xref: /linux/net/core/dev.c (revision 3a598264436e94c410c413088a7873fcad33616c)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
134 
135 #include "net-sysfs.h"
136 
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139 
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142 
143 /*
144  *	The list of packet types we will receive (as opposed to discard)
145  *	and the routines to invoke.
146  *
147  *	Why 16. Because with 16 the only overlap we get on a hash of the
148  *	low nibble of the protocol value is RARP/SNAP/X.25.
149  *
150  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
151  *             sure which should go first, but I bet it won't make much
152  *             difference if we are running VLANs.  The good news is that
153  *             this protocol won't be in the list unless compiled in, so
154  *             the average user (w/out VLANs) will not be adversely affected.
155  *             --BLG
156  *
157  *		0800	IP
158  *		8100    802.1Q VLAN
159  *		0001	802.3
160  *		0002	AX.25
161  *		0004	802.2
162  *		8035	RARP
163  *		0005	SNAP
164  *		0805	X.25
165  *		0806	ARP
166  *		8137	IPX
167  *		0009	Localtalk
168  *		86DD	IPv6
169  */
170 
171 #define PTYPE_HASH_SIZE	(16)
172 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
173 
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly;	/* Taps */
177 
178 /*
179  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180  * semaphore.
181  *
182  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183  *
184  * Writers must hold the rtnl semaphore while they loop through the
185  * dev_base_head list, and hold dev_base_lock for writing when they do the
186  * actual updates.  This allows pure readers to access the list even
187  * while a writer is preparing to update it.
188  *
189  * To put it another way, dev_base_lock is held for writing only to
190  * protect against pure readers; the rtnl semaphore provides the
191  * protection against other writers.
192  *
193  * See, for example usages, register_netdevice() and
194  * unregister_netdevice(), which must be called with the rtnl
195  * semaphore held.
196  */
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
199 
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205 
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210 
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 	spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217 
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
227 {
228 	struct net *net = dev_net(dev);
229 
230 	ASSERT_RTNL();
231 
232 	write_lock_bh(&dev_base_lock);
233 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 	hlist_add_head_rcu(&dev->index_hlist,
236 			   dev_index_hash(net, dev->ifindex));
237 	write_unlock_bh(&dev_base_lock);
238 	return 0;
239 }
240 
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 	ASSERT_RTNL();
247 
248 	/* Unlink dev from the device chain */
249 	write_lock_bh(&dev_base_lock);
250 	list_del_rcu(&dev->dev_list);
251 	hlist_del_rcu(&dev->name_hlist);
252 	hlist_del_rcu(&dev->index_hlist);
253 	write_unlock_bh(&dev_base_lock);
254 }
255 
256 /*
257  *	Our notifier list
258  */
259 
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261 
262 /*
263  *	Device drivers call our routines to queue packets here. We empty the
264  *	queue in the local softnet handler.
265  */
266 
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269 
270 #ifdef CONFIG_LOCKDEP
271 /*
272  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273  * according to dev->type
274  */
275 static const unsigned short netdev_lock_type[] =
276 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 	 ARPHRD_VOID, ARPHRD_NONE};
292 
293 static const char *const netdev_lock_name[] =
294 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 	 "_xmit_VOID", "_xmit_NONE"};
310 
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 	int i;
317 
318 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 		if (netdev_lock_type[i] == dev_type)
320 			return i;
321 	/* the last key is used by default */
322 	return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324 
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 						 unsigned short dev_type)
327 {
328 	int i;
329 
330 	i = netdev_lock_pos(dev_type);
331 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 				   netdev_lock_name[i]);
333 }
334 
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev->type);
340 	lockdep_set_class_and_name(&dev->addr_list_lock,
341 				   &netdev_addr_lock_key[i],
342 				   netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 						 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353 
354 /*******************************************************************************
355 
356 		Protocol management and registration routines
357 
358 *******************************************************************************/
359 
360 /*
361  *	Add a protocol ID to the list. Now that the input handler is
362  *	smarter we can dispense with all the messy stuff that used to be
363  *	here.
364  *
365  *	BEWARE!!! Protocol handlers, mangling input packets,
366  *	MUST BE last in hash buckets and checking protocol handlers
367  *	MUST start from promiscuous ptype_all chain in net_bh.
368  *	It is true now, do not change it.
369  *	Explanation follows: if protocol handler, mangling packet, will
370  *	be the first on list, it is not able to sense, that packet
371  *	is cloned and should be copied-on-write, so that it will
372  *	change it and subsequent readers will get broken packet.
373  *							--ANK (980803)
374  */
375 
376 /**
377  *	dev_add_pack - add packet handler
378  *	@pt: packet type declaration
379  *
380  *	Add a protocol handler to the networking stack. The passed &packet_type
381  *	is linked into kernel lists and may not be freed until it has been
382  *	removed from the kernel lists.
383  *
384  *	This call does not sleep therefore it can not
385  *	guarantee all CPU's that are in middle of receiving packets
386  *	will see the new packet type (until the next received packet).
387  */
388 
389 void dev_add_pack(struct packet_type *pt)
390 {
391 	int hash;
392 
393 	spin_lock_bh(&ptype_lock);
394 	if (pt->type == htons(ETH_P_ALL))
395 		list_add_rcu(&pt->list, &ptype_all);
396 	else {
397 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 		list_add_rcu(&pt->list, &ptype_base[hash]);
399 	}
400 	spin_unlock_bh(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403 
404 /**
405  *	__dev_remove_pack	 - remove packet handler
406  *	@pt: packet type declaration
407  *
408  *	Remove a protocol handler that was previously added to the kernel
409  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
410  *	from the kernel lists and can be freed or reused once this function
411  *	returns.
412  *
413  *      The packet type might still be in use by receivers
414  *	and must not be freed until after all the CPU's have gone
415  *	through a quiescent state.
416  */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 	struct list_head *head;
420 	struct packet_type *pt1;
421 
422 	spin_lock_bh(&ptype_lock);
423 
424 	if (pt->type == htons(ETH_P_ALL))
425 		head = &ptype_all;
426 	else
427 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428 
429 	list_for_each_entry(pt1, head, list) {
430 		if (pt == pt1) {
431 			list_del_rcu(&pt->list);
432 			goto out;
433 		}
434 	}
435 
436 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 	spin_unlock_bh(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441 
442 /**
443  *	dev_remove_pack	 - remove packet handler
444  *	@pt: packet type declaration
445  *
446  *	Remove a protocol handler that was previously added to the kernel
447  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *	from the kernel lists and can be freed or reused once this function
449  *	returns.
450  *
451  *	This call sleeps to guarantee that no CPU is looking at the packet
452  *	type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 	__dev_remove_pack(pt);
457 
458 	synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461 
462 /******************************************************************************
463 
464 		      Device Boot-time Settings Routines
465 
466 *******************************************************************************/
467 
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470 
471 /**
472  *	netdev_boot_setup_add	- add new setup entry
473  *	@name: name of the device
474  *	@map: configured settings for the device
475  *
476  *	Adds new setup entry to the dev_boot_setup list.  The function
477  *	returns 0 on error and 1 on success.  This is a generic routine to
478  *	all netdevices.
479  */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 	struct netdev_boot_setup *s;
483 	int i;
484 
485 	s = dev_boot_setup;
486 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 			memset(s[i].name, 0, sizeof(s[i].name));
489 			strlcpy(s[i].name, name, IFNAMSIZ);
490 			memcpy(&s[i].map, map, sizeof(s[i].map));
491 			break;
492 		}
493 	}
494 
495 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497 
498 /**
499  *	netdev_boot_setup_check	- check boot time settings
500  *	@dev: the netdevice
501  *
502  * 	Check boot time settings for the device.
503  *	The found settings are set for the device to be used
504  *	later in the device probing.
505  *	Returns 0 if no settings found, 1 if they are.
506  */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 	struct netdev_boot_setup *s = dev_boot_setup;
510 	int i;
511 
512 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 		    !strcmp(dev->name, s[i].name)) {
515 			dev->irq 	= s[i].map.irq;
516 			dev->base_addr 	= s[i].map.base_addr;
517 			dev->mem_start 	= s[i].map.mem_start;
518 			dev->mem_end 	= s[i].map.mem_end;
519 			return 1;
520 		}
521 	}
522 	return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525 
526 
527 /**
528  *	netdev_boot_base	- get address from boot time settings
529  *	@prefix: prefix for network device
530  *	@unit: id for network device
531  *
532  * 	Check boot time settings for the base address of device.
533  *	The found settings are set for the device to be used
534  *	later in the device probing.
535  *	Returns 0 if no settings found.
536  */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 	const struct netdev_boot_setup *s = dev_boot_setup;
540 	char name[IFNAMSIZ];
541 	int i;
542 
543 	sprintf(name, "%s%d", prefix, unit);
544 
545 	/*
546 	 * If device already registered then return base of 1
547 	 * to indicate not to probe for this interface
548 	 */
549 	if (__dev_get_by_name(&init_net, name))
550 		return 1;
551 
552 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 		if (!strcmp(name, s[i].name))
554 			return s[i].map.base_addr;
555 	return 0;
556 }
557 
558 /*
559  * Saves at boot time configured settings for any netdevice.
560  */
561 int __init netdev_boot_setup(char *str)
562 {
563 	int ints[5];
564 	struct ifmap map;
565 
566 	str = get_options(str, ARRAY_SIZE(ints), ints);
567 	if (!str || !*str)
568 		return 0;
569 
570 	/* Save settings */
571 	memset(&map, 0, sizeof(map));
572 	if (ints[0] > 0)
573 		map.irq = ints[1];
574 	if (ints[0] > 1)
575 		map.base_addr = ints[2];
576 	if (ints[0] > 2)
577 		map.mem_start = ints[3];
578 	if (ints[0] > 3)
579 		map.mem_end = ints[4];
580 
581 	/* Add new entry to the list */
582 	return netdev_boot_setup_add(str, &map);
583 }
584 
585 __setup("netdev=", netdev_boot_setup);
586 
587 /*******************************************************************************
588 
589 			    Device Interface Subroutines
590 
591 *******************************************************************************/
592 
593 /**
594  *	__dev_get_by_name	- find a device by its name
595  *	@net: the applicable net namespace
596  *	@name: name to find
597  *
598  *	Find an interface by name. Must be called under RTNL semaphore
599  *	or @dev_base_lock. If the name is found a pointer to the device
600  *	is returned. If the name is not found then %NULL is returned. The
601  *	reference counters are not incremented so the caller must be
602  *	careful with locks.
603  */
604 
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 	struct hlist_node *p;
608 	struct net_device *dev;
609 	struct hlist_head *head = dev_name_hash(net, name);
610 
611 	hlist_for_each_entry(dev, p, head, name_hlist)
612 		if (!strncmp(dev->name, name, IFNAMSIZ))
613 			return dev;
614 
615 	return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618 
619 /**
620  *	dev_get_by_name_rcu	- find a device by its name
621  *	@net: the applicable net namespace
622  *	@name: name to find
623  *
624  *	Find an interface by name.
625  *	If the name is found a pointer to the device is returned.
626  * 	If the name is not found then %NULL is returned.
627  *	The reference counters are not incremented so the caller must be
628  *	careful with locks. The caller must hold RCU lock.
629  */
630 
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 	struct hlist_node *p;
634 	struct net_device *dev;
635 	struct hlist_head *head = dev_name_hash(net, name);
636 
637 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 		if (!strncmp(dev->name, name, IFNAMSIZ))
639 			return dev;
640 
641 	return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644 
645 /**
646  *	dev_get_by_name		- find a device by its name
647  *	@net: the applicable net namespace
648  *	@name: name to find
649  *
650  *	Find an interface by name. This can be called from any
651  *	context and does its own locking. The returned handle has
652  *	the usage count incremented and the caller must use dev_put() to
653  *	release it when it is no longer needed. %NULL is returned if no
654  *	matching device is found.
655  */
656 
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 	struct net_device *dev;
660 
661 	rcu_read_lock();
662 	dev = dev_get_by_name_rcu(net, name);
663 	if (dev)
664 		dev_hold(dev);
665 	rcu_read_unlock();
666 	return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669 
670 /**
671  *	__dev_get_by_index - find a device by its ifindex
672  *	@net: the applicable net namespace
673  *	@ifindex: index of device
674  *
675  *	Search for an interface by index. Returns %NULL if the device
676  *	is not found or a pointer to the device. The device has not
677  *	had its reference counter increased so the caller must be careful
678  *	about locking. The caller must hold either the RTNL semaphore
679  *	or @dev_base_lock.
680  */
681 
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 	struct hlist_node *p;
685 	struct net_device *dev;
686 	struct hlist_head *head = dev_index_hash(net, ifindex);
687 
688 	hlist_for_each_entry(dev, p, head, index_hlist)
689 		if (dev->ifindex == ifindex)
690 			return dev;
691 
692 	return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695 
696 /**
697  *	dev_get_by_index_rcu - find a device by its ifindex
698  *	@net: the applicable net namespace
699  *	@ifindex: index of device
700  *
701  *	Search for an interface by index. Returns %NULL if the device
702  *	is not found or a pointer to the device. The device has not
703  *	had its reference counter increased so the caller must be careful
704  *	about locking. The caller must hold RCU lock.
705  */
706 
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 	struct hlist_node *p;
710 	struct net_device *dev;
711 	struct hlist_head *head = dev_index_hash(net, ifindex);
712 
713 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 		if (dev->ifindex == ifindex)
715 			return dev;
716 
717 	return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720 
721 
722 /**
723  *	dev_get_by_index - find a device by its ifindex
724  *	@net: the applicable net namespace
725  *	@ifindex: index of device
726  *
727  *	Search for an interface by index. Returns NULL if the device
728  *	is not found or a pointer to the device. The device returned has
729  *	had a reference added and the pointer is safe until the user calls
730  *	dev_put to indicate they have finished with it.
731  */
732 
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 	struct net_device *dev;
736 
737 	rcu_read_lock();
738 	dev = dev_get_by_index_rcu(net, ifindex);
739 	if (dev)
740 		dev_hold(dev);
741 	rcu_read_unlock();
742 	return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745 
746 /**
747  *	dev_getbyhwaddr - find a device by its hardware address
748  *	@net: the applicable net namespace
749  *	@type: media type of device
750  *	@ha: hardware address
751  *
752  *	Search for an interface by MAC address. Returns NULL if the device
753  *	is not found or a pointer to the device. The caller must hold the
754  *	rtnl semaphore. The returned device has not had its ref count increased
755  *	and the caller must therefore be careful about locking
756  *
757  *	BUGS:
758  *	If the API was consistent this would be __dev_get_by_hwaddr
759  */
760 
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762 {
763 	struct net_device *dev;
764 
765 	ASSERT_RTNL();
766 
767 	for_each_netdev(net, dev)
768 		if (dev->type == type &&
769 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
770 			return dev;
771 
772 	return NULL;
773 }
774 EXPORT_SYMBOL(dev_getbyhwaddr);
775 
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777 {
778 	struct net_device *dev;
779 
780 	ASSERT_RTNL();
781 	for_each_netdev(net, dev)
782 		if (dev->type == type)
783 			return dev;
784 
785 	return NULL;
786 }
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788 
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 	struct net_device *dev, *ret = NULL;
792 
793 	rcu_read_lock();
794 	for_each_netdev_rcu(net, dev)
795 		if (dev->type == type) {
796 			dev_hold(dev);
797 			ret = dev;
798 			break;
799 		}
800 	rcu_read_unlock();
801 	return ret;
802 }
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804 
805 /**
806  *	dev_get_by_flags - find any device with given flags
807  *	@net: the applicable net namespace
808  *	@if_flags: IFF_* values
809  *	@mask: bitmask of bits in if_flags to check
810  *
811  *	Search for any interface with the given flags. Returns NULL if a device
812  *	is not found or a pointer to the device. The device returned has
813  *	had a reference added and the pointer is safe until the user calls
814  *	dev_put to indicate they have finished with it.
815  */
816 
817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 				    unsigned short mask)
819 {
820 	struct net_device *dev, *ret;
821 
822 	ret = NULL;
823 	rcu_read_lock();
824 	for_each_netdev_rcu(net, dev) {
825 		if (((dev->flags ^ if_flags) & mask) == 0) {
826 			dev_hold(dev);
827 			ret = dev;
828 			break;
829 		}
830 	}
831 	rcu_read_unlock();
832 	return ret;
833 }
834 EXPORT_SYMBOL(dev_get_by_flags);
835 
836 /**
837  *	dev_valid_name - check if name is okay for network device
838  *	@name: name string
839  *
840  *	Network device names need to be valid file names to
841  *	to allow sysfs to work.  We also disallow any kind of
842  *	whitespace.
843  */
844 int dev_valid_name(const char *name)
845 {
846 	if (*name == '\0')
847 		return 0;
848 	if (strlen(name) >= IFNAMSIZ)
849 		return 0;
850 	if (!strcmp(name, ".") || !strcmp(name, ".."))
851 		return 0;
852 
853 	while (*name) {
854 		if (*name == '/' || isspace(*name))
855 			return 0;
856 		name++;
857 	}
858 	return 1;
859 }
860 EXPORT_SYMBOL(dev_valid_name);
861 
862 /**
863  *	__dev_alloc_name - allocate a name for a device
864  *	@net: network namespace to allocate the device name in
865  *	@name: name format string
866  *	@buf:  scratch buffer and result name string
867  *
868  *	Passed a format string - eg "lt%d" it will try and find a suitable
869  *	id. It scans list of devices to build up a free map, then chooses
870  *	the first empty slot. The caller must hold the dev_base or rtnl lock
871  *	while allocating the name and adding the device in order to avoid
872  *	duplicates.
873  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874  *	Returns the number of the unit assigned or a negative errno code.
875  */
876 
877 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878 {
879 	int i = 0;
880 	const char *p;
881 	const int max_netdevices = 8*PAGE_SIZE;
882 	unsigned long *inuse;
883 	struct net_device *d;
884 
885 	p = strnchr(name, IFNAMSIZ-1, '%');
886 	if (p) {
887 		/*
888 		 * Verify the string as this thing may have come from
889 		 * the user.  There must be either one "%d" and no other "%"
890 		 * characters.
891 		 */
892 		if (p[1] != 'd' || strchr(p + 2, '%'))
893 			return -EINVAL;
894 
895 		/* Use one page as a bit array of possible slots */
896 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 		if (!inuse)
898 			return -ENOMEM;
899 
900 		for_each_netdev(net, d) {
901 			if (!sscanf(d->name, name, &i))
902 				continue;
903 			if (i < 0 || i >= max_netdevices)
904 				continue;
905 
906 			/*  avoid cases where sscanf is not exact inverse of printf */
907 			snprintf(buf, IFNAMSIZ, name, i);
908 			if (!strncmp(buf, d->name, IFNAMSIZ))
909 				set_bit(i, inuse);
910 		}
911 
912 		i = find_first_zero_bit(inuse, max_netdevices);
913 		free_page((unsigned long) inuse);
914 	}
915 
916 	if (buf != name)
917 		snprintf(buf, IFNAMSIZ, name, i);
918 	if (!__dev_get_by_name(net, buf))
919 		return i;
920 
921 	/* It is possible to run out of possible slots
922 	 * when the name is long and there isn't enough space left
923 	 * for the digits, or if all bits are used.
924 	 */
925 	return -ENFILE;
926 }
927 
928 /**
929  *	dev_alloc_name - allocate a name for a device
930  *	@dev: device
931  *	@name: name format string
932  *
933  *	Passed a format string - eg "lt%d" it will try and find a suitable
934  *	id. It scans list of devices to build up a free map, then chooses
935  *	the first empty slot. The caller must hold the dev_base or rtnl lock
936  *	while allocating the name and adding the device in order to avoid
937  *	duplicates.
938  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939  *	Returns the number of the unit assigned or a negative errno code.
940  */
941 
942 int dev_alloc_name(struct net_device *dev, const char *name)
943 {
944 	char buf[IFNAMSIZ];
945 	struct net *net;
946 	int ret;
947 
948 	BUG_ON(!dev_net(dev));
949 	net = dev_net(dev);
950 	ret = __dev_alloc_name(net, name, buf);
951 	if (ret >= 0)
952 		strlcpy(dev->name, buf, IFNAMSIZ);
953 	return ret;
954 }
955 EXPORT_SYMBOL(dev_alloc_name);
956 
957 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
958 {
959 	struct net *net;
960 
961 	BUG_ON(!dev_net(dev));
962 	net = dev_net(dev);
963 
964 	if (!dev_valid_name(name))
965 		return -EINVAL;
966 
967 	if (fmt && strchr(name, '%'))
968 		return dev_alloc_name(dev, name);
969 	else if (__dev_get_by_name(net, name))
970 		return -EEXIST;
971 	else if (dev->name != name)
972 		strlcpy(dev->name, name, IFNAMSIZ);
973 
974 	return 0;
975 }
976 
977 /**
978  *	dev_change_name - change name of a device
979  *	@dev: device
980  *	@newname: name (or format string) must be at least IFNAMSIZ
981  *
982  *	Change name of a device, can pass format strings "eth%d".
983  *	for wildcarding.
984  */
985 int dev_change_name(struct net_device *dev, const char *newname)
986 {
987 	char oldname[IFNAMSIZ];
988 	int err = 0;
989 	int ret;
990 	struct net *net;
991 
992 	ASSERT_RTNL();
993 	BUG_ON(!dev_net(dev));
994 
995 	net = dev_net(dev);
996 	if (dev->flags & IFF_UP)
997 		return -EBUSY;
998 
999 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1000 		return 0;
1001 
1002 	memcpy(oldname, dev->name, IFNAMSIZ);
1003 
1004 	err = dev_get_valid_name(dev, newname, 1);
1005 	if (err < 0)
1006 		return err;
1007 
1008 rollback:
1009 	ret = device_rename(&dev->dev, dev->name);
1010 	if (ret) {
1011 		memcpy(dev->name, oldname, IFNAMSIZ);
1012 		return ret;
1013 	}
1014 
1015 	write_lock_bh(&dev_base_lock);
1016 	hlist_del(&dev->name_hlist);
1017 	write_unlock_bh(&dev_base_lock);
1018 
1019 	synchronize_rcu();
1020 
1021 	write_lock_bh(&dev_base_lock);
1022 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1023 	write_unlock_bh(&dev_base_lock);
1024 
1025 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1026 	ret = notifier_to_errno(ret);
1027 
1028 	if (ret) {
1029 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1030 		if (err >= 0) {
1031 			err = ret;
1032 			memcpy(dev->name, oldname, IFNAMSIZ);
1033 			goto rollback;
1034 		} else {
1035 			printk(KERN_ERR
1036 			       "%s: name change rollback failed: %d.\n",
1037 			       dev->name, ret);
1038 		}
1039 	}
1040 
1041 	return err;
1042 }
1043 
1044 /**
1045  *	dev_set_alias - change ifalias of a device
1046  *	@dev: device
1047  *	@alias: name up to IFALIASZ
1048  *	@len: limit of bytes to copy from info
1049  *
1050  *	Set ifalias for a device,
1051  */
1052 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1053 {
1054 	ASSERT_RTNL();
1055 
1056 	if (len >= IFALIASZ)
1057 		return -EINVAL;
1058 
1059 	if (!len) {
1060 		if (dev->ifalias) {
1061 			kfree(dev->ifalias);
1062 			dev->ifalias = NULL;
1063 		}
1064 		return 0;
1065 	}
1066 
1067 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1068 	if (!dev->ifalias)
1069 		return -ENOMEM;
1070 
1071 	strlcpy(dev->ifalias, alias, len+1);
1072 	return len;
1073 }
1074 
1075 
1076 /**
1077  *	netdev_features_change - device changes features
1078  *	@dev: device to cause notification
1079  *
1080  *	Called to indicate a device has changed features.
1081  */
1082 void netdev_features_change(struct net_device *dev)
1083 {
1084 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1085 }
1086 EXPORT_SYMBOL(netdev_features_change);
1087 
1088 /**
1089  *	netdev_state_change - device changes state
1090  *	@dev: device to cause notification
1091  *
1092  *	Called to indicate a device has changed state. This function calls
1093  *	the notifier chains for netdev_chain and sends a NEWLINK message
1094  *	to the routing socket.
1095  */
1096 void netdev_state_change(struct net_device *dev)
1097 {
1098 	if (dev->flags & IFF_UP) {
1099 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1100 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1101 	}
1102 }
1103 EXPORT_SYMBOL(netdev_state_change);
1104 
1105 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1106 {
1107 	return call_netdevice_notifiers(event, dev);
1108 }
1109 EXPORT_SYMBOL(netdev_bonding_change);
1110 
1111 /**
1112  *	dev_load 	- load a network module
1113  *	@net: the applicable net namespace
1114  *	@name: name of interface
1115  *
1116  *	If a network interface is not present and the process has suitable
1117  *	privileges this function loads the module. If module loading is not
1118  *	available in this kernel then it becomes a nop.
1119  */
1120 
1121 void dev_load(struct net *net, const char *name)
1122 {
1123 	struct net_device *dev;
1124 
1125 	rcu_read_lock();
1126 	dev = dev_get_by_name_rcu(net, name);
1127 	rcu_read_unlock();
1128 
1129 	if (!dev && capable(CAP_NET_ADMIN))
1130 		request_module("%s", name);
1131 }
1132 EXPORT_SYMBOL(dev_load);
1133 
1134 static int __dev_open(struct net_device *dev)
1135 {
1136 	const struct net_device_ops *ops = dev->netdev_ops;
1137 	int ret;
1138 
1139 	ASSERT_RTNL();
1140 
1141 	/*
1142 	 *	Is it even present?
1143 	 */
1144 	if (!netif_device_present(dev))
1145 		return -ENODEV;
1146 
1147 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1148 	ret = notifier_to_errno(ret);
1149 	if (ret)
1150 		return ret;
1151 
1152 	/*
1153 	 *	Call device private open method
1154 	 */
1155 	set_bit(__LINK_STATE_START, &dev->state);
1156 
1157 	if (ops->ndo_validate_addr)
1158 		ret = ops->ndo_validate_addr(dev);
1159 
1160 	if (!ret && ops->ndo_open)
1161 		ret = ops->ndo_open(dev);
1162 
1163 	/*
1164 	 *	If it went open OK then:
1165 	 */
1166 
1167 	if (ret)
1168 		clear_bit(__LINK_STATE_START, &dev->state);
1169 	else {
1170 		/*
1171 		 *	Set the flags.
1172 		 */
1173 		dev->flags |= IFF_UP;
1174 
1175 		/*
1176 		 *	Enable NET_DMA
1177 		 */
1178 		net_dmaengine_get();
1179 
1180 		/*
1181 		 *	Initialize multicasting status
1182 		 */
1183 		dev_set_rx_mode(dev);
1184 
1185 		/*
1186 		 *	Wakeup transmit queue engine
1187 		 */
1188 		dev_activate(dev);
1189 	}
1190 
1191 	return ret;
1192 }
1193 
1194 /**
1195  *	dev_open	- prepare an interface for use.
1196  *	@dev:	device to open
1197  *
1198  *	Takes a device from down to up state. The device's private open
1199  *	function is invoked and then the multicast lists are loaded. Finally
1200  *	the device is moved into the up state and a %NETDEV_UP message is
1201  *	sent to the netdev notifier chain.
1202  *
1203  *	Calling this function on an active interface is a nop. On a failure
1204  *	a negative errno code is returned.
1205  */
1206 int dev_open(struct net_device *dev)
1207 {
1208 	int ret;
1209 
1210 	/*
1211 	 *	Is it already up?
1212 	 */
1213 	if (dev->flags & IFF_UP)
1214 		return 0;
1215 
1216 	/*
1217 	 *	Open device
1218 	 */
1219 	ret = __dev_open(dev);
1220 	if (ret < 0)
1221 		return ret;
1222 
1223 	/*
1224 	 *	... and announce new interface.
1225 	 */
1226 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1227 	call_netdevice_notifiers(NETDEV_UP, dev);
1228 
1229 	return ret;
1230 }
1231 EXPORT_SYMBOL(dev_open);
1232 
1233 static int __dev_close(struct net_device *dev)
1234 {
1235 	const struct net_device_ops *ops = dev->netdev_ops;
1236 
1237 	ASSERT_RTNL();
1238 	might_sleep();
1239 
1240 	/*
1241 	 *	Tell people we are going down, so that they can
1242 	 *	prepare to death, when device is still operating.
1243 	 */
1244 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1245 
1246 	clear_bit(__LINK_STATE_START, &dev->state);
1247 
1248 	/* Synchronize to scheduled poll. We cannot touch poll list,
1249 	 * it can be even on different cpu. So just clear netif_running().
1250 	 *
1251 	 * dev->stop() will invoke napi_disable() on all of it's
1252 	 * napi_struct instances on this device.
1253 	 */
1254 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1255 
1256 	dev_deactivate(dev);
1257 
1258 	/*
1259 	 *	Call the device specific close. This cannot fail.
1260 	 *	Only if device is UP
1261 	 *
1262 	 *	We allow it to be called even after a DETACH hot-plug
1263 	 *	event.
1264 	 */
1265 	if (ops->ndo_stop)
1266 		ops->ndo_stop(dev);
1267 
1268 	/*
1269 	 *	Device is now down.
1270 	 */
1271 
1272 	dev->flags &= ~IFF_UP;
1273 
1274 	/*
1275 	 *	Shutdown NET_DMA
1276 	 */
1277 	net_dmaengine_put();
1278 
1279 	return 0;
1280 }
1281 
1282 /**
1283  *	dev_close - shutdown an interface.
1284  *	@dev: device to shutdown
1285  *
1286  *	This function moves an active device into down state. A
1287  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1288  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1289  *	chain.
1290  */
1291 int dev_close(struct net_device *dev)
1292 {
1293 	if (!(dev->flags & IFF_UP))
1294 		return 0;
1295 
1296 	__dev_close(dev);
1297 
1298 	/*
1299 	 * Tell people we are down
1300 	 */
1301 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1302 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1303 
1304 	return 0;
1305 }
1306 EXPORT_SYMBOL(dev_close);
1307 
1308 
1309 /**
1310  *	dev_disable_lro - disable Large Receive Offload on a device
1311  *	@dev: device
1312  *
1313  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1314  *	called under RTNL.  This is needed if received packets may be
1315  *	forwarded to another interface.
1316  */
1317 void dev_disable_lro(struct net_device *dev)
1318 {
1319 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1320 	    dev->ethtool_ops->set_flags) {
1321 		u32 flags = dev->ethtool_ops->get_flags(dev);
1322 		if (flags & ETH_FLAG_LRO) {
1323 			flags &= ~ETH_FLAG_LRO;
1324 			dev->ethtool_ops->set_flags(dev, flags);
1325 		}
1326 	}
1327 	WARN_ON(dev->features & NETIF_F_LRO);
1328 }
1329 EXPORT_SYMBOL(dev_disable_lro);
1330 
1331 
1332 static int dev_boot_phase = 1;
1333 
1334 /*
1335  *	Device change register/unregister. These are not inline or static
1336  *	as we export them to the world.
1337  */
1338 
1339 /**
1340  *	register_netdevice_notifier - register a network notifier block
1341  *	@nb: notifier
1342  *
1343  *	Register a notifier to be called when network device events occur.
1344  *	The notifier passed is linked into the kernel structures and must
1345  *	not be reused until it has been unregistered. A negative errno code
1346  *	is returned on a failure.
1347  *
1348  * 	When registered all registration and up events are replayed
1349  *	to the new notifier to allow device to have a race free
1350  *	view of the network device list.
1351  */
1352 
1353 int register_netdevice_notifier(struct notifier_block *nb)
1354 {
1355 	struct net_device *dev;
1356 	struct net_device *last;
1357 	struct net *net;
1358 	int err;
1359 
1360 	rtnl_lock();
1361 	err = raw_notifier_chain_register(&netdev_chain, nb);
1362 	if (err)
1363 		goto unlock;
1364 	if (dev_boot_phase)
1365 		goto unlock;
1366 	for_each_net(net) {
1367 		for_each_netdev(net, dev) {
1368 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1369 			err = notifier_to_errno(err);
1370 			if (err)
1371 				goto rollback;
1372 
1373 			if (!(dev->flags & IFF_UP))
1374 				continue;
1375 
1376 			nb->notifier_call(nb, NETDEV_UP, dev);
1377 		}
1378 	}
1379 
1380 unlock:
1381 	rtnl_unlock();
1382 	return err;
1383 
1384 rollback:
1385 	last = dev;
1386 	for_each_net(net) {
1387 		for_each_netdev(net, dev) {
1388 			if (dev == last)
1389 				break;
1390 
1391 			if (dev->flags & IFF_UP) {
1392 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1393 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1394 			}
1395 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1396 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1397 		}
1398 	}
1399 
1400 	raw_notifier_chain_unregister(&netdev_chain, nb);
1401 	goto unlock;
1402 }
1403 EXPORT_SYMBOL(register_netdevice_notifier);
1404 
1405 /**
1406  *	unregister_netdevice_notifier - unregister a network notifier block
1407  *	@nb: notifier
1408  *
1409  *	Unregister a notifier previously registered by
1410  *	register_netdevice_notifier(). The notifier is unlinked into the
1411  *	kernel structures and may then be reused. A negative errno code
1412  *	is returned on a failure.
1413  */
1414 
1415 int unregister_netdevice_notifier(struct notifier_block *nb)
1416 {
1417 	int err;
1418 
1419 	rtnl_lock();
1420 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1421 	rtnl_unlock();
1422 	return err;
1423 }
1424 EXPORT_SYMBOL(unregister_netdevice_notifier);
1425 
1426 /**
1427  *	call_netdevice_notifiers - call all network notifier blocks
1428  *      @val: value passed unmodified to notifier function
1429  *      @dev: net_device pointer passed unmodified to notifier function
1430  *
1431  *	Call all network notifier blocks.  Parameters and return value
1432  *	are as for raw_notifier_call_chain().
1433  */
1434 
1435 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1436 {
1437 	ASSERT_RTNL();
1438 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1439 }
1440 
1441 /* When > 0 there are consumers of rx skb time stamps */
1442 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1443 
1444 void net_enable_timestamp(void)
1445 {
1446 	atomic_inc(&netstamp_needed);
1447 }
1448 EXPORT_SYMBOL(net_enable_timestamp);
1449 
1450 void net_disable_timestamp(void)
1451 {
1452 	atomic_dec(&netstamp_needed);
1453 }
1454 EXPORT_SYMBOL(net_disable_timestamp);
1455 
1456 static inline void net_timestamp_set(struct sk_buff *skb)
1457 {
1458 	if (atomic_read(&netstamp_needed))
1459 		__net_timestamp(skb);
1460 	else
1461 		skb->tstamp.tv64 = 0;
1462 }
1463 
1464 static inline void net_timestamp_check(struct sk_buff *skb)
1465 {
1466 	if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1467 		__net_timestamp(skb);
1468 }
1469 
1470 /**
1471  * dev_forward_skb - loopback an skb to another netif
1472  *
1473  * @dev: destination network device
1474  * @skb: buffer to forward
1475  *
1476  * return values:
1477  *	NET_RX_SUCCESS	(no congestion)
1478  *	NET_RX_DROP     (packet was dropped, but freed)
1479  *
1480  * dev_forward_skb can be used for injecting an skb from the
1481  * start_xmit function of one device into the receive queue
1482  * of another device.
1483  *
1484  * The receiving device may be in another namespace, so
1485  * we have to clear all information in the skb that could
1486  * impact namespace isolation.
1487  */
1488 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1489 {
1490 	skb_orphan(skb);
1491 
1492 	if (!(dev->flags & IFF_UP) ||
1493 	    (skb->len > (dev->mtu + dev->hard_header_len))) {
1494 		kfree_skb(skb);
1495 		return NET_RX_DROP;
1496 	}
1497 	skb_set_dev(skb, dev);
1498 	skb->tstamp.tv64 = 0;
1499 	skb->pkt_type = PACKET_HOST;
1500 	skb->protocol = eth_type_trans(skb, dev);
1501 	return netif_rx(skb);
1502 }
1503 EXPORT_SYMBOL_GPL(dev_forward_skb);
1504 
1505 /*
1506  *	Support routine. Sends outgoing frames to any network
1507  *	taps currently in use.
1508  */
1509 
1510 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1511 {
1512 	struct packet_type *ptype;
1513 
1514 #ifdef CONFIG_NET_CLS_ACT
1515 	if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1516 		net_timestamp_set(skb);
1517 #else
1518 	net_timestamp_set(skb);
1519 #endif
1520 
1521 	rcu_read_lock();
1522 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1523 		/* Never send packets back to the socket
1524 		 * they originated from - MvS (miquels@drinkel.ow.org)
1525 		 */
1526 		if ((ptype->dev == dev || !ptype->dev) &&
1527 		    (ptype->af_packet_priv == NULL ||
1528 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1529 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1530 			if (!skb2)
1531 				break;
1532 
1533 			/* skb->nh should be correctly
1534 			   set by sender, so that the second statement is
1535 			   just protection against buggy protocols.
1536 			 */
1537 			skb_reset_mac_header(skb2);
1538 
1539 			if (skb_network_header(skb2) < skb2->data ||
1540 			    skb2->network_header > skb2->tail) {
1541 				if (net_ratelimit())
1542 					printk(KERN_CRIT "protocol %04x is "
1543 					       "buggy, dev %s\n",
1544 					       skb2->protocol, dev->name);
1545 				skb_reset_network_header(skb2);
1546 			}
1547 
1548 			skb2->transport_header = skb2->network_header;
1549 			skb2->pkt_type = PACKET_OUTGOING;
1550 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1551 		}
1552 	}
1553 	rcu_read_unlock();
1554 }
1555 
1556 
1557 static inline void __netif_reschedule(struct Qdisc *q)
1558 {
1559 	struct softnet_data *sd;
1560 	unsigned long flags;
1561 
1562 	local_irq_save(flags);
1563 	sd = &__get_cpu_var(softnet_data);
1564 	q->next_sched = NULL;
1565 	*sd->output_queue_tailp = q;
1566 	sd->output_queue_tailp = &q->next_sched;
1567 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1568 	local_irq_restore(flags);
1569 }
1570 
1571 void __netif_schedule(struct Qdisc *q)
1572 {
1573 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1574 		__netif_reschedule(q);
1575 }
1576 EXPORT_SYMBOL(__netif_schedule);
1577 
1578 void dev_kfree_skb_irq(struct sk_buff *skb)
1579 {
1580 	if (atomic_dec_and_test(&skb->users)) {
1581 		struct softnet_data *sd;
1582 		unsigned long flags;
1583 
1584 		local_irq_save(flags);
1585 		sd = &__get_cpu_var(softnet_data);
1586 		skb->next = sd->completion_queue;
1587 		sd->completion_queue = skb;
1588 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1589 		local_irq_restore(flags);
1590 	}
1591 }
1592 EXPORT_SYMBOL(dev_kfree_skb_irq);
1593 
1594 void dev_kfree_skb_any(struct sk_buff *skb)
1595 {
1596 	if (in_irq() || irqs_disabled())
1597 		dev_kfree_skb_irq(skb);
1598 	else
1599 		dev_kfree_skb(skb);
1600 }
1601 EXPORT_SYMBOL(dev_kfree_skb_any);
1602 
1603 
1604 /**
1605  * netif_device_detach - mark device as removed
1606  * @dev: network device
1607  *
1608  * Mark device as removed from system and therefore no longer available.
1609  */
1610 void netif_device_detach(struct net_device *dev)
1611 {
1612 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1613 	    netif_running(dev)) {
1614 		netif_tx_stop_all_queues(dev);
1615 	}
1616 }
1617 EXPORT_SYMBOL(netif_device_detach);
1618 
1619 /**
1620  * netif_device_attach - mark device as attached
1621  * @dev: network device
1622  *
1623  * Mark device as attached from system and restart if needed.
1624  */
1625 void netif_device_attach(struct net_device *dev)
1626 {
1627 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1628 	    netif_running(dev)) {
1629 		netif_tx_wake_all_queues(dev);
1630 		__netdev_watchdog_up(dev);
1631 	}
1632 }
1633 EXPORT_SYMBOL(netif_device_attach);
1634 
1635 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1636 {
1637 	return ((features & NETIF_F_GEN_CSUM) ||
1638 		((features & NETIF_F_IP_CSUM) &&
1639 		 protocol == htons(ETH_P_IP)) ||
1640 		((features & NETIF_F_IPV6_CSUM) &&
1641 		 protocol == htons(ETH_P_IPV6)) ||
1642 		((features & NETIF_F_FCOE_CRC) &&
1643 		 protocol == htons(ETH_P_FCOE)));
1644 }
1645 
1646 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1647 {
1648 	if (can_checksum_protocol(dev->features, skb->protocol))
1649 		return true;
1650 
1651 	if (skb->protocol == htons(ETH_P_8021Q)) {
1652 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1653 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1654 					  veh->h_vlan_encapsulated_proto))
1655 			return true;
1656 	}
1657 
1658 	return false;
1659 }
1660 
1661 /**
1662  * skb_dev_set -- assign a new device to a buffer
1663  * @skb: buffer for the new device
1664  * @dev: network device
1665  *
1666  * If an skb is owned by a device already, we have to reset
1667  * all data private to the namespace a device belongs to
1668  * before assigning it a new device.
1669  */
1670 #ifdef CONFIG_NET_NS
1671 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1672 {
1673 	skb_dst_drop(skb);
1674 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1675 		secpath_reset(skb);
1676 		nf_reset(skb);
1677 		skb_init_secmark(skb);
1678 		skb->mark = 0;
1679 		skb->priority = 0;
1680 		skb->nf_trace = 0;
1681 		skb->ipvs_property = 0;
1682 #ifdef CONFIG_NET_SCHED
1683 		skb->tc_index = 0;
1684 #endif
1685 	}
1686 	skb->dev = dev;
1687 }
1688 EXPORT_SYMBOL(skb_set_dev);
1689 #endif /* CONFIG_NET_NS */
1690 
1691 /*
1692  * Invalidate hardware checksum when packet is to be mangled, and
1693  * complete checksum manually on outgoing path.
1694  */
1695 int skb_checksum_help(struct sk_buff *skb)
1696 {
1697 	__wsum csum;
1698 	int ret = 0, offset;
1699 
1700 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1701 		goto out_set_summed;
1702 
1703 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1704 		/* Let GSO fix up the checksum. */
1705 		goto out_set_summed;
1706 	}
1707 
1708 	offset = skb->csum_start - skb_headroom(skb);
1709 	BUG_ON(offset >= skb_headlen(skb));
1710 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1711 
1712 	offset += skb->csum_offset;
1713 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1714 
1715 	if (skb_cloned(skb) &&
1716 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1717 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1718 		if (ret)
1719 			goto out;
1720 	}
1721 
1722 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1723 out_set_summed:
1724 	skb->ip_summed = CHECKSUM_NONE;
1725 out:
1726 	return ret;
1727 }
1728 EXPORT_SYMBOL(skb_checksum_help);
1729 
1730 /**
1731  *	skb_gso_segment - Perform segmentation on skb.
1732  *	@skb: buffer to segment
1733  *	@features: features for the output path (see dev->features)
1734  *
1735  *	This function segments the given skb and returns a list of segments.
1736  *
1737  *	It may return NULL if the skb requires no segmentation.  This is
1738  *	only possible when GSO is used for verifying header integrity.
1739  */
1740 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1741 {
1742 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1743 	struct packet_type *ptype;
1744 	__be16 type = skb->protocol;
1745 	int err;
1746 
1747 	skb_reset_mac_header(skb);
1748 	skb->mac_len = skb->network_header - skb->mac_header;
1749 	__skb_pull(skb, skb->mac_len);
1750 
1751 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1752 		struct net_device *dev = skb->dev;
1753 		struct ethtool_drvinfo info = {};
1754 
1755 		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1756 			dev->ethtool_ops->get_drvinfo(dev, &info);
1757 
1758 		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1759 			"ip_summed=%d",
1760 		     info.driver, dev ? dev->features : 0L,
1761 		     skb->sk ? skb->sk->sk_route_caps : 0L,
1762 		     skb->len, skb->data_len, skb->ip_summed);
1763 
1764 		if (skb_header_cloned(skb) &&
1765 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1766 			return ERR_PTR(err);
1767 	}
1768 
1769 	rcu_read_lock();
1770 	list_for_each_entry_rcu(ptype,
1771 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1772 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1773 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1774 				err = ptype->gso_send_check(skb);
1775 				segs = ERR_PTR(err);
1776 				if (err || skb_gso_ok(skb, features))
1777 					break;
1778 				__skb_push(skb, (skb->data -
1779 						 skb_network_header(skb)));
1780 			}
1781 			segs = ptype->gso_segment(skb, features);
1782 			break;
1783 		}
1784 	}
1785 	rcu_read_unlock();
1786 
1787 	__skb_push(skb, skb->data - skb_mac_header(skb));
1788 
1789 	return segs;
1790 }
1791 EXPORT_SYMBOL(skb_gso_segment);
1792 
1793 /* Take action when hardware reception checksum errors are detected. */
1794 #ifdef CONFIG_BUG
1795 void netdev_rx_csum_fault(struct net_device *dev)
1796 {
1797 	if (net_ratelimit()) {
1798 		printk(KERN_ERR "%s: hw csum failure.\n",
1799 			dev ? dev->name : "<unknown>");
1800 		dump_stack();
1801 	}
1802 }
1803 EXPORT_SYMBOL(netdev_rx_csum_fault);
1804 #endif
1805 
1806 /* Actually, we should eliminate this check as soon as we know, that:
1807  * 1. IOMMU is present and allows to map all the memory.
1808  * 2. No high memory really exists on this machine.
1809  */
1810 
1811 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1812 {
1813 #ifdef CONFIG_HIGHMEM
1814 	int i;
1815 	if (!(dev->features & NETIF_F_HIGHDMA)) {
1816 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1817 			if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1818 				return 1;
1819 	}
1820 
1821 	if (PCI_DMA_BUS_IS_PHYS) {
1822 		struct device *pdev = dev->dev.parent;
1823 
1824 		if (!pdev)
1825 			return 0;
1826 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1827 			dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1828 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1829 				return 1;
1830 		}
1831 	}
1832 #endif
1833 	return 0;
1834 }
1835 
1836 struct dev_gso_cb {
1837 	void (*destructor)(struct sk_buff *skb);
1838 };
1839 
1840 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1841 
1842 static void dev_gso_skb_destructor(struct sk_buff *skb)
1843 {
1844 	struct dev_gso_cb *cb;
1845 
1846 	do {
1847 		struct sk_buff *nskb = skb->next;
1848 
1849 		skb->next = nskb->next;
1850 		nskb->next = NULL;
1851 		kfree_skb(nskb);
1852 	} while (skb->next);
1853 
1854 	cb = DEV_GSO_CB(skb);
1855 	if (cb->destructor)
1856 		cb->destructor(skb);
1857 }
1858 
1859 /**
1860  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1861  *	@skb: buffer to segment
1862  *
1863  *	This function segments the given skb and stores the list of segments
1864  *	in skb->next.
1865  */
1866 static int dev_gso_segment(struct sk_buff *skb)
1867 {
1868 	struct net_device *dev = skb->dev;
1869 	struct sk_buff *segs;
1870 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1871 					 NETIF_F_SG : 0);
1872 
1873 	segs = skb_gso_segment(skb, features);
1874 
1875 	/* Verifying header integrity only. */
1876 	if (!segs)
1877 		return 0;
1878 
1879 	if (IS_ERR(segs))
1880 		return PTR_ERR(segs);
1881 
1882 	skb->next = segs;
1883 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1884 	skb->destructor = dev_gso_skb_destructor;
1885 
1886 	return 0;
1887 }
1888 
1889 /*
1890  * Try to orphan skb early, right before transmission by the device.
1891  * We cannot orphan skb if tx timestamp is requested, since
1892  * drivers need to call skb_tstamp_tx() to send the timestamp.
1893  */
1894 static inline void skb_orphan_try(struct sk_buff *skb)
1895 {
1896 	if (!skb_tx(skb)->flags)
1897 		skb_orphan(skb);
1898 }
1899 
1900 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1901 			struct netdev_queue *txq)
1902 {
1903 	const struct net_device_ops *ops = dev->netdev_ops;
1904 	int rc = NETDEV_TX_OK;
1905 
1906 	if (likely(!skb->next)) {
1907 		if (!list_empty(&ptype_all))
1908 			dev_queue_xmit_nit(skb, dev);
1909 
1910 		/*
1911 		 * If device doesnt need skb->dst, release it right now while
1912 		 * its hot in this cpu cache
1913 		 */
1914 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1915 			skb_dst_drop(skb);
1916 
1917 		skb_orphan_try(skb);
1918 
1919 		if (netif_needs_gso(dev, skb)) {
1920 			if (unlikely(dev_gso_segment(skb)))
1921 				goto out_kfree_skb;
1922 			if (skb->next)
1923 				goto gso;
1924 		}
1925 
1926 		rc = ops->ndo_start_xmit(skb, dev);
1927 		if (rc == NETDEV_TX_OK)
1928 			txq_trans_update(txq);
1929 		return rc;
1930 	}
1931 
1932 gso:
1933 	do {
1934 		struct sk_buff *nskb = skb->next;
1935 
1936 		skb->next = nskb->next;
1937 		nskb->next = NULL;
1938 
1939 		/*
1940 		 * If device doesnt need nskb->dst, release it right now while
1941 		 * its hot in this cpu cache
1942 		 */
1943 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1944 			skb_dst_drop(nskb);
1945 
1946 		rc = ops->ndo_start_xmit(nskb, dev);
1947 		if (unlikely(rc != NETDEV_TX_OK)) {
1948 			if (rc & ~NETDEV_TX_MASK)
1949 				goto out_kfree_gso_skb;
1950 			nskb->next = skb->next;
1951 			skb->next = nskb;
1952 			return rc;
1953 		}
1954 		txq_trans_update(txq);
1955 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1956 			return NETDEV_TX_BUSY;
1957 	} while (skb->next);
1958 
1959 out_kfree_gso_skb:
1960 	if (likely(skb->next == NULL))
1961 		skb->destructor = DEV_GSO_CB(skb)->destructor;
1962 out_kfree_skb:
1963 	kfree_skb(skb);
1964 	return rc;
1965 }
1966 
1967 static u32 hashrnd __read_mostly;
1968 
1969 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1970 {
1971 	u32 hash;
1972 
1973 	if (skb_rx_queue_recorded(skb)) {
1974 		hash = skb_get_rx_queue(skb);
1975 		while (unlikely(hash >= dev->real_num_tx_queues))
1976 			hash -= dev->real_num_tx_queues;
1977 		return hash;
1978 	}
1979 
1980 	if (skb->sk && skb->sk->sk_hash)
1981 		hash = skb->sk->sk_hash;
1982 	else
1983 		hash = (__force u16) skb->protocol;
1984 
1985 	hash = jhash_1word(hash, hashrnd);
1986 
1987 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1988 }
1989 EXPORT_SYMBOL(skb_tx_hash);
1990 
1991 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1992 {
1993 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1994 		if (net_ratelimit()) {
1995 			pr_warning("%s selects TX queue %d, but "
1996 				"real number of TX queues is %d\n",
1997 				dev->name, queue_index, dev->real_num_tx_queues);
1998 		}
1999 		return 0;
2000 	}
2001 	return queue_index;
2002 }
2003 
2004 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2005 					struct sk_buff *skb)
2006 {
2007 	u16 queue_index;
2008 	struct sock *sk = skb->sk;
2009 
2010 	if (sk_tx_queue_recorded(sk)) {
2011 		queue_index = sk_tx_queue_get(sk);
2012 	} else {
2013 		const struct net_device_ops *ops = dev->netdev_ops;
2014 
2015 		if (ops->ndo_select_queue) {
2016 			queue_index = ops->ndo_select_queue(dev, skb);
2017 			queue_index = dev_cap_txqueue(dev, queue_index);
2018 		} else {
2019 			queue_index = 0;
2020 			if (dev->real_num_tx_queues > 1)
2021 				queue_index = skb_tx_hash(dev, skb);
2022 
2023 			if (sk) {
2024 				struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2025 
2026 				if (dst && skb_dst(skb) == dst)
2027 					sk_tx_queue_set(sk, queue_index);
2028 			}
2029 		}
2030 	}
2031 
2032 	skb_set_queue_mapping(skb, queue_index);
2033 	return netdev_get_tx_queue(dev, queue_index);
2034 }
2035 
2036 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2037 				 struct net_device *dev,
2038 				 struct netdev_queue *txq)
2039 {
2040 	spinlock_t *root_lock = qdisc_lock(q);
2041 	int rc;
2042 
2043 	spin_lock(root_lock);
2044 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2045 		kfree_skb(skb);
2046 		rc = NET_XMIT_DROP;
2047 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2048 		   !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2049 		/*
2050 		 * This is a work-conserving queue; there are no old skbs
2051 		 * waiting to be sent out; and the qdisc is not running -
2052 		 * xmit the skb directly.
2053 		 */
2054 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2055 			skb_dst_force(skb);
2056 		__qdisc_update_bstats(q, skb->len);
2057 		if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2058 			__qdisc_run(q);
2059 		else
2060 			clear_bit(__QDISC_STATE_RUNNING, &q->state);
2061 
2062 		rc = NET_XMIT_SUCCESS;
2063 	} else {
2064 		skb_dst_force(skb);
2065 		rc = qdisc_enqueue_root(skb, q);
2066 		qdisc_run(q);
2067 	}
2068 	spin_unlock(root_lock);
2069 
2070 	return rc;
2071 }
2072 
2073 /*
2074  * Returns true if either:
2075  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2076  *	2. skb is fragmented and the device does not support SG, or if
2077  *	   at least one of fragments is in highmem and device does not
2078  *	   support DMA from it.
2079  */
2080 static inline int skb_needs_linearize(struct sk_buff *skb,
2081 				      struct net_device *dev)
2082 {
2083 	return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2084 	       (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2085 					      illegal_highdma(dev, skb)));
2086 }
2087 
2088 /**
2089  *	dev_queue_xmit - transmit a buffer
2090  *	@skb: buffer to transmit
2091  *
2092  *	Queue a buffer for transmission to a network device. The caller must
2093  *	have set the device and priority and built the buffer before calling
2094  *	this function. The function can be called from an interrupt.
2095  *
2096  *	A negative errno code is returned on a failure. A success does not
2097  *	guarantee the frame will be transmitted as it may be dropped due
2098  *	to congestion or traffic shaping.
2099  *
2100  * -----------------------------------------------------------------------------------
2101  *      I notice this method can also return errors from the queue disciplines,
2102  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2103  *      be positive.
2104  *
2105  *      Regardless of the return value, the skb is consumed, so it is currently
2106  *      difficult to retry a send to this method.  (You can bump the ref count
2107  *      before sending to hold a reference for retry if you are careful.)
2108  *
2109  *      When calling this method, interrupts MUST be enabled.  This is because
2110  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2111  *          --BLG
2112  */
2113 int dev_queue_xmit(struct sk_buff *skb)
2114 {
2115 	struct net_device *dev = skb->dev;
2116 	struct netdev_queue *txq;
2117 	struct Qdisc *q;
2118 	int rc = -ENOMEM;
2119 
2120 	/* GSO will handle the following emulations directly. */
2121 	if (netif_needs_gso(dev, skb))
2122 		goto gso;
2123 
2124 	/* Convert a paged skb to linear, if required */
2125 	if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2126 		goto out_kfree_skb;
2127 
2128 	/* If packet is not checksummed and device does not support
2129 	 * checksumming for this protocol, complete checksumming here.
2130 	 */
2131 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2132 		skb_set_transport_header(skb, skb->csum_start -
2133 					      skb_headroom(skb));
2134 		if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2135 			goto out_kfree_skb;
2136 	}
2137 
2138 gso:
2139 	/* Disable soft irqs for various locks below. Also
2140 	 * stops preemption for RCU.
2141 	 */
2142 	rcu_read_lock_bh();
2143 
2144 	txq = dev_pick_tx(dev, skb);
2145 	q = rcu_dereference_bh(txq->qdisc);
2146 
2147 #ifdef CONFIG_NET_CLS_ACT
2148 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2149 #endif
2150 	if (q->enqueue) {
2151 		rc = __dev_xmit_skb(skb, q, dev, txq);
2152 		goto out;
2153 	}
2154 
2155 	/* The device has no queue. Common case for software devices:
2156 	   loopback, all the sorts of tunnels...
2157 
2158 	   Really, it is unlikely that netif_tx_lock protection is necessary
2159 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2160 	   counters.)
2161 	   However, it is possible, that they rely on protection
2162 	   made by us here.
2163 
2164 	   Check this and shot the lock. It is not prone from deadlocks.
2165 	   Either shot noqueue qdisc, it is even simpler 8)
2166 	 */
2167 	if (dev->flags & IFF_UP) {
2168 		int cpu = smp_processor_id(); /* ok because BHs are off */
2169 
2170 		if (txq->xmit_lock_owner != cpu) {
2171 
2172 			HARD_TX_LOCK(dev, txq, cpu);
2173 
2174 			if (!netif_tx_queue_stopped(txq)) {
2175 				rc = dev_hard_start_xmit(skb, dev, txq);
2176 				if (dev_xmit_complete(rc)) {
2177 					HARD_TX_UNLOCK(dev, txq);
2178 					goto out;
2179 				}
2180 			}
2181 			HARD_TX_UNLOCK(dev, txq);
2182 			if (net_ratelimit())
2183 				printk(KERN_CRIT "Virtual device %s asks to "
2184 				       "queue packet!\n", dev->name);
2185 		} else {
2186 			/* Recursion is detected! It is possible,
2187 			 * unfortunately */
2188 			if (net_ratelimit())
2189 				printk(KERN_CRIT "Dead loop on virtual device "
2190 				       "%s, fix it urgently!\n", dev->name);
2191 		}
2192 	}
2193 
2194 	rc = -ENETDOWN;
2195 	rcu_read_unlock_bh();
2196 
2197 out_kfree_skb:
2198 	kfree_skb(skb);
2199 	return rc;
2200 out:
2201 	rcu_read_unlock_bh();
2202 	return rc;
2203 }
2204 EXPORT_SYMBOL(dev_queue_xmit);
2205 
2206 
2207 /*=======================================================================
2208 			Receiver routines
2209   =======================================================================*/
2210 
2211 int netdev_max_backlog __read_mostly = 1000;
2212 int netdev_tstamp_prequeue __read_mostly = 1;
2213 int netdev_budget __read_mostly = 300;
2214 int weight_p __read_mostly = 64;            /* old backlog weight */
2215 
2216 /* Called with irq disabled */
2217 static inline void ____napi_schedule(struct softnet_data *sd,
2218 				     struct napi_struct *napi)
2219 {
2220 	list_add_tail(&napi->poll_list, &sd->poll_list);
2221 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2222 }
2223 
2224 #ifdef CONFIG_RPS
2225 
2226 /* One global table that all flow-based protocols share. */
2227 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2228 EXPORT_SYMBOL(rps_sock_flow_table);
2229 
2230 /*
2231  * get_rps_cpu is called from netif_receive_skb and returns the target
2232  * CPU from the RPS map of the receiving queue for a given skb.
2233  * rcu_read_lock must be held on entry.
2234  */
2235 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2236 		       struct rps_dev_flow **rflowp)
2237 {
2238 	struct ipv6hdr *ip6;
2239 	struct iphdr *ip;
2240 	struct netdev_rx_queue *rxqueue;
2241 	struct rps_map *map;
2242 	struct rps_dev_flow_table *flow_table;
2243 	struct rps_sock_flow_table *sock_flow_table;
2244 	int cpu = -1;
2245 	u8 ip_proto;
2246 	u16 tcpu;
2247 	u32 addr1, addr2, ihl;
2248 	union {
2249 		u32 v32;
2250 		u16 v16[2];
2251 	} ports;
2252 
2253 	if (skb_rx_queue_recorded(skb)) {
2254 		u16 index = skb_get_rx_queue(skb);
2255 		if (unlikely(index >= dev->num_rx_queues)) {
2256 			if (net_ratelimit()) {
2257 				pr_warning("%s received packet on queue "
2258 					"%u, but number of RX queues is %u\n",
2259 					dev->name, index, dev->num_rx_queues);
2260 			}
2261 			goto done;
2262 		}
2263 		rxqueue = dev->_rx + index;
2264 	} else
2265 		rxqueue = dev->_rx;
2266 
2267 	if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2268 		goto done;
2269 
2270 	if (skb->rxhash)
2271 		goto got_hash; /* Skip hash computation on packet header */
2272 
2273 	switch (skb->protocol) {
2274 	case __constant_htons(ETH_P_IP):
2275 		if (!pskb_may_pull(skb, sizeof(*ip)))
2276 			goto done;
2277 
2278 		ip = (struct iphdr *) skb->data;
2279 		ip_proto = ip->protocol;
2280 		addr1 = (__force u32) ip->saddr;
2281 		addr2 = (__force u32) ip->daddr;
2282 		ihl = ip->ihl;
2283 		break;
2284 	case __constant_htons(ETH_P_IPV6):
2285 		if (!pskb_may_pull(skb, sizeof(*ip6)))
2286 			goto done;
2287 
2288 		ip6 = (struct ipv6hdr *) skb->data;
2289 		ip_proto = ip6->nexthdr;
2290 		addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2291 		addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2292 		ihl = (40 >> 2);
2293 		break;
2294 	default:
2295 		goto done;
2296 	}
2297 	switch (ip_proto) {
2298 	case IPPROTO_TCP:
2299 	case IPPROTO_UDP:
2300 	case IPPROTO_DCCP:
2301 	case IPPROTO_ESP:
2302 	case IPPROTO_AH:
2303 	case IPPROTO_SCTP:
2304 	case IPPROTO_UDPLITE:
2305 		if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2306 			ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2307 			if (ports.v16[1] < ports.v16[0])
2308 				swap(ports.v16[0], ports.v16[1]);
2309 			break;
2310 		}
2311 	default:
2312 		ports.v32 = 0;
2313 		break;
2314 	}
2315 
2316 	/* get a consistent hash (same value on both flow directions) */
2317 	if (addr2 < addr1)
2318 		swap(addr1, addr2);
2319 	skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2320 	if (!skb->rxhash)
2321 		skb->rxhash = 1;
2322 
2323 got_hash:
2324 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2325 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2326 	if (flow_table && sock_flow_table) {
2327 		u16 next_cpu;
2328 		struct rps_dev_flow *rflow;
2329 
2330 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2331 		tcpu = rflow->cpu;
2332 
2333 		next_cpu = sock_flow_table->ents[skb->rxhash &
2334 		    sock_flow_table->mask];
2335 
2336 		/*
2337 		 * If the desired CPU (where last recvmsg was done) is
2338 		 * different from current CPU (one in the rx-queue flow
2339 		 * table entry), switch if one of the following holds:
2340 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2341 		 *   - Current CPU is offline.
2342 		 *   - The current CPU's queue tail has advanced beyond the
2343 		 *     last packet that was enqueued using this table entry.
2344 		 *     This guarantees that all previous packets for the flow
2345 		 *     have been dequeued, thus preserving in order delivery.
2346 		 */
2347 		if (unlikely(tcpu != next_cpu) &&
2348 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2349 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2350 		      rflow->last_qtail)) >= 0)) {
2351 			tcpu = rflow->cpu = next_cpu;
2352 			if (tcpu != RPS_NO_CPU)
2353 				rflow->last_qtail = per_cpu(softnet_data,
2354 				    tcpu).input_queue_head;
2355 		}
2356 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2357 			*rflowp = rflow;
2358 			cpu = tcpu;
2359 			goto done;
2360 		}
2361 	}
2362 
2363 	map = rcu_dereference(rxqueue->rps_map);
2364 	if (map) {
2365 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2366 
2367 		if (cpu_online(tcpu)) {
2368 			cpu = tcpu;
2369 			goto done;
2370 		}
2371 	}
2372 
2373 done:
2374 	return cpu;
2375 }
2376 
2377 /* Called from hardirq (IPI) context */
2378 static void rps_trigger_softirq(void *data)
2379 {
2380 	struct softnet_data *sd = data;
2381 
2382 	____napi_schedule(sd, &sd->backlog);
2383 	sd->received_rps++;
2384 }
2385 
2386 #endif /* CONFIG_RPS */
2387 
2388 /*
2389  * Check if this softnet_data structure is another cpu one
2390  * If yes, queue it to our IPI list and return 1
2391  * If no, return 0
2392  */
2393 static int rps_ipi_queued(struct softnet_data *sd)
2394 {
2395 #ifdef CONFIG_RPS
2396 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2397 
2398 	if (sd != mysd) {
2399 		sd->rps_ipi_next = mysd->rps_ipi_list;
2400 		mysd->rps_ipi_list = sd;
2401 
2402 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2403 		return 1;
2404 	}
2405 #endif /* CONFIG_RPS */
2406 	return 0;
2407 }
2408 
2409 /*
2410  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2411  * queue (may be a remote CPU queue).
2412  */
2413 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2414 			      unsigned int *qtail)
2415 {
2416 	struct softnet_data *sd;
2417 	unsigned long flags;
2418 
2419 	sd = &per_cpu(softnet_data, cpu);
2420 
2421 	local_irq_save(flags);
2422 
2423 	rps_lock(sd);
2424 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2425 		if (skb_queue_len(&sd->input_pkt_queue)) {
2426 enqueue:
2427 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2428 			input_queue_tail_incr_save(sd, qtail);
2429 			rps_unlock(sd);
2430 			local_irq_restore(flags);
2431 			return NET_RX_SUCCESS;
2432 		}
2433 
2434 		/* Schedule NAPI for backlog device
2435 		 * We can use non atomic operation since we own the queue lock
2436 		 */
2437 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2438 			if (!rps_ipi_queued(sd))
2439 				____napi_schedule(sd, &sd->backlog);
2440 		}
2441 		goto enqueue;
2442 	}
2443 
2444 	sd->dropped++;
2445 	rps_unlock(sd);
2446 
2447 	local_irq_restore(flags);
2448 
2449 	kfree_skb(skb);
2450 	return NET_RX_DROP;
2451 }
2452 
2453 /**
2454  *	netif_rx	-	post buffer to the network code
2455  *	@skb: buffer to post
2456  *
2457  *	This function receives a packet from a device driver and queues it for
2458  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2459  *	may be dropped during processing for congestion control or by the
2460  *	protocol layers.
2461  *
2462  *	return values:
2463  *	NET_RX_SUCCESS	(no congestion)
2464  *	NET_RX_DROP     (packet was dropped)
2465  *
2466  */
2467 
2468 int netif_rx(struct sk_buff *skb)
2469 {
2470 	int ret;
2471 
2472 	/* if netpoll wants it, pretend we never saw it */
2473 	if (netpoll_rx(skb))
2474 		return NET_RX_DROP;
2475 
2476 	if (netdev_tstamp_prequeue)
2477 		net_timestamp_check(skb);
2478 
2479 #ifdef CONFIG_RPS
2480 	{
2481 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2482 		int cpu;
2483 
2484 		rcu_read_lock();
2485 
2486 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2487 		if (cpu < 0)
2488 			cpu = smp_processor_id();
2489 
2490 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2491 
2492 		rcu_read_unlock();
2493 	}
2494 #else
2495 	{
2496 		unsigned int qtail;
2497 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2498 		put_cpu();
2499 	}
2500 #endif
2501 	return ret;
2502 }
2503 EXPORT_SYMBOL(netif_rx);
2504 
2505 int netif_rx_ni(struct sk_buff *skb)
2506 {
2507 	int err;
2508 
2509 	preempt_disable();
2510 	err = netif_rx(skb);
2511 	if (local_softirq_pending())
2512 		do_softirq();
2513 	preempt_enable();
2514 
2515 	return err;
2516 }
2517 EXPORT_SYMBOL(netif_rx_ni);
2518 
2519 static void net_tx_action(struct softirq_action *h)
2520 {
2521 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2522 
2523 	if (sd->completion_queue) {
2524 		struct sk_buff *clist;
2525 
2526 		local_irq_disable();
2527 		clist = sd->completion_queue;
2528 		sd->completion_queue = NULL;
2529 		local_irq_enable();
2530 
2531 		while (clist) {
2532 			struct sk_buff *skb = clist;
2533 			clist = clist->next;
2534 
2535 			WARN_ON(atomic_read(&skb->users));
2536 			__kfree_skb(skb);
2537 		}
2538 	}
2539 
2540 	if (sd->output_queue) {
2541 		struct Qdisc *head;
2542 
2543 		local_irq_disable();
2544 		head = sd->output_queue;
2545 		sd->output_queue = NULL;
2546 		sd->output_queue_tailp = &sd->output_queue;
2547 		local_irq_enable();
2548 
2549 		while (head) {
2550 			struct Qdisc *q = head;
2551 			spinlock_t *root_lock;
2552 
2553 			head = head->next_sched;
2554 
2555 			root_lock = qdisc_lock(q);
2556 			if (spin_trylock(root_lock)) {
2557 				smp_mb__before_clear_bit();
2558 				clear_bit(__QDISC_STATE_SCHED,
2559 					  &q->state);
2560 				qdisc_run(q);
2561 				spin_unlock(root_lock);
2562 			} else {
2563 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2564 					      &q->state)) {
2565 					__netif_reschedule(q);
2566 				} else {
2567 					smp_mb__before_clear_bit();
2568 					clear_bit(__QDISC_STATE_SCHED,
2569 						  &q->state);
2570 				}
2571 			}
2572 		}
2573 	}
2574 }
2575 
2576 static inline int deliver_skb(struct sk_buff *skb,
2577 			      struct packet_type *pt_prev,
2578 			      struct net_device *orig_dev)
2579 {
2580 	atomic_inc(&skb->users);
2581 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2582 }
2583 
2584 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2585 
2586 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2587 /* This hook is defined here for ATM LANE */
2588 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2589 			     unsigned char *addr) __read_mostly;
2590 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2591 #endif
2592 
2593 /*
2594  * If bridge module is loaded call bridging hook.
2595  *  returns NULL if packet was consumed.
2596  */
2597 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2598 					struct sk_buff *skb) __read_mostly;
2599 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2600 
2601 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2602 					    struct packet_type **pt_prev, int *ret,
2603 					    struct net_device *orig_dev)
2604 {
2605 	struct net_bridge_port *port;
2606 
2607 	if (skb->pkt_type == PACKET_LOOPBACK ||
2608 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
2609 		return skb;
2610 
2611 	if (*pt_prev) {
2612 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2613 		*pt_prev = NULL;
2614 	}
2615 
2616 	return br_handle_frame_hook(port, skb);
2617 }
2618 #else
2619 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
2620 #endif
2621 
2622 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2623 struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p,
2624 					     struct sk_buff *skb) __read_mostly;
2625 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2626 
2627 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2628 					     struct packet_type **pt_prev,
2629 					     int *ret,
2630 					     struct net_device *orig_dev)
2631 {
2632 	struct macvlan_port *port;
2633 
2634 	port = rcu_dereference(skb->dev->macvlan_port);
2635 	if (!port)
2636 		return skb;
2637 
2638 	if (*pt_prev) {
2639 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2640 		*pt_prev = NULL;
2641 	}
2642 	return macvlan_handle_frame_hook(port, skb);
2643 }
2644 #else
2645 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
2646 #endif
2647 
2648 #ifdef CONFIG_NET_CLS_ACT
2649 /* TODO: Maybe we should just force sch_ingress to be compiled in
2650  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2651  * a compare and 2 stores extra right now if we dont have it on
2652  * but have CONFIG_NET_CLS_ACT
2653  * NOTE: This doesnt stop any functionality; if you dont have
2654  * the ingress scheduler, you just cant add policies on ingress.
2655  *
2656  */
2657 static int ing_filter(struct sk_buff *skb)
2658 {
2659 	struct net_device *dev = skb->dev;
2660 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2661 	struct netdev_queue *rxq;
2662 	int result = TC_ACT_OK;
2663 	struct Qdisc *q;
2664 
2665 	if (MAX_RED_LOOP < ttl++) {
2666 		printk(KERN_WARNING
2667 		       "Redir loop detected Dropping packet (%d->%d)\n",
2668 		       skb->skb_iif, dev->ifindex);
2669 		return TC_ACT_SHOT;
2670 	}
2671 
2672 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2673 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2674 
2675 	rxq = &dev->rx_queue;
2676 
2677 	q = rxq->qdisc;
2678 	if (q != &noop_qdisc) {
2679 		spin_lock(qdisc_lock(q));
2680 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2681 			result = qdisc_enqueue_root(skb, q);
2682 		spin_unlock(qdisc_lock(q));
2683 	}
2684 
2685 	return result;
2686 }
2687 
2688 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2689 					 struct packet_type **pt_prev,
2690 					 int *ret, struct net_device *orig_dev)
2691 {
2692 	if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2693 		goto out;
2694 
2695 	if (*pt_prev) {
2696 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2697 		*pt_prev = NULL;
2698 	} else {
2699 		/* Huh? Why does turning on AF_PACKET affect this? */
2700 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2701 	}
2702 
2703 	switch (ing_filter(skb)) {
2704 	case TC_ACT_SHOT:
2705 	case TC_ACT_STOLEN:
2706 		kfree_skb(skb);
2707 		return NULL;
2708 	}
2709 
2710 out:
2711 	skb->tc_verd = 0;
2712 	return skb;
2713 }
2714 #endif
2715 
2716 /*
2717  * 	netif_nit_deliver - deliver received packets to network taps
2718  * 	@skb: buffer
2719  *
2720  * 	This function is used to deliver incoming packets to network
2721  * 	taps. It should be used when the normal netif_receive_skb path
2722  * 	is bypassed, for example because of VLAN acceleration.
2723  */
2724 void netif_nit_deliver(struct sk_buff *skb)
2725 {
2726 	struct packet_type *ptype;
2727 
2728 	if (list_empty(&ptype_all))
2729 		return;
2730 
2731 	skb_reset_network_header(skb);
2732 	skb_reset_transport_header(skb);
2733 	skb->mac_len = skb->network_header - skb->mac_header;
2734 
2735 	rcu_read_lock();
2736 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2737 		if (!ptype->dev || ptype->dev == skb->dev)
2738 			deliver_skb(skb, ptype, skb->dev);
2739 	}
2740 	rcu_read_unlock();
2741 }
2742 
2743 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2744 					      struct net_device *master)
2745 {
2746 	if (skb->pkt_type == PACKET_HOST) {
2747 		u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2748 
2749 		memcpy(dest, master->dev_addr, ETH_ALEN);
2750 	}
2751 }
2752 
2753 /* On bonding slaves other than the currently active slave, suppress
2754  * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2755  * ARP on active-backup slaves with arp_validate enabled.
2756  */
2757 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2758 {
2759 	struct net_device *dev = skb->dev;
2760 
2761 	if (master->priv_flags & IFF_MASTER_ARPMON)
2762 		dev->last_rx = jiffies;
2763 
2764 	if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2765 		/* Do address unmangle. The local destination address
2766 		 * will be always the one master has. Provides the right
2767 		 * functionality in a bridge.
2768 		 */
2769 		skb_bond_set_mac_by_master(skb, master);
2770 	}
2771 
2772 	if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2773 		if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2774 		    skb->protocol == __cpu_to_be16(ETH_P_ARP))
2775 			return 0;
2776 
2777 		if (master->priv_flags & IFF_MASTER_ALB) {
2778 			if (skb->pkt_type != PACKET_BROADCAST &&
2779 			    skb->pkt_type != PACKET_MULTICAST)
2780 				return 0;
2781 		}
2782 		if (master->priv_flags & IFF_MASTER_8023AD &&
2783 		    skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2784 			return 0;
2785 
2786 		return 1;
2787 	}
2788 	return 0;
2789 }
2790 EXPORT_SYMBOL(__skb_bond_should_drop);
2791 
2792 static int __netif_receive_skb(struct sk_buff *skb)
2793 {
2794 	struct packet_type *ptype, *pt_prev;
2795 	struct net_device *orig_dev;
2796 	struct net_device *master;
2797 	struct net_device *null_or_orig;
2798 	struct net_device *orig_or_bond;
2799 	int ret = NET_RX_DROP;
2800 	__be16 type;
2801 
2802 	if (!netdev_tstamp_prequeue)
2803 		net_timestamp_check(skb);
2804 
2805 	if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2806 		return NET_RX_SUCCESS;
2807 
2808 	/* if we've gotten here through NAPI, check netpoll */
2809 	if (netpoll_receive_skb(skb))
2810 		return NET_RX_DROP;
2811 
2812 	if (!skb->skb_iif)
2813 		skb->skb_iif = skb->dev->ifindex;
2814 
2815 	null_or_orig = NULL;
2816 	orig_dev = skb->dev;
2817 	master = ACCESS_ONCE(orig_dev->master);
2818 	if (master) {
2819 		if (skb_bond_should_drop(skb, master))
2820 			null_or_orig = orig_dev; /* deliver only exact match */
2821 		else
2822 			skb->dev = master;
2823 	}
2824 
2825 	__get_cpu_var(softnet_data).processed++;
2826 
2827 	skb_reset_network_header(skb);
2828 	skb_reset_transport_header(skb);
2829 	skb->mac_len = skb->network_header - skb->mac_header;
2830 
2831 	pt_prev = NULL;
2832 
2833 	rcu_read_lock();
2834 
2835 #ifdef CONFIG_NET_CLS_ACT
2836 	if (skb->tc_verd & TC_NCLS) {
2837 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2838 		goto ncls;
2839 	}
2840 #endif
2841 
2842 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2843 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2844 		    ptype->dev == orig_dev) {
2845 			if (pt_prev)
2846 				ret = deliver_skb(skb, pt_prev, orig_dev);
2847 			pt_prev = ptype;
2848 		}
2849 	}
2850 
2851 #ifdef CONFIG_NET_CLS_ACT
2852 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2853 	if (!skb)
2854 		goto out;
2855 ncls:
2856 #endif
2857 
2858 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2859 	if (!skb)
2860 		goto out;
2861 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2862 	if (!skb)
2863 		goto out;
2864 
2865 	/*
2866 	 * Make sure frames received on VLAN interfaces stacked on
2867 	 * bonding interfaces still make their way to any base bonding
2868 	 * device that may have registered for a specific ptype.  The
2869 	 * handler may have to adjust skb->dev and orig_dev.
2870 	 */
2871 	orig_or_bond = orig_dev;
2872 	if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2873 	    (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2874 		orig_or_bond = vlan_dev_real_dev(skb->dev);
2875 	}
2876 
2877 	type = skb->protocol;
2878 	list_for_each_entry_rcu(ptype,
2879 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2880 		if (ptype->type == type && (ptype->dev == null_or_orig ||
2881 		     ptype->dev == skb->dev || ptype->dev == orig_dev ||
2882 		     ptype->dev == orig_or_bond)) {
2883 			if (pt_prev)
2884 				ret = deliver_skb(skb, pt_prev, orig_dev);
2885 			pt_prev = ptype;
2886 		}
2887 	}
2888 
2889 	if (pt_prev) {
2890 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2891 	} else {
2892 		kfree_skb(skb);
2893 		/* Jamal, now you will not able to escape explaining
2894 		 * me how you were going to use this. :-)
2895 		 */
2896 		ret = NET_RX_DROP;
2897 	}
2898 
2899 out:
2900 	rcu_read_unlock();
2901 	return ret;
2902 }
2903 
2904 /**
2905  *	netif_receive_skb - process receive buffer from network
2906  *	@skb: buffer to process
2907  *
2908  *	netif_receive_skb() is the main receive data processing function.
2909  *	It always succeeds. The buffer may be dropped during processing
2910  *	for congestion control or by the protocol layers.
2911  *
2912  *	This function may only be called from softirq context and interrupts
2913  *	should be enabled.
2914  *
2915  *	Return values (usually ignored):
2916  *	NET_RX_SUCCESS: no congestion
2917  *	NET_RX_DROP: packet was dropped
2918  */
2919 int netif_receive_skb(struct sk_buff *skb)
2920 {
2921 	if (netdev_tstamp_prequeue)
2922 		net_timestamp_check(skb);
2923 
2924 #ifdef CONFIG_RPS
2925 	{
2926 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2927 		int cpu, ret;
2928 
2929 		rcu_read_lock();
2930 
2931 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2932 
2933 		if (cpu >= 0) {
2934 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2935 			rcu_read_unlock();
2936 		} else {
2937 			rcu_read_unlock();
2938 			ret = __netif_receive_skb(skb);
2939 		}
2940 
2941 		return ret;
2942 	}
2943 #else
2944 	return __netif_receive_skb(skb);
2945 #endif
2946 }
2947 EXPORT_SYMBOL(netif_receive_skb);
2948 
2949 /* Network device is going away, flush any packets still pending
2950  * Called with irqs disabled.
2951  */
2952 static void flush_backlog(void *arg)
2953 {
2954 	struct net_device *dev = arg;
2955 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2956 	struct sk_buff *skb, *tmp;
2957 
2958 	rps_lock(sd);
2959 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
2960 		if (skb->dev == dev) {
2961 			__skb_unlink(skb, &sd->input_pkt_queue);
2962 			kfree_skb(skb);
2963 			input_queue_head_incr(sd);
2964 		}
2965 	}
2966 	rps_unlock(sd);
2967 
2968 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
2969 		if (skb->dev == dev) {
2970 			__skb_unlink(skb, &sd->process_queue);
2971 			kfree_skb(skb);
2972 			input_queue_head_incr(sd);
2973 		}
2974 	}
2975 }
2976 
2977 static int napi_gro_complete(struct sk_buff *skb)
2978 {
2979 	struct packet_type *ptype;
2980 	__be16 type = skb->protocol;
2981 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2982 	int err = -ENOENT;
2983 
2984 	if (NAPI_GRO_CB(skb)->count == 1) {
2985 		skb_shinfo(skb)->gso_size = 0;
2986 		goto out;
2987 	}
2988 
2989 	rcu_read_lock();
2990 	list_for_each_entry_rcu(ptype, head, list) {
2991 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2992 			continue;
2993 
2994 		err = ptype->gro_complete(skb);
2995 		break;
2996 	}
2997 	rcu_read_unlock();
2998 
2999 	if (err) {
3000 		WARN_ON(&ptype->list == head);
3001 		kfree_skb(skb);
3002 		return NET_RX_SUCCESS;
3003 	}
3004 
3005 out:
3006 	return netif_receive_skb(skb);
3007 }
3008 
3009 static void napi_gro_flush(struct napi_struct *napi)
3010 {
3011 	struct sk_buff *skb, *next;
3012 
3013 	for (skb = napi->gro_list; skb; skb = next) {
3014 		next = skb->next;
3015 		skb->next = NULL;
3016 		napi_gro_complete(skb);
3017 	}
3018 
3019 	napi->gro_count = 0;
3020 	napi->gro_list = NULL;
3021 }
3022 
3023 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3024 {
3025 	struct sk_buff **pp = NULL;
3026 	struct packet_type *ptype;
3027 	__be16 type = skb->protocol;
3028 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3029 	int same_flow;
3030 	int mac_len;
3031 	enum gro_result ret;
3032 
3033 	if (!(skb->dev->features & NETIF_F_GRO))
3034 		goto normal;
3035 
3036 	if (skb_is_gso(skb) || skb_has_frags(skb))
3037 		goto normal;
3038 
3039 	rcu_read_lock();
3040 	list_for_each_entry_rcu(ptype, head, list) {
3041 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3042 			continue;
3043 
3044 		skb_set_network_header(skb, skb_gro_offset(skb));
3045 		mac_len = skb->network_header - skb->mac_header;
3046 		skb->mac_len = mac_len;
3047 		NAPI_GRO_CB(skb)->same_flow = 0;
3048 		NAPI_GRO_CB(skb)->flush = 0;
3049 		NAPI_GRO_CB(skb)->free = 0;
3050 
3051 		pp = ptype->gro_receive(&napi->gro_list, skb);
3052 		break;
3053 	}
3054 	rcu_read_unlock();
3055 
3056 	if (&ptype->list == head)
3057 		goto normal;
3058 
3059 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3060 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3061 
3062 	if (pp) {
3063 		struct sk_buff *nskb = *pp;
3064 
3065 		*pp = nskb->next;
3066 		nskb->next = NULL;
3067 		napi_gro_complete(nskb);
3068 		napi->gro_count--;
3069 	}
3070 
3071 	if (same_flow)
3072 		goto ok;
3073 
3074 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3075 		goto normal;
3076 
3077 	napi->gro_count++;
3078 	NAPI_GRO_CB(skb)->count = 1;
3079 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3080 	skb->next = napi->gro_list;
3081 	napi->gro_list = skb;
3082 	ret = GRO_HELD;
3083 
3084 pull:
3085 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3086 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3087 
3088 		BUG_ON(skb->end - skb->tail < grow);
3089 
3090 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3091 
3092 		skb->tail += grow;
3093 		skb->data_len -= grow;
3094 
3095 		skb_shinfo(skb)->frags[0].page_offset += grow;
3096 		skb_shinfo(skb)->frags[0].size -= grow;
3097 
3098 		if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3099 			put_page(skb_shinfo(skb)->frags[0].page);
3100 			memmove(skb_shinfo(skb)->frags,
3101 				skb_shinfo(skb)->frags + 1,
3102 				--skb_shinfo(skb)->nr_frags);
3103 		}
3104 	}
3105 
3106 ok:
3107 	return ret;
3108 
3109 normal:
3110 	ret = GRO_NORMAL;
3111 	goto pull;
3112 }
3113 EXPORT_SYMBOL(dev_gro_receive);
3114 
3115 static gro_result_t
3116 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3117 {
3118 	struct sk_buff *p;
3119 
3120 	if (netpoll_rx_on(skb))
3121 		return GRO_NORMAL;
3122 
3123 	for (p = napi->gro_list; p; p = p->next) {
3124 		NAPI_GRO_CB(p)->same_flow =
3125 			(p->dev == skb->dev) &&
3126 			!compare_ether_header(skb_mac_header(p),
3127 					      skb_gro_mac_header(skb));
3128 		NAPI_GRO_CB(p)->flush = 0;
3129 	}
3130 
3131 	return dev_gro_receive(napi, skb);
3132 }
3133 
3134 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3135 {
3136 	switch (ret) {
3137 	case GRO_NORMAL:
3138 		if (netif_receive_skb(skb))
3139 			ret = GRO_DROP;
3140 		break;
3141 
3142 	case GRO_DROP:
3143 	case GRO_MERGED_FREE:
3144 		kfree_skb(skb);
3145 		break;
3146 
3147 	case GRO_HELD:
3148 	case GRO_MERGED:
3149 		break;
3150 	}
3151 
3152 	return ret;
3153 }
3154 EXPORT_SYMBOL(napi_skb_finish);
3155 
3156 void skb_gro_reset_offset(struct sk_buff *skb)
3157 {
3158 	NAPI_GRO_CB(skb)->data_offset = 0;
3159 	NAPI_GRO_CB(skb)->frag0 = NULL;
3160 	NAPI_GRO_CB(skb)->frag0_len = 0;
3161 
3162 	if (skb->mac_header == skb->tail &&
3163 	    !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3164 		NAPI_GRO_CB(skb)->frag0 =
3165 			page_address(skb_shinfo(skb)->frags[0].page) +
3166 			skb_shinfo(skb)->frags[0].page_offset;
3167 		NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3168 	}
3169 }
3170 EXPORT_SYMBOL(skb_gro_reset_offset);
3171 
3172 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3173 {
3174 	skb_gro_reset_offset(skb);
3175 
3176 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3177 }
3178 EXPORT_SYMBOL(napi_gro_receive);
3179 
3180 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3181 {
3182 	__skb_pull(skb, skb_headlen(skb));
3183 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3184 
3185 	napi->skb = skb;
3186 }
3187 EXPORT_SYMBOL(napi_reuse_skb);
3188 
3189 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3190 {
3191 	struct sk_buff *skb = napi->skb;
3192 
3193 	if (!skb) {
3194 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3195 		if (skb)
3196 			napi->skb = skb;
3197 	}
3198 	return skb;
3199 }
3200 EXPORT_SYMBOL(napi_get_frags);
3201 
3202 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3203 			       gro_result_t ret)
3204 {
3205 	switch (ret) {
3206 	case GRO_NORMAL:
3207 	case GRO_HELD:
3208 		skb->protocol = eth_type_trans(skb, skb->dev);
3209 
3210 		if (ret == GRO_HELD)
3211 			skb_gro_pull(skb, -ETH_HLEN);
3212 		else if (netif_receive_skb(skb))
3213 			ret = GRO_DROP;
3214 		break;
3215 
3216 	case GRO_DROP:
3217 	case GRO_MERGED_FREE:
3218 		napi_reuse_skb(napi, skb);
3219 		break;
3220 
3221 	case GRO_MERGED:
3222 		break;
3223 	}
3224 
3225 	return ret;
3226 }
3227 EXPORT_SYMBOL(napi_frags_finish);
3228 
3229 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3230 {
3231 	struct sk_buff *skb = napi->skb;
3232 	struct ethhdr *eth;
3233 	unsigned int hlen;
3234 	unsigned int off;
3235 
3236 	napi->skb = NULL;
3237 
3238 	skb_reset_mac_header(skb);
3239 	skb_gro_reset_offset(skb);
3240 
3241 	off = skb_gro_offset(skb);
3242 	hlen = off + sizeof(*eth);
3243 	eth = skb_gro_header_fast(skb, off);
3244 	if (skb_gro_header_hard(skb, hlen)) {
3245 		eth = skb_gro_header_slow(skb, hlen, off);
3246 		if (unlikely(!eth)) {
3247 			napi_reuse_skb(napi, skb);
3248 			skb = NULL;
3249 			goto out;
3250 		}
3251 	}
3252 
3253 	skb_gro_pull(skb, sizeof(*eth));
3254 
3255 	/*
3256 	 * This works because the only protocols we care about don't require
3257 	 * special handling.  We'll fix it up properly at the end.
3258 	 */
3259 	skb->protocol = eth->h_proto;
3260 
3261 out:
3262 	return skb;
3263 }
3264 EXPORT_SYMBOL(napi_frags_skb);
3265 
3266 gro_result_t napi_gro_frags(struct napi_struct *napi)
3267 {
3268 	struct sk_buff *skb = napi_frags_skb(napi);
3269 
3270 	if (!skb)
3271 		return GRO_DROP;
3272 
3273 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3274 }
3275 EXPORT_SYMBOL(napi_gro_frags);
3276 
3277 /*
3278  * net_rps_action sends any pending IPI's for rps.
3279  * Note: called with local irq disabled, but exits with local irq enabled.
3280  */
3281 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3282 {
3283 #ifdef CONFIG_RPS
3284 	struct softnet_data *remsd = sd->rps_ipi_list;
3285 
3286 	if (remsd) {
3287 		sd->rps_ipi_list = NULL;
3288 
3289 		local_irq_enable();
3290 
3291 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3292 		while (remsd) {
3293 			struct softnet_data *next = remsd->rps_ipi_next;
3294 
3295 			if (cpu_online(remsd->cpu))
3296 				__smp_call_function_single(remsd->cpu,
3297 							   &remsd->csd, 0);
3298 			remsd = next;
3299 		}
3300 	} else
3301 #endif
3302 		local_irq_enable();
3303 }
3304 
3305 static int process_backlog(struct napi_struct *napi, int quota)
3306 {
3307 	int work = 0;
3308 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3309 
3310 #ifdef CONFIG_RPS
3311 	/* Check if we have pending ipi, its better to send them now,
3312 	 * not waiting net_rx_action() end.
3313 	 */
3314 	if (sd->rps_ipi_list) {
3315 		local_irq_disable();
3316 		net_rps_action_and_irq_enable(sd);
3317 	}
3318 #endif
3319 	napi->weight = weight_p;
3320 	local_irq_disable();
3321 	while (work < quota) {
3322 		struct sk_buff *skb;
3323 		unsigned int qlen;
3324 
3325 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3326 			local_irq_enable();
3327 			__netif_receive_skb(skb);
3328 			local_irq_disable();
3329 			input_queue_head_incr(sd);
3330 			if (++work >= quota) {
3331 				local_irq_enable();
3332 				return work;
3333 			}
3334 		}
3335 
3336 		rps_lock(sd);
3337 		qlen = skb_queue_len(&sd->input_pkt_queue);
3338 		if (qlen)
3339 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3340 						   &sd->process_queue);
3341 
3342 		if (qlen < quota - work) {
3343 			/*
3344 			 * Inline a custom version of __napi_complete().
3345 			 * only current cpu owns and manipulates this napi,
3346 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3347 			 * we can use a plain write instead of clear_bit(),
3348 			 * and we dont need an smp_mb() memory barrier.
3349 			 */
3350 			list_del(&napi->poll_list);
3351 			napi->state = 0;
3352 
3353 			quota = work + qlen;
3354 		}
3355 		rps_unlock(sd);
3356 	}
3357 	local_irq_enable();
3358 
3359 	return work;
3360 }
3361 
3362 /**
3363  * __napi_schedule - schedule for receive
3364  * @n: entry to schedule
3365  *
3366  * The entry's receive function will be scheduled to run
3367  */
3368 void __napi_schedule(struct napi_struct *n)
3369 {
3370 	unsigned long flags;
3371 
3372 	local_irq_save(flags);
3373 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3374 	local_irq_restore(flags);
3375 }
3376 EXPORT_SYMBOL(__napi_schedule);
3377 
3378 void __napi_complete(struct napi_struct *n)
3379 {
3380 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3381 	BUG_ON(n->gro_list);
3382 
3383 	list_del(&n->poll_list);
3384 	smp_mb__before_clear_bit();
3385 	clear_bit(NAPI_STATE_SCHED, &n->state);
3386 }
3387 EXPORT_SYMBOL(__napi_complete);
3388 
3389 void napi_complete(struct napi_struct *n)
3390 {
3391 	unsigned long flags;
3392 
3393 	/*
3394 	 * don't let napi dequeue from the cpu poll list
3395 	 * just in case its running on a different cpu
3396 	 */
3397 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3398 		return;
3399 
3400 	napi_gro_flush(n);
3401 	local_irq_save(flags);
3402 	__napi_complete(n);
3403 	local_irq_restore(flags);
3404 }
3405 EXPORT_SYMBOL(napi_complete);
3406 
3407 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3408 		    int (*poll)(struct napi_struct *, int), int weight)
3409 {
3410 	INIT_LIST_HEAD(&napi->poll_list);
3411 	napi->gro_count = 0;
3412 	napi->gro_list = NULL;
3413 	napi->skb = NULL;
3414 	napi->poll = poll;
3415 	napi->weight = weight;
3416 	list_add(&napi->dev_list, &dev->napi_list);
3417 	napi->dev = dev;
3418 #ifdef CONFIG_NETPOLL
3419 	spin_lock_init(&napi->poll_lock);
3420 	napi->poll_owner = -1;
3421 #endif
3422 	set_bit(NAPI_STATE_SCHED, &napi->state);
3423 }
3424 EXPORT_SYMBOL(netif_napi_add);
3425 
3426 void netif_napi_del(struct napi_struct *napi)
3427 {
3428 	struct sk_buff *skb, *next;
3429 
3430 	list_del_init(&napi->dev_list);
3431 	napi_free_frags(napi);
3432 
3433 	for (skb = napi->gro_list; skb; skb = next) {
3434 		next = skb->next;
3435 		skb->next = NULL;
3436 		kfree_skb(skb);
3437 	}
3438 
3439 	napi->gro_list = NULL;
3440 	napi->gro_count = 0;
3441 }
3442 EXPORT_SYMBOL(netif_napi_del);
3443 
3444 static void net_rx_action(struct softirq_action *h)
3445 {
3446 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3447 	unsigned long time_limit = jiffies + 2;
3448 	int budget = netdev_budget;
3449 	void *have;
3450 
3451 	local_irq_disable();
3452 
3453 	while (!list_empty(&sd->poll_list)) {
3454 		struct napi_struct *n;
3455 		int work, weight;
3456 
3457 		/* If softirq window is exhuasted then punt.
3458 		 * Allow this to run for 2 jiffies since which will allow
3459 		 * an average latency of 1.5/HZ.
3460 		 */
3461 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3462 			goto softnet_break;
3463 
3464 		local_irq_enable();
3465 
3466 		/* Even though interrupts have been re-enabled, this
3467 		 * access is safe because interrupts can only add new
3468 		 * entries to the tail of this list, and only ->poll()
3469 		 * calls can remove this head entry from the list.
3470 		 */
3471 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3472 
3473 		have = netpoll_poll_lock(n);
3474 
3475 		weight = n->weight;
3476 
3477 		/* This NAPI_STATE_SCHED test is for avoiding a race
3478 		 * with netpoll's poll_napi().  Only the entity which
3479 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3480 		 * actually make the ->poll() call.  Therefore we avoid
3481 		 * accidently calling ->poll() when NAPI is not scheduled.
3482 		 */
3483 		work = 0;
3484 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3485 			work = n->poll(n, weight);
3486 			trace_napi_poll(n);
3487 		}
3488 
3489 		WARN_ON_ONCE(work > weight);
3490 
3491 		budget -= work;
3492 
3493 		local_irq_disable();
3494 
3495 		/* Drivers must not modify the NAPI state if they
3496 		 * consume the entire weight.  In such cases this code
3497 		 * still "owns" the NAPI instance and therefore can
3498 		 * move the instance around on the list at-will.
3499 		 */
3500 		if (unlikely(work == weight)) {
3501 			if (unlikely(napi_disable_pending(n))) {
3502 				local_irq_enable();
3503 				napi_complete(n);
3504 				local_irq_disable();
3505 			} else
3506 				list_move_tail(&n->poll_list, &sd->poll_list);
3507 		}
3508 
3509 		netpoll_poll_unlock(have);
3510 	}
3511 out:
3512 	net_rps_action_and_irq_enable(sd);
3513 
3514 #ifdef CONFIG_NET_DMA
3515 	/*
3516 	 * There may not be any more sk_buffs coming right now, so push
3517 	 * any pending DMA copies to hardware
3518 	 */
3519 	dma_issue_pending_all();
3520 #endif
3521 
3522 	return;
3523 
3524 softnet_break:
3525 	sd->time_squeeze++;
3526 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3527 	goto out;
3528 }
3529 
3530 static gifconf_func_t *gifconf_list[NPROTO];
3531 
3532 /**
3533  *	register_gifconf	-	register a SIOCGIF handler
3534  *	@family: Address family
3535  *	@gifconf: Function handler
3536  *
3537  *	Register protocol dependent address dumping routines. The handler
3538  *	that is passed must not be freed or reused until it has been replaced
3539  *	by another handler.
3540  */
3541 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3542 {
3543 	if (family >= NPROTO)
3544 		return -EINVAL;
3545 	gifconf_list[family] = gifconf;
3546 	return 0;
3547 }
3548 EXPORT_SYMBOL(register_gifconf);
3549 
3550 
3551 /*
3552  *	Map an interface index to its name (SIOCGIFNAME)
3553  */
3554 
3555 /*
3556  *	We need this ioctl for efficient implementation of the
3557  *	if_indextoname() function required by the IPv6 API.  Without
3558  *	it, we would have to search all the interfaces to find a
3559  *	match.  --pb
3560  */
3561 
3562 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3563 {
3564 	struct net_device *dev;
3565 	struct ifreq ifr;
3566 
3567 	/*
3568 	 *	Fetch the caller's info block.
3569 	 */
3570 
3571 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3572 		return -EFAULT;
3573 
3574 	rcu_read_lock();
3575 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3576 	if (!dev) {
3577 		rcu_read_unlock();
3578 		return -ENODEV;
3579 	}
3580 
3581 	strcpy(ifr.ifr_name, dev->name);
3582 	rcu_read_unlock();
3583 
3584 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3585 		return -EFAULT;
3586 	return 0;
3587 }
3588 
3589 /*
3590  *	Perform a SIOCGIFCONF call. This structure will change
3591  *	size eventually, and there is nothing I can do about it.
3592  *	Thus we will need a 'compatibility mode'.
3593  */
3594 
3595 static int dev_ifconf(struct net *net, char __user *arg)
3596 {
3597 	struct ifconf ifc;
3598 	struct net_device *dev;
3599 	char __user *pos;
3600 	int len;
3601 	int total;
3602 	int i;
3603 
3604 	/*
3605 	 *	Fetch the caller's info block.
3606 	 */
3607 
3608 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3609 		return -EFAULT;
3610 
3611 	pos = ifc.ifc_buf;
3612 	len = ifc.ifc_len;
3613 
3614 	/*
3615 	 *	Loop over the interfaces, and write an info block for each.
3616 	 */
3617 
3618 	total = 0;
3619 	for_each_netdev(net, dev) {
3620 		for (i = 0; i < NPROTO; i++) {
3621 			if (gifconf_list[i]) {
3622 				int done;
3623 				if (!pos)
3624 					done = gifconf_list[i](dev, NULL, 0);
3625 				else
3626 					done = gifconf_list[i](dev, pos + total,
3627 							       len - total);
3628 				if (done < 0)
3629 					return -EFAULT;
3630 				total += done;
3631 			}
3632 		}
3633 	}
3634 
3635 	/*
3636 	 *	All done.  Write the updated control block back to the caller.
3637 	 */
3638 	ifc.ifc_len = total;
3639 
3640 	/*
3641 	 * 	Both BSD and Solaris return 0 here, so we do too.
3642 	 */
3643 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3644 }
3645 
3646 #ifdef CONFIG_PROC_FS
3647 /*
3648  *	This is invoked by the /proc filesystem handler to display a device
3649  *	in detail.
3650  */
3651 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3652 	__acquires(RCU)
3653 {
3654 	struct net *net = seq_file_net(seq);
3655 	loff_t off;
3656 	struct net_device *dev;
3657 
3658 	rcu_read_lock();
3659 	if (!*pos)
3660 		return SEQ_START_TOKEN;
3661 
3662 	off = 1;
3663 	for_each_netdev_rcu(net, dev)
3664 		if (off++ == *pos)
3665 			return dev;
3666 
3667 	return NULL;
3668 }
3669 
3670 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3671 {
3672 	struct net_device *dev = (v == SEQ_START_TOKEN) ?
3673 				  first_net_device(seq_file_net(seq)) :
3674 				  next_net_device((struct net_device *)v);
3675 
3676 	++*pos;
3677 	return rcu_dereference(dev);
3678 }
3679 
3680 void dev_seq_stop(struct seq_file *seq, void *v)
3681 	__releases(RCU)
3682 {
3683 	rcu_read_unlock();
3684 }
3685 
3686 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3687 {
3688 	const struct net_device_stats *stats = dev_get_stats(dev);
3689 
3690 	seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3691 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3692 		   dev->name, stats->rx_bytes, stats->rx_packets,
3693 		   stats->rx_errors,
3694 		   stats->rx_dropped + stats->rx_missed_errors,
3695 		   stats->rx_fifo_errors,
3696 		   stats->rx_length_errors + stats->rx_over_errors +
3697 		    stats->rx_crc_errors + stats->rx_frame_errors,
3698 		   stats->rx_compressed, stats->multicast,
3699 		   stats->tx_bytes, stats->tx_packets,
3700 		   stats->tx_errors, stats->tx_dropped,
3701 		   stats->tx_fifo_errors, stats->collisions,
3702 		   stats->tx_carrier_errors +
3703 		    stats->tx_aborted_errors +
3704 		    stats->tx_window_errors +
3705 		    stats->tx_heartbeat_errors,
3706 		   stats->tx_compressed);
3707 }
3708 
3709 /*
3710  *	Called from the PROCfs module. This now uses the new arbitrary sized
3711  *	/proc/net interface to create /proc/net/dev
3712  */
3713 static int dev_seq_show(struct seq_file *seq, void *v)
3714 {
3715 	if (v == SEQ_START_TOKEN)
3716 		seq_puts(seq, "Inter-|   Receive                            "
3717 			      "                    |  Transmit\n"
3718 			      " face |bytes    packets errs drop fifo frame "
3719 			      "compressed multicast|bytes    packets errs "
3720 			      "drop fifo colls carrier compressed\n");
3721 	else
3722 		dev_seq_printf_stats(seq, v);
3723 	return 0;
3724 }
3725 
3726 static struct softnet_data *softnet_get_online(loff_t *pos)
3727 {
3728 	struct softnet_data *sd = NULL;
3729 
3730 	while (*pos < nr_cpu_ids)
3731 		if (cpu_online(*pos)) {
3732 			sd = &per_cpu(softnet_data, *pos);
3733 			break;
3734 		} else
3735 			++*pos;
3736 	return sd;
3737 }
3738 
3739 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3740 {
3741 	return softnet_get_online(pos);
3742 }
3743 
3744 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3745 {
3746 	++*pos;
3747 	return softnet_get_online(pos);
3748 }
3749 
3750 static void softnet_seq_stop(struct seq_file *seq, void *v)
3751 {
3752 }
3753 
3754 static int softnet_seq_show(struct seq_file *seq, void *v)
3755 {
3756 	struct softnet_data *sd = v;
3757 
3758 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3759 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
3760 		   0, 0, 0, 0, /* was fastroute */
3761 		   sd->cpu_collision, sd->received_rps);
3762 	return 0;
3763 }
3764 
3765 static const struct seq_operations dev_seq_ops = {
3766 	.start = dev_seq_start,
3767 	.next  = dev_seq_next,
3768 	.stop  = dev_seq_stop,
3769 	.show  = dev_seq_show,
3770 };
3771 
3772 static int dev_seq_open(struct inode *inode, struct file *file)
3773 {
3774 	return seq_open_net(inode, file, &dev_seq_ops,
3775 			    sizeof(struct seq_net_private));
3776 }
3777 
3778 static const struct file_operations dev_seq_fops = {
3779 	.owner	 = THIS_MODULE,
3780 	.open    = dev_seq_open,
3781 	.read    = seq_read,
3782 	.llseek  = seq_lseek,
3783 	.release = seq_release_net,
3784 };
3785 
3786 static const struct seq_operations softnet_seq_ops = {
3787 	.start = softnet_seq_start,
3788 	.next  = softnet_seq_next,
3789 	.stop  = softnet_seq_stop,
3790 	.show  = softnet_seq_show,
3791 };
3792 
3793 static int softnet_seq_open(struct inode *inode, struct file *file)
3794 {
3795 	return seq_open(file, &softnet_seq_ops);
3796 }
3797 
3798 static const struct file_operations softnet_seq_fops = {
3799 	.owner	 = THIS_MODULE,
3800 	.open    = softnet_seq_open,
3801 	.read    = seq_read,
3802 	.llseek  = seq_lseek,
3803 	.release = seq_release,
3804 };
3805 
3806 static void *ptype_get_idx(loff_t pos)
3807 {
3808 	struct packet_type *pt = NULL;
3809 	loff_t i = 0;
3810 	int t;
3811 
3812 	list_for_each_entry_rcu(pt, &ptype_all, list) {
3813 		if (i == pos)
3814 			return pt;
3815 		++i;
3816 	}
3817 
3818 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3819 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3820 			if (i == pos)
3821 				return pt;
3822 			++i;
3823 		}
3824 	}
3825 	return NULL;
3826 }
3827 
3828 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3829 	__acquires(RCU)
3830 {
3831 	rcu_read_lock();
3832 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3833 }
3834 
3835 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3836 {
3837 	struct packet_type *pt;
3838 	struct list_head *nxt;
3839 	int hash;
3840 
3841 	++*pos;
3842 	if (v == SEQ_START_TOKEN)
3843 		return ptype_get_idx(0);
3844 
3845 	pt = v;
3846 	nxt = pt->list.next;
3847 	if (pt->type == htons(ETH_P_ALL)) {
3848 		if (nxt != &ptype_all)
3849 			goto found;
3850 		hash = 0;
3851 		nxt = ptype_base[0].next;
3852 	} else
3853 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3854 
3855 	while (nxt == &ptype_base[hash]) {
3856 		if (++hash >= PTYPE_HASH_SIZE)
3857 			return NULL;
3858 		nxt = ptype_base[hash].next;
3859 	}
3860 found:
3861 	return list_entry(nxt, struct packet_type, list);
3862 }
3863 
3864 static void ptype_seq_stop(struct seq_file *seq, void *v)
3865 	__releases(RCU)
3866 {
3867 	rcu_read_unlock();
3868 }
3869 
3870 static int ptype_seq_show(struct seq_file *seq, void *v)
3871 {
3872 	struct packet_type *pt = v;
3873 
3874 	if (v == SEQ_START_TOKEN)
3875 		seq_puts(seq, "Type Device      Function\n");
3876 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3877 		if (pt->type == htons(ETH_P_ALL))
3878 			seq_puts(seq, "ALL ");
3879 		else
3880 			seq_printf(seq, "%04x", ntohs(pt->type));
3881 
3882 		seq_printf(seq, " %-8s %pF\n",
3883 			   pt->dev ? pt->dev->name : "", pt->func);
3884 	}
3885 
3886 	return 0;
3887 }
3888 
3889 static const struct seq_operations ptype_seq_ops = {
3890 	.start = ptype_seq_start,
3891 	.next  = ptype_seq_next,
3892 	.stop  = ptype_seq_stop,
3893 	.show  = ptype_seq_show,
3894 };
3895 
3896 static int ptype_seq_open(struct inode *inode, struct file *file)
3897 {
3898 	return seq_open_net(inode, file, &ptype_seq_ops,
3899 			sizeof(struct seq_net_private));
3900 }
3901 
3902 static const struct file_operations ptype_seq_fops = {
3903 	.owner	 = THIS_MODULE,
3904 	.open    = ptype_seq_open,
3905 	.read    = seq_read,
3906 	.llseek  = seq_lseek,
3907 	.release = seq_release_net,
3908 };
3909 
3910 
3911 static int __net_init dev_proc_net_init(struct net *net)
3912 {
3913 	int rc = -ENOMEM;
3914 
3915 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3916 		goto out;
3917 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3918 		goto out_dev;
3919 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3920 		goto out_softnet;
3921 
3922 	if (wext_proc_init(net))
3923 		goto out_ptype;
3924 	rc = 0;
3925 out:
3926 	return rc;
3927 out_ptype:
3928 	proc_net_remove(net, "ptype");
3929 out_softnet:
3930 	proc_net_remove(net, "softnet_stat");
3931 out_dev:
3932 	proc_net_remove(net, "dev");
3933 	goto out;
3934 }
3935 
3936 static void __net_exit dev_proc_net_exit(struct net *net)
3937 {
3938 	wext_proc_exit(net);
3939 
3940 	proc_net_remove(net, "ptype");
3941 	proc_net_remove(net, "softnet_stat");
3942 	proc_net_remove(net, "dev");
3943 }
3944 
3945 static struct pernet_operations __net_initdata dev_proc_ops = {
3946 	.init = dev_proc_net_init,
3947 	.exit = dev_proc_net_exit,
3948 };
3949 
3950 static int __init dev_proc_init(void)
3951 {
3952 	return register_pernet_subsys(&dev_proc_ops);
3953 }
3954 #else
3955 #define dev_proc_init() 0
3956 #endif	/* CONFIG_PROC_FS */
3957 
3958 
3959 /**
3960  *	netdev_set_master	-	set up master/slave pair
3961  *	@slave: slave device
3962  *	@master: new master device
3963  *
3964  *	Changes the master device of the slave. Pass %NULL to break the
3965  *	bonding. The caller must hold the RTNL semaphore. On a failure
3966  *	a negative errno code is returned. On success the reference counts
3967  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3968  *	function returns zero.
3969  */
3970 int netdev_set_master(struct net_device *slave, struct net_device *master)
3971 {
3972 	struct net_device *old = slave->master;
3973 
3974 	ASSERT_RTNL();
3975 
3976 	if (master) {
3977 		if (old)
3978 			return -EBUSY;
3979 		dev_hold(master);
3980 	}
3981 
3982 	slave->master = master;
3983 
3984 	if (old) {
3985 		synchronize_net();
3986 		dev_put(old);
3987 	}
3988 	if (master)
3989 		slave->flags |= IFF_SLAVE;
3990 	else
3991 		slave->flags &= ~IFF_SLAVE;
3992 
3993 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3994 	return 0;
3995 }
3996 EXPORT_SYMBOL(netdev_set_master);
3997 
3998 static void dev_change_rx_flags(struct net_device *dev, int flags)
3999 {
4000 	const struct net_device_ops *ops = dev->netdev_ops;
4001 
4002 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4003 		ops->ndo_change_rx_flags(dev, flags);
4004 }
4005 
4006 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4007 {
4008 	unsigned short old_flags = dev->flags;
4009 	uid_t uid;
4010 	gid_t gid;
4011 
4012 	ASSERT_RTNL();
4013 
4014 	dev->flags |= IFF_PROMISC;
4015 	dev->promiscuity += inc;
4016 	if (dev->promiscuity == 0) {
4017 		/*
4018 		 * Avoid overflow.
4019 		 * If inc causes overflow, untouch promisc and return error.
4020 		 */
4021 		if (inc < 0)
4022 			dev->flags &= ~IFF_PROMISC;
4023 		else {
4024 			dev->promiscuity -= inc;
4025 			printk(KERN_WARNING "%s: promiscuity touches roof, "
4026 				"set promiscuity failed, promiscuity feature "
4027 				"of device might be broken.\n", dev->name);
4028 			return -EOVERFLOW;
4029 		}
4030 	}
4031 	if (dev->flags != old_flags) {
4032 		printk(KERN_INFO "device %s %s promiscuous mode\n",
4033 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4034 							       "left");
4035 		if (audit_enabled) {
4036 			current_uid_gid(&uid, &gid);
4037 			audit_log(current->audit_context, GFP_ATOMIC,
4038 				AUDIT_ANOM_PROMISCUOUS,
4039 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4040 				dev->name, (dev->flags & IFF_PROMISC),
4041 				(old_flags & IFF_PROMISC),
4042 				audit_get_loginuid(current),
4043 				uid, gid,
4044 				audit_get_sessionid(current));
4045 		}
4046 
4047 		dev_change_rx_flags(dev, IFF_PROMISC);
4048 	}
4049 	return 0;
4050 }
4051 
4052 /**
4053  *	dev_set_promiscuity	- update promiscuity count on a device
4054  *	@dev: device
4055  *	@inc: modifier
4056  *
4057  *	Add or remove promiscuity from a device. While the count in the device
4058  *	remains above zero the interface remains promiscuous. Once it hits zero
4059  *	the device reverts back to normal filtering operation. A negative inc
4060  *	value is used to drop promiscuity on the device.
4061  *	Return 0 if successful or a negative errno code on error.
4062  */
4063 int dev_set_promiscuity(struct net_device *dev, int inc)
4064 {
4065 	unsigned short old_flags = dev->flags;
4066 	int err;
4067 
4068 	err = __dev_set_promiscuity(dev, inc);
4069 	if (err < 0)
4070 		return err;
4071 	if (dev->flags != old_flags)
4072 		dev_set_rx_mode(dev);
4073 	return err;
4074 }
4075 EXPORT_SYMBOL(dev_set_promiscuity);
4076 
4077 /**
4078  *	dev_set_allmulti	- update allmulti count on a device
4079  *	@dev: device
4080  *	@inc: modifier
4081  *
4082  *	Add or remove reception of all multicast frames to a device. While the
4083  *	count in the device remains above zero the interface remains listening
4084  *	to all interfaces. Once it hits zero the device reverts back to normal
4085  *	filtering operation. A negative @inc value is used to drop the counter
4086  *	when releasing a resource needing all multicasts.
4087  *	Return 0 if successful or a negative errno code on error.
4088  */
4089 
4090 int dev_set_allmulti(struct net_device *dev, int inc)
4091 {
4092 	unsigned short old_flags = dev->flags;
4093 
4094 	ASSERT_RTNL();
4095 
4096 	dev->flags |= IFF_ALLMULTI;
4097 	dev->allmulti += inc;
4098 	if (dev->allmulti == 0) {
4099 		/*
4100 		 * Avoid overflow.
4101 		 * If inc causes overflow, untouch allmulti and return error.
4102 		 */
4103 		if (inc < 0)
4104 			dev->flags &= ~IFF_ALLMULTI;
4105 		else {
4106 			dev->allmulti -= inc;
4107 			printk(KERN_WARNING "%s: allmulti touches roof, "
4108 				"set allmulti failed, allmulti feature of "
4109 				"device might be broken.\n", dev->name);
4110 			return -EOVERFLOW;
4111 		}
4112 	}
4113 	if (dev->flags ^ old_flags) {
4114 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4115 		dev_set_rx_mode(dev);
4116 	}
4117 	return 0;
4118 }
4119 EXPORT_SYMBOL(dev_set_allmulti);
4120 
4121 /*
4122  *	Upload unicast and multicast address lists to device and
4123  *	configure RX filtering. When the device doesn't support unicast
4124  *	filtering it is put in promiscuous mode while unicast addresses
4125  *	are present.
4126  */
4127 void __dev_set_rx_mode(struct net_device *dev)
4128 {
4129 	const struct net_device_ops *ops = dev->netdev_ops;
4130 
4131 	/* dev_open will call this function so the list will stay sane. */
4132 	if (!(dev->flags&IFF_UP))
4133 		return;
4134 
4135 	if (!netif_device_present(dev))
4136 		return;
4137 
4138 	if (ops->ndo_set_rx_mode)
4139 		ops->ndo_set_rx_mode(dev);
4140 	else {
4141 		/* Unicast addresses changes may only happen under the rtnl,
4142 		 * therefore calling __dev_set_promiscuity here is safe.
4143 		 */
4144 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4145 			__dev_set_promiscuity(dev, 1);
4146 			dev->uc_promisc = 1;
4147 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4148 			__dev_set_promiscuity(dev, -1);
4149 			dev->uc_promisc = 0;
4150 		}
4151 
4152 		if (ops->ndo_set_multicast_list)
4153 			ops->ndo_set_multicast_list(dev);
4154 	}
4155 }
4156 
4157 void dev_set_rx_mode(struct net_device *dev)
4158 {
4159 	netif_addr_lock_bh(dev);
4160 	__dev_set_rx_mode(dev);
4161 	netif_addr_unlock_bh(dev);
4162 }
4163 
4164 /**
4165  *	dev_get_flags - get flags reported to userspace
4166  *	@dev: device
4167  *
4168  *	Get the combination of flag bits exported through APIs to userspace.
4169  */
4170 unsigned dev_get_flags(const struct net_device *dev)
4171 {
4172 	unsigned flags;
4173 
4174 	flags = (dev->flags & ~(IFF_PROMISC |
4175 				IFF_ALLMULTI |
4176 				IFF_RUNNING |
4177 				IFF_LOWER_UP |
4178 				IFF_DORMANT)) |
4179 		(dev->gflags & (IFF_PROMISC |
4180 				IFF_ALLMULTI));
4181 
4182 	if (netif_running(dev)) {
4183 		if (netif_oper_up(dev))
4184 			flags |= IFF_RUNNING;
4185 		if (netif_carrier_ok(dev))
4186 			flags |= IFF_LOWER_UP;
4187 		if (netif_dormant(dev))
4188 			flags |= IFF_DORMANT;
4189 	}
4190 
4191 	return flags;
4192 }
4193 EXPORT_SYMBOL(dev_get_flags);
4194 
4195 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4196 {
4197 	int old_flags = dev->flags;
4198 	int ret;
4199 
4200 	ASSERT_RTNL();
4201 
4202 	/*
4203 	 *	Set the flags on our device.
4204 	 */
4205 
4206 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4207 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4208 			       IFF_AUTOMEDIA)) |
4209 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4210 				    IFF_ALLMULTI));
4211 
4212 	/*
4213 	 *	Load in the correct multicast list now the flags have changed.
4214 	 */
4215 
4216 	if ((old_flags ^ flags) & IFF_MULTICAST)
4217 		dev_change_rx_flags(dev, IFF_MULTICAST);
4218 
4219 	dev_set_rx_mode(dev);
4220 
4221 	/*
4222 	 *	Have we downed the interface. We handle IFF_UP ourselves
4223 	 *	according to user attempts to set it, rather than blindly
4224 	 *	setting it.
4225 	 */
4226 
4227 	ret = 0;
4228 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4229 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4230 
4231 		if (!ret)
4232 			dev_set_rx_mode(dev);
4233 	}
4234 
4235 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4236 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4237 
4238 		dev->gflags ^= IFF_PROMISC;
4239 		dev_set_promiscuity(dev, inc);
4240 	}
4241 
4242 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4243 	   is important. Some (broken) drivers set IFF_PROMISC, when
4244 	   IFF_ALLMULTI is requested not asking us and not reporting.
4245 	 */
4246 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4247 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4248 
4249 		dev->gflags ^= IFF_ALLMULTI;
4250 		dev_set_allmulti(dev, inc);
4251 	}
4252 
4253 	return ret;
4254 }
4255 
4256 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4257 {
4258 	unsigned int changes = dev->flags ^ old_flags;
4259 
4260 	if (changes & IFF_UP) {
4261 		if (dev->flags & IFF_UP)
4262 			call_netdevice_notifiers(NETDEV_UP, dev);
4263 		else
4264 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4265 	}
4266 
4267 	if (dev->flags & IFF_UP &&
4268 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4269 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4270 }
4271 
4272 /**
4273  *	dev_change_flags - change device settings
4274  *	@dev: device
4275  *	@flags: device state flags
4276  *
4277  *	Change settings on device based state flags. The flags are
4278  *	in the userspace exported format.
4279  */
4280 int dev_change_flags(struct net_device *dev, unsigned flags)
4281 {
4282 	int ret, changes;
4283 	int old_flags = dev->flags;
4284 
4285 	ret = __dev_change_flags(dev, flags);
4286 	if (ret < 0)
4287 		return ret;
4288 
4289 	changes = old_flags ^ dev->flags;
4290 	if (changes)
4291 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4292 
4293 	__dev_notify_flags(dev, old_flags);
4294 	return ret;
4295 }
4296 EXPORT_SYMBOL(dev_change_flags);
4297 
4298 /**
4299  *	dev_set_mtu - Change maximum transfer unit
4300  *	@dev: device
4301  *	@new_mtu: new transfer unit
4302  *
4303  *	Change the maximum transfer size of the network device.
4304  */
4305 int dev_set_mtu(struct net_device *dev, int new_mtu)
4306 {
4307 	const struct net_device_ops *ops = dev->netdev_ops;
4308 	int err;
4309 
4310 	if (new_mtu == dev->mtu)
4311 		return 0;
4312 
4313 	/*	MTU must be positive.	 */
4314 	if (new_mtu < 0)
4315 		return -EINVAL;
4316 
4317 	if (!netif_device_present(dev))
4318 		return -ENODEV;
4319 
4320 	err = 0;
4321 	if (ops->ndo_change_mtu)
4322 		err = ops->ndo_change_mtu(dev, new_mtu);
4323 	else
4324 		dev->mtu = new_mtu;
4325 
4326 	if (!err && dev->flags & IFF_UP)
4327 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4328 	return err;
4329 }
4330 EXPORT_SYMBOL(dev_set_mtu);
4331 
4332 /**
4333  *	dev_set_mac_address - Change Media Access Control Address
4334  *	@dev: device
4335  *	@sa: new address
4336  *
4337  *	Change the hardware (MAC) address of the device
4338  */
4339 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4340 {
4341 	const struct net_device_ops *ops = dev->netdev_ops;
4342 	int err;
4343 
4344 	if (!ops->ndo_set_mac_address)
4345 		return -EOPNOTSUPP;
4346 	if (sa->sa_family != dev->type)
4347 		return -EINVAL;
4348 	if (!netif_device_present(dev))
4349 		return -ENODEV;
4350 	err = ops->ndo_set_mac_address(dev, sa);
4351 	if (!err)
4352 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4353 	return err;
4354 }
4355 EXPORT_SYMBOL(dev_set_mac_address);
4356 
4357 /*
4358  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4359  */
4360 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4361 {
4362 	int err;
4363 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4364 
4365 	if (!dev)
4366 		return -ENODEV;
4367 
4368 	switch (cmd) {
4369 	case SIOCGIFFLAGS:	/* Get interface flags */
4370 		ifr->ifr_flags = (short) dev_get_flags(dev);
4371 		return 0;
4372 
4373 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4374 				   (currently unused) */
4375 		ifr->ifr_metric = 0;
4376 		return 0;
4377 
4378 	case SIOCGIFMTU:	/* Get the MTU of a device */
4379 		ifr->ifr_mtu = dev->mtu;
4380 		return 0;
4381 
4382 	case SIOCGIFHWADDR:
4383 		if (!dev->addr_len)
4384 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4385 		else
4386 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4387 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4388 		ifr->ifr_hwaddr.sa_family = dev->type;
4389 		return 0;
4390 
4391 	case SIOCGIFSLAVE:
4392 		err = -EINVAL;
4393 		break;
4394 
4395 	case SIOCGIFMAP:
4396 		ifr->ifr_map.mem_start = dev->mem_start;
4397 		ifr->ifr_map.mem_end   = dev->mem_end;
4398 		ifr->ifr_map.base_addr = dev->base_addr;
4399 		ifr->ifr_map.irq       = dev->irq;
4400 		ifr->ifr_map.dma       = dev->dma;
4401 		ifr->ifr_map.port      = dev->if_port;
4402 		return 0;
4403 
4404 	case SIOCGIFINDEX:
4405 		ifr->ifr_ifindex = dev->ifindex;
4406 		return 0;
4407 
4408 	case SIOCGIFTXQLEN:
4409 		ifr->ifr_qlen = dev->tx_queue_len;
4410 		return 0;
4411 
4412 	default:
4413 		/* dev_ioctl() should ensure this case
4414 		 * is never reached
4415 		 */
4416 		WARN_ON(1);
4417 		err = -EINVAL;
4418 		break;
4419 
4420 	}
4421 	return err;
4422 }
4423 
4424 /*
4425  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4426  */
4427 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4428 {
4429 	int err;
4430 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4431 	const struct net_device_ops *ops;
4432 
4433 	if (!dev)
4434 		return -ENODEV;
4435 
4436 	ops = dev->netdev_ops;
4437 
4438 	switch (cmd) {
4439 	case SIOCSIFFLAGS:	/* Set interface flags */
4440 		return dev_change_flags(dev, ifr->ifr_flags);
4441 
4442 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4443 				   (currently unused) */
4444 		return -EOPNOTSUPP;
4445 
4446 	case SIOCSIFMTU:	/* Set the MTU of a device */
4447 		return dev_set_mtu(dev, ifr->ifr_mtu);
4448 
4449 	case SIOCSIFHWADDR:
4450 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4451 
4452 	case SIOCSIFHWBROADCAST:
4453 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4454 			return -EINVAL;
4455 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4456 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4457 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4458 		return 0;
4459 
4460 	case SIOCSIFMAP:
4461 		if (ops->ndo_set_config) {
4462 			if (!netif_device_present(dev))
4463 				return -ENODEV;
4464 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4465 		}
4466 		return -EOPNOTSUPP;
4467 
4468 	case SIOCADDMULTI:
4469 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4470 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4471 			return -EINVAL;
4472 		if (!netif_device_present(dev))
4473 			return -ENODEV;
4474 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4475 
4476 	case SIOCDELMULTI:
4477 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4478 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4479 			return -EINVAL;
4480 		if (!netif_device_present(dev))
4481 			return -ENODEV;
4482 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4483 
4484 	case SIOCSIFTXQLEN:
4485 		if (ifr->ifr_qlen < 0)
4486 			return -EINVAL;
4487 		dev->tx_queue_len = ifr->ifr_qlen;
4488 		return 0;
4489 
4490 	case SIOCSIFNAME:
4491 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4492 		return dev_change_name(dev, ifr->ifr_newname);
4493 
4494 	/*
4495 	 *	Unknown or private ioctl
4496 	 */
4497 	default:
4498 		if ((cmd >= SIOCDEVPRIVATE &&
4499 		    cmd <= SIOCDEVPRIVATE + 15) ||
4500 		    cmd == SIOCBONDENSLAVE ||
4501 		    cmd == SIOCBONDRELEASE ||
4502 		    cmd == SIOCBONDSETHWADDR ||
4503 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4504 		    cmd == SIOCBONDINFOQUERY ||
4505 		    cmd == SIOCBONDCHANGEACTIVE ||
4506 		    cmd == SIOCGMIIPHY ||
4507 		    cmd == SIOCGMIIREG ||
4508 		    cmd == SIOCSMIIREG ||
4509 		    cmd == SIOCBRADDIF ||
4510 		    cmd == SIOCBRDELIF ||
4511 		    cmd == SIOCSHWTSTAMP ||
4512 		    cmd == SIOCWANDEV) {
4513 			err = -EOPNOTSUPP;
4514 			if (ops->ndo_do_ioctl) {
4515 				if (netif_device_present(dev))
4516 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4517 				else
4518 					err = -ENODEV;
4519 			}
4520 		} else
4521 			err = -EINVAL;
4522 
4523 	}
4524 	return err;
4525 }
4526 
4527 /*
4528  *	This function handles all "interface"-type I/O control requests. The actual
4529  *	'doing' part of this is dev_ifsioc above.
4530  */
4531 
4532 /**
4533  *	dev_ioctl	-	network device ioctl
4534  *	@net: the applicable net namespace
4535  *	@cmd: command to issue
4536  *	@arg: pointer to a struct ifreq in user space
4537  *
4538  *	Issue ioctl functions to devices. This is normally called by the
4539  *	user space syscall interfaces but can sometimes be useful for
4540  *	other purposes. The return value is the return from the syscall if
4541  *	positive or a negative errno code on error.
4542  */
4543 
4544 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4545 {
4546 	struct ifreq ifr;
4547 	int ret;
4548 	char *colon;
4549 
4550 	/* One special case: SIOCGIFCONF takes ifconf argument
4551 	   and requires shared lock, because it sleeps writing
4552 	   to user space.
4553 	 */
4554 
4555 	if (cmd == SIOCGIFCONF) {
4556 		rtnl_lock();
4557 		ret = dev_ifconf(net, (char __user *) arg);
4558 		rtnl_unlock();
4559 		return ret;
4560 	}
4561 	if (cmd == SIOCGIFNAME)
4562 		return dev_ifname(net, (struct ifreq __user *)arg);
4563 
4564 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4565 		return -EFAULT;
4566 
4567 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4568 
4569 	colon = strchr(ifr.ifr_name, ':');
4570 	if (colon)
4571 		*colon = 0;
4572 
4573 	/*
4574 	 *	See which interface the caller is talking about.
4575 	 */
4576 
4577 	switch (cmd) {
4578 	/*
4579 	 *	These ioctl calls:
4580 	 *	- can be done by all.
4581 	 *	- atomic and do not require locking.
4582 	 *	- return a value
4583 	 */
4584 	case SIOCGIFFLAGS:
4585 	case SIOCGIFMETRIC:
4586 	case SIOCGIFMTU:
4587 	case SIOCGIFHWADDR:
4588 	case SIOCGIFSLAVE:
4589 	case SIOCGIFMAP:
4590 	case SIOCGIFINDEX:
4591 	case SIOCGIFTXQLEN:
4592 		dev_load(net, ifr.ifr_name);
4593 		rcu_read_lock();
4594 		ret = dev_ifsioc_locked(net, &ifr, cmd);
4595 		rcu_read_unlock();
4596 		if (!ret) {
4597 			if (colon)
4598 				*colon = ':';
4599 			if (copy_to_user(arg, &ifr,
4600 					 sizeof(struct ifreq)))
4601 				ret = -EFAULT;
4602 		}
4603 		return ret;
4604 
4605 	case SIOCETHTOOL:
4606 		dev_load(net, ifr.ifr_name);
4607 		rtnl_lock();
4608 		ret = dev_ethtool(net, &ifr);
4609 		rtnl_unlock();
4610 		if (!ret) {
4611 			if (colon)
4612 				*colon = ':';
4613 			if (copy_to_user(arg, &ifr,
4614 					 sizeof(struct ifreq)))
4615 				ret = -EFAULT;
4616 		}
4617 		return ret;
4618 
4619 	/*
4620 	 *	These ioctl calls:
4621 	 *	- require superuser power.
4622 	 *	- require strict serialization.
4623 	 *	- return a value
4624 	 */
4625 	case SIOCGMIIPHY:
4626 	case SIOCGMIIREG:
4627 	case SIOCSIFNAME:
4628 		if (!capable(CAP_NET_ADMIN))
4629 			return -EPERM;
4630 		dev_load(net, ifr.ifr_name);
4631 		rtnl_lock();
4632 		ret = dev_ifsioc(net, &ifr, cmd);
4633 		rtnl_unlock();
4634 		if (!ret) {
4635 			if (colon)
4636 				*colon = ':';
4637 			if (copy_to_user(arg, &ifr,
4638 					 sizeof(struct ifreq)))
4639 				ret = -EFAULT;
4640 		}
4641 		return ret;
4642 
4643 	/*
4644 	 *	These ioctl calls:
4645 	 *	- require superuser power.
4646 	 *	- require strict serialization.
4647 	 *	- do not return a value
4648 	 */
4649 	case SIOCSIFFLAGS:
4650 	case SIOCSIFMETRIC:
4651 	case SIOCSIFMTU:
4652 	case SIOCSIFMAP:
4653 	case SIOCSIFHWADDR:
4654 	case SIOCSIFSLAVE:
4655 	case SIOCADDMULTI:
4656 	case SIOCDELMULTI:
4657 	case SIOCSIFHWBROADCAST:
4658 	case SIOCSIFTXQLEN:
4659 	case SIOCSMIIREG:
4660 	case SIOCBONDENSLAVE:
4661 	case SIOCBONDRELEASE:
4662 	case SIOCBONDSETHWADDR:
4663 	case SIOCBONDCHANGEACTIVE:
4664 	case SIOCBRADDIF:
4665 	case SIOCBRDELIF:
4666 	case SIOCSHWTSTAMP:
4667 		if (!capable(CAP_NET_ADMIN))
4668 			return -EPERM;
4669 		/* fall through */
4670 	case SIOCBONDSLAVEINFOQUERY:
4671 	case SIOCBONDINFOQUERY:
4672 		dev_load(net, ifr.ifr_name);
4673 		rtnl_lock();
4674 		ret = dev_ifsioc(net, &ifr, cmd);
4675 		rtnl_unlock();
4676 		return ret;
4677 
4678 	case SIOCGIFMEM:
4679 		/* Get the per device memory space. We can add this but
4680 		 * currently do not support it */
4681 	case SIOCSIFMEM:
4682 		/* Set the per device memory buffer space.
4683 		 * Not applicable in our case */
4684 	case SIOCSIFLINK:
4685 		return -EINVAL;
4686 
4687 	/*
4688 	 *	Unknown or private ioctl.
4689 	 */
4690 	default:
4691 		if (cmd == SIOCWANDEV ||
4692 		    (cmd >= SIOCDEVPRIVATE &&
4693 		     cmd <= SIOCDEVPRIVATE + 15)) {
4694 			dev_load(net, ifr.ifr_name);
4695 			rtnl_lock();
4696 			ret = dev_ifsioc(net, &ifr, cmd);
4697 			rtnl_unlock();
4698 			if (!ret && copy_to_user(arg, &ifr,
4699 						 sizeof(struct ifreq)))
4700 				ret = -EFAULT;
4701 			return ret;
4702 		}
4703 		/* Take care of Wireless Extensions */
4704 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4705 			return wext_handle_ioctl(net, &ifr, cmd, arg);
4706 		return -EINVAL;
4707 	}
4708 }
4709 
4710 
4711 /**
4712  *	dev_new_index	-	allocate an ifindex
4713  *	@net: the applicable net namespace
4714  *
4715  *	Returns a suitable unique value for a new device interface
4716  *	number.  The caller must hold the rtnl semaphore or the
4717  *	dev_base_lock to be sure it remains unique.
4718  */
4719 static int dev_new_index(struct net *net)
4720 {
4721 	static int ifindex;
4722 	for (;;) {
4723 		if (++ifindex <= 0)
4724 			ifindex = 1;
4725 		if (!__dev_get_by_index(net, ifindex))
4726 			return ifindex;
4727 	}
4728 }
4729 
4730 /* Delayed registration/unregisteration */
4731 static LIST_HEAD(net_todo_list);
4732 
4733 static void net_set_todo(struct net_device *dev)
4734 {
4735 	list_add_tail(&dev->todo_list, &net_todo_list);
4736 }
4737 
4738 static void rollback_registered_many(struct list_head *head)
4739 {
4740 	struct net_device *dev, *tmp;
4741 
4742 	BUG_ON(dev_boot_phase);
4743 	ASSERT_RTNL();
4744 
4745 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4746 		/* Some devices call without registering
4747 		 * for initialization unwind. Remove those
4748 		 * devices and proceed with the remaining.
4749 		 */
4750 		if (dev->reg_state == NETREG_UNINITIALIZED) {
4751 			pr_debug("unregister_netdevice: device %s/%p never "
4752 				 "was registered\n", dev->name, dev);
4753 
4754 			WARN_ON(1);
4755 			list_del(&dev->unreg_list);
4756 			continue;
4757 		}
4758 
4759 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
4760 
4761 		/* If device is running, close it first. */
4762 		dev_close(dev);
4763 
4764 		/* And unlink it from device chain. */
4765 		unlist_netdevice(dev);
4766 
4767 		dev->reg_state = NETREG_UNREGISTERING;
4768 	}
4769 
4770 	synchronize_net();
4771 
4772 	list_for_each_entry(dev, head, unreg_list) {
4773 		/* Shutdown queueing discipline. */
4774 		dev_shutdown(dev);
4775 
4776 
4777 		/* Notify protocols, that we are about to destroy
4778 		   this device. They should clean all the things.
4779 		*/
4780 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4781 
4782 		if (!dev->rtnl_link_ops ||
4783 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4784 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4785 
4786 		/*
4787 		 *	Flush the unicast and multicast chains
4788 		 */
4789 		dev_uc_flush(dev);
4790 		dev_mc_flush(dev);
4791 
4792 		if (dev->netdev_ops->ndo_uninit)
4793 			dev->netdev_ops->ndo_uninit(dev);
4794 
4795 		/* Notifier chain MUST detach us from master device. */
4796 		WARN_ON(dev->master);
4797 
4798 		/* Remove entries from kobject tree */
4799 		netdev_unregister_kobject(dev);
4800 	}
4801 
4802 	/* Process any work delayed until the end of the batch */
4803 	dev = list_first_entry(head, struct net_device, unreg_list);
4804 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4805 
4806 	synchronize_net();
4807 
4808 	list_for_each_entry(dev, head, unreg_list)
4809 		dev_put(dev);
4810 }
4811 
4812 static void rollback_registered(struct net_device *dev)
4813 {
4814 	LIST_HEAD(single);
4815 
4816 	list_add(&dev->unreg_list, &single);
4817 	rollback_registered_many(&single);
4818 }
4819 
4820 static void __netdev_init_queue_locks_one(struct net_device *dev,
4821 					  struct netdev_queue *dev_queue,
4822 					  void *_unused)
4823 {
4824 	spin_lock_init(&dev_queue->_xmit_lock);
4825 	netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4826 	dev_queue->xmit_lock_owner = -1;
4827 }
4828 
4829 static void netdev_init_queue_locks(struct net_device *dev)
4830 {
4831 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4832 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4833 }
4834 
4835 unsigned long netdev_fix_features(unsigned long features, const char *name)
4836 {
4837 	/* Fix illegal SG+CSUM combinations. */
4838 	if ((features & NETIF_F_SG) &&
4839 	    !(features & NETIF_F_ALL_CSUM)) {
4840 		if (name)
4841 			printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4842 			       "checksum feature.\n", name);
4843 		features &= ~NETIF_F_SG;
4844 	}
4845 
4846 	/* TSO requires that SG is present as well. */
4847 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4848 		if (name)
4849 			printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4850 			       "SG feature.\n", name);
4851 		features &= ~NETIF_F_TSO;
4852 	}
4853 
4854 	if (features & NETIF_F_UFO) {
4855 		if (!(features & NETIF_F_GEN_CSUM)) {
4856 			if (name)
4857 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4858 				       "since no NETIF_F_HW_CSUM feature.\n",
4859 				       name);
4860 			features &= ~NETIF_F_UFO;
4861 		}
4862 
4863 		if (!(features & NETIF_F_SG)) {
4864 			if (name)
4865 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4866 				       "since no NETIF_F_SG feature.\n", name);
4867 			features &= ~NETIF_F_UFO;
4868 		}
4869 	}
4870 
4871 	return features;
4872 }
4873 EXPORT_SYMBOL(netdev_fix_features);
4874 
4875 /**
4876  *	netif_stacked_transfer_operstate -	transfer operstate
4877  *	@rootdev: the root or lower level device to transfer state from
4878  *	@dev: the device to transfer operstate to
4879  *
4880  *	Transfer operational state from root to device. This is normally
4881  *	called when a stacking relationship exists between the root
4882  *	device and the device(a leaf device).
4883  */
4884 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4885 					struct net_device *dev)
4886 {
4887 	if (rootdev->operstate == IF_OPER_DORMANT)
4888 		netif_dormant_on(dev);
4889 	else
4890 		netif_dormant_off(dev);
4891 
4892 	if (netif_carrier_ok(rootdev)) {
4893 		if (!netif_carrier_ok(dev))
4894 			netif_carrier_on(dev);
4895 	} else {
4896 		if (netif_carrier_ok(dev))
4897 			netif_carrier_off(dev);
4898 	}
4899 }
4900 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4901 
4902 /**
4903  *	register_netdevice	- register a network device
4904  *	@dev: device to register
4905  *
4906  *	Take a completed network device structure and add it to the kernel
4907  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4908  *	chain. 0 is returned on success. A negative errno code is returned
4909  *	on a failure to set up the device, or if the name is a duplicate.
4910  *
4911  *	Callers must hold the rtnl semaphore. You may want
4912  *	register_netdev() instead of this.
4913  *
4914  *	BUGS:
4915  *	The locking appears insufficient to guarantee two parallel registers
4916  *	will not get the same name.
4917  */
4918 
4919 int register_netdevice(struct net_device *dev)
4920 {
4921 	int ret;
4922 	struct net *net = dev_net(dev);
4923 
4924 	BUG_ON(dev_boot_phase);
4925 	ASSERT_RTNL();
4926 
4927 	might_sleep();
4928 
4929 	/* When net_device's are persistent, this will be fatal. */
4930 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4931 	BUG_ON(!net);
4932 
4933 	spin_lock_init(&dev->addr_list_lock);
4934 	netdev_set_addr_lockdep_class(dev);
4935 	netdev_init_queue_locks(dev);
4936 
4937 	dev->iflink = -1;
4938 
4939 #ifdef CONFIG_RPS
4940 	if (!dev->num_rx_queues) {
4941 		/*
4942 		 * Allocate a single RX queue if driver never called
4943 		 * alloc_netdev_mq
4944 		 */
4945 
4946 		dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4947 		if (!dev->_rx) {
4948 			ret = -ENOMEM;
4949 			goto out;
4950 		}
4951 
4952 		dev->_rx->first = dev->_rx;
4953 		atomic_set(&dev->_rx->count, 1);
4954 		dev->num_rx_queues = 1;
4955 	}
4956 #endif
4957 	/* Init, if this function is available */
4958 	if (dev->netdev_ops->ndo_init) {
4959 		ret = dev->netdev_ops->ndo_init(dev);
4960 		if (ret) {
4961 			if (ret > 0)
4962 				ret = -EIO;
4963 			goto out;
4964 		}
4965 	}
4966 
4967 	ret = dev_get_valid_name(dev, dev->name, 0);
4968 	if (ret)
4969 		goto err_uninit;
4970 
4971 	dev->ifindex = dev_new_index(net);
4972 	if (dev->iflink == -1)
4973 		dev->iflink = dev->ifindex;
4974 
4975 	/* Fix illegal checksum combinations */
4976 	if ((dev->features & NETIF_F_HW_CSUM) &&
4977 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4978 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4979 		       dev->name);
4980 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4981 	}
4982 
4983 	if ((dev->features & NETIF_F_NO_CSUM) &&
4984 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4985 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4986 		       dev->name);
4987 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4988 	}
4989 
4990 	dev->features = netdev_fix_features(dev->features, dev->name);
4991 
4992 	/* Enable software GSO if SG is supported. */
4993 	if (dev->features & NETIF_F_SG)
4994 		dev->features |= NETIF_F_GSO;
4995 
4996 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4997 	ret = notifier_to_errno(ret);
4998 	if (ret)
4999 		goto err_uninit;
5000 
5001 	ret = netdev_register_kobject(dev);
5002 	if (ret)
5003 		goto err_uninit;
5004 	dev->reg_state = NETREG_REGISTERED;
5005 
5006 	/*
5007 	 *	Default initial state at registry is that the
5008 	 *	device is present.
5009 	 */
5010 
5011 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5012 
5013 	dev_init_scheduler(dev);
5014 	dev_hold(dev);
5015 	list_netdevice(dev);
5016 
5017 	/* Notify protocols, that a new device appeared. */
5018 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5019 	ret = notifier_to_errno(ret);
5020 	if (ret) {
5021 		rollback_registered(dev);
5022 		dev->reg_state = NETREG_UNREGISTERED;
5023 	}
5024 	/*
5025 	 *	Prevent userspace races by waiting until the network
5026 	 *	device is fully setup before sending notifications.
5027 	 */
5028 	if (!dev->rtnl_link_ops ||
5029 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5030 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5031 
5032 out:
5033 	return ret;
5034 
5035 err_uninit:
5036 	if (dev->netdev_ops->ndo_uninit)
5037 		dev->netdev_ops->ndo_uninit(dev);
5038 	goto out;
5039 }
5040 EXPORT_SYMBOL(register_netdevice);
5041 
5042 /**
5043  *	init_dummy_netdev	- init a dummy network device for NAPI
5044  *	@dev: device to init
5045  *
5046  *	This takes a network device structure and initialize the minimum
5047  *	amount of fields so it can be used to schedule NAPI polls without
5048  *	registering a full blown interface. This is to be used by drivers
5049  *	that need to tie several hardware interfaces to a single NAPI
5050  *	poll scheduler due to HW limitations.
5051  */
5052 int init_dummy_netdev(struct net_device *dev)
5053 {
5054 	/* Clear everything. Note we don't initialize spinlocks
5055 	 * are they aren't supposed to be taken by any of the
5056 	 * NAPI code and this dummy netdev is supposed to be
5057 	 * only ever used for NAPI polls
5058 	 */
5059 	memset(dev, 0, sizeof(struct net_device));
5060 
5061 	/* make sure we BUG if trying to hit standard
5062 	 * register/unregister code path
5063 	 */
5064 	dev->reg_state = NETREG_DUMMY;
5065 
5066 	/* initialize the ref count */
5067 	atomic_set(&dev->refcnt, 1);
5068 
5069 	/* NAPI wants this */
5070 	INIT_LIST_HEAD(&dev->napi_list);
5071 
5072 	/* a dummy interface is started by default */
5073 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5074 	set_bit(__LINK_STATE_START, &dev->state);
5075 
5076 	return 0;
5077 }
5078 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5079 
5080 
5081 /**
5082  *	register_netdev	- register a network device
5083  *	@dev: device to register
5084  *
5085  *	Take a completed network device structure and add it to the kernel
5086  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5087  *	chain. 0 is returned on success. A negative errno code is returned
5088  *	on a failure to set up the device, or if the name is a duplicate.
5089  *
5090  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5091  *	and expands the device name if you passed a format string to
5092  *	alloc_netdev.
5093  */
5094 int register_netdev(struct net_device *dev)
5095 {
5096 	int err;
5097 
5098 	rtnl_lock();
5099 
5100 	/*
5101 	 * If the name is a format string the caller wants us to do a
5102 	 * name allocation.
5103 	 */
5104 	if (strchr(dev->name, '%')) {
5105 		err = dev_alloc_name(dev, dev->name);
5106 		if (err < 0)
5107 			goto out;
5108 	}
5109 
5110 	err = register_netdevice(dev);
5111 out:
5112 	rtnl_unlock();
5113 	return err;
5114 }
5115 EXPORT_SYMBOL(register_netdev);
5116 
5117 /*
5118  * netdev_wait_allrefs - wait until all references are gone.
5119  *
5120  * This is called when unregistering network devices.
5121  *
5122  * Any protocol or device that holds a reference should register
5123  * for netdevice notification, and cleanup and put back the
5124  * reference if they receive an UNREGISTER event.
5125  * We can get stuck here if buggy protocols don't correctly
5126  * call dev_put.
5127  */
5128 static void netdev_wait_allrefs(struct net_device *dev)
5129 {
5130 	unsigned long rebroadcast_time, warning_time;
5131 
5132 	linkwatch_forget_dev(dev);
5133 
5134 	rebroadcast_time = warning_time = jiffies;
5135 	while (atomic_read(&dev->refcnt) != 0) {
5136 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5137 			rtnl_lock();
5138 
5139 			/* Rebroadcast unregister notification */
5140 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5141 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5142 			 * should have already handle it the first time */
5143 
5144 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5145 				     &dev->state)) {
5146 				/* We must not have linkwatch events
5147 				 * pending on unregister. If this
5148 				 * happens, we simply run the queue
5149 				 * unscheduled, resulting in a noop
5150 				 * for this device.
5151 				 */
5152 				linkwatch_run_queue();
5153 			}
5154 
5155 			__rtnl_unlock();
5156 
5157 			rebroadcast_time = jiffies;
5158 		}
5159 
5160 		msleep(250);
5161 
5162 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5163 			printk(KERN_EMERG "unregister_netdevice: "
5164 			       "waiting for %s to become free. Usage "
5165 			       "count = %d\n",
5166 			       dev->name, atomic_read(&dev->refcnt));
5167 			warning_time = jiffies;
5168 		}
5169 	}
5170 }
5171 
5172 /* The sequence is:
5173  *
5174  *	rtnl_lock();
5175  *	...
5176  *	register_netdevice(x1);
5177  *	register_netdevice(x2);
5178  *	...
5179  *	unregister_netdevice(y1);
5180  *	unregister_netdevice(y2);
5181  *      ...
5182  *	rtnl_unlock();
5183  *	free_netdev(y1);
5184  *	free_netdev(y2);
5185  *
5186  * We are invoked by rtnl_unlock().
5187  * This allows us to deal with problems:
5188  * 1) We can delete sysfs objects which invoke hotplug
5189  *    without deadlocking with linkwatch via keventd.
5190  * 2) Since we run with the RTNL semaphore not held, we can sleep
5191  *    safely in order to wait for the netdev refcnt to drop to zero.
5192  *
5193  * We must not return until all unregister events added during
5194  * the interval the lock was held have been completed.
5195  */
5196 void netdev_run_todo(void)
5197 {
5198 	struct list_head list;
5199 
5200 	/* Snapshot list, allow later requests */
5201 	list_replace_init(&net_todo_list, &list);
5202 
5203 	__rtnl_unlock();
5204 
5205 	while (!list_empty(&list)) {
5206 		struct net_device *dev
5207 			= list_first_entry(&list, struct net_device, todo_list);
5208 		list_del(&dev->todo_list);
5209 
5210 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5211 			printk(KERN_ERR "network todo '%s' but state %d\n",
5212 			       dev->name, dev->reg_state);
5213 			dump_stack();
5214 			continue;
5215 		}
5216 
5217 		dev->reg_state = NETREG_UNREGISTERED;
5218 
5219 		on_each_cpu(flush_backlog, dev, 1);
5220 
5221 		netdev_wait_allrefs(dev);
5222 
5223 		/* paranoia */
5224 		BUG_ON(atomic_read(&dev->refcnt));
5225 		WARN_ON(dev->ip_ptr);
5226 		WARN_ON(dev->ip6_ptr);
5227 		WARN_ON(dev->dn_ptr);
5228 
5229 		if (dev->destructor)
5230 			dev->destructor(dev);
5231 
5232 		/* Free network device */
5233 		kobject_put(&dev->dev.kobj);
5234 	}
5235 }
5236 
5237 /**
5238  *	dev_txq_stats_fold - fold tx_queues stats
5239  *	@dev: device to get statistics from
5240  *	@stats: struct net_device_stats to hold results
5241  */
5242 void dev_txq_stats_fold(const struct net_device *dev,
5243 			struct net_device_stats *stats)
5244 {
5245 	unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5246 	unsigned int i;
5247 	struct netdev_queue *txq;
5248 
5249 	for (i = 0; i < dev->num_tx_queues; i++) {
5250 		txq = netdev_get_tx_queue(dev, i);
5251 		tx_bytes   += txq->tx_bytes;
5252 		tx_packets += txq->tx_packets;
5253 		tx_dropped += txq->tx_dropped;
5254 	}
5255 	if (tx_bytes || tx_packets || tx_dropped) {
5256 		stats->tx_bytes   = tx_bytes;
5257 		stats->tx_packets = tx_packets;
5258 		stats->tx_dropped = tx_dropped;
5259 	}
5260 }
5261 EXPORT_SYMBOL(dev_txq_stats_fold);
5262 
5263 /**
5264  *	dev_get_stats	- get network device statistics
5265  *	@dev: device to get statistics from
5266  *
5267  *	Get network statistics from device. The device driver may provide
5268  *	its own method by setting dev->netdev_ops->get_stats; otherwise
5269  *	the internal statistics structure is used.
5270  */
5271 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5272 {
5273 	const struct net_device_ops *ops = dev->netdev_ops;
5274 
5275 	if (ops->ndo_get_stats)
5276 		return ops->ndo_get_stats(dev);
5277 
5278 	dev_txq_stats_fold(dev, &dev->stats);
5279 	return &dev->stats;
5280 }
5281 EXPORT_SYMBOL(dev_get_stats);
5282 
5283 static void netdev_init_one_queue(struct net_device *dev,
5284 				  struct netdev_queue *queue,
5285 				  void *_unused)
5286 {
5287 	queue->dev = dev;
5288 }
5289 
5290 static void netdev_init_queues(struct net_device *dev)
5291 {
5292 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5293 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5294 	spin_lock_init(&dev->tx_global_lock);
5295 }
5296 
5297 /**
5298  *	alloc_netdev_mq - allocate network device
5299  *	@sizeof_priv:	size of private data to allocate space for
5300  *	@name:		device name format string
5301  *	@setup:		callback to initialize device
5302  *	@queue_count:	the number of subqueues to allocate
5303  *
5304  *	Allocates a struct net_device with private data area for driver use
5305  *	and performs basic initialization.  Also allocates subquue structs
5306  *	for each queue on the device at the end of the netdevice.
5307  */
5308 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5309 		void (*setup)(struct net_device *), unsigned int queue_count)
5310 {
5311 	struct netdev_queue *tx;
5312 	struct net_device *dev;
5313 	size_t alloc_size;
5314 	struct net_device *p;
5315 #ifdef CONFIG_RPS
5316 	struct netdev_rx_queue *rx;
5317 	int i;
5318 #endif
5319 
5320 	BUG_ON(strlen(name) >= sizeof(dev->name));
5321 
5322 	alloc_size = sizeof(struct net_device);
5323 	if (sizeof_priv) {
5324 		/* ensure 32-byte alignment of private area */
5325 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5326 		alloc_size += sizeof_priv;
5327 	}
5328 	/* ensure 32-byte alignment of whole construct */
5329 	alloc_size += NETDEV_ALIGN - 1;
5330 
5331 	p = kzalloc(alloc_size, GFP_KERNEL);
5332 	if (!p) {
5333 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5334 		return NULL;
5335 	}
5336 
5337 	tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5338 	if (!tx) {
5339 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
5340 		       "tx qdiscs.\n");
5341 		goto free_p;
5342 	}
5343 
5344 #ifdef CONFIG_RPS
5345 	rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5346 	if (!rx) {
5347 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
5348 		       "rx queues.\n");
5349 		goto free_tx;
5350 	}
5351 
5352 	atomic_set(&rx->count, queue_count);
5353 
5354 	/*
5355 	 * Set a pointer to first element in the array which holds the
5356 	 * reference count.
5357 	 */
5358 	for (i = 0; i < queue_count; i++)
5359 		rx[i].first = rx;
5360 #endif
5361 
5362 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5363 	dev->padded = (char *)dev - (char *)p;
5364 
5365 	if (dev_addr_init(dev))
5366 		goto free_rx;
5367 
5368 	dev_mc_init(dev);
5369 	dev_uc_init(dev);
5370 
5371 	dev_net_set(dev, &init_net);
5372 
5373 	dev->_tx = tx;
5374 	dev->num_tx_queues = queue_count;
5375 	dev->real_num_tx_queues = queue_count;
5376 
5377 #ifdef CONFIG_RPS
5378 	dev->_rx = rx;
5379 	dev->num_rx_queues = queue_count;
5380 #endif
5381 
5382 	dev->gso_max_size = GSO_MAX_SIZE;
5383 
5384 	netdev_init_queues(dev);
5385 
5386 	INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5387 	dev->ethtool_ntuple_list.count = 0;
5388 	INIT_LIST_HEAD(&dev->napi_list);
5389 	INIT_LIST_HEAD(&dev->unreg_list);
5390 	INIT_LIST_HEAD(&dev->link_watch_list);
5391 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5392 	setup(dev);
5393 	strcpy(dev->name, name);
5394 	return dev;
5395 
5396 free_rx:
5397 #ifdef CONFIG_RPS
5398 	kfree(rx);
5399 free_tx:
5400 #endif
5401 	kfree(tx);
5402 free_p:
5403 	kfree(p);
5404 	return NULL;
5405 }
5406 EXPORT_SYMBOL(alloc_netdev_mq);
5407 
5408 /**
5409  *	free_netdev - free network device
5410  *	@dev: device
5411  *
5412  *	This function does the last stage of destroying an allocated device
5413  * 	interface. The reference to the device object is released.
5414  *	If this is the last reference then it will be freed.
5415  */
5416 void free_netdev(struct net_device *dev)
5417 {
5418 	struct napi_struct *p, *n;
5419 
5420 	release_net(dev_net(dev));
5421 
5422 	kfree(dev->_tx);
5423 
5424 	/* Flush device addresses */
5425 	dev_addr_flush(dev);
5426 
5427 	/* Clear ethtool n-tuple list */
5428 	ethtool_ntuple_flush(dev);
5429 
5430 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5431 		netif_napi_del(p);
5432 
5433 	/*  Compatibility with error handling in drivers */
5434 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5435 		kfree((char *)dev - dev->padded);
5436 		return;
5437 	}
5438 
5439 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5440 	dev->reg_state = NETREG_RELEASED;
5441 
5442 	/* will free via device release */
5443 	put_device(&dev->dev);
5444 }
5445 EXPORT_SYMBOL(free_netdev);
5446 
5447 /**
5448  *	synchronize_net -  Synchronize with packet receive processing
5449  *
5450  *	Wait for packets currently being received to be done.
5451  *	Does not block later packets from starting.
5452  */
5453 void synchronize_net(void)
5454 {
5455 	might_sleep();
5456 	synchronize_rcu();
5457 }
5458 EXPORT_SYMBOL(synchronize_net);
5459 
5460 /**
5461  *	unregister_netdevice_queue - remove device from the kernel
5462  *	@dev: device
5463  *	@head: list
5464  *
5465  *	This function shuts down a device interface and removes it
5466  *	from the kernel tables.
5467  *	If head not NULL, device is queued to be unregistered later.
5468  *
5469  *	Callers must hold the rtnl semaphore.  You may want
5470  *	unregister_netdev() instead of this.
5471  */
5472 
5473 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5474 {
5475 	ASSERT_RTNL();
5476 
5477 	if (head) {
5478 		list_move_tail(&dev->unreg_list, head);
5479 	} else {
5480 		rollback_registered(dev);
5481 		/* Finish processing unregister after unlock */
5482 		net_set_todo(dev);
5483 	}
5484 }
5485 EXPORT_SYMBOL(unregister_netdevice_queue);
5486 
5487 /**
5488  *	unregister_netdevice_many - unregister many devices
5489  *	@head: list of devices
5490  */
5491 void unregister_netdevice_many(struct list_head *head)
5492 {
5493 	struct net_device *dev;
5494 
5495 	if (!list_empty(head)) {
5496 		rollback_registered_many(head);
5497 		list_for_each_entry(dev, head, unreg_list)
5498 			net_set_todo(dev);
5499 	}
5500 }
5501 EXPORT_SYMBOL(unregister_netdevice_many);
5502 
5503 /**
5504  *	unregister_netdev - remove device from the kernel
5505  *	@dev: device
5506  *
5507  *	This function shuts down a device interface and removes it
5508  *	from the kernel tables.
5509  *
5510  *	This is just a wrapper for unregister_netdevice that takes
5511  *	the rtnl semaphore.  In general you want to use this and not
5512  *	unregister_netdevice.
5513  */
5514 void unregister_netdev(struct net_device *dev)
5515 {
5516 	rtnl_lock();
5517 	unregister_netdevice(dev);
5518 	rtnl_unlock();
5519 }
5520 EXPORT_SYMBOL(unregister_netdev);
5521 
5522 /**
5523  *	dev_change_net_namespace - move device to different nethost namespace
5524  *	@dev: device
5525  *	@net: network namespace
5526  *	@pat: If not NULL name pattern to try if the current device name
5527  *	      is already taken in the destination network namespace.
5528  *
5529  *	This function shuts down a device interface and moves it
5530  *	to a new network namespace. On success 0 is returned, on
5531  *	a failure a netagive errno code is returned.
5532  *
5533  *	Callers must hold the rtnl semaphore.
5534  */
5535 
5536 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5537 {
5538 	int err;
5539 
5540 	ASSERT_RTNL();
5541 
5542 	/* Don't allow namespace local devices to be moved. */
5543 	err = -EINVAL;
5544 	if (dev->features & NETIF_F_NETNS_LOCAL)
5545 		goto out;
5546 
5547 	/* Ensure the device has been registrered */
5548 	err = -EINVAL;
5549 	if (dev->reg_state != NETREG_REGISTERED)
5550 		goto out;
5551 
5552 	/* Get out if there is nothing todo */
5553 	err = 0;
5554 	if (net_eq(dev_net(dev), net))
5555 		goto out;
5556 
5557 	/* Pick the destination device name, and ensure
5558 	 * we can use it in the destination network namespace.
5559 	 */
5560 	err = -EEXIST;
5561 	if (__dev_get_by_name(net, dev->name)) {
5562 		/* We get here if we can't use the current device name */
5563 		if (!pat)
5564 			goto out;
5565 		if (dev_get_valid_name(dev, pat, 1))
5566 			goto out;
5567 	}
5568 
5569 	/*
5570 	 * And now a mini version of register_netdevice unregister_netdevice.
5571 	 */
5572 
5573 	/* If device is running close it first. */
5574 	dev_close(dev);
5575 
5576 	/* And unlink it from device chain */
5577 	err = -ENODEV;
5578 	unlist_netdevice(dev);
5579 
5580 	synchronize_net();
5581 
5582 	/* Shutdown queueing discipline. */
5583 	dev_shutdown(dev);
5584 
5585 	/* Notify protocols, that we are about to destroy
5586 	   this device. They should clean all the things.
5587 	*/
5588 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5589 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5590 
5591 	/*
5592 	 *	Flush the unicast and multicast chains
5593 	 */
5594 	dev_uc_flush(dev);
5595 	dev_mc_flush(dev);
5596 
5597 	/* Actually switch the network namespace */
5598 	dev_net_set(dev, net);
5599 
5600 	/* If there is an ifindex conflict assign a new one */
5601 	if (__dev_get_by_index(net, dev->ifindex)) {
5602 		int iflink = (dev->iflink == dev->ifindex);
5603 		dev->ifindex = dev_new_index(net);
5604 		if (iflink)
5605 			dev->iflink = dev->ifindex;
5606 	}
5607 
5608 	/* Fixup kobjects */
5609 	err = device_rename(&dev->dev, dev->name);
5610 	WARN_ON(err);
5611 
5612 	/* Add the device back in the hashes */
5613 	list_netdevice(dev);
5614 
5615 	/* Notify protocols, that a new device appeared. */
5616 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
5617 
5618 	/*
5619 	 *	Prevent userspace races by waiting until the network
5620 	 *	device is fully setup before sending notifications.
5621 	 */
5622 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5623 
5624 	synchronize_net();
5625 	err = 0;
5626 out:
5627 	return err;
5628 }
5629 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5630 
5631 static int dev_cpu_callback(struct notifier_block *nfb,
5632 			    unsigned long action,
5633 			    void *ocpu)
5634 {
5635 	struct sk_buff **list_skb;
5636 	struct sk_buff *skb;
5637 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
5638 	struct softnet_data *sd, *oldsd;
5639 
5640 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5641 		return NOTIFY_OK;
5642 
5643 	local_irq_disable();
5644 	cpu = smp_processor_id();
5645 	sd = &per_cpu(softnet_data, cpu);
5646 	oldsd = &per_cpu(softnet_data, oldcpu);
5647 
5648 	/* Find end of our completion_queue. */
5649 	list_skb = &sd->completion_queue;
5650 	while (*list_skb)
5651 		list_skb = &(*list_skb)->next;
5652 	/* Append completion queue from offline CPU. */
5653 	*list_skb = oldsd->completion_queue;
5654 	oldsd->completion_queue = NULL;
5655 
5656 	/* Append output queue from offline CPU. */
5657 	if (oldsd->output_queue) {
5658 		*sd->output_queue_tailp = oldsd->output_queue;
5659 		sd->output_queue_tailp = oldsd->output_queue_tailp;
5660 		oldsd->output_queue = NULL;
5661 		oldsd->output_queue_tailp = &oldsd->output_queue;
5662 	}
5663 
5664 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
5665 	local_irq_enable();
5666 
5667 	/* Process offline CPU's input_pkt_queue */
5668 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5669 		netif_rx(skb);
5670 		input_queue_head_incr(oldsd);
5671 	}
5672 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5673 		netif_rx(skb);
5674 		input_queue_head_incr(oldsd);
5675 	}
5676 
5677 	return NOTIFY_OK;
5678 }
5679 
5680 
5681 /**
5682  *	netdev_increment_features - increment feature set by one
5683  *	@all: current feature set
5684  *	@one: new feature set
5685  *	@mask: mask feature set
5686  *
5687  *	Computes a new feature set after adding a device with feature set
5688  *	@one to the master device with current feature set @all.  Will not
5689  *	enable anything that is off in @mask. Returns the new feature set.
5690  */
5691 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5692 					unsigned long mask)
5693 {
5694 	/* If device needs checksumming, downgrade to it. */
5695 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5696 		all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5697 	else if (mask & NETIF_F_ALL_CSUM) {
5698 		/* If one device supports v4/v6 checksumming, set for all. */
5699 		if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5700 		    !(all & NETIF_F_GEN_CSUM)) {
5701 			all &= ~NETIF_F_ALL_CSUM;
5702 			all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5703 		}
5704 
5705 		/* If one device supports hw checksumming, set for all. */
5706 		if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5707 			all &= ~NETIF_F_ALL_CSUM;
5708 			all |= NETIF_F_HW_CSUM;
5709 		}
5710 	}
5711 
5712 	one |= NETIF_F_ALL_CSUM;
5713 
5714 	one |= all & NETIF_F_ONE_FOR_ALL;
5715 	all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5716 	all |= one & mask & NETIF_F_ONE_FOR_ALL;
5717 
5718 	return all;
5719 }
5720 EXPORT_SYMBOL(netdev_increment_features);
5721 
5722 static struct hlist_head *netdev_create_hash(void)
5723 {
5724 	int i;
5725 	struct hlist_head *hash;
5726 
5727 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5728 	if (hash != NULL)
5729 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
5730 			INIT_HLIST_HEAD(&hash[i]);
5731 
5732 	return hash;
5733 }
5734 
5735 /* Initialize per network namespace state */
5736 static int __net_init netdev_init(struct net *net)
5737 {
5738 	INIT_LIST_HEAD(&net->dev_base_head);
5739 
5740 	net->dev_name_head = netdev_create_hash();
5741 	if (net->dev_name_head == NULL)
5742 		goto err_name;
5743 
5744 	net->dev_index_head = netdev_create_hash();
5745 	if (net->dev_index_head == NULL)
5746 		goto err_idx;
5747 
5748 	return 0;
5749 
5750 err_idx:
5751 	kfree(net->dev_name_head);
5752 err_name:
5753 	return -ENOMEM;
5754 }
5755 
5756 /**
5757  *	netdev_drivername - network driver for the device
5758  *	@dev: network device
5759  *	@buffer: buffer for resulting name
5760  *	@len: size of buffer
5761  *
5762  *	Determine network driver for device.
5763  */
5764 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5765 {
5766 	const struct device_driver *driver;
5767 	const struct device *parent;
5768 
5769 	if (len <= 0 || !buffer)
5770 		return buffer;
5771 	buffer[0] = 0;
5772 
5773 	parent = dev->dev.parent;
5774 
5775 	if (!parent)
5776 		return buffer;
5777 
5778 	driver = parent->driver;
5779 	if (driver && driver->name)
5780 		strlcpy(buffer, driver->name, len);
5781 	return buffer;
5782 }
5783 
5784 static void __net_exit netdev_exit(struct net *net)
5785 {
5786 	kfree(net->dev_name_head);
5787 	kfree(net->dev_index_head);
5788 }
5789 
5790 static struct pernet_operations __net_initdata netdev_net_ops = {
5791 	.init = netdev_init,
5792 	.exit = netdev_exit,
5793 };
5794 
5795 static void __net_exit default_device_exit(struct net *net)
5796 {
5797 	struct net_device *dev, *aux;
5798 	/*
5799 	 * Push all migratable network devices back to the
5800 	 * initial network namespace
5801 	 */
5802 	rtnl_lock();
5803 	for_each_netdev_safe(net, dev, aux) {
5804 		int err;
5805 		char fb_name[IFNAMSIZ];
5806 
5807 		/* Ignore unmoveable devices (i.e. loopback) */
5808 		if (dev->features & NETIF_F_NETNS_LOCAL)
5809 			continue;
5810 
5811 		/* Leave virtual devices for the generic cleanup */
5812 		if (dev->rtnl_link_ops)
5813 			continue;
5814 
5815 		/* Push remaing network devices to init_net */
5816 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5817 		err = dev_change_net_namespace(dev, &init_net, fb_name);
5818 		if (err) {
5819 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5820 				__func__, dev->name, err);
5821 			BUG();
5822 		}
5823 	}
5824 	rtnl_unlock();
5825 }
5826 
5827 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5828 {
5829 	/* At exit all network devices most be removed from a network
5830 	 * namespace.  Do this in the reverse order of registeration.
5831 	 * Do this across as many network namespaces as possible to
5832 	 * improve batching efficiency.
5833 	 */
5834 	struct net_device *dev;
5835 	struct net *net;
5836 	LIST_HEAD(dev_kill_list);
5837 
5838 	rtnl_lock();
5839 	list_for_each_entry(net, net_list, exit_list) {
5840 		for_each_netdev_reverse(net, dev) {
5841 			if (dev->rtnl_link_ops)
5842 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5843 			else
5844 				unregister_netdevice_queue(dev, &dev_kill_list);
5845 		}
5846 	}
5847 	unregister_netdevice_many(&dev_kill_list);
5848 	rtnl_unlock();
5849 }
5850 
5851 static struct pernet_operations __net_initdata default_device_ops = {
5852 	.exit = default_device_exit,
5853 	.exit_batch = default_device_exit_batch,
5854 };
5855 
5856 /*
5857  *	Initialize the DEV module. At boot time this walks the device list and
5858  *	unhooks any devices that fail to initialise (normally hardware not
5859  *	present) and leaves us with a valid list of present and active devices.
5860  *
5861  */
5862 
5863 /*
5864  *       This is called single threaded during boot, so no need
5865  *       to take the rtnl semaphore.
5866  */
5867 static int __init net_dev_init(void)
5868 {
5869 	int i, rc = -ENOMEM;
5870 
5871 	BUG_ON(!dev_boot_phase);
5872 
5873 	if (dev_proc_init())
5874 		goto out;
5875 
5876 	if (netdev_kobject_init())
5877 		goto out;
5878 
5879 	INIT_LIST_HEAD(&ptype_all);
5880 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
5881 		INIT_LIST_HEAD(&ptype_base[i]);
5882 
5883 	if (register_pernet_subsys(&netdev_net_ops))
5884 		goto out;
5885 
5886 	/*
5887 	 *	Initialise the packet receive queues.
5888 	 */
5889 
5890 	for_each_possible_cpu(i) {
5891 		struct softnet_data *sd = &per_cpu(softnet_data, i);
5892 
5893 		memset(sd, 0, sizeof(*sd));
5894 		skb_queue_head_init(&sd->input_pkt_queue);
5895 		skb_queue_head_init(&sd->process_queue);
5896 		sd->completion_queue = NULL;
5897 		INIT_LIST_HEAD(&sd->poll_list);
5898 		sd->output_queue = NULL;
5899 		sd->output_queue_tailp = &sd->output_queue;
5900 #ifdef CONFIG_RPS
5901 		sd->csd.func = rps_trigger_softirq;
5902 		sd->csd.info = sd;
5903 		sd->csd.flags = 0;
5904 		sd->cpu = i;
5905 #endif
5906 
5907 		sd->backlog.poll = process_backlog;
5908 		sd->backlog.weight = weight_p;
5909 		sd->backlog.gro_list = NULL;
5910 		sd->backlog.gro_count = 0;
5911 	}
5912 
5913 	dev_boot_phase = 0;
5914 
5915 	/* The loopback device is special if any other network devices
5916 	 * is present in a network namespace the loopback device must
5917 	 * be present. Since we now dynamically allocate and free the
5918 	 * loopback device ensure this invariant is maintained by
5919 	 * keeping the loopback device as the first device on the
5920 	 * list of network devices.  Ensuring the loopback devices
5921 	 * is the first device that appears and the last network device
5922 	 * that disappears.
5923 	 */
5924 	if (register_pernet_device(&loopback_net_ops))
5925 		goto out;
5926 
5927 	if (register_pernet_device(&default_device_ops))
5928 		goto out;
5929 
5930 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5931 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5932 
5933 	hotcpu_notifier(dev_cpu_callback, 0);
5934 	dst_init();
5935 	dev_mcast_init();
5936 	rc = 0;
5937 out:
5938 	return rc;
5939 }
5940 
5941 subsys_initcall(net_dev_init);
5942 
5943 static int __init initialize_hashrnd(void)
5944 {
5945 	get_random_bytes(&hashrnd, sizeof(hashrnd));
5946 	return 0;
5947 }
5948 
5949 late_initcall_sync(initialize_hashrnd);
5950 
5951