1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <linux/if_bridge.h> 105 #include <linux/if_macvlan.h> 106 #include <net/dst.h> 107 #include <net/pkt_sched.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/kmod.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/wext.h> 118 #include <net/iw_handler.h> 119 #include <asm/current.h> 120 #include <linux/audit.h> 121 #include <linux/dmaengine.h> 122 #include <linux/err.h> 123 #include <linux/ctype.h> 124 #include <linux/if_arp.h> 125 #include <linux/if_vlan.h> 126 #include <linux/ip.h> 127 #include <net/ip.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <linux/pci.h> 134 135 #include "net-sysfs.h" 136 137 /* Instead of increasing this, you should create a hash table. */ 138 #define MAX_GRO_SKBS 8 139 140 /* This should be increased if a protocol with a bigger head is added. */ 141 #define GRO_MAX_HEAD (MAX_HEADER + 128) 142 143 /* 144 * The list of packet types we will receive (as opposed to discard) 145 * and the routines to invoke. 146 * 147 * Why 16. Because with 16 the only overlap we get on a hash of the 148 * low nibble of the protocol value is RARP/SNAP/X.25. 149 * 150 * NOTE: That is no longer true with the addition of VLAN tags. Not 151 * sure which should go first, but I bet it won't make much 152 * difference if we are running VLANs. The good news is that 153 * this protocol won't be in the list unless compiled in, so 154 * the average user (w/out VLANs) will not be adversely affected. 155 * --BLG 156 * 157 * 0800 IP 158 * 8100 802.1Q VLAN 159 * 0001 802.3 160 * 0002 AX.25 161 * 0004 802.2 162 * 8035 RARP 163 * 0005 SNAP 164 * 0805 X.25 165 * 0806 ARP 166 * 8137 IPX 167 * 0009 Localtalk 168 * 86DD IPv6 169 */ 170 171 #define PTYPE_HASH_SIZE (16) 172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 173 174 static DEFINE_SPINLOCK(ptype_lock); 175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 176 static struct list_head ptype_all __read_mostly; /* Taps */ 177 178 /* 179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 180 * semaphore. 181 * 182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 183 * 184 * Writers must hold the rtnl semaphore while they loop through the 185 * dev_base_head list, and hold dev_base_lock for writing when they do the 186 * actual updates. This allows pure readers to access the list even 187 * while a writer is preparing to update it. 188 * 189 * To put it another way, dev_base_lock is held for writing only to 190 * protect against pure readers; the rtnl semaphore provides the 191 * protection against other writers. 192 * 193 * See, for example usages, register_netdevice() and 194 * unregister_netdevice(), which must be called with the rtnl 195 * semaphore held. 196 */ 197 DEFINE_RWLOCK(dev_base_lock); 198 EXPORT_SYMBOL(dev_base_lock); 199 200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 201 { 202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 204 } 205 206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 207 { 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 209 } 210 211 static inline void rps_lock(struct softnet_data *sd) 212 { 213 #ifdef CONFIG_RPS 214 spin_lock(&sd->input_pkt_queue.lock); 215 #endif 216 } 217 218 static inline void rps_unlock(struct softnet_data *sd) 219 { 220 #ifdef CONFIG_RPS 221 spin_unlock(&sd->input_pkt_queue.lock); 222 #endif 223 } 224 225 /* Device list insertion */ 226 static int list_netdevice(struct net_device *dev) 227 { 228 struct net *net = dev_net(dev); 229 230 ASSERT_RTNL(); 231 232 write_lock_bh(&dev_base_lock); 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 235 hlist_add_head_rcu(&dev->index_hlist, 236 dev_index_hash(net, dev->ifindex)); 237 write_unlock_bh(&dev_base_lock); 238 return 0; 239 } 240 241 /* Device list removal 242 * caller must respect a RCU grace period before freeing/reusing dev 243 */ 244 static void unlist_netdevice(struct net_device *dev) 245 { 246 ASSERT_RTNL(); 247 248 /* Unlink dev from the device chain */ 249 write_lock_bh(&dev_base_lock); 250 list_del_rcu(&dev->dev_list); 251 hlist_del_rcu(&dev->name_hlist); 252 hlist_del_rcu(&dev->index_hlist); 253 write_unlock_bh(&dev_base_lock); 254 } 255 256 /* 257 * Our notifier list 258 */ 259 260 static RAW_NOTIFIER_HEAD(netdev_chain); 261 262 /* 263 * Device drivers call our routines to queue packets here. We empty the 264 * queue in the local softnet handler. 265 */ 266 267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 268 EXPORT_PER_CPU_SYMBOL(softnet_data); 269 270 #ifdef CONFIG_LOCKDEP 271 /* 272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 273 * according to dev->type 274 */ 275 static const unsigned short netdev_lock_type[] = 276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 291 ARPHRD_VOID, ARPHRD_NONE}; 292 293 static const char *const netdev_lock_name[] = 294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 309 "_xmit_VOID", "_xmit_NONE"}; 310 311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 314 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 315 { 316 int i; 317 318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 319 if (netdev_lock_type[i] == dev_type) 320 return i; 321 /* the last key is used by default */ 322 return ARRAY_SIZE(netdev_lock_type) - 1; 323 } 324 325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327 { 328 int i; 329 330 i = netdev_lock_pos(dev_type); 331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 332 netdev_lock_name[i]); 333 } 334 335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev->type); 340 lockdep_set_class_and_name(&dev->addr_list_lock, 341 &netdev_addr_lock_key[i], 342 netdev_lock_name[i]); 343 } 344 #else 345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 346 unsigned short dev_type) 347 { 348 } 349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350 { 351 } 352 #endif 353 354 /******************************************************************************* 355 356 Protocol management and registration routines 357 358 *******************************************************************************/ 359 360 /* 361 * Add a protocol ID to the list. Now that the input handler is 362 * smarter we can dispense with all the messy stuff that used to be 363 * here. 364 * 365 * BEWARE!!! Protocol handlers, mangling input packets, 366 * MUST BE last in hash buckets and checking protocol handlers 367 * MUST start from promiscuous ptype_all chain in net_bh. 368 * It is true now, do not change it. 369 * Explanation follows: if protocol handler, mangling packet, will 370 * be the first on list, it is not able to sense, that packet 371 * is cloned and should be copied-on-write, so that it will 372 * change it and subsequent readers will get broken packet. 373 * --ANK (980803) 374 */ 375 376 /** 377 * dev_add_pack - add packet handler 378 * @pt: packet type declaration 379 * 380 * Add a protocol handler to the networking stack. The passed &packet_type 381 * is linked into kernel lists and may not be freed until it has been 382 * removed from the kernel lists. 383 * 384 * This call does not sleep therefore it can not 385 * guarantee all CPU's that are in middle of receiving packets 386 * will see the new packet type (until the next received packet). 387 */ 388 389 void dev_add_pack(struct packet_type *pt) 390 { 391 int hash; 392 393 spin_lock_bh(&ptype_lock); 394 if (pt->type == htons(ETH_P_ALL)) 395 list_add_rcu(&pt->list, &ptype_all); 396 else { 397 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 398 list_add_rcu(&pt->list, &ptype_base[hash]); 399 } 400 spin_unlock_bh(&ptype_lock); 401 } 402 EXPORT_SYMBOL(dev_add_pack); 403 404 /** 405 * __dev_remove_pack - remove packet handler 406 * @pt: packet type declaration 407 * 408 * Remove a protocol handler that was previously added to the kernel 409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 410 * from the kernel lists and can be freed or reused once this function 411 * returns. 412 * 413 * The packet type might still be in use by receivers 414 * and must not be freed until after all the CPU's have gone 415 * through a quiescent state. 416 */ 417 void __dev_remove_pack(struct packet_type *pt) 418 { 419 struct list_head *head; 420 struct packet_type *pt1; 421 422 spin_lock_bh(&ptype_lock); 423 424 if (pt->type == htons(ETH_P_ALL)) 425 head = &ptype_all; 426 else 427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 428 429 list_for_each_entry(pt1, head, list) { 430 if (pt == pt1) { 431 list_del_rcu(&pt->list); 432 goto out; 433 } 434 } 435 436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 437 out: 438 spin_unlock_bh(&ptype_lock); 439 } 440 EXPORT_SYMBOL(__dev_remove_pack); 441 442 /** 443 * dev_remove_pack - remove packet handler 444 * @pt: packet type declaration 445 * 446 * Remove a protocol handler that was previously added to the kernel 447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 448 * from the kernel lists and can be freed or reused once this function 449 * returns. 450 * 451 * This call sleeps to guarantee that no CPU is looking at the packet 452 * type after return. 453 */ 454 void dev_remove_pack(struct packet_type *pt) 455 { 456 __dev_remove_pack(pt); 457 458 synchronize_net(); 459 } 460 EXPORT_SYMBOL(dev_remove_pack); 461 462 /****************************************************************************** 463 464 Device Boot-time Settings Routines 465 466 *******************************************************************************/ 467 468 /* Boot time configuration table */ 469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 470 471 /** 472 * netdev_boot_setup_add - add new setup entry 473 * @name: name of the device 474 * @map: configured settings for the device 475 * 476 * Adds new setup entry to the dev_boot_setup list. The function 477 * returns 0 on error and 1 on success. This is a generic routine to 478 * all netdevices. 479 */ 480 static int netdev_boot_setup_add(char *name, struct ifmap *map) 481 { 482 struct netdev_boot_setup *s; 483 int i; 484 485 s = dev_boot_setup; 486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 488 memset(s[i].name, 0, sizeof(s[i].name)); 489 strlcpy(s[i].name, name, IFNAMSIZ); 490 memcpy(&s[i].map, map, sizeof(s[i].map)); 491 break; 492 } 493 } 494 495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 496 } 497 498 /** 499 * netdev_boot_setup_check - check boot time settings 500 * @dev: the netdevice 501 * 502 * Check boot time settings for the device. 503 * The found settings are set for the device to be used 504 * later in the device probing. 505 * Returns 0 if no settings found, 1 if they are. 506 */ 507 int netdev_boot_setup_check(struct net_device *dev) 508 { 509 struct netdev_boot_setup *s = dev_boot_setup; 510 int i; 511 512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 514 !strcmp(dev->name, s[i].name)) { 515 dev->irq = s[i].map.irq; 516 dev->base_addr = s[i].map.base_addr; 517 dev->mem_start = s[i].map.mem_start; 518 dev->mem_end = s[i].map.mem_end; 519 return 1; 520 } 521 } 522 return 0; 523 } 524 EXPORT_SYMBOL(netdev_boot_setup_check); 525 526 527 /** 528 * netdev_boot_base - get address from boot time settings 529 * @prefix: prefix for network device 530 * @unit: id for network device 531 * 532 * Check boot time settings for the base address of device. 533 * The found settings are set for the device to be used 534 * later in the device probing. 535 * Returns 0 if no settings found. 536 */ 537 unsigned long netdev_boot_base(const char *prefix, int unit) 538 { 539 const struct netdev_boot_setup *s = dev_boot_setup; 540 char name[IFNAMSIZ]; 541 int i; 542 543 sprintf(name, "%s%d", prefix, unit); 544 545 /* 546 * If device already registered then return base of 1 547 * to indicate not to probe for this interface 548 */ 549 if (__dev_get_by_name(&init_net, name)) 550 return 1; 551 552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 553 if (!strcmp(name, s[i].name)) 554 return s[i].map.base_addr; 555 return 0; 556 } 557 558 /* 559 * Saves at boot time configured settings for any netdevice. 560 */ 561 int __init netdev_boot_setup(char *str) 562 { 563 int ints[5]; 564 struct ifmap map; 565 566 str = get_options(str, ARRAY_SIZE(ints), ints); 567 if (!str || !*str) 568 return 0; 569 570 /* Save settings */ 571 memset(&map, 0, sizeof(map)); 572 if (ints[0] > 0) 573 map.irq = ints[1]; 574 if (ints[0] > 1) 575 map.base_addr = ints[2]; 576 if (ints[0] > 2) 577 map.mem_start = ints[3]; 578 if (ints[0] > 3) 579 map.mem_end = ints[4]; 580 581 /* Add new entry to the list */ 582 return netdev_boot_setup_add(str, &map); 583 } 584 585 __setup("netdev=", netdev_boot_setup); 586 587 /******************************************************************************* 588 589 Device Interface Subroutines 590 591 *******************************************************************************/ 592 593 /** 594 * __dev_get_by_name - find a device by its name 595 * @net: the applicable net namespace 596 * @name: name to find 597 * 598 * Find an interface by name. Must be called under RTNL semaphore 599 * or @dev_base_lock. If the name is found a pointer to the device 600 * is returned. If the name is not found then %NULL is returned. The 601 * reference counters are not incremented so the caller must be 602 * careful with locks. 603 */ 604 605 struct net_device *__dev_get_by_name(struct net *net, const char *name) 606 { 607 struct hlist_node *p; 608 struct net_device *dev; 609 struct hlist_head *head = dev_name_hash(net, name); 610 611 hlist_for_each_entry(dev, p, head, name_hlist) 612 if (!strncmp(dev->name, name, IFNAMSIZ)) 613 return dev; 614 615 return NULL; 616 } 617 EXPORT_SYMBOL(__dev_get_by_name); 618 619 /** 620 * dev_get_by_name_rcu - find a device by its name 621 * @net: the applicable net namespace 622 * @name: name to find 623 * 624 * Find an interface by name. 625 * If the name is found a pointer to the device is returned. 626 * If the name is not found then %NULL is returned. 627 * The reference counters are not incremented so the caller must be 628 * careful with locks. The caller must hold RCU lock. 629 */ 630 631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 632 { 633 struct hlist_node *p; 634 struct net_device *dev; 635 struct hlist_head *head = dev_name_hash(net, name); 636 637 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 638 if (!strncmp(dev->name, name, IFNAMSIZ)) 639 return dev; 640 641 return NULL; 642 } 643 EXPORT_SYMBOL(dev_get_by_name_rcu); 644 645 /** 646 * dev_get_by_name - find a device by its name 647 * @net: the applicable net namespace 648 * @name: name to find 649 * 650 * Find an interface by name. This can be called from any 651 * context and does its own locking. The returned handle has 652 * the usage count incremented and the caller must use dev_put() to 653 * release it when it is no longer needed. %NULL is returned if no 654 * matching device is found. 655 */ 656 657 struct net_device *dev_get_by_name(struct net *net, const char *name) 658 { 659 struct net_device *dev; 660 661 rcu_read_lock(); 662 dev = dev_get_by_name_rcu(net, name); 663 if (dev) 664 dev_hold(dev); 665 rcu_read_unlock(); 666 return dev; 667 } 668 EXPORT_SYMBOL(dev_get_by_name); 669 670 /** 671 * __dev_get_by_index - find a device by its ifindex 672 * @net: the applicable net namespace 673 * @ifindex: index of device 674 * 675 * Search for an interface by index. Returns %NULL if the device 676 * is not found or a pointer to the device. The device has not 677 * had its reference counter increased so the caller must be careful 678 * about locking. The caller must hold either the RTNL semaphore 679 * or @dev_base_lock. 680 */ 681 682 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 683 { 684 struct hlist_node *p; 685 struct net_device *dev; 686 struct hlist_head *head = dev_index_hash(net, ifindex); 687 688 hlist_for_each_entry(dev, p, head, index_hlist) 689 if (dev->ifindex == ifindex) 690 return dev; 691 692 return NULL; 693 } 694 EXPORT_SYMBOL(__dev_get_by_index); 695 696 /** 697 * dev_get_by_index_rcu - find a device by its ifindex 698 * @net: the applicable net namespace 699 * @ifindex: index of device 700 * 701 * Search for an interface by index. Returns %NULL if the device 702 * is not found or a pointer to the device. The device has not 703 * had its reference counter increased so the caller must be careful 704 * about locking. The caller must hold RCU lock. 705 */ 706 707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 708 { 709 struct hlist_node *p; 710 struct net_device *dev; 711 struct hlist_head *head = dev_index_hash(net, ifindex); 712 713 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 714 if (dev->ifindex == ifindex) 715 return dev; 716 717 return NULL; 718 } 719 EXPORT_SYMBOL(dev_get_by_index_rcu); 720 721 722 /** 723 * dev_get_by_index - find a device by its ifindex 724 * @net: the applicable net namespace 725 * @ifindex: index of device 726 * 727 * Search for an interface by index. Returns NULL if the device 728 * is not found or a pointer to the device. The device returned has 729 * had a reference added and the pointer is safe until the user calls 730 * dev_put to indicate they have finished with it. 731 */ 732 733 struct net_device *dev_get_by_index(struct net *net, int ifindex) 734 { 735 struct net_device *dev; 736 737 rcu_read_lock(); 738 dev = dev_get_by_index_rcu(net, ifindex); 739 if (dev) 740 dev_hold(dev); 741 rcu_read_unlock(); 742 return dev; 743 } 744 EXPORT_SYMBOL(dev_get_by_index); 745 746 /** 747 * dev_getbyhwaddr - find a device by its hardware address 748 * @net: the applicable net namespace 749 * @type: media type of device 750 * @ha: hardware address 751 * 752 * Search for an interface by MAC address. Returns NULL if the device 753 * is not found or a pointer to the device. The caller must hold the 754 * rtnl semaphore. The returned device has not had its ref count increased 755 * and the caller must therefore be careful about locking 756 * 757 * BUGS: 758 * If the API was consistent this would be __dev_get_by_hwaddr 759 */ 760 761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 762 { 763 struct net_device *dev; 764 765 ASSERT_RTNL(); 766 767 for_each_netdev(net, dev) 768 if (dev->type == type && 769 !memcmp(dev->dev_addr, ha, dev->addr_len)) 770 return dev; 771 772 return NULL; 773 } 774 EXPORT_SYMBOL(dev_getbyhwaddr); 775 776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 777 { 778 struct net_device *dev; 779 780 ASSERT_RTNL(); 781 for_each_netdev(net, dev) 782 if (dev->type == type) 783 return dev; 784 785 return NULL; 786 } 787 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 788 789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 790 { 791 struct net_device *dev, *ret = NULL; 792 793 rcu_read_lock(); 794 for_each_netdev_rcu(net, dev) 795 if (dev->type == type) { 796 dev_hold(dev); 797 ret = dev; 798 break; 799 } 800 rcu_read_unlock(); 801 return ret; 802 } 803 EXPORT_SYMBOL(dev_getfirstbyhwtype); 804 805 /** 806 * dev_get_by_flags - find any device with given flags 807 * @net: the applicable net namespace 808 * @if_flags: IFF_* values 809 * @mask: bitmask of bits in if_flags to check 810 * 811 * Search for any interface with the given flags. Returns NULL if a device 812 * is not found or a pointer to the device. The device returned has 813 * had a reference added and the pointer is safe until the user calls 814 * dev_put to indicate they have finished with it. 815 */ 816 817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags, 818 unsigned short mask) 819 { 820 struct net_device *dev, *ret; 821 822 ret = NULL; 823 rcu_read_lock(); 824 for_each_netdev_rcu(net, dev) { 825 if (((dev->flags ^ if_flags) & mask) == 0) { 826 dev_hold(dev); 827 ret = dev; 828 break; 829 } 830 } 831 rcu_read_unlock(); 832 return ret; 833 } 834 EXPORT_SYMBOL(dev_get_by_flags); 835 836 /** 837 * dev_valid_name - check if name is okay for network device 838 * @name: name string 839 * 840 * Network device names need to be valid file names to 841 * to allow sysfs to work. We also disallow any kind of 842 * whitespace. 843 */ 844 int dev_valid_name(const char *name) 845 { 846 if (*name == '\0') 847 return 0; 848 if (strlen(name) >= IFNAMSIZ) 849 return 0; 850 if (!strcmp(name, ".") || !strcmp(name, "..")) 851 return 0; 852 853 while (*name) { 854 if (*name == '/' || isspace(*name)) 855 return 0; 856 name++; 857 } 858 return 1; 859 } 860 EXPORT_SYMBOL(dev_valid_name); 861 862 /** 863 * __dev_alloc_name - allocate a name for a device 864 * @net: network namespace to allocate the device name in 865 * @name: name format string 866 * @buf: scratch buffer and result name string 867 * 868 * Passed a format string - eg "lt%d" it will try and find a suitable 869 * id. It scans list of devices to build up a free map, then chooses 870 * the first empty slot. The caller must hold the dev_base or rtnl lock 871 * while allocating the name and adding the device in order to avoid 872 * duplicates. 873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 874 * Returns the number of the unit assigned or a negative errno code. 875 */ 876 877 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 878 { 879 int i = 0; 880 const char *p; 881 const int max_netdevices = 8*PAGE_SIZE; 882 unsigned long *inuse; 883 struct net_device *d; 884 885 p = strnchr(name, IFNAMSIZ-1, '%'); 886 if (p) { 887 /* 888 * Verify the string as this thing may have come from 889 * the user. There must be either one "%d" and no other "%" 890 * characters. 891 */ 892 if (p[1] != 'd' || strchr(p + 2, '%')) 893 return -EINVAL; 894 895 /* Use one page as a bit array of possible slots */ 896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 897 if (!inuse) 898 return -ENOMEM; 899 900 for_each_netdev(net, d) { 901 if (!sscanf(d->name, name, &i)) 902 continue; 903 if (i < 0 || i >= max_netdevices) 904 continue; 905 906 /* avoid cases where sscanf is not exact inverse of printf */ 907 snprintf(buf, IFNAMSIZ, name, i); 908 if (!strncmp(buf, d->name, IFNAMSIZ)) 909 set_bit(i, inuse); 910 } 911 912 i = find_first_zero_bit(inuse, max_netdevices); 913 free_page((unsigned long) inuse); 914 } 915 916 if (buf != name) 917 snprintf(buf, IFNAMSIZ, name, i); 918 if (!__dev_get_by_name(net, buf)) 919 return i; 920 921 /* It is possible to run out of possible slots 922 * when the name is long and there isn't enough space left 923 * for the digits, or if all bits are used. 924 */ 925 return -ENFILE; 926 } 927 928 /** 929 * dev_alloc_name - allocate a name for a device 930 * @dev: device 931 * @name: name format string 932 * 933 * Passed a format string - eg "lt%d" it will try and find a suitable 934 * id. It scans list of devices to build up a free map, then chooses 935 * the first empty slot. The caller must hold the dev_base or rtnl lock 936 * while allocating the name and adding the device in order to avoid 937 * duplicates. 938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 939 * Returns the number of the unit assigned or a negative errno code. 940 */ 941 942 int dev_alloc_name(struct net_device *dev, const char *name) 943 { 944 char buf[IFNAMSIZ]; 945 struct net *net; 946 int ret; 947 948 BUG_ON(!dev_net(dev)); 949 net = dev_net(dev); 950 ret = __dev_alloc_name(net, name, buf); 951 if (ret >= 0) 952 strlcpy(dev->name, buf, IFNAMSIZ); 953 return ret; 954 } 955 EXPORT_SYMBOL(dev_alloc_name); 956 957 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt) 958 { 959 struct net *net; 960 961 BUG_ON(!dev_net(dev)); 962 net = dev_net(dev); 963 964 if (!dev_valid_name(name)) 965 return -EINVAL; 966 967 if (fmt && strchr(name, '%')) 968 return dev_alloc_name(dev, name); 969 else if (__dev_get_by_name(net, name)) 970 return -EEXIST; 971 else if (dev->name != name) 972 strlcpy(dev->name, name, IFNAMSIZ); 973 974 return 0; 975 } 976 977 /** 978 * dev_change_name - change name of a device 979 * @dev: device 980 * @newname: name (or format string) must be at least IFNAMSIZ 981 * 982 * Change name of a device, can pass format strings "eth%d". 983 * for wildcarding. 984 */ 985 int dev_change_name(struct net_device *dev, const char *newname) 986 { 987 char oldname[IFNAMSIZ]; 988 int err = 0; 989 int ret; 990 struct net *net; 991 992 ASSERT_RTNL(); 993 BUG_ON(!dev_net(dev)); 994 995 net = dev_net(dev); 996 if (dev->flags & IFF_UP) 997 return -EBUSY; 998 999 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1000 return 0; 1001 1002 memcpy(oldname, dev->name, IFNAMSIZ); 1003 1004 err = dev_get_valid_name(dev, newname, 1); 1005 if (err < 0) 1006 return err; 1007 1008 rollback: 1009 ret = device_rename(&dev->dev, dev->name); 1010 if (ret) { 1011 memcpy(dev->name, oldname, IFNAMSIZ); 1012 return ret; 1013 } 1014 1015 write_lock_bh(&dev_base_lock); 1016 hlist_del(&dev->name_hlist); 1017 write_unlock_bh(&dev_base_lock); 1018 1019 synchronize_rcu(); 1020 1021 write_lock_bh(&dev_base_lock); 1022 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1023 write_unlock_bh(&dev_base_lock); 1024 1025 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1026 ret = notifier_to_errno(ret); 1027 1028 if (ret) { 1029 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1030 if (err >= 0) { 1031 err = ret; 1032 memcpy(dev->name, oldname, IFNAMSIZ); 1033 goto rollback; 1034 } else { 1035 printk(KERN_ERR 1036 "%s: name change rollback failed: %d.\n", 1037 dev->name, ret); 1038 } 1039 } 1040 1041 return err; 1042 } 1043 1044 /** 1045 * dev_set_alias - change ifalias of a device 1046 * @dev: device 1047 * @alias: name up to IFALIASZ 1048 * @len: limit of bytes to copy from info 1049 * 1050 * Set ifalias for a device, 1051 */ 1052 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1053 { 1054 ASSERT_RTNL(); 1055 1056 if (len >= IFALIASZ) 1057 return -EINVAL; 1058 1059 if (!len) { 1060 if (dev->ifalias) { 1061 kfree(dev->ifalias); 1062 dev->ifalias = NULL; 1063 } 1064 return 0; 1065 } 1066 1067 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1068 if (!dev->ifalias) 1069 return -ENOMEM; 1070 1071 strlcpy(dev->ifalias, alias, len+1); 1072 return len; 1073 } 1074 1075 1076 /** 1077 * netdev_features_change - device changes features 1078 * @dev: device to cause notification 1079 * 1080 * Called to indicate a device has changed features. 1081 */ 1082 void netdev_features_change(struct net_device *dev) 1083 { 1084 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1085 } 1086 EXPORT_SYMBOL(netdev_features_change); 1087 1088 /** 1089 * netdev_state_change - device changes state 1090 * @dev: device to cause notification 1091 * 1092 * Called to indicate a device has changed state. This function calls 1093 * the notifier chains for netdev_chain and sends a NEWLINK message 1094 * to the routing socket. 1095 */ 1096 void netdev_state_change(struct net_device *dev) 1097 { 1098 if (dev->flags & IFF_UP) { 1099 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1100 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1101 } 1102 } 1103 EXPORT_SYMBOL(netdev_state_change); 1104 1105 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1106 { 1107 return call_netdevice_notifiers(event, dev); 1108 } 1109 EXPORT_SYMBOL(netdev_bonding_change); 1110 1111 /** 1112 * dev_load - load a network module 1113 * @net: the applicable net namespace 1114 * @name: name of interface 1115 * 1116 * If a network interface is not present and the process has suitable 1117 * privileges this function loads the module. If module loading is not 1118 * available in this kernel then it becomes a nop. 1119 */ 1120 1121 void dev_load(struct net *net, const char *name) 1122 { 1123 struct net_device *dev; 1124 1125 rcu_read_lock(); 1126 dev = dev_get_by_name_rcu(net, name); 1127 rcu_read_unlock(); 1128 1129 if (!dev && capable(CAP_NET_ADMIN)) 1130 request_module("%s", name); 1131 } 1132 EXPORT_SYMBOL(dev_load); 1133 1134 static int __dev_open(struct net_device *dev) 1135 { 1136 const struct net_device_ops *ops = dev->netdev_ops; 1137 int ret; 1138 1139 ASSERT_RTNL(); 1140 1141 /* 1142 * Is it even present? 1143 */ 1144 if (!netif_device_present(dev)) 1145 return -ENODEV; 1146 1147 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1148 ret = notifier_to_errno(ret); 1149 if (ret) 1150 return ret; 1151 1152 /* 1153 * Call device private open method 1154 */ 1155 set_bit(__LINK_STATE_START, &dev->state); 1156 1157 if (ops->ndo_validate_addr) 1158 ret = ops->ndo_validate_addr(dev); 1159 1160 if (!ret && ops->ndo_open) 1161 ret = ops->ndo_open(dev); 1162 1163 /* 1164 * If it went open OK then: 1165 */ 1166 1167 if (ret) 1168 clear_bit(__LINK_STATE_START, &dev->state); 1169 else { 1170 /* 1171 * Set the flags. 1172 */ 1173 dev->flags |= IFF_UP; 1174 1175 /* 1176 * Enable NET_DMA 1177 */ 1178 net_dmaengine_get(); 1179 1180 /* 1181 * Initialize multicasting status 1182 */ 1183 dev_set_rx_mode(dev); 1184 1185 /* 1186 * Wakeup transmit queue engine 1187 */ 1188 dev_activate(dev); 1189 } 1190 1191 return ret; 1192 } 1193 1194 /** 1195 * dev_open - prepare an interface for use. 1196 * @dev: device to open 1197 * 1198 * Takes a device from down to up state. The device's private open 1199 * function is invoked and then the multicast lists are loaded. Finally 1200 * the device is moved into the up state and a %NETDEV_UP message is 1201 * sent to the netdev notifier chain. 1202 * 1203 * Calling this function on an active interface is a nop. On a failure 1204 * a negative errno code is returned. 1205 */ 1206 int dev_open(struct net_device *dev) 1207 { 1208 int ret; 1209 1210 /* 1211 * Is it already up? 1212 */ 1213 if (dev->flags & IFF_UP) 1214 return 0; 1215 1216 /* 1217 * Open device 1218 */ 1219 ret = __dev_open(dev); 1220 if (ret < 0) 1221 return ret; 1222 1223 /* 1224 * ... and announce new interface. 1225 */ 1226 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1227 call_netdevice_notifiers(NETDEV_UP, dev); 1228 1229 return ret; 1230 } 1231 EXPORT_SYMBOL(dev_open); 1232 1233 static int __dev_close(struct net_device *dev) 1234 { 1235 const struct net_device_ops *ops = dev->netdev_ops; 1236 1237 ASSERT_RTNL(); 1238 might_sleep(); 1239 1240 /* 1241 * Tell people we are going down, so that they can 1242 * prepare to death, when device is still operating. 1243 */ 1244 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1245 1246 clear_bit(__LINK_STATE_START, &dev->state); 1247 1248 /* Synchronize to scheduled poll. We cannot touch poll list, 1249 * it can be even on different cpu. So just clear netif_running(). 1250 * 1251 * dev->stop() will invoke napi_disable() on all of it's 1252 * napi_struct instances on this device. 1253 */ 1254 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1255 1256 dev_deactivate(dev); 1257 1258 /* 1259 * Call the device specific close. This cannot fail. 1260 * Only if device is UP 1261 * 1262 * We allow it to be called even after a DETACH hot-plug 1263 * event. 1264 */ 1265 if (ops->ndo_stop) 1266 ops->ndo_stop(dev); 1267 1268 /* 1269 * Device is now down. 1270 */ 1271 1272 dev->flags &= ~IFF_UP; 1273 1274 /* 1275 * Shutdown NET_DMA 1276 */ 1277 net_dmaengine_put(); 1278 1279 return 0; 1280 } 1281 1282 /** 1283 * dev_close - shutdown an interface. 1284 * @dev: device to shutdown 1285 * 1286 * This function moves an active device into down state. A 1287 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1288 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1289 * chain. 1290 */ 1291 int dev_close(struct net_device *dev) 1292 { 1293 if (!(dev->flags & IFF_UP)) 1294 return 0; 1295 1296 __dev_close(dev); 1297 1298 /* 1299 * Tell people we are down 1300 */ 1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1302 call_netdevice_notifiers(NETDEV_DOWN, dev); 1303 1304 return 0; 1305 } 1306 EXPORT_SYMBOL(dev_close); 1307 1308 1309 /** 1310 * dev_disable_lro - disable Large Receive Offload on a device 1311 * @dev: device 1312 * 1313 * Disable Large Receive Offload (LRO) on a net device. Must be 1314 * called under RTNL. This is needed if received packets may be 1315 * forwarded to another interface. 1316 */ 1317 void dev_disable_lro(struct net_device *dev) 1318 { 1319 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1320 dev->ethtool_ops->set_flags) { 1321 u32 flags = dev->ethtool_ops->get_flags(dev); 1322 if (flags & ETH_FLAG_LRO) { 1323 flags &= ~ETH_FLAG_LRO; 1324 dev->ethtool_ops->set_flags(dev, flags); 1325 } 1326 } 1327 WARN_ON(dev->features & NETIF_F_LRO); 1328 } 1329 EXPORT_SYMBOL(dev_disable_lro); 1330 1331 1332 static int dev_boot_phase = 1; 1333 1334 /* 1335 * Device change register/unregister. These are not inline or static 1336 * as we export them to the world. 1337 */ 1338 1339 /** 1340 * register_netdevice_notifier - register a network notifier block 1341 * @nb: notifier 1342 * 1343 * Register a notifier to be called when network device events occur. 1344 * The notifier passed is linked into the kernel structures and must 1345 * not be reused until it has been unregistered. A negative errno code 1346 * is returned on a failure. 1347 * 1348 * When registered all registration and up events are replayed 1349 * to the new notifier to allow device to have a race free 1350 * view of the network device list. 1351 */ 1352 1353 int register_netdevice_notifier(struct notifier_block *nb) 1354 { 1355 struct net_device *dev; 1356 struct net_device *last; 1357 struct net *net; 1358 int err; 1359 1360 rtnl_lock(); 1361 err = raw_notifier_chain_register(&netdev_chain, nb); 1362 if (err) 1363 goto unlock; 1364 if (dev_boot_phase) 1365 goto unlock; 1366 for_each_net(net) { 1367 for_each_netdev(net, dev) { 1368 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1369 err = notifier_to_errno(err); 1370 if (err) 1371 goto rollback; 1372 1373 if (!(dev->flags & IFF_UP)) 1374 continue; 1375 1376 nb->notifier_call(nb, NETDEV_UP, dev); 1377 } 1378 } 1379 1380 unlock: 1381 rtnl_unlock(); 1382 return err; 1383 1384 rollback: 1385 last = dev; 1386 for_each_net(net) { 1387 for_each_netdev(net, dev) { 1388 if (dev == last) 1389 break; 1390 1391 if (dev->flags & IFF_UP) { 1392 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1393 nb->notifier_call(nb, NETDEV_DOWN, dev); 1394 } 1395 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1396 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1397 } 1398 } 1399 1400 raw_notifier_chain_unregister(&netdev_chain, nb); 1401 goto unlock; 1402 } 1403 EXPORT_SYMBOL(register_netdevice_notifier); 1404 1405 /** 1406 * unregister_netdevice_notifier - unregister a network notifier block 1407 * @nb: notifier 1408 * 1409 * Unregister a notifier previously registered by 1410 * register_netdevice_notifier(). The notifier is unlinked into the 1411 * kernel structures and may then be reused. A negative errno code 1412 * is returned on a failure. 1413 */ 1414 1415 int unregister_netdevice_notifier(struct notifier_block *nb) 1416 { 1417 int err; 1418 1419 rtnl_lock(); 1420 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1421 rtnl_unlock(); 1422 return err; 1423 } 1424 EXPORT_SYMBOL(unregister_netdevice_notifier); 1425 1426 /** 1427 * call_netdevice_notifiers - call all network notifier blocks 1428 * @val: value passed unmodified to notifier function 1429 * @dev: net_device pointer passed unmodified to notifier function 1430 * 1431 * Call all network notifier blocks. Parameters and return value 1432 * are as for raw_notifier_call_chain(). 1433 */ 1434 1435 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1436 { 1437 ASSERT_RTNL(); 1438 return raw_notifier_call_chain(&netdev_chain, val, dev); 1439 } 1440 1441 /* When > 0 there are consumers of rx skb time stamps */ 1442 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1443 1444 void net_enable_timestamp(void) 1445 { 1446 atomic_inc(&netstamp_needed); 1447 } 1448 EXPORT_SYMBOL(net_enable_timestamp); 1449 1450 void net_disable_timestamp(void) 1451 { 1452 atomic_dec(&netstamp_needed); 1453 } 1454 EXPORT_SYMBOL(net_disable_timestamp); 1455 1456 static inline void net_timestamp_set(struct sk_buff *skb) 1457 { 1458 if (atomic_read(&netstamp_needed)) 1459 __net_timestamp(skb); 1460 else 1461 skb->tstamp.tv64 = 0; 1462 } 1463 1464 static inline void net_timestamp_check(struct sk_buff *skb) 1465 { 1466 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1467 __net_timestamp(skb); 1468 } 1469 1470 /** 1471 * dev_forward_skb - loopback an skb to another netif 1472 * 1473 * @dev: destination network device 1474 * @skb: buffer to forward 1475 * 1476 * return values: 1477 * NET_RX_SUCCESS (no congestion) 1478 * NET_RX_DROP (packet was dropped, but freed) 1479 * 1480 * dev_forward_skb can be used for injecting an skb from the 1481 * start_xmit function of one device into the receive queue 1482 * of another device. 1483 * 1484 * The receiving device may be in another namespace, so 1485 * we have to clear all information in the skb that could 1486 * impact namespace isolation. 1487 */ 1488 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1489 { 1490 skb_orphan(skb); 1491 1492 if (!(dev->flags & IFF_UP) || 1493 (skb->len > (dev->mtu + dev->hard_header_len))) { 1494 kfree_skb(skb); 1495 return NET_RX_DROP; 1496 } 1497 skb_set_dev(skb, dev); 1498 skb->tstamp.tv64 = 0; 1499 skb->pkt_type = PACKET_HOST; 1500 skb->protocol = eth_type_trans(skb, dev); 1501 return netif_rx(skb); 1502 } 1503 EXPORT_SYMBOL_GPL(dev_forward_skb); 1504 1505 /* 1506 * Support routine. Sends outgoing frames to any network 1507 * taps currently in use. 1508 */ 1509 1510 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1511 { 1512 struct packet_type *ptype; 1513 1514 #ifdef CONFIG_NET_CLS_ACT 1515 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1516 net_timestamp_set(skb); 1517 #else 1518 net_timestamp_set(skb); 1519 #endif 1520 1521 rcu_read_lock(); 1522 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1523 /* Never send packets back to the socket 1524 * they originated from - MvS (miquels@drinkel.ow.org) 1525 */ 1526 if ((ptype->dev == dev || !ptype->dev) && 1527 (ptype->af_packet_priv == NULL || 1528 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1529 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1530 if (!skb2) 1531 break; 1532 1533 /* skb->nh should be correctly 1534 set by sender, so that the second statement is 1535 just protection against buggy protocols. 1536 */ 1537 skb_reset_mac_header(skb2); 1538 1539 if (skb_network_header(skb2) < skb2->data || 1540 skb2->network_header > skb2->tail) { 1541 if (net_ratelimit()) 1542 printk(KERN_CRIT "protocol %04x is " 1543 "buggy, dev %s\n", 1544 skb2->protocol, dev->name); 1545 skb_reset_network_header(skb2); 1546 } 1547 1548 skb2->transport_header = skb2->network_header; 1549 skb2->pkt_type = PACKET_OUTGOING; 1550 ptype->func(skb2, skb->dev, ptype, skb->dev); 1551 } 1552 } 1553 rcu_read_unlock(); 1554 } 1555 1556 1557 static inline void __netif_reschedule(struct Qdisc *q) 1558 { 1559 struct softnet_data *sd; 1560 unsigned long flags; 1561 1562 local_irq_save(flags); 1563 sd = &__get_cpu_var(softnet_data); 1564 q->next_sched = NULL; 1565 *sd->output_queue_tailp = q; 1566 sd->output_queue_tailp = &q->next_sched; 1567 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1568 local_irq_restore(flags); 1569 } 1570 1571 void __netif_schedule(struct Qdisc *q) 1572 { 1573 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1574 __netif_reschedule(q); 1575 } 1576 EXPORT_SYMBOL(__netif_schedule); 1577 1578 void dev_kfree_skb_irq(struct sk_buff *skb) 1579 { 1580 if (atomic_dec_and_test(&skb->users)) { 1581 struct softnet_data *sd; 1582 unsigned long flags; 1583 1584 local_irq_save(flags); 1585 sd = &__get_cpu_var(softnet_data); 1586 skb->next = sd->completion_queue; 1587 sd->completion_queue = skb; 1588 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1589 local_irq_restore(flags); 1590 } 1591 } 1592 EXPORT_SYMBOL(dev_kfree_skb_irq); 1593 1594 void dev_kfree_skb_any(struct sk_buff *skb) 1595 { 1596 if (in_irq() || irqs_disabled()) 1597 dev_kfree_skb_irq(skb); 1598 else 1599 dev_kfree_skb(skb); 1600 } 1601 EXPORT_SYMBOL(dev_kfree_skb_any); 1602 1603 1604 /** 1605 * netif_device_detach - mark device as removed 1606 * @dev: network device 1607 * 1608 * Mark device as removed from system and therefore no longer available. 1609 */ 1610 void netif_device_detach(struct net_device *dev) 1611 { 1612 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1613 netif_running(dev)) { 1614 netif_tx_stop_all_queues(dev); 1615 } 1616 } 1617 EXPORT_SYMBOL(netif_device_detach); 1618 1619 /** 1620 * netif_device_attach - mark device as attached 1621 * @dev: network device 1622 * 1623 * Mark device as attached from system and restart if needed. 1624 */ 1625 void netif_device_attach(struct net_device *dev) 1626 { 1627 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1628 netif_running(dev)) { 1629 netif_tx_wake_all_queues(dev); 1630 __netdev_watchdog_up(dev); 1631 } 1632 } 1633 EXPORT_SYMBOL(netif_device_attach); 1634 1635 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1636 { 1637 return ((features & NETIF_F_GEN_CSUM) || 1638 ((features & NETIF_F_IP_CSUM) && 1639 protocol == htons(ETH_P_IP)) || 1640 ((features & NETIF_F_IPV6_CSUM) && 1641 protocol == htons(ETH_P_IPV6)) || 1642 ((features & NETIF_F_FCOE_CRC) && 1643 protocol == htons(ETH_P_FCOE))); 1644 } 1645 1646 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1647 { 1648 if (can_checksum_protocol(dev->features, skb->protocol)) 1649 return true; 1650 1651 if (skb->protocol == htons(ETH_P_8021Q)) { 1652 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1653 if (can_checksum_protocol(dev->features & dev->vlan_features, 1654 veh->h_vlan_encapsulated_proto)) 1655 return true; 1656 } 1657 1658 return false; 1659 } 1660 1661 /** 1662 * skb_dev_set -- assign a new device to a buffer 1663 * @skb: buffer for the new device 1664 * @dev: network device 1665 * 1666 * If an skb is owned by a device already, we have to reset 1667 * all data private to the namespace a device belongs to 1668 * before assigning it a new device. 1669 */ 1670 #ifdef CONFIG_NET_NS 1671 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1672 { 1673 skb_dst_drop(skb); 1674 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1675 secpath_reset(skb); 1676 nf_reset(skb); 1677 skb_init_secmark(skb); 1678 skb->mark = 0; 1679 skb->priority = 0; 1680 skb->nf_trace = 0; 1681 skb->ipvs_property = 0; 1682 #ifdef CONFIG_NET_SCHED 1683 skb->tc_index = 0; 1684 #endif 1685 } 1686 skb->dev = dev; 1687 } 1688 EXPORT_SYMBOL(skb_set_dev); 1689 #endif /* CONFIG_NET_NS */ 1690 1691 /* 1692 * Invalidate hardware checksum when packet is to be mangled, and 1693 * complete checksum manually on outgoing path. 1694 */ 1695 int skb_checksum_help(struct sk_buff *skb) 1696 { 1697 __wsum csum; 1698 int ret = 0, offset; 1699 1700 if (skb->ip_summed == CHECKSUM_COMPLETE) 1701 goto out_set_summed; 1702 1703 if (unlikely(skb_shinfo(skb)->gso_size)) { 1704 /* Let GSO fix up the checksum. */ 1705 goto out_set_summed; 1706 } 1707 1708 offset = skb->csum_start - skb_headroom(skb); 1709 BUG_ON(offset >= skb_headlen(skb)); 1710 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1711 1712 offset += skb->csum_offset; 1713 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1714 1715 if (skb_cloned(skb) && 1716 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1717 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1718 if (ret) 1719 goto out; 1720 } 1721 1722 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1723 out_set_summed: 1724 skb->ip_summed = CHECKSUM_NONE; 1725 out: 1726 return ret; 1727 } 1728 EXPORT_SYMBOL(skb_checksum_help); 1729 1730 /** 1731 * skb_gso_segment - Perform segmentation on skb. 1732 * @skb: buffer to segment 1733 * @features: features for the output path (see dev->features) 1734 * 1735 * This function segments the given skb and returns a list of segments. 1736 * 1737 * It may return NULL if the skb requires no segmentation. This is 1738 * only possible when GSO is used for verifying header integrity. 1739 */ 1740 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1741 { 1742 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1743 struct packet_type *ptype; 1744 __be16 type = skb->protocol; 1745 int err; 1746 1747 skb_reset_mac_header(skb); 1748 skb->mac_len = skb->network_header - skb->mac_header; 1749 __skb_pull(skb, skb->mac_len); 1750 1751 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1752 struct net_device *dev = skb->dev; 1753 struct ethtool_drvinfo info = {}; 1754 1755 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1756 dev->ethtool_ops->get_drvinfo(dev, &info); 1757 1758 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1759 "ip_summed=%d", 1760 info.driver, dev ? dev->features : 0L, 1761 skb->sk ? skb->sk->sk_route_caps : 0L, 1762 skb->len, skb->data_len, skb->ip_summed); 1763 1764 if (skb_header_cloned(skb) && 1765 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1766 return ERR_PTR(err); 1767 } 1768 1769 rcu_read_lock(); 1770 list_for_each_entry_rcu(ptype, 1771 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1772 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1773 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1774 err = ptype->gso_send_check(skb); 1775 segs = ERR_PTR(err); 1776 if (err || skb_gso_ok(skb, features)) 1777 break; 1778 __skb_push(skb, (skb->data - 1779 skb_network_header(skb))); 1780 } 1781 segs = ptype->gso_segment(skb, features); 1782 break; 1783 } 1784 } 1785 rcu_read_unlock(); 1786 1787 __skb_push(skb, skb->data - skb_mac_header(skb)); 1788 1789 return segs; 1790 } 1791 EXPORT_SYMBOL(skb_gso_segment); 1792 1793 /* Take action when hardware reception checksum errors are detected. */ 1794 #ifdef CONFIG_BUG 1795 void netdev_rx_csum_fault(struct net_device *dev) 1796 { 1797 if (net_ratelimit()) { 1798 printk(KERN_ERR "%s: hw csum failure.\n", 1799 dev ? dev->name : "<unknown>"); 1800 dump_stack(); 1801 } 1802 } 1803 EXPORT_SYMBOL(netdev_rx_csum_fault); 1804 #endif 1805 1806 /* Actually, we should eliminate this check as soon as we know, that: 1807 * 1. IOMMU is present and allows to map all the memory. 1808 * 2. No high memory really exists on this machine. 1809 */ 1810 1811 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1812 { 1813 #ifdef CONFIG_HIGHMEM 1814 int i; 1815 if (!(dev->features & NETIF_F_HIGHDMA)) { 1816 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1817 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1818 return 1; 1819 } 1820 1821 if (PCI_DMA_BUS_IS_PHYS) { 1822 struct device *pdev = dev->dev.parent; 1823 1824 if (!pdev) 1825 return 0; 1826 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1827 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1828 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1829 return 1; 1830 } 1831 } 1832 #endif 1833 return 0; 1834 } 1835 1836 struct dev_gso_cb { 1837 void (*destructor)(struct sk_buff *skb); 1838 }; 1839 1840 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1841 1842 static void dev_gso_skb_destructor(struct sk_buff *skb) 1843 { 1844 struct dev_gso_cb *cb; 1845 1846 do { 1847 struct sk_buff *nskb = skb->next; 1848 1849 skb->next = nskb->next; 1850 nskb->next = NULL; 1851 kfree_skb(nskb); 1852 } while (skb->next); 1853 1854 cb = DEV_GSO_CB(skb); 1855 if (cb->destructor) 1856 cb->destructor(skb); 1857 } 1858 1859 /** 1860 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1861 * @skb: buffer to segment 1862 * 1863 * This function segments the given skb and stores the list of segments 1864 * in skb->next. 1865 */ 1866 static int dev_gso_segment(struct sk_buff *skb) 1867 { 1868 struct net_device *dev = skb->dev; 1869 struct sk_buff *segs; 1870 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1871 NETIF_F_SG : 0); 1872 1873 segs = skb_gso_segment(skb, features); 1874 1875 /* Verifying header integrity only. */ 1876 if (!segs) 1877 return 0; 1878 1879 if (IS_ERR(segs)) 1880 return PTR_ERR(segs); 1881 1882 skb->next = segs; 1883 DEV_GSO_CB(skb)->destructor = skb->destructor; 1884 skb->destructor = dev_gso_skb_destructor; 1885 1886 return 0; 1887 } 1888 1889 /* 1890 * Try to orphan skb early, right before transmission by the device. 1891 * We cannot orphan skb if tx timestamp is requested, since 1892 * drivers need to call skb_tstamp_tx() to send the timestamp. 1893 */ 1894 static inline void skb_orphan_try(struct sk_buff *skb) 1895 { 1896 if (!skb_tx(skb)->flags) 1897 skb_orphan(skb); 1898 } 1899 1900 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1901 struct netdev_queue *txq) 1902 { 1903 const struct net_device_ops *ops = dev->netdev_ops; 1904 int rc = NETDEV_TX_OK; 1905 1906 if (likely(!skb->next)) { 1907 if (!list_empty(&ptype_all)) 1908 dev_queue_xmit_nit(skb, dev); 1909 1910 /* 1911 * If device doesnt need skb->dst, release it right now while 1912 * its hot in this cpu cache 1913 */ 1914 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1915 skb_dst_drop(skb); 1916 1917 skb_orphan_try(skb); 1918 1919 if (netif_needs_gso(dev, skb)) { 1920 if (unlikely(dev_gso_segment(skb))) 1921 goto out_kfree_skb; 1922 if (skb->next) 1923 goto gso; 1924 } 1925 1926 rc = ops->ndo_start_xmit(skb, dev); 1927 if (rc == NETDEV_TX_OK) 1928 txq_trans_update(txq); 1929 return rc; 1930 } 1931 1932 gso: 1933 do { 1934 struct sk_buff *nskb = skb->next; 1935 1936 skb->next = nskb->next; 1937 nskb->next = NULL; 1938 1939 /* 1940 * If device doesnt need nskb->dst, release it right now while 1941 * its hot in this cpu cache 1942 */ 1943 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1944 skb_dst_drop(nskb); 1945 1946 rc = ops->ndo_start_xmit(nskb, dev); 1947 if (unlikely(rc != NETDEV_TX_OK)) { 1948 if (rc & ~NETDEV_TX_MASK) 1949 goto out_kfree_gso_skb; 1950 nskb->next = skb->next; 1951 skb->next = nskb; 1952 return rc; 1953 } 1954 txq_trans_update(txq); 1955 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1956 return NETDEV_TX_BUSY; 1957 } while (skb->next); 1958 1959 out_kfree_gso_skb: 1960 if (likely(skb->next == NULL)) 1961 skb->destructor = DEV_GSO_CB(skb)->destructor; 1962 out_kfree_skb: 1963 kfree_skb(skb); 1964 return rc; 1965 } 1966 1967 static u32 hashrnd __read_mostly; 1968 1969 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1970 { 1971 u32 hash; 1972 1973 if (skb_rx_queue_recorded(skb)) { 1974 hash = skb_get_rx_queue(skb); 1975 while (unlikely(hash >= dev->real_num_tx_queues)) 1976 hash -= dev->real_num_tx_queues; 1977 return hash; 1978 } 1979 1980 if (skb->sk && skb->sk->sk_hash) 1981 hash = skb->sk->sk_hash; 1982 else 1983 hash = (__force u16) skb->protocol; 1984 1985 hash = jhash_1word(hash, hashrnd); 1986 1987 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1988 } 1989 EXPORT_SYMBOL(skb_tx_hash); 1990 1991 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 1992 { 1993 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 1994 if (net_ratelimit()) { 1995 pr_warning("%s selects TX queue %d, but " 1996 "real number of TX queues is %d\n", 1997 dev->name, queue_index, dev->real_num_tx_queues); 1998 } 1999 return 0; 2000 } 2001 return queue_index; 2002 } 2003 2004 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2005 struct sk_buff *skb) 2006 { 2007 u16 queue_index; 2008 struct sock *sk = skb->sk; 2009 2010 if (sk_tx_queue_recorded(sk)) { 2011 queue_index = sk_tx_queue_get(sk); 2012 } else { 2013 const struct net_device_ops *ops = dev->netdev_ops; 2014 2015 if (ops->ndo_select_queue) { 2016 queue_index = ops->ndo_select_queue(dev, skb); 2017 queue_index = dev_cap_txqueue(dev, queue_index); 2018 } else { 2019 queue_index = 0; 2020 if (dev->real_num_tx_queues > 1) 2021 queue_index = skb_tx_hash(dev, skb); 2022 2023 if (sk) { 2024 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1); 2025 2026 if (dst && skb_dst(skb) == dst) 2027 sk_tx_queue_set(sk, queue_index); 2028 } 2029 } 2030 } 2031 2032 skb_set_queue_mapping(skb, queue_index); 2033 return netdev_get_tx_queue(dev, queue_index); 2034 } 2035 2036 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2037 struct net_device *dev, 2038 struct netdev_queue *txq) 2039 { 2040 spinlock_t *root_lock = qdisc_lock(q); 2041 int rc; 2042 2043 spin_lock(root_lock); 2044 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2045 kfree_skb(skb); 2046 rc = NET_XMIT_DROP; 2047 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2048 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) { 2049 /* 2050 * This is a work-conserving queue; there are no old skbs 2051 * waiting to be sent out; and the qdisc is not running - 2052 * xmit the skb directly. 2053 */ 2054 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2055 skb_dst_force(skb); 2056 __qdisc_update_bstats(q, skb->len); 2057 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) 2058 __qdisc_run(q); 2059 else 2060 clear_bit(__QDISC_STATE_RUNNING, &q->state); 2061 2062 rc = NET_XMIT_SUCCESS; 2063 } else { 2064 skb_dst_force(skb); 2065 rc = qdisc_enqueue_root(skb, q); 2066 qdisc_run(q); 2067 } 2068 spin_unlock(root_lock); 2069 2070 return rc; 2071 } 2072 2073 /* 2074 * Returns true if either: 2075 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2076 * 2. skb is fragmented and the device does not support SG, or if 2077 * at least one of fragments is in highmem and device does not 2078 * support DMA from it. 2079 */ 2080 static inline int skb_needs_linearize(struct sk_buff *skb, 2081 struct net_device *dev) 2082 { 2083 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) || 2084 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) || 2085 illegal_highdma(dev, skb))); 2086 } 2087 2088 /** 2089 * dev_queue_xmit - transmit a buffer 2090 * @skb: buffer to transmit 2091 * 2092 * Queue a buffer for transmission to a network device. The caller must 2093 * have set the device and priority and built the buffer before calling 2094 * this function. The function can be called from an interrupt. 2095 * 2096 * A negative errno code is returned on a failure. A success does not 2097 * guarantee the frame will be transmitted as it may be dropped due 2098 * to congestion or traffic shaping. 2099 * 2100 * ----------------------------------------------------------------------------------- 2101 * I notice this method can also return errors from the queue disciplines, 2102 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2103 * be positive. 2104 * 2105 * Regardless of the return value, the skb is consumed, so it is currently 2106 * difficult to retry a send to this method. (You can bump the ref count 2107 * before sending to hold a reference for retry if you are careful.) 2108 * 2109 * When calling this method, interrupts MUST be enabled. This is because 2110 * the BH enable code must have IRQs enabled so that it will not deadlock. 2111 * --BLG 2112 */ 2113 int dev_queue_xmit(struct sk_buff *skb) 2114 { 2115 struct net_device *dev = skb->dev; 2116 struct netdev_queue *txq; 2117 struct Qdisc *q; 2118 int rc = -ENOMEM; 2119 2120 /* GSO will handle the following emulations directly. */ 2121 if (netif_needs_gso(dev, skb)) 2122 goto gso; 2123 2124 /* Convert a paged skb to linear, if required */ 2125 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb)) 2126 goto out_kfree_skb; 2127 2128 /* If packet is not checksummed and device does not support 2129 * checksumming for this protocol, complete checksumming here. 2130 */ 2131 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2132 skb_set_transport_header(skb, skb->csum_start - 2133 skb_headroom(skb)); 2134 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 2135 goto out_kfree_skb; 2136 } 2137 2138 gso: 2139 /* Disable soft irqs for various locks below. Also 2140 * stops preemption for RCU. 2141 */ 2142 rcu_read_lock_bh(); 2143 2144 txq = dev_pick_tx(dev, skb); 2145 q = rcu_dereference_bh(txq->qdisc); 2146 2147 #ifdef CONFIG_NET_CLS_ACT 2148 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2149 #endif 2150 if (q->enqueue) { 2151 rc = __dev_xmit_skb(skb, q, dev, txq); 2152 goto out; 2153 } 2154 2155 /* The device has no queue. Common case for software devices: 2156 loopback, all the sorts of tunnels... 2157 2158 Really, it is unlikely that netif_tx_lock protection is necessary 2159 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2160 counters.) 2161 However, it is possible, that they rely on protection 2162 made by us here. 2163 2164 Check this and shot the lock. It is not prone from deadlocks. 2165 Either shot noqueue qdisc, it is even simpler 8) 2166 */ 2167 if (dev->flags & IFF_UP) { 2168 int cpu = smp_processor_id(); /* ok because BHs are off */ 2169 2170 if (txq->xmit_lock_owner != cpu) { 2171 2172 HARD_TX_LOCK(dev, txq, cpu); 2173 2174 if (!netif_tx_queue_stopped(txq)) { 2175 rc = dev_hard_start_xmit(skb, dev, txq); 2176 if (dev_xmit_complete(rc)) { 2177 HARD_TX_UNLOCK(dev, txq); 2178 goto out; 2179 } 2180 } 2181 HARD_TX_UNLOCK(dev, txq); 2182 if (net_ratelimit()) 2183 printk(KERN_CRIT "Virtual device %s asks to " 2184 "queue packet!\n", dev->name); 2185 } else { 2186 /* Recursion is detected! It is possible, 2187 * unfortunately */ 2188 if (net_ratelimit()) 2189 printk(KERN_CRIT "Dead loop on virtual device " 2190 "%s, fix it urgently!\n", dev->name); 2191 } 2192 } 2193 2194 rc = -ENETDOWN; 2195 rcu_read_unlock_bh(); 2196 2197 out_kfree_skb: 2198 kfree_skb(skb); 2199 return rc; 2200 out: 2201 rcu_read_unlock_bh(); 2202 return rc; 2203 } 2204 EXPORT_SYMBOL(dev_queue_xmit); 2205 2206 2207 /*======================================================================= 2208 Receiver routines 2209 =======================================================================*/ 2210 2211 int netdev_max_backlog __read_mostly = 1000; 2212 int netdev_tstamp_prequeue __read_mostly = 1; 2213 int netdev_budget __read_mostly = 300; 2214 int weight_p __read_mostly = 64; /* old backlog weight */ 2215 2216 /* Called with irq disabled */ 2217 static inline void ____napi_schedule(struct softnet_data *sd, 2218 struct napi_struct *napi) 2219 { 2220 list_add_tail(&napi->poll_list, &sd->poll_list); 2221 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2222 } 2223 2224 #ifdef CONFIG_RPS 2225 2226 /* One global table that all flow-based protocols share. */ 2227 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly; 2228 EXPORT_SYMBOL(rps_sock_flow_table); 2229 2230 /* 2231 * get_rps_cpu is called from netif_receive_skb and returns the target 2232 * CPU from the RPS map of the receiving queue for a given skb. 2233 * rcu_read_lock must be held on entry. 2234 */ 2235 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2236 struct rps_dev_flow **rflowp) 2237 { 2238 struct ipv6hdr *ip6; 2239 struct iphdr *ip; 2240 struct netdev_rx_queue *rxqueue; 2241 struct rps_map *map; 2242 struct rps_dev_flow_table *flow_table; 2243 struct rps_sock_flow_table *sock_flow_table; 2244 int cpu = -1; 2245 u8 ip_proto; 2246 u16 tcpu; 2247 u32 addr1, addr2, ihl; 2248 union { 2249 u32 v32; 2250 u16 v16[2]; 2251 } ports; 2252 2253 if (skb_rx_queue_recorded(skb)) { 2254 u16 index = skb_get_rx_queue(skb); 2255 if (unlikely(index >= dev->num_rx_queues)) { 2256 if (net_ratelimit()) { 2257 pr_warning("%s received packet on queue " 2258 "%u, but number of RX queues is %u\n", 2259 dev->name, index, dev->num_rx_queues); 2260 } 2261 goto done; 2262 } 2263 rxqueue = dev->_rx + index; 2264 } else 2265 rxqueue = dev->_rx; 2266 2267 if (!rxqueue->rps_map && !rxqueue->rps_flow_table) 2268 goto done; 2269 2270 if (skb->rxhash) 2271 goto got_hash; /* Skip hash computation on packet header */ 2272 2273 switch (skb->protocol) { 2274 case __constant_htons(ETH_P_IP): 2275 if (!pskb_may_pull(skb, sizeof(*ip))) 2276 goto done; 2277 2278 ip = (struct iphdr *) skb->data; 2279 ip_proto = ip->protocol; 2280 addr1 = (__force u32) ip->saddr; 2281 addr2 = (__force u32) ip->daddr; 2282 ihl = ip->ihl; 2283 break; 2284 case __constant_htons(ETH_P_IPV6): 2285 if (!pskb_may_pull(skb, sizeof(*ip6))) 2286 goto done; 2287 2288 ip6 = (struct ipv6hdr *) skb->data; 2289 ip_proto = ip6->nexthdr; 2290 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2291 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2292 ihl = (40 >> 2); 2293 break; 2294 default: 2295 goto done; 2296 } 2297 switch (ip_proto) { 2298 case IPPROTO_TCP: 2299 case IPPROTO_UDP: 2300 case IPPROTO_DCCP: 2301 case IPPROTO_ESP: 2302 case IPPROTO_AH: 2303 case IPPROTO_SCTP: 2304 case IPPROTO_UDPLITE: 2305 if (pskb_may_pull(skb, (ihl * 4) + 4)) { 2306 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4)); 2307 if (ports.v16[1] < ports.v16[0]) 2308 swap(ports.v16[0], ports.v16[1]); 2309 break; 2310 } 2311 default: 2312 ports.v32 = 0; 2313 break; 2314 } 2315 2316 /* get a consistent hash (same value on both flow directions) */ 2317 if (addr2 < addr1) 2318 swap(addr1, addr2); 2319 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2320 if (!skb->rxhash) 2321 skb->rxhash = 1; 2322 2323 got_hash: 2324 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2325 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2326 if (flow_table && sock_flow_table) { 2327 u16 next_cpu; 2328 struct rps_dev_flow *rflow; 2329 2330 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2331 tcpu = rflow->cpu; 2332 2333 next_cpu = sock_flow_table->ents[skb->rxhash & 2334 sock_flow_table->mask]; 2335 2336 /* 2337 * If the desired CPU (where last recvmsg was done) is 2338 * different from current CPU (one in the rx-queue flow 2339 * table entry), switch if one of the following holds: 2340 * - Current CPU is unset (equal to RPS_NO_CPU). 2341 * - Current CPU is offline. 2342 * - The current CPU's queue tail has advanced beyond the 2343 * last packet that was enqueued using this table entry. 2344 * This guarantees that all previous packets for the flow 2345 * have been dequeued, thus preserving in order delivery. 2346 */ 2347 if (unlikely(tcpu != next_cpu) && 2348 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2349 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2350 rflow->last_qtail)) >= 0)) { 2351 tcpu = rflow->cpu = next_cpu; 2352 if (tcpu != RPS_NO_CPU) 2353 rflow->last_qtail = per_cpu(softnet_data, 2354 tcpu).input_queue_head; 2355 } 2356 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2357 *rflowp = rflow; 2358 cpu = tcpu; 2359 goto done; 2360 } 2361 } 2362 2363 map = rcu_dereference(rxqueue->rps_map); 2364 if (map) { 2365 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2366 2367 if (cpu_online(tcpu)) { 2368 cpu = tcpu; 2369 goto done; 2370 } 2371 } 2372 2373 done: 2374 return cpu; 2375 } 2376 2377 /* Called from hardirq (IPI) context */ 2378 static void rps_trigger_softirq(void *data) 2379 { 2380 struct softnet_data *sd = data; 2381 2382 ____napi_schedule(sd, &sd->backlog); 2383 sd->received_rps++; 2384 } 2385 2386 #endif /* CONFIG_RPS */ 2387 2388 /* 2389 * Check if this softnet_data structure is another cpu one 2390 * If yes, queue it to our IPI list and return 1 2391 * If no, return 0 2392 */ 2393 static int rps_ipi_queued(struct softnet_data *sd) 2394 { 2395 #ifdef CONFIG_RPS 2396 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2397 2398 if (sd != mysd) { 2399 sd->rps_ipi_next = mysd->rps_ipi_list; 2400 mysd->rps_ipi_list = sd; 2401 2402 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2403 return 1; 2404 } 2405 #endif /* CONFIG_RPS */ 2406 return 0; 2407 } 2408 2409 /* 2410 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2411 * queue (may be a remote CPU queue). 2412 */ 2413 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2414 unsigned int *qtail) 2415 { 2416 struct softnet_data *sd; 2417 unsigned long flags; 2418 2419 sd = &per_cpu(softnet_data, cpu); 2420 2421 local_irq_save(flags); 2422 2423 rps_lock(sd); 2424 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2425 if (skb_queue_len(&sd->input_pkt_queue)) { 2426 enqueue: 2427 __skb_queue_tail(&sd->input_pkt_queue, skb); 2428 input_queue_tail_incr_save(sd, qtail); 2429 rps_unlock(sd); 2430 local_irq_restore(flags); 2431 return NET_RX_SUCCESS; 2432 } 2433 2434 /* Schedule NAPI for backlog device 2435 * We can use non atomic operation since we own the queue lock 2436 */ 2437 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2438 if (!rps_ipi_queued(sd)) 2439 ____napi_schedule(sd, &sd->backlog); 2440 } 2441 goto enqueue; 2442 } 2443 2444 sd->dropped++; 2445 rps_unlock(sd); 2446 2447 local_irq_restore(flags); 2448 2449 kfree_skb(skb); 2450 return NET_RX_DROP; 2451 } 2452 2453 /** 2454 * netif_rx - post buffer to the network code 2455 * @skb: buffer to post 2456 * 2457 * This function receives a packet from a device driver and queues it for 2458 * the upper (protocol) levels to process. It always succeeds. The buffer 2459 * may be dropped during processing for congestion control or by the 2460 * protocol layers. 2461 * 2462 * return values: 2463 * NET_RX_SUCCESS (no congestion) 2464 * NET_RX_DROP (packet was dropped) 2465 * 2466 */ 2467 2468 int netif_rx(struct sk_buff *skb) 2469 { 2470 int ret; 2471 2472 /* if netpoll wants it, pretend we never saw it */ 2473 if (netpoll_rx(skb)) 2474 return NET_RX_DROP; 2475 2476 if (netdev_tstamp_prequeue) 2477 net_timestamp_check(skb); 2478 2479 #ifdef CONFIG_RPS 2480 { 2481 struct rps_dev_flow voidflow, *rflow = &voidflow; 2482 int cpu; 2483 2484 rcu_read_lock(); 2485 2486 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2487 if (cpu < 0) 2488 cpu = smp_processor_id(); 2489 2490 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2491 2492 rcu_read_unlock(); 2493 } 2494 #else 2495 { 2496 unsigned int qtail; 2497 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2498 put_cpu(); 2499 } 2500 #endif 2501 return ret; 2502 } 2503 EXPORT_SYMBOL(netif_rx); 2504 2505 int netif_rx_ni(struct sk_buff *skb) 2506 { 2507 int err; 2508 2509 preempt_disable(); 2510 err = netif_rx(skb); 2511 if (local_softirq_pending()) 2512 do_softirq(); 2513 preempt_enable(); 2514 2515 return err; 2516 } 2517 EXPORT_SYMBOL(netif_rx_ni); 2518 2519 static void net_tx_action(struct softirq_action *h) 2520 { 2521 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2522 2523 if (sd->completion_queue) { 2524 struct sk_buff *clist; 2525 2526 local_irq_disable(); 2527 clist = sd->completion_queue; 2528 sd->completion_queue = NULL; 2529 local_irq_enable(); 2530 2531 while (clist) { 2532 struct sk_buff *skb = clist; 2533 clist = clist->next; 2534 2535 WARN_ON(atomic_read(&skb->users)); 2536 __kfree_skb(skb); 2537 } 2538 } 2539 2540 if (sd->output_queue) { 2541 struct Qdisc *head; 2542 2543 local_irq_disable(); 2544 head = sd->output_queue; 2545 sd->output_queue = NULL; 2546 sd->output_queue_tailp = &sd->output_queue; 2547 local_irq_enable(); 2548 2549 while (head) { 2550 struct Qdisc *q = head; 2551 spinlock_t *root_lock; 2552 2553 head = head->next_sched; 2554 2555 root_lock = qdisc_lock(q); 2556 if (spin_trylock(root_lock)) { 2557 smp_mb__before_clear_bit(); 2558 clear_bit(__QDISC_STATE_SCHED, 2559 &q->state); 2560 qdisc_run(q); 2561 spin_unlock(root_lock); 2562 } else { 2563 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2564 &q->state)) { 2565 __netif_reschedule(q); 2566 } else { 2567 smp_mb__before_clear_bit(); 2568 clear_bit(__QDISC_STATE_SCHED, 2569 &q->state); 2570 } 2571 } 2572 } 2573 } 2574 } 2575 2576 static inline int deliver_skb(struct sk_buff *skb, 2577 struct packet_type *pt_prev, 2578 struct net_device *orig_dev) 2579 { 2580 atomic_inc(&skb->users); 2581 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2582 } 2583 2584 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2585 2586 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE) 2587 /* This hook is defined here for ATM LANE */ 2588 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2589 unsigned char *addr) __read_mostly; 2590 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2591 #endif 2592 2593 /* 2594 * If bridge module is loaded call bridging hook. 2595 * returns NULL if packet was consumed. 2596 */ 2597 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2598 struct sk_buff *skb) __read_mostly; 2599 EXPORT_SYMBOL_GPL(br_handle_frame_hook); 2600 2601 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2602 struct packet_type **pt_prev, int *ret, 2603 struct net_device *orig_dev) 2604 { 2605 struct net_bridge_port *port; 2606 2607 if (skb->pkt_type == PACKET_LOOPBACK || 2608 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2609 return skb; 2610 2611 if (*pt_prev) { 2612 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2613 *pt_prev = NULL; 2614 } 2615 2616 return br_handle_frame_hook(port, skb); 2617 } 2618 #else 2619 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2620 #endif 2621 2622 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2623 struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p, 2624 struct sk_buff *skb) __read_mostly; 2625 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2626 2627 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2628 struct packet_type **pt_prev, 2629 int *ret, 2630 struct net_device *orig_dev) 2631 { 2632 struct macvlan_port *port; 2633 2634 port = rcu_dereference(skb->dev->macvlan_port); 2635 if (!port) 2636 return skb; 2637 2638 if (*pt_prev) { 2639 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2640 *pt_prev = NULL; 2641 } 2642 return macvlan_handle_frame_hook(port, skb); 2643 } 2644 #else 2645 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2646 #endif 2647 2648 #ifdef CONFIG_NET_CLS_ACT 2649 /* TODO: Maybe we should just force sch_ingress to be compiled in 2650 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2651 * a compare and 2 stores extra right now if we dont have it on 2652 * but have CONFIG_NET_CLS_ACT 2653 * NOTE: This doesnt stop any functionality; if you dont have 2654 * the ingress scheduler, you just cant add policies on ingress. 2655 * 2656 */ 2657 static int ing_filter(struct sk_buff *skb) 2658 { 2659 struct net_device *dev = skb->dev; 2660 u32 ttl = G_TC_RTTL(skb->tc_verd); 2661 struct netdev_queue *rxq; 2662 int result = TC_ACT_OK; 2663 struct Qdisc *q; 2664 2665 if (MAX_RED_LOOP < ttl++) { 2666 printk(KERN_WARNING 2667 "Redir loop detected Dropping packet (%d->%d)\n", 2668 skb->skb_iif, dev->ifindex); 2669 return TC_ACT_SHOT; 2670 } 2671 2672 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2673 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2674 2675 rxq = &dev->rx_queue; 2676 2677 q = rxq->qdisc; 2678 if (q != &noop_qdisc) { 2679 spin_lock(qdisc_lock(q)); 2680 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2681 result = qdisc_enqueue_root(skb, q); 2682 spin_unlock(qdisc_lock(q)); 2683 } 2684 2685 return result; 2686 } 2687 2688 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2689 struct packet_type **pt_prev, 2690 int *ret, struct net_device *orig_dev) 2691 { 2692 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2693 goto out; 2694 2695 if (*pt_prev) { 2696 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2697 *pt_prev = NULL; 2698 } else { 2699 /* Huh? Why does turning on AF_PACKET affect this? */ 2700 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2701 } 2702 2703 switch (ing_filter(skb)) { 2704 case TC_ACT_SHOT: 2705 case TC_ACT_STOLEN: 2706 kfree_skb(skb); 2707 return NULL; 2708 } 2709 2710 out: 2711 skb->tc_verd = 0; 2712 return skb; 2713 } 2714 #endif 2715 2716 /* 2717 * netif_nit_deliver - deliver received packets to network taps 2718 * @skb: buffer 2719 * 2720 * This function is used to deliver incoming packets to network 2721 * taps. It should be used when the normal netif_receive_skb path 2722 * is bypassed, for example because of VLAN acceleration. 2723 */ 2724 void netif_nit_deliver(struct sk_buff *skb) 2725 { 2726 struct packet_type *ptype; 2727 2728 if (list_empty(&ptype_all)) 2729 return; 2730 2731 skb_reset_network_header(skb); 2732 skb_reset_transport_header(skb); 2733 skb->mac_len = skb->network_header - skb->mac_header; 2734 2735 rcu_read_lock(); 2736 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2737 if (!ptype->dev || ptype->dev == skb->dev) 2738 deliver_skb(skb, ptype, skb->dev); 2739 } 2740 rcu_read_unlock(); 2741 } 2742 2743 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb, 2744 struct net_device *master) 2745 { 2746 if (skb->pkt_type == PACKET_HOST) { 2747 u16 *dest = (u16 *) eth_hdr(skb)->h_dest; 2748 2749 memcpy(dest, master->dev_addr, ETH_ALEN); 2750 } 2751 } 2752 2753 /* On bonding slaves other than the currently active slave, suppress 2754 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and 2755 * ARP on active-backup slaves with arp_validate enabled. 2756 */ 2757 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master) 2758 { 2759 struct net_device *dev = skb->dev; 2760 2761 if (master->priv_flags & IFF_MASTER_ARPMON) 2762 dev->last_rx = jiffies; 2763 2764 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) { 2765 /* Do address unmangle. The local destination address 2766 * will be always the one master has. Provides the right 2767 * functionality in a bridge. 2768 */ 2769 skb_bond_set_mac_by_master(skb, master); 2770 } 2771 2772 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 2773 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) && 2774 skb->protocol == __cpu_to_be16(ETH_P_ARP)) 2775 return 0; 2776 2777 if (master->priv_flags & IFF_MASTER_ALB) { 2778 if (skb->pkt_type != PACKET_BROADCAST && 2779 skb->pkt_type != PACKET_MULTICAST) 2780 return 0; 2781 } 2782 if (master->priv_flags & IFF_MASTER_8023AD && 2783 skb->protocol == __cpu_to_be16(ETH_P_SLOW)) 2784 return 0; 2785 2786 return 1; 2787 } 2788 return 0; 2789 } 2790 EXPORT_SYMBOL(__skb_bond_should_drop); 2791 2792 static int __netif_receive_skb(struct sk_buff *skb) 2793 { 2794 struct packet_type *ptype, *pt_prev; 2795 struct net_device *orig_dev; 2796 struct net_device *master; 2797 struct net_device *null_or_orig; 2798 struct net_device *orig_or_bond; 2799 int ret = NET_RX_DROP; 2800 __be16 type; 2801 2802 if (!netdev_tstamp_prequeue) 2803 net_timestamp_check(skb); 2804 2805 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb)) 2806 return NET_RX_SUCCESS; 2807 2808 /* if we've gotten here through NAPI, check netpoll */ 2809 if (netpoll_receive_skb(skb)) 2810 return NET_RX_DROP; 2811 2812 if (!skb->skb_iif) 2813 skb->skb_iif = skb->dev->ifindex; 2814 2815 null_or_orig = NULL; 2816 orig_dev = skb->dev; 2817 master = ACCESS_ONCE(orig_dev->master); 2818 if (master) { 2819 if (skb_bond_should_drop(skb, master)) 2820 null_or_orig = orig_dev; /* deliver only exact match */ 2821 else 2822 skb->dev = master; 2823 } 2824 2825 __get_cpu_var(softnet_data).processed++; 2826 2827 skb_reset_network_header(skb); 2828 skb_reset_transport_header(skb); 2829 skb->mac_len = skb->network_header - skb->mac_header; 2830 2831 pt_prev = NULL; 2832 2833 rcu_read_lock(); 2834 2835 #ifdef CONFIG_NET_CLS_ACT 2836 if (skb->tc_verd & TC_NCLS) { 2837 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2838 goto ncls; 2839 } 2840 #endif 2841 2842 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2843 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2844 ptype->dev == orig_dev) { 2845 if (pt_prev) 2846 ret = deliver_skb(skb, pt_prev, orig_dev); 2847 pt_prev = ptype; 2848 } 2849 } 2850 2851 #ifdef CONFIG_NET_CLS_ACT 2852 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2853 if (!skb) 2854 goto out; 2855 ncls: 2856 #endif 2857 2858 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2859 if (!skb) 2860 goto out; 2861 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2862 if (!skb) 2863 goto out; 2864 2865 /* 2866 * Make sure frames received on VLAN interfaces stacked on 2867 * bonding interfaces still make their way to any base bonding 2868 * device that may have registered for a specific ptype. The 2869 * handler may have to adjust skb->dev and orig_dev. 2870 */ 2871 orig_or_bond = orig_dev; 2872 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 2873 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 2874 orig_or_bond = vlan_dev_real_dev(skb->dev); 2875 } 2876 2877 type = skb->protocol; 2878 list_for_each_entry_rcu(ptype, 2879 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2880 if (ptype->type == type && (ptype->dev == null_or_orig || 2881 ptype->dev == skb->dev || ptype->dev == orig_dev || 2882 ptype->dev == orig_or_bond)) { 2883 if (pt_prev) 2884 ret = deliver_skb(skb, pt_prev, orig_dev); 2885 pt_prev = ptype; 2886 } 2887 } 2888 2889 if (pt_prev) { 2890 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2891 } else { 2892 kfree_skb(skb); 2893 /* Jamal, now you will not able to escape explaining 2894 * me how you were going to use this. :-) 2895 */ 2896 ret = NET_RX_DROP; 2897 } 2898 2899 out: 2900 rcu_read_unlock(); 2901 return ret; 2902 } 2903 2904 /** 2905 * netif_receive_skb - process receive buffer from network 2906 * @skb: buffer to process 2907 * 2908 * netif_receive_skb() is the main receive data processing function. 2909 * It always succeeds. The buffer may be dropped during processing 2910 * for congestion control or by the protocol layers. 2911 * 2912 * This function may only be called from softirq context and interrupts 2913 * should be enabled. 2914 * 2915 * Return values (usually ignored): 2916 * NET_RX_SUCCESS: no congestion 2917 * NET_RX_DROP: packet was dropped 2918 */ 2919 int netif_receive_skb(struct sk_buff *skb) 2920 { 2921 if (netdev_tstamp_prequeue) 2922 net_timestamp_check(skb); 2923 2924 #ifdef CONFIG_RPS 2925 { 2926 struct rps_dev_flow voidflow, *rflow = &voidflow; 2927 int cpu, ret; 2928 2929 rcu_read_lock(); 2930 2931 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2932 2933 if (cpu >= 0) { 2934 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2935 rcu_read_unlock(); 2936 } else { 2937 rcu_read_unlock(); 2938 ret = __netif_receive_skb(skb); 2939 } 2940 2941 return ret; 2942 } 2943 #else 2944 return __netif_receive_skb(skb); 2945 #endif 2946 } 2947 EXPORT_SYMBOL(netif_receive_skb); 2948 2949 /* Network device is going away, flush any packets still pending 2950 * Called with irqs disabled. 2951 */ 2952 static void flush_backlog(void *arg) 2953 { 2954 struct net_device *dev = arg; 2955 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2956 struct sk_buff *skb, *tmp; 2957 2958 rps_lock(sd); 2959 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 2960 if (skb->dev == dev) { 2961 __skb_unlink(skb, &sd->input_pkt_queue); 2962 kfree_skb(skb); 2963 input_queue_head_incr(sd); 2964 } 2965 } 2966 rps_unlock(sd); 2967 2968 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 2969 if (skb->dev == dev) { 2970 __skb_unlink(skb, &sd->process_queue); 2971 kfree_skb(skb); 2972 input_queue_head_incr(sd); 2973 } 2974 } 2975 } 2976 2977 static int napi_gro_complete(struct sk_buff *skb) 2978 { 2979 struct packet_type *ptype; 2980 __be16 type = skb->protocol; 2981 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2982 int err = -ENOENT; 2983 2984 if (NAPI_GRO_CB(skb)->count == 1) { 2985 skb_shinfo(skb)->gso_size = 0; 2986 goto out; 2987 } 2988 2989 rcu_read_lock(); 2990 list_for_each_entry_rcu(ptype, head, list) { 2991 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2992 continue; 2993 2994 err = ptype->gro_complete(skb); 2995 break; 2996 } 2997 rcu_read_unlock(); 2998 2999 if (err) { 3000 WARN_ON(&ptype->list == head); 3001 kfree_skb(skb); 3002 return NET_RX_SUCCESS; 3003 } 3004 3005 out: 3006 return netif_receive_skb(skb); 3007 } 3008 3009 static void napi_gro_flush(struct napi_struct *napi) 3010 { 3011 struct sk_buff *skb, *next; 3012 3013 for (skb = napi->gro_list; skb; skb = next) { 3014 next = skb->next; 3015 skb->next = NULL; 3016 napi_gro_complete(skb); 3017 } 3018 3019 napi->gro_count = 0; 3020 napi->gro_list = NULL; 3021 } 3022 3023 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3024 { 3025 struct sk_buff **pp = NULL; 3026 struct packet_type *ptype; 3027 __be16 type = skb->protocol; 3028 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3029 int same_flow; 3030 int mac_len; 3031 enum gro_result ret; 3032 3033 if (!(skb->dev->features & NETIF_F_GRO)) 3034 goto normal; 3035 3036 if (skb_is_gso(skb) || skb_has_frags(skb)) 3037 goto normal; 3038 3039 rcu_read_lock(); 3040 list_for_each_entry_rcu(ptype, head, list) { 3041 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3042 continue; 3043 3044 skb_set_network_header(skb, skb_gro_offset(skb)); 3045 mac_len = skb->network_header - skb->mac_header; 3046 skb->mac_len = mac_len; 3047 NAPI_GRO_CB(skb)->same_flow = 0; 3048 NAPI_GRO_CB(skb)->flush = 0; 3049 NAPI_GRO_CB(skb)->free = 0; 3050 3051 pp = ptype->gro_receive(&napi->gro_list, skb); 3052 break; 3053 } 3054 rcu_read_unlock(); 3055 3056 if (&ptype->list == head) 3057 goto normal; 3058 3059 same_flow = NAPI_GRO_CB(skb)->same_flow; 3060 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3061 3062 if (pp) { 3063 struct sk_buff *nskb = *pp; 3064 3065 *pp = nskb->next; 3066 nskb->next = NULL; 3067 napi_gro_complete(nskb); 3068 napi->gro_count--; 3069 } 3070 3071 if (same_flow) 3072 goto ok; 3073 3074 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3075 goto normal; 3076 3077 napi->gro_count++; 3078 NAPI_GRO_CB(skb)->count = 1; 3079 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3080 skb->next = napi->gro_list; 3081 napi->gro_list = skb; 3082 ret = GRO_HELD; 3083 3084 pull: 3085 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3086 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3087 3088 BUG_ON(skb->end - skb->tail < grow); 3089 3090 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3091 3092 skb->tail += grow; 3093 skb->data_len -= grow; 3094 3095 skb_shinfo(skb)->frags[0].page_offset += grow; 3096 skb_shinfo(skb)->frags[0].size -= grow; 3097 3098 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3099 put_page(skb_shinfo(skb)->frags[0].page); 3100 memmove(skb_shinfo(skb)->frags, 3101 skb_shinfo(skb)->frags + 1, 3102 --skb_shinfo(skb)->nr_frags); 3103 } 3104 } 3105 3106 ok: 3107 return ret; 3108 3109 normal: 3110 ret = GRO_NORMAL; 3111 goto pull; 3112 } 3113 EXPORT_SYMBOL(dev_gro_receive); 3114 3115 static gro_result_t 3116 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3117 { 3118 struct sk_buff *p; 3119 3120 if (netpoll_rx_on(skb)) 3121 return GRO_NORMAL; 3122 3123 for (p = napi->gro_list; p; p = p->next) { 3124 NAPI_GRO_CB(p)->same_flow = 3125 (p->dev == skb->dev) && 3126 !compare_ether_header(skb_mac_header(p), 3127 skb_gro_mac_header(skb)); 3128 NAPI_GRO_CB(p)->flush = 0; 3129 } 3130 3131 return dev_gro_receive(napi, skb); 3132 } 3133 3134 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3135 { 3136 switch (ret) { 3137 case GRO_NORMAL: 3138 if (netif_receive_skb(skb)) 3139 ret = GRO_DROP; 3140 break; 3141 3142 case GRO_DROP: 3143 case GRO_MERGED_FREE: 3144 kfree_skb(skb); 3145 break; 3146 3147 case GRO_HELD: 3148 case GRO_MERGED: 3149 break; 3150 } 3151 3152 return ret; 3153 } 3154 EXPORT_SYMBOL(napi_skb_finish); 3155 3156 void skb_gro_reset_offset(struct sk_buff *skb) 3157 { 3158 NAPI_GRO_CB(skb)->data_offset = 0; 3159 NAPI_GRO_CB(skb)->frag0 = NULL; 3160 NAPI_GRO_CB(skb)->frag0_len = 0; 3161 3162 if (skb->mac_header == skb->tail && 3163 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3164 NAPI_GRO_CB(skb)->frag0 = 3165 page_address(skb_shinfo(skb)->frags[0].page) + 3166 skb_shinfo(skb)->frags[0].page_offset; 3167 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3168 } 3169 } 3170 EXPORT_SYMBOL(skb_gro_reset_offset); 3171 3172 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3173 { 3174 skb_gro_reset_offset(skb); 3175 3176 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3177 } 3178 EXPORT_SYMBOL(napi_gro_receive); 3179 3180 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3181 { 3182 __skb_pull(skb, skb_headlen(skb)); 3183 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3184 3185 napi->skb = skb; 3186 } 3187 EXPORT_SYMBOL(napi_reuse_skb); 3188 3189 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3190 { 3191 struct sk_buff *skb = napi->skb; 3192 3193 if (!skb) { 3194 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3195 if (skb) 3196 napi->skb = skb; 3197 } 3198 return skb; 3199 } 3200 EXPORT_SYMBOL(napi_get_frags); 3201 3202 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3203 gro_result_t ret) 3204 { 3205 switch (ret) { 3206 case GRO_NORMAL: 3207 case GRO_HELD: 3208 skb->protocol = eth_type_trans(skb, skb->dev); 3209 3210 if (ret == GRO_HELD) 3211 skb_gro_pull(skb, -ETH_HLEN); 3212 else if (netif_receive_skb(skb)) 3213 ret = GRO_DROP; 3214 break; 3215 3216 case GRO_DROP: 3217 case GRO_MERGED_FREE: 3218 napi_reuse_skb(napi, skb); 3219 break; 3220 3221 case GRO_MERGED: 3222 break; 3223 } 3224 3225 return ret; 3226 } 3227 EXPORT_SYMBOL(napi_frags_finish); 3228 3229 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3230 { 3231 struct sk_buff *skb = napi->skb; 3232 struct ethhdr *eth; 3233 unsigned int hlen; 3234 unsigned int off; 3235 3236 napi->skb = NULL; 3237 3238 skb_reset_mac_header(skb); 3239 skb_gro_reset_offset(skb); 3240 3241 off = skb_gro_offset(skb); 3242 hlen = off + sizeof(*eth); 3243 eth = skb_gro_header_fast(skb, off); 3244 if (skb_gro_header_hard(skb, hlen)) { 3245 eth = skb_gro_header_slow(skb, hlen, off); 3246 if (unlikely(!eth)) { 3247 napi_reuse_skb(napi, skb); 3248 skb = NULL; 3249 goto out; 3250 } 3251 } 3252 3253 skb_gro_pull(skb, sizeof(*eth)); 3254 3255 /* 3256 * This works because the only protocols we care about don't require 3257 * special handling. We'll fix it up properly at the end. 3258 */ 3259 skb->protocol = eth->h_proto; 3260 3261 out: 3262 return skb; 3263 } 3264 EXPORT_SYMBOL(napi_frags_skb); 3265 3266 gro_result_t napi_gro_frags(struct napi_struct *napi) 3267 { 3268 struct sk_buff *skb = napi_frags_skb(napi); 3269 3270 if (!skb) 3271 return GRO_DROP; 3272 3273 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3274 } 3275 EXPORT_SYMBOL(napi_gro_frags); 3276 3277 /* 3278 * net_rps_action sends any pending IPI's for rps. 3279 * Note: called with local irq disabled, but exits with local irq enabled. 3280 */ 3281 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3282 { 3283 #ifdef CONFIG_RPS 3284 struct softnet_data *remsd = sd->rps_ipi_list; 3285 3286 if (remsd) { 3287 sd->rps_ipi_list = NULL; 3288 3289 local_irq_enable(); 3290 3291 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3292 while (remsd) { 3293 struct softnet_data *next = remsd->rps_ipi_next; 3294 3295 if (cpu_online(remsd->cpu)) 3296 __smp_call_function_single(remsd->cpu, 3297 &remsd->csd, 0); 3298 remsd = next; 3299 } 3300 } else 3301 #endif 3302 local_irq_enable(); 3303 } 3304 3305 static int process_backlog(struct napi_struct *napi, int quota) 3306 { 3307 int work = 0; 3308 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3309 3310 #ifdef CONFIG_RPS 3311 /* Check if we have pending ipi, its better to send them now, 3312 * not waiting net_rx_action() end. 3313 */ 3314 if (sd->rps_ipi_list) { 3315 local_irq_disable(); 3316 net_rps_action_and_irq_enable(sd); 3317 } 3318 #endif 3319 napi->weight = weight_p; 3320 local_irq_disable(); 3321 while (work < quota) { 3322 struct sk_buff *skb; 3323 unsigned int qlen; 3324 3325 while ((skb = __skb_dequeue(&sd->process_queue))) { 3326 local_irq_enable(); 3327 __netif_receive_skb(skb); 3328 local_irq_disable(); 3329 input_queue_head_incr(sd); 3330 if (++work >= quota) { 3331 local_irq_enable(); 3332 return work; 3333 } 3334 } 3335 3336 rps_lock(sd); 3337 qlen = skb_queue_len(&sd->input_pkt_queue); 3338 if (qlen) 3339 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3340 &sd->process_queue); 3341 3342 if (qlen < quota - work) { 3343 /* 3344 * Inline a custom version of __napi_complete(). 3345 * only current cpu owns and manipulates this napi, 3346 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3347 * we can use a plain write instead of clear_bit(), 3348 * and we dont need an smp_mb() memory barrier. 3349 */ 3350 list_del(&napi->poll_list); 3351 napi->state = 0; 3352 3353 quota = work + qlen; 3354 } 3355 rps_unlock(sd); 3356 } 3357 local_irq_enable(); 3358 3359 return work; 3360 } 3361 3362 /** 3363 * __napi_schedule - schedule for receive 3364 * @n: entry to schedule 3365 * 3366 * The entry's receive function will be scheduled to run 3367 */ 3368 void __napi_schedule(struct napi_struct *n) 3369 { 3370 unsigned long flags; 3371 3372 local_irq_save(flags); 3373 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3374 local_irq_restore(flags); 3375 } 3376 EXPORT_SYMBOL(__napi_schedule); 3377 3378 void __napi_complete(struct napi_struct *n) 3379 { 3380 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3381 BUG_ON(n->gro_list); 3382 3383 list_del(&n->poll_list); 3384 smp_mb__before_clear_bit(); 3385 clear_bit(NAPI_STATE_SCHED, &n->state); 3386 } 3387 EXPORT_SYMBOL(__napi_complete); 3388 3389 void napi_complete(struct napi_struct *n) 3390 { 3391 unsigned long flags; 3392 3393 /* 3394 * don't let napi dequeue from the cpu poll list 3395 * just in case its running on a different cpu 3396 */ 3397 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3398 return; 3399 3400 napi_gro_flush(n); 3401 local_irq_save(flags); 3402 __napi_complete(n); 3403 local_irq_restore(flags); 3404 } 3405 EXPORT_SYMBOL(napi_complete); 3406 3407 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3408 int (*poll)(struct napi_struct *, int), int weight) 3409 { 3410 INIT_LIST_HEAD(&napi->poll_list); 3411 napi->gro_count = 0; 3412 napi->gro_list = NULL; 3413 napi->skb = NULL; 3414 napi->poll = poll; 3415 napi->weight = weight; 3416 list_add(&napi->dev_list, &dev->napi_list); 3417 napi->dev = dev; 3418 #ifdef CONFIG_NETPOLL 3419 spin_lock_init(&napi->poll_lock); 3420 napi->poll_owner = -1; 3421 #endif 3422 set_bit(NAPI_STATE_SCHED, &napi->state); 3423 } 3424 EXPORT_SYMBOL(netif_napi_add); 3425 3426 void netif_napi_del(struct napi_struct *napi) 3427 { 3428 struct sk_buff *skb, *next; 3429 3430 list_del_init(&napi->dev_list); 3431 napi_free_frags(napi); 3432 3433 for (skb = napi->gro_list; skb; skb = next) { 3434 next = skb->next; 3435 skb->next = NULL; 3436 kfree_skb(skb); 3437 } 3438 3439 napi->gro_list = NULL; 3440 napi->gro_count = 0; 3441 } 3442 EXPORT_SYMBOL(netif_napi_del); 3443 3444 static void net_rx_action(struct softirq_action *h) 3445 { 3446 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3447 unsigned long time_limit = jiffies + 2; 3448 int budget = netdev_budget; 3449 void *have; 3450 3451 local_irq_disable(); 3452 3453 while (!list_empty(&sd->poll_list)) { 3454 struct napi_struct *n; 3455 int work, weight; 3456 3457 /* If softirq window is exhuasted then punt. 3458 * Allow this to run for 2 jiffies since which will allow 3459 * an average latency of 1.5/HZ. 3460 */ 3461 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3462 goto softnet_break; 3463 3464 local_irq_enable(); 3465 3466 /* Even though interrupts have been re-enabled, this 3467 * access is safe because interrupts can only add new 3468 * entries to the tail of this list, and only ->poll() 3469 * calls can remove this head entry from the list. 3470 */ 3471 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3472 3473 have = netpoll_poll_lock(n); 3474 3475 weight = n->weight; 3476 3477 /* This NAPI_STATE_SCHED test is for avoiding a race 3478 * with netpoll's poll_napi(). Only the entity which 3479 * obtains the lock and sees NAPI_STATE_SCHED set will 3480 * actually make the ->poll() call. Therefore we avoid 3481 * accidently calling ->poll() when NAPI is not scheduled. 3482 */ 3483 work = 0; 3484 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3485 work = n->poll(n, weight); 3486 trace_napi_poll(n); 3487 } 3488 3489 WARN_ON_ONCE(work > weight); 3490 3491 budget -= work; 3492 3493 local_irq_disable(); 3494 3495 /* Drivers must not modify the NAPI state if they 3496 * consume the entire weight. In such cases this code 3497 * still "owns" the NAPI instance and therefore can 3498 * move the instance around on the list at-will. 3499 */ 3500 if (unlikely(work == weight)) { 3501 if (unlikely(napi_disable_pending(n))) { 3502 local_irq_enable(); 3503 napi_complete(n); 3504 local_irq_disable(); 3505 } else 3506 list_move_tail(&n->poll_list, &sd->poll_list); 3507 } 3508 3509 netpoll_poll_unlock(have); 3510 } 3511 out: 3512 net_rps_action_and_irq_enable(sd); 3513 3514 #ifdef CONFIG_NET_DMA 3515 /* 3516 * There may not be any more sk_buffs coming right now, so push 3517 * any pending DMA copies to hardware 3518 */ 3519 dma_issue_pending_all(); 3520 #endif 3521 3522 return; 3523 3524 softnet_break: 3525 sd->time_squeeze++; 3526 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3527 goto out; 3528 } 3529 3530 static gifconf_func_t *gifconf_list[NPROTO]; 3531 3532 /** 3533 * register_gifconf - register a SIOCGIF handler 3534 * @family: Address family 3535 * @gifconf: Function handler 3536 * 3537 * Register protocol dependent address dumping routines. The handler 3538 * that is passed must not be freed or reused until it has been replaced 3539 * by another handler. 3540 */ 3541 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3542 { 3543 if (family >= NPROTO) 3544 return -EINVAL; 3545 gifconf_list[family] = gifconf; 3546 return 0; 3547 } 3548 EXPORT_SYMBOL(register_gifconf); 3549 3550 3551 /* 3552 * Map an interface index to its name (SIOCGIFNAME) 3553 */ 3554 3555 /* 3556 * We need this ioctl for efficient implementation of the 3557 * if_indextoname() function required by the IPv6 API. Without 3558 * it, we would have to search all the interfaces to find a 3559 * match. --pb 3560 */ 3561 3562 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3563 { 3564 struct net_device *dev; 3565 struct ifreq ifr; 3566 3567 /* 3568 * Fetch the caller's info block. 3569 */ 3570 3571 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3572 return -EFAULT; 3573 3574 rcu_read_lock(); 3575 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3576 if (!dev) { 3577 rcu_read_unlock(); 3578 return -ENODEV; 3579 } 3580 3581 strcpy(ifr.ifr_name, dev->name); 3582 rcu_read_unlock(); 3583 3584 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3585 return -EFAULT; 3586 return 0; 3587 } 3588 3589 /* 3590 * Perform a SIOCGIFCONF call. This structure will change 3591 * size eventually, and there is nothing I can do about it. 3592 * Thus we will need a 'compatibility mode'. 3593 */ 3594 3595 static int dev_ifconf(struct net *net, char __user *arg) 3596 { 3597 struct ifconf ifc; 3598 struct net_device *dev; 3599 char __user *pos; 3600 int len; 3601 int total; 3602 int i; 3603 3604 /* 3605 * Fetch the caller's info block. 3606 */ 3607 3608 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3609 return -EFAULT; 3610 3611 pos = ifc.ifc_buf; 3612 len = ifc.ifc_len; 3613 3614 /* 3615 * Loop over the interfaces, and write an info block for each. 3616 */ 3617 3618 total = 0; 3619 for_each_netdev(net, dev) { 3620 for (i = 0; i < NPROTO; i++) { 3621 if (gifconf_list[i]) { 3622 int done; 3623 if (!pos) 3624 done = gifconf_list[i](dev, NULL, 0); 3625 else 3626 done = gifconf_list[i](dev, pos + total, 3627 len - total); 3628 if (done < 0) 3629 return -EFAULT; 3630 total += done; 3631 } 3632 } 3633 } 3634 3635 /* 3636 * All done. Write the updated control block back to the caller. 3637 */ 3638 ifc.ifc_len = total; 3639 3640 /* 3641 * Both BSD and Solaris return 0 here, so we do too. 3642 */ 3643 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3644 } 3645 3646 #ifdef CONFIG_PROC_FS 3647 /* 3648 * This is invoked by the /proc filesystem handler to display a device 3649 * in detail. 3650 */ 3651 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3652 __acquires(RCU) 3653 { 3654 struct net *net = seq_file_net(seq); 3655 loff_t off; 3656 struct net_device *dev; 3657 3658 rcu_read_lock(); 3659 if (!*pos) 3660 return SEQ_START_TOKEN; 3661 3662 off = 1; 3663 for_each_netdev_rcu(net, dev) 3664 if (off++ == *pos) 3665 return dev; 3666 3667 return NULL; 3668 } 3669 3670 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3671 { 3672 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3673 first_net_device(seq_file_net(seq)) : 3674 next_net_device((struct net_device *)v); 3675 3676 ++*pos; 3677 return rcu_dereference(dev); 3678 } 3679 3680 void dev_seq_stop(struct seq_file *seq, void *v) 3681 __releases(RCU) 3682 { 3683 rcu_read_unlock(); 3684 } 3685 3686 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3687 { 3688 const struct net_device_stats *stats = dev_get_stats(dev); 3689 3690 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 3691 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 3692 dev->name, stats->rx_bytes, stats->rx_packets, 3693 stats->rx_errors, 3694 stats->rx_dropped + stats->rx_missed_errors, 3695 stats->rx_fifo_errors, 3696 stats->rx_length_errors + stats->rx_over_errors + 3697 stats->rx_crc_errors + stats->rx_frame_errors, 3698 stats->rx_compressed, stats->multicast, 3699 stats->tx_bytes, stats->tx_packets, 3700 stats->tx_errors, stats->tx_dropped, 3701 stats->tx_fifo_errors, stats->collisions, 3702 stats->tx_carrier_errors + 3703 stats->tx_aborted_errors + 3704 stats->tx_window_errors + 3705 stats->tx_heartbeat_errors, 3706 stats->tx_compressed); 3707 } 3708 3709 /* 3710 * Called from the PROCfs module. This now uses the new arbitrary sized 3711 * /proc/net interface to create /proc/net/dev 3712 */ 3713 static int dev_seq_show(struct seq_file *seq, void *v) 3714 { 3715 if (v == SEQ_START_TOKEN) 3716 seq_puts(seq, "Inter-| Receive " 3717 " | Transmit\n" 3718 " face |bytes packets errs drop fifo frame " 3719 "compressed multicast|bytes packets errs " 3720 "drop fifo colls carrier compressed\n"); 3721 else 3722 dev_seq_printf_stats(seq, v); 3723 return 0; 3724 } 3725 3726 static struct softnet_data *softnet_get_online(loff_t *pos) 3727 { 3728 struct softnet_data *sd = NULL; 3729 3730 while (*pos < nr_cpu_ids) 3731 if (cpu_online(*pos)) { 3732 sd = &per_cpu(softnet_data, *pos); 3733 break; 3734 } else 3735 ++*pos; 3736 return sd; 3737 } 3738 3739 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3740 { 3741 return softnet_get_online(pos); 3742 } 3743 3744 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3745 { 3746 ++*pos; 3747 return softnet_get_online(pos); 3748 } 3749 3750 static void softnet_seq_stop(struct seq_file *seq, void *v) 3751 { 3752 } 3753 3754 static int softnet_seq_show(struct seq_file *seq, void *v) 3755 { 3756 struct softnet_data *sd = v; 3757 3758 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3759 sd->processed, sd->dropped, sd->time_squeeze, 0, 3760 0, 0, 0, 0, /* was fastroute */ 3761 sd->cpu_collision, sd->received_rps); 3762 return 0; 3763 } 3764 3765 static const struct seq_operations dev_seq_ops = { 3766 .start = dev_seq_start, 3767 .next = dev_seq_next, 3768 .stop = dev_seq_stop, 3769 .show = dev_seq_show, 3770 }; 3771 3772 static int dev_seq_open(struct inode *inode, struct file *file) 3773 { 3774 return seq_open_net(inode, file, &dev_seq_ops, 3775 sizeof(struct seq_net_private)); 3776 } 3777 3778 static const struct file_operations dev_seq_fops = { 3779 .owner = THIS_MODULE, 3780 .open = dev_seq_open, 3781 .read = seq_read, 3782 .llseek = seq_lseek, 3783 .release = seq_release_net, 3784 }; 3785 3786 static const struct seq_operations softnet_seq_ops = { 3787 .start = softnet_seq_start, 3788 .next = softnet_seq_next, 3789 .stop = softnet_seq_stop, 3790 .show = softnet_seq_show, 3791 }; 3792 3793 static int softnet_seq_open(struct inode *inode, struct file *file) 3794 { 3795 return seq_open(file, &softnet_seq_ops); 3796 } 3797 3798 static const struct file_operations softnet_seq_fops = { 3799 .owner = THIS_MODULE, 3800 .open = softnet_seq_open, 3801 .read = seq_read, 3802 .llseek = seq_lseek, 3803 .release = seq_release, 3804 }; 3805 3806 static void *ptype_get_idx(loff_t pos) 3807 { 3808 struct packet_type *pt = NULL; 3809 loff_t i = 0; 3810 int t; 3811 3812 list_for_each_entry_rcu(pt, &ptype_all, list) { 3813 if (i == pos) 3814 return pt; 3815 ++i; 3816 } 3817 3818 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3819 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3820 if (i == pos) 3821 return pt; 3822 ++i; 3823 } 3824 } 3825 return NULL; 3826 } 3827 3828 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3829 __acquires(RCU) 3830 { 3831 rcu_read_lock(); 3832 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3833 } 3834 3835 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3836 { 3837 struct packet_type *pt; 3838 struct list_head *nxt; 3839 int hash; 3840 3841 ++*pos; 3842 if (v == SEQ_START_TOKEN) 3843 return ptype_get_idx(0); 3844 3845 pt = v; 3846 nxt = pt->list.next; 3847 if (pt->type == htons(ETH_P_ALL)) { 3848 if (nxt != &ptype_all) 3849 goto found; 3850 hash = 0; 3851 nxt = ptype_base[0].next; 3852 } else 3853 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3854 3855 while (nxt == &ptype_base[hash]) { 3856 if (++hash >= PTYPE_HASH_SIZE) 3857 return NULL; 3858 nxt = ptype_base[hash].next; 3859 } 3860 found: 3861 return list_entry(nxt, struct packet_type, list); 3862 } 3863 3864 static void ptype_seq_stop(struct seq_file *seq, void *v) 3865 __releases(RCU) 3866 { 3867 rcu_read_unlock(); 3868 } 3869 3870 static int ptype_seq_show(struct seq_file *seq, void *v) 3871 { 3872 struct packet_type *pt = v; 3873 3874 if (v == SEQ_START_TOKEN) 3875 seq_puts(seq, "Type Device Function\n"); 3876 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3877 if (pt->type == htons(ETH_P_ALL)) 3878 seq_puts(seq, "ALL "); 3879 else 3880 seq_printf(seq, "%04x", ntohs(pt->type)); 3881 3882 seq_printf(seq, " %-8s %pF\n", 3883 pt->dev ? pt->dev->name : "", pt->func); 3884 } 3885 3886 return 0; 3887 } 3888 3889 static const struct seq_operations ptype_seq_ops = { 3890 .start = ptype_seq_start, 3891 .next = ptype_seq_next, 3892 .stop = ptype_seq_stop, 3893 .show = ptype_seq_show, 3894 }; 3895 3896 static int ptype_seq_open(struct inode *inode, struct file *file) 3897 { 3898 return seq_open_net(inode, file, &ptype_seq_ops, 3899 sizeof(struct seq_net_private)); 3900 } 3901 3902 static const struct file_operations ptype_seq_fops = { 3903 .owner = THIS_MODULE, 3904 .open = ptype_seq_open, 3905 .read = seq_read, 3906 .llseek = seq_lseek, 3907 .release = seq_release_net, 3908 }; 3909 3910 3911 static int __net_init dev_proc_net_init(struct net *net) 3912 { 3913 int rc = -ENOMEM; 3914 3915 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3916 goto out; 3917 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3918 goto out_dev; 3919 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3920 goto out_softnet; 3921 3922 if (wext_proc_init(net)) 3923 goto out_ptype; 3924 rc = 0; 3925 out: 3926 return rc; 3927 out_ptype: 3928 proc_net_remove(net, "ptype"); 3929 out_softnet: 3930 proc_net_remove(net, "softnet_stat"); 3931 out_dev: 3932 proc_net_remove(net, "dev"); 3933 goto out; 3934 } 3935 3936 static void __net_exit dev_proc_net_exit(struct net *net) 3937 { 3938 wext_proc_exit(net); 3939 3940 proc_net_remove(net, "ptype"); 3941 proc_net_remove(net, "softnet_stat"); 3942 proc_net_remove(net, "dev"); 3943 } 3944 3945 static struct pernet_operations __net_initdata dev_proc_ops = { 3946 .init = dev_proc_net_init, 3947 .exit = dev_proc_net_exit, 3948 }; 3949 3950 static int __init dev_proc_init(void) 3951 { 3952 return register_pernet_subsys(&dev_proc_ops); 3953 } 3954 #else 3955 #define dev_proc_init() 0 3956 #endif /* CONFIG_PROC_FS */ 3957 3958 3959 /** 3960 * netdev_set_master - set up master/slave pair 3961 * @slave: slave device 3962 * @master: new master device 3963 * 3964 * Changes the master device of the slave. Pass %NULL to break the 3965 * bonding. The caller must hold the RTNL semaphore. On a failure 3966 * a negative errno code is returned. On success the reference counts 3967 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3968 * function returns zero. 3969 */ 3970 int netdev_set_master(struct net_device *slave, struct net_device *master) 3971 { 3972 struct net_device *old = slave->master; 3973 3974 ASSERT_RTNL(); 3975 3976 if (master) { 3977 if (old) 3978 return -EBUSY; 3979 dev_hold(master); 3980 } 3981 3982 slave->master = master; 3983 3984 if (old) { 3985 synchronize_net(); 3986 dev_put(old); 3987 } 3988 if (master) 3989 slave->flags |= IFF_SLAVE; 3990 else 3991 slave->flags &= ~IFF_SLAVE; 3992 3993 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3994 return 0; 3995 } 3996 EXPORT_SYMBOL(netdev_set_master); 3997 3998 static void dev_change_rx_flags(struct net_device *dev, int flags) 3999 { 4000 const struct net_device_ops *ops = dev->netdev_ops; 4001 4002 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4003 ops->ndo_change_rx_flags(dev, flags); 4004 } 4005 4006 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4007 { 4008 unsigned short old_flags = dev->flags; 4009 uid_t uid; 4010 gid_t gid; 4011 4012 ASSERT_RTNL(); 4013 4014 dev->flags |= IFF_PROMISC; 4015 dev->promiscuity += inc; 4016 if (dev->promiscuity == 0) { 4017 /* 4018 * Avoid overflow. 4019 * If inc causes overflow, untouch promisc and return error. 4020 */ 4021 if (inc < 0) 4022 dev->flags &= ~IFF_PROMISC; 4023 else { 4024 dev->promiscuity -= inc; 4025 printk(KERN_WARNING "%s: promiscuity touches roof, " 4026 "set promiscuity failed, promiscuity feature " 4027 "of device might be broken.\n", dev->name); 4028 return -EOVERFLOW; 4029 } 4030 } 4031 if (dev->flags != old_flags) { 4032 printk(KERN_INFO "device %s %s promiscuous mode\n", 4033 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4034 "left"); 4035 if (audit_enabled) { 4036 current_uid_gid(&uid, &gid); 4037 audit_log(current->audit_context, GFP_ATOMIC, 4038 AUDIT_ANOM_PROMISCUOUS, 4039 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4040 dev->name, (dev->flags & IFF_PROMISC), 4041 (old_flags & IFF_PROMISC), 4042 audit_get_loginuid(current), 4043 uid, gid, 4044 audit_get_sessionid(current)); 4045 } 4046 4047 dev_change_rx_flags(dev, IFF_PROMISC); 4048 } 4049 return 0; 4050 } 4051 4052 /** 4053 * dev_set_promiscuity - update promiscuity count on a device 4054 * @dev: device 4055 * @inc: modifier 4056 * 4057 * Add or remove promiscuity from a device. While the count in the device 4058 * remains above zero the interface remains promiscuous. Once it hits zero 4059 * the device reverts back to normal filtering operation. A negative inc 4060 * value is used to drop promiscuity on the device. 4061 * Return 0 if successful or a negative errno code on error. 4062 */ 4063 int dev_set_promiscuity(struct net_device *dev, int inc) 4064 { 4065 unsigned short old_flags = dev->flags; 4066 int err; 4067 4068 err = __dev_set_promiscuity(dev, inc); 4069 if (err < 0) 4070 return err; 4071 if (dev->flags != old_flags) 4072 dev_set_rx_mode(dev); 4073 return err; 4074 } 4075 EXPORT_SYMBOL(dev_set_promiscuity); 4076 4077 /** 4078 * dev_set_allmulti - update allmulti count on a device 4079 * @dev: device 4080 * @inc: modifier 4081 * 4082 * Add or remove reception of all multicast frames to a device. While the 4083 * count in the device remains above zero the interface remains listening 4084 * to all interfaces. Once it hits zero the device reverts back to normal 4085 * filtering operation. A negative @inc value is used to drop the counter 4086 * when releasing a resource needing all multicasts. 4087 * Return 0 if successful or a negative errno code on error. 4088 */ 4089 4090 int dev_set_allmulti(struct net_device *dev, int inc) 4091 { 4092 unsigned short old_flags = dev->flags; 4093 4094 ASSERT_RTNL(); 4095 4096 dev->flags |= IFF_ALLMULTI; 4097 dev->allmulti += inc; 4098 if (dev->allmulti == 0) { 4099 /* 4100 * Avoid overflow. 4101 * If inc causes overflow, untouch allmulti and return error. 4102 */ 4103 if (inc < 0) 4104 dev->flags &= ~IFF_ALLMULTI; 4105 else { 4106 dev->allmulti -= inc; 4107 printk(KERN_WARNING "%s: allmulti touches roof, " 4108 "set allmulti failed, allmulti feature of " 4109 "device might be broken.\n", dev->name); 4110 return -EOVERFLOW; 4111 } 4112 } 4113 if (dev->flags ^ old_flags) { 4114 dev_change_rx_flags(dev, IFF_ALLMULTI); 4115 dev_set_rx_mode(dev); 4116 } 4117 return 0; 4118 } 4119 EXPORT_SYMBOL(dev_set_allmulti); 4120 4121 /* 4122 * Upload unicast and multicast address lists to device and 4123 * configure RX filtering. When the device doesn't support unicast 4124 * filtering it is put in promiscuous mode while unicast addresses 4125 * are present. 4126 */ 4127 void __dev_set_rx_mode(struct net_device *dev) 4128 { 4129 const struct net_device_ops *ops = dev->netdev_ops; 4130 4131 /* dev_open will call this function so the list will stay sane. */ 4132 if (!(dev->flags&IFF_UP)) 4133 return; 4134 4135 if (!netif_device_present(dev)) 4136 return; 4137 4138 if (ops->ndo_set_rx_mode) 4139 ops->ndo_set_rx_mode(dev); 4140 else { 4141 /* Unicast addresses changes may only happen under the rtnl, 4142 * therefore calling __dev_set_promiscuity here is safe. 4143 */ 4144 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4145 __dev_set_promiscuity(dev, 1); 4146 dev->uc_promisc = 1; 4147 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4148 __dev_set_promiscuity(dev, -1); 4149 dev->uc_promisc = 0; 4150 } 4151 4152 if (ops->ndo_set_multicast_list) 4153 ops->ndo_set_multicast_list(dev); 4154 } 4155 } 4156 4157 void dev_set_rx_mode(struct net_device *dev) 4158 { 4159 netif_addr_lock_bh(dev); 4160 __dev_set_rx_mode(dev); 4161 netif_addr_unlock_bh(dev); 4162 } 4163 4164 /** 4165 * dev_get_flags - get flags reported to userspace 4166 * @dev: device 4167 * 4168 * Get the combination of flag bits exported through APIs to userspace. 4169 */ 4170 unsigned dev_get_flags(const struct net_device *dev) 4171 { 4172 unsigned flags; 4173 4174 flags = (dev->flags & ~(IFF_PROMISC | 4175 IFF_ALLMULTI | 4176 IFF_RUNNING | 4177 IFF_LOWER_UP | 4178 IFF_DORMANT)) | 4179 (dev->gflags & (IFF_PROMISC | 4180 IFF_ALLMULTI)); 4181 4182 if (netif_running(dev)) { 4183 if (netif_oper_up(dev)) 4184 flags |= IFF_RUNNING; 4185 if (netif_carrier_ok(dev)) 4186 flags |= IFF_LOWER_UP; 4187 if (netif_dormant(dev)) 4188 flags |= IFF_DORMANT; 4189 } 4190 4191 return flags; 4192 } 4193 EXPORT_SYMBOL(dev_get_flags); 4194 4195 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4196 { 4197 int old_flags = dev->flags; 4198 int ret; 4199 4200 ASSERT_RTNL(); 4201 4202 /* 4203 * Set the flags on our device. 4204 */ 4205 4206 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4207 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4208 IFF_AUTOMEDIA)) | 4209 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4210 IFF_ALLMULTI)); 4211 4212 /* 4213 * Load in the correct multicast list now the flags have changed. 4214 */ 4215 4216 if ((old_flags ^ flags) & IFF_MULTICAST) 4217 dev_change_rx_flags(dev, IFF_MULTICAST); 4218 4219 dev_set_rx_mode(dev); 4220 4221 /* 4222 * Have we downed the interface. We handle IFF_UP ourselves 4223 * according to user attempts to set it, rather than blindly 4224 * setting it. 4225 */ 4226 4227 ret = 0; 4228 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4229 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4230 4231 if (!ret) 4232 dev_set_rx_mode(dev); 4233 } 4234 4235 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4236 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4237 4238 dev->gflags ^= IFF_PROMISC; 4239 dev_set_promiscuity(dev, inc); 4240 } 4241 4242 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4243 is important. Some (broken) drivers set IFF_PROMISC, when 4244 IFF_ALLMULTI is requested not asking us and not reporting. 4245 */ 4246 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4247 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4248 4249 dev->gflags ^= IFF_ALLMULTI; 4250 dev_set_allmulti(dev, inc); 4251 } 4252 4253 return ret; 4254 } 4255 4256 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4257 { 4258 unsigned int changes = dev->flags ^ old_flags; 4259 4260 if (changes & IFF_UP) { 4261 if (dev->flags & IFF_UP) 4262 call_netdevice_notifiers(NETDEV_UP, dev); 4263 else 4264 call_netdevice_notifiers(NETDEV_DOWN, dev); 4265 } 4266 4267 if (dev->flags & IFF_UP && 4268 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4269 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4270 } 4271 4272 /** 4273 * dev_change_flags - change device settings 4274 * @dev: device 4275 * @flags: device state flags 4276 * 4277 * Change settings on device based state flags. The flags are 4278 * in the userspace exported format. 4279 */ 4280 int dev_change_flags(struct net_device *dev, unsigned flags) 4281 { 4282 int ret, changes; 4283 int old_flags = dev->flags; 4284 4285 ret = __dev_change_flags(dev, flags); 4286 if (ret < 0) 4287 return ret; 4288 4289 changes = old_flags ^ dev->flags; 4290 if (changes) 4291 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4292 4293 __dev_notify_flags(dev, old_flags); 4294 return ret; 4295 } 4296 EXPORT_SYMBOL(dev_change_flags); 4297 4298 /** 4299 * dev_set_mtu - Change maximum transfer unit 4300 * @dev: device 4301 * @new_mtu: new transfer unit 4302 * 4303 * Change the maximum transfer size of the network device. 4304 */ 4305 int dev_set_mtu(struct net_device *dev, int new_mtu) 4306 { 4307 const struct net_device_ops *ops = dev->netdev_ops; 4308 int err; 4309 4310 if (new_mtu == dev->mtu) 4311 return 0; 4312 4313 /* MTU must be positive. */ 4314 if (new_mtu < 0) 4315 return -EINVAL; 4316 4317 if (!netif_device_present(dev)) 4318 return -ENODEV; 4319 4320 err = 0; 4321 if (ops->ndo_change_mtu) 4322 err = ops->ndo_change_mtu(dev, new_mtu); 4323 else 4324 dev->mtu = new_mtu; 4325 4326 if (!err && dev->flags & IFF_UP) 4327 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4328 return err; 4329 } 4330 EXPORT_SYMBOL(dev_set_mtu); 4331 4332 /** 4333 * dev_set_mac_address - Change Media Access Control Address 4334 * @dev: device 4335 * @sa: new address 4336 * 4337 * Change the hardware (MAC) address of the device 4338 */ 4339 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4340 { 4341 const struct net_device_ops *ops = dev->netdev_ops; 4342 int err; 4343 4344 if (!ops->ndo_set_mac_address) 4345 return -EOPNOTSUPP; 4346 if (sa->sa_family != dev->type) 4347 return -EINVAL; 4348 if (!netif_device_present(dev)) 4349 return -ENODEV; 4350 err = ops->ndo_set_mac_address(dev, sa); 4351 if (!err) 4352 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4353 return err; 4354 } 4355 EXPORT_SYMBOL(dev_set_mac_address); 4356 4357 /* 4358 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4359 */ 4360 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4361 { 4362 int err; 4363 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4364 4365 if (!dev) 4366 return -ENODEV; 4367 4368 switch (cmd) { 4369 case SIOCGIFFLAGS: /* Get interface flags */ 4370 ifr->ifr_flags = (short) dev_get_flags(dev); 4371 return 0; 4372 4373 case SIOCGIFMETRIC: /* Get the metric on the interface 4374 (currently unused) */ 4375 ifr->ifr_metric = 0; 4376 return 0; 4377 4378 case SIOCGIFMTU: /* Get the MTU of a device */ 4379 ifr->ifr_mtu = dev->mtu; 4380 return 0; 4381 4382 case SIOCGIFHWADDR: 4383 if (!dev->addr_len) 4384 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4385 else 4386 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4387 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4388 ifr->ifr_hwaddr.sa_family = dev->type; 4389 return 0; 4390 4391 case SIOCGIFSLAVE: 4392 err = -EINVAL; 4393 break; 4394 4395 case SIOCGIFMAP: 4396 ifr->ifr_map.mem_start = dev->mem_start; 4397 ifr->ifr_map.mem_end = dev->mem_end; 4398 ifr->ifr_map.base_addr = dev->base_addr; 4399 ifr->ifr_map.irq = dev->irq; 4400 ifr->ifr_map.dma = dev->dma; 4401 ifr->ifr_map.port = dev->if_port; 4402 return 0; 4403 4404 case SIOCGIFINDEX: 4405 ifr->ifr_ifindex = dev->ifindex; 4406 return 0; 4407 4408 case SIOCGIFTXQLEN: 4409 ifr->ifr_qlen = dev->tx_queue_len; 4410 return 0; 4411 4412 default: 4413 /* dev_ioctl() should ensure this case 4414 * is never reached 4415 */ 4416 WARN_ON(1); 4417 err = -EINVAL; 4418 break; 4419 4420 } 4421 return err; 4422 } 4423 4424 /* 4425 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4426 */ 4427 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4428 { 4429 int err; 4430 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4431 const struct net_device_ops *ops; 4432 4433 if (!dev) 4434 return -ENODEV; 4435 4436 ops = dev->netdev_ops; 4437 4438 switch (cmd) { 4439 case SIOCSIFFLAGS: /* Set interface flags */ 4440 return dev_change_flags(dev, ifr->ifr_flags); 4441 4442 case SIOCSIFMETRIC: /* Set the metric on the interface 4443 (currently unused) */ 4444 return -EOPNOTSUPP; 4445 4446 case SIOCSIFMTU: /* Set the MTU of a device */ 4447 return dev_set_mtu(dev, ifr->ifr_mtu); 4448 4449 case SIOCSIFHWADDR: 4450 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4451 4452 case SIOCSIFHWBROADCAST: 4453 if (ifr->ifr_hwaddr.sa_family != dev->type) 4454 return -EINVAL; 4455 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4456 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4457 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4458 return 0; 4459 4460 case SIOCSIFMAP: 4461 if (ops->ndo_set_config) { 4462 if (!netif_device_present(dev)) 4463 return -ENODEV; 4464 return ops->ndo_set_config(dev, &ifr->ifr_map); 4465 } 4466 return -EOPNOTSUPP; 4467 4468 case SIOCADDMULTI: 4469 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4470 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4471 return -EINVAL; 4472 if (!netif_device_present(dev)) 4473 return -ENODEV; 4474 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4475 4476 case SIOCDELMULTI: 4477 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4478 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4479 return -EINVAL; 4480 if (!netif_device_present(dev)) 4481 return -ENODEV; 4482 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4483 4484 case SIOCSIFTXQLEN: 4485 if (ifr->ifr_qlen < 0) 4486 return -EINVAL; 4487 dev->tx_queue_len = ifr->ifr_qlen; 4488 return 0; 4489 4490 case SIOCSIFNAME: 4491 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4492 return dev_change_name(dev, ifr->ifr_newname); 4493 4494 /* 4495 * Unknown or private ioctl 4496 */ 4497 default: 4498 if ((cmd >= SIOCDEVPRIVATE && 4499 cmd <= SIOCDEVPRIVATE + 15) || 4500 cmd == SIOCBONDENSLAVE || 4501 cmd == SIOCBONDRELEASE || 4502 cmd == SIOCBONDSETHWADDR || 4503 cmd == SIOCBONDSLAVEINFOQUERY || 4504 cmd == SIOCBONDINFOQUERY || 4505 cmd == SIOCBONDCHANGEACTIVE || 4506 cmd == SIOCGMIIPHY || 4507 cmd == SIOCGMIIREG || 4508 cmd == SIOCSMIIREG || 4509 cmd == SIOCBRADDIF || 4510 cmd == SIOCBRDELIF || 4511 cmd == SIOCSHWTSTAMP || 4512 cmd == SIOCWANDEV) { 4513 err = -EOPNOTSUPP; 4514 if (ops->ndo_do_ioctl) { 4515 if (netif_device_present(dev)) 4516 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4517 else 4518 err = -ENODEV; 4519 } 4520 } else 4521 err = -EINVAL; 4522 4523 } 4524 return err; 4525 } 4526 4527 /* 4528 * This function handles all "interface"-type I/O control requests. The actual 4529 * 'doing' part of this is dev_ifsioc above. 4530 */ 4531 4532 /** 4533 * dev_ioctl - network device ioctl 4534 * @net: the applicable net namespace 4535 * @cmd: command to issue 4536 * @arg: pointer to a struct ifreq in user space 4537 * 4538 * Issue ioctl functions to devices. This is normally called by the 4539 * user space syscall interfaces but can sometimes be useful for 4540 * other purposes. The return value is the return from the syscall if 4541 * positive or a negative errno code on error. 4542 */ 4543 4544 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4545 { 4546 struct ifreq ifr; 4547 int ret; 4548 char *colon; 4549 4550 /* One special case: SIOCGIFCONF takes ifconf argument 4551 and requires shared lock, because it sleeps writing 4552 to user space. 4553 */ 4554 4555 if (cmd == SIOCGIFCONF) { 4556 rtnl_lock(); 4557 ret = dev_ifconf(net, (char __user *) arg); 4558 rtnl_unlock(); 4559 return ret; 4560 } 4561 if (cmd == SIOCGIFNAME) 4562 return dev_ifname(net, (struct ifreq __user *)arg); 4563 4564 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4565 return -EFAULT; 4566 4567 ifr.ifr_name[IFNAMSIZ-1] = 0; 4568 4569 colon = strchr(ifr.ifr_name, ':'); 4570 if (colon) 4571 *colon = 0; 4572 4573 /* 4574 * See which interface the caller is talking about. 4575 */ 4576 4577 switch (cmd) { 4578 /* 4579 * These ioctl calls: 4580 * - can be done by all. 4581 * - atomic and do not require locking. 4582 * - return a value 4583 */ 4584 case SIOCGIFFLAGS: 4585 case SIOCGIFMETRIC: 4586 case SIOCGIFMTU: 4587 case SIOCGIFHWADDR: 4588 case SIOCGIFSLAVE: 4589 case SIOCGIFMAP: 4590 case SIOCGIFINDEX: 4591 case SIOCGIFTXQLEN: 4592 dev_load(net, ifr.ifr_name); 4593 rcu_read_lock(); 4594 ret = dev_ifsioc_locked(net, &ifr, cmd); 4595 rcu_read_unlock(); 4596 if (!ret) { 4597 if (colon) 4598 *colon = ':'; 4599 if (copy_to_user(arg, &ifr, 4600 sizeof(struct ifreq))) 4601 ret = -EFAULT; 4602 } 4603 return ret; 4604 4605 case SIOCETHTOOL: 4606 dev_load(net, ifr.ifr_name); 4607 rtnl_lock(); 4608 ret = dev_ethtool(net, &ifr); 4609 rtnl_unlock(); 4610 if (!ret) { 4611 if (colon) 4612 *colon = ':'; 4613 if (copy_to_user(arg, &ifr, 4614 sizeof(struct ifreq))) 4615 ret = -EFAULT; 4616 } 4617 return ret; 4618 4619 /* 4620 * These ioctl calls: 4621 * - require superuser power. 4622 * - require strict serialization. 4623 * - return a value 4624 */ 4625 case SIOCGMIIPHY: 4626 case SIOCGMIIREG: 4627 case SIOCSIFNAME: 4628 if (!capable(CAP_NET_ADMIN)) 4629 return -EPERM; 4630 dev_load(net, ifr.ifr_name); 4631 rtnl_lock(); 4632 ret = dev_ifsioc(net, &ifr, cmd); 4633 rtnl_unlock(); 4634 if (!ret) { 4635 if (colon) 4636 *colon = ':'; 4637 if (copy_to_user(arg, &ifr, 4638 sizeof(struct ifreq))) 4639 ret = -EFAULT; 4640 } 4641 return ret; 4642 4643 /* 4644 * These ioctl calls: 4645 * - require superuser power. 4646 * - require strict serialization. 4647 * - do not return a value 4648 */ 4649 case SIOCSIFFLAGS: 4650 case SIOCSIFMETRIC: 4651 case SIOCSIFMTU: 4652 case SIOCSIFMAP: 4653 case SIOCSIFHWADDR: 4654 case SIOCSIFSLAVE: 4655 case SIOCADDMULTI: 4656 case SIOCDELMULTI: 4657 case SIOCSIFHWBROADCAST: 4658 case SIOCSIFTXQLEN: 4659 case SIOCSMIIREG: 4660 case SIOCBONDENSLAVE: 4661 case SIOCBONDRELEASE: 4662 case SIOCBONDSETHWADDR: 4663 case SIOCBONDCHANGEACTIVE: 4664 case SIOCBRADDIF: 4665 case SIOCBRDELIF: 4666 case SIOCSHWTSTAMP: 4667 if (!capable(CAP_NET_ADMIN)) 4668 return -EPERM; 4669 /* fall through */ 4670 case SIOCBONDSLAVEINFOQUERY: 4671 case SIOCBONDINFOQUERY: 4672 dev_load(net, ifr.ifr_name); 4673 rtnl_lock(); 4674 ret = dev_ifsioc(net, &ifr, cmd); 4675 rtnl_unlock(); 4676 return ret; 4677 4678 case SIOCGIFMEM: 4679 /* Get the per device memory space. We can add this but 4680 * currently do not support it */ 4681 case SIOCSIFMEM: 4682 /* Set the per device memory buffer space. 4683 * Not applicable in our case */ 4684 case SIOCSIFLINK: 4685 return -EINVAL; 4686 4687 /* 4688 * Unknown or private ioctl. 4689 */ 4690 default: 4691 if (cmd == SIOCWANDEV || 4692 (cmd >= SIOCDEVPRIVATE && 4693 cmd <= SIOCDEVPRIVATE + 15)) { 4694 dev_load(net, ifr.ifr_name); 4695 rtnl_lock(); 4696 ret = dev_ifsioc(net, &ifr, cmd); 4697 rtnl_unlock(); 4698 if (!ret && copy_to_user(arg, &ifr, 4699 sizeof(struct ifreq))) 4700 ret = -EFAULT; 4701 return ret; 4702 } 4703 /* Take care of Wireless Extensions */ 4704 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4705 return wext_handle_ioctl(net, &ifr, cmd, arg); 4706 return -EINVAL; 4707 } 4708 } 4709 4710 4711 /** 4712 * dev_new_index - allocate an ifindex 4713 * @net: the applicable net namespace 4714 * 4715 * Returns a suitable unique value for a new device interface 4716 * number. The caller must hold the rtnl semaphore or the 4717 * dev_base_lock to be sure it remains unique. 4718 */ 4719 static int dev_new_index(struct net *net) 4720 { 4721 static int ifindex; 4722 for (;;) { 4723 if (++ifindex <= 0) 4724 ifindex = 1; 4725 if (!__dev_get_by_index(net, ifindex)) 4726 return ifindex; 4727 } 4728 } 4729 4730 /* Delayed registration/unregisteration */ 4731 static LIST_HEAD(net_todo_list); 4732 4733 static void net_set_todo(struct net_device *dev) 4734 { 4735 list_add_tail(&dev->todo_list, &net_todo_list); 4736 } 4737 4738 static void rollback_registered_many(struct list_head *head) 4739 { 4740 struct net_device *dev, *tmp; 4741 4742 BUG_ON(dev_boot_phase); 4743 ASSERT_RTNL(); 4744 4745 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4746 /* Some devices call without registering 4747 * for initialization unwind. Remove those 4748 * devices and proceed with the remaining. 4749 */ 4750 if (dev->reg_state == NETREG_UNINITIALIZED) { 4751 pr_debug("unregister_netdevice: device %s/%p never " 4752 "was registered\n", dev->name, dev); 4753 4754 WARN_ON(1); 4755 list_del(&dev->unreg_list); 4756 continue; 4757 } 4758 4759 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4760 4761 /* If device is running, close it first. */ 4762 dev_close(dev); 4763 4764 /* And unlink it from device chain. */ 4765 unlist_netdevice(dev); 4766 4767 dev->reg_state = NETREG_UNREGISTERING; 4768 } 4769 4770 synchronize_net(); 4771 4772 list_for_each_entry(dev, head, unreg_list) { 4773 /* Shutdown queueing discipline. */ 4774 dev_shutdown(dev); 4775 4776 4777 /* Notify protocols, that we are about to destroy 4778 this device. They should clean all the things. 4779 */ 4780 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4781 4782 if (!dev->rtnl_link_ops || 4783 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4784 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4785 4786 /* 4787 * Flush the unicast and multicast chains 4788 */ 4789 dev_uc_flush(dev); 4790 dev_mc_flush(dev); 4791 4792 if (dev->netdev_ops->ndo_uninit) 4793 dev->netdev_ops->ndo_uninit(dev); 4794 4795 /* Notifier chain MUST detach us from master device. */ 4796 WARN_ON(dev->master); 4797 4798 /* Remove entries from kobject tree */ 4799 netdev_unregister_kobject(dev); 4800 } 4801 4802 /* Process any work delayed until the end of the batch */ 4803 dev = list_first_entry(head, struct net_device, unreg_list); 4804 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 4805 4806 synchronize_net(); 4807 4808 list_for_each_entry(dev, head, unreg_list) 4809 dev_put(dev); 4810 } 4811 4812 static void rollback_registered(struct net_device *dev) 4813 { 4814 LIST_HEAD(single); 4815 4816 list_add(&dev->unreg_list, &single); 4817 rollback_registered_many(&single); 4818 } 4819 4820 static void __netdev_init_queue_locks_one(struct net_device *dev, 4821 struct netdev_queue *dev_queue, 4822 void *_unused) 4823 { 4824 spin_lock_init(&dev_queue->_xmit_lock); 4825 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4826 dev_queue->xmit_lock_owner = -1; 4827 } 4828 4829 static void netdev_init_queue_locks(struct net_device *dev) 4830 { 4831 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4832 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4833 } 4834 4835 unsigned long netdev_fix_features(unsigned long features, const char *name) 4836 { 4837 /* Fix illegal SG+CSUM combinations. */ 4838 if ((features & NETIF_F_SG) && 4839 !(features & NETIF_F_ALL_CSUM)) { 4840 if (name) 4841 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4842 "checksum feature.\n", name); 4843 features &= ~NETIF_F_SG; 4844 } 4845 4846 /* TSO requires that SG is present as well. */ 4847 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4848 if (name) 4849 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4850 "SG feature.\n", name); 4851 features &= ~NETIF_F_TSO; 4852 } 4853 4854 if (features & NETIF_F_UFO) { 4855 if (!(features & NETIF_F_GEN_CSUM)) { 4856 if (name) 4857 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4858 "since no NETIF_F_HW_CSUM feature.\n", 4859 name); 4860 features &= ~NETIF_F_UFO; 4861 } 4862 4863 if (!(features & NETIF_F_SG)) { 4864 if (name) 4865 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4866 "since no NETIF_F_SG feature.\n", name); 4867 features &= ~NETIF_F_UFO; 4868 } 4869 } 4870 4871 return features; 4872 } 4873 EXPORT_SYMBOL(netdev_fix_features); 4874 4875 /** 4876 * netif_stacked_transfer_operstate - transfer operstate 4877 * @rootdev: the root or lower level device to transfer state from 4878 * @dev: the device to transfer operstate to 4879 * 4880 * Transfer operational state from root to device. This is normally 4881 * called when a stacking relationship exists between the root 4882 * device and the device(a leaf device). 4883 */ 4884 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4885 struct net_device *dev) 4886 { 4887 if (rootdev->operstate == IF_OPER_DORMANT) 4888 netif_dormant_on(dev); 4889 else 4890 netif_dormant_off(dev); 4891 4892 if (netif_carrier_ok(rootdev)) { 4893 if (!netif_carrier_ok(dev)) 4894 netif_carrier_on(dev); 4895 } else { 4896 if (netif_carrier_ok(dev)) 4897 netif_carrier_off(dev); 4898 } 4899 } 4900 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 4901 4902 /** 4903 * register_netdevice - register a network device 4904 * @dev: device to register 4905 * 4906 * Take a completed network device structure and add it to the kernel 4907 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4908 * chain. 0 is returned on success. A negative errno code is returned 4909 * on a failure to set up the device, or if the name is a duplicate. 4910 * 4911 * Callers must hold the rtnl semaphore. You may want 4912 * register_netdev() instead of this. 4913 * 4914 * BUGS: 4915 * The locking appears insufficient to guarantee two parallel registers 4916 * will not get the same name. 4917 */ 4918 4919 int register_netdevice(struct net_device *dev) 4920 { 4921 int ret; 4922 struct net *net = dev_net(dev); 4923 4924 BUG_ON(dev_boot_phase); 4925 ASSERT_RTNL(); 4926 4927 might_sleep(); 4928 4929 /* When net_device's are persistent, this will be fatal. */ 4930 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4931 BUG_ON(!net); 4932 4933 spin_lock_init(&dev->addr_list_lock); 4934 netdev_set_addr_lockdep_class(dev); 4935 netdev_init_queue_locks(dev); 4936 4937 dev->iflink = -1; 4938 4939 #ifdef CONFIG_RPS 4940 if (!dev->num_rx_queues) { 4941 /* 4942 * Allocate a single RX queue if driver never called 4943 * alloc_netdev_mq 4944 */ 4945 4946 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL); 4947 if (!dev->_rx) { 4948 ret = -ENOMEM; 4949 goto out; 4950 } 4951 4952 dev->_rx->first = dev->_rx; 4953 atomic_set(&dev->_rx->count, 1); 4954 dev->num_rx_queues = 1; 4955 } 4956 #endif 4957 /* Init, if this function is available */ 4958 if (dev->netdev_ops->ndo_init) { 4959 ret = dev->netdev_ops->ndo_init(dev); 4960 if (ret) { 4961 if (ret > 0) 4962 ret = -EIO; 4963 goto out; 4964 } 4965 } 4966 4967 ret = dev_get_valid_name(dev, dev->name, 0); 4968 if (ret) 4969 goto err_uninit; 4970 4971 dev->ifindex = dev_new_index(net); 4972 if (dev->iflink == -1) 4973 dev->iflink = dev->ifindex; 4974 4975 /* Fix illegal checksum combinations */ 4976 if ((dev->features & NETIF_F_HW_CSUM) && 4977 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4978 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4979 dev->name); 4980 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4981 } 4982 4983 if ((dev->features & NETIF_F_NO_CSUM) && 4984 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4985 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4986 dev->name); 4987 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4988 } 4989 4990 dev->features = netdev_fix_features(dev->features, dev->name); 4991 4992 /* Enable software GSO if SG is supported. */ 4993 if (dev->features & NETIF_F_SG) 4994 dev->features |= NETIF_F_GSO; 4995 4996 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 4997 ret = notifier_to_errno(ret); 4998 if (ret) 4999 goto err_uninit; 5000 5001 ret = netdev_register_kobject(dev); 5002 if (ret) 5003 goto err_uninit; 5004 dev->reg_state = NETREG_REGISTERED; 5005 5006 /* 5007 * Default initial state at registry is that the 5008 * device is present. 5009 */ 5010 5011 set_bit(__LINK_STATE_PRESENT, &dev->state); 5012 5013 dev_init_scheduler(dev); 5014 dev_hold(dev); 5015 list_netdevice(dev); 5016 5017 /* Notify protocols, that a new device appeared. */ 5018 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5019 ret = notifier_to_errno(ret); 5020 if (ret) { 5021 rollback_registered(dev); 5022 dev->reg_state = NETREG_UNREGISTERED; 5023 } 5024 /* 5025 * Prevent userspace races by waiting until the network 5026 * device is fully setup before sending notifications. 5027 */ 5028 if (!dev->rtnl_link_ops || 5029 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5030 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5031 5032 out: 5033 return ret; 5034 5035 err_uninit: 5036 if (dev->netdev_ops->ndo_uninit) 5037 dev->netdev_ops->ndo_uninit(dev); 5038 goto out; 5039 } 5040 EXPORT_SYMBOL(register_netdevice); 5041 5042 /** 5043 * init_dummy_netdev - init a dummy network device for NAPI 5044 * @dev: device to init 5045 * 5046 * This takes a network device structure and initialize the minimum 5047 * amount of fields so it can be used to schedule NAPI polls without 5048 * registering a full blown interface. This is to be used by drivers 5049 * that need to tie several hardware interfaces to a single NAPI 5050 * poll scheduler due to HW limitations. 5051 */ 5052 int init_dummy_netdev(struct net_device *dev) 5053 { 5054 /* Clear everything. Note we don't initialize spinlocks 5055 * are they aren't supposed to be taken by any of the 5056 * NAPI code and this dummy netdev is supposed to be 5057 * only ever used for NAPI polls 5058 */ 5059 memset(dev, 0, sizeof(struct net_device)); 5060 5061 /* make sure we BUG if trying to hit standard 5062 * register/unregister code path 5063 */ 5064 dev->reg_state = NETREG_DUMMY; 5065 5066 /* initialize the ref count */ 5067 atomic_set(&dev->refcnt, 1); 5068 5069 /* NAPI wants this */ 5070 INIT_LIST_HEAD(&dev->napi_list); 5071 5072 /* a dummy interface is started by default */ 5073 set_bit(__LINK_STATE_PRESENT, &dev->state); 5074 set_bit(__LINK_STATE_START, &dev->state); 5075 5076 return 0; 5077 } 5078 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5079 5080 5081 /** 5082 * register_netdev - register a network device 5083 * @dev: device to register 5084 * 5085 * Take a completed network device structure and add it to the kernel 5086 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5087 * chain. 0 is returned on success. A negative errno code is returned 5088 * on a failure to set up the device, or if the name is a duplicate. 5089 * 5090 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5091 * and expands the device name if you passed a format string to 5092 * alloc_netdev. 5093 */ 5094 int register_netdev(struct net_device *dev) 5095 { 5096 int err; 5097 5098 rtnl_lock(); 5099 5100 /* 5101 * If the name is a format string the caller wants us to do a 5102 * name allocation. 5103 */ 5104 if (strchr(dev->name, '%')) { 5105 err = dev_alloc_name(dev, dev->name); 5106 if (err < 0) 5107 goto out; 5108 } 5109 5110 err = register_netdevice(dev); 5111 out: 5112 rtnl_unlock(); 5113 return err; 5114 } 5115 EXPORT_SYMBOL(register_netdev); 5116 5117 /* 5118 * netdev_wait_allrefs - wait until all references are gone. 5119 * 5120 * This is called when unregistering network devices. 5121 * 5122 * Any protocol or device that holds a reference should register 5123 * for netdevice notification, and cleanup and put back the 5124 * reference if they receive an UNREGISTER event. 5125 * We can get stuck here if buggy protocols don't correctly 5126 * call dev_put. 5127 */ 5128 static void netdev_wait_allrefs(struct net_device *dev) 5129 { 5130 unsigned long rebroadcast_time, warning_time; 5131 5132 linkwatch_forget_dev(dev); 5133 5134 rebroadcast_time = warning_time = jiffies; 5135 while (atomic_read(&dev->refcnt) != 0) { 5136 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5137 rtnl_lock(); 5138 5139 /* Rebroadcast unregister notification */ 5140 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5141 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5142 * should have already handle it the first time */ 5143 5144 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5145 &dev->state)) { 5146 /* We must not have linkwatch events 5147 * pending on unregister. If this 5148 * happens, we simply run the queue 5149 * unscheduled, resulting in a noop 5150 * for this device. 5151 */ 5152 linkwatch_run_queue(); 5153 } 5154 5155 __rtnl_unlock(); 5156 5157 rebroadcast_time = jiffies; 5158 } 5159 5160 msleep(250); 5161 5162 if (time_after(jiffies, warning_time + 10 * HZ)) { 5163 printk(KERN_EMERG "unregister_netdevice: " 5164 "waiting for %s to become free. Usage " 5165 "count = %d\n", 5166 dev->name, atomic_read(&dev->refcnt)); 5167 warning_time = jiffies; 5168 } 5169 } 5170 } 5171 5172 /* The sequence is: 5173 * 5174 * rtnl_lock(); 5175 * ... 5176 * register_netdevice(x1); 5177 * register_netdevice(x2); 5178 * ... 5179 * unregister_netdevice(y1); 5180 * unregister_netdevice(y2); 5181 * ... 5182 * rtnl_unlock(); 5183 * free_netdev(y1); 5184 * free_netdev(y2); 5185 * 5186 * We are invoked by rtnl_unlock(). 5187 * This allows us to deal with problems: 5188 * 1) We can delete sysfs objects which invoke hotplug 5189 * without deadlocking with linkwatch via keventd. 5190 * 2) Since we run with the RTNL semaphore not held, we can sleep 5191 * safely in order to wait for the netdev refcnt to drop to zero. 5192 * 5193 * We must not return until all unregister events added during 5194 * the interval the lock was held have been completed. 5195 */ 5196 void netdev_run_todo(void) 5197 { 5198 struct list_head list; 5199 5200 /* Snapshot list, allow later requests */ 5201 list_replace_init(&net_todo_list, &list); 5202 5203 __rtnl_unlock(); 5204 5205 while (!list_empty(&list)) { 5206 struct net_device *dev 5207 = list_first_entry(&list, struct net_device, todo_list); 5208 list_del(&dev->todo_list); 5209 5210 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5211 printk(KERN_ERR "network todo '%s' but state %d\n", 5212 dev->name, dev->reg_state); 5213 dump_stack(); 5214 continue; 5215 } 5216 5217 dev->reg_state = NETREG_UNREGISTERED; 5218 5219 on_each_cpu(flush_backlog, dev, 1); 5220 5221 netdev_wait_allrefs(dev); 5222 5223 /* paranoia */ 5224 BUG_ON(atomic_read(&dev->refcnt)); 5225 WARN_ON(dev->ip_ptr); 5226 WARN_ON(dev->ip6_ptr); 5227 WARN_ON(dev->dn_ptr); 5228 5229 if (dev->destructor) 5230 dev->destructor(dev); 5231 5232 /* Free network device */ 5233 kobject_put(&dev->dev.kobj); 5234 } 5235 } 5236 5237 /** 5238 * dev_txq_stats_fold - fold tx_queues stats 5239 * @dev: device to get statistics from 5240 * @stats: struct net_device_stats to hold results 5241 */ 5242 void dev_txq_stats_fold(const struct net_device *dev, 5243 struct net_device_stats *stats) 5244 { 5245 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5246 unsigned int i; 5247 struct netdev_queue *txq; 5248 5249 for (i = 0; i < dev->num_tx_queues; i++) { 5250 txq = netdev_get_tx_queue(dev, i); 5251 tx_bytes += txq->tx_bytes; 5252 tx_packets += txq->tx_packets; 5253 tx_dropped += txq->tx_dropped; 5254 } 5255 if (tx_bytes || tx_packets || tx_dropped) { 5256 stats->tx_bytes = tx_bytes; 5257 stats->tx_packets = tx_packets; 5258 stats->tx_dropped = tx_dropped; 5259 } 5260 } 5261 EXPORT_SYMBOL(dev_txq_stats_fold); 5262 5263 /** 5264 * dev_get_stats - get network device statistics 5265 * @dev: device to get statistics from 5266 * 5267 * Get network statistics from device. The device driver may provide 5268 * its own method by setting dev->netdev_ops->get_stats; otherwise 5269 * the internal statistics structure is used. 5270 */ 5271 const struct net_device_stats *dev_get_stats(struct net_device *dev) 5272 { 5273 const struct net_device_ops *ops = dev->netdev_ops; 5274 5275 if (ops->ndo_get_stats) 5276 return ops->ndo_get_stats(dev); 5277 5278 dev_txq_stats_fold(dev, &dev->stats); 5279 return &dev->stats; 5280 } 5281 EXPORT_SYMBOL(dev_get_stats); 5282 5283 static void netdev_init_one_queue(struct net_device *dev, 5284 struct netdev_queue *queue, 5285 void *_unused) 5286 { 5287 queue->dev = dev; 5288 } 5289 5290 static void netdev_init_queues(struct net_device *dev) 5291 { 5292 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 5293 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5294 spin_lock_init(&dev->tx_global_lock); 5295 } 5296 5297 /** 5298 * alloc_netdev_mq - allocate network device 5299 * @sizeof_priv: size of private data to allocate space for 5300 * @name: device name format string 5301 * @setup: callback to initialize device 5302 * @queue_count: the number of subqueues to allocate 5303 * 5304 * Allocates a struct net_device with private data area for driver use 5305 * and performs basic initialization. Also allocates subquue structs 5306 * for each queue on the device at the end of the netdevice. 5307 */ 5308 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5309 void (*setup)(struct net_device *), unsigned int queue_count) 5310 { 5311 struct netdev_queue *tx; 5312 struct net_device *dev; 5313 size_t alloc_size; 5314 struct net_device *p; 5315 #ifdef CONFIG_RPS 5316 struct netdev_rx_queue *rx; 5317 int i; 5318 #endif 5319 5320 BUG_ON(strlen(name) >= sizeof(dev->name)); 5321 5322 alloc_size = sizeof(struct net_device); 5323 if (sizeof_priv) { 5324 /* ensure 32-byte alignment of private area */ 5325 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5326 alloc_size += sizeof_priv; 5327 } 5328 /* ensure 32-byte alignment of whole construct */ 5329 alloc_size += NETDEV_ALIGN - 1; 5330 5331 p = kzalloc(alloc_size, GFP_KERNEL); 5332 if (!p) { 5333 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5334 return NULL; 5335 } 5336 5337 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5338 if (!tx) { 5339 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5340 "tx qdiscs.\n"); 5341 goto free_p; 5342 } 5343 5344 #ifdef CONFIG_RPS 5345 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5346 if (!rx) { 5347 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5348 "rx queues.\n"); 5349 goto free_tx; 5350 } 5351 5352 atomic_set(&rx->count, queue_count); 5353 5354 /* 5355 * Set a pointer to first element in the array which holds the 5356 * reference count. 5357 */ 5358 for (i = 0; i < queue_count; i++) 5359 rx[i].first = rx; 5360 #endif 5361 5362 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5363 dev->padded = (char *)dev - (char *)p; 5364 5365 if (dev_addr_init(dev)) 5366 goto free_rx; 5367 5368 dev_mc_init(dev); 5369 dev_uc_init(dev); 5370 5371 dev_net_set(dev, &init_net); 5372 5373 dev->_tx = tx; 5374 dev->num_tx_queues = queue_count; 5375 dev->real_num_tx_queues = queue_count; 5376 5377 #ifdef CONFIG_RPS 5378 dev->_rx = rx; 5379 dev->num_rx_queues = queue_count; 5380 #endif 5381 5382 dev->gso_max_size = GSO_MAX_SIZE; 5383 5384 netdev_init_queues(dev); 5385 5386 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5387 dev->ethtool_ntuple_list.count = 0; 5388 INIT_LIST_HEAD(&dev->napi_list); 5389 INIT_LIST_HEAD(&dev->unreg_list); 5390 INIT_LIST_HEAD(&dev->link_watch_list); 5391 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5392 setup(dev); 5393 strcpy(dev->name, name); 5394 return dev; 5395 5396 free_rx: 5397 #ifdef CONFIG_RPS 5398 kfree(rx); 5399 free_tx: 5400 #endif 5401 kfree(tx); 5402 free_p: 5403 kfree(p); 5404 return NULL; 5405 } 5406 EXPORT_SYMBOL(alloc_netdev_mq); 5407 5408 /** 5409 * free_netdev - free network device 5410 * @dev: device 5411 * 5412 * This function does the last stage of destroying an allocated device 5413 * interface. The reference to the device object is released. 5414 * If this is the last reference then it will be freed. 5415 */ 5416 void free_netdev(struct net_device *dev) 5417 { 5418 struct napi_struct *p, *n; 5419 5420 release_net(dev_net(dev)); 5421 5422 kfree(dev->_tx); 5423 5424 /* Flush device addresses */ 5425 dev_addr_flush(dev); 5426 5427 /* Clear ethtool n-tuple list */ 5428 ethtool_ntuple_flush(dev); 5429 5430 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5431 netif_napi_del(p); 5432 5433 /* Compatibility with error handling in drivers */ 5434 if (dev->reg_state == NETREG_UNINITIALIZED) { 5435 kfree((char *)dev - dev->padded); 5436 return; 5437 } 5438 5439 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5440 dev->reg_state = NETREG_RELEASED; 5441 5442 /* will free via device release */ 5443 put_device(&dev->dev); 5444 } 5445 EXPORT_SYMBOL(free_netdev); 5446 5447 /** 5448 * synchronize_net - Synchronize with packet receive processing 5449 * 5450 * Wait for packets currently being received to be done. 5451 * Does not block later packets from starting. 5452 */ 5453 void synchronize_net(void) 5454 { 5455 might_sleep(); 5456 synchronize_rcu(); 5457 } 5458 EXPORT_SYMBOL(synchronize_net); 5459 5460 /** 5461 * unregister_netdevice_queue - remove device from the kernel 5462 * @dev: device 5463 * @head: list 5464 * 5465 * This function shuts down a device interface and removes it 5466 * from the kernel tables. 5467 * If head not NULL, device is queued to be unregistered later. 5468 * 5469 * Callers must hold the rtnl semaphore. You may want 5470 * unregister_netdev() instead of this. 5471 */ 5472 5473 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5474 { 5475 ASSERT_RTNL(); 5476 5477 if (head) { 5478 list_move_tail(&dev->unreg_list, head); 5479 } else { 5480 rollback_registered(dev); 5481 /* Finish processing unregister after unlock */ 5482 net_set_todo(dev); 5483 } 5484 } 5485 EXPORT_SYMBOL(unregister_netdevice_queue); 5486 5487 /** 5488 * unregister_netdevice_many - unregister many devices 5489 * @head: list of devices 5490 */ 5491 void unregister_netdevice_many(struct list_head *head) 5492 { 5493 struct net_device *dev; 5494 5495 if (!list_empty(head)) { 5496 rollback_registered_many(head); 5497 list_for_each_entry(dev, head, unreg_list) 5498 net_set_todo(dev); 5499 } 5500 } 5501 EXPORT_SYMBOL(unregister_netdevice_many); 5502 5503 /** 5504 * unregister_netdev - remove device from the kernel 5505 * @dev: device 5506 * 5507 * This function shuts down a device interface and removes it 5508 * from the kernel tables. 5509 * 5510 * This is just a wrapper for unregister_netdevice that takes 5511 * the rtnl semaphore. In general you want to use this and not 5512 * unregister_netdevice. 5513 */ 5514 void unregister_netdev(struct net_device *dev) 5515 { 5516 rtnl_lock(); 5517 unregister_netdevice(dev); 5518 rtnl_unlock(); 5519 } 5520 EXPORT_SYMBOL(unregister_netdev); 5521 5522 /** 5523 * dev_change_net_namespace - move device to different nethost namespace 5524 * @dev: device 5525 * @net: network namespace 5526 * @pat: If not NULL name pattern to try if the current device name 5527 * is already taken in the destination network namespace. 5528 * 5529 * This function shuts down a device interface and moves it 5530 * to a new network namespace. On success 0 is returned, on 5531 * a failure a netagive errno code is returned. 5532 * 5533 * Callers must hold the rtnl semaphore. 5534 */ 5535 5536 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5537 { 5538 int err; 5539 5540 ASSERT_RTNL(); 5541 5542 /* Don't allow namespace local devices to be moved. */ 5543 err = -EINVAL; 5544 if (dev->features & NETIF_F_NETNS_LOCAL) 5545 goto out; 5546 5547 /* Ensure the device has been registrered */ 5548 err = -EINVAL; 5549 if (dev->reg_state != NETREG_REGISTERED) 5550 goto out; 5551 5552 /* Get out if there is nothing todo */ 5553 err = 0; 5554 if (net_eq(dev_net(dev), net)) 5555 goto out; 5556 5557 /* Pick the destination device name, and ensure 5558 * we can use it in the destination network namespace. 5559 */ 5560 err = -EEXIST; 5561 if (__dev_get_by_name(net, dev->name)) { 5562 /* We get here if we can't use the current device name */ 5563 if (!pat) 5564 goto out; 5565 if (dev_get_valid_name(dev, pat, 1)) 5566 goto out; 5567 } 5568 5569 /* 5570 * And now a mini version of register_netdevice unregister_netdevice. 5571 */ 5572 5573 /* If device is running close it first. */ 5574 dev_close(dev); 5575 5576 /* And unlink it from device chain */ 5577 err = -ENODEV; 5578 unlist_netdevice(dev); 5579 5580 synchronize_net(); 5581 5582 /* Shutdown queueing discipline. */ 5583 dev_shutdown(dev); 5584 5585 /* Notify protocols, that we are about to destroy 5586 this device. They should clean all the things. 5587 */ 5588 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5589 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5590 5591 /* 5592 * Flush the unicast and multicast chains 5593 */ 5594 dev_uc_flush(dev); 5595 dev_mc_flush(dev); 5596 5597 /* Actually switch the network namespace */ 5598 dev_net_set(dev, net); 5599 5600 /* If there is an ifindex conflict assign a new one */ 5601 if (__dev_get_by_index(net, dev->ifindex)) { 5602 int iflink = (dev->iflink == dev->ifindex); 5603 dev->ifindex = dev_new_index(net); 5604 if (iflink) 5605 dev->iflink = dev->ifindex; 5606 } 5607 5608 /* Fixup kobjects */ 5609 err = device_rename(&dev->dev, dev->name); 5610 WARN_ON(err); 5611 5612 /* Add the device back in the hashes */ 5613 list_netdevice(dev); 5614 5615 /* Notify protocols, that a new device appeared. */ 5616 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5617 5618 /* 5619 * Prevent userspace races by waiting until the network 5620 * device is fully setup before sending notifications. 5621 */ 5622 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5623 5624 synchronize_net(); 5625 err = 0; 5626 out: 5627 return err; 5628 } 5629 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5630 5631 static int dev_cpu_callback(struct notifier_block *nfb, 5632 unsigned long action, 5633 void *ocpu) 5634 { 5635 struct sk_buff **list_skb; 5636 struct sk_buff *skb; 5637 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5638 struct softnet_data *sd, *oldsd; 5639 5640 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5641 return NOTIFY_OK; 5642 5643 local_irq_disable(); 5644 cpu = smp_processor_id(); 5645 sd = &per_cpu(softnet_data, cpu); 5646 oldsd = &per_cpu(softnet_data, oldcpu); 5647 5648 /* Find end of our completion_queue. */ 5649 list_skb = &sd->completion_queue; 5650 while (*list_skb) 5651 list_skb = &(*list_skb)->next; 5652 /* Append completion queue from offline CPU. */ 5653 *list_skb = oldsd->completion_queue; 5654 oldsd->completion_queue = NULL; 5655 5656 /* Append output queue from offline CPU. */ 5657 if (oldsd->output_queue) { 5658 *sd->output_queue_tailp = oldsd->output_queue; 5659 sd->output_queue_tailp = oldsd->output_queue_tailp; 5660 oldsd->output_queue = NULL; 5661 oldsd->output_queue_tailp = &oldsd->output_queue; 5662 } 5663 5664 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5665 local_irq_enable(); 5666 5667 /* Process offline CPU's input_pkt_queue */ 5668 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5669 netif_rx(skb); 5670 input_queue_head_incr(oldsd); 5671 } 5672 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5673 netif_rx(skb); 5674 input_queue_head_incr(oldsd); 5675 } 5676 5677 return NOTIFY_OK; 5678 } 5679 5680 5681 /** 5682 * netdev_increment_features - increment feature set by one 5683 * @all: current feature set 5684 * @one: new feature set 5685 * @mask: mask feature set 5686 * 5687 * Computes a new feature set after adding a device with feature set 5688 * @one to the master device with current feature set @all. Will not 5689 * enable anything that is off in @mask. Returns the new feature set. 5690 */ 5691 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5692 unsigned long mask) 5693 { 5694 /* If device needs checksumming, downgrade to it. */ 5695 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5696 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5697 else if (mask & NETIF_F_ALL_CSUM) { 5698 /* If one device supports v4/v6 checksumming, set for all. */ 5699 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5700 !(all & NETIF_F_GEN_CSUM)) { 5701 all &= ~NETIF_F_ALL_CSUM; 5702 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5703 } 5704 5705 /* If one device supports hw checksumming, set for all. */ 5706 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5707 all &= ~NETIF_F_ALL_CSUM; 5708 all |= NETIF_F_HW_CSUM; 5709 } 5710 } 5711 5712 one |= NETIF_F_ALL_CSUM; 5713 5714 one |= all & NETIF_F_ONE_FOR_ALL; 5715 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 5716 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5717 5718 return all; 5719 } 5720 EXPORT_SYMBOL(netdev_increment_features); 5721 5722 static struct hlist_head *netdev_create_hash(void) 5723 { 5724 int i; 5725 struct hlist_head *hash; 5726 5727 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5728 if (hash != NULL) 5729 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5730 INIT_HLIST_HEAD(&hash[i]); 5731 5732 return hash; 5733 } 5734 5735 /* Initialize per network namespace state */ 5736 static int __net_init netdev_init(struct net *net) 5737 { 5738 INIT_LIST_HEAD(&net->dev_base_head); 5739 5740 net->dev_name_head = netdev_create_hash(); 5741 if (net->dev_name_head == NULL) 5742 goto err_name; 5743 5744 net->dev_index_head = netdev_create_hash(); 5745 if (net->dev_index_head == NULL) 5746 goto err_idx; 5747 5748 return 0; 5749 5750 err_idx: 5751 kfree(net->dev_name_head); 5752 err_name: 5753 return -ENOMEM; 5754 } 5755 5756 /** 5757 * netdev_drivername - network driver for the device 5758 * @dev: network device 5759 * @buffer: buffer for resulting name 5760 * @len: size of buffer 5761 * 5762 * Determine network driver for device. 5763 */ 5764 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5765 { 5766 const struct device_driver *driver; 5767 const struct device *parent; 5768 5769 if (len <= 0 || !buffer) 5770 return buffer; 5771 buffer[0] = 0; 5772 5773 parent = dev->dev.parent; 5774 5775 if (!parent) 5776 return buffer; 5777 5778 driver = parent->driver; 5779 if (driver && driver->name) 5780 strlcpy(buffer, driver->name, len); 5781 return buffer; 5782 } 5783 5784 static void __net_exit netdev_exit(struct net *net) 5785 { 5786 kfree(net->dev_name_head); 5787 kfree(net->dev_index_head); 5788 } 5789 5790 static struct pernet_operations __net_initdata netdev_net_ops = { 5791 .init = netdev_init, 5792 .exit = netdev_exit, 5793 }; 5794 5795 static void __net_exit default_device_exit(struct net *net) 5796 { 5797 struct net_device *dev, *aux; 5798 /* 5799 * Push all migratable network devices back to the 5800 * initial network namespace 5801 */ 5802 rtnl_lock(); 5803 for_each_netdev_safe(net, dev, aux) { 5804 int err; 5805 char fb_name[IFNAMSIZ]; 5806 5807 /* Ignore unmoveable devices (i.e. loopback) */ 5808 if (dev->features & NETIF_F_NETNS_LOCAL) 5809 continue; 5810 5811 /* Leave virtual devices for the generic cleanup */ 5812 if (dev->rtnl_link_ops) 5813 continue; 5814 5815 /* Push remaing network devices to init_net */ 5816 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5817 err = dev_change_net_namespace(dev, &init_net, fb_name); 5818 if (err) { 5819 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5820 __func__, dev->name, err); 5821 BUG(); 5822 } 5823 } 5824 rtnl_unlock(); 5825 } 5826 5827 static void __net_exit default_device_exit_batch(struct list_head *net_list) 5828 { 5829 /* At exit all network devices most be removed from a network 5830 * namespace. Do this in the reverse order of registeration. 5831 * Do this across as many network namespaces as possible to 5832 * improve batching efficiency. 5833 */ 5834 struct net_device *dev; 5835 struct net *net; 5836 LIST_HEAD(dev_kill_list); 5837 5838 rtnl_lock(); 5839 list_for_each_entry(net, net_list, exit_list) { 5840 for_each_netdev_reverse(net, dev) { 5841 if (dev->rtnl_link_ops) 5842 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 5843 else 5844 unregister_netdevice_queue(dev, &dev_kill_list); 5845 } 5846 } 5847 unregister_netdevice_many(&dev_kill_list); 5848 rtnl_unlock(); 5849 } 5850 5851 static struct pernet_operations __net_initdata default_device_ops = { 5852 .exit = default_device_exit, 5853 .exit_batch = default_device_exit_batch, 5854 }; 5855 5856 /* 5857 * Initialize the DEV module. At boot time this walks the device list and 5858 * unhooks any devices that fail to initialise (normally hardware not 5859 * present) and leaves us with a valid list of present and active devices. 5860 * 5861 */ 5862 5863 /* 5864 * This is called single threaded during boot, so no need 5865 * to take the rtnl semaphore. 5866 */ 5867 static int __init net_dev_init(void) 5868 { 5869 int i, rc = -ENOMEM; 5870 5871 BUG_ON(!dev_boot_phase); 5872 5873 if (dev_proc_init()) 5874 goto out; 5875 5876 if (netdev_kobject_init()) 5877 goto out; 5878 5879 INIT_LIST_HEAD(&ptype_all); 5880 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5881 INIT_LIST_HEAD(&ptype_base[i]); 5882 5883 if (register_pernet_subsys(&netdev_net_ops)) 5884 goto out; 5885 5886 /* 5887 * Initialise the packet receive queues. 5888 */ 5889 5890 for_each_possible_cpu(i) { 5891 struct softnet_data *sd = &per_cpu(softnet_data, i); 5892 5893 memset(sd, 0, sizeof(*sd)); 5894 skb_queue_head_init(&sd->input_pkt_queue); 5895 skb_queue_head_init(&sd->process_queue); 5896 sd->completion_queue = NULL; 5897 INIT_LIST_HEAD(&sd->poll_list); 5898 sd->output_queue = NULL; 5899 sd->output_queue_tailp = &sd->output_queue; 5900 #ifdef CONFIG_RPS 5901 sd->csd.func = rps_trigger_softirq; 5902 sd->csd.info = sd; 5903 sd->csd.flags = 0; 5904 sd->cpu = i; 5905 #endif 5906 5907 sd->backlog.poll = process_backlog; 5908 sd->backlog.weight = weight_p; 5909 sd->backlog.gro_list = NULL; 5910 sd->backlog.gro_count = 0; 5911 } 5912 5913 dev_boot_phase = 0; 5914 5915 /* The loopback device is special if any other network devices 5916 * is present in a network namespace the loopback device must 5917 * be present. Since we now dynamically allocate and free the 5918 * loopback device ensure this invariant is maintained by 5919 * keeping the loopback device as the first device on the 5920 * list of network devices. Ensuring the loopback devices 5921 * is the first device that appears and the last network device 5922 * that disappears. 5923 */ 5924 if (register_pernet_device(&loopback_net_ops)) 5925 goto out; 5926 5927 if (register_pernet_device(&default_device_ops)) 5928 goto out; 5929 5930 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5931 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5932 5933 hotcpu_notifier(dev_cpu_callback, 0); 5934 dst_init(); 5935 dev_mcast_init(); 5936 rc = 0; 5937 out: 5938 return rc; 5939 } 5940 5941 subsys_initcall(net_dev_init); 5942 5943 static int __init initialize_hashrnd(void) 5944 { 5945 get_random_bytes(&hashrnd, sizeof(hashrnd)); 5946 return 0; 5947 } 5948 5949 late_initcall_sync(initialize_hashrnd); 5950 5951