xref: /linux/net/core/dev.c (revision 397692eab35cbbd83681880c6a2dbcdb9fd84386)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 					   struct net_device *dev,
164 					   struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232 						       const char *name)
233 {
234 	struct netdev_name_node *name_node;
235 
236 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237 	if (!name_node)
238 		return NULL;
239 	INIT_HLIST_NODE(&name_node->hlist);
240 	name_node->dev = dev;
241 	name_node->name = name;
242 	return name_node;
243 }
244 
245 static struct netdev_name_node *
246 netdev_name_node_head_alloc(struct net_device *dev)
247 {
248 	struct netdev_name_node *name_node;
249 
250 	name_node = netdev_name_node_alloc(dev, dev->name);
251 	if (!name_node)
252 		return NULL;
253 	INIT_LIST_HEAD(&name_node->list);
254 	return name_node;
255 }
256 
257 static void netdev_name_node_free(struct netdev_name_node *name_node)
258 {
259 	kfree(name_node);
260 }
261 
262 static void netdev_name_node_add(struct net *net,
263 				 struct netdev_name_node *name_node)
264 {
265 	hlist_add_head_rcu(&name_node->hlist,
266 			   dev_name_hash(net, name_node->name));
267 }
268 
269 static void netdev_name_node_del(struct netdev_name_node *name_node)
270 {
271 	hlist_del_rcu(&name_node->hlist);
272 }
273 
274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275 							const char *name)
276 {
277 	struct hlist_head *head = dev_name_hash(net, name);
278 	struct netdev_name_node *name_node;
279 
280 	hlist_for_each_entry(name_node, head, hlist)
281 		if (!strcmp(name_node->name, name))
282 			return name_node;
283 	return NULL;
284 }
285 
286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287 							    const char *name)
288 {
289 	struct hlist_head *head = dev_name_hash(net, name);
290 	struct netdev_name_node *name_node;
291 
292 	hlist_for_each_entry_rcu(name_node, head, hlist)
293 		if (!strcmp(name_node->name, name))
294 			return name_node;
295 	return NULL;
296 }
297 
298 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299 {
300 	struct netdev_name_node *name_node;
301 	struct net *net = dev_net(dev);
302 
303 	name_node = netdev_name_node_lookup(net, name);
304 	if (name_node)
305 		return -EEXIST;
306 	name_node = netdev_name_node_alloc(dev, name);
307 	if (!name_node)
308 		return -ENOMEM;
309 	netdev_name_node_add(net, name_node);
310 	/* The node that holds dev->name acts as a head of per-device list. */
311 	list_add_tail(&name_node->list, &dev->name_node->list);
312 
313 	return 0;
314 }
315 EXPORT_SYMBOL(netdev_name_node_alt_create);
316 
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318 {
319 	list_del(&name_node->list);
320 	netdev_name_node_del(name_node);
321 	kfree(name_node->name);
322 	netdev_name_node_free(name_node);
323 }
324 
325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326 {
327 	struct netdev_name_node *name_node;
328 	struct net *net = dev_net(dev);
329 
330 	name_node = netdev_name_node_lookup(net, name);
331 	if (!name_node)
332 		return -ENOENT;
333 	/* lookup might have found our primary name or a name belonging
334 	 * to another device.
335 	 */
336 	if (name_node == dev->name_node || name_node->dev != dev)
337 		return -EINVAL;
338 
339 	__netdev_name_node_alt_destroy(name_node);
340 
341 	return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344 
345 static void netdev_name_node_alt_flush(struct net_device *dev)
346 {
347 	struct netdev_name_node *name_node, *tmp;
348 
349 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350 		__netdev_name_node_alt_destroy(name_node);
351 }
352 
353 /* Device list insertion */
354 static void list_netdevice(struct net_device *dev)
355 {
356 	struct net *net = dev_net(dev);
357 
358 	ASSERT_RTNL();
359 
360 	write_lock_bh(&dev_base_lock);
361 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362 	netdev_name_node_add(net, dev->name_node);
363 	hlist_add_head_rcu(&dev->index_hlist,
364 			   dev_index_hash(net, dev->ifindex));
365 	write_unlock_bh(&dev_base_lock);
366 
367 	dev_base_seq_inc(net);
368 }
369 
370 /* Device list removal
371  * caller must respect a RCU grace period before freeing/reusing dev
372  */
373 static void unlist_netdevice(struct net_device *dev)
374 {
375 	ASSERT_RTNL();
376 
377 	/* Unlink dev from the device chain */
378 	write_lock_bh(&dev_base_lock);
379 	list_del_rcu(&dev->dev_list);
380 	netdev_name_node_del(dev->name_node);
381 	hlist_del_rcu(&dev->index_hlist);
382 	write_unlock_bh(&dev_base_lock);
383 
384 	dev_base_seq_inc(dev_net(dev));
385 }
386 
387 /*
388  *	Our notifier list
389  */
390 
391 static RAW_NOTIFIER_HEAD(netdev_chain);
392 
393 /*
394  *	Device drivers call our routines to queue packets here. We empty the
395  *	queue in the local softnet handler.
396  */
397 
398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399 EXPORT_PER_CPU_SYMBOL(softnet_data);
400 
401 /*******************************************************************************
402  *
403  *		Protocol management and registration routines
404  *
405  *******************************************************************************/
406 
407 
408 /*
409  *	Add a protocol ID to the list. Now that the input handler is
410  *	smarter we can dispense with all the messy stuff that used to be
411  *	here.
412  *
413  *	BEWARE!!! Protocol handlers, mangling input packets,
414  *	MUST BE last in hash buckets and checking protocol handlers
415  *	MUST start from promiscuous ptype_all chain in net_bh.
416  *	It is true now, do not change it.
417  *	Explanation follows: if protocol handler, mangling packet, will
418  *	be the first on list, it is not able to sense, that packet
419  *	is cloned and should be copied-on-write, so that it will
420  *	change it and subsequent readers will get broken packet.
421  *							--ANK (980803)
422  */
423 
424 static inline struct list_head *ptype_head(const struct packet_type *pt)
425 {
426 	if (pt->type == htons(ETH_P_ALL))
427 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
428 	else
429 		return pt->dev ? &pt->dev->ptype_specific :
430 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
431 }
432 
433 /**
434  *	dev_add_pack - add packet handler
435  *	@pt: packet type declaration
436  *
437  *	Add a protocol handler to the networking stack. The passed &packet_type
438  *	is linked into kernel lists and may not be freed until it has been
439  *	removed from the kernel lists.
440  *
441  *	This call does not sleep therefore it can not
442  *	guarantee all CPU's that are in middle of receiving packets
443  *	will see the new packet type (until the next received packet).
444  */
445 
446 void dev_add_pack(struct packet_type *pt)
447 {
448 	struct list_head *head = ptype_head(pt);
449 
450 	spin_lock(&ptype_lock);
451 	list_add_rcu(&pt->list, head);
452 	spin_unlock(&ptype_lock);
453 }
454 EXPORT_SYMBOL(dev_add_pack);
455 
456 /**
457  *	__dev_remove_pack	 - remove packet handler
458  *	@pt: packet type declaration
459  *
460  *	Remove a protocol handler that was previously added to the kernel
461  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
462  *	from the kernel lists and can be freed or reused once this function
463  *	returns.
464  *
465  *      The packet type might still be in use by receivers
466  *	and must not be freed until after all the CPU's have gone
467  *	through a quiescent state.
468  */
469 void __dev_remove_pack(struct packet_type *pt)
470 {
471 	struct list_head *head = ptype_head(pt);
472 	struct packet_type *pt1;
473 
474 	spin_lock(&ptype_lock);
475 
476 	list_for_each_entry(pt1, head, list) {
477 		if (pt == pt1) {
478 			list_del_rcu(&pt->list);
479 			goto out;
480 		}
481 	}
482 
483 	pr_warn("dev_remove_pack: %p not found\n", pt);
484 out:
485 	spin_unlock(&ptype_lock);
486 }
487 EXPORT_SYMBOL(__dev_remove_pack);
488 
489 /**
490  *	dev_remove_pack	 - remove packet handler
491  *	@pt: packet type declaration
492  *
493  *	Remove a protocol handler that was previously added to the kernel
494  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
495  *	from the kernel lists and can be freed or reused once this function
496  *	returns.
497  *
498  *	This call sleeps to guarantee that no CPU is looking at the packet
499  *	type after return.
500  */
501 void dev_remove_pack(struct packet_type *pt)
502 {
503 	__dev_remove_pack(pt);
504 
505 	synchronize_net();
506 }
507 EXPORT_SYMBOL(dev_remove_pack);
508 
509 
510 /**
511  *	dev_add_offload - register offload handlers
512  *	@po: protocol offload declaration
513  *
514  *	Add protocol offload handlers to the networking stack. The passed
515  *	&proto_offload is linked into kernel lists and may not be freed until
516  *	it has been removed from the kernel lists.
517  *
518  *	This call does not sleep therefore it can not
519  *	guarantee all CPU's that are in middle of receiving packets
520  *	will see the new offload handlers (until the next received packet).
521  */
522 void dev_add_offload(struct packet_offload *po)
523 {
524 	struct packet_offload *elem;
525 
526 	spin_lock(&offload_lock);
527 	list_for_each_entry(elem, &offload_base, list) {
528 		if (po->priority < elem->priority)
529 			break;
530 	}
531 	list_add_rcu(&po->list, elem->list.prev);
532 	spin_unlock(&offload_lock);
533 }
534 EXPORT_SYMBOL(dev_add_offload);
535 
536 /**
537  *	__dev_remove_offload	 - remove offload handler
538  *	@po: packet offload declaration
539  *
540  *	Remove a protocol offload handler that was previously added to the
541  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
542  *	is removed from the kernel lists and can be freed or reused once this
543  *	function returns.
544  *
545  *      The packet type might still be in use by receivers
546  *	and must not be freed until after all the CPU's have gone
547  *	through a quiescent state.
548  */
549 static void __dev_remove_offload(struct packet_offload *po)
550 {
551 	struct list_head *head = &offload_base;
552 	struct packet_offload *po1;
553 
554 	spin_lock(&offload_lock);
555 
556 	list_for_each_entry(po1, head, list) {
557 		if (po == po1) {
558 			list_del_rcu(&po->list);
559 			goto out;
560 		}
561 	}
562 
563 	pr_warn("dev_remove_offload: %p not found\n", po);
564 out:
565 	spin_unlock(&offload_lock);
566 }
567 
568 /**
569  *	dev_remove_offload	 - remove packet offload handler
570  *	@po: packet offload declaration
571  *
572  *	Remove a packet offload handler that was previously added to the kernel
573  *	offload handlers by dev_add_offload(). The passed &offload_type is
574  *	removed from the kernel lists and can be freed or reused once this
575  *	function returns.
576  *
577  *	This call sleeps to guarantee that no CPU is looking at the packet
578  *	type after return.
579  */
580 void dev_remove_offload(struct packet_offload *po)
581 {
582 	__dev_remove_offload(po);
583 
584 	synchronize_net();
585 }
586 EXPORT_SYMBOL(dev_remove_offload);
587 
588 /******************************************************************************
589  *
590  *		      Device Boot-time Settings Routines
591  *
592  ******************************************************************************/
593 
594 /* Boot time configuration table */
595 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
596 
597 /**
598  *	netdev_boot_setup_add	- add new setup entry
599  *	@name: name of the device
600  *	@map: configured settings for the device
601  *
602  *	Adds new setup entry to the dev_boot_setup list.  The function
603  *	returns 0 on error and 1 on success.  This is a generic routine to
604  *	all netdevices.
605  */
606 static int netdev_boot_setup_add(char *name, struct ifmap *map)
607 {
608 	struct netdev_boot_setup *s;
609 	int i;
610 
611 	s = dev_boot_setup;
612 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
613 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
614 			memset(s[i].name, 0, sizeof(s[i].name));
615 			strlcpy(s[i].name, name, IFNAMSIZ);
616 			memcpy(&s[i].map, map, sizeof(s[i].map));
617 			break;
618 		}
619 	}
620 
621 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
622 }
623 
624 /**
625  * netdev_boot_setup_check	- check boot time settings
626  * @dev: the netdevice
627  *
628  * Check boot time settings for the device.
629  * The found settings are set for the device to be used
630  * later in the device probing.
631  * Returns 0 if no settings found, 1 if they are.
632  */
633 int netdev_boot_setup_check(struct net_device *dev)
634 {
635 	struct netdev_boot_setup *s = dev_boot_setup;
636 	int i;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
639 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
640 		    !strcmp(dev->name, s[i].name)) {
641 			dev->irq = s[i].map.irq;
642 			dev->base_addr = s[i].map.base_addr;
643 			dev->mem_start = s[i].map.mem_start;
644 			dev->mem_end = s[i].map.mem_end;
645 			return 1;
646 		}
647 	}
648 	return 0;
649 }
650 EXPORT_SYMBOL(netdev_boot_setup_check);
651 
652 
653 /**
654  * netdev_boot_base	- get address from boot time settings
655  * @prefix: prefix for network device
656  * @unit: id for network device
657  *
658  * Check boot time settings for the base address of device.
659  * The found settings are set for the device to be used
660  * later in the device probing.
661  * Returns 0 if no settings found.
662  */
663 unsigned long netdev_boot_base(const char *prefix, int unit)
664 {
665 	const struct netdev_boot_setup *s = dev_boot_setup;
666 	char name[IFNAMSIZ];
667 	int i;
668 
669 	sprintf(name, "%s%d", prefix, unit);
670 
671 	/*
672 	 * If device already registered then return base of 1
673 	 * to indicate not to probe for this interface
674 	 */
675 	if (__dev_get_by_name(&init_net, name))
676 		return 1;
677 
678 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
679 		if (!strcmp(name, s[i].name))
680 			return s[i].map.base_addr;
681 	return 0;
682 }
683 
684 /*
685  * Saves at boot time configured settings for any netdevice.
686  */
687 int __init netdev_boot_setup(char *str)
688 {
689 	int ints[5];
690 	struct ifmap map;
691 
692 	str = get_options(str, ARRAY_SIZE(ints), ints);
693 	if (!str || !*str)
694 		return 0;
695 
696 	/* Save settings */
697 	memset(&map, 0, sizeof(map));
698 	if (ints[0] > 0)
699 		map.irq = ints[1];
700 	if (ints[0] > 1)
701 		map.base_addr = ints[2];
702 	if (ints[0] > 2)
703 		map.mem_start = ints[3];
704 	if (ints[0] > 3)
705 		map.mem_end = ints[4];
706 
707 	/* Add new entry to the list */
708 	return netdev_boot_setup_add(str, &map);
709 }
710 
711 __setup("netdev=", netdev_boot_setup);
712 
713 /*******************************************************************************
714  *
715  *			    Device Interface Subroutines
716  *
717  *******************************************************************************/
718 
719 /**
720  *	dev_get_iflink	- get 'iflink' value of a interface
721  *	@dev: targeted interface
722  *
723  *	Indicates the ifindex the interface is linked to.
724  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
725  */
726 
727 int dev_get_iflink(const struct net_device *dev)
728 {
729 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
730 		return dev->netdev_ops->ndo_get_iflink(dev);
731 
732 	return dev->ifindex;
733 }
734 EXPORT_SYMBOL(dev_get_iflink);
735 
736 /**
737  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
738  *	@dev: targeted interface
739  *	@skb: The packet.
740  *
741  *	For better visibility of tunnel traffic OVS needs to retrieve
742  *	egress tunnel information for a packet. Following API allows
743  *	user to get this info.
744  */
745 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
746 {
747 	struct ip_tunnel_info *info;
748 
749 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
750 		return -EINVAL;
751 
752 	info = skb_tunnel_info_unclone(skb);
753 	if (!info)
754 		return -ENOMEM;
755 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
756 		return -EINVAL;
757 
758 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
759 }
760 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
761 
762 /**
763  *	__dev_get_by_name	- find a device by its name
764  *	@net: the applicable net namespace
765  *	@name: name to find
766  *
767  *	Find an interface by name. Must be called under RTNL semaphore
768  *	or @dev_base_lock. If the name is found a pointer to the device
769  *	is returned. If the name is not found then %NULL is returned. The
770  *	reference counters are not incremented so the caller must be
771  *	careful with locks.
772  */
773 
774 struct net_device *__dev_get_by_name(struct net *net, const char *name)
775 {
776 	struct netdev_name_node *node_name;
777 
778 	node_name = netdev_name_node_lookup(net, name);
779 	return node_name ? node_name->dev : NULL;
780 }
781 EXPORT_SYMBOL(__dev_get_by_name);
782 
783 /**
784  * dev_get_by_name_rcu	- find a device by its name
785  * @net: the applicable net namespace
786  * @name: name to find
787  *
788  * Find an interface by name.
789  * If the name is found a pointer to the device is returned.
790  * If the name is not found then %NULL is returned.
791  * The reference counters are not incremented so the caller must be
792  * careful with locks. The caller must hold RCU lock.
793  */
794 
795 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
796 {
797 	struct netdev_name_node *node_name;
798 
799 	node_name = netdev_name_node_lookup_rcu(net, name);
800 	return node_name ? node_name->dev : NULL;
801 }
802 EXPORT_SYMBOL(dev_get_by_name_rcu);
803 
804 /**
805  *	dev_get_by_name		- find a device by its name
806  *	@net: the applicable net namespace
807  *	@name: name to find
808  *
809  *	Find an interface by name. This can be called from any
810  *	context and does its own locking. The returned handle has
811  *	the usage count incremented and the caller must use dev_put() to
812  *	release it when it is no longer needed. %NULL is returned if no
813  *	matching device is found.
814  */
815 
816 struct net_device *dev_get_by_name(struct net *net, const char *name)
817 {
818 	struct net_device *dev;
819 
820 	rcu_read_lock();
821 	dev = dev_get_by_name_rcu(net, name);
822 	if (dev)
823 		dev_hold(dev);
824 	rcu_read_unlock();
825 	return dev;
826 }
827 EXPORT_SYMBOL(dev_get_by_name);
828 
829 /**
830  *	__dev_get_by_index - find a device by its ifindex
831  *	@net: the applicable net namespace
832  *	@ifindex: index of device
833  *
834  *	Search for an interface by index. Returns %NULL if the device
835  *	is not found or a pointer to the device. The device has not
836  *	had its reference counter increased so the caller must be careful
837  *	about locking. The caller must hold either the RTNL semaphore
838  *	or @dev_base_lock.
839  */
840 
841 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
842 {
843 	struct net_device *dev;
844 	struct hlist_head *head = dev_index_hash(net, ifindex);
845 
846 	hlist_for_each_entry(dev, head, index_hlist)
847 		if (dev->ifindex == ifindex)
848 			return dev;
849 
850 	return NULL;
851 }
852 EXPORT_SYMBOL(__dev_get_by_index);
853 
854 /**
855  *	dev_get_by_index_rcu - find a device by its ifindex
856  *	@net: the applicable net namespace
857  *	@ifindex: index of device
858  *
859  *	Search for an interface by index. Returns %NULL if the device
860  *	is not found or a pointer to the device. The device has not
861  *	had its reference counter increased so the caller must be careful
862  *	about locking. The caller must hold RCU lock.
863  */
864 
865 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
866 {
867 	struct net_device *dev;
868 	struct hlist_head *head = dev_index_hash(net, ifindex);
869 
870 	hlist_for_each_entry_rcu(dev, head, index_hlist)
871 		if (dev->ifindex == ifindex)
872 			return dev;
873 
874 	return NULL;
875 }
876 EXPORT_SYMBOL(dev_get_by_index_rcu);
877 
878 
879 /**
880  *	dev_get_by_index - find a device by its ifindex
881  *	@net: the applicable net namespace
882  *	@ifindex: index of device
883  *
884  *	Search for an interface by index. Returns NULL if the device
885  *	is not found or a pointer to the device. The device returned has
886  *	had a reference added and the pointer is safe until the user calls
887  *	dev_put to indicate they have finished with it.
888  */
889 
890 struct net_device *dev_get_by_index(struct net *net, int ifindex)
891 {
892 	struct net_device *dev;
893 
894 	rcu_read_lock();
895 	dev = dev_get_by_index_rcu(net, ifindex);
896 	if (dev)
897 		dev_hold(dev);
898 	rcu_read_unlock();
899 	return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_index);
902 
903 /**
904  *	dev_get_by_napi_id - find a device by napi_id
905  *	@napi_id: ID of the NAPI struct
906  *
907  *	Search for an interface by NAPI ID. Returns %NULL if the device
908  *	is not found or a pointer to the device. The device has not had
909  *	its reference counter increased so the caller must be careful
910  *	about locking. The caller must hold RCU lock.
911  */
912 
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 	struct napi_struct *napi;
916 
917 	WARN_ON_ONCE(!rcu_read_lock_held());
918 
919 	if (napi_id < MIN_NAPI_ID)
920 		return NULL;
921 
922 	napi = napi_by_id(napi_id);
923 
924 	return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927 
928 /**
929  *	netdev_get_name - get a netdevice name, knowing its ifindex.
930  *	@net: network namespace
931  *	@name: a pointer to the buffer where the name will be stored.
932  *	@ifindex: the ifindex of the interface to get the name from.
933  *
934  *	The use of raw_seqcount_begin() and cond_resched() before
935  *	retrying is required as we want to give the writers a chance
936  *	to complete when CONFIG_PREEMPTION is not set.
937  */
938 int netdev_get_name(struct net *net, char *name, int ifindex)
939 {
940 	struct net_device *dev;
941 	unsigned int seq;
942 
943 retry:
944 	seq = raw_seqcount_begin(&devnet_rename_seq);
945 	rcu_read_lock();
946 	dev = dev_get_by_index_rcu(net, ifindex);
947 	if (!dev) {
948 		rcu_read_unlock();
949 		return -ENODEV;
950 	}
951 
952 	strcpy(name, dev->name);
953 	rcu_read_unlock();
954 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
955 		cond_resched();
956 		goto retry;
957 	}
958 
959 	return 0;
960 }
961 
962 /**
963  *	dev_getbyhwaddr_rcu - find a device by its hardware address
964  *	@net: the applicable net namespace
965  *	@type: media type of device
966  *	@ha: hardware address
967  *
968  *	Search for an interface by MAC address. Returns NULL if the device
969  *	is not found or a pointer to the device.
970  *	The caller must hold RCU or RTNL.
971  *	The returned device has not had its ref count increased
972  *	and the caller must therefore be careful about locking
973  *
974  */
975 
976 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
977 				       const char *ha)
978 {
979 	struct net_device *dev;
980 
981 	for_each_netdev_rcu(net, dev)
982 		if (dev->type == type &&
983 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
984 			return dev;
985 
986 	return NULL;
987 }
988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
989 
990 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
991 {
992 	struct net_device *dev;
993 
994 	ASSERT_RTNL();
995 	for_each_netdev(net, dev)
996 		if (dev->type == type)
997 			return dev;
998 
999 	return NULL;
1000 }
1001 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1002 
1003 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1004 {
1005 	struct net_device *dev, *ret = NULL;
1006 
1007 	rcu_read_lock();
1008 	for_each_netdev_rcu(net, dev)
1009 		if (dev->type == type) {
1010 			dev_hold(dev);
1011 			ret = dev;
1012 			break;
1013 		}
1014 	rcu_read_unlock();
1015 	return ret;
1016 }
1017 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1018 
1019 /**
1020  *	__dev_get_by_flags - find any device with given flags
1021  *	@net: the applicable net namespace
1022  *	@if_flags: IFF_* values
1023  *	@mask: bitmask of bits in if_flags to check
1024  *
1025  *	Search for any interface with the given flags. Returns NULL if a device
1026  *	is not found or a pointer to the device. Must be called inside
1027  *	rtnl_lock(), and result refcount is unchanged.
1028  */
1029 
1030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031 				      unsigned short mask)
1032 {
1033 	struct net_device *dev, *ret;
1034 
1035 	ASSERT_RTNL();
1036 
1037 	ret = NULL;
1038 	for_each_netdev(net, dev) {
1039 		if (((dev->flags ^ if_flags) & mask) == 0) {
1040 			ret = dev;
1041 			break;
1042 		}
1043 	}
1044 	return ret;
1045 }
1046 EXPORT_SYMBOL(__dev_get_by_flags);
1047 
1048 /**
1049  *	dev_valid_name - check if name is okay for network device
1050  *	@name: name string
1051  *
1052  *	Network device names need to be valid file names to
1053  *	to allow sysfs to work.  We also disallow any kind of
1054  *	whitespace.
1055  */
1056 bool dev_valid_name(const char *name)
1057 {
1058 	if (*name == '\0')
1059 		return false;
1060 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1061 		return false;
1062 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1063 		return false;
1064 
1065 	while (*name) {
1066 		if (*name == '/' || *name == ':' || isspace(*name))
1067 			return false;
1068 		name++;
1069 	}
1070 	return true;
1071 }
1072 EXPORT_SYMBOL(dev_valid_name);
1073 
1074 /**
1075  *	__dev_alloc_name - allocate a name for a device
1076  *	@net: network namespace to allocate the device name in
1077  *	@name: name format string
1078  *	@buf:  scratch buffer and result name string
1079  *
1080  *	Passed a format string - eg "lt%d" it will try and find a suitable
1081  *	id. It scans list of devices to build up a free map, then chooses
1082  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *	while allocating the name and adding the device in order to avoid
1084  *	duplicates.
1085  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *	Returns the number of the unit assigned or a negative errno code.
1087  */
1088 
1089 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1090 {
1091 	int i = 0;
1092 	const char *p;
1093 	const int max_netdevices = 8*PAGE_SIZE;
1094 	unsigned long *inuse;
1095 	struct net_device *d;
1096 
1097 	if (!dev_valid_name(name))
1098 		return -EINVAL;
1099 
1100 	p = strchr(name, '%');
1101 	if (p) {
1102 		/*
1103 		 * Verify the string as this thing may have come from
1104 		 * the user.  There must be either one "%d" and no other "%"
1105 		 * characters.
1106 		 */
1107 		if (p[1] != 'd' || strchr(p + 2, '%'))
1108 			return -EINVAL;
1109 
1110 		/* Use one page as a bit array of possible slots */
1111 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1112 		if (!inuse)
1113 			return -ENOMEM;
1114 
1115 		for_each_netdev(net, d) {
1116 			if (!sscanf(d->name, name, &i))
1117 				continue;
1118 			if (i < 0 || i >= max_netdevices)
1119 				continue;
1120 
1121 			/*  avoid cases where sscanf is not exact inverse of printf */
1122 			snprintf(buf, IFNAMSIZ, name, i);
1123 			if (!strncmp(buf, d->name, IFNAMSIZ))
1124 				set_bit(i, inuse);
1125 		}
1126 
1127 		i = find_first_zero_bit(inuse, max_netdevices);
1128 		free_page((unsigned long) inuse);
1129 	}
1130 
1131 	snprintf(buf, IFNAMSIZ, name, i);
1132 	if (!__dev_get_by_name(net, buf))
1133 		return i;
1134 
1135 	/* It is possible to run out of possible slots
1136 	 * when the name is long and there isn't enough space left
1137 	 * for the digits, or if all bits are used.
1138 	 */
1139 	return -ENFILE;
1140 }
1141 
1142 static int dev_alloc_name_ns(struct net *net,
1143 			     struct net_device *dev,
1144 			     const char *name)
1145 {
1146 	char buf[IFNAMSIZ];
1147 	int ret;
1148 
1149 	BUG_ON(!net);
1150 	ret = __dev_alloc_name(net, name, buf);
1151 	if (ret >= 0)
1152 		strlcpy(dev->name, buf, IFNAMSIZ);
1153 	return ret;
1154 }
1155 
1156 /**
1157  *	dev_alloc_name - allocate a name for a device
1158  *	@dev: device
1159  *	@name: name format string
1160  *
1161  *	Passed a format string - eg "lt%d" it will try and find a suitable
1162  *	id. It scans list of devices to build up a free map, then chooses
1163  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1164  *	while allocating the name and adding the device in order to avoid
1165  *	duplicates.
1166  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167  *	Returns the number of the unit assigned or a negative errno code.
1168  */
1169 
1170 int dev_alloc_name(struct net_device *dev, const char *name)
1171 {
1172 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1173 }
1174 EXPORT_SYMBOL(dev_alloc_name);
1175 
1176 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1177 			      const char *name)
1178 {
1179 	BUG_ON(!net);
1180 
1181 	if (!dev_valid_name(name))
1182 		return -EINVAL;
1183 
1184 	if (strchr(name, '%'))
1185 		return dev_alloc_name_ns(net, dev, name);
1186 	else if (__dev_get_by_name(net, name))
1187 		return -EEXIST;
1188 	else if (dev->name != name)
1189 		strlcpy(dev->name, name, IFNAMSIZ);
1190 
1191 	return 0;
1192 }
1193 
1194 /**
1195  *	dev_change_name - change name of a device
1196  *	@dev: device
1197  *	@newname: name (or format string) must be at least IFNAMSIZ
1198  *
1199  *	Change name of a device, can pass format strings "eth%d".
1200  *	for wildcarding.
1201  */
1202 int dev_change_name(struct net_device *dev, const char *newname)
1203 {
1204 	unsigned char old_assign_type;
1205 	char oldname[IFNAMSIZ];
1206 	int err = 0;
1207 	int ret;
1208 	struct net *net;
1209 
1210 	ASSERT_RTNL();
1211 	BUG_ON(!dev_net(dev));
1212 
1213 	net = dev_net(dev);
1214 
1215 	/* Some auto-enslaved devices e.g. failover slaves are
1216 	 * special, as userspace might rename the device after
1217 	 * the interface had been brought up and running since
1218 	 * the point kernel initiated auto-enslavement. Allow
1219 	 * live name change even when these slave devices are
1220 	 * up and running.
1221 	 *
1222 	 * Typically, users of these auto-enslaving devices
1223 	 * don't actually care about slave name change, as
1224 	 * they are supposed to operate on master interface
1225 	 * directly.
1226 	 */
1227 	if (dev->flags & IFF_UP &&
1228 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1229 		return -EBUSY;
1230 
1231 	write_seqcount_begin(&devnet_rename_seq);
1232 
1233 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1234 		write_seqcount_end(&devnet_rename_seq);
1235 		return 0;
1236 	}
1237 
1238 	memcpy(oldname, dev->name, IFNAMSIZ);
1239 
1240 	err = dev_get_valid_name(net, dev, newname);
1241 	if (err < 0) {
1242 		write_seqcount_end(&devnet_rename_seq);
1243 		return err;
1244 	}
1245 
1246 	if (oldname[0] && !strchr(oldname, '%'))
1247 		netdev_info(dev, "renamed from %s\n", oldname);
1248 
1249 	old_assign_type = dev->name_assign_type;
1250 	dev->name_assign_type = NET_NAME_RENAMED;
1251 
1252 rollback:
1253 	ret = device_rename(&dev->dev, dev->name);
1254 	if (ret) {
1255 		memcpy(dev->name, oldname, IFNAMSIZ);
1256 		dev->name_assign_type = old_assign_type;
1257 		write_seqcount_end(&devnet_rename_seq);
1258 		return ret;
1259 	}
1260 
1261 	write_seqcount_end(&devnet_rename_seq);
1262 
1263 	netdev_adjacent_rename_links(dev, oldname);
1264 
1265 	write_lock_bh(&dev_base_lock);
1266 	netdev_name_node_del(dev->name_node);
1267 	write_unlock_bh(&dev_base_lock);
1268 
1269 	synchronize_rcu();
1270 
1271 	write_lock_bh(&dev_base_lock);
1272 	netdev_name_node_add(net, dev->name_node);
1273 	write_unlock_bh(&dev_base_lock);
1274 
1275 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1276 	ret = notifier_to_errno(ret);
1277 
1278 	if (ret) {
1279 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1280 		if (err >= 0) {
1281 			err = ret;
1282 			write_seqcount_begin(&devnet_rename_seq);
1283 			memcpy(dev->name, oldname, IFNAMSIZ);
1284 			memcpy(oldname, newname, IFNAMSIZ);
1285 			dev->name_assign_type = old_assign_type;
1286 			old_assign_type = NET_NAME_RENAMED;
1287 			goto rollback;
1288 		} else {
1289 			pr_err("%s: name change rollback failed: %d\n",
1290 			       dev->name, ret);
1291 		}
1292 	}
1293 
1294 	return err;
1295 }
1296 
1297 /**
1298  *	dev_set_alias - change ifalias of a device
1299  *	@dev: device
1300  *	@alias: name up to IFALIASZ
1301  *	@len: limit of bytes to copy from info
1302  *
1303  *	Set ifalias for a device,
1304  */
1305 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1306 {
1307 	struct dev_ifalias *new_alias = NULL;
1308 
1309 	if (len >= IFALIASZ)
1310 		return -EINVAL;
1311 
1312 	if (len) {
1313 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1314 		if (!new_alias)
1315 			return -ENOMEM;
1316 
1317 		memcpy(new_alias->ifalias, alias, len);
1318 		new_alias->ifalias[len] = 0;
1319 	}
1320 
1321 	mutex_lock(&ifalias_mutex);
1322 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1323 					mutex_is_locked(&ifalias_mutex));
1324 	mutex_unlock(&ifalias_mutex);
1325 
1326 	if (new_alias)
1327 		kfree_rcu(new_alias, rcuhead);
1328 
1329 	return len;
1330 }
1331 EXPORT_SYMBOL(dev_set_alias);
1332 
1333 /**
1334  *	dev_get_alias - get ifalias of a device
1335  *	@dev: device
1336  *	@name: buffer to store name of ifalias
1337  *	@len: size of buffer
1338  *
1339  *	get ifalias for a device.  Caller must make sure dev cannot go
1340  *	away,  e.g. rcu read lock or own a reference count to device.
1341  */
1342 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1343 {
1344 	const struct dev_ifalias *alias;
1345 	int ret = 0;
1346 
1347 	rcu_read_lock();
1348 	alias = rcu_dereference(dev->ifalias);
1349 	if (alias)
1350 		ret = snprintf(name, len, "%s", alias->ifalias);
1351 	rcu_read_unlock();
1352 
1353 	return ret;
1354 }
1355 
1356 /**
1357  *	netdev_features_change - device changes features
1358  *	@dev: device to cause notification
1359  *
1360  *	Called to indicate a device has changed features.
1361  */
1362 void netdev_features_change(struct net_device *dev)
1363 {
1364 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1365 }
1366 EXPORT_SYMBOL(netdev_features_change);
1367 
1368 /**
1369  *	netdev_state_change - device changes state
1370  *	@dev: device to cause notification
1371  *
1372  *	Called to indicate a device has changed state. This function calls
1373  *	the notifier chains for netdev_chain and sends a NEWLINK message
1374  *	to the routing socket.
1375  */
1376 void netdev_state_change(struct net_device *dev)
1377 {
1378 	if (dev->flags & IFF_UP) {
1379 		struct netdev_notifier_change_info change_info = {
1380 			.info.dev = dev,
1381 		};
1382 
1383 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1384 					      &change_info.info);
1385 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1386 	}
1387 }
1388 EXPORT_SYMBOL(netdev_state_change);
1389 
1390 /**
1391  * netdev_notify_peers - notify network peers about existence of @dev
1392  * @dev: network device
1393  *
1394  * Generate traffic such that interested network peers are aware of
1395  * @dev, such as by generating a gratuitous ARP. This may be used when
1396  * a device wants to inform the rest of the network about some sort of
1397  * reconfiguration such as a failover event or virtual machine
1398  * migration.
1399  */
1400 void netdev_notify_peers(struct net_device *dev)
1401 {
1402 	rtnl_lock();
1403 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1404 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1405 	rtnl_unlock();
1406 }
1407 EXPORT_SYMBOL(netdev_notify_peers);
1408 
1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1410 {
1411 	const struct net_device_ops *ops = dev->netdev_ops;
1412 	int ret;
1413 
1414 	ASSERT_RTNL();
1415 
1416 	if (!netif_device_present(dev))
1417 		return -ENODEV;
1418 
1419 	/* Block netpoll from trying to do any rx path servicing.
1420 	 * If we don't do this there is a chance ndo_poll_controller
1421 	 * or ndo_poll may be running while we open the device
1422 	 */
1423 	netpoll_poll_disable(dev);
1424 
1425 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1426 	ret = notifier_to_errno(ret);
1427 	if (ret)
1428 		return ret;
1429 
1430 	set_bit(__LINK_STATE_START, &dev->state);
1431 
1432 	if (ops->ndo_validate_addr)
1433 		ret = ops->ndo_validate_addr(dev);
1434 
1435 	if (!ret && ops->ndo_open)
1436 		ret = ops->ndo_open(dev);
1437 
1438 	netpoll_poll_enable(dev);
1439 
1440 	if (ret)
1441 		clear_bit(__LINK_STATE_START, &dev->state);
1442 	else {
1443 		dev->flags |= IFF_UP;
1444 		dev_set_rx_mode(dev);
1445 		dev_activate(dev);
1446 		add_device_randomness(dev->dev_addr, dev->addr_len);
1447 	}
1448 
1449 	return ret;
1450 }
1451 
1452 /**
1453  *	dev_open	- prepare an interface for use.
1454  *	@dev: device to open
1455  *	@extack: netlink extended ack
1456  *
1457  *	Takes a device from down to up state. The device's private open
1458  *	function is invoked and then the multicast lists are loaded. Finally
1459  *	the device is moved into the up state and a %NETDEV_UP message is
1460  *	sent to the netdev notifier chain.
1461  *
1462  *	Calling this function on an active interface is a nop. On a failure
1463  *	a negative errno code is returned.
1464  */
1465 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1466 {
1467 	int ret;
1468 
1469 	if (dev->flags & IFF_UP)
1470 		return 0;
1471 
1472 	ret = __dev_open(dev, extack);
1473 	if (ret < 0)
1474 		return ret;
1475 
1476 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1477 	call_netdevice_notifiers(NETDEV_UP, dev);
1478 
1479 	return ret;
1480 }
1481 EXPORT_SYMBOL(dev_open);
1482 
1483 static void __dev_close_many(struct list_head *head)
1484 {
1485 	struct net_device *dev;
1486 
1487 	ASSERT_RTNL();
1488 	might_sleep();
1489 
1490 	list_for_each_entry(dev, head, close_list) {
1491 		/* Temporarily disable netpoll until the interface is down */
1492 		netpoll_poll_disable(dev);
1493 
1494 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1495 
1496 		clear_bit(__LINK_STATE_START, &dev->state);
1497 
1498 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1499 		 * can be even on different cpu. So just clear netif_running().
1500 		 *
1501 		 * dev->stop() will invoke napi_disable() on all of it's
1502 		 * napi_struct instances on this device.
1503 		 */
1504 		smp_mb__after_atomic(); /* Commit netif_running(). */
1505 	}
1506 
1507 	dev_deactivate_many(head);
1508 
1509 	list_for_each_entry(dev, head, close_list) {
1510 		const struct net_device_ops *ops = dev->netdev_ops;
1511 
1512 		/*
1513 		 *	Call the device specific close. This cannot fail.
1514 		 *	Only if device is UP
1515 		 *
1516 		 *	We allow it to be called even after a DETACH hot-plug
1517 		 *	event.
1518 		 */
1519 		if (ops->ndo_stop)
1520 			ops->ndo_stop(dev);
1521 
1522 		dev->flags &= ~IFF_UP;
1523 		netpoll_poll_enable(dev);
1524 	}
1525 }
1526 
1527 static void __dev_close(struct net_device *dev)
1528 {
1529 	LIST_HEAD(single);
1530 
1531 	list_add(&dev->close_list, &single);
1532 	__dev_close_many(&single);
1533 	list_del(&single);
1534 }
1535 
1536 void dev_close_many(struct list_head *head, bool unlink)
1537 {
1538 	struct net_device *dev, *tmp;
1539 
1540 	/* Remove the devices that don't need to be closed */
1541 	list_for_each_entry_safe(dev, tmp, head, close_list)
1542 		if (!(dev->flags & IFF_UP))
1543 			list_del_init(&dev->close_list);
1544 
1545 	__dev_close_many(head);
1546 
1547 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1548 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1549 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1550 		if (unlink)
1551 			list_del_init(&dev->close_list);
1552 	}
1553 }
1554 EXPORT_SYMBOL(dev_close_many);
1555 
1556 /**
1557  *	dev_close - shutdown an interface.
1558  *	@dev: device to shutdown
1559  *
1560  *	This function moves an active device into down state. A
1561  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1563  *	chain.
1564  */
1565 void dev_close(struct net_device *dev)
1566 {
1567 	if (dev->flags & IFF_UP) {
1568 		LIST_HEAD(single);
1569 
1570 		list_add(&dev->close_list, &single);
1571 		dev_close_many(&single, true);
1572 		list_del(&single);
1573 	}
1574 }
1575 EXPORT_SYMBOL(dev_close);
1576 
1577 
1578 /**
1579  *	dev_disable_lro - disable Large Receive Offload on a device
1580  *	@dev: device
1581  *
1582  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1583  *	called under RTNL.  This is needed if received packets may be
1584  *	forwarded to another interface.
1585  */
1586 void dev_disable_lro(struct net_device *dev)
1587 {
1588 	struct net_device *lower_dev;
1589 	struct list_head *iter;
1590 
1591 	dev->wanted_features &= ~NETIF_F_LRO;
1592 	netdev_update_features(dev);
1593 
1594 	if (unlikely(dev->features & NETIF_F_LRO))
1595 		netdev_WARN(dev, "failed to disable LRO!\n");
1596 
1597 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1598 		dev_disable_lro(lower_dev);
1599 }
1600 EXPORT_SYMBOL(dev_disable_lro);
1601 
1602 /**
1603  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1604  *	@dev: device
1605  *
1606  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1607  *	called under RTNL.  This is needed if Generic XDP is installed on
1608  *	the device.
1609  */
1610 static void dev_disable_gro_hw(struct net_device *dev)
1611 {
1612 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1613 	netdev_update_features(dev);
1614 
1615 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1616 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1617 }
1618 
1619 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1620 {
1621 #define N(val) 						\
1622 	case NETDEV_##val:				\
1623 		return "NETDEV_" __stringify(val);
1624 	switch (cmd) {
1625 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1626 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1627 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1628 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1629 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1630 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1631 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1632 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1633 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1634 	N(PRE_CHANGEADDR)
1635 	}
1636 #undef N
1637 	return "UNKNOWN_NETDEV_EVENT";
1638 }
1639 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1640 
1641 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1642 				   struct net_device *dev)
1643 {
1644 	struct netdev_notifier_info info = {
1645 		.dev = dev,
1646 	};
1647 
1648 	return nb->notifier_call(nb, val, &info);
1649 }
1650 
1651 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1652 					     struct net_device *dev)
1653 {
1654 	int err;
1655 
1656 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1657 	err = notifier_to_errno(err);
1658 	if (err)
1659 		return err;
1660 
1661 	if (!(dev->flags & IFF_UP))
1662 		return 0;
1663 
1664 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1665 	return 0;
1666 }
1667 
1668 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1669 						struct net_device *dev)
1670 {
1671 	if (dev->flags & IFF_UP) {
1672 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1673 					dev);
1674 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1675 	}
1676 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1677 }
1678 
1679 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1680 						 struct net *net)
1681 {
1682 	struct net_device *dev;
1683 	int err;
1684 
1685 	for_each_netdev(net, dev) {
1686 		err = call_netdevice_register_notifiers(nb, dev);
1687 		if (err)
1688 			goto rollback;
1689 	}
1690 	return 0;
1691 
1692 rollback:
1693 	for_each_netdev_continue_reverse(net, dev)
1694 		call_netdevice_unregister_notifiers(nb, dev);
1695 	return err;
1696 }
1697 
1698 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1699 						    struct net *net)
1700 {
1701 	struct net_device *dev;
1702 
1703 	for_each_netdev(net, dev)
1704 		call_netdevice_unregister_notifiers(nb, dev);
1705 }
1706 
1707 static int dev_boot_phase = 1;
1708 
1709 /**
1710  * register_netdevice_notifier - register a network notifier block
1711  * @nb: notifier
1712  *
1713  * Register a notifier to be called when network device events occur.
1714  * The notifier passed is linked into the kernel structures and must
1715  * not be reused until it has been unregistered. A negative errno code
1716  * is returned on a failure.
1717  *
1718  * When registered all registration and up events are replayed
1719  * to the new notifier to allow device to have a race free
1720  * view of the network device list.
1721  */
1722 
1723 int register_netdevice_notifier(struct notifier_block *nb)
1724 {
1725 	struct net *net;
1726 	int err;
1727 
1728 	/* Close race with setup_net() and cleanup_net() */
1729 	down_write(&pernet_ops_rwsem);
1730 	rtnl_lock();
1731 	err = raw_notifier_chain_register(&netdev_chain, nb);
1732 	if (err)
1733 		goto unlock;
1734 	if (dev_boot_phase)
1735 		goto unlock;
1736 	for_each_net(net) {
1737 		err = call_netdevice_register_net_notifiers(nb, net);
1738 		if (err)
1739 			goto rollback;
1740 	}
1741 
1742 unlock:
1743 	rtnl_unlock();
1744 	up_write(&pernet_ops_rwsem);
1745 	return err;
1746 
1747 rollback:
1748 	for_each_net_continue_reverse(net)
1749 		call_netdevice_unregister_net_notifiers(nb, net);
1750 
1751 	raw_notifier_chain_unregister(&netdev_chain, nb);
1752 	goto unlock;
1753 }
1754 EXPORT_SYMBOL(register_netdevice_notifier);
1755 
1756 /**
1757  * unregister_netdevice_notifier - unregister a network notifier block
1758  * @nb: notifier
1759  *
1760  * Unregister a notifier previously registered by
1761  * register_netdevice_notifier(). The notifier is unlinked into the
1762  * kernel structures and may then be reused. A negative errno code
1763  * is returned on a failure.
1764  *
1765  * After unregistering unregister and down device events are synthesized
1766  * for all devices on the device list to the removed notifier to remove
1767  * the need for special case cleanup code.
1768  */
1769 
1770 int unregister_netdevice_notifier(struct notifier_block *nb)
1771 {
1772 	struct net *net;
1773 	int err;
1774 
1775 	/* Close race with setup_net() and cleanup_net() */
1776 	down_write(&pernet_ops_rwsem);
1777 	rtnl_lock();
1778 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1779 	if (err)
1780 		goto unlock;
1781 
1782 	for_each_net(net)
1783 		call_netdevice_unregister_net_notifiers(nb, net);
1784 
1785 unlock:
1786 	rtnl_unlock();
1787 	up_write(&pernet_ops_rwsem);
1788 	return err;
1789 }
1790 EXPORT_SYMBOL(unregister_netdevice_notifier);
1791 
1792 static int __register_netdevice_notifier_net(struct net *net,
1793 					     struct notifier_block *nb,
1794 					     bool ignore_call_fail)
1795 {
1796 	int err;
1797 
1798 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1799 	if (err)
1800 		return err;
1801 	if (dev_boot_phase)
1802 		return 0;
1803 
1804 	err = call_netdevice_register_net_notifiers(nb, net);
1805 	if (err && !ignore_call_fail)
1806 		goto chain_unregister;
1807 
1808 	return 0;
1809 
1810 chain_unregister:
1811 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812 	return err;
1813 }
1814 
1815 static int __unregister_netdevice_notifier_net(struct net *net,
1816 					       struct notifier_block *nb)
1817 {
1818 	int err;
1819 
1820 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1821 	if (err)
1822 		return err;
1823 
1824 	call_netdevice_unregister_net_notifiers(nb, net);
1825 	return 0;
1826 }
1827 
1828 /**
1829  * register_netdevice_notifier_net - register a per-netns network notifier block
1830  * @net: network namespace
1831  * @nb: notifier
1832  *
1833  * Register a notifier to be called when network device events occur.
1834  * The notifier passed is linked into the kernel structures and must
1835  * not be reused until it has been unregistered. A negative errno code
1836  * is returned on a failure.
1837  *
1838  * When registered all registration and up events are replayed
1839  * to the new notifier to allow device to have a race free
1840  * view of the network device list.
1841  */
1842 
1843 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1844 {
1845 	int err;
1846 
1847 	rtnl_lock();
1848 	err = __register_netdevice_notifier_net(net, nb, false);
1849 	rtnl_unlock();
1850 	return err;
1851 }
1852 EXPORT_SYMBOL(register_netdevice_notifier_net);
1853 
1854 /**
1855  * unregister_netdevice_notifier_net - unregister a per-netns
1856  *                                     network notifier block
1857  * @net: network namespace
1858  * @nb: notifier
1859  *
1860  * Unregister a notifier previously registered by
1861  * register_netdevice_notifier(). The notifier is unlinked into the
1862  * kernel structures and may then be reused. A negative errno code
1863  * is returned on a failure.
1864  *
1865  * After unregistering unregister and down device events are synthesized
1866  * for all devices on the device list to the removed notifier to remove
1867  * the need for special case cleanup code.
1868  */
1869 
1870 int unregister_netdevice_notifier_net(struct net *net,
1871 				      struct notifier_block *nb)
1872 {
1873 	int err;
1874 
1875 	rtnl_lock();
1876 	err = __unregister_netdevice_notifier_net(net, nb);
1877 	rtnl_unlock();
1878 	return err;
1879 }
1880 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1881 
1882 int register_netdevice_notifier_dev_net(struct net_device *dev,
1883 					struct notifier_block *nb,
1884 					struct netdev_net_notifier *nn)
1885 {
1886 	int err;
1887 
1888 	rtnl_lock();
1889 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1890 	if (!err) {
1891 		nn->nb = nb;
1892 		list_add(&nn->list, &dev->net_notifier_list);
1893 	}
1894 	rtnl_unlock();
1895 	return err;
1896 }
1897 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1898 
1899 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1900 					  struct notifier_block *nb,
1901 					  struct netdev_net_notifier *nn)
1902 {
1903 	int err;
1904 
1905 	rtnl_lock();
1906 	list_del(&nn->list);
1907 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1908 	rtnl_unlock();
1909 	return err;
1910 }
1911 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1912 
1913 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1914 					     struct net *net)
1915 {
1916 	struct netdev_net_notifier *nn;
1917 
1918 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1919 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1920 		__register_netdevice_notifier_net(net, nn->nb, true);
1921 	}
1922 }
1923 
1924 /**
1925  *	call_netdevice_notifiers_info - call all network notifier blocks
1926  *	@val: value passed unmodified to notifier function
1927  *	@info: notifier information data
1928  *
1929  *	Call all network notifier blocks.  Parameters and return value
1930  *	are as for raw_notifier_call_chain().
1931  */
1932 
1933 static int call_netdevice_notifiers_info(unsigned long val,
1934 					 struct netdev_notifier_info *info)
1935 {
1936 	struct net *net = dev_net(info->dev);
1937 	int ret;
1938 
1939 	ASSERT_RTNL();
1940 
1941 	/* Run per-netns notifier block chain first, then run the global one.
1942 	 * Hopefully, one day, the global one is going to be removed after
1943 	 * all notifier block registrators get converted to be per-netns.
1944 	 */
1945 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1946 	if (ret & NOTIFY_STOP_MASK)
1947 		return ret;
1948 	return raw_notifier_call_chain(&netdev_chain, val, info);
1949 }
1950 
1951 static int call_netdevice_notifiers_extack(unsigned long val,
1952 					   struct net_device *dev,
1953 					   struct netlink_ext_ack *extack)
1954 {
1955 	struct netdev_notifier_info info = {
1956 		.dev = dev,
1957 		.extack = extack,
1958 	};
1959 
1960 	return call_netdevice_notifiers_info(val, &info);
1961 }
1962 
1963 /**
1964  *	call_netdevice_notifiers - call all network notifier blocks
1965  *      @val: value passed unmodified to notifier function
1966  *      @dev: net_device pointer passed unmodified to notifier function
1967  *
1968  *	Call all network notifier blocks.  Parameters and return value
1969  *	are as for raw_notifier_call_chain().
1970  */
1971 
1972 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1973 {
1974 	return call_netdevice_notifiers_extack(val, dev, NULL);
1975 }
1976 EXPORT_SYMBOL(call_netdevice_notifiers);
1977 
1978 /**
1979  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1980  *	@val: value passed unmodified to notifier function
1981  *	@dev: net_device pointer passed unmodified to notifier function
1982  *	@arg: additional u32 argument passed to the notifier function
1983  *
1984  *	Call all network notifier blocks.  Parameters and return value
1985  *	are as for raw_notifier_call_chain().
1986  */
1987 static int call_netdevice_notifiers_mtu(unsigned long val,
1988 					struct net_device *dev, u32 arg)
1989 {
1990 	struct netdev_notifier_info_ext info = {
1991 		.info.dev = dev,
1992 		.ext.mtu = arg,
1993 	};
1994 
1995 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1996 
1997 	return call_netdevice_notifiers_info(val, &info.info);
1998 }
1999 
2000 #ifdef CONFIG_NET_INGRESS
2001 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2002 
2003 void net_inc_ingress_queue(void)
2004 {
2005 	static_branch_inc(&ingress_needed_key);
2006 }
2007 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2008 
2009 void net_dec_ingress_queue(void)
2010 {
2011 	static_branch_dec(&ingress_needed_key);
2012 }
2013 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2014 #endif
2015 
2016 #ifdef CONFIG_NET_EGRESS
2017 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2018 
2019 void net_inc_egress_queue(void)
2020 {
2021 	static_branch_inc(&egress_needed_key);
2022 }
2023 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2024 
2025 void net_dec_egress_queue(void)
2026 {
2027 	static_branch_dec(&egress_needed_key);
2028 }
2029 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2030 #endif
2031 
2032 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2033 #ifdef CONFIG_JUMP_LABEL
2034 static atomic_t netstamp_needed_deferred;
2035 static atomic_t netstamp_wanted;
2036 static void netstamp_clear(struct work_struct *work)
2037 {
2038 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2039 	int wanted;
2040 
2041 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2042 	if (wanted > 0)
2043 		static_branch_enable(&netstamp_needed_key);
2044 	else
2045 		static_branch_disable(&netstamp_needed_key);
2046 }
2047 static DECLARE_WORK(netstamp_work, netstamp_clear);
2048 #endif
2049 
2050 void net_enable_timestamp(void)
2051 {
2052 #ifdef CONFIG_JUMP_LABEL
2053 	int wanted;
2054 
2055 	while (1) {
2056 		wanted = atomic_read(&netstamp_wanted);
2057 		if (wanted <= 0)
2058 			break;
2059 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2060 			return;
2061 	}
2062 	atomic_inc(&netstamp_needed_deferred);
2063 	schedule_work(&netstamp_work);
2064 #else
2065 	static_branch_inc(&netstamp_needed_key);
2066 #endif
2067 }
2068 EXPORT_SYMBOL(net_enable_timestamp);
2069 
2070 void net_disable_timestamp(void)
2071 {
2072 #ifdef CONFIG_JUMP_LABEL
2073 	int wanted;
2074 
2075 	while (1) {
2076 		wanted = atomic_read(&netstamp_wanted);
2077 		if (wanted <= 1)
2078 			break;
2079 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2080 			return;
2081 	}
2082 	atomic_dec(&netstamp_needed_deferred);
2083 	schedule_work(&netstamp_work);
2084 #else
2085 	static_branch_dec(&netstamp_needed_key);
2086 #endif
2087 }
2088 EXPORT_SYMBOL(net_disable_timestamp);
2089 
2090 static inline void net_timestamp_set(struct sk_buff *skb)
2091 {
2092 	skb->tstamp = 0;
2093 	if (static_branch_unlikely(&netstamp_needed_key))
2094 		__net_timestamp(skb);
2095 }
2096 
2097 #define net_timestamp_check(COND, SKB)				\
2098 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2099 		if ((COND) && !(SKB)->tstamp)			\
2100 			__net_timestamp(SKB);			\
2101 	}							\
2102 
2103 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2104 {
2105 	unsigned int len;
2106 
2107 	if (!(dev->flags & IFF_UP))
2108 		return false;
2109 
2110 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2111 	if (skb->len <= len)
2112 		return true;
2113 
2114 	/* if TSO is enabled, we don't care about the length as the packet
2115 	 * could be forwarded without being segmented before
2116 	 */
2117 	if (skb_is_gso(skb))
2118 		return true;
2119 
2120 	return false;
2121 }
2122 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2123 
2124 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2125 {
2126 	int ret = ____dev_forward_skb(dev, skb);
2127 
2128 	if (likely(!ret)) {
2129 		skb->protocol = eth_type_trans(skb, dev);
2130 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2131 	}
2132 
2133 	return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136 
2137 /**
2138  * dev_forward_skb - loopback an skb to another netif
2139  *
2140  * @dev: destination network device
2141  * @skb: buffer to forward
2142  *
2143  * return values:
2144  *	NET_RX_SUCCESS	(no congestion)
2145  *	NET_RX_DROP     (packet was dropped, but freed)
2146  *
2147  * dev_forward_skb can be used for injecting an skb from the
2148  * start_xmit function of one device into the receive queue
2149  * of another device.
2150  *
2151  * The receiving device may be in another namespace, so
2152  * we have to clear all information in the skb that could
2153  * impact namespace isolation.
2154  */
2155 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156 {
2157 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2158 }
2159 EXPORT_SYMBOL_GPL(dev_forward_skb);
2160 
2161 static inline int deliver_skb(struct sk_buff *skb,
2162 			      struct packet_type *pt_prev,
2163 			      struct net_device *orig_dev)
2164 {
2165 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2166 		return -ENOMEM;
2167 	refcount_inc(&skb->users);
2168 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2169 }
2170 
2171 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2172 					  struct packet_type **pt,
2173 					  struct net_device *orig_dev,
2174 					  __be16 type,
2175 					  struct list_head *ptype_list)
2176 {
2177 	struct packet_type *ptype, *pt_prev = *pt;
2178 
2179 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2180 		if (ptype->type != type)
2181 			continue;
2182 		if (pt_prev)
2183 			deliver_skb(skb, pt_prev, orig_dev);
2184 		pt_prev = ptype;
2185 	}
2186 	*pt = pt_prev;
2187 }
2188 
2189 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2190 {
2191 	if (!ptype->af_packet_priv || !skb->sk)
2192 		return false;
2193 
2194 	if (ptype->id_match)
2195 		return ptype->id_match(ptype, skb->sk);
2196 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2197 		return true;
2198 
2199 	return false;
2200 }
2201 
2202 /**
2203  * dev_nit_active - return true if any network interface taps are in use
2204  *
2205  * @dev: network device to check for the presence of taps
2206  */
2207 bool dev_nit_active(struct net_device *dev)
2208 {
2209 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2210 }
2211 EXPORT_SYMBOL_GPL(dev_nit_active);
2212 
2213 /*
2214  *	Support routine. Sends outgoing frames to any network
2215  *	taps currently in use.
2216  */
2217 
2218 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2219 {
2220 	struct packet_type *ptype;
2221 	struct sk_buff *skb2 = NULL;
2222 	struct packet_type *pt_prev = NULL;
2223 	struct list_head *ptype_list = &ptype_all;
2224 
2225 	rcu_read_lock();
2226 again:
2227 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2228 		if (ptype->ignore_outgoing)
2229 			continue;
2230 
2231 		/* Never send packets back to the socket
2232 		 * they originated from - MvS (miquels@drinkel.ow.org)
2233 		 */
2234 		if (skb_loop_sk(ptype, skb))
2235 			continue;
2236 
2237 		if (pt_prev) {
2238 			deliver_skb(skb2, pt_prev, skb->dev);
2239 			pt_prev = ptype;
2240 			continue;
2241 		}
2242 
2243 		/* need to clone skb, done only once */
2244 		skb2 = skb_clone(skb, GFP_ATOMIC);
2245 		if (!skb2)
2246 			goto out_unlock;
2247 
2248 		net_timestamp_set(skb2);
2249 
2250 		/* skb->nh should be correctly
2251 		 * set by sender, so that the second statement is
2252 		 * just protection against buggy protocols.
2253 		 */
2254 		skb_reset_mac_header(skb2);
2255 
2256 		if (skb_network_header(skb2) < skb2->data ||
2257 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2258 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259 					     ntohs(skb2->protocol),
2260 					     dev->name);
2261 			skb_reset_network_header(skb2);
2262 		}
2263 
2264 		skb2->transport_header = skb2->network_header;
2265 		skb2->pkt_type = PACKET_OUTGOING;
2266 		pt_prev = ptype;
2267 	}
2268 
2269 	if (ptype_list == &ptype_all) {
2270 		ptype_list = &dev->ptype_all;
2271 		goto again;
2272 	}
2273 out_unlock:
2274 	if (pt_prev) {
2275 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2276 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2277 		else
2278 			kfree_skb(skb2);
2279 	}
2280 	rcu_read_unlock();
2281 }
2282 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2283 
2284 /**
2285  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2286  * @dev: Network device
2287  * @txq: number of queues available
2288  *
2289  * If real_num_tx_queues is changed the tc mappings may no longer be
2290  * valid. To resolve this verify the tc mapping remains valid and if
2291  * not NULL the mapping. With no priorities mapping to this
2292  * offset/count pair it will no longer be used. In the worst case TC0
2293  * is invalid nothing can be done so disable priority mappings. If is
2294  * expected that drivers will fix this mapping if they can before
2295  * calling netif_set_real_num_tx_queues.
2296  */
2297 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2298 {
2299 	int i;
2300 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2301 
2302 	/* If TC0 is invalidated disable TC mapping */
2303 	if (tc->offset + tc->count > txq) {
2304 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2305 		dev->num_tc = 0;
2306 		return;
2307 	}
2308 
2309 	/* Invalidated prio to tc mappings set to TC0 */
2310 	for (i = 1; i < TC_BITMASK + 1; i++) {
2311 		int q = netdev_get_prio_tc_map(dev, i);
2312 
2313 		tc = &dev->tc_to_txq[q];
2314 		if (tc->offset + tc->count > txq) {
2315 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2316 				i, q);
2317 			netdev_set_prio_tc_map(dev, i, 0);
2318 		}
2319 	}
2320 }
2321 
2322 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2323 {
2324 	if (dev->num_tc) {
2325 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2326 		int i;
2327 
2328 		/* walk through the TCs and see if it falls into any of them */
2329 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2330 			if ((txq - tc->offset) < tc->count)
2331 				return i;
2332 		}
2333 
2334 		/* didn't find it, just return -1 to indicate no match */
2335 		return -1;
2336 	}
2337 
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL(netdev_txq_to_tc);
2341 
2342 #ifdef CONFIG_XPS
2343 struct static_key xps_needed __read_mostly;
2344 EXPORT_SYMBOL(xps_needed);
2345 struct static_key xps_rxqs_needed __read_mostly;
2346 EXPORT_SYMBOL(xps_rxqs_needed);
2347 static DEFINE_MUTEX(xps_map_mutex);
2348 #define xmap_dereference(P)		\
2349 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2350 
2351 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2352 			     int tci, u16 index)
2353 {
2354 	struct xps_map *map = NULL;
2355 	int pos;
2356 
2357 	if (dev_maps)
2358 		map = xmap_dereference(dev_maps->attr_map[tci]);
2359 	if (!map)
2360 		return false;
2361 
2362 	for (pos = map->len; pos--;) {
2363 		if (map->queues[pos] != index)
2364 			continue;
2365 
2366 		if (map->len > 1) {
2367 			map->queues[pos] = map->queues[--map->len];
2368 			break;
2369 		}
2370 
2371 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2372 		kfree_rcu(map, rcu);
2373 		return false;
2374 	}
2375 
2376 	return true;
2377 }
2378 
2379 static bool remove_xps_queue_cpu(struct net_device *dev,
2380 				 struct xps_dev_maps *dev_maps,
2381 				 int cpu, u16 offset, u16 count)
2382 {
2383 	int num_tc = dev->num_tc ? : 1;
2384 	bool active = false;
2385 	int tci;
2386 
2387 	for (tci = cpu * num_tc; num_tc--; tci++) {
2388 		int i, j;
2389 
2390 		for (i = count, j = offset; i--; j++) {
2391 			if (!remove_xps_queue(dev_maps, tci, j))
2392 				break;
2393 		}
2394 
2395 		active |= i < 0;
2396 	}
2397 
2398 	return active;
2399 }
2400 
2401 static void reset_xps_maps(struct net_device *dev,
2402 			   struct xps_dev_maps *dev_maps,
2403 			   bool is_rxqs_map)
2404 {
2405 	if (is_rxqs_map) {
2406 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2407 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2408 	} else {
2409 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2410 	}
2411 	static_key_slow_dec_cpuslocked(&xps_needed);
2412 	kfree_rcu(dev_maps, rcu);
2413 }
2414 
2415 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2416 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2417 			   u16 offset, u16 count, bool is_rxqs_map)
2418 {
2419 	bool active = false;
2420 	int i, j;
2421 
2422 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2423 	     j < nr_ids;)
2424 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2425 					       count);
2426 	if (!active)
2427 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2428 
2429 	if (!is_rxqs_map) {
2430 		for (i = offset + (count - 1); count--; i--) {
2431 			netdev_queue_numa_node_write(
2432 				netdev_get_tx_queue(dev, i),
2433 				NUMA_NO_NODE);
2434 		}
2435 	}
2436 }
2437 
2438 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2439 				   u16 count)
2440 {
2441 	const unsigned long *possible_mask = NULL;
2442 	struct xps_dev_maps *dev_maps;
2443 	unsigned int nr_ids;
2444 
2445 	if (!static_key_false(&xps_needed))
2446 		return;
2447 
2448 	cpus_read_lock();
2449 	mutex_lock(&xps_map_mutex);
2450 
2451 	if (static_key_false(&xps_rxqs_needed)) {
2452 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2453 		if (dev_maps) {
2454 			nr_ids = dev->num_rx_queues;
2455 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2456 				       offset, count, true);
2457 		}
2458 	}
2459 
2460 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2461 	if (!dev_maps)
2462 		goto out_no_maps;
2463 
2464 	if (num_possible_cpus() > 1)
2465 		possible_mask = cpumask_bits(cpu_possible_mask);
2466 	nr_ids = nr_cpu_ids;
2467 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2468 		       false);
2469 
2470 out_no_maps:
2471 	mutex_unlock(&xps_map_mutex);
2472 	cpus_read_unlock();
2473 }
2474 
2475 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2476 {
2477 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2478 }
2479 
2480 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2481 				      u16 index, bool is_rxqs_map)
2482 {
2483 	struct xps_map *new_map;
2484 	int alloc_len = XPS_MIN_MAP_ALLOC;
2485 	int i, pos;
2486 
2487 	for (pos = 0; map && pos < map->len; pos++) {
2488 		if (map->queues[pos] != index)
2489 			continue;
2490 		return map;
2491 	}
2492 
2493 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2494 	if (map) {
2495 		if (pos < map->alloc_len)
2496 			return map;
2497 
2498 		alloc_len = map->alloc_len * 2;
2499 	}
2500 
2501 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2502 	 *  map
2503 	 */
2504 	if (is_rxqs_map)
2505 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2506 	else
2507 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2508 				       cpu_to_node(attr_index));
2509 	if (!new_map)
2510 		return NULL;
2511 
2512 	for (i = 0; i < pos; i++)
2513 		new_map->queues[i] = map->queues[i];
2514 	new_map->alloc_len = alloc_len;
2515 	new_map->len = pos;
2516 
2517 	return new_map;
2518 }
2519 
2520 /* Must be called under cpus_read_lock */
2521 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2522 			  u16 index, bool is_rxqs_map)
2523 {
2524 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2525 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2526 	int i, j, tci, numa_node_id = -2;
2527 	int maps_sz, num_tc = 1, tc = 0;
2528 	struct xps_map *map, *new_map;
2529 	bool active = false;
2530 	unsigned int nr_ids;
2531 
2532 	if (dev->num_tc) {
2533 		/* Do not allow XPS on subordinate device directly */
2534 		num_tc = dev->num_tc;
2535 		if (num_tc < 0)
2536 			return -EINVAL;
2537 
2538 		/* If queue belongs to subordinate dev use its map */
2539 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2540 
2541 		tc = netdev_txq_to_tc(dev, index);
2542 		if (tc < 0)
2543 			return -EINVAL;
2544 	}
2545 
2546 	mutex_lock(&xps_map_mutex);
2547 	if (is_rxqs_map) {
2548 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2549 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2550 		nr_ids = dev->num_rx_queues;
2551 	} else {
2552 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2553 		if (num_possible_cpus() > 1) {
2554 			online_mask = cpumask_bits(cpu_online_mask);
2555 			possible_mask = cpumask_bits(cpu_possible_mask);
2556 		}
2557 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2558 		nr_ids = nr_cpu_ids;
2559 	}
2560 
2561 	if (maps_sz < L1_CACHE_BYTES)
2562 		maps_sz = L1_CACHE_BYTES;
2563 
2564 	/* allocate memory for queue storage */
2565 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2566 	     j < nr_ids;) {
2567 		if (!new_dev_maps)
2568 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2569 		if (!new_dev_maps) {
2570 			mutex_unlock(&xps_map_mutex);
2571 			return -ENOMEM;
2572 		}
2573 
2574 		tci = j * num_tc + tc;
2575 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2576 				 NULL;
2577 
2578 		map = expand_xps_map(map, j, index, is_rxqs_map);
2579 		if (!map)
2580 			goto error;
2581 
2582 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2583 	}
2584 
2585 	if (!new_dev_maps)
2586 		goto out_no_new_maps;
2587 
2588 	if (!dev_maps) {
2589 		/* Increment static keys at most once per type */
2590 		static_key_slow_inc_cpuslocked(&xps_needed);
2591 		if (is_rxqs_map)
2592 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2593 	}
2594 
2595 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2596 	     j < nr_ids;) {
2597 		/* copy maps belonging to foreign traffic classes */
2598 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2599 			/* fill in the new device map from the old device map */
2600 			map = xmap_dereference(dev_maps->attr_map[tci]);
2601 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2602 		}
2603 
2604 		/* We need to explicitly update tci as prevous loop
2605 		 * could break out early if dev_maps is NULL.
2606 		 */
2607 		tci = j * num_tc + tc;
2608 
2609 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2610 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2611 			/* add tx-queue to CPU/rx-queue maps */
2612 			int pos = 0;
2613 
2614 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2615 			while ((pos < map->len) && (map->queues[pos] != index))
2616 				pos++;
2617 
2618 			if (pos == map->len)
2619 				map->queues[map->len++] = index;
2620 #ifdef CONFIG_NUMA
2621 			if (!is_rxqs_map) {
2622 				if (numa_node_id == -2)
2623 					numa_node_id = cpu_to_node(j);
2624 				else if (numa_node_id != cpu_to_node(j))
2625 					numa_node_id = -1;
2626 			}
2627 #endif
2628 		} else if (dev_maps) {
2629 			/* fill in the new device map from the old device map */
2630 			map = xmap_dereference(dev_maps->attr_map[tci]);
2631 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2632 		}
2633 
2634 		/* copy maps belonging to foreign traffic classes */
2635 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2636 			/* fill in the new device map from the old device map */
2637 			map = xmap_dereference(dev_maps->attr_map[tci]);
2638 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2639 		}
2640 	}
2641 
2642 	if (is_rxqs_map)
2643 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2644 	else
2645 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2646 
2647 	/* Cleanup old maps */
2648 	if (!dev_maps)
2649 		goto out_no_old_maps;
2650 
2651 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2652 	     j < nr_ids;) {
2653 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2654 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655 			map = xmap_dereference(dev_maps->attr_map[tci]);
2656 			if (map && map != new_map)
2657 				kfree_rcu(map, rcu);
2658 		}
2659 	}
2660 
2661 	kfree_rcu(dev_maps, rcu);
2662 
2663 out_no_old_maps:
2664 	dev_maps = new_dev_maps;
2665 	active = true;
2666 
2667 out_no_new_maps:
2668 	if (!is_rxqs_map) {
2669 		/* update Tx queue numa node */
2670 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2671 					     (numa_node_id >= 0) ?
2672 					     numa_node_id : NUMA_NO_NODE);
2673 	}
2674 
2675 	if (!dev_maps)
2676 		goto out_no_maps;
2677 
2678 	/* removes tx-queue from unused CPUs/rx-queues */
2679 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2680 	     j < nr_ids;) {
2681 		for (i = tc, tci = j * num_tc; i--; tci++)
2682 			active |= remove_xps_queue(dev_maps, tci, index);
2683 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2684 		    !netif_attr_test_online(j, online_mask, nr_ids))
2685 			active |= remove_xps_queue(dev_maps, tci, index);
2686 		for (i = num_tc - tc, tci++; --i; tci++)
2687 			active |= remove_xps_queue(dev_maps, tci, index);
2688 	}
2689 
2690 	/* free map if not active */
2691 	if (!active)
2692 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2693 
2694 out_no_maps:
2695 	mutex_unlock(&xps_map_mutex);
2696 
2697 	return 0;
2698 error:
2699 	/* remove any maps that we added */
2700 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2701 	     j < nr_ids;) {
2702 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2703 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2704 			map = dev_maps ?
2705 			      xmap_dereference(dev_maps->attr_map[tci]) :
2706 			      NULL;
2707 			if (new_map && new_map != map)
2708 				kfree(new_map);
2709 		}
2710 	}
2711 
2712 	mutex_unlock(&xps_map_mutex);
2713 
2714 	kfree(new_dev_maps);
2715 	return -ENOMEM;
2716 }
2717 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2718 
2719 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2720 			u16 index)
2721 {
2722 	int ret;
2723 
2724 	cpus_read_lock();
2725 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2726 	cpus_read_unlock();
2727 
2728 	return ret;
2729 }
2730 EXPORT_SYMBOL(netif_set_xps_queue);
2731 
2732 #endif
2733 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2734 {
2735 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736 
2737 	/* Unbind any subordinate channels */
2738 	while (txq-- != &dev->_tx[0]) {
2739 		if (txq->sb_dev)
2740 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2741 	}
2742 }
2743 
2744 void netdev_reset_tc(struct net_device *dev)
2745 {
2746 #ifdef CONFIG_XPS
2747 	netif_reset_xps_queues_gt(dev, 0);
2748 #endif
2749 	netdev_unbind_all_sb_channels(dev);
2750 
2751 	/* Reset TC configuration of device */
2752 	dev->num_tc = 0;
2753 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2754 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2755 }
2756 EXPORT_SYMBOL(netdev_reset_tc);
2757 
2758 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2759 {
2760 	if (tc >= dev->num_tc)
2761 		return -EINVAL;
2762 
2763 #ifdef CONFIG_XPS
2764 	netif_reset_xps_queues(dev, offset, count);
2765 #endif
2766 	dev->tc_to_txq[tc].count = count;
2767 	dev->tc_to_txq[tc].offset = offset;
2768 	return 0;
2769 }
2770 EXPORT_SYMBOL(netdev_set_tc_queue);
2771 
2772 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2773 {
2774 	if (num_tc > TC_MAX_QUEUE)
2775 		return -EINVAL;
2776 
2777 #ifdef CONFIG_XPS
2778 	netif_reset_xps_queues_gt(dev, 0);
2779 #endif
2780 	netdev_unbind_all_sb_channels(dev);
2781 
2782 	dev->num_tc = num_tc;
2783 	return 0;
2784 }
2785 EXPORT_SYMBOL(netdev_set_num_tc);
2786 
2787 void netdev_unbind_sb_channel(struct net_device *dev,
2788 			      struct net_device *sb_dev)
2789 {
2790 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2791 
2792 #ifdef CONFIG_XPS
2793 	netif_reset_xps_queues_gt(sb_dev, 0);
2794 #endif
2795 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2796 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2797 
2798 	while (txq-- != &dev->_tx[0]) {
2799 		if (txq->sb_dev == sb_dev)
2800 			txq->sb_dev = NULL;
2801 	}
2802 }
2803 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2804 
2805 int netdev_bind_sb_channel_queue(struct net_device *dev,
2806 				 struct net_device *sb_dev,
2807 				 u8 tc, u16 count, u16 offset)
2808 {
2809 	/* Make certain the sb_dev and dev are already configured */
2810 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2811 		return -EINVAL;
2812 
2813 	/* We cannot hand out queues we don't have */
2814 	if ((offset + count) > dev->real_num_tx_queues)
2815 		return -EINVAL;
2816 
2817 	/* Record the mapping */
2818 	sb_dev->tc_to_txq[tc].count = count;
2819 	sb_dev->tc_to_txq[tc].offset = offset;
2820 
2821 	/* Provide a way for Tx queue to find the tc_to_txq map or
2822 	 * XPS map for itself.
2823 	 */
2824 	while (count--)
2825 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2826 
2827 	return 0;
2828 }
2829 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2830 
2831 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2832 {
2833 	/* Do not use a multiqueue device to represent a subordinate channel */
2834 	if (netif_is_multiqueue(dev))
2835 		return -ENODEV;
2836 
2837 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2838 	 * Channel 0 is meant to be "native" mode and used only to represent
2839 	 * the main root device. We allow writing 0 to reset the device back
2840 	 * to normal mode after being used as a subordinate channel.
2841 	 */
2842 	if (channel > S16_MAX)
2843 		return -EINVAL;
2844 
2845 	dev->num_tc = -channel;
2846 
2847 	return 0;
2848 }
2849 EXPORT_SYMBOL(netdev_set_sb_channel);
2850 
2851 /*
2852  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2853  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2854  */
2855 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2856 {
2857 	bool disabling;
2858 	int rc;
2859 
2860 	disabling = txq < dev->real_num_tx_queues;
2861 
2862 	if (txq < 1 || txq > dev->num_tx_queues)
2863 		return -EINVAL;
2864 
2865 	if (dev->reg_state == NETREG_REGISTERED ||
2866 	    dev->reg_state == NETREG_UNREGISTERING) {
2867 		ASSERT_RTNL();
2868 
2869 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2870 						  txq);
2871 		if (rc)
2872 			return rc;
2873 
2874 		if (dev->num_tc)
2875 			netif_setup_tc(dev, txq);
2876 
2877 		dev->real_num_tx_queues = txq;
2878 
2879 		if (disabling) {
2880 			synchronize_net();
2881 			qdisc_reset_all_tx_gt(dev, txq);
2882 #ifdef CONFIG_XPS
2883 			netif_reset_xps_queues_gt(dev, txq);
2884 #endif
2885 		}
2886 	} else {
2887 		dev->real_num_tx_queues = txq;
2888 	}
2889 
2890 	return 0;
2891 }
2892 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2893 
2894 #ifdef CONFIG_SYSFS
2895 /**
2896  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2897  *	@dev: Network device
2898  *	@rxq: Actual number of RX queues
2899  *
2900  *	This must be called either with the rtnl_lock held or before
2901  *	registration of the net device.  Returns 0 on success, or a
2902  *	negative error code.  If called before registration, it always
2903  *	succeeds.
2904  */
2905 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2906 {
2907 	int rc;
2908 
2909 	if (rxq < 1 || rxq > dev->num_rx_queues)
2910 		return -EINVAL;
2911 
2912 	if (dev->reg_state == NETREG_REGISTERED) {
2913 		ASSERT_RTNL();
2914 
2915 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2916 						  rxq);
2917 		if (rc)
2918 			return rc;
2919 	}
2920 
2921 	dev->real_num_rx_queues = rxq;
2922 	return 0;
2923 }
2924 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2925 #endif
2926 
2927 /**
2928  * netif_get_num_default_rss_queues - default number of RSS queues
2929  *
2930  * This routine should set an upper limit on the number of RSS queues
2931  * used by default by multiqueue devices.
2932  */
2933 int netif_get_num_default_rss_queues(void)
2934 {
2935 	return is_kdump_kernel() ?
2936 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2937 }
2938 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2939 
2940 static void __netif_reschedule(struct Qdisc *q)
2941 {
2942 	struct softnet_data *sd;
2943 	unsigned long flags;
2944 
2945 	local_irq_save(flags);
2946 	sd = this_cpu_ptr(&softnet_data);
2947 	q->next_sched = NULL;
2948 	*sd->output_queue_tailp = q;
2949 	sd->output_queue_tailp = &q->next_sched;
2950 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2951 	local_irq_restore(flags);
2952 }
2953 
2954 void __netif_schedule(struct Qdisc *q)
2955 {
2956 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2957 		__netif_reschedule(q);
2958 }
2959 EXPORT_SYMBOL(__netif_schedule);
2960 
2961 struct dev_kfree_skb_cb {
2962 	enum skb_free_reason reason;
2963 };
2964 
2965 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2966 {
2967 	return (struct dev_kfree_skb_cb *)skb->cb;
2968 }
2969 
2970 void netif_schedule_queue(struct netdev_queue *txq)
2971 {
2972 	rcu_read_lock();
2973 	if (!netif_xmit_stopped(txq)) {
2974 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2975 
2976 		__netif_schedule(q);
2977 	}
2978 	rcu_read_unlock();
2979 }
2980 EXPORT_SYMBOL(netif_schedule_queue);
2981 
2982 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2983 {
2984 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2985 		struct Qdisc *q;
2986 
2987 		rcu_read_lock();
2988 		q = rcu_dereference(dev_queue->qdisc);
2989 		__netif_schedule(q);
2990 		rcu_read_unlock();
2991 	}
2992 }
2993 EXPORT_SYMBOL(netif_tx_wake_queue);
2994 
2995 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2996 {
2997 	unsigned long flags;
2998 
2999 	if (unlikely(!skb))
3000 		return;
3001 
3002 	if (likely(refcount_read(&skb->users) == 1)) {
3003 		smp_rmb();
3004 		refcount_set(&skb->users, 0);
3005 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3006 		return;
3007 	}
3008 	get_kfree_skb_cb(skb)->reason = reason;
3009 	local_irq_save(flags);
3010 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3011 	__this_cpu_write(softnet_data.completion_queue, skb);
3012 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3013 	local_irq_restore(flags);
3014 }
3015 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3016 
3017 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3018 {
3019 	if (in_irq() || irqs_disabled())
3020 		__dev_kfree_skb_irq(skb, reason);
3021 	else
3022 		dev_kfree_skb(skb);
3023 }
3024 EXPORT_SYMBOL(__dev_kfree_skb_any);
3025 
3026 
3027 /**
3028  * netif_device_detach - mark device as removed
3029  * @dev: network device
3030  *
3031  * Mark device as removed from system and therefore no longer available.
3032  */
3033 void netif_device_detach(struct net_device *dev)
3034 {
3035 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3036 	    netif_running(dev)) {
3037 		netif_tx_stop_all_queues(dev);
3038 	}
3039 }
3040 EXPORT_SYMBOL(netif_device_detach);
3041 
3042 /**
3043  * netif_device_attach - mark device as attached
3044  * @dev: network device
3045  *
3046  * Mark device as attached from system and restart if needed.
3047  */
3048 void netif_device_attach(struct net_device *dev)
3049 {
3050 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051 	    netif_running(dev)) {
3052 		netif_tx_wake_all_queues(dev);
3053 		__netdev_watchdog_up(dev);
3054 	}
3055 }
3056 EXPORT_SYMBOL(netif_device_attach);
3057 
3058 /*
3059  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060  * to be used as a distribution range.
3061  */
3062 static u16 skb_tx_hash(const struct net_device *dev,
3063 		       const struct net_device *sb_dev,
3064 		       struct sk_buff *skb)
3065 {
3066 	u32 hash;
3067 	u16 qoffset = 0;
3068 	u16 qcount = dev->real_num_tx_queues;
3069 
3070 	if (dev->num_tc) {
3071 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3072 
3073 		qoffset = sb_dev->tc_to_txq[tc].offset;
3074 		qcount = sb_dev->tc_to_txq[tc].count;
3075 	}
3076 
3077 	if (skb_rx_queue_recorded(skb)) {
3078 		hash = skb_get_rx_queue(skb);
3079 		if (hash >= qoffset)
3080 			hash -= qoffset;
3081 		while (unlikely(hash >= qcount))
3082 			hash -= qcount;
3083 		return hash + qoffset;
3084 	}
3085 
3086 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3087 }
3088 
3089 static void skb_warn_bad_offload(const struct sk_buff *skb)
3090 {
3091 	static const netdev_features_t null_features;
3092 	struct net_device *dev = skb->dev;
3093 	const char *name = "";
3094 
3095 	if (!net_ratelimit())
3096 		return;
3097 
3098 	if (dev) {
3099 		if (dev->dev.parent)
3100 			name = dev_driver_string(dev->dev.parent);
3101 		else
3102 			name = netdev_name(dev);
3103 	}
3104 	skb_dump(KERN_WARNING, skb, false);
3105 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3106 	     name, dev ? &dev->features : &null_features,
3107 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3108 }
3109 
3110 /*
3111  * Invalidate hardware checksum when packet is to be mangled, and
3112  * complete checksum manually on outgoing path.
3113  */
3114 int skb_checksum_help(struct sk_buff *skb)
3115 {
3116 	__wsum csum;
3117 	int ret = 0, offset;
3118 
3119 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3120 		goto out_set_summed;
3121 
3122 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3123 		skb_warn_bad_offload(skb);
3124 		return -EINVAL;
3125 	}
3126 
3127 	/* Before computing a checksum, we should make sure no frag could
3128 	 * be modified by an external entity : checksum could be wrong.
3129 	 */
3130 	if (skb_has_shared_frag(skb)) {
3131 		ret = __skb_linearize(skb);
3132 		if (ret)
3133 			goto out;
3134 	}
3135 
3136 	offset = skb_checksum_start_offset(skb);
3137 	BUG_ON(offset >= skb_headlen(skb));
3138 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3139 
3140 	offset += skb->csum_offset;
3141 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3142 
3143 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3144 	if (ret)
3145 		goto out;
3146 
3147 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3148 out_set_summed:
3149 	skb->ip_summed = CHECKSUM_NONE;
3150 out:
3151 	return ret;
3152 }
3153 EXPORT_SYMBOL(skb_checksum_help);
3154 
3155 int skb_crc32c_csum_help(struct sk_buff *skb)
3156 {
3157 	__le32 crc32c_csum;
3158 	int ret = 0, offset, start;
3159 
3160 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3161 		goto out;
3162 
3163 	if (unlikely(skb_is_gso(skb)))
3164 		goto out;
3165 
3166 	/* Before computing a checksum, we should make sure no frag could
3167 	 * be modified by an external entity : checksum could be wrong.
3168 	 */
3169 	if (unlikely(skb_has_shared_frag(skb))) {
3170 		ret = __skb_linearize(skb);
3171 		if (ret)
3172 			goto out;
3173 	}
3174 	start = skb_checksum_start_offset(skb);
3175 	offset = start + offsetof(struct sctphdr, checksum);
3176 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3177 		ret = -EINVAL;
3178 		goto out;
3179 	}
3180 
3181 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3182 	if (ret)
3183 		goto out;
3184 
3185 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3186 						  skb->len - start, ~(__u32)0,
3187 						  crc32c_csum_stub));
3188 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3189 	skb->ip_summed = CHECKSUM_NONE;
3190 	skb->csum_not_inet = 0;
3191 out:
3192 	return ret;
3193 }
3194 
3195 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3196 {
3197 	__be16 type = skb->protocol;
3198 
3199 	/* Tunnel gso handlers can set protocol to ethernet. */
3200 	if (type == htons(ETH_P_TEB)) {
3201 		struct ethhdr *eth;
3202 
3203 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3204 			return 0;
3205 
3206 		eth = (struct ethhdr *)skb->data;
3207 		type = eth->h_proto;
3208 	}
3209 
3210 	return __vlan_get_protocol(skb, type, depth);
3211 }
3212 
3213 /**
3214  *	skb_mac_gso_segment - mac layer segmentation handler.
3215  *	@skb: buffer to segment
3216  *	@features: features for the output path (see dev->features)
3217  */
3218 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3219 				    netdev_features_t features)
3220 {
3221 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3222 	struct packet_offload *ptype;
3223 	int vlan_depth = skb->mac_len;
3224 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3225 
3226 	if (unlikely(!type))
3227 		return ERR_PTR(-EINVAL);
3228 
3229 	__skb_pull(skb, vlan_depth);
3230 
3231 	rcu_read_lock();
3232 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3233 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3234 			segs = ptype->callbacks.gso_segment(skb, features);
3235 			break;
3236 		}
3237 	}
3238 	rcu_read_unlock();
3239 
3240 	__skb_push(skb, skb->data - skb_mac_header(skb));
3241 
3242 	return segs;
3243 }
3244 EXPORT_SYMBOL(skb_mac_gso_segment);
3245 
3246 
3247 /* openvswitch calls this on rx path, so we need a different check.
3248  */
3249 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3250 {
3251 	if (tx_path)
3252 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3253 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3254 
3255 	return skb->ip_summed == CHECKSUM_NONE;
3256 }
3257 
3258 /**
3259  *	__skb_gso_segment - Perform segmentation on skb.
3260  *	@skb: buffer to segment
3261  *	@features: features for the output path (see dev->features)
3262  *	@tx_path: whether it is called in TX path
3263  *
3264  *	This function segments the given skb and returns a list of segments.
3265  *
3266  *	It may return NULL if the skb requires no segmentation.  This is
3267  *	only possible when GSO is used for verifying header integrity.
3268  *
3269  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3270  */
3271 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3272 				  netdev_features_t features, bool tx_path)
3273 {
3274 	struct sk_buff *segs;
3275 
3276 	if (unlikely(skb_needs_check(skb, tx_path))) {
3277 		int err;
3278 
3279 		/* We're going to init ->check field in TCP or UDP header */
3280 		err = skb_cow_head(skb, 0);
3281 		if (err < 0)
3282 			return ERR_PTR(err);
3283 	}
3284 
3285 	/* Only report GSO partial support if it will enable us to
3286 	 * support segmentation on this frame without needing additional
3287 	 * work.
3288 	 */
3289 	if (features & NETIF_F_GSO_PARTIAL) {
3290 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3291 		struct net_device *dev = skb->dev;
3292 
3293 		partial_features |= dev->features & dev->gso_partial_features;
3294 		if (!skb_gso_ok(skb, features | partial_features))
3295 			features &= ~NETIF_F_GSO_PARTIAL;
3296 	}
3297 
3298 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3299 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3300 
3301 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3302 	SKB_GSO_CB(skb)->encap_level = 0;
3303 
3304 	skb_reset_mac_header(skb);
3305 	skb_reset_mac_len(skb);
3306 
3307 	segs = skb_mac_gso_segment(skb, features);
3308 
3309 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3310 		skb_warn_bad_offload(skb);
3311 
3312 	return segs;
3313 }
3314 EXPORT_SYMBOL(__skb_gso_segment);
3315 
3316 /* Take action when hardware reception checksum errors are detected. */
3317 #ifdef CONFIG_BUG
3318 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3319 {
3320 	if (net_ratelimit()) {
3321 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3322 		skb_dump(KERN_ERR, skb, true);
3323 		dump_stack();
3324 	}
3325 }
3326 EXPORT_SYMBOL(netdev_rx_csum_fault);
3327 #endif
3328 
3329 /* XXX: check that highmem exists at all on the given machine. */
3330 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3331 {
3332 #ifdef CONFIG_HIGHMEM
3333 	int i;
3334 
3335 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3336 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3337 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3338 
3339 			if (PageHighMem(skb_frag_page(frag)))
3340 				return 1;
3341 		}
3342 	}
3343 #endif
3344 	return 0;
3345 }
3346 
3347 /* If MPLS offload request, verify we are testing hardware MPLS features
3348  * instead of standard features for the netdev.
3349  */
3350 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3351 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3352 					   netdev_features_t features,
3353 					   __be16 type)
3354 {
3355 	if (eth_p_mpls(type))
3356 		features &= skb->dev->mpls_features;
3357 
3358 	return features;
3359 }
3360 #else
3361 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3362 					   netdev_features_t features,
3363 					   __be16 type)
3364 {
3365 	return features;
3366 }
3367 #endif
3368 
3369 static netdev_features_t harmonize_features(struct sk_buff *skb,
3370 	netdev_features_t features)
3371 {
3372 	int tmp;
3373 	__be16 type;
3374 
3375 	type = skb_network_protocol(skb, &tmp);
3376 	features = net_mpls_features(skb, features, type);
3377 
3378 	if (skb->ip_summed != CHECKSUM_NONE &&
3379 	    !can_checksum_protocol(features, type)) {
3380 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3381 	}
3382 	if (illegal_highdma(skb->dev, skb))
3383 		features &= ~NETIF_F_SG;
3384 
3385 	return features;
3386 }
3387 
3388 netdev_features_t passthru_features_check(struct sk_buff *skb,
3389 					  struct net_device *dev,
3390 					  netdev_features_t features)
3391 {
3392 	return features;
3393 }
3394 EXPORT_SYMBOL(passthru_features_check);
3395 
3396 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3397 					     struct net_device *dev,
3398 					     netdev_features_t features)
3399 {
3400 	return vlan_features_check(skb, features);
3401 }
3402 
3403 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3404 					    struct net_device *dev,
3405 					    netdev_features_t features)
3406 {
3407 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3408 
3409 	if (gso_segs > dev->gso_max_segs)
3410 		return features & ~NETIF_F_GSO_MASK;
3411 
3412 	/* Support for GSO partial features requires software
3413 	 * intervention before we can actually process the packets
3414 	 * so we need to strip support for any partial features now
3415 	 * and we can pull them back in after we have partially
3416 	 * segmented the frame.
3417 	 */
3418 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3419 		features &= ~dev->gso_partial_features;
3420 
3421 	/* Make sure to clear the IPv4 ID mangling feature if the
3422 	 * IPv4 header has the potential to be fragmented.
3423 	 */
3424 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3425 		struct iphdr *iph = skb->encapsulation ?
3426 				    inner_ip_hdr(skb) : ip_hdr(skb);
3427 
3428 		if (!(iph->frag_off & htons(IP_DF)))
3429 			features &= ~NETIF_F_TSO_MANGLEID;
3430 	}
3431 
3432 	return features;
3433 }
3434 
3435 netdev_features_t netif_skb_features(struct sk_buff *skb)
3436 {
3437 	struct net_device *dev = skb->dev;
3438 	netdev_features_t features = dev->features;
3439 
3440 	if (skb_is_gso(skb))
3441 		features = gso_features_check(skb, dev, features);
3442 
3443 	/* If encapsulation offload request, verify we are testing
3444 	 * hardware encapsulation features instead of standard
3445 	 * features for the netdev
3446 	 */
3447 	if (skb->encapsulation)
3448 		features &= dev->hw_enc_features;
3449 
3450 	if (skb_vlan_tagged(skb))
3451 		features = netdev_intersect_features(features,
3452 						     dev->vlan_features |
3453 						     NETIF_F_HW_VLAN_CTAG_TX |
3454 						     NETIF_F_HW_VLAN_STAG_TX);
3455 
3456 	if (dev->netdev_ops->ndo_features_check)
3457 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3458 								features);
3459 	else
3460 		features &= dflt_features_check(skb, dev, features);
3461 
3462 	return harmonize_features(skb, features);
3463 }
3464 EXPORT_SYMBOL(netif_skb_features);
3465 
3466 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3467 		    struct netdev_queue *txq, bool more)
3468 {
3469 	unsigned int len;
3470 	int rc;
3471 
3472 	if (dev_nit_active(dev))
3473 		dev_queue_xmit_nit(skb, dev);
3474 
3475 	len = skb->len;
3476 	trace_net_dev_start_xmit(skb, dev);
3477 	rc = netdev_start_xmit(skb, dev, txq, more);
3478 	trace_net_dev_xmit(skb, rc, dev, len);
3479 
3480 	return rc;
3481 }
3482 
3483 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3484 				    struct netdev_queue *txq, int *ret)
3485 {
3486 	struct sk_buff *skb = first;
3487 	int rc = NETDEV_TX_OK;
3488 
3489 	while (skb) {
3490 		struct sk_buff *next = skb->next;
3491 
3492 		skb_mark_not_on_list(skb);
3493 		rc = xmit_one(skb, dev, txq, next != NULL);
3494 		if (unlikely(!dev_xmit_complete(rc))) {
3495 			skb->next = next;
3496 			goto out;
3497 		}
3498 
3499 		skb = next;
3500 		if (netif_tx_queue_stopped(txq) && skb) {
3501 			rc = NETDEV_TX_BUSY;
3502 			break;
3503 		}
3504 	}
3505 
3506 out:
3507 	*ret = rc;
3508 	return skb;
3509 }
3510 
3511 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3512 					  netdev_features_t features)
3513 {
3514 	if (skb_vlan_tag_present(skb) &&
3515 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3516 		skb = __vlan_hwaccel_push_inside(skb);
3517 	return skb;
3518 }
3519 
3520 int skb_csum_hwoffload_help(struct sk_buff *skb,
3521 			    const netdev_features_t features)
3522 {
3523 	if (unlikely(skb->csum_not_inet))
3524 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3525 			skb_crc32c_csum_help(skb);
3526 
3527 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3528 }
3529 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3530 
3531 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3532 {
3533 	netdev_features_t features;
3534 
3535 	features = netif_skb_features(skb);
3536 	skb = validate_xmit_vlan(skb, features);
3537 	if (unlikely(!skb))
3538 		goto out_null;
3539 
3540 	skb = sk_validate_xmit_skb(skb, dev);
3541 	if (unlikely(!skb))
3542 		goto out_null;
3543 
3544 	if (netif_needs_gso(skb, features)) {
3545 		struct sk_buff *segs;
3546 
3547 		segs = skb_gso_segment(skb, features);
3548 		if (IS_ERR(segs)) {
3549 			goto out_kfree_skb;
3550 		} else if (segs) {
3551 			consume_skb(skb);
3552 			skb = segs;
3553 		}
3554 	} else {
3555 		if (skb_needs_linearize(skb, features) &&
3556 		    __skb_linearize(skb))
3557 			goto out_kfree_skb;
3558 
3559 		/* If packet is not checksummed and device does not
3560 		 * support checksumming for this protocol, complete
3561 		 * checksumming here.
3562 		 */
3563 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3564 			if (skb->encapsulation)
3565 				skb_set_inner_transport_header(skb,
3566 							       skb_checksum_start_offset(skb));
3567 			else
3568 				skb_set_transport_header(skb,
3569 							 skb_checksum_start_offset(skb));
3570 			if (skb_csum_hwoffload_help(skb, features))
3571 				goto out_kfree_skb;
3572 		}
3573 	}
3574 
3575 	skb = validate_xmit_xfrm(skb, features, again);
3576 
3577 	return skb;
3578 
3579 out_kfree_skb:
3580 	kfree_skb(skb);
3581 out_null:
3582 	atomic_long_inc(&dev->tx_dropped);
3583 	return NULL;
3584 }
3585 
3586 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3587 {
3588 	struct sk_buff *next, *head = NULL, *tail;
3589 
3590 	for (; skb != NULL; skb = next) {
3591 		next = skb->next;
3592 		skb_mark_not_on_list(skb);
3593 
3594 		/* in case skb wont be segmented, point to itself */
3595 		skb->prev = skb;
3596 
3597 		skb = validate_xmit_skb(skb, dev, again);
3598 		if (!skb)
3599 			continue;
3600 
3601 		if (!head)
3602 			head = skb;
3603 		else
3604 			tail->next = skb;
3605 		/* If skb was segmented, skb->prev points to
3606 		 * the last segment. If not, it still contains skb.
3607 		 */
3608 		tail = skb->prev;
3609 	}
3610 	return head;
3611 }
3612 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3613 
3614 static void qdisc_pkt_len_init(struct sk_buff *skb)
3615 {
3616 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3617 
3618 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3619 
3620 	/* To get more precise estimation of bytes sent on wire,
3621 	 * we add to pkt_len the headers size of all segments
3622 	 */
3623 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3624 		unsigned int hdr_len;
3625 		u16 gso_segs = shinfo->gso_segs;
3626 
3627 		/* mac layer + network layer */
3628 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3629 
3630 		/* + transport layer */
3631 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3632 			const struct tcphdr *th;
3633 			struct tcphdr _tcphdr;
3634 
3635 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3636 						sizeof(_tcphdr), &_tcphdr);
3637 			if (likely(th))
3638 				hdr_len += __tcp_hdrlen(th);
3639 		} else {
3640 			struct udphdr _udphdr;
3641 
3642 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3643 					       sizeof(_udphdr), &_udphdr))
3644 				hdr_len += sizeof(struct udphdr);
3645 		}
3646 
3647 		if (shinfo->gso_type & SKB_GSO_DODGY)
3648 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3649 						shinfo->gso_size);
3650 
3651 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3652 	}
3653 }
3654 
3655 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3656 				 struct net_device *dev,
3657 				 struct netdev_queue *txq)
3658 {
3659 	spinlock_t *root_lock = qdisc_lock(q);
3660 	struct sk_buff *to_free = NULL;
3661 	bool contended;
3662 	int rc;
3663 
3664 	qdisc_calculate_pkt_len(skb, q);
3665 
3666 	if (q->flags & TCQ_F_NOLOCK) {
3667 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3668 		qdisc_run(q);
3669 
3670 		if (unlikely(to_free))
3671 			kfree_skb_list(to_free);
3672 		return rc;
3673 	}
3674 
3675 	/*
3676 	 * Heuristic to force contended enqueues to serialize on a
3677 	 * separate lock before trying to get qdisc main lock.
3678 	 * This permits qdisc->running owner to get the lock more
3679 	 * often and dequeue packets faster.
3680 	 */
3681 	contended = qdisc_is_running(q);
3682 	if (unlikely(contended))
3683 		spin_lock(&q->busylock);
3684 
3685 	spin_lock(root_lock);
3686 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3687 		__qdisc_drop(skb, &to_free);
3688 		rc = NET_XMIT_DROP;
3689 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3690 		   qdisc_run_begin(q)) {
3691 		/*
3692 		 * This is a work-conserving queue; there are no old skbs
3693 		 * waiting to be sent out; and the qdisc is not running -
3694 		 * xmit the skb directly.
3695 		 */
3696 
3697 		qdisc_bstats_update(q, skb);
3698 
3699 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3700 			if (unlikely(contended)) {
3701 				spin_unlock(&q->busylock);
3702 				contended = false;
3703 			}
3704 			__qdisc_run(q);
3705 		}
3706 
3707 		qdisc_run_end(q);
3708 		rc = NET_XMIT_SUCCESS;
3709 	} else {
3710 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3711 		if (qdisc_run_begin(q)) {
3712 			if (unlikely(contended)) {
3713 				spin_unlock(&q->busylock);
3714 				contended = false;
3715 			}
3716 			__qdisc_run(q);
3717 			qdisc_run_end(q);
3718 		}
3719 	}
3720 	spin_unlock(root_lock);
3721 	if (unlikely(to_free))
3722 		kfree_skb_list(to_free);
3723 	if (unlikely(contended))
3724 		spin_unlock(&q->busylock);
3725 	return rc;
3726 }
3727 
3728 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3729 static void skb_update_prio(struct sk_buff *skb)
3730 {
3731 	const struct netprio_map *map;
3732 	const struct sock *sk;
3733 	unsigned int prioidx;
3734 
3735 	if (skb->priority)
3736 		return;
3737 	map = rcu_dereference_bh(skb->dev->priomap);
3738 	if (!map)
3739 		return;
3740 	sk = skb_to_full_sk(skb);
3741 	if (!sk)
3742 		return;
3743 
3744 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3745 
3746 	if (prioidx < map->priomap_len)
3747 		skb->priority = map->priomap[prioidx];
3748 }
3749 #else
3750 #define skb_update_prio(skb)
3751 #endif
3752 
3753 /**
3754  *	dev_loopback_xmit - loop back @skb
3755  *	@net: network namespace this loopback is happening in
3756  *	@sk:  sk needed to be a netfilter okfn
3757  *	@skb: buffer to transmit
3758  */
3759 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3760 {
3761 	skb_reset_mac_header(skb);
3762 	__skb_pull(skb, skb_network_offset(skb));
3763 	skb->pkt_type = PACKET_LOOPBACK;
3764 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3765 	WARN_ON(!skb_dst(skb));
3766 	skb_dst_force(skb);
3767 	netif_rx_ni(skb);
3768 	return 0;
3769 }
3770 EXPORT_SYMBOL(dev_loopback_xmit);
3771 
3772 #ifdef CONFIG_NET_EGRESS
3773 static struct sk_buff *
3774 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3775 {
3776 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3777 	struct tcf_result cl_res;
3778 
3779 	if (!miniq)
3780 		return skb;
3781 
3782 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3783 	mini_qdisc_bstats_cpu_update(miniq, skb);
3784 
3785 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3786 	case TC_ACT_OK:
3787 	case TC_ACT_RECLASSIFY:
3788 		skb->tc_index = TC_H_MIN(cl_res.classid);
3789 		break;
3790 	case TC_ACT_SHOT:
3791 		mini_qdisc_qstats_cpu_drop(miniq);
3792 		*ret = NET_XMIT_DROP;
3793 		kfree_skb(skb);
3794 		return NULL;
3795 	case TC_ACT_STOLEN:
3796 	case TC_ACT_QUEUED:
3797 	case TC_ACT_TRAP:
3798 		*ret = NET_XMIT_SUCCESS;
3799 		consume_skb(skb);
3800 		return NULL;
3801 	case TC_ACT_REDIRECT:
3802 		/* No need to push/pop skb's mac_header here on egress! */
3803 		skb_do_redirect(skb);
3804 		*ret = NET_XMIT_SUCCESS;
3805 		return NULL;
3806 	default:
3807 		break;
3808 	}
3809 
3810 	return skb;
3811 }
3812 #endif /* CONFIG_NET_EGRESS */
3813 
3814 #ifdef CONFIG_XPS
3815 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3816 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3817 {
3818 	struct xps_map *map;
3819 	int queue_index = -1;
3820 
3821 	if (dev->num_tc) {
3822 		tci *= dev->num_tc;
3823 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3824 	}
3825 
3826 	map = rcu_dereference(dev_maps->attr_map[tci]);
3827 	if (map) {
3828 		if (map->len == 1)
3829 			queue_index = map->queues[0];
3830 		else
3831 			queue_index = map->queues[reciprocal_scale(
3832 						skb_get_hash(skb), map->len)];
3833 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3834 			queue_index = -1;
3835 	}
3836 	return queue_index;
3837 }
3838 #endif
3839 
3840 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3841 			 struct sk_buff *skb)
3842 {
3843 #ifdef CONFIG_XPS
3844 	struct xps_dev_maps *dev_maps;
3845 	struct sock *sk = skb->sk;
3846 	int queue_index = -1;
3847 
3848 	if (!static_key_false(&xps_needed))
3849 		return -1;
3850 
3851 	rcu_read_lock();
3852 	if (!static_key_false(&xps_rxqs_needed))
3853 		goto get_cpus_map;
3854 
3855 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3856 	if (dev_maps) {
3857 		int tci = sk_rx_queue_get(sk);
3858 
3859 		if (tci >= 0 && tci < dev->num_rx_queues)
3860 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3861 							  tci);
3862 	}
3863 
3864 get_cpus_map:
3865 	if (queue_index < 0) {
3866 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3867 		if (dev_maps) {
3868 			unsigned int tci = skb->sender_cpu - 1;
3869 
3870 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3871 							  tci);
3872 		}
3873 	}
3874 	rcu_read_unlock();
3875 
3876 	return queue_index;
3877 #else
3878 	return -1;
3879 #endif
3880 }
3881 
3882 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3883 		     struct net_device *sb_dev)
3884 {
3885 	return 0;
3886 }
3887 EXPORT_SYMBOL(dev_pick_tx_zero);
3888 
3889 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3890 		       struct net_device *sb_dev)
3891 {
3892 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3893 }
3894 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3895 
3896 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3897 		     struct net_device *sb_dev)
3898 {
3899 	struct sock *sk = skb->sk;
3900 	int queue_index = sk_tx_queue_get(sk);
3901 
3902 	sb_dev = sb_dev ? : dev;
3903 
3904 	if (queue_index < 0 || skb->ooo_okay ||
3905 	    queue_index >= dev->real_num_tx_queues) {
3906 		int new_index = get_xps_queue(dev, sb_dev, skb);
3907 
3908 		if (new_index < 0)
3909 			new_index = skb_tx_hash(dev, sb_dev, skb);
3910 
3911 		if (queue_index != new_index && sk &&
3912 		    sk_fullsock(sk) &&
3913 		    rcu_access_pointer(sk->sk_dst_cache))
3914 			sk_tx_queue_set(sk, new_index);
3915 
3916 		queue_index = new_index;
3917 	}
3918 
3919 	return queue_index;
3920 }
3921 EXPORT_SYMBOL(netdev_pick_tx);
3922 
3923 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3924 					 struct sk_buff *skb,
3925 					 struct net_device *sb_dev)
3926 {
3927 	int queue_index = 0;
3928 
3929 #ifdef CONFIG_XPS
3930 	u32 sender_cpu = skb->sender_cpu - 1;
3931 
3932 	if (sender_cpu >= (u32)NR_CPUS)
3933 		skb->sender_cpu = raw_smp_processor_id() + 1;
3934 #endif
3935 
3936 	if (dev->real_num_tx_queues != 1) {
3937 		const struct net_device_ops *ops = dev->netdev_ops;
3938 
3939 		if (ops->ndo_select_queue)
3940 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3941 		else
3942 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3943 
3944 		queue_index = netdev_cap_txqueue(dev, queue_index);
3945 	}
3946 
3947 	skb_set_queue_mapping(skb, queue_index);
3948 	return netdev_get_tx_queue(dev, queue_index);
3949 }
3950 
3951 /**
3952  *	__dev_queue_xmit - transmit a buffer
3953  *	@skb: buffer to transmit
3954  *	@sb_dev: suboordinate device used for L2 forwarding offload
3955  *
3956  *	Queue a buffer for transmission to a network device. The caller must
3957  *	have set the device and priority and built the buffer before calling
3958  *	this function. The function can be called from an interrupt.
3959  *
3960  *	A negative errno code is returned on a failure. A success does not
3961  *	guarantee the frame will be transmitted as it may be dropped due
3962  *	to congestion or traffic shaping.
3963  *
3964  * -----------------------------------------------------------------------------------
3965  *      I notice this method can also return errors from the queue disciplines,
3966  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3967  *      be positive.
3968  *
3969  *      Regardless of the return value, the skb is consumed, so it is currently
3970  *      difficult to retry a send to this method.  (You can bump the ref count
3971  *      before sending to hold a reference for retry if you are careful.)
3972  *
3973  *      When calling this method, interrupts MUST be enabled.  This is because
3974  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3975  *          --BLG
3976  */
3977 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3978 {
3979 	struct net_device *dev = skb->dev;
3980 	struct netdev_queue *txq;
3981 	struct Qdisc *q;
3982 	int rc = -ENOMEM;
3983 	bool again = false;
3984 
3985 	skb_reset_mac_header(skb);
3986 
3987 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3988 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3989 
3990 	/* Disable soft irqs for various locks below. Also
3991 	 * stops preemption for RCU.
3992 	 */
3993 	rcu_read_lock_bh();
3994 
3995 	skb_update_prio(skb);
3996 
3997 	qdisc_pkt_len_init(skb);
3998 #ifdef CONFIG_NET_CLS_ACT
3999 	skb->tc_at_ingress = 0;
4000 # ifdef CONFIG_NET_EGRESS
4001 	if (static_branch_unlikely(&egress_needed_key)) {
4002 		skb = sch_handle_egress(skb, &rc, dev);
4003 		if (!skb)
4004 			goto out;
4005 	}
4006 # endif
4007 #endif
4008 	/* If device/qdisc don't need skb->dst, release it right now while
4009 	 * its hot in this cpu cache.
4010 	 */
4011 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4012 		skb_dst_drop(skb);
4013 	else
4014 		skb_dst_force(skb);
4015 
4016 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4017 	q = rcu_dereference_bh(txq->qdisc);
4018 
4019 	trace_net_dev_queue(skb);
4020 	if (q->enqueue) {
4021 		rc = __dev_xmit_skb(skb, q, dev, txq);
4022 		goto out;
4023 	}
4024 
4025 	/* The device has no queue. Common case for software devices:
4026 	 * loopback, all the sorts of tunnels...
4027 
4028 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4029 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4030 	 * counters.)
4031 	 * However, it is possible, that they rely on protection
4032 	 * made by us here.
4033 
4034 	 * Check this and shot the lock. It is not prone from deadlocks.
4035 	 *Either shot noqueue qdisc, it is even simpler 8)
4036 	 */
4037 	if (dev->flags & IFF_UP) {
4038 		int cpu = smp_processor_id(); /* ok because BHs are off */
4039 
4040 		if (txq->xmit_lock_owner != cpu) {
4041 			if (dev_xmit_recursion())
4042 				goto recursion_alert;
4043 
4044 			skb = validate_xmit_skb(skb, dev, &again);
4045 			if (!skb)
4046 				goto out;
4047 
4048 			HARD_TX_LOCK(dev, txq, cpu);
4049 
4050 			if (!netif_xmit_stopped(txq)) {
4051 				dev_xmit_recursion_inc();
4052 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4053 				dev_xmit_recursion_dec();
4054 				if (dev_xmit_complete(rc)) {
4055 					HARD_TX_UNLOCK(dev, txq);
4056 					goto out;
4057 				}
4058 			}
4059 			HARD_TX_UNLOCK(dev, txq);
4060 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4061 					     dev->name);
4062 		} else {
4063 			/* Recursion is detected! It is possible,
4064 			 * unfortunately
4065 			 */
4066 recursion_alert:
4067 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4068 					     dev->name);
4069 		}
4070 	}
4071 
4072 	rc = -ENETDOWN;
4073 	rcu_read_unlock_bh();
4074 
4075 	atomic_long_inc(&dev->tx_dropped);
4076 	kfree_skb_list(skb);
4077 	return rc;
4078 out:
4079 	rcu_read_unlock_bh();
4080 	return rc;
4081 }
4082 
4083 int dev_queue_xmit(struct sk_buff *skb)
4084 {
4085 	return __dev_queue_xmit(skb, NULL);
4086 }
4087 EXPORT_SYMBOL(dev_queue_xmit);
4088 
4089 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4090 {
4091 	return __dev_queue_xmit(skb, sb_dev);
4092 }
4093 EXPORT_SYMBOL(dev_queue_xmit_accel);
4094 
4095 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4096 {
4097 	struct net_device *dev = skb->dev;
4098 	struct sk_buff *orig_skb = skb;
4099 	struct netdev_queue *txq;
4100 	int ret = NETDEV_TX_BUSY;
4101 	bool again = false;
4102 
4103 	if (unlikely(!netif_running(dev) ||
4104 		     !netif_carrier_ok(dev)))
4105 		goto drop;
4106 
4107 	skb = validate_xmit_skb_list(skb, dev, &again);
4108 	if (skb != orig_skb)
4109 		goto drop;
4110 
4111 	skb_set_queue_mapping(skb, queue_id);
4112 	txq = skb_get_tx_queue(dev, skb);
4113 
4114 	local_bh_disable();
4115 
4116 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4117 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4118 		ret = netdev_start_xmit(skb, dev, txq, false);
4119 	HARD_TX_UNLOCK(dev, txq);
4120 
4121 	local_bh_enable();
4122 
4123 	if (!dev_xmit_complete(ret))
4124 		kfree_skb(skb);
4125 
4126 	return ret;
4127 drop:
4128 	atomic_long_inc(&dev->tx_dropped);
4129 	kfree_skb_list(skb);
4130 	return NET_XMIT_DROP;
4131 }
4132 EXPORT_SYMBOL(dev_direct_xmit);
4133 
4134 /*************************************************************************
4135  *			Receiver routines
4136  *************************************************************************/
4137 
4138 int netdev_max_backlog __read_mostly = 1000;
4139 EXPORT_SYMBOL(netdev_max_backlog);
4140 
4141 int netdev_tstamp_prequeue __read_mostly = 1;
4142 int netdev_budget __read_mostly = 300;
4143 unsigned int __read_mostly netdev_budget_usecs = 2000;
4144 int weight_p __read_mostly = 64;           /* old backlog weight */
4145 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4146 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4147 int dev_rx_weight __read_mostly = 64;
4148 int dev_tx_weight __read_mostly = 64;
4149 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4150 int gro_normal_batch __read_mostly = 8;
4151 
4152 /* Called with irq disabled */
4153 static inline void ____napi_schedule(struct softnet_data *sd,
4154 				     struct napi_struct *napi)
4155 {
4156 	list_add_tail(&napi->poll_list, &sd->poll_list);
4157 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4158 }
4159 
4160 #ifdef CONFIG_RPS
4161 
4162 /* One global table that all flow-based protocols share. */
4163 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4164 EXPORT_SYMBOL(rps_sock_flow_table);
4165 u32 rps_cpu_mask __read_mostly;
4166 EXPORT_SYMBOL(rps_cpu_mask);
4167 
4168 struct static_key_false rps_needed __read_mostly;
4169 EXPORT_SYMBOL(rps_needed);
4170 struct static_key_false rfs_needed __read_mostly;
4171 EXPORT_SYMBOL(rfs_needed);
4172 
4173 static struct rps_dev_flow *
4174 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4175 	    struct rps_dev_flow *rflow, u16 next_cpu)
4176 {
4177 	if (next_cpu < nr_cpu_ids) {
4178 #ifdef CONFIG_RFS_ACCEL
4179 		struct netdev_rx_queue *rxqueue;
4180 		struct rps_dev_flow_table *flow_table;
4181 		struct rps_dev_flow *old_rflow;
4182 		u32 flow_id;
4183 		u16 rxq_index;
4184 		int rc;
4185 
4186 		/* Should we steer this flow to a different hardware queue? */
4187 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4188 		    !(dev->features & NETIF_F_NTUPLE))
4189 			goto out;
4190 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4191 		if (rxq_index == skb_get_rx_queue(skb))
4192 			goto out;
4193 
4194 		rxqueue = dev->_rx + rxq_index;
4195 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4196 		if (!flow_table)
4197 			goto out;
4198 		flow_id = skb_get_hash(skb) & flow_table->mask;
4199 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4200 							rxq_index, flow_id);
4201 		if (rc < 0)
4202 			goto out;
4203 		old_rflow = rflow;
4204 		rflow = &flow_table->flows[flow_id];
4205 		rflow->filter = rc;
4206 		if (old_rflow->filter == rflow->filter)
4207 			old_rflow->filter = RPS_NO_FILTER;
4208 	out:
4209 #endif
4210 		rflow->last_qtail =
4211 			per_cpu(softnet_data, next_cpu).input_queue_head;
4212 	}
4213 
4214 	rflow->cpu = next_cpu;
4215 	return rflow;
4216 }
4217 
4218 /*
4219  * get_rps_cpu is called from netif_receive_skb and returns the target
4220  * CPU from the RPS map of the receiving queue for a given skb.
4221  * rcu_read_lock must be held on entry.
4222  */
4223 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4224 		       struct rps_dev_flow **rflowp)
4225 {
4226 	const struct rps_sock_flow_table *sock_flow_table;
4227 	struct netdev_rx_queue *rxqueue = dev->_rx;
4228 	struct rps_dev_flow_table *flow_table;
4229 	struct rps_map *map;
4230 	int cpu = -1;
4231 	u32 tcpu;
4232 	u32 hash;
4233 
4234 	if (skb_rx_queue_recorded(skb)) {
4235 		u16 index = skb_get_rx_queue(skb);
4236 
4237 		if (unlikely(index >= dev->real_num_rx_queues)) {
4238 			WARN_ONCE(dev->real_num_rx_queues > 1,
4239 				  "%s received packet on queue %u, but number "
4240 				  "of RX queues is %u\n",
4241 				  dev->name, index, dev->real_num_rx_queues);
4242 			goto done;
4243 		}
4244 		rxqueue += index;
4245 	}
4246 
4247 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4248 
4249 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4250 	map = rcu_dereference(rxqueue->rps_map);
4251 	if (!flow_table && !map)
4252 		goto done;
4253 
4254 	skb_reset_network_header(skb);
4255 	hash = skb_get_hash(skb);
4256 	if (!hash)
4257 		goto done;
4258 
4259 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4260 	if (flow_table && sock_flow_table) {
4261 		struct rps_dev_flow *rflow;
4262 		u32 next_cpu;
4263 		u32 ident;
4264 
4265 		/* First check into global flow table if there is a match */
4266 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4267 		if ((ident ^ hash) & ~rps_cpu_mask)
4268 			goto try_rps;
4269 
4270 		next_cpu = ident & rps_cpu_mask;
4271 
4272 		/* OK, now we know there is a match,
4273 		 * we can look at the local (per receive queue) flow table
4274 		 */
4275 		rflow = &flow_table->flows[hash & flow_table->mask];
4276 		tcpu = rflow->cpu;
4277 
4278 		/*
4279 		 * If the desired CPU (where last recvmsg was done) is
4280 		 * different from current CPU (one in the rx-queue flow
4281 		 * table entry), switch if one of the following holds:
4282 		 *   - Current CPU is unset (>= nr_cpu_ids).
4283 		 *   - Current CPU is offline.
4284 		 *   - The current CPU's queue tail has advanced beyond the
4285 		 *     last packet that was enqueued using this table entry.
4286 		 *     This guarantees that all previous packets for the flow
4287 		 *     have been dequeued, thus preserving in order delivery.
4288 		 */
4289 		if (unlikely(tcpu != next_cpu) &&
4290 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4291 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4292 		      rflow->last_qtail)) >= 0)) {
4293 			tcpu = next_cpu;
4294 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4295 		}
4296 
4297 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4298 			*rflowp = rflow;
4299 			cpu = tcpu;
4300 			goto done;
4301 		}
4302 	}
4303 
4304 try_rps:
4305 
4306 	if (map) {
4307 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4308 		if (cpu_online(tcpu)) {
4309 			cpu = tcpu;
4310 			goto done;
4311 		}
4312 	}
4313 
4314 done:
4315 	return cpu;
4316 }
4317 
4318 #ifdef CONFIG_RFS_ACCEL
4319 
4320 /**
4321  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4322  * @dev: Device on which the filter was set
4323  * @rxq_index: RX queue index
4324  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4325  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4326  *
4327  * Drivers that implement ndo_rx_flow_steer() should periodically call
4328  * this function for each installed filter and remove the filters for
4329  * which it returns %true.
4330  */
4331 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4332 			 u32 flow_id, u16 filter_id)
4333 {
4334 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4335 	struct rps_dev_flow_table *flow_table;
4336 	struct rps_dev_flow *rflow;
4337 	bool expire = true;
4338 	unsigned int cpu;
4339 
4340 	rcu_read_lock();
4341 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4342 	if (flow_table && flow_id <= flow_table->mask) {
4343 		rflow = &flow_table->flows[flow_id];
4344 		cpu = READ_ONCE(rflow->cpu);
4345 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4346 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4347 			   rflow->last_qtail) <
4348 		     (int)(10 * flow_table->mask)))
4349 			expire = false;
4350 	}
4351 	rcu_read_unlock();
4352 	return expire;
4353 }
4354 EXPORT_SYMBOL(rps_may_expire_flow);
4355 
4356 #endif /* CONFIG_RFS_ACCEL */
4357 
4358 /* Called from hardirq (IPI) context */
4359 static void rps_trigger_softirq(void *data)
4360 {
4361 	struct softnet_data *sd = data;
4362 
4363 	____napi_schedule(sd, &sd->backlog);
4364 	sd->received_rps++;
4365 }
4366 
4367 #endif /* CONFIG_RPS */
4368 
4369 /*
4370  * Check if this softnet_data structure is another cpu one
4371  * If yes, queue it to our IPI list and return 1
4372  * If no, return 0
4373  */
4374 static int rps_ipi_queued(struct softnet_data *sd)
4375 {
4376 #ifdef CONFIG_RPS
4377 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4378 
4379 	if (sd != mysd) {
4380 		sd->rps_ipi_next = mysd->rps_ipi_list;
4381 		mysd->rps_ipi_list = sd;
4382 
4383 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4384 		return 1;
4385 	}
4386 #endif /* CONFIG_RPS */
4387 	return 0;
4388 }
4389 
4390 #ifdef CONFIG_NET_FLOW_LIMIT
4391 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4392 #endif
4393 
4394 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4395 {
4396 #ifdef CONFIG_NET_FLOW_LIMIT
4397 	struct sd_flow_limit *fl;
4398 	struct softnet_data *sd;
4399 	unsigned int old_flow, new_flow;
4400 
4401 	if (qlen < (netdev_max_backlog >> 1))
4402 		return false;
4403 
4404 	sd = this_cpu_ptr(&softnet_data);
4405 
4406 	rcu_read_lock();
4407 	fl = rcu_dereference(sd->flow_limit);
4408 	if (fl) {
4409 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4410 		old_flow = fl->history[fl->history_head];
4411 		fl->history[fl->history_head] = new_flow;
4412 
4413 		fl->history_head++;
4414 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4415 
4416 		if (likely(fl->buckets[old_flow]))
4417 			fl->buckets[old_flow]--;
4418 
4419 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4420 			fl->count++;
4421 			rcu_read_unlock();
4422 			return true;
4423 		}
4424 	}
4425 	rcu_read_unlock();
4426 #endif
4427 	return false;
4428 }
4429 
4430 /*
4431  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4432  * queue (may be a remote CPU queue).
4433  */
4434 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4435 			      unsigned int *qtail)
4436 {
4437 	struct softnet_data *sd;
4438 	unsigned long flags;
4439 	unsigned int qlen;
4440 
4441 	sd = &per_cpu(softnet_data, cpu);
4442 
4443 	local_irq_save(flags);
4444 
4445 	rps_lock(sd);
4446 	if (!netif_running(skb->dev))
4447 		goto drop;
4448 	qlen = skb_queue_len(&sd->input_pkt_queue);
4449 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4450 		if (qlen) {
4451 enqueue:
4452 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4453 			input_queue_tail_incr_save(sd, qtail);
4454 			rps_unlock(sd);
4455 			local_irq_restore(flags);
4456 			return NET_RX_SUCCESS;
4457 		}
4458 
4459 		/* Schedule NAPI for backlog device
4460 		 * We can use non atomic operation since we own the queue lock
4461 		 */
4462 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4463 			if (!rps_ipi_queued(sd))
4464 				____napi_schedule(sd, &sd->backlog);
4465 		}
4466 		goto enqueue;
4467 	}
4468 
4469 drop:
4470 	sd->dropped++;
4471 	rps_unlock(sd);
4472 
4473 	local_irq_restore(flags);
4474 
4475 	atomic_long_inc(&skb->dev->rx_dropped);
4476 	kfree_skb(skb);
4477 	return NET_RX_DROP;
4478 }
4479 
4480 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4481 {
4482 	struct net_device *dev = skb->dev;
4483 	struct netdev_rx_queue *rxqueue;
4484 
4485 	rxqueue = dev->_rx;
4486 
4487 	if (skb_rx_queue_recorded(skb)) {
4488 		u16 index = skb_get_rx_queue(skb);
4489 
4490 		if (unlikely(index >= dev->real_num_rx_queues)) {
4491 			WARN_ONCE(dev->real_num_rx_queues > 1,
4492 				  "%s received packet on queue %u, but number "
4493 				  "of RX queues is %u\n",
4494 				  dev->name, index, dev->real_num_rx_queues);
4495 
4496 			return rxqueue; /* Return first rxqueue */
4497 		}
4498 		rxqueue += index;
4499 	}
4500 	return rxqueue;
4501 }
4502 
4503 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4504 				     struct xdp_buff *xdp,
4505 				     struct bpf_prog *xdp_prog)
4506 {
4507 	struct netdev_rx_queue *rxqueue;
4508 	void *orig_data, *orig_data_end;
4509 	u32 metalen, act = XDP_DROP;
4510 	__be16 orig_eth_type;
4511 	struct ethhdr *eth;
4512 	bool orig_bcast;
4513 	int hlen, off;
4514 	u32 mac_len;
4515 
4516 	/* Reinjected packets coming from act_mirred or similar should
4517 	 * not get XDP generic processing.
4518 	 */
4519 	if (skb_is_tc_redirected(skb))
4520 		return XDP_PASS;
4521 
4522 	/* XDP packets must be linear and must have sufficient headroom
4523 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4524 	 * native XDP provides, thus we need to do it here as well.
4525 	 */
4526 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4527 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4528 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4529 		int troom = skb->tail + skb->data_len - skb->end;
4530 
4531 		/* In case we have to go down the path and also linearize,
4532 		 * then lets do the pskb_expand_head() work just once here.
4533 		 */
4534 		if (pskb_expand_head(skb,
4535 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4536 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4537 			goto do_drop;
4538 		if (skb_linearize(skb))
4539 			goto do_drop;
4540 	}
4541 
4542 	/* The XDP program wants to see the packet starting at the MAC
4543 	 * header.
4544 	 */
4545 	mac_len = skb->data - skb_mac_header(skb);
4546 	hlen = skb_headlen(skb) + mac_len;
4547 	xdp->data = skb->data - mac_len;
4548 	xdp->data_meta = xdp->data;
4549 	xdp->data_end = xdp->data + hlen;
4550 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4551 	orig_data_end = xdp->data_end;
4552 	orig_data = xdp->data;
4553 	eth = (struct ethhdr *)xdp->data;
4554 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4555 	orig_eth_type = eth->h_proto;
4556 
4557 	rxqueue = netif_get_rxqueue(skb);
4558 	xdp->rxq = &rxqueue->xdp_rxq;
4559 
4560 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4561 
4562 	/* check if bpf_xdp_adjust_head was used */
4563 	off = xdp->data - orig_data;
4564 	if (off) {
4565 		if (off > 0)
4566 			__skb_pull(skb, off);
4567 		else if (off < 0)
4568 			__skb_push(skb, -off);
4569 
4570 		skb->mac_header += off;
4571 		skb_reset_network_header(skb);
4572 	}
4573 
4574 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4575 	 * pckt.
4576 	 */
4577 	off = orig_data_end - xdp->data_end;
4578 	if (off != 0) {
4579 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4580 		skb->len -= off;
4581 
4582 	}
4583 
4584 	/* check if XDP changed eth hdr such SKB needs update */
4585 	eth = (struct ethhdr *)xdp->data;
4586 	if ((orig_eth_type != eth->h_proto) ||
4587 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4588 		__skb_push(skb, ETH_HLEN);
4589 		skb->protocol = eth_type_trans(skb, skb->dev);
4590 	}
4591 
4592 	switch (act) {
4593 	case XDP_REDIRECT:
4594 	case XDP_TX:
4595 		__skb_push(skb, mac_len);
4596 		break;
4597 	case XDP_PASS:
4598 		metalen = xdp->data - xdp->data_meta;
4599 		if (metalen)
4600 			skb_metadata_set(skb, metalen);
4601 		break;
4602 	default:
4603 		bpf_warn_invalid_xdp_action(act);
4604 		/* fall through */
4605 	case XDP_ABORTED:
4606 		trace_xdp_exception(skb->dev, xdp_prog, act);
4607 		/* fall through */
4608 	case XDP_DROP:
4609 	do_drop:
4610 		kfree_skb(skb);
4611 		break;
4612 	}
4613 
4614 	return act;
4615 }
4616 
4617 /* When doing generic XDP we have to bypass the qdisc layer and the
4618  * network taps in order to match in-driver-XDP behavior.
4619  */
4620 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4621 {
4622 	struct net_device *dev = skb->dev;
4623 	struct netdev_queue *txq;
4624 	bool free_skb = true;
4625 	int cpu, rc;
4626 
4627 	txq = netdev_core_pick_tx(dev, skb, NULL);
4628 	cpu = smp_processor_id();
4629 	HARD_TX_LOCK(dev, txq, cpu);
4630 	if (!netif_xmit_stopped(txq)) {
4631 		rc = netdev_start_xmit(skb, dev, txq, 0);
4632 		if (dev_xmit_complete(rc))
4633 			free_skb = false;
4634 	}
4635 	HARD_TX_UNLOCK(dev, txq);
4636 	if (free_skb) {
4637 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4638 		kfree_skb(skb);
4639 	}
4640 }
4641 
4642 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4643 
4644 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4645 {
4646 	if (xdp_prog) {
4647 		struct xdp_buff xdp;
4648 		u32 act;
4649 		int err;
4650 
4651 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4652 		if (act != XDP_PASS) {
4653 			switch (act) {
4654 			case XDP_REDIRECT:
4655 				err = xdp_do_generic_redirect(skb->dev, skb,
4656 							      &xdp, xdp_prog);
4657 				if (err)
4658 					goto out_redir;
4659 				break;
4660 			case XDP_TX:
4661 				generic_xdp_tx(skb, xdp_prog);
4662 				break;
4663 			}
4664 			return XDP_DROP;
4665 		}
4666 	}
4667 	return XDP_PASS;
4668 out_redir:
4669 	kfree_skb(skb);
4670 	return XDP_DROP;
4671 }
4672 EXPORT_SYMBOL_GPL(do_xdp_generic);
4673 
4674 static int netif_rx_internal(struct sk_buff *skb)
4675 {
4676 	int ret;
4677 
4678 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4679 
4680 	trace_netif_rx(skb);
4681 
4682 #ifdef CONFIG_RPS
4683 	if (static_branch_unlikely(&rps_needed)) {
4684 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4685 		int cpu;
4686 
4687 		preempt_disable();
4688 		rcu_read_lock();
4689 
4690 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4691 		if (cpu < 0)
4692 			cpu = smp_processor_id();
4693 
4694 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4695 
4696 		rcu_read_unlock();
4697 		preempt_enable();
4698 	} else
4699 #endif
4700 	{
4701 		unsigned int qtail;
4702 
4703 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4704 		put_cpu();
4705 	}
4706 	return ret;
4707 }
4708 
4709 /**
4710  *	netif_rx	-	post buffer to the network code
4711  *	@skb: buffer to post
4712  *
4713  *	This function receives a packet from a device driver and queues it for
4714  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4715  *	may be dropped during processing for congestion control or by the
4716  *	protocol layers.
4717  *
4718  *	return values:
4719  *	NET_RX_SUCCESS	(no congestion)
4720  *	NET_RX_DROP     (packet was dropped)
4721  *
4722  */
4723 
4724 int netif_rx(struct sk_buff *skb)
4725 {
4726 	int ret;
4727 
4728 	trace_netif_rx_entry(skb);
4729 
4730 	ret = netif_rx_internal(skb);
4731 	trace_netif_rx_exit(ret);
4732 
4733 	return ret;
4734 }
4735 EXPORT_SYMBOL(netif_rx);
4736 
4737 int netif_rx_ni(struct sk_buff *skb)
4738 {
4739 	int err;
4740 
4741 	trace_netif_rx_ni_entry(skb);
4742 
4743 	preempt_disable();
4744 	err = netif_rx_internal(skb);
4745 	if (local_softirq_pending())
4746 		do_softirq();
4747 	preempt_enable();
4748 	trace_netif_rx_ni_exit(err);
4749 
4750 	return err;
4751 }
4752 EXPORT_SYMBOL(netif_rx_ni);
4753 
4754 static __latent_entropy void net_tx_action(struct softirq_action *h)
4755 {
4756 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4757 
4758 	if (sd->completion_queue) {
4759 		struct sk_buff *clist;
4760 
4761 		local_irq_disable();
4762 		clist = sd->completion_queue;
4763 		sd->completion_queue = NULL;
4764 		local_irq_enable();
4765 
4766 		while (clist) {
4767 			struct sk_buff *skb = clist;
4768 
4769 			clist = clist->next;
4770 
4771 			WARN_ON(refcount_read(&skb->users));
4772 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4773 				trace_consume_skb(skb);
4774 			else
4775 				trace_kfree_skb(skb, net_tx_action);
4776 
4777 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4778 				__kfree_skb(skb);
4779 			else
4780 				__kfree_skb_defer(skb);
4781 		}
4782 
4783 		__kfree_skb_flush();
4784 	}
4785 
4786 	if (sd->output_queue) {
4787 		struct Qdisc *head;
4788 
4789 		local_irq_disable();
4790 		head = sd->output_queue;
4791 		sd->output_queue = NULL;
4792 		sd->output_queue_tailp = &sd->output_queue;
4793 		local_irq_enable();
4794 
4795 		while (head) {
4796 			struct Qdisc *q = head;
4797 			spinlock_t *root_lock = NULL;
4798 
4799 			head = head->next_sched;
4800 
4801 			if (!(q->flags & TCQ_F_NOLOCK)) {
4802 				root_lock = qdisc_lock(q);
4803 				spin_lock(root_lock);
4804 			}
4805 			/* We need to make sure head->next_sched is read
4806 			 * before clearing __QDISC_STATE_SCHED
4807 			 */
4808 			smp_mb__before_atomic();
4809 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4810 			qdisc_run(q);
4811 			if (root_lock)
4812 				spin_unlock(root_lock);
4813 		}
4814 	}
4815 
4816 	xfrm_dev_backlog(sd);
4817 }
4818 
4819 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4820 /* This hook is defined here for ATM LANE */
4821 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4822 			     unsigned char *addr) __read_mostly;
4823 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4824 #endif
4825 
4826 static inline struct sk_buff *
4827 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4828 		   struct net_device *orig_dev)
4829 {
4830 #ifdef CONFIG_NET_CLS_ACT
4831 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4832 	struct tcf_result cl_res;
4833 
4834 	/* If there's at least one ingress present somewhere (so
4835 	 * we get here via enabled static key), remaining devices
4836 	 * that are not configured with an ingress qdisc will bail
4837 	 * out here.
4838 	 */
4839 	if (!miniq)
4840 		return skb;
4841 
4842 	if (*pt_prev) {
4843 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4844 		*pt_prev = NULL;
4845 	}
4846 
4847 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4848 	skb->tc_at_ingress = 1;
4849 	mini_qdisc_bstats_cpu_update(miniq, skb);
4850 
4851 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4852 	case TC_ACT_OK:
4853 	case TC_ACT_RECLASSIFY:
4854 		skb->tc_index = TC_H_MIN(cl_res.classid);
4855 		break;
4856 	case TC_ACT_SHOT:
4857 		mini_qdisc_qstats_cpu_drop(miniq);
4858 		kfree_skb(skb);
4859 		return NULL;
4860 	case TC_ACT_STOLEN:
4861 	case TC_ACT_QUEUED:
4862 	case TC_ACT_TRAP:
4863 		consume_skb(skb);
4864 		return NULL;
4865 	case TC_ACT_REDIRECT:
4866 		/* skb_mac_header check was done by cls/act_bpf, so
4867 		 * we can safely push the L2 header back before
4868 		 * redirecting to another netdev
4869 		 */
4870 		__skb_push(skb, skb->mac_len);
4871 		skb_do_redirect(skb);
4872 		return NULL;
4873 	case TC_ACT_CONSUMED:
4874 		return NULL;
4875 	default:
4876 		break;
4877 	}
4878 #endif /* CONFIG_NET_CLS_ACT */
4879 	return skb;
4880 }
4881 
4882 /**
4883  *	netdev_is_rx_handler_busy - check if receive handler is registered
4884  *	@dev: device to check
4885  *
4886  *	Check if a receive handler is already registered for a given device.
4887  *	Return true if there one.
4888  *
4889  *	The caller must hold the rtnl_mutex.
4890  */
4891 bool netdev_is_rx_handler_busy(struct net_device *dev)
4892 {
4893 	ASSERT_RTNL();
4894 	return dev && rtnl_dereference(dev->rx_handler);
4895 }
4896 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4897 
4898 /**
4899  *	netdev_rx_handler_register - register receive handler
4900  *	@dev: device to register a handler for
4901  *	@rx_handler: receive handler to register
4902  *	@rx_handler_data: data pointer that is used by rx handler
4903  *
4904  *	Register a receive handler for a device. This handler will then be
4905  *	called from __netif_receive_skb. A negative errno code is returned
4906  *	on a failure.
4907  *
4908  *	The caller must hold the rtnl_mutex.
4909  *
4910  *	For a general description of rx_handler, see enum rx_handler_result.
4911  */
4912 int netdev_rx_handler_register(struct net_device *dev,
4913 			       rx_handler_func_t *rx_handler,
4914 			       void *rx_handler_data)
4915 {
4916 	if (netdev_is_rx_handler_busy(dev))
4917 		return -EBUSY;
4918 
4919 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4920 		return -EINVAL;
4921 
4922 	/* Note: rx_handler_data must be set before rx_handler */
4923 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4924 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4925 
4926 	return 0;
4927 }
4928 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4929 
4930 /**
4931  *	netdev_rx_handler_unregister - unregister receive handler
4932  *	@dev: device to unregister a handler from
4933  *
4934  *	Unregister a receive handler from a device.
4935  *
4936  *	The caller must hold the rtnl_mutex.
4937  */
4938 void netdev_rx_handler_unregister(struct net_device *dev)
4939 {
4940 
4941 	ASSERT_RTNL();
4942 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4943 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4944 	 * section has a guarantee to see a non NULL rx_handler_data
4945 	 * as well.
4946 	 */
4947 	synchronize_net();
4948 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4949 }
4950 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4951 
4952 /*
4953  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4954  * the special handling of PFMEMALLOC skbs.
4955  */
4956 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4957 {
4958 	switch (skb->protocol) {
4959 	case htons(ETH_P_ARP):
4960 	case htons(ETH_P_IP):
4961 	case htons(ETH_P_IPV6):
4962 	case htons(ETH_P_8021Q):
4963 	case htons(ETH_P_8021AD):
4964 		return true;
4965 	default:
4966 		return false;
4967 	}
4968 }
4969 
4970 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4971 			     int *ret, struct net_device *orig_dev)
4972 {
4973 	if (nf_hook_ingress_active(skb)) {
4974 		int ingress_retval;
4975 
4976 		if (*pt_prev) {
4977 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4978 			*pt_prev = NULL;
4979 		}
4980 
4981 		rcu_read_lock();
4982 		ingress_retval = nf_hook_ingress(skb);
4983 		rcu_read_unlock();
4984 		return ingress_retval;
4985 	}
4986 	return 0;
4987 }
4988 
4989 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4990 				    struct packet_type **ppt_prev)
4991 {
4992 	struct packet_type *ptype, *pt_prev;
4993 	rx_handler_func_t *rx_handler;
4994 	struct net_device *orig_dev;
4995 	bool deliver_exact = false;
4996 	int ret = NET_RX_DROP;
4997 	__be16 type;
4998 
4999 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5000 
5001 	trace_netif_receive_skb(skb);
5002 
5003 	orig_dev = skb->dev;
5004 
5005 	skb_reset_network_header(skb);
5006 	if (!skb_transport_header_was_set(skb))
5007 		skb_reset_transport_header(skb);
5008 	skb_reset_mac_len(skb);
5009 
5010 	pt_prev = NULL;
5011 
5012 another_round:
5013 	skb->skb_iif = skb->dev->ifindex;
5014 
5015 	__this_cpu_inc(softnet_data.processed);
5016 
5017 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5018 		int ret2;
5019 
5020 		preempt_disable();
5021 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5022 		preempt_enable();
5023 
5024 		if (ret2 != XDP_PASS)
5025 			return NET_RX_DROP;
5026 		skb_reset_mac_len(skb);
5027 	}
5028 
5029 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5030 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5031 		skb = skb_vlan_untag(skb);
5032 		if (unlikely(!skb))
5033 			goto out;
5034 	}
5035 
5036 	if (skb_skip_tc_classify(skb))
5037 		goto skip_classify;
5038 
5039 	if (pfmemalloc)
5040 		goto skip_taps;
5041 
5042 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5043 		if (pt_prev)
5044 			ret = deliver_skb(skb, pt_prev, orig_dev);
5045 		pt_prev = ptype;
5046 	}
5047 
5048 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5049 		if (pt_prev)
5050 			ret = deliver_skb(skb, pt_prev, orig_dev);
5051 		pt_prev = ptype;
5052 	}
5053 
5054 skip_taps:
5055 #ifdef CONFIG_NET_INGRESS
5056 	if (static_branch_unlikely(&ingress_needed_key)) {
5057 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5058 		if (!skb)
5059 			goto out;
5060 
5061 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5062 			goto out;
5063 	}
5064 #endif
5065 	skb_reset_tc(skb);
5066 skip_classify:
5067 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5068 		goto drop;
5069 
5070 	if (skb_vlan_tag_present(skb)) {
5071 		if (pt_prev) {
5072 			ret = deliver_skb(skb, pt_prev, orig_dev);
5073 			pt_prev = NULL;
5074 		}
5075 		if (vlan_do_receive(&skb))
5076 			goto another_round;
5077 		else if (unlikely(!skb))
5078 			goto out;
5079 	}
5080 
5081 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5082 	if (rx_handler) {
5083 		if (pt_prev) {
5084 			ret = deliver_skb(skb, pt_prev, orig_dev);
5085 			pt_prev = NULL;
5086 		}
5087 		switch (rx_handler(&skb)) {
5088 		case RX_HANDLER_CONSUMED:
5089 			ret = NET_RX_SUCCESS;
5090 			goto out;
5091 		case RX_HANDLER_ANOTHER:
5092 			goto another_round;
5093 		case RX_HANDLER_EXACT:
5094 			deliver_exact = true;
5095 		case RX_HANDLER_PASS:
5096 			break;
5097 		default:
5098 			BUG();
5099 		}
5100 	}
5101 
5102 	if (unlikely(skb_vlan_tag_present(skb))) {
5103 check_vlan_id:
5104 		if (skb_vlan_tag_get_id(skb)) {
5105 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5106 			 * find vlan device.
5107 			 */
5108 			skb->pkt_type = PACKET_OTHERHOST;
5109 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5110 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5111 			/* Outer header is 802.1P with vlan 0, inner header is
5112 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5113 			 * not find vlan dev for vlan id 0.
5114 			 */
5115 			__vlan_hwaccel_clear_tag(skb);
5116 			skb = skb_vlan_untag(skb);
5117 			if (unlikely(!skb))
5118 				goto out;
5119 			if (vlan_do_receive(&skb))
5120 				/* After stripping off 802.1P header with vlan 0
5121 				 * vlan dev is found for inner header.
5122 				 */
5123 				goto another_round;
5124 			else if (unlikely(!skb))
5125 				goto out;
5126 			else
5127 				/* We have stripped outer 802.1P vlan 0 header.
5128 				 * But could not find vlan dev.
5129 				 * check again for vlan id to set OTHERHOST.
5130 				 */
5131 				goto check_vlan_id;
5132 		}
5133 		/* Note: we might in the future use prio bits
5134 		 * and set skb->priority like in vlan_do_receive()
5135 		 * For the time being, just ignore Priority Code Point
5136 		 */
5137 		__vlan_hwaccel_clear_tag(skb);
5138 	}
5139 
5140 	type = skb->protocol;
5141 
5142 	/* deliver only exact match when indicated */
5143 	if (likely(!deliver_exact)) {
5144 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5145 				       &ptype_base[ntohs(type) &
5146 						   PTYPE_HASH_MASK]);
5147 	}
5148 
5149 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5150 			       &orig_dev->ptype_specific);
5151 
5152 	if (unlikely(skb->dev != orig_dev)) {
5153 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5154 				       &skb->dev->ptype_specific);
5155 	}
5156 
5157 	if (pt_prev) {
5158 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5159 			goto drop;
5160 		*ppt_prev = pt_prev;
5161 	} else {
5162 drop:
5163 		if (!deliver_exact)
5164 			atomic_long_inc(&skb->dev->rx_dropped);
5165 		else
5166 			atomic_long_inc(&skb->dev->rx_nohandler);
5167 		kfree_skb(skb);
5168 		/* Jamal, now you will not able to escape explaining
5169 		 * me how you were going to use this. :-)
5170 		 */
5171 		ret = NET_RX_DROP;
5172 	}
5173 
5174 out:
5175 	return ret;
5176 }
5177 
5178 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5179 {
5180 	struct net_device *orig_dev = skb->dev;
5181 	struct packet_type *pt_prev = NULL;
5182 	int ret;
5183 
5184 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5185 	if (pt_prev)
5186 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5187 					 skb->dev, pt_prev, orig_dev);
5188 	return ret;
5189 }
5190 
5191 /**
5192  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5193  *	@skb: buffer to process
5194  *
5195  *	More direct receive version of netif_receive_skb().  It should
5196  *	only be used by callers that have a need to skip RPS and Generic XDP.
5197  *	Caller must also take care of handling if (page_is_)pfmemalloc.
5198  *
5199  *	This function may only be called from softirq context and interrupts
5200  *	should be enabled.
5201  *
5202  *	Return values (usually ignored):
5203  *	NET_RX_SUCCESS: no congestion
5204  *	NET_RX_DROP: packet was dropped
5205  */
5206 int netif_receive_skb_core(struct sk_buff *skb)
5207 {
5208 	int ret;
5209 
5210 	rcu_read_lock();
5211 	ret = __netif_receive_skb_one_core(skb, false);
5212 	rcu_read_unlock();
5213 
5214 	return ret;
5215 }
5216 EXPORT_SYMBOL(netif_receive_skb_core);
5217 
5218 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5219 						  struct packet_type *pt_prev,
5220 						  struct net_device *orig_dev)
5221 {
5222 	struct sk_buff *skb, *next;
5223 
5224 	if (!pt_prev)
5225 		return;
5226 	if (list_empty(head))
5227 		return;
5228 	if (pt_prev->list_func != NULL)
5229 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5230 				   ip_list_rcv, head, pt_prev, orig_dev);
5231 	else
5232 		list_for_each_entry_safe(skb, next, head, list) {
5233 			skb_list_del_init(skb);
5234 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5235 		}
5236 }
5237 
5238 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5239 {
5240 	/* Fast-path assumptions:
5241 	 * - There is no RX handler.
5242 	 * - Only one packet_type matches.
5243 	 * If either of these fails, we will end up doing some per-packet
5244 	 * processing in-line, then handling the 'last ptype' for the whole
5245 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5246 	 * because the 'last ptype' must be constant across the sublist, and all
5247 	 * other ptypes are handled per-packet.
5248 	 */
5249 	/* Current (common) ptype of sublist */
5250 	struct packet_type *pt_curr = NULL;
5251 	/* Current (common) orig_dev of sublist */
5252 	struct net_device *od_curr = NULL;
5253 	struct list_head sublist;
5254 	struct sk_buff *skb, *next;
5255 
5256 	INIT_LIST_HEAD(&sublist);
5257 	list_for_each_entry_safe(skb, next, head, list) {
5258 		struct net_device *orig_dev = skb->dev;
5259 		struct packet_type *pt_prev = NULL;
5260 
5261 		skb_list_del_init(skb);
5262 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5263 		if (!pt_prev)
5264 			continue;
5265 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5266 			/* dispatch old sublist */
5267 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5268 			/* start new sublist */
5269 			INIT_LIST_HEAD(&sublist);
5270 			pt_curr = pt_prev;
5271 			od_curr = orig_dev;
5272 		}
5273 		list_add_tail(&skb->list, &sublist);
5274 	}
5275 
5276 	/* dispatch final sublist */
5277 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5278 }
5279 
5280 static int __netif_receive_skb(struct sk_buff *skb)
5281 {
5282 	int ret;
5283 
5284 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5285 		unsigned int noreclaim_flag;
5286 
5287 		/*
5288 		 * PFMEMALLOC skbs are special, they should
5289 		 * - be delivered to SOCK_MEMALLOC sockets only
5290 		 * - stay away from userspace
5291 		 * - have bounded memory usage
5292 		 *
5293 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5294 		 * context down to all allocation sites.
5295 		 */
5296 		noreclaim_flag = memalloc_noreclaim_save();
5297 		ret = __netif_receive_skb_one_core(skb, true);
5298 		memalloc_noreclaim_restore(noreclaim_flag);
5299 	} else
5300 		ret = __netif_receive_skb_one_core(skb, false);
5301 
5302 	return ret;
5303 }
5304 
5305 static void __netif_receive_skb_list(struct list_head *head)
5306 {
5307 	unsigned long noreclaim_flag = 0;
5308 	struct sk_buff *skb, *next;
5309 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5310 
5311 	list_for_each_entry_safe(skb, next, head, list) {
5312 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5313 			struct list_head sublist;
5314 
5315 			/* Handle the previous sublist */
5316 			list_cut_before(&sublist, head, &skb->list);
5317 			if (!list_empty(&sublist))
5318 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5319 			pfmemalloc = !pfmemalloc;
5320 			/* See comments in __netif_receive_skb */
5321 			if (pfmemalloc)
5322 				noreclaim_flag = memalloc_noreclaim_save();
5323 			else
5324 				memalloc_noreclaim_restore(noreclaim_flag);
5325 		}
5326 	}
5327 	/* Handle the remaining sublist */
5328 	if (!list_empty(head))
5329 		__netif_receive_skb_list_core(head, pfmemalloc);
5330 	/* Restore pflags */
5331 	if (pfmemalloc)
5332 		memalloc_noreclaim_restore(noreclaim_flag);
5333 }
5334 
5335 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5336 {
5337 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5338 	struct bpf_prog *new = xdp->prog;
5339 	int ret = 0;
5340 
5341 	switch (xdp->command) {
5342 	case XDP_SETUP_PROG:
5343 		rcu_assign_pointer(dev->xdp_prog, new);
5344 		if (old)
5345 			bpf_prog_put(old);
5346 
5347 		if (old && !new) {
5348 			static_branch_dec(&generic_xdp_needed_key);
5349 		} else if (new && !old) {
5350 			static_branch_inc(&generic_xdp_needed_key);
5351 			dev_disable_lro(dev);
5352 			dev_disable_gro_hw(dev);
5353 		}
5354 		break;
5355 
5356 	case XDP_QUERY_PROG:
5357 		xdp->prog_id = old ? old->aux->id : 0;
5358 		break;
5359 
5360 	default:
5361 		ret = -EINVAL;
5362 		break;
5363 	}
5364 
5365 	return ret;
5366 }
5367 
5368 static int netif_receive_skb_internal(struct sk_buff *skb)
5369 {
5370 	int ret;
5371 
5372 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5373 
5374 	if (skb_defer_rx_timestamp(skb))
5375 		return NET_RX_SUCCESS;
5376 
5377 	rcu_read_lock();
5378 #ifdef CONFIG_RPS
5379 	if (static_branch_unlikely(&rps_needed)) {
5380 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5381 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5382 
5383 		if (cpu >= 0) {
5384 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5385 			rcu_read_unlock();
5386 			return ret;
5387 		}
5388 	}
5389 #endif
5390 	ret = __netif_receive_skb(skb);
5391 	rcu_read_unlock();
5392 	return ret;
5393 }
5394 
5395 static void netif_receive_skb_list_internal(struct list_head *head)
5396 {
5397 	struct sk_buff *skb, *next;
5398 	struct list_head sublist;
5399 
5400 	INIT_LIST_HEAD(&sublist);
5401 	list_for_each_entry_safe(skb, next, head, list) {
5402 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5403 		skb_list_del_init(skb);
5404 		if (!skb_defer_rx_timestamp(skb))
5405 			list_add_tail(&skb->list, &sublist);
5406 	}
5407 	list_splice_init(&sublist, head);
5408 
5409 	rcu_read_lock();
5410 #ifdef CONFIG_RPS
5411 	if (static_branch_unlikely(&rps_needed)) {
5412 		list_for_each_entry_safe(skb, next, head, list) {
5413 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5414 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5415 
5416 			if (cpu >= 0) {
5417 				/* Will be handled, remove from list */
5418 				skb_list_del_init(skb);
5419 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5420 			}
5421 		}
5422 	}
5423 #endif
5424 	__netif_receive_skb_list(head);
5425 	rcu_read_unlock();
5426 }
5427 
5428 /**
5429  *	netif_receive_skb - process receive buffer from network
5430  *	@skb: buffer to process
5431  *
5432  *	netif_receive_skb() is the main receive data processing function.
5433  *	It always succeeds. The buffer may be dropped during processing
5434  *	for congestion control or by the protocol layers.
5435  *
5436  *	This function may only be called from softirq context and interrupts
5437  *	should be enabled.
5438  *
5439  *	Return values (usually ignored):
5440  *	NET_RX_SUCCESS: no congestion
5441  *	NET_RX_DROP: packet was dropped
5442  */
5443 int netif_receive_skb(struct sk_buff *skb)
5444 {
5445 	int ret;
5446 
5447 	trace_netif_receive_skb_entry(skb);
5448 
5449 	ret = netif_receive_skb_internal(skb);
5450 	trace_netif_receive_skb_exit(ret);
5451 
5452 	return ret;
5453 }
5454 EXPORT_SYMBOL(netif_receive_skb);
5455 
5456 /**
5457  *	netif_receive_skb_list - process many receive buffers from network
5458  *	@head: list of skbs to process.
5459  *
5460  *	Since return value of netif_receive_skb() is normally ignored, and
5461  *	wouldn't be meaningful for a list, this function returns void.
5462  *
5463  *	This function may only be called from softirq context and interrupts
5464  *	should be enabled.
5465  */
5466 void netif_receive_skb_list(struct list_head *head)
5467 {
5468 	struct sk_buff *skb;
5469 
5470 	if (list_empty(head))
5471 		return;
5472 	if (trace_netif_receive_skb_list_entry_enabled()) {
5473 		list_for_each_entry(skb, head, list)
5474 			trace_netif_receive_skb_list_entry(skb);
5475 	}
5476 	netif_receive_skb_list_internal(head);
5477 	trace_netif_receive_skb_list_exit(0);
5478 }
5479 EXPORT_SYMBOL(netif_receive_skb_list);
5480 
5481 DEFINE_PER_CPU(struct work_struct, flush_works);
5482 
5483 /* Network device is going away, flush any packets still pending */
5484 static void flush_backlog(struct work_struct *work)
5485 {
5486 	struct sk_buff *skb, *tmp;
5487 	struct softnet_data *sd;
5488 
5489 	local_bh_disable();
5490 	sd = this_cpu_ptr(&softnet_data);
5491 
5492 	local_irq_disable();
5493 	rps_lock(sd);
5494 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5495 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5496 			__skb_unlink(skb, &sd->input_pkt_queue);
5497 			kfree_skb(skb);
5498 			input_queue_head_incr(sd);
5499 		}
5500 	}
5501 	rps_unlock(sd);
5502 	local_irq_enable();
5503 
5504 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5505 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5506 			__skb_unlink(skb, &sd->process_queue);
5507 			kfree_skb(skb);
5508 			input_queue_head_incr(sd);
5509 		}
5510 	}
5511 	local_bh_enable();
5512 }
5513 
5514 static void flush_all_backlogs(void)
5515 {
5516 	unsigned int cpu;
5517 
5518 	get_online_cpus();
5519 
5520 	for_each_online_cpu(cpu)
5521 		queue_work_on(cpu, system_highpri_wq,
5522 			      per_cpu_ptr(&flush_works, cpu));
5523 
5524 	for_each_online_cpu(cpu)
5525 		flush_work(per_cpu_ptr(&flush_works, cpu));
5526 
5527 	put_online_cpus();
5528 }
5529 
5530 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5531 static void gro_normal_list(struct napi_struct *napi)
5532 {
5533 	if (!napi->rx_count)
5534 		return;
5535 	netif_receive_skb_list_internal(&napi->rx_list);
5536 	INIT_LIST_HEAD(&napi->rx_list);
5537 	napi->rx_count = 0;
5538 }
5539 
5540 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5541  * pass the whole batch up to the stack.
5542  */
5543 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5544 {
5545 	list_add_tail(&skb->list, &napi->rx_list);
5546 	if (++napi->rx_count >= gro_normal_batch)
5547 		gro_normal_list(napi);
5548 }
5549 
5550 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5551 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5552 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5553 {
5554 	struct packet_offload *ptype;
5555 	__be16 type = skb->protocol;
5556 	struct list_head *head = &offload_base;
5557 	int err = -ENOENT;
5558 
5559 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5560 
5561 	if (NAPI_GRO_CB(skb)->count == 1) {
5562 		skb_shinfo(skb)->gso_size = 0;
5563 		goto out;
5564 	}
5565 
5566 	rcu_read_lock();
5567 	list_for_each_entry_rcu(ptype, head, list) {
5568 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5569 			continue;
5570 
5571 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5572 					 ipv6_gro_complete, inet_gro_complete,
5573 					 skb, 0);
5574 		break;
5575 	}
5576 	rcu_read_unlock();
5577 
5578 	if (err) {
5579 		WARN_ON(&ptype->list == head);
5580 		kfree_skb(skb);
5581 		return NET_RX_SUCCESS;
5582 	}
5583 
5584 out:
5585 	gro_normal_one(napi, skb);
5586 	return NET_RX_SUCCESS;
5587 }
5588 
5589 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5590 				   bool flush_old)
5591 {
5592 	struct list_head *head = &napi->gro_hash[index].list;
5593 	struct sk_buff *skb, *p;
5594 
5595 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5596 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5597 			return;
5598 		skb_list_del_init(skb);
5599 		napi_gro_complete(napi, skb);
5600 		napi->gro_hash[index].count--;
5601 	}
5602 
5603 	if (!napi->gro_hash[index].count)
5604 		__clear_bit(index, &napi->gro_bitmask);
5605 }
5606 
5607 /* napi->gro_hash[].list contains packets ordered by age.
5608  * youngest packets at the head of it.
5609  * Complete skbs in reverse order to reduce latencies.
5610  */
5611 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5612 {
5613 	unsigned long bitmask = napi->gro_bitmask;
5614 	unsigned int i, base = ~0U;
5615 
5616 	while ((i = ffs(bitmask)) != 0) {
5617 		bitmask >>= i;
5618 		base += i;
5619 		__napi_gro_flush_chain(napi, base, flush_old);
5620 	}
5621 }
5622 EXPORT_SYMBOL(napi_gro_flush);
5623 
5624 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5625 					  struct sk_buff *skb)
5626 {
5627 	unsigned int maclen = skb->dev->hard_header_len;
5628 	u32 hash = skb_get_hash_raw(skb);
5629 	struct list_head *head;
5630 	struct sk_buff *p;
5631 
5632 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5633 	list_for_each_entry(p, head, list) {
5634 		unsigned long diffs;
5635 
5636 		NAPI_GRO_CB(p)->flush = 0;
5637 
5638 		if (hash != skb_get_hash_raw(p)) {
5639 			NAPI_GRO_CB(p)->same_flow = 0;
5640 			continue;
5641 		}
5642 
5643 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5644 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5645 		if (skb_vlan_tag_present(p))
5646 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5647 		diffs |= skb_metadata_dst_cmp(p, skb);
5648 		diffs |= skb_metadata_differs(p, skb);
5649 		if (maclen == ETH_HLEN)
5650 			diffs |= compare_ether_header(skb_mac_header(p),
5651 						      skb_mac_header(skb));
5652 		else if (!diffs)
5653 			diffs = memcmp(skb_mac_header(p),
5654 				       skb_mac_header(skb),
5655 				       maclen);
5656 		NAPI_GRO_CB(p)->same_flow = !diffs;
5657 	}
5658 
5659 	return head;
5660 }
5661 
5662 static void skb_gro_reset_offset(struct sk_buff *skb)
5663 {
5664 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5665 	const skb_frag_t *frag0 = &pinfo->frags[0];
5666 
5667 	NAPI_GRO_CB(skb)->data_offset = 0;
5668 	NAPI_GRO_CB(skb)->frag0 = NULL;
5669 	NAPI_GRO_CB(skb)->frag0_len = 0;
5670 
5671 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5672 	    !PageHighMem(skb_frag_page(frag0))) {
5673 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5674 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5675 						    skb_frag_size(frag0),
5676 						    skb->end - skb->tail);
5677 	}
5678 }
5679 
5680 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5681 {
5682 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5683 
5684 	BUG_ON(skb->end - skb->tail < grow);
5685 
5686 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5687 
5688 	skb->data_len -= grow;
5689 	skb->tail += grow;
5690 
5691 	skb_frag_off_add(&pinfo->frags[0], grow);
5692 	skb_frag_size_sub(&pinfo->frags[0], grow);
5693 
5694 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5695 		skb_frag_unref(skb, 0);
5696 		memmove(pinfo->frags, pinfo->frags + 1,
5697 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5698 	}
5699 }
5700 
5701 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5702 {
5703 	struct sk_buff *oldest;
5704 
5705 	oldest = list_last_entry(head, struct sk_buff, list);
5706 
5707 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5708 	 * impossible.
5709 	 */
5710 	if (WARN_ON_ONCE(!oldest))
5711 		return;
5712 
5713 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5714 	 * SKB to the chain.
5715 	 */
5716 	skb_list_del_init(oldest);
5717 	napi_gro_complete(napi, oldest);
5718 }
5719 
5720 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5721 							   struct sk_buff *));
5722 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5723 							   struct sk_buff *));
5724 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5725 {
5726 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5727 	struct list_head *head = &offload_base;
5728 	struct packet_offload *ptype;
5729 	__be16 type = skb->protocol;
5730 	struct list_head *gro_head;
5731 	struct sk_buff *pp = NULL;
5732 	enum gro_result ret;
5733 	int same_flow;
5734 	int grow;
5735 
5736 	if (netif_elide_gro(skb->dev))
5737 		goto normal;
5738 
5739 	gro_head = gro_list_prepare(napi, skb);
5740 
5741 	rcu_read_lock();
5742 	list_for_each_entry_rcu(ptype, head, list) {
5743 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5744 			continue;
5745 
5746 		skb_set_network_header(skb, skb_gro_offset(skb));
5747 		skb_reset_mac_len(skb);
5748 		NAPI_GRO_CB(skb)->same_flow = 0;
5749 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5750 		NAPI_GRO_CB(skb)->free = 0;
5751 		NAPI_GRO_CB(skb)->encap_mark = 0;
5752 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5753 		NAPI_GRO_CB(skb)->is_fou = 0;
5754 		NAPI_GRO_CB(skb)->is_atomic = 1;
5755 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5756 
5757 		/* Setup for GRO checksum validation */
5758 		switch (skb->ip_summed) {
5759 		case CHECKSUM_COMPLETE:
5760 			NAPI_GRO_CB(skb)->csum = skb->csum;
5761 			NAPI_GRO_CB(skb)->csum_valid = 1;
5762 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5763 			break;
5764 		case CHECKSUM_UNNECESSARY:
5765 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5766 			NAPI_GRO_CB(skb)->csum_valid = 0;
5767 			break;
5768 		default:
5769 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5770 			NAPI_GRO_CB(skb)->csum_valid = 0;
5771 		}
5772 
5773 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5774 					ipv6_gro_receive, inet_gro_receive,
5775 					gro_head, skb);
5776 		break;
5777 	}
5778 	rcu_read_unlock();
5779 
5780 	if (&ptype->list == head)
5781 		goto normal;
5782 
5783 	if (PTR_ERR(pp) == -EINPROGRESS) {
5784 		ret = GRO_CONSUMED;
5785 		goto ok;
5786 	}
5787 
5788 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5789 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5790 
5791 	if (pp) {
5792 		skb_list_del_init(pp);
5793 		napi_gro_complete(napi, pp);
5794 		napi->gro_hash[hash].count--;
5795 	}
5796 
5797 	if (same_flow)
5798 		goto ok;
5799 
5800 	if (NAPI_GRO_CB(skb)->flush)
5801 		goto normal;
5802 
5803 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5804 		gro_flush_oldest(napi, gro_head);
5805 	} else {
5806 		napi->gro_hash[hash].count++;
5807 	}
5808 	NAPI_GRO_CB(skb)->count = 1;
5809 	NAPI_GRO_CB(skb)->age = jiffies;
5810 	NAPI_GRO_CB(skb)->last = skb;
5811 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5812 	list_add(&skb->list, gro_head);
5813 	ret = GRO_HELD;
5814 
5815 pull:
5816 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5817 	if (grow > 0)
5818 		gro_pull_from_frag0(skb, grow);
5819 ok:
5820 	if (napi->gro_hash[hash].count) {
5821 		if (!test_bit(hash, &napi->gro_bitmask))
5822 			__set_bit(hash, &napi->gro_bitmask);
5823 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5824 		__clear_bit(hash, &napi->gro_bitmask);
5825 	}
5826 
5827 	return ret;
5828 
5829 normal:
5830 	ret = GRO_NORMAL;
5831 	goto pull;
5832 }
5833 
5834 struct packet_offload *gro_find_receive_by_type(__be16 type)
5835 {
5836 	struct list_head *offload_head = &offload_base;
5837 	struct packet_offload *ptype;
5838 
5839 	list_for_each_entry_rcu(ptype, offload_head, list) {
5840 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5841 			continue;
5842 		return ptype;
5843 	}
5844 	return NULL;
5845 }
5846 EXPORT_SYMBOL(gro_find_receive_by_type);
5847 
5848 struct packet_offload *gro_find_complete_by_type(__be16 type)
5849 {
5850 	struct list_head *offload_head = &offload_base;
5851 	struct packet_offload *ptype;
5852 
5853 	list_for_each_entry_rcu(ptype, offload_head, list) {
5854 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5855 			continue;
5856 		return ptype;
5857 	}
5858 	return NULL;
5859 }
5860 EXPORT_SYMBOL(gro_find_complete_by_type);
5861 
5862 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5863 {
5864 	skb_dst_drop(skb);
5865 	skb_ext_put(skb);
5866 	kmem_cache_free(skbuff_head_cache, skb);
5867 }
5868 
5869 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5870 				    struct sk_buff *skb,
5871 				    gro_result_t ret)
5872 {
5873 	switch (ret) {
5874 	case GRO_NORMAL:
5875 		gro_normal_one(napi, skb);
5876 		break;
5877 
5878 	case GRO_DROP:
5879 		kfree_skb(skb);
5880 		break;
5881 
5882 	case GRO_MERGED_FREE:
5883 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5884 			napi_skb_free_stolen_head(skb);
5885 		else
5886 			__kfree_skb(skb);
5887 		break;
5888 
5889 	case GRO_HELD:
5890 	case GRO_MERGED:
5891 	case GRO_CONSUMED:
5892 		break;
5893 	}
5894 
5895 	return ret;
5896 }
5897 
5898 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5899 {
5900 	gro_result_t ret;
5901 
5902 	skb_mark_napi_id(skb, napi);
5903 	trace_napi_gro_receive_entry(skb);
5904 
5905 	skb_gro_reset_offset(skb);
5906 
5907 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5908 	trace_napi_gro_receive_exit(ret);
5909 
5910 	return ret;
5911 }
5912 EXPORT_SYMBOL(napi_gro_receive);
5913 
5914 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5915 {
5916 	if (unlikely(skb->pfmemalloc)) {
5917 		consume_skb(skb);
5918 		return;
5919 	}
5920 	__skb_pull(skb, skb_headlen(skb));
5921 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5922 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5923 	__vlan_hwaccel_clear_tag(skb);
5924 	skb->dev = napi->dev;
5925 	skb->skb_iif = 0;
5926 
5927 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5928 	skb->pkt_type = PACKET_HOST;
5929 
5930 	skb->encapsulation = 0;
5931 	skb_shinfo(skb)->gso_type = 0;
5932 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5933 	skb_ext_reset(skb);
5934 
5935 	napi->skb = skb;
5936 }
5937 
5938 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5939 {
5940 	struct sk_buff *skb = napi->skb;
5941 
5942 	if (!skb) {
5943 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5944 		if (skb) {
5945 			napi->skb = skb;
5946 			skb_mark_napi_id(skb, napi);
5947 		}
5948 	}
5949 	return skb;
5950 }
5951 EXPORT_SYMBOL(napi_get_frags);
5952 
5953 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5954 				      struct sk_buff *skb,
5955 				      gro_result_t ret)
5956 {
5957 	switch (ret) {
5958 	case GRO_NORMAL:
5959 	case GRO_HELD:
5960 		__skb_push(skb, ETH_HLEN);
5961 		skb->protocol = eth_type_trans(skb, skb->dev);
5962 		if (ret == GRO_NORMAL)
5963 			gro_normal_one(napi, skb);
5964 		break;
5965 
5966 	case GRO_DROP:
5967 		napi_reuse_skb(napi, skb);
5968 		break;
5969 
5970 	case GRO_MERGED_FREE:
5971 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5972 			napi_skb_free_stolen_head(skb);
5973 		else
5974 			napi_reuse_skb(napi, skb);
5975 		break;
5976 
5977 	case GRO_MERGED:
5978 	case GRO_CONSUMED:
5979 		break;
5980 	}
5981 
5982 	return ret;
5983 }
5984 
5985 /* Upper GRO stack assumes network header starts at gro_offset=0
5986  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5987  * We copy ethernet header into skb->data to have a common layout.
5988  */
5989 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5990 {
5991 	struct sk_buff *skb = napi->skb;
5992 	const struct ethhdr *eth;
5993 	unsigned int hlen = sizeof(*eth);
5994 
5995 	napi->skb = NULL;
5996 
5997 	skb_reset_mac_header(skb);
5998 	skb_gro_reset_offset(skb);
5999 
6000 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6001 		eth = skb_gro_header_slow(skb, hlen, 0);
6002 		if (unlikely(!eth)) {
6003 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6004 					     __func__, napi->dev->name);
6005 			napi_reuse_skb(napi, skb);
6006 			return NULL;
6007 		}
6008 	} else {
6009 		eth = (const struct ethhdr *)skb->data;
6010 		gro_pull_from_frag0(skb, hlen);
6011 		NAPI_GRO_CB(skb)->frag0 += hlen;
6012 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6013 	}
6014 	__skb_pull(skb, hlen);
6015 
6016 	/*
6017 	 * This works because the only protocols we care about don't require
6018 	 * special handling.
6019 	 * We'll fix it up properly in napi_frags_finish()
6020 	 */
6021 	skb->protocol = eth->h_proto;
6022 
6023 	return skb;
6024 }
6025 
6026 gro_result_t napi_gro_frags(struct napi_struct *napi)
6027 {
6028 	gro_result_t ret;
6029 	struct sk_buff *skb = napi_frags_skb(napi);
6030 
6031 	if (!skb)
6032 		return GRO_DROP;
6033 
6034 	trace_napi_gro_frags_entry(skb);
6035 
6036 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6037 	trace_napi_gro_frags_exit(ret);
6038 
6039 	return ret;
6040 }
6041 EXPORT_SYMBOL(napi_gro_frags);
6042 
6043 /* Compute the checksum from gro_offset and return the folded value
6044  * after adding in any pseudo checksum.
6045  */
6046 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6047 {
6048 	__wsum wsum;
6049 	__sum16 sum;
6050 
6051 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6052 
6053 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6054 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6055 	/* See comments in __skb_checksum_complete(). */
6056 	if (likely(!sum)) {
6057 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6058 		    !skb->csum_complete_sw)
6059 			netdev_rx_csum_fault(skb->dev, skb);
6060 	}
6061 
6062 	NAPI_GRO_CB(skb)->csum = wsum;
6063 	NAPI_GRO_CB(skb)->csum_valid = 1;
6064 
6065 	return sum;
6066 }
6067 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6068 
6069 static void net_rps_send_ipi(struct softnet_data *remsd)
6070 {
6071 #ifdef CONFIG_RPS
6072 	while (remsd) {
6073 		struct softnet_data *next = remsd->rps_ipi_next;
6074 
6075 		if (cpu_online(remsd->cpu))
6076 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6077 		remsd = next;
6078 	}
6079 #endif
6080 }
6081 
6082 /*
6083  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6084  * Note: called with local irq disabled, but exits with local irq enabled.
6085  */
6086 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6087 {
6088 #ifdef CONFIG_RPS
6089 	struct softnet_data *remsd = sd->rps_ipi_list;
6090 
6091 	if (remsd) {
6092 		sd->rps_ipi_list = NULL;
6093 
6094 		local_irq_enable();
6095 
6096 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6097 		net_rps_send_ipi(remsd);
6098 	} else
6099 #endif
6100 		local_irq_enable();
6101 }
6102 
6103 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6104 {
6105 #ifdef CONFIG_RPS
6106 	return sd->rps_ipi_list != NULL;
6107 #else
6108 	return false;
6109 #endif
6110 }
6111 
6112 static int process_backlog(struct napi_struct *napi, int quota)
6113 {
6114 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6115 	bool again = true;
6116 	int work = 0;
6117 
6118 	/* Check if we have pending ipi, its better to send them now,
6119 	 * not waiting net_rx_action() end.
6120 	 */
6121 	if (sd_has_rps_ipi_waiting(sd)) {
6122 		local_irq_disable();
6123 		net_rps_action_and_irq_enable(sd);
6124 	}
6125 
6126 	napi->weight = dev_rx_weight;
6127 	while (again) {
6128 		struct sk_buff *skb;
6129 
6130 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6131 			rcu_read_lock();
6132 			__netif_receive_skb(skb);
6133 			rcu_read_unlock();
6134 			input_queue_head_incr(sd);
6135 			if (++work >= quota)
6136 				return work;
6137 
6138 		}
6139 
6140 		local_irq_disable();
6141 		rps_lock(sd);
6142 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6143 			/*
6144 			 * Inline a custom version of __napi_complete().
6145 			 * only current cpu owns and manipulates this napi,
6146 			 * and NAPI_STATE_SCHED is the only possible flag set
6147 			 * on backlog.
6148 			 * We can use a plain write instead of clear_bit(),
6149 			 * and we dont need an smp_mb() memory barrier.
6150 			 */
6151 			napi->state = 0;
6152 			again = false;
6153 		} else {
6154 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6155 						   &sd->process_queue);
6156 		}
6157 		rps_unlock(sd);
6158 		local_irq_enable();
6159 	}
6160 
6161 	return work;
6162 }
6163 
6164 /**
6165  * __napi_schedule - schedule for receive
6166  * @n: entry to schedule
6167  *
6168  * The entry's receive function will be scheduled to run.
6169  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6170  */
6171 void __napi_schedule(struct napi_struct *n)
6172 {
6173 	unsigned long flags;
6174 
6175 	local_irq_save(flags);
6176 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6177 	local_irq_restore(flags);
6178 }
6179 EXPORT_SYMBOL(__napi_schedule);
6180 
6181 /**
6182  *	napi_schedule_prep - check if napi can be scheduled
6183  *	@n: napi context
6184  *
6185  * Test if NAPI routine is already running, and if not mark
6186  * it as running.  This is used as a condition variable
6187  * insure only one NAPI poll instance runs.  We also make
6188  * sure there is no pending NAPI disable.
6189  */
6190 bool napi_schedule_prep(struct napi_struct *n)
6191 {
6192 	unsigned long val, new;
6193 
6194 	do {
6195 		val = READ_ONCE(n->state);
6196 		if (unlikely(val & NAPIF_STATE_DISABLE))
6197 			return false;
6198 		new = val | NAPIF_STATE_SCHED;
6199 
6200 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6201 		 * This was suggested by Alexander Duyck, as compiler
6202 		 * emits better code than :
6203 		 * if (val & NAPIF_STATE_SCHED)
6204 		 *     new |= NAPIF_STATE_MISSED;
6205 		 */
6206 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6207 						   NAPIF_STATE_MISSED;
6208 	} while (cmpxchg(&n->state, val, new) != val);
6209 
6210 	return !(val & NAPIF_STATE_SCHED);
6211 }
6212 EXPORT_SYMBOL(napi_schedule_prep);
6213 
6214 /**
6215  * __napi_schedule_irqoff - schedule for receive
6216  * @n: entry to schedule
6217  *
6218  * Variant of __napi_schedule() assuming hard irqs are masked
6219  */
6220 void __napi_schedule_irqoff(struct napi_struct *n)
6221 {
6222 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6223 }
6224 EXPORT_SYMBOL(__napi_schedule_irqoff);
6225 
6226 bool napi_complete_done(struct napi_struct *n, int work_done)
6227 {
6228 	unsigned long flags, val, new;
6229 
6230 	/*
6231 	 * 1) Don't let napi dequeue from the cpu poll list
6232 	 *    just in case its running on a different cpu.
6233 	 * 2) If we are busy polling, do nothing here, we have
6234 	 *    the guarantee we will be called later.
6235 	 */
6236 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6237 				 NAPIF_STATE_IN_BUSY_POLL)))
6238 		return false;
6239 
6240 	if (n->gro_bitmask) {
6241 		unsigned long timeout = 0;
6242 
6243 		if (work_done)
6244 			timeout = n->dev->gro_flush_timeout;
6245 
6246 		/* When the NAPI instance uses a timeout and keeps postponing
6247 		 * it, we need to bound somehow the time packets are kept in
6248 		 * the GRO layer
6249 		 */
6250 		napi_gro_flush(n, !!timeout);
6251 		if (timeout)
6252 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6253 				      HRTIMER_MODE_REL_PINNED);
6254 	}
6255 
6256 	gro_normal_list(n);
6257 
6258 	if (unlikely(!list_empty(&n->poll_list))) {
6259 		/* If n->poll_list is not empty, we need to mask irqs */
6260 		local_irq_save(flags);
6261 		list_del_init(&n->poll_list);
6262 		local_irq_restore(flags);
6263 	}
6264 
6265 	do {
6266 		val = READ_ONCE(n->state);
6267 
6268 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6269 
6270 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6271 
6272 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6273 		 * because we will call napi->poll() one more time.
6274 		 * This C code was suggested by Alexander Duyck to help gcc.
6275 		 */
6276 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6277 						    NAPIF_STATE_SCHED;
6278 	} while (cmpxchg(&n->state, val, new) != val);
6279 
6280 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6281 		__napi_schedule(n);
6282 		return false;
6283 	}
6284 
6285 	return true;
6286 }
6287 EXPORT_SYMBOL(napi_complete_done);
6288 
6289 /* must be called under rcu_read_lock(), as we dont take a reference */
6290 static struct napi_struct *napi_by_id(unsigned int napi_id)
6291 {
6292 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6293 	struct napi_struct *napi;
6294 
6295 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6296 		if (napi->napi_id == napi_id)
6297 			return napi;
6298 
6299 	return NULL;
6300 }
6301 
6302 #if defined(CONFIG_NET_RX_BUSY_POLL)
6303 
6304 #define BUSY_POLL_BUDGET 8
6305 
6306 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6307 {
6308 	int rc;
6309 
6310 	/* Busy polling means there is a high chance device driver hard irq
6311 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6312 	 * set in napi_schedule_prep().
6313 	 * Since we are about to call napi->poll() once more, we can safely
6314 	 * clear NAPI_STATE_MISSED.
6315 	 *
6316 	 * Note: x86 could use a single "lock and ..." instruction
6317 	 * to perform these two clear_bit()
6318 	 */
6319 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6320 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6321 
6322 	local_bh_disable();
6323 
6324 	/* All we really want here is to re-enable device interrupts.
6325 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6326 	 */
6327 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6328 	/* We can't gro_normal_list() here, because napi->poll() might have
6329 	 * rearmed the napi (napi_complete_done()) in which case it could
6330 	 * already be running on another CPU.
6331 	 */
6332 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6333 	netpoll_poll_unlock(have_poll_lock);
6334 	if (rc == BUSY_POLL_BUDGET) {
6335 		/* As the whole budget was spent, we still own the napi so can
6336 		 * safely handle the rx_list.
6337 		 */
6338 		gro_normal_list(napi);
6339 		__napi_schedule(napi);
6340 	}
6341 	local_bh_enable();
6342 }
6343 
6344 void napi_busy_loop(unsigned int napi_id,
6345 		    bool (*loop_end)(void *, unsigned long),
6346 		    void *loop_end_arg)
6347 {
6348 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6349 	int (*napi_poll)(struct napi_struct *napi, int budget);
6350 	void *have_poll_lock = NULL;
6351 	struct napi_struct *napi;
6352 
6353 restart:
6354 	napi_poll = NULL;
6355 
6356 	rcu_read_lock();
6357 
6358 	napi = napi_by_id(napi_id);
6359 	if (!napi)
6360 		goto out;
6361 
6362 	preempt_disable();
6363 	for (;;) {
6364 		int work = 0;
6365 
6366 		local_bh_disable();
6367 		if (!napi_poll) {
6368 			unsigned long val = READ_ONCE(napi->state);
6369 
6370 			/* If multiple threads are competing for this napi,
6371 			 * we avoid dirtying napi->state as much as we can.
6372 			 */
6373 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6374 				   NAPIF_STATE_IN_BUSY_POLL))
6375 				goto count;
6376 			if (cmpxchg(&napi->state, val,
6377 				    val | NAPIF_STATE_IN_BUSY_POLL |
6378 					  NAPIF_STATE_SCHED) != val)
6379 				goto count;
6380 			have_poll_lock = netpoll_poll_lock(napi);
6381 			napi_poll = napi->poll;
6382 		}
6383 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6384 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6385 		gro_normal_list(napi);
6386 count:
6387 		if (work > 0)
6388 			__NET_ADD_STATS(dev_net(napi->dev),
6389 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6390 		local_bh_enable();
6391 
6392 		if (!loop_end || loop_end(loop_end_arg, start_time))
6393 			break;
6394 
6395 		if (unlikely(need_resched())) {
6396 			if (napi_poll)
6397 				busy_poll_stop(napi, have_poll_lock);
6398 			preempt_enable();
6399 			rcu_read_unlock();
6400 			cond_resched();
6401 			if (loop_end(loop_end_arg, start_time))
6402 				return;
6403 			goto restart;
6404 		}
6405 		cpu_relax();
6406 	}
6407 	if (napi_poll)
6408 		busy_poll_stop(napi, have_poll_lock);
6409 	preempt_enable();
6410 out:
6411 	rcu_read_unlock();
6412 }
6413 EXPORT_SYMBOL(napi_busy_loop);
6414 
6415 #endif /* CONFIG_NET_RX_BUSY_POLL */
6416 
6417 static void napi_hash_add(struct napi_struct *napi)
6418 {
6419 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6420 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6421 		return;
6422 
6423 	spin_lock(&napi_hash_lock);
6424 
6425 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6426 	do {
6427 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6428 			napi_gen_id = MIN_NAPI_ID;
6429 	} while (napi_by_id(napi_gen_id));
6430 	napi->napi_id = napi_gen_id;
6431 
6432 	hlist_add_head_rcu(&napi->napi_hash_node,
6433 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6434 
6435 	spin_unlock(&napi_hash_lock);
6436 }
6437 
6438 /* Warning : caller is responsible to make sure rcu grace period
6439  * is respected before freeing memory containing @napi
6440  */
6441 bool napi_hash_del(struct napi_struct *napi)
6442 {
6443 	bool rcu_sync_needed = false;
6444 
6445 	spin_lock(&napi_hash_lock);
6446 
6447 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6448 		rcu_sync_needed = true;
6449 		hlist_del_rcu(&napi->napi_hash_node);
6450 	}
6451 	spin_unlock(&napi_hash_lock);
6452 	return rcu_sync_needed;
6453 }
6454 EXPORT_SYMBOL_GPL(napi_hash_del);
6455 
6456 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6457 {
6458 	struct napi_struct *napi;
6459 
6460 	napi = container_of(timer, struct napi_struct, timer);
6461 
6462 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6463 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6464 	 */
6465 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6466 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6467 		__napi_schedule_irqoff(napi);
6468 
6469 	return HRTIMER_NORESTART;
6470 }
6471 
6472 static void init_gro_hash(struct napi_struct *napi)
6473 {
6474 	int i;
6475 
6476 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6477 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6478 		napi->gro_hash[i].count = 0;
6479 	}
6480 	napi->gro_bitmask = 0;
6481 }
6482 
6483 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6484 		    int (*poll)(struct napi_struct *, int), int weight)
6485 {
6486 	INIT_LIST_HEAD(&napi->poll_list);
6487 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6488 	napi->timer.function = napi_watchdog;
6489 	init_gro_hash(napi);
6490 	napi->skb = NULL;
6491 	INIT_LIST_HEAD(&napi->rx_list);
6492 	napi->rx_count = 0;
6493 	napi->poll = poll;
6494 	if (weight > NAPI_POLL_WEIGHT)
6495 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6496 				weight);
6497 	napi->weight = weight;
6498 	list_add(&napi->dev_list, &dev->napi_list);
6499 	napi->dev = dev;
6500 #ifdef CONFIG_NETPOLL
6501 	napi->poll_owner = -1;
6502 #endif
6503 	set_bit(NAPI_STATE_SCHED, &napi->state);
6504 	napi_hash_add(napi);
6505 }
6506 EXPORT_SYMBOL(netif_napi_add);
6507 
6508 void napi_disable(struct napi_struct *n)
6509 {
6510 	might_sleep();
6511 	set_bit(NAPI_STATE_DISABLE, &n->state);
6512 
6513 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6514 		msleep(1);
6515 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6516 		msleep(1);
6517 
6518 	hrtimer_cancel(&n->timer);
6519 
6520 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6521 }
6522 EXPORT_SYMBOL(napi_disable);
6523 
6524 static void flush_gro_hash(struct napi_struct *napi)
6525 {
6526 	int i;
6527 
6528 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6529 		struct sk_buff *skb, *n;
6530 
6531 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6532 			kfree_skb(skb);
6533 		napi->gro_hash[i].count = 0;
6534 	}
6535 }
6536 
6537 /* Must be called in process context */
6538 void netif_napi_del(struct napi_struct *napi)
6539 {
6540 	might_sleep();
6541 	if (napi_hash_del(napi))
6542 		synchronize_net();
6543 	list_del_init(&napi->dev_list);
6544 	napi_free_frags(napi);
6545 
6546 	flush_gro_hash(napi);
6547 	napi->gro_bitmask = 0;
6548 }
6549 EXPORT_SYMBOL(netif_napi_del);
6550 
6551 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6552 {
6553 	void *have;
6554 	int work, weight;
6555 
6556 	list_del_init(&n->poll_list);
6557 
6558 	have = netpoll_poll_lock(n);
6559 
6560 	weight = n->weight;
6561 
6562 	/* This NAPI_STATE_SCHED test is for avoiding a race
6563 	 * with netpoll's poll_napi().  Only the entity which
6564 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6565 	 * actually make the ->poll() call.  Therefore we avoid
6566 	 * accidentally calling ->poll() when NAPI is not scheduled.
6567 	 */
6568 	work = 0;
6569 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6570 		work = n->poll(n, weight);
6571 		trace_napi_poll(n, work, weight);
6572 	}
6573 
6574 	WARN_ON_ONCE(work > weight);
6575 
6576 	if (likely(work < weight))
6577 		goto out_unlock;
6578 
6579 	/* Drivers must not modify the NAPI state if they
6580 	 * consume the entire weight.  In such cases this code
6581 	 * still "owns" the NAPI instance and therefore can
6582 	 * move the instance around on the list at-will.
6583 	 */
6584 	if (unlikely(napi_disable_pending(n))) {
6585 		napi_complete(n);
6586 		goto out_unlock;
6587 	}
6588 
6589 	if (n->gro_bitmask) {
6590 		/* flush too old packets
6591 		 * If HZ < 1000, flush all packets.
6592 		 */
6593 		napi_gro_flush(n, HZ >= 1000);
6594 	}
6595 
6596 	gro_normal_list(n);
6597 
6598 	/* Some drivers may have called napi_schedule
6599 	 * prior to exhausting their budget.
6600 	 */
6601 	if (unlikely(!list_empty(&n->poll_list))) {
6602 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6603 			     n->dev ? n->dev->name : "backlog");
6604 		goto out_unlock;
6605 	}
6606 
6607 	list_add_tail(&n->poll_list, repoll);
6608 
6609 out_unlock:
6610 	netpoll_poll_unlock(have);
6611 
6612 	return work;
6613 }
6614 
6615 static __latent_entropy void net_rx_action(struct softirq_action *h)
6616 {
6617 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6618 	unsigned long time_limit = jiffies +
6619 		usecs_to_jiffies(netdev_budget_usecs);
6620 	int budget = netdev_budget;
6621 	LIST_HEAD(list);
6622 	LIST_HEAD(repoll);
6623 
6624 	local_irq_disable();
6625 	list_splice_init(&sd->poll_list, &list);
6626 	local_irq_enable();
6627 
6628 	for (;;) {
6629 		struct napi_struct *n;
6630 
6631 		if (list_empty(&list)) {
6632 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6633 				goto out;
6634 			break;
6635 		}
6636 
6637 		n = list_first_entry(&list, struct napi_struct, poll_list);
6638 		budget -= napi_poll(n, &repoll);
6639 
6640 		/* If softirq window is exhausted then punt.
6641 		 * Allow this to run for 2 jiffies since which will allow
6642 		 * an average latency of 1.5/HZ.
6643 		 */
6644 		if (unlikely(budget <= 0 ||
6645 			     time_after_eq(jiffies, time_limit))) {
6646 			sd->time_squeeze++;
6647 			break;
6648 		}
6649 	}
6650 
6651 	local_irq_disable();
6652 
6653 	list_splice_tail_init(&sd->poll_list, &list);
6654 	list_splice_tail(&repoll, &list);
6655 	list_splice(&list, &sd->poll_list);
6656 	if (!list_empty(&sd->poll_list))
6657 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6658 
6659 	net_rps_action_and_irq_enable(sd);
6660 out:
6661 	__kfree_skb_flush();
6662 }
6663 
6664 struct netdev_adjacent {
6665 	struct net_device *dev;
6666 
6667 	/* upper master flag, there can only be one master device per list */
6668 	bool master;
6669 
6670 	/* lookup ignore flag */
6671 	bool ignore;
6672 
6673 	/* counter for the number of times this device was added to us */
6674 	u16 ref_nr;
6675 
6676 	/* private field for the users */
6677 	void *private;
6678 
6679 	struct list_head list;
6680 	struct rcu_head rcu;
6681 };
6682 
6683 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6684 						 struct list_head *adj_list)
6685 {
6686 	struct netdev_adjacent *adj;
6687 
6688 	list_for_each_entry(adj, adj_list, list) {
6689 		if (adj->dev == adj_dev)
6690 			return adj;
6691 	}
6692 	return NULL;
6693 }
6694 
6695 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6696 {
6697 	struct net_device *dev = data;
6698 
6699 	return upper_dev == dev;
6700 }
6701 
6702 /**
6703  * netdev_has_upper_dev - Check if device is linked to an upper device
6704  * @dev: device
6705  * @upper_dev: upper device to check
6706  *
6707  * Find out if a device is linked to specified upper device and return true
6708  * in case it is. Note that this checks only immediate upper device,
6709  * not through a complete stack of devices. The caller must hold the RTNL lock.
6710  */
6711 bool netdev_has_upper_dev(struct net_device *dev,
6712 			  struct net_device *upper_dev)
6713 {
6714 	ASSERT_RTNL();
6715 
6716 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6717 					     upper_dev);
6718 }
6719 EXPORT_SYMBOL(netdev_has_upper_dev);
6720 
6721 /**
6722  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6723  * @dev: device
6724  * @upper_dev: upper device to check
6725  *
6726  * Find out if a device is linked to specified upper device and return true
6727  * in case it is. Note that this checks the entire upper device chain.
6728  * The caller must hold rcu lock.
6729  */
6730 
6731 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6732 				  struct net_device *upper_dev)
6733 {
6734 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6735 					       upper_dev);
6736 }
6737 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6738 
6739 /**
6740  * netdev_has_any_upper_dev - Check if device is linked to some device
6741  * @dev: device
6742  *
6743  * Find out if a device is linked to an upper device and return true in case
6744  * it is. The caller must hold the RTNL lock.
6745  */
6746 bool netdev_has_any_upper_dev(struct net_device *dev)
6747 {
6748 	ASSERT_RTNL();
6749 
6750 	return !list_empty(&dev->adj_list.upper);
6751 }
6752 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6753 
6754 /**
6755  * netdev_master_upper_dev_get - Get master upper device
6756  * @dev: device
6757  *
6758  * Find a master upper device and return pointer to it or NULL in case
6759  * it's not there. The caller must hold the RTNL lock.
6760  */
6761 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6762 {
6763 	struct netdev_adjacent *upper;
6764 
6765 	ASSERT_RTNL();
6766 
6767 	if (list_empty(&dev->adj_list.upper))
6768 		return NULL;
6769 
6770 	upper = list_first_entry(&dev->adj_list.upper,
6771 				 struct netdev_adjacent, list);
6772 	if (likely(upper->master))
6773 		return upper->dev;
6774 	return NULL;
6775 }
6776 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6777 
6778 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6779 {
6780 	struct netdev_adjacent *upper;
6781 
6782 	ASSERT_RTNL();
6783 
6784 	if (list_empty(&dev->adj_list.upper))
6785 		return NULL;
6786 
6787 	upper = list_first_entry(&dev->adj_list.upper,
6788 				 struct netdev_adjacent, list);
6789 	if (likely(upper->master) && !upper->ignore)
6790 		return upper->dev;
6791 	return NULL;
6792 }
6793 
6794 /**
6795  * netdev_has_any_lower_dev - Check if device is linked to some device
6796  * @dev: device
6797  *
6798  * Find out if a device is linked to a lower device and return true in case
6799  * it is. The caller must hold the RTNL lock.
6800  */
6801 static bool netdev_has_any_lower_dev(struct net_device *dev)
6802 {
6803 	ASSERT_RTNL();
6804 
6805 	return !list_empty(&dev->adj_list.lower);
6806 }
6807 
6808 void *netdev_adjacent_get_private(struct list_head *adj_list)
6809 {
6810 	struct netdev_adjacent *adj;
6811 
6812 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6813 
6814 	return adj->private;
6815 }
6816 EXPORT_SYMBOL(netdev_adjacent_get_private);
6817 
6818 /**
6819  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6820  * @dev: device
6821  * @iter: list_head ** of the current position
6822  *
6823  * Gets the next device from the dev's upper list, starting from iter
6824  * position. The caller must hold RCU read lock.
6825  */
6826 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6827 						 struct list_head **iter)
6828 {
6829 	struct netdev_adjacent *upper;
6830 
6831 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6832 
6833 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6834 
6835 	if (&upper->list == &dev->adj_list.upper)
6836 		return NULL;
6837 
6838 	*iter = &upper->list;
6839 
6840 	return upper->dev;
6841 }
6842 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6843 
6844 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6845 						  struct list_head **iter,
6846 						  bool *ignore)
6847 {
6848 	struct netdev_adjacent *upper;
6849 
6850 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6851 
6852 	if (&upper->list == &dev->adj_list.upper)
6853 		return NULL;
6854 
6855 	*iter = &upper->list;
6856 	*ignore = upper->ignore;
6857 
6858 	return upper->dev;
6859 }
6860 
6861 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6862 						    struct list_head **iter)
6863 {
6864 	struct netdev_adjacent *upper;
6865 
6866 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6867 
6868 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6869 
6870 	if (&upper->list == &dev->adj_list.upper)
6871 		return NULL;
6872 
6873 	*iter = &upper->list;
6874 
6875 	return upper->dev;
6876 }
6877 
6878 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6879 				       int (*fn)(struct net_device *dev,
6880 						 void *data),
6881 				       void *data)
6882 {
6883 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6884 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6885 	int ret, cur = 0;
6886 	bool ignore;
6887 
6888 	now = dev;
6889 	iter = &dev->adj_list.upper;
6890 
6891 	while (1) {
6892 		if (now != dev) {
6893 			ret = fn(now, data);
6894 			if (ret)
6895 				return ret;
6896 		}
6897 
6898 		next = NULL;
6899 		while (1) {
6900 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6901 			if (!udev)
6902 				break;
6903 			if (ignore)
6904 				continue;
6905 
6906 			next = udev;
6907 			niter = &udev->adj_list.upper;
6908 			dev_stack[cur] = now;
6909 			iter_stack[cur++] = iter;
6910 			break;
6911 		}
6912 
6913 		if (!next) {
6914 			if (!cur)
6915 				return 0;
6916 			next = dev_stack[--cur];
6917 			niter = iter_stack[cur];
6918 		}
6919 
6920 		now = next;
6921 		iter = niter;
6922 	}
6923 
6924 	return 0;
6925 }
6926 
6927 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6928 				  int (*fn)(struct net_device *dev,
6929 					    void *data),
6930 				  void *data)
6931 {
6932 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6933 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6934 	int ret, cur = 0;
6935 
6936 	now = dev;
6937 	iter = &dev->adj_list.upper;
6938 
6939 	while (1) {
6940 		if (now != dev) {
6941 			ret = fn(now, data);
6942 			if (ret)
6943 				return ret;
6944 		}
6945 
6946 		next = NULL;
6947 		while (1) {
6948 			udev = netdev_next_upper_dev_rcu(now, &iter);
6949 			if (!udev)
6950 				break;
6951 
6952 			next = udev;
6953 			niter = &udev->adj_list.upper;
6954 			dev_stack[cur] = now;
6955 			iter_stack[cur++] = iter;
6956 			break;
6957 		}
6958 
6959 		if (!next) {
6960 			if (!cur)
6961 				return 0;
6962 			next = dev_stack[--cur];
6963 			niter = iter_stack[cur];
6964 		}
6965 
6966 		now = next;
6967 		iter = niter;
6968 	}
6969 
6970 	return 0;
6971 }
6972 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6973 
6974 static bool __netdev_has_upper_dev(struct net_device *dev,
6975 				   struct net_device *upper_dev)
6976 {
6977 	ASSERT_RTNL();
6978 
6979 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6980 					   upper_dev);
6981 }
6982 
6983 /**
6984  * netdev_lower_get_next_private - Get the next ->private from the
6985  *				   lower neighbour list
6986  * @dev: device
6987  * @iter: list_head ** of the current position
6988  *
6989  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6990  * list, starting from iter position. The caller must hold either hold the
6991  * RTNL lock or its own locking that guarantees that the neighbour lower
6992  * list will remain unchanged.
6993  */
6994 void *netdev_lower_get_next_private(struct net_device *dev,
6995 				    struct list_head **iter)
6996 {
6997 	struct netdev_adjacent *lower;
6998 
6999 	lower = list_entry(*iter, struct netdev_adjacent, list);
7000 
7001 	if (&lower->list == &dev->adj_list.lower)
7002 		return NULL;
7003 
7004 	*iter = lower->list.next;
7005 
7006 	return lower->private;
7007 }
7008 EXPORT_SYMBOL(netdev_lower_get_next_private);
7009 
7010 /**
7011  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7012  *				       lower neighbour list, RCU
7013  *				       variant
7014  * @dev: device
7015  * @iter: list_head ** of the current position
7016  *
7017  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7018  * list, starting from iter position. The caller must hold RCU read lock.
7019  */
7020 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7021 					struct list_head **iter)
7022 {
7023 	struct netdev_adjacent *lower;
7024 
7025 	WARN_ON_ONCE(!rcu_read_lock_held());
7026 
7027 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7028 
7029 	if (&lower->list == &dev->adj_list.lower)
7030 		return NULL;
7031 
7032 	*iter = &lower->list;
7033 
7034 	return lower->private;
7035 }
7036 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7037 
7038 /**
7039  * netdev_lower_get_next - Get the next device from the lower neighbour
7040  *                         list
7041  * @dev: device
7042  * @iter: list_head ** of the current position
7043  *
7044  * Gets the next netdev_adjacent from the dev's lower neighbour
7045  * list, starting from iter position. The caller must hold RTNL lock or
7046  * its own locking that guarantees that the neighbour lower
7047  * list will remain unchanged.
7048  */
7049 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7050 {
7051 	struct netdev_adjacent *lower;
7052 
7053 	lower = list_entry(*iter, struct netdev_adjacent, list);
7054 
7055 	if (&lower->list == &dev->adj_list.lower)
7056 		return NULL;
7057 
7058 	*iter = lower->list.next;
7059 
7060 	return lower->dev;
7061 }
7062 EXPORT_SYMBOL(netdev_lower_get_next);
7063 
7064 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7065 						struct list_head **iter)
7066 {
7067 	struct netdev_adjacent *lower;
7068 
7069 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7070 
7071 	if (&lower->list == &dev->adj_list.lower)
7072 		return NULL;
7073 
7074 	*iter = &lower->list;
7075 
7076 	return lower->dev;
7077 }
7078 
7079 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7080 						  struct list_head **iter,
7081 						  bool *ignore)
7082 {
7083 	struct netdev_adjacent *lower;
7084 
7085 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7086 
7087 	if (&lower->list == &dev->adj_list.lower)
7088 		return NULL;
7089 
7090 	*iter = &lower->list;
7091 	*ignore = lower->ignore;
7092 
7093 	return lower->dev;
7094 }
7095 
7096 int netdev_walk_all_lower_dev(struct net_device *dev,
7097 			      int (*fn)(struct net_device *dev,
7098 					void *data),
7099 			      void *data)
7100 {
7101 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7102 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7103 	int ret, cur = 0;
7104 
7105 	now = dev;
7106 	iter = &dev->adj_list.lower;
7107 
7108 	while (1) {
7109 		if (now != dev) {
7110 			ret = fn(now, data);
7111 			if (ret)
7112 				return ret;
7113 		}
7114 
7115 		next = NULL;
7116 		while (1) {
7117 			ldev = netdev_next_lower_dev(now, &iter);
7118 			if (!ldev)
7119 				break;
7120 
7121 			next = ldev;
7122 			niter = &ldev->adj_list.lower;
7123 			dev_stack[cur] = now;
7124 			iter_stack[cur++] = iter;
7125 			break;
7126 		}
7127 
7128 		if (!next) {
7129 			if (!cur)
7130 				return 0;
7131 			next = dev_stack[--cur];
7132 			niter = iter_stack[cur];
7133 		}
7134 
7135 		now = next;
7136 		iter = niter;
7137 	}
7138 
7139 	return 0;
7140 }
7141 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7142 
7143 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7144 				       int (*fn)(struct net_device *dev,
7145 						 void *data),
7146 				       void *data)
7147 {
7148 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7149 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7150 	int ret, cur = 0;
7151 	bool ignore;
7152 
7153 	now = dev;
7154 	iter = &dev->adj_list.lower;
7155 
7156 	while (1) {
7157 		if (now != dev) {
7158 			ret = fn(now, data);
7159 			if (ret)
7160 				return ret;
7161 		}
7162 
7163 		next = NULL;
7164 		while (1) {
7165 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7166 			if (!ldev)
7167 				break;
7168 			if (ignore)
7169 				continue;
7170 
7171 			next = ldev;
7172 			niter = &ldev->adj_list.lower;
7173 			dev_stack[cur] = now;
7174 			iter_stack[cur++] = iter;
7175 			break;
7176 		}
7177 
7178 		if (!next) {
7179 			if (!cur)
7180 				return 0;
7181 			next = dev_stack[--cur];
7182 			niter = iter_stack[cur];
7183 		}
7184 
7185 		now = next;
7186 		iter = niter;
7187 	}
7188 
7189 	return 0;
7190 }
7191 
7192 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7193 					     struct list_head **iter)
7194 {
7195 	struct netdev_adjacent *lower;
7196 
7197 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7198 	if (&lower->list == &dev->adj_list.lower)
7199 		return NULL;
7200 
7201 	*iter = &lower->list;
7202 
7203 	return lower->dev;
7204 }
7205 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7206 
7207 static u8 __netdev_upper_depth(struct net_device *dev)
7208 {
7209 	struct net_device *udev;
7210 	struct list_head *iter;
7211 	u8 max_depth = 0;
7212 	bool ignore;
7213 
7214 	for (iter = &dev->adj_list.upper,
7215 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7216 	     udev;
7217 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7218 		if (ignore)
7219 			continue;
7220 		if (max_depth < udev->upper_level)
7221 			max_depth = udev->upper_level;
7222 	}
7223 
7224 	return max_depth;
7225 }
7226 
7227 static u8 __netdev_lower_depth(struct net_device *dev)
7228 {
7229 	struct net_device *ldev;
7230 	struct list_head *iter;
7231 	u8 max_depth = 0;
7232 	bool ignore;
7233 
7234 	for (iter = &dev->adj_list.lower,
7235 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7236 	     ldev;
7237 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7238 		if (ignore)
7239 			continue;
7240 		if (max_depth < ldev->lower_level)
7241 			max_depth = ldev->lower_level;
7242 	}
7243 
7244 	return max_depth;
7245 }
7246 
7247 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7248 {
7249 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7250 	return 0;
7251 }
7252 
7253 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7254 {
7255 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7256 	return 0;
7257 }
7258 
7259 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7260 				  int (*fn)(struct net_device *dev,
7261 					    void *data),
7262 				  void *data)
7263 {
7264 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7265 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7266 	int ret, cur = 0;
7267 
7268 	now = dev;
7269 	iter = &dev->adj_list.lower;
7270 
7271 	while (1) {
7272 		if (now != dev) {
7273 			ret = fn(now, data);
7274 			if (ret)
7275 				return ret;
7276 		}
7277 
7278 		next = NULL;
7279 		while (1) {
7280 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7281 			if (!ldev)
7282 				break;
7283 
7284 			next = ldev;
7285 			niter = &ldev->adj_list.lower;
7286 			dev_stack[cur] = now;
7287 			iter_stack[cur++] = iter;
7288 			break;
7289 		}
7290 
7291 		if (!next) {
7292 			if (!cur)
7293 				return 0;
7294 			next = dev_stack[--cur];
7295 			niter = iter_stack[cur];
7296 		}
7297 
7298 		now = next;
7299 		iter = niter;
7300 	}
7301 
7302 	return 0;
7303 }
7304 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7305 
7306 /**
7307  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7308  *				       lower neighbour list, RCU
7309  *				       variant
7310  * @dev: device
7311  *
7312  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7313  * list. The caller must hold RCU read lock.
7314  */
7315 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7316 {
7317 	struct netdev_adjacent *lower;
7318 
7319 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7320 			struct netdev_adjacent, list);
7321 	if (lower)
7322 		return lower->private;
7323 	return NULL;
7324 }
7325 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7326 
7327 /**
7328  * netdev_master_upper_dev_get_rcu - Get master upper device
7329  * @dev: device
7330  *
7331  * Find a master upper device and return pointer to it or NULL in case
7332  * it's not there. The caller must hold the RCU read lock.
7333  */
7334 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7335 {
7336 	struct netdev_adjacent *upper;
7337 
7338 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7339 				       struct netdev_adjacent, list);
7340 	if (upper && likely(upper->master))
7341 		return upper->dev;
7342 	return NULL;
7343 }
7344 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7345 
7346 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7347 			      struct net_device *adj_dev,
7348 			      struct list_head *dev_list)
7349 {
7350 	char linkname[IFNAMSIZ+7];
7351 
7352 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7353 		"upper_%s" : "lower_%s", adj_dev->name);
7354 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7355 				 linkname);
7356 }
7357 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7358 			       char *name,
7359 			       struct list_head *dev_list)
7360 {
7361 	char linkname[IFNAMSIZ+7];
7362 
7363 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7364 		"upper_%s" : "lower_%s", name);
7365 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7366 }
7367 
7368 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7369 						 struct net_device *adj_dev,
7370 						 struct list_head *dev_list)
7371 {
7372 	return (dev_list == &dev->adj_list.upper ||
7373 		dev_list == &dev->adj_list.lower) &&
7374 		net_eq(dev_net(dev), dev_net(adj_dev));
7375 }
7376 
7377 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7378 					struct net_device *adj_dev,
7379 					struct list_head *dev_list,
7380 					void *private, bool master)
7381 {
7382 	struct netdev_adjacent *adj;
7383 	int ret;
7384 
7385 	adj = __netdev_find_adj(adj_dev, dev_list);
7386 
7387 	if (adj) {
7388 		adj->ref_nr += 1;
7389 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7390 			 dev->name, adj_dev->name, adj->ref_nr);
7391 
7392 		return 0;
7393 	}
7394 
7395 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7396 	if (!adj)
7397 		return -ENOMEM;
7398 
7399 	adj->dev = adj_dev;
7400 	adj->master = master;
7401 	adj->ref_nr = 1;
7402 	adj->private = private;
7403 	adj->ignore = false;
7404 	dev_hold(adj_dev);
7405 
7406 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7407 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7408 
7409 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7410 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7411 		if (ret)
7412 			goto free_adj;
7413 	}
7414 
7415 	/* Ensure that master link is always the first item in list. */
7416 	if (master) {
7417 		ret = sysfs_create_link(&(dev->dev.kobj),
7418 					&(adj_dev->dev.kobj), "master");
7419 		if (ret)
7420 			goto remove_symlinks;
7421 
7422 		list_add_rcu(&adj->list, dev_list);
7423 	} else {
7424 		list_add_tail_rcu(&adj->list, dev_list);
7425 	}
7426 
7427 	return 0;
7428 
7429 remove_symlinks:
7430 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7431 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7432 free_adj:
7433 	kfree(adj);
7434 	dev_put(adj_dev);
7435 
7436 	return ret;
7437 }
7438 
7439 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7440 					 struct net_device *adj_dev,
7441 					 u16 ref_nr,
7442 					 struct list_head *dev_list)
7443 {
7444 	struct netdev_adjacent *adj;
7445 
7446 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7447 		 dev->name, adj_dev->name, ref_nr);
7448 
7449 	adj = __netdev_find_adj(adj_dev, dev_list);
7450 
7451 	if (!adj) {
7452 		pr_err("Adjacency does not exist for device %s from %s\n",
7453 		       dev->name, adj_dev->name);
7454 		WARN_ON(1);
7455 		return;
7456 	}
7457 
7458 	if (adj->ref_nr > ref_nr) {
7459 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7460 			 dev->name, adj_dev->name, ref_nr,
7461 			 adj->ref_nr - ref_nr);
7462 		adj->ref_nr -= ref_nr;
7463 		return;
7464 	}
7465 
7466 	if (adj->master)
7467 		sysfs_remove_link(&(dev->dev.kobj), "master");
7468 
7469 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7470 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7471 
7472 	list_del_rcu(&adj->list);
7473 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7474 		 adj_dev->name, dev->name, adj_dev->name);
7475 	dev_put(adj_dev);
7476 	kfree_rcu(adj, rcu);
7477 }
7478 
7479 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7480 					    struct net_device *upper_dev,
7481 					    struct list_head *up_list,
7482 					    struct list_head *down_list,
7483 					    void *private, bool master)
7484 {
7485 	int ret;
7486 
7487 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7488 					   private, master);
7489 	if (ret)
7490 		return ret;
7491 
7492 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7493 					   private, false);
7494 	if (ret) {
7495 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7496 		return ret;
7497 	}
7498 
7499 	return 0;
7500 }
7501 
7502 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7503 					       struct net_device *upper_dev,
7504 					       u16 ref_nr,
7505 					       struct list_head *up_list,
7506 					       struct list_head *down_list)
7507 {
7508 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7509 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7510 }
7511 
7512 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7513 						struct net_device *upper_dev,
7514 						void *private, bool master)
7515 {
7516 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7517 						&dev->adj_list.upper,
7518 						&upper_dev->adj_list.lower,
7519 						private, master);
7520 }
7521 
7522 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7523 						   struct net_device *upper_dev)
7524 {
7525 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7526 					   &dev->adj_list.upper,
7527 					   &upper_dev->adj_list.lower);
7528 }
7529 
7530 static int __netdev_upper_dev_link(struct net_device *dev,
7531 				   struct net_device *upper_dev, bool master,
7532 				   void *upper_priv, void *upper_info,
7533 				   struct netlink_ext_ack *extack)
7534 {
7535 	struct netdev_notifier_changeupper_info changeupper_info = {
7536 		.info = {
7537 			.dev = dev,
7538 			.extack = extack,
7539 		},
7540 		.upper_dev = upper_dev,
7541 		.master = master,
7542 		.linking = true,
7543 		.upper_info = upper_info,
7544 	};
7545 	struct net_device *master_dev;
7546 	int ret = 0;
7547 
7548 	ASSERT_RTNL();
7549 
7550 	if (dev == upper_dev)
7551 		return -EBUSY;
7552 
7553 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7554 	if (__netdev_has_upper_dev(upper_dev, dev))
7555 		return -EBUSY;
7556 
7557 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7558 		return -EMLINK;
7559 
7560 	if (!master) {
7561 		if (__netdev_has_upper_dev(dev, upper_dev))
7562 			return -EEXIST;
7563 	} else {
7564 		master_dev = __netdev_master_upper_dev_get(dev);
7565 		if (master_dev)
7566 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7567 	}
7568 
7569 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7570 					    &changeupper_info.info);
7571 	ret = notifier_to_errno(ret);
7572 	if (ret)
7573 		return ret;
7574 
7575 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7576 						   master);
7577 	if (ret)
7578 		return ret;
7579 
7580 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7581 					    &changeupper_info.info);
7582 	ret = notifier_to_errno(ret);
7583 	if (ret)
7584 		goto rollback;
7585 
7586 	__netdev_update_upper_level(dev, NULL);
7587 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7588 
7589 	__netdev_update_lower_level(upper_dev, NULL);
7590 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7591 				    NULL);
7592 
7593 	return 0;
7594 
7595 rollback:
7596 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7597 
7598 	return ret;
7599 }
7600 
7601 /**
7602  * netdev_upper_dev_link - Add a link to the upper device
7603  * @dev: device
7604  * @upper_dev: new upper device
7605  * @extack: netlink extended ack
7606  *
7607  * Adds a link to device which is upper to this one. The caller must hold
7608  * the RTNL lock. On a failure a negative errno code is returned.
7609  * On success the reference counts are adjusted and the function
7610  * returns zero.
7611  */
7612 int netdev_upper_dev_link(struct net_device *dev,
7613 			  struct net_device *upper_dev,
7614 			  struct netlink_ext_ack *extack)
7615 {
7616 	return __netdev_upper_dev_link(dev, upper_dev, false,
7617 				       NULL, NULL, extack);
7618 }
7619 EXPORT_SYMBOL(netdev_upper_dev_link);
7620 
7621 /**
7622  * netdev_master_upper_dev_link - Add a master link to the upper device
7623  * @dev: device
7624  * @upper_dev: new upper device
7625  * @upper_priv: upper device private
7626  * @upper_info: upper info to be passed down via notifier
7627  * @extack: netlink extended ack
7628  *
7629  * Adds a link to device which is upper to this one. In this case, only
7630  * one master upper device can be linked, although other non-master devices
7631  * might be linked as well. The caller must hold the RTNL lock.
7632  * On a failure a negative errno code is returned. On success the reference
7633  * counts are adjusted and the function returns zero.
7634  */
7635 int netdev_master_upper_dev_link(struct net_device *dev,
7636 				 struct net_device *upper_dev,
7637 				 void *upper_priv, void *upper_info,
7638 				 struct netlink_ext_ack *extack)
7639 {
7640 	return __netdev_upper_dev_link(dev, upper_dev, true,
7641 				       upper_priv, upper_info, extack);
7642 }
7643 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7644 
7645 /**
7646  * netdev_upper_dev_unlink - Removes a link to upper device
7647  * @dev: device
7648  * @upper_dev: new upper device
7649  *
7650  * Removes a link to device which is upper to this one. The caller must hold
7651  * the RTNL lock.
7652  */
7653 void netdev_upper_dev_unlink(struct net_device *dev,
7654 			     struct net_device *upper_dev)
7655 {
7656 	struct netdev_notifier_changeupper_info changeupper_info = {
7657 		.info = {
7658 			.dev = dev,
7659 		},
7660 		.upper_dev = upper_dev,
7661 		.linking = false,
7662 	};
7663 
7664 	ASSERT_RTNL();
7665 
7666 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7667 
7668 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7669 				      &changeupper_info.info);
7670 
7671 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7672 
7673 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7674 				      &changeupper_info.info);
7675 
7676 	__netdev_update_upper_level(dev, NULL);
7677 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7678 
7679 	__netdev_update_lower_level(upper_dev, NULL);
7680 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7681 				    NULL);
7682 }
7683 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7684 
7685 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7686 				      struct net_device *lower_dev,
7687 				      bool val)
7688 {
7689 	struct netdev_adjacent *adj;
7690 
7691 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7692 	if (adj)
7693 		adj->ignore = val;
7694 
7695 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7696 	if (adj)
7697 		adj->ignore = val;
7698 }
7699 
7700 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7701 					struct net_device *lower_dev)
7702 {
7703 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7704 }
7705 
7706 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7707 				       struct net_device *lower_dev)
7708 {
7709 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7710 }
7711 
7712 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7713 				   struct net_device *new_dev,
7714 				   struct net_device *dev,
7715 				   struct netlink_ext_ack *extack)
7716 {
7717 	int err;
7718 
7719 	if (!new_dev)
7720 		return 0;
7721 
7722 	if (old_dev && new_dev != old_dev)
7723 		netdev_adjacent_dev_disable(dev, old_dev);
7724 
7725 	err = netdev_upper_dev_link(new_dev, dev, extack);
7726 	if (err) {
7727 		if (old_dev && new_dev != old_dev)
7728 			netdev_adjacent_dev_enable(dev, old_dev);
7729 		return err;
7730 	}
7731 
7732 	return 0;
7733 }
7734 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7735 
7736 void netdev_adjacent_change_commit(struct net_device *old_dev,
7737 				   struct net_device *new_dev,
7738 				   struct net_device *dev)
7739 {
7740 	if (!new_dev || !old_dev)
7741 		return;
7742 
7743 	if (new_dev == old_dev)
7744 		return;
7745 
7746 	netdev_adjacent_dev_enable(dev, old_dev);
7747 	netdev_upper_dev_unlink(old_dev, dev);
7748 }
7749 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7750 
7751 void netdev_adjacent_change_abort(struct net_device *old_dev,
7752 				  struct net_device *new_dev,
7753 				  struct net_device *dev)
7754 {
7755 	if (!new_dev)
7756 		return;
7757 
7758 	if (old_dev && new_dev != old_dev)
7759 		netdev_adjacent_dev_enable(dev, old_dev);
7760 
7761 	netdev_upper_dev_unlink(new_dev, dev);
7762 }
7763 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7764 
7765 /**
7766  * netdev_bonding_info_change - Dispatch event about slave change
7767  * @dev: device
7768  * @bonding_info: info to dispatch
7769  *
7770  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7771  * The caller must hold the RTNL lock.
7772  */
7773 void netdev_bonding_info_change(struct net_device *dev,
7774 				struct netdev_bonding_info *bonding_info)
7775 {
7776 	struct netdev_notifier_bonding_info info = {
7777 		.info.dev = dev,
7778 	};
7779 
7780 	memcpy(&info.bonding_info, bonding_info,
7781 	       sizeof(struct netdev_bonding_info));
7782 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7783 				      &info.info);
7784 }
7785 EXPORT_SYMBOL(netdev_bonding_info_change);
7786 
7787 static void netdev_adjacent_add_links(struct net_device *dev)
7788 {
7789 	struct netdev_adjacent *iter;
7790 
7791 	struct net *net = dev_net(dev);
7792 
7793 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7794 		if (!net_eq(net, dev_net(iter->dev)))
7795 			continue;
7796 		netdev_adjacent_sysfs_add(iter->dev, dev,
7797 					  &iter->dev->adj_list.lower);
7798 		netdev_adjacent_sysfs_add(dev, iter->dev,
7799 					  &dev->adj_list.upper);
7800 	}
7801 
7802 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7803 		if (!net_eq(net, dev_net(iter->dev)))
7804 			continue;
7805 		netdev_adjacent_sysfs_add(iter->dev, dev,
7806 					  &iter->dev->adj_list.upper);
7807 		netdev_adjacent_sysfs_add(dev, iter->dev,
7808 					  &dev->adj_list.lower);
7809 	}
7810 }
7811 
7812 static void netdev_adjacent_del_links(struct net_device *dev)
7813 {
7814 	struct netdev_adjacent *iter;
7815 
7816 	struct net *net = dev_net(dev);
7817 
7818 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7819 		if (!net_eq(net, dev_net(iter->dev)))
7820 			continue;
7821 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7822 					  &iter->dev->adj_list.lower);
7823 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7824 					  &dev->adj_list.upper);
7825 	}
7826 
7827 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7828 		if (!net_eq(net, dev_net(iter->dev)))
7829 			continue;
7830 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7831 					  &iter->dev->adj_list.upper);
7832 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7833 					  &dev->adj_list.lower);
7834 	}
7835 }
7836 
7837 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7838 {
7839 	struct netdev_adjacent *iter;
7840 
7841 	struct net *net = dev_net(dev);
7842 
7843 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7844 		if (!net_eq(net, dev_net(iter->dev)))
7845 			continue;
7846 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7847 					  &iter->dev->adj_list.lower);
7848 		netdev_adjacent_sysfs_add(iter->dev, dev,
7849 					  &iter->dev->adj_list.lower);
7850 	}
7851 
7852 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7853 		if (!net_eq(net, dev_net(iter->dev)))
7854 			continue;
7855 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7856 					  &iter->dev->adj_list.upper);
7857 		netdev_adjacent_sysfs_add(iter->dev, dev,
7858 					  &iter->dev->adj_list.upper);
7859 	}
7860 }
7861 
7862 void *netdev_lower_dev_get_private(struct net_device *dev,
7863 				   struct net_device *lower_dev)
7864 {
7865 	struct netdev_adjacent *lower;
7866 
7867 	if (!lower_dev)
7868 		return NULL;
7869 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7870 	if (!lower)
7871 		return NULL;
7872 
7873 	return lower->private;
7874 }
7875 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7876 
7877 
7878 /**
7879  * netdev_lower_change - Dispatch event about lower device state change
7880  * @lower_dev: device
7881  * @lower_state_info: state to dispatch
7882  *
7883  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7884  * The caller must hold the RTNL lock.
7885  */
7886 void netdev_lower_state_changed(struct net_device *lower_dev,
7887 				void *lower_state_info)
7888 {
7889 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7890 		.info.dev = lower_dev,
7891 	};
7892 
7893 	ASSERT_RTNL();
7894 	changelowerstate_info.lower_state_info = lower_state_info;
7895 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7896 				      &changelowerstate_info.info);
7897 }
7898 EXPORT_SYMBOL(netdev_lower_state_changed);
7899 
7900 static void dev_change_rx_flags(struct net_device *dev, int flags)
7901 {
7902 	const struct net_device_ops *ops = dev->netdev_ops;
7903 
7904 	if (ops->ndo_change_rx_flags)
7905 		ops->ndo_change_rx_flags(dev, flags);
7906 }
7907 
7908 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7909 {
7910 	unsigned int old_flags = dev->flags;
7911 	kuid_t uid;
7912 	kgid_t gid;
7913 
7914 	ASSERT_RTNL();
7915 
7916 	dev->flags |= IFF_PROMISC;
7917 	dev->promiscuity += inc;
7918 	if (dev->promiscuity == 0) {
7919 		/*
7920 		 * Avoid overflow.
7921 		 * If inc causes overflow, untouch promisc and return error.
7922 		 */
7923 		if (inc < 0)
7924 			dev->flags &= ~IFF_PROMISC;
7925 		else {
7926 			dev->promiscuity -= inc;
7927 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7928 				dev->name);
7929 			return -EOVERFLOW;
7930 		}
7931 	}
7932 	if (dev->flags != old_flags) {
7933 		pr_info("device %s %s promiscuous mode\n",
7934 			dev->name,
7935 			dev->flags & IFF_PROMISC ? "entered" : "left");
7936 		if (audit_enabled) {
7937 			current_uid_gid(&uid, &gid);
7938 			audit_log(audit_context(), GFP_ATOMIC,
7939 				  AUDIT_ANOM_PROMISCUOUS,
7940 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7941 				  dev->name, (dev->flags & IFF_PROMISC),
7942 				  (old_flags & IFF_PROMISC),
7943 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7944 				  from_kuid(&init_user_ns, uid),
7945 				  from_kgid(&init_user_ns, gid),
7946 				  audit_get_sessionid(current));
7947 		}
7948 
7949 		dev_change_rx_flags(dev, IFF_PROMISC);
7950 	}
7951 	if (notify)
7952 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7953 	return 0;
7954 }
7955 
7956 /**
7957  *	dev_set_promiscuity	- update promiscuity count on a device
7958  *	@dev: device
7959  *	@inc: modifier
7960  *
7961  *	Add or remove promiscuity from a device. While the count in the device
7962  *	remains above zero the interface remains promiscuous. Once it hits zero
7963  *	the device reverts back to normal filtering operation. A negative inc
7964  *	value is used to drop promiscuity on the device.
7965  *	Return 0 if successful or a negative errno code on error.
7966  */
7967 int dev_set_promiscuity(struct net_device *dev, int inc)
7968 {
7969 	unsigned int old_flags = dev->flags;
7970 	int err;
7971 
7972 	err = __dev_set_promiscuity(dev, inc, true);
7973 	if (err < 0)
7974 		return err;
7975 	if (dev->flags != old_flags)
7976 		dev_set_rx_mode(dev);
7977 	return err;
7978 }
7979 EXPORT_SYMBOL(dev_set_promiscuity);
7980 
7981 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7982 {
7983 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7984 
7985 	ASSERT_RTNL();
7986 
7987 	dev->flags |= IFF_ALLMULTI;
7988 	dev->allmulti += inc;
7989 	if (dev->allmulti == 0) {
7990 		/*
7991 		 * Avoid overflow.
7992 		 * If inc causes overflow, untouch allmulti and return error.
7993 		 */
7994 		if (inc < 0)
7995 			dev->flags &= ~IFF_ALLMULTI;
7996 		else {
7997 			dev->allmulti -= inc;
7998 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7999 				dev->name);
8000 			return -EOVERFLOW;
8001 		}
8002 	}
8003 	if (dev->flags ^ old_flags) {
8004 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8005 		dev_set_rx_mode(dev);
8006 		if (notify)
8007 			__dev_notify_flags(dev, old_flags,
8008 					   dev->gflags ^ old_gflags);
8009 	}
8010 	return 0;
8011 }
8012 
8013 /**
8014  *	dev_set_allmulti	- update allmulti count on a device
8015  *	@dev: device
8016  *	@inc: modifier
8017  *
8018  *	Add or remove reception of all multicast frames to a device. While the
8019  *	count in the device remains above zero the interface remains listening
8020  *	to all interfaces. Once it hits zero the device reverts back to normal
8021  *	filtering operation. A negative @inc value is used to drop the counter
8022  *	when releasing a resource needing all multicasts.
8023  *	Return 0 if successful or a negative errno code on error.
8024  */
8025 
8026 int dev_set_allmulti(struct net_device *dev, int inc)
8027 {
8028 	return __dev_set_allmulti(dev, inc, true);
8029 }
8030 EXPORT_SYMBOL(dev_set_allmulti);
8031 
8032 /*
8033  *	Upload unicast and multicast address lists to device and
8034  *	configure RX filtering. When the device doesn't support unicast
8035  *	filtering it is put in promiscuous mode while unicast addresses
8036  *	are present.
8037  */
8038 void __dev_set_rx_mode(struct net_device *dev)
8039 {
8040 	const struct net_device_ops *ops = dev->netdev_ops;
8041 
8042 	/* dev_open will call this function so the list will stay sane. */
8043 	if (!(dev->flags&IFF_UP))
8044 		return;
8045 
8046 	if (!netif_device_present(dev))
8047 		return;
8048 
8049 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8050 		/* Unicast addresses changes may only happen under the rtnl,
8051 		 * therefore calling __dev_set_promiscuity here is safe.
8052 		 */
8053 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8054 			__dev_set_promiscuity(dev, 1, false);
8055 			dev->uc_promisc = true;
8056 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8057 			__dev_set_promiscuity(dev, -1, false);
8058 			dev->uc_promisc = false;
8059 		}
8060 	}
8061 
8062 	if (ops->ndo_set_rx_mode)
8063 		ops->ndo_set_rx_mode(dev);
8064 }
8065 
8066 void dev_set_rx_mode(struct net_device *dev)
8067 {
8068 	netif_addr_lock_bh(dev);
8069 	__dev_set_rx_mode(dev);
8070 	netif_addr_unlock_bh(dev);
8071 }
8072 
8073 /**
8074  *	dev_get_flags - get flags reported to userspace
8075  *	@dev: device
8076  *
8077  *	Get the combination of flag bits exported through APIs to userspace.
8078  */
8079 unsigned int dev_get_flags(const struct net_device *dev)
8080 {
8081 	unsigned int flags;
8082 
8083 	flags = (dev->flags & ~(IFF_PROMISC |
8084 				IFF_ALLMULTI |
8085 				IFF_RUNNING |
8086 				IFF_LOWER_UP |
8087 				IFF_DORMANT)) |
8088 		(dev->gflags & (IFF_PROMISC |
8089 				IFF_ALLMULTI));
8090 
8091 	if (netif_running(dev)) {
8092 		if (netif_oper_up(dev))
8093 			flags |= IFF_RUNNING;
8094 		if (netif_carrier_ok(dev))
8095 			flags |= IFF_LOWER_UP;
8096 		if (netif_dormant(dev))
8097 			flags |= IFF_DORMANT;
8098 	}
8099 
8100 	return flags;
8101 }
8102 EXPORT_SYMBOL(dev_get_flags);
8103 
8104 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8105 		       struct netlink_ext_ack *extack)
8106 {
8107 	unsigned int old_flags = dev->flags;
8108 	int ret;
8109 
8110 	ASSERT_RTNL();
8111 
8112 	/*
8113 	 *	Set the flags on our device.
8114 	 */
8115 
8116 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8117 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8118 			       IFF_AUTOMEDIA)) |
8119 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8120 				    IFF_ALLMULTI));
8121 
8122 	/*
8123 	 *	Load in the correct multicast list now the flags have changed.
8124 	 */
8125 
8126 	if ((old_flags ^ flags) & IFF_MULTICAST)
8127 		dev_change_rx_flags(dev, IFF_MULTICAST);
8128 
8129 	dev_set_rx_mode(dev);
8130 
8131 	/*
8132 	 *	Have we downed the interface. We handle IFF_UP ourselves
8133 	 *	according to user attempts to set it, rather than blindly
8134 	 *	setting it.
8135 	 */
8136 
8137 	ret = 0;
8138 	if ((old_flags ^ flags) & IFF_UP) {
8139 		if (old_flags & IFF_UP)
8140 			__dev_close(dev);
8141 		else
8142 			ret = __dev_open(dev, extack);
8143 	}
8144 
8145 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8146 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8147 		unsigned int old_flags = dev->flags;
8148 
8149 		dev->gflags ^= IFF_PROMISC;
8150 
8151 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8152 			if (dev->flags != old_flags)
8153 				dev_set_rx_mode(dev);
8154 	}
8155 
8156 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8157 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8158 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8159 	 */
8160 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8161 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8162 
8163 		dev->gflags ^= IFF_ALLMULTI;
8164 		__dev_set_allmulti(dev, inc, false);
8165 	}
8166 
8167 	return ret;
8168 }
8169 
8170 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8171 			unsigned int gchanges)
8172 {
8173 	unsigned int changes = dev->flags ^ old_flags;
8174 
8175 	if (gchanges)
8176 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8177 
8178 	if (changes & IFF_UP) {
8179 		if (dev->flags & IFF_UP)
8180 			call_netdevice_notifiers(NETDEV_UP, dev);
8181 		else
8182 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8183 	}
8184 
8185 	if (dev->flags & IFF_UP &&
8186 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8187 		struct netdev_notifier_change_info change_info = {
8188 			.info = {
8189 				.dev = dev,
8190 			},
8191 			.flags_changed = changes,
8192 		};
8193 
8194 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8195 	}
8196 }
8197 
8198 /**
8199  *	dev_change_flags - change device settings
8200  *	@dev: device
8201  *	@flags: device state flags
8202  *	@extack: netlink extended ack
8203  *
8204  *	Change settings on device based state flags. The flags are
8205  *	in the userspace exported format.
8206  */
8207 int dev_change_flags(struct net_device *dev, unsigned int flags,
8208 		     struct netlink_ext_ack *extack)
8209 {
8210 	int ret;
8211 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8212 
8213 	ret = __dev_change_flags(dev, flags, extack);
8214 	if (ret < 0)
8215 		return ret;
8216 
8217 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8218 	__dev_notify_flags(dev, old_flags, changes);
8219 	return ret;
8220 }
8221 EXPORT_SYMBOL(dev_change_flags);
8222 
8223 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8224 {
8225 	const struct net_device_ops *ops = dev->netdev_ops;
8226 
8227 	if (ops->ndo_change_mtu)
8228 		return ops->ndo_change_mtu(dev, new_mtu);
8229 
8230 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8231 	WRITE_ONCE(dev->mtu, new_mtu);
8232 	return 0;
8233 }
8234 EXPORT_SYMBOL(__dev_set_mtu);
8235 
8236 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8237 		     struct netlink_ext_ack *extack)
8238 {
8239 	/* MTU must be positive, and in range */
8240 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8241 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8242 		return -EINVAL;
8243 	}
8244 
8245 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8246 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8247 		return -EINVAL;
8248 	}
8249 	return 0;
8250 }
8251 
8252 /**
8253  *	dev_set_mtu_ext - Change maximum transfer unit
8254  *	@dev: device
8255  *	@new_mtu: new transfer unit
8256  *	@extack: netlink extended ack
8257  *
8258  *	Change the maximum transfer size of the network device.
8259  */
8260 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8261 		    struct netlink_ext_ack *extack)
8262 {
8263 	int err, orig_mtu;
8264 
8265 	if (new_mtu == dev->mtu)
8266 		return 0;
8267 
8268 	err = dev_validate_mtu(dev, new_mtu, extack);
8269 	if (err)
8270 		return err;
8271 
8272 	if (!netif_device_present(dev))
8273 		return -ENODEV;
8274 
8275 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8276 	err = notifier_to_errno(err);
8277 	if (err)
8278 		return err;
8279 
8280 	orig_mtu = dev->mtu;
8281 	err = __dev_set_mtu(dev, new_mtu);
8282 
8283 	if (!err) {
8284 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8285 						   orig_mtu);
8286 		err = notifier_to_errno(err);
8287 		if (err) {
8288 			/* setting mtu back and notifying everyone again,
8289 			 * so that they have a chance to revert changes.
8290 			 */
8291 			__dev_set_mtu(dev, orig_mtu);
8292 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8293 						     new_mtu);
8294 		}
8295 	}
8296 	return err;
8297 }
8298 
8299 int dev_set_mtu(struct net_device *dev, int new_mtu)
8300 {
8301 	struct netlink_ext_ack extack;
8302 	int err;
8303 
8304 	memset(&extack, 0, sizeof(extack));
8305 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8306 	if (err && extack._msg)
8307 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8308 	return err;
8309 }
8310 EXPORT_SYMBOL(dev_set_mtu);
8311 
8312 /**
8313  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8314  *	@dev: device
8315  *	@new_len: new tx queue length
8316  */
8317 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8318 {
8319 	unsigned int orig_len = dev->tx_queue_len;
8320 	int res;
8321 
8322 	if (new_len != (unsigned int)new_len)
8323 		return -ERANGE;
8324 
8325 	if (new_len != orig_len) {
8326 		dev->tx_queue_len = new_len;
8327 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8328 		res = notifier_to_errno(res);
8329 		if (res)
8330 			goto err_rollback;
8331 		res = dev_qdisc_change_tx_queue_len(dev);
8332 		if (res)
8333 			goto err_rollback;
8334 	}
8335 
8336 	return 0;
8337 
8338 err_rollback:
8339 	netdev_err(dev, "refused to change device tx_queue_len\n");
8340 	dev->tx_queue_len = orig_len;
8341 	return res;
8342 }
8343 
8344 /**
8345  *	dev_set_group - Change group this device belongs to
8346  *	@dev: device
8347  *	@new_group: group this device should belong to
8348  */
8349 void dev_set_group(struct net_device *dev, int new_group)
8350 {
8351 	dev->group = new_group;
8352 }
8353 EXPORT_SYMBOL(dev_set_group);
8354 
8355 /**
8356  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8357  *	@dev: device
8358  *	@addr: new address
8359  *	@extack: netlink extended ack
8360  */
8361 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8362 			      struct netlink_ext_ack *extack)
8363 {
8364 	struct netdev_notifier_pre_changeaddr_info info = {
8365 		.info.dev = dev,
8366 		.info.extack = extack,
8367 		.dev_addr = addr,
8368 	};
8369 	int rc;
8370 
8371 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8372 	return notifier_to_errno(rc);
8373 }
8374 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8375 
8376 /**
8377  *	dev_set_mac_address - Change Media Access Control Address
8378  *	@dev: device
8379  *	@sa: new address
8380  *	@extack: netlink extended ack
8381  *
8382  *	Change the hardware (MAC) address of the device
8383  */
8384 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8385 			struct netlink_ext_ack *extack)
8386 {
8387 	const struct net_device_ops *ops = dev->netdev_ops;
8388 	int err;
8389 
8390 	if (!ops->ndo_set_mac_address)
8391 		return -EOPNOTSUPP;
8392 	if (sa->sa_family != dev->type)
8393 		return -EINVAL;
8394 	if (!netif_device_present(dev))
8395 		return -ENODEV;
8396 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8397 	if (err)
8398 		return err;
8399 	err = ops->ndo_set_mac_address(dev, sa);
8400 	if (err)
8401 		return err;
8402 	dev->addr_assign_type = NET_ADDR_SET;
8403 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8404 	add_device_randomness(dev->dev_addr, dev->addr_len);
8405 	return 0;
8406 }
8407 EXPORT_SYMBOL(dev_set_mac_address);
8408 
8409 /**
8410  *	dev_change_carrier - Change device carrier
8411  *	@dev: device
8412  *	@new_carrier: new value
8413  *
8414  *	Change device carrier
8415  */
8416 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8417 {
8418 	const struct net_device_ops *ops = dev->netdev_ops;
8419 
8420 	if (!ops->ndo_change_carrier)
8421 		return -EOPNOTSUPP;
8422 	if (!netif_device_present(dev))
8423 		return -ENODEV;
8424 	return ops->ndo_change_carrier(dev, new_carrier);
8425 }
8426 EXPORT_SYMBOL(dev_change_carrier);
8427 
8428 /**
8429  *	dev_get_phys_port_id - Get device physical port ID
8430  *	@dev: device
8431  *	@ppid: port ID
8432  *
8433  *	Get device physical port ID
8434  */
8435 int dev_get_phys_port_id(struct net_device *dev,
8436 			 struct netdev_phys_item_id *ppid)
8437 {
8438 	const struct net_device_ops *ops = dev->netdev_ops;
8439 
8440 	if (!ops->ndo_get_phys_port_id)
8441 		return -EOPNOTSUPP;
8442 	return ops->ndo_get_phys_port_id(dev, ppid);
8443 }
8444 EXPORT_SYMBOL(dev_get_phys_port_id);
8445 
8446 /**
8447  *	dev_get_phys_port_name - Get device physical port name
8448  *	@dev: device
8449  *	@name: port name
8450  *	@len: limit of bytes to copy to name
8451  *
8452  *	Get device physical port name
8453  */
8454 int dev_get_phys_port_name(struct net_device *dev,
8455 			   char *name, size_t len)
8456 {
8457 	const struct net_device_ops *ops = dev->netdev_ops;
8458 	int err;
8459 
8460 	if (ops->ndo_get_phys_port_name) {
8461 		err = ops->ndo_get_phys_port_name(dev, name, len);
8462 		if (err != -EOPNOTSUPP)
8463 			return err;
8464 	}
8465 	return devlink_compat_phys_port_name_get(dev, name, len);
8466 }
8467 EXPORT_SYMBOL(dev_get_phys_port_name);
8468 
8469 /**
8470  *	dev_get_port_parent_id - Get the device's port parent identifier
8471  *	@dev: network device
8472  *	@ppid: pointer to a storage for the port's parent identifier
8473  *	@recurse: allow/disallow recursion to lower devices
8474  *
8475  *	Get the devices's port parent identifier
8476  */
8477 int dev_get_port_parent_id(struct net_device *dev,
8478 			   struct netdev_phys_item_id *ppid,
8479 			   bool recurse)
8480 {
8481 	const struct net_device_ops *ops = dev->netdev_ops;
8482 	struct netdev_phys_item_id first = { };
8483 	struct net_device *lower_dev;
8484 	struct list_head *iter;
8485 	int err;
8486 
8487 	if (ops->ndo_get_port_parent_id) {
8488 		err = ops->ndo_get_port_parent_id(dev, ppid);
8489 		if (err != -EOPNOTSUPP)
8490 			return err;
8491 	}
8492 
8493 	err = devlink_compat_switch_id_get(dev, ppid);
8494 	if (!err || err != -EOPNOTSUPP)
8495 		return err;
8496 
8497 	if (!recurse)
8498 		return -EOPNOTSUPP;
8499 
8500 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8501 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8502 		if (err)
8503 			break;
8504 		if (!first.id_len)
8505 			first = *ppid;
8506 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8507 			return -ENODATA;
8508 	}
8509 
8510 	return err;
8511 }
8512 EXPORT_SYMBOL(dev_get_port_parent_id);
8513 
8514 /**
8515  *	netdev_port_same_parent_id - Indicate if two network devices have
8516  *	the same port parent identifier
8517  *	@a: first network device
8518  *	@b: second network device
8519  */
8520 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8521 {
8522 	struct netdev_phys_item_id a_id = { };
8523 	struct netdev_phys_item_id b_id = { };
8524 
8525 	if (dev_get_port_parent_id(a, &a_id, true) ||
8526 	    dev_get_port_parent_id(b, &b_id, true))
8527 		return false;
8528 
8529 	return netdev_phys_item_id_same(&a_id, &b_id);
8530 }
8531 EXPORT_SYMBOL(netdev_port_same_parent_id);
8532 
8533 /**
8534  *	dev_change_proto_down - update protocol port state information
8535  *	@dev: device
8536  *	@proto_down: new value
8537  *
8538  *	This info can be used by switch drivers to set the phys state of the
8539  *	port.
8540  */
8541 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8542 {
8543 	const struct net_device_ops *ops = dev->netdev_ops;
8544 
8545 	if (!ops->ndo_change_proto_down)
8546 		return -EOPNOTSUPP;
8547 	if (!netif_device_present(dev))
8548 		return -ENODEV;
8549 	return ops->ndo_change_proto_down(dev, proto_down);
8550 }
8551 EXPORT_SYMBOL(dev_change_proto_down);
8552 
8553 /**
8554  *	dev_change_proto_down_generic - generic implementation for
8555  * 	ndo_change_proto_down that sets carrier according to
8556  * 	proto_down.
8557  *
8558  *	@dev: device
8559  *	@proto_down: new value
8560  */
8561 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8562 {
8563 	if (proto_down)
8564 		netif_carrier_off(dev);
8565 	else
8566 		netif_carrier_on(dev);
8567 	dev->proto_down = proto_down;
8568 	return 0;
8569 }
8570 EXPORT_SYMBOL(dev_change_proto_down_generic);
8571 
8572 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8573 		    enum bpf_netdev_command cmd)
8574 {
8575 	struct netdev_bpf xdp;
8576 
8577 	if (!bpf_op)
8578 		return 0;
8579 
8580 	memset(&xdp, 0, sizeof(xdp));
8581 	xdp.command = cmd;
8582 
8583 	/* Query must always succeed. */
8584 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8585 
8586 	return xdp.prog_id;
8587 }
8588 
8589 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8590 			   struct netlink_ext_ack *extack, u32 flags,
8591 			   struct bpf_prog *prog)
8592 {
8593 	bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8594 	struct bpf_prog *prev_prog = NULL;
8595 	struct netdev_bpf xdp;
8596 	int err;
8597 
8598 	if (non_hw) {
8599 		prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8600 							   XDP_QUERY_PROG));
8601 		if (IS_ERR(prev_prog))
8602 			prev_prog = NULL;
8603 	}
8604 
8605 	memset(&xdp, 0, sizeof(xdp));
8606 	if (flags & XDP_FLAGS_HW_MODE)
8607 		xdp.command = XDP_SETUP_PROG_HW;
8608 	else
8609 		xdp.command = XDP_SETUP_PROG;
8610 	xdp.extack = extack;
8611 	xdp.flags = flags;
8612 	xdp.prog = prog;
8613 
8614 	err = bpf_op(dev, &xdp);
8615 	if (!err && non_hw)
8616 		bpf_prog_change_xdp(prev_prog, prog);
8617 
8618 	if (prev_prog)
8619 		bpf_prog_put(prev_prog);
8620 
8621 	return err;
8622 }
8623 
8624 static void dev_xdp_uninstall(struct net_device *dev)
8625 {
8626 	struct netdev_bpf xdp;
8627 	bpf_op_t ndo_bpf;
8628 
8629 	/* Remove generic XDP */
8630 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8631 
8632 	/* Remove from the driver */
8633 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8634 	if (!ndo_bpf)
8635 		return;
8636 
8637 	memset(&xdp, 0, sizeof(xdp));
8638 	xdp.command = XDP_QUERY_PROG;
8639 	WARN_ON(ndo_bpf(dev, &xdp));
8640 	if (xdp.prog_id)
8641 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8642 					NULL));
8643 
8644 	/* Remove HW offload */
8645 	memset(&xdp, 0, sizeof(xdp));
8646 	xdp.command = XDP_QUERY_PROG_HW;
8647 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8648 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8649 					NULL));
8650 }
8651 
8652 /**
8653  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8654  *	@dev: device
8655  *	@extack: netlink extended ack
8656  *	@fd: new program fd or negative value to clear
8657  *	@flags: xdp-related flags
8658  *
8659  *	Set or clear a bpf program for a device
8660  */
8661 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8662 		      int fd, u32 flags)
8663 {
8664 	const struct net_device_ops *ops = dev->netdev_ops;
8665 	enum bpf_netdev_command query;
8666 	struct bpf_prog *prog = NULL;
8667 	bpf_op_t bpf_op, bpf_chk;
8668 	bool offload;
8669 	int err;
8670 
8671 	ASSERT_RTNL();
8672 
8673 	offload = flags & XDP_FLAGS_HW_MODE;
8674 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8675 
8676 	bpf_op = bpf_chk = ops->ndo_bpf;
8677 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8678 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8679 		return -EOPNOTSUPP;
8680 	}
8681 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8682 		bpf_op = generic_xdp_install;
8683 	if (bpf_op == bpf_chk)
8684 		bpf_chk = generic_xdp_install;
8685 
8686 	if (fd >= 0) {
8687 		u32 prog_id;
8688 
8689 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8690 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8691 			return -EEXIST;
8692 		}
8693 
8694 		prog_id = __dev_xdp_query(dev, bpf_op, query);
8695 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8696 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8697 			return -EBUSY;
8698 		}
8699 
8700 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8701 					     bpf_op == ops->ndo_bpf);
8702 		if (IS_ERR(prog))
8703 			return PTR_ERR(prog);
8704 
8705 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8706 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8707 			bpf_prog_put(prog);
8708 			return -EINVAL;
8709 		}
8710 
8711 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8712 		if (prog->aux->id && prog->aux->id == prog_id) {
8713 			bpf_prog_put(prog);
8714 			return 0;
8715 		}
8716 	} else {
8717 		if (!__dev_xdp_query(dev, bpf_op, query))
8718 			return 0;
8719 	}
8720 
8721 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8722 	if (err < 0 && prog)
8723 		bpf_prog_put(prog);
8724 
8725 	return err;
8726 }
8727 
8728 /**
8729  *	dev_new_index	-	allocate an ifindex
8730  *	@net: the applicable net namespace
8731  *
8732  *	Returns a suitable unique value for a new device interface
8733  *	number.  The caller must hold the rtnl semaphore or the
8734  *	dev_base_lock to be sure it remains unique.
8735  */
8736 static int dev_new_index(struct net *net)
8737 {
8738 	int ifindex = net->ifindex;
8739 
8740 	for (;;) {
8741 		if (++ifindex <= 0)
8742 			ifindex = 1;
8743 		if (!__dev_get_by_index(net, ifindex))
8744 			return net->ifindex = ifindex;
8745 	}
8746 }
8747 
8748 /* Delayed registration/unregisteration */
8749 static LIST_HEAD(net_todo_list);
8750 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8751 
8752 static void net_set_todo(struct net_device *dev)
8753 {
8754 	list_add_tail(&dev->todo_list, &net_todo_list);
8755 	dev_net(dev)->dev_unreg_count++;
8756 }
8757 
8758 static void rollback_registered_many(struct list_head *head)
8759 {
8760 	struct net_device *dev, *tmp;
8761 	LIST_HEAD(close_head);
8762 
8763 	BUG_ON(dev_boot_phase);
8764 	ASSERT_RTNL();
8765 
8766 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8767 		/* Some devices call without registering
8768 		 * for initialization unwind. Remove those
8769 		 * devices and proceed with the remaining.
8770 		 */
8771 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8772 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8773 				 dev->name, dev);
8774 
8775 			WARN_ON(1);
8776 			list_del(&dev->unreg_list);
8777 			continue;
8778 		}
8779 		dev->dismantle = true;
8780 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8781 	}
8782 
8783 	/* If device is running, close it first. */
8784 	list_for_each_entry(dev, head, unreg_list)
8785 		list_add_tail(&dev->close_list, &close_head);
8786 	dev_close_many(&close_head, true);
8787 
8788 	list_for_each_entry(dev, head, unreg_list) {
8789 		/* And unlink it from device chain. */
8790 		unlist_netdevice(dev);
8791 
8792 		dev->reg_state = NETREG_UNREGISTERING;
8793 	}
8794 	flush_all_backlogs();
8795 
8796 	synchronize_net();
8797 
8798 	list_for_each_entry(dev, head, unreg_list) {
8799 		struct sk_buff *skb = NULL;
8800 
8801 		/* Shutdown queueing discipline. */
8802 		dev_shutdown(dev);
8803 
8804 		dev_xdp_uninstall(dev);
8805 
8806 		/* Notify protocols, that we are about to destroy
8807 		 * this device. They should clean all the things.
8808 		 */
8809 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8810 
8811 		if (!dev->rtnl_link_ops ||
8812 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8813 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8814 						     GFP_KERNEL, NULL, 0);
8815 
8816 		/*
8817 		 *	Flush the unicast and multicast chains
8818 		 */
8819 		dev_uc_flush(dev);
8820 		dev_mc_flush(dev);
8821 
8822 		netdev_name_node_alt_flush(dev);
8823 		netdev_name_node_free(dev->name_node);
8824 
8825 		if (dev->netdev_ops->ndo_uninit)
8826 			dev->netdev_ops->ndo_uninit(dev);
8827 
8828 		if (skb)
8829 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8830 
8831 		/* Notifier chain MUST detach us all upper devices. */
8832 		WARN_ON(netdev_has_any_upper_dev(dev));
8833 		WARN_ON(netdev_has_any_lower_dev(dev));
8834 
8835 		/* Remove entries from kobject tree */
8836 		netdev_unregister_kobject(dev);
8837 #ifdef CONFIG_XPS
8838 		/* Remove XPS queueing entries */
8839 		netif_reset_xps_queues_gt(dev, 0);
8840 #endif
8841 	}
8842 
8843 	synchronize_net();
8844 
8845 	list_for_each_entry(dev, head, unreg_list)
8846 		dev_put(dev);
8847 }
8848 
8849 static void rollback_registered(struct net_device *dev)
8850 {
8851 	LIST_HEAD(single);
8852 
8853 	list_add(&dev->unreg_list, &single);
8854 	rollback_registered_many(&single);
8855 	list_del(&single);
8856 }
8857 
8858 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8859 	struct net_device *upper, netdev_features_t features)
8860 {
8861 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8862 	netdev_features_t feature;
8863 	int feature_bit;
8864 
8865 	for_each_netdev_feature(upper_disables, feature_bit) {
8866 		feature = __NETIF_F_BIT(feature_bit);
8867 		if (!(upper->wanted_features & feature)
8868 		    && (features & feature)) {
8869 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8870 				   &feature, upper->name);
8871 			features &= ~feature;
8872 		}
8873 	}
8874 
8875 	return features;
8876 }
8877 
8878 static void netdev_sync_lower_features(struct net_device *upper,
8879 	struct net_device *lower, netdev_features_t features)
8880 {
8881 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8882 	netdev_features_t feature;
8883 	int feature_bit;
8884 
8885 	for_each_netdev_feature(upper_disables, feature_bit) {
8886 		feature = __NETIF_F_BIT(feature_bit);
8887 		if (!(features & feature) && (lower->features & feature)) {
8888 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8889 				   &feature, lower->name);
8890 			lower->wanted_features &= ~feature;
8891 			netdev_update_features(lower);
8892 
8893 			if (unlikely(lower->features & feature))
8894 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8895 					    &feature, lower->name);
8896 		}
8897 	}
8898 }
8899 
8900 static netdev_features_t netdev_fix_features(struct net_device *dev,
8901 	netdev_features_t features)
8902 {
8903 	/* Fix illegal checksum combinations */
8904 	if ((features & NETIF_F_HW_CSUM) &&
8905 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8906 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8907 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8908 	}
8909 
8910 	/* TSO requires that SG is present as well. */
8911 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8912 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8913 		features &= ~NETIF_F_ALL_TSO;
8914 	}
8915 
8916 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8917 					!(features & NETIF_F_IP_CSUM)) {
8918 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8919 		features &= ~NETIF_F_TSO;
8920 		features &= ~NETIF_F_TSO_ECN;
8921 	}
8922 
8923 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8924 					 !(features & NETIF_F_IPV6_CSUM)) {
8925 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8926 		features &= ~NETIF_F_TSO6;
8927 	}
8928 
8929 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8930 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8931 		features &= ~NETIF_F_TSO_MANGLEID;
8932 
8933 	/* TSO ECN requires that TSO is present as well. */
8934 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8935 		features &= ~NETIF_F_TSO_ECN;
8936 
8937 	/* Software GSO depends on SG. */
8938 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8939 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8940 		features &= ~NETIF_F_GSO;
8941 	}
8942 
8943 	/* GSO partial features require GSO partial be set */
8944 	if ((features & dev->gso_partial_features) &&
8945 	    !(features & NETIF_F_GSO_PARTIAL)) {
8946 		netdev_dbg(dev,
8947 			   "Dropping partially supported GSO features since no GSO partial.\n");
8948 		features &= ~dev->gso_partial_features;
8949 	}
8950 
8951 	if (!(features & NETIF_F_RXCSUM)) {
8952 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8953 		 * successfully merged by hardware must also have the
8954 		 * checksum verified by hardware.  If the user does not
8955 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8956 		 */
8957 		if (features & NETIF_F_GRO_HW) {
8958 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8959 			features &= ~NETIF_F_GRO_HW;
8960 		}
8961 	}
8962 
8963 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8964 	if (features & NETIF_F_RXFCS) {
8965 		if (features & NETIF_F_LRO) {
8966 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8967 			features &= ~NETIF_F_LRO;
8968 		}
8969 
8970 		if (features & NETIF_F_GRO_HW) {
8971 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8972 			features &= ~NETIF_F_GRO_HW;
8973 		}
8974 	}
8975 
8976 	return features;
8977 }
8978 
8979 int __netdev_update_features(struct net_device *dev)
8980 {
8981 	struct net_device *upper, *lower;
8982 	netdev_features_t features;
8983 	struct list_head *iter;
8984 	int err = -1;
8985 
8986 	ASSERT_RTNL();
8987 
8988 	features = netdev_get_wanted_features(dev);
8989 
8990 	if (dev->netdev_ops->ndo_fix_features)
8991 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8992 
8993 	/* driver might be less strict about feature dependencies */
8994 	features = netdev_fix_features(dev, features);
8995 
8996 	/* some features can't be enabled if they're off an an upper device */
8997 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8998 		features = netdev_sync_upper_features(dev, upper, features);
8999 
9000 	if (dev->features == features)
9001 		goto sync_lower;
9002 
9003 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9004 		&dev->features, &features);
9005 
9006 	if (dev->netdev_ops->ndo_set_features)
9007 		err = dev->netdev_ops->ndo_set_features(dev, features);
9008 	else
9009 		err = 0;
9010 
9011 	if (unlikely(err < 0)) {
9012 		netdev_err(dev,
9013 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9014 			err, &features, &dev->features);
9015 		/* return non-0 since some features might have changed and
9016 		 * it's better to fire a spurious notification than miss it
9017 		 */
9018 		return -1;
9019 	}
9020 
9021 sync_lower:
9022 	/* some features must be disabled on lower devices when disabled
9023 	 * on an upper device (think: bonding master or bridge)
9024 	 */
9025 	netdev_for_each_lower_dev(dev, lower, iter)
9026 		netdev_sync_lower_features(dev, lower, features);
9027 
9028 	if (!err) {
9029 		netdev_features_t diff = features ^ dev->features;
9030 
9031 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9032 			/* udp_tunnel_{get,drop}_rx_info both need
9033 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9034 			 * device, or they won't do anything.
9035 			 * Thus we need to update dev->features
9036 			 * *before* calling udp_tunnel_get_rx_info,
9037 			 * but *after* calling udp_tunnel_drop_rx_info.
9038 			 */
9039 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9040 				dev->features = features;
9041 				udp_tunnel_get_rx_info(dev);
9042 			} else {
9043 				udp_tunnel_drop_rx_info(dev);
9044 			}
9045 		}
9046 
9047 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9048 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9049 				dev->features = features;
9050 				err |= vlan_get_rx_ctag_filter_info(dev);
9051 			} else {
9052 				vlan_drop_rx_ctag_filter_info(dev);
9053 			}
9054 		}
9055 
9056 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9057 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9058 				dev->features = features;
9059 				err |= vlan_get_rx_stag_filter_info(dev);
9060 			} else {
9061 				vlan_drop_rx_stag_filter_info(dev);
9062 			}
9063 		}
9064 
9065 		dev->features = features;
9066 	}
9067 
9068 	return err < 0 ? 0 : 1;
9069 }
9070 
9071 /**
9072  *	netdev_update_features - recalculate device features
9073  *	@dev: the device to check
9074  *
9075  *	Recalculate dev->features set and send notifications if it
9076  *	has changed. Should be called after driver or hardware dependent
9077  *	conditions might have changed that influence the features.
9078  */
9079 void netdev_update_features(struct net_device *dev)
9080 {
9081 	if (__netdev_update_features(dev))
9082 		netdev_features_change(dev);
9083 }
9084 EXPORT_SYMBOL(netdev_update_features);
9085 
9086 /**
9087  *	netdev_change_features - recalculate device features
9088  *	@dev: the device to check
9089  *
9090  *	Recalculate dev->features set and send notifications even
9091  *	if they have not changed. Should be called instead of
9092  *	netdev_update_features() if also dev->vlan_features might
9093  *	have changed to allow the changes to be propagated to stacked
9094  *	VLAN devices.
9095  */
9096 void netdev_change_features(struct net_device *dev)
9097 {
9098 	__netdev_update_features(dev);
9099 	netdev_features_change(dev);
9100 }
9101 EXPORT_SYMBOL(netdev_change_features);
9102 
9103 /**
9104  *	netif_stacked_transfer_operstate -	transfer operstate
9105  *	@rootdev: the root or lower level device to transfer state from
9106  *	@dev: the device to transfer operstate to
9107  *
9108  *	Transfer operational state from root to device. This is normally
9109  *	called when a stacking relationship exists between the root
9110  *	device and the device(a leaf device).
9111  */
9112 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9113 					struct net_device *dev)
9114 {
9115 	if (rootdev->operstate == IF_OPER_DORMANT)
9116 		netif_dormant_on(dev);
9117 	else
9118 		netif_dormant_off(dev);
9119 
9120 	if (netif_carrier_ok(rootdev))
9121 		netif_carrier_on(dev);
9122 	else
9123 		netif_carrier_off(dev);
9124 }
9125 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9126 
9127 static int netif_alloc_rx_queues(struct net_device *dev)
9128 {
9129 	unsigned int i, count = dev->num_rx_queues;
9130 	struct netdev_rx_queue *rx;
9131 	size_t sz = count * sizeof(*rx);
9132 	int err = 0;
9133 
9134 	BUG_ON(count < 1);
9135 
9136 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9137 	if (!rx)
9138 		return -ENOMEM;
9139 
9140 	dev->_rx = rx;
9141 
9142 	for (i = 0; i < count; i++) {
9143 		rx[i].dev = dev;
9144 
9145 		/* XDP RX-queue setup */
9146 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9147 		if (err < 0)
9148 			goto err_rxq_info;
9149 	}
9150 	return 0;
9151 
9152 err_rxq_info:
9153 	/* Rollback successful reg's and free other resources */
9154 	while (i--)
9155 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9156 	kvfree(dev->_rx);
9157 	dev->_rx = NULL;
9158 	return err;
9159 }
9160 
9161 static void netif_free_rx_queues(struct net_device *dev)
9162 {
9163 	unsigned int i, count = dev->num_rx_queues;
9164 
9165 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9166 	if (!dev->_rx)
9167 		return;
9168 
9169 	for (i = 0; i < count; i++)
9170 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9171 
9172 	kvfree(dev->_rx);
9173 }
9174 
9175 static void netdev_init_one_queue(struct net_device *dev,
9176 				  struct netdev_queue *queue, void *_unused)
9177 {
9178 	/* Initialize queue lock */
9179 	spin_lock_init(&queue->_xmit_lock);
9180 	lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9181 	queue->xmit_lock_owner = -1;
9182 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9183 	queue->dev = dev;
9184 #ifdef CONFIG_BQL
9185 	dql_init(&queue->dql, HZ);
9186 #endif
9187 }
9188 
9189 static void netif_free_tx_queues(struct net_device *dev)
9190 {
9191 	kvfree(dev->_tx);
9192 }
9193 
9194 static int netif_alloc_netdev_queues(struct net_device *dev)
9195 {
9196 	unsigned int count = dev->num_tx_queues;
9197 	struct netdev_queue *tx;
9198 	size_t sz = count * sizeof(*tx);
9199 
9200 	if (count < 1 || count > 0xffff)
9201 		return -EINVAL;
9202 
9203 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9204 	if (!tx)
9205 		return -ENOMEM;
9206 
9207 	dev->_tx = tx;
9208 
9209 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9210 	spin_lock_init(&dev->tx_global_lock);
9211 
9212 	return 0;
9213 }
9214 
9215 void netif_tx_stop_all_queues(struct net_device *dev)
9216 {
9217 	unsigned int i;
9218 
9219 	for (i = 0; i < dev->num_tx_queues; i++) {
9220 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9221 
9222 		netif_tx_stop_queue(txq);
9223 	}
9224 }
9225 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9226 
9227 static void netdev_register_lockdep_key(struct net_device *dev)
9228 {
9229 	lockdep_register_key(&dev->qdisc_tx_busylock_key);
9230 	lockdep_register_key(&dev->qdisc_running_key);
9231 	lockdep_register_key(&dev->qdisc_xmit_lock_key);
9232 	lockdep_register_key(&dev->addr_list_lock_key);
9233 }
9234 
9235 static void netdev_unregister_lockdep_key(struct net_device *dev)
9236 {
9237 	lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9238 	lockdep_unregister_key(&dev->qdisc_running_key);
9239 	lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9240 	lockdep_unregister_key(&dev->addr_list_lock_key);
9241 }
9242 
9243 void netdev_update_lockdep_key(struct net_device *dev)
9244 {
9245 	lockdep_unregister_key(&dev->addr_list_lock_key);
9246 	lockdep_register_key(&dev->addr_list_lock_key);
9247 
9248 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9249 }
9250 EXPORT_SYMBOL(netdev_update_lockdep_key);
9251 
9252 /**
9253  *	register_netdevice	- register a network device
9254  *	@dev: device to register
9255  *
9256  *	Take a completed network device structure and add it to the kernel
9257  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9258  *	chain. 0 is returned on success. A negative errno code is returned
9259  *	on a failure to set up the device, or if the name is a duplicate.
9260  *
9261  *	Callers must hold the rtnl semaphore. You may want
9262  *	register_netdev() instead of this.
9263  *
9264  *	BUGS:
9265  *	The locking appears insufficient to guarantee two parallel registers
9266  *	will not get the same name.
9267  */
9268 
9269 int register_netdevice(struct net_device *dev)
9270 {
9271 	int ret;
9272 	struct net *net = dev_net(dev);
9273 
9274 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9275 		     NETDEV_FEATURE_COUNT);
9276 	BUG_ON(dev_boot_phase);
9277 	ASSERT_RTNL();
9278 
9279 	might_sleep();
9280 
9281 	/* When net_device's are persistent, this will be fatal. */
9282 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9283 	BUG_ON(!net);
9284 
9285 	spin_lock_init(&dev->addr_list_lock);
9286 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9287 
9288 	ret = dev_get_valid_name(net, dev, dev->name);
9289 	if (ret < 0)
9290 		goto out;
9291 
9292 	ret = -ENOMEM;
9293 	dev->name_node = netdev_name_node_head_alloc(dev);
9294 	if (!dev->name_node)
9295 		goto out;
9296 
9297 	/* Init, if this function is available */
9298 	if (dev->netdev_ops->ndo_init) {
9299 		ret = dev->netdev_ops->ndo_init(dev);
9300 		if (ret) {
9301 			if (ret > 0)
9302 				ret = -EIO;
9303 			goto err_free_name;
9304 		}
9305 	}
9306 
9307 	if (((dev->hw_features | dev->features) &
9308 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9309 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9310 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9311 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9312 		ret = -EINVAL;
9313 		goto err_uninit;
9314 	}
9315 
9316 	ret = -EBUSY;
9317 	if (!dev->ifindex)
9318 		dev->ifindex = dev_new_index(net);
9319 	else if (__dev_get_by_index(net, dev->ifindex))
9320 		goto err_uninit;
9321 
9322 	/* Transfer changeable features to wanted_features and enable
9323 	 * software offloads (GSO and GRO).
9324 	 */
9325 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9326 	dev->features |= NETIF_F_SOFT_FEATURES;
9327 
9328 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9329 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9330 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9331 	}
9332 
9333 	dev->wanted_features = dev->features & dev->hw_features;
9334 
9335 	if (!(dev->flags & IFF_LOOPBACK))
9336 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9337 
9338 	/* If IPv4 TCP segmentation offload is supported we should also
9339 	 * allow the device to enable segmenting the frame with the option
9340 	 * of ignoring a static IP ID value.  This doesn't enable the
9341 	 * feature itself but allows the user to enable it later.
9342 	 */
9343 	if (dev->hw_features & NETIF_F_TSO)
9344 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9345 	if (dev->vlan_features & NETIF_F_TSO)
9346 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9347 	if (dev->mpls_features & NETIF_F_TSO)
9348 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9349 	if (dev->hw_enc_features & NETIF_F_TSO)
9350 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9351 
9352 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9353 	 */
9354 	dev->vlan_features |= NETIF_F_HIGHDMA;
9355 
9356 	/* Make NETIF_F_SG inheritable to tunnel devices.
9357 	 */
9358 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9359 
9360 	/* Make NETIF_F_SG inheritable to MPLS.
9361 	 */
9362 	dev->mpls_features |= NETIF_F_SG;
9363 
9364 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9365 	ret = notifier_to_errno(ret);
9366 	if (ret)
9367 		goto err_uninit;
9368 
9369 	ret = netdev_register_kobject(dev);
9370 	if (ret) {
9371 		dev->reg_state = NETREG_UNREGISTERED;
9372 		goto err_uninit;
9373 	}
9374 	dev->reg_state = NETREG_REGISTERED;
9375 
9376 	__netdev_update_features(dev);
9377 
9378 	/*
9379 	 *	Default initial state at registry is that the
9380 	 *	device is present.
9381 	 */
9382 
9383 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9384 
9385 	linkwatch_init_dev(dev);
9386 
9387 	dev_init_scheduler(dev);
9388 	dev_hold(dev);
9389 	list_netdevice(dev);
9390 	add_device_randomness(dev->dev_addr, dev->addr_len);
9391 
9392 	/* If the device has permanent device address, driver should
9393 	 * set dev_addr and also addr_assign_type should be set to
9394 	 * NET_ADDR_PERM (default value).
9395 	 */
9396 	if (dev->addr_assign_type == NET_ADDR_PERM)
9397 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9398 
9399 	/* Notify protocols, that a new device appeared. */
9400 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9401 	ret = notifier_to_errno(ret);
9402 	if (ret) {
9403 		rollback_registered(dev);
9404 		rcu_barrier();
9405 
9406 		dev->reg_state = NETREG_UNREGISTERED;
9407 	}
9408 	/*
9409 	 *	Prevent userspace races by waiting until the network
9410 	 *	device is fully setup before sending notifications.
9411 	 */
9412 	if (!dev->rtnl_link_ops ||
9413 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9414 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9415 
9416 out:
9417 	return ret;
9418 
9419 err_uninit:
9420 	if (dev->netdev_ops->ndo_uninit)
9421 		dev->netdev_ops->ndo_uninit(dev);
9422 	if (dev->priv_destructor)
9423 		dev->priv_destructor(dev);
9424 err_free_name:
9425 	netdev_name_node_free(dev->name_node);
9426 	goto out;
9427 }
9428 EXPORT_SYMBOL(register_netdevice);
9429 
9430 /**
9431  *	init_dummy_netdev	- init a dummy network device for NAPI
9432  *	@dev: device to init
9433  *
9434  *	This takes a network device structure and initialize the minimum
9435  *	amount of fields so it can be used to schedule NAPI polls without
9436  *	registering a full blown interface. This is to be used by drivers
9437  *	that need to tie several hardware interfaces to a single NAPI
9438  *	poll scheduler due to HW limitations.
9439  */
9440 int init_dummy_netdev(struct net_device *dev)
9441 {
9442 	/* Clear everything. Note we don't initialize spinlocks
9443 	 * are they aren't supposed to be taken by any of the
9444 	 * NAPI code and this dummy netdev is supposed to be
9445 	 * only ever used for NAPI polls
9446 	 */
9447 	memset(dev, 0, sizeof(struct net_device));
9448 
9449 	/* make sure we BUG if trying to hit standard
9450 	 * register/unregister code path
9451 	 */
9452 	dev->reg_state = NETREG_DUMMY;
9453 
9454 	/* NAPI wants this */
9455 	INIT_LIST_HEAD(&dev->napi_list);
9456 
9457 	/* a dummy interface is started by default */
9458 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9459 	set_bit(__LINK_STATE_START, &dev->state);
9460 
9461 	/* napi_busy_loop stats accounting wants this */
9462 	dev_net_set(dev, &init_net);
9463 
9464 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9465 	 * because users of this 'device' dont need to change
9466 	 * its refcount.
9467 	 */
9468 
9469 	return 0;
9470 }
9471 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9472 
9473 
9474 /**
9475  *	register_netdev	- register a network device
9476  *	@dev: device to register
9477  *
9478  *	Take a completed network device structure and add it to the kernel
9479  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9480  *	chain. 0 is returned on success. A negative errno code is returned
9481  *	on a failure to set up the device, or if the name is a duplicate.
9482  *
9483  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9484  *	and expands the device name if you passed a format string to
9485  *	alloc_netdev.
9486  */
9487 int register_netdev(struct net_device *dev)
9488 {
9489 	int err;
9490 
9491 	if (rtnl_lock_killable())
9492 		return -EINTR;
9493 	err = register_netdevice(dev);
9494 	rtnl_unlock();
9495 	return err;
9496 }
9497 EXPORT_SYMBOL(register_netdev);
9498 
9499 int netdev_refcnt_read(const struct net_device *dev)
9500 {
9501 	int i, refcnt = 0;
9502 
9503 	for_each_possible_cpu(i)
9504 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9505 	return refcnt;
9506 }
9507 EXPORT_SYMBOL(netdev_refcnt_read);
9508 
9509 /**
9510  * netdev_wait_allrefs - wait until all references are gone.
9511  * @dev: target net_device
9512  *
9513  * This is called when unregistering network devices.
9514  *
9515  * Any protocol or device that holds a reference should register
9516  * for netdevice notification, and cleanup and put back the
9517  * reference if they receive an UNREGISTER event.
9518  * We can get stuck here if buggy protocols don't correctly
9519  * call dev_put.
9520  */
9521 static void netdev_wait_allrefs(struct net_device *dev)
9522 {
9523 	unsigned long rebroadcast_time, warning_time;
9524 	int refcnt;
9525 
9526 	linkwatch_forget_dev(dev);
9527 
9528 	rebroadcast_time = warning_time = jiffies;
9529 	refcnt = netdev_refcnt_read(dev);
9530 
9531 	while (refcnt != 0) {
9532 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9533 			rtnl_lock();
9534 
9535 			/* Rebroadcast unregister notification */
9536 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9537 
9538 			__rtnl_unlock();
9539 			rcu_barrier();
9540 			rtnl_lock();
9541 
9542 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9543 				     &dev->state)) {
9544 				/* We must not have linkwatch events
9545 				 * pending on unregister. If this
9546 				 * happens, we simply run the queue
9547 				 * unscheduled, resulting in a noop
9548 				 * for this device.
9549 				 */
9550 				linkwatch_run_queue();
9551 			}
9552 
9553 			__rtnl_unlock();
9554 
9555 			rebroadcast_time = jiffies;
9556 		}
9557 
9558 		msleep(250);
9559 
9560 		refcnt = netdev_refcnt_read(dev);
9561 
9562 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9563 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9564 				 dev->name, refcnt);
9565 			warning_time = jiffies;
9566 		}
9567 	}
9568 }
9569 
9570 /* The sequence is:
9571  *
9572  *	rtnl_lock();
9573  *	...
9574  *	register_netdevice(x1);
9575  *	register_netdevice(x2);
9576  *	...
9577  *	unregister_netdevice(y1);
9578  *	unregister_netdevice(y2);
9579  *      ...
9580  *	rtnl_unlock();
9581  *	free_netdev(y1);
9582  *	free_netdev(y2);
9583  *
9584  * We are invoked by rtnl_unlock().
9585  * This allows us to deal with problems:
9586  * 1) We can delete sysfs objects which invoke hotplug
9587  *    without deadlocking with linkwatch via keventd.
9588  * 2) Since we run with the RTNL semaphore not held, we can sleep
9589  *    safely in order to wait for the netdev refcnt to drop to zero.
9590  *
9591  * We must not return until all unregister events added during
9592  * the interval the lock was held have been completed.
9593  */
9594 void netdev_run_todo(void)
9595 {
9596 	struct list_head list;
9597 
9598 	/* Snapshot list, allow later requests */
9599 	list_replace_init(&net_todo_list, &list);
9600 
9601 	__rtnl_unlock();
9602 
9603 
9604 	/* Wait for rcu callbacks to finish before next phase */
9605 	if (!list_empty(&list))
9606 		rcu_barrier();
9607 
9608 	while (!list_empty(&list)) {
9609 		struct net_device *dev
9610 			= list_first_entry(&list, struct net_device, todo_list);
9611 		list_del(&dev->todo_list);
9612 
9613 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9614 			pr_err("network todo '%s' but state %d\n",
9615 			       dev->name, dev->reg_state);
9616 			dump_stack();
9617 			continue;
9618 		}
9619 
9620 		dev->reg_state = NETREG_UNREGISTERED;
9621 
9622 		netdev_wait_allrefs(dev);
9623 
9624 		/* paranoia */
9625 		BUG_ON(netdev_refcnt_read(dev));
9626 		BUG_ON(!list_empty(&dev->ptype_all));
9627 		BUG_ON(!list_empty(&dev->ptype_specific));
9628 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9629 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9630 #if IS_ENABLED(CONFIG_DECNET)
9631 		WARN_ON(dev->dn_ptr);
9632 #endif
9633 		if (dev->priv_destructor)
9634 			dev->priv_destructor(dev);
9635 		if (dev->needs_free_netdev)
9636 			free_netdev(dev);
9637 
9638 		/* Report a network device has been unregistered */
9639 		rtnl_lock();
9640 		dev_net(dev)->dev_unreg_count--;
9641 		__rtnl_unlock();
9642 		wake_up(&netdev_unregistering_wq);
9643 
9644 		/* Free network device */
9645 		kobject_put(&dev->dev.kobj);
9646 	}
9647 }
9648 
9649 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9650  * all the same fields in the same order as net_device_stats, with only
9651  * the type differing, but rtnl_link_stats64 may have additional fields
9652  * at the end for newer counters.
9653  */
9654 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9655 			     const struct net_device_stats *netdev_stats)
9656 {
9657 #if BITS_PER_LONG == 64
9658 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9659 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9660 	/* zero out counters that only exist in rtnl_link_stats64 */
9661 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9662 	       sizeof(*stats64) - sizeof(*netdev_stats));
9663 #else
9664 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9665 	const unsigned long *src = (const unsigned long *)netdev_stats;
9666 	u64 *dst = (u64 *)stats64;
9667 
9668 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9669 	for (i = 0; i < n; i++)
9670 		dst[i] = src[i];
9671 	/* zero out counters that only exist in rtnl_link_stats64 */
9672 	memset((char *)stats64 + n * sizeof(u64), 0,
9673 	       sizeof(*stats64) - n * sizeof(u64));
9674 #endif
9675 }
9676 EXPORT_SYMBOL(netdev_stats_to_stats64);
9677 
9678 /**
9679  *	dev_get_stats	- get network device statistics
9680  *	@dev: device to get statistics from
9681  *	@storage: place to store stats
9682  *
9683  *	Get network statistics from device. Return @storage.
9684  *	The device driver may provide its own method by setting
9685  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9686  *	otherwise the internal statistics structure is used.
9687  */
9688 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9689 					struct rtnl_link_stats64 *storage)
9690 {
9691 	const struct net_device_ops *ops = dev->netdev_ops;
9692 
9693 	if (ops->ndo_get_stats64) {
9694 		memset(storage, 0, sizeof(*storage));
9695 		ops->ndo_get_stats64(dev, storage);
9696 	} else if (ops->ndo_get_stats) {
9697 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9698 	} else {
9699 		netdev_stats_to_stats64(storage, &dev->stats);
9700 	}
9701 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9702 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9703 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9704 	return storage;
9705 }
9706 EXPORT_SYMBOL(dev_get_stats);
9707 
9708 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9709 {
9710 	struct netdev_queue *queue = dev_ingress_queue(dev);
9711 
9712 #ifdef CONFIG_NET_CLS_ACT
9713 	if (queue)
9714 		return queue;
9715 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9716 	if (!queue)
9717 		return NULL;
9718 	netdev_init_one_queue(dev, queue, NULL);
9719 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9720 	queue->qdisc_sleeping = &noop_qdisc;
9721 	rcu_assign_pointer(dev->ingress_queue, queue);
9722 #endif
9723 	return queue;
9724 }
9725 
9726 static const struct ethtool_ops default_ethtool_ops;
9727 
9728 void netdev_set_default_ethtool_ops(struct net_device *dev,
9729 				    const struct ethtool_ops *ops)
9730 {
9731 	if (dev->ethtool_ops == &default_ethtool_ops)
9732 		dev->ethtool_ops = ops;
9733 }
9734 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9735 
9736 void netdev_freemem(struct net_device *dev)
9737 {
9738 	char *addr = (char *)dev - dev->padded;
9739 
9740 	kvfree(addr);
9741 }
9742 
9743 /**
9744  * alloc_netdev_mqs - allocate network device
9745  * @sizeof_priv: size of private data to allocate space for
9746  * @name: device name format string
9747  * @name_assign_type: origin of device name
9748  * @setup: callback to initialize device
9749  * @txqs: the number of TX subqueues to allocate
9750  * @rxqs: the number of RX subqueues to allocate
9751  *
9752  * Allocates a struct net_device with private data area for driver use
9753  * and performs basic initialization.  Also allocates subqueue structs
9754  * for each queue on the device.
9755  */
9756 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9757 		unsigned char name_assign_type,
9758 		void (*setup)(struct net_device *),
9759 		unsigned int txqs, unsigned int rxqs)
9760 {
9761 	struct net_device *dev;
9762 	unsigned int alloc_size;
9763 	struct net_device *p;
9764 
9765 	BUG_ON(strlen(name) >= sizeof(dev->name));
9766 
9767 	if (txqs < 1) {
9768 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9769 		return NULL;
9770 	}
9771 
9772 	if (rxqs < 1) {
9773 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9774 		return NULL;
9775 	}
9776 
9777 	alloc_size = sizeof(struct net_device);
9778 	if (sizeof_priv) {
9779 		/* ensure 32-byte alignment of private area */
9780 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9781 		alloc_size += sizeof_priv;
9782 	}
9783 	/* ensure 32-byte alignment of whole construct */
9784 	alloc_size += NETDEV_ALIGN - 1;
9785 
9786 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9787 	if (!p)
9788 		return NULL;
9789 
9790 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9791 	dev->padded = (char *)dev - (char *)p;
9792 
9793 	dev->pcpu_refcnt = alloc_percpu(int);
9794 	if (!dev->pcpu_refcnt)
9795 		goto free_dev;
9796 
9797 	if (dev_addr_init(dev))
9798 		goto free_pcpu;
9799 
9800 	dev_mc_init(dev);
9801 	dev_uc_init(dev);
9802 
9803 	dev_net_set(dev, &init_net);
9804 
9805 	netdev_register_lockdep_key(dev);
9806 
9807 	dev->gso_max_size = GSO_MAX_SIZE;
9808 	dev->gso_max_segs = GSO_MAX_SEGS;
9809 	dev->upper_level = 1;
9810 	dev->lower_level = 1;
9811 
9812 	INIT_LIST_HEAD(&dev->napi_list);
9813 	INIT_LIST_HEAD(&dev->unreg_list);
9814 	INIT_LIST_HEAD(&dev->close_list);
9815 	INIT_LIST_HEAD(&dev->link_watch_list);
9816 	INIT_LIST_HEAD(&dev->adj_list.upper);
9817 	INIT_LIST_HEAD(&dev->adj_list.lower);
9818 	INIT_LIST_HEAD(&dev->ptype_all);
9819 	INIT_LIST_HEAD(&dev->ptype_specific);
9820 	INIT_LIST_HEAD(&dev->net_notifier_list);
9821 #ifdef CONFIG_NET_SCHED
9822 	hash_init(dev->qdisc_hash);
9823 #endif
9824 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9825 	setup(dev);
9826 
9827 	if (!dev->tx_queue_len) {
9828 		dev->priv_flags |= IFF_NO_QUEUE;
9829 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9830 	}
9831 
9832 	dev->num_tx_queues = txqs;
9833 	dev->real_num_tx_queues = txqs;
9834 	if (netif_alloc_netdev_queues(dev))
9835 		goto free_all;
9836 
9837 	dev->num_rx_queues = rxqs;
9838 	dev->real_num_rx_queues = rxqs;
9839 	if (netif_alloc_rx_queues(dev))
9840 		goto free_all;
9841 
9842 	strcpy(dev->name, name);
9843 	dev->name_assign_type = name_assign_type;
9844 	dev->group = INIT_NETDEV_GROUP;
9845 	if (!dev->ethtool_ops)
9846 		dev->ethtool_ops = &default_ethtool_ops;
9847 
9848 	nf_hook_ingress_init(dev);
9849 
9850 	return dev;
9851 
9852 free_all:
9853 	free_netdev(dev);
9854 	return NULL;
9855 
9856 free_pcpu:
9857 	free_percpu(dev->pcpu_refcnt);
9858 free_dev:
9859 	netdev_freemem(dev);
9860 	return NULL;
9861 }
9862 EXPORT_SYMBOL(alloc_netdev_mqs);
9863 
9864 /**
9865  * free_netdev - free network device
9866  * @dev: device
9867  *
9868  * This function does the last stage of destroying an allocated device
9869  * interface. The reference to the device object is released. If this
9870  * is the last reference then it will be freed.Must be called in process
9871  * context.
9872  */
9873 void free_netdev(struct net_device *dev)
9874 {
9875 	struct napi_struct *p, *n;
9876 
9877 	might_sleep();
9878 	netif_free_tx_queues(dev);
9879 	netif_free_rx_queues(dev);
9880 
9881 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9882 
9883 	/* Flush device addresses */
9884 	dev_addr_flush(dev);
9885 
9886 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9887 		netif_napi_del(p);
9888 
9889 	free_percpu(dev->pcpu_refcnt);
9890 	dev->pcpu_refcnt = NULL;
9891 	free_percpu(dev->xdp_bulkq);
9892 	dev->xdp_bulkq = NULL;
9893 
9894 	netdev_unregister_lockdep_key(dev);
9895 
9896 	/*  Compatibility with error handling in drivers */
9897 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9898 		netdev_freemem(dev);
9899 		return;
9900 	}
9901 
9902 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9903 	dev->reg_state = NETREG_RELEASED;
9904 
9905 	/* will free via device release */
9906 	put_device(&dev->dev);
9907 }
9908 EXPORT_SYMBOL(free_netdev);
9909 
9910 /**
9911  *	synchronize_net -  Synchronize with packet receive processing
9912  *
9913  *	Wait for packets currently being received to be done.
9914  *	Does not block later packets from starting.
9915  */
9916 void synchronize_net(void)
9917 {
9918 	might_sleep();
9919 	if (rtnl_is_locked())
9920 		synchronize_rcu_expedited();
9921 	else
9922 		synchronize_rcu();
9923 }
9924 EXPORT_SYMBOL(synchronize_net);
9925 
9926 /**
9927  *	unregister_netdevice_queue - remove device from the kernel
9928  *	@dev: device
9929  *	@head: list
9930  *
9931  *	This function shuts down a device interface and removes it
9932  *	from the kernel tables.
9933  *	If head not NULL, device is queued to be unregistered later.
9934  *
9935  *	Callers must hold the rtnl semaphore.  You may want
9936  *	unregister_netdev() instead of this.
9937  */
9938 
9939 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9940 {
9941 	ASSERT_RTNL();
9942 
9943 	if (head) {
9944 		list_move_tail(&dev->unreg_list, head);
9945 	} else {
9946 		rollback_registered(dev);
9947 		/* Finish processing unregister after unlock */
9948 		net_set_todo(dev);
9949 	}
9950 }
9951 EXPORT_SYMBOL(unregister_netdevice_queue);
9952 
9953 /**
9954  *	unregister_netdevice_many - unregister many devices
9955  *	@head: list of devices
9956  *
9957  *  Note: As most callers use a stack allocated list_head,
9958  *  we force a list_del() to make sure stack wont be corrupted later.
9959  */
9960 void unregister_netdevice_many(struct list_head *head)
9961 {
9962 	struct net_device *dev;
9963 
9964 	if (!list_empty(head)) {
9965 		rollback_registered_many(head);
9966 		list_for_each_entry(dev, head, unreg_list)
9967 			net_set_todo(dev);
9968 		list_del(head);
9969 	}
9970 }
9971 EXPORT_SYMBOL(unregister_netdevice_many);
9972 
9973 /**
9974  *	unregister_netdev - remove device from the kernel
9975  *	@dev: device
9976  *
9977  *	This function shuts down a device interface and removes it
9978  *	from the kernel tables.
9979  *
9980  *	This is just a wrapper for unregister_netdevice that takes
9981  *	the rtnl semaphore.  In general you want to use this and not
9982  *	unregister_netdevice.
9983  */
9984 void unregister_netdev(struct net_device *dev)
9985 {
9986 	rtnl_lock();
9987 	unregister_netdevice(dev);
9988 	rtnl_unlock();
9989 }
9990 EXPORT_SYMBOL(unregister_netdev);
9991 
9992 /**
9993  *	dev_change_net_namespace - move device to different nethost namespace
9994  *	@dev: device
9995  *	@net: network namespace
9996  *	@pat: If not NULL name pattern to try if the current device name
9997  *	      is already taken in the destination network namespace.
9998  *
9999  *	This function shuts down a device interface and moves it
10000  *	to a new network namespace. On success 0 is returned, on
10001  *	a failure a netagive errno code is returned.
10002  *
10003  *	Callers must hold the rtnl semaphore.
10004  */
10005 
10006 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10007 {
10008 	struct net *net_old = dev_net(dev);
10009 	int err, new_nsid, new_ifindex;
10010 
10011 	ASSERT_RTNL();
10012 
10013 	/* Don't allow namespace local devices to be moved. */
10014 	err = -EINVAL;
10015 	if (dev->features & NETIF_F_NETNS_LOCAL)
10016 		goto out;
10017 
10018 	/* Ensure the device has been registrered */
10019 	if (dev->reg_state != NETREG_REGISTERED)
10020 		goto out;
10021 
10022 	/* Get out if there is nothing todo */
10023 	err = 0;
10024 	if (net_eq(net_old, net))
10025 		goto out;
10026 
10027 	/* Pick the destination device name, and ensure
10028 	 * we can use it in the destination network namespace.
10029 	 */
10030 	err = -EEXIST;
10031 	if (__dev_get_by_name(net, dev->name)) {
10032 		/* We get here if we can't use the current device name */
10033 		if (!pat)
10034 			goto out;
10035 		err = dev_get_valid_name(net, dev, pat);
10036 		if (err < 0)
10037 			goto out;
10038 	}
10039 
10040 	/*
10041 	 * And now a mini version of register_netdevice unregister_netdevice.
10042 	 */
10043 
10044 	/* If device is running close it first. */
10045 	dev_close(dev);
10046 
10047 	/* And unlink it from device chain */
10048 	unlist_netdevice(dev);
10049 
10050 	synchronize_net();
10051 
10052 	/* Shutdown queueing discipline. */
10053 	dev_shutdown(dev);
10054 
10055 	/* Notify protocols, that we are about to destroy
10056 	 * this device. They should clean all the things.
10057 	 *
10058 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10059 	 * This is wanted because this way 8021q and macvlan know
10060 	 * the device is just moving and can keep their slaves up.
10061 	 */
10062 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10063 	rcu_barrier();
10064 
10065 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10066 	/* If there is an ifindex conflict assign a new one */
10067 	if (__dev_get_by_index(net, dev->ifindex))
10068 		new_ifindex = dev_new_index(net);
10069 	else
10070 		new_ifindex = dev->ifindex;
10071 
10072 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10073 			    new_ifindex);
10074 
10075 	/*
10076 	 *	Flush the unicast and multicast chains
10077 	 */
10078 	dev_uc_flush(dev);
10079 	dev_mc_flush(dev);
10080 
10081 	/* Send a netdev-removed uevent to the old namespace */
10082 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10083 	netdev_adjacent_del_links(dev);
10084 
10085 	/* Move per-net netdevice notifiers that are following the netdevice */
10086 	move_netdevice_notifiers_dev_net(dev, net);
10087 
10088 	/* Actually switch the network namespace */
10089 	dev_net_set(dev, net);
10090 	dev->ifindex = new_ifindex;
10091 
10092 	/* Send a netdev-add uevent to the new namespace */
10093 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10094 	netdev_adjacent_add_links(dev);
10095 
10096 	/* Fixup kobjects */
10097 	err = device_rename(&dev->dev, dev->name);
10098 	WARN_ON(err);
10099 
10100 	/* Adapt owner in case owning user namespace of target network
10101 	 * namespace is different from the original one.
10102 	 */
10103 	err = netdev_change_owner(dev, net_old, net);
10104 	WARN_ON(err);
10105 
10106 	/* Add the device back in the hashes */
10107 	list_netdevice(dev);
10108 
10109 	/* Notify protocols, that a new device appeared. */
10110 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10111 
10112 	/*
10113 	 *	Prevent userspace races by waiting until the network
10114 	 *	device is fully setup before sending notifications.
10115 	 */
10116 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10117 
10118 	synchronize_net();
10119 	err = 0;
10120 out:
10121 	return err;
10122 }
10123 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10124 
10125 static int dev_cpu_dead(unsigned int oldcpu)
10126 {
10127 	struct sk_buff **list_skb;
10128 	struct sk_buff *skb;
10129 	unsigned int cpu;
10130 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10131 
10132 	local_irq_disable();
10133 	cpu = smp_processor_id();
10134 	sd = &per_cpu(softnet_data, cpu);
10135 	oldsd = &per_cpu(softnet_data, oldcpu);
10136 
10137 	/* Find end of our completion_queue. */
10138 	list_skb = &sd->completion_queue;
10139 	while (*list_skb)
10140 		list_skb = &(*list_skb)->next;
10141 	/* Append completion queue from offline CPU. */
10142 	*list_skb = oldsd->completion_queue;
10143 	oldsd->completion_queue = NULL;
10144 
10145 	/* Append output queue from offline CPU. */
10146 	if (oldsd->output_queue) {
10147 		*sd->output_queue_tailp = oldsd->output_queue;
10148 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10149 		oldsd->output_queue = NULL;
10150 		oldsd->output_queue_tailp = &oldsd->output_queue;
10151 	}
10152 	/* Append NAPI poll list from offline CPU, with one exception :
10153 	 * process_backlog() must be called by cpu owning percpu backlog.
10154 	 * We properly handle process_queue & input_pkt_queue later.
10155 	 */
10156 	while (!list_empty(&oldsd->poll_list)) {
10157 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10158 							    struct napi_struct,
10159 							    poll_list);
10160 
10161 		list_del_init(&napi->poll_list);
10162 		if (napi->poll == process_backlog)
10163 			napi->state = 0;
10164 		else
10165 			____napi_schedule(sd, napi);
10166 	}
10167 
10168 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10169 	local_irq_enable();
10170 
10171 #ifdef CONFIG_RPS
10172 	remsd = oldsd->rps_ipi_list;
10173 	oldsd->rps_ipi_list = NULL;
10174 #endif
10175 	/* send out pending IPI's on offline CPU */
10176 	net_rps_send_ipi(remsd);
10177 
10178 	/* Process offline CPU's input_pkt_queue */
10179 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10180 		netif_rx_ni(skb);
10181 		input_queue_head_incr(oldsd);
10182 	}
10183 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10184 		netif_rx_ni(skb);
10185 		input_queue_head_incr(oldsd);
10186 	}
10187 
10188 	return 0;
10189 }
10190 
10191 /**
10192  *	netdev_increment_features - increment feature set by one
10193  *	@all: current feature set
10194  *	@one: new feature set
10195  *	@mask: mask feature set
10196  *
10197  *	Computes a new feature set after adding a device with feature set
10198  *	@one to the master device with current feature set @all.  Will not
10199  *	enable anything that is off in @mask. Returns the new feature set.
10200  */
10201 netdev_features_t netdev_increment_features(netdev_features_t all,
10202 	netdev_features_t one, netdev_features_t mask)
10203 {
10204 	if (mask & NETIF_F_HW_CSUM)
10205 		mask |= NETIF_F_CSUM_MASK;
10206 	mask |= NETIF_F_VLAN_CHALLENGED;
10207 
10208 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10209 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10210 
10211 	/* If one device supports hw checksumming, set for all. */
10212 	if (all & NETIF_F_HW_CSUM)
10213 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10214 
10215 	return all;
10216 }
10217 EXPORT_SYMBOL(netdev_increment_features);
10218 
10219 static struct hlist_head * __net_init netdev_create_hash(void)
10220 {
10221 	int i;
10222 	struct hlist_head *hash;
10223 
10224 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10225 	if (hash != NULL)
10226 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10227 			INIT_HLIST_HEAD(&hash[i]);
10228 
10229 	return hash;
10230 }
10231 
10232 /* Initialize per network namespace state */
10233 static int __net_init netdev_init(struct net *net)
10234 {
10235 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10236 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10237 
10238 	if (net != &init_net)
10239 		INIT_LIST_HEAD(&net->dev_base_head);
10240 
10241 	net->dev_name_head = netdev_create_hash();
10242 	if (net->dev_name_head == NULL)
10243 		goto err_name;
10244 
10245 	net->dev_index_head = netdev_create_hash();
10246 	if (net->dev_index_head == NULL)
10247 		goto err_idx;
10248 
10249 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10250 
10251 	return 0;
10252 
10253 err_idx:
10254 	kfree(net->dev_name_head);
10255 err_name:
10256 	return -ENOMEM;
10257 }
10258 
10259 /**
10260  *	netdev_drivername - network driver for the device
10261  *	@dev: network device
10262  *
10263  *	Determine network driver for device.
10264  */
10265 const char *netdev_drivername(const struct net_device *dev)
10266 {
10267 	const struct device_driver *driver;
10268 	const struct device *parent;
10269 	const char *empty = "";
10270 
10271 	parent = dev->dev.parent;
10272 	if (!parent)
10273 		return empty;
10274 
10275 	driver = parent->driver;
10276 	if (driver && driver->name)
10277 		return driver->name;
10278 	return empty;
10279 }
10280 
10281 static void __netdev_printk(const char *level, const struct net_device *dev,
10282 			    struct va_format *vaf)
10283 {
10284 	if (dev && dev->dev.parent) {
10285 		dev_printk_emit(level[1] - '0',
10286 				dev->dev.parent,
10287 				"%s %s %s%s: %pV",
10288 				dev_driver_string(dev->dev.parent),
10289 				dev_name(dev->dev.parent),
10290 				netdev_name(dev), netdev_reg_state(dev),
10291 				vaf);
10292 	} else if (dev) {
10293 		printk("%s%s%s: %pV",
10294 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10295 	} else {
10296 		printk("%s(NULL net_device): %pV", level, vaf);
10297 	}
10298 }
10299 
10300 void netdev_printk(const char *level, const struct net_device *dev,
10301 		   const char *format, ...)
10302 {
10303 	struct va_format vaf;
10304 	va_list args;
10305 
10306 	va_start(args, format);
10307 
10308 	vaf.fmt = format;
10309 	vaf.va = &args;
10310 
10311 	__netdev_printk(level, dev, &vaf);
10312 
10313 	va_end(args);
10314 }
10315 EXPORT_SYMBOL(netdev_printk);
10316 
10317 #define define_netdev_printk_level(func, level)			\
10318 void func(const struct net_device *dev, const char *fmt, ...)	\
10319 {								\
10320 	struct va_format vaf;					\
10321 	va_list args;						\
10322 								\
10323 	va_start(args, fmt);					\
10324 								\
10325 	vaf.fmt = fmt;						\
10326 	vaf.va = &args;						\
10327 								\
10328 	__netdev_printk(level, dev, &vaf);			\
10329 								\
10330 	va_end(args);						\
10331 }								\
10332 EXPORT_SYMBOL(func);
10333 
10334 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10335 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10336 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10337 define_netdev_printk_level(netdev_err, KERN_ERR);
10338 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10339 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10340 define_netdev_printk_level(netdev_info, KERN_INFO);
10341 
10342 static void __net_exit netdev_exit(struct net *net)
10343 {
10344 	kfree(net->dev_name_head);
10345 	kfree(net->dev_index_head);
10346 	if (net != &init_net)
10347 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10348 }
10349 
10350 static struct pernet_operations __net_initdata netdev_net_ops = {
10351 	.init = netdev_init,
10352 	.exit = netdev_exit,
10353 };
10354 
10355 static void __net_exit default_device_exit(struct net *net)
10356 {
10357 	struct net_device *dev, *aux;
10358 	/*
10359 	 * Push all migratable network devices back to the
10360 	 * initial network namespace
10361 	 */
10362 	rtnl_lock();
10363 	for_each_netdev_safe(net, dev, aux) {
10364 		int err;
10365 		char fb_name[IFNAMSIZ];
10366 
10367 		/* Ignore unmoveable devices (i.e. loopback) */
10368 		if (dev->features & NETIF_F_NETNS_LOCAL)
10369 			continue;
10370 
10371 		/* Leave virtual devices for the generic cleanup */
10372 		if (dev->rtnl_link_ops)
10373 			continue;
10374 
10375 		/* Push remaining network devices to init_net */
10376 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10377 		if (__dev_get_by_name(&init_net, fb_name))
10378 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10379 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10380 		if (err) {
10381 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10382 				 __func__, dev->name, err);
10383 			BUG();
10384 		}
10385 	}
10386 	rtnl_unlock();
10387 }
10388 
10389 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10390 {
10391 	/* Return with the rtnl_lock held when there are no network
10392 	 * devices unregistering in any network namespace in net_list.
10393 	 */
10394 	struct net *net;
10395 	bool unregistering;
10396 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10397 
10398 	add_wait_queue(&netdev_unregistering_wq, &wait);
10399 	for (;;) {
10400 		unregistering = false;
10401 		rtnl_lock();
10402 		list_for_each_entry(net, net_list, exit_list) {
10403 			if (net->dev_unreg_count > 0) {
10404 				unregistering = true;
10405 				break;
10406 			}
10407 		}
10408 		if (!unregistering)
10409 			break;
10410 		__rtnl_unlock();
10411 
10412 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10413 	}
10414 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10415 }
10416 
10417 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10418 {
10419 	/* At exit all network devices most be removed from a network
10420 	 * namespace.  Do this in the reverse order of registration.
10421 	 * Do this across as many network namespaces as possible to
10422 	 * improve batching efficiency.
10423 	 */
10424 	struct net_device *dev;
10425 	struct net *net;
10426 	LIST_HEAD(dev_kill_list);
10427 
10428 	/* To prevent network device cleanup code from dereferencing
10429 	 * loopback devices or network devices that have been freed
10430 	 * wait here for all pending unregistrations to complete,
10431 	 * before unregistring the loopback device and allowing the
10432 	 * network namespace be freed.
10433 	 *
10434 	 * The netdev todo list containing all network devices
10435 	 * unregistrations that happen in default_device_exit_batch
10436 	 * will run in the rtnl_unlock() at the end of
10437 	 * default_device_exit_batch.
10438 	 */
10439 	rtnl_lock_unregistering(net_list);
10440 	list_for_each_entry(net, net_list, exit_list) {
10441 		for_each_netdev_reverse(net, dev) {
10442 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10443 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10444 			else
10445 				unregister_netdevice_queue(dev, &dev_kill_list);
10446 		}
10447 	}
10448 	unregister_netdevice_many(&dev_kill_list);
10449 	rtnl_unlock();
10450 }
10451 
10452 static struct pernet_operations __net_initdata default_device_ops = {
10453 	.exit = default_device_exit,
10454 	.exit_batch = default_device_exit_batch,
10455 };
10456 
10457 /*
10458  *	Initialize the DEV module. At boot time this walks the device list and
10459  *	unhooks any devices that fail to initialise (normally hardware not
10460  *	present) and leaves us with a valid list of present and active devices.
10461  *
10462  */
10463 
10464 /*
10465  *       This is called single threaded during boot, so no need
10466  *       to take the rtnl semaphore.
10467  */
10468 static int __init net_dev_init(void)
10469 {
10470 	int i, rc = -ENOMEM;
10471 
10472 	BUG_ON(!dev_boot_phase);
10473 
10474 	if (dev_proc_init())
10475 		goto out;
10476 
10477 	if (netdev_kobject_init())
10478 		goto out;
10479 
10480 	INIT_LIST_HEAD(&ptype_all);
10481 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10482 		INIT_LIST_HEAD(&ptype_base[i]);
10483 
10484 	INIT_LIST_HEAD(&offload_base);
10485 
10486 	if (register_pernet_subsys(&netdev_net_ops))
10487 		goto out;
10488 
10489 	/*
10490 	 *	Initialise the packet receive queues.
10491 	 */
10492 
10493 	for_each_possible_cpu(i) {
10494 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10495 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10496 
10497 		INIT_WORK(flush, flush_backlog);
10498 
10499 		skb_queue_head_init(&sd->input_pkt_queue);
10500 		skb_queue_head_init(&sd->process_queue);
10501 #ifdef CONFIG_XFRM_OFFLOAD
10502 		skb_queue_head_init(&sd->xfrm_backlog);
10503 #endif
10504 		INIT_LIST_HEAD(&sd->poll_list);
10505 		sd->output_queue_tailp = &sd->output_queue;
10506 #ifdef CONFIG_RPS
10507 		sd->csd.func = rps_trigger_softirq;
10508 		sd->csd.info = sd;
10509 		sd->cpu = i;
10510 #endif
10511 
10512 		init_gro_hash(&sd->backlog);
10513 		sd->backlog.poll = process_backlog;
10514 		sd->backlog.weight = weight_p;
10515 	}
10516 
10517 	dev_boot_phase = 0;
10518 
10519 	/* The loopback device is special if any other network devices
10520 	 * is present in a network namespace the loopback device must
10521 	 * be present. Since we now dynamically allocate and free the
10522 	 * loopback device ensure this invariant is maintained by
10523 	 * keeping the loopback device as the first device on the
10524 	 * list of network devices.  Ensuring the loopback devices
10525 	 * is the first device that appears and the last network device
10526 	 * that disappears.
10527 	 */
10528 	if (register_pernet_device(&loopback_net_ops))
10529 		goto out;
10530 
10531 	if (register_pernet_device(&default_device_ops))
10532 		goto out;
10533 
10534 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10535 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10536 
10537 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10538 				       NULL, dev_cpu_dead);
10539 	WARN_ON(rc < 0);
10540 	rc = 0;
10541 out:
10542 	return rc;
10543 }
10544 
10545 subsys_initcall(net_dev_init);
10546