1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 #include <linux/if_macvlan.h> 135 #include <linux/errqueue.h> 136 137 #include "net-sysfs.h" 138 139 /* Instead of increasing this, you should create a hash table. */ 140 #define MAX_GRO_SKBS 8 141 142 /* This should be increased if a protocol with a bigger head is added. */ 143 #define GRO_MAX_HEAD (MAX_HEADER + 128) 144 145 static DEFINE_SPINLOCK(ptype_lock); 146 static DEFINE_SPINLOCK(offload_lock); 147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 148 struct list_head ptype_all __read_mostly; /* Taps */ 149 static struct list_head offload_base __read_mostly; 150 151 static int netif_rx_internal(struct sk_buff *skb); 152 static int call_netdevice_notifiers_info(unsigned long val, 153 struct net_device *dev, 154 struct netdev_notifier_info *info); 155 156 /* 157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 158 * semaphore. 159 * 160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 161 * 162 * Writers must hold the rtnl semaphore while they loop through the 163 * dev_base_head list, and hold dev_base_lock for writing when they do the 164 * actual updates. This allows pure readers to access the list even 165 * while a writer is preparing to update it. 166 * 167 * To put it another way, dev_base_lock is held for writing only to 168 * protect against pure readers; the rtnl semaphore provides the 169 * protection against other writers. 170 * 171 * See, for example usages, register_netdevice() and 172 * unregister_netdevice(), which must be called with the rtnl 173 * semaphore held. 174 */ 175 DEFINE_RWLOCK(dev_base_lock); 176 EXPORT_SYMBOL(dev_base_lock); 177 178 /* protects napi_hash addition/deletion and napi_gen_id */ 179 static DEFINE_SPINLOCK(napi_hash_lock); 180 181 static unsigned int napi_gen_id; 182 static DEFINE_HASHTABLE(napi_hash, 8); 183 184 static seqcount_t devnet_rename_seq; 185 186 static inline void dev_base_seq_inc(struct net *net) 187 { 188 while (++net->dev_base_seq == 0); 189 } 190 191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 192 { 193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 194 195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 196 } 197 198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 199 { 200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 201 } 202 203 static inline void rps_lock(struct softnet_data *sd) 204 { 205 #ifdef CONFIG_RPS 206 spin_lock(&sd->input_pkt_queue.lock); 207 #endif 208 } 209 210 static inline void rps_unlock(struct softnet_data *sd) 211 { 212 #ifdef CONFIG_RPS 213 spin_unlock(&sd->input_pkt_queue.lock); 214 #endif 215 } 216 217 /* Device list insertion */ 218 static void list_netdevice(struct net_device *dev) 219 { 220 struct net *net = dev_net(dev); 221 222 ASSERT_RTNL(); 223 224 write_lock_bh(&dev_base_lock); 225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 227 hlist_add_head_rcu(&dev->index_hlist, 228 dev_index_hash(net, dev->ifindex)); 229 write_unlock_bh(&dev_base_lock); 230 231 dev_base_seq_inc(net); 232 } 233 234 /* Device list removal 235 * caller must respect a RCU grace period before freeing/reusing dev 236 */ 237 static void unlist_netdevice(struct net_device *dev) 238 { 239 ASSERT_RTNL(); 240 241 /* Unlink dev from the device chain */ 242 write_lock_bh(&dev_base_lock); 243 list_del_rcu(&dev->dev_list); 244 hlist_del_rcu(&dev->name_hlist); 245 hlist_del_rcu(&dev->index_hlist); 246 write_unlock_bh(&dev_base_lock); 247 248 dev_base_seq_inc(dev_net(dev)); 249 } 250 251 /* 252 * Our notifier list 253 */ 254 255 static RAW_NOTIFIER_HEAD(netdev_chain); 256 257 /* 258 * Device drivers call our routines to queue packets here. We empty the 259 * queue in the local softnet handler. 260 */ 261 262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 263 EXPORT_PER_CPU_SYMBOL(softnet_data); 264 265 #ifdef CONFIG_LOCKDEP 266 /* 267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 268 * according to dev->type 269 */ 270 static const unsigned short netdev_lock_type[] = 271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 286 287 static const char *const netdev_lock_name[] = 288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 303 304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 306 307 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 308 { 309 int i; 310 311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 312 if (netdev_lock_type[i] == dev_type) 313 return i; 314 /* the last key is used by default */ 315 return ARRAY_SIZE(netdev_lock_type) - 1; 316 } 317 318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 319 unsigned short dev_type) 320 { 321 int i; 322 323 i = netdev_lock_pos(dev_type); 324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 325 netdev_lock_name[i]); 326 } 327 328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 329 { 330 int i; 331 332 i = netdev_lock_pos(dev->type); 333 lockdep_set_class_and_name(&dev->addr_list_lock, 334 &netdev_addr_lock_key[i], 335 netdev_lock_name[i]); 336 } 337 #else 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 } 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 } 345 #endif 346 347 /******************************************************************************* 348 349 Protocol management and registration routines 350 351 *******************************************************************************/ 352 353 /* 354 * Add a protocol ID to the list. Now that the input handler is 355 * smarter we can dispense with all the messy stuff that used to be 356 * here. 357 * 358 * BEWARE!!! Protocol handlers, mangling input packets, 359 * MUST BE last in hash buckets and checking protocol handlers 360 * MUST start from promiscuous ptype_all chain in net_bh. 361 * It is true now, do not change it. 362 * Explanation follows: if protocol handler, mangling packet, will 363 * be the first on list, it is not able to sense, that packet 364 * is cloned and should be copied-on-write, so that it will 365 * change it and subsequent readers will get broken packet. 366 * --ANK (980803) 367 */ 368 369 static inline struct list_head *ptype_head(const struct packet_type *pt) 370 { 371 if (pt->type == htons(ETH_P_ALL)) 372 return &ptype_all; 373 else 374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 375 } 376 377 /** 378 * dev_add_pack - add packet handler 379 * @pt: packet type declaration 380 * 381 * Add a protocol handler to the networking stack. The passed &packet_type 382 * is linked into kernel lists and may not be freed until it has been 383 * removed from the kernel lists. 384 * 385 * This call does not sleep therefore it can not 386 * guarantee all CPU's that are in middle of receiving packets 387 * will see the new packet type (until the next received packet). 388 */ 389 390 void dev_add_pack(struct packet_type *pt) 391 { 392 struct list_head *head = ptype_head(pt); 393 394 spin_lock(&ptype_lock); 395 list_add_rcu(&pt->list, head); 396 spin_unlock(&ptype_lock); 397 } 398 EXPORT_SYMBOL(dev_add_pack); 399 400 /** 401 * __dev_remove_pack - remove packet handler 402 * @pt: packet type declaration 403 * 404 * Remove a protocol handler that was previously added to the kernel 405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 406 * from the kernel lists and can be freed or reused once this function 407 * returns. 408 * 409 * The packet type might still be in use by receivers 410 * and must not be freed until after all the CPU's have gone 411 * through a quiescent state. 412 */ 413 void __dev_remove_pack(struct packet_type *pt) 414 { 415 struct list_head *head = ptype_head(pt); 416 struct packet_type *pt1; 417 418 spin_lock(&ptype_lock); 419 420 list_for_each_entry(pt1, head, list) { 421 if (pt == pt1) { 422 list_del_rcu(&pt->list); 423 goto out; 424 } 425 } 426 427 pr_warn("dev_remove_pack: %p not found\n", pt); 428 out: 429 spin_unlock(&ptype_lock); 430 } 431 EXPORT_SYMBOL(__dev_remove_pack); 432 433 /** 434 * dev_remove_pack - remove packet handler 435 * @pt: packet type declaration 436 * 437 * Remove a protocol handler that was previously added to the kernel 438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 439 * from the kernel lists and can be freed or reused once this function 440 * returns. 441 * 442 * This call sleeps to guarantee that no CPU is looking at the packet 443 * type after return. 444 */ 445 void dev_remove_pack(struct packet_type *pt) 446 { 447 __dev_remove_pack(pt); 448 449 synchronize_net(); 450 } 451 EXPORT_SYMBOL(dev_remove_pack); 452 453 454 /** 455 * dev_add_offload - register offload handlers 456 * @po: protocol offload declaration 457 * 458 * Add protocol offload handlers to the networking stack. The passed 459 * &proto_offload is linked into kernel lists and may not be freed until 460 * it has been removed from the kernel lists. 461 * 462 * This call does not sleep therefore it can not 463 * guarantee all CPU's that are in middle of receiving packets 464 * will see the new offload handlers (until the next received packet). 465 */ 466 void dev_add_offload(struct packet_offload *po) 467 { 468 struct list_head *head = &offload_base; 469 470 spin_lock(&offload_lock); 471 list_add_rcu(&po->list, head); 472 spin_unlock(&offload_lock); 473 } 474 EXPORT_SYMBOL(dev_add_offload); 475 476 /** 477 * __dev_remove_offload - remove offload handler 478 * @po: packet offload declaration 479 * 480 * Remove a protocol offload handler that was previously added to the 481 * kernel offload handlers by dev_add_offload(). The passed &offload_type 482 * is removed from the kernel lists and can be freed or reused once this 483 * function returns. 484 * 485 * The packet type might still be in use by receivers 486 * and must not be freed until after all the CPU's have gone 487 * through a quiescent state. 488 */ 489 static void __dev_remove_offload(struct packet_offload *po) 490 { 491 struct list_head *head = &offload_base; 492 struct packet_offload *po1; 493 494 spin_lock(&offload_lock); 495 496 list_for_each_entry(po1, head, list) { 497 if (po == po1) { 498 list_del_rcu(&po->list); 499 goto out; 500 } 501 } 502 503 pr_warn("dev_remove_offload: %p not found\n", po); 504 out: 505 spin_unlock(&offload_lock); 506 } 507 508 /** 509 * dev_remove_offload - remove packet offload handler 510 * @po: packet offload declaration 511 * 512 * Remove a packet offload handler that was previously added to the kernel 513 * offload handlers by dev_add_offload(). The passed &offload_type is 514 * removed from the kernel lists and can be freed or reused once this 515 * function returns. 516 * 517 * This call sleeps to guarantee that no CPU is looking at the packet 518 * type after return. 519 */ 520 void dev_remove_offload(struct packet_offload *po) 521 { 522 __dev_remove_offload(po); 523 524 synchronize_net(); 525 } 526 EXPORT_SYMBOL(dev_remove_offload); 527 528 /****************************************************************************** 529 530 Device Boot-time Settings Routines 531 532 *******************************************************************************/ 533 534 /* Boot time configuration table */ 535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 536 537 /** 538 * netdev_boot_setup_add - add new setup entry 539 * @name: name of the device 540 * @map: configured settings for the device 541 * 542 * Adds new setup entry to the dev_boot_setup list. The function 543 * returns 0 on error and 1 on success. This is a generic routine to 544 * all netdevices. 545 */ 546 static int netdev_boot_setup_add(char *name, struct ifmap *map) 547 { 548 struct netdev_boot_setup *s; 549 int i; 550 551 s = dev_boot_setup; 552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 554 memset(s[i].name, 0, sizeof(s[i].name)); 555 strlcpy(s[i].name, name, IFNAMSIZ); 556 memcpy(&s[i].map, map, sizeof(s[i].map)); 557 break; 558 } 559 } 560 561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 562 } 563 564 /** 565 * netdev_boot_setup_check - check boot time settings 566 * @dev: the netdevice 567 * 568 * Check boot time settings for the device. 569 * The found settings are set for the device to be used 570 * later in the device probing. 571 * Returns 0 if no settings found, 1 if they are. 572 */ 573 int netdev_boot_setup_check(struct net_device *dev) 574 { 575 struct netdev_boot_setup *s = dev_boot_setup; 576 int i; 577 578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 580 !strcmp(dev->name, s[i].name)) { 581 dev->irq = s[i].map.irq; 582 dev->base_addr = s[i].map.base_addr; 583 dev->mem_start = s[i].map.mem_start; 584 dev->mem_end = s[i].map.mem_end; 585 return 1; 586 } 587 } 588 return 0; 589 } 590 EXPORT_SYMBOL(netdev_boot_setup_check); 591 592 593 /** 594 * netdev_boot_base - get address from boot time settings 595 * @prefix: prefix for network device 596 * @unit: id for network device 597 * 598 * Check boot time settings for the base address of device. 599 * The found settings are set for the device to be used 600 * later in the device probing. 601 * Returns 0 if no settings found. 602 */ 603 unsigned long netdev_boot_base(const char *prefix, int unit) 604 { 605 const struct netdev_boot_setup *s = dev_boot_setup; 606 char name[IFNAMSIZ]; 607 int i; 608 609 sprintf(name, "%s%d", prefix, unit); 610 611 /* 612 * If device already registered then return base of 1 613 * to indicate not to probe for this interface 614 */ 615 if (__dev_get_by_name(&init_net, name)) 616 return 1; 617 618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 619 if (!strcmp(name, s[i].name)) 620 return s[i].map.base_addr; 621 return 0; 622 } 623 624 /* 625 * Saves at boot time configured settings for any netdevice. 626 */ 627 int __init netdev_boot_setup(char *str) 628 { 629 int ints[5]; 630 struct ifmap map; 631 632 str = get_options(str, ARRAY_SIZE(ints), ints); 633 if (!str || !*str) 634 return 0; 635 636 /* Save settings */ 637 memset(&map, 0, sizeof(map)); 638 if (ints[0] > 0) 639 map.irq = ints[1]; 640 if (ints[0] > 1) 641 map.base_addr = ints[2]; 642 if (ints[0] > 2) 643 map.mem_start = ints[3]; 644 if (ints[0] > 3) 645 map.mem_end = ints[4]; 646 647 /* Add new entry to the list */ 648 return netdev_boot_setup_add(str, &map); 649 } 650 651 __setup("netdev=", netdev_boot_setup); 652 653 /******************************************************************************* 654 655 Device Interface Subroutines 656 657 *******************************************************************************/ 658 659 /** 660 * __dev_get_by_name - find a device by its name 661 * @net: the applicable net namespace 662 * @name: name to find 663 * 664 * Find an interface by name. Must be called under RTNL semaphore 665 * or @dev_base_lock. If the name is found a pointer to the device 666 * is returned. If the name is not found then %NULL is returned. The 667 * reference counters are not incremented so the caller must be 668 * careful with locks. 669 */ 670 671 struct net_device *__dev_get_by_name(struct net *net, const char *name) 672 { 673 struct net_device *dev; 674 struct hlist_head *head = dev_name_hash(net, name); 675 676 hlist_for_each_entry(dev, head, name_hlist) 677 if (!strncmp(dev->name, name, IFNAMSIZ)) 678 return dev; 679 680 return NULL; 681 } 682 EXPORT_SYMBOL(__dev_get_by_name); 683 684 /** 685 * dev_get_by_name_rcu - find a device by its name 686 * @net: the applicable net namespace 687 * @name: name to find 688 * 689 * Find an interface by name. 690 * If the name is found a pointer to the device is returned. 691 * If the name is not found then %NULL is returned. 692 * The reference counters are not incremented so the caller must be 693 * careful with locks. The caller must hold RCU lock. 694 */ 695 696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 697 { 698 struct net_device *dev; 699 struct hlist_head *head = dev_name_hash(net, name); 700 701 hlist_for_each_entry_rcu(dev, head, name_hlist) 702 if (!strncmp(dev->name, name, IFNAMSIZ)) 703 return dev; 704 705 return NULL; 706 } 707 EXPORT_SYMBOL(dev_get_by_name_rcu); 708 709 /** 710 * dev_get_by_name - find a device by its name 711 * @net: the applicable net namespace 712 * @name: name to find 713 * 714 * Find an interface by name. This can be called from any 715 * context and does its own locking. The returned handle has 716 * the usage count incremented and the caller must use dev_put() to 717 * release it when it is no longer needed. %NULL is returned if no 718 * matching device is found. 719 */ 720 721 struct net_device *dev_get_by_name(struct net *net, const char *name) 722 { 723 struct net_device *dev; 724 725 rcu_read_lock(); 726 dev = dev_get_by_name_rcu(net, name); 727 if (dev) 728 dev_hold(dev); 729 rcu_read_unlock(); 730 return dev; 731 } 732 EXPORT_SYMBOL(dev_get_by_name); 733 734 /** 735 * __dev_get_by_index - find a device by its ifindex 736 * @net: the applicable net namespace 737 * @ifindex: index of device 738 * 739 * Search for an interface by index. Returns %NULL if the device 740 * is not found or a pointer to the device. The device has not 741 * had its reference counter increased so the caller must be careful 742 * about locking. The caller must hold either the RTNL semaphore 743 * or @dev_base_lock. 744 */ 745 746 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 747 { 748 struct net_device *dev; 749 struct hlist_head *head = dev_index_hash(net, ifindex); 750 751 hlist_for_each_entry(dev, head, index_hlist) 752 if (dev->ifindex == ifindex) 753 return dev; 754 755 return NULL; 756 } 757 EXPORT_SYMBOL(__dev_get_by_index); 758 759 /** 760 * dev_get_by_index_rcu - find a device by its ifindex 761 * @net: the applicable net namespace 762 * @ifindex: index of device 763 * 764 * Search for an interface by index. Returns %NULL if the device 765 * is not found or a pointer to the device. The device has not 766 * had its reference counter increased so the caller must be careful 767 * about locking. The caller must hold RCU lock. 768 */ 769 770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 771 { 772 struct net_device *dev; 773 struct hlist_head *head = dev_index_hash(net, ifindex); 774 775 hlist_for_each_entry_rcu(dev, head, index_hlist) 776 if (dev->ifindex == ifindex) 777 return dev; 778 779 return NULL; 780 } 781 EXPORT_SYMBOL(dev_get_by_index_rcu); 782 783 784 /** 785 * dev_get_by_index - find a device by its ifindex 786 * @net: the applicable net namespace 787 * @ifindex: index of device 788 * 789 * Search for an interface by index. Returns NULL if the device 790 * is not found or a pointer to the device. The device returned has 791 * had a reference added and the pointer is safe until the user calls 792 * dev_put to indicate they have finished with it. 793 */ 794 795 struct net_device *dev_get_by_index(struct net *net, int ifindex) 796 { 797 struct net_device *dev; 798 799 rcu_read_lock(); 800 dev = dev_get_by_index_rcu(net, ifindex); 801 if (dev) 802 dev_hold(dev); 803 rcu_read_unlock(); 804 return dev; 805 } 806 EXPORT_SYMBOL(dev_get_by_index); 807 808 /** 809 * netdev_get_name - get a netdevice name, knowing its ifindex. 810 * @net: network namespace 811 * @name: a pointer to the buffer where the name will be stored. 812 * @ifindex: the ifindex of the interface to get the name from. 813 * 814 * The use of raw_seqcount_begin() and cond_resched() before 815 * retrying is required as we want to give the writers a chance 816 * to complete when CONFIG_PREEMPT is not set. 817 */ 818 int netdev_get_name(struct net *net, char *name, int ifindex) 819 { 820 struct net_device *dev; 821 unsigned int seq; 822 823 retry: 824 seq = raw_seqcount_begin(&devnet_rename_seq); 825 rcu_read_lock(); 826 dev = dev_get_by_index_rcu(net, ifindex); 827 if (!dev) { 828 rcu_read_unlock(); 829 return -ENODEV; 830 } 831 832 strcpy(name, dev->name); 833 rcu_read_unlock(); 834 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 835 cond_resched(); 836 goto retry; 837 } 838 839 return 0; 840 } 841 842 /** 843 * dev_getbyhwaddr_rcu - find a device by its hardware address 844 * @net: the applicable net namespace 845 * @type: media type of device 846 * @ha: hardware address 847 * 848 * Search for an interface by MAC address. Returns NULL if the device 849 * is not found or a pointer to the device. 850 * The caller must hold RCU or RTNL. 851 * The returned device has not had its ref count increased 852 * and the caller must therefore be careful about locking 853 * 854 */ 855 856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 857 const char *ha) 858 { 859 struct net_device *dev; 860 861 for_each_netdev_rcu(net, dev) 862 if (dev->type == type && 863 !memcmp(dev->dev_addr, ha, dev->addr_len)) 864 return dev; 865 866 return NULL; 867 } 868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 869 870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 871 { 872 struct net_device *dev; 873 874 ASSERT_RTNL(); 875 for_each_netdev(net, dev) 876 if (dev->type == type) 877 return dev; 878 879 return NULL; 880 } 881 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 882 883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 884 { 885 struct net_device *dev, *ret = NULL; 886 887 rcu_read_lock(); 888 for_each_netdev_rcu(net, dev) 889 if (dev->type == type) { 890 dev_hold(dev); 891 ret = dev; 892 break; 893 } 894 rcu_read_unlock(); 895 return ret; 896 } 897 EXPORT_SYMBOL(dev_getfirstbyhwtype); 898 899 /** 900 * dev_get_by_flags_rcu - find any device with given flags 901 * @net: the applicable net namespace 902 * @if_flags: IFF_* values 903 * @mask: bitmask of bits in if_flags to check 904 * 905 * Search for any interface with the given flags. Returns NULL if a device 906 * is not found or a pointer to the device. Must be called inside 907 * rcu_read_lock(), and result refcount is unchanged. 908 */ 909 910 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 911 unsigned short mask) 912 { 913 struct net_device *dev, *ret; 914 915 ret = NULL; 916 for_each_netdev_rcu(net, dev) { 917 if (((dev->flags ^ if_flags) & mask) == 0) { 918 ret = dev; 919 break; 920 } 921 } 922 return ret; 923 } 924 EXPORT_SYMBOL(dev_get_by_flags_rcu); 925 926 /** 927 * dev_valid_name - check if name is okay for network device 928 * @name: name string 929 * 930 * Network device names need to be valid file names to 931 * to allow sysfs to work. We also disallow any kind of 932 * whitespace. 933 */ 934 bool dev_valid_name(const char *name) 935 { 936 if (*name == '\0') 937 return false; 938 if (strlen(name) >= IFNAMSIZ) 939 return false; 940 if (!strcmp(name, ".") || !strcmp(name, "..")) 941 return false; 942 943 while (*name) { 944 if (*name == '/' || isspace(*name)) 945 return false; 946 name++; 947 } 948 return true; 949 } 950 EXPORT_SYMBOL(dev_valid_name); 951 952 /** 953 * __dev_alloc_name - allocate a name for a device 954 * @net: network namespace to allocate the device name in 955 * @name: name format string 956 * @buf: scratch buffer and result name string 957 * 958 * Passed a format string - eg "lt%d" it will try and find a suitable 959 * id. It scans list of devices to build up a free map, then chooses 960 * the first empty slot. The caller must hold the dev_base or rtnl lock 961 * while allocating the name and adding the device in order to avoid 962 * duplicates. 963 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 964 * Returns the number of the unit assigned or a negative errno code. 965 */ 966 967 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 968 { 969 int i = 0; 970 const char *p; 971 const int max_netdevices = 8*PAGE_SIZE; 972 unsigned long *inuse; 973 struct net_device *d; 974 975 p = strnchr(name, IFNAMSIZ-1, '%'); 976 if (p) { 977 /* 978 * Verify the string as this thing may have come from 979 * the user. There must be either one "%d" and no other "%" 980 * characters. 981 */ 982 if (p[1] != 'd' || strchr(p + 2, '%')) 983 return -EINVAL; 984 985 /* Use one page as a bit array of possible slots */ 986 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 987 if (!inuse) 988 return -ENOMEM; 989 990 for_each_netdev(net, d) { 991 if (!sscanf(d->name, name, &i)) 992 continue; 993 if (i < 0 || i >= max_netdevices) 994 continue; 995 996 /* avoid cases where sscanf is not exact inverse of printf */ 997 snprintf(buf, IFNAMSIZ, name, i); 998 if (!strncmp(buf, d->name, IFNAMSIZ)) 999 set_bit(i, inuse); 1000 } 1001 1002 i = find_first_zero_bit(inuse, max_netdevices); 1003 free_page((unsigned long) inuse); 1004 } 1005 1006 if (buf != name) 1007 snprintf(buf, IFNAMSIZ, name, i); 1008 if (!__dev_get_by_name(net, buf)) 1009 return i; 1010 1011 /* It is possible to run out of possible slots 1012 * when the name is long and there isn't enough space left 1013 * for the digits, or if all bits are used. 1014 */ 1015 return -ENFILE; 1016 } 1017 1018 /** 1019 * dev_alloc_name - allocate a name for a device 1020 * @dev: device 1021 * @name: name format string 1022 * 1023 * Passed a format string - eg "lt%d" it will try and find a suitable 1024 * id. It scans list of devices to build up a free map, then chooses 1025 * the first empty slot. The caller must hold the dev_base or rtnl lock 1026 * while allocating the name and adding the device in order to avoid 1027 * duplicates. 1028 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1029 * Returns the number of the unit assigned or a negative errno code. 1030 */ 1031 1032 int dev_alloc_name(struct net_device *dev, const char *name) 1033 { 1034 char buf[IFNAMSIZ]; 1035 struct net *net; 1036 int ret; 1037 1038 BUG_ON(!dev_net(dev)); 1039 net = dev_net(dev); 1040 ret = __dev_alloc_name(net, name, buf); 1041 if (ret >= 0) 1042 strlcpy(dev->name, buf, IFNAMSIZ); 1043 return ret; 1044 } 1045 EXPORT_SYMBOL(dev_alloc_name); 1046 1047 static int dev_alloc_name_ns(struct net *net, 1048 struct net_device *dev, 1049 const char *name) 1050 { 1051 char buf[IFNAMSIZ]; 1052 int ret; 1053 1054 ret = __dev_alloc_name(net, name, buf); 1055 if (ret >= 0) 1056 strlcpy(dev->name, buf, IFNAMSIZ); 1057 return ret; 1058 } 1059 1060 static int dev_get_valid_name(struct net *net, 1061 struct net_device *dev, 1062 const char *name) 1063 { 1064 BUG_ON(!net); 1065 1066 if (!dev_valid_name(name)) 1067 return -EINVAL; 1068 1069 if (strchr(name, '%')) 1070 return dev_alloc_name_ns(net, dev, name); 1071 else if (__dev_get_by_name(net, name)) 1072 return -EEXIST; 1073 else if (dev->name != name) 1074 strlcpy(dev->name, name, IFNAMSIZ); 1075 1076 return 0; 1077 } 1078 1079 /** 1080 * dev_change_name - change name of a device 1081 * @dev: device 1082 * @newname: name (or format string) must be at least IFNAMSIZ 1083 * 1084 * Change name of a device, can pass format strings "eth%d". 1085 * for wildcarding. 1086 */ 1087 int dev_change_name(struct net_device *dev, const char *newname) 1088 { 1089 unsigned char old_assign_type; 1090 char oldname[IFNAMSIZ]; 1091 int err = 0; 1092 int ret; 1093 struct net *net; 1094 1095 ASSERT_RTNL(); 1096 BUG_ON(!dev_net(dev)); 1097 1098 net = dev_net(dev); 1099 if (dev->flags & IFF_UP) 1100 return -EBUSY; 1101 1102 write_seqcount_begin(&devnet_rename_seq); 1103 1104 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1105 write_seqcount_end(&devnet_rename_seq); 1106 return 0; 1107 } 1108 1109 memcpy(oldname, dev->name, IFNAMSIZ); 1110 1111 err = dev_get_valid_name(net, dev, newname); 1112 if (err < 0) { 1113 write_seqcount_end(&devnet_rename_seq); 1114 return err; 1115 } 1116 1117 if (oldname[0] && !strchr(oldname, '%')) 1118 netdev_info(dev, "renamed from %s\n", oldname); 1119 1120 old_assign_type = dev->name_assign_type; 1121 dev->name_assign_type = NET_NAME_RENAMED; 1122 1123 rollback: 1124 ret = device_rename(&dev->dev, dev->name); 1125 if (ret) { 1126 memcpy(dev->name, oldname, IFNAMSIZ); 1127 dev->name_assign_type = old_assign_type; 1128 write_seqcount_end(&devnet_rename_seq); 1129 return ret; 1130 } 1131 1132 write_seqcount_end(&devnet_rename_seq); 1133 1134 netdev_adjacent_rename_links(dev, oldname); 1135 1136 write_lock_bh(&dev_base_lock); 1137 hlist_del_rcu(&dev->name_hlist); 1138 write_unlock_bh(&dev_base_lock); 1139 1140 synchronize_rcu(); 1141 1142 write_lock_bh(&dev_base_lock); 1143 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1144 write_unlock_bh(&dev_base_lock); 1145 1146 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1147 ret = notifier_to_errno(ret); 1148 1149 if (ret) { 1150 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1151 if (err >= 0) { 1152 err = ret; 1153 write_seqcount_begin(&devnet_rename_seq); 1154 memcpy(dev->name, oldname, IFNAMSIZ); 1155 memcpy(oldname, newname, IFNAMSIZ); 1156 dev->name_assign_type = old_assign_type; 1157 old_assign_type = NET_NAME_RENAMED; 1158 goto rollback; 1159 } else { 1160 pr_err("%s: name change rollback failed: %d\n", 1161 dev->name, ret); 1162 } 1163 } 1164 1165 return err; 1166 } 1167 1168 /** 1169 * dev_set_alias - change ifalias of a device 1170 * @dev: device 1171 * @alias: name up to IFALIASZ 1172 * @len: limit of bytes to copy from info 1173 * 1174 * Set ifalias for a device, 1175 */ 1176 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1177 { 1178 char *new_ifalias; 1179 1180 ASSERT_RTNL(); 1181 1182 if (len >= IFALIASZ) 1183 return -EINVAL; 1184 1185 if (!len) { 1186 kfree(dev->ifalias); 1187 dev->ifalias = NULL; 1188 return 0; 1189 } 1190 1191 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1192 if (!new_ifalias) 1193 return -ENOMEM; 1194 dev->ifalias = new_ifalias; 1195 1196 strlcpy(dev->ifalias, alias, len+1); 1197 return len; 1198 } 1199 1200 1201 /** 1202 * netdev_features_change - device changes features 1203 * @dev: device to cause notification 1204 * 1205 * Called to indicate a device has changed features. 1206 */ 1207 void netdev_features_change(struct net_device *dev) 1208 { 1209 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1210 } 1211 EXPORT_SYMBOL(netdev_features_change); 1212 1213 /** 1214 * netdev_state_change - device changes state 1215 * @dev: device to cause notification 1216 * 1217 * Called to indicate a device has changed state. This function calls 1218 * the notifier chains for netdev_chain and sends a NEWLINK message 1219 * to the routing socket. 1220 */ 1221 void netdev_state_change(struct net_device *dev) 1222 { 1223 if (dev->flags & IFF_UP) { 1224 struct netdev_notifier_change_info change_info; 1225 1226 change_info.flags_changed = 0; 1227 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1228 &change_info.info); 1229 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1230 } 1231 } 1232 EXPORT_SYMBOL(netdev_state_change); 1233 1234 /** 1235 * netdev_notify_peers - notify network peers about existence of @dev 1236 * @dev: network device 1237 * 1238 * Generate traffic such that interested network peers are aware of 1239 * @dev, such as by generating a gratuitous ARP. This may be used when 1240 * a device wants to inform the rest of the network about some sort of 1241 * reconfiguration such as a failover event or virtual machine 1242 * migration. 1243 */ 1244 void netdev_notify_peers(struct net_device *dev) 1245 { 1246 rtnl_lock(); 1247 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1248 rtnl_unlock(); 1249 } 1250 EXPORT_SYMBOL(netdev_notify_peers); 1251 1252 static int __dev_open(struct net_device *dev) 1253 { 1254 const struct net_device_ops *ops = dev->netdev_ops; 1255 int ret; 1256 1257 ASSERT_RTNL(); 1258 1259 if (!netif_device_present(dev)) 1260 return -ENODEV; 1261 1262 /* Block netpoll from trying to do any rx path servicing. 1263 * If we don't do this there is a chance ndo_poll_controller 1264 * or ndo_poll may be running while we open the device 1265 */ 1266 netpoll_poll_disable(dev); 1267 1268 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1269 ret = notifier_to_errno(ret); 1270 if (ret) 1271 return ret; 1272 1273 set_bit(__LINK_STATE_START, &dev->state); 1274 1275 if (ops->ndo_validate_addr) 1276 ret = ops->ndo_validate_addr(dev); 1277 1278 if (!ret && ops->ndo_open) 1279 ret = ops->ndo_open(dev); 1280 1281 netpoll_poll_enable(dev); 1282 1283 if (ret) 1284 clear_bit(__LINK_STATE_START, &dev->state); 1285 else { 1286 dev->flags |= IFF_UP; 1287 net_dmaengine_get(); 1288 dev_set_rx_mode(dev); 1289 dev_activate(dev); 1290 add_device_randomness(dev->dev_addr, dev->addr_len); 1291 } 1292 1293 return ret; 1294 } 1295 1296 /** 1297 * dev_open - prepare an interface for use. 1298 * @dev: device to open 1299 * 1300 * Takes a device from down to up state. The device's private open 1301 * function is invoked and then the multicast lists are loaded. Finally 1302 * the device is moved into the up state and a %NETDEV_UP message is 1303 * sent to the netdev notifier chain. 1304 * 1305 * Calling this function on an active interface is a nop. On a failure 1306 * a negative errno code is returned. 1307 */ 1308 int dev_open(struct net_device *dev) 1309 { 1310 int ret; 1311 1312 if (dev->flags & IFF_UP) 1313 return 0; 1314 1315 ret = __dev_open(dev); 1316 if (ret < 0) 1317 return ret; 1318 1319 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1320 call_netdevice_notifiers(NETDEV_UP, dev); 1321 1322 return ret; 1323 } 1324 EXPORT_SYMBOL(dev_open); 1325 1326 static int __dev_close_many(struct list_head *head) 1327 { 1328 struct net_device *dev; 1329 1330 ASSERT_RTNL(); 1331 might_sleep(); 1332 1333 list_for_each_entry(dev, head, close_list) { 1334 /* Temporarily disable netpoll until the interface is down */ 1335 netpoll_poll_disable(dev); 1336 1337 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1338 1339 clear_bit(__LINK_STATE_START, &dev->state); 1340 1341 /* Synchronize to scheduled poll. We cannot touch poll list, it 1342 * can be even on different cpu. So just clear netif_running(). 1343 * 1344 * dev->stop() will invoke napi_disable() on all of it's 1345 * napi_struct instances on this device. 1346 */ 1347 smp_mb__after_atomic(); /* Commit netif_running(). */ 1348 } 1349 1350 dev_deactivate_many(head); 1351 1352 list_for_each_entry(dev, head, close_list) { 1353 const struct net_device_ops *ops = dev->netdev_ops; 1354 1355 /* 1356 * Call the device specific close. This cannot fail. 1357 * Only if device is UP 1358 * 1359 * We allow it to be called even after a DETACH hot-plug 1360 * event. 1361 */ 1362 if (ops->ndo_stop) 1363 ops->ndo_stop(dev); 1364 1365 dev->flags &= ~IFF_UP; 1366 net_dmaengine_put(); 1367 netpoll_poll_enable(dev); 1368 } 1369 1370 return 0; 1371 } 1372 1373 static int __dev_close(struct net_device *dev) 1374 { 1375 int retval; 1376 LIST_HEAD(single); 1377 1378 list_add(&dev->close_list, &single); 1379 retval = __dev_close_many(&single); 1380 list_del(&single); 1381 1382 return retval; 1383 } 1384 1385 static int dev_close_many(struct list_head *head) 1386 { 1387 struct net_device *dev, *tmp; 1388 1389 /* Remove the devices that don't need to be closed */ 1390 list_for_each_entry_safe(dev, tmp, head, close_list) 1391 if (!(dev->flags & IFF_UP)) 1392 list_del_init(&dev->close_list); 1393 1394 __dev_close_many(head); 1395 1396 list_for_each_entry_safe(dev, tmp, head, close_list) { 1397 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1398 call_netdevice_notifiers(NETDEV_DOWN, dev); 1399 list_del_init(&dev->close_list); 1400 } 1401 1402 return 0; 1403 } 1404 1405 /** 1406 * dev_close - shutdown an interface. 1407 * @dev: device to shutdown 1408 * 1409 * This function moves an active device into down state. A 1410 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1411 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1412 * chain. 1413 */ 1414 int dev_close(struct net_device *dev) 1415 { 1416 if (dev->flags & IFF_UP) { 1417 LIST_HEAD(single); 1418 1419 list_add(&dev->close_list, &single); 1420 dev_close_many(&single); 1421 list_del(&single); 1422 } 1423 return 0; 1424 } 1425 EXPORT_SYMBOL(dev_close); 1426 1427 1428 /** 1429 * dev_disable_lro - disable Large Receive Offload on a device 1430 * @dev: device 1431 * 1432 * Disable Large Receive Offload (LRO) on a net device. Must be 1433 * called under RTNL. This is needed if received packets may be 1434 * forwarded to another interface. 1435 */ 1436 void dev_disable_lro(struct net_device *dev) 1437 { 1438 /* 1439 * If we're trying to disable lro on a vlan device 1440 * use the underlying physical device instead 1441 */ 1442 if (is_vlan_dev(dev)) 1443 dev = vlan_dev_real_dev(dev); 1444 1445 /* the same for macvlan devices */ 1446 if (netif_is_macvlan(dev)) 1447 dev = macvlan_dev_real_dev(dev); 1448 1449 dev->wanted_features &= ~NETIF_F_LRO; 1450 netdev_update_features(dev); 1451 1452 if (unlikely(dev->features & NETIF_F_LRO)) 1453 netdev_WARN(dev, "failed to disable LRO!\n"); 1454 } 1455 EXPORT_SYMBOL(dev_disable_lro); 1456 1457 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1458 struct net_device *dev) 1459 { 1460 struct netdev_notifier_info info; 1461 1462 netdev_notifier_info_init(&info, dev); 1463 return nb->notifier_call(nb, val, &info); 1464 } 1465 1466 static int dev_boot_phase = 1; 1467 1468 /** 1469 * register_netdevice_notifier - register a network notifier block 1470 * @nb: notifier 1471 * 1472 * Register a notifier to be called when network device events occur. 1473 * The notifier passed is linked into the kernel structures and must 1474 * not be reused until it has been unregistered. A negative errno code 1475 * is returned on a failure. 1476 * 1477 * When registered all registration and up events are replayed 1478 * to the new notifier to allow device to have a race free 1479 * view of the network device list. 1480 */ 1481 1482 int register_netdevice_notifier(struct notifier_block *nb) 1483 { 1484 struct net_device *dev; 1485 struct net_device *last; 1486 struct net *net; 1487 int err; 1488 1489 rtnl_lock(); 1490 err = raw_notifier_chain_register(&netdev_chain, nb); 1491 if (err) 1492 goto unlock; 1493 if (dev_boot_phase) 1494 goto unlock; 1495 for_each_net(net) { 1496 for_each_netdev(net, dev) { 1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1498 err = notifier_to_errno(err); 1499 if (err) 1500 goto rollback; 1501 1502 if (!(dev->flags & IFF_UP)) 1503 continue; 1504 1505 call_netdevice_notifier(nb, NETDEV_UP, dev); 1506 } 1507 } 1508 1509 unlock: 1510 rtnl_unlock(); 1511 return err; 1512 1513 rollback: 1514 last = dev; 1515 for_each_net(net) { 1516 for_each_netdev(net, dev) { 1517 if (dev == last) 1518 goto outroll; 1519 1520 if (dev->flags & IFF_UP) { 1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1522 dev); 1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1524 } 1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1526 } 1527 } 1528 1529 outroll: 1530 raw_notifier_chain_unregister(&netdev_chain, nb); 1531 goto unlock; 1532 } 1533 EXPORT_SYMBOL(register_netdevice_notifier); 1534 1535 /** 1536 * unregister_netdevice_notifier - unregister a network notifier block 1537 * @nb: notifier 1538 * 1539 * Unregister a notifier previously registered by 1540 * register_netdevice_notifier(). The notifier is unlinked into the 1541 * kernel structures and may then be reused. A negative errno code 1542 * is returned on a failure. 1543 * 1544 * After unregistering unregister and down device events are synthesized 1545 * for all devices on the device list to the removed notifier to remove 1546 * the need for special case cleanup code. 1547 */ 1548 1549 int unregister_netdevice_notifier(struct notifier_block *nb) 1550 { 1551 struct net_device *dev; 1552 struct net *net; 1553 int err; 1554 1555 rtnl_lock(); 1556 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1557 if (err) 1558 goto unlock; 1559 1560 for_each_net(net) { 1561 for_each_netdev(net, dev) { 1562 if (dev->flags & IFF_UP) { 1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1564 dev); 1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1566 } 1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1568 } 1569 } 1570 unlock: 1571 rtnl_unlock(); 1572 return err; 1573 } 1574 EXPORT_SYMBOL(unregister_netdevice_notifier); 1575 1576 /** 1577 * call_netdevice_notifiers_info - call all network notifier blocks 1578 * @val: value passed unmodified to notifier function 1579 * @dev: net_device pointer passed unmodified to notifier function 1580 * @info: notifier information data 1581 * 1582 * Call all network notifier blocks. Parameters and return value 1583 * are as for raw_notifier_call_chain(). 1584 */ 1585 1586 static int call_netdevice_notifiers_info(unsigned long val, 1587 struct net_device *dev, 1588 struct netdev_notifier_info *info) 1589 { 1590 ASSERT_RTNL(); 1591 netdev_notifier_info_init(info, dev); 1592 return raw_notifier_call_chain(&netdev_chain, val, info); 1593 } 1594 1595 /** 1596 * call_netdevice_notifiers - call all network notifier blocks 1597 * @val: value passed unmodified to notifier function 1598 * @dev: net_device pointer passed unmodified to notifier function 1599 * 1600 * Call all network notifier blocks. Parameters and return value 1601 * are as for raw_notifier_call_chain(). 1602 */ 1603 1604 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1605 { 1606 struct netdev_notifier_info info; 1607 1608 return call_netdevice_notifiers_info(val, dev, &info); 1609 } 1610 EXPORT_SYMBOL(call_netdevice_notifiers); 1611 1612 static struct static_key netstamp_needed __read_mostly; 1613 #ifdef HAVE_JUMP_LABEL 1614 /* We are not allowed to call static_key_slow_dec() from irq context 1615 * If net_disable_timestamp() is called from irq context, defer the 1616 * static_key_slow_dec() calls. 1617 */ 1618 static atomic_t netstamp_needed_deferred; 1619 #endif 1620 1621 void net_enable_timestamp(void) 1622 { 1623 #ifdef HAVE_JUMP_LABEL 1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1625 1626 if (deferred) { 1627 while (--deferred) 1628 static_key_slow_dec(&netstamp_needed); 1629 return; 1630 } 1631 #endif 1632 static_key_slow_inc(&netstamp_needed); 1633 } 1634 EXPORT_SYMBOL(net_enable_timestamp); 1635 1636 void net_disable_timestamp(void) 1637 { 1638 #ifdef HAVE_JUMP_LABEL 1639 if (in_interrupt()) { 1640 atomic_inc(&netstamp_needed_deferred); 1641 return; 1642 } 1643 #endif 1644 static_key_slow_dec(&netstamp_needed); 1645 } 1646 EXPORT_SYMBOL(net_disable_timestamp); 1647 1648 static inline void net_timestamp_set(struct sk_buff *skb) 1649 { 1650 skb->tstamp.tv64 = 0; 1651 if (static_key_false(&netstamp_needed)) 1652 __net_timestamp(skb); 1653 } 1654 1655 #define net_timestamp_check(COND, SKB) \ 1656 if (static_key_false(&netstamp_needed)) { \ 1657 if ((COND) && !(SKB)->tstamp.tv64) \ 1658 __net_timestamp(SKB); \ 1659 } \ 1660 1661 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1662 { 1663 unsigned int len; 1664 1665 if (!(dev->flags & IFF_UP)) 1666 return false; 1667 1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1669 if (skb->len <= len) 1670 return true; 1671 1672 /* if TSO is enabled, we don't care about the length as the packet 1673 * could be forwarded without being segmented before 1674 */ 1675 if (skb_is_gso(skb)) 1676 return true; 1677 1678 return false; 1679 } 1680 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1681 1682 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1683 { 1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1686 atomic_long_inc(&dev->rx_dropped); 1687 kfree_skb(skb); 1688 return NET_RX_DROP; 1689 } 1690 } 1691 1692 if (unlikely(!is_skb_forwardable(dev, skb))) { 1693 atomic_long_inc(&dev->rx_dropped); 1694 kfree_skb(skb); 1695 return NET_RX_DROP; 1696 } 1697 1698 skb_scrub_packet(skb, true); 1699 skb->protocol = eth_type_trans(skb, dev); 1700 1701 return 0; 1702 } 1703 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1704 1705 /** 1706 * dev_forward_skb - loopback an skb to another netif 1707 * 1708 * @dev: destination network device 1709 * @skb: buffer to forward 1710 * 1711 * return values: 1712 * NET_RX_SUCCESS (no congestion) 1713 * NET_RX_DROP (packet was dropped, but freed) 1714 * 1715 * dev_forward_skb can be used for injecting an skb from the 1716 * start_xmit function of one device into the receive queue 1717 * of another device. 1718 * 1719 * The receiving device may be in another namespace, so 1720 * we have to clear all information in the skb that could 1721 * impact namespace isolation. 1722 */ 1723 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1724 { 1725 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1726 } 1727 EXPORT_SYMBOL_GPL(dev_forward_skb); 1728 1729 static inline int deliver_skb(struct sk_buff *skb, 1730 struct packet_type *pt_prev, 1731 struct net_device *orig_dev) 1732 { 1733 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1734 return -ENOMEM; 1735 atomic_inc(&skb->users); 1736 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1737 } 1738 1739 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1740 { 1741 if (!ptype->af_packet_priv || !skb->sk) 1742 return false; 1743 1744 if (ptype->id_match) 1745 return ptype->id_match(ptype, skb->sk); 1746 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1747 return true; 1748 1749 return false; 1750 } 1751 1752 /* 1753 * Support routine. Sends outgoing frames to any network 1754 * taps currently in use. 1755 */ 1756 1757 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1758 { 1759 struct packet_type *ptype; 1760 struct sk_buff *skb2 = NULL; 1761 struct packet_type *pt_prev = NULL; 1762 1763 rcu_read_lock(); 1764 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1765 /* Never send packets back to the socket 1766 * they originated from - MvS (miquels@drinkel.ow.org) 1767 */ 1768 if ((ptype->dev == dev || !ptype->dev) && 1769 (!skb_loop_sk(ptype, skb))) { 1770 if (pt_prev) { 1771 deliver_skb(skb2, pt_prev, skb->dev); 1772 pt_prev = ptype; 1773 continue; 1774 } 1775 1776 skb2 = skb_clone(skb, GFP_ATOMIC); 1777 if (!skb2) 1778 break; 1779 1780 net_timestamp_set(skb2); 1781 1782 /* skb->nh should be correctly 1783 set by sender, so that the second statement is 1784 just protection against buggy protocols. 1785 */ 1786 skb_reset_mac_header(skb2); 1787 1788 if (skb_network_header(skb2) < skb2->data || 1789 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1790 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1791 ntohs(skb2->protocol), 1792 dev->name); 1793 skb_reset_network_header(skb2); 1794 } 1795 1796 skb2->transport_header = skb2->network_header; 1797 skb2->pkt_type = PACKET_OUTGOING; 1798 pt_prev = ptype; 1799 } 1800 } 1801 if (pt_prev) 1802 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1803 rcu_read_unlock(); 1804 } 1805 1806 /** 1807 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1808 * @dev: Network device 1809 * @txq: number of queues available 1810 * 1811 * If real_num_tx_queues is changed the tc mappings may no longer be 1812 * valid. To resolve this verify the tc mapping remains valid and if 1813 * not NULL the mapping. With no priorities mapping to this 1814 * offset/count pair it will no longer be used. In the worst case TC0 1815 * is invalid nothing can be done so disable priority mappings. If is 1816 * expected that drivers will fix this mapping if they can before 1817 * calling netif_set_real_num_tx_queues. 1818 */ 1819 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1820 { 1821 int i; 1822 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1823 1824 /* If TC0 is invalidated disable TC mapping */ 1825 if (tc->offset + tc->count > txq) { 1826 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1827 dev->num_tc = 0; 1828 return; 1829 } 1830 1831 /* Invalidated prio to tc mappings set to TC0 */ 1832 for (i = 1; i < TC_BITMASK + 1; i++) { 1833 int q = netdev_get_prio_tc_map(dev, i); 1834 1835 tc = &dev->tc_to_txq[q]; 1836 if (tc->offset + tc->count > txq) { 1837 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1838 i, q); 1839 netdev_set_prio_tc_map(dev, i, 0); 1840 } 1841 } 1842 } 1843 1844 #ifdef CONFIG_XPS 1845 static DEFINE_MUTEX(xps_map_mutex); 1846 #define xmap_dereference(P) \ 1847 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1848 1849 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1850 int cpu, u16 index) 1851 { 1852 struct xps_map *map = NULL; 1853 int pos; 1854 1855 if (dev_maps) 1856 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1857 1858 for (pos = 0; map && pos < map->len; pos++) { 1859 if (map->queues[pos] == index) { 1860 if (map->len > 1) { 1861 map->queues[pos] = map->queues[--map->len]; 1862 } else { 1863 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1864 kfree_rcu(map, rcu); 1865 map = NULL; 1866 } 1867 break; 1868 } 1869 } 1870 1871 return map; 1872 } 1873 1874 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1875 { 1876 struct xps_dev_maps *dev_maps; 1877 int cpu, i; 1878 bool active = false; 1879 1880 mutex_lock(&xps_map_mutex); 1881 dev_maps = xmap_dereference(dev->xps_maps); 1882 1883 if (!dev_maps) 1884 goto out_no_maps; 1885 1886 for_each_possible_cpu(cpu) { 1887 for (i = index; i < dev->num_tx_queues; i++) { 1888 if (!remove_xps_queue(dev_maps, cpu, i)) 1889 break; 1890 } 1891 if (i == dev->num_tx_queues) 1892 active = true; 1893 } 1894 1895 if (!active) { 1896 RCU_INIT_POINTER(dev->xps_maps, NULL); 1897 kfree_rcu(dev_maps, rcu); 1898 } 1899 1900 for (i = index; i < dev->num_tx_queues; i++) 1901 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1902 NUMA_NO_NODE); 1903 1904 out_no_maps: 1905 mutex_unlock(&xps_map_mutex); 1906 } 1907 1908 static struct xps_map *expand_xps_map(struct xps_map *map, 1909 int cpu, u16 index) 1910 { 1911 struct xps_map *new_map; 1912 int alloc_len = XPS_MIN_MAP_ALLOC; 1913 int i, pos; 1914 1915 for (pos = 0; map && pos < map->len; pos++) { 1916 if (map->queues[pos] != index) 1917 continue; 1918 return map; 1919 } 1920 1921 /* Need to add queue to this CPU's existing map */ 1922 if (map) { 1923 if (pos < map->alloc_len) 1924 return map; 1925 1926 alloc_len = map->alloc_len * 2; 1927 } 1928 1929 /* Need to allocate new map to store queue on this CPU's map */ 1930 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1931 cpu_to_node(cpu)); 1932 if (!new_map) 1933 return NULL; 1934 1935 for (i = 0; i < pos; i++) 1936 new_map->queues[i] = map->queues[i]; 1937 new_map->alloc_len = alloc_len; 1938 new_map->len = pos; 1939 1940 return new_map; 1941 } 1942 1943 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1944 u16 index) 1945 { 1946 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1947 struct xps_map *map, *new_map; 1948 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1949 int cpu, numa_node_id = -2; 1950 bool active = false; 1951 1952 mutex_lock(&xps_map_mutex); 1953 1954 dev_maps = xmap_dereference(dev->xps_maps); 1955 1956 /* allocate memory for queue storage */ 1957 for_each_online_cpu(cpu) { 1958 if (!cpumask_test_cpu(cpu, mask)) 1959 continue; 1960 1961 if (!new_dev_maps) 1962 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1963 if (!new_dev_maps) { 1964 mutex_unlock(&xps_map_mutex); 1965 return -ENOMEM; 1966 } 1967 1968 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1969 NULL; 1970 1971 map = expand_xps_map(map, cpu, index); 1972 if (!map) 1973 goto error; 1974 1975 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1976 } 1977 1978 if (!new_dev_maps) 1979 goto out_no_new_maps; 1980 1981 for_each_possible_cpu(cpu) { 1982 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1983 /* add queue to CPU maps */ 1984 int pos = 0; 1985 1986 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1987 while ((pos < map->len) && (map->queues[pos] != index)) 1988 pos++; 1989 1990 if (pos == map->len) 1991 map->queues[map->len++] = index; 1992 #ifdef CONFIG_NUMA 1993 if (numa_node_id == -2) 1994 numa_node_id = cpu_to_node(cpu); 1995 else if (numa_node_id != cpu_to_node(cpu)) 1996 numa_node_id = -1; 1997 #endif 1998 } else if (dev_maps) { 1999 /* fill in the new device map from the old device map */ 2000 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2001 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2002 } 2003 2004 } 2005 2006 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2007 2008 /* Cleanup old maps */ 2009 if (dev_maps) { 2010 for_each_possible_cpu(cpu) { 2011 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2012 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2013 if (map && map != new_map) 2014 kfree_rcu(map, rcu); 2015 } 2016 2017 kfree_rcu(dev_maps, rcu); 2018 } 2019 2020 dev_maps = new_dev_maps; 2021 active = true; 2022 2023 out_no_new_maps: 2024 /* update Tx queue numa node */ 2025 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2026 (numa_node_id >= 0) ? numa_node_id : 2027 NUMA_NO_NODE); 2028 2029 if (!dev_maps) 2030 goto out_no_maps; 2031 2032 /* removes queue from unused CPUs */ 2033 for_each_possible_cpu(cpu) { 2034 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2035 continue; 2036 2037 if (remove_xps_queue(dev_maps, cpu, index)) 2038 active = true; 2039 } 2040 2041 /* free map if not active */ 2042 if (!active) { 2043 RCU_INIT_POINTER(dev->xps_maps, NULL); 2044 kfree_rcu(dev_maps, rcu); 2045 } 2046 2047 out_no_maps: 2048 mutex_unlock(&xps_map_mutex); 2049 2050 return 0; 2051 error: 2052 /* remove any maps that we added */ 2053 for_each_possible_cpu(cpu) { 2054 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2056 NULL; 2057 if (new_map && new_map != map) 2058 kfree(new_map); 2059 } 2060 2061 mutex_unlock(&xps_map_mutex); 2062 2063 kfree(new_dev_maps); 2064 return -ENOMEM; 2065 } 2066 EXPORT_SYMBOL(netif_set_xps_queue); 2067 2068 #endif 2069 /* 2070 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2071 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2072 */ 2073 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2074 { 2075 int rc; 2076 2077 if (txq < 1 || txq > dev->num_tx_queues) 2078 return -EINVAL; 2079 2080 if (dev->reg_state == NETREG_REGISTERED || 2081 dev->reg_state == NETREG_UNREGISTERING) { 2082 ASSERT_RTNL(); 2083 2084 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2085 txq); 2086 if (rc) 2087 return rc; 2088 2089 if (dev->num_tc) 2090 netif_setup_tc(dev, txq); 2091 2092 if (txq < dev->real_num_tx_queues) { 2093 qdisc_reset_all_tx_gt(dev, txq); 2094 #ifdef CONFIG_XPS 2095 netif_reset_xps_queues_gt(dev, txq); 2096 #endif 2097 } 2098 } 2099 2100 dev->real_num_tx_queues = txq; 2101 return 0; 2102 } 2103 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2104 2105 #ifdef CONFIG_SYSFS 2106 /** 2107 * netif_set_real_num_rx_queues - set actual number of RX queues used 2108 * @dev: Network device 2109 * @rxq: Actual number of RX queues 2110 * 2111 * This must be called either with the rtnl_lock held or before 2112 * registration of the net device. Returns 0 on success, or a 2113 * negative error code. If called before registration, it always 2114 * succeeds. 2115 */ 2116 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2117 { 2118 int rc; 2119 2120 if (rxq < 1 || rxq > dev->num_rx_queues) 2121 return -EINVAL; 2122 2123 if (dev->reg_state == NETREG_REGISTERED) { 2124 ASSERT_RTNL(); 2125 2126 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2127 rxq); 2128 if (rc) 2129 return rc; 2130 } 2131 2132 dev->real_num_rx_queues = rxq; 2133 return 0; 2134 } 2135 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2136 #endif 2137 2138 /** 2139 * netif_get_num_default_rss_queues - default number of RSS queues 2140 * 2141 * This routine should set an upper limit on the number of RSS queues 2142 * used by default by multiqueue devices. 2143 */ 2144 int netif_get_num_default_rss_queues(void) 2145 { 2146 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2147 } 2148 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2149 2150 static inline void __netif_reschedule(struct Qdisc *q) 2151 { 2152 struct softnet_data *sd; 2153 unsigned long flags; 2154 2155 local_irq_save(flags); 2156 sd = &__get_cpu_var(softnet_data); 2157 q->next_sched = NULL; 2158 *sd->output_queue_tailp = q; 2159 sd->output_queue_tailp = &q->next_sched; 2160 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2161 local_irq_restore(flags); 2162 } 2163 2164 void __netif_schedule(struct Qdisc *q) 2165 { 2166 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2167 __netif_reschedule(q); 2168 } 2169 EXPORT_SYMBOL(__netif_schedule); 2170 2171 struct dev_kfree_skb_cb { 2172 enum skb_free_reason reason; 2173 }; 2174 2175 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2176 { 2177 return (struct dev_kfree_skb_cb *)skb->cb; 2178 } 2179 2180 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2181 { 2182 unsigned long flags; 2183 2184 if (likely(atomic_read(&skb->users) == 1)) { 2185 smp_rmb(); 2186 atomic_set(&skb->users, 0); 2187 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2188 return; 2189 } 2190 get_kfree_skb_cb(skb)->reason = reason; 2191 local_irq_save(flags); 2192 skb->next = __this_cpu_read(softnet_data.completion_queue); 2193 __this_cpu_write(softnet_data.completion_queue, skb); 2194 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2195 local_irq_restore(flags); 2196 } 2197 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2198 2199 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2200 { 2201 if (in_irq() || irqs_disabled()) 2202 __dev_kfree_skb_irq(skb, reason); 2203 else 2204 dev_kfree_skb(skb); 2205 } 2206 EXPORT_SYMBOL(__dev_kfree_skb_any); 2207 2208 2209 /** 2210 * netif_device_detach - mark device as removed 2211 * @dev: network device 2212 * 2213 * Mark device as removed from system and therefore no longer available. 2214 */ 2215 void netif_device_detach(struct net_device *dev) 2216 { 2217 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2218 netif_running(dev)) { 2219 netif_tx_stop_all_queues(dev); 2220 } 2221 } 2222 EXPORT_SYMBOL(netif_device_detach); 2223 2224 /** 2225 * netif_device_attach - mark device as attached 2226 * @dev: network device 2227 * 2228 * Mark device as attached from system and restart if needed. 2229 */ 2230 void netif_device_attach(struct net_device *dev) 2231 { 2232 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2233 netif_running(dev)) { 2234 netif_tx_wake_all_queues(dev); 2235 __netdev_watchdog_up(dev); 2236 } 2237 } 2238 EXPORT_SYMBOL(netif_device_attach); 2239 2240 static void skb_warn_bad_offload(const struct sk_buff *skb) 2241 { 2242 static const netdev_features_t null_features = 0; 2243 struct net_device *dev = skb->dev; 2244 const char *driver = ""; 2245 2246 if (!net_ratelimit()) 2247 return; 2248 2249 if (dev && dev->dev.parent) 2250 driver = dev_driver_string(dev->dev.parent); 2251 2252 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2253 "gso_type=%d ip_summed=%d\n", 2254 driver, dev ? &dev->features : &null_features, 2255 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2256 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2257 skb_shinfo(skb)->gso_type, skb->ip_summed); 2258 } 2259 2260 /* 2261 * Invalidate hardware checksum when packet is to be mangled, and 2262 * complete checksum manually on outgoing path. 2263 */ 2264 int skb_checksum_help(struct sk_buff *skb) 2265 { 2266 __wsum csum; 2267 int ret = 0, offset; 2268 2269 if (skb->ip_summed == CHECKSUM_COMPLETE) 2270 goto out_set_summed; 2271 2272 if (unlikely(skb_shinfo(skb)->gso_size)) { 2273 skb_warn_bad_offload(skb); 2274 return -EINVAL; 2275 } 2276 2277 /* Before computing a checksum, we should make sure no frag could 2278 * be modified by an external entity : checksum could be wrong. 2279 */ 2280 if (skb_has_shared_frag(skb)) { 2281 ret = __skb_linearize(skb); 2282 if (ret) 2283 goto out; 2284 } 2285 2286 offset = skb_checksum_start_offset(skb); 2287 BUG_ON(offset >= skb_headlen(skb)); 2288 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2289 2290 offset += skb->csum_offset; 2291 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2292 2293 if (skb_cloned(skb) && 2294 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2295 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2296 if (ret) 2297 goto out; 2298 } 2299 2300 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2301 out_set_summed: 2302 skb->ip_summed = CHECKSUM_NONE; 2303 out: 2304 return ret; 2305 } 2306 EXPORT_SYMBOL(skb_checksum_help); 2307 2308 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2309 { 2310 unsigned int vlan_depth = skb->mac_len; 2311 __be16 type = skb->protocol; 2312 2313 /* Tunnel gso handlers can set protocol to ethernet. */ 2314 if (type == htons(ETH_P_TEB)) { 2315 struct ethhdr *eth; 2316 2317 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2318 return 0; 2319 2320 eth = (struct ethhdr *)skb_mac_header(skb); 2321 type = eth->h_proto; 2322 } 2323 2324 /* if skb->protocol is 802.1Q/AD then the header should already be 2325 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at 2326 * ETH_HLEN otherwise 2327 */ 2328 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2329 if (vlan_depth) { 2330 if (WARN_ON(vlan_depth < VLAN_HLEN)) 2331 return 0; 2332 vlan_depth -= VLAN_HLEN; 2333 } else { 2334 vlan_depth = ETH_HLEN; 2335 } 2336 do { 2337 struct vlan_hdr *vh; 2338 2339 if (unlikely(!pskb_may_pull(skb, 2340 vlan_depth + VLAN_HLEN))) 2341 return 0; 2342 2343 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2344 type = vh->h_vlan_encapsulated_proto; 2345 vlan_depth += VLAN_HLEN; 2346 } while (type == htons(ETH_P_8021Q) || 2347 type == htons(ETH_P_8021AD)); 2348 } 2349 2350 *depth = vlan_depth; 2351 2352 return type; 2353 } 2354 2355 /** 2356 * skb_mac_gso_segment - mac layer segmentation handler. 2357 * @skb: buffer to segment 2358 * @features: features for the output path (see dev->features) 2359 */ 2360 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2361 netdev_features_t features) 2362 { 2363 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2364 struct packet_offload *ptype; 2365 int vlan_depth = skb->mac_len; 2366 __be16 type = skb_network_protocol(skb, &vlan_depth); 2367 2368 if (unlikely(!type)) 2369 return ERR_PTR(-EINVAL); 2370 2371 __skb_pull(skb, vlan_depth); 2372 2373 rcu_read_lock(); 2374 list_for_each_entry_rcu(ptype, &offload_base, list) { 2375 if (ptype->type == type && ptype->callbacks.gso_segment) { 2376 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2377 int err; 2378 2379 err = ptype->callbacks.gso_send_check(skb); 2380 segs = ERR_PTR(err); 2381 if (err || skb_gso_ok(skb, features)) 2382 break; 2383 __skb_push(skb, (skb->data - 2384 skb_network_header(skb))); 2385 } 2386 segs = ptype->callbacks.gso_segment(skb, features); 2387 break; 2388 } 2389 } 2390 rcu_read_unlock(); 2391 2392 __skb_push(skb, skb->data - skb_mac_header(skb)); 2393 2394 return segs; 2395 } 2396 EXPORT_SYMBOL(skb_mac_gso_segment); 2397 2398 2399 /* openvswitch calls this on rx path, so we need a different check. 2400 */ 2401 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2402 { 2403 if (tx_path) 2404 return skb->ip_summed != CHECKSUM_PARTIAL; 2405 else 2406 return skb->ip_summed == CHECKSUM_NONE; 2407 } 2408 2409 /** 2410 * __skb_gso_segment - Perform segmentation on skb. 2411 * @skb: buffer to segment 2412 * @features: features for the output path (see dev->features) 2413 * @tx_path: whether it is called in TX path 2414 * 2415 * This function segments the given skb and returns a list of segments. 2416 * 2417 * It may return NULL if the skb requires no segmentation. This is 2418 * only possible when GSO is used for verifying header integrity. 2419 */ 2420 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2421 netdev_features_t features, bool tx_path) 2422 { 2423 if (unlikely(skb_needs_check(skb, tx_path))) { 2424 int err; 2425 2426 skb_warn_bad_offload(skb); 2427 2428 err = skb_cow_head(skb, 0); 2429 if (err < 0) 2430 return ERR_PTR(err); 2431 } 2432 2433 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2434 SKB_GSO_CB(skb)->encap_level = 0; 2435 2436 skb_reset_mac_header(skb); 2437 skb_reset_mac_len(skb); 2438 2439 return skb_mac_gso_segment(skb, features); 2440 } 2441 EXPORT_SYMBOL(__skb_gso_segment); 2442 2443 /* Take action when hardware reception checksum errors are detected. */ 2444 #ifdef CONFIG_BUG 2445 void netdev_rx_csum_fault(struct net_device *dev) 2446 { 2447 if (net_ratelimit()) { 2448 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2449 dump_stack(); 2450 } 2451 } 2452 EXPORT_SYMBOL(netdev_rx_csum_fault); 2453 #endif 2454 2455 /* Actually, we should eliminate this check as soon as we know, that: 2456 * 1. IOMMU is present and allows to map all the memory. 2457 * 2. No high memory really exists on this machine. 2458 */ 2459 2460 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2461 { 2462 #ifdef CONFIG_HIGHMEM 2463 int i; 2464 if (!(dev->features & NETIF_F_HIGHDMA)) { 2465 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2466 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2467 if (PageHighMem(skb_frag_page(frag))) 2468 return 1; 2469 } 2470 } 2471 2472 if (PCI_DMA_BUS_IS_PHYS) { 2473 struct device *pdev = dev->dev.parent; 2474 2475 if (!pdev) 2476 return 0; 2477 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2479 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2480 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2481 return 1; 2482 } 2483 } 2484 #endif 2485 return 0; 2486 } 2487 2488 struct dev_gso_cb { 2489 void (*destructor)(struct sk_buff *skb); 2490 }; 2491 2492 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2493 2494 static void dev_gso_skb_destructor(struct sk_buff *skb) 2495 { 2496 struct dev_gso_cb *cb; 2497 2498 kfree_skb_list(skb->next); 2499 skb->next = NULL; 2500 2501 cb = DEV_GSO_CB(skb); 2502 if (cb->destructor) 2503 cb->destructor(skb); 2504 } 2505 2506 /** 2507 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2508 * @skb: buffer to segment 2509 * @features: device features as applicable to this skb 2510 * 2511 * This function segments the given skb and stores the list of segments 2512 * in skb->next. 2513 */ 2514 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2515 { 2516 struct sk_buff *segs; 2517 2518 segs = skb_gso_segment(skb, features); 2519 2520 /* Verifying header integrity only. */ 2521 if (!segs) 2522 return 0; 2523 2524 if (IS_ERR(segs)) 2525 return PTR_ERR(segs); 2526 2527 skb->next = segs; 2528 DEV_GSO_CB(skb)->destructor = skb->destructor; 2529 skb->destructor = dev_gso_skb_destructor; 2530 2531 return 0; 2532 } 2533 2534 /* If MPLS offload request, verify we are testing hardware MPLS features 2535 * instead of standard features for the netdev. 2536 */ 2537 #ifdef CONFIG_NET_MPLS_GSO 2538 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2539 netdev_features_t features, 2540 __be16 type) 2541 { 2542 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC)) 2543 features &= skb->dev->mpls_features; 2544 2545 return features; 2546 } 2547 #else 2548 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2549 netdev_features_t features, 2550 __be16 type) 2551 { 2552 return features; 2553 } 2554 #endif 2555 2556 static netdev_features_t harmonize_features(struct sk_buff *skb, 2557 netdev_features_t features) 2558 { 2559 int tmp; 2560 __be16 type; 2561 2562 type = skb_network_protocol(skb, &tmp); 2563 features = net_mpls_features(skb, features, type); 2564 2565 if (skb->ip_summed != CHECKSUM_NONE && 2566 !can_checksum_protocol(features, type)) { 2567 features &= ~NETIF_F_ALL_CSUM; 2568 } else if (illegal_highdma(skb->dev, skb)) { 2569 features &= ~NETIF_F_SG; 2570 } 2571 2572 return features; 2573 } 2574 2575 netdev_features_t netif_skb_features(struct sk_buff *skb) 2576 { 2577 __be16 protocol = skb->protocol; 2578 netdev_features_t features = skb->dev->features; 2579 2580 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2581 features &= ~NETIF_F_GSO_MASK; 2582 2583 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2584 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2585 protocol = veh->h_vlan_encapsulated_proto; 2586 } else if (!vlan_tx_tag_present(skb)) { 2587 return harmonize_features(skb, features); 2588 } 2589 2590 features = netdev_intersect_features(features, 2591 skb->dev->vlan_features | 2592 NETIF_F_HW_VLAN_CTAG_TX | 2593 NETIF_F_HW_VLAN_STAG_TX); 2594 2595 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2596 features = netdev_intersect_features(features, 2597 NETIF_F_SG | 2598 NETIF_F_HIGHDMA | 2599 NETIF_F_FRAGLIST | 2600 NETIF_F_GEN_CSUM | 2601 NETIF_F_HW_VLAN_CTAG_TX | 2602 NETIF_F_HW_VLAN_STAG_TX); 2603 2604 return harmonize_features(skb, features); 2605 } 2606 EXPORT_SYMBOL(netif_skb_features); 2607 2608 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2609 struct netdev_queue *txq) 2610 { 2611 const struct net_device_ops *ops = dev->netdev_ops; 2612 int rc = NETDEV_TX_OK; 2613 unsigned int skb_len; 2614 2615 if (likely(!skb->next)) { 2616 netdev_features_t features; 2617 2618 /* 2619 * If device doesn't need skb->dst, release it right now while 2620 * its hot in this cpu cache 2621 */ 2622 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2623 skb_dst_drop(skb); 2624 2625 features = netif_skb_features(skb); 2626 2627 if (vlan_tx_tag_present(skb) && 2628 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2629 skb = __vlan_put_tag(skb, skb->vlan_proto, 2630 vlan_tx_tag_get(skb)); 2631 if (unlikely(!skb)) 2632 goto out; 2633 2634 skb->vlan_tci = 0; 2635 } 2636 2637 /* If encapsulation offload request, verify we are testing 2638 * hardware encapsulation features instead of standard 2639 * features for the netdev 2640 */ 2641 if (skb->encapsulation) 2642 features &= dev->hw_enc_features; 2643 2644 if (netif_needs_gso(skb, features)) { 2645 if (unlikely(dev_gso_segment(skb, features))) 2646 goto out_kfree_skb; 2647 if (skb->next) 2648 goto gso; 2649 } else { 2650 if (skb_needs_linearize(skb, features) && 2651 __skb_linearize(skb)) 2652 goto out_kfree_skb; 2653 2654 /* If packet is not checksummed and device does not 2655 * support checksumming for this protocol, complete 2656 * checksumming here. 2657 */ 2658 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2659 if (skb->encapsulation) 2660 skb_set_inner_transport_header(skb, 2661 skb_checksum_start_offset(skb)); 2662 else 2663 skb_set_transport_header(skb, 2664 skb_checksum_start_offset(skb)); 2665 if (!(features & NETIF_F_ALL_CSUM) && 2666 skb_checksum_help(skb)) 2667 goto out_kfree_skb; 2668 } 2669 } 2670 2671 if (!list_empty(&ptype_all)) 2672 dev_queue_xmit_nit(skb, dev); 2673 2674 skb_len = skb->len; 2675 trace_net_dev_start_xmit(skb, dev); 2676 rc = ops->ndo_start_xmit(skb, dev); 2677 trace_net_dev_xmit(skb, rc, dev, skb_len); 2678 if (rc == NETDEV_TX_OK) 2679 txq_trans_update(txq); 2680 return rc; 2681 } 2682 2683 gso: 2684 do { 2685 struct sk_buff *nskb = skb->next; 2686 2687 skb->next = nskb->next; 2688 nskb->next = NULL; 2689 2690 if (!list_empty(&ptype_all)) 2691 dev_queue_xmit_nit(nskb, dev); 2692 2693 skb_len = nskb->len; 2694 trace_net_dev_start_xmit(nskb, dev); 2695 rc = ops->ndo_start_xmit(nskb, dev); 2696 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2697 if (unlikely(rc != NETDEV_TX_OK)) { 2698 if (rc & ~NETDEV_TX_MASK) 2699 goto out_kfree_gso_skb; 2700 nskb->next = skb->next; 2701 skb->next = nskb; 2702 return rc; 2703 } 2704 txq_trans_update(txq); 2705 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2706 return NETDEV_TX_BUSY; 2707 } while (skb->next); 2708 2709 out_kfree_gso_skb: 2710 if (likely(skb->next == NULL)) { 2711 skb->destructor = DEV_GSO_CB(skb)->destructor; 2712 consume_skb(skb); 2713 return rc; 2714 } 2715 out_kfree_skb: 2716 kfree_skb(skb); 2717 out: 2718 return rc; 2719 } 2720 EXPORT_SYMBOL_GPL(dev_hard_start_xmit); 2721 2722 static void qdisc_pkt_len_init(struct sk_buff *skb) 2723 { 2724 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2725 2726 qdisc_skb_cb(skb)->pkt_len = skb->len; 2727 2728 /* To get more precise estimation of bytes sent on wire, 2729 * we add to pkt_len the headers size of all segments 2730 */ 2731 if (shinfo->gso_size) { 2732 unsigned int hdr_len; 2733 u16 gso_segs = shinfo->gso_segs; 2734 2735 /* mac layer + network layer */ 2736 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2737 2738 /* + transport layer */ 2739 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2740 hdr_len += tcp_hdrlen(skb); 2741 else 2742 hdr_len += sizeof(struct udphdr); 2743 2744 if (shinfo->gso_type & SKB_GSO_DODGY) 2745 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2746 shinfo->gso_size); 2747 2748 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2749 } 2750 } 2751 2752 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2753 struct net_device *dev, 2754 struct netdev_queue *txq) 2755 { 2756 spinlock_t *root_lock = qdisc_lock(q); 2757 bool contended; 2758 int rc; 2759 2760 qdisc_pkt_len_init(skb); 2761 qdisc_calculate_pkt_len(skb, q); 2762 /* 2763 * Heuristic to force contended enqueues to serialize on a 2764 * separate lock before trying to get qdisc main lock. 2765 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2766 * often and dequeue packets faster. 2767 */ 2768 contended = qdisc_is_running(q); 2769 if (unlikely(contended)) 2770 spin_lock(&q->busylock); 2771 2772 spin_lock(root_lock); 2773 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2774 kfree_skb(skb); 2775 rc = NET_XMIT_DROP; 2776 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2777 qdisc_run_begin(q)) { 2778 /* 2779 * This is a work-conserving queue; there are no old skbs 2780 * waiting to be sent out; and the qdisc is not running - 2781 * xmit the skb directly. 2782 */ 2783 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2784 skb_dst_force(skb); 2785 2786 qdisc_bstats_update(q, skb); 2787 2788 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2789 if (unlikely(contended)) { 2790 spin_unlock(&q->busylock); 2791 contended = false; 2792 } 2793 __qdisc_run(q); 2794 } else 2795 qdisc_run_end(q); 2796 2797 rc = NET_XMIT_SUCCESS; 2798 } else { 2799 skb_dst_force(skb); 2800 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2801 if (qdisc_run_begin(q)) { 2802 if (unlikely(contended)) { 2803 spin_unlock(&q->busylock); 2804 contended = false; 2805 } 2806 __qdisc_run(q); 2807 } 2808 } 2809 spin_unlock(root_lock); 2810 if (unlikely(contended)) 2811 spin_unlock(&q->busylock); 2812 return rc; 2813 } 2814 2815 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2816 static void skb_update_prio(struct sk_buff *skb) 2817 { 2818 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2819 2820 if (!skb->priority && skb->sk && map) { 2821 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2822 2823 if (prioidx < map->priomap_len) 2824 skb->priority = map->priomap[prioidx]; 2825 } 2826 } 2827 #else 2828 #define skb_update_prio(skb) 2829 #endif 2830 2831 static DEFINE_PER_CPU(int, xmit_recursion); 2832 #define RECURSION_LIMIT 10 2833 2834 /** 2835 * dev_loopback_xmit - loop back @skb 2836 * @skb: buffer to transmit 2837 */ 2838 int dev_loopback_xmit(struct sk_buff *skb) 2839 { 2840 skb_reset_mac_header(skb); 2841 __skb_pull(skb, skb_network_offset(skb)); 2842 skb->pkt_type = PACKET_LOOPBACK; 2843 skb->ip_summed = CHECKSUM_UNNECESSARY; 2844 WARN_ON(!skb_dst(skb)); 2845 skb_dst_force(skb); 2846 netif_rx_ni(skb); 2847 return 0; 2848 } 2849 EXPORT_SYMBOL(dev_loopback_xmit); 2850 2851 /** 2852 * __dev_queue_xmit - transmit a buffer 2853 * @skb: buffer to transmit 2854 * @accel_priv: private data used for L2 forwarding offload 2855 * 2856 * Queue a buffer for transmission to a network device. The caller must 2857 * have set the device and priority and built the buffer before calling 2858 * this function. The function can be called from an interrupt. 2859 * 2860 * A negative errno code is returned on a failure. A success does not 2861 * guarantee the frame will be transmitted as it may be dropped due 2862 * to congestion or traffic shaping. 2863 * 2864 * ----------------------------------------------------------------------------------- 2865 * I notice this method can also return errors from the queue disciplines, 2866 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2867 * be positive. 2868 * 2869 * Regardless of the return value, the skb is consumed, so it is currently 2870 * difficult to retry a send to this method. (You can bump the ref count 2871 * before sending to hold a reference for retry if you are careful.) 2872 * 2873 * When calling this method, interrupts MUST be enabled. This is because 2874 * the BH enable code must have IRQs enabled so that it will not deadlock. 2875 * --BLG 2876 */ 2877 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2878 { 2879 struct net_device *dev = skb->dev; 2880 struct netdev_queue *txq; 2881 struct Qdisc *q; 2882 int rc = -ENOMEM; 2883 2884 skb_reset_mac_header(skb); 2885 2886 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 2887 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 2888 2889 /* Disable soft irqs for various locks below. Also 2890 * stops preemption for RCU. 2891 */ 2892 rcu_read_lock_bh(); 2893 2894 skb_update_prio(skb); 2895 2896 txq = netdev_pick_tx(dev, skb, accel_priv); 2897 q = rcu_dereference_bh(txq->qdisc); 2898 2899 #ifdef CONFIG_NET_CLS_ACT 2900 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2901 #endif 2902 trace_net_dev_queue(skb); 2903 if (q->enqueue) { 2904 rc = __dev_xmit_skb(skb, q, dev, txq); 2905 goto out; 2906 } 2907 2908 /* The device has no queue. Common case for software devices: 2909 loopback, all the sorts of tunnels... 2910 2911 Really, it is unlikely that netif_tx_lock protection is necessary 2912 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2913 counters.) 2914 However, it is possible, that they rely on protection 2915 made by us here. 2916 2917 Check this and shot the lock. It is not prone from deadlocks. 2918 Either shot noqueue qdisc, it is even simpler 8) 2919 */ 2920 if (dev->flags & IFF_UP) { 2921 int cpu = smp_processor_id(); /* ok because BHs are off */ 2922 2923 if (txq->xmit_lock_owner != cpu) { 2924 2925 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2926 goto recursion_alert; 2927 2928 HARD_TX_LOCK(dev, txq, cpu); 2929 2930 if (!netif_xmit_stopped(txq)) { 2931 __this_cpu_inc(xmit_recursion); 2932 rc = dev_hard_start_xmit(skb, dev, txq); 2933 __this_cpu_dec(xmit_recursion); 2934 if (dev_xmit_complete(rc)) { 2935 HARD_TX_UNLOCK(dev, txq); 2936 goto out; 2937 } 2938 } 2939 HARD_TX_UNLOCK(dev, txq); 2940 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2941 dev->name); 2942 } else { 2943 /* Recursion is detected! It is possible, 2944 * unfortunately 2945 */ 2946 recursion_alert: 2947 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2948 dev->name); 2949 } 2950 } 2951 2952 rc = -ENETDOWN; 2953 rcu_read_unlock_bh(); 2954 2955 atomic_long_inc(&dev->tx_dropped); 2956 kfree_skb(skb); 2957 return rc; 2958 out: 2959 rcu_read_unlock_bh(); 2960 return rc; 2961 } 2962 2963 int dev_queue_xmit(struct sk_buff *skb) 2964 { 2965 return __dev_queue_xmit(skb, NULL); 2966 } 2967 EXPORT_SYMBOL(dev_queue_xmit); 2968 2969 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 2970 { 2971 return __dev_queue_xmit(skb, accel_priv); 2972 } 2973 EXPORT_SYMBOL(dev_queue_xmit_accel); 2974 2975 2976 /*======================================================================= 2977 Receiver routines 2978 =======================================================================*/ 2979 2980 int netdev_max_backlog __read_mostly = 1000; 2981 EXPORT_SYMBOL(netdev_max_backlog); 2982 2983 int netdev_tstamp_prequeue __read_mostly = 1; 2984 int netdev_budget __read_mostly = 300; 2985 int weight_p __read_mostly = 64; /* old backlog weight */ 2986 2987 /* Called with irq disabled */ 2988 static inline void ____napi_schedule(struct softnet_data *sd, 2989 struct napi_struct *napi) 2990 { 2991 list_add_tail(&napi->poll_list, &sd->poll_list); 2992 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2993 } 2994 2995 #ifdef CONFIG_RPS 2996 2997 /* One global table that all flow-based protocols share. */ 2998 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2999 EXPORT_SYMBOL(rps_sock_flow_table); 3000 3001 struct static_key rps_needed __read_mostly; 3002 3003 static struct rps_dev_flow * 3004 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3005 struct rps_dev_flow *rflow, u16 next_cpu) 3006 { 3007 if (next_cpu != RPS_NO_CPU) { 3008 #ifdef CONFIG_RFS_ACCEL 3009 struct netdev_rx_queue *rxqueue; 3010 struct rps_dev_flow_table *flow_table; 3011 struct rps_dev_flow *old_rflow; 3012 u32 flow_id; 3013 u16 rxq_index; 3014 int rc; 3015 3016 /* Should we steer this flow to a different hardware queue? */ 3017 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3018 !(dev->features & NETIF_F_NTUPLE)) 3019 goto out; 3020 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3021 if (rxq_index == skb_get_rx_queue(skb)) 3022 goto out; 3023 3024 rxqueue = dev->_rx + rxq_index; 3025 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3026 if (!flow_table) 3027 goto out; 3028 flow_id = skb_get_hash(skb) & flow_table->mask; 3029 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3030 rxq_index, flow_id); 3031 if (rc < 0) 3032 goto out; 3033 old_rflow = rflow; 3034 rflow = &flow_table->flows[flow_id]; 3035 rflow->filter = rc; 3036 if (old_rflow->filter == rflow->filter) 3037 old_rflow->filter = RPS_NO_FILTER; 3038 out: 3039 #endif 3040 rflow->last_qtail = 3041 per_cpu(softnet_data, next_cpu).input_queue_head; 3042 } 3043 3044 rflow->cpu = next_cpu; 3045 return rflow; 3046 } 3047 3048 /* 3049 * get_rps_cpu is called from netif_receive_skb and returns the target 3050 * CPU from the RPS map of the receiving queue for a given skb. 3051 * rcu_read_lock must be held on entry. 3052 */ 3053 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3054 struct rps_dev_flow **rflowp) 3055 { 3056 struct netdev_rx_queue *rxqueue; 3057 struct rps_map *map; 3058 struct rps_dev_flow_table *flow_table; 3059 struct rps_sock_flow_table *sock_flow_table; 3060 int cpu = -1; 3061 u16 tcpu; 3062 u32 hash; 3063 3064 if (skb_rx_queue_recorded(skb)) { 3065 u16 index = skb_get_rx_queue(skb); 3066 if (unlikely(index >= dev->real_num_rx_queues)) { 3067 WARN_ONCE(dev->real_num_rx_queues > 1, 3068 "%s received packet on queue %u, but number " 3069 "of RX queues is %u\n", 3070 dev->name, index, dev->real_num_rx_queues); 3071 goto done; 3072 } 3073 rxqueue = dev->_rx + index; 3074 } else 3075 rxqueue = dev->_rx; 3076 3077 map = rcu_dereference(rxqueue->rps_map); 3078 if (map) { 3079 if (map->len == 1 && 3080 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3081 tcpu = map->cpus[0]; 3082 if (cpu_online(tcpu)) 3083 cpu = tcpu; 3084 goto done; 3085 } 3086 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3087 goto done; 3088 } 3089 3090 skb_reset_network_header(skb); 3091 hash = skb_get_hash(skb); 3092 if (!hash) 3093 goto done; 3094 3095 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3096 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3097 if (flow_table && sock_flow_table) { 3098 u16 next_cpu; 3099 struct rps_dev_flow *rflow; 3100 3101 rflow = &flow_table->flows[hash & flow_table->mask]; 3102 tcpu = rflow->cpu; 3103 3104 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask]; 3105 3106 /* 3107 * If the desired CPU (where last recvmsg was done) is 3108 * different from current CPU (one in the rx-queue flow 3109 * table entry), switch if one of the following holds: 3110 * - Current CPU is unset (equal to RPS_NO_CPU). 3111 * - Current CPU is offline. 3112 * - The current CPU's queue tail has advanced beyond the 3113 * last packet that was enqueued using this table entry. 3114 * This guarantees that all previous packets for the flow 3115 * have been dequeued, thus preserving in order delivery. 3116 */ 3117 if (unlikely(tcpu != next_cpu) && 3118 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3119 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3120 rflow->last_qtail)) >= 0)) { 3121 tcpu = next_cpu; 3122 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3123 } 3124 3125 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3126 *rflowp = rflow; 3127 cpu = tcpu; 3128 goto done; 3129 } 3130 } 3131 3132 if (map) { 3133 tcpu = map->cpus[((u64) hash * map->len) >> 32]; 3134 3135 if (cpu_online(tcpu)) { 3136 cpu = tcpu; 3137 goto done; 3138 } 3139 } 3140 3141 done: 3142 return cpu; 3143 } 3144 3145 #ifdef CONFIG_RFS_ACCEL 3146 3147 /** 3148 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3149 * @dev: Device on which the filter was set 3150 * @rxq_index: RX queue index 3151 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3152 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3153 * 3154 * Drivers that implement ndo_rx_flow_steer() should periodically call 3155 * this function for each installed filter and remove the filters for 3156 * which it returns %true. 3157 */ 3158 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3159 u32 flow_id, u16 filter_id) 3160 { 3161 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3162 struct rps_dev_flow_table *flow_table; 3163 struct rps_dev_flow *rflow; 3164 bool expire = true; 3165 int cpu; 3166 3167 rcu_read_lock(); 3168 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3169 if (flow_table && flow_id <= flow_table->mask) { 3170 rflow = &flow_table->flows[flow_id]; 3171 cpu = ACCESS_ONCE(rflow->cpu); 3172 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3173 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3174 rflow->last_qtail) < 3175 (int)(10 * flow_table->mask))) 3176 expire = false; 3177 } 3178 rcu_read_unlock(); 3179 return expire; 3180 } 3181 EXPORT_SYMBOL(rps_may_expire_flow); 3182 3183 #endif /* CONFIG_RFS_ACCEL */ 3184 3185 /* Called from hardirq (IPI) context */ 3186 static void rps_trigger_softirq(void *data) 3187 { 3188 struct softnet_data *sd = data; 3189 3190 ____napi_schedule(sd, &sd->backlog); 3191 sd->received_rps++; 3192 } 3193 3194 #endif /* CONFIG_RPS */ 3195 3196 /* 3197 * Check if this softnet_data structure is another cpu one 3198 * If yes, queue it to our IPI list and return 1 3199 * If no, return 0 3200 */ 3201 static int rps_ipi_queued(struct softnet_data *sd) 3202 { 3203 #ifdef CONFIG_RPS 3204 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3205 3206 if (sd != mysd) { 3207 sd->rps_ipi_next = mysd->rps_ipi_list; 3208 mysd->rps_ipi_list = sd; 3209 3210 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3211 return 1; 3212 } 3213 #endif /* CONFIG_RPS */ 3214 return 0; 3215 } 3216 3217 #ifdef CONFIG_NET_FLOW_LIMIT 3218 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3219 #endif 3220 3221 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3222 { 3223 #ifdef CONFIG_NET_FLOW_LIMIT 3224 struct sd_flow_limit *fl; 3225 struct softnet_data *sd; 3226 unsigned int old_flow, new_flow; 3227 3228 if (qlen < (netdev_max_backlog >> 1)) 3229 return false; 3230 3231 sd = &__get_cpu_var(softnet_data); 3232 3233 rcu_read_lock(); 3234 fl = rcu_dereference(sd->flow_limit); 3235 if (fl) { 3236 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3237 old_flow = fl->history[fl->history_head]; 3238 fl->history[fl->history_head] = new_flow; 3239 3240 fl->history_head++; 3241 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3242 3243 if (likely(fl->buckets[old_flow])) 3244 fl->buckets[old_flow]--; 3245 3246 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3247 fl->count++; 3248 rcu_read_unlock(); 3249 return true; 3250 } 3251 } 3252 rcu_read_unlock(); 3253 #endif 3254 return false; 3255 } 3256 3257 /* 3258 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3259 * queue (may be a remote CPU queue). 3260 */ 3261 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3262 unsigned int *qtail) 3263 { 3264 struct softnet_data *sd; 3265 unsigned long flags; 3266 unsigned int qlen; 3267 3268 sd = &per_cpu(softnet_data, cpu); 3269 3270 local_irq_save(flags); 3271 3272 rps_lock(sd); 3273 qlen = skb_queue_len(&sd->input_pkt_queue); 3274 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3275 if (skb_queue_len(&sd->input_pkt_queue)) { 3276 enqueue: 3277 __skb_queue_tail(&sd->input_pkt_queue, skb); 3278 input_queue_tail_incr_save(sd, qtail); 3279 rps_unlock(sd); 3280 local_irq_restore(flags); 3281 return NET_RX_SUCCESS; 3282 } 3283 3284 /* Schedule NAPI for backlog device 3285 * We can use non atomic operation since we own the queue lock 3286 */ 3287 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3288 if (!rps_ipi_queued(sd)) 3289 ____napi_schedule(sd, &sd->backlog); 3290 } 3291 goto enqueue; 3292 } 3293 3294 sd->dropped++; 3295 rps_unlock(sd); 3296 3297 local_irq_restore(flags); 3298 3299 atomic_long_inc(&skb->dev->rx_dropped); 3300 kfree_skb(skb); 3301 return NET_RX_DROP; 3302 } 3303 3304 static int netif_rx_internal(struct sk_buff *skb) 3305 { 3306 int ret; 3307 3308 net_timestamp_check(netdev_tstamp_prequeue, skb); 3309 3310 trace_netif_rx(skb); 3311 #ifdef CONFIG_RPS 3312 if (static_key_false(&rps_needed)) { 3313 struct rps_dev_flow voidflow, *rflow = &voidflow; 3314 int cpu; 3315 3316 preempt_disable(); 3317 rcu_read_lock(); 3318 3319 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3320 if (cpu < 0) 3321 cpu = smp_processor_id(); 3322 3323 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3324 3325 rcu_read_unlock(); 3326 preempt_enable(); 3327 } else 3328 #endif 3329 { 3330 unsigned int qtail; 3331 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3332 put_cpu(); 3333 } 3334 return ret; 3335 } 3336 3337 /** 3338 * netif_rx - post buffer to the network code 3339 * @skb: buffer to post 3340 * 3341 * This function receives a packet from a device driver and queues it for 3342 * the upper (protocol) levels to process. It always succeeds. The buffer 3343 * may be dropped during processing for congestion control or by the 3344 * protocol layers. 3345 * 3346 * return values: 3347 * NET_RX_SUCCESS (no congestion) 3348 * NET_RX_DROP (packet was dropped) 3349 * 3350 */ 3351 3352 int netif_rx(struct sk_buff *skb) 3353 { 3354 trace_netif_rx_entry(skb); 3355 3356 return netif_rx_internal(skb); 3357 } 3358 EXPORT_SYMBOL(netif_rx); 3359 3360 int netif_rx_ni(struct sk_buff *skb) 3361 { 3362 int err; 3363 3364 trace_netif_rx_ni_entry(skb); 3365 3366 preempt_disable(); 3367 err = netif_rx_internal(skb); 3368 if (local_softirq_pending()) 3369 do_softirq(); 3370 preempt_enable(); 3371 3372 return err; 3373 } 3374 EXPORT_SYMBOL(netif_rx_ni); 3375 3376 static void net_tx_action(struct softirq_action *h) 3377 { 3378 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3379 3380 if (sd->completion_queue) { 3381 struct sk_buff *clist; 3382 3383 local_irq_disable(); 3384 clist = sd->completion_queue; 3385 sd->completion_queue = NULL; 3386 local_irq_enable(); 3387 3388 while (clist) { 3389 struct sk_buff *skb = clist; 3390 clist = clist->next; 3391 3392 WARN_ON(atomic_read(&skb->users)); 3393 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3394 trace_consume_skb(skb); 3395 else 3396 trace_kfree_skb(skb, net_tx_action); 3397 __kfree_skb(skb); 3398 } 3399 } 3400 3401 if (sd->output_queue) { 3402 struct Qdisc *head; 3403 3404 local_irq_disable(); 3405 head = sd->output_queue; 3406 sd->output_queue = NULL; 3407 sd->output_queue_tailp = &sd->output_queue; 3408 local_irq_enable(); 3409 3410 while (head) { 3411 struct Qdisc *q = head; 3412 spinlock_t *root_lock; 3413 3414 head = head->next_sched; 3415 3416 root_lock = qdisc_lock(q); 3417 if (spin_trylock(root_lock)) { 3418 smp_mb__before_atomic(); 3419 clear_bit(__QDISC_STATE_SCHED, 3420 &q->state); 3421 qdisc_run(q); 3422 spin_unlock(root_lock); 3423 } else { 3424 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3425 &q->state)) { 3426 __netif_reschedule(q); 3427 } else { 3428 smp_mb__before_atomic(); 3429 clear_bit(__QDISC_STATE_SCHED, 3430 &q->state); 3431 } 3432 } 3433 } 3434 } 3435 } 3436 3437 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3438 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3439 /* This hook is defined here for ATM LANE */ 3440 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3441 unsigned char *addr) __read_mostly; 3442 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3443 #endif 3444 3445 #ifdef CONFIG_NET_CLS_ACT 3446 /* TODO: Maybe we should just force sch_ingress to be compiled in 3447 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3448 * a compare and 2 stores extra right now if we dont have it on 3449 * but have CONFIG_NET_CLS_ACT 3450 * NOTE: This doesn't stop any functionality; if you dont have 3451 * the ingress scheduler, you just can't add policies on ingress. 3452 * 3453 */ 3454 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3455 { 3456 struct net_device *dev = skb->dev; 3457 u32 ttl = G_TC_RTTL(skb->tc_verd); 3458 int result = TC_ACT_OK; 3459 struct Qdisc *q; 3460 3461 if (unlikely(MAX_RED_LOOP < ttl++)) { 3462 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3463 skb->skb_iif, dev->ifindex); 3464 return TC_ACT_SHOT; 3465 } 3466 3467 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3468 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3469 3470 q = rxq->qdisc; 3471 if (q != &noop_qdisc) { 3472 spin_lock(qdisc_lock(q)); 3473 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3474 result = qdisc_enqueue_root(skb, q); 3475 spin_unlock(qdisc_lock(q)); 3476 } 3477 3478 return result; 3479 } 3480 3481 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3482 struct packet_type **pt_prev, 3483 int *ret, struct net_device *orig_dev) 3484 { 3485 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3486 3487 if (!rxq || rxq->qdisc == &noop_qdisc) 3488 goto out; 3489 3490 if (*pt_prev) { 3491 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3492 *pt_prev = NULL; 3493 } 3494 3495 switch (ing_filter(skb, rxq)) { 3496 case TC_ACT_SHOT: 3497 case TC_ACT_STOLEN: 3498 kfree_skb(skb); 3499 return NULL; 3500 } 3501 3502 out: 3503 skb->tc_verd = 0; 3504 return skb; 3505 } 3506 #endif 3507 3508 /** 3509 * netdev_rx_handler_register - register receive handler 3510 * @dev: device to register a handler for 3511 * @rx_handler: receive handler to register 3512 * @rx_handler_data: data pointer that is used by rx handler 3513 * 3514 * Register a receive handler for a device. This handler will then be 3515 * called from __netif_receive_skb. A negative errno code is returned 3516 * on a failure. 3517 * 3518 * The caller must hold the rtnl_mutex. 3519 * 3520 * For a general description of rx_handler, see enum rx_handler_result. 3521 */ 3522 int netdev_rx_handler_register(struct net_device *dev, 3523 rx_handler_func_t *rx_handler, 3524 void *rx_handler_data) 3525 { 3526 ASSERT_RTNL(); 3527 3528 if (dev->rx_handler) 3529 return -EBUSY; 3530 3531 /* Note: rx_handler_data must be set before rx_handler */ 3532 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3533 rcu_assign_pointer(dev->rx_handler, rx_handler); 3534 3535 return 0; 3536 } 3537 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3538 3539 /** 3540 * netdev_rx_handler_unregister - unregister receive handler 3541 * @dev: device to unregister a handler from 3542 * 3543 * Unregister a receive handler from a device. 3544 * 3545 * The caller must hold the rtnl_mutex. 3546 */ 3547 void netdev_rx_handler_unregister(struct net_device *dev) 3548 { 3549 3550 ASSERT_RTNL(); 3551 RCU_INIT_POINTER(dev->rx_handler, NULL); 3552 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3553 * section has a guarantee to see a non NULL rx_handler_data 3554 * as well. 3555 */ 3556 synchronize_net(); 3557 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3558 } 3559 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3560 3561 /* 3562 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3563 * the special handling of PFMEMALLOC skbs. 3564 */ 3565 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3566 { 3567 switch (skb->protocol) { 3568 case htons(ETH_P_ARP): 3569 case htons(ETH_P_IP): 3570 case htons(ETH_P_IPV6): 3571 case htons(ETH_P_8021Q): 3572 case htons(ETH_P_8021AD): 3573 return true; 3574 default: 3575 return false; 3576 } 3577 } 3578 3579 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3580 { 3581 struct packet_type *ptype, *pt_prev; 3582 rx_handler_func_t *rx_handler; 3583 struct net_device *orig_dev; 3584 struct net_device *null_or_dev; 3585 bool deliver_exact = false; 3586 int ret = NET_RX_DROP; 3587 __be16 type; 3588 3589 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3590 3591 trace_netif_receive_skb(skb); 3592 3593 orig_dev = skb->dev; 3594 3595 skb_reset_network_header(skb); 3596 if (!skb_transport_header_was_set(skb)) 3597 skb_reset_transport_header(skb); 3598 skb_reset_mac_len(skb); 3599 3600 pt_prev = NULL; 3601 3602 rcu_read_lock(); 3603 3604 another_round: 3605 skb->skb_iif = skb->dev->ifindex; 3606 3607 __this_cpu_inc(softnet_data.processed); 3608 3609 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3610 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3611 skb = skb_vlan_untag(skb); 3612 if (unlikely(!skb)) 3613 goto unlock; 3614 } 3615 3616 #ifdef CONFIG_NET_CLS_ACT 3617 if (skb->tc_verd & TC_NCLS) { 3618 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3619 goto ncls; 3620 } 3621 #endif 3622 3623 if (pfmemalloc) 3624 goto skip_taps; 3625 3626 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3627 if (!ptype->dev || ptype->dev == skb->dev) { 3628 if (pt_prev) 3629 ret = deliver_skb(skb, pt_prev, orig_dev); 3630 pt_prev = ptype; 3631 } 3632 } 3633 3634 skip_taps: 3635 #ifdef CONFIG_NET_CLS_ACT 3636 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3637 if (!skb) 3638 goto unlock; 3639 ncls: 3640 #endif 3641 3642 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3643 goto drop; 3644 3645 if (vlan_tx_tag_present(skb)) { 3646 if (pt_prev) { 3647 ret = deliver_skb(skb, pt_prev, orig_dev); 3648 pt_prev = NULL; 3649 } 3650 if (vlan_do_receive(&skb)) 3651 goto another_round; 3652 else if (unlikely(!skb)) 3653 goto unlock; 3654 } 3655 3656 rx_handler = rcu_dereference(skb->dev->rx_handler); 3657 if (rx_handler) { 3658 if (pt_prev) { 3659 ret = deliver_skb(skb, pt_prev, orig_dev); 3660 pt_prev = NULL; 3661 } 3662 switch (rx_handler(&skb)) { 3663 case RX_HANDLER_CONSUMED: 3664 ret = NET_RX_SUCCESS; 3665 goto unlock; 3666 case RX_HANDLER_ANOTHER: 3667 goto another_round; 3668 case RX_HANDLER_EXACT: 3669 deliver_exact = true; 3670 case RX_HANDLER_PASS: 3671 break; 3672 default: 3673 BUG(); 3674 } 3675 } 3676 3677 if (unlikely(vlan_tx_tag_present(skb))) { 3678 if (vlan_tx_tag_get_id(skb)) 3679 skb->pkt_type = PACKET_OTHERHOST; 3680 /* Note: we might in the future use prio bits 3681 * and set skb->priority like in vlan_do_receive() 3682 * For the time being, just ignore Priority Code Point 3683 */ 3684 skb->vlan_tci = 0; 3685 } 3686 3687 /* deliver only exact match when indicated */ 3688 null_or_dev = deliver_exact ? skb->dev : NULL; 3689 3690 type = skb->protocol; 3691 list_for_each_entry_rcu(ptype, 3692 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3693 if (ptype->type == type && 3694 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3695 ptype->dev == orig_dev)) { 3696 if (pt_prev) 3697 ret = deliver_skb(skb, pt_prev, orig_dev); 3698 pt_prev = ptype; 3699 } 3700 } 3701 3702 if (pt_prev) { 3703 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3704 goto drop; 3705 else 3706 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3707 } else { 3708 drop: 3709 atomic_long_inc(&skb->dev->rx_dropped); 3710 kfree_skb(skb); 3711 /* Jamal, now you will not able to escape explaining 3712 * me how you were going to use this. :-) 3713 */ 3714 ret = NET_RX_DROP; 3715 } 3716 3717 unlock: 3718 rcu_read_unlock(); 3719 return ret; 3720 } 3721 3722 static int __netif_receive_skb(struct sk_buff *skb) 3723 { 3724 int ret; 3725 3726 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3727 unsigned long pflags = current->flags; 3728 3729 /* 3730 * PFMEMALLOC skbs are special, they should 3731 * - be delivered to SOCK_MEMALLOC sockets only 3732 * - stay away from userspace 3733 * - have bounded memory usage 3734 * 3735 * Use PF_MEMALLOC as this saves us from propagating the allocation 3736 * context down to all allocation sites. 3737 */ 3738 current->flags |= PF_MEMALLOC; 3739 ret = __netif_receive_skb_core(skb, true); 3740 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3741 } else 3742 ret = __netif_receive_skb_core(skb, false); 3743 3744 return ret; 3745 } 3746 3747 static int netif_receive_skb_internal(struct sk_buff *skb) 3748 { 3749 net_timestamp_check(netdev_tstamp_prequeue, skb); 3750 3751 if (skb_defer_rx_timestamp(skb)) 3752 return NET_RX_SUCCESS; 3753 3754 #ifdef CONFIG_RPS 3755 if (static_key_false(&rps_needed)) { 3756 struct rps_dev_flow voidflow, *rflow = &voidflow; 3757 int cpu, ret; 3758 3759 rcu_read_lock(); 3760 3761 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3762 3763 if (cpu >= 0) { 3764 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3765 rcu_read_unlock(); 3766 return ret; 3767 } 3768 rcu_read_unlock(); 3769 } 3770 #endif 3771 return __netif_receive_skb(skb); 3772 } 3773 3774 /** 3775 * netif_receive_skb - process receive buffer from network 3776 * @skb: buffer to process 3777 * 3778 * netif_receive_skb() is the main receive data processing function. 3779 * It always succeeds. The buffer may be dropped during processing 3780 * for congestion control or by the protocol layers. 3781 * 3782 * This function may only be called from softirq context and interrupts 3783 * should be enabled. 3784 * 3785 * Return values (usually ignored): 3786 * NET_RX_SUCCESS: no congestion 3787 * NET_RX_DROP: packet was dropped 3788 */ 3789 int netif_receive_skb(struct sk_buff *skb) 3790 { 3791 trace_netif_receive_skb_entry(skb); 3792 3793 return netif_receive_skb_internal(skb); 3794 } 3795 EXPORT_SYMBOL(netif_receive_skb); 3796 3797 /* Network device is going away, flush any packets still pending 3798 * Called with irqs disabled. 3799 */ 3800 static void flush_backlog(void *arg) 3801 { 3802 struct net_device *dev = arg; 3803 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3804 struct sk_buff *skb, *tmp; 3805 3806 rps_lock(sd); 3807 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3808 if (skb->dev == dev) { 3809 __skb_unlink(skb, &sd->input_pkt_queue); 3810 kfree_skb(skb); 3811 input_queue_head_incr(sd); 3812 } 3813 } 3814 rps_unlock(sd); 3815 3816 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3817 if (skb->dev == dev) { 3818 __skb_unlink(skb, &sd->process_queue); 3819 kfree_skb(skb); 3820 input_queue_head_incr(sd); 3821 } 3822 } 3823 } 3824 3825 static int napi_gro_complete(struct sk_buff *skb) 3826 { 3827 struct packet_offload *ptype; 3828 __be16 type = skb->protocol; 3829 struct list_head *head = &offload_base; 3830 int err = -ENOENT; 3831 3832 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3833 3834 if (NAPI_GRO_CB(skb)->count == 1) { 3835 skb_shinfo(skb)->gso_size = 0; 3836 goto out; 3837 } 3838 3839 rcu_read_lock(); 3840 list_for_each_entry_rcu(ptype, head, list) { 3841 if (ptype->type != type || !ptype->callbacks.gro_complete) 3842 continue; 3843 3844 err = ptype->callbacks.gro_complete(skb, 0); 3845 break; 3846 } 3847 rcu_read_unlock(); 3848 3849 if (err) { 3850 WARN_ON(&ptype->list == head); 3851 kfree_skb(skb); 3852 return NET_RX_SUCCESS; 3853 } 3854 3855 out: 3856 return netif_receive_skb_internal(skb); 3857 } 3858 3859 /* napi->gro_list contains packets ordered by age. 3860 * youngest packets at the head of it. 3861 * Complete skbs in reverse order to reduce latencies. 3862 */ 3863 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3864 { 3865 struct sk_buff *skb, *prev = NULL; 3866 3867 /* scan list and build reverse chain */ 3868 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3869 skb->prev = prev; 3870 prev = skb; 3871 } 3872 3873 for (skb = prev; skb; skb = prev) { 3874 skb->next = NULL; 3875 3876 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3877 return; 3878 3879 prev = skb->prev; 3880 napi_gro_complete(skb); 3881 napi->gro_count--; 3882 } 3883 3884 napi->gro_list = NULL; 3885 } 3886 EXPORT_SYMBOL(napi_gro_flush); 3887 3888 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3889 { 3890 struct sk_buff *p; 3891 unsigned int maclen = skb->dev->hard_header_len; 3892 u32 hash = skb_get_hash_raw(skb); 3893 3894 for (p = napi->gro_list; p; p = p->next) { 3895 unsigned long diffs; 3896 3897 NAPI_GRO_CB(p)->flush = 0; 3898 3899 if (hash != skb_get_hash_raw(p)) { 3900 NAPI_GRO_CB(p)->same_flow = 0; 3901 continue; 3902 } 3903 3904 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3905 diffs |= p->vlan_tci ^ skb->vlan_tci; 3906 if (maclen == ETH_HLEN) 3907 diffs |= compare_ether_header(skb_mac_header(p), 3908 skb_mac_header(skb)); 3909 else if (!diffs) 3910 diffs = memcmp(skb_mac_header(p), 3911 skb_mac_header(skb), 3912 maclen); 3913 NAPI_GRO_CB(p)->same_flow = !diffs; 3914 } 3915 } 3916 3917 static void skb_gro_reset_offset(struct sk_buff *skb) 3918 { 3919 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3920 const skb_frag_t *frag0 = &pinfo->frags[0]; 3921 3922 NAPI_GRO_CB(skb)->data_offset = 0; 3923 NAPI_GRO_CB(skb)->frag0 = NULL; 3924 NAPI_GRO_CB(skb)->frag0_len = 0; 3925 3926 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3927 pinfo->nr_frags && 3928 !PageHighMem(skb_frag_page(frag0))) { 3929 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3930 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3931 } 3932 } 3933 3934 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 3935 { 3936 struct skb_shared_info *pinfo = skb_shinfo(skb); 3937 3938 BUG_ON(skb->end - skb->tail < grow); 3939 3940 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3941 3942 skb->data_len -= grow; 3943 skb->tail += grow; 3944 3945 pinfo->frags[0].page_offset += grow; 3946 skb_frag_size_sub(&pinfo->frags[0], grow); 3947 3948 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 3949 skb_frag_unref(skb, 0); 3950 memmove(pinfo->frags, pinfo->frags + 1, 3951 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 3952 } 3953 } 3954 3955 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3956 { 3957 struct sk_buff **pp = NULL; 3958 struct packet_offload *ptype; 3959 __be16 type = skb->protocol; 3960 struct list_head *head = &offload_base; 3961 int same_flow; 3962 enum gro_result ret; 3963 int grow; 3964 3965 if (!(skb->dev->features & NETIF_F_GRO)) 3966 goto normal; 3967 3968 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3969 goto normal; 3970 3971 gro_list_prepare(napi, skb); 3972 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */ 3973 3974 rcu_read_lock(); 3975 list_for_each_entry_rcu(ptype, head, list) { 3976 if (ptype->type != type || !ptype->callbacks.gro_receive) 3977 continue; 3978 3979 skb_set_network_header(skb, skb_gro_offset(skb)); 3980 skb_reset_mac_len(skb); 3981 NAPI_GRO_CB(skb)->same_flow = 0; 3982 NAPI_GRO_CB(skb)->flush = 0; 3983 NAPI_GRO_CB(skb)->free = 0; 3984 NAPI_GRO_CB(skb)->udp_mark = 0; 3985 3986 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3987 break; 3988 } 3989 rcu_read_unlock(); 3990 3991 if (&ptype->list == head) 3992 goto normal; 3993 3994 same_flow = NAPI_GRO_CB(skb)->same_flow; 3995 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3996 3997 if (pp) { 3998 struct sk_buff *nskb = *pp; 3999 4000 *pp = nskb->next; 4001 nskb->next = NULL; 4002 napi_gro_complete(nskb); 4003 napi->gro_count--; 4004 } 4005 4006 if (same_flow) 4007 goto ok; 4008 4009 if (NAPI_GRO_CB(skb)->flush) 4010 goto normal; 4011 4012 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4013 struct sk_buff *nskb = napi->gro_list; 4014 4015 /* locate the end of the list to select the 'oldest' flow */ 4016 while (nskb->next) { 4017 pp = &nskb->next; 4018 nskb = *pp; 4019 } 4020 *pp = NULL; 4021 nskb->next = NULL; 4022 napi_gro_complete(nskb); 4023 } else { 4024 napi->gro_count++; 4025 } 4026 NAPI_GRO_CB(skb)->count = 1; 4027 NAPI_GRO_CB(skb)->age = jiffies; 4028 NAPI_GRO_CB(skb)->last = skb; 4029 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4030 skb->next = napi->gro_list; 4031 napi->gro_list = skb; 4032 ret = GRO_HELD; 4033 4034 pull: 4035 grow = skb_gro_offset(skb) - skb_headlen(skb); 4036 if (grow > 0) 4037 gro_pull_from_frag0(skb, grow); 4038 ok: 4039 return ret; 4040 4041 normal: 4042 ret = GRO_NORMAL; 4043 goto pull; 4044 } 4045 4046 struct packet_offload *gro_find_receive_by_type(__be16 type) 4047 { 4048 struct list_head *offload_head = &offload_base; 4049 struct packet_offload *ptype; 4050 4051 list_for_each_entry_rcu(ptype, offload_head, list) { 4052 if (ptype->type != type || !ptype->callbacks.gro_receive) 4053 continue; 4054 return ptype; 4055 } 4056 return NULL; 4057 } 4058 EXPORT_SYMBOL(gro_find_receive_by_type); 4059 4060 struct packet_offload *gro_find_complete_by_type(__be16 type) 4061 { 4062 struct list_head *offload_head = &offload_base; 4063 struct packet_offload *ptype; 4064 4065 list_for_each_entry_rcu(ptype, offload_head, list) { 4066 if (ptype->type != type || !ptype->callbacks.gro_complete) 4067 continue; 4068 return ptype; 4069 } 4070 return NULL; 4071 } 4072 EXPORT_SYMBOL(gro_find_complete_by_type); 4073 4074 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4075 { 4076 switch (ret) { 4077 case GRO_NORMAL: 4078 if (netif_receive_skb_internal(skb)) 4079 ret = GRO_DROP; 4080 break; 4081 4082 case GRO_DROP: 4083 kfree_skb(skb); 4084 break; 4085 4086 case GRO_MERGED_FREE: 4087 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4088 kmem_cache_free(skbuff_head_cache, skb); 4089 else 4090 __kfree_skb(skb); 4091 break; 4092 4093 case GRO_HELD: 4094 case GRO_MERGED: 4095 break; 4096 } 4097 4098 return ret; 4099 } 4100 4101 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4102 { 4103 trace_napi_gro_receive_entry(skb); 4104 4105 skb_gro_reset_offset(skb); 4106 4107 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4108 } 4109 EXPORT_SYMBOL(napi_gro_receive); 4110 4111 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4112 { 4113 __skb_pull(skb, skb_headlen(skb)); 4114 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4115 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4116 skb->vlan_tci = 0; 4117 skb->dev = napi->dev; 4118 skb->skb_iif = 0; 4119 skb->encapsulation = 0; 4120 skb_shinfo(skb)->gso_type = 0; 4121 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4122 4123 napi->skb = skb; 4124 } 4125 4126 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4127 { 4128 struct sk_buff *skb = napi->skb; 4129 4130 if (!skb) { 4131 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 4132 napi->skb = skb; 4133 } 4134 return skb; 4135 } 4136 EXPORT_SYMBOL(napi_get_frags); 4137 4138 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4139 struct sk_buff *skb, 4140 gro_result_t ret) 4141 { 4142 switch (ret) { 4143 case GRO_NORMAL: 4144 case GRO_HELD: 4145 __skb_push(skb, ETH_HLEN); 4146 skb->protocol = eth_type_trans(skb, skb->dev); 4147 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4148 ret = GRO_DROP; 4149 break; 4150 4151 case GRO_DROP: 4152 case GRO_MERGED_FREE: 4153 napi_reuse_skb(napi, skb); 4154 break; 4155 4156 case GRO_MERGED: 4157 break; 4158 } 4159 4160 return ret; 4161 } 4162 4163 /* Upper GRO stack assumes network header starts at gro_offset=0 4164 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4165 * We copy ethernet header into skb->data to have a common layout. 4166 */ 4167 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4168 { 4169 struct sk_buff *skb = napi->skb; 4170 const struct ethhdr *eth; 4171 unsigned int hlen = sizeof(*eth); 4172 4173 napi->skb = NULL; 4174 4175 skb_reset_mac_header(skb); 4176 skb_gro_reset_offset(skb); 4177 4178 eth = skb_gro_header_fast(skb, 0); 4179 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4180 eth = skb_gro_header_slow(skb, hlen, 0); 4181 if (unlikely(!eth)) { 4182 napi_reuse_skb(napi, skb); 4183 return NULL; 4184 } 4185 } else { 4186 gro_pull_from_frag0(skb, hlen); 4187 NAPI_GRO_CB(skb)->frag0 += hlen; 4188 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4189 } 4190 __skb_pull(skb, hlen); 4191 4192 /* 4193 * This works because the only protocols we care about don't require 4194 * special handling. 4195 * We'll fix it up properly in napi_frags_finish() 4196 */ 4197 skb->protocol = eth->h_proto; 4198 4199 return skb; 4200 } 4201 4202 gro_result_t napi_gro_frags(struct napi_struct *napi) 4203 { 4204 struct sk_buff *skb = napi_frags_skb(napi); 4205 4206 if (!skb) 4207 return GRO_DROP; 4208 4209 trace_napi_gro_frags_entry(skb); 4210 4211 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4212 } 4213 EXPORT_SYMBOL(napi_gro_frags); 4214 4215 /* 4216 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4217 * Note: called with local irq disabled, but exits with local irq enabled. 4218 */ 4219 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4220 { 4221 #ifdef CONFIG_RPS 4222 struct softnet_data *remsd = sd->rps_ipi_list; 4223 4224 if (remsd) { 4225 sd->rps_ipi_list = NULL; 4226 4227 local_irq_enable(); 4228 4229 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4230 while (remsd) { 4231 struct softnet_data *next = remsd->rps_ipi_next; 4232 4233 if (cpu_online(remsd->cpu)) 4234 smp_call_function_single_async(remsd->cpu, 4235 &remsd->csd); 4236 remsd = next; 4237 } 4238 } else 4239 #endif 4240 local_irq_enable(); 4241 } 4242 4243 static int process_backlog(struct napi_struct *napi, int quota) 4244 { 4245 int work = 0; 4246 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4247 4248 #ifdef CONFIG_RPS 4249 /* Check if we have pending ipi, its better to send them now, 4250 * not waiting net_rx_action() end. 4251 */ 4252 if (sd->rps_ipi_list) { 4253 local_irq_disable(); 4254 net_rps_action_and_irq_enable(sd); 4255 } 4256 #endif 4257 napi->weight = weight_p; 4258 local_irq_disable(); 4259 while (1) { 4260 struct sk_buff *skb; 4261 4262 while ((skb = __skb_dequeue(&sd->process_queue))) { 4263 local_irq_enable(); 4264 __netif_receive_skb(skb); 4265 local_irq_disable(); 4266 input_queue_head_incr(sd); 4267 if (++work >= quota) { 4268 local_irq_enable(); 4269 return work; 4270 } 4271 } 4272 4273 rps_lock(sd); 4274 if (skb_queue_empty(&sd->input_pkt_queue)) { 4275 /* 4276 * Inline a custom version of __napi_complete(). 4277 * only current cpu owns and manipulates this napi, 4278 * and NAPI_STATE_SCHED is the only possible flag set 4279 * on backlog. 4280 * We can use a plain write instead of clear_bit(), 4281 * and we dont need an smp_mb() memory barrier. 4282 */ 4283 list_del(&napi->poll_list); 4284 napi->state = 0; 4285 rps_unlock(sd); 4286 4287 break; 4288 } 4289 4290 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4291 &sd->process_queue); 4292 rps_unlock(sd); 4293 } 4294 local_irq_enable(); 4295 4296 return work; 4297 } 4298 4299 /** 4300 * __napi_schedule - schedule for receive 4301 * @n: entry to schedule 4302 * 4303 * The entry's receive function will be scheduled to run 4304 */ 4305 void __napi_schedule(struct napi_struct *n) 4306 { 4307 unsigned long flags; 4308 4309 local_irq_save(flags); 4310 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4311 local_irq_restore(flags); 4312 } 4313 EXPORT_SYMBOL(__napi_schedule); 4314 4315 void __napi_complete(struct napi_struct *n) 4316 { 4317 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4318 BUG_ON(n->gro_list); 4319 4320 list_del(&n->poll_list); 4321 smp_mb__before_atomic(); 4322 clear_bit(NAPI_STATE_SCHED, &n->state); 4323 } 4324 EXPORT_SYMBOL(__napi_complete); 4325 4326 void napi_complete(struct napi_struct *n) 4327 { 4328 unsigned long flags; 4329 4330 /* 4331 * don't let napi dequeue from the cpu poll list 4332 * just in case its running on a different cpu 4333 */ 4334 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4335 return; 4336 4337 napi_gro_flush(n, false); 4338 local_irq_save(flags); 4339 __napi_complete(n); 4340 local_irq_restore(flags); 4341 } 4342 EXPORT_SYMBOL(napi_complete); 4343 4344 /* must be called under rcu_read_lock(), as we dont take a reference */ 4345 struct napi_struct *napi_by_id(unsigned int napi_id) 4346 { 4347 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4348 struct napi_struct *napi; 4349 4350 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4351 if (napi->napi_id == napi_id) 4352 return napi; 4353 4354 return NULL; 4355 } 4356 EXPORT_SYMBOL_GPL(napi_by_id); 4357 4358 void napi_hash_add(struct napi_struct *napi) 4359 { 4360 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4361 4362 spin_lock(&napi_hash_lock); 4363 4364 /* 0 is not a valid id, we also skip an id that is taken 4365 * we expect both events to be extremely rare 4366 */ 4367 napi->napi_id = 0; 4368 while (!napi->napi_id) { 4369 napi->napi_id = ++napi_gen_id; 4370 if (napi_by_id(napi->napi_id)) 4371 napi->napi_id = 0; 4372 } 4373 4374 hlist_add_head_rcu(&napi->napi_hash_node, 4375 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4376 4377 spin_unlock(&napi_hash_lock); 4378 } 4379 } 4380 EXPORT_SYMBOL_GPL(napi_hash_add); 4381 4382 /* Warning : caller is responsible to make sure rcu grace period 4383 * is respected before freeing memory containing @napi 4384 */ 4385 void napi_hash_del(struct napi_struct *napi) 4386 { 4387 spin_lock(&napi_hash_lock); 4388 4389 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4390 hlist_del_rcu(&napi->napi_hash_node); 4391 4392 spin_unlock(&napi_hash_lock); 4393 } 4394 EXPORT_SYMBOL_GPL(napi_hash_del); 4395 4396 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4397 int (*poll)(struct napi_struct *, int), int weight) 4398 { 4399 INIT_LIST_HEAD(&napi->poll_list); 4400 napi->gro_count = 0; 4401 napi->gro_list = NULL; 4402 napi->skb = NULL; 4403 napi->poll = poll; 4404 if (weight > NAPI_POLL_WEIGHT) 4405 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4406 weight, dev->name); 4407 napi->weight = weight; 4408 list_add(&napi->dev_list, &dev->napi_list); 4409 napi->dev = dev; 4410 #ifdef CONFIG_NETPOLL 4411 spin_lock_init(&napi->poll_lock); 4412 napi->poll_owner = -1; 4413 #endif 4414 set_bit(NAPI_STATE_SCHED, &napi->state); 4415 } 4416 EXPORT_SYMBOL(netif_napi_add); 4417 4418 void netif_napi_del(struct napi_struct *napi) 4419 { 4420 list_del_init(&napi->dev_list); 4421 napi_free_frags(napi); 4422 4423 kfree_skb_list(napi->gro_list); 4424 napi->gro_list = NULL; 4425 napi->gro_count = 0; 4426 } 4427 EXPORT_SYMBOL(netif_napi_del); 4428 4429 static void net_rx_action(struct softirq_action *h) 4430 { 4431 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4432 unsigned long time_limit = jiffies + 2; 4433 int budget = netdev_budget; 4434 void *have; 4435 4436 local_irq_disable(); 4437 4438 while (!list_empty(&sd->poll_list)) { 4439 struct napi_struct *n; 4440 int work, weight; 4441 4442 /* If softirq window is exhuasted then punt. 4443 * Allow this to run for 2 jiffies since which will allow 4444 * an average latency of 1.5/HZ. 4445 */ 4446 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4447 goto softnet_break; 4448 4449 local_irq_enable(); 4450 4451 /* Even though interrupts have been re-enabled, this 4452 * access is safe because interrupts can only add new 4453 * entries to the tail of this list, and only ->poll() 4454 * calls can remove this head entry from the list. 4455 */ 4456 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4457 4458 have = netpoll_poll_lock(n); 4459 4460 weight = n->weight; 4461 4462 /* This NAPI_STATE_SCHED test is for avoiding a race 4463 * with netpoll's poll_napi(). Only the entity which 4464 * obtains the lock and sees NAPI_STATE_SCHED set will 4465 * actually make the ->poll() call. Therefore we avoid 4466 * accidentally calling ->poll() when NAPI is not scheduled. 4467 */ 4468 work = 0; 4469 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4470 work = n->poll(n, weight); 4471 trace_napi_poll(n); 4472 } 4473 4474 WARN_ON_ONCE(work > weight); 4475 4476 budget -= work; 4477 4478 local_irq_disable(); 4479 4480 /* Drivers must not modify the NAPI state if they 4481 * consume the entire weight. In such cases this code 4482 * still "owns" the NAPI instance and therefore can 4483 * move the instance around on the list at-will. 4484 */ 4485 if (unlikely(work == weight)) { 4486 if (unlikely(napi_disable_pending(n))) { 4487 local_irq_enable(); 4488 napi_complete(n); 4489 local_irq_disable(); 4490 } else { 4491 if (n->gro_list) { 4492 /* flush too old packets 4493 * If HZ < 1000, flush all packets. 4494 */ 4495 local_irq_enable(); 4496 napi_gro_flush(n, HZ >= 1000); 4497 local_irq_disable(); 4498 } 4499 list_move_tail(&n->poll_list, &sd->poll_list); 4500 } 4501 } 4502 4503 netpoll_poll_unlock(have); 4504 } 4505 out: 4506 net_rps_action_and_irq_enable(sd); 4507 4508 #ifdef CONFIG_NET_DMA 4509 /* 4510 * There may not be any more sk_buffs coming right now, so push 4511 * any pending DMA copies to hardware 4512 */ 4513 dma_issue_pending_all(); 4514 #endif 4515 4516 return; 4517 4518 softnet_break: 4519 sd->time_squeeze++; 4520 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4521 goto out; 4522 } 4523 4524 struct netdev_adjacent { 4525 struct net_device *dev; 4526 4527 /* upper master flag, there can only be one master device per list */ 4528 bool master; 4529 4530 /* counter for the number of times this device was added to us */ 4531 u16 ref_nr; 4532 4533 /* private field for the users */ 4534 void *private; 4535 4536 struct list_head list; 4537 struct rcu_head rcu; 4538 }; 4539 4540 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4541 struct net_device *adj_dev, 4542 struct list_head *adj_list) 4543 { 4544 struct netdev_adjacent *adj; 4545 4546 list_for_each_entry(adj, adj_list, list) { 4547 if (adj->dev == adj_dev) 4548 return adj; 4549 } 4550 return NULL; 4551 } 4552 4553 /** 4554 * netdev_has_upper_dev - Check if device is linked to an upper device 4555 * @dev: device 4556 * @upper_dev: upper device to check 4557 * 4558 * Find out if a device is linked to specified upper device and return true 4559 * in case it is. Note that this checks only immediate upper device, 4560 * not through a complete stack of devices. The caller must hold the RTNL lock. 4561 */ 4562 bool netdev_has_upper_dev(struct net_device *dev, 4563 struct net_device *upper_dev) 4564 { 4565 ASSERT_RTNL(); 4566 4567 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4568 } 4569 EXPORT_SYMBOL(netdev_has_upper_dev); 4570 4571 /** 4572 * netdev_has_any_upper_dev - Check if device is linked to some device 4573 * @dev: device 4574 * 4575 * Find out if a device is linked to an upper device and return true in case 4576 * it is. The caller must hold the RTNL lock. 4577 */ 4578 static bool netdev_has_any_upper_dev(struct net_device *dev) 4579 { 4580 ASSERT_RTNL(); 4581 4582 return !list_empty(&dev->all_adj_list.upper); 4583 } 4584 4585 /** 4586 * netdev_master_upper_dev_get - Get master upper device 4587 * @dev: device 4588 * 4589 * Find a master upper device and return pointer to it or NULL in case 4590 * it's not there. The caller must hold the RTNL lock. 4591 */ 4592 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4593 { 4594 struct netdev_adjacent *upper; 4595 4596 ASSERT_RTNL(); 4597 4598 if (list_empty(&dev->adj_list.upper)) 4599 return NULL; 4600 4601 upper = list_first_entry(&dev->adj_list.upper, 4602 struct netdev_adjacent, list); 4603 if (likely(upper->master)) 4604 return upper->dev; 4605 return NULL; 4606 } 4607 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4608 4609 void *netdev_adjacent_get_private(struct list_head *adj_list) 4610 { 4611 struct netdev_adjacent *adj; 4612 4613 adj = list_entry(adj_list, struct netdev_adjacent, list); 4614 4615 return adj->private; 4616 } 4617 EXPORT_SYMBOL(netdev_adjacent_get_private); 4618 4619 /** 4620 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4621 * @dev: device 4622 * @iter: list_head ** of the current position 4623 * 4624 * Gets the next device from the dev's upper list, starting from iter 4625 * position. The caller must hold RCU read lock. 4626 */ 4627 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4628 struct list_head **iter) 4629 { 4630 struct netdev_adjacent *upper; 4631 4632 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4633 4634 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4635 4636 if (&upper->list == &dev->adj_list.upper) 4637 return NULL; 4638 4639 *iter = &upper->list; 4640 4641 return upper->dev; 4642 } 4643 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4644 4645 /** 4646 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4647 * @dev: device 4648 * @iter: list_head ** of the current position 4649 * 4650 * Gets the next device from the dev's upper list, starting from iter 4651 * position. The caller must hold RCU read lock. 4652 */ 4653 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4654 struct list_head **iter) 4655 { 4656 struct netdev_adjacent *upper; 4657 4658 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4659 4660 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4661 4662 if (&upper->list == &dev->all_adj_list.upper) 4663 return NULL; 4664 4665 *iter = &upper->list; 4666 4667 return upper->dev; 4668 } 4669 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4670 4671 /** 4672 * netdev_lower_get_next_private - Get the next ->private from the 4673 * lower neighbour list 4674 * @dev: device 4675 * @iter: list_head ** of the current position 4676 * 4677 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4678 * list, starting from iter position. The caller must hold either hold the 4679 * RTNL lock or its own locking that guarantees that the neighbour lower 4680 * list will remain unchainged. 4681 */ 4682 void *netdev_lower_get_next_private(struct net_device *dev, 4683 struct list_head **iter) 4684 { 4685 struct netdev_adjacent *lower; 4686 4687 lower = list_entry(*iter, struct netdev_adjacent, list); 4688 4689 if (&lower->list == &dev->adj_list.lower) 4690 return NULL; 4691 4692 *iter = lower->list.next; 4693 4694 return lower->private; 4695 } 4696 EXPORT_SYMBOL(netdev_lower_get_next_private); 4697 4698 /** 4699 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4700 * lower neighbour list, RCU 4701 * variant 4702 * @dev: device 4703 * @iter: list_head ** of the current position 4704 * 4705 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4706 * list, starting from iter position. The caller must hold RCU read lock. 4707 */ 4708 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4709 struct list_head **iter) 4710 { 4711 struct netdev_adjacent *lower; 4712 4713 WARN_ON_ONCE(!rcu_read_lock_held()); 4714 4715 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4716 4717 if (&lower->list == &dev->adj_list.lower) 4718 return NULL; 4719 4720 *iter = &lower->list; 4721 4722 return lower->private; 4723 } 4724 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4725 4726 /** 4727 * netdev_lower_get_next - Get the next device from the lower neighbour 4728 * list 4729 * @dev: device 4730 * @iter: list_head ** of the current position 4731 * 4732 * Gets the next netdev_adjacent from the dev's lower neighbour 4733 * list, starting from iter position. The caller must hold RTNL lock or 4734 * its own locking that guarantees that the neighbour lower 4735 * list will remain unchainged. 4736 */ 4737 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 4738 { 4739 struct netdev_adjacent *lower; 4740 4741 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 4742 4743 if (&lower->list == &dev->adj_list.lower) 4744 return NULL; 4745 4746 *iter = &lower->list; 4747 4748 return lower->dev; 4749 } 4750 EXPORT_SYMBOL(netdev_lower_get_next); 4751 4752 /** 4753 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4754 * lower neighbour list, RCU 4755 * variant 4756 * @dev: device 4757 * 4758 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4759 * list. The caller must hold RCU read lock. 4760 */ 4761 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4762 { 4763 struct netdev_adjacent *lower; 4764 4765 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4766 struct netdev_adjacent, list); 4767 if (lower) 4768 return lower->private; 4769 return NULL; 4770 } 4771 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4772 4773 /** 4774 * netdev_master_upper_dev_get_rcu - Get master upper device 4775 * @dev: device 4776 * 4777 * Find a master upper device and return pointer to it or NULL in case 4778 * it's not there. The caller must hold the RCU read lock. 4779 */ 4780 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4781 { 4782 struct netdev_adjacent *upper; 4783 4784 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4785 struct netdev_adjacent, list); 4786 if (upper && likely(upper->master)) 4787 return upper->dev; 4788 return NULL; 4789 } 4790 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4791 4792 static int netdev_adjacent_sysfs_add(struct net_device *dev, 4793 struct net_device *adj_dev, 4794 struct list_head *dev_list) 4795 { 4796 char linkname[IFNAMSIZ+7]; 4797 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4798 "upper_%s" : "lower_%s", adj_dev->name); 4799 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 4800 linkname); 4801 } 4802 static void netdev_adjacent_sysfs_del(struct net_device *dev, 4803 char *name, 4804 struct list_head *dev_list) 4805 { 4806 char linkname[IFNAMSIZ+7]; 4807 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4808 "upper_%s" : "lower_%s", name); 4809 sysfs_remove_link(&(dev->dev.kobj), linkname); 4810 } 4811 4812 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 4813 struct net_device *adj_dev, 4814 struct list_head *dev_list) 4815 { 4816 return (dev_list == &dev->adj_list.upper || 4817 dev_list == &dev->adj_list.lower) && 4818 net_eq(dev_net(dev), dev_net(adj_dev)); 4819 } 4820 4821 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4822 struct net_device *adj_dev, 4823 struct list_head *dev_list, 4824 void *private, bool master) 4825 { 4826 struct netdev_adjacent *adj; 4827 int ret; 4828 4829 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4830 4831 if (adj) { 4832 adj->ref_nr++; 4833 return 0; 4834 } 4835 4836 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4837 if (!adj) 4838 return -ENOMEM; 4839 4840 adj->dev = adj_dev; 4841 adj->master = master; 4842 adj->ref_nr = 1; 4843 adj->private = private; 4844 dev_hold(adj_dev); 4845 4846 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4847 adj_dev->name, dev->name, adj_dev->name); 4848 4849 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 4850 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 4851 if (ret) 4852 goto free_adj; 4853 } 4854 4855 /* Ensure that master link is always the first item in list. */ 4856 if (master) { 4857 ret = sysfs_create_link(&(dev->dev.kobj), 4858 &(adj_dev->dev.kobj), "master"); 4859 if (ret) 4860 goto remove_symlinks; 4861 4862 list_add_rcu(&adj->list, dev_list); 4863 } else { 4864 list_add_tail_rcu(&adj->list, dev_list); 4865 } 4866 4867 return 0; 4868 4869 remove_symlinks: 4870 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 4871 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4872 free_adj: 4873 kfree(adj); 4874 dev_put(adj_dev); 4875 4876 return ret; 4877 } 4878 4879 static void __netdev_adjacent_dev_remove(struct net_device *dev, 4880 struct net_device *adj_dev, 4881 struct list_head *dev_list) 4882 { 4883 struct netdev_adjacent *adj; 4884 4885 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4886 4887 if (!adj) { 4888 pr_err("tried to remove device %s from %s\n", 4889 dev->name, adj_dev->name); 4890 BUG(); 4891 } 4892 4893 if (adj->ref_nr > 1) { 4894 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 4895 adj->ref_nr-1); 4896 adj->ref_nr--; 4897 return; 4898 } 4899 4900 if (adj->master) 4901 sysfs_remove_link(&(dev->dev.kobj), "master"); 4902 4903 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 4904 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4905 4906 list_del_rcu(&adj->list); 4907 pr_debug("dev_put for %s, because link removed from %s to %s\n", 4908 adj_dev->name, dev->name, adj_dev->name); 4909 dev_put(adj_dev); 4910 kfree_rcu(adj, rcu); 4911 } 4912 4913 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 4914 struct net_device *upper_dev, 4915 struct list_head *up_list, 4916 struct list_head *down_list, 4917 void *private, bool master) 4918 { 4919 int ret; 4920 4921 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 4922 master); 4923 if (ret) 4924 return ret; 4925 4926 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 4927 false); 4928 if (ret) { 4929 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4930 return ret; 4931 } 4932 4933 return 0; 4934 } 4935 4936 static int __netdev_adjacent_dev_link(struct net_device *dev, 4937 struct net_device *upper_dev) 4938 { 4939 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 4940 &dev->all_adj_list.upper, 4941 &upper_dev->all_adj_list.lower, 4942 NULL, false); 4943 } 4944 4945 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 4946 struct net_device *upper_dev, 4947 struct list_head *up_list, 4948 struct list_head *down_list) 4949 { 4950 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4951 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 4952 } 4953 4954 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 4955 struct net_device *upper_dev) 4956 { 4957 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4958 &dev->all_adj_list.upper, 4959 &upper_dev->all_adj_list.lower); 4960 } 4961 4962 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 4963 struct net_device *upper_dev, 4964 void *private, bool master) 4965 { 4966 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 4967 4968 if (ret) 4969 return ret; 4970 4971 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 4972 &dev->adj_list.upper, 4973 &upper_dev->adj_list.lower, 4974 private, master); 4975 if (ret) { 4976 __netdev_adjacent_dev_unlink(dev, upper_dev); 4977 return ret; 4978 } 4979 4980 return 0; 4981 } 4982 4983 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 4984 struct net_device *upper_dev) 4985 { 4986 __netdev_adjacent_dev_unlink(dev, upper_dev); 4987 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4988 &dev->adj_list.upper, 4989 &upper_dev->adj_list.lower); 4990 } 4991 4992 static int __netdev_upper_dev_link(struct net_device *dev, 4993 struct net_device *upper_dev, bool master, 4994 void *private) 4995 { 4996 struct netdev_adjacent *i, *j, *to_i, *to_j; 4997 int ret = 0; 4998 4999 ASSERT_RTNL(); 5000 5001 if (dev == upper_dev) 5002 return -EBUSY; 5003 5004 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5005 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 5006 return -EBUSY; 5007 5008 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 5009 return -EEXIST; 5010 5011 if (master && netdev_master_upper_dev_get(dev)) 5012 return -EBUSY; 5013 5014 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5015 master); 5016 if (ret) 5017 return ret; 5018 5019 /* Now that we linked these devs, make all the upper_dev's 5020 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5021 * versa, and don't forget the devices itself. All of these 5022 * links are non-neighbours. 5023 */ 5024 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5025 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5026 pr_debug("Interlinking %s with %s, non-neighbour\n", 5027 i->dev->name, j->dev->name); 5028 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5029 if (ret) 5030 goto rollback_mesh; 5031 } 5032 } 5033 5034 /* add dev to every upper_dev's upper device */ 5035 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5036 pr_debug("linking %s's upper device %s with %s\n", 5037 upper_dev->name, i->dev->name, dev->name); 5038 ret = __netdev_adjacent_dev_link(dev, i->dev); 5039 if (ret) 5040 goto rollback_upper_mesh; 5041 } 5042 5043 /* add upper_dev to every dev's lower device */ 5044 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5045 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5046 i->dev->name, upper_dev->name); 5047 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5048 if (ret) 5049 goto rollback_lower_mesh; 5050 } 5051 5052 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5053 return 0; 5054 5055 rollback_lower_mesh: 5056 to_i = i; 5057 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5058 if (i == to_i) 5059 break; 5060 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5061 } 5062 5063 i = NULL; 5064 5065 rollback_upper_mesh: 5066 to_i = i; 5067 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5068 if (i == to_i) 5069 break; 5070 __netdev_adjacent_dev_unlink(dev, i->dev); 5071 } 5072 5073 i = j = NULL; 5074 5075 rollback_mesh: 5076 to_i = i; 5077 to_j = j; 5078 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5079 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5080 if (i == to_i && j == to_j) 5081 break; 5082 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5083 } 5084 if (i == to_i) 5085 break; 5086 } 5087 5088 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5089 5090 return ret; 5091 } 5092 5093 /** 5094 * netdev_upper_dev_link - Add a link to the upper device 5095 * @dev: device 5096 * @upper_dev: new upper device 5097 * 5098 * Adds a link to device which is upper to this one. The caller must hold 5099 * the RTNL lock. On a failure a negative errno code is returned. 5100 * On success the reference counts are adjusted and the function 5101 * returns zero. 5102 */ 5103 int netdev_upper_dev_link(struct net_device *dev, 5104 struct net_device *upper_dev) 5105 { 5106 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5107 } 5108 EXPORT_SYMBOL(netdev_upper_dev_link); 5109 5110 /** 5111 * netdev_master_upper_dev_link - Add a master link to the upper device 5112 * @dev: device 5113 * @upper_dev: new upper device 5114 * 5115 * Adds a link to device which is upper to this one. In this case, only 5116 * one master upper device can be linked, although other non-master devices 5117 * might be linked as well. The caller must hold the RTNL lock. 5118 * On a failure a negative errno code is returned. On success the reference 5119 * counts are adjusted and the function returns zero. 5120 */ 5121 int netdev_master_upper_dev_link(struct net_device *dev, 5122 struct net_device *upper_dev) 5123 { 5124 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5125 } 5126 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5127 5128 int netdev_master_upper_dev_link_private(struct net_device *dev, 5129 struct net_device *upper_dev, 5130 void *private) 5131 { 5132 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5133 } 5134 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5135 5136 /** 5137 * netdev_upper_dev_unlink - Removes a link to upper device 5138 * @dev: device 5139 * @upper_dev: new upper device 5140 * 5141 * Removes a link to device which is upper to this one. The caller must hold 5142 * the RTNL lock. 5143 */ 5144 void netdev_upper_dev_unlink(struct net_device *dev, 5145 struct net_device *upper_dev) 5146 { 5147 struct netdev_adjacent *i, *j; 5148 ASSERT_RTNL(); 5149 5150 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5151 5152 /* Here is the tricky part. We must remove all dev's lower 5153 * devices from all upper_dev's upper devices and vice 5154 * versa, to maintain the graph relationship. 5155 */ 5156 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5157 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5158 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5159 5160 /* remove also the devices itself from lower/upper device 5161 * list 5162 */ 5163 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5164 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5165 5166 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5167 __netdev_adjacent_dev_unlink(dev, i->dev); 5168 5169 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5170 } 5171 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5172 5173 void netdev_adjacent_add_links(struct net_device *dev) 5174 { 5175 struct netdev_adjacent *iter; 5176 5177 struct net *net = dev_net(dev); 5178 5179 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5180 if (!net_eq(net,dev_net(iter->dev))) 5181 continue; 5182 netdev_adjacent_sysfs_add(iter->dev, dev, 5183 &iter->dev->adj_list.lower); 5184 netdev_adjacent_sysfs_add(dev, iter->dev, 5185 &dev->adj_list.upper); 5186 } 5187 5188 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5189 if (!net_eq(net,dev_net(iter->dev))) 5190 continue; 5191 netdev_adjacent_sysfs_add(iter->dev, dev, 5192 &iter->dev->adj_list.upper); 5193 netdev_adjacent_sysfs_add(dev, iter->dev, 5194 &dev->adj_list.lower); 5195 } 5196 } 5197 5198 void netdev_adjacent_del_links(struct net_device *dev) 5199 { 5200 struct netdev_adjacent *iter; 5201 5202 struct net *net = dev_net(dev); 5203 5204 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5205 if (!net_eq(net,dev_net(iter->dev))) 5206 continue; 5207 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5208 &iter->dev->adj_list.lower); 5209 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5210 &dev->adj_list.upper); 5211 } 5212 5213 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5214 if (!net_eq(net,dev_net(iter->dev))) 5215 continue; 5216 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5217 &iter->dev->adj_list.upper); 5218 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5219 &dev->adj_list.lower); 5220 } 5221 } 5222 5223 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5224 { 5225 struct netdev_adjacent *iter; 5226 5227 struct net *net = dev_net(dev); 5228 5229 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5230 if (!net_eq(net,dev_net(iter->dev))) 5231 continue; 5232 netdev_adjacent_sysfs_del(iter->dev, oldname, 5233 &iter->dev->adj_list.lower); 5234 netdev_adjacent_sysfs_add(iter->dev, dev, 5235 &iter->dev->adj_list.lower); 5236 } 5237 5238 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5239 if (!net_eq(net,dev_net(iter->dev))) 5240 continue; 5241 netdev_adjacent_sysfs_del(iter->dev, oldname, 5242 &iter->dev->adj_list.upper); 5243 netdev_adjacent_sysfs_add(iter->dev, dev, 5244 &iter->dev->adj_list.upper); 5245 } 5246 } 5247 5248 void *netdev_lower_dev_get_private(struct net_device *dev, 5249 struct net_device *lower_dev) 5250 { 5251 struct netdev_adjacent *lower; 5252 5253 if (!lower_dev) 5254 return NULL; 5255 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5256 if (!lower) 5257 return NULL; 5258 5259 return lower->private; 5260 } 5261 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5262 5263 5264 int dev_get_nest_level(struct net_device *dev, 5265 bool (*type_check)(struct net_device *dev)) 5266 { 5267 struct net_device *lower = NULL; 5268 struct list_head *iter; 5269 int max_nest = -1; 5270 int nest; 5271 5272 ASSERT_RTNL(); 5273 5274 netdev_for_each_lower_dev(dev, lower, iter) { 5275 nest = dev_get_nest_level(lower, type_check); 5276 if (max_nest < nest) 5277 max_nest = nest; 5278 } 5279 5280 if (type_check(dev)) 5281 max_nest++; 5282 5283 return max_nest; 5284 } 5285 EXPORT_SYMBOL(dev_get_nest_level); 5286 5287 static void dev_change_rx_flags(struct net_device *dev, int flags) 5288 { 5289 const struct net_device_ops *ops = dev->netdev_ops; 5290 5291 if (ops->ndo_change_rx_flags) 5292 ops->ndo_change_rx_flags(dev, flags); 5293 } 5294 5295 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5296 { 5297 unsigned int old_flags = dev->flags; 5298 kuid_t uid; 5299 kgid_t gid; 5300 5301 ASSERT_RTNL(); 5302 5303 dev->flags |= IFF_PROMISC; 5304 dev->promiscuity += inc; 5305 if (dev->promiscuity == 0) { 5306 /* 5307 * Avoid overflow. 5308 * If inc causes overflow, untouch promisc and return error. 5309 */ 5310 if (inc < 0) 5311 dev->flags &= ~IFF_PROMISC; 5312 else { 5313 dev->promiscuity -= inc; 5314 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5315 dev->name); 5316 return -EOVERFLOW; 5317 } 5318 } 5319 if (dev->flags != old_flags) { 5320 pr_info("device %s %s promiscuous mode\n", 5321 dev->name, 5322 dev->flags & IFF_PROMISC ? "entered" : "left"); 5323 if (audit_enabled) { 5324 current_uid_gid(&uid, &gid); 5325 audit_log(current->audit_context, GFP_ATOMIC, 5326 AUDIT_ANOM_PROMISCUOUS, 5327 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5328 dev->name, (dev->flags & IFF_PROMISC), 5329 (old_flags & IFF_PROMISC), 5330 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5331 from_kuid(&init_user_ns, uid), 5332 from_kgid(&init_user_ns, gid), 5333 audit_get_sessionid(current)); 5334 } 5335 5336 dev_change_rx_flags(dev, IFF_PROMISC); 5337 } 5338 if (notify) 5339 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5340 return 0; 5341 } 5342 5343 /** 5344 * dev_set_promiscuity - update promiscuity count on a device 5345 * @dev: device 5346 * @inc: modifier 5347 * 5348 * Add or remove promiscuity from a device. While the count in the device 5349 * remains above zero the interface remains promiscuous. Once it hits zero 5350 * the device reverts back to normal filtering operation. A negative inc 5351 * value is used to drop promiscuity on the device. 5352 * Return 0 if successful or a negative errno code on error. 5353 */ 5354 int dev_set_promiscuity(struct net_device *dev, int inc) 5355 { 5356 unsigned int old_flags = dev->flags; 5357 int err; 5358 5359 err = __dev_set_promiscuity(dev, inc, true); 5360 if (err < 0) 5361 return err; 5362 if (dev->flags != old_flags) 5363 dev_set_rx_mode(dev); 5364 return err; 5365 } 5366 EXPORT_SYMBOL(dev_set_promiscuity); 5367 5368 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5369 { 5370 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5371 5372 ASSERT_RTNL(); 5373 5374 dev->flags |= IFF_ALLMULTI; 5375 dev->allmulti += inc; 5376 if (dev->allmulti == 0) { 5377 /* 5378 * Avoid overflow. 5379 * If inc causes overflow, untouch allmulti and return error. 5380 */ 5381 if (inc < 0) 5382 dev->flags &= ~IFF_ALLMULTI; 5383 else { 5384 dev->allmulti -= inc; 5385 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5386 dev->name); 5387 return -EOVERFLOW; 5388 } 5389 } 5390 if (dev->flags ^ old_flags) { 5391 dev_change_rx_flags(dev, IFF_ALLMULTI); 5392 dev_set_rx_mode(dev); 5393 if (notify) 5394 __dev_notify_flags(dev, old_flags, 5395 dev->gflags ^ old_gflags); 5396 } 5397 return 0; 5398 } 5399 5400 /** 5401 * dev_set_allmulti - update allmulti count on a device 5402 * @dev: device 5403 * @inc: modifier 5404 * 5405 * Add or remove reception of all multicast frames to a device. While the 5406 * count in the device remains above zero the interface remains listening 5407 * to all interfaces. Once it hits zero the device reverts back to normal 5408 * filtering operation. A negative @inc value is used to drop the counter 5409 * when releasing a resource needing all multicasts. 5410 * Return 0 if successful or a negative errno code on error. 5411 */ 5412 5413 int dev_set_allmulti(struct net_device *dev, int inc) 5414 { 5415 return __dev_set_allmulti(dev, inc, true); 5416 } 5417 EXPORT_SYMBOL(dev_set_allmulti); 5418 5419 /* 5420 * Upload unicast and multicast address lists to device and 5421 * configure RX filtering. When the device doesn't support unicast 5422 * filtering it is put in promiscuous mode while unicast addresses 5423 * are present. 5424 */ 5425 void __dev_set_rx_mode(struct net_device *dev) 5426 { 5427 const struct net_device_ops *ops = dev->netdev_ops; 5428 5429 /* dev_open will call this function so the list will stay sane. */ 5430 if (!(dev->flags&IFF_UP)) 5431 return; 5432 5433 if (!netif_device_present(dev)) 5434 return; 5435 5436 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5437 /* Unicast addresses changes may only happen under the rtnl, 5438 * therefore calling __dev_set_promiscuity here is safe. 5439 */ 5440 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5441 __dev_set_promiscuity(dev, 1, false); 5442 dev->uc_promisc = true; 5443 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5444 __dev_set_promiscuity(dev, -1, false); 5445 dev->uc_promisc = false; 5446 } 5447 } 5448 5449 if (ops->ndo_set_rx_mode) 5450 ops->ndo_set_rx_mode(dev); 5451 } 5452 5453 void dev_set_rx_mode(struct net_device *dev) 5454 { 5455 netif_addr_lock_bh(dev); 5456 __dev_set_rx_mode(dev); 5457 netif_addr_unlock_bh(dev); 5458 } 5459 5460 /** 5461 * dev_get_flags - get flags reported to userspace 5462 * @dev: device 5463 * 5464 * Get the combination of flag bits exported through APIs to userspace. 5465 */ 5466 unsigned int dev_get_flags(const struct net_device *dev) 5467 { 5468 unsigned int flags; 5469 5470 flags = (dev->flags & ~(IFF_PROMISC | 5471 IFF_ALLMULTI | 5472 IFF_RUNNING | 5473 IFF_LOWER_UP | 5474 IFF_DORMANT)) | 5475 (dev->gflags & (IFF_PROMISC | 5476 IFF_ALLMULTI)); 5477 5478 if (netif_running(dev)) { 5479 if (netif_oper_up(dev)) 5480 flags |= IFF_RUNNING; 5481 if (netif_carrier_ok(dev)) 5482 flags |= IFF_LOWER_UP; 5483 if (netif_dormant(dev)) 5484 flags |= IFF_DORMANT; 5485 } 5486 5487 return flags; 5488 } 5489 EXPORT_SYMBOL(dev_get_flags); 5490 5491 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5492 { 5493 unsigned int old_flags = dev->flags; 5494 int ret; 5495 5496 ASSERT_RTNL(); 5497 5498 /* 5499 * Set the flags on our device. 5500 */ 5501 5502 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5503 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5504 IFF_AUTOMEDIA)) | 5505 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5506 IFF_ALLMULTI)); 5507 5508 /* 5509 * Load in the correct multicast list now the flags have changed. 5510 */ 5511 5512 if ((old_flags ^ flags) & IFF_MULTICAST) 5513 dev_change_rx_flags(dev, IFF_MULTICAST); 5514 5515 dev_set_rx_mode(dev); 5516 5517 /* 5518 * Have we downed the interface. We handle IFF_UP ourselves 5519 * according to user attempts to set it, rather than blindly 5520 * setting it. 5521 */ 5522 5523 ret = 0; 5524 if ((old_flags ^ flags) & IFF_UP) 5525 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5526 5527 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5528 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5529 unsigned int old_flags = dev->flags; 5530 5531 dev->gflags ^= IFF_PROMISC; 5532 5533 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5534 if (dev->flags != old_flags) 5535 dev_set_rx_mode(dev); 5536 } 5537 5538 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5539 is important. Some (broken) drivers set IFF_PROMISC, when 5540 IFF_ALLMULTI is requested not asking us and not reporting. 5541 */ 5542 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5543 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5544 5545 dev->gflags ^= IFF_ALLMULTI; 5546 __dev_set_allmulti(dev, inc, false); 5547 } 5548 5549 return ret; 5550 } 5551 5552 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5553 unsigned int gchanges) 5554 { 5555 unsigned int changes = dev->flags ^ old_flags; 5556 5557 if (gchanges) 5558 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5559 5560 if (changes & IFF_UP) { 5561 if (dev->flags & IFF_UP) 5562 call_netdevice_notifiers(NETDEV_UP, dev); 5563 else 5564 call_netdevice_notifiers(NETDEV_DOWN, dev); 5565 } 5566 5567 if (dev->flags & IFF_UP && 5568 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5569 struct netdev_notifier_change_info change_info; 5570 5571 change_info.flags_changed = changes; 5572 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5573 &change_info.info); 5574 } 5575 } 5576 5577 /** 5578 * dev_change_flags - change device settings 5579 * @dev: device 5580 * @flags: device state flags 5581 * 5582 * Change settings on device based state flags. The flags are 5583 * in the userspace exported format. 5584 */ 5585 int dev_change_flags(struct net_device *dev, unsigned int flags) 5586 { 5587 int ret; 5588 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5589 5590 ret = __dev_change_flags(dev, flags); 5591 if (ret < 0) 5592 return ret; 5593 5594 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5595 __dev_notify_flags(dev, old_flags, changes); 5596 return ret; 5597 } 5598 EXPORT_SYMBOL(dev_change_flags); 5599 5600 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5601 { 5602 const struct net_device_ops *ops = dev->netdev_ops; 5603 5604 if (ops->ndo_change_mtu) 5605 return ops->ndo_change_mtu(dev, new_mtu); 5606 5607 dev->mtu = new_mtu; 5608 return 0; 5609 } 5610 5611 /** 5612 * dev_set_mtu - Change maximum transfer unit 5613 * @dev: device 5614 * @new_mtu: new transfer unit 5615 * 5616 * Change the maximum transfer size of the network device. 5617 */ 5618 int dev_set_mtu(struct net_device *dev, int new_mtu) 5619 { 5620 int err, orig_mtu; 5621 5622 if (new_mtu == dev->mtu) 5623 return 0; 5624 5625 /* MTU must be positive. */ 5626 if (new_mtu < 0) 5627 return -EINVAL; 5628 5629 if (!netif_device_present(dev)) 5630 return -ENODEV; 5631 5632 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5633 err = notifier_to_errno(err); 5634 if (err) 5635 return err; 5636 5637 orig_mtu = dev->mtu; 5638 err = __dev_set_mtu(dev, new_mtu); 5639 5640 if (!err) { 5641 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5642 err = notifier_to_errno(err); 5643 if (err) { 5644 /* setting mtu back and notifying everyone again, 5645 * so that they have a chance to revert changes. 5646 */ 5647 __dev_set_mtu(dev, orig_mtu); 5648 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5649 } 5650 } 5651 return err; 5652 } 5653 EXPORT_SYMBOL(dev_set_mtu); 5654 5655 /** 5656 * dev_set_group - Change group this device belongs to 5657 * @dev: device 5658 * @new_group: group this device should belong to 5659 */ 5660 void dev_set_group(struct net_device *dev, int new_group) 5661 { 5662 dev->group = new_group; 5663 } 5664 EXPORT_SYMBOL(dev_set_group); 5665 5666 /** 5667 * dev_set_mac_address - Change Media Access Control Address 5668 * @dev: device 5669 * @sa: new address 5670 * 5671 * Change the hardware (MAC) address of the device 5672 */ 5673 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5674 { 5675 const struct net_device_ops *ops = dev->netdev_ops; 5676 int err; 5677 5678 if (!ops->ndo_set_mac_address) 5679 return -EOPNOTSUPP; 5680 if (sa->sa_family != dev->type) 5681 return -EINVAL; 5682 if (!netif_device_present(dev)) 5683 return -ENODEV; 5684 err = ops->ndo_set_mac_address(dev, sa); 5685 if (err) 5686 return err; 5687 dev->addr_assign_type = NET_ADDR_SET; 5688 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5689 add_device_randomness(dev->dev_addr, dev->addr_len); 5690 return 0; 5691 } 5692 EXPORT_SYMBOL(dev_set_mac_address); 5693 5694 /** 5695 * dev_change_carrier - Change device carrier 5696 * @dev: device 5697 * @new_carrier: new value 5698 * 5699 * Change device carrier 5700 */ 5701 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5702 { 5703 const struct net_device_ops *ops = dev->netdev_ops; 5704 5705 if (!ops->ndo_change_carrier) 5706 return -EOPNOTSUPP; 5707 if (!netif_device_present(dev)) 5708 return -ENODEV; 5709 return ops->ndo_change_carrier(dev, new_carrier); 5710 } 5711 EXPORT_SYMBOL(dev_change_carrier); 5712 5713 /** 5714 * dev_get_phys_port_id - Get device physical port ID 5715 * @dev: device 5716 * @ppid: port ID 5717 * 5718 * Get device physical port ID 5719 */ 5720 int dev_get_phys_port_id(struct net_device *dev, 5721 struct netdev_phys_port_id *ppid) 5722 { 5723 const struct net_device_ops *ops = dev->netdev_ops; 5724 5725 if (!ops->ndo_get_phys_port_id) 5726 return -EOPNOTSUPP; 5727 return ops->ndo_get_phys_port_id(dev, ppid); 5728 } 5729 EXPORT_SYMBOL(dev_get_phys_port_id); 5730 5731 /** 5732 * dev_new_index - allocate an ifindex 5733 * @net: the applicable net namespace 5734 * 5735 * Returns a suitable unique value for a new device interface 5736 * number. The caller must hold the rtnl semaphore or the 5737 * dev_base_lock to be sure it remains unique. 5738 */ 5739 static int dev_new_index(struct net *net) 5740 { 5741 int ifindex = net->ifindex; 5742 for (;;) { 5743 if (++ifindex <= 0) 5744 ifindex = 1; 5745 if (!__dev_get_by_index(net, ifindex)) 5746 return net->ifindex = ifindex; 5747 } 5748 } 5749 5750 /* Delayed registration/unregisteration */ 5751 static LIST_HEAD(net_todo_list); 5752 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5753 5754 static void net_set_todo(struct net_device *dev) 5755 { 5756 list_add_tail(&dev->todo_list, &net_todo_list); 5757 dev_net(dev)->dev_unreg_count++; 5758 } 5759 5760 static void rollback_registered_many(struct list_head *head) 5761 { 5762 struct net_device *dev, *tmp; 5763 LIST_HEAD(close_head); 5764 5765 BUG_ON(dev_boot_phase); 5766 ASSERT_RTNL(); 5767 5768 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5769 /* Some devices call without registering 5770 * for initialization unwind. Remove those 5771 * devices and proceed with the remaining. 5772 */ 5773 if (dev->reg_state == NETREG_UNINITIALIZED) { 5774 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5775 dev->name, dev); 5776 5777 WARN_ON(1); 5778 list_del(&dev->unreg_list); 5779 continue; 5780 } 5781 dev->dismantle = true; 5782 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5783 } 5784 5785 /* If device is running, close it first. */ 5786 list_for_each_entry(dev, head, unreg_list) 5787 list_add_tail(&dev->close_list, &close_head); 5788 dev_close_many(&close_head); 5789 5790 list_for_each_entry(dev, head, unreg_list) { 5791 /* And unlink it from device chain. */ 5792 unlist_netdevice(dev); 5793 5794 dev->reg_state = NETREG_UNREGISTERING; 5795 } 5796 5797 synchronize_net(); 5798 5799 list_for_each_entry(dev, head, unreg_list) { 5800 /* Shutdown queueing discipline. */ 5801 dev_shutdown(dev); 5802 5803 5804 /* Notify protocols, that we are about to destroy 5805 this device. They should clean all the things. 5806 */ 5807 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5808 5809 /* 5810 * Flush the unicast and multicast chains 5811 */ 5812 dev_uc_flush(dev); 5813 dev_mc_flush(dev); 5814 5815 if (dev->netdev_ops->ndo_uninit) 5816 dev->netdev_ops->ndo_uninit(dev); 5817 5818 if (!dev->rtnl_link_ops || 5819 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5820 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 5821 5822 /* Notifier chain MUST detach us all upper devices. */ 5823 WARN_ON(netdev_has_any_upper_dev(dev)); 5824 5825 /* Remove entries from kobject tree */ 5826 netdev_unregister_kobject(dev); 5827 #ifdef CONFIG_XPS 5828 /* Remove XPS queueing entries */ 5829 netif_reset_xps_queues_gt(dev, 0); 5830 #endif 5831 } 5832 5833 synchronize_net(); 5834 5835 list_for_each_entry(dev, head, unreg_list) 5836 dev_put(dev); 5837 } 5838 5839 static void rollback_registered(struct net_device *dev) 5840 { 5841 LIST_HEAD(single); 5842 5843 list_add(&dev->unreg_list, &single); 5844 rollback_registered_many(&single); 5845 list_del(&single); 5846 } 5847 5848 static netdev_features_t netdev_fix_features(struct net_device *dev, 5849 netdev_features_t features) 5850 { 5851 /* Fix illegal checksum combinations */ 5852 if ((features & NETIF_F_HW_CSUM) && 5853 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5854 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5855 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5856 } 5857 5858 /* TSO requires that SG is present as well. */ 5859 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5860 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5861 features &= ~NETIF_F_ALL_TSO; 5862 } 5863 5864 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5865 !(features & NETIF_F_IP_CSUM)) { 5866 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5867 features &= ~NETIF_F_TSO; 5868 features &= ~NETIF_F_TSO_ECN; 5869 } 5870 5871 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5872 !(features & NETIF_F_IPV6_CSUM)) { 5873 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5874 features &= ~NETIF_F_TSO6; 5875 } 5876 5877 /* TSO ECN requires that TSO is present as well. */ 5878 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5879 features &= ~NETIF_F_TSO_ECN; 5880 5881 /* Software GSO depends on SG. */ 5882 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5883 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5884 features &= ~NETIF_F_GSO; 5885 } 5886 5887 /* UFO needs SG and checksumming */ 5888 if (features & NETIF_F_UFO) { 5889 /* maybe split UFO into V4 and V6? */ 5890 if (!((features & NETIF_F_GEN_CSUM) || 5891 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5892 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5893 netdev_dbg(dev, 5894 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5895 features &= ~NETIF_F_UFO; 5896 } 5897 5898 if (!(features & NETIF_F_SG)) { 5899 netdev_dbg(dev, 5900 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5901 features &= ~NETIF_F_UFO; 5902 } 5903 } 5904 5905 #ifdef CONFIG_NET_RX_BUSY_POLL 5906 if (dev->netdev_ops->ndo_busy_poll) 5907 features |= NETIF_F_BUSY_POLL; 5908 else 5909 #endif 5910 features &= ~NETIF_F_BUSY_POLL; 5911 5912 return features; 5913 } 5914 5915 int __netdev_update_features(struct net_device *dev) 5916 { 5917 netdev_features_t features; 5918 int err = 0; 5919 5920 ASSERT_RTNL(); 5921 5922 features = netdev_get_wanted_features(dev); 5923 5924 if (dev->netdev_ops->ndo_fix_features) 5925 features = dev->netdev_ops->ndo_fix_features(dev, features); 5926 5927 /* driver might be less strict about feature dependencies */ 5928 features = netdev_fix_features(dev, features); 5929 5930 if (dev->features == features) 5931 return 0; 5932 5933 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5934 &dev->features, &features); 5935 5936 if (dev->netdev_ops->ndo_set_features) 5937 err = dev->netdev_ops->ndo_set_features(dev, features); 5938 5939 if (unlikely(err < 0)) { 5940 netdev_err(dev, 5941 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5942 err, &features, &dev->features); 5943 return -1; 5944 } 5945 5946 if (!err) 5947 dev->features = features; 5948 5949 return 1; 5950 } 5951 5952 /** 5953 * netdev_update_features - recalculate device features 5954 * @dev: the device to check 5955 * 5956 * Recalculate dev->features set and send notifications if it 5957 * has changed. Should be called after driver or hardware dependent 5958 * conditions might have changed that influence the features. 5959 */ 5960 void netdev_update_features(struct net_device *dev) 5961 { 5962 if (__netdev_update_features(dev)) 5963 netdev_features_change(dev); 5964 } 5965 EXPORT_SYMBOL(netdev_update_features); 5966 5967 /** 5968 * netdev_change_features - recalculate device features 5969 * @dev: the device to check 5970 * 5971 * Recalculate dev->features set and send notifications even 5972 * if they have not changed. Should be called instead of 5973 * netdev_update_features() if also dev->vlan_features might 5974 * have changed to allow the changes to be propagated to stacked 5975 * VLAN devices. 5976 */ 5977 void netdev_change_features(struct net_device *dev) 5978 { 5979 __netdev_update_features(dev); 5980 netdev_features_change(dev); 5981 } 5982 EXPORT_SYMBOL(netdev_change_features); 5983 5984 /** 5985 * netif_stacked_transfer_operstate - transfer operstate 5986 * @rootdev: the root or lower level device to transfer state from 5987 * @dev: the device to transfer operstate to 5988 * 5989 * Transfer operational state from root to device. This is normally 5990 * called when a stacking relationship exists between the root 5991 * device and the device(a leaf device). 5992 */ 5993 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5994 struct net_device *dev) 5995 { 5996 if (rootdev->operstate == IF_OPER_DORMANT) 5997 netif_dormant_on(dev); 5998 else 5999 netif_dormant_off(dev); 6000 6001 if (netif_carrier_ok(rootdev)) { 6002 if (!netif_carrier_ok(dev)) 6003 netif_carrier_on(dev); 6004 } else { 6005 if (netif_carrier_ok(dev)) 6006 netif_carrier_off(dev); 6007 } 6008 } 6009 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6010 6011 #ifdef CONFIG_SYSFS 6012 static int netif_alloc_rx_queues(struct net_device *dev) 6013 { 6014 unsigned int i, count = dev->num_rx_queues; 6015 struct netdev_rx_queue *rx; 6016 6017 BUG_ON(count < 1); 6018 6019 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 6020 if (!rx) 6021 return -ENOMEM; 6022 6023 dev->_rx = rx; 6024 6025 for (i = 0; i < count; i++) 6026 rx[i].dev = dev; 6027 return 0; 6028 } 6029 #endif 6030 6031 static void netdev_init_one_queue(struct net_device *dev, 6032 struct netdev_queue *queue, void *_unused) 6033 { 6034 /* Initialize queue lock */ 6035 spin_lock_init(&queue->_xmit_lock); 6036 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6037 queue->xmit_lock_owner = -1; 6038 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6039 queue->dev = dev; 6040 #ifdef CONFIG_BQL 6041 dql_init(&queue->dql, HZ); 6042 #endif 6043 } 6044 6045 static void netif_free_tx_queues(struct net_device *dev) 6046 { 6047 kvfree(dev->_tx); 6048 } 6049 6050 static int netif_alloc_netdev_queues(struct net_device *dev) 6051 { 6052 unsigned int count = dev->num_tx_queues; 6053 struct netdev_queue *tx; 6054 size_t sz = count * sizeof(*tx); 6055 6056 BUG_ON(count < 1 || count > 0xffff); 6057 6058 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6059 if (!tx) { 6060 tx = vzalloc(sz); 6061 if (!tx) 6062 return -ENOMEM; 6063 } 6064 dev->_tx = tx; 6065 6066 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6067 spin_lock_init(&dev->tx_global_lock); 6068 6069 return 0; 6070 } 6071 6072 /** 6073 * register_netdevice - register a network device 6074 * @dev: device to register 6075 * 6076 * Take a completed network device structure and add it to the kernel 6077 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6078 * chain. 0 is returned on success. A negative errno code is returned 6079 * on a failure to set up the device, or if the name is a duplicate. 6080 * 6081 * Callers must hold the rtnl semaphore. You may want 6082 * register_netdev() instead of this. 6083 * 6084 * BUGS: 6085 * The locking appears insufficient to guarantee two parallel registers 6086 * will not get the same name. 6087 */ 6088 6089 int register_netdevice(struct net_device *dev) 6090 { 6091 int ret; 6092 struct net *net = dev_net(dev); 6093 6094 BUG_ON(dev_boot_phase); 6095 ASSERT_RTNL(); 6096 6097 might_sleep(); 6098 6099 /* When net_device's are persistent, this will be fatal. */ 6100 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6101 BUG_ON(!net); 6102 6103 spin_lock_init(&dev->addr_list_lock); 6104 netdev_set_addr_lockdep_class(dev); 6105 6106 dev->iflink = -1; 6107 6108 ret = dev_get_valid_name(net, dev, dev->name); 6109 if (ret < 0) 6110 goto out; 6111 6112 /* Init, if this function is available */ 6113 if (dev->netdev_ops->ndo_init) { 6114 ret = dev->netdev_ops->ndo_init(dev); 6115 if (ret) { 6116 if (ret > 0) 6117 ret = -EIO; 6118 goto out; 6119 } 6120 } 6121 6122 if (((dev->hw_features | dev->features) & 6123 NETIF_F_HW_VLAN_CTAG_FILTER) && 6124 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6125 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6126 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6127 ret = -EINVAL; 6128 goto err_uninit; 6129 } 6130 6131 ret = -EBUSY; 6132 if (!dev->ifindex) 6133 dev->ifindex = dev_new_index(net); 6134 else if (__dev_get_by_index(net, dev->ifindex)) 6135 goto err_uninit; 6136 6137 if (dev->iflink == -1) 6138 dev->iflink = dev->ifindex; 6139 6140 /* Transfer changeable features to wanted_features and enable 6141 * software offloads (GSO and GRO). 6142 */ 6143 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6144 dev->features |= NETIF_F_SOFT_FEATURES; 6145 dev->wanted_features = dev->features & dev->hw_features; 6146 6147 if (!(dev->flags & IFF_LOOPBACK)) { 6148 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6149 } 6150 6151 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6152 */ 6153 dev->vlan_features |= NETIF_F_HIGHDMA; 6154 6155 /* Make NETIF_F_SG inheritable to tunnel devices. 6156 */ 6157 dev->hw_enc_features |= NETIF_F_SG; 6158 6159 /* Make NETIF_F_SG inheritable to MPLS. 6160 */ 6161 dev->mpls_features |= NETIF_F_SG; 6162 6163 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6164 ret = notifier_to_errno(ret); 6165 if (ret) 6166 goto err_uninit; 6167 6168 ret = netdev_register_kobject(dev); 6169 if (ret) 6170 goto err_uninit; 6171 dev->reg_state = NETREG_REGISTERED; 6172 6173 __netdev_update_features(dev); 6174 6175 /* 6176 * Default initial state at registry is that the 6177 * device is present. 6178 */ 6179 6180 set_bit(__LINK_STATE_PRESENT, &dev->state); 6181 6182 linkwatch_init_dev(dev); 6183 6184 dev_init_scheduler(dev); 6185 dev_hold(dev); 6186 list_netdevice(dev); 6187 add_device_randomness(dev->dev_addr, dev->addr_len); 6188 6189 /* If the device has permanent device address, driver should 6190 * set dev_addr and also addr_assign_type should be set to 6191 * NET_ADDR_PERM (default value). 6192 */ 6193 if (dev->addr_assign_type == NET_ADDR_PERM) 6194 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6195 6196 /* Notify protocols, that a new device appeared. */ 6197 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6198 ret = notifier_to_errno(ret); 6199 if (ret) { 6200 rollback_registered(dev); 6201 dev->reg_state = NETREG_UNREGISTERED; 6202 } 6203 /* 6204 * Prevent userspace races by waiting until the network 6205 * device is fully setup before sending notifications. 6206 */ 6207 if (!dev->rtnl_link_ops || 6208 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6209 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6210 6211 out: 6212 return ret; 6213 6214 err_uninit: 6215 if (dev->netdev_ops->ndo_uninit) 6216 dev->netdev_ops->ndo_uninit(dev); 6217 goto out; 6218 } 6219 EXPORT_SYMBOL(register_netdevice); 6220 6221 /** 6222 * init_dummy_netdev - init a dummy network device for NAPI 6223 * @dev: device to init 6224 * 6225 * This takes a network device structure and initialize the minimum 6226 * amount of fields so it can be used to schedule NAPI polls without 6227 * registering a full blown interface. This is to be used by drivers 6228 * that need to tie several hardware interfaces to a single NAPI 6229 * poll scheduler due to HW limitations. 6230 */ 6231 int init_dummy_netdev(struct net_device *dev) 6232 { 6233 /* Clear everything. Note we don't initialize spinlocks 6234 * are they aren't supposed to be taken by any of the 6235 * NAPI code and this dummy netdev is supposed to be 6236 * only ever used for NAPI polls 6237 */ 6238 memset(dev, 0, sizeof(struct net_device)); 6239 6240 /* make sure we BUG if trying to hit standard 6241 * register/unregister code path 6242 */ 6243 dev->reg_state = NETREG_DUMMY; 6244 6245 /* NAPI wants this */ 6246 INIT_LIST_HEAD(&dev->napi_list); 6247 6248 /* a dummy interface is started by default */ 6249 set_bit(__LINK_STATE_PRESENT, &dev->state); 6250 set_bit(__LINK_STATE_START, &dev->state); 6251 6252 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6253 * because users of this 'device' dont need to change 6254 * its refcount. 6255 */ 6256 6257 return 0; 6258 } 6259 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6260 6261 6262 /** 6263 * register_netdev - register a network device 6264 * @dev: device to register 6265 * 6266 * Take a completed network device structure and add it to the kernel 6267 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6268 * chain. 0 is returned on success. A negative errno code is returned 6269 * on a failure to set up the device, or if the name is a duplicate. 6270 * 6271 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6272 * and expands the device name if you passed a format string to 6273 * alloc_netdev. 6274 */ 6275 int register_netdev(struct net_device *dev) 6276 { 6277 int err; 6278 6279 rtnl_lock(); 6280 err = register_netdevice(dev); 6281 rtnl_unlock(); 6282 return err; 6283 } 6284 EXPORT_SYMBOL(register_netdev); 6285 6286 int netdev_refcnt_read(const struct net_device *dev) 6287 { 6288 int i, refcnt = 0; 6289 6290 for_each_possible_cpu(i) 6291 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6292 return refcnt; 6293 } 6294 EXPORT_SYMBOL(netdev_refcnt_read); 6295 6296 /** 6297 * netdev_wait_allrefs - wait until all references are gone. 6298 * @dev: target net_device 6299 * 6300 * This is called when unregistering network devices. 6301 * 6302 * Any protocol or device that holds a reference should register 6303 * for netdevice notification, and cleanup and put back the 6304 * reference if they receive an UNREGISTER event. 6305 * We can get stuck here if buggy protocols don't correctly 6306 * call dev_put. 6307 */ 6308 static void netdev_wait_allrefs(struct net_device *dev) 6309 { 6310 unsigned long rebroadcast_time, warning_time; 6311 int refcnt; 6312 6313 linkwatch_forget_dev(dev); 6314 6315 rebroadcast_time = warning_time = jiffies; 6316 refcnt = netdev_refcnt_read(dev); 6317 6318 while (refcnt != 0) { 6319 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6320 rtnl_lock(); 6321 6322 /* Rebroadcast unregister notification */ 6323 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6324 6325 __rtnl_unlock(); 6326 rcu_barrier(); 6327 rtnl_lock(); 6328 6329 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6330 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6331 &dev->state)) { 6332 /* We must not have linkwatch events 6333 * pending on unregister. If this 6334 * happens, we simply run the queue 6335 * unscheduled, resulting in a noop 6336 * for this device. 6337 */ 6338 linkwatch_run_queue(); 6339 } 6340 6341 __rtnl_unlock(); 6342 6343 rebroadcast_time = jiffies; 6344 } 6345 6346 msleep(250); 6347 6348 refcnt = netdev_refcnt_read(dev); 6349 6350 if (time_after(jiffies, warning_time + 10 * HZ)) { 6351 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6352 dev->name, refcnt); 6353 warning_time = jiffies; 6354 } 6355 } 6356 } 6357 6358 /* The sequence is: 6359 * 6360 * rtnl_lock(); 6361 * ... 6362 * register_netdevice(x1); 6363 * register_netdevice(x2); 6364 * ... 6365 * unregister_netdevice(y1); 6366 * unregister_netdevice(y2); 6367 * ... 6368 * rtnl_unlock(); 6369 * free_netdev(y1); 6370 * free_netdev(y2); 6371 * 6372 * We are invoked by rtnl_unlock(). 6373 * This allows us to deal with problems: 6374 * 1) We can delete sysfs objects which invoke hotplug 6375 * without deadlocking with linkwatch via keventd. 6376 * 2) Since we run with the RTNL semaphore not held, we can sleep 6377 * safely in order to wait for the netdev refcnt to drop to zero. 6378 * 6379 * We must not return until all unregister events added during 6380 * the interval the lock was held have been completed. 6381 */ 6382 void netdev_run_todo(void) 6383 { 6384 struct list_head list; 6385 6386 /* Snapshot list, allow later requests */ 6387 list_replace_init(&net_todo_list, &list); 6388 6389 __rtnl_unlock(); 6390 6391 6392 /* Wait for rcu callbacks to finish before next phase */ 6393 if (!list_empty(&list)) 6394 rcu_barrier(); 6395 6396 while (!list_empty(&list)) { 6397 struct net_device *dev 6398 = list_first_entry(&list, struct net_device, todo_list); 6399 list_del(&dev->todo_list); 6400 6401 rtnl_lock(); 6402 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6403 __rtnl_unlock(); 6404 6405 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6406 pr_err("network todo '%s' but state %d\n", 6407 dev->name, dev->reg_state); 6408 dump_stack(); 6409 continue; 6410 } 6411 6412 dev->reg_state = NETREG_UNREGISTERED; 6413 6414 on_each_cpu(flush_backlog, dev, 1); 6415 6416 netdev_wait_allrefs(dev); 6417 6418 /* paranoia */ 6419 BUG_ON(netdev_refcnt_read(dev)); 6420 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6421 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6422 WARN_ON(dev->dn_ptr); 6423 6424 if (dev->destructor) 6425 dev->destructor(dev); 6426 6427 /* Report a network device has been unregistered */ 6428 rtnl_lock(); 6429 dev_net(dev)->dev_unreg_count--; 6430 __rtnl_unlock(); 6431 wake_up(&netdev_unregistering_wq); 6432 6433 /* Free network device */ 6434 kobject_put(&dev->dev.kobj); 6435 } 6436 } 6437 6438 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6439 * fields in the same order, with only the type differing. 6440 */ 6441 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6442 const struct net_device_stats *netdev_stats) 6443 { 6444 #if BITS_PER_LONG == 64 6445 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6446 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6447 #else 6448 size_t i, n = sizeof(*stats64) / sizeof(u64); 6449 const unsigned long *src = (const unsigned long *)netdev_stats; 6450 u64 *dst = (u64 *)stats64; 6451 6452 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6453 sizeof(*stats64) / sizeof(u64)); 6454 for (i = 0; i < n; i++) 6455 dst[i] = src[i]; 6456 #endif 6457 } 6458 EXPORT_SYMBOL(netdev_stats_to_stats64); 6459 6460 /** 6461 * dev_get_stats - get network device statistics 6462 * @dev: device to get statistics from 6463 * @storage: place to store stats 6464 * 6465 * Get network statistics from device. Return @storage. 6466 * The device driver may provide its own method by setting 6467 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6468 * otherwise the internal statistics structure is used. 6469 */ 6470 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6471 struct rtnl_link_stats64 *storage) 6472 { 6473 const struct net_device_ops *ops = dev->netdev_ops; 6474 6475 if (ops->ndo_get_stats64) { 6476 memset(storage, 0, sizeof(*storage)); 6477 ops->ndo_get_stats64(dev, storage); 6478 } else if (ops->ndo_get_stats) { 6479 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6480 } else { 6481 netdev_stats_to_stats64(storage, &dev->stats); 6482 } 6483 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6484 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6485 return storage; 6486 } 6487 EXPORT_SYMBOL(dev_get_stats); 6488 6489 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6490 { 6491 struct netdev_queue *queue = dev_ingress_queue(dev); 6492 6493 #ifdef CONFIG_NET_CLS_ACT 6494 if (queue) 6495 return queue; 6496 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6497 if (!queue) 6498 return NULL; 6499 netdev_init_one_queue(dev, queue, NULL); 6500 queue->qdisc = &noop_qdisc; 6501 queue->qdisc_sleeping = &noop_qdisc; 6502 rcu_assign_pointer(dev->ingress_queue, queue); 6503 #endif 6504 return queue; 6505 } 6506 6507 static const struct ethtool_ops default_ethtool_ops; 6508 6509 void netdev_set_default_ethtool_ops(struct net_device *dev, 6510 const struct ethtool_ops *ops) 6511 { 6512 if (dev->ethtool_ops == &default_ethtool_ops) 6513 dev->ethtool_ops = ops; 6514 } 6515 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6516 6517 void netdev_freemem(struct net_device *dev) 6518 { 6519 char *addr = (char *)dev - dev->padded; 6520 6521 kvfree(addr); 6522 } 6523 6524 /** 6525 * alloc_netdev_mqs - allocate network device 6526 * @sizeof_priv: size of private data to allocate space for 6527 * @name: device name format string 6528 * @name_assign_type: origin of device name 6529 * @setup: callback to initialize device 6530 * @txqs: the number of TX subqueues to allocate 6531 * @rxqs: the number of RX subqueues to allocate 6532 * 6533 * Allocates a struct net_device with private data area for driver use 6534 * and performs basic initialization. Also allocates subqueue structs 6535 * for each queue on the device. 6536 */ 6537 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6538 unsigned char name_assign_type, 6539 void (*setup)(struct net_device *), 6540 unsigned int txqs, unsigned int rxqs) 6541 { 6542 struct net_device *dev; 6543 size_t alloc_size; 6544 struct net_device *p; 6545 6546 BUG_ON(strlen(name) >= sizeof(dev->name)); 6547 6548 if (txqs < 1) { 6549 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6550 return NULL; 6551 } 6552 6553 #ifdef CONFIG_SYSFS 6554 if (rxqs < 1) { 6555 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6556 return NULL; 6557 } 6558 #endif 6559 6560 alloc_size = sizeof(struct net_device); 6561 if (sizeof_priv) { 6562 /* ensure 32-byte alignment of private area */ 6563 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6564 alloc_size += sizeof_priv; 6565 } 6566 /* ensure 32-byte alignment of whole construct */ 6567 alloc_size += NETDEV_ALIGN - 1; 6568 6569 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6570 if (!p) 6571 p = vzalloc(alloc_size); 6572 if (!p) 6573 return NULL; 6574 6575 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6576 dev->padded = (char *)dev - (char *)p; 6577 6578 dev->pcpu_refcnt = alloc_percpu(int); 6579 if (!dev->pcpu_refcnt) 6580 goto free_dev; 6581 6582 if (dev_addr_init(dev)) 6583 goto free_pcpu; 6584 6585 dev_mc_init(dev); 6586 dev_uc_init(dev); 6587 6588 dev_net_set(dev, &init_net); 6589 6590 dev->gso_max_size = GSO_MAX_SIZE; 6591 dev->gso_max_segs = GSO_MAX_SEGS; 6592 6593 INIT_LIST_HEAD(&dev->napi_list); 6594 INIT_LIST_HEAD(&dev->unreg_list); 6595 INIT_LIST_HEAD(&dev->close_list); 6596 INIT_LIST_HEAD(&dev->link_watch_list); 6597 INIT_LIST_HEAD(&dev->adj_list.upper); 6598 INIT_LIST_HEAD(&dev->adj_list.lower); 6599 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6600 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6601 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6602 setup(dev); 6603 6604 dev->num_tx_queues = txqs; 6605 dev->real_num_tx_queues = txqs; 6606 if (netif_alloc_netdev_queues(dev)) 6607 goto free_all; 6608 6609 #ifdef CONFIG_SYSFS 6610 dev->num_rx_queues = rxqs; 6611 dev->real_num_rx_queues = rxqs; 6612 if (netif_alloc_rx_queues(dev)) 6613 goto free_all; 6614 #endif 6615 6616 strcpy(dev->name, name); 6617 dev->name_assign_type = name_assign_type; 6618 dev->group = INIT_NETDEV_GROUP; 6619 if (!dev->ethtool_ops) 6620 dev->ethtool_ops = &default_ethtool_ops; 6621 return dev; 6622 6623 free_all: 6624 free_netdev(dev); 6625 return NULL; 6626 6627 free_pcpu: 6628 free_percpu(dev->pcpu_refcnt); 6629 free_dev: 6630 netdev_freemem(dev); 6631 return NULL; 6632 } 6633 EXPORT_SYMBOL(alloc_netdev_mqs); 6634 6635 /** 6636 * free_netdev - free network device 6637 * @dev: device 6638 * 6639 * This function does the last stage of destroying an allocated device 6640 * interface. The reference to the device object is released. 6641 * If this is the last reference then it will be freed. 6642 */ 6643 void free_netdev(struct net_device *dev) 6644 { 6645 struct napi_struct *p, *n; 6646 6647 release_net(dev_net(dev)); 6648 6649 netif_free_tx_queues(dev); 6650 #ifdef CONFIG_SYSFS 6651 kfree(dev->_rx); 6652 #endif 6653 6654 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6655 6656 /* Flush device addresses */ 6657 dev_addr_flush(dev); 6658 6659 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6660 netif_napi_del(p); 6661 6662 free_percpu(dev->pcpu_refcnt); 6663 dev->pcpu_refcnt = NULL; 6664 6665 /* Compatibility with error handling in drivers */ 6666 if (dev->reg_state == NETREG_UNINITIALIZED) { 6667 netdev_freemem(dev); 6668 return; 6669 } 6670 6671 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6672 dev->reg_state = NETREG_RELEASED; 6673 6674 /* will free via device release */ 6675 put_device(&dev->dev); 6676 } 6677 EXPORT_SYMBOL(free_netdev); 6678 6679 /** 6680 * synchronize_net - Synchronize with packet receive processing 6681 * 6682 * Wait for packets currently being received to be done. 6683 * Does not block later packets from starting. 6684 */ 6685 void synchronize_net(void) 6686 { 6687 might_sleep(); 6688 if (rtnl_is_locked()) 6689 synchronize_rcu_expedited(); 6690 else 6691 synchronize_rcu(); 6692 } 6693 EXPORT_SYMBOL(synchronize_net); 6694 6695 /** 6696 * unregister_netdevice_queue - remove device from the kernel 6697 * @dev: device 6698 * @head: list 6699 * 6700 * This function shuts down a device interface and removes it 6701 * from the kernel tables. 6702 * If head not NULL, device is queued to be unregistered later. 6703 * 6704 * Callers must hold the rtnl semaphore. You may want 6705 * unregister_netdev() instead of this. 6706 */ 6707 6708 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6709 { 6710 ASSERT_RTNL(); 6711 6712 if (head) { 6713 list_move_tail(&dev->unreg_list, head); 6714 } else { 6715 rollback_registered(dev); 6716 /* Finish processing unregister after unlock */ 6717 net_set_todo(dev); 6718 } 6719 } 6720 EXPORT_SYMBOL(unregister_netdevice_queue); 6721 6722 /** 6723 * unregister_netdevice_many - unregister many devices 6724 * @head: list of devices 6725 * 6726 * Note: As most callers use a stack allocated list_head, 6727 * we force a list_del() to make sure stack wont be corrupted later. 6728 */ 6729 void unregister_netdevice_many(struct list_head *head) 6730 { 6731 struct net_device *dev; 6732 6733 if (!list_empty(head)) { 6734 rollback_registered_many(head); 6735 list_for_each_entry(dev, head, unreg_list) 6736 net_set_todo(dev); 6737 list_del(head); 6738 } 6739 } 6740 EXPORT_SYMBOL(unregister_netdevice_many); 6741 6742 /** 6743 * unregister_netdev - remove device from the kernel 6744 * @dev: device 6745 * 6746 * This function shuts down a device interface and removes it 6747 * from the kernel tables. 6748 * 6749 * This is just a wrapper for unregister_netdevice that takes 6750 * the rtnl semaphore. In general you want to use this and not 6751 * unregister_netdevice. 6752 */ 6753 void unregister_netdev(struct net_device *dev) 6754 { 6755 rtnl_lock(); 6756 unregister_netdevice(dev); 6757 rtnl_unlock(); 6758 } 6759 EXPORT_SYMBOL(unregister_netdev); 6760 6761 /** 6762 * dev_change_net_namespace - move device to different nethost namespace 6763 * @dev: device 6764 * @net: network namespace 6765 * @pat: If not NULL name pattern to try if the current device name 6766 * is already taken in the destination network namespace. 6767 * 6768 * This function shuts down a device interface and moves it 6769 * to a new network namespace. On success 0 is returned, on 6770 * a failure a netagive errno code is returned. 6771 * 6772 * Callers must hold the rtnl semaphore. 6773 */ 6774 6775 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6776 { 6777 int err; 6778 6779 ASSERT_RTNL(); 6780 6781 /* Don't allow namespace local devices to be moved. */ 6782 err = -EINVAL; 6783 if (dev->features & NETIF_F_NETNS_LOCAL) 6784 goto out; 6785 6786 /* Ensure the device has been registrered */ 6787 if (dev->reg_state != NETREG_REGISTERED) 6788 goto out; 6789 6790 /* Get out if there is nothing todo */ 6791 err = 0; 6792 if (net_eq(dev_net(dev), net)) 6793 goto out; 6794 6795 /* Pick the destination device name, and ensure 6796 * we can use it in the destination network namespace. 6797 */ 6798 err = -EEXIST; 6799 if (__dev_get_by_name(net, dev->name)) { 6800 /* We get here if we can't use the current device name */ 6801 if (!pat) 6802 goto out; 6803 if (dev_get_valid_name(net, dev, pat) < 0) 6804 goto out; 6805 } 6806 6807 /* 6808 * And now a mini version of register_netdevice unregister_netdevice. 6809 */ 6810 6811 /* If device is running close it first. */ 6812 dev_close(dev); 6813 6814 /* And unlink it from device chain */ 6815 err = -ENODEV; 6816 unlist_netdevice(dev); 6817 6818 synchronize_net(); 6819 6820 /* Shutdown queueing discipline. */ 6821 dev_shutdown(dev); 6822 6823 /* Notify protocols, that we are about to destroy 6824 this device. They should clean all the things. 6825 6826 Note that dev->reg_state stays at NETREG_REGISTERED. 6827 This is wanted because this way 8021q and macvlan know 6828 the device is just moving and can keep their slaves up. 6829 */ 6830 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6831 rcu_barrier(); 6832 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6833 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6834 6835 /* 6836 * Flush the unicast and multicast chains 6837 */ 6838 dev_uc_flush(dev); 6839 dev_mc_flush(dev); 6840 6841 /* Send a netdev-removed uevent to the old namespace */ 6842 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6843 netdev_adjacent_del_links(dev); 6844 6845 /* Actually switch the network namespace */ 6846 dev_net_set(dev, net); 6847 6848 /* If there is an ifindex conflict assign a new one */ 6849 if (__dev_get_by_index(net, dev->ifindex)) { 6850 int iflink = (dev->iflink == dev->ifindex); 6851 dev->ifindex = dev_new_index(net); 6852 if (iflink) 6853 dev->iflink = dev->ifindex; 6854 } 6855 6856 /* Send a netdev-add uevent to the new namespace */ 6857 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6858 netdev_adjacent_add_links(dev); 6859 6860 /* Fixup kobjects */ 6861 err = device_rename(&dev->dev, dev->name); 6862 WARN_ON(err); 6863 6864 /* Add the device back in the hashes */ 6865 list_netdevice(dev); 6866 6867 /* Notify protocols, that a new device appeared. */ 6868 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6869 6870 /* 6871 * Prevent userspace races by waiting until the network 6872 * device is fully setup before sending notifications. 6873 */ 6874 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6875 6876 synchronize_net(); 6877 err = 0; 6878 out: 6879 return err; 6880 } 6881 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6882 6883 static int dev_cpu_callback(struct notifier_block *nfb, 6884 unsigned long action, 6885 void *ocpu) 6886 { 6887 struct sk_buff **list_skb; 6888 struct sk_buff *skb; 6889 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6890 struct softnet_data *sd, *oldsd; 6891 6892 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6893 return NOTIFY_OK; 6894 6895 local_irq_disable(); 6896 cpu = smp_processor_id(); 6897 sd = &per_cpu(softnet_data, cpu); 6898 oldsd = &per_cpu(softnet_data, oldcpu); 6899 6900 /* Find end of our completion_queue. */ 6901 list_skb = &sd->completion_queue; 6902 while (*list_skb) 6903 list_skb = &(*list_skb)->next; 6904 /* Append completion queue from offline CPU. */ 6905 *list_skb = oldsd->completion_queue; 6906 oldsd->completion_queue = NULL; 6907 6908 /* Append output queue from offline CPU. */ 6909 if (oldsd->output_queue) { 6910 *sd->output_queue_tailp = oldsd->output_queue; 6911 sd->output_queue_tailp = oldsd->output_queue_tailp; 6912 oldsd->output_queue = NULL; 6913 oldsd->output_queue_tailp = &oldsd->output_queue; 6914 } 6915 /* Append NAPI poll list from offline CPU. */ 6916 if (!list_empty(&oldsd->poll_list)) { 6917 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6918 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6919 } 6920 6921 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6922 local_irq_enable(); 6923 6924 /* Process offline CPU's input_pkt_queue */ 6925 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6926 netif_rx_internal(skb); 6927 input_queue_head_incr(oldsd); 6928 } 6929 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6930 netif_rx_internal(skb); 6931 input_queue_head_incr(oldsd); 6932 } 6933 6934 return NOTIFY_OK; 6935 } 6936 6937 6938 /** 6939 * netdev_increment_features - increment feature set by one 6940 * @all: current feature set 6941 * @one: new feature set 6942 * @mask: mask feature set 6943 * 6944 * Computes a new feature set after adding a device with feature set 6945 * @one to the master device with current feature set @all. Will not 6946 * enable anything that is off in @mask. Returns the new feature set. 6947 */ 6948 netdev_features_t netdev_increment_features(netdev_features_t all, 6949 netdev_features_t one, netdev_features_t mask) 6950 { 6951 if (mask & NETIF_F_GEN_CSUM) 6952 mask |= NETIF_F_ALL_CSUM; 6953 mask |= NETIF_F_VLAN_CHALLENGED; 6954 6955 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6956 all &= one | ~NETIF_F_ALL_FOR_ALL; 6957 6958 /* If one device supports hw checksumming, set for all. */ 6959 if (all & NETIF_F_GEN_CSUM) 6960 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6961 6962 return all; 6963 } 6964 EXPORT_SYMBOL(netdev_increment_features); 6965 6966 static struct hlist_head * __net_init netdev_create_hash(void) 6967 { 6968 int i; 6969 struct hlist_head *hash; 6970 6971 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6972 if (hash != NULL) 6973 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6974 INIT_HLIST_HEAD(&hash[i]); 6975 6976 return hash; 6977 } 6978 6979 /* Initialize per network namespace state */ 6980 static int __net_init netdev_init(struct net *net) 6981 { 6982 if (net != &init_net) 6983 INIT_LIST_HEAD(&net->dev_base_head); 6984 6985 net->dev_name_head = netdev_create_hash(); 6986 if (net->dev_name_head == NULL) 6987 goto err_name; 6988 6989 net->dev_index_head = netdev_create_hash(); 6990 if (net->dev_index_head == NULL) 6991 goto err_idx; 6992 6993 return 0; 6994 6995 err_idx: 6996 kfree(net->dev_name_head); 6997 err_name: 6998 return -ENOMEM; 6999 } 7000 7001 /** 7002 * netdev_drivername - network driver for the device 7003 * @dev: network device 7004 * 7005 * Determine network driver for device. 7006 */ 7007 const char *netdev_drivername(const struct net_device *dev) 7008 { 7009 const struct device_driver *driver; 7010 const struct device *parent; 7011 const char *empty = ""; 7012 7013 parent = dev->dev.parent; 7014 if (!parent) 7015 return empty; 7016 7017 driver = parent->driver; 7018 if (driver && driver->name) 7019 return driver->name; 7020 return empty; 7021 } 7022 7023 static int __netdev_printk(const char *level, const struct net_device *dev, 7024 struct va_format *vaf) 7025 { 7026 int r; 7027 7028 if (dev && dev->dev.parent) { 7029 r = dev_printk_emit(level[1] - '0', 7030 dev->dev.parent, 7031 "%s %s %s%s: %pV", 7032 dev_driver_string(dev->dev.parent), 7033 dev_name(dev->dev.parent), 7034 netdev_name(dev), netdev_reg_state(dev), 7035 vaf); 7036 } else if (dev) { 7037 r = printk("%s%s%s: %pV", level, netdev_name(dev), 7038 netdev_reg_state(dev), vaf); 7039 } else { 7040 r = printk("%s(NULL net_device): %pV", level, vaf); 7041 } 7042 7043 return r; 7044 } 7045 7046 int netdev_printk(const char *level, const struct net_device *dev, 7047 const char *format, ...) 7048 { 7049 struct va_format vaf; 7050 va_list args; 7051 int r; 7052 7053 va_start(args, format); 7054 7055 vaf.fmt = format; 7056 vaf.va = &args; 7057 7058 r = __netdev_printk(level, dev, &vaf); 7059 7060 va_end(args); 7061 7062 return r; 7063 } 7064 EXPORT_SYMBOL(netdev_printk); 7065 7066 #define define_netdev_printk_level(func, level) \ 7067 int func(const struct net_device *dev, const char *fmt, ...) \ 7068 { \ 7069 int r; \ 7070 struct va_format vaf; \ 7071 va_list args; \ 7072 \ 7073 va_start(args, fmt); \ 7074 \ 7075 vaf.fmt = fmt; \ 7076 vaf.va = &args; \ 7077 \ 7078 r = __netdev_printk(level, dev, &vaf); \ 7079 \ 7080 va_end(args); \ 7081 \ 7082 return r; \ 7083 } \ 7084 EXPORT_SYMBOL(func); 7085 7086 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7087 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7088 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7089 define_netdev_printk_level(netdev_err, KERN_ERR); 7090 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7091 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7092 define_netdev_printk_level(netdev_info, KERN_INFO); 7093 7094 static void __net_exit netdev_exit(struct net *net) 7095 { 7096 kfree(net->dev_name_head); 7097 kfree(net->dev_index_head); 7098 } 7099 7100 static struct pernet_operations __net_initdata netdev_net_ops = { 7101 .init = netdev_init, 7102 .exit = netdev_exit, 7103 }; 7104 7105 static void __net_exit default_device_exit(struct net *net) 7106 { 7107 struct net_device *dev, *aux; 7108 /* 7109 * Push all migratable network devices back to the 7110 * initial network namespace 7111 */ 7112 rtnl_lock(); 7113 for_each_netdev_safe(net, dev, aux) { 7114 int err; 7115 char fb_name[IFNAMSIZ]; 7116 7117 /* Ignore unmoveable devices (i.e. loopback) */ 7118 if (dev->features & NETIF_F_NETNS_LOCAL) 7119 continue; 7120 7121 /* Leave virtual devices for the generic cleanup */ 7122 if (dev->rtnl_link_ops) 7123 continue; 7124 7125 /* Push remaining network devices to init_net */ 7126 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7127 err = dev_change_net_namespace(dev, &init_net, fb_name); 7128 if (err) { 7129 pr_emerg("%s: failed to move %s to init_net: %d\n", 7130 __func__, dev->name, err); 7131 BUG(); 7132 } 7133 } 7134 rtnl_unlock(); 7135 } 7136 7137 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7138 { 7139 /* Return with the rtnl_lock held when there are no network 7140 * devices unregistering in any network namespace in net_list. 7141 */ 7142 struct net *net; 7143 bool unregistering; 7144 DEFINE_WAIT(wait); 7145 7146 for (;;) { 7147 prepare_to_wait(&netdev_unregistering_wq, &wait, 7148 TASK_UNINTERRUPTIBLE); 7149 unregistering = false; 7150 rtnl_lock(); 7151 list_for_each_entry(net, net_list, exit_list) { 7152 if (net->dev_unreg_count > 0) { 7153 unregistering = true; 7154 break; 7155 } 7156 } 7157 if (!unregistering) 7158 break; 7159 __rtnl_unlock(); 7160 schedule(); 7161 } 7162 finish_wait(&netdev_unregistering_wq, &wait); 7163 } 7164 7165 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7166 { 7167 /* At exit all network devices most be removed from a network 7168 * namespace. Do this in the reverse order of registration. 7169 * Do this across as many network namespaces as possible to 7170 * improve batching efficiency. 7171 */ 7172 struct net_device *dev; 7173 struct net *net; 7174 LIST_HEAD(dev_kill_list); 7175 7176 /* To prevent network device cleanup code from dereferencing 7177 * loopback devices or network devices that have been freed 7178 * wait here for all pending unregistrations to complete, 7179 * before unregistring the loopback device and allowing the 7180 * network namespace be freed. 7181 * 7182 * The netdev todo list containing all network devices 7183 * unregistrations that happen in default_device_exit_batch 7184 * will run in the rtnl_unlock() at the end of 7185 * default_device_exit_batch. 7186 */ 7187 rtnl_lock_unregistering(net_list); 7188 list_for_each_entry(net, net_list, exit_list) { 7189 for_each_netdev_reverse(net, dev) { 7190 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7191 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7192 else 7193 unregister_netdevice_queue(dev, &dev_kill_list); 7194 } 7195 } 7196 unregister_netdevice_many(&dev_kill_list); 7197 rtnl_unlock(); 7198 } 7199 7200 static struct pernet_operations __net_initdata default_device_ops = { 7201 .exit = default_device_exit, 7202 .exit_batch = default_device_exit_batch, 7203 }; 7204 7205 /* 7206 * Initialize the DEV module. At boot time this walks the device list and 7207 * unhooks any devices that fail to initialise (normally hardware not 7208 * present) and leaves us with a valid list of present and active devices. 7209 * 7210 */ 7211 7212 /* 7213 * This is called single threaded during boot, so no need 7214 * to take the rtnl semaphore. 7215 */ 7216 static int __init net_dev_init(void) 7217 { 7218 int i, rc = -ENOMEM; 7219 7220 BUG_ON(!dev_boot_phase); 7221 7222 if (dev_proc_init()) 7223 goto out; 7224 7225 if (netdev_kobject_init()) 7226 goto out; 7227 7228 INIT_LIST_HEAD(&ptype_all); 7229 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7230 INIT_LIST_HEAD(&ptype_base[i]); 7231 7232 INIT_LIST_HEAD(&offload_base); 7233 7234 if (register_pernet_subsys(&netdev_net_ops)) 7235 goto out; 7236 7237 /* 7238 * Initialise the packet receive queues. 7239 */ 7240 7241 for_each_possible_cpu(i) { 7242 struct softnet_data *sd = &per_cpu(softnet_data, i); 7243 7244 skb_queue_head_init(&sd->input_pkt_queue); 7245 skb_queue_head_init(&sd->process_queue); 7246 INIT_LIST_HEAD(&sd->poll_list); 7247 sd->output_queue_tailp = &sd->output_queue; 7248 #ifdef CONFIG_RPS 7249 sd->csd.func = rps_trigger_softirq; 7250 sd->csd.info = sd; 7251 sd->cpu = i; 7252 #endif 7253 7254 sd->backlog.poll = process_backlog; 7255 sd->backlog.weight = weight_p; 7256 } 7257 7258 dev_boot_phase = 0; 7259 7260 /* The loopback device is special if any other network devices 7261 * is present in a network namespace the loopback device must 7262 * be present. Since we now dynamically allocate and free the 7263 * loopback device ensure this invariant is maintained by 7264 * keeping the loopback device as the first device on the 7265 * list of network devices. Ensuring the loopback devices 7266 * is the first device that appears and the last network device 7267 * that disappears. 7268 */ 7269 if (register_pernet_device(&loopback_net_ops)) 7270 goto out; 7271 7272 if (register_pernet_device(&default_device_ops)) 7273 goto out; 7274 7275 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7276 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7277 7278 hotcpu_notifier(dev_cpu_callback, 0); 7279 dst_init(); 7280 rc = 0; 7281 out: 7282 return rc; 7283 } 7284 7285 subsys_initcall(net_dev_init); 7286