xref: /linux/net/core/dev.c (revision 385ef48f468696d6d172eb367656a3466fa0408d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 
157 #include "dev.h"
158 #include "net-sysfs.h"
159 
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock_irqsave(struct softnet_data *sd,
220 				    unsigned long *flags)
221 {
222 	if (IS_ENABLED(CONFIG_RPS))
223 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225 		local_irq_save(*flags);
226 }
227 
228 static inline void rps_lock_irq_disable(struct softnet_data *sd)
229 {
230 	if (IS_ENABLED(CONFIG_RPS))
231 		spin_lock_irq(&sd->input_pkt_queue.lock);
232 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233 		local_irq_disable();
234 }
235 
236 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237 					  unsigned long *flags)
238 {
239 	if (IS_ENABLED(CONFIG_RPS))
240 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 		local_irq_restore(*flags);
243 }
244 
245 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246 {
247 	if (IS_ENABLED(CONFIG_RPS))
248 		spin_unlock_irq(&sd->input_pkt_queue.lock);
249 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 		local_irq_enable();
251 }
252 
253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254 						       const char *name)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259 	if (!name_node)
260 		return NULL;
261 	INIT_HLIST_NODE(&name_node->hlist);
262 	name_node->dev = dev;
263 	name_node->name = name;
264 	return name_node;
265 }
266 
267 static struct netdev_name_node *
268 netdev_name_node_head_alloc(struct net_device *dev)
269 {
270 	struct netdev_name_node *name_node;
271 
272 	name_node = netdev_name_node_alloc(dev, dev->name);
273 	if (!name_node)
274 		return NULL;
275 	INIT_LIST_HEAD(&name_node->list);
276 	return name_node;
277 }
278 
279 static void netdev_name_node_free(struct netdev_name_node *name_node)
280 {
281 	kfree(name_node);
282 }
283 
284 static void netdev_name_node_add(struct net *net,
285 				 struct netdev_name_node *name_node)
286 {
287 	hlist_add_head_rcu(&name_node->hlist,
288 			   dev_name_hash(net, name_node->name));
289 }
290 
291 static void netdev_name_node_del(struct netdev_name_node *name_node)
292 {
293 	hlist_del_rcu(&name_node->hlist);
294 }
295 
296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297 							const char *name)
298 {
299 	struct hlist_head *head = dev_name_hash(net, name);
300 	struct netdev_name_node *name_node;
301 
302 	hlist_for_each_entry(name_node, head, hlist)
303 		if (!strcmp(name_node->name, name))
304 			return name_node;
305 	return NULL;
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309 							    const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry_rcu(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 bool netdev_name_in_use(struct net *net, const char *name)
321 {
322 	return netdev_name_node_lookup(net, name);
323 }
324 EXPORT_SYMBOL(netdev_name_in_use);
325 
326 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327 {
328 	struct netdev_name_node *name_node;
329 	struct net *net = dev_net(dev);
330 
331 	name_node = netdev_name_node_lookup(net, name);
332 	if (name_node)
333 		return -EEXIST;
334 	name_node = netdev_name_node_alloc(dev, name);
335 	if (!name_node)
336 		return -ENOMEM;
337 	netdev_name_node_add(net, name_node);
338 	/* The node that holds dev->name acts as a head of per-device list. */
339 	list_add_tail(&name_node->list, &dev->name_node->list);
340 
341 	return 0;
342 }
343 
344 static void netdev_name_node_alt_free(struct rcu_head *head)
345 {
346 	struct netdev_name_node *name_node =
347 		container_of(head, struct netdev_name_node, rcu);
348 
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
354 {
355 	netdev_name_node_del(name_node);
356 	list_del(&name_node->list);
357 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
358 }
359 
360 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
361 {
362 	struct netdev_name_node *name_node;
363 	struct net *net = dev_net(dev);
364 
365 	name_node = netdev_name_node_lookup(net, name);
366 	if (!name_node)
367 		return -ENOENT;
368 	/* lookup might have found our primary name or a name belonging
369 	 * to another device.
370 	 */
371 	if (name_node == dev->name_node || name_node->dev != dev)
372 		return -EINVAL;
373 
374 	__netdev_name_node_alt_destroy(name_node);
375 	return 0;
376 }
377 
378 static void netdev_name_node_alt_flush(struct net_device *dev)
379 {
380 	struct netdev_name_node *name_node, *tmp;
381 
382 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
383 		list_del(&name_node->list);
384 		netdev_name_node_alt_free(&name_node->rcu);
385 	}
386 }
387 
388 /* Device list insertion */
389 static void list_netdevice(struct net_device *dev)
390 {
391 	struct netdev_name_node *name_node;
392 	struct net *net = dev_net(dev);
393 
394 	ASSERT_RTNL();
395 
396 	write_lock(&dev_base_lock);
397 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
398 	netdev_name_node_add(net, dev->name_node);
399 	hlist_add_head_rcu(&dev->index_hlist,
400 			   dev_index_hash(net, dev->ifindex));
401 	write_unlock(&dev_base_lock);
402 
403 	netdev_for_each_altname(dev, name_node)
404 		netdev_name_node_add(net, name_node);
405 
406 	/* We reserved the ifindex, this can't fail */
407 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
408 
409 	dev_base_seq_inc(net);
410 }
411 
412 /* Device list removal
413  * caller must respect a RCU grace period before freeing/reusing dev
414  */
415 static void unlist_netdevice(struct net_device *dev, bool lock)
416 {
417 	struct netdev_name_node *name_node;
418 	struct net *net = dev_net(dev);
419 
420 	ASSERT_RTNL();
421 
422 	xa_erase(&net->dev_by_index, dev->ifindex);
423 
424 	netdev_for_each_altname(dev, name_node)
425 		netdev_name_node_del(name_node);
426 
427 	/* Unlink dev from the device chain */
428 	if (lock)
429 		write_lock(&dev_base_lock);
430 	list_del_rcu(&dev->dev_list);
431 	netdev_name_node_del(dev->name_node);
432 	hlist_del_rcu(&dev->index_hlist);
433 	if (lock)
434 		write_unlock(&dev_base_lock);
435 
436 	dev_base_seq_inc(dev_net(dev));
437 }
438 
439 /*
440  *	Our notifier list
441  */
442 
443 static RAW_NOTIFIER_HEAD(netdev_chain);
444 
445 /*
446  *	Device drivers call our routines to queue packets here. We empty the
447  *	queue in the local softnet handler.
448  */
449 
450 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
451 EXPORT_PER_CPU_SYMBOL(softnet_data);
452 
453 #ifdef CONFIG_LOCKDEP
454 /*
455  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
456  * according to dev->type
457  */
458 static const unsigned short netdev_lock_type[] = {
459 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
460 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
461 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
462 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
463 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
464 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
465 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
466 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
467 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
468 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
469 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
470 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
471 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
472 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
473 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
474 
475 static const char *const netdev_lock_name[] = {
476 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
477 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
478 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
479 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
480 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
481 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
482 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
483 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
484 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
485 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
486 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
487 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
488 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
489 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
490 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
491 
492 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
493 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
494 
495 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
496 {
497 	int i;
498 
499 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
500 		if (netdev_lock_type[i] == dev_type)
501 			return i;
502 	/* the last key is used by default */
503 	return ARRAY_SIZE(netdev_lock_type) - 1;
504 }
505 
506 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
507 						 unsigned short dev_type)
508 {
509 	int i;
510 
511 	i = netdev_lock_pos(dev_type);
512 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
513 				   netdev_lock_name[i]);
514 }
515 
516 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
517 {
518 	int i;
519 
520 	i = netdev_lock_pos(dev->type);
521 	lockdep_set_class_and_name(&dev->addr_list_lock,
522 				   &netdev_addr_lock_key[i],
523 				   netdev_lock_name[i]);
524 }
525 #else
526 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
527 						 unsigned short dev_type)
528 {
529 }
530 
531 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
532 {
533 }
534 #endif
535 
536 /*******************************************************************************
537  *
538  *		Protocol management and registration routines
539  *
540  *******************************************************************************/
541 
542 
543 /*
544  *	Add a protocol ID to the list. Now that the input handler is
545  *	smarter we can dispense with all the messy stuff that used to be
546  *	here.
547  *
548  *	BEWARE!!! Protocol handlers, mangling input packets,
549  *	MUST BE last in hash buckets and checking protocol handlers
550  *	MUST start from promiscuous ptype_all chain in net_bh.
551  *	It is true now, do not change it.
552  *	Explanation follows: if protocol handler, mangling packet, will
553  *	be the first on list, it is not able to sense, that packet
554  *	is cloned and should be copied-on-write, so that it will
555  *	change it and subsequent readers will get broken packet.
556  *							--ANK (980803)
557  */
558 
559 static inline struct list_head *ptype_head(const struct packet_type *pt)
560 {
561 	if (pt->type == htons(ETH_P_ALL))
562 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
563 	else
564 		return pt->dev ? &pt->dev->ptype_specific :
565 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
566 }
567 
568 /**
569  *	dev_add_pack - add packet handler
570  *	@pt: packet type declaration
571  *
572  *	Add a protocol handler to the networking stack. The passed &packet_type
573  *	is linked into kernel lists and may not be freed until it has been
574  *	removed from the kernel lists.
575  *
576  *	This call does not sleep therefore it can not
577  *	guarantee all CPU's that are in middle of receiving packets
578  *	will see the new packet type (until the next received packet).
579  */
580 
581 void dev_add_pack(struct packet_type *pt)
582 {
583 	struct list_head *head = ptype_head(pt);
584 
585 	spin_lock(&ptype_lock);
586 	list_add_rcu(&pt->list, head);
587 	spin_unlock(&ptype_lock);
588 }
589 EXPORT_SYMBOL(dev_add_pack);
590 
591 /**
592  *	__dev_remove_pack	 - remove packet handler
593  *	@pt: packet type declaration
594  *
595  *	Remove a protocol handler that was previously added to the kernel
596  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
597  *	from the kernel lists and can be freed or reused once this function
598  *	returns.
599  *
600  *      The packet type might still be in use by receivers
601  *	and must not be freed until after all the CPU's have gone
602  *	through a quiescent state.
603  */
604 void __dev_remove_pack(struct packet_type *pt)
605 {
606 	struct list_head *head = ptype_head(pt);
607 	struct packet_type *pt1;
608 
609 	spin_lock(&ptype_lock);
610 
611 	list_for_each_entry(pt1, head, list) {
612 		if (pt == pt1) {
613 			list_del_rcu(&pt->list);
614 			goto out;
615 		}
616 	}
617 
618 	pr_warn("dev_remove_pack: %p not found\n", pt);
619 out:
620 	spin_unlock(&ptype_lock);
621 }
622 EXPORT_SYMBOL(__dev_remove_pack);
623 
624 /**
625  *	dev_remove_pack	 - remove packet handler
626  *	@pt: packet type declaration
627  *
628  *	Remove a protocol handler that was previously added to the kernel
629  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
630  *	from the kernel lists and can be freed or reused once this function
631  *	returns.
632  *
633  *	This call sleeps to guarantee that no CPU is looking at the packet
634  *	type after return.
635  */
636 void dev_remove_pack(struct packet_type *pt)
637 {
638 	__dev_remove_pack(pt);
639 
640 	synchronize_net();
641 }
642 EXPORT_SYMBOL(dev_remove_pack);
643 
644 
645 /*******************************************************************************
646  *
647  *			    Device Interface Subroutines
648  *
649  *******************************************************************************/
650 
651 /**
652  *	dev_get_iflink	- get 'iflink' value of a interface
653  *	@dev: targeted interface
654  *
655  *	Indicates the ifindex the interface is linked to.
656  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
657  */
658 
659 int dev_get_iflink(const struct net_device *dev)
660 {
661 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
662 		return dev->netdev_ops->ndo_get_iflink(dev);
663 
664 	return dev->ifindex;
665 }
666 EXPORT_SYMBOL(dev_get_iflink);
667 
668 /**
669  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
670  *	@dev: targeted interface
671  *	@skb: The packet.
672  *
673  *	For better visibility of tunnel traffic OVS needs to retrieve
674  *	egress tunnel information for a packet. Following API allows
675  *	user to get this info.
676  */
677 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
678 {
679 	struct ip_tunnel_info *info;
680 
681 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
682 		return -EINVAL;
683 
684 	info = skb_tunnel_info_unclone(skb);
685 	if (!info)
686 		return -ENOMEM;
687 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
688 		return -EINVAL;
689 
690 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
691 }
692 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
693 
694 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
695 {
696 	int k = stack->num_paths++;
697 
698 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
699 		return NULL;
700 
701 	return &stack->path[k];
702 }
703 
704 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
705 			  struct net_device_path_stack *stack)
706 {
707 	const struct net_device *last_dev;
708 	struct net_device_path_ctx ctx = {
709 		.dev	= dev,
710 	};
711 	struct net_device_path *path;
712 	int ret = 0;
713 
714 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
715 	stack->num_paths = 0;
716 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
717 		last_dev = ctx.dev;
718 		path = dev_fwd_path(stack);
719 		if (!path)
720 			return -1;
721 
722 		memset(path, 0, sizeof(struct net_device_path));
723 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
724 		if (ret < 0)
725 			return -1;
726 
727 		if (WARN_ON_ONCE(last_dev == ctx.dev))
728 			return -1;
729 	}
730 
731 	if (!ctx.dev)
732 		return ret;
733 
734 	path = dev_fwd_path(stack);
735 	if (!path)
736 		return -1;
737 	path->type = DEV_PATH_ETHERNET;
738 	path->dev = ctx.dev;
739 
740 	return ret;
741 }
742 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
743 
744 /**
745  *	__dev_get_by_name	- find a device by its name
746  *	@net: the applicable net namespace
747  *	@name: name to find
748  *
749  *	Find an interface by name. Must be called under RTNL semaphore
750  *	or @dev_base_lock. If the name is found a pointer to the device
751  *	is returned. If the name is not found then %NULL is returned. The
752  *	reference counters are not incremented so the caller must be
753  *	careful with locks.
754  */
755 
756 struct net_device *__dev_get_by_name(struct net *net, const char *name)
757 {
758 	struct netdev_name_node *node_name;
759 
760 	node_name = netdev_name_node_lookup(net, name);
761 	return node_name ? node_name->dev : NULL;
762 }
763 EXPORT_SYMBOL(__dev_get_by_name);
764 
765 /**
766  * dev_get_by_name_rcu	- find a device by its name
767  * @net: the applicable net namespace
768  * @name: name to find
769  *
770  * Find an interface by name.
771  * If the name is found a pointer to the device is returned.
772  * If the name is not found then %NULL is returned.
773  * The reference counters are not incremented so the caller must be
774  * careful with locks. The caller must hold RCU lock.
775  */
776 
777 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
778 {
779 	struct netdev_name_node *node_name;
780 
781 	node_name = netdev_name_node_lookup_rcu(net, name);
782 	return node_name ? node_name->dev : NULL;
783 }
784 EXPORT_SYMBOL(dev_get_by_name_rcu);
785 
786 /* Deprecated for new users, call netdev_get_by_name() instead */
787 struct net_device *dev_get_by_name(struct net *net, const char *name)
788 {
789 	struct net_device *dev;
790 
791 	rcu_read_lock();
792 	dev = dev_get_by_name_rcu(net, name);
793 	dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	netdev_get_by_name() - find a device by its name
801  *	@net: the applicable net namespace
802  *	@name: name to find
803  *	@tracker: tracking object for the acquired reference
804  *	@gfp: allocation flags for the tracker
805  *
806  *	Find an interface by name. This can be called from any
807  *	context and does its own locking. The returned handle has
808  *	the usage count incremented and the caller must use netdev_put() to
809  *	release it when it is no longer needed. %NULL is returned if no
810  *	matching device is found.
811  */
812 struct net_device *netdev_get_by_name(struct net *net, const char *name,
813 				      netdevice_tracker *tracker, gfp_t gfp)
814 {
815 	struct net_device *dev;
816 
817 	dev = dev_get_by_name(net, name);
818 	if (dev)
819 		netdev_tracker_alloc(dev, tracker, gfp);
820 	return dev;
821 }
822 EXPORT_SYMBOL(netdev_get_by_name);
823 
824 /**
825  *	__dev_get_by_index - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold either the RTNL semaphore
833  *	or @dev_base_lock.
834  */
835 
836 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
837 {
838 	struct net_device *dev;
839 	struct hlist_head *head = dev_index_hash(net, ifindex);
840 
841 	hlist_for_each_entry(dev, head, index_hlist)
842 		if (dev->ifindex == ifindex)
843 			return dev;
844 
845 	return NULL;
846 }
847 EXPORT_SYMBOL(__dev_get_by_index);
848 
849 /**
850  *	dev_get_by_index_rcu - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns %NULL if the device
855  *	is not found or a pointer to the device. The device has not
856  *	had its reference counter increased so the caller must be careful
857  *	about locking. The caller must hold RCU lock.
858  */
859 
860 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 	struct hlist_head *head = dev_index_hash(net, ifindex);
864 
865 	hlist_for_each_entry_rcu(dev, head, index_hlist)
866 		if (dev->ifindex == ifindex)
867 			return dev;
868 
869 	return NULL;
870 }
871 EXPORT_SYMBOL(dev_get_by_index_rcu);
872 
873 /* Deprecated for new users, call netdev_get_by_index() instead */
874 struct net_device *dev_get_by_index(struct net *net, int ifindex)
875 {
876 	struct net_device *dev;
877 
878 	rcu_read_lock();
879 	dev = dev_get_by_index_rcu(net, ifindex);
880 	dev_hold(dev);
881 	rcu_read_unlock();
882 	return dev;
883 }
884 EXPORT_SYMBOL(dev_get_by_index);
885 
886 /**
887  *	netdev_get_by_index() - find a device by its ifindex
888  *	@net: the applicable net namespace
889  *	@ifindex: index of device
890  *	@tracker: tracking object for the acquired reference
891  *	@gfp: allocation flags for the tracker
892  *
893  *	Search for an interface by index. Returns NULL if the device
894  *	is not found or a pointer to the device. The device returned has
895  *	had a reference added and the pointer is safe until the user calls
896  *	netdev_put() to indicate they have finished with it.
897  */
898 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
899 				       netdevice_tracker *tracker, gfp_t gfp)
900 {
901 	struct net_device *dev;
902 
903 	dev = dev_get_by_index(net, ifindex);
904 	if (dev)
905 		netdev_tracker_alloc(dev, tracker, gfp);
906 	return dev;
907 }
908 EXPORT_SYMBOL(netdev_get_by_index);
909 
910 /**
911  *	dev_get_by_napi_id - find a device by napi_id
912  *	@napi_id: ID of the NAPI struct
913  *
914  *	Search for an interface by NAPI ID. Returns %NULL if the device
915  *	is not found or a pointer to the device. The device has not had
916  *	its reference counter increased so the caller must be careful
917  *	about locking. The caller must hold RCU lock.
918  */
919 
920 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
921 {
922 	struct napi_struct *napi;
923 
924 	WARN_ON_ONCE(!rcu_read_lock_held());
925 
926 	if (napi_id < MIN_NAPI_ID)
927 		return NULL;
928 
929 	napi = napi_by_id(napi_id);
930 
931 	return napi ? napi->dev : NULL;
932 }
933 EXPORT_SYMBOL(dev_get_by_napi_id);
934 
935 /**
936  *	netdev_get_name - get a netdevice name, knowing its ifindex.
937  *	@net: network namespace
938  *	@name: a pointer to the buffer where the name will be stored.
939  *	@ifindex: the ifindex of the interface to get the name from.
940  */
941 int netdev_get_name(struct net *net, char *name, int ifindex)
942 {
943 	struct net_device *dev;
944 	int ret;
945 
946 	down_read(&devnet_rename_sem);
947 	rcu_read_lock();
948 
949 	dev = dev_get_by_index_rcu(net, ifindex);
950 	if (!dev) {
951 		ret = -ENODEV;
952 		goto out;
953 	}
954 
955 	strcpy(name, dev->name);
956 
957 	ret = 0;
958 out:
959 	rcu_read_unlock();
960 	up_read(&devnet_rename_sem);
961 	return ret;
962 }
963 
964 /**
965  *	dev_getbyhwaddr_rcu - find a device by its hardware address
966  *	@net: the applicable net namespace
967  *	@type: media type of device
968  *	@ha: hardware address
969  *
970  *	Search for an interface by MAC address. Returns NULL if the device
971  *	is not found or a pointer to the device.
972  *	The caller must hold RCU or RTNL.
973  *	The returned device has not had its ref count increased
974  *	and the caller must therefore be careful about locking
975  *
976  */
977 
978 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
979 				       const char *ha)
980 {
981 	struct net_device *dev;
982 
983 	for_each_netdev_rcu(net, dev)
984 		if (dev->type == type &&
985 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
986 			return dev;
987 
988 	return NULL;
989 }
990 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
991 
992 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
993 {
994 	struct net_device *dev, *ret = NULL;
995 
996 	rcu_read_lock();
997 	for_each_netdev_rcu(net, dev)
998 		if (dev->type == type) {
999 			dev_hold(dev);
1000 			ret = dev;
1001 			break;
1002 		}
1003 	rcu_read_unlock();
1004 	return ret;
1005 }
1006 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1007 
1008 /**
1009  *	__dev_get_by_flags - find any device with given flags
1010  *	@net: the applicable net namespace
1011  *	@if_flags: IFF_* values
1012  *	@mask: bitmask of bits in if_flags to check
1013  *
1014  *	Search for any interface with the given flags. Returns NULL if a device
1015  *	is not found or a pointer to the device. Must be called inside
1016  *	rtnl_lock(), and result refcount is unchanged.
1017  */
1018 
1019 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1020 				      unsigned short mask)
1021 {
1022 	struct net_device *dev, *ret;
1023 
1024 	ASSERT_RTNL();
1025 
1026 	ret = NULL;
1027 	for_each_netdev(net, dev) {
1028 		if (((dev->flags ^ if_flags) & mask) == 0) {
1029 			ret = dev;
1030 			break;
1031 		}
1032 	}
1033 	return ret;
1034 }
1035 EXPORT_SYMBOL(__dev_get_by_flags);
1036 
1037 /**
1038  *	dev_valid_name - check if name is okay for network device
1039  *	@name: name string
1040  *
1041  *	Network device names need to be valid file names to
1042  *	allow sysfs to work.  We also disallow any kind of
1043  *	whitespace.
1044  */
1045 bool dev_valid_name(const char *name)
1046 {
1047 	if (*name == '\0')
1048 		return false;
1049 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1050 		return false;
1051 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1052 		return false;
1053 
1054 	while (*name) {
1055 		if (*name == '/' || *name == ':' || isspace(*name))
1056 			return false;
1057 		name++;
1058 	}
1059 	return true;
1060 }
1061 EXPORT_SYMBOL(dev_valid_name);
1062 
1063 /**
1064  *	__dev_alloc_name - allocate a name for a device
1065  *	@net: network namespace to allocate the device name in
1066  *	@name: name format string
1067  *	@res: result name string
1068  *
1069  *	Passed a format string - eg "lt%d" it will try and find a suitable
1070  *	id. It scans list of devices to build up a free map, then chooses
1071  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1072  *	while allocating the name and adding the device in order to avoid
1073  *	duplicates.
1074  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1075  *	Returns the number of the unit assigned or a negative errno code.
1076  */
1077 
1078 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1079 {
1080 	int i = 0;
1081 	const char *p;
1082 	const int max_netdevices = 8*PAGE_SIZE;
1083 	unsigned long *inuse;
1084 	struct net_device *d;
1085 	char buf[IFNAMSIZ];
1086 
1087 	/* Verify the string as this thing may have come from the user.
1088 	 * There must be one "%d" and no other "%" characters.
1089 	 */
1090 	p = strchr(name, '%');
1091 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1092 		return -EINVAL;
1093 
1094 	/* Use one page as a bit array of possible slots */
1095 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1096 	if (!inuse)
1097 		return -ENOMEM;
1098 
1099 	for_each_netdev(net, d) {
1100 		struct netdev_name_node *name_node;
1101 
1102 		netdev_for_each_altname(d, name_node) {
1103 			if (!sscanf(name_node->name, name, &i))
1104 				continue;
1105 			if (i < 0 || i >= max_netdevices)
1106 				continue;
1107 
1108 			/* avoid cases where sscanf is not exact inverse of printf */
1109 			snprintf(buf, IFNAMSIZ, name, i);
1110 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1111 				__set_bit(i, inuse);
1112 		}
1113 		if (!sscanf(d->name, name, &i))
1114 			continue;
1115 		if (i < 0 || i >= max_netdevices)
1116 			continue;
1117 
1118 		/* avoid cases where sscanf is not exact inverse of printf */
1119 		snprintf(buf, IFNAMSIZ, name, i);
1120 		if (!strncmp(buf, d->name, IFNAMSIZ))
1121 			__set_bit(i, inuse);
1122 	}
1123 
1124 	i = find_first_zero_bit(inuse, max_netdevices);
1125 	bitmap_free(inuse);
1126 	if (i == max_netdevices)
1127 		return -ENFILE;
1128 
1129 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1130 	strscpy(buf, name, IFNAMSIZ);
1131 	snprintf(res, IFNAMSIZ, buf, i);
1132 	return i;
1133 }
1134 
1135 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1136 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1137 			       const char *want_name, char *out_name,
1138 			       int dup_errno)
1139 {
1140 	if (!dev_valid_name(want_name))
1141 		return -EINVAL;
1142 
1143 	if (strchr(want_name, '%'))
1144 		return __dev_alloc_name(net, want_name, out_name);
1145 
1146 	if (netdev_name_in_use(net, want_name))
1147 		return -dup_errno;
1148 	if (out_name != want_name)
1149 		strscpy(out_name, want_name, IFNAMSIZ);
1150 	return 0;
1151 }
1152 
1153 /**
1154  *	dev_alloc_name - allocate a name for a device
1155  *	@dev: device
1156  *	@name: name format string
1157  *
1158  *	Passed a format string - eg "lt%d" it will try and find a suitable
1159  *	id. It scans list of devices to build up a free map, then chooses
1160  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1161  *	while allocating the name and adding the device in order to avoid
1162  *	duplicates.
1163  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1164  *	Returns the number of the unit assigned or a negative errno code.
1165  */
1166 
1167 int dev_alloc_name(struct net_device *dev, const char *name)
1168 {
1169 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1170 }
1171 EXPORT_SYMBOL(dev_alloc_name);
1172 
1173 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1174 			      const char *name)
1175 {
1176 	int ret;
1177 
1178 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1179 	return ret < 0 ? ret : 0;
1180 }
1181 
1182 /**
1183  *	dev_change_name - change name of a device
1184  *	@dev: device
1185  *	@newname: name (or format string) must be at least IFNAMSIZ
1186  *
1187  *	Change name of a device, can pass format strings "eth%d".
1188  *	for wildcarding.
1189  */
1190 int dev_change_name(struct net_device *dev, const char *newname)
1191 {
1192 	unsigned char old_assign_type;
1193 	char oldname[IFNAMSIZ];
1194 	int err = 0;
1195 	int ret;
1196 	struct net *net;
1197 
1198 	ASSERT_RTNL();
1199 	BUG_ON(!dev_net(dev));
1200 
1201 	net = dev_net(dev);
1202 
1203 	down_write(&devnet_rename_sem);
1204 
1205 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1206 		up_write(&devnet_rename_sem);
1207 		return 0;
1208 	}
1209 
1210 	memcpy(oldname, dev->name, IFNAMSIZ);
1211 
1212 	err = dev_get_valid_name(net, dev, newname);
1213 	if (err < 0) {
1214 		up_write(&devnet_rename_sem);
1215 		return err;
1216 	}
1217 
1218 	if (oldname[0] && !strchr(oldname, '%'))
1219 		netdev_info(dev, "renamed from %s%s\n", oldname,
1220 			    dev->flags & IFF_UP ? " (while UP)" : "");
1221 
1222 	old_assign_type = dev->name_assign_type;
1223 	dev->name_assign_type = NET_NAME_RENAMED;
1224 
1225 rollback:
1226 	ret = device_rename(&dev->dev, dev->name);
1227 	if (ret) {
1228 		memcpy(dev->name, oldname, IFNAMSIZ);
1229 		dev->name_assign_type = old_assign_type;
1230 		up_write(&devnet_rename_sem);
1231 		return ret;
1232 	}
1233 
1234 	up_write(&devnet_rename_sem);
1235 
1236 	netdev_adjacent_rename_links(dev, oldname);
1237 
1238 	write_lock(&dev_base_lock);
1239 	netdev_name_node_del(dev->name_node);
1240 	write_unlock(&dev_base_lock);
1241 
1242 	synchronize_rcu();
1243 
1244 	write_lock(&dev_base_lock);
1245 	netdev_name_node_add(net, dev->name_node);
1246 	write_unlock(&dev_base_lock);
1247 
1248 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1249 	ret = notifier_to_errno(ret);
1250 
1251 	if (ret) {
1252 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1253 		if (err >= 0) {
1254 			err = ret;
1255 			down_write(&devnet_rename_sem);
1256 			memcpy(dev->name, oldname, IFNAMSIZ);
1257 			memcpy(oldname, newname, IFNAMSIZ);
1258 			dev->name_assign_type = old_assign_type;
1259 			old_assign_type = NET_NAME_RENAMED;
1260 			goto rollback;
1261 		} else {
1262 			netdev_err(dev, "name change rollback failed: %d\n",
1263 				   ret);
1264 		}
1265 	}
1266 
1267 	return err;
1268 }
1269 
1270 /**
1271  *	dev_set_alias - change ifalias of a device
1272  *	@dev: device
1273  *	@alias: name up to IFALIASZ
1274  *	@len: limit of bytes to copy from info
1275  *
1276  *	Set ifalias for a device,
1277  */
1278 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1279 {
1280 	struct dev_ifalias *new_alias = NULL;
1281 
1282 	if (len >= IFALIASZ)
1283 		return -EINVAL;
1284 
1285 	if (len) {
1286 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1287 		if (!new_alias)
1288 			return -ENOMEM;
1289 
1290 		memcpy(new_alias->ifalias, alias, len);
1291 		new_alias->ifalias[len] = 0;
1292 	}
1293 
1294 	mutex_lock(&ifalias_mutex);
1295 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1296 					mutex_is_locked(&ifalias_mutex));
1297 	mutex_unlock(&ifalias_mutex);
1298 
1299 	if (new_alias)
1300 		kfree_rcu(new_alias, rcuhead);
1301 
1302 	return len;
1303 }
1304 EXPORT_SYMBOL(dev_set_alias);
1305 
1306 /**
1307  *	dev_get_alias - get ifalias of a device
1308  *	@dev: device
1309  *	@name: buffer to store name of ifalias
1310  *	@len: size of buffer
1311  *
1312  *	get ifalias for a device.  Caller must make sure dev cannot go
1313  *	away,  e.g. rcu read lock or own a reference count to device.
1314  */
1315 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1316 {
1317 	const struct dev_ifalias *alias;
1318 	int ret = 0;
1319 
1320 	rcu_read_lock();
1321 	alias = rcu_dereference(dev->ifalias);
1322 	if (alias)
1323 		ret = snprintf(name, len, "%s", alias->ifalias);
1324 	rcu_read_unlock();
1325 
1326 	return ret;
1327 }
1328 
1329 /**
1330  *	netdev_features_change - device changes features
1331  *	@dev: device to cause notification
1332  *
1333  *	Called to indicate a device has changed features.
1334  */
1335 void netdev_features_change(struct net_device *dev)
1336 {
1337 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1338 }
1339 EXPORT_SYMBOL(netdev_features_change);
1340 
1341 /**
1342  *	netdev_state_change - device changes state
1343  *	@dev: device to cause notification
1344  *
1345  *	Called to indicate a device has changed state. This function calls
1346  *	the notifier chains for netdev_chain and sends a NEWLINK message
1347  *	to the routing socket.
1348  */
1349 void netdev_state_change(struct net_device *dev)
1350 {
1351 	if (dev->flags & IFF_UP) {
1352 		struct netdev_notifier_change_info change_info = {
1353 			.info.dev = dev,
1354 		};
1355 
1356 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1357 					      &change_info.info);
1358 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1359 	}
1360 }
1361 EXPORT_SYMBOL(netdev_state_change);
1362 
1363 /**
1364  * __netdev_notify_peers - notify network peers about existence of @dev,
1365  * to be called when rtnl lock is already held.
1366  * @dev: network device
1367  *
1368  * Generate traffic such that interested network peers are aware of
1369  * @dev, such as by generating a gratuitous ARP. This may be used when
1370  * a device wants to inform the rest of the network about some sort of
1371  * reconfiguration such as a failover event or virtual machine
1372  * migration.
1373  */
1374 void __netdev_notify_peers(struct net_device *dev)
1375 {
1376 	ASSERT_RTNL();
1377 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1378 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1379 }
1380 EXPORT_SYMBOL(__netdev_notify_peers);
1381 
1382 /**
1383  * netdev_notify_peers - notify network peers about existence of @dev
1384  * @dev: network device
1385  *
1386  * Generate traffic such that interested network peers are aware of
1387  * @dev, such as by generating a gratuitous ARP. This may be used when
1388  * a device wants to inform the rest of the network about some sort of
1389  * reconfiguration such as a failover event or virtual machine
1390  * migration.
1391  */
1392 void netdev_notify_peers(struct net_device *dev)
1393 {
1394 	rtnl_lock();
1395 	__netdev_notify_peers(dev);
1396 	rtnl_unlock();
1397 }
1398 EXPORT_SYMBOL(netdev_notify_peers);
1399 
1400 static int napi_threaded_poll(void *data);
1401 
1402 static int napi_kthread_create(struct napi_struct *n)
1403 {
1404 	int err = 0;
1405 
1406 	/* Create and wake up the kthread once to put it in
1407 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1408 	 * warning and work with loadavg.
1409 	 */
1410 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1411 				n->dev->name, n->napi_id);
1412 	if (IS_ERR(n->thread)) {
1413 		err = PTR_ERR(n->thread);
1414 		pr_err("kthread_run failed with err %d\n", err);
1415 		n->thread = NULL;
1416 	}
1417 
1418 	return err;
1419 }
1420 
1421 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1422 {
1423 	const struct net_device_ops *ops = dev->netdev_ops;
1424 	int ret;
1425 
1426 	ASSERT_RTNL();
1427 	dev_addr_check(dev);
1428 
1429 	if (!netif_device_present(dev)) {
1430 		/* may be detached because parent is runtime-suspended */
1431 		if (dev->dev.parent)
1432 			pm_runtime_resume(dev->dev.parent);
1433 		if (!netif_device_present(dev))
1434 			return -ENODEV;
1435 	}
1436 
1437 	/* Block netpoll from trying to do any rx path servicing.
1438 	 * If we don't do this there is a chance ndo_poll_controller
1439 	 * or ndo_poll may be running while we open the device
1440 	 */
1441 	netpoll_poll_disable(dev);
1442 
1443 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1444 	ret = notifier_to_errno(ret);
1445 	if (ret)
1446 		return ret;
1447 
1448 	set_bit(__LINK_STATE_START, &dev->state);
1449 
1450 	if (ops->ndo_validate_addr)
1451 		ret = ops->ndo_validate_addr(dev);
1452 
1453 	if (!ret && ops->ndo_open)
1454 		ret = ops->ndo_open(dev);
1455 
1456 	netpoll_poll_enable(dev);
1457 
1458 	if (ret)
1459 		clear_bit(__LINK_STATE_START, &dev->state);
1460 	else {
1461 		dev->flags |= IFF_UP;
1462 		dev_set_rx_mode(dev);
1463 		dev_activate(dev);
1464 		add_device_randomness(dev->dev_addr, dev->addr_len);
1465 	}
1466 
1467 	return ret;
1468 }
1469 
1470 /**
1471  *	dev_open	- prepare an interface for use.
1472  *	@dev: device to open
1473  *	@extack: netlink extended ack
1474  *
1475  *	Takes a device from down to up state. The device's private open
1476  *	function is invoked and then the multicast lists are loaded. Finally
1477  *	the device is moved into the up state and a %NETDEV_UP message is
1478  *	sent to the netdev notifier chain.
1479  *
1480  *	Calling this function on an active interface is a nop. On a failure
1481  *	a negative errno code is returned.
1482  */
1483 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1484 {
1485 	int ret;
1486 
1487 	if (dev->flags & IFF_UP)
1488 		return 0;
1489 
1490 	ret = __dev_open(dev, extack);
1491 	if (ret < 0)
1492 		return ret;
1493 
1494 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1495 	call_netdevice_notifiers(NETDEV_UP, dev);
1496 
1497 	return ret;
1498 }
1499 EXPORT_SYMBOL(dev_open);
1500 
1501 static void __dev_close_many(struct list_head *head)
1502 {
1503 	struct net_device *dev;
1504 
1505 	ASSERT_RTNL();
1506 	might_sleep();
1507 
1508 	list_for_each_entry(dev, head, close_list) {
1509 		/* Temporarily disable netpoll until the interface is down */
1510 		netpoll_poll_disable(dev);
1511 
1512 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1513 
1514 		clear_bit(__LINK_STATE_START, &dev->state);
1515 
1516 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1517 		 * can be even on different cpu. So just clear netif_running().
1518 		 *
1519 		 * dev->stop() will invoke napi_disable() on all of it's
1520 		 * napi_struct instances on this device.
1521 		 */
1522 		smp_mb__after_atomic(); /* Commit netif_running(). */
1523 	}
1524 
1525 	dev_deactivate_many(head);
1526 
1527 	list_for_each_entry(dev, head, close_list) {
1528 		const struct net_device_ops *ops = dev->netdev_ops;
1529 
1530 		/*
1531 		 *	Call the device specific close. This cannot fail.
1532 		 *	Only if device is UP
1533 		 *
1534 		 *	We allow it to be called even after a DETACH hot-plug
1535 		 *	event.
1536 		 */
1537 		if (ops->ndo_stop)
1538 			ops->ndo_stop(dev);
1539 
1540 		dev->flags &= ~IFF_UP;
1541 		netpoll_poll_enable(dev);
1542 	}
1543 }
1544 
1545 static void __dev_close(struct net_device *dev)
1546 {
1547 	LIST_HEAD(single);
1548 
1549 	list_add(&dev->close_list, &single);
1550 	__dev_close_many(&single);
1551 	list_del(&single);
1552 }
1553 
1554 void dev_close_many(struct list_head *head, bool unlink)
1555 {
1556 	struct net_device *dev, *tmp;
1557 
1558 	/* Remove the devices that don't need to be closed */
1559 	list_for_each_entry_safe(dev, tmp, head, close_list)
1560 		if (!(dev->flags & IFF_UP))
1561 			list_del_init(&dev->close_list);
1562 
1563 	__dev_close_many(head);
1564 
1565 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1566 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1567 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1568 		if (unlink)
1569 			list_del_init(&dev->close_list);
1570 	}
1571 }
1572 EXPORT_SYMBOL(dev_close_many);
1573 
1574 /**
1575  *	dev_close - shutdown an interface.
1576  *	@dev: device to shutdown
1577  *
1578  *	This function moves an active device into down state. A
1579  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1580  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1581  *	chain.
1582  */
1583 void dev_close(struct net_device *dev)
1584 {
1585 	if (dev->flags & IFF_UP) {
1586 		LIST_HEAD(single);
1587 
1588 		list_add(&dev->close_list, &single);
1589 		dev_close_many(&single, true);
1590 		list_del(&single);
1591 	}
1592 }
1593 EXPORT_SYMBOL(dev_close);
1594 
1595 
1596 /**
1597  *	dev_disable_lro - disable Large Receive Offload on a device
1598  *	@dev: device
1599  *
1600  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1601  *	called under RTNL.  This is needed if received packets may be
1602  *	forwarded to another interface.
1603  */
1604 void dev_disable_lro(struct net_device *dev)
1605 {
1606 	struct net_device *lower_dev;
1607 	struct list_head *iter;
1608 
1609 	dev->wanted_features &= ~NETIF_F_LRO;
1610 	netdev_update_features(dev);
1611 
1612 	if (unlikely(dev->features & NETIF_F_LRO))
1613 		netdev_WARN(dev, "failed to disable LRO!\n");
1614 
1615 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1616 		dev_disable_lro(lower_dev);
1617 }
1618 EXPORT_SYMBOL(dev_disable_lro);
1619 
1620 /**
1621  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1622  *	@dev: device
1623  *
1624  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1625  *	called under RTNL.  This is needed if Generic XDP is installed on
1626  *	the device.
1627  */
1628 static void dev_disable_gro_hw(struct net_device *dev)
1629 {
1630 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1631 	netdev_update_features(dev);
1632 
1633 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1634 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1635 }
1636 
1637 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1638 {
1639 #define N(val) 						\
1640 	case NETDEV_##val:				\
1641 		return "NETDEV_" __stringify(val);
1642 	switch (cmd) {
1643 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1644 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1645 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1646 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1647 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1648 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1649 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1650 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1651 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1652 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1653 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1654 	N(XDP_FEAT_CHANGE)
1655 	}
1656 #undef N
1657 	return "UNKNOWN_NETDEV_EVENT";
1658 }
1659 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1660 
1661 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1662 				   struct net_device *dev)
1663 {
1664 	struct netdev_notifier_info info = {
1665 		.dev = dev,
1666 	};
1667 
1668 	return nb->notifier_call(nb, val, &info);
1669 }
1670 
1671 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1672 					     struct net_device *dev)
1673 {
1674 	int err;
1675 
1676 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1677 	err = notifier_to_errno(err);
1678 	if (err)
1679 		return err;
1680 
1681 	if (!(dev->flags & IFF_UP))
1682 		return 0;
1683 
1684 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1685 	return 0;
1686 }
1687 
1688 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1689 						struct net_device *dev)
1690 {
1691 	if (dev->flags & IFF_UP) {
1692 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1693 					dev);
1694 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1695 	}
1696 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1697 }
1698 
1699 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1700 						 struct net *net)
1701 {
1702 	struct net_device *dev;
1703 	int err;
1704 
1705 	for_each_netdev(net, dev) {
1706 		err = call_netdevice_register_notifiers(nb, dev);
1707 		if (err)
1708 			goto rollback;
1709 	}
1710 	return 0;
1711 
1712 rollback:
1713 	for_each_netdev_continue_reverse(net, dev)
1714 		call_netdevice_unregister_notifiers(nb, dev);
1715 	return err;
1716 }
1717 
1718 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1719 						    struct net *net)
1720 {
1721 	struct net_device *dev;
1722 
1723 	for_each_netdev(net, dev)
1724 		call_netdevice_unregister_notifiers(nb, dev);
1725 }
1726 
1727 static int dev_boot_phase = 1;
1728 
1729 /**
1730  * register_netdevice_notifier - register a network notifier block
1731  * @nb: notifier
1732  *
1733  * Register a notifier to be called when network device events occur.
1734  * The notifier passed is linked into the kernel structures and must
1735  * not be reused until it has been unregistered. A negative errno code
1736  * is returned on a failure.
1737  *
1738  * When registered all registration and up events are replayed
1739  * to the new notifier to allow device to have a race free
1740  * view of the network device list.
1741  */
1742 
1743 int register_netdevice_notifier(struct notifier_block *nb)
1744 {
1745 	struct net *net;
1746 	int err;
1747 
1748 	/* Close race with setup_net() and cleanup_net() */
1749 	down_write(&pernet_ops_rwsem);
1750 	rtnl_lock();
1751 	err = raw_notifier_chain_register(&netdev_chain, nb);
1752 	if (err)
1753 		goto unlock;
1754 	if (dev_boot_phase)
1755 		goto unlock;
1756 	for_each_net(net) {
1757 		err = call_netdevice_register_net_notifiers(nb, net);
1758 		if (err)
1759 			goto rollback;
1760 	}
1761 
1762 unlock:
1763 	rtnl_unlock();
1764 	up_write(&pernet_ops_rwsem);
1765 	return err;
1766 
1767 rollback:
1768 	for_each_net_continue_reverse(net)
1769 		call_netdevice_unregister_net_notifiers(nb, net);
1770 
1771 	raw_notifier_chain_unregister(&netdev_chain, nb);
1772 	goto unlock;
1773 }
1774 EXPORT_SYMBOL(register_netdevice_notifier);
1775 
1776 /**
1777  * unregister_netdevice_notifier - unregister a network notifier block
1778  * @nb: notifier
1779  *
1780  * Unregister a notifier previously registered by
1781  * register_netdevice_notifier(). The notifier is unlinked into the
1782  * kernel structures and may then be reused. A negative errno code
1783  * is returned on a failure.
1784  *
1785  * After unregistering unregister and down device events are synthesized
1786  * for all devices on the device list to the removed notifier to remove
1787  * the need for special case cleanup code.
1788  */
1789 
1790 int unregister_netdevice_notifier(struct notifier_block *nb)
1791 {
1792 	struct net *net;
1793 	int err;
1794 
1795 	/* Close race with setup_net() and cleanup_net() */
1796 	down_write(&pernet_ops_rwsem);
1797 	rtnl_lock();
1798 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1799 	if (err)
1800 		goto unlock;
1801 
1802 	for_each_net(net)
1803 		call_netdevice_unregister_net_notifiers(nb, net);
1804 
1805 unlock:
1806 	rtnl_unlock();
1807 	up_write(&pernet_ops_rwsem);
1808 	return err;
1809 }
1810 EXPORT_SYMBOL(unregister_netdevice_notifier);
1811 
1812 static int __register_netdevice_notifier_net(struct net *net,
1813 					     struct notifier_block *nb,
1814 					     bool ignore_call_fail)
1815 {
1816 	int err;
1817 
1818 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1819 	if (err)
1820 		return err;
1821 	if (dev_boot_phase)
1822 		return 0;
1823 
1824 	err = call_netdevice_register_net_notifiers(nb, net);
1825 	if (err && !ignore_call_fail)
1826 		goto chain_unregister;
1827 
1828 	return 0;
1829 
1830 chain_unregister:
1831 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1832 	return err;
1833 }
1834 
1835 static int __unregister_netdevice_notifier_net(struct net *net,
1836 					       struct notifier_block *nb)
1837 {
1838 	int err;
1839 
1840 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1841 	if (err)
1842 		return err;
1843 
1844 	call_netdevice_unregister_net_notifiers(nb, net);
1845 	return 0;
1846 }
1847 
1848 /**
1849  * register_netdevice_notifier_net - register a per-netns network notifier block
1850  * @net: network namespace
1851  * @nb: notifier
1852  *
1853  * Register a notifier to be called when network device events occur.
1854  * The notifier passed is linked into the kernel structures and must
1855  * not be reused until it has been unregistered. A negative errno code
1856  * is returned on a failure.
1857  *
1858  * When registered all registration and up events are replayed
1859  * to the new notifier to allow device to have a race free
1860  * view of the network device list.
1861  */
1862 
1863 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1864 {
1865 	int err;
1866 
1867 	rtnl_lock();
1868 	err = __register_netdevice_notifier_net(net, nb, false);
1869 	rtnl_unlock();
1870 	return err;
1871 }
1872 EXPORT_SYMBOL(register_netdevice_notifier_net);
1873 
1874 /**
1875  * unregister_netdevice_notifier_net - unregister a per-netns
1876  *                                     network notifier block
1877  * @net: network namespace
1878  * @nb: notifier
1879  *
1880  * Unregister a notifier previously registered by
1881  * register_netdevice_notifier_net(). The notifier is unlinked from the
1882  * kernel structures and may then be reused. A negative errno code
1883  * is returned on a failure.
1884  *
1885  * After unregistering unregister and down device events are synthesized
1886  * for all devices on the device list to the removed notifier to remove
1887  * the need for special case cleanup code.
1888  */
1889 
1890 int unregister_netdevice_notifier_net(struct net *net,
1891 				      struct notifier_block *nb)
1892 {
1893 	int err;
1894 
1895 	rtnl_lock();
1896 	err = __unregister_netdevice_notifier_net(net, nb);
1897 	rtnl_unlock();
1898 	return err;
1899 }
1900 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1901 
1902 static void __move_netdevice_notifier_net(struct net *src_net,
1903 					  struct net *dst_net,
1904 					  struct notifier_block *nb)
1905 {
1906 	__unregister_netdevice_notifier_net(src_net, nb);
1907 	__register_netdevice_notifier_net(dst_net, nb, true);
1908 }
1909 
1910 int register_netdevice_notifier_dev_net(struct net_device *dev,
1911 					struct notifier_block *nb,
1912 					struct netdev_net_notifier *nn)
1913 {
1914 	int err;
1915 
1916 	rtnl_lock();
1917 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1918 	if (!err) {
1919 		nn->nb = nb;
1920 		list_add(&nn->list, &dev->net_notifier_list);
1921 	}
1922 	rtnl_unlock();
1923 	return err;
1924 }
1925 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1926 
1927 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1928 					  struct notifier_block *nb,
1929 					  struct netdev_net_notifier *nn)
1930 {
1931 	int err;
1932 
1933 	rtnl_lock();
1934 	list_del(&nn->list);
1935 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1936 	rtnl_unlock();
1937 	return err;
1938 }
1939 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1940 
1941 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1942 					     struct net *net)
1943 {
1944 	struct netdev_net_notifier *nn;
1945 
1946 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1947 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1948 }
1949 
1950 /**
1951  *	call_netdevice_notifiers_info - call all network notifier blocks
1952  *	@val: value passed unmodified to notifier function
1953  *	@info: notifier information data
1954  *
1955  *	Call all network notifier blocks.  Parameters and return value
1956  *	are as for raw_notifier_call_chain().
1957  */
1958 
1959 int call_netdevice_notifiers_info(unsigned long val,
1960 				  struct netdev_notifier_info *info)
1961 {
1962 	struct net *net = dev_net(info->dev);
1963 	int ret;
1964 
1965 	ASSERT_RTNL();
1966 
1967 	/* Run per-netns notifier block chain first, then run the global one.
1968 	 * Hopefully, one day, the global one is going to be removed after
1969 	 * all notifier block registrators get converted to be per-netns.
1970 	 */
1971 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1972 	if (ret & NOTIFY_STOP_MASK)
1973 		return ret;
1974 	return raw_notifier_call_chain(&netdev_chain, val, info);
1975 }
1976 
1977 /**
1978  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1979  *	                                       for and rollback on error
1980  *	@val_up: value passed unmodified to notifier function
1981  *	@val_down: value passed unmodified to the notifier function when
1982  *	           recovering from an error on @val_up
1983  *	@info: notifier information data
1984  *
1985  *	Call all per-netns network notifier blocks, but not notifier blocks on
1986  *	the global notifier chain. Parameters and return value are as for
1987  *	raw_notifier_call_chain_robust().
1988  */
1989 
1990 static int
1991 call_netdevice_notifiers_info_robust(unsigned long val_up,
1992 				     unsigned long val_down,
1993 				     struct netdev_notifier_info *info)
1994 {
1995 	struct net *net = dev_net(info->dev);
1996 
1997 	ASSERT_RTNL();
1998 
1999 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2000 					      val_up, val_down, info);
2001 }
2002 
2003 static int call_netdevice_notifiers_extack(unsigned long val,
2004 					   struct net_device *dev,
2005 					   struct netlink_ext_ack *extack)
2006 {
2007 	struct netdev_notifier_info info = {
2008 		.dev = dev,
2009 		.extack = extack,
2010 	};
2011 
2012 	return call_netdevice_notifiers_info(val, &info);
2013 }
2014 
2015 /**
2016  *	call_netdevice_notifiers - call all network notifier blocks
2017  *      @val: value passed unmodified to notifier function
2018  *      @dev: net_device pointer passed unmodified to notifier function
2019  *
2020  *	Call all network notifier blocks.  Parameters and return value
2021  *	are as for raw_notifier_call_chain().
2022  */
2023 
2024 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2025 {
2026 	return call_netdevice_notifiers_extack(val, dev, NULL);
2027 }
2028 EXPORT_SYMBOL(call_netdevice_notifiers);
2029 
2030 /**
2031  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2032  *	@val: value passed unmodified to notifier function
2033  *	@dev: net_device pointer passed unmodified to notifier function
2034  *	@arg: additional u32 argument passed to the notifier function
2035  *
2036  *	Call all network notifier blocks.  Parameters and return value
2037  *	are as for raw_notifier_call_chain().
2038  */
2039 static int call_netdevice_notifiers_mtu(unsigned long val,
2040 					struct net_device *dev, u32 arg)
2041 {
2042 	struct netdev_notifier_info_ext info = {
2043 		.info.dev = dev,
2044 		.ext.mtu = arg,
2045 	};
2046 
2047 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2048 
2049 	return call_netdevice_notifiers_info(val, &info.info);
2050 }
2051 
2052 #ifdef CONFIG_NET_INGRESS
2053 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2054 
2055 void net_inc_ingress_queue(void)
2056 {
2057 	static_branch_inc(&ingress_needed_key);
2058 }
2059 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2060 
2061 void net_dec_ingress_queue(void)
2062 {
2063 	static_branch_dec(&ingress_needed_key);
2064 }
2065 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2066 #endif
2067 
2068 #ifdef CONFIG_NET_EGRESS
2069 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2070 
2071 void net_inc_egress_queue(void)
2072 {
2073 	static_branch_inc(&egress_needed_key);
2074 }
2075 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2076 
2077 void net_dec_egress_queue(void)
2078 {
2079 	static_branch_dec(&egress_needed_key);
2080 }
2081 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2082 #endif
2083 
2084 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2085 EXPORT_SYMBOL(netstamp_needed_key);
2086 #ifdef CONFIG_JUMP_LABEL
2087 static atomic_t netstamp_needed_deferred;
2088 static atomic_t netstamp_wanted;
2089 static void netstamp_clear(struct work_struct *work)
2090 {
2091 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2092 	int wanted;
2093 
2094 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2095 	if (wanted > 0)
2096 		static_branch_enable(&netstamp_needed_key);
2097 	else
2098 		static_branch_disable(&netstamp_needed_key);
2099 }
2100 static DECLARE_WORK(netstamp_work, netstamp_clear);
2101 #endif
2102 
2103 void net_enable_timestamp(void)
2104 {
2105 #ifdef CONFIG_JUMP_LABEL
2106 	int wanted = atomic_read(&netstamp_wanted);
2107 
2108 	while (wanted > 0) {
2109 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2110 			return;
2111 	}
2112 	atomic_inc(&netstamp_needed_deferred);
2113 	schedule_work(&netstamp_work);
2114 #else
2115 	static_branch_inc(&netstamp_needed_key);
2116 #endif
2117 }
2118 EXPORT_SYMBOL(net_enable_timestamp);
2119 
2120 void net_disable_timestamp(void)
2121 {
2122 #ifdef CONFIG_JUMP_LABEL
2123 	int wanted = atomic_read(&netstamp_wanted);
2124 
2125 	while (wanted > 1) {
2126 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2127 			return;
2128 	}
2129 	atomic_dec(&netstamp_needed_deferred);
2130 	schedule_work(&netstamp_work);
2131 #else
2132 	static_branch_dec(&netstamp_needed_key);
2133 #endif
2134 }
2135 EXPORT_SYMBOL(net_disable_timestamp);
2136 
2137 static inline void net_timestamp_set(struct sk_buff *skb)
2138 {
2139 	skb->tstamp = 0;
2140 	skb->mono_delivery_time = 0;
2141 	if (static_branch_unlikely(&netstamp_needed_key))
2142 		skb->tstamp = ktime_get_real();
2143 }
2144 
2145 #define net_timestamp_check(COND, SKB)				\
2146 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2147 		if ((COND) && !(SKB)->tstamp)			\
2148 			(SKB)->tstamp = ktime_get_real();	\
2149 	}							\
2150 
2151 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2152 {
2153 	return __is_skb_forwardable(dev, skb, true);
2154 }
2155 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2156 
2157 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2158 			      bool check_mtu)
2159 {
2160 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2161 
2162 	if (likely(!ret)) {
2163 		skb->protocol = eth_type_trans(skb, dev);
2164 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2165 	}
2166 
2167 	return ret;
2168 }
2169 
2170 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171 {
2172 	return __dev_forward_skb2(dev, skb, true);
2173 }
2174 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2175 
2176 /**
2177  * dev_forward_skb - loopback an skb to another netif
2178  *
2179  * @dev: destination network device
2180  * @skb: buffer to forward
2181  *
2182  * return values:
2183  *	NET_RX_SUCCESS	(no congestion)
2184  *	NET_RX_DROP     (packet was dropped, but freed)
2185  *
2186  * dev_forward_skb can be used for injecting an skb from the
2187  * start_xmit function of one device into the receive queue
2188  * of another device.
2189  *
2190  * The receiving device may be in another namespace, so
2191  * we have to clear all information in the skb that could
2192  * impact namespace isolation.
2193  */
2194 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2195 {
2196 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2197 }
2198 EXPORT_SYMBOL_GPL(dev_forward_skb);
2199 
2200 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2201 {
2202 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2203 }
2204 
2205 static inline int deliver_skb(struct sk_buff *skb,
2206 			      struct packet_type *pt_prev,
2207 			      struct net_device *orig_dev)
2208 {
2209 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2210 		return -ENOMEM;
2211 	refcount_inc(&skb->users);
2212 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2213 }
2214 
2215 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2216 					  struct packet_type **pt,
2217 					  struct net_device *orig_dev,
2218 					  __be16 type,
2219 					  struct list_head *ptype_list)
2220 {
2221 	struct packet_type *ptype, *pt_prev = *pt;
2222 
2223 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2224 		if (ptype->type != type)
2225 			continue;
2226 		if (pt_prev)
2227 			deliver_skb(skb, pt_prev, orig_dev);
2228 		pt_prev = ptype;
2229 	}
2230 	*pt = pt_prev;
2231 }
2232 
2233 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2234 {
2235 	if (!ptype->af_packet_priv || !skb->sk)
2236 		return false;
2237 
2238 	if (ptype->id_match)
2239 		return ptype->id_match(ptype, skb->sk);
2240 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2241 		return true;
2242 
2243 	return false;
2244 }
2245 
2246 /**
2247  * dev_nit_active - return true if any network interface taps are in use
2248  *
2249  * @dev: network device to check for the presence of taps
2250  */
2251 bool dev_nit_active(struct net_device *dev)
2252 {
2253 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2254 }
2255 EXPORT_SYMBOL_GPL(dev_nit_active);
2256 
2257 /*
2258  *	Support routine. Sends outgoing frames to any network
2259  *	taps currently in use.
2260  */
2261 
2262 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2263 {
2264 	struct packet_type *ptype;
2265 	struct sk_buff *skb2 = NULL;
2266 	struct packet_type *pt_prev = NULL;
2267 	struct list_head *ptype_list = &ptype_all;
2268 
2269 	rcu_read_lock();
2270 again:
2271 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2272 		if (ptype->ignore_outgoing)
2273 			continue;
2274 
2275 		/* Never send packets back to the socket
2276 		 * they originated from - MvS (miquels@drinkel.ow.org)
2277 		 */
2278 		if (skb_loop_sk(ptype, skb))
2279 			continue;
2280 
2281 		if (pt_prev) {
2282 			deliver_skb(skb2, pt_prev, skb->dev);
2283 			pt_prev = ptype;
2284 			continue;
2285 		}
2286 
2287 		/* need to clone skb, done only once */
2288 		skb2 = skb_clone(skb, GFP_ATOMIC);
2289 		if (!skb2)
2290 			goto out_unlock;
2291 
2292 		net_timestamp_set(skb2);
2293 
2294 		/* skb->nh should be correctly
2295 		 * set by sender, so that the second statement is
2296 		 * just protection against buggy protocols.
2297 		 */
2298 		skb_reset_mac_header(skb2);
2299 
2300 		if (skb_network_header(skb2) < skb2->data ||
2301 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2302 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2303 					     ntohs(skb2->protocol),
2304 					     dev->name);
2305 			skb_reset_network_header(skb2);
2306 		}
2307 
2308 		skb2->transport_header = skb2->network_header;
2309 		skb2->pkt_type = PACKET_OUTGOING;
2310 		pt_prev = ptype;
2311 	}
2312 
2313 	if (ptype_list == &ptype_all) {
2314 		ptype_list = &dev->ptype_all;
2315 		goto again;
2316 	}
2317 out_unlock:
2318 	if (pt_prev) {
2319 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2320 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2321 		else
2322 			kfree_skb(skb2);
2323 	}
2324 	rcu_read_unlock();
2325 }
2326 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2327 
2328 /**
2329  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2330  * @dev: Network device
2331  * @txq: number of queues available
2332  *
2333  * If real_num_tx_queues is changed the tc mappings may no longer be
2334  * valid. To resolve this verify the tc mapping remains valid and if
2335  * not NULL the mapping. With no priorities mapping to this
2336  * offset/count pair it will no longer be used. In the worst case TC0
2337  * is invalid nothing can be done so disable priority mappings. If is
2338  * expected that drivers will fix this mapping if they can before
2339  * calling netif_set_real_num_tx_queues.
2340  */
2341 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2342 {
2343 	int i;
2344 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2345 
2346 	/* If TC0 is invalidated disable TC mapping */
2347 	if (tc->offset + tc->count > txq) {
2348 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2349 		dev->num_tc = 0;
2350 		return;
2351 	}
2352 
2353 	/* Invalidated prio to tc mappings set to TC0 */
2354 	for (i = 1; i < TC_BITMASK + 1; i++) {
2355 		int q = netdev_get_prio_tc_map(dev, i);
2356 
2357 		tc = &dev->tc_to_txq[q];
2358 		if (tc->offset + tc->count > txq) {
2359 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2360 				    i, q);
2361 			netdev_set_prio_tc_map(dev, i, 0);
2362 		}
2363 	}
2364 }
2365 
2366 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2367 {
2368 	if (dev->num_tc) {
2369 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2370 		int i;
2371 
2372 		/* walk through the TCs and see if it falls into any of them */
2373 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2374 			if ((txq - tc->offset) < tc->count)
2375 				return i;
2376 		}
2377 
2378 		/* didn't find it, just return -1 to indicate no match */
2379 		return -1;
2380 	}
2381 
2382 	return 0;
2383 }
2384 EXPORT_SYMBOL(netdev_txq_to_tc);
2385 
2386 #ifdef CONFIG_XPS
2387 static struct static_key xps_needed __read_mostly;
2388 static struct static_key xps_rxqs_needed __read_mostly;
2389 static DEFINE_MUTEX(xps_map_mutex);
2390 #define xmap_dereference(P)		\
2391 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2392 
2393 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2394 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2395 {
2396 	struct xps_map *map = NULL;
2397 	int pos;
2398 
2399 	map = xmap_dereference(dev_maps->attr_map[tci]);
2400 	if (!map)
2401 		return false;
2402 
2403 	for (pos = map->len; pos--;) {
2404 		if (map->queues[pos] != index)
2405 			continue;
2406 
2407 		if (map->len > 1) {
2408 			map->queues[pos] = map->queues[--map->len];
2409 			break;
2410 		}
2411 
2412 		if (old_maps)
2413 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2414 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2415 		kfree_rcu(map, rcu);
2416 		return false;
2417 	}
2418 
2419 	return true;
2420 }
2421 
2422 static bool remove_xps_queue_cpu(struct net_device *dev,
2423 				 struct xps_dev_maps *dev_maps,
2424 				 int cpu, u16 offset, u16 count)
2425 {
2426 	int num_tc = dev_maps->num_tc;
2427 	bool active = false;
2428 	int tci;
2429 
2430 	for (tci = cpu * num_tc; num_tc--; tci++) {
2431 		int i, j;
2432 
2433 		for (i = count, j = offset; i--; j++) {
2434 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2435 				break;
2436 		}
2437 
2438 		active |= i < 0;
2439 	}
2440 
2441 	return active;
2442 }
2443 
2444 static void reset_xps_maps(struct net_device *dev,
2445 			   struct xps_dev_maps *dev_maps,
2446 			   enum xps_map_type type)
2447 {
2448 	static_key_slow_dec_cpuslocked(&xps_needed);
2449 	if (type == XPS_RXQS)
2450 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2451 
2452 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2453 
2454 	kfree_rcu(dev_maps, rcu);
2455 }
2456 
2457 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2458 			   u16 offset, u16 count)
2459 {
2460 	struct xps_dev_maps *dev_maps;
2461 	bool active = false;
2462 	int i, j;
2463 
2464 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2465 	if (!dev_maps)
2466 		return;
2467 
2468 	for (j = 0; j < dev_maps->nr_ids; j++)
2469 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2470 	if (!active)
2471 		reset_xps_maps(dev, dev_maps, type);
2472 
2473 	if (type == XPS_CPUS) {
2474 		for (i = offset + (count - 1); count--; i--)
2475 			netdev_queue_numa_node_write(
2476 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2477 	}
2478 }
2479 
2480 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2481 				   u16 count)
2482 {
2483 	if (!static_key_false(&xps_needed))
2484 		return;
2485 
2486 	cpus_read_lock();
2487 	mutex_lock(&xps_map_mutex);
2488 
2489 	if (static_key_false(&xps_rxqs_needed))
2490 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2491 
2492 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2493 
2494 	mutex_unlock(&xps_map_mutex);
2495 	cpus_read_unlock();
2496 }
2497 
2498 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2499 {
2500 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2501 }
2502 
2503 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2504 				      u16 index, bool is_rxqs_map)
2505 {
2506 	struct xps_map *new_map;
2507 	int alloc_len = XPS_MIN_MAP_ALLOC;
2508 	int i, pos;
2509 
2510 	for (pos = 0; map && pos < map->len; pos++) {
2511 		if (map->queues[pos] != index)
2512 			continue;
2513 		return map;
2514 	}
2515 
2516 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2517 	if (map) {
2518 		if (pos < map->alloc_len)
2519 			return map;
2520 
2521 		alloc_len = map->alloc_len * 2;
2522 	}
2523 
2524 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2525 	 *  map
2526 	 */
2527 	if (is_rxqs_map)
2528 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2529 	else
2530 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2531 				       cpu_to_node(attr_index));
2532 	if (!new_map)
2533 		return NULL;
2534 
2535 	for (i = 0; i < pos; i++)
2536 		new_map->queues[i] = map->queues[i];
2537 	new_map->alloc_len = alloc_len;
2538 	new_map->len = pos;
2539 
2540 	return new_map;
2541 }
2542 
2543 /* Copy xps maps at a given index */
2544 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2545 			      struct xps_dev_maps *new_dev_maps, int index,
2546 			      int tc, bool skip_tc)
2547 {
2548 	int i, tci = index * dev_maps->num_tc;
2549 	struct xps_map *map;
2550 
2551 	/* copy maps belonging to foreign traffic classes */
2552 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2553 		if (i == tc && skip_tc)
2554 			continue;
2555 
2556 		/* fill in the new device map from the old device map */
2557 		map = xmap_dereference(dev_maps->attr_map[tci]);
2558 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2559 	}
2560 }
2561 
2562 /* Must be called under cpus_read_lock */
2563 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2564 			  u16 index, enum xps_map_type type)
2565 {
2566 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2567 	const unsigned long *online_mask = NULL;
2568 	bool active = false, copy = false;
2569 	int i, j, tci, numa_node_id = -2;
2570 	int maps_sz, num_tc = 1, tc = 0;
2571 	struct xps_map *map, *new_map;
2572 	unsigned int nr_ids;
2573 
2574 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2575 
2576 	if (dev->num_tc) {
2577 		/* Do not allow XPS on subordinate device directly */
2578 		num_tc = dev->num_tc;
2579 		if (num_tc < 0)
2580 			return -EINVAL;
2581 
2582 		/* If queue belongs to subordinate dev use its map */
2583 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2584 
2585 		tc = netdev_txq_to_tc(dev, index);
2586 		if (tc < 0)
2587 			return -EINVAL;
2588 	}
2589 
2590 	mutex_lock(&xps_map_mutex);
2591 
2592 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2593 	if (type == XPS_RXQS) {
2594 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2595 		nr_ids = dev->num_rx_queues;
2596 	} else {
2597 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2598 		if (num_possible_cpus() > 1)
2599 			online_mask = cpumask_bits(cpu_online_mask);
2600 		nr_ids = nr_cpu_ids;
2601 	}
2602 
2603 	if (maps_sz < L1_CACHE_BYTES)
2604 		maps_sz = L1_CACHE_BYTES;
2605 
2606 	/* The old dev_maps could be larger or smaller than the one we're
2607 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2608 	 * between. We could try to be smart, but let's be safe instead and only
2609 	 * copy foreign traffic classes if the two map sizes match.
2610 	 */
2611 	if (dev_maps &&
2612 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2613 		copy = true;
2614 
2615 	/* allocate memory for queue storage */
2616 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2617 	     j < nr_ids;) {
2618 		if (!new_dev_maps) {
2619 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2620 			if (!new_dev_maps) {
2621 				mutex_unlock(&xps_map_mutex);
2622 				return -ENOMEM;
2623 			}
2624 
2625 			new_dev_maps->nr_ids = nr_ids;
2626 			new_dev_maps->num_tc = num_tc;
2627 		}
2628 
2629 		tci = j * num_tc + tc;
2630 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2631 
2632 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2633 		if (!map)
2634 			goto error;
2635 
2636 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2637 	}
2638 
2639 	if (!new_dev_maps)
2640 		goto out_no_new_maps;
2641 
2642 	if (!dev_maps) {
2643 		/* Increment static keys at most once per type */
2644 		static_key_slow_inc_cpuslocked(&xps_needed);
2645 		if (type == XPS_RXQS)
2646 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2647 	}
2648 
2649 	for (j = 0; j < nr_ids; j++) {
2650 		bool skip_tc = false;
2651 
2652 		tci = j * num_tc + tc;
2653 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2654 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2655 			/* add tx-queue to CPU/rx-queue maps */
2656 			int pos = 0;
2657 
2658 			skip_tc = true;
2659 
2660 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2661 			while ((pos < map->len) && (map->queues[pos] != index))
2662 				pos++;
2663 
2664 			if (pos == map->len)
2665 				map->queues[map->len++] = index;
2666 #ifdef CONFIG_NUMA
2667 			if (type == XPS_CPUS) {
2668 				if (numa_node_id == -2)
2669 					numa_node_id = cpu_to_node(j);
2670 				else if (numa_node_id != cpu_to_node(j))
2671 					numa_node_id = -1;
2672 			}
2673 #endif
2674 		}
2675 
2676 		if (copy)
2677 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2678 					  skip_tc);
2679 	}
2680 
2681 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2682 
2683 	/* Cleanup old maps */
2684 	if (!dev_maps)
2685 		goto out_no_old_maps;
2686 
2687 	for (j = 0; j < dev_maps->nr_ids; j++) {
2688 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2689 			map = xmap_dereference(dev_maps->attr_map[tci]);
2690 			if (!map)
2691 				continue;
2692 
2693 			if (copy) {
2694 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2695 				if (map == new_map)
2696 					continue;
2697 			}
2698 
2699 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2700 			kfree_rcu(map, rcu);
2701 		}
2702 	}
2703 
2704 	old_dev_maps = dev_maps;
2705 
2706 out_no_old_maps:
2707 	dev_maps = new_dev_maps;
2708 	active = true;
2709 
2710 out_no_new_maps:
2711 	if (type == XPS_CPUS)
2712 		/* update Tx queue numa node */
2713 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2714 					     (numa_node_id >= 0) ?
2715 					     numa_node_id : NUMA_NO_NODE);
2716 
2717 	if (!dev_maps)
2718 		goto out_no_maps;
2719 
2720 	/* removes tx-queue from unused CPUs/rx-queues */
2721 	for (j = 0; j < dev_maps->nr_ids; j++) {
2722 		tci = j * dev_maps->num_tc;
2723 
2724 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2725 			if (i == tc &&
2726 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2727 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2728 				continue;
2729 
2730 			active |= remove_xps_queue(dev_maps,
2731 						   copy ? old_dev_maps : NULL,
2732 						   tci, index);
2733 		}
2734 	}
2735 
2736 	if (old_dev_maps)
2737 		kfree_rcu(old_dev_maps, rcu);
2738 
2739 	/* free map if not active */
2740 	if (!active)
2741 		reset_xps_maps(dev, dev_maps, type);
2742 
2743 out_no_maps:
2744 	mutex_unlock(&xps_map_mutex);
2745 
2746 	return 0;
2747 error:
2748 	/* remove any maps that we added */
2749 	for (j = 0; j < nr_ids; j++) {
2750 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2751 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2752 			map = copy ?
2753 			      xmap_dereference(dev_maps->attr_map[tci]) :
2754 			      NULL;
2755 			if (new_map && new_map != map)
2756 				kfree(new_map);
2757 		}
2758 	}
2759 
2760 	mutex_unlock(&xps_map_mutex);
2761 
2762 	kfree(new_dev_maps);
2763 	return -ENOMEM;
2764 }
2765 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2766 
2767 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2768 			u16 index)
2769 {
2770 	int ret;
2771 
2772 	cpus_read_lock();
2773 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2774 	cpus_read_unlock();
2775 
2776 	return ret;
2777 }
2778 EXPORT_SYMBOL(netif_set_xps_queue);
2779 
2780 #endif
2781 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2782 {
2783 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2784 
2785 	/* Unbind any subordinate channels */
2786 	while (txq-- != &dev->_tx[0]) {
2787 		if (txq->sb_dev)
2788 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2789 	}
2790 }
2791 
2792 void netdev_reset_tc(struct net_device *dev)
2793 {
2794 #ifdef CONFIG_XPS
2795 	netif_reset_xps_queues_gt(dev, 0);
2796 #endif
2797 	netdev_unbind_all_sb_channels(dev);
2798 
2799 	/* Reset TC configuration of device */
2800 	dev->num_tc = 0;
2801 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2802 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2803 }
2804 EXPORT_SYMBOL(netdev_reset_tc);
2805 
2806 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2807 {
2808 	if (tc >= dev->num_tc)
2809 		return -EINVAL;
2810 
2811 #ifdef CONFIG_XPS
2812 	netif_reset_xps_queues(dev, offset, count);
2813 #endif
2814 	dev->tc_to_txq[tc].count = count;
2815 	dev->tc_to_txq[tc].offset = offset;
2816 	return 0;
2817 }
2818 EXPORT_SYMBOL(netdev_set_tc_queue);
2819 
2820 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2821 {
2822 	if (num_tc > TC_MAX_QUEUE)
2823 		return -EINVAL;
2824 
2825 #ifdef CONFIG_XPS
2826 	netif_reset_xps_queues_gt(dev, 0);
2827 #endif
2828 	netdev_unbind_all_sb_channels(dev);
2829 
2830 	dev->num_tc = num_tc;
2831 	return 0;
2832 }
2833 EXPORT_SYMBOL(netdev_set_num_tc);
2834 
2835 void netdev_unbind_sb_channel(struct net_device *dev,
2836 			      struct net_device *sb_dev)
2837 {
2838 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2839 
2840 #ifdef CONFIG_XPS
2841 	netif_reset_xps_queues_gt(sb_dev, 0);
2842 #endif
2843 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2844 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2845 
2846 	while (txq-- != &dev->_tx[0]) {
2847 		if (txq->sb_dev == sb_dev)
2848 			txq->sb_dev = NULL;
2849 	}
2850 }
2851 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2852 
2853 int netdev_bind_sb_channel_queue(struct net_device *dev,
2854 				 struct net_device *sb_dev,
2855 				 u8 tc, u16 count, u16 offset)
2856 {
2857 	/* Make certain the sb_dev and dev are already configured */
2858 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2859 		return -EINVAL;
2860 
2861 	/* We cannot hand out queues we don't have */
2862 	if ((offset + count) > dev->real_num_tx_queues)
2863 		return -EINVAL;
2864 
2865 	/* Record the mapping */
2866 	sb_dev->tc_to_txq[tc].count = count;
2867 	sb_dev->tc_to_txq[tc].offset = offset;
2868 
2869 	/* Provide a way for Tx queue to find the tc_to_txq map or
2870 	 * XPS map for itself.
2871 	 */
2872 	while (count--)
2873 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2874 
2875 	return 0;
2876 }
2877 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2878 
2879 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2880 {
2881 	/* Do not use a multiqueue device to represent a subordinate channel */
2882 	if (netif_is_multiqueue(dev))
2883 		return -ENODEV;
2884 
2885 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2886 	 * Channel 0 is meant to be "native" mode and used only to represent
2887 	 * the main root device. We allow writing 0 to reset the device back
2888 	 * to normal mode after being used as a subordinate channel.
2889 	 */
2890 	if (channel > S16_MAX)
2891 		return -EINVAL;
2892 
2893 	dev->num_tc = -channel;
2894 
2895 	return 0;
2896 }
2897 EXPORT_SYMBOL(netdev_set_sb_channel);
2898 
2899 /*
2900  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2901  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2902  */
2903 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2904 {
2905 	bool disabling;
2906 	int rc;
2907 
2908 	disabling = txq < dev->real_num_tx_queues;
2909 
2910 	if (txq < 1 || txq > dev->num_tx_queues)
2911 		return -EINVAL;
2912 
2913 	if (dev->reg_state == NETREG_REGISTERED ||
2914 	    dev->reg_state == NETREG_UNREGISTERING) {
2915 		ASSERT_RTNL();
2916 
2917 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2918 						  txq);
2919 		if (rc)
2920 			return rc;
2921 
2922 		if (dev->num_tc)
2923 			netif_setup_tc(dev, txq);
2924 
2925 		dev_qdisc_change_real_num_tx(dev, txq);
2926 
2927 		dev->real_num_tx_queues = txq;
2928 
2929 		if (disabling) {
2930 			synchronize_net();
2931 			qdisc_reset_all_tx_gt(dev, txq);
2932 #ifdef CONFIG_XPS
2933 			netif_reset_xps_queues_gt(dev, txq);
2934 #endif
2935 		}
2936 	} else {
2937 		dev->real_num_tx_queues = txq;
2938 	}
2939 
2940 	return 0;
2941 }
2942 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2943 
2944 #ifdef CONFIG_SYSFS
2945 /**
2946  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2947  *	@dev: Network device
2948  *	@rxq: Actual number of RX queues
2949  *
2950  *	This must be called either with the rtnl_lock held or before
2951  *	registration of the net device.  Returns 0 on success, or a
2952  *	negative error code.  If called before registration, it always
2953  *	succeeds.
2954  */
2955 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2956 {
2957 	int rc;
2958 
2959 	if (rxq < 1 || rxq > dev->num_rx_queues)
2960 		return -EINVAL;
2961 
2962 	if (dev->reg_state == NETREG_REGISTERED) {
2963 		ASSERT_RTNL();
2964 
2965 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2966 						  rxq);
2967 		if (rc)
2968 			return rc;
2969 	}
2970 
2971 	dev->real_num_rx_queues = rxq;
2972 	return 0;
2973 }
2974 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2975 #endif
2976 
2977 /**
2978  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2979  *	@dev: Network device
2980  *	@txq: Actual number of TX queues
2981  *	@rxq: Actual number of RX queues
2982  *
2983  *	Set the real number of both TX and RX queues.
2984  *	Does nothing if the number of queues is already correct.
2985  */
2986 int netif_set_real_num_queues(struct net_device *dev,
2987 			      unsigned int txq, unsigned int rxq)
2988 {
2989 	unsigned int old_rxq = dev->real_num_rx_queues;
2990 	int err;
2991 
2992 	if (txq < 1 || txq > dev->num_tx_queues ||
2993 	    rxq < 1 || rxq > dev->num_rx_queues)
2994 		return -EINVAL;
2995 
2996 	/* Start from increases, so the error path only does decreases -
2997 	 * decreases can't fail.
2998 	 */
2999 	if (rxq > dev->real_num_rx_queues) {
3000 		err = netif_set_real_num_rx_queues(dev, rxq);
3001 		if (err)
3002 			return err;
3003 	}
3004 	if (txq > dev->real_num_tx_queues) {
3005 		err = netif_set_real_num_tx_queues(dev, txq);
3006 		if (err)
3007 			goto undo_rx;
3008 	}
3009 	if (rxq < dev->real_num_rx_queues)
3010 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3011 	if (txq < dev->real_num_tx_queues)
3012 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3013 
3014 	return 0;
3015 undo_rx:
3016 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3017 	return err;
3018 }
3019 EXPORT_SYMBOL(netif_set_real_num_queues);
3020 
3021 /**
3022  * netif_set_tso_max_size() - set the max size of TSO frames supported
3023  * @dev:	netdev to update
3024  * @size:	max skb->len of a TSO frame
3025  *
3026  * Set the limit on the size of TSO super-frames the device can handle.
3027  * Unless explicitly set the stack will assume the value of
3028  * %GSO_LEGACY_MAX_SIZE.
3029  */
3030 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3031 {
3032 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3033 	if (size < READ_ONCE(dev->gso_max_size))
3034 		netif_set_gso_max_size(dev, size);
3035 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3036 		netif_set_gso_ipv4_max_size(dev, size);
3037 }
3038 EXPORT_SYMBOL(netif_set_tso_max_size);
3039 
3040 /**
3041  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3042  * @dev:	netdev to update
3043  * @segs:	max number of TCP segments
3044  *
3045  * Set the limit on the number of TCP segments the device can generate from
3046  * a single TSO super-frame.
3047  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3048  */
3049 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3050 {
3051 	dev->tso_max_segs = segs;
3052 	if (segs < READ_ONCE(dev->gso_max_segs))
3053 		netif_set_gso_max_segs(dev, segs);
3054 }
3055 EXPORT_SYMBOL(netif_set_tso_max_segs);
3056 
3057 /**
3058  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3059  * @to:		netdev to update
3060  * @from:	netdev from which to copy the limits
3061  */
3062 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3063 {
3064 	netif_set_tso_max_size(to, from->tso_max_size);
3065 	netif_set_tso_max_segs(to, from->tso_max_segs);
3066 }
3067 EXPORT_SYMBOL(netif_inherit_tso_max);
3068 
3069 /**
3070  * netif_get_num_default_rss_queues - default number of RSS queues
3071  *
3072  * Default value is the number of physical cores if there are only 1 or 2, or
3073  * divided by 2 if there are more.
3074  */
3075 int netif_get_num_default_rss_queues(void)
3076 {
3077 	cpumask_var_t cpus;
3078 	int cpu, count = 0;
3079 
3080 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3081 		return 1;
3082 
3083 	cpumask_copy(cpus, cpu_online_mask);
3084 	for_each_cpu(cpu, cpus) {
3085 		++count;
3086 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3087 	}
3088 	free_cpumask_var(cpus);
3089 
3090 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3091 }
3092 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3093 
3094 static void __netif_reschedule(struct Qdisc *q)
3095 {
3096 	struct softnet_data *sd;
3097 	unsigned long flags;
3098 
3099 	local_irq_save(flags);
3100 	sd = this_cpu_ptr(&softnet_data);
3101 	q->next_sched = NULL;
3102 	*sd->output_queue_tailp = q;
3103 	sd->output_queue_tailp = &q->next_sched;
3104 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3105 	local_irq_restore(flags);
3106 }
3107 
3108 void __netif_schedule(struct Qdisc *q)
3109 {
3110 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3111 		__netif_reschedule(q);
3112 }
3113 EXPORT_SYMBOL(__netif_schedule);
3114 
3115 struct dev_kfree_skb_cb {
3116 	enum skb_drop_reason reason;
3117 };
3118 
3119 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3120 {
3121 	return (struct dev_kfree_skb_cb *)skb->cb;
3122 }
3123 
3124 void netif_schedule_queue(struct netdev_queue *txq)
3125 {
3126 	rcu_read_lock();
3127 	if (!netif_xmit_stopped(txq)) {
3128 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3129 
3130 		__netif_schedule(q);
3131 	}
3132 	rcu_read_unlock();
3133 }
3134 EXPORT_SYMBOL(netif_schedule_queue);
3135 
3136 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3137 {
3138 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3139 		struct Qdisc *q;
3140 
3141 		rcu_read_lock();
3142 		q = rcu_dereference(dev_queue->qdisc);
3143 		__netif_schedule(q);
3144 		rcu_read_unlock();
3145 	}
3146 }
3147 EXPORT_SYMBOL(netif_tx_wake_queue);
3148 
3149 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3150 {
3151 	unsigned long flags;
3152 
3153 	if (unlikely(!skb))
3154 		return;
3155 
3156 	if (likely(refcount_read(&skb->users) == 1)) {
3157 		smp_rmb();
3158 		refcount_set(&skb->users, 0);
3159 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3160 		return;
3161 	}
3162 	get_kfree_skb_cb(skb)->reason = reason;
3163 	local_irq_save(flags);
3164 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3165 	__this_cpu_write(softnet_data.completion_queue, skb);
3166 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3167 	local_irq_restore(flags);
3168 }
3169 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3170 
3171 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3172 {
3173 	if (in_hardirq() || irqs_disabled())
3174 		dev_kfree_skb_irq_reason(skb, reason);
3175 	else
3176 		kfree_skb_reason(skb, reason);
3177 }
3178 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3179 
3180 
3181 /**
3182  * netif_device_detach - mark device as removed
3183  * @dev: network device
3184  *
3185  * Mark device as removed from system and therefore no longer available.
3186  */
3187 void netif_device_detach(struct net_device *dev)
3188 {
3189 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3190 	    netif_running(dev)) {
3191 		netif_tx_stop_all_queues(dev);
3192 	}
3193 }
3194 EXPORT_SYMBOL(netif_device_detach);
3195 
3196 /**
3197  * netif_device_attach - mark device as attached
3198  * @dev: network device
3199  *
3200  * Mark device as attached from system and restart if needed.
3201  */
3202 void netif_device_attach(struct net_device *dev)
3203 {
3204 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3205 	    netif_running(dev)) {
3206 		netif_tx_wake_all_queues(dev);
3207 		__netdev_watchdog_up(dev);
3208 	}
3209 }
3210 EXPORT_SYMBOL(netif_device_attach);
3211 
3212 /*
3213  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3214  * to be used as a distribution range.
3215  */
3216 static u16 skb_tx_hash(const struct net_device *dev,
3217 		       const struct net_device *sb_dev,
3218 		       struct sk_buff *skb)
3219 {
3220 	u32 hash;
3221 	u16 qoffset = 0;
3222 	u16 qcount = dev->real_num_tx_queues;
3223 
3224 	if (dev->num_tc) {
3225 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3226 
3227 		qoffset = sb_dev->tc_to_txq[tc].offset;
3228 		qcount = sb_dev->tc_to_txq[tc].count;
3229 		if (unlikely(!qcount)) {
3230 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3231 					     sb_dev->name, qoffset, tc);
3232 			qoffset = 0;
3233 			qcount = dev->real_num_tx_queues;
3234 		}
3235 	}
3236 
3237 	if (skb_rx_queue_recorded(skb)) {
3238 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3239 		hash = skb_get_rx_queue(skb);
3240 		if (hash >= qoffset)
3241 			hash -= qoffset;
3242 		while (unlikely(hash >= qcount))
3243 			hash -= qcount;
3244 		return hash + qoffset;
3245 	}
3246 
3247 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3248 }
3249 
3250 void skb_warn_bad_offload(const struct sk_buff *skb)
3251 {
3252 	static const netdev_features_t null_features;
3253 	struct net_device *dev = skb->dev;
3254 	const char *name = "";
3255 
3256 	if (!net_ratelimit())
3257 		return;
3258 
3259 	if (dev) {
3260 		if (dev->dev.parent)
3261 			name = dev_driver_string(dev->dev.parent);
3262 		else
3263 			name = netdev_name(dev);
3264 	}
3265 	skb_dump(KERN_WARNING, skb, false);
3266 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3267 	     name, dev ? &dev->features : &null_features,
3268 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3269 }
3270 
3271 /*
3272  * Invalidate hardware checksum when packet is to be mangled, and
3273  * complete checksum manually on outgoing path.
3274  */
3275 int skb_checksum_help(struct sk_buff *skb)
3276 {
3277 	__wsum csum;
3278 	int ret = 0, offset;
3279 
3280 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3281 		goto out_set_summed;
3282 
3283 	if (unlikely(skb_is_gso(skb))) {
3284 		skb_warn_bad_offload(skb);
3285 		return -EINVAL;
3286 	}
3287 
3288 	/* Before computing a checksum, we should make sure no frag could
3289 	 * be modified by an external entity : checksum could be wrong.
3290 	 */
3291 	if (skb_has_shared_frag(skb)) {
3292 		ret = __skb_linearize(skb);
3293 		if (ret)
3294 			goto out;
3295 	}
3296 
3297 	offset = skb_checksum_start_offset(skb);
3298 	ret = -EINVAL;
3299 	if (unlikely(offset >= skb_headlen(skb))) {
3300 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3301 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3302 			  offset, skb_headlen(skb));
3303 		goto out;
3304 	}
3305 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3306 
3307 	offset += skb->csum_offset;
3308 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3309 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3310 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3311 			  offset + sizeof(__sum16), skb_headlen(skb));
3312 		goto out;
3313 	}
3314 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3315 	if (ret)
3316 		goto out;
3317 
3318 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3319 out_set_summed:
3320 	skb->ip_summed = CHECKSUM_NONE;
3321 out:
3322 	return ret;
3323 }
3324 EXPORT_SYMBOL(skb_checksum_help);
3325 
3326 int skb_crc32c_csum_help(struct sk_buff *skb)
3327 {
3328 	__le32 crc32c_csum;
3329 	int ret = 0, offset, start;
3330 
3331 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3332 		goto out;
3333 
3334 	if (unlikely(skb_is_gso(skb)))
3335 		goto out;
3336 
3337 	/* Before computing a checksum, we should make sure no frag could
3338 	 * be modified by an external entity : checksum could be wrong.
3339 	 */
3340 	if (unlikely(skb_has_shared_frag(skb))) {
3341 		ret = __skb_linearize(skb);
3342 		if (ret)
3343 			goto out;
3344 	}
3345 	start = skb_checksum_start_offset(skb);
3346 	offset = start + offsetof(struct sctphdr, checksum);
3347 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3348 		ret = -EINVAL;
3349 		goto out;
3350 	}
3351 
3352 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3353 	if (ret)
3354 		goto out;
3355 
3356 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3357 						  skb->len - start, ~(__u32)0,
3358 						  crc32c_csum_stub));
3359 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3360 	skb_reset_csum_not_inet(skb);
3361 out:
3362 	return ret;
3363 }
3364 
3365 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3366 {
3367 	__be16 type = skb->protocol;
3368 
3369 	/* Tunnel gso handlers can set protocol to ethernet. */
3370 	if (type == htons(ETH_P_TEB)) {
3371 		struct ethhdr *eth;
3372 
3373 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3374 			return 0;
3375 
3376 		eth = (struct ethhdr *)skb->data;
3377 		type = eth->h_proto;
3378 	}
3379 
3380 	return vlan_get_protocol_and_depth(skb, type, depth);
3381 }
3382 
3383 
3384 /* Take action when hardware reception checksum errors are detected. */
3385 #ifdef CONFIG_BUG
3386 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3387 {
3388 	netdev_err(dev, "hw csum failure\n");
3389 	skb_dump(KERN_ERR, skb, true);
3390 	dump_stack();
3391 }
3392 
3393 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3394 {
3395 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3396 }
3397 EXPORT_SYMBOL(netdev_rx_csum_fault);
3398 #endif
3399 
3400 /* XXX: check that highmem exists at all on the given machine. */
3401 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3402 {
3403 #ifdef CONFIG_HIGHMEM
3404 	int i;
3405 
3406 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3407 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3408 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3409 
3410 			if (PageHighMem(skb_frag_page(frag)))
3411 				return 1;
3412 		}
3413 	}
3414 #endif
3415 	return 0;
3416 }
3417 
3418 /* If MPLS offload request, verify we are testing hardware MPLS features
3419  * instead of standard features for the netdev.
3420  */
3421 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3422 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3423 					   netdev_features_t features,
3424 					   __be16 type)
3425 {
3426 	if (eth_p_mpls(type))
3427 		features &= skb->dev->mpls_features;
3428 
3429 	return features;
3430 }
3431 #else
3432 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3433 					   netdev_features_t features,
3434 					   __be16 type)
3435 {
3436 	return features;
3437 }
3438 #endif
3439 
3440 static netdev_features_t harmonize_features(struct sk_buff *skb,
3441 	netdev_features_t features)
3442 {
3443 	__be16 type;
3444 
3445 	type = skb_network_protocol(skb, NULL);
3446 	features = net_mpls_features(skb, features, type);
3447 
3448 	if (skb->ip_summed != CHECKSUM_NONE &&
3449 	    !can_checksum_protocol(features, type)) {
3450 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3451 	}
3452 	if (illegal_highdma(skb->dev, skb))
3453 		features &= ~NETIF_F_SG;
3454 
3455 	return features;
3456 }
3457 
3458 netdev_features_t passthru_features_check(struct sk_buff *skb,
3459 					  struct net_device *dev,
3460 					  netdev_features_t features)
3461 {
3462 	return features;
3463 }
3464 EXPORT_SYMBOL(passthru_features_check);
3465 
3466 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3467 					     struct net_device *dev,
3468 					     netdev_features_t features)
3469 {
3470 	return vlan_features_check(skb, features);
3471 }
3472 
3473 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3474 					    struct net_device *dev,
3475 					    netdev_features_t features)
3476 {
3477 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3478 
3479 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3480 		return features & ~NETIF_F_GSO_MASK;
3481 
3482 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3483 		return features & ~NETIF_F_GSO_MASK;
3484 
3485 	if (!skb_shinfo(skb)->gso_type) {
3486 		skb_warn_bad_offload(skb);
3487 		return features & ~NETIF_F_GSO_MASK;
3488 	}
3489 
3490 	/* Support for GSO partial features requires software
3491 	 * intervention before we can actually process the packets
3492 	 * so we need to strip support for any partial features now
3493 	 * and we can pull them back in after we have partially
3494 	 * segmented the frame.
3495 	 */
3496 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3497 		features &= ~dev->gso_partial_features;
3498 
3499 	/* Make sure to clear the IPv4 ID mangling feature if the
3500 	 * IPv4 header has the potential to be fragmented.
3501 	 */
3502 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3503 		struct iphdr *iph = skb->encapsulation ?
3504 				    inner_ip_hdr(skb) : ip_hdr(skb);
3505 
3506 		if (!(iph->frag_off & htons(IP_DF)))
3507 			features &= ~NETIF_F_TSO_MANGLEID;
3508 	}
3509 
3510 	return features;
3511 }
3512 
3513 netdev_features_t netif_skb_features(struct sk_buff *skb)
3514 {
3515 	struct net_device *dev = skb->dev;
3516 	netdev_features_t features = dev->features;
3517 
3518 	if (skb_is_gso(skb))
3519 		features = gso_features_check(skb, dev, features);
3520 
3521 	/* If encapsulation offload request, verify we are testing
3522 	 * hardware encapsulation features instead of standard
3523 	 * features for the netdev
3524 	 */
3525 	if (skb->encapsulation)
3526 		features &= dev->hw_enc_features;
3527 
3528 	if (skb_vlan_tagged(skb))
3529 		features = netdev_intersect_features(features,
3530 						     dev->vlan_features |
3531 						     NETIF_F_HW_VLAN_CTAG_TX |
3532 						     NETIF_F_HW_VLAN_STAG_TX);
3533 
3534 	if (dev->netdev_ops->ndo_features_check)
3535 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3536 								features);
3537 	else
3538 		features &= dflt_features_check(skb, dev, features);
3539 
3540 	return harmonize_features(skb, features);
3541 }
3542 EXPORT_SYMBOL(netif_skb_features);
3543 
3544 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3545 		    struct netdev_queue *txq, bool more)
3546 {
3547 	unsigned int len;
3548 	int rc;
3549 
3550 	if (dev_nit_active(dev))
3551 		dev_queue_xmit_nit(skb, dev);
3552 
3553 	len = skb->len;
3554 	trace_net_dev_start_xmit(skb, dev);
3555 	rc = netdev_start_xmit(skb, dev, txq, more);
3556 	trace_net_dev_xmit(skb, rc, dev, len);
3557 
3558 	return rc;
3559 }
3560 
3561 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3562 				    struct netdev_queue *txq, int *ret)
3563 {
3564 	struct sk_buff *skb = first;
3565 	int rc = NETDEV_TX_OK;
3566 
3567 	while (skb) {
3568 		struct sk_buff *next = skb->next;
3569 
3570 		skb_mark_not_on_list(skb);
3571 		rc = xmit_one(skb, dev, txq, next != NULL);
3572 		if (unlikely(!dev_xmit_complete(rc))) {
3573 			skb->next = next;
3574 			goto out;
3575 		}
3576 
3577 		skb = next;
3578 		if (netif_tx_queue_stopped(txq) && skb) {
3579 			rc = NETDEV_TX_BUSY;
3580 			break;
3581 		}
3582 	}
3583 
3584 out:
3585 	*ret = rc;
3586 	return skb;
3587 }
3588 
3589 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3590 					  netdev_features_t features)
3591 {
3592 	if (skb_vlan_tag_present(skb) &&
3593 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3594 		skb = __vlan_hwaccel_push_inside(skb);
3595 	return skb;
3596 }
3597 
3598 int skb_csum_hwoffload_help(struct sk_buff *skb,
3599 			    const netdev_features_t features)
3600 {
3601 	if (unlikely(skb_csum_is_sctp(skb)))
3602 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3603 			skb_crc32c_csum_help(skb);
3604 
3605 	if (features & NETIF_F_HW_CSUM)
3606 		return 0;
3607 
3608 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3609 		switch (skb->csum_offset) {
3610 		case offsetof(struct tcphdr, check):
3611 		case offsetof(struct udphdr, check):
3612 			return 0;
3613 		}
3614 	}
3615 
3616 	return skb_checksum_help(skb);
3617 }
3618 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3619 
3620 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3621 {
3622 	netdev_features_t features;
3623 
3624 	features = netif_skb_features(skb);
3625 	skb = validate_xmit_vlan(skb, features);
3626 	if (unlikely(!skb))
3627 		goto out_null;
3628 
3629 	skb = sk_validate_xmit_skb(skb, dev);
3630 	if (unlikely(!skb))
3631 		goto out_null;
3632 
3633 	if (netif_needs_gso(skb, features)) {
3634 		struct sk_buff *segs;
3635 
3636 		segs = skb_gso_segment(skb, features);
3637 		if (IS_ERR(segs)) {
3638 			goto out_kfree_skb;
3639 		} else if (segs) {
3640 			consume_skb(skb);
3641 			skb = segs;
3642 		}
3643 	} else {
3644 		if (skb_needs_linearize(skb, features) &&
3645 		    __skb_linearize(skb))
3646 			goto out_kfree_skb;
3647 
3648 		/* If packet is not checksummed and device does not
3649 		 * support checksumming for this protocol, complete
3650 		 * checksumming here.
3651 		 */
3652 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3653 			if (skb->encapsulation)
3654 				skb_set_inner_transport_header(skb,
3655 							       skb_checksum_start_offset(skb));
3656 			else
3657 				skb_set_transport_header(skb,
3658 							 skb_checksum_start_offset(skb));
3659 			if (skb_csum_hwoffload_help(skb, features))
3660 				goto out_kfree_skb;
3661 		}
3662 	}
3663 
3664 	skb = validate_xmit_xfrm(skb, features, again);
3665 
3666 	return skb;
3667 
3668 out_kfree_skb:
3669 	kfree_skb(skb);
3670 out_null:
3671 	dev_core_stats_tx_dropped_inc(dev);
3672 	return NULL;
3673 }
3674 
3675 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3676 {
3677 	struct sk_buff *next, *head = NULL, *tail;
3678 
3679 	for (; skb != NULL; skb = next) {
3680 		next = skb->next;
3681 		skb_mark_not_on_list(skb);
3682 
3683 		/* in case skb wont be segmented, point to itself */
3684 		skb->prev = skb;
3685 
3686 		skb = validate_xmit_skb(skb, dev, again);
3687 		if (!skb)
3688 			continue;
3689 
3690 		if (!head)
3691 			head = skb;
3692 		else
3693 			tail->next = skb;
3694 		/* If skb was segmented, skb->prev points to
3695 		 * the last segment. If not, it still contains skb.
3696 		 */
3697 		tail = skb->prev;
3698 	}
3699 	return head;
3700 }
3701 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3702 
3703 static void qdisc_pkt_len_init(struct sk_buff *skb)
3704 {
3705 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3706 
3707 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3708 
3709 	/* To get more precise estimation of bytes sent on wire,
3710 	 * we add to pkt_len the headers size of all segments
3711 	 */
3712 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3713 		u16 gso_segs = shinfo->gso_segs;
3714 		unsigned int hdr_len;
3715 
3716 		/* mac layer + network layer */
3717 		hdr_len = skb_transport_offset(skb);
3718 
3719 		/* + transport layer */
3720 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3721 			const struct tcphdr *th;
3722 			struct tcphdr _tcphdr;
3723 
3724 			th = skb_header_pointer(skb, hdr_len,
3725 						sizeof(_tcphdr), &_tcphdr);
3726 			if (likely(th))
3727 				hdr_len += __tcp_hdrlen(th);
3728 		} else {
3729 			struct udphdr _udphdr;
3730 
3731 			if (skb_header_pointer(skb, hdr_len,
3732 					       sizeof(_udphdr), &_udphdr))
3733 				hdr_len += sizeof(struct udphdr);
3734 		}
3735 
3736 		if (shinfo->gso_type & SKB_GSO_DODGY)
3737 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3738 						shinfo->gso_size);
3739 
3740 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3741 	}
3742 }
3743 
3744 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3745 			     struct sk_buff **to_free,
3746 			     struct netdev_queue *txq)
3747 {
3748 	int rc;
3749 
3750 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3751 	if (rc == NET_XMIT_SUCCESS)
3752 		trace_qdisc_enqueue(q, txq, skb);
3753 	return rc;
3754 }
3755 
3756 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3757 				 struct net_device *dev,
3758 				 struct netdev_queue *txq)
3759 {
3760 	spinlock_t *root_lock = qdisc_lock(q);
3761 	struct sk_buff *to_free = NULL;
3762 	bool contended;
3763 	int rc;
3764 
3765 	qdisc_calculate_pkt_len(skb, q);
3766 
3767 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3768 
3769 	if (q->flags & TCQ_F_NOLOCK) {
3770 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3771 		    qdisc_run_begin(q)) {
3772 			/* Retest nolock_qdisc_is_empty() within the protection
3773 			 * of q->seqlock to protect from racing with requeuing.
3774 			 */
3775 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3776 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3777 				__qdisc_run(q);
3778 				qdisc_run_end(q);
3779 
3780 				goto no_lock_out;
3781 			}
3782 
3783 			qdisc_bstats_cpu_update(q, skb);
3784 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3785 			    !nolock_qdisc_is_empty(q))
3786 				__qdisc_run(q);
3787 
3788 			qdisc_run_end(q);
3789 			return NET_XMIT_SUCCESS;
3790 		}
3791 
3792 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3793 		qdisc_run(q);
3794 
3795 no_lock_out:
3796 		if (unlikely(to_free))
3797 			kfree_skb_list_reason(to_free,
3798 					      tcf_get_drop_reason(to_free));
3799 		return rc;
3800 	}
3801 
3802 	/*
3803 	 * Heuristic to force contended enqueues to serialize on a
3804 	 * separate lock before trying to get qdisc main lock.
3805 	 * This permits qdisc->running owner to get the lock more
3806 	 * often and dequeue packets faster.
3807 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3808 	 * and then other tasks will only enqueue packets. The packets will be
3809 	 * sent after the qdisc owner is scheduled again. To prevent this
3810 	 * scenario the task always serialize on the lock.
3811 	 */
3812 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3813 	if (unlikely(contended))
3814 		spin_lock(&q->busylock);
3815 
3816 	spin_lock(root_lock);
3817 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3818 		__qdisc_drop(skb, &to_free);
3819 		rc = NET_XMIT_DROP;
3820 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3821 		   qdisc_run_begin(q)) {
3822 		/*
3823 		 * This is a work-conserving queue; there are no old skbs
3824 		 * waiting to be sent out; and the qdisc is not running -
3825 		 * xmit the skb directly.
3826 		 */
3827 
3828 		qdisc_bstats_update(q, skb);
3829 
3830 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3831 			if (unlikely(contended)) {
3832 				spin_unlock(&q->busylock);
3833 				contended = false;
3834 			}
3835 			__qdisc_run(q);
3836 		}
3837 
3838 		qdisc_run_end(q);
3839 		rc = NET_XMIT_SUCCESS;
3840 	} else {
3841 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3842 		if (qdisc_run_begin(q)) {
3843 			if (unlikely(contended)) {
3844 				spin_unlock(&q->busylock);
3845 				contended = false;
3846 			}
3847 			__qdisc_run(q);
3848 			qdisc_run_end(q);
3849 		}
3850 	}
3851 	spin_unlock(root_lock);
3852 	if (unlikely(to_free))
3853 		kfree_skb_list_reason(to_free,
3854 				      tcf_get_drop_reason(to_free));
3855 	if (unlikely(contended))
3856 		spin_unlock(&q->busylock);
3857 	return rc;
3858 }
3859 
3860 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3861 static void skb_update_prio(struct sk_buff *skb)
3862 {
3863 	const struct netprio_map *map;
3864 	const struct sock *sk;
3865 	unsigned int prioidx;
3866 
3867 	if (skb->priority)
3868 		return;
3869 	map = rcu_dereference_bh(skb->dev->priomap);
3870 	if (!map)
3871 		return;
3872 	sk = skb_to_full_sk(skb);
3873 	if (!sk)
3874 		return;
3875 
3876 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3877 
3878 	if (prioidx < map->priomap_len)
3879 		skb->priority = map->priomap[prioidx];
3880 }
3881 #else
3882 #define skb_update_prio(skb)
3883 #endif
3884 
3885 /**
3886  *	dev_loopback_xmit - loop back @skb
3887  *	@net: network namespace this loopback is happening in
3888  *	@sk:  sk needed to be a netfilter okfn
3889  *	@skb: buffer to transmit
3890  */
3891 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3892 {
3893 	skb_reset_mac_header(skb);
3894 	__skb_pull(skb, skb_network_offset(skb));
3895 	skb->pkt_type = PACKET_LOOPBACK;
3896 	if (skb->ip_summed == CHECKSUM_NONE)
3897 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3898 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3899 	skb_dst_force(skb);
3900 	netif_rx(skb);
3901 	return 0;
3902 }
3903 EXPORT_SYMBOL(dev_loopback_xmit);
3904 
3905 #ifdef CONFIG_NET_EGRESS
3906 static struct netdev_queue *
3907 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3908 {
3909 	int qm = skb_get_queue_mapping(skb);
3910 
3911 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3912 }
3913 
3914 static bool netdev_xmit_txqueue_skipped(void)
3915 {
3916 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3917 }
3918 
3919 void netdev_xmit_skip_txqueue(bool skip)
3920 {
3921 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3922 }
3923 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3924 #endif /* CONFIG_NET_EGRESS */
3925 
3926 #ifdef CONFIG_NET_XGRESS
3927 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3928 		  enum skb_drop_reason *drop_reason)
3929 {
3930 	int ret = TC_ACT_UNSPEC;
3931 #ifdef CONFIG_NET_CLS_ACT
3932 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3933 	struct tcf_result res;
3934 
3935 	if (!miniq)
3936 		return ret;
3937 
3938 	tc_skb_cb(skb)->mru = 0;
3939 	tc_skb_cb(skb)->post_ct = false;
3940 	tcf_set_drop_reason(skb, *drop_reason);
3941 
3942 	mini_qdisc_bstats_cpu_update(miniq, skb);
3943 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3944 	/* Only tcf related quirks below. */
3945 	switch (ret) {
3946 	case TC_ACT_SHOT:
3947 		*drop_reason = tcf_get_drop_reason(skb);
3948 		mini_qdisc_qstats_cpu_drop(miniq);
3949 		break;
3950 	case TC_ACT_OK:
3951 	case TC_ACT_RECLASSIFY:
3952 		skb->tc_index = TC_H_MIN(res.classid);
3953 		break;
3954 	}
3955 #endif /* CONFIG_NET_CLS_ACT */
3956 	return ret;
3957 }
3958 
3959 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3960 
3961 void tcx_inc(void)
3962 {
3963 	static_branch_inc(&tcx_needed_key);
3964 }
3965 
3966 void tcx_dec(void)
3967 {
3968 	static_branch_dec(&tcx_needed_key);
3969 }
3970 
3971 static __always_inline enum tcx_action_base
3972 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3973 	const bool needs_mac)
3974 {
3975 	const struct bpf_mprog_fp *fp;
3976 	const struct bpf_prog *prog;
3977 	int ret = TCX_NEXT;
3978 
3979 	if (needs_mac)
3980 		__skb_push(skb, skb->mac_len);
3981 	bpf_mprog_foreach_prog(entry, fp, prog) {
3982 		bpf_compute_data_pointers(skb);
3983 		ret = bpf_prog_run(prog, skb);
3984 		if (ret != TCX_NEXT)
3985 			break;
3986 	}
3987 	if (needs_mac)
3988 		__skb_pull(skb, skb->mac_len);
3989 	return tcx_action_code(skb, ret);
3990 }
3991 
3992 static __always_inline struct sk_buff *
3993 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3994 		   struct net_device *orig_dev, bool *another)
3995 {
3996 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3997 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3998 	int sch_ret;
3999 
4000 	if (!entry)
4001 		return skb;
4002 	if (*pt_prev) {
4003 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4004 		*pt_prev = NULL;
4005 	}
4006 
4007 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4008 	tcx_set_ingress(skb, true);
4009 
4010 	if (static_branch_unlikely(&tcx_needed_key)) {
4011 		sch_ret = tcx_run(entry, skb, true);
4012 		if (sch_ret != TC_ACT_UNSPEC)
4013 			goto ingress_verdict;
4014 	}
4015 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4016 ingress_verdict:
4017 	switch (sch_ret) {
4018 	case TC_ACT_REDIRECT:
4019 		/* skb_mac_header check was done by BPF, so we can safely
4020 		 * push the L2 header back before redirecting to another
4021 		 * netdev.
4022 		 */
4023 		__skb_push(skb, skb->mac_len);
4024 		if (skb_do_redirect(skb) == -EAGAIN) {
4025 			__skb_pull(skb, skb->mac_len);
4026 			*another = true;
4027 			break;
4028 		}
4029 		*ret = NET_RX_SUCCESS;
4030 		return NULL;
4031 	case TC_ACT_SHOT:
4032 		kfree_skb_reason(skb, drop_reason);
4033 		*ret = NET_RX_DROP;
4034 		return NULL;
4035 	/* used by tc_run */
4036 	case TC_ACT_STOLEN:
4037 	case TC_ACT_QUEUED:
4038 	case TC_ACT_TRAP:
4039 		consume_skb(skb);
4040 		fallthrough;
4041 	case TC_ACT_CONSUMED:
4042 		*ret = NET_RX_SUCCESS;
4043 		return NULL;
4044 	}
4045 
4046 	return skb;
4047 }
4048 
4049 static __always_inline struct sk_buff *
4050 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4051 {
4052 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4053 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4054 	int sch_ret;
4055 
4056 	if (!entry)
4057 		return skb;
4058 
4059 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4060 	 * already set by the caller.
4061 	 */
4062 	if (static_branch_unlikely(&tcx_needed_key)) {
4063 		sch_ret = tcx_run(entry, skb, false);
4064 		if (sch_ret != TC_ACT_UNSPEC)
4065 			goto egress_verdict;
4066 	}
4067 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4068 egress_verdict:
4069 	switch (sch_ret) {
4070 	case TC_ACT_REDIRECT:
4071 		/* No need to push/pop skb's mac_header here on egress! */
4072 		skb_do_redirect(skb);
4073 		*ret = NET_XMIT_SUCCESS;
4074 		return NULL;
4075 	case TC_ACT_SHOT:
4076 		kfree_skb_reason(skb, drop_reason);
4077 		*ret = NET_XMIT_DROP;
4078 		return NULL;
4079 	/* used by tc_run */
4080 	case TC_ACT_STOLEN:
4081 	case TC_ACT_QUEUED:
4082 	case TC_ACT_TRAP:
4083 		consume_skb(skb);
4084 		fallthrough;
4085 	case TC_ACT_CONSUMED:
4086 		*ret = NET_XMIT_SUCCESS;
4087 		return NULL;
4088 	}
4089 
4090 	return skb;
4091 }
4092 #else
4093 static __always_inline struct sk_buff *
4094 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4095 		   struct net_device *orig_dev, bool *another)
4096 {
4097 	return skb;
4098 }
4099 
4100 static __always_inline struct sk_buff *
4101 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4102 {
4103 	return skb;
4104 }
4105 #endif /* CONFIG_NET_XGRESS */
4106 
4107 #ifdef CONFIG_XPS
4108 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4109 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4110 {
4111 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4112 	struct xps_map *map;
4113 	int queue_index = -1;
4114 
4115 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4116 		return queue_index;
4117 
4118 	tci *= dev_maps->num_tc;
4119 	tci += tc;
4120 
4121 	map = rcu_dereference(dev_maps->attr_map[tci]);
4122 	if (map) {
4123 		if (map->len == 1)
4124 			queue_index = map->queues[0];
4125 		else
4126 			queue_index = map->queues[reciprocal_scale(
4127 						skb_get_hash(skb), map->len)];
4128 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4129 			queue_index = -1;
4130 	}
4131 	return queue_index;
4132 }
4133 #endif
4134 
4135 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4136 			 struct sk_buff *skb)
4137 {
4138 #ifdef CONFIG_XPS
4139 	struct xps_dev_maps *dev_maps;
4140 	struct sock *sk = skb->sk;
4141 	int queue_index = -1;
4142 
4143 	if (!static_key_false(&xps_needed))
4144 		return -1;
4145 
4146 	rcu_read_lock();
4147 	if (!static_key_false(&xps_rxqs_needed))
4148 		goto get_cpus_map;
4149 
4150 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4151 	if (dev_maps) {
4152 		int tci = sk_rx_queue_get(sk);
4153 
4154 		if (tci >= 0)
4155 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4156 							  tci);
4157 	}
4158 
4159 get_cpus_map:
4160 	if (queue_index < 0) {
4161 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4162 		if (dev_maps) {
4163 			unsigned int tci = skb->sender_cpu - 1;
4164 
4165 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4166 							  tci);
4167 		}
4168 	}
4169 	rcu_read_unlock();
4170 
4171 	return queue_index;
4172 #else
4173 	return -1;
4174 #endif
4175 }
4176 
4177 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4178 		     struct net_device *sb_dev)
4179 {
4180 	return 0;
4181 }
4182 EXPORT_SYMBOL(dev_pick_tx_zero);
4183 
4184 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4185 		       struct net_device *sb_dev)
4186 {
4187 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4188 }
4189 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4190 
4191 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4192 		     struct net_device *sb_dev)
4193 {
4194 	struct sock *sk = skb->sk;
4195 	int queue_index = sk_tx_queue_get(sk);
4196 
4197 	sb_dev = sb_dev ? : dev;
4198 
4199 	if (queue_index < 0 || skb->ooo_okay ||
4200 	    queue_index >= dev->real_num_tx_queues) {
4201 		int new_index = get_xps_queue(dev, sb_dev, skb);
4202 
4203 		if (new_index < 0)
4204 			new_index = skb_tx_hash(dev, sb_dev, skb);
4205 
4206 		if (queue_index != new_index && sk &&
4207 		    sk_fullsock(sk) &&
4208 		    rcu_access_pointer(sk->sk_dst_cache))
4209 			sk_tx_queue_set(sk, new_index);
4210 
4211 		queue_index = new_index;
4212 	}
4213 
4214 	return queue_index;
4215 }
4216 EXPORT_SYMBOL(netdev_pick_tx);
4217 
4218 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4219 					 struct sk_buff *skb,
4220 					 struct net_device *sb_dev)
4221 {
4222 	int queue_index = 0;
4223 
4224 #ifdef CONFIG_XPS
4225 	u32 sender_cpu = skb->sender_cpu - 1;
4226 
4227 	if (sender_cpu >= (u32)NR_CPUS)
4228 		skb->sender_cpu = raw_smp_processor_id() + 1;
4229 #endif
4230 
4231 	if (dev->real_num_tx_queues != 1) {
4232 		const struct net_device_ops *ops = dev->netdev_ops;
4233 
4234 		if (ops->ndo_select_queue)
4235 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4236 		else
4237 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4238 
4239 		queue_index = netdev_cap_txqueue(dev, queue_index);
4240 	}
4241 
4242 	skb_set_queue_mapping(skb, queue_index);
4243 	return netdev_get_tx_queue(dev, queue_index);
4244 }
4245 
4246 /**
4247  * __dev_queue_xmit() - transmit a buffer
4248  * @skb:	buffer to transmit
4249  * @sb_dev:	suboordinate device used for L2 forwarding offload
4250  *
4251  * Queue a buffer for transmission to a network device. The caller must
4252  * have set the device and priority and built the buffer before calling
4253  * this function. The function can be called from an interrupt.
4254  *
4255  * When calling this method, interrupts MUST be enabled. This is because
4256  * the BH enable code must have IRQs enabled so that it will not deadlock.
4257  *
4258  * Regardless of the return value, the skb is consumed, so it is currently
4259  * difficult to retry a send to this method. (You can bump the ref count
4260  * before sending to hold a reference for retry if you are careful.)
4261  *
4262  * Return:
4263  * * 0				- buffer successfully transmitted
4264  * * positive qdisc return code	- NET_XMIT_DROP etc.
4265  * * negative errno		- other errors
4266  */
4267 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4268 {
4269 	struct net_device *dev = skb->dev;
4270 	struct netdev_queue *txq = NULL;
4271 	struct Qdisc *q;
4272 	int rc = -ENOMEM;
4273 	bool again = false;
4274 
4275 	skb_reset_mac_header(skb);
4276 	skb_assert_len(skb);
4277 
4278 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4279 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4280 
4281 	/* Disable soft irqs for various locks below. Also
4282 	 * stops preemption for RCU.
4283 	 */
4284 	rcu_read_lock_bh();
4285 
4286 	skb_update_prio(skb);
4287 
4288 	qdisc_pkt_len_init(skb);
4289 	tcx_set_ingress(skb, false);
4290 #ifdef CONFIG_NET_EGRESS
4291 	if (static_branch_unlikely(&egress_needed_key)) {
4292 		if (nf_hook_egress_active()) {
4293 			skb = nf_hook_egress(skb, &rc, dev);
4294 			if (!skb)
4295 				goto out;
4296 		}
4297 
4298 		netdev_xmit_skip_txqueue(false);
4299 
4300 		nf_skip_egress(skb, true);
4301 		skb = sch_handle_egress(skb, &rc, dev);
4302 		if (!skb)
4303 			goto out;
4304 		nf_skip_egress(skb, false);
4305 
4306 		if (netdev_xmit_txqueue_skipped())
4307 			txq = netdev_tx_queue_mapping(dev, skb);
4308 	}
4309 #endif
4310 	/* If device/qdisc don't need skb->dst, release it right now while
4311 	 * its hot in this cpu cache.
4312 	 */
4313 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4314 		skb_dst_drop(skb);
4315 	else
4316 		skb_dst_force(skb);
4317 
4318 	if (!txq)
4319 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4320 
4321 	q = rcu_dereference_bh(txq->qdisc);
4322 
4323 	trace_net_dev_queue(skb);
4324 	if (q->enqueue) {
4325 		rc = __dev_xmit_skb(skb, q, dev, txq);
4326 		goto out;
4327 	}
4328 
4329 	/* The device has no queue. Common case for software devices:
4330 	 * loopback, all the sorts of tunnels...
4331 
4332 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4333 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4334 	 * counters.)
4335 	 * However, it is possible, that they rely on protection
4336 	 * made by us here.
4337 
4338 	 * Check this and shot the lock. It is not prone from deadlocks.
4339 	 *Either shot noqueue qdisc, it is even simpler 8)
4340 	 */
4341 	if (dev->flags & IFF_UP) {
4342 		int cpu = smp_processor_id(); /* ok because BHs are off */
4343 
4344 		/* Other cpus might concurrently change txq->xmit_lock_owner
4345 		 * to -1 or to their cpu id, but not to our id.
4346 		 */
4347 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4348 			if (dev_xmit_recursion())
4349 				goto recursion_alert;
4350 
4351 			skb = validate_xmit_skb(skb, dev, &again);
4352 			if (!skb)
4353 				goto out;
4354 
4355 			HARD_TX_LOCK(dev, txq, cpu);
4356 
4357 			if (!netif_xmit_stopped(txq)) {
4358 				dev_xmit_recursion_inc();
4359 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4360 				dev_xmit_recursion_dec();
4361 				if (dev_xmit_complete(rc)) {
4362 					HARD_TX_UNLOCK(dev, txq);
4363 					goto out;
4364 				}
4365 			}
4366 			HARD_TX_UNLOCK(dev, txq);
4367 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4368 					     dev->name);
4369 		} else {
4370 			/* Recursion is detected! It is possible,
4371 			 * unfortunately
4372 			 */
4373 recursion_alert:
4374 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4375 					     dev->name);
4376 		}
4377 	}
4378 
4379 	rc = -ENETDOWN;
4380 	rcu_read_unlock_bh();
4381 
4382 	dev_core_stats_tx_dropped_inc(dev);
4383 	kfree_skb_list(skb);
4384 	return rc;
4385 out:
4386 	rcu_read_unlock_bh();
4387 	return rc;
4388 }
4389 EXPORT_SYMBOL(__dev_queue_xmit);
4390 
4391 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4392 {
4393 	struct net_device *dev = skb->dev;
4394 	struct sk_buff *orig_skb = skb;
4395 	struct netdev_queue *txq;
4396 	int ret = NETDEV_TX_BUSY;
4397 	bool again = false;
4398 
4399 	if (unlikely(!netif_running(dev) ||
4400 		     !netif_carrier_ok(dev)))
4401 		goto drop;
4402 
4403 	skb = validate_xmit_skb_list(skb, dev, &again);
4404 	if (skb != orig_skb)
4405 		goto drop;
4406 
4407 	skb_set_queue_mapping(skb, queue_id);
4408 	txq = skb_get_tx_queue(dev, skb);
4409 
4410 	local_bh_disable();
4411 
4412 	dev_xmit_recursion_inc();
4413 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4414 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4415 		ret = netdev_start_xmit(skb, dev, txq, false);
4416 	HARD_TX_UNLOCK(dev, txq);
4417 	dev_xmit_recursion_dec();
4418 
4419 	local_bh_enable();
4420 	return ret;
4421 drop:
4422 	dev_core_stats_tx_dropped_inc(dev);
4423 	kfree_skb_list(skb);
4424 	return NET_XMIT_DROP;
4425 }
4426 EXPORT_SYMBOL(__dev_direct_xmit);
4427 
4428 /*************************************************************************
4429  *			Receiver routines
4430  *************************************************************************/
4431 
4432 int netdev_max_backlog __read_mostly = 1000;
4433 EXPORT_SYMBOL(netdev_max_backlog);
4434 
4435 int netdev_tstamp_prequeue __read_mostly = 1;
4436 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4437 int netdev_budget __read_mostly = 300;
4438 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4439 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4440 int weight_p __read_mostly = 64;           /* old backlog weight */
4441 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4442 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4443 int dev_rx_weight __read_mostly = 64;
4444 int dev_tx_weight __read_mostly = 64;
4445 
4446 /* Called with irq disabled */
4447 static inline void ____napi_schedule(struct softnet_data *sd,
4448 				     struct napi_struct *napi)
4449 {
4450 	struct task_struct *thread;
4451 
4452 	lockdep_assert_irqs_disabled();
4453 
4454 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4455 		/* Paired with smp_mb__before_atomic() in
4456 		 * napi_enable()/dev_set_threaded().
4457 		 * Use READ_ONCE() to guarantee a complete
4458 		 * read on napi->thread. Only call
4459 		 * wake_up_process() when it's not NULL.
4460 		 */
4461 		thread = READ_ONCE(napi->thread);
4462 		if (thread) {
4463 			/* Avoid doing set_bit() if the thread is in
4464 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4465 			 * makes sure to proceed with napi polling
4466 			 * if the thread is explicitly woken from here.
4467 			 */
4468 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4469 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4470 			wake_up_process(thread);
4471 			return;
4472 		}
4473 	}
4474 
4475 	list_add_tail(&napi->poll_list, &sd->poll_list);
4476 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4477 	/* If not called from net_rx_action()
4478 	 * we have to raise NET_RX_SOFTIRQ.
4479 	 */
4480 	if (!sd->in_net_rx_action)
4481 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4482 }
4483 
4484 #ifdef CONFIG_RPS
4485 
4486 /* One global table that all flow-based protocols share. */
4487 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4488 EXPORT_SYMBOL(rps_sock_flow_table);
4489 u32 rps_cpu_mask __read_mostly;
4490 EXPORT_SYMBOL(rps_cpu_mask);
4491 
4492 struct static_key_false rps_needed __read_mostly;
4493 EXPORT_SYMBOL(rps_needed);
4494 struct static_key_false rfs_needed __read_mostly;
4495 EXPORT_SYMBOL(rfs_needed);
4496 
4497 static struct rps_dev_flow *
4498 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4499 	    struct rps_dev_flow *rflow, u16 next_cpu)
4500 {
4501 	if (next_cpu < nr_cpu_ids) {
4502 #ifdef CONFIG_RFS_ACCEL
4503 		struct netdev_rx_queue *rxqueue;
4504 		struct rps_dev_flow_table *flow_table;
4505 		struct rps_dev_flow *old_rflow;
4506 		u32 flow_id;
4507 		u16 rxq_index;
4508 		int rc;
4509 
4510 		/* Should we steer this flow to a different hardware queue? */
4511 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4512 		    !(dev->features & NETIF_F_NTUPLE))
4513 			goto out;
4514 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4515 		if (rxq_index == skb_get_rx_queue(skb))
4516 			goto out;
4517 
4518 		rxqueue = dev->_rx + rxq_index;
4519 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4520 		if (!flow_table)
4521 			goto out;
4522 		flow_id = skb_get_hash(skb) & flow_table->mask;
4523 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4524 							rxq_index, flow_id);
4525 		if (rc < 0)
4526 			goto out;
4527 		old_rflow = rflow;
4528 		rflow = &flow_table->flows[flow_id];
4529 		rflow->filter = rc;
4530 		if (old_rflow->filter == rflow->filter)
4531 			old_rflow->filter = RPS_NO_FILTER;
4532 	out:
4533 #endif
4534 		rflow->last_qtail =
4535 			per_cpu(softnet_data, next_cpu).input_queue_head;
4536 	}
4537 
4538 	rflow->cpu = next_cpu;
4539 	return rflow;
4540 }
4541 
4542 /*
4543  * get_rps_cpu is called from netif_receive_skb and returns the target
4544  * CPU from the RPS map of the receiving queue for a given skb.
4545  * rcu_read_lock must be held on entry.
4546  */
4547 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4548 		       struct rps_dev_flow **rflowp)
4549 {
4550 	const struct rps_sock_flow_table *sock_flow_table;
4551 	struct netdev_rx_queue *rxqueue = dev->_rx;
4552 	struct rps_dev_flow_table *flow_table;
4553 	struct rps_map *map;
4554 	int cpu = -1;
4555 	u32 tcpu;
4556 	u32 hash;
4557 
4558 	if (skb_rx_queue_recorded(skb)) {
4559 		u16 index = skb_get_rx_queue(skb);
4560 
4561 		if (unlikely(index >= dev->real_num_rx_queues)) {
4562 			WARN_ONCE(dev->real_num_rx_queues > 1,
4563 				  "%s received packet on queue %u, but number "
4564 				  "of RX queues is %u\n",
4565 				  dev->name, index, dev->real_num_rx_queues);
4566 			goto done;
4567 		}
4568 		rxqueue += index;
4569 	}
4570 
4571 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4572 
4573 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4574 	map = rcu_dereference(rxqueue->rps_map);
4575 	if (!flow_table && !map)
4576 		goto done;
4577 
4578 	skb_reset_network_header(skb);
4579 	hash = skb_get_hash(skb);
4580 	if (!hash)
4581 		goto done;
4582 
4583 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4584 	if (flow_table && sock_flow_table) {
4585 		struct rps_dev_flow *rflow;
4586 		u32 next_cpu;
4587 		u32 ident;
4588 
4589 		/* First check into global flow table if there is a match.
4590 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4591 		 */
4592 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4593 		if ((ident ^ hash) & ~rps_cpu_mask)
4594 			goto try_rps;
4595 
4596 		next_cpu = ident & rps_cpu_mask;
4597 
4598 		/* OK, now we know there is a match,
4599 		 * we can look at the local (per receive queue) flow table
4600 		 */
4601 		rflow = &flow_table->flows[hash & flow_table->mask];
4602 		tcpu = rflow->cpu;
4603 
4604 		/*
4605 		 * If the desired CPU (where last recvmsg was done) is
4606 		 * different from current CPU (one in the rx-queue flow
4607 		 * table entry), switch if one of the following holds:
4608 		 *   - Current CPU is unset (>= nr_cpu_ids).
4609 		 *   - Current CPU is offline.
4610 		 *   - The current CPU's queue tail has advanced beyond the
4611 		 *     last packet that was enqueued using this table entry.
4612 		 *     This guarantees that all previous packets for the flow
4613 		 *     have been dequeued, thus preserving in order delivery.
4614 		 */
4615 		if (unlikely(tcpu != next_cpu) &&
4616 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4617 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4618 		      rflow->last_qtail)) >= 0)) {
4619 			tcpu = next_cpu;
4620 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4621 		}
4622 
4623 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4624 			*rflowp = rflow;
4625 			cpu = tcpu;
4626 			goto done;
4627 		}
4628 	}
4629 
4630 try_rps:
4631 
4632 	if (map) {
4633 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4634 		if (cpu_online(tcpu)) {
4635 			cpu = tcpu;
4636 			goto done;
4637 		}
4638 	}
4639 
4640 done:
4641 	return cpu;
4642 }
4643 
4644 #ifdef CONFIG_RFS_ACCEL
4645 
4646 /**
4647  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4648  * @dev: Device on which the filter was set
4649  * @rxq_index: RX queue index
4650  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4651  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4652  *
4653  * Drivers that implement ndo_rx_flow_steer() should periodically call
4654  * this function for each installed filter and remove the filters for
4655  * which it returns %true.
4656  */
4657 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4658 			 u32 flow_id, u16 filter_id)
4659 {
4660 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4661 	struct rps_dev_flow_table *flow_table;
4662 	struct rps_dev_flow *rflow;
4663 	bool expire = true;
4664 	unsigned int cpu;
4665 
4666 	rcu_read_lock();
4667 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4668 	if (flow_table && flow_id <= flow_table->mask) {
4669 		rflow = &flow_table->flows[flow_id];
4670 		cpu = READ_ONCE(rflow->cpu);
4671 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4672 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4673 			   rflow->last_qtail) <
4674 		     (int)(10 * flow_table->mask)))
4675 			expire = false;
4676 	}
4677 	rcu_read_unlock();
4678 	return expire;
4679 }
4680 EXPORT_SYMBOL(rps_may_expire_flow);
4681 
4682 #endif /* CONFIG_RFS_ACCEL */
4683 
4684 /* Called from hardirq (IPI) context */
4685 static void rps_trigger_softirq(void *data)
4686 {
4687 	struct softnet_data *sd = data;
4688 
4689 	____napi_schedule(sd, &sd->backlog);
4690 	sd->received_rps++;
4691 }
4692 
4693 #endif /* CONFIG_RPS */
4694 
4695 /* Called from hardirq (IPI) context */
4696 static void trigger_rx_softirq(void *data)
4697 {
4698 	struct softnet_data *sd = data;
4699 
4700 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4701 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4702 }
4703 
4704 /*
4705  * After we queued a packet into sd->input_pkt_queue,
4706  * we need to make sure this queue is serviced soon.
4707  *
4708  * - If this is another cpu queue, link it to our rps_ipi_list,
4709  *   and make sure we will process rps_ipi_list from net_rx_action().
4710  *
4711  * - If this is our own queue, NAPI schedule our backlog.
4712  *   Note that this also raises NET_RX_SOFTIRQ.
4713  */
4714 static void napi_schedule_rps(struct softnet_data *sd)
4715 {
4716 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4717 
4718 #ifdef CONFIG_RPS
4719 	if (sd != mysd) {
4720 		sd->rps_ipi_next = mysd->rps_ipi_list;
4721 		mysd->rps_ipi_list = sd;
4722 
4723 		/* If not called from net_rx_action() or napi_threaded_poll()
4724 		 * we have to raise NET_RX_SOFTIRQ.
4725 		 */
4726 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4727 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4728 		return;
4729 	}
4730 #endif /* CONFIG_RPS */
4731 	__napi_schedule_irqoff(&mysd->backlog);
4732 }
4733 
4734 #ifdef CONFIG_NET_FLOW_LIMIT
4735 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4736 #endif
4737 
4738 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4739 {
4740 #ifdef CONFIG_NET_FLOW_LIMIT
4741 	struct sd_flow_limit *fl;
4742 	struct softnet_data *sd;
4743 	unsigned int old_flow, new_flow;
4744 
4745 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4746 		return false;
4747 
4748 	sd = this_cpu_ptr(&softnet_data);
4749 
4750 	rcu_read_lock();
4751 	fl = rcu_dereference(sd->flow_limit);
4752 	if (fl) {
4753 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4754 		old_flow = fl->history[fl->history_head];
4755 		fl->history[fl->history_head] = new_flow;
4756 
4757 		fl->history_head++;
4758 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4759 
4760 		if (likely(fl->buckets[old_flow]))
4761 			fl->buckets[old_flow]--;
4762 
4763 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4764 			fl->count++;
4765 			rcu_read_unlock();
4766 			return true;
4767 		}
4768 	}
4769 	rcu_read_unlock();
4770 #endif
4771 	return false;
4772 }
4773 
4774 /*
4775  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4776  * queue (may be a remote CPU queue).
4777  */
4778 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4779 			      unsigned int *qtail)
4780 {
4781 	enum skb_drop_reason reason;
4782 	struct softnet_data *sd;
4783 	unsigned long flags;
4784 	unsigned int qlen;
4785 
4786 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4787 	sd = &per_cpu(softnet_data, cpu);
4788 
4789 	rps_lock_irqsave(sd, &flags);
4790 	if (!netif_running(skb->dev))
4791 		goto drop;
4792 	qlen = skb_queue_len(&sd->input_pkt_queue);
4793 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4794 		if (qlen) {
4795 enqueue:
4796 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4797 			input_queue_tail_incr_save(sd, qtail);
4798 			rps_unlock_irq_restore(sd, &flags);
4799 			return NET_RX_SUCCESS;
4800 		}
4801 
4802 		/* Schedule NAPI for backlog device
4803 		 * We can use non atomic operation since we own the queue lock
4804 		 */
4805 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4806 			napi_schedule_rps(sd);
4807 		goto enqueue;
4808 	}
4809 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4810 
4811 drop:
4812 	sd->dropped++;
4813 	rps_unlock_irq_restore(sd, &flags);
4814 
4815 	dev_core_stats_rx_dropped_inc(skb->dev);
4816 	kfree_skb_reason(skb, reason);
4817 	return NET_RX_DROP;
4818 }
4819 
4820 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4821 {
4822 	struct net_device *dev = skb->dev;
4823 	struct netdev_rx_queue *rxqueue;
4824 
4825 	rxqueue = dev->_rx;
4826 
4827 	if (skb_rx_queue_recorded(skb)) {
4828 		u16 index = skb_get_rx_queue(skb);
4829 
4830 		if (unlikely(index >= dev->real_num_rx_queues)) {
4831 			WARN_ONCE(dev->real_num_rx_queues > 1,
4832 				  "%s received packet on queue %u, but number "
4833 				  "of RX queues is %u\n",
4834 				  dev->name, index, dev->real_num_rx_queues);
4835 
4836 			return rxqueue; /* Return first rxqueue */
4837 		}
4838 		rxqueue += index;
4839 	}
4840 	return rxqueue;
4841 }
4842 
4843 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4844 			     struct bpf_prog *xdp_prog)
4845 {
4846 	void *orig_data, *orig_data_end, *hard_start;
4847 	struct netdev_rx_queue *rxqueue;
4848 	bool orig_bcast, orig_host;
4849 	u32 mac_len, frame_sz;
4850 	__be16 orig_eth_type;
4851 	struct ethhdr *eth;
4852 	u32 metalen, act;
4853 	int off;
4854 
4855 	/* The XDP program wants to see the packet starting at the MAC
4856 	 * header.
4857 	 */
4858 	mac_len = skb->data - skb_mac_header(skb);
4859 	hard_start = skb->data - skb_headroom(skb);
4860 
4861 	/* SKB "head" area always have tailroom for skb_shared_info */
4862 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4863 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4864 
4865 	rxqueue = netif_get_rxqueue(skb);
4866 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4867 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4868 			 skb_headlen(skb) + mac_len, true);
4869 
4870 	orig_data_end = xdp->data_end;
4871 	orig_data = xdp->data;
4872 	eth = (struct ethhdr *)xdp->data;
4873 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4874 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4875 	orig_eth_type = eth->h_proto;
4876 
4877 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4878 
4879 	/* check if bpf_xdp_adjust_head was used */
4880 	off = xdp->data - orig_data;
4881 	if (off) {
4882 		if (off > 0)
4883 			__skb_pull(skb, off);
4884 		else if (off < 0)
4885 			__skb_push(skb, -off);
4886 
4887 		skb->mac_header += off;
4888 		skb_reset_network_header(skb);
4889 	}
4890 
4891 	/* check if bpf_xdp_adjust_tail was used */
4892 	off = xdp->data_end - orig_data_end;
4893 	if (off != 0) {
4894 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4895 		skb->len += off; /* positive on grow, negative on shrink */
4896 	}
4897 
4898 	/* check if XDP changed eth hdr such SKB needs update */
4899 	eth = (struct ethhdr *)xdp->data;
4900 	if ((orig_eth_type != eth->h_proto) ||
4901 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4902 						  skb->dev->dev_addr)) ||
4903 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4904 		__skb_push(skb, ETH_HLEN);
4905 		skb->pkt_type = PACKET_HOST;
4906 		skb->protocol = eth_type_trans(skb, skb->dev);
4907 	}
4908 
4909 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4910 	 * before calling us again on redirect path. We do not call do_redirect
4911 	 * as we leave that up to the caller.
4912 	 *
4913 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4914 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4915 	 */
4916 	switch (act) {
4917 	case XDP_REDIRECT:
4918 	case XDP_TX:
4919 		__skb_push(skb, mac_len);
4920 		break;
4921 	case XDP_PASS:
4922 		metalen = xdp->data - xdp->data_meta;
4923 		if (metalen)
4924 			skb_metadata_set(skb, metalen);
4925 		break;
4926 	}
4927 
4928 	return act;
4929 }
4930 
4931 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4932 				     struct xdp_buff *xdp,
4933 				     struct bpf_prog *xdp_prog)
4934 {
4935 	u32 act = XDP_DROP;
4936 
4937 	/* Reinjected packets coming from act_mirred or similar should
4938 	 * not get XDP generic processing.
4939 	 */
4940 	if (skb_is_redirected(skb))
4941 		return XDP_PASS;
4942 
4943 	/* XDP packets must be linear and must have sufficient headroom
4944 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4945 	 * native XDP provides, thus we need to do it here as well.
4946 	 */
4947 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4948 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4949 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4950 		int troom = skb->tail + skb->data_len - skb->end;
4951 
4952 		/* In case we have to go down the path and also linearize,
4953 		 * then lets do the pskb_expand_head() work just once here.
4954 		 */
4955 		if (pskb_expand_head(skb,
4956 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4957 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4958 			goto do_drop;
4959 		if (skb_linearize(skb))
4960 			goto do_drop;
4961 	}
4962 
4963 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4964 	switch (act) {
4965 	case XDP_REDIRECT:
4966 	case XDP_TX:
4967 	case XDP_PASS:
4968 		break;
4969 	default:
4970 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4971 		fallthrough;
4972 	case XDP_ABORTED:
4973 		trace_xdp_exception(skb->dev, xdp_prog, act);
4974 		fallthrough;
4975 	case XDP_DROP:
4976 	do_drop:
4977 		kfree_skb(skb);
4978 		break;
4979 	}
4980 
4981 	return act;
4982 }
4983 
4984 /* When doing generic XDP we have to bypass the qdisc layer and the
4985  * network taps in order to match in-driver-XDP behavior. This also means
4986  * that XDP packets are able to starve other packets going through a qdisc,
4987  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4988  * queues, so they do not have this starvation issue.
4989  */
4990 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4991 {
4992 	struct net_device *dev = skb->dev;
4993 	struct netdev_queue *txq;
4994 	bool free_skb = true;
4995 	int cpu, rc;
4996 
4997 	txq = netdev_core_pick_tx(dev, skb, NULL);
4998 	cpu = smp_processor_id();
4999 	HARD_TX_LOCK(dev, txq, cpu);
5000 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5001 		rc = netdev_start_xmit(skb, dev, txq, 0);
5002 		if (dev_xmit_complete(rc))
5003 			free_skb = false;
5004 	}
5005 	HARD_TX_UNLOCK(dev, txq);
5006 	if (free_skb) {
5007 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5008 		dev_core_stats_tx_dropped_inc(dev);
5009 		kfree_skb(skb);
5010 	}
5011 }
5012 
5013 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5014 
5015 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5016 {
5017 	if (xdp_prog) {
5018 		struct xdp_buff xdp;
5019 		u32 act;
5020 		int err;
5021 
5022 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5023 		if (act != XDP_PASS) {
5024 			switch (act) {
5025 			case XDP_REDIRECT:
5026 				err = xdp_do_generic_redirect(skb->dev, skb,
5027 							      &xdp, xdp_prog);
5028 				if (err)
5029 					goto out_redir;
5030 				break;
5031 			case XDP_TX:
5032 				generic_xdp_tx(skb, xdp_prog);
5033 				break;
5034 			}
5035 			return XDP_DROP;
5036 		}
5037 	}
5038 	return XDP_PASS;
5039 out_redir:
5040 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5041 	return XDP_DROP;
5042 }
5043 EXPORT_SYMBOL_GPL(do_xdp_generic);
5044 
5045 static int netif_rx_internal(struct sk_buff *skb)
5046 {
5047 	int ret;
5048 
5049 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5050 
5051 	trace_netif_rx(skb);
5052 
5053 #ifdef CONFIG_RPS
5054 	if (static_branch_unlikely(&rps_needed)) {
5055 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5056 		int cpu;
5057 
5058 		rcu_read_lock();
5059 
5060 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5061 		if (cpu < 0)
5062 			cpu = smp_processor_id();
5063 
5064 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5065 
5066 		rcu_read_unlock();
5067 	} else
5068 #endif
5069 	{
5070 		unsigned int qtail;
5071 
5072 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5073 	}
5074 	return ret;
5075 }
5076 
5077 /**
5078  *	__netif_rx	-	Slightly optimized version of netif_rx
5079  *	@skb: buffer to post
5080  *
5081  *	This behaves as netif_rx except that it does not disable bottom halves.
5082  *	As a result this function may only be invoked from the interrupt context
5083  *	(either hard or soft interrupt).
5084  */
5085 int __netif_rx(struct sk_buff *skb)
5086 {
5087 	int ret;
5088 
5089 	lockdep_assert_once(hardirq_count() | softirq_count());
5090 
5091 	trace_netif_rx_entry(skb);
5092 	ret = netif_rx_internal(skb);
5093 	trace_netif_rx_exit(ret);
5094 	return ret;
5095 }
5096 EXPORT_SYMBOL(__netif_rx);
5097 
5098 /**
5099  *	netif_rx	-	post buffer to the network code
5100  *	@skb: buffer to post
5101  *
5102  *	This function receives a packet from a device driver and queues it for
5103  *	the upper (protocol) levels to process via the backlog NAPI device. It
5104  *	always succeeds. The buffer may be dropped during processing for
5105  *	congestion control or by the protocol layers.
5106  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5107  *	driver should use NAPI and GRO.
5108  *	This function can used from interrupt and from process context. The
5109  *	caller from process context must not disable interrupts before invoking
5110  *	this function.
5111  *
5112  *	return values:
5113  *	NET_RX_SUCCESS	(no congestion)
5114  *	NET_RX_DROP     (packet was dropped)
5115  *
5116  */
5117 int netif_rx(struct sk_buff *skb)
5118 {
5119 	bool need_bh_off = !(hardirq_count() | softirq_count());
5120 	int ret;
5121 
5122 	if (need_bh_off)
5123 		local_bh_disable();
5124 	trace_netif_rx_entry(skb);
5125 	ret = netif_rx_internal(skb);
5126 	trace_netif_rx_exit(ret);
5127 	if (need_bh_off)
5128 		local_bh_enable();
5129 	return ret;
5130 }
5131 EXPORT_SYMBOL(netif_rx);
5132 
5133 static __latent_entropy void net_tx_action(struct softirq_action *h)
5134 {
5135 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5136 
5137 	if (sd->completion_queue) {
5138 		struct sk_buff *clist;
5139 
5140 		local_irq_disable();
5141 		clist = sd->completion_queue;
5142 		sd->completion_queue = NULL;
5143 		local_irq_enable();
5144 
5145 		while (clist) {
5146 			struct sk_buff *skb = clist;
5147 
5148 			clist = clist->next;
5149 
5150 			WARN_ON(refcount_read(&skb->users));
5151 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5152 				trace_consume_skb(skb, net_tx_action);
5153 			else
5154 				trace_kfree_skb(skb, net_tx_action,
5155 						get_kfree_skb_cb(skb)->reason);
5156 
5157 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5158 				__kfree_skb(skb);
5159 			else
5160 				__napi_kfree_skb(skb,
5161 						 get_kfree_skb_cb(skb)->reason);
5162 		}
5163 	}
5164 
5165 	if (sd->output_queue) {
5166 		struct Qdisc *head;
5167 
5168 		local_irq_disable();
5169 		head = sd->output_queue;
5170 		sd->output_queue = NULL;
5171 		sd->output_queue_tailp = &sd->output_queue;
5172 		local_irq_enable();
5173 
5174 		rcu_read_lock();
5175 
5176 		while (head) {
5177 			struct Qdisc *q = head;
5178 			spinlock_t *root_lock = NULL;
5179 
5180 			head = head->next_sched;
5181 
5182 			/* We need to make sure head->next_sched is read
5183 			 * before clearing __QDISC_STATE_SCHED
5184 			 */
5185 			smp_mb__before_atomic();
5186 
5187 			if (!(q->flags & TCQ_F_NOLOCK)) {
5188 				root_lock = qdisc_lock(q);
5189 				spin_lock(root_lock);
5190 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5191 						     &q->state))) {
5192 				/* There is a synchronize_net() between
5193 				 * STATE_DEACTIVATED flag being set and
5194 				 * qdisc_reset()/some_qdisc_is_busy() in
5195 				 * dev_deactivate(), so we can safely bail out
5196 				 * early here to avoid data race between
5197 				 * qdisc_deactivate() and some_qdisc_is_busy()
5198 				 * for lockless qdisc.
5199 				 */
5200 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5201 				continue;
5202 			}
5203 
5204 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5205 			qdisc_run(q);
5206 			if (root_lock)
5207 				spin_unlock(root_lock);
5208 		}
5209 
5210 		rcu_read_unlock();
5211 	}
5212 
5213 	xfrm_dev_backlog(sd);
5214 }
5215 
5216 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5217 /* This hook is defined here for ATM LANE */
5218 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5219 			     unsigned char *addr) __read_mostly;
5220 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5221 #endif
5222 
5223 /**
5224  *	netdev_is_rx_handler_busy - check if receive handler is registered
5225  *	@dev: device to check
5226  *
5227  *	Check if a receive handler is already registered for a given device.
5228  *	Return true if there one.
5229  *
5230  *	The caller must hold the rtnl_mutex.
5231  */
5232 bool netdev_is_rx_handler_busy(struct net_device *dev)
5233 {
5234 	ASSERT_RTNL();
5235 	return dev && rtnl_dereference(dev->rx_handler);
5236 }
5237 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5238 
5239 /**
5240  *	netdev_rx_handler_register - register receive handler
5241  *	@dev: device to register a handler for
5242  *	@rx_handler: receive handler to register
5243  *	@rx_handler_data: data pointer that is used by rx handler
5244  *
5245  *	Register a receive handler for a device. This handler will then be
5246  *	called from __netif_receive_skb. A negative errno code is returned
5247  *	on a failure.
5248  *
5249  *	The caller must hold the rtnl_mutex.
5250  *
5251  *	For a general description of rx_handler, see enum rx_handler_result.
5252  */
5253 int netdev_rx_handler_register(struct net_device *dev,
5254 			       rx_handler_func_t *rx_handler,
5255 			       void *rx_handler_data)
5256 {
5257 	if (netdev_is_rx_handler_busy(dev))
5258 		return -EBUSY;
5259 
5260 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5261 		return -EINVAL;
5262 
5263 	/* Note: rx_handler_data must be set before rx_handler */
5264 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5265 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5266 
5267 	return 0;
5268 }
5269 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5270 
5271 /**
5272  *	netdev_rx_handler_unregister - unregister receive handler
5273  *	@dev: device to unregister a handler from
5274  *
5275  *	Unregister a receive handler from a device.
5276  *
5277  *	The caller must hold the rtnl_mutex.
5278  */
5279 void netdev_rx_handler_unregister(struct net_device *dev)
5280 {
5281 
5282 	ASSERT_RTNL();
5283 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5284 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5285 	 * section has a guarantee to see a non NULL rx_handler_data
5286 	 * as well.
5287 	 */
5288 	synchronize_net();
5289 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5290 }
5291 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5292 
5293 /*
5294  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5295  * the special handling of PFMEMALLOC skbs.
5296  */
5297 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5298 {
5299 	switch (skb->protocol) {
5300 	case htons(ETH_P_ARP):
5301 	case htons(ETH_P_IP):
5302 	case htons(ETH_P_IPV6):
5303 	case htons(ETH_P_8021Q):
5304 	case htons(ETH_P_8021AD):
5305 		return true;
5306 	default:
5307 		return false;
5308 	}
5309 }
5310 
5311 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5312 			     int *ret, struct net_device *orig_dev)
5313 {
5314 	if (nf_hook_ingress_active(skb)) {
5315 		int ingress_retval;
5316 
5317 		if (*pt_prev) {
5318 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5319 			*pt_prev = NULL;
5320 		}
5321 
5322 		rcu_read_lock();
5323 		ingress_retval = nf_hook_ingress(skb);
5324 		rcu_read_unlock();
5325 		return ingress_retval;
5326 	}
5327 	return 0;
5328 }
5329 
5330 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5331 				    struct packet_type **ppt_prev)
5332 {
5333 	struct packet_type *ptype, *pt_prev;
5334 	rx_handler_func_t *rx_handler;
5335 	struct sk_buff *skb = *pskb;
5336 	struct net_device *orig_dev;
5337 	bool deliver_exact = false;
5338 	int ret = NET_RX_DROP;
5339 	__be16 type;
5340 
5341 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5342 
5343 	trace_netif_receive_skb(skb);
5344 
5345 	orig_dev = skb->dev;
5346 
5347 	skb_reset_network_header(skb);
5348 	if (!skb_transport_header_was_set(skb))
5349 		skb_reset_transport_header(skb);
5350 	skb_reset_mac_len(skb);
5351 
5352 	pt_prev = NULL;
5353 
5354 another_round:
5355 	skb->skb_iif = skb->dev->ifindex;
5356 
5357 	__this_cpu_inc(softnet_data.processed);
5358 
5359 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5360 		int ret2;
5361 
5362 		migrate_disable();
5363 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5364 		migrate_enable();
5365 
5366 		if (ret2 != XDP_PASS) {
5367 			ret = NET_RX_DROP;
5368 			goto out;
5369 		}
5370 	}
5371 
5372 	if (eth_type_vlan(skb->protocol)) {
5373 		skb = skb_vlan_untag(skb);
5374 		if (unlikely(!skb))
5375 			goto out;
5376 	}
5377 
5378 	if (skb_skip_tc_classify(skb))
5379 		goto skip_classify;
5380 
5381 	if (pfmemalloc)
5382 		goto skip_taps;
5383 
5384 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5385 		if (pt_prev)
5386 			ret = deliver_skb(skb, pt_prev, orig_dev);
5387 		pt_prev = ptype;
5388 	}
5389 
5390 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5391 		if (pt_prev)
5392 			ret = deliver_skb(skb, pt_prev, orig_dev);
5393 		pt_prev = ptype;
5394 	}
5395 
5396 skip_taps:
5397 #ifdef CONFIG_NET_INGRESS
5398 	if (static_branch_unlikely(&ingress_needed_key)) {
5399 		bool another = false;
5400 
5401 		nf_skip_egress(skb, true);
5402 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5403 					 &another);
5404 		if (another)
5405 			goto another_round;
5406 		if (!skb)
5407 			goto out;
5408 
5409 		nf_skip_egress(skb, false);
5410 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5411 			goto out;
5412 	}
5413 #endif
5414 	skb_reset_redirect(skb);
5415 skip_classify:
5416 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5417 		goto drop;
5418 
5419 	if (skb_vlan_tag_present(skb)) {
5420 		if (pt_prev) {
5421 			ret = deliver_skb(skb, pt_prev, orig_dev);
5422 			pt_prev = NULL;
5423 		}
5424 		if (vlan_do_receive(&skb))
5425 			goto another_round;
5426 		else if (unlikely(!skb))
5427 			goto out;
5428 	}
5429 
5430 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5431 	if (rx_handler) {
5432 		if (pt_prev) {
5433 			ret = deliver_skb(skb, pt_prev, orig_dev);
5434 			pt_prev = NULL;
5435 		}
5436 		switch (rx_handler(&skb)) {
5437 		case RX_HANDLER_CONSUMED:
5438 			ret = NET_RX_SUCCESS;
5439 			goto out;
5440 		case RX_HANDLER_ANOTHER:
5441 			goto another_round;
5442 		case RX_HANDLER_EXACT:
5443 			deliver_exact = true;
5444 			break;
5445 		case RX_HANDLER_PASS:
5446 			break;
5447 		default:
5448 			BUG();
5449 		}
5450 	}
5451 
5452 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5453 check_vlan_id:
5454 		if (skb_vlan_tag_get_id(skb)) {
5455 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5456 			 * find vlan device.
5457 			 */
5458 			skb->pkt_type = PACKET_OTHERHOST;
5459 		} else if (eth_type_vlan(skb->protocol)) {
5460 			/* Outer header is 802.1P with vlan 0, inner header is
5461 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5462 			 * not find vlan dev for vlan id 0.
5463 			 */
5464 			__vlan_hwaccel_clear_tag(skb);
5465 			skb = skb_vlan_untag(skb);
5466 			if (unlikely(!skb))
5467 				goto out;
5468 			if (vlan_do_receive(&skb))
5469 				/* After stripping off 802.1P header with vlan 0
5470 				 * vlan dev is found for inner header.
5471 				 */
5472 				goto another_round;
5473 			else if (unlikely(!skb))
5474 				goto out;
5475 			else
5476 				/* We have stripped outer 802.1P vlan 0 header.
5477 				 * But could not find vlan dev.
5478 				 * check again for vlan id to set OTHERHOST.
5479 				 */
5480 				goto check_vlan_id;
5481 		}
5482 		/* Note: we might in the future use prio bits
5483 		 * and set skb->priority like in vlan_do_receive()
5484 		 * For the time being, just ignore Priority Code Point
5485 		 */
5486 		__vlan_hwaccel_clear_tag(skb);
5487 	}
5488 
5489 	type = skb->protocol;
5490 
5491 	/* deliver only exact match when indicated */
5492 	if (likely(!deliver_exact)) {
5493 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5494 				       &ptype_base[ntohs(type) &
5495 						   PTYPE_HASH_MASK]);
5496 	}
5497 
5498 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5499 			       &orig_dev->ptype_specific);
5500 
5501 	if (unlikely(skb->dev != orig_dev)) {
5502 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5503 				       &skb->dev->ptype_specific);
5504 	}
5505 
5506 	if (pt_prev) {
5507 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5508 			goto drop;
5509 		*ppt_prev = pt_prev;
5510 	} else {
5511 drop:
5512 		if (!deliver_exact)
5513 			dev_core_stats_rx_dropped_inc(skb->dev);
5514 		else
5515 			dev_core_stats_rx_nohandler_inc(skb->dev);
5516 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5517 		/* Jamal, now you will not able to escape explaining
5518 		 * me how you were going to use this. :-)
5519 		 */
5520 		ret = NET_RX_DROP;
5521 	}
5522 
5523 out:
5524 	/* The invariant here is that if *ppt_prev is not NULL
5525 	 * then skb should also be non-NULL.
5526 	 *
5527 	 * Apparently *ppt_prev assignment above holds this invariant due to
5528 	 * skb dereferencing near it.
5529 	 */
5530 	*pskb = skb;
5531 	return ret;
5532 }
5533 
5534 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5535 {
5536 	struct net_device *orig_dev = skb->dev;
5537 	struct packet_type *pt_prev = NULL;
5538 	int ret;
5539 
5540 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5541 	if (pt_prev)
5542 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5543 					 skb->dev, pt_prev, orig_dev);
5544 	return ret;
5545 }
5546 
5547 /**
5548  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5549  *	@skb: buffer to process
5550  *
5551  *	More direct receive version of netif_receive_skb().  It should
5552  *	only be used by callers that have a need to skip RPS and Generic XDP.
5553  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5554  *
5555  *	This function may only be called from softirq context and interrupts
5556  *	should be enabled.
5557  *
5558  *	Return values (usually ignored):
5559  *	NET_RX_SUCCESS: no congestion
5560  *	NET_RX_DROP: packet was dropped
5561  */
5562 int netif_receive_skb_core(struct sk_buff *skb)
5563 {
5564 	int ret;
5565 
5566 	rcu_read_lock();
5567 	ret = __netif_receive_skb_one_core(skb, false);
5568 	rcu_read_unlock();
5569 
5570 	return ret;
5571 }
5572 EXPORT_SYMBOL(netif_receive_skb_core);
5573 
5574 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5575 						  struct packet_type *pt_prev,
5576 						  struct net_device *orig_dev)
5577 {
5578 	struct sk_buff *skb, *next;
5579 
5580 	if (!pt_prev)
5581 		return;
5582 	if (list_empty(head))
5583 		return;
5584 	if (pt_prev->list_func != NULL)
5585 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5586 				   ip_list_rcv, head, pt_prev, orig_dev);
5587 	else
5588 		list_for_each_entry_safe(skb, next, head, list) {
5589 			skb_list_del_init(skb);
5590 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5591 		}
5592 }
5593 
5594 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5595 {
5596 	/* Fast-path assumptions:
5597 	 * - There is no RX handler.
5598 	 * - Only one packet_type matches.
5599 	 * If either of these fails, we will end up doing some per-packet
5600 	 * processing in-line, then handling the 'last ptype' for the whole
5601 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5602 	 * because the 'last ptype' must be constant across the sublist, and all
5603 	 * other ptypes are handled per-packet.
5604 	 */
5605 	/* Current (common) ptype of sublist */
5606 	struct packet_type *pt_curr = NULL;
5607 	/* Current (common) orig_dev of sublist */
5608 	struct net_device *od_curr = NULL;
5609 	struct list_head sublist;
5610 	struct sk_buff *skb, *next;
5611 
5612 	INIT_LIST_HEAD(&sublist);
5613 	list_for_each_entry_safe(skb, next, head, list) {
5614 		struct net_device *orig_dev = skb->dev;
5615 		struct packet_type *pt_prev = NULL;
5616 
5617 		skb_list_del_init(skb);
5618 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5619 		if (!pt_prev)
5620 			continue;
5621 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5622 			/* dispatch old sublist */
5623 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5624 			/* start new sublist */
5625 			INIT_LIST_HEAD(&sublist);
5626 			pt_curr = pt_prev;
5627 			od_curr = orig_dev;
5628 		}
5629 		list_add_tail(&skb->list, &sublist);
5630 	}
5631 
5632 	/* dispatch final sublist */
5633 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5634 }
5635 
5636 static int __netif_receive_skb(struct sk_buff *skb)
5637 {
5638 	int ret;
5639 
5640 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5641 		unsigned int noreclaim_flag;
5642 
5643 		/*
5644 		 * PFMEMALLOC skbs are special, they should
5645 		 * - be delivered to SOCK_MEMALLOC sockets only
5646 		 * - stay away from userspace
5647 		 * - have bounded memory usage
5648 		 *
5649 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5650 		 * context down to all allocation sites.
5651 		 */
5652 		noreclaim_flag = memalloc_noreclaim_save();
5653 		ret = __netif_receive_skb_one_core(skb, true);
5654 		memalloc_noreclaim_restore(noreclaim_flag);
5655 	} else
5656 		ret = __netif_receive_skb_one_core(skb, false);
5657 
5658 	return ret;
5659 }
5660 
5661 static void __netif_receive_skb_list(struct list_head *head)
5662 {
5663 	unsigned long noreclaim_flag = 0;
5664 	struct sk_buff *skb, *next;
5665 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5666 
5667 	list_for_each_entry_safe(skb, next, head, list) {
5668 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5669 			struct list_head sublist;
5670 
5671 			/* Handle the previous sublist */
5672 			list_cut_before(&sublist, head, &skb->list);
5673 			if (!list_empty(&sublist))
5674 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5675 			pfmemalloc = !pfmemalloc;
5676 			/* See comments in __netif_receive_skb */
5677 			if (pfmemalloc)
5678 				noreclaim_flag = memalloc_noreclaim_save();
5679 			else
5680 				memalloc_noreclaim_restore(noreclaim_flag);
5681 		}
5682 	}
5683 	/* Handle the remaining sublist */
5684 	if (!list_empty(head))
5685 		__netif_receive_skb_list_core(head, pfmemalloc);
5686 	/* Restore pflags */
5687 	if (pfmemalloc)
5688 		memalloc_noreclaim_restore(noreclaim_flag);
5689 }
5690 
5691 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5692 {
5693 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5694 	struct bpf_prog *new = xdp->prog;
5695 	int ret = 0;
5696 
5697 	switch (xdp->command) {
5698 	case XDP_SETUP_PROG:
5699 		rcu_assign_pointer(dev->xdp_prog, new);
5700 		if (old)
5701 			bpf_prog_put(old);
5702 
5703 		if (old && !new) {
5704 			static_branch_dec(&generic_xdp_needed_key);
5705 		} else if (new && !old) {
5706 			static_branch_inc(&generic_xdp_needed_key);
5707 			dev_disable_lro(dev);
5708 			dev_disable_gro_hw(dev);
5709 		}
5710 		break;
5711 
5712 	default:
5713 		ret = -EINVAL;
5714 		break;
5715 	}
5716 
5717 	return ret;
5718 }
5719 
5720 static int netif_receive_skb_internal(struct sk_buff *skb)
5721 {
5722 	int ret;
5723 
5724 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5725 
5726 	if (skb_defer_rx_timestamp(skb))
5727 		return NET_RX_SUCCESS;
5728 
5729 	rcu_read_lock();
5730 #ifdef CONFIG_RPS
5731 	if (static_branch_unlikely(&rps_needed)) {
5732 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5733 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5734 
5735 		if (cpu >= 0) {
5736 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5737 			rcu_read_unlock();
5738 			return ret;
5739 		}
5740 	}
5741 #endif
5742 	ret = __netif_receive_skb(skb);
5743 	rcu_read_unlock();
5744 	return ret;
5745 }
5746 
5747 void netif_receive_skb_list_internal(struct list_head *head)
5748 {
5749 	struct sk_buff *skb, *next;
5750 	struct list_head sublist;
5751 
5752 	INIT_LIST_HEAD(&sublist);
5753 	list_for_each_entry_safe(skb, next, head, list) {
5754 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5755 		skb_list_del_init(skb);
5756 		if (!skb_defer_rx_timestamp(skb))
5757 			list_add_tail(&skb->list, &sublist);
5758 	}
5759 	list_splice_init(&sublist, head);
5760 
5761 	rcu_read_lock();
5762 #ifdef CONFIG_RPS
5763 	if (static_branch_unlikely(&rps_needed)) {
5764 		list_for_each_entry_safe(skb, next, head, list) {
5765 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5766 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5767 
5768 			if (cpu >= 0) {
5769 				/* Will be handled, remove from list */
5770 				skb_list_del_init(skb);
5771 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5772 			}
5773 		}
5774 	}
5775 #endif
5776 	__netif_receive_skb_list(head);
5777 	rcu_read_unlock();
5778 }
5779 
5780 /**
5781  *	netif_receive_skb - process receive buffer from network
5782  *	@skb: buffer to process
5783  *
5784  *	netif_receive_skb() is the main receive data processing function.
5785  *	It always succeeds. The buffer may be dropped during processing
5786  *	for congestion control or by the protocol layers.
5787  *
5788  *	This function may only be called from softirq context and interrupts
5789  *	should be enabled.
5790  *
5791  *	Return values (usually ignored):
5792  *	NET_RX_SUCCESS: no congestion
5793  *	NET_RX_DROP: packet was dropped
5794  */
5795 int netif_receive_skb(struct sk_buff *skb)
5796 {
5797 	int ret;
5798 
5799 	trace_netif_receive_skb_entry(skb);
5800 
5801 	ret = netif_receive_skb_internal(skb);
5802 	trace_netif_receive_skb_exit(ret);
5803 
5804 	return ret;
5805 }
5806 EXPORT_SYMBOL(netif_receive_skb);
5807 
5808 /**
5809  *	netif_receive_skb_list - process many receive buffers from network
5810  *	@head: list of skbs to process.
5811  *
5812  *	Since return value of netif_receive_skb() is normally ignored, and
5813  *	wouldn't be meaningful for a list, this function returns void.
5814  *
5815  *	This function may only be called from softirq context and interrupts
5816  *	should be enabled.
5817  */
5818 void netif_receive_skb_list(struct list_head *head)
5819 {
5820 	struct sk_buff *skb;
5821 
5822 	if (list_empty(head))
5823 		return;
5824 	if (trace_netif_receive_skb_list_entry_enabled()) {
5825 		list_for_each_entry(skb, head, list)
5826 			trace_netif_receive_skb_list_entry(skb);
5827 	}
5828 	netif_receive_skb_list_internal(head);
5829 	trace_netif_receive_skb_list_exit(0);
5830 }
5831 EXPORT_SYMBOL(netif_receive_skb_list);
5832 
5833 static DEFINE_PER_CPU(struct work_struct, flush_works);
5834 
5835 /* Network device is going away, flush any packets still pending */
5836 static void flush_backlog(struct work_struct *work)
5837 {
5838 	struct sk_buff *skb, *tmp;
5839 	struct softnet_data *sd;
5840 
5841 	local_bh_disable();
5842 	sd = this_cpu_ptr(&softnet_data);
5843 
5844 	rps_lock_irq_disable(sd);
5845 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5846 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5847 			__skb_unlink(skb, &sd->input_pkt_queue);
5848 			dev_kfree_skb_irq(skb);
5849 			input_queue_head_incr(sd);
5850 		}
5851 	}
5852 	rps_unlock_irq_enable(sd);
5853 
5854 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5855 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5856 			__skb_unlink(skb, &sd->process_queue);
5857 			kfree_skb(skb);
5858 			input_queue_head_incr(sd);
5859 		}
5860 	}
5861 	local_bh_enable();
5862 }
5863 
5864 static bool flush_required(int cpu)
5865 {
5866 #if IS_ENABLED(CONFIG_RPS)
5867 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5868 	bool do_flush;
5869 
5870 	rps_lock_irq_disable(sd);
5871 
5872 	/* as insertion into process_queue happens with the rps lock held,
5873 	 * process_queue access may race only with dequeue
5874 	 */
5875 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5876 		   !skb_queue_empty_lockless(&sd->process_queue);
5877 	rps_unlock_irq_enable(sd);
5878 
5879 	return do_flush;
5880 #endif
5881 	/* without RPS we can't safely check input_pkt_queue: during a
5882 	 * concurrent remote skb_queue_splice() we can detect as empty both
5883 	 * input_pkt_queue and process_queue even if the latter could end-up
5884 	 * containing a lot of packets.
5885 	 */
5886 	return true;
5887 }
5888 
5889 static void flush_all_backlogs(void)
5890 {
5891 	static cpumask_t flush_cpus;
5892 	unsigned int cpu;
5893 
5894 	/* since we are under rtnl lock protection we can use static data
5895 	 * for the cpumask and avoid allocating on stack the possibly
5896 	 * large mask
5897 	 */
5898 	ASSERT_RTNL();
5899 
5900 	cpus_read_lock();
5901 
5902 	cpumask_clear(&flush_cpus);
5903 	for_each_online_cpu(cpu) {
5904 		if (flush_required(cpu)) {
5905 			queue_work_on(cpu, system_highpri_wq,
5906 				      per_cpu_ptr(&flush_works, cpu));
5907 			cpumask_set_cpu(cpu, &flush_cpus);
5908 		}
5909 	}
5910 
5911 	/* we can have in flight packet[s] on the cpus we are not flushing,
5912 	 * synchronize_net() in unregister_netdevice_many() will take care of
5913 	 * them
5914 	 */
5915 	for_each_cpu(cpu, &flush_cpus)
5916 		flush_work(per_cpu_ptr(&flush_works, cpu));
5917 
5918 	cpus_read_unlock();
5919 }
5920 
5921 static void net_rps_send_ipi(struct softnet_data *remsd)
5922 {
5923 #ifdef CONFIG_RPS
5924 	while (remsd) {
5925 		struct softnet_data *next = remsd->rps_ipi_next;
5926 
5927 		if (cpu_online(remsd->cpu))
5928 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5929 		remsd = next;
5930 	}
5931 #endif
5932 }
5933 
5934 /*
5935  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5936  * Note: called with local irq disabled, but exits with local irq enabled.
5937  */
5938 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5939 {
5940 #ifdef CONFIG_RPS
5941 	struct softnet_data *remsd = sd->rps_ipi_list;
5942 
5943 	if (remsd) {
5944 		sd->rps_ipi_list = NULL;
5945 
5946 		local_irq_enable();
5947 
5948 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5949 		net_rps_send_ipi(remsd);
5950 	} else
5951 #endif
5952 		local_irq_enable();
5953 }
5954 
5955 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5956 {
5957 #ifdef CONFIG_RPS
5958 	return sd->rps_ipi_list != NULL;
5959 #else
5960 	return false;
5961 #endif
5962 }
5963 
5964 static int process_backlog(struct napi_struct *napi, int quota)
5965 {
5966 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5967 	bool again = true;
5968 	int work = 0;
5969 
5970 	/* Check if we have pending ipi, its better to send them now,
5971 	 * not waiting net_rx_action() end.
5972 	 */
5973 	if (sd_has_rps_ipi_waiting(sd)) {
5974 		local_irq_disable();
5975 		net_rps_action_and_irq_enable(sd);
5976 	}
5977 
5978 	napi->weight = READ_ONCE(dev_rx_weight);
5979 	while (again) {
5980 		struct sk_buff *skb;
5981 
5982 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5983 			rcu_read_lock();
5984 			__netif_receive_skb(skb);
5985 			rcu_read_unlock();
5986 			input_queue_head_incr(sd);
5987 			if (++work >= quota)
5988 				return work;
5989 
5990 		}
5991 
5992 		rps_lock_irq_disable(sd);
5993 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5994 			/*
5995 			 * Inline a custom version of __napi_complete().
5996 			 * only current cpu owns and manipulates this napi,
5997 			 * and NAPI_STATE_SCHED is the only possible flag set
5998 			 * on backlog.
5999 			 * We can use a plain write instead of clear_bit(),
6000 			 * and we dont need an smp_mb() memory barrier.
6001 			 */
6002 			napi->state = 0;
6003 			again = false;
6004 		} else {
6005 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6006 						   &sd->process_queue);
6007 		}
6008 		rps_unlock_irq_enable(sd);
6009 	}
6010 
6011 	return work;
6012 }
6013 
6014 /**
6015  * __napi_schedule - schedule for receive
6016  * @n: entry to schedule
6017  *
6018  * The entry's receive function will be scheduled to run.
6019  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6020  */
6021 void __napi_schedule(struct napi_struct *n)
6022 {
6023 	unsigned long flags;
6024 
6025 	local_irq_save(flags);
6026 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6027 	local_irq_restore(flags);
6028 }
6029 EXPORT_SYMBOL(__napi_schedule);
6030 
6031 /**
6032  *	napi_schedule_prep - check if napi can be scheduled
6033  *	@n: napi context
6034  *
6035  * Test if NAPI routine is already running, and if not mark
6036  * it as running.  This is used as a condition variable to
6037  * insure only one NAPI poll instance runs.  We also make
6038  * sure there is no pending NAPI disable.
6039  */
6040 bool napi_schedule_prep(struct napi_struct *n)
6041 {
6042 	unsigned long new, val = READ_ONCE(n->state);
6043 
6044 	do {
6045 		if (unlikely(val & NAPIF_STATE_DISABLE))
6046 			return false;
6047 		new = val | NAPIF_STATE_SCHED;
6048 
6049 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6050 		 * This was suggested by Alexander Duyck, as compiler
6051 		 * emits better code than :
6052 		 * if (val & NAPIF_STATE_SCHED)
6053 		 *     new |= NAPIF_STATE_MISSED;
6054 		 */
6055 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6056 						   NAPIF_STATE_MISSED;
6057 	} while (!try_cmpxchg(&n->state, &val, new));
6058 
6059 	return !(val & NAPIF_STATE_SCHED);
6060 }
6061 EXPORT_SYMBOL(napi_schedule_prep);
6062 
6063 /**
6064  * __napi_schedule_irqoff - schedule for receive
6065  * @n: entry to schedule
6066  *
6067  * Variant of __napi_schedule() assuming hard irqs are masked.
6068  *
6069  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6070  * because the interrupt disabled assumption might not be true
6071  * due to force-threaded interrupts and spinlock substitution.
6072  */
6073 void __napi_schedule_irqoff(struct napi_struct *n)
6074 {
6075 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6076 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6077 	else
6078 		__napi_schedule(n);
6079 }
6080 EXPORT_SYMBOL(__napi_schedule_irqoff);
6081 
6082 bool napi_complete_done(struct napi_struct *n, int work_done)
6083 {
6084 	unsigned long flags, val, new, timeout = 0;
6085 	bool ret = true;
6086 
6087 	/*
6088 	 * 1) Don't let napi dequeue from the cpu poll list
6089 	 *    just in case its running on a different cpu.
6090 	 * 2) If we are busy polling, do nothing here, we have
6091 	 *    the guarantee we will be called later.
6092 	 */
6093 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6094 				 NAPIF_STATE_IN_BUSY_POLL)))
6095 		return false;
6096 
6097 	if (work_done) {
6098 		if (n->gro_bitmask)
6099 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6100 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6101 	}
6102 	if (n->defer_hard_irqs_count > 0) {
6103 		n->defer_hard_irqs_count--;
6104 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6105 		if (timeout)
6106 			ret = false;
6107 	}
6108 	if (n->gro_bitmask) {
6109 		/* When the NAPI instance uses a timeout and keeps postponing
6110 		 * it, we need to bound somehow the time packets are kept in
6111 		 * the GRO layer
6112 		 */
6113 		napi_gro_flush(n, !!timeout);
6114 	}
6115 
6116 	gro_normal_list(n);
6117 
6118 	if (unlikely(!list_empty(&n->poll_list))) {
6119 		/* If n->poll_list is not empty, we need to mask irqs */
6120 		local_irq_save(flags);
6121 		list_del_init(&n->poll_list);
6122 		local_irq_restore(flags);
6123 	}
6124 	WRITE_ONCE(n->list_owner, -1);
6125 
6126 	val = READ_ONCE(n->state);
6127 	do {
6128 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6129 
6130 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6131 			      NAPIF_STATE_SCHED_THREADED |
6132 			      NAPIF_STATE_PREFER_BUSY_POLL);
6133 
6134 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6135 		 * because we will call napi->poll() one more time.
6136 		 * This C code was suggested by Alexander Duyck to help gcc.
6137 		 */
6138 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6139 						    NAPIF_STATE_SCHED;
6140 	} while (!try_cmpxchg(&n->state, &val, new));
6141 
6142 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6143 		__napi_schedule(n);
6144 		return false;
6145 	}
6146 
6147 	if (timeout)
6148 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6149 			      HRTIMER_MODE_REL_PINNED);
6150 	return ret;
6151 }
6152 EXPORT_SYMBOL(napi_complete_done);
6153 
6154 /* must be called under rcu_read_lock(), as we dont take a reference */
6155 struct napi_struct *napi_by_id(unsigned int napi_id)
6156 {
6157 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6158 	struct napi_struct *napi;
6159 
6160 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6161 		if (napi->napi_id == napi_id)
6162 			return napi;
6163 
6164 	return NULL;
6165 }
6166 
6167 #if defined(CONFIG_NET_RX_BUSY_POLL)
6168 
6169 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6170 {
6171 	if (!skip_schedule) {
6172 		gro_normal_list(napi);
6173 		__napi_schedule(napi);
6174 		return;
6175 	}
6176 
6177 	if (napi->gro_bitmask) {
6178 		/* flush too old packets
6179 		 * If HZ < 1000, flush all packets.
6180 		 */
6181 		napi_gro_flush(napi, HZ >= 1000);
6182 	}
6183 
6184 	gro_normal_list(napi);
6185 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6186 }
6187 
6188 enum {
6189 	NAPI_F_PREFER_BUSY_POLL	= 1,
6190 	NAPI_F_END_ON_RESCHED	= 2,
6191 };
6192 
6193 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6194 			   unsigned flags, u16 budget)
6195 {
6196 	bool skip_schedule = false;
6197 	unsigned long timeout;
6198 	int rc;
6199 
6200 	/* Busy polling means there is a high chance device driver hard irq
6201 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6202 	 * set in napi_schedule_prep().
6203 	 * Since we are about to call napi->poll() once more, we can safely
6204 	 * clear NAPI_STATE_MISSED.
6205 	 *
6206 	 * Note: x86 could use a single "lock and ..." instruction
6207 	 * to perform these two clear_bit()
6208 	 */
6209 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6210 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6211 
6212 	local_bh_disable();
6213 
6214 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6215 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6216 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6217 		if (napi->defer_hard_irqs_count && timeout) {
6218 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6219 			skip_schedule = true;
6220 		}
6221 	}
6222 
6223 	/* All we really want here is to re-enable device interrupts.
6224 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6225 	 */
6226 	rc = napi->poll(napi, budget);
6227 	/* We can't gro_normal_list() here, because napi->poll() might have
6228 	 * rearmed the napi (napi_complete_done()) in which case it could
6229 	 * already be running on another CPU.
6230 	 */
6231 	trace_napi_poll(napi, rc, budget);
6232 	netpoll_poll_unlock(have_poll_lock);
6233 	if (rc == budget)
6234 		__busy_poll_stop(napi, skip_schedule);
6235 	local_bh_enable();
6236 }
6237 
6238 static void __napi_busy_loop(unsigned int napi_id,
6239 		      bool (*loop_end)(void *, unsigned long),
6240 		      void *loop_end_arg, unsigned flags, u16 budget)
6241 {
6242 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6243 	int (*napi_poll)(struct napi_struct *napi, int budget);
6244 	void *have_poll_lock = NULL;
6245 	struct napi_struct *napi;
6246 
6247 	WARN_ON_ONCE(!rcu_read_lock_held());
6248 
6249 restart:
6250 	napi_poll = NULL;
6251 
6252 	napi = napi_by_id(napi_id);
6253 	if (!napi)
6254 		return;
6255 
6256 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6257 		preempt_disable();
6258 	for (;;) {
6259 		int work = 0;
6260 
6261 		local_bh_disable();
6262 		if (!napi_poll) {
6263 			unsigned long val = READ_ONCE(napi->state);
6264 
6265 			/* If multiple threads are competing for this napi,
6266 			 * we avoid dirtying napi->state as much as we can.
6267 			 */
6268 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6269 				   NAPIF_STATE_IN_BUSY_POLL)) {
6270 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6271 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6272 				goto count;
6273 			}
6274 			if (cmpxchg(&napi->state, val,
6275 				    val | NAPIF_STATE_IN_BUSY_POLL |
6276 					  NAPIF_STATE_SCHED) != val) {
6277 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6278 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6279 				goto count;
6280 			}
6281 			have_poll_lock = netpoll_poll_lock(napi);
6282 			napi_poll = napi->poll;
6283 		}
6284 		work = napi_poll(napi, budget);
6285 		trace_napi_poll(napi, work, budget);
6286 		gro_normal_list(napi);
6287 count:
6288 		if (work > 0)
6289 			__NET_ADD_STATS(dev_net(napi->dev),
6290 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6291 		local_bh_enable();
6292 
6293 		if (!loop_end || loop_end(loop_end_arg, start_time))
6294 			break;
6295 
6296 		if (unlikely(need_resched())) {
6297 			if (flags & NAPI_F_END_ON_RESCHED)
6298 				break;
6299 			if (napi_poll)
6300 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6301 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6302 				preempt_enable();
6303 			rcu_read_unlock();
6304 			cond_resched();
6305 			rcu_read_lock();
6306 			if (loop_end(loop_end_arg, start_time))
6307 				return;
6308 			goto restart;
6309 		}
6310 		cpu_relax();
6311 	}
6312 	if (napi_poll)
6313 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6314 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6315 		preempt_enable();
6316 }
6317 
6318 void napi_busy_loop_rcu(unsigned int napi_id,
6319 			bool (*loop_end)(void *, unsigned long),
6320 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6321 {
6322 	unsigned flags = NAPI_F_END_ON_RESCHED;
6323 
6324 	if (prefer_busy_poll)
6325 		flags |= NAPI_F_PREFER_BUSY_POLL;
6326 
6327 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6328 }
6329 
6330 void napi_busy_loop(unsigned int napi_id,
6331 		    bool (*loop_end)(void *, unsigned long),
6332 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6333 {
6334 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6335 
6336 	rcu_read_lock();
6337 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6338 	rcu_read_unlock();
6339 }
6340 EXPORT_SYMBOL(napi_busy_loop);
6341 
6342 #endif /* CONFIG_NET_RX_BUSY_POLL */
6343 
6344 static void napi_hash_add(struct napi_struct *napi)
6345 {
6346 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6347 		return;
6348 
6349 	spin_lock(&napi_hash_lock);
6350 
6351 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6352 	do {
6353 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6354 			napi_gen_id = MIN_NAPI_ID;
6355 	} while (napi_by_id(napi_gen_id));
6356 	napi->napi_id = napi_gen_id;
6357 
6358 	hlist_add_head_rcu(&napi->napi_hash_node,
6359 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6360 
6361 	spin_unlock(&napi_hash_lock);
6362 }
6363 
6364 /* Warning : caller is responsible to make sure rcu grace period
6365  * is respected before freeing memory containing @napi
6366  */
6367 static void napi_hash_del(struct napi_struct *napi)
6368 {
6369 	spin_lock(&napi_hash_lock);
6370 
6371 	hlist_del_init_rcu(&napi->napi_hash_node);
6372 
6373 	spin_unlock(&napi_hash_lock);
6374 }
6375 
6376 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6377 {
6378 	struct napi_struct *napi;
6379 
6380 	napi = container_of(timer, struct napi_struct, timer);
6381 
6382 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6383 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6384 	 */
6385 	if (!napi_disable_pending(napi) &&
6386 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6387 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6388 		__napi_schedule_irqoff(napi);
6389 	}
6390 
6391 	return HRTIMER_NORESTART;
6392 }
6393 
6394 static void init_gro_hash(struct napi_struct *napi)
6395 {
6396 	int i;
6397 
6398 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6399 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6400 		napi->gro_hash[i].count = 0;
6401 	}
6402 	napi->gro_bitmask = 0;
6403 }
6404 
6405 int dev_set_threaded(struct net_device *dev, bool threaded)
6406 {
6407 	struct napi_struct *napi;
6408 	int err = 0;
6409 
6410 	if (dev->threaded == threaded)
6411 		return 0;
6412 
6413 	if (threaded) {
6414 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6415 			if (!napi->thread) {
6416 				err = napi_kthread_create(napi);
6417 				if (err) {
6418 					threaded = false;
6419 					break;
6420 				}
6421 			}
6422 		}
6423 	}
6424 
6425 	dev->threaded = threaded;
6426 
6427 	/* Make sure kthread is created before THREADED bit
6428 	 * is set.
6429 	 */
6430 	smp_mb__before_atomic();
6431 
6432 	/* Setting/unsetting threaded mode on a napi might not immediately
6433 	 * take effect, if the current napi instance is actively being
6434 	 * polled. In this case, the switch between threaded mode and
6435 	 * softirq mode will happen in the next round of napi_schedule().
6436 	 * This should not cause hiccups/stalls to the live traffic.
6437 	 */
6438 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6439 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6440 
6441 	return err;
6442 }
6443 EXPORT_SYMBOL(dev_set_threaded);
6444 
6445 /**
6446  * netif_queue_set_napi - Associate queue with the napi
6447  * @dev: device to which NAPI and queue belong
6448  * @queue_index: Index of queue
6449  * @type: queue type as RX or TX
6450  * @napi: NAPI context, pass NULL to clear previously set NAPI
6451  *
6452  * Set queue with its corresponding napi context. This should be done after
6453  * registering the NAPI handler for the queue-vector and the queues have been
6454  * mapped to the corresponding interrupt vector.
6455  */
6456 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6457 			  enum netdev_queue_type type, struct napi_struct *napi)
6458 {
6459 	struct netdev_rx_queue *rxq;
6460 	struct netdev_queue *txq;
6461 
6462 	if (WARN_ON_ONCE(napi && !napi->dev))
6463 		return;
6464 	if (dev->reg_state >= NETREG_REGISTERED)
6465 		ASSERT_RTNL();
6466 
6467 	switch (type) {
6468 	case NETDEV_QUEUE_TYPE_RX:
6469 		rxq = __netif_get_rx_queue(dev, queue_index);
6470 		rxq->napi = napi;
6471 		return;
6472 	case NETDEV_QUEUE_TYPE_TX:
6473 		txq = netdev_get_tx_queue(dev, queue_index);
6474 		txq->napi = napi;
6475 		return;
6476 	default:
6477 		return;
6478 	}
6479 }
6480 EXPORT_SYMBOL(netif_queue_set_napi);
6481 
6482 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6483 			   int (*poll)(struct napi_struct *, int), int weight)
6484 {
6485 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6486 		return;
6487 
6488 	INIT_LIST_HEAD(&napi->poll_list);
6489 	INIT_HLIST_NODE(&napi->napi_hash_node);
6490 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6491 	napi->timer.function = napi_watchdog;
6492 	init_gro_hash(napi);
6493 	napi->skb = NULL;
6494 	INIT_LIST_HEAD(&napi->rx_list);
6495 	napi->rx_count = 0;
6496 	napi->poll = poll;
6497 	if (weight > NAPI_POLL_WEIGHT)
6498 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6499 				weight);
6500 	napi->weight = weight;
6501 	napi->dev = dev;
6502 #ifdef CONFIG_NETPOLL
6503 	napi->poll_owner = -1;
6504 #endif
6505 	napi->list_owner = -1;
6506 	set_bit(NAPI_STATE_SCHED, &napi->state);
6507 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6508 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6509 	napi_hash_add(napi);
6510 	napi_get_frags_check(napi);
6511 	/* Create kthread for this napi if dev->threaded is set.
6512 	 * Clear dev->threaded if kthread creation failed so that
6513 	 * threaded mode will not be enabled in napi_enable().
6514 	 */
6515 	if (dev->threaded && napi_kthread_create(napi))
6516 		dev->threaded = 0;
6517 	netif_napi_set_irq(napi, -1);
6518 }
6519 EXPORT_SYMBOL(netif_napi_add_weight);
6520 
6521 void napi_disable(struct napi_struct *n)
6522 {
6523 	unsigned long val, new;
6524 
6525 	might_sleep();
6526 	set_bit(NAPI_STATE_DISABLE, &n->state);
6527 
6528 	val = READ_ONCE(n->state);
6529 	do {
6530 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6531 			usleep_range(20, 200);
6532 			val = READ_ONCE(n->state);
6533 		}
6534 
6535 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6536 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6537 	} while (!try_cmpxchg(&n->state, &val, new));
6538 
6539 	hrtimer_cancel(&n->timer);
6540 
6541 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6542 }
6543 EXPORT_SYMBOL(napi_disable);
6544 
6545 /**
6546  *	napi_enable - enable NAPI scheduling
6547  *	@n: NAPI context
6548  *
6549  * Resume NAPI from being scheduled on this context.
6550  * Must be paired with napi_disable.
6551  */
6552 void napi_enable(struct napi_struct *n)
6553 {
6554 	unsigned long new, val = READ_ONCE(n->state);
6555 
6556 	do {
6557 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6558 
6559 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6560 		if (n->dev->threaded && n->thread)
6561 			new |= NAPIF_STATE_THREADED;
6562 	} while (!try_cmpxchg(&n->state, &val, new));
6563 }
6564 EXPORT_SYMBOL(napi_enable);
6565 
6566 static void flush_gro_hash(struct napi_struct *napi)
6567 {
6568 	int i;
6569 
6570 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6571 		struct sk_buff *skb, *n;
6572 
6573 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6574 			kfree_skb(skb);
6575 		napi->gro_hash[i].count = 0;
6576 	}
6577 }
6578 
6579 /* Must be called in process context */
6580 void __netif_napi_del(struct napi_struct *napi)
6581 {
6582 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6583 		return;
6584 
6585 	napi_hash_del(napi);
6586 	list_del_rcu(&napi->dev_list);
6587 	napi_free_frags(napi);
6588 
6589 	flush_gro_hash(napi);
6590 	napi->gro_bitmask = 0;
6591 
6592 	if (napi->thread) {
6593 		kthread_stop(napi->thread);
6594 		napi->thread = NULL;
6595 	}
6596 }
6597 EXPORT_SYMBOL(__netif_napi_del);
6598 
6599 static int __napi_poll(struct napi_struct *n, bool *repoll)
6600 {
6601 	int work, weight;
6602 
6603 	weight = n->weight;
6604 
6605 	/* This NAPI_STATE_SCHED test is for avoiding a race
6606 	 * with netpoll's poll_napi().  Only the entity which
6607 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6608 	 * actually make the ->poll() call.  Therefore we avoid
6609 	 * accidentally calling ->poll() when NAPI is not scheduled.
6610 	 */
6611 	work = 0;
6612 	if (napi_is_scheduled(n)) {
6613 		work = n->poll(n, weight);
6614 		trace_napi_poll(n, work, weight);
6615 
6616 		xdp_do_check_flushed(n);
6617 	}
6618 
6619 	if (unlikely(work > weight))
6620 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6621 				n->poll, work, weight);
6622 
6623 	if (likely(work < weight))
6624 		return work;
6625 
6626 	/* Drivers must not modify the NAPI state if they
6627 	 * consume the entire weight.  In such cases this code
6628 	 * still "owns" the NAPI instance and therefore can
6629 	 * move the instance around on the list at-will.
6630 	 */
6631 	if (unlikely(napi_disable_pending(n))) {
6632 		napi_complete(n);
6633 		return work;
6634 	}
6635 
6636 	/* The NAPI context has more processing work, but busy-polling
6637 	 * is preferred. Exit early.
6638 	 */
6639 	if (napi_prefer_busy_poll(n)) {
6640 		if (napi_complete_done(n, work)) {
6641 			/* If timeout is not set, we need to make sure
6642 			 * that the NAPI is re-scheduled.
6643 			 */
6644 			napi_schedule(n);
6645 		}
6646 		return work;
6647 	}
6648 
6649 	if (n->gro_bitmask) {
6650 		/* flush too old packets
6651 		 * If HZ < 1000, flush all packets.
6652 		 */
6653 		napi_gro_flush(n, HZ >= 1000);
6654 	}
6655 
6656 	gro_normal_list(n);
6657 
6658 	/* Some drivers may have called napi_schedule
6659 	 * prior to exhausting their budget.
6660 	 */
6661 	if (unlikely(!list_empty(&n->poll_list))) {
6662 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6663 			     n->dev ? n->dev->name : "backlog");
6664 		return work;
6665 	}
6666 
6667 	*repoll = true;
6668 
6669 	return work;
6670 }
6671 
6672 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6673 {
6674 	bool do_repoll = false;
6675 	void *have;
6676 	int work;
6677 
6678 	list_del_init(&n->poll_list);
6679 
6680 	have = netpoll_poll_lock(n);
6681 
6682 	work = __napi_poll(n, &do_repoll);
6683 
6684 	if (do_repoll)
6685 		list_add_tail(&n->poll_list, repoll);
6686 
6687 	netpoll_poll_unlock(have);
6688 
6689 	return work;
6690 }
6691 
6692 static int napi_thread_wait(struct napi_struct *napi)
6693 {
6694 	bool woken = false;
6695 
6696 	set_current_state(TASK_INTERRUPTIBLE);
6697 
6698 	while (!kthread_should_stop()) {
6699 		/* Testing SCHED_THREADED bit here to make sure the current
6700 		 * kthread owns this napi and could poll on this napi.
6701 		 * Testing SCHED bit is not enough because SCHED bit might be
6702 		 * set by some other busy poll thread or by napi_disable().
6703 		 */
6704 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6705 			WARN_ON(!list_empty(&napi->poll_list));
6706 			__set_current_state(TASK_RUNNING);
6707 			return 0;
6708 		}
6709 
6710 		schedule();
6711 		/* woken being true indicates this thread owns this napi. */
6712 		woken = true;
6713 		set_current_state(TASK_INTERRUPTIBLE);
6714 	}
6715 	__set_current_state(TASK_RUNNING);
6716 
6717 	return -1;
6718 }
6719 
6720 static void skb_defer_free_flush(struct softnet_data *sd)
6721 {
6722 	struct sk_buff *skb, *next;
6723 
6724 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6725 	if (!READ_ONCE(sd->defer_list))
6726 		return;
6727 
6728 	spin_lock(&sd->defer_lock);
6729 	skb = sd->defer_list;
6730 	sd->defer_list = NULL;
6731 	sd->defer_count = 0;
6732 	spin_unlock(&sd->defer_lock);
6733 
6734 	while (skb != NULL) {
6735 		next = skb->next;
6736 		napi_consume_skb(skb, 1);
6737 		skb = next;
6738 	}
6739 }
6740 
6741 static int napi_threaded_poll(void *data)
6742 {
6743 	struct napi_struct *napi = data;
6744 	struct softnet_data *sd;
6745 	void *have;
6746 
6747 	while (!napi_thread_wait(napi)) {
6748 		for (;;) {
6749 			bool repoll = false;
6750 
6751 			local_bh_disable();
6752 			sd = this_cpu_ptr(&softnet_data);
6753 			sd->in_napi_threaded_poll = true;
6754 
6755 			have = netpoll_poll_lock(napi);
6756 			__napi_poll(napi, &repoll);
6757 			netpoll_poll_unlock(have);
6758 
6759 			sd->in_napi_threaded_poll = false;
6760 			barrier();
6761 
6762 			if (sd_has_rps_ipi_waiting(sd)) {
6763 				local_irq_disable();
6764 				net_rps_action_and_irq_enable(sd);
6765 			}
6766 			skb_defer_free_flush(sd);
6767 			local_bh_enable();
6768 
6769 			if (!repoll)
6770 				break;
6771 
6772 			cond_resched();
6773 		}
6774 	}
6775 	return 0;
6776 }
6777 
6778 static __latent_entropy void net_rx_action(struct softirq_action *h)
6779 {
6780 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6781 	unsigned long time_limit = jiffies +
6782 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6783 	int budget = READ_ONCE(netdev_budget);
6784 	LIST_HEAD(list);
6785 	LIST_HEAD(repoll);
6786 
6787 start:
6788 	sd->in_net_rx_action = true;
6789 	local_irq_disable();
6790 	list_splice_init(&sd->poll_list, &list);
6791 	local_irq_enable();
6792 
6793 	for (;;) {
6794 		struct napi_struct *n;
6795 
6796 		skb_defer_free_flush(sd);
6797 
6798 		if (list_empty(&list)) {
6799 			if (list_empty(&repoll)) {
6800 				sd->in_net_rx_action = false;
6801 				barrier();
6802 				/* We need to check if ____napi_schedule()
6803 				 * had refilled poll_list while
6804 				 * sd->in_net_rx_action was true.
6805 				 */
6806 				if (!list_empty(&sd->poll_list))
6807 					goto start;
6808 				if (!sd_has_rps_ipi_waiting(sd))
6809 					goto end;
6810 			}
6811 			break;
6812 		}
6813 
6814 		n = list_first_entry(&list, struct napi_struct, poll_list);
6815 		budget -= napi_poll(n, &repoll);
6816 
6817 		/* If softirq window is exhausted then punt.
6818 		 * Allow this to run for 2 jiffies since which will allow
6819 		 * an average latency of 1.5/HZ.
6820 		 */
6821 		if (unlikely(budget <= 0 ||
6822 			     time_after_eq(jiffies, time_limit))) {
6823 			sd->time_squeeze++;
6824 			break;
6825 		}
6826 	}
6827 
6828 	local_irq_disable();
6829 
6830 	list_splice_tail_init(&sd->poll_list, &list);
6831 	list_splice_tail(&repoll, &list);
6832 	list_splice(&list, &sd->poll_list);
6833 	if (!list_empty(&sd->poll_list))
6834 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6835 	else
6836 		sd->in_net_rx_action = false;
6837 
6838 	net_rps_action_and_irq_enable(sd);
6839 end:;
6840 }
6841 
6842 struct netdev_adjacent {
6843 	struct net_device *dev;
6844 	netdevice_tracker dev_tracker;
6845 
6846 	/* upper master flag, there can only be one master device per list */
6847 	bool master;
6848 
6849 	/* lookup ignore flag */
6850 	bool ignore;
6851 
6852 	/* counter for the number of times this device was added to us */
6853 	u16 ref_nr;
6854 
6855 	/* private field for the users */
6856 	void *private;
6857 
6858 	struct list_head list;
6859 	struct rcu_head rcu;
6860 };
6861 
6862 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6863 						 struct list_head *adj_list)
6864 {
6865 	struct netdev_adjacent *adj;
6866 
6867 	list_for_each_entry(adj, adj_list, list) {
6868 		if (adj->dev == adj_dev)
6869 			return adj;
6870 	}
6871 	return NULL;
6872 }
6873 
6874 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6875 				    struct netdev_nested_priv *priv)
6876 {
6877 	struct net_device *dev = (struct net_device *)priv->data;
6878 
6879 	return upper_dev == dev;
6880 }
6881 
6882 /**
6883  * netdev_has_upper_dev - Check if device is linked to an upper device
6884  * @dev: device
6885  * @upper_dev: upper device to check
6886  *
6887  * Find out if a device is linked to specified upper device and return true
6888  * in case it is. Note that this checks only immediate upper device,
6889  * not through a complete stack of devices. The caller must hold the RTNL lock.
6890  */
6891 bool netdev_has_upper_dev(struct net_device *dev,
6892 			  struct net_device *upper_dev)
6893 {
6894 	struct netdev_nested_priv priv = {
6895 		.data = (void *)upper_dev,
6896 	};
6897 
6898 	ASSERT_RTNL();
6899 
6900 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6901 					     &priv);
6902 }
6903 EXPORT_SYMBOL(netdev_has_upper_dev);
6904 
6905 /**
6906  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6907  * @dev: device
6908  * @upper_dev: upper device to check
6909  *
6910  * Find out if a device is linked to specified upper device and return true
6911  * in case it is. Note that this checks the entire upper device chain.
6912  * The caller must hold rcu lock.
6913  */
6914 
6915 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6916 				  struct net_device *upper_dev)
6917 {
6918 	struct netdev_nested_priv priv = {
6919 		.data = (void *)upper_dev,
6920 	};
6921 
6922 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6923 					       &priv);
6924 }
6925 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6926 
6927 /**
6928  * netdev_has_any_upper_dev - Check if device is linked to some device
6929  * @dev: device
6930  *
6931  * Find out if a device is linked to an upper device and return true in case
6932  * it is. The caller must hold the RTNL lock.
6933  */
6934 bool netdev_has_any_upper_dev(struct net_device *dev)
6935 {
6936 	ASSERT_RTNL();
6937 
6938 	return !list_empty(&dev->adj_list.upper);
6939 }
6940 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6941 
6942 /**
6943  * netdev_master_upper_dev_get - Get master upper device
6944  * @dev: device
6945  *
6946  * Find a master upper device and return pointer to it or NULL in case
6947  * it's not there. The caller must hold the RTNL lock.
6948  */
6949 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6950 {
6951 	struct netdev_adjacent *upper;
6952 
6953 	ASSERT_RTNL();
6954 
6955 	if (list_empty(&dev->adj_list.upper))
6956 		return NULL;
6957 
6958 	upper = list_first_entry(&dev->adj_list.upper,
6959 				 struct netdev_adjacent, list);
6960 	if (likely(upper->master))
6961 		return upper->dev;
6962 	return NULL;
6963 }
6964 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6965 
6966 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6967 {
6968 	struct netdev_adjacent *upper;
6969 
6970 	ASSERT_RTNL();
6971 
6972 	if (list_empty(&dev->adj_list.upper))
6973 		return NULL;
6974 
6975 	upper = list_first_entry(&dev->adj_list.upper,
6976 				 struct netdev_adjacent, list);
6977 	if (likely(upper->master) && !upper->ignore)
6978 		return upper->dev;
6979 	return NULL;
6980 }
6981 
6982 /**
6983  * netdev_has_any_lower_dev - Check if device is linked to some device
6984  * @dev: device
6985  *
6986  * Find out if a device is linked to a lower device and return true in case
6987  * it is. The caller must hold the RTNL lock.
6988  */
6989 static bool netdev_has_any_lower_dev(struct net_device *dev)
6990 {
6991 	ASSERT_RTNL();
6992 
6993 	return !list_empty(&dev->adj_list.lower);
6994 }
6995 
6996 void *netdev_adjacent_get_private(struct list_head *adj_list)
6997 {
6998 	struct netdev_adjacent *adj;
6999 
7000 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7001 
7002 	return adj->private;
7003 }
7004 EXPORT_SYMBOL(netdev_adjacent_get_private);
7005 
7006 /**
7007  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7008  * @dev: device
7009  * @iter: list_head ** of the current position
7010  *
7011  * Gets the next device from the dev's upper list, starting from iter
7012  * position. The caller must hold RCU read lock.
7013  */
7014 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7015 						 struct list_head **iter)
7016 {
7017 	struct netdev_adjacent *upper;
7018 
7019 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7020 
7021 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7022 
7023 	if (&upper->list == &dev->adj_list.upper)
7024 		return NULL;
7025 
7026 	*iter = &upper->list;
7027 
7028 	return upper->dev;
7029 }
7030 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7031 
7032 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7033 						  struct list_head **iter,
7034 						  bool *ignore)
7035 {
7036 	struct netdev_adjacent *upper;
7037 
7038 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7039 
7040 	if (&upper->list == &dev->adj_list.upper)
7041 		return NULL;
7042 
7043 	*iter = &upper->list;
7044 	*ignore = upper->ignore;
7045 
7046 	return upper->dev;
7047 }
7048 
7049 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7050 						    struct list_head **iter)
7051 {
7052 	struct netdev_adjacent *upper;
7053 
7054 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7055 
7056 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7057 
7058 	if (&upper->list == &dev->adj_list.upper)
7059 		return NULL;
7060 
7061 	*iter = &upper->list;
7062 
7063 	return upper->dev;
7064 }
7065 
7066 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7067 				       int (*fn)(struct net_device *dev,
7068 					 struct netdev_nested_priv *priv),
7069 				       struct netdev_nested_priv *priv)
7070 {
7071 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7072 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7073 	int ret, cur = 0;
7074 	bool ignore;
7075 
7076 	now = dev;
7077 	iter = &dev->adj_list.upper;
7078 
7079 	while (1) {
7080 		if (now != dev) {
7081 			ret = fn(now, priv);
7082 			if (ret)
7083 				return ret;
7084 		}
7085 
7086 		next = NULL;
7087 		while (1) {
7088 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7089 			if (!udev)
7090 				break;
7091 			if (ignore)
7092 				continue;
7093 
7094 			next = udev;
7095 			niter = &udev->adj_list.upper;
7096 			dev_stack[cur] = now;
7097 			iter_stack[cur++] = iter;
7098 			break;
7099 		}
7100 
7101 		if (!next) {
7102 			if (!cur)
7103 				return 0;
7104 			next = dev_stack[--cur];
7105 			niter = iter_stack[cur];
7106 		}
7107 
7108 		now = next;
7109 		iter = niter;
7110 	}
7111 
7112 	return 0;
7113 }
7114 
7115 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7116 				  int (*fn)(struct net_device *dev,
7117 					    struct netdev_nested_priv *priv),
7118 				  struct netdev_nested_priv *priv)
7119 {
7120 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7121 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7122 	int ret, cur = 0;
7123 
7124 	now = dev;
7125 	iter = &dev->adj_list.upper;
7126 
7127 	while (1) {
7128 		if (now != dev) {
7129 			ret = fn(now, priv);
7130 			if (ret)
7131 				return ret;
7132 		}
7133 
7134 		next = NULL;
7135 		while (1) {
7136 			udev = netdev_next_upper_dev_rcu(now, &iter);
7137 			if (!udev)
7138 				break;
7139 
7140 			next = udev;
7141 			niter = &udev->adj_list.upper;
7142 			dev_stack[cur] = now;
7143 			iter_stack[cur++] = iter;
7144 			break;
7145 		}
7146 
7147 		if (!next) {
7148 			if (!cur)
7149 				return 0;
7150 			next = dev_stack[--cur];
7151 			niter = iter_stack[cur];
7152 		}
7153 
7154 		now = next;
7155 		iter = niter;
7156 	}
7157 
7158 	return 0;
7159 }
7160 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7161 
7162 static bool __netdev_has_upper_dev(struct net_device *dev,
7163 				   struct net_device *upper_dev)
7164 {
7165 	struct netdev_nested_priv priv = {
7166 		.flags = 0,
7167 		.data = (void *)upper_dev,
7168 	};
7169 
7170 	ASSERT_RTNL();
7171 
7172 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7173 					   &priv);
7174 }
7175 
7176 /**
7177  * netdev_lower_get_next_private - Get the next ->private from the
7178  *				   lower neighbour list
7179  * @dev: device
7180  * @iter: list_head ** of the current position
7181  *
7182  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7183  * list, starting from iter position. The caller must hold either hold the
7184  * RTNL lock or its own locking that guarantees that the neighbour lower
7185  * list will remain unchanged.
7186  */
7187 void *netdev_lower_get_next_private(struct net_device *dev,
7188 				    struct list_head **iter)
7189 {
7190 	struct netdev_adjacent *lower;
7191 
7192 	lower = list_entry(*iter, struct netdev_adjacent, list);
7193 
7194 	if (&lower->list == &dev->adj_list.lower)
7195 		return NULL;
7196 
7197 	*iter = lower->list.next;
7198 
7199 	return lower->private;
7200 }
7201 EXPORT_SYMBOL(netdev_lower_get_next_private);
7202 
7203 /**
7204  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7205  *				       lower neighbour list, RCU
7206  *				       variant
7207  * @dev: device
7208  * @iter: list_head ** of the current position
7209  *
7210  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7211  * list, starting from iter position. The caller must hold RCU read lock.
7212  */
7213 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7214 					struct list_head **iter)
7215 {
7216 	struct netdev_adjacent *lower;
7217 
7218 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7219 
7220 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7221 
7222 	if (&lower->list == &dev->adj_list.lower)
7223 		return NULL;
7224 
7225 	*iter = &lower->list;
7226 
7227 	return lower->private;
7228 }
7229 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7230 
7231 /**
7232  * netdev_lower_get_next - Get the next device from the lower neighbour
7233  *                         list
7234  * @dev: device
7235  * @iter: list_head ** of the current position
7236  *
7237  * Gets the next netdev_adjacent from the dev's lower neighbour
7238  * list, starting from iter position. The caller must hold RTNL lock or
7239  * its own locking that guarantees that the neighbour lower
7240  * list will remain unchanged.
7241  */
7242 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7243 {
7244 	struct netdev_adjacent *lower;
7245 
7246 	lower = list_entry(*iter, struct netdev_adjacent, list);
7247 
7248 	if (&lower->list == &dev->adj_list.lower)
7249 		return NULL;
7250 
7251 	*iter = lower->list.next;
7252 
7253 	return lower->dev;
7254 }
7255 EXPORT_SYMBOL(netdev_lower_get_next);
7256 
7257 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7258 						struct list_head **iter)
7259 {
7260 	struct netdev_adjacent *lower;
7261 
7262 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7263 
7264 	if (&lower->list == &dev->adj_list.lower)
7265 		return NULL;
7266 
7267 	*iter = &lower->list;
7268 
7269 	return lower->dev;
7270 }
7271 
7272 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7273 						  struct list_head **iter,
7274 						  bool *ignore)
7275 {
7276 	struct netdev_adjacent *lower;
7277 
7278 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7279 
7280 	if (&lower->list == &dev->adj_list.lower)
7281 		return NULL;
7282 
7283 	*iter = &lower->list;
7284 	*ignore = lower->ignore;
7285 
7286 	return lower->dev;
7287 }
7288 
7289 int netdev_walk_all_lower_dev(struct net_device *dev,
7290 			      int (*fn)(struct net_device *dev,
7291 					struct netdev_nested_priv *priv),
7292 			      struct netdev_nested_priv *priv)
7293 {
7294 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7295 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7296 	int ret, cur = 0;
7297 
7298 	now = dev;
7299 	iter = &dev->adj_list.lower;
7300 
7301 	while (1) {
7302 		if (now != dev) {
7303 			ret = fn(now, priv);
7304 			if (ret)
7305 				return ret;
7306 		}
7307 
7308 		next = NULL;
7309 		while (1) {
7310 			ldev = netdev_next_lower_dev(now, &iter);
7311 			if (!ldev)
7312 				break;
7313 
7314 			next = ldev;
7315 			niter = &ldev->adj_list.lower;
7316 			dev_stack[cur] = now;
7317 			iter_stack[cur++] = iter;
7318 			break;
7319 		}
7320 
7321 		if (!next) {
7322 			if (!cur)
7323 				return 0;
7324 			next = dev_stack[--cur];
7325 			niter = iter_stack[cur];
7326 		}
7327 
7328 		now = next;
7329 		iter = niter;
7330 	}
7331 
7332 	return 0;
7333 }
7334 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7335 
7336 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7337 				       int (*fn)(struct net_device *dev,
7338 					 struct netdev_nested_priv *priv),
7339 				       struct netdev_nested_priv *priv)
7340 {
7341 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7342 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7343 	int ret, cur = 0;
7344 	bool ignore;
7345 
7346 	now = dev;
7347 	iter = &dev->adj_list.lower;
7348 
7349 	while (1) {
7350 		if (now != dev) {
7351 			ret = fn(now, priv);
7352 			if (ret)
7353 				return ret;
7354 		}
7355 
7356 		next = NULL;
7357 		while (1) {
7358 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7359 			if (!ldev)
7360 				break;
7361 			if (ignore)
7362 				continue;
7363 
7364 			next = ldev;
7365 			niter = &ldev->adj_list.lower;
7366 			dev_stack[cur] = now;
7367 			iter_stack[cur++] = iter;
7368 			break;
7369 		}
7370 
7371 		if (!next) {
7372 			if (!cur)
7373 				return 0;
7374 			next = dev_stack[--cur];
7375 			niter = iter_stack[cur];
7376 		}
7377 
7378 		now = next;
7379 		iter = niter;
7380 	}
7381 
7382 	return 0;
7383 }
7384 
7385 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7386 					     struct list_head **iter)
7387 {
7388 	struct netdev_adjacent *lower;
7389 
7390 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7391 	if (&lower->list == &dev->adj_list.lower)
7392 		return NULL;
7393 
7394 	*iter = &lower->list;
7395 
7396 	return lower->dev;
7397 }
7398 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7399 
7400 static u8 __netdev_upper_depth(struct net_device *dev)
7401 {
7402 	struct net_device *udev;
7403 	struct list_head *iter;
7404 	u8 max_depth = 0;
7405 	bool ignore;
7406 
7407 	for (iter = &dev->adj_list.upper,
7408 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7409 	     udev;
7410 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7411 		if (ignore)
7412 			continue;
7413 		if (max_depth < udev->upper_level)
7414 			max_depth = udev->upper_level;
7415 	}
7416 
7417 	return max_depth;
7418 }
7419 
7420 static u8 __netdev_lower_depth(struct net_device *dev)
7421 {
7422 	struct net_device *ldev;
7423 	struct list_head *iter;
7424 	u8 max_depth = 0;
7425 	bool ignore;
7426 
7427 	for (iter = &dev->adj_list.lower,
7428 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7429 	     ldev;
7430 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7431 		if (ignore)
7432 			continue;
7433 		if (max_depth < ldev->lower_level)
7434 			max_depth = ldev->lower_level;
7435 	}
7436 
7437 	return max_depth;
7438 }
7439 
7440 static int __netdev_update_upper_level(struct net_device *dev,
7441 				       struct netdev_nested_priv *__unused)
7442 {
7443 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7444 	return 0;
7445 }
7446 
7447 #ifdef CONFIG_LOCKDEP
7448 static LIST_HEAD(net_unlink_list);
7449 
7450 static void net_unlink_todo(struct net_device *dev)
7451 {
7452 	if (list_empty(&dev->unlink_list))
7453 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7454 }
7455 #endif
7456 
7457 static int __netdev_update_lower_level(struct net_device *dev,
7458 				       struct netdev_nested_priv *priv)
7459 {
7460 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7461 
7462 #ifdef CONFIG_LOCKDEP
7463 	if (!priv)
7464 		return 0;
7465 
7466 	if (priv->flags & NESTED_SYNC_IMM)
7467 		dev->nested_level = dev->lower_level - 1;
7468 	if (priv->flags & NESTED_SYNC_TODO)
7469 		net_unlink_todo(dev);
7470 #endif
7471 	return 0;
7472 }
7473 
7474 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7475 				  int (*fn)(struct net_device *dev,
7476 					    struct netdev_nested_priv *priv),
7477 				  struct netdev_nested_priv *priv)
7478 {
7479 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7480 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7481 	int ret, cur = 0;
7482 
7483 	now = dev;
7484 	iter = &dev->adj_list.lower;
7485 
7486 	while (1) {
7487 		if (now != dev) {
7488 			ret = fn(now, priv);
7489 			if (ret)
7490 				return ret;
7491 		}
7492 
7493 		next = NULL;
7494 		while (1) {
7495 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7496 			if (!ldev)
7497 				break;
7498 
7499 			next = ldev;
7500 			niter = &ldev->adj_list.lower;
7501 			dev_stack[cur] = now;
7502 			iter_stack[cur++] = iter;
7503 			break;
7504 		}
7505 
7506 		if (!next) {
7507 			if (!cur)
7508 				return 0;
7509 			next = dev_stack[--cur];
7510 			niter = iter_stack[cur];
7511 		}
7512 
7513 		now = next;
7514 		iter = niter;
7515 	}
7516 
7517 	return 0;
7518 }
7519 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7520 
7521 /**
7522  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7523  *				       lower neighbour list, RCU
7524  *				       variant
7525  * @dev: device
7526  *
7527  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7528  * list. The caller must hold RCU read lock.
7529  */
7530 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7531 {
7532 	struct netdev_adjacent *lower;
7533 
7534 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7535 			struct netdev_adjacent, list);
7536 	if (lower)
7537 		return lower->private;
7538 	return NULL;
7539 }
7540 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7541 
7542 /**
7543  * netdev_master_upper_dev_get_rcu - Get master upper device
7544  * @dev: device
7545  *
7546  * Find a master upper device and return pointer to it or NULL in case
7547  * it's not there. The caller must hold the RCU read lock.
7548  */
7549 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7550 {
7551 	struct netdev_adjacent *upper;
7552 
7553 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7554 				       struct netdev_adjacent, list);
7555 	if (upper && likely(upper->master))
7556 		return upper->dev;
7557 	return NULL;
7558 }
7559 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7560 
7561 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7562 			      struct net_device *adj_dev,
7563 			      struct list_head *dev_list)
7564 {
7565 	char linkname[IFNAMSIZ+7];
7566 
7567 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7568 		"upper_%s" : "lower_%s", adj_dev->name);
7569 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7570 				 linkname);
7571 }
7572 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7573 			       char *name,
7574 			       struct list_head *dev_list)
7575 {
7576 	char linkname[IFNAMSIZ+7];
7577 
7578 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7579 		"upper_%s" : "lower_%s", name);
7580 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7581 }
7582 
7583 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7584 						 struct net_device *adj_dev,
7585 						 struct list_head *dev_list)
7586 {
7587 	return (dev_list == &dev->adj_list.upper ||
7588 		dev_list == &dev->adj_list.lower) &&
7589 		net_eq(dev_net(dev), dev_net(adj_dev));
7590 }
7591 
7592 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7593 					struct net_device *adj_dev,
7594 					struct list_head *dev_list,
7595 					void *private, bool master)
7596 {
7597 	struct netdev_adjacent *adj;
7598 	int ret;
7599 
7600 	adj = __netdev_find_adj(adj_dev, dev_list);
7601 
7602 	if (adj) {
7603 		adj->ref_nr += 1;
7604 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7605 			 dev->name, adj_dev->name, adj->ref_nr);
7606 
7607 		return 0;
7608 	}
7609 
7610 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7611 	if (!adj)
7612 		return -ENOMEM;
7613 
7614 	adj->dev = adj_dev;
7615 	adj->master = master;
7616 	adj->ref_nr = 1;
7617 	adj->private = private;
7618 	adj->ignore = false;
7619 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7620 
7621 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7622 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7623 
7624 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7625 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7626 		if (ret)
7627 			goto free_adj;
7628 	}
7629 
7630 	/* Ensure that master link is always the first item in list. */
7631 	if (master) {
7632 		ret = sysfs_create_link(&(dev->dev.kobj),
7633 					&(adj_dev->dev.kobj), "master");
7634 		if (ret)
7635 			goto remove_symlinks;
7636 
7637 		list_add_rcu(&adj->list, dev_list);
7638 	} else {
7639 		list_add_tail_rcu(&adj->list, dev_list);
7640 	}
7641 
7642 	return 0;
7643 
7644 remove_symlinks:
7645 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7646 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7647 free_adj:
7648 	netdev_put(adj_dev, &adj->dev_tracker);
7649 	kfree(adj);
7650 
7651 	return ret;
7652 }
7653 
7654 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7655 					 struct net_device *adj_dev,
7656 					 u16 ref_nr,
7657 					 struct list_head *dev_list)
7658 {
7659 	struct netdev_adjacent *adj;
7660 
7661 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7662 		 dev->name, adj_dev->name, ref_nr);
7663 
7664 	adj = __netdev_find_adj(adj_dev, dev_list);
7665 
7666 	if (!adj) {
7667 		pr_err("Adjacency does not exist for device %s from %s\n",
7668 		       dev->name, adj_dev->name);
7669 		WARN_ON(1);
7670 		return;
7671 	}
7672 
7673 	if (adj->ref_nr > ref_nr) {
7674 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7675 			 dev->name, adj_dev->name, ref_nr,
7676 			 adj->ref_nr - ref_nr);
7677 		adj->ref_nr -= ref_nr;
7678 		return;
7679 	}
7680 
7681 	if (adj->master)
7682 		sysfs_remove_link(&(dev->dev.kobj), "master");
7683 
7684 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7685 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7686 
7687 	list_del_rcu(&adj->list);
7688 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7689 		 adj_dev->name, dev->name, adj_dev->name);
7690 	netdev_put(adj_dev, &adj->dev_tracker);
7691 	kfree_rcu(adj, rcu);
7692 }
7693 
7694 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7695 					    struct net_device *upper_dev,
7696 					    struct list_head *up_list,
7697 					    struct list_head *down_list,
7698 					    void *private, bool master)
7699 {
7700 	int ret;
7701 
7702 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7703 					   private, master);
7704 	if (ret)
7705 		return ret;
7706 
7707 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7708 					   private, false);
7709 	if (ret) {
7710 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7711 		return ret;
7712 	}
7713 
7714 	return 0;
7715 }
7716 
7717 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7718 					       struct net_device *upper_dev,
7719 					       u16 ref_nr,
7720 					       struct list_head *up_list,
7721 					       struct list_head *down_list)
7722 {
7723 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7724 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7725 }
7726 
7727 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7728 						struct net_device *upper_dev,
7729 						void *private, bool master)
7730 {
7731 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7732 						&dev->adj_list.upper,
7733 						&upper_dev->adj_list.lower,
7734 						private, master);
7735 }
7736 
7737 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7738 						   struct net_device *upper_dev)
7739 {
7740 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7741 					   &dev->adj_list.upper,
7742 					   &upper_dev->adj_list.lower);
7743 }
7744 
7745 static int __netdev_upper_dev_link(struct net_device *dev,
7746 				   struct net_device *upper_dev, bool master,
7747 				   void *upper_priv, void *upper_info,
7748 				   struct netdev_nested_priv *priv,
7749 				   struct netlink_ext_ack *extack)
7750 {
7751 	struct netdev_notifier_changeupper_info changeupper_info = {
7752 		.info = {
7753 			.dev = dev,
7754 			.extack = extack,
7755 		},
7756 		.upper_dev = upper_dev,
7757 		.master = master,
7758 		.linking = true,
7759 		.upper_info = upper_info,
7760 	};
7761 	struct net_device *master_dev;
7762 	int ret = 0;
7763 
7764 	ASSERT_RTNL();
7765 
7766 	if (dev == upper_dev)
7767 		return -EBUSY;
7768 
7769 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7770 	if (__netdev_has_upper_dev(upper_dev, dev))
7771 		return -EBUSY;
7772 
7773 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7774 		return -EMLINK;
7775 
7776 	if (!master) {
7777 		if (__netdev_has_upper_dev(dev, upper_dev))
7778 			return -EEXIST;
7779 	} else {
7780 		master_dev = __netdev_master_upper_dev_get(dev);
7781 		if (master_dev)
7782 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7783 	}
7784 
7785 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7786 					    &changeupper_info.info);
7787 	ret = notifier_to_errno(ret);
7788 	if (ret)
7789 		return ret;
7790 
7791 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7792 						   master);
7793 	if (ret)
7794 		return ret;
7795 
7796 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7797 					    &changeupper_info.info);
7798 	ret = notifier_to_errno(ret);
7799 	if (ret)
7800 		goto rollback;
7801 
7802 	__netdev_update_upper_level(dev, NULL);
7803 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7804 
7805 	__netdev_update_lower_level(upper_dev, priv);
7806 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7807 				    priv);
7808 
7809 	return 0;
7810 
7811 rollback:
7812 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7813 
7814 	return ret;
7815 }
7816 
7817 /**
7818  * netdev_upper_dev_link - Add a link to the upper device
7819  * @dev: device
7820  * @upper_dev: new upper device
7821  * @extack: netlink extended ack
7822  *
7823  * Adds a link to device which is upper to this one. The caller must hold
7824  * the RTNL lock. On a failure a negative errno code is returned.
7825  * On success the reference counts are adjusted and the function
7826  * returns zero.
7827  */
7828 int netdev_upper_dev_link(struct net_device *dev,
7829 			  struct net_device *upper_dev,
7830 			  struct netlink_ext_ack *extack)
7831 {
7832 	struct netdev_nested_priv priv = {
7833 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7834 		.data = NULL,
7835 	};
7836 
7837 	return __netdev_upper_dev_link(dev, upper_dev, false,
7838 				       NULL, NULL, &priv, extack);
7839 }
7840 EXPORT_SYMBOL(netdev_upper_dev_link);
7841 
7842 /**
7843  * netdev_master_upper_dev_link - Add a master link to the upper device
7844  * @dev: device
7845  * @upper_dev: new upper device
7846  * @upper_priv: upper device private
7847  * @upper_info: upper info to be passed down via notifier
7848  * @extack: netlink extended ack
7849  *
7850  * Adds a link to device which is upper to this one. In this case, only
7851  * one master upper device can be linked, although other non-master devices
7852  * might be linked as well. The caller must hold the RTNL lock.
7853  * On a failure a negative errno code is returned. On success the reference
7854  * counts are adjusted and the function returns zero.
7855  */
7856 int netdev_master_upper_dev_link(struct net_device *dev,
7857 				 struct net_device *upper_dev,
7858 				 void *upper_priv, void *upper_info,
7859 				 struct netlink_ext_ack *extack)
7860 {
7861 	struct netdev_nested_priv priv = {
7862 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7863 		.data = NULL,
7864 	};
7865 
7866 	return __netdev_upper_dev_link(dev, upper_dev, true,
7867 				       upper_priv, upper_info, &priv, extack);
7868 }
7869 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7870 
7871 static void __netdev_upper_dev_unlink(struct net_device *dev,
7872 				      struct net_device *upper_dev,
7873 				      struct netdev_nested_priv *priv)
7874 {
7875 	struct netdev_notifier_changeupper_info changeupper_info = {
7876 		.info = {
7877 			.dev = dev,
7878 		},
7879 		.upper_dev = upper_dev,
7880 		.linking = false,
7881 	};
7882 
7883 	ASSERT_RTNL();
7884 
7885 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7886 
7887 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7888 				      &changeupper_info.info);
7889 
7890 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7891 
7892 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7893 				      &changeupper_info.info);
7894 
7895 	__netdev_update_upper_level(dev, NULL);
7896 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7897 
7898 	__netdev_update_lower_level(upper_dev, priv);
7899 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7900 				    priv);
7901 }
7902 
7903 /**
7904  * netdev_upper_dev_unlink - Removes a link to upper device
7905  * @dev: device
7906  * @upper_dev: new upper device
7907  *
7908  * Removes a link to device which is upper to this one. The caller must hold
7909  * the RTNL lock.
7910  */
7911 void netdev_upper_dev_unlink(struct net_device *dev,
7912 			     struct net_device *upper_dev)
7913 {
7914 	struct netdev_nested_priv priv = {
7915 		.flags = NESTED_SYNC_TODO,
7916 		.data = NULL,
7917 	};
7918 
7919 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7920 }
7921 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7922 
7923 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7924 				      struct net_device *lower_dev,
7925 				      bool val)
7926 {
7927 	struct netdev_adjacent *adj;
7928 
7929 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7930 	if (adj)
7931 		adj->ignore = val;
7932 
7933 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7934 	if (adj)
7935 		adj->ignore = val;
7936 }
7937 
7938 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7939 					struct net_device *lower_dev)
7940 {
7941 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7942 }
7943 
7944 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7945 				       struct net_device *lower_dev)
7946 {
7947 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7948 }
7949 
7950 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7951 				   struct net_device *new_dev,
7952 				   struct net_device *dev,
7953 				   struct netlink_ext_ack *extack)
7954 {
7955 	struct netdev_nested_priv priv = {
7956 		.flags = 0,
7957 		.data = NULL,
7958 	};
7959 	int err;
7960 
7961 	if (!new_dev)
7962 		return 0;
7963 
7964 	if (old_dev && new_dev != old_dev)
7965 		netdev_adjacent_dev_disable(dev, old_dev);
7966 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7967 				      extack);
7968 	if (err) {
7969 		if (old_dev && new_dev != old_dev)
7970 			netdev_adjacent_dev_enable(dev, old_dev);
7971 		return err;
7972 	}
7973 
7974 	return 0;
7975 }
7976 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7977 
7978 void netdev_adjacent_change_commit(struct net_device *old_dev,
7979 				   struct net_device *new_dev,
7980 				   struct net_device *dev)
7981 {
7982 	struct netdev_nested_priv priv = {
7983 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7984 		.data = NULL,
7985 	};
7986 
7987 	if (!new_dev || !old_dev)
7988 		return;
7989 
7990 	if (new_dev == old_dev)
7991 		return;
7992 
7993 	netdev_adjacent_dev_enable(dev, old_dev);
7994 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7995 }
7996 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7997 
7998 void netdev_adjacent_change_abort(struct net_device *old_dev,
7999 				  struct net_device *new_dev,
8000 				  struct net_device *dev)
8001 {
8002 	struct netdev_nested_priv priv = {
8003 		.flags = 0,
8004 		.data = NULL,
8005 	};
8006 
8007 	if (!new_dev)
8008 		return;
8009 
8010 	if (old_dev && new_dev != old_dev)
8011 		netdev_adjacent_dev_enable(dev, old_dev);
8012 
8013 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8014 }
8015 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8016 
8017 /**
8018  * netdev_bonding_info_change - Dispatch event about slave change
8019  * @dev: device
8020  * @bonding_info: info to dispatch
8021  *
8022  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8023  * The caller must hold the RTNL lock.
8024  */
8025 void netdev_bonding_info_change(struct net_device *dev,
8026 				struct netdev_bonding_info *bonding_info)
8027 {
8028 	struct netdev_notifier_bonding_info info = {
8029 		.info.dev = dev,
8030 	};
8031 
8032 	memcpy(&info.bonding_info, bonding_info,
8033 	       sizeof(struct netdev_bonding_info));
8034 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8035 				      &info.info);
8036 }
8037 EXPORT_SYMBOL(netdev_bonding_info_change);
8038 
8039 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8040 					   struct netlink_ext_ack *extack)
8041 {
8042 	struct netdev_notifier_offload_xstats_info info = {
8043 		.info.dev = dev,
8044 		.info.extack = extack,
8045 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8046 	};
8047 	int err;
8048 	int rc;
8049 
8050 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8051 					 GFP_KERNEL);
8052 	if (!dev->offload_xstats_l3)
8053 		return -ENOMEM;
8054 
8055 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8056 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8057 						  &info.info);
8058 	err = notifier_to_errno(rc);
8059 	if (err)
8060 		goto free_stats;
8061 
8062 	return 0;
8063 
8064 free_stats:
8065 	kfree(dev->offload_xstats_l3);
8066 	dev->offload_xstats_l3 = NULL;
8067 	return err;
8068 }
8069 
8070 int netdev_offload_xstats_enable(struct net_device *dev,
8071 				 enum netdev_offload_xstats_type type,
8072 				 struct netlink_ext_ack *extack)
8073 {
8074 	ASSERT_RTNL();
8075 
8076 	if (netdev_offload_xstats_enabled(dev, type))
8077 		return -EALREADY;
8078 
8079 	switch (type) {
8080 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8081 		return netdev_offload_xstats_enable_l3(dev, extack);
8082 	}
8083 
8084 	WARN_ON(1);
8085 	return -EINVAL;
8086 }
8087 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8088 
8089 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8090 {
8091 	struct netdev_notifier_offload_xstats_info info = {
8092 		.info.dev = dev,
8093 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8094 	};
8095 
8096 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8097 				      &info.info);
8098 	kfree(dev->offload_xstats_l3);
8099 	dev->offload_xstats_l3 = NULL;
8100 }
8101 
8102 int netdev_offload_xstats_disable(struct net_device *dev,
8103 				  enum netdev_offload_xstats_type type)
8104 {
8105 	ASSERT_RTNL();
8106 
8107 	if (!netdev_offload_xstats_enabled(dev, type))
8108 		return -EALREADY;
8109 
8110 	switch (type) {
8111 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8112 		netdev_offload_xstats_disable_l3(dev);
8113 		return 0;
8114 	}
8115 
8116 	WARN_ON(1);
8117 	return -EINVAL;
8118 }
8119 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8120 
8121 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8122 {
8123 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8124 }
8125 
8126 static struct rtnl_hw_stats64 *
8127 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8128 			      enum netdev_offload_xstats_type type)
8129 {
8130 	switch (type) {
8131 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8132 		return dev->offload_xstats_l3;
8133 	}
8134 
8135 	WARN_ON(1);
8136 	return NULL;
8137 }
8138 
8139 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8140 				   enum netdev_offload_xstats_type type)
8141 {
8142 	ASSERT_RTNL();
8143 
8144 	return netdev_offload_xstats_get_ptr(dev, type);
8145 }
8146 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8147 
8148 struct netdev_notifier_offload_xstats_ru {
8149 	bool used;
8150 };
8151 
8152 struct netdev_notifier_offload_xstats_rd {
8153 	struct rtnl_hw_stats64 stats;
8154 	bool used;
8155 };
8156 
8157 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8158 				  const struct rtnl_hw_stats64 *src)
8159 {
8160 	dest->rx_packets	  += src->rx_packets;
8161 	dest->tx_packets	  += src->tx_packets;
8162 	dest->rx_bytes		  += src->rx_bytes;
8163 	dest->tx_bytes		  += src->tx_bytes;
8164 	dest->rx_errors		  += src->rx_errors;
8165 	dest->tx_errors		  += src->tx_errors;
8166 	dest->rx_dropped	  += src->rx_dropped;
8167 	dest->tx_dropped	  += src->tx_dropped;
8168 	dest->multicast		  += src->multicast;
8169 }
8170 
8171 static int netdev_offload_xstats_get_used(struct net_device *dev,
8172 					  enum netdev_offload_xstats_type type,
8173 					  bool *p_used,
8174 					  struct netlink_ext_ack *extack)
8175 {
8176 	struct netdev_notifier_offload_xstats_ru report_used = {};
8177 	struct netdev_notifier_offload_xstats_info info = {
8178 		.info.dev = dev,
8179 		.info.extack = extack,
8180 		.type = type,
8181 		.report_used = &report_used,
8182 	};
8183 	int rc;
8184 
8185 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8186 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8187 					   &info.info);
8188 	*p_used = report_used.used;
8189 	return notifier_to_errno(rc);
8190 }
8191 
8192 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8193 					   enum netdev_offload_xstats_type type,
8194 					   struct rtnl_hw_stats64 *p_stats,
8195 					   bool *p_used,
8196 					   struct netlink_ext_ack *extack)
8197 {
8198 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8199 	struct netdev_notifier_offload_xstats_info info = {
8200 		.info.dev = dev,
8201 		.info.extack = extack,
8202 		.type = type,
8203 		.report_delta = &report_delta,
8204 	};
8205 	struct rtnl_hw_stats64 *stats;
8206 	int rc;
8207 
8208 	stats = netdev_offload_xstats_get_ptr(dev, type);
8209 	if (WARN_ON(!stats))
8210 		return -EINVAL;
8211 
8212 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8213 					   &info.info);
8214 
8215 	/* Cache whatever we got, even if there was an error, otherwise the
8216 	 * successful stats retrievals would get lost.
8217 	 */
8218 	netdev_hw_stats64_add(stats, &report_delta.stats);
8219 
8220 	if (p_stats)
8221 		*p_stats = *stats;
8222 	*p_used = report_delta.used;
8223 
8224 	return notifier_to_errno(rc);
8225 }
8226 
8227 int netdev_offload_xstats_get(struct net_device *dev,
8228 			      enum netdev_offload_xstats_type type,
8229 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8230 			      struct netlink_ext_ack *extack)
8231 {
8232 	ASSERT_RTNL();
8233 
8234 	if (p_stats)
8235 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8236 						       p_used, extack);
8237 	else
8238 		return netdev_offload_xstats_get_used(dev, type, p_used,
8239 						      extack);
8240 }
8241 EXPORT_SYMBOL(netdev_offload_xstats_get);
8242 
8243 void
8244 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8245 				   const struct rtnl_hw_stats64 *stats)
8246 {
8247 	report_delta->used = true;
8248 	netdev_hw_stats64_add(&report_delta->stats, stats);
8249 }
8250 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8251 
8252 void
8253 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8254 {
8255 	report_used->used = true;
8256 }
8257 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8258 
8259 void netdev_offload_xstats_push_delta(struct net_device *dev,
8260 				      enum netdev_offload_xstats_type type,
8261 				      const struct rtnl_hw_stats64 *p_stats)
8262 {
8263 	struct rtnl_hw_stats64 *stats;
8264 
8265 	ASSERT_RTNL();
8266 
8267 	stats = netdev_offload_xstats_get_ptr(dev, type);
8268 	if (WARN_ON(!stats))
8269 		return;
8270 
8271 	netdev_hw_stats64_add(stats, p_stats);
8272 }
8273 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8274 
8275 /**
8276  * netdev_get_xmit_slave - Get the xmit slave of master device
8277  * @dev: device
8278  * @skb: The packet
8279  * @all_slaves: assume all the slaves are active
8280  *
8281  * The reference counters are not incremented so the caller must be
8282  * careful with locks. The caller must hold RCU lock.
8283  * %NULL is returned if no slave is found.
8284  */
8285 
8286 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8287 					 struct sk_buff *skb,
8288 					 bool all_slaves)
8289 {
8290 	const struct net_device_ops *ops = dev->netdev_ops;
8291 
8292 	if (!ops->ndo_get_xmit_slave)
8293 		return NULL;
8294 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8295 }
8296 EXPORT_SYMBOL(netdev_get_xmit_slave);
8297 
8298 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8299 						  struct sock *sk)
8300 {
8301 	const struct net_device_ops *ops = dev->netdev_ops;
8302 
8303 	if (!ops->ndo_sk_get_lower_dev)
8304 		return NULL;
8305 	return ops->ndo_sk_get_lower_dev(dev, sk);
8306 }
8307 
8308 /**
8309  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8310  * @dev: device
8311  * @sk: the socket
8312  *
8313  * %NULL is returned if no lower device is found.
8314  */
8315 
8316 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8317 					    struct sock *sk)
8318 {
8319 	struct net_device *lower;
8320 
8321 	lower = netdev_sk_get_lower_dev(dev, sk);
8322 	while (lower) {
8323 		dev = lower;
8324 		lower = netdev_sk_get_lower_dev(dev, sk);
8325 	}
8326 
8327 	return dev;
8328 }
8329 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8330 
8331 static void netdev_adjacent_add_links(struct net_device *dev)
8332 {
8333 	struct netdev_adjacent *iter;
8334 
8335 	struct net *net = dev_net(dev);
8336 
8337 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8338 		if (!net_eq(net, dev_net(iter->dev)))
8339 			continue;
8340 		netdev_adjacent_sysfs_add(iter->dev, dev,
8341 					  &iter->dev->adj_list.lower);
8342 		netdev_adjacent_sysfs_add(dev, iter->dev,
8343 					  &dev->adj_list.upper);
8344 	}
8345 
8346 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8347 		if (!net_eq(net, dev_net(iter->dev)))
8348 			continue;
8349 		netdev_adjacent_sysfs_add(iter->dev, dev,
8350 					  &iter->dev->adj_list.upper);
8351 		netdev_adjacent_sysfs_add(dev, iter->dev,
8352 					  &dev->adj_list.lower);
8353 	}
8354 }
8355 
8356 static void netdev_adjacent_del_links(struct net_device *dev)
8357 {
8358 	struct netdev_adjacent *iter;
8359 
8360 	struct net *net = dev_net(dev);
8361 
8362 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8363 		if (!net_eq(net, dev_net(iter->dev)))
8364 			continue;
8365 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8366 					  &iter->dev->adj_list.lower);
8367 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8368 					  &dev->adj_list.upper);
8369 	}
8370 
8371 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8372 		if (!net_eq(net, dev_net(iter->dev)))
8373 			continue;
8374 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8375 					  &iter->dev->adj_list.upper);
8376 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8377 					  &dev->adj_list.lower);
8378 	}
8379 }
8380 
8381 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8382 {
8383 	struct netdev_adjacent *iter;
8384 
8385 	struct net *net = dev_net(dev);
8386 
8387 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8388 		if (!net_eq(net, dev_net(iter->dev)))
8389 			continue;
8390 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8391 					  &iter->dev->adj_list.lower);
8392 		netdev_adjacent_sysfs_add(iter->dev, dev,
8393 					  &iter->dev->adj_list.lower);
8394 	}
8395 
8396 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8397 		if (!net_eq(net, dev_net(iter->dev)))
8398 			continue;
8399 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8400 					  &iter->dev->adj_list.upper);
8401 		netdev_adjacent_sysfs_add(iter->dev, dev,
8402 					  &iter->dev->adj_list.upper);
8403 	}
8404 }
8405 
8406 void *netdev_lower_dev_get_private(struct net_device *dev,
8407 				   struct net_device *lower_dev)
8408 {
8409 	struct netdev_adjacent *lower;
8410 
8411 	if (!lower_dev)
8412 		return NULL;
8413 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8414 	if (!lower)
8415 		return NULL;
8416 
8417 	return lower->private;
8418 }
8419 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8420 
8421 
8422 /**
8423  * netdev_lower_state_changed - Dispatch event about lower device state change
8424  * @lower_dev: device
8425  * @lower_state_info: state to dispatch
8426  *
8427  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8428  * The caller must hold the RTNL lock.
8429  */
8430 void netdev_lower_state_changed(struct net_device *lower_dev,
8431 				void *lower_state_info)
8432 {
8433 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8434 		.info.dev = lower_dev,
8435 	};
8436 
8437 	ASSERT_RTNL();
8438 	changelowerstate_info.lower_state_info = lower_state_info;
8439 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8440 				      &changelowerstate_info.info);
8441 }
8442 EXPORT_SYMBOL(netdev_lower_state_changed);
8443 
8444 static void dev_change_rx_flags(struct net_device *dev, int flags)
8445 {
8446 	const struct net_device_ops *ops = dev->netdev_ops;
8447 
8448 	if (ops->ndo_change_rx_flags)
8449 		ops->ndo_change_rx_flags(dev, flags);
8450 }
8451 
8452 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8453 {
8454 	unsigned int old_flags = dev->flags;
8455 	kuid_t uid;
8456 	kgid_t gid;
8457 
8458 	ASSERT_RTNL();
8459 
8460 	dev->flags |= IFF_PROMISC;
8461 	dev->promiscuity += inc;
8462 	if (dev->promiscuity == 0) {
8463 		/*
8464 		 * Avoid overflow.
8465 		 * If inc causes overflow, untouch promisc and return error.
8466 		 */
8467 		if (inc < 0)
8468 			dev->flags &= ~IFF_PROMISC;
8469 		else {
8470 			dev->promiscuity -= inc;
8471 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8472 			return -EOVERFLOW;
8473 		}
8474 	}
8475 	if (dev->flags != old_flags) {
8476 		netdev_info(dev, "%s promiscuous mode\n",
8477 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8478 		if (audit_enabled) {
8479 			current_uid_gid(&uid, &gid);
8480 			audit_log(audit_context(), GFP_ATOMIC,
8481 				  AUDIT_ANOM_PROMISCUOUS,
8482 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8483 				  dev->name, (dev->flags & IFF_PROMISC),
8484 				  (old_flags & IFF_PROMISC),
8485 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8486 				  from_kuid(&init_user_ns, uid),
8487 				  from_kgid(&init_user_ns, gid),
8488 				  audit_get_sessionid(current));
8489 		}
8490 
8491 		dev_change_rx_flags(dev, IFF_PROMISC);
8492 	}
8493 	if (notify)
8494 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8495 	return 0;
8496 }
8497 
8498 /**
8499  *	dev_set_promiscuity	- update promiscuity count on a device
8500  *	@dev: device
8501  *	@inc: modifier
8502  *
8503  *	Add or remove promiscuity from a device. While the count in the device
8504  *	remains above zero the interface remains promiscuous. Once it hits zero
8505  *	the device reverts back to normal filtering operation. A negative inc
8506  *	value is used to drop promiscuity on the device.
8507  *	Return 0 if successful or a negative errno code on error.
8508  */
8509 int dev_set_promiscuity(struct net_device *dev, int inc)
8510 {
8511 	unsigned int old_flags = dev->flags;
8512 	int err;
8513 
8514 	err = __dev_set_promiscuity(dev, inc, true);
8515 	if (err < 0)
8516 		return err;
8517 	if (dev->flags != old_flags)
8518 		dev_set_rx_mode(dev);
8519 	return err;
8520 }
8521 EXPORT_SYMBOL(dev_set_promiscuity);
8522 
8523 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8524 {
8525 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8526 
8527 	ASSERT_RTNL();
8528 
8529 	dev->flags |= IFF_ALLMULTI;
8530 	dev->allmulti += inc;
8531 	if (dev->allmulti == 0) {
8532 		/*
8533 		 * Avoid overflow.
8534 		 * If inc causes overflow, untouch allmulti and return error.
8535 		 */
8536 		if (inc < 0)
8537 			dev->flags &= ~IFF_ALLMULTI;
8538 		else {
8539 			dev->allmulti -= inc;
8540 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8541 			return -EOVERFLOW;
8542 		}
8543 	}
8544 	if (dev->flags ^ old_flags) {
8545 		netdev_info(dev, "%s allmulticast mode\n",
8546 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8547 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8548 		dev_set_rx_mode(dev);
8549 		if (notify)
8550 			__dev_notify_flags(dev, old_flags,
8551 					   dev->gflags ^ old_gflags, 0, NULL);
8552 	}
8553 	return 0;
8554 }
8555 
8556 /**
8557  *	dev_set_allmulti	- update allmulti count on a device
8558  *	@dev: device
8559  *	@inc: modifier
8560  *
8561  *	Add or remove reception of all multicast frames to a device. While the
8562  *	count in the device remains above zero the interface remains listening
8563  *	to all interfaces. Once it hits zero the device reverts back to normal
8564  *	filtering operation. A negative @inc value is used to drop the counter
8565  *	when releasing a resource needing all multicasts.
8566  *	Return 0 if successful or a negative errno code on error.
8567  */
8568 
8569 int dev_set_allmulti(struct net_device *dev, int inc)
8570 {
8571 	return __dev_set_allmulti(dev, inc, true);
8572 }
8573 EXPORT_SYMBOL(dev_set_allmulti);
8574 
8575 /*
8576  *	Upload unicast and multicast address lists to device and
8577  *	configure RX filtering. When the device doesn't support unicast
8578  *	filtering it is put in promiscuous mode while unicast addresses
8579  *	are present.
8580  */
8581 void __dev_set_rx_mode(struct net_device *dev)
8582 {
8583 	const struct net_device_ops *ops = dev->netdev_ops;
8584 
8585 	/* dev_open will call this function so the list will stay sane. */
8586 	if (!(dev->flags&IFF_UP))
8587 		return;
8588 
8589 	if (!netif_device_present(dev))
8590 		return;
8591 
8592 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8593 		/* Unicast addresses changes may only happen under the rtnl,
8594 		 * therefore calling __dev_set_promiscuity here is safe.
8595 		 */
8596 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8597 			__dev_set_promiscuity(dev, 1, false);
8598 			dev->uc_promisc = true;
8599 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8600 			__dev_set_promiscuity(dev, -1, false);
8601 			dev->uc_promisc = false;
8602 		}
8603 	}
8604 
8605 	if (ops->ndo_set_rx_mode)
8606 		ops->ndo_set_rx_mode(dev);
8607 }
8608 
8609 void dev_set_rx_mode(struct net_device *dev)
8610 {
8611 	netif_addr_lock_bh(dev);
8612 	__dev_set_rx_mode(dev);
8613 	netif_addr_unlock_bh(dev);
8614 }
8615 
8616 /**
8617  *	dev_get_flags - get flags reported to userspace
8618  *	@dev: device
8619  *
8620  *	Get the combination of flag bits exported through APIs to userspace.
8621  */
8622 unsigned int dev_get_flags(const struct net_device *dev)
8623 {
8624 	unsigned int flags;
8625 
8626 	flags = (dev->flags & ~(IFF_PROMISC |
8627 				IFF_ALLMULTI |
8628 				IFF_RUNNING |
8629 				IFF_LOWER_UP |
8630 				IFF_DORMANT)) |
8631 		(dev->gflags & (IFF_PROMISC |
8632 				IFF_ALLMULTI));
8633 
8634 	if (netif_running(dev)) {
8635 		if (netif_oper_up(dev))
8636 			flags |= IFF_RUNNING;
8637 		if (netif_carrier_ok(dev))
8638 			flags |= IFF_LOWER_UP;
8639 		if (netif_dormant(dev))
8640 			flags |= IFF_DORMANT;
8641 	}
8642 
8643 	return flags;
8644 }
8645 EXPORT_SYMBOL(dev_get_flags);
8646 
8647 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8648 		       struct netlink_ext_ack *extack)
8649 {
8650 	unsigned int old_flags = dev->flags;
8651 	int ret;
8652 
8653 	ASSERT_RTNL();
8654 
8655 	/*
8656 	 *	Set the flags on our device.
8657 	 */
8658 
8659 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8660 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8661 			       IFF_AUTOMEDIA)) |
8662 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8663 				    IFF_ALLMULTI));
8664 
8665 	/*
8666 	 *	Load in the correct multicast list now the flags have changed.
8667 	 */
8668 
8669 	if ((old_flags ^ flags) & IFF_MULTICAST)
8670 		dev_change_rx_flags(dev, IFF_MULTICAST);
8671 
8672 	dev_set_rx_mode(dev);
8673 
8674 	/*
8675 	 *	Have we downed the interface. We handle IFF_UP ourselves
8676 	 *	according to user attempts to set it, rather than blindly
8677 	 *	setting it.
8678 	 */
8679 
8680 	ret = 0;
8681 	if ((old_flags ^ flags) & IFF_UP) {
8682 		if (old_flags & IFF_UP)
8683 			__dev_close(dev);
8684 		else
8685 			ret = __dev_open(dev, extack);
8686 	}
8687 
8688 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8689 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8690 		unsigned int old_flags = dev->flags;
8691 
8692 		dev->gflags ^= IFF_PROMISC;
8693 
8694 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8695 			if (dev->flags != old_flags)
8696 				dev_set_rx_mode(dev);
8697 	}
8698 
8699 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8700 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8701 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8702 	 */
8703 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8704 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8705 
8706 		dev->gflags ^= IFF_ALLMULTI;
8707 		__dev_set_allmulti(dev, inc, false);
8708 	}
8709 
8710 	return ret;
8711 }
8712 
8713 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8714 			unsigned int gchanges, u32 portid,
8715 			const struct nlmsghdr *nlh)
8716 {
8717 	unsigned int changes = dev->flags ^ old_flags;
8718 
8719 	if (gchanges)
8720 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8721 
8722 	if (changes & IFF_UP) {
8723 		if (dev->flags & IFF_UP)
8724 			call_netdevice_notifiers(NETDEV_UP, dev);
8725 		else
8726 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8727 	}
8728 
8729 	if (dev->flags & IFF_UP &&
8730 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8731 		struct netdev_notifier_change_info change_info = {
8732 			.info = {
8733 				.dev = dev,
8734 			},
8735 			.flags_changed = changes,
8736 		};
8737 
8738 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8739 	}
8740 }
8741 
8742 /**
8743  *	dev_change_flags - change device settings
8744  *	@dev: device
8745  *	@flags: device state flags
8746  *	@extack: netlink extended ack
8747  *
8748  *	Change settings on device based state flags. The flags are
8749  *	in the userspace exported format.
8750  */
8751 int dev_change_flags(struct net_device *dev, unsigned int flags,
8752 		     struct netlink_ext_ack *extack)
8753 {
8754 	int ret;
8755 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8756 
8757 	ret = __dev_change_flags(dev, flags, extack);
8758 	if (ret < 0)
8759 		return ret;
8760 
8761 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8762 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8763 	return ret;
8764 }
8765 EXPORT_SYMBOL(dev_change_flags);
8766 
8767 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8768 {
8769 	const struct net_device_ops *ops = dev->netdev_ops;
8770 
8771 	if (ops->ndo_change_mtu)
8772 		return ops->ndo_change_mtu(dev, new_mtu);
8773 
8774 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8775 	WRITE_ONCE(dev->mtu, new_mtu);
8776 	return 0;
8777 }
8778 EXPORT_SYMBOL(__dev_set_mtu);
8779 
8780 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8781 		     struct netlink_ext_ack *extack)
8782 {
8783 	/* MTU must be positive, and in range */
8784 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8785 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8786 		return -EINVAL;
8787 	}
8788 
8789 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8790 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8791 		return -EINVAL;
8792 	}
8793 	return 0;
8794 }
8795 
8796 /**
8797  *	dev_set_mtu_ext - Change maximum transfer unit
8798  *	@dev: device
8799  *	@new_mtu: new transfer unit
8800  *	@extack: netlink extended ack
8801  *
8802  *	Change the maximum transfer size of the network device.
8803  */
8804 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8805 		    struct netlink_ext_ack *extack)
8806 {
8807 	int err, orig_mtu;
8808 
8809 	if (new_mtu == dev->mtu)
8810 		return 0;
8811 
8812 	err = dev_validate_mtu(dev, new_mtu, extack);
8813 	if (err)
8814 		return err;
8815 
8816 	if (!netif_device_present(dev))
8817 		return -ENODEV;
8818 
8819 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8820 	err = notifier_to_errno(err);
8821 	if (err)
8822 		return err;
8823 
8824 	orig_mtu = dev->mtu;
8825 	err = __dev_set_mtu(dev, new_mtu);
8826 
8827 	if (!err) {
8828 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8829 						   orig_mtu);
8830 		err = notifier_to_errno(err);
8831 		if (err) {
8832 			/* setting mtu back and notifying everyone again,
8833 			 * so that they have a chance to revert changes.
8834 			 */
8835 			__dev_set_mtu(dev, orig_mtu);
8836 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8837 						     new_mtu);
8838 		}
8839 	}
8840 	return err;
8841 }
8842 
8843 int dev_set_mtu(struct net_device *dev, int new_mtu)
8844 {
8845 	struct netlink_ext_ack extack;
8846 	int err;
8847 
8848 	memset(&extack, 0, sizeof(extack));
8849 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8850 	if (err && extack._msg)
8851 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8852 	return err;
8853 }
8854 EXPORT_SYMBOL(dev_set_mtu);
8855 
8856 /**
8857  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8858  *	@dev: device
8859  *	@new_len: new tx queue length
8860  */
8861 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8862 {
8863 	unsigned int orig_len = dev->tx_queue_len;
8864 	int res;
8865 
8866 	if (new_len != (unsigned int)new_len)
8867 		return -ERANGE;
8868 
8869 	if (new_len != orig_len) {
8870 		dev->tx_queue_len = new_len;
8871 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8872 		res = notifier_to_errno(res);
8873 		if (res)
8874 			goto err_rollback;
8875 		res = dev_qdisc_change_tx_queue_len(dev);
8876 		if (res)
8877 			goto err_rollback;
8878 	}
8879 
8880 	return 0;
8881 
8882 err_rollback:
8883 	netdev_err(dev, "refused to change device tx_queue_len\n");
8884 	dev->tx_queue_len = orig_len;
8885 	return res;
8886 }
8887 
8888 /**
8889  *	dev_set_group - Change group this device belongs to
8890  *	@dev: device
8891  *	@new_group: group this device should belong to
8892  */
8893 void dev_set_group(struct net_device *dev, int new_group)
8894 {
8895 	dev->group = new_group;
8896 }
8897 
8898 /**
8899  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8900  *	@dev: device
8901  *	@addr: new address
8902  *	@extack: netlink extended ack
8903  */
8904 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8905 			      struct netlink_ext_ack *extack)
8906 {
8907 	struct netdev_notifier_pre_changeaddr_info info = {
8908 		.info.dev = dev,
8909 		.info.extack = extack,
8910 		.dev_addr = addr,
8911 	};
8912 	int rc;
8913 
8914 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8915 	return notifier_to_errno(rc);
8916 }
8917 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8918 
8919 /**
8920  *	dev_set_mac_address - Change Media Access Control Address
8921  *	@dev: device
8922  *	@sa: new address
8923  *	@extack: netlink extended ack
8924  *
8925  *	Change the hardware (MAC) address of the device
8926  */
8927 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8928 			struct netlink_ext_ack *extack)
8929 {
8930 	const struct net_device_ops *ops = dev->netdev_ops;
8931 	int err;
8932 
8933 	if (!ops->ndo_set_mac_address)
8934 		return -EOPNOTSUPP;
8935 	if (sa->sa_family != dev->type)
8936 		return -EINVAL;
8937 	if (!netif_device_present(dev))
8938 		return -ENODEV;
8939 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8940 	if (err)
8941 		return err;
8942 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8943 		err = ops->ndo_set_mac_address(dev, sa);
8944 		if (err)
8945 			return err;
8946 	}
8947 	dev->addr_assign_type = NET_ADDR_SET;
8948 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8949 	add_device_randomness(dev->dev_addr, dev->addr_len);
8950 	return 0;
8951 }
8952 EXPORT_SYMBOL(dev_set_mac_address);
8953 
8954 static DECLARE_RWSEM(dev_addr_sem);
8955 
8956 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8957 			     struct netlink_ext_ack *extack)
8958 {
8959 	int ret;
8960 
8961 	down_write(&dev_addr_sem);
8962 	ret = dev_set_mac_address(dev, sa, extack);
8963 	up_write(&dev_addr_sem);
8964 	return ret;
8965 }
8966 EXPORT_SYMBOL(dev_set_mac_address_user);
8967 
8968 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8969 {
8970 	size_t size = sizeof(sa->sa_data_min);
8971 	struct net_device *dev;
8972 	int ret = 0;
8973 
8974 	down_read(&dev_addr_sem);
8975 	rcu_read_lock();
8976 
8977 	dev = dev_get_by_name_rcu(net, dev_name);
8978 	if (!dev) {
8979 		ret = -ENODEV;
8980 		goto unlock;
8981 	}
8982 	if (!dev->addr_len)
8983 		memset(sa->sa_data, 0, size);
8984 	else
8985 		memcpy(sa->sa_data, dev->dev_addr,
8986 		       min_t(size_t, size, dev->addr_len));
8987 	sa->sa_family = dev->type;
8988 
8989 unlock:
8990 	rcu_read_unlock();
8991 	up_read(&dev_addr_sem);
8992 	return ret;
8993 }
8994 EXPORT_SYMBOL(dev_get_mac_address);
8995 
8996 /**
8997  *	dev_change_carrier - Change device carrier
8998  *	@dev: device
8999  *	@new_carrier: new value
9000  *
9001  *	Change device carrier
9002  */
9003 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9004 {
9005 	const struct net_device_ops *ops = dev->netdev_ops;
9006 
9007 	if (!ops->ndo_change_carrier)
9008 		return -EOPNOTSUPP;
9009 	if (!netif_device_present(dev))
9010 		return -ENODEV;
9011 	return ops->ndo_change_carrier(dev, new_carrier);
9012 }
9013 
9014 /**
9015  *	dev_get_phys_port_id - Get device physical port ID
9016  *	@dev: device
9017  *	@ppid: port ID
9018  *
9019  *	Get device physical port ID
9020  */
9021 int dev_get_phys_port_id(struct net_device *dev,
9022 			 struct netdev_phys_item_id *ppid)
9023 {
9024 	const struct net_device_ops *ops = dev->netdev_ops;
9025 
9026 	if (!ops->ndo_get_phys_port_id)
9027 		return -EOPNOTSUPP;
9028 	return ops->ndo_get_phys_port_id(dev, ppid);
9029 }
9030 
9031 /**
9032  *	dev_get_phys_port_name - Get device physical port name
9033  *	@dev: device
9034  *	@name: port name
9035  *	@len: limit of bytes to copy to name
9036  *
9037  *	Get device physical port name
9038  */
9039 int dev_get_phys_port_name(struct net_device *dev,
9040 			   char *name, size_t len)
9041 {
9042 	const struct net_device_ops *ops = dev->netdev_ops;
9043 	int err;
9044 
9045 	if (ops->ndo_get_phys_port_name) {
9046 		err = ops->ndo_get_phys_port_name(dev, name, len);
9047 		if (err != -EOPNOTSUPP)
9048 			return err;
9049 	}
9050 	return devlink_compat_phys_port_name_get(dev, name, len);
9051 }
9052 
9053 /**
9054  *	dev_get_port_parent_id - Get the device's port parent identifier
9055  *	@dev: network device
9056  *	@ppid: pointer to a storage for the port's parent identifier
9057  *	@recurse: allow/disallow recursion to lower devices
9058  *
9059  *	Get the devices's port parent identifier
9060  */
9061 int dev_get_port_parent_id(struct net_device *dev,
9062 			   struct netdev_phys_item_id *ppid,
9063 			   bool recurse)
9064 {
9065 	const struct net_device_ops *ops = dev->netdev_ops;
9066 	struct netdev_phys_item_id first = { };
9067 	struct net_device *lower_dev;
9068 	struct list_head *iter;
9069 	int err;
9070 
9071 	if (ops->ndo_get_port_parent_id) {
9072 		err = ops->ndo_get_port_parent_id(dev, ppid);
9073 		if (err != -EOPNOTSUPP)
9074 			return err;
9075 	}
9076 
9077 	err = devlink_compat_switch_id_get(dev, ppid);
9078 	if (!recurse || err != -EOPNOTSUPP)
9079 		return err;
9080 
9081 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9082 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9083 		if (err)
9084 			break;
9085 		if (!first.id_len)
9086 			first = *ppid;
9087 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9088 			return -EOPNOTSUPP;
9089 	}
9090 
9091 	return err;
9092 }
9093 EXPORT_SYMBOL(dev_get_port_parent_id);
9094 
9095 /**
9096  *	netdev_port_same_parent_id - Indicate if two network devices have
9097  *	the same port parent identifier
9098  *	@a: first network device
9099  *	@b: second network device
9100  */
9101 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9102 {
9103 	struct netdev_phys_item_id a_id = { };
9104 	struct netdev_phys_item_id b_id = { };
9105 
9106 	if (dev_get_port_parent_id(a, &a_id, true) ||
9107 	    dev_get_port_parent_id(b, &b_id, true))
9108 		return false;
9109 
9110 	return netdev_phys_item_id_same(&a_id, &b_id);
9111 }
9112 EXPORT_SYMBOL(netdev_port_same_parent_id);
9113 
9114 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9115 {
9116 #if IS_ENABLED(CONFIG_DPLL)
9117 	rtnl_lock();
9118 	dev->dpll_pin = dpll_pin;
9119 	rtnl_unlock();
9120 #endif
9121 }
9122 
9123 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9124 {
9125 	WARN_ON(!dpll_pin);
9126 	netdev_dpll_pin_assign(dev, dpll_pin);
9127 }
9128 EXPORT_SYMBOL(netdev_dpll_pin_set);
9129 
9130 void netdev_dpll_pin_clear(struct net_device *dev)
9131 {
9132 	netdev_dpll_pin_assign(dev, NULL);
9133 }
9134 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9135 
9136 /**
9137  *	dev_change_proto_down - set carrier according to proto_down.
9138  *
9139  *	@dev: device
9140  *	@proto_down: new value
9141  */
9142 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9143 {
9144 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9145 		return -EOPNOTSUPP;
9146 	if (!netif_device_present(dev))
9147 		return -ENODEV;
9148 	if (proto_down)
9149 		netif_carrier_off(dev);
9150 	else
9151 		netif_carrier_on(dev);
9152 	dev->proto_down = proto_down;
9153 	return 0;
9154 }
9155 
9156 /**
9157  *	dev_change_proto_down_reason - proto down reason
9158  *
9159  *	@dev: device
9160  *	@mask: proto down mask
9161  *	@value: proto down value
9162  */
9163 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9164 				  u32 value)
9165 {
9166 	int b;
9167 
9168 	if (!mask) {
9169 		dev->proto_down_reason = value;
9170 	} else {
9171 		for_each_set_bit(b, &mask, 32) {
9172 			if (value & (1 << b))
9173 				dev->proto_down_reason |= BIT(b);
9174 			else
9175 				dev->proto_down_reason &= ~BIT(b);
9176 		}
9177 	}
9178 }
9179 
9180 struct bpf_xdp_link {
9181 	struct bpf_link link;
9182 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9183 	int flags;
9184 };
9185 
9186 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9187 {
9188 	if (flags & XDP_FLAGS_HW_MODE)
9189 		return XDP_MODE_HW;
9190 	if (flags & XDP_FLAGS_DRV_MODE)
9191 		return XDP_MODE_DRV;
9192 	if (flags & XDP_FLAGS_SKB_MODE)
9193 		return XDP_MODE_SKB;
9194 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9195 }
9196 
9197 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9198 {
9199 	switch (mode) {
9200 	case XDP_MODE_SKB:
9201 		return generic_xdp_install;
9202 	case XDP_MODE_DRV:
9203 	case XDP_MODE_HW:
9204 		return dev->netdev_ops->ndo_bpf;
9205 	default:
9206 		return NULL;
9207 	}
9208 }
9209 
9210 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9211 					 enum bpf_xdp_mode mode)
9212 {
9213 	return dev->xdp_state[mode].link;
9214 }
9215 
9216 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9217 				     enum bpf_xdp_mode mode)
9218 {
9219 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9220 
9221 	if (link)
9222 		return link->link.prog;
9223 	return dev->xdp_state[mode].prog;
9224 }
9225 
9226 u8 dev_xdp_prog_count(struct net_device *dev)
9227 {
9228 	u8 count = 0;
9229 	int i;
9230 
9231 	for (i = 0; i < __MAX_XDP_MODE; i++)
9232 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9233 			count++;
9234 	return count;
9235 }
9236 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9237 
9238 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9239 {
9240 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9241 
9242 	return prog ? prog->aux->id : 0;
9243 }
9244 
9245 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9246 			     struct bpf_xdp_link *link)
9247 {
9248 	dev->xdp_state[mode].link = link;
9249 	dev->xdp_state[mode].prog = NULL;
9250 }
9251 
9252 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9253 			     struct bpf_prog *prog)
9254 {
9255 	dev->xdp_state[mode].link = NULL;
9256 	dev->xdp_state[mode].prog = prog;
9257 }
9258 
9259 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9260 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9261 			   u32 flags, struct bpf_prog *prog)
9262 {
9263 	struct netdev_bpf xdp;
9264 	int err;
9265 
9266 	memset(&xdp, 0, sizeof(xdp));
9267 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9268 	xdp.extack = extack;
9269 	xdp.flags = flags;
9270 	xdp.prog = prog;
9271 
9272 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9273 	 * "moved" into driver), so they don't increment it on their own, but
9274 	 * they do decrement refcnt when program is detached or replaced.
9275 	 * Given net_device also owns link/prog, we need to bump refcnt here
9276 	 * to prevent drivers from underflowing it.
9277 	 */
9278 	if (prog)
9279 		bpf_prog_inc(prog);
9280 	err = bpf_op(dev, &xdp);
9281 	if (err) {
9282 		if (prog)
9283 			bpf_prog_put(prog);
9284 		return err;
9285 	}
9286 
9287 	if (mode != XDP_MODE_HW)
9288 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9289 
9290 	return 0;
9291 }
9292 
9293 static void dev_xdp_uninstall(struct net_device *dev)
9294 {
9295 	struct bpf_xdp_link *link;
9296 	struct bpf_prog *prog;
9297 	enum bpf_xdp_mode mode;
9298 	bpf_op_t bpf_op;
9299 
9300 	ASSERT_RTNL();
9301 
9302 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9303 		prog = dev_xdp_prog(dev, mode);
9304 		if (!prog)
9305 			continue;
9306 
9307 		bpf_op = dev_xdp_bpf_op(dev, mode);
9308 		if (!bpf_op)
9309 			continue;
9310 
9311 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9312 
9313 		/* auto-detach link from net device */
9314 		link = dev_xdp_link(dev, mode);
9315 		if (link)
9316 			link->dev = NULL;
9317 		else
9318 			bpf_prog_put(prog);
9319 
9320 		dev_xdp_set_link(dev, mode, NULL);
9321 	}
9322 }
9323 
9324 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9325 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9326 			  struct bpf_prog *old_prog, u32 flags)
9327 {
9328 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9329 	struct bpf_prog *cur_prog;
9330 	struct net_device *upper;
9331 	struct list_head *iter;
9332 	enum bpf_xdp_mode mode;
9333 	bpf_op_t bpf_op;
9334 	int err;
9335 
9336 	ASSERT_RTNL();
9337 
9338 	/* either link or prog attachment, never both */
9339 	if (link && (new_prog || old_prog))
9340 		return -EINVAL;
9341 	/* link supports only XDP mode flags */
9342 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9343 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9344 		return -EINVAL;
9345 	}
9346 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9347 	if (num_modes > 1) {
9348 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9349 		return -EINVAL;
9350 	}
9351 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9352 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9353 		NL_SET_ERR_MSG(extack,
9354 			       "More than one program loaded, unset mode is ambiguous");
9355 		return -EINVAL;
9356 	}
9357 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9358 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9359 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9360 		return -EINVAL;
9361 	}
9362 
9363 	mode = dev_xdp_mode(dev, flags);
9364 	/* can't replace attached link */
9365 	if (dev_xdp_link(dev, mode)) {
9366 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9367 		return -EBUSY;
9368 	}
9369 
9370 	/* don't allow if an upper device already has a program */
9371 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9372 		if (dev_xdp_prog_count(upper) > 0) {
9373 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9374 			return -EEXIST;
9375 		}
9376 	}
9377 
9378 	cur_prog = dev_xdp_prog(dev, mode);
9379 	/* can't replace attached prog with link */
9380 	if (link && cur_prog) {
9381 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9382 		return -EBUSY;
9383 	}
9384 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9385 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9386 		return -EEXIST;
9387 	}
9388 
9389 	/* put effective new program into new_prog */
9390 	if (link)
9391 		new_prog = link->link.prog;
9392 
9393 	if (new_prog) {
9394 		bool offload = mode == XDP_MODE_HW;
9395 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9396 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9397 
9398 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9399 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9400 			return -EBUSY;
9401 		}
9402 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9403 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9404 			return -EEXIST;
9405 		}
9406 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9407 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9408 			return -EINVAL;
9409 		}
9410 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9411 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9412 			return -EINVAL;
9413 		}
9414 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9415 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9416 			return -EINVAL;
9417 		}
9418 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9419 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9420 			return -EINVAL;
9421 		}
9422 	}
9423 
9424 	/* don't call drivers if the effective program didn't change */
9425 	if (new_prog != cur_prog) {
9426 		bpf_op = dev_xdp_bpf_op(dev, mode);
9427 		if (!bpf_op) {
9428 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9429 			return -EOPNOTSUPP;
9430 		}
9431 
9432 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9433 		if (err)
9434 			return err;
9435 	}
9436 
9437 	if (link)
9438 		dev_xdp_set_link(dev, mode, link);
9439 	else
9440 		dev_xdp_set_prog(dev, mode, new_prog);
9441 	if (cur_prog)
9442 		bpf_prog_put(cur_prog);
9443 
9444 	return 0;
9445 }
9446 
9447 static int dev_xdp_attach_link(struct net_device *dev,
9448 			       struct netlink_ext_ack *extack,
9449 			       struct bpf_xdp_link *link)
9450 {
9451 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9452 }
9453 
9454 static int dev_xdp_detach_link(struct net_device *dev,
9455 			       struct netlink_ext_ack *extack,
9456 			       struct bpf_xdp_link *link)
9457 {
9458 	enum bpf_xdp_mode mode;
9459 	bpf_op_t bpf_op;
9460 
9461 	ASSERT_RTNL();
9462 
9463 	mode = dev_xdp_mode(dev, link->flags);
9464 	if (dev_xdp_link(dev, mode) != link)
9465 		return -EINVAL;
9466 
9467 	bpf_op = dev_xdp_bpf_op(dev, mode);
9468 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9469 	dev_xdp_set_link(dev, mode, NULL);
9470 	return 0;
9471 }
9472 
9473 static void bpf_xdp_link_release(struct bpf_link *link)
9474 {
9475 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9476 
9477 	rtnl_lock();
9478 
9479 	/* if racing with net_device's tear down, xdp_link->dev might be
9480 	 * already NULL, in which case link was already auto-detached
9481 	 */
9482 	if (xdp_link->dev) {
9483 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9484 		xdp_link->dev = NULL;
9485 	}
9486 
9487 	rtnl_unlock();
9488 }
9489 
9490 static int bpf_xdp_link_detach(struct bpf_link *link)
9491 {
9492 	bpf_xdp_link_release(link);
9493 	return 0;
9494 }
9495 
9496 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9497 {
9498 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9499 
9500 	kfree(xdp_link);
9501 }
9502 
9503 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9504 				     struct seq_file *seq)
9505 {
9506 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9507 	u32 ifindex = 0;
9508 
9509 	rtnl_lock();
9510 	if (xdp_link->dev)
9511 		ifindex = xdp_link->dev->ifindex;
9512 	rtnl_unlock();
9513 
9514 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9515 }
9516 
9517 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9518 				       struct bpf_link_info *info)
9519 {
9520 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9521 	u32 ifindex = 0;
9522 
9523 	rtnl_lock();
9524 	if (xdp_link->dev)
9525 		ifindex = xdp_link->dev->ifindex;
9526 	rtnl_unlock();
9527 
9528 	info->xdp.ifindex = ifindex;
9529 	return 0;
9530 }
9531 
9532 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9533 			       struct bpf_prog *old_prog)
9534 {
9535 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9536 	enum bpf_xdp_mode mode;
9537 	bpf_op_t bpf_op;
9538 	int err = 0;
9539 
9540 	rtnl_lock();
9541 
9542 	/* link might have been auto-released already, so fail */
9543 	if (!xdp_link->dev) {
9544 		err = -ENOLINK;
9545 		goto out_unlock;
9546 	}
9547 
9548 	if (old_prog && link->prog != old_prog) {
9549 		err = -EPERM;
9550 		goto out_unlock;
9551 	}
9552 	old_prog = link->prog;
9553 	if (old_prog->type != new_prog->type ||
9554 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9555 		err = -EINVAL;
9556 		goto out_unlock;
9557 	}
9558 
9559 	if (old_prog == new_prog) {
9560 		/* no-op, don't disturb drivers */
9561 		bpf_prog_put(new_prog);
9562 		goto out_unlock;
9563 	}
9564 
9565 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9566 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9567 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9568 			      xdp_link->flags, new_prog);
9569 	if (err)
9570 		goto out_unlock;
9571 
9572 	old_prog = xchg(&link->prog, new_prog);
9573 	bpf_prog_put(old_prog);
9574 
9575 out_unlock:
9576 	rtnl_unlock();
9577 	return err;
9578 }
9579 
9580 static const struct bpf_link_ops bpf_xdp_link_lops = {
9581 	.release = bpf_xdp_link_release,
9582 	.dealloc = bpf_xdp_link_dealloc,
9583 	.detach = bpf_xdp_link_detach,
9584 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9585 	.fill_link_info = bpf_xdp_link_fill_link_info,
9586 	.update_prog = bpf_xdp_link_update,
9587 };
9588 
9589 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9590 {
9591 	struct net *net = current->nsproxy->net_ns;
9592 	struct bpf_link_primer link_primer;
9593 	struct netlink_ext_ack extack = {};
9594 	struct bpf_xdp_link *link;
9595 	struct net_device *dev;
9596 	int err, fd;
9597 
9598 	rtnl_lock();
9599 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9600 	if (!dev) {
9601 		rtnl_unlock();
9602 		return -EINVAL;
9603 	}
9604 
9605 	link = kzalloc(sizeof(*link), GFP_USER);
9606 	if (!link) {
9607 		err = -ENOMEM;
9608 		goto unlock;
9609 	}
9610 
9611 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9612 	link->dev = dev;
9613 	link->flags = attr->link_create.flags;
9614 
9615 	err = bpf_link_prime(&link->link, &link_primer);
9616 	if (err) {
9617 		kfree(link);
9618 		goto unlock;
9619 	}
9620 
9621 	err = dev_xdp_attach_link(dev, &extack, link);
9622 	rtnl_unlock();
9623 
9624 	if (err) {
9625 		link->dev = NULL;
9626 		bpf_link_cleanup(&link_primer);
9627 		trace_bpf_xdp_link_attach_failed(extack._msg);
9628 		goto out_put_dev;
9629 	}
9630 
9631 	fd = bpf_link_settle(&link_primer);
9632 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9633 	dev_put(dev);
9634 	return fd;
9635 
9636 unlock:
9637 	rtnl_unlock();
9638 
9639 out_put_dev:
9640 	dev_put(dev);
9641 	return err;
9642 }
9643 
9644 /**
9645  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9646  *	@dev: device
9647  *	@extack: netlink extended ack
9648  *	@fd: new program fd or negative value to clear
9649  *	@expected_fd: old program fd that userspace expects to replace or clear
9650  *	@flags: xdp-related flags
9651  *
9652  *	Set or clear a bpf program for a device
9653  */
9654 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9655 		      int fd, int expected_fd, u32 flags)
9656 {
9657 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9658 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9659 	int err;
9660 
9661 	ASSERT_RTNL();
9662 
9663 	if (fd >= 0) {
9664 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9665 						 mode != XDP_MODE_SKB);
9666 		if (IS_ERR(new_prog))
9667 			return PTR_ERR(new_prog);
9668 	}
9669 
9670 	if (expected_fd >= 0) {
9671 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9672 						 mode != XDP_MODE_SKB);
9673 		if (IS_ERR(old_prog)) {
9674 			err = PTR_ERR(old_prog);
9675 			old_prog = NULL;
9676 			goto err_out;
9677 		}
9678 	}
9679 
9680 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9681 
9682 err_out:
9683 	if (err && new_prog)
9684 		bpf_prog_put(new_prog);
9685 	if (old_prog)
9686 		bpf_prog_put(old_prog);
9687 	return err;
9688 }
9689 
9690 /**
9691  * dev_index_reserve() - allocate an ifindex in a namespace
9692  * @net: the applicable net namespace
9693  * @ifindex: requested ifindex, pass %0 to get one allocated
9694  *
9695  * Allocate a ifindex for a new device. Caller must either use the ifindex
9696  * to store the device (via list_netdevice()) or call dev_index_release()
9697  * to give the index up.
9698  *
9699  * Return: a suitable unique value for a new device interface number or -errno.
9700  */
9701 static int dev_index_reserve(struct net *net, u32 ifindex)
9702 {
9703 	int err;
9704 
9705 	if (ifindex > INT_MAX) {
9706 		DEBUG_NET_WARN_ON_ONCE(1);
9707 		return -EINVAL;
9708 	}
9709 
9710 	if (!ifindex)
9711 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9712 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9713 	else
9714 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9715 	if (err < 0)
9716 		return err;
9717 
9718 	return ifindex;
9719 }
9720 
9721 static void dev_index_release(struct net *net, int ifindex)
9722 {
9723 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9724 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9725 }
9726 
9727 /* Delayed registration/unregisteration */
9728 LIST_HEAD(net_todo_list);
9729 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9730 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9731 
9732 static void net_set_todo(struct net_device *dev)
9733 {
9734 	list_add_tail(&dev->todo_list, &net_todo_list);
9735 }
9736 
9737 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9738 	struct net_device *upper, netdev_features_t features)
9739 {
9740 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9741 	netdev_features_t feature;
9742 	int feature_bit;
9743 
9744 	for_each_netdev_feature(upper_disables, feature_bit) {
9745 		feature = __NETIF_F_BIT(feature_bit);
9746 		if (!(upper->wanted_features & feature)
9747 		    && (features & feature)) {
9748 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9749 				   &feature, upper->name);
9750 			features &= ~feature;
9751 		}
9752 	}
9753 
9754 	return features;
9755 }
9756 
9757 static void netdev_sync_lower_features(struct net_device *upper,
9758 	struct net_device *lower, netdev_features_t features)
9759 {
9760 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9761 	netdev_features_t feature;
9762 	int feature_bit;
9763 
9764 	for_each_netdev_feature(upper_disables, feature_bit) {
9765 		feature = __NETIF_F_BIT(feature_bit);
9766 		if (!(features & feature) && (lower->features & feature)) {
9767 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9768 				   &feature, lower->name);
9769 			lower->wanted_features &= ~feature;
9770 			__netdev_update_features(lower);
9771 
9772 			if (unlikely(lower->features & feature))
9773 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9774 					    &feature, lower->name);
9775 			else
9776 				netdev_features_change(lower);
9777 		}
9778 	}
9779 }
9780 
9781 static netdev_features_t netdev_fix_features(struct net_device *dev,
9782 	netdev_features_t features)
9783 {
9784 	/* Fix illegal checksum combinations */
9785 	if ((features & NETIF_F_HW_CSUM) &&
9786 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9787 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9788 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9789 	}
9790 
9791 	/* TSO requires that SG is present as well. */
9792 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9793 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9794 		features &= ~NETIF_F_ALL_TSO;
9795 	}
9796 
9797 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9798 					!(features & NETIF_F_IP_CSUM)) {
9799 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9800 		features &= ~NETIF_F_TSO;
9801 		features &= ~NETIF_F_TSO_ECN;
9802 	}
9803 
9804 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9805 					 !(features & NETIF_F_IPV6_CSUM)) {
9806 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9807 		features &= ~NETIF_F_TSO6;
9808 	}
9809 
9810 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9811 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9812 		features &= ~NETIF_F_TSO_MANGLEID;
9813 
9814 	/* TSO ECN requires that TSO is present as well. */
9815 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9816 		features &= ~NETIF_F_TSO_ECN;
9817 
9818 	/* Software GSO depends on SG. */
9819 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9820 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9821 		features &= ~NETIF_F_GSO;
9822 	}
9823 
9824 	/* GSO partial features require GSO partial be set */
9825 	if ((features & dev->gso_partial_features) &&
9826 	    !(features & NETIF_F_GSO_PARTIAL)) {
9827 		netdev_dbg(dev,
9828 			   "Dropping partially supported GSO features since no GSO partial.\n");
9829 		features &= ~dev->gso_partial_features;
9830 	}
9831 
9832 	if (!(features & NETIF_F_RXCSUM)) {
9833 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9834 		 * successfully merged by hardware must also have the
9835 		 * checksum verified by hardware.  If the user does not
9836 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9837 		 */
9838 		if (features & NETIF_F_GRO_HW) {
9839 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9840 			features &= ~NETIF_F_GRO_HW;
9841 		}
9842 	}
9843 
9844 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9845 	if (features & NETIF_F_RXFCS) {
9846 		if (features & NETIF_F_LRO) {
9847 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9848 			features &= ~NETIF_F_LRO;
9849 		}
9850 
9851 		if (features & NETIF_F_GRO_HW) {
9852 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9853 			features &= ~NETIF_F_GRO_HW;
9854 		}
9855 	}
9856 
9857 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9858 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9859 		features &= ~NETIF_F_LRO;
9860 	}
9861 
9862 	if (features & NETIF_F_HW_TLS_TX) {
9863 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9864 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9865 		bool hw_csum = features & NETIF_F_HW_CSUM;
9866 
9867 		if (!ip_csum && !hw_csum) {
9868 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9869 			features &= ~NETIF_F_HW_TLS_TX;
9870 		}
9871 	}
9872 
9873 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9874 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9875 		features &= ~NETIF_F_HW_TLS_RX;
9876 	}
9877 
9878 	return features;
9879 }
9880 
9881 int __netdev_update_features(struct net_device *dev)
9882 {
9883 	struct net_device *upper, *lower;
9884 	netdev_features_t features;
9885 	struct list_head *iter;
9886 	int err = -1;
9887 
9888 	ASSERT_RTNL();
9889 
9890 	features = netdev_get_wanted_features(dev);
9891 
9892 	if (dev->netdev_ops->ndo_fix_features)
9893 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9894 
9895 	/* driver might be less strict about feature dependencies */
9896 	features = netdev_fix_features(dev, features);
9897 
9898 	/* some features can't be enabled if they're off on an upper device */
9899 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9900 		features = netdev_sync_upper_features(dev, upper, features);
9901 
9902 	if (dev->features == features)
9903 		goto sync_lower;
9904 
9905 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9906 		&dev->features, &features);
9907 
9908 	if (dev->netdev_ops->ndo_set_features)
9909 		err = dev->netdev_ops->ndo_set_features(dev, features);
9910 	else
9911 		err = 0;
9912 
9913 	if (unlikely(err < 0)) {
9914 		netdev_err(dev,
9915 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9916 			err, &features, &dev->features);
9917 		/* return non-0 since some features might have changed and
9918 		 * it's better to fire a spurious notification than miss it
9919 		 */
9920 		return -1;
9921 	}
9922 
9923 sync_lower:
9924 	/* some features must be disabled on lower devices when disabled
9925 	 * on an upper device (think: bonding master or bridge)
9926 	 */
9927 	netdev_for_each_lower_dev(dev, lower, iter)
9928 		netdev_sync_lower_features(dev, lower, features);
9929 
9930 	if (!err) {
9931 		netdev_features_t diff = features ^ dev->features;
9932 
9933 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9934 			/* udp_tunnel_{get,drop}_rx_info both need
9935 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9936 			 * device, or they won't do anything.
9937 			 * Thus we need to update dev->features
9938 			 * *before* calling udp_tunnel_get_rx_info,
9939 			 * but *after* calling udp_tunnel_drop_rx_info.
9940 			 */
9941 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9942 				dev->features = features;
9943 				udp_tunnel_get_rx_info(dev);
9944 			} else {
9945 				udp_tunnel_drop_rx_info(dev);
9946 			}
9947 		}
9948 
9949 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9950 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9951 				dev->features = features;
9952 				err |= vlan_get_rx_ctag_filter_info(dev);
9953 			} else {
9954 				vlan_drop_rx_ctag_filter_info(dev);
9955 			}
9956 		}
9957 
9958 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9959 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9960 				dev->features = features;
9961 				err |= vlan_get_rx_stag_filter_info(dev);
9962 			} else {
9963 				vlan_drop_rx_stag_filter_info(dev);
9964 			}
9965 		}
9966 
9967 		dev->features = features;
9968 	}
9969 
9970 	return err < 0 ? 0 : 1;
9971 }
9972 
9973 /**
9974  *	netdev_update_features - recalculate device features
9975  *	@dev: the device to check
9976  *
9977  *	Recalculate dev->features set and send notifications if it
9978  *	has changed. Should be called after driver or hardware dependent
9979  *	conditions might have changed that influence the features.
9980  */
9981 void netdev_update_features(struct net_device *dev)
9982 {
9983 	if (__netdev_update_features(dev))
9984 		netdev_features_change(dev);
9985 }
9986 EXPORT_SYMBOL(netdev_update_features);
9987 
9988 /**
9989  *	netdev_change_features - recalculate device features
9990  *	@dev: the device to check
9991  *
9992  *	Recalculate dev->features set and send notifications even
9993  *	if they have not changed. Should be called instead of
9994  *	netdev_update_features() if also dev->vlan_features might
9995  *	have changed to allow the changes to be propagated to stacked
9996  *	VLAN devices.
9997  */
9998 void netdev_change_features(struct net_device *dev)
9999 {
10000 	__netdev_update_features(dev);
10001 	netdev_features_change(dev);
10002 }
10003 EXPORT_SYMBOL(netdev_change_features);
10004 
10005 /**
10006  *	netif_stacked_transfer_operstate -	transfer operstate
10007  *	@rootdev: the root or lower level device to transfer state from
10008  *	@dev: the device to transfer operstate to
10009  *
10010  *	Transfer operational state from root to device. This is normally
10011  *	called when a stacking relationship exists between the root
10012  *	device and the device(a leaf device).
10013  */
10014 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10015 					struct net_device *dev)
10016 {
10017 	if (rootdev->operstate == IF_OPER_DORMANT)
10018 		netif_dormant_on(dev);
10019 	else
10020 		netif_dormant_off(dev);
10021 
10022 	if (rootdev->operstate == IF_OPER_TESTING)
10023 		netif_testing_on(dev);
10024 	else
10025 		netif_testing_off(dev);
10026 
10027 	if (netif_carrier_ok(rootdev))
10028 		netif_carrier_on(dev);
10029 	else
10030 		netif_carrier_off(dev);
10031 }
10032 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10033 
10034 static int netif_alloc_rx_queues(struct net_device *dev)
10035 {
10036 	unsigned int i, count = dev->num_rx_queues;
10037 	struct netdev_rx_queue *rx;
10038 	size_t sz = count * sizeof(*rx);
10039 	int err = 0;
10040 
10041 	BUG_ON(count < 1);
10042 
10043 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10044 	if (!rx)
10045 		return -ENOMEM;
10046 
10047 	dev->_rx = rx;
10048 
10049 	for (i = 0; i < count; i++) {
10050 		rx[i].dev = dev;
10051 
10052 		/* XDP RX-queue setup */
10053 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10054 		if (err < 0)
10055 			goto err_rxq_info;
10056 	}
10057 	return 0;
10058 
10059 err_rxq_info:
10060 	/* Rollback successful reg's and free other resources */
10061 	while (i--)
10062 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10063 	kvfree(dev->_rx);
10064 	dev->_rx = NULL;
10065 	return err;
10066 }
10067 
10068 static void netif_free_rx_queues(struct net_device *dev)
10069 {
10070 	unsigned int i, count = dev->num_rx_queues;
10071 
10072 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10073 	if (!dev->_rx)
10074 		return;
10075 
10076 	for (i = 0; i < count; i++)
10077 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10078 
10079 	kvfree(dev->_rx);
10080 }
10081 
10082 static void netdev_init_one_queue(struct net_device *dev,
10083 				  struct netdev_queue *queue, void *_unused)
10084 {
10085 	/* Initialize queue lock */
10086 	spin_lock_init(&queue->_xmit_lock);
10087 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10088 	queue->xmit_lock_owner = -1;
10089 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10090 	queue->dev = dev;
10091 #ifdef CONFIG_BQL
10092 	dql_init(&queue->dql, HZ);
10093 #endif
10094 }
10095 
10096 static void netif_free_tx_queues(struct net_device *dev)
10097 {
10098 	kvfree(dev->_tx);
10099 }
10100 
10101 static int netif_alloc_netdev_queues(struct net_device *dev)
10102 {
10103 	unsigned int count = dev->num_tx_queues;
10104 	struct netdev_queue *tx;
10105 	size_t sz = count * sizeof(*tx);
10106 
10107 	if (count < 1 || count > 0xffff)
10108 		return -EINVAL;
10109 
10110 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10111 	if (!tx)
10112 		return -ENOMEM;
10113 
10114 	dev->_tx = tx;
10115 
10116 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10117 	spin_lock_init(&dev->tx_global_lock);
10118 
10119 	return 0;
10120 }
10121 
10122 void netif_tx_stop_all_queues(struct net_device *dev)
10123 {
10124 	unsigned int i;
10125 
10126 	for (i = 0; i < dev->num_tx_queues; i++) {
10127 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10128 
10129 		netif_tx_stop_queue(txq);
10130 	}
10131 }
10132 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10133 
10134 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10135 {
10136 	void __percpu *v;
10137 
10138 	/* Drivers implementing ndo_get_peer_dev must support tstat
10139 	 * accounting, so that skb_do_redirect() can bump the dev's
10140 	 * RX stats upon network namespace switch.
10141 	 */
10142 	if (dev->netdev_ops->ndo_get_peer_dev &&
10143 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10144 		return -EOPNOTSUPP;
10145 
10146 	switch (dev->pcpu_stat_type) {
10147 	case NETDEV_PCPU_STAT_NONE:
10148 		return 0;
10149 	case NETDEV_PCPU_STAT_LSTATS:
10150 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10151 		break;
10152 	case NETDEV_PCPU_STAT_TSTATS:
10153 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10154 		break;
10155 	case NETDEV_PCPU_STAT_DSTATS:
10156 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10157 		break;
10158 	default:
10159 		return -EINVAL;
10160 	}
10161 
10162 	return v ? 0 : -ENOMEM;
10163 }
10164 
10165 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10166 {
10167 	switch (dev->pcpu_stat_type) {
10168 	case NETDEV_PCPU_STAT_NONE:
10169 		return;
10170 	case NETDEV_PCPU_STAT_LSTATS:
10171 		free_percpu(dev->lstats);
10172 		break;
10173 	case NETDEV_PCPU_STAT_TSTATS:
10174 		free_percpu(dev->tstats);
10175 		break;
10176 	case NETDEV_PCPU_STAT_DSTATS:
10177 		free_percpu(dev->dstats);
10178 		break;
10179 	}
10180 }
10181 
10182 /**
10183  * register_netdevice() - register a network device
10184  * @dev: device to register
10185  *
10186  * Take a prepared network device structure and make it externally accessible.
10187  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10188  * Callers must hold the rtnl lock - you may want register_netdev()
10189  * instead of this.
10190  */
10191 int register_netdevice(struct net_device *dev)
10192 {
10193 	int ret;
10194 	struct net *net = dev_net(dev);
10195 
10196 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10197 		     NETDEV_FEATURE_COUNT);
10198 	BUG_ON(dev_boot_phase);
10199 	ASSERT_RTNL();
10200 
10201 	might_sleep();
10202 
10203 	/* When net_device's are persistent, this will be fatal. */
10204 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10205 	BUG_ON(!net);
10206 
10207 	ret = ethtool_check_ops(dev->ethtool_ops);
10208 	if (ret)
10209 		return ret;
10210 
10211 	spin_lock_init(&dev->addr_list_lock);
10212 	netdev_set_addr_lockdep_class(dev);
10213 
10214 	ret = dev_get_valid_name(net, dev, dev->name);
10215 	if (ret < 0)
10216 		goto out;
10217 
10218 	ret = -ENOMEM;
10219 	dev->name_node = netdev_name_node_head_alloc(dev);
10220 	if (!dev->name_node)
10221 		goto out;
10222 
10223 	/* Init, if this function is available */
10224 	if (dev->netdev_ops->ndo_init) {
10225 		ret = dev->netdev_ops->ndo_init(dev);
10226 		if (ret) {
10227 			if (ret > 0)
10228 				ret = -EIO;
10229 			goto err_free_name;
10230 		}
10231 	}
10232 
10233 	if (((dev->hw_features | dev->features) &
10234 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10235 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10236 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10237 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10238 		ret = -EINVAL;
10239 		goto err_uninit;
10240 	}
10241 
10242 	ret = netdev_do_alloc_pcpu_stats(dev);
10243 	if (ret)
10244 		goto err_uninit;
10245 
10246 	ret = dev_index_reserve(net, dev->ifindex);
10247 	if (ret < 0)
10248 		goto err_free_pcpu;
10249 	dev->ifindex = ret;
10250 
10251 	/* Transfer changeable features to wanted_features and enable
10252 	 * software offloads (GSO and GRO).
10253 	 */
10254 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10255 	dev->features |= NETIF_F_SOFT_FEATURES;
10256 
10257 	if (dev->udp_tunnel_nic_info) {
10258 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10259 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10260 	}
10261 
10262 	dev->wanted_features = dev->features & dev->hw_features;
10263 
10264 	if (!(dev->flags & IFF_LOOPBACK))
10265 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10266 
10267 	/* If IPv4 TCP segmentation offload is supported we should also
10268 	 * allow the device to enable segmenting the frame with the option
10269 	 * of ignoring a static IP ID value.  This doesn't enable the
10270 	 * feature itself but allows the user to enable it later.
10271 	 */
10272 	if (dev->hw_features & NETIF_F_TSO)
10273 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10274 	if (dev->vlan_features & NETIF_F_TSO)
10275 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10276 	if (dev->mpls_features & NETIF_F_TSO)
10277 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10278 	if (dev->hw_enc_features & NETIF_F_TSO)
10279 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10280 
10281 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10282 	 */
10283 	dev->vlan_features |= NETIF_F_HIGHDMA;
10284 
10285 	/* Make NETIF_F_SG inheritable to tunnel devices.
10286 	 */
10287 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10288 
10289 	/* Make NETIF_F_SG inheritable to MPLS.
10290 	 */
10291 	dev->mpls_features |= NETIF_F_SG;
10292 
10293 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10294 	ret = notifier_to_errno(ret);
10295 	if (ret)
10296 		goto err_ifindex_release;
10297 
10298 	ret = netdev_register_kobject(dev);
10299 	write_lock(&dev_base_lock);
10300 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10301 	write_unlock(&dev_base_lock);
10302 	if (ret)
10303 		goto err_uninit_notify;
10304 
10305 	__netdev_update_features(dev);
10306 
10307 	/*
10308 	 *	Default initial state at registry is that the
10309 	 *	device is present.
10310 	 */
10311 
10312 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10313 
10314 	linkwatch_init_dev(dev);
10315 
10316 	dev_init_scheduler(dev);
10317 
10318 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10319 	list_netdevice(dev);
10320 
10321 	add_device_randomness(dev->dev_addr, dev->addr_len);
10322 
10323 	/* If the device has permanent device address, driver should
10324 	 * set dev_addr and also addr_assign_type should be set to
10325 	 * NET_ADDR_PERM (default value).
10326 	 */
10327 	if (dev->addr_assign_type == NET_ADDR_PERM)
10328 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10329 
10330 	/* Notify protocols, that a new device appeared. */
10331 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10332 	ret = notifier_to_errno(ret);
10333 	if (ret) {
10334 		/* Expect explicit free_netdev() on failure */
10335 		dev->needs_free_netdev = false;
10336 		unregister_netdevice_queue(dev, NULL);
10337 		goto out;
10338 	}
10339 	/*
10340 	 *	Prevent userspace races by waiting until the network
10341 	 *	device is fully setup before sending notifications.
10342 	 */
10343 	if (!dev->rtnl_link_ops ||
10344 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10345 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10346 
10347 out:
10348 	return ret;
10349 
10350 err_uninit_notify:
10351 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10352 err_ifindex_release:
10353 	dev_index_release(net, dev->ifindex);
10354 err_free_pcpu:
10355 	netdev_do_free_pcpu_stats(dev);
10356 err_uninit:
10357 	if (dev->netdev_ops->ndo_uninit)
10358 		dev->netdev_ops->ndo_uninit(dev);
10359 	if (dev->priv_destructor)
10360 		dev->priv_destructor(dev);
10361 err_free_name:
10362 	netdev_name_node_free(dev->name_node);
10363 	goto out;
10364 }
10365 EXPORT_SYMBOL(register_netdevice);
10366 
10367 /**
10368  *	init_dummy_netdev	- init a dummy network device for NAPI
10369  *	@dev: device to init
10370  *
10371  *	This takes a network device structure and initialize the minimum
10372  *	amount of fields so it can be used to schedule NAPI polls without
10373  *	registering a full blown interface. This is to be used by drivers
10374  *	that need to tie several hardware interfaces to a single NAPI
10375  *	poll scheduler due to HW limitations.
10376  */
10377 void init_dummy_netdev(struct net_device *dev)
10378 {
10379 	/* Clear everything. Note we don't initialize spinlocks
10380 	 * are they aren't supposed to be taken by any of the
10381 	 * NAPI code and this dummy netdev is supposed to be
10382 	 * only ever used for NAPI polls
10383 	 */
10384 	memset(dev, 0, sizeof(struct net_device));
10385 
10386 	/* make sure we BUG if trying to hit standard
10387 	 * register/unregister code path
10388 	 */
10389 	dev->reg_state = NETREG_DUMMY;
10390 
10391 	/* NAPI wants this */
10392 	INIT_LIST_HEAD(&dev->napi_list);
10393 
10394 	/* a dummy interface is started by default */
10395 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10396 	set_bit(__LINK_STATE_START, &dev->state);
10397 
10398 	/* napi_busy_loop stats accounting wants this */
10399 	dev_net_set(dev, &init_net);
10400 
10401 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10402 	 * because users of this 'device' dont need to change
10403 	 * its refcount.
10404 	 */
10405 }
10406 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10407 
10408 
10409 /**
10410  *	register_netdev	- register a network device
10411  *	@dev: device to register
10412  *
10413  *	Take a completed network device structure and add it to the kernel
10414  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10415  *	chain. 0 is returned on success. A negative errno code is returned
10416  *	on a failure to set up the device, or if the name is a duplicate.
10417  *
10418  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10419  *	and expands the device name if you passed a format string to
10420  *	alloc_netdev.
10421  */
10422 int register_netdev(struct net_device *dev)
10423 {
10424 	int err;
10425 
10426 	if (rtnl_lock_killable())
10427 		return -EINTR;
10428 	err = register_netdevice(dev);
10429 	rtnl_unlock();
10430 	return err;
10431 }
10432 EXPORT_SYMBOL(register_netdev);
10433 
10434 int netdev_refcnt_read(const struct net_device *dev)
10435 {
10436 #ifdef CONFIG_PCPU_DEV_REFCNT
10437 	int i, refcnt = 0;
10438 
10439 	for_each_possible_cpu(i)
10440 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10441 	return refcnt;
10442 #else
10443 	return refcount_read(&dev->dev_refcnt);
10444 #endif
10445 }
10446 EXPORT_SYMBOL(netdev_refcnt_read);
10447 
10448 int netdev_unregister_timeout_secs __read_mostly = 10;
10449 
10450 #define WAIT_REFS_MIN_MSECS 1
10451 #define WAIT_REFS_MAX_MSECS 250
10452 /**
10453  * netdev_wait_allrefs_any - wait until all references are gone.
10454  * @list: list of net_devices to wait on
10455  *
10456  * This is called when unregistering network devices.
10457  *
10458  * Any protocol or device that holds a reference should register
10459  * for netdevice notification, and cleanup and put back the
10460  * reference if they receive an UNREGISTER event.
10461  * We can get stuck here if buggy protocols don't correctly
10462  * call dev_put.
10463  */
10464 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10465 {
10466 	unsigned long rebroadcast_time, warning_time;
10467 	struct net_device *dev;
10468 	int wait = 0;
10469 
10470 	rebroadcast_time = warning_time = jiffies;
10471 
10472 	list_for_each_entry(dev, list, todo_list)
10473 		if (netdev_refcnt_read(dev) == 1)
10474 			return dev;
10475 
10476 	while (true) {
10477 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10478 			rtnl_lock();
10479 
10480 			/* Rebroadcast unregister notification */
10481 			list_for_each_entry(dev, list, todo_list)
10482 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10483 
10484 			__rtnl_unlock();
10485 			rcu_barrier();
10486 			rtnl_lock();
10487 
10488 			list_for_each_entry(dev, list, todo_list)
10489 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10490 					     &dev->state)) {
10491 					/* We must not have linkwatch events
10492 					 * pending on unregister. If this
10493 					 * happens, we simply run the queue
10494 					 * unscheduled, resulting in a noop
10495 					 * for this device.
10496 					 */
10497 					linkwatch_run_queue();
10498 					break;
10499 				}
10500 
10501 			__rtnl_unlock();
10502 
10503 			rebroadcast_time = jiffies;
10504 		}
10505 
10506 		if (!wait) {
10507 			rcu_barrier();
10508 			wait = WAIT_REFS_MIN_MSECS;
10509 		} else {
10510 			msleep(wait);
10511 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10512 		}
10513 
10514 		list_for_each_entry(dev, list, todo_list)
10515 			if (netdev_refcnt_read(dev) == 1)
10516 				return dev;
10517 
10518 		if (time_after(jiffies, warning_time +
10519 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10520 			list_for_each_entry(dev, list, todo_list) {
10521 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10522 					 dev->name, netdev_refcnt_read(dev));
10523 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10524 			}
10525 
10526 			warning_time = jiffies;
10527 		}
10528 	}
10529 }
10530 
10531 /* The sequence is:
10532  *
10533  *	rtnl_lock();
10534  *	...
10535  *	register_netdevice(x1);
10536  *	register_netdevice(x2);
10537  *	...
10538  *	unregister_netdevice(y1);
10539  *	unregister_netdevice(y2);
10540  *      ...
10541  *	rtnl_unlock();
10542  *	free_netdev(y1);
10543  *	free_netdev(y2);
10544  *
10545  * We are invoked by rtnl_unlock().
10546  * This allows us to deal with problems:
10547  * 1) We can delete sysfs objects which invoke hotplug
10548  *    without deadlocking with linkwatch via keventd.
10549  * 2) Since we run with the RTNL semaphore not held, we can sleep
10550  *    safely in order to wait for the netdev refcnt to drop to zero.
10551  *
10552  * We must not return until all unregister events added during
10553  * the interval the lock was held have been completed.
10554  */
10555 void netdev_run_todo(void)
10556 {
10557 	struct net_device *dev, *tmp;
10558 	struct list_head list;
10559 	int cnt;
10560 #ifdef CONFIG_LOCKDEP
10561 	struct list_head unlink_list;
10562 
10563 	list_replace_init(&net_unlink_list, &unlink_list);
10564 
10565 	while (!list_empty(&unlink_list)) {
10566 		struct net_device *dev = list_first_entry(&unlink_list,
10567 							  struct net_device,
10568 							  unlink_list);
10569 		list_del_init(&dev->unlink_list);
10570 		dev->nested_level = dev->lower_level - 1;
10571 	}
10572 #endif
10573 
10574 	/* Snapshot list, allow later requests */
10575 	list_replace_init(&net_todo_list, &list);
10576 
10577 	__rtnl_unlock();
10578 
10579 	/* Wait for rcu callbacks to finish before next phase */
10580 	if (!list_empty(&list))
10581 		rcu_barrier();
10582 
10583 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10584 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10585 			netdev_WARN(dev, "run_todo but not unregistering\n");
10586 			list_del(&dev->todo_list);
10587 			continue;
10588 		}
10589 
10590 		write_lock(&dev_base_lock);
10591 		dev->reg_state = NETREG_UNREGISTERED;
10592 		write_unlock(&dev_base_lock);
10593 		linkwatch_sync_dev(dev);
10594 	}
10595 
10596 	cnt = 0;
10597 	while (!list_empty(&list)) {
10598 		dev = netdev_wait_allrefs_any(&list);
10599 		list_del(&dev->todo_list);
10600 
10601 		/* paranoia */
10602 		BUG_ON(netdev_refcnt_read(dev) != 1);
10603 		BUG_ON(!list_empty(&dev->ptype_all));
10604 		BUG_ON(!list_empty(&dev->ptype_specific));
10605 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10606 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10607 
10608 		netdev_do_free_pcpu_stats(dev);
10609 		if (dev->priv_destructor)
10610 			dev->priv_destructor(dev);
10611 		if (dev->needs_free_netdev)
10612 			free_netdev(dev);
10613 
10614 		cnt++;
10615 
10616 		/* Free network device */
10617 		kobject_put(&dev->dev.kobj);
10618 	}
10619 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10620 		wake_up(&netdev_unregistering_wq);
10621 }
10622 
10623 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10624  * all the same fields in the same order as net_device_stats, with only
10625  * the type differing, but rtnl_link_stats64 may have additional fields
10626  * at the end for newer counters.
10627  */
10628 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10629 			     const struct net_device_stats *netdev_stats)
10630 {
10631 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10632 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10633 	u64 *dst = (u64 *)stats64;
10634 
10635 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10636 	for (i = 0; i < n; i++)
10637 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10638 	/* zero out counters that only exist in rtnl_link_stats64 */
10639 	memset((char *)stats64 + n * sizeof(u64), 0,
10640 	       sizeof(*stats64) - n * sizeof(u64));
10641 }
10642 EXPORT_SYMBOL(netdev_stats_to_stats64);
10643 
10644 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10645 		struct net_device *dev)
10646 {
10647 	struct net_device_core_stats __percpu *p;
10648 
10649 	p = alloc_percpu_gfp(struct net_device_core_stats,
10650 			     GFP_ATOMIC | __GFP_NOWARN);
10651 
10652 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10653 		free_percpu(p);
10654 
10655 	/* This READ_ONCE() pairs with the cmpxchg() above */
10656 	return READ_ONCE(dev->core_stats);
10657 }
10658 
10659 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10660 {
10661 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10662 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10663 	unsigned long __percpu *field;
10664 
10665 	if (unlikely(!p)) {
10666 		p = netdev_core_stats_alloc(dev);
10667 		if (!p)
10668 			return;
10669 	}
10670 
10671 	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10672 	this_cpu_inc(*field);
10673 }
10674 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10675 
10676 /**
10677  *	dev_get_stats	- get network device statistics
10678  *	@dev: device to get statistics from
10679  *	@storage: place to store stats
10680  *
10681  *	Get network statistics from device. Return @storage.
10682  *	The device driver may provide its own method by setting
10683  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10684  *	otherwise the internal statistics structure is used.
10685  */
10686 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10687 					struct rtnl_link_stats64 *storage)
10688 {
10689 	const struct net_device_ops *ops = dev->netdev_ops;
10690 	const struct net_device_core_stats __percpu *p;
10691 
10692 	if (ops->ndo_get_stats64) {
10693 		memset(storage, 0, sizeof(*storage));
10694 		ops->ndo_get_stats64(dev, storage);
10695 	} else if (ops->ndo_get_stats) {
10696 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10697 	} else {
10698 		netdev_stats_to_stats64(storage, &dev->stats);
10699 	}
10700 
10701 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10702 	p = READ_ONCE(dev->core_stats);
10703 	if (p) {
10704 		const struct net_device_core_stats *core_stats;
10705 		int i;
10706 
10707 		for_each_possible_cpu(i) {
10708 			core_stats = per_cpu_ptr(p, i);
10709 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10710 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10711 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10712 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10713 		}
10714 	}
10715 	return storage;
10716 }
10717 EXPORT_SYMBOL(dev_get_stats);
10718 
10719 /**
10720  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10721  *	@s: place to store stats
10722  *	@netstats: per-cpu network stats to read from
10723  *
10724  *	Read per-cpu network statistics and populate the related fields in @s.
10725  */
10726 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10727 			   const struct pcpu_sw_netstats __percpu *netstats)
10728 {
10729 	int cpu;
10730 
10731 	for_each_possible_cpu(cpu) {
10732 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10733 		const struct pcpu_sw_netstats *stats;
10734 		unsigned int start;
10735 
10736 		stats = per_cpu_ptr(netstats, cpu);
10737 		do {
10738 			start = u64_stats_fetch_begin(&stats->syncp);
10739 			rx_packets = u64_stats_read(&stats->rx_packets);
10740 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10741 			tx_packets = u64_stats_read(&stats->tx_packets);
10742 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10743 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10744 
10745 		s->rx_packets += rx_packets;
10746 		s->rx_bytes   += rx_bytes;
10747 		s->tx_packets += tx_packets;
10748 		s->tx_bytes   += tx_bytes;
10749 	}
10750 }
10751 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10752 
10753 /**
10754  *	dev_get_tstats64 - ndo_get_stats64 implementation
10755  *	@dev: device to get statistics from
10756  *	@s: place to store stats
10757  *
10758  *	Populate @s from dev->stats and dev->tstats. Can be used as
10759  *	ndo_get_stats64() callback.
10760  */
10761 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10762 {
10763 	netdev_stats_to_stats64(s, &dev->stats);
10764 	dev_fetch_sw_netstats(s, dev->tstats);
10765 }
10766 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10767 
10768 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10769 {
10770 	struct netdev_queue *queue = dev_ingress_queue(dev);
10771 
10772 #ifdef CONFIG_NET_CLS_ACT
10773 	if (queue)
10774 		return queue;
10775 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10776 	if (!queue)
10777 		return NULL;
10778 	netdev_init_one_queue(dev, queue, NULL);
10779 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10780 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10781 	rcu_assign_pointer(dev->ingress_queue, queue);
10782 #endif
10783 	return queue;
10784 }
10785 
10786 static const struct ethtool_ops default_ethtool_ops;
10787 
10788 void netdev_set_default_ethtool_ops(struct net_device *dev,
10789 				    const struct ethtool_ops *ops)
10790 {
10791 	if (dev->ethtool_ops == &default_ethtool_ops)
10792 		dev->ethtool_ops = ops;
10793 }
10794 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10795 
10796 /**
10797  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10798  * @dev: netdev to enable the IRQ coalescing on
10799  *
10800  * Sets a conservative default for SW IRQ coalescing. Users can use
10801  * sysfs attributes to override the default values.
10802  */
10803 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10804 {
10805 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10806 
10807 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10808 		dev->gro_flush_timeout = 20000;
10809 		dev->napi_defer_hard_irqs = 1;
10810 	}
10811 }
10812 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10813 
10814 void netdev_freemem(struct net_device *dev)
10815 {
10816 	char *addr = (char *)dev - dev->padded;
10817 
10818 	kvfree(addr);
10819 }
10820 
10821 /**
10822  * alloc_netdev_mqs - allocate network device
10823  * @sizeof_priv: size of private data to allocate space for
10824  * @name: device name format string
10825  * @name_assign_type: origin of device name
10826  * @setup: callback to initialize device
10827  * @txqs: the number of TX subqueues to allocate
10828  * @rxqs: the number of RX subqueues to allocate
10829  *
10830  * Allocates a struct net_device with private data area for driver use
10831  * and performs basic initialization.  Also allocates subqueue structs
10832  * for each queue on the device.
10833  */
10834 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10835 		unsigned char name_assign_type,
10836 		void (*setup)(struct net_device *),
10837 		unsigned int txqs, unsigned int rxqs)
10838 {
10839 	struct net_device *dev;
10840 	unsigned int alloc_size;
10841 	struct net_device *p;
10842 
10843 	BUG_ON(strlen(name) >= sizeof(dev->name));
10844 
10845 	if (txqs < 1) {
10846 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10847 		return NULL;
10848 	}
10849 
10850 	if (rxqs < 1) {
10851 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10852 		return NULL;
10853 	}
10854 
10855 	alloc_size = sizeof(struct net_device);
10856 	if (sizeof_priv) {
10857 		/* ensure 32-byte alignment of private area */
10858 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10859 		alloc_size += sizeof_priv;
10860 	}
10861 	/* ensure 32-byte alignment of whole construct */
10862 	alloc_size += NETDEV_ALIGN - 1;
10863 
10864 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10865 	if (!p)
10866 		return NULL;
10867 
10868 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10869 	dev->padded = (char *)dev - (char *)p;
10870 
10871 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10872 #ifdef CONFIG_PCPU_DEV_REFCNT
10873 	dev->pcpu_refcnt = alloc_percpu(int);
10874 	if (!dev->pcpu_refcnt)
10875 		goto free_dev;
10876 	__dev_hold(dev);
10877 #else
10878 	refcount_set(&dev->dev_refcnt, 1);
10879 #endif
10880 
10881 	if (dev_addr_init(dev))
10882 		goto free_pcpu;
10883 
10884 	dev_mc_init(dev);
10885 	dev_uc_init(dev);
10886 
10887 	dev_net_set(dev, &init_net);
10888 
10889 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10890 	dev->xdp_zc_max_segs = 1;
10891 	dev->gso_max_segs = GSO_MAX_SEGS;
10892 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10893 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10894 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10895 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10896 	dev->tso_max_segs = TSO_MAX_SEGS;
10897 	dev->upper_level = 1;
10898 	dev->lower_level = 1;
10899 #ifdef CONFIG_LOCKDEP
10900 	dev->nested_level = 0;
10901 	INIT_LIST_HEAD(&dev->unlink_list);
10902 #endif
10903 
10904 	INIT_LIST_HEAD(&dev->napi_list);
10905 	INIT_LIST_HEAD(&dev->unreg_list);
10906 	INIT_LIST_HEAD(&dev->close_list);
10907 	INIT_LIST_HEAD(&dev->link_watch_list);
10908 	INIT_LIST_HEAD(&dev->adj_list.upper);
10909 	INIT_LIST_HEAD(&dev->adj_list.lower);
10910 	INIT_LIST_HEAD(&dev->ptype_all);
10911 	INIT_LIST_HEAD(&dev->ptype_specific);
10912 	INIT_LIST_HEAD(&dev->net_notifier_list);
10913 #ifdef CONFIG_NET_SCHED
10914 	hash_init(dev->qdisc_hash);
10915 #endif
10916 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10917 	setup(dev);
10918 
10919 	if (!dev->tx_queue_len) {
10920 		dev->priv_flags |= IFF_NO_QUEUE;
10921 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10922 	}
10923 
10924 	dev->num_tx_queues = txqs;
10925 	dev->real_num_tx_queues = txqs;
10926 	if (netif_alloc_netdev_queues(dev))
10927 		goto free_all;
10928 
10929 	dev->num_rx_queues = rxqs;
10930 	dev->real_num_rx_queues = rxqs;
10931 	if (netif_alloc_rx_queues(dev))
10932 		goto free_all;
10933 
10934 	strcpy(dev->name, name);
10935 	dev->name_assign_type = name_assign_type;
10936 	dev->group = INIT_NETDEV_GROUP;
10937 	if (!dev->ethtool_ops)
10938 		dev->ethtool_ops = &default_ethtool_ops;
10939 
10940 	nf_hook_netdev_init(dev);
10941 
10942 	return dev;
10943 
10944 free_all:
10945 	free_netdev(dev);
10946 	return NULL;
10947 
10948 free_pcpu:
10949 #ifdef CONFIG_PCPU_DEV_REFCNT
10950 	free_percpu(dev->pcpu_refcnt);
10951 free_dev:
10952 #endif
10953 	netdev_freemem(dev);
10954 	return NULL;
10955 }
10956 EXPORT_SYMBOL(alloc_netdev_mqs);
10957 
10958 /**
10959  * free_netdev - free network device
10960  * @dev: device
10961  *
10962  * This function does the last stage of destroying an allocated device
10963  * interface. The reference to the device object is released. If this
10964  * is the last reference then it will be freed.Must be called in process
10965  * context.
10966  */
10967 void free_netdev(struct net_device *dev)
10968 {
10969 	struct napi_struct *p, *n;
10970 
10971 	might_sleep();
10972 
10973 	/* When called immediately after register_netdevice() failed the unwind
10974 	 * handling may still be dismantling the device. Handle that case by
10975 	 * deferring the free.
10976 	 */
10977 	if (dev->reg_state == NETREG_UNREGISTERING) {
10978 		ASSERT_RTNL();
10979 		dev->needs_free_netdev = true;
10980 		return;
10981 	}
10982 
10983 	netif_free_tx_queues(dev);
10984 	netif_free_rx_queues(dev);
10985 
10986 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10987 
10988 	/* Flush device addresses */
10989 	dev_addr_flush(dev);
10990 
10991 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10992 		netif_napi_del(p);
10993 
10994 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10995 #ifdef CONFIG_PCPU_DEV_REFCNT
10996 	free_percpu(dev->pcpu_refcnt);
10997 	dev->pcpu_refcnt = NULL;
10998 #endif
10999 	free_percpu(dev->core_stats);
11000 	dev->core_stats = NULL;
11001 	free_percpu(dev->xdp_bulkq);
11002 	dev->xdp_bulkq = NULL;
11003 
11004 	/*  Compatibility with error handling in drivers */
11005 	if (dev->reg_state == NETREG_UNINITIALIZED) {
11006 		netdev_freemem(dev);
11007 		return;
11008 	}
11009 
11010 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11011 	dev->reg_state = NETREG_RELEASED;
11012 
11013 	/* will free via device release */
11014 	put_device(&dev->dev);
11015 }
11016 EXPORT_SYMBOL(free_netdev);
11017 
11018 /**
11019  *	synchronize_net -  Synchronize with packet receive processing
11020  *
11021  *	Wait for packets currently being received to be done.
11022  *	Does not block later packets from starting.
11023  */
11024 void synchronize_net(void)
11025 {
11026 	might_sleep();
11027 	if (rtnl_is_locked())
11028 		synchronize_rcu_expedited();
11029 	else
11030 		synchronize_rcu();
11031 }
11032 EXPORT_SYMBOL(synchronize_net);
11033 
11034 /**
11035  *	unregister_netdevice_queue - remove device from the kernel
11036  *	@dev: device
11037  *	@head: list
11038  *
11039  *	This function shuts down a device interface and removes it
11040  *	from the kernel tables.
11041  *	If head not NULL, device is queued to be unregistered later.
11042  *
11043  *	Callers must hold the rtnl semaphore.  You may want
11044  *	unregister_netdev() instead of this.
11045  */
11046 
11047 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11048 {
11049 	ASSERT_RTNL();
11050 
11051 	if (head) {
11052 		list_move_tail(&dev->unreg_list, head);
11053 	} else {
11054 		LIST_HEAD(single);
11055 
11056 		list_add(&dev->unreg_list, &single);
11057 		unregister_netdevice_many(&single);
11058 	}
11059 }
11060 EXPORT_SYMBOL(unregister_netdevice_queue);
11061 
11062 void unregister_netdevice_many_notify(struct list_head *head,
11063 				      u32 portid, const struct nlmsghdr *nlh)
11064 {
11065 	struct net_device *dev, *tmp;
11066 	LIST_HEAD(close_head);
11067 	int cnt = 0;
11068 
11069 	BUG_ON(dev_boot_phase);
11070 	ASSERT_RTNL();
11071 
11072 	if (list_empty(head))
11073 		return;
11074 
11075 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11076 		/* Some devices call without registering
11077 		 * for initialization unwind. Remove those
11078 		 * devices and proceed with the remaining.
11079 		 */
11080 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11081 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11082 				 dev->name, dev);
11083 
11084 			WARN_ON(1);
11085 			list_del(&dev->unreg_list);
11086 			continue;
11087 		}
11088 		dev->dismantle = true;
11089 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11090 	}
11091 
11092 	/* If device is running, close it first. */
11093 	list_for_each_entry(dev, head, unreg_list)
11094 		list_add_tail(&dev->close_list, &close_head);
11095 	dev_close_many(&close_head, true);
11096 
11097 	list_for_each_entry(dev, head, unreg_list) {
11098 		/* And unlink it from device chain. */
11099 		write_lock(&dev_base_lock);
11100 		unlist_netdevice(dev, false);
11101 		dev->reg_state = NETREG_UNREGISTERING;
11102 		write_unlock(&dev_base_lock);
11103 	}
11104 	flush_all_backlogs();
11105 
11106 	synchronize_net();
11107 
11108 	list_for_each_entry(dev, head, unreg_list) {
11109 		struct sk_buff *skb = NULL;
11110 
11111 		/* Shutdown queueing discipline. */
11112 		dev_shutdown(dev);
11113 		dev_tcx_uninstall(dev);
11114 		dev_xdp_uninstall(dev);
11115 		bpf_dev_bound_netdev_unregister(dev);
11116 
11117 		netdev_offload_xstats_disable_all(dev);
11118 
11119 		/* Notify protocols, that we are about to destroy
11120 		 * this device. They should clean all the things.
11121 		 */
11122 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11123 
11124 		if (!dev->rtnl_link_ops ||
11125 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11126 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11127 						     GFP_KERNEL, NULL, 0,
11128 						     portid, nlh);
11129 
11130 		/*
11131 		 *	Flush the unicast and multicast chains
11132 		 */
11133 		dev_uc_flush(dev);
11134 		dev_mc_flush(dev);
11135 
11136 		netdev_name_node_alt_flush(dev);
11137 		netdev_name_node_free(dev->name_node);
11138 
11139 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11140 
11141 		if (dev->netdev_ops->ndo_uninit)
11142 			dev->netdev_ops->ndo_uninit(dev);
11143 
11144 		if (skb)
11145 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11146 
11147 		/* Notifier chain MUST detach us all upper devices. */
11148 		WARN_ON(netdev_has_any_upper_dev(dev));
11149 		WARN_ON(netdev_has_any_lower_dev(dev));
11150 
11151 		/* Remove entries from kobject tree */
11152 		netdev_unregister_kobject(dev);
11153 #ifdef CONFIG_XPS
11154 		/* Remove XPS queueing entries */
11155 		netif_reset_xps_queues_gt(dev, 0);
11156 #endif
11157 	}
11158 
11159 	synchronize_net();
11160 
11161 	list_for_each_entry(dev, head, unreg_list) {
11162 		netdev_put(dev, &dev->dev_registered_tracker);
11163 		net_set_todo(dev);
11164 		cnt++;
11165 	}
11166 	atomic_add(cnt, &dev_unreg_count);
11167 
11168 	list_del(head);
11169 }
11170 
11171 /**
11172  *	unregister_netdevice_many - unregister many devices
11173  *	@head: list of devices
11174  *
11175  *  Note: As most callers use a stack allocated list_head,
11176  *  we force a list_del() to make sure stack wont be corrupted later.
11177  */
11178 void unregister_netdevice_many(struct list_head *head)
11179 {
11180 	unregister_netdevice_many_notify(head, 0, NULL);
11181 }
11182 EXPORT_SYMBOL(unregister_netdevice_many);
11183 
11184 /**
11185  *	unregister_netdev - remove device from the kernel
11186  *	@dev: device
11187  *
11188  *	This function shuts down a device interface and removes it
11189  *	from the kernel tables.
11190  *
11191  *	This is just a wrapper for unregister_netdevice that takes
11192  *	the rtnl semaphore.  In general you want to use this and not
11193  *	unregister_netdevice.
11194  */
11195 void unregister_netdev(struct net_device *dev)
11196 {
11197 	rtnl_lock();
11198 	unregister_netdevice(dev);
11199 	rtnl_unlock();
11200 }
11201 EXPORT_SYMBOL(unregister_netdev);
11202 
11203 /**
11204  *	__dev_change_net_namespace - move device to different nethost namespace
11205  *	@dev: device
11206  *	@net: network namespace
11207  *	@pat: If not NULL name pattern to try if the current device name
11208  *	      is already taken in the destination network namespace.
11209  *	@new_ifindex: If not zero, specifies device index in the target
11210  *	              namespace.
11211  *
11212  *	This function shuts down a device interface and moves it
11213  *	to a new network namespace. On success 0 is returned, on
11214  *	a failure a netagive errno code is returned.
11215  *
11216  *	Callers must hold the rtnl semaphore.
11217  */
11218 
11219 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11220 			       const char *pat, int new_ifindex)
11221 {
11222 	struct netdev_name_node *name_node;
11223 	struct net *net_old = dev_net(dev);
11224 	char new_name[IFNAMSIZ] = {};
11225 	int err, new_nsid;
11226 
11227 	ASSERT_RTNL();
11228 
11229 	/* Don't allow namespace local devices to be moved. */
11230 	err = -EINVAL;
11231 	if (dev->features & NETIF_F_NETNS_LOCAL)
11232 		goto out;
11233 
11234 	/* Ensure the device has been registrered */
11235 	if (dev->reg_state != NETREG_REGISTERED)
11236 		goto out;
11237 
11238 	/* Get out if there is nothing todo */
11239 	err = 0;
11240 	if (net_eq(net_old, net))
11241 		goto out;
11242 
11243 	/* Pick the destination device name, and ensure
11244 	 * we can use it in the destination network namespace.
11245 	 */
11246 	err = -EEXIST;
11247 	if (netdev_name_in_use(net, dev->name)) {
11248 		/* We get here if we can't use the current device name */
11249 		if (!pat)
11250 			goto out;
11251 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11252 		if (err < 0)
11253 			goto out;
11254 	}
11255 	/* Check that none of the altnames conflicts. */
11256 	err = -EEXIST;
11257 	netdev_for_each_altname(dev, name_node)
11258 		if (netdev_name_in_use(net, name_node->name))
11259 			goto out;
11260 
11261 	/* Check that new_ifindex isn't used yet. */
11262 	if (new_ifindex) {
11263 		err = dev_index_reserve(net, new_ifindex);
11264 		if (err < 0)
11265 			goto out;
11266 	} else {
11267 		/* If there is an ifindex conflict assign a new one */
11268 		err = dev_index_reserve(net, dev->ifindex);
11269 		if (err == -EBUSY)
11270 			err = dev_index_reserve(net, 0);
11271 		if (err < 0)
11272 			goto out;
11273 		new_ifindex = err;
11274 	}
11275 
11276 	/*
11277 	 * And now a mini version of register_netdevice unregister_netdevice.
11278 	 */
11279 
11280 	/* If device is running close it first. */
11281 	dev_close(dev);
11282 
11283 	/* And unlink it from device chain */
11284 	unlist_netdevice(dev, true);
11285 
11286 	synchronize_net();
11287 
11288 	/* Shutdown queueing discipline. */
11289 	dev_shutdown(dev);
11290 
11291 	/* Notify protocols, that we are about to destroy
11292 	 * this device. They should clean all the things.
11293 	 *
11294 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11295 	 * This is wanted because this way 8021q and macvlan know
11296 	 * the device is just moving and can keep their slaves up.
11297 	 */
11298 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11299 	rcu_barrier();
11300 
11301 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11302 
11303 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11304 			    new_ifindex);
11305 
11306 	/*
11307 	 *	Flush the unicast and multicast chains
11308 	 */
11309 	dev_uc_flush(dev);
11310 	dev_mc_flush(dev);
11311 
11312 	/* Send a netdev-removed uevent to the old namespace */
11313 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11314 	netdev_adjacent_del_links(dev);
11315 
11316 	/* Move per-net netdevice notifiers that are following the netdevice */
11317 	move_netdevice_notifiers_dev_net(dev, net);
11318 
11319 	/* Actually switch the network namespace */
11320 	dev_net_set(dev, net);
11321 	dev->ifindex = new_ifindex;
11322 
11323 	if (new_name[0]) /* Rename the netdev to prepared name */
11324 		strscpy(dev->name, new_name, IFNAMSIZ);
11325 
11326 	/* Fixup kobjects */
11327 	dev_set_uevent_suppress(&dev->dev, 1);
11328 	err = device_rename(&dev->dev, dev->name);
11329 	dev_set_uevent_suppress(&dev->dev, 0);
11330 	WARN_ON(err);
11331 
11332 	/* Send a netdev-add uevent to the new namespace */
11333 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11334 	netdev_adjacent_add_links(dev);
11335 
11336 	/* Adapt owner in case owning user namespace of target network
11337 	 * namespace is different from the original one.
11338 	 */
11339 	err = netdev_change_owner(dev, net_old, net);
11340 	WARN_ON(err);
11341 
11342 	/* Add the device back in the hashes */
11343 	list_netdevice(dev);
11344 
11345 	/* Notify protocols, that a new device appeared. */
11346 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11347 
11348 	/*
11349 	 *	Prevent userspace races by waiting until the network
11350 	 *	device is fully setup before sending notifications.
11351 	 */
11352 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11353 
11354 	synchronize_net();
11355 	err = 0;
11356 out:
11357 	return err;
11358 }
11359 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11360 
11361 static int dev_cpu_dead(unsigned int oldcpu)
11362 {
11363 	struct sk_buff **list_skb;
11364 	struct sk_buff *skb;
11365 	unsigned int cpu;
11366 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11367 
11368 	local_irq_disable();
11369 	cpu = smp_processor_id();
11370 	sd = &per_cpu(softnet_data, cpu);
11371 	oldsd = &per_cpu(softnet_data, oldcpu);
11372 
11373 	/* Find end of our completion_queue. */
11374 	list_skb = &sd->completion_queue;
11375 	while (*list_skb)
11376 		list_skb = &(*list_skb)->next;
11377 	/* Append completion queue from offline CPU. */
11378 	*list_skb = oldsd->completion_queue;
11379 	oldsd->completion_queue = NULL;
11380 
11381 	/* Append output queue from offline CPU. */
11382 	if (oldsd->output_queue) {
11383 		*sd->output_queue_tailp = oldsd->output_queue;
11384 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11385 		oldsd->output_queue = NULL;
11386 		oldsd->output_queue_tailp = &oldsd->output_queue;
11387 	}
11388 	/* Append NAPI poll list from offline CPU, with one exception :
11389 	 * process_backlog() must be called by cpu owning percpu backlog.
11390 	 * We properly handle process_queue & input_pkt_queue later.
11391 	 */
11392 	while (!list_empty(&oldsd->poll_list)) {
11393 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11394 							    struct napi_struct,
11395 							    poll_list);
11396 
11397 		list_del_init(&napi->poll_list);
11398 		if (napi->poll == process_backlog)
11399 			napi->state = 0;
11400 		else
11401 			____napi_schedule(sd, napi);
11402 	}
11403 
11404 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11405 	local_irq_enable();
11406 
11407 #ifdef CONFIG_RPS
11408 	remsd = oldsd->rps_ipi_list;
11409 	oldsd->rps_ipi_list = NULL;
11410 #endif
11411 	/* send out pending IPI's on offline CPU */
11412 	net_rps_send_ipi(remsd);
11413 
11414 	/* Process offline CPU's input_pkt_queue */
11415 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11416 		netif_rx(skb);
11417 		input_queue_head_incr(oldsd);
11418 	}
11419 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11420 		netif_rx(skb);
11421 		input_queue_head_incr(oldsd);
11422 	}
11423 
11424 	return 0;
11425 }
11426 
11427 /**
11428  *	netdev_increment_features - increment feature set by one
11429  *	@all: current feature set
11430  *	@one: new feature set
11431  *	@mask: mask feature set
11432  *
11433  *	Computes a new feature set after adding a device with feature set
11434  *	@one to the master device with current feature set @all.  Will not
11435  *	enable anything that is off in @mask. Returns the new feature set.
11436  */
11437 netdev_features_t netdev_increment_features(netdev_features_t all,
11438 	netdev_features_t one, netdev_features_t mask)
11439 {
11440 	if (mask & NETIF_F_HW_CSUM)
11441 		mask |= NETIF_F_CSUM_MASK;
11442 	mask |= NETIF_F_VLAN_CHALLENGED;
11443 
11444 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11445 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11446 
11447 	/* If one device supports hw checksumming, set for all. */
11448 	if (all & NETIF_F_HW_CSUM)
11449 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11450 
11451 	return all;
11452 }
11453 EXPORT_SYMBOL(netdev_increment_features);
11454 
11455 static struct hlist_head * __net_init netdev_create_hash(void)
11456 {
11457 	int i;
11458 	struct hlist_head *hash;
11459 
11460 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11461 	if (hash != NULL)
11462 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11463 			INIT_HLIST_HEAD(&hash[i]);
11464 
11465 	return hash;
11466 }
11467 
11468 /* Initialize per network namespace state */
11469 static int __net_init netdev_init(struct net *net)
11470 {
11471 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11472 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11473 
11474 	INIT_LIST_HEAD(&net->dev_base_head);
11475 
11476 	net->dev_name_head = netdev_create_hash();
11477 	if (net->dev_name_head == NULL)
11478 		goto err_name;
11479 
11480 	net->dev_index_head = netdev_create_hash();
11481 	if (net->dev_index_head == NULL)
11482 		goto err_idx;
11483 
11484 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11485 
11486 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11487 
11488 	return 0;
11489 
11490 err_idx:
11491 	kfree(net->dev_name_head);
11492 err_name:
11493 	return -ENOMEM;
11494 }
11495 
11496 /**
11497  *	netdev_drivername - network driver for the device
11498  *	@dev: network device
11499  *
11500  *	Determine network driver for device.
11501  */
11502 const char *netdev_drivername(const struct net_device *dev)
11503 {
11504 	const struct device_driver *driver;
11505 	const struct device *parent;
11506 	const char *empty = "";
11507 
11508 	parent = dev->dev.parent;
11509 	if (!parent)
11510 		return empty;
11511 
11512 	driver = parent->driver;
11513 	if (driver && driver->name)
11514 		return driver->name;
11515 	return empty;
11516 }
11517 
11518 static void __netdev_printk(const char *level, const struct net_device *dev,
11519 			    struct va_format *vaf)
11520 {
11521 	if (dev && dev->dev.parent) {
11522 		dev_printk_emit(level[1] - '0',
11523 				dev->dev.parent,
11524 				"%s %s %s%s: %pV",
11525 				dev_driver_string(dev->dev.parent),
11526 				dev_name(dev->dev.parent),
11527 				netdev_name(dev), netdev_reg_state(dev),
11528 				vaf);
11529 	} else if (dev) {
11530 		printk("%s%s%s: %pV",
11531 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11532 	} else {
11533 		printk("%s(NULL net_device): %pV", level, vaf);
11534 	}
11535 }
11536 
11537 void netdev_printk(const char *level, const struct net_device *dev,
11538 		   const char *format, ...)
11539 {
11540 	struct va_format vaf;
11541 	va_list args;
11542 
11543 	va_start(args, format);
11544 
11545 	vaf.fmt = format;
11546 	vaf.va = &args;
11547 
11548 	__netdev_printk(level, dev, &vaf);
11549 
11550 	va_end(args);
11551 }
11552 EXPORT_SYMBOL(netdev_printk);
11553 
11554 #define define_netdev_printk_level(func, level)			\
11555 void func(const struct net_device *dev, const char *fmt, ...)	\
11556 {								\
11557 	struct va_format vaf;					\
11558 	va_list args;						\
11559 								\
11560 	va_start(args, fmt);					\
11561 								\
11562 	vaf.fmt = fmt;						\
11563 	vaf.va = &args;						\
11564 								\
11565 	__netdev_printk(level, dev, &vaf);			\
11566 								\
11567 	va_end(args);						\
11568 }								\
11569 EXPORT_SYMBOL(func);
11570 
11571 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11572 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11573 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11574 define_netdev_printk_level(netdev_err, KERN_ERR);
11575 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11576 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11577 define_netdev_printk_level(netdev_info, KERN_INFO);
11578 
11579 static void __net_exit netdev_exit(struct net *net)
11580 {
11581 	kfree(net->dev_name_head);
11582 	kfree(net->dev_index_head);
11583 	xa_destroy(&net->dev_by_index);
11584 	if (net != &init_net)
11585 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11586 }
11587 
11588 static struct pernet_operations __net_initdata netdev_net_ops = {
11589 	.init = netdev_init,
11590 	.exit = netdev_exit,
11591 };
11592 
11593 static void __net_exit default_device_exit_net(struct net *net)
11594 {
11595 	struct netdev_name_node *name_node, *tmp;
11596 	struct net_device *dev, *aux;
11597 	/*
11598 	 * Push all migratable network devices back to the
11599 	 * initial network namespace
11600 	 */
11601 	ASSERT_RTNL();
11602 	for_each_netdev_safe(net, dev, aux) {
11603 		int err;
11604 		char fb_name[IFNAMSIZ];
11605 
11606 		/* Ignore unmoveable devices (i.e. loopback) */
11607 		if (dev->features & NETIF_F_NETNS_LOCAL)
11608 			continue;
11609 
11610 		/* Leave virtual devices for the generic cleanup */
11611 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11612 			continue;
11613 
11614 		/* Push remaining network devices to init_net */
11615 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11616 		if (netdev_name_in_use(&init_net, fb_name))
11617 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11618 
11619 		netdev_for_each_altname_safe(dev, name_node, tmp)
11620 			if (netdev_name_in_use(&init_net, name_node->name))
11621 				__netdev_name_node_alt_destroy(name_node);
11622 
11623 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11624 		if (err) {
11625 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11626 				 __func__, dev->name, err);
11627 			BUG();
11628 		}
11629 	}
11630 }
11631 
11632 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11633 {
11634 	/* At exit all network devices most be removed from a network
11635 	 * namespace.  Do this in the reverse order of registration.
11636 	 * Do this across as many network namespaces as possible to
11637 	 * improve batching efficiency.
11638 	 */
11639 	struct net_device *dev;
11640 	struct net *net;
11641 	LIST_HEAD(dev_kill_list);
11642 
11643 	rtnl_lock();
11644 	list_for_each_entry(net, net_list, exit_list) {
11645 		default_device_exit_net(net);
11646 		cond_resched();
11647 	}
11648 
11649 	list_for_each_entry(net, net_list, exit_list) {
11650 		for_each_netdev_reverse(net, dev) {
11651 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11652 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11653 			else
11654 				unregister_netdevice_queue(dev, &dev_kill_list);
11655 		}
11656 	}
11657 	unregister_netdevice_many(&dev_kill_list);
11658 	rtnl_unlock();
11659 }
11660 
11661 static struct pernet_operations __net_initdata default_device_ops = {
11662 	.exit_batch = default_device_exit_batch,
11663 };
11664 
11665 static void __init net_dev_struct_check(void)
11666 {
11667 	/* TX read-mostly hotpath */
11668 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11669 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11670 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11671 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11672 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11673 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11674 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11675 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11676 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11677 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11678 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11679 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11680 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11681 #ifdef CONFIG_XPS
11682 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11683 #endif
11684 #ifdef CONFIG_NETFILTER_EGRESS
11685 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11686 #endif
11687 #ifdef CONFIG_NET_XGRESS
11688 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11689 #endif
11690 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11691 
11692 	/* TXRX read-mostly hotpath */
11693 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11694 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11695 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11696 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11697 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 30);
11698 
11699 	/* RX read-mostly hotpath */
11700 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11701 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11702 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11703 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11704 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11705 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11706 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11707 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11708 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11709 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11710 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11711 #ifdef CONFIG_NETPOLL
11712 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11713 #endif
11714 #ifdef CONFIG_NET_XGRESS
11715 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11716 #endif
11717 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11718 }
11719 
11720 /*
11721  *	Initialize the DEV module. At boot time this walks the device list and
11722  *	unhooks any devices that fail to initialise (normally hardware not
11723  *	present) and leaves us with a valid list of present and active devices.
11724  *
11725  */
11726 
11727 /*
11728  *       This is called single threaded during boot, so no need
11729  *       to take the rtnl semaphore.
11730  */
11731 static int __init net_dev_init(void)
11732 {
11733 	int i, rc = -ENOMEM;
11734 
11735 	BUG_ON(!dev_boot_phase);
11736 
11737 	net_dev_struct_check();
11738 
11739 	if (dev_proc_init())
11740 		goto out;
11741 
11742 	if (netdev_kobject_init())
11743 		goto out;
11744 
11745 	INIT_LIST_HEAD(&ptype_all);
11746 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11747 		INIT_LIST_HEAD(&ptype_base[i]);
11748 
11749 	if (register_pernet_subsys(&netdev_net_ops))
11750 		goto out;
11751 
11752 	/*
11753 	 *	Initialise the packet receive queues.
11754 	 */
11755 
11756 	for_each_possible_cpu(i) {
11757 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11758 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11759 
11760 		INIT_WORK(flush, flush_backlog);
11761 
11762 		skb_queue_head_init(&sd->input_pkt_queue);
11763 		skb_queue_head_init(&sd->process_queue);
11764 #ifdef CONFIG_XFRM_OFFLOAD
11765 		skb_queue_head_init(&sd->xfrm_backlog);
11766 #endif
11767 		INIT_LIST_HEAD(&sd->poll_list);
11768 		sd->output_queue_tailp = &sd->output_queue;
11769 #ifdef CONFIG_RPS
11770 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11771 		sd->cpu = i;
11772 #endif
11773 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11774 		spin_lock_init(&sd->defer_lock);
11775 
11776 		init_gro_hash(&sd->backlog);
11777 		sd->backlog.poll = process_backlog;
11778 		sd->backlog.weight = weight_p;
11779 	}
11780 
11781 	dev_boot_phase = 0;
11782 
11783 	/* The loopback device is special if any other network devices
11784 	 * is present in a network namespace the loopback device must
11785 	 * be present. Since we now dynamically allocate and free the
11786 	 * loopback device ensure this invariant is maintained by
11787 	 * keeping the loopback device as the first device on the
11788 	 * list of network devices.  Ensuring the loopback devices
11789 	 * is the first device that appears and the last network device
11790 	 * that disappears.
11791 	 */
11792 	if (register_pernet_device(&loopback_net_ops))
11793 		goto out;
11794 
11795 	if (register_pernet_device(&default_device_ops))
11796 		goto out;
11797 
11798 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11799 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11800 
11801 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11802 				       NULL, dev_cpu_dead);
11803 	WARN_ON(rc < 0);
11804 	rc = 0;
11805 out:
11806 	return rc;
11807 }
11808 
11809 subsys_initcall(net_dev_init);
11810