xref: /linux/net/core/dev.c (revision 37744feebc086908fd89760650f458ab19071750)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 					   struct net_device *dev,
164 					   struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232 						       const char *name)
233 {
234 	struct netdev_name_node *name_node;
235 
236 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237 	if (!name_node)
238 		return NULL;
239 	INIT_HLIST_NODE(&name_node->hlist);
240 	name_node->dev = dev;
241 	name_node->name = name;
242 	return name_node;
243 }
244 
245 static struct netdev_name_node *
246 netdev_name_node_head_alloc(struct net_device *dev)
247 {
248 	struct netdev_name_node *name_node;
249 
250 	name_node = netdev_name_node_alloc(dev, dev->name);
251 	if (!name_node)
252 		return NULL;
253 	INIT_LIST_HEAD(&name_node->list);
254 	return name_node;
255 }
256 
257 static void netdev_name_node_free(struct netdev_name_node *name_node)
258 {
259 	kfree(name_node);
260 }
261 
262 static void netdev_name_node_add(struct net *net,
263 				 struct netdev_name_node *name_node)
264 {
265 	hlist_add_head_rcu(&name_node->hlist,
266 			   dev_name_hash(net, name_node->name));
267 }
268 
269 static void netdev_name_node_del(struct netdev_name_node *name_node)
270 {
271 	hlist_del_rcu(&name_node->hlist);
272 }
273 
274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275 							const char *name)
276 {
277 	struct hlist_head *head = dev_name_hash(net, name);
278 	struct netdev_name_node *name_node;
279 
280 	hlist_for_each_entry(name_node, head, hlist)
281 		if (!strcmp(name_node->name, name))
282 			return name_node;
283 	return NULL;
284 }
285 
286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287 							    const char *name)
288 {
289 	struct hlist_head *head = dev_name_hash(net, name);
290 	struct netdev_name_node *name_node;
291 
292 	hlist_for_each_entry_rcu(name_node, head, hlist)
293 		if (!strcmp(name_node->name, name))
294 			return name_node;
295 	return NULL;
296 }
297 
298 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299 {
300 	struct netdev_name_node *name_node;
301 	struct net *net = dev_net(dev);
302 
303 	name_node = netdev_name_node_lookup(net, name);
304 	if (name_node)
305 		return -EEXIST;
306 	name_node = netdev_name_node_alloc(dev, name);
307 	if (!name_node)
308 		return -ENOMEM;
309 	netdev_name_node_add(net, name_node);
310 	/* The node that holds dev->name acts as a head of per-device list. */
311 	list_add_tail(&name_node->list, &dev->name_node->list);
312 
313 	return 0;
314 }
315 EXPORT_SYMBOL(netdev_name_node_alt_create);
316 
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318 {
319 	list_del(&name_node->list);
320 	netdev_name_node_del(name_node);
321 	kfree(name_node->name);
322 	netdev_name_node_free(name_node);
323 }
324 
325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326 {
327 	struct netdev_name_node *name_node;
328 	struct net *net = dev_net(dev);
329 
330 	name_node = netdev_name_node_lookup(net, name);
331 	if (!name_node)
332 		return -ENOENT;
333 	/* lookup might have found our primary name or a name belonging
334 	 * to another device.
335 	 */
336 	if (name_node == dev->name_node || name_node->dev != dev)
337 		return -EINVAL;
338 
339 	__netdev_name_node_alt_destroy(name_node);
340 
341 	return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344 
345 static void netdev_name_node_alt_flush(struct net_device *dev)
346 {
347 	struct netdev_name_node *name_node, *tmp;
348 
349 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350 		__netdev_name_node_alt_destroy(name_node);
351 }
352 
353 /* Device list insertion */
354 static void list_netdevice(struct net_device *dev)
355 {
356 	struct net *net = dev_net(dev);
357 
358 	ASSERT_RTNL();
359 
360 	write_lock_bh(&dev_base_lock);
361 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362 	netdev_name_node_add(net, dev->name_node);
363 	hlist_add_head_rcu(&dev->index_hlist,
364 			   dev_index_hash(net, dev->ifindex));
365 	write_unlock_bh(&dev_base_lock);
366 
367 	dev_base_seq_inc(net);
368 }
369 
370 /* Device list removal
371  * caller must respect a RCU grace period before freeing/reusing dev
372  */
373 static void unlist_netdevice(struct net_device *dev)
374 {
375 	ASSERT_RTNL();
376 
377 	/* Unlink dev from the device chain */
378 	write_lock_bh(&dev_base_lock);
379 	list_del_rcu(&dev->dev_list);
380 	netdev_name_node_del(dev->name_node);
381 	hlist_del_rcu(&dev->index_hlist);
382 	write_unlock_bh(&dev_base_lock);
383 
384 	dev_base_seq_inc(dev_net(dev));
385 }
386 
387 /*
388  *	Our notifier list
389  */
390 
391 static RAW_NOTIFIER_HEAD(netdev_chain);
392 
393 /*
394  *	Device drivers call our routines to queue packets here. We empty the
395  *	queue in the local softnet handler.
396  */
397 
398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399 EXPORT_PER_CPU_SYMBOL(softnet_data);
400 
401 /*******************************************************************************
402  *
403  *		Protocol management and registration routines
404  *
405  *******************************************************************************/
406 
407 
408 /*
409  *	Add a protocol ID to the list. Now that the input handler is
410  *	smarter we can dispense with all the messy stuff that used to be
411  *	here.
412  *
413  *	BEWARE!!! Protocol handlers, mangling input packets,
414  *	MUST BE last in hash buckets and checking protocol handlers
415  *	MUST start from promiscuous ptype_all chain in net_bh.
416  *	It is true now, do not change it.
417  *	Explanation follows: if protocol handler, mangling packet, will
418  *	be the first on list, it is not able to sense, that packet
419  *	is cloned and should be copied-on-write, so that it will
420  *	change it and subsequent readers will get broken packet.
421  *							--ANK (980803)
422  */
423 
424 static inline struct list_head *ptype_head(const struct packet_type *pt)
425 {
426 	if (pt->type == htons(ETH_P_ALL))
427 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
428 	else
429 		return pt->dev ? &pt->dev->ptype_specific :
430 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
431 }
432 
433 /**
434  *	dev_add_pack - add packet handler
435  *	@pt: packet type declaration
436  *
437  *	Add a protocol handler to the networking stack. The passed &packet_type
438  *	is linked into kernel lists and may not be freed until it has been
439  *	removed from the kernel lists.
440  *
441  *	This call does not sleep therefore it can not
442  *	guarantee all CPU's that are in middle of receiving packets
443  *	will see the new packet type (until the next received packet).
444  */
445 
446 void dev_add_pack(struct packet_type *pt)
447 {
448 	struct list_head *head = ptype_head(pt);
449 
450 	spin_lock(&ptype_lock);
451 	list_add_rcu(&pt->list, head);
452 	spin_unlock(&ptype_lock);
453 }
454 EXPORT_SYMBOL(dev_add_pack);
455 
456 /**
457  *	__dev_remove_pack	 - remove packet handler
458  *	@pt: packet type declaration
459  *
460  *	Remove a protocol handler that was previously added to the kernel
461  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
462  *	from the kernel lists and can be freed or reused once this function
463  *	returns.
464  *
465  *      The packet type might still be in use by receivers
466  *	and must not be freed until after all the CPU's have gone
467  *	through a quiescent state.
468  */
469 void __dev_remove_pack(struct packet_type *pt)
470 {
471 	struct list_head *head = ptype_head(pt);
472 	struct packet_type *pt1;
473 
474 	spin_lock(&ptype_lock);
475 
476 	list_for_each_entry(pt1, head, list) {
477 		if (pt == pt1) {
478 			list_del_rcu(&pt->list);
479 			goto out;
480 		}
481 	}
482 
483 	pr_warn("dev_remove_pack: %p not found\n", pt);
484 out:
485 	spin_unlock(&ptype_lock);
486 }
487 EXPORT_SYMBOL(__dev_remove_pack);
488 
489 /**
490  *	dev_remove_pack	 - remove packet handler
491  *	@pt: packet type declaration
492  *
493  *	Remove a protocol handler that was previously added to the kernel
494  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
495  *	from the kernel lists and can be freed or reused once this function
496  *	returns.
497  *
498  *	This call sleeps to guarantee that no CPU is looking at the packet
499  *	type after return.
500  */
501 void dev_remove_pack(struct packet_type *pt)
502 {
503 	__dev_remove_pack(pt);
504 
505 	synchronize_net();
506 }
507 EXPORT_SYMBOL(dev_remove_pack);
508 
509 
510 /**
511  *	dev_add_offload - register offload handlers
512  *	@po: protocol offload declaration
513  *
514  *	Add protocol offload handlers to the networking stack. The passed
515  *	&proto_offload is linked into kernel lists and may not be freed until
516  *	it has been removed from the kernel lists.
517  *
518  *	This call does not sleep therefore it can not
519  *	guarantee all CPU's that are in middle of receiving packets
520  *	will see the new offload handlers (until the next received packet).
521  */
522 void dev_add_offload(struct packet_offload *po)
523 {
524 	struct packet_offload *elem;
525 
526 	spin_lock(&offload_lock);
527 	list_for_each_entry(elem, &offload_base, list) {
528 		if (po->priority < elem->priority)
529 			break;
530 	}
531 	list_add_rcu(&po->list, elem->list.prev);
532 	spin_unlock(&offload_lock);
533 }
534 EXPORT_SYMBOL(dev_add_offload);
535 
536 /**
537  *	__dev_remove_offload	 - remove offload handler
538  *	@po: packet offload declaration
539  *
540  *	Remove a protocol offload handler that was previously added to the
541  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
542  *	is removed from the kernel lists and can be freed or reused once this
543  *	function returns.
544  *
545  *      The packet type might still be in use by receivers
546  *	and must not be freed until after all the CPU's have gone
547  *	through a quiescent state.
548  */
549 static void __dev_remove_offload(struct packet_offload *po)
550 {
551 	struct list_head *head = &offload_base;
552 	struct packet_offload *po1;
553 
554 	spin_lock(&offload_lock);
555 
556 	list_for_each_entry(po1, head, list) {
557 		if (po == po1) {
558 			list_del_rcu(&po->list);
559 			goto out;
560 		}
561 	}
562 
563 	pr_warn("dev_remove_offload: %p not found\n", po);
564 out:
565 	spin_unlock(&offload_lock);
566 }
567 
568 /**
569  *	dev_remove_offload	 - remove packet offload handler
570  *	@po: packet offload declaration
571  *
572  *	Remove a packet offload handler that was previously added to the kernel
573  *	offload handlers by dev_add_offload(). The passed &offload_type is
574  *	removed from the kernel lists and can be freed or reused once this
575  *	function returns.
576  *
577  *	This call sleeps to guarantee that no CPU is looking at the packet
578  *	type after return.
579  */
580 void dev_remove_offload(struct packet_offload *po)
581 {
582 	__dev_remove_offload(po);
583 
584 	synchronize_net();
585 }
586 EXPORT_SYMBOL(dev_remove_offload);
587 
588 /******************************************************************************
589  *
590  *		      Device Boot-time Settings Routines
591  *
592  ******************************************************************************/
593 
594 /* Boot time configuration table */
595 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
596 
597 /**
598  *	netdev_boot_setup_add	- add new setup entry
599  *	@name: name of the device
600  *	@map: configured settings for the device
601  *
602  *	Adds new setup entry to the dev_boot_setup list.  The function
603  *	returns 0 on error and 1 on success.  This is a generic routine to
604  *	all netdevices.
605  */
606 static int netdev_boot_setup_add(char *name, struct ifmap *map)
607 {
608 	struct netdev_boot_setup *s;
609 	int i;
610 
611 	s = dev_boot_setup;
612 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
613 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
614 			memset(s[i].name, 0, sizeof(s[i].name));
615 			strlcpy(s[i].name, name, IFNAMSIZ);
616 			memcpy(&s[i].map, map, sizeof(s[i].map));
617 			break;
618 		}
619 	}
620 
621 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
622 }
623 
624 /**
625  * netdev_boot_setup_check	- check boot time settings
626  * @dev: the netdevice
627  *
628  * Check boot time settings for the device.
629  * The found settings are set for the device to be used
630  * later in the device probing.
631  * Returns 0 if no settings found, 1 if they are.
632  */
633 int netdev_boot_setup_check(struct net_device *dev)
634 {
635 	struct netdev_boot_setup *s = dev_boot_setup;
636 	int i;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
639 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
640 		    !strcmp(dev->name, s[i].name)) {
641 			dev->irq = s[i].map.irq;
642 			dev->base_addr = s[i].map.base_addr;
643 			dev->mem_start = s[i].map.mem_start;
644 			dev->mem_end = s[i].map.mem_end;
645 			return 1;
646 		}
647 	}
648 	return 0;
649 }
650 EXPORT_SYMBOL(netdev_boot_setup_check);
651 
652 
653 /**
654  * netdev_boot_base	- get address from boot time settings
655  * @prefix: prefix for network device
656  * @unit: id for network device
657  *
658  * Check boot time settings for the base address of device.
659  * The found settings are set for the device to be used
660  * later in the device probing.
661  * Returns 0 if no settings found.
662  */
663 unsigned long netdev_boot_base(const char *prefix, int unit)
664 {
665 	const struct netdev_boot_setup *s = dev_boot_setup;
666 	char name[IFNAMSIZ];
667 	int i;
668 
669 	sprintf(name, "%s%d", prefix, unit);
670 
671 	/*
672 	 * If device already registered then return base of 1
673 	 * to indicate not to probe for this interface
674 	 */
675 	if (__dev_get_by_name(&init_net, name))
676 		return 1;
677 
678 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
679 		if (!strcmp(name, s[i].name))
680 			return s[i].map.base_addr;
681 	return 0;
682 }
683 
684 /*
685  * Saves at boot time configured settings for any netdevice.
686  */
687 int __init netdev_boot_setup(char *str)
688 {
689 	int ints[5];
690 	struct ifmap map;
691 
692 	str = get_options(str, ARRAY_SIZE(ints), ints);
693 	if (!str || !*str)
694 		return 0;
695 
696 	/* Save settings */
697 	memset(&map, 0, sizeof(map));
698 	if (ints[0] > 0)
699 		map.irq = ints[1];
700 	if (ints[0] > 1)
701 		map.base_addr = ints[2];
702 	if (ints[0] > 2)
703 		map.mem_start = ints[3];
704 	if (ints[0] > 3)
705 		map.mem_end = ints[4];
706 
707 	/* Add new entry to the list */
708 	return netdev_boot_setup_add(str, &map);
709 }
710 
711 __setup("netdev=", netdev_boot_setup);
712 
713 /*******************************************************************************
714  *
715  *			    Device Interface Subroutines
716  *
717  *******************************************************************************/
718 
719 /**
720  *	dev_get_iflink	- get 'iflink' value of a interface
721  *	@dev: targeted interface
722  *
723  *	Indicates the ifindex the interface is linked to.
724  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
725  */
726 
727 int dev_get_iflink(const struct net_device *dev)
728 {
729 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
730 		return dev->netdev_ops->ndo_get_iflink(dev);
731 
732 	return dev->ifindex;
733 }
734 EXPORT_SYMBOL(dev_get_iflink);
735 
736 /**
737  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
738  *	@dev: targeted interface
739  *	@skb: The packet.
740  *
741  *	For better visibility of tunnel traffic OVS needs to retrieve
742  *	egress tunnel information for a packet. Following API allows
743  *	user to get this info.
744  */
745 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
746 {
747 	struct ip_tunnel_info *info;
748 
749 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
750 		return -EINVAL;
751 
752 	info = skb_tunnel_info_unclone(skb);
753 	if (!info)
754 		return -ENOMEM;
755 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
756 		return -EINVAL;
757 
758 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
759 }
760 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
761 
762 /**
763  *	__dev_get_by_name	- find a device by its name
764  *	@net: the applicable net namespace
765  *	@name: name to find
766  *
767  *	Find an interface by name. Must be called under RTNL semaphore
768  *	or @dev_base_lock. If the name is found a pointer to the device
769  *	is returned. If the name is not found then %NULL is returned. The
770  *	reference counters are not incremented so the caller must be
771  *	careful with locks.
772  */
773 
774 struct net_device *__dev_get_by_name(struct net *net, const char *name)
775 {
776 	struct netdev_name_node *node_name;
777 
778 	node_name = netdev_name_node_lookup(net, name);
779 	return node_name ? node_name->dev : NULL;
780 }
781 EXPORT_SYMBOL(__dev_get_by_name);
782 
783 /**
784  * dev_get_by_name_rcu	- find a device by its name
785  * @net: the applicable net namespace
786  * @name: name to find
787  *
788  * Find an interface by name.
789  * If the name is found a pointer to the device is returned.
790  * If the name is not found then %NULL is returned.
791  * The reference counters are not incremented so the caller must be
792  * careful with locks. The caller must hold RCU lock.
793  */
794 
795 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
796 {
797 	struct netdev_name_node *node_name;
798 
799 	node_name = netdev_name_node_lookup_rcu(net, name);
800 	return node_name ? node_name->dev : NULL;
801 }
802 EXPORT_SYMBOL(dev_get_by_name_rcu);
803 
804 /**
805  *	dev_get_by_name		- find a device by its name
806  *	@net: the applicable net namespace
807  *	@name: name to find
808  *
809  *	Find an interface by name. This can be called from any
810  *	context and does its own locking. The returned handle has
811  *	the usage count incremented and the caller must use dev_put() to
812  *	release it when it is no longer needed. %NULL is returned if no
813  *	matching device is found.
814  */
815 
816 struct net_device *dev_get_by_name(struct net *net, const char *name)
817 {
818 	struct net_device *dev;
819 
820 	rcu_read_lock();
821 	dev = dev_get_by_name_rcu(net, name);
822 	if (dev)
823 		dev_hold(dev);
824 	rcu_read_unlock();
825 	return dev;
826 }
827 EXPORT_SYMBOL(dev_get_by_name);
828 
829 /**
830  *	__dev_get_by_index - find a device by its ifindex
831  *	@net: the applicable net namespace
832  *	@ifindex: index of device
833  *
834  *	Search for an interface by index. Returns %NULL if the device
835  *	is not found or a pointer to the device. The device has not
836  *	had its reference counter increased so the caller must be careful
837  *	about locking. The caller must hold either the RTNL semaphore
838  *	or @dev_base_lock.
839  */
840 
841 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
842 {
843 	struct net_device *dev;
844 	struct hlist_head *head = dev_index_hash(net, ifindex);
845 
846 	hlist_for_each_entry(dev, head, index_hlist)
847 		if (dev->ifindex == ifindex)
848 			return dev;
849 
850 	return NULL;
851 }
852 EXPORT_SYMBOL(__dev_get_by_index);
853 
854 /**
855  *	dev_get_by_index_rcu - find a device by its ifindex
856  *	@net: the applicable net namespace
857  *	@ifindex: index of device
858  *
859  *	Search for an interface by index. Returns %NULL if the device
860  *	is not found or a pointer to the device. The device has not
861  *	had its reference counter increased so the caller must be careful
862  *	about locking. The caller must hold RCU lock.
863  */
864 
865 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
866 {
867 	struct net_device *dev;
868 	struct hlist_head *head = dev_index_hash(net, ifindex);
869 
870 	hlist_for_each_entry_rcu(dev, head, index_hlist)
871 		if (dev->ifindex == ifindex)
872 			return dev;
873 
874 	return NULL;
875 }
876 EXPORT_SYMBOL(dev_get_by_index_rcu);
877 
878 
879 /**
880  *	dev_get_by_index - find a device by its ifindex
881  *	@net: the applicable net namespace
882  *	@ifindex: index of device
883  *
884  *	Search for an interface by index. Returns NULL if the device
885  *	is not found or a pointer to the device. The device returned has
886  *	had a reference added and the pointer is safe until the user calls
887  *	dev_put to indicate they have finished with it.
888  */
889 
890 struct net_device *dev_get_by_index(struct net *net, int ifindex)
891 {
892 	struct net_device *dev;
893 
894 	rcu_read_lock();
895 	dev = dev_get_by_index_rcu(net, ifindex);
896 	if (dev)
897 		dev_hold(dev);
898 	rcu_read_unlock();
899 	return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_index);
902 
903 /**
904  *	dev_get_by_napi_id - find a device by napi_id
905  *	@napi_id: ID of the NAPI struct
906  *
907  *	Search for an interface by NAPI ID. Returns %NULL if the device
908  *	is not found or a pointer to the device. The device has not had
909  *	its reference counter increased so the caller must be careful
910  *	about locking. The caller must hold RCU lock.
911  */
912 
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 	struct napi_struct *napi;
916 
917 	WARN_ON_ONCE(!rcu_read_lock_held());
918 
919 	if (napi_id < MIN_NAPI_ID)
920 		return NULL;
921 
922 	napi = napi_by_id(napi_id);
923 
924 	return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927 
928 /**
929  *	netdev_get_name - get a netdevice name, knowing its ifindex.
930  *	@net: network namespace
931  *	@name: a pointer to the buffer where the name will be stored.
932  *	@ifindex: the ifindex of the interface to get the name from.
933  *
934  *	The use of raw_seqcount_begin() and cond_resched() before
935  *	retrying is required as we want to give the writers a chance
936  *	to complete when CONFIG_PREEMPTION is not set.
937  */
938 int netdev_get_name(struct net *net, char *name, int ifindex)
939 {
940 	struct net_device *dev;
941 	unsigned int seq;
942 
943 retry:
944 	seq = raw_seqcount_begin(&devnet_rename_seq);
945 	rcu_read_lock();
946 	dev = dev_get_by_index_rcu(net, ifindex);
947 	if (!dev) {
948 		rcu_read_unlock();
949 		return -ENODEV;
950 	}
951 
952 	strcpy(name, dev->name);
953 	rcu_read_unlock();
954 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
955 		cond_resched();
956 		goto retry;
957 	}
958 
959 	return 0;
960 }
961 
962 /**
963  *	dev_getbyhwaddr_rcu - find a device by its hardware address
964  *	@net: the applicable net namespace
965  *	@type: media type of device
966  *	@ha: hardware address
967  *
968  *	Search for an interface by MAC address. Returns NULL if the device
969  *	is not found or a pointer to the device.
970  *	The caller must hold RCU or RTNL.
971  *	The returned device has not had its ref count increased
972  *	and the caller must therefore be careful about locking
973  *
974  */
975 
976 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
977 				       const char *ha)
978 {
979 	struct net_device *dev;
980 
981 	for_each_netdev_rcu(net, dev)
982 		if (dev->type == type &&
983 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
984 			return dev;
985 
986 	return NULL;
987 }
988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
989 
990 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
991 {
992 	struct net_device *dev;
993 
994 	ASSERT_RTNL();
995 	for_each_netdev(net, dev)
996 		if (dev->type == type)
997 			return dev;
998 
999 	return NULL;
1000 }
1001 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1002 
1003 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1004 {
1005 	struct net_device *dev, *ret = NULL;
1006 
1007 	rcu_read_lock();
1008 	for_each_netdev_rcu(net, dev)
1009 		if (dev->type == type) {
1010 			dev_hold(dev);
1011 			ret = dev;
1012 			break;
1013 		}
1014 	rcu_read_unlock();
1015 	return ret;
1016 }
1017 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1018 
1019 /**
1020  *	__dev_get_by_flags - find any device with given flags
1021  *	@net: the applicable net namespace
1022  *	@if_flags: IFF_* values
1023  *	@mask: bitmask of bits in if_flags to check
1024  *
1025  *	Search for any interface with the given flags. Returns NULL if a device
1026  *	is not found or a pointer to the device. Must be called inside
1027  *	rtnl_lock(), and result refcount is unchanged.
1028  */
1029 
1030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031 				      unsigned short mask)
1032 {
1033 	struct net_device *dev, *ret;
1034 
1035 	ASSERT_RTNL();
1036 
1037 	ret = NULL;
1038 	for_each_netdev(net, dev) {
1039 		if (((dev->flags ^ if_flags) & mask) == 0) {
1040 			ret = dev;
1041 			break;
1042 		}
1043 	}
1044 	return ret;
1045 }
1046 EXPORT_SYMBOL(__dev_get_by_flags);
1047 
1048 /**
1049  *	dev_valid_name - check if name is okay for network device
1050  *	@name: name string
1051  *
1052  *	Network device names need to be valid file names to
1053  *	to allow sysfs to work.  We also disallow any kind of
1054  *	whitespace.
1055  */
1056 bool dev_valid_name(const char *name)
1057 {
1058 	if (*name == '\0')
1059 		return false;
1060 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1061 		return false;
1062 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1063 		return false;
1064 
1065 	while (*name) {
1066 		if (*name == '/' || *name == ':' || isspace(*name))
1067 			return false;
1068 		name++;
1069 	}
1070 	return true;
1071 }
1072 EXPORT_SYMBOL(dev_valid_name);
1073 
1074 /**
1075  *	__dev_alloc_name - allocate a name for a device
1076  *	@net: network namespace to allocate the device name in
1077  *	@name: name format string
1078  *	@buf:  scratch buffer and result name string
1079  *
1080  *	Passed a format string - eg "lt%d" it will try and find a suitable
1081  *	id. It scans list of devices to build up a free map, then chooses
1082  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *	while allocating the name and adding the device in order to avoid
1084  *	duplicates.
1085  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *	Returns the number of the unit assigned or a negative errno code.
1087  */
1088 
1089 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1090 {
1091 	int i = 0;
1092 	const char *p;
1093 	const int max_netdevices = 8*PAGE_SIZE;
1094 	unsigned long *inuse;
1095 	struct net_device *d;
1096 
1097 	if (!dev_valid_name(name))
1098 		return -EINVAL;
1099 
1100 	p = strchr(name, '%');
1101 	if (p) {
1102 		/*
1103 		 * Verify the string as this thing may have come from
1104 		 * the user.  There must be either one "%d" and no other "%"
1105 		 * characters.
1106 		 */
1107 		if (p[1] != 'd' || strchr(p + 2, '%'))
1108 			return -EINVAL;
1109 
1110 		/* Use one page as a bit array of possible slots */
1111 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1112 		if (!inuse)
1113 			return -ENOMEM;
1114 
1115 		for_each_netdev(net, d) {
1116 			if (!sscanf(d->name, name, &i))
1117 				continue;
1118 			if (i < 0 || i >= max_netdevices)
1119 				continue;
1120 
1121 			/*  avoid cases where sscanf is not exact inverse of printf */
1122 			snprintf(buf, IFNAMSIZ, name, i);
1123 			if (!strncmp(buf, d->name, IFNAMSIZ))
1124 				set_bit(i, inuse);
1125 		}
1126 
1127 		i = find_first_zero_bit(inuse, max_netdevices);
1128 		free_page((unsigned long) inuse);
1129 	}
1130 
1131 	snprintf(buf, IFNAMSIZ, name, i);
1132 	if (!__dev_get_by_name(net, buf))
1133 		return i;
1134 
1135 	/* It is possible to run out of possible slots
1136 	 * when the name is long and there isn't enough space left
1137 	 * for the digits, or if all bits are used.
1138 	 */
1139 	return -ENFILE;
1140 }
1141 
1142 static int dev_alloc_name_ns(struct net *net,
1143 			     struct net_device *dev,
1144 			     const char *name)
1145 {
1146 	char buf[IFNAMSIZ];
1147 	int ret;
1148 
1149 	BUG_ON(!net);
1150 	ret = __dev_alloc_name(net, name, buf);
1151 	if (ret >= 0)
1152 		strlcpy(dev->name, buf, IFNAMSIZ);
1153 	return ret;
1154 }
1155 
1156 /**
1157  *	dev_alloc_name - allocate a name for a device
1158  *	@dev: device
1159  *	@name: name format string
1160  *
1161  *	Passed a format string - eg "lt%d" it will try and find a suitable
1162  *	id. It scans list of devices to build up a free map, then chooses
1163  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1164  *	while allocating the name and adding the device in order to avoid
1165  *	duplicates.
1166  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167  *	Returns the number of the unit assigned or a negative errno code.
1168  */
1169 
1170 int dev_alloc_name(struct net_device *dev, const char *name)
1171 {
1172 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1173 }
1174 EXPORT_SYMBOL(dev_alloc_name);
1175 
1176 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1177 			      const char *name)
1178 {
1179 	BUG_ON(!net);
1180 
1181 	if (!dev_valid_name(name))
1182 		return -EINVAL;
1183 
1184 	if (strchr(name, '%'))
1185 		return dev_alloc_name_ns(net, dev, name);
1186 	else if (__dev_get_by_name(net, name))
1187 		return -EEXIST;
1188 	else if (dev->name != name)
1189 		strlcpy(dev->name, name, IFNAMSIZ);
1190 
1191 	return 0;
1192 }
1193 
1194 /**
1195  *	dev_change_name - change name of a device
1196  *	@dev: device
1197  *	@newname: name (or format string) must be at least IFNAMSIZ
1198  *
1199  *	Change name of a device, can pass format strings "eth%d".
1200  *	for wildcarding.
1201  */
1202 int dev_change_name(struct net_device *dev, const char *newname)
1203 {
1204 	unsigned char old_assign_type;
1205 	char oldname[IFNAMSIZ];
1206 	int err = 0;
1207 	int ret;
1208 	struct net *net;
1209 
1210 	ASSERT_RTNL();
1211 	BUG_ON(!dev_net(dev));
1212 
1213 	net = dev_net(dev);
1214 
1215 	/* Some auto-enslaved devices e.g. failover slaves are
1216 	 * special, as userspace might rename the device after
1217 	 * the interface had been brought up and running since
1218 	 * the point kernel initiated auto-enslavement. Allow
1219 	 * live name change even when these slave devices are
1220 	 * up and running.
1221 	 *
1222 	 * Typically, users of these auto-enslaving devices
1223 	 * don't actually care about slave name change, as
1224 	 * they are supposed to operate on master interface
1225 	 * directly.
1226 	 */
1227 	if (dev->flags & IFF_UP &&
1228 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1229 		return -EBUSY;
1230 
1231 	write_seqcount_begin(&devnet_rename_seq);
1232 
1233 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1234 		write_seqcount_end(&devnet_rename_seq);
1235 		return 0;
1236 	}
1237 
1238 	memcpy(oldname, dev->name, IFNAMSIZ);
1239 
1240 	err = dev_get_valid_name(net, dev, newname);
1241 	if (err < 0) {
1242 		write_seqcount_end(&devnet_rename_seq);
1243 		return err;
1244 	}
1245 
1246 	if (oldname[0] && !strchr(oldname, '%'))
1247 		netdev_info(dev, "renamed from %s\n", oldname);
1248 
1249 	old_assign_type = dev->name_assign_type;
1250 	dev->name_assign_type = NET_NAME_RENAMED;
1251 
1252 rollback:
1253 	ret = device_rename(&dev->dev, dev->name);
1254 	if (ret) {
1255 		memcpy(dev->name, oldname, IFNAMSIZ);
1256 		dev->name_assign_type = old_assign_type;
1257 		write_seqcount_end(&devnet_rename_seq);
1258 		return ret;
1259 	}
1260 
1261 	write_seqcount_end(&devnet_rename_seq);
1262 
1263 	netdev_adjacent_rename_links(dev, oldname);
1264 
1265 	write_lock_bh(&dev_base_lock);
1266 	netdev_name_node_del(dev->name_node);
1267 	write_unlock_bh(&dev_base_lock);
1268 
1269 	synchronize_rcu();
1270 
1271 	write_lock_bh(&dev_base_lock);
1272 	netdev_name_node_add(net, dev->name_node);
1273 	write_unlock_bh(&dev_base_lock);
1274 
1275 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1276 	ret = notifier_to_errno(ret);
1277 
1278 	if (ret) {
1279 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1280 		if (err >= 0) {
1281 			err = ret;
1282 			write_seqcount_begin(&devnet_rename_seq);
1283 			memcpy(dev->name, oldname, IFNAMSIZ);
1284 			memcpy(oldname, newname, IFNAMSIZ);
1285 			dev->name_assign_type = old_assign_type;
1286 			old_assign_type = NET_NAME_RENAMED;
1287 			goto rollback;
1288 		} else {
1289 			pr_err("%s: name change rollback failed: %d\n",
1290 			       dev->name, ret);
1291 		}
1292 	}
1293 
1294 	return err;
1295 }
1296 
1297 /**
1298  *	dev_set_alias - change ifalias of a device
1299  *	@dev: device
1300  *	@alias: name up to IFALIASZ
1301  *	@len: limit of bytes to copy from info
1302  *
1303  *	Set ifalias for a device,
1304  */
1305 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1306 {
1307 	struct dev_ifalias *new_alias = NULL;
1308 
1309 	if (len >= IFALIASZ)
1310 		return -EINVAL;
1311 
1312 	if (len) {
1313 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1314 		if (!new_alias)
1315 			return -ENOMEM;
1316 
1317 		memcpy(new_alias->ifalias, alias, len);
1318 		new_alias->ifalias[len] = 0;
1319 	}
1320 
1321 	mutex_lock(&ifalias_mutex);
1322 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1323 					mutex_is_locked(&ifalias_mutex));
1324 	mutex_unlock(&ifalias_mutex);
1325 
1326 	if (new_alias)
1327 		kfree_rcu(new_alias, rcuhead);
1328 
1329 	return len;
1330 }
1331 EXPORT_SYMBOL(dev_set_alias);
1332 
1333 /**
1334  *	dev_get_alias - get ifalias of a device
1335  *	@dev: device
1336  *	@name: buffer to store name of ifalias
1337  *	@len: size of buffer
1338  *
1339  *	get ifalias for a device.  Caller must make sure dev cannot go
1340  *	away,  e.g. rcu read lock or own a reference count to device.
1341  */
1342 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1343 {
1344 	const struct dev_ifalias *alias;
1345 	int ret = 0;
1346 
1347 	rcu_read_lock();
1348 	alias = rcu_dereference(dev->ifalias);
1349 	if (alias)
1350 		ret = snprintf(name, len, "%s", alias->ifalias);
1351 	rcu_read_unlock();
1352 
1353 	return ret;
1354 }
1355 
1356 /**
1357  *	netdev_features_change - device changes features
1358  *	@dev: device to cause notification
1359  *
1360  *	Called to indicate a device has changed features.
1361  */
1362 void netdev_features_change(struct net_device *dev)
1363 {
1364 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1365 }
1366 EXPORT_SYMBOL(netdev_features_change);
1367 
1368 /**
1369  *	netdev_state_change - device changes state
1370  *	@dev: device to cause notification
1371  *
1372  *	Called to indicate a device has changed state. This function calls
1373  *	the notifier chains for netdev_chain and sends a NEWLINK message
1374  *	to the routing socket.
1375  */
1376 void netdev_state_change(struct net_device *dev)
1377 {
1378 	if (dev->flags & IFF_UP) {
1379 		struct netdev_notifier_change_info change_info = {
1380 			.info.dev = dev,
1381 		};
1382 
1383 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1384 					      &change_info.info);
1385 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1386 	}
1387 }
1388 EXPORT_SYMBOL(netdev_state_change);
1389 
1390 /**
1391  * netdev_notify_peers - notify network peers about existence of @dev
1392  * @dev: network device
1393  *
1394  * Generate traffic such that interested network peers are aware of
1395  * @dev, such as by generating a gratuitous ARP. This may be used when
1396  * a device wants to inform the rest of the network about some sort of
1397  * reconfiguration such as a failover event or virtual machine
1398  * migration.
1399  */
1400 void netdev_notify_peers(struct net_device *dev)
1401 {
1402 	rtnl_lock();
1403 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1404 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1405 	rtnl_unlock();
1406 }
1407 EXPORT_SYMBOL(netdev_notify_peers);
1408 
1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1410 {
1411 	const struct net_device_ops *ops = dev->netdev_ops;
1412 	int ret;
1413 
1414 	ASSERT_RTNL();
1415 
1416 	if (!netif_device_present(dev))
1417 		return -ENODEV;
1418 
1419 	/* Block netpoll from trying to do any rx path servicing.
1420 	 * If we don't do this there is a chance ndo_poll_controller
1421 	 * or ndo_poll may be running while we open the device
1422 	 */
1423 	netpoll_poll_disable(dev);
1424 
1425 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1426 	ret = notifier_to_errno(ret);
1427 	if (ret)
1428 		return ret;
1429 
1430 	set_bit(__LINK_STATE_START, &dev->state);
1431 
1432 	if (ops->ndo_validate_addr)
1433 		ret = ops->ndo_validate_addr(dev);
1434 
1435 	if (!ret && ops->ndo_open)
1436 		ret = ops->ndo_open(dev);
1437 
1438 	netpoll_poll_enable(dev);
1439 
1440 	if (ret)
1441 		clear_bit(__LINK_STATE_START, &dev->state);
1442 	else {
1443 		dev->flags |= IFF_UP;
1444 		dev_set_rx_mode(dev);
1445 		dev_activate(dev);
1446 		add_device_randomness(dev->dev_addr, dev->addr_len);
1447 	}
1448 
1449 	return ret;
1450 }
1451 
1452 /**
1453  *	dev_open	- prepare an interface for use.
1454  *	@dev: device to open
1455  *	@extack: netlink extended ack
1456  *
1457  *	Takes a device from down to up state. The device's private open
1458  *	function is invoked and then the multicast lists are loaded. Finally
1459  *	the device is moved into the up state and a %NETDEV_UP message is
1460  *	sent to the netdev notifier chain.
1461  *
1462  *	Calling this function on an active interface is a nop. On a failure
1463  *	a negative errno code is returned.
1464  */
1465 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1466 {
1467 	int ret;
1468 
1469 	if (dev->flags & IFF_UP)
1470 		return 0;
1471 
1472 	ret = __dev_open(dev, extack);
1473 	if (ret < 0)
1474 		return ret;
1475 
1476 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1477 	call_netdevice_notifiers(NETDEV_UP, dev);
1478 
1479 	return ret;
1480 }
1481 EXPORT_SYMBOL(dev_open);
1482 
1483 static void __dev_close_many(struct list_head *head)
1484 {
1485 	struct net_device *dev;
1486 
1487 	ASSERT_RTNL();
1488 	might_sleep();
1489 
1490 	list_for_each_entry(dev, head, close_list) {
1491 		/* Temporarily disable netpoll until the interface is down */
1492 		netpoll_poll_disable(dev);
1493 
1494 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1495 
1496 		clear_bit(__LINK_STATE_START, &dev->state);
1497 
1498 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1499 		 * can be even on different cpu. So just clear netif_running().
1500 		 *
1501 		 * dev->stop() will invoke napi_disable() on all of it's
1502 		 * napi_struct instances on this device.
1503 		 */
1504 		smp_mb__after_atomic(); /* Commit netif_running(). */
1505 	}
1506 
1507 	dev_deactivate_many(head);
1508 
1509 	list_for_each_entry(dev, head, close_list) {
1510 		const struct net_device_ops *ops = dev->netdev_ops;
1511 
1512 		/*
1513 		 *	Call the device specific close. This cannot fail.
1514 		 *	Only if device is UP
1515 		 *
1516 		 *	We allow it to be called even after a DETACH hot-plug
1517 		 *	event.
1518 		 */
1519 		if (ops->ndo_stop)
1520 			ops->ndo_stop(dev);
1521 
1522 		dev->flags &= ~IFF_UP;
1523 		netpoll_poll_enable(dev);
1524 	}
1525 }
1526 
1527 static void __dev_close(struct net_device *dev)
1528 {
1529 	LIST_HEAD(single);
1530 
1531 	list_add(&dev->close_list, &single);
1532 	__dev_close_many(&single);
1533 	list_del(&single);
1534 }
1535 
1536 void dev_close_many(struct list_head *head, bool unlink)
1537 {
1538 	struct net_device *dev, *tmp;
1539 
1540 	/* Remove the devices that don't need to be closed */
1541 	list_for_each_entry_safe(dev, tmp, head, close_list)
1542 		if (!(dev->flags & IFF_UP))
1543 			list_del_init(&dev->close_list);
1544 
1545 	__dev_close_many(head);
1546 
1547 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1548 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1549 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1550 		if (unlink)
1551 			list_del_init(&dev->close_list);
1552 	}
1553 }
1554 EXPORT_SYMBOL(dev_close_many);
1555 
1556 /**
1557  *	dev_close - shutdown an interface.
1558  *	@dev: device to shutdown
1559  *
1560  *	This function moves an active device into down state. A
1561  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1563  *	chain.
1564  */
1565 void dev_close(struct net_device *dev)
1566 {
1567 	if (dev->flags & IFF_UP) {
1568 		LIST_HEAD(single);
1569 
1570 		list_add(&dev->close_list, &single);
1571 		dev_close_many(&single, true);
1572 		list_del(&single);
1573 	}
1574 }
1575 EXPORT_SYMBOL(dev_close);
1576 
1577 
1578 /**
1579  *	dev_disable_lro - disable Large Receive Offload on a device
1580  *	@dev: device
1581  *
1582  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1583  *	called under RTNL.  This is needed if received packets may be
1584  *	forwarded to another interface.
1585  */
1586 void dev_disable_lro(struct net_device *dev)
1587 {
1588 	struct net_device *lower_dev;
1589 	struct list_head *iter;
1590 
1591 	dev->wanted_features &= ~NETIF_F_LRO;
1592 	netdev_update_features(dev);
1593 
1594 	if (unlikely(dev->features & NETIF_F_LRO))
1595 		netdev_WARN(dev, "failed to disable LRO!\n");
1596 
1597 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1598 		dev_disable_lro(lower_dev);
1599 }
1600 EXPORT_SYMBOL(dev_disable_lro);
1601 
1602 /**
1603  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1604  *	@dev: device
1605  *
1606  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1607  *	called under RTNL.  This is needed if Generic XDP is installed on
1608  *	the device.
1609  */
1610 static void dev_disable_gro_hw(struct net_device *dev)
1611 {
1612 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1613 	netdev_update_features(dev);
1614 
1615 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1616 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1617 }
1618 
1619 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1620 {
1621 #define N(val) 						\
1622 	case NETDEV_##val:				\
1623 		return "NETDEV_" __stringify(val);
1624 	switch (cmd) {
1625 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1626 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1627 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1628 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1629 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1630 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1631 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1632 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1633 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1634 	N(PRE_CHANGEADDR)
1635 	}
1636 #undef N
1637 	return "UNKNOWN_NETDEV_EVENT";
1638 }
1639 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1640 
1641 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1642 				   struct net_device *dev)
1643 {
1644 	struct netdev_notifier_info info = {
1645 		.dev = dev,
1646 	};
1647 
1648 	return nb->notifier_call(nb, val, &info);
1649 }
1650 
1651 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1652 					     struct net_device *dev)
1653 {
1654 	int err;
1655 
1656 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1657 	err = notifier_to_errno(err);
1658 	if (err)
1659 		return err;
1660 
1661 	if (!(dev->flags & IFF_UP))
1662 		return 0;
1663 
1664 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1665 	return 0;
1666 }
1667 
1668 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1669 						struct net_device *dev)
1670 {
1671 	if (dev->flags & IFF_UP) {
1672 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1673 					dev);
1674 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1675 	}
1676 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1677 }
1678 
1679 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1680 						 struct net *net)
1681 {
1682 	struct net_device *dev;
1683 	int err;
1684 
1685 	for_each_netdev(net, dev) {
1686 		err = call_netdevice_register_notifiers(nb, dev);
1687 		if (err)
1688 			goto rollback;
1689 	}
1690 	return 0;
1691 
1692 rollback:
1693 	for_each_netdev_continue_reverse(net, dev)
1694 		call_netdevice_unregister_notifiers(nb, dev);
1695 	return err;
1696 }
1697 
1698 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1699 						    struct net *net)
1700 {
1701 	struct net_device *dev;
1702 
1703 	for_each_netdev(net, dev)
1704 		call_netdevice_unregister_notifiers(nb, dev);
1705 }
1706 
1707 static int dev_boot_phase = 1;
1708 
1709 /**
1710  * register_netdevice_notifier - register a network notifier block
1711  * @nb: notifier
1712  *
1713  * Register a notifier to be called when network device events occur.
1714  * The notifier passed is linked into the kernel structures and must
1715  * not be reused until it has been unregistered. A negative errno code
1716  * is returned on a failure.
1717  *
1718  * When registered all registration and up events are replayed
1719  * to the new notifier to allow device to have a race free
1720  * view of the network device list.
1721  */
1722 
1723 int register_netdevice_notifier(struct notifier_block *nb)
1724 {
1725 	struct net *net;
1726 	int err;
1727 
1728 	/* Close race with setup_net() and cleanup_net() */
1729 	down_write(&pernet_ops_rwsem);
1730 	rtnl_lock();
1731 	err = raw_notifier_chain_register(&netdev_chain, nb);
1732 	if (err)
1733 		goto unlock;
1734 	if (dev_boot_phase)
1735 		goto unlock;
1736 	for_each_net(net) {
1737 		err = call_netdevice_register_net_notifiers(nb, net);
1738 		if (err)
1739 			goto rollback;
1740 	}
1741 
1742 unlock:
1743 	rtnl_unlock();
1744 	up_write(&pernet_ops_rwsem);
1745 	return err;
1746 
1747 rollback:
1748 	for_each_net_continue_reverse(net)
1749 		call_netdevice_unregister_net_notifiers(nb, net);
1750 
1751 	raw_notifier_chain_unregister(&netdev_chain, nb);
1752 	goto unlock;
1753 }
1754 EXPORT_SYMBOL(register_netdevice_notifier);
1755 
1756 /**
1757  * unregister_netdevice_notifier - unregister a network notifier block
1758  * @nb: notifier
1759  *
1760  * Unregister a notifier previously registered by
1761  * register_netdevice_notifier(). The notifier is unlinked into the
1762  * kernel structures and may then be reused. A negative errno code
1763  * is returned on a failure.
1764  *
1765  * After unregistering unregister and down device events are synthesized
1766  * for all devices on the device list to the removed notifier to remove
1767  * the need for special case cleanup code.
1768  */
1769 
1770 int unregister_netdevice_notifier(struct notifier_block *nb)
1771 {
1772 	struct net *net;
1773 	int err;
1774 
1775 	/* Close race with setup_net() and cleanup_net() */
1776 	down_write(&pernet_ops_rwsem);
1777 	rtnl_lock();
1778 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1779 	if (err)
1780 		goto unlock;
1781 
1782 	for_each_net(net)
1783 		call_netdevice_unregister_net_notifiers(nb, net);
1784 
1785 unlock:
1786 	rtnl_unlock();
1787 	up_write(&pernet_ops_rwsem);
1788 	return err;
1789 }
1790 EXPORT_SYMBOL(unregister_netdevice_notifier);
1791 
1792 static int __register_netdevice_notifier_net(struct net *net,
1793 					     struct notifier_block *nb,
1794 					     bool ignore_call_fail)
1795 {
1796 	int err;
1797 
1798 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1799 	if (err)
1800 		return err;
1801 	if (dev_boot_phase)
1802 		return 0;
1803 
1804 	err = call_netdevice_register_net_notifiers(nb, net);
1805 	if (err && !ignore_call_fail)
1806 		goto chain_unregister;
1807 
1808 	return 0;
1809 
1810 chain_unregister:
1811 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812 	return err;
1813 }
1814 
1815 static int __unregister_netdevice_notifier_net(struct net *net,
1816 					       struct notifier_block *nb)
1817 {
1818 	int err;
1819 
1820 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1821 	if (err)
1822 		return err;
1823 
1824 	call_netdevice_unregister_net_notifiers(nb, net);
1825 	return 0;
1826 }
1827 
1828 /**
1829  * register_netdevice_notifier_net - register a per-netns network notifier block
1830  * @net: network namespace
1831  * @nb: notifier
1832  *
1833  * Register a notifier to be called when network device events occur.
1834  * The notifier passed is linked into the kernel structures and must
1835  * not be reused until it has been unregistered. A negative errno code
1836  * is returned on a failure.
1837  *
1838  * When registered all registration and up events are replayed
1839  * to the new notifier to allow device to have a race free
1840  * view of the network device list.
1841  */
1842 
1843 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1844 {
1845 	int err;
1846 
1847 	rtnl_lock();
1848 	err = __register_netdevice_notifier_net(net, nb, false);
1849 	rtnl_unlock();
1850 	return err;
1851 }
1852 EXPORT_SYMBOL(register_netdevice_notifier_net);
1853 
1854 /**
1855  * unregister_netdevice_notifier_net - unregister a per-netns
1856  *                                     network notifier block
1857  * @net: network namespace
1858  * @nb: notifier
1859  *
1860  * Unregister a notifier previously registered by
1861  * register_netdevice_notifier(). The notifier is unlinked into the
1862  * kernel structures and may then be reused. A negative errno code
1863  * is returned on a failure.
1864  *
1865  * After unregistering unregister and down device events are synthesized
1866  * for all devices on the device list to the removed notifier to remove
1867  * the need for special case cleanup code.
1868  */
1869 
1870 int unregister_netdevice_notifier_net(struct net *net,
1871 				      struct notifier_block *nb)
1872 {
1873 	int err;
1874 
1875 	rtnl_lock();
1876 	err = __unregister_netdevice_notifier_net(net, nb);
1877 	rtnl_unlock();
1878 	return err;
1879 }
1880 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1881 
1882 int register_netdevice_notifier_dev_net(struct net_device *dev,
1883 					struct notifier_block *nb,
1884 					struct netdev_net_notifier *nn)
1885 {
1886 	int err;
1887 
1888 	rtnl_lock();
1889 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1890 	if (!err) {
1891 		nn->nb = nb;
1892 		list_add(&nn->list, &dev->net_notifier_list);
1893 	}
1894 	rtnl_unlock();
1895 	return err;
1896 }
1897 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1898 
1899 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1900 					  struct notifier_block *nb,
1901 					  struct netdev_net_notifier *nn)
1902 {
1903 	int err;
1904 
1905 	rtnl_lock();
1906 	list_del(&nn->list);
1907 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1908 	rtnl_unlock();
1909 	return err;
1910 }
1911 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1912 
1913 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1914 					     struct net *net)
1915 {
1916 	struct netdev_net_notifier *nn;
1917 
1918 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1919 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1920 		__register_netdevice_notifier_net(net, nn->nb, true);
1921 	}
1922 }
1923 
1924 /**
1925  *	call_netdevice_notifiers_info - call all network notifier blocks
1926  *	@val: value passed unmodified to notifier function
1927  *	@info: notifier information data
1928  *
1929  *	Call all network notifier blocks.  Parameters and return value
1930  *	are as for raw_notifier_call_chain().
1931  */
1932 
1933 static int call_netdevice_notifiers_info(unsigned long val,
1934 					 struct netdev_notifier_info *info)
1935 {
1936 	struct net *net = dev_net(info->dev);
1937 	int ret;
1938 
1939 	ASSERT_RTNL();
1940 
1941 	/* Run per-netns notifier block chain first, then run the global one.
1942 	 * Hopefully, one day, the global one is going to be removed after
1943 	 * all notifier block registrators get converted to be per-netns.
1944 	 */
1945 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1946 	if (ret & NOTIFY_STOP_MASK)
1947 		return ret;
1948 	return raw_notifier_call_chain(&netdev_chain, val, info);
1949 }
1950 
1951 static int call_netdevice_notifiers_extack(unsigned long val,
1952 					   struct net_device *dev,
1953 					   struct netlink_ext_ack *extack)
1954 {
1955 	struct netdev_notifier_info info = {
1956 		.dev = dev,
1957 		.extack = extack,
1958 	};
1959 
1960 	return call_netdevice_notifiers_info(val, &info);
1961 }
1962 
1963 /**
1964  *	call_netdevice_notifiers - call all network notifier blocks
1965  *      @val: value passed unmodified to notifier function
1966  *      @dev: net_device pointer passed unmodified to notifier function
1967  *
1968  *	Call all network notifier blocks.  Parameters and return value
1969  *	are as for raw_notifier_call_chain().
1970  */
1971 
1972 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1973 {
1974 	return call_netdevice_notifiers_extack(val, dev, NULL);
1975 }
1976 EXPORT_SYMBOL(call_netdevice_notifiers);
1977 
1978 /**
1979  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1980  *	@val: value passed unmodified to notifier function
1981  *	@dev: net_device pointer passed unmodified to notifier function
1982  *	@arg: additional u32 argument passed to the notifier function
1983  *
1984  *	Call all network notifier blocks.  Parameters and return value
1985  *	are as for raw_notifier_call_chain().
1986  */
1987 static int call_netdevice_notifiers_mtu(unsigned long val,
1988 					struct net_device *dev, u32 arg)
1989 {
1990 	struct netdev_notifier_info_ext info = {
1991 		.info.dev = dev,
1992 		.ext.mtu = arg,
1993 	};
1994 
1995 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1996 
1997 	return call_netdevice_notifiers_info(val, &info.info);
1998 }
1999 
2000 #ifdef CONFIG_NET_INGRESS
2001 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2002 
2003 void net_inc_ingress_queue(void)
2004 {
2005 	static_branch_inc(&ingress_needed_key);
2006 }
2007 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2008 
2009 void net_dec_ingress_queue(void)
2010 {
2011 	static_branch_dec(&ingress_needed_key);
2012 }
2013 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2014 #endif
2015 
2016 #ifdef CONFIG_NET_EGRESS
2017 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2018 
2019 void net_inc_egress_queue(void)
2020 {
2021 	static_branch_inc(&egress_needed_key);
2022 }
2023 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2024 
2025 void net_dec_egress_queue(void)
2026 {
2027 	static_branch_dec(&egress_needed_key);
2028 }
2029 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2030 #endif
2031 
2032 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2033 #ifdef CONFIG_JUMP_LABEL
2034 static atomic_t netstamp_needed_deferred;
2035 static atomic_t netstamp_wanted;
2036 static void netstamp_clear(struct work_struct *work)
2037 {
2038 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2039 	int wanted;
2040 
2041 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2042 	if (wanted > 0)
2043 		static_branch_enable(&netstamp_needed_key);
2044 	else
2045 		static_branch_disable(&netstamp_needed_key);
2046 }
2047 static DECLARE_WORK(netstamp_work, netstamp_clear);
2048 #endif
2049 
2050 void net_enable_timestamp(void)
2051 {
2052 #ifdef CONFIG_JUMP_LABEL
2053 	int wanted;
2054 
2055 	while (1) {
2056 		wanted = atomic_read(&netstamp_wanted);
2057 		if (wanted <= 0)
2058 			break;
2059 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2060 			return;
2061 	}
2062 	atomic_inc(&netstamp_needed_deferred);
2063 	schedule_work(&netstamp_work);
2064 #else
2065 	static_branch_inc(&netstamp_needed_key);
2066 #endif
2067 }
2068 EXPORT_SYMBOL(net_enable_timestamp);
2069 
2070 void net_disable_timestamp(void)
2071 {
2072 #ifdef CONFIG_JUMP_LABEL
2073 	int wanted;
2074 
2075 	while (1) {
2076 		wanted = atomic_read(&netstamp_wanted);
2077 		if (wanted <= 1)
2078 			break;
2079 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2080 			return;
2081 	}
2082 	atomic_dec(&netstamp_needed_deferred);
2083 	schedule_work(&netstamp_work);
2084 #else
2085 	static_branch_dec(&netstamp_needed_key);
2086 #endif
2087 }
2088 EXPORT_SYMBOL(net_disable_timestamp);
2089 
2090 static inline void net_timestamp_set(struct sk_buff *skb)
2091 {
2092 	skb->tstamp = 0;
2093 	if (static_branch_unlikely(&netstamp_needed_key))
2094 		__net_timestamp(skb);
2095 }
2096 
2097 #define net_timestamp_check(COND, SKB)				\
2098 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2099 		if ((COND) && !(SKB)->tstamp)			\
2100 			__net_timestamp(SKB);			\
2101 	}							\
2102 
2103 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2104 {
2105 	unsigned int len;
2106 
2107 	if (!(dev->flags & IFF_UP))
2108 		return false;
2109 
2110 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2111 	if (skb->len <= len)
2112 		return true;
2113 
2114 	/* if TSO is enabled, we don't care about the length as the packet
2115 	 * could be forwarded without being segmented before
2116 	 */
2117 	if (skb_is_gso(skb))
2118 		return true;
2119 
2120 	return false;
2121 }
2122 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2123 
2124 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2125 {
2126 	int ret = ____dev_forward_skb(dev, skb);
2127 
2128 	if (likely(!ret)) {
2129 		skb->protocol = eth_type_trans(skb, dev);
2130 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2131 	}
2132 
2133 	return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136 
2137 /**
2138  * dev_forward_skb - loopback an skb to another netif
2139  *
2140  * @dev: destination network device
2141  * @skb: buffer to forward
2142  *
2143  * return values:
2144  *	NET_RX_SUCCESS	(no congestion)
2145  *	NET_RX_DROP     (packet was dropped, but freed)
2146  *
2147  * dev_forward_skb can be used for injecting an skb from the
2148  * start_xmit function of one device into the receive queue
2149  * of another device.
2150  *
2151  * The receiving device may be in another namespace, so
2152  * we have to clear all information in the skb that could
2153  * impact namespace isolation.
2154  */
2155 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156 {
2157 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2158 }
2159 EXPORT_SYMBOL_GPL(dev_forward_skb);
2160 
2161 static inline int deliver_skb(struct sk_buff *skb,
2162 			      struct packet_type *pt_prev,
2163 			      struct net_device *orig_dev)
2164 {
2165 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2166 		return -ENOMEM;
2167 	refcount_inc(&skb->users);
2168 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2169 }
2170 
2171 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2172 					  struct packet_type **pt,
2173 					  struct net_device *orig_dev,
2174 					  __be16 type,
2175 					  struct list_head *ptype_list)
2176 {
2177 	struct packet_type *ptype, *pt_prev = *pt;
2178 
2179 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2180 		if (ptype->type != type)
2181 			continue;
2182 		if (pt_prev)
2183 			deliver_skb(skb, pt_prev, orig_dev);
2184 		pt_prev = ptype;
2185 	}
2186 	*pt = pt_prev;
2187 }
2188 
2189 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2190 {
2191 	if (!ptype->af_packet_priv || !skb->sk)
2192 		return false;
2193 
2194 	if (ptype->id_match)
2195 		return ptype->id_match(ptype, skb->sk);
2196 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2197 		return true;
2198 
2199 	return false;
2200 }
2201 
2202 /**
2203  * dev_nit_active - return true if any network interface taps are in use
2204  *
2205  * @dev: network device to check for the presence of taps
2206  */
2207 bool dev_nit_active(struct net_device *dev)
2208 {
2209 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2210 }
2211 EXPORT_SYMBOL_GPL(dev_nit_active);
2212 
2213 /*
2214  *	Support routine. Sends outgoing frames to any network
2215  *	taps currently in use.
2216  */
2217 
2218 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2219 {
2220 	struct packet_type *ptype;
2221 	struct sk_buff *skb2 = NULL;
2222 	struct packet_type *pt_prev = NULL;
2223 	struct list_head *ptype_list = &ptype_all;
2224 
2225 	rcu_read_lock();
2226 again:
2227 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2228 		if (ptype->ignore_outgoing)
2229 			continue;
2230 
2231 		/* Never send packets back to the socket
2232 		 * they originated from - MvS (miquels@drinkel.ow.org)
2233 		 */
2234 		if (skb_loop_sk(ptype, skb))
2235 			continue;
2236 
2237 		if (pt_prev) {
2238 			deliver_skb(skb2, pt_prev, skb->dev);
2239 			pt_prev = ptype;
2240 			continue;
2241 		}
2242 
2243 		/* need to clone skb, done only once */
2244 		skb2 = skb_clone(skb, GFP_ATOMIC);
2245 		if (!skb2)
2246 			goto out_unlock;
2247 
2248 		net_timestamp_set(skb2);
2249 
2250 		/* skb->nh should be correctly
2251 		 * set by sender, so that the second statement is
2252 		 * just protection against buggy protocols.
2253 		 */
2254 		skb_reset_mac_header(skb2);
2255 
2256 		if (skb_network_header(skb2) < skb2->data ||
2257 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2258 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259 					     ntohs(skb2->protocol),
2260 					     dev->name);
2261 			skb_reset_network_header(skb2);
2262 		}
2263 
2264 		skb2->transport_header = skb2->network_header;
2265 		skb2->pkt_type = PACKET_OUTGOING;
2266 		pt_prev = ptype;
2267 	}
2268 
2269 	if (ptype_list == &ptype_all) {
2270 		ptype_list = &dev->ptype_all;
2271 		goto again;
2272 	}
2273 out_unlock:
2274 	if (pt_prev) {
2275 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2276 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2277 		else
2278 			kfree_skb(skb2);
2279 	}
2280 	rcu_read_unlock();
2281 }
2282 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2283 
2284 /**
2285  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2286  * @dev: Network device
2287  * @txq: number of queues available
2288  *
2289  * If real_num_tx_queues is changed the tc mappings may no longer be
2290  * valid. To resolve this verify the tc mapping remains valid and if
2291  * not NULL the mapping. With no priorities mapping to this
2292  * offset/count pair it will no longer be used. In the worst case TC0
2293  * is invalid nothing can be done so disable priority mappings. If is
2294  * expected that drivers will fix this mapping if they can before
2295  * calling netif_set_real_num_tx_queues.
2296  */
2297 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2298 {
2299 	int i;
2300 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2301 
2302 	/* If TC0 is invalidated disable TC mapping */
2303 	if (tc->offset + tc->count > txq) {
2304 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2305 		dev->num_tc = 0;
2306 		return;
2307 	}
2308 
2309 	/* Invalidated prio to tc mappings set to TC0 */
2310 	for (i = 1; i < TC_BITMASK + 1; i++) {
2311 		int q = netdev_get_prio_tc_map(dev, i);
2312 
2313 		tc = &dev->tc_to_txq[q];
2314 		if (tc->offset + tc->count > txq) {
2315 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2316 				i, q);
2317 			netdev_set_prio_tc_map(dev, i, 0);
2318 		}
2319 	}
2320 }
2321 
2322 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2323 {
2324 	if (dev->num_tc) {
2325 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2326 		int i;
2327 
2328 		/* walk through the TCs and see if it falls into any of them */
2329 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2330 			if ((txq - tc->offset) < tc->count)
2331 				return i;
2332 		}
2333 
2334 		/* didn't find it, just return -1 to indicate no match */
2335 		return -1;
2336 	}
2337 
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL(netdev_txq_to_tc);
2341 
2342 #ifdef CONFIG_XPS
2343 struct static_key xps_needed __read_mostly;
2344 EXPORT_SYMBOL(xps_needed);
2345 struct static_key xps_rxqs_needed __read_mostly;
2346 EXPORT_SYMBOL(xps_rxqs_needed);
2347 static DEFINE_MUTEX(xps_map_mutex);
2348 #define xmap_dereference(P)		\
2349 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2350 
2351 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2352 			     int tci, u16 index)
2353 {
2354 	struct xps_map *map = NULL;
2355 	int pos;
2356 
2357 	if (dev_maps)
2358 		map = xmap_dereference(dev_maps->attr_map[tci]);
2359 	if (!map)
2360 		return false;
2361 
2362 	for (pos = map->len; pos--;) {
2363 		if (map->queues[pos] != index)
2364 			continue;
2365 
2366 		if (map->len > 1) {
2367 			map->queues[pos] = map->queues[--map->len];
2368 			break;
2369 		}
2370 
2371 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2372 		kfree_rcu(map, rcu);
2373 		return false;
2374 	}
2375 
2376 	return true;
2377 }
2378 
2379 static bool remove_xps_queue_cpu(struct net_device *dev,
2380 				 struct xps_dev_maps *dev_maps,
2381 				 int cpu, u16 offset, u16 count)
2382 {
2383 	int num_tc = dev->num_tc ? : 1;
2384 	bool active = false;
2385 	int tci;
2386 
2387 	for (tci = cpu * num_tc; num_tc--; tci++) {
2388 		int i, j;
2389 
2390 		for (i = count, j = offset; i--; j++) {
2391 			if (!remove_xps_queue(dev_maps, tci, j))
2392 				break;
2393 		}
2394 
2395 		active |= i < 0;
2396 	}
2397 
2398 	return active;
2399 }
2400 
2401 static void reset_xps_maps(struct net_device *dev,
2402 			   struct xps_dev_maps *dev_maps,
2403 			   bool is_rxqs_map)
2404 {
2405 	if (is_rxqs_map) {
2406 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2407 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2408 	} else {
2409 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2410 	}
2411 	static_key_slow_dec_cpuslocked(&xps_needed);
2412 	kfree_rcu(dev_maps, rcu);
2413 }
2414 
2415 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2416 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2417 			   u16 offset, u16 count, bool is_rxqs_map)
2418 {
2419 	bool active = false;
2420 	int i, j;
2421 
2422 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2423 	     j < nr_ids;)
2424 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2425 					       count);
2426 	if (!active)
2427 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2428 
2429 	if (!is_rxqs_map) {
2430 		for (i = offset + (count - 1); count--; i--) {
2431 			netdev_queue_numa_node_write(
2432 				netdev_get_tx_queue(dev, i),
2433 				NUMA_NO_NODE);
2434 		}
2435 	}
2436 }
2437 
2438 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2439 				   u16 count)
2440 {
2441 	const unsigned long *possible_mask = NULL;
2442 	struct xps_dev_maps *dev_maps;
2443 	unsigned int nr_ids;
2444 
2445 	if (!static_key_false(&xps_needed))
2446 		return;
2447 
2448 	cpus_read_lock();
2449 	mutex_lock(&xps_map_mutex);
2450 
2451 	if (static_key_false(&xps_rxqs_needed)) {
2452 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2453 		if (dev_maps) {
2454 			nr_ids = dev->num_rx_queues;
2455 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2456 				       offset, count, true);
2457 		}
2458 	}
2459 
2460 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2461 	if (!dev_maps)
2462 		goto out_no_maps;
2463 
2464 	if (num_possible_cpus() > 1)
2465 		possible_mask = cpumask_bits(cpu_possible_mask);
2466 	nr_ids = nr_cpu_ids;
2467 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2468 		       false);
2469 
2470 out_no_maps:
2471 	mutex_unlock(&xps_map_mutex);
2472 	cpus_read_unlock();
2473 }
2474 
2475 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2476 {
2477 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2478 }
2479 
2480 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2481 				      u16 index, bool is_rxqs_map)
2482 {
2483 	struct xps_map *new_map;
2484 	int alloc_len = XPS_MIN_MAP_ALLOC;
2485 	int i, pos;
2486 
2487 	for (pos = 0; map && pos < map->len; pos++) {
2488 		if (map->queues[pos] != index)
2489 			continue;
2490 		return map;
2491 	}
2492 
2493 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2494 	if (map) {
2495 		if (pos < map->alloc_len)
2496 			return map;
2497 
2498 		alloc_len = map->alloc_len * 2;
2499 	}
2500 
2501 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2502 	 *  map
2503 	 */
2504 	if (is_rxqs_map)
2505 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2506 	else
2507 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2508 				       cpu_to_node(attr_index));
2509 	if (!new_map)
2510 		return NULL;
2511 
2512 	for (i = 0; i < pos; i++)
2513 		new_map->queues[i] = map->queues[i];
2514 	new_map->alloc_len = alloc_len;
2515 	new_map->len = pos;
2516 
2517 	return new_map;
2518 }
2519 
2520 /* Must be called under cpus_read_lock */
2521 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2522 			  u16 index, bool is_rxqs_map)
2523 {
2524 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2525 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2526 	int i, j, tci, numa_node_id = -2;
2527 	int maps_sz, num_tc = 1, tc = 0;
2528 	struct xps_map *map, *new_map;
2529 	bool active = false;
2530 	unsigned int nr_ids;
2531 
2532 	if (dev->num_tc) {
2533 		/* Do not allow XPS on subordinate device directly */
2534 		num_tc = dev->num_tc;
2535 		if (num_tc < 0)
2536 			return -EINVAL;
2537 
2538 		/* If queue belongs to subordinate dev use its map */
2539 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2540 
2541 		tc = netdev_txq_to_tc(dev, index);
2542 		if (tc < 0)
2543 			return -EINVAL;
2544 	}
2545 
2546 	mutex_lock(&xps_map_mutex);
2547 	if (is_rxqs_map) {
2548 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2549 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2550 		nr_ids = dev->num_rx_queues;
2551 	} else {
2552 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2553 		if (num_possible_cpus() > 1) {
2554 			online_mask = cpumask_bits(cpu_online_mask);
2555 			possible_mask = cpumask_bits(cpu_possible_mask);
2556 		}
2557 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2558 		nr_ids = nr_cpu_ids;
2559 	}
2560 
2561 	if (maps_sz < L1_CACHE_BYTES)
2562 		maps_sz = L1_CACHE_BYTES;
2563 
2564 	/* allocate memory for queue storage */
2565 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2566 	     j < nr_ids;) {
2567 		if (!new_dev_maps)
2568 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2569 		if (!new_dev_maps) {
2570 			mutex_unlock(&xps_map_mutex);
2571 			return -ENOMEM;
2572 		}
2573 
2574 		tci = j * num_tc + tc;
2575 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2576 				 NULL;
2577 
2578 		map = expand_xps_map(map, j, index, is_rxqs_map);
2579 		if (!map)
2580 			goto error;
2581 
2582 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2583 	}
2584 
2585 	if (!new_dev_maps)
2586 		goto out_no_new_maps;
2587 
2588 	if (!dev_maps) {
2589 		/* Increment static keys at most once per type */
2590 		static_key_slow_inc_cpuslocked(&xps_needed);
2591 		if (is_rxqs_map)
2592 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2593 	}
2594 
2595 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2596 	     j < nr_ids;) {
2597 		/* copy maps belonging to foreign traffic classes */
2598 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2599 			/* fill in the new device map from the old device map */
2600 			map = xmap_dereference(dev_maps->attr_map[tci]);
2601 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2602 		}
2603 
2604 		/* We need to explicitly update tci as prevous loop
2605 		 * could break out early if dev_maps is NULL.
2606 		 */
2607 		tci = j * num_tc + tc;
2608 
2609 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2610 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2611 			/* add tx-queue to CPU/rx-queue maps */
2612 			int pos = 0;
2613 
2614 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2615 			while ((pos < map->len) && (map->queues[pos] != index))
2616 				pos++;
2617 
2618 			if (pos == map->len)
2619 				map->queues[map->len++] = index;
2620 #ifdef CONFIG_NUMA
2621 			if (!is_rxqs_map) {
2622 				if (numa_node_id == -2)
2623 					numa_node_id = cpu_to_node(j);
2624 				else if (numa_node_id != cpu_to_node(j))
2625 					numa_node_id = -1;
2626 			}
2627 #endif
2628 		} else if (dev_maps) {
2629 			/* fill in the new device map from the old device map */
2630 			map = xmap_dereference(dev_maps->attr_map[tci]);
2631 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2632 		}
2633 
2634 		/* copy maps belonging to foreign traffic classes */
2635 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2636 			/* fill in the new device map from the old device map */
2637 			map = xmap_dereference(dev_maps->attr_map[tci]);
2638 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2639 		}
2640 	}
2641 
2642 	if (is_rxqs_map)
2643 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2644 	else
2645 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2646 
2647 	/* Cleanup old maps */
2648 	if (!dev_maps)
2649 		goto out_no_old_maps;
2650 
2651 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2652 	     j < nr_ids;) {
2653 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2654 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655 			map = xmap_dereference(dev_maps->attr_map[tci]);
2656 			if (map && map != new_map)
2657 				kfree_rcu(map, rcu);
2658 		}
2659 	}
2660 
2661 	kfree_rcu(dev_maps, rcu);
2662 
2663 out_no_old_maps:
2664 	dev_maps = new_dev_maps;
2665 	active = true;
2666 
2667 out_no_new_maps:
2668 	if (!is_rxqs_map) {
2669 		/* update Tx queue numa node */
2670 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2671 					     (numa_node_id >= 0) ?
2672 					     numa_node_id : NUMA_NO_NODE);
2673 	}
2674 
2675 	if (!dev_maps)
2676 		goto out_no_maps;
2677 
2678 	/* removes tx-queue from unused CPUs/rx-queues */
2679 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2680 	     j < nr_ids;) {
2681 		for (i = tc, tci = j * num_tc; i--; tci++)
2682 			active |= remove_xps_queue(dev_maps, tci, index);
2683 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2684 		    !netif_attr_test_online(j, online_mask, nr_ids))
2685 			active |= remove_xps_queue(dev_maps, tci, index);
2686 		for (i = num_tc - tc, tci++; --i; tci++)
2687 			active |= remove_xps_queue(dev_maps, tci, index);
2688 	}
2689 
2690 	/* free map if not active */
2691 	if (!active)
2692 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2693 
2694 out_no_maps:
2695 	mutex_unlock(&xps_map_mutex);
2696 
2697 	return 0;
2698 error:
2699 	/* remove any maps that we added */
2700 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2701 	     j < nr_ids;) {
2702 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2703 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2704 			map = dev_maps ?
2705 			      xmap_dereference(dev_maps->attr_map[tci]) :
2706 			      NULL;
2707 			if (new_map && new_map != map)
2708 				kfree(new_map);
2709 		}
2710 	}
2711 
2712 	mutex_unlock(&xps_map_mutex);
2713 
2714 	kfree(new_dev_maps);
2715 	return -ENOMEM;
2716 }
2717 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2718 
2719 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2720 			u16 index)
2721 {
2722 	int ret;
2723 
2724 	cpus_read_lock();
2725 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2726 	cpus_read_unlock();
2727 
2728 	return ret;
2729 }
2730 EXPORT_SYMBOL(netif_set_xps_queue);
2731 
2732 #endif
2733 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2734 {
2735 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736 
2737 	/* Unbind any subordinate channels */
2738 	while (txq-- != &dev->_tx[0]) {
2739 		if (txq->sb_dev)
2740 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2741 	}
2742 }
2743 
2744 void netdev_reset_tc(struct net_device *dev)
2745 {
2746 #ifdef CONFIG_XPS
2747 	netif_reset_xps_queues_gt(dev, 0);
2748 #endif
2749 	netdev_unbind_all_sb_channels(dev);
2750 
2751 	/* Reset TC configuration of device */
2752 	dev->num_tc = 0;
2753 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2754 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2755 }
2756 EXPORT_SYMBOL(netdev_reset_tc);
2757 
2758 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2759 {
2760 	if (tc >= dev->num_tc)
2761 		return -EINVAL;
2762 
2763 #ifdef CONFIG_XPS
2764 	netif_reset_xps_queues(dev, offset, count);
2765 #endif
2766 	dev->tc_to_txq[tc].count = count;
2767 	dev->tc_to_txq[tc].offset = offset;
2768 	return 0;
2769 }
2770 EXPORT_SYMBOL(netdev_set_tc_queue);
2771 
2772 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2773 {
2774 	if (num_tc > TC_MAX_QUEUE)
2775 		return -EINVAL;
2776 
2777 #ifdef CONFIG_XPS
2778 	netif_reset_xps_queues_gt(dev, 0);
2779 #endif
2780 	netdev_unbind_all_sb_channels(dev);
2781 
2782 	dev->num_tc = num_tc;
2783 	return 0;
2784 }
2785 EXPORT_SYMBOL(netdev_set_num_tc);
2786 
2787 void netdev_unbind_sb_channel(struct net_device *dev,
2788 			      struct net_device *sb_dev)
2789 {
2790 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2791 
2792 #ifdef CONFIG_XPS
2793 	netif_reset_xps_queues_gt(sb_dev, 0);
2794 #endif
2795 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2796 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2797 
2798 	while (txq-- != &dev->_tx[0]) {
2799 		if (txq->sb_dev == sb_dev)
2800 			txq->sb_dev = NULL;
2801 	}
2802 }
2803 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2804 
2805 int netdev_bind_sb_channel_queue(struct net_device *dev,
2806 				 struct net_device *sb_dev,
2807 				 u8 tc, u16 count, u16 offset)
2808 {
2809 	/* Make certain the sb_dev and dev are already configured */
2810 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2811 		return -EINVAL;
2812 
2813 	/* We cannot hand out queues we don't have */
2814 	if ((offset + count) > dev->real_num_tx_queues)
2815 		return -EINVAL;
2816 
2817 	/* Record the mapping */
2818 	sb_dev->tc_to_txq[tc].count = count;
2819 	sb_dev->tc_to_txq[tc].offset = offset;
2820 
2821 	/* Provide a way for Tx queue to find the tc_to_txq map or
2822 	 * XPS map for itself.
2823 	 */
2824 	while (count--)
2825 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2826 
2827 	return 0;
2828 }
2829 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2830 
2831 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2832 {
2833 	/* Do not use a multiqueue device to represent a subordinate channel */
2834 	if (netif_is_multiqueue(dev))
2835 		return -ENODEV;
2836 
2837 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2838 	 * Channel 0 is meant to be "native" mode and used only to represent
2839 	 * the main root device. We allow writing 0 to reset the device back
2840 	 * to normal mode after being used as a subordinate channel.
2841 	 */
2842 	if (channel > S16_MAX)
2843 		return -EINVAL;
2844 
2845 	dev->num_tc = -channel;
2846 
2847 	return 0;
2848 }
2849 EXPORT_SYMBOL(netdev_set_sb_channel);
2850 
2851 /*
2852  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2853  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2854  */
2855 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2856 {
2857 	bool disabling;
2858 	int rc;
2859 
2860 	disabling = txq < dev->real_num_tx_queues;
2861 
2862 	if (txq < 1 || txq > dev->num_tx_queues)
2863 		return -EINVAL;
2864 
2865 	if (dev->reg_state == NETREG_REGISTERED ||
2866 	    dev->reg_state == NETREG_UNREGISTERING) {
2867 		ASSERT_RTNL();
2868 
2869 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2870 						  txq);
2871 		if (rc)
2872 			return rc;
2873 
2874 		if (dev->num_tc)
2875 			netif_setup_tc(dev, txq);
2876 
2877 		dev->real_num_tx_queues = txq;
2878 
2879 		if (disabling) {
2880 			synchronize_net();
2881 			qdisc_reset_all_tx_gt(dev, txq);
2882 #ifdef CONFIG_XPS
2883 			netif_reset_xps_queues_gt(dev, txq);
2884 #endif
2885 		}
2886 	} else {
2887 		dev->real_num_tx_queues = txq;
2888 	}
2889 
2890 	return 0;
2891 }
2892 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2893 
2894 #ifdef CONFIG_SYSFS
2895 /**
2896  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2897  *	@dev: Network device
2898  *	@rxq: Actual number of RX queues
2899  *
2900  *	This must be called either with the rtnl_lock held or before
2901  *	registration of the net device.  Returns 0 on success, or a
2902  *	negative error code.  If called before registration, it always
2903  *	succeeds.
2904  */
2905 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2906 {
2907 	int rc;
2908 
2909 	if (rxq < 1 || rxq > dev->num_rx_queues)
2910 		return -EINVAL;
2911 
2912 	if (dev->reg_state == NETREG_REGISTERED) {
2913 		ASSERT_RTNL();
2914 
2915 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2916 						  rxq);
2917 		if (rc)
2918 			return rc;
2919 	}
2920 
2921 	dev->real_num_rx_queues = rxq;
2922 	return 0;
2923 }
2924 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2925 #endif
2926 
2927 /**
2928  * netif_get_num_default_rss_queues - default number of RSS queues
2929  *
2930  * This routine should set an upper limit on the number of RSS queues
2931  * used by default by multiqueue devices.
2932  */
2933 int netif_get_num_default_rss_queues(void)
2934 {
2935 	return is_kdump_kernel() ?
2936 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2937 }
2938 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2939 
2940 static void __netif_reschedule(struct Qdisc *q)
2941 {
2942 	struct softnet_data *sd;
2943 	unsigned long flags;
2944 
2945 	local_irq_save(flags);
2946 	sd = this_cpu_ptr(&softnet_data);
2947 	q->next_sched = NULL;
2948 	*sd->output_queue_tailp = q;
2949 	sd->output_queue_tailp = &q->next_sched;
2950 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2951 	local_irq_restore(flags);
2952 }
2953 
2954 void __netif_schedule(struct Qdisc *q)
2955 {
2956 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2957 		__netif_reschedule(q);
2958 }
2959 EXPORT_SYMBOL(__netif_schedule);
2960 
2961 struct dev_kfree_skb_cb {
2962 	enum skb_free_reason reason;
2963 };
2964 
2965 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2966 {
2967 	return (struct dev_kfree_skb_cb *)skb->cb;
2968 }
2969 
2970 void netif_schedule_queue(struct netdev_queue *txq)
2971 {
2972 	rcu_read_lock();
2973 	if (!netif_xmit_stopped(txq)) {
2974 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2975 
2976 		__netif_schedule(q);
2977 	}
2978 	rcu_read_unlock();
2979 }
2980 EXPORT_SYMBOL(netif_schedule_queue);
2981 
2982 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2983 {
2984 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2985 		struct Qdisc *q;
2986 
2987 		rcu_read_lock();
2988 		q = rcu_dereference(dev_queue->qdisc);
2989 		__netif_schedule(q);
2990 		rcu_read_unlock();
2991 	}
2992 }
2993 EXPORT_SYMBOL(netif_tx_wake_queue);
2994 
2995 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2996 {
2997 	unsigned long flags;
2998 
2999 	if (unlikely(!skb))
3000 		return;
3001 
3002 	if (likely(refcount_read(&skb->users) == 1)) {
3003 		smp_rmb();
3004 		refcount_set(&skb->users, 0);
3005 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3006 		return;
3007 	}
3008 	get_kfree_skb_cb(skb)->reason = reason;
3009 	local_irq_save(flags);
3010 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3011 	__this_cpu_write(softnet_data.completion_queue, skb);
3012 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3013 	local_irq_restore(flags);
3014 }
3015 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3016 
3017 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3018 {
3019 	if (in_irq() || irqs_disabled())
3020 		__dev_kfree_skb_irq(skb, reason);
3021 	else
3022 		dev_kfree_skb(skb);
3023 }
3024 EXPORT_SYMBOL(__dev_kfree_skb_any);
3025 
3026 
3027 /**
3028  * netif_device_detach - mark device as removed
3029  * @dev: network device
3030  *
3031  * Mark device as removed from system and therefore no longer available.
3032  */
3033 void netif_device_detach(struct net_device *dev)
3034 {
3035 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3036 	    netif_running(dev)) {
3037 		netif_tx_stop_all_queues(dev);
3038 	}
3039 }
3040 EXPORT_SYMBOL(netif_device_detach);
3041 
3042 /**
3043  * netif_device_attach - mark device as attached
3044  * @dev: network device
3045  *
3046  * Mark device as attached from system and restart if needed.
3047  */
3048 void netif_device_attach(struct net_device *dev)
3049 {
3050 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051 	    netif_running(dev)) {
3052 		netif_tx_wake_all_queues(dev);
3053 		__netdev_watchdog_up(dev);
3054 	}
3055 }
3056 EXPORT_SYMBOL(netif_device_attach);
3057 
3058 /*
3059  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060  * to be used as a distribution range.
3061  */
3062 static u16 skb_tx_hash(const struct net_device *dev,
3063 		       const struct net_device *sb_dev,
3064 		       struct sk_buff *skb)
3065 {
3066 	u32 hash;
3067 	u16 qoffset = 0;
3068 	u16 qcount = dev->real_num_tx_queues;
3069 
3070 	if (dev->num_tc) {
3071 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3072 
3073 		qoffset = sb_dev->tc_to_txq[tc].offset;
3074 		qcount = sb_dev->tc_to_txq[tc].count;
3075 	}
3076 
3077 	if (skb_rx_queue_recorded(skb)) {
3078 		hash = skb_get_rx_queue(skb);
3079 		if (hash >= qoffset)
3080 			hash -= qoffset;
3081 		while (unlikely(hash >= qcount))
3082 			hash -= qcount;
3083 		return hash + qoffset;
3084 	}
3085 
3086 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3087 }
3088 
3089 static void skb_warn_bad_offload(const struct sk_buff *skb)
3090 {
3091 	static const netdev_features_t null_features;
3092 	struct net_device *dev = skb->dev;
3093 	const char *name = "";
3094 
3095 	if (!net_ratelimit())
3096 		return;
3097 
3098 	if (dev) {
3099 		if (dev->dev.parent)
3100 			name = dev_driver_string(dev->dev.parent);
3101 		else
3102 			name = netdev_name(dev);
3103 	}
3104 	skb_dump(KERN_WARNING, skb, false);
3105 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3106 	     name, dev ? &dev->features : &null_features,
3107 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3108 }
3109 
3110 /*
3111  * Invalidate hardware checksum when packet is to be mangled, and
3112  * complete checksum manually on outgoing path.
3113  */
3114 int skb_checksum_help(struct sk_buff *skb)
3115 {
3116 	__wsum csum;
3117 	int ret = 0, offset;
3118 
3119 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3120 		goto out_set_summed;
3121 
3122 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3123 		skb_warn_bad_offload(skb);
3124 		return -EINVAL;
3125 	}
3126 
3127 	/* Before computing a checksum, we should make sure no frag could
3128 	 * be modified by an external entity : checksum could be wrong.
3129 	 */
3130 	if (skb_has_shared_frag(skb)) {
3131 		ret = __skb_linearize(skb);
3132 		if (ret)
3133 			goto out;
3134 	}
3135 
3136 	offset = skb_checksum_start_offset(skb);
3137 	BUG_ON(offset >= skb_headlen(skb));
3138 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3139 
3140 	offset += skb->csum_offset;
3141 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3142 
3143 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3144 	if (ret)
3145 		goto out;
3146 
3147 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3148 out_set_summed:
3149 	skb->ip_summed = CHECKSUM_NONE;
3150 out:
3151 	return ret;
3152 }
3153 EXPORT_SYMBOL(skb_checksum_help);
3154 
3155 int skb_crc32c_csum_help(struct sk_buff *skb)
3156 {
3157 	__le32 crc32c_csum;
3158 	int ret = 0, offset, start;
3159 
3160 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3161 		goto out;
3162 
3163 	if (unlikely(skb_is_gso(skb)))
3164 		goto out;
3165 
3166 	/* Before computing a checksum, we should make sure no frag could
3167 	 * be modified by an external entity : checksum could be wrong.
3168 	 */
3169 	if (unlikely(skb_has_shared_frag(skb))) {
3170 		ret = __skb_linearize(skb);
3171 		if (ret)
3172 			goto out;
3173 	}
3174 	start = skb_checksum_start_offset(skb);
3175 	offset = start + offsetof(struct sctphdr, checksum);
3176 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3177 		ret = -EINVAL;
3178 		goto out;
3179 	}
3180 
3181 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3182 	if (ret)
3183 		goto out;
3184 
3185 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3186 						  skb->len - start, ~(__u32)0,
3187 						  crc32c_csum_stub));
3188 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3189 	skb->ip_summed = CHECKSUM_NONE;
3190 	skb->csum_not_inet = 0;
3191 out:
3192 	return ret;
3193 }
3194 
3195 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3196 {
3197 	__be16 type = skb->protocol;
3198 
3199 	/* Tunnel gso handlers can set protocol to ethernet. */
3200 	if (type == htons(ETH_P_TEB)) {
3201 		struct ethhdr *eth;
3202 
3203 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3204 			return 0;
3205 
3206 		eth = (struct ethhdr *)skb->data;
3207 		type = eth->h_proto;
3208 	}
3209 
3210 	return __vlan_get_protocol(skb, type, depth);
3211 }
3212 
3213 /**
3214  *	skb_mac_gso_segment - mac layer segmentation handler.
3215  *	@skb: buffer to segment
3216  *	@features: features for the output path (see dev->features)
3217  */
3218 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3219 				    netdev_features_t features)
3220 {
3221 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3222 	struct packet_offload *ptype;
3223 	int vlan_depth = skb->mac_len;
3224 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3225 
3226 	if (unlikely(!type))
3227 		return ERR_PTR(-EINVAL);
3228 
3229 	__skb_pull(skb, vlan_depth);
3230 
3231 	rcu_read_lock();
3232 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3233 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3234 			segs = ptype->callbacks.gso_segment(skb, features);
3235 			break;
3236 		}
3237 	}
3238 	rcu_read_unlock();
3239 
3240 	__skb_push(skb, skb->data - skb_mac_header(skb));
3241 
3242 	return segs;
3243 }
3244 EXPORT_SYMBOL(skb_mac_gso_segment);
3245 
3246 
3247 /* openvswitch calls this on rx path, so we need a different check.
3248  */
3249 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3250 {
3251 	if (tx_path)
3252 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3253 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3254 
3255 	return skb->ip_summed == CHECKSUM_NONE;
3256 }
3257 
3258 /**
3259  *	__skb_gso_segment - Perform segmentation on skb.
3260  *	@skb: buffer to segment
3261  *	@features: features for the output path (see dev->features)
3262  *	@tx_path: whether it is called in TX path
3263  *
3264  *	This function segments the given skb and returns a list of segments.
3265  *
3266  *	It may return NULL if the skb requires no segmentation.  This is
3267  *	only possible when GSO is used for verifying header integrity.
3268  *
3269  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3270  */
3271 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3272 				  netdev_features_t features, bool tx_path)
3273 {
3274 	struct sk_buff *segs;
3275 
3276 	if (unlikely(skb_needs_check(skb, tx_path))) {
3277 		int err;
3278 
3279 		/* We're going to init ->check field in TCP or UDP header */
3280 		err = skb_cow_head(skb, 0);
3281 		if (err < 0)
3282 			return ERR_PTR(err);
3283 	}
3284 
3285 	/* Only report GSO partial support if it will enable us to
3286 	 * support segmentation on this frame without needing additional
3287 	 * work.
3288 	 */
3289 	if (features & NETIF_F_GSO_PARTIAL) {
3290 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3291 		struct net_device *dev = skb->dev;
3292 
3293 		partial_features |= dev->features & dev->gso_partial_features;
3294 		if (!skb_gso_ok(skb, features | partial_features))
3295 			features &= ~NETIF_F_GSO_PARTIAL;
3296 	}
3297 
3298 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3299 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3300 
3301 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3302 	SKB_GSO_CB(skb)->encap_level = 0;
3303 
3304 	skb_reset_mac_header(skb);
3305 	skb_reset_mac_len(skb);
3306 
3307 	segs = skb_mac_gso_segment(skb, features);
3308 
3309 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3310 		skb_warn_bad_offload(skb);
3311 
3312 	return segs;
3313 }
3314 EXPORT_SYMBOL(__skb_gso_segment);
3315 
3316 /* Take action when hardware reception checksum errors are detected. */
3317 #ifdef CONFIG_BUG
3318 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3319 {
3320 	if (net_ratelimit()) {
3321 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3322 		skb_dump(KERN_ERR, skb, true);
3323 		dump_stack();
3324 	}
3325 }
3326 EXPORT_SYMBOL(netdev_rx_csum_fault);
3327 #endif
3328 
3329 /* XXX: check that highmem exists at all on the given machine. */
3330 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3331 {
3332 #ifdef CONFIG_HIGHMEM
3333 	int i;
3334 
3335 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3336 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3337 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3338 
3339 			if (PageHighMem(skb_frag_page(frag)))
3340 				return 1;
3341 		}
3342 	}
3343 #endif
3344 	return 0;
3345 }
3346 
3347 /* If MPLS offload request, verify we are testing hardware MPLS features
3348  * instead of standard features for the netdev.
3349  */
3350 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3351 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3352 					   netdev_features_t features,
3353 					   __be16 type)
3354 {
3355 	if (eth_p_mpls(type))
3356 		features &= skb->dev->mpls_features;
3357 
3358 	return features;
3359 }
3360 #else
3361 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3362 					   netdev_features_t features,
3363 					   __be16 type)
3364 {
3365 	return features;
3366 }
3367 #endif
3368 
3369 static netdev_features_t harmonize_features(struct sk_buff *skb,
3370 	netdev_features_t features)
3371 {
3372 	int tmp;
3373 	__be16 type;
3374 
3375 	type = skb_network_protocol(skb, &tmp);
3376 	features = net_mpls_features(skb, features, type);
3377 
3378 	if (skb->ip_summed != CHECKSUM_NONE &&
3379 	    !can_checksum_protocol(features, type)) {
3380 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3381 	}
3382 	if (illegal_highdma(skb->dev, skb))
3383 		features &= ~NETIF_F_SG;
3384 
3385 	return features;
3386 }
3387 
3388 netdev_features_t passthru_features_check(struct sk_buff *skb,
3389 					  struct net_device *dev,
3390 					  netdev_features_t features)
3391 {
3392 	return features;
3393 }
3394 EXPORT_SYMBOL(passthru_features_check);
3395 
3396 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3397 					     struct net_device *dev,
3398 					     netdev_features_t features)
3399 {
3400 	return vlan_features_check(skb, features);
3401 }
3402 
3403 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3404 					    struct net_device *dev,
3405 					    netdev_features_t features)
3406 {
3407 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3408 
3409 	if (gso_segs > dev->gso_max_segs)
3410 		return features & ~NETIF_F_GSO_MASK;
3411 
3412 	/* Support for GSO partial features requires software
3413 	 * intervention before we can actually process the packets
3414 	 * so we need to strip support for any partial features now
3415 	 * and we can pull them back in after we have partially
3416 	 * segmented the frame.
3417 	 */
3418 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3419 		features &= ~dev->gso_partial_features;
3420 
3421 	/* Make sure to clear the IPv4 ID mangling feature if the
3422 	 * IPv4 header has the potential to be fragmented.
3423 	 */
3424 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3425 		struct iphdr *iph = skb->encapsulation ?
3426 				    inner_ip_hdr(skb) : ip_hdr(skb);
3427 
3428 		if (!(iph->frag_off & htons(IP_DF)))
3429 			features &= ~NETIF_F_TSO_MANGLEID;
3430 	}
3431 
3432 	return features;
3433 }
3434 
3435 netdev_features_t netif_skb_features(struct sk_buff *skb)
3436 {
3437 	struct net_device *dev = skb->dev;
3438 	netdev_features_t features = dev->features;
3439 
3440 	if (skb_is_gso(skb))
3441 		features = gso_features_check(skb, dev, features);
3442 
3443 	/* If encapsulation offload request, verify we are testing
3444 	 * hardware encapsulation features instead of standard
3445 	 * features for the netdev
3446 	 */
3447 	if (skb->encapsulation)
3448 		features &= dev->hw_enc_features;
3449 
3450 	if (skb_vlan_tagged(skb))
3451 		features = netdev_intersect_features(features,
3452 						     dev->vlan_features |
3453 						     NETIF_F_HW_VLAN_CTAG_TX |
3454 						     NETIF_F_HW_VLAN_STAG_TX);
3455 
3456 	if (dev->netdev_ops->ndo_features_check)
3457 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3458 								features);
3459 	else
3460 		features &= dflt_features_check(skb, dev, features);
3461 
3462 	return harmonize_features(skb, features);
3463 }
3464 EXPORT_SYMBOL(netif_skb_features);
3465 
3466 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3467 		    struct netdev_queue *txq, bool more)
3468 {
3469 	unsigned int len;
3470 	int rc;
3471 
3472 	if (dev_nit_active(dev))
3473 		dev_queue_xmit_nit(skb, dev);
3474 
3475 	len = skb->len;
3476 	trace_net_dev_start_xmit(skb, dev);
3477 	rc = netdev_start_xmit(skb, dev, txq, more);
3478 	trace_net_dev_xmit(skb, rc, dev, len);
3479 
3480 	return rc;
3481 }
3482 
3483 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3484 				    struct netdev_queue *txq, int *ret)
3485 {
3486 	struct sk_buff *skb = first;
3487 	int rc = NETDEV_TX_OK;
3488 
3489 	while (skb) {
3490 		struct sk_buff *next = skb->next;
3491 
3492 		skb_mark_not_on_list(skb);
3493 		rc = xmit_one(skb, dev, txq, next != NULL);
3494 		if (unlikely(!dev_xmit_complete(rc))) {
3495 			skb->next = next;
3496 			goto out;
3497 		}
3498 
3499 		skb = next;
3500 		if (netif_tx_queue_stopped(txq) && skb) {
3501 			rc = NETDEV_TX_BUSY;
3502 			break;
3503 		}
3504 	}
3505 
3506 out:
3507 	*ret = rc;
3508 	return skb;
3509 }
3510 
3511 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3512 					  netdev_features_t features)
3513 {
3514 	if (skb_vlan_tag_present(skb) &&
3515 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3516 		skb = __vlan_hwaccel_push_inside(skb);
3517 	return skb;
3518 }
3519 
3520 int skb_csum_hwoffload_help(struct sk_buff *skb,
3521 			    const netdev_features_t features)
3522 {
3523 	if (unlikely(skb->csum_not_inet))
3524 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3525 			skb_crc32c_csum_help(skb);
3526 
3527 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3528 }
3529 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3530 
3531 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3532 {
3533 	netdev_features_t features;
3534 
3535 	features = netif_skb_features(skb);
3536 	skb = validate_xmit_vlan(skb, features);
3537 	if (unlikely(!skb))
3538 		goto out_null;
3539 
3540 	skb = sk_validate_xmit_skb(skb, dev);
3541 	if (unlikely(!skb))
3542 		goto out_null;
3543 
3544 	if (netif_needs_gso(skb, features)) {
3545 		struct sk_buff *segs;
3546 
3547 		segs = skb_gso_segment(skb, features);
3548 		if (IS_ERR(segs)) {
3549 			goto out_kfree_skb;
3550 		} else if (segs) {
3551 			consume_skb(skb);
3552 			skb = segs;
3553 		}
3554 	} else {
3555 		if (skb_needs_linearize(skb, features) &&
3556 		    __skb_linearize(skb))
3557 			goto out_kfree_skb;
3558 
3559 		/* If packet is not checksummed and device does not
3560 		 * support checksumming for this protocol, complete
3561 		 * checksumming here.
3562 		 */
3563 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3564 			if (skb->encapsulation)
3565 				skb_set_inner_transport_header(skb,
3566 							       skb_checksum_start_offset(skb));
3567 			else
3568 				skb_set_transport_header(skb,
3569 							 skb_checksum_start_offset(skb));
3570 			if (skb_csum_hwoffload_help(skb, features))
3571 				goto out_kfree_skb;
3572 		}
3573 	}
3574 
3575 	skb = validate_xmit_xfrm(skb, features, again);
3576 
3577 	return skb;
3578 
3579 out_kfree_skb:
3580 	kfree_skb(skb);
3581 out_null:
3582 	atomic_long_inc(&dev->tx_dropped);
3583 	return NULL;
3584 }
3585 
3586 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3587 {
3588 	struct sk_buff *next, *head = NULL, *tail;
3589 
3590 	for (; skb != NULL; skb = next) {
3591 		next = skb->next;
3592 		skb_mark_not_on_list(skb);
3593 
3594 		/* in case skb wont be segmented, point to itself */
3595 		skb->prev = skb;
3596 
3597 		skb = validate_xmit_skb(skb, dev, again);
3598 		if (!skb)
3599 			continue;
3600 
3601 		if (!head)
3602 			head = skb;
3603 		else
3604 			tail->next = skb;
3605 		/* If skb was segmented, skb->prev points to
3606 		 * the last segment. If not, it still contains skb.
3607 		 */
3608 		tail = skb->prev;
3609 	}
3610 	return head;
3611 }
3612 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3613 
3614 static void qdisc_pkt_len_init(struct sk_buff *skb)
3615 {
3616 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3617 
3618 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3619 
3620 	/* To get more precise estimation of bytes sent on wire,
3621 	 * we add to pkt_len the headers size of all segments
3622 	 */
3623 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3624 		unsigned int hdr_len;
3625 		u16 gso_segs = shinfo->gso_segs;
3626 
3627 		/* mac layer + network layer */
3628 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3629 
3630 		/* + transport layer */
3631 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3632 			const struct tcphdr *th;
3633 			struct tcphdr _tcphdr;
3634 
3635 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3636 						sizeof(_tcphdr), &_tcphdr);
3637 			if (likely(th))
3638 				hdr_len += __tcp_hdrlen(th);
3639 		} else {
3640 			struct udphdr _udphdr;
3641 
3642 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3643 					       sizeof(_udphdr), &_udphdr))
3644 				hdr_len += sizeof(struct udphdr);
3645 		}
3646 
3647 		if (shinfo->gso_type & SKB_GSO_DODGY)
3648 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3649 						shinfo->gso_size);
3650 
3651 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3652 	}
3653 }
3654 
3655 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3656 				 struct net_device *dev,
3657 				 struct netdev_queue *txq)
3658 {
3659 	spinlock_t *root_lock = qdisc_lock(q);
3660 	struct sk_buff *to_free = NULL;
3661 	bool contended;
3662 	int rc;
3663 
3664 	qdisc_calculate_pkt_len(skb, q);
3665 
3666 	if (q->flags & TCQ_F_NOLOCK) {
3667 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3668 		qdisc_run(q);
3669 
3670 		if (unlikely(to_free))
3671 			kfree_skb_list(to_free);
3672 		return rc;
3673 	}
3674 
3675 	/*
3676 	 * Heuristic to force contended enqueues to serialize on a
3677 	 * separate lock before trying to get qdisc main lock.
3678 	 * This permits qdisc->running owner to get the lock more
3679 	 * often and dequeue packets faster.
3680 	 */
3681 	contended = qdisc_is_running(q);
3682 	if (unlikely(contended))
3683 		spin_lock(&q->busylock);
3684 
3685 	spin_lock(root_lock);
3686 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3687 		__qdisc_drop(skb, &to_free);
3688 		rc = NET_XMIT_DROP;
3689 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3690 		   qdisc_run_begin(q)) {
3691 		/*
3692 		 * This is a work-conserving queue; there are no old skbs
3693 		 * waiting to be sent out; and the qdisc is not running -
3694 		 * xmit the skb directly.
3695 		 */
3696 
3697 		qdisc_bstats_update(q, skb);
3698 
3699 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3700 			if (unlikely(contended)) {
3701 				spin_unlock(&q->busylock);
3702 				contended = false;
3703 			}
3704 			__qdisc_run(q);
3705 		}
3706 
3707 		qdisc_run_end(q);
3708 		rc = NET_XMIT_SUCCESS;
3709 	} else {
3710 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3711 		if (qdisc_run_begin(q)) {
3712 			if (unlikely(contended)) {
3713 				spin_unlock(&q->busylock);
3714 				contended = false;
3715 			}
3716 			__qdisc_run(q);
3717 			qdisc_run_end(q);
3718 		}
3719 	}
3720 	spin_unlock(root_lock);
3721 	if (unlikely(to_free))
3722 		kfree_skb_list(to_free);
3723 	if (unlikely(contended))
3724 		spin_unlock(&q->busylock);
3725 	return rc;
3726 }
3727 
3728 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3729 static void skb_update_prio(struct sk_buff *skb)
3730 {
3731 	const struct netprio_map *map;
3732 	const struct sock *sk;
3733 	unsigned int prioidx;
3734 
3735 	if (skb->priority)
3736 		return;
3737 	map = rcu_dereference_bh(skb->dev->priomap);
3738 	if (!map)
3739 		return;
3740 	sk = skb_to_full_sk(skb);
3741 	if (!sk)
3742 		return;
3743 
3744 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3745 
3746 	if (prioidx < map->priomap_len)
3747 		skb->priority = map->priomap[prioidx];
3748 }
3749 #else
3750 #define skb_update_prio(skb)
3751 #endif
3752 
3753 /**
3754  *	dev_loopback_xmit - loop back @skb
3755  *	@net: network namespace this loopback is happening in
3756  *	@sk:  sk needed to be a netfilter okfn
3757  *	@skb: buffer to transmit
3758  */
3759 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3760 {
3761 	skb_reset_mac_header(skb);
3762 	__skb_pull(skb, skb_network_offset(skb));
3763 	skb->pkt_type = PACKET_LOOPBACK;
3764 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3765 	WARN_ON(!skb_dst(skb));
3766 	skb_dst_force(skb);
3767 	netif_rx_ni(skb);
3768 	return 0;
3769 }
3770 EXPORT_SYMBOL(dev_loopback_xmit);
3771 
3772 #ifdef CONFIG_NET_EGRESS
3773 static struct sk_buff *
3774 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3775 {
3776 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3777 	struct tcf_result cl_res;
3778 
3779 	if (!miniq)
3780 		return skb;
3781 
3782 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3783 	mini_qdisc_bstats_cpu_update(miniq, skb);
3784 
3785 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3786 	case TC_ACT_OK:
3787 	case TC_ACT_RECLASSIFY:
3788 		skb->tc_index = TC_H_MIN(cl_res.classid);
3789 		break;
3790 	case TC_ACT_SHOT:
3791 		mini_qdisc_qstats_cpu_drop(miniq);
3792 		*ret = NET_XMIT_DROP;
3793 		kfree_skb(skb);
3794 		return NULL;
3795 	case TC_ACT_STOLEN:
3796 	case TC_ACT_QUEUED:
3797 	case TC_ACT_TRAP:
3798 		*ret = NET_XMIT_SUCCESS;
3799 		consume_skb(skb);
3800 		return NULL;
3801 	case TC_ACT_REDIRECT:
3802 		/* No need to push/pop skb's mac_header here on egress! */
3803 		skb_do_redirect(skb);
3804 		*ret = NET_XMIT_SUCCESS;
3805 		return NULL;
3806 	default:
3807 		break;
3808 	}
3809 
3810 	return skb;
3811 }
3812 #endif /* CONFIG_NET_EGRESS */
3813 
3814 #ifdef CONFIG_XPS
3815 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3816 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3817 {
3818 	struct xps_map *map;
3819 	int queue_index = -1;
3820 
3821 	if (dev->num_tc) {
3822 		tci *= dev->num_tc;
3823 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3824 	}
3825 
3826 	map = rcu_dereference(dev_maps->attr_map[tci]);
3827 	if (map) {
3828 		if (map->len == 1)
3829 			queue_index = map->queues[0];
3830 		else
3831 			queue_index = map->queues[reciprocal_scale(
3832 						skb_get_hash(skb), map->len)];
3833 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3834 			queue_index = -1;
3835 	}
3836 	return queue_index;
3837 }
3838 #endif
3839 
3840 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3841 			 struct sk_buff *skb)
3842 {
3843 #ifdef CONFIG_XPS
3844 	struct xps_dev_maps *dev_maps;
3845 	struct sock *sk = skb->sk;
3846 	int queue_index = -1;
3847 
3848 	if (!static_key_false(&xps_needed))
3849 		return -1;
3850 
3851 	rcu_read_lock();
3852 	if (!static_key_false(&xps_rxqs_needed))
3853 		goto get_cpus_map;
3854 
3855 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3856 	if (dev_maps) {
3857 		int tci = sk_rx_queue_get(sk);
3858 
3859 		if (tci >= 0 && tci < dev->num_rx_queues)
3860 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3861 							  tci);
3862 	}
3863 
3864 get_cpus_map:
3865 	if (queue_index < 0) {
3866 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3867 		if (dev_maps) {
3868 			unsigned int tci = skb->sender_cpu - 1;
3869 
3870 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3871 							  tci);
3872 		}
3873 	}
3874 	rcu_read_unlock();
3875 
3876 	return queue_index;
3877 #else
3878 	return -1;
3879 #endif
3880 }
3881 
3882 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3883 		     struct net_device *sb_dev)
3884 {
3885 	return 0;
3886 }
3887 EXPORT_SYMBOL(dev_pick_tx_zero);
3888 
3889 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3890 		       struct net_device *sb_dev)
3891 {
3892 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3893 }
3894 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3895 
3896 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3897 		     struct net_device *sb_dev)
3898 {
3899 	struct sock *sk = skb->sk;
3900 	int queue_index = sk_tx_queue_get(sk);
3901 
3902 	sb_dev = sb_dev ? : dev;
3903 
3904 	if (queue_index < 0 || skb->ooo_okay ||
3905 	    queue_index >= dev->real_num_tx_queues) {
3906 		int new_index = get_xps_queue(dev, sb_dev, skb);
3907 
3908 		if (new_index < 0)
3909 			new_index = skb_tx_hash(dev, sb_dev, skb);
3910 
3911 		if (queue_index != new_index && sk &&
3912 		    sk_fullsock(sk) &&
3913 		    rcu_access_pointer(sk->sk_dst_cache))
3914 			sk_tx_queue_set(sk, new_index);
3915 
3916 		queue_index = new_index;
3917 	}
3918 
3919 	return queue_index;
3920 }
3921 EXPORT_SYMBOL(netdev_pick_tx);
3922 
3923 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3924 					 struct sk_buff *skb,
3925 					 struct net_device *sb_dev)
3926 {
3927 	int queue_index = 0;
3928 
3929 #ifdef CONFIG_XPS
3930 	u32 sender_cpu = skb->sender_cpu - 1;
3931 
3932 	if (sender_cpu >= (u32)NR_CPUS)
3933 		skb->sender_cpu = raw_smp_processor_id() + 1;
3934 #endif
3935 
3936 	if (dev->real_num_tx_queues != 1) {
3937 		const struct net_device_ops *ops = dev->netdev_ops;
3938 
3939 		if (ops->ndo_select_queue)
3940 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3941 		else
3942 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3943 
3944 		queue_index = netdev_cap_txqueue(dev, queue_index);
3945 	}
3946 
3947 	skb_set_queue_mapping(skb, queue_index);
3948 	return netdev_get_tx_queue(dev, queue_index);
3949 }
3950 
3951 /**
3952  *	__dev_queue_xmit - transmit a buffer
3953  *	@skb: buffer to transmit
3954  *	@sb_dev: suboordinate device used for L2 forwarding offload
3955  *
3956  *	Queue a buffer for transmission to a network device. The caller must
3957  *	have set the device and priority and built the buffer before calling
3958  *	this function. The function can be called from an interrupt.
3959  *
3960  *	A negative errno code is returned on a failure. A success does not
3961  *	guarantee the frame will be transmitted as it may be dropped due
3962  *	to congestion or traffic shaping.
3963  *
3964  * -----------------------------------------------------------------------------------
3965  *      I notice this method can also return errors from the queue disciplines,
3966  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3967  *      be positive.
3968  *
3969  *      Regardless of the return value, the skb is consumed, so it is currently
3970  *      difficult to retry a send to this method.  (You can bump the ref count
3971  *      before sending to hold a reference for retry if you are careful.)
3972  *
3973  *      When calling this method, interrupts MUST be enabled.  This is because
3974  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3975  *          --BLG
3976  */
3977 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3978 {
3979 	struct net_device *dev = skb->dev;
3980 	struct netdev_queue *txq;
3981 	struct Qdisc *q;
3982 	int rc = -ENOMEM;
3983 	bool again = false;
3984 
3985 	skb_reset_mac_header(skb);
3986 
3987 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3988 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3989 
3990 	/* Disable soft irqs for various locks below. Also
3991 	 * stops preemption for RCU.
3992 	 */
3993 	rcu_read_lock_bh();
3994 
3995 	skb_update_prio(skb);
3996 
3997 	qdisc_pkt_len_init(skb);
3998 #ifdef CONFIG_NET_CLS_ACT
3999 	skb->tc_at_ingress = 0;
4000 # ifdef CONFIG_NET_EGRESS
4001 	if (static_branch_unlikely(&egress_needed_key)) {
4002 		skb = sch_handle_egress(skb, &rc, dev);
4003 		if (!skb)
4004 			goto out;
4005 	}
4006 # endif
4007 #endif
4008 	/* If device/qdisc don't need skb->dst, release it right now while
4009 	 * its hot in this cpu cache.
4010 	 */
4011 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4012 		skb_dst_drop(skb);
4013 	else
4014 		skb_dst_force(skb);
4015 
4016 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4017 	q = rcu_dereference_bh(txq->qdisc);
4018 
4019 	trace_net_dev_queue(skb);
4020 	if (q->enqueue) {
4021 		rc = __dev_xmit_skb(skb, q, dev, txq);
4022 		goto out;
4023 	}
4024 
4025 	/* The device has no queue. Common case for software devices:
4026 	 * loopback, all the sorts of tunnels...
4027 
4028 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4029 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4030 	 * counters.)
4031 	 * However, it is possible, that they rely on protection
4032 	 * made by us here.
4033 
4034 	 * Check this and shot the lock. It is not prone from deadlocks.
4035 	 *Either shot noqueue qdisc, it is even simpler 8)
4036 	 */
4037 	if (dev->flags & IFF_UP) {
4038 		int cpu = smp_processor_id(); /* ok because BHs are off */
4039 
4040 		if (txq->xmit_lock_owner != cpu) {
4041 			if (dev_xmit_recursion())
4042 				goto recursion_alert;
4043 
4044 			skb = validate_xmit_skb(skb, dev, &again);
4045 			if (!skb)
4046 				goto out;
4047 
4048 			HARD_TX_LOCK(dev, txq, cpu);
4049 
4050 			if (!netif_xmit_stopped(txq)) {
4051 				dev_xmit_recursion_inc();
4052 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4053 				dev_xmit_recursion_dec();
4054 				if (dev_xmit_complete(rc)) {
4055 					HARD_TX_UNLOCK(dev, txq);
4056 					goto out;
4057 				}
4058 			}
4059 			HARD_TX_UNLOCK(dev, txq);
4060 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4061 					     dev->name);
4062 		} else {
4063 			/* Recursion is detected! It is possible,
4064 			 * unfortunately
4065 			 */
4066 recursion_alert:
4067 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4068 					     dev->name);
4069 		}
4070 	}
4071 
4072 	rc = -ENETDOWN;
4073 	rcu_read_unlock_bh();
4074 
4075 	atomic_long_inc(&dev->tx_dropped);
4076 	kfree_skb_list(skb);
4077 	return rc;
4078 out:
4079 	rcu_read_unlock_bh();
4080 	return rc;
4081 }
4082 
4083 int dev_queue_xmit(struct sk_buff *skb)
4084 {
4085 	return __dev_queue_xmit(skb, NULL);
4086 }
4087 EXPORT_SYMBOL(dev_queue_xmit);
4088 
4089 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4090 {
4091 	return __dev_queue_xmit(skb, sb_dev);
4092 }
4093 EXPORT_SYMBOL(dev_queue_xmit_accel);
4094 
4095 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4096 {
4097 	struct net_device *dev = skb->dev;
4098 	struct sk_buff *orig_skb = skb;
4099 	struct netdev_queue *txq;
4100 	int ret = NETDEV_TX_BUSY;
4101 	bool again = false;
4102 
4103 	if (unlikely(!netif_running(dev) ||
4104 		     !netif_carrier_ok(dev)))
4105 		goto drop;
4106 
4107 	skb = validate_xmit_skb_list(skb, dev, &again);
4108 	if (skb != orig_skb)
4109 		goto drop;
4110 
4111 	skb_set_queue_mapping(skb, queue_id);
4112 	txq = skb_get_tx_queue(dev, skb);
4113 
4114 	local_bh_disable();
4115 
4116 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4117 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4118 		ret = netdev_start_xmit(skb, dev, txq, false);
4119 	HARD_TX_UNLOCK(dev, txq);
4120 
4121 	local_bh_enable();
4122 
4123 	if (!dev_xmit_complete(ret))
4124 		kfree_skb(skb);
4125 
4126 	return ret;
4127 drop:
4128 	atomic_long_inc(&dev->tx_dropped);
4129 	kfree_skb_list(skb);
4130 	return NET_XMIT_DROP;
4131 }
4132 EXPORT_SYMBOL(dev_direct_xmit);
4133 
4134 /*************************************************************************
4135  *			Receiver routines
4136  *************************************************************************/
4137 
4138 int netdev_max_backlog __read_mostly = 1000;
4139 EXPORT_SYMBOL(netdev_max_backlog);
4140 
4141 int netdev_tstamp_prequeue __read_mostly = 1;
4142 int netdev_budget __read_mostly = 300;
4143 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4144 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4145 int weight_p __read_mostly = 64;           /* old backlog weight */
4146 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4147 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4148 int dev_rx_weight __read_mostly = 64;
4149 int dev_tx_weight __read_mostly = 64;
4150 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4151 int gro_normal_batch __read_mostly = 8;
4152 
4153 /* Called with irq disabled */
4154 static inline void ____napi_schedule(struct softnet_data *sd,
4155 				     struct napi_struct *napi)
4156 {
4157 	list_add_tail(&napi->poll_list, &sd->poll_list);
4158 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4159 }
4160 
4161 #ifdef CONFIG_RPS
4162 
4163 /* One global table that all flow-based protocols share. */
4164 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4165 EXPORT_SYMBOL(rps_sock_flow_table);
4166 u32 rps_cpu_mask __read_mostly;
4167 EXPORT_SYMBOL(rps_cpu_mask);
4168 
4169 struct static_key_false rps_needed __read_mostly;
4170 EXPORT_SYMBOL(rps_needed);
4171 struct static_key_false rfs_needed __read_mostly;
4172 EXPORT_SYMBOL(rfs_needed);
4173 
4174 static struct rps_dev_flow *
4175 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4176 	    struct rps_dev_flow *rflow, u16 next_cpu)
4177 {
4178 	if (next_cpu < nr_cpu_ids) {
4179 #ifdef CONFIG_RFS_ACCEL
4180 		struct netdev_rx_queue *rxqueue;
4181 		struct rps_dev_flow_table *flow_table;
4182 		struct rps_dev_flow *old_rflow;
4183 		u32 flow_id;
4184 		u16 rxq_index;
4185 		int rc;
4186 
4187 		/* Should we steer this flow to a different hardware queue? */
4188 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4189 		    !(dev->features & NETIF_F_NTUPLE))
4190 			goto out;
4191 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4192 		if (rxq_index == skb_get_rx_queue(skb))
4193 			goto out;
4194 
4195 		rxqueue = dev->_rx + rxq_index;
4196 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4197 		if (!flow_table)
4198 			goto out;
4199 		flow_id = skb_get_hash(skb) & flow_table->mask;
4200 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4201 							rxq_index, flow_id);
4202 		if (rc < 0)
4203 			goto out;
4204 		old_rflow = rflow;
4205 		rflow = &flow_table->flows[flow_id];
4206 		rflow->filter = rc;
4207 		if (old_rflow->filter == rflow->filter)
4208 			old_rflow->filter = RPS_NO_FILTER;
4209 	out:
4210 #endif
4211 		rflow->last_qtail =
4212 			per_cpu(softnet_data, next_cpu).input_queue_head;
4213 	}
4214 
4215 	rflow->cpu = next_cpu;
4216 	return rflow;
4217 }
4218 
4219 /*
4220  * get_rps_cpu is called from netif_receive_skb and returns the target
4221  * CPU from the RPS map of the receiving queue for a given skb.
4222  * rcu_read_lock must be held on entry.
4223  */
4224 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4225 		       struct rps_dev_flow **rflowp)
4226 {
4227 	const struct rps_sock_flow_table *sock_flow_table;
4228 	struct netdev_rx_queue *rxqueue = dev->_rx;
4229 	struct rps_dev_flow_table *flow_table;
4230 	struct rps_map *map;
4231 	int cpu = -1;
4232 	u32 tcpu;
4233 	u32 hash;
4234 
4235 	if (skb_rx_queue_recorded(skb)) {
4236 		u16 index = skb_get_rx_queue(skb);
4237 
4238 		if (unlikely(index >= dev->real_num_rx_queues)) {
4239 			WARN_ONCE(dev->real_num_rx_queues > 1,
4240 				  "%s received packet on queue %u, but number "
4241 				  "of RX queues is %u\n",
4242 				  dev->name, index, dev->real_num_rx_queues);
4243 			goto done;
4244 		}
4245 		rxqueue += index;
4246 	}
4247 
4248 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4249 
4250 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4251 	map = rcu_dereference(rxqueue->rps_map);
4252 	if (!flow_table && !map)
4253 		goto done;
4254 
4255 	skb_reset_network_header(skb);
4256 	hash = skb_get_hash(skb);
4257 	if (!hash)
4258 		goto done;
4259 
4260 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4261 	if (flow_table && sock_flow_table) {
4262 		struct rps_dev_flow *rflow;
4263 		u32 next_cpu;
4264 		u32 ident;
4265 
4266 		/* First check into global flow table if there is a match */
4267 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4268 		if ((ident ^ hash) & ~rps_cpu_mask)
4269 			goto try_rps;
4270 
4271 		next_cpu = ident & rps_cpu_mask;
4272 
4273 		/* OK, now we know there is a match,
4274 		 * we can look at the local (per receive queue) flow table
4275 		 */
4276 		rflow = &flow_table->flows[hash & flow_table->mask];
4277 		tcpu = rflow->cpu;
4278 
4279 		/*
4280 		 * If the desired CPU (where last recvmsg was done) is
4281 		 * different from current CPU (one in the rx-queue flow
4282 		 * table entry), switch if one of the following holds:
4283 		 *   - Current CPU is unset (>= nr_cpu_ids).
4284 		 *   - Current CPU is offline.
4285 		 *   - The current CPU's queue tail has advanced beyond the
4286 		 *     last packet that was enqueued using this table entry.
4287 		 *     This guarantees that all previous packets for the flow
4288 		 *     have been dequeued, thus preserving in order delivery.
4289 		 */
4290 		if (unlikely(tcpu != next_cpu) &&
4291 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4292 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4293 		      rflow->last_qtail)) >= 0)) {
4294 			tcpu = next_cpu;
4295 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4296 		}
4297 
4298 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4299 			*rflowp = rflow;
4300 			cpu = tcpu;
4301 			goto done;
4302 		}
4303 	}
4304 
4305 try_rps:
4306 
4307 	if (map) {
4308 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4309 		if (cpu_online(tcpu)) {
4310 			cpu = tcpu;
4311 			goto done;
4312 		}
4313 	}
4314 
4315 done:
4316 	return cpu;
4317 }
4318 
4319 #ifdef CONFIG_RFS_ACCEL
4320 
4321 /**
4322  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4323  * @dev: Device on which the filter was set
4324  * @rxq_index: RX queue index
4325  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4326  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4327  *
4328  * Drivers that implement ndo_rx_flow_steer() should periodically call
4329  * this function for each installed filter and remove the filters for
4330  * which it returns %true.
4331  */
4332 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4333 			 u32 flow_id, u16 filter_id)
4334 {
4335 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4336 	struct rps_dev_flow_table *flow_table;
4337 	struct rps_dev_flow *rflow;
4338 	bool expire = true;
4339 	unsigned int cpu;
4340 
4341 	rcu_read_lock();
4342 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4343 	if (flow_table && flow_id <= flow_table->mask) {
4344 		rflow = &flow_table->flows[flow_id];
4345 		cpu = READ_ONCE(rflow->cpu);
4346 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4347 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4348 			   rflow->last_qtail) <
4349 		     (int)(10 * flow_table->mask)))
4350 			expire = false;
4351 	}
4352 	rcu_read_unlock();
4353 	return expire;
4354 }
4355 EXPORT_SYMBOL(rps_may_expire_flow);
4356 
4357 #endif /* CONFIG_RFS_ACCEL */
4358 
4359 /* Called from hardirq (IPI) context */
4360 static void rps_trigger_softirq(void *data)
4361 {
4362 	struct softnet_data *sd = data;
4363 
4364 	____napi_schedule(sd, &sd->backlog);
4365 	sd->received_rps++;
4366 }
4367 
4368 #endif /* CONFIG_RPS */
4369 
4370 /*
4371  * Check if this softnet_data structure is another cpu one
4372  * If yes, queue it to our IPI list and return 1
4373  * If no, return 0
4374  */
4375 static int rps_ipi_queued(struct softnet_data *sd)
4376 {
4377 #ifdef CONFIG_RPS
4378 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4379 
4380 	if (sd != mysd) {
4381 		sd->rps_ipi_next = mysd->rps_ipi_list;
4382 		mysd->rps_ipi_list = sd;
4383 
4384 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4385 		return 1;
4386 	}
4387 #endif /* CONFIG_RPS */
4388 	return 0;
4389 }
4390 
4391 #ifdef CONFIG_NET_FLOW_LIMIT
4392 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4393 #endif
4394 
4395 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4396 {
4397 #ifdef CONFIG_NET_FLOW_LIMIT
4398 	struct sd_flow_limit *fl;
4399 	struct softnet_data *sd;
4400 	unsigned int old_flow, new_flow;
4401 
4402 	if (qlen < (netdev_max_backlog >> 1))
4403 		return false;
4404 
4405 	sd = this_cpu_ptr(&softnet_data);
4406 
4407 	rcu_read_lock();
4408 	fl = rcu_dereference(sd->flow_limit);
4409 	if (fl) {
4410 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4411 		old_flow = fl->history[fl->history_head];
4412 		fl->history[fl->history_head] = new_flow;
4413 
4414 		fl->history_head++;
4415 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4416 
4417 		if (likely(fl->buckets[old_flow]))
4418 			fl->buckets[old_flow]--;
4419 
4420 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4421 			fl->count++;
4422 			rcu_read_unlock();
4423 			return true;
4424 		}
4425 	}
4426 	rcu_read_unlock();
4427 #endif
4428 	return false;
4429 }
4430 
4431 /*
4432  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4433  * queue (may be a remote CPU queue).
4434  */
4435 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4436 			      unsigned int *qtail)
4437 {
4438 	struct softnet_data *sd;
4439 	unsigned long flags;
4440 	unsigned int qlen;
4441 
4442 	sd = &per_cpu(softnet_data, cpu);
4443 
4444 	local_irq_save(flags);
4445 
4446 	rps_lock(sd);
4447 	if (!netif_running(skb->dev))
4448 		goto drop;
4449 	qlen = skb_queue_len(&sd->input_pkt_queue);
4450 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4451 		if (qlen) {
4452 enqueue:
4453 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4454 			input_queue_tail_incr_save(sd, qtail);
4455 			rps_unlock(sd);
4456 			local_irq_restore(flags);
4457 			return NET_RX_SUCCESS;
4458 		}
4459 
4460 		/* Schedule NAPI for backlog device
4461 		 * We can use non atomic operation since we own the queue lock
4462 		 */
4463 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4464 			if (!rps_ipi_queued(sd))
4465 				____napi_schedule(sd, &sd->backlog);
4466 		}
4467 		goto enqueue;
4468 	}
4469 
4470 drop:
4471 	sd->dropped++;
4472 	rps_unlock(sd);
4473 
4474 	local_irq_restore(flags);
4475 
4476 	atomic_long_inc(&skb->dev->rx_dropped);
4477 	kfree_skb(skb);
4478 	return NET_RX_DROP;
4479 }
4480 
4481 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4482 {
4483 	struct net_device *dev = skb->dev;
4484 	struct netdev_rx_queue *rxqueue;
4485 
4486 	rxqueue = dev->_rx;
4487 
4488 	if (skb_rx_queue_recorded(skb)) {
4489 		u16 index = skb_get_rx_queue(skb);
4490 
4491 		if (unlikely(index >= dev->real_num_rx_queues)) {
4492 			WARN_ONCE(dev->real_num_rx_queues > 1,
4493 				  "%s received packet on queue %u, but number "
4494 				  "of RX queues is %u\n",
4495 				  dev->name, index, dev->real_num_rx_queues);
4496 
4497 			return rxqueue; /* Return first rxqueue */
4498 		}
4499 		rxqueue += index;
4500 	}
4501 	return rxqueue;
4502 }
4503 
4504 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4505 				     struct xdp_buff *xdp,
4506 				     struct bpf_prog *xdp_prog)
4507 {
4508 	struct netdev_rx_queue *rxqueue;
4509 	void *orig_data, *orig_data_end;
4510 	u32 metalen, act = XDP_DROP;
4511 	__be16 orig_eth_type;
4512 	struct ethhdr *eth;
4513 	bool orig_bcast;
4514 	int hlen, off;
4515 	u32 mac_len;
4516 
4517 	/* Reinjected packets coming from act_mirred or similar should
4518 	 * not get XDP generic processing.
4519 	 */
4520 	if (skb_is_redirected(skb))
4521 		return XDP_PASS;
4522 
4523 	/* XDP packets must be linear and must have sufficient headroom
4524 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4525 	 * native XDP provides, thus we need to do it here as well.
4526 	 */
4527 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4528 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4529 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4530 		int troom = skb->tail + skb->data_len - skb->end;
4531 
4532 		/* In case we have to go down the path and also linearize,
4533 		 * then lets do the pskb_expand_head() work just once here.
4534 		 */
4535 		if (pskb_expand_head(skb,
4536 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4537 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4538 			goto do_drop;
4539 		if (skb_linearize(skb))
4540 			goto do_drop;
4541 	}
4542 
4543 	/* The XDP program wants to see the packet starting at the MAC
4544 	 * header.
4545 	 */
4546 	mac_len = skb->data - skb_mac_header(skb);
4547 	hlen = skb_headlen(skb) + mac_len;
4548 	xdp->data = skb->data - mac_len;
4549 	xdp->data_meta = xdp->data;
4550 	xdp->data_end = xdp->data + hlen;
4551 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4552 	orig_data_end = xdp->data_end;
4553 	orig_data = xdp->data;
4554 	eth = (struct ethhdr *)xdp->data;
4555 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4556 	orig_eth_type = eth->h_proto;
4557 
4558 	rxqueue = netif_get_rxqueue(skb);
4559 	xdp->rxq = &rxqueue->xdp_rxq;
4560 
4561 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4562 
4563 	/* check if bpf_xdp_adjust_head was used */
4564 	off = xdp->data - orig_data;
4565 	if (off) {
4566 		if (off > 0)
4567 			__skb_pull(skb, off);
4568 		else if (off < 0)
4569 			__skb_push(skb, -off);
4570 
4571 		skb->mac_header += off;
4572 		skb_reset_network_header(skb);
4573 	}
4574 
4575 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4576 	 * pckt.
4577 	 */
4578 	off = orig_data_end - xdp->data_end;
4579 	if (off != 0) {
4580 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4581 		skb->len -= off;
4582 
4583 	}
4584 
4585 	/* check if XDP changed eth hdr such SKB needs update */
4586 	eth = (struct ethhdr *)xdp->data;
4587 	if ((orig_eth_type != eth->h_proto) ||
4588 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4589 		__skb_push(skb, ETH_HLEN);
4590 		skb->protocol = eth_type_trans(skb, skb->dev);
4591 	}
4592 
4593 	switch (act) {
4594 	case XDP_REDIRECT:
4595 	case XDP_TX:
4596 		__skb_push(skb, mac_len);
4597 		break;
4598 	case XDP_PASS:
4599 		metalen = xdp->data - xdp->data_meta;
4600 		if (metalen)
4601 			skb_metadata_set(skb, metalen);
4602 		break;
4603 	default:
4604 		bpf_warn_invalid_xdp_action(act);
4605 		/* fall through */
4606 	case XDP_ABORTED:
4607 		trace_xdp_exception(skb->dev, xdp_prog, act);
4608 		/* fall through */
4609 	case XDP_DROP:
4610 	do_drop:
4611 		kfree_skb(skb);
4612 		break;
4613 	}
4614 
4615 	return act;
4616 }
4617 
4618 /* When doing generic XDP we have to bypass the qdisc layer and the
4619  * network taps in order to match in-driver-XDP behavior.
4620  */
4621 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4622 {
4623 	struct net_device *dev = skb->dev;
4624 	struct netdev_queue *txq;
4625 	bool free_skb = true;
4626 	int cpu, rc;
4627 
4628 	txq = netdev_core_pick_tx(dev, skb, NULL);
4629 	cpu = smp_processor_id();
4630 	HARD_TX_LOCK(dev, txq, cpu);
4631 	if (!netif_xmit_stopped(txq)) {
4632 		rc = netdev_start_xmit(skb, dev, txq, 0);
4633 		if (dev_xmit_complete(rc))
4634 			free_skb = false;
4635 	}
4636 	HARD_TX_UNLOCK(dev, txq);
4637 	if (free_skb) {
4638 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4639 		kfree_skb(skb);
4640 	}
4641 }
4642 
4643 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4644 
4645 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4646 {
4647 	if (xdp_prog) {
4648 		struct xdp_buff xdp;
4649 		u32 act;
4650 		int err;
4651 
4652 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4653 		if (act != XDP_PASS) {
4654 			switch (act) {
4655 			case XDP_REDIRECT:
4656 				err = xdp_do_generic_redirect(skb->dev, skb,
4657 							      &xdp, xdp_prog);
4658 				if (err)
4659 					goto out_redir;
4660 				break;
4661 			case XDP_TX:
4662 				generic_xdp_tx(skb, xdp_prog);
4663 				break;
4664 			}
4665 			return XDP_DROP;
4666 		}
4667 	}
4668 	return XDP_PASS;
4669 out_redir:
4670 	kfree_skb(skb);
4671 	return XDP_DROP;
4672 }
4673 EXPORT_SYMBOL_GPL(do_xdp_generic);
4674 
4675 static int netif_rx_internal(struct sk_buff *skb)
4676 {
4677 	int ret;
4678 
4679 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4680 
4681 	trace_netif_rx(skb);
4682 
4683 #ifdef CONFIG_RPS
4684 	if (static_branch_unlikely(&rps_needed)) {
4685 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4686 		int cpu;
4687 
4688 		preempt_disable();
4689 		rcu_read_lock();
4690 
4691 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4692 		if (cpu < 0)
4693 			cpu = smp_processor_id();
4694 
4695 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4696 
4697 		rcu_read_unlock();
4698 		preempt_enable();
4699 	} else
4700 #endif
4701 	{
4702 		unsigned int qtail;
4703 
4704 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4705 		put_cpu();
4706 	}
4707 	return ret;
4708 }
4709 
4710 /**
4711  *	netif_rx	-	post buffer to the network code
4712  *	@skb: buffer to post
4713  *
4714  *	This function receives a packet from a device driver and queues it for
4715  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4716  *	may be dropped during processing for congestion control or by the
4717  *	protocol layers.
4718  *
4719  *	return values:
4720  *	NET_RX_SUCCESS	(no congestion)
4721  *	NET_RX_DROP     (packet was dropped)
4722  *
4723  */
4724 
4725 int netif_rx(struct sk_buff *skb)
4726 {
4727 	int ret;
4728 
4729 	trace_netif_rx_entry(skb);
4730 
4731 	ret = netif_rx_internal(skb);
4732 	trace_netif_rx_exit(ret);
4733 
4734 	return ret;
4735 }
4736 EXPORT_SYMBOL(netif_rx);
4737 
4738 int netif_rx_ni(struct sk_buff *skb)
4739 {
4740 	int err;
4741 
4742 	trace_netif_rx_ni_entry(skb);
4743 
4744 	preempt_disable();
4745 	err = netif_rx_internal(skb);
4746 	if (local_softirq_pending())
4747 		do_softirq();
4748 	preempt_enable();
4749 	trace_netif_rx_ni_exit(err);
4750 
4751 	return err;
4752 }
4753 EXPORT_SYMBOL(netif_rx_ni);
4754 
4755 static __latent_entropy void net_tx_action(struct softirq_action *h)
4756 {
4757 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4758 
4759 	if (sd->completion_queue) {
4760 		struct sk_buff *clist;
4761 
4762 		local_irq_disable();
4763 		clist = sd->completion_queue;
4764 		sd->completion_queue = NULL;
4765 		local_irq_enable();
4766 
4767 		while (clist) {
4768 			struct sk_buff *skb = clist;
4769 
4770 			clist = clist->next;
4771 
4772 			WARN_ON(refcount_read(&skb->users));
4773 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4774 				trace_consume_skb(skb);
4775 			else
4776 				trace_kfree_skb(skb, net_tx_action);
4777 
4778 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4779 				__kfree_skb(skb);
4780 			else
4781 				__kfree_skb_defer(skb);
4782 		}
4783 
4784 		__kfree_skb_flush();
4785 	}
4786 
4787 	if (sd->output_queue) {
4788 		struct Qdisc *head;
4789 
4790 		local_irq_disable();
4791 		head = sd->output_queue;
4792 		sd->output_queue = NULL;
4793 		sd->output_queue_tailp = &sd->output_queue;
4794 		local_irq_enable();
4795 
4796 		while (head) {
4797 			struct Qdisc *q = head;
4798 			spinlock_t *root_lock = NULL;
4799 
4800 			head = head->next_sched;
4801 
4802 			if (!(q->flags & TCQ_F_NOLOCK)) {
4803 				root_lock = qdisc_lock(q);
4804 				spin_lock(root_lock);
4805 			}
4806 			/* We need to make sure head->next_sched is read
4807 			 * before clearing __QDISC_STATE_SCHED
4808 			 */
4809 			smp_mb__before_atomic();
4810 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4811 			qdisc_run(q);
4812 			if (root_lock)
4813 				spin_unlock(root_lock);
4814 		}
4815 	}
4816 
4817 	xfrm_dev_backlog(sd);
4818 }
4819 
4820 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4821 /* This hook is defined here for ATM LANE */
4822 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4823 			     unsigned char *addr) __read_mostly;
4824 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4825 #endif
4826 
4827 static inline struct sk_buff *
4828 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4829 		   struct net_device *orig_dev)
4830 {
4831 #ifdef CONFIG_NET_CLS_ACT
4832 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4833 	struct tcf_result cl_res;
4834 
4835 	/* If there's at least one ingress present somewhere (so
4836 	 * we get here via enabled static key), remaining devices
4837 	 * that are not configured with an ingress qdisc will bail
4838 	 * out here.
4839 	 */
4840 	if (!miniq)
4841 		return skb;
4842 
4843 	if (*pt_prev) {
4844 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4845 		*pt_prev = NULL;
4846 	}
4847 
4848 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4849 	skb->tc_at_ingress = 1;
4850 	mini_qdisc_bstats_cpu_update(miniq, skb);
4851 
4852 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4853 				     &cl_res, false)) {
4854 	case TC_ACT_OK:
4855 	case TC_ACT_RECLASSIFY:
4856 		skb->tc_index = TC_H_MIN(cl_res.classid);
4857 		break;
4858 	case TC_ACT_SHOT:
4859 		mini_qdisc_qstats_cpu_drop(miniq);
4860 		kfree_skb(skb);
4861 		return NULL;
4862 	case TC_ACT_STOLEN:
4863 	case TC_ACT_QUEUED:
4864 	case TC_ACT_TRAP:
4865 		consume_skb(skb);
4866 		return NULL;
4867 	case TC_ACT_REDIRECT:
4868 		/* skb_mac_header check was done by cls/act_bpf, so
4869 		 * we can safely push the L2 header back before
4870 		 * redirecting to another netdev
4871 		 */
4872 		__skb_push(skb, skb->mac_len);
4873 		skb_do_redirect(skb);
4874 		return NULL;
4875 	case TC_ACT_CONSUMED:
4876 		return NULL;
4877 	default:
4878 		break;
4879 	}
4880 #endif /* CONFIG_NET_CLS_ACT */
4881 	return skb;
4882 }
4883 
4884 /**
4885  *	netdev_is_rx_handler_busy - check if receive handler is registered
4886  *	@dev: device to check
4887  *
4888  *	Check if a receive handler is already registered for a given device.
4889  *	Return true if there one.
4890  *
4891  *	The caller must hold the rtnl_mutex.
4892  */
4893 bool netdev_is_rx_handler_busy(struct net_device *dev)
4894 {
4895 	ASSERT_RTNL();
4896 	return dev && rtnl_dereference(dev->rx_handler);
4897 }
4898 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4899 
4900 /**
4901  *	netdev_rx_handler_register - register receive handler
4902  *	@dev: device to register a handler for
4903  *	@rx_handler: receive handler to register
4904  *	@rx_handler_data: data pointer that is used by rx handler
4905  *
4906  *	Register a receive handler for a device. This handler will then be
4907  *	called from __netif_receive_skb. A negative errno code is returned
4908  *	on a failure.
4909  *
4910  *	The caller must hold the rtnl_mutex.
4911  *
4912  *	For a general description of rx_handler, see enum rx_handler_result.
4913  */
4914 int netdev_rx_handler_register(struct net_device *dev,
4915 			       rx_handler_func_t *rx_handler,
4916 			       void *rx_handler_data)
4917 {
4918 	if (netdev_is_rx_handler_busy(dev))
4919 		return -EBUSY;
4920 
4921 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4922 		return -EINVAL;
4923 
4924 	/* Note: rx_handler_data must be set before rx_handler */
4925 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4926 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4927 
4928 	return 0;
4929 }
4930 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4931 
4932 /**
4933  *	netdev_rx_handler_unregister - unregister receive handler
4934  *	@dev: device to unregister a handler from
4935  *
4936  *	Unregister a receive handler from a device.
4937  *
4938  *	The caller must hold the rtnl_mutex.
4939  */
4940 void netdev_rx_handler_unregister(struct net_device *dev)
4941 {
4942 
4943 	ASSERT_RTNL();
4944 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4945 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4946 	 * section has a guarantee to see a non NULL rx_handler_data
4947 	 * as well.
4948 	 */
4949 	synchronize_net();
4950 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4951 }
4952 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4953 
4954 /*
4955  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4956  * the special handling of PFMEMALLOC skbs.
4957  */
4958 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4959 {
4960 	switch (skb->protocol) {
4961 	case htons(ETH_P_ARP):
4962 	case htons(ETH_P_IP):
4963 	case htons(ETH_P_IPV6):
4964 	case htons(ETH_P_8021Q):
4965 	case htons(ETH_P_8021AD):
4966 		return true;
4967 	default:
4968 		return false;
4969 	}
4970 }
4971 
4972 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4973 			     int *ret, struct net_device *orig_dev)
4974 {
4975 	if (nf_hook_ingress_active(skb)) {
4976 		int ingress_retval;
4977 
4978 		if (*pt_prev) {
4979 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4980 			*pt_prev = NULL;
4981 		}
4982 
4983 		rcu_read_lock();
4984 		ingress_retval = nf_hook_ingress(skb);
4985 		rcu_read_unlock();
4986 		return ingress_retval;
4987 	}
4988 	return 0;
4989 }
4990 
4991 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
4992 				    struct packet_type **ppt_prev)
4993 {
4994 	struct packet_type *ptype, *pt_prev;
4995 	rx_handler_func_t *rx_handler;
4996 	struct sk_buff *skb = *pskb;
4997 	struct net_device *orig_dev;
4998 	bool deliver_exact = false;
4999 	int ret = NET_RX_DROP;
5000 	__be16 type;
5001 
5002 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5003 
5004 	trace_netif_receive_skb(skb);
5005 
5006 	orig_dev = skb->dev;
5007 
5008 	skb_reset_network_header(skb);
5009 	if (!skb_transport_header_was_set(skb))
5010 		skb_reset_transport_header(skb);
5011 	skb_reset_mac_len(skb);
5012 
5013 	pt_prev = NULL;
5014 
5015 another_round:
5016 	skb->skb_iif = skb->dev->ifindex;
5017 
5018 	__this_cpu_inc(softnet_data.processed);
5019 
5020 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5021 		int ret2;
5022 
5023 		preempt_disable();
5024 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5025 		preempt_enable();
5026 
5027 		if (ret2 != XDP_PASS) {
5028 			ret = NET_RX_DROP;
5029 			goto out;
5030 		}
5031 		skb_reset_mac_len(skb);
5032 	}
5033 
5034 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5035 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5036 		skb = skb_vlan_untag(skb);
5037 		if (unlikely(!skb))
5038 			goto out;
5039 	}
5040 
5041 	if (skb_skip_tc_classify(skb))
5042 		goto skip_classify;
5043 
5044 	if (pfmemalloc)
5045 		goto skip_taps;
5046 
5047 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5048 		if (pt_prev)
5049 			ret = deliver_skb(skb, pt_prev, orig_dev);
5050 		pt_prev = ptype;
5051 	}
5052 
5053 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5054 		if (pt_prev)
5055 			ret = deliver_skb(skb, pt_prev, orig_dev);
5056 		pt_prev = ptype;
5057 	}
5058 
5059 skip_taps:
5060 #ifdef CONFIG_NET_INGRESS
5061 	if (static_branch_unlikely(&ingress_needed_key)) {
5062 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5063 		if (!skb)
5064 			goto out;
5065 
5066 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5067 			goto out;
5068 	}
5069 #endif
5070 	skb_reset_redirect(skb);
5071 skip_classify:
5072 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5073 		goto drop;
5074 
5075 	if (skb_vlan_tag_present(skb)) {
5076 		if (pt_prev) {
5077 			ret = deliver_skb(skb, pt_prev, orig_dev);
5078 			pt_prev = NULL;
5079 		}
5080 		if (vlan_do_receive(&skb))
5081 			goto another_round;
5082 		else if (unlikely(!skb))
5083 			goto out;
5084 	}
5085 
5086 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5087 	if (rx_handler) {
5088 		if (pt_prev) {
5089 			ret = deliver_skb(skb, pt_prev, orig_dev);
5090 			pt_prev = NULL;
5091 		}
5092 		switch (rx_handler(&skb)) {
5093 		case RX_HANDLER_CONSUMED:
5094 			ret = NET_RX_SUCCESS;
5095 			goto out;
5096 		case RX_HANDLER_ANOTHER:
5097 			goto another_round;
5098 		case RX_HANDLER_EXACT:
5099 			deliver_exact = true;
5100 		case RX_HANDLER_PASS:
5101 			break;
5102 		default:
5103 			BUG();
5104 		}
5105 	}
5106 
5107 	if (unlikely(skb_vlan_tag_present(skb))) {
5108 check_vlan_id:
5109 		if (skb_vlan_tag_get_id(skb)) {
5110 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5111 			 * find vlan device.
5112 			 */
5113 			skb->pkt_type = PACKET_OTHERHOST;
5114 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5115 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5116 			/* Outer header is 802.1P with vlan 0, inner header is
5117 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5118 			 * not find vlan dev for vlan id 0.
5119 			 */
5120 			__vlan_hwaccel_clear_tag(skb);
5121 			skb = skb_vlan_untag(skb);
5122 			if (unlikely(!skb))
5123 				goto out;
5124 			if (vlan_do_receive(&skb))
5125 				/* After stripping off 802.1P header with vlan 0
5126 				 * vlan dev is found for inner header.
5127 				 */
5128 				goto another_round;
5129 			else if (unlikely(!skb))
5130 				goto out;
5131 			else
5132 				/* We have stripped outer 802.1P vlan 0 header.
5133 				 * But could not find vlan dev.
5134 				 * check again for vlan id to set OTHERHOST.
5135 				 */
5136 				goto check_vlan_id;
5137 		}
5138 		/* Note: we might in the future use prio bits
5139 		 * and set skb->priority like in vlan_do_receive()
5140 		 * For the time being, just ignore Priority Code Point
5141 		 */
5142 		__vlan_hwaccel_clear_tag(skb);
5143 	}
5144 
5145 	type = skb->protocol;
5146 
5147 	/* deliver only exact match when indicated */
5148 	if (likely(!deliver_exact)) {
5149 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5150 				       &ptype_base[ntohs(type) &
5151 						   PTYPE_HASH_MASK]);
5152 	}
5153 
5154 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5155 			       &orig_dev->ptype_specific);
5156 
5157 	if (unlikely(skb->dev != orig_dev)) {
5158 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5159 				       &skb->dev->ptype_specific);
5160 	}
5161 
5162 	if (pt_prev) {
5163 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5164 			goto drop;
5165 		*ppt_prev = pt_prev;
5166 	} else {
5167 drop:
5168 		if (!deliver_exact)
5169 			atomic_long_inc(&skb->dev->rx_dropped);
5170 		else
5171 			atomic_long_inc(&skb->dev->rx_nohandler);
5172 		kfree_skb(skb);
5173 		/* Jamal, now you will not able to escape explaining
5174 		 * me how you were going to use this. :-)
5175 		 */
5176 		ret = NET_RX_DROP;
5177 	}
5178 
5179 out:
5180 	/* The invariant here is that if *ppt_prev is not NULL
5181 	 * then skb should also be non-NULL.
5182 	 *
5183 	 * Apparently *ppt_prev assignment above holds this invariant due to
5184 	 * skb dereferencing near it.
5185 	 */
5186 	*pskb = skb;
5187 	return ret;
5188 }
5189 
5190 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5191 {
5192 	struct net_device *orig_dev = skb->dev;
5193 	struct packet_type *pt_prev = NULL;
5194 	int ret;
5195 
5196 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5197 	if (pt_prev)
5198 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5199 					 skb->dev, pt_prev, orig_dev);
5200 	return ret;
5201 }
5202 
5203 /**
5204  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5205  *	@skb: buffer to process
5206  *
5207  *	More direct receive version of netif_receive_skb().  It should
5208  *	only be used by callers that have a need to skip RPS and Generic XDP.
5209  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5210  *
5211  *	This function may only be called from softirq context and interrupts
5212  *	should be enabled.
5213  *
5214  *	Return values (usually ignored):
5215  *	NET_RX_SUCCESS: no congestion
5216  *	NET_RX_DROP: packet was dropped
5217  */
5218 int netif_receive_skb_core(struct sk_buff *skb)
5219 {
5220 	int ret;
5221 
5222 	rcu_read_lock();
5223 	ret = __netif_receive_skb_one_core(skb, false);
5224 	rcu_read_unlock();
5225 
5226 	return ret;
5227 }
5228 EXPORT_SYMBOL(netif_receive_skb_core);
5229 
5230 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5231 						  struct packet_type *pt_prev,
5232 						  struct net_device *orig_dev)
5233 {
5234 	struct sk_buff *skb, *next;
5235 
5236 	if (!pt_prev)
5237 		return;
5238 	if (list_empty(head))
5239 		return;
5240 	if (pt_prev->list_func != NULL)
5241 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5242 				   ip_list_rcv, head, pt_prev, orig_dev);
5243 	else
5244 		list_for_each_entry_safe(skb, next, head, list) {
5245 			skb_list_del_init(skb);
5246 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5247 		}
5248 }
5249 
5250 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5251 {
5252 	/* Fast-path assumptions:
5253 	 * - There is no RX handler.
5254 	 * - Only one packet_type matches.
5255 	 * If either of these fails, we will end up doing some per-packet
5256 	 * processing in-line, then handling the 'last ptype' for the whole
5257 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5258 	 * because the 'last ptype' must be constant across the sublist, and all
5259 	 * other ptypes are handled per-packet.
5260 	 */
5261 	/* Current (common) ptype of sublist */
5262 	struct packet_type *pt_curr = NULL;
5263 	/* Current (common) orig_dev of sublist */
5264 	struct net_device *od_curr = NULL;
5265 	struct list_head sublist;
5266 	struct sk_buff *skb, *next;
5267 
5268 	INIT_LIST_HEAD(&sublist);
5269 	list_for_each_entry_safe(skb, next, head, list) {
5270 		struct net_device *orig_dev = skb->dev;
5271 		struct packet_type *pt_prev = NULL;
5272 
5273 		skb_list_del_init(skb);
5274 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5275 		if (!pt_prev)
5276 			continue;
5277 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5278 			/* dispatch old sublist */
5279 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5280 			/* start new sublist */
5281 			INIT_LIST_HEAD(&sublist);
5282 			pt_curr = pt_prev;
5283 			od_curr = orig_dev;
5284 		}
5285 		list_add_tail(&skb->list, &sublist);
5286 	}
5287 
5288 	/* dispatch final sublist */
5289 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5290 }
5291 
5292 static int __netif_receive_skb(struct sk_buff *skb)
5293 {
5294 	int ret;
5295 
5296 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5297 		unsigned int noreclaim_flag;
5298 
5299 		/*
5300 		 * PFMEMALLOC skbs are special, they should
5301 		 * - be delivered to SOCK_MEMALLOC sockets only
5302 		 * - stay away from userspace
5303 		 * - have bounded memory usage
5304 		 *
5305 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5306 		 * context down to all allocation sites.
5307 		 */
5308 		noreclaim_flag = memalloc_noreclaim_save();
5309 		ret = __netif_receive_skb_one_core(skb, true);
5310 		memalloc_noreclaim_restore(noreclaim_flag);
5311 	} else
5312 		ret = __netif_receive_skb_one_core(skb, false);
5313 
5314 	return ret;
5315 }
5316 
5317 static void __netif_receive_skb_list(struct list_head *head)
5318 {
5319 	unsigned long noreclaim_flag = 0;
5320 	struct sk_buff *skb, *next;
5321 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5322 
5323 	list_for_each_entry_safe(skb, next, head, list) {
5324 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5325 			struct list_head sublist;
5326 
5327 			/* Handle the previous sublist */
5328 			list_cut_before(&sublist, head, &skb->list);
5329 			if (!list_empty(&sublist))
5330 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5331 			pfmemalloc = !pfmemalloc;
5332 			/* See comments in __netif_receive_skb */
5333 			if (pfmemalloc)
5334 				noreclaim_flag = memalloc_noreclaim_save();
5335 			else
5336 				memalloc_noreclaim_restore(noreclaim_flag);
5337 		}
5338 	}
5339 	/* Handle the remaining sublist */
5340 	if (!list_empty(head))
5341 		__netif_receive_skb_list_core(head, pfmemalloc);
5342 	/* Restore pflags */
5343 	if (pfmemalloc)
5344 		memalloc_noreclaim_restore(noreclaim_flag);
5345 }
5346 
5347 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5348 {
5349 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5350 	struct bpf_prog *new = xdp->prog;
5351 	int ret = 0;
5352 
5353 	switch (xdp->command) {
5354 	case XDP_SETUP_PROG:
5355 		rcu_assign_pointer(dev->xdp_prog, new);
5356 		if (old)
5357 			bpf_prog_put(old);
5358 
5359 		if (old && !new) {
5360 			static_branch_dec(&generic_xdp_needed_key);
5361 		} else if (new && !old) {
5362 			static_branch_inc(&generic_xdp_needed_key);
5363 			dev_disable_lro(dev);
5364 			dev_disable_gro_hw(dev);
5365 		}
5366 		break;
5367 
5368 	case XDP_QUERY_PROG:
5369 		xdp->prog_id = old ? old->aux->id : 0;
5370 		break;
5371 
5372 	default:
5373 		ret = -EINVAL;
5374 		break;
5375 	}
5376 
5377 	return ret;
5378 }
5379 
5380 static int netif_receive_skb_internal(struct sk_buff *skb)
5381 {
5382 	int ret;
5383 
5384 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5385 
5386 	if (skb_defer_rx_timestamp(skb))
5387 		return NET_RX_SUCCESS;
5388 
5389 	rcu_read_lock();
5390 #ifdef CONFIG_RPS
5391 	if (static_branch_unlikely(&rps_needed)) {
5392 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5393 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5394 
5395 		if (cpu >= 0) {
5396 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5397 			rcu_read_unlock();
5398 			return ret;
5399 		}
5400 	}
5401 #endif
5402 	ret = __netif_receive_skb(skb);
5403 	rcu_read_unlock();
5404 	return ret;
5405 }
5406 
5407 static void netif_receive_skb_list_internal(struct list_head *head)
5408 {
5409 	struct sk_buff *skb, *next;
5410 	struct list_head sublist;
5411 
5412 	INIT_LIST_HEAD(&sublist);
5413 	list_for_each_entry_safe(skb, next, head, list) {
5414 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5415 		skb_list_del_init(skb);
5416 		if (!skb_defer_rx_timestamp(skb))
5417 			list_add_tail(&skb->list, &sublist);
5418 	}
5419 	list_splice_init(&sublist, head);
5420 
5421 	rcu_read_lock();
5422 #ifdef CONFIG_RPS
5423 	if (static_branch_unlikely(&rps_needed)) {
5424 		list_for_each_entry_safe(skb, next, head, list) {
5425 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5426 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5427 
5428 			if (cpu >= 0) {
5429 				/* Will be handled, remove from list */
5430 				skb_list_del_init(skb);
5431 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5432 			}
5433 		}
5434 	}
5435 #endif
5436 	__netif_receive_skb_list(head);
5437 	rcu_read_unlock();
5438 }
5439 
5440 /**
5441  *	netif_receive_skb - process receive buffer from network
5442  *	@skb: buffer to process
5443  *
5444  *	netif_receive_skb() is the main receive data processing function.
5445  *	It always succeeds. The buffer may be dropped during processing
5446  *	for congestion control or by the protocol layers.
5447  *
5448  *	This function may only be called from softirq context and interrupts
5449  *	should be enabled.
5450  *
5451  *	Return values (usually ignored):
5452  *	NET_RX_SUCCESS: no congestion
5453  *	NET_RX_DROP: packet was dropped
5454  */
5455 int netif_receive_skb(struct sk_buff *skb)
5456 {
5457 	int ret;
5458 
5459 	trace_netif_receive_skb_entry(skb);
5460 
5461 	ret = netif_receive_skb_internal(skb);
5462 	trace_netif_receive_skb_exit(ret);
5463 
5464 	return ret;
5465 }
5466 EXPORT_SYMBOL(netif_receive_skb);
5467 
5468 /**
5469  *	netif_receive_skb_list - process many receive buffers from network
5470  *	@head: list of skbs to process.
5471  *
5472  *	Since return value of netif_receive_skb() is normally ignored, and
5473  *	wouldn't be meaningful for a list, this function returns void.
5474  *
5475  *	This function may only be called from softirq context and interrupts
5476  *	should be enabled.
5477  */
5478 void netif_receive_skb_list(struct list_head *head)
5479 {
5480 	struct sk_buff *skb;
5481 
5482 	if (list_empty(head))
5483 		return;
5484 	if (trace_netif_receive_skb_list_entry_enabled()) {
5485 		list_for_each_entry(skb, head, list)
5486 			trace_netif_receive_skb_list_entry(skb);
5487 	}
5488 	netif_receive_skb_list_internal(head);
5489 	trace_netif_receive_skb_list_exit(0);
5490 }
5491 EXPORT_SYMBOL(netif_receive_skb_list);
5492 
5493 DEFINE_PER_CPU(struct work_struct, flush_works);
5494 
5495 /* Network device is going away, flush any packets still pending */
5496 static void flush_backlog(struct work_struct *work)
5497 {
5498 	struct sk_buff *skb, *tmp;
5499 	struct softnet_data *sd;
5500 
5501 	local_bh_disable();
5502 	sd = this_cpu_ptr(&softnet_data);
5503 
5504 	local_irq_disable();
5505 	rps_lock(sd);
5506 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5507 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5508 			__skb_unlink(skb, &sd->input_pkt_queue);
5509 			kfree_skb(skb);
5510 			input_queue_head_incr(sd);
5511 		}
5512 	}
5513 	rps_unlock(sd);
5514 	local_irq_enable();
5515 
5516 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5517 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5518 			__skb_unlink(skb, &sd->process_queue);
5519 			kfree_skb(skb);
5520 			input_queue_head_incr(sd);
5521 		}
5522 	}
5523 	local_bh_enable();
5524 }
5525 
5526 static void flush_all_backlogs(void)
5527 {
5528 	unsigned int cpu;
5529 
5530 	get_online_cpus();
5531 
5532 	for_each_online_cpu(cpu)
5533 		queue_work_on(cpu, system_highpri_wq,
5534 			      per_cpu_ptr(&flush_works, cpu));
5535 
5536 	for_each_online_cpu(cpu)
5537 		flush_work(per_cpu_ptr(&flush_works, cpu));
5538 
5539 	put_online_cpus();
5540 }
5541 
5542 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5543 static void gro_normal_list(struct napi_struct *napi)
5544 {
5545 	if (!napi->rx_count)
5546 		return;
5547 	netif_receive_skb_list_internal(&napi->rx_list);
5548 	INIT_LIST_HEAD(&napi->rx_list);
5549 	napi->rx_count = 0;
5550 }
5551 
5552 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5553  * pass the whole batch up to the stack.
5554  */
5555 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5556 {
5557 	list_add_tail(&skb->list, &napi->rx_list);
5558 	if (++napi->rx_count >= gro_normal_batch)
5559 		gro_normal_list(napi);
5560 }
5561 
5562 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5563 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5564 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5565 {
5566 	struct packet_offload *ptype;
5567 	__be16 type = skb->protocol;
5568 	struct list_head *head = &offload_base;
5569 	int err = -ENOENT;
5570 
5571 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5572 
5573 	if (NAPI_GRO_CB(skb)->count == 1) {
5574 		skb_shinfo(skb)->gso_size = 0;
5575 		goto out;
5576 	}
5577 
5578 	rcu_read_lock();
5579 	list_for_each_entry_rcu(ptype, head, list) {
5580 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5581 			continue;
5582 
5583 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5584 					 ipv6_gro_complete, inet_gro_complete,
5585 					 skb, 0);
5586 		break;
5587 	}
5588 	rcu_read_unlock();
5589 
5590 	if (err) {
5591 		WARN_ON(&ptype->list == head);
5592 		kfree_skb(skb);
5593 		return NET_RX_SUCCESS;
5594 	}
5595 
5596 out:
5597 	gro_normal_one(napi, skb);
5598 	return NET_RX_SUCCESS;
5599 }
5600 
5601 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5602 				   bool flush_old)
5603 {
5604 	struct list_head *head = &napi->gro_hash[index].list;
5605 	struct sk_buff *skb, *p;
5606 
5607 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5608 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5609 			return;
5610 		skb_list_del_init(skb);
5611 		napi_gro_complete(napi, skb);
5612 		napi->gro_hash[index].count--;
5613 	}
5614 
5615 	if (!napi->gro_hash[index].count)
5616 		__clear_bit(index, &napi->gro_bitmask);
5617 }
5618 
5619 /* napi->gro_hash[].list contains packets ordered by age.
5620  * youngest packets at the head of it.
5621  * Complete skbs in reverse order to reduce latencies.
5622  */
5623 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5624 {
5625 	unsigned long bitmask = napi->gro_bitmask;
5626 	unsigned int i, base = ~0U;
5627 
5628 	while ((i = ffs(bitmask)) != 0) {
5629 		bitmask >>= i;
5630 		base += i;
5631 		__napi_gro_flush_chain(napi, base, flush_old);
5632 	}
5633 }
5634 EXPORT_SYMBOL(napi_gro_flush);
5635 
5636 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5637 					  struct sk_buff *skb)
5638 {
5639 	unsigned int maclen = skb->dev->hard_header_len;
5640 	u32 hash = skb_get_hash_raw(skb);
5641 	struct list_head *head;
5642 	struct sk_buff *p;
5643 
5644 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5645 	list_for_each_entry(p, head, list) {
5646 		unsigned long diffs;
5647 
5648 		NAPI_GRO_CB(p)->flush = 0;
5649 
5650 		if (hash != skb_get_hash_raw(p)) {
5651 			NAPI_GRO_CB(p)->same_flow = 0;
5652 			continue;
5653 		}
5654 
5655 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5656 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5657 		if (skb_vlan_tag_present(p))
5658 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5659 		diffs |= skb_metadata_dst_cmp(p, skb);
5660 		diffs |= skb_metadata_differs(p, skb);
5661 		if (maclen == ETH_HLEN)
5662 			diffs |= compare_ether_header(skb_mac_header(p),
5663 						      skb_mac_header(skb));
5664 		else if (!diffs)
5665 			diffs = memcmp(skb_mac_header(p),
5666 				       skb_mac_header(skb),
5667 				       maclen);
5668 		NAPI_GRO_CB(p)->same_flow = !diffs;
5669 	}
5670 
5671 	return head;
5672 }
5673 
5674 static void skb_gro_reset_offset(struct sk_buff *skb)
5675 {
5676 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5677 	const skb_frag_t *frag0 = &pinfo->frags[0];
5678 
5679 	NAPI_GRO_CB(skb)->data_offset = 0;
5680 	NAPI_GRO_CB(skb)->frag0 = NULL;
5681 	NAPI_GRO_CB(skb)->frag0_len = 0;
5682 
5683 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5684 	    !PageHighMem(skb_frag_page(frag0))) {
5685 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5686 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5687 						    skb_frag_size(frag0),
5688 						    skb->end - skb->tail);
5689 	}
5690 }
5691 
5692 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5693 {
5694 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5695 
5696 	BUG_ON(skb->end - skb->tail < grow);
5697 
5698 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5699 
5700 	skb->data_len -= grow;
5701 	skb->tail += grow;
5702 
5703 	skb_frag_off_add(&pinfo->frags[0], grow);
5704 	skb_frag_size_sub(&pinfo->frags[0], grow);
5705 
5706 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5707 		skb_frag_unref(skb, 0);
5708 		memmove(pinfo->frags, pinfo->frags + 1,
5709 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5710 	}
5711 }
5712 
5713 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5714 {
5715 	struct sk_buff *oldest;
5716 
5717 	oldest = list_last_entry(head, struct sk_buff, list);
5718 
5719 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5720 	 * impossible.
5721 	 */
5722 	if (WARN_ON_ONCE(!oldest))
5723 		return;
5724 
5725 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5726 	 * SKB to the chain.
5727 	 */
5728 	skb_list_del_init(oldest);
5729 	napi_gro_complete(napi, oldest);
5730 }
5731 
5732 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5733 							   struct sk_buff *));
5734 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5735 							   struct sk_buff *));
5736 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5737 {
5738 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5739 	struct list_head *head = &offload_base;
5740 	struct packet_offload *ptype;
5741 	__be16 type = skb->protocol;
5742 	struct list_head *gro_head;
5743 	struct sk_buff *pp = NULL;
5744 	enum gro_result ret;
5745 	int same_flow;
5746 	int grow;
5747 
5748 	if (netif_elide_gro(skb->dev))
5749 		goto normal;
5750 
5751 	gro_head = gro_list_prepare(napi, skb);
5752 
5753 	rcu_read_lock();
5754 	list_for_each_entry_rcu(ptype, head, list) {
5755 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5756 			continue;
5757 
5758 		skb_set_network_header(skb, skb_gro_offset(skb));
5759 		skb_reset_mac_len(skb);
5760 		NAPI_GRO_CB(skb)->same_flow = 0;
5761 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5762 		NAPI_GRO_CB(skb)->free = 0;
5763 		NAPI_GRO_CB(skb)->encap_mark = 0;
5764 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5765 		NAPI_GRO_CB(skb)->is_fou = 0;
5766 		NAPI_GRO_CB(skb)->is_atomic = 1;
5767 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5768 
5769 		/* Setup for GRO checksum validation */
5770 		switch (skb->ip_summed) {
5771 		case CHECKSUM_COMPLETE:
5772 			NAPI_GRO_CB(skb)->csum = skb->csum;
5773 			NAPI_GRO_CB(skb)->csum_valid = 1;
5774 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5775 			break;
5776 		case CHECKSUM_UNNECESSARY:
5777 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5778 			NAPI_GRO_CB(skb)->csum_valid = 0;
5779 			break;
5780 		default:
5781 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5782 			NAPI_GRO_CB(skb)->csum_valid = 0;
5783 		}
5784 
5785 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5786 					ipv6_gro_receive, inet_gro_receive,
5787 					gro_head, skb);
5788 		break;
5789 	}
5790 	rcu_read_unlock();
5791 
5792 	if (&ptype->list == head)
5793 		goto normal;
5794 
5795 	if (PTR_ERR(pp) == -EINPROGRESS) {
5796 		ret = GRO_CONSUMED;
5797 		goto ok;
5798 	}
5799 
5800 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5801 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5802 
5803 	if (pp) {
5804 		skb_list_del_init(pp);
5805 		napi_gro_complete(napi, pp);
5806 		napi->gro_hash[hash].count--;
5807 	}
5808 
5809 	if (same_flow)
5810 		goto ok;
5811 
5812 	if (NAPI_GRO_CB(skb)->flush)
5813 		goto normal;
5814 
5815 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5816 		gro_flush_oldest(napi, gro_head);
5817 	} else {
5818 		napi->gro_hash[hash].count++;
5819 	}
5820 	NAPI_GRO_CB(skb)->count = 1;
5821 	NAPI_GRO_CB(skb)->age = jiffies;
5822 	NAPI_GRO_CB(skb)->last = skb;
5823 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5824 	list_add(&skb->list, gro_head);
5825 	ret = GRO_HELD;
5826 
5827 pull:
5828 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5829 	if (grow > 0)
5830 		gro_pull_from_frag0(skb, grow);
5831 ok:
5832 	if (napi->gro_hash[hash].count) {
5833 		if (!test_bit(hash, &napi->gro_bitmask))
5834 			__set_bit(hash, &napi->gro_bitmask);
5835 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5836 		__clear_bit(hash, &napi->gro_bitmask);
5837 	}
5838 
5839 	return ret;
5840 
5841 normal:
5842 	ret = GRO_NORMAL;
5843 	goto pull;
5844 }
5845 
5846 struct packet_offload *gro_find_receive_by_type(__be16 type)
5847 {
5848 	struct list_head *offload_head = &offload_base;
5849 	struct packet_offload *ptype;
5850 
5851 	list_for_each_entry_rcu(ptype, offload_head, list) {
5852 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5853 			continue;
5854 		return ptype;
5855 	}
5856 	return NULL;
5857 }
5858 EXPORT_SYMBOL(gro_find_receive_by_type);
5859 
5860 struct packet_offload *gro_find_complete_by_type(__be16 type)
5861 {
5862 	struct list_head *offload_head = &offload_base;
5863 	struct packet_offload *ptype;
5864 
5865 	list_for_each_entry_rcu(ptype, offload_head, list) {
5866 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5867 			continue;
5868 		return ptype;
5869 	}
5870 	return NULL;
5871 }
5872 EXPORT_SYMBOL(gro_find_complete_by_type);
5873 
5874 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5875 {
5876 	skb_dst_drop(skb);
5877 	skb_ext_put(skb);
5878 	kmem_cache_free(skbuff_head_cache, skb);
5879 }
5880 
5881 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5882 				    struct sk_buff *skb,
5883 				    gro_result_t ret)
5884 {
5885 	switch (ret) {
5886 	case GRO_NORMAL:
5887 		gro_normal_one(napi, skb);
5888 		break;
5889 
5890 	case GRO_DROP:
5891 		kfree_skb(skb);
5892 		break;
5893 
5894 	case GRO_MERGED_FREE:
5895 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5896 			napi_skb_free_stolen_head(skb);
5897 		else
5898 			__kfree_skb(skb);
5899 		break;
5900 
5901 	case GRO_HELD:
5902 	case GRO_MERGED:
5903 	case GRO_CONSUMED:
5904 		break;
5905 	}
5906 
5907 	return ret;
5908 }
5909 
5910 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5911 {
5912 	gro_result_t ret;
5913 
5914 	skb_mark_napi_id(skb, napi);
5915 	trace_napi_gro_receive_entry(skb);
5916 
5917 	skb_gro_reset_offset(skb);
5918 
5919 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5920 	trace_napi_gro_receive_exit(ret);
5921 
5922 	return ret;
5923 }
5924 EXPORT_SYMBOL(napi_gro_receive);
5925 
5926 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5927 {
5928 	if (unlikely(skb->pfmemalloc)) {
5929 		consume_skb(skb);
5930 		return;
5931 	}
5932 	__skb_pull(skb, skb_headlen(skb));
5933 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5934 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5935 	__vlan_hwaccel_clear_tag(skb);
5936 	skb->dev = napi->dev;
5937 	skb->skb_iif = 0;
5938 
5939 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5940 	skb->pkt_type = PACKET_HOST;
5941 
5942 	skb->encapsulation = 0;
5943 	skb_shinfo(skb)->gso_type = 0;
5944 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5945 	skb_ext_reset(skb);
5946 
5947 	napi->skb = skb;
5948 }
5949 
5950 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5951 {
5952 	struct sk_buff *skb = napi->skb;
5953 
5954 	if (!skb) {
5955 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5956 		if (skb) {
5957 			napi->skb = skb;
5958 			skb_mark_napi_id(skb, napi);
5959 		}
5960 	}
5961 	return skb;
5962 }
5963 EXPORT_SYMBOL(napi_get_frags);
5964 
5965 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5966 				      struct sk_buff *skb,
5967 				      gro_result_t ret)
5968 {
5969 	switch (ret) {
5970 	case GRO_NORMAL:
5971 	case GRO_HELD:
5972 		__skb_push(skb, ETH_HLEN);
5973 		skb->protocol = eth_type_trans(skb, skb->dev);
5974 		if (ret == GRO_NORMAL)
5975 			gro_normal_one(napi, skb);
5976 		break;
5977 
5978 	case GRO_DROP:
5979 		napi_reuse_skb(napi, skb);
5980 		break;
5981 
5982 	case GRO_MERGED_FREE:
5983 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5984 			napi_skb_free_stolen_head(skb);
5985 		else
5986 			napi_reuse_skb(napi, skb);
5987 		break;
5988 
5989 	case GRO_MERGED:
5990 	case GRO_CONSUMED:
5991 		break;
5992 	}
5993 
5994 	return ret;
5995 }
5996 
5997 /* Upper GRO stack assumes network header starts at gro_offset=0
5998  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5999  * We copy ethernet header into skb->data to have a common layout.
6000  */
6001 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6002 {
6003 	struct sk_buff *skb = napi->skb;
6004 	const struct ethhdr *eth;
6005 	unsigned int hlen = sizeof(*eth);
6006 
6007 	napi->skb = NULL;
6008 
6009 	skb_reset_mac_header(skb);
6010 	skb_gro_reset_offset(skb);
6011 
6012 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6013 		eth = skb_gro_header_slow(skb, hlen, 0);
6014 		if (unlikely(!eth)) {
6015 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6016 					     __func__, napi->dev->name);
6017 			napi_reuse_skb(napi, skb);
6018 			return NULL;
6019 		}
6020 	} else {
6021 		eth = (const struct ethhdr *)skb->data;
6022 		gro_pull_from_frag0(skb, hlen);
6023 		NAPI_GRO_CB(skb)->frag0 += hlen;
6024 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6025 	}
6026 	__skb_pull(skb, hlen);
6027 
6028 	/*
6029 	 * This works because the only protocols we care about don't require
6030 	 * special handling.
6031 	 * We'll fix it up properly in napi_frags_finish()
6032 	 */
6033 	skb->protocol = eth->h_proto;
6034 
6035 	return skb;
6036 }
6037 
6038 gro_result_t napi_gro_frags(struct napi_struct *napi)
6039 {
6040 	gro_result_t ret;
6041 	struct sk_buff *skb = napi_frags_skb(napi);
6042 
6043 	if (!skb)
6044 		return GRO_DROP;
6045 
6046 	trace_napi_gro_frags_entry(skb);
6047 
6048 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6049 	trace_napi_gro_frags_exit(ret);
6050 
6051 	return ret;
6052 }
6053 EXPORT_SYMBOL(napi_gro_frags);
6054 
6055 /* Compute the checksum from gro_offset and return the folded value
6056  * after adding in any pseudo checksum.
6057  */
6058 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6059 {
6060 	__wsum wsum;
6061 	__sum16 sum;
6062 
6063 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6064 
6065 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6066 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6067 	/* See comments in __skb_checksum_complete(). */
6068 	if (likely(!sum)) {
6069 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6070 		    !skb->csum_complete_sw)
6071 			netdev_rx_csum_fault(skb->dev, skb);
6072 	}
6073 
6074 	NAPI_GRO_CB(skb)->csum = wsum;
6075 	NAPI_GRO_CB(skb)->csum_valid = 1;
6076 
6077 	return sum;
6078 }
6079 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6080 
6081 static void net_rps_send_ipi(struct softnet_data *remsd)
6082 {
6083 #ifdef CONFIG_RPS
6084 	while (remsd) {
6085 		struct softnet_data *next = remsd->rps_ipi_next;
6086 
6087 		if (cpu_online(remsd->cpu))
6088 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6089 		remsd = next;
6090 	}
6091 #endif
6092 }
6093 
6094 /*
6095  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6096  * Note: called with local irq disabled, but exits with local irq enabled.
6097  */
6098 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6099 {
6100 #ifdef CONFIG_RPS
6101 	struct softnet_data *remsd = sd->rps_ipi_list;
6102 
6103 	if (remsd) {
6104 		sd->rps_ipi_list = NULL;
6105 
6106 		local_irq_enable();
6107 
6108 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6109 		net_rps_send_ipi(remsd);
6110 	} else
6111 #endif
6112 		local_irq_enable();
6113 }
6114 
6115 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6116 {
6117 #ifdef CONFIG_RPS
6118 	return sd->rps_ipi_list != NULL;
6119 #else
6120 	return false;
6121 #endif
6122 }
6123 
6124 static int process_backlog(struct napi_struct *napi, int quota)
6125 {
6126 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6127 	bool again = true;
6128 	int work = 0;
6129 
6130 	/* Check if we have pending ipi, its better to send them now,
6131 	 * not waiting net_rx_action() end.
6132 	 */
6133 	if (sd_has_rps_ipi_waiting(sd)) {
6134 		local_irq_disable();
6135 		net_rps_action_and_irq_enable(sd);
6136 	}
6137 
6138 	napi->weight = dev_rx_weight;
6139 	while (again) {
6140 		struct sk_buff *skb;
6141 
6142 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6143 			rcu_read_lock();
6144 			__netif_receive_skb(skb);
6145 			rcu_read_unlock();
6146 			input_queue_head_incr(sd);
6147 			if (++work >= quota)
6148 				return work;
6149 
6150 		}
6151 
6152 		local_irq_disable();
6153 		rps_lock(sd);
6154 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6155 			/*
6156 			 * Inline a custom version of __napi_complete().
6157 			 * only current cpu owns and manipulates this napi,
6158 			 * and NAPI_STATE_SCHED is the only possible flag set
6159 			 * on backlog.
6160 			 * We can use a plain write instead of clear_bit(),
6161 			 * and we dont need an smp_mb() memory barrier.
6162 			 */
6163 			napi->state = 0;
6164 			again = false;
6165 		} else {
6166 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6167 						   &sd->process_queue);
6168 		}
6169 		rps_unlock(sd);
6170 		local_irq_enable();
6171 	}
6172 
6173 	return work;
6174 }
6175 
6176 /**
6177  * __napi_schedule - schedule for receive
6178  * @n: entry to schedule
6179  *
6180  * The entry's receive function will be scheduled to run.
6181  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6182  */
6183 void __napi_schedule(struct napi_struct *n)
6184 {
6185 	unsigned long flags;
6186 
6187 	local_irq_save(flags);
6188 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6189 	local_irq_restore(flags);
6190 }
6191 EXPORT_SYMBOL(__napi_schedule);
6192 
6193 /**
6194  *	napi_schedule_prep - check if napi can be scheduled
6195  *	@n: napi context
6196  *
6197  * Test if NAPI routine is already running, and if not mark
6198  * it as running.  This is used as a condition variable
6199  * insure only one NAPI poll instance runs.  We also make
6200  * sure there is no pending NAPI disable.
6201  */
6202 bool napi_schedule_prep(struct napi_struct *n)
6203 {
6204 	unsigned long val, new;
6205 
6206 	do {
6207 		val = READ_ONCE(n->state);
6208 		if (unlikely(val & NAPIF_STATE_DISABLE))
6209 			return false;
6210 		new = val | NAPIF_STATE_SCHED;
6211 
6212 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6213 		 * This was suggested by Alexander Duyck, as compiler
6214 		 * emits better code than :
6215 		 * if (val & NAPIF_STATE_SCHED)
6216 		 *     new |= NAPIF_STATE_MISSED;
6217 		 */
6218 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6219 						   NAPIF_STATE_MISSED;
6220 	} while (cmpxchg(&n->state, val, new) != val);
6221 
6222 	return !(val & NAPIF_STATE_SCHED);
6223 }
6224 EXPORT_SYMBOL(napi_schedule_prep);
6225 
6226 /**
6227  * __napi_schedule_irqoff - schedule for receive
6228  * @n: entry to schedule
6229  *
6230  * Variant of __napi_schedule() assuming hard irqs are masked
6231  */
6232 void __napi_schedule_irqoff(struct napi_struct *n)
6233 {
6234 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6235 }
6236 EXPORT_SYMBOL(__napi_schedule_irqoff);
6237 
6238 bool napi_complete_done(struct napi_struct *n, int work_done)
6239 {
6240 	unsigned long flags, val, new;
6241 
6242 	/*
6243 	 * 1) Don't let napi dequeue from the cpu poll list
6244 	 *    just in case its running on a different cpu.
6245 	 * 2) If we are busy polling, do nothing here, we have
6246 	 *    the guarantee we will be called later.
6247 	 */
6248 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6249 				 NAPIF_STATE_IN_BUSY_POLL)))
6250 		return false;
6251 
6252 	if (n->gro_bitmask) {
6253 		unsigned long timeout = 0;
6254 
6255 		if (work_done)
6256 			timeout = n->dev->gro_flush_timeout;
6257 
6258 		/* When the NAPI instance uses a timeout and keeps postponing
6259 		 * it, we need to bound somehow the time packets are kept in
6260 		 * the GRO layer
6261 		 */
6262 		napi_gro_flush(n, !!timeout);
6263 		if (timeout)
6264 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6265 				      HRTIMER_MODE_REL_PINNED);
6266 	}
6267 
6268 	gro_normal_list(n);
6269 
6270 	if (unlikely(!list_empty(&n->poll_list))) {
6271 		/* If n->poll_list is not empty, we need to mask irqs */
6272 		local_irq_save(flags);
6273 		list_del_init(&n->poll_list);
6274 		local_irq_restore(flags);
6275 	}
6276 
6277 	do {
6278 		val = READ_ONCE(n->state);
6279 
6280 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6281 
6282 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6283 
6284 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6285 		 * because we will call napi->poll() one more time.
6286 		 * This C code was suggested by Alexander Duyck to help gcc.
6287 		 */
6288 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6289 						    NAPIF_STATE_SCHED;
6290 	} while (cmpxchg(&n->state, val, new) != val);
6291 
6292 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6293 		__napi_schedule(n);
6294 		return false;
6295 	}
6296 
6297 	return true;
6298 }
6299 EXPORT_SYMBOL(napi_complete_done);
6300 
6301 /* must be called under rcu_read_lock(), as we dont take a reference */
6302 static struct napi_struct *napi_by_id(unsigned int napi_id)
6303 {
6304 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6305 	struct napi_struct *napi;
6306 
6307 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6308 		if (napi->napi_id == napi_id)
6309 			return napi;
6310 
6311 	return NULL;
6312 }
6313 
6314 #if defined(CONFIG_NET_RX_BUSY_POLL)
6315 
6316 #define BUSY_POLL_BUDGET 8
6317 
6318 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6319 {
6320 	int rc;
6321 
6322 	/* Busy polling means there is a high chance device driver hard irq
6323 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6324 	 * set in napi_schedule_prep().
6325 	 * Since we are about to call napi->poll() once more, we can safely
6326 	 * clear NAPI_STATE_MISSED.
6327 	 *
6328 	 * Note: x86 could use a single "lock and ..." instruction
6329 	 * to perform these two clear_bit()
6330 	 */
6331 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6332 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6333 
6334 	local_bh_disable();
6335 
6336 	/* All we really want here is to re-enable device interrupts.
6337 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6338 	 */
6339 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6340 	/* We can't gro_normal_list() here, because napi->poll() might have
6341 	 * rearmed the napi (napi_complete_done()) in which case it could
6342 	 * already be running on another CPU.
6343 	 */
6344 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6345 	netpoll_poll_unlock(have_poll_lock);
6346 	if (rc == BUSY_POLL_BUDGET) {
6347 		/* As the whole budget was spent, we still own the napi so can
6348 		 * safely handle the rx_list.
6349 		 */
6350 		gro_normal_list(napi);
6351 		__napi_schedule(napi);
6352 	}
6353 	local_bh_enable();
6354 }
6355 
6356 void napi_busy_loop(unsigned int napi_id,
6357 		    bool (*loop_end)(void *, unsigned long),
6358 		    void *loop_end_arg)
6359 {
6360 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6361 	int (*napi_poll)(struct napi_struct *napi, int budget);
6362 	void *have_poll_lock = NULL;
6363 	struct napi_struct *napi;
6364 
6365 restart:
6366 	napi_poll = NULL;
6367 
6368 	rcu_read_lock();
6369 
6370 	napi = napi_by_id(napi_id);
6371 	if (!napi)
6372 		goto out;
6373 
6374 	preempt_disable();
6375 	for (;;) {
6376 		int work = 0;
6377 
6378 		local_bh_disable();
6379 		if (!napi_poll) {
6380 			unsigned long val = READ_ONCE(napi->state);
6381 
6382 			/* If multiple threads are competing for this napi,
6383 			 * we avoid dirtying napi->state as much as we can.
6384 			 */
6385 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6386 				   NAPIF_STATE_IN_BUSY_POLL))
6387 				goto count;
6388 			if (cmpxchg(&napi->state, val,
6389 				    val | NAPIF_STATE_IN_BUSY_POLL |
6390 					  NAPIF_STATE_SCHED) != val)
6391 				goto count;
6392 			have_poll_lock = netpoll_poll_lock(napi);
6393 			napi_poll = napi->poll;
6394 		}
6395 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6396 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6397 		gro_normal_list(napi);
6398 count:
6399 		if (work > 0)
6400 			__NET_ADD_STATS(dev_net(napi->dev),
6401 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6402 		local_bh_enable();
6403 
6404 		if (!loop_end || loop_end(loop_end_arg, start_time))
6405 			break;
6406 
6407 		if (unlikely(need_resched())) {
6408 			if (napi_poll)
6409 				busy_poll_stop(napi, have_poll_lock);
6410 			preempt_enable();
6411 			rcu_read_unlock();
6412 			cond_resched();
6413 			if (loop_end(loop_end_arg, start_time))
6414 				return;
6415 			goto restart;
6416 		}
6417 		cpu_relax();
6418 	}
6419 	if (napi_poll)
6420 		busy_poll_stop(napi, have_poll_lock);
6421 	preempt_enable();
6422 out:
6423 	rcu_read_unlock();
6424 }
6425 EXPORT_SYMBOL(napi_busy_loop);
6426 
6427 #endif /* CONFIG_NET_RX_BUSY_POLL */
6428 
6429 static void napi_hash_add(struct napi_struct *napi)
6430 {
6431 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6432 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6433 		return;
6434 
6435 	spin_lock(&napi_hash_lock);
6436 
6437 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6438 	do {
6439 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6440 			napi_gen_id = MIN_NAPI_ID;
6441 	} while (napi_by_id(napi_gen_id));
6442 	napi->napi_id = napi_gen_id;
6443 
6444 	hlist_add_head_rcu(&napi->napi_hash_node,
6445 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6446 
6447 	spin_unlock(&napi_hash_lock);
6448 }
6449 
6450 /* Warning : caller is responsible to make sure rcu grace period
6451  * is respected before freeing memory containing @napi
6452  */
6453 bool napi_hash_del(struct napi_struct *napi)
6454 {
6455 	bool rcu_sync_needed = false;
6456 
6457 	spin_lock(&napi_hash_lock);
6458 
6459 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6460 		rcu_sync_needed = true;
6461 		hlist_del_rcu(&napi->napi_hash_node);
6462 	}
6463 	spin_unlock(&napi_hash_lock);
6464 	return rcu_sync_needed;
6465 }
6466 EXPORT_SYMBOL_GPL(napi_hash_del);
6467 
6468 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6469 {
6470 	struct napi_struct *napi;
6471 
6472 	napi = container_of(timer, struct napi_struct, timer);
6473 
6474 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6475 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6476 	 */
6477 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6478 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6479 		__napi_schedule_irqoff(napi);
6480 
6481 	return HRTIMER_NORESTART;
6482 }
6483 
6484 static void init_gro_hash(struct napi_struct *napi)
6485 {
6486 	int i;
6487 
6488 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6489 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6490 		napi->gro_hash[i].count = 0;
6491 	}
6492 	napi->gro_bitmask = 0;
6493 }
6494 
6495 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6496 		    int (*poll)(struct napi_struct *, int), int weight)
6497 {
6498 	INIT_LIST_HEAD(&napi->poll_list);
6499 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6500 	napi->timer.function = napi_watchdog;
6501 	init_gro_hash(napi);
6502 	napi->skb = NULL;
6503 	INIT_LIST_HEAD(&napi->rx_list);
6504 	napi->rx_count = 0;
6505 	napi->poll = poll;
6506 	if (weight > NAPI_POLL_WEIGHT)
6507 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6508 				weight);
6509 	napi->weight = weight;
6510 	list_add(&napi->dev_list, &dev->napi_list);
6511 	napi->dev = dev;
6512 #ifdef CONFIG_NETPOLL
6513 	napi->poll_owner = -1;
6514 #endif
6515 	set_bit(NAPI_STATE_SCHED, &napi->state);
6516 	napi_hash_add(napi);
6517 }
6518 EXPORT_SYMBOL(netif_napi_add);
6519 
6520 void napi_disable(struct napi_struct *n)
6521 {
6522 	might_sleep();
6523 	set_bit(NAPI_STATE_DISABLE, &n->state);
6524 
6525 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6526 		msleep(1);
6527 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6528 		msleep(1);
6529 
6530 	hrtimer_cancel(&n->timer);
6531 
6532 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6533 }
6534 EXPORT_SYMBOL(napi_disable);
6535 
6536 static void flush_gro_hash(struct napi_struct *napi)
6537 {
6538 	int i;
6539 
6540 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6541 		struct sk_buff *skb, *n;
6542 
6543 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6544 			kfree_skb(skb);
6545 		napi->gro_hash[i].count = 0;
6546 	}
6547 }
6548 
6549 /* Must be called in process context */
6550 void netif_napi_del(struct napi_struct *napi)
6551 {
6552 	might_sleep();
6553 	if (napi_hash_del(napi))
6554 		synchronize_net();
6555 	list_del_init(&napi->dev_list);
6556 	napi_free_frags(napi);
6557 
6558 	flush_gro_hash(napi);
6559 	napi->gro_bitmask = 0;
6560 }
6561 EXPORT_SYMBOL(netif_napi_del);
6562 
6563 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6564 {
6565 	void *have;
6566 	int work, weight;
6567 
6568 	list_del_init(&n->poll_list);
6569 
6570 	have = netpoll_poll_lock(n);
6571 
6572 	weight = n->weight;
6573 
6574 	/* This NAPI_STATE_SCHED test is for avoiding a race
6575 	 * with netpoll's poll_napi().  Only the entity which
6576 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6577 	 * actually make the ->poll() call.  Therefore we avoid
6578 	 * accidentally calling ->poll() when NAPI is not scheduled.
6579 	 */
6580 	work = 0;
6581 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6582 		work = n->poll(n, weight);
6583 		trace_napi_poll(n, work, weight);
6584 	}
6585 
6586 	WARN_ON_ONCE(work > weight);
6587 
6588 	if (likely(work < weight))
6589 		goto out_unlock;
6590 
6591 	/* Drivers must not modify the NAPI state if they
6592 	 * consume the entire weight.  In such cases this code
6593 	 * still "owns" the NAPI instance and therefore can
6594 	 * move the instance around on the list at-will.
6595 	 */
6596 	if (unlikely(napi_disable_pending(n))) {
6597 		napi_complete(n);
6598 		goto out_unlock;
6599 	}
6600 
6601 	if (n->gro_bitmask) {
6602 		/* flush too old packets
6603 		 * If HZ < 1000, flush all packets.
6604 		 */
6605 		napi_gro_flush(n, HZ >= 1000);
6606 	}
6607 
6608 	gro_normal_list(n);
6609 
6610 	/* Some drivers may have called napi_schedule
6611 	 * prior to exhausting their budget.
6612 	 */
6613 	if (unlikely(!list_empty(&n->poll_list))) {
6614 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6615 			     n->dev ? n->dev->name : "backlog");
6616 		goto out_unlock;
6617 	}
6618 
6619 	list_add_tail(&n->poll_list, repoll);
6620 
6621 out_unlock:
6622 	netpoll_poll_unlock(have);
6623 
6624 	return work;
6625 }
6626 
6627 static __latent_entropy void net_rx_action(struct softirq_action *h)
6628 {
6629 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6630 	unsigned long time_limit = jiffies +
6631 		usecs_to_jiffies(netdev_budget_usecs);
6632 	int budget = netdev_budget;
6633 	LIST_HEAD(list);
6634 	LIST_HEAD(repoll);
6635 
6636 	local_irq_disable();
6637 	list_splice_init(&sd->poll_list, &list);
6638 	local_irq_enable();
6639 
6640 	for (;;) {
6641 		struct napi_struct *n;
6642 
6643 		if (list_empty(&list)) {
6644 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6645 				goto out;
6646 			break;
6647 		}
6648 
6649 		n = list_first_entry(&list, struct napi_struct, poll_list);
6650 		budget -= napi_poll(n, &repoll);
6651 
6652 		/* If softirq window is exhausted then punt.
6653 		 * Allow this to run for 2 jiffies since which will allow
6654 		 * an average latency of 1.5/HZ.
6655 		 */
6656 		if (unlikely(budget <= 0 ||
6657 			     time_after_eq(jiffies, time_limit))) {
6658 			sd->time_squeeze++;
6659 			break;
6660 		}
6661 	}
6662 
6663 	local_irq_disable();
6664 
6665 	list_splice_tail_init(&sd->poll_list, &list);
6666 	list_splice_tail(&repoll, &list);
6667 	list_splice(&list, &sd->poll_list);
6668 	if (!list_empty(&sd->poll_list))
6669 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6670 
6671 	net_rps_action_and_irq_enable(sd);
6672 out:
6673 	__kfree_skb_flush();
6674 }
6675 
6676 struct netdev_adjacent {
6677 	struct net_device *dev;
6678 
6679 	/* upper master flag, there can only be one master device per list */
6680 	bool master;
6681 
6682 	/* lookup ignore flag */
6683 	bool ignore;
6684 
6685 	/* counter for the number of times this device was added to us */
6686 	u16 ref_nr;
6687 
6688 	/* private field for the users */
6689 	void *private;
6690 
6691 	struct list_head list;
6692 	struct rcu_head rcu;
6693 };
6694 
6695 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6696 						 struct list_head *adj_list)
6697 {
6698 	struct netdev_adjacent *adj;
6699 
6700 	list_for_each_entry(adj, adj_list, list) {
6701 		if (adj->dev == adj_dev)
6702 			return adj;
6703 	}
6704 	return NULL;
6705 }
6706 
6707 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6708 {
6709 	struct net_device *dev = data;
6710 
6711 	return upper_dev == dev;
6712 }
6713 
6714 /**
6715  * netdev_has_upper_dev - Check if device is linked to an upper device
6716  * @dev: device
6717  * @upper_dev: upper device to check
6718  *
6719  * Find out if a device is linked to specified upper device and return true
6720  * in case it is. Note that this checks only immediate upper device,
6721  * not through a complete stack of devices. The caller must hold the RTNL lock.
6722  */
6723 bool netdev_has_upper_dev(struct net_device *dev,
6724 			  struct net_device *upper_dev)
6725 {
6726 	ASSERT_RTNL();
6727 
6728 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6729 					     upper_dev);
6730 }
6731 EXPORT_SYMBOL(netdev_has_upper_dev);
6732 
6733 /**
6734  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6735  * @dev: device
6736  * @upper_dev: upper device to check
6737  *
6738  * Find out if a device is linked to specified upper device and return true
6739  * in case it is. Note that this checks the entire upper device chain.
6740  * The caller must hold rcu lock.
6741  */
6742 
6743 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6744 				  struct net_device *upper_dev)
6745 {
6746 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6747 					       upper_dev);
6748 }
6749 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6750 
6751 /**
6752  * netdev_has_any_upper_dev - Check if device is linked to some device
6753  * @dev: device
6754  *
6755  * Find out if a device is linked to an upper device and return true in case
6756  * it is. The caller must hold the RTNL lock.
6757  */
6758 bool netdev_has_any_upper_dev(struct net_device *dev)
6759 {
6760 	ASSERT_RTNL();
6761 
6762 	return !list_empty(&dev->adj_list.upper);
6763 }
6764 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6765 
6766 /**
6767  * netdev_master_upper_dev_get - Get master upper device
6768  * @dev: device
6769  *
6770  * Find a master upper device and return pointer to it or NULL in case
6771  * it's not there. The caller must hold the RTNL lock.
6772  */
6773 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6774 {
6775 	struct netdev_adjacent *upper;
6776 
6777 	ASSERT_RTNL();
6778 
6779 	if (list_empty(&dev->adj_list.upper))
6780 		return NULL;
6781 
6782 	upper = list_first_entry(&dev->adj_list.upper,
6783 				 struct netdev_adjacent, list);
6784 	if (likely(upper->master))
6785 		return upper->dev;
6786 	return NULL;
6787 }
6788 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6789 
6790 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6791 {
6792 	struct netdev_adjacent *upper;
6793 
6794 	ASSERT_RTNL();
6795 
6796 	if (list_empty(&dev->adj_list.upper))
6797 		return NULL;
6798 
6799 	upper = list_first_entry(&dev->adj_list.upper,
6800 				 struct netdev_adjacent, list);
6801 	if (likely(upper->master) && !upper->ignore)
6802 		return upper->dev;
6803 	return NULL;
6804 }
6805 
6806 /**
6807  * netdev_has_any_lower_dev - Check if device is linked to some device
6808  * @dev: device
6809  *
6810  * Find out if a device is linked to a lower device and return true in case
6811  * it is. The caller must hold the RTNL lock.
6812  */
6813 static bool netdev_has_any_lower_dev(struct net_device *dev)
6814 {
6815 	ASSERT_RTNL();
6816 
6817 	return !list_empty(&dev->adj_list.lower);
6818 }
6819 
6820 void *netdev_adjacent_get_private(struct list_head *adj_list)
6821 {
6822 	struct netdev_adjacent *adj;
6823 
6824 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6825 
6826 	return adj->private;
6827 }
6828 EXPORT_SYMBOL(netdev_adjacent_get_private);
6829 
6830 /**
6831  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6832  * @dev: device
6833  * @iter: list_head ** of the current position
6834  *
6835  * Gets the next device from the dev's upper list, starting from iter
6836  * position. The caller must hold RCU read lock.
6837  */
6838 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6839 						 struct list_head **iter)
6840 {
6841 	struct netdev_adjacent *upper;
6842 
6843 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6844 
6845 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6846 
6847 	if (&upper->list == &dev->adj_list.upper)
6848 		return NULL;
6849 
6850 	*iter = &upper->list;
6851 
6852 	return upper->dev;
6853 }
6854 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6855 
6856 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6857 						  struct list_head **iter,
6858 						  bool *ignore)
6859 {
6860 	struct netdev_adjacent *upper;
6861 
6862 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6863 
6864 	if (&upper->list == &dev->adj_list.upper)
6865 		return NULL;
6866 
6867 	*iter = &upper->list;
6868 	*ignore = upper->ignore;
6869 
6870 	return upper->dev;
6871 }
6872 
6873 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6874 						    struct list_head **iter)
6875 {
6876 	struct netdev_adjacent *upper;
6877 
6878 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6879 
6880 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6881 
6882 	if (&upper->list == &dev->adj_list.upper)
6883 		return NULL;
6884 
6885 	*iter = &upper->list;
6886 
6887 	return upper->dev;
6888 }
6889 
6890 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6891 				       int (*fn)(struct net_device *dev,
6892 						 void *data),
6893 				       void *data)
6894 {
6895 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6896 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6897 	int ret, cur = 0;
6898 	bool ignore;
6899 
6900 	now = dev;
6901 	iter = &dev->adj_list.upper;
6902 
6903 	while (1) {
6904 		if (now != dev) {
6905 			ret = fn(now, data);
6906 			if (ret)
6907 				return ret;
6908 		}
6909 
6910 		next = NULL;
6911 		while (1) {
6912 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6913 			if (!udev)
6914 				break;
6915 			if (ignore)
6916 				continue;
6917 
6918 			next = udev;
6919 			niter = &udev->adj_list.upper;
6920 			dev_stack[cur] = now;
6921 			iter_stack[cur++] = iter;
6922 			break;
6923 		}
6924 
6925 		if (!next) {
6926 			if (!cur)
6927 				return 0;
6928 			next = dev_stack[--cur];
6929 			niter = iter_stack[cur];
6930 		}
6931 
6932 		now = next;
6933 		iter = niter;
6934 	}
6935 
6936 	return 0;
6937 }
6938 
6939 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6940 				  int (*fn)(struct net_device *dev,
6941 					    void *data),
6942 				  void *data)
6943 {
6944 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6945 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6946 	int ret, cur = 0;
6947 
6948 	now = dev;
6949 	iter = &dev->adj_list.upper;
6950 
6951 	while (1) {
6952 		if (now != dev) {
6953 			ret = fn(now, data);
6954 			if (ret)
6955 				return ret;
6956 		}
6957 
6958 		next = NULL;
6959 		while (1) {
6960 			udev = netdev_next_upper_dev_rcu(now, &iter);
6961 			if (!udev)
6962 				break;
6963 
6964 			next = udev;
6965 			niter = &udev->adj_list.upper;
6966 			dev_stack[cur] = now;
6967 			iter_stack[cur++] = iter;
6968 			break;
6969 		}
6970 
6971 		if (!next) {
6972 			if (!cur)
6973 				return 0;
6974 			next = dev_stack[--cur];
6975 			niter = iter_stack[cur];
6976 		}
6977 
6978 		now = next;
6979 		iter = niter;
6980 	}
6981 
6982 	return 0;
6983 }
6984 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6985 
6986 static bool __netdev_has_upper_dev(struct net_device *dev,
6987 				   struct net_device *upper_dev)
6988 {
6989 	ASSERT_RTNL();
6990 
6991 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6992 					   upper_dev);
6993 }
6994 
6995 /**
6996  * netdev_lower_get_next_private - Get the next ->private from the
6997  *				   lower neighbour list
6998  * @dev: device
6999  * @iter: list_head ** of the current position
7000  *
7001  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7002  * list, starting from iter position. The caller must hold either hold the
7003  * RTNL lock or its own locking that guarantees that the neighbour lower
7004  * list will remain unchanged.
7005  */
7006 void *netdev_lower_get_next_private(struct net_device *dev,
7007 				    struct list_head **iter)
7008 {
7009 	struct netdev_adjacent *lower;
7010 
7011 	lower = list_entry(*iter, struct netdev_adjacent, list);
7012 
7013 	if (&lower->list == &dev->adj_list.lower)
7014 		return NULL;
7015 
7016 	*iter = lower->list.next;
7017 
7018 	return lower->private;
7019 }
7020 EXPORT_SYMBOL(netdev_lower_get_next_private);
7021 
7022 /**
7023  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7024  *				       lower neighbour list, RCU
7025  *				       variant
7026  * @dev: device
7027  * @iter: list_head ** of the current position
7028  *
7029  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7030  * list, starting from iter position. The caller must hold RCU read lock.
7031  */
7032 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7033 					struct list_head **iter)
7034 {
7035 	struct netdev_adjacent *lower;
7036 
7037 	WARN_ON_ONCE(!rcu_read_lock_held());
7038 
7039 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7040 
7041 	if (&lower->list == &dev->adj_list.lower)
7042 		return NULL;
7043 
7044 	*iter = &lower->list;
7045 
7046 	return lower->private;
7047 }
7048 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7049 
7050 /**
7051  * netdev_lower_get_next - Get the next device from the lower neighbour
7052  *                         list
7053  * @dev: device
7054  * @iter: list_head ** of the current position
7055  *
7056  * Gets the next netdev_adjacent from the dev's lower neighbour
7057  * list, starting from iter position. The caller must hold RTNL lock or
7058  * its own locking that guarantees that the neighbour lower
7059  * list will remain unchanged.
7060  */
7061 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7062 {
7063 	struct netdev_adjacent *lower;
7064 
7065 	lower = list_entry(*iter, struct netdev_adjacent, list);
7066 
7067 	if (&lower->list == &dev->adj_list.lower)
7068 		return NULL;
7069 
7070 	*iter = lower->list.next;
7071 
7072 	return lower->dev;
7073 }
7074 EXPORT_SYMBOL(netdev_lower_get_next);
7075 
7076 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7077 						struct list_head **iter)
7078 {
7079 	struct netdev_adjacent *lower;
7080 
7081 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7082 
7083 	if (&lower->list == &dev->adj_list.lower)
7084 		return NULL;
7085 
7086 	*iter = &lower->list;
7087 
7088 	return lower->dev;
7089 }
7090 
7091 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7092 						  struct list_head **iter,
7093 						  bool *ignore)
7094 {
7095 	struct netdev_adjacent *lower;
7096 
7097 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7098 
7099 	if (&lower->list == &dev->adj_list.lower)
7100 		return NULL;
7101 
7102 	*iter = &lower->list;
7103 	*ignore = lower->ignore;
7104 
7105 	return lower->dev;
7106 }
7107 
7108 int netdev_walk_all_lower_dev(struct net_device *dev,
7109 			      int (*fn)(struct net_device *dev,
7110 					void *data),
7111 			      void *data)
7112 {
7113 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7114 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7115 	int ret, cur = 0;
7116 
7117 	now = dev;
7118 	iter = &dev->adj_list.lower;
7119 
7120 	while (1) {
7121 		if (now != dev) {
7122 			ret = fn(now, data);
7123 			if (ret)
7124 				return ret;
7125 		}
7126 
7127 		next = NULL;
7128 		while (1) {
7129 			ldev = netdev_next_lower_dev(now, &iter);
7130 			if (!ldev)
7131 				break;
7132 
7133 			next = ldev;
7134 			niter = &ldev->adj_list.lower;
7135 			dev_stack[cur] = now;
7136 			iter_stack[cur++] = iter;
7137 			break;
7138 		}
7139 
7140 		if (!next) {
7141 			if (!cur)
7142 				return 0;
7143 			next = dev_stack[--cur];
7144 			niter = iter_stack[cur];
7145 		}
7146 
7147 		now = next;
7148 		iter = niter;
7149 	}
7150 
7151 	return 0;
7152 }
7153 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7154 
7155 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7156 				       int (*fn)(struct net_device *dev,
7157 						 void *data),
7158 				       void *data)
7159 {
7160 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7161 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7162 	int ret, cur = 0;
7163 	bool ignore;
7164 
7165 	now = dev;
7166 	iter = &dev->adj_list.lower;
7167 
7168 	while (1) {
7169 		if (now != dev) {
7170 			ret = fn(now, data);
7171 			if (ret)
7172 				return ret;
7173 		}
7174 
7175 		next = NULL;
7176 		while (1) {
7177 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7178 			if (!ldev)
7179 				break;
7180 			if (ignore)
7181 				continue;
7182 
7183 			next = ldev;
7184 			niter = &ldev->adj_list.lower;
7185 			dev_stack[cur] = now;
7186 			iter_stack[cur++] = iter;
7187 			break;
7188 		}
7189 
7190 		if (!next) {
7191 			if (!cur)
7192 				return 0;
7193 			next = dev_stack[--cur];
7194 			niter = iter_stack[cur];
7195 		}
7196 
7197 		now = next;
7198 		iter = niter;
7199 	}
7200 
7201 	return 0;
7202 }
7203 
7204 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7205 					     struct list_head **iter)
7206 {
7207 	struct netdev_adjacent *lower;
7208 
7209 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7210 	if (&lower->list == &dev->adj_list.lower)
7211 		return NULL;
7212 
7213 	*iter = &lower->list;
7214 
7215 	return lower->dev;
7216 }
7217 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7218 
7219 static u8 __netdev_upper_depth(struct net_device *dev)
7220 {
7221 	struct net_device *udev;
7222 	struct list_head *iter;
7223 	u8 max_depth = 0;
7224 	bool ignore;
7225 
7226 	for (iter = &dev->adj_list.upper,
7227 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7228 	     udev;
7229 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7230 		if (ignore)
7231 			continue;
7232 		if (max_depth < udev->upper_level)
7233 			max_depth = udev->upper_level;
7234 	}
7235 
7236 	return max_depth;
7237 }
7238 
7239 static u8 __netdev_lower_depth(struct net_device *dev)
7240 {
7241 	struct net_device *ldev;
7242 	struct list_head *iter;
7243 	u8 max_depth = 0;
7244 	bool ignore;
7245 
7246 	for (iter = &dev->adj_list.lower,
7247 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7248 	     ldev;
7249 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7250 		if (ignore)
7251 			continue;
7252 		if (max_depth < ldev->lower_level)
7253 			max_depth = ldev->lower_level;
7254 	}
7255 
7256 	return max_depth;
7257 }
7258 
7259 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7260 {
7261 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7262 	return 0;
7263 }
7264 
7265 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7266 {
7267 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7268 	return 0;
7269 }
7270 
7271 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7272 				  int (*fn)(struct net_device *dev,
7273 					    void *data),
7274 				  void *data)
7275 {
7276 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7277 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7278 	int ret, cur = 0;
7279 
7280 	now = dev;
7281 	iter = &dev->adj_list.lower;
7282 
7283 	while (1) {
7284 		if (now != dev) {
7285 			ret = fn(now, data);
7286 			if (ret)
7287 				return ret;
7288 		}
7289 
7290 		next = NULL;
7291 		while (1) {
7292 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7293 			if (!ldev)
7294 				break;
7295 
7296 			next = ldev;
7297 			niter = &ldev->adj_list.lower;
7298 			dev_stack[cur] = now;
7299 			iter_stack[cur++] = iter;
7300 			break;
7301 		}
7302 
7303 		if (!next) {
7304 			if (!cur)
7305 				return 0;
7306 			next = dev_stack[--cur];
7307 			niter = iter_stack[cur];
7308 		}
7309 
7310 		now = next;
7311 		iter = niter;
7312 	}
7313 
7314 	return 0;
7315 }
7316 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7317 
7318 /**
7319  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7320  *				       lower neighbour list, RCU
7321  *				       variant
7322  * @dev: device
7323  *
7324  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7325  * list. The caller must hold RCU read lock.
7326  */
7327 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7328 {
7329 	struct netdev_adjacent *lower;
7330 
7331 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7332 			struct netdev_adjacent, list);
7333 	if (lower)
7334 		return lower->private;
7335 	return NULL;
7336 }
7337 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7338 
7339 /**
7340  * netdev_master_upper_dev_get_rcu - Get master upper device
7341  * @dev: device
7342  *
7343  * Find a master upper device and return pointer to it or NULL in case
7344  * it's not there. The caller must hold the RCU read lock.
7345  */
7346 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7347 {
7348 	struct netdev_adjacent *upper;
7349 
7350 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7351 				       struct netdev_adjacent, list);
7352 	if (upper && likely(upper->master))
7353 		return upper->dev;
7354 	return NULL;
7355 }
7356 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7357 
7358 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7359 			      struct net_device *adj_dev,
7360 			      struct list_head *dev_list)
7361 {
7362 	char linkname[IFNAMSIZ+7];
7363 
7364 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7365 		"upper_%s" : "lower_%s", adj_dev->name);
7366 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7367 				 linkname);
7368 }
7369 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7370 			       char *name,
7371 			       struct list_head *dev_list)
7372 {
7373 	char linkname[IFNAMSIZ+7];
7374 
7375 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7376 		"upper_%s" : "lower_%s", name);
7377 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7378 }
7379 
7380 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7381 						 struct net_device *adj_dev,
7382 						 struct list_head *dev_list)
7383 {
7384 	return (dev_list == &dev->adj_list.upper ||
7385 		dev_list == &dev->adj_list.lower) &&
7386 		net_eq(dev_net(dev), dev_net(adj_dev));
7387 }
7388 
7389 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7390 					struct net_device *adj_dev,
7391 					struct list_head *dev_list,
7392 					void *private, bool master)
7393 {
7394 	struct netdev_adjacent *adj;
7395 	int ret;
7396 
7397 	adj = __netdev_find_adj(adj_dev, dev_list);
7398 
7399 	if (adj) {
7400 		adj->ref_nr += 1;
7401 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7402 			 dev->name, adj_dev->name, adj->ref_nr);
7403 
7404 		return 0;
7405 	}
7406 
7407 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7408 	if (!adj)
7409 		return -ENOMEM;
7410 
7411 	adj->dev = adj_dev;
7412 	adj->master = master;
7413 	adj->ref_nr = 1;
7414 	adj->private = private;
7415 	adj->ignore = false;
7416 	dev_hold(adj_dev);
7417 
7418 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7419 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7420 
7421 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7422 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7423 		if (ret)
7424 			goto free_adj;
7425 	}
7426 
7427 	/* Ensure that master link is always the first item in list. */
7428 	if (master) {
7429 		ret = sysfs_create_link(&(dev->dev.kobj),
7430 					&(adj_dev->dev.kobj), "master");
7431 		if (ret)
7432 			goto remove_symlinks;
7433 
7434 		list_add_rcu(&adj->list, dev_list);
7435 	} else {
7436 		list_add_tail_rcu(&adj->list, dev_list);
7437 	}
7438 
7439 	return 0;
7440 
7441 remove_symlinks:
7442 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7443 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7444 free_adj:
7445 	kfree(adj);
7446 	dev_put(adj_dev);
7447 
7448 	return ret;
7449 }
7450 
7451 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7452 					 struct net_device *adj_dev,
7453 					 u16 ref_nr,
7454 					 struct list_head *dev_list)
7455 {
7456 	struct netdev_adjacent *adj;
7457 
7458 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7459 		 dev->name, adj_dev->name, ref_nr);
7460 
7461 	adj = __netdev_find_adj(adj_dev, dev_list);
7462 
7463 	if (!adj) {
7464 		pr_err("Adjacency does not exist for device %s from %s\n",
7465 		       dev->name, adj_dev->name);
7466 		WARN_ON(1);
7467 		return;
7468 	}
7469 
7470 	if (adj->ref_nr > ref_nr) {
7471 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7472 			 dev->name, adj_dev->name, ref_nr,
7473 			 adj->ref_nr - ref_nr);
7474 		adj->ref_nr -= ref_nr;
7475 		return;
7476 	}
7477 
7478 	if (adj->master)
7479 		sysfs_remove_link(&(dev->dev.kobj), "master");
7480 
7481 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7482 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7483 
7484 	list_del_rcu(&adj->list);
7485 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7486 		 adj_dev->name, dev->name, adj_dev->name);
7487 	dev_put(adj_dev);
7488 	kfree_rcu(adj, rcu);
7489 }
7490 
7491 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7492 					    struct net_device *upper_dev,
7493 					    struct list_head *up_list,
7494 					    struct list_head *down_list,
7495 					    void *private, bool master)
7496 {
7497 	int ret;
7498 
7499 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7500 					   private, master);
7501 	if (ret)
7502 		return ret;
7503 
7504 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7505 					   private, false);
7506 	if (ret) {
7507 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7508 		return ret;
7509 	}
7510 
7511 	return 0;
7512 }
7513 
7514 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7515 					       struct net_device *upper_dev,
7516 					       u16 ref_nr,
7517 					       struct list_head *up_list,
7518 					       struct list_head *down_list)
7519 {
7520 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7521 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7522 }
7523 
7524 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7525 						struct net_device *upper_dev,
7526 						void *private, bool master)
7527 {
7528 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7529 						&dev->adj_list.upper,
7530 						&upper_dev->adj_list.lower,
7531 						private, master);
7532 }
7533 
7534 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7535 						   struct net_device *upper_dev)
7536 {
7537 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7538 					   &dev->adj_list.upper,
7539 					   &upper_dev->adj_list.lower);
7540 }
7541 
7542 static int __netdev_upper_dev_link(struct net_device *dev,
7543 				   struct net_device *upper_dev, bool master,
7544 				   void *upper_priv, void *upper_info,
7545 				   struct netlink_ext_ack *extack)
7546 {
7547 	struct netdev_notifier_changeupper_info changeupper_info = {
7548 		.info = {
7549 			.dev = dev,
7550 			.extack = extack,
7551 		},
7552 		.upper_dev = upper_dev,
7553 		.master = master,
7554 		.linking = true,
7555 		.upper_info = upper_info,
7556 	};
7557 	struct net_device *master_dev;
7558 	int ret = 0;
7559 
7560 	ASSERT_RTNL();
7561 
7562 	if (dev == upper_dev)
7563 		return -EBUSY;
7564 
7565 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7566 	if (__netdev_has_upper_dev(upper_dev, dev))
7567 		return -EBUSY;
7568 
7569 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7570 		return -EMLINK;
7571 
7572 	if (!master) {
7573 		if (__netdev_has_upper_dev(dev, upper_dev))
7574 			return -EEXIST;
7575 	} else {
7576 		master_dev = __netdev_master_upper_dev_get(dev);
7577 		if (master_dev)
7578 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7579 	}
7580 
7581 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7582 					    &changeupper_info.info);
7583 	ret = notifier_to_errno(ret);
7584 	if (ret)
7585 		return ret;
7586 
7587 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7588 						   master);
7589 	if (ret)
7590 		return ret;
7591 
7592 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7593 					    &changeupper_info.info);
7594 	ret = notifier_to_errno(ret);
7595 	if (ret)
7596 		goto rollback;
7597 
7598 	__netdev_update_upper_level(dev, NULL);
7599 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7600 
7601 	__netdev_update_lower_level(upper_dev, NULL);
7602 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7603 				    NULL);
7604 
7605 	return 0;
7606 
7607 rollback:
7608 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7609 
7610 	return ret;
7611 }
7612 
7613 /**
7614  * netdev_upper_dev_link - Add a link to the upper device
7615  * @dev: device
7616  * @upper_dev: new upper device
7617  * @extack: netlink extended ack
7618  *
7619  * Adds a link to device which is upper to this one. The caller must hold
7620  * the RTNL lock. On a failure a negative errno code is returned.
7621  * On success the reference counts are adjusted and the function
7622  * returns zero.
7623  */
7624 int netdev_upper_dev_link(struct net_device *dev,
7625 			  struct net_device *upper_dev,
7626 			  struct netlink_ext_ack *extack)
7627 {
7628 	return __netdev_upper_dev_link(dev, upper_dev, false,
7629 				       NULL, NULL, extack);
7630 }
7631 EXPORT_SYMBOL(netdev_upper_dev_link);
7632 
7633 /**
7634  * netdev_master_upper_dev_link - Add a master link to the upper device
7635  * @dev: device
7636  * @upper_dev: new upper device
7637  * @upper_priv: upper device private
7638  * @upper_info: upper info to be passed down via notifier
7639  * @extack: netlink extended ack
7640  *
7641  * Adds a link to device which is upper to this one. In this case, only
7642  * one master upper device can be linked, although other non-master devices
7643  * might be linked as well. The caller must hold the RTNL lock.
7644  * On a failure a negative errno code is returned. On success the reference
7645  * counts are adjusted and the function returns zero.
7646  */
7647 int netdev_master_upper_dev_link(struct net_device *dev,
7648 				 struct net_device *upper_dev,
7649 				 void *upper_priv, void *upper_info,
7650 				 struct netlink_ext_ack *extack)
7651 {
7652 	return __netdev_upper_dev_link(dev, upper_dev, true,
7653 				       upper_priv, upper_info, extack);
7654 }
7655 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7656 
7657 /**
7658  * netdev_upper_dev_unlink - Removes a link to upper device
7659  * @dev: device
7660  * @upper_dev: new upper device
7661  *
7662  * Removes a link to device which is upper to this one. The caller must hold
7663  * the RTNL lock.
7664  */
7665 void netdev_upper_dev_unlink(struct net_device *dev,
7666 			     struct net_device *upper_dev)
7667 {
7668 	struct netdev_notifier_changeupper_info changeupper_info = {
7669 		.info = {
7670 			.dev = dev,
7671 		},
7672 		.upper_dev = upper_dev,
7673 		.linking = false,
7674 	};
7675 
7676 	ASSERT_RTNL();
7677 
7678 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7679 
7680 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7681 				      &changeupper_info.info);
7682 
7683 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7684 
7685 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7686 				      &changeupper_info.info);
7687 
7688 	__netdev_update_upper_level(dev, NULL);
7689 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7690 
7691 	__netdev_update_lower_level(upper_dev, NULL);
7692 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7693 				    NULL);
7694 }
7695 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7696 
7697 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7698 				      struct net_device *lower_dev,
7699 				      bool val)
7700 {
7701 	struct netdev_adjacent *adj;
7702 
7703 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7704 	if (adj)
7705 		adj->ignore = val;
7706 
7707 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7708 	if (adj)
7709 		adj->ignore = val;
7710 }
7711 
7712 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7713 					struct net_device *lower_dev)
7714 {
7715 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7716 }
7717 
7718 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7719 				       struct net_device *lower_dev)
7720 {
7721 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7722 }
7723 
7724 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7725 				   struct net_device *new_dev,
7726 				   struct net_device *dev,
7727 				   struct netlink_ext_ack *extack)
7728 {
7729 	int err;
7730 
7731 	if (!new_dev)
7732 		return 0;
7733 
7734 	if (old_dev && new_dev != old_dev)
7735 		netdev_adjacent_dev_disable(dev, old_dev);
7736 
7737 	err = netdev_upper_dev_link(new_dev, dev, extack);
7738 	if (err) {
7739 		if (old_dev && new_dev != old_dev)
7740 			netdev_adjacent_dev_enable(dev, old_dev);
7741 		return err;
7742 	}
7743 
7744 	return 0;
7745 }
7746 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7747 
7748 void netdev_adjacent_change_commit(struct net_device *old_dev,
7749 				   struct net_device *new_dev,
7750 				   struct net_device *dev)
7751 {
7752 	if (!new_dev || !old_dev)
7753 		return;
7754 
7755 	if (new_dev == old_dev)
7756 		return;
7757 
7758 	netdev_adjacent_dev_enable(dev, old_dev);
7759 	netdev_upper_dev_unlink(old_dev, dev);
7760 }
7761 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7762 
7763 void netdev_adjacent_change_abort(struct net_device *old_dev,
7764 				  struct net_device *new_dev,
7765 				  struct net_device *dev)
7766 {
7767 	if (!new_dev)
7768 		return;
7769 
7770 	if (old_dev && new_dev != old_dev)
7771 		netdev_adjacent_dev_enable(dev, old_dev);
7772 
7773 	netdev_upper_dev_unlink(new_dev, dev);
7774 }
7775 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7776 
7777 /**
7778  * netdev_bonding_info_change - Dispatch event about slave change
7779  * @dev: device
7780  * @bonding_info: info to dispatch
7781  *
7782  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7783  * The caller must hold the RTNL lock.
7784  */
7785 void netdev_bonding_info_change(struct net_device *dev,
7786 				struct netdev_bonding_info *bonding_info)
7787 {
7788 	struct netdev_notifier_bonding_info info = {
7789 		.info.dev = dev,
7790 	};
7791 
7792 	memcpy(&info.bonding_info, bonding_info,
7793 	       sizeof(struct netdev_bonding_info));
7794 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7795 				      &info.info);
7796 }
7797 EXPORT_SYMBOL(netdev_bonding_info_change);
7798 
7799 static void netdev_adjacent_add_links(struct net_device *dev)
7800 {
7801 	struct netdev_adjacent *iter;
7802 
7803 	struct net *net = dev_net(dev);
7804 
7805 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7806 		if (!net_eq(net, dev_net(iter->dev)))
7807 			continue;
7808 		netdev_adjacent_sysfs_add(iter->dev, dev,
7809 					  &iter->dev->adj_list.lower);
7810 		netdev_adjacent_sysfs_add(dev, iter->dev,
7811 					  &dev->adj_list.upper);
7812 	}
7813 
7814 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7815 		if (!net_eq(net, dev_net(iter->dev)))
7816 			continue;
7817 		netdev_adjacent_sysfs_add(iter->dev, dev,
7818 					  &iter->dev->adj_list.upper);
7819 		netdev_adjacent_sysfs_add(dev, iter->dev,
7820 					  &dev->adj_list.lower);
7821 	}
7822 }
7823 
7824 static void netdev_adjacent_del_links(struct net_device *dev)
7825 {
7826 	struct netdev_adjacent *iter;
7827 
7828 	struct net *net = dev_net(dev);
7829 
7830 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7831 		if (!net_eq(net, dev_net(iter->dev)))
7832 			continue;
7833 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7834 					  &iter->dev->adj_list.lower);
7835 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7836 					  &dev->adj_list.upper);
7837 	}
7838 
7839 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7840 		if (!net_eq(net, dev_net(iter->dev)))
7841 			continue;
7842 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7843 					  &iter->dev->adj_list.upper);
7844 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7845 					  &dev->adj_list.lower);
7846 	}
7847 }
7848 
7849 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7850 {
7851 	struct netdev_adjacent *iter;
7852 
7853 	struct net *net = dev_net(dev);
7854 
7855 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7856 		if (!net_eq(net, dev_net(iter->dev)))
7857 			continue;
7858 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7859 					  &iter->dev->adj_list.lower);
7860 		netdev_adjacent_sysfs_add(iter->dev, dev,
7861 					  &iter->dev->adj_list.lower);
7862 	}
7863 
7864 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7865 		if (!net_eq(net, dev_net(iter->dev)))
7866 			continue;
7867 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7868 					  &iter->dev->adj_list.upper);
7869 		netdev_adjacent_sysfs_add(iter->dev, dev,
7870 					  &iter->dev->adj_list.upper);
7871 	}
7872 }
7873 
7874 void *netdev_lower_dev_get_private(struct net_device *dev,
7875 				   struct net_device *lower_dev)
7876 {
7877 	struct netdev_adjacent *lower;
7878 
7879 	if (!lower_dev)
7880 		return NULL;
7881 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7882 	if (!lower)
7883 		return NULL;
7884 
7885 	return lower->private;
7886 }
7887 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7888 
7889 
7890 /**
7891  * netdev_lower_change - Dispatch event about lower device state change
7892  * @lower_dev: device
7893  * @lower_state_info: state to dispatch
7894  *
7895  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7896  * The caller must hold the RTNL lock.
7897  */
7898 void netdev_lower_state_changed(struct net_device *lower_dev,
7899 				void *lower_state_info)
7900 {
7901 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7902 		.info.dev = lower_dev,
7903 	};
7904 
7905 	ASSERT_RTNL();
7906 	changelowerstate_info.lower_state_info = lower_state_info;
7907 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7908 				      &changelowerstate_info.info);
7909 }
7910 EXPORT_SYMBOL(netdev_lower_state_changed);
7911 
7912 static void dev_change_rx_flags(struct net_device *dev, int flags)
7913 {
7914 	const struct net_device_ops *ops = dev->netdev_ops;
7915 
7916 	if (ops->ndo_change_rx_flags)
7917 		ops->ndo_change_rx_flags(dev, flags);
7918 }
7919 
7920 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7921 {
7922 	unsigned int old_flags = dev->flags;
7923 	kuid_t uid;
7924 	kgid_t gid;
7925 
7926 	ASSERT_RTNL();
7927 
7928 	dev->flags |= IFF_PROMISC;
7929 	dev->promiscuity += inc;
7930 	if (dev->promiscuity == 0) {
7931 		/*
7932 		 * Avoid overflow.
7933 		 * If inc causes overflow, untouch promisc and return error.
7934 		 */
7935 		if (inc < 0)
7936 			dev->flags &= ~IFF_PROMISC;
7937 		else {
7938 			dev->promiscuity -= inc;
7939 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7940 				dev->name);
7941 			return -EOVERFLOW;
7942 		}
7943 	}
7944 	if (dev->flags != old_flags) {
7945 		pr_info("device %s %s promiscuous mode\n",
7946 			dev->name,
7947 			dev->flags & IFF_PROMISC ? "entered" : "left");
7948 		if (audit_enabled) {
7949 			current_uid_gid(&uid, &gid);
7950 			audit_log(audit_context(), GFP_ATOMIC,
7951 				  AUDIT_ANOM_PROMISCUOUS,
7952 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7953 				  dev->name, (dev->flags & IFF_PROMISC),
7954 				  (old_flags & IFF_PROMISC),
7955 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7956 				  from_kuid(&init_user_ns, uid),
7957 				  from_kgid(&init_user_ns, gid),
7958 				  audit_get_sessionid(current));
7959 		}
7960 
7961 		dev_change_rx_flags(dev, IFF_PROMISC);
7962 	}
7963 	if (notify)
7964 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7965 	return 0;
7966 }
7967 
7968 /**
7969  *	dev_set_promiscuity	- update promiscuity count on a device
7970  *	@dev: device
7971  *	@inc: modifier
7972  *
7973  *	Add or remove promiscuity from a device. While the count in the device
7974  *	remains above zero the interface remains promiscuous. Once it hits zero
7975  *	the device reverts back to normal filtering operation. A negative inc
7976  *	value is used to drop promiscuity on the device.
7977  *	Return 0 if successful or a negative errno code on error.
7978  */
7979 int dev_set_promiscuity(struct net_device *dev, int inc)
7980 {
7981 	unsigned int old_flags = dev->flags;
7982 	int err;
7983 
7984 	err = __dev_set_promiscuity(dev, inc, true);
7985 	if (err < 0)
7986 		return err;
7987 	if (dev->flags != old_flags)
7988 		dev_set_rx_mode(dev);
7989 	return err;
7990 }
7991 EXPORT_SYMBOL(dev_set_promiscuity);
7992 
7993 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7994 {
7995 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7996 
7997 	ASSERT_RTNL();
7998 
7999 	dev->flags |= IFF_ALLMULTI;
8000 	dev->allmulti += inc;
8001 	if (dev->allmulti == 0) {
8002 		/*
8003 		 * Avoid overflow.
8004 		 * If inc causes overflow, untouch allmulti and return error.
8005 		 */
8006 		if (inc < 0)
8007 			dev->flags &= ~IFF_ALLMULTI;
8008 		else {
8009 			dev->allmulti -= inc;
8010 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8011 				dev->name);
8012 			return -EOVERFLOW;
8013 		}
8014 	}
8015 	if (dev->flags ^ old_flags) {
8016 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8017 		dev_set_rx_mode(dev);
8018 		if (notify)
8019 			__dev_notify_flags(dev, old_flags,
8020 					   dev->gflags ^ old_gflags);
8021 	}
8022 	return 0;
8023 }
8024 
8025 /**
8026  *	dev_set_allmulti	- update allmulti count on a device
8027  *	@dev: device
8028  *	@inc: modifier
8029  *
8030  *	Add or remove reception of all multicast frames to a device. While the
8031  *	count in the device remains above zero the interface remains listening
8032  *	to all interfaces. Once it hits zero the device reverts back to normal
8033  *	filtering operation. A negative @inc value is used to drop the counter
8034  *	when releasing a resource needing all multicasts.
8035  *	Return 0 if successful or a negative errno code on error.
8036  */
8037 
8038 int dev_set_allmulti(struct net_device *dev, int inc)
8039 {
8040 	return __dev_set_allmulti(dev, inc, true);
8041 }
8042 EXPORT_SYMBOL(dev_set_allmulti);
8043 
8044 /*
8045  *	Upload unicast and multicast address lists to device and
8046  *	configure RX filtering. When the device doesn't support unicast
8047  *	filtering it is put in promiscuous mode while unicast addresses
8048  *	are present.
8049  */
8050 void __dev_set_rx_mode(struct net_device *dev)
8051 {
8052 	const struct net_device_ops *ops = dev->netdev_ops;
8053 
8054 	/* dev_open will call this function so the list will stay sane. */
8055 	if (!(dev->flags&IFF_UP))
8056 		return;
8057 
8058 	if (!netif_device_present(dev))
8059 		return;
8060 
8061 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8062 		/* Unicast addresses changes may only happen under the rtnl,
8063 		 * therefore calling __dev_set_promiscuity here is safe.
8064 		 */
8065 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8066 			__dev_set_promiscuity(dev, 1, false);
8067 			dev->uc_promisc = true;
8068 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8069 			__dev_set_promiscuity(dev, -1, false);
8070 			dev->uc_promisc = false;
8071 		}
8072 	}
8073 
8074 	if (ops->ndo_set_rx_mode)
8075 		ops->ndo_set_rx_mode(dev);
8076 }
8077 
8078 void dev_set_rx_mode(struct net_device *dev)
8079 {
8080 	netif_addr_lock_bh(dev);
8081 	__dev_set_rx_mode(dev);
8082 	netif_addr_unlock_bh(dev);
8083 }
8084 
8085 /**
8086  *	dev_get_flags - get flags reported to userspace
8087  *	@dev: device
8088  *
8089  *	Get the combination of flag bits exported through APIs to userspace.
8090  */
8091 unsigned int dev_get_flags(const struct net_device *dev)
8092 {
8093 	unsigned int flags;
8094 
8095 	flags = (dev->flags & ~(IFF_PROMISC |
8096 				IFF_ALLMULTI |
8097 				IFF_RUNNING |
8098 				IFF_LOWER_UP |
8099 				IFF_DORMANT)) |
8100 		(dev->gflags & (IFF_PROMISC |
8101 				IFF_ALLMULTI));
8102 
8103 	if (netif_running(dev)) {
8104 		if (netif_oper_up(dev))
8105 			flags |= IFF_RUNNING;
8106 		if (netif_carrier_ok(dev))
8107 			flags |= IFF_LOWER_UP;
8108 		if (netif_dormant(dev))
8109 			flags |= IFF_DORMANT;
8110 	}
8111 
8112 	return flags;
8113 }
8114 EXPORT_SYMBOL(dev_get_flags);
8115 
8116 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8117 		       struct netlink_ext_ack *extack)
8118 {
8119 	unsigned int old_flags = dev->flags;
8120 	int ret;
8121 
8122 	ASSERT_RTNL();
8123 
8124 	/*
8125 	 *	Set the flags on our device.
8126 	 */
8127 
8128 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8129 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8130 			       IFF_AUTOMEDIA)) |
8131 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8132 				    IFF_ALLMULTI));
8133 
8134 	/*
8135 	 *	Load in the correct multicast list now the flags have changed.
8136 	 */
8137 
8138 	if ((old_flags ^ flags) & IFF_MULTICAST)
8139 		dev_change_rx_flags(dev, IFF_MULTICAST);
8140 
8141 	dev_set_rx_mode(dev);
8142 
8143 	/*
8144 	 *	Have we downed the interface. We handle IFF_UP ourselves
8145 	 *	according to user attempts to set it, rather than blindly
8146 	 *	setting it.
8147 	 */
8148 
8149 	ret = 0;
8150 	if ((old_flags ^ flags) & IFF_UP) {
8151 		if (old_flags & IFF_UP)
8152 			__dev_close(dev);
8153 		else
8154 			ret = __dev_open(dev, extack);
8155 	}
8156 
8157 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8158 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8159 		unsigned int old_flags = dev->flags;
8160 
8161 		dev->gflags ^= IFF_PROMISC;
8162 
8163 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8164 			if (dev->flags != old_flags)
8165 				dev_set_rx_mode(dev);
8166 	}
8167 
8168 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8169 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8170 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8171 	 */
8172 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8173 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8174 
8175 		dev->gflags ^= IFF_ALLMULTI;
8176 		__dev_set_allmulti(dev, inc, false);
8177 	}
8178 
8179 	return ret;
8180 }
8181 
8182 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8183 			unsigned int gchanges)
8184 {
8185 	unsigned int changes = dev->flags ^ old_flags;
8186 
8187 	if (gchanges)
8188 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8189 
8190 	if (changes & IFF_UP) {
8191 		if (dev->flags & IFF_UP)
8192 			call_netdevice_notifiers(NETDEV_UP, dev);
8193 		else
8194 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8195 	}
8196 
8197 	if (dev->flags & IFF_UP &&
8198 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8199 		struct netdev_notifier_change_info change_info = {
8200 			.info = {
8201 				.dev = dev,
8202 			},
8203 			.flags_changed = changes,
8204 		};
8205 
8206 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8207 	}
8208 }
8209 
8210 /**
8211  *	dev_change_flags - change device settings
8212  *	@dev: device
8213  *	@flags: device state flags
8214  *	@extack: netlink extended ack
8215  *
8216  *	Change settings on device based state flags. The flags are
8217  *	in the userspace exported format.
8218  */
8219 int dev_change_flags(struct net_device *dev, unsigned int flags,
8220 		     struct netlink_ext_ack *extack)
8221 {
8222 	int ret;
8223 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8224 
8225 	ret = __dev_change_flags(dev, flags, extack);
8226 	if (ret < 0)
8227 		return ret;
8228 
8229 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8230 	__dev_notify_flags(dev, old_flags, changes);
8231 	return ret;
8232 }
8233 EXPORT_SYMBOL(dev_change_flags);
8234 
8235 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8236 {
8237 	const struct net_device_ops *ops = dev->netdev_ops;
8238 
8239 	if (ops->ndo_change_mtu)
8240 		return ops->ndo_change_mtu(dev, new_mtu);
8241 
8242 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8243 	WRITE_ONCE(dev->mtu, new_mtu);
8244 	return 0;
8245 }
8246 EXPORT_SYMBOL(__dev_set_mtu);
8247 
8248 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8249 		     struct netlink_ext_ack *extack)
8250 {
8251 	/* MTU must be positive, and in range */
8252 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8253 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8254 		return -EINVAL;
8255 	}
8256 
8257 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8258 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8259 		return -EINVAL;
8260 	}
8261 	return 0;
8262 }
8263 
8264 /**
8265  *	dev_set_mtu_ext - Change maximum transfer unit
8266  *	@dev: device
8267  *	@new_mtu: new transfer unit
8268  *	@extack: netlink extended ack
8269  *
8270  *	Change the maximum transfer size of the network device.
8271  */
8272 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8273 		    struct netlink_ext_ack *extack)
8274 {
8275 	int err, orig_mtu;
8276 
8277 	if (new_mtu == dev->mtu)
8278 		return 0;
8279 
8280 	err = dev_validate_mtu(dev, new_mtu, extack);
8281 	if (err)
8282 		return err;
8283 
8284 	if (!netif_device_present(dev))
8285 		return -ENODEV;
8286 
8287 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8288 	err = notifier_to_errno(err);
8289 	if (err)
8290 		return err;
8291 
8292 	orig_mtu = dev->mtu;
8293 	err = __dev_set_mtu(dev, new_mtu);
8294 
8295 	if (!err) {
8296 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8297 						   orig_mtu);
8298 		err = notifier_to_errno(err);
8299 		if (err) {
8300 			/* setting mtu back and notifying everyone again,
8301 			 * so that they have a chance to revert changes.
8302 			 */
8303 			__dev_set_mtu(dev, orig_mtu);
8304 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8305 						     new_mtu);
8306 		}
8307 	}
8308 	return err;
8309 }
8310 
8311 int dev_set_mtu(struct net_device *dev, int new_mtu)
8312 {
8313 	struct netlink_ext_ack extack;
8314 	int err;
8315 
8316 	memset(&extack, 0, sizeof(extack));
8317 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8318 	if (err && extack._msg)
8319 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8320 	return err;
8321 }
8322 EXPORT_SYMBOL(dev_set_mtu);
8323 
8324 /**
8325  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8326  *	@dev: device
8327  *	@new_len: new tx queue length
8328  */
8329 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8330 {
8331 	unsigned int orig_len = dev->tx_queue_len;
8332 	int res;
8333 
8334 	if (new_len != (unsigned int)new_len)
8335 		return -ERANGE;
8336 
8337 	if (new_len != orig_len) {
8338 		dev->tx_queue_len = new_len;
8339 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8340 		res = notifier_to_errno(res);
8341 		if (res)
8342 			goto err_rollback;
8343 		res = dev_qdisc_change_tx_queue_len(dev);
8344 		if (res)
8345 			goto err_rollback;
8346 	}
8347 
8348 	return 0;
8349 
8350 err_rollback:
8351 	netdev_err(dev, "refused to change device tx_queue_len\n");
8352 	dev->tx_queue_len = orig_len;
8353 	return res;
8354 }
8355 
8356 /**
8357  *	dev_set_group - Change group this device belongs to
8358  *	@dev: device
8359  *	@new_group: group this device should belong to
8360  */
8361 void dev_set_group(struct net_device *dev, int new_group)
8362 {
8363 	dev->group = new_group;
8364 }
8365 EXPORT_SYMBOL(dev_set_group);
8366 
8367 /**
8368  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8369  *	@dev: device
8370  *	@addr: new address
8371  *	@extack: netlink extended ack
8372  */
8373 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8374 			      struct netlink_ext_ack *extack)
8375 {
8376 	struct netdev_notifier_pre_changeaddr_info info = {
8377 		.info.dev = dev,
8378 		.info.extack = extack,
8379 		.dev_addr = addr,
8380 	};
8381 	int rc;
8382 
8383 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8384 	return notifier_to_errno(rc);
8385 }
8386 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8387 
8388 /**
8389  *	dev_set_mac_address - Change Media Access Control Address
8390  *	@dev: device
8391  *	@sa: new address
8392  *	@extack: netlink extended ack
8393  *
8394  *	Change the hardware (MAC) address of the device
8395  */
8396 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8397 			struct netlink_ext_ack *extack)
8398 {
8399 	const struct net_device_ops *ops = dev->netdev_ops;
8400 	int err;
8401 
8402 	if (!ops->ndo_set_mac_address)
8403 		return -EOPNOTSUPP;
8404 	if (sa->sa_family != dev->type)
8405 		return -EINVAL;
8406 	if (!netif_device_present(dev))
8407 		return -ENODEV;
8408 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8409 	if (err)
8410 		return err;
8411 	err = ops->ndo_set_mac_address(dev, sa);
8412 	if (err)
8413 		return err;
8414 	dev->addr_assign_type = NET_ADDR_SET;
8415 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8416 	add_device_randomness(dev->dev_addr, dev->addr_len);
8417 	return 0;
8418 }
8419 EXPORT_SYMBOL(dev_set_mac_address);
8420 
8421 /**
8422  *	dev_change_carrier - Change device carrier
8423  *	@dev: device
8424  *	@new_carrier: new value
8425  *
8426  *	Change device carrier
8427  */
8428 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8429 {
8430 	const struct net_device_ops *ops = dev->netdev_ops;
8431 
8432 	if (!ops->ndo_change_carrier)
8433 		return -EOPNOTSUPP;
8434 	if (!netif_device_present(dev))
8435 		return -ENODEV;
8436 	return ops->ndo_change_carrier(dev, new_carrier);
8437 }
8438 EXPORT_SYMBOL(dev_change_carrier);
8439 
8440 /**
8441  *	dev_get_phys_port_id - Get device physical port ID
8442  *	@dev: device
8443  *	@ppid: port ID
8444  *
8445  *	Get device physical port ID
8446  */
8447 int dev_get_phys_port_id(struct net_device *dev,
8448 			 struct netdev_phys_item_id *ppid)
8449 {
8450 	const struct net_device_ops *ops = dev->netdev_ops;
8451 
8452 	if (!ops->ndo_get_phys_port_id)
8453 		return -EOPNOTSUPP;
8454 	return ops->ndo_get_phys_port_id(dev, ppid);
8455 }
8456 EXPORT_SYMBOL(dev_get_phys_port_id);
8457 
8458 /**
8459  *	dev_get_phys_port_name - Get device physical port name
8460  *	@dev: device
8461  *	@name: port name
8462  *	@len: limit of bytes to copy to name
8463  *
8464  *	Get device physical port name
8465  */
8466 int dev_get_phys_port_name(struct net_device *dev,
8467 			   char *name, size_t len)
8468 {
8469 	const struct net_device_ops *ops = dev->netdev_ops;
8470 	int err;
8471 
8472 	if (ops->ndo_get_phys_port_name) {
8473 		err = ops->ndo_get_phys_port_name(dev, name, len);
8474 		if (err != -EOPNOTSUPP)
8475 			return err;
8476 	}
8477 	return devlink_compat_phys_port_name_get(dev, name, len);
8478 }
8479 EXPORT_SYMBOL(dev_get_phys_port_name);
8480 
8481 /**
8482  *	dev_get_port_parent_id - Get the device's port parent identifier
8483  *	@dev: network device
8484  *	@ppid: pointer to a storage for the port's parent identifier
8485  *	@recurse: allow/disallow recursion to lower devices
8486  *
8487  *	Get the devices's port parent identifier
8488  */
8489 int dev_get_port_parent_id(struct net_device *dev,
8490 			   struct netdev_phys_item_id *ppid,
8491 			   bool recurse)
8492 {
8493 	const struct net_device_ops *ops = dev->netdev_ops;
8494 	struct netdev_phys_item_id first = { };
8495 	struct net_device *lower_dev;
8496 	struct list_head *iter;
8497 	int err;
8498 
8499 	if (ops->ndo_get_port_parent_id) {
8500 		err = ops->ndo_get_port_parent_id(dev, ppid);
8501 		if (err != -EOPNOTSUPP)
8502 			return err;
8503 	}
8504 
8505 	err = devlink_compat_switch_id_get(dev, ppid);
8506 	if (!err || err != -EOPNOTSUPP)
8507 		return err;
8508 
8509 	if (!recurse)
8510 		return -EOPNOTSUPP;
8511 
8512 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8513 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8514 		if (err)
8515 			break;
8516 		if (!first.id_len)
8517 			first = *ppid;
8518 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8519 			return -ENODATA;
8520 	}
8521 
8522 	return err;
8523 }
8524 EXPORT_SYMBOL(dev_get_port_parent_id);
8525 
8526 /**
8527  *	netdev_port_same_parent_id - Indicate if two network devices have
8528  *	the same port parent identifier
8529  *	@a: first network device
8530  *	@b: second network device
8531  */
8532 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8533 {
8534 	struct netdev_phys_item_id a_id = { };
8535 	struct netdev_phys_item_id b_id = { };
8536 
8537 	if (dev_get_port_parent_id(a, &a_id, true) ||
8538 	    dev_get_port_parent_id(b, &b_id, true))
8539 		return false;
8540 
8541 	return netdev_phys_item_id_same(&a_id, &b_id);
8542 }
8543 EXPORT_SYMBOL(netdev_port_same_parent_id);
8544 
8545 /**
8546  *	dev_change_proto_down - update protocol port state information
8547  *	@dev: device
8548  *	@proto_down: new value
8549  *
8550  *	This info can be used by switch drivers to set the phys state of the
8551  *	port.
8552  */
8553 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8554 {
8555 	const struct net_device_ops *ops = dev->netdev_ops;
8556 
8557 	if (!ops->ndo_change_proto_down)
8558 		return -EOPNOTSUPP;
8559 	if (!netif_device_present(dev))
8560 		return -ENODEV;
8561 	return ops->ndo_change_proto_down(dev, proto_down);
8562 }
8563 EXPORT_SYMBOL(dev_change_proto_down);
8564 
8565 /**
8566  *	dev_change_proto_down_generic - generic implementation for
8567  * 	ndo_change_proto_down that sets carrier according to
8568  * 	proto_down.
8569  *
8570  *	@dev: device
8571  *	@proto_down: new value
8572  */
8573 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8574 {
8575 	if (proto_down)
8576 		netif_carrier_off(dev);
8577 	else
8578 		netif_carrier_on(dev);
8579 	dev->proto_down = proto_down;
8580 	return 0;
8581 }
8582 EXPORT_SYMBOL(dev_change_proto_down_generic);
8583 
8584 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8585 		    enum bpf_netdev_command cmd)
8586 {
8587 	struct netdev_bpf xdp;
8588 
8589 	if (!bpf_op)
8590 		return 0;
8591 
8592 	memset(&xdp, 0, sizeof(xdp));
8593 	xdp.command = cmd;
8594 
8595 	/* Query must always succeed. */
8596 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8597 
8598 	return xdp.prog_id;
8599 }
8600 
8601 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8602 			   struct netlink_ext_ack *extack, u32 flags,
8603 			   struct bpf_prog *prog)
8604 {
8605 	bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8606 	struct bpf_prog *prev_prog = NULL;
8607 	struct netdev_bpf xdp;
8608 	int err;
8609 
8610 	if (non_hw) {
8611 		prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8612 							   XDP_QUERY_PROG));
8613 		if (IS_ERR(prev_prog))
8614 			prev_prog = NULL;
8615 	}
8616 
8617 	memset(&xdp, 0, sizeof(xdp));
8618 	if (flags & XDP_FLAGS_HW_MODE)
8619 		xdp.command = XDP_SETUP_PROG_HW;
8620 	else
8621 		xdp.command = XDP_SETUP_PROG;
8622 	xdp.extack = extack;
8623 	xdp.flags = flags;
8624 	xdp.prog = prog;
8625 
8626 	err = bpf_op(dev, &xdp);
8627 	if (!err && non_hw)
8628 		bpf_prog_change_xdp(prev_prog, prog);
8629 
8630 	if (prev_prog)
8631 		bpf_prog_put(prev_prog);
8632 
8633 	return err;
8634 }
8635 
8636 static void dev_xdp_uninstall(struct net_device *dev)
8637 {
8638 	struct netdev_bpf xdp;
8639 	bpf_op_t ndo_bpf;
8640 
8641 	/* Remove generic XDP */
8642 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8643 
8644 	/* Remove from the driver */
8645 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8646 	if (!ndo_bpf)
8647 		return;
8648 
8649 	memset(&xdp, 0, sizeof(xdp));
8650 	xdp.command = XDP_QUERY_PROG;
8651 	WARN_ON(ndo_bpf(dev, &xdp));
8652 	if (xdp.prog_id)
8653 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8654 					NULL));
8655 
8656 	/* Remove HW offload */
8657 	memset(&xdp, 0, sizeof(xdp));
8658 	xdp.command = XDP_QUERY_PROG_HW;
8659 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8660 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8661 					NULL));
8662 }
8663 
8664 /**
8665  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8666  *	@dev: device
8667  *	@extack: netlink extended ack
8668  *	@fd: new program fd or negative value to clear
8669  *	@expected_fd: old program fd that userspace expects to replace or clear
8670  *	@flags: xdp-related flags
8671  *
8672  *	Set or clear a bpf program for a device
8673  */
8674 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8675 		      int fd, int expected_fd, u32 flags)
8676 {
8677 	const struct net_device_ops *ops = dev->netdev_ops;
8678 	enum bpf_netdev_command query;
8679 	u32 prog_id, expected_id = 0;
8680 	bpf_op_t bpf_op, bpf_chk;
8681 	struct bpf_prog *prog;
8682 	bool offload;
8683 	int err;
8684 
8685 	ASSERT_RTNL();
8686 
8687 	offload = flags & XDP_FLAGS_HW_MODE;
8688 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8689 
8690 	bpf_op = bpf_chk = ops->ndo_bpf;
8691 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8692 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8693 		return -EOPNOTSUPP;
8694 	}
8695 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8696 		bpf_op = generic_xdp_install;
8697 	if (bpf_op == bpf_chk)
8698 		bpf_chk = generic_xdp_install;
8699 
8700 	prog_id = __dev_xdp_query(dev, bpf_op, query);
8701 	if (flags & XDP_FLAGS_REPLACE) {
8702 		if (expected_fd >= 0) {
8703 			prog = bpf_prog_get_type_dev(expected_fd,
8704 						     BPF_PROG_TYPE_XDP,
8705 						     bpf_op == ops->ndo_bpf);
8706 			if (IS_ERR(prog))
8707 				return PTR_ERR(prog);
8708 			expected_id = prog->aux->id;
8709 			bpf_prog_put(prog);
8710 		}
8711 
8712 		if (prog_id != expected_id) {
8713 			NL_SET_ERR_MSG(extack, "Active program does not match expected");
8714 			return -EEXIST;
8715 		}
8716 	}
8717 	if (fd >= 0) {
8718 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8719 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8720 			return -EEXIST;
8721 		}
8722 
8723 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8724 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8725 			return -EBUSY;
8726 		}
8727 
8728 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8729 					     bpf_op == ops->ndo_bpf);
8730 		if (IS_ERR(prog))
8731 			return PTR_ERR(prog);
8732 
8733 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8734 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8735 			bpf_prog_put(prog);
8736 			return -EINVAL;
8737 		}
8738 
8739 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8740 		if (prog->aux->id && prog->aux->id == prog_id) {
8741 			bpf_prog_put(prog);
8742 			return 0;
8743 		}
8744 	} else {
8745 		if (!prog_id)
8746 			return 0;
8747 		prog = NULL;
8748 	}
8749 
8750 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8751 	if (err < 0 && prog)
8752 		bpf_prog_put(prog);
8753 
8754 	return err;
8755 }
8756 
8757 /**
8758  *	dev_new_index	-	allocate an ifindex
8759  *	@net: the applicable net namespace
8760  *
8761  *	Returns a suitable unique value for a new device interface
8762  *	number.  The caller must hold the rtnl semaphore or the
8763  *	dev_base_lock to be sure it remains unique.
8764  */
8765 static int dev_new_index(struct net *net)
8766 {
8767 	int ifindex = net->ifindex;
8768 
8769 	for (;;) {
8770 		if (++ifindex <= 0)
8771 			ifindex = 1;
8772 		if (!__dev_get_by_index(net, ifindex))
8773 			return net->ifindex = ifindex;
8774 	}
8775 }
8776 
8777 /* Delayed registration/unregisteration */
8778 static LIST_HEAD(net_todo_list);
8779 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8780 
8781 static void net_set_todo(struct net_device *dev)
8782 {
8783 	list_add_tail(&dev->todo_list, &net_todo_list);
8784 	dev_net(dev)->dev_unreg_count++;
8785 }
8786 
8787 static void rollback_registered_many(struct list_head *head)
8788 {
8789 	struct net_device *dev, *tmp;
8790 	LIST_HEAD(close_head);
8791 
8792 	BUG_ON(dev_boot_phase);
8793 	ASSERT_RTNL();
8794 
8795 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8796 		/* Some devices call without registering
8797 		 * for initialization unwind. Remove those
8798 		 * devices and proceed with the remaining.
8799 		 */
8800 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8801 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8802 				 dev->name, dev);
8803 
8804 			WARN_ON(1);
8805 			list_del(&dev->unreg_list);
8806 			continue;
8807 		}
8808 		dev->dismantle = true;
8809 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8810 	}
8811 
8812 	/* If device is running, close it first. */
8813 	list_for_each_entry(dev, head, unreg_list)
8814 		list_add_tail(&dev->close_list, &close_head);
8815 	dev_close_many(&close_head, true);
8816 
8817 	list_for_each_entry(dev, head, unreg_list) {
8818 		/* And unlink it from device chain. */
8819 		unlist_netdevice(dev);
8820 
8821 		dev->reg_state = NETREG_UNREGISTERING;
8822 	}
8823 	flush_all_backlogs();
8824 
8825 	synchronize_net();
8826 
8827 	list_for_each_entry(dev, head, unreg_list) {
8828 		struct sk_buff *skb = NULL;
8829 
8830 		/* Shutdown queueing discipline. */
8831 		dev_shutdown(dev);
8832 
8833 		dev_xdp_uninstall(dev);
8834 
8835 		/* Notify protocols, that we are about to destroy
8836 		 * this device. They should clean all the things.
8837 		 */
8838 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8839 
8840 		if (!dev->rtnl_link_ops ||
8841 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8842 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8843 						     GFP_KERNEL, NULL, 0);
8844 
8845 		/*
8846 		 *	Flush the unicast and multicast chains
8847 		 */
8848 		dev_uc_flush(dev);
8849 		dev_mc_flush(dev);
8850 
8851 		netdev_name_node_alt_flush(dev);
8852 		netdev_name_node_free(dev->name_node);
8853 
8854 		if (dev->netdev_ops->ndo_uninit)
8855 			dev->netdev_ops->ndo_uninit(dev);
8856 
8857 		if (skb)
8858 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8859 
8860 		/* Notifier chain MUST detach us all upper devices. */
8861 		WARN_ON(netdev_has_any_upper_dev(dev));
8862 		WARN_ON(netdev_has_any_lower_dev(dev));
8863 
8864 		/* Remove entries from kobject tree */
8865 		netdev_unregister_kobject(dev);
8866 #ifdef CONFIG_XPS
8867 		/* Remove XPS queueing entries */
8868 		netif_reset_xps_queues_gt(dev, 0);
8869 #endif
8870 	}
8871 
8872 	synchronize_net();
8873 
8874 	list_for_each_entry(dev, head, unreg_list)
8875 		dev_put(dev);
8876 }
8877 
8878 static void rollback_registered(struct net_device *dev)
8879 {
8880 	LIST_HEAD(single);
8881 
8882 	list_add(&dev->unreg_list, &single);
8883 	rollback_registered_many(&single);
8884 	list_del(&single);
8885 }
8886 
8887 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8888 	struct net_device *upper, netdev_features_t features)
8889 {
8890 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8891 	netdev_features_t feature;
8892 	int feature_bit;
8893 
8894 	for_each_netdev_feature(upper_disables, feature_bit) {
8895 		feature = __NETIF_F_BIT(feature_bit);
8896 		if (!(upper->wanted_features & feature)
8897 		    && (features & feature)) {
8898 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8899 				   &feature, upper->name);
8900 			features &= ~feature;
8901 		}
8902 	}
8903 
8904 	return features;
8905 }
8906 
8907 static void netdev_sync_lower_features(struct net_device *upper,
8908 	struct net_device *lower, netdev_features_t features)
8909 {
8910 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8911 	netdev_features_t feature;
8912 	int feature_bit;
8913 
8914 	for_each_netdev_feature(upper_disables, feature_bit) {
8915 		feature = __NETIF_F_BIT(feature_bit);
8916 		if (!(features & feature) && (lower->features & feature)) {
8917 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8918 				   &feature, lower->name);
8919 			lower->wanted_features &= ~feature;
8920 			__netdev_update_features(lower);
8921 
8922 			if (unlikely(lower->features & feature))
8923 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8924 					    &feature, lower->name);
8925 			else
8926 				netdev_features_change(lower);
8927 		}
8928 	}
8929 }
8930 
8931 static netdev_features_t netdev_fix_features(struct net_device *dev,
8932 	netdev_features_t features)
8933 {
8934 	/* Fix illegal checksum combinations */
8935 	if ((features & NETIF_F_HW_CSUM) &&
8936 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8937 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8938 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8939 	}
8940 
8941 	/* TSO requires that SG is present as well. */
8942 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8943 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8944 		features &= ~NETIF_F_ALL_TSO;
8945 	}
8946 
8947 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8948 					!(features & NETIF_F_IP_CSUM)) {
8949 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8950 		features &= ~NETIF_F_TSO;
8951 		features &= ~NETIF_F_TSO_ECN;
8952 	}
8953 
8954 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8955 					 !(features & NETIF_F_IPV6_CSUM)) {
8956 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8957 		features &= ~NETIF_F_TSO6;
8958 	}
8959 
8960 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8961 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8962 		features &= ~NETIF_F_TSO_MANGLEID;
8963 
8964 	/* TSO ECN requires that TSO is present as well. */
8965 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8966 		features &= ~NETIF_F_TSO_ECN;
8967 
8968 	/* Software GSO depends on SG. */
8969 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8970 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8971 		features &= ~NETIF_F_GSO;
8972 	}
8973 
8974 	/* GSO partial features require GSO partial be set */
8975 	if ((features & dev->gso_partial_features) &&
8976 	    !(features & NETIF_F_GSO_PARTIAL)) {
8977 		netdev_dbg(dev,
8978 			   "Dropping partially supported GSO features since no GSO partial.\n");
8979 		features &= ~dev->gso_partial_features;
8980 	}
8981 
8982 	if (!(features & NETIF_F_RXCSUM)) {
8983 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8984 		 * successfully merged by hardware must also have the
8985 		 * checksum verified by hardware.  If the user does not
8986 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8987 		 */
8988 		if (features & NETIF_F_GRO_HW) {
8989 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8990 			features &= ~NETIF_F_GRO_HW;
8991 		}
8992 	}
8993 
8994 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8995 	if (features & NETIF_F_RXFCS) {
8996 		if (features & NETIF_F_LRO) {
8997 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8998 			features &= ~NETIF_F_LRO;
8999 		}
9000 
9001 		if (features & NETIF_F_GRO_HW) {
9002 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9003 			features &= ~NETIF_F_GRO_HW;
9004 		}
9005 	}
9006 
9007 	return features;
9008 }
9009 
9010 int __netdev_update_features(struct net_device *dev)
9011 {
9012 	struct net_device *upper, *lower;
9013 	netdev_features_t features;
9014 	struct list_head *iter;
9015 	int err = -1;
9016 
9017 	ASSERT_RTNL();
9018 
9019 	features = netdev_get_wanted_features(dev);
9020 
9021 	if (dev->netdev_ops->ndo_fix_features)
9022 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9023 
9024 	/* driver might be less strict about feature dependencies */
9025 	features = netdev_fix_features(dev, features);
9026 
9027 	/* some features can't be enabled if they're off an an upper device */
9028 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9029 		features = netdev_sync_upper_features(dev, upper, features);
9030 
9031 	if (dev->features == features)
9032 		goto sync_lower;
9033 
9034 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9035 		&dev->features, &features);
9036 
9037 	if (dev->netdev_ops->ndo_set_features)
9038 		err = dev->netdev_ops->ndo_set_features(dev, features);
9039 	else
9040 		err = 0;
9041 
9042 	if (unlikely(err < 0)) {
9043 		netdev_err(dev,
9044 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9045 			err, &features, &dev->features);
9046 		/* return non-0 since some features might have changed and
9047 		 * it's better to fire a spurious notification than miss it
9048 		 */
9049 		return -1;
9050 	}
9051 
9052 sync_lower:
9053 	/* some features must be disabled on lower devices when disabled
9054 	 * on an upper device (think: bonding master or bridge)
9055 	 */
9056 	netdev_for_each_lower_dev(dev, lower, iter)
9057 		netdev_sync_lower_features(dev, lower, features);
9058 
9059 	if (!err) {
9060 		netdev_features_t diff = features ^ dev->features;
9061 
9062 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9063 			/* udp_tunnel_{get,drop}_rx_info both need
9064 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9065 			 * device, or they won't do anything.
9066 			 * Thus we need to update dev->features
9067 			 * *before* calling udp_tunnel_get_rx_info,
9068 			 * but *after* calling udp_tunnel_drop_rx_info.
9069 			 */
9070 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9071 				dev->features = features;
9072 				udp_tunnel_get_rx_info(dev);
9073 			} else {
9074 				udp_tunnel_drop_rx_info(dev);
9075 			}
9076 		}
9077 
9078 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9079 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9080 				dev->features = features;
9081 				err |= vlan_get_rx_ctag_filter_info(dev);
9082 			} else {
9083 				vlan_drop_rx_ctag_filter_info(dev);
9084 			}
9085 		}
9086 
9087 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9088 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9089 				dev->features = features;
9090 				err |= vlan_get_rx_stag_filter_info(dev);
9091 			} else {
9092 				vlan_drop_rx_stag_filter_info(dev);
9093 			}
9094 		}
9095 
9096 		dev->features = features;
9097 	}
9098 
9099 	return err < 0 ? 0 : 1;
9100 }
9101 
9102 /**
9103  *	netdev_update_features - recalculate device features
9104  *	@dev: the device to check
9105  *
9106  *	Recalculate dev->features set and send notifications if it
9107  *	has changed. Should be called after driver or hardware dependent
9108  *	conditions might have changed that influence the features.
9109  */
9110 void netdev_update_features(struct net_device *dev)
9111 {
9112 	if (__netdev_update_features(dev))
9113 		netdev_features_change(dev);
9114 }
9115 EXPORT_SYMBOL(netdev_update_features);
9116 
9117 /**
9118  *	netdev_change_features - recalculate device features
9119  *	@dev: the device to check
9120  *
9121  *	Recalculate dev->features set and send notifications even
9122  *	if they have not changed. Should be called instead of
9123  *	netdev_update_features() if also dev->vlan_features might
9124  *	have changed to allow the changes to be propagated to stacked
9125  *	VLAN devices.
9126  */
9127 void netdev_change_features(struct net_device *dev)
9128 {
9129 	__netdev_update_features(dev);
9130 	netdev_features_change(dev);
9131 }
9132 EXPORT_SYMBOL(netdev_change_features);
9133 
9134 /**
9135  *	netif_stacked_transfer_operstate -	transfer operstate
9136  *	@rootdev: the root or lower level device to transfer state from
9137  *	@dev: the device to transfer operstate to
9138  *
9139  *	Transfer operational state from root to device. This is normally
9140  *	called when a stacking relationship exists between the root
9141  *	device and the device(a leaf device).
9142  */
9143 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9144 					struct net_device *dev)
9145 {
9146 	if (rootdev->operstate == IF_OPER_DORMANT)
9147 		netif_dormant_on(dev);
9148 	else
9149 		netif_dormant_off(dev);
9150 
9151 	if (netif_carrier_ok(rootdev))
9152 		netif_carrier_on(dev);
9153 	else
9154 		netif_carrier_off(dev);
9155 }
9156 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9157 
9158 static int netif_alloc_rx_queues(struct net_device *dev)
9159 {
9160 	unsigned int i, count = dev->num_rx_queues;
9161 	struct netdev_rx_queue *rx;
9162 	size_t sz = count * sizeof(*rx);
9163 	int err = 0;
9164 
9165 	BUG_ON(count < 1);
9166 
9167 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9168 	if (!rx)
9169 		return -ENOMEM;
9170 
9171 	dev->_rx = rx;
9172 
9173 	for (i = 0; i < count; i++) {
9174 		rx[i].dev = dev;
9175 
9176 		/* XDP RX-queue setup */
9177 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9178 		if (err < 0)
9179 			goto err_rxq_info;
9180 	}
9181 	return 0;
9182 
9183 err_rxq_info:
9184 	/* Rollback successful reg's and free other resources */
9185 	while (i--)
9186 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9187 	kvfree(dev->_rx);
9188 	dev->_rx = NULL;
9189 	return err;
9190 }
9191 
9192 static void netif_free_rx_queues(struct net_device *dev)
9193 {
9194 	unsigned int i, count = dev->num_rx_queues;
9195 
9196 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9197 	if (!dev->_rx)
9198 		return;
9199 
9200 	for (i = 0; i < count; i++)
9201 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9202 
9203 	kvfree(dev->_rx);
9204 }
9205 
9206 static void netdev_init_one_queue(struct net_device *dev,
9207 				  struct netdev_queue *queue, void *_unused)
9208 {
9209 	/* Initialize queue lock */
9210 	spin_lock_init(&queue->_xmit_lock);
9211 	lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9212 	queue->xmit_lock_owner = -1;
9213 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9214 	queue->dev = dev;
9215 #ifdef CONFIG_BQL
9216 	dql_init(&queue->dql, HZ);
9217 #endif
9218 }
9219 
9220 static void netif_free_tx_queues(struct net_device *dev)
9221 {
9222 	kvfree(dev->_tx);
9223 }
9224 
9225 static int netif_alloc_netdev_queues(struct net_device *dev)
9226 {
9227 	unsigned int count = dev->num_tx_queues;
9228 	struct netdev_queue *tx;
9229 	size_t sz = count * sizeof(*tx);
9230 
9231 	if (count < 1 || count > 0xffff)
9232 		return -EINVAL;
9233 
9234 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9235 	if (!tx)
9236 		return -ENOMEM;
9237 
9238 	dev->_tx = tx;
9239 
9240 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9241 	spin_lock_init(&dev->tx_global_lock);
9242 
9243 	return 0;
9244 }
9245 
9246 void netif_tx_stop_all_queues(struct net_device *dev)
9247 {
9248 	unsigned int i;
9249 
9250 	for (i = 0; i < dev->num_tx_queues; i++) {
9251 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9252 
9253 		netif_tx_stop_queue(txq);
9254 	}
9255 }
9256 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9257 
9258 static void netdev_register_lockdep_key(struct net_device *dev)
9259 {
9260 	lockdep_register_key(&dev->qdisc_tx_busylock_key);
9261 	lockdep_register_key(&dev->qdisc_running_key);
9262 	lockdep_register_key(&dev->qdisc_xmit_lock_key);
9263 	lockdep_register_key(&dev->addr_list_lock_key);
9264 }
9265 
9266 static void netdev_unregister_lockdep_key(struct net_device *dev)
9267 {
9268 	lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9269 	lockdep_unregister_key(&dev->qdisc_running_key);
9270 	lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9271 	lockdep_unregister_key(&dev->addr_list_lock_key);
9272 }
9273 
9274 void netdev_update_lockdep_key(struct net_device *dev)
9275 {
9276 	lockdep_unregister_key(&dev->addr_list_lock_key);
9277 	lockdep_register_key(&dev->addr_list_lock_key);
9278 
9279 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9280 }
9281 EXPORT_SYMBOL(netdev_update_lockdep_key);
9282 
9283 /**
9284  *	register_netdevice	- register a network device
9285  *	@dev: device to register
9286  *
9287  *	Take a completed network device structure and add it to the kernel
9288  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9289  *	chain. 0 is returned on success. A negative errno code is returned
9290  *	on a failure to set up the device, or if the name is a duplicate.
9291  *
9292  *	Callers must hold the rtnl semaphore. You may want
9293  *	register_netdev() instead of this.
9294  *
9295  *	BUGS:
9296  *	The locking appears insufficient to guarantee two parallel registers
9297  *	will not get the same name.
9298  */
9299 
9300 int register_netdevice(struct net_device *dev)
9301 {
9302 	int ret;
9303 	struct net *net = dev_net(dev);
9304 
9305 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9306 		     NETDEV_FEATURE_COUNT);
9307 	BUG_ON(dev_boot_phase);
9308 	ASSERT_RTNL();
9309 
9310 	might_sleep();
9311 
9312 	/* When net_device's are persistent, this will be fatal. */
9313 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9314 	BUG_ON(!net);
9315 
9316 	ret = ethtool_check_ops(dev->ethtool_ops);
9317 	if (ret)
9318 		return ret;
9319 
9320 	spin_lock_init(&dev->addr_list_lock);
9321 	lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9322 
9323 	ret = dev_get_valid_name(net, dev, dev->name);
9324 	if (ret < 0)
9325 		goto out;
9326 
9327 	ret = -ENOMEM;
9328 	dev->name_node = netdev_name_node_head_alloc(dev);
9329 	if (!dev->name_node)
9330 		goto out;
9331 
9332 	/* Init, if this function is available */
9333 	if (dev->netdev_ops->ndo_init) {
9334 		ret = dev->netdev_ops->ndo_init(dev);
9335 		if (ret) {
9336 			if (ret > 0)
9337 				ret = -EIO;
9338 			goto err_free_name;
9339 		}
9340 	}
9341 
9342 	if (((dev->hw_features | dev->features) &
9343 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9344 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9345 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9346 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9347 		ret = -EINVAL;
9348 		goto err_uninit;
9349 	}
9350 
9351 	ret = -EBUSY;
9352 	if (!dev->ifindex)
9353 		dev->ifindex = dev_new_index(net);
9354 	else if (__dev_get_by_index(net, dev->ifindex))
9355 		goto err_uninit;
9356 
9357 	/* Transfer changeable features to wanted_features and enable
9358 	 * software offloads (GSO and GRO).
9359 	 */
9360 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9361 	dev->features |= NETIF_F_SOFT_FEATURES;
9362 
9363 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9364 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9365 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9366 	}
9367 
9368 	dev->wanted_features = dev->features & dev->hw_features;
9369 
9370 	if (!(dev->flags & IFF_LOOPBACK))
9371 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9372 
9373 	/* If IPv4 TCP segmentation offload is supported we should also
9374 	 * allow the device to enable segmenting the frame with the option
9375 	 * of ignoring a static IP ID value.  This doesn't enable the
9376 	 * feature itself but allows the user to enable it later.
9377 	 */
9378 	if (dev->hw_features & NETIF_F_TSO)
9379 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9380 	if (dev->vlan_features & NETIF_F_TSO)
9381 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9382 	if (dev->mpls_features & NETIF_F_TSO)
9383 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9384 	if (dev->hw_enc_features & NETIF_F_TSO)
9385 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9386 
9387 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9388 	 */
9389 	dev->vlan_features |= NETIF_F_HIGHDMA;
9390 
9391 	/* Make NETIF_F_SG inheritable to tunnel devices.
9392 	 */
9393 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9394 
9395 	/* Make NETIF_F_SG inheritable to MPLS.
9396 	 */
9397 	dev->mpls_features |= NETIF_F_SG;
9398 
9399 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9400 	ret = notifier_to_errno(ret);
9401 	if (ret)
9402 		goto err_uninit;
9403 
9404 	ret = netdev_register_kobject(dev);
9405 	if (ret) {
9406 		dev->reg_state = NETREG_UNREGISTERED;
9407 		goto err_uninit;
9408 	}
9409 	dev->reg_state = NETREG_REGISTERED;
9410 
9411 	__netdev_update_features(dev);
9412 
9413 	/*
9414 	 *	Default initial state at registry is that the
9415 	 *	device is present.
9416 	 */
9417 
9418 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9419 
9420 	linkwatch_init_dev(dev);
9421 
9422 	dev_init_scheduler(dev);
9423 	dev_hold(dev);
9424 	list_netdevice(dev);
9425 	add_device_randomness(dev->dev_addr, dev->addr_len);
9426 
9427 	/* If the device has permanent device address, driver should
9428 	 * set dev_addr and also addr_assign_type should be set to
9429 	 * NET_ADDR_PERM (default value).
9430 	 */
9431 	if (dev->addr_assign_type == NET_ADDR_PERM)
9432 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9433 
9434 	/* Notify protocols, that a new device appeared. */
9435 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9436 	ret = notifier_to_errno(ret);
9437 	if (ret) {
9438 		rollback_registered(dev);
9439 		rcu_barrier();
9440 
9441 		dev->reg_state = NETREG_UNREGISTERED;
9442 	}
9443 	/*
9444 	 *	Prevent userspace races by waiting until the network
9445 	 *	device is fully setup before sending notifications.
9446 	 */
9447 	if (!dev->rtnl_link_ops ||
9448 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9449 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9450 
9451 out:
9452 	return ret;
9453 
9454 err_uninit:
9455 	if (dev->netdev_ops->ndo_uninit)
9456 		dev->netdev_ops->ndo_uninit(dev);
9457 	if (dev->priv_destructor)
9458 		dev->priv_destructor(dev);
9459 err_free_name:
9460 	netdev_name_node_free(dev->name_node);
9461 	goto out;
9462 }
9463 EXPORT_SYMBOL(register_netdevice);
9464 
9465 /**
9466  *	init_dummy_netdev	- init a dummy network device for NAPI
9467  *	@dev: device to init
9468  *
9469  *	This takes a network device structure and initialize the minimum
9470  *	amount of fields so it can be used to schedule NAPI polls without
9471  *	registering a full blown interface. This is to be used by drivers
9472  *	that need to tie several hardware interfaces to a single NAPI
9473  *	poll scheduler due to HW limitations.
9474  */
9475 int init_dummy_netdev(struct net_device *dev)
9476 {
9477 	/* Clear everything. Note we don't initialize spinlocks
9478 	 * are they aren't supposed to be taken by any of the
9479 	 * NAPI code and this dummy netdev is supposed to be
9480 	 * only ever used for NAPI polls
9481 	 */
9482 	memset(dev, 0, sizeof(struct net_device));
9483 
9484 	/* make sure we BUG if trying to hit standard
9485 	 * register/unregister code path
9486 	 */
9487 	dev->reg_state = NETREG_DUMMY;
9488 
9489 	/* NAPI wants this */
9490 	INIT_LIST_HEAD(&dev->napi_list);
9491 
9492 	/* a dummy interface is started by default */
9493 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9494 	set_bit(__LINK_STATE_START, &dev->state);
9495 
9496 	/* napi_busy_loop stats accounting wants this */
9497 	dev_net_set(dev, &init_net);
9498 
9499 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9500 	 * because users of this 'device' dont need to change
9501 	 * its refcount.
9502 	 */
9503 
9504 	return 0;
9505 }
9506 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9507 
9508 
9509 /**
9510  *	register_netdev	- register a network device
9511  *	@dev: device to register
9512  *
9513  *	Take a completed network device structure and add it to the kernel
9514  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9515  *	chain. 0 is returned on success. A negative errno code is returned
9516  *	on a failure to set up the device, or if the name is a duplicate.
9517  *
9518  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9519  *	and expands the device name if you passed a format string to
9520  *	alloc_netdev.
9521  */
9522 int register_netdev(struct net_device *dev)
9523 {
9524 	int err;
9525 
9526 	if (rtnl_lock_killable())
9527 		return -EINTR;
9528 	err = register_netdevice(dev);
9529 	rtnl_unlock();
9530 	return err;
9531 }
9532 EXPORT_SYMBOL(register_netdev);
9533 
9534 int netdev_refcnt_read(const struct net_device *dev)
9535 {
9536 	int i, refcnt = 0;
9537 
9538 	for_each_possible_cpu(i)
9539 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9540 	return refcnt;
9541 }
9542 EXPORT_SYMBOL(netdev_refcnt_read);
9543 
9544 /**
9545  * netdev_wait_allrefs - wait until all references are gone.
9546  * @dev: target net_device
9547  *
9548  * This is called when unregistering network devices.
9549  *
9550  * Any protocol or device that holds a reference should register
9551  * for netdevice notification, and cleanup and put back the
9552  * reference if they receive an UNREGISTER event.
9553  * We can get stuck here if buggy protocols don't correctly
9554  * call dev_put.
9555  */
9556 static void netdev_wait_allrefs(struct net_device *dev)
9557 {
9558 	unsigned long rebroadcast_time, warning_time;
9559 	int refcnt;
9560 
9561 	linkwatch_forget_dev(dev);
9562 
9563 	rebroadcast_time = warning_time = jiffies;
9564 	refcnt = netdev_refcnt_read(dev);
9565 
9566 	while (refcnt != 0) {
9567 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9568 			rtnl_lock();
9569 
9570 			/* Rebroadcast unregister notification */
9571 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9572 
9573 			__rtnl_unlock();
9574 			rcu_barrier();
9575 			rtnl_lock();
9576 
9577 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9578 				     &dev->state)) {
9579 				/* We must not have linkwatch events
9580 				 * pending on unregister. If this
9581 				 * happens, we simply run the queue
9582 				 * unscheduled, resulting in a noop
9583 				 * for this device.
9584 				 */
9585 				linkwatch_run_queue();
9586 			}
9587 
9588 			__rtnl_unlock();
9589 
9590 			rebroadcast_time = jiffies;
9591 		}
9592 
9593 		msleep(250);
9594 
9595 		refcnt = netdev_refcnt_read(dev);
9596 
9597 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9598 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9599 				 dev->name, refcnt);
9600 			warning_time = jiffies;
9601 		}
9602 	}
9603 }
9604 
9605 /* The sequence is:
9606  *
9607  *	rtnl_lock();
9608  *	...
9609  *	register_netdevice(x1);
9610  *	register_netdevice(x2);
9611  *	...
9612  *	unregister_netdevice(y1);
9613  *	unregister_netdevice(y2);
9614  *      ...
9615  *	rtnl_unlock();
9616  *	free_netdev(y1);
9617  *	free_netdev(y2);
9618  *
9619  * We are invoked by rtnl_unlock().
9620  * This allows us to deal with problems:
9621  * 1) We can delete sysfs objects which invoke hotplug
9622  *    without deadlocking with linkwatch via keventd.
9623  * 2) Since we run with the RTNL semaphore not held, we can sleep
9624  *    safely in order to wait for the netdev refcnt to drop to zero.
9625  *
9626  * We must not return until all unregister events added during
9627  * the interval the lock was held have been completed.
9628  */
9629 void netdev_run_todo(void)
9630 {
9631 	struct list_head list;
9632 
9633 	/* Snapshot list, allow later requests */
9634 	list_replace_init(&net_todo_list, &list);
9635 
9636 	__rtnl_unlock();
9637 
9638 
9639 	/* Wait for rcu callbacks to finish before next phase */
9640 	if (!list_empty(&list))
9641 		rcu_barrier();
9642 
9643 	while (!list_empty(&list)) {
9644 		struct net_device *dev
9645 			= list_first_entry(&list, struct net_device, todo_list);
9646 		list_del(&dev->todo_list);
9647 
9648 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9649 			pr_err("network todo '%s' but state %d\n",
9650 			       dev->name, dev->reg_state);
9651 			dump_stack();
9652 			continue;
9653 		}
9654 
9655 		dev->reg_state = NETREG_UNREGISTERED;
9656 
9657 		netdev_wait_allrefs(dev);
9658 
9659 		/* paranoia */
9660 		BUG_ON(netdev_refcnt_read(dev));
9661 		BUG_ON(!list_empty(&dev->ptype_all));
9662 		BUG_ON(!list_empty(&dev->ptype_specific));
9663 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9664 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9665 #if IS_ENABLED(CONFIG_DECNET)
9666 		WARN_ON(dev->dn_ptr);
9667 #endif
9668 		if (dev->priv_destructor)
9669 			dev->priv_destructor(dev);
9670 		if (dev->needs_free_netdev)
9671 			free_netdev(dev);
9672 
9673 		/* Report a network device has been unregistered */
9674 		rtnl_lock();
9675 		dev_net(dev)->dev_unreg_count--;
9676 		__rtnl_unlock();
9677 		wake_up(&netdev_unregistering_wq);
9678 
9679 		/* Free network device */
9680 		kobject_put(&dev->dev.kobj);
9681 	}
9682 }
9683 
9684 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9685  * all the same fields in the same order as net_device_stats, with only
9686  * the type differing, but rtnl_link_stats64 may have additional fields
9687  * at the end for newer counters.
9688  */
9689 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9690 			     const struct net_device_stats *netdev_stats)
9691 {
9692 #if BITS_PER_LONG == 64
9693 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9694 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9695 	/* zero out counters that only exist in rtnl_link_stats64 */
9696 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9697 	       sizeof(*stats64) - sizeof(*netdev_stats));
9698 #else
9699 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9700 	const unsigned long *src = (const unsigned long *)netdev_stats;
9701 	u64 *dst = (u64 *)stats64;
9702 
9703 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9704 	for (i = 0; i < n; i++)
9705 		dst[i] = src[i];
9706 	/* zero out counters that only exist in rtnl_link_stats64 */
9707 	memset((char *)stats64 + n * sizeof(u64), 0,
9708 	       sizeof(*stats64) - n * sizeof(u64));
9709 #endif
9710 }
9711 EXPORT_SYMBOL(netdev_stats_to_stats64);
9712 
9713 /**
9714  *	dev_get_stats	- get network device statistics
9715  *	@dev: device to get statistics from
9716  *	@storage: place to store stats
9717  *
9718  *	Get network statistics from device. Return @storage.
9719  *	The device driver may provide its own method by setting
9720  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9721  *	otherwise the internal statistics structure is used.
9722  */
9723 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9724 					struct rtnl_link_stats64 *storage)
9725 {
9726 	const struct net_device_ops *ops = dev->netdev_ops;
9727 
9728 	if (ops->ndo_get_stats64) {
9729 		memset(storage, 0, sizeof(*storage));
9730 		ops->ndo_get_stats64(dev, storage);
9731 	} else if (ops->ndo_get_stats) {
9732 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9733 	} else {
9734 		netdev_stats_to_stats64(storage, &dev->stats);
9735 	}
9736 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9737 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9738 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9739 	return storage;
9740 }
9741 EXPORT_SYMBOL(dev_get_stats);
9742 
9743 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9744 {
9745 	struct netdev_queue *queue = dev_ingress_queue(dev);
9746 
9747 #ifdef CONFIG_NET_CLS_ACT
9748 	if (queue)
9749 		return queue;
9750 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9751 	if (!queue)
9752 		return NULL;
9753 	netdev_init_one_queue(dev, queue, NULL);
9754 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9755 	queue->qdisc_sleeping = &noop_qdisc;
9756 	rcu_assign_pointer(dev->ingress_queue, queue);
9757 #endif
9758 	return queue;
9759 }
9760 
9761 static const struct ethtool_ops default_ethtool_ops;
9762 
9763 void netdev_set_default_ethtool_ops(struct net_device *dev,
9764 				    const struct ethtool_ops *ops)
9765 {
9766 	if (dev->ethtool_ops == &default_ethtool_ops)
9767 		dev->ethtool_ops = ops;
9768 }
9769 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9770 
9771 void netdev_freemem(struct net_device *dev)
9772 {
9773 	char *addr = (char *)dev - dev->padded;
9774 
9775 	kvfree(addr);
9776 }
9777 
9778 /**
9779  * alloc_netdev_mqs - allocate network device
9780  * @sizeof_priv: size of private data to allocate space for
9781  * @name: device name format string
9782  * @name_assign_type: origin of device name
9783  * @setup: callback to initialize device
9784  * @txqs: the number of TX subqueues to allocate
9785  * @rxqs: the number of RX subqueues to allocate
9786  *
9787  * Allocates a struct net_device with private data area for driver use
9788  * and performs basic initialization.  Also allocates subqueue structs
9789  * for each queue on the device.
9790  */
9791 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9792 		unsigned char name_assign_type,
9793 		void (*setup)(struct net_device *),
9794 		unsigned int txqs, unsigned int rxqs)
9795 {
9796 	struct net_device *dev;
9797 	unsigned int alloc_size;
9798 	struct net_device *p;
9799 
9800 	BUG_ON(strlen(name) >= sizeof(dev->name));
9801 
9802 	if (txqs < 1) {
9803 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9804 		return NULL;
9805 	}
9806 
9807 	if (rxqs < 1) {
9808 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9809 		return NULL;
9810 	}
9811 
9812 	alloc_size = sizeof(struct net_device);
9813 	if (sizeof_priv) {
9814 		/* ensure 32-byte alignment of private area */
9815 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9816 		alloc_size += sizeof_priv;
9817 	}
9818 	/* ensure 32-byte alignment of whole construct */
9819 	alloc_size += NETDEV_ALIGN - 1;
9820 
9821 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9822 	if (!p)
9823 		return NULL;
9824 
9825 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9826 	dev->padded = (char *)dev - (char *)p;
9827 
9828 	dev->pcpu_refcnt = alloc_percpu(int);
9829 	if (!dev->pcpu_refcnt)
9830 		goto free_dev;
9831 
9832 	if (dev_addr_init(dev))
9833 		goto free_pcpu;
9834 
9835 	dev_mc_init(dev);
9836 	dev_uc_init(dev);
9837 
9838 	dev_net_set(dev, &init_net);
9839 
9840 	netdev_register_lockdep_key(dev);
9841 
9842 	dev->gso_max_size = GSO_MAX_SIZE;
9843 	dev->gso_max_segs = GSO_MAX_SEGS;
9844 	dev->upper_level = 1;
9845 	dev->lower_level = 1;
9846 
9847 	INIT_LIST_HEAD(&dev->napi_list);
9848 	INIT_LIST_HEAD(&dev->unreg_list);
9849 	INIT_LIST_HEAD(&dev->close_list);
9850 	INIT_LIST_HEAD(&dev->link_watch_list);
9851 	INIT_LIST_HEAD(&dev->adj_list.upper);
9852 	INIT_LIST_HEAD(&dev->adj_list.lower);
9853 	INIT_LIST_HEAD(&dev->ptype_all);
9854 	INIT_LIST_HEAD(&dev->ptype_specific);
9855 	INIT_LIST_HEAD(&dev->net_notifier_list);
9856 #ifdef CONFIG_NET_SCHED
9857 	hash_init(dev->qdisc_hash);
9858 #endif
9859 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9860 	setup(dev);
9861 
9862 	if (!dev->tx_queue_len) {
9863 		dev->priv_flags |= IFF_NO_QUEUE;
9864 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9865 	}
9866 
9867 	dev->num_tx_queues = txqs;
9868 	dev->real_num_tx_queues = txqs;
9869 	if (netif_alloc_netdev_queues(dev))
9870 		goto free_all;
9871 
9872 	dev->num_rx_queues = rxqs;
9873 	dev->real_num_rx_queues = rxqs;
9874 	if (netif_alloc_rx_queues(dev))
9875 		goto free_all;
9876 
9877 	strcpy(dev->name, name);
9878 	dev->name_assign_type = name_assign_type;
9879 	dev->group = INIT_NETDEV_GROUP;
9880 	if (!dev->ethtool_ops)
9881 		dev->ethtool_ops = &default_ethtool_ops;
9882 
9883 	nf_hook_ingress_init(dev);
9884 
9885 	return dev;
9886 
9887 free_all:
9888 	free_netdev(dev);
9889 	return NULL;
9890 
9891 free_pcpu:
9892 	free_percpu(dev->pcpu_refcnt);
9893 free_dev:
9894 	netdev_freemem(dev);
9895 	return NULL;
9896 }
9897 EXPORT_SYMBOL(alloc_netdev_mqs);
9898 
9899 /**
9900  * free_netdev - free network device
9901  * @dev: device
9902  *
9903  * This function does the last stage of destroying an allocated device
9904  * interface. The reference to the device object is released. If this
9905  * is the last reference then it will be freed.Must be called in process
9906  * context.
9907  */
9908 void free_netdev(struct net_device *dev)
9909 {
9910 	struct napi_struct *p, *n;
9911 
9912 	might_sleep();
9913 	netif_free_tx_queues(dev);
9914 	netif_free_rx_queues(dev);
9915 
9916 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9917 
9918 	/* Flush device addresses */
9919 	dev_addr_flush(dev);
9920 
9921 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9922 		netif_napi_del(p);
9923 
9924 	free_percpu(dev->pcpu_refcnt);
9925 	dev->pcpu_refcnt = NULL;
9926 	free_percpu(dev->xdp_bulkq);
9927 	dev->xdp_bulkq = NULL;
9928 
9929 	netdev_unregister_lockdep_key(dev);
9930 
9931 	/*  Compatibility with error handling in drivers */
9932 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9933 		netdev_freemem(dev);
9934 		return;
9935 	}
9936 
9937 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9938 	dev->reg_state = NETREG_RELEASED;
9939 
9940 	/* will free via device release */
9941 	put_device(&dev->dev);
9942 }
9943 EXPORT_SYMBOL(free_netdev);
9944 
9945 /**
9946  *	synchronize_net -  Synchronize with packet receive processing
9947  *
9948  *	Wait for packets currently being received to be done.
9949  *	Does not block later packets from starting.
9950  */
9951 void synchronize_net(void)
9952 {
9953 	might_sleep();
9954 	if (rtnl_is_locked())
9955 		synchronize_rcu_expedited();
9956 	else
9957 		synchronize_rcu();
9958 }
9959 EXPORT_SYMBOL(synchronize_net);
9960 
9961 /**
9962  *	unregister_netdevice_queue - remove device from the kernel
9963  *	@dev: device
9964  *	@head: list
9965  *
9966  *	This function shuts down a device interface and removes it
9967  *	from the kernel tables.
9968  *	If head not NULL, device is queued to be unregistered later.
9969  *
9970  *	Callers must hold the rtnl semaphore.  You may want
9971  *	unregister_netdev() instead of this.
9972  */
9973 
9974 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9975 {
9976 	ASSERT_RTNL();
9977 
9978 	if (head) {
9979 		list_move_tail(&dev->unreg_list, head);
9980 	} else {
9981 		rollback_registered(dev);
9982 		/* Finish processing unregister after unlock */
9983 		net_set_todo(dev);
9984 	}
9985 }
9986 EXPORT_SYMBOL(unregister_netdevice_queue);
9987 
9988 /**
9989  *	unregister_netdevice_many - unregister many devices
9990  *	@head: list of devices
9991  *
9992  *  Note: As most callers use a stack allocated list_head,
9993  *  we force a list_del() to make sure stack wont be corrupted later.
9994  */
9995 void unregister_netdevice_many(struct list_head *head)
9996 {
9997 	struct net_device *dev;
9998 
9999 	if (!list_empty(head)) {
10000 		rollback_registered_many(head);
10001 		list_for_each_entry(dev, head, unreg_list)
10002 			net_set_todo(dev);
10003 		list_del(head);
10004 	}
10005 }
10006 EXPORT_SYMBOL(unregister_netdevice_many);
10007 
10008 /**
10009  *	unregister_netdev - remove device from the kernel
10010  *	@dev: device
10011  *
10012  *	This function shuts down a device interface and removes it
10013  *	from the kernel tables.
10014  *
10015  *	This is just a wrapper for unregister_netdevice that takes
10016  *	the rtnl semaphore.  In general you want to use this and not
10017  *	unregister_netdevice.
10018  */
10019 void unregister_netdev(struct net_device *dev)
10020 {
10021 	rtnl_lock();
10022 	unregister_netdevice(dev);
10023 	rtnl_unlock();
10024 }
10025 EXPORT_SYMBOL(unregister_netdev);
10026 
10027 /**
10028  *	dev_change_net_namespace - move device to different nethost namespace
10029  *	@dev: device
10030  *	@net: network namespace
10031  *	@pat: If not NULL name pattern to try if the current device name
10032  *	      is already taken in the destination network namespace.
10033  *
10034  *	This function shuts down a device interface and moves it
10035  *	to a new network namespace. On success 0 is returned, on
10036  *	a failure a netagive errno code is returned.
10037  *
10038  *	Callers must hold the rtnl semaphore.
10039  */
10040 
10041 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10042 {
10043 	struct net *net_old = dev_net(dev);
10044 	int err, new_nsid, new_ifindex;
10045 
10046 	ASSERT_RTNL();
10047 
10048 	/* Don't allow namespace local devices to be moved. */
10049 	err = -EINVAL;
10050 	if (dev->features & NETIF_F_NETNS_LOCAL)
10051 		goto out;
10052 
10053 	/* Ensure the device has been registrered */
10054 	if (dev->reg_state != NETREG_REGISTERED)
10055 		goto out;
10056 
10057 	/* Get out if there is nothing todo */
10058 	err = 0;
10059 	if (net_eq(net_old, net))
10060 		goto out;
10061 
10062 	/* Pick the destination device name, and ensure
10063 	 * we can use it in the destination network namespace.
10064 	 */
10065 	err = -EEXIST;
10066 	if (__dev_get_by_name(net, dev->name)) {
10067 		/* We get here if we can't use the current device name */
10068 		if (!pat)
10069 			goto out;
10070 		err = dev_get_valid_name(net, dev, pat);
10071 		if (err < 0)
10072 			goto out;
10073 	}
10074 
10075 	/*
10076 	 * And now a mini version of register_netdevice unregister_netdevice.
10077 	 */
10078 
10079 	/* If device is running close it first. */
10080 	dev_close(dev);
10081 
10082 	/* And unlink it from device chain */
10083 	unlist_netdevice(dev);
10084 
10085 	synchronize_net();
10086 
10087 	/* Shutdown queueing discipline. */
10088 	dev_shutdown(dev);
10089 
10090 	/* Notify protocols, that we are about to destroy
10091 	 * this device. They should clean all the things.
10092 	 *
10093 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10094 	 * This is wanted because this way 8021q and macvlan know
10095 	 * the device is just moving and can keep their slaves up.
10096 	 */
10097 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10098 	rcu_barrier();
10099 
10100 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10101 	/* If there is an ifindex conflict assign a new one */
10102 	if (__dev_get_by_index(net, dev->ifindex))
10103 		new_ifindex = dev_new_index(net);
10104 	else
10105 		new_ifindex = dev->ifindex;
10106 
10107 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10108 			    new_ifindex);
10109 
10110 	/*
10111 	 *	Flush the unicast and multicast chains
10112 	 */
10113 	dev_uc_flush(dev);
10114 	dev_mc_flush(dev);
10115 
10116 	/* Send a netdev-removed uevent to the old namespace */
10117 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10118 	netdev_adjacent_del_links(dev);
10119 
10120 	/* Move per-net netdevice notifiers that are following the netdevice */
10121 	move_netdevice_notifiers_dev_net(dev, net);
10122 
10123 	/* Actually switch the network namespace */
10124 	dev_net_set(dev, net);
10125 	dev->ifindex = new_ifindex;
10126 
10127 	/* Send a netdev-add uevent to the new namespace */
10128 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10129 	netdev_adjacent_add_links(dev);
10130 
10131 	/* Fixup kobjects */
10132 	err = device_rename(&dev->dev, dev->name);
10133 	WARN_ON(err);
10134 
10135 	/* Adapt owner in case owning user namespace of target network
10136 	 * namespace is different from the original one.
10137 	 */
10138 	err = netdev_change_owner(dev, net_old, net);
10139 	WARN_ON(err);
10140 
10141 	/* Add the device back in the hashes */
10142 	list_netdevice(dev);
10143 
10144 	/* Notify protocols, that a new device appeared. */
10145 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10146 
10147 	/*
10148 	 *	Prevent userspace races by waiting until the network
10149 	 *	device is fully setup before sending notifications.
10150 	 */
10151 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10152 
10153 	synchronize_net();
10154 	err = 0;
10155 out:
10156 	return err;
10157 }
10158 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10159 
10160 static int dev_cpu_dead(unsigned int oldcpu)
10161 {
10162 	struct sk_buff **list_skb;
10163 	struct sk_buff *skb;
10164 	unsigned int cpu;
10165 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10166 
10167 	local_irq_disable();
10168 	cpu = smp_processor_id();
10169 	sd = &per_cpu(softnet_data, cpu);
10170 	oldsd = &per_cpu(softnet_data, oldcpu);
10171 
10172 	/* Find end of our completion_queue. */
10173 	list_skb = &sd->completion_queue;
10174 	while (*list_skb)
10175 		list_skb = &(*list_skb)->next;
10176 	/* Append completion queue from offline CPU. */
10177 	*list_skb = oldsd->completion_queue;
10178 	oldsd->completion_queue = NULL;
10179 
10180 	/* Append output queue from offline CPU. */
10181 	if (oldsd->output_queue) {
10182 		*sd->output_queue_tailp = oldsd->output_queue;
10183 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10184 		oldsd->output_queue = NULL;
10185 		oldsd->output_queue_tailp = &oldsd->output_queue;
10186 	}
10187 	/* Append NAPI poll list from offline CPU, with one exception :
10188 	 * process_backlog() must be called by cpu owning percpu backlog.
10189 	 * We properly handle process_queue & input_pkt_queue later.
10190 	 */
10191 	while (!list_empty(&oldsd->poll_list)) {
10192 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10193 							    struct napi_struct,
10194 							    poll_list);
10195 
10196 		list_del_init(&napi->poll_list);
10197 		if (napi->poll == process_backlog)
10198 			napi->state = 0;
10199 		else
10200 			____napi_schedule(sd, napi);
10201 	}
10202 
10203 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10204 	local_irq_enable();
10205 
10206 #ifdef CONFIG_RPS
10207 	remsd = oldsd->rps_ipi_list;
10208 	oldsd->rps_ipi_list = NULL;
10209 #endif
10210 	/* send out pending IPI's on offline CPU */
10211 	net_rps_send_ipi(remsd);
10212 
10213 	/* Process offline CPU's input_pkt_queue */
10214 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10215 		netif_rx_ni(skb);
10216 		input_queue_head_incr(oldsd);
10217 	}
10218 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10219 		netif_rx_ni(skb);
10220 		input_queue_head_incr(oldsd);
10221 	}
10222 
10223 	return 0;
10224 }
10225 
10226 /**
10227  *	netdev_increment_features - increment feature set by one
10228  *	@all: current feature set
10229  *	@one: new feature set
10230  *	@mask: mask feature set
10231  *
10232  *	Computes a new feature set after adding a device with feature set
10233  *	@one to the master device with current feature set @all.  Will not
10234  *	enable anything that is off in @mask. Returns the new feature set.
10235  */
10236 netdev_features_t netdev_increment_features(netdev_features_t all,
10237 	netdev_features_t one, netdev_features_t mask)
10238 {
10239 	if (mask & NETIF_F_HW_CSUM)
10240 		mask |= NETIF_F_CSUM_MASK;
10241 	mask |= NETIF_F_VLAN_CHALLENGED;
10242 
10243 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10244 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10245 
10246 	/* If one device supports hw checksumming, set for all. */
10247 	if (all & NETIF_F_HW_CSUM)
10248 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10249 
10250 	return all;
10251 }
10252 EXPORT_SYMBOL(netdev_increment_features);
10253 
10254 static struct hlist_head * __net_init netdev_create_hash(void)
10255 {
10256 	int i;
10257 	struct hlist_head *hash;
10258 
10259 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10260 	if (hash != NULL)
10261 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10262 			INIT_HLIST_HEAD(&hash[i]);
10263 
10264 	return hash;
10265 }
10266 
10267 /* Initialize per network namespace state */
10268 static int __net_init netdev_init(struct net *net)
10269 {
10270 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10271 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10272 
10273 	if (net != &init_net)
10274 		INIT_LIST_HEAD(&net->dev_base_head);
10275 
10276 	net->dev_name_head = netdev_create_hash();
10277 	if (net->dev_name_head == NULL)
10278 		goto err_name;
10279 
10280 	net->dev_index_head = netdev_create_hash();
10281 	if (net->dev_index_head == NULL)
10282 		goto err_idx;
10283 
10284 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10285 
10286 	return 0;
10287 
10288 err_idx:
10289 	kfree(net->dev_name_head);
10290 err_name:
10291 	return -ENOMEM;
10292 }
10293 
10294 /**
10295  *	netdev_drivername - network driver for the device
10296  *	@dev: network device
10297  *
10298  *	Determine network driver for device.
10299  */
10300 const char *netdev_drivername(const struct net_device *dev)
10301 {
10302 	const struct device_driver *driver;
10303 	const struct device *parent;
10304 	const char *empty = "";
10305 
10306 	parent = dev->dev.parent;
10307 	if (!parent)
10308 		return empty;
10309 
10310 	driver = parent->driver;
10311 	if (driver && driver->name)
10312 		return driver->name;
10313 	return empty;
10314 }
10315 
10316 static void __netdev_printk(const char *level, const struct net_device *dev,
10317 			    struct va_format *vaf)
10318 {
10319 	if (dev && dev->dev.parent) {
10320 		dev_printk_emit(level[1] - '0',
10321 				dev->dev.parent,
10322 				"%s %s %s%s: %pV",
10323 				dev_driver_string(dev->dev.parent),
10324 				dev_name(dev->dev.parent),
10325 				netdev_name(dev), netdev_reg_state(dev),
10326 				vaf);
10327 	} else if (dev) {
10328 		printk("%s%s%s: %pV",
10329 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10330 	} else {
10331 		printk("%s(NULL net_device): %pV", level, vaf);
10332 	}
10333 }
10334 
10335 void netdev_printk(const char *level, const struct net_device *dev,
10336 		   const char *format, ...)
10337 {
10338 	struct va_format vaf;
10339 	va_list args;
10340 
10341 	va_start(args, format);
10342 
10343 	vaf.fmt = format;
10344 	vaf.va = &args;
10345 
10346 	__netdev_printk(level, dev, &vaf);
10347 
10348 	va_end(args);
10349 }
10350 EXPORT_SYMBOL(netdev_printk);
10351 
10352 #define define_netdev_printk_level(func, level)			\
10353 void func(const struct net_device *dev, const char *fmt, ...)	\
10354 {								\
10355 	struct va_format vaf;					\
10356 	va_list args;						\
10357 								\
10358 	va_start(args, fmt);					\
10359 								\
10360 	vaf.fmt = fmt;						\
10361 	vaf.va = &args;						\
10362 								\
10363 	__netdev_printk(level, dev, &vaf);			\
10364 								\
10365 	va_end(args);						\
10366 }								\
10367 EXPORT_SYMBOL(func);
10368 
10369 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10370 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10371 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10372 define_netdev_printk_level(netdev_err, KERN_ERR);
10373 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10374 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10375 define_netdev_printk_level(netdev_info, KERN_INFO);
10376 
10377 static void __net_exit netdev_exit(struct net *net)
10378 {
10379 	kfree(net->dev_name_head);
10380 	kfree(net->dev_index_head);
10381 	if (net != &init_net)
10382 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10383 }
10384 
10385 static struct pernet_operations __net_initdata netdev_net_ops = {
10386 	.init = netdev_init,
10387 	.exit = netdev_exit,
10388 };
10389 
10390 static void __net_exit default_device_exit(struct net *net)
10391 {
10392 	struct net_device *dev, *aux;
10393 	/*
10394 	 * Push all migratable network devices back to the
10395 	 * initial network namespace
10396 	 */
10397 	rtnl_lock();
10398 	for_each_netdev_safe(net, dev, aux) {
10399 		int err;
10400 		char fb_name[IFNAMSIZ];
10401 
10402 		/* Ignore unmoveable devices (i.e. loopback) */
10403 		if (dev->features & NETIF_F_NETNS_LOCAL)
10404 			continue;
10405 
10406 		/* Leave virtual devices for the generic cleanup */
10407 		if (dev->rtnl_link_ops)
10408 			continue;
10409 
10410 		/* Push remaining network devices to init_net */
10411 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10412 		if (__dev_get_by_name(&init_net, fb_name))
10413 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10414 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10415 		if (err) {
10416 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10417 				 __func__, dev->name, err);
10418 			BUG();
10419 		}
10420 	}
10421 	rtnl_unlock();
10422 }
10423 
10424 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10425 {
10426 	/* Return with the rtnl_lock held when there are no network
10427 	 * devices unregistering in any network namespace in net_list.
10428 	 */
10429 	struct net *net;
10430 	bool unregistering;
10431 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10432 
10433 	add_wait_queue(&netdev_unregistering_wq, &wait);
10434 	for (;;) {
10435 		unregistering = false;
10436 		rtnl_lock();
10437 		list_for_each_entry(net, net_list, exit_list) {
10438 			if (net->dev_unreg_count > 0) {
10439 				unregistering = true;
10440 				break;
10441 			}
10442 		}
10443 		if (!unregistering)
10444 			break;
10445 		__rtnl_unlock();
10446 
10447 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10448 	}
10449 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10450 }
10451 
10452 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10453 {
10454 	/* At exit all network devices most be removed from a network
10455 	 * namespace.  Do this in the reverse order of registration.
10456 	 * Do this across as many network namespaces as possible to
10457 	 * improve batching efficiency.
10458 	 */
10459 	struct net_device *dev;
10460 	struct net *net;
10461 	LIST_HEAD(dev_kill_list);
10462 
10463 	/* To prevent network device cleanup code from dereferencing
10464 	 * loopback devices or network devices that have been freed
10465 	 * wait here for all pending unregistrations to complete,
10466 	 * before unregistring the loopback device and allowing the
10467 	 * network namespace be freed.
10468 	 *
10469 	 * The netdev todo list containing all network devices
10470 	 * unregistrations that happen in default_device_exit_batch
10471 	 * will run in the rtnl_unlock() at the end of
10472 	 * default_device_exit_batch.
10473 	 */
10474 	rtnl_lock_unregistering(net_list);
10475 	list_for_each_entry(net, net_list, exit_list) {
10476 		for_each_netdev_reverse(net, dev) {
10477 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10478 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10479 			else
10480 				unregister_netdevice_queue(dev, &dev_kill_list);
10481 		}
10482 	}
10483 	unregister_netdevice_many(&dev_kill_list);
10484 	rtnl_unlock();
10485 }
10486 
10487 static struct pernet_operations __net_initdata default_device_ops = {
10488 	.exit = default_device_exit,
10489 	.exit_batch = default_device_exit_batch,
10490 };
10491 
10492 /*
10493  *	Initialize the DEV module. At boot time this walks the device list and
10494  *	unhooks any devices that fail to initialise (normally hardware not
10495  *	present) and leaves us with a valid list of present and active devices.
10496  *
10497  */
10498 
10499 /*
10500  *       This is called single threaded during boot, so no need
10501  *       to take the rtnl semaphore.
10502  */
10503 static int __init net_dev_init(void)
10504 {
10505 	int i, rc = -ENOMEM;
10506 
10507 	BUG_ON(!dev_boot_phase);
10508 
10509 	if (dev_proc_init())
10510 		goto out;
10511 
10512 	if (netdev_kobject_init())
10513 		goto out;
10514 
10515 	INIT_LIST_HEAD(&ptype_all);
10516 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10517 		INIT_LIST_HEAD(&ptype_base[i]);
10518 
10519 	INIT_LIST_HEAD(&offload_base);
10520 
10521 	if (register_pernet_subsys(&netdev_net_ops))
10522 		goto out;
10523 
10524 	/*
10525 	 *	Initialise the packet receive queues.
10526 	 */
10527 
10528 	for_each_possible_cpu(i) {
10529 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10530 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10531 
10532 		INIT_WORK(flush, flush_backlog);
10533 
10534 		skb_queue_head_init(&sd->input_pkt_queue);
10535 		skb_queue_head_init(&sd->process_queue);
10536 #ifdef CONFIG_XFRM_OFFLOAD
10537 		skb_queue_head_init(&sd->xfrm_backlog);
10538 #endif
10539 		INIT_LIST_HEAD(&sd->poll_list);
10540 		sd->output_queue_tailp = &sd->output_queue;
10541 #ifdef CONFIG_RPS
10542 		sd->csd.func = rps_trigger_softirq;
10543 		sd->csd.info = sd;
10544 		sd->cpu = i;
10545 #endif
10546 
10547 		init_gro_hash(&sd->backlog);
10548 		sd->backlog.poll = process_backlog;
10549 		sd->backlog.weight = weight_p;
10550 	}
10551 
10552 	dev_boot_phase = 0;
10553 
10554 	/* The loopback device is special if any other network devices
10555 	 * is present in a network namespace the loopback device must
10556 	 * be present. Since we now dynamically allocate and free the
10557 	 * loopback device ensure this invariant is maintained by
10558 	 * keeping the loopback device as the first device on the
10559 	 * list of network devices.  Ensuring the loopback devices
10560 	 * is the first device that appears and the last network device
10561 	 * that disappears.
10562 	 */
10563 	if (register_pernet_device(&loopback_net_ops))
10564 		goto out;
10565 
10566 	if (register_pernet_device(&default_device_ops))
10567 		goto out;
10568 
10569 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10570 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10571 
10572 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10573 				       NULL, dev_cpu_dead);
10574 	WARN_ON(rc < 0);
10575 	rc = 0;
10576 out:
10577 	return rc;
10578 }
10579 
10580 subsys_initcall(net_dev_init);
10581