1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/net_tstamp.h> 136 #include <linux/static_key.h> 137 #include <net/flow_keys.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 /* 148 * The list of packet types we will receive (as opposed to discard) 149 * and the routines to invoke. 150 * 151 * Why 16. Because with 16 the only overlap we get on a hash of the 152 * low nibble of the protocol value is RARP/SNAP/X.25. 153 * 154 * NOTE: That is no longer true with the addition of VLAN tags. Not 155 * sure which should go first, but I bet it won't make much 156 * difference if we are running VLANs. The good news is that 157 * this protocol won't be in the list unless compiled in, so 158 * the average user (w/out VLANs) will not be adversely affected. 159 * --BLG 160 * 161 * 0800 IP 162 * 8100 802.1Q VLAN 163 * 0001 802.3 164 * 0002 AX.25 165 * 0004 802.2 166 * 8035 RARP 167 * 0005 SNAP 168 * 0805 X.25 169 * 0806 ARP 170 * 8137 IPX 171 * 0009 Localtalk 172 * 86DD IPv6 173 */ 174 175 #define PTYPE_HASH_SIZE (16) 176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 177 178 static DEFINE_SPINLOCK(ptype_lock); 179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 180 static struct list_head ptype_all __read_mostly; /* Taps */ 181 182 /* 183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 184 * semaphore. 185 * 186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 187 * 188 * Writers must hold the rtnl semaphore while they loop through the 189 * dev_base_head list, and hold dev_base_lock for writing when they do the 190 * actual updates. This allows pure readers to access the list even 191 * while a writer is preparing to update it. 192 * 193 * To put it another way, dev_base_lock is held for writing only to 194 * protect against pure readers; the rtnl semaphore provides the 195 * protection against other writers. 196 * 197 * See, for example usages, register_netdevice() and 198 * unregister_netdevice(), which must be called with the rtnl 199 * semaphore held. 200 */ 201 DEFINE_RWLOCK(dev_base_lock); 202 EXPORT_SYMBOL(dev_base_lock); 203 204 static inline void dev_base_seq_inc(struct net *net) 205 { 206 while (++net->dev_base_seq == 0); 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static int list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 251 return 0; 252 } 253 254 /* Device list removal 255 * caller must respect a RCU grace period before freeing/reusing dev 256 */ 257 static void unlist_netdevice(struct net_device *dev) 258 { 259 ASSERT_RTNL(); 260 261 /* Unlink dev from the device chain */ 262 write_lock_bh(&dev_base_lock); 263 list_del_rcu(&dev->dev_list); 264 hlist_del_rcu(&dev->name_hlist); 265 hlist_del_rcu(&dev->index_hlist); 266 write_unlock_bh(&dev_base_lock); 267 268 dev_base_seq_inc(dev_net(dev)); 269 } 270 271 /* 272 * Our notifier list 273 */ 274 275 static RAW_NOTIFIER_HEAD(netdev_chain); 276 277 /* 278 * Device drivers call our routines to queue packets here. We empty the 279 * queue in the local softnet handler. 280 */ 281 282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 283 EXPORT_PER_CPU_SYMBOL(softnet_data); 284 285 #ifdef CONFIG_LOCKDEP 286 /* 287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 288 * according to dev->type 289 */ 290 static const unsigned short netdev_lock_type[] = 291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 306 307 static const char *const netdev_lock_name[] = 308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 323 324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 326 327 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 328 { 329 int i; 330 331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 332 if (netdev_lock_type[i] == dev_type) 333 return i; 334 /* the last key is used by default */ 335 return ARRAY_SIZE(netdev_lock_type) - 1; 336 } 337 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 int i; 342 343 i = netdev_lock_pos(dev_type); 344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 345 netdev_lock_name[i]); 346 } 347 348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 349 { 350 int i; 351 352 i = netdev_lock_pos(dev->type); 353 lockdep_set_class_and_name(&dev->addr_list_lock, 354 &netdev_addr_lock_key[i], 355 netdev_lock_name[i]); 356 } 357 #else 358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 359 unsigned short dev_type) 360 { 361 } 362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 363 { 364 } 365 #endif 366 367 /******************************************************************************* 368 369 Protocol management and registration routines 370 371 *******************************************************************************/ 372 373 /* 374 * Add a protocol ID to the list. Now that the input handler is 375 * smarter we can dispense with all the messy stuff that used to be 376 * here. 377 * 378 * BEWARE!!! Protocol handlers, mangling input packets, 379 * MUST BE last in hash buckets and checking protocol handlers 380 * MUST start from promiscuous ptype_all chain in net_bh. 381 * It is true now, do not change it. 382 * Explanation follows: if protocol handler, mangling packet, will 383 * be the first on list, it is not able to sense, that packet 384 * is cloned and should be copied-on-write, so that it will 385 * change it and subsequent readers will get broken packet. 386 * --ANK (980803) 387 */ 388 389 static inline struct list_head *ptype_head(const struct packet_type *pt) 390 { 391 if (pt->type == htons(ETH_P_ALL)) 392 return &ptype_all; 393 else 394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 395 } 396 397 /** 398 * dev_add_pack - add packet handler 399 * @pt: packet type declaration 400 * 401 * Add a protocol handler to the networking stack. The passed &packet_type 402 * is linked into kernel lists and may not be freed until it has been 403 * removed from the kernel lists. 404 * 405 * This call does not sleep therefore it can not 406 * guarantee all CPU's that are in middle of receiving packets 407 * will see the new packet type (until the next received packet). 408 */ 409 410 void dev_add_pack(struct packet_type *pt) 411 { 412 struct list_head *head = ptype_head(pt); 413 414 spin_lock(&ptype_lock); 415 list_add_rcu(&pt->list, head); 416 spin_unlock(&ptype_lock); 417 } 418 EXPORT_SYMBOL(dev_add_pack); 419 420 /** 421 * __dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * The packet type might still be in use by receivers 430 * and must not be freed until after all the CPU's have gone 431 * through a quiescent state. 432 */ 433 void __dev_remove_pack(struct packet_type *pt) 434 { 435 struct list_head *head = ptype_head(pt); 436 struct packet_type *pt1; 437 438 spin_lock(&ptype_lock); 439 440 list_for_each_entry(pt1, head, list) { 441 if (pt == pt1) { 442 list_del_rcu(&pt->list); 443 goto out; 444 } 445 } 446 447 pr_warn("dev_remove_pack: %p not found\n", pt); 448 out: 449 spin_unlock(&ptype_lock); 450 } 451 EXPORT_SYMBOL(__dev_remove_pack); 452 453 /** 454 * dev_remove_pack - remove packet handler 455 * @pt: packet type declaration 456 * 457 * Remove a protocol handler that was previously added to the kernel 458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 459 * from the kernel lists and can be freed or reused once this function 460 * returns. 461 * 462 * This call sleeps to guarantee that no CPU is looking at the packet 463 * type after return. 464 */ 465 void dev_remove_pack(struct packet_type *pt) 466 { 467 __dev_remove_pack(pt); 468 469 synchronize_net(); 470 } 471 EXPORT_SYMBOL(dev_remove_pack); 472 473 /****************************************************************************** 474 475 Device Boot-time Settings Routines 476 477 *******************************************************************************/ 478 479 /* Boot time configuration table */ 480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 481 482 /** 483 * netdev_boot_setup_add - add new setup entry 484 * @name: name of the device 485 * @map: configured settings for the device 486 * 487 * Adds new setup entry to the dev_boot_setup list. The function 488 * returns 0 on error and 1 on success. This is a generic routine to 489 * all netdevices. 490 */ 491 static int netdev_boot_setup_add(char *name, struct ifmap *map) 492 { 493 struct netdev_boot_setup *s; 494 int i; 495 496 s = dev_boot_setup; 497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 499 memset(s[i].name, 0, sizeof(s[i].name)); 500 strlcpy(s[i].name, name, IFNAMSIZ); 501 memcpy(&s[i].map, map, sizeof(s[i].map)); 502 break; 503 } 504 } 505 506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 507 } 508 509 /** 510 * netdev_boot_setup_check - check boot time settings 511 * @dev: the netdevice 512 * 513 * Check boot time settings for the device. 514 * The found settings are set for the device to be used 515 * later in the device probing. 516 * Returns 0 if no settings found, 1 if they are. 517 */ 518 int netdev_boot_setup_check(struct net_device *dev) 519 { 520 struct netdev_boot_setup *s = dev_boot_setup; 521 int i; 522 523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 525 !strcmp(dev->name, s[i].name)) { 526 dev->irq = s[i].map.irq; 527 dev->base_addr = s[i].map.base_addr; 528 dev->mem_start = s[i].map.mem_start; 529 dev->mem_end = s[i].map.mem_end; 530 return 1; 531 } 532 } 533 return 0; 534 } 535 EXPORT_SYMBOL(netdev_boot_setup_check); 536 537 538 /** 539 * netdev_boot_base - get address from boot time settings 540 * @prefix: prefix for network device 541 * @unit: id for network device 542 * 543 * Check boot time settings for the base address of device. 544 * The found settings are set for the device to be used 545 * later in the device probing. 546 * Returns 0 if no settings found. 547 */ 548 unsigned long netdev_boot_base(const char *prefix, int unit) 549 { 550 const struct netdev_boot_setup *s = dev_boot_setup; 551 char name[IFNAMSIZ]; 552 int i; 553 554 sprintf(name, "%s%d", prefix, unit); 555 556 /* 557 * If device already registered then return base of 1 558 * to indicate not to probe for this interface 559 */ 560 if (__dev_get_by_name(&init_net, name)) 561 return 1; 562 563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 564 if (!strcmp(name, s[i].name)) 565 return s[i].map.base_addr; 566 return 0; 567 } 568 569 /* 570 * Saves at boot time configured settings for any netdevice. 571 */ 572 int __init netdev_boot_setup(char *str) 573 { 574 int ints[5]; 575 struct ifmap map; 576 577 str = get_options(str, ARRAY_SIZE(ints), ints); 578 if (!str || !*str) 579 return 0; 580 581 /* Save settings */ 582 memset(&map, 0, sizeof(map)); 583 if (ints[0] > 0) 584 map.irq = ints[1]; 585 if (ints[0] > 1) 586 map.base_addr = ints[2]; 587 if (ints[0] > 2) 588 map.mem_start = ints[3]; 589 if (ints[0] > 3) 590 map.mem_end = ints[4]; 591 592 /* Add new entry to the list */ 593 return netdev_boot_setup_add(str, &map); 594 } 595 596 __setup("netdev=", netdev_boot_setup); 597 598 /******************************************************************************* 599 600 Device Interface Subroutines 601 602 *******************************************************************************/ 603 604 /** 605 * __dev_get_by_name - find a device by its name 606 * @net: the applicable net namespace 607 * @name: name to find 608 * 609 * Find an interface by name. Must be called under RTNL semaphore 610 * or @dev_base_lock. If the name is found a pointer to the device 611 * is returned. If the name is not found then %NULL is returned. The 612 * reference counters are not incremented so the caller must be 613 * careful with locks. 614 */ 615 616 struct net_device *__dev_get_by_name(struct net *net, const char *name) 617 { 618 struct hlist_node *p; 619 struct net_device *dev; 620 struct hlist_head *head = dev_name_hash(net, name); 621 622 hlist_for_each_entry(dev, p, head, name_hlist) 623 if (!strncmp(dev->name, name, IFNAMSIZ)) 624 return dev; 625 626 return NULL; 627 } 628 EXPORT_SYMBOL(__dev_get_by_name); 629 630 /** 631 * dev_get_by_name_rcu - find a device by its name 632 * @net: the applicable net namespace 633 * @name: name to find 634 * 635 * Find an interface by name. 636 * If the name is found a pointer to the device is returned. 637 * If the name is not found then %NULL is returned. 638 * The reference counters are not incremented so the caller must be 639 * careful with locks. The caller must hold RCU lock. 640 */ 641 642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 643 { 644 struct hlist_node *p; 645 struct net_device *dev; 646 struct hlist_head *head = dev_name_hash(net, name); 647 648 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 649 if (!strncmp(dev->name, name, IFNAMSIZ)) 650 return dev; 651 652 return NULL; 653 } 654 EXPORT_SYMBOL(dev_get_by_name_rcu); 655 656 /** 657 * dev_get_by_name - find a device by its name 658 * @net: the applicable net namespace 659 * @name: name to find 660 * 661 * Find an interface by name. This can be called from any 662 * context and does its own locking. The returned handle has 663 * the usage count incremented and the caller must use dev_put() to 664 * release it when it is no longer needed. %NULL is returned if no 665 * matching device is found. 666 */ 667 668 struct net_device *dev_get_by_name(struct net *net, const char *name) 669 { 670 struct net_device *dev; 671 672 rcu_read_lock(); 673 dev = dev_get_by_name_rcu(net, name); 674 if (dev) 675 dev_hold(dev); 676 rcu_read_unlock(); 677 return dev; 678 } 679 EXPORT_SYMBOL(dev_get_by_name); 680 681 /** 682 * __dev_get_by_index - find a device by its ifindex 683 * @net: the applicable net namespace 684 * @ifindex: index of device 685 * 686 * Search for an interface by index. Returns %NULL if the device 687 * is not found or a pointer to the device. The device has not 688 * had its reference counter increased so the caller must be careful 689 * about locking. The caller must hold either the RTNL semaphore 690 * or @dev_base_lock. 691 */ 692 693 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 694 { 695 struct hlist_node *p; 696 struct net_device *dev; 697 struct hlist_head *head = dev_index_hash(net, ifindex); 698 699 hlist_for_each_entry(dev, p, head, index_hlist) 700 if (dev->ifindex == ifindex) 701 return dev; 702 703 return NULL; 704 } 705 EXPORT_SYMBOL(__dev_get_by_index); 706 707 /** 708 * dev_get_by_index_rcu - find a device by its ifindex 709 * @net: the applicable net namespace 710 * @ifindex: index of device 711 * 712 * Search for an interface by index. Returns %NULL if the device 713 * is not found or a pointer to the device. The device has not 714 * had its reference counter increased so the caller must be careful 715 * about locking. The caller must hold RCU lock. 716 */ 717 718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 719 { 720 struct hlist_node *p; 721 struct net_device *dev; 722 struct hlist_head *head = dev_index_hash(net, ifindex); 723 724 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 725 if (dev->ifindex == ifindex) 726 return dev; 727 728 return NULL; 729 } 730 EXPORT_SYMBOL(dev_get_by_index_rcu); 731 732 733 /** 734 * dev_get_by_index - find a device by its ifindex 735 * @net: the applicable net namespace 736 * @ifindex: index of device 737 * 738 * Search for an interface by index. Returns NULL if the device 739 * is not found or a pointer to the device. The device returned has 740 * had a reference added and the pointer is safe until the user calls 741 * dev_put to indicate they have finished with it. 742 */ 743 744 struct net_device *dev_get_by_index(struct net *net, int ifindex) 745 { 746 struct net_device *dev; 747 748 rcu_read_lock(); 749 dev = dev_get_by_index_rcu(net, ifindex); 750 if (dev) 751 dev_hold(dev); 752 rcu_read_unlock(); 753 return dev; 754 } 755 EXPORT_SYMBOL(dev_get_by_index); 756 757 /** 758 * dev_getbyhwaddr_rcu - find a device by its hardware address 759 * @net: the applicable net namespace 760 * @type: media type of device 761 * @ha: hardware address 762 * 763 * Search for an interface by MAC address. Returns NULL if the device 764 * is not found or a pointer to the device. 765 * The caller must hold RCU or RTNL. 766 * The returned device has not had its ref count increased 767 * and the caller must therefore be careful about locking 768 * 769 */ 770 771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 772 const char *ha) 773 { 774 struct net_device *dev; 775 776 for_each_netdev_rcu(net, dev) 777 if (dev->type == type && 778 !memcmp(dev->dev_addr, ha, dev->addr_len)) 779 return dev; 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 784 785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 786 { 787 struct net_device *dev; 788 789 ASSERT_RTNL(); 790 for_each_netdev(net, dev) 791 if (dev->type == type) 792 return dev; 793 794 return NULL; 795 } 796 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 797 798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 799 { 800 struct net_device *dev, *ret = NULL; 801 802 rcu_read_lock(); 803 for_each_netdev_rcu(net, dev) 804 if (dev->type == type) { 805 dev_hold(dev); 806 ret = dev; 807 break; 808 } 809 rcu_read_unlock(); 810 return ret; 811 } 812 EXPORT_SYMBOL(dev_getfirstbyhwtype); 813 814 /** 815 * dev_get_by_flags_rcu - find any device with given flags 816 * @net: the applicable net namespace 817 * @if_flags: IFF_* values 818 * @mask: bitmask of bits in if_flags to check 819 * 820 * Search for any interface with the given flags. Returns NULL if a device 821 * is not found or a pointer to the device. Must be called inside 822 * rcu_read_lock(), and result refcount is unchanged. 823 */ 824 825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 826 unsigned short mask) 827 { 828 struct net_device *dev, *ret; 829 830 ret = NULL; 831 for_each_netdev_rcu(net, dev) { 832 if (((dev->flags ^ if_flags) & mask) == 0) { 833 ret = dev; 834 break; 835 } 836 } 837 return ret; 838 } 839 EXPORT_SYMBOL(dev_get_by_flags_rcu); 840 841 /** 842 * dev_valid_name - check if name is okay for network device 843 * @name: name string 844 * 845 * Network device names need to be valid file names to 846 * to allow sysfs to work. We also disallow any kind of 847 * whitespace. 848 */ 849 bool dev_valid_name(const char *name) 850 { 851 if (*name == '\0') 852 return false; 853 if (strlen(name) >= IFNAMSIZ) 854 return false; 855 if (!strcmp(name, ".") || !strcmp(name, "..")) 856 return false; 857 858 while (*name) { 859 if (*name == '/' || isspace(*name)) 860 return false; 861 name++; 862 } 863 return true; 864 } 865 EXPORT_SYMBOL(dev_valid_name); 866 867 /** 868 * __dev_alloc_name - allocate a name for a device 869 * @net: network namespace to allocate the device name in 870 * @name: name format string 871 * @buf: scratch buffer and result name string 872 * 873 * Passed a format string - eg "lt%d" it will try and find a suitable 874 * id. It scans list of devices to build up a free map, then chooses 875 * the first empty slot. The caller must hold the dev_base or rtnl lock 876 * while allocating the name and adding the device in order to avoid 877 * duplicates. 878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 879 * Returns the number of the unit assigned or a negative errno code. 880 */ 881 882 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 883 { 884 int i = 0; 885 const char *p; 886 const int max_netdevices = 8*PAGE_SIZE; 887 unsigned long *inuse; 888 struct net_device *d; 889 890 p = strnchr(name, IFNAMSIZ-1, '%'); 891 if (p) { 892 /* 893 * Verify the string as this thing may have come from 894 * the user. There must be either one "%d" and no other "%" 895 * characters. 896 */ 897 if (p[1] != 'd' || strchr(p + 2, '%')) 898 return -EINVAL; 899 900 /* Use one page as a bit array of possible slots */ 901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 902 if (!inuse) 903 return -ENOMEM; 904 905 for_each_netdev(net, d) { 906 if (!sscanf(d->name, name, &i)) 907 continue; 908 if (i < 0 || i >= max_netdevices) 909 continue; 910 911 /* avoid cases where sscanf is not exact inverse of printf */ 912 snprintf(buf, IFNAMSIZ, name, i); 913 if (!strncmp(buf, d->name, IFNAMSIZ)) 914 set_bit(i, inuse); 915 } 916 917 i = find_first_zero_bit(inuse, max_netdevices); 918 free_page((unsigned long) inuse); 919 } 920 921 if (buf != name) 922 snprintf(buf, IFNAMSIZ, name, i); 923 if (!__dev_get_by_name(net, buf)) 924 return i; 925 926 /* It is possible to run out of possible slots 927 * when the name is long and there isn't enough space left 928 * for the digits, or if all bits are used. 929 */ 930 return -ENFILE; 931 } 932 933 /** 934 * dev_alloc_name - allocate a name for a device 935 * @dev: device 936 * @name: name format string 937 * 938 * Passed a format string - eg "lt%d" it will try and find a suitable 939 * id. It scans list of devices to build up a free map, then chooses 940 * the first empty slot. The caller must hold the dev_base or rtnl lock 941 * while allocating the name and adding the device in order to avoid 942 * duplicates. 943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 944 * Returns the number of the unit assigned or a negative errno code. 945 */ 946 947 int dev_alloc_name(struct net_device *dev, const char *name) 948 { 949 char buf[IFNAMSIZ]; 950 struct net *net; 951 int ret; 952 953 BUG_ON(!dev_net(dev)); 954 net = dev_net(dev); 955 ret = __dev_alloc_name(net, name, buf); 956 if (ret >= 0) 957 strlcpy(dev->name, buf, IFNAMSIZ); 958 return ret; 959 } 960 EXPORT_SYMBOL(dev_alloc_name); 961 962 static int dev_get_valid_name(struct net_device *dev, const char *name) 963 { 964 struct net *net; 965 966 BUG_ON(!dev_net(dev)); 967 net = dev_net(dev); 968 969 if (!dev_valid_name(name)) 970 return -EINVAL; 971 972 if (strchr(name, '%')) 973 return dev_alloc_name(dev, name); 974 else if (__dev_get_by_name(net, name)) 975 return -EEXIST; 976 else if (dev->name != name) 977 strlcpy(dev->name, name, IFNAMSIZ); 978 979 return 0; 980 } 981 982 /** 983 * dev_change_name - change name of a device 984 * @dev: device 985 * @newname: name (or format string) must be at least IFNAMSIZ 986 * 987 * Change name of a device, can pass format strings "eth%d". 988 * for wildcarding. 989 */ 990 int dev_change_name(struct net_device *dev, const char *newname) 991 { 992 char oldname[IFNAMSIZ]; 993 int err = 0; 994 int ret; 995 struct net *net; 996 997 ASSERT_RTNL(); 998 BUG_ON(!dev_net(dev)); 999 1000 net = dev_net(dev); 1001 if (dev->flags & IFF_UP) 1002 return -EBUSY; 1003 1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1005 return 0; 1006 1007 memcpy(oldname, dev->name, IFNAMSIZ); 1008 1009 err = dev_get_valid_name(dev, newname); 1010 if (err < 0) 1011 return err; 1012 1013 rollback: 1014 ret = device_rename(&dev->dev, dev->name); 1015 if (ret) { 1016 memcpy(dev->name, oldname, IFNAMSIZ); 1017 return ret; 1018 } 1019 1020 write_lock_bh(&dev_base_lock); 1021 hlist_del_rcu(&dev->name_hlist); 1022 write_unlock_bh(&dev_base_lock); 1023 1024 synchronize_rcu(); 1025 1026 write_lock_bh(&dev_base_lock); 1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1028 write_unlock_bh(&dev_base_lock); 1029 1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1031 ret = notifier_to_errno(ret); 1032 1033 if (ret) { 1034 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1035 if (err >= 0) { 1036 err = ret; 1037 memcpy(dev->name, oldname, IFNAMSIZ); 1038 goto rollback; 1039 } else { 1040 pr_err("%s: name change rollback failed: %d\n", 1041 dev->name, ret); 1042 } 1043 } 1044 1045 return err; 1046 } 1047 1048 /** 1049 * dev_set_alias - change ifalias of a device 1050 * @dev: device 1051 * @alias: name up to IFALIASZ 1052 * @len: limit of bytes to copy from info 1053 * 1054 * Set ifalias for a device, 1055 */ 1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1057 { 1058 ASSERT_RTNL(); 1059 1060 if (len >= IFALIASZ) 1061 return -EINVAL; 1062 1063 if (!len) { 1064 if (dev->ifalias) { 1065 kfree(dev->ifalias); 1066 dev->ifalias = NULL; 1067 } 1068 return 0; 1069 } 1070 1071 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1072 if (!dev->ifalias) 1073 return -ENOMEM; 1074 1075 strlcpy(dev->ifalias, alias, len+1); 1076 return len; 1077 } 1078 1079 1080 /** 1081 * netdev_features_change - device changes features 1082 * @dev: device to cause notification 1083 * 1084 * Called to indicate a device has changed features. 1085 */ 1086 void netdev_features_change(struct net_device *dev) 1087 { 1088 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1089 } 1090 EXPORT_SYMBOL(netdev_features_change); 1091 1092 /** 1093 * netdev_state_change - device changes state 1094 * @dev: device to cause notification 1095 * 1096 * Called to indicate a device has changed state. This function calls 1097 * the notifier chains for netdev_chain and sends a NEWLINK message 1098 * to the routing socket. 1099 */ 1100 void netdev_state_change(struct net_device *dev) 1101 { 1102 if (dev->flags & IFF_UP) { 1103 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1104 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1105 } 1106 } 1107 EXPORT_SYMBOL(netdev_state_change); 1108 1109 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1110 { 1111 return call_netdevice_notifiers(event, dev); 1112 } 1113 EXPORT_SYMBOL(netdev_bonding_change); 1114 1115 /** 1116 * dev_load - load a network module 1117 * @net: the applicable net namespace 1118 * @name: name of interface 1119 * 1120 * If a network interface is not present and the process has suitable 1121 * privileges this function loads the module. If module loading is not 1122 * available in this kernel then it becomes a nop. 1123 */ 1124 1125 void dev_load(struct net *net, const char *name) 1126 { 1127 struct net_device *dev; 1128 int no_module; 1129 1130 rcu_read_lock(); 1131 dev = dev_get_by_name_rcu(net, name); 1132 rcu_read_unlock(); 1133 1134 no_module = !dev; 1135 if (no_module && capable(CAP_NET_ADMIN)) 1136 no_module = request_module("netdev-%s", name); 1137 if (no_module && capable(CAP_SYS_MODULE)) { 1138 if (!request_module("%s", name)) 1139 pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n", 1140 name); 1141 } 1142 } 1143 EXPORT_SYMBOL(dev_load); 1144 1145 static int __dev_open(struct net_device *dev) 1146 { 1147 const struct net_device_ops *ops = dev->netdev_ops; 1148 int ret; 1149 1150 ASSERT_RTNL(); 1151 1152 if (!netif_device_present(dev)) 1153 return -ENODEV; 1154 1155 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1156 ret = notifier_to_errno(ret); 1157 if (ret) 1158 return ret; 1159 1160 set_bit(__LINK_STATE_START, &dev->state); 1161 1162 if (ops->ndo_validate_addr) 1163 ret = ops->ndo_validate_addr(dev); 1164 1165 if (!ret && ops->ndo_open) 1166 ret = ops->ndo_open(dev); 1167 1168 if (ret) 1169 clear_bit(__LINK_STATE_START, &dev->state); 1170 else { 1171 dev->flags |= IFF_UP; 1172 net_dmaengine_get(); 1173 dev_set_rx_mode(dev); 1174 dev_activate(dev); 1175 } 1176 1177 return ret; 1178 } 1179 1180 /** 1181 * dev_open - prepare an interface for use. 1182 * @dev: device to open 1183 * 1184 * Takes a device from down to up state. The device's private open 1185 * function is invoked and then the multicast lists are loaded. Finally 1186 * the device is moved into the up state and a %NETDEV_UP message is 1187 * sent to the netdev notifier chain. 1188 * 1189 * Calling this function on an active interface is a nop. On a failure 1190 * a negative errno code is returned. 1191 */ 1192 int dev_open(struct net_device *dev) 1193 { 1194 int ret; 1195 1196 if (dev->flags & IFF_UP) 1197 return 0; 1198 1199 ret = __dev_open(dev); 1200 if (ret < 0) 1201 return ret; 1202 1203 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1204 call_netdevice_notifiers(NETDEV_UP, dev); 1205 1206 return ret; 1207 } 1208 EXPORT_SYMBOL(dev_open); 1209 1210 static int __dev_close_many(struct list_head *head) 1211 { 1212 struct net_device *dev; 1213 1214 ASSERT_RTNL(); 1215 might_sleep(); 1216 1217 list_for_each_entry(dev, head, unreg_list) { 1218 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1219 1220 clear_bit(__LINK_STATE_START, &dev->state); 1221 1222 /* Synchronize to scheduled poll. We cannot touch poll list, it 1223 * can be even on different cpu. So just clear netif_running(). 1224 * 1225 * dev->stop() will invoke napi_disable() on all of it's 1226 * napi_struct instances on this device. 1227 */ 1228 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1229 } 1230 1231 dev_deactivate_many(head); 1232 1233 list_for_each_entry(dev, head, unreg_list) { 1234 const struct net_device_ops *ops = dev->netdev_ops; 1235 1236 /* 1237 * Call the device specific close. This cannot fail. 1238 * Only if device is UP 1239 * 1240 * We allow it to be called even after a DETACH hot-plug 1241 * event. 1242 */ 1243 if (ops->ndo_stop) 1244 ops->ndo_stop(dev); 1245 1246 dev->flags &= ~IFF_UP; 1247 net_dmaengine_put(); 1248 } 1249 1250 return 0; 1251 } 1252 1253 static int __dev_close(struct net_device *dev) 1254 { 1255 int retval; 1256 LIST_HEAD(single); 1257 1258 list_add(&dev->unreg_list, &single); 1259 retval = __dev_close_many(&single); 1260 list_del(&single); 1261 return retval; 1262 } 1263 1264 static int dev_close_many(struct list_head *head) 1265 { 1266 struct net_device *dev, *tmp; 1267 LIST_HEAD(tmp_list); 1268 1269 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1270 if (!(dev->flags & IFF_UP)) 1271 list_move(&dev->unreg_list, &tmp_list); 1272 1273 __dev_close_many(head); 1274 1275 list_for_each_entry(dev, head, unreg_list) { 1276 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1277 call_netdevice_notifiers(NETDEV_DOWN, dev); 1278 } 1279 1280 /* rollback_registered_many needs the complete original list */ 1281 list_splice(&tmp_list, head); 1282 return 0; 1283 } 1284 1285 /** 1286 * dev_close - shutdown an interface. 1287 * @dev: device to shutdown 1288 * 1289 * This function moves an active device into down state. A 1290 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1291 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1292 * chain. 1293 */ 1294 int dev_close(struct net_device *dev) 1295 { 1296 if (dev->flags & IFF_UP) { 1297 LIST_HEAD(single); 1298 1299 list_add(&dev->unreg_list, &single); 1300 dev_close_many(&single); 1301 list_del(&single); 1302 } 1303 return 0; 1304 } 1305 EXPORT_SYMBOL(dev_close); 1306 1307 1308 /** 1309 * dev_disable_lro - disable Large Receive Offload on a device 1310 * @dev: device 1311 * 1312 * Disable Large Receive Offload (LRO) on a net device. Must be 1313 * called under RTNL. This is needed if received packets may be 1314 * forwarded to another interface. 1315 */ 1316 void dev_disable_lro(struct net_device *dev) 1317 { 1318 /* 1319 * If we're trying to disable lro on a vlan device 1320 * use the underlying physical device instead 1321 */ 1322 if (is_vlan_dev(dev)) 1323 dev = vlan_dev_real_dev(dev); 1324 1325 dev->wanted_features &= ~NETIF_F_LRO; 1326 netdev_update_features(dev); 1327 1328 if (unlikely(dev->features & NETIF_F_LRO)) 1329 netdev_WARN(dev, "failed to disable LRO!\n"); 1330 } 1331 EXPORT_SYMBOL(dev_disable_lro); 1332 1333 1334 static int dev_boot_phase = 1; 1335 1336 /** 1337 * register_netdevice_notifier - register a network notifier block 1338 * @nb: notifier 1339 * 1340 * Register a notifier to be called when network device events occur. 1341 * The notifier passed is linked into the kernel structures and must 1342 * not be reused until it has been unregistered. A negative errno code 1343 * is returned on a failure. 1344 * 1345 * When registered all registration and up events are replayed 1346 * to the new notifier to allow device to have a race free 1347 * view of the network device list. 1348 */ 1349 1350 int register_netdevice_notifier(struct notifier_block *nb) 1351 { 1352 struct net_device *dev; 1353 struct net_device *last; 1354 struct net *net; 1355 int err; 1356 1357 rtnl_lock(); 1358 err = raw_notifier_chain_register(&netdev_chain, nb); 1359 if (err) 1360 goto unlock; 1361 if (dev_boot_phase) 1362 goto unlock; 1363 for_each_net(net) { 1364 for_each_netdev(net, dev) { 1365 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1366 err = notifier_to_errno(err); 1367 if (err) 1368 goto rollback; 1369 1370 if (!(dev->flags & IFF_UP)) 1371 continue; 1372 1373 nb->notifier_call(nb, NETDEV_UP, dev); 1374 } 1375 } 1376 1377 unlock: 1378 rtnl_unlock(); 1379 return err; 1380 1381 rollback: 1382 last = dev; 1383 for_each_net(net) { 1384 for_each_netdev(net, dev) { 1385 if (dev == last) 1386 goto outroll; 1387 1388 if (dev->flags & IFF_UP) { 1389 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1390 nb->notifier_call(nb, NETDEV_DOWN, dev); 1391 } 1392 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1393 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1394 } 1395 } 1396 1397 outroll: 1398 raw_notifier_chain_unregister(&netdev_chain, nb); 1399 goto unlock; 1400 } 1401 EXPORT_SYMBOL(register_netdevice_notifier); 1402 1403 /** 1404 * unregister_netdevice_notifier - unregister a network notifier block 1405 * @nb: notifier 1406 * 1407 * Unregister a notifier previously registered by 1408 * register_netdevice_notifier(). The notifier is unlinked into the 1409 * kernel structures and may then be reused. A negative errno code 1410 * is returned on a failure. 1411 * 1412 * After unregistering unregister and down device events are synthesized 1413 * for all devices on the device list to the removed notifier to remove 1414 * the need for special case cleanup code. 1415 */ 1416 1417 int unregister_netdevice_notifier(struct notifier_block *nb) 1418 { 1419 struct net_device *dev; 1420 struct net *net; 1421 int err; 1422 1423 rtnl_lock(); 1424 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1425 if (err) 1426 goto unlock; 1427 1428 for_each_net(net) { 1429 for_each_netdev(net, dev) { 1430 if (dev->flags & IFF_UP) { 1431 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1432 nb->notifier_call(nb, NETDEV_DOWN, dev); 1433 } 1434 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1435 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1436 } 1437 } 1438 unlock: 1439 rtnl_unlock(); 1440 return err; 1441 } 1442 EXPORT_SYMBOL(unregister_netdevice_notifier); 1443 1444 /** 1445 * call_netdevice_notifiers - call all network notifier blocks 1446 * @val: value passed unmodified to notifier function 1447 * @dev: net_device pointer passed unmodified to notifier function 1448 * 1449 * Call all network notifier blocks. Parameters and return value 1450 * are as for raw_notifier_call_chain(). 1451 */ 1452 1453 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1454 { 1455 ASSERT_RTNL(); 1456 return raw_notifier_call_chain(&netdev_chain, val, dev); 1457 } 1458 EXPORT_SYMBOL(call_netdevice_notifiers); 1459 1460 static struct static_key netstamp_needed __read_mostly; 1461 #ifdef HAVE_JUMP_LABEL 1462 /* We are not allowed to call static_key_slow_dec() from irq context 1463 * If net_disable_timestamp() is called from irq context, defer the 1464 * static_key_slow_dec() calls. 1465 */ 1466 static atomic_t netstamp_needed_deferred; 1467 #endif 1468 1469 void net_enable_timestamp(void) 1470 { 1471 #ifdef HAVE_JUMP_LABEL 1472 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1473 1474 if (deferred) { 1475 while (--deferred) 1476 static_key_slow_dec(&netstamp_needed); 1477 return; 1478 } 1479 #endif 1480 WARN_ON(in_interrupt()); 1481 static_key_slow_inc(&netstamp_needed); 1482 } 1483 EXPORT_SYMBOL(net_enable_timestamp); 1484 1485 void net_disable_timestamp(void) 1486 { 1487 #ifdef HAVE_JUMP_LABEL 1488 if (in_interrupt()) { 1489 atomic_inc(&netstamp_needed_deferred); 1490 return; 1491 } 1492 #endif 1493 static_key_slow_dec(&netstamp_needed); 1494 } 1495 EXPORT_SYMBOL(net_disable_timestamp); 1496 1497 static inline void net_timestamp_set(struct sk_buff *skb) 1498 { 1499 skb->tstamp.tv64 = 0; 1500 if (static_key_false(&netstamp_needed)) 1501 __net_timestamp(skb); 1502 } 1503 1504 #define net_timestamp_check(COND, SKB) \ 1505 if (static_key_false(&netstamp_needed)) { \ 1506 if ((COND) && !(SKB)->tstamp.tv64) \ 1507 __net_timestamp(SKB); \ 1508 } \ 1509 1510 static int net_hwtstamp_validate(struct ifreq *ifr) 1511 { 1512 struct hwtstamp_config cfg; 1513 enum hwtstamp_tx_types tx_type; 1514 enum hwtstamp_rx_filters rx_filter; 1515 int tx_type_valid = 0; 1516 int rx_filter_valid = 0; 1517 1518 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1519 return -EFAULT; 1520 1521 if (cfg.flags) /* reserved for future extensions */ 1522 return -EINVAL; 1523 1524 tx_type = cfg.tx_type; 1525 rx_filter = cfg.rx_filter; 1526 1527 switch (tx_type) { 1528 case HWTSTAMP_TX_OFF: 1529 case HWTSTAMP_TX_ON: 1530 case HWTSTAMP_TX_ONESTEP_SYNC: 1531 tx_type_valid = 1; 1532 break; 1533 } 1534 1535 switch (rx_filter) { 1536 case HWTSTAMP_FILTER_NONE: 1537 case HWTSTAMP_FILTER_ALL: 1538 case HWTSTAMP_FILTER_SOME: 1539 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1540 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1541 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1542 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1543 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1544 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1545 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1546 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1547 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1548 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1549 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1550 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1551 rx_filter_valid = 1; 1552 break; 1553 } 1554 1555 if (!tx_type_valid || !rx_filter_valid) 1556 return -ERANGE; 1557 1558 return 0; 1559 } 1560 1561 static inline bool is_skb_forwardable(struct net_device *dev, 1562 struct sk_buff *skb) 1563 { 1564 unsigned int len; 1565 1566 if (!(dev->flags & IFF_UP)) 1567 return false; 1568 1569 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1570 if (skb->len <= len) 1571 return true; 1572 1573 /* if TSO is enabled, we don't care about the length as the packet 1574 * could be forwarded without being segmented before 1575 */ 1576 if (skb_is_gso(skb)) 1577 return true; 1578 1579 return false; 1580 } 1581 1582 /** 1583 * dev_forward_skb - loopback an skb to another netif 1584 * 1585 * @dev: destination network device 1586 * @skb: buffer to forward 1587 * 1588 * return values: 1589 * NET_RX_SUCCESS (no congestion) 1590 * NET_RX_DROP (packet was dropped, but freed) 1591 * 1592 * dev_forward_skb can be used for injecting an skb from the 1593 * start_xmit function of one device into the receive queue 1594 * of another device. 1595 * 1596 * The receiving device may be in another namespace, so 1597 * we have to clear all information in the skb that could 1598 * impact namespace isolation. 1599 */ 1600 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1601 { 1602 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1603 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1604 atomic_long_inc(&dev->rx_dropped); 1605 kfree_skb(skb); 1606 return NET_RX_DROP; 1607 } 1608 } 1609 1610 skb_orphan(skb); 1611 nf_reset(skb); 1612 1613 if (unlikely(!is_skb_forwardable(dev, skb))) { 1614 atomic_long_inc(&dev->rx_dropped); 1615 kfree_skb(skb); 1616 return NET_RX_DROP; 1617 } 1618 skb->skb_iif = 0; 1619 skb->dev = dev; 1620 skb_dst_drop(skb); 1621 skb->tstamp.tv64 = 0; 1622 skb->pkt_type = PACKET_HOST; 1623 skb->protocol = eth_type_trans(skb, dev); 1624 skb->mark = 0; 1625 secpath_reset(skb); 1626 nf_reset(skb); 1627 return netif_rx(skb); 1628 } 1629 EXPORT_SYMBOL_GPL(dev_forward_skb); 1630 1631 static inline int deliver_skb(struct sk_buff *skb, 1632 struct packet_type *pt_prev, 1633 struct net_device *orig_dev) 1634 { 1635 atomic_inc(&skb->users); 1636 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1637 } 1638 1639 /* 1640 * Support routine. Sends outgoing frames to any network 1641 * taps currently in use. 1642 */ 1643 1644 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1645 { 1646 struct packet_type *ptype; 1647 struct sk_buff *skb2 = NULL; 1648 struct packet_type *pt_prev = NULL; 1649 1650 rcu_read_lock(); 1651 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1652 /* Never send packets back to the socket 1653 * they originated from - MvS (miquels@drinkel.ow.org) 1654 */ 1655 if ((ptype->dev == dev || !ptype->dev) && 1656 (ptype->af_packet_priv == NULL || 1657 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1658 if (pt_prev) { 1659 deliver_skb(skb2, pt_prev, skb->dev); 1660 pt_prev = ptype; 1661 continue; 1662 } 1663 1664 skb2 = skb_clone(skb, GFP_ATOMIC); 1665 if (!skb2) 1666 break; 1667 1668 net_timestamp_set(skb2); 1669 1670 /* skb->nh should be correctly 1671 set by sender, so that the second statement is 1672 just protection against buggy protocols. 1673 */ 1674 skb_reset_mac_header(skb2); 1675 1676 if (skb_network_header(skb2) < skb2->data || 1677 skb2->network_header > skb2->tail) { 1678 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1679 ntohs(skb2->protocol), 1680 dev->name); 1681 skb_reset_network_header(skb2); 1682 } 1683 1684 skb2->transport_header = skb2->network_header; 1685 skb2->pkt_type = PACKET_OUTGOING; 1686 pt_prev = ptype; 1687 } 1688 } 1689 if (pt_prev) 1690 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1691 rcu_read_unlock(); 1692 } 1693 1694 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1695 * @dev: Network device 1696 * @txq: number of queues available 1697 * 1698 * If real_num_tx_queues is changed the tc mappings may no longer be 1699 * valid. To resolve this verify the tc mapping remains valid and if 1700 * not NULL the mapping. With no priorities mapping to this 1701 * offset/count pair it will no longer be used. In the worst case TC0 1702 * is invalid nothing can be done so disable priority mappings. If is 1703 * expected that drivers will fix this mapping if they can before 1704 * calling netif_set_real_num_tx_queues. 1705 */ 1706 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1707 { 1708 int i; 1709 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1710 1711 /* If TC0 is invalidated disable TC mapping */ 1712 if (tc->offset + tc->count > txq) { 1713 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1714 dev->num_tc = 0; 1715 return; 1716 } 1717 1718 /* Invalidated prio to tc mappings set to TC0 */ 1719 for (i = 1; i < TC_BITMASK + 1; i++) { 1720 int q = netdev_get_prio_tc_map(dev, i); 1721 1722 tc = &dev->tc_to_txq[q]; 1723 if (tc->offset + tc->count > txq) { 1724 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1725 i, q); 1726 netdev_set_prio_tc_map(dev, i, 0); 1727 } 1728 } 1729 } 1730 1731 /* 1732 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1733 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1734 */ 1735 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1736 { 1737 int rc; 1738 1739 if (txq < 1 || txq > dev->num_tx_queues) 1740 return -EINVAL; 1741 1742 if (dev->reg_state == NETREG_REGISTERED || 1743 dev->reg_state == NETREG_UNREGISTERING) { 1744 ASSERT_RTNL(); 1745 1746 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1747 txq); 1748 if (rc) 1749 return rc; 1750 1751 if (dev->num_tc) 1752 netif_setup_tc(dev, txq); 1753 1754 if (txq < dev->real_num_tx_queues) 1755 qdisc_reset_all_tx_gt(dev, txq); 1756 } 1757 1758 dev->real_num_tx_queues = txq; 1759 return 0; 1760 } 1761 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1762 1763 #ifdef CONFIG_RPS 1764 /** 1765 * netif_set_real_num_rx_queues - set actual number of RX queues used 1766 * @dev: Network device 1767 * @rxq: Actual number of RX queues 1768 * 1769 * This must be called either with the rtnl_lock held or before 1770 * registration of the net device. Returns 0 on success, or a 1771 * negative error code. If called before registration, it always 1772 * succeeds. 1773 */ 1774 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1775 { 1776 int rc; 1777 1778 if (rxq < 1 || rxq > dev->num_rx_queues) 1779 return -EINVAL; 1780 1781 if (dev->reg_state == NETREG_REGISTERED) { 1782 ASSERT_RTNL(); 1783 1784 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1785 rxq); 1786 if (rc) 1787 return rc; 1788 } 1789 1790 dev->real_num_rx_queues = rxq; 1791 return 0; 1792 } 1793 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1794 #endif 1795 1796 static inline void __netif_reschedule(struct Qdisc *q) 1797 { 1798 struct softnet_data *sd; 1799 unsigned long flags; 1800 1801 local_irq_save(flags); 1802 sd = &__get_cpu_var(softnet_data); 1803 q->next_sched = NULL; 1804 *sd->output_queue_tailp = q; 1805 sd->output_queue_tailp = &q->next_sched; 1806 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1807 local_irq_restore(flags); 1808 } 1809 1810 void __netif_schedule(struct Qdisc *q) 1811 { 1812 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1813 __netif_reschedule(q); 1814 } 1815 EXPORT_SYMBOL(__netif_schedule); 1816 1817 void dev_kfree_skb_irq(struct sk_buff *skb) 1818 { 1819 if (atomic_dec_and_test(&skb->users)) { 1820 struct softnet_data *sd; 1821 unsigned long flags; 1822 1823 local_irq_save(flags); 1824 sd = &__get_cpu_var(softnet_data); 1825 skb->next = sd->completion_queue; 1826 sd->completion_queue = skb; 1827 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1828 local_irq_restore(flags); 1829 } 1830 } 1831 EXPORT_SYMBOL(dev_kfree_skb_irq); 1832 1833 void dev_kfree_skb_any(struct sk_buff *skb) 1834 { 1835 if (in_irq() || irqs_disabled()) 1836 dev_kfree_skb_irq(skb); 1837 else 1838 dev_kfree_skb(skb); 1839 } 1840 EXPORT_SYMBOL(dev_kfree_skb_any); 1841 1842 1843 /** 1844 * netif_device_detach - mark device as removed 1845 * @dev: network device 1846 * 1847 * Mark device as removed from system and therefore no longer available. 1848 */ 1849 void netif_device_detach(struct net_device *dev) 1850 { 1851 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1852 netif_running(dev)) { 1853 netif_tx_stop_all_queues(dev); 1854 } 1855 } 1856 EXPORT_SYMBOL(netif_device_detach); 1857 1858 /** 1859 * netif_device_attach - mark device as attached 1860 * @dev: network device 1861 * 1862 * Mark device as attached from system and restart if needed. 1863 */ 1864 void netif_device_attach(struct net_device *dev) 1865 { 1866 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1867 netif_running(dev)) { 1868 netif_tx_wake_all_queues(dev); 1869 __netdev_watchdog_up(dev); 1870 } 1871 } 1872 EXPORT_SYMBOL(netif_device_attach); 1873 1874 static void skb_warn_bad_offload(const struct sk_buff *skb) 1875 { 1876 static const netdev_features_t null_features = 0; 1877 struct net_device *dev = skb->dev; 1878 const char *driver = ""; 1879 1880 if (dev && dev->dev.parent) 1881 driver = dev_driver_string(dev->dev.parent); 1882 1883 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 1884 "gso_type=%d ip_summed=%d\n", 1885 driver, dev ? &dev->features : &null_features, 1886 skb->sk ? &skb->sk->sk_route_caps : &null_features, 1887 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 1888 skb_shinfo(skb)->gso_type, skb->ip_summed); 1889 } 1890 1891 /* 1892 * Invalidate hardware checksum when packet is to be mangled, and 1893 * complete checksum manually on outgoing path. 1894 */ 1895 int skb_checksum_help(struct sk_buff *skb) 1896 { 1897 __wsum csum; 1898 int ret = 0, offset; 1899 1900 if (skb->ip_summed == CHECKSUM_COMPLETE) 1901 goto out_set_summed; 1902 1903 if (unlikely(skb_shinfo(skb)->gso_size)) { 1904 skb_warn_bad_offload(skb); 1905 return -EINVAL; 1906 } 1907 1908 offset = skb_checksum_start_offset(skb); 1909 BUG_ON(offset >= skb_headlen(skb)); 1910 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1911 1912 offset += skb->csum_offset; 1913 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1914 1915 if (skb_cloned(skb) && 1916 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1917 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1918 if (ret) 1919 goto out; 1920 } 1921 1922 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1923 out_set_summed: 1924 skb->ip_summed = CHECKSUM_NONE; 1925 out: 1926 return ret; 1927 } 1928 EXPORT_SYMBOL(skb_checksum_help); 1929 1930 /** 1931 * skb_gso_segment - Perform segmentation on skb. 1932 * @skb: buffer to segment 1933 * @features: features for the output path (see dev->features) 1934 * 1935 * This function segments the given skb and returns a list of segments. 1936 * 1937 * It may return NULL if the skb requires no segmentation. This is 1938 * only possible when GSO is used for verifying header integrity. 1939 */ 1940 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1941 netdev_features_t features) 1942 { 1943 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1944 struct packet_type *ptype; 1945 __be16 type = skb->protocol; 1946 int vlan_depth = ETH_HLEN; 1947 int err; 1948 1949 while (type == htons(ETH_P_8021Q)) { 1950 struct vlan_hdr *vh; 1951 1952 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1953 return ERR_PTR(-EINVAL); 1954 1955 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1956 type = vh->h_vlan_encapsulated_proto; 1957 vlan_depth += VLAN_HLEN; 1958 } 1959 1960 skb_reset_mac_header(skb); 1961 skb->mac_len = skb->network_header - skb->mac_header; 1962 __skb_pull(skb, skb->mac_len); 1963 1964 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1965 skb_warn_bad_offload(skb); 1966 1967 if (skb_header_cloned(skb) && 1968 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1969 return ERR_PTR(err); 1970 } 1971 1972 rcu_read_lock(); 1973 list_for_each_entry_rcu(ptype, 1974 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1975 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1976 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1977 err = ptype->gso_send_check(skb); 1978 segs = ERR_PTR(err); 1979 if (err || skb_gso_ok(skb, features)) 1980 break; 1981 __skb_push(skb, (skb->data - 1982 skb_network_header(skb))); 1983 } 1984 segs = ptype->gso_segment(skb, features); 1985 break; 1986 } 1987 } 1988 rcu_read_unlock(); 1989 1990 __skb_push(skb, skb->data - skb_mac_header(skb)); 1991 1992 return segs; 1993 } 1994 EXPORT_SYMBOL(skb_gso_segment); 1995 1996 /* Take action when hardware reception checksum errors are detected. */ 1997 #ifdef CONFIG_BUG 1998 void netdev_rx_csum_fault(struct net_device *dev) 1999 { 2000 if (net_ratelimit()) { 2001 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2002 dump_stack(); 2003 } 2004 } 2005 EXPORT_SYMBOL(netdev_rx_csum_fault); 2006 #endif 2007 2008 /* Actually, we should eliminate this check as soon as we know, that: 2009 * 1. IOMMU is present and allows to map all the memory. 2010 * 2. No high memory really exists on this machine. 2011 */ 2012 2013 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2014 { 2015 #ifdef CONFIG_HIGHMEM 2016 int i; 2017 if (!(dev->features & NETIF_F_HIGHDMA)) { 2018 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2019 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2020 if (PageHighMem(skb_frag_page(frag))) 2021 return 1; 2022 } 2023 } 2024 2025 if (PCI_DMA_BUS_IS_PHYS) { 2026 struct device *pdev = dev->dev.parent; 2027 2028 if (!pdev) 2029 return 0; 2030 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2031 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2032 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2033 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2034 return 1; 2035 } 2036 } 2037 #endif 2038 return 0; 2039 } 2040 2041 struct dev_gso_cb { 2042 void (*destructor)(struct sk_buff *skb); 2043 }; 2044 2045 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2046 2047 static void dev_gso_skb_destructor(struct sk_buff *skb) 2048 { 2049 struct dev_gso_cb *cb; 2050 2051 do { 2052 struct sk_buff *nskb = skb->next; 2053 2054 skb->next = nskb->next; 2055 nskb->next = NULL; 2056 kfree_skb(nskb); 2057 } while (skb->next); 2058 2059 cb = DEV_GSO_CB(skb); 2060 if (cb->destructor) 2061 cb->destructor(skb); 2062 } 2063 2064 /** 2065 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2066 * @skb: buffer to segment 2067 * @features: device features as applicable to this skb 2068 * 2069 * This function segments the given skb and stores the list of segments 2070 * in skb->next. 2071 */ 2072 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2073 { 2074 struct sk_buff *segs; 2075 2076 segs = skb_gso_segment(skb, features); 2077 2078 /* Verifying header integrity only. */ 2079 if (!segs) 2080 return 0; 2081 2082 if (IS_ERR(segs)) 2083 return PTR_ERR(segs); 2084 2085 skb->next = segs; 2086 DEV_GSO_CB(skb)->destructor = skb->destructor; 2087 skb->destructor = dev_gso_skb_destructor; 2088 2089 return 0; 2090 } 2091 2092 /* 2093 * Try to orphan skb early, right before transmission by the device. 2094 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2095 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2096 */ 2097 static inline void skb_orphan_try(struct sk_buff *skb) 2098 { 2099 struct sock *sk = skb->sk; 2100 2101 if (sk && !skb_shinfo(skb)->tx_flags) { 2102 /* skb_tx_hash() wont be able to get sk. 2103 * We copy sk_hash into skb->rxhash 2104 */ 2105 if (!skb->rxhash) 2106 skb->rxhash = sk->sk_hash; 2107 skb_orphan(skb); 2108 } 2109 } 2110 2111 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2112 { 2113 return ((features & NETIF_F_GEN_CSUM) || 2114 ((features & NETIF_F_V4_CSUM) && 2115 protocol == htons(ETH_P_IP)) || 2116 ((features & NETIF_F_V6_CSUM) && 2117 protocol == htons(ETH_P_IPV6)) || 2118 ((features & NETIF_F_FCOE_CRC) && 2119 protocol == htons(ETH_P_FCOE))); 2120 } 2121 2122 static netdev_features_t harmonize_features(struct sk_buff *skb, 2123 __be16 protocol, netdev_features_t features) 2124 { 2125 if (!can_checksum_protocol(features, protocol)) { 2126 features &= ~NETIF_F_ALL_CSUM; 2127 features &= ~NETIF_F_SG; 2128 } else if (illegal_highdma(skb->dev, skb)) { 2129 features &= ~NETIF_F_SG; 2130 } 2131 2132 return features; 2133 } 2134 2135 netdev_features_t netif_skb_features(struct sk_buff *skb) 2136 { 2137 __be16 protocol = skb->protocol; 2138 netdev_features_t features = skb->dev->features; 2139 2140 if (protocol == htons(ETH_P_8021Q)) { 2141 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2142 protocol = veh->h_vlan_encapsulated_proto; 2143 } else if (!vlan_tx_tag_present(skb)) { 2144 return harmonize_features(skb, protocol, features); 2145 } 2146 2147 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2148 2149 if (protocol != htons(ETH_P_8021Q)) { 2150 return harmonize_features(skb, protocol, features); 2151 } else { 2152 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2153 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2154 return harmonize_features(skb, protocol, features); 2155 } 2156 } 2157 EXPORT_SYMBOL(netif_skb_features); 2158 2159 /* 2160 * Returns true if either: 2161 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2162 * 2. skb is fragmented and the device does not support SG, or if 2163 * at least one of fragments is in highmem and device does not 2164 * support DMA from it. 2165 */ 2166 static inline int skb_needs_linearize(struct sk_buff *skb, 2167 int features) 2168 { 2169 return skb_is_nonlinear(skb) && 2170 ((skb_has_frag_list(skb) && 2171 !(features & NETIF_F_FRAGLIST)) || 2172 (skb_shinfo(skb)->nr_frags && 2173 !(features & NETIF_F_SG))); 2174 } 2175 2176 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2177 struct netdev_queue *txq) 2178 { 2179 const struct net_device_ops *ops = dev->netdev_ops; 2180 int rc = NETDEV_TX_OK; 2181 unsigned int skb_len; 2182 2183 if (likely(!skb->next)) { 2184 netdev_features_t features; 2185 2186 /* 2187 * If device doesn't need skb->dst, release it right now while 2188 * its hot in this cpu cache 2189 */ 2190 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2191 skb_dst_drop(skb); 2192 2193 if (!list_empty(&ptype_all)) 2194 dev_queue_xmit_nit(skb, dev); 2195 2196 skb_orphan_try(skb); 2197 2198 features = netif_skb_features(skb); 2199 2200 if (vlan_tx_tag_present(skb) && 2201 !(features & NETIF_F_HW_VLAN_TX)) { 2202 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2203 if (unlikely(!skb)) 2204 goto out; 2205 2206 skb->vlan_tci = 0; 2207 } 2208 2209 if (netif_needs_gso(skb, features)) { 2210 if (unlikely(dev_gso_segment(skb, features))) 2211 goto out_kfree_skb; 2212 if (skb->next) 2213 goto gso; 2214 } else { 2215 if (skb_needs_linearize(skb, features) && 2216 __skb_linearize(skb)) 2217 goto out_kfree_skb; 2218 2219 /* If packet is not checksummed and device does not 2220 * support checksumming for this protocol, complete 2221 * checksumming here. 2222 */ 2223 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2224 skb_set_transport_header(skb, 2225 skb_checksum_start_offset(skb)); 2226 if (!(features & NETIF_F_ALL_CSUM) && 2227 skb_checksum_help(skb)) 2228 goto out_kfree_skb; 2229 } 2230 } 2231 2232 skb_len = skb->len; 2233 rc = ops->ndo_start_xmit(skb, dev); 2234 trace_net_dev_xmit(skb, rc, dev, skb_len); 2235 if (rc == NETDEV_TX_OK) 2236 txq_trans_update(txq); 2237 return rc; 2238 } 2239 2240 gso: 2241 do { 2242 struct sk_buff *nskb = skb->next; 2243 2244 skb->next = nskb->next; 2245 nskb->next = NULL; 2246 2247 /* 2248 * If device doesn't need nskb->dst, release it right now while 2249 * its hot in this cpu cache 2250 */ 2251 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2252 skb_dst_drop(nskb); 2253 2254 skb_len = nskb->len; 2255 rc = ops->ndo_start_xmit(nskb, dev); 2256 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2257 if (unlikely(rc != NETDEV_TX_OK)) { 2258 if (rc & ~NETDEV_TX_MASK) 2259 goto out_kfree_gso_skb; 2260 nskb->next = skb->next; 2261 skb->next = nskb; 2262 return rc; 2263 } 2264 txq_trans_update(txq); 2265 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2266 return NETDEV_TX_BUSY; 2267 } while (skb->next); 2268 2269 out_kfree_gso_skb: 2270 if (likely(skb->next == NULL)) 2271 skb->destructor = DEV_GSO_CB(skb)->destructor; 2272 out_kfree_skb: 2273 kfree_skb(skb); 2274 out: 2275 return rc; 2276 } 2277 2278 static u32 hashrnd __read_mostly; 2279 2280 /* 2281 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2282 * to be used as a distribution range. 2283 */ 2284 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2285 unsigned int num_tx_queues) 2286 { 2287 u32 hash; 2288 u16 qoffset = 0; 2289 u16 qcount = num_tx_queues; 2290 2291 if (skb_rx_queue_recorded(skb)) { 2292 hash = skb_get_rx_queue(skb); 2293 while (unlikely(hash >= num_tx_queues)) 2294 hash -= num_tx_queues; 2295 return hash; 2296 } 2297 2298 if (dev->num_tc) { 2299 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2300 qoffset = dev->tc_to_txq[tc].offset; 2301 qcount = dev->tc_to_txq[tc].count; 2302 } 2303 2304 if (skb->sk && skb->sk->sk_hash) 2305 hash = skb->sk->sk_hash; 2306 else 2307 hash = (__force u16) skb->protocol ^ skb->rxhash; 2308 hash = jhash_1word(hash, hashrnd); 2309 2310 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2311 } 2312 EXPORT_SYMBOL(__skb_tx_hash); 2313 2314 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2315 { 2316 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2317 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2318 dev->name, queue_index, 2319 dev->real_num_tx_queues); 2320 return 0; 2321 } 2322 return queue_index; 2323 } 2324 2325 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2326 { 2327 #ifdef CONFIG_XPS 2328 struct xps_dev_maps *dev_maps; 2329 struct xps_map *map; 2330 int queue_index = -1; 2331 2332 rcu_read_lock(); 2333 dev_maps = rcu_dereference(dev->xps_maps); 2334 if (dev_maps) { 2335 map = rcu_dereference( 2336 dev_maps->cpu_map[raw_smp_processor_id()]); 2337 if (map) { 2338 if (map->len == 1) 2339 queue_index = map->queues[0]; 2340 else { 2341 u32 hash; 2342 if (skb->sk && skb->sk->sk_hash) 2343 hash = skb->sk->sk_hash; 2344 else 2345 hash = (__force u16) skb->protocol ^ 2346 skb->rxhash; 2347 hash = jhash_1word(hash, hashrnd); 2348 queue_index = map->queues[ 2349 ((u64)hash * map->len) >> 32]; 2350 } 2351 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2352 queue_index = -1; 2353 } 2354 } 2355 rcu_read_unlock(); 2356 2357 return queue_index; 2358 #else 2359 return -1; 2360 #endif 2361 } 2362 2363 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2364 struct sk_buff *skb) 2365 { 2366 int queue_index; 2367 const struct net_device_ops *ops = dev->netdev_ops; 2368 2369 if (dev->real_num_tx_queues == 1) 2370 queue_index = 0; 2371 else if (ops->ndo_select_queue) { 2372 queue_index = ops->ndo_select_queue(dev, skb); 2373 queue_index = dev_cap_txqueue(dev, queue_index); 2374 } else { 2375 struct sock *sk = skb->sk; 2376 queue_index = sk_tx_queue_get(sk); 2377 2378 if (queue_index < 0 || skb->ooo_okay || 2379 queue_index >= dev->real_num_tx_queues) { 2380 int old_index = queue_index; 2381 2382 queue_index = get_xps_queue(dev, skb); 2383 if (queue_index < 0) 2384 queue_index = skb_tx_hash(dev, skb); 2385 2386 if (queue_index != old_index && sk) { 2387 struct dst_entry *dst = 2388 rcu_dereference_check(sk->sk_dst_cache, 1); 2389 2390 if (dst && skb_dst(skb) == dst) 2391 sk_tx_queue_set(sk, queue_index); 2392 } 2393 } 2394 } 2395 2396 skb_set_queue_mapping(skb, queue_index); 2397 return netdev_get_tx_queue(dev, queue_index); 2398 } 2399 2400 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2401 struct net_device *dev, 2402 struct netdev_queue *txq) 2403 { 2404 spinlock_t *root_lock = qdisc_lock(q); 2405 bool contended; 2406 int rc; 2407 2408 qdisc_skb_cb(skb)->pkt_len = skb->len; 2409 qdisc_calculate_pkt_len(skb, q); 2410 /* 2411 * Heuristic to force contended enqueues to serialize on a 2412 * separate lock before trying to get qdisc main lock. 2413 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2414 * and dequeue packets faster. 2415 */ 2416 contended = qdisc_is_running(q); 2417 if (unlikely(contended)) 2418 spin_lock(&q->busylock); 2419 2420 spin_lock(root_lock); 2421 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2422 kfree_skb(skb); 2423 rc = NET_XMIT_DROP; 2424 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2425 qdisc_run_begin(q)) { 2426 /* 2427 * This is a work-conserving queue; there are no old skbs 2428 * waiting to be sent out; and the qdisc is not running - 2429 * xmit the skb directly. 2430 */ 2431 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2432 skb_dst_force(skb); 2433 2434 qdisc_bstats_update(q, skb); 2435 2436 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2437 if (unlikely(contended)) { 2438 spin_unlock(&q->busylock); 2439 contended = false; 2440 } 2441 __qdisc_run(q); 2442 } else 2443 qdisc_run_end(q); 2444 2445 rc = NET_XMIT_SUCCESS; 2446 } else { 2447 skb_dst_force(skb); 2448 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2449 if (qdisc_run_begin(q)) { 2450 if (unlikely(contended)) { 2451 spin_unlock(&q->busylock); 2452 contended = false; 2453 } 2454 __qdisc_run(q); 2455 } 2456 } 2457 spin_unlock(root_lock); 2458 if (unlikely(contended)) 2459 spin_unlock(&q->busylock); 2460 return rc; 2461 } 2462 2463 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2464 static void skb_update_prio(struct sk_buff *skb) 2465 { 2466 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2467 2468 if ((!skb->priority) && (skb->sk) && map) 2469 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx]; 2470 } 2471 #else 2472 #define skb_update_prio(skb) 2473 #endif 2474 2475 static DEFINE_PER_CPU(int, xmit_recursion); 2476 #define RECURSION_LIMIT 10 2477 2478 /** 2479 * dev_queue_xmit - transmit a buffer 2480 * @skb: buffer to transmit 2481 * 2482 * Queue a buffer for transmission to a network device. The caller must 2483 * have set the device and priority and built the buffer before calling 2484 * this function. The function can be called from an interrupt. 2485 * 2486 * A negative errno code is returned on a failure. A success does not 2487 * guarantee the frame will be transmitted as it may be dropped due 2488 * to congestion or traffic shaping. 2489 * 2490 * ----------------------------------------------------------------------------------- 2491 * I notice this method can also return errors from the queue disciplines, 2492 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2493 * be positive. 2494 * 2495 * Regardless of the return value, the skb is consumed, so it is currently 2496 * difficult to retry a send to this method. (You can bump the ref count 2497 * before sending to hold a reference for retry if you are careful.) 2498 * 2499 * When calling this method, interrupts MUST be enabled. This is because 2500 * the BH enable code must have IRQs enabled so that it will not deadlock. 2501 * --BLG 2502 */ 2503 int dev_queue_xmit(struct sk_buff *skb) 2504 { 2505 struct net_device *dev = skb->dev; 2506 struct netdev_queue *txq; 2507 struct Qdisc *q; 2508 int rc = -ENOMEM; 2509 2510 /* Disable soft irqs for various locks below. Also 2511 * stops preemption for RCU. 2512 */ 2513 rcu_read_lock_bh(); 2514 2515 skb_update_prio(skb); 2516 2517 txq = dev_pick_tx(dev, skb); 2518 q = rcu_dereference_bh(txq->qdisc); 2519 2520 #ifdef CONFIG_NET_CLS_ACT 2521 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2522 #endif 2523 trace_net_dev_queue(skb); 2524 if (q->enqueue) { 2525 rc = __dev_xmit_skb(skb, q, dev, txq); 2526 goto out; 2527 } 2528 2529 /* The device has no queue. Common case for software devices: 2530 loopback, all the sorts of tunnels... 2531 2532 Really, it is unlikely that netif_tx_lock protection is necessary 2533 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2534 counters.) 2535 However, it is possible, that they rely on protection 2536 made by us here. 2537 2538 Check this and shot the lock. It is not prone from deadlocks. 2539 Either shot noqueue qdisc, it is even simpler 8) 2540 */ 2541 if (dev->flags & IFF_UP) { 2542 int cpu = smp_processor_id(); /* ok because BHs are off */ 2543 2544 if (txq->xmit_lock_owner != cpu) { 2545 2546 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2547 goto recursion_alert; 2548 2549 HARD_TX_LOCK(dev, txq, cpu); 2550 2551 if (!netif_xmit_stopped(txq)) { 2552 __this_cpu_inc(xmit_recursion); 2553 rc = dev_hard_start_xmit(skb, dev, txq); 2554 __this_cpu_dec(xmit_recursion); 2555 if (dev_xmit_complete(rc)) { 2556 HARD_TX_UNLOCK(dev, txq); 2557 goto out; 2558 } 2559 } 2560 HARD_TX_UNLOCK(dev, txq); 2561 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2562 dev->name); 2563 } else { 2564 /* Recursion is detected! It is possible, 2565 * unfortunately 2566 */ 2567 recursion_alert: 2568 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2569 dev->name); 2570 } 2571 } 2572 2573 rc = -ENETDOWN; 2574 rcu_read_unlock_bh(); 2575 2576 kfree_skb(skb); 2577 return rc; 2578 out: 2579 rcu_read_unlock_bh(); 2580 return rc; 2581 } 2582 EXPORT_SYMBOL(dev_queue_xmit); 2583 2584 2585 /*======================================================================= 2586 Receiver routines 2587 =======================================================================*/ 2588 2589 int netdev_max_backlog __read_mostly = 1000; 2590 int netdev_tstamp_prequeue __read_mostly = 1; 2591 int netdev_budget __read_mostly = 300; 2592 int weight_p __read_mostly = 64; /* old backlog weight */ 2593 2594 /* Called with irq disabled */ 2595 static inline void ____napi_schedule(struct softnet_data *sd, 2596 struct napi_struct *napi) 2597 { 2598 list_add_tail(&napi->poll_list, &sd->poll_list); 2599 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2600 } 2601 2602 /* 2603 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2604 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2605 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2606 * if hash is a canonical 4-tuple hash over transport ports. 2607 */ 2608 void __skb_get_rxhash(struct sk_buff *skb) 2609 { 2610 struct flow_keys keys; 2611 u32 hash; 2612 2613 if (!skb_flow_dissect(skb, &keys)) 2614 return; 2615 2616 if (keys.ports) { 2617 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]) 2618 swap(keys.port16[0], keys.port16[1]); 2619 skb->l4_rxhash = 1; 2620 } 2621 2622 /* get a consistent hash (same value on both flow directions) */ 2623 if ((__force u32)keys.dst < (__force u32)keys.src) 2624 swap(keys.dst, keys.src); 2625 2626 hash = jhash_3words((__force u32)keys.dst, 2627 (__force u32)keys.src, 2628 (__force u32)keys.ports, hashrnd); 2629 if (!hash) 2630 hash = 1; 2631 2632 skb->rxhash = hash; 2633 } 2634 EXPORT_SYMBOL(__skb_get_rxhash); 2635 2636 #ifdef CONFIG_RPS 2637 2638 /* One global table that all flow-based protocols share. */ 2639 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2640 EXPORT_SYMBOL(rps_sock_flow_table); 2641 2642 struct static_key rps_needed __read_mostly; 2643 2644 static struct rps_dev_flow * 2645 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2646 struct rps_dev_flow *rflow, u16 next_cpu) 2647 { 2648 if (next_cpu != RPS_NO_CPU) { 2649 #ifdef CONFIG_RFS_ACCEL 2650 struct netdev_rx_queue *rxqueue; 2651 struct rps_dev_flow_table *flow_table; 2652 struct rps_dev_flow *old_rflow; 2653 u32 flow_id; 2654 u16 rxq_index; 2655 int rc; 2656 2657 /* Should we steer this flow to a different hardware queue? */ 2658 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2659 !(dev->features & NETIF_F_NTUPLE)) 2660 goto out; 2661 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2662 if (rxq_index == skb_get_rx_queue(skb)) 2663 goto out; 2664 2665 rxqueue = dev->_rx + rxq_index; 2666 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2667 if (!flow_table) 2668 goto out; 2669 flow_id = skb->rxhash & flow_table->mask; 2670 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2671 rxq_index, flow_id); 2672 if (rc < 0) 2673 goto out; 2674 old_rflow = rflow; 2675 rflow = &flow_table->flows[flow_id]; 2676 rflow->filter = rc; 2677 if (old_rflow->filter == rflow->filter) 2678 old_rflow->filter = RPS_NO_FILTER; 2679 out: 2680 #endif 2681 rflow->last_qtail = 2682 per_cpu(softnet_data, next_cpu).input_queue_head; 2683 } 2684 2685 rflow->cpu = next_cpu; 2686 return rflow; 2687 } 2688 2689 /* 2690 * get_rps_cpu is called from netif_receive_skb and returns the target 2691 * CPU from the RPS map of the receiving queue for a given skb. 2692 * rcu_read_lock must be held on entry. 2693 */ 2694 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2695 struct rps_dev_flow **rflowp) 2696 { 2697 struct netdev_rx_queue *rxqueue; 2698 struct rps_map *map; 2699 struct rps_dev_flow_table *flow_table; 2700 struct rps_sock_flow_table *sock_flow_table; 2701 int cpu = -1; 2702 u16 tcpu; 2703 2704 if (skb_rx_queue_recorded(skb)) { 2705 u16 index = skb_get_rx_queue(skb); 2706 if (unlikely(index >= dev->real_num_rx_queues)) { 2707 WARN_ONCE(dev->real_num_rx_queues > 1, 2708 "%s received packet on queue %u, but number " 2709 "of RX queues is %u\n", 2710 dev->name, index, dev->real_num_rx_queues); 2711 goto done; 2712 } 2713 rxqueue = dev->_rx + index; 2714 } else 2715 rxqueue = dev->_rx; 2716 2717 map = rcu_dereference(rxqueue->rps_map); 2718 if (map) { 2719 if (map->len == 1 && 2720 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2721 tcpu = map->cpus[0]; 2722 if (cpu_online(tcpu)) 2723 cpu = tcpu; 2724 goto done; 2725 } 2726 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2727 goto done; 2728 } 2729 2730 skb_reset_network_header(skb); 2731 if (!skb_get_rxhash(skb)) 2732 goto done; 2733 2734 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2735 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2736 if (flow_table && sock_flow_table) { 2737 u16 next_cpu; 2738 struct rps_dev_flow *rflow; 2739 2740 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2741 tcpu = rflow->cpu; 2742 2743 next_cpu = sock_flow_table->ents[skb->rxhash & 2744 sock_flow_table->mask]; 2745 2746 /* 2747 * If the desired CPU (where last recvmsg was done) is 2748 * different from current CPU (one in the rx-queue flow 2749 * table entry), switch if one of the following holds: 2750 * - Current CPU is unset (equal to RPS_NO_CPU). 2751 * - Current CPU is offline. 2752 * - The current CPU's queue tail has advanced beyond the 2753 * last packet that was enqueued using this table entry. 2754 * This guarantees that all previous packets for the flow 2755 * have been dequeued, thus preserving in order delivery. 2756 */ 2757 if (unlikely(tcpu != next_cpu) && 2758 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2759 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2760 rflow->last_qtail)) >= 0)) 2761 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2762 2763 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2764 *rflowp = rflow; 2765 cpu = tcpu; 2766 goto done; 2767 } 2768 } 2769 2770 if (map) { 2771 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2772 2773 if (cpu_online(tcpu)) { 2774 cpu = tcpu; 2775 goto done; 2776 } 2777 } 2778 2779 done: 2780 return cpu; 2781 } 2782 2783 #ifdef CONFIG_RFS_ACCEL 2784 2785 /** 2786 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2787 * @dev: Device on which the filter was set 2788 * @rxq_index: RX queue index 2789 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2790 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2791 * 2792 * Drivers that implement ndo_rx_flow_steer() should periodically call 2793 * this function for each installed filter and remove the filters for 2794 * which it returns %true. 2795 */ 2796 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2797 u32 flow_id, u16 filter_id) 2798 { 2799 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2800 struct rps_dev_flow_table *flow_table; 2801 struct rps_dev_flow *rflow; 2802 bool expire = true; 2803 int cpu; 2804 2805 rcu_read_lock(); 2806 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2807 if (flow_table && flow_id <= flow_table->mask) { 2808 rflow = &flow_table->flows[flow_id]; 2809 cpu = ACCESS_ONCE(rflow->cpu); 2810 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2811 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2812 rflow->last_qtail) < 2813 (int)(10 * flow_table->mask))) 2814 expire = false; 2815 } 2816 rcu_read_unlock(); 2817 return expire; 2818 } 2819 EXPORT_SYMBOL(rps_may_expire_flow); 2820 2821 #endif /* CONFIG_RFS_ACCEL */ 2822 2823 /* Called from hardirq (IPI) context */ 2824 static void rps_trigger_softirq(void *data) 2825 { 2826 struct softnet_data *sd = data; 2827 2828 ____napi_schedule(sd, &sd->backlog); 2829 sd->received_rps++; 2830 } 2831 2832 #endif /* CONFIG_RPS */ 2833 2834 /* 2835 * Check if this softnet_data structure is another cpu one 2836 * If yes, queue it to our IPI list and return 1 2837 * If no, return 0 2838 */ 2839 static int rps_ipi_queued(struct softnet_data *sd) 2840 { 2841 #ifdef CONFIG_RPS 2842 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2843 2844 if (sd != mysd) { 2845 sd->rps_ipi_next = mysd->rps_ipi_list; 2846 mysd->rps_ipi_list = sd; 2847 2848 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2849 return 1; 2850 } 2851 #endif /* CONFIG_RPS */ 2852 return 0; 2853 } 2854 2855 /* 2856 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2857 * queue (may be a remote CPU queue). 2858 */ 2859 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2860 unsigned int *qtail) 2861 { 2862 struct softnet_data *sd; 2863 unsigned long flags; 2864 2865 sd = &per_cpu(softnet_data, cpu); 2866 2867 local_irq_save(flags); 2868 2869 rps_lock(sd); 2870 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2871 if (skb_queue_len(&sd->input_pkt_queue)) { 2872 enqueue: 2873 __skb_queue_tail(&sd->input_pkt_queue, skb); 2874 input_queue_tail_incr_save(sd, qtail); 2875 rps_unlock(sd); 2876 local_irq_restore(flags); 2877 return NET_RX_SUCCESS; 2878 } 2879 2880 /* Schedule NAPI for backlog device 2881 * We can use non atomic operation since we own the queue lock 2882 */ 2883 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2884 if (!rps_ipi_queued(sd)) 2885 ____napi_schedule(sd, &sd->backlog); 2886 } 2887 goto enqueue; 2888 } 2889 2890 sd->dropped++; 2891 rps_unlock(sd); 2892 2893 local_irq_restore(flags); 2894 2895 atomic_long_inc(&skb->dev->rx_dropped); 2896 kfree_skb(skb); 2897 return NET_RX_DROP; 2898 } 2899 2900 /** 2901 * netif_rx - post buffer to the network code 2902 * @skb: buffer to post 2903 * 2904 * This function receives a packet from a device driver and queues it for 2905 * the upper (protocol) levels to process. It always succeeds. The buffer 2906 * may be dropped during processing for congestion control or by the 2907 * protocol layers. 2908 * 2909 * return values: 2910 * NET_RX_SUCCESS (no congestion) 2911 * NET_RX_DROP (packet was dropped) 2912 * 2913 */ 2914 2915 int netif_rx(struct sk_buff *skb) 2916 { 2917 int ret; 2918 2919 /* if netpoll wants it, pretend we never saw it */ 2920 if (netpoll_rx(skb)) 2921 return NET_RX_DROP; 2922 2923 net_timestamp_check(netdev_tstamp_prequeue, skb); 2924 2925 trace_netif_rx(skb); 2926 #ifdef CONFIG_RPS 2927 if (static_key_false(&rps_needed)) { 2928 struct rps_dev_flow voidflow, *rflow = &voidflow; 2929 int cpu; 2930 2931 preempt_disable(); 2932 rcu_read_lock(); 2933 2934 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2935 if (cpu < 0) 2936 cpu = smp_processor_id(); 2937 2938 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2939 2940 rcu_read_unlock(); 2941 preempt_enable(); 2942 } else 2943 #endif 2944 { 2945 unsigned int qtail; 2946 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2947 put_cpu(); 2948 } 2949 return ret; 2950 } 2951 EXPORT_SYMBOL(netif_rx); 2952 2953 int netif_rx_ni(struct sk_buff *skb) 2954 { 2955 int err; 2956 2957 preempt_disable(); 2958 err = netif_rx(skb); 2959 if (local_softirq_pending()) 2960 do_softirq(); 2961 preempt_enable(); 2962 2963 return err; 2964 } 2965 EXPORT_SYMBOL(netif_rx_ni); 2966 2967 static void net_tx_action(struct softirq_action *h) 2968 { 2969 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2970 2971 if (sd->completion_queue) { 2972 struct sk_buff *clist; 2973 2974 local_irq_disable(); 2975 clist = sd->completion_queue; 2976 sd->completion_queue = NULL; 2977 local_irq_enable(); 2978 2979 while (clist) { 2980 struct sk_buff *skb = clist; 2981 clist = clist->next; 2982 2983 WARN_ON(atomic_read(&skb->users)); 2984 trace_kfree_skb(skb, net_tx_action); 2985 __kfree_skb(skb); 2986 } 2987 } 2988 2989 if (sd->output_queue) { 2990 struct Qdisc *head; 2991 2992 local_irq_disable(); 2993 head = sd->output_queue; 2994 sd->output_queue = NULL; 2995 sd->output_queue_tailp = &sd->output_queue; 2996 local_irq_enable(); 2997 2998 while (head) { 2999 struct Qdisc *q = head; 3000 spinlock_t *root_lock; 3001 3002 head = head->next_sched; 3003 3004 root_lock = qdisc_lock(q); 3005 if (spin_trylock(root_lock)) { 3006 smp_mb__before_clear_bit(); 3007 clear_bit(__QDISC_STATE_SCHED, 3008 &q->state); 3009 qdisc_run(q); 3010 spin_unlock(root_lock); 3011 } else { 3012 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3013 &q->state)) { 3014 __netif_reschedule(q); 3015 } else { 3016 smp_mb__before_clear_bit(); 3017 clear_bit(__QDISC_STATE_SCHED, 3018 &q->state); 3019 } 3020 } 3021 } 3022 } 3023 } 3024 3025 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3026 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3027 /* This hook is defined here for ATM LANE */ 3028 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3029 unsigned char *addr) __read_mostly; 3030 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3031 #endif 3032 3033 #ifdef CONFIG_NET_CLS_ACT 3034 /* TODO: Maybe we should just force sch_ingress to be compiled in 3035 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3036 * a compare and 2 stores extra right now if we dont have it on 3037 * but have CONFIG_NET_CLS_ACT 3038 * NOTE: This doesn't stop any functionality; if you dont have 3039 * the ingress scheduler, you just can't add policies on ingress. 3040 * 3041 */ 3042 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3043 { 3044 struct net_device *dev = skb->dev; 3045 u32 ttl = G_TC_RTTL(skb->tc_verd); 3046 int result = TC_ACT_OK; 3047 struct Qdisc *q; 3048 3049 if (unlikely(MAX_RED_LOOP < ttl++)) { 3050 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3051 skb->skb_iif, dev->ifindex); 3052 return TC_ACT_SHOT; 3053 } 3054 3055 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3056 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3057 3058 q = rxq->qdisc; 3059 if (q != &noop_qdisc) { 3060 spin_lock(qdisc_lock(q)); 3061 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3062 result = qdisc_enqueue_root(skb, q); 3063 spin_unlock(qdisc_lock(q)); 3064 } 3065 3066 return result; 3067 } 3068 3069 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3070 struct packet_type **pt_prev, 3071 int *ret, struct net_device *orig_dev) 3072 { 3073 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3074 3075 if (!rxq || rxq->qdisc == &noop_qdisc) 3076 goto out; 3077 3078 if (*pt_prev) { 3079 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3080 *pt_prev = NULL; 3081 } 3082 3083 switch (ing_filter(skb, rxq)) { 3084 case TC_ACT_SHOT: 3085 case TC_ACT_STOLEN: 3086 kfree_skb(skb); 3087 return NULL; 3088 } 3089 3090 out: 3091 skb->tc_verd = 0; 3092 return skb; 3093 } 3094 #endif 3095 3096 /** 3097 * netdev_rx_handler_register - register receive handler 3098 * @dev: device to register a handler for 3099 * @rx_handler: receive handler to register 3100 * @rx_handler_data: data pointer that is used by rx handler 3101 * 3102 * Register a receive hander for a device. This handler will then be 3103 * called from __netif_receive_skb. A negative errno code is returned 3104 * on a failure. 3105 * 3106 * The caller must hold the rtnl_mutex. 3107 * 3108 * For a general description of rx_handler, see enum rx_handler_result. 3109 */ 3110 int netdev_rx_handler_register(struct net_device *dev, 3111 rx_handler_func_t *rx_handler, 3112 void *rx_handler_data) 3113 { 3114 ASSERT_RTNL(); 3115 3116 if (dev->rx_handler) 3117 return -EBUSY; 3118 3119 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3120 rcu_assign_pointer(dev->rx_handler, rx_handler); 3121 3122 return 0; 3123 } 3124 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3125 3126 /** 3127 * netdev_rx_handler_unregister - unregister receive handler 3128 * @dev: device to unregister a handler from 3129 * 3130 * Unregister a receive hander from a device. 3131 * 3132 * The caller must hold the rtnl_mutex. 3133 */ 3134 void netdev_rx_handler_unregister(struct net_device *dev) 3135 { 3136 3137 ASSERT_RTNL(); 3138 RCU_INIT_POINTER(dev->rx_handler, NULL); 3139 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3140 } 3141 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3142 3143 static int __netif_receive_skb(struct sk_buff *skb) 3144 { 3145 struct packet_type *ptype, *pt_prev; 3146 rx_handler_func_t *rx_handler; 3147 struct net_device *orig_dev; 3148 struct net_device *null_or_dev; 3149 bool deliver_exact = false; 3150 int ret = NET_RX_DROP; 3151 __be16 type; 3152 3153 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3154 3155 trace_netif_receive_skb(skb); 3156 3157 /* if we've gotten here through NAPI, check netpoll */ 3158 if (netpoll_receive_skb(skb)) 3159 return NET_RX_DROP; 3160 3161 if (!skb->skb_iif) 3162 skb->skb_iif = skb->dev->ifindex; 3163 orig_dev = skb->dev; 3164 3165 skb_reset_network_header(skb); 3166 skb_reset_transport_header(skb); 3167 skb_reset_mac_len(skb); 3168 3169 pt_prev = NULL; 3170 3171 rcu_read_lock(); 3172 3173 another_round: 3174 3175 __this_cpu_inc(softnet_data.processed); 3176 3177 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3178 skb = vlan_untag(skb); 3179 if (unlikely(!skb)) 3180 goto out; 3181 } 3182 3183 #ifdef CONFIG_NET_CLS_ACT 3184 if (skb->tc_verd & TC_NCLS) { 3185 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3186 goto ncls; 3187 } 3188 #endif 3189 3190 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3191 if (!ptype->dev || ptype->dev == skb->dev) { 3192 if (pt_prev) 3193 ret = deliver_skb(skb, pt_prev, orig_dev); 3194 pt_prev = ptype; 3195 } 3196 } 3197 3198 #ifdef CONFIG_NET_CLS_ACT 3199 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3200 if (!skb) 3201 goto out; 3202 ncls: 3203 #endif 3204 3205 rx_handler = rcu_dereference(skb->dev->rx_handler); 3206 if (vlan_tx_tag_present(skb)) { 3207 if (pt_prev) { 3208 ret = deliver_skb(skb, pt_prev, orig_dev); 3209 pt_prev = NULL; 3210 } 3211 if (vlan_do_receive(&skb, !rx_handler)) 3212 goto another_round; 3213 else if (unlikely(!skb)) 3214 goto out; 3215 } 3216 3217 if (rx_handler) { 3218 if (pt_prev) { 3219 ret = deliver_skb(skb, pt_prev, orig_dev); 3220 pt_prev = NULL; 3221 } 3222 switch (rx_handler(&skb)) { 3223 case RX_HANDLER_CONSUMED: 3224 goto out; 3225 case RX_HANDLER_ANOTHER: 3226 goto another_round; 3227 case RX_HANDLER_EXACT: 3228 deliver_exact = true; 3229 case RX_HANDLER_PASS: 3230 break; 3231 default: 3232 BUG(); 3233 } 3234 } 3235 3236 /* deliver only exact match when indicated */ 3237 null_or_dev = deliver_exact ? skb->dev : NULL; 3238 3239 type = skb->protocol; 3240 list_for_each_entry_rcu(ptype, 3241 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3242 if (ptype->type == type && 3243 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3244 ptype->dev == orig_dev)) { 3245 if (pt_prev) 3246 ret = deliver_skb(skb, pt_prev, orig_dev); 3247 pt_prev = ptype; 3248 } 3249 } 3250 3251 if (pt_prev) { 3252 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3253 } else { 3254 atomic_long_inc(&skb->dev->rx_dropped); 3255 kfree_skb(skb); 3256 /* Jamal, now you will not able to escape explaining 3257 * me how you were going to use this. :-) 3258 */ 3259 ret = NET_RX_DROP; 3260 } 3261 3262 out: 3263 rcu_read_unlock(); 3264 return ret; 3265 } 3266 3267 /** 3268 * netif_receive_skb - process receive buffer from network 3269 * @skb: buffer to process 3270 * 3271 * netif_receive_skb() is the main receive data processing function. 3272 * It always succeeds. The buffer may be dropped during processing 3273 * for congestion control or by the protocol layers. 3274 * 3275 * This function may only be called from softirq context and interrupts 3276 * should be enabled. 3277 * 3278 * Return values (usually ignored): 3279 * NET_RX_SUCCESS: no congestion 3280 * NET_RX_DROP: packet was dropped 3281 */ 3282 int netif_receive_skb(struct sk_buff *skb) 3283 { 3284 net_timestamp_check(netdev_tstamp_prequeue, skb); 3285 3286 if (skb_defer_rx_timestamp(skb)) 3287 return NET_RX_SUCCESS; 3288 3289 #ifdef CONFIG_RPS 3290 if (static_key_false(&rps_needed)) { 3291 struct rps_dev_flow voidflow, *rflow = &voidflow; 3292 int cpu, ret; 3293 3294 rcu_read_lock(); 3295 3296 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3297 3298 if (cpu >= 0) { 3299 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3300 rcu_read_unlock(); 3301 return ret; 3302 } 3303 rcu_read_unlock(); 3304 } 3305 #endif 3306 return __netif_receive_skb(skb); 3307 } 3308 EXPORT_SYMBOL(netif_receive_skb); 3309 3310 /* Network device is going away, flush any packets still pending 3311 * Called with irqs disabled. 3312 */ 3313 static void flush_backlog(void *arg) 3314 { 3315 struct net_device *dev = arg; 3316 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3317 struct sk_buff *skb, *tmp; 3318 3319 rps_lock(sd); 3320 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3321 if (skb->dev == dev) { 3322 __skb_unlink(skb, &sd->input_pkt_queue); 3323 kfree_skb(skb); 3324 input_queue_head_incr(sd); 3325 } 3326 } 3327 rps_unlock(sd); 3328 3329 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3330 if (skb->dev == dev) { 3331 __skb_unlink(skb, &sd->process_queue); 3332 kfree_skb(skb); 3333 input_queue_head_incr(sd); 3334 } 3335 } 3336 } 3337 3338 static int napi_gro_complete(struct sk_buff *skb) 3339 { 3340 struct packet_type *ptype; 3341 __be16 type = skb->protocol; 3342 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3343 int err = -ENOENT; 3344 3345 if (NAPI_GRO_CB(skb)->count == 1) { 3346 skb_shinfo(skb)->gso_size = 0; 3347 goto out; 3348 } 3349 3350 rcu_read_lock(); 3351 list_for_each_entry_rcu(ptype, head, list) { 3352 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3353 continue; 3354 3355 err = ptype->gro_complete(skb); 3356 break; 3357 } 3358 rcu_read_unlock(); 3359 3360 if (err) { 3361 WARN_ON(&ptype->list == head); 3362 kfree_skb(skb); 3363 return NET_RX_SUCCESS; 3364 } 3365 3366 out: 3367 return netif_receive_skb(skb); 3368 } 3369 3370 inline void napi_gro_flush(struct napi_struct *napi) 3371 { 3372 struct sk_buff *skb, *next; 3373 3374 for (skb = napi->gro_list; skb; skb = next) { 3375 next = skb->next; 3376 skb->next = NULL; 3377 napi_gro_complete(skb); 3378 } 3379 3380 napi->gro_count = 0; 3381 napi->gro_list = NULL; 3382 } 3383 EXPORT_SYMBOL(napi_gro_flush); 3384 3385 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3386 { 3387 struct sk_buff **pp = NULL; 3388 struct packet_type *ptype; 3389 __be16 type = skb->protocol; 3390 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3391 int same_flow; 3392 int mac_len; 3393 enum gro_result ret; 3394 3395 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3396 goto normal; 3397 3398 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3399 goto normal; 3400 3401 rcu_read_lock(); 3402 list_for_each_entry_rcu(ptype, head, list) { 3403 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3404 continue; 3405 3406 skb_set_network_header(skb, skb_gro_offset(skb)); 3407 mac_len = skb->network_header - skb->mac_header; 3408 skb->mac_len = mac_len; 3409 NAPI_GRO_CB(skb)->same_flow = 0; 3410 NAPI_GRO_CB(skb)->flush = 0; 3411 NAPI_GRO_CB(skb)->free = 0; 3412 3413 pp = ptype->gro_receive(&napi->gro_list, skb); 3414 break; 3415 } 3416 rcu_read_unlock(); 3417 3418 if (&ptype->list == head) 3419 goto normal; 3420 3421 same_flow = NAPI_GRO_CB(skb)->same_flow; 3422 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3423 3424 if (pp) { 3425 struct sk_buff *nskb = *pp; 3426 3427 *pp = nskb->next; 3428 nskb->next = NULL; 3429 napi_gro_complete(nskb); 3430 napi->gro_count--; 3431 } 3432 3433 if (same_flow) 3434 goto ok; 3435 3436 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3437 goto normal; 3438 3439 napi->gro_count++; 3440 NAPI_GRO_CB(skb)->count = 1; 3441 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3442 skb->next = napi->gro_list; 3443 napi->gro_list = skb; 3444 ret = GRO_HELD; 3445 3446 pull: 3447 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3448 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3449 3450 BUG_ON(skb->end - skb->tail < grow); 3451 3452 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3453 3454 skb->tail += grow; 3455 skb->data_len -= grow; 3456 3457 skb_shinfo(skb)->frags[0].page_offset += grow; 3458 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3459 3460 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3461 skb_frag_unref(skb, 0); 3462 memmove(skb_shinfo(skb)->frags, 3463 skb_shinfo(skb)->frags + 1, 3464 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3465 } 3466 } 3467 3468 ok: 3469 return ret; 3470 3471 normal: 3472 ret = GRO_NORMAL; 3473 goto pull; 3474 } 3475 EXPORT_SYMBOL(dev_gro_receive); 3476 3477 static inline gro_result_t 3478 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3479 { 3480 struct sk_buff *p; 3481 unsigned int maclen = skb->dev->hard_header_len; 3482 3483 for (p = napi->gro_list; p; p = p->next) { 3484 unsigned long diffs; 3485 3486 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3487 diffs |= p->vlan_tci ^ skb->vlan_tci; 3488 if (maclen == ETH_HLEN) 3489 diffs |= compare_ether_header(skb_mac_header(p), 3490 skb_gro_mac_header(skb)); 3491 else if (!diffs) 3492 diffs = memcmp(skb_mac_header(p), 3493 skb_gro_mac_header(skb), 3494 maclen); 3495 NAPI_GRO_CB(p)->same_flow = !diffs; 3496 NAPI_GRO_CB(p)->flush = 0; 3497 } 3498 3499 return dev_gro_receive(napi, skb); 3500 } 3501 3502 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3503 { 3504 switch (ret) { 3505 case GRO_NORMAL: 3506 if (netif_receive_skb(skb)) 3507 ret = GRO_DROP; 3508 break; 3509 3510 case GRO_DROP: 3511 kfree_skb(skb); 3512 break; 3513 3514 case GRO_MERGED_FREE: 3515 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3516 kmem_cache_free(skbuff_head_cache, skb); 3517 else 3518 __kfree_skb(skb); 3519 break; 3520 3521 case GRO_HELD: 3522 case GRO_MERGED: 3523 break; 3524 } 3525 3526 return ret; 3527 } 3528 EXPORT_SYMBOL(napi_skb_finish); 3529 3530 void skb_gro_reset_offset(struct sk_buff *skb) 3531 { 3532 NAPI_GRO_CB(skb)->data_offset = 0; 3533 NAPI_GRO_CB(skb)->frag0 = NULL; 3534 NAPI_GRO_CB(skb)->frag0_len = 0; 3535 3536 if (skb->mac_header == skb->tail && 3537 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3538 NAPI_GRO_CB(skb)->frag0 = 3539 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3540 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3541 } 3542 } 3543 EXPORT_SYMBOL(skb_gro_reset_offset); 3544 3545 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3546 { 3547 skb_gro_reset_offset(skb); 3548 3549 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3550 } 3551 EXPORT_SYMBOL(napi_gro_receive); 3552 3553 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3554 { 3555 __skb_pull(skb, skb_headlen(skb)); 3556 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3557 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3558 skb->vlan_tci = 0; 3559 skb->dev = napi->dev; 3560 skb->skb_iif = 0; 3561 3562 napi->skb = skb; 3563 } 3564 3565 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3566 { 3567 struct sk_buff *skb = napi->skb; 3568 3569 if (!skb) { 3570 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3571 if (skb) 3572 napi->skb = skb; 3573 } 3574 return skb; 3575 } 3576 EXPORT_SYMBOL(napi_get_frags); 3577 3578 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3579 gro_result_t ret) 3580 { 3581 switch (ret) { 3582 case GRO_NORMAL: 3583 case GRO_HELD: 3584 skb->protocol = eth_type_trans(skb, skb->dev); 3585 3586 if (ret == GRO_HELD) 3587 skb_gro_pull(skb, -ETH_HLEN); 3588 else if (netif_receive_skb(skb)) 3589 ret = GRO_DROP; 3590 break; 3591 3592 case GRO_DROP: 3593 case GRO_MERGED_FREE: 3594 napi_reuse_skb(napi, skb); 3595 break; 3596 3597 case GRO_MERGED: 3598 break; 3599 } 3600 3601 return ret; 3602 } 3603 EXPORT_SYMBOL(napi_frags_finish); 3604 3605 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3606 { 3607 struct sk_buff *skb = napi->skb; 3608 struct ethhdr *eth; 3609 unsigned int hlen; 3610 unsigned int off; 3611 3612 napi->skb = NULL; 3613 3614 skb_reset_mac_header(skb); 3615 skb_gro_reset_offset(skb); 3616 3617 off = skb_gro_offset(skb); 3618 hlen = off + sizeof(*eth); 3619 eth = skb_gro_header_fast(skb, off); 3620 if (skb_gro_header_hard(skb, hlen)) { 3621 eth = skb_gro_header_slow(skb, hlen, off); 3622 if (unlikely(!eth)) { 3623 napi_reuse_skb(napi, skb); 3624 skb = NULL; 3625 goto out; 3626 } 3627 } 3628 3629 skb_gro_pull(skb, sizeof(*eth)); 3630 3631 /* 3632 * This works because the only protocols we care about don't require 3633 * special handling. We'll fix it up properly at the end. 3634 */ 3635 skb->protocol = eth->h_proto; 3636 3637 out: 3638 return skb; 3639 } 3640 3641 gro_result_t napi_gro_frags(struct napi_struct *napi) 3642 { 3643 struct sk_buff *skb = napi_frags_skb(napi); 3644 3645 if (!skb) 3646 return GRO_DROP; 3647 3648 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3649 } 3650 EXPORT_SYMBOL(napi_gro_frags); 3651 3652 /* 3653 * net_rps_action sends any pending IPI's for rps. 3654 * Note: called with local irq disabled, but exits with local irq enabled. 3655 */ 3656 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3657 { 3658 #ifdef CONFIG_RPS 3659 struct softnet_data *remsd = sd->rps_ipi_list; 3660 3661 if (remsd) { 3662 sd->rps_ipi_list = NULL; 3663 3664 local_irq_enable(); 3665 3666 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3667 while (remsd) { 3668 struct softnet_data *next = remsd->rps_ipi_next; 3669 3670 if (cpu_online(remsd->cpu)) 3671 __smp_call_function_single(remsd->cpu, 3672 &remsd->csd, 0); 3673 remsd = next; 3674 } 3675 } else 3676 #endif 3677 local_irq_enable(); 3678 } 3679 3680 static int process_backlog(struct napi_struct *napi, int quota) 3681 { 3682 int work = 0; 3683 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3684 3685 #ifdef CONFIG_RPS 3686 /* Check if we have pending ipi, its better to send them now, 3687 * not waiting net_rx_action() end. 3688 */ 3689 if (sd->rps_ipi_list) { 3690 local_irq_disable(); 3691 net_rps_action_and_irq_enable(sd); 3692 } 3693 #endif 3694 napi->weight = weight_p; 3695 local_irq_disable(); 3696 while (work < quota) { 3697 struct sk_buff *skb; 3698 unsigned int qlen; 3699 3700 while ((skb = __skb_dequeue(&sd->process_queue))) { 3701 local_irq_enable(); 3702 __netif_receive_skb(skb); 3703 local_irq_disable(); 3704 input_queue_head_incr(sd); 3705 if (++work >= quota) { 3706 local_irq_enable(); 3707 return work; 3708 } 3709 } 3710 3711 rps_lock(sd); 3712 qlen = skb_queue_len(&sd->input_pkt_queue); 3713 if (qlen) 3714 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3715 &sd->process_queue); 3716 3717 if (qlen < quota - work) { 3718 /* 3719 * Inline a custom version of __napi_complete(). 3720 * only current cpu owns and manipulates this napi, 3721 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3722 * we can use a plain write instead of clear_bit(), 3723 * and we dont need an smp_mb() memory barrier. 3724 */ 3725 list_del(&napi->poll_list); 3726 napi->state = 0; 3727 3728 quota = work + qlen; 3729 } 3730 rps_unlock(sd); 3731 } 3732 local_irq_enable(); 3733 3734 return work; 3735 } 3736 3737 /** 3738 * __napi_schedule - schedule for receive 3739 * @n: entry to schedule 3740 * 3741 * The entry's receive function will be scheduled to run 3742 */ 3743 void __napi_schedule(struct napi_struct *n) 3744 { 3745 unsigned long flags; 3746 3747 local_irq_save(flags); 3748 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3749 local_irq_restore(flags); 3750 } 3751 EXPORT_SYMBOL(__napi_schedule); 3752 3753 void __napi_complete(struct napi_struct *n) 3754 { 3755 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3756 BUG_ON(n->gro_list); 3757 3758 list_del(&n->poll_list); 3759 smp_mb__before_clear_bit(); 3760 clear_bit(NAPI_STATE_SCHED, &n->state); 3761 } 3762 EXPORT_SYMBOL(__napi_complete); 3763 3764 void napi_complete(struct napi_struct *n) 3765 { 3766 unsigned long flags; 3767 3768 /* 3769 * don't let napi dequeue from the cpu poll list 3770 * just in case its running on a different cpu 3771 */ 3772 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3773 return; 3774 3775 napi_gro_flush(n); 3776 local_irq_save(flags); 3777 __napi_complete(n); 3778 local_irq_restore(flags); 3779 } 3780 EXPORT_SYMBOL(napi_complete); 3781 3782 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3783 int (*poll)(struct napi_struct *, int), int weight) 3784 { 3785 INIT_LIST_HEAD(&napi->poll_list); 3786 napi->gro_count = 0; 3787 napi->gro_list = NULL; 3788 napi->skb = NULL; 3789 napi->poll = poll; 3790 napi->weight = weight; 3791 list_add(&napi->dev_list, &dev->napi_list); 3792 napi->dev = dev; 3793 #ifdef CONFIG_NETPOLL 3794 spin_lock_init(&napi->poll_lock); 3795 napi->poll_owner = -1; 3796 #endif 3797 set_bit(NAPI_STATE_SCHED, &napi->state); 3798 } 3799 EXPORT_SYMBOL(netif_napi_add); 3800 3801 void netif_napi_del(struct napi_struct *napi) 3802 { 3803 struct sk_buff *skb, *next; 3804 3805 list_del_init(&napi->dev_list); 3806 napi_free_frags(napi); 3807 3808 for (skb = napi->gro_list; skb; skb = next) { 3809 next = skb->next; 3810 skb->next = NULL; 3811 kfree_skb(skb); 3812 } 3813 3814 napi->gro_list = NULL; 3815 napi->gro_count = 0; 3816 } 3817 EXPORT_SYMBOL(netif_napi_del); 3818 3819 static void net_rx_action(struct softirq_action *h) 3820 { 3821 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3822 unsigned long time_limit = jiffies + 2; 3823 int budget = netdev_budget; 3824 void *have; 3825 3826 local_irq_disable(); 3827 3828 while (!list_empty(&sd->poll_list)) { 3829 struct napi_struct *n; 3830 int work, weight; 3831 3832 /* If softirq window is exhuasted then punt. 3833 * Allow this to run for 2 jiffies since which will allow 3834 * an average latency of 1.5/HZ. 3835 */ 3836 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3837 goto softnet_break; 3838 3839 local_irq_enable(); 3840 3841 /* Even though interrupts have been re-enabled, this 3842 * access is safe because interrupts can only add new 3843 * entries to the tail of this list, and only ->poll() 3844 * calls can remove this head entry from the list. 3845 */ 3846 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3847 3848 have = netpoll_poll_lock(n); 3849 3850 weight = n->weight; 3851 3852 /* This NAPI_STATE_SCHED test is for avoiding a race 3853 * with netpoll's poll_napi(). Only the entity which 3854 * obtains the lock and sees NAPI_STATE_SCHED set will 3855 * actually make the ->poll() call. Therefore we avoid 3856 * accidentally calling ->poll() when NAPI is not scheduled. 3857 */ 3858 work = 0; 3859 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3860 work = n->poll(n, weight); 3861 trace_napi_poll(n); 3862 } 3863 3864 WARN_ON_ONCE(work > weight); 3865 3866 budget -= work; 3867 3868 local_irq_disable(); 3869 3870 /* Drivers must not modify the NAPI state if they 3871 * consume the entire weight. In such cases this code 3872 * still "owns" the NAPI instance and therefore can 3873 * move the instance around on the list at-will. 3874 */ 3875 if (unlikely(work == weight)) { 3876 if (unlikely(napi_disable_pending(n))) { 3877 local_irq_enable(); 3878 napi_complete(n); 3879 local_irq_disable(); 3880 } else 3881 list_move_tail(&n->poll_list, &sd->poll_list); 3882 } 3883 3884 netpoll_poll_unlock(have); 3885 } 3886 out: 3887 net_rps_action_and_irq_enable(sd); 3888 3889 #ifdef CONFIG_NET_DMA 3890 /* 3891 * There may not be any more sk_buffs coming right now, so push 3892 * any pending DMA copies to hardware 3893 */ 3894 dma_issue_pending_all(); 3895 #endif 3896 3897 return; 3898 3899 softnet_break: 3900 sd->time_squeeze++; 3901 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3902 goto out; 3903 } 3904 3905 static gifconf_func_t *gifconf_list[NPROTO]; 3906 3907 /** 3908 * register_gifconf - register a SIOCGIF handler 3909 * @family: Address family 3910 * @gifconf: Function handler 3911 * 3912 * Register protocol dependent address dumping routines. The handler 3913 * that is passed must not be freed or reused until it has been replaced 3914 * by another handler. 3915 */ 3916 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3917 { 3918 if (family >= NPROTO) 3919 return -EINVAL; 3920 gifconf_list[family] = gifconf; 3921 return 0; 3922 } 3923 EXPORT_SYMBOL(register_gifconf); 3924 3925 3926 /* 3927 * Map an interface index to its name (SIOCGIFNAME) 3928 */ 3929 3930 /* 3931 * We need this ioctl for efficient implementation of the 3932 * if_indextoname() function required by the IPv6 API. Without 3933 * it, we would have to search all the interfaces to find a 3934 * match. --pb 3935 */ 3936 3937 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3938 { 3939 struct net_device *dev; 3940 struct ifreq ifr; 3941 3942 /* 3943 * Fetch the caller's info block. 3944 */ 3945 3946 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3947 return -EFAULT; 3948 3949 rcu_read_lock(); 3950 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3951 if (!dev) { 3952 rcu_read_unlock(); 3953 return -ENODEV; 3954 } 3955 3956 strcpy(ifr.ifr_name, dev->name); 3957 rcu_read_unlock(); 3958 3959 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3960 return -EFAULT; 3961 return 0; 3962 } 3963 3964 /* 3965 * Perform a SIOCGIFCONF call. This structure will change 3966 * size eventually, and there is nothing I can do about it. 3967 * Thus we will need a 'compatibility mode'. 3968 */ 3969 3970 static int dev_ifconf(struct net *net, char __user *arg) 3971 { 3972 struct ifconf ifc; 3973 struct net_device *dev; 3974 char __user *pos; 3975 int len; 3976 int total; 3977 int i; 3978 3979 /* 3980 * Fetch the caller's info block. 3981 */ 3982 3983 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3984 return -EFAULT; 3985 3986 pos = ifc.ifc_buf; 3987 len = ifc.ifc_len; 3988 3989 /* 3990 * Loop over the interfaces, and write an info block for each. 3991 */ 3992 3993 total = 0; 3994 for_each_netdev(net, dev) { 3995 for (i = 0; i < NPROTO; i++) { 3996 if (gifconf_list[i]) { 3997 int done; 3998 if (!pos) 3999 done = gifconf_list[i](dev, NULL, 0); 4000 else 4001 done = gifconf_list[i](dev, pos + total, 4002 len - total); 4003 if (done < 0) 4004 return -EFAULT; 4005 total += done; 4006 } 4007 } 4008 } 4009 4010 /* 4011 * All done. Write the updated control block back to the caller. 4012 */ 4013 ifc.ifc_len = total; 4014 4015 /* 4016 * Both BSD and Solaris return 0 here, so we do too. 4017 */ 4018 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4019 } 4020 4021 #ifdef CONFIG_PROC_FS 4022 4023 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1) 4024 4025 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4026 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4027 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4028 4029 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos) 4030 { 4031 struct net *net = seq_file_net(seq); 4032 struct net_device *dev; 4033 struct hlist_node *p; 4034 struct hlist_head *h; 4035 unsigned int count = 0, offset = get_offset(*pos); 4036 4037 h = &net->dev_name_head[get_bucket(*pos)]; 4038 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4039 if (++count == offset) 4040 return dev; 4041 } 4042 4043 return NULL; 4044 } 4045 4046 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos) 4047 { 4048 struct net_device *dev; 4049 unsigned int bucket; 4050 4051 do { 4052 dev = dev_from_same_bucket(seq, pos); 4053 if (dev) 4054 return dev; 4055 4056 bucket = get_bucket(*pos) + 1; 4057 *pos = set_bucket_offset(bucket, 1); 4058 } while (bucket < NETDEV_HASHENTRIES); 4059 4060 return NULL; 4061 } 4062 4063 /* 4064 * This is invoked by the /proc filesystem handler to display a device 4065 * in detail. 4066 */ 4067 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4068 __acquires(RCU) 4069 { 4070 rcu_read_lock(); 4071 if (!*pos) 4072 return SEQ_START_TOKEN; 4073 4074 if (get_bucket(*pos) >= NETDEV_HASHENTRIES) 4075 return NULL; 4076 4077 return dev_from_bucket(seq, pos); 4078 } 4079 4080 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4081 { 4082 ++*pos; 4083 return dev_from_bucket(seq, pos); 4084 } 4085 4086 void dev_seq_stop(struct seq_file *seq, void *v) 4087 __releases(RCU) 4088 { 4089 rcu_read_unlock(); 4090 } 4091 4092 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4093 { 4094 struct rtnl_link_stats64 temp; 4095 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4096 4097 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4098 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4099 dev->name, stats->rx_bytes, stats->rx_packets, 4100 stats->rx_errors, 4101 stats->rx_dropped + stats->rx_missed_errors, 4102 stats->rx_fifo_errors, 4103 stats->rx_length_errors + stats->rx_over_errors + 4104 stats->rx_crc_errors + stats->rx_frame_errors, 4105 stats->rx_compressed, stats->multicast, 4106 stats->tx_bytes, stats->tx_packets, 4107 stats->tx_errors, stats->tx_dropped, 4108 stats->tx_fifo_errors, stats->collisions, 4109 stats->tx_carrier_errors + 4110 stats->tx_aborted_errors + 4111 stats->tx_window_errors + 4112 stats->tx_heartbeat_errors, 4113 stats->tx_compressed); 4114 } 4115 4116 /* 4117 * Called from the PROCfs module. This now uses the new arbitrary sized 4118 * /proc/net interface to create /proc/net/dev 4119 */ 4120 static int dev_seq_show(struct seq_file *seq, void *v) 4121 { 4122 if (v == SEQ_START_TOKEN) 4123 seq_puts(seq, "Inter-| Receive " 4124 " | Transmit\n" 4125 " face |bytes packets errs drop fifo frame " 4126 "compressed multicast|bytes packets errs " 4127 "drop fifo colls carrier compressed\n"); 4128 else 4129 dev_seq_printf_stats(seq, v); 4130 return 0; 4131 } 4132 4133 static struct softnet_data *softnet_get_online(loff_t *pos) 4134 { 4135 struct softnet_data *sd = NULL; 4136 4137 while (*pos < nr_cpu_ids) 4138 if (cpu_online(*pos)) { 4139 sd = &per_cpu(softnet_data, *pos); 4140 break; 4141 } else 4142 ++*pos; 4143 return sd; 4144 } 4145 4146 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4147 { 4148 return softnet_get_online(pos); 4149 } 4150 4151 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4152 { 4153 ++*pos; 4154 return softnet_get_online(pos); 4155 } 4156 4157 static void softnet_seq_stop(struct seq_file *seq, void *v) 4158 { 4159 } 4160 4161 static int softnet_seq_show(struct seq_file *seq, void *v) 4162 { 4163 struct softnet_data *sd = v; 4164 4165 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4166 sd->processed, sd->dropped, sd->time_squeeze, 0, 4167 0, 0, 0, 0, /* was fastroute */ 4168 sd->cpu_collision, sd->received_rps); 4169 return 0; 4170 } 4171 4172 static const struct seq_operations dev_seq_ops = { 4173 .start = dev_seq_start, 4174 .next = dev_seq_next, 4175 .stop = dev_seq_stop, 4176 .show = dev_seq_show, 4177 }; 4178 4179 static int dev_seq_open(struct inode *inode, struct file *file) 4180 { 4181 return seq_open_net(inode, file, &dev_seq_ops, 4182 sizeof(struct seq_net_private)); 4183 } 4184 4185 static const struct file_operations dev_seq_fops = { 4186 .owner = THIS_MODULE, 4187 .open = dev_seq_open, 4188 .read = seq_read, 4189 .llseek = seq_lseek, 4190 .release = seq_release_net, 4191 }; 4192 4193 static const struct seq_operations softnet_seq_ops = { 4194 .start = softnet_seq_start, 4195 .next = softnet_seq_next, 4196 .stop = softnet_seq_stop, 4197 .show = softnet_seq_show, 4198 }; 4199 4200 static int softnet_seq_open(struct inode *inode, struct file *file) 4201 { 4202 return seq_open(file, &softnet_seq_ops); 4203 } 4204 4205 static const struct file_operations softnet_seq_fops = { 4206 .owner = THIS_MODULE, 4207 .open = softnet_seq_open, 4208 .read = seq_read, 4209 .llseek = seq_lseek, 4210 .release = seq_release, 4211 }; 4212 4213 static void *ptype_get_idx(loff_t pos) 4214 { 4215 struct packet_type *pt = NULL; 4216 loff_t i = 0; 4217 int t; 4218 4219 list_for_each_entry_rcu(pt, &ptype_all, list) { 4220 if (i == pos) 4221 return pt; 4222 ++i; 4223 } 4224 4225 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4226 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4227 if (i == pos) 4228 return pt; 4229 ++i; 4230 } 4231 } 4232 return NULL; 4233 } 4234 4235 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4236 __acquires(RCU) 4237 { 4238 rcu_read_lock(); 4239 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4240 } 4241 4242 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4243 { 4244 struct packet_type *pt; 4245 struct list_head *nxt; 4246 int hash; 4247 4248 ++*pos; 4249 if (v == SEQ_START_TOKEN) 4250 return ptype_get_idx(0); 4251 4252 pt = v; 4253 nxt = pt->list.next; 4254 if (pt->type == htons(ETH_P_ALL)) { 4255 if (nxt != &ptype_all) 4256 goto found; 4257 hash = 0; 4258 nxt = ptype_base[0].next; 4259 } else 4260 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4261 4262 while (nxt == &ptype_base[hash]) { 4263 if (++hash >= PTYPE_HASH_SIZE) 4264 return NULL; 4265 nxt = ptype_base[hash].next; 4266 } 4267 found: 4268 return list_entry(nxt, struct packet_type, list); 4269 } 4270 4271 static void ptype_seq_stop(struct seq_file *seq, void *v) 4272 __releases(RCU) 4273 { 4274 rcu_read_unlock(); 4275 } 4276 4277 static int ptype_seq_show(struct seq_file *seq, void *v) 4278 { 4279 struct packet_type *pt = v; 4280 4281 if (v == SEQ_START_TOKEN) 4282 seq_puts(seq, "Type Device Function\n"); 4283 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4284 if (pt->type == htons(ETH_P_ALL)) 4285 seq_puts(seq, "ALL "); 4286 else 4287 seq_printf(seq, "%04x", ntohs(pt->type)); 4288 4289 seq_printf(seq, " %-8s %pF\n", 4290 pt->dev ? pt->dev->name : "", pt->func); 4291 } 4292 4293 return 0; 4294 } 4295 4296 static const struct seq_operations ptype_seq_ops = { 4297 .start = ptype_seq_start, 4298 .next = ptype_seq_next, 4299 .stop = ptype_seq_stop, 4300 .show = ptype_seq_show, 4301 }; 4302 4303 static int ptype_seq_open(struct inode *inode, struct file *file) 4304 { 4305 return seq_open_net(inode, file, &ptype_seq_ops, 4306 sizeof(struct seq_net_private)); 4307 } 4308 4309 static const struct file_operations ptype_seq_fops = { 4310 .owner = THIS_MODULE, 4311 .open = ptype_seq_open, 4312 .read = seq_read, 4313 .llseek = seq_lseek, 4314 .release = seq_release_net, 4315 }; 4316 4317 4318 static int __net_init dev_proc_net_init(struct net *net) 4319 { 4320 int rc = -ENOMEM; 4321 4322 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4323 goto out; 4324 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4325 goto out_dev; 4326 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4327 goto out_softnet; 4328 4329 if (wext_proc_init(net)) 4330 goto out_ptype; 4331 rc = 0; 4332 out: 4333 return rc; 4334 out_ptype: 4335 proc_net_remove(net, "ptype"); 4336 out_softnet: 4337 proc_net_remove(net, "softnet_stat"); 4338 out_dev: 4339 proc_net_remove(net, "dev"); 4340 goto out; 4341 } 4342 4343 static void __net_exit dev_proc_net_exit(struct net *net) 4344 { 4345 wext_proc_exit(net); 4346 4347 proc_net_remove(net, "ptype"); 4348 proc_net_remove(net, "softnet_stat"); 4349 proc_net_remove(net, "dev"); 4350 } 4351 4352 static struct pernet_operations __net_initdata dev_proc_ops = { 4353 .init = dev_proc_net_init, 4354 .exit = dev_proc_net_exit, 4355 }; 4356 4357 static int __init dev_proc_init(void) 4358 { 4359 return register_pernet_subsys(&dev_proc_ops); 4360 } 4361 #else 4362 #define dev_proc_init() 0 4363 #endif /* CONFIG_PROC_FS */ 4364 4365 4366 /** 4367 * netdev_set_master - set up master pointer 4368 * @slave: slave device 4369 * @master: new master device 4370 * 4371 * Changes the master device of the slave. Pass %NULL to break the 4372 * bonding. The caller must hold the RTNL semaphore. On a failure 4373 * a negative errno code is returned. On success the reference counts 4374 * are adjusted and the function returns zero. 4375 */ 4376 int netdev_set_master(struct net_device *slave, struct net_device *master) 4377 { 4378 struct net_device *old = slave->master; 4379 4380 ASSERT_RTNL(); 4381 4382 if (master) { 4383 if (old) 4384 return -EBUSY; 4385 dev_hold(master); 4386 } 4387 4388 slave->master = master; 4389 4390 if (old) 4391 dev_put(old); 4392 return 0; 4393 } 4394 EXPORT_SYMBOL(netdev_set_master); 4395 4396 /** 4397 * netdev_set_bond_master - set up bonding master/slave pair 4398 * @slave: slave device 4399 * @master: new master device 4400 * 4401 * Changes the master device of the slave. Pass %NULL to break the 4402 * bonding. The caller must hold the RTNL semaphore. On a failure 4403 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4404 * to the routing socket and the function returns zero. 4405 */ 4406 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4407 { 4408 int err; 4409 4410 ASSERT_RTNL(); 4411 4412 err = netdev_set_master(slave, master); 4413 if (err) 4414 return err; 4415 if (master) 4416 slave->flags |= IFF_SLAVE; 4417 else 4418 slave->flags &= ~IFF_SLAVE; 4419 4420 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4421 return 0; 4422 } 4423 EXPORT_SYMBOL(netdev_set_bond_master); 4424 4425 static void dev_change_rx_flags(struct net_device *dev, int flags) 4426 { 4427 const struct net_device_ops *ops = dev->netdev_ops; 4428 4429 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4430 ops->ndo_change_rx_flags(dev, flags); 4431 } 4432 4433 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4434 { 4435 unsigned int old_flags = dev->flags; 4436 uid_t uid; 4437 gid_t gid; 4438 4439 ASSERT_RTNL(); 4440 4441 dev->flags |= IFF_PROMISC; 4442 dev->promiscuity += inc; 4443 if (dev->promiscuity == 0) { 4444 /* 4445 * Avoid overflow. 4446 * If inc causes overflow, untouch promisc and return error. 4447 */ 4448 if (inc < 0) 4449 dev->flags &= ~IFF_PROMISC; 4450 else { 4451 dev->promiscuity -= inc; 4452 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4453 dev->name); 4454 return -EOVERFLOW; 4455 } 4456 } 4457 if (dev->flags != old_flags) { 4458 pr_info("device %s %s promiscuous mode\n", 4459 dev->name, 4460 dev->flags & IFF_PROMISC ? "entered" : "left"); 4461 if (audit_enabled) { 4462 current_uid_gid(&uid, &gid); 4463 audit_log(current->audit_context, GFP_ATOMIC, 4464 AUDIT_ANOM_PROMISCUOUS, 4465 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4466 dev->name, (dev->flags & IFF_PROMISC), 4467 (old_flags & IFF_PROMISC), 4468 audit_get_loginuid(current), 4469 uid, gid, 4470 audit_get_sessionid(current)); 4471 } 4472 4473 dev_change_rx_flags(dev, IFF_PROMISC); 4474 } 4475 return 0; 4476 } 4477 4478 /** 4479 * dev_set_promiscuity - update promiscuity count on a device 4480 * @dev: device 4481 * @inc: modifier 4482 * 4483 * Add or remove promiscuity from a device. While the count in the device 4484 * remains above zero the interface remains promiscuous. Once it hits zero 4485 * the device reverts back to normal filtering operation. A negative inc 4486 * value is used to drop promiscuity on the device. 4487 * Return 0 if successful or a negative errno code on error. 4488 */ 4489 int dev_set_promiscuity(struct net_device *dev, int inc) 4490 { 4491 unsigned int old_flags = dev->flags; 4492 int err; 4493 4494 err = __dev_set_promiscuity(dev, inc); 4495 if (err < 0) 4496 return err; 4497 if (dev->flags != old_flags) 4498 dev_set_rx_mode(dev); 4499 return err; 4500 } 4501 EXPORT_SYMBOL(dev_set_promiscuity); 4502 4503 /** 4504 * dev_set_allmulti - update allmulti count on a device 4505 * @dev: device 4506 * @inc: modifier 4507 * 4508 * Add or remove reception of all multicast frames to a device. While the 4509 * count in the device remains above zero the interface remains listening 4510 * to all interfaces. Once it hits zero the device reverts back to normal 4511 * filtering operation. A negative @inc value is used to drop the counter 4512 * when releasing a resource needing all multicasts. 4513 * Return 0 if successful or a negative errno code on error. 4514 */ 4515 4516 int dev_set_allmulti(struct net_device *dev, int inc) 4517 { 4518 unsigned int old_flags = dev->flags; 4519 4520 ASSERT_RTNL(); 4521 4522 dev->flags |= IFF_ALLMULTI; 4523 dev->allmulti += inc; 4524 if (dev->allmulti == 0) { 4525 /* 4526 * Avoid overflow. 4527 * If inc causes overflow, untouch allmulti and return error. 4528 */ 4529 if (inc < 0) 4530 dev->flags &= ~IFF_ALLMULTI; 4531 else { 4532 dev->allmulti -= inc; 4533 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4534 dev->name); 4535 return -EOVERFLOW; 4536 } 4537 } 4538 if (dev->flags ^ old_flags) { 4539 dev_change_rx_flags(dev, IFF_ALLMULTI); 4540 dev_set_rx_mode(dev); 4541 } 4542 return 0; 4543 } 4544 EXPORT_SYMBOL(dev_set_allmulti); 4545 4546 /* 4547 * Upload unicast and multicast address lists to device and 4548 * configure RX filtering. When the device doesn't support unicast 4549 * filtering it is put in promiscuous mode while unicast addresses 4550 * are present. 4551 */ 4552 void __dev_set_rx_mode(struct net_device *dev) 4553 { 4554 const struct net_device_ops *ops = dev->netdev_ops; 4555 4556 /* dev_open will call this function so the list will stay sane. */ 4557 if (!(dev->flags&IFF_UP)) 4558 return; 4559 4560 if (!netif_device_present(dev)) 4561 return; 4562 4563 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4564 /* Unicast addresses changes may only happen under the rtnl, 4565 * therefore calling __dev_set_promiscuity here is safe. 4566 */ 4567 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4568 __dev_set_promiscuity(dev, 1); 4569 dev->uc_promisc = true; 4570 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4571 __dev_set_promiscuity(dev, -1); 4572 dev->uc_promisc = false; 4573 } 4574 } 4575 4576 if (ops->ndo_set_rx_mode) 4577 ops->ndo_set_rx_mode(dev); 4578 } 4579 4580 void dev_set_rx_mode(struct net_device *dev) 4581 { 4582 netif_addr_lock_bh(dev); 4583 __dev_set_rx_mode(dev); 4584 netif_addr_unlock_bh(dev); 4585 } 4586 4587 /** 4588 * dev_get_flags - get flags reported to userspace 4589 * @dev: device 4590 * 4591 * Get the combination of flag bits exported through APIs to userspace. 4592 */ 4593 unsigned int dev_get_flags(const struct net_device *dev) 4594 { 4595 unsigned int flags; 4596 4597 flags = (dev->flags & ~(IFF_PROMISC | 4598 IFF_ALLMULTI | 4599 IFF_RUNNING | 4600 IFF_LOWER_UP | 4601 IFF_DORMANT)) | 4602 (dev->gflags & (IFF_PROMISC | 4603 IFF_ALLMULTI)); 4604 4605 if (netif_running(dev)) { 4606 if (netif_oper_up(dev)) 4607 flags |= IFF_RUNNING; 4608 if (netif_carrier_ok(dev)) 4609 flags |= IFF_LOWER_UP; 4610 if (netif_dormant(dev)) 4611 flags |= IFF_DORMANT; 4612 } 4613 4614 return flags; 4615 } 4616 EXPORT_SYMBOL(dev_get_flags); 4617 4618 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4619 { 4620 unsigned int old_flags = dev->flags; 4621 int ret; 4622 4623 ASSERT_RTNL(); 4624 4625 /* 4626 * Set the flags on our device. 4627 */ 4628 4629 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4630 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4631 IFF_AUTOMEDIA)) | 4632 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4633 IFF_ALLMULTI)); 4634 4635 /* 4636 * Load in the correct multicast list now the flags have changed. 4637 */ 4638 4639 if ((old_flags ^ flags) & IFF_MULTICAST) 4640 dev_change_rx_flags(dev, IFF_MULTICAST); 4641 4642 dev_set_rx_mode(dev); 4643 4644 /* 4645 * Have we downed the interface. We handle IFF_UP ourselves 4646 * according to user attempts to set it, rather than blindly 4647 * setting it. 4648 */ 4649 4650 ret = 0; 4651 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4652 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4653 4654 if (!ret) 4655 dev_set_rx_mode(dev); 4656 } 4657 4658 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4659 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4660 4661 dev->gflags ^= IFF_PROMISC; 4662 dev_set_promiscuity(dev, inc); 4663 } 4664 4665 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4666 is important. Some (broken) drivers set IFF_PROMISC, when 4667 IFF_ALLMULTI is requested not asking us and not reporting. 4668 */ 4669 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4670 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4671 4672 dev->gflags ^= IFF_ALLMULTI; 4673 dev_set_allmulti(dev, inc); 4674 } 4675 4676 return ret; 4677 } 4678 4679 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4680 { 4681 unsigned int changes = dev->flags ^ old_flags; 4682 4683 if (changes & IFF_UP) { 4684 if (dev->flags & IFF_UP) 4685 call_netdevice_notifiers(NETDEV_UP, dev); 4686 else 4687 call_netdevice_notifiers(NETDEV_DOWN, dev); 4688 } 4689 4690 if (dev->flags & IFF_UP && 4691 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4692 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4693 } 4694 4695 /** 4696 * dev_change_flags - change device settings 4697 * @dev: device 4698 * @flags: device state flags 4699 * 4700 * Change settings on device based state flags. The flags are 4701 * in the userspace exported format. 4702 */ 4703 int dev_change_flags(struct net_device *dev, unsigned int flags) 4704 { 4705 int ret; 4706 unsigned int changes, old_flags = dev->flags; 4707 4708 ret = __dev_change_flags(dev, flags); 4709 if (ret < 0) 4710 return ret; 4711 4712 changes = old_flags ^ dev->flags; 4713 if (changes) 4714 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4715 4716 __dev_notify_flags(dev, old_flags); 4717 return ret; 4718 } 4719 EXPORT_SYMBOL(dev_change_flags); 4720 4721 /** 4722 * dev_set_mtu - Change maximum transfer unit 4723 * @dev: device 4724 * @new_mtu: new transfer unit 4725 * 4726 * Change the maximum transfer size of the network device. 4727 */ 4728 int dev_set_mtu(struct net_device *dev, int new_mtu) 4729 { 4730 const struct net_device_ops *ops = dev->netdev_ops; 4731 int err; 4732 4733 if (new_mtu == dev->mtu) 4734 return 0; 4735 4736 /* MTU must be positive. */ 4737 if (new_mtu < 0) 4738 return -EINVAL; 4739 4740 if (!netif_device_present(dev)) 4741 return -ENODEV; 4742 4743 err = 0; 4744 if (ops->ndo_change_mtu) 4745 err = ops->ndo_change_mtu(dev, new_mtu); 4746 else 4747 dev->mtu = new_mtu; 4748 4749 if (!err && dev->flags & IFF_UP) 4750 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4751 return err; 4752 } 4753 EXPORT_SYMBOL(dev_set_mtu); 4754 4755 /** 4756 * dev_set_group - Change group this device belongs to 4757 * @dev: device 4758 * @new_group: group this device should belong to 4759 */ 4760 void dev_set_group(struct net_device *dev, int new_group) 4761 { 4762 dev->group = new_group; 4763 } 4764 EXPORT_SYMBOL(dev_set_group); 4765 4766 /** 4767 * dev_set_mac_address - Change Media Access Control Address 4768 * @dev: device 4769 * @sa: new address 4770 * 4771 * Change the hardware (MAC) address of the device 4772 */ 4773 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4774 { 4775 const struct net_device_ops *ops = dev->netdev_ops; 4776 int err; 4777 4778 if (!ops->ndo_set_mac_address) 4779 return -EOPNOTSUPP; 4780 if (sa->sa_family != dev->type) 4781 return -EINVAL; 4782 if (!netif_device_present(dev)) 4783 return -ENODEV; 4784 err = ops->ndo_set_mac_address(dev, sa); 4785 if (!err) 4786 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4787 return err; 4788 } 4789 EXPORT_SYMBOL(dev_set_mac_address); 4790 4791 /* 4792 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4793 */ 4794 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4795 { 4796 int err; 4797 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4798 4799 if (!dev) 4800 return -ENODEV; 4801 4802 switch (cmd) { 4803 case SIOCGIFFLAGS: /* Get interface flags */ 4804 ifr->ifr_flags = (short) dev_get_flags(dev); 4805 return 0; 4806 4807 case SIOCGIFMETRIC: /* Get the metric on the interface 4808 (currently unused) */ 4809 ifr->ifr_metric = 0; 4810 return 0; 4811 4812 case SIOCGIFMTU: /* Get the MTU of a device */ 4813 ifr->ifr_mtu = dev->mtu; 4814 return 0; 4815 4816 case SIOCGIFHWADDR: 4817 if (!dev->addr_len) 4818 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4819 else 4820 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4821 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4822 ifr->ifr_hwaddr.sa_family = dev->type; 4823 return 0; 4824 4825 case SIOCGIFSLAVE: 4826 err = -EINVAL; 4827 break; 4828 4829 case SIOCGIFMAP: 4830 ifr->ifr_map.mem_start = dev->mem_start; 4831 ifr->ifr_map.mem_end = dev->mem_end; 4832 ifr->ifr_map.base_addr = dev->base_addr; 4833 ifr->ifr_map.irq = dev->irq; 4834 ifr->ifr_map.dma = dev->dma; 4835 ifr->ifr_map.port = dev->if_port; 4836 return 0; 4837 4838 case SIOCGIFINDEX: 4839 ifr->ifr_ifindex = dev->ifindex; 4840 return 0; 4841 4842 case SIOCGIFTXQLEN: 4843 ifr->ifr_qlen = dev->tx_queue_len; 4844 return 0; 4845 4846 default: 4847 /* dev_ioctl() should ensure this case 4848 * is never reached 4849 */ 4850 WARN_ON(1); 4851 err = -ENOTTY; 4852 break; 4853 4854 } 4855 return err; 4856 } 4857 4858 /* 4859 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4860 */ 4861 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4862 { 4863 int err; 4864 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4865 const struct net_device_ops *ops; 4866 4867 if (!dev) 4868 return -ENODEV; 4869 4870 ops = dev->netdev_ops; 4871 4872 switch (cmd) { 4873 case SIOCSIFFLAGS: /* Set interface flags */ 4874 return dev_change_flags(dev, ifr->ifr_flags); 4875 4876 case SIOCSIFMETRIC: /* Set the metric on the interface 4877 (currently unused) */ 4878 return -EOPNOTSUPP; 4879 4880 case SIOCSIFMTU: /* Set the MTU of a device */ 4881 return dev_set_mtu(dev, ifr->ifr_mtu); 4882 4883 case SIOCSIFHWADDR: 4884 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4885 4886 case SIOCSIFHWBROADCAST: 4887 if (ifr->ifr_hwaddr.sa_family != dev->type) 4888 return -EINVAL; 4889 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4890 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4891 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4892 return 0; 4893 4894 case SIOCSIFMAP: 4895 if (ops->ndo_set_config) { 4896 if (!netif_device_present(dev)) 4897 return -ENODEV; 4898 return ops->ndo_set_config(dev, &ifr->ifr_map); 4899 } 4900 return -EOPNOTSUPP; 4901 4902 case SIOCADDMULTI: 4903 if (!ops->ndo_set_rx_mode || 4904 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4905 return -EINVAL; 4906 if (!netif_device_present(dev)) 4907 return -ENODEV; 4908 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4909 4910 case SIOCDELMULTI: 4911 if (!ops->ndo_set_rx_mode || 4912 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4913 return -EINVAL; 4914 if (!netif_device_present(dev)) 4915 return -ENODEV; 4916 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4917 4918 case SIOCSIFTXQLEN: 4919 if (ifr->ifr_qlen < 0) 4920 return -EINVAL; 4921 dev->tx_queue_len = ifr->ifr_qlen; 4922 return 0; 4923 4924 case SIOCSIFNAME: 4925 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4926 return dev_change_name(dev, ifr->ifr_newname); 4927 4928 case SIOCSHWTSTAMP: 4929 err = net_hwtstamp_validate(ifr); 4930 if (err) 4931 return err; 4932 /* fall through */ 4933 4934 /* 4935 * Unknown or private ioctl 4936 */ 4937 default: 4938 if ((cmd >= SIOCDEVPRIVATE && 4939 cmd <= SIOCDEVPRIVATE + 15) || 4940 cmd == SIOCBONDENSLAVE || 4941 cmd == SIOCBONDRELEASE || 4942 cmd == SIOCBONDSETHWADDR || 4943 cmd == SIOCBONDSLAVEINFOQUERY || 4944 cmd == SIOCBONDINFOQUERY || 4945 cmd == SIOCBONDCHANGEACTIVE || 4946 cmd == SIOCGMIIPHY || 4947 cmd == SIOCGMIIREG || 4948 cmd == SIOCSMIIREG || 4949 cmd == SIOCBRADDIF || 4950 cmd == SIOCBRDELIF || 4951 cmd == SIOCSHWTSTAMP || 4952 cmd == SIOCWANDEV) { 4953 err = -EOPNOTSUPP; 4954 if (ops->ndo_do_ioctl) { 4955 if (netif_device_present(dev)) 4956 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4957 else 4958 err = -ENODEV; 4959 } 4960 } else 4961 err = -EINVAL; 4962 4963 } 4964 return err; 4965 } 4966 4967 /* 4968 * This function handles all "interface"-type I/O control requests. The actual 4969 * 'doing' part of this is dev_ifsioc above. 4970 */ 4971 4972 /** 4973 * dev_ioctl - network device ioctl 4974 * @net: the applicable net namespace 4975 * @cmd: command to issue 4976 * @arg: pointer to a struct ifreq in user space 4977 * 4978 * Issue ioctl functions to devices. This is normally called by the 4979 * user space syscall interfaces but can sometimes be useful for 4980 * other purposes. The return value is the return from the syscall if 4981 * positive or a negative errno code on error. 4982 */ 4983 4984 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4985 { 4986 struct ifreq ifr; 4987 int ret; 4988 char *colon; 4989 4990 /* One special case: SIOCGIFCONF takes ifconf argument 4991 and requires shared lock, because it sleeps writing 4992 to user space. 4993 */ 4994 4995 if (cmd == SIOCGIFCONF) { 4996 rtnl_lock(); 4997 ret = dev_ifconf(net, (char __user *) arg); 4998 rtnl_unlock(); 4999 return ret; 5000 } 5001 if (cmd == SIOCGIFNAME) 5002 return dev_ifname(net, (struct ifreq __user *)arg); 5003 5004 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5005 return -EFAULT; 5006 5007 ifr.ifr_name[IFNAMSIZ-1] = 0; 5008 5009 colon = strchr(ifr.ifr_name, ':'); 5010 if (colon) 5011 *colon = 0; 5012 5013 /* 5014 * See which interface the caller is talking about. 5015 */ 5016 5017 switch (cmd) { 5018 /* 5019 * These ioctl calls: 5020 * - can be done by all. 5021 * - atomic and do not require locking. 5022 * - return a value 5023 */ 5024 case SIOCGIFFLAGS: 5025 case SIOCGIFMETRIC: 5026 case SIOCGIFMTU: 5027 case SIOCGIFHWADDR: 5028 case SIOCGIFSLAVE: 5029 case SIOCGIFMAP: 5030 case SIOCGIFINDEX: 5031 case SIOCGIFTXQLEN: 5032 dev_load(net, ifr.ifr_name); 5033 rcu_read_lock(); 5034 ret = dev_ifsioc_locked(net, &ifr, cmd); 5035 rcu_read_unlock(); 5036 if (!ret) { 5037 if (colon) 5038 *colon = ':'; 5039 if (copy_to_user(arg, &ifr, 5040 sizeof(struct ifreq))) 5041 ret = -EFAULT; 5042 } 5043 return ret; 5044 5045 case SIOCETHTOOL: 5046 dev_load(net, ifr.ifr_name); 5047 rtnl_lock(); 5048 ret = dev_ethtool(net, &ifr); 5049 rtnl_unlock(); 5050 if (!ret) { 5051 if (colon) 5052 *colon = ':'; 5053 if (copy_to_user(arg, &ifr, 5054 sizeof(struct ifreq))) 5055 ret = -EFAULT; 5056 } 5057 return ret; 5058 5059 /* 5060 * These ioctl calls: 5061 * - require superuser power. 5062 * - require strict serialization. 5063 * - return a value 5064 */ 5065 case SIOCGMIIPHY: 5066 case SIOCGMIIREG: 5067 case SIOCSIFNAME: 5068 if (!capable(CAP_NET_ADMIN)) 5069 return -EPERM; 5070 dev_load(net, ifr.ifr_name); 5071 rtnl_lock(); 5072 ret = dev_ifsioc(net, &ifr, cmd); 5073 rtnl_unlock(); 5074 if (!ret) { 5075 if (colon) 5076 *colon = ':'; 5077 if (copy_to_user(arg, &ifr, 5078 sizeof(struct ifreq))) 5079 ret = -EFAULT; 5080 } 5081 return ret; 5082 5083 /* 5084 * These ioctl calls: 5085 * - require superuser power. 5086 * - require strict serialization. 5087 * - do not return a value 5088 */ 5089 case SIOCSIFFLAGS: 5090 case SIOCSIFMETRIC: 5091 case SIOCSIFMTU: 5092 case SIOCSIFMAP: 5093 case SIOCSIFHWADDR: 5094 case SIOCSIFSLAVE: 5095 case SIOCADDMULTI: 5096 case SIOCDELMULTI: 5097 case SIOCSIFHWBROADCAST: 5098 case SIOCSIFTXQLEN: 5099 case SIOCSMIIREG: 5100 case SIOCBONDENSLAVE: 5101 case SIOCBONDRELEASE: 5102 case SIOCBONDSETHWADDR: 5103 case SIOCBONDCHANGEACTIVE: 5104 case SIOCBRADDIF: 5105 case SIOCBRDELIF: 5106 case SIOCSHWTSTAMP: 5107 if (!capable(CAP_NET_ADMIN)) 5108 return -EPERM; 5109 /* fall through */ 5110 case SIOCBONDSLAVEINFOQUERY: 5111 case SIOCBONDINFOQUERY: 5112 dev_load(net, ifr.ifr_name); 5113 rtnl_lock(); 5114 ret = dev_ifsioc(net, &ifr, cmd); 5115 rtnl_unlock(); 5116 return ret; 5117 5118 case SIOCGIFMEM: 5119 /* Get the per device memory space. We can add this but 5120 * currently do not support it */ 5121 case SIOCSIFMEM: 5122 /* Set the per device memory buffer space. 5123 * Not applicable in our case */ 5124 case SIOCSIFLINK: 5125 return -ENOTTY; 5126 5127 /* 5128 * Unknown or private ioctl. 5129 */ 5130 default: 5131 if (cmd == SIOCWANDEV || 5132 (cmd >= SIOCDEVPRIVATE && 5133 cmd <= SIOCDEVPRIVATE + 15)) { 5134 dev_load(net, ifr.ifr_name); 5135 rtnl_lock(); 5136 ret = dev_ifsioc(net, &ifr, cmd); 5137 rtnl_unlock(); 5138 if (!ret && copy_to_user(arg, &ifr, 5139 sizeof(struct ifreq))) 5140 ret = -EFAULT; 5141 return ret; 5142 } 5143 /* Take care of Wireless Extensions */ 5144 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5145 return wext_handle_ioctl(net, &ifr, cmd, arg); 5146 return -ENOTTY; 5147 } 5148 } 5149 5150 5151 /** 5152 * dev_new_index - allocate an ifindex 5153 * @net: the applicable net namespace 5154 * 5155 * Returns a suitable unique value for a new device interface 5156 * number. The caller must hold the rtnl semaphore or the 5157 * dev_base_lock to be sure it remains unique. 5158 */ 5159 static int dev_new_index(struct net *net) 5160 { 5161 static int ifindex; 5162 for (;;) { 5163 if (++ifindex <= 0) 5164 ifindex = 1; 5165 if (!__dev_get_by_index(net, ifindex)) 5166 return ifindex; 5167 } 5168 } 5169 5170 /* Delayed registration/unregisteration */ 5171 static LIST_HEAD(net_todo_list); 5172 5173 static void net_set_todo(struct net_device *dev) 5174 { 5175 list_add_tail(&dev->todo_list, &net_todo_list); 5176 } 5177 5178 static void rollback_registered_many(struct list_head *head) 5179 { 5180 struct net_device *dev, *tmp; 5181 5182 BUG_ON(dev_boot_phase); 5183 ASSERT_RTNL(); 5184 5185 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5186 /* Some devices call without registering 5187 * for initialization unwind. Remove those 5188 * devices and proceed with the remaining. 5189 */ 5190 if (dev->reg_state == NETREG_UNINITIALIZED) { 5191 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5192 dev->name, dev); 5193 5194 WARN_ON(1); 5195 list_del(&dev->unreg_list); 5196 continue; 5197 } 5198 dev->dismantle = true; 5199 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5200 } 5201 5202 /* If device is running, close it first. */ 5203 dev_close_many(head); 5204 5205 list_for_each_entry(dev, head, unreg_list) { 5206 /* And unlink it from device chain. */ 5207 unlist_netdevice(dev); 5208 5209 dev->reg_state = NETREG_UNREGISTERING; 5210 } 5211 5212 synchronize_net(); 5213 5214 list_for_each_entry(dev, head, unreg_list) { 5215 /* Shutdown queueing discipline. */ 5216 dev_shutdown(dev); 5217 5218 5219 /* Notify protocols, that we are about to destroy 5220 this device. They should clean all the things. 5221 */ 5222 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5223 5224 if (!dev->rtnl_link_ops || 5225 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5226 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5227 5228 /* 5229 * Flush the unicast and multicast chains 5230 */ 5231 dev_uc_flush(dev); 5232 dev_mc_flush(dev); 5233 5234 if (dev->netdev_ops->ndo_uninit) 5235 dev->netdev_ops->ndo_uninit(dev); 5236 5237 /* Notifier chain MUST detach us from master device. */ 5238 WARN_ON(dev->master); 5239 5240 /* Remove entries from kobject tree */ 5241 netdev_unregister_kobject(dev); 5242 } 5243 5244 /* Process any work delayed until the end of the batch */ 5245 dev = list_first_entry(head, struct net_device, unreg_list); 5246 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5247 5248 synchronize_net(); 5249 5250 list_for_each_entry(dev, head, unreg_list) 5251 dev_put(dev); 5252 } 5253 5254 static void rollback_registered(struct net_device *dev) 5255 { 5256 LIST_HEAD(single); 5257 5258 list_add(&dev->unreg_list, &single); 5259 rollback_registered_many(&single); 5260 list_del(&single); 5261 } 5262 5263 static netdev_features_t netdev_fix_features(struct net_device *dev, 5264 netdev_features_t features) 5265 { 5266 /* Fix illegal checksum combinations */ 5267 if ((features & NETIF_F_HW_CSUM) && 5268 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5269 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5270 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5271 } 5272 5273 /* Fix illegal SG+CSUM combinations. */ 5274 if ((features & NETIF_F_SG) && 5275 !(features & NETIF_F_ALL_CSUM)) { 5276 netdev_dbg(dev, 5277 "Dropping NETIF_F_SG since no checksum feature.\n"); 5278 features &= ~NETIF_F_SG; 5279 } 5280 5281 /* TSO requires that SG is present as well. */ 5282 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5283 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5284 features &= ~NETIF_F_ALL_TSO; 5285 } 5286 5287 /* TSO ECN requires that TSO is present as well. */ 5288 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5289 features &= ~NETIF_F_TSO_ECN; 5290 5291 /* Software GSO depends on SG. */ 5292 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5293 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5294 features &= ~NETIF_F_GSO; 5295 } 5296 5297 /* UFO needs SG and checksumming */ 5298 if (features & NETIF_F_UFO) { 5299 /* maybe split UFO into V4 and V6? */ 5300 if (!((features & NETIF_F_GEN_CSUM) || 5301 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5302 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5303 netdev_dbg(dev, 5304 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5305 features &= ~NETIF_F_UFO; 5306 } 5307 5308 if (!(features & NETIF_F_SG)) { 5309 netdev_dbg(dev, 5310 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5311 features &= ~NETIF_F_UFO; 5312 } 5313 } 5314 5315 return features; 5316 } 5317 5318 int __netdev_update_features(struct net_device *dev) 5319 { 5320 netdev_features_t features; 5321 int err = 0; 5322 5323 ASSERT_RTNL(); 5324 5325 features = netdev_get_wanted_features(dev); 5326 5327 if (dev->netdev_ops->ndo_fix_features) 5328 features = dev->netdev_ops->ndo_fix_features(dev, features); 5329 5330 /* driver might be less strict about feature dependencies */ 5331 features = netdev_fix_features(dev, features); 5332 5333 if (dev->features == features) 5334 return 0; 5335 5336 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5337 &dev->features, &features); 5338 5339 if (dev->netdev_ops->ndo_set_features) 5340 err = dev->netdev_ops->ndo_set_features(dev, features); 5341 5342 if (unlikely(err < 0)) { 5343 netdev_err(dev, 5344 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5345 err, &features, &dev->features); 5346 return -1; 5347 } 5348 5349 if (!err) 5350 dev->features = features; 5351 5352 return 1; 5353 } 5354 5355 /** 5356 * netdev_update_features - recalculate device features 5357 * @dev: the device to check 5358 * 5359 * Recalculate dev->features set and send notifications if it 5360 * has changed. Should be called after driver or hardware dependent 5361 * conditions might have changed that influence the features. 5362 */ 5363 void netdev_update_features(struct net_device *dev) 5364 { 5365 if (__netdev_update_features(dev)) 5366 netdev_features_change(dev); 5367 } 5368 EXPORT_SYMBOL(netdev_update_features); 5369 5370 /** 5371 * netdev_change_features - recalculate device features 5372 * @dev: the device to check 5373 * 5374 * Recalculate dev->features set and send notifications even 5375 * if they have not changed. Should be called instead of 5376 * netdev_update_features() if also dev->vlan_features might 5377 * have changed to allow the changes to be propagated to stacked 5378 * VLAN devices. 5379 */ 5380 void netdev_change_features(struct net_device *dev) 5381 { 5382 __netdev_update_features(dev); 5383 netdev_features_change(dev); 5384 } 5385 EXPORT_SYMBOL(netdev_change_features); 5386 5387 /** 5388 * netif_stacked_transfer_operstate - transfer operstate 5389 * @rootdev: the root or lower level device to transfer state from 5390 * @dev: the device to transfer operstate to 5391 * 5392 * Transfer operational state from root to device. This is normally 5393 * called when a stacking relationship exists between the root 5394 * device and the device(a leaf device). 5395 */ 5396 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5397 struct net_device *dev) 5398 { 5399 if (rootdev->operstate == IF_OPER_DORMANT) 5400 netif_dormant_on(dev); 5401 else 5402 netif_dormant_off(dev); 5403 5404 if (netif_carrier_ok(rootdev)) { 5405 if (!netif_carrier_ok(dev)) 5406 netif_carrier_on(dev); 5407 } else { 5408 if (netif_carrier_ok(dev)) 5409 netif_carrier_off(dev); 5410 } 5411 } 5412 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5413 5414 #ifdef CONFIG_RPS 5415 static int netif_alloc_rx_queues(struct net_device *dev) 5416 { 5417 unsigned int i, count = dev->num_rx_queues; 5418 struct netdev_rx_queue *rx; 5419 5420 BUG_ON(count < 1); 5421 5422 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5423 if (!rx) { 5424 pr_err("netdev: Unable to allocate %u rx queues\n", count); 5425 return -ENOMEM; 5426 } 5427 dev->_rx = rx; 5428 5429 for (i = 0; i < count; i++) 5430 rx[i].dev = dev; 5431 return 0; 5432 } 5433 #endif 5434 5435 static void netdev_init_one_queue(struct net_device *dev, 5436 struct netdev_queue *queue, void *_unused) 5437 { 5438 /* Initialize queue lock */ 5439 spin_lock_init(&queue->_xmit_lock); 5440 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5441 queue->xmit_lock_owner = -1; 5442 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5443 queue->dev = dev; 5444 #ifdef CONFIG_BQL 5445 dql_init(&queue->dql, HZ); 5446 #endif 5447 } 5448 5449 static int netif_alloc_netdev_queues(struct net_device *dev) 5450 { 5451 unsigned int count = dev->num_tx_queues; 5452 struct netdev_queue *tx; 5453 5454 BUG_ON(count < 1); 5455 5456 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5457 if (!tx) { 5458 pr_err("netdev: Unable to allocate %u tx queues\n", count); 5459 return -ENOMEM; 5460 } 5461 dev->_tx = tx; 5462 5463 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5464 spin_lock_init(&dev->tx_global_lock); 5465 5466 return 0; 5467 } 5468 5469 /** 5470 * register_netdevice - register a network device 5471 * @dev: device to register 5472 * 5473 * Take a completed network device structure and add it to the kernel 5474 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5475 * chain. 0 is returned on success. A negative errno code is returned 5476 * on a failure to set up the device, or if the name is a duplicate. 5477 * 5478 * Callers must hold the rtnl semaphore. You may want 5479 * register_netdev() instead of this. 5480 * 5481 * BUGS: 5482 * The locking appears insufficient to guarantee two parallel registers 5483 * will not get the same name. 5484 */ 5485 5486 int register_netdevice(struct net_device *dev) 5487 { 5488 int ret; 5489 struct net *net = dev_net(dev); 5490 5491 BUG_ON(dev_boot_phase); 5492 ASSERT_RTNL(); 5493 5494 might_sleep(); 5495 5496 /* When net_device's are persistent, this will be fatal. */ 5497 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5498 BUG_ON(!net); 5499 5500 spin_lock_init(&dev->addr_list_lock); 5501 netdev_set_addr_lockdep_class(dev); 5502 5503 dev->iflink = -1; 5504 5505 ret = dev_get_valid_name(dev, dev->name); 5506 if (ret < 0) 5507 goto out; 5508 5509 /* Init, if this function is available */ 5510 if (dev->netdev_ops->ndo_init) { 5511 ret = dev->netdev_ops->ndo_init(dev); 5512 if (ret) { 5513 if (ret > 0) 5514 ret = -EIO; 5515 goto out; 5516 } 5517 } 5518 5519 dev->ifindex = dev_new_index(net); 5520 if (dev->iflink == -1) 5521 dev->iflink = dev->ifindex; 5522 5523 /* Transfer changeable features to wanted_features and enable 5524 * software offloads (GSO and GRO). 5525 */ 5526 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5527 dev->features |= NETIF_F_SOFT_FEATURES; 5528 dev->wanted_features = dev->features & dev->hw_features; 5529 5530 /* Turn on no cache copy if HW is doing checksum */ 5531 if (!(dev->flags & IFF_LOOPBACK)) { 5532 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5533 if (dev->features & NETIF_F_ALL_CSUM) { 5534 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5535 dev->features |= NETIF_F_NOCACHE_COPY; 5536 } 5537 } 5538 5539 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5540 */ 5541 dev->vlan_features |= NETIF_F_HIGHDMA; 5542 5543 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5544 ret = notifier_to_errno(ret); 5545 if (ret) 5546 goto err_uninit; 5547 5548 ret = netdev_register_kobject(dev); 5549 if (ret) 5550 goto err_uninit; 5551 dev->reg_state = NETREG_REGISTERED; 5552 5553 __netdev_update_features(dev); 5554 5555 /* 5556 * Default initial state at registry is that the 5557 * device is present. 5558 */ 5559 5560 set_bit(__LINK_STATE_PRESENT, &dev->state); 5561 5562 dev_init_scheduler(dev); 5563 dev_hold(dev); 5564 list_netdevice(dev); 5565 5566 /* Notify protocols, that a new device appeared. */ 5567 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5568 ret = notifier_to_errno(ret); 5569 if (ret) { 5570 rollback_registered(dev); 5571 dev->reg_state = NETREG_UNREGISTERED; 5572 } 5573 /* 5574 * Prevent userspace races by waiting until the network 5575 * device is fully setup before sending notifications. 5576 */ 5577 if (!dev->rtnl_link_ops || 5578 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5579 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5580 5581 out: 5582 return ret; 5583 5584 err_uninit: 5585 if (dev->netdev_ops->ndo_uninit) 5586 dev->netdev_ops->ndo_uninit(dev); 5587 goto out; 5588 } 5589 EXPORT_SYMBOL(register_netdevice); 5590 5591 /** 5592 * init_dummy_netdev - init a dummy network device for NAPI 5593 * @dev: device to init 5594 * 5595 * This takes a network device structure and initialize the minimum 5596 * amount of fields so it can be used to schedule NAPI polls without 5597 * registering a full blown interface. This is to be used by drivers 5598 * that need to tie several hardware interfaces to a single NAPI 5599 * poll scheduler due to HW limitations. 5600 */ 5601 int init_dummy_netdev(struct net_device *dev) 5602 { 5603 /* Clear everything. Note we don't initialize spinlocks 5604 * are they aren't supposed to be taken by any of the 5605 * NAPI code and this dummy netdev is supposed to be 5606 * only ever used for NAPI polls 5607 */ 5608 memset(dev, 0, sizeof(struct net_device)); 5609 5610 /* make sure we BUG if trying to hit standard 5611 * register/unregister code path 5612 */ 5613 dev->reg_state = NETREG_DUMMY; 5614 5615 /* NAPI wants this */ 5616 INIT_LIST_HEAD(&dev->napi_list); 5617 5618 /* a dummy interface is started by default */ 5619 set_bit(__LINK_STATE_PRESENT, &dev->state); 5620 set_bit(__LINK_STATE_START, &dev->state); 5621 5622 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5623 * because users of this 'device' dont need to change 5624 * its refcount. 5625 */ 5626 5627 return 0; 5628 } 5629 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5630 5631 5632 /** 5633 * register_netdev - register a network device 5634 * @dev: device to register 5635 * 5636 * Take a completed network device structure and add it to the kernel 5637 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5638 * chain. 0 is returned on success. A negative errno code is returned 5639 * on a failure to set up the device, or if the name is a duplicate. 5640 * 5641 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5642 * and expands the device name if you passed a format string to 5643 * alloc_netdev. 5644 */ 5645 int register_netdev(struct net_device *dev) 5646 { 5647 int err; 5648 5649 rtnl_lock(); 5650 err = register_netdevice(dev); 5651 rtnl_unlock(); 5652 return err; 5653 } 5654 EXPORT_SYMBOL(register_netdev); 5655 5656 int netdev_refcnt_read(const struct net_device *dev) 5657 { 5658 int i, refcnt = 0; 5659 5660 for_each_possible_cpu(i) 5661 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5662 return refcnt; 5663 } 5664 EXPORT_SYMBOL(netdev_refcnt_read); 5665 5666 /* 5667 * netdev_wait_allrefs - wait until all references are gone. 5668 * 5669 * This is called when unregistering network devices. 5670 * 5671 * Any protocol or device that holds a reference should register 5672 * for netdevice notification, and cleanup and put back the 5673 * reference if they receive an UNREGISTER event. 5674 * We can get stuck here if buggy protocols don't correctly 5675 * call dev_put. 5676 */ 5677 static void netdev_wait_allrefs(struct net_device *dev) 5678 { 5679 unsigned long rebroadcast_time, warning_time; 5680 int refcnt; 5681 5682 linkwatch_forget_dev(dev); 5683 5684 rebroadcast_time = warning_time = jiffies; 5685 refcnt = netdev_refcnt_read(dev); 5686 5687 while (refcnt != 0) { 5688 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5689 rtnl_lock(); 5690 5691 /* Rebroadcast unregister notification */ 5692 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5693 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5694 * should have already handle it the first time */ 5695 5696 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5697 &dev->state)) { 5698 /* We must not have linkwatch events 5699 * pending on unregister. If this 5700 * happens, we simply run the queue 5701 * unscheduled, resulting in a noop 5702 * for this device. 5703 */ 5704 linkwatch_run_queue(); 5705 } 5706 5707 __rtnl_unlock(); 5708 5709 rebroadcast_time = jiffies; 5710 } 5711 5712 msleep(250); 5713 5714 refcnt = netdev_refcnt_read(dev); 5715 5716 if (time_after(jiffies, warning_time + 10 * HZ)) { 5717 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5718 dev->name, refcnt); 5719 warning_time = jiffies; 5720 } 5721 } 5722 } 5723 5724 /* The sequence is: 5725 * 5726 * rtnl_lock(); 5727 * ... 5728 * register_netdevice(x1); 5729 * register_netdevice(x2); 5730 * ... 5731 * unregister_netdevice(y1); 5732 * unregister_netdevice(y2); 5733 * ... 5734 * rtnl_unlock(); 5735 * free_netdev(y1); 5736 * free_netdev(y2); 5737 * 5738 * We are invoked by rtnl_unlock(). 5739 * This allows us to deal with problems: 5740 * 1) We can delete sysfs objects which invoke hotplug 5741 * without deadlocking with linkwatch via keventd. 5742 * 2) Since we run with the RTNL semaphore not held, we can sleep 5743 * safely in order to wait for the netdev refcnt to drop to zero. 5744 * 5745 * We must not return until all unregister events added during 5746 * the interval the lock was held have been completed. 5747 */ 5748 void netdev_run_todo(void) 5749 { 5750 struct list_head list; 5751 5752 /* Snapshot list, allow later requests */ 5753 list_replace_init(&net_todo_list, &list); 5754 5755 __rtnl_unlock(); 5756 5757 /* Wait for rcu callbacks to finish before attempting to drain 5758 * the device list. This usually avoids a 250ms wait. 5759 */ 5760 if (!list_empty(&list)) 5761 rcu_barrier(); 5762 5763 while (!list_empty(&list)) { 5764 struct net_device *dev 5765 = list_first_entry(&list, struct net_device, todo_list); 5766 list_del(&dev->todo_list); 5767 5768 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5769 pr_err("network todo '%s' but state %d\n", 5770 dev->name, dev->reg_state); 5771 dump_stack(); 5772 continue; 5773 } 5774 5775 dev->reg_state = NETREG_UNREGISTERED; 5776 5777 on_each_cpu(flush_backlog, dev, 1); 5778 5779 netdev_wait_allrefs(dev); 5780 5781 /* paranoia */ 5782 BUG_ON(netdev_refcnt_read(dev)); 5783 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5784 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5785 WARN_ON(dev->dn_ptr); 5786 5787 if (dev->destructor) 5788 dev->destructor(dev); 5789 5790 /* Free network device */ 5791 kobject_put(&dev->dev.kobj); 5792 } 5793 } 5794 5795 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5796 * fields in the same order, with only the type differing. 5797 */ 5798 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5799 const struct net_device_stats *netdev_stats) 5800 { 5801 #if BITS_PER_LONG == 64 5802 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5803 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5804 #else 5805 size_t i, n = sizeof(*stats64) / sizeof(u64); 5806 const unsigned long *src = (const unsigned long *)netdev_stats; 5807 u64 *dst = (u64 *)stats64; 5808 5809 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5810 sizeof(*stats64) / sizeof(u64)); 5811 for (i = 0; i < n; i++) 5812 dst[i] = src[i]; 5813 #endif 5814 } 5815 EXPORT_SYMBOL(netdev_stats_to_stats64); 5816 5817 /** 5818 * dev_get_stats - get network device statistics 5819 * @dev: device to get statistics from 5820 * @storage: place to store stats 5821 * 5822 * Get network statistics from device. Return @storage. 5823 * The device driver may provide its own method by setting 5824 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5825 * otherwise the internal statistics structure is used. 5826 */ 5827 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5828 struct rtnl_link_stats64 *storage) 5829 { 5830 const struct net_device_ops *ops = dev->netdev_ops; 5831 5832 if (ops->ndo_get_stats64) { 5833 memset(storage, 0, sizeof(*storage)); 5834 ops->ndo_get_stats64(dev, storage); 5835 } else if (ops->ndo_get_stats) { 5836 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5837 } else { 5838 netdev_stats_to_stats64(storage, &dev->stats); 5839 } 5840 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5841 return storage; 5842 } 5843 EXPORT_SYMBOL(dev_get_stats); 5844 5845 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5846 { 5847 struct netdev_queue *queue = dev_ingress_queue(dev); 5848 5849 #ifdef CONFIG_NET_CLS_ACT 5850 if (queue) 5851 return queue; 5852 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5853 if (!queue) 5854 return NULL; 5855 netdev_init_one_queue(dev, queue, NULL); 5856 queue->qdisc = &noop_qdisc; 5857 queue->qdisc_sleeping = &noop_qdisc; 5858 rcu_assign_pointer(dev->ingress_queue, queue); 5859 #endif 5860 return queue; 5861 } 5862 5863 /** 5864 * alloc_netdev_mqs - allocate network device 5865 * @sizeof_priv: size of private data to allocate space for 5866 * @name: device name format string 5867 * @setup: callback to initialize device 5868 * @txqs: the number of TX subqueues to allocate 5869 * @rxqs: the number of RX subqueues to allocate 5870 * 5871 * Allocates a struct net_device with private data area for driver use 5872 * and performs basic initialization. Also allocates subquue structs 5873 * for each queue on the device. 5874 */ 5875 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5876 void (*setup)(struct net_device *), 5877 unsigned int txqs, unsigned int rxqs) 5878 { 5879 struct net_device *dev; 5880 size_t alloc_size; 5881 struct net_device *p; 5882 5883 BUG_ON(strlen(name) >= sizeof(dev->name)); 5884 5885 if (txqs < 1) { 5886 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5887 return NULL; 5888 } 5889 5890 #ifdef CONFIG_RPS 5891 if (rxqs < 1) { 5892 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5893 return NULL; 5894 } 5895 #endif 5896 5897 alloc_size = sizeof(struct net_device); 5898 if (sizeof_priv) { 5899 /* ensure 32-byte alignment of private area */ 5900 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5901 alloc_size += sizeof_priv; 5902 } 5903 /* ensure 32-byte alignment of whole construct */ 5904 alloc_size += NETDEV_ALIGN - 1; 5905 5906 p = kzalloc(alloc_size, GFP_KERNEL); 5907 if (!p) { 5908 pr_err("alloc_netdev: Unable to allocate device\n"); 5909 return NULL; 5910 } 5911 5912 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5913 dev->padded = (char *)dev - (char *)p; 5914 5915 dev->pcpu_refcnt = alloc_percpu(int); 5916 if (!dev->pcpu_refcnt) 5917 goto free_p; 5918 5919 if (dev_addr_init(dev)) 5920 goto free_pcpu; 5921 5922 dev_mc_init(dev); 5923 dev_uc_init(dev); 5924 5925 dev_net_set(dev, &init_net); 5926 5927 dev->gso_max_size = GSO_MAX_SIZE; 5928 5929 INIT_LIST_HEAD(&dev->napi_list); 5930 INIT_LIST_HEAD(&dev->unreg_list); 5931 INIT_LIST_HEAD(&dev->link_watch_list); 5932 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5933 setup(dev); 5934 5935 dev->num_tx_queues = txqs; 5936 dev->real_num_tx_queues = txqs; 5937 if (netif_alloc_netdev_queues(dev)) 5938 goto free_all; 5939 5940 #ifdef CONFIG_RPS 5941 dev->num_rx_queues = rxqs; 5942 dev->real_num_rx_queues = rxqs; 5943 if (netif_alloc_rx_queues(dev)) 5944 goto free_all; 5945 #endif 5946 5947 strcpy(dev->name, name); 5948 dev->group = INIT_NETDEV_GROUP; 5949 return dev; 5950 5951 free_all: 5952 free_netdev(dev); 5953 return NULL; 5954 5955 free_pcpu: 5956 free_percpu(dev->pcpu_refcnt); 5957 kfree(dev->_tx); 5958 #ifdef CONFIG_RPS 5959 kfree(dev->_rx); 5960 #endif 5961 5962 free_p: 5963 kfree(p); 5964 return NULL; 5965 } 5966 EXPORT_SYMBOL(alloc_netdev_mqs); 5967 5968 /** 5969 * free_netdev - free network device 5970 * @dev: device 5971 * 5972 * This function does the last stage of destroying an allocated device 5973 * interface. The reference to the device object is released. 5974 * If this is the last reference then it will be freed. 5975 */ 5976 void free_netdev(struct net_device *dev) 5977 { 5978 struct napi_struct *p, *n; 5979 5980 release_net(dev_net(dev)); 5981 5982 kfree(dev->_tx); 5983 #ifdef CONFIG_RPS 5984 kfree(dev->_rx); 5985 #endif 5986 5987 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 5988 5989 /* Flush device addresses */ 5990 dev_addr_flush(dev); 5991 5992 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5993 netif_napi_del(p); 5994 5995 free_percpu(dev->pcpu_refcnt); 5996 dev->pcpu_refcnt = NULL; 5997 5998 /* Compatibility with error handling in drivers */ 5999 if (dev->reg_state == NETREG_UNINITIALIZED) { 6000 kfree((char *)dev - dev->padded); 6001 return; 6002 } 6003 6004 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6005 dev->reg_state = NETREG_RELEASED; 6006 6007 /* will free via device release */ 6008 put_device(&dev->dev); 6009 } 6010 EXPORT_SYMBOL(free_netdev); 6011 6012 /** 6013 * synchronize_net - Synchronize with packet receive processing 6014 * 6015 * Wait for packets currently being received to be done. 6016 * Does not block later packets from starting. 6017 */ 6018 void synchronize_net(void) 6019 { 6020 might_sleep(); 6021 if (rtnl_is_locked()) 6022 synchronize_rcu_expedited(); 6023 else 6024 synchronize_rcu(); 6025 } 6026 EXPORT_SYMBOL(synchronize_net); 6027 6028 /** 6029 * unregister_netdevice_queue - remove device from the kernel 6030 * @dev: device 6031 * @head: list 6032 * 6033 * This function shuts down a device interface and removes it 6034 * from the kernel tables. 6035 * If head not NULL, device is queued to be unregistered later. 6036 * 6037 * Callers must hold the rtnl semaphore. You may want 6038 * unregister_netdev() instead of this. 6039 */ 6040 6041 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6042 { 6043 ASSERT_RTNL(); 6044 6045 if (head) { 6046 list_move_tail(&dev->unreg_list, head); 6047 } else { 6048 rollback_registered(dev); 6049 /* Finish processing unregister after unlock */ 6050 net_set_todo(dev); 6051 } 6052 } 6053 EXPORT_SYMBOL(unregister_netdevice_queue); 6054 6055 /** 6056 * unregister_netdevice_many - unregister many devices 6057 * @head: list of devices 6058 */ 6059 void unregister_netdevice_many(struct list_head *head) 6060 { 6061 struct net_device *dev; 6062 6063 if (!list_empty(head)) { 6064 rollback_registered_many(head); 6065 list_for_each_entry(dev, head, unreg_list) 6066 net_set_todo(dev); 6067 } 6068 } 6069 EXPORT_SYMBOL(unregister_netdevice_many); 6070 6071 /** 6072 * unregister_netdev - remove device from the kernel 6073 * @dev: device 6074 * 6075 * This function shuts down a device interface and removes it 6076 * from the kernel tables. 6077 * 6078 * This is just a wrapper for unregister_netdevice that takes 6079 * the rtnl semaphore. In general you want to use this and not 6080 * unregister_netdevice. 6081 */ 6082 void unregister_netdev(struct net_device *dev) 6083 { 6084 rtnl_lock(); 6085 unregister_netdevice(dev); 6086 rtnl_unlock(); 6087 } 6088 EXPORT_SYMBOL(unregister_netdev); 6089 6090 /** 6091 * dev_change_net_namespace - move device to different nethost namespace 6092 * @dev: device 6093 * @net: network namespace 6094 * @pat: If not NULL name pattern to try if the current device name 6095 * is already taken in the destination network namespace. 6096 * 6097 * This function shuts down a device interface and moves it 6098 * to a new network namespace. On success 0 is returned, on 6099 * a failure a netagive errno code is returned. 6100 * 6101 * Callers must hold the rtnl semaphore. 6102 */ 6103 6104 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6105 { 6106 int err; 6107 6108 ASSERT_RTNL(); 6109 6110 /* Don't allow namespace local devices to be moved. */ 6111 err = -EINVAL; 6112 if (dev->features & NETIF_F_NETNS_LOCAL) 6113 goto out; 6114 6115 /* Ensure the device has been registrered */ 6116 err = -EINVAL; 6117 if (dev->reg_state != NETREG_REGISTERED) 6118 goto out; 6119 6120 /* Get out if there is nothing todo */ 6121 err = 0; 6122 if (net_eq(dev_net(dev), net)) 6123 goto out; 6124 6125 /* Pick the destination device name, and ensure 6126 * we can use it in the destination network namespace. 6127 */ 6128 err = -EEXIST; 6129 if (__dev_get_by_name(net, dev->name)) { 6130 /* We get here if we can't use the current device name */ 6131 if (!pat) 6132 goto out; 6133 if (dev_get_valid_name(dev, pat) < 0) 6134 goto out; 6135 } 6136 6137 /* 6138 * And now a mini version of register_netdevice unregister_netdevice. 6139 */ 6140 6141 /* If device is running close it first. */ 6142 dev_close(dev); 6143 6144 /* And unlink it from device chain */ 6145 err = -ENODEV; 6146 unlist_netdevice(dev); 6147 6148 synchronize_net(); 6149 6150 /* Shutdown queueing discipline. */ 6151 dev_shutdown(dev); 6152 6153 /* Notify protocols, that we are about to destroy 6154 this device. They should clean all the things. 6155 6156 Note that dev->reg_state stays at NETREG_REGISTERED. 6157 This is wanted because this way 8021q and macvlan know 6158 the device is just moving and can keep their slaves up. 6159 */ 6160 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6161 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6162 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6163 6164 /* 6165 * Flush the unicast and multicast chains 6166 */ 6167 dev_uc_flush(dev); 6168 dev_mc_flush(dev); 6169 6170 /* Actually switch the network namespace */ 6171 dev_net_set(dev, net); 6172 6173 /* If there is an ifindex conflict assign a new one */ 6174 if (__dev_get_by_index(net, dev->ifindex)) { 6175 int iflink = (dev->iflink == dev->ifindex); 6176 dev->ifindex = dev_new_index(net); 6177 if (iflink) 6178 dev->iflink = dev->ifindex; 6179 } 6180 6181 /* Fixup kobjects */ 6182 err = device_rename(&dev->dev, dev->name); 6183 WARN_ON(err); 6184 6185 /* Add the device back in the hashes */ 6186 list_netdevice(dev); 6187 6188 /* Notify protocols, that a new device appeared. */ 6189 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6190 6191 /* 6192 * Prevent userspace races by waiting until the network 6193 * device is fully setup before sending notifications. 6194 */ 6195 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6196 6197 synchronize_net(); 6198 err = 0; 6199 out: 6200 return err; 6201 } 6202 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6203 6204 static int dev_cpu_callback(struct notifier_block *nfb, 6205 unsigned long action, 6206 void *ocpu) 6207 { 6208 struct sk_buff **list_skb; 6209 struct sk_buff *skb; 6210 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6211 struct softnet_data *sd, *oldsd; 6212 6213 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6214 return NOTIFY_OK; 6215 6216 local_irq_disable(); 6217 cpu = smp_processor_id(); 6218 sd = &per_cpu(softnet_data, cpu); 6219 oldsd = &per_cpu(softnet_data, oldcpu); 6220 6221 /* Find end of our completion_queue. */ 6222 list_skb = &sd->completion_queue; 6223 while (*list_skb) 6224 list_skb = &(*list_skb)->next; 6225 /* Append completion queue from offline CPU. */ 6226 *list_skb = oldsd->completion_queue; 6227 oldsd->completion_queue = NULL; 6228 6229 /* Append output queue from offline CPU. */ 6230 if (oldsd->output_queue) { 6231 *sd->output_queue_tailp = oldsd->output_queue; 6232 sd->output_queue_tailp = oldsd->output_queue_tailp; 6233 oldsd->output_queue = NULL; 6234 oldsd->output_queue_tailp = &oldsd->output_queue; 6235 } 6236 /* Append NAPI poll list from offline CPU. */ 6237 if (!list_empty(&oldsd->poll_list)) { 6238 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6239 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6240 } 6241 6242 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6243 local_irq_enable(); 6244 6245 /* Process offline CPU's input_pkt_queue */ 6246 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6247 netif_rx(skb); 6248 input_queue_head_incr(oldsd); 6249 } 6250 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6251 netif_rx(skb); 6252 input_queue_head_incr(oldsd); 6253 } 6254 6255 return NOTIFY_OK; 6256 } 6257 6258 6259 /** 6260 * netdev_increment_features - increment feature set by one 6261 * @all: current feature set 6262 * @one: new feature set 6263 * @mask: mask feature set 6264 * 6265 * Computes a new feature set after adding a device with feature set 6266 * @one to the master device with current feature set @all. Will not 6267 * enable anything that is off in @mask. Returns the new feature set. 6268 */ 6269 netdev_features_t netdev_increment_features(netdev_features_t all, 6270 netdev_features_t one, netdev_features_t mask) 6271 { 6272 if (mask & NETIF_F_GEN_CSUM) 6273 mask |= NETIF_F_ALL_CSUM; 6274 mask |= NETIF_F_VLAN_CHALLENGED; 6275 6276 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6277 all &= one | ~NETIF_F_ALL_FOR_ALL; 6278 6279 /* If one device supports hw checksumming, set for all. */ 6280 if (all & NETIF_F_GEN_CSUM) 6281 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6282 6283 return all; 6284 } 6285 EXPORT_SYMBOL(netdev_increment_features); 6286 6287 static struct hlist_head *netdev_create_hash(void) 6288 { 6289 int i; 6290 struct hlist_head *hash; 6291 6292 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6293 if (hash != NULL) 6294 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6295 INIT_HLIST_HEAD(&hash[i]); 6296 6297 return hash; 6298 } 6299 6300 /* Initialize per network namespace state */ 6301 static int __net_init netdev_init(struct net *net) 6302 { 6303 INIT_LIST_HEAD(&net->dev_base_head); 6304 6305 net->dev_name_head = netdev_create_hash(); 6306 if (net->dev_name_head == NULL) 6307 goto err_name; 6308 6309 net->dev_index_head = netdev_create_hash(); 6310 if (net->dev_index_head == NULL) 6311 goto err_idx; 6312 6313 return 0; 6314 6315 err_idx: 6316 kfree(net->dev_name_head); 6317 err_name: 6318 return -ENOMEM; 6319 } 6320 6321 /** 6322 * netdev_drivername - network driver for the device 6323 * @dev: network device 6324 * 6325 * Determine network driver for device. 6326 */ 6327 const char *netdev_drivername(const struct net_device *dev) 6328 { 6329 const struct device_driver *driver; 6330 const struct device *parent; 6331 const char *empty = ""; 6332 6333 parent = dev->dev.parent; 6334 if (!parent) 6335 return empty; 6336 6337 driver = parent->driver; 6338 if (driver && driver->name) 6339 return driver->name; 6340 return empty; 6341 } 6342 6343 int __netdev_printk(const char *level, const struct net_device *dev, 6344 struct va_format *vaf) 6345 { 6346 int r; 6347 6348 if (dev && dev->dev.parent) 6349 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6350 netdev_name(dev), vaf); 6351 else if (dev) 6352 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6353 else 6354 r = printk("%s(NULL net_device): %pV", level, vaf); 6355 6356 return r; 6357 } 6358 EXPORT_SYMBOL(__netdev_printk); 6359 6360 int netdev_printk(const char *level, const struct net_device *dev, 6361 const char *format, ...) 6362 { 6363 struct va_format vaf; 6364 va_list args; 6365 int r; 6366 6367 va_start(args, format); 6368 6369 vaf.fmt = format; 6370 vaf.va = &args; 6371 6372 r = __netdev_printk(level, dev, &vaf); 6373 va_end(args); 6374 6375 return r; 6376 } 6377 EXPORT_SYMBOL(netdev_printk); 6378 6379 #define define_netdev_printk_level(func, level) \ 6380 int func(const struct net_device *dev, const char *fmt, ...) \ 6381 { \ 6382 int r; \ 6383 struct va_format vaf; \ 6384 va_list args; \ 6385 \ 6386 va_start(args, fmt); \ 6387 \ 6388 vaf.fmt = fmt; \ 6389 vaf.va = &args; \ 6390 \ 6391 r = __netdev_printk(level, dev, &vaf); \ 6392 va_end(args); \ 6393 \ 6394 return r; \ 6395 } \ 6396 EXPORT_SYMBOL(func); 6397 6398 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6399 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6400 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6401 define_netdev_printk_level(netdev_err, KERN_ERR); 6402 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6403 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6404 define_netdev_printk_level(netdev_info, KERN_INFO); 6405 6406 static void __net_exit netdev_exit(struct net *net) 6407 { 6408 kfree(net->dev_name_head); 6409 kfree(net->dev_index_head); 6410 } 6411 6412 static struct pernet_operations __net_initdata netdev_net_ops = { 6413 .init = netdev_init, 6414 .exit = netdev_exit, 6415 }; 6416 6417 static void __net_exit default_device_exit(struct net *net) 6418 { 6419 struct net_device *dev, *aux; 6420 /* 6421 * Push all migratable network devices back to the 6422 * initial network namespace 6423 */ 6424 rtnl_lock(); 6425 for_each_netdev_safe(net, dev, aux) { 6426 int err; 6427 char fb_name[IFNAMSIZ]; 6428 6429 /* Ignore unmoveable devices (i.e. loopback) */ 6430 if (dev->features & NETIF_F_NETNS_LOCAL) 6431 continue; 6432 6433 /* Leave virtual devices for the generic cleanup */ 6434 if (dev->rtnl_link_ops) 6435 continue; 6436 6437 /* Push remaining network devices to init_net */ 6438 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6439 err = dev_change_net_namespace(dev, &init_net, fb_name); 6440 if (err) { 6441 pr_emerg("%s: failed to move %s to init_net: %d\n", 6442 __func__, dev->name, err); 6443 BUG(); 6444 } 6445 } 6446 rtnl_unlock(); 6447 } 6448 6449 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6450 { 6451 /* At exit all network devices most be removed from a network 6452 * namespace. Do this in the reverse order of registration. 6453 * Do this across as many network namespaces as possible to 6454 * improve batching efficiency. 6455 */ 6456 struct net_device *dev; 6457 struct net *net; 6458 LIST_HEAD(dev_kill_list); 6459 6460 rtnl_lock(); 6461 list_for_each_entry(net, net_list, exit_list) { 6462 for_each_netdev_reverse(net, dev) { 6463 if (dev->rtnl_link_ops) 6464 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6465 else 6466 unregister_netdevice_queue(dev, &dev_kill_list); 6467 } 6468 } 6469 unregister_netdevice_many(&dev_kill_list); 6470 list_del(&dev_kill_list); 6471 rtnl_unlock(); 6472 } 6473 6474 static struct pernet_operations __net_initdata default_device_ops = { 6475 .exit = default_device_exit, 6476 .exit_batch = default_device_exit_batch, 6477 }; 6478 6479 /* 6480 * Initialize the DEV module. At boot time this walks the device list and 6481 * unhooks any devices that fail to initialise (normally hardware not 6482 * present) and leaves us with a valid list of present and active devices. 6483 * 6484 */ 6485 6486 /* 6487 * This is called single threaded during boot, so no need 6488 * to take the rtnl semaphore. 6489 */ 6490 static int __init net_dev_init(void) 6491 { 6492 int i, rc = -ENOMEM; 6493 6494 BUG_ON(!dev_boot_phase); 6495 6496 if (dev_proc_init()) 6497 goto out; 6498 6499 if (netdev_kobject_init()) 6500 goto out; 6501 6502 INIT_LIST_HEAD(&ptype_all); 6503 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6504 INIT_LIST_HEAD(&ptype_base[i]); 6505 6506 if (register_pernet_subsys(&netdev_net_ops)) 6507 goto out; 6508 6509 /* 6510 * Initialise the packet receive queues. 6511 */ 6512 6513 for_each_possible_cpu(i) { 6514 struct softnet_data *sd = &per_cpu(softnet_data, i); 6515 6516 memset(sd, 0, sizeof(*sd)); 6517 skb_queue_head_init(&sd->input_pkt_queue); 6518 skb_queue_head_init(&sd->process_queue); 6519 sd->completion_queue = NULL; 6520 INIT_LIST_HEAD(&sd->poll_list); 6521 sd->output_queue = NULL; 6522 sd->output_queue_tailp = &sd->output_queue; 6523 #ifdef CONFIG_RPS 6524 sd->csd.func = rps_trigger_softirq; 6525 sd->csd.info = sd; 6526 sd->csd.flags = 0; 6527 sd->cpu = i; 6528 #endif 6529 6530 sd->backlog.poll = process_backlog; 6531 sd->backlog.weight = weight_p; 6532 sd->backlog.gro_list = NULL; 6533 sd->backlog.gro_count = 0; 6534 } 6535 6536 dev_boot_phase = 0; 6537 6538 /* The loopback device is special if any other network devices 6539 * is present in a network namespace the loopback device must 6540 * be present. Since we now dynamically allocate and free the 6541 * loopback device ensure this invariant is maintained by 6542 * keeping the loopback device as the first device on the 6543 * list of network devices. Ensuring the loopback devices 6544 * is the first device that appears and the last network device 6545 * that disappears. 6546 */ 6547 if (register_pernet_device(&loopback_net_ops)) 6548 goto out; 6549 6550 if (register_pernet_device(&default_device_ops)) 6551 goto out; 6552 6553 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6554 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6555 6556 hotcpu_notifier(dev_cpu_callback, 0); 6557 dst_init(); 6558 dev_mcast_init(); 6559 rc = 0; 6560 out: 6561 return rc; 6562 } 6563 6564 subsys_initcall(net_dev_init); 6565 6566 static int __init initialize_hashrnd(void) 6567 { 6568 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6569 return 0; 6570 } 6571 6572 late_initcall_sync(initialize_hashrnd); 6573 6574