xref: /linux/net/core/dev.c (revision 31d166642c7c601c65eccf0ff2e0afe9a0538be2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 					   struct net_device *dev,
164 					   struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234 	struct net *net = dev_net(dev);
235 
236 	ASSERT_RTNL();
237 
238 	write_lock_bh(&dev_base_lock);
239 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 	hlist_add_head_rcu(&dev->index_hlist,
242 			   dev_index_hash(net, dev->ifindex));
243 	write_unlock_bh(&dev_base_lock);
244 
245 	dev_base_seq_inc(net);
246 }
247 
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253 	ASSERT_RTNL();
254 
255 	/* Unlink dev from the device chain */
256 	write_lock_bh(&dev_base_lock);
257 	list_del_rcu(&dev->dev_list);
258 	hlist_del_rcu(&dev->name_hlist);
259 	hlist_del_rcu(&dev->index_hlist);
260 	write_unlock_bh(&dev_base_lock);
261 
262 	dev_base_seq_inc(dev_net(dev));
263 }
264 
265 /*
266  *	Our notifier list
267  */
268 
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270 
271 /*
272  *	Device drivers call our routines to queue packets here. We empty the
273  *	queue in the local softnet handler.
274  */
275 
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278 
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300 
301 static const char *const netdev_lock_name[] = {
302 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317 
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 		if (netdev_lock_type[i] == dev_type)
327 			return i;
328 	/* the last key is used by default */
329 	return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331 
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 						 unsigned short dev_type)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev_type);
338 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 	int i;
345 
346 	i = netdev_lock_pos(dev->type);
347 	lockdep_set_class_and_name(&dev->addr_list_lock,
348 				   &netdev_addr_lock_key[i],
349 				   netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 						 unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360 
361 /*******************************************************************************
362  *
363  *		Protocol management and registration routines
364  *
365  *******************************************************************************/
366 
367 
368 /*
369  *	Add a protocol ID to the list. Now that the input handler is
370  *	smarter we can dispense with all the messy stuff that used to be
371  *	here.
372  *
373  *	BEWARE!!! Protocol handlers, mangling input packets,
374  *	MUST BE last in hash buckets and checking protocol handlers
375  *	MUST start from promiscuous ptype_all chain in net_bh.
376  *	It is true now, do not change it.
377  *	Explanation follows: if protocol handler, mangling packet, will
378  *	be the first on list, it is not able to sense, that packet
379  *	is cloned and should be copied-on-write, so that it will
380  *	change it and subsequent readers will get broken packet.
381  *							--ANK (980803)
382  */
383 
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386 	if (pt->type == htons(ETH_P_ALL))
387 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 	else
389 		return pt->dev ? &pt->dev->ptype_specific :
390 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392 
393 /**
394  *	dev_add_pack - add packet handler
395  *	@pt: packet type declaration
396  *
397  *	Add a protocol handler to the networking stack. The passed &packet_type
398  *	is linked into kernel lists and may not be freed until it has been
399  *	removed from the kernel lists.
400  *
401  *	This call does not sleep therefore it can not
402  *	guarantee all CPU's that are in middle of receiving packets
403  *	will see the new packet type (until the next received packet).
404  */
405 
406 void dev_add_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 
410 	spin_lock(&ptype_lock);
411 	list_add_rcu(&pt->list, head);
412 	spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415 
416 /**
417  *	__dev_remove_pack	 - remove packet handler
418  *	@pt: packet type declaration
419  *
420  *	Remove a protocol handler that was previously added to the kernel
421  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *	from the kernel lists and can be freed or reused once this function
423  *	returns.
424  *
425  *      The packet type might still be in use by receivers
426  *	and must not be freed until after all the CPU's have gone
427  *	through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431 	struct list_head *head = ptype_head(pt);
432 	struct packet_type *pt1;
433 
434 	spin_lock(&ptype_lock);
435 
436 	list_for_each_entry(pt1, head, list) {
437 		if (pt == pt1) {
438 			list_del_rcu(&pt->list);
439 			goto out;
440 		}
441 	}
442 
443 	pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 	spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448 
449 /**
450  *	dev_remove_pack	 - remove packet handler
451  *	@pt: packet type declaration
452  *
453  *	Remove a protocol handler that was previously added to the kernel
454  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *	from the kernel lists and can be freed or reused once this function
456  *	returns.
457  *
458  *	This call sleeps to guarantee that no CPU is looking at the packet
459  *	type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463 	__dev_remove_pack(pt);
464 
465 	synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468 
469 
470 /**
471  *	dev_add_offload - register offload handlers
472  *	@po: protocol offload declaration
473  *
474  *	Add protocol offload handlers to the networking stack. The passed
475  *	&proto_offload is linked into kernel lists and may not be freed until
476  *	it has been removed from the kernel lists.
477  *
478  *	This call does not sleep therefore it can not
479  *	guarantee all CPU's that are in middle of receiving packets
480  *	will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484 	struct packet_offload *elem;
485 
486 	spin_lock(&offload_lock);
487 	list_for_each_entry(elem, &offload_base, list) {
488 		if (po->priority < elem->priority)
489 			break;
490 	}
491 	list_add_rcu(&po->list, elem->list.prev);
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495 
496 /**
497  *	__dev_remove_offload	 - remove offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a protocol offload handler that was previously added to the
501  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *	is removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *	and must not be freed until after all the CPU's have gone
507  *	through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511 	struct list_head *head = &offload_base;
512 	struct packet_offload *po1;
513 
514 	spin_lock(&offload_lock);
515 
516 	list_for_each_entry(po1, head, list) {
517 		if (po == po1) {
518 			list_del_rcu(&po->list);
519 			goto out;
520 		}
521 	}
522 
523 	pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 	spin_unlock(&offload_lock);
526 }
527 
528 /**
529  *	dev_remove_offload	 - remove packet offload handler
530  *	@po: packet offload declaration
531  *
532  *	Remove a packet offload handler that was previously added to the kernel
533  *	offload handlers by dev_add_offload(). The passed &offload_type is
534  *	removed from the kernel lists and can be freed or reused once this
535  *	function returns.
536  *
537  *	This call sleeps to guarantee that no CPU is looking at the packet
538  *	type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542 	__dev_remove_offload(po);
543 
544 	synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547 
548 /******************************************************************************
549  *
550  *		      Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553 
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556 
557 /**
558  *	netdev_boot_setup_add	- add new setup entry
559  *	@name: name of the device
560  *	@map: configured settings for the device
561  *
562  *	Adds new setup entry to the dev_boot_setup list.  The function
563  *	returns 0 on error and 1 on success.  This is a generic routine to
564  *	all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568 	struct netdev_boot_setup *s;
569 	int i;
570 
571 	s = dev_boot_setup;
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 			memset(s[i].name, 0, sizeof(s[i].name));
575 			strlcpy(s[i].name, name, IFNAMSIZ);
576 			memcpy(&s[i].map, map, sizeof(s[i].map));
577 			break;
578 		}
579 	}
580 
581 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583 
584 /**
585  * netdev_boot_setup_check	- check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595 	struct netdev_boot_setup *s = dev_boot_setup;
596 	int i;
597 
598 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 		    !strcmp(dev->name, s[i].name)) {
601 			dev->irq = s[i].map.irq;
602 			dev->base_addr = s[i].map.base_addr;
603 			dev->mem_start = s[i].map.mem_start;
604 			dev->mem_end = s[i].map.mem_end;
605 			return 1;
606 		}
607 	}
608 	return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611 
612 
613 /**
614  * netdev_boot_base	- get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625 	const struct netdev_boot_setup *s = dev_boot_setup;
626 	char name[IFNAMSIZ];
627 	int i;
628 
629 	sprintf(name, "%s%d", prefix, unit);
630 
631 	/*
632 	 * If device already registered then return base of 1
633 	 * to indicate not to probe for this interface
634 	 */
635 	if (__dev_get_by_name(&init_net, name))
636 		return 1;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 		if (!strcmp(name, s[i].name))
640 			return s[i].map.base_addr;
641 	return 0;
642 }
643 
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649 	int ints[5];
650 	struct ifmap map;
651 
652 	str = get_options(str, ARRAY_SIZE(ints), ints);
653 	if (!str || !*str)
654 		return 0;
655 
656 	/* Save settings */
657 	memset(&map, 0, sizeof(map));
658 	if (ints[0] > 0)
659 		map.irq = ints[1];
660 	if (ints[0] > 1)
661 		map.base_addr = ints[2];
662 	if (ints[0] > 2)
663 		map.mem_start = ints[3];
664 	if (ints[0] > 3)
665 		map.mem_end = ints[4];
666 
667 	/* Add new entry to the list */
668 	return netdev_boot_setup_add(str, &map);
669 }
670 
671 __setup("netdev=", netdev_boot_setup);
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 /**
723  *	__dev_get_by_name	- find a device by its name
724  *	@net: the applicable net namespace
725  *	@name: name to find
726  *
727  *	Find an interface by name. Must be called under RTNL semaphore
728  *	or @dev_base_lock. If the name is found a pointer to the device
729  *	is returned. If the name is not found then %NULL is returned. The
730  *	reference counters are not incremented so the caller must be
731  *	careful with locks.
732  */
733 
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_name_hash(net, name);
738 
739 	hlist_for_each_entry(dev, head, name_hlist)
740 		if (!strncmp(dev->name, name, IFNAMSIZ))
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746 
747 /**
748  * dev_get_by_name_rcu	- find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758 
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761 	struct net_device *dev;
762 	struct hlist_head *head = dev_name_hash(net, name);
763 
764 	hlist_for_each_entry_rcu(dev, head, name_hlist)
765 		if (!strncmp(dev->name, name, IFNAMSIZ))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771 
772 /**
773  *	dev_get_by_name		- find a device by its name
774  *	@net: the applicable net namespace
775  *	@name: name to find
776  *
777  *	Find an interface by name. This can be called from any
778  *	context and does its own locking. The returned handle has
779  *	the usage count incremented and the caller must use dev_put() to
780  *	release it when it is no longer needed. %NULL is returned if no
781  *	matching device is found.
782  */
783 
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786 	struct net_device *dev;
787 
788 	rcu_read_lock();
789 	dev = dev_get_by_name_rcu(net, name);
790 	if (dev)
791 		dev_hold(dev);
792 	rcu_read_unlock();
793 	return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796 
797 /**
798  *	__dev_get_by_index - find a device by its ifindex
799  *	@net: the applicable net namespace
800  *	@ifindex: index of device
801  *
802  *	Search for an interface by index. Returns %NULL if the device
803  *	is not found or a pointer to the device. The device has not
804  *	had its reference counter increased so the caller must be careful
805  *	about locking. The caller must hold either the RTNL semaphore
806  *	or @dev_base_lock.
807  */
808 
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811 	struct net_device *dev;
812 	struct hlist_head *head = dev_index_hash(net, ifindex);
813 
814 	hlist_for_each_entry(dev, head, index_hlist)
815 		if (dev->ifindex == ifindex)
816 			return dev;
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821 
822 /**
823  *	dev_get_by_index_rcu - find a device by its ifindex
824  *	@net: the applicable net namespace
825  *	@ifindex: index of device
826  *
827  *	Search for an interface by index. Returns %NULL if the device
828  *	is not found or a pointer to the device. The device has not
829  *	had its reference counter increased so the caller must be careful
830  *	about locking. The caller must hold RCU lock.
831  */
832 
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835 	struct net_device *dev;
836 	struct hlist_head *head = dev_index_hash(net, ifindex);
837 
838 	hlist_for_each_entry_rcu(dev, head, index_hlist)
839 		if (dev->ifindex == ifindex)
840 			return dev;
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845 
846 
847 /**
848  *	dev_get_by_index - find a device by its ifindex
849  *	@net: the applicable net namespace
850  *	@ifindex: index of device
851  *
852  *	Search for an interface by index. Returns NULL if the device
853  *	is not found or a pointer to the device. The device returned has
854  *	had a reference added and the pointer is safe until the user calls
855  *	dev_put to indicate they have finished with it.
856  */
857 
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 
862 	rcu_read_lock();
863 	dev = dev_get_by_index_rcu(net, ifindex);
864 	if (dev)
865 		dev_hold(dev);
866 	rcu_read_unlock();
867 	return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870 
871 /**
872  *	dev_get_by_napi_id - find a device by napi_id
873  *	@napi_id: ID of the NAPI struct
874  *
875  *	Search for an interface by NAPI ID. Returns %NULL if the device
876  *	is not found or a pointer to the device. The device has not had
877  *	its reference counter increased so the caller must be careful
878  *	about locking. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883 	struct napi_struct *napi;
884 
885 	WARN_ON_ONCE(!rcu_read_lock_held());
886 
887 	if (napi_id < MIN_NAPI_ID)
888 		return NULL;
889 
890 	napi = napi_by_id(napi_id);
891 
892 	return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895 
896 /**
897  *	netdev_get_name - get a netdevice name, knowing its ifindex.
898  *	@net: network namespace
899  *	@name: a pointer to the buffer where the name will be stored.
900  *	@ifindex: the ifindex of the interface to get the name from.
901  *
902  *	The use of raw_seqcount_begin() and cond_resched() before
903  *	retrying is required as we want to give the writers a chance
904  *	to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908 	struct net_device *dev;
909 	unsigned int seq;
910 
911 retry:
912 	seq = raw_seqcount_begin(&devnet_rename_seq);
913 	rcu_read_lock();
914 	dev = dev_get_by_index_rcu(net, ifindex);
915 	if (!dev) {
916 		rcu_read_unlock();
917 		return -ENODEV;
918 	}
919 
920 	strcpy(name, dev->name);
921 	rcu_read_unlock();
922 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 		cond_resched();
924 		goto retry;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  *	dev_getbyhwaddr_rcu - find a device by its hardware address
932  *	@net: the applicable net namespace
933  *	@type: media type of device
934  *	@ha: hardware address
935  *
936  *	Search for an interface by MAC address. Returns NULL if the device
937  *	is not found or a pointer to the device.
938  *	The caller must hold RCU or RTNL.
939  *	The returned device has not had its ref count increased
940  *	and the caller must therefore be careful about locking
941  *
942  */
943 
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 				       const char *ha)
946 {
947 	struct net_device *dev;
948 
949 	for_each_netdev_rcu(net, dev)
950 		if (dev->type == type &&
951 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957 
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960 	struct net_device *dev;
961 
962 	ASSERT_RTNL();
963 	for_each_netdev(net, dev)
964 		if (dev->type == type)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970 
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973 	struct net_device *dev, *ret = NULL;
974 
975 	rcu_read_lock();
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type) {
978 			dev_hold(dev);
979 			ret = dev;
980 			break;
981 		}
982 	rcu_read_unlock();
983 	return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986 
987 /**
988  *	__dev_get_by_flags - find any device with given flags
989  *	@net: the applicable net namespace
990  *	@if_flags: IFF_* values
991  *	@mask: bitmask of bits in if_flags to check
992  *
993  *	Search for any interface with the given flags. Returns NULL if a device
994  *	is not found or a pointer to the device. Must be called inside
995  *	rtnl_lock(), and result refcount is unchanged.
996  */
997 
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 				      unsigned short mask)
1000 {
1001 	struct net_device *dev, *ret;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	ret = NULL;
1006 	for_each_netdev(net, dev) {
1007 		if (((dev->flags ^ if_flags) & mask) == 0) {
1008 			ret = dev;
1009 			break;
1010 		}
1011 	}
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015 
1016 /**
1017  *	dev_valid_name - check if name is okay for network device
1018  *	@name: name string
1019  *
1020  *	Network device names need to be valid file names to
1021  *	to allow sysfs to work.  We also disallow any kind of
1022  *	whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026 	if (*name == '\0')
1027 		return false;
1028 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 		return false;
1030 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 		return false;
1032 
1033 	while (*name) {
1034 		if (*name == '/' || *name == ':' || isspace(*name))
1035 			return false;
1036 		name++;
1037 	}
1038 	return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041 
1042 /**
1043  *	__dev_alloc_name - allocate a name for a device
1044  *	@net: network namespace to allocate the device name in
1045  *	@name: name format string
1046  *	@buf:  scratch buffer and result name string
1047  *
1048  *	Passed a format string - eg "lt%d" it will try and find a suitable
1049  *	id. It scans list of devices to build up a free map, then chooses
1050  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *	while allocating the name and adding the device in order to avoid
1052  *	duplicates.
1053  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *	Returns the number of the unit assigned or a negative errno code.
1055  */
1056 
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059 	int i = 0;
1060 	const char *p;
1061 	const int max_netdevices = 8*PAGE_SIZE;
1062 	unsigned long *inuse;
1063 	struct net_device *d;
1064 
1065 	if (!dev_valid_name(name))
1066 		return -EINVAL;
1067 
1068 	p = strchr(name, '%');
1069 	if (p) {
1070 		/*
1071 		 * Verify the string as this thing may have come from
1072 		 * the user.  There must be either one "%d" and no other "%"
1073 		 * characters.
1074 		 */
1075 		if (p[1] != 'd' || strchr(p + 2, '%'))
1076 			return -EINVAL;
1077 
1078 		/* Use one page as a bit array of possible slots */
1079 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 		if (!inuse)
1081 			return -ENOMEM;
1082 
1083 		for_each_netdev(net, d) {
1084 			if (!sscanf(d->name, name, &i))
1085 				continue;
1086 			if (i < 0 || i >= max_netdevices)
1087 				continue;
1088 
1089 			/*  avoid cases where sscanf is not exact inverse of printf */
1090 			snprintf(buf, IFNAMSIZ, name, i);
1091 			if (!strncmp(buf, d->name, IFNAMSIZ))
1092 				set_bit(i, inuse);
1093 		}
1094 
1095 		i = find_first_zero_bit(inuse, max_netdevices);
1096 		free_page((unsigned long) inuse);
1097 	}
1098 
1099 	snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
1110 static int dev_alloc_name_ns(struct net *net,
1111 			     struct net_device *dev,
1112 			     const char *name)
1113 {
1114 	char buf[IFNAMSIZ];
1115 	int ret;
1116 
1117 	BUG_ON(!net);
1118 	ret = __dev_alloc_name(net, name, buf);
1119 	if (ret >= 0)
1120 		strlcpy(dev->name, buf, IFNAMSIZ);
1121 	return ret;
1122 }
1123 
1124 /**
1125  *	dev_alloc_name - allocate a name for a device
1126  *	@dev: device
1127  *	@name: name format string
1128  *
1129  *	Passed a format string - eg "lt%d" it will try and find a suitable
1130  *	id. It scans list of devices to build up a free map, then chooses
1131  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *	while allocating the name and adding the device in order to avoid
1133  *	duplicates.
1134  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *	Returns the number of the unit assigned or a negative errno code.
1136  */
1137 
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143 
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 		       const char *name)
1146 {
1147 	BUG_ON(!net);
1148 
1149 	if (!dev_valid_name(name))
1150 		return -EINVAL;
1151 
1152 	if (strchr(name, '%'))
1153 		return dev_alloc_name_ns(net, dev, name);
1154 	else if (__dev_get_by_name(net, name))
1155 		return -EEXIST;
1156 	else if (dev->name != name)
1157 		strlcpy(dev->name, name, IFNAMSIZ);
1158 
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162 
1163 /**
1164  *	dev_change_name - change name of a device
1165  *	@dev: device
1166  *	@newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *	Change name of a device, can pass format strings "eth%d".
1169  *	for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173 	unsigned char old_assign_type;
1174 	char oldname[IFNAMSIZ];
1175 	int err = 0;
1176 	int ret;
1177 	struct net *net;
1178 
1179 	ASSERT_RTNL();
1180 	BUG_ON(!dev_net(dev));
1181 
1182 	net = dev_net(dev);
1183 
1184 	/* Some auto-enslaved devices e.g. failover slaves are
1185 	 * special, as userspace might rename the device after
1186 	 * the interface had been brought up and running since
1187 	 * the point kernel initiated auto-enslavement. Allow
1188 	 * live name change even when these slave devices are
1189 	 * up and running.
1190 	 *
1191 	 * Typically, users of these auto-enslaving devices
1192 	 * don't actually care about slave name change, as
1193 	 * they are supposed to operate on master interface
1194 	 * directly.
1195 	 */
1196 	if (dev->flags & IFF_UP &&
1197 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1198 		return -EBUSY;
1199 
1200 	write_seqcount_begin(&devnet_rename_seq);
1201 
1202 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1203 		write_seqcount_end(&devnet_rename_seq);
1204 		return 0;
1205 	}
1206 
1207 	memcpy(oldname, dev->name, IFNAMSIZ);
1208 
1209 	err = dev_get_valid_name(net, dev, newname);
1210 	if (err < 0) {
1211 		write_seqcount_end(&devnet_rename_seq);
1212 		return err;
1213 	}
1214 
1215 	if (oldname[0] && !strchr(oldname, '%'))
1216 		netdev_info(dev, "renamed from %s\n", oldname);
1217 
1218 	old_assign_type = dev->name_assign_type;
1219 	dev->name_assign_type = NET_NAME_RENAMED;
1220 
1221 rollback:
1222 	ret = device_rename(&dev->dev, dev->name);
1223 	if (ret) {
1224 		memcpy(dev->name, oldname, IFNAMSIZ);
1225 		dev->name_assign_type = old_assign_type;
1226 		write_seqcount_end(&devnet_rename_seq);
1227 		return ret;
1228 	}
1229 
1230 	write_seqcount_end(&devnet_rename_seq);
1231 
1232 	netdev_adjacent_rename_links(dev, oldname);
1233 
1234 	write_lock_bh(&dev_base_lock);
1235 	hlist_del_rcu(&dev->name_hlist);
1236 	write_unlock_bh(&dev_base_lock);
1237 
1238 	synchronize_rcu();
1239 
1240 	write_lock_bh(&dev_base_lock);
1241 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1242 	write_unlock_bh(&dev_base_lock);
1243 
1244 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245 	ret = notifier_to_errno(ret);
1246 
1247 	if (ret) {
1248 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1249 		if (err >= 0) {
1250 			err = ret;
1251 			write_seqcount_begin(&devnet_rename_seq);
1252 			memcpy(dev->name, oldname, IFNAMSIZ);
1253 			memcpy(oldname, newname, IFNAMSIZ);
1254 			dev->name_assign_type = old_assign_type;
1255 			old_assign_type = NET_NAME_RENAMED;
1256 			goto rollback;
1257 		} else {
1258 			pr_err("%s: name change rollback failed: %d\n",
1259 			       dev->name, ret);
1260 		}
1261 	}
1262 
1263 	return err;
1264 }
1265 
1266 /**
1267  *	dev_set_alias - change ifalias of a device
1268  *	@dev: device
1269  *	@alias: name up to IFALIASZ
1270  *	@len: limit of bytes to copy from info
1271  *
1272  *	Set ifalias for a device,
1273  */
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275 {
1276 	struct dev_ifalias *new_alias = NULL;
1277 
1278 	if (len >= IFALIASZ)
1279 		return -EINVAL;
1280 
1281 	if (len) {
1282 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283 		if (!new_alias)
1284 			return -ENOMEM;
1285 
1286 		memcpy(new_alias->ifalias, alias, len);
1287 		new_alias->ifalias[len] = 0;
1288 	}
1289 
1290 	mutex_lock(&ifalias_mutex);
1291 	rcu_swap_protected(dev->ifalias, new_alias,
1292 			   mutex_is_locked(&ifalias_mutex));
1293 	mutex_unlock(&ifalias_mutex);
1294 
1295 	if (new_alias)
1296 		kfree_rcu(new_alias, rcuhead);
1297 
1298 	return len;
1299 }
1300 EXPORT_SYMBOL(dev_set_alias);
1301 
1302 /**
1303  *	dev_get_alias - get ifalias of a device
1304  *	@dev: device
1305  *	@name: buffer to store name of ifalias
1306  *	@len: size of buffer
1307  *
1308  *	get ifalias for a device.  Caller must make sure dev cannot go
1309  *	away,  e.g. rcu read lock or own a reference count to device.
1310  */
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312 {
1313 	const struct dev_ifalias *alias;
1314 	int ret = 0;
1315 
1316 	rcu_read_lock();
1317 	alias = rcu_dereference(dev->ifalias);
1318 	if (alias)
1319 		ret = snprintf(name, len, "%s", alias->ifalias);
1320 	rcu_read_unlock();
1321 
1322 	return ret;
1323 }
1324 
1325 /**
1326  *	netdev_features_change - device changes features
1327  *	@dev: device to cause notification
1328  *
1329  *	Called to indicate a device has changed features.
1330  */
1331 void netdev_features_change(struct net_device *dev)
1332 {
1333 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334 }
1335 EXPORT_SYMBOL(netdev_features_change);
1336 
1337 /**
1338  *	netdev_state_change - device changes state
1339  *	@dev: device to cause notification
1340  *
1341  *	Called to indicate a device has changed state. This function calls
1342  *	the notifier chains for netdev_chain and sends a NEWLINK message
1343  *	to the routing socket.
1344  */
1345 void netdev_state_change(struct net_device *dev)
1346 {
1347 	if (dev->flags & IFF_UP) {
1348 		struct netdev_notifier_change_info change_info = {
1349 			.info.dev = dev,
1350 		};
1351 
1352 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1353 					      &change_info.info);
1354 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1355 	}
1356 }
1357 EXPORT_SYMBOL(netdev_state_change);
1358 
1359 /**
1360  * netdev_notify_peers - notify network peers about existence of @dev
1361  * @dev: network device
1362  *
1363  * Generate traffic such that interested network peers are aware of
1364  * @dev, such as by generating a gratuitous ARP. This may be used when
1365  * a device wants to inform the rest of the network about some sort of
1366  * reconfiguration such as a failover event or virtual machine
1367  * migration.
1368  */
1369 void netdev_notify_peers(struct net_device *dev)
1370 {
1371 	rtnl_lock();
1372 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1373 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1374 	rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377 
1378 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1379 {
1380 	const struct net_device_ops *ops = dev->netdev_ops;
1381 	int ret;
1382 
1383 	ASSERT_RTNL();
1384 
1385 	if (!netif_device_present(dev))
1386 		return -ENODEV;
1387 
1388 	/* Block netpoll from trying to do any rx path servicing.
1389 	 * If we don't do this there is a chance ndo_poll_controller
1390 	 * or ndo_poll may be running while we open the device
1391 	 */
1392 	netpoll_poll_disable(dev);
1393 
1394 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1395 	ret = notifier_to_errno(ret);
1396 	if (ret)
1397 		return ret;
1398 
1399 	set_bit(__LINK_STATE_START, &dev->state);
1400 
1401 	if (ops->ndo_validate_addr)
1402 		ret = ops->ndo_validate_addr(dev);
1403 
1404 	if (!ret && ops->ndo_open)
1405 		ret = ops->ndo_open(dev);
1406 
1407 	netpoll_poll_enable(dev);
1408 
1409 	if (ret)
1410 		clear_bit(__LINK_STATE_START, &dev->state);
1411 	else {
1412 		dev->flags |= IFF_UP;
1413 		dev_set_rx_mode(dev);
1414 		dev_activate(dev);
1415 		add_device_randomness(dev->dev_addr, dev->addr_len);
1416 	}
1417 
1418 	return ret;
1419 }
1420 
1421 /**
1422  *	dev_open	- prepare an interface for use.
1423  *	@dev: device to open
1424  *	@extack: netlink extended ack
1425  *
1426  *	Takes a device from down to up state. The device's private open
1427  *	function is invoked and then the multicast lists are loaded. Finally
1428  *	the device is moved into the up state and a %NETDEV_UP message is
1429  *	sent to the netdev notifier chain.
1430  *
1431  *	Calling this function on an active interface is a nop. On a failure
1432  *	a negative errno code is returned.
1433  */
1434 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1435 {
1436 	int ret;
1437 
1438 	if (dev->flags & IFF_UP)
1439 		return 0;
1440 
1441 	ret = __dev_open(dev, extack);
1442 	if (ret < 0)
1443 		return ret;
1444 
1445 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1446 	call_netdevice_notifiers(NETDEV_UP, dev);
1447 
1448 	return ret;
1449 }
1450 EXPORT_SYMBOL(dev_open);
1451 
1452 static void __dev_close_many(struct list_head *head)
1453 {
1454 	struct net_device *dev;
1455 
1456 	ASSERT_RTNL();
1457 	might_sleep();
1458 
1459 	list_for_each_entry(dev, head, close_list) {
1460 		/* Temporarily disable netpoll until the interface is down */
1461 		netpoll_poll_disable(dev);
1462 
1463 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1464 
1465 		clear_bit(__LINK_STATE_START, &dev->state);
1466 
1467 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1468 		 * can be even on different cpu. So just clear netif_running().
1469 		 *
1470 		 * dev->stop() will invoke napi_disable() on all of it's
1471 		 * napi_struct instances on this device.
1472 		 */
1473 		smp_mb__after_atomic(); /* Commit netif_running(). */
1474 	}
1475 
1476 	dev_deactivate_many(head);
1477 
1478 	list_for_each_entry(dev, head, close_list) {
1479 		const struct net_device_ops *ops = dev->netdev_ops;
1480 
1481 		/*
1482 		 *	Call the device specific close. This cannot fail.
1483 		 *	Only if device is UP
1484 		 *
1485 		 *	We allow it to be called even after a DETACH hot-plug
1486 		 *	event.
1487 		 */
1488 		if (ops->ndo_stop)
1489 			ops->ndo_stop(dev);
1490 
1491 		dev->flags &= ~IFF_UP;
1492 		netpoll_poll_enable(dev);
1493 	}
1494 }
1495 
1496 static void __dev_close(struct net_device *dev)
1497 {
1498 	LIST_HEAD(single);
1499 
1500 	list_add(&dev->close_list, &single);
1501 	__dev_close_many(&single);
1502 	list_del(&single);
1503 }
1504 
1505 void dev_close_many(struct list_head *head, bool unlink)
1506 {
1507 	struct net_device *dev, *tmp;
1508 
1509 	/* Remove the devices that don't need to be closed */
1510 	list_for_each_entry_safe(dev, tmp, head, close_list)
1511 		if (!(dev->flags & IFF_UP))
1512 			list_del_init(&dev->close_list);
1513 
1514 	__dev_close_many(head);
1515 
1516 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1517 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1518 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1519 		if (unlink)
1520 			list_del_init(&dev->close_list);
1521 	}
1522 }
1523 EXPORT_SYMBOL(dev_close_many);
1524 
1525 /**
1526  *	dev_close - shutdown an interface.
1527  *	@dev: device to shutdown
1528  *
1529  *	This function moves an active device into down state. A
1530  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1532  *	chain.
1533  */
1534 void dev_close(struct net_device *dev)
1535 {
1536 	if (dev->flags & IFF_UP) {
1537 		LIST_HEAD(single);
1538 
1539 		list_add(&dev->close_list, &single);
1540 		dev_close_many(&single, true);
1541 		list_del(&single);
1542 	}
1543 }
1544 EXPORT_SYMBOL(dev_close);
1545 
1546 
1547 /**
1548  *	dev_disable_lro - disable Large Receive Offload on a device
1549  *	@dev: device
1550  *
1551  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1552  *	called under RTNL.  This is needed if received packets may be
1553  *	forwarded to another interface.
1554  */
1555 void dev_disable_lro(struct net_device *dev)
1556 {
1557 	struct net_device *lower_dev;
1558 	struct list_head *iter;
1559 
1560 	dev->wanted_features &= ~NETIF_F_LRO;
1561 	netdev_update_features(dev);
1562 
1563 	if (unlikely(dev->features & NETIF_F_LRO))
1564 		netdev_WARN(dev, "failed to disable LRO!\n");
1565 
1566 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1567 		dev_disable_lro(lower_dev);
1568 }
1569 EXPORT_SYMBOL(dev_disable_lro);
1570 
1571 /**
1572  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1573  *	@dev: device
1574  *
1575  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1576  *	called under RTNL.  This is needed if Generic XDP is installed on
1577  *	the device.
1578  */
1579 static void dev_disable_gro_hw(struct net_device *dev)
1580 {
1581 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1582 	netdev_update_features(dev);
1583 
1584 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1585 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1586 }
1587 
1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1589 {
1590 #define N(val) 						\
1591 	case NETDEV_##val:				\
1592 		return "NETDEV_" __stringify(val);
1593 	switch (cmd) {
1594 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1601 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1603 	N(PRE_CHANGEADDR)
1604 	}
1605 #undef N
1606 	return "UNKNOWN_NETDEV_EVENT";
1607 }
1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1609 
1610 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611 				   struct net_device *dev)
1612 {
1613 	struct netdev_notifier_info info = {
1614 		.dev = dev,
1615 	};
1616 
1617 	return nb->notifier_call(nb, val, &info);
1618 }
1619 
1620 static int dev_boot_phase = 1;
1621 
1622 /**
1623  * register_netdevice_notifier - register a network notifier block
1624  * @nb: notifier
1625  *
1626  * Register a notifier to be called when network device events occur.
1627  * The notifier passed is linked into the kernel structures and must
1628  * not be reused until it has been unregistered. A negative errno code
1629  * is returned on a failure.
1630  *
1631  * When registered all registration and up events are replayed
1632  * to the new notifier to allow device to have a race free
1633  * view of the network device list.
1634  */
1635 
1636 int register_netdevice_notifier(struct notifier_block *nb)
1637 {
1638 	struct net_device *dev;
1639 	struct net_device *last;
1640 	struct net *net;
1641 	int err;
1642 
1643 	/* Close race with setup_net() and cleanup_net() */
1644 	down_write(&pernet_ops_rwsem);
1645 	rtnl_lock();
1646 	err = raw_notifier_chain_register(&netdev_chain, nb);
1647 	if (err)
1648 		goto unlock;
1649 	if (dev_boot_phase)
1650 		goto unlock;
1651 	for_each_net(net) {
1652 		for_each_netdev(net, dev) {
1653 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654 			err = notifier_to_errno(err);
1655 			if (err)
1656 				goto rollback;
1657 
1658 			if (!(dev->flags & IFF_UP))
1659 				continue;
1660 
1661 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1662 		}
1663 	}
1664 
1665 unlock:
1666 	rtnl_unlock();
1667 	up_write(&pernet_ops_rwsem);
1668 	return err;
1669 
1670 rollback:
1671 	last = dev;
1672 	for_each_net(net) {
1673 		for_each_netdev(net, dev) {
1674 			if (dev == last)
1675 				goto outroll;
1676 
1677 			if (dev->flags & IFF_UP) {
1678 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1679 							dev);
1680 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1681 			}
1682 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1683 		}
1684 	}
1685 
1686 outroll:
1687 	raw_notifier_chain_unregister(&netdev_chain, nb);
1688 	goto unlock;
1689 }
1690 EXPORT_SYMBOL(register_netdevice_notifier);
1691 
1692 /**
1693  * unregister_netdevice_notifier - unregister a network notifier block
1694  * @nb: notifier
1695  *
1696  * Unregister a notifier previously registered by
1697  * register_netdevice_notifier(). The notifier is unlinked into the
1698  * kernel structures and may then be reused. A negative errno code
1699  * is returned on a failure.
1700  *
1701  * After unregistering unregister and down device events are synthesized
1702  * for all devices on the device list to the removed notifier to remove
1703  * the need for special case cleanup code.
1704  */
1705 
1706 int unregister_netdevice_notifier(struct notifier_block *nb)
1707 {
1708 	struct net_device *dev;
1709 	struct net *net;
1710 	int err;
1711 
1712 	/* Close race with setup_net() and cleanup_net() */
1713 	down_write(&pernet_ops_rwsem);
1714 	rtnl_lock();
1715 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1716 	if (err)
1717 		goto unlock;
1718 
1719 	for_each_net(net) {
1720 		for_each_netdev(net, dev) {
1721 			if (dev->flags & IFF_UP) {
1722 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723 							dev);
1724 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725 			}
1726 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727 		}
1728 	}
1729 unlock:
1730 	rtnl_unlock();
1731 	up_write(&pernet_ops_rwsem);
1732 	return err;
1733 }
1734 EXPORT_SYMBOL(unregister_netdevice_notifier);
1735 
1736 /**
1737  *	call_netdevice_notifiers_info - call all network notifier blocks
1738  *	@val: value passed unmodified to notifier function
1739  *	@info: notifier information data
1740  *
1741  *	Call all network notifier blocks.  Parameters and return value
1742  *	are as for raw_notifier_call_chain().
1743  */
1744 
1745 static int call_netdevice_notifiers_info(unsigned long val,
1746 					 struct netdev_notifier_info *info)
1747 {
1748 	ASSERT_RTNL();
1749 	return raw_notifier_call_chain(&netdev_chain, val, info);
1750 }
1751 
1752 static int call_netdevice_notifiers_extack(unsigned long val,
1753 					   struct net_device *dev,
1754 					   struct netlink_ext_ack *extack)
1755 {
1756 	struct netdev_notifier_info info = {
1757 		.dev = dev,
1758 		.extack = extack,
1759 	};
1760 
1761 	return call_netdevice_notifiers_info(val, &info);
1762 }
1763 
1764 /**
1765  *	call_netdevice_notifiers - call all network notifier blocks
1766  *      @val: value passed unmodified to notifier function
1767  *      @dev: net_device pointer passed unmodified to notifier function
1768  *
1769  *	Call all network notifier blocks.  Parameters and return value
1770  *	are as for raw_notifier_call_chain().
1771  */
1772 
1773 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1774 {
1775 	return call_netdevice_notifiers_extack(val, dev, NULL);
1776 }
1777 EXPORT_SYMBOL(call_netdevice_notifiers);
1778 
1779 /**
1780  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1781  *	@val: value passed unmodified to notifier function
1782  *	@dev: net_device pointer passed unmodified to notifier function
1783  *	@arg: additional u32 argument passed to the notifier function
1784  *
1785  *	Call all network notifier blocks.  Parameters and return value
1786  *	are as for raw_notifier_call_chain().
1787  */
1788 static int call_netdevice_notifiers_mtu(unsigned long val,
1789 					struct net_device *dev, u32 arg)
1790 {
1791 	struct netdev_notifier_info_ext info = {
1792 		.info.dev = dev,
1793 		.ext.mtu = arg,
1794 	};
1795 
1796 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1797 
1798 	return call_netdevice_notifiers_info(val, &info.info);
1799 }
1800 
1801 #ifdef CONFIG_NET_INGRESS
1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1803 
1804 void net_inc_ingress_queue(void)
1805 {
1806 	static_branch_inc(&ingress_needed_key);
1807 }
1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1809 
1810 void net_dec_ingress_queue(void)
1811 {
1812 	static_branch_dec(&ingress_needed_key);
1813 }
1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1815 #endif
1816 
1817 #ifdef CONFIG_NET_EGRESS
1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1819 
1820 void net_inc_egress_queue(void)
1821 {
1822 	static_branch_inc(&egress_needed_key);
1823 }
1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1825 
1826 void net_dec_egress_queue(void)
1827 {
1828 	static_branch_dec(&egress_needed_key);
1829 }
1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1831 #endif
1832 
1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1834 #ifdef CONFIG_JUMP_LABEL
1835 static atomic_t netstamp_needed_deferred;
1836 static atomic_t netstamp_wanted;
1837 static void netstamp_clear(struct work_struct *work)
1838 {
1839 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1840 	int wanted;
1841 
1842 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1843 	if (wanted > 0)
1844 		static_branch_enable(&netstamp_needed_key);
1845 	else
1846 		static_branch_disable(&netstamp_needed_key);
1847 }
1848 static DECLARE_WORK(netstamp_work, netstamp_clear);
1849 #endif
1850 
1851 void net_enable_timestamp(void)
1852 {
1853 #ifdef CONFIG_JUMP_LABEL
1854 	int wanted;
1855 
1856 	while (1) {
1857 		wanted = atomic_read(&netstamp_wanted);
1858 		if (wanted <= 0)
1859 			break;
1860 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1861 			return;
1862 	}
1863 	atomic_inc(&netstamp_needed_deferred);
1864 	schedule_work(&netstamp_work);
1865 #else
1866 	static_branch_inc(&netstamp_needed_key);
1867 #endif
1868 }
1869 EXPORT_SYMBOL(net_enable_timestamp);
1870 
1871 void net_disable_timestamp(void)
1872 {
1873 #ifdef CONFIG_JUMP_LABEL
1874 	int wanted;
1875 
1876 	while (1) {
1877 		wanted = atomic_read(&netstamp_wanted);
1878 		if (wanted <= 1)
1879 			break;
1880 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1881 			return;
1882 	}
1883 	atomic_dec(&netstamp_needed_deferred);
1884 	schedule_work(&netstamp_work);
1885 #else
1886 	static_branch_dec(&netstamp_needed_key);
1887 #endif
1888 }
1889 EXPORT_SYMBOL(net_disable_timestamp);
1890 
1891 static inline void net_timestamp_set(struct sk_buff *skb)
1892 {
1893 	skb->tstamp = 0;
1894 	if (static_branch_unlikely(&netstamp_needed_key))
1895 		__net_timestamp(skb);
1896 }
1897 
1898 #define net_timestamp_check(COND, SKB)				\
1899 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1900 		if ((COND) && !(SKB)->tstamp)			\
1901 			__net_timestamp(SKB);			\
1902 	}							\
1903 
1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1905 {
1906 	unsigned int len;
1907 
1908 	if (!(dev->flags & IFF_UP))
1909 		return false;
1910 
1911 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912 	if (skb->len <= len)
1913 		return true;
1914 
1915 	/* if TSO is enabled, we don't care about the length as the packet
1916 	 * could be forwarded without being segmented before
1917 	 */
1918 	if (skb_is_gso(skb))
1919 		return true;
1920 
1921 	return false;
1922 }
1923 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1924 
1925 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1926 {
1927 	int ret = ____dev_forward_skb(dev, skb);
1928 
1929 	if (likely(!ret)) {
1930 		skb->protocol = eth_type_trans(skb, dev);
1931 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1932 	}
1933 
1934 	return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1937 
1938 /**
1939  * dev_forward_skb - loopback an skb to another netif
1940  *
1941  * @dev: destination network device
1942  * @skb: buffer to forward
1943  *
1944  * return values:
1945  *	NET_RX_SUCCESS	(no congestion)
1946  *	NET_RX_DROP     (packet was dropped, but freed)
1947  *
1948  * dev_forward_skb can be used for injecting an skb from the
1949  * start_xmit function of one device into the receive queue
1950  * of another device.
1951  *
1952  * The receiving device may be in another namespace, so
1953  * we have to clear all information in the skb that could
1954  * impact namespace isolation.
1955  */
1956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1957 {
1958 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1959 }
1960 EXPORT_SYMBOL_GPL(dev_forward_skb);
1961 
1962 static inline int deliver_skb(struct sk_buff *skb,
1963 			      struct packet_type *pt_prev,
1964 			      struct net_device *orig_dev)
1965 {
1966 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1967 		return -ENOMEM;
1968 	refcount_inc(&skb->users);
1969 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1970 }
1971 
1972 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973 					  struct packet_type **pt,
1974 					  struct net_device *orig_dev,
1975 					  __be16 type,
1976 					  struct list_head *ptype_list)
1977 {
1978 	struct packet_type *ptype, *pt_prev = *pt;
1979 
1980 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1981 		if (ptype->type != type)
1982 			continue;
1983 		if (pt_prev)
1984 			deliver_skb(skb, pt_prev, orig_dev);
1985 		pt_prev = ptype;
1986 	}
1987 	*pt = pt_prev;
1988 }
1989 
1990 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1991 {
1992 	if (!ptype->af_packet_priv || !skb->sk)
1993 		return false;
1994 
1995 	if (ptype->id_match)
1996 		return ptype->id_match(ptype, skb->sk);
1997 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1998 		return true;
1999 
2000 	return false;
2001 }
2002 
2003 /**
2004  * dev_nit_active - return true if any network interface taps are in use
2005  *
2006  * @dev: network device to check for the presence of taps
2007  */
2008 bool dev_nit_active(struct net_device *dev)
2009 {
2010 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2011 }
2012 EXPORT_SYMBOL_GPL(dev_nit_active);
2013 
2014 /*
2015  *	Support routine. Sends outgoing frames to any network
2016  *	taps currently in use.
2017  */
2018 
2019 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2020 {
2021 	struct packet_type *ptype;
2022 	struct sk_buff *skb2 = NULL;
2023 	struct packet_type *pt_prev = NULL;
2024 	struct list_head *ptype_list = &ptype_all;
2025 
2026 	rcu_read_lock();
2027 again:
2028 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2029 		if (ptype->ignore_outgoing)
2030 			continue;
2031 
2032 		/* Never send packets back to the socket
2033 		 * they originated from - MvS (miquels@drinkel.ow.org)
2034 		 */
2035 		if (skb_loop_sk(ptype, skb))
2036 			continue;
2037 
2038 		if (pt_prev) {
2039 			deliver_skb(skb2, pt_prev, skb->dev);
2040 			pt_prev = ptype;
2041 			continue;
2042 		}
2043 
2044 		/* need to clone skb, done only once */
2045 		skb2 = skb_clone(skb, GFP_ATOMIC);
2046 		if (!skb2)
2047 			goto out_unlock;
2048 
2049 		net_timestamp_set(skb2);
2050 
2051 		/* skb->nh should be correctly
2052 		 * set by sender, so that the second statement is
2053 		 * just protection against buggy protocols.
2054 		 */
2055 		skb_reset_mac_header(skb2);
2056 
2057 		if (skb_network_header(skb2) < skb2->data ||
2058 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060 					     ntohs(skb2->protocol),
2061 					     dev->name);
2062 			skb_reset_network_header(skb2);
2063 		}
2064 
2065 		skb2->transport_header = skb2->network_header;
2066 		skb2->pkt_type = PACKET_OUTGOING;
2067 		pt_prev = ptype;
2068 	}
2069 
2070 	if (ptype_list == &ptype_all) {
2071 		ptype_list = &dev->ptype_all;
2072 		goto again;
2073 	}
2074 out_unlock:
2075 	if (pt_prev) {
2076 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2078 		else
2079 			kfree_skb(skb2);
2080 	}
2081 	rcu_read_unlock();
2082 }
2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2084 
2085 /**
2086  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2087  * @dev: Network device
2088  * @txq: number of queues available
2089  *
2090  * If real_num_tx_queues is changed the tc mappings may no longer be
2091  * valid. To resolve this verify the tc mapping remains valid and if
2092  * not NULL the mapping. With no priorities mapping to this
2093  * offset/count pair it will no longer be used. In the worst case TC0
2094  * is invalid nothing can be done so disable priority mappings. If is
2095  * expected that drivers will fix this mapping if they can before
2096  * calling netif_set_real_num_tx_queues.
2097  */
2098 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2099 {
2100 	int i;
2101 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2102 
2103 	/* If TC0 is invalidated disable TC mapping */
2104 	if (tc->offset + tc->count > txq) {
2105 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2106 		dev->num_tc = 0;
2107 		return;
2108 	}
2109 
2110 	/* Invalidated prio to tc mappings set to TC0 */
2111 	for (i = 1; i < TC_BITMASK + 1; i++) {
2112 		int q = netdev_get_prio_tc_map(dev, i);
2113 
2114 		tc = &dev->tc_to_txq[q];
2115 		if (tc->offset + tc->count > txq) {
2116 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2117 				i, q);
2118 			netdev_set_prio_tc_map(dev, i, 0);
2119 		}
2120 	}
2121 }
2122 
2123 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2124 {
2125 	if (dev->num_tc) {
2126 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2127 		int i;
2128 
2129 		/* walk through the TCs and see if it falls into any of them */
2130 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131 			if ((txq - tc->offset) < tc->count)
2132 				return i;
2133 		}
2134 
2135 		/* didn't find it, just return -1 to indicate no match */
2136 		return -1;
2137 	}
2138 
2139 	return 0;
2140 }
2141 EXPORT_SYMBOL(netdev_txq_to_tc);
2142 
2143 #ifdef CONFIG_XPS
2144 struct static_key xps_needed __read_mostly;
2145 EXPORT_SYMBOL(xps_needed);
2146 struct static_key xps_rxqs_needed __read_mostly;
2147 EXPORT_SYMBOL(xps_rxqs_needed);
2148 static DEFINE_MUTEX(xps_map_mutex);
2149 #define xmap_dereference(P)		\
2150 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2151 
2152 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2153 			     int tci, u16 index)
2154 {
2155 	struct xps_map *map = NULL;
2156 	int pos;
2157 
2158 	if (dev_maps)
2159 		map = xmap_dereference(dev_maps->attr_map[tci]);
2160 	if (!map)
2161 		return false;
2162 
2163 	for (pos = map->len; pos--;) {
2164 		if (map->queues[pos] != index)
2165 			continue;
2166 
2167 		if (map->len > 1) {
2168 			map->queues[pos] = map->queues[--map->len];
2169 			break;
2170 		}
2171 
2172 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2173 		kfree_rcu(map, rcu);
2174 		return false;
2175 	}
2176 
2177 	return true;
2178 }
2179 
2180 static bool remove_xps_queue_cpu(struct net_device *dev,
2181 				 struct xps_dev_maps *dev_maps,
2182 				 int cpu, u16 offset, u16 count)
2183 {
2184 	int num_tc = dev->num_tc ? : 1;
2185 	bool active = false;
2186 	int tci;
2187 
2188 	for (tci = cpu * num_tc; num_tc--; tci++) {
2189 		int i, j;
2190 
2191 		for (i = count, j = offset; i--; j++) {
2192 			if (!remove_xps_queue(dev_maps, tci, j))
2193 				break;
2194 		}
2195 
2196 		active |= i < 0;
2197 	}
2198 
2199 	return active;
2200 }
2201 
2202 static void reset_xps_maps(struct net_device *dev,
2203 			   struct xps_dev_maps *dev_maps,
2204 			   bool is_rxqs_map)
2205 {
2206 	if (is_rxqs_map) {
2207 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2209 	} else {
2210 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2211 	}
2212 	static_key_slow_dec_cpuslocked(&xps_needed);
2213 	kfree_rcu(dev_maps, rcu);
2214 }
2215 
2216 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218 			   u16 offset, u16 count, bool is_rxqs_map)
2219 {
2220 	bool active = false;
2221 	int i, j;
2222 
2223 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2224 	     j < nr_ids;)
2225 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2226 					       count);
2227 	if (!active)
2228 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2229 
2230 	if (!is_rxqs_map) {
2231 		for (i = offset + (count - 1); count--; i--) {
2232 			netdev_queue_numa_node_write(
2233 				netdev_get_tx_queue(dev, i),
2234 				NUMA_NO_NODE);
2235 		}
2236 	}
2237 }
2238 
2239 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2240 				   u16 count)
2241 {
2242 	const unsigned long *possible_mask = NULL;
2243 	struct xps_dev_maps *dev_maps;
2244 	unsigned int nr_ids;
2245 
2246 	if (!static_key_false(&xps_needed))
2247 		return;
2248 
2249 	cpus_read_lock();
2250 	mutex_lock(&xps_map_mutex);
2251 
2252 	if (static_key_false(&xps_rxqs_needed)) {
2253 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2254 		if (dev_maps) {
2255 			nr_ids = dev->num_rx_queues;
2256 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257 				       offset, count, true);
2258 		}
2259 	}
2260 
2261 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2262 	if (!dev_maps)
2263 		goto out_no_maps;
2264 
2265 	if (num_possible_cpus() > 1)
2266 		possible_mask = cpumask_bits(cpu_possible_mask);
2267 	nr_ids = nr_cpu_ids;
2268 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2269 		       false);
2270 
2271 out_no_maps:
2272 	mutex_unlock(&xps_map_mutex);
2273 	cpus_read_unlock();
2274 }
2275 
2276 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2277 {
2278 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2279 }
2280 
2281 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282 				      u16 index, bool is_rxqs_map)
2283 {
2284 	struct xps_map *new_map;
2285 	int alloc_len = XPS_MIN_MAP_ALLOC;
2286 	int i, pos;
2287 
2288 	for (pos = 0; map && pos < map->len; pos++) {
2289 		if (map->queues[pos] != index)
2290 			continue;
2291 		return map;
2292 	}
2293 
2294 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2295 	if (map) {
2296 		if (pos < map->alloc_len)
2297 			return map;
2298 
2299 		alloc_len = map->alloc_len * 2;
2300 	}
2301 
2302 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2303 	 *  map
2304 	 */
2305 	if (is_rxqs_map)
2306 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2307 	else
2308 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309 				       cpu_to_node(attr_index));
2310 	if (!new_map)
2311 		return NULL;
2312 
2313 	for (i = 0; i < pos; i++)
2314 		new_map->queues[i] = map->queues[i];
2315 	new_map->alloc_len = alloc_len;
2316 	new_map->len = pos;
2317 
2318 	return new_map;
2319 }
2320 
2321 /* Must be called under cpus_read_lock */
2322 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323 			  u16 index, bool is_rxqs_map)
2324 {
2325 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2326 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2327 	int i, j, tci, numa_node_id = -2;
2328 	int maps_sz, num_tc = 1, tc = 0;
2329 	struct xps_map *map, *new_map;
2330 	bool active = false;
2331 	unsigned int nr_ids;
2332 
2333 	if (dev->num_tc) {
2334 		/* Do not allow XPS on subordinate device directly */
2335 		num_tc = dev->num_tc;
2336 		if (num_tc < 0)
2337 			return -EINVAL;
2338 
2339 		/* If queue belongs to subordinate dev use its map */
2340 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2341 
2342 		tc = netdev_txq_to_tc(dev, index);
2343 		if (tc < 0)
2344 			return -EINVAL;
2345 	}
2346 
2347 	mutex_lock(&xps_map_mutex);
2348 	if (is_rxqs_map) {
2349 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351 		nr_ids = dev->num_rx_queues;
2352 	} else {
2353 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354 		if (num_possible_cpus() > 1) {
2355 			online_mask = cpumask_bits(cpu_online_mask);
2356 			possible_mask = cpumask_bits(cpu_possible_mask);
2357 		}
2358 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2359 		nr_ids = nr_cpu_ids;
2360 	}
2361 
2362 	if (maps_sz < L1_CACHE_BYTES)
2363 		maps_sz = L1_CACHE_BYTES;
2364 
2365 	/* allocate memory for queue storage */
2366 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2367 	     j < nr_ids;) {
2368 		if (!new_dev_maps)
2369 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2370 		if (!new_dev_maps) {
2371 			mutex_unlock(&xps_map_mutex);
2372 			return -ENOMEM;
2373 		}
2374 
2375 		tci = j * num_tc + tc;
2376 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2377 				 NULL;
2378 
2379 		map = expand_xps_map(map, j, index, is_rxqs_map);
2380 		if (!map)
2381 			goto error;
2382 
2383 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2384 	}
2385 
2386 	if (!new_dev_maps)
2387 		goto out_no_new_maps;
2388 
2389 	if (!dev_maps) {
2390 		/* Increment static keys at most once per type */
2391 		static_key_slow_inc_cpuslocked(&xps_needed);
2392 		if (is_rxqs_map)
2393 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2394 	}
2395 
2396 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2397 	     j < nr_ids;) {
2398 		/* copy maps belonging to foreign traffic classes */
2399 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2400 			/* fill in the new device map from the old device map */
2401 			map = xmap_dereference(dev_maps->attr_map[tci]);
2402 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2403 		}
2404 
2405 		/* We need to explicitly update tci as prevous loop
2406 		 * could break out early if dev_maps is NULL.
2407 		 */
2408 		tci = j * num_tc + tc;
2409 
2410 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2411 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2412 			/* add tx-queue to CPU/rx-queue maps */
2413 			int pos = 0;
2414 
2415 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2416 			while ((pos < map->len) && (map->queues[pos] != index))
2417 				pos++;
2418 
2419 			if (pos == map->len)
2420 				map->queues[map->len++] = index;
2421 #ifdef CONFIG_NUMA
2422 			if (!is_rxqs_map) {
2423 				if (numa_node_id == -2)
2424 					numa_node_id = cpu_to_node(j);
2425 				else if (numa_node_id != cpu_to_node(j))
2426 					numa_node_id = -1;
2427 			}
2428 #endif
2429 		} else if (dev_maps) {
2430 			/* fill in the new device map from the old device map */
2431 			map = xmap_dereference(dev_maps->attr_map[tci]);
2432 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2433 		}
2434 
2435 		/* copy maps belonging to foreign traffic classes */
2436 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437 			/* fill in the new device map from the old device map */
2438 			map = xmap_dereference(dev_maps->attr_map[tci]);
2439 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2440 		}
2441 	}
2442 
2443 	if (is_rxqs_map)
2444 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2445 	else
2446 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2447 
2448 	/* Cleanup old maps */
2449 	if (!dev_maps)
2450 		goto out_no_old_maps;
2451 
2452 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2453 	     j < nr_ids;) {
2454 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456 			map = xmap_dereference(dev_maps->attr_map[tci]);
2457 			if (map && map != new_map)
2458 				kfree_rcu(map, rcu);
2459 		}
2460 	}
2461 
2462 	kfree_rcu(dev_maps, rcu);
2463 
2464 out_no_old_maps:
2465 	dev_maps = new_dev_maps;
2466 	active = true;
2467 
2468 out_no_new_maps:
2469 	if (!is_rxqs_map) {
2470 		/* update Tx queue numa node */
2471 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472 					     (numa_node_id >= 0) ?
2473 					     numa_node_id : NUMA_NO_NODE);
2474 	}
2475 
2476 	if (!dev_maps)
2477 		goto out_no_maps;
2478 
2479 	/* removes tx-queue from unused CPUs/rx-queues */
2480 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2481 	     j < nr_ids;) {
2482 		for (i = tc, tci = j * num_tc; i--; tci++)
2483 			active |= remove_xps_queue(dev_maps, tci, index);
2484 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485 		    !netif_attr_test_online(j, online_mask, nr_ids))
2486 			active |= remove_xps_queue(dev_maps, tci, index);
2487 		for (i = num_tc - tc, tci++; --i; tci++)
2488 			active |= remove_xps_queue(dev_maps, tci, index);
2489 	}
2490 
2491 	/* free map if not active */
2492 	if (!active)
2493 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2494 
2495 out_no_maps:
2496 	mutex_unlock(&xps_map_mutex);
2497 
2498 	return 0;
2499 error:
2500 	/* remove any maps that we added */
2501 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2502 	     j < nr_ids;) {
2503 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2505 			map = dev_maps ?
2506 			      xmap_dereference(dev_maps->attr_map[tci]) :
2507 			      NULL;
2508 			if (new_map && new_map != map)
2509 				kfree(new_map);
2510 		}
2511 	}
2512 
2513 	mutex_unlock(&xps_map_mutex);
2514 
2515 	kfree(new_dev_maps);
2516 	return -ENOMEM;
2517 }
2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2519 
2520 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2521 			u16 index)
2522 {
2523 	int ret;
2524 
2525 	cpus_read_lock();
2526 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2527 	cpus_read_unlock();
2528 
2529 	return ret;
2530 }
2531 EXPORT_SYMBOL(netif_set_xps_queue);
2532 
2533 #endif
2534 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2535 {
2536 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2537 
2538 	/* Unbind any subordinate channels */
2539 	while (txq-- != &dev->_tx[0]) {
2540 		if (txq->sb_dev)
2541 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2542 	}
2543 }
2544 
2545 void netdev_reset_tc(struct net_device *dev)
2546 {
2547 #ifdef CONFIG_XPS
2548 	netif_reset_xps_queues_gt(dev, 0);
2549 #endif
2550 	netdev_unbind_all_sb_channels(dev);
2551 
2552 	/* Reset TC configuration of device */
2553 	dev->num_tc = 0;
2554 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2556 }
2557 EXPORT_SYMBOL(netdev_reset_tc);
2558 
2559 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2560 {
2561 	if (tc >= dev->num_tc)
2562 		return -EINVAL;
2563 
2564 #ifdef CONFIG_XPS
2565 	netif_reset_xps_queues(dev, offset, count);
2566 #endif
2567 	dev->tc_to_txq[tc].count = count;
2568 	dev->tc_to_txq[tc].offset = offset;
2569 	return 0;
2570 }
2571 EXPORT_SYMBOL(netdev_set_tc_queue);
2572 
2573 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2574 {
2575 	if (num_tc > TC_MAX_QUEUE)
2576 		return -EINVAL;
2577 
2578 #ifdef CONFIG_XPS
2579 	netif_reset_xps_queues_gt(dev, 0);
2580 #endif
2581 	netdev_unbind_all_sb_channels(dev);
2582 
2583 	dev->num_tc = num_tc;
2584 	return 0;
2585 }
2586 EXPORT_SYMBOL(netdev_set_num_tc);
2587 
2588 void netdev_unbind_sb_channel(struct net_device *dev,
2589 			      struct net_device *sb_dev)
2590 {
2591 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2592 
2593 #ifdef CONFIG_XPS
2594 	netif_reset_xps_queues_gt(sb_dev, 0);
2595 #endif
2596 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2598 
2599 	while (txq-- != &dev->_tx[0]) {
2600 		if (txq->sb_dev == sb_dev)
2601 			txq->sb_dev = NULL;
2602 	}
2603 }
2604 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2605 
2606 int netdev_bind_sb_channel_queue(struct net_device *dev,
2607 				 struct net_device *sb_dev,
2608 				 u8 tc, u16 count, u16 offset)
2609 {
2610 	/* Make certain the sb_dev and dev are already configured */
2611 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2612 		return -EINVAL;
2613 
2614 	/* We cannot hand out queues we don't have */
2615 	if ((offset + count) > dev->real_num_tx_queues)
2616 		return -EINVAL;
2617 
2618 	/* Record the mapping */
2619 	sb_dev->tc_to_txq[tc].count = count;
2620 	sb_dev->tc_to_txq[tc].offset = offset;
2621 
2622 	/* Provide a way for Tx queue to find the tc_to_txq map or
2623 	 * XPS map for itself.
2624 	 */
2625 	while (count--)
2626 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2627 
2628 	return 0;
2629 }
2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2631 
2632 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2633 {
2634 	/* Do not use a multiqueue device to represent a subordinate channel */
2635 	if (netif_is_multiqueue(dev))
2636 		return -ENODEV;
2637 
2638 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2639 	 * Channel 0 is meant to be "native" mode and used only to represent
2640 	 * the main root device. We allow writing 0 to reset the device back
2641 	 * to normal mode after being used as a subordinate channel.
2642 	 */
2643 	if (channel > S16_MAX)
2644 		return -EINVAL;
2645 
2646 	dev->num_tc = -channel;
2647 
2648 	return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_set_sb_channel);
2651 
2652 /*
2653  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2654  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2655  */
2656 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2657 {
2658 	bool disabling;
2659 	int rc;
2660 
2661 	disabling = txq < dev->real_num_tx_queues;
2662 
2663 	if (txq < 1 || txq > dev->num_tx_queues)
2664 		return -EINVAL;
2665 
2666 	if (dev->reg_state == NETREG_REGISTERED ||
2667 	    dev->reg_state == NETREG_UNREGISTERING) {
2668 		ASSERT_RTNL();
2669 
2670 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2671 						  txq);
2672 		if (rc)
2673 			return rc;
2674 
2675 		if (dev->num_tc)
2676 			netif_setup_tc(dev, txq);
2677 
2678 		dev->real_num_tx_queues = txq;
2679 
2680 		if (disabling) {
2681 			synchronize_net();
2682 			qdisc_reset_all_tx_gt(dev, txq);
2683 #ifdef CONFIG_XPS
2684 			netif_reset_xps_queues_gt(dev, txq);
2685 #endif
2686 		}
2687 	} else {
2688 		dev->real_num_tx_queues = txq;
2689 	}
2690 
2691 	return 0;
2692 }
2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2694 
2695 #ifdef CONFIG_SYSFS
2696 /**
2697  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2698  *	@dev: Network device
2699  *	@rxq: Actual number of RX queues
2700  *
2701  *	This must be called either with the rtnl_lock held or before
2702  *	registration of the net device.  Returns 0 on success, or a
2703  *	negative error code.  If called before registration, it always
2704  *	succeeds.
2705  */
2706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2707 {
2708 	int rc;
2709 
2710 	if (rxq < 1 || rxq > dev->num_rx_queues)
2711 		return -EINVAL;
2712 
2713 	if (dev->reg_state == NETREG_REGISTERED) {
2714 		ASSERT_RTNL();
2715 
2716 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2717 						  rxq);
2718 		if (rc)
2719 			return rc;
2720 	}
2721 
2722 	dev->real_num_rx_queues = rxq;
2723 	return 0;
2724 }
2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2726 #endif
2727 
2728 /**
2729  * netif_get_num_default_rss_queues - default number of RSS queues
2730  *
2731  * This routine should set an upper limit on the number of RSS queues
2732  * used by default by multiqueue devices.
2733  */
2734 int netif_get_num_default_rss_queues(void)
2735 {
2736 	return is_kdump_kernel() ?
2737 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2738 }
2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2740 
2741 static void __netif_reschedule(struct Qdisc *q)
2742 {
2743 	struct softnet_data *sd;
2744 	unsigned long flags;
2745 
2746 	local_irq_save(flags);
2747 	sd = this_cpu_ptr(&softnet_data);
2748 	q->next_sched = NULL;
2749 	*sd->output_queue_tailp = q;
2750 	sd->output_queue_tailp = &q->next_sched;
2751 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752 	local_irq_restore(flags);
2753 }
2754 
2755 void __netif_schedule(struct Qdisc *q)
2756 {
2757 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758 		__netif_reschedule(q);
2759 }
2760 EXPORT_SYMBOL(__netif_schedule);
2761 
2762 struct dev_kfree_skb_cb {
2763 	enum skb_free_reason reason;
2764 };
2765 
2766 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2767 {
2768 	return (struct dev_kfree_skb_cb *)skb->cb;
2769 }
2770 
2771 void netif_schedule_queue(struct netdev_queue *txq)
2772 {
2773 	rcu_read_lock();
2774 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2776 
2777 		__netif_schedule(q);
2778 	}
2779 	rcu_read_unlock();
2780 }
2781 EXPORT_SYMBOL(netif_schedule_queue);
2782 
2783 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2784 {
2785 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2786 		struct Qdisc *q;
2787 
2788 		rcu_read_lock();
2789 		q = rcu_dereference(dev_queue->qdisc);
2790 		__netif_schedule(q);
2791 		rcu_read_unlock();
2792 	}
2793 }
2794 EXPORT_SYMBOL(netif_tx_wake_queue);
2795 
2796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2797 {
2798 	unsigned long flags;
2799 
2800 	if (unlikely(!skb))
2801 		return;
2802 
2803 	if (likely(refcount_read(&skb->users) == 1)) {
2804 		smp_rmb();
2805 		refcount_set(&skb->users, 0);
2806 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2807 		return;
2808 	}
2809 	get_kfree_skb_cb(skb)->reason = reason;
2810 	local_irq_save(flags);
2811 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2812 	__this_cpu_write(softnet_data.completion_queue, skb);
2813 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814 	local_irq_restore(flags);
2815 }
2816 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2817 
2818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2819 {
2820 	if (in_irq() || irqs_disabled())
2821 		__dev_kfree_skb_irq(skb, reason);
2822 	else
2823 		dev_kfree_skb(skb);
2824 }
2825 EXPORT_SYMBOL(__dev_kfree_skb_any);
2826 
2827 
2828 /**
2829  * netif_device_detach - mark device as removed
2830  * @dev: network device
2831  *
2832  * Mark device as removed from system and therefore no longer available.
2833  */
2834 void netif_device_detach(struct net_device *dev)
2835 {
2836 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837 	    netif_running(dev)) {
2838 		netif_tx_stop_all_queues(dev);
2839 	}
2840 }
2841 EXPORT_SYMBOL(netif_device_detach);
2842 
2843 /**
2844  * netif_device_attach - mark device as attached
2845  * @dev: network device
2846  *
2847  * Mark device as attached from system and restart if needed.
2848  */
2849 void netif_device_attach(struct net_device *dev)
2850 {
2851 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852 	    netif_running(dev)) {
2853 		netif_tx_wake_all_queues(dev);
2854 		__netdev_watchdog_up(dev);
2855 	}
2856 }
2857 EXPORT_SYMBOL(netif_device_attach);
2858 
2859 /*
2860  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861  * to be used as a distribution range.
2862  */
2863 static u16 skb_tx_hash(const struct net_device *dev,
2864 		       const struct net_device *sb_dev,
2865 		       struct sk_buff *skb)
2866 {
2867 	u32 hash;
2868 	u16 qoffset = 0;
2869 	u16 qcount = dev->real_num_tx_queues;
2870 
2871 	if (dev->num_tc) {
2872 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2873 
2874 		qoffset = sb_dev->tc_to_txq[tc].offset;
2875 		qcount = sb_dev->tc_to_txq[tc].count;
2876 	}
2877 
2878 	if (skb_rx_queue_recorded(skb)) {
2879 		hash = skb_get_rx_queue(skb);
2880 		while (unlikely(hash >= qcount))
2881 			hash -= qcount;
2882 		return hash + qoffset;
2883 	}
2884 
2885 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2886 }
2887 
2888 static void skb_warn_bad_offload(const struct sk_buff *skb)
2889 {
2890 	static const netdev_features_t null_features;
2891 	struct net_device *dev = skb->dev;
2892 	const char *name = "";
2893 
2894 	if (!net_ratelimit())
2895 		return;
2896 
2897 	if (dev) {
2898 		if (dev->dev.parent)
2899 			name = dev_driver_string(dev->dev.parent);
2900 		else
2901 			name = netdev_name(dev);
2902 	}
2903 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2904 	     "gso_type=%d ip_summed=%d\n",
2905 	     name, dev ? &dev->features : &null_features,
2906 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2907 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2908 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2909 }
2910 
2911 /*
2912  * Invalidate hardware checksum when packet is to be mangled, and
2913  * complete checksum manually on outgoing path.
2914  */
2915 int skb_checksum_help(struct sk_buff *skb)
2916 {
2917 	__wsum csum;
2918 	int ret = 0, offset;
2919 
2920 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2921 		goto out_set_summed;
2922 
2923 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2924 		skb_warn_bad_offload(skb);
2925 		return -EINVAL;
2926 	}
2927 
2928 	/* Before computing a checksum, we should make sure no frag could
2929 	 * be modified by an external entity : checksum could be wrong.
2930 	 */
2931 	if (skb_has_shared_frag(skb)) {
2932 		ret = __skb_linearize(skb);
2933 		if (ret)
2934 			goto out;
2935 	}
2936 
2937 	offset = skb_checksum_start_offset(skb);
2938 	BUG_ON(offset >= skb_headlen(skb));
2939 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2940 
2941 	offset += skb->csum_offset;
2942 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2943 
2944 	if (skb_cloned(skb) &&
2945 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2946 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2947 		if (ret)
2948 			goto out;
2949 	}
2950 
2951 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2952 out_set_summed:
2953 	skb->ip_summed = CHECKSUM_NONE;
2954 out:
2955 	return ret;
2956 }
2957 EXPORT_SYMBOL(skb_checksum_help);
2958 
2959 int skb_crc32c_csum_help(struct sk_buff *skb)
2960 {
2961 	__le32 crc32c_csum;
2962 	int ret = 0, offset, start;
2963 
2964 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2965 		goto out;
2966 
2967 	if (unlikely(skb_is_gso(skb)))
2968 		goto out;
2969 
2970 	/* Before computing a checksum, we should make sure no frag could
2971 	 * be modified by an external entity : checksum could be wrong.
2972 	 */
2973 	if (unlikely(skb_has_shared_frag(skb))) {
2974 		ret = __skb_linearize(skb);
2975 		if (ret)
2976 			goto out;
2977 	}
2978 	start = skb_checksum_start_offset(skb);
2979 	offset = start + offsetof(struct sctphdr, checksum);
2980 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2981 		ret = -EINVAL;
2982 		goto out;
2983 	}
2984 	if (skb_cloned(skb) &&
2985 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2986 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2987 		if (ret)
2988 			goto out;
2989 	}
2990 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2991 						  skb->len - start, ~(__u32)0,
2992 						  crc32c_csum_stub));
2993 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2994 	skb->ip_summed = CHECKSUM_NONE;
2995 	skb->csum_not_inet = 0;
2996 out:
2997 	return ret;
2998 }
2999 
3000 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3001 {
3002 	__be16 type = skb->protocol;
3003 
3004 	/* Tunnel gso handlers can set protocol to ethernet. */
3005 	if (type == htons(ETH_P_TEB)) {
3006 		struct ethhdr *eth;
3007 
3008 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3009 			return 0;
3010 
3011 		eth = (struct ethhdr *)skb->data;
3012 		type = eth->h_proto;
3013 	}
3014 
3015 	return __vlan_get_protocol(skb, type, depth);
3016 }
3017 
3018 /**
3019  *	skb_mac_gso_segment - mac layer segmentation handler.
3020  *	@skb: buffer to segment
3021  *	@features: features for the output path (see dev->features)
3022  */
3023 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3024 				    netdev_features_t features)
3025 {
3026 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3027 	struct packet_offload *ptype;
3028 	int vlan_depth = skb->mac_len;
3029 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3030 
3031 	if (unlikely(!type))
3032 		return ERR_PTR(-EINVAL);
3033 
3034 	__skb_pull(skb, vlan_depth);
3035 
3036 	rcu_read_lock();
3037 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3038 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3039 			segs = ptype->callbacks.gso_segment(skb, features);
3040 			break;
3041 		}
3042 	}
3043 	rcu_read_unlock();
3044 
3045 	__skb_push(skb, skb->data - skb_mac_header(skb));
3046 
3047 	return segs;
3048 }
3049 EXPORT_SYMBOL(skb_mac_gso_segment);
3050 
3051 
3052 /* openvswitch calls this on rx path, so we need a different check.
3053  */
3054 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3055 {
3056 	if (tx_path)
3057 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3058 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3059 
3060 	return skb->ip_summed == CHECKSUM_NONE;
3061 }
3062 
3063 /**
3064  *	__skb_gso_segment - Perform segmentation on skb.
3065  *	@skb: buffer to segment
3066  *	@features: features for the output path (see dev->features)
3067  *	@tx_path: whether it is called in TX path
3068  *
3069  *	This function segments the given skb and returns a list of segments.
3070  *
3071  *	It may return NULL if the skb requires no segmentation.  This is
3072  *	only possible when GSO is used for verifying header integrity.
3073  *
3074  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3075  */
3076 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3077 				  netdev_features_t features, bool tx_path)
3078 {
3079 	struct sk_buff *segs;
3080 
3081 	if (unlikely(skb_needs_check(skb, tx_path))) {
3082 		int err;
3083 
3084 		/* We're going to init ->check field in TCP or UDP header */
3085 		err = skb_cow_head(skb, 0);
3086 		if (err < 0)
3087 			return ERR_PTR(err);
3088 	}
3089 
3090 	/* Only report GSO partial support if it will enable us to
3091 	 * support segmentation on this frame without needing additional
3092 	 * work.
3093 	 */
3094 	if (features & NETIF_F_GSO_PARTIAL) {
3095 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3096 		struct net_device *dev = skb->dev;
3097 
3098 		partial_features |= dev->features & dev->gso_partial_features;
3099 		if (!skb_gso_ok(skb, features | partial_features))
3100 			features &= ~NETIF_F_GSO_PARTIAL;
3101 	}
3102 
3103 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3104 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3105 
3106 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3107 	SKB_GSO_CB(skb)->encap_level = 0;
3108 
3109 	skb_reset_mac_header(skb);
3110 	skb_reset_mac_len(skb);
3111 
3112 	segs = skb_mac_gso_segment(skb, features);
3113 
3114 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3115 		skb_warn_bad_offload(skb);
3116 
3117 	return segs;
3118 }
3119 EXPORT_SYMBOL(__skb_gso_segment);
3120 
3121 /* Take action when hardware reception checksum errors are detected. */
3122 #ifdef CONFIG_BUG
3123 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3124 {
3125 	if (net_ratelimit()) {
3126 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3127 		if (dev)
3128 			pr_err("dev features: %pNF\n", &dev->features);
3129 		pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3130 		       skb->len, skb->data_len, skb->pkt_type,
3131 		       skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3132 		       skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3133 		       skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3134 		dump_stack();
3135 	}
3136 }
3137 EXPORT_SYMBOL(netdev_rx_csum_fault);
3138 #endif
3139 
3140 /* XXX: check that highmem exists at all on the given machine. */
3141 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3142 {
3143 #ifdef CONFIG_HIGHMEM
3144 	int i;
3145 
3146 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3147 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3148 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3149 
3150 			if (PageHighMem(skb_frag_page(frag)))
3151 				return 1;
3152 		}
3153 	}
3154 #endif
3155 	return 0;
3156 }
3157 
3158 /* If MPLS offload request, verify we are testing hardware MPLS features
3159  * instead of standard features for the netdev.
3160  */
3161 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3162 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3163 					   netdev_features_t features,
3164 					   __be16 type)
3165 {
3166 	if (eth_p_mpls(type))
3167 		features &= skb->dev->mpls_features;
3168 
3169 	return features;
3170 }
3171 #else
3172 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3173 					   netdev_features_t features,
3174 					   __be16 type)
3175 {
3176 	return features;
3177 }
3178 #endif
3179 
3180 static netdev_features_t harmonize_features(struct sk_buff *skb,
3181 	netdev_features_t features)
3182 {
3183 	int tmp;
3184 	__be16 type;
3185 
3186 	type = skb_network_protocol(skb, &tmp);
3187 	features = net_mpls_features(skb, features, type);
3188 
3189 	if (skb->ip_summed != CHECKSUM_NONE &&
3190 	    !can_checksum_protocol(features, type)) {
3191 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3192 	}
3193 	if (illegal_highdma(skb->dev, skb))
3194 		features &= ~NETIF_F_SG;
3195 
3196 	return features;
3197 }
3198 
3199 netdev_features_t passthru_features_check(struct sk_buff *skb,
3200 					  struct net_device *dev,
3201 					  netdev_features_t features)
3202 {
3203 	return features;
3204 }
3205 EXPORT_SYMBOL(passthru_features_check);
3206 
3207 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3208 					     struct net_device *dev,
3209 					     netdev_features_t features)
3210 {
3211 	return vlan_features_check(skb, features);
3212 }
3213 
3214 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3215 					    struct net_device *dev,
3216 					    netdev_features_t features)
3217 {
3218 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3219 
3220 	if (gso_segs > dev->gso_max_segs)
3221 		return features & ~NETIF_F_GSO_MASK;
3222 
3223 	/* Support for GSO partial features requires software
3224 	 * intervention before we can actually process the packets
3225 	 * so we need to strip support for any partial features now
3226 	 * and we can pull them back in after we have partially
3227 	 * segmented the frame.
3228 	 */
3229 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3230 		features &= ~dev->gso_partial_features;
3231 
3232 	/* Make sure to clear the IPv4 ID mangling feature if the
3233 	 * IPv4 header has the potential to be fragmented.
3234 	 */
3235 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3236 		struct iphdr *iph = skb->encapsulation ?
3237 				    inner_ip_hdr(skb) : ip_hdr(skb);
3238 
3239 		if (!(iph->frag_off & htons(IP_DF)))
3240 			features &= ~NETIF_F_TSO_MANGLEID;
3241 	}
3242 
3243 	return features;
3244 }
3245 
3246 netdev_features_t netif_skb_features(struct sk_buff *skb)
3247 {
3248 	struct net_device *dev = skb->dev;
3249 	netdev_features_t features = dev->features;
3250 
3251 	if (skb_is_gso(skb))
3252 		features = gso_features_check(skb, dev, features);
3253 
3254 	/* If encapsulation offload request, verify we are testing
3255 	 * hardware encapsulation features instead of standard
3256 	 * features for the netdev
3257 	 */
3258 	if (skb->encapsulation)
3259 		features &= dev->hw_enc_features;
3260 
3261 	if (skb_vlan_tagged(skb))
3262 		features = netdev_intersect_features(features,
3263 						     dev->vlan_features |
3264 						     NETIF_F_HW_VLAN_CTAG_TX |
3265 						     NETIF_F_HW_VLAN_STAG_TX);
3266 
3267 	if (dev->netdev_ops->ndo_features_check)
3268 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3269 								features);
3270 	else
3271 		features &= dflt_features_check(skb, dev, features);
3272 
3273 	return harmonize_features(skb, features);
3274 }
3275 EXPORT_SYMBOL(netif_skb_features);
3276 
3277 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3278 		    struct netdev_queue *txq, bool more)
3279 {
3280 	unsigned int len;
3281 	int rc;
3282 
3283 	if (dev_nit_active(dev))
3284 		dev_queue_xmit_nit(skb, dev);
3285 
3286 	len = skb->len;
3287 	trace_net_dev_start_xmit(skb, dev);
3288 	rc = netdev_start_xmit(skb, dev, txq, more);
3289 	trace_net_dev_xmit(skb, rc, dev, len);
3290 
3291 	return rc;
3292 }
3293 
3294 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3295 				    struct netdev_queue *txq, int *ret)
3296 {
3297 	struct sk_buff *skb = first;
3298 	int rc = NETDEV_TX_OK;
3299 
3300 	while (skb) {
3301 		struct sk_buff *next = skb->next;
3302 
3303 		skb_mark_not_on_list(skb);
3304 		rc = xmit_one(skb, dev, txq, next != NULL);
3305 		if (unlikely(!dev_xmit_complete(rc))) {
3306 			skb->next = next;
3307 			goto out;
3308 		}
3309 
3310 		skb = next;
3311 		if (netif_tx_queue_stopped(txq) && skb) {
3312 			rc = NETDEV_TX_BUSY;
3313 			break;
3314 		}
3315 	}
3316 
3317 out:
3318 	*ret = rc;
3319 	return skb;
3320 }
3321 
3322 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3323 					  netdev_features_t features)
3324 {
3325 	if (skb_vlan_tag_present(skb) &&
3326 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3327 		skb = __vlan_hwaccel_push_inside(skb);
3328 	return skb;
3329 }
3330 
3331 int skb_csum_hwoffload_help(struct sk_buff *skb,
3332 			    const netdev_features_t features)
3333 {
3334 	if (unlikely(skb->csum_not_inet))
3335 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3336 			skb_crc32c_csum_help(skb);
3337 
3338 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3339 }
3340 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3341 
3342 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3343 {
3344 	netdev_features_t features;
3345 
3346 	features = netif_skb_features(skb);
3347 	skb = validate_xmit_vlan(skb, features);
3348 	if (unlikely(!skb))
3349 		goto out_null;
3350 
3351 	skb = sk_validate_xmit_skb(skb, dev);
3352 	if (unlikely(!skb))
3353 		goto out_null;
3354 
3355 	if (netif_needs_gso(skb, features)) {
3356 		struct sk_buff *segs;
3357 
3358 		segs = skb_gso_segment(skb, features);
3359 		if (IS_ERR(segs)) {
3360 			goto out_kfree_skb;
3361 		} else if (segs) {
3362 			consume_skb(skb);
3363 			skb = segs;
3364 		}
3365 	} else {
3366 		if (skb_needs_linearize(skb, features) &&
3367 		    __skb_linearize(skb))
3368 			goto out_kfree_skb;
3369 
3370 		/* If packet is not checksummed and device does not
3371 		 * support checksumming for this protocol, complete
3372 		 * checksumming here.
3373 		 */
3374 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3375 			if (skb->encapsulation)
3376 				skb_set_inner_transport_header(skb,
3377 							       skb_checksum_start_offset(skb));
3378 			else
3379 				skb_set_transport_header(skb,
3380 							 skb_checksum_start_offset(skb));
3381 			if (skb_csum_hwoffload_help(skb, features))
3382 				goto out_kfree_skb;
3383 		}
3384 	}
3385 
3386 	skb = validate_xmit_xfrm(skb, features, again);
3387 
3388 	return skb;
3389 
3390 out_kfree_skb:
3391 	kfree_skb(skb);
3392 out_null:
3393 	atomic_long_inc(&dev->tx_dropped);
3394 	return NULL;
3395 }
3396 
3397 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3398 {
3399 	struct sk_buff *next, *head = NULL, *tail;
3400 
3401 	for (; skb != NULL; skb = next) {
3402 		next = skb->next;
3403 		skb_mark_not_on_list(skb);
3404 
3405 		/* in case skb wont be segmented, point to itself */
3406 		skb->prev = skb;
3407 
3408 		skb = validate_xmit_skb(skb, dev, again);
3409 		if (!skb)
3410 			continue;
3411 
3412 		if (!head)
3413 			head = skb;
3414 		else
3415 			tail->next = skb;
3416 		/* If skb was segmented, skb->prev points to
3417 		 * the last segment. If not, it still contains skb.
3418 		 */
3419 		tail = skb->prev;
3420 	}
3421 	return head;
3422 }
3423 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3424 
3425 static void qdisc_pkt_len_init(struct sk_buff *skb)
3426 {
3427 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3428 
3429 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3430 
3431 	/* To get more precise estimation of bytes sent on wire,
3432 	 * we add to pkt_len the headers size of all segments
3433 	 */
3434 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3435 		unsigned int hdr_len;
3436 		u16 gso_segs = shinfo->gso_segs;
3437 
3438 		/* mac layer + network layer */
3439 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3440 
3441 		/* + transport layer */
3442 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3443 			const struct tcphdr *th;
3444 			struct tcphdr _tcphdr;
3445 
3446 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3447 						sizeof(_tcphdr), &_tcphdr);
3448 			if (likely(th))
3449 				hdr_len += __tcp_hdrlen(th);
3450 		} else {
3451 			struct udphdr _udphdr;
3452 
3453 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3454 					       sizeof(_udphdr), &_udphdr))
3455 				hdr_len += sizeof(struct udphdr);
3456 		}
3457 
3458 		if (shinfo->gso_type & SKB_GSO_DODGY)
3459 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3460 						shinfo->gso_size);
3461 
3462 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3463 	}
3464 }
3465 
3466 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3467 				 struct net_device *dev,
3468 				 struct netdev_queue *txq)
3469 {
3470 	spinlock_t *root_lock = qdisc_lock(q);
3471 	struct sk_buff *to_free = NULL;
3472 	bool contended;
3473 	int rc;
3474 
3475 	qdisc_calculate_pkt_len(skb, q);
3476 
3477 	if (q->flags & TCQ_F_NOLOCK) {
3478 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3479 			__qdisc_drop(skb, &to_free);
3480 			rc = NET_XMIT_DROP;
3481 		} else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3482 			   qdisc_run_begin(q)) {
3483 			qdisc_bstats_cpu_update(q, skb);
3484 
3485 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3486 				__qdisc_run(q);
3487 
3488 			qdisc_run_end(q);
3489 			rc = NET_XMIT_SUCCESS;
3490 		} else {
3491 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3492 			qdisc_run(q);
3493 		}
3494 
3495 		if (unlikely(to_free))
3496 			kfree_skb_list(to_free);
3497 		return rc;
3498 	}
3499 
3500 	/*
3501 	 * Heuristic to force contended enqueues to serialize on a
3502 	 * separate lock before trying to get qdisc main lock.
3503 	 * This permits qdisc->running owner to get the lock more
3504 	 * often and dequeue packets faster.
3505 	 */
3506 	contended = qdisc_is_running(q);
3507 	if (unlikely(contended))
3508 		spin_lock(&q->busylock);
3509 
3510 	spin_lock(root_lock);
3511 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3512 		__qdisc_drop(skb, &to_free);
3513 		rc = NET_XMIT_DROP;
3514 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3515 		   qdisc_run_begin(q)) {
3516 		/*
3517 		 * This is a work-conserving queue; there are no old skbs
3518 		 * waiting to be sent out; and the qdisc is not running -
3519 		 * xmit the skb directly.
3520 		 */
3521 
3522 		qdisc_bstats_update(q, skb);
3523 
3524 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3525 			if (unlikely(contended)) {
3526 				spin_unlock(&q->busylock);
3527 				contended = false;
3528 			}
3529 			__qdisc_run(q);
3530 		}
3531 
3532 		qdisc_run_end(q);
3533 		rc = NET_XMIT_SUCCESS;
3534 	} else {
3535 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3536 		if (qdisc_run_begin(q)) {
3537 			if (unlikely(contended)) {
3538 				spin_unlock(&q->busylock);
3539 				contended = false;
3540 			}
3541 			__qdisc_run(q);
3542 			qdisc_run_end(q);
3543 		}
3544 	}
3545 	spin_unlock(root_lock);
3546 	if (unlikely(to_free))
3547 		kfree_skb_list(to_free);
3548 	if (unlikely(contended))
3549 		spin_unlock(&q->busylock);
3550 	return rc;
3551 }
3552 
3553 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3554 static void skb_update_prio(struct sk_buff *skb)
3555 {
3556 	const struct netprio_map *map;
3557 	const struct sock *sk;
3558 	unsigned int prioidx;
3559 
3560 	if (skb->priority)
3561 		return;
3562 	map = rcu_dereference_bh(skb->dev->priomap);
3563 	if (!map)
3564 		return;
3565 	sk = skb_to_full_sk(skb);
3566 	if (!sk)
3567 		return;
3568 
3569 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3570 
3571 	if (prioidx < map->priomap_len)
3572 		skb->priority = map->priomap[prioidx];
3573 }
3574 #else
3575 #define skb_update_prio(skb)
3576 #endif
3577 
3578 /**
3579  *	dev_loopback_xmit - loop back @skb
3580  *	@net: network namespace this loopback is happening in
3581  *	@sk:  sk needed to be a netfilter okfn
3582  *	@skb: buffer to transmit
3583  */
3584 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3585 {
3586 	skb_reset_mac_header(skb);
3587 	__skb_pull(skb, skb_network_offset(skb));
3588 	skb->pkt_type = PACKET_LOOPBACK;
3589 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3590 	WARN_ON(!skb_dst(skb));
3591 	skb_dst_force(skb);
3592 	netif_rx_ni(skb);
3593 	return 0;
3594 }
3595 EXPORT_SYMBOL(dev_loopback_xmit);
3596 
3597 #ifdef CONFIG_NET_EGRESS
3598 static struct sk_buff *
3599 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3600 {
3601 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3602 	struct tcf_result cl_res;
3603 
3604 	if (!miniq)
3605 		return skb;
3606 
3607 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3608 	mini_qdisc_bstats_cpu_update(miniq, skb);
3609 
3610 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3611 	case TC_ACT_OK:
3612 	case TC_ACT_RECLASSIFY:
3613 		skb->tc_index = TC_H_MIN(cl_res.classid);
3614 		break;
3615 	case TC_ACT_SHOT:
3616 		mini_qdisc_qstats_cpu_drop(miniq);
3617 		*ret = NET_XMIT_DROP;
3618 		kfree_skb(skb);
3619 		return NULL;
3620 	case TC_ACT_STOLEN:
3621 	case TC_ACT_QUEUED:
3622 	case TC_ACT_TRAP:
3623 		*ret = NET_XMIT_SUCCESS;
3624 		consume_skb(skb);
3625 		return NULL;
3626 	case TC_ACT_REDIRECT:
3627 		/* No need to push/pop skb's mac_header here on egress! */
3628 		skb_do_redirect(skb);
3629 		*ret = NET_XMIT_SUCCESS;
3630 		return NULL;
3631 	default:
3632 		break;
3633 	}
3634 
3635 	return skb;
3636 }
3637 #endif /* CONFIG_NET_EGRESS */
3638 
3639 #ifdef CONFIG_XPS
3640 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3641 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3642 {
3643 	struct xps_map *map;
3644 	int queue_index = -1;
3645 
3646 	if (dev->num_tc) {
3647 		tci *= dev->num_tc;
3648 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3649 	}
3650 
3651 	map = rcu_dereference(dev_maps->attr_map[tci]);
3652 	if (map) {
3653 		if (map->len == 1)
3654 			queue_index = map->queues[0];
3655 		else
3656 			queue_index = map->queues[reciprocal_scale(
3657 						skb_get_hash(skb), map->len)];
3658 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3659 			queue_index = -1;
3660 	}
3661 	return queue_index;
3662 }
3663 #endif
3664 
3665 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3666 			 struct sk_buff *skb)
3667 {
3668 #ifdef CONFIG_XPS
3669 	struct xps_dev_maps *dev_maps;
3670 	struct sock *sk = skb->sk;
3671 	int queue_index = -1;
3672 
3673 	if (!static_key_false(&xps_needed))
3674 		return -1;
3675 
3676 	rcu_read_lock();
3677 	if (!static_key_false(&xps_rxqs_needed))
3678 		goto get_cpus_map;
3679 
3680 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3681 	if (dev_maps) {
3682 		int tci = sk_rx_queue_get(sk);
3683 
3684 		if (tci >= 0 && tci < dev->num_rx_queues)
3685 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3686 							  tci);
3687 	}
3688 
3689 get_cpus_map:
3690 	if (queue_index < 0) {
3691 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3692 		if (dev_maps) {
3693 			unsigned int tci = skb->sender_cpu - 1;
3694 
3695 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3696 							  tci);
3697 		}
3698 	}
3699 	rcu_read_unlock();
3700 
3701 	return queue_index;
3702 #else
3703 	return -1;
3704 #endif
3705 }
3706 
3707 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3708 		     struct net_device *sb_dev)
3709 {
3710 	return 0;
3711 }
3712 EXPORT_SYMBOL(dev_pick_tx_zero);
3713 
3714 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3715 		       struct net_device *sb_dev)
3716 {
3717 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3718 }
3719 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3720 
3721 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3722 		     struct net_device *sb_dev)
3723 {
3724 	struct sock *sk = skb->sk;
3725 	int queue_index = sk_tx_queue_get(sk);
3726 
3727 	sb_dev = sb_dev ? : dev;
3728 
3729 	if (queue_index < 0 || skb->ooo_okay ||
3730 	    queue_index >= dev->real_num_tx_queues) {
3731 		int new_index = get_xps_queue(dev, sb_dev, skb);
3732 
3733 		if (new_index < 0)
3734 			new_index = skb_tx_hash(dev, sb_dev, skb);
3735 
3736 		if (queue_index != new_index && sk &&
3737 		    sk_fullsock(sk) &&
3738 		    rcu_access_pointer(sk->sk_dst_cache))
3739 			sk_tx_queue_set(sk, new_index);
3740 
3741 		queue_index = new_index;
3742 	}
3743 
3744 	return queue_index;
3745 }
3746 EXPORT_SYMBOL(netdev_pick_tx);
3747 
3748 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3749 					 struct sk_buff *skb,
3750 					 struct net_device *sb_dev)
3751 {
3752 	int queue_index = 0;
3753 
3754 #ifdef CONFIG_XPS
3755 	u32 sender_cpu = skb->sender_cpu - 1;
3756 
3757 	if (sender_cpu >= (u32)NR_CPUS)
3758 		skb->sender_cpu = raw_smp_processor_id() + 1;
3759 #endif
3760 
3761 	if (dev->real_num_tx_queues != 1) {
3762 		const struct net_device_ops *ops = dev->netdev_ops;
3763 
3764 		if (ops->ndo_select_queue)
3765 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3766 		else
3767 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3768 
3769 		queue_index = netdev_cap_txqueue(dev, queue_index);
3770 	}
3771 
3772 	skb_set_queue_mapping(skb, queue_index);
3773 	return netdev_get_tx_queue(dev, queue_index);
3774 }
3775 
3776 /**
3777  *	__dev_queue_xmit - transmit a buffer
3778  *	@skb: buffer to transmit
3779  *	@sb_dev: suboordinate device used for L2 forwarding offload
3780  *
3781  *	Queue a buffer for transmission to a network device. The caller must
3782  *	have set the device and priority and built the buffer before calling
3783  *	this function. The function can be called from an interrupt.
3784  *
3785  *	A negative errno code is returned on a failure. A success does not
3786  *	guarantee the frame will be transmitted as it may be dropped due
3787  *	to congestion or traffic shaping.
3788  *
3789  * -----------------------------------------------------------------------------------
3790  *      I notice this method can also return errors from the queue disciplines,
3791  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3792  *      be positive.
3793  *
3794  *      Regardless of the return value, the skb is consumed, so it is currently
3795  *      difficult to retry a send to this method.  (You can bump the ref count
3796  *      before sending to hold a reference for retry if you are careful.)
3797  *
3798  *      When calling this method, interrupts MUST be enabled.  This is because
3799  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3800  *          --BLG
3801  */
3802 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3803 {
3804 	struct net_device *dev = skb->dev;
3805 	struct netdev_queue *txq;
3806 	struct Qdisc *q;
3807 	int rc = -ENOMEM;
3808 	bool again = false;
3809 
3810 	skb_reset_mac_header(skb);
3811 
3812 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3813 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3814 
3815 	/* Disable soft irqs for various locks below. Also
3816 	 * stops preemption for RCU.
3817 	 */
3818 	rcu_read_lock_bh();
3819 
3820 	skb_update_prio(skb);
3821 
3822 	qdisc_pkt_len_init(skb);
3823 #ifdef CONFIG_NET_CLS_ACT
3824 	skb->tc_at_ingress = 0;
3825 # ifdef CONFIG_NET_EGRESS
3826 	if (static_branch_unlikely(&egress_needed_key)) {
3827 		skb = sch_handle_egress(skb, &rc, dev);
3828 		if (!skb)
3829 			goto out;
3830 	}
3831 # endif
3832 #endif
3833 	/* If device/qdisc don't need skb->dst, release it right now while
3834 	 * its hot in this cpu cache.
3835 	 */
3836 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3837 		skb_dst_drop(skb);
3838 	else
3839 		skb_dst_force(skb);
3840 
3841 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
3842 	q = rcu_dereference_bh(txq->qdisc);
3843 
3844 	trace_net_dev_queue(skb);
3845 	if (q->enqueue) {
3846 		rc = __dev_xmit_skb(skb, q, dev, txq);
3847 		goto out;
3848 	}
3849 
3850 	/* The device has no queue. Common case for software devices:
3851 	 * loopback, all the sorts of tunnels...
3852 
3853 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3854 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3855 	 * counters.)
3856 	 * However, it is possible, that they rely on protection
3857 	 * made by us here.
3858 
3859 	 * Check this and shot the lock. It is not prone from deadlocks.
3860 	 *Either shot noqueue qdisc, it is even simpler 8)
3861 	 */
3862 	if (dev->flags & IFF_UP) {
3863 		int cpu = smp_processor_id(); /* ok because BHs are off */
3864 
3865 		if (txq->xmit_lock_owner != cpu) {
3866 			if (dev_xmit_recursion())
3867 				goto recursion_alert;
3868 
3869 			skb = validate_xmit_skb(skb, dev, &again);
3870 			if (!skb)
3871 				goto out;
3872 
3873 			HARD_TX_LOCK(dev, txq, cpu);
3874 
3875 			if (!netif_xmit_stopped(txq)) {
3876 				dev_xmit_recursion_inc();
3877 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3878 				dev_xmit_recursion_dec();
3879 				if (dev_xmit_complete(rc)) {
3880 					HARD_TX_UNLOCK(dev, txq);
3881 					goto out;
3882 				}
3883 			}
3884 			HARD_TX_UNLOCK(dev, txq);
3885 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3886 					     dev->name);
3887 		} else {
3888 			/* Recursion is detected! It is possible,
3889 			 * unfortunately
3890 			 */
3891 recursion_alert:
3892 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3893 					     dev->name);
3894 		}
3895 	}
3896 
3897 	rc = -ENETDOWN;
3898 	rcu_read_unlock_bh();
3899 
3900 	atomic_long_inc(&dev->tx_dropped);
3901 	kfree_skb_list(skb);
3902 	return rc;
3903 out:
3904 	rcu_read_unlock_bh();
3905 	return rc;
3906 }
3907 
3908 int dev_queue_xmit(struct sk_buff *skb)
3909 {
3910 	return __dev_queue_xmit(skb, NULL);
3911 }
3912 EXPORT_SYMBOL(dev_queue_xmit);
3913 
3914 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3915 {
3916 	return __dev_queue_xmit(skb, sb_dev);
3917 }
3918 EXPORT_SYMBOL(dev_queue_xmit_accel);
3919 
3920 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3921 {
3922 	struct net_device *dev = skb->dev;
3923 	struct sk_buff *orig_skb = skb;
3924 	struct netdev_queue *txq;
3925 	int ret = NETDEV_TX_BUSY;
3926 	bool again = false;
3927 
3928 	if (unlikely(!netif_running(dev) ||
3929 		     !netif_carrier_ok(dev)))
3930 		goto drop;
3931 
3932 	skb = validate_xmit_skb_list(skb, dev, &again);
3933 	if (skb != orig_skb)
3934 		goto drop;
3935 
3936 	skb_set_queue_mapping(skb, queue_id);
3937 	txq = skb_get_tx_queue(dev, skb);
3938 
3939 	local_bh_disable();
3940 
3941 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3942 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3943 		ret = netdev_start_xmit(skb, dev, txq, false);
3944 	HARD_TX_UNLOCK(dev, txq);
3945 
3946 	local_bh_enable();
3947 
3948 	if (!dev_xmit_complete(ret))
3949 		kfree_skb(skb);
3950 
3951 	return ret;
3952 drop:
3953 	atomic_long_inc(&dev->tx_dropped);
3954 	kfree_skb_list(skb);
3955 	return NET_XMIT_DROP;
3956 }
3957 EXPORT_SYMBOL(dev_direct_xmit);
3958 
3959 /*************************************************************************
3960  *			Receiver routines
3961  *************************************************************************/
3962 
3963 int netdev_max_backlog __read_mostly = 1000;
3964 EXPORT_SYMBOL(netdev_max_backlog);
3965 
3966 int netdev_tstamp_prequeue __read_mostly = 1;
3967 int netdev_budget __read_mostly = 300;
3968 unsigned int __read_mostly netdev_budget_usecs = 2000;
3969 int weight_p __read_mostly = 64;           /* old backlog weight */
3970 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3971 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3972 int dev_rx_weight __read_mostly = 64;
3973 int dev_tx_weight __read_mostly = 64;
3974 
3975 /* Called with irq disabled */
3976 static inline void ____napi_schedule(struct softnet_data *sd,
3977 				     struct napi_struct *napi)
3978 {
3979 	list_add_tail(&napi->poll_list, &sd->poll_list);
3980 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3981 }
3982 
3983 #ifdef CONFIG_RPS
3984 
3985 /* One global table that all flow-based protocols share. */
3986 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3987 EXPORT_SYMBOL(rps_sock_flow_table);
3988 u32 rps_cpu_mask __read_mostly;
3989 EXPORT_SYMBOL(rps_cpu_mask);
3990 
3991 struct static_key_false rps_needed __read_mostly;
3992 EXPORT_SYMBOL(rps_needed);
3993 struct static_key_false rfs_needed __read_mostly;
3994 EXPORT_SYMBOL(rfs_needed);
3995 
3996 static struct rps_dev_flow *
3997 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3998 	    struct rps_dev_flow *rflow, u16 next_cpu)
3999 {
4000 	if (next_cpu < nr_cpu_ids) {
4001 #ifdef CONFIG_RFS_ACCEL
4002 		struct netdev_rx_queue *rxqueue;
4003 		struct rps_dev_flow_table *flow_table;
4004 		struct rps_dev_flow *old_rflow;
4005 		u32 flow_id;
4006 		u16 rxq_index;
4007 		int rc;
4008 
4009 		/* Should we steer this flow to a different hardware queue? */
4010 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4011 		    !(dev->features & NETIF_F_NTUPLE))
4012 			goto out;
4013 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4014 		if (rxq_index == skb_get_rx_queue(skb))
4015 			goto out;
4016 
4017 		rxqueue = dev->_rx + rxq_index;
4018 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4019 		if (!flow_table)
4020 			goto out;
4021 		flow_id = skb_get_hash(skb) & flow_table->mask;
4022 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4023 							rxq_index, flow_id);
4024 		if (rc < 0)
4025 			goto out;
4026 		old_rflow = rflow;
4027 		rflow = &flow_table->flows[flow_id];
4028 		rflow->filter = rc;
4029 		if (old_rflow->filter == rflow->filter)
4030 			old_rflow->filter = RPS_NO_FILTER;
4031 	out:
4032 #endif
4033 		rflow->last_qtail =
4034 			per_cpu(softnet_data, next_cpu).input_queue_head;
4035 	}
4036 
4037 	rflow->cpu = next_cpu;
4038 	return rflow;
4039 }
4040 
4041 /*
4042  * get_rps_cpu is called from netif_receive_skb and returns the target
4043  * CPU from the RPS map of the receiving queue for a given skb.
4044  * rcu_read_lock must be held on entry.
4045  */
4046 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4047 		       struct rps_dev_flow **rflowp)
4048 {
4049 	const struct rps_sock_flow_table *sock_flow_table;
4050 	struct netdev_rx_queue *rxqueue = dev->_rx;
4051 	struct rps_dev_flow_table *flow_table;
4052 	struct rps_map *map;
4053 	int cpu = -1;
4054 	u32 tcpu;
4055 	u32 hash;
4056 
4057 	if (skb_rx_queue_recorded(skb)) {
4058 		u16 index = skb_get_rx_queue(skb);
4059 
4060 		if (unlikely(index >= dev->real_num_rx_queues)) {
4061 			WARN_ONCE(dev->real_num_rx_queues > 1,
4062 				  "%s received packet on queue %u, but number "
4063 				  "of RX queues is %u\n",
4064 				  dev->name, index, dev->real_num_rx_queues);
4065 			goto done;
4066 		}
4067 		rxqueue += index;
4068 	}
4069 
4070 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4071 
4072 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4073 	map = rcu_dereference(rxqueue->rps_map);
4074 	if (!flow_table && !map)
4075 		goto done;
4076 
4077 	skb_reset_network_header(skb);
4078 	hash = skb_get_hash(skb);
4079 	if (!hash)
4080 		goto done;
4081 
4082 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4083 	if (flow_table && sock_flow_table) {
4084 		struct rps_dev_flow *rflow;
4085 		u32 next_cpu;
4086 		u32 ident;
4087 
4088 		/* First check into global flow table if there is a match */
4089 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4090 		if ((ident ^ hash) & ~rps_cpu_mask)
4091 			goto try_rps;
4092 
4093 		next_cpu = ident & rps_cpu_mask;
4094 
4095 		/* OK, now we know there is a match,
4096 		 * we can look at the local (per receive queue) flow table
4097 		 */
4098 		rflow = &flow_table->flows[hash & flow_table->mask];
4099 		tcpu = rflow->cpu;
4100 
4101 		/*
4102 		 * If the desired CPU (where last recvmsg was done) is
4103 		 * different from current CPU (one in the rx-queue flow
4104 		 * table entry), switch if one of the following holds:
4105 		 *   - Current CPU is unset (>= nr_cpu_ids).
4106 		 *   - Current CPU is offline.
4107 		 *   - The current CPU's queue tail has advanced beyond the
4108 		 *     last packet that was enqueued using this table entry.
4109 		 *     This guarantees that all previous packets for the flow
4110 		 *     have been dequeued, thus preserving in order delivery.
4111 		 */
4112 		if (unlikely(tcpu != next_cpu) &&
4113 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4114 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4115 		      rflow->last_qtail)) >= 0)) {
4116 			tcpu = next_cpu;
4117 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4118 		}
4119 
4120 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4121 			*rflowp = rflow;
4122 			cpu = tcpu;
4123 			goto done;
4124 		}
4125 	}
4126 
4127 try_rps:
4128 
4129 	if (map) {
4130 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4131 		if (cpu_online(tcpu)) {
4132 			cpu = tcpu;
4133 			goto done;
4134 		}
4135 	}
4136 
4137 done:
4138 	return cpu;
4139 }
4140 
4141 #ifdef CONFIG_RFS_ACCEL
4142 
4143 /**
4144  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4145  * @dev: Device on which the filter was set
4146  * @rxq_index: RX queue index
4147  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4148  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4149  *
4150  * Drivers that implement ndo_rx_flow_steer() should periodically call
4151  * this function for each installed filter and remove the filters for
4152  * which it returns %true.
4153  */
4154 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4155 			 u32 flow_id, u16 filter_id)
4156 {
4157 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4158 	struct rps_dev_flow_table *flow_table;
4159 	struct rps_dev_flow *rflow;
4160 	bool expire = true;
4161 	unsigned int cpu;
4162 
4163 	rcu_read_lock();
4164 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4165 	if (flow_table && flow_id <= flow_table->mask) {
4166 		rflow = &flow_table->flows[flow_id];
4167 		cpu = READ_ONCE(rflow->cpu);
4168 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4169 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4170 			   rflow->last_qtail) <
4171 		     (int)(10 * flow_table->mask)))
4172 			expire = false;
4173 	}
4174 	rcu_read_unlock();
4175 	return expire;
4176 }
4177 EXPORT_SYMBOL(rps_may_expire_flow);
4178 
4179 #endif /* CONFIG_RFS_ACCEL */
4180 
4181 /* Called from hardirq (IPI) context */
4182 static void rps_trigger_softirq(void *data)
4183 {
4184 	struct softnet_data *sd = data;
4185 
4186 	____napi_schedule(sd, &sd->backlog);
4187 	sd->received_rps++;
4188 }
4189 
4190 #endif /* CONFIG_RPS */
4191 
4192 /*
4193  * Check if this softnet_data structure is another cpu one
4194  * If yes, queue it to our IPI list and return 1
4195  * If no, return 0
4196  */
4197 static int rps_ipi_queued(struct softnet_data *sd)
4198 {
4199 #ifdef CONFIG_RPS
4200 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4201 
4202 	if (sd != mysd) {
4203 		sd->rps_ipi_next = mysd->rps_ipi_list;
4204 		mysd->rps_ipi_list = sd;
4205 
4206 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4207 		return 1;
4208 	}
4209 #endif /* CONFIG_RPS */
4210 	return 0;
4211 }
4212 
4213 #ifdef CONFIG_NET_FLOW_LIMIT
4214 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4215 #endif
4216 
4217 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4218 {
4219 #ifdef CONFIG_NET_FLOW_LIMIT
4220 	struct sd_flow_limit *fl;
4221 	struct softnet_data *sd;
4222 	unsigned int old_flow, new_flow;
4223 
4224 	if (qlen < (netdev_max_backlog >> 1))
4225 		return false;
4226 
4227 	sd = this_cpu_ptr(&softnet_data);
4228 
4229 	rcu_read_lock();
4230 	fl = rcu_dereference(sd->flow_limit);
4231 	if (fl) {
4232 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4233 		old_flow = fl->history[fl->history_head];
4234 		fl->history[fl->history_head] = new_flow;
4235 
4236 		fl->history_head++;
4237 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4238 
4239 		if (likely(fl->buckets[old_flow]))
4240 			fl->buckets[old_flow]--;
4241 
4242 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4243 			fl->count++;
4244 			rcu_read_unlock();
4245 			return true;
4246 		}
4247 	}
4248 	rcu_read_unlock();
4249 #endif
4250 	return false;
4251 }
4252 
4253 /*
4254  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4255  * queue (may be a remote CPU queue).
4256  */
4257 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4258 			      unsigned int *qtail)
4259 {
4260 	struct softnet_data *sd;
4261 	unsigned long flags;
4262 	unsigned int qlen;
4263 
4264 	sd = &per_cpu(softnet_data, cpu);
4265 
4266 	local_irq_save(flags);
4267 
4268 	rps_lock(sd);
4269 	if (!netif_running(skb->dev))
4270 		goto drop;
4271 	qlen = skb_queue_len(&sd->input_pkt_queue);
4272 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4273 		if (qlen) {
4274 enqueue:
4275 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4276 			input_queue_tail_incr_save(sd, qtail);
4277 			rps_unlock(sd);
4278 			local_irq_restore(flags);
4279 			return NET_RX_SUCCESS;
4280 		}
4281 
4282 		/* Schedule NAPI for backlog device
4283 		 * We can use non atomic operation since we own the queue lock
4284 		 */
4285 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4286 			if (!rps_ipi_queued(sd))
4287 				____napi_schedule(sd, &sd->backlog);
4288 		}
4289 		goto enqueue;
4290 	}
4291 
4292 drop:
4293 	sd->dropped++;
4294 	rps_unlock(sd);
4295 
4296 	local_irq_restore(flags);
4297 
4298 	atomic_long_inc(&skb->dev->rx_dropped);
4299 	kfree_skb(skb);
4300 	return NET_RX_DROP;
4301 }
4302 
4303 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4304 {
4305 	struct net_device *dev = skb->dev;
4306 	struct netdev_rx_queue *rxqueue;
4307 
4308 	rxqueue = dev->_rx;
4309 
4310 	if (skb_rx_queue_recorded(skb)) {
4311 		u16 index = skb_get_rx_queue(skb);
4312 
4313 		if (unlikely(index >= dev->real_num_rx_queues)) {
4314 			WARN_ONCE(dev->real_num_rx_queues > 1,
4315 				  "%s received packet on queue %u, but number "
4316 				  "of RX queues is %u\n",
4317 				  dev->name, index, dev->real_num_rx_queues);
4318 
4319 			return rxqueue; /* Return first rxqueue */
4320 		}
4321 		rxqueue += index;
4322 	}
4323 	return rxqueue;
4324 }
4325 
4326 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4327 				     struct xdp_buff *xdp,
4328 				     struct bpf_prog *xdp_prog)
4329 {
4330 	struct netdev_rx_queue *rxqueue;
4331 	void *orig_data, *orig_data_end;
4332 	u32 metalen, act = XDP_DROP;
4333 	__be16 orig_eth_type;
4334 	struct ethhdr *eth;
4335 	bool orig_bcast;
4336 	int hlen, off;
4337 	u32 mac_len;
4338 
4339 	/* Reinjected packets coming from act_mirred or similar should
4340 	 * not get XDP generic processing.
4341 	 */
4342 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4343 		return XDP_PASS;
4344 
4345 	/* XDP packets must be linear and must have sufficient headroom
4346 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4347 	 * native XDP provides, thus we need to do it here as well.
4348 	 */
4349 	if (skb_is_nonlinear(skb) ||
4350 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4351 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4352 		int troom = skb->tail + skb->data_len - skb->end;
4353 
4354 		/* In case we have to go down the path and also linearize,
4355 		 * then lets do the pskb_expand_head() work just once here.
4356 		 */
4357 		if (pskb_expand_head(skb,
4358 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4359 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4360 			goto do_drop;
4361 		if (skb_linearize(skb))
4362 			goto do_drop;
4363 	}
4364 
4365 	/* The XDP program wants to see the packet starting at the MAC
4366 	 * header.
4367 	 */
4368 	mac_len = skb->data - skb_mac_header(skb);
4369 	hlen = skb_headlen(skb) + mac_len;
4370 	xdp->data = skb->data - mac_len;
4371 	xdp->data_meta = xdp->data;
4372 	xdp->data_end = xdp->data + hlen;
4373 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4374 	orig_data_end = xdp->data_end;
4375 	orig_data = xdp->data;
4376 	eth = (struct ethhdr *)xdp->data;
4377 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4378 	orig_eth_type = eth->h_proto;
4379 
4380 	rxqueue = netif_get_rxqueue(skb);
4381 	xdp->rxq = &rxqueue->xdp_rxq;
4382 
4383 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4384 
4385 	off = xdp->data - orig_data;
4386 	if (off > 0)
4387 		__skb_pull(skb, off);
4388 	else if (off < 0)
4389 		__skb_push(skb, -off);
4390 	skb->mac_header += off;
4391 
4392 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4393 	 * pckt.
4394 	 */
4395 	off = orig_data_end - xdp->data_end;
4396 	if (off != 0) {
4397 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4398 		skb->len -= off;
4399 
4400 	}
4401 
4402 	/* check if XDP changed eth hdr such SKB needs update */
4403 	eth = (struct ethhdr *)xdp->data;
4404 	if ((orig_eth_type != eth->h_proto) ||
4405 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4406 		__skb_push(skb, ETH_HLEN);
4407 		skb->protocol = eth_type_trans(skb, skb->dev);
4408 	}
4409 
4410 	switch (act) {
4411 	case XDP_REDIRECT:
4412 	case XDP_TX:
4413 		__skb_push(skb, mac_len);
4414 		break;
4415 	case XDP_PASS:
4416 		metalen = xdp->data - xdp->data_meta;
4417 		if (metalen)
4418 			skb_metadata_set(skb, metalen);
4419 		break;
4420 	default:
4421 		bpf_warn_invalid_xdp_action(act);
4422 		/* fall through */
4423 	case XDP_ABORTED:
4424 		trace_xdp_exception(skb->dev, xdp_prog, act);
4425 		/* fall through */
4426 	case XDP_DROP:
4427 	do_drop:
4428 		kfree_skb(skb);
4429 		break;
4430 	}
4431 
4432 	return act;
4433 }
4434 
4435 /* When doing generic XDP we have to bypass the qdisc layer and the
4436  * network taps in order to match in-driver-XDP behavior.
4437  */
4438 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4439 {
4440 	struct net_device *dev = skb->dev;
4441 	struct netdev_queue *txq;
4442 	bool free_skb = true;
4443 	int cpu, rc;
4444 
4445 	txq = netdev_core_pick_tx(dev, skb, NULL);
4446 	cpu = smp_processor_id();
4447 	HARD_TX_LOCK(dev, txq, cpu);
4448 	if (!netif_xmit_stopped(txq)) {
4449 		rc = netdev_start_xmit(skb, dev, txq, 0);
4450 		if (dev_xmit_complete(rc))
4451 			free_skb = false;
4452 	}
4453 	HARD_TX_UNLOCK(dev, txq);
4454 	if (free_skb) {
4455 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4456 		kfree_skb(skb);
4457 	}
4458 }
4459 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4460 
4461 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4462 
4463 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4464 {
4465 	if (xdp_prog) {
4466 		struct xdp_buff xdp;
4467 		u32 act;
4468 		int err;
4469 
4470 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4471 		if (act != XDP_PASS) {
4472 			switch (act) {
4473 			case XDP_REDIRECT:
4474 				err = xdp_do_generic_redirect(skb->dev, skb,
4475 							      &xdp, xdp_prog);
4476 				if (err)
4477 					goto out_redir;
4478 				break;
4479 			case XDP_TX:
4480 				generic_xdp_tx(skb, xdp_prog);
4481 				break;
4482 			}
4483 			return XDP_DROP;
4484 		}
4485 	}
4486 	return XDP_PASS;
4487 out_redir:
4488 	kfree_skb(skb);
4489 	return XDP_DROP;
4490 }
4491 EXPORT_SYMBOL_GPL(do_xdp_generic);
4492 
4493 static int netif_rx_internal(struct sk_buff *skb)
4494 {
4495 	int ret;
4496 
4497 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4498 
4499 	trace_netif_rx(skb);
4500 
4501 #ifdef CONFIG_RPS
4502 	if (static_branch_unlikely(&rps_needed)) {
4503 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4504 		int cpu;
4505 
4506 		preempt_disable();
4507 		rcu_read_lock();
4508 
4509 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4510 		if (cpu < 0)
4511 			cpu = smp_processor_id();
4512 
4513 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4514 
4515 		rcu_read_unlock();
4516 		preempt_enable();
4517 	} else
4518 #endif
4519 	{
4520 		unsigned int qtail;
4521 
4522 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4523 		put_cpu();
4524 	}
4525 	return ret;
4526 }
4527 
4528 /**
4529  *	netif_rx	-	post buffer to the network code
4530  *	@skb: buffer to post
4531  *
4532  *	This function receives a packet from a device driver and queues it for
4533  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4534  *	may be dropped during processing for congestion control or by the
4535  *	protocol layers.
4536  *
4537  *	return values:
4538  *	NET_RX_SUCCESS	(no congestion)
4539  *	NET_RX_DROP     (packet was dropped)
4540  *
4541  */
4542 
4543 int netif_rx(struct sk_buff *skb)
4544 {
4545 	int ret;
4546 
4547 	trace_netif_rx_entry(skb);
4548 
4549 	ret = netif_rx_internal(skb);
4550 	trace_netif_rx_exit(ret);
4551 
4552 	return ret;
4553 }
4554 EXPORT_SYMBOL(netif_rx);
4555 
4556 int netif_rx_ni(struct sk_buff *skb)
4557 {
4558 	int err;
4559 
4560 	trace_netif_rx_ni_entry(skb);
4561 
4562 	preempt_disable();
4563 	err = netif_rx_internal(skb);
4564 	if (local_softirq_pending())
4565 		do_softirq();
4566 	preempt_enable();
4567 	trace_netif_rx_ni_exit(err);
4568 
4569 	return err;
4570 }
4571 EXPORT_SYMBOL(netif_rx_ni);
4572 
4573 static __latent_entropy void net_tx_action(struct softirq_action *h)
4574 {
4575 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4576 
4577 	if (sd->completion_queue) {
4578 		struct sk_buff *clist;
4579 
4580 		local_irq_disable();
4581 		clist = sd->completion_queue;
4582 		sd->completion_queue = NULL;
4583 		local_irq_enable();
4584 
4585 		while (clist) {
4586 			struct sk_buff *skb = clist;
4587 
4588 			clist = clist->next;
4589 
4590 			WARN_ON(refcount_read(&skb->users));
4591 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4592 				trace_consume_skb(skb);
4593 			else
4594 				trace_kfree_skb(skb, net_tx_action);
4595 
4596 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4597 				__kfree_skb(skb);
4598 			else
4599 				__kfree_skb_defer(skb);
4600 		}
4601 
4602 		__kfree_skb_flush();
4603 	}
4604 
4605 	if (sd->output_queue) {
4606 		struct Qdisc *head;
4607 
4608 		local_irq_disable();
4609 		head = sd->output_queue;
4610 		sd->output_queue = NULL;
4611 		sd->output_queue_tailp = &sd->output_queue;
4612 		local_irq_enable();
4613 
4614 		while (head) {
4615 			struct Qdisc *q = head;
4616 			spinlock_t *root_lock = NULL;
4617 
4618 			head = head->next_sched;
4619 
4620 			if (!(q->flags & TCQ_F_NOLOCK)) {
4621 				root_lock = qdisc_lock(q);
4622 				spin_lock(root_lock);
4623 			}
4624 			/* We need to make sure head->next_sched is read
4625 			 * before clearing __QDISC_STATE_SCHED
4626 			 */
4627 			smp_mb__before_atomic();
4628 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4629 			qdisc_run(q);
4630 			if (root_lock)
4631 				spin_unlock(root_lock);
4632 		}
4633 	}
4634 
4635 	xfrm_dev_backlog(sd);
4636 }
4637 
4638 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4639 /* This hook is defined here for ATM LANE */
4640 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4641 			     unsigned char *addr) __read_mostly;
4642 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4643 #endif
4644 
4645 static inline struct sk_buff *
4646 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4647 		   struct net_device *orig_dev)
4648 {
4649 #ifdef CONFIG_NET_CLS_ACT
4650 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4651 	struct tcf_result cl_res;
4652 
4653 	/* If there's at least one ingress present somewhere (so
4654 	 * we get here via enabled static key), remaining devices
4655 	 * that are not configured with an ingress qdisc will bail
4656 	 * out here.
4657 	 */
4658 	if (!miniq)
4659 		return skb;
4660 
4661 	if (*pt_prev) {
4662 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4663 		*pt_prev = NULL;
4664 	}
4665 
4666 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4667 	skb->tc_at_ingress = 1;
4668 	mini_qdisc_bstats_cpu_update(miniq, skb);
4669 
4670 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4671 	case TC_ACT_OK:
4672 	case TC_ACT_RECLASSIFY:
4673 		skb->tc_index = TC_H_MIN(cl_res.classid);
4674 		break;
4675 	case TC_ACT_SHOT:
4676 		mini_qdisc_qstats_cpu_drop(miniq);
4677 		kfree_skb(skb);
4678 		return NULL;
4679 	case TC_ACT_STOLEN:
4680 	case TC_ACT_QUEUED:
4681 	case TC_ACT_TRAP:
4682 		consume_skb(skb);
4683 		return NULL;
4684 	case TC_ACT_REDIRECT:
4685 		/* skb_mac_header check was done by cls/act_bpf, so
4686 		 * we can safely push the L2 header back before
4687 		 * redirecting to another netdev
4688 		 */
4689 		__skb_push(skb, skb->mac_len);
4690 		skb_do_redirect(skb);
4691 		return NULL;
4692 	case TC_ACT_CONSUMED:
4693 		return NULL;
4694 	default:
4695 		break;
4696 	}
4697 #endif /* CONFIG_NET_CLS_ACT */
4698 	return skb;
4699 }
4700 
4701 /**
4702  *	netdev_is_rx_handler_busy - check if receive handler is registered
4703  *	@dev: device to check
4704  *
4705  *	Check if a receive handler is already registered for a given device.
4706  *	Return true if there one.
4707  *
4708  *	The caller must hold the rtnl_mutex.
4709  */
4710 bool netdev_is_rx_handler_busy(struct net_device *dev)
4711 {
4712 	ASSERT_RTNL();
4713 	return dev && rtnl_dereference(dev->rx_handler);
4714 }
4715 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4716 
4717 /**
4718  *	netdev_rx_handler_register - register receive handler
4719  *	@dev: device to register a handler for
4720  *	@rx_handler: receive handler to register
4721  *	@rx_handler_data: data pointer that is used by rx handler
4722  *
4723  *	Register a receive handler for a device. This handler will then be
4724  *	called from __netif_receive_skb. A negative errno code is returned
4725  *	on a failure.
4726  *
4727  *	The caller must hold the rtnl_mutex.
4728  *
4729  *	For a general description of rx_handler, see enum rx_handler_result.
4730  */
4731 int netdev_rx_handler_register(struct net_device *dev,
4732 			       rx_handler_func_t *rx_handler,
4733 			       void *rx_handler_data)
4734 {
4735 	if (netdev_is_rx_handler_busy(dev))
4736 		return -EBUSY;
4737 
4738 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4739 		return -EINVAL;
4740 
4741 	/* Note: rx_handler_data must be set before rx_handler */
4742 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4743 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4744 
4745 	return 0;
4746 }
4747 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4748 
4749 /**
4750  *	netdev_rx_handler_unregister - unregister receive handler
4751  *	@dev: device to unregister a handler from
4752  *
4753  *	Unregister a receive handler from a device.
4754  *
4755  *	The caller must hold the rtnl_mutex.
4756  */
4757 void netdev_rx_handler_unregister(struct net_device *dev)
4758 {
4759 
4760 	ASSERT_RTNL();
4761 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4762 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4763 	 * section has a guarantee to see a non NULL rx_handler_data
4764 	 * as well.
4765 	 */
4766 	synchronize_net();
4767 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4768 }
4769 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4770 
4771 /*
4772  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4773  * the special handling of PFMEMALLOC skbs.
4774  */
4775 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4776 {
4777 	switch (skb->protocol) {
4778 	case htons(ETH_P_ARP):
4779 	case htons(ETH_P_IP):
4780 	case htons(ETH_P_IPV6):
4781 	case htons(ETH_P_8021Q):
4782 	case htons(ETH_P_8021AD):
4783 		return true;
4784 	default:
4785 		return false;
4786 	}
4787 }
4788 
4789 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4790 			     int *ret, struct net_device *orig_dev)
4791 {
4792 #ifdef CONFIG_NETFILTER_INGRESS
4793 	if (nf_hook_ingress_active(skb)) {
4794 		int ingress_retval;
4795 
4796 		if (*pt_prev) {
4797 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4798 			*pt_prev = NULL;
4799 		}
4800 
4801 		rcu_read_lock();
4802 		ingress_retval = nf_hook_ingress(skb);
4803 		rcu_read_unlock();
4804 		return ingress_retval;
4805 	}
4806 #endif /* CONFIG_NETFILTER_INGRESS */
4807 	return 0;
4808 }
4809 
4810 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4811 				    struct packet_type **ppt_prev)
4812 {
4813 	struct packet_type *ptype, *pt_prev;
4814 	rx_handler_func_t *rx_handler;
4815 	struct net_device *orig_dev;
4816 	bool deliver_exact = false;
4817 	int ret = NET_RX_DROP;
4818 	__be16 type;
4819 
4820 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4821 
4822 	trace_netif_receive_skb(skb);
4823 
4824 	orig_dev = skb->dev;
4825 
4826 	skb_reset_network_header(skb);
4827 	if (!skb_transport_header_was_set(skb))
4828 		skb_reset_transport_header(skb);
4829 	skb_reset_mac_len(skb);
4830 
4831 	pt_prev = NULL;
4832 
4833 another_round:
4834 	skb->skb_iif = skb->dev->ifindex;
4835 
4836 	__this_cpu_inc(softnet_data.processed);
4837 
4838 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4839 		int ret2;
4840 
4841 		preempt_disable();
4842 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4843 		preempt_enable();
4844 
4845 		if (ret2 != XDP_PASS)
4846 			return NET_RX_DROP;
4847 		skb_reset_mac_len(skb);
4848 	}
4849 
4850 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4851 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4852 		skb = skb_vlan_untag(skb);
4853 		if (unlikely(!skb))
4854 			goto out;
4855 	}
4856 
4857 	if (skb_skip_tc_classify(skb))
4858 		goto skip_classify;
4859 
4860 	if (pfmemalloc)
4861 		goto skip_taps;
4862 
4863 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4864 		if (pt_prev)
4865 			ret = deliver_skb(skb, pt_prev, orig_dev);
4866 		pt_prev = ptype;
4867 	}
4868 
4869 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4870 		if (pt_prev)
4871 			ret = deliver_skb(skb, pt_prev, orig_dev);
4872 		pt_prev = ptype;
4873 	}
4874 
4875 skip_taps:
4876 #ifdef CONFIG_NET_INGRESS
4877 	if (static_branch_unlikely(&ingress_needed_key)) {
4878 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4879 		if (!skb)
4880 			goto out;
4881 
4882 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4883 			goto out;
4884 	}
4885 #endif
4886 	skb_reset_tc(skb);
4887 skip_classify:
4888 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4889 		goto drop;
4890 
4891 	if (skb_vlan_tag_present(skb)) {
4892 		if (pt_prev) {
4893 			ret = deliver_skb(skb, pt_prev, orig_dev);
4894 			pt_prev = NULL;
4895 		}
4896 		if (vlan_do_receive(&skb))
4897 			goto another_round;
4898 		else if (unlikely(!skb))
4899 			goto out;
4900 	}
4901 
4902 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4903 	if (rx_handler) {
4904 		if (pt_prev) {
4905 			ret = deliver_skb(skb, pt_prev, orig_dev);
4906 			pt_prev = NULL;
4907 		}
4908 		switch (rx_handler(&skb)) {
4909 		case RX_HANDLER_CONSUMED:
4910 			ret = NET_RX_SUCCESS;
4911 			goto out;
4912 		case RX_HANDLER_ANOTHER:
4913 			goto another_round;
4914 		case RX_HANDLER_EXACT:
4915 			deliver_exact = true;
4916 		case RX_HANDLER_PASS:
4917 			break;
4918 		default:
4919 			BUG();
4920 		}
4921 	}
4922 
4923 	if (unlikely(skb_vlan_tag_present(skb))) {
4924 check_vlan_id:
4925 		if (skb_vlan_tag_get_id(skb)) {
4926 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
4927 			 * find vlan device.
4928 			 */
4929 			skb->pkt_type = PACKET_OTHERHOST;
4930 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4931 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4932 			/* Outer header is 802.1P with vlan 0, inner header is
4933 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
4934 			 * not find vlan dev for vlan id 0.
4935 			 */
4936 			__vlan_hwaccel_clear_tag(skb);
4937 			skb = skb_vlan_untag(skb);
4938 			if (unlikely(!skb))
4939 				goto out;
4940 			if (vlan_do_receive(&skb))
4941 				/* After stripping off 802.1P header with vlan 0
4942 				 * vlan dev is found for inner header.
4943 				 */
4944 				goto another_round;
4945 			else if (unlikely(!skb))
4946 				goto out;
4947 			else
4948 				/* We have stripped outer 802.1P vlan 0 header.
4949 				 * But could not find vlan dev.
4950 				 * check again for vlan id to set OTHERHOST.
4951 				 */
4952 				goto check_vlan_id;
4953 		}
4954 		/* Note: we might in the future use prio bits
4955 		 * and set skb->priority like in vlan_do_receive()
4956 		 * For the time being, just ignore Priority Code Point
4957 		 */
4958 		__vlan_hwaccel_clear_tag(skb);
4959 	}
4960 
4961 	type = skb->protocol;
4962 
4963 	/* deliver only exact match when indicated */
4964 	if (likely(!deliver_exact)) {
4965 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4966 				       &ptype_base[ntohs(type) &
4967 						   PTYPE_HASH_MASK]);
4968 	}
4969 
4970 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4971 			       &orig_dev->ptype_specific);
4972 
4973 	if (unlikely(skb->dev != orig_dev)) {
4974 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4975 				       &skb->dev->ptype_specific);
4976 	}
4977 
4978 	if (pt_prev) {
4979 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4980 			goto drop;
4981 		*ppt_prev = pt_prev;
4982 	} else {
4983 drop:
4984 		if (!deliver_exact)
4985 			atomic_long_inc(&skb->dev->rx_dropped);
4986 		else
4987 			atomic_long_inc(&skb->dev->rx_nohandler);
4988 		kfree_skb(skb);
4989 		/* Jamal, now you will not able to escape explaining
4990 		 * me how you were going to use this. :-)
4991 		 */
4992 		ret = NET_RX_DROP;
4993 	}
4994 
4995 out:
4996 	return ret;
4997 }
4998 
4999 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5000 {
5001 	struct net_device *orig_dev = skb->dev;
5002 	struct packet_type *pt_prev = NULL;
5003 	int ret;
5004 
5005 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5006 	if (pt_prev)
5007 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5008 					 skb->dev, pt_prev, orig_dev);
5009 	return ret;
5010 }
5011 
5012 /**
5013  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5014  *	@skb: buffer to process
5015  *
5016  *	More direct receive version of netif_receive_skb().  It should
5017  *	only be used by callers that have a need to skip RPS and Generic XDP.
5018  *	Caller must also take care of handling if (page_is_)pfmemalloc.
5019  *
5020  *	This function may only be called from softirq context and interrupts
5021  *	should be enabled.
5022  *
5023  *	Return values (usually ignored):
5024  *	NET_RX_SUCCESS: no congestion
5025  *	NET_RX_DROP: packet was dropped
5026  */
5027 int netif_receive_skb_core(struct sk_buff *skb)
5028 {
5029 	int ret;
5030 
5031 	rcu_read_lock();
5032 	ret = __netif_receive_skb_one_core(skb, false);
5033 	rcu_read_unlock();
5034 
5035 	return ret;
5036 }
5037 EXPORT_SYMBOL(netif_receive_skb_core);
5038 
5039 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5040 						  struct packet_type *pt_prev,
5041 						  struct net_device *orig_dev)
5042 {
5043 	struct sk_buff *skb, *next;
5044 
5045 	if (!pt_prev)
5046 		return;
5047 	if (list_empty(head))
5048 		return;
5049 	if (pt_prev->list_func != NULL)
5050 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5051 				   ip_list_rcv, head, pt_prev, orig_dev);
5052 	else
5053 		list_for_each_entry_safe(skb, next, head, list) {
5054 			skb_list_del_init(skb);
5055 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5056 		}
5057 }
5058 
5059 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5060 {
5061 	/* Fast-path assumptions:
5062 	 * - There is no RX handler.
5063 	 * - Only one packet_type matches.
5064 	 * If either of these fails, we will end up doing some per-packet
5065 	 * processing in-line, then handling the 'last ptype' for the whole
5066 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5067 	 * because the 'last ptype' must be constant across the sublist, and all
5068 	 * other ptypes are handled per-packet.
5069 	 */
5070 	/* Current (common) ptype of sublist */
5071 	struct packet_type *pt_curr = NULL;
5072 	/* Current (common) orig_dev of sublist */
5073 	struct net_device *od_curr = NULL;
5074 	struct list_head sublist;
5075 	struct sk_buff *skb, *next;
5076 
5077 	INIT_LIST_HEAD(&sublist);
5078 	list_for_each_entry_safe(skb, next, head, list) {
5079 		struct net_device *orig_dev = skb->dev;
5080 		struct packet_type *pt_prev = NULL;
5081 
5082 		skb_list_del_init(skb);
5083 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5084 		if (!pt_prev)
5085 			continue;
5086 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5087 			/* dispatch old sublist */
5088 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5089 			/* start new sublist */
5090 			INIT_LIST_HEAD(&sublist);
5091 			pt_curr = pt_prev;
5092 			od_curr = orig_dev;
5093 		}
5094 		list_add_tail(&skb->list, &sublist);
5095 	}
5096 
5097 	/* dispatch final sublist */
5098 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5099 }
5100 
5101 static int __netif_receive_skb(struct sk_buff *skb)
5102 {
5103 	int ret;
5104 
5105 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5106 		unsigned int noreclaim_flag;
5107 
5108 		/*
5109 		 * PFMEMALLOC skbs are special, they should
5110 		 * - be delivered to SOCK_MEMALLOC sockets only
5111 		 * - stay away from userspace
5112 		 * - have bounded memory usage
5113 		 *
5114 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5115 		 * context down to all allocation sites.
5116 		 */
5117 		noreclaim_flag = memalloc_noreclaim_save();
5118 		ret = __netif_receive_skb_one_core(skb, true);
5119 		memalloc_noreclaim_restore(noreclaim_flag);
5120 	} else
5121 		ret = __netif_receive_skb_one_core(skb, false);
5122 
5123 	return ret;
5124 }
5125 
5126 static void __netif_receive_skb_list(struct list_head *head)
5127 {
5128 	unsigned long noreclaim_flag = 0;
5129 	struct sk_buff *skb, *next;
5130 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5131 
5132 	list_for_each_entry_safe(skb, next, head, list) {
5133 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5134 			struct list_head sublist;
5135 
5136 			/* Handle the previous sublist */
5137 			list_cut_before(&sublist, head, &skb->list);
5138 			if (!list_empty(&sublist))
5139 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5140 			pfmemalloc = !pfmemalloc;
5141 			/* See comments in __netif_receive_skb */
5142 			if (pfmemalloc)
5143 				noreclaim_flag = memalloc_noreclaim_save();
5144 			else
5145 				memalloc_noreclaim_restore(noreclaim_flag);
5146 		}
5147 	}
5148 	/* Handle the remaining sublist */
5149 	if (!list_empty(head))
5150 		__netif_receive_skb_list_core(head, pfmemalloc);
5151 	/* Restore pflags */
5152 	if (pfmemalloc)
5153 		memalloc_noreclaim_restore(noreclaim_flag);
5154 }
5155 
5156 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5157 {
5158 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5159 	struct bpf_prog *new = xdp->prog;
5160 	int ret = 0;
5161 
5162 	switch (xdp->command) {
5163 	case XDP_SETUP_PROG:
5164 		rcu_assign_pointer(dev->xdp_prog, new);
5165 		if (old)
5166 			bpf_prog_put(old);
5167 
5168 		if (old && !new) {
5169 			static_branch_dec(&generic_xdp_needed_key);
5170 		} else if (new && !old) {
5171 			static_branch_inc(&generic_xdp_needed_key);
5172 			dev_disable_lro(dev);
5173 			dev_disable_gro_hw(dev);
5174 		}
5175 		break;
5176 
5177 	case XDP_QUERY_PROG:
5178 		xdp->prog_id = old ? old->aux->id : 0;
5179 		break;
5180 
5181 	default:
5182 		ret = -EINVAL;
5183 		break;
5184 	}
5185 
5186 	return ret;
5187 }
5188 
5189 static int netif_receive_skb_internal(struct sk_buff *skb)
5190 {
5191 	int ret;
5192 
5193 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5194 
5195 	if (skb_defer_rx_timestamp(skb))
5196 		return NET_RX_SUCCESS;
5197 
5198 	rcu_read_lock();
5199 #ifdef CONFIG_RPS
5200 	if (static_branch_unlikely(&rps_needed)) {
5201 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5202 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5203 
5204 		if (cpu >= 0) {
5205 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5206 			rcu_read_unlock();
5207 			return ret;
5208 		}
5209 	}
5210 #endif
5211 	ret = __netif_receive_skb(skb);
5212 	rcu_read_unlock();
5213 	return ret;
5214 }
5215 
5216 static void netif_receive_skb_list_internal(struct list_head *head)
5217 {
5218 	struct sk_buff *skb, *next;
5219 	struct list_head sublist;
5220 
5221 	INIT_LIST_HEAD(&sublist);
5222 	list_for_each_entry_safe(skb, next, head, list) {
5223 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5224 		skb_list_del_init(skb);
5225 		if (!skb_defer_rx_timestamp(skb))
5226 			list_add_tail(&skb->list, &sublist);
5227 	}
5228 	list_splice_init(&sublist, head);
5229 
5230 	rcu_read_lock();
5231 #ifdef CONFIG_RPS
5232 	if (static_branch_unlikely(&rps_needed)) {
5233 		list_for_each_entry_safe(skb, next, head, list) {
5234 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5235 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5236 
5237 			if (cpu >= 0) {
5238 				/* Will be handled, remove from list */
5239 				skb_list_del_init(skb);
5240 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5241 			}
5242 		}
5243 	}
5244 #endif
5245 	__netif_receive_skb_list(head);
5246 	rcu_read_unlock();
5247 }
5248 
5249 /**
5250  *	netif_receive_skb - process receive buffer from network
5251  *	@skb: buffer to process
5252  *
5253  *	netif_receive_skb() is the main receive data processing function.
5254  *	It always succeeds. The buffer may be dropped during processing
5255  *	for congestion control or by the protocol layers.
5256  *
5257  *	This function may only be called from softirq context and interrupts
5258  *	should be enabled.
5259  *
5260  *	Return values (usually ignored):
5261  *	NET_RX_SUCCESS: no congestion
5262  *	NET_RX_DROP: packet was dropped
5263  */
5264 int netif_receive_skb(struct sk_buff *skb)
5265 {
5266 	int ret;
5267 
5268 	trace_netif_receive_skb_entry(skb);
5269 
5270 	ret = netif_receive_skb_internal(skb);
5271 	trace_netif_receive_skb_exit(ret);
5272 
5273 	return ret;
5274 }
5275 EXPORT_SYMBOL(netif_receive_skb);
5276 
5277 /**
5278  *	netif_receive_skb_list - process many receive buffers from network
5279  *	@head: list of skbs to process.
5280  *
5281  *	Since return value of netif_receive_skb() is normally ignored, and
5282  *	wouldn't be meaningful for a list, this function returns void.
5283  *
5284  *	This function may only be called from softirq context and interrupts
5285  *	should be enabled.
5286  */
5287 void netif_receive_skb_list(struct list_head *head)
5288 {
5289 	struct sk_buff *skb;
5290 
5291 	if (list_empty(head))
5292 		return;
5293 	if (trace_netif_receive_skb_list_entry_enabled()) {
5294 		list_for_each_entry(skb, head, list)
5295 			trace_netif_receive_skb_list_entry(skb);
5296 	}
5297 	netif_receive_skb_list_internal(head);
5298 	trace_netif_receive_skb_list_exit(0);
5299 }
5300 EXPORT_SYMBOL(netif_receive_skb_list);
5301 
5302 DEFINE_PER_CPU(struct work_struct, flush_works);
5303 
5304 /* Network device is going away, flush any packets still pending */
5305 static void flush_backlog(struct work_struct *work)
5306 {
5307 	struct sk_buff *skb, *tmp;
5308 	struct softnet_data *sd;
5309 
5310 	local_bh_disable();
5311 	sd = this_cpu_ptr(&softnet_data);
5312 
5313 	local_irq_disable();
5314 	rps_lock(sd);
5315 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5316 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5317 			__skb_unlink(skb, &sd->input_pkt_queue);
5318 			kfree_skb(skb);
5319 			input_queue_head_incr(sd);
5320 		}
5321 	}
5322 	rps_unlock(sd);
5323 	local_irq_enable();
5324 
5325 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5326 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5327 			__skb_unlink(skb, &sd->process_queue);
5328 			kfree_skb(skb);
5329 			input_queue_head_incr(sd);
5330 		}
5331 	}
5332 	local_bh_enable();
5333 }
5334 
5335 static void flush_all_backlogs(void)
5336 {
5337 	unsigned int cpu;
5338 
5339 	get_online_cpus();
5340 
5341 	for_each_online_cpu(cpu)
5342 		queue_work_on(cpu, system_highpri_wq,
5343 			      per_cpu_ptr(&flush_works, cpu));
5344 
5345 	for_each_online_cpu(cpu)
5346 		flush_work(per_cpu_ptr(&flush_works, cpu));
5347 
5348 	put_online_cpus();
5349 }
5350 
5351 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5352 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5353 static int napi_gro_complete(struct sk_buff *skb)
5354 {
5355 	struct packet_offload *ptype;
5356 	__be16 type = skb->protocol;
5357 	struct list_head *head = &offload_base;
5358 	int err = -ENOENT;
5359 
5360 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5361 
5362 	if (NAPI_GRO_CB(skb)->count == 1) {
5363 		skb_shinfo(skb)->gso_size = 0;
5364 		goto out;
5365 	}
5366 
5367 	rcu_read_lock();
5368 	list_for_each_entry_rcu(ptype, head, list) {
5369 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5370 			continue;
5371 
5372 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5373 					 ipv6_gro_complete, inet_gro_complete,
5374 					 skb, 0);
5375 		break;
5376 	}
5377 	rcu_read_unlock();
5378 
5379 	if (err) {
5380 		WARN_ON(&ptype->list == head);
5381 		kfree_skb(skb);
5382 		return NET_RX_SUCCESS;
5383 	}
5384 
5385 out:
5386 	return netif_receive_skb_internal(skb);
5387 }
5388 
5389 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5390 				   bool flush_old)
5391 {
5392 	struct list_head *head = &napi->gro_hash[index].list;
5393 	struct sk_buff *skb, *p;
5394 
5395 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5396 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5397 			return;
5398 		skb_list_del_init(skb);
5399 		napi_gro_complete(skb);
5400 		napi->gro_hash[index].count--;
5401 	}
5402 
5403 	if (!napi->gro_hash[index].count)
5404 		__clear_bit(index, &napi->gro_bitmask);
5405 }
5406 
5407 /* napi->gro_hash[].list contains packets ordered by age.
5408  * youngest packets at the head of it.
5409  * Complete skbs in reverse order to reduce latencies.
5410  */
5411 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5412 {
5413 	unsigned long bitmask = napi->gro_bitmask;
5414 	unsigned int i, base = ~0U;
5415 
5416 	while ((i = ffs(bitmask)) != 0) {
5417 		bitmask >>= i;
5418 		base += i;
5419 		__napi_gro_flush_chain(napi, base, flush_old);
5420 	}
5421 }
5422 EXPORT_SYMBOL(napi_gro_flush);
5423 
5424 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5425 					  struct sk_buff *skb)
5426 {
5427 	unsigned int maclen = skb->dev->hard_header_len;
5428 	u32 hash = skb_get_hash_raw(skb);
5429 	struct list_head *head;
5430 	struct sk_buff *p;
5431 
5432 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5433 	list_for_each_entry(p, head, list) {
5434 		unsigned long diffs;
5435 
5436 		NAPI_GRO_CB(p)->flush = 0;
5437 
5438 		if (hash != skb_get_hash_raw(p)) {
5439 			NAPI_GRO_CB(p)->same_flow = 0;
5440 			continue;
5441 		}
5442 
5443 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5444 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5445 		if (skb_vlan_tag_present(p))
5446 			diffs |= p->vlan_tci ^ skb->vlan_tci;
5447 		diffs |= skb_metadata_dst_cmp(p, skb);
5448 		diffs |= skb_metadata_differs(p, skb);
5449 		if (maclen == ETH_HLEN)
5450 			diffs |= compare_ether_header(skb_mac_header(p),
5451 						      skb_mac_header(skb));
5452 		else if (!diffs)
5453 			diffs = memcmp(skb_mac_header(p),
5454 				       skb_mac_header(skb),
5455 				       maclen);
5456 		NAPI_GRO_CB(p)->same_flow = !diffs;
5457 	}
5458 
5459 	return head;
5460 }
5461 
5462 static void skb_gro_reset_offset(struct sk_buff *skb)
5463 {
5464 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5465 	const skb_frag_t *frag0 = &pinfo->frags[0];
5466 
5467 	NAPI_GRO_CB(skb)->data_offset = 0;
5468 	NAPI_GRO_CB(skb)->frag0 = NULL;
5469 	NAPI_GRO_CB(skb)->frag0_len = 0;
5470 
5471 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5472 	    pinfo->nr_frags &&
5473 	    !PageHighMem(skb_frag_page(frag0))) {
5474 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5475 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5476 						    skb_frag_size(frag0),
5477 						    skb->end - skb->tail);
5478 	}
5479 }
5480 
5481 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5482 {
5483 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5484 
5485 	BUG_ON(skb->end - skb->tail < grow);
5486 
5487 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5488 
5489 	skb->data_len -= grow;
5490 	skb->tail += grow;
5491 
5492 	pinfo->frags[0].page_offset += grow;
5493 	skb_frag_size_sub(&pinfo->frags[0], grow);
5494 
5495 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5496 		skb_frag_unref(skb, 0);
5497 		memmove(pinfo->frags, pinfo->frags + 1,
5498 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5499 	}
5500 }
5501 
5502 static void gro_flush_oldest(struct list_head *head)
5503 {
5504 	struct sk_buff *oldest;
5505 
5506 	oldest = list_last_entry(head, struct sk_buff, list);
5507 
5508 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5509 	 * impossible.
5510 	 */
5511 	if (WARN_ON_ONCE(!oldest))
5512 		return;
5513 
5514 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5515 	 * SKB to the chain.
5516 	 */
5517 	skb_list_del_init(oldest);
5518 	napi_gro_complete(oldest);
5519 }
5520 
5521 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5522 							   struct sk_buff *));
5523 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5524 							   struct sk_buff *));
5525 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5526 {
5527 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5528 	struct list_head *head = &offload_base;
5529 	struct packet_offload *ptype;
5530 	__be16 type = skb->protocol;
5531 	struct list_head *gro_head;
5532 	struct sk_buff *pp = NULL;
5533 	enum gro_result ret;
5534 	int same_flow;
5535 	int grow;
5536 
5537 	if (netif_elide_gro(skb->dev))
5538 		goto normal;
5539 
5540 	gro_head = gro_list_prepare(napi, skb);
5541 
5542 	rcu_read_lock();
5543 	list_for_each_entry_rcu(ptype, head, list) {
5544 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5545 			continue;
5546 
5547 		skb_set_network_header(skb, skb_gro_offset(skb));
5548 		skb_reset_mac_len(skb);
5549 		NAPI_GRO_CB(skb)->same_flow = 0;
5550 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5551 		NAPI_GRO_CB(skb)->free = 0;
5552 		NAPI_GRO_CB(skb)->encap_mark = 0;
5553 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5554 		NAPI_GRO_CB(skb)->is_fou = 0;
5555 		NAPI_GRO_CB(skb)->is_atomic = 1;
5556 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5557 
5558 		/* Setup for GRO checksum validation */
5559 		switch (skb->ip_summed) {
5560 		case CHECKSUM_COMPLETE:
5561 			NAPI_GRO_CB(skb)->csum = skb->csum;
5562 			NAPI_GRO_CB(skb)->csum_valid = 1;
5563 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5564 			break;
5565 		case CHECKSUM_UNNECESSARY:
5566 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5567 			NAPI_GRO_CB(skb)->csum_valid = 0;
5568 			break;
5569 		default:
5570 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5571 			NAPI_GRO_CB(skb)->csum_valid = 0;
5572 		}
5573 
5574 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5575 					ipv6_gro_receive, inet_gro_receive,
5576 					gro_head, skb);
5577 		break;
5578 	}
5579 	rcu_read_unlock();
5580 
5581 	if (&ptype->list == head)
5582 		goto normal;
5583 
5584 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5585 		ret = GRO_CONSUMED;
5586 		goto ok;
5587 	}
5588 
5589 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5590 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5591 
5592 	if (pp) {
5593 		skb_list_del_init(pp);
5594 		napi_gro_complete(pp);
5595 		napi->gro_hash[hash].count--;
5596 	}
5597 
5598 	if (same_flow)
5599 		goto ok;
5600 
5601 	if (NAPI_GRO_CB(skb)->flush)
5602 		goto normal;
5603 
5604 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5605 		gro_flush_oldest(gro_head);
5606 	} else {
5607 		napi->gro_hash[hash].count++;
5608 	}
5609 	NAPI_GRO_CB(skb)->count = 1;
5610 	NAPI_GRO_CB(skb)->age = jiffies;
5611 	NAPI_GRO_CB(skb)->last = skb;
5612 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5613 	list_add(&skb->list, gro_head);
5614 	ret = GRO_HELD;
5615 
5616 pull:
5617 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5618 	if (grow > 0)
5619 		gro_pull_from_frag0(skb, grow);
5620 ok:
5621 	if (napi->gro_hash[hash].count) {
5622 		if (!test_bit(hash, &napi->gro_bitmask))
5623 			__set_bit(hash, &napi->gro_bitmask);
5624 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5625 		__clear_bit(hash, &napi->gro_bitmask);
5626 	}
5627 
5628 	return ret;
5629 
5630 normal:
5631 	ret = GRO_NORMAL;
5632 	goto pull;
5633 }
5634 
5635 struct packet_offload *gro_find_receive_by_type(__be16 type)
5636 {
5637 	struct list_head *offload_head = &offload_base;
5638 	struct packet_offload *ptype;
5639 
5640 	list_for_each_entry_rcu(ptype, offload_head, list) {
5641 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5642 			continue;
5643 		return ptype;
5644 	}
5645 	return NULL;
5646 }
5647 EXPORT_SYMBOL(gro_find_receive_by_type);
5648 
5649 struct packet_offload *gro_find_complete_by_type(__be16 type)
5650 {
5651 	struct list_head *offload_head = &offload_base;
5652 	struct packet_offload *ptype;
5653 
5654 	list_for_each_entry_rcu(ptype, offload_head, list) {
5655 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5656 			continue;
5657 		return ptype;
5658 	}
5659 	return NULL;
5660 }
5661 EXPORT_SYMBOL(gro_find_complete_by_type);
5662 
5663 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5664 {
5665 	skb_dst_drop(skb);
5666 	secpath_reset(skb);
5667 	kmem_cache_free(skbuff_head_cache, skb);
5668 }
5669 
5670 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5671 {
5672 	switch (ret) {
5673 	case GRO_NORMAL:
5674 		if (netif_receive_skb_internal(skb))
5675 			ret = GRO_DROP;
5676 		break;
5677 
5678 	case GRO_DROP:
5679 		kfree_skb(skb);
5680 		break;
5681 
5682 	case GRO_MERGED_FREE:
5683 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5684 			napi_skb_free_stolen_head(skb);
5685 		else
5686 			__kfree_skb(skb);
5687 		break;
5688 
5689 	case GRO_HELD:
5690 	case GRO_MERGED:
5691 	case GRO_CONSUMED:
5692 		break;
5693 	}
5694 
5695 	return ret;
5696 }
5697 
5698 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5699 {
5700 	gro_result_t ret;
5701 
5702 	skb_mark_napi_id(skb, napi);
5703 	trace_napi_gro_receive_entry(skb);
5704 
5705 	skb_gro_reset_offset(skb);
5706 
5707 	ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5708 	trace_napi_gro_receive_exit(ret);
5709 
5710 	return ret;
5711 }
5712 EXPORT_SYMBOL(napi_gro_receive);
5713 
5714 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5715 {
5716 	if (unlikely(skb->pfmemalloc)) {
5717 		consume_skb(skb);
5718 		return;
5719 	}
5720 	__skb_pull(skb, skb_headlen(skb));
5721 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5722 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5723 	__vlan_hwaccel_clear_tag(skb);
5724 	skb->dev = napi->dev;
5725 	skb->skb_iif = 0;
5726 
5727 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5728 	skb->pkt_type = PACKET_HOST;
5729 
5730 	skb->encapsulation = 0;
5731 	skb_shinfo(skb)->gso_type = 0;
5732 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5733 	secpath_reset(skb);
5734 
5735 	napi->skb = skb;
5736 }
5737 
5738 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5739 {
5740 	struct sk_buff *skb = napi->skb;
5741 
5742 	if (!skb) {
5743 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5744 		if (skb) {
5745 			napi->skb = skb;
5746 			skb_mark_napi_id(skb, napi);
5747 		}
5748 	}
5749 	return skb;
5750 }
5751 EXPORT_SYMBOL(napi_get_frags);
5752 
5753 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5754 				      struct sk_buff *skb,
5755 				      gro_result_t ret)
5756 {
5757 	switch (ret) {
5758 	case GRO_NORMAL:
5759 	case GRO_HELD:
5760 		__skb_push(skb, ETH_HLEN);
5761 		skb->protocol = eth_type_trans(skb, skb->dev);
5762 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5763 			ret = GRO_DROP;
5764 		break;
5765 
5766 	case GRO_DROP:
5767 		napi_reuse_skb(napi, skb);
5768 		break;
5769 
5770 	case GRO_MERGED_FREE:
5771 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5772 			napi_skb_free_stolen_head(skb);
5773 		else
5774 			napi_reuse_skb(napi, skb);
5775 		break;
5776 
5777 	case GRO_MERGED:
5778 	case GRO_CONSUMED:
5779 		break;
5780 	}
5781 
5782 	return ret;
5783 }
5784 
5785 /* Upper GRO stack assumes network header starts at gro_offset=0
5786  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5787  * We copy ethernet header into skb->data to have a common layout.
5788  */
5789 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5790 {
5791 	struct sk_buff *skb = napi->skb;
5792 	const struct ethhdr *eth;
5793 	unsigned int hlen = sizeof(*eth);
5794 
5795 	napi->skb = NULL;
5796 
5797 	skb_reset_mac_header(skb);
5798 	skb_gro_reset_offset(skb);
5799 
5800 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5801 		eth = skb_gro_header_slow(skb, hlen, 0);
5802 		if (unlikely(!eth)) {
5803 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5804 					     __func__, napi->dev->name);
5805 			napi_reuse_skb(napi, skb);
5806 			return NULL;
5807 		}
5808 	} else {
5809 		eth = (const struct ethhdr *)skb->data;
5810 		gro_pull_from_frag0(skb, hlen);
5811 		NAPI_GRO_CB(skb)->frag0 += hlen;
5812 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5813 	}
5814 	__skb_pull(skb, hlen);
5815 
5816 	/*
5817 	 * This works because the only protocols we care about don't require
5818 	 * special handling.
5819 	 * We'll fix it up properly in napi_frags_finish()
5820 	 */
5821 	skb->protocol = eth->h_proto;
5822 
5823 	return skb;
5824 }
5825 
5826 gro_result_t napi_gro_frags(struct napi_struct *napi)
5827 {
5828 	gro_result_t ret;
5829 	struct sk_buff *skb = napi_frags_skb(napi);
5830 
5831 	if (!skb)
5832 		return GRO_DROP;
5833 
5834 	trace_napi_gro_frags_entry(skb);
5835 
5836 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5837 	trace_napi_gro_frags_exit(ret);
5838 
5839 	return ret;
5840 }
5841 EXPORT_SYMBOL(napi_gro_frags);
5842 
5843 /* Compute the checksum from gro_offset and return the folded value
5844  * after adding in any pseudo checksum.
5845  */
5846 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5847 {
5848 	__wsum wsum;
5849 	__sum16 sum;
5850 
5851 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5852 
5853 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5854 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5855 	/* See comments in __skb_checksum_complete(). */
5856 	if (likely(!sum)) {
5857 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5858 		    !skb->csum_complete_sw)
5859 			netdev_rx_csum_fault(skb->dev, skb);
5860 	}
5861 
5862 	NAPI_GRO_CB(skb)->csum = wsum;
5863 	NAPI_GRO_CB(skb)->csum_valid = 1;
5864 
5865 	return sum;
5866 }
5867 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5868 
5869 static void net_rps_send_ipi(struct softnet_data *remsd)
5870 {
5871 #ifdef CONFIG_RPS
5872 	while (remsd) {
5873 		struct softnet_data *next = remsd->rps_ipi_next;
5874 
5875 		if (cpu_online(remsd->cpu))
5876 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5877 		remsd = next;
5878 	}
5879 #endif
5880 }
5881 
5882 /*
5883  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5884  * Note: called with local irq disabled, but exits with local irq enabled.
5885  */
5886 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5887 {
5888 #ifdef CONFIG_RPS
5889 	struct softnet_data *remsd = sd->rps_ipi_list;
5890 
5891 	if (remsd) {
5892 		sd->rps_ipi_list = NULL;
5893 
5894 		local_irq_enable();
5895 
5896 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5897 		net_rps_send_ipi(remsd);
5898 	} else
5899 #endif
5900 		local_irq_enable();
5901 }
5902 
5903 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5904 {
5905 #ifdef CONFIG_RPS
5906 	return sd->rps_ipi_list != NULL;
5907 #else
5908 	return false;
5909 #endif
5910 }
5911 
5912 static int process_backlog(struct napi_struct *napi, int quota)
5913 {
5914 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5915 	bool again = true;
5916 	int work = 0;
5917 
5918 	/* Check if we have pending ipi, its better to send them now,
5919 	 * not waiting net_rx_action() end.
5920 	 */
5921 	if (sd_has_rps_ipi_waiting(sd)) {
5922 		local_irq_disable();
5923 		net_rps_action_and_irq_enable(sd);
5924 	}
5925 
5926 	napi->weight = dev_rx_weight;
5927 	while (again) {
5928 		struct sk_buff *skb;
5929 
5930 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5931 			rcu_read_lock();
5932 			__netif_receive_skb(skb);
5933 			rcu_read_unlock();
5934 			input_queue_head_incr(sd);
5935 			if (++work >= quota)
5936 				return work;
5937 
5938 		}
5939 
5940 		local_irq_disable();
5941 		rps_lock(sd);
5942 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5943 			/*
5944 			 * Inline a custom version of __napi_complete().
5945 			 * only current cpu owns and manipulates this napi,
5946 			 * and NAPI_STATE_SCHED is the only possible flag set
5947 			 * on backlog.
5948 			 * We can use a plain write instead of clear_bit(),
5949 			 * and we dont need an smp_mb() memory barrier.
5950 			 */
5951 			napi->state = 0;
5952 			again = false;
5953 		} else {
5954 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5955 						   &sd->process_queue);
5956 		}
5957 		rps_unlock(sd);
5958 		local_irq_enable();
5959 	}
5960 
5961 	return work;
5962 }
5963 
5964 /**
5965  * __napi_schedule - schedule for receive
5966  * @n: entry to schedule
5967  *
5968  * The entry's receive function will be scheduled to run.
5969  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5970  */
5971 void __napi_schedule(struct napi_struct *n)
5972 {
5973 	unsigned long flags;
5974 
5975 	local_irq_save(flags);
5976 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5977 	local_irq_restore(flags);
5978 }
5979 EXPORT_SYMBOL(__napi_schedule);
5980 
5981 /**
5982  *	napi_schedule_prep - check if napi can be scheduled
5983  *	@n: napi context
5984  *
5985  * Test if NAPI routine is already running, and if not mark
5986  * it as running.  This is used as a condition variable
5987  * insure only one NAPI poll instance runs.  We also make
5988  * sure there is no pending NAPI disable.
5989  */
5990 bool napi_schedule_prep(struct napi_struct *n)
5991 {
5992 	unsigned long val, new;
5993 
5994 	do {
5995 		val = READ_ONCE(n->state);
5996 		if (unlikely(val & NAPIF_STATE_DISABLE))
5997 			return false;
5998 		new = val | NAPIF_STATE_SCHED;
5999 
6000 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6001 		 * This was suggested by Alexander Duyck, as compiler
6002 		 * emits better code than :
6003 		 * if (val & NAPIF_STATE_SCHED)
6004 		 *     new |= NAPIF_STATE_MISSED;
6005 		 */
6006 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6007 						   NAPIF_STATE_MISSED;
6008 	} while (cmpxchg(&n->state, val, new) != val);
6009 
6010 	return !(val & NAPIF_STATE_SCHED);
6011 }
6012 EXPORT_SYMBOL(napi_schedule_prep);
6013 
6014 /**
6015  * __napi_schedule_irqoff - schedule for receive
6016  * @n: entry to schedule
6017  *
6018  * Variant of __napi_schedule() assuming hard irqs are masked
6019  */
6020 void __napi_schedule_irqoff(struct napi_struct *n)
6021 {
6022 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6023 }
6024 EXPORT_SYMBOL(__napi_schedule_irqoff);
6025 
6026 bool napi_complete_done(struct napi_struct *n, int work_done)
6027 {
6028 	unsigned long flags, val, new;
6029 
6030 	/*
6031 	 * 1) Don't let napi dequeue from the cpu poll list
6032 	 *    just in case its running on a different cpu.
6033 	 * 2) If we are busy polling, do nothing here, we have
6034 	 *    the guarantee we will be called later.
6035 	 */
6036 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6037 				 NAPIF_STATE_IN_BUSY_POLL)))
6038 		return false;
6039 
6040 	if (n->gro_bitmask) {
6041 		unsigned long timeout = 0;
6042 
6043 		if (work_done)
6044 			timeout = n->dev->gro_flush_timeout;
6045 
6046 		/* When the NAPI instance uses a timeout and keeps postponing
6047 		 * it, we need to bound somehow the time packets are kept in
6048 		 * the GRO layer
6049 		 */
6050 		napi_gro_flush(n, !!timeout);
6051 		if (timeout)
6052 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6053 				      HRTIMER_MODE_REL_PINNED);
6054 	}
6055 	if (unlikely(!list_empty(&n->poll_list))) {
6056 		/* If n->poll_list is not empty, we need to mask irqs */
6057 		local_irq_save(flags);
6058 		list_del_init(&n->poll_list);
6059 		local_irq_restore(flags);
6060 	}
6061 
6062 	do {
6063 		val = READ_ONCE(n->state);
6064 
6065 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6066 
6067 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6068 
6069 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6070 		 * because we will call napi->poll() one more time.
6071 		 * This C code was suggested by Alexander Duyck to help gcc.
6072 		 */
6073 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6074 						    NAPIF_STATE_SCHED;
6075 	} while (cmpxchg(&n->state, val, new) != val);
6076 
6077 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6078 		__napi_schedule(n);
6079 		return false;
6080 	}
6081 
6082 	return true;
6083 }
6084 EXPORT_SYMBOL(napi_complete_done);
6085 
6086 /* must be called under rcu_read_lock(), as we dont take a reference */
6087 static struct napi_struct *napi_by_id(unsigned int napi_id)
6088 {
6089 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6090 	struct napi_struct *napi;
6091 
6092 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6093 		if (napi->napi_id == napi_id)
6094 			return napi;
6095 
6096 	return NULL;
6097 }
6098 
6099 #if defined(CONFIG_NET_RX_BUSY_POLL)
6100 
6101 #define BUSY_POLL_BUDGET 8
6102 
6103 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6104 {
6105 	int rc;
6106 
6107 	/* Busy polling means there is a high chance device driver hard irq
6108 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6109 	 * set in napi_schedule_prep().
6110 	 * Since we are about to call napi->poll() once more, we can safely
6111 	 * clear NAPI_STATE_MISSED.
6112 	 *
6113 	 * Note: x86 could use a single "lock and ..." instruction
6114 	 * to perform these two clear_bit()
6115 	 */
6116 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6117 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6118 
6119 	local_bh_disable();
6120 
6121 	/* All we really want here is to re-enable device interrupts.
6122 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6123 	 */
6124 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6125 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6126 	netpoll_poll_unlock(have_poll_lock);
6127 	if (rc == BUSY_POLL_BUDGET)
6128 		__napi_schedule(napi);
6129 	local_bh_enable();
6130 }
6131 
6132 void napi_busy_loop(unsigned int napi_id,
6133 		    bool (*loop_end)(void *, unsigned long),
6134 		    void *loop_end_arg)
6135 {
6136 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6137 	int (*napi_poll)(struct napi_struct *napi, int budget);
6138 	void *have_poll_lock = NULL;
6139 	struct napi_struct *napi;
6140 
6141 restart:
6142 	napi_poll = NULL;
6143 
6144 	rcu_read_lock();
6145 
6146 	napi = napi_by_id(napi_id);
6147 	if (!napi)
6148 		goto out;
6149 
6150 	preempt_disable();
6151 	for (;;) {
6152 		int work = 0;
6153 
6154 		local_bh_disable();
6155 		if (!napi_poll) {
6156 			unsigned long val = READ_ONCE(napi->state);
6157 
6158 			/* If multiple threads are competing for this napi,
6159 			 * we avoid dirtying napi->state as much as we can.
6160 			 */
6161 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6162 				   NAPIF_STATE_IN_BUSY_POLL))
6163 				goto count;
6164 			if (cmpxchg(&napi->state, val,
6165 				    val | NAPIF_STATE_IN_BUSY_POLL |
6166 					  NAPIF_STATE_SCHED) != val)
6167 				goto count;
6168 			have_poll_lock = netpoll_poll_lock(napi);
6169 			napi_poll = napi->poll;
6170 		}
6171 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6172 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6173 count:
6174 		if (work > 0)
6175 			__NET_ADD_STATS(dev_net(napi->dev),
6176 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6177 		local_bh_enable();
6178 
6179 		if (!loop_end || loop_end(loop_end_arg, start_time))
6180 			break;
6181 
6182 		if (unlikely(need_resched())) {
6183 			if (napi_poll)
6184 				busy_poll_stop(napi, have_poll_lock);
6185 			preempt_enable();
6186 			rcu_read_unlock();
6187 			cond_resched();
6188 			if (loop_end(loop_end_arg, start_time))
6189 				return;
6190 			goto restart;
6191 		}
6192 		cpu_relax();
6193 	}
6194 	if (napi_poll)
6195 		busy_poll_stop(napi, have_poll_lock);
6196 	preempt_enable();
6197 out:
6198 	rcu_read_unlock();
6199 }
6200 EXPORT_SYMBOL(napi_busy_loop);
6201 
6202 #endif /* CONFIG_NET_RX_BUSY_POLL */
6203 
6204 static void napi_hash_add(struct napi_struct *napi)
6205 {
6206 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6207 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6208 		return;
6209 
6210 	spin_lock(&napi_hash_lock);
6211 
6212 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6213 	do {
6214 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6215 			napi_gen_id = MIN_NAPI_ID;
6216 	} while (napi_by_id(napi_gen_id));
6217 	napi->napi_id = napi_gen_id;
6218 
6219 	hlist_add_head_rcu(&napi->napi_hash_node,
6220 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6221 
6222 	spin_unlock(&napi_hash_lock);
6223 }
6224 
6225 /* Warning : caller is responsible to make sure rcu grace period
6226  * is respected before freeing memory containing @napi
6227  */
6228 bool napi_hash_del(struct napi_struct *napi)
6229 {
6230 	bool rcu_sync_needed = false;
6231 
6232 	spin_lock(&napi_hash_lock);
6233 
6234 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6235 		rcu_sync_needed = true;
6236 		hlist_del_rcu(&napi->napi_hash_node);
6237 	}
6238 	spin_unlock(&napi_hash_lock);
6239 	return rcu_sync_needed;
6240 }
6241 EXPORT_SYMBOL_GPL(napi_hash_del);
6242 
6243 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6244 {
6245 	struct napi_struct *napi;
6246 
6247 	napi = container_of(timer, struct napi_struct, timer);
6248 
6249 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6250 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6251 	 */
6252 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6253 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6254 		__napi_schedule_irqoff(napi);
6255 
6256 	return HRTIMER_NORESTART;
6257 }
6258 
6259 static void init_gro_hash(struct napi_struct *napi)
6260 {
6261 	int i;
6262 
6263 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6264 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6265 		napi->gro_hash[i].count = 0;
6266 	}
6267 	napi->gro_bitmask = 0;
6268 }
6269 
6270 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6271 		    int (*poll)(struct napi_struct *, int), int weight)
6272 {
6273 	INIT_LIST_HEAD(&napi->poll_list);
6274 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6275 	napi->timer.function = napi_watchdog;
6276 	init_gro_hash(napi);
6277 	napi->skb = NULL;
6278 	napi->poll = poll;
6279 	if (weight > NAPI_POLL_WEIGHT)
6280 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6281 				weight);
6282 	napi->weight = weight;
6283 	list_add(&napi->dev_list, &dev->napi_list);
6284 	napi->dev = dev;
6285 #ifdef CONFIG_NETPOLL
6286 	napi->poll_owner = -1;
6287 #endif
6288 	set_bit(NAPI_STATE_SCHED, &napi->state);
6289 	napi_hash_add(napi);
6290 }
6291 EXPORT_SYMBOL(netif_napi_add);
6292 
6293 void napi_disable(struct napi_struct *n)
6294 {
6295 	might_sleep();
6296 	set_bit(NAPI_STATE_DISABLE, &n->state);
6297 
6298 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6299 		msleep(1);
6300 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6301 		msleep(1);
6302 
6303 	hrtimer_cancel(&n->timer);
6304 
6305 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6306 }
6307 EXPORT_SYMBOL(napi_disable);
6308 
6309 static void flush_gro_hash(struct napi_struct *napi)
6310 {
6311 	int i;
6312 
6313 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6314 		struct sk_buff *skb, *n;
6315 
6316 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6317 			kfree_skb(skb);
6318 		napi->gro_hash[i].count = 0;
6319 	}
6320 }
6321 
6322 /* Must be called in process context */
6323 void netif_napi_del(struct napi_struct *napi)
6324 {
6325 	might_sleep();
6326 	if (napi_hash_del(napi))
6327 		synchronize_net();
6328 	list_del_init(&napi->dev_list);
6329 	napi_free_frags(napi);
6330 
6331 	flush_gro_hash(napi);
6332 	napi->gro_bitmask = 0;
6333 }
6334 EXPORT_SYMBOL(netif_napi_del);
6335 
6336 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6337 {
6338 	void *have;
6339 	int work, weight;
6340 
6341 	list_del_init(&n->poll_list);
6342 
6343 	have = netpoll_poll_lock(n);
6344 
6345 	weight = n->weight;
6346 
6347 	/* This NAPI_STATE_SCHED test is for avoiding a race
6348 	 * with netpoll's poll_napi().  Only the entity which
6349 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6350 	 * actually make the ->poll() call.  Therefore we avoid
6351 	 * accidentally calling ->poll() when NAPI is not scheduled.
6352 	 */
6353 	work = 0;
6354 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6355 		work = n->poll(n, weight);
6356 		trace_napi_poll(n, work, weight);
6357 	}
6358 
6359 	WARN_ON_ONCE(work > weight);
6360 
6361 	if (likely(work < weight))
6362 		goto out_unlock;
6363 
6364 	/* Drivers must not modify the NAPI state if they
6365 	 * consume the entire weight.  In such cases this code
6366 	 * still "owns" the NAPI instance and therefore can
6367 	 * move the instance around on the list at-will.
6368 	 */
6369 	if (unlikely(napi_disable_pending(n))) {
6370 		napi_complete(n);
6371 		goto out_unlock;
6372 	}
6373 
6374 	if (n->gro_bitmask) {
6375 		/* flush too old packets
6376 		 * If HZ < 1000, flush all packets.
6377 		 */
6378 		napi_gro_flush(n, HZ >= 1000);
6379 	}
6380 
6381 	/* Some drivers may have called napi_schedule
6382 	 * prior to exhausting their budget.
6383 	 */
6384 	if (unlikely(!list_empty(&n->poll_list))) {
6385 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6386 			     n->dev ? n->dev->name : "backlog");
6387 		goto out_unlock;
6388 	}
6389 
6390 	list_add_tail(&n->poll_list, repoll);
6391 
6392 out_unlock:
6393 	netpoll_poll_unlock(have);
6394 
6395 	return work;
6396 }
6397 
6398 static __latent_entropy void net_rx_action(struct softirq_action *h)
6399 {
6400 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6401 	unsigned long time_limit = jiffies +
6402 		usecs_to_jiffies(netdev_budget_usecs);
6403 	int budget = netdev_budget;
6404 	LIST_HEAD(list);
6405 	LIST_HEAD(repoll);
6406 
6407 	local_irq_disable();
6408 	list_splice_init(&sd->poll_list, &list);
6409 	local_irq_enable();
6410 
6411 	for (;;) {
6412 		struct napi_struct *n;
6413 
6414 		if (list_empty(&list)) {
6415 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6416 				goto out;
6417 			break;
6418 		}
6419 
6420 		n = list_first_entry(&list, struct napi_struct, poll_list);
6421 		budget -= napi_poll(n, &repoll);
6422 
6423 		/* If softirq window is exhausted then punt.
6424 		 * Allow this to run for 2 jiffies since which will allow
6425 		 * an average latency of 1.5/HZ.
6426 		 */
6427 		if (unlikely(budget <= 0 ||
6428 			     time_after_eq(jiffies, time_limit))) {
6429 			sd->time_squeeze++;
6430 			break;
6431 		}
6432 	}
6433 
6434 	local_irq_disable();
6435 
6436 	list_splice_tail_init(&sd->poll_list, &list);
6437 	list_splice_tail(&repoll, &list);
6438 	list_splice(&list, &sd->poll_list);
6439 	if (!list_empty(&sd->poll_list))
6440 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6441 
6442 	net_rps_action_and_irq_enable(sd);
6443 out:
6444 	__kfree_skb_flush();
6445 }
6446 
6447 struct netdev_adjacent {
6448 	struct net_device *dev;
6449 
6450 	/* upper master flag, there can only be one master device per list */
6451 	bool master;
6452 
6453 	/* counter for the number of times this device was added to us */
6454 	u16 ref_nr;
6455 
6456 	/* private field for the users */
6457 	void *private;
6458 
6459 	struct list_head list;
6460 	struct rcu_head rcu;
6461 };
6462 
6463 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6464 						 struct list_head *adj_list)
6465 {
6466 	struct netdev_adjacent *adj;
6467 
6468 	list_for_each_entry(adj, adj_list, list) {
6469 		if (adj->dev == adj_dev)
6470 			return adj;
6471 	}
6472 	return NULL;
6473 }
6474 
6475 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6476 {
6477 	struct net_device *dev = data;
6478 
6479 	return upper_dev == dev;
6480 }
6481 
6482 /**
6483  * netdev_has_upper_dev - Check if device is linked to an upper device
6484  * @dev: device
6485  * @upper_dev: upper device to check
6486  *
6487  * Find out if a device is linked to specified upper device and return true
6488  * in case it is. Note that this checks only immediate upper device,
6489  * not through a complete stack of devices. The caller must hold the RTNL lock.
6490  */
6491 bool netdev_has_upper_dev(struct net_device *dev,
6492 			  struct net_device *upper_dev)
6493 {
6494 	ASSERT_RTNL();
6495 
6496 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6497 					     upper_dev);
6498 }
6499 EXPORT_SYMBOL(netdev_has_upper_dev);
6500 
6501 /**
6502  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6503  * @dev: device
6504  * @upper_dev: upper device to check
6505  *
6506  * Find out if a device is linked to specified upper device and return true
6507  * in case it is. Note that this checks the entire upper device chain.
6508  * The caller must hold rcu lock.
6509  */
6510 
6511 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6512 				  struct net_device *upper_dev)
6513 {
6514 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6515 					       upper_dev);
6516 }
6517 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6518 
6519 /**
6520  * netdev_has_any_upper_dev - Check if device is linked to some device
6521  * @dev: device
6522  *
6523  * Find out if a device is linked to an upper device and return true in case
6524  * it is. The caller must hold the RTNL lock.
6525  */
6526 bool netdev_has_any_upper_dev(struct net_device *dev)
6527 {
6528 	ASSERT_RTNL();
6529 
6530 	return !list_empty(&dev->adj_list.upper);
6531 }
6532 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6533 
6534 /**
6535  * netdev_master_upper_dev_get - Get master upper device
6536  * @dev: device
6537  *
6538  * Find a master upper device and return pointer to it or NULL in case
6539  * it's not there. The caller must hold the RTNL lock.
6540  */
6541 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6542 {
6543 	struct netdev_adjacent *upper;
6544 
6545 	ASSERT_RTNL();
6546 
6547 	if (list_empty(&dev->adj_list.upper))
6548 		return NULL;
6549 
6550 	upper = list_first_entry(&dev->adj_list.upper,
6551 				 struct netdev_adjacent, list);
6552 	if (likely(upper->master))
6553 		return upper->dev;
6554 	return NULL;
6555 }
6556 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6557 
6558 /**
6559  * netdev_has_any_lower_dev - Check if device is linked to some device
6560  * @dev: device
6561  *
6562  * Find out if a device is linked to a lower device and return true in case
6563  * it is. The caller must hold the RTNL lock.
6564  */
6565 static bool netdev_has_any_lower_dev(struct net_device *dev)
6566 {
6567 	ASSERT_RTNL();
6568 
6569 	return !list_empty(&dev->adj_list.lower);
6570 }
6571 
6572 void *netdev_adjacent_get_private(struct list_head *adj_list)
6573 {
6574 	struct netdev_adjacent *adj;
6575 
6576 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6577 
6578 	return adj->private;
6579 }
6580 EXPORT_SYMBOL(netdev_adjacent_get_private);
6581 
6582 /**
6583  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6584  * @dev: device
6585  * @iter: list_head ** of the current position
6586  *
6587  * Gets the next device from the dev's upper list, starting from iter
6588  * position. The caller must hold RCU read lock.
6589  */
6590 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6591 						 struct list_head **iter)
6592 {
6593 	struct netdev_adjacent *upper;
6594 
6595 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6596 
6597 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6598 
6599 	if (&upper->list == &dev->adj_list.upper)
6600 		return NULL;
6601 
6602 	*iter = &upper->list;
6603 
6604 	return upper->dev;
6605 }
6606 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6607 
6608 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6609 						    struct list_head **iter)
6610 {
6611 	struct netdev_adjacent *upper;
6612 
6613 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6614 
6615 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6616 
6617 	if (&upper->list == &dev->adj_list.upper)
6618 		return NULL;
6619 
6620 	*iter = &upper->list;
6621 
6622 	return upper->dev;
6623 }
6624 
6625 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6626 				  int (*fn)(struct net_device *dev,
6627 					    void *data),
6628 				  void *data)
6629 {
6630 	struct net_device *udev;
6631 	struct list_head *iter;
6632 	int ret;
6633 
6634 	for (iter = &dev->adj_list.upper,
6635 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6636 	     udev;
6637 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6638 		/* first is the upper device itself */
6639 		ret = fn(udev, data);
6640 		if (ret)
6641 			return ret;
6642 
6643 		/* then look at all of its upper devices */
6644 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6645 		if (ret)
6646 			return ret;
6647 	}
6648 
6649 	return 0;
6650 }
6651 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6652 
6653 /**
6654  * netdev_lower_get_next_private - Get the next ->private from the
6655  *				   lower neighbour list
6656  * @dev: device
6657  * @iter: list_head ** of the current position
6658  *
6659  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6660  * list, starting from iter position. The caller must hold either hold the
6661  * RTNL lock or its own locking that guarantees that the neighbour lower
6662  * list will remain unchanged.
6663  */
6664 void *netdev_lower_get_next_private(struct net_device *dev,
6665 				    struct list_head **iter)
6666 {
6667 	struct netdev_adjacent *lower;
6668 
6669 	lower = list_entry(*iter, struct netdev_adjacent, list);
6670 
6671 	if (&lower->list == &dev->adj_list.lower)
6672 		return NULL;
6673 
6674 	*iter = lower->list.next;
6675 
6676 	return lower->private;
6677 }
6678 EXPORT_SYMBOL(netdev_lower_get_next_private);
6679 
6680 /**
6681  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6682  *				       lower neighbour list, RCU
6683  *				       variant
6684  * @dev: device
6685  * @iter: list_head ** of the current position
6686  *
6687  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6688  * list, starting from iter position. The caller must hold RCU read lock.
6689  */
6690 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6691 					struct list_head **iter)
6692 {
6693 	struct netdev_adjacent *lower;
6694 
6695 	WARN_ON_ONCE(!rcu_read_lock_held());
6696 
6697 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6698 
6699 	if (&lower->list == &dev->adj_list.lower)
6700 		return NULL;
6701 
6702 	*iter = &lower->list;
6703 
6704 	return lower->private;
6705 }
6706 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6707 
6708 /**
6709  * netdev_lower_get_next - Get the next device from the lower neighbour
6710  *                         list
6711  * @dev: device
6712  * @iter: list_head ** of the current position
6713  *
6714  * Gets the next netdev_adjacent from the dev's lower neighbour
6715  * list, starting from iter position. The caller must hold RTNL lock or
6716  * its own locking that guarantees that the neighbour lower
6717  * list will remain unchanged.
6718  */
6719 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6720 {
6721 	struct netdev_adjacent *lower;
6722 
6723 	lower = list_entry(*iter, struct netdev_adjacent, list);
6724 
6725 	if (&lower->list == &dev->adj_list.lower)
6726 		return NULL;
6727 
6728 	*iter = lower->list.next;
6729 
6730 	return lower->dev;
6731 }
6732 EXPORT_SYMBOL(netdev_lower_get_next);
6733 
6734 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6735 						struct list_head **iter)
6736 {
6737 	struct netdev_adjacent *lower;
6738 
6739 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6740 
6741 	if (&lower->list == &dev->adj_list.lower)
6742 		return NULL;
6743 
6744 	*iter = &lower->list;
6745 
6746 	return lower->dev;
6747 }
6748 
6749 int netdev_walk_all_lower_dev(struct net_device *dev,
6750 			      int (*fn)(struct net_device *dev,
6751 					void *data),
6752 			      void *data)
6753 {
6754 	struct net_device *ldev;
6755 	struct list_head *iter;
6756 	int ret;
6757 
6758 	for (iter = &dev->adj_list.lower,
6759 	     ldev = netdev_next_lower_dev(dev, &iter);
6760 	     ldev;
6761 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6762 		/* first is the lower device itself */
6763 		ret = fn(ldev, data);
6764 		if (ret)
6765 			return ret;
6766 
6767 		/* then look at all of its lower devices */
6768 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6769 		if (ret)
6770 			return ret;
6771 	}
6772 
6773 	return 0;
6774 }
6775 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6776 
6777 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6778 						    struct list_head **iter)
6779 {
6780 	struct netdev_adjacent *lower;
6781 
6782 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6783 	if (&lower->list == &dev->adj_list.lower)
6784 		return NULL;
6785 
6786 	*iter = &lower->list;
6787 
6788 	return lower->dev;
6789 }
6790 
6791 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6792 				  int (*fn)(struct net_device *dev,
6793 					    void *data),
6794 				  void *data)
6795 {
6796 	struct net_device *ldev;
6797 	struct list_head *iter;
6798 	int ret;
6799 
6800 	for (iter = &dev->adj_list.lower,
6801 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6802 	     ldev;
6803 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6804 		/* first is the lower device itself */
6805 		ret = fn(ldev, data);
6806 		if (ret)
6807 			return ret;
6808 
6809 		/* then look at all of its lower devices */
6810 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6811 		if (ret)
6812 			return ret;
6813 	}
6814 
6815 	return 0;
6816 }
6817 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6818 
6819 /**
6820  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6821  *				       lower neighbour list, RCU
6822  *				       variant
6823  * @dev: device
6824  *
6825  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6826  * list. The caller must hold RCU read lock.
6827  */
6828 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6829 {
6830 	struct netdev_adjacent *lower;
6831 
6832 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6833 			struct netdev_adjacent, list);
6834 	if (lower)
6835 		return lower->private;
6836 	return NULL;
6837 }
6838 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6839 
6840 /**
6841  * netdev_master_upper_dev_get_rcu - Get master upper device
6842  * @dev: device
6843  *
6844  * Find a master upper device and return pointer to it or NULL in case
6845  * it's not there. The caller must hold the RCU read lock.
6846  */
6847 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6848 {
6849 	struct netdev_adjacent *upper;
6850 
6851 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6852 				       struct netdev_adjacent, list);
6853 	if (upper && likely(upper->master))
6854 		return upper->dev;
6855 	return NULL;
6856 }
6857 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6858 
6859 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6860 			      struct net_device *adj_dev,
6861 			      struct list_head *dev_list)
6862 {
6863 	char linkname[IFNAMSIZ+7];
6864 
6865 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6866 		"upper_%s" : "lower_%s", adj_dev->name);
6867 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6868 				 linkname);
6869 }
6870 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6871 			       char *name,
6872 			       struct list_head *dev_list)
6873 {
6874 	char linkname[IFNAMSIZ+7];
6875 
6876 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6877 		"upper_%s" : "lower_%s", name);
6878 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6879 }
6880 
6881 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6882 						 struct net_device *adj_dev,
6883 						 struct list_head *dev_list)
6884 {
6885 	return (dev_list == &dev->adj_list.upper ||
6886 		dev_list == &dev->adj_list.lower) &&
6887 		net_eq(dev_net(dev), dev_net(adj_dev));
6888 }
6889 
6890 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6891 					struct net_device *adj_dev,
6892 					struct list_head *dev_list,
6893 					void *private, bool master)
6894 {
6895 	struct netdev_adjacent *adj;
6896 	int ret;
6897 
6898 	adj = __netdev_find_adj(adj_dev, dev_list);
6899 
6900 	if (adj) {
6901 		adj->ref_nr += 1;
6902 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6903 			 dev->name, adj_dev->name, adj->ref_nr);
6904 
6905 		return 0;
6906 	}
6907 
6908 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6909 	if (!adj)
6910 		return -ENOMEM;
6911 
6912 	adj->dev = adj_dev;
6913 	adj->master = master;
6914 	adj->ref_nr = 1;
6915 	adj->private = private;
6916 	dev_hold(adj_dev);
6917 
6918 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6919 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6920 
6921 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6922 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6923 		if (ret)
6924 			goto free_adj;
6925 	}
6926 
6927 	/* Ensure that master link is always the first item in list. */
6928 	if (master) {
6929 		ret = sysfs_create_link(&(dev->dev.kobj),
6930 					&(adj_dev->dev.kobj), "master");
6931 		if (ret)
6932 			goto remove_symlinks;
6933 
6934 		list_add_rcu(&adj->list, dev_list);
6935 	} else {
6936 		list_add_tail_rcu(&adj->list, dev_list);
6937 	}
6938 
6939 	return 0;
6940 
6941 remove_symlinks:
6942 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6943 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6944 free_adj:
6945 	kfree(adj);
6946 	dev_put(adj_dev);
6947 
6948 	return ret;
6949 }
6950 
6951 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6952 					 struct net_device *adj_dev,
6953 					 u16 ref_nr,
6954 					 struct list_head *dev_list)
6955 {
6956 	struct netdev_adjacent *adj;
6957 
6958 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6959 		 dev->name, adj_dev->name, ref_nr);
6960 
6961 	adj = __netdev_find_adj(adj_dev, dev_list);
6962 
6963 	if (!adj) {
6964 		pr_err("Adjacency does not exist for device %s from %s\n",
6965 		       dev->name, adj_dev->name);
6966 		WARN_ON(1);
6967 		return;
6968 	}
6969 
6970 	if (adj->ref_nr > ref_nr) {
6971 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6972 			 dev->name, adj_dev->name, ref_nr,
6973 			 adj->ref_nr - ref_nr);
6974 		adj->ref_nr -= ref_nr;
6975 		return;
6976 	}
6977 
6978 	if (adj->master)
6979 		sysfs_remove_link(&(dev->dev.kobj), "master");
6980 
6981 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6982 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6983 
6984 	list_del_rcu(&adj->list);
6985 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6986 		 adj_dev->name, dev->name, adj_dev->name);
6987 	dev_put(adj_dev);
6988 	kfree_rcu(adj, rcu);
6989 }
6990 
6991 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6992 					    struct net_device *upper_dev,
6993 					    struct list_head *up_list,
6994 					    struct list_head *down_list,
6995 					    void *private, bool master)
6996 {
6997 	int ret;
6998 
6999 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7000 					   private, master);
7001 	if (ret)
7002 		return ret;
7003 
7004 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7005 					   private, false);
7006 	if (ret) {
7007 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7008 		return ret;
7009 	}
7010 
7011 	return 0;
7012 }
7013 
7014 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7015 					       struct net_device *upper_dev,
7016 					       u16 ref_nr,
7017 					       struct list_head *up_list,
7018 					       struct list_head *down_list)
7019 {
7020 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7021 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7022 }
7023 
7024 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7025 						struct net_device *upper_dev,
7026 						void *private, bool master)
7027 {
7028 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7029 						&dev->adj_list.upper,
7030 						&upper_dev->adj_list.lower,
7031 						private, master);
7032 }
7033 
7034 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7035 						   struct net_device *upper_dev)
7036 {
7037 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7038 					   &dev->adj_list.upper,
7039 					   &upper_dev->adj_list.lower);
7040 }
7041 
7042 static int __netdev_upper_dev_link(struct net_device *dev,
7043 				   struct net_device *upper_dev, bool master,
7044 				   void *upper_priv, void *upper_info,
7045 				   struct netlink_ext_ack *extack)
7046 {
7047 	struct netdev_notifier_changeupper_info changeupper_info = {
7048 		.info = {
7049 			.dev = dev,
7050 			.extack = extack,
7051 		},
7052 		.upper_dev = upper_dev,
7053 		.master = master,
7054 		.linking = true,
7055 		.upper_info = upper_info,
7056 	};
7057 	struct net_device *master_dev;
7058 	int ret = 0;
7059 
7060 	ASSERT_RTNL();
7061 
7062 	if (dev == upper_dev)
7063 		return -EBUSY;
7064 
7065 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7066 	if (netdev_has_upper_dev(upper_dev, dev))
7067 		return -EBUSY;
7068 
7069 	if (!master) {
7070 		if (netdev_has_upper_dev(dev, upper_dev))
7071 			return -EEXIST;
7072 	} else {
7073 		master_dev = netdev_master_upper_dev_get(dev);
7074 		if (master_dev)
7075 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7076 	}
7077 
7078 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7079 					    &changeupper_info.info);
7080 	ret = notifier_to_errno(ret);
7081 	if (ret)
7082 		return ret;
7083 
7084 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7085 						   master);
7086 	if (ret)
7087 		return ret;
7088 
7089 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7090 					    &changeupper_info.info);
7091 	ret = notifier_to_errno(ret);
7092 	if (ret)
7093 		goto rollback;
7094 
7095 	return 0;
7096 
7097 rollback:
7098 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7099 
7100 	return ret;
7101 }
7102 
7103 /**
7104  * netdev_upper_dev_link - Add a link to the upper device
7105  * @dev: device
7106  * @upper_dev: new upper device
7107  * @extack: netlink extended ack
7108  *
7109  * Adds a link to device which is upper to this one. The caller must hold
7110  * the RTNL lock. On a failure a negative errno code is returned.
7111  * On success the reference counts are adjusted and the function
7112  * returns zero.
7113  */
7114 int netdev_upper_dev_link(struct net_device *dev,
7115 			  struct net_device *upper_dev,
7116 			  struct netlink_ext_ack *extack)
7117 {
7118 	return __netdev_upper_dev_link(dev, upper_dev, false,
7119 				       NULL, NULL, extack);
7120 }
7121 EXPORT_SYMBOL(netdev_upper_dev_link);
7122 
7123 /**
7124  * netdev_master_upper_dev_link - Add a master link to the upper device
7125  * @dev: device
7126  * @upper_dev: new upper device
7127  * @upper_priv: upper device private
7128  * @upper_info: upper info to be passed down via notifier
7129  * @extack: netlink extended ack
7130  *
7131  * Adds a link to device which is upper to this one. In this case, only
7132  * one master upper device can be linked, although other non-master devices
7133  * might be linked as well. The caller must hold the RTNL lock.
7134  * On a failure a negative errno code is returned. On success the reference
7135  * counts are adjusted and the function returns zero.
7136  */
7137 int netdev_master_upper_dev_link(struct net_device *dev,
7138 				 struct net_device *upper_dev,
7139 				 void *upper_priv, void *upper_info,
7140 				 struct netlink_ext_ack *extack)
7141 {
7142 	return __netdev_upper_dev_link(dev, upper_dev, true,
7143 				       upper_priv, upper_info, extack);
7144 }
7145 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7146 
7147 /**
7148  * netdev_upper_dev_unlink - Removes a link to upper device
7149  * @dev: device
7150  * @upper_dev: new upper device
7151  *
7152  * Removes a link to device which is upper to this one. The caller must hold
7153  * the RTNL lock.
7154  */
7155 void netdev_upper_dev_unlink(struct net_device *dev,
7156 			     struct net_device *upper_dev)
7157 {
7158 	struct netdev_notifier_changeupper_info changeupper_info = {
7159 		.info = {
7160 			.dev = dev,
7161 		},
7162 		.upper_dev = upper_dev,
7163 		.linking = false,
7164 	};
7165 
7166 	ASSERT_RTNL();
7167 
7168 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7169 
7170 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7171 				      &changeupper_info.info);
7172 
7173 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7174 
7175 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7176 				      &changeupper_info.info);
7177 }
7178 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7179 
7180 /**
7181  * netdev_bonding_info_change - Dispatch event about slave change
7182  * @dev: device
7183  * @bonding_info: info to dispatch
7184  *
7185  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7186  * The caller must hold the RTNL lock.
7187  */
7188 void netdev_bonding_info_change(struct net_device *dev,
7189 				struct netdev_bonding_info *bonding_info)
7190 {
7191 	struct netdev_notifier_bonding_info info = {
7192 		.info.dev = dev,
7193 	};
7194 
7195 	memcpy(&info.bonding_info, bonding_info,
7196 	       sizeof(struct netdev_bonding_info));
7197 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7198 				      &info.info);
7199 }
7200 EXPORT_SYMBOL(netdev_bonding_info_change);
7201 
7202 static void netdev_adjacent_add_links(struct net_device *dev)
7203 {
7204 	struct netdev_adjacent *iter;
7205 
7206 	struct net *net = dev_net(dev);
7207 
7208 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7209 		if (!net_eq(net, dev_net(iter->dev)))
7210 			continue;
7211 		netdev_adjacent_sysfs_add(iter->dev, dev,
7212 					  &iter->dev->adj_list.lower);
7213 		netdev_adjacent_sysfs_add(dev, iter->dev,
7214 					  &dev->adj_list.upper);
7215 	}
7216 
7217 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7218 		if (!net_eq(net, dev_net(iter->dev)))
7219 			continue;
7220 		netdev_adjacent_sysfs_add(iter->dev, dev,
7221 					  &iter->dev->adj_list.upper);
7222 		netdev_adjacent_sysfs_add(dev, iter->dev,
7223 					  &dev->adj_list.lower);
7224 	}
7225 }
7226 
7227 static void netdev_adjacent_del_links(struct net_device *dev)
7228 {
7229 	struct netdev_adjacent *iter;
7230 
7231 	struct net *net = dev_net(dev);
7232 
7233 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7234 		if (!net_eq(net, dev_net(iter->dev)))
7235 			continue;
7236 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7237 					  &iter->dev->adj_list.lower);
7238 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7239 					  &dev->adj_list.upper);
7240 	}
7241 
7242 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7243 		if (!net_eq(net, dev_net(iter->dev)))
7244 			continue;
7245 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7246 					  &iter->dev->adj_list.upper);
7247 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7248 					  &dev->adj_list.lower);
7249 	}
7250 }
7251 
7252 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7253 {
7254 	struct netdev_adjacent *iter;
7255 
7256 	struct net *net = dev_net(dev);
7257 
7258 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7259 		if (!net_eq(net, dev_net(iter->dev)))
7260 			continue;
7261 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7262 					  &iter->dev->adj_list.lower);
7263 		netdev_adjacent_sysfs_add(iter->dev, dev,
7264 					  &iter->dev->adj_list.lower);
7265 	}
7266 
7267 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7268 		if (!net_eq(net, dev_net(iter->dev)))
7269 			continue;
7270 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7271 					  &iter->dev->adj_list.upper);
7272 		netdev_adjacent_sysfs_add(iter->dev, dev,
7273 					  &iter->dev->adj_list.upper);
7274 	}
7275 }
7276 
7277 void *netdev_lower_dev_get_private(struct net_device *dev,
7278 				   struct net_device *lower_dev)
7279 {
7280 	struct netdev_adjacent *lower;
7281 
7282 	if (!lower_dev)
7283 		return NULL;
7284 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7285 	if (!lower)
7286 		return NULL;
7287 
7288 	return lower->private;
7289 }
7290 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7291 
7292 
7293 int dev_get_nest_level(struct net_device *dev)
7294 {
7295 	struct net_device *lower = NULL;
7296 	struct list_head *iter;
7297 	int max_nest = -1;
7298 	int nest;
7299 
7300 	ASSERT_RTNL();
7301 
7302 	netdev_for_each_lower_dev(dev, lower, iter) {
7303 		nest = dev_get_nest_level(lower);
7304 		if (max_nest < nest)
7305 			max_nest = nest;
7306 	}
7307 
7308 	return max_nest + 1;
7309 }
7310 EXPORT_SYMBOL(dev_get_nest_level);
7311 
7312 /**
7313  * netdev_lower_change - Dispatch event about lower device state change
7314  * @lower_dev: device
7315  * @lower_state_info: state to dispatch
7316  *
7317  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7318  * The caller must hold the RTNL lock.
7319  */
7320 void netdev_lower_state_changed(struct net_device *lower_dev,
7321 				void *lower_state_info)
7322 {
7323 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7324 		.info.dev = lower_dev,
7325 	};
7326 
7327 	ASSERT_RTNL();
7328 	changelowerstate_info.lower_state_info = lower_state_info;
7329 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7330 				      &changelowerstate_info.info);
7331 }
7332 EXPORT_SYMBOL(netdev_lower_state_changed);
7333 
7334 static void dev_change_rx_flags(struct net_device *dev, int flags)
7335 {
7336 	const struct net_device_ops *ops = dev->netdev_ops;
7337 
7338 	if (ops->ndo_change_rx_flags)
7339 		ops->ndo_change_rx_flags(dev, flags);
7340 }
7341 
7342 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7343 {
7344 	unsigned int old_flags = dev->flags;
7345 	kuid_t uid;
7346 	kgid_t gid;
7347 
7348 	ASSERT_RTNL();
7349 
7350 	dev->flags |= IFF_PROMISC;
7351 	dev->promiscuity += inc;
7352 	if (dev->promiscuity == 0) {
7353 		/*
7354 		 * Avoid overflow.
7355 		 * If inc causes overflow, untouch promisc and return error.
7356 		 */
7357 		if (inc < 0)
7358 			dev->flags &= ~IFF_PROMISC;
7359 		else {
7360 			dev->promiscuity -= inc;
7361 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7362 				dev->name);
7363 			return -EOVERFLOW;
7364 		}
7365 	}
7366 	if (dev->flags != old_flags) {
7367 		pr_info("device %s %s promiscuous mode\n",
7368 			dev->name,
7369 			dev->flags & IFF_PROMISC ? "entered" : "left");
7370 		if (audit_enabled) {
7371 			current_uid_gid(&uid, &gid);
7372 			audit_log(audit_context(), GFP_ATOMIC,
7373 				  AUDIT_ANOM_PROMISCUOUS,
7374 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7375 				  dev->name, (dev->flags & IFF_PROMISC),
7376 				  (old_flags & IFF_PROMISC),
7377 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7378 				  from_kuid(&init_user_ns, uid),
7379 				  from_kgid(&init_user_ns, gid),
7380 				  audit_get_sessionid(current));
7381 		}
7382 
7383 		dev_change_rx_flags(dev, IFF_PROMISC);
7384 	}
7385 	if (notify)
7386 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7387 	return 0;
7388 }
7389 
7390 /**
7391  *	dev_set_promiscuity	- update promiscuity count on a device
7392  *	@dev: device
7393  *	@inc: modifier
7394  *
7395  *	Add or remove promiscuity from a device. While the count in the device
7396  *	remains above zero the interface remains promiscuous. Once it hits zero
7397  *	the device reverts back to normal filtering operation. A negative inc
7398  *	value is used to drop promiscuity on the device.
7399  *	Return 0 if successful or a negative errno code on error.
7400  */
7401 int dev_set_promiscuity(struct net_device *dev, int inc)
7402 {
7403 	unsigned int old_flags = dev->flags;
7404 	int err;
7405 
7406 	err = __dev_set_promiscuity(dev, inc, true);
7407 	if (err < 0)
7408 		return err;
7409 	if (dev->flags != old_flags)
7410 		dev_set_rx_mode(dev);
7411 	return err;
7412 }
7413 EXPORT_SYMBOL(dev_set_promiscuity);
7414 
7415 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7416 {
7417 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7418 
7419 	ASSERT_RTNL();
7420 
7421 	dev->flags |= IFF_ALLMULTI;
7422 	dev->allmulti += inc;
7423 	if (dev->allmulti == 0) {
7424 		/*
7425 		 * Avoid overflow.
7426 		 * If inc causes overflow, untouch allmulti and return error.
7427 		 */
7428 		if (inc < 0)
7429 			dev->flags &= ~IFF_ALLMULTI;
7430 		else {
7431 			dev->allmulti -= inc;
7432 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7433 				dev->name);
7434 			return -EOVERFLOW;
7435 		}
7436 	}
7437 	if (dev->flags ^ old_flags) {
7438 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7439 		dev_set_rx_mode(dev);
7440 		if (notify)
7441 			__dev_notify_flags(dev, old_flags,
7442 					   dev->gflags ^ old_gflags);
7443 	}
7444 	return 0;
7445 }
7446 
7447 /**
7448  *	dev_set_allmulti	- update allmulti count on a device
7449  *	@dev: device
7450  *	@inc: modifier
7451  *
7452  *	Add or remove reception of all multicast frames to a device. While the
7453  *	count in the device remains above zero the interface remains listening
7454  *	to all interfaces. Once it hits zero the device reverts back to normal
7455  *	filtering operation. A negative @inc value is used to drop the counter
7456  *	when releasing a resource needing all multicasts.
7457  *	Return 0 if successful or a negative errno code on error.
7458  */
7459 
7460 int dev_set_allmulti(struct net_device *dev, int inc)
7461 {
7462 	return __dev_set_allmulti(dev, inc, true);
7463 }
7464 EXPORT_SYMBOL(dev_set_allmulti);
7465 
7466 /*
7467  *	Upload unicast and multicast address lists to device and
7468  *	configure RX filtering. When the device doesn't support unicast
7469  *	filtering it is put in promiscuous mode while unicast addresses
7470  *	are present.
7471  */
7472 void __dev_set_rx_mode(struct net_device *dev)
7473 {
7474 	const struct net_device_ops *ops = dev->netdev_ops;
7475 
7476 	/* dev_open will call this function so the list will stay sane. */
7477 	if (!(dev->flags&IFF_UP))
7478 		return;
7479 
7480 	if (!netif_device_present(dev))
7481 		return;
7482 
7483 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7484 		/* Unicast addresses changes may only happen under the rtnl,
7485 		 * therefore calling __dev_set_promiscuity here is safe.
7486 		 */
7487 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7488 			__dev_set_promiscuity(dev, 1, false);
7489 			dev->uc_promisc = true;
7490 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7491 			__dev_set_promiscuity(dev, -1, false);
7492 			dev->uc_promisc = false;
7493 		}
7494 	}
7495 
7496 	if (ops->ndo_set_rx_mode)
7497 		ops->ndo_set_rx_mode(dev);
7498 }
7499 
7500 void dev_set_rx_mode(struct net_device *dev)
7501 {
7502 	netif_addr_lock_bh(dev);
7503 	__dev_set_rx_mode(dev);
7504 	netif_addr_unlock_bh(dev);
7505 }
7506 
7507 /**
7508  *	dev_get_flags - get flags reported to userspace
7509  *	@dev: device
7510  *
7511  *	Get the combination of flag bits exported through APIs to userspace.
7512  */
7513 unsigned int dev_get_flags(const struct net_device *dev)
7514 {
7515 	unsigned int flags;
7516 
7517 	flags = (dev->flags & ~(IFF_PROMISC |
7518 				IFF_ALLMULTI |
7519 				IFF_RUNNING |
7520 				IFF_LOWER_UP |
7521 				IFF_DORMANT)) |
7522 		(dev->gflags & (IFF_PROMISC |
7523 				IFF_ALLMULTI));
7524 
7525 	if (netif_running(dev)) {
7526 		if (netif_oper_up(dev))
7527 			flags |= IFF_RUNNING;
7528 		if (netif_carrier_ok(dev))
7529 			flags |= IFF_LOWER_UP;
7530 		if (netif_dormant(dev))
7531 			flags |= IFF_DORMANT;
7532 	}
7533 
7534 	return flags;
7535 }
7536 EXPORT_SYMBOL(dev_get_flags);
7537 
7538 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7539 		       struct netlink_ext_ack *extack)
7540 {
7541 	unsigned int old_flags = dev->flags;
7542 	int ret;
7543 
7544 	ASSERT_RTNL();
7545 
7546 	/*
7547 	 *	Set the flags on our device.
7548 	 */
7549 
7550 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7551 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7552 			       IFF_AUTOMEDIA)) |
7553 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7554 				    IFF_ALLMULTI));
7555 
7556 	/*
7557 	 *	Load in the correct multicast list now the flags have changed.
7558 	 */
7559 
7560 	if ((old_flags ^ flags) & IFF_MULTICAST)
7561 		dev_change_rx_flags(dev, IFF_MULTICAST);
7562 
7563 	dev_set_rx_mode(dev);
7564 
7565 	/*
7566 	 *	Have we downed the interface. We handle IFF_UP ourselves
7567 	 *	according to user attempts to set it, rather than blindly
7568 	 *	setting it.
7569 	 */
7570 
7571 	ret = 0;
7572 	if ((old_flags ^ flags) & IFF_UP) {
7573 		if (old_flags & IFF_UP)
7574 			__dev_close(dev);
7575 		else
7576 			ret = __dev_open(dev, extack);
7577 	}
7578 
7579 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7580 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7581 		unsigned int old_flags = dev->flags;
7582 
7583 		dev->gflags ^= IFF_PROMISC;
7584 
7585 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7586 			if (dev->flags != old_flags)
7587 				dev_set_rx_mode(dev);
7588 	}
7589 
7590 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7591 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7592 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7593 	 */
7594 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7595 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7596 
7597 		dev->gflags ^= IFF_ALLMULTI;
7598 		__dev_set_allmulti(dev, inc, false);
7599 	}
7600 
7601 	return ret;
7602 }
7603 
7604 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7605 			unsigned int gchanges)
7606 {
7607 	unsigned int changes = dev->flags ^ old_flags;
7608 
7609 	if (gchanges)
7610 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7611 
7612 	if (changes & IFF_UP) {
7613 		if (dev->flags & IFF_UP)
7614 			call_netdevice_notifiers(NETDEV_UP, dev);
7615 		else
7616 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7617 	}
7618 
7619 	if (dev->flags & IFF_UP &&
7620 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7621 		struct netdev_notifier_change_info change_info = {
7622 			.info = {
7623 				.dev = dev,
7624 			},
7625 			.flags_changed = changes,
7626 		};
7627 
7628 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7629 	}
7630 }
7631 
7632 /**
7633  *	dev_change_flags - change device settings
7634  *	@dev: device
7635  *	@flags: device state flags
7636  *	@extack: netlink extended ack
7637  *
7638  *	Change settings on device based state flags. The flags are
7639  *	in the userspace exported format.
7640  */
7641 int dev_change_flags(struct net_device *dev, unsigned int flags,
7642 		     struct netlink_ext_ack *extack)
7643 {
7644 	int ret;
7645 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7646 
7647 	ret = __dev_change_flags(dev, flags, extack);
7648 	if (ret < 0)
7649 		return ret;
7650 
7651 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7652 	__dev_notify_flags(dev, old_flags, changes);
7653 	return ret;
7654 }
7655 EXPORT_SYMBOL(dev_change_flags);
7656 
7657 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7658 {
7659 	const struct net_device_ops *ops = dev->netdev_ops;
7660 
7661 	if (ops->ndo_change_mtu)
7662 		return ops->ndo_change_mtu(dev, new_mtu);
7663 
7664 	dev->mtu = new_mtu;
7665 	return 0;
7666 }
7667 EXPORT_SYMBOL(__dev_set_mtu);
7668 
7669 /**
7670  *	dev_set_mtu_ext - Change maximum transfer unit
7671  *	@dev: device
7672  *	@new_mtu: new transfer unit
7673  *	@extack: netlink extended ack
7674  *
7675  *	Change the maximum transfer size of the network device.
7676  */
7677 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7678 		    struct netlink_ext_ack *extack)
7679 {
7680 	int err, orig_mtu;
7681 
7682 	if (new_mtu == dev->mtu)
7683 		return 0;
7684 
7685 	/* MTU must be positive, and in range */
7686 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7687 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7688 		return -EINVAL;
7689 	}
7690 
7691 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7692 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7693 		return -EINVAL;
7694 	}
7695 
7696 	if (!netif_device_present(dev))
7697 		return -ENODEV;
7698 
7699 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7700 	err = notifier_to_errno(err);
7701 	if (err)
7702 		return err;
7703 
7704 	orig_mtu = dev->mtu;
7705 	err = __dev_set_mtu(dev, new_mtu);
7706 
7707 	if (!err) {
7708 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7709 						   orig_mtu);
7710 		err = notifier_to_errno(err);
7711 		if (err) {
7712 			/* setting mtu back and notifying everyone again,
7713 			 * so that they have a chance to revert changes.
7714 			 */
7715 			__dev_set_mtu(dev, orig_mtu);
7716 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7717 						     new_mtu);
7718 		}
7719 	}
7720 	return err;
7721 }
7722 
7723 int dev_set_mtu(struct net_device *dev, int new_mtu)
7724 {
7725 	struct netlink_ext_ack extack;
7726 	int err;
7727 
7728 	memset(&extack, 0, sizeof(extack));
7729 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7730 	if (err && extack._msg)
7731 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7732 	return err;
7733 }
7734 EXPORT_SYMBOL(dev_set_mtu);
7735 
7736 /**
7737  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7738  *	@dev: device
7739  *	@new_len: new tx queue length
7740  */
7741 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7742 {
7743 	unsigned int orig_len = dev->tx_queue_len;
7744 	int res;
7745 
7746 	if (new_len != (unsigned int)new_len)
7747 		return -ERANGE;
7748 
7749 	if (new_len != orig_len) {
7750 		dev->tx_queue_len = new_len;
7751 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7752 		res = notifier_to_errno(res);
7753 		if (res)
7754 			goto err_rollback;
7755 		res = dev_qdisc_change_tx_queue_len(dev);
7756 		if (res)
7757 			goto err_rollback;
7758 	}
7759 
7760 	return 0;
7761 
7762 err_rollback:
7763 	netdev_err(dev, "refused to change device tx_queue_len\n");
7764 	dev->tx_queue_len = orig_len;
7765 	return res;
7766 }
7767 
7768 /**
7769  *	dev_set_group - Change group this device belongs to
7770  *	@dev: device
7771  *	@new_group: group this device should belong to
7772  */
7773 void dev_set_group(struct net_device *dev, int new_group)
7774 {
7775 	dev->group = new_group;
7776 }
7777 EXPORT_SYMBOL(dev_set_group);
7778 
7779 /**
7780  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7781  *	@dev: device
7782  *	@addr: new address
7783  *	@extack: netlink extended ack
7784  */
7785 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7786 			      struct netlink_ext_ack *extack)
7787 {
7788 	struct netdev_notifier_pre_changeaddr_info info = {
7789 		.info.dev = dev,
7790 		.info.extack = extack,
7791 		.dev_addr = addr,
7792 	};
7793 	int rc;
7794 
7795 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7796 	return notifier_to_errno(rc);
7797 }
7798 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7799 
7800 /**
7801  *	dev_set_mac_address - Change Media Access Control Address
7802  *	@dev: device
7803  *	@sa: new address
7804  *	@extack: netlink extended ack
7805  *
7806  *	Change the hardware (MAC) address of the device
7807  */
7808 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7809 			struct netlink_ext_ack *extack)
7810 {
7811 	const struct net_device_ops *ops = dev->netdev_ops;
7812 	int err;
7813 
7814 	if (!ops->ndo_set_mac_address)
7815 		return -EOPNOTSUPP;
7816 	if (sa->sa_family != dev->type)
7817 		return -EINVAL;
7818 	if (!netif_device_present(dev))
7819 		return -ENODEV;
7820 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7821 	if (err)
7822 		return err;
7823 	err = ops->ndo_set_mac_address(dev, sa);
7824 	if (err)
7825 		return err;
7826 	dev->addr_assign_type = NET_ADDR_SET;
7827 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7828 	add_device_randomness(dev->dev_addr, dev->addr_len);
7829 	return 0;
7830 }
7831 EXPORT_SYMBOL(dev_set_mac_address);
7832 
7833 /**
7834  *	dev_change_carrier - Change device carrier
7835  *	@dev: device
7836  *	@new_carrier: new value
7837  *
7838  *	Change device carrier
7839  */
7840 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7841 {
7842 	const struct net_device_ops *ops = dev->netdev_ops;
7843 
7844 	if (!ops->ndo_change_carrier)
7845 		return -EOPNOTSUPP;
7846 	if (!netif_device_present(dev))
7847 		return -ENODEV;
7848 	return ops->ndo_change_carrier(dev, new_carrier);
7849 }
7850 EXPORT_SYMBOL(dev_change_carrier);
7851 
7852 /**
7853  *	dev_get_phys_port_id - Get device physical port ID
7854  *	@dev: device
7855  *	@ppid: port ID
7856  *
7857  *	Get device physical port ID
7858  */
7859 int dev_get_phys_port_id(struct net_device *dev,
7860 			 struct netdev_phys_item_id *ppid)
7861 {
7862 	const struct net_device_ops *ops = dev->netdev_ops;
7863 
7864 	if (!ops->ndo_get_phys_port_id)
7865 		return -EOPNOTSUPP;
7866 	return ops->ndo_get_phys_port_id(dev, ppid);
7867 }
7868 EXPORT_SYMBOL(dev_get_phys_port_id);
7869 
7870 /**
7871  *	dev_get_phys_port_name - Get device physical port name
7872  *	@dev: device
7873  *	@name: port name
7874  *	@len: limit of bytes to copy to name
7875  *
7876  *	Get device physical port name
7877  */
7878 int dev_get_phys_port_name(struct net_device *dev,
7879 			   char *name, size_t len)
7880 {
7881 	const struct net_device_ops *ops = dev->netdev_ops;
7882 	int err;
7883 
7884 	if (ops->ndo_get_phys_port_name) {
7885 		err = ops->ndo_get_phys_port_name(dev, name, len);
7886 		if (err != -EOPNOTSUPP)
7887 			return err;
7888 	}
7889 	return devlink_compat_phys_port_name_get(dev, name, len);
7890 }
7891 EXPORT_SYMBOL(dev_get_phys_port_name);
7892 
7893 /**
7894  *	dev_get_port_parent_id - Get the device's port parent identifier
7895  *	@dev: network device
7896  *	@ppid: pointer to a storage for the port's parent identifier
7897  *	@recurse: allow/disallow recursion to lower devices
7898  *
7899  *	Get the devices's port parent identifier
7900  */
7901 int dev_get_port_parent_id(struct net_device *dev,
7902 			   struct netdev_phys_item_id *ppid,
7903 			   bool recurse)
7904 {
7905 	const struct net_device_ops *ops = dev->netdev_ops;
7906 	struct netdev_phys_item_id first = { };
7907 	struct net_device *lower_dev;
7908 	struct list_head *iter;
7909 	int err;
7910 
7911 	if (ops->ndo_get_port_parent_id) {
7912 		err = ops->ndo_get_port_parent_id(dev, ppid);
7913 		if (err != -EOPNOTSUPP)
7914 			return err;
7915 	}
7916 
7917 	err = devlink_compat_switch_id_get(dev, ppid);
7918 	if (!err || err != -EOPNOTSUPP)
7919 		return err;
7920 
7921 	if (!recurse)
7922 		return -EOPNOTSUPP;
7923 
7924 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
7925 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7926 		if (err)
7927 			break;
7928 		if (!first.id_len)
7929 			first = *ppid;
7930 		else if (memcmp(&first, ppid, sizeof(*ppid)))
7931 			return -ENODATA;
7932 	}
7933 
7934 	return err;
7935 }
7936 EXPORT_SYMBOL(dev_get_port_parent_id);
7937 
7938 /**
7939  *	netdev_port_same_parent_id - Indicate if two network devices have
7940  *	the same port parent identifier
7941  *	@a: first network device
7942  *	@b: second network device
7943  */
7944 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7945 {
7946 	struct netdev_phys_item_id a_id = { };
7947 	struct netdev_phys_item_id b_id = { };
7948 
7949 	if (dev_get_port_parent_id(a, &a_id, true) ||
7950 	    dev_get_port_parent_id(b, &b_id, true))
7951 		return false;
7952 
7953 	return netdev_phys_item_id_same(&a_id, &b_id);
7954 }
7955 EXPORT_SYMBOL(netdev_port_same_parent_id);
7956 
7957 /**
7958  *	dev_change_proto_down - update protocol port state information
7959  *	@dev: device
7960  *	@proto_down: new value
7961  *
7962  *	This info can be used by switch drivers to set the phys state of the
7963  *	port.
7964  */
7965 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7966 {
7967 	const struct net_device_ops *ops = dev->netdev_ops;
7968 
7969 	if (!ops->ndo_change_proto_down)
7970 		return -EOPNOTSUPP;
7971 	if (!netif_device_present(dev))
7972 		return -ENODEV;
7973 	return ops->ndo_change_proto_down(dev, proto_down);
7974 }
7975 EXPORT_SYMBOL(dev_change_proto_down);
7976 
7977 /**
7978  *	dev_change_proto_down_generic - generic implementation for
7979  * 	ndo_change_proto_down that sets carrier according to
7980  * 	proto_down.
7981  *
7982  *	@dev: device
7983  *	@proto_down: new value
7984  */
7985 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7986 {
7987 	if (proto_down)
7988 		netif_carrier_off(dev);
7989 	else
7990 		netif_carrier_on(dev);
7991 	dev->proto_down = proto_down;
7992 	return 0;
7993 }
7994 EXPORT_SYMBOL(dev_change_proto_down_generic);
7995 
7996 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7997 		    enum bpf_netdev_command cmd)
7998 {
7999 	struct netdev_bpf xdp;
8000 
8001 	if (!bpf_op)
8002 		return 0;
8003 
8004 	memset(&xdp, 0, sizeof(xdp));
8005 	xdp.command = cmd;
8006 
8007 	/* Query must always succeed. */
8008 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8009 
8010 	return xdp.prog_id;
8011 }
8012 
8013 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8014 			   struct netlink_ext_ack *extack, u32 flags,
8015 			   struct bpf_prog *prog)
8016 {
8017 	struct netdev_bpf xdp;
8018 
8019 	memset(&xdp, 0, sizeof(xdp));
8020 	if (flags & XDP_FLAGS_HW_MODE)
8021 		xdp.command = XDP_SETUP_PROG_HW;
8022 	else
8023 		xdp.command = XDP_SETUP_PROG;
8024 	xdp.extack = extack;
8025 	xdp.flags = flags;
8026 	xdp.prog = prog;
8027 
8028 	return bpf_op(dev, &xdp);
8029 }
8030 
8031 static void dev_xdp_uninstall(struct net_device *dev)
8032 {
8033 	struct netdev_bpf xdp;
8034 	bpf_op_t ndo_bpf;
8035 
8036 	/* Remove generic XDP */
8037 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8038 
8039 	/* Remove from the driver */
8040 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8041 	if (!ndo_bpf)
8042 		return;
8043 
8044 	memset(&xdp, 0, sizeof(xdp));
8045 	xdp.command = XDP_QUERY_PROG;
8046 	WARN_ON(ndo_bpf(dev, &xdp));
8047 	if (xdp.prog_id)
8048 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8049 					NULL));
8050 
8051 	/* Remove HW offload */
8052 	memset(&xdp, 0, sizeof(xdp));
8053 	xdp.command = XDP_QUERY_PROG_HW;
8054 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8055 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8056 					NULL));
8057 }
8058 
8059 /**
8060  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8061  *	@dev: device
8062  *	@extack: netlink extended ack
8063  *	@fd: new program fd or negative value to clear
8064  *	@flags: xdp-related flags
8065  *
8066  *	Set or clear a bpf program for a device
8067  */
8068 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8069 		      int fd, u32 flags)
8070 {
8071 	const struct net_device_ops *ops = dev->netdev_ops;
8072 	enum bpf_netdev_command query;
8073 	struct bpf_prog *prog = NULL;
8074 	bpf_op_t bpf_op, bpf_chk;
8075 	bool offload;
8076 	int err;
8077 
8078 	ASSERT_RTNL();
8079 
8080 	offload = flags & XDP_FLAGS_HW_MODE;
8081 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8082 
8083 	bpf_op = bpf_chk = ops->ndo_bpf;
8084 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8085 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8086 		return -EOPNOTSUPP;
8087 	}
8088 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8089 		bpf_op = generic_xdp_install;
8090 	if (bpf_op == bpf_chk)
8091 		bpf_chk = generic_xdp_install;
8092 
8093 	if (fd >= 0) {
8094 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8095 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8096 			return -EEXIST;
8097 		}
8098 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8099 		    __dev_xdp_query(dev, bpf_op, query)) {
8100 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8101 			return -EBUSY;
8102 		}
8103 
8104 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8105 					     bpf_op == ops->ndo_bpf);
8106 		if (IS_ERR(prog))
8107 			return PTR_ERR(prog);
8108 
8109 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8110 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8111 			bpf_prog_put(prog);
8112 			return -EINVAL;
8113 		}
8114 	}
8115 
8116 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8117 	if (err < 0 && prog)
8118 		bpf_prog_put(prog);
8119 
8120 	return err;
8121 }
8122 
8123 /**
8124  *	dev_new_index	-	allocate an ifindex
8125  *	@net: the applicable net namespace
8126  *
8127  *	Returns a suitable unique value for a new device interface
8128  *	number.  The caller must hold the rtnl semaphore or the
8129  *	dev_base_lock to be sure it remains unique.
8130  */
8131 static int dev_new_index(struct net *net)
8132 {
8133 	int ifindex = net->ifindex;
8134 
8135 	for (;;) {
8136 		if (++ifindex <= 0)
8137 			ifindex = 1;
8138 		if (!__dev_get_by_index(net, ifindex))
8139 			return net->ifindex = ifindex;
8140 	}
8141 }
8142 
8143 /* Delayed registration/unregisteration */
8144 static LIST_HEAD(net_todo_list);
8145 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8146 
8147 static void net_set_todo(struct net_device *dev)
8148 {
8149 	list_add_tail(&dev->todo_list, &net_todo_list);
8150 	dev_net(dev)->dev_unreg_count++;
8151 }
8152 
8153 static void rollback_registered_many(struct list_head *head)
8154 {
8155 	struct net_device *dev, *tmp;
8156 	LIST_HEAD(close_head);
8157 
8158 	BUG_ON(dev_boot_phase);
8159 	ASSERT_RTNL();
8160 
8161 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8162 		/* Some devices call without registering
8163 		 * for initialization unwind. Remove those
8164 		 * devices and proceed with the remaining.
8165 		 */
8166 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8167 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8168 				 dev->name, dev);
8169 
8170 			WARN_ON(1);
8171 			list_del(&dev->unreg_list);
8172 			continue;
8173 		}
8174 		dev->dismantle = true;
8175 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8176 	}
8177 
8178 	/* If device is running, close it first. */
8179 	list_for_each_entry(dev, head, unreg_list)
8180 		list_add_tail(&dev->close_list, &close_head);
8181 	dev_close_many(&close_head, true);
8182 
8183 	list_for_each_entry(dev, head, unreg_list) {
8184 		/* And unlink it from device chain. */
8185 		unlist_netdevice(dev);
8186 
8187 		dev->reg_state = NETREG_UNREGISTERING;
8188 	}
8189 	flush_all_backlogs();
8190 
8191 	synchronize_net();
8192 
8193 	list_for_each_entry(dev, head, unreg_list) {
8194 		struct sk_buff *skb = NULL;
8195 
8196 		/* Shutdown queueing discipline. */
8197 		dev_shutdown(dev);
8198 
8199 		dev_xdp_uninstall(dev);
8200 
8201 		/* Notify protocols, that we are about to destroy
8202 		 * this device. They should clean all the things.
8203 		 */
8204 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8205 
8206 		if (!dev->rtnl_link_ops ||
8207 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8208 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8209 						     GFP_KERNEL, NULL, 0);
8210 
8211 		/*
8212 		 *	Flush the unicast and multicast chains
8213 		 */
8214 		dev_uc_flush(dev);
8215 		dev_mc_flush(dev);
8216 
8217 		if (dev->netdev_ops->ndo_uninit)
8218 			dev->netdev_ops->ndo_uninit(dev);
8219 
8220 		if (skb)
8221 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8222 
8223 		/* Notifier chain MUST detach us all upper devices. */
8224 		WARN_ON(netdev_has_any_upper_dev(dev));
8225 		WARN_ON(netdev_has_any_lower_dev(dev));
8226 
8227 		/* Remove entries from kobject tree */
8228 		netdev_unregister_kobject(dev);
8229 #ifdef CONFIG_XPS
8230 		/* Remove XPS queueing entries */
8231 		netif_reset_xps_queues_gt(dev, 0);
8232 #endif
8233 	}
8234 
8235 	synchronize_net();
8236 
8237 	list_for_each_entry(dev, head, unreg_list)
8238 		dev_put(dev);
8239 }
8240 
8241 static void rollback_registered(struct net_device *dev)
8242 {
8243 	LIST_HEAD(single);
8244 
8245 	list_add(&dev->unreg_list, &single);
8246 	rollback_registered_many(&single);
8247 	list_del(&single);
8248 }
8249 
8250 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8251 	struct net_device *upper, netdev_features_t features)
8252 {
8253 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8254 	netdev_features_t feature;
8255 	int feature_bit;
8256 
8257 	for_each_netdev_feature(upper_disables, feature_bit) {
8258 		feature = __NETIF_F_BIT(feature_bit);
8259 		if (!(upper->wanted_features & feature)
8260 		    && (features & feature)) {
8261 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8262 				   &feature, upper->name);
8263 			features &= ~feature;
8264 		}
8265 	}
8266 
8267 	return features;
8268 }
8269 
8270 static void netdev_sync_lower_features(struct net_device *upper,
8271 	struct net_device *lower, netdev_features_t features)
8272 {
8273 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8274 	netdev_features_t feature;
8275 	int feature_bit;
8276 
8277 	for_each_netdev_feature(upper_disables, feature_bit) {
8278 		feature = __NETIF_F_BIT(feature_bit);
8279 		if (!(features & feature) && (lower->features & feature)) {
8280 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8281 				   &feature, lower->name);
8282 			lower->wanted_features &= ~feature;
8283 			netdev_update_features(lower);
8284 
8285 			if (unlikely(lower->features & feature))
8286 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8287 					    &feature, lower->name);
8288 		}
8289 	}
8290 }
8291 
8292 static netdev_features_t netdev_fix_features(struct net_device *dev,
8293 	netdev_features_t features)
8294 {
8295 	/* Fix illegal checksum combinations */
8296 	if ((features & NETIF_F_HW_CSUM) &&
8297 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8298 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8299 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8300 	}
8301 
8302 	/* TSO requires that SG is present as well. */
8303 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8304 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8305 		features &= ~NETIF_F_ALL_TSO;
8306 	}
8307 
8308 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8309 					!(features & NETIF_F_IP_CSUM)) {
8310 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8311 		features &= ~NETIF_F_TSO;
8312 		features &= ~NETIF_F_TSO_ECN;
8313 	}
8314 
8315 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8316 					 !(features & NETIF_F_IPV6_CSUM)) {
8317 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8318 		features &= ~NETIF_F_TSO6;
8319 	}
8320 
8321 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8322 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8323 		features &= ~NETIF_F_TSO_MANGLEID;
8324 
8325 	/* TSO ECN requires that TSO is present as well. */
8326 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8327 		features &= ~NETIF_F_TSO_ECN;
8328 
8329 	/* Software GSO depends on SG. */
8330 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8331 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8332 		features &= ~NETIF_F_GSO;
8333 	}
8334 
8335 	/* GSO partial features require GSO partial be set */
8336 	if ((features & dev->gso_partial_features) &&
8337 	    !(features & NETIF_F_GSO_PARTIAL)) {
8338 		netdev_dbg(dev,
8339 			   "Dropping partially supported GSO features since no GSO partial.\n");
8340 		features &= ~dev->gso_partial_features;
8341 	}
8342 
8343 	if (!(features & NETIF_F_RXCSUM)) {
8344 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8345 		 * successfully merged by hardware must also have the
8346 		 * checksum verified by hardware.  If the user does not
8347 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8348 		 */
8349 		if (features & NETIF_F_GRO_HW) {
8350 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8351 			features &= ~NETIF_F_GRO_HW;
8352 		}
8353 	}
8354 
8355 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8356 	if (features & NETIF_F_RXFCS) {
8357 		if (features & NETIF_F_LRO) {
8358 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8359 			features &= ~NETIF_F_LRO;
8360 		}
8361 
8362 		if (features & NETIF_F_GRO_HW) {
8363 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8364 			features &= ~NETIF_F_GRO_HW;
8365 		}
8366 	}
8367 
8368 	return features;
8369 }
8370 
8371 int __netdev_update_features(struct net_device *dev)
8372 {
8373 	struct net_device *upper, *lower;
8374 	netdev_features_t features;
8375 	struct list_head *iter;
8376 	int err = -1;
8377 
8378 	ASSERT_RTNL();
8379 
8380 	features = netdev_get_wanted_features(dev);
8381 
8382 	if (dev->netdev_ops->ndo_fix_features)
8383 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8384 
8385 	/* driver might be less strict about feature dependencies */
8386 	features = netdev_fix_features(dev, features);
8387 
8388 	/* some features can't be enabled if they're off an an upper device */
8389 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8390 		features = netdev_sync_upper_features(dev, upper, features);
8391 
8392 	if (dev->features == features)
8393 		goto sync_lower;
8394 
8395 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8396 		&dev->features, &features);
8397 
8398 	if (dev->netdev_ops->ndo_set_features)
8399 		err = dev->netdev_ops->ndo_set_features(dev, features);
8400 	else
8401 		err = 0;
8402 
8403 	if (unlikely(err < 0)) {
8404 		netdev_err(dev,
8405 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8406 			err, &features, &dev->features);
8407 		/* return non-0 since some features might have changed and
8408 		 * it's better to fire a spurious notification than miss it
8409 		 */
8410 		return -1;
8411 	}
8412 
8413 sync_lower:
8414 	/* some features must be disabled on lower devices when disabled
8415 	 * on an upper device (think: bonding master or bridge)
8416 	 */
8417 	netdev_for_each_lower_dev(dev, lower, iter)
8418 		netdev_sync_lower_features(dev, lower, features);
8419 
8420 	if (!err) {
8421 		netdev_features_t diff = features ^ dev->features;
8422 
8423 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8424 			/* udp_tunnel_{get,drop}_rx_info both need
8425 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8426 			 * device, or they won't do anything.
8427 			 * Thus we need to update dev->features
8428 			 * *before* calling udp_tunnel_get_rx_info,
8429 			 * but *after* calling udp_tunnel_drop_rx_info.
8430 			 */
8431 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8432 				dev->features = features;
8433 				udp_tunnel_get_rx_info(dev);
8434 			} else {
8435 				udp_tunnel_drop_rx_info(dev);
8436 			}
8437 		}
8438 
8439 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8440 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8441 				dev->features = features;
8442 				err |= vlan_get_rx_ctag_filter_info(dev);
8443 			} else {
8444 				vlan_drop_rx_ctag_filter_info(dev);
8445 			}
8446 		}
8447 
8448 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8449 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8450 				dev->features = features;
8451 				err |= vlan_get_rx_stag_filter_info(dev);
8452 			} else {
8453 				vlan_drop_rx_stag_filter_info(dev);
8454 			}
8455 		}
8456 
8457 		dev->features = features;
8458 	}
8459 
8460 	return err < 0 ? 0 : 1;
8461 }
8462 
8463 /**
8464  *	netdev_update_features - recalculate device features
8465  *	@dev: the device to check
8466  *
8467  *	Recalculate dev->features set and send notifications if it
8468  *	has changed. Should be called after driver or hardware dependent
8469  *	conditions might have changed that influence the features.
8470  */
8471 void netdev_update_features(struct net_device *dev)
8472 {
8473 	if (__netdev_update_features(dev))
8474 		netdev_features_change(dev);
8475 }
8476 EXPORT_SYMBOL(netdev_update_features);
8477 
8478 /**
8479  *	netdev_change_features - recalculate device features
8480  *	@dev: the device to check
8481  *
8482  *	Recalculate dev->features set and send notifications even
8483  *	if they have not changed. Should be called instead of
8484  *	netdev_update_features() if also dev->vlan_features might
8485  *	have changed to allow the changes to be propagated to stacked
8486  *	VLAN devices.
8487  */
8488 void netdev_change_features(struct net_device *dev)
8489 {
8490 	__netdev_update_features(dev);
8491 	netdev_features_change(dev);
8492 }
8493 EXPORT_SYMBOL(netdev_change_features);
8494 
8495 /**
8496  *	netif_stacked_transfer_operstate -	transfer operstate
8497  *	@rootdev: the root or lower level device to transfer state from
8498  *	@dev: the device to transfer operstate to
8499  *
8500  *	Transfer operational state from root to device. This is normally
8501  *	called when a stacking relationship exists between the root
8502  *	device and the device(a leaf device).
8503  */
8504 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8505 					struct net_device *dev)
8506 {
8507 	if (rootdev->operstate == IF_OPER_DORMANT)
8508 		netif_dormant_on(dev);
8509 	else
8510 		netif_dormant_off(dev);
8511 
8512 	if (netif_carrier_ok(rootdev))
8513 		netif_carrier_on(dev);
8514 	else
8515 		netif_carrier_off(dev);
8516 }
8517 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8518 
8519 static int netif_alloc_rx_queues(struct net_device *dev)
8520 {
8521 	unsigned int i, count = dev->num_rx_queues;
8522 	struct netdev_rx_queue *rx;
8523 	size_t sz = count * sizeof(*rx);
8524 	int err = 0;
8525 
8526 	BUG_ON(count < 1);
8527 
8528 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8529 	if (!rx)
8530 		return -ENOMEM;
8531 
8532 	dev->_rx = rx;
8533 
8534 	for (i = 0; i < count; i++) {
8535 		rx[i].dev = dev;
8536 
8537 		/* XDP RX-queue setup */
8538 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8539 		if (err < 0)
8540 			goto err_rxq_info;
8541 	}
8542 	return 0;
8543 
8544 err_rxq_info:
8545 	/* Rollback successful reg's and free other resources */
8546 	while (i--)
8547 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8548 	kvfree(dev->_rx);
8549 	dev->_rx = NULL;
8550 	return err;
8551 }
8552 
8553 static void netif_free_rx_queues(struct net_device *dev)
8554 {
8555 	unsigned int i, count = dev->num_rx_queues;
8556 
8557 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8558 	if (!dev->_rx)
8559 		return;
8560 
8561 	for (i = 0; i < count; i++)
8562 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8563 
8564 	kvfree(dev->_rx);
8565 }
8566 
8567 static void netdev_init_one_queue(struct net_device *dev,
8568 				  struct netdev_queue *queue, void *_unused)
8569 {
8570 	/* Initialize queue lock */
8571 	spin_lock_init(&queue->_xmit_lock);
8572 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8573 	queue->xmit_lock_owner = -1;
8574 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8575 	queue->dev = dev;
8576 #ifdef CONFIG_BQL
8577 	dql_init(&queue->dql, HZ);
8578 #endif
8579 }
8580 
8581 static void netif_free_tx_queues(struct net_device *dev)
8582 {
8583 	kvfree(dev->_tx);
8584 }
8585 
8586 static int netif_alloc_netdev_queues(struct net_device *dev)
8587 {
8588 	unsigned int count = dev->num_tx_queues;
8589 	struct netdev_queue *tx;
8590 	size_t sz = count * sizeof(*tx);
8591 
8592 	if (count < 1 || count > 0xffff)
8593 		return -EINVAL;
8594 
8595 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8596 	if (!tx)
8597 		return -ENOMEM;
8598 
8599 	dev->_tx = tx;
8600 
8601 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8602 	spin_lock_init(&dev->tx_global_lock);
8603 
8604 	return 0;
8605 }
8606 
8607 void netif_tx_stop_all_queues(struct net_device *dev)
8608 {
8609 	unsigned int i;
8610 
8611 	for (i = 0; i < dev->num_tx_queues; i++) {
8612 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8613 
8614 		netif_tx_stop_queue(txq);
8615 	}
8616 }
8617 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8618 
8619 /**
8620  *	register_netdevice	- register a network device
8621  *	@dev: device to register
8622  *
8623  *	Take a completed network device structure and add it to the kernel
8624  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8625  *	chain. 0 is returned on success. A negative errno code is returned
8626  *	on a failure to set up the device, or if the name is a duplicate.
8627  *
8628  *	Callers must hold the rtnl semaphore. You may want
8629  *	register_netdev() instead of this.
8630  *
8631  *	BUGS:
8632  *	The locking appears insufficient to guarantee two parallel registers
8633  *	will not get the same name.
8634  */
8635 
8636 int register_netdevice(struct net_device *dev)
8637 {
8638 	int ret;
8639 	struct net *net = dev_net(dev);
8640 
8641 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8642 		     NETDEV_FEATURE_COUNT);
8643 	BUG_ON(dev_boot_phase);
8644 	ASSERT_RTNL();
8645 
8646 	might_sleep();
8647 
8648 	/* When net_device's are persistent, this will be fatal. */
8649 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8650 	BUG_ON(!net);
8651 
8652 	spin_lock_init(&dev->addr_list_lock);
8653 	netdev_set_addr_lockdep_class(dev);
8654 
8655 	ret = dev_get_valid_name(net, dev, dev->name);
8656 	if (ret < 0)
8657 		goto out;
8658 
8659 	/* Init, if this function is available */
8660 	if (dev->netdev_ops->ndo_init) {
8661 		ret = dev->netdev_ops->ndo_init(dev);
8662 		if (ret) {
8663 			if (ret > 0)
8664 				ret = -EIO;
8665 			goto out;
8666 		}
8667 	}
8668 
8669 	if (((dev->hw_features | dev->features) &
8670 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8671 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8672 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8673 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8674 		ret = -EINVAL;
8675 		goto err_uninit;
8676 	}
8677 
8678 	ret = -EBUSY;
8679 	if (!dev->ifindex)
8680 		dev->ifindex = dev_new_index(net);
8681 	else if (__dev_get_by_index(net, dev->ifindex))
8682 		goto err_uninit;
8683 
8684 	/* Transfer changeable features to wanted_features and enable
8685 	 * software offloads (GSO and GRO).
8686 	 */
8687 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8688 	dev->features |= NETIF_F_SOFT_FEATURES;
8689 
8690 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8691 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8692 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8693 	}
8694 
8695 	dev->wanted_features = dev->features & dev->hw_features;
8696 
8697 	if (!(dev->flags & IFF_LOOPBACK))
8698 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8699 
8700 	/* If IPv4 TCP segmentation offload is supported we should also
8701 	 * allow the device to enable segmenting the frame with the option
8702 	 * of ignoring a static IP ID value.  This doesn't enable the
8703 	 * feature itself but allows the user to enable it later.
8704 	 */
8705 	if (dev->hw_features & NETIF_F_TSO)
8706 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8707 	if (dev->vlan_features & NETIF_F_TSO)
8708 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8709 	if (dev->mpls_features & NETIF_F_TSO)
8710 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8711 	if (dev->hw_enc_features & NETIF_F_TSO)
8712 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8713 
8714 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8715 	 */
8716 	dev->vlan_features |= NETIF_F_HIGHDMA;
8717 
8718 	/* Make NETIF_F_SG inheritable to tunnel devices.
8719 	 */
8720 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8721 
8722 	/* Make NETIF_F_SG inheritable to MPLS.
8723 	 */
8724 	dev->mpls_features |= NETIF_F_SG;
8725 
8726 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8727 	ret = notifier_to_errno(ret);
8728 	if (ret)
8729 		goto err_uninit;
8730 
8731 	ret = netdev_register_kobject(dev);
8732 	if (ret)
8733 		goto err_uninit;
8734 	dev->reg_state = NETREG_REGISTERED;
8735 
8736 	__netdev_update_features(dev);
8737 
8738 	/*
8739 	 *	Default initial state at registry is that the
8740 	 *	device is present.
8741 	 */
8742 
8743 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8744 
8745 	linkwatch_init_dev(dev);
8746 
8747 	dev_init_scheduler(dev);
8748 	dev_hold(dev);
8749 	list_netdevice(dev);
8750 	add_device_randomness(dev->dev_addr, dev->addr_len);
8751 
8752 	/* If the device has permanent device address, driver should
8753 	 * set dev_addr and also addr_assign_type should be set to
8754 	 * NET_ADDR_PERM (default value).
8755 	 */
8756 	if (dev->addr_assign_type == NET_ADDR_PERM)
8757 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8758 
8759 	/* Notify protocols, that a new device appeared. */
8760 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8761 	ret = notifier_to_errno(ret);
8762 	if (ret) {
8763 		rollback_registered(dev);
8764 		dev->reg_state = NETREG_UNREGISTERED;
8765 	}
8766 	/*
8767 	 *	Prevent userspace races by waiting until the network
8768 	 *	device is fully setup before sending notifications.
8769 	 */
8770 	if (!dev->rtnl_link_ops ||
8771 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8772 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8773 
8774 out:
8775 	return ret;
8776 
8777 err_uninit:
8778 	if (dev->netdev_ops->ndo_uninit)
8779 		dev->netdev_ops->ndo_uninit(dev);
8780 	if (dev->priv_destructor)
8781 		dev->priv_destructor(dev);
8782 	goto out;
8783 }
8784 EXPORT_SYMBOL(register_netdevice);
8785 
8786 /**
8787  *	init_dummy_netdev	- init a dummy network device for NAPI
8788  *	@dev: device to init
8789  *
8790  *	This takes a network device structure and initialize the minimum
8791  *	amount of fields so it can be used to schedule NAPI polls without
8792  *	registering a full blown interface. This is to be used by drivers
8793  *	that need to tie several hardware interfaces to a single NAPI
8794  *	poll scheduler due to HW limitations.
8795  */
8796 int init_dummy_netdev(struct net_device *dev)
8797 {
8798 	/* Clear everything. Note we don't initialize spinlocks
8799 	 * are they aren't supposed to be taken by any of the
8800 	 * NAPI code and this dummy netdev is supposed to be
8801 	 * only ever used for NAPI polls
8802 	 */
8803 	memset(dev, 0, sizeof(struct net_device));
8804 
8805 	/* make sure we BUG if trying to hit standard
8806 	 * register/unregister code path
8807 	 */
8808 	dev->reg_state = NETREG_DUMMY;
8809 
8810 	/* NAPI wants this */
8811 	INIT_LIST_HEAD(&dev->napi_list);
8812 
8813 	/* a dummy interface is started by default */
8814 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8815 	set_bit(__LINK_STATE_START, &dev->state);
8816 
8817 	/* napi_busy_loop stats accounting wants this */
8818 	dev_net_set(dev, &init_net);
8819 
8820 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8821 	 * because users of this 'device' dont need to change
8822 	 * its refcount.
8823 	 */
8824 
8825 	return 0;
8826 }
8827 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8828 
8829 
8830 /**
8831  *	register_netdev	- register a network device
8832  *	@dev: device to register
8833  *
8834  *	Take a completed network device structure and add it to the kernel
8835  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8836  *	chain. 0 is returned on success. A negative errno code is returned
8837  *	on a failure to set up the device, or if the name is a duplicate.
8838  *
8839  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8840  *	and expands the device name if you passed a format string to
8841  *	alloc_netdev.
8842  */
8843 int register_netdev(struct net_device *dev)
8844 {
8845 	int err;
8846 
8847 	if (rtnl_lock_killable())
8848 		return -EINTR;
8849 	err = register_netdevice(dev);
8850 	rtnl_unlock();
8851 	return err;
8852 }
8853 EXPORT_SYMBOL(register_netdev);
8854 
8855 int netdev_refcnt_read(const struct net_device *dev)
8856 {
8857 	int i, refcnt = 0;
8858 
8859 	for_each_possible_cpu(i)
8860 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8861 	return refcnt;
8862 }
8863 EXPORT_SYMBOL(netdev_refcnt_read);
8864 
8865 /**
8866  * netdev_wait_allrefs - wait until all references are gone.
8867  * @dev: target net_device
8868  *
8869  * This is called when unregistering network devices.
8870  *
8871  * Any protocol or device that holds a reference should register
8872  * for netdevice notification, and cleanup and put back the
8873  * reference if they receive an UNREGISTER event.
8874  * We can get stuck here if buggy protocols don't correctly
8875  * call dev_put.
8876  */
8877 static void netdev_wait_allrefs(struct net_device *dev)
8878 {
8879 	unsigned long rebroadcast_time, warning_time;
8880 	int refcnt;
8881 
8882 	linkwatch_forget_dev(dev);
8883 
8884 	rebroadcast_time = warning_time = jiffies;
8885 	refcnt = netdev_refcnt_read(dev);
8886 
8887 	while (refcnt != 0) {
8888 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8889 			rtnl_lock();
8890 
8891 			/* Rebroadcast unregister notification */
8892 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8893 
8894 			__rtnl_unlock();
8895 			rcu_barrier();
8896 			rtnl_lock();
8897 
8898 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8899 				     &dev->state)) {
8900 				/* We must not have linkwatch events
8901 				 * pending on unregister. If this
8902 				 * happens, we simply run the queue
8903 				 * unscheduled, resulting in a noop
8904 				 * for this device.
8905 				 */
8906 				linkwatch_run_queue();
8907 			}
8908 
8909 			__rtnl_unlock();
8910 
8911 			rebroadcast_time = jiffies;
8912 		}
8913 
8914 		msleep(250);
8915 
8916 		refcnt = netdev_refcnt_read(dev);
8917 
8918 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8919 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8920 				 dev->name, refcnt);
8921 			warning_time = jiffies;
8922 		}
8923 	}
8924 }
8925 
8926 /* The sequence is:
8927  *
8928  *	rtnl_lock();
8929  *	...
8930  *	register_netdevice(x1);
8931  *	register_netdevice(x2);
8932  *	...
8933  *	unregister_netdevice(y1);
8934  *	unregister_netdevice(y2);
8935  *      ...
8936  *	rtnl_unlock();
8937  *	free_netdev(y1);
8938  *	free_netdev(y2);
8939  *
8940  * We are invoked by rtnl_unlock().
8941  * This allows us to deal with problems:
8942  * 1) We can delete sysfs objects which invoke hotplug
8943  *    without deadlocking with linkwatch via keventd.
8944  * 2) Since we run with the RTNL semaphore not held, we can sleep
8945  *    safely in order to wait for the netdev refcnt to drop to zero.
8946  *
8947  * We must not return until all unregister events added during
8948  * the interval the lock was held have been completed.
8949  */
8950 void netdev_run_todo(void)
8951 {
8952 	struct list_head list;
8953 
8954 	/* Snapshot list, allow later requests */
8955 	list_replace_init(&net_todo_list, &list);
8956 
8957 	__rtnl_unlock();
8958 
8959 
8960 	/* Wait for rcu callbacks to finish before next phase */
8961 	if (!list_empty(&list))
8962 		rcu_barrier();
8963 
8964 	while (!list_empty(&list)) {
8965 		struct net_device *dev
8966 			= list_first_entry(&list, struct net_device, todo_list);
8967 		list_del(&dev->todo_list);
8968 
8969 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8970 			pr_err("network todo '%s' but state %d\n",
8971 			       dev->name, dev->reg_state);
8972 			dump_stack();
8973 			continue;
8974 		}
8975 
8976 		dev->reg_state = NETREG_UNREGISTERED;
8977 
8978 		netdev_wait_allrefs(dev);
8979 
8980 		/* paranoia */
8981 		BUG_ON(netdev_refcnt_read(dev));
8982 		BUG_ON(!list_empty(&dev->ptype_all));
8983 		BUG_ON(!list_empty(&dev->ptype_specific));
8984 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8985 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8986 #if IS_ENABLED(CONFIG_DECNET)
8987 		WARN_ON(dev->dn_ptr);
8988 #endif
8989 		if (dev->priv_destructor)
8990 			dev->priv_destructor(dev);
8991 		if (dev->needs_free_netdev)
8992 			free_netdev(dev);
8993 
8994 		/* Report a network device has been unregistered */
8995 		rtnl_lock();
8996 		dev_net(dev)->dev_unreg_count--;
8997 		__rtnl_unlock();
8998 		wake_up(&netdev_unregistering_wq);
8999 
9000 		/* Free network device */
9001 		kobject_put(&dev->dev.kobj);
9002 	}
9003 }
9004 
9005 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9006  * all the same fields in the same order as net_device_stats, with only
9007  * the type differing, but rtnl_link_stats64 may have additional fields
9008  * at the end for newer counters.
9009  */
9010 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9011 			     const struct net_device_stats *netdev_stats)
9012 {
9013 #if BITS_PER_LONG == 64
9014 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9015 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9016 	/* zero out counters that only exist in rtnl_link_stats64 */
9017 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9018 	       sizeof(*stats64) - sizeof(*netdev_stats));
9019 #else
9020 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9021 	const unsigned long *src = (const unsigned long *)netdev_stats;
9022 	u64 *dst = (u64 *)stats64;
9023 
9024 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9025 	for (i = 0; i < n; i++)
9026 		dst[i] = src[i];
9027 	/* zero out counters that only exist in rtnl_link_stats64 */
9028 	memset((char *)stats64 + n * sizeof(u64), 0,
9029 	       sizeof(*stats64) - n * sizeof(u64));
9030 #endif
9031 }
9032 EXPORT_SYMBOL(netdev_stats_to_stats64);
9033 
9034 /**
9035  *	dev_get_stats	- get network device statistics
9036  *	@dev: device to get statistics from
9037  *	@storage: place to store stats
9038  *
9039  *	Get network statistics from device. Return @storage.
9040  *	The device driver may provide its own method by setting
9041  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9042  *	otherwise the internal statistics structure is used.
9043  */
9044 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9045 					struct rtnl_link_stats64 *storage)
9046 {
9047 	const struct net_device_ops *ops = dev->netdev_ops;
9048 
9049 	if (ops->ndo_get_stats64) {
9050 		memset(storage, 0, sizeof(*storage));
9051 		ops->ndo_get_stats64(dev, storage);
9052 	} else if (ops->ndo_get_stats) {
9053 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9054 	} else {
9055 		netdev_stats_to_stats64(storage, &dev->stats);
9056 	}
9057 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9058 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9059 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9060 	return storage;
9061 }
9062 EXPORT_SYMBOL(dev_get_stats);
9063 
9064 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9065 {
9066 	struct netdev_queue *queue = dev_ingress_queue(dev);
9067 
9068 #ifdef CONFIG_NET_CLS_ACT
9069 	if (queue)
9070 		return queue;
9071 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9072 	if (!queue)
9073 		return NULL;
9074 	netdev_init_one_queue(dev, queue, NULL);
9075 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9076 	queue->qdisc_sleeping = &noop_qdisc;
9077 	rcu_assign_pointer(dev->ingress_queue, queue);
9078 #endif
9079 	return queue;
9080 }
9081 
9082 static const struct ethtool_ops default_ethtool_ops;
9083 
9084 void netdev_set_default_ethtool_ops(struct net_device *dev,
9085 				    const struct ethtool_ops *ops)
9086 {
9087 	if (dev->ethtool_ops == &default_ethtool_ops)
9088 		dev->ethtool_ops = ops;
9089 }
9090 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9091 
9092 void netdev_freemem(struct net_device *dev)
9093 {
9094 	char *addr = (char *)dev - dev->padded;
9095 
9096 	kvfree(addr);
9097 }
9098 
9099 /**
9100  * alloc_netdev_mqs - allocate network device
9101  * @sizeof_priv: size of private data to allocate space for
9102  * @name: device name format string
9103  * @name_assign_type: origin of device name
9104  * @setup: callback to initialize device
9105  * @txqs: the number of TX subqueues to allocate
9106  * @rxqs: the number of RX subqueues to allocate
9107  *
9108  * Allocates a struct net_device with private data area for driver use
9109  * and performs basic initialization.  Also allocates subqueue structs
9110  * for each queue on the device.
9111  */
9112 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9113 		unsigned char name_assign_type,
9114 		void (*setup)(struct net_device *),
9115 		unsigned int txqs, unsigned int rxqs)
9116 {
9117 	struct net_device *dev;
9118 	unsigned int alloc_size;
9119 	struct net_device *p;
9120 
9121 	BUG_ON(strlen(name) >= sizeof(dev->name));
9122 
9123 	if (txqs < 1) {
9124 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9125 		return NULL;
9126 	}
9127 
9128 	if (rxqs < 1) {
9129 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9130 		return NULL;
9131 	}
9132 
9133 	alloc_size = sizeof(struct net_device);
9134 	if (sizeof_priv) {
9135 		/* ensure 32-byte alignment of private area */
9136 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9137 		alloc_size += sizeof_priv;
9138 	}
9139 	/* ensure 32-byte alignment of whole construct */
9140 	alloc_size += NETDEV_ALIGN - 1;
9141 
9142 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9143 	if (!p)
9144 		return NULL;
9145 
9146 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9147 	dev->padded = (char *)dev - (char *)p;
9148 
9149 	dev->pcpu_refcnt = alloc_percpu(int);
9150 	if (!dev->pcpu_refcnt)
9151 		goto free_dev;
9152 
9153 	if (dev_addr_init(dev))
9154 		goto free_pcpu;
9155 
9156 	dev_mc_init(dev);
9157 	dev_uc_init(dev);
9158 
9159 	dev_net_set(dev, &init_net);
9160 
9161 	dev->gso_max_size = GSO_MAX_SIZE;
9162 	dev->gso_max_segs = GSO_MAX_SEGS;
9163 
9164 	INIT_LIST_HEAD(&dev->napi_list);
9165 	INIT_LIST_HEAD(&dev->unreg_list);
9166 	INIT_LIST_HEAD(&dev->close_list);
9167 	INIT_LIST_HEAD(&dev->link_watch_list);
9168 	INIT_LIST_HEAD(&dev->adj_list.upper);
9169 	INIT_LIST_HEAD(&dev->adj_list.lower);
9170 	INIT_LIST_HEAD(&dev->ptype_all);
9171 	INIT_LIST_HEAD(&dev->ptype_specific);
9172 #ifdef CONFIG_NET_SCHED
9173 	hash_init(dev->qdisc_hash);
9174 #endif
9175 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9176 	setup(dev);
9177 
9178 	if (!dev->tx_queue_len) {
9179 		dev->priv_flags |= IFF_NO_QUEUE;
9180 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9181 	}
9182 
9183 	dev->num_tx_queues = txqs;
9184 	dev->real_num_tx_queues = txqs;
9185 	if (netif_alloc_netdev_queues(dev))
9186 		goto free_all;
9187 
9188 	dev->num_rx_queues = rxqs;
9189 	dev->real_num_rx_queues = rxqs;
9190 	if (netif_alloc_rx_queues(dev))
9191 		goto free_all;
9192 
9193 	strcpy(dev->name, name);
9194 	dev->name_assign_type = name_assign_type;
9195 	dev->group = INIT_NETDEV_GROUP;
9196 	if (!dev->ethtool_ops)
9197 		dev->ethtool_ops = &default_ethtool_ops;
9198 
9199 	nf_hook_ingress_init(dev);
9200 
9201 	return dev;
9202 
9203 free_all:
9204 	free_netdev(dev);
9205 	return NULL;
9206 
9207 free_pcpu:
9208 	free_percpu(dev->pcpu_refcnt);
9209 free_dev:
9210 	netdev_freemem(dev);
9211 	return NULL;
9212 }
9213 EXPORT_SYMBOL(alloc_netdev_mqs);
9214 
9215 /**
9216  * free_netdev - free network device
9217  * @dev: device
9218  *
9219  * This function does the last stage of destroying an allocated device
9220  * interface. The reference to the device object is released. If this
9221  * is the last reference then it will be freed.Must be called in process
9222  * context.
9223  */
9224 void free_netdev(struct net_device *dev)
9225 {
9226 	struct napi_struct *p, *n;
9227 
9228 	might_sleep();
9229 	netif_free_tx_queues(dev);
9230 	netif_free_rx_queues(dev);
9231 
9232 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9233 
9234 	/* Flush device addresses */
9235 	dev_addr_flush(dev);
9236 
9237 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9238 		netif_napi_del(p);
9239 
9240 	free_percpu(dev->pcpu_refcnt);
9241 	dev->pcpu_refcnt = NULL;
9242 
9243 	/*  Compatibility with error handling in drivers */
9244 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9245 		netdev_freemem(dev);
9246 		return;
9247 	}
9248 
9249 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9250 	dev->reg_state = NETREG_RELEASED;
9251 
9252 	/* will free via device release */
9253 	put_device(&dev->dev);
9254 }
9255 EXPORT_SYMBOL(free_netdev);
9256 
9257 /**
9258  *	synchronize_net -  Synchronize with packet receive processing
9259  *
9260  *	Wait for packets currently being received to be done.
9261  *	Does not block later packets from starting.
9262  */
9263 void synchronize_net(void)
9264 {
9265 	might_sleep();
9266 	if (rtnl_is_locked())
9267 		synchronize_rcu_expedited();
9268 	else
9269 		synchronize_rcu();
9270 }
9271 EXPORT_SYMBOL(synchronize_net);
9272 
9273 /**
9274  *	unregister_netdevice_queue - remove device from the kernel
9275  *	@dev: device
9276  *	@head: list
9277  *
9278  *	This function shuts down a device interface and removes it
9279  *	from the kernel tables.
9280  *	If head not NULL, device is queued to be unregistered later.
9281  *
9282  *	Callers must hold the rtnl semaphore.  You may want
9283  *	unregister_netdev() instead of this.
9284  */
9285 
9286 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9287 {
9288 	ASSERT_RTNL();
9289 
9290 	if (head) {
9291 		list_move_tail(&dev->unreg_list, head);
9292 	} else {
9293 		rollback_registered(dev);
9294 		/* Finish processing unregister after unlock */
9295 		net_set_todo(dev);
9296 	}
9297 }
9298 EXPORT_SYMBOL(unregister_netdevice_queue);
9299 
9300 /**
9301  *	unregister_netdevice_many - unregister many devices
9302  *	@head: list of devices
9303  *
9304  *  Note: As most callers use a stack allocated list_head,
9305  *  we force a list_del() to make sure stack wont be corrupted later.
9306  */
9307 void unregister_netdevice_many(struct list_head *head)
9308 {
9309 	struct net_device *dev;
9310 
9311 	if (!list_empty(head)) {
9312 		rollback_registered_many(head);
9313 		list_for_each_entry(dev, head, unreg_list)
9314 			net_set_todo(dev);
9315 		list_del(head);
9316 	}
9317 }
9318 EXPORT_SYMBOL(unregister_netdevice_many);
9319 
9320 /**
9321  *	unregister_netdev - remove device from the kernel
9322  *	@dev: device
9323  *
9324  *	This function shuts down a device interface and removes it
9325  *	from the kernel tables.
9326  *
9327  *	This is just a wrapper for unregister_netdevice that takes
9328  *	the rtnl semaphore.  In general you want to use this and not
9329  *	unregister_netdevice.
9330  */
9331 void unregister_netdev(struct net_device *dev)
9332 {
9333 	rtnl_lock();
9334 	unregister_netdevice(dev);
9335 	rtnl_unlock();
9336 }
9337 EXPORT_SYMBOL(unregister_netdev);
9338 
9339 /**
9340  *	dev_change_net_namespace - move device to different nethost namespace
9341  *	@dev: device
9342  *	@net: network namespace
9343  *	@pat: If not NULL name pattern to try if the current device name
9344  *	      is already taken in the destination network namespace.
9345  *
9346  *	This function shuts down a device interface and moves it
9347  *	to a new network namespace. On success 0 is returned, on
9348  *	a failure a netagive errno code is returned.
9349  *
9350  *	Callers must hold the rtnl semaphore.
9351  */
9352 
9353 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9354 {
9355 	int err, new_nsid, new_ifindex;
9356 
9357 	ASSERT_RTNL();
9358 
9359 	/* Don't allow namespace local devices to be moved. */
9360 	err = -EINVAL;
9361 	if (dev->features & NETIF_F_NETNS_LOCAL)
9362 		goto out;
9363 
9364 	/* Ensure the device has been registrered */
9365 	if (dev->reg_state != NETREG_REGISTERED)
9366 		goto out;
9367 
9368 	/* Get out if there is nothing todo */
9369 	err = 0;
9370 	if (net_eq(dev_net(dev), net))
9371 		goto out;
9372 
9373 	/* Pick the destination device name, and ensure
9374 	 * we can use it in the destination network namespace.
9375 	 */
9376 	err = -EEXIST;
9377 	if (__dev_get_by_name(net, dev->name)) {
9378 		/* We get here if we can't use the current device name */
9379 		if (!pat)
9380 			goto out;
9381 		err = dev_get_valid_name(net, dev, pat);
9382 		if (err < 0)
9383 			goto out;
9384 	}
9385 
9386 	/*
9387 	 * And now a mini version of register_netdevice unregister_netdevice.
9388 	 */
9389 
9390 	/* If device is running close it first. */
9391 	dev_close(dev);
9392 
9393 	/* And unlink it from device chain */
9394 	unlist_netdevice(dev);
9395 
9396 	synchronize_net();
9397 
9398 	/* Shutdown queueing discipline. */
9399 	dev_shutdown(dev);
9400 
9401 	/* Notify protocols, that we are about to destroy
9402 	 * this device. They should clean all the things.
9403 	 *
9404 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9405 	 * This is wanted because this way 8021q and macvlan know
9406 	 * the device is just moving and can keep their slaves up.
9407 	 */
9408 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9409 	rcu_barrier();
9410 
9411 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9412 	/* If there is an ifindex conflict assign a new one */
9413 	if (__dev_get_by_index(net, dev->ifindex))
9414 		new_ifindex = dev_new_index(net);
9415 	else
9416 		new_ifindex = dev->ifindex;
9417 
9418 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9419 			    new_ifindex);
9420 
9421 	/*
9422 	 *	Flush the unicast and multicast chains
9423 	 */
9424 	dev_uc_flush(dev);
9425 	dev_mc_flush(dev);
9426 
9427 	/* Send a netdev-removed uevent to the old namespace */
9428 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9429 	netdev_adjacent_del_links(dev);
9430 
9431 	/* Actually switch the network namespace */
9432 	dev_net_set(dev, net);
9433 	dev->ifindex = new_ifindex;
9434 
9435 	/* Send a netdev-add uevent to the new namespace */
9436 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9437 	netdev_adjacent_add_links(dev);
9438 
9439 	/* Fixup kobjects */
9440 	err = device_rename(&dev->dev, dev->name);
9441 	WARN_ON(err);
9442 
9443 	/* Add the device back in the hashes */
9444 	list_netdevice(dev);
9445 
9446 	/* Notify protocols, that a new device appeared. */
9447 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9448 
9449 	/*
9450 	 *	Prevent userspace races by waiting until the network
9451 	 *	device is fully setup before sending notifications.
9452 	 */
9453 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9454 
9455 	synchronize_net();
9456 	err = 0;
9457 out:
9458 	return err;
9459 }
9460 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9461 
9462 static int dev_cpu_dead(unsigned int oldcpu)
9463 {
9464 	struct sk_buff **list_skb;
9465 	struct sk_buff *skb;
9466 	unsigned int cpu;
9467 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9468 
9469 	local_irq_disable();
9470 	cpu = smp_processor_id();
9471 	sd = &per_cpu(softnet_data, cpu);
9472 	oldsd = &per_cpu(softnet_data, oldcpu);
9473 
9474 	/* Find end of our completion_queue. */
9475 	list_skb = &sd->completion_queue;
9476 	while (*list_skb)
9477 		list_skb = &(*list_skb)->next;
9478 	/* Append completion queue from offline CPU. */
9479 	*list_skb = oldsd->completion_queue;
9480 	oldsd->completion_queue = NULL;
9481 
9482 	/* Append output queue from offline CPU. */
9483 	if (oldsd->output_queue) {
9484 		*sd->output_queue_tailp = oldsd->output_queue;
9485 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9486 		oldsd->output_queue = NULL;
9487 		oldsd->output_queue_tailp = &oldsd->output_queue;
9488 	}
9489 	/* Append NAPI poll list from offline CPU, with one exception :
9490 	 * process_backlog() must be called by cpu owning percpu backlog.
9491 	 * We properly handle process_queue & input_pkt_queue later.
9492 	 */
9493 	while (!list_empty(&oldsd->poll_list)) {
9494 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9495 							    struct napi_struct,
9496 							    poll_list);
9497 
9498 		list_del_init(&napi->poll_list);
9499 		if (napi->poll == process_backlog)
9500 			napi->state = 0;
9501 		else
9502 			____napi_schedule(sd, napi);
9503 	}
9504 
9505 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9506 	local_irq_enable();
9507 
9508 #ifdef CONFIG_RPS
9509 	remsd = oldsd->rps_ipi_list;
9510 	oldsd->rps_ipi_list = NULL;
9511 #endif
9512 	/* send out pending IPI's on offline CPU */
9513 	net_rps_send_ipi(remsd);
9514 
9515 	/* Process offline CPU's input_pkt_queue */
9516 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9517 		netif_rx_ni(skb);
9518 		input_queue_head_incr(oldsd);
9519 	}
9520 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9521 		netif_rx_ni(skb);
9522 		input_queue_head_incr(oldsd);
9523 	}
9524 
9525 	return 0;
9526 }
9527 
9528 /**
9529  *	netdev_increment_features - increment feature set by one
9530  *	@all: current feature set
9531  *	@one: new feature set
9532  *	@mask: mask feature set
9533  *
9534  *	Computes a new feature set after adding a device with feature set
9535  *	@one to the master device with current feature set @all.  Will not
9536  *	enable anything that is off in @mask. Returns the new feature set.
9537  */
9538 netdev_features_t netdev_increment_features(netdev_features_t all,
9539 	netdev_features_t one, netdev_features_t mask)
9540 {
9541 	if (mask & NETIF_F_HW_CSUM)
9542 		mask |= NETIF_F_CSUM_MASK;
9543 	mask |= NETIF_F_VLAN_CHALLENGED;
9544 
9545 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9546 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9547 
9548 	/* If one device supports hw checksumming, set for all. */
9549 	if (all & NETIF_F_HW_CSUM)
9550 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9551 
9552 	return all;
9553 }
9554 EXPORT_SYMBOL(netdev_increment_features);
9555 
9556 static struct hlist_head * __net_init netdev_create_hash(void)
9557 {
9558 	int i;
9559 	struct hlist_head *hash;
9560 
9561 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9562 	if (hash != NULL)
9563 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9564 			INIT_HLIST_HEAD(&hash[i]);
9565 
9566 	return hash;
9567 }
9568 
9569 /* Initialize per network namespace state */
9570 static int __net_init netdev_init(struct net *net)
9571 {
9572 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9573 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9574 
9575 	if (net != &init_net)
9576 		INIT_LIST_HEAD(&net->dev_base_head);
9577 
9578 	net->dev_name_head = netdev_create_hash();
9579 	if (net->dev_name_head == NULL)
9580 		goto err_name;
9581 
9582 	net->dev_index_head = netdev_create_hash();
9583 	if (net->dev_index_head == NULL)
9584 		goto err_idx;
9585 
9586 	return 0;
9587 
9588 err_idx:
9589 	kfree(net->dev_name_head);
9590 err_name:
9591 	return -ENOMEM;
9592 }
9593 
9594 /**
9595  *	netdev_drivername - network driver for the device
9596  *	@dev: network device
9597  *
9598  *	Determine network driver for device.
9599  */
9600 const char *netdev_drivername(const struct net_device *dev)
9601 {
9602 	const struct device_driver *driver;
9603 	const struct device *parent;
9604 	const char *empty = "";
9605 
9606 	parent = dev->dev.parent;
9607 	if (!parent)
9608 		return empty;
9609 
9610 	driver = parent->driver;
9611 	if (driver && driver->name)
9612 		return driver->name;
9613 	return empty;
9614 }
9615 
9616 static void __netdev_printk(const char *level, const struct net_device *dev,
9617 			    struct va_format *vaf)
9618 {
9619 	if (dev && dev->dev.parent) {
9620 		dev_printk_emit(level[1] - '0',
9621 				dev->dev.parent,
9622 				"%s %s %s%s: %pV",
9623 				dev_driver_string(dev->dev.parent),
9624 				dev_name(dev->dev.parent),
9625 				netdev_name(dev), netdev_reg_state(dev),
9626 				vaf);
9627 	} else if (dev) {
9628 		printk("%s%s%s: %pV",
9629 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9630 	} else {
9631 		printk("%s(NULL net_device): %pV", level, vaf);
9632 	}
9633 }
9634 
9635 void netdev_printk(const char *level, const struct net_device *dev,
9636 		   const char *format, ...)
9637 {
9638 	struct va_format vaf;
9639 	va_list args;
9640 
9641 	va_start(args, format);
9642 
9643 	vaf.fmt = format;
9644 	vaf.va = &args;
9645 
9646 	__netdev_printk(level, dev, &vaf);
9647 
9648 	va_end(args);
9649 }
9650 EXPORT_SYMBOL(netdev_printk);
9651 
9652 #define define_netdev_printk_level(func, level)			\
9653 void func(const struct net_device *dev, const char *fmt, ...)	\
9654 {								\
9655 	struct va_format vaf;					\
9656 	va_list args;						\
9657 								\
9658 	va_start(args, fmt);					\
9659 								\
9660 	vaf.fmt = fmt;						\
9661 	vaf.va = &args;						\
9662 								\
9663 	__netdev_printk(level, dev, &vaf);			\
9664 								\
9665 	va_end(args);						\
9666 }								\
9667 EXPORT_SYMBOL(func);
9668 
9669 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9670 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9671 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9672 define_netdev_printk_level(netdev_err, KERN_ERR);
9673 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9674 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9675 define_netdev_printk_level(netdev_info, KERN_INFO);
9676 
9677 static void __net_exit netdev_exit(struct net *net)
9678 {
9679 	kfree(net->dev_name_head);
9680 	kfree(net->dev_index_head);
9681 	if (net != &init_net)
9682 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9683 }
9684 
9685 static struct pernet_operations __net_initdata netdev_net_ops = {
9686 	.init = netdev_init,
9687 	.exit = netdev_exit,
9688 };
9689 
9690 static void __net_exit default_device_exit(struct net *net)
9691 {
9692 	struct net_device *dev, *aux;
9693 	/*
9694 	 * Push all migratable network devices back to the
9695 	 * initial network namespace
9696 	 */
9697 	rtnl_lock();
9698 	for_each_netdev_safe(net, dev, aux) {
9699 		int err;
9700 		char fb_name[IFNAMSIZ];
9701 
9702 		/* Ignore unmoveable devices (i.e. loopback) */
9703 		if (dev->features & NETIF_F_NETNS_LOCAL)
9704 			continue;
9705 
9706 		/* Leave virtual devices for the generic cleanup */
9707 		if (dev->rtnl_link_ops)
9708 			continue;
9709 
9710 		/* Push remaining network devices to init_net */
9711 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9712 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9713 		if (err) {
9714 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9715 				 __func__, dev->name, err);
9716 			BUG();
9717 		}
9718 	}
9719 	rtnl_unlock();
9720 }
9721 
9722 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9723 {
9724 	/* Return with the rtnl_lock held when there are no network
9725 	 * devices unregistering in any network namespace in net_list.
9726 	 */
9727 	struct net *net;
9728 	bool unregistering;
9729 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9730 
9731 	add_wait_queue(&netdev_unregistering_wq, &wait);
9732 	for (;;) {
9733 		unregistering = false;
9734 		rtnl_lock();
9735 		list_for_each_entry(net, net_list, exit_list) {
9736 			if (net->dev_unreg_count > 0) {
9737 				unregistering = true;
9738 				break;
9739 			}
9740 		}
9741 		if (!unregistering)
9742 			break;
9743 		__rtnl_unlock();
9744 
9745 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9746 	}
9747 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9748 }
9749 
9750 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9751 {
9752 	/* At exit all network devices most be removed from a network
9753 	 * namespace.  Do this in the reverse order of registration.
9754 	 * Do this across as many network namespaces as possible to
9755 	 * improve batching efficiency.
9756 	 */
9757 	struct net_device *dev;
9758 	struct net *net;
9759 	LIST_HEAD(dev_kill_list);
9760 
9761 	/* To prevent network device cleanup code from dereferencing
9762 	 * loopback devices or network devices that have been freed
9763 	 * wait here for all pending unregistrations to complete,
9764 	 * before unregistring the loopback device and allowing the
9765 	 * network namespace be freed.
9766 	 *
9767 	 * The netdev todo list containing all network devices
9768 	 * unregistrations that happen in default_device_exit_batch
9769 	 * will run in the rtnl_unlock() at the end of
9770 	 * default_device_exit_batch.
9771 	 */
9772 	rtnl_lock_unregistering(net_list);
9773 	list_for_each_entry(net, net_list, exit_list) {
9774 		for_each_netdev_reverse(net, dev) {
9775 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9776 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9777 			else
9778 				unregister_netdevice_queue(dev, &dev_kill_list);
9779 		}
9780 	}
9781 	unregister_netdevice_many(&dev_kill_list);
9782 	rtnl_unlock();
9783 }
9784 
9785 static struct pernet_operations __net_initdata default_device_ops = {
9786 	.exit = default_device_exit,
9787 	.exit_batch = default_device_exit_batch,
9788 };
9789 
9790 /*
9791  *	Initialize the DEV module. At boot time this walks the device list and
9792  *	unhooks any devices that fail to initialise (normally hardware not
9793  *	present) and leaves us with a valid list of present and active devices.
9794  *
9795  */
9796 
9797 /*
9798  *       This is called single threaded during boot, so no need
9799  *       to take the rtnl semaphore.
9800  */
9801 static int __init net_dev_init(void)
9802 {
9803 	int i, rc = -ENOMEM;
9804 
9805 	BUG_ON(!dev_boot_phase);
9806 
9807 	if (dev_proc_init())
9808 		goto out;
9809 
9810 	if (netdev_kobject_init())
9811 		goto out;
9812 
9813 	INIT_LIST_HEAD(&ptype_all);
9814 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9815 		INIT_LIST_HEAD(&ptype_base[i]);
9816 
9817 	INIT_LIST_HEAD(&offload_base);
9818 
9819 	if (register_pernet_subsys(&netdev_net_ops))
9820 		goto out;
9821 
9822 	/*
9823 	 *	Initialise the packet receive queues.
9824 	 */
9825 
9826 	for_each_possible_cpu(i) {
9827 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9828 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9829 
9830 		INIT_WORK(flush, flush_backlog);
9831 
9832 		skb_queue_head_init(&sd->input_pkt_queue);
9833 		skb_queue_head_init(&sd->process_queue);
9834 #ifdef CONFIG_XFRM_OFFLOAD
9835 		skb_queue_head_init(&sd->xfrm_backlog);
9836 #endif
9837 		INIT_LIST_HEAD(&sd->poll_list);
9838 		sd->output_queue_tailp = &sd->output_queue;
9839 #ifdef CONFIG_RPS
9840 		sd->csd.func = rps_trigger_softirq;
9841 		sd->csd.info = sd;
9842 		sd->cpu = i;
9843 #endif
9844 
9845 		init_gro_hash(&sd->backlog);
9846 		sd->backlog.poll = process_backlog;
9847 		sd->backlog.weight = weight_p;
9848 	}
9849 
9850 	dev_boot_phase = 0;
9851 
9852 	/* The loopback device is special if any other network devices
9853 	 * is present in a network namespace the loopback device must
9854 	 * be present. Since we now dynamically allocate and free the
9855 	 * loopback device ensure this invariant is maintained by
9856 	 * keeping the loopback device as the first device on the
9857 	 * list of network devices.  Ensuring the loopback devices
9858 	 * is the first device that appears and the last network device
9859 	 * that disappears.
9860 	 */
9861 	if (register_pernet_device(&loopback_net_ops))
9862 		goto out;
9863 
9864 	if (register_pernet_device(&default_device_ops))
9865 		goto out;
9866 
9867 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9868 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9869 
9870 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9871 				       NULL, dev_cpu_dead);
9872 	WARN_ON(rc < 0);
9873 	rc = 0;
9874 out:
9875 	return rc;
9876 }
9877 
9878 subsys_initcall(net_dev_init);
9879