1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/net_tstamp.h> 136 #include <linux/static_key.h> 137 #include <net/flow_keys.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 /* 148 * The list of packet types we will receive (as opposed to discard) 149 * and the routines to invoke. 150 * 151 * Why 16. Because with 16 the only overlap we get on a hash of the 152 * low nibble of the protocol value is RARP/SNAP/X.25. 153 * 154 * NOTE: That is no longer true with the addition of VLAN tags. Not 155 * sure which should go first, but I bet it won't make much 156 * difference if we are running VLANs. The good news is that 157 * this protocol won't be in the list unless compiled in, so 158 * the average user (w/out VLANs) will not be adversely affected. 159 * --BLG 160 * 161 * 0800 IP 162 * 8100 802.1Q VLAN 163 * 0001 802.3 164 * 0002 AX.25 165 * 0004 802.2 166 * 8035 RARP 167 * 0005 SNAP 168 * 0805 X.25 169 * 0806 ARP 170 * 8137 IPX 171 * 0009 Localtalk 172 * 86DD IPv6 173 */ 174 175 #define PTYPE_HASH_SIZE (16) 176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 177 178 static DEFINE_SPINLOCK(ptype_lock); 179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 180 static struct list_head ptype_all __read_mostly; /* Taps */ 181 182 /* 183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 184 * semaphore. 185 * 186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 187 * 188 * Writers must hold the rtnl semaphore while they loop through the 189 * dev_base_head list, and hold dev_base_lock for writing when they do the 190 * actual updates. This allows pure readers to access the list even 191 * while a writer is preparing to update it. 192 * 193 * To put it another way, dev_base_lock is held for writing only to 194 * protect against pure readers; the rtnl semaphore provides the 195 * protection against other writers. 196 * 197 * See, for example usages, register_netdevice() and 198 * unregister_netdevice(), which must be called with the rtnl 199 * semaphore held. 200 */ 201 DEFINE_RWLOCK(dev_base_lock); 202 EXPORT_SYMBOL(dev_base_lock); 203 204 static inline void dev_base_seq_inc(struct net *net) 205 { 206 while (++net->dev_base_seq == 0); 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 213 } 214 215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 216 { 217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 218 } 219 220 static inline void rps_lock(struct softnet_data *sd) 221 { 222 #ifdef CONFIG_RPS 223 spin_lock(&sd->input_pkt_queue.lock); 224 #endif 225 } 226 227 static inline void rps_unlock(struct softnet_data *sd) 228 { 229 #ifdef CONFIG_RPS 230 spin_unlock(&sd->input_pkt_queue.lock); 231 #endif 232 } 233 234 /* Device list insertion */ 235 static int list_netdevice(struct net_device *dev) 236 { 237 struct net *net = dev_net(dev); 238 239 ASSERT_RTNL(); 240 241 write_lock_bh(&dev_base_lock); 242 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 243 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 244 hlist_add_head_rcu(&dev->index_hlist, 245 dev_index_hash(net, dev->ifindex)); 246 write_unlock_bh(&dev_base_lock); 247 248 dev_base_seq_inc(net); 249 250 return 0; 251 } 252 253 /* Device list removal 254 * caller must respect a RCU grace period before freeing/reusing dev 255 */ 256 static void unlist_netdevice(struct net_device *dev) 257 { 258 ASSERT_RTNL(); 259 260 /* Unlink dev from the device chain */ 261 write_lock_bh(&dev_base_lock); 262 list_del_rcu(&dev->dev_list); 263 hlist_del_rcu(&dev->name_hlist); 264 hlist_del_rcu(&dev->index_hlist); 265 write_unlock_bh(&dev_base_lock); 266 267 dev_base_seq_inc(dev_net(dev)); 268 } 269 270 /* 271 * Our notifier list 272 */ 273 274 static RAW_NOTIFIER_HEAD(netdev_chain); 275 276 /* 277 * Device drivers call our routines to queue packets here. We empty the 278 * queue in the local softnet handler. 279 */ 280 281 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 282 EXPORT_PER_CPU_SYMBOL(softnet_data); 283 284 #ifdef CONFIG_LOCKDEP 285 /* 286 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 287 * according to dev->type 288 */ 289 static const unsigned short netdev_lock_type[] = 290 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 291 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 292 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 293 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 294 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 295 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 296 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 297 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 298 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 299 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 300 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 301 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 302 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 303 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 304 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 305 ARPHRD_VOID, ARPHRD_NONE}; 306 307 static const char *const netdev_lock_name[] = 308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 320 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 321 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 322 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 323 "_xmit_VOID", "_xmit_NONE"}; 324 325 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 326 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 327 328 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 329 { 330 int i; 331 332 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 333 if (netdev_lock_type[i] == dev_type) 334 return i; 335 /* the last key is used by default */ 336 return ARRAY_SIZE(netdev_lock_type) - 1; 337 } 338 339 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 340 unsigned short dev_type) 341 { 342 int i; 343 344 i = netdev_lock_pos(dev_type); 345 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 346 netdev_lock_name[i]); 347 } 348 349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350 { 351 int i; 352 353 i = netdev_lock_pos(dev->type); 354 lockdep_set_class_and_name(&dev->addr_list_lock, 355 &netdev_addr_lock_key[i], 356 netdev_lock_name[i]); 357 } 358 #else 359 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 360 unsigned short dev_type) 361 { 362 } 363 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 364 { 365 } 366 #endif 367 368 /******************************************************************************* 369 370 Protocol management and registration routines 371 372 *******************************************************************************/ 373 374 /* 375 * Add a protocol ID to the list. Now that the input handler is 376 * smarter we can dispense with all the messy stuff that used to be 377 * here. 378 * 379 * BEWARE!!! Protocol handlers, mangling input packets, 380 * MUST BE last in hash buckets and checking protocol handlers 381 * MUST start from promiscuous ptype_all chain in net_bh. 382 * It is true now, do not change it. 383 * Explanation follows: if protocol handler, mangling packet, will 384 * be the first on list, it is not able to sense, that packet 385 * is cloned and should be copied-on-write, so that it will 386 * change it and subsequent readers will get broken packet. 387 * --ANK (980803) 388 */ 389 390 static inline struct list_head *ptype_head(const struct packet_type *pt) 391 { 392 if (pt->type == htons(ETH_P_ALL)) 393 return &ptype_all; 394 else 395 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 396 } 397 398 /** 399 * dev_add_pack - add packet handler 400 * @pt: packet type declaration 401 * 402 * Add a protocol handler to the networking stack. The passed &packet_type 403 * is linked into kernel lists and may not be freed until it has been 404 * removed from the kernel lists. 405 * 406 * This call does not sleep therefore it can not 407 * guarantee all CPU's that are in middle of receiving packets 408 * will see the new packet type (until the next received packet). 409 */ 410 411 void dev_add_pack(struct packet_type *pt) 412 { 413 struct list_head *head = ptype_head(pt); 414 415 spin_lock(&ptype_lock); 416 list_add_rcu(&pt->list, head); 417 spin_unlock(&ptype_lock); 418 } 419 EXPORT_SYMBOL(dev_add_pack); 420 421 /** 422 * __dev_remove_pack - remove packet handler 423 * @pt: packet type declaration 424 * 425 * Remove a protocol handler that was previously added to the kernel 426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 427 * from the kernel lists and can be freed or reused once this function 428 * returns. 429 * 430 * The packet type might still be in use by receivers 431 * and must not be freed until after all the CPU's have gone 432 * through a quiescent state. 433 */ 434 void __dev_remove_pack(struct packet_type *pt) 435 { 436 struct list_head *head = ptype_head(pt); 437 struct packet_type *pt1; 438 439 spin_lock(&ptype_lock); 440 441 list_for_each_entry(pt1, head, list) { 442 if (pt == pt1) { 443 list_del_rcu(&pt->list); 444 goto out; 445 } 446 } 447 448 pr_warn("dev_remove_pack: %p not found\n", pt); 449 out: 450 spin_unlock(&ptype_lock); 451 } 452 EXPORT_SYMBOL(__dev_remove_pack); 453 454 /** 455 * dev_remove_pack - remove packet handler 456 * @pt: packet type declaration 457 * 458 * Remove a protocol handler that was previously added to the kernel 459 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 460 * from the kernel lists and can be freed or reused once this function 461 * returns. 462 * 463 * This call sleeps to guarantee that no CPU is looking at the packet 464 * type after return. 465 */ 466 void dev_remove_pack(struct packet_type *pt) 467 { 468 __dev_remove_pack(pt); 469 470 synchronize_net(); 471 } 472 EXPORT_SYMBOL(dev_remove_pack); 473 474 /****************************************************************************** 475 476 Device Boot-time Settings Routines 477 478 *******************************************************************************/ 479 480 /* Boot time configuration table */ 481 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 482 483 /** 484 * netdev_boot_setup_add - add new setup entry 485 * @name: name of the device 486 * @map: configured settings for the device 487 * 488 * Adds new setup entry to the dev_boot_setup list. The function 489 * returns 0 on error and 1 on success. This is a generic routine to 490 * all netdevices. 491 */ 492 static int netdev_boot_setup_add(char *name, struct ifmap *map) 493 { 494 struct netdev_boot_setup *s; 495 int i; 496 497 s = dev_boot_setup; 498 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 499 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 500 memset(s[i].name, 0, sizeof(s[i].name)); 501 strlcpy(s[i].name, name, IFNAMSIZ); 502 memcpy(&s[i].map, map, sizeof(s[i].map)); 503 break; 504 } 505 } 506 507 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 508 } 509 510 /** 511 * netdev_boot_setup_check - check boot time settings 512 * @dev: the netdevice 513 * 514 * Check boot time settings for the device. 515 * The found settings are set for the device to be used 516 * later in the device probing. 517 * Returns 0 if no settings found, 1 if they are. 518 */ 519 int netdev_boot_setup_check(struct net_device *dev) 520 { 521 struct netdev_boot_setup *s = dev_boot_setup; 522 int i; 523 524 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 525 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 526 !strcmp(dev->name, s[i].name)) { 527 dev->irq = s[i].map.irq; 528 dev->base_addr = s[i].map.base_addr; 529 dev->mem_start = s[i].map.mem_start; 530 dev->mem_end = s[i].map.mem_end; 531 return 1; 532 } 533 } 534 return 0; 535 } 536 EXPORT_SYMBOL(netdev_boot_setup_check); 537 538 539 /** 540 * netdev_boot_base - get address from boot time settings 541 * @prefix: prefix for network device 542 * @unit: id for network device 543 * 544 * Check boot time settings for the base address of device. 545 * The found settings are set for the device to be used 546 * later in the device probing. 547 * Returns 0 if no settings found. 548 */ 549 unsigned long netdev_boot_base(const char *prefix, int unit) 550 { 551 const struct netdev_boot_setup *s = dev_boot_setup; 552 char name[IFNAMSIZ]; 553 int i; 554 555 sprintf(name, "%s%d", prefix, unit); 556 557 /* 558 * If device already registered then return base of 1 559 * to indicate not to probe for this interface 560 */ 561 if (__dev_get_by_name(&init_net, name)) 562 return 1; 563 564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 565 if (!strcmp(name, s[i].name)) 566 return s[i].map.base_addr; 567 return 0; 568 } 569 570 /* 571 * Saves at boot time configured settings for any netdevice. 572 */ 573 int __init netdev_boot_setup(char *str) 574 { 575 int ints[5]; 576 struct ifmap map; 577 578 str = get_options(str, ARRAY_SIZE(ints), ints); 579 if (!str || !*str) 580 return 0; 581 582 /* Save settings */ 583 memset(&map, 0, sizeof(map)); 584 if (ints[0] > 0) 585 map.irq = ints[1]; 586 if (ints[0] > 1) 587 map.base_addr = ints[2]; 588 if (ints[0] > 2) 589 map.mem_start = ints[3]; 590 if (ints[0] > 3) 591 map.mem_end = ints[4]; 592 593 /* Add new entry to the list */ 594 return netdev_boot_setup_add(str, &map); 595 } 596 597 __setup("netdev=", netdev_boot_setup); 598 599 /******************************************************************************* 600 601 Device Interface Subroutines 602 603 *******************************************************************************/ 604 605 /** 606 * __dev_get_by_name - find a device by its name 607 * @net: the applicable net namespace 608 * @name: name to find 609 * 610 * Find an interface by name. Must be called under RTNL semaphore 611 * or @dev_base_lock. If the name is found a pointer to the device 612 * is returned. If the name is not found then %NULL is returned. The 613 * reference counters are not incremented so the caller must be 614 * careful with locks. 615 */ 616 617 struct net_device *__dev_get_by_name(struct net *net, const char *name) 618 { 619 struct hlist_node *p; 620 struct net_device *dev; 621 struct hlist_head *head = dev_name_hash(net, name); 622 623 hlist_for_each_entry(dev, p, head, name_hlist) 624 if (!strncmp(dev->name, name, IFNAMSIZ)) 625 return dev; 626 627 return NULL; 628 } 629 EXPORT_SYMBOL(__dev_get_by_name); 630 631 /** 632 * dev_get_by_name_rcu - find a device by its name 633 * @net: the applicable net namespace 634 * @name: name to find 635 * 636 * Find an interface by name. 637 * If the name is found a pointer to the device is returned. 638 * If the name is not found then %NULL is returned. 639 * The reference counters are not incremented so the caller must be 640 * careful with locks. The caller must hold RCU lock. 641 */ 642 643 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 644 { 645 struct hlist_node *p; 646 struct net_device *dev; 647 struct hlist_head *head = dev_name_hash(net, name); 648 649 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 650 if (!strncmp(dev->name, name, IFNAMSIZ)) 651 return dev; 652 653 return NULL; 654 } 655 EXPORT_SYMBOL(dev_get_by_name_rcu); 656 657 /** 658 * dev_get_by_name - find a device by its name 659 * @net: the applicable net namespace 660 * @name: name to find 661 * 662 * Find an interface by name. This can be called from any 663 * context and does its own locking. The returned handle has 664 * the usage count incremented and the caller must use dev_put() to 665 * release it when it is no longer needed. %NULL is returned if no 666 * matching device is found. 667 */ 668 669 struct net_device *dev_get_by_name(struct net *net, const char *name) 670 { 671 struct net_device *dev; 672 673 rcu_read_lock(); 674 dev = dev_get_by_name_rcu(net, name); 675 if (dev) 676 dev_hold(dev); 677 rcu_read_unlock(); 678 return dev; 679 } 680 EXPORT_SYMBOL(dev_get_by_name); 681 682 /** 683 * __dev_get_by_index - find a device by its ifindex 684 * @net: the applicable net namespace 685 * @ifindex: index of device 686 * 687 * Search for an interface by index. Returns %NULL if the device 688 * is not found or a pointer to the device. The device has not 689 * had its reference counter increased so the caller must be careful 690 * about locking. The caller must hold either the RTNL semaphore 691 * or @dev_base_lock. 692 */ 693 694 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 695 { 696 struct hlist_node *p; 697 struct net_device *dev; 698 struct hlist_head *head = dev_index_hash(net, ifindex); 699 700 hlist_for_each_entry(dev, p, head, index_hlist) 701 if (dev->ifindex == ifindex) 702 return dev; 703 704 return NULL; 705 } 706 EXPORT_SYMBOL(__dev_get_by_index); 707 708 /** 709 * dev_get_by_index_rcu - find a device by its ifindex 710 * @net: the applicable net namespace 711 * @ifindex: index of device 712 * 713 * Search for an interface by index. Returns %NULL if the device 714 * is not found or a pointer to the device. The device has not 715 * had its reference counter increased so the caller must be careful 716 * about locking. The caller must hold RCU lock. 717 */ 718 719 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 720 { 721 struct hlist_node *p; 722 struct net_device *dev; 723 struct hlist_head *head = dev_index_hash(net, ifindex); 724 725 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 726 if (dev->ifindex == ifindex) 727 return dev; 728 729 return NULL; 730 } 731 EXPORT_SYMBOL(dev_get_by_index_rcu); 732 733 734 /** 735 * dev_get_by_index - find a device by its ifindex 736 * @net: the applicable net namespace 737 * @ifindex: index of device 738 * 739 * Search for an interface by index. Returns NULL if the device 740 * is not found or a pointer to the device. The device returned has 741 * had a reference added and the pointer is safe until the user calls 742 * dev_put to indicate they have finished with it. 743 */ 744 745 struct net_device *dev_get_by_index(struct net *net, int ifindex) 746 { 747 struct net_device *dev; 748 749 rcu_read_lock(); 750 dev = dev_get_by_index_rcu(net, ifindex); 751 if (dev) 752 dev_hold(dev); 753 rcu_read_unlock(); 754 return dev; 755 } 756 EXPORT_SYMBOL(dev_get_by_index); 757 758 /** 759 * dev_getbyhwaddr_rcu - find a device by its hardware address 760 * @net: the applicable net namespace 761 * @type: media type of device 762 * @ha: hardware address 763 * 764 * Search for an interface by MAC address. Returns NULL if the device 765 * is not found or a pointer to the device. 766 * The caller must hold RCU or RTNL. 767 * The returned device has not had its ref count increased 768 * and the caller must therefore be careful about locking 769 * 770 */ 771 772 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 773 const char *ha) 774 { 775 struct net_device *dev; 776 777 for_each_netdev_rcu(net, dev) 778 if (dev->type == type && 779 !memcmp(dev->dev_addr, ha, dev->addr_len)) 780 return dev; 781 782 return NULL; 783 } 784 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 785 786 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 787 { 788 struct net_device *dev; 789 790 ASSERT_RTNL(); 791 for_each_netdev(net, dev) 792 if (dev->type == type) 793 return dev; 794 795 return NULL; 796 } 797 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 798 799 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 800 { 801 struct net_device *dev, *ret = NULL; 802 803 rcu_read_lock(); 804 for_each_netdev_rcu(net, dev) 805 if (dev->type == type) { 806 dev_hold(dev); 807 ret = dev; 808 break; 809 } 810 rcu_read_unlock(); 811 return ret; 812 } 813 EXPORT_SYMBOL(dev_getfirstbyhwtype); 814 815 /** 816 * dev_get_by_flags_rcu - find any device with given flags 817 * @net: the applicable net namespace 818 * @if_flags: IFF_* values 819 * @mask: bitmask of bits in if_flags to check 820 * 821 * Search for any interface with the given flags. Returns NULL if a device 822 * is not found or a pointer to the device. Must be called inside 823 * rcu_read_lock(), and result refcount is unchanged. 824 */ 825 826 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 827 unsigned short mask) 828 { 829 struct net_device *dev, *ret; 830 831 ret = NULL; 832 for_each_netdev_rcu(net, dev) { 833 if (((dev->flags ^ if_flags) & mask) == 0) { 834 ret = dev; 835 break; 836 } 837 } 838 return ret; 839 } 840 EXPORT_SYMBOL(dev_get_by_flags_rcu); 841 842 /** 843 * dev_valid_name - check if name is okay for network device 844 * @name: name string 845 * 846 * Network device names need to be valid file names to 847 * to allow sysfs to work. We also disallow any kind of 848 * whitespace. 849 */ 850 bool dev_valid_name(const char *name) 851 { 852 if (*name == '\0') 853 return false; 854 if (strlen(name) >= IFNAMSIZ) 855 return false; 856 if (!strcmp(name, ".") || !strcmp(name, "..")) 857 return false; 858 859 while (*name) { 860 if (*name == '/' || isspace(*name)) 861 return false; 862 name++; 863 } 864 return true; 865 } 866 EXPORT_SYMBOL(dev_valid_name); 867 868 /** 869 * __dev_alloc_name - allocate a name for a device 870 * @net: network namespace to allocate the device name in 871 * @name: name format string 872 * @buf: scratch buffer and result name string 873 * 874 * Passed a format string - eg "lt%d" it will try and find a suitable 875 * id. It scans list of devices to build up a free map, then chooses 876 * the first empty slot. The caller must hold the dev_base or rtnl lock 877 * while allocating the name and adding the device in order to avoid 878 * duplicates. 879 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 880 * Returns the number of the unit assigned or a negative errno code. 881 */ 882 883 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 884 { 885 int i = 0; 886 const char *p; 887 const int max_netdevices = 8*PAGE_SIZE; 888 unsigned long *inuse; 889 struct net_device *d; 890 891 p = strnchr(name, IFNAMSIZ-1, '%'); 892 if (p) { 893 /* 894 * Verify the string as this thing may have come from 895 * the user. There must be either one "%d" and no other "%" 896 * characters. 897 */ 898 if (p[1] != 'd' || strchr(p + 2, '%')) 899 return -EINVAL; 900 901 /* Use one page as a bit array of possible slots */ 902 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 903 if (!inuse) 904 return -ENOMEM; 905 906 for_each_netdev(net, d) { 907 if (!sscanf(d->name, name, &i)) 908 continue; 909 if (i < 0 || i >= max_netdevices) 910 continue; 911 912 /* avoid cases where sscanf is not exact inverse of printf */ 913 snprintf(buf, IFNAMSIZ, name, i); 914 if (!strncmp(buf, d->name, IFNAMSIZ)) 915 set_bit(i, inuse); 916 } 917 918 i = find_first_zero_bit(inuse, max_netdevices); 919 free_page((unsigned long) inuse); 920 } 921 922 if (buf != name) 923 snprintf(buf, IFNAMSIZ, name, i); 924 if (!__dev_get_by_name(net, buf)) 925 return i; 926 927 /* It is possible to run out of possible slots 928 * when the name is long and there isn't enough space left 929 * for the digits, or if all bits are used. 930 */ 931 return -ENFILE; 932 } 933 934 /** 935 * dev_alloc_name - allocate a name for a device 936 * @dev: device 937 * @name: name format string 938 * 939 * Passed a format string - eg "lt%d" it will try and find a suitable 940 * id. It scans list of devices to build up a free map, then chooses 941 * the first empty slot. The caller must hold the dev_base or rtnl lock 942 * while allocating the name and adding the device in order to avoid 943 * duplicates. 944 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 945 * Returns the number of the unit assigned or a negative errno code. 946 */ 947 948 int dev_alloc_name(struct net_device *dev, const char *name) 949 { 950 char buf[IFNAMSIZ]; 951 struct net *net; 952 int ret; 953 954 BUG_ON(!dev_net(dev)); 955 net = dev_net(dev); 956 ret = __dev_alloc_name(net, name, buf); 957 if (ret >= 0) 958 strlcpy(dev->name, buf, IFNAMSIZ); 959 return ret; 960 } 961 EXPORT_SYMBOL(dev_alloc_name); 962 963 static int dev_get_valid_name(struct net_device *dev, const char *name) 964 { 965 struct net *net; 966 967 BUG_ON(!dev_net(dev)); 968 net = dev_net(dev); 969 970 if (!dev_valid_name(name)) 971 return -EINVAL; 972 973 if (strchr(name, '%')) 974 return dev_alloc_name(dev, name); 975 else if (__dev_get_by_name(net, name)) 976 return -EEXIST; 977 else if (dev->name != name) 978 strlcpy(dev->name, name, IFNAMSIZ); 979 980 return 0; 981 } 982 983 /** 984 * dev_change_name - change name of a device 985 * @dev: device 986 * @newname: name (or format string) must be at least IFNAMSIZ 987 * 988 * Change name of a device, can pass format strings "eth%d". 989 * for wildcarding. 990 */ 991 int dev_change_name(struct net_device *dev, const char *newname) 992 { 993 char oldname[IFNAMSIZ]; 994 int err = 0; 995 int ret; 996 struct net *net; 997 998 ASSERT_RTNL(); 999 BUG_ON(!dev_net(dev)); 1000 1001 net = dev_net(dev); 1002 if (dev->flags & IFF_UP) 1003 return -EBUSY; 1004 1005 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1006 return 0; 1007 1008 memcpy(oldname, dev->name, IFNAMSIZ); 1009 1010 err = dev_get_valid_name(dev, newname); 1011 if (err < 0) 1012 return err; 1013 1014 rollback: 1015 ret = device_rename(&dev->dev, dev->name); 1016 if (ret) { 1017 memcpy(dev->name, oldname, IFNAMSIZ); 1018 return ret; 1019 } 1020 1021 write_lock_bh(&dev_base_lock); 1022 hlist_del_rcu(&dev->name_hlist); 1023 write_unlock_bh(&dev_base_lock); 1024 1025 synchronize_rcu(); 1026 1027 write_lock_bh(&dev_base_lock); 1028 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1029 write_unlock_bh(&dev_base_lock); 1030 1031 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1032 ret = notifier_to_errno(ret); 1033 1034 if (ret) { 1035 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1036 if (err >= 0) { 1037 err = ret; 1038 memcpy(dev->name, oldname, IFNAMSIZ); 1039 goto rollback; 1040 } else { 1041 pr_err("%s: name change rollback failed: %d\n", 1042 dev->name, ret); 1043 } 1044 } 1045 1046 return err; 1047 } 1048 1049 /** 1050 * dev_set_alias - change ifalias of a device 1051 * @dev: device 1052 * @alias: name up to IFALIASZ 1053 * @len: limit of bytes to copy from info 1054 * 1055 * Set ifalias for a device, 1056 */ 1057 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1058 { 1059 ASSERT_RTNL(); 1060 1061 if (len >= IFALIASZ) 1062 return -EINVAL; 1063 1064 if (!len) { 1065 if (dev->ifalias) { 1066 kfree(dev->ifalias); 1067 dev->ifalias = NULL; 1068 } 1069 return 0; 1070 } 1071 1072 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1073 if (!dev->ifalias) 1074 return -ENOMEM; 1075 1076 strlcpy(dev->ifalias, alias, len+1); 1077 return len; 1078 } 1079 1080 1081 /** 1082 * netdev_features_change - device changes features 1083 * @dev: device to cause notification 1084 * 1085 * Called to indicate a device has changed features. 1086 */ 1087 void netdev_features_change(struct net_device *dev) 1088 { 1089 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1090 } 1091 EXPORT_SYMBOL(netdev_features_change); 1092 1093 /** 1094 * netdev_state_change - device changes state 1095 * @dev: device to cause notification 1096 * 1097 * Called to indicate a device has changed state. This function calls 1098 * the notifier chains for netdev_chain and sends a NEWLINK message 1099 * to the routing socket. 1100 */ 1101 void netdev_state_change(struct net_device *dev) 1102 { 1103 if (dev->flags & IFF_UP) { 1104 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1105 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1106 } 1107 } 1108 EXPORT_SYMBOL(netdev_state_change); 1109 1110 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1111 { 1112 return call_netdevice_notifiers(event, dev); 1113 } 1114 EXPORT_SYMBOL(netdev_bonding_change); 1115 1116 /** 1117 * dev_load - load a network module 1118 * @net: the applicable net namespace 1119 * @name: name of interface 1120 * 1121 * If a network interface is not present and the process has suitable 1122 * privileges this function loads the module. If module loading is not 1123 * available in this kernel then it becomes a nop. 1124 */ 1125 1126 void dev_load(struct net *net, const char *name) 1127 { 1128 struct net_device *dev; 1129 int no_module; 1130 1131 rcu_read_lock(); 1132 dev = dev_get_by_name_rcu(net, name); 1133 rcu_read_unlock(); 1134 1135 no_module = !dev; 1136 if (no_module && capable(CAP_NET_ADMIN)) 1137 no_module = request_module("netdev-%s", name); 1138 if (no_module && capable(CAP_SYS_MODULE)) { 1139 if (!request_module("%s", name)) 1140 pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n", 1141 name); 1142 } 1143 } 1144 EXPORT_SYMBOL(dev_load); 1145 1146 static int __dev_open(struct net_device *dev) 1147 { 1148 const struct net_device_ops *ops = dev->netdev_ops; 1149 int ret; 1150 1151 ASSERT_RTNL(); 1152 1153 if (!netif_device_present(dev)) 1154 return -ENODEV; 1155 1156 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1157 ret = notifier_to_errno(ret); 1158 if (ret) 1159 return ret; 1160 1161 set_bit(__LINK_STATE_START, &dev->state); 1162 1163 if (ops->ndo_validate_addr) 1164 ret = ops->ndo_validate_addr(dev); 1165 1166 if (!ret && ops->ndo_open) 1167 ret = ops->ndo_open(dev); 1168 1169 if (ret) 1170 clear_bit(__LINK_STATE_START, &dev->state); 1171 else { 1172 dev->flags |= IFF_UP; 1173 net_dmaengine_get(); 1174 dev_set_rx_mode(dev); 1175 dev_activate(dev); 1176 } 1177 1178 return ret; 1179 } 1180 1181 /** 1182 * dev_open - prepare an interface for use. 1183 * @dev: device to open 1184 * 1185 * Takes a device from down to up state. The device's private open 1186 * function is invoked and then the multicast lists are loaded. Finally 1187 * the device is moved into the up state and a %NETDEV_UP message is 1188 * sent to the netdev notifier chain. 1189 * 1190 * Calling this function on an active interface is a nop. On a failure 1191 * a negative errno code is returned. 1192 */ 1193 int dev_open(struct net_device *dev) 1194 { 1195 int ret; 1196 1197 if (dev->flags & IFF_UP) 1198 return 0; 1199 1200 ret = __dev_open(dev); 1201 if (ret < 0) 1202 return ret; 1203 1204 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1205 call_netdevice_notifiers(NETDEV_UP, dev); 1206 1207 return ret; 1208 } 1209 EXPORT_SYMBOL(dev_open); 1210 1211 static int __dev_close_many(struct list_head *head) 1212 { 1213 struct net_device *dev; 1214 1215 ASSERT_RTNL(); 1216 might_sleep(); 1217 1218 list_for_each_entry(dev, head, unreg_list) { 1219 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1220 1221 clear_bit(__LINK_STATE_START, &dev->state); 1222 1223 /* Synchronize to scheduled poll. We cannot touch poll list, it 1224 * can be even on different cpu. So just clear netif_running(). 1225 * 1226 * dev->stop() will invoke napi_disable() on all of it's 1227 * napi_struct instances on this device. 1228 */ 1229 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1230 } 1231 1232 dev_deactivate_many(head); 1233 1234 list_for_each_entry(dev, head, unreg_list) { 1235 const struct net_device_ops *ops = dev->netdev_ops; 1236 1237 /* 1238 * Call the device specific close. This cannot fail. 1239 * Only if device is UP 1240 * 1241 * We allow it to be called even after a DETACH hot-plug 1242 * event. 1243 */ 1244 if (ops->ndo_stop) 1245 ops->ndo_stop(dev); 1246 1247 dev->flags &= ~IFF_UP; 1248 net_dmaengine_put(); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static int __dev_close(struct net_device *dev) 1255 { 1256 int retval; 1257 LIST_HEAD(single); 1258 1259 list_add(&dev->unreg_list, &single); 1260 retval = __dev_close_many(&single); 1261 list_del(&single); 1262 return retval; 1263 } 1264 1265 static int dev_close_many(struct list_head *head) 1266 { 1267 struct net_device *dev, *tmp; 1268 LIST_HEAD(tmp_list); 1269 1270 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1271 if (!(dev->flags & IFF_UP)) 1272 list_move(&dev->unreg_list, &tmp_list); 1273 1274 __dev_close_many(head); 1275 1276 list_for_each_entry(dev, head, unreg_list) { 1277 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1278 call_netdevice_notifiers(NETDEV_DOWN, dev); 1279 } 1280 1281 /* rollback_registered_many needs the complete original list */ 1282 list_splice(&tmp_list, head); 1283 return 0; 1284 } 1285 1286 /** 1287 * dev_close - shutdown an interface. 1288 * @dev: device to shutdown 1289 * 1290 * This function moves an active device into down state. A 1291 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1292 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1293 * chain. 1294 */ 1295 int dev_close(struct net_device *dev) 1296 { 1297 if (dev->flags & IFF_UP) { 1298 LIST_HEAD(single); 1299 1300 list_add(&dev->unreg_list, &single); 1301 dev_close_many(&single); 1302 list_del(&single); 1303 } 1304 return 0; 1305 } 1306 EXPORT_SYMBOL(dev_close); 1307 1308 1309 /** 1310 * dev_disable_lro - disable Large Receive Offload on a device 1311 * @dev: device 1312 * 1313 * Disable Large Receive Offload (LRO) on a net device. Must be 1314 * called under RTNL. This is needed if received packets may be 1315 * forwarded to another interface. 1316 */ 1317 void dev_disable_lro(struct net_device *dev) 1318 { 1319 /* 1320 * If we're trying to disable lro on a vlan device 1321 * use the underlying physical device instead 1322 */ 1323 if (is_vlan_dev(dev)) 1324 dev = vlan_dev_real_dev(dev); 1325 1326 dev->wanted_features &= ~NETIF_F_LRO; 1327 netdev_update_features(dev); 1328 1329 if (unlikely(dev->features & NETIF_F_LRO)) 1330 netdev_WARN(dev, "failed to disable LRO!\n"); 1331 } 1332 EXPORT_SYMBOL(dev_disable_lro); 1333 1334 1335 static int dev_boot_phase = 1; 1336 1337 /** 1338 * register_netdevice_notifier - register a network notifier block 1339 * @nb: notifier 1340 * 1341 * Register a notifier to be called when network device events occur. 1342 * The notifier passed is linked into the kernel structures and must 1343 * not be reused until it has been unregistered. A negative errno code 1344 * is returned on a failure. 1345 * 1346 * When registered all registration and up events are replayed 1347 * to the new notifier to allow device to have a race free 1348 * view of the network device list. 1349 */ 1350 1351 int register_netdevice_notifier(struct notifier_block *nb) 1352 { 1353 struct net_device *dev; 1354 struct net_device *last; 1355 struct net *net; 1356 int err; 1357 1358 rtnl_lock(); 1359 err = raw_notifier_chain_register(&netdev_chain, nb); 1360 if (err) 1361 goto unlock; 1362 if (dev_boot_phase) 1363 goto unlock; 1364 for_each_net(net) { 1365 for_each_netdev(net, dev) { 1366 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1367 err = notifier_to_errno(err); 1368 if (err) 1369 goto rollback; 1370 1371 if (!(dev->flags & IFF_UP)) 1372 continue; 1373 1374 nb->notifier_call(nb, NETDEV_UP, dev); 1375 } 1376 } 1377 1378 unlock: 1379 rtnl_unlock(); 1380 return err; 1381 1382 rollback: 1383 last = dev; 1384 for_each_net(net) { 1385 for_each_netdev(net, dev) { 1386 if (dev == last) 1387 goto outroll; 1388 1389 if (dev->flags & IFF_UP) { 1390 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1391 nb->notifier_call(nb, NETDEV_DOWN, dev); 1392 } 1393 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1394 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1395 } 1396 } 1397 1398 outroll: 1399 raw_notifier_chain_unregister(&netdev_chain, nb); 1400 goto unlock; 1401 } 1402 EXPORT_SYMBOL(register_netdevice_notifier); 1403 1404 /** 1405 * unregister_netdevice_notifier - unregister a network notifier block 1406 * @nb: notifier 1407 * 1408 * Unregister a notifier previously registered by 1409 * register_netdevice_notifier(). The notifier is unlinked into the 1410 * kernel structures and may then be reused. A negative errno code 1411 * is returned on a failure. 1412 * 1413 * After unregistering unregister and down device events are synthesized 1414 * for all devices on the device list to the removed notifier to remove 1415 * the need for special case cleanup code. 1416 */ 1417 1418 int unregister_netdevice_notifier(struct notifier_block *nb) 1419 { 1420 struct net_device *dev; 1421 struct net *net; 1422 int err; 1423 1424 rtnl_lock(); 1425 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1426 if (err) 1427 goto unlock; 1428 1429 for_each_net(net) { 1430 for_each_netdev(net, dev) { 1431 if (dev->flags & IFF_UP) { 1432 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1433 nb->notifier_call(nb, NETDEV_DOWN, dev); 1434 } 1435 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1436 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1437 } 1438 } 1439 unlock: 1440 rtnl_unlock(); 1441 return err; 1442 } 1443 EXPORT_SYMBOL(unregister_netdevice_notifier); 1444 1445 /** 1446 * call_netdevice_notifiers - call all network notifier blocks 1447 * @val: value passed unmodified to notifier function 1448 * @dev: net_device pointer passed unmodified to notifier function 1449 * 1450 * Call all network notifier blocks. Parameters and return value 1451 * are as for raw_notifier_call_chain(). 1452 */ 1453 1454 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1455 { 1456 ASSERT_RTNL(); 1457 return raw_notifier_call_chain(&netdev_chain, val, dev); 1458 } 1459 EXPORT_SYMBOL(call_netdevice_notifiers); 1460 1461 static struct static_key netstamp_needed __read_mostly; 1462 #ifdef HAVE_JUMP_LABEL 1463 /* We are not allowed to call static_key_slow_dec() from irq context 1464 * If net_disable_timestamp() is called from irq context, defer the 1465 * static_key_slow_dec() calls. 1466 */ 1467 static atomic_t netstamp_needed_deferred; 1468 #endif 1469 1470 void net_enable_timestamp(void) 1471 { 1472 #ifdef HAVE_JUMP_LABEL 1473 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1474 1475 if (deferred) { 1476 while (--deferred) 1477 static_key_slow_dec(&netstamp_needed); 1478 return; 1479 } 1480 #endif 1481 WARN_ON(in_interrupt()); 1482 static_key_slow_inc(&netstamp_needed); 1483 } 1484 EXPORT_SYMBOL(net_enable_timestamp); 1485 1486 void net_disable_timestamp(void) 1487 { 1488 #ifdef HAVE_JUMP_LABEL 1489 if (in_interrupt()) { 1490 atomic_inc(&netstamp_needed_deferred); 1491 return; 1492 } 1493 #endif 1494 static_key_slow_dec(&netstamp_needed); 1495 } 1496 EXPORT_SYMBOL(net_disable_timestamp); 1497 1498 static inline void net_timestamp_set(struct sk_buff *skb) 1499 { 1500 skb->tstamp.tv64 = 0; 1501 if (static_key_false(&netstamp_needed)) 1502 __net_timestamp(skb); 1503 } 1504 1505 #define net_timestamp_check(COND, SKB) \ 1506 if (static_key_false(&netstamp_needed)) { \ 1507 if ((COND) && !(SKB)->tstamp.tv64) \ 1508 __net_timestamp(SKB); \ 1509 } \ 1510 1511 static int net_hwtstamp_validate(struct ifreq *ifr) 1512 { 1513 struct hwtstamp_config cfg; 1514 enum hwtstamp_tx_types tx_type; 1515 enum hwtstamp_rx_filters rx_filter; 1516 int tx_type_valid = 0; 1517 int rx_filter_valid = 0; 1518 1519 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1520 return -EFAULT; 1521 1522 if (cfg.flags) /* reserved for future extensions */ 1523 return -EINVAL; 1524 1525 tx_type = cfg.tx_type; 1526 rx_filter = cfg.rx_filter; 1527 1528 switch (tx_type) { 1529 case HWTSTAMP_TX_OFF: 1530 case HWTSTAMP_TX_ON: 1531 case HWTSTAMP_TX_ONESTEP_SYNC: 1532 tx_type_valid = 1; 1533 break; 1534 } 1535 1536 switch (rx_filter) { 1537 case HWTSTAMP_FILTER_NONE: 1538 case HWTSTAMP_FILTER_ALL: 1539 case HWTSTAMP_FILTER_SOME: 1540 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1541 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1542 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1543 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1544 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1545 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1546 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1547 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1548 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1549 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1550 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1551 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1552 rx_filter_valid = 1; 1553 break; 1554 } 1555 1556 if (!tx_type_valid || !rx_filter_valid) 1557 return -ERANGE; 1558 1559 return 0; 1560 } 1561 1562 static inline bool is_skb_forwardable(struct net_device *dev, 1563 struct sk_buff *skb) 1564 { 1565 unsigned int len; 1566 1567 if (!(dev->flags & IFF_UP)) 1568 return false; 1569 1570 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1571 if (skb->len <= len) 1572 return true; 1573 1574 /* if TSO is enabled, we don't care about the length as the packet 1575 * could be forwarded without being segmented before 1576 */ 1577 if (skb_is_gso(skb)) 1578 return true; 1579 1580 return false; 1581 } 1582 1583 /** 1584 * dev_forward_skb - loopback an skb to another netif 1585 * 1586 * @dev: destination network device 1587 * @skb: buffer to forward 1588 * 1589 * return values: 1590 * NET_RX_SUCCESS (no congestion) 1591 * NET_RX_DROP (packet was dropped, but freed) 1592 * 1593 * dev_forward_skb can be used for injecting an skb from the 1594 * start_xmit function of one device into the receive queue 1595 * of another device. 1596 * 1597 * The receiving device may be in another namespace, so 1598 * we have to clear all information in the skb that could 1599 * impact namespace isolation. 1600 */ 1601 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1602 { 1603 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1604 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1605 atomic_long_inc(&dev->rx_dropped); 1606 kfree_skb(skb); 1607 return NET_RX_DROP; 1608 } 1609 } 1610 1611 skb_orphan(skb); 1612 nf_reset(skb); 1613 1614 if (unlikely(!is_skb_forwardable(dev, skb))) { 1615 atomic_long_inc(&dev->rx_dropped); 1616 kfree_skb(skb); 1617 return NET_RX_DROP; 1618 } 1619 skb->skb_iif = 0; 1620 skb_set_dev(skb, dev); 1621 skb->tstamp.tv64 = 0; 1622 skb->pkt_type = PACKET_HOST; 1623 skb->protocol = eth_type_trans(skb, dev); 1624 return netif_rx(skb); 1625 } 1626 EXPORT_SYMBOL_GPL(dev_forward_skb); 1627 1628 static inline int deliver_skb(struct sk_buff *skb, 1629 struct packet_type *pt_prev, 1630 struct net_device *orig_dev) 1631 { 1632 atomic_inc(&skb->users); 1633 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1634 } 1635 1636 /* 1637 * Support routine. Sends outgoing frames to any network 1638 * taps currently in use. 1639 */ 1640 1641 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1642 { 1643 struct packet_type *ptype; 1644 struct sk_buff *skb2 = NULL; 1645 struct packet_type *pt_prev = NULL; 1646 1647 rcu_read_lock(); 1648 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1649 /* Never send packets back to the socket 1650 * they originated from - MvS (miquels@drinkel.ow.org) 1651 */ 1652 if ((ptype->dev == dev || !ptype->dev) && 1653 (ptype->af_packet_priv == NULL || 1654 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1655 if (pt_prev) { 1656 deliver_skb(skb2, pt_prev, skb->dev); 1657 pt_prev = ptype; 1658 continue; 1659 } 1660 1661 skb2 = skb_clone(skb, GFP_ATOMIC); 1662 if (!skb2) 1663 break; 1664 1665 net_timestamp_set(skb2); 1666 1667 /* skb->nh should be correctly 1668 set by sender, so that the second statement is 1669 just protection against buggy protocols. 1670 */ 1671 skb_reset_mac_header(skb2); 1672 1673 if (skb_network_header(skb2) < skb2->data || 1674 skb2->network_header > skb2->tail) { 1675 if (net_ratelimit()) 1676 pr_crit("protocol %04x is buggy, dev %s\n", 1677 ntohs(skb2->protocol), 1678 dev->name); 1679 skb_reset_network_header(skb2); 1680 } 1681 1682 skb2->transport_header = skb2->network_header; 1683 skb2->pkt_type = PACKET_OUTGOING; 1684 pt_prev = ptype; 1685 } 1686 } 1687 if (pt_prev) 1688 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1689 rcu_read_unlock(); 1690 } 1691 1692 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1693 * @dev: Network device 1694 * @txq: number of queues available 1695 * 1696 * If real_num_tx_queues is changed the tc mappings may no longer be 1697 * valid. To resolve this verify the tc mapping remains valid and if 1698 * not NULL the mapping. With no priorities mapping to this 1699 * offset/count pair it will no longer be used. In the worst case TC0 1700 * is invalid nothing can be done so disable priority mappings. If is 1701 * expected that drivers will fix this mapping if they can before 1702 * calling netif_set_real_num_tx_queues. 1703 */ 1704 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1705 { 1706 int i; 1707 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1708 1709 /* If TC0 is invalidated disable TC mapping */ 1710 if (tc->offset + tc->count > txq) { 1711 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1712 dev->num_tc = 0; 1713 return; 1714 } 1715 1716 /* Invalidated prio to tc mappings set to TC0 */ 1717 for (i = 1; i < TC_BITMASK + 1; i++) { 1718 int q = netdev_get_prio_tc_map(dev, i); 1719 1720 tc = &dev->tc_to_txq[q]; 1721 if (tc->offset + tc->count > txq) { 1722 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1723 i, q); 1724 netdev_set_prio_tc_map(dev, i, 0); 1725 } 1726 } 1727 } 1728 1729 /* 1730 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1731 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1732 */ 1733 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1734 { 1735 int rc; 1736 1737 if (txq < 1 || txq > dev->num_tx_queues) 1738 return -EINVAL; 1739 1740 if (dev->reg_state == NETREG_REGISTERED || 1741 dev->reg_state == NETREG_UNREGISTERING) { 1742 ASSERT_RTNL(); 1743 1744 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1745 txq); 1746 if (rc) 1747 return rc; 1748 1749 if (dev->num_tc) 1750 netif_setup_tc(dev, txq); 1751 1752 if (txq < dev->real_num_tx_queues) 1753 qdisc_reset_all_tx_gt(dev, txq); 1754 } 1755 1756 dev->real_num_tx_queues = txq; 1757 return 0; 1758 } 1759 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1760 1761 #ifdef CONFIG_RPS 1762 /** 1763 * netif_set_real_num_rx_queues - set actual number of RX queues used 1764 * @dev: Network device 1765 * @rxq: Actual number of RX queues 1766 * 1767 * This must be called either with the rtnl_lock held or before 1768 * registration of the net device. Returns 0 on success, or a 1769 * negative error code. If called before registration, it always 1770 * succeeds. 1771 */ 1772 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1773 { 1774 int rc; 1775 1776 if (rxq < 1 || rxq > dev->num_rx_queues) 1777 return -EINVAL; 1778 1779 if (dev->reg_state == NETREG_REGISTERED) { 1780 ASSERT_RTNL(); 1781 1782 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1783 rxq); 1784 if (rc) 1785 return rc; 1786 } 1787 1788 dev->real_num_rx_queues = rxq; 1789 return 0; 1790 } 1791 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1792 #endif 1793 1794 static inline void __netif_reschedule(struct Qdisc *q) 1795 { 1796 struct softnet_data *sd; 1797 unsigned long flags; 1798 1799 local_irq_save(flags); 1800 sd = &__get_cpu_var(softnet_data); 1801 q->next_sched = NULL; 1802 *sd->output_queue_tailp = q; 1803 sd->output_queue_tailp = &q->next_sched; 1804 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1805 local_irq_restore(flags); 1806 } 1807 1808 void __netif_schedule(struct Qdisc *q) 1809 { 1810 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1811 __netif_reschedule(q); 1812 } 1813 EXPORT_SYMBOL(__netif_schedule); 1814 1815 void dev_kfree_skb_irq(struct sk_buff *skb) 1816 { 1817 if (atomic_dec_and_test(&skb->users)) { 1818 struct softnet_data *sd; 1819 unsigned long flags; 1820 1821 local_irq_save(flags); 1822 sd = &__get_cpu_var(softnet_data); 1823 skb->next = sd->completion_queue; 1824 sd->completion_queue = skb; 1825 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1826 local_irq_restore(flags); 1827 } 1828 } 1829 EXPORT_SYMBOL(dev_kfree_skb_irq); 1830 1831 void dev_kfree_skb_any(struct sk_buff *skb) 1832 { 1833 if (in_irq() || irqs_disabled()) 1834 dev_kfree_skb_irq(skb); 1835 else 1836 dev_kfree_skb(skb); 1837 } 1838 EXPORT_SYMBOL(dev_kfree_skb_any); 1839 1840 1841 /** 1842 * netif_device_detach - mark device as removed 1843 * @dev: network device 1844 * 1845 * Mark device as removed from system and therefore no longer available. 1846 */ 1847 void netif_device_detach(struct net_device *dev) 1848 { 1849 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1850 netif_running(dev)) { 1851 netif_tx_stop_all_queues(dev); 1852 } 1853 } 1854 EXPORT_SYMBOL(netif_device_detach); 1855 1856 /** 1857 * netif_device_attach - mark device as attached 1858 * @dev: network device 1859 * 1860 * Mark device as attached from system and restart if needed. 1861 */ 1862 void netif_device_attach(struct net_device *dev) 1863 { 1864 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1865 netif_running(dev)) { 1866 netif_tx_wake_all_queues(dev); 1867 __netdev_watchdog_up(dev); 1868 } 1869 } 1870 EXPORT_SYMBOL(netif_device_attach); 1871 1872 /** 1873 * skb_dev_set -- assign a new device to a buffer 1874 * @skb: buffer for the new device 1875 * @dev: network device 1876 * 1877 * If an skb is owned by a device already, we have to reset 1878 * all data private to the namespace a device belongs to 1879 * before assigning it a new device. 1880 */ 1881 #ifdef CONFIG_NET_NS 1882 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1883 { 1884 skb_dst_drop(skb); 1885 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1886 secpath_reset(skb); 1887 nf_reset(skb); 1888 skb_init_secmark(skb); 1889 skb->mark = 0; 1890 skb->priority = 0; 1891 skb->nf_trace = 0; 1892 skb->ipvs_property = 0; 1893 #ifdef CONFIG_NET_SCHED 1894 skb->tc_index = 0; 1895 #endif 1896 } 1897 skb->dev = dev; 1898 } 1899 EXPORT_SYMBOL(skb_set_dev); 1900 #endif /* CONFIG_NET_NS */ 1901 1902 static void skb_warn_bad_offload(const struct sk_buff *skb) 1903 { 1904 static const netdev_features_t null_features = 0; 1905 struct net_device *dev = skb->dev; 1906 const char *driver = ""; 1907 1908 if (dev && dev->dev.parent) 1909 driver = dev_driver_string(dev->dev.parent); 1910 1911 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 1912 "gso_type=%d ip_summed=%d\n", 1913 driver, dev ? &dev->features : &null_features, 1914 skb->sk ? &skb->sk->sk_route_caps : &null_features, 1915 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 1916 skb_shinfo(skb)->gso_type, skb->ip_summed); 1917 } 1918 1919 /* 1920 * Invalidate hardware checksum when packet is to be mangled, and 1921 * complete checksum manually on outgoing path. 1922 */ 1923 int skb_checksum_help(struct sk_buff *skb) 1924 { 1925 __wsum csum; 1926 int ret = 0, offset; 1927 1928 if (skb->ip_summed == CHECKSUM_COMPLETE) 1929 goto out_set_summed; 1930 1931 if (unlikely(skb_shinfo(skb)->gso_size)) { 1932 skb_warn_bad_offload(skb); 1933 return -EINVAL; 1934 } 1935 1936 offset = skb_checksum_start_offset(skb); 1937 BUG_ON(offset >= skb_headlen(skb)); 1938 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1939 1940 offset += skb->csum_offset; 1941 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1942 1943 if (skb_cloned(skb) && 1944 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1945 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1946 if (ret) 1947 goto out; 1948 } 1949 1950 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1951 out_set_summed: 1952 skb->ip_summed = CHECKSUM_NONE; 1953 out: 1954 return ret; 1955 } 1956 EXPORT_SYMBOL(skb_checksum_help); 1957 1958 /** 1959 * skb_gso_segment - Perform segmentation on skb. 1960 * @skb: buffer to segment 1961 * @features: features for the output path (see dev->features) 1962 * 1963 * This function segments the given skb and returns a list of segments. 1964 * 1965 * It may return NULL if the skb requires no segmentation. This is 1966 * only possible when GSO is used for verifying header integrity. 1967 */ 1968 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1969 netdev_features_t features) 1970 { 1971 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1972 struct packet_type *ptype; 1973 __be16 type = skb->protocol; 1974 int vlan_depth = ETH_HLEN; 1975 int err; 1976 1977 while (type == htons(ETH_P_8021Q)) { 1978 struct vlan_hdr *vh; 1979 1980 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1981 return ERR_PTR(-EINVAL); 1982 1983 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1984 type = vh->h_vlan_encapsulated_proto; 1985 vlan_depth += VLAN_HLEN; 1986 } 1987 1988 skb_reset_mac_header(skb); 1989 skb->mac_len = skb->network_header - skb->mac_header; 1990 __skb_pull(skb, skb->mac_len); 1991 1992 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1993 skb_warn_bad_offload(skb); 1994 1995 if (skb_header_cloned(skb) && 1996 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1997 return ERR_PTR(err); 1998 } 1999 2000 rcu_read_lock(); 2001 list_for_each_entry_rcu(ptype, 2002 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2003 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 2004 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2005 err = ptype->gso_send_check(skb); 2006 segs = ERR_PTR(err); 2007 if (err || skb_gso_ok(skb, features)) 2008 break; 2009 __skb_push(skb, (skb->data - 2010 skb_network_header(skb))); 2011 } 2012 segs = ptype->gso_segment(skb, features); 2013 break; 2014 } 2015 } 2016 rcu_read_unlock(); 2017 2018 __skb_push(skb, skb->data - skb_mac_header(skb)); 2019 2020 return segs; 2021 } 2022 EXPORT_SYMBOL(skb_gso_segment); 2023 2024 /* Take action when hardware reception checksum errors are detected. */ 2025 #ifdef CONFIG_BUG 2026 void netdev_rx_csum_fault(struct net_device *dev) 2027 { 2028 if (net_ratelimit()) { 2029 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2030 dump_stack(); 2031 } 2032 } 2033 EXPORT_SYMBOL(netdev_rx_csum_fault); 2034 #endif 2035 2036 /* Actually, we should eliminate this check as soon as we know, that: 2037 * 1. IOMMU is present and allows to map all the memory. 2038 * 2. No high memory really exists on this machine. 2039 */ 2040 2041 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2042 { 2043 #ifdef CONFIG_HIGHMEM 2044 int i; 2045 if (!(dev->features & NETIF_F_HIGHDMA)) { 2046 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2047 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2048 if (PageHighMem(skb_frag_page(frag))) 2049 return 1; 2050 } 2051 } 2052 2053 if (PCI_DMA_BUS_IS_PHYS) { 2054 struct device *pdev = dev->dev.parent; 2055 2056 if (!pdev) 2057 return 0; 2058 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2059 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2060 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2061 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2062 return 1; 2063 } 2064 } 2065 #endif 2066 return 0; 2067 } 2068 2069 struct dev_gso_cb { 2070 void (*destructor)(struct sk_buff *skb); 2071 }; 2072 2073 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2074 2075 static void dev_gso_skb_destructor(struct sk_buff *skb) 2076 { 2077 struct dev_gso_cb *cb; 2078 2079 do { 2080 struct sk_buff *nskb = skb->next; 2081 2082 skb->next = nskb->next; 2083 nskb->next = NULL; 2084 kfree_skb(nskb); 2085 } while (skb->next); 2086 2087 cb = DEV_GSO_CB(skb); 2088 if (cb->destructor) 2089 cb->destructor(skb); 2090 } 2091 2092 /** 2093 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2094 * @skb: buffer to segment 2095 * @features: device features as applicable to this skb 2096 * 2097 * This function segments the given skb and stores the list of segments 2098 * in skb->next. 2099 */ 2100 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2101 { 2102 struct sk_buff *segs; 2103 2104 segs = skb_gso_segment(skb, features); 2105 2106 /* Verifying header integrity only. */ 2107 if (!segs) 2108 return 0; 2109 2110 if (IS_ERR(segs)) 2111 return PTR_ERR(segs); 2112 2113 skb->next = segs; 2114 DEV_GSO_CB(skb)->destructor = skb->destructor; 2115 skb->destructor = dev_gso_skb_destructor; 2116 2117 return 0; 2118 } 2119 2120 /* 2121 * Try to orphan skb early, right before transmission by the device. 2122 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2123 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2124 */ 2125 static inline void skb_orphan_try(struct sk_buff *skb) 2126 { 2127 struct sock *sk = skb->sk; 2128 2129 if (sk && !skb_shinfo(skb)->tx_flags) { 2130 /* skb_tx_hash() wont be able to get sk. 2131 * We copy sk_hash into skb->rxhash 2132 */ 2133 if (!skb->rxhash) 2134 skb->rxhash = sk->sk_hash; 2135 skb_orphan(skb); 2136 } 2137 } 2138 2139 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2140 { 2141 return ((features & NETIF_F_GEN_CSUM) || 2142 ((features & NETIF_F_V4_CSUM) && 2143 protocol == htons(ETH_P_IP)) || 2144 ((features & NETIF_F_V6_CSUM) && 2145 protocol == htons(ETH_P_IPV6)) || 2146 ((features & NETIF_F_FCOE_CRC) && 2147 protocol == htons(ETH_P_FCOE))); 2148 } 2149 2150 static netdev_features_t harmonize_features(struct sk_buff *skb, 2151 __be16 protocol, netdev_features_t features) 2152 { 2153 if (!can_checksum_protocol(features, protocol)) { 2154 features &= ~NETIF_F_ALL_CSUM; 2155 features &= ~NETIF_F_SG; 2156 } else if (illegal_highdma(skb->dev, skb)) { 2157 features &= ~NETIF_F_SG; 2158 } 2159 2160 return features; 2161 } 2162 2163 netdev_features_t netif_skb_features(struct sk_buff *skb) 2164 { 2165 __be16 protocol = skb->protocol; 2166 netdev_features_t features = skb->dev->features; 2167 2168 if (protocol == htons(ETH_P_8021Q)) { 2169 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2170 protocol = veh->h_vlan_encapsulated_proto; 2171 } else if (!vlan_tx_tag_present(skb)) { 2172 return harmonize_features(skb, protocol, features); 2173 } 2174 2175 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2176 2177 if (protocol != htons(ETH_P_8021Q)) { 2178 return harmonize_features(skb, protocol, features); 2179 } else { 2180 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2181 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2182 return harmonize_features(skb, protocol, features); 2183 } 2184 } 2185 EXPORT_SYMBOL(netif_skb_features); 2186 2187 /* 2188 * Returns true if either: 2189 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2190 * 2. skb is fragmented and the device does not support SG, or if 2191 * at least one of fragments is in highmem and device does not 2192 * support DMA from it. 2193 */ 2194 static inline int skb_needs_linearize(struct sk_buff *skb, 2195 int features) 2196 { 2197 return skb_is_nonlinear(skb) && 2198 ((skb_has_frag_list(skb) && 2199 !(features & NETIF_F_FRAGLIST)) || 2200 (skb_shinfo(skb)->nr_frags && 2201 !(features & NETIF_F_SG))); 2202 } 2203 2204 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2205 struct netdev_queue *txq) 2206 { 2207 const struct net_device_ops *ops = dev->netdev_ops; 2208 int rc = NETDEV_TX_OK; 2209 unsigned int skb_len; 2210 2211 if (likely(!skb->next)) { 2212 netdev_features_t features; 2213 2214 /* 2215 * If device doesn't need skb->dst, release it right now while 2216 * its hot in this cpu cache 2217 */ 2218 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2219 skb_dst_drop(skb); 2220 2221 if (!list_empty(&ptype_all)) 2222 dev_queue_xmit_nit(skb, dev); 2223 2224 skb_orphan_try(skb); 2225 2226 features = netif_skb_features(skb); 2227 2228 if (vlan_tx_tag_present(skb) && 2229 !(features & NETIF_F_HW_VLAN_TX)) { 2230 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2231 if (unlikely(!skb)) 2232 goto out; 2233 2234 skb->vlan_tci = 0; 2235 } 2236 2237 if (netif_needs_gso(skb, features)) { 2238 if (unlikely(dev_gso_segment(skb, features))) 2239 goto out_kfree_skb; 2240 if (skb->next) 2241 goto gso; 2242 } else { 2243 if (skb_needs_linearize(skb, features) && 2244 __skb_linearize(skb)) 2245 goto out_kfree_skb; 2246 2247 /* If packet is not checksummed and device does not 2248 * support checksumming for this protocol, complete 2249 * checksumming here. 2250 */ 2251 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2252 skb_set_transport_header(skb, 2253 skb_checksum_start_offset(skb)); 2254 if (!(features & NETIF_F_ALL_CSUM) && 2255 skb_checksum_help(skb)) 2256 goto out_kfree_skb; 2257 } 2258 } 2259 2260 skb_len = skb->len; 2261 rc = ops->ndo_start_xmit(skb, dev); 2262 trace_net_dev_xmit(skb, rc, dev, skb_len); 2263 if (rc == NETDEV_TX_OK) 2264 txq_trans_update(txq); 2265 return rc; 2266 } 2267 2268 gso: 2269 do { 2270 struct sk_buff *nskb = skb->next; 2271 2272 skb->next = nskb->next; 2273 nskb->next = NULL; 2274 2275 /* 2276 * If device doesn't need nskb->dst, release it right now while 2277 * its hot in this cpu cache 2278 */ 2279 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2280 skb_dst_drop(nskb); 2281 2282 skb_len = nskb->len; 2283 rc = ops->ndo_start_xmit(nskb, dev); 2284 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2285 if (unlikely(rc != NETDEV_TX_OK)) { 2286 if (rc & ~NETDEV_TX_MASK) 2287 goto out_kfree_gso_skb; 2288 nskb->next = skb->next; 2289 skb->next = nskb; 2290 return rc; 2291 } 2292 txq_trans_update(txq); 2293 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2294 return NETDEV_TX_BUSY; 2295 } while (skb->next); 2296 2297 out_kfree_gso_skb: 2298 if (likely(skb->next == NULL)) 2299 skb->destructor = DEV_GSO_CB(skb)->destructor; 2300 out_kfree_skb: 2301 kfree_skb(skb); 2302 out: 2303 return rc; 2304 } 2305 2306 static u32 hashrnd __read_mostly; 2307 2308 /* 2309 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2310 * to be used as a distribution range. 2311 */ 2312 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2313 unsigned int num_tx_queues) 2314 { 2315 u32 hash; 2316 u16 qoffset = 0; 2317 u16 qcount = num_tx_queues; 2318 2319 if (skb_rx_queue_recorded(skb)) { 2320 hash = skb_get_rx_queue(skb); 2321 while (unlikely(hash >= num_tx_queues)) 2322 hash -= num_tx_queues; 2323 return hash; 2324 } 2325 2326 if (dev->num_tc) { 2327 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2328 qoffset = dev->tc_to_txq[tc].offset; 2329 qcount = dev->tc_to_txq[tc].count; 2330 } 2331 2332 if (skb->sk && skb->sk->sk_hash) 2333 hash = skb->sk->sk_hash; 2334 else 2335 hash = (__force u16) skb->protocol ^ skb->rxhash; 2336 hash = jhash_1word(hash, hashrnd); 2337 2338 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2339 } 2340 EXPORT_SYMBOL(__skb_tx_hash); 2341 2342 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2343 { 2344 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2345 if (net_ratelimit()) { 2346 pr_warn("%s selects TX queue %d, but real number of TX queues is %d\n", 2347 dev->name, queue_index, 2348 dev->real_num_tx_queues); 2349 } 2350 return 0; 2351 } 2352 return queue_index; 2353 } 2354 2355 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2356 { 2357 #ifdef CONFIG_XPS 2358 struct xps_dev_maps *dev_maps; 2359 struct xps_map *map; 2360 int queue_index = -1; 2361 2362 rcu_read_lock(); 2363 dev_maps = rcu_dereference(dev->xps_maps); 2364 if (dev_maps) { 2365 map = rcu_dereference( 2366 dev_maps->cpu_map[raw_smp_processor_id()]); 2367 if (map) { 2368 if (map->len == 1) 2369 queue_index = map->queues[0]; 2370 else { 2371 u32 hash; 2372 if (skb->sk && skb->sk->sk_hash) 2373 hash = skb->sk->sk_hash; 2374 else 2375 hash = (__force u16) skb->protocol ^ 2376 skb->rxhash; 2377 hash = jhash_1word(hash, hashrnd); 2378 queue_index = map->queues[ 2379 ((u64)hash * map->len) >> 32]; 2380 } 2381 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2382 queue_index = -1; 2383 } 2384 } 2385 rcu_read_unlock(); 2386 2387 return queue_index; 2388 #else 2389 return -1; 2390 #endif 2391 } 2392 2393 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2394 struct sk_buff *skb) 2395 { 2396 int queue_index; 2397 const struct net_device_ops *ops = dev->netdev_ops; 2398 2399 if (dev->real_num_tx_queues == 1) 2400 queue_index = 0; 2401 else if (ops->ndo_select_queue) { 2402 queue_index = ops->ndo_select_queue(dev, skb); 2403 queue_index = dev_cap_txqueue(dev, queue_index); 2404 } else { 2405 struct sock *sk = skb->sk; 2406 queue_index = sk_tx_queue_get(sk); 2407 2408 if (queue_index < 0 || skb->ooo_okay || 2409 queue_index >= dev->real_num_tx_queues) { 2410 int old_index = queue_index; 2411 2412 queue_index = get_xps_queue(dev, skb); 2413 if (queue_index < 0) 2414 queue_index = skb_tx_hash(dev, skb); 2415 2416 if (queue_index != old_index && sk) { 2417 struct dst_entry *dst = 2418 rcu_dereference_check(sk->sk_dst_cache, 1); 2419 2420 if (dst && skb_dst(skb) == dst) 2421 sk_tx_queue_set(sk, queue_index); 2422 } 2423 } 2424 } 2425 2426 skb_set_queue_mapping(skb, queue_index); 2427 return netdev_get_tx_queue(dev, queue_index); 2428 } 2429 2430 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2431 struct net_device *dev, 2432 struct netdev_queue *txq) 2433 { 2434 spinlock_t *root_lock = qdisc_lock(q); 2435 bool contended; 2436 int rc; 2437 2438 qdisc_skb_cb(skb)->pkt_len = skb->len; 2439 qdisc_calculate_pkt_len(skb, q); 2440 /* 2441 * Heuristic to force contended enqueues to serialize on a 2442 * separate lock before trying to get qdisc main lock. 2443 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2444 * and dequeue packets faster. 2445 */ 2446 contended = qdisc_is_running(q); 2447 if (unlikely(contended)) 2448 spin_lock(&q->busylock); 2449 2450 spin_lock(root_lock); 2451 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2452 kfree_skb(skb); 2453 rc = NET_XMIT_DROP; 2454 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2455 qdisc_run_begin(q)) { 2456 /* 2457 * This is a work-conserving queue; there are no old skbs 2458 * waiting to be sent out; and the qdisc is not running - 2459 * xmit the skb directly. 2460 */ 2461 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2462 skb_dst_force(skb); 2463 2464 qdisc_bstats_update(q, skb); 2465 2466 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2467 if (unlikely(contended)) { 2468 spin_unlock(&q->busylock); 2469 contended = false; 2470 } 2471 __qdisc_run(q); 2472 } else 2473 qdisc_run_end(q); 2474 2475 rc = NET_XMIT_SUCCESS; 2476 } else { 2477 skb_dst_force(skb); 2478 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2479 if (qdisc_run_begin(q)) { 2480 if (unlikely(contended)) { 2481 spin_unlock(&q->busylock); 2482 contended = false; 2483 } 2484 __qdisc_run(q); 2485 } 2486 } 2487 spin_unlock(root_lock); 2488 if (unlikely(contended)) 2489 spin_unlock(&q->busylock); 2490 return rc; 2491 } 2492 2493 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2494 static void skb_update_prio(struct sk_buff *skb) 2495 { 2496 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2497 2498 if ((!skb->priority) && (skb->sk) && map) 2499 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx]; 2500 } 2501 #else 2502 #define skb_update_prio(skb) 2503 #endif 2504 2505 static DEFINE_PER_CPU(int, xmit_recursion); 2506 #define RECURSION_LIMIT 10 2507 2508 /** 2509 * dev_queue_xmit - transmit a buffer 2510 * @skb: buffer to transmit 2511 * 2512 * Queue a buffer for transmission to a network device. The caller must 2513 * have set the device and priority and built the buffer before calling 2514 * this function. The function can be called from an interrupt. 2515 * 2516 * A negative errno code is returned on a failure. A success does not 2517 * guarantee the frame will be transmitted as it may be dropped due 2518 * to congestion or traffic shaping. 2519 * 2520 * ----------------------------------------------------------------------------------- 2521 * I notice this method can also return errors from the queue disciplines, 2522 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2523 * be positive. 2524 * 2525 * Regardless of the return value, the skb is consumed, so it is currently 2526 * difficult to retry a send to this method. (You can bump the ref count 2527 * before sending to hold a reference for retry if you are careful.) 2528 * 2529 * When calling this method, interrupts MUST be enabled. This is because 2530 * the BH enable code must have IRQs enabled so that it will not deadlock. 2531 * --BLG 2532 */ 2533 int dev_queue_xmit(struct sk_buff *skb) 2534 { 2535 struct net_device *dev = skb->dev; 2536 struct netdev_queue *txq; 2537 struct Qdisc *q; 2538 int rc = -ENOMEM; 2539 2540 /* Disable soft irqs for various locks below. Also 2541 * stops preemption for RCU. 2542 */ 2543 rcu_read_lock_bh(); 2544 2545 skb_update_prio(skb); 2546 2547 txq = dev_pick_tx(dev, skb); 2548 q = rcu_dereference_bh(txq->qdisc); 2549 2550 #ifdef CONFIG_NET_CLS_ACT 2551 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2552 #endif 2553 trace_net_dev_queue(skb); 2554 if (q->enqueue) { 2555 rc = __dev_xmit_skb(skb, q, dev, txq); 2556 goto out; 2557 } 2558 2559 /* The device has no queue. Common case for software devices: 2560 loopback, all the sorts of tunnels... 2561 2562 Really, it is unlikely that netif_tx_lock protection is necessary 2563 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2564 counters.) 2565 However, it is possible, that they rely on protection 2566 made by us here. 2567 2568 Check this and shot the lock. It is not prone from deadlocks. 2569 Either shot noqueue qdisc, it is even simpler 8) 2570 */ 2571 if (dev->flags & IFF_UP) { 2572 int cpu = smp_processor_id(); /* ok because BHs are off */ 2573 2574 if (txq->xmit_lock_owner != cpu) { 2575 2576 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2577 goto recursion_alert; 2578 2579 HARD_TX_LOCK(dev, txq, cpu); 2580 2581 if (!netif_xmit_stopped(txq)) { 2582 __this_cpu_inc(xmit_recursion); 2583 rc = dev_hard_start_xmit(skb, dev, txq); 2584 __this_cpu_dec(xmit_recursion); 2585 if (dev_xmit_complete(rc)) { 2586 HARD_TX_UNLOCK(dev, txq); 2587 goto out; 2588 } 2589 } 2590 HARD_TX_UNLOCK(dev, txq); 2591 if (net_ratelimit()) 2592 pr_crit("Virtual device %s asks to queue packet!\n", 2593 dev->name); 2594 } else { 2595 /* Recursion is detected! It is possible, 2596 * unfortunately 2597 */ 2598 recursion_alert: 2599 if (net_ratelimit()) 2600 pr_crit("Dead loop on virtual device %s, fix it urgently!\n", 2601 dev->name); 2602 } 2603 } 2604 2605 rc = -ENETDOWN; 2606 rcu_read_unlock_bh(); 2607 2608 kfree_skb(skb); 2609 return rc; 2610 out: 2611 rcu_read_unlock_bh(); 2612 return rc; 2613 } 2614 EXPORT_SYMBOL(dev_queue_xmit); 2615 2616 2617 /*======================================================================= 2618 Receiver routines 2619 =======================================================================*/ 2620 2621 int netdev_max_backlog __read_mostly = 1000; 2622 int netdev_tstamp_prequeue __read_mostly = 1; 2623 int netdev_budget __read_mostly = 300; 2624 int weight_p __read_mostly = 64; /* old backlog weight */ 2625 2626 /* Called with irq disabled */ 2627 static inline void ____napi_schedule(struct softnet_data *sd, 2628 struct napi_struct *napi) 2629 { 2630 list_add_tail(&napi->poll_list, &sd->poll_list); 2631 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2632 } 2633 2634 /* 2635 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2636 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2637 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2638 * if hash is a canonical 4-tuple hash over transport ports. 2639 */ 2640 void __skb_get_rxhash(struct sk_buff *skb) 2641 { 2642 struct flow_keys keys; 2643 u32 hash; 2644 2645 if (!skb_flow_dissect(skb, &keys)) 2646 return; 2647 2648 if (keys.ports) { 2649 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]) 2650 swap(keys.port16[0], keys.port16[1]); 2651 skb->l4_rxhash = 1; 2652 } 2653 2654 /* get a consistent hash (same value on both flow directions) */ 2655 if ((__force u32)keys.dst < (__force u32)keys.src) 2656 swap(keys.dst, keys.src); 2657 2658 hash = jhash_3words((__force u32)keys.dst, 2659 (__force u32)keys.src, 2660 (__force u32)keys.ports, hashrnd); 2661 if (!hash) 2662 hash = 1; 2663 2664 skb->rxhash = hash; 2665 } 2666 EXPORT_SYMBOL(__skb_get_rxhash); 2667 2668 #ifdef CONFIG_RPS 2669 2670 /* One global table that all flow-based protocols share. */ 2671 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2672 EXPORT_SYMBOL(rps_sock_flow_table); 2673 2674 struct static_key rps_needed __read_mostly; 2675 2676 static struct rps_dev_flow * 2677 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2678 struct rps_dev_flow *rflow, u16 next_cpu) 2679 { 2680 if (next_cpu != RPS_NO_CPU) { 2681 #ifdef CONFIG_RFS_ACCEL 2682 struct netdev_rx_queue *rxqueue; 2683 struct rps_dev_flow_table *flow_table; 2684 struct rps_dev_flow *old_rflow; 2685 u32 flow_id; 2686 u16 rxq_index; 2687 int rc; 2688 2689 /* Should we steer this flow to a different hardware queue? */ 2690 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2691 !(dev->features & NETIF_F_NTUPLE)) 2692 goto out; 2693 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2694 if (rxq_index == skb_get_rx_queue(skb)) 2695 goto out; 2696 2697 rxqueue = dev->_rx + rxq_index; 2698 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2699 if (!flow_table) 2700 goto out; 2701 flow_id = skb->rxhash & flow_table->mask; 2702 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2703 rxq_index, flow_id); 2704 if (rc < 0) 2705 goto out; 2706 old_rflow = rflow; 2707 rflow = &flow_table->flows[flow_id]; 2708 rflow->filter = rc; 2709 if (old_rflow->filter == rflow->filter) 2710 old_rflow->filter = RPS_NO_FILTER; 2711 out: 2712 #endif 2713 rflow->last_qtail = 2714 per_cpu(softnet_data, next_cpu).input_queue_head; 2715 } 2716 2717 rflow->cpu = next_cpu; 2718 return rflow; 2719 } 2720 2721 /* 2722 * get_rps_cpu is called from netif_receive_skb and returns the target 2723 * CPU from the RPS map of the receiving queue for a given skb. 2724 * rcu_read_lock must be held on entry. 2725 */ 2726 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2727 struct rps_dev_flow **rflowp) 2728 { 2729 struct netdev_rx_queue *rxqueue; 2730 struct rps_map *map; 2731 struct rps_dev_flow_table *flow_table; 2732 struct rps_sock_flow_table *sock_flow_table; 2733 int cpu = -1; 2734 u16 tcpu; 2735 2736 if (skb_rx_queue_recorded(skb)) { 2737 u16 index = skb_get_rx_queue(skb); 2738 if (unlikely(index >= dev->real_num_rx_queues)) { 2739 WARN_ONCE(dev->real_num_rx_queues > 1, 2740 "%s received packet on queue %u, but number " 2741 "of RX queues is %u\n", 2742 dev->name, index, dev->real_num_rx_queues); 2743 goto done; 2744 } 2745 rxqueue = dev->_rx + index; 2746 } else 2747 rxqueue = dev->_rx; 2748 2749 map = rcu_dereference(rxqueue->rps_map); 2750 if (map) { 2751 if (map->len == 1 && 2752 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2753 tcpu = map->cpus[0]; 2754 if (cpu_online(tcpu)) 2755 cpu = tcpu; 2756 goto done; 2757 } 2758 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2759 goto done; 2760 } 2761 2762 skb_reset_network_header(skb); 2763 if (!skb_get_rxhash(skb)) 2764 goto done; 2765 2766 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2767 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2768 if (flow_table && sock_flow_table) { 2769 u16 next_cpu; 2770 struct rps_dev_flow *rflow; 2771 2772 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2773 tcpu = rflow->cpu; 2774 2775 next_cpu = sock_flow_table->ents[skb->rxhash & 2776 sock_flow_table->mask]; 2777 2778 /* 2779 * If the desired CPU (where last recvmsg was done) is 2780 * different from current CPU (one in the rx-queue flow 2781 * table entry), switch if one of the following holds: 2782 * - Current CPU is unset (equal to RPS_NO_CPU). 2783 * - Current CPU is offline. 2784 * - The current CPU's queue tail has advanced beyond the 2785 * last packet that was enqueued using this table entry. 2786 * This guarantees that all previous packets for the flow 2787 * have been dequeued, thus preserving in order delivery. 2788 */ 2789 if (unlikely(tcpu != next_cpu) && 2790 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2791 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2792 rflow->last_qtail)) >= 0)) 2793 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2794 2795 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2796 *rflowp = rflow; 2797 cpu = tcpu; 2798 goto done; 2799 } 2800 } 2801 2802 if (map) { 2803 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2804 2805 if (cpu_online(tcpu)) { 2806 cpu = tcpu; 2807 goto done; 2808 } 2809 } 2810 2811 done: 2812 return cpu; 2813 } 2814 2815 #ifdef CONFIG_RFS_ACCEL 2816 2817 /** 2818 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2819 * @dev: Device on which the filter was set 2820 * @rxq_index: RX queue index 2821 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2822 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2823 * 2824 * Drivers that implement ndo_rx_flow_steer() should periodically call 2825 * this function for each installed filter and remove the filters for 2826 * which it returns %true. 2827 */ 2828 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2829 u32 flow_id, u16 filter_id) 2830 { 2831 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2832 struct rps_dev_flow_table *flow_table; 2833 struct rps_dev_flow *rflow; 2834 bool expire = true; 2835 int cpu; 2836 2837 rcu_read_lock(); 2838 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2839 if (flow_table && flow_id <= flow_table->mask) { 2840 rflow = &flow_table->flows[flow_id]; 2841 cpu = ACCESS_ONCE(rflow->cpu); 2842 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2843 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2844 rflow->last_qtail) < 2845 (int)(10 * flow_table->mask))) 2846 expire = false; 2847 } 2848 rcu_read_unlock(); 2849 return expire; 2850 } 2851 EXPORT_SYMBOL(rps_may_expire_flow); 2852 2853 #endif /* CONFIG_RFS_ACCEL */ 2854 2855 /* Called from hardirq (IPI) context */ 2856 static void rps_trigger_softirq(void *data) 2857 { 2858 struct softnet_data *sd = data; 2859 2860 ____napi_schedule(sd, &sd->backlog); 2861 sd->received_rps++; 2862 } 2863 2864 #endif /* CONFIG_RPS */ 2865 2866 /* 2867 * Check if this softnet_data structure is another cpu one 2868 * If yes, queue it to our IPI list and return 1 2869 * If no, return 0 2870 */ 2871 static int rps_ipi_queued(struct softnet_data *sd) 2872 { 2873 #ifdef CONFIG_RPS 2874 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2875 2876 if (sd != mysd) { 2877 sd->rps_ipi_next = mysd->rps_ipi_list; 2878 mysd->rps_ipi_list = sd; 2879 2880 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2881 return 1; 2882 } 2883 #endif /* CONFIG_RPS */ 2884 return 0; 2885 } 2886 2887 /* 2888 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2889 * queue (may be a remote CPU queue). 2890 */ 2891 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2892 unsigned int *qtail) 2893 { 2894 struct softnet_data *sd; 2895 unsigned long flags; 2896 2897 sd = &per_cpu(softnet_data, cpu); 2898 2899 local_irq_save(flags); 2900 2901 rps_lock(sd); 2902 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2903 if (skb_queue_len(&sd->input_pkt_queue)) { 2904 enqueue: 2905 __skb_queue_tail(&sd->input_pkt_queue, skb); 2906 input_queue_tail_incr_save(sd, qtail); 2907 rps_unlock(sd); 2908 local_irq_restore(flags); 2909 return NET_RX_SUCCESS; 2910 } 2911 2912 /* Schedule NAPI for backlog device 2913 * We can use non atomic operation since we own the queue lock 2914 */ 2915 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2916 if (!rps_ipi_queued(sd)) 2917 ____napi_schedule(sd, &sd->backlog); 2918 } 2919 goto enqueue; 2920 } 2921 2922 sd->dropped++; 2923 rps_unlock(sd); 2924 2925 local_irq_restore(flags); 2926 2927 atomic_long_inc(&skb->dev->rx_dropped); 2928 kfree_skb(skb); 2929 return NET_RX_DROP; 2930 } 2931 2932 /** 2933 * netif_rx - post buffer to the network code 2934 * @skb: buffer to post 2935 * 2936 * This function receives a packet from a device driver and queues it for 2937 * the upper (protocol) levels to process. It always succeeds. The buffer 2938 * may be dropped during processing for congestion control or by the 2939 * protocol layers. 2940 * 2941 * return values: 2942 * NET_RX_SUCCESS (no congestion) 2943 * NET_RX_DROP (packet was dropped) 2944 * 2945 */ 2946 2947 int netif_rx(struct sk_buff *skb) 2948 { 2949 int ret; 2950 2951 /* if netpoll wants it, pretend we never saw it */ 2952 if (netpoll_rx(skb)) 2953 return NET_RX_DROP; 2954 2955 net_timestamp_check(netdev_tstamp_prequeue, skb); 2956 2957 trace_netif_rx(skb); 2958 #ifdef CONFIG_RPS 2959 if (static_key_false(&rps_needed)) { 2960 struct rps_dev_flow voidflow, *rflow = &voidflow; 2961 int cpu; 2962 2963 preempt_disable(); 2964 rcu_read_lock(); 2965 2966 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2967 if (cpu < 0) 2968 cpu = smp_processor_id(); 2969 2970 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2971 2972 rcu_read_unlock(); 2973 preempt_enable(); 2974 } else 2975 #endif 2976 { 2977 unsigned int qtail; 2978 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2979 put_cpu(); 2980 } 2981 return ret; 2982 } 2983 EXPORT_SYMBOL(netif_rx); 2984 2985 int netif_rx_ni(struct sk_buff *skb) 2986 { 2987 int err; 2988 2989 preempt_disable(); 2990 err = netif_rx(skb); 2991 if (local_softirq_pending()) 2992 do_softirq(); 2993 preempt_enable(); 2994 2995 return err; 2996 } 2997 EXPORT_SYMBOL(netif_rx_ni); 2998 2999 static void net_tx_action(struct softirq_action *h) 3000 { 3001 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3002 3003 if (sd->completion_queue) { 3004 struct sk_buff *clist; 3005 3006 local_irq_disable(); 3007 clist = sd->completion_queue; 3008 sd->completion_queue = NULL; 3009 local_irq_enable(); 3010 3011 while (clist) { 3012 struct sk_buff *skb = clist; 3013 clist = clist->next; 3014 3015 WARN_ON(atomic_read(&skb->users)); 3016 trace_kfree_skb(skb, net_tx_action); 3017 __kfree_skb(skb); 3018 } 3019 } 3020 3021 if (sd->output_queue) { 3022 struct Qdisc *head; 3023 3024 local_irq_disable(); 3025 head = sd->output_queue; 3026 sd->output_queue = NULL; 3027 sd->output_queue_tailp = &sd->output_queue; 3028 local_irq_enable(); 3029 3030 while (head) { 3031 struct Qdisc *q = head; 3032 spinlock_t *root_lock; 3033 3034 head = head->next_sched; 3035 3036 root_lock = qdisc_lock(q); 3037 if (spin_trylock(root_lock)) { 3038 smp_mb__before_clear_bit(); 3039 clear_bit(__QDISC_STATE_SCHED, 3040 &q->state); 3041 qdisc_run(q); 3042 spin_unlock(root_lock); 3043 } else { 3044 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3045 &q->state)) { 3046 __netif_reschedule(q); 3047 } else { 3048 smp_mb__before_clear_bit(); 3049 clear_bit(__QDISC_STATE_SCHED, 3050 &q->state); 3051 } 3052 } 3053 } 3054 } 3055 } 3056 3057 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3058 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3059 /* This hook is defined here for ATM LANE */ 3060 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3061 unsigned char *addr) __read_mostly; 3062 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3063 #endif 3064 3065 #ifdef CONFIG_NET_CLS_ACT 3066 /* TODO: Maybe we should just force sch_ingress to be compiled in 3067 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3068 * a compare and 2 stores extra right now if we dont have it on 3069 * but have CONFIG_NET_CLS_ACT 3070 * NOTE: This doesn't stop any functionality; if you dont have 3071 * the ingress scheduler, you just can't add policies on ingress. 3072 * 3073 */ 3074 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3075 { 3076 struct net_device *dev = skb->dev; 3077 u32 ttl = G_TC_RTTL(skb->tc_verd); 3078 int result = TC_ACT_OK; 3079 struct Qdisc *q; 3080 3081 if (unlikely(MAX_RED_LOOP < ttl++)) { 3082 if (net_ratelimit()) 3083 pr_warn("Redir loop detected Dropping packet (%d->%d)\n", 3084 skb->skb_iif, dev->ifindex); 3085 return TC_ACT_SHOT; 3086 } 3087 3088 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3089 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3090 3091 q = rxq->qdisc; 3092 if (q != &noop_qdisc) { 3093 spin_lock(qdisc_lock(q)); 3094 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3095 result = qdisc_enqueue_root(skb, q); 3096 spin_unlock(qdisc_lock(q)); 3097 } 3098 3099 return result; 3100 } 3101 3102 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3103 struct packet_type **pt_prev, 3104 int *ret, struct net_device *orig_dev) 3105 { 3106 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3107 3108 if (!rxq || rxq->qdisc == &noop_qdisc) 3109 goto out; 3110 3111 if (*pt_prev) { 3112 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3113 *pt_prev = NULL; 3114 } 3115 3116 switch (ing_filter(skb, rxq)) { 3117 case TC_ACT_SHOT: 3118 case TC_ACT_STOLEN: 3119 kfree_skb(skb); 3120 return NULL; 3121 } 3122 3123 out: 3124 skb->tc_verd = 0; 3125 return skb; 3126 } 3127 #endif 3128 3129 /** 3130 * netdev_rx_handler_register - register receive handler 3131 * @dev: device to register a handler for 3132 * @rx_handler: receive handler to register 3133 * @rx_handler_data: data pointer that is used by rx handler 3134 * 3135 * Register a receive hander for a device. This handler will then be 3136 * called from __netif_receive_skb. A negative errno code is returned 3137 * on a failure. 3138 * 3139 * The caller must hold the rtnl_mutex. 3140 * 3141 * For a general description of rx_handler, see enum rx_handler_result. 3142 */ 3143 int netdev_rx_handler_register(struct net_device *dev, 3144 rx_handler_func_t *rx_handler, 3145 void *rx_handler_data) 3146 { 3147 ASSERT_RTNL(); 3148 3149 if (dev->rx_handler) 3150 return -EBUSY; 3151 3152 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3153 rcu_assign_pointer(dev->rx_handler, rx_handler); 3154 3155 return 0; 3156 } 3157 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3158 3159 /** 3160 * netdev_rx_handler_unregister - unregister receive handler 3161 * @dev: device to unregister a handler from 3162 * 3163 * Unregister a receive hander from a device. 3164 * 3165 * The caller must hold the rtnl_mutex. 3166 */ 3167 void netdev_rx_handler_unregister(struct net_device *dev) 3168 { 3169 3170 ASSERT_RTNL(); 3171 RCU_INIT_POINTER(dev->rx_handler, NULL); 3172 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3173 } 3174 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3175 3176 static int __netif_receive_skb(struct sk_buff *skb) 3177 { 3178 struct packet_type *ptype, *pt_prev; 3179 rx_handler_func_t *rx_handler; 3180 struct net_device *orig_dev; 3181 struct net_device *null_or_dev; 3182 bool deliver_exact = false; 3183 int ret = NET_RX_DROP; 3184 __be16 type; 3185 3186 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3187 3188 trace_netif_receive_skb(skb); 3189 3190 /* if we've gotten here through NAPI, check netpoll */ 3191 if (netpoll_receive_skb(skb)) 3192 return NET_RX_DROP; 3193 3194 if (!skb->skb_iif) 3195 skb->skb_iif = skb->dev->ifindex; 3196 orig_dev = skb->dev; 3197 3198 skb_reset_network_header(skb); 3199 skb_reset_transport_header(skb); 3200 skb_reset_mac_len(skb); 3201 3202 pt_prev = NULL; 3203 3204 rcu_read_lock(); 3205 3206 another_round: 3207 3208 __this_cpu_inc(softnet_data.processed); 3209 3210 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3211 skb = vlan_untag(skb); 3212 if (unlikely(!skb)) 3213 goto out; 3214 } 3215 3216 #ifdef CONFIG_NET_CLS_ACT 3217 if (skb->tc_verd & TC_NCLS) { 3218 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3219 goto ncls; 3220 } 3221 #endif 3222 3223 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3224 if (!ptype->dev || ptype->dev == skb->dev) { 3225 if (pt_prev) 3226 ret = deliver_skb(skb, pt_prev, orig_dev); 3227 pt_prev = ptype; 3228 } 3229 } 3230 3231 #ifdef CONFIG_NET_CLS_ACT 3232 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3233 if (!skb) 3234 goto out; 3235 ncls: 3236 #endif 3237 3238 rx_handler = rcu_dereference(skb->dev->rx_handler); 3239 if (vlan_tx_tag_present(skb)) { 3240 if (pt_prev) { 3241 ret = deliver_skb(skb, pt_prev, orig_dev); 3242 pt_prev = NULL; 3243 } 3244 if (vlan_do_receive(&skb, !rx_handler)) 3245 goto another_round; 3246 else if (unlikely(!skb)) 3247 goto out; 3248 } 3249 3250 if (rx_handler) { 3251 if (pt_prev) { 3252 ret = deliver_skb(skb, pt_prev, orig_dev); 3253 pt_prev = NULL; 3254 } 3255 switch (rx_handler(&skb)) { 3256 case RX_HANDLER_CONSUMED: 3257 goto out; 3258 case RX_HANDLER_ANOTHER: 3259 goto another_round; 3260 case RX_HANDLER_EXACT: 3261 deliver_exact = true; 3262 case RX_HANDLER_PASS: 3263 break; 3264 default: 3265 BUG(); 3266 } 3267 } 3268 3269 /* deliver only exact match when indicated */ 3270 null_or_dev = deliver_exact ? skb->dev : NULL; 3271 3272 type = skb->protocol; 3273 list_for_each_entry_rcu(ptype, 3274 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3275 if (ptype->type == type && 3276 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3277 ptype->dev == orig_dev)) { 3278 if (pt_prev) 3279 ret = deliver_skb(skb, pt_prev, orig_dev); 3280 pt_prev = ptype; 3281 } 3282 } 3283 3284 if (pt_prev) { 3285 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3286 } else { 3287 atomic_long_inc(&skb->dev->rx_dropped); 3288 kfree_skb(skb); 3289 /* Jamal, now you will not able to escape explaining 3290 * me how you were going to use this. :-) 3291 */ 3292 ret = NET_RX_DROP; 3293 } 3294 3295 out: 3296 rcu_read_unlock(); 3297 return ret; 3298 } 3299 3300 /** 3301 * netif_receive_skb - process receive buffer from network 3302 * @skb: buffer to process 3303 * 3304 * netif_receive_skb() is the main receive data processing function. 3305 * It always succeeds. The buffer may be dropped during processing 3306 * for congestion control or by the protocol layers. 3307 * 3308 * This function may only be called from softirq context and interrupts 3309 * should be enabled. 3310 * 3311 * Return values (usually ignored): 3312 * NET_RX_SUCCESS: no congestion 3313 * NET_RX_DROP: packet was dropped 3314 */ 3315 int netif_receive_skb(struct sk_buff *skb) 3316 { 3317 net_timestamp_check(netdev_tstamp_prequeue, skb); 3318 3319 if (skb_defer_rx_timestamp(skb)) 3320 return NET_RX_SUCCESS; 3321 3322 #ifdef CONFIG_RPS 3323 if (static_key_false(&rps_needed)) { 3324 struct rps_dev_flow voidflow, *rflow = &voidflow; 3325 int cpu, ret; 3326 3327 rcu_read_lock(); 3328 3329 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3330 3331 if (cpu >= 0) { 3332 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3333 rcu_read_unlock(); 3334 return ret; 3335 } 3336 rcu_read_unlock(); 3337 } 3338 #endif 3339 return __netif_receive_skb(skb); 3340 } 3341 EXPORT_SYMBOL(netif_receive_skb); 3342 3343 /* Network device is going away, flush any packets still pending 3344 * Called with irqs disabled. 3345 */ 3346 static void flush_backlog(void *arg) 3347 { 3348 struct net_device *dev = arg; 3349 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3350 struct sk_buff *skb, *tmp; 3351 3352 rps_lock(sd); 3353 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3354 if (skb->dev == dev) { 3355 __skb_unlink(skb, &sd->input_pkt_queue); 3356 kfree_skb(skb); 3357 input_queue_head_incr(sd); 3358 } 3359 } 3360 rps_unlock(sd); 3361 3362 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3363 if (skb->dev == dev) { 3364 __skb_unlink(skb, &sd->process_queue); 3365 kfree_skb(skb); 3366 input_queue_head_incr(sd); 3367 } 3368 } 3369 } 3370 3371 static int napi_gro_complete(struct sk_buff *skb) 3372 { 3373 struct packet_type *ptype; 3374 __be16 type = skb->protocol; 3375 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3376 int err = -ENOENT; 3377 3378 if (NAPI_GRO_CB(skb)->count == 1) { 3379 skb_shinfo(skb)->gso_size = 0; 3380 goto out; 3381 } 3382 3383 rcu_read_lock(); 3384 list_for_each_entry_rcu(ptype, head, list) { 3385 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3386 continue; 3387 3388 err = ptype->gro_complete(skb); 3389 break; 3390 } 3391 rcu_read_unlock(); 3392 3393 if (err) { 3394 WARN_ON(&ptype->list == head); 3395 kfree_skb(skb); 3396 return NET_RX_SUCCESS; 3397 } 3398 3399 out: 3400 return netif_receive_skb(skb); 3401 } 3402 3403 inline void napi_gro_flush(struct napi_struct *napi) 3404 { 3405 struct sk_buff *skb, *next; 3406 3407 for (skb = napi->gro_list; skb; skb = next) { 3408 next = skb->next; 3409 skb->next = NULL; 3410 napi_gro_complete(skb); 3411 } 3412 3413 napi->gro_count = 0; 3414 napi->gro_list = NULL; 3415 } 3416 EXPORT_SYMBOL(napi_gro_flush); 3417 3418 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3419 { 3420 struct sk_buff **pp = NULL; 3421 struct packet_type *ptype; 3422 __be16 type = skb->protocol; 3423 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3424 int same_flow; 3425 int mac_len; 3426 enum gro_result ret; 3427 3428 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3429 goto normal; 3430 3431 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3432 goto normal; 3433 3434 rcu_read_lock(); 3435 list_for_each_entry_rcu(ptype, head, list) { 3436 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3437 continue; 3438 3439 skb_set_network_header(skb, skb_gro_offset(skb)); 3440 mac_len = skb->network_header - skb->mac_header; 3441 skb->mac_len = mac_len; 3442 NAPI_GRO_CB(skb)->same_flow = 0; 3443 NAPI_GRO_CB(skb)->flush = 0; 3444 NAPI_GRO_CB(skb)->free = 0; 3445 3446 pp = ptype->gro_receive(&napi->gro_list, skb); 3447 break; 3448 } 3449 rcu_read_unlock(); 3450 3451 if (&ptype->list == head) 3452 goto normal; 3453 3454 same_flow = NAPI_GRO_CB(skb)->same_flow; 3455 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3456 3457 if (pp) { 3458 struct sk_buff *nskb = *pp; 3459 3460 *pp = nskb->next; 3461 nskb->next = NULL; 3462 napi_gro_complete(nskb); 3463 napi->gro_count--; 3464 } 3465 3466 if (same_flow) 3467 goto ok; 3468 3469 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3470 goto normal; 3471 3472 napi->gro_count++; 3473 NAPI_GRO_CB(skb)->count = 1; 3474 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3475 skb->next = napi->gro_list; 3476 napi->gro_list = skb; 3477 ret = GRO_HELD; 3478 3479 pull: 3480 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3481 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3482 3483 BUG_ON(skb->end - skb->tail < grow); 3484 3485 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3486 3487 skb->tail += grow; 3488 skb->data_len -= grow; 3489 3490 skb_shinfo(skb)->frags[0].page_offset += grow; 3491 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3492 3493 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3494 skb_frag_unref(skb, 0); 3495 memmove(skb_shinfo(skb)->frags, 3496 skb_shinfo(skb)->frags + 1, 3497 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3498 } 3499 } 3500 3501 ok: 3502 return ret; 3503 3504 normal: 3505 ret = GRO_NORMAL; 3506 goto pull; 3507 } 3508 EXPORT_SYMBOL(dev_gro_receive); 3509 3510 static inline gro_result_t 3511 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3512 { 3513 struct sk_buff *p; 3514 unsigned int maclen = skb->dev->hard_header_len; 3515 3516 for (p = napi->gro_list; p; p = p->next) { 3517 unsigned long diffs; 3518 3519 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3520 diffs |= p->vlan_tci ^ skb->vlan_tci; 3521 if (maclen == ETH_HLEN) 3522 diffs |= compare_ether_header(skb_mac_header(p), 3523 skb_gro_mac_header(skb)); 3524 else if (!diffs) 3525 diffs = memcmp(skb_mac_header(p), 3526 skb_gro_mac_header(skb), 3527 maclen); 3528 NAPI_GRO_CB(p)->same_flow = !diffs; 3529 NAPI_GRO_CB(p)->flush = 0; 3530 } 3531 3532 return dev_gro_receive(napi, skb); 3533 } 3534 3535 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3536 { 3537 switch (ret) { 3538 case GRO_NORMAL: 3539 if (netif_receive_skb(skb)) 3540 ret = GRO_DROP; 3541 break; 3542 3543 case GRO_DROP: 3544 case GRO_MERGED_FREE: 3545 kfree_skb(skb); 3546 break; 3547 3548 case GRO_HELD: 3549 case GRO_MERGED: 3550 break; 3551 } 3552 3553 return ret; 3554 } 3555 EXPORT_SYMBOL(napi_skb_finish); 3556 3557 void skb_gro_reset_offset(struct sk_buff *skb) 3558 { 3559 NAPI_GRO_CB(skb)->data_offset = 0; 3560 NAPI_GRO_CB(skb)->frag0 = NULL; 3561 NAPI_GRO_CB(skb)->frag0_len = 0; 3562 3563 if (skb->mac_header == skb->tail && 3564 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3565 NAPI_GRO_CB(skb)->frag0 = 3566 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3567 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3568 } 3569 } 3570 EXPORT_SYMBOL(skb_gro_reset_offset); 3571 3572 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3573 { 3574 skb_gro_reset_offset(skb); 3575 3576 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3577 } 3578 EXPORT_SYMBOL(napi_gro_receive); 3579 3580 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3581 { 3582 __skb_pull(skb, skb_headlen(skb)); 3583 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3584 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3585 skb->vlan_tci = 0; 3586 skb->dev = napi->dev; 3587 skb->skb_iif = 0; 3588 3589 napi->skb = skb; 3590 } 3591 3592 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3593 { 3594 struct sk_buff *skb = napi->skb; 3595 3596 if (!skb) { 3597 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3598 if (skb) 3599 napi->skb = skb; 3600 } 3601 return skb; 3602 } 3603 EXPORT_SYMBOL(napi_get_frags); 3604 3605 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3606 gro_result_t ret) 3607 { 3608 switch (ret) { 3609 case GRO_NORMAL: 3610 case GRO_HELD: 3611 skb->protocol = eth_type_trans(skb, skb->dev); 3612 3613 if (ret == GRO_HELD) 3614 skb_gro_pull(skb, -ETH_HLEN); 3615 else if (netif_receive_skb(skb)) 3616 ret = GRO_DROP; 3617 break; 3618 3619 case GRO_DROP: 3620 case GRO_MERGED_FREE: 3621 napi_reuse_skb(napi, skb); 3622 break; 3623 3624 case GRO_MERGED: 3625 break; 3626 } 3627 3628 return ret; 3629 } 3630 EXPORT_SYMBOL(napi_frags_finish); 3631 3632 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3633 { 3634 struct sk_buff *skb = napi->skb; 3635 struct ethhdr *eth; 3636 unsigned int hlen; 3637 unsigned int off; 3638 3639 napi->skb = NULL; 3640 3641 skb_reset_mac_header(skb); 3642 skb_gro_reset_offset(skb); 3643 3644 off = skb_gro_offset(skb); 3645 hlen = off + sizeof(*eth); 3646 eth = skb_gro_header_fast(skb, off); 3647 if (skb_gro_header_hard(skb, hlen)) { 3648 eth = skb_gro_header_slow(skb, hlen, off); 3649 if (unlikely(!eth)) { 3650 napi_reuse_skb(napi, skb); 3651 skb = NULL; 3652 goto out; 3653 } 3654 } 3655 3656 skb_gro_pull(skb, sizeof(*eth)); 3657 3658 /* 3659 * This works because the only protocols we care about don't require 3660 * special handling. We'll fix it up properly at the end. 3661 */ 3662 skb->protocol = eth->h_proto; 3663 3664 out: 3665 return skb; 3666 } 3667 EXPORT_SYMBOL(napi_frags_skb); 3668 3669 gro_result_t napi_gro_frags(struct napi_struct *napi) 3670 { 3671 struct sk_buff *skb = napi_frags_skb(napi); 3672 3673 if (!skb) 3674 return GRO_DROP; 3675 3676 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3677 } 3678 EXPORT_SYMBOL(napi_gro_frags); 3679 3680 /* 3681 * net_rps_action sends any pending IPI's for rps. 3682 * Note: called with local irq disabled, but exits with local irq enabled. 3683 */ 3684 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3685 { 3686 #ifdef CONFIG_RPS 3687 struct softnet_data *remsd = sd->rps_ipi_list; 3688 3689 if (remsd) { 3690 sd->rps_ipi_list = NULL; 3691 3692 local_irq_enable(); 3693 3694 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3695 while (remsd) { 3696 struct softnet_data *next = remsd->rps_ipi_next; 3697 3698 if (cpu_online(remsd->cpu)) 3699 __smp_call_function_single(remsd->cpu, 3700 &remsd->csd, 0); 3701 remsd = next; 3702 } 3703 } else 3704 #endif 3705 local_irq_enable(); 3706 } 3707 3708 static int process_backlog(struct napi_struct *napi, int quota) 3709 { 3710 int work = 0; 3711 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3712 3713 #ifdef CONFIG_RPS 3714 /* Check if we have pending ipi, its better to send them now, 3715 * not waiting net_rx_action() end. 3716 */ 3717 if (sd->rps_ipi_list) { 3718 local_irq_disable(); 3719 net_rps_action_and_irq_enable(sd); 3720 } 3721 #endif 3722 napi->weight = weight_p; 3723 local_irq_disable(); 3724 while (work < quota) { 3725 struct sk_buff *skb; 3726 unsigned int qlen; 3727 3728 while ((skb = __skb_dequeue(&sd->process_queue))) { 3729 local_irq_enable(); 3730 __netif_receive_skb(skb); 3731 local_irq_disable(); 3732 input_queue_head_incr(sd); 3733 if (++work >= quota) { 3734 local_irq_enable(); 3735 return work; 3736 } 3737 } 3738 3739 rps_lock(sd); 3740 qlen = skb_queue_len(&sd->input_pkt_queue); 3741 if (qlen) 3742 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3743 &sd->process_queue); 3744 3745 if (qlen < quota - work) { 3746 /* 3747 * Inline a custom version of __napi_complete(). 3748 * only current cpu owns and manipulates this napi, 3749 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3750 * we can use a plain write instead of clear_bit(), 3751 * and we dont need an smp_mb() memory barrier. 3752 */ 3753 list_del(&napi->poll_list); 3754 napi->state = 0; 3755 3756 quota = work + qlen; 3757 } 3758 rps_unlock(sd); 3759 } 3760 local_irq_enable(); 3761 3762 return work; 3763 } 3764 3765 /** 3766 * __napi_schedule - schedule for receive 3767 * @n: entry to schedule 3768 * 3769 * The entry's receive function will be scheduled to run 3770 */ 3771 void __napi_schedule(struct napi_struct *n) 3772 { 3773 unsigned long flags; 3774 3775 local_irq_save(flags); 3776 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3777 local_irq_restore(flags); 3778 } 3779 EXPORT_SYMBOL(__napi_schedule); 3780 3781 void __napi_complete(struct napi_struct *n) 3782 { 3783 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3784 BUG_ON(n->gro_list); 3785 3786 list_del(&n->poll_list); 3787 smp_mb__before_clear_bit(); 3788 clear_bit(NAPI_STATE_SCHED, &n->state); 3789 } 3790 EXPORT_SYMBOL(__napi_complete); 3791 3792 void napi_complete(struct napi_struct *n) 3793 { 3794 unsigned long flags; 3795 3796 /* 3797 * don't let napi dequeue from the cpu poll list 3798 * just in case its running on a different cpu 3799 */ 3800 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3801 return; 3802 3803 napi_gro_flush(n); 3804 local_irq_save(flags); 3805 __napi_complete(n); 3806 local_irq_restore(flags); 3807 } 3808 EXPORT_SYMBOL(napi_complete); 3809 3810 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3811 int (*poll)(struct napi_struct *, int), int weight) 3812 { 3813 INIT_LIST_HEAD(&napi->poll_list); 3814 napi->gro_count = 0; 3815 napi->gro_list = NULL; 3816 napi->skb = NULL; 3817 napi->poll = poll; 3818 napi->weight = weight; 3819 list_add(&napi->dev_list, &dev->napi_list); 3820 napi->dev = dev; 3821 #ifdef CONFIG_NETPOLL 3822 spin_lock_init(&napi->poll_lock); 3823 napi->poll_owner = -1; 3824 #endif 3825 set_bit(NAPI_STATE_SCHED, &napi->state); 3826 } 3827 EXPORT_SYMBOL(netif_napi_add); 3828 3829 void netif_napi_del(struct napi_struct *napi) 3830 { 3831 struct sk_buff *skb, *next; 3832 3833 list_del_init(&napi->dev_list); 3834 napi_free_frags(napi); 3835 3836 for (skb = napi->gro_list; skb; skb = next) { 3837 next = skb->next; 3838 skb->next = NULL; 3839 kfree_skb(skb); 3840 } 3841 3842 napi->gro_list = NULL; 3843 napi->gro_count = 0; 3844 } 3845 EXPORT_SYMBOL(netif_napi_del); 3846 3847 static void net_rx_action(struct softirq_action *h) 3848 { 3849 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3850 unsigned long time_limit = jiffies + 2; 3851 int budget = netdev_budget; 3852 void *have; 3853 3854 local_irq_disable(); 3855 3856 while (!list_empty(&sd->poll_list)) { 3857 struct napi_struct *n; 3858 int work, weight; 3859 3860 /* If softirq window is exhuasted then punt. 3861 * Allow this to run for 2 jiffies since which will allow 3862 * an average latency of 1.5/HZ. 3863 */ 3864 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3865 goto softnet_break; 3866 3867 local_irq_enable(); 3868 3869 /* Even though interrupts have been re-enabled, this 3870 * access is safe because interrupts can only add new 3871 * entries to the tail of this list, and only ->poll() 3872 * calls can remove this head entry from the list. 3873 */ 3874 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3875 3876 have = netpoll_poll_lock(n); 3877 3878 weight = n->weight; 3879 3880 /* This NAPI_STATE_SCHED test is for avoiding a race 3881 * with netpoll's poll_napi(). Only the entity which 3882 * obtains the lock and sees NAPI_STATE_SCHED set will 3883 * actually make the ->poll() call. Therefore we avoid 3884 * accidentally calling ->poll() when NAPI is not scheduled. 3885 */ 3886 work = 0; 3887 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3888 work = n->poll(n, weight); 3889 trace_napi_poll(n); 3890 } 3891 3892 WARN_ON_ONCE(work > weight); 3893 3894 budget -= work; 3895 3896 local_irq_disable(); 3897 3898 /* Drivers must not modify the NAPI state if they 3899 * consume the entire weight. In such cases this code 3900 * still "owns" the NAPI instance and therefore can 3901 * move the instance around on the list at-will. 3902 */ 3903 if (unlikely(work == weight)) { 3904 if (unlikely(napi_disable_pending(n))) { 3905 local_irq_enable(); 3906 napi_complete(n); 3907 local_irq_disable(); 3908 } else 3909 list_move_tail(&n->poll_list, &sd->poll_list); 3910 } 3911 3912 netpoll_poll_unlock(have); 3913 } 3914 out: 3915 net_rps_action_and_irq_enable(sd); 3916 3917 #ifdef CONFIG_NET_DMA 3918 /* 3919 * There may not be any more sk_buffs coming right now, so push 3920 * any pending DMA copies to hardware 3921 */ 3922 dma_issue_pending_all(); 3923 #endif 3924 3925 return; 3926 3927 softnet_break: 3928 sd->time_squeeze++; 3929 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3930 goto out; 3931 } 3932 3933 static gifconf_func_t *gifconf_list[NPROTO]; 3934 3935 /** 3936 * register_gifconf - register a SIOCGIF handler 3937 * @family: Address family 3938 * @gifconf: Function handler 3939 * 3940 * Register protocol dependent address dumping routines. The handler 3941 * that is passed must not be freed or reused until it has been replaced 3942 * by another handler. 3943 */ 3944 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3945 { 3946 if (family >= NPROTO) 3947 return -EINVAL; 3948 gifconf_list[family] = gifconf; 3949 return 0; 3950 } 3951 EXPORT_SYMBOL(register_gifconf); 3952 3953 3954 /* 3955 * Map an interface index to its name (SIOCGIFNAME) 3956 */ 3957 3958 /* 3959 * We need this ioctl for efficient implementation of the 3960 * if_indextoname() function required by the IPv6 API. Without 3961 * it, we would have to search all the interfaces to find a 3962 * match. --pb 3963 */ 3964 3965 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3966 { 3967 struct net_device *dev; 3968 struct ifreq ifr; 3969 3970 /* 3971 * Fetch the caller's info block. 3972 */ 3973 3974 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3975 return -EFAULT; 3976 3977 rcu_read_lock(); 3978 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3979 if (!dev) { 3980 rcu_read_unlock(); 3981 return -ENODEV; 3982 } 3983 3984 strcpy(ifr.ifr_name, dev->name); 3985 rcu_read_unlock(); 3986 3987 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3988 return -EFAULT; 3989 return 0; 3990 } 3991 3992 /* 3993 * Perform a SIOCGIFCONF call. This structure will change 3994 * size eventually, and there is nothing I can do about it. 3995 * Thus we will need a 'compatibility mode'. 3996 */ 3997 3998 static int dev_ifconf(struct net *net, char __user *arg) 3999 { 4000 struct ifconf ifc; 4001 struct net_device *dev; 4002 char __user *pos; 4003 int len; 4004 int total; 4005 int i; 4006 4007 /* 4008 * Fetch the caller's info block. 4009 */ 4010 4011 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 4012 return -EFAULT; 4013 4014 pos = ifc.ifc_buf; 4015 len = ifc.ifc_len; 4016 4017 /* 4018 * Loop over the interfaces, and write an info block for each. 4019 */ 4020 4021 total = 0; 4022 for_each_netdev(net, dev) { 4023 for (i = 0; i < NPROTO; i++) { 4024 if (gifconf_list[i]) { 4025 int done; 4026 if (!pos) 4027 done = gifconf_list[i](dev, NULL, 0); 4028 else 4029 done = gifconf_list[i](dev, pos + total, 4030 len - total); 4031 if (done < 0) 4032 return -EFAULT; 4033 total += done; 4034 } 4035 } 4036 } 4037 4038 /* 4039 * All done. Write the updated control block back to the caller. 4040 */ 4041 ifc.ifc_len = total; 4042 4043 /* 4044 * Both BSD and Solaris return 0 here, so we do too. 4045 */ 4046 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4047 } 4048 4049 #ifdef CONFIG_PROC_FS 4050 4051 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1) 4052 4053 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4054 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4055 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4056 4057 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos) 4058 { 4059 struct net *net = seq_file_net(seq); 4060 struct net_device *dev; 4061 struct hlist_node *p; 4062 struct hlist_head *h; 4063 unsigned int count = 0, offset = get_offset(*pos); 4064 4065 h = &net->dev_name_head[get_bucket(*pos)]; 4066 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4067 if (++count == offset) 4068 return dev; 4069 } 4070 4071 return NULL; 4072 } 4073 4074 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos) 4075 { 4076 struct net_device *dev; 4077 unsigned int bucket; 4078 4079 do { 4080 dev = dev_from_same_bucket(seq, pos); 4081 if (dev) 4082 return dev; 4083 4084 bucket = get_bucket(*pos) + 1; 4085 *pos = set_bucket_offset(bucket, 1); 4086 } while (bucket < NETDEV_HASHENTRIES); 4087 4088 return NULL; 4089 } 4090 4091 /* 4092 * This is invoked by the /proc filesystem handler to display a device 4093 * in detail. 4094 */ 4095 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4096 __acquires(RCU) 4097 { 4098 rcu_read_lock(); 4099 if (!*pos) 4100 return SEQ_START_TOKEN; 4101 4102 if (get_bucket(*pos) >= NETDEV_HASHENTRIES) 4103 return NULL; 4104 4105 return dev_from_bucket(seq, pos); 4106 } 4107 4108 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4109 { 4110 ++*pos; 4111 return dev_from_bucket(seq, pos); 4112 } 4113 4114 void dev_seq_stop(struct seq_file *seq, void *v) 4115 __releases(RCU) 4116 { 4117 rcu_read_unlock(); 4118 } 4119 4120 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4121 { 4122 struct rtnl_link_stats64 temp; 4123 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4124 4125 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4126 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4127 dev->name, stats->rx_bytes, stats->rx_packets, 4128 stats->rx_errors, 4129 stats->rx_dropped + stats->rx_missed_errors, 4130 stats->rx_fifo_errors, 4131 stats->rx_length_errors + stats->rx_over_errors + 4132 stats->rx_crc_errors + stats->rx_frame_errors, 4133 stats->rx_compressed, stats->multicast, 4134 stats->tx_bytes, stats->tx_packets, 4135 stats->tx_errors, stats->tx_dropped, 4136 stats->tx_fifo_errors, stats->collisions, 4137 stats->tx_carrier_errors + 4138 stats->tx_aborted_errors + 4139 stats->tx_window_errors + 4140 stats->tx_heartbeat_errors, 4141 stats->tx_compressed); 4142 } 4143 4144 /* 4145 * Called from the PROCfs module. This now uses the new arbitrary sized 4146 * /proc/net interface to create /proc/net/dev 4147 */ 4148 static int dev_seq_show(struct seq_file *seq, void *v) 4149 { 4150 if (v == SEQ_START_TOKEN) 4151 seq_puts(seq, "Inter-| Receive " 4152 " | Transmit\n" 4153 " face |bytes packets errs drop fifo frame " 4154 "compressed multicast|bytes packets errs " 4155 "drop fifo colls carrier compressed\n"); 4156 else 4157 dev_seq_printf_stats(seq, v); 4158 return 0; 4159 } 4160 4161 static struct softnet_data *softnet_get_online(loff_t *pos) 4162 { 4163 struct softnet_data *sd = NULL; 4164 4165 while (*pos < nr_cpu_ids) 4166 if (cpu_online(*pos)) { 4167 sd = &per_cpu(softnet_data, *pos); 4168 break; 4169 } else 4170 ++*pos; 4171 return sd; 4172 } 4173 4174 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4175 { 4176 return softnet_get_online(pos); 4177 } 4178 4179 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4180 { 4181 ++*pos; 4182 return softnet_get_online(pos); 4183 } 4184 4185 static void softnet_seq_stop(struct seq_file *seq, void *v) 4186 { 4187 } 4188 4189 static int softnet_seq_show(struct seq_file *seq, void *v) 4190 { 4191 struct softnet_data *sd = v; 4192 4193 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4194 sd->processed, sd->dropped, sd->time_squeeze, 0, 4195 0, 0, 0, 0, /* was fastroute */ 4196 sd->cpu_collision, sd->received_rps); 4197 return 0; 4198 } 4199 4200 static const struct seq_operations dev_seq_ops = { 4201 .start = dev_seq_start, 4202 .next = dev_seq_next, 4203 .stop = dev_seq_stop, 4204 .show = dev_seq_show, 4205 }; 4206 4207 static int dev_seq_open(struct inode *inode, struct file *file) 4208 { 4209 return seq_open_net(inode, file, &dev_seq_ops, 4210 sizeof(struct seq_net_private)); 4211 } 4212 4213 static const struct file_operations dev_seq_fops = { 4214 .owner = THIS_MODULE, 4215 .open = dev_seq_open, 4216 .read = seq_read, 4217 .llseek = seq_lseek, 4218 .release = seq_release_net, 4219 }; 4220 4221 static const struct seq_operations softnet_seq_ops = { 4222 .start = softnet_seq_start, 4223 .next = softnet_seq_next, 4224 .stop = softnet_seq_stop, 4225 .show = softnet_seq_show, 4226 }; 4227 4228 static int softnet_seq_open(struct inode *inode, struct file *file) 4229 { 4230 return seq_open(file, &softnet_seq_ops); 4231 } 4232 4233 static const struct file_operations softnet_seq_fops = { 4234 .owner = THIS_MODULE, 4235 .open = softnet_seq_open, 4236 .read = seq_read, 4237 .llseek = seq_lseek, 4238 .release = seq_release, 4239 }; 4240 4241 static void *ptype_get_idx(loff_t pos) 4242 { 4243 struct packet_type *pt = NULL; 4244 loff_t i = 0; 4245 int t; 4246 4247 list_for_each_entry_rcu(pt, &ptype_all, list) { 4248 if (i == pos) 4249 return pt; 4250 ++i; 4251 } 4252 4253 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4254 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4255 if (i == pos) 4256 return pt; 4257 ++i; 4258 } 4259 } 4260 return NULL; 4261 } 4262 4263 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4264 __acquires(RCU) 4265 { 4266 rcu_read_lock(); 4267 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4268 } 4269 4270 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4271 { 4272 struct packet_type *pt; 4273 struct list_head *nxt; 4274 int hash; 4275 4276 ++*pos; 4277 if (v == SEQ_START_TOKEN) 4278 return ptype_get_idx(0); 4279 4280 pt = v; 4281 nxt = pt->list.next; 4282 if (pt->type == htons(ETH_P_ALL)) { 4283 if (nxt != &ptype_all) 4284 goto found; 4285 hash = 0; 4286 nxt = ptype_base[0].next; 4287 } else 4288 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4289 4290 while (nxt == &ptype_base[hash]) { 4291 if (++hash >= PTYPE_HASH_SIZE) 4292 return NULL; 4293 nxt = ptype_base[hash].next; 4294 } 4295 found: 4296 return list_entry(nxt, struct packet_type, list); 4297 } 4298 4299 static void ptype_seq_stop(struct seq_file *seq, void *v) 4300 __releases(RCU) 4301 { 4302 rcu_read_unlock(); 4303 } 4304 4305 static int ptype_seq_show(struct seq_file *seq, void *v) 4306 { 4307 struct packet_type *pt = v; 4308 4309 if (v == SEQ_START_TOKEN) 4310 seq_puts(seq, "Type Device Function\n"); 4311 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4312 if (pt->type == htons(ETH_P_ALL)) 4313 seq_puts(seq, "ALL "); 4314 else 4315 seq_printf(seq, "%04x", ntohs(pt->type)); 4316 4317 seq_printf(seq, " %-8s %pF\n", 4318 pt->dev ? pt->dev->name : "", pt->func); 4319 } 4320 4321 return 0; 4322 } 4323 4324 static const struct seq_operations ptype_seq_ops = { 4325 .start = ptype_seq_start, 4326 .next = ptype_seq_next, 4327 .stop = ptype_seq_stop, 4328 .show = ptype_seq_show, 4329 }; 4330 4331 static int ptype_seq_open(struct inode *inode, struct file *file) 4332 { 4333 return seq_open_net(inode, file, &ptype_seq_ops, 4334 sizeof(struct seq_net_private)); 4335 } 4336 4337 static const struct file_operations ptype_seq_fops = { 4338 .owner = THIS_MODULE, 4339 .open = ptype_seq_open, 4340 .read = seq_read, 4341 .llseek = seq_lseek, 4342 .release = seq_release_net, 4343 }; 4344 4345 4346 static int __net_init dev_proc_net_init(struct net *net) 4347 { 4348 int rc = -ENOMEM; 4349 4350 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4351 goto out; 4352 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4353 goto out_dev; 4354 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4355 goto out_softnet; 4356 4357 if (wext_proc_init(net)) 4358 goto out_ptype; 4359 rc = 0; 4360 out: 4361 return rc; 4362 out_ptype: 4363 proc_net_remove(net, "ptype"); 4364 out_softnet: 4365 proc_net_remove(net, "softnet_stat"); 4366 out_dev: 4367 proc_net_remove(net, "dev"); 4368 goto out; 4369 } 4370 4371 static void __net_exit dev_proc_net_exit(struct net *net) 4372 { 4373 wext_proc_exit(net); 4374 4375 proc_net_remove(net, "ptype"); 4376 proc_net_remove(net, "softnet_stat"); 4377 proc_net_remove(net, "dev"); 4378 } 4379 4380 static struct pernet_operations __net_initdata dev_proc_ops = { 4381 .init = dev_proc_net_init, 4382 .exit = dev_proc_net_exit, 4383 }; 4384 4385 static int __init dev_proc_init(void) 4386 { 4387 return register_pernet_subsys(&dev_proc_ops); 4388 } 4389 #else 4390 #define dev_proc_init() 0 4391 #endif /* CONFIG_PROC_FS */ 4392 4393 4394 /** 4395 * netdev_set_master - set up master pointer 4396 * @slave: slave device 4397 * @master: new master device 4398 * 4399 * Changes the master device of the slave. Pass %NULL to break the 4400 * bonding. The caller must hold the RTNL semaphore. On a failure 4401 * a negative errno code is returned. On success the reference counts 4402 * are adjusted and the function returns zero. 4403 */ 4404 int netdev_set_master(struct net_device *slave, struct net_device *master) 4405 { 4406 struct net_device *old = slave->master; 4407 4408 ASSERT_RTNL(); 4409 4410 if (master) { 4411 if (old) 4412 return -EBUSY; 4413 dev_hold(master); 4414 } 4415 4416 slave->master = master; 4417 4418 if (old) 4419 dev_put(old); 4420 return 0; 4421 } 4422 EXPORT_SYMBOL(netdev_set_master); 4423 4424 /** 4425 * netdev_set_bond_master - set up bonding master/slave pair 4426 * @slave: slave device 4427 * @master: new master device 4428 * 4429 * Changes the master device of the slave. Pass %NULL to break the 4430 * bonding. The caller must hold the RTNL semaphore. On a failure 4431 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4432 * to the routing socket and the function returns zero. 4433 */ 4434 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4435 { 4436 int err; 4437 4438 ASSERT_RTNL(); 4439 4440 err = netdev_set_master(slave, master); 4441 if (err) 4442 return err; 4443 if (master) 4444 slave->flags |= IFF_SLAVE; 4445 else 4446 slave->flags &= ~IFF_SLAVE; 4447 4448 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4449 return 0; 4450 } 4451 EXPORT_SYMBOL(netdev_set_bond_master); 4452 4453 static void dev_change_rx_flags(struct net_device *dev, int flags) 4454 { 4455 const struct net_device_ops *ops = dev->netdev_ops; 4456 4457 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4458 ops->ndo_change_rx_flags(dev, flags); 4459 } 4460 4461 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4462 { 4463 unsigned int old_flags = dev->flags; 4464 uid_t uid; 4465 gid_t gid; 4466 4467 ASSERT_RTNL(); 4468 4469 dev->flags |= IFF_PROMISC; 4470 dev->promiscuity += inc; 4471 if (dev->promiscuity == 0) { 4472 /* 4473 * Avoid overflow. 4474 * If inc causes overflow, untouch promisc and return error. 4475 */ 4476 if (inc < 0) 4477 dev->flags &= ~IFF_PROMISC; 4478 else { 4479 dev->promiscuity -= inc; 4480 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4481 dev->name); 4482 return -EOVERFLOW; 4483 } 4484 } 4485 if (dev->flags != old_flags) { 4486 pr_info("device %s %s promiscuous mode\n", 4487 dev->name, 4488 dev->flags & IFF_PROMISC ? "entered" : "left"); 4489 if (audit_enabled) { 4490 current_uid_gid(&uid, &gid); 4491 audit_log(current->audit_context, GFP_ATOMIC, 4492 AUDIT_ANOM_PROMISCUOUS, 4493 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4494 dev->name, (dev->flags & IFF_PROMISC), 4495 (old_flags & IFF_PROMISC), 4496 audit_get_loginuid(current), 4497 uid, gid, 4498 audit_get_sessionid(current)); 4499 } 4500 4501 dev_change_rx_flags(dev, IFF_PROMISC); 4502 } 4503 return 0; 4504 } 4505 4506 /** 4507 * dev_set_promiscuity - update promiscuity count on a device 4508 * @dev: device 4509 * @inc: modifier 4510 * 4511 * Add or remove promiscuity from a device. While the count in the device 4512 * remains above zero the interface remains promiscuous. Once it hits zero 4513 * the device reverts back to normal filtering operation. A negative inc 4514 * value is used to drop promiscuity on the device. 4515 * Return 0 if successful or a negative errno code on error. 4516 */ 4517 int dev_set_promiscuity(struct net_device *dev, int inc) 4518 { 4519 unsigned int old_flags = dev->flags; 4520 int err; 4521 4522 err = __dev_set_promiscuity(dev, inc); 4523 if (err < 0) 4524 return err; 4525 if (dev->flags != old_flags) 4526 dev_set_rx_mode(dev); 4527 return err; 4528 } 4529 EXPORT_SYMBOL(dev_set_promiscuity); 4530 4531 /** 4532 * dev_set_allmulti - update allmulti count on a device 4533 * @dev: device 4534 * @inc: modifier 4535 * 4536 * Add or remove reception of all multicast frames to a device. While the 4537 * count in the device remains above zero the interface remains listening 4538 * to all interfaces. Once it hits zero the device reverts back to normal 4539 * filtering operation. A negative @inc value is used to drop the counter 4540 * when releasing a resource needing all multicasts. 4541 * Return 0 if successful or a negative errno code on error. 4542 */ 4543 4544 int dev_set_allmulti(struct net_device *dev, int inc) 4545 { 4546 unsigned int old_flags = dev->flags; 4547 4548 ASSERT_RTNL(); 4549 4550 dev->flags |= IFF_ALLMULTI; 4551 dev->allmulti += inc; 4552 if (dev->allmulti == 0) { 4553 /* 4554 * Avoid overflow. 4555 * If inc causes overflow, untouch allmulti and return error. 4556 */ 4557 if (inc < 0) 4558 dev->flags &= ~IFF_ALLMULTI; 4559 else { 4560 dev->allmulti -= inc; 4561 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4562 dev->name); 4563 return -EOVERFLOW; 4564 } 4565 } 4566 if (dev->flags ^ old_flags) { 4567 dev_change_rx_flags(dev, IFF_ALLMULTI); 4568 dev_set_rx_mode(dev); 4569 } 4570 return 0; 4571 } 4572 EXPORT_SYMBOL(dev_set_allmulti); 4573 4574 /* 4575 * Upload unicast and multicast address lists to device and 4576 * configure RX filtering. When the device doesn't support unicast 4577 * filtering it is put in promiscuous mode while unicast addresses 4578 * are present. 4579 */ 4580 void __dev_set_rx_mode(struct net_device *dev) 4581 { 4582 const struct net_device_ops *ops = dev->netdev_ops; 4583 4584 /* dev_open will call this function so the list will stay sane. */ 4585 if (!(dev->flags&IFF_UP)) 4586 return; 4587 4588 if (!netif_device_present(dev)) 4589 return; 4590 4591 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4592 /* Unicast addresses changes may only happen under the rtnl, 4593 * therefore calling __dev_set_promiscuity here is safe. 4594 */ 4595 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4596 __dev_set_promiscuity(dev, 1); 4597 dev->uc_promisc = true; 4598 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4599 __dev_set_promiscuity(dev, -1); 4600 dev->uc_promisc = false; 4601 } 4602 } 4603 4604 if (ops->ndo_set_rx_mode) 4605 ops->ndo_set_rx_mode(dev); 4606 } 4607 4608 void dev_set_rx_mode(struct net_device *dev) 4609 { 4610 netif_addr_lock_bh(dev); 4611 __dev_set_rx_mode(dev); 4612 netif_addr_unlock_bh(dev); 4613 } 4614 4615 /** 4616 * dev_get_flags - get flags reported to userspace 4617 * @dev: device 4618 * 4619 * Get the combination of flag bits exported through APIs to userspace. 4620 */ 4621 unsigned dev_get_flags(const struct net_device *dev) 4622 { 4623 unsigned flags; 4624 4625 flags = (dev->flags & ~(IFF_PROMISC | 4626 IFF_ALLMULTI | 4627 IFF_RUNNING | 4628 IFF_LOWER_UP | 4629 IFF_DORMANT)) | 4630 (dev->gflags & (IFF_PROMISC | 4631 IFF_ALLMULTI)); 4632 4633 if (netif_running(dev)) { 4634 if (netif_oper_up(dev)) 4635 flags |= IFF_RUNNING; 4636 if (netif_carrier_ok(dev)) 4637 flags |= IFF_LOWER_UP; 4638 if (netif_dormant(dev)) 4639 flags |= IFF_DORMANT; 4640 } 4641 4642 return flags; 4643 } 4644 EXPORT_SYMBOL(dev_get_flags); 4645 4646 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4647 { 4648 unsigned int old_flags = dev->flags; 4649 int ret; 4650 4651 ASSERT_RTNL(); 4652 4653 /* 4654 * Set the flags on our device. 4655 */ 4656 4657 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4658 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4659 IFF_AUTOMEDIA)) | 4660 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4661 IFF_ALLMULTI)); 4662 4663 /* 4664 * Load in the correct multicast list now the flags have changed. 4665 */ 4666 4667 if ((old_flags ^ flags) & IFF_MULTICAST) 4668 dev_change_rx_flags(dev, IFF_MULTICAST); 4669 4670 dev_set_rx_mode(dev); 4671 4672 /* 4673 * Have we downed the interface. We handle IFF_UP ourselves 4674 * according to user attempts to set it, rather than blindly 4675 * setting it. 4676 */ 4677 4678 ret = 0; 4679 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4680 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4681 4682 if (!ret) 4683 dev_set_rx_mode(dev); 4684 } 4685 4686 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4687 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4688 4689 dev->gflags ^= IFF_PROMISC; 4690 dev_set_promiscuity(dev, inc); 4691 } 4692 4693 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4694 is important. Some (broken) drivers set IFF_PROMISC, when 4695 IFF_ALLMULTI is requested not asking us and not reporting. 4696 */ 4697 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4698 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4699 4700 dev->gflags ^= IFF_ALLMULTI; 4701 dev_set_allmulti(dev, inc); 4702 } 4703 4704 return ret; 4705 } 4706 4707 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4708 { 4709 unsigned int changes = dev->flags ^ old_flags; 4710 4711 if (changes & IFF_UP) { 4712 if (dev->flags & IFF_UP) 4713 call_netdevice_notifiers(NETDEV_UP, dev); 4714 else 4715 call_netdevice_notifiers(NETDEV_DOWN, dev); 4716 } 4717 4718 if (dev->flags & IFF_UP && 4719 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4720 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4721 } 4722 4723 /** 4724 * dev_change_flags - change device settings 4725 * @dev: device 4726 * @flags: device state flags 4727 * 4728 * Change settings on device based state flags. The flags are 4729 * in the userspace exported format. 4730 */ 4731 int dev_change_flags(struct net_device *dev, unsigned int flags) 4732 { 4733 int ret; 4734 unsigned int changes, old_flags = dev->flags; 4735 4736 ret = __dev_change_flags(dev, flags); 4737 if (ret < 0) 4738 return ret; 4739 4740 changes = old_flags ^ dev->flags; 4741 if (changes) 4742 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4743 4744 __dev_notify_flags(dev, old_flags); 4745 return ret; 4746 } 4747 EXPORT_SYMBOL(dev_change_flags); 4748 4749 /** 4750 * dev_set_mtu - Change maximum transfer unit 4751 * @dev: device 4752 * @new_mtu: new transfer unit 4753 * 4754 * Change the maximum transfer size of the network device. 4755 */ 4756 int dev_set_mtu(struct net_device *dev, int new_mtu) 4757 { 4758 const struct net_device_ops *ops = dev->netdev_ops; 4759 int err; 4760 4761 if (new_mtu == dev->mtu) 4762 return 0; 4763 4764 /* MTU must be positive. */ 4765 if (new_mtu < 0) 4766 return -EINVAL; 4767 4768 if (!netif_device_present(dev)) 4769 return -ENODEV; 4770 4771 err = 0; 4772 if (ops->ndo_change_mtu) 4773 err = ops->ndo_change_mtu(dev, new_mtu); 4774 else 4775 dev->mtu = new_mtu; 4776 4777 if (!err && dev->flags & IFF_UP) 4778 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4779 return err; 4780 } 4781 EXPORT_SYMBOL(dev_set_mtu); 4782 4783 /** 4784 * dev_set_group - Change group this device belongs to 4785 * @dev: device 4786 * @new_group: group this device should belong to 4787 */ 4788 void dev_set_group(struct net_device *dev, int new_group) 4789 { 4790 dev->group = new_group; 4791 } 4792 EXPORT_SYMBOL(dev_set_group); 4793 4794 /** 4795 * dev_set_mac_address - Change Media Access Control Address 4796 * @dev: device 4797 * @sa: new address 4798 * 4799 * Change the hardware (MAC) address of the device 4800 */ 4801 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4802 { 4803 const struct net_device_ops *ops = dev->netdev_ops; 4804 int err; 4805 4806 if (!ops->ndo_set_mac_address) 4807 return -EOPNOTSUPP; 4808 if (sa->sa_family != dev->type) 4809 return -EINVAL; 4810 if (!netif_device_present(dev)) 4811 return -ENODEV; 4812 err = ops->ndo_set_mac_address(dev, sa); 4813 if (!err) 4814 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4815 return err; 4816 } 4817 EXPORT_SYMBOL(dev_set_mac_address); 4818 4819 /* 4820 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4821 */ 4822 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4823 { 4824 int err; 4825 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4826 4827 if (!dev) 4828 return -ENODEV; 4829 4830 switch (cmd) { 4831 case SIOCGIFFLAGS: /* Get interface flags */ 4832 ifr->ifr_flags = (short) dev_get_flags(dev); 4833 return 0; 4834 4835 case SIOCGIFMETRIC: /* Get the metric on the interface 4836 (currently unused) */ 4837 ifr->ifr_metric = 0; 4838 return 0; 4839 4840 case SIOCGIFMTU: /* Get the MTU of a device */ 4841 ifr->ifr_mtu = dev->mtu; 4842 return 0; 4843 4844 case SIOCGIFHWADDR: 4845 if (!dev->addr_len) 4846 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4847 else 4848 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4849 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4850 ifr->ifr_hwaddr.sa_family = dev->type; 4851 return 0; 4852 4853 case SIOCGIFSLAVE: 4854 err = -EINVAL; 4855 break; 4856 4857 case SIOCGIFMAP: 4858 ifr->ifr_map.mem_start = dev->mem_start; 4859 ifr->ifr_map.mem_end = dev->mem_end; 4860 ifr->ifr_map.base_addr = dev->base_addr; 4861 ifr->ifr_map.irq = dev->irq; 4862 ifr->ifr_map.dma = dev->dma; 4863 ifr->ifr_map.port = dev->if_port; 4864 return 0; 4865 4866 case SIOCGIFINDEX: 4867 ifr->ifr_ifindex = dev->ifindex; 4868 return 0; 4869 4870 case SIOCGIFTXQLEN: 4871 ifr->ifr_qlen = dev->tx_queue_len; 4872 return 0; 4873 4874 default: 4875 /* dev_ioctl() should ensure this case 4876 * is never reached 4877 */ 4878 WARN_ON(1); 4879 err = -ENOTTY; 4880 break; 4881 4882 } 4883 return err; 4884 } 4885 4886 /* 4887 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4888 */ 4889 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4890 { 4891 int err; 4892 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4893 const struct net_device_ops *ops; 4894 4895 if (!dev) 4896 return -ENODEV; 4897 4898 ops = dev->netdev_ops; 4899 4900 switch (cmd) { 4901 case SIOCSIFFLAGS: /* Set interface flags */ 4902 return dev_change_flags(dev, ifr->ifr_flags); 4903 4904 case SIOCSIFMETRIC: /* Set the metric on the interface 4905 (currently unused) */ 4906 return -EOPNOTSUPP; 4907 4908 case SIOCSIFMTU: /* Set the MTU of a device */ 4909 return dev_set_mtu(dev, ifr->ifr_mtu); 4910 4911 case SIOCSIFHWADDR: 4912 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4913 4914 case SIOCSIFHWBROADCAST: 4915 if (ifr->ifr_hwaddr.sa_family != dev->type) 4916 return -EINVAL; 4917 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4918 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4919 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4920 return 0; 4921 4922 case SIOCSIFMAP: 4923 if (ops->ndo_set_config) { 4924 if (!netif_device_present(dev)) 4925 return -ENODEV; 4926 return ops->ndo_set_config(dev, &ifr->ifr_map); 4927 } 4928 return -EOPNOTSUPP; 4929 4930 case SIOCADDMULTI: 4931 if (!ops->ndo_set_rx_mode || 4932 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4933 return -EINVAL; 4934 if (!netif_device_present(dev)) 4935 return -ENODEV; 4936 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4937 4938 case SIOCDELMULTI: 4939 if (!ops->ndo_set_rx_mode || 4940 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4941 return -EINVAL; 4942 if (!netif_device_present(dev)) 4943 return -ENODEV; 4944 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4945 4946 case SIOCSIFTXQLEN: 4947 if (ifr->ifr_qlen < 0) 4948 return -EINVAL; 4949 dev->tx_queue_len = ifr->ifr_qlen; 4950 return 0; 4951 4952 case SIOCSIFNAME: 4953 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4954 return dev_change_name(dev, ifr->ifr_newname); 4955 4956 case SIOCSHWTSTAMP: 4957 err = net_hwtstamp_validate(ifr); 4958 if (err) 4959 return err; 4960 /* fall through */ 4961 4962 /* 4963 * Unknown or private ioctl 4964 */ 4965 default: 4966 if ((cmd >= SIOCDEVPRIVATE && 4967 cmd <= SIOCDEVPRIVATE + 15) || 4968 cmd == SIOCBONDENSLAVE || 4969 cmd == SIOCBONDRELEASE || 4970 cmd == SIOCBONDSETHWADDR || 4971 cmd == SIOCBONDSLAVEINFOQUERY || 4972 cmd == SIOCBONDINFOQUERY || 4973 cmd == SIOCBONDCHANGEACTIVE || 4974 cmd == SIOCGMIIPHY || 4975 cmd == SIOCGMIIREG || 4976 cmd == SIOCSMIIREG || 4977 cmd == SIOCBRADDIF || 4978 cmd == SIOCBRDELIF || 4979 cmd == SIOCSHWTSTAMP || 4980 cmd == SIOCWANDEV) { 4981 err = -EOPNOTSUPP; 4982 if (ops->ndo_do_ioctl) { 4983 if (netif_device_present(dev)) 4984 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4985 else 4986 err = -ENODEV; 4987 } 4988 } else 4989 err = -EINVAL; 4990 4991 } 4992 return err; 4993 } 4994 4995 /* 4996 * This function handles all "interface"-type I/O control requests. The actual 4997 * 'doing' part of this is dev_ifsioc above. 4998 */ 4999 5000 /** 5001 * dev_ioctl - network device ioctl 5002 * @net: the applicable net namespace 5003 * @cmd: command to issue 5004 * @arg: pointer to a struct ifreq in user space 5005 * 5006 * Issue ioctl functions to devices. This is normally called by the 5007 * user space syscall interfaces but can sometimes be useful for 5008 * other purposes. The return value is the return from the syscall if 5009 * positive or a negative errno code on error. 5010 */ 5011 5012 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 5013 { 5014 struct ifreq ifr; 5015 int ret; 5016 char *colon; 5017 5018 /* One special case: SIOCGIFCONF takes ifconf argument 5019 and requires shared lock, because it sleeps writing 5020 to user space. 5021 */ 5022 5023 if (cmd == SIOCGIFCONF) { 5024 rtnl_lock(); 5025 ret = dev_ifconf(net, (char __user *) arg); 5026 rtnl_unlock(); 5027 return ret; 5028 } 5029 if (cmd == SIOCGIFNAME) 5030 return dev_ifname(net, (struct ifreq __user *)arg); 5031 5032 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5033 return -EFAULT; 5034 5035 ifr.ifr_name[IFNAMSIZ-1] = 0; 5036 5037 colon = strchr(ifr.ifr_name, ':'); 5038 if (colon) 5039 *colon = 0; 5040 5041 /* 5042 * See which interface the caller is talking about. 5043 */ 5044 5045 switch (cmd) { 5046 /* 5047 * These ioctl calls: 5048 * - can be done by all. 5049 * - atomic and do not require locking. 5050 * - return a value 5051 */ 5052 case SIOCGIFFLAGS: 5053 case SIOCGIFMETRIC: 5054 case SIOCGIFMTU: 5055 case SIOCGIFHWADDR: 5056 case SIOCGIFSLAVE: 5057 case SIOCGIFMAP: 5058 case SIOCGIFINDEX: 5059 case SIOCGIFTXQLEN: 5060 dev_load(net, ifr.ifr_name); 5061 rcu_read_lock(); 5062 ret = dev_ifsioc_locked(net, &ifr, cmd); 5063 rcu_read_unlock(); 5064 if (!ret) { 5065 if (colon) 5066 *colon = ':'; 5067 if (copy_to_user(arg, &ifr, 5068 sizeof(struct ifreq))) 5069 ret = -EFAULT; 5070 } 5071 return ret; 5072 5073 case SIOCETHTOOL: 5074 dev_load(net, ifr.ifr_name); 5075 rtnl_lock(); 5076 ret = dev_ethtool(net, &ifr); 5077 rtnl_unlock(); 5078 if (!ret) { 5079 if (colon) 5080 *colon = ':'; 5081 if (copy_to_user(arg, &ifr, 5082 sizeof(struct ifreq))) 5083 ret = -EFAULT; 5084 } 5085 return ret; 5086 5087 /* 5088 * These ioctl calls: 5089 * - require superuser power. 5090 * - require strict serialization. 5091 * - return a value 5092 */ 5093 case SIOCGMIIPHY: 5094 case SIOCGMIIREG: 5095 case SIOCSIFNAME: 5096 if (!capable(CAP_NET_ADMIN)) 5097 return -EPERM; 5098 dev_load(net, ifr.ifr_name); 5099 rtnl_lock(); 5100 ret = dev_ifsioc(net, &ifr, cmd); 5101 rtnl_unlock(); 5102 if (!ret) { 5103 if (colon) 5104 *colon = ':'; 5105 if (copy_to_user(arg, &ifr, 5106 sizeof(struct ifreq))) 5107 ret = -EFAULT; 5108 } 5109 return ret; 5110 5111 /* 5112 * These ioctl calls: 5113 * - require superuser power. 5114 * - require strict serialization. 5115 * - do not return a value 5116 */ 5117 case SIOCSIFFLAGS: 5118 case SIOCSIFMETRIC: 5119 case SIOCSIFMTU: 5120 case SIOCSIFMAP: 5121 case SIOCSIFHWADDR: 5122 case SIOCSIFSLAVE: 5123 case SIOCADDMULTI: 5124 case SIOCDELMULTI: 5125 case SIOCSIFHWBROADCAST: 5126 case SIOCSIFTXQLEN: 5127 case SIOCSMIIREG: 5128 case SIOCBONDENSLAVE: 5129 case SIOCBONDRELEASE: 5130 case SIOCBONDSETHWADDR: 5131 case SIOCBONDCHANGEACTIVE: 5132 case SIOCBRADDIF: 5133 case SIOCBRDELIF: 5134 case SIOCSHWTSTAMP: 5135 if (!capable(CAP_NET_ADMIN)) 5136 return -EPERM; 5137 /* fall through */ 5138 case SIOCBONDSLAVEINFOQUERY: 5139 case SIOCBONDINFOQUERY: 5140 dev_load(net, ifr.ifr_name); 5141 rtnl_lock(); 5142 ret = dev_ifsioc(net, &ifr, cmd); 5143 rtnl_unlock(); 5144 return ret; 5145 5146 case SIOCGIFMEM: 5147 /* Get the per device memory space. We can add this but 5148 * currently do not support it */ 5149 case SIOCSIFMEM: 5150 /* Set the per device memory buffer space. 5151 * Not applicable in our case */ 5152 case SIOCSIFLINK: 5153 return -ENOTTY; 5154 5155 /* 5156 * Unknown or private ioctl. 5157 */ 5158 default: 5159 if (cmd == SIOCWANDEV || 5160 (cmd >= SIOCDEVPRIVATE && 5161 cmd <= SIOCDEVPRIVATE + 15)) { 5162 dev_load(net, ifr.ifr_name); 5163 rtnl_lock(); 5164 ret = dev_ifsioc(net, &ifr, cmd); 5165 rtnl_unlock(); 5166 if (!ret && copy_to_user(arg, &ifr, 5167 sizeof(struct ifreq))) 5168 ret = -EFAULT; 5169 return ret; 5170 } 5171 /* Take care of Wireless Extensions */ 5172 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5173 return wext_handle_ioctl(net, &ifr, cmd, arg); 5174 return -ENOTTY; 5175 } 5176 } 5177 5178 5179 /** 5180 * dev_new_index - allocate an ifindex 5181 * @net: the applicable net namespace 5182 * 5183 * Returns a suitable unique value for a new device interface 5184 * number. The caller must hold the rtnl semaphore or the 5185 * dev_base_lock to be sure it remains unique. 5186 */ 5187 static int dev_new_index(struct net *net) 5188 { 5189 static int ifindex; 5190 for (;;) { 5191 if (++ifindex <= 0) 5192 ifindex = 1; 5193 if (!__dev_get_by_index(net, ifindex)) 5194 return ifindex; 5195 } 5196 } 5197 5198 /* Delayed registration/unregisteration */ 5199 static LIST_HEAD(net_todo_list); 5200 5201 static void net_set_todo(struct net_device *dev) 5202 { 5203 list_add_tail(&dev->todo_list, &net_todo_list); 5204 } 5205 5206 static void rollback_registered_many(struct list_head *head) 5207 { 5208 struct net_device *dev, *tmp; 5209 5210 BUG_ON(dev_boot_phase); 5211 ASSERT_RTNL(); 5212 5213 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5214 /* Some devices call without registering 5215 * for initialization unwind. Remove those 5216 * devices and proceed with the remaining. 5217 */ 5218 if (dev->reg_state == NETREG_UNINITIALIZED) { 5219 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5220 dev->name, dev); 5221 5222 WARN_ON(1); 5223 list_del(&dev->unreg_list); 5224 continue; 5225 } 5226 dev->dismantle = true; 5227 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5228 } 5229 5230 /* If device is running, close it first. */ 5231 dev_close_many(head); 5232 5233 list_for_each_entry(dev, head, unreg_list) { 5234 /* And unlink it from device chain. */ 5235 unlist_netdevice(dev); 5236 5237 dev->reg_state = NETREG_UNREGISTERING; 5238 } 5239 5240 synchronize_net(); 5241 5242 list_for_each_entry(dev, head, unreg_list) { 5243 /* Shutdown queueing discipline. */ 5244 dev_shutdown(dev); 5245 5246 5247 /* Notify protocols, that we are about to destroy 5248 this device. They should clean all the things. 5249 */ 5250 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5251 5252 if (!dev->rtnl_link_ops || 5253 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5254 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5255 5256 /* 5257 * Flush the unicast and multicast chains 5258 */ 5259 dev_uc_flush(dev); 5260 dev_mc_flush(dev); 5261 5262 if (dev->netdev_ops->ndo_uninit) 5263 dev->netdev_ops->ndo_uninit(dev); 5264 5265 /* Notifier chain MUST detach us from master device. */ 5266 WARN_ON(dev->master); 5267 5268 /* Remove entries from kobject tree */ 5269 netdev_unregister_kobject(dev); 5270 } 5271 5272 /* Process any work delayed until the end of the batch */ 5273 dev = list_first_entry(head, struct net_device, unreg_list); 5274 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5275 5276 synchronize_net(); 5277 5278 list_for_each_entry(dev, head, unreg_list) 5279 dev_put(dev); 5280 } 5281 5282 static void rollback_registered(struct net_device *dev) 5283 { 5284 LIST_HEAD(single); 5285 5286 list_add(&dev->unreg_list, &single); 5287 rollback_registered_many(&single); 5288 list_del(&single); 5289 } 5290 5291 static netdev_features_t netdev_fix_features(struct net_device *dev, 5292 netdev_features_t features) 5293 { 5294 /* Fix illegal checksum combinations */ 5295 if ((features & NETIF_F_HW_CSUM) && 5296 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5297 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5298 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5299 } 5300 5301 /* Fix illegal SG+CSUM combinations. */ 5302 if ((features & NETIF_F_SG) && 5303 !(features & NETIF_F_ALL_CSUM)) { 5304 netdev_dbg(dev, 5305 "Dropping NETIF_F_SG since no checksum feature.\n"); 5306 features &= ~NETIF_F_SG; 5307 } 5308 5309 /* TSO requires that SG is present as well. */ 5310 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5311 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5312 features &= ~NETIF_F_ALL_TSO; 5313 } 5314 5315 /* TSO ECN requires that TSO is present as well. */ 5316 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5317 features &= ~NETIF_F_TSO_ECN; 5318 5319 /* Software GSO depends on SG. */ 5320 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5321 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5322 features &= ~NETIF_F_GSO; 5323 } 5324 5325 /* UFO needs SG and checksumming */ 5326 if (features & NETIF_F_UFO) { 5327 /* maybe split UFO into V4 and V6? */ 5328 if (!((features & NETIF_F_GEN_CSUM) || 5329 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5330 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5331 netdev_dbg(dev, 5332 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5333 features &= ~NETIF_F_UFO; 5334 } 5335 5336 if (!(features & NETIF_F_SG)) { 5337 netdev_dbg(dev, 5338 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5339 features &= ~NETIF_F_UFO; 5340 } 5341 } 5342 5343 return features; 5344 } 5345 5346 int __netdev_update_features(struct net_device *dev) 5347 { 5348 netdev_features_t features; 5349 int err = 0; 5350 5351 ASSERT_RTNL(); 5352 5353 features = netdev_get_wanted_features(dev); 5354 5355 if (dev->netdev_ops->ndo_fix_features) 5356 features = dev->netdev_ops->ndo_fix_features(dev, features); 5357 5358 /* driver might be less strict about feature dependencies */ 5359 features = netdev_fix_features(dev, features); 5360 5361 if (dev->features == features) 5362 return 0; 5363 5364 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5365 &dev->features, &features); 5366 5367 if (dev->netdev_ops->ndo_set_features) 5368 err = dev->netdev_ops->ndo_set_features(dev, features); 5369 5370 if (unlikely(err < 0)) { 5371 netdev_err(dev, 5372 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5373 err, &features, &dev->features); 5374 return -1; 5375 } 5376 5377 if (!err) 5378 dev->features = features; 5379 5380 return 1; 5381 } 5382 5383 /** 5384 * netdev_update_features - recalculate device features 5385 * @dev: the device to check 5386 * 5387 * Recalculate dev->features set and send notifications if it 5388 * has changed. Should be called after driver or hardware dependent 5389 * conditions might have changed that influence the features. 5390 */ 5391 void netdev_update_features(struct net_device *dev) 5392 { 5393 if (__netdev_update_features(dev)) 5394 netdev_features_change(dev); 5395 } 5396 EXPORT_SYMBOL(netdev_update_features); 5397 5398 /** 5399 * netdev_change_features - recalculate device features 5400 * @dev: the device to check 5401 * 5402 * Recalculate dev->features set and send notifications even 5403 * if they have not changed. Should be called instead of 5404 * netdev_update_features() if also dev->vlan_features might 5405 * have changed to allow the changes to be propagated to stacked 5406 * VLAN devices. 5407 */ 5408 void netdev_change_features(struct net_device *dev) 5409 { 5410 __netdev_update_features(dev); 5411 netdev_features_change(dev); 5412 } 5413 EXPORT_SYMBOL(netdev_change_features); 5414 5415 /** 5416 * netif_stacked_transfer_operstate - transfer operstate 5417 * @rootdev: the root or lower level device to transfer state from 5418 * @dev: the device to transfer operstate to 5419 * 5420 * Transfer operational state from root to device. This is normally 5421 * called when a stacking relationship exists between the root 5422 * device and the device(a leaf device). 5423 */ 5424 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5425 struct net_device *dev) 5426 { 5427 if (rootdev->operstate == IF_OPER_DORMANT) 5428 netif_dormant_on(dev); 5429 else 5430 netif_dormant_off(dev); 5431 5432 if (netif_carrier_ok(rootdev)) { 5433 if (!netif_carrier_ok(dev)) 5434 netif_carrier_on(dev); 5435 } else { 5436 if (netif_carrier_ok(dev)) 5437 netif_carrier_off(dev); 5438 } 5439 } 5440 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5441 5442 #ifdef CONFIG_RPS 5443 static int netif_alloc_rx_queues(struct net_device *dev) 5444 { 5445 unsigned int i, count = dev->num_rx_queues; 5446 struct netdev_rx_queue *rx; 5447 5448 BUG_ON(count < 1); 5449 5450 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5451 if (!rx) { 5452 pr_err("netdev: Unable to allocate %u rx queues\n", count); 5453 return -ENOMEM; 5454 } 5455 dev->_rx = rx; 5456 5457 for (i = 0; i < count; i++) 5458 rx[i].dev = dev; 5459 return 0; 5460 } 5461 #endif 5462 5463 static void netdev_init_one_queue(struct net_device *dev, 5464 struct netdev_queue *queue, void *_unused) 5465 { 5466 /* Initialize queue lock */ 5467 spin_lock_init(&queue->_xmit_lock); 5468 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5469 queue->xmit_lock_owner = -1; 5470 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5471 queue->dev = dev; 5472 #ifdef CONFIG_BQL 5473 dql_init(&queue->dql, HZ); 5474 #endif 5475 } 5476 5477 static int netif_alloc_netdev_queues(struct net_device *dev) 5478 { 5479 unsigned int count = dev->num_tx_queues; 5480 struct netdev_queue *tx; 5481 5482 BUG_ON(count < 1); 5483 5484 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5485 if (!tx) { 5486 pr_err("netdev: Unable to allocate %u tx queues\n", count); 5487 return -ENOMEM; 5488 } 5489 dev->_tx = tx; 5490 5491 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5492 spin_lock_init(&dev->tx_global_lock); 5493 5494 return 0; 5495 } 5496 5497 /** 5498 * register_netdevice - register a network device 5499 * @dev: device to register 5500 * 5501 * Take a completed network device structure and add it to the kernel 5502 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5503 * chain. 0 is returned on success. A negative errno code is returned 5504 * on a failure to set up the device, or if the name is a duplicate. 5505 * 5506 * Callers must hold the rtnl semaphore. You may want 5507 * register_netdev() instead of this. 5508 * 5509 * BUGS: 5510 * The locking appears insufficient to guarantee two parallel registers 5511 * will not get the same name. 5512 */ 5513 5514 int register_netdevice(struct net_device *dev) 5515 { 5516 int ret; 5517 struct net *net = dev_net(dev); 5518 5519 BUG_ON(dev_boot_phase); 5520 ASSERT_RTNL(); 5521 5522 might_sleep(); 5523 5524 /* When net_device's are persistent, this will be fatal. */ 5525 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5526 BUG_ON(!net); 5527 5528 spin_lock_init(&dev->addr_list_lock); 5529 netdev_set_addr_lockdep_class(dev); 5530 5531 dev->iflink = -1; 5532 5533 ret = dev_get_valid_name(dev, dev->name); 5534 if (ret < 0) 5535 goto out; 5536 5537 /* Init, if this function is available */ 5538 if (dev->netdev_ops->ndo_init) { 5539 ret = dev->netdev_ops->ndo_init(dev); 5540 if (ret) { 5541 if (ret > 0) 5542 ret = -EIO; 5543 goto out; 5544 } 5545 } 5546 5547 dev->ifindex = dev_new_index(net); 5548 if (dev->iflink == -1) 5549 dev->iflink = dev->ifindex; 5550 5551 /* Transfer changeable features to wanted_features and enable 5552 * software offloads (GSO and GRO). 5553 */ 5554 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5555 dev->features |= NETIF_F_SOFT_FEATURES; 5556 dev->wanted_features = dev->features & dev->hw_features; 5557 5558 /* Turn on no cache copy if HW is doing checksum */ 5559 if (!(dev->flags & IFF_LOOPBACK)) { 5560 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5561 if (dev->features & NETIF_F_ALL_CSUM) { 5562 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5563 dev->features |= NETIF_F_NOCACHE_COPY; 5564 } 5565 } 5566 5567 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5568 */ 5569 dev->vlan_features |= NETIF_F_HIGHDMA; 5570 5571 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5572 ret = notifier_to_errno(ret); 5573 if (ret) 5574 goto err_uninit; 5575 5576 ret = netdev_register_kobject(dev); 5577 if (ret) 5578 goto err_uninit; 5579 dev->reg_state = NETREG_REGISTERED; 5580 5581 __netdev_update_features(dev); 5582 5583 /* 5584 * Default initial state at registry is that the 5585 * device is present. 5586 */ 5587 5588 set_bit(__LINK_STATE_PRESENT, &dev->state); 5589 5590 dev_init_scheduler(dev); 5591 dev_hold(dev); 5592 list_netdevice(dev); 5593 5594 /* Notify protocols, that a new device appeared. */ 5595 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5596 ret = notifier_to_errno(ret); 5597 if (ret) { 5598 rollback_registered(dev); 5599 dev->reg_state = NETREG_UNREGISTERED; 5600 } 5601 /* 5602 * Prevent userspace races by waiting until the network 5603 * device is fully setup before sending notifications. 5604 */ 5605 if (!dev->rtnl_link_ops || 5606 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5607 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5608 5609 out: 5610 return ret; 5611 5612 err_uninit: 5613 if (dev->netdev_ops->ndo_uninit) 5614 dev->netdev_ops->ndo_uninit(dev); 5615 goto out; 5616 } 5617 EXPORT_SYMBOL(register_netdevice); 5618 5619 /** 5620 * init_dummy_netdev - init a dummy network device for NAPI 5621 * @dev: device to init 5622 * 5623 * This takes a network device structure and initialize the minimum 5624 * amount of fields so it can be used to schedule NAPI polls without 5625 * registering a full blown interface. This is to be used by drivers 5626 * that need to tie several hardware interfaces to a single NAPI 5627 * poll scheduler due to HW limitations. 5628 */ 5629 int init_dummy_netdev(struct net_device *dev) 5630 { 5631 /* Clear everything. Note we don't initialize spinlocks 5632 * are they aren't supposed to be taken by any of the 5633 * NAPI code and this dummy netdev is supposed to be 5634 * only ever used for NAPI polls 5635 */ 5636 memset(dev, 0, sizeof(struct net_device)); 5637 5638 /* make sure we BUG if trying to hit standard 5639 * register/unregister code path 5640 */ 5641 dev->reg_state = NETREG_DUMMY; 5642 5643 /* NAPI wants this */ 5644 INIT_LIST_HEAD(&dev->napi_list); 5645 5646 /* a dummy interface is started by default */ 5647 set_bit(__LINK_STATE_PRESENT, &dev->state); 5648 set_bit(__LINK_STATE_START, &dev->state); 5649 5650 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5651 * because users of this 'device' dont need to change 5652 * its refcount. 5653 */ 5654 5655 return 0; 5656 } 5657 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5658 5659 5660 /** 5661 * register_netdev - register a network device 5662 * @dev: device to register 5663 * 5664 * Take a completed network device structure and add it to the kernel 5665 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5666 * chain. 0 is returned on success. A negative errno code is returned 5667 * on a failure to set up the device, or if the name is a duplicate. 5668 * 5669 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5670 * and expands the device name if you passed a format string to 5671 * alloc_netdev. 5672 */ 5673 int register_netdev(struct net_device *dev) 5674 { 5675 int err; 5676 5677 rtnl_lock(); 5678 err = register_netdevice(dev); 5679 rtnl_unlock(); 5680 return err; 5681 } 5682 EXPORT_SYMBOL(register_netdev); 5683 5684 int netdev_refcnt_read(const struct net_device *dev) 5685 { 5686 int i, refcnt = 0; 5687 5688 for_each_possible_cpu(i) 5689 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5690 return refcnt; 5691 } 5692 EXPORT_SYMBOL(netdev_refcnt_read); 5693 5694 /* 5695 * netdev_wait_allrefs - wait until all references are gone. 5696 * 5697 * This is called when unregistering network devices. 5698 * 5699 * Any protocol or device that holds a reference should register 5700 * for netdevice notification, and cleanup and put back the 5701 * reference if they receive an UNREGISTER event. 5702 * We can get stuck here if buggy protocols don't correctly 5703 * call dev_put. 5704 */ 5705 static void netdev_wait_allrefs(struct net_device *dev) 5706 { 5707 unsigned long rebroadcast_time, warning_time; 5708 int refcnt; 5709 5710 linkwatch_forget_dev(dev); 5711 5712 rebroadcast_time = warning_time = jiffies; 5713 refcnt = netdev_refcnt_read(dev); 5714 5715 while (refcnt != 0) { 5716 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5717 rtnl_lock(); 5718 5719 /* Rebroadcast unregister notification */ 5720 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5721 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5722 * should have already handle it the first time */ 5723 5724 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5725 &dev->state)) { 5726 /* We must not have linkwatch events 5727 * pending on unregister. If this 5728 * happens, we simply run the queue 5729 * unscheduled, resulting in a noop 5730 * for this device. 5731 */ 5732 linkwatch_run_queue(); 5733 } 5734 5735 __rtnl_unlock(); 5736 5737 rebroadcast_time = jiffies; 5738 } 5739 5740 msleep(250); 5741 5742 refcnt = netdev_refcnt_read(dev); 5743 5744 if (time_after(jiffies, warning_time + 10 * HZ)) { 5745 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5746 dev->name, refcnt); 5747 warning_time = jiffies; 5748 } 5749 } 5750 } 5751 5752 /* The sequence is: 5753 * 5754 * rtnl_lock(); 5755 * ... 5756 * register_netdevice(x1); 5757 * register_netdevice(x2); 5758 * ... 5759 * unregister_netdevice(y1); 5760 * unregister_netdevice(y2); 5761 * ... 5762 * rtnl_unlock(); 5763 * free_netdev(y1); 5764 * free_netdev(y2); 5765 * 5766 * We are invoked by rtnl_unlock(). 5767 * This allows us to deal with problems: 5768 * 1) We can delete sysfs objects which invoke hotplug 5769 * without deadlocking with linkwatch via keventd. 5770 * 2) Since we run with the RTNL semaphore not held, we can sleep 5771 * safely in order to wait for the netdev refcnt to drop to zero. 5772 * 5773 * We must not return until all unregister events added during 5774 * the interval the lock was held have been completed. 5775 */ 5776 void netdev_run_todo(void) 5777 { 5778 struct list_head list; 5779 5780 /* Snapshot list, allow later requests */ 5781 list_replace_init(&net_todo_list, &list); 5782 5783 __rtnl_unlock(); 5784 5785 /* Wait for rcu callbacks to finish before attempting to drain 5786 * the device list. This usually avoids a 250ms wait. 5787 */ 5788 if (!list_empty(&list)) 5789 rcu_barrier(); 5790 5791 while (!list_empty(&list)) { 5792 struct net_device *dev 5793 = list_first_entry(&list, struct net_device, todo_list); 5794 list_del(&dev->todo_list); 5795 5796 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5797 pr_err("network todo '%s' but state %d\n", 5798 dev->name, dev->reg_state); 5799 dump_stack(); 5800 continue; 5801 } 5802 5803 dev->reg_state = NETREG_UNREGISTERED; 5804 5805 on_each_cpu(flush_backlog, dev, 1); 5806 5807 netdev_wait_allrefs(dev); 5808 5809 /* paranoia */ 5810 BUG_ON(netdev_refcnt_read(dev)); 5811 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5812 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5813 WARN_ON(dev->dn_ptr); 5814 5815 if (dev->destructor) 5816 dev->destructor(dev); 5817 5818 /* Free network device */ 5819 kobject_put(&dev->dev.kobj); 5820 } 5821 } 5822 5823 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5824 * fields in the same order, with only the type differing. 5825 */ 5826 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5827 const struct net_device_stats *netdev_stats) 5828 { 5829 #if BITS_PER_LONG == 64 5830 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5831 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5832 #else 5833 size_t i, n = sizeof(*stats64) / sizeof(u64); 5834 const unsigned long *src = (const unsigned long *)netdev_stats; 5835 u64 *dst = (u64 *)stats64; 5836 5837 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5838 sizeof(*stats64) / sizeof(u64)); 5839 for (i = 0; i < n; i++) 5840 dst[i] = src[i]; 5841 #endif 5842 } 5843 EXPORT_SYMBOL(netdev_stats_to_stats64); 5844 5845 /** 5846 * dev_get_stats - get network device statistics 5847 * @dev: device to get statistics from 5848 * @storage: place to store stats 5849 * 5850 * Get network statistics from device. Return @storage. 5851 * The device driver may provide its own method by setting 5852 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5853 * otherwise the internal statistics structure is used. 5854 */ 5855 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5856 struct rtnl_link_stats64 *storage) 5857 { 5858 const struct net_device_ops *ops = dev->netdev_ops; 5859 5860 if (ops->ndo_get_stats64) { 5861 memset(storage, 0, sizeof(*storage)); 5862 ops->ndo_get_stats64(dev, storage); 5863 } else if (ops->ndo_get_stats) { 5864 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5865 } else { 5866 netdev_stats_to_stats64(storage, &dev->stats); 5867 } 5868 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5869 return storage; 5870 } 5871 EXPORT_SYMBOL(dev_get_stats); 5872 5873 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5874 { 5875 struct netdev_queue *queue = dev_ingress_queue(dev); 5876 5877 #ifdef CONFIG_NET_CLS_ACT 5878 if (queue) 5879 return queue; 5880 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5881 if (!queue) 5882 return NULL; 5883 netdev_init_one_queue(dev, queue, NULL); 5884 queue->qdisc = &noop_qdisc; 5885 queue->qdisc_sleeping = &noop_qdisc; 5886 rcu_assign_pointer(dev->ingress_queue, queue); 5887 #endif 5888 return queue; 5889 } 5890 5891 /** 5892 * alloc_netdev_mqs - allocate network device 5893 * @sizeof_priv: size of private data to allocate space for 5894 * @name: device name format string 5895 * @setup: callback to initialize device 5896 * @txqs: the number of TX subqueues to allocate 5897 * @rxqs: the number of RX subqueues to allocate 5898 * 5899 * Allocates a struct net_device with private data area for driver use 5900 * and performs basic initialization. Also allocates subquue structs 5901 * for each queue on the device. 5902 */ 5903 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5904 void (*setup)(struct net_device *), 5905 unsigned int txqs, unsigned int rxqs) 5906 { 5907 struct net_device *dev; 5908 size_t alloc_size; 5909 struct net_device *p; 5910 5911 BUG_ON(strlen(name) >= sizeof(dev->name)); 5912 5913 if (txqs < 1) { 5914 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5915 return NULL; 5916 } 5917 5918 #ifdef CONFIG_RPS 5919 if (rxqs < 1) { 5920 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5921 return NULL; 5922 } 5923 #endif 5924 5925 alloc_size = sizeof(struct net_device); 5926 if (sizeof_priv) { 5927 /* ensure 32-byte alignment of private area */ 5928 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5929 alloc_size += sizeof_priv; 5930 } 5931 /* ensure 32-byte alignment of whole construct */ 5932 alloc_size += NETDEV_ALIGN - 1; 5933 5934 p = kzalloc(alloc_size, GFP_KERNEL); 5935 if (!p) { 5936 pr_err("alloc_netdev: Unable to allocate device\n"); 5937 return NULL; 5938 } 5939 5940 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5941 dev->padded = (char *)dev - (char *)p; 5942 5943 dev->pcpu_refcnt = alloc_percpu(int); 5944 if (!dev->pcpu_refcnt) 5945 goto free_p; 5946 5947 if (dev_addr_init(dev)) 5948 goto free_pcpu; 5949 5950 dev_mc_init(dev); 5951 dev_uc_init(dev); 5952 5953 dev_net_set(dev, &init_net); 5954 5955 dev->gso_max_size = GSO_MAX_SIZE; 5956 5957 INIT_LIST_HEAD(&dev->napi_list); 5958 INIT_LIST_HEAD(&dev->unreg_list); 5959 INIT_LIST_HEAD(&dev->link_watch_list); 5960 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5961 setup(dev); 5962 5963 dev->num_tx_queues = txqs; 5964 dev->real_num_tx_queues = txqs; 5965 if (netif_alloc_netdev_queues(dev)) 5966 goto free_all; 5967 5968 #ifdef CONFIG_RPS 5969 dev->num_rx_queues = rxqs; 5970 dev->real_num_rx_queues = rxqs; 5971 if (netif_alloc_rx_queues(dev)) 5972 goto free_all; 5973 #endif 5974 5975 strcpy(dev->name, name); 5976 dev->group = INIT_NETDEV_GROUP; 5977 return dev; 5978 5979 free_all: 5980 free_netdev(dev); 5981 return NULL; 5982 5983 free_pcpu: 5984 free_percpu(dev->pcpu_refcnt); 5985 kfree(dev->_tx); 5986 #ifdef CONFIG_RPS 5987 kfree(dev->_rx); 5988 #endif 5989 5990 free_p: 5991 kfree(p); 5992 return NULL; 5993 } 5994 EXPORT_SYMBOL(alloc_netdev_mqs); 5995 5996 /** 5997 * free_netdev - free network device 5998 * @dev: device 5999 * 6000 * This function does the last stage of destroying an allocated device 6001 * interface. The reference to the device object is released. 6002 * If this is the last reference then it will be freed. 6003 */ 6004 void free_netdev(struct net_device *dev) 6005 { 6006 struct napi_struct *p, *n; 6007 6008 release_net(dev_net(dev)); 6009 6010 kfree(dev->_tx); 6011 #ifdef CONFIG_RPS 6012 kfree(dev->_rx); 6013 #endif 6014 6015 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6016 6017 /* Flush device addresses */ 6018 dev_addr_flush(dev); 6019 6020 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6021 netif_napi_del(p); 6022 6023 free_percpu(dev->pcpu_refcnt); 6024 dev->pcpu_refcnt = NULL; 6025 6026 /* Compatibility with error handling in drivers */ 6027 if (dev->reg_state == NETREG_UNINITIALIZED) { 6028 kfree((char *)dev - dev->padded); 6029 return; 6030 } 6031 6032 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6033 dev->reg_state = NETREG_RELEASED; 6034 6035 /* will free via device release */ 6036 put_device(&dev->dev); 6037 } 6038 EXPORT_SYMBOL(free_netdev); 6039 6040 /** 6041 * synchronize_net - Synchronize with packet receive processing 6042 * 6043 * Wait for packets currently being received to be done. 6044 * Does not block later packets from starting. 6045 */ 6046 void synchronize_net(void) 6047 { 6048 might_sleep(); 6049 if (rtnl_is_locked()) 6050 synchronize_rcu_expedited(); 6051 else 6052 synchronize_rcu(); 6053 } 6054 EXPORT_SYMBOL(synchronize_net); 6055 6056 /** 6057 * unregister_netdevice_queue - remove device from the kernel 6058 * @dev: device 6059 * @head: list 6060 * 6061 * This function shuts down a device interface and removes it 6062 * from the kernel tables. 6063 * If head not NULL, device is queued to be unregistered later. 6064 * 6065 * Callers must hold the rtnl semaphore. You may want 6066 * unregister_netdev() instead of this. 6067 */ 6068 6069 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6070 { 6071 ASSERT_RTNL(); 6072 6073 if (head) { 6074 list_move_tail(&dev->unreg_list, head); 6075 } else { 6076 rollback_registered(dev); 6077 /* Finish processing unregister after unlock */ 6078 net_set_todo(dev); 6079 } 6080 } 6081 EXPORT_SYMBOL(unregister_netdevice_queue); 6082 6083 /** 6084 * unregister_netdevice_many - unregister many devices 6085 * @head: list of devices 6086 */ 6087 void unregister_netdevice_many(struct list_head *head) 6088 { 6089 struct net_device *dev; 6090 6091 if (!list_empty(head)) { 6092 rollback_registered_many(head); 6093 list_for_each_entry(dev, head, unreg_list) 6094 net_set_todo(dev); 6095 } 6096 } 6097 EXPORT_SYMBOL(unregister_netdevice_many); 6098 6099 /** 6100 * unregister_netdev - remove device from the kernel 6101 * @dev: device 6102 * 6103 * This function shuts down a device interface and removes it 6104 * from the kernel tables. 6105 * 6106 * This is just a wrapper for unregister_netdevice that takes 6107 * the rtnl semaphore. In general you want to use this and not 6108 * unregister_netdevice. 6109 */ 6110 void unregister_netdev(struct net_device *dev) 6111 { 6112 rtnl_lock(); 6113 unregister_netdevice(dev); 6114 rtnl_unlock(); 6115 } 6116 EXPORT_SYMBOL(unregister_netdev); 6117 6118 /** 6119 * dev_change_net_namespace - move device to different nethost namespace 6120 * @dev: device 6121 * @net: network namespace 6122 * @pat: If not NULL name pattern to try if the current device name 6123 * is already taken in the destination network namespace. 6124 * 6125 * This function shuts down a device interface and moves it 6126 * to a new network namespace. On success 0 is returned, on 6127 * a failure a netagive errno code is returned. 6128 * 6129 * Callers must hold the rtnl semaphore. 6130 */ 6131 6132 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6133 { 6134 int err; 6135 6136 ASSERT_RTNL(); 6137 6138 /* Don't allow namespace local devices to be moved. */ 6139 err = -EINVAL; 6140 if (dev->features & NETIF_F_NETNS_LOCAL) 6141 goto out; 6142 6143 /* Ensure the device has been registrered */ 6144 err = -EINVAL; 6145 if (dev->reg_state != NETREG_REGISTERED) 6146 goto out; 6147 6148 /* Get out if there is nothing todo */ 6149 err = 0; 6150 if (net_eq(dev_net(dev), net)) 6151 goto out; 6152 6153 /* Pick the destination device name, and ensure 6154 * we can use it in the destination network namespace. 6155 */ 6156 err = -EEXIST; 6157 if (__dev_get_by_name(net, dev->name)) { 6158 /* We get here if we can't use the current device name */ 6159 if (!pat) 6160 goto out; 6161 if (dev_get_valid_name(dev, pat) < 0) 6162 goto out; 6163 } 6164 6165 /* 6166 * And now a mini version of register_netdevice unregister_netdevice. 6167 */ 6168 6169 /* If device is running close it first. */ 6170 dev_close(dev); 6171 6172 /* And unlink it from device chain */ 6173 err = -ENODEV; 6174 unlist_netdevice(dev); 6175 6176 synchronize_net(); 6177 6178 /* Shutdown queueing discipline. */ 6179 dev_shutdown(dev); 6180 6181 /* Notify protocols, that we are about to destroy 6182 this device. They should clean all the things. 6183 6184 Note that dev->reg_state stays at NETREG_REGISTERED. 6185 This is wanted because this way 8021q and macvlan know 6186 the device is just moving and can keep their slaves up. 6187 */ 6188 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6189 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6190 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6191 6192 /* 6193 * Flush the unicast and multicast chains 6194 */ 6195 dev_uc_flush(dev); 6196 dev_mc_flush(dev); 6197 6198 /* Actually switch the network namespace */ 6199 dev_net_set(dev, net); 6200 6201 /* If there is an ifindex conflict assign a new one */ 6202 if (__dev_get_by_index(net, dev->ifindex)) { 6203 int iflink = (dev->iflink == dev->ifindex); 6204 dev->ifindex = dev_new_index(net); 6205 if (iflink) 6206 dev->iflink = dev->ifindex; 6207 } 6208 6209 /* Fixup kobjects */ 6210 err = device_rename(&dev->dev, dev->name); 6211 WARN_ON(err); 6212 6213 /* Add the device back in the hashes */ 6214 list_netdevice(dev); 6215 6216 /* Notify protocols, that a new device appeared. */ 6217 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6218 6219 /* 6220 * Prevent userspace races by waiting until the network 6221 * device is fully setup before sending notifications. 6222 */ 6223 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6224 6225 synchronize_net(); 6226 err = 0; 6227 out: 6228 return err; 6229 } 6230 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6231 6232 static int dev_cpu_callback(struct notifier_block *nfb, 6233 unsigned long action, 6234 void *ocpu) 6235 { 6236 struct sk_buff **list_skb; 6237 struct sk_buff *skb; 6238 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6239 struct softnet_data *sd, *oldsd; 6240 6241 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6242 return NOTIFY_OK; 6243 6244 local_irq_disable(); 6245 cpu = smp_processor_id(); 6246 sd = &per_cpu(softnet_data, cpu); 6247 oldsd = &per_cpu(softnet_data, oldcpu); 6248 6249 /* Find end of our completion_queue. */ 6250 list_skb = &sd->completion_queue; 6251 while (*list_skb) 6252 list_skb = &(*list_skb)->next; 6253 /* Append completion queue from offline CPU. */ 6254 *list_skb = oldsd->completion_queue; 6255 oldsd->completion_queue = NULL; 6256 6257 /* Append output queue from offline CPU. */ 6258 if (oldsd->output_queue) { 6259 *sd->output_queue_tailp = oldsd->output_queue; 6260 sd->output_queue_tailp = oldsd->output_queue_tailp; 6261 oldsd->output_queue = NULL; 6262 oldsd->output_queue_tailp = &oldsd->output_queue; 6263 } 6264 /* Append NAPI poll list from offline CPU. */ 6265 if (!list_empty(&oldsd->poll_list)) { 6266 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6267 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6268 } 6269 6270 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6271 local_irq_enable(); 6272 6273 /* Process offline CPU's input_pkt_queue */ 6274 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6275 netif_rx(skb); 6276 input_queue_head_incr(oldsd); 6277 } 6278 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6279 netif_rx(skb); 6280 input_queue_head_incr(oldsd); 6281 } 6282 6283 return NOTIFY_OK; 6284 } 6285 6286 6287 /** 6288 * netdev_increment_features - increment feature set by one 6289 * @all: current feature set 6290 * @one: new feature set 6291 * @mask: mask feature set 6292 * 6293 * Computes a new feature set after adding a device with feature set 6294 * @one to the master device with current feature set @all. Will not 6295 * enable anything that is off in @mask. Returns the new feature set. 6296 */ 6297 netdev_features_t netdev_increment_features(netdev_features_t all, 6298 netdev_features_t one, netdev_features_t mask) 6299 { 6300 if (mask & NETIF_F_GEN_CSUM) 6301 mask |= NETIF_F_ALL_CSUM; 6302 mask |= NETIF_F_VLAN_CHALLENGED; 6303 6304 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6305 all &= one | ~NETIF_F_ALL_FOR_ALL; 6306 6307 /* If one device supports hw checksumming, set for all. */ 6308 if (all & NETIF_F_GEN_CSUM) 6309 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6310 6311 return all; 6312 } 6313 EXPORT_SYMBOL(netdev_increment_features); 6314 6315 static struct hlist_head *netdev_create_hash(void) 6316 { 6317 int i; 6318 struct hlist_head *hash; 6319 6320 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6321 if (hash != NULL) 6322 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6323 INIT_HLIST_HEAD(&hash[i]); 6324 6325 return hash; 6326 } 6327 6328 /* Initialize per network namespace state */ 6329 static int __net_init netdev_init(struct net *net) 6330 { 6331 INIT_LIST_HEAD(&net->dev_base_head); 6332 6333 net->dev_name_head = netdev_create_hash(); 6334 if (net->dev_name_head == NULL) 6335 goto err_name; 6336 6337 net->dev_index_head = netdev_create_hash(); 6338 if (net->dev_index_head == NULL) 6339 goto err_idx; 6340 6341 return 0; 6342 6343 err_idx: 6344 kfree(net->dev_name_head); 6345 err_name: 6346 return -ENOMEM; 6347 } 6348 6349 /** 6350 * netdev_drivername - network driver for the device 6351 * @dev: network device 6352 * 6353 * Determine network driver for device. 6354 */ 6355 const char *netdev_drivername(const struct net_device *dev) 6356 { 6357 const struct device_driver *driver; 6358 const struct device *parent; 6359 const char *empty = ""; 6360 6361 parent = dev->dev.parent; 6362 if (!parent) 6363 return empty; 6364 6365 driver = parent->driver; 6366 if (driver && driver->name) 6367 return driver->name; 6368 return empty; 6369 } 6370 6371 int __netdev_printk(const char *level, const struct net_device *dev, 6372 struct va_format *vaf) 6373 { 6374 int r; 6375 6376 if (dev && dev->dev.parent) 6377 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6378 netdev_name(dev), vaf); 6379 else if (dev) 6380 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6381 else 6382 r = printk("%s(NULL net_device): %pV", level, vaf); 6383 6384 return r; 6385 } 6386 EXPORT_SYMBOL(__netdev_printk); 6387 6388 int netdev_printk(const char *level, const struct net_device *dev, 6389 const char *format, ...) 6390 { 6391 struct va_format vaf; 6392 va_list args; 6393 int r; 6394 6395 va_start(args, format); 6396 6397 vaf.fmt = format; 6398 vaf.va = &args; 6399 6400 r = __netdev_printk(level, dev, &vaf); 6401 va_end(args); 6402 6403 return r; 6404 } 6405 EXPORT_SYMBOL(netdev_printk); 6406 6407 #define define_netdev_printk_level(func, level) \ 6408 int func(const struct net_device *dev, const char *fmt, ...) \ 6409 { \ 6410 int r; \ 6411 struct va_format vaf; \ 6412 va_list args; \ 6413 \ 6414 va_start(args, fmt); \ 6415 \ 6416 vaf.fmt = fmt; \ 6417 vaf.va = &args; \ 6418 \ 6419 r = __netdev_printk(level, dev, &vaf); \ 6420 va_end(args); \ 6421 \ 6422 return r; \ 6423 } \ 6424 EXPORT_SYMBOL(func); 6425 6426 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6427 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6428 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6429 define_netdev_printk_level(netdev_err, KERN_ERR); 6430 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6431 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6432 define_netdev_printk_level(netdev_info, KERN_INFO); 6433 6434 static void __net_exit netdev_exit(struct net *net) 6435 { 6436 kfree(net->dev_name_head); 6437 kfree(net->dev_index_head); 6438 } 6439 6440 static struct pernet_operations __net_initdata netdev_net_ops = { 6441 .init = netdev_init, 6442 .exit = netdev_exit, 6443 }; 6444 6445 static void __net_exit default_device_exit(struct net *net) 6446 { 6447 struct net_device *dev, *aux; 6448 /* 6449 * Push all migratable network devices back to the 6450 * initial network namespace 6451 */ 6452 rtnl_lock(); 6453 for_each_netdev_safe(net, dev, aux) { 6454 int err; 6455 char fb_name[IFNAMSIZ]; 6456 6457 /* Ignore unmoveable devices (i.e. loopback) */ 6458 if (dev->features & NETIF_F_NETNS_LOCAL) 6459 continue; 6460 6461 /* Leave virtual devices for the generic cleanup */ 6462 if (dev->rtnl_link_ops) 6463 continue; 6464 6465 /* Push remaining network devices to init_net */ 6466 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6467 err = dev_change_net_namespace(dev, &init_net, fb_name); 6468 if (err) { 6469 pr_emerg("%s: failed to move %s to init_net: %d\n", 6470 __func__, dev->name, err); 6471 BUG(); 6472 } 6473 } 6474 rtnl_unlock(); 6475 } 6476 6477 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6478 { 6479 /* At exit all network devices most be removed from a network 6480 * namespace. Do this in the reverse order of registration. 6481 * Do this across as many network namespaces as possible to 6482 * improve batching efficiency. 6483 */ 6484 struct net_device *dev; 6485 struct net *net; 6486 LIST_HEAD(dev_kill_list); 6487 6488 rtnl_lock(); 6489 list_for_each_entry(net, net_list, exit_list) { 6490 for_each_netdev_reverse(net, dev) { 6491 if (dev->rtnl_link_ops) 6492 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6493 else 6494 unregister_netdevice_queue(dev, &dev_kill_list); 6495 } 6496 } 6497 unregister_netdevice_many(&dev_kill_list); 6498 list_del(&dev_kill_list); 6499 rtnl_unlock(); 6500 } 6501 6502 static struct pernet_operations __net_initdata default_device_ops = { 6503 .exit = default_device_exit, 6504 .exit_batch = default_device_exit_batch, 6505 }; 6506 6507 /* 6508 * Initialize the DEV module. At boot time this walks the device list and 6509 * unhooks any devices that fail to initialise (normally hardware not 6510 * present) and leaves us with a valid list of present and active devices. 6511 * 6512 */ 6513 6514 /* 6515 * This is called single threaded during boot, so no need 6516 * to take the rtnl semaphore. 6517 */ 6518 static int __init net_dev_init(void) 6519 { 6520 int i, rc = -ENOMEM; 6521 6522 BUG_ON(!dev_boot_phase); 6523 6524 if (dev_proc_init()) 6525 goto out; 6526 6527 if (netdev_kobject_init()) 6528 goto out; 6529 6530 INIT_LIST_HEAD(&ptype_all); 6531 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6532 INIT_LIST_HEAD(&ptype_base[i]); 6533 6534 if (register_pernet_subsys(&netdev_net_ops)) 6535 goto out; 6536 6537 /* 6538 * Initialise the packet receive queues. 6539 */ 6540 6541 for_each_possible_cpu(i) { 6542 struct softnet_data *sd = &per_cpu(softnet_data, i); 6543 6544 memset(sd, 0, sizeof(*sd)); 6545 skb_queue_head_init(&sd->input_pkt_queue); 6546 skb_queue_head_init(&sd->process_queue); 6547 sd->completion_queue = NULL; 6548 INIT_LIST_HEAD(&sd->poll_list); 6549 sd->output_queue = NULL; 6550 sd->output_queue_tailp = &sd->output_queue; 6551 #ifdef CONFIG_RPS 6552 sd->csd.func = rps_trigger_softirq; 6553 sd->csd.info = sd; 6554 sd->csd.flags = 0; 6555 sd->cpu = i; 6556 #endif 6557 6558 sd->backlog.poll = process_backlog; 6559 sd->backlog.weight = weight_p; 6560 sd->backlog.gro_list = NULL; 6561 sd->backlog.gro_count = 0; 6562 } 6563 6564 dev_boot_phase = 0; 6565 6566 /* The loopback device is special if any other network devices 6567 * is present in a network namespace the loopback device must 6568 * be present. Since we now dynamically allocate and free the 6569 * loopback device ensure this invariant is maintained by 6570 * keeping the loopback device as the first device on the 6571 * list of network devices. Ensuring the loopback devices 6572 * is the first device that appears and the last network device 6573 * that disappears. 6574 */ 6575 if (register_pernet_device(&loopback_net_ops)) 6576 goto out; 6577 6578 if (register_pernet_device(&default_device_ops)) 6579 goto out; 6580 6581 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6582 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6583 6584 hotcpu_notifier(dev_cpu_callback, 0); 6585 dst_init(); 6586 dev_mcast_init(); 6587 rc = 0; 6588 out: 6589 return rc; 6590 } 6591 6592 subsys_initcall(net_dev_init); 6593 6594 static int __init initialize_hashrnd(void) 6595 { 6596 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6597 return 0; 6598 } 6599 6600 late_initcall_sync(initialize_hashrnd); 6601 6602