1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/notifier.h> 94 #include <linux/skbuff.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <linux/rtnetlink.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/stat.h> 101 #include <linux/if_bridge.h> 102 #include <linux/if_macvlan.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/kmod.h> 109 #include <linux/module.h> 110 #include <linux/kallsyms.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 123 /* 124 * The list of packet types we will receive (as opposed to discard) 125 * and the routines to invoke. 126 * 127 * Why 16. Because with 16 the only overlap we get on a hash of the 128 * low nibble of the protocol value is RARP/SNAP/X.25. 129 * 130 * NOTE: That is no longer true with the addition of VLAN tags. Not 131 * sure which should go first, but I bet it won't make much 132 * difference if we are running VLANs. The good news is that 133 * this protocol won't be in the list unless compiled in, so 134 * the average user (w/out VLANs) will not be adversely affected. 135 * --BLG 136 * 137 * 0800 IP 138 * 8100 802.1Q VLAN 139 * 0001 802.3 140 * 0002 AX.25 141 * 0004 802.2 142 * 8035 RARP 143 * 0005 SNAP 144 * 0805 X.25 145 * 0806 ARP 146 * 8137 IPX 147 * 0009 Localtalk 148 * 86DD IPv6 149 */ 150 151 static DEFINE_SPINLOCK(ptype_lock); 152 static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */ 153 static struct list_head ptype_all __read_mostly; /* Taps */ 154 155 #ifdef CONFIG_NET_DMA 156 struct net_dma { 157 struct dma_client client; 158 spinlock_t lock; 159 cpumask_t channel_mask; 160 struct dma_chan *channels[NR_CPUS]; 161 }; 162 163 static enum dma_state_client 164 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 165 enum dma_state state); 166 167 static struct net_dma net_dma = { 168 .client = { 169 .event_callback = netdev_dma_event, 170 }, 171 }; 172 #endif 173 174 /* 175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 176 * semaphore. 177 * 178 * Pure readers hold dev_base_lock for reading. 179 * 180 * Writers must hold the rtnl semaphore while they loop through the 181 * dev_base_head list, and hold dev_base_lock for writing when they do the 182 * actual updates. This allows pure readers to access the list even 183 * while a writer is preparing to update it. 184 * 185 * To put it another way, dev_base_lock is held for writing only to 186 * protect against pure readers; the rtnl semaphore provides the 187 * protection against other writers. 188 * 189 * See, for example usages, register_netdevice() and 190 * unregister_netdevice(), which must be called with the rtnl 191 * semaphore held. 192 */ 193 DEFINE_RWLOCK(dev_base_lock); 194 195 EXPORT_SYMBOL(dev_base_lock); 196 197 #define NETDEV_HASHBITS 8 198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 199 200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 201 { 202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 204 } 205 206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 207 { 208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 209 } 210 211 /* Device list insertion */ 212 static int list_netdevice(struct net_device *dev) 213 { 214 struct net *net = dev->nd_net; 215 216 ASSERT_RTNL(); 217 218 write_lock_bh(&dev_base_lock); 219 list_add_tail(&dev->dev_list, &net->dev_base_head); 220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 222 write_unlock_bh(&dev_base_lock); 223 return 0; 224 } 225 226 /* Device list removal */ 227 static void unlist_netdevice(struct net_device *dev) 228 { 229 ASSERT_RTNL(); 230 231 /* Unlink dev from the device chain */ 232 write_lock_bh(&dev_base_lock); 233 list_del(&dev->dev_list); 234 hlist_del(&dev->name_hlist); 235 hlist_del(&dev->index_hlist); 236 write_unlock_bh(&dev_base_lock); 237 } 238 239 /* 240 * Our notifier list 241 */ 242 243 static RAW_NOTIFIER_HEAD(netdev_chain); 244 245 /* 246 * Device drivers call our routines to queue packets here. We empty the 247 * queue in the local softnet handler. 248 */ 249 250 DEFINE_PER_CPU(struct softnet_data, softnet_data); 251 252 extern int netdev_kobject_init(void); 253 extern int netdev_register_kobject(struct net_device *); 254 extern void netdev_unregister_kobject(struct net_device *); 255 256 #ifdef CONFIG_DEBUG_LOCK_ALLOC 257 /* 258 * register_netdevice() inits dev->_xmit_lock and sets lockdep class 259 * according to dev->type 260 */ 261 static const unsigned short netdev_lock_type[] = 262 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 263 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 264 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 265 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 266 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 267 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 268 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 269 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 270 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 271 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 272 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 273 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 274 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 275 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 276 ARPHRD_NONE}; 277 278 static const char *netdev_lock_name[] = 279 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 280 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 281 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 282 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 283 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 284 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 285 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 286 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 287 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 288 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 289 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 290 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 291 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 292 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 293 "_xmit_NONE"}; 294 295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 296 297 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 298 { 299 int i; 300 301 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 302 if (netdev_lock_type[i] == dev_type) 303 return i; 304 /* the last key is used by default */ 305 return ARRAY_SIZE(netdev_lock_type) - 1; 306 } 307 308 static inline void netdev_set_lockdep_class(spinlock_t *lock, 309 unsigned short dev_type) 310 { 311 int i; 312 313 i = netdev_lock_pos(dev_type); 314 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 315 netdev_lock_name[i]); 316 } 317 #else 318 static inline void netdev_set_lockdep_class(spinlock_t *lock, 319 unsigned short dev_type) 320 { 321 } 322 #endif 323 324 /******************************************************************************* 325 326 Protocol management and registration routines 327 328 *******************************************************************************/ 329 330 /* 331 * Add a protocol ID to the list. Now that the input handler is 332 * smarter we can dispense with all the messy stuff that used to be 333 * here. 334 * 335 * BEWARE!!! Protocol handlers, mangling input packets, 336 * MUST BE last in hash buckets and checking protocol handlers 337 * MUST start from promiscuous ptype_all chain in net_bh. 338 * It is true now, do not change it. 339 * Explanation follows: if protocol handler, mangling packet, will 340 * be the first on list, it is not able to sense, that packet 341 * is cloned and should be copied-on-write, so that it will 342 * change it and subsequent readers will get broken packet. 343 * --ANK (980803) 344 */ 345 346 /** 347 * dev_add_pack - add packet handler 348 * @pt: packet type declaration 349 * 350 * Add a protocol handler to the networking stack. The passed &packet_type 351 * is linked into kernel lists and may not be freed until it has been 352 * removed from the kernel lists. 353 * 354 * This call does not sleep therefore it can not 355 * guarantee all CPU's that are in middle of receiving packets 356 * will see the new packet type (until the next received packet). 357 */ 358 359 void dev_add_pack(struct packet_type *pt) 360 { 361 int hash; 362 363 spin_lock_bh(&ptype_lock); 364 if (pt->type == htons(ETH_P_ALL)) 365 list_add_rcu(&pt->list, &ptype_all); 366 else { 367 hash = ntohs(pt->type) & 15; 368 list_add_rcu(&pt->list, &ptype_base[hash]); 369 } 370 spin_unlock_bh(&ptype_lock); 371 } 372 373 /** 374 * __dev_remove_pack - remove packet handler 375 * @pt: packet type declaration 376 * 377 * Remove a protocol handler that was previously added to the kernel 378 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 379 * from the kernel lists and can be freed or reused once this function 380 * returns. 381 * 382 * The packet type might still be in use by receivers 383 * and must not be freed until after all the CPU's have gone 384 * through a quiescent state. 385 */ 386 void __dev_remove_pack(struct packet_type *pt) 387 { 388 struct list_head *head; 389 struct packet_type *pt1; 390 391 spin_lock_bh(&ptype_lock); 392 393 if (pt->type == htons(ETH_P_ALL)) 394 head = &ptype_all; 395 else 396 head = &ptype_base[ntohs(pt->type) & 15]; 397 398 list_for_each_entry(pt1, head, list) { 399 if (pt == pt1) { 400 list_del_rcu(&pt->list); 401 goto out; 402 } 403 } 404 405 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 406 out: 407 spin_unlock_bh(&ptype_lock); 408 } 409 /** 410 * dev_remove_pack - remove packet handler 411 * @pt: packet type declaration 412 * 413 * Remove a protocol handler that was previously added to the kernel 414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 415 * from the kernel lists and can be freed or reused once this function 416 * returns. 417 * 418 * This call sleeps to guarantee that no CPU is looking at the packet 419 * type after return. 420 */ 421 void dev_remove_pack(struct packet_type *pt) 422 { 423 __dev_remove_pack(pt); 424 425 synchronize_net(); 426 } 427 428 /****************************************************************************** 429 430 Device Boot-time Settings Routines 431 432 *******************************************************************************/ 433 434 /* Boot time configuration table */ 435 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 436 437 /** 438 * netdev_boot_setup_add - add new setup entry 439 * @name: name of the device 440 * @map: configured settings for the device 441 * 442 * Adds new setup entry to the dev_boot_setup list. The function 443 * returns 0 on error and 1 on success. This is a generic routine to 444 * all netdevices. 445 */ 446 static int netdev_boot_setup_add(char *name, struct ifmap *map) 447 { 448 struct netdev_boot_setup *s; 449 int i; 450 451 s = dev_boot_setup; 452 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 453 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 454 memset(s[i].name, 0, sizeof(s[i].name)); 455 strcpy(s[i].name, name); 456 memcpy(&s[i].map, map, sizeof(s[i].map)); 457 break; 458 } 459 } 460 461 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 462 } 463 464 /** 465 * netdev_boot_setup_check - check boot time settings 466 * @dev: the netdevice 467 * 468 * Check boot time settings for the device. 469 * The found settings are set for the device to be used 470 * later in the device probing. 471 * Returns 0 if no settings found, 1 if they are. 472 */ 473 int netdev_boot_setup_check(struct net_device *dev) 474 { 475 struct netdev_boot_setup *s = dev_boot_setup; 476 int i; 477 478 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 479 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 480 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 481 dev->irq = s[i].map.irq; 482 dev->base_addr = s[i].map.base_addr; 483 dev->mem_start = s[i].map.mem_start; 484 dev->mem_end = s[i].map.mem_end; 485 return 1; 486 } 487 } 488 return 0; 489 } 490 491 492 /** 493 * netdev_boot_base - get address from boot time settings 494 * @prefix: prefix for network device 495 * @unit: id for network device 496 * 497 * Check boot time settings for the base address of device. 498 * The found settings are set for the device to be used 499 * later in the device probing. 500 * Returns 0 if no settings found. 501 */ 502 unsigned long netdev_boot_base(const char *prefix, int unit) 503 { 504 const struct netdev_boot_setup *s = dev_boot_setup; 505 char name[IFNAMSIZ]; 506 int i; 507 508 sprintf(name, "%s%d", prefix, unit); 509 510 /* 511 * If device already registered then return base of 1 512 * to indicate not to probe for this interface 513 */ 514 if (__dev_get_by_name(&init_net, name)) 515 return 1; 516 517 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 518 if (!strcmp(name, s[i].name)) 519 return s[i].map.base_addr; 520 return 0; 521 } 522 523 /* 524 * Saves at boot time configured settings for any netdevice. 525 */ 526 int __init netdev_boot_setup(char *str) 527 { 528 int ints[5]; 529 struct ifmap map; 530 531 str = get_options(str, ARRAY_SIZE(ints), ints); 532 if (!str || !*str) 533 return 0; 534 535 /* Save settings */ 536 memset(&map, 0, sizeof(map)); 537 if (ints[0] > 0) 538 map.irq = ints[1]; 539 if (ints[0] > 1) 540 map.base_addr = ints[2]; 541 if (ints[0] > 2) 542 map.mem_start = ints[3]; 543 if (ints[0] > 3) 544 map.mem_end = ints[4]; 545 546 /* Add new entry to the list */ 547 return netdev_boot_setup_add(str, &map); 548 } 549 550 __setup("netdev=", netdev_boot_setup); 551 552 /******************************************************************************* 553 554 Device Interface Subroutines 555 556 *******************************************************************************/ 557 558 /** 559 * __dev_get_by_name - find a device by its name 560 * @net: the applicable net namespace 561 * @name: name to find 562 * 563 * Find an interface by name. Must be called under RTNL semaphore 564 * or @dev_base_lock. If the name is found a pointer to the device 565 * is returned. If the name is not found then %NULL is returned. The 566 * reference counters are not incremented so the caller must be 567 * careful with locks. 568 */ 569 570 struct net_device *__dev_get_by_name(struct net *net, const char *name) 571 { 572 struct hlist_node *p; 573 574 hlist_for_each(p, dev_name_hash(net, name)) { 575 struct net_device *dev 576 = hlist_entry(p, struct net_device, name_hlist); 577 if (!strncmp(dev->name, name, IFNAMSIZ)) 578 return dev; 579 } 580 return NULL; 581 } 582 583 /** 584 * dev_get_by_name - find a device by its name 585 * @net: the applicable net namespace 586 * @name: name to find 587 * 588 * Find an interface by name. This can be called from any 589 * context and does its own locking. The returned handle has 590 * the usage count incremented and the caller must use dev_put() to 591 * release it when it is no longer needed. %NULL is returned if no 592 * matching device is found. 593 */ 594 595 struct net_device *dev_get_by_name(struct net *net, const char *name) 596 { 597 struct net_device *dev; 598 599 read_lock(&dev_base_lock); 600 dev = __dev_get_by_name(net, name); 601 if (dev) 602 dev_hold(dev); 603 read_unlock(&dev_base_lock); 604 return dev; 605 } 606 607 /** 608 * __dev_get_by_index - find a device by its ifindex 609 * @net: the applicable net namespace 610 * @ifindex: index of device 611 * 612 * Search for an interface by index. Returns %NULL if the device 613 * is not found or a pointer to the device. The device has not 614 * had its reference counter increased so the caller must be careful 615 * about locking. The caller must hold either the RTNL semaphore 616 * or @dev_base_lock. 617 */ 618 619 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 620 { 621 struct hlist_node *p; 622 623 hlist_for_each(p, dev_index_hash(net, ifindex)) { 624 struct net_device *dev 625 = hlist_entry(p, struct net_device, index_hlist); 626 if (dev->ifindex == ifindex) 627 return dev; 628 } 629 return NULL; 630 } 631 632 633 /** 634 * dev_get_by_index - find a device by its ifindex 635 * @net: the applicable net namespace 636 * @ifindex: index of device 637 * 638 * Search for an interface by index. Returns NULL if the device 639 * is not found or a pointer to the device. The device returned has 640 * had a reference added and the pointer is safe until the user calls 641 * dev_put to indicate they have finished with it. 642 */ 643 644 struct net_device *dev_get_by_index(struct net *net, int ifindex) 645 { 646 struct net_device *dev; 647 648 read_lock(&dev_base_lock); 649 dev = __dev_get_by_index(net, ifindex); 650 if (dev) 651 dev_hold(dev); 652 read_unlock(&dev_base_lock); 653 return dev; 654 } 655 656 /** 657 * dev_getbyhwaddr - find a device by its hardware address 658 * @net: the applicable net namespace 659 * @type: media type of device 660 * @ha: hardware address 661 * 662 * Search for an interface by MAC address. Returns NULL if the device 663 * is not found or a pointer to the device. The caller must hold the 664 * rtnl semaphore. The returned device has not had its ref count increased 665 * and the caller must therefore be careful about locking 666 * 667 * BUGS: 668 * If the API was consistent this would be __dev_get_by_hwaddr 669 */ 670 671 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 672 { 673 struct net_device *dev; 674 675 ASSERT_RTNL(); 676 677 for_each_netdev(&init_net, dev) 678 if (dev->type == type && 679 !memcmp(dev->dev_addr, ha, dev->addr_len)) 680 return dev; 681 682 return NULL; 683 } 684 685 EXPORT_SYMBOL(dev_getbyhwaddr); 686 687 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 688 { 689 struct net_device *dev; 690 691 ASSERT_RTNL(); 692 for_each_netdev(net, dev) 693 if (dev->type == type) 694 return dev; 695 696 return NULL; 697 } 698 699 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 700 701 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 702 { 703 struct net_device *dev; 704 705 rtnl_lock(); 706 dev = __dev_getfirstbyhwtype(net, type); 707 if (dev) 708 dev_hold(dev); 709 rtnl_unlock(); 710 return dev; 711 } 712 713 EXPORT_SYMBOL(dev_getfirstbyhwtype); 714 715 /** 716 * dev_get_by_flags - find any device with given flags 717 * @net: the applicable net namespace 718 * @if_flags: IFF_* values 719 * @mask: bitmask of bits in if_flags to check 720 * 721 * Search for any interface with the given flags. Returns NULL if a device 722 * is not found or a pointer to the device. The device returned has 723 * had a reference added and the pointer is safe until the user calls 724 * dev_put to indicate they have finished with it. 725 */ 726 727 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 728 { 729 struct net_device *dev, *ret; 730 731 ret = NULL; 732 read_lock(&dev_base_lock); 733 for_each_netdev(net, dev) { 734 if (((dev->flags ^ if_flags) & mask) == 0) { 735 dev_hold(dev); 736 ret = dev; 737 break; 738 } 739 } 740 read_unlock(&dev_base_lock); 741 return ret; 742 } 743 744 /** 745 * dev_valid_name - check if name is okay for network device 746 * @name: name string 747 * 748 * Network device names need to be valid file names to 749 * to allow sysfs to work. We also disallow any kind of 750 * whitespace. 751 */ 752 int dev_valid_name(const char *name) 753 { 754 if (*name == '\0') 755 return 0; 756 if (strlen(name) >= IFNAMSIZ) 757 return 0; 758 if (!strcmp(name, ".") || !strcmp(name, "..")) 759 return 0; 760 761 while (*name) { 762 if (*name == '/' || isspace(*name)) 763 return 0; 764 name++; 765 } 766 return 1; 767 } 768 769 /** 770 * __dev_alloc_name - allocate a name for a device 771 * @net: network namespace to allocate the device name in 772 * @name: name format string 773 * @buf: scratch buffer and result name string 774 * 775 * Passed a format string - eg "lt%d" it will try and find a suitable 776 * id. It scans list of devices to build up a free map, then chooses 777 * the first empty slot. The caller must hold the dev_base or rtnl lock 778 * while allocating the name and adding the device in order to avoid 779 * duplicates. 780 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 781 * Returns the number of the unit assigned or a negative errno code. 782 */ 783 784 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 785 { 786 int i = 0; 787 const char *p; 788 const int max_netdevices = 8*PAGE_SIZE; 789 unsigned long *inuse; 790 struct net_device *d; 791 792 p = strnchr(name, IFNAMSIZ-1, '%'); 793 if (p) { 794 /* 795 * Verify the string as this thing may have come from 796 * the user. There must be either one "%d" and no other "%" 797 * characters. 798 */ 799 if (p[1] != 'd' || strchr(p + 2, '%')) 800 return -EINVAL; 801 802 /* Use one page as a bit array of possible slots */ 803 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 804 if (!inuse) 805 return -ENOMEM; 806 807 for_each_netdev(net, d) { 808 if (!sscanf(d->name, name, &i)) 809 continue; 810 if (i < 0 || i >= max_netdevices) 811 continue; 812 813 /* avoid cases where sscanf is not exact inverse of printf */ 814 snprintf(buf, IFNAMSIZ, name, i); 815 if (!strncmp(buf, d->name, IFNAMSIZ)) 816 set_bit(i, inuse); 817 } 818 819 i = find_first_zero_bit(inuse, max_netdevices); 820 free_page((unsigned long) inuse); 821 } 822 823 snprintf(buf, IFNAMSIZ, name, i); 824 if (!__dev_get_by_name(net, buf)) 825 return i; 826 827 /* It is possible to run out of possible slots 828 * when the name is long and there isn't enough space left 829 * for the digits, or if all bits are used. 830 */ 831 return -ENFILE; 832 } 833 834 /** 835 * dev_alloc_name - allocate a name for a device 836 * @dev: device 837 * @name: name format string 838 * 839 * Passed a format string - eg "lt%d" it will try and find a suitable 840 * id. It scans list of devices to build up a free map, then chooses 841 * the first empty slot. The caller must hold the dev_base or rtnl lock 842 * while allocating the name and adding the device in order to avoid 843 * duplicates. 844 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 845 * Returns the number of the unit assigned or a negative errno code. 846 */ 847 848 int dev_alloc_name(struct net_device *dev, const char *name) 849 { 850 char buf[IFNAMSIZ]; 851 struct net *net; 852 int ret; 853 854 BUG_ON(!dev->nd_net); 855 net = dev->nd_net; 856 ret = __dev_alloc_name(net, name, buf); 857 if (ret >= 0) 858 strlcpy(dev->name, buf, IFNAMSIZ); 859 return ret; 860 } 861 862 863 /** 864 * dev_change_name - change name of a device 865 * @dev: device 866 * @newname: name (or format string) must be at least IFNAMSIZ 867 * 868 * Change name of a device, can pass format strings "eth%d". 869 * for wildcarding. 870 */ 871 int dev_change_name(struct net_device *dev, char *newname) 872 { 873 char oldname[IFNAMSIZ]; 874 int err = 0; 875 int ret; 876 struct net *net; 877 878 ASSERT_RTNL(); 879 BUG_ON(!dev->nd_net); 880 881 net = dev->nd_net; 882 if (dev->flags & IFF_UP) 883 return -EBUSY; 884 885 if (!dev_valid_name(newname)) 886 return -EINVAL; 887 888 memcpy(oldname, dev->name, IFNAMSIZ); 889 890 if (strchr(newname, '%')) { 891 err = dev_alloc_name(dev, newname); 892 if (err < 0) 893 return err; 894 strcpy(newname, dev->name); 895 } 896 else if (__dev_get_by_name(net, newname)) 897 return -EEXIST; 898 else 899 strlcpy(dev->name, newname, IFNAMSIZ); 900 901 rollback: 902 device_rename(&dev->dev, dev->name); 903 904 write_lock_bh(&dev_base_lock); 905 hlist_del(&dev->name_hlist); 906 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 907 write_unlock_bh(&dev_base_lock); 908 909 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 910 ret = notifier_to_errno(ret); 911 912 if (ret) { 913 if (err) { 914 printk(KERN_ERR 915 "%s: name change rollback failed: %d.\n", 916 dev->name, ret); 917 } else { 918 err = ret; 919 memcpy(dev->name, oldname, IFNAMSIZ); 920 goto rollback; 921 } 922 } 923 924 return err; 925 } 926 927 /** 928 * netdev_features_change - device changes features 929 * @dev: device to cause notification 930 * 931 * Called to indicate a device has changed features. 932 */ 933 void netdev_features_change(struct net_device *dev) 934 { 935 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 936 } 937 EXPORT_SYMBOL(netdev_features_change); 938 939 /** 940 * netdev_state_change - device changes state 941 * @dev: device to cause notification 942 * 943 * Called to indicate a device has changed state. This function calls 944 * the notifier chains for netdev_chain and sends a NEWLINK message 945 * to the routing socket. 946 */ 947 void netdev_state_change(struct net_device *dev) 948 { 949 if (dev->flags & IFF_UP) { 950 call_netdevice_notifiers(NETDEV_CHANGE, dev); 951 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 952 } 953 } 954 955 /** 956 * dev_load - load a network module 957 * @net: the applicable net namespace 958 * @name: name of interface 959 * 960 * If a network interface is not present and the process has suitable 961 * privileges this function loads the module. If module loading is not 962 * available in this kernel then it becomes a nop. 963 */ 964 965 void dev_load(struct net *net, const char *name) 966 { 967 struct net_device *dev; 968 969 read_lock(&dev_base_lock); 970 dev = __dev_get_by_name(net, name); 971 read_unlock(&dev_base_lock); 972 973 if (!dev && capable(CAP_SYS_MODULE)) 974 request_module("%s", name); 975 } 976 977 /** 978 * dev_open - prepare an interface for use. 979 * @dev: device to open 980 * 981 * Takes a device from down to up state. The device's private open 982 * function is invoked and then the multicast lists are loaded. Finally 983 * the device is moved into the up state and a %NETDEV_UP message is 984 * sent to the netdev notifier chain. 985 * 986 * Calling this function on an active interface is a nop. On a failure 987 * a negative errno code is returned. 988 */ 989 int dev_open(struct net_device *dev) 990 { 991 int ret = 0; 992 993 /* 994 * Is it already up? 995 */ 996 997 if (dev->flags & IFF_UP) 998 return 0; 999 1000 /* 1001 * Is it even present? 1002 */ 1003 if (!netif_device_present(dev)) 1004 return -ENODEV; 1005 1006 /* 1007 * Call device private open method 1008 */ 1009 set_bit(__LINK_STATE_START, &dev->state); 1010 if (dev->open) { 1011 ret = dev->open(dev); 1012 if (ret) 1013 clear_bit(__LINK_STATE_START, &dev->state); 1014 } 1015 1016 /* 1017 * If it went open OK then: 1018 */ 1019 1020 if (!ret) { 1021 /* 1022 * Set the flags. 1023 */ 1024 dev->flags |= IFF_UP; 1025 1026 /* 1027 * Initialize multicasting status 1028 */ 1029 dev_set_rx_mode(dev); 1030 1031 /* 1032 * Wakeup transmit queue engine 1033 */ 1034 dev_activate(dev); 1035 1036 /* 1037 * ... and announce new interface. 1038 */ 1039 call_netdevice_notifiers(NETDEV_UP, dev); 1040 } 1041 return ret; 1042 } 1043 1044 /** 1045 * dev_close - shutdown an interface. 1046 * @dev: device to shutdown 1047 * 1048 * This function moves an active device into down state. A 1049 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1050 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1051 * chain. 1052 */ 1053 int dev_close(struct net_device *dev) 1054 { 1055 might_sleep(); 1056 1057 if (!(dev->flags & IFF_UP)) 1058 return 0; 1059 1060 /* 1061 * Tell people we are going down, so that they can 1062 * prepare to death, when device is still operating. 1063 */ 1064 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1065 1066 dev_deactivate(dev); 1067 1068 clear_bit(__LINK_STATE_START, &dev->state); 1069 1070 /* Synchronize to scheduled poll. We cannot touch poll list, 1071 * it can be even on different cpu. So just clear netif_running(). 1072 * 1073 * dev->stop() will invoke napi_disable() on all of it's 1074 * napi_struct instances on this device. 1075 */ 1076 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1077 1078 /* 1079 * Call the device specific close. This cannot fail. 1080 * Only if device is UP 1081 * 1082 * We allow it to be called even after a DETACH hot-plug 1083 * event. 1084 */ 1085 if (dev->stop) 1086 dev->stop(dev); 1087 1088 /* 1089 * Device is now down. 1090 */ 1091 1092 dev->flags &= ~IFF_UP; 1093 1094 /* 1095 * Tell people we are down 1096 */ 1097 call_netdevice_notifiers(NETDEV_DOWN, dev); 1098 1099 return 0; 1100 } 1101 1102 1103 static int dev_boot_phase = 1; 1104 1105 /* 1106 * Device change register/unregister. These are not inline or static 1107 * as we export them to the world. 1108 */ 1109 1110 /** 1111 * register_netdevice_notifier - register a network notifier block 1112 * @nb: notifier 1113 * 1114 * Register a notifier to be called when network device events occur. 1115 * The notifier passed is linked into the kernel structures and must 1116 * not be reused until it has been unregistered. A negative errno code 1117 * is returned on a failure. 1118 * 1119 * When registered all registration and up events are replayed 1120 * to the new notifier to allow device to have a race free 1121 * view of the network device list. 1122 */ 1123 1124 int register_netdevice_notifier(struct notifier_block *nb) 1125 { 1126 struct net_device *dev; 1127 struct net_device *last; 1128 struct net *net; 1129 int err; 1130 1131 rtnl_lock(); 1132 err = raw_notifier_chain_register(&netdev_chain, nb); 1133 if (err) 1134 goto unlock; 1135 if (dev_boot_phase) 1136 goto unlock; 1137 for_each_net(net) { 1138 for_each_netdev(net, dev) { 1139 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1140 err = notifier_to_errno(err); 1141 if (err) 1142 goto rollback; 1143 1144 if (!(dev->flags & IFF_UP)) 1145 continue; 1146 1147 nb->notifier_call(nb, NETDEV_UP, dev); 1148 } 1149 } 1150 1151 unlock: 1152 rtnl_unlock(); 1153 return err; 1154 1155 rollback: 1156 last = dev; 1157 for_each_net(net) { 1158 for_each_netdev(net, dev) { 1159 if (dev == last) 1160 break; 1161 1162 if (dev->flags & IFF_UP) { 1163 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1164 nb->notifier_call(nb, NETDEV_DOWN, dev); 1165 } 1166 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1167 } 1168 } 1169 goto unlock; 1170 } 1171 1172 /** 1173 * unregister_netdevice_notifier - unregister a network notifier block 1174 * @nb: notifier 1175 * 1176 * Unregister a notifier previously registered by 1177 * register_netdevice_notifier(). The notifier is unlinked into the 1178 * kernel structures and may then be reused. A negative errno code 1179 * is returned on a failure. 1180 */ 1181 1182 int unregister_netdevice_notifier(struct notifier_block *nb) 1183 { 1184 int err; 1185 1186 rtnl_lock(); 1187 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1188 rtnl_unlock(); 1189 return err; 1190 } 1191 1192 /** 1193 * call_netdevice_notifiers - call all network notifier blocks 1194 * @val: value passed unmodified to notifier function 1195 * @dev: net_device pointer passed unmodified to notifier function 1196 * 1197 * Call all network notifier blocks. Parameters and return value 1198 * are as for raw_notifier_call_chain(). 1199 */ 1200 1201 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1202 { 1203 return raw_notifier_call_chain(&netdev_chain, val, dev); 1204 } 1205 1206 /* When > 0 there are consumers of rx skb time stamps */ 1207 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1208 1209 void net_enable_timestamp(void) 1210 { 1211 atomic_inc(&netstamp_needed); 1212 } 1213 1214 void net_disable_timestamp(void) 1215 { 1216 atomic_dec(&netstamp_needed); 1217 } 1218 1219 static inline void net_timestamp(struct sk_buff *skb) 1220 { 1221 if (atomic_read(&netstamp_needed)) 1222 __net_timestamp(skb); 1223 else 1224 skb->tstamp.tv64 = 0; 1225 } 1226 1227 /* 1228 * Support routine. Sends outgoing frames to any network 1229 * taps currently in use. 1230 */ 1231 1232 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1233 { 1234 struct packet_type *ptype; 1235 1236 net_timestamp(skb); 1237 1238 rcu_read_lock(); 1239 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1240 /* Never send packets back to the socket 1241 * they originated from - MvS (miquels@drinkel.ow.org) 1242 */ 1243 if ((ptype->dev == dev || !ptype->dev) && 1244 (ptype->af_packet_priv == NULL || 1245 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1246 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1247 if (!skb2) 1248 break; 1249 1250 /* skb->nh should be correctly 1251 set by sender, so that the second statement is 1252 just protection against buggy protocols. 1253 */ 1254 skb_reset_mac_header(skb2); 1255 1256 if (skb_network_header(skb2) < skb2->data || 1257 skb2->network_header > skb2->tail) { 1258 if (net_ratelimit()) 1259 printk(KERN_CRIT "protocol %04x is " 1260 "buggy, dev %s\n", 1261 skb2->protocol, dev->name); 1262 skb_reset_network_header(skb2); 1263 } 1264 1265 skb2->transport_header = skb2->network_header; 1266 skb2->pkt_type = PACKET_OUTGOING; 1267 ptype->func(skb2, skb->dev, ptype, skb->dev); 1268 } 1269 } 1270 rcu_read_unlock(); 1271 } 1272 1273 1274 void __netif_schedule(struct net_device *dev) 1275 { 1276 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1277 unsigned long flags; 1278 struct softnet_data *sd; 1279 1280 local_irq_save(flags); 1281 sd = &__get_cpu_var(softnet_data); 1282 dev->next_sched = sd->output_queue; 1283 sd->output_queue = dev; 1284 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1285 local_irq_restore(flags); 1286 } 1287 } 1288 EXPORT_SYMBOL(__netif_schedule); 1289 1290 void dev_kfree_skb_irq(struct sk_buff *skb) 1291 { 1292 if (atomic_dec_and_test(&skb->users)) { 1293 struct softnet_data *sd; 1294 unsigned long flags; 1295 1296 local_irq_save(flags); 1297 sd = &__get_cpu_var(softnet_data); 1298 skb->next = sd->completion_queue; 1299 sd->completion_queue = skb; 1300 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1301 local_irq_restore(flags); 1302 } 1303 } 1304 EXPORT_SYMBOL(dev_kfree_skb_irq); 1305 1306 void dev_kfree_skb_any(struct sk_buff *skb) 1307 { 1308 if (in_irq() || irqs_disabled()) 1309 dev_kfree_skb_irq(skb); 1310 else 1311 dev_kfree_skb(skb); 1312 } 1313 EXPORT_SYMBOL(dev_kfree_skb_any); 1314 1315 1316 /** 1317 * netif_device_detach - mark device as removed 1318 * @dev: network device 1319 * 1320 * Mark device as removed from system and therefore no longer available. 1321 */ 1322 void netif_device_detach(struct net_device *dev) 1323 { 1324 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1325 netif_running(dev)) { 1326 netif_stop_queue(dev); 1327 } 1328 } 1329 EXPORT_SYMBOL(netif_device_detach); 1330 1331 /** 1332 * netif_device_attach - mark device as attached 1333 * @dev: network device 1334 * 1335 * Mark device as attached from system and restart if needed. 1336 */ 1337 void netif_device_attach(struct net_device *dev) 1338 { 1339 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1340 netif_running(dev)) { 1341 netif_wake_queue(dev); 1342 __netdev_watchdog_up(dev); 1343 } 1344 } 1345 EXPORT_SYMBOL(netif_device_attach); 1346 1347 1348 /* 1349 * Invalidate hardware checksum when packet is to be mangled, and 1350 * complete checksum manually on outgoing path. 1351 */ 1352 int skb_checksum_help(struct sk_buff *skb) 1353 { 1354 __wsum csum; 1355 int ret = 0, offset; 1356 1357 if (skb->ip_summed == CHECKSUM_COMPLETE) 1358 goto out_set_summed; 1359 1360 if (unlikely(skb_shinfo(skb)->gso_size)) { 1361 /* Let GSO fix up the checksum. */ 1362 goto out_set_summed; 1363 } 1364 1365 if (skb_cloned(skb)) { 1366 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1367 if (ret) 1368 goto out; 1369 } 1370 1371 offset = skb->csum_start - skb_headroom(skb); 1372 BUG_ON(offset > (int)skb->len); 1373 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1374 1375 offset = skb_headlen(skb) - offset; 1376 BUG_ON(offset <= 0); 1377 BUG_ON(skb->csum_offset + 2 > offset); 1378 1379 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 1380 csum_fold(csum); 1381 out_set_summed: 1382 skb->ip_summed = CHECKSUM_NONE; 1383 out: 1384 return ret; 1385 } 1386 1387 /** 1388 * skb_gso_segment - Perform segmentation on skb. 1389 * @skb: buffer to segment 1390 * @features: features for the output path (see dev->features) 1391 * 1392 * This function segments the given skb and returns a list of segments. 1393 * 1394 * It may return NULL if the skb requires no segmentation. This is 1395 * only possible when GSO is used for verifying header integrity. 1396 */ 1397 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1398 { 1399 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1400 struct packet_type *ptype; 1401 __be16 type = skb->protocol; 1402 int err; 1403 1404 BUG_ON(skb_shinfo(skb)->frag_list); 1405 1406 skb_reset_mac_header(skb); 1407 skb->mac_len = skb->network_header - skb->mac_header; 1408 __skb_pull(skb, skb->mac_len); 1409 1410 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1411 if (skb_header_cloned(skb) && 1412 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1413 return ERR_PTR(err); 1414 } 1415 1416 rcu_read_lock(); 1417 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) { 1418 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1419 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1420 err = ptype->gso_send_check(skb); 1421 segs = ERR_PTR(err); 1422 if (err || skb_gso_ok(skb, features)) 1423 break; 1424 __skb_push(skb, (skb->data - 1425 skb_network_header(skb))); 1426 } 1427 segs = ptype->gso_segment(skb, features); 1428 break; 1429 } 1430 } 1431 rcu_read_unlock(); 1432 1433 __skb_push(skb, skb->data - skb_mac_header(skb)); 1434 1435 return segs; 1436 } 1437 1438 EXPORT_SYMBOL(skb_gso_segment); 1439 1440 /* Take action when hardware reception checksum errors are detected. */ 1441 #ifdef CONFIG_BUG 1442 void netdev_rx_csum_fault(struct net_device *dev) 1443 { 1444 if (net_ratelimit()) { 1445 printk(KERN_ERR "%s: hw csum failure.\n", 1446 dev ? dev->name : "<unknown>"); 1447 dump_stack(); 1448 } 1449 } 1450 EXPORT_SYMBOL(netdev_rx_csum_fault); 1451 #endif 1452 1453 /* Actually, we should eliminate this check as soon as we know, that: 1454 * 1. IOMMU is present and allows to map all the memory. 1455 * 2. No high memory really exists on this machine. 1456 */ 1457 1458 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1459 { 1460 #ifdef CONFIG_HIGHMEM 1461 int i; 1462 1463 if (dev->features & NETIF_F_HIGHDMA) 1464 return 0; 1465 1466 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1467 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1468 return 1; 1469 1470 #endif 1471 return 0; 1472 } 1473 1474 struct dev_gso_cb { 1475 void (*destructor)(struct sk_buff *skb); 1476 }; 1477 1478 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1479 1480 static void dev_gso_skb_destructor(struct sk_buff *skb) 1481 { 1482 struct dev_gso_cb *cb; 1483 1484 do { 1485 struct sk_buff *nskb = skb->next; 1486 1487 skb->next = nskb->next; 1488 nskb->next = NULL; 1489 kfree_skb(nskb); 1490 } while (skb->next); 1491 1492 cb = DEV_GSO_CB(skb); 1493 if (cb->destructor) 1494 cb->destructor(skb); 1495 } 1496 1497 /** 1498 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1499 * @skb: buffer to segment 1500 * 1501 * This function segments the given skb and stores the list of segments 1502 * in skb->next. 1503 */ 1504 static int dev_gso_segment(struct sk_buff *skb) 1505 { 1506 struct net_device *dev = skb->dev; 1507 struct sk_buff *segs; 1508 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1509 NETIF_F_SG : 0); 1510 1511 segs = skb_gso_segment(skb, features); 1512 1513 /* Verifying header integrity only. */ 1514 if (!segs) 1515 return 0; 1516 1517 if (unlikely(IS_ERR(segs))) 1518 return PTR_ERR(segs); 1519 1520 skb->next = segs; 1521 DEV_GSO_CB(skb)->destructor = skb->destructor; 1522 skb->destructor = dev_gso_skb_destructor; 1523 1524 return 0; 1525 } 1526 1527 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1528 { 1529 if (likely(!skb->next)) { 1530 if (!list_empty(&ptype_all)) 1531 dev_queue_xmit_nit(skb, dev); 1532 1533 if (netif_needs_gso(dev, skb)) { 1534 if (unlikely(dev_gso_segment(skb))) 1535 goto out_kfree_skb; 1536 if (skb->next) 1537 goto gso; 1538 } 1539 1540 return dev->hard_start_xmit(skb, dev); 1541 } 1542 1543 gso: 1544 do { 1545 struct sk_buff *nskb = skb->next; 1546 int rc; 1547 1548 skb->next = nskb->next; 1549 nskb->next = NULL; 1550 rc = dev->hard_start_xmit(nskb, dev); 1551 if (unlikely(rc)) { 1552 nskb->next = skb->next; 1553 skb->next = nskb; 1554 return rc; 1555 } 1556 if (unlikely((netif_queue_stopped(dev) || 1557 netif_subqueue_stopped(dev, skb->queue_mapping)) && 1558 skb->next)) 1559 return NETDEV_TX_BUSY; 1560 } while (skb->next); 1561 1562 skb->destructor = DEV_GSO_CB(skb)->destructor; 1563 1564 out_kfree_skb: 1565 kfree_skb(skb); 1566 return 0; 1567 } 1568 1569 /** 1570 * dev_queue_xmit - transmit a buffer 1571 * @skb: buffer to transmit 1572 * 1573 * Queue a buffer for transmission to a network device. The caller must 1574 * have set the device and priority and built the buffer before calling 1575 * this function. The function can be called from an interrupt. 1576 * 1577 * A negative errno code is returned on a failure. A success does not 1578 * guarantee the frame will be transmitted as it may be dropped due 1579 * to congestion or traffic shaping. 1580 * 1581 * ----------------------------------------------------------------------------------- 1582 * I notice this method can also return errors from the queue disciplines, 1583 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1584 * be positive. 1585 * 1586 * Regardless of the return value, the skb is consumed, so it is currently 1587 * difficult to retry a send to this method. (You can bump the ref count 1588 * before sending to hold a reference for retry if you are careful.) 1589 * 1590 * When calling this method, interrupts MUST be enabled. This is because 1591 * the BH enable code must have IRQs enabled so that it will not deadlock. 1592 * --BLG 1593 */ 1594 1595 int dev_queue_xmit(struct sk_buff *skb) 1596 { 1597 struct net_device *dev = skb->dev; 1598 struct Qdisc *q; 1599 int rc = -ENOMEM; 1600 1601 /* GSO will handle the following emulations directly. */ 1602 if (netif_needs_gso(dev, skb)) 1603 goto gso; 1604 1605 if (skb_shinfo(skb)->frag_list && 1606 !(dev->features & NETIF_F_FRAGLIST) && 1607 __skb_linearize(skb)) 1608 goto out_kfree_skb; 1609 1610 /* Fragmented skb is linearized if device does not support SG, 1611 * or if at least one of fragments is in highmem and device 1612 * does not support DMA from it. 1613 */ 1614 if (skb_shinfo(skb)->nr_frags && 1615 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1616 __skb_linearize(skb)) 1617 goto out_kfree_skb; 1618 1619 /* If packet is not checksummed and device does not support 1620 * checksumming for this protocol, complete checksumming here. 1621 */ 1622 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1623 skb_set_transport_header(skb, skb->csum_start - 1624 skb_headroom(skb)); 1625 1626 if (!(dev->features & NETIF_F_GEN_CSUM) && 1627 !((dev->features & NETIF_F_IP_CSUM) && 1628 skb->protocol == htons(ETH_P_IP)) && 1629 !((dev->features & NETIF_F_IPV6_CSUM) && 1630 skb->protocol == htons(ETH_P_IPV6))) 1631 if (skb_checksum_help(skb)) 1632 goto out_kfree_skb; 1633 } 1634 1635 gso: 1636 spin_lock_prefetch(&dev->queue_lock); 1637 1638 /* Disable soft irqs for various locks below. Also 1639 * stops preemption for RCU. 1640 */ 1641 rcu_read_lock_bh(); 1642 1643 /* Updates of qdisc are serialized by queue_lock. 1644 * The struct Qdisc which is pointed to by qdisc is now a 1645 * rcu structure - it may be accessed without acquiring 1646 * a lock (but the structure may be stale.) The freeing of the 1647 * qdisc will be deferred until it's known that there are no 1648 * more references to it. 1649 * 1650 * If the qdisc has an enqueue function, we still need to 1651 * hold the queue_lock before calling it, since queue_lock 1652 * also serializes access to the device queue. 1653 */ 1654 1655 q = rcu_dereference(dev->qdisc); 1656 #ifdef CONFIG_NET_CLS_ACT 1657 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1658 #endif 1659 if (q->enqueue) { 1660 /* Grab device queue */ 1661 spin_lock(&dev->queue_lock); 1662 q = dev->qdisc; 1663 if (q->enqueue) { 1664 /* reset queue_mapping to zero */ 1665 skb->queue_mapping = 0; 1666 rc = q->enqueue(skb, q); 1667 qdisc_run(dev); 1668 spin_unlock(&dev->queue_lock); 1669 1670 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1671 goto out; 1672 } 1673 spin_unlock(&dev->queue_lock); 1674 } 1675 1676 /* The device has no queue. Common case for software devices: 1677 loopback, all the sorts of tunnels... 1678 1679 Really, it is unlikely that netif_tx_lock protection is necessary 1680 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1681 counters.) 1682 However, it is possible, that they rely on protection 1683 made by us here. 1684 1685 Check this and shot the lock. It is not prone from deadlocks. 1686 Either shot noqueue qdisc, it is even simpler 8) 1687 */ 1688 if (dev->flags & IFF_UP) { 1689 int cpu = smp_processor_id(); /* ok because BHs are off */ 1690 1691 if (dev->xmit_lock_owner != cpu) { 1692 1693 HARD_TX_LOCK(dev, cpu); 1694 1695 if (!netif_queue_stopped(dev) && 1696 !netif_subqueue_stopped(dev, skb->queue_mapping)) { 1697 rc = 0; 1698 if (!dev_hard_start_xmit(skb, dev)) { 1699 HARD_TX_UNLOCK(dev); 1700 goto out; 1701 } 1702 } 1703 HARD_TX_UNLOCK(dev); 1704 if (net_ratelimit()) 1705 printk(KERN_CRIT "Virtual device %s asks to " 1706 "queue packet!\n", dev->name); 1707 } else { 1708 /* Recursion is detected! It is possible, 1709 * unfortunately */ 1710 if (net_ratelimit()) 1711 printk(KERN_CRIT "Dead loop on virtual device " 1712 "%s, fix it urgently!\n", dev->name); 1713 } 1714 } 1715 1716 rc = -ENETDOWN; 1717 rcu_read_unlock_bh(); 1718 1719 out_kfree_skb: 1720 kfree_skb(skb); 1721 return rc; 1722 out: 1723 rcu_read_unlock_bh(); 1724 return rc; 1725 } 1726 1727 1728 /*======================================================================= 1729 Receiver routines 1730 =======================================================================*/ 1731 1732 int netdev_max_backlog __read_mostly = 1000; 1733 int netdev_budget __read_mostly = 300; 1734 int weight_p __read_mostly = 64; /* old backlog weight */ 1735 1736 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1737 1738 1739 /** 1740 * netif_rx - post buffer to the network code 1741 * @skb: buffer to post 1742 * 1743 * This function receives a packet from a device driver and queues it for 1744 * the upper (protocol) levels to process. It always succeeds. The buffer 1745 * may be dropped during processing for congestion control or by the 1746 * protocol layers. 1747 * 1748 * return values: 1749 * NET_RX_SUCCESS (no congestion) 1750 * NET_RX_CN_LOW (low congestion) 1751 * NET_RX_CN_MOD (moderate congestion) 1752 * NET_RX_CN_HIGH (high congestion) 1753 * NET_RX_DROP (packet was dropped) 1754 * 1755 */ 1756 1757 int netif_rx(struct sk_buff *skb) 1758 { 1759 struct softnet_data *queue; 1760 unsigned long flags; 1761 1762 /* if netpoll wants it, pretend we never saw it */ 1763 if (netpoll_rx(skb)) 1764 return NET_RX_DROP; 1765 1766 if (!skb->tstamp.tv64) 1767 net_timestamp(skb); 1768 1769 /* 1770 * The code is rearranged so that the path is the most 1771 * short when CPU is congested, but is still operating. 1772 */ 1773 local_irq_save(flags); 1774 queue = &__get_cpu_var(softnet_data); 1775 1776 __get_cpu_var(netdev_rx_stat).total++; 1777 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1778 if (queue->input_pkt_queue.qlen) { 1779 enqueue: 1780 dev_hold(skb->dev); 1781 __skb_queue_tail(&queue->input_pkt_queue, skb); 1782 local_irq_restore(flags); 1783 return NET_RX_SUCCESS; 1784 } 1785 1786 napi_schedule(&queue->backlog); 1787 goto enqueue; 1788 } 1789 1790 __get_cpu_var(netdev_rx_stat).dropped++; 1791 local_irq_restore(flags); 1792 1793 kfree_skb(skb); 1794 return NET_RX_DROP; 1795 } 1796 1797 int netif_rx_ni(struct sk_buff *skb) 1798 { 1799 int err; 1800 1801 preempt_disable(); 1802 err = netif_rx(skb); 1803 if (local_softirq_pending()) 1804 do_softirq(); 1805 preempt_enable(); 1806 1807 return err; 1808 } 1809 1810 EXPORT_SYMBOL(netif_rx_ni); 1811 1812 static inline struct net_device *skb_bond(struct sk_buff *skb) 1813 { 1814 struct net_device *dev = skb->dev; 1815 1816 if (dev->master) { 1817 if (skb_bond_should_drop(skb)) { 1818 kfree_skb(skb); 1819 return NULL; 1820 } 1821 skb->dev = dev->master; 1822 } 1823 1824 return dev; 1825 } 1826 1827 1828 static void net_tx_action(struct softirq_action *h) 1829 { 1830 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1831 1832 if (sd->completion_queue) { 1833 struct sk_buff *clist; 1834 1835 local_irq_disable(); 1836 clist = sd->completion_queue; 1837 sd->completion_queue = NULL; 1838 local_irq_enable(); 1839 1840 while (clist) { 1841 struct sk_buff *skb = clist; 1842 clist = clist->next; 1843 1844 BUG_TRAP(!atomic_read(&skb->users)); 1845 __kfree_skb(skb); 1846 } 1847 } 1848 1849 if (sd->output_queue) { 1850 struct net_device *head; 1851 1852 local_irq_disable(); 1853 head = sd->output_queue; 1854 sd->output_queue = NULL; 1855 local_irq_enable(); 1856 1857 while (head) { 1858 struct net_device *dev = head; 1859 head = head->next_sched; 1860 1861 smp_mb__before_clear_bit(); 1862 clear_bit(__LINK_STATE_SCHED, &dev->state); 1863 1864 if (spin_trylock(&dev->queue_lock)) { 1865 qdisc_run(dev); 1866 spin_unlock(&dev->queue_lock); 1867 } else { 1868 netif_schedule(dev); 1869 } 1870 } 1871 } 1872 } 1873 1874 static inline int deliver_skb(struct sk_buff *skb, 1875 struct packet_type *pt_prev, 1876 struct net_device *orig_dev) 1877 { 1878 atomic_inc(&skb->users); 1879 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1880 } 1881 1882 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1883 /* These hooks defined here for ATM */ 1884 struct net_bridge; 1885 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1886 unsigned char *addr); 1887 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 1888 1889 /* 1890 * If bridge module is loaded call bridging hook. 1891 * returns NULL if packet was consumed. 1892 */ 1893 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 1894 struct sk_buff *skb) __read_mostly; 1895 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 1896 struct packet_type **pt_prev, int *ret, 1897 struct net_device *orig_dev) 1898 { 1899 struct net_bridge_port *port; 1900 1901 if (skb->pkt_type == PACKET_LOOPBACK || 1902 (port = rcu_dereference(skb->dev->br_port)) == NULL) 1903 return skb; 1904 1905 if (*pt_prev) { 1906 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1907 *pt_prev = NULL; 1908 } 1909 1910 return br_handle_frame_hook(port, skb); 1911 } 1912 #else 1913 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 1914 #endif 1915 1916 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 1917 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 1918 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 1919 1920 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 1921 struct packet_type **pt_prev, 1922 int *ret, 1923 struct net_device *orig_dev) 1924 { 1925 if (skb->dev->macvlan_port == NULL) 1926 return skb; 1927 1928 if (*pt_prev) { 1929 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1930 *pt_prev = NULL; 1931 } 1932 return macvlan_handle_frame_hook(skb); 1933 } 1934 #else 1935 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 1936 #endif 1937 1938 #ifdef CONFIG_NET_CLS_ACT 1939 /* TODO: Maybe we should just force sch_ingress to be compiled in 1940 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1941 * a compare and 2 stores extra right now if we dont have it on 1942 * but have CONFIG_NET_CLS_ACT 1943 * NOTE: This doesnt stop any functionality; if you dont have 1944 * the ingress scheduler, you just cant add policies on ingress. 1945 * 1946 */ 1947 static int ing_filter(struct sk_buff *skb) 1948 { 1949 struct Qdisc *q; 1950 struct net_device *dev = skb->dev; 1951 int result = TC_ACT_OK; 1952 1953 if (dev->qdisc_ingress) { 1954 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1955 if (MAX_RED_LOOP < ttl++) { 1956 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n", 1957 skb->iif, skb->dev->ifindex); 1958 return TC_ACT_SHOT; 1959 } 1960 1961 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1962 1963 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1964 1965 spin_lock(&dev->ingress_lock); 1966 if ((q = dev->qdisc_ingress) != NULL) 1967 result = q->enqueue(skb, q); 1968 spin_unlock(&dev->ingress_lock); 1969 1970 } 1971 1972 return result; 1973 } 1974 #endif 1975 1976 int netif_receive_skb(struct sk_buff *skb) 1977 { 1978 struct packet_type *ptype, *pt_prev; 1979 struct net_device *orig_dev; 1980 int ret = NET_RX_DROP; 1981 __be16 type; 1982 1983 /* if we've gotten here through NAPI, check netpoll */ 1984 if (netpoll_receive_skb(skb)) 1985 return NET_RX_DROP; 1986 1987 if (!skb->tstamp.tv64) 1988 net_timestamp(skb); 1989 1990 if (!skb->iif) 1991 skb->iif = skb->dev->ifindex; 1992 1993 orig_dev = skb_bond(skb); 1994 1995 if (!orig_dev) 1996 return NET_RX_DROP; 1997 1998 __get_cpu_var(netdev_rx_stat).total++; 1999 2000 skb_reset_network_header(skb); 2001 skb_reset_transport_header(skb); 2002 skb->mac_len = skb->network_header - skb->mac_header; 2003 2004 pt_prev = NULL; 2005 2006 rcu_read_lock(); 2007 2008 #ifdef CONFIG_NET_CLS_ACT 2009 if (skb->tc_verd & TC_NCLS) { 2010 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2011 goto ncls; 2012 } 2013 #endif 2014 2015 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2016 if (!ptype->dev || ptype->dev == skb->dev) { 2017 if (pt_prev) 2018 ret = deliver_skb(skb, pt_prev, orig_dev); 2019 pt_prev = ptype; 2020 } 2021 } 2022 2023 #ifdef CONFIG_NET_CLS_ACT 2024 if (pt_prev) { 2025 ret = deliver_skb(skb, pt_prev, orig_dev); 2026 pt_prev = NULL; /* noone else should process this after*/ 2027 } else { 2028 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2029 } 2030 2031 ret = ing_filter(skb); 2032 2033 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 2034 kfree_skb(skb); 2035 goto out; 2036 } 2037 2038 skb->tc_verd = 0; 2039 ncls: 2040 #endif 2041 2042 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2043 if (!skb) 2044 goto out; 2045 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2046 if (!skb) 2047 goto out; 2048 2049 type = skb->protocol; 2050 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 2051 if (ptype->type == type && 2052 (!ptype->dev || ptype->dev == skb->dev)) { 2053 if (pt_prev) 2054 ret = deliver_skb(skb, pt_prev, orig_dev); 2055 pt_prev = ptype; 2056 } 2057 } 2058 2059 if (pt_prev) { 2060 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2061 } else { 2062 kfree_skb(skb); 2063 /* Jamal, now you will not able to escape explaining 2064 * me how you were going to use this. :-) 2065 */ 2066 ret = NET_RX_DROP; 2067 } 2068 2069 out: 2070 rcu_read_unlock(); 2071 return ret; 2072 } 2073 2074 static int process_backlog(struct napi_struct *napi, int quota) 2075 { 2076 int work = 0; 2077 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2078 unsigned long start_time = jiffies; 2079 2080 napi->weight = weight_p; 2081 do { 2082 struct sk_buff *skb; 2083 struct net_device *dev; 2084 2085 local_irq_disable(); 2086 skb = __skb_dequeue(&queue->input_pkt_queue); 2087 if (!skb) { 2088 __napi_complete(napi); 2089 local_irq_enable(); 2090 break; 2091 } 2092 2093 local_irq_enable(); 2094 2095 dev = skb->dev; 2096 2097 netif_receive_skb(skb); 2098 2099 dev_put(dev); 2100 } while (++work < quota && jiffies == start_time); 2101 2102 return work; 2103 } 2104 2105 /** 2106 * __napi_schedule - schedule for receive 2107 * @n: entry to schedule 2108 * 2109 * The entry's receive function will be scheduled to run 2110 */ 2111 void fastcall __napi_schedule(struct napi_struct *n) 2112 { 2113 unsigned long flags; 2114 2115 local_irq_save(flags); 2116 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2117 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2118 local_irq_restore(flags); 2119 } 2120 EXPORT_SYMBOL(__napi_schedule); 2121 2122 2123 static void net_rx_action(struct softirq_action *h) 2124 { 2125 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2126 unsigned long start_time = jiffies; 2127 int budget = netdev_budget; 2128 void *have; 2129 2130 local_irq_disable(); 2131 2132 while (!list_empty(list)) { 2133 struct napi_struct *n; 2134 int work, weight; 2135 2136 /* If softirq window is exhuasted then punt. 2137 * 2138 * Note that this is a slight policy change from the 2139 * previous NAPI code, which would allow up to 2 2140 * jiffies to pass before breaking out. The test 2141 * used to be "jiffies - start_time > 1". 2142 */ 2143 if (unlikely(budget <= 0 || jiffies != start_time)) 2144 goto softnet_break; 2145 2146 local_irq_enable(); 2147 2148 /* Even though interrupts have been re-enabled, this 2149 * access is safe because interrupts can only add new 2150 * entries to the tail of this list, and only ->poll() 2151 * calls can remove this head entry from the list. 2152 */ 2153 n = list_entry(list->next, struct napi_struct, poll_list); 2154 2155 have = netpoll_poll_lock(n); 2156 2157 weight = n->weight; 2158 2159 work = n->poll(n, weight); 2160 2161 WARN_ON_ONCE(work > weight); 2162 2163 budget -= work; 2164 2165 local_irq_disable(); 2166 2167 /* Drivers must not modify the NAPI state if they 2168 * consume the entire weight. In such cases this code 2169 * still "owns" the NAPI instance and therefore can 2170 * move the instance around on the list at-will. 2171 */ 2172 if (unlikely(work == weight)) 2173 list_move_tail(&n->poll_list, list); 2174 2175 netpoll_poll_unlock(have); 2176 } 2177 out: 2178 local_irq_enable(); 2179 2180 #ifdef CONFIG_NET_DMA 2181 /* 2182 * There may not be any more sk_buffs coming right now, so push 2183 * any pending DMA copies to hardware 2184 */ 2185 if (!cpus_empty(net_dma.channel_mask)) { 2186 int chan_idx; 2187 for_each_cpu_mask(chan_idx, net_dma.channel_mask) { 2188 struct dma_chan *chan = net_dma.channels[chan_idx]; 2189 if (chan) 2190 dma_async_memcpy_issue_pending(chan); 2191 } 2192 } 2193 #endif 2194 2195 return; 2196 2197 softnet_break: 2198 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2199 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2200 goto out; 2201 } 2202 2203 static gifconf_func_t * gifconf_list [NPROTO]; 2204 2205 /** 2206 * register_gifconf - register a SIOCGIF handler 2207 * @family: Address family 2208 * @gifconf: Function handler 2209 * 2210 * Register protocol dependent address dumping routines. The handler 2211 * that is passed must not be freed or reused until it has been replaced 2212 * by another handler. 2213 */ 2214 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2215 { 2216 if (family >= NPROTO) 2217 return -EINVAL; 2218 gifconf_list[family] = gifconf; 2219 return 0; 2220 } 2221 2222 2223 /* 2224 * Map an interface index to its name (SIOCGIFNAME) 2225 */ 2226 2227 /* 2228 * We need this ioctl for efficient implementation of the 2229 * if_indextoname() function required by the IPv6 API. Without 2230 * it, we would have to search all the interfaces to find a 2231 * match. --pb 2232 */ 2233 2234 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2235 { 2236 struct net_device *dev; 2237 struct ifreq ifr; 2238 2239 /* 2240 * Fetch the caller's info block. 2241 */ 2242 2243 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2244 return -EFAULT; 2245 2246 read_lock(&dev_base_lock); 2247 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2248 if (!dev) { 2249 read_unlock(&dev_base_lock); 2250 return -ENODEV; 2251 } 2252 2253 strcpy(ifr.ifr_name, dev->name); 2254 read_unlock(&dev_base_lock); 2255 2256 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2257 return -EFAULT; 2258 return 0; 2259 } 2260 2261 /* 2262 * Perform a SIOCGIFCONF call. This structure will change 2263 * size eventually, and there is nothing I can do about it. 2264 * Thus we will need a 'compatibility mode'. 2265 */ 2266 2267 static int dev_ifconf(struct net *net, char __user *arg) 2268 { 2269 struct ifconf ifc; 2270 struct net_device *dev; 2271 char __user *pos; 2272 int len; 2273 int total; 2274 int i; 2275 2276 /* 2277 * Fetch the caller's info block. 2278 */ 2279 2280 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2281 return -EFAULT; 2282 2283 pos = ifc.ifc_buf; 2284 len = ifc.ifc_len; 2285 2286 /* 2287 * Loop over the interfaces, and write an info block for each. 2288 */ 2289 2290 total = 0; 2291 for_each_netdev(net, dev) { 2292 for (i = 0; i < NPROTO; i++) { 2293 if (gifconf_list[i]) { 2294 int done; 2295 if (!pos) 2296 done = gifconf_list[i](dev, NULL, 0); 2297 else 2298 done = gifconf_list[i](dev, pos + total, 2299 len - total); 2300 if (done < 0) 2301 return -EFAULT; 2302 total += done; 2303 } 2304 } 2305 } 2306 2307 /* 2308 * All done. Write the updated control block back to the caller. 2309 */ 2310 ifc.ifc_len = total; 2311 2312 /* 2313 * Both BSD and Solaris return 0 here, so we do too. 2314 */ 2315 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2316 } 2317 2318 #ifdef CONFIG_PROC_FS 2319 /* 2320 * This is invoked by the /proc filesystem handler to display a device 2321 * in detail. 2322 */ 2323 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2324 { 2325 struct net *net = seq->private; 2326 loff_t off; 2327 struct net_device *dev; 2328 2329 read_lock(&dev_base_lock); 2330 if (!*pos) 2331 return SEQ_START_TOKEN; 2332 2333 off = 1; 2334 for_each_netdev(net, dev) 2335 if (off++ == *pos) 2336 return dev; 2337 2338 return NULL; 2339 } 2340 2341 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2342 { 2343 struct net *net = seq->private; 2344 ++*pos; 2345 return v == SEQ_START_TOKEN ? 2346 first_net_device(net) : next_net_device((struct net_device *)v); 2347 } 2348 2349 void dev_seq_stop(struct seq_file *seq, void *v) 2350 { 2351 read_unlock(&dev_base_lock); 2352 } 2353 2354 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2355 { 2356 struct net_device_stats *stats = dev->get_stats(dev); 2357 2358 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2359 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2360 dev->name, stats->rx_bytes, stats->rx_packets, 2361 stats->rx_errors, 2362 stats->rx_dropped + stats->rx_missed_errors, 2363 stats->rx_fifo_errors, 2364 stats->rx_length_errors + stats->rx_over_errors + 2365 stats->rx_crc_errors + stats->rx_frame_errors, 2366 stats->rx_compressed, stats->multicast, 2367 stats->tx_bytes, stats->tx_packets, 2368 stats->tx_errors, stats->tx_dropped, 2369 stats->tx_fifo_errors, stats->collisions, 2370 stats->tx_carrier_errors + 2371 stats->tx_aborted_errors + 2372 stats->tx_window_errors + 2373 stats->tx_heartbeat_errors, 2374 stats->tx_compressed); 2375 } 2376 2377 /* 2378 * Called from the PROCfs module. This now uses the new arbitrary sized 2379 * /proc/net interface to create /proc/net/dev 2380 */ 2381 static int dev_seq_show(struct seq_file *seq, void *v) 2382 { 2383 if (v == SEQ_START_TOKEN) 2384 seq_puts(seq, "Inter-| Receive " 2385 " | Transmit\n" 2386 " face |bytes packets errs drop fifo frame " 2387 "compressed multicast|bytes packets errs " 2388 "drop fifo colls carrier compressed\n"); 2389 else 2390 dev_seq_printf_stats(seq, v); 2391 return 0; 2392 } 2393 2394 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2395 { 2396 struct netif_rx_stats *rc = NULL; 2397 2398 while (*pos < NR_CPUS) 2399 if (cpu_online(*pos)) { 2400 rc = &per_cpu(netdev_rx_stat, *pos); 2401 break; 2402 } else 2403 ++*pos; 2404 return rc; 2405 } 2406 2407 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2408 { 2409 return softnet_get_online(pos); 2410 } 2411 2412 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2413 { 2414 ++*pos; 2415 return softnet_get_online(pos); 2416 } 2417 2418 static void softnet_seq_stop(struct seq_file *seq, void *v) 2419 { 2420 } 2421 2422 static int softnet_seq_show(struct seq_file *seq, void *v) 2423 { 2424 struct netif_rx_stats *s = v; 2425 2426 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2427 s->total, s->dropped, s->time_squeeze, 0, 2428 0, 0, 0, 0, /* was fastroute */ 2429 s->cpu_collision ); 2430 return 0; 2431 } 2432 2433 static const struct seq_operations dev_seq_ops = { 2434 .start = dev_seq_start, 2435 .next = dev_seq_next, 2436 .stop = dev_seq_stop, 2437 .show = dev_seq_show, 2438 }; 2439 2440 static int dev_seq_open(struct inode *inode, struct file *file) 2441 { 2442 struct seq_file *seq; 2443 int res; 2444 res = seq_open(file, &dev_seq_ops); 2445 if (!res) { 2446 seq = file->private_data; 2447 seq->private = get_proc_net(inode); 2448 if (!seq->private) { 2449 seq_release(inode, file); 2450 res = -ENXIO; 2451 } 2452 } 2453 return res; 2454 } 2455 2456 static int dev_seq_release(struct inode *inode, struct file *file) 2457 { 2458 struct seq_file *seq = file->private_data; 2459 struct net *net = seq->private; 2460 put_net(net); 2461 return seq_release(inode, file); 2462 } 2463 2464 static const struct file_operations dev_seq_fops = { 2465 .owner = THIS_MODULE, 2466 .open = dev_seq_open, 2467 .read = seq_read, 2468 .llseek = seq_lseek, 2469 .release = dev_seq_release, 2470 }; 2471 2472 static const struct seq_operations softnet_seq_ops = { 2473 .start = softnet_seq_start, 2474 .next = softnet_seq_next, 2475 .stop = softnet_seq_stop, 2476 .show = softnet_seq_show, 2477 }; 2478 2479 static int softnet_seq_open(struct inode *inode, struct file *file) 2480 { 2481 return seq_open(file, &softnet_seq_ops); 2482 } 2483 2484 static const struct file_operations softnet_seq_fops = { 2485 .owner = THIS_MODULE, 2486 .open = softnet_seq_open, 2487 .read = seq_read, 2488 .llseek = seq_lseek, 2489 .release = seq_release, 2490 }; 2491 2492 static void *ptype_get_idx(loff_t pos) 2493 { 2494 struct packet_type *pt = NULL; 2495 loff_t i = 0; 2496 int t; 2497 2498 list_for_each_entry_rcu(pt, &ptype_all, list) { 2499 if (i == pos) 2500 return pt; 2501 ++i; 2502 } 2503 2504 for (t = 0; t < 16; t++) { 2505 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2506 if (i == pos) 2507 return pt; 2508 ++i; 2509 } 2510 } 2511 return NULL; 2512 } 2513 2514 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2515 { 2516 rcu_read_lock(); 2517 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2518 } 2519 2520 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2521 { 2522 struct packet_type *pt; 2523 struct list_head *nxt; 2524 int hash; 2525 2526 ++*pos; 2527 if (v == SEQ_START_TOKEN) 2528 return ptype_get_idx(0); 2529 2530 pt = v; 2531 nxt = pt->list.next; 2532 if (pt->type == htons(ETH_P_ALL)) { 2533 if (nxt != &ptype_all) 2534 goto found; 2535 hash = 0; 2536 nxt = ptype_base[0].next; 2537 } else 2538 hash = ntohs(pt->type) & 15; 2539 2540 while (nxt == &ptype_base[hash]) { 2541 if (++hash >= 16) 2542 return NULL; 2543 nxt = ptype_base[hash].next; 2544 } 2545 found: 2546 return list_entry(nxt, struct packet_type, list); 2547 } 2548 2549 static void ptype_seq_stop(struct seq_file *seq, void *v) 2550 { 2551 rcu_read_unlock(); 2552 } 2553 2554 static void ptype_seq_decode(struct seq_file *seq, void *sym) 2555 { 2556 #ifdef CONFIG_KALLSYMS 2557 unsigned long offset = 0, symsize; 2558 const char *symname; 2559 char *modname; 2560 char namebuf[128]; 2561 2562 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2563 &modname, namebuf); 2564 2565 if (symname) { 2566 char *delim = ":"; 2567 2568 if (!modname) 2569 modname = delim = ""; 2570 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2571 symname, offset); 2572 return; 2573 } 2574 #endif 2575 2576 seq_printf(seq, "[%p]", sym); 2577 } 2578 2579 static int ptype_seq_show(struct seq_file *seq, void *v) 2580 { 2581 struct packet_type *pt = v; 2582 2583 if (v == SEQ_START_TOKEN) 2584 seq_puts(seq, "Type Device Function\n"); 2585 else { 2586 if (pt->type == htons(ETH_P_ALL)) 2587 seq_puts(seq, "ALL "); 2588 else 2589 seq_printf(seq, "%04x", ntohs(pt->type)); 2590 2591 seq_printf(seq, " %-8s ", 2592 pt->dev ? pt->dev->name : ""); 2593 ptype_seq_decode(seq, pt->func); 2594 seq_putc(seq, '\n'); 2595 } 2596 2597 return 0; 2598 } 2599 2600 static const struct seq_operations ptype_seq_ops = { 2601 .start = ptype_seq_start, 2602 .next = ptype_seq_next, 2603 .stop = ptype_seq_stop, 2604 .show = ptype_seq_show, 2605 }; 2606 2607 static int ptype_seq_open(struct inode *inode, struct file *file) 2608 { 2609 return seq_open(file, &ptype_seq_ops); 2610 } 2611 2612 static const struct file_operations ptype_seq_fops = { 2613 .owner = THIS_MODULE, 2614 .open = ptype_seq_open, 2615 .read = seq_read, 2616 .llseek = seq_lseek, 2617 .release = seq_release, 2618 }; 2619 2620 2621 static int __net_init dev_proc_net_init(struct net *net) 2622 { 2623 int rc = -ENOMEM; 2624 2625 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2626 goto out; 2627 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2628 goto out_dev; 2629 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2630 goto out_softnet; 2631 2632 if (wext_proc_init(net)) 2633 goto out_ptype; 2634 rc = 0; 2635 out: 2636 return rc; 2637 out_ptype: 2638 proc_net_remove(net, "ptype"); 2639 out_softnet: 2640 proc_net_remove(net, "softnet_stat"); 2641 out_dev: 2642 proc_net_remove(net, "dev"); 2643 goto out; 2644 } 2645 2646 static void __net_exit dev_proc_net_exit(struct net *net) 2647 { 2648 wext_proc_exit(net); 2649 2650 proc_net_remove(net, "ptype"); 2651 proc_net_remove(net, "softnet_stat"); 2652 proc_net_remove(net, "dev"); 2653 } 2654 2655 static struct pernet_operations __net_initdata dev_proc_ops = { 2656 .init = dev_proc_net_init, 2657 .exit = dev_proc_net_exit, 2658 }; 2659 2660 static int __init dev_proc_init(void) 2661 { 2662 return register_pernet_subsys(&dev_proc_ops); 2663 } 2664 #else 2665 #define dev_proc_init() 0 2666 #endif /* CONFIG_PROC_FS */ 2667 2668 2669 /** 2670 * netdev_set_master - set up master/slave pair 2671 * @slave: slave device 2672 * @master: new master device 2673 * 2674 * Changes the master device of the slave. Pass %NULL to break the 2675 * bonding. The caller must hold the RTNL semaphore. On a failure 2676 * a negative errno code is returned. On success the reference counts 2677 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2678 * function returns zero. 2679 */ 2680 int netdev_set_master(struct net_device *slave, struct net_device *master) 2681 { 2682 struct net_device *old = slave->master; 2683 2684 ASSERT_RTNL(); 2685 2686 if (master) { 2687 if (old) 2688 return -EBUSY; 2689 dev_hold(master); 2690 } 2691 2692 slave->master = master; 2693 2694 synchronize_net(); 2695 2696 if (old) 2697 dev_put(old); 2698 2699 if (master) 2700 slave->flags |= IFF_SLAVE; 2701 else 2702 slave->flags &= ~IFF_SLAVE; 2703 2704 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2705 return 0; 2706 } 2707 2708 static void __dev_set_promiscuity(struct net_device *dev, int inc) 2709 { 2710 unsigned short old_flags = dev->flags; 2711 2712 ASSERT_RTNL(); 2713 2714 if ((dev->promiscuity += inc) == 0) 2715 dev->flags &= ~IFF_PROMISC; 2716 else 2717 dev->flags |= IFF_PROMISC; 2718 if (dev->flags != old_flags) { 2719 printk(KERN_INFO "device %s %s promiscuous mode\n", 2720 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2721 "left"); 2722 audit_log(current->audit_context, GFP_ATOMIC, 2723 AUDIT_ANOM_PROMISCUOUS, 2724 "dev=%s prom=%d old_prom=%d auid=%u", 2725 dev->name, (dev->flags & IFF_PROMISC), 2726 (old_flags & IFF_PROMISC), 2727 audit_get_loginuid(current->audit_context)); 2728 2729 if (dev->change_rx_flags) 2730 dev->change_rx_flags(dev, IFF_PROMISC); 2731 } 2732 } 2733 2734 /** 2735 * dev_set_promiscuity - update promiscuity count on a device 2736 * @dev: device 2737 * @inc: modifier 2738 * 2739 * Add or remove promiscuity from a device. While the count in the device 2740 * remains above zero the interface remains promiscuous. Once it hits zero 2741 * the device reverts back to normal filtering operation. A negative inc 2742 * value is used to drop promiscuity on the device. 2743 */ 2744 void dev_set_promiscuity(struct net_device *dev, int inc) 2745 { 2746 unsigned short old_flags = dev->flags; 2747 2748 __dev_set_promiscuity(dev, inc); 2749 if (dev->flags != old_flags) 2750 dev_set_rx_mode(dev); 2751 } 2752 2753 /** 2754 * dev_set_allmulti - update allmulti count on a device 2755 * @dev: device 2756 * @inc: modifier 2757 * 2758 * Add or remove reception of all multicast frames to a device. While the 2759 * count in the device remains above zero the interface remains listening 2760 * to all interfaces. Once it hits zero the device reverts back to normal 2761 * filtering operation. A negative @inc value is used to drop the counter 2762 * when releasing a resource needing all multicasts. 2763 */ 2764 2765 void dev_set_allmulti(struct net_device *dev, int inc) 2766 { 2767 unsigned short old_flags = dev->flags; 2768 2769 ASSERT_RTNL(); 2770 2771 dev->flags |= IFF_ALLMULTI; 2772 if ((dev->allmulti += inc) == 0) 2773 dev->flags &= ~IFF_ALLMULTI; 2774 if (dev->flags ^ old_flags) { 2775 if (dev->change_rx_flags) 2776 dev->change_rx_flags(dev, IFF_ALLMULTI); 2777 dev_set_rx_mode(dev); 2778 } 2779 } 2780 2781 /* 2782 * Upload unicast and multicast address lists to device and 2783 * configure RX filtering. When the device doesn't support unicast 2784 * filtering it is put in promiscous mode while unicast addresses 2785 * are present. 2786 */ 2787 void __dev_set_rx_mode(struct net_device *dev) 2788 { 2789 /* dev_open will call this function so the list will stay sane. */ 2790 if (!(dev->flags&IFF_UP)) 2791 return; 2792 2793 if (!netif_device_present(dev)) 2794 return; 2795 2796 if (dev->set_rx_mode) 2797 dev->set_rx_mode(dev); 2798 else { 2799 /* Unicast addresses changes may only happen under the rtnl, 2800 * therefore calling __dev_set_promiscuity here is safe. 2801 */ 2802 if (dev->uc_count > 0 && !dev->uc_promisc) { 2803 __dev_set_promiscuity(dev, 1); 2804 dev->uc_promisc = 1; 2805 } else if (dev->uc_count == 0 && dev->uc_promisc) { 2806 __dev_set_promiscuity(dev, -1); 2807 dev->uc_promisc = 0; 2808 } 2809 2810 if (dev->set_multicast_list) 2811 dev->set_multicast_list(dev); 2812 } 2813 } 2814 2815 void dev_set_rx_mode(struct net_device *dev) 2816 { 2817 netif_tx_lock_bh(dev); 2818 __dev_set_rx_mode(dev); 2819 netif_tx_unlock_bh(dev); 2820 } 2821 2822 int __dev_addr_delete(struct dev_addr_list **list, int *count, 2823 void *addr, int alen, int glbl) 2824 { 2825 struct dev_addr_list *da; 2826 2827 for (; (da = *list) != NULL; list = &da->next) { 2828 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2829 alen == da->da_addrlen) { 2830 if (glbl) { 2831 int old_glbl = da->da_gusers; 2832 da->da_gusers = 0; 2833 if (old_glbl == 0) 2834 break; 2835 } 2836 if (--da->da_users) 2837 return 0; 2838 2839 *list = da->next; 2840 kfree(da); 2841 (*count)--; 2842 return 0; 2843 } 2844 } 2845 return -ENOENT; 2846 } 2847 2848 int __dev_addr_add(struct dev_addr_list **list, int *count, 2849 void *addr, int alen, int glbl) 2850 { 2851 struct dev_addr_list *da; 2852 2853 for (da = *list; da != NULL; da = da->next) { 2854 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2855 da->da_addrlen == alen) { 2856 if (glbl) { 2857 int old_glbl = da->da_gusers; 2858 da->da_gusers = 1; 2859 if (old_glbl) 2860 return 0; 2861 } 2862 da->da_users++; 2863 return 0; 2864 } 2865 } 2866 2867 da = kmalloc(sizeof(*da), GFP_ATOMIC); 2868 if (da == NULL) 2869 return -ENOMEM; 2870 memcpy(da->da_addr, addr, alen); 2871 da->da_addrlen = alen; 2872 da->da_users = 1; 2873 da->da_gusers = glbl ? 1 : 0; 2874 da->next = *list; 2875 *list = da; 2876 (*count)++; 2877 return 0; 2878 } 2879 2880 /** 2881 * dev_unicast_delete - Release secondary unicast address. 2882 * @dev: device 2883 * @addr: address to delete 2884 * @alen: length of @addr 2885 * 2886 * Release reference to a secondary unicast address and remove it 2887 * from the device if the reference count drops to zero. 2888 * 2889 * The caller must hold the rtnl_mutex. 2890 */ 2891 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 2892 { 2893 int err; 2894 2895 ASSERT_RTNL(); 2896 2897 netif_tx_lock_bh(dev); 2898 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2899 if (!err) 2900 __dev_set_rx_mode(dev); 2901 netif_tx_unlock_bh(dev); 2902 return err; 2903 } 2904 EXPORT_SYMBOL(dev_unicast_delete); 2905 2906 /** 2907 * dev_unicast_add - add a secondary unicast address 2908 * @dev: device 2909 * @addr: address to delete 2910 * @alen: length of @addr 2911 * 2912 * Add a secondary unicast address to the device or increase 2913 * the reference count if it already exists. 2914 * 2915 * The caller must hold the rtnl_mutex. 2916 */ 2917 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 2918 { 2919 int err; 2920 2921 ASSERT_RTNL(); 2922 2923 netif_tx_lock_bh(dev); 2924 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2925 if (!err) 2926 __dev_set_rx_mode(dev); 2927 netif_tx_unlock_bh(dev); 2928 return err; 2929 } 2930 EXPORT_SYMBOL(dev_unicast_add); 2931 2932 static void __dev_addr_discard(struct dev_addr_list **list) 2933 { 2934 struct dev_addr_list *tmp; 2935 2936 while (*list != NULL) { 2937 tmp = *list; 2938 *list = tmp->next; 2939 if (tmp->da_users > tmp->da_gusers) 2940 printk("__dev_addr_discard: address leakage! " 2941 "da_users=%d\n", tmp->da_users); 2942 kfree(tmp); 2943 } 2944 } 2945 2946 static void dev_addr_discard(struct net_device *dev) 2947 { 2948 netif_tx_lock_bh(dev); 2949 2950 __dev_addr_discard(&dev->uc_list); 2951 dev->uc_count = 0; 2952 2953 __dev_addr_discard(&dev->mc_list); 2954 dev->mc_count = 0; 2955 2956 netif_tx_unlock_bh(dev); 2957 } 2958 2959 unsigned dev_get_flags(const struct net_device *dev) 2960 { 2961 unsigned flags; 2962 2963 flags = (dev->flags & ~(IFF_PROMISC | 2964 IFF_ALLMULTI | 2965 IFF_RUNNING | 2966 IFF_LOWER_UP | 2967 IFF_DORMANT)) | 2968 (dev->gflags & (IFF_PROMISC | 2969 IFF_ALLMULTI)); 2970 2971 if (netif_running(dev)) { 2972 if (netif_oper_up(dev)) 2973 flags |= IFF_RUNNING; 2974 if (netif_carrier_ok(dev)) 2975 flags |= IFF_LOWER_UP; 2976 if (netif_dormant(dev)) 2977 flags |= IFF_DORMANT; 2978 } 2979 2980 return flags; 2981 } 2982 2983 int dev_change_flags(struct net_device *dev, unsigned flags) 2984 { 2985 int ret, changes; 2986 int old_flags = dev->flags; 2987 2988 ASSERT_RTNL(); 2989 2990 /* 2991 * Set the flags on our device. 2992 */ 2993 2994 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2995 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2996 IFF_AUTOMEDIA)) | 2997 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2998 IFF_ALLMULTI)); 2999 3000 /* 3001 * Load in the correct multicast list now the flags have changed. 3002 */ 3003 3004 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST) 3005 dev->change_rx_flags(dev, IFF_MULTICAST); 3006 3007 dev_set_rx_mode(dev); 3008 3009 /* 3010 * Have we downed the interface. We handle IFF_UP ourselves 3011 * according to user attempts to set it, rather than blindly 3012 * setting it. 3013 */ 3014 3015 ret = 0; 3016 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3017 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3018 3019 if (!ret) 3020 dev_set_rx_mode(dev); 3021 } 3022 3023 if (dev->flags & IFF_UP && 3024 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3025 IFF_VOLATILE))) 3026 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3027 3028 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3029 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3030 dev->gflags ^= IFF_PROMISC; 3031 dev_set_promiscuity(dev, inc); 3032 } 3033 3034 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3035 is important. Some (broken) drivers set IFF_PROMISC, when 3036 IFF_ALLMULTI is requested not asking us and not reporting. 3037 */ 3038 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3039 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3040 dev->gflags ^= IFF_ALLMULTI; 3041 dev_set_allmulti(dev, inc); 3042 } 3043 3044 /* Exclude state transition flags, already notified */ 3045 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3046 if (changes) 3047 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3048 3049 return ret; 3050 } 3051 3052 int dev_set_mtu(struct net_device *dev, int new_mtu) 3053 { 3054 int err; 3055 3056 if (new_mtu == dev->mtu) 3057 return 0; 3058 3059 /* MTU must be positive. */ 3060 if (new_mtu < 0) 3061 return -EINVAL; 3062 3063 if (!netif_device_present(dev)) 3064 return -ENODEV; 3065 3066 err = 0; 3067 if (dev->change_mtu) 3068 err = dev->change_mtu(dev, new_mtu); 3069 else 3070 dev->mtu = new_mtu; 3071 if (!err && dev->flags & IFF_UP) 3072 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3073 return err; 3074 } 3075 3076 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3077 { 3078 int err; 3079 3080 if (!dev->set_mac_address) 3081 return -EOPNOTSUPP; 3082 if (sa->sa_family != dev->type) 3083 return -EINVAL; 3084 if (!netif_device_present(dev)) 3085 return -ENODEV; 3086 err = dev->set_mac_address(dev, sa); 3087 if (!err) 3088 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3089 return err; 3090 } 3091 3092 /* 3093 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3094 */ 3095 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3096 { 3097 int err; 3098 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3099 3100 if (!dev) 3101 return -ENODEV; 3102 3103 switch (cmd) { 3104 case SIOCGIFFLAGS: /* Get interface flags */ 3105 ifr->ifr_flags = dev_get_flags(dev); 3106 return 0; 3107 3108 case SIOCGIFMETRIC: /* Get the metric on the interface 3109 (currently unused) */ 3110 ifr->ifr_metric = 0; 3111 return 0; 3112 3113 case SIOCGIFMTU: /* Get the MTU of a device */ 3114 ifr->ifr_mtu = dev->mtu; 3115 return 0; 3116 3117 case SIOCGIFHWADDR: 3118 if (!dev->addr_len) 3119 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3120 else 3121 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3122 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3123 ifr->ifr_hwaddr.sa_family = dev->type; 3124 return 0; 3125 3126 case SIOCGIFSLAVE: 3127 err = -EINVAL; 3128 break; 3129 3130 case SIOCGIFMAP: 3131 ifr->ifr_map.mem_start = dev->mem_start; 3132 ifr->ifr_map.mem_end = dev->mem_end; 3133 ifr->ifr_map.base_addr = dev->base_addr; 3134 ifr->ifr_map.irq = dev->irq; 3135 ifr->ifr_map.dma = dev->dma; 3136 ifr->ifr_map.port = dev->if_port; 3137 return 0; 3138 3139 case SIOCGIFINDEX: 3140 ifr->ifr_ifindex = dev->ifindex; 3141 return 0; 3142 3143 case SIOCGIFTXQLEN: 3144 ifr->ifr_qlen = dev->tx_queue_len; 3145 return 0; 3146 3147 default: 3148 /* dev_ioctl() should ensure this case 3149 * is never reached 3150 */ 3151 WARN_ON(1); 3152 err = -EINVAL; 3153 break; 3154 3155 } 3156 return err; 3157 } 3158 3159 /* 3160 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3161 */ 3162 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3163 { 3164 int err; 3165 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3166 3167 if (!dev) 3168 return -ENODEV; 3169 3170 switch (cmd) { 3171 case SIOCSIFFLAGS: /* Set interface flags */ 3172 return dev_change_flags(dev, ifr->ifr_flags); 3173 3174 case SIOCSIFMETRIC: /* Set the metric on the interface 3175 (currently unused) */ 3176 return -EOPNOTSUPP; 3177 3178 case SIOCSIFMTU: /* Set the MTU of a device */ 3179 return dev_set_mtu(dev, ifr->ifr_mtu); 3180 3181 case SIOCSIFHWADDR: 3182 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3183 3184 case SIOCSIFHWBROADCAST: 3185 if (ifr->ifr_hwaddr.sa_family != dev->type) 3186 return -EINVAL; 3187 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3188 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3189 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3190 return 0; 3191 3192 case SIOCSIFMAP: 3193 if (dev->set_config) { 3194 if (!netif_device_present(dev)) 3195 return -ENODEV; 3196 return dev->set_config(dev, &ifr->ifr_map); 3197 } 3198 return -EOPNOTSUPP; 3199 3200 case SIOCADDMULTI: 3201 if (!dev->set_multicast_list || 3202 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3203 return -EINVAL; 3204 if (!netif_device_present(dev)) 3205 return -ENODEV; 3206 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3207 dev->addr_len, 1); 3208 3209 case SIOCDELMULTI: 3210 if (!dev->set_multicast_list || 3211 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3212 return -EINVAL; 3213 if (!netif_device_present(dev)) 3214 return -ENODEV; 3215 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3216 dev->addr_len, 1); 3217 3218 case SIOCSIFTXQLEN: 3219 if (ifr->ifr_qlen < 0) 3220 return -EINVAL; 3221 dev->tx_queue_len = ifr->ifr_qlen; 3222 return 0; 3223 3224 case SIOCSIFNAME: 3225 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3226 return dev_change_name(dev, ifr->ifr_newname); 3227 3228 /* 3229 * Unknown or private ioctl 3230 */ 3231 3232 default: 3233 if ((cmd >= SIOCDEVPRIVATE && 3234 cmd <= SIOCDEVPRIVATE + 15) || 3235 cmd == SIOCBONDENSLAVE || 3236 cmd == SIOCBONDRELEASE || 3237 cmd == SIOCBONDSETHWADDR || 3238 cmd == SIOCBONDSLAVEINFOQUERY || 3239 cmd == SIOCBONDINFOQUERY || 3240 cmd == SIOCBONDCHANGEACTIVE || 3241 cmd == SIOCGMIIPHY || 3242 cmd == SIOCGMIIREG || 3243 cmd == SIOCSMIIREG || 3244 cmd == SIOCBRADDIF || 3245 cmd == SIOCBRDELIF || 3246 cmd == SIOCWANDEV) { 3247 err = -EOPNOTSUPP; 3248 if (dev->do_ioctl) { 3249 if (netif_device_present(dev)) 3250 err = dev->do_ioctl(dev, ifr, 3251 cmd); 3252 else 3253 err = -ENODEV; 3254 } 3255 } else 3256 err = -EINVAL; 3257 3258 } 3259 return err; 3260 } 3261 3262 /* 3263 * This function handles all "interface"-type I/O control requests. The actual 3264 * 'doing' part of this is dev_ifsioc above. 3265 */ 3266 3267 /** 3268 * dev_ioctl - network device ioctl 3269 * @net: the applicable net namespace 3270 * @cmd: command to issue 3271 * @arg: pointer to a struct ifreq in user space 3272 * 3273 * Issue ioctl functions to devices. This is normally called by the 3274 * user space syscall interfaces but can sometimes be useful for 3275 * other purposes. The return value is the return from the syscall if 3276 * positive or a negative errno code on error. 3277 */ 3278 3279 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3280 { 3281 struct ifreq ifr; 3282 int ret; 3283 char *colon; 3284 3285 /* One special case: SIOCGIFCONF takes ifconf argument 3286 and requires shared lock, because it sleeps writing 3287 to user space. 3288 */ 3289 3290 if (cmd == SIOCGIFCONF) { 3291 rtnl_lock(); 3292 ret = dev_ifconf(net, (char __user *) arg); 3293 rtnl_unlock(); 3294 return ret; 3295 } 3296 if (cmd == SIOCGIFNAME) 3297 return dev_ifname(net, (struct ifreq __user *)arg); 3298 3299 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3300 return -EFAULT; 3301 3302 ifr.ifr_name[IFNAMSIZ-1] = 0; 3303 3304 colon = strchr(ifr.ifr_name, ':'); 3305 if (colon) 3306 *colon = 0; 3307 3308 /* 3309 * See which interface the caller is talking about. 3310 */ 3311 3312 switch (cmd) { 3313 /* 3314 * These ioctl calls: 3315 * - can be done by all. 3316 * - atomic and do not require locking. 3317 * - return a value 3318 */ 3319 case SIOCGIFFLAGS: 3320 case SIOCGIFMETRIC: 3321 case SIOCGIFMTU: 3322 case SIOCGIFHWADDR: 3323 case SIOCGIFSLAVE: 3324 case SIOCGIFMAP: 3325 case SIOCGIFINDEX: 3326 case SIOCGIFTXQLEN: 3327 dev_load(net, ifr.ifr_name); 3328 read_lock(&dev_base_lock); 3329 ret = dev_ifsioc_locked(net, &ifr, cmd); 3330 read_unlock(&dev_base_lock); 3331 if (!ret) { 3332 if (colon) 3333 *colon = ':'; 3334 if (copy_to_user(arg, &ifr, 3335 sizeof(struct ifreq))) 3336 ret = -EFAULT; 3337 } 3338 return ret; 3339 3340 case SIOCETHTOOL: 3341 dev_load(net, ifr.ifr_name); 3342 rtnl_lock(); 3343 ret = dev_ethtool(net, &ifr); 3344 rtnl_unlock(); 3345 if (!ret) { 3346 if (colon) 3347 *colon = ':'; 3348 if (copy_to_user(arg, &ifr, 3349 sizeof(struct ifreq))) 3350 ret = -EFAULT; 3351 } 3352 return ret; 3353 3354 /* 3355 * These ioctl calls: 3356 * - require superuser power. 3357 * - require strict serialization. 3358 * - return a value 3359 */ 3360 case SIOCGMIIPHY: 3361 case SIOCGMIIREG: 3362 case SIOCSIFNAME: 3363 if (!capable(CAP_NET_ADMIN)) 3364 return -EPERM; 3365 dev_load(net, ifr.ifr_name); 3366 rtnl_lock(); 3367 ret = dev_ifsioc(net, &ifr, cmd); 3368 rtnl_unlock(); 3369 if (!ret) { 3370 if (colon) 3371 *colon = ':'; 3372 if (copy_to_user(arg, &ifr, 3373 sizeof(struct ifreq))) 3374 ret = -EFAULT; 3375 } 3376 return ret; 3377 3378 /* 3379 * These ioctl calls: 3380 * - require superuser power. 3381 * - require strict serialization. 3382 * - do not return a value 3383 */ 3384 case SIOCSIFFLAGS: 3385 case SIOCSIFMETRIC: 3386 case SIOCSIFMTU: 3387 case SIOCSIFMAP: 3388 case SIOCSIFHWADDR: 3389 case SIOCSIFSLAVE: 3390 case SIOCADDMULTI: 3391 case SIOCDELMULTI: 3392 case SIOCSIFHWBROADCAST: 3393 case SIOCSIFTXQLEN: 3394 case SIOCSMIIREG: 3395 case SIOCBONDENSLAVE: 3396 case SIOCBONDRELEASE: 3397 case SIOCBONDSETHWADDR: 3398 case SIOCBONDCHANGEACTIVE: 3399 case SIOCBRADDIF: 3400 case SIOCBRDELIF: 3401 if (!capable(CAP_NET_ADMIN)) 3402 return -EPERM; 3403 /* fall through */ 3404 case SIOCBONDSLAVEINFOQUERY: 3405 case SIOCBONDINFOQUERY: 3406 dev_load(net, ifr.ifr_name); 3407 rtnl_lock(); 3408 ret = dev_ifsioc(net, &ifr, cmd); 3409 rtnl_unlock(); 3410 return ret; 3411 3412 case SIOCGIFMEM: 3413 /* Get the per device memory space. We can add this but 3414 * currently do not support it */ 3415 case SIOCSIFMEM: 3416 /* Set the per device memory buffer space. 3417 * Not applicable in our case */ 3418 case SIOCSIFLINK: 3419 return -EINVAL; 3420 3421 /* 3422 * Unknown or private ioctl. 3423 */ 3424 default: 3425 if (cmd == SIOCWANDEV || 3426 (cmd >= SIOCDEVPRIVATE && 3427 cmd <= SIOCDEVPRIVATE + 15)) { 3428 dev_load(net, ifr.ifr_name); 3429 rtnl_lock(); 3430 ret = dev_ifsioc(net, &ifr, cmd); 3431 rtnl_unlock(); 3432 if (!ret && copy_to_user(arg, &ifr, 3433 sizeof(struct ifreq))) 3434 ret = -EFAULT; 3435 return ret; 3436 } 3437 /* Take care of Wireless Extensions */ 3438 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3439 return wext_handle_ioctl(net, &ifr, cmd, arg); 3440 return -EINVAL; 3441 } 3442 } 3443 3444 3445 /** 3446 * dev_new_index - allocate an ifindex 3447 * @net: the applicable net namespace 3448 * 3449 * Returns a suitable unique value for a new device interface 3450 * number. The caller must hold the rtnl semaphore or the 3451 * dev_base_lock to be sure it remains unique. 3452 */ 3453 static int dev_new_index(struct net *net) 3454 { 3455 static int ifindex; 3456 for (;;) { 3457 if (++ifindex <= 0) 3458 ifindex = 1; 3459 if (!__dev_get_by_index(net, ifindex)) 3460 return ifindex; 3461 } 3462 } 3463 3464 /* Delayed registration/unregisteration */ 3465 static DEFINE_SPINLOCK(net_todo_list_lock); 3466 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 3467 3468 static void net_set_todo(struct net_device *dev) 3469 { 3470 spin_lock(&net_todo_list_lock); 3471 list_add_tail(&dev->todo_list, &net_todo_list); 3472 spin_unlock(&net_todo_list_lock); 3473 } 3474 3475 /** 3476 * register_netdevice - register a network device 3477 * @dev: device to register 3478 * 3479 * Take a completed network device structure and add it to the kernel 3480 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3481 * chain. 0 is returned on success. A negative errno code is returned 3482 * on a failure to set up the device, or if the name is a duplicate. 3483 * 3484 * Callers must hold the rtnl semaphore. You may want 3485 * register_netdev() instead of this. 3486 * 3487 * BUGS: 3488 * The locking appears insufficient to guarantee two parallel registers 3489 * will not get the same name. 3490 */ 3491 3492 int register_netdevice(struct net_device *dev) 3493 { 3494 struct hlist_head *head; 3495 struct hlist_node *p; 3496 int ret; 3497 struct net *net; 3498 3499 BUG_ON(dev_boot_phase); 3500 ASSERT_RTNL(); 3501 3502 might_sleep(); 3503 3504 /* When net_device's are persistent, this will be fatal. */ 3505 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3506 BUG_ON(!dev->nd_net); 3507 net = dev->nd_net; 3508 3509 spin_lock_init(&dev->queue_lock); 3510 spin_lock_init(&dev->_xmit_lock); 3511 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type); 3512 dev->xmit_lock_owner = -1; 3513 spin_lock_init(&dev->ingress_lock); 3514 3515 dev->iflink = -1; 3516 3517 /* Init, if this function is available */ 3518 if (dev->init) { 3519 ret = dev->init(dev); 3520 if (ret) { 3521 if (ret > 0) 3522 ret = -EIO; 3523 goto out; 3524 } 3525 } 3526 3527 if (!dev_valid_name(dev->name)) { 3528 ret = -EINVAL; 3529 goto err_uninit; 3530 } 3531 3532 dev->ifindex = dev_new_index(net); 3533 if (dev->iflink == -1) 3534 dev->iflink = dev->ifindex; 3535 3536 /* Check for existence of name */ 3537 head = dev_name_hash(net, dev->name); 3538 hlist_for_each(p, head) { 3539 struct net_device *d 3540 = hlist_entry(p, struct net_device, name_hlist); 3541 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3542 ret = -EEXIST; 3543 goto err_uninit; 3544 } 3545 } 3546 3547 /* Fix illegal checksum combinations */ 3548 if ((dev->features & NETIF_F_HW_CSUM) && 3549 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3550 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 3551 dev->name); 3552 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3553 } 3554 3555 if ((dev->features & NETIF_F_NO_CSUM) && 3556 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3557 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 3558 dev->name); 3559 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 3560 } 3561 3562 3563 /* Fix illegal SG+CSUM combinations. */ 3564 if ((dev->features & NETIF_F_SG) && 3565 !(dev->features & NETIF_F_ALL_CSUM)) { 3566 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3567 dev->name); 3568 dev->features &= ~NETIF_F_SG; 3569 } 3570 3571 /* TSO requires that SG is present as well. */ 3572 if ((dev->features & NETIF_F_TSO) && 3573 !(dev->features & NETIF_F_SG)) { 3574 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3575 dev->name); 3576 dev->features &= ~NETIF_F_TSO; 3577 } 3578 if (dev->features & NETIF_F_UFO) { 3579 if (!(dev->features & NETIF_F_HW_CSUM)) { 3580 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3581 "NETIF_F_HW_CSUM feature.\n", 3582 dev->name); 3583 dev->features &= ~NETIF_F_UFO; 3584 } 3585 if (!(dev->features & NETIF_F_SG)) { 3586 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3587 "NETIF_F_SG feature.\n", 3588 dev->name); 3589 dev->features &= ~NETIF_F_UFO; 3590 } 3591 } 3592 3593 ret = netdev_register_kobject(dev); 3594 if (ret) 3595 goto err_uninit; 3596 dev->reg_state = NETREG_REGISTERED; 3597 3598 /* 3599 * Default initial state at registry is that the 3600 * device is present. 3601 */ 3602 3603 set_bit(__LINK_STATE_PRESENT, &dev->state); 3604 3605 dev_init_scheduler(dev); 3606 dev_hold(dev); 3607 list_netdevice(dev); 3608 3609 /* Notify protocols, that a new device appeared. */ 3610 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 3611 ret = notifier_to_errno(ret); 3612 if (ret) 3613 unregister_netdevice(dev); 3614 3615 out: 3616 return ret; 3617 3618 err_uninit: 3619 if (dev->uninit) 3620 dev->uninit(dev); 3621 goto out; 3622 } 3623 3624 /** 3625 * register_netdev - register a network device 3626 * @dev: device to register 3627 * 3628 * Take a completed network device structure and add it to the kernel 3629 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3630 * chain. 0 is returned on success. A negative errno code is returned 3631 * on a failure to set up the device, or if the name is a duplicate. 3632 * 3633 * This is a wrapper around register_netdevice that takes the rtnl semaphore 3634 * and expands the device name if you passed a format string to 3635 * alloc_netdev. 3636 */ 3637 int register_netdev(struct net_device *dev) 3638 { 3639 int err; 3640 3641 rtnl_lock(); 3642 3643 /* 3644 * If the name is a format string the caller wants us to do a 3645 * name allocation. 3646 */ 3647 if (strchr(dev->name, '%')) { 3648 err = dev_alloc_name(dev, dev->name); 3649 if (err < 0) 3650 goto out; 3651 } 3652 3653 err = register_netdevice(dev); 3654 out: 3655 rtnl_unlock(); 3656 return err; 3657 } 3658 EXPORT_SYMBOL(register_netdev); 3659 3660 /* 3661 * netdev_wait_allrefs - wait until all references are gone. 3662 * 3663 * This is called when unregistering network devices. 3664 * 3665 * Any protocol or device that holds a reference should register 3666 * for netdevice notification, and cleanup and put back the 3667 * reference if they receive an UNREGISTER event. 3668 * We can get stuck here if buggy protocols don't correctly 3669 * call dev_put. 3670 */ 3671 static void netdev_wait_allrefs(struct net_device *dev) 3672 { 3673 unsigned long rebroadcast_time, warning_time; 3674 3675 rebroadcast_time = warning_time = jiffies; 3676 while (atomic_read(&dev->refcnt) != 0) { 3677 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3678 rtnl_lock(); 3679 3680 /* Rebroadcast unregister notification */ 3681 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3682 3683 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3684 &dev->state)) { 3685 /* We must not have linkwatch events 3686 * pending on unregister. If this 3687 * happens, we simply run the queue 3688 * unscheduled, resulting in a noop 3689 * for this device. 3690 */ 3691 linkwatch_run_queue(); 3692 } 3693 3694 __rtnl_unlock(); 3695 3696 rebroadcast_time = jiffies; 3697 } 3698 3699 msleep(250); 3700 3701 if (time_after(jiffies, warning_time + 10 * HZ)) { 3702 printk(KERN_EMERG "unregister_netdevice: " 3703 "waiting for %s to become free. Usage " 3704 "count = %d\n", 3705 dev->name, atomic_read(&dev->refcnt)); 3706 warning_time = jiffies; 3707 } 3708 } 3709 } 3710 3711 /* The sequence is: 3712 * 3713 * rtnl_lock(); 3714 * ... 3715 * register_netdevice(x1); 3716 * register_netdevice(x2); 3717 * ... 3718 * unregister_netdevice(y1); 3719 * unregister_netdevice(y2); 3720 * ... 3721 * rtnl_unlock(); 3722 * free_netdev(y1); 3723 * free_netdev(y2); 3724 * 3725 * We are invoked by rtnl_unlock() after it drops the semaphore. 3726 * This allows us to deal with problems: 3727 * 1) We can delete sysfs objects which invoke hotplug 3728 * without deadlocking with linkwatch via keventd. 3729 * 2) Since we run with the RTNL semaphore not held, we can sleep 3730 * safely in order to wait for the netdev refcnt to drop to zero. 3731 */ 3732 static DEFINE_MUTEX(net_todo_run_mutex); 3733 void netdev_run_todo(void) 3734 { 3735 struct list_head list; 3736 3737 /* Need to guard against multiple cpu's getting out of order. */ 3738 mutex_lock(&net_todo_run_mutex); 3739 3740 /* Not safe to do outside the semaphore. We must not return 3741 * until all unregister events invoked by the local processor 3742 * have been completed (either by this todo run, or one on 3743 * another cpu). 3744 */ 3745 if (list_empty(&net_todo_list)) 3746 goto out; 3747 3748 /* Snapshot list, allow later requests */ 3749 spin_lock(&net_todo_list_lock); 3750 list_replace_init(&net_todo_list, &list); 3751 spin_unlock(&net_todo_list_lock); 3752 3753 while (!list_empty(&list)) { 3754 struct net_device *dev 3755 = list_entry(list.next, struct net_device, todo_list); 3756 list_del(&dev->todo_list); 3757 3758 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3759 printk(KERN_ERR "network todo '%s' but state %d\n", 3760 dev->name, dev->reg_state); 3761 dump_stack(); 3762 continue; 3763 } 3764 3765 dev->reg_state = NETREG_UNREGISTERED; 3766 3767 netdev_wait_allrefs(dev); 3768 3769 /* paranoia */ 3770 BUG_ON(atomic_read(&dev->refcnt)); 3771 BUG_TRAP(!dev->ip_ptr); 3772 BUG_TRAP(!dev->ip6_ptr); 3773 BUG_TRAP(!dev->dn_ptr); 3774 3775 if (dev->destructor) 3776 dev->destructor(dev); 3777 3778 /* Free network device */ 3779 kobject_put(&dev->dev.kobj); 3780 } 3781 3782 out: 3783 mutex_unlock(&net_todo_run_mutex); 3784 } 3785 3786 static struct net_device_stats *internal_stats(struct net_device *dev) 3787 { 3788 return &dev->stats; 3789 } 3790 3791 /** 3792 * alloc_netdev_mq - allocate network device 3793 * @sizeof_priv: size of private data to allocate space for 3794 * @name: device name format string 3795 * @setup: callback to initialize device 3796 * @queue_count: the number of subqueues to allocate 3797 * 3798 * Allocates a struct net_device with private data area for driver use 3799 * and performs basic initialization. Also allocates subquue structs 3800 * for each queue on the device at the end of the netdevice. 3801 */ 3802 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 3803 void (*setup)(struct net_device *), unsigned int queue_count) 3804 { 3805 void *p; 3806 struct net_device *dev; 3807 int alloc_size; 3808 3809 BUG_ON(strlen(name) >= sizeof(dev->name)); 3810 3811 /* ensure 32-byte alignment of both the device and private area */ 3812 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST + 3813 (sizeof(struct net_device_subqueue) * (queue_count - 1))) & 3814 ~NETDEV_ALIGN_CONST; 3815 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3816 3817 p = kzalloc(alloc_size, GFP_KERNEL); 3818 if (!p) { 3819 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 3820 return NULL; 3821 } 3822 3823 dev = (struct net_device *) 3824 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3825 dev->padded = (char *)dev - (char *)p; 3826 dev->nd_net = &init_net; 3827 3828 if (sizeof_priv) { 3829 dev->priv = ((char *)dev + 3830 ((sizeof(struct net_device) + 3831 (sizeof(struct net_device_subqueue) * 3832 (queue_count - 1)) + NETDEV_ALIGN_CONST) 3833 & ~NETDEV_ALIGN_CONST)); 3834 } 3835 3836 dev->egress_subqueue_count = queue_count; 3837 3838 dev->get_stats = internal_stats; 3839 netpoll_netdev_init(dev); 3840 setup(dev); 3841 strcpy(dev->name, name); 3842 return dev; 3843 } 3844 EXPORT_SYMBOL(alloc_netdev_mq); 3845 3846 /** 3847 * free_netdev - free network device 3848 * @dev: device 3849 * 3850 * This function does the last stage of destroying an allocated device 3851 * interface. The reference to the device object is released. 3852 * If this is the last reference then it will be freed. 3853 */ 3854 void free_netdev(struct net_device *dev) 3855 { 3856 /* Compatibility with error handling in drivers */ 3857 if (dev->reg_state == NETREG_UNINITIALIZED) { 3858 kfree((char *)dev - dev->padded); 3859 return; 3860 } 3861 3862 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3863 dev->reg_state = NETREG_RELEASED; 3864 3865 /* will free via device release */ 3866 put_device(&dev->dev); 3867 } 3868 3869 /* Synchronize with packet receive processing. */ 3870 void synchronize_net(void) 3871 { 3872 might_sleep(); 3873 synchronize_rcu(); 3874 } 3875 3876 /** 3877 * unregister_netdevice - remove device from the kernel 3878 * @dev: device 3879 * 3880 * This function shuts down a device interface and removes it 3881 * from the kernel tables. On success 0 is returned, on a failure 3882 * a negative errno code is returned. 3883 * 3884 * Callers must hold the rtnl semaphore. You may want 3885 * unregister_netdev() instead of this. 3886 */ 3887 3888 void unregister_netdevice(struct net_device *dev) 3889 { 3890 BUG_ON(dev_boot_phase); 3891 ASSERT_RTNL(); 3892 3893 /* Some devices call without registering for initialization unwind. */ 3894 if (dev->reg_state == NETREG_UNINITIALIZED) { 3895 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3896 "was registered\n", dev->name, dev); 3897 3898 WARN_ON(1); 3899 return; 3900 } 3901 3902 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3903 3904 /* If device is running, close it first. */ 3905 dev_close(dev); 3906 3907 /* And unlink it from device chain. */ 3908 unlist_netdevice(dev); 3909 3910 dev->reg_state = NETREG_UNREGISTERING; 3911 3912 synchronize_net(); 3913 3914 /* Shutdown queueing discipline. */ 3915 dev_shutdown(dev); 3916 3917 3918 /* Notify protocols, that we are about to destroy 3919 this device. They should clean all the things. 3920 */ 3921 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3922 3923 /* 3924 * Flush the unicast and multicast chains 3925 */ 3926 dev_addr_discard(dev); 3927 3928 if (dev->uninit) 3929 dev->uninit(dev); 3930 3931 /* Notifier chain MUST detach us from master device. */ 3932 BUG_TRAP(!dev->master); 3933 3934 /* Remove entries from kobject tree */ 3935 netdev_unregister_kobject(dev); 3936 3937 /* Finish processing unregister after unlock */ 3938 net_set_todo(dev); 3939 3940 synchronize_net(); 3941 3942 dev_put(dev); 3943 } 3944 3945 /** 3946 * unregister_netdev - remove device from the kernel 3947 * @dev: device 3948 * 3949 * This function shuts down a device interface and removes it 3950 * from the kernel tables. On success 0 is returned, on a failure 3951 * a negative errno code is returned. 3952 * 3953 * This is just a wrapper for unregister_netdevice that takes 3954 * the rtnl semaphore. In general you want to use this and not 3955 * unregister_netdevice. 3956 */ 3957 void unregister_netdev(struct net_device *dev) 3958 { 3959 rtnl_lock(); 3960 unregister_netdevice(dev); 3961 rtnl_unlock(); 3962 } 3963 3964 EXPORT_SYMBOL(unregister_netdev); 3965 3966 /** 3967 * dev_change_net_namespace - move device to different nethost namespace 3968 * @dev: device 3969 * @net: network namespace 3970 * @pat: If not NULL name pattern to try if the current device name 3971 * is already taken in the destination network namespace. 3972 * 3973 * This function shuts down a device interface and moves it 3974 * to a new network namespace. On success 0 is returned, on 3975 * a failure a netagive errno code is returned. 3976 * 3977 * Callers must hold the rtnl semaphore. 3978 */ 3979 3980 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 3981 { 3982 char buf[IFNAMSIZ]; 3983 const char *destname; 3984 int err; 3985 3986 ASSERT_RTNL(); 3987 3988 /* Don't allow namespace local devices to be moved. */ 3989 err = -EINVAL; 3990 if (dev->features & NETIF_F_NETNS_LOCAL) 3991 goto out; 3992 3993 /* Ensure the device has been registrered */ 3994 err = -EINVAL; 3995 if (dev->reg_state != NETREG_REGISTERED) 3996 goto out; 3997 3998 /* Get out if there is nothing todo */ 3999 err = 0; 4000 if (dev->nd_net == net) 4001 goto out; 4002 4003 /* Pick the destination device name, and ensure 4004 * we can use it in the destination network namespace. 4005 */ 4006 err = -EEXIST; 4007 destname = dev->name; 4008 if (__dev_get_by_name(net, destname)) { 4009 /* We get here if we can't use the current device name */ 4010 if (!pat) 4011 goto out; 4012 if (!dev_valid_name(pat)) 4013 goto out; 4014 if (strchr(pat, '%')) { 4015 if (__dev_alloc_name(net, pat, buf) < 0) 4016 goto out; 4017 destname = buf; 4018 } else 4019 destname = pat; 4020 if (__dev_get_by_name(net, destname)) 4021 goto out; 4022 } 4023 4024 /* 4025 * And now a mini version of register_netdevice unregister_netdevice. 4026 */ 4027 4028 /* If device is running close it first. */ 4029 dev_close(dev); 4030 4031 /* And unlink it from device chain */ 4032 err = -ENODEV; 4033 unlist_netdevice(dev); 4034 4035 synchronize_net(); 4036 4037 /* Shutdown queueing discipline. */ 4038 dev_shutdown(dev); 4039 4040 /* Notify protocols, that we are about to destroy 4041 this device. They should clean all the things. 4042 */ 4043 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4044 4045 /* 4046 * Flush the unicast and multicast chains 4047 */ 4048 dev_addr_discard(dev); 4049 4050 /* Actually switch the network namespace */ 4051 dev->nd_net = net; 4052 4053 /* Assign the new device name */ 4054 if (destname != dev->name) 4055 strcpy(dev->name, destname); 4056 4057 /* If there is an ifindex conflict assign a new one */ 4058 if (__dev_get_by_index(net, dev->ifindex)) { 4059 int iflink = (dev->iflink == dev->ifindex); 4060 dev->ifindex = dev_new_index(net); 4061 if (iflink) 4062 dev->iflink = dev->ifindex; 4063 } 4064 4065 /* Fixup kobjects */ 4066 err = device_rename(&dev->dev, dev->name); 4067 WARN_ON(err); 4068 4069 /* Add the device back in the hashes */ 4070 list_netdevice(dev); 4071 4072 /* Notify protocols, that a new device appeared. */ 4073 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4074 4075 synchronize_net(); 4076 err = 0; 4077 out: 4078 return err; 4079 } 4080 4081 static int dev_cpu_callback(struct notifier_block *nfb, 4082 unsigned long action, 4083 void *ocpu) 4084 { 4085 struct sk_buff **list_skb; 4086 struct net_device **list_net; 4087 struct sk_buff *skb; 4088 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4089 struct softnet_data *sd, *oldsd; 4090 4091 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4092 return NOTIFY_OK; 4093 4094 local_irq_disable(); 4095 cpu = smp_processor_id(); 4096 sd = &per_cpu(softnet_data, cpu); 4097 oldsd = &per_cpu(softnet_data, oldcpu); 4098 4099 /* Find end of our completion_queue. */ 4100 list_skb = &sd->completion_queue; 4101 while (*list_skb) 4102 list_skb = &(*list_skb)->next; 4103 /* Append completion queue from offline CPU. */ 4104 *list_skb = oldsd->completion_queue; 4105 oldsd->completion_queue = NULL; 4106 4107 /* Find end of our output_queue. */ 4108 list_net = &sd->output_queue; 4109 while (*list_net) 4110 list_net = &(*list_net)->next_sched; 4111 /* Append output queue from offline CPU. */ 4112 *list_net = oldsd->output_queue; 4113 oldsd->output_queue = NULL; 4114 4115 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4116 local_irq_enable(); 4117 4118 /* Process offline CPU's input_pkt_queue */ 4119 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4120 netif_rx(skb); 4121 4122 return NOTIFY_OK; 4123 } 4124 4125 #ifdef CONFIG_NET_DMA 4126 /** 4127 * net_dma_rebalance - try to maintain one DMA channel per CPU 4128 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4129 * 4130 * This is called when the number of channels allocated to the net_dma client 4131 * changes. The net_dma client tries to have one DMA channel per CPU. 4132 */ 4133 4134 static void net_dma_rebalance(struct net_dma *net_dma) 4135 { 4136 unsigned int cpu, i, n, chan_idx; 4137 struct dma_chan *chan; 4138 4139 if (cpus_empty(net_dma->channel_mask)) { 4140 for_each_online_cpu(cpu) 4141 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4142 return; 4143 } 4144 4145 i = 0; 4146 cpu = first_cpu(cpu_online_map); 4147 4148 for_each_cpu_mask(chan_idx, net_dma->channel_mask) { 4149 chan = net_dma->channels[chan_idx]; 4150 4151 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4152 + (i < (num_online_cpus() % 4153 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4154 4155 while(n) { 4156 per_cpu(softnet_data, cpu).net_dma = chan; 4157 cpu = next_cpu(cpu, cpu_online_map); 4158 n--; 4159 } 4160 i++; 4161 } 4162 } 4163 4164 /** 4165 * netdev_dma_event - event callback for the net_dma_client 4166 * @client: should always be net_dma_client 4167 * @chan: DMA channel for the event 4168 * @state: DMA state to be handled 4169 */ 4170 static enum dma_state_client 4171 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4172 enum dma_state state) 4173 { 4174 int i, found = 0, pos = -1; 4175 struct net_dma *net_dma = 4176 container_of(client, struct net_dma, client); 4177 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4178 4179 spin_lock(&net_dma->lock); 4180 switch (state) { 4181 case DMA_RESOURCE_AVAILABLE: 4182 for (i = 0; i < NR_CPUS; i++) 4183 if (net_dma->channels[i] == chan) { 4184 found = 1; 4185 break; 4186 } else if (net_dma->channels[i] == NULL && pos < 0) 4187 pos = i; 4188 4189 if (!found && pos >= 0) { 4190 ack = DMA_ACK; 4191 net_dma->channels[pos] = chan; 4192 cpu_set(pos, net_dma->channel_mask); 4193 net_dma_rebalance(net_dma); 4194 } 4195 break; 4196 case DMA_RESOURCE_REMOVED: 4197 for (i = 0; i < NR_CPUS; i++) 4198 if (net_dma->channels[i] == chan) { 4199 found = 1; 4200 pos = i; 4201 break; 4202 } 4203 4204 if (found) { 4205 ack = DMA_ACK; 4206 cpu_clear(pos, net_dma->channel_mask); 4207 net_dma->channels[i] = NULL; 4208 net_dma_rebalance(net_dma); 4209 } 4210 break; 4211 default: 4212 break; 4213 } 4214 spin_unlock(&net_dma->lock); 4215 4216 return ack; 4217 } 4218 4219 /** 4220 * netdev_dma_regiser - register the networking subsystem as a DMA client 4221 */ 4222 static int __init netdev_dma_register(void) 4223 { 4224 spin_lock_init(&net_dma.lock); 4225 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4226 dma_async_client_register(&net_dma.client); 4227 dma_async_client_chan_request(&net_dma.client); 4228 return 0; 4229 } 4230 4231 #else 4232 static int __init netdev_dma_register(void) { return -ENODEV; } 4233 #endif /* CONFIG_NET_DMA */ 4234 4235 /** 4236 * netdev_compute_feature - compute conjunction of two feature sets 4237 * @all: first feature set 4238 * @one: second feature set 4239 * 4240 * Computes a new feature set after adding a device with feature set 4241 * @one to the master device with current feature set @all. Returns 4242 * the new feature set. 4243 */ 4244 int netdev_compute_features(unsigned long all, unsigned long one) 4245 { 4246 /* if device needs checksumming, downgrade to hw checksumming */ 4247 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4248 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM; 4249 4250 /* if device can't do all checksum, downgrade to ipv4/ipv6 */ 4251 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM)) 4252 all ^= NETIF_F_HW_CSUM 4253 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 4254 4255 if (one & NETIF_F_GSO) 4256 one |= NETIF_F_GSO_SOFTWARE; 4257 one |= NETIF_F_GSO; 4258 4259 /* If even one device supports robust GSO, enable it for all. */ 4260 if (one & NETIF_F_GSO_ROBUST) 4261 all |= NETIF_F_GSO_ROBUST; 4262 4263 all &= one | NETIF_F_LLTX; 4264 4265 if (!(all & NETIF_F_ALL_CSUM)) 4266 all &= ~NETIF_F_SG; 4267 if (!(all & NETIF_F_SG)) 4268 all &= ~NETIF_F_GSO_MASK; 4269 4270 return all; 4271 } 4272 EXPORT_SYMBOL(netdev_compute_features); 4273 4274 static struct hlist_head *netdev_create_hash(void) 4275 { 4276 int i; 4277 struct hlist_head *hash; 4278 4279 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4280 if (hash != NULL) 4281 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4282 INIT_HLIST_HEAD(&hash[i]); 4283 4284 return hash; 4285 } 4286 4287 /* Initialize per network namespace state */ 4288 static int __net_init netdev_init(struct net *net) 4289 { 4290 INIT_LIST_HEAD(&net->dev_base_head); 4291 rwlock_init(&dev_base_lock); 4292 4293 net->dev_name_head = netdev_create_hash(); 4294 if (net->dev_name_head == NULL) 4295 goto err_name; 4296 4297 net->dev_index_head = netdev_create_hash(); 4298 if (net->dev_index_head == NULL) 4299 goto err_idx; 4300 4301 return 0; 4302 4303 err_idx: 4304 kfree(net->dev_name_head); 4305 err_name: 4306 return -ENOMEM; 4307 } 4308 4309 static void __net_exit netdev_exit(struct net *net) 4310 { 4311 kfree(net->dev_name_head); 4312 kfree(net->dev_index_head); 4313 } 4314 4315 static struct pernet_operations __net_initdata netdev_net_ops = { 4316 .init = netdev_init, 4317 .exit = netdev_exit, 4318 }; 4319 4320 static void __net_exit default_device_exit(struct net *net) 4321 { 4322 struct net_device *dev, *next; 4323 /* 4324 * Push all migratable of the network devices back to the 4325 * initial network namespace 4326 */ 4327 rtnl_lock(); 4328 for_each_netdev_safe(net, dev, next) { 4329 int err; 4330 4331 /* Ignore unmoveable devices (i.e. loopback) */ 4332 if (dev->features & NETIF_F_NETNS_LOCAL) 4333 continue; 4334 4335 /* Push remaing network devices to init_net */ 4336 err = dev_change_net_namespace(dev, &init_net, "dev%d"); 4337 if (err) { 4338 printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n", 4339 __func__, dev->name, err); 4340 unregister_netdevice(dev); 4341 } 4342 } 4343 rtnl_unlock(); 4344 } 4345 4346 static struct pernet_operations __net_initdata default_device_ops = { 4347 .exit = default_device_exit, 4348 }; 4349 4350 /* 4351 * Initialize the DEV module. At boot time this walks the device list and 4352 * unhooks any devices that fail to initialise (normally hardware not 4353 * present) and leaves us with a valid list of present and active devices. 4354 * 4355 */ 4356 4357 /* 4358 * This is called single threaded during boot, so no need 4359 * to take the rtnl semaphore. 4360 */ 4361 static int __init net_dev_init(void) 4362 { 4363 int i, rc = -ENOMEM; 4364 4365 BUG_ON(!dev_boot_phase); 4366 4367 if (dev_proc_init()) 4368 goto out; 4369 4370 if (netdev_kobject_init()) 4371 goto out; 4372 4373 INIT_LIST_HEAD(&ptype_all); 4374 for (i = 0; i < 16; i++) 4375 INIT_LIST_HEAD(&ptype_base[i]); 4376 4377 if (register_pernet_subsys(&netdev_net_ops)) 4378 goto out; 4379 4380 if (register_pernet_device(&default_device_ops)) 4381 goto out; 4382 4383 /* 4384 * Initialise the packet receive queues. 4385 */ 4386 4387 for_each_possible_cpu(i) { 4388 struct softnet_data *queue; 4389 4390 queue = &per_cpu(softnet_data, i); 4391 skb_queue_head_init(&queue->input_pkt_queue); 4392 queue->completion_queue = NULL; 4393 INIT_LIST_HEAD(&queue->poll_list); 4394 4395 queue->backlog.poll = process_backlog; 4396 queue->backlog.weight = weight_p; 4397 } 4398 4399 netdev_dma_register(); 4400 4401 dev_boot_phase = 0; 4402 4403 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 4404 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 4405 4406 hotcpu_notifier(dev_cpu_callback, 0); 4407 dst_init(); 4408 dev_mcast_init(); 4409 rc = 0; 4410 out: 4411 return rc; 4412 } 4413 4414 subsys_initcall(net_dev_init); 4415 4416 EXPORT_SYMBOL(__dev_get_by_index); 4417 EXPORT_SYMBOL(__dev_get_by_name); 4418 EXPORT_SYMBOL(__dev_remove_pack); 4419 EXPORT_SYMBOL(dev_valid_name); 4420 EXPORT_SYMBOL(dev_add_pack); 4421 EXPORT_SYMBOL(dev_alloc_name); 4422 EXPORT_SYMBOL(dev_close); 4423 EXPORT_SYMBOL(dev_get_by_flags); 4424 EXPORT_SYMBOL(dev_get_by_index); 4425 EXPORT_SYMBOL(dev_get_by_name); 4426 EXPORT_SYMBOL(dev_open); 4427 EXPORT_SYMBOL(dev_queue_xmit); 4428 EXPORT_SYMBOL(dev_remove_pack); 4429 EXPORT_SYMBOL(dev_set_allmulti); 4430 EXPORT_SYMBOL(dev_set_promiscuity); 4431 EXPORT_SYMBOL(dev_change_flags); 4432 EXPORT_SYMBOL(dev_set_mtu); 4433 EXPORT_SYMBOL(dev_set_mac_address); 4434 EXPORT_SYMBOL(free_netdev); 4435 EXPORT_SYMBOL(netdev_boot_setup_check); 4436 EXPORT_SYMBOL(netdev_set_master); 4437 EXPORT_SYMBOL(netdev_state_change); 4438 EXPORT_SYMBOL(netif_receive_skb); 4439 EXPORT_SYMBOL(netif_rx); 4440 EXPORT_SYMBOL(register_gifconf); 4441 EXPORT_SYMBOL(register_netdevice); 4442 EXPORT_SYMBOL(register_netdevice_notifier); 4443 EXPORT_SYMBOL(skb_checksum_help); 4444 EXPORT_SYMBOL(synchronize_net); 4445 EXPORT_SYMBOL(unregister_netdevice); 4446 EXPORT_SYMBOL(unregister_netdevice_notifier); 4447 EXPORT_SYMBOL(net_enable_timestamp); 4448 EXPORT_SYMBOL(net_disable_timestamp); 4449 EXPORT_SYMBOL(dev_get_flags); 4450 4451 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4452 EXPORT_SYMBOL(br_handle_frame_hook); 4453 EXPORT_SYMBOL(br_fdb_get_hook); 4454 EXPORT_SYMBOL(br_fdb_put_hook); 4455 #endif 4456 4457 #ifdef CONFIG_KMOD 4458 EXPORT_SYMBOL(dev_load); 4459 #endif 4460 4461 EXPORT_PER_CPU_SYMBOL(softnet_data); 4462