xref: /linux/net/core/dev.c (revision 2b0cfa6e49566c8fa6759734cf821aa6e8271a9e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 #include <net/page_pool/types.h>
157 #include <net/page_pool/helpers.h>
158 
159 #include "dev.h"
160 #include "net-sysfs.h"
161 
162 static DEFINE_SPINLOCK(ptype_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;	/* Taps */
165 
166 static int netif_rx_internal(struct sk_buff *skb);
167 static int call_netdevice_notifiers_extack(unsigned long val,
168 					   struct net_device *dev,
169 					   struct netlink_ext_ack *extack);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static DECLARE_RWSEM(devnet_rename_sem);
202 
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock_irqsave(struct softnet_data *sd,
222 				    unsigned long *flags)
223 {
224 	if (IS_ENABLED(CONFIG_RPS))
225 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
226 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
227 		local_irq_save(*flags);
228 }
229 
230 static inline void rps_lock_irq_disable(struct softnet_data *sd)
231 {
232 	if (IS_ENABLED(CONFIG_RPS))
233 		spin_lock_irq(&sd->input_pkt_queue.lock);
234 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
235 		local_irq_disable();
236 }
237 
238 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
239 					  unsigned long *flags)
240 {
241 	if (IS_ENABLED(CONFIG_RPS))
242 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
243 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
244 		local_irq_restore(*flags);
245 }
246 
247 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
248 {
249 	if (IS_ENABLED(CONFIG_RPS))
250 		spin_unlock_irq(&sd->input_pkt_queue.lock);
251 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
252 		local_irq_enable();
253 }
254 
255 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
256 						       const char *name)
257 {
258 	struct netdev_name_node *name_node;
259 
260 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
261 	if (!name_node)
262 		return NULL;
263 	INIT_HLIST_NODE(&name_node->hlist);
264 	name_node->dev = dev;
265 	name_node->name = name;
266 	return name_node;
267 }
268 
269 static struct netdev_name_node *
270 netdev_name_node_head_alloc(struct net_device *dev)
271 {
272 	struct netdev_name_node *name_node;
273 
274 	name_node = netdev_name_node_alloc(dev, dev->name);
275 	if (!name_node)
276 		return NULL;
277 	INIT_LIST_HEAD(&name_node->list);
278 	return name_node;
279 }
280 
281 static void netdev_name_node_free(struct netdev_name_node *name_node)
282 {
283 	kfree(name_node);
284 }
285 
286 static void netdev_name_node_add(struct net *net,
287 				 struct netdev_name_node *name_node)
288 {
289 	hlist_add_head_rcu(&name_node->hlist,
290 			   dev_name_hash(net, name_node->name));
291 }
292 
293 static void netdev_name_node_del(struct netdev_name_node *name_node)
294 {
295 	hlist_del_rcu(&name_node->hlist);
296 }
297 
298 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
299 							const char *name)
300 {
301 	struct hlist_head *head = dev_name_hash(net, name);
302 	struct netdev_name_node *name_node;
303 
304 	hlist_for_each_entry(name_node, head, hlist)
305 		if (!strcmp(name_node->name, name))
306 			return name_node;
307 	return NULL;
308 }
309 
310 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
311 							    const char *name)
312 {
313 	struct hlist_head *head = dev_name_hash(net, name);
314 	struct netdev_name_node *name_node;
315 
316 	hlist_for_each_entry_rcu(name_node, head, hlist)
317 		if (!strcmp(name_node->name, name))
318 			return name_node;
319 	return NULL;
320 }
321 
322 bool netdev_name_in_use(struct net *net, const char *name)
323 {
324 	return netdev_name_node_lookup(net, name);
325 }
326 EXPORT_SYMBOL(netdev_name_in_use);
327 
328 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
329 {
330 	struct netdev_name_node *name_node;
331 	struct net *net = dev_net(dev);
332 
333 	name_node = netdev_name_node_lookup(net, name);
334 	if (name_node)
335 		return -EEXIST;
336 	name_node = netdev_name_node_alloc(dev, name);
337 	if (!name_node)
338 		return -ENOMEM;
339 	netdev_name_node_add(net, name_node);
340 	/* The node that holds dev->name acts as a head of per-device list. */
341 	list_add_tail(&name_node->list, &dev->name_node->list);
342 
343 	return 0;
344 }
345 
346 static void netdev_name_node_alt_free(struct rcu_head *head)
347 {
348 	struct netdev_name_node *name_node =
349 		container_of(head, struct netdev_name_node, rcu);
350 
351 	kfree(name_node->name);
352 	netdev_name_node_free(name_node);
353 }
354 
355 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
356 {
357 	netdev_name_node_del(name_node);
358 	list_del(&name_node->list);
359 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
360 }
361 
362 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
363 {
364 	struct netdev_name_node *name_node;
365 	struct net *net = dev_net(dev);
366 
367 	name_node = netdev_name_node_lookup(net, name);
368 	if (!name_node)
369 		return -ENOENT;
370 	/* lookup might have found our primary name or a name belonging
371 	 * to another device.
372 	 */
373 	if (name_node == dev->name_node || name_node->dev != dev)
374 		return -EINVAL;
375 
376 	__netdev_name_node_alt_destroy(name_node);
377 	return 0;
378 }
379 
380 static void netdev_name_node_alt_flush(struct net_device *dev)
381 {
382 	struct netdev_name_node *name_node, *tmp;
383 
384 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
385 		list_del(&name_node->list);
386 		netdev_name_node_alt_free(&name_node->rcu);
387 	}
388 }
389 
390 /* Device list insertion */
391 static void list_netdevice(struct net_device *dev)
392 {
393 	struct netdev_name_node *name_node;
394 	struct net *net = dev_net(dev);
395 
396 	ASSERT_RTNL();
397 
398 	write_lock(&dev_base_lock);
399 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
400 	netdev_name_node_add(net, dev->name_node);
401 	hlist_add_head_rcu(&dev->index_hlist,
402 			   dev_index_hash(net, dev->ifindex));
403 	write_unlock(&dev_base_lock);
404 
405 	netdev_for_each_altname(dev, name_node)
406 		netdev_name_node_add(net, name_node);
407 
408 	/* We reserved the ifindex, this can't fail */
409 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
410 
411 	dev_base_seq_inc(net);
412 }
413 
414 /* Device list removal
415  * caller must respect a RCU grace period before freeing/reusing dev
416  */
417 static void unlist_netdevice(struct net_device *dev, bool lock)
418 {
419 	struct netdev_name_node *name_node;
420 	struct net *net = dev_net(dev);
421 
422 	ASSERT_RTNL();
423 
424 	xa_erase(&net->dev_by_index, dev->ifindex);
425 
426 	netdev_for_each_altname(dev, name_node)
427 		netdev_name_node_del(name_node);
428 
429 	/* Unlink dev from the device chain */
430 	if (lock)
431 		write_lock(&dev_base_lock);
432 	list_del_rcu(&dev->dev_list);
433 	netdev_name_node_del(dev->name_node);
434 	hlist_del_rcu(&dev->index_hlist);
435 	if (lock)
436 		write_unlock(&dev_base_lock);
437 
438 	dev_base_seq_inc(dev_net(dev));
439 }
440 
441 /*
442  *	Our notifier list
443  */
444 
445 static RAW_NOTIFIER_HEAD(netdev_chain);
446 
447 /*
448  *	Device drivers call our routines to queue packets here. We empty the
449  *	queue in the local softnet handler.
450  */
451 
452 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
453 EXPORT_PER_CPU_SYMBOL(softnet_data);
454 
455 /* Page_pool has a lockless array/stack to alloc/recycle pages.
456  * PP consumers must pay attention to run APIs in the appropriate context
457  * (e.g. NAPI context).
458  */
459 static DEFINE_PER_CPU_ALIGNED(struct page_pool *, system_page_pool);
460 
461 #ifdef CONFIG_LOCKDEP
462 /*
463  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
464  * according to dev->type
465  */
466 static const unsigned short netdev_lock_type[] = {
467 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
468 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
469 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
470 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
471 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
472 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
473 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
474 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
475 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
476 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
477 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
478 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
479 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
480 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
481 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
482 
483 static const char *const netdev_lock_name[] = {
484 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
485 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
486 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
487 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
488 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
489 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
490 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
491 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
492 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
493 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
494 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
495 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
496 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
497 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
498 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
499 
500 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
501 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
502 
503 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
504 {
505 	int i;
506 
507 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
508 		if (netdev_lock_type[i] == dev_type)
509 			return i;
510 	/* the last key is used by default */
511 	return ARRAY_SIZE(netdev_lock_type) - 1;
512 }
513 
514 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
515 						 unsigned short dev_type)
516 {
517 	int i;
518 
519 	i = netdev_lock_pos(dev_type);
520 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
521 				   netdev_lock_name[i]);
522 }
523 
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 	int i;
527 
528 	i = netdev_lock_pos(dev->type);
529 	lockdep_set_class_and_name(&dev->addr_list_lock,
530 				   &netdev_addr_lock_key[i],
531 				   netdev_lock_name[i]);
532 }
533 #else
534 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
535 						 unsigned short dev_type)
536 {
537 }
538 
539 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
540 {
541 }
542 #endif
543 
544 /*******************************************************************************
545  *
546  *		Protocol management and registration routines
547  *
548  *******************************************************************************/
549 
550 
551 /*
552  *	Add a protocol ID to the list. Now that the input handler is
553  *	smarter we can dispense with all the messy stuff that used to be
554  *	here.
555  *
556  *	BEWARE!!! Protocol handlers, mangling input packets,
557  *	MUST BE last in hash buckets and checking protocol handlers
558  *	MUST start from promiscuous ptype_all chain in net_bh.
559  *	It is true now, do not change it.
560  *	Explanation follows: if protocol handler, mangling packet, will
561  *	be the first on list, it is not able to sense, that packet
562  *	is cloned and should be copied-on-write, so that it will
563  *	change it and subsequent readers will get broken packet.
564  *							--ANK (980803)
565  */
566 
567 static inline struct list_head *ptype_head(const struct packet_type *pt)
568 {
569 	if (pt->type == htons(ETH_P_ALL))
570 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
571 	else
572 		return pt->dev ? &pt->dev->ptype_specific :
573 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
574 }
575 
576 /**
577  *	dev_add_pack - add packet handler
578  *	@pt: packet type declaration
579  *
580  *	Add a protocol handler to the networking stack. The passed &packet_type
581  *	is linked into kernel lists and may not be freed until it has been
582  *	removed from the kernel lists.
583  *
584  *	This call does not sleep therefore it can not
585  *	guarantee all CPU's that are in middle of receiving packets
586  *	will see the new packet type (until the next received packet).
587  */
588 
589 void dev_add_pack(struct packet_type *pt)
590 {
591 	struct list_head *head = ptype_head(pt);
592 
593 	spin_lock(&ptype_lock);
594 	list_add_rcu(&pt->list, head);
595 	spin_unlock(&ptype_lock);
596 }
597 EXPORT_SYMBOL(dev_add_pack);
598 
599 /**
600  *	__dev_remove_pack	 - remove packet handler
601  *	@pt: packet type declaration
602  *
603  *	Remove a protocol handler that was previously added to the kernel
604  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
605  *	from the kernel lists and can be freed or reused once this function
606  *	returns.
607  *
608  *      The packet type might still be in use by receivers
609  *	and must not be freed until after all the CPU's have gone
610  *	through a quiescent state.
611  */
612 void __dev_remove_pack(struct packet_type *pt)
613 {
614 	struct list_head *head = ptype_head(pt);
615 	struct packet_type *pt1;
616 
617 	spin_lock(&ptype_lock);
618 
619 	list_for_each_entry(pt1, head, list) {
620 		if (pt == pt1) {
621 			list_del_rcu(&pt->list);
622 			goto out;
623 		}
624 	}
625 
626 	pr_warn("dev_remove_pack: %p not found\n", pt);
627 out:
628 	spin_unlock(&ptype_lock);
629 }
630 EXPORT_SYMBOL(__dev_remove_pack);
631 
632 /**
633  *	dev_remove_pack	 - remove packet handler
634  *	@pt: packet type declaration
635  *
636  *	Remove a protocol handler that was previously added to the kernel
637  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
638  *	from the kernel lists and can be freed or reused once this function
639  *	returns.
640  *
641  *	This call sleeps to guarantee that no CPU is looking at the packet
642  *	type after return.
643  */
644 void dev_remove_pack(struct packet_type *pt)
645 {
646 	__dev_remove_pack(pt);
647 
648 	synchronize_net();
649 }
650 EXPORT_SYMBOL(dev_remove_pack);
651 
652 
653 /*******************************************************************************
654  *
655  *			    Device Interface Subroutines
656  *
657  *******************************************************************************/
658 
659 /**
660  *	dev_get_iflink	- get 'iflink' value of a interface
661  *	@dev: targeted interface
662  *
663  *	Indicates the ifindex the interface is linked to.
664  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
665  */
666 
667 int dev_get_iflink(const struct net_device *dev)
668 {
669 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
670 		return dev->netdev_ops->ndo_get_iflink(dev);
671 
672 	return dev->ifindex;
673 }
674 EXPORT_SYMBOL(dev_get_iflink);
675 
676 /**
677  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
678  *	@dev: targeted interface
679  *	@skb: The packet.
680  *
681  *	For better visibility of tunnel traffic OVS needs to retrieve
682  *	egress tunnel information for a packet. Following API allows
683  *	user to get this info.
684  */
685 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
686 {
687 	struct ip_tunnel_info *info;
688 
689 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
690 		return -EINVAL;
691 
692 	info = skb_tunnel_info_unclone(skb);
693 	if (!info)
694 		return -ENOMEM;
695 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
696 		return -EINVAL;
697 
698 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
699 }
700 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
701 
702 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
703 {
704 	int k = stack->num_paths++;
705 
706 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
707 		return NULL;
708 
709 	return &stack->path[k];
710 }
711 
712 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
713 			  struct net_device_path_stack *stack)
714 {
715 	const struct net_device *last_dev;
716 	struct net_device_path_ctx ctx = {
717 		.dev	= dev,
718 	};
719 	struct net_device_path *path;
720 	int ret = 0;
721 
722 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
723 	stack->num_paths = 0;
724 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
725 		last_dev = ctx.dev;
726 		path = dev_fwd_path(stack);
727 		if (!path)
728 			return -1;
729 
730 		memset(path, 0, sizeof(struct net_device_path));
731 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
732 		if (ret < 0)
733 			return -1;
734 
735 		if (WARN_ON_ONCE(last_dev == ctx.dev))
736 			return -1;
737 	}
738 
739 	if (!ctx.dev)
740 		return ret;
741 
742 	path = dev_fwd_path(stack);
743 	if (!path)
744 		return -1;
745 	path->type = DEV_PATH_ETHERNET;
746 	path->dev = ctx.dev;
747 
748 	return ret;
749 }
750 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
751 
752 /**
753  *	__dev_get_by_name	- find a device by its name
754  *	@net: the applicable net namespace
755  *	@name: name to find
756  *
757  *	Find an interface by name. Must be called under RTNL semaphore
758  *	or @dev_base_lock. If the name is found a pointer to the device
759  *	is returned. If the name is not found then %NULL is returned. The
760  *	reference counters are not incremented so the caller must be
761  *	careful with locks.
762  */
763 
764 struct net_device *__dev_get_by_name(struct net *net, const char *name)
765 {
766 	struct netdev_name_node *node_name;
767 
768 	node_name = netdev_name_node_lookup(net, name);
769 	return node_name ? node_name->dev : NULL;
770 }
771 EXPORT_SYMBOL(__dev_get_by_name);
772 
773 /**
774  * dev_get_by_name_rcu	- find a device by its name
775  * @net: the applicable net namespace
776  * @name: name to find
777  *
778  * Find an interface by name.
779  * If the name is found a pointer to the device is returned.
780  * If the name is not found then %NULL is returned.
781  * The reference counters are not incremented so the caller must be
782  * careful with locks. The caller must hold RCU lock.
783  */
784 
785 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
786 {
787 	struct netdev_name_node *node_name;
788 
789 	node_name = netdev_name_node_lookup_rcu(net, name);
790 	return node_name ? node_name->dev : NULL;
791 }
792 EXPORT_SYMBOL(dev_get_by_name_rcu);
793 
794 /* Deprecated for new users, call netdev_get_by_name() instead */
795 struct net_device *dev_get_by_name(struct net *net, const char *name)
796 {
797 	struct net_device *dev;
798 
799 	rcu_read_lock();
800 	dev = dev_get_by_name_rcu(net, name);
801 	dev_hold(dev);
802 	rcu_read_unlock();
803 	return dev;
804 }
805 EXPORT_SYMBOL(dev_get_by_name);
806 
807 /**
808  *	netdev_get_by_name() - find a device by its name
809  *	@net: the applicable net namespace
810  *	@name: name to find
811  *	@tracker: tracking object for the acquired reference
812  *	@gfp: allocation flags for the tracker
813  *
814  *	Find an interface by name. This can be called from any
815  *	context and does its own locking. The returned handle has
816  *	the usage count incremented and the caller must use netdev_put() to
817  *	release it when it is no longer needed. %NULL is returned if no
818  *	matching device is found.
819  */
820 struct net_device *netdev_get_by_name(struct net *net, const char *name,
821 				      netdevice_tracker *tracker, gfp_t gfp)
822 {
823 	struct net_device *dev;
824 
825 	dev = dev_get_by_name(net, name);
826 	if (dev)
827 		netdev_tracker_alloc(dev, tracker, gfp);
828 	return dev;
829 }
830 EXPORT_SYMBOL(netdev_get_by_name);
831 
832 /**
833  *	__dev_get_by_index - find a device by its ifindex
834  *	@net: the applicable net namespace
835  *	@ifindex: index of device
836  *
837  *	Search for an interface by index. Returns %NULL if the device
838  *	is not found or a pointer to the device. The device has not
839  *	had its reference counter increased so the caller must be careful
840  *	about locking. The caller must hold either the RTNL semaphore
841  *	or @dev_base_lock.
842  */
843 
844 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
845 {
846 	struct net_device *dev;
847 	struct hlist_head *head = dev_index_hash(net, ifindex);
848 
849 	hlist_for_each_entry(dev, head, index_hlist)
850 		if (dev->ifindex == ifindex)
851 			return dev;
852 
853 	return NULL;
854 }
855 EXPORT_SYMBOL(__dev_get_by_index);
856 
857 /**
858  *	dev_get_by_index_rcu - find a device by its ifindex
859  *	@net: the applicable net namespace
860  *	@ifindex: index of device
861  *
862  *	Search for an interface by index. Returns %NULL if the device
863  *	is not found or a pointer to the device. The device has not
864  *	had its reference counter increased so the caller must be careful
865  *	about locking. The caller must hold RCU lock.
866  */
867 
868 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
869 {
870 	struct net_device *dev;
871 	struct hlist_head *head = dev_index_hash(net, ifindex);
872 
873 	hlist_for_each_entry_rcu(dev, head, index_hlist)
874 		if (dev->ifindex == ifindex)
875 			return dev;
876 
877 	return NULL;
878 }
879 EXPORT_SYMBOL(dev_get_by_index_rcu);
880 
881 /* Deprecated for new users, call netdev_get_by_index() instead */
882 struct net_device *dev_get_by_index(struct net *net, int ifindex)
883 {
884 	struct net_device *dev;
885 
886 	rcu_read_lock();
887 	dev = dev_get_by_index_rcu(net, ifindex);
888 	dev_hold(dev);
889 	rcu_read_unlock();
890 	return dev;
891 }
892 EXPORT_SYMBOL(dev_get_by_index);
893 
894 /**
895  *	netdev_get_by_index() - find a device by its ifindex
896  *	@net: the applicable net namespace
897  *	@ifindex: index of device
898  *	@tracker: tracking object for the acquired reference
899  *	@gfp: allocation flags for the tracker
900  *
901  *	Search for an interface by index. Returns NULL if the device
902  *	is not found or a pointer to the device. The device returned has
903  *	had a reference added and the pointer is safe until the user calls
904  *	netdev_put() to indicate they have finished with it.
905  */
906 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
907 				       netdevice_tracker *tracker, gfp_t gfp)
908 {
909 	struct net_device *dev;
910 
911 	dev = dev_get_by_index(net, ifindex);
912 	if (dev)
913 		netdev_tracker_alloc(dev, tracker, gfp);
914 	return dev;
915 }
916 EXPORT_SYMBOL(netdev_get_by_index);
917 
918 /**
919  *	dev_get_by_napi_id - find a device by napi_id
920  *	@napi_id: ID of the NAPI struct
921  *
922  *	Search for an interface by NAPI ID. Returns %NULL if the device
923  *	is not found or a pointer to the device. The device has not had
924  *	its reference counter increased so the caller must be careful
925  *	about locking. The caller must hold RCU lock.
926  */
927 
928 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
929 {
930 	struct napi_struct *napi;
931 
932 	WARN_ON_ONCE(!rcu_read_lock_held());
933 
934 	if (napi_id < MIN_NAPI_ID)
935 		return NULL;
936 
937 	napi = napi_by_id(napi_id);
938 
939 	return napi ? napi->dev : NULL;
940 }
941 EXPORT_SYMBOL(dev_get_by_napi_id);
942 
943 /**
944  *	netdev_get_name - get a netdevice name, knowing its ifindex.
945  *	@net: network namespace
946  *	@name: a pointer to the buffer where the name will be stored.
947  *	@ifindex: the ifindex of the interface to get the name from.
948  */
949 int netdev_get_name(struct net *net, char *name, int ifindex)
950 {
951 	struct net_device *dev;
952 	int ret;
953 
954 	down_read(&devnet_rename_sem);
955 	rcu_read_lock();
956 
957 	dev = dev_get_by_index_rcu(net, ifindex);
958 	if (!dev) {
959 		ret = -ENODEV;
960 		goto out;
961 	}
962 
963 	strcpy(name, dev->name);
964 
965 	ret = 0;
966 out:
967 	rcu_read_unlock();
968 	up_read(&devnet_rename_sem);
969 	return ret;
970 }
971 
972 /**
973  *	dev_getbyhwaddr_rcu - find a device by its hardware address
974  *	@net: the applicable net namespace
975  *	@type: media type of device
976  *	@ha: hardware address
977  *
978  *	Search for an interface by MAC address. Returns NULL if the device
979  *	is not found or a pointer to the device.
980  *	The caller must hold RCU or RTNL.
981  *	The returned device has not had its ref count increased
982  *	and the caller must therefore be careful about locking
983  *
984  */
985 
986 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
987 				       const char *ha)
988 {
989 	struct net_device *dev;
990 
991 	for_each_netdev_rcu(net, dev)
992 		if (dev->type == type &&
993 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
994 			return dev;
995 
996 	return NULL;
997 }
998 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
999 
1000 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1001 {
1002 	struct net_device *dev, *ret = NULL;
1003 
1004 	rcu_read_lock();
1005 	for_each_netdev_rcu(net, dev)
1006 		if (dev->type == type) {
1007 			dev_hold(dev);
1008 			ret = dev;
1009 			break;
1010 		}
1011 	rcu_read_unlock();
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1015 
1016 /**
1017  *	__dev_get_by_flags - find any device with given flags
1018  *	@net: the applicable net namespace
1019  *	@if_flags: IFF_* values
1020  *	@mask: bitmask of bits in if_flags to check
1021  *
1022  *	Search for any interface with the given flags. Returns NULL if a device
1023  *	is not found or a pointer to the device. Must be called inside
1024  *	rtnl_lock(), and result refcount is unchanged.
1025  */
1026 
1027 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1028 				      unsigned short mask)
1029 {
1030 	struct net_device *dev, *ret;
1031 
1032 	ASSERT_RTNL();
1033 
1034 	ret = NULL;
1035 	for_each_netdev(net, dev) {
1036 		if (((dev->flags ^ if_flags) & mask) == 0) {
1037 			ret = dev;
1038 			break;
1039 		}
1040 	}
1041 	return ret;
1042 }
1043 EXPORT_SYMBOL(__dev_get_by_flags);
1044 
1045 /**
1046  *	dev_valid_name - check if name is okay for network device
1047  *	@name: name string
1048  *
1049  *	Network device names need to be valid file names to
1050  *	allow sysfs to work.  We also disallow any kind of
1051  *	whitespace.
1052  */
1053 bool dev_valid_name(const char *name)
1054 {
1055 	if (*name == '\0')
1056 		return false;
1057 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1058 		return false;
1059 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1060 		return false;
1061 
1062 	while (*name) {
1063 		if (*name == '/' || *name == ':' || isspace(*name))
1064 			return false;
1065 		name++;
1066 	}
1067 	return true;
1068 }
1069 EXPORT_SYMBOL(dev_valid_name);
1070 
1071 /**
1072  *	__dev_alloc_name - allocate a name for a device
1073  *	@net: network namespace to allocate the device name in
1074  *	@name: name format string
1075  *	@res: result name string
1076  *
1077  *	Passed a format string - eg "lt%d" it will try and find a suitable
1078  *	id. It scans list of devices to build up a free map, then chooses
1079  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1080  *	while allocating the name and adding the device in order to avoid
1081  *	duplicates.
1082  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083  *	Returns the number of the unit assigned or a negative errno code.
1084  */
1085 
1086 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1087 {
1088 	int i = 0;
1089 	const char *p;
1090 	const int max_netdevices = 8*PAGE_SIZE;
1091 	unsigned long *inuse;
1092 	struct net_device *d;
1093 	char buf[IFNAMSIZ];
1094 
1095 	/* Verify the string as this thing may have come from the user.
1096 	 * There must be one "%d" and no other "%" characters.
1097 	 */
1098 	p = strchr(name, '%');
1099 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1100 		return -EINVAL;
1101 
1102 	/* Use one page as a bit array of possible slots */
1103 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1104 	if (!inuse)
1105 		return -ENOMEM;
1106 
1107 	for_each_netdev(net, d) {
1108 		struct netdev_name_node *name_node;
1109 
1110 		netdev_for_each_altname(d, name_node) {
1111 			if (!sscanf(name_node->name, name, &i))
1112 				continue;
1113 			if (i < 0 || i >= max_netdevices)
1114 				continue;
1115 
1116 			/* avoid cases where sscanf is not exact inverse of printf */
1117 			snprintf(buf, IFNAMSIZ, name, i);
1118 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1119 				__set_bit(i, inuse);
1120 		}
1121 		if (!sscanf(d->name, name, &i))
1122 			continue;
1123 		if (i < 0 || i >= max_netdevices)
1124 			continue;
1125 
1126 		/* avoid cases where sscanf is not exact inverse of printf */
1127 		snprintf(buf, IFNAMSIZ, name, i);
1128 		if (!strncmp(buf, d->name, IFNAMSIZ))
1129 			__set_bit(i, inuse);
1130 	}
1131 
1132 	i = find_first_zero_bit(inuse, max_netdevices);
1133 	bitmap_free(inuse);
1134 	if (i == max_netdevices)
1135 		return -ENFILE;
1136 
1137 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1138 	strscpy(buf, name, IFNAMSIZ);
1139 	snprintf(res, IFNAMSIZ, buf, i);
1140 	return i;
1141 }
1142 
1143 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1144 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1145 			       const char *want_name, char *out_name,
1146 			       int dup_errno)
1147 {
1148 	if (!dev_valid_name(want_name))
1149 		return -EINVAL;
1150 
1151 	if (strchr(want_name, '%'))
1152 		return __dev_alloc_name(net, want_name, out_name);
1153 
1154 	if (netdev_name_in_use(net, want_name))
1155 		return -dup_errno;
1156 	if (out_name != want_name)
1157 		strscpy(out_name, want_name, IFNAMSIZ);
1158 	return 0;
1159 }
1160 
1161 /**
1162  *	dev_alloc_name - allocate a name for a device
1163  *	@dev: device
1164  *	@name: name format string
1165  *
1166  *	Passed a format string - eg "lt%d" it will try and find a suitable
1167  *	id. It scans list of devices to build up a free map, then chooses
1168  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1169  *	while allocating the name and adding the device in order to avoid
1170  *	duplicates.
1171  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1172  *	Returns the number of the unit assigned or a negative errno code.
1173  */
1174 
1175 int dev_alloc_name(struct net_device *dev, const char *name)
1176 {
1177 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1178 }
1179 EXPORT_SYMBOL(dev_alloc_name);
1180 
1181 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1182 			      const char *name)
1183 {
1184 	int ret;
1185 
1186 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1187 	return ret < 0 ? ret : 0;
1188 }
1189 
1190 /**
1191  *	dev_change_name - change name of a device
1192  *	@dev: device
1193  *	@newname: name (or format string) must be at least IFNAMSIZ
1194  *
1195  *	Change name of a device, can pass format strings "eth%d".
1196  *	for wildcarding.
1197  */
1198 int dev_change_name(struct net_device *dev, const char *newname)
1199 {
1200 	unsigned char old_assign_type;
1201 	char oldname[IFNAMSIZ];
1202 	int err = 0;
1203 	int ret;
1204 	struct net *net;
1205 
1206 	ASSERT_RTNL();
1207 	BUG_ON(!dev_net(dev));
1208 
1209 	net = dev_net(dev);
1210 
1211 	down_write(&devnet_rename_sem);
1212 
1213 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1214 		up_write(&devnet_rename_sem);
1215 		return 0;
1216 	}
1217 
1218 	memcpy(oldname, dev->name, IFNAMSIZ);
1219 
1220 	err = dev_get_valid_name(net, dev, newname);
1221 	if (err < 0) {
1222 		up_write(&devnet_rename_sem);
1223 		return err;
1224 	}
1225 
1226 	if (oldname[0] && !strchr(oldname, '%'))
1227 		netdev_info(dev, "renamed from %s%s\n", oldname,
1228 			    dev->flags & IFF_UP ? " (while UP)" : "");
1229 
1230 	old_assign_type = dev->name_assign_type;
1231 	dev->name_assign_type = NET_NAME_RENAMED;
1232 
1233 rollback:
1234 	ret = device_rename(&dev->dev, dev->name);
1235 	if (ret) {
1236 		memcpy(dev->name, oldname, IFNAMSIZ);
1237 		dev->name_assign_type = old_assign_type;
1238 		up_write(&devnet_rename_sem);
1239 		return ret;
1240 	}
1241 
1242 	up_write(&devnet_rename_sem);
1243 
1244 	netdev_adjacent_rename_links(dev, oldname);
1245 
1246 	write_lock(&dev_base_lock);
1247 	netdev_name_node_del(dev->name_node);
1248 	write_unlock(&dev_base_lock);
1249 
1250 	synchronize_net();
1251 
1252 	write_lock(&dev_base_lock);
1253 	netdev_name_node_add(net, dev->name_node);
1254 	write_unlock(&dev_base_lock);
1255 
1256 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1257 	ret = notifier_to_errno(ret);
1258 
1259 	if (ret) {
1260 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1261 		if (err >= 0) {
1262 			err = ret;
1263 			down_write(&devnet_rename_sem);
1264 			memcpy(dev->name, oldname, IFNAMSIZ);
1265 			memcpy(oldname, newname, IFNAMSIZ);
1266 			dev->name_assign_type = old_assign_type;
1267 			old_assign_type = NET_NAME_RENAMED;
1268 			goto rollback;
1269 		} else {
1270 			netdev_err(dev, "name change rollback failed: %d\n",
1271 				   ret);
1272 		}
1273 	}
1274 
1275 	return err;
1276 }
1277 
1278 /**
1279  *	dev_set_alias - change ifalias of a device
1280  *	@dev: device
1281  *	@alias: name up to IFALIASZ
1282  *	@len: limit of bytes to copy from info
1283  *
1284  *	Set ifalias for a device,
1285  */
1286 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1287 {
1288 	struct dev_ifalias *new_alias = NULL;
1289 
1290 	if (len >= IFALIASZ)
1291 		return -EINVAL;
1292 
1293 	if (len) {
1294 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1295 		if (!new_alias)
1296 			return -ENOMEM;
1297 
1298 		memcpy(new_alias->ifalias, alias, len);
1299 		new_alias->ifalias[len] = 0;
1300 	}
1301 
1302 	mutex_lock(&ifalias_mutex);
1303 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1304 					mutex_is_locked(&ifalias_mutex));
1305 	mutex_unlock(&ifalias_mutex);
1306 
1307 	if (new_alias)
1308 		kfree_rcu(new_alias, rcuhead);
1309 
1310 	return len;
1311 }
1312 EXPORT_SYMBOL(dev_set_alias);
1313 
1314 /**
1315  *	dev_get_alias - get ifalias of a device
1316  *	@dev: device
1317  *	@name: buffer to store name of ifalias
1318  *	@len: size of buffer
1319  *
1320  *	get ifalias for a device.  Caller must make sure dev cannot go
1321  *	away,  e.g. rcu read lock or own a reference count to device.
1322  */
1323 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1324 {
1325 	const struct dev_ifalias *alias;
1326 	int ret = 0;
1327 
1328 	rcu_read_lock();
1329 	alias = rcu_dereference(dev->ifalias);
1330 	if (alias)
1331 		ret = snprintf(name, len, "%s", alias->ifalias);
1332 	rcu_read_unlock();
1333 
1334 	return ret;
1335 }
1336 
1337 /**
1338  *	netdev_features_change - device changes features
1339  *	@dev: device to cause notification
1340  *
1341  *	Called to indicate a device has changed features.
1342  */
1343 void netdev_features_change(struct net_device *dev)
1344 {
1345 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1346 }
1347 EXPORT_SYMBOL(netdev_features_change);
1348 
1349 /**
1350  *	netdev_state_change - device changes state
1351  *	@dev: device to cause notification
1352  *
1353  *	Called to indicate a device has changed state. This function calls
1354  *	the notifier chains for netdev_chain and sends a NEWLINK message
1355  *	to the routing socket.
1356  */
1357 void netdev_state_change(struct net_device *dev)
1358 {
1359 	if (dev->flags & IFF_UP) {
1360 		struct netdev_notifier_change_info change_info = {
1361 			.info.dev = dev,
1362 		};
1363 
1364 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1365 					      &change_info.info);
1366 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1367 	}
1368 }
1369 EXPORT_SYMBOL(netdev_state_change);
1370 
1371 /**
1372  * __netdev_notify_peers - notify network peers about existence of @dev,
1373  * to be called when rtnl lock is already held.
1374  * @dev: network device
1375  *
1376  * Generate traffic such that interested network peers are aware of
1377  * @dev, such as by generating a gratuitous ARP. This may be used when
1378  * a device wants to inform the rest of the network about some sort of
1379  * reconfiguration such as a failover event or virtual machine
1380  * migration.
1381  */
1382 void __netdev_notify_peers(struct net_device *dev)
1383 {
1384 	ASSERT_RTNL();
1385 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1386 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1387 }
1388 EXPORT_SYMBOL(__netdev_notify_peers);
1389 
1390 /**
1391  * netdev_notify_peers - notify network peers about existence of @dev
1392  * @dev: network device
1393  *
1394  * Generate traffic such that interested network peers are aware of
1395  * @dev, such as by generating a gratuitous ARP. This may be used when
1396  * a device wants to inform the rest of the network about some sort of
1397  * reconfiguration such as a failover event or virtual machine
1398  * migration.
1399  */
1400 void netdev_notify_peers(struct net_device *dev)
1401 {
1402 	rtnl_lock();
1403 	__netdev_notify_peers(dev);
1404 	rtnl_unlock();
1405 }
1406 EXPORT_SYMBOL(netdev_notify_peers);
1407 
1408 static int napi_threaded_poll(void *data);
1409 
1410 static int napi_kthread_create(struct napi_struct *n)
1411 {
1412 	int err = 0;
1413 
1414 	/* Create and wake up the kthread once to put it in
1415 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1416 	 * warning and work with loadavg.
1417 	 */
1418 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1419 				n->dev->name, n->napi_id);
1420 	if (IS_ERR(n->thread)) {
1421 		err = PTR_ERR(n->thread);
1422 		pr_err("kthread_run failed with err %d\n", err);
1423 		n->thread = NULL;
1424 	}
1425 
1426 	return err;
1427 }
1428 
1429 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1430 {
1431 	const struct net_device_ops *ops = dev->netdev_ops;
1432 	int ret;
1433 
1434 	ASSERT_RTNL();
1435 	dev_addr_check(dev);
1436 
1437 	if (!netif_device_present(dev)) {
1438 		/* may be detached because parent is runtime-suspended */
1439 		if (dev->dev.parent)
1440 			pm_runtime_resume(dev->dev.parent);
1441 		if (!netif_device_present(dev))
1442 			return -ENODEV;
1443 	}
1444 
1445 	/* Block netpoll from trying to do any rx path servicing.
1446 	 * If we don't do this there is a chance ndo_poll_controller
1447 	 * or ndo_poll may be running while we open the device
1448 	 */
1449 	netpoll_poll_disable(dev);
1450 
1451 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1452 	ret = notifier_to_errno(ret);
1453 	if (ret)
1454 		return ret;
1455 
1456 	set_bit(__LINK_STATE_START, &dev->state);
1457 
1458 	if (ops->ndo_validate_addr)
1459 		ret = ops->ndo_validate_addr(dev);
1460 
1461 	if (!ret && ops->ndo_open)
1462 		ret = ops->ndo_open(dev);
1463 
1464 	netpoll_poll_enable(dev);
1465 
1466 	if (ret)
1467 		clear_bit(__LINK_STATE_START, &dev->state);
1468 	else {
1469 		dev->flags |= IFF_UP;
1470 		dev_set_rx_mode(dev);
1471 		dev_activate(dev);
1472 		add_device_randomness(dev->dev_addr, dev->addr_len);
1473 	}
1474 
1475 	return ret;
1476 }
1477 
1478 /**
1479  *	dev_open	- prepare an interface for use.
1480  *	@dev: device to open
1481  *	@extack: netlink extended ack
1482  *
1483  *	Takes a device from down to up state. The device's private open
1484  *	function is invoked and then the multicast lists are loaded. Finally
1485  *	the device is moved into the up state and a %NETDEV_UP message is
1486  *	sent to the netdev notifier chain.
1487  *
1488  *	Calling this function on an active interface is a nop. On a failure
1489  *	a negative errno code is returned.
1490  */
1491 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1492 {
1493 	int ret;
1494 
1495 	if (dev->flags & IFF_UP)
1496 		return 0;
1497 
1498 	ret = __dev_open(dev, extack);
1499 	if (ret < 0)
1500 		return ret;
1501 
1502 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1503 	call_netdevice_notifiers(NETDEV_UP, dev);
1504 
1505 	return ret;
1506 }
1507 EXPORT_SYMBOL(dev_open);
1508 
1509 static void __dev_close_many(struct list_head *head)
1510 {
1511 	struct net_device *dev;
1512 
1513 	ASSERT_RTNL();
1514 	might_sleep();
1515 
1516 	list_for_each_entry(dev, head, close_list) {
1517 		/* Temporarily disable netpoll until the interface is down */
1518 		netpoll_poll_disable(dev);
1519 
1520 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1521 
1522 		clear_bit(__LINK_STATE_START, &dev->state);
1523 
1524 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1525 		 * can be even on different cpu. So just clear netif_running().
1526 		 *
1527 		 * dev->stop() will invoke napi_disable() on all of it's
1528 		 * napi_struct instances on this device.
1529 		 */
1530 		smp_mb__after_atomic(); /* Commit netif_running(). */
1531 	}
1532 
1533 	dev_deactivate_many(head);
1534 
1535 	list_for_each_entry(dev, head, close_list) {
1536 		const struct net_device_ops *ops = dev->netdev_ops;
1537 
1538 		/*
1539 		 *	Call the device specific close. This cannot fail.
1540 		 *	Only if device is UP
1541 		 *
1542 		 *	We allow it to be called even after a DETACH hot-plug
1543 		 *	event.
1544 		 */
1545 		if (ops->ndo_stop)
1546 			ops->ndo_stop(dev);
1547 
1548 		dev->flags &= ~IFF_UP;
1549 		netpoll_poll_enable(dev);
1550 	}
1551 }
1552 
1553 static void __dev_close(struct net_device *dev)
1554 {
1555 	LIST_HEAD(single);
1556 
1557 	list_add(&dev->close_list, &single);
1558 	__dev_close_many(&single);
1559 	list_del(&single);
1560 }
1561 
1562 void dev_close_many(struct list_head *head, bool unlink)
1563 {
1564 	struct net_device *dev, *tmp;
1565 
1566 	/* Remove the devices that don't need to be closed */
1567 	list_for_each_entry_safe(dev, tmp, head, close_list)
1568 		if (!(dev->flags & IFF_UP))
1569 			list_del_init(&dev->close_list);
1570 
1571 	__dev_close_many(head);
1572 
1573 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1574 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1575 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1576 		if (unlink)
1577 			list_del_init(&dev->close_list);
1578 	}
1579 }
1580 EXPORT_SYMBOL(dev_close_many);
1581 
1582 /**
1583  *	dev_close - shutdown an interface.
1584  *	@dev: device to shutdown
1585  *
1586  *	This function moves an active device into down state. A
1587  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1588  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1589  *	chain.
1590  */
1591 void dev_close(struct net_device *dev)
1592 {
1593 	if (dev->flags & IFF_UP) {
1594 		LIST_HEAD(single);
1595 
1596 		list_add(&dev->close_list, &single);
1597 		dev_close_many(&single, true);
1598 		list_del(&single);
1599 	}
1600 }
1601 EXPORT_SYMBOL(dev_close);
1602 
1603 
1604 /**
1605  *	dev_disable_lro - disable Large Receive Offload on a device
1606  *	@dev: device
1607  *
1608  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1609  *	called under RTNL.  This is needed if received packets may be
1610  *	forwarded to another interface.
1611  */
1612 void dev_disable_lro(struct net_device *dev)
1613 {
1614 	struct net_device *lower_dev;
1615 	struct list_head *iter;
1616 
1617 	dev->wanted_features &= ~NETIF_F_LRO;
1618 	netdev_update_features(dev);
1619 
1620 	if (unlikely(dev->features & NETIF_F_LRO))
1621 		netdev_WARN(dev, "failed to disable LRO!\n");
1622 
1623 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1624 		dev_disable_lro(lower_dev);
1625 }
1626 EXPORT_SYMBOL(dev_disable_lro);
1627 
1628 /**
1629  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1630  *	@dev: device
1631  *
1632  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1633  *	called under RTNL.  This is needed if Generic XDP is installed on
1634  *	the device.
1635  */
1636 static void dev_disable_gro_hw(struct net_device *dev)
1637 {
1638 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1639 	netdev_update_features(dev);
1640 
1641 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1642 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1643 }
1644 
1645 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1646 {
1647 #define N(val) 						\
1648 	case NETDEV_##val:				\
1649 		return "NETDEV_" __stringify(val);
1650 	switch (cmd) {
1651 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1652 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1653 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1654 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1655 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1656 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1657 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1658 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1659 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1660 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1661 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1662 	N(XDP_FEAT_CHANGE)
1663 	}
1664 #undef N
1665 	return "UNKNOWN_NETDEV_EVENT";
1666 }
1667 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1668 
1669 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1670 				   struct net_device *dev)
1671 {
1672 	struct netdev_notifier_info info = {
1673 		.dev = dev,
1674 	};
1675 
1676 	return nb->notifier_call(nb, val, &info);
1677 }
1678 
1679 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1680 					     struct net_device *dev)
1681 {
1682 	int err;
1683 
1684 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1685 	err = notifier_to_errno(err);
1686 	if (err)
1687 		return err;
1688 
1689 	if (!(dev->flags & IFF_UP))
1690 		return 0;
1691 
1692 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1693 	return 0;
1694 }
1695 
1696 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1697 						struct net_device *dev)
1698 {
1699 	if (dev->flags & IFF_UP) {
1700 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1701 					dev);
1702 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1703 	}
1704 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1705 }
1706 
1707 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1708 						 struct net *net)
1709 {
1710 	struct net_device *dev;
1711 	int err;
1712 
1713 	for_each_netdev(net, dev) {
1714 		err = call_netdevice_register_notifiers(nb, dev);
1715 		if (err)
1716 			goto rollback;
1717 	}
1718 	return 0;
1719 
1720 rollback:
1721 	for_each_netdev_continue_reverse(net, dev)
1722 		call_netdevice_unregister_notifiers(nb, dev);
1723 	return err;
1724 }
1725 
1726 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1727 						    struct net *net)
1728 {
1729 	struct net_device *dev;
1730 
1731 	for_each_netdev(net, dev)
1732 		call_netdevice_unregister_notifiers(nb, dev);
1733 }
1734 
1735 static int dev_boot_phase = 1;
1736 
1737 /**
1738  * register_netdevice_notifier - register a network notifier block
1739  * @nb: notifier
1740  *
1741  * Register a notifier to be called when network device events occur.
1742  * The notifier passed is linked into the kernel structures and must
1743  * not be reused until it has been unregistered. A negative errno code
1744  * is returned on a failure.
1745  *
1746  * When registered all registration and up events are replayed
1747  * to the new notifier to allow device to have a race free
1748  * view of the network device list.
1749  */
1750 
1751 int register_netdevice_notifier(struct notifier_block *nb)
1752 {
1753 	struct net *net;
1754 	int err;
1755 
1756 	/* Close race with setup_net() and cleanup_net() */
1757 	down_write(&pernet_ops_rwsem);
1758 	rtnl_lock();
1759 	err = raw_notifier_chain_register(&netdev_chain, nb);
1760 	if (err)
1761 		goto unlock;
1762 	if (dev_boot_phase)
1763 		goto unlock;
1764 	for_each_net(net) {
1765 		err = call_netdevice_register_net_notifiers(nb, net);
1766 		if (err)
1767 			goto rollback;
1768 	}
1769 
1770 unlock:
1771 	rtnl_unlock();
1772 	up_write(&pernet_ops_rwsem);
1773 	return err;
1774 
1775 rollback:
1776 	for_each_net_continue_reverse(net)
1777 		call_netdevice_unregister_net_notifiers(nb, net);
1778 
1779 	raw_notifier_chain_unregister(&netdev_chain, nb);
1780 	goto unlock;
1781 }
1782 EXPORT_SYMBOL(register_netdevice_notifier);
1783 
1784 /**
1785  * unregister_netdevice_notifier - unregister a network notifier block
1786  * @nb: notifier
1787  *
1788  * Unregister a notifier previously registered by
1789  * register_netdevice_notifier(). The notifier is unlinked into the
1790  * kernel structures and may then be reused. A negative errno code
1791  * is returned on a failure.
1792  *
1793  * After unregistering unregister and down device events are synthesized
1794  * for all devices on the device list to the removed notifier to remove
1795  * the need for special case cleanup code.
1796  */
1797 
1798 int unregister_netdevice_notifier(struct notifier_block *nb)
1799 {
1800 	struct net *net;
1801 	int err;
1802 
1803 	/* Close race with setup_net() and cleanup_net() */
1804 	down_write(&pernet_ops_rwsem);
1805 	rtnl_lock();
1806 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1807 	if (err)
1808 		goto unlock;
1809 
1810 	for_each_net(net)
1811 		call_netdevice_unregister_net_notifiers(nb, net);
1812 
1813 unlock:
1814 	rtnl_unlock();
1815 	up_write(&pernet_ops_rwsem);
1816 	return err;
1817 }
1818 EXPORT_SYMBOL(unregister_netdevice_notifier);
1819 
1820 static int __register_netdevice_notifier_net(struct net *net,
1821 					     struct notifier_block *nb,
1822 					     bool ignore_call_fail)
1823 {
1824 	int err;
1825 
1826 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1827 	if (err)
1828 		return err;
1829 	if (dev_boot_phase)
1830 		return 0;
1831 
1832 	err = call_netdevice_register_net_notifiers(nb, net);
1833 	if (err && !ignore_call_fail)
1834 		goto chain_unregister;
1835 
1836 	return 0;
1837 
1838 chain_unregister:
1839 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1840 	return err;
1841 }
1842 
1843 static int __unregister_netdevice_notifier_net(struct net *net,
1844 					       struct notifier_block *nb)
1845 {
1846 	int err;
1847 
1848 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1849 	if (err)
1850 		return err;
1851 
1852 	call_netdevice_unregister_net_notifiers(nb, net);
1853 	return 0;
1854 }
1855 
1856 /**
1857  * register_netdevice_notifier_net - register a per-netns network notifier block
1858  * @net: network namespace
1859  * @nb: notifier
1860  *
1861  * Register a notifier to be called when network device events occur.
1862  * The notifier passed is linked into the kernel structures and must
1863  * not be reused until it has been unregistered. A negative errno code
1864  * is returned on a failure.
1865  *
1866  * When registered all registration and up events are replayed
1867  * to the new notifier to allow device to have a race free
1868  * view of the network device list.
1869  */
1870 
1871 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1872 {
1873 	int err;
1874 
1875 	rtnl_lock();
1876 	err = __register_netdevice_notifier_net(net, nb, false);
1877 	rtnl_unlock();
1878 	return err;
1879 }
1880 EXPORT_SYMBOL(register_netdevice_notifier_net);
1881 
1882 /**
1883  * unregister_netdevice_notifier_net - unregister a per-netns
1884  *                                     network notifier block
1885  * @net: network namespace
1886  * @nb: notifier
1887  *
1888  * Unregister a notifier previously registered by
1889  * register_netdevice_notifier_net(). The notifier is unlinked from the
1890  * kernel structures and may then be reused. A negative errno code
1891  * is returned on a failure.
1892  *
1893  * After unregistering unregister and down device events are synthesized
1894  * for all devices on the device list to the removed notifier to remove
1895  * the need for special case cleanup code.
1896  */
1897 
1898 int unregister_netdevice_notifier_net(struct net *net,
1899 				      struct notifier_block *nb)
1900 {
1901 	int err;
1902 
1903 	rtnl_lock();
1904 	err = __unregister_netdevice_notifier_net(net, nb);
1905 	rtnl_unlock();
1906 	return err;
1907 }
1908 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1909 
1910 static void __move_netdevice_notifier_net(struct net *src_net,
1911 					  struct net *dst_net,
1912 					  struct notifier_block *nb)
1913 {
1914 	__unregister_netdevice_notifier_net(src_net, nb);
1915 	__register_netdevice_notifier_net(dst_net, nb, true);
1916 }
1917 
1918 int register_netdevice_notifier_dev_net(struct net_device *dev,
1919 					struct notifier_block *nb,
1920 					struct netdev_net_notifier *nn)
1921 {
1922 	int err;
1923 
1924 	rtnl_lock();
1925 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1926 	if (!err) {
1927 		nn->nb = nb;
1928 		list_add(&nn->list, &dev->net_notifier_list);
1929 	}
1930 	rtnl_unlock();
1931 	return err;
1932 }
1933 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1934 
1935 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1936 					  struct notifier_block *nb,
1937 					  struct netdev_net_notifier *nn)
1938 {
1939 	int err;
1940 
1941 	rtnl_lock();
1942 	list_del(&nn->list);
1943 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1944 	rtnl_unlock();
1945 	return err;
1946 }
1947 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1948 
1949 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1950 					     struct net *net)
1951 {
1952 	struct netdev_net_notifier *nn;
1953 
1954 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1955 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1956 }
1957 
1958 /**
1959  *	call_netdevice_notifiers_info - call all network notifier blocks
1960  *	@val: value passed unmodified to notifier function
1961  *	@info: notifier information data
1962  *
1963  *	Call all network notifier blocks.  Parameters and return value
1964  *	are as for raw_notifier_call_chain().
1965  */
1966 
1967 int call_netdevice_notifiers_info(unsigned long val,
1968 				  struct netdev_notifier_info *info)
1969 {
1970 	struct net *net = dev_net(info->dev);
1971 	int ret;
1972 
1973 	ASSERT_RTNL();
1974 
1975 	/* Run per-netns notifier block chain first, then run the global one.
1976 	 * Hopefully, one day, the global one is going to be removed after
1977 	 * all notifier block registrators get converted to be per-netns.
1978 	 */
1979 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1980 	if (ret & NOTIFY_STOP_MASK)
1981 		return ret;
1982 	return raw_notifier_call_chain(&netdev_chain, val, info);
1983 }
1984 
1985 /**
1986  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1987  *	                                       for and rollback on error
1988  *	@val_up: value passed unmodified to notifier function
1989  *	@val_down: value passed unmodified to the notifier function when
1990  *	           recovering from an error on @val_up
1991  *	@info: notifier information data
1992  *
1993  *	Call all per-netns network notifier blocks, but not notifier blocks on
1994  *	the global notifier chain. Parameters and return value are as for
1995  *	raw_notifier_call_chain_robust().
1996  */
1997 
1998 static int
1999 call_netdevice_notifiers_info_robust(unsigned long val_up,
2000 				     unsigned long val_down,
2001 				     struct netdev_notifier_info *info)
2002 {
2003 	struct net *net = dev_net(info->dev);
2004 
2005 	ASSERT_RTNL();
2006 
2007 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2008 					      val_up, val_down, info);
2009 }
2010 
2011 static int call_netdevice_notifiers_extack(unsigned long val,
2012 					   struct net_device *dev,
2013 					   struct netlink_ext_ack *extack)
2014 {
2015 	struct netdev_notifier_info info = {
2016 		.dev = dev,
2017 		.extack = extack,
2018 	};
2019 
2020 	return call_netdevice_notifiers_info(val, &info);
2021 }
2022 
2023 /**
2024  *	call_netdevice_notifiers - call all network notifier blocks
2025  *      @val: value passed unmodified to notifier function
2026  *      @dev: net_device pointer passed unmodified to notifier function
2027  *
2028  *	Call all network notifier blocks.  Parameters and return value
2029  *	are as for raw_notifier_call_chain().
2030  */
2031 
2032 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2033 {
2034 	return call_netdevice_notifiers_extack(val, dev, NULL);
2035 }
2036 EXPORT_SYMBOL(call_netdevice_notifiers);
2037 
2038 /**
2039  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2040  *	@val: value passed unmodified to notifier function
2041  *	@dev: net_device pointer passed unmodified to notifier function
2042  *	@arg: additional u32 argument passed to the notifier function
2043  *
2044  *	Call all network notifier blocks.  Parameters and return value
2045  *	are as for raw_notifier_call_chain().
2046  */
2047 static int call_netdevice_notifiers_mtu(unsigned long val,
2048 					struct net_device *dev, u32 arg)
2049 {
2050 	struct netdev_notifier_info_ext info = {
2051 		.info.dev = dev,
2052 		.ext.mtu = arg,
2053 	};
2054 
2055 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2056 
2057 	return call_netdevice_notifiers_info(val, &info.info);
2058 }
2059 
2060 #ifdef CONFIG_NET_INGRESS
2061 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2062 
2063 void net_inc_ingress_queue(void)
2064 {
2065 	static_branch_inc(&ingress_needed_key);
2066 }
2067 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2068 
2069 void net_dec_ingress_queue(void)
2070 {
2071 	static_branch_dec(&ingress_needed_key);
2072 }
2073 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2074 #endif
2075 
2076 #ifdef CONFIG_NET_EGRESS
2077 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2078 
2079 void net_inc_egress_queue(void)
2080 {
2081 	static_branch_inc(&egress_needed_key);
2082 }
2083 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2084 
2085 void net_dec_egress_queue(void)
2086 {
2087 	static_branch_dec(&egress_needed_key);
2088 }
2089 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2090 #endif
2091 
2092 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2093 EXPORT_SYMBOL(netstamp_needed_key);
2094 #ifdef CONFIG_JUMP_LABEL
2095 static atomic_t netstamp_needed_deferred;
2096 static atomic_t netstamp_wanted;
2097 static void netstamp_clear(struct work_struct *work)
2098 {
2099 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2100 	int wanted;
2101 
2102 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2103 	if (wanted > 0)
2104 		static_branch_enable(&netstamp_needed_key);
2105 	else
2106 		static_branch_disable(&netstamp_needed_key);
2107 }
2108 static DECLARE_WORK(netstamp_work, netstamp_clear);
2109 #endif
2110 
2111 void net_enable_timestamp(void)
2112 {
2113 #ifdef CONFIG_JUMP_LABEL
2114 	int wanted = atomic_read(&netstamp_wanted);
2115 
2116 	while (wanted > 0) {
2117 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2118 			return;
2119 	}
2120 	atomic_inc(&netstamp_needed_deferred);
2121 	schedule_work(&netstamp_work);
2122 #else
2123 	static_branch_inc(&netstamp_needed_key);
2124 #endif
2125 }
2126 EXPORT_SYMBOL(net_enable_timestamp);
2127 
2128 void net_disable_timestamp(void)
2129 {
2130 #ifdef CONFIG_JUMP_LABEL
2131 	int wanted = atomic_read(&netstamp_wanted);
2132 
2133 	while (wanted > 1) {
2134 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2135 			return;
2136 	}
2137 	atomic_dec(&netstamp_needed_deferred);
2138 	schedule_work(&netstamp_work);
2139 #else
2140 	static_branch_dec(&netstamp_needed_key);
2141 #endif
2142 }
2143 EXPORT_SYMBOL(net_disable_timestamp);
2144 
2145 static inline void net_timestamp_set(struct sk_buff *skb)
2146 {
2147 	skb->tstamp = 0;
2148 	skb->mono_delivery_time = 0;
2149 	if (static_branch_unlikely(&netstamp_needed_key))
2150 		skb->tstamp = ktime_get_real();
2151 }
2152 
2153 #define net_timestamp_check(COND, SKB)				\
2154 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2155 		if ((COND) && !(SKB)->tstamp)			\
2156 			(SKB)->tstamp = ktime_get_real();	\
2157 	}							\
2158 
2159 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2160 {
2161 	return __is_skb_forwardable(dev, skb, true);
2162 }
2163 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2164 
2165 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2166 			      bool check_mtu)
2167 {
2168 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2169 
2170 	if (likely(!ret)) {
2171 		skb->protocol = eth_type_trans(skb, dev);
2172 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2173 	}
2174 
2175 	return ret;
2176 }
2177 
2178 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2179 {
2180 	return __dev_forward_skb2(dev, skb, true);
2181 }
2182 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2183 
2184 /**
2185  * dev_forward_skb - loopback an skb to another netif
2186  *
2187  * @dev: destination network device
2188  * @skb: buffer to forward
2189  *
2190  * return values:
2191  *	NET_RX_SUCCESS	(no congestion)
2192  *	NET_RX_DROP     (packet was dropped, but freed)
2193  *
2194  * dev_forward_skb can be used for injecting an skb from the
2195  * start_xmit function of one device into the receive queue
2196  * of another device.
2197  *
2198  * The receiving device may be in another namespace, so
2199  * we have to clear all information in the skb that could
2200  * impact namespace isolation.
2201  */
2202 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2203 {
2204 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2205 }
2206 EXPORT_SYMBOL_GPL(dev_forward_skb);
2207 
2208 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2209 {
2210 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2211 }
2212 
2213 static inline int deliver_skb(struct sk_buff *skb,
2214 			      struct packet_type *pt_prev,
2215 			      struct net_device *orig_dev)
2216 {
2217 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2218 		return -ENOMEM;
2219 	refcount_inc(&skb->users);
2220 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2221 }
2222 
2223 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2224 					  struct packet_type **pt,
2225 					  struct net_device *orig_dev,
2226 					  __be16 type,
2227 					  struct list_head *ptype_list)
2228 {
2229 	struct packet_type *ptype, *pt_prev = *pt;
2230 
2231 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2232 		if (ptype->type != type)
2233 			continue;
2234 		if (pt_prev)
2235 			deliver_skb(skb, pt_prev, orig_dev);
2236 		pt_prev = ptype;
2237 	}
2238 	*pt = pt_prev;
2239 }
2240 
2241 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2242 {
2243 	if (!ptype->af_packet_priv || !skb->sk)
2244 		return false;
2245 
2246 	if (ptype->id_match)
2247 		return ptype->id_match(ptype, skb->sk);
2248 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2249 		return true;
2250 
2251 	return false;
2252 }
2253 
2254 /**
2255  * dev_nit_active - return true if any network interface taps are in use
2256  *
2257  * @dev: network device to check for the presence of taps
2258  */
2259 bool dev_nit_active(struct net_device *dev)
2260 {
2261 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2262 }
2263 EXPORT_SYMBOL_GPL(dev_nit_active);
2264 
2265 /*
2266  *	Support routine. Sends outgoing frames to any network
2267  *	taps currently in use.
2268  */
2269 
2270 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2271 {
2272 	struct packet_type *ptype;
2273 	struct sk_buff *skb2 = NULL;
2274 	struct packet_type *pt_prev = NULL;
2275 	struct list_head *ptype_list = &ptype_all;
2276 
2277 	rcu_read_lock();
2278 again:
2279 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2280 		if (ptype->ignore_outgoing)
2281 			continue;
2282 
2283 		/* Never send packets back to the socket
2284 		 * they originated from - MvS (miquels@drinkel.ow.org)
2285 		 */
2286 		if (skb_loop_sk(ptype, skb))
2287 			continue;
2288 
2289 		if (pt_prev) {
2290 			deliver_skb(skb2, pt_prev, skb->dev);
2291 			pt_prev = ptype;
2292 			continue;
2293 		}
2294 
2295 		/* need to clone skb, done only once */
2296 		skb2 = skb_clone(skb, GFP_ATOMIC);
2297 		if (!skb2)
2298 			goto out_unlock;
2299 
2300 		net_timestamp_set(skb2);
2301 
2302 		/* skb->nh should be correctly
2303 		 * set by sender, so that the second statement is
2304 		 * just protection against buggy protocols.
2305 		 */
2306 		skb_reset_mac_header(skb2);
2307 
2308 		if (skb_network_header(skb2) < skb2->data ||
2309 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2310 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2311 					     ntohs(skb2->protocol),
2312 					     dev->name);
2313 			skb_reset_network_header(skb2);
2314 		}
2315 
2316 		skb2->transport_header = skb2->network_header;
2317 		skb2->pkt_type = PACKET_OUTGOING;
2318 		pt_prev = ptype;
2319 	}
2320 
2321 	if (ptype_list == &ptype_all) {
2322 		ptype_list = &dev->ptype_all;
2323 		goto again;
2324 	}
2325 out_unlock:
2326 	if (pt_prev) {
2327 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2328 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2329 		else
2330 			kfree_skb(skb2);
2331 	}
2332 	rcu_read_unlock();
2333 }
2334 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2335 
2336 /**
2337  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2338  * @dev: Network device
2339  * @txq: number of queues available
2340  *
2341  * If real_num_tx_queues is changed the tc mappings may no longer be
2342  * valid. To resolve this verify the tc mapping remains valid and if
2343  * not NULL the mapping. With no priorities mapping to this
2344  * offset/count pair it will no longer be used. In the worst case TC0
2345  * is invalid nothing can be done so disable priority mappings. If is
2346  * expected that drivers will fix this mapping if they can before
2347  * calling netif_set_real_num_tx_queues.
2348  */
2349 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2350 {
2351 	int i;
2352 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2353 
2354 	/* If TC0 is invalidated disable TC mapping */
2355 	if (tc->offset + tc->count > txq) {
2356 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2357 		dev->num_tc = 0;
2358 		return;
2359 	}
2360 
2361 	/* Invalidated prio to tc mappings set to TC0 */
2362 	for (i = 1; i < TC_BITMASK + 1; i++) {
2363 		int q = netdev_get_prio_tc_map(dev, i);
2364 
2365 		tc = &dev->tc_to_txq[q];
2366 		if (tc->offset + tc->count > txq) {
2367 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2368 				    i, q);
2369 			netdev_set_prio_tc_map(dev, i, 0);
2370 		}
2371 	}
2372 }
2373 
2374 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2375 {
2376 	if (dev->num_tc) {
2377 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2378 		int i;
2379 
2380 		/* walk through the TCs and see if it falls into any of them */
2381 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2382 			if ((txq - tc->offset) < tc->count)
2383 				return i;
2384 		}
2385 
2386 		/* didn't find it, just return -1 to indicate no match */
2387 		return -1;
2388 	}
2389 
2390 	return 0;
2391 }
2392 EXPORT_SYMBOL(netdev_txq_to_tc);
2393 
2394 #ifdef CONFIG_XPS
2395 static struct static_key xps_needed __read_mostly;
2396 static struct static_key xps_rxqs_needed __read_mostly;
2397 static DEFINE_MUTEX(xps_map_mutex);
2398 #define xmap_dereference(P)		\
2399 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2400 
2401 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2402 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2403 {
2404 	struct xps_map *map = NULL;
2405 	int pos;
2406 
2407 	map = xmap_dereference(dev_maps->attr_map[tci]);
2408 	if (!map)
2409 		return false;
2410 
2411 	for (pos = map->len; pos--;) {
2412 		if (map->queues[pos] != index)
2413 			continue;
2414 
2415 		if (map->len > 1) {
2416 			map->queues[pos] = map->queues[--map->len];
2417 			break;
2418 		}
2419 
2420 		if (old_maps)
2421 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2422 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2423 		kfree_rcu(map, rcu);
2424 		return false;
2425 	}
2426 
2427 	return true;
2428 }
2429 
2430 static bool remove_xps_queue_cpu(struct net_device *dev,
2431 				 struct xps_dev_maps *dev_maps,
2432 				 int cpu, u16 offset, u16 count)
2433 {
2434 	int num_tc = dev_maps->num_tc;
2435 	bool active = false;
2436 	int tci;
2437 
2438 	for (tci = cpu * num_tc; num_tc--; tci++) {
2439 		int i, j;
2440 
2441 		for (i = count, j = offset; i--; j++) {
2442 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2443 				break;
2444 		}
2445 
2446 		active |= i < 0;
2447 	}
2448 
2449 	return active;
2450 }
2451 
2452 static void reset_xps_maps(struct net_device *dev,
2453 			   struct xps_dev_maps *dev_maps,
2454 			   enum xps_map_type type)
2455 {
2456 	static_key_slow_dec_cpuslocked(&xps_needed);
2457 	if (type == XPS_RXQS)
2458 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2459 
2460 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2461 
2462 	kfree_rcu(dev_maps, rcu);
2463 }
2464 
2465 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2466 			   u16 offset, u16 count)
2467 {
2468 	struct xps_dev_maps *dev_maps;
2469 	bool active = false;
2470 	int i, j;
2471 
2472 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2473 	if (!dev_maps)
2474 		return;
2475 
2476 	for (j = 0; j < dev_maps->nr_ids; j++)
2477 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2478 	if (!active)
2479 		reset_xps_maps(dev, dev_maps, type);
2480 
2481 	if (type == XPS_CPUS) {
2482 		for (i = offset + (count - 1); count--; i--)
2483 			netdev_queue_numa_node_write(
2484 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2485 	}
2486 }
2487 
2488 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2489 				   u16 count)
2490 {
2491 	if (!static_key_false(&xps_needed))
2492 		return;
2493 
2494 	cpus_read_lock();
2495 	mutex_lock(&xps_map_mutex);
2496 
2497 	if (static_key_false(&xps_rxqs_needed))
2498 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2499 
2500 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2501 
2502 	mutex_unlock(&xps_map_mutex);
2503 	cpus_read_unlock();
2504 }
2505 
2506 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2507 {
2508 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2509 }
2510 
2511 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2512 				      u16 index, bool is_rxqs_map)
2513 {
2514 	struct xps_map *new_map;
2515 	int alloc_len = XPS_MIN_MAP_ALLOC;
2516 	int i, pos;
2517 
2518 	for (pos = 0; map && pos < map->len; pos++) {
2519 		if (map->queues[pos] != index)
2520 			continue;
2521 		return map;
2522 	}
2523 
2524 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2525 	if (map) {
2526 		if (pos < map->alloc_len)
2527 			return map;
2528 
2529 		alloc_len = map->alloc_len * 2;
2530 	}
2531 
2532 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2533 	 *  map
2534 	 */
2535 	if (is_rxqs_map)
2536 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2537 	else
2538 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2539 				       cpu_to_node(attr_index));
2540 	if (!new_map)
2541 		return NULL;
2542 
2543 	for (i = 0; i < pos; i++)
2544 		new_map->queues[i] = map->queues[i];
2545 	new_map->alloc_len = alloc_len;
2546 	new_map->len = pos;
2547 
2548 	return new_map;
2549 }
2550 
2551 /* Copy xps maps at a given index */
2552 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2553 			      struct xps_dev_maps *new_dev_maps, int index,
2554 			      int tc, bool skip_tc)
2555 {
2556 	int i, tci = index * dev_maps->num_tc;
2557 	struct xps_map *map;
2558 
2559 	/* copy maps belonging to foreign traffic classes */
2560 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2561 		if (i == tc && skip_tc)
2562 			continue;
2563 
2564 		/* fill in the new device map from the old device map */
2565 		map = xmap_dereference(dev_maps->attr_map[tci]);
2566 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2567 	}
2568 }
2569 
2570 /* Must be called under cpus_read_lock */
2571 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2572 			  u16 index, enum xps_map_type type)
2573 {
2574 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2575 	const unsigned long *online_mask = NULL;
2576 	bool active = false, copy = false;
2577 	int i, j, tci, numa_node_id = -2;
2578 	int maps_sz, num_tc = 1, tc = 0;
2579 	struct xps_map *map, *new_map;
2580 	unsigned int nr_ids;
2581 
2582 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2583 
2584 	if (dev->num_tc) {
2585 		/* Do not allow XPS on subordinate device directly */
2586 		num_tc = dev->num_tc;
2587 		if (num_tc < 0)
2588 			return -EINVAL;
2589 
2590 		/* If queue belongs to subordinate dev use its map */
2591 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2592 
2593 		tc = netdev_txq_to_tc(dev, index);
2594 		if (tc < 0)
2595 			return -EINVAL;
2596 	}
2597 
2598 	mutex_lock(&xps_map_mutex);
2599 
2600 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2601 	if (type == XPS_RXQS) {
2602 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2603 		nr_ids = dev->num_rx_queues;
2604 	} else {
2605 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2606 		if (num_possible_cpus() > 1)
2607 			online_mask = cpumask_bits(cpu_online_mask);
2608 		nr_ids = nr_cpu_ids;
2609 	}
2610 
2611 	if (maps_sz < L1_CACHE_BYTES)
2612 		maps_sz = L1_CACHE_BYTES;
2613 
2614 	/* The old dev_maps could be larger or smaller than the one we're
2615 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2616 	 * between. We could try to be smart, but let's be safe instead and only
2617 	 * copy foreign traffic classes if the two map sizes match.
2618 	 */
2619 	if (dev_maps &&
2620 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2621 		copy = true;
2622 
2623 	/* allocate memory for queue storage */
2624 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2625 	     j < nr_ids;) {
2626 		if (!new_dev_maps) {
2627 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2628 			if (!new_dev_maps) {
2629 				mutex_unlock(&xps_map_mutex);
2630 				return -ENOMEM;
2631 			}
2632 
2633 			new_dev_maps->nr_ids = nr_ids;
2634 			new_dev_maps->num_tc = num_tc;
2635 		}
2636 
2637 		tci = j * num_tc + tc;
2638 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2639 
2640 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2641 		if (!map)
2642 			goto error;
2643 
2644 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2645 	}
2646 
2647 	if (!new_dev_maps)
2648 		goto out_no_new_maps;
2649 
2650 	if (!dev_maps) {
2651 		/* Increment static keys at most once per type */
2652 		static_key_slow_inc_cpuslocked(&xps_needed);
2653 		if (type == XPS_RXQS)
2654 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2655 	}
2656 
2657 	for (j = 0; j < nr_ids; j++) {
2658 		bool skip_tc = false;
2659 
2660 		tci = j * num_tc + tc;
2661 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2662 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2663 			/* add tx-queue to CPU/rx-queue maps */
2664 			int pos = 0;
2665 
2666 			skip_tc = true;
2667 
2668 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2669 			while ((pos < map->len) && (map->queues[pos] != index))
2670 				pos++;
2671 
2672 			if (pos == map->len)
2673 				map->queues[map->len++] = index;
2674 #ifdef CONFIG_NUMA
2675 			if (type == XPS_CPUS) {
2676 				if (numa_node_id == -2)
2677 					numa_node_id = cpu_to_node(j);
2678 				else if (numa_node_id != cpu_to_node(j))
2679 					numa_node_id = -1;
2680 			}
2681 #endif
2682 		}
2683 
2684 		if (copy)
2685 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2686 					  skip_tc);
2687 	}
2688 
2689 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2690 
2691 	/* Cleanup old maps */
2692 	if (!dev_maps)
2693 		goto out_no_old_maps;
2694 
2695 	for (j = 0; j < dev_maps->nr_ids; j++) {
2696 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2697 			map = xmap_dereference(dev_maps->attr_map[tci]);
2698 			if (!map)
2699 				continue;
2700 
2701 			if (copy) {
2702 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2703 				if (map == new_map)
2704 					continue;
2705 			}
2706 
2707 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2708 			kfree_rcu(map, rcu);
2709 		}
2710 	}
2711 
2712 	old_dev_maps = dev_maps;
2713 
2714 out_no_old_maps:
2715 	dev_maps = new_dev_maps;
2716 	active = true;
2717 
2718 out_no_new_maps:
2719 	if (type == XPS_CPUS)
2720 		/* update Tx queue numa node */
2721 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2722 					     (numa_node_id >= 0) ?
2723 					     numa_node_id : NUMA_NO_NODE);
2724 
2725 	if (!dev_maps)
2726 		goto out_no_maps;
2727 
2728 	/* removes tx-queue from unused CPUs/rx-queues */
2729 	for (j = 0; j < dev_maps->nr_ids; j++) {
2730 		tci = j * dev_maps->num_tc;
2731 
2732 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2733 			if (i == tc &&
2734 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2735 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2736 				continue;
2737 
2738 			active |= remove_xps_queue(dev_maps,
2739 						   copy ? old_dev_maps : NULL,
2740 						   tci, index);
2741 		}
2742 	}
2743 
2744 	if (old_dev_maps)
2745 		kfree_rcu(old_dev_maps, rcu);
2746 
2747 	/* free map if not active */
2748 	if (!active)
2749 		reset_xps_maps(dev, dev_maps, type);
2750 
2751 out_no_maps:
2752 	mutex_unlock(&xps_map_mutex);
2753 
2754 	return 0;
2755 error:
2756 	/* remove any maps that we added */
2757 	for (j = 0; j < nr_ids; j++) {
2758 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2759 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2760 			map = copy ?
2761 			      xmap_dereference(dev_maps->attr_map[tci]) :
2762 			      NULL;
2763 			if (new_map && new_map != map)
2764 				kfree(new_map);
2765 		}
2766 	}
2767 
2768 	mutex_unlock(&xps_map_mutex);
2769 
2770 	kfree(new_dev_maps);
2771 	return -ENOMEM;
2772 }
2773 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2774 
2775 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2776 			u16 index)
2777 {
2778 	int ret;
2779 
2780 	cpus_read_lock();
2781 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2782 	cpus_read_unlock();
2783 
2784 	return ret;
2785 }
2786 EXPORT_SYMBOL(netif_set_xps_queue);
2787 
2788 #endif
2789 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2790 {
2791 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2792 
2793 	/* Unbind any subordinate channels */
2794 	while (txq-- != &dev->_tx[0]) {
2795 		if (txq->sb_dev)
2796 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2797 	}
2798 }
2799 
2800 void netdev_reset_tc(struct net_device *dev)
2801 {
2802 #ifdef CONFIG_XPS
2803 	netif_reset_xps_queues_gt(dev, 0);
2804 #endif
2805 	netdev_unbind_all_sb_channels(dev);
2806 
2807 	/* Reset TC configuration of device */
2808 	dev->num_tc = 0;
2809 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2810 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2811 }
2812 EXPORT_SYMBOL(netdev_reset_tc);
2813 
2814 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2815 {
2816 	if (tc >= dev->num_tc)
2817 		return -EINVAL;
2818 
2819 #ifdef CONFIG_XPS
2820 	netif_reset_xps_queues(dev, offset, count);
2821 #endif
2822 	dev->tc_to_txq[tc].count = count;
2823 	dev->tc_to_txq[tc].offset = offset;
2824 	return 0;
2825 }
2826 EXPORT_SYMBOL(netdev_set_tc_queue);
2827 
2828 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2829 {
2830 	if (num_tc > TC_MAX_QUEUE)
2831 		return -EINVAL;
2832 
2833 #ifdef CONFIG_XPS
2834 	netif_reset_xps_queues_gt(dev, 0);
2835 #endif
2836 	netdev_unbind_all_sb_channels(dev);
2837 
2838 	dev->num_tc = num_tc;
2839 	return 0;
2840 }
2841 EXPORT_SYMBOL(netdev_set_num_tc);
2842 
2843 void netdev_unbind_sb_channel(struct net_device *dev,
2844 			      struct net_device *sb_dev)
2845 {
2846 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2847 
2848 #ifdef CONFIG_XPS
2849 	netif_reset_xps_queues_gt(sb_dev, 0);
2850 #endif
2851 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2852 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2853 
2854 	while (txq-- != &dev->_tx[0]) {
2855 		if (txq->sb_dev == sb_dev)
2856 			txq->sb_dev = NULL;
2857 	}
2858 }
2859 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2860 
2861 int netdev_bind_sb_channel_queue(struct net_device *dev,
2862 				 struct net_device *sb_dev,
2863 				 u8 tc, u16 count, u16 offset)
2864 {
2865 	/* Make certain the sb_dev and dev are already configured */
2866 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2867 		return -EINVAL;
2868 
2869 	/* We cannot hand out queues we don't have */
2870 	if ((offset + count) > dev->real_num_tx_queues)
2871 		return -EINVAL;
2872 
2873 	/* Record the mapping */
2874 	sb_dev->tc_to_txq[tc].count = count;
2875 	sb_dev->tc_to_txq[tc].offset = offset;
2876 
2877 	/* Provide a way for Tx queue to find the tc_to_txq map or
2878 	 * XPS map for itself.
2879 	 */
2880 	while (count--)
2881 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2882 
2883 	return 0;
2884 }
2885 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2886 
2887 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2888 {
2889 	/* Do not use a multiqueue device to represent a subordinate channel */
2890 	if (netif_is_multiqueue(dev))
2891 		return -ENODEV;
2892 
2893 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2894 	 * Channel 0 is meant to be "native" mode and used only to represent
2895 	 * the main root device. We allow writing 0 to reset the device back
2896 	 * to normal mode after being used as a subordinate channel.
2897 	 */
2898 	if (channel > S16_MAX)
2899 		return -EINVAL;
2900 
2901 	dev->num_tc = -channel;
2902 
2903 	return 0;
2904 }
2905 EXPORT_SYMBOL(netdev_set_sb_channel);
2906 
2907 /*
2908  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2909  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2910  */
2911 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2912 {
2913 	bool disabling;
2914 	int rc;
2915 
2916 	disabling = txq < dev->real_num_tx_queues;
2917 
2918 	if (txq < 1 || txq > dev->num_tx_queues)
2919 		return -EINVAL;
2920 
2921 	if (dev->reg_state == NETREG_REGISTERED ||
2922 	    dev->reg_state == NETREG_UNREGISTERING) {
2923 		ASSERT_RTNL();
2924 
2925 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2926 						  txq);
2927 		if (rc)
2928 			return rc;
2929 
2930 		if (dev->num_tc)
2931 			netif_setup_tc(dev, txq);
2932 
2933 		dev_qdisc_change_real_num_tx(dev, txq);
2934 
2935 		dev->real_num_tx_queues = txq;
2936 
2937 		if (disabling) {
2938 			synchronize_net();
2939 			qdisc_reset_all_tx_gt(dev, txq);
2940 #ifdef CONFIG_XPS
2941 			netif_reset_xps_queues_gt(dev, txq);
2942 #endif
2943 		}
2944 	} else {
2945 		dev->real_num_tx_queues = txq;
2946 	}
2947 
2948 	return 0;
2949 }
2950 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2951 
2952 #ifdef CONFIG_SYSFS
2953 /**
2954  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2955  *	@dev: Network device
2956  *	@rxq: Actual number of RX queues
2957  *
2958  *	This must be called either with the rtnl_lock held or before
2959  *	registration of the net device.  Returns 0 on success, or a
2960  *	negative error code.  If called before registration, it always
2961  *	succeeds.
2962  */
2963 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2964 {
2965 	int rc;
2966 
2967 	if (rxq < 1 || rxq > dev->num_rx_queues)
2968 		return -EINVAL;
2969 
2970 	if (dev->reg_state == NETREG_REGISTERED) {
2971 		ASSERT_RTNL();
2972 
2973 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2974 						  rxq);
2975 		if (rc)
2976 			return rc;
2977 	}
2978 
2979 	dev->real_num_rx_queues = rxq;
2980 	return 0;
2981 }
2982 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2983 #endif
2984 
2985 /**
2986  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2987  *	@dev: Network device
2988  *	@txq: Actual number of TX queues
2989  *	@rxq: Actual number of RX queues
2990  *
2991  *	Set the real number of both TX and RX queues.
2992  *	Does nothing if the number of queues is already correct.
2993  */
2994 int netif_set_real_num_queues(struct net_device *dev,
2995 			      unsigned int txq, unsigned int rxq)
2996 {
2997 	unsigned int old_rxq = dev->real_num_rx_queues;
2998 	int err;
2999 
3000 	if (txq < 1 || txq > dev->num_tx_queues ||
3001 	    rxq < 1 || rxq > dev->num_rx_queues)
3002 		return -EINVAL;
3003 
3004 	/* Start from increases, so the error path only does decreases -
3005 	 * decreases can't fail.
3006 	 */
3007 	if (rxq > dev->real_num_rx_queues) {
3008 		err = netif_set_real_num_rx_queues(dev, rxq);
3009 		if (err)
3010 			return err;
3011 	}
3012 	if (txq > dev->real_num_tx_queues) {
3013 		err = netif_set_real_num_tx_queues(dev, txq);
3014 		if (err)
3015 			goto undo_rx;
3016 	}
3017 	if (rxq < dev->real_num_rx_queues)
3018 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3019 	if (txq < dev->real_num_tx_queues)
3020 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3021 
3022 	return 0;
3023 undo_rx:
3024 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3025 	return err;
3026 }
3027 EXPORT_SYMBOL(netif_set_real_num_queues);
3028 
3029 /**
3030  * netif_set_tso_max_size() - set the max size of TSO frames supported
3031  * @dev:	netdev to update
3032  * @size:	max skb->len of a TSO frame
3033  *
3034  * Set the limit on the size of TSO super-frames the device can handle.
3035  * Unless explicitly set the stack will assume the value of
3036  * %GSO_LEGACY_MAX_SIZE.
3037  */
3038 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3039 {
3040 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3041 	if (size < READ_ONCE(dev->gso_max_size))
3042 		netif_set_gso_max_size(dev, size);
3043 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3044 		netif_set_gso_ipv4_max_size(dev, size);
3045 }
3046 EXPORT_SYMBOL(netif_set_tso_max_size);
3047 
3048 /**
3049  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3050  * @dev:	netdev to update
3051  * @segs:	max number of TCP segments
3052  *
3053  * Set the limit on the number of TCP segments the device can generate from
3054  * a single TSO super-frame.
3055  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3056  */
3057 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3058 {
3059 	dev->tso_max_segs = segs;
3060 	if (segs < READ_ONCE(dev->gso_max_segs))
3061 		netif_set_gso_max_segs(dev, segs);
3062 }
3063 EXPORT_SYMBOL(netif_set_tso_max_segs);
3064 
3065 /**
3066  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3067  * @to:		netdev to update
3068  * @from:	netdev from which to copy the limits
3069  */
3070 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3071 {
3072 	netif_set_tso_max_size(to, from->tso_max_size);
3073 	netif_set_tso_max_segs(to, from->tso_max_segs);
3074 }
3075 EXPORT_SYMBOL(netif_inherit_tso_max);
3076 
3077 /**
3078  * netif_get_num_default_rss_queues - default number of RSS queues
3079  *
3080  * Default value is the number of physical cores if there are only 1 or 2, or
3081  * divided by 2 if there are more.
3082  */
3083 int netif_get_num_default_rss_queues(void)
3084 {
3085 	cpumask_var_t cpus;
3086 	int cpu, count = 0;
3087 
3088 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3089 		return 1;
3090 
3091 	cpumask_copy(cpus, cpu_online_mask);
3092 	for_each_cpu(cpu, cpus) {
3093 		++count;
3094 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3095 	}
3096 	free_cpumask_var(cpus);
3097 
3098 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3099 }
3100 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3101 
3102 static void __netif_reschedule(struct Qdisc *q)
3103 {
3104 	struct softnet_data *sd;
3105 	unsigned long flags;
3106 
3107 	local_irq_save(flags);
3108 	sd = this_cpu_ptr(&softnet_data);
3109 	q->next_sched = NULL;
3110 	*sd->output_queue_tailp = q;
3111 	sd->output_queue_tailp = &q->next_sched;
3112 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3113 	local_irq_restore(flags);
3114 }
3115 
3116 void __netif_schedule(struct Qdisc *q)
3117 {
3118 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3119 		__netif_reschedule(q);
3120 }
3121 EXPORT_SYMBOL(__netif_schedule);
3122 
3123 struct dev_kfree_skb_cb {
3124 	enum skb_drop_reason reason;
3125 };
3126 
3127 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3128 {
3129 	return (struct dev_kfree_skb_cb *)skb->cb;
3130 }
3131 
3132 void netif_schedule_queue(struct netdev_queue *txq)
3133 {
3134 	rcu_read_lock();
3135 	if (!netif_xmit_stopped(txq)) {
3136 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3137 
3138 		__netif_schedule(q);
3139 	}
3140 	rcu_read_unlock();
3141 }
3142 EXPORT_SYMBOL(netif_schedule_queue);
3143 
3144 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3145 {
3146 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3147 		struct Qdisc *q;
3148 
3149 		rcu_read_lock();
3150 		q = rcu_dereference(dev_queue->qdisc);
3151 		__netif_schedule(q);
3152 		rcu_read_unlock();
3153 	}
3154 }
3155 EXPORT_SYMBOL(netif_tx_wake_queue);
3156 
3157 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3158 {
3159 	unsigned long flags;
3160 
3161 	if (unlikely(!skb))
3162 		return;
3163 
3164 	if (likely(refcount_read(&skb->users) == 1)) {
3165 		smp_rmb();
3166 		refcount_set(&skb->users, 0);
3167 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3168 		return;
3169 	}
3170 	get_kfree_skb_cb(skb)->reason = reason;
3171 	local_irq_save(flags);
3172 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3173 	__this_cpu_write(softnet_data.completion_queue, skb);
3174 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3175 	local_irq_restore(flags);
3176 }
3177 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3178 
3179 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3180 {
3181 	if (in_hardirq() || irqs_disabled())
3182 		dev_kfree_skb_irq_reason(skb, reason);
3183 	else
3184 		kfree_skb_reason(skb, reason);
3185 }
3186 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3187 
3188 
3189 /**
3190  * netif_device_detach - mark device as removed
3191  * @dev: network device
3192  *
3193  * Mark device as removed from system and therefore no longer available.
3194  */
3195 void netif_device_detach(struct net_device *dev)
3196 {
3197 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3198 	    netif_running(dev)) {
3199 		netif_tx_stop_all_queues(dev);
3200 	}
3201 }
3202 EXPORT_SYMBOL(netif_device_detach);
3203 
3204 /**
3205  * netif_device_attach - mark device as attached
3206  * @dev: network device
3207  *
3208  * Mark device as attached from system and restart if needed.
3209  */
3210 void netif_device_attach(struct net_device *dev)
3211 {
3212 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3213 	    netif_running(dev)) {
3214 		netif_tx_wake_all_queues(dev);
3215 		__netdev_watchdog_up(dev);
3216 	}
3217 }
3218 EXPORT_SYMBOL(netif_device_attach);
3219 
3220 /*
3221  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3222  * to be used as a distribution range.
3223  */
3224 static u16 skb_tx_hash(const struct net_device *dev,
3225 		       const struct net_device *sb_dev,
3226 		       struct sk_buff *skb)
3227 {
3228 	u32 hash;
3229 	u16 qoffset = 0;
3230 	u16 qcount = dev->real_num_tx_queues;
3231 
3232 	if (dev->num_tc) {
3233 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3234 
3235 		qoffset = sb_dev->tc_to_txq[tc].offset;
3236 		qcount = sb_dev->tc_to_txq[tc].count;
3237 		if (unlikely(!qcount)) {
3238 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3239 					     sb_dev->name, qoffset, tc);
3240 			qoffset = 0;
3241 			qcount = dev->real_num_tx_queues;
3242 		}
3243 	}
3244 
3245 	if (skb_rx_queue_recorded(skb)) {
3246 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3247 		hash = skb_get_rx_queue(skb);
3248 		if (hash >= qoffset)
3249 			hash -= qoffset;
3250 		while (unlikely(hash >= qcount))
3251 			hash -= qcount;
3252 		return hash + qoffset;
3253 	}
3254 
3255 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3256 }
3257 
3258 void skb_warn_bad_offload(const struct sk_buff *skb)
3259 {
3260 	static const netdev_features_t null_features;
3261 	struct net_device *dev = skb->dev;
3262 	const char *name = "";
3263 
3264 	if (!net_ratelimit())
3265 		return;
3266 
3267 	if (dev) {
3268 		if (dev->dev.parent)
3269 			name = dev_driver_string(dev->dev.parent);
3270 		else
3271 			name = netdev_name(dev);
3272 	}
3273 	skb_dump(KERN_WARNING, skb, false);
3274 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3275 	     name, dev ? &dev->features : &null_features,
3276 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3277 }
3278 
3279 /*
3280  * Invalidate hardware checksum when packet is to be mangled, and
3281  * complete checksum manually on outgoing path.
3282  */
3283 int skb_checksum_help(struct sk_buff *skb)
3284 {
3285 	__wsum csum;
3286 	int ret = 0, offset;
3287 
3288 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3289 		goto out_set_summed;
3290 
3291 	if (unlikely(skb_is_gso(skb))) {
3292 		skb_warn_bad_offload(skb);
3293 		return -EINVAL;
3294 	}
3295 
3296 	/* Before computing a checksum, we should make sure no frag could
3297 	 * be modified by an external entity : checksum could be wrong.
3298 	 */
3299 	if (skb_has_shared_frag(skb)) {
3300 		ret = __skb_linearize(skb);
3301 		if (ret)
3302 			goto out;
3303 	}
3304 
3305 	offset = skb_checksum_start_offset(skb);
3306 	ret = -EINVAL;
3307 	if (unlikely(offset >= skb_headlen(skb))) {
3308 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3309 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3310 			  offset, skb_headlen(skb));
3311 		goto out;
3312 	}
3313 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3314 
3315 	offset += skb->csum_offset;
3316 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3317 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3318 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3319 			  offset + sizeof(__sum16), skb_headlen(skb));
3320 		goto out;
3321 	}
3322 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3323 	if (ret)
3324 		goto out;
3325 
3326 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3327 out_set_summed:
3328 	skb->ip_summed = CHECKSUM_NONE;
3329 out:
3330 	return ret;
3331 }
3332 EXPORT_SYMBOL(skb_checksum_help);
3333 
3334 int skb_crc32c_csum_help(struct sk_buff *skb)
3335 {
3336 	__le32 crc32c_csum;
3337 	int ret = 0, offset, start;
3338 
3339 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3340 		goto out;
3341 
3342 	if (unlikely(skb_is_gso(skb)))
3343 		goto out;
3344 
3345 	/* Before computing a checksum, we should make sure no frag could
3346 	 * be modified by an external entity : checksum could be wrong.
3347 	 */
3348 	if (unlikely(skb_has_shared_frag(skb))) {
3349 		ret = __skb_linearize(skb);
3350 		if (ret)
3351 			goto out;
3352 	}
3353 	start = skb_checksum_start_offset(skb);
3354 	offset = start + offsetof(struct sctphdr, checksum);
3355 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3356 		ret = -EINVAL;
3357 		goto out;
3358 	}
3359 
3360 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3361 	if (ret)
3362 		goto out;
3363 
3364 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3365 						  skb->len - start, ~(__u32)0,
3366 						  crc32c_csum_stub));
3367 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3368 	skb_reset_csum_not_inet(skb);
3369 out:
3370 	return ret;
3371 }
3372 
3373 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3374 {
3375 	__be16 type = skb->protocol;
3376 
3377 	/* Tunnel gso handlers can set protocol to ethernet. */
3378 	if (type == htons(ETH_P_TEB)) {
3379 		struct ethhdr *eth;
3380 
3381 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3382 			return 0;
3383 
3384 		eth = (struct ethhdr *)skb->data;
3385 		type = eth->h_proto;
3386 	}
3387 
3388 	return vlan_get_protocol_and_depth(skb, type, depth);
3389 }
3390 
3391 
3392 /* Take action when hardware reception checksum errors are detected. */
3393 #ifdef CONFIG_BUG
3394 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3395 {
3396 	netdev_err(dev, "hw csum failure\n");
3397 	skb_dump(KERN_ERR, skb, true);
3398 	dump_stack();
3399 }
3400 
3401 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3402 {
3403 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3404 }
3405 EXPORT_SYMBOL(netdev_rx_csum_fault);
3406 #endif
3407 
3408 /* XXX: check that highmem exists at all on the given machine. */
3409 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3410 {
3411 #ifdef CONFIG_HIGHMEM
3412 	int i;
3413 
3414 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3415 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3416 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3417 
3418 			if (PageHighMem(skb_frag_page(frag)))
3419 				return 1;
3420 		}
3421 	}
3422 #endif
3423 	return 0;
3424 }
3425 
3426 /* If MPLS offload request, verify we are testing hardware MPLS features
3427  * instead of standard features for the netdev.
3428  */
3429 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3430 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3431 					   netdev_features_t features,
3432 					   __be16 type)
3433 {
3434 	if (eth_p_mpls(type))
3435 		features &= skb->dev->mpls_features;
3436 
3437 	return features;
3438 }
3439 #else
3440 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3441 					   netdev_features_t features,
3442 					   __be16 type)
3443 {
3444 	return features;
3445 }
3446 #endif
3447 
3448 static netdev_features_t harmonize_features(struct sk_buff *skb,
3449 	netdev_features_t features)
3450 {
3451 	__be16 type;
3452 
3453 	type = skb_network_protocol(skb, NULL);
3454 	features = net_mpls_features(skb, features, type);
3455 
3456 	if (skb->ip_summed != CHECKSUM_NONE &&
3457 	    !can_checksum_protocol(features, type)) {
3458 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3459 	}
3460 	if (illegal_highdma(skb->dev, skb))
3461 		features &= ~NETIF_F_SG;
3462 
3463 	return features;
3464 }
3465 
3466 netdev_features_t passthru_features_check(struct sk_buff *skb,
3467 					  struct net_device *dev,
3468 					  netdev_features_t features)
3469 {
3470 	return features;
3471 }
3472 EXPORT_SYMBOL(passthru_features_check);
3473 
3474 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3475 					     struct net_device *dev,
3476 					     netdev_features_t features)
3477 {
3478 	return vlan_features_check(skb, features);
3479 }
3480 
3481 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3482 					    struct net_device *dev,
3483 					    netdev_features_t features)
3484 {
3485 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3486 
3487 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3488 		return features & ~NETIF_F_GSO_MASK;
3489 
3490 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3491 		return features & ~NETIF_F_GSO_MASK;
3492 
3493 	if (!skb_shinfo(skb)->gso_type) {
3494 		skb_warn_bad_offload(skb);
3495 		return features & ~NETIF_F_GSO_MASK;
3496 	}
3497 
3498 	/* Support for GSO partial features requires software
3499 	 * intervention before we can actually process the packets
3500 	 * so we need to strip support for any partial features now
3501 	 * and we can pull them back in after we have partially
3502 	 * segmented the frame.
3503 	 */
3504 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3505 		features &= ~dev->gso_partial_features;
3506 
3507 	/* Make sure to clear the IPv4 ID mangling feature if the
3508 	 * IPv4 header has the potential to be fragmented.
3509 	 */
3510 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3511 		struct iphdr *iph = skb->encapsulation ?
3512 				    inner_ip_hdr(skb) : ip_hdr(skb);
3513 
3514 		if (!(iph->frag_off & htons(IP_DF)))
3515 			features &= ~NETIF_F_TSO_MANGLEID;
3516 	}
3517 
3518 	return features;
3519 }
3520 
3521 netdev_features_t netif_skb_features(struct sk_buff *skb)
3522 {
3523 	struct net_device *dev = skb->dev;
3524 	netdev_features_t features = dev->features;
3525 
3526 	if (skb_is_gso(skb))
3527 		features = gso_features_check(skb, dev, features);
3528 
3529 	/* If encapsulation offload request, verify we are testing
3530 	 * hardware encapsulation features instead of standard
3531 	 * features for the netdev
3532 	 */
3533 	if (skb->encapsulation)
3534 		features &= dev->hw_enc_features;
3535 
3536 	if (skb_vlan_tagged(skb))
3537 		features = netdev_intersect_features(features,
3538 						     dev->vlan_features |
3539 						     NETIF_F_HW_VLAN_CTAG_TX |
3540 						     NETIF_F_HW_VLAN_STAG_TX);
3541 
3542 	if (dev->netdev_ops->ndo_features_check)
3543 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3544 								features);
3545 	else
3546 		features &= dflt_features_check(skb, dev, features);
3547 
3548 	return harmonize_features(skb, features);
3549 }
3550 EXPORT_SYMBOL(netif_skb_features);
3551 
3552 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3553 		    struct netdev_queue *txq, bool more)
3554 {
3555 	unsigned int len;
3556 	int rc;
3557 
3558 	if (dev_nit_active(dev))
3559 		dev_queue_xmit_nit(skb, dev);
3560 
3561 	len = skb->len;
3562 	trace_net_dev_start_xmit(skb, dev);
3563 	rc = netdev_start_xmit(skb, dev, txq, more);
3564 	trace_net_dev_xmit(skb, rc, dev, len);
3565 
3566 	return rc;
3567 }
3568 
3569 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3570 				    struct netdev_queue *txq, int *ret)
3571 {
3572 	struct sk_buff *skb = first;
3573 	int rc = NETDEV_TX_OK;
3574 
3575 	while (skb) {
3576 		struct sk_buff *next = skb->next;
3577 
3578 		skb_mark_not_on_list(skb);
3579 		rc = xmit_one(skb, dev, txq, next != NULL);
3580 		if (unlikely(!dev_xmit_complete(rc))) {
3581 			skb->next = next;
3582 			goto out;
3583 		}
3584 
3585 		skb = next;
3586 		if (netif_tx_queue_stopped(txq) && skb) {
3587 			rc = NETDEV_TX_BUSY;
3588 			break;
3589 		}
3590 	}
3591 
3592 out:
3593 	*ret = rc;
3594 	return skb;
3595 }
3596 
3597 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3598 					  netdev_features_t features)
3599 {
3600 	if (skb_vlan_tag_present(skb) &&
3601 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3602 		skb = __vlan_hwaccel_push_inside(skb);
3603 	return skb;
3604 }
3605 
3606 int skb_csum_hwoffload_help(struct sk_buff *skb,
3607 			    const netdev_features_t features)
3608 {
3609 	if (unlikely(skb_csum_is_sctp(skb)))
3610 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3611 			skb_crc32c_csum_help(skb);
3612 
3613 	if (features & NETIF_F_HW_CSUM)
3614 		return 0;
3615 
3616 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3617 		switch (skb->csum_offset) {
3618 		case offsetof(struct tcphdr, check):
3619 		case offsetof(struct udphdr, check):
3620 			return 0;
3621 		}
3622 	}
3623 
3624 	return skb_checksum_help(skb);
3625 }
3626 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3627 
3628 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3629 {
3630 	netdev_features_t features;
3631 
3632 	features = netif_skb_features(skb);
3633 	skb = validate_xmit_vlan(skb, features);
3634 	if (unlikely(!skb))
3635 		goto out_null;
3636 
3637 	skb = sk_validate_xmit_skb(skb, dev);
3638 	if (unlikely(!skb))
3639 		goto out_null;
3640 
3641 	if (netif_needs_gso(skb, features)) {
3642 		struct sk_buff *segs;
3643 
3644 		segs = skb_gso_segment(skb, features);
3645 		if (IS_ERR(segs)) {
3646 			goto out_kfree_skb;
3647 		} else if (segs) {
3648 			consume_skb(skb);
3649 			skb = segs;
3650 		}
3651 	} else {
3652 		if (skb_needs_linearize(skb, features) &&
3653 		    __skb_linearize(skb))
3654 			goto out_kfree_skb;
3655 
3656 		/* If packet is not checksummed and device does not
3657 		 * support checksumming for this protocol, complete
3658 		 * checksumming here.
3659 		 */
3660 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3661 			if (skb->encapsulation)
3662 				skb_set_inner_transport_header(skb,
3663 							       skb_checksum_start_offset(skb));
3664 			else
3665 				skb_set_transport_header(skb,
3666 							 skb_checksum_start_offset(skb));
3667 			if (skb_csum_hwoffload_help(skb, features))
3668 				goto out_kfree_skb;
3669 		}
3670 	}
3671 
3672 	skb = validate_xmit_xfrm(skb, features, again);
3673 
3674 	return skb;
3675 
3676 out_kfree_skb:
3677 	kfree_skb(skb);
3678 out_null:
3679 	dev_core_stats_tx_dropped_inc(dev);
3680 	return NULL;
3681 }
3682 
3683 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3684 {
3685 	struct sk_buff *next, *head = NULL, *tail;
3686 
3687 	for (; skb != NULL; skb = next) {
3688 		next = skb->next;
3689 		skb_mark_not_on_list(skb);
3690 
3691 		/* in case skb wont be segmented, point to itself */
3692 		skb->prev = skb;
3693 
3694 		skb = validate_xmit_skb(skb, dev, again);
3695 		if (!skb)
3696 			continue;
3697 
3698 		if (!head)
3699 			head = skb;
3700 		else
3701 			tail->next = skb;
3702 		/* If skb was segmented, skb->prev points to
3703 		 * the last segment. If not, it still contains skb.
3704 		 */
3705 		tail = skb->prev;
3706 	}
3707 	return head;
3708 }
3709 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3710 
3711 static void qdisc_pkt_len_init(struct sk_buff *skb)
3712 {
3713 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3714 
3715 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3716 
3717 	/* To get more precise estimation of bytes sent on wire,
3718 	 * we add to pkt_len the headers size of all segments
3719 	 */
3720 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3721 		u16 gso_segs = shinfo->gso_segs;
3722 		unsigned int hdr_len;
3723 
3724 		/* mac layer + network layer */
3725 		hdr_len = skb_transport_offset(skb);
3726 
3727 		/* + transport layer */
3728 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3729 			const struct tcphdr *th;
3730 			struct tcphdr _tcphdr;
3731 
3732 			th = skb_header_pointer(skb, hdr_len,
3733 						sizeof(_tcphdr), &_tcphdr);
3734 			if (likely(th))
3735 				hdr_len += __tcp_hdrlen(th);
3736 		} else {
3737 			struct udphdr _udphdr;
3738 
3739 			if (skb_header_pointer(skb, hdr_len,
3740 					       sizeof(_udphdr), &_udphdr))
3741 				hdr_len += sizeof(struct udphdr);
3742 		}
3743 
3744 		if (shinfo->gso_type & SKB_GSO_DODGY)
3745 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3746 						shinfo->gso_size);
3747 
3748 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3749 	}
3750 }
3751 
3752 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3753 			     struct sk_buff **to_free,
3754 			     struct netdev_queue *txq)
3755 {
3756 	int rc;
3757 
3758 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3759 	if (rc == NET_XMIT_SUCCESS)
3760 		trace_qdisc_enqueue(q, txq, skb);
3761 	return rc;
3762 }
3763 
3764 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3765 				 struct net_device *dev,
3766 				 struct netdev_queue *txq)
3767 {
3768 	spinlock_t *root_lock = qdisc_lock(q);
3769 	struct sk_buff *to_free = NULL;
3770 	bool contended;
3771 	int rc;
3772 
3773 	qdisc_calculate_pkt_len(skb, q);
3774 
3775 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3776 
3777 	if (q->flags & TCQ_F_NOLOCK) {
3778 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3779 		    qdisc_run_begin(q)) {
3780 			/* Retest nolock_qdisc_is_empty() within the protection
3781 			 * of q->seqlock to protect from racing with requeuing.
3782 			 */
3783 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3784 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3785 				__qdisc_run(q);
3786 				qdisc_run_end(q);
3787 
3788 				goto no_lock_out;
3789 			}
3790 
3791 			qdisc_bstats_cpu_update(q, skb);
3792 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3793 			    !nolock_qdisc_is_empty(q))
3794 				__qdisc_run(q);
3795 
3796 			qdisc_run_end(q);
3797 			return NET_XMIT_SUCCESS;
3798 		}
3799 
3800 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3801 		qdisc_run(q);
3802 
3803 no_lock_out:
3804 		if (unlikely(to_free))
3805 			kfree_skb_list_reason(to_free,
3806 					      tcf_get_drop_reason(to_free));
3807 		return rc;
3808 	}
3809 
3810 	/*
3811 	 * Heuristic to force contended enqueues to serialize on a
3812 	 * separate lock before trying to get qdisc main lock.
3813 	 * This permits qdisc->running owner to get the lock more
3814 	 * often and dequeue packets faster.
3815 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3816 	 * and then other tasks will only enqueue packets. The packets will be
3817 	 * sent after the qdisc owner is scheduled again. To prevent this
3818 	 * scenario the task always serialize on the lock.
3819 	 */
3820 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3821 	if (unlikely(contended))
3822 		spin_lock(&q->busylock);
3823 
3824 	spin_lock(root_lock);
3825 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3826 		__qdisc_drop(skb, &to_free);
3827 		rc = NET_XMIT_DROP;
3828 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3829 		   qdisc_run_begin(q)) {
3830 		/*
3831 		 * This is a work-conserving queue; there are no old skbs
3832 		 * waiting to be sent out; and the qdisc is not running -
3833 		 * xmit the skb directly.
3834 		 */
3835 
3836 		qdisc_bstats_update(q, skb);
3837 
3838 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3839 			if (unlikely(contended)) {
3840 				spin_unlock(&q->busylock);
3841 				contended = false;
3842 			}
3843 			__qdisc_run(q);
3844 		}
3845 
3846 		qdisc_run_end(q);
3847 		rc = NET_XMIT_SUCCESS;
3848 	} else {
3849 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3850 		if (qdisc_run_begin(q)) {
3851 			if (unlikely(contended)) {
3852 				spin_unlock(&q->busylock);
3853 				contended = false;
3854 			}
3855 			__qdisc_run(q);
3856 			qdisc_run_end(q);
3857 		}
3858 	}
3859 	spin_unlock(root_lock);
3860 	if (unlikely(to_free))
3861 		kfree_skb_list_reason(to_free,
3862 				      tcf_get_drop_reason(to_free));
3863 	if (unlikely(contended))
3864 		spin_unlock(&q->busylock);
3865 	return rc;
3866 }
3867 
3868 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3869 static void skb_update_prio(struct sk_buff *skb)
3870 {
3871 	const struct netprio_map *map;
3872 	const struct sock *sk;
3873 	unsigned int prioidx;
3874 
3875 	if (skb->priority)
3876 		return;
3877 	map = rcu_dereference_bh(skb->dev->priomap);
3878 	if (!map)
3879 		return;
3880 	sk = skb_to_full_sk(skb);
3881 	if (!sk)
3882 		return;
3883 
3884 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3885 
3886 	if (prioidx < map->priomap_len)
3887 		skb->priority = map->priomap[prioidx];
3888 }
3889 #else
3890 #define skb_update_prio(skb)
3891 #endif
3892 
3893 /**
3894  *	dev_loopback_xmit - loop back @skb
3895  *	@net: network namespace this loopback is happening in
3896  *	@sk:  sk needed to be a netfilter okfn
3897  *	@skb: buffer to transmit
3898  */
3899 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3900 {
3901 	skb_reset_mac_header(skb);
3902 	__skb_pull(skb, skb_network_offset(skb));
3903 	skb->pkt_type = PACKET_LOOPBACK;
3904 	if (skb->ip_summed == CHECKSUM_NONE)
3905 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3906 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3907 	skb_dst_force(skb);
3908 	netif_rx(skb);
3909 	return 0;
3910 }
3911 EXPORT_SYMBOL(dev_loopback_xmit);
3912 
3913 #ifdef CONFIG_NET_EGRESS
3914 static struct netdev_queue *
3915 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3916 {
3917 	int qm = skb_get_queue_mapping(skb);
3918 
3919 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3920 }
3921 
3922 static bool netdev_xmit_txqueue_skipped(void)
3923 {
3924 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3925 }
3926 
3927 void netdev_xmit_skip_txqueue(bool skip)
3928 {
3929 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3930 }
3931 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3932 #endif /* CONFIG_NET_EGRESS */
3933 
3934 #ifdef CONFIG_NET_XGRESS
3935 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3936 		  enum skb_drop_reason *drop_reason)
3937 {
3938 	int ret = TC_ACT_UNSPEC;
3939 #ifdef CONFIG_NET_CLS_ACT
3940 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3941 	struct tcf_result res;
3942 
3943 	if (!miniq)
3944 		return ret;
3945 
3946 	tc_skb_cb(skb)->mru = 0;
3947 	tc_skb_cb(skb)->post_ct = false;
3948 	tcf_set_drop_reason(skb, *drop_reason);
3949 
3950 	mini_qdisc_bstats_cpu_update(miniq, skb);
3951 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3952 	/* Only tcf related quirks below. */
3953 	switch (ret) {
3954 	case TC_ACT_SHOT:
3955 		*drop_reason = tcf_get_drop_reason(skb);
3956 		mini_qdisc_qstats_cpu_drop(miniq);
3957 		break;
3958 	case TC_ACT_OK:
3959 	case TC_ACT_RECLASSIFY:
3960 		skb->tc_index = TC_H_MIN(res.classid);
3961 		break;
3962 	}
3963 #endif /* CONFIG_NET_CLS_ACT */
3964 	return ret;
3965 }
3966 
3967 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3968 
3969 void tcx_inc(void)
3970 {
3971 	static_branch_inc(&tcx_needed_key);
3972 }
3973 
3974 void tcx_dec(void)
3975 {
3976 	static_branch_dec(&tcx_needed_key);
3977 }
3978 
3979 static __always_inline enum tcx_action_base
3980 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3981 	const bool needs_mac)
3982 {
3983 	const struct bpf_mprog_fp *fp;
3984 	const struct bpf_prog *prog;
3985 	int ret = TCX_NEXT;
3986 
3987 	if (needs_mac)
3988 		__skb_push(skb, skb->mac_len);
3989 	bpf_mprog_foreach_prog(entry, fp, prog) {
3990 		bpf_compute_data_pointers(skb);
3991 		ret = bpf_prog_run(prog, skb);
3992 		if (ret != TCX_NEXT)
3993 			break;
3994 	}
3995 	if (needs_mac)
3996 		__skb_pull(skb, skb->mac_len);
3997 	return tcx_action_code(skb, ret);
3998 }
3999 
4000 static __always_inline struct sk_buff *
4001 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4002 		   struct net_device *orig_dev, bool *another)
4003 {
4004 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4005 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4006 	int sch_ret;
4007 
4008 	if (!entry)
4009 		return skb;
4010 	if (*pt_prev) {
4011 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4012 		*pt_prev = NULL;
4013 	}
4014 
4015 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4016 	tcx_set_ingress(skb, true);
4017 
4018 	if (static_branch_unlikely(&tcx_needed_key)) {
4019 		sch_ret = tcx_run(entry, skb, true);
4020 		if (sch_ret != TC_ACT_UNSPEC)
4021 			goto ingress_verdict;
4022 	}
4023 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4024 ingress_verdict:
4025 	switch (sch_ret) {
4026 	case TC_ACT_REDIRECT:
4027 		/* skb_mac_header check was done by BPF, so we can safely
4028 		 * push the L2 header back before redirecting to another
4029 		 * netdev.
4030 		 */
4031 		__skb_push(skb, skb->mac_len);
4032 		if (skb_do_redirect(skb) == -EAGAIN) {
4033 			__skb_pull(skb, skb->mac_len);
4034 			*another = true;
4035 			break;
4036 		}
4037 		*ret = NET_RX_SUCCESS;
4038 		return NULL;
4039 	case TC_ACT_SHOT:
4040 		kfree_skb_reason(skb, drop_reason);
4041 		*ret = NET_RX_DROP;
4042 		return NULL;
4043 	/* used by tc_run */
4044 	case TC_ACT_STOLEN:
4045 	case TC_ACT_QUEUED:
4046 	case TC_ACT_TRAP:
4047 		consume_skb(skb);
4048 		fallthrough;
4049 	case TC_ACT_CONSUMED:
4050 		*ret = NET_RX_SUCCESS;
4051 		return NULL;
4052 	}
4053 
4054 	return skb;
4055 }
4056 
4057 static __always_inline struct sk_buff *
4058 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4059 {
4060 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4061 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4062 	int sch_ret;
4063 
4064 	if (!entry)
4065 		return skb;
4066 
4067 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4068 	 * already set by the caller.
4069 	 */
4070 	if (static_branch_unlikely(&tcx_needed_key)) {
4071 		sch_ret = tcx_run(entry, skb, false);
4072 		if (sch_ret != TC_ACT_UNSPEC)
4073 			goto egress_verdict;
4074 	}
4075 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4076 egress_verdict:
4077 	switch (sch_ret) {
4078 	case TC_ACT_REDIRECT:
4079 		/* No need to push/pop skb's mac_header here on egress! */
4080 		skb_do_redirect(skb);
4081 		*ret = NET_XMIT_SUCCESS;
4082 		return NULL;
4083 	case TC_ACT_SHOT:
4084 		kfree_skb_reason(skb, drop_reason);
4085 		*ret = NET_XMIT_DROP;
4086 		return NULL;
4087 	/* used by tc_run */
4088 	case TC_ACT_STOLEN:
4089 	case TC_ACT_QUEUED:
4090 	case TC_ACT_TRAP:
4091 		consume_skb(skb);
4092 		fallthrough;
4093 	case TC_ACT_CONSUMED:
4094 		*ret = NET_XMIT_SUCCESS;
4095 		return NULL;
4096 	}
4097 
4098 	return skb;
4099 }
4100 #else
4101 static __always_inline struct sk_buff *
4102 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4103 		   struct net_device *orig_dev, bool *another)
4104 {
4105 	return skb;
4106 }
4107 
4108 static __always_inline struct sk_buff *
4109 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4110 {
4111 	return skb;
4112 }
4113 #endif /* CONFIG_NET_XGRESS */
4114 
4115 #ifdef CONFIG_XPS
4116 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4117 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4118 {
4119 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4120 	struct xps_map *map;
4121 	int queue_index = -1;
4122 
4123 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4124 		return queue_index;
4125 
4126 	tci *= dev_maps->num_tc;
4127 	tci += tc;
4128 
4129 	map = rcu_dereference(dev_maps->attr_map[tci]);
4130 	if (map) {
4131 		if (map->len == 1)
4132 			queue_index = map->queues[0];
4133 		else
4134 			queue_index = map->queues[reciprocal_scale(
4135 						skb_get_hash(skb), map->len)];
4136 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4137 			queue_index = -1;
4138 	}
4139 	return queue_index;
4140 }
4141 #endif
4142 
4143 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4144 			 struct sk_buff *skb)
4145 {
4146 #ifdef CONFIG_XPS
4147 	struct xps_dev_maps *dev_maps;
4148 	struct sock *sk = skb->sk;
4149 	int queue_index = -1;
4150 
4151 	if (!static_key_false(&xps_needed))
4152 		return -1;
4153 
4154 	rcu_read_lock();
4155 	if (!static_key_false(&xps_rxqs_needed))
4156 		goto get_cpus_map;
4157 
4158 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4159 	if (dev_maps) {
4160 		int tci = sk_rx_queue_get(sk);
4161 
4162 		if (tci >= 0)
4163 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4164 							  tci);
4165 	}
4166 
4167 get_cpus_map:
4168 	if (queue_index < 0) {
4169 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4170 		if (dev_maps) {
4171 			unsigned int tci = skb->sender_cpu - 1;
4172 
4173 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4174 							  tci);
4175 		}
4176 	}
4177 	rcu_read_unlock();
4178 
4179 	return queue_index;
4180 #else
4181 	return -1;
4182 #endif
4183 }
4184 
4185 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4186 		     struct net_device *sb_dev)
4187 {
4188 	return 0;
4189 }
4190 EXPORT_SYMBOL(dev_pick_tx_zero);
4191 
4192 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4193 		       struct net_device *sb_dev)
4194 {
4195 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4196 }
4197 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4198 
4199 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4200 		     struct net_device *sb_dev)
4201 {
4202 	struct sock *sk = skb->sk;
4203 	int queue_index = sk_tx_queue_get(sk);
4204 
4205 	sb_dev = sb_dev ? : dev;
4206 
4207 	if (queue_index < 0 || skb->ooo_okay ||
4208 	    queue_index >= dev->real_num_tx_queues) {
4209 		int new_index = get_xps_queue(dev, sb_dev, skb);
4210 
4211 		if (new_index < 0)
4212 			new_index = skb_tx_hash(dev, sb_dev, skb);
4213 
4214 		if (queue_index != new_index && sk &&
4215 		    sk_fullsock(sk) &&
4216 		    rcu_access_pointer(sk->sk_dst_cache))
4217 			sk_tx_queue_set(sk, new_index);
4218 
4219 		queue_index = new_index;
4220 	}
4221 
4222 	return queue_index;
4223 }
4224 EXPORT_SYMBOL(netdev_pick_tx);
4225 
4226 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4227 					 struct sk_buff *skb,
4228 					 struct net_device *sb_dev)
4229 {
4230 	int queue_index = 0;
4231 
4232 #ifdef CONFIG_XPS
4233 	u32 sender_cpu = skb->sender_cpu - 1;
4234 
4235 	if (sender_cpu >= (u32)NR_CPUS)
4236 		skb->sender_cpu = raw_smp_processor_id() + 1;
4237 #endif
4238 
4239 	if (dev->real_num_tx_queues != 1) {
4240 		const struct net_device_ops *ops = dev->netdev_ops;
4241 
4242 		if (ops->ndo_select_queue)
4243 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4244 		else
4245 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4246 
4247 		queue_index = netdev_cap_txqueue(dev, queue_index);
4248 	}
4249 
4250 	skb_set_queue_mapping(skb, queue_index);
4251 	return netdev_get_tx_queue(dev, queue_index);
4252 }
4253 
4254 /**
4255  * __dev_queue_xmit() - transmit a buffer
4256  * @skb:	buffer to transmit
4257  * @sb_dev:	suboordinate device used for L2 forwarding offload
4258  *
4259  * Queue a buffer for transmission to a network device. The caller must
4260  * have set the device and priority and built the buffer before calling
4261  * this function. The function can be called from an interrupt.
4262  *
4263  * When calling this method, interrupts MUST be enabled. This is because
4264  * the BH enable code must have IRQs enabled so that it will not deadlock.
4265  *
4266  * Regardless of the return value, the skb is consumed, so it is currently
4267  * difficult to retry a send to this method. (You can bump the ref count
4268  * before sending to hold a reference for retry if you are careful.)
4269  *
4270  * Return:
4271  * * 0				- buffer successfully transmitted
4272  * * positive qdisc return code	- NET_XMIT_DROP etc.
4273  * * negative errno		- other errors
4274  */
4275 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4276 {
4277 	struct net_device *dev = skb->dev;
4278 	struct netdev_queue *txq = NULL;
4279 	struct Qdisc *q;
4280 	int rc = -ENOMEM;
4281 	bool again = false;
4282 
4283 	skb_reset_mac_header(skb);
4284 	skb_assert_len(skb);
4285 
4286 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4287 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4288 
4289 	/* Disable soft irqs for various locks below. Also
4290 	 * stops preemption for RCU.
4291 	 */
4292 	rcu_read_lock_bh();
4293 
4294 	skb_update_prio(skb);
4295 
4296 	qdisc_pkt_len_init(skb);
4297 	tcx_set_ingress(skb, false);
4298 #ifdef CONFIG_NET_EGRESS
4299 	if (static_branch_unlikely(&egress_needed_key)) {
4300 		if (nf_hook_egress_active()) {
4301 			skb = nf_hook_egress(skb, &rc, dev);
4302 			if (!skb)
4303 				goto out;
4304 		}
4305 
4306 		netdev_xmit_skip_txqueue(false);
4307 
4308 		nf_skip_egress(skb, true);
4309 		skb = sch_handle_egress(skb, &rc, dev);
4310 		if (!skb)
4311 			goto out;
4312 		nf_skip_egress(skb, false);
4313 
4314 		if (netdev_xmit_txqueue_skipped())
4315 			txq = netdev_tx_queue_mapping(dev, skb);
4316 	}
4317 #endif
4318 	/* If device/qdisc don't need skb->dst, release it right now while
4319 	 * its hot in this cpu cache.
4320 	 */
4321 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4322 		skb_dst_drop(skb);
4323 	else
4324 		skb_dst_force(skb);
4325 
4326 	if (!txq)
4327 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4328 
4329 	q = rcu_dereference_bh(txq->qdisc);
4330 
4331 	trace_net_dev_queue(skb);
4332 	if (q->enqueue) {
4333 		rc = __dev_xmit_skb(skb, q, dev, txq);
4334 		goto out;
4335 	}
4336 
4337 	/* The device has no queue. Common case for software devices:
4338 	 * loopback, all the sorts of tunnels...
4339 
4340 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4341 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4342 	 * counters.)
4343 	 * However, it is possible, that they rely on protection
4344 	 * made by us here.
4345 
4346 	 * Check this and shot the lock. It is not prone from deadlocks.
4347 	 *Either shot noqueue qdisc, it is even simpler 8)
4348 	 */
4349 	if (dev->flags & IFF_UP) {
4350 		int cpu = smp_processor_id(); /* ok because BHs are off */
4351 
4352 		/* Other cpus might concurrently change txq->xmit_lock_owner
4353 		 * to -1 or to their cpu id, but not to our id.
4354 		 */
4355 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4356 			if (dev_xmit_recursion())
4357 				goto recursion_alert;
4358 
4359 			skb = validate_xmit_skb(skb, dev, &again);
4360 			if (!skb)
4361 				goto out;
4362 
4363 			HARD_TX_LOCK(dev, txq, cpu);
4364 
4365 			if (!netif_xmit_stopped(txq)) {
4366 				dev_xmit_recursion_inc();
4367 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4368 				dev_xmit_recursion_dec();
4369 				if (dev_xmit_complete(rc)) {
4370 					HARD_TX_UNLOCK(dev, txq);
4371 					goto out;
4372 				}
4373 			}
4374 			HARD_TX_UNLOCK(dev, txq);
4375 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4376 					     dev->name);
4377 		} else {
4378 			/* Recursion is detected! It is possible,
4379 			 * unfortunately
4380 			 */
4381 recursion_alert:
4382 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4383 					     dev->name);
4384 		}
4385 	}
4386 
4387 	rc = -ENETDOWN;
4388 	rcu_read_unlock_bh();
4389 
4390 	dev_core_stats_tx_dropped_inc(dev);
4391 	kfree_skb_list(skb);
4392 	return rc;
4393 out:
4394 	rcu_read_unlock_bh();
4395 	return rc;
4396 }
4397 EXPORT_SYMBOL(__dev_queue_xmit);
4398 
4399 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4400 {
4401 	struct net_device *dev = skb->dev;
4402 	struct sk_buff *orig_skb = skb;
4403 	struct netdev_queue *txq;
4404 	int ret = NETDEV_TX_BUSY;
4405 	bool again = false;
4406 
4407 	if (unlikely(!netif_running(dev) ||
4408 		     !netif_carrier_ok(dev)))
4409 		goto drop;
4410 
4411 	skb = validate_xmit_skb_list(skb, dev, &again);
4412 	if (skb != orig_skb)
4413 		goto drop;
4414 
4415 	skb_set_queue_mapping(skb, queue_id);
4416 	txq = skb_get_tx_queue(dev, skb);
4417 
4418 	local_bh_disable();
4419 
4420 	dev_xmit_recursion_inc();
4421 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4422 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4423 		ret = netdev_start_xmit(skb, dev, txq, false);
4424 	HARD_TX_UNLOCK(dev, txq);
4425 	dev_xmit_recursion_dec();
4426 
4427 	local_bh_enable();
4428 	return ret;
4429 drop:
4430 	dev_core_stats_tx_dropped_inc(dev);
4431 	kfree_skb_list(skb);
4432 	return NET_XMIT_DROP;
4433 }
4434 EXPORT_SYMBOL(__dev_direct_xmit);
4435 
4436 /*************************************************************************
4437  *			Receiver routines
4438  *************************************************************************/
4439 
4440 int netdev_max_backlog __read_mostly = 1000;
4441 EXPORT_SYMBOL(netdev_max_backlog);
4442 
4443 int netdev_tstamp_prequeue __read_mostly = 1;
4444 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4445 int netdev_budget __read_mostly = 300;
4446 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4447 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4448 int weight_p __read_mostly = 64;           /* old backlog weight */
4449 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4450 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4451 int dev_rx_weight __read_mostly = 64;
4452 int dev_tx_weight __read_mostly = 64;
4453 
4454 /* Called with irq disabled */
4455 static inline void ____napi_schedule(struct softnet_data *sd,
4456 				     struct napi_struct *napi)
4457 {
4458 	struct task_struct *thread;
4459 
4460 	lockdep_assert_irqs_disabled();
4461 
4462 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4463 		/* Paired with smp_mb__before_atomic() in
4464 		 * napi_enable()/dev_set_threaded().
4465 		 * Use READ_ONCE() to guarantee a complete
4466 		 * read on napi->thread. Only call
4467 		 * wake_up_process() when it's not NULL.
4468 		 */
4469 		thread = READ_ONCE(napi->thread);
4470 		if (thread) {
4471 			/* Avoid doing set_bit() if the thread is in
4472 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4473 			 * makes sure to proceed with napi polling
4474 			 * if the thread is explicitly woken from here.
4475 			 */
4476 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4477 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4478 			wake_up_process(thread);
4479 			return;
4480 		}
4481 	}
4482 
4483 	list_add_tail(&napi->poll_list, &sd->poll_list);
4484 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4485 	/* If not called from net_rx_action()
4486 	 * we have to raise NET_RX_SOFTIRQ.
4487 	 */
4488 	if (!sd->in_net_rx_action)
4489 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4490 }
4491 
4492 #ifdef CONFIG_RPS
4493 
4494 /* One global table that all flow-based protocols share. */
4495 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4496 EXPORT_SYMBOL(rps_sock_flow_table);
4497 u32 rps_cpu_mask __read_mostly;
4498 EXPORT_SYMBOL(rps_cpu_mask);
4499 
4500 struct static_key_false rps_needed __read_mostly;
4501 EXPORT_SYMBOL(rps_needed);
4502 struct static_key_false rfs_needed __read_mostly;
4503 EXPORT_SYMBOL(rfs_needed);
4504 
4505 static struct rps_dev_flow *
4506 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4507 	    struct rps_dev_flow *rflow, u16 next_cpu)
4508 {
4509 	if (next_cpu < nr_cpu_ids) {
4510 #ifdef CONFIG_RFS_ACCEL
4511 		struct netdev_rx_queue *rxqueue;
4512 		struct rps_dev_flow_table *flow_table;
4513 		struct rps_dev_flow *old_rflow;
4514 		u32 flow_id;
4515 		u16 rxq_index;
4516 		int rc;
4517 
4518 		/* Should we steer this flow to a different hardware queue? */
4519 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4520 		    !(dev->features & NETIF_F_NTUPLE))
4521 			goto out;
4522 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4523 		if (rxq_index == skb_get_rx_queue(skb))
4524 			goto out;
4525 
4526 		rxqueue = dev->_rx + rxq_index;
4527 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4528 		if (!flow_table)
4529 			goto out;
4530 		flow_id = skb_get_hash(skb) & flow_table->mask;
4531 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4532 							rxq_index, flow_id);
4533 		if (rc < 0)
4534 			goto out;
4535 		old_rflow = rflow;
4536 		rflow = &flow_table->flows[flow_id];
4537 		rflow->filter = rc;
4538 		if (old_rflow->filter == rflow->filter)
4539 			old_rflow->filter = RPS_NO_FILTER;
4540 	out:
4541 #endif
4542 		rflow->last_qtail =
4543 			per_cpu(softnet_data, next_cpu).input_queue_head;
4544 	}
4545 
4546 	rflow->cpu = next_cpu;
4547 	return rflow;
4548 }
4549 
4550 /*
4551  * get_rps_cpu is called from netif_receive_skb and returns the target
4552  * CPU from the RPS map of the receiving queue for a given skb.
4553  * rcu_read_lock must be held on entry.
4554  */
4555 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4556 		       struct rps_dev_flow **rflowp)
4557 {
4558 	const struct rps_sock_flow_table *sock_flow_table;
4559 	struct netdev_rx_queue *rxqueue = dev->_rx;
4560 	struct rps_dev_flow_table *flow_table;
4561 	struct rps_map *map;
4562 	int cpu = -1;
4563 	u32 tcpu;
4564 	u32 hash;
4565 
4566 	if (skb_rx_queue_recorded(skb)) {
4567 		u16 index = skb_get_rx_queue(skb);
4568 
4569 		if (unlikely(index >= dev->real_num_rx_queues)) {
4570 			WARN_ONCE(dev->real_num_rx_queues > 1,
4571 				  "%s received packet on queue %u, but number "
4572 				  "of RX queues is %u\n",
4573 				  dev->name, index, dev->real_num_rx_queues);
4574 			goto done;
4575 		}
4576 		rxqueue += index;
4577 	}
4578 
4579 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4580 
4581 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4582 	map = rcu_dereference(rxqueue->rps_map);
4583 	if (!flow_table && !map)
4584 		goto done;
4585 
4586 	skb_reset_network_header(skb);
4587 	hash = skb_get_hash(skb);
4588 	if (!hash)
4589 		goto done;
4590 
4591 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4592 	if (flow_table && sock_flow_table) {
4593 		struct rps_dev_flow *rflow;
4594 		u32 next_cpu;
4595 		u32 ident;
4596 
4597 		/* First check into global flow table if there is a match.
4598 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4599 		 */
4600 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4601 		if ((ident ^ hash) & ~rps_cpu_mask)
4602 			goto try_rps;
4603 
4604 		next_cpu = ident & rps_cpu_mask;
4605 
4606 		/* OK, now we know there is a match,
4607 		 * we can look at the local (per receive queue) flow table
4608 		 */
4609 		rflow = &flow_table->flows[hash & flow_table->mask];
4610 		tcpu = rflow->cpu;
4611 
4612 		/*
4613 		 * If the desired CPU (where last recvmsg was done) is
4614 		 * different from current CPU (one in the rx-queue flow
4615 		 * table entry), switch if one of the following holds:
4616 		 *   - Current CPU is unset (>= nr_cpu_ids).
4617 		 *   - Current CPU is offline.
4618 		 *   - The current CPU's queue tail has advanced beyond the
4619 		 *     last packet that was enqueued using this table entry.
4620 		 *     This guarantees that all previous packets for the flow
4621 		 *     have been dequeued, thus preserving in order delivery.
4622 		 */
4623 		if (unlikely(tcpu != next_cpu) &&
4624 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4625 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4626 		      rflow->last_qtail)) >= 0)) {
4627 			tcpu = next_cpu;
4628 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4629 		}
4630 
4631 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4632 			*rflowp = rflow;
4633 			cpu = tcpu;
4634 			goto done;
4635 		}
4636 	}
4637 
4638 try_rps:
4639 
4640 	if (map) {
4641 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4642 		if (cpu_online(tcpu)) {
4643 			cpu = tcpu;
4644 			goto done;
4645 		}
4646 	}
4647 
4648 done:
4649 	return cpu;
4650 }
4651 
4652 #ifdef CONFIG_RFS_ACCEL
4653 
4654 /**
4655  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4656  * @dev: Device on which the filter was set
4657  * @rxq_index: RX queue index
4658  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4659  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4660  *
4661  * Drivers that implement ndo_rx_flow_steer() should periodically call
4662  * this function for each installed filter and remove the filters for
4663  * which it returns %true.
4664  */
4665 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4666 			 u32 flow_id, u16 filter_id)
4667 {
4668 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4669 	struct rps_dev_flow_table *flow_table;
4670 	struct rps_dev_flow *rflow;
4671 	bool expire = true;
4672 	unsigned int cpu;
4673 
4674 	rcu_read_lock();
4675 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4676 	if (flow_table && flow_id <= flow_table->mask) {
4677 		rflow = &flow_table->flows[flow_id];
4678 		cpu = READ_ONCE(rflow->cpu);
4679 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4680 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4681 			   rflow->last_qtail) <
4682 		     (int)(10 * flow_table->mask)))
4683 			expire = false;
4684 	}
4685 	rcu_read_unlock();
4686 	return expire;
4687 }
4688 EXPORT_SYMBOL(rps_may_expire_flow);
4689 
4690 #endif /* CONFIG_RFS_ACCEL */
4691 
4692 /* Called from hardirq (IPI) context */
4693 static void rps_trigger_softirq(void *data)
4694 {
4695 	struct softnet_data *sd = data;
4696 
4697 	____napi_schedule(sd, &sd->backlog);
4698 	sd->received_rps++;
4699 }
4700 
4701 #endif /* CONFIG_RPS */
4702 
4703 /* Called from hardirq (IPI) context */
4704 static void trigger_rx_softirq(void *data)
4705 {
4706 	struct softnet_data *sd = data;
4707 
4708 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4709 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4710 }
4711 
4712 /*
4713  * After we queued a packet into sd->input_pkt_queue,
4714  * we need to make sure this queue is serviced soon.
4715  *
4716  * - If this is another cpu queue, link it to our rps_ipi_list,
4717  *   and make sure we will process rps_ipi_list from net_rx_action().
4718  *
4719  * - If this is our own queue, NAPI schedule our backlog.
4720  *   Note that this also raises NET_RX_SOFTIRQ.
4721  */
4722 static void napi_schedule_rps(struct softnet_data *sd)
4723 {
4724 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4725 
4726 #ifdef CONFIG_RPS
4727 	if (sd != mysd) {
4728 		sd->rps_ipi_next = mysd->rps_ipi_list;
4729 		mysd->rps_ipi_list = sd;
4730 
4731 		/* If not called from net_rx_action() or napi_threaded_poll()
4732 		 * we have to raise NET_RX_SOFTIRQ.
4733 		 */
4734 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4735 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4736 		return;
4737 	}
4738 #endif /* CONFIG_RPS */
4739 	__napi_schedule_irqoff(&mysd->backlog);
4740 }
4741 
4742 #ifdef CONFIG_NET_FLOW_LIMIT
4743 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4744 #endif
4745 
4746 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4747 {
4748 #ifdef CONFIG_NET_FLOW_LIMIT
4749 	struct sd_flow_limit *fl;
4750 	struct softnet_data *sd;
4751 	unsigned int old_flow, new_flow;
4752 
4753 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4754 		return false;
4755 
4756 	sd = this_cpu_ptr(&softnet_data);
4757 
4758 	rcu_read_lock();
4759 	fl = rcu_dereference(sd->flow_limit);
4760 	if (fl) {
4761 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4762 		old_flow = fl->history[fl->history_head];
4763 		fl->history[fl->history_head] = new_flow;
4764 
4765 		fl->history_head++;
4766 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4767 
4768 		if (likely(fl->buckets[old_flow]))
4769 			fl->buckets[old_flow]--;
4770 
4771 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4772 			fl->count++;
4773 			rcu_read_unlock();
4774 			return true;
4775 		}
4776 	}
4777 	rcu_read_unlock();
4778 #endif
4779 	return false;
4780 }
4781 
4782 /*
4783  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4784  * queue (may be a remote CPU queue).
4785  */
4786 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4787 			      unsigned int *qtail)
4788 {
4789 	enum skb_drop_reason reason;
4790 	struct softnet_data *sd;
4791 	unsigned long flags;
4792 	unsigned int qlen;
4793 
4794 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4795 	sd = &per_cpu(softnet_data, cpu);
4796 
4797 	rps_lock_irqsave(sd, &flags);
4798 	if (!netif_running(skb->dev))
4799 		goto drop;
4800 	qlen = skb_queue_len(&sd->input_pkt_queue);
4801 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4802 		if (qlen) {
4803 enqueue:
4804 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4805 			input_queue_tail_incr_save(sd, qtail);
4806 			rps_unlock_irq_restore(sd, &flags);
4807 			return NET_RX_SUCCESS;
4808 		}
4809 
4810 		/* Schedule NAPI for backlog device
4811 		 * We can use non atomic operation since we own the queue lock
4812 		 */
4813 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4814 			napi_schedule_rps(sd);
4815 		goto enqueue;
4816 	}
4817 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4818 
4819 drop:
4820 	sd->dropped++;
4821 	rps_unlock_irq_restore(sd, &flags);
4822 
4823 	dev_core_stats_rx_dropped_inc(skb->dev);
4824 	kfree_skb_reason(skb, reason);
4825 	return NET_RX_DROP;
4826 }
4827 
4828 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4829 {
4830 	struct net_device *dev = skb->dev;
4831 	struct netdev_rx_queue *rxqueue;
4832 
4833 	rxqueue = dev->_rx;
4834 
4835 	if (skb_rx_queue_recorded(skb)) {
4836 		u16 index = skb_get_rx_queue(skb);
4837 
4838 		if (unlikely(index >= dev->real_num_rx_queues)) {
4839 			WARN_ONCE(dev->real_num_rx_queues > 1,
4840 				  "%s received packet on queue %u, but number "
4841 				  "of RX queues is %u\n",
4842 				  dev->name, index, dev->real_num_rx_queues);
4843 
4844 			return rxqueue; /* Return first rxqueue */
4845 		}
4846 		rxqueue += index;
4847 	}
4848 	return rxqueue;
4849 }
4850 
4851 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4852 			     struct bpf_prog *xdp_prog)
4853 {
4854 	void *orig_data, *orig_data_end, *hard_start;
4855 	struct netdev_rx_queue *rxqueue;
4856 	bool orig_bcast, orig_host;
4857 	u32 mac_len, frame_sz;
4858 	__be16 orig_eth_type;
4859 	struct ethhdr *eth;
4860 	u32 metalen, act;
4861 	int off;
4862 
4863 	/* The XDP program wants to see the packet starting at the MAC
4864 	 * header.
4865 	 */
4866 	mac_len = skb->data - skb_mac_header(skb);
4867 	hard_start = skb->data - skb_headroom(skb);
4868 
4869 	/* SKB "head" area always have tailroom for skb_shared_info */
4870 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4871 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4872 
4873 	rxqueue = netif_get_rxqueue(skb);
4874 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4875 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4876 			 skb_headlen(skb) + mac_len, true);
4877 
4878 	orig_data_end = xdp->data_end;
4879 	orig_data = xdp->data;
4880 	eth = (struct ethhdr *)xdp->data;
4881 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4882 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4883 	orig_eth_type = eth->h_proto;
4884 
4885 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4886 
4887 	/* check if bpf_xdp_adjust_head was used */
4888 	off = xdp->data - orig_data;
4889 	if (off) {
4890 		if (off > 0)
4891 			__skb_pull(skb, off);
4892 		else if (off < 0)
4893 			__skb_push(skb, -off);
4894 
4895 		skb->mac_header += off;
4896 		skb_reset_network_header(skb);
4897 	}
4898 
4899 	/* check if bpf_xdp_adjust_tail was used */
4900 	off = xdp->data_end - orig_data_end;
4901 	if (off != 0) {
4902 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4903 		skb->len += off; /* positive on grow, negative on shrink */
4904 	}
4905 
4906 	/* check if XDP changed eth hdr such SKB needs update */
4907 	eth = (struct ethhdr *)xdp->data;
4908 	if ((orig_eth_type != eth->h_proto) ||
4909 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4910 						  skb->dev->dev_addr)) ||
4911 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4912 		__skb_push(skb, ETH_HLEN);
4913 		skb->pkt_type = PACKET_HOST;
4914 		skb->protocol = eth_type_trans(skb, skb->dev);
4915 	}
4916 
4917 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4918 	 * before calling us again on redirect path. We do not call do_redirect
4919 	 * as we leave that up to the caller.
4920 	 *
4921 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4922 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4923 	 */
4924 	switch (act) {
4925 	case XDP_REDIRECT:
4926 	case XDP_TX:
4927 		__skb_push(skb, mac_len);
4928 		break;
4929 	case XDP_PASS:
4930 		metalen = xdp->data - xdp->data_meta;
4931 		if (metalen)
4932 			skb_metadata_set(skb, metalen);
4933 		break;
4934 	}
4935 
4936 	return act;
4937 }
4938 
4939 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4940 				     struct xdp_buff *xdp,
4941 				     struct bpf_prog *xdp_prog)
4942 {
4943 	u32 act = XDP_DROP;
4944 
4945 	/* Reinjected packets coming from act_mirred or similar should
4946 	 * not get XDP generic processing.
4947 	 */
4948 	if (skb_is_redirected(skb))
4949 		return XDP_PASS;
4950 
4951 	/* XDP packets must be linear and must have sufficient headroom
4952 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4953 	 * native XDP provides, thus we need to do it here as well.
4954 	 */
4955 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4956 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4957 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4958 		int troom = skb->tail + skb->data_len - skb->end;
4959 
4960 		/* In case we have to go down the path and also linearize,
4961 		 * then lets do the pskb_expand_head() work just once here.
4962 		 */
4963 		if (pskb_expand_head(skb,
4964 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4965 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4966 			goto do_drop;
4967 		if (skb_linearize(skb))
4968 			goto do_drop;
4969 	}
4970 
4971 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4972 	switch (act) {
4973 	case XDP_REDIRECT:
4974 	case XDP_TX:
4975 	case XDP_PASS:
4976 		break;
4977 	default:
4978 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4979 		fallthrough;
4980 	case XDP_ABORTED:
4981 		trace_xdp_exception(skb->dev, xdp_prog, act);
4982 		fallthrough;
4983 	case XDP_DROP:
4984 	do_drop:
4985 		kfree_skb(skb);
4986 		break;
4987 	}
4988 
4989 	return act;
4990 }
4991 
4992 /* When doing generic XDP we have to bypass the qdisc layer and the
4993  * network taps in order to match in-driver-XDP behavior. This also means
4994  * that XDP packets are able to starve other packets going through a qdisc,
4995  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4996  * queues, so they do not have this starvation issue.
4997  */
4998 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4999 {
5000 	struct net_device *dev = skb->dev;
5001 	struct netdev_queue *txq;
5002 	bool free_skb = true;
5003 	int cpu, rc;
5004 
5005 	txq = netdev_core_pick_tx(dev, skb, NULL);
5006 	cpu = smp_processor_id();
5007 	HARD_TX_LOCK(dev, txq, cpu);
5008 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5009 		rc = netdev_start_xmit(skb, dev, txq, 0);
5010 		if (dev_xmit_complete(rc))
5011 			free_skb = false;
5012 	}
5013 	HARD_TX_UNLOCK(dev, txq);
5014 	if (free_skb) {
5015 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5016 		dev_core_stats_tx_dropped_inc(dev);
5017 		kfree_skb(skb);
5018 	}
5019 }
5020 
5021 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5022 
5023 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5024 {
5025 	if (xdp_prog) {
5026 		struct xdp_buff xdp;
5027 		u32 act;
5028 		int err;
5029 
5030 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5031 		if (act != XDP_PASS) {
5032 			switch (act) {
5033 			case XDP_REDIRECT:
5034 				err = xdp_do_generic_redirect(skb->dev, skb,
5035 							      &xdp, xdp_prog);
5036 				if (err)
5037 					goto out_redir;
5038 				break;
5039 			case XDP_TX:
5040 				generic_xdp_tx(skb, xdp_prog);
5041 				break;
5042 			}
5043 			return XDP_DROP;
5044 		}
5045 	}
5046 	return XDP_PASS;
5047 out_redir:
5048 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5049 	return XDP_DROP;
5050 }
5051 EXPORT_SYMBOL_GPL(do_xdp_generic);
5052 
5053 static int netif_rx_internal(struct sk_buff *skb)
5054 {
5055 	int ret;
5056 
5057 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5058 
5059 	trace_netif_rx(skb);
5060 
5061 #ifdef CONFIG_RPS
5062 	if (static_branch_unlikely(&rps_needed)) {
5063 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5064 		int cpu;
5065 
5066 		rcu_read_lock();
5067 
5068 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5069 		if (cpu < 0)
5070 			cpu = smp_processor_id();
5071 
5072 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5073 
5074 		rcu_read_unlock();
5075 	} else
5076 #endif
5077 	{
5078 		unsigned int qtail;
5079 
5080 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5081 	}
5082 	return ret;
5083 }
5084 
5085 /**
5086  *	__netif_rx	-	Slightly optimized version of netif_rx
5087  *	@skb: buffer to post
5088  *
5089  *	This behaves as netif_rx except that it does not disable bottom halves.
5090  *	As a result this function may only be invoked from the interrupt context
5091  *	(either hard or soft interrupt).
5092  */
5093 int __netif_rx(struct sk_buff *skb)
5094 {
5095 	int ret;
5096 
5097 	lockdep_assert_once(hardirq_count() | softirq_count());
5098 
5099 	trace_netif_rx_entry(skb);
5100 	ret = netif_rx_internal(skb);
5101 	trace_netif_rx_exit(ret);
5102 	return ret;
5103 }
5104 EXPORT_SYMBOL(__netif_rx);
5105 
5106 /**
5107  *	netif_rx	-	post buffer to the network code
5108  *	@skb: buffer to post
5109  *
5110  *	This function receives a packet from a device driver and queues it for
5111  *	the upper (protocol) levels to process via the backlog NAPI device. It
5112  *	always succeeds. The buffer may be dropped during processing for
5113  *	congestion control or by the protocol layers.
5114  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5115  *	driver should use NAPI and GRO.
5116  *	This function can used from interrupt and from process context. The
5117  *	caller from process context must not disable interrupts before invoking
5118  *	this function.
5119  *
5120  *	return values:
5121  *	NET_RX_SUCCESS	(no congestion)
5122  *	NET_RX_DROP     (packet was dropped)
5123  *
5124  */
5125 int netif_rx(struct sk_buff *skb)
5126 {
5127 	bool need_bh_off = !(hardirq_count() | softirq_count());
5128 	int ret;
5129 
5130 	if (need_bh_off)
5131 		local_bh_disable();
5132 	trace_netif_rx_entry(skb);
5133 	ret = netif_rx_internal(skb);
5134 	trace_netif_rx_exit(ret);
5135 	if (need_bh_off)
5136 		local_bh_enable();
5137 	return ret;
5138 }
5139 EXPORT_SYMBOL(netif_rx);
5140 
5141 static __latent_entropy void net_tx_action(struct softirq_action *h)
5142 {
5143 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5144 
5145 	if (sd->completion_queue) {
5146 		struct sk_buff *clist;
5147 
5148 		local_irq_disable();
5149 		clist = sd->completion_queue;
5150 		sd->completion_queue = NULL;
5151 		local_irq_enable();
5152 
5153 		while (clist) {
5154 			struct sk_buff *skb = clist;
5155 
5156 			clist = clist->next;
5157 
5158 			WARN_ON(refcount_read(&skb->users));
5159 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5160 				trace_consume_skb(skb, net_tx_action);
5161 			else
5162 				trace_kfree_skb(skb, net_tx_action,
5163 						get_kfree_skb_cb(skb)->reason);
5164 
5165 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5166 				__kfree_skb(skb);
5167 			else
5168 				__napi_kfree_skb(skb,
5169 						 get_kfree_skb_cb(skb)->reason);
5170 		}
5171 	}
5172 
5173 	if (sd->output_queue) {
5174 		struct Qdisc *head;
5175 
5176 		local_irq_disable();
5177 		head = sd->output_queue;
5178 		sd->output_queue = NULL;
5179 		sd->output_queue_tailp = &sd->output_queue;
5180 		local_irq_enable();
5181 
5182 		rcu_read_lock();
5183 
5184 		while (head) {
5185 			struct Qdisc *q = head;
5186 			spinlock_t *root_lock = NULL;
5187 
5188 			head = head->next_sched;
5189 
5190 			/* We need to make sure head->next_sched is read
5191 			 * before clearing __QDISC_STATE_SCHED
5192 			 */
5193 			smp_mb__before_atomic();
5194 
5195 			if (!(q->flags & TCQ_F_NOLOCK)) {
5196 				root_lock = qdisc_lock(q);
5197 				spin_lock(root_lock);
5198 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5199 						     &q->state))) {
5200 				/* There is a synchronize_net() between
5201 				 * STATE_DEACTIVATED flag being set and
5202 				 * qdisc_reset()/some_qdisc_is_busy() in
5203 				 * dev_deactivate(), so we can safely bail out
5204 				 * early here to avoid data race between
5205 				 * qdisc_deactivate() and some_qdisc_is_busy()
5206 				 * for lockless qdisc.
5207 				 */
5208 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5209 				continue;
5210 			}
5211 
5212 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5213 			qdisc_run(q);
5214 			if (root_lock)
5215 				spin_unlock(root_lock);
5216 		}
5217 
5218 		rcu_read_unlock();
5219 	}
5220 
5221 	xfrm_dev_backlog(sd);
5222 }
5223 
5224 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5225 /* This hook is defined here for ATM LANE */
5226 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5227 			     unsigned char *addr) __read_mostly;
5228 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5229 #endif
5230 
5231 /**
5232  *	netdev_is_rx_handler_busy - check if receive handler is registered
5233  *	@dev: device to check
5234  *
5235  *	Check if a receive handler is already registered for a given device.
5236  *	Return true if there one.
5237  *
5238  *	The caller must hold the rtnl_mutex.
5239  */
5240 bool netdev_is_rx_handler_busy(struct net_device *dev)
5241 {
5242 	ASSERT_RTNL();
5243 	return dev && rtnl_dereference(dev->rx_handler);
5244 }
5245 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5246 
5247 /**
5248  *	netdev_rx_handler_register - register receive handler
5249  *	@dev: device to register a handler for
5250  *	@rx_handler: receive handler to register
5251  *	@rx_handler_data: data pointer that is used by rx handler
5252  *
5253  *	Register a receive handler for a device. This handler will then be
5254  *	called from __netif_receive_skb. A negative errno code is returned
5255  *	on a failure.
5256  *
5257  *	The caller must hold the rtnl_mutex.
5258  *
5259  *	For a general description of rx_handler, see enum rx_handler_result.
5260  */
5261 int netdev_rx_handler_register(struct net_device *dev,
5262 			       rx_handler_func_t *rx_handler,
5263 			       void *rx_handler_data)
5264 {
5265 	if (netdev_is_rx_handler_busy(dev))
5266 		return -EBUSY;
5267 
5268 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5269 		return -EINVAL;
5270 
5271 	/* Note: rx_handler_data must be set before rx_handler */
5272 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5273 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5274 
5275 	return 0;
5276 }
5277 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5278 
5279 /**
5280  *	netdev_rx_handler_unregister - unregister receive handler
5281  *	@dev: device to unregister a handler from
5282  *
5283  *	Unregister a receive handler from a device.
5284  *
5285  *	The caller must hold the rtnl_mutex.
5286  */
5287 void netdev_rx_handler_unregister(struct net_device *dev)
5288 {
5289 
5290 	ASSERT_RTNL();
5291 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5292 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5293 	 * section has a guarantee to see a non NULL rx_handler_data
5294 	 * as well.
5295 	 */
5296 	synchronize_net();
5297 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5298 }
5299 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5300 
5301 /*
5302  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5303  * the special handling of PFMEMALLOC skbs.
5304  */
5305 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5306 {
5307 	switch (skb->protocol) {
5308 	case htons(ETH_P_ARP):
5309 	case htons(ETH_P_IP):
5310 	case htons(ETH_P_IPV6):
5311 	case htons(ETH_P_8021Q):
5312 	case htons(ETH_P_8021AD):
5313 		return true;
5314 	default:
5315 		return false;
5316 	}
5317 }
5318 
5319 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5320 			     int *ret, struct net_device *orig_dev)
5321 {
5322 	if (nf_hook_ingress_active(skb)) {
5323 		int ingress_retval;
5324 
5325 		if (*pt_prev) {
5326 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5327 			*pt_prev = NULL;
5328 		}
5329 
5330 		rcu_read_lock();
5331 		ingress_retval = nf_hook_ingress(skb);
5332 		rcu_read_unlock();
5333 		return ingress_retval;
5334 	}
5335 	return 0;
5336 }
5337 
5338 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5339 				    struct packet_type **ppt_prev)
5340 {
5341 	struct packet_type *ptype, *pt_prev;
5342 	rx_handler_func_t *rx_handler;
5343 	struct sk_buff *skb = *pskb;
5344 	struct net_device *orig_dev;
5345 	bool deliver_exact = false;
5346 	int ret = NET_RX_DROP;
5347 	__be16 type;
5348 
5349 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5350 
5351 	trace_netif_receive_skb(skb);
5352 
5353 	orig_dev = skb->dev;
5354 
5355 	skb_reset_network_header(skb);
5356 	if (!skb_transport_header_was_set(skb))
5357 		skb_reset_transport_header(skb);
5358 	skb_reset_mac_len(skb);
5359 
5360 	pt_prev = NULL;
5361 
5362 another_round:
5363 	skb->skb_iif = skb->dev->ifindex;
5364 
5365 	__this_cpu_inc(softnet_data.processed);
5366 
5367 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5368 		int ret2;
5369 
5370 		migrate_disable();
5371 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5372 		migrate_enable();
5373 
5374 		if (ret2 != XDP_PASS) {
5375 			ret = NET_RX_DROP;
5376 			goto out;
5377 		}
5378 	}
5379 
5380 	if (eth_type_vlan(skb->protocol)) {
5381 		skb = skb_vlan_untag(skb);
5382 		if (unlikely(!skb))
5383 			goto out;
5384 	}
5385 
5386 	if (skb_skip_tc_classify(skb))
5387 		goto skip_classify;
5388 
5389 	if (pfmemalloc)
5390 		goto skip_taps;
5391 
5392 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5393 		if (pt_prev)
5394 			ret = deliver_skb(skb, pt_prev, orig_dev);
5395 		pt_prev = ptype;
5396 	}
5397 
5398 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5399 		if (pt_prev)
5400 			ret = deliver_skb(skb, pt_prev, orig_dev);
5401 		pt_prev = ptype;
5402 	}
5403 
5404 skip_taps:
5405 #ifdef CONFIG_NET_INGRESS
5406 	if (static_branch_unlikely(&ingress_needed_key)) {
5407 		bool another = false;
5408 
5409 		nf_skip_egress(skb, true);
5410 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5411 					 &another);
5412 		if (another)
5413 			goto another_round;
5414 		if (!skb)
5415 			goto out;
5416 
5417 		nf_skip_egress(skb, false);
5418 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5419 			goto out;
5420 	}
5421 #endif
5422 	skb_reset_redirect(skb);
5423 skip_classify:
5424 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5425 		goto drop;
5426 
5427 	if (skb_vlan_tag_present(skb)) {
5428 		if (pt_prev) {
5429 			ret = deliver_skb(skb, pt_prev, orig_dev);
5430 			pt_prev = NULL;
5431 		}
5432 		if (vlan_do_receive(&skb))
5433 			goto another_round;
5434 		else if (unlikely(!skb))
5435 			goto out;
5436 	}
5437 
5438 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5439 	if (rx_handler) {
5440 		if (pt_prev) {
5441 			ret = deliver_skb(skb, pt_prev, orig_dev);
5442 			pt_prev = NULL;
5443 		}
5444 		switch (rx_handler(&skb)) {
5445 		case RX_HANDLER_CONSUMED:
5446 			ret = NET_RX_SUCCESS;
5447 			goto out;
5448 		case RX_HANDLER_ANOTHER:
5449 			goto another_round;
5450 		case RX_HANDLER_EXACT:
5451 			deliver_exact = true;
5452 			break;
5453 		case RX_HANDLER_PASS:
5454 			break;
5455 		default:
5456 			BUG();
5457 		}
5458 	}
5459 
5460 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5461 check_vlan_id:
5462 		if (skb_vlan_tag_get_id(skb)) {
5463 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5464 			 * find vlan device.
5465 			 */
5466 			skb->pkt_type = PACKET_OTHERHOST;
5467 		} else if (eth_type_vlan(skb->protocol)) {
5468 			/* Outer header is 802.1P with vlan 0, inner header is
5469 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5470 			 * not find vlan dev for vlan id 0.
5471 			 */
5472 			__vlan_hwaccel_clear_tag(skb);
5473 			skb = skb_vlan_untag(skb);
5474 			if (unlikely(!skb))
5475 				goto out;
5476 			if (vlan_do_receive(&skb))
5477 				/* After stripping off 802.1P header with vlan 0
5478 				 * vlan dev is found for inner header.
5479 				 */
5480 				goto another_round;
5481 			else if (unlikely(!skb))
5482 				goto out;
5483 			else
5484 				/* We have stripped outer 802.1P vlan 0 header.
5485 				 * But could not find vlan dev.
5486 				 * check again for vlan id to set OTHERHOST.
5487 				 */
5488 				goto check_vlan_id;
5489 		}
5490 		/* Note: we might in the future use prio bits
5491 		 * and set skb->priority like in vlan_do_receive()
5492 		 * For the time being, just ignore Priority Code Point
5493 		 */
5494 		__vlan_hwaccel_clear_tag(skb);
5495 	}
5496 
5497 	type = skb->protocol;
5498 
5499 	/* deliver only exact match when indicated */
5500 	if (likely(!deliver_exact)) {
5501 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5502 				       &ptype_base[ntohs(type) &
5503 						   PTYPE_HASH_MASK]);
5504 	}
5505 
5506 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5507 			       &orig_dev->ptype_specific);
5508 
5509 	if (unlikely(skb->dev != orig_dev)) {
5510 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5511 				       &skb->dev->ptype_specific);
5512 	}
5513 
5514 	if (pt_prev) {
5515 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5516 			goto drop;
5517 		*ppt_prev = pt_prev;
5518 	} else {
5519 drop:
5520 		if (!deliver_exact)
5521 			dev_core_stats_rx_dropped_inc(skb->dev);
5522 		else
5523 			dev_core_stats_rx_nohandler_inc(skb->dev);
5524 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5525 		/* Jamal, now you will not able to escape explaining
5526 		 * me how you were going to use this. :-)
5527 		 */
5528 		ret = NET_RX_DROP;
5529 	}
5530 
5531 out:
5532 	/* The invariant here is that if *ppt_prev is not NULL
5533 	 * then skb should also be non-NULL.
5534 	 *
5535 	 * Apparently *ppt_prev assignment above holds this invariant due to
5536 	 * skb dereferencing near it.
5537 	 */
5538 	*pskb = skb;
5539 	return ret;
5540 }
5541 
5542 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5543 {
5544 	struct net_device *orig_dev = skb->dev;
5545 	struct packet_type *pt_prev = NULL;
5546 	int ret;
5547 
5548 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5549 	if (pt_prev)
5550 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5551 					 skb->dev, pt_prev, orig_dev);
5552 	return ret;
5553 }
5554 
5555 /**
5556  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5557  *	@skb: buffer to process
5558  *
5559  *	More direct receive version of netif_receive_skb().  It should
5560  *	only be used by callers that have a need to skip RPS and Generic XDP.
5561  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5562  *
5563  *	This function may only be called from softirq context and interrupts
5564  *	should be enabled.
5565  *
5566  *	Return values (usually ignored):
5567  *	NET_RX_SUCCESS: no congestion
5568  *	NET_RX_DROP: packet was dropped
5569  */
5570 int netif_receive_skb_core(struct sk_buff *skb)
5571 {
5572 	int ret;
5573 
5574 	rcu_read_lock();
5575 	ret = __netif_receive_skb_one_core(skb, false);
5576 	rcu_read_unlock();
5577 
5578 	return ret;
5579 }
5580 EXPORT_SYMBOL(netif_receive_skb_core);
5581 
5582 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5583 						  struct packet_type *pt_prev,
5584 						  struct net_device *orig_dev)
5585 {
5586 	struct sk_buff *skb, *next;
5587 
5588 	if (!pt_prev)
5589 		return;
5590 	if (list_empty(head))
5591 		return;
5592 	if (pt_prev->list_func != NULL)
5593 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5594 				   ip_list_rcv, head, pt_prev, orig_dev);
5595 	else
5596 		list_for_each_entry_safe(skb, next, head, list) {
5597 			skb_list_del_init(skb);
5598 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5599 		}
5600 }
5601 
5602 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5603 {
5604 	/* Fast-path assumptions:
5605 	 * - There is no RX handler.
5606 	 * - Only one packet_type matches.
5607 	 * If either of these fails, we will end up doing some per-packet
5608 	 * processing in-line, then handling the 'last ptype' for the whole
5609 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5610 	 * because the 'last ptype' must be constant across the sublist, and all
5611 	 * other ptypes are handled per-packet.
5612 	 */
5613 	/* Current (common) ptype of sublist */
5614 	struct packet_type *pt_curr = NULL;
5615 	/* Current (common) orig_dev of sublist */
5616 	struct net_device *od_curr = NULL;
5617 	struct list_head sublist;
5618 	struct sk_buff *skb, *next;
5619 
5620 	INIT_LIST_HEAD(&sublist);
5621 	list_for_each_entry_safe(skb, next, head, list) {
5622 		struct net_device *orig_dev = skb->dev;
5623 		struct packet_type *pt_prev = NULL;
5624 
5625 		skb_list_del_init(skb);
5626 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5627 		if (!pt_prev)
5628 			continue;
5629 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5630 			/* dispatch old sublist */
5631 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5632 			/* start new sublist */
5633 			INIT_LIST_HEAD(&sublist);
5634 			pt_curr = pt_prev;
5635 			od_curr = orig_dev;
5636 		}
5637 		list_add_tail(&skb->list, &sublist);
5638 	}
5639 
5640 	/* dispatch final sublist */
5641 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5642 }
5643 
5644 static int __netif_receive_skb(struct sk_buff *skb)
5645 {
5646 	int ret;
5647 
5648 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5649 		unsigned int noreclaim_flag;
5650 
5651 		/*
5652 		 * PFMEMALLOC skbs are special, they should
5653 		 * - be delivered to SOCK_MEMALLOC sockets only
5654 		 * - stay away from userspace
5655 		 * - have bounded memory usage
5656 		 *
5657 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5658 		 * context down to all allocation sites.
5659 		 */
5660 		noreclaim_flag = memalloc_noreclaim_save();
5661 		ret = __netif_receive_skb_one_core(skb, true);
5662 		memalloc_noreclaim_restore(noreclaim_flag);
5663 	} else
5664 		ret = __netif_receive_skb_one_core(skb, false);
5665 
5666 	return ret;
5667 }
5668 
5669 static void __netif_receive_skb_list(struct list_head *head)
5670 {
5671 	unsigned long noreclaim_flag = 0;
5672 	struct sk_buff *skb, *next;
5673 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5674 
5675 	list_for_each_entry_safe(skb, next, head, list) {
5676 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5677 			struct list_head sublist;
5678 
5679 			/* Handle the previous sublist */
5680 			list_cut_before(&sublist, head, &skb->list);
5681 			if (!list_empty(&sublist))
5682 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5683 			pfmemalloc = !pfmemalloc;
5684 			/* See comments in __netif_receive_skb */
5685 			if (pfmemalloc)
5686 				noreclaim_flag = memalloc_noreclaim_save();
5687 			else
5688 				memalloc_noreclaim_restore(noreclaim_flag);
5689 		}
5690 	}
5691 	/* Handle the remaining sublist */
5692 	if (!list_empty(head))
5693 		__netif_receive_skb_list_core(head, pfmemalloc);
5694 	/* Restore pflags */
5695 	if (pfmemalloc)
5696 		memalloc_noreclaim_restore(noreclaim_flag);
5697 }
5698 
5699 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5700 {
5701 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5702 	struct bpf_prog *new = xdp->prog;
5703 	int ret = 0;
5704 
5705 	switch (xdp->command) {
5706 	case XDP_SETUP_PROG:
5707 		rcu_assign_pointer(dev->xdp_prog, new);
5708 		if (old)
5709 			bpf_prog_put(old);
5710 
5711 		if (old && !new) {
5712 			static_branch_dec(&generic_xdp_needed_key);
5713 		} else if (new && !old) {
5714 			static_branch_inc(&generic_xdp_needed_key);
5715 			dev_disable_lro(dev);
5716 			dev_disable_gro_hw(dev);
5717 		}
5718 		break;
5719 
5720 	default:
5721 		ret = -EINVAL;
5722 		break;
5723 	}
5724 
5725 	return ret;
5726 }
5727 
5728 static int netif_receive_skb_internal(struct sk_buff *skb)
5729 {
5730 	int ret;
5731 
5732 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5733 
5734 	if (skb_defer_rx_timestamp(skb))
5735 		return NET_RX_SUCCESS;
5736 
5737 	rcu_read_lock();
5738 #ifdef CONFIG_RPS
5739 	if (static_branch_unlikely(&rps_needed)) {
5740 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5741 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5742 
5743 		if (cpu >= 0) {
5744 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5745 			rcu_read_unlock();
5746 			return ret;
5747 		}
5748 	}
5749 #endif
5750 	ret = __netif_receive_skb(skb);
5751 	rcu_read_unlock();
5752 	return ret;
5753 }
5754 
5755 void netif_receive_skb_list_internal(struct list_head *head)
5756 {
5757 	struct sk_buff *skb, *next;
5758 	struct list_head sublist;
5759 
5760 	INIT_LIST_HEAD(&sublist);
5761 	list_for_each_entry_safe(skb, next, head, list) {
5762 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5763 		skb_list_del_init(skb);
5764 		if (!skb_defer_rx_timestamp(skb))
5765 			list_add_tail(&skb->list, &sublist);
5766 	}
5767 	list_splice_init(&sublist, head);
5768 
5769 	rcu_read_lock();
5770 #ifdef CONFIG_RPS
5771 	if (static_branch_unlikely(&rps_needed)) {
5772 		list_for_each_entry_safe(skb, next, head, list) {
5773 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5774 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5775 
5776 			if (cpu >= 0) {
5777 				/* Will be handled, remove from list */
5778 				skb_list_del_init(skb);
5779 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5780 			}
5781 		}
5782 	}
5783 #endif
5784 	__netif_receive_skb_list(head);
5785 	rcu_read_unlock();
5786 }
5787 
5788 /**
5789  *	netif_receive_skb - process receive buffer from network
5790  *	@skb: buffer to process
5791  *
5792  *	netif_receive_skb() is the main receive data processing function.
5793  *	It always succeeds. The buffer may be dropped during processing
5794  *	for congestion control or by the protocol layers.
5795  *
5796  *	This function may only be called from softirq context and interrupts
5797  *	should be enabled.
5798  *
5799  *	Return values (usually ignored):
5800  *	NET_RX_SUCCESS: no congestion
5801  *	NET_RX_DROP: packet was dropped
5802  */
5803 int netif_receive_skb(struct sk_buff *skb)
5804 {
5805 	int ret;
5806 
5807 	trace_netif_receive_skb_entry(skb);
5808 
5809 	ret = netif_receive_skb_internal(skb);
5810 	trace_netif_receive_skb_exit(ret);
5811 
5812 	return ret;
5813 }
5814 EXPORT_SYMBOL(netif_receive_skb);
5815 
5816 /**
5817  *	netif_receive_skb_list - process many receive buffers from network
5818  *	@head: list of skbs to process.
5819  *
5820  *	Since return value of netif_receive_skb() is normally ignored, and
5821  *	wouldn't be meaningful for a list, this function returns void.
5822  *
5823  *	This function may only be called from softirq context and interrupts
5824  *	should be enabled.
5825  */
5826 void netif_receive_skb_list(struct list_head *head)
5827 {
5828 	struct sk_buff *skb;
5829 
5830 	if (list_empty(head))
5831 		return;
5832 	if (trace_netif_receive_skb_list_entry_enabled()) {
5833 		list_for_each_entry(skb, head, list)
5834 			trace_netif_receive_skb_list_entry(skb);
5835 	}
5836 	netif_receive_skb_list_internal(head);
5837 	trace_netif_receive_skb_list_exit(0);
5838 }
5839 EXPORT_SYMBOL(netif_receive_skb_list);
5840 
5841 static DEFINE_PER_CPU(struct work_struct, flush_works);
5842 
5843 /* Network device is going away, flush any packets still pending */
5844 static void flush_backlog(struct work_struct *work)
5845 {
5846 	struct sk_buff *skb, *tmp;
5847 	struct softnet_data *sd;
5848 
5849 	local_bh_disable();
5850 	sd = this_cpu_ptr(&softnet_data);
5851 
5852 	rps_lock_irq_disable(sd);
5853 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5854 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5855 			__skb_unlink(skb, &sd->input_pkt_queue);
5856 			dev_kfree_skb_irq(skb);
5857 			input_queue_head_incr(sd);
5858 		}
5859 	}
5860 	rps_unlock_irq_enable(sd);
5861 
5862 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5863 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5864 			__skb_unlink(skb, &sd->process_queue);
5865 			kfree_skb(skb);
5866 			input_queue_head_incr(sd);
5867 		}
5868 	}
5869 	local_bh_enable();
5870 }
5871 
5872 static bool flush_required(int cpu)
5873 {
5874 #if IS_ENABLED(CONFIG_RPS)
5875 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5876 	bool do_flush;
5877 
5878 	rps_lock_irq_disable(sd);
5879 
5880 	/* as insertion into process_queue happens with the rps lock held,
5881 	 * process_queue access may race only with dequeue
5882 	 */
5883 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5884 		   !skb_queue_empty_lockless(&sd->process_queue);
5885 	rps_unlock_irq_enable(sd);
5886 
5887 	return do_flush;
5888 #endif
5889 	/* without RPS we can't safely check input_pkt_queue: during a
5890 	 * concurrent remote skb_queue_splice() we can detect as empty both
5891 	 * input_pkt_queue and process_queue even if the latter could end-up
5892 	 * containing a lot of packets.
5893 	 */
5894 	return true;
5895 }
5896 
5897 static void flush_all_backlogs(void)
5898 {
5899 	static cpumask_t flush_cpus;
5900 	unsigned int cpu;
5901 
5902 	/* since we are under rtnl lock protection we can use static data
5903 	 * for the cpumask and avoid allocating on stack the possibly
5904 	 * large mask
5905 	 */
5906 	ASSERT_RTNL();
5907 
5908 	cpus_read_lock();
5909 
5910 	cpumask_clear(&flush_cpus);
5911 	for_each_online_cpu(cpu) {
5912 		if (flush_required(cpu)) {
5913 			queue_work_on(cpu, system_highpri_wq,
5914 				      per_cpu_ptr(&flush_works, cpu));
5915 			cpumask_set_cpu(cpu, &flush_cpus);
5916 		}
5917 	}
5918 
5919 	/* we can have in flight packet[s] on the cpus we are not flushing,
5920 	 * synchronize_net() in unregister_netdevice_many() will take care of
5921 	 * them
5922 	 */
5923 	for_each_cpu(cpu, &flush_cpus)
5924 		flush_work(per_cpu_ptr(&flush_works, cpu));
5925 
5926 	cpus_read_unlock();
5927 }
5928 
5929 static void net_rps_send_ipi(struct softnet_data *remsd)
5930 {
5931 #ifdef CONFIG_RPS
5932 	while (remsd) {
5933 		struct softnet_data *next = remsd->rps_ipi_next;
5934 
5935 		if (cpu_online(remsd->cpu))
5936 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5937 		remsd = next;
5938 	}
5939 #endif
5940 }
5941 
5942 /*
5943  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5944  * Note: called with local irq disabled, but exits with local irq enabled.
5945  */
5946 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5947 {
5948 #ifdef CONFIG_RPS
5949 	struct softnet_data *remsd = sd->rps_ipi_list;
5950 
5951 	if (remsd) {
5952 		sd->rps_ipi_list = NULL;
5953 
5954 		local_irq_enable();
5955 
5956 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5957 		net_rps_send_ipi(remsd);
5958 	} else
5959 #endif
5960 		local_irq_enable();
5961 }
5962 
5963 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5964 {
5965 #ifdef CONFIG_RPS
5966 	return sd->rps_ipi_list != NULL;
5967 #else
5968 	return false;
5969 #endif
5970 }
5971 
5972 static int process_backlog(struct napi_struct *napi, int quota)
5973 {
5974 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5975 	bool again = true;
5976 	int work = 0;
5977 
5978 	/* Check if we have pending ipi, its better to send them now,
5979 	 * not waiting net_rx_action() end.
5980 	 */
5981 	if (sd_has_rps_ipi_waiting(sd)) {
5982 		local_irq_disable();
5983 		net_rps_action_and_irq_enable(sd);
5984 	}
5985 
5986 	napi->weight = READ_ONCE(dev_rx_weight);
5987 	while (again) {
5988 		struct sk_buff *skb;
5989 
5990 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5991 			rcu_read_lock();
5992 			__netif_receive_skb(skb);
5993 			rcu_read_unlock();
5994 			input_queue_head_incr(sd);
5995 			if (++work >= quota)
5996 				return work;
5997 
5998 		}
5999 
6000 		rps_lock_irq_disable(sd);
6001 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6002 			/*
6003 			 * Inline a custom version of __napi_complete().
6004 			 * only current cpu owns and manipulates this napi,
6005 			 * and NAPI_STATE_SCHED is the only possible flag set
6006 			 * on backlog.
6007 			 * We can use a plain write instead of clear_bit(),
6008 			 * and we dont need an smp_mb() memory barrier.
6009 			 */
6010 			napi->state = 0;
6011 			again = false;
6012 		} else {
6013 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6014 						   &sd->process_queue);
6015 		}
6016 		rps_unlock_irq_enable(sd);
6017 	}
6018 
6019 	return work;
6020 }
6021 
6022 /**
6023  * __napi_schedule - schedule for receive
6024  * @n: entry to schedule
6025  *
6026  * The entry's receive function will be scheduled to run.
6027  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6028  */
6029 void __napi_schedule(struct napi_struct *n)
6030 {
6031 	unsigned long flags;
6032 
6033 	local_irq_save(flags);
6034 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6035 	local_irq_restore(flags);
6036 }
6037 EXPORT_SYMBOL(__napi_schedule);
6038 
6039 /**
6040  *	napi_schedule_prep - check if napi can be scheduled
6041  *	@n: napi context
6042  *
6043  * Test if NAPI routine is already running, and if not mark
6044  * it as running.  This is used as a condition variable to
6045  * insure only one NAPI poll instance runs.  We also make
6046  * sure there is no pending NAPI disable.
6047  */
6048 bool napi_schedule_prep(struct napi_struct *n)
6049 {
6050 	unsigned long new, val = READ_ONCE(n->state);
6051 
6052 	do {
6053 		if (unlikely(val & NAPIF_STATE_DISABLE))
6054 			return false;
6055 		new = val | NAPIF_STATE_SCHED;
6056 
6057 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6058 		 * This was suggested by Alexander Duyck, as compiler
6059 		 * emits better code than :
6060 		 * if (val & NAPIF_STATE_SCHED)
6061 		 *     new |= NAPIF_STATE_MISSED;
6062 		 */
6063 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6064 						   NAPIF_STATE_MISSED;
6065 	} while (!try_cmpxchg(&n->state, &val, new));
6066 
6067 	return !(val & NAPIF_STATE_SCHED);
6068 }
6069 EXPORT_SYMBOL(napi_schedule_prep);
6070 
6071 /**
6072  * __napi_schedule_irqoff - schedule for receive
6073  * @n: entry to schedule
6074  *
6075  * Variant of __napi_schedule() assuming hard irqs are masked.
6076  *
6077  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6078  * because the interrupt disabled assumption might not be true
6079  * due to force-threaded interrupts and spinlock substitution.
6080  */
6081 void __napi_schedule_irqoff(struct napi_struct *n)
6082 {
6083 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6084 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6085 	else
6086 		__napi_schedule(n);
6087 }
6088 EXPORT_SYMBOL(__napi_schedule_irqoff);
6089 
6090 bool napi_complete_done(struct napi_struct *n, int work_done)
6091 {
6092 	unsigned long flags, val, new, timeout = 0;
6093 	bool ret = true;
6094 
6095 	/*
6096 	 * 1) Don't let napi dequeue from the cpu poll list
6097 	 *    just in case its running on a different cpu.
6098 	 * 2) If we are busy polling, do nothing here, we have
6099 	 *    the guarantee we will be called later.
6100 	 */
6101 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6102 				 NAPIF_STATE_IN_BUSY_POLL)))
6103 		return false;
6104 
6105 	if (work_done) {
6106 		if (n->gro_bitmask)
6107 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6108 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6109 	}
6110 	if (n->defer_hard_irqs_count > 0) {
6111 		n->defer_hard_irqs_count--;
6112 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6113 		if (timeout)
6114 			ret = false;
6115 	}
6116 	if (n->gro_bitmask) {
6117 		/* When the NAPI instance uses a timeout and keeps postponing
6118 		 * it, we need to bound somehow the time packets are kept in
6119 		 * the GRO layer
6120 		 */
6121 		napi_gro_flush(n, !!timeout);
6122 	}
6123 
6124 	gro_normal_list(n);
6125 
6126 	if (unlikely(!list_empty(&n->poll_list))) {
6127 		/* If n->poll_list is not empty, we need to mask irqs */
6128 		local_irq_save(flags);
6129 		list_del_init(&n->poll_list);
6130 		local_irq_restore(flags);
6131 	}
6132 	WRITE_ONCE(n->list_owner, -1);
6133 
6134 	val = READ_ONCE(n->state);
6135 	do {
6136 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6137 
6138 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6139 			      NAPIF_STATE_SCHED_THREADED |
6140 			      NAPIF_STATE_PREFER_BUSY_POLL);
6141 
6142 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6143 		 * because we will call napi->poll() one more time.
6144 		 * This C code was suggested by Alexander Duyck to help gcc.
6145 		 */
6146 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6147 						    NAPIF_STATE_SCHED;
6148 	} while (!try_cmpxchg(&n->state, &val, new));
6149 
6150 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6151 		__napi_schedule(n);
6152 		return false;
6153 	}
6154 
6155 	if (timeout)
6156 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6157 			      HRTIMER_MODE_REL_PINNED);
6158 	return ret;
6159 }
6160 EXPORT_SYMBOL(napi_complete_done);
6161 
6162 /* must be called under rcu_read_lock(), as we dont take a reference */
6163 struct napi_struct *napi_by_id(unsigned int napi_id)
6164 {
6165 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6166 	struct napi_struct *napi;
6167 
6168 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6169 		if (napi->napi_id == napi_id)
6170 			return napi;
6171 
6172 	return NULL;
6173 }
6174 
6175 #if defined(CONFIG_NET_RX_BUSY_POLL)
6176 
6177 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6178 {
6179 	if (!skip_schedule) {
6180 		gro_normal_list(napi);
6181 		__napi_schedule(napi);
6182 		return;
6183 	}
6184 
6185 	if (napi->gro_bitmask) {
6186 		/* flush too old packets
6187 		 * If HZ < 1000, flush all packets.
6188 		 */
6189 		napi_gro_flush(napi, HZ >= 1000);
6190 	}
6191 
6192 	gro_normal_list(napi);
6193 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6194 }
6195 
6196 enum {
6197 	NAPI_F_PREFER_BUSY_POLL	= 1,
6198 	NAPI_F_END_ON_RESCHED	= 2,
6199 };
6200 
6201 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6202 			   unsigned flags, u16 budget)
6203 {
6204 	bool skip_schedule = false;
6205 	unsigned long timeout;
6206 	int rc;
6207 
6208 	/* Busy polling means there is a high chance device driver hard irq
6209 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6210 	 * set in napi_schedule_prep().
6211 	 * Since we are about to call napi->poll() once more, we can safely
6212 	 * clear NAPI_STATE_MISSED.
6213 	 *
6214 	 * Note: x86 could use a single "lock and ..." instruction
6215 	 * to perform these two clear_bit()
6216 	 */
6217 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6218 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6219 
6220 	local_bh_disable();
6221 
6222 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6223 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6224 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6225 		if (napi->defer_hard_irqs_count && timeout) {
6226 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6227 			skip_schedule = true;
6228 		}
6229 	}
6230 
6231 	/* All we really want here is to re-enable device interrupts.
6232 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6233 	 */
6234 	rc = napi->poll(napi, budget);
6235 	/* We can't gro_normal_list() here, because napi->poll() might have
6236 	 * rearmed the napi (napi_complete_done()) in which case it could
6237 	 * already be running on another CPU.
6238 	 */
6239 	trace_napi_poll(napi, rc, budget);
6240 	netpoll_poll_unlock(have_poll_lock);
6241 	if (rc == budget)
6242 		__busy_poll_stop(napi, skip_schedule);
6243 	local_bh_enable();
6244 }
6245 
6246 static void __napi_busy_loop(unsigned int napi_id,
6247 		      bool (*loop_end)(void *, unsigned long),
6248 		      void *loop_end_arg, unsigned flags, u16 budget)
6249 {
6250 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6251 	int (*napi_poll)(struct napi_struct *napi, int budget);
6252 	void *have_poll_lock = NULL;
6253 	struct napi_struct *napi;
6254 
6255 	WARN_ON_ONCE(!rcu_read_lock_held());
6256 
6257 restart:
6258 	napi_poll = NULL;
6259 
6260 	napi = napi_by_id(napi_id);
6261 	if (!napi)
6262 		return;
6263 
6264 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6265 		preempt_disable();
6266 	for (;;) {
6267 		int work = 0;
6268 
6269 		local_bh_disable();
6270 		if (!napi_poll) {
6271 			unsigned long val = READ_ONCE(napi->state);
6272 
6273 			/* If multiple threads are competing for this napi,
6274 			 * we avoid dirtying napi->state as much as we can.
6275 			 */
6276 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6277 				   NAPIF_STATE_IN_BUSY_POLL)) {
6278 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6279 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6280 				goto count;
6281 			}
6282 			if (cmpxchg(&napi->state, val,
6283 				    val | NAPIF_STATE_IN_BUSY_POLL |
6284 					  NAPIF_STATE_SCHED) != val) {
6285 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6286 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6287 				goto count;
6288 			}
6289 			have_poll_lock = netpoll_poll_lock(napi);
6290 			napi_poll = napi->poll;
6291 		}
6292 		work = napi_poll(napi, budget);
6293 		trace_napi_poll(napi, work, budget);
6294 		gro_normal_list(napi);
6295 count:
6296 		if (work > 0)
6297 			__NET_ADD_STATS(dev_net(napi->dev),
6298 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6299 		local_bh_enable();
6300 
6301 		if (!loop_end || loop_end(loop_end_arg, start_time))
6302 			break;
6303 
6304 		if (unlikely(need_resched())) {
6305 			if (flags & NAPI_F_END_ON_RESCHED)
6306 				break;
6307 			if (napi_poll)
6308 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6309 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6310 				preempt_enable();
6311 			rcu_read_unlock();
6312 			cond_resched();
6313 			rcu_read_lock();
6314 			if (loop_end(loop_end_arg, start_time))
6315 				return;
6316 			goto restart;
6317 		}
6318 		cpu_relax();
6319 	}
6320 	if (napi_poll)
6321 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6322 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6323 		preempt_enable();
6324 }
6325 
6326 void napi_busy_loop_rcu(unsigned int napi_id,
6327 			bool (*loop_end)(void *, unsigned long),
6328 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6329 {
6330 	unsigned flags = NAPI_F_END_ON_RESCHED;
6331 
6332 	if (prefer_busy_poll)
6333 		flags |= NAPI_F_PREFER_BUSY_POLL;
6334 
6335 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6336 }
6337 
6338 void napi_busy_loop(unsigned int napi_id,
6339 		    bool (*loop_end)(void *, unsigned long),
6340 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6341 {
6342 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6343 
6344 	rcu_read_lock();
6345 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6346 	rcu_read_unlock();
6347 }
6348 EXPORT_SYMBOL(napi_busy_loop);
6349 
6350 #endif /* CONFIG_NET_RX_BUSY_POLL */
6351 
6352 static void napi_hash_add(struct napi_struct *napi)
6353 {
6354 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6355 		return;
6356 
6357 	spin_lock(&napi_hash_lock);
6358 
6359 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6360 	do {
6361 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6362 			napi_gen_id = MIN_NAPI_ID;
6363 	} while (napi_by_id(napi_gen_id));
6364 	napi->napi_id = napi_gen_id;
6365 
6366 	hlist_add_head_rcu(&napi->napi_hash_node,
6367 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6368 
6369 	spin_unlock(&napi_hash_lock);
6370 }
6371 
6372 /* Warning : caller is responsible to make sure rcu grace period
6373  * is respected before freeing memory containing @napi
6374  */
6375 static void napi_hash_del(struct napi_struct *napi)
6376 {
6377 	spin_lock(&napi_hash_lock);
6378 
6379 	hlist_del_init_rcu(&napi->napi_hash_node);
6380 
6381 	spin_unlock(&napi_hash_lock);
6382 }
6383 
6384 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6385 {
6386 	struct napi_struct *napi;
6387 
6388 	napi = container_of(timer, struct napi_struct, timer);
6389 
6390 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6391 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6392 	 */
6393 	if (!napi_disable_pending(napi) &&
6394 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6395 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6396 		__napi_schedule_irqoff(napi);
6397 	}
6398 
6399 	return HRTIMER_NORESTART;
6400 }
6401 
6402 static void init_gro_hash(struct napi_struct *napi)
6403 {
6404 	int i;
6405 
6406 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6407 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6408 		napi->gro_hash[i].count = 0;
6409 	}
6410 	napi->gro_bitmask = 0;
6411 }
6412 
6413 int dev_set_threaded(struct net_device *dev, bool threaded)
6414 {
6415 	struct napi_struct *napi;
6416 	int err = 0;
6417 
6418 	if (dev->threaded == threaded)
6419 		return 0;
6420 
6421 	if (threaded) {
6422 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6423 			if (!napi->thread) {
6424 				err = napi_kthread_create(napi);
6425 				if (err) {
6426 					threaded = false;
6427 					break;
6428 				}
6429 			}
6430 		}
6431 	}
6432 
6433 	dev->threaded = threaded;
6434 
6435 	/* Make sure kthread is created before THREADED bit
6436 	 * is set.
6437 	 */
6438 	smp_mb__before_atomic();
6439 
6440 	/* Setting/unsetting threaded mode on a napi might not immediately
6441 	 * take effect, if the current napi instance is actively being
6442 	 * polled. In this case, the switch between threaded mode and
6443 	 * softirq mode will happen in the next round of napi_schedule().
6444 	 * This should not cause hiccups/stalls to the live traffic.
6445 	 */
6446 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6447 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6448 
6449 	return err;
6450 }
6451 EXPORT_SYMBOL(dev_set_threaded);
6452 
6453 /**
6454  * netif_queue_set_napi - Associate queue with the napi
6455  * @dev: device to which NAPI and queue belong
6456  * @queue_index: Index of queue
6457  * @type: queue type as RX or TX
6458  * @napi: NAPI context, pass NULL to clear previously set NAPI
6459  *
6460  * Set queue with its corresponding napi context. This should be done after
6461  * registering the NAPI handler for the queue-vector and the queues have been
6462  * mapped to the corresponding interrupt vector.
6463  */
6464 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6465 			  enum netdev_queue_type type, struct napi_struct *napi)
6466 {
6467 	struct netdev_rx_queue *rxq;
6468 	struct netdev_queue *txq;
6469 
6470 	if (WARN_ON_ONCE(napi && !napi->dev))
6471 		return;
6472 	if (dev->reg_state >= NETREG_REGISTERED)
6473 		ASSERT_RTNL();
6474 
6475 	switch (type) {
6476 	case NETDEV_QUEUE_TYPE_RX:
6477 		rxq = __netif_get_rx_queue(dev, queue_index);
6478 		rxq->napi = napi;
6479 		return;
6480 	case NETDEV_QUEUE_TYPE_TX:
6481 		txq = netdev_get_tx_queue(dev, queue_index);
6482 		txq->napi = napi;
6483 		return;
6484 	default:
6485 		return;
6486 	}
6487 }
6488 EXPORT_SYMBOL(netif_queue_set_napi);
6489 
6490 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6491 			   int (*poll)(struct napi_struct *, int), int weight)
6492 {
6493 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6494 		return;
6495 
6496 	INIT_LIST_HEAD(&napi->poll_list);
6497 	INIT_HLIST_NODE(&napi->napi_hash_node);
6498 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6499 	napi->timer.function = napi_watchdog;
6500 	init_gro_hash(napi);
6501 	napi->skb = NULL;
6502 	INIT_LIST_HEAD(&napi->rx_list);
6503 	napi->rx_count = 0;
6504 	napi->poll = poll;
6505 	if (weight > NAPI_POLL_WEIGHT)
6506 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6507 				weight);
6508 	napi->weight = weight;
6509 	napi->dev = dev;
6510 #ifdef CONFIG_NETPOLL
6511 	napi->poll_owner = -1;
6512 #endif
6513 	napi->list_owner = -1;
6514 	set_bit(NAPI_STATE_SCHED, &napi->state);
6515 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6516 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6517 	napi_hash_add(napi);
6518 	napi_get_frags_check(napi);
6519 	/* Create kthread for this napi if dev->threaded is set.
6520 	 * Clear dev->threaded if kthread creation failed so that
6521 	 * threaded mode will not be enabled in napi_enable().
6522 	 */
6523 	if (dev->threaded && napi_kthread_create(napi))
6524 		dev->threaded = 0;
6525 	netif_napi_set_irq(napi, -1);
6526 }
6527 EXPORT_SYMBOL(netif_napi_add_weight);
6528 
6529 void napi_disable(struct napi_struct *n)
6530 {
6531 	unsigned long val, new;
6532 
6533 	might_sleep();
6534 	set_bit(NAPI_STATE_DISABLE, &n->state);
6535 
6536 	val = READ_ONCE(n->state);
6537 	do {
6538 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6539 			usleep_range(20, 200);
6540 			val = READ_ONCE(n->state);
6541 		}
6542 
6543 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6544 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6545 	} while (!try_cmpxchg(&n->state, &val, new));
6546 
6547 	hrtimer_cancel(&n->timer);
6548 
6549 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6550 }
6551 EXPORT_SYMBOL(napi_disable);
6552 
6553 /**
6554  *	napi_enable - enable NAPI scheduling
6555  *	@n: NAPI context
6556  *
6557  * Resume NAPI from being scheduled on this context.
6558  * Must be paired with napi_disable.
6559  */
6560 void napi_enable(struct napi_struct *n)
6561 {
6562 	unsigned long new, val = READ_ONCE(n->state);
6563 
6564 	do {
6565 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6566 
6567 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6568 		if (n->dev->threaded && n->thread)
6569 			new |= NAPIF_STATE_THREADED;
6570 	} while (!try_cmpxchg(&n->state, &val, new));
6571 }
6572 EXPORT_SYMBOL(napi_enable);
6573 
6574 static void flush_gro_hash(struct napi_struct *napi)
6575 {
6576 	int i;
6577 
6578 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6579 		struct sk_buff *skb, *n;
6580 
6581 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6582 			kfree_skb(skb);
6583 		napi->gro_hash[i].count = 0;
6584 	}
6585 }
6586 
6587 /* Must be called in process context */
6588 void __netif_napi_del(struct napi_struct *napi)
6589 {
6590 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6591 		return;
6592 
6593 	napi_hash_del(napi);
6594 	list_del_rcu(&napi->dev_list);
6595 	napi_free_frags(napi);
6596 
6597 	flush_gro_hash(napi);
6598 	napi->gro_bitmask = 0;
6599 
6600 	if (napi->thread) {
6601 		kthread_stop(napi->thread);
6602 		napi->thread = NULL;
6603 	}
6604 }
6605 EXPORT_SYMBOL(__netif_napi_del);
6606 
6607 static int __napi_poll(struct napi_struct *n, bool *repoll)
6608 {
6609 	int work, weight;
6610 
6611 	weight = n->weight;
6612 
6613 	/* This NAPI_STATE_SCHED test is for avoiding a race
6614 	 * with netpoll's poll_napi().  Only the entity which
6615 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6616 	 * actually make the ->poll() call.  Therefore we avoid
6617 	 * accidentally calling ->poll() when NAPI is not scheduled.
6618 	 */
6619 	work = 0;
6620 	if (napi_is_scheduled(n)) {
6621 		work = n->poll(n, weight);
6622 		trace_napi_poll(n, work, weight);
6623 
6624 		xdp_do_check_flushed(n);
6625 	}
6626 
6627 	if (unlikely(work > weight))
6628 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6629 				n->poll, work, weight);
6630 
6631 	if (likely(work < weight))
6632 		return work;
6633 
6634 	/* Drivers must not modify the NAPI state if they
6635 	 * consume the entire weight.  In such cases this code
6636 	 * still "owns" the NAPI instance and therefore can
6637 	 * move the instance around on the list at-will.
6638 	 */
6639 	if (unlikely(napi_disable_pending(n))) {
6640 		napi_complete(n);
6641 		return work;
6642 	}
6643 
6644 	/* The NAPI context has more processing work, but busy-polling
6645 	 * is preferred. Exit early.
6646 	 */
6647 	if (napi_prefer_busy_poll(n)) {
6648 		if (napi_complete_done(n, work)) {
6649 			/* If timeout is not set, we need to make sure
6650 			 * that the NAPI is re-scheduled.
6651 			 */
6652 			napi_schedule(n);
6653 		}
6654 		return work;
6655 	}
6656 
6657 	if (n->gro_bitmask) {
6658 		/* flush too old packets
6659 		 * If HZ < 1000, flush all packets.
6660 		 */
6661 		napi_gro_flush(n, HZ >= 1000);
6662 	}
6663 
6664 	gro_normal_list(n);
6665 
6666 	/* Some drivers may have called napi_schedule
6667 	 * prior to exhausting their budget.
6668 	 */
6669 	if (unlikely(!list_empty(&n->poll_list))) {
6670 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6671 			     n->dev ? n->dev->name : "backlog");
6672 		return work;
6673 	}
6674 
6675 	*repoll = true;
6676 
6677 	return work;
6678 }
6679 
6680 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6681 {
6682 	bool do_repoll = false;
6683 	void *have;
6684 	int work;
6685 
6686 	list_del_init(&n->poll_list);
6687 
6688 	have = netpoll_poll_lock(n);
6689 
6690 	work = __napi_poll(n, &do_repoll);
6691 
6692 	if (do_repoll)
6693 		list_add_tail(&n->poll_list, repoll);
6694 
6695 	netpoll_poll_unlock(have);
6696 
6697 	return work;
6698 }
6699 
6700 static int napi_thread_wait(struct napi_struct *napi)
6701 {
6702 	bool woken = false;
6703 
6704 	set_current_state(TASK_INTERRUPTIBLE);
6705 
6706 	while (!kthread_should_stop()) {
6707 		/* Testing SCHED_THREADED bit here to make sure the current
6708 		 * kthread owns this napi and could poll on this napi.
6709 		 * Testing SCHED bit is not enough because SCHED bit might be
6710 		 * set by some other busy poll thread or by napi_disable().
6711 		 */
6712 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6713 			WARN_ON(!list_empty(&napi->poll_list));
6714 			__set_current_state(TASK_RUNNING);
6715 			return 0;
6716 		}
6717 
6718 		schedule();
6719 		/* woken being true indicates this thread owns this napi. */
6720 		woken = true;
6721 		set_current_state(TASK_INTERRUPTIBLE);
6722 	}
6723 	__set_current_state(TASK_RUNNING);
6724 
6725 	return -1;
6726 }
6727 
6728 static void skb_defer_free_flush(struct softnet_data *sd)
6729 {
6730 	struct sk_buff *skb, *next;
6731 
6732 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6733 	if (!READ_ONCE(sd->defer_list))
6734 		return;
6735 
6736 	spin_lock(&sd->defer_lock);
6737 	skb = sd->defer_list;
6738 	sd->defer_list = NULL;
6739 	sd->defer_count = 0;
6740 	spin_unlock(&sd->defer_lock);
6741 
6742 	while (skb != NULL) {
6743 		next = skb->next;
6744 		napi_consume_skb(skb, 1);
6745 		skb = next;
6746 	}
6747 }
6748 
6749 static int napi_threaded_poll(void *data)
6750 {
6751 	struct napi_struct *napi = data;
6752 	struct softnet_data *sd;
6753 	void *have;
6754 
6755 	while (!napi_thread_wait(napi)) {
6756 		for (;;) {
6757 			bool repoll = false;
6758 
6759 			local_bh_disable();
6760 			sd = this_cpu_ptr(&softnet_data);
6761 			sd->in_napi_threaded_poll = true;
6762 
6763 			have = netpoll_poll_lock(napi);
6764 			__napi_poll(napi, &repoll);
6765 			netpoll_poll_unlock(have);
6766 
6767 			sd->in_napi_threaded_poll = false;
6768 			barrier();
6769 
6770 			if (sd_has_rps_ipi_waiting(sd)) {
6771 				local_irq_disable();
6772 				net_rps_action_and_irq_enable(sd);
6773 			}
6774 			skb_defer_free_flush(sd);
6775 			local_bh_enable();
6776 
6777 			if (!repoll)
6778 				break;
6779 
6780 			cond_resched();
6781 		}
6782 	}
6783 	return 0;
6784 }
6785 
6786 static __latent_entropy void net_rx_action(struct softirq_action *h)
6787 {
6788 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6789 	unsigned long time_limit = jiffies +
6790 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6791 	int budget = READ_ONCE(netdev_budget);
6792 	LIST_HEAD(list);
6793 	LIST_HEAD(repoll);
6794 
6795 start:
6796 	sd->in_net_rx_action = true;
6797 	local_irq_disable();
6798 	list_splice_init(&sd->poll_list, &list);
6799 	local_irq_enable();
6800 
6801 	for (;;) {
6802 		struct napi_struct *n;
6803 
6804 		skb_defer_free_flush(sd);
6805 
6806 		if (list_empty(&list)) {
6807 			if (list_empty(&repoll)) {
6808 				sd->in_net_rx_action = false;
6809 				barrier();
6810 				/* We need to check if ____napi_schedule()
6811 				 * had refilled poll_list while
6812 				 * sd->in_net_rx_action was true.
6813 				 */
6814 				if (!list_empty(&sd->poll_list))
6815 					goto start;
6816 				if (!sd_has_rps_ipi_waiting(sd))
6817 					goto end;
6818 			}
6819 			break;
6820 		}
6821 
6822 		n = list_first_entry(&list, struct napi_struct, poll_list);
6823 		budget -= napi_poll(n, &repoll);
6824 
6825 		/* If softirq window is exhausted then punt.
6826 		 * Allow this to run for 2 jiffies since which will allow
6827 		 * an average latency of 1.5/HZ.
6828 		 */
6829 		if (unlikely(budget <= 0 ||
6830 			     time_after_eq(jiffies, time_limit))) {
6831 			sd->time_squeeze++;
6832 			break;
6833 		}
6834 	}
6835 
6836 	local_irq_disable();
6837 
6838 	list_splice_tail_init(&sd->poll_list, &list);
6839 	list_splice_tail(&repoll, &list);
6840 	list_splice(&list, &sd->poll_list);
6841 	if (!list_empty(&sd->poll_list))
6842 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6843 	else
6844 		sd->in_net_rx_action = false;
6845 
6846 	net_rps_action_and_irq_enable(sd);
6847 end:;
6848 }
6849 
6850 struct netdev_adjacent {
6851 	struct net_device *dev;
6852 	netdevice_tracker dev_tracker;
6853 
6854 	/* upper master flag, there can only be one master device per list */
6855 	bool master;
6856 
6857 	/* lookup ignore flag */
6858 	bool ignore;
6859 
6860 	/* counter for the number of times this device was added to us */
6861 	u16 ref_nr;
6862 
6863 	/* private field for the users */
6864 	void *private;
6865 
6866 	struct list_head list;
6867 	struct rcu_head rcu;
6868 };
6869 
6870 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6871 						 struct list_head *adj_list)
6872 {
6873 	struct netdev_adjacent *adj;
6874 
6875 	list_for_each_entry(adj, adj_list, list) {
6876 		if (adj->dev == adj_dev)
6877 			return adj;
6878 	}
6879 	return NULL;
6880 }
6881 
6882 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6883 				    struct netdev_nested_priv *priv)
6884 {
6885 	struct net_device *dev = (struct net_device *)priv->data;
6886 
6887 	return upper_dev == dev;
6888 }
6889 
6890 /**
6891  * netdev_has_upper_dev - Check if device is linked to an upper device
6892  * @dev: device
6893  * @upper_dev: upper device to check
6894  *
6895  * Find out if a device is linked to specified upper device and return true
6896  * in case it is. Note that this checks only immediate upper device,
6897  * not through a complete stack of devices. The caller must hold the RTNL lock.
6898  */
6899 bool netdev_has_upper_dev(struct net_device *dev,
6900 			  struct net_device *upper_dev)
6901 {
6902 	struct netdev_nested_priv priv = {
6903 		.data = (void *)upper_dev,
6904 	};
6905 
6906 	ASSERT_RTNL();
6907 
6908 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6909 					     &priv);
6910 }
6911 EXPORT_SYMBOL(netdev_has_upper_dev);
6912 
6913 /**
6914  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6915  * @dev: device
6916  * @upper_dev: upper device to check
6917  *
6918  * Find out if a device is linked to specified upper device and return true
6919  * in case it is. Note that this checks the entire upper device chain.
6920  * The caller must hold rcu lock.
6921  */
6922 
6923 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6924 				  struct net_device *upper_dev)
6925 {
6926 	struct netdev_nested_priv priv = {
6927 		.data = (void *)upper_dev,
6928 	};
6929 
6930 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6931 					       &priv);
6932 }
6933 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6934 
6935 /**
6936  * netdev_has_any_upper_dev - Check if device is linked to some device
6937  * @dev: device
6938  *
6939  * Find out if a device is linked to an upper device and return true in case
6940  * it is. The caller must hold the RTNL lock.
6941  */
6942 bool netdev_has_any_upper_dev(struct net_device *dev)
6943 {
6944 	ASSERT_RTNL();
6945 
6946 	return !list_empty(&dev->adj_list.upper);
6947 }
6948 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6949 
6950 /**
6951  * netdev_master_upper_dev_get - Get master upper device
6952  * @dev: device
6953  *
6954  * Find a master upper device and return pointer to it or NULL in case
6955  * it's not there. The caller must hold the RTNL lock.
6956  */
6957 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6958 {
6959 	struct netdev_adjacent *upper;
6960 
6961 	ASSERT_RTNL();
6962 
6963 	if (list_empty(&dev->adj_list.upper))
6964 		return NULL;
6965 
6966 	upper = list_first_entry(&dev->adj_list.upper,
6967 				 struct netdev_adjacent, list);
6968 	if (likely(upper->master))
6969 		return upper->dev;
6970 	return NULL;
6971 }
6972 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6973 
6974 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6975 {
6976 	struct netdev_adjacent *upper;
6977 
6978 	ASSERT_RTNL();
6979 
6980 	if (list_empty(&dev->adj_list.upper))
6981 		return NULL;
6982 
6983 	upper = list_first_entry(&dev->adj_list.upper,
6984 				 struct netdev_adjacent, list);
6985 	if (likely(upper->master) && !upper->ignore)
6986 		return upper->dev;
6987 	return NULL;
6988 }
6989 
6990 /**
6991  * netdev_has_any_lower_dev - Check if device is linked to some device
6992  * @dev: device
6993  *
6994  * Find out if a device is linked to a lower device and return true in case
6995  * it is. The caller must hold the RTNL lock.
6996  */
6997 static bool netdev_has_any_lower_dev(struct net_device *dev)
6998 {
6999 	ASSERT_RTNL();
7000 
7001 	return !list_empty(&dev->adj_list.lower);
7002 }
7003 
7004 void *netdev_adjacent_get_private(struct list_head *adj_list)
7005 {
7006 	struct netdev_adjacent *adj;
7007 
7008 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7009 
7010 	return adj->private;
7011 }
7012 EXPORT_SYMBOL(netdev_adjacent_get_private);
7013 
7014 /**
7015  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7016  * @dev: device
7017  * @iter: list_head ** of the current position
7018  *
7019  * Gets the next device from the dev's upper list, starting from iter
7020  * position. The caller must hold RCU read lock.
7021  */
7022 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7023 						 struct list_head **iter)
7024 {
7025 	struct netdev_adjacent *upper;
7026 
7027 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7028 
7029 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7030 
7031 	if (&upper->list == &dev->adj_list.upper)
7032 		return NULL;
7033 
7034 	*iter = &upper->list;
7035 
7036 	return upper->dev;
7037 }
7038 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7039 
7040 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7041 						  struct list_head **iter,
7042 						  bool *ignore)
7043 {
7044 	struct netdev_adjacent *upper;
7045 
7046 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7047 
7048 	if (&upper->list == &dev->adj_list.upper)
7049 		return NULL;
7050 
7051 	*iter = &upper->list;
7052 	*ignore = upper->ignore;
7053 
7054 	return upper->dev;
7055 }
7056 
7057 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7058 						    struct list_head **iter)
7059 {
7060 	struct netdev_adjacent *upper;
7061 
7062 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7063 
7064 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7065 
7066 	if (&upper->list == &dev->adj_list.upper)
7067 		return NULL;
7068 
7069 	*iter = &upper->list;
7070 
7071 	return upper->dev;
7072 }
7073 
7074 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7075 				       int (*fn)(struct net_device *dev,
7076 					 struct netdev_nested_priv *priv),
7077 				       struct netdev_nested_priv *priv)
7078 {
7079 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7080 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7081 	int ret, cur = 0;
7082 	bool ignore;
7083 
7084 	now = dev;
7085 	iter = &dev->adj_list.upper;
7086 
7087 	while (1) {
7088 		if (now != dev) {
7089 			ret = fn(now, priv);
7090 			if (ret)
7091 				return ret;
7092 		}
7093 
7094 		next = NULL;
7095 		while (1) {
7096 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7097 			if (!udev)
7098 				break;
7099 			if (ignore)
7100 				continue;
7101 
7102 			next = udev;
7103 			niter = &udev->adj_list.upper;
7104 			dev_stack[cur] = now;
7105 			iter_stack[cur++] = iter;
7106 			break;
7107 		}
7108 
7109 		if (!next) {
7110 			if (!cur)
7111 				return 0;
7112 			next = dev_stack[--cur];
7113 			niter = iter_stack[cur];
7114 		}
7115 
7116 		now = next;
7117 		iter = niter;
7118 	}
7119 
7120 	return 0;
7121 }
7122 
7123 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7124 				  int (*fn)(struct net_device *dev,
7125 					    struct netdev_nested_priv *priv),
7126 				  struct netdev_nested_priv *priv)
7127 {
7128 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7129 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7130 	int ret, cur = 0;
7131 
7132 	now = dev;
7133 	iter = &dev->adj_list.upper;
7134 
7135 	while (1) {
7136 		if (now != dev) {
7137 			ret = fn(now, priv);
7138 			if (ret)
7139 				return ret;
7140 		}
7141 
7142 		next = NULL;
7143 		while (1) {
7144 			udev = netdev_next_upper_dev_rcu(now, &iter);
7145 			if (!udev)
7146 				break;
7147 
7148 			next = udev;
7149 			niter = &udev->adj_list.upper;
7150 			dev_stack[cur] = now;
7151 			iter_stack[cur++] = iter;
7152 			break;
7153 		}
7154 
7155 		if (!next) {
7156 			if (!cur)
7157 				return 0;
7158 			next = dev_stack[--cur];
7159 			niter = iter_stack[cur];
7160 		}
7161 
7162 		now = next;
7163 		iter = niter;
7164 	}
7165 
7166 	return 0;
7167 }
7168 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7169 
7170 static bool __netdev_has_upper_dev(struct net_device *dev,
7171 				   struct net_device *upper_dev)
7172 {
7173 	struct netdev_nested_priv priv = {
7174 		.flags = 0,
7175 		.data = (void *)upper_dev,
7176 	};
7177 
7178 	ASSERT_RTNL();
7179 
7180 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7181 					   &priv);
7182 }
7183 
7184 /**
7185  * netdev_lower_get_next_private - Get the next ->private from the
7186  *				   lower neighbour list
7187  * @dev: device
7188  * @iter: list_head ** of the current position
7189  *
7190  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7191  * list, starting from iter position. The caller must hold either hold the
7192  * RTNL lock or its own locking that guarantees that the neighbour lower
7193  * list will remain unchanged.
7194  */
7195 void *netdev_lower_get_next_private(struct net_device *dev,
7196 				    struct list_head **iter)
7197 {
7198 	struct netdev_adjacent *lower;
7199 
7200 	lower = list_entry(*iter, struct netdev_adjacent, list);
7201 
7202 	if (&lower->list == &dev->adj_list.lower)
7203 		return NULL;
7204 
7205 	*iter = lower->list.next;
7206 
7207 	return lower->private;
7208 }
7209 EXPORT_SYMBOL(netdev_lower_get_next_private);
7210 
7211 /**
7212  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7213  *				       lower neighbour list, RCU
7214  *				       variant
7215  * @dev: device
7216  * @iter: list_head ** of the current position
7217  *
7218  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7219  * list, starting from iter position. The caller must hold RCU read lock.
7220  */
7221 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7222 					struct list_head **iter)
7223 {
7224 	struct netdev_adjacent *lower;
7225 
7226 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7227 
7228 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7229 
7230 	if (&lower->list == &dev->adj_list.lower)
7231 		return NULL;
7232 
7233 	*iter = &lower->list;
7234 
7235 	return lower->private;
7236 }
7237 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7238 
7239 /**
7240  * netdev_lower_get_next - Get the next device from the lower neighbour
7241  *                         list
7242  * @dev: device
7243  * @iter: list_head ** of the current position
7244  *
7245  * Gets the next netdev_adjacent from the dev's lower neighbour
7246  * list, starting from iter position. The caller must hold RTNL lock or
7247  * its own locking that guarantees that the neighbour lower
7248  * list will remain unchanged.
7249  */
7250 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7251 {
7252 	struct netdev_adjacent *lower;
7253 
7254 	lower = list_entry(*iter, struct netdev_adjacent, list);
7255 
7256 	if (&lower->list == &dev->adj_list.lower)
7257 		return NULL;
7258 
7259 	*iter = lower->list.next;
7260 
7261 	return lower->dev;
7262 }
7263 EXPORT_SYMBOL(netdev_lower_get_next);
7264 
7265 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7266 						struct list_head **iter)
7267 {
7268 	struct netdev_adjacent *lower;
7269 
7270 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7271 
7272 	if (&lower->list == &dev->adj_list.lower)
7273 		return NULL;
7274 
7275 	*iter = &lower->list;
7276 
7277 	return lower->dev;
7278 }
7279 
7280 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7281 						  struct list_head **iter,
7282 						  bool *ignore)
7283 {
7284 	struct netdev_adjacent *lower;
7285 
7286 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7287 
7288 	if (&lower->list == &dev->adj_list.lower)
7289 		return NULL;
7290 
7291 	*iter = &lower->list;
7292 	*ignore = lower->ignore;
7293 
7294 	return lower->dev;
7295 }
7296 
7297 int netdev_walk_all_lower_dev(struct net_device *dev,
7298 			      int (*fn)(struct net_device *dev,
7299 					struct netdev_nested_priv *priv),
7300 			      struct netdev_nested_priv *priv)
7301 {
7302 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7303 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7304 	int ret, cur = 0;
7305 
7306 	now = dev;
7307 	iter = &dev->adj_list.lower;
7308 
7309 	while (1) {
7310 		if (now != dev) {
7311 			ret = fn(now, priv);
7312 			if (ret)
7313 				return ret;
7314 		}
7315 
7316 		next = NULL;
7317 		while (1) {
7318 			ldev = netdev_next_lower_dev(now, &iter);
7319 			if (!ldev)
7320 				break;
7321 
7322 			next = ldev;
7323 			niter = &ldev->adj_list.lower;
7324 			dev_stack[cur] = now;
7325 			iter_stack[cur++] = iter;
7326 			break;
7327 		}
7328 
7329 		if (!next) {
7330 			if (!cur)
7331 				return 0;
7332 			next = dev_stack[--cur];
7333 			niter = iter_stack[cur];
7334 		}
7335 
7336 		now = next;
7337 		iter = niter;
7338 	}
7339 
7340 	return 0;
7341 }
7342 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7343 
7344 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7345 				       int (*fn)(struct net_device *dev,
7346 					 struct netdev_nested_priv *priv),
7347 				       struct netdev_nested_priv *priv)
7348 {
7349 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7350 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7351 	int ret, cur = 0;
7352 	bool ignore;
7353 
7354 	now = dev;
7355 	iter = &dev->adj_list.lower;
7356 
7357 	while (1) {
7358 		if (now != dev) {
7359 			ret = fn(now, priv);
7360 			if (ret)
7361 				return ret;
7362 		}
7363 
7364 		next = NULL;
7365 		while (1) {
7366 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7367 			if (!ldev)
7368 				break;
7369 			if (ignore)
7370 				continue;
7371 
7372 			next = ldev;
7373 			niter = &ldev->adj_list.lower;
7374 			dev_stack[cur] = now;
7375 			iter_stack[cur++] = iter;
7376 			break;
7377 		}
7378 
7379 		if (!next) {
7380 			if (!cur)
7381 				return 0;
7382 			next = dev_stack[--cur];
7383 			niter = iter_stack[cur];
7384 		}
7385 
7386 		now = next;
7387 		iter = niter;
7388 	}
7389 
7390 	return 0;
7391 }
7392 
7393 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7394 					     struct list_head **iter)
7395 {
7396 	struct netdev_adjacent *lower;
7397 
7398 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7399 	if (&lower->list == &dev->adj_list.lower)
7400 		return NULL;
7401 
7402 	*iter = &lower->list;
7403 
7404 	return lower->dev;
7405 }
7406 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7407 
7408 static u8 __netdev_upper_depth(struct net_device *dev)
7409 {
7410 	struct net_device *udev;
7411 	struct list_head *iter;
7412 	u8 max_depth = 0;
7413 	bool ignore;
7414 
7415 	for (iter = &dev->adj_list.upper,
7416 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7417 	     udev;
7418 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7419 		if (ignore)
7420 			continue;
7421 		if (max_depth < udev->upper_level)
7422 			max_depth = udev->upper_level;
7423 	}
7424 
7425 	return max_depth;
7426 }
7427 
7428 static u8 __netdev_lower_depth(struct net_device *dev)
7429 {
7430 	struct net_device *ldev;
7431 	struct list_head *iter;
7432 	u8 max_depth = 0;
7433 	bool ignore;
7434 
7435 	for (iter = &dev->adj_list.lower,
7436 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7437 	     ldev;
7438 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7439 		if (ignore)
7440 			continue;
7441 		if (max_depth < ldev->lower_level)
7442 			max_depth = ldev->lower_level;
7443 	}
7444 
7445 	return max_depth;
7446 }
7447 
7448 static int __netdev_update_upper_level(struct net_device *dev,
7449 				       struct netdev_nested_priv *__unused)
7450 {
7451 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7452 	return 0;
7453 }
7454 
7455 #ifdef CONFIG_LOCKDEP
7456 static LIST_HEAD(net_unlink_list);
7457 
7458 static void net_unlink_todo(struct net_device *dev)
7459 {
7460 	if (list_empty(&dev->unlink_list))
7461 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7462 }
7463 #endif
7464 
7465 static int __netdev_update_lower_level(struct net_device *dev,
7466 				       struct netdev_nested_priv *priv)
7467 {
7468 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7469 
7470 #ifdef CONFIG_LOCKDEP
7471 	if (!priv)
7472 		return 0;
7473 
7474 	if (priv->flags & NESTED_SYNC_IMM)
7475 		dev->nested_level = dev->lower_level - 1;
7476 	if (priv->flags & NESTED_SYNC_TODO)
7477 		net_unlink_todo(dev);
7478 #endif
7479 	return 0;
7480 }
7481 
7482 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7483 				  int (*fn)(struct net_device *dev,
7484 					    struct netdev_nested_priv *priv),
7485 				  struct netdev_nested_priv *priv)
7486 {
7487 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7488 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7489 	int ret, cur = 0;
7490 
7491 	now = dev;
7492 	iter = &dev->adj_list.lower;
7493 
7494 	while (1) {
7495 		if (now != dev) {
7496 			ret = fn(now, priv);
7497 			if (ret)
7498 				return ret;
7499 		}
7500 
7501 		next = NULL;
7502 		while (1) {
7503 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7504 			if (!ldev)
7505 				break;
7506 
7507 			next = ldev;
7508 			niter = &ldev->adj_list.lower;
7509 			dev_stack[cur] = now;
7510 			iter_stack[cur++] = iter;
7511 			break;
7512 		}
7513 
7514 		if (!next) {
7515 			if (!cur)
7516 				return 0;
7517 			next = dev_stack[--cur];
7518 			niter = iter_stack[cur];
7519 		}
7520 
7521 		now = next;
7522 		iter = niter;
7523 	}
7524 
7525 	return 0;
7526 }
7527 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7528 
7529 /**
7530  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7531  *				       lower neighbour list, RCU
7532  *				       variant
7533  * @dev: device
7534  *
7535  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7536  * list. The caller must hold RCU read lock.
7537  */
7538 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7539 {
7540 	struct netdev_adjacent *lower;
7541 
7542 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7543 			struct netdev_adjacent, list);
7544 	if (lower)
7545 		return lower->private;
7546 	return NULL;
7547 }
7548 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7549 
7550 /**
7551  * netdev_master_upper_dev_get_rcu - Get master upper device
7552  * @dev: device
7553  *
7554  * Find a master upper device and return pointer to it or NULL in case
7555  * it's not there. The caller must hold the RCU read lock.
7556  */
7557 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7558 {
7559 	struct netdev_adjacent *upper;
7560 
7561 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7562 				       struct netdev_adjacent, list);
7563 	if (upper && likely(upper->master))
7564 		return upper->dev;
7565 	return NULL;
7566 }
7567 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7568 
7569 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7570 			      struct net_device *adj_dev,
7571 			      struct list_head *dev_list)
7572 {
7573 	char linkname[IFNAMSIZ+7];
7574 
7575 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7576 		"upper_%s" : "lower_%s", adj_dev->name);
7577 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7578 				 linkname);
7579 }
7580 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7581 			       char *name,
7582 			       struct list_head *dev_list)
7583 {
7584 	char linkname[IFNAMSIZ+7];
7585 
7586 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7587 		"upper_%s" : "lower_%s", name);
7588 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7589 }
7590 
7591 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7592 						 struct net_device *adj_dev,
7593 						 struct list_head *dev_list)
7594 {
7595 	return (dev_list == &dev->adj_list.upper ||
7596 		dev_list == &dev->adj_list.lower) &&
7597 		net_eq(dev_net(dev), dev_net(adj_dev));
7598 }
7599 
7600 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7601 					struct net_device *adj_dev,
7602 					struct list_head *dev_list,
7603 					void *private, bool master)
7604 {
7605 	struct netdev_adjacent *adj;
7606 	int ret;
7607 
7608 	adj = __netdev_find_adj(adj_dev, dev_list);
7609 
7610 	if (adj) {
7611 		adj->ref_nr += 1;
7612 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7613 			 dev->name, adj_dev->name, adj->ref_nr);
7614 
7615 		return 0;
7616 	}
7617 
7618 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7619 	if (!adj)
7620 		return -ENOMEM;
7621 
7622 	adj->dev = adj_dev;
7623 	adj->master = master;
7624 	adj->ref_nr = 1;
7625 	adj->private = private;
7626 	adj->ignore = false;
7627 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7628 
7629 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7630 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7631 
7632 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7633 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7634 		if (ret)
7635 			goto free_adj;
7636 	}
7637 
7638 	/* Ensure that master link is always the first item in list. */
7639 	if (master) {
7640 		ret = sysfs_create_link(&(dev->dev.kobj),
7641 					&(adj_dev->dev.kobj), "master");
7642 		if (ret)
7643 			goto remove_symlinks;
7644 
7645 		list_add_rcu(&adj->list, dev_list);
7646 	} else {
7647 		list_add_tail_rcu(&adj->list, dev_list);
7648 	}
7649 
7650 	return 0;
7651 
7652 remove_symlinks:
7653 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7654 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7655 free_adj:
7656 	netdev_put(adj_dev, &adj->dev_tracker);
7657 	kfree(adj);
7658 
7659 	return ret;
7660 }
7661 
7662 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7663 					 struct net_device *adj_dev,
7664 					 u16 ref_nr,
7665 					 struct list_head *dev_list)
7666 {
7667 	struct netdev_adjacent *adj;
7668 
7669 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7670 		 dev->name, adj_dev->name, ref_nr);
7671 
7672 	adj = __netdev_find_adj(adj_dev, dev_list);
7673 
7674 	if (!adj) {
7675 		pr_err("Adjacency does not exist for device %s from %s\n",
7676 		       dev->name, adj_dev->name);
7677 		WARN_ON(1);
7678 		return;
7679 	}
7680 
7681 	if (adj->ref_nr > ref_nr) {
7682 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7683 			 dev->name, adj_dev->name, ref_nr,
7684 			 adj->ref_nr - ref_nr);
7685 		adj->ref_nr -= ref_nr;
7686 		return;
7687 	}
7688 
7689 	if (adj->master)
7690 		sysfs_remove_link(&(dev->dev.kobj), "master");
7691 
7692 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7693 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7694 
7695 	list_del_rcu(&adj->list);
7696 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7697 		 adj_dev->name, dev->name, adj_dev->name);
7698 	netdev_put(adj_dev, &adj->dev_tracker);
7699 	kfree_rcu(adj, rcu);
7700 }
7701 
7702 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7703 					    struct net_device *upper_dev,
7704 					    struct list_head *up_list,
7705 					    struct list_head *down_list,
7706 					    void *private, bool master)
7707 {
7708 	int ret;
7709 
7710 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7711 					   private, master);
7712 	if (ret)
7713 		return ret;
7714 
7715 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7716 					   private, false);
7717 	if (ret) {
7718 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7719 		return ret;
7720 	}
7721 
7722 	return 0;
7723 }
7724 
7725 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7726 					       struct net_device *upper_dev,
7727 					       u16 ref_nr,
7728 					       struct list_head *up_list,
7729 					       struct list_head *down_list)
7730 {
7731 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7732 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7733 }
7734 
7735 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7736 						struct net_device *upper_dev,
7737 						void *private, bool master)
7738 {
7739 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7740 						&dev->adj_list.upper,
7741 						&upper_dev->adj_list.lower,
7742 						private, master);
7743 }
7744 
7745 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7746 						   struct net_device *upper_dev)
7747 {
7748 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7749 					   &dev->adj_list.upper,
7750 					   &upper_dev->adj_list.lower);
7751 }
7752 
7753 static int __netdev_upper_dev_link(struct net_device *dev,
7754 				   struct net_device *upper_dev, bool master,
7755 				   void *upper_priv, void *upper_info,
7756 				   struct netdev_nested_priv *priv,
7757 				   struct netlink_ext_ack *extack)
7758 {
7759 	struct netdev_notifier_changeupper_info changeupper_info = {
7760 		.info = {
7761 			.dev = dev,
7762 			.extack = extack,
7763 		},
7764 		.upper_dev = upper_dev,
7765 		.master = master,
7766 		.linking = true,
7767 		.upper_info = upper_info,
7768 	};
7769 	struct net_device *master_dev;
7770 	int ret = 0;
7771 
7772 	ASSERT_RTNL();
7773 
7774 	if (dev == upper_dev)
7775 		return -EBUSY;
7776 
7777 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7778 	if (__netdev_has_upper_dev(upper_dev, dev))
7779 		return -EBUSY;
7780 
7781 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7782 		return -EMLINK;
7783 
7784 	if (!master) {
7785 		if (__netdev_has_upper_dev(dev, upper_dev))
7786 			return -EEXIST;
7787 	} else {
7788 		master_dev = __netdev_master_upper_dev_get(dev);
7789 		if (master_dev)
7790 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7791 	}
7792 
7793 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7794 					    &changeupper_info.info);
7795 	ret = notifier_to_errno(ret);
7796 	if (ret)
7797 		return ret;
7798 
7799 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7800 						   master);
7801 	if (ret)
7802 		return ret;
7803 
7804 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7805 					    &changeupper_info.info);
7806 	ret = notifier_to_errno(ret);
7807 	if (ret)
7808 		goto rollback;
7809 
7810 	__netdev_update_upper_level(dev, NULL);
7811 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7812 
7813 	__netdev_update_lower_level(upper_dev, priv);
7814 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7815 				    priv);
7816 
7817 	return 0;
7818 
7819 rollback:
7820 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7821 
7822 	return ret;
7823 }
7824 
7825 /**
7826  * netdev_upper_dev_link - Add a link to the upper device
7827  * @dev: device
7828  * @upper_dev: new upper device
7829  * @extack: netlink extended ack
7830  *
7831  * Adds a link to device which is upper to this one. The caller must hold
7832  * the RTNL lock. On a failure a negative errno code is returned.
7833  * On success the reference counts are adjusted and the function
7834  * returns zero.
7835  */
7836 int netdev_upper_dev_link(struct net_device *dev,
7837 			  struct net_device *upper_dev,
7838 			  struct netlink_ext_ack *extack)
7839 {
7840 	struct netdev_nested_priv priv = {
7841 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7842 		.data = NULL,
7843 	};
7844 
7845 	return __netdev_upper_dev_link(dev, upper_dev, false,
7846 				       NULL, NULL, &priv, extack);
7847 }
7848 EXPORT_SYMBOL(netdev_upper_dev_link);
7849 
7850 /**
7851  * netdev_master_upper_dev_link - Add a master link to the upper device
7852  * @dev: device
7853  * @upper_dev: new upper device
7854  * @upper_priv: upper device private
7855  * @upper_info: upper info to be passed down via notifier
7856  * @extack: netlink extended ack
7857  *
7858  * Adds a link to device which is upper to this one. In this case, only
7859  * one master upper device can be linked, although other non-master devices
7860  * might be linked as well. The caller must hold the RTNL lock.
7861  * On a failure a negative errno code is returned. On success the reference
7862  * counts are adjusted and the function returns zero.
7863  */
7864 int netdev_master_upper_dev_link(struct net_device *dev,
7865 				 struct net_device *upper_dev,
7866 				 void *upper_priv, void *upper_info,
7867 				 struct netlink_ext_ack *extack)
7868 {
7869 	struct netdev_nested_priv priv = {
7870 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7871 		.data = NULL,
7872 	};
7873 
7874 	return __netdev_upper_dev_link(dev, upper_dev, true,
7875 				       upper_priv, upper_info, &priv, extack);
7876 }
7877 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7878 
7879 static void __netdev_upper_dev_unlink(struct net_device *dev,
7880 				      struct net_device *upper_dev,
7881 				      struct netdev_nested_priv *priv)
7882 {
7883 	struct netdev_notifier_changeupper_info changeupper_info = {
7884 		.info = {
7885 			.dev = dev,
7886 		},
7887 		.upper_dev = upper_dev,
7888 		.linking = false,
7889 	};
7890 
7891 	ASSERT_RTNL();
7892 
7893 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7894 
7895 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7896 				      &changeupper_info.info);
7897 
7898 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7899 
7900 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7901 				      &changeupper_info.info);
7902 
7903 	__netdev_update_upper_level(dev, NULL);
7904 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7905 
7906 	__netdev_update_lower_level(upper_dev, priv);
7907 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7908 				    priv);
7909 }
7910 
7911 /**
7912  * netdev_upper_dev_unlink - Removes a link to upper device
7913  * @dev: device
7914  * @upper_dev: new upper device
7915  *
7916  * Removes a link to device which is upper to this one. The caller must hold
7917  * the RTNL lock.
7918  */
7919 void netdev_upper_dev_unlink(struct net_device *dev,
7920 			     struct net_device *upper_dev)
7921 {
7922 	struct netdev_nested_priv priv = {
7923 		.flags = NESTED_SYNC_TODO,
7924 		.data = NULL,
7925 	};
7926 
7927 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7928 }
7929 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7930 
7931 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7932 				      struct net_device *lower_dev,
7933 				      bool val)
7934 {
7935 	struct netdev_adjacent *adj;
7936 
7937 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7938 	if (adj)
7939 		adj->ignore = val;
7940 
7941 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7942 	if (adj)
7943 		adj->ignore = val;
7944 }
7945 
7946 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7947 					struct net_device *lower_dev)
7948 {
7949 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7950 }
7951 
7952 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7953 				       struct net_device *lower_dev)
7954 {
7955 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7956 }
7957 
7958 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7959 				   struct net_device *new_dev,
7960 				   struct net_device *dev,
7961 				   struct netlink_ext_ack *extack)
7962 {
7963 	struct netdev_nested_priv priv = {
7964 		.flags = 0,
7965 		.data = NULL,
7966 	};
7967 	int err;
7968 
7969 	if (!new_dev)
7970 		return 0;
7971 
7972 	if (old_dev && new_dev != old_dev)
7973 		netdev_adjacent_dev_disable(dev, old_dev);
7974 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7975 				      extack);
7976 	if (err) {
7977 		if (old_dev && new_dev != old_dev)
7978 			netdev_adjacent_dev_enable(dev, old_dev);
7979 		return err;
7980 	}
7981 
7982 	return 0;
7983 }
7984 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7985 
7986 void netdev_adjacent_change_commit(struct net_device *old_dev,
7987 				   struct net_device *new_dev,
7988 				   struct net_device *dev)
7989 {
7990 	struct netdev_nested_priv priv = {
7991 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7992 		.data = NULL,
7993 	};
7994 
7995 	if (!new_dev || !old_dev)
7996 		return;
7997 
7998 	if (new_dev == old_dev)
7999 		return;
8000 
8001 	netdev_adjacent_dev_enable(dev, old_dev);
8002 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8003 }
8004 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8005 
8006 void netdev_adjacent_change_abort(struct net_device *old_dev,
8007 				  struct net_device *new_dev,
8008 				  struct net_device *dev)
8009 {
8010 	struct netdev_nested_priv priv = {
8011 		.flags = 0,
8012 		.data = NULL,
8013 	};
8014 
8015 	if (!new_dev)
8016 		return;
8017 
8018 	if (old_dev && new_dev != old_dev)
8019 		netdev_adjacent_dev_enable(dev, old_dev);
8020 
8021 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8022 }
8023 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8024 
8025 /**
8026  * netdev_bonding_info_change - Dispatch event about slave change
8027  * @dev: device
8028  * @bonding_info: info to dispatch
8029  *
8030  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8031  * The caller must hold the RTNL lock.
8032  */
8033 void netdev_bonding_info_change(struct net_device *dev,
8034 				struct netdev_bonding_info *bonding_info)
8035 {
8036 	struct netdev_notifier_bonding_info info = {
8037 		.info.dev = dev,
8038 	};
8039 
8040 	memcpy(&info.bonding_info, bonding_info,
8041 	       sizeof(struct netdev_bonding_info));
8042 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8043 				      &info.info);
8044 }
8045 EXPORT_SYMBOL(netdev_bonding_info_change);
8046 
8047 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8048 					   struct netlink_ext_ack *extack)
8049 {
8050 	struct netdev_notifier_offload_xstats_info info = {
8051 		.info.dev = dev,
8052 		.info.extack = extack,
8053 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8054 	};
8055 	int err;
8056 	int rc;
8057 
8058 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8059 					 GFP_KERNEL);
8060 	if (!dev->offload_xstats_l3)
8061 		return -ENOMEM;
8062 
8063 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8064 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8065 						  &info.info);
8066 	err = notifier_to_errno(rc);
8067 	if (err)
8068 		goto free_stats;
8069 
8070 	return 0;
8071 
8072 free_stats:
8073 	kfree(dev->offload_xstats_l3);
8074 	dev->offload_xstats_l3 = NULL;
8075 	return err;
8076 }
8077 
8078 int netdev_offload_xstats_enable(struct net_device *dev,
8079 				 enum netdev_offload_xstats_type type,
8080 				 struct netlink_ext_ack *extack)
8081 {
8082 	ASSERT_RTNL();
8083 
8084 	if (netdev_offload_xstats_enabled(dev, type))
8085 		return -EALREADY;
8086 
8087 	switch (type) {
8088 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8089 		return netdev_offload_xstats_enable_l3(dev, extack);
8090 	}
8091 
8092 	WARN_ON(1);
8093 	return -EINVAL;
8094 }
8095 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8096 
8097 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8098 {
8099 	struct netdev_notifier_offload_xstats_info info = {
8100 		.info.dev = dev,
8101 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8102 	};
8103 
8104 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8105 				      &info.info);
8106 	kfree(dev->offload_xstats_l3);
8107 	dev->offload_xstats_l3 = NULL;
8108 }
8109 
8110 int netdev_offload_xstats_disable(struct net_device *dev,
8111 				  enum netdev_offload_xstats_type type)
8112 {
8113 	ASSERT_RTNL();
8114 
8115 	if (!netdev_offload_xstats_enabled(dev, type))
8116 		return -EALREADY;
8117 
8118 	switch (type) {
8119 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8120 		netdev_offload_xstats_disable_l3(dev);
8121 		return 0;
8122 	}
8123 
8124 	WARN_ON(1);
8125 	return -EINVAL;
8126 }
8127 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8128 
8129 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8130 {
8131 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8132 }
8133 
8134 static struct rtnl_hw_stats64 *
8135 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8136 			      enum netdev_offload_xstats_type type)
8137 {
8138 	switch (type) {
8139 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8140 		return dev->offload_xstats_l3;
8141 	}
8142 
8143 	WARN_ON(1);
8144 	return NULL;
8145 }
8146 
8147 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8148 				   enum netdev_offload_xstats_type type)
8149 {
8150 	ASSERT_RTNL();
8151 
8152 	return netdev_offload_xstats_get_ptr(dev, type);
8153 }
8154 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8155 
8156 struct netdev_notifier_offload_xstats_ru {
8157 	bool used;
8158 };
8159 
8160 struct netdev_notifier_offload_xstats_rd {
8161 	struct rtnl_hw_stats64 stats;
8162 	bool used;
8163 };
8164 
8165 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8166 				  const struct rtnl_hw_stats64 *src)
8167 {
8168 	dest->rx_packets	  += src->rx_packets;
8169 	dest->tx_packets	  += src->tx_packets;
8170 	dest->rx_bytes		  += src->rx_bytes;
8171 	dest->tx_bytes		  += src->tx_bytes;
8172 	dest->rx_errors		  += src->rx_errors;
8173 	dest->tx_errors		  += src->tx_errors;
8174 	dest->rx_dropped	  += src->rx_dropped;
8175 	dest->tx_dropped	  += src->tx_dropped;
8176 	dest->multicast		  += src->multicast;
8177 }
8178 
8179 static int netdev_offload_xstats_get_used(struct net_device *dev,
8180 					  enum netdev_offload_xstats_type type,
8181 					  bool *p_used,
8182 					  struct netlink_ext_ack *extack)
8183 {
8184 	struct netdev_notifier_offload_xstats_ru report_used = {};
8185 	struct netdev_notifier_offload_xstats_info info = {
8186 		.info.dev = dev,
8187 		.info.extack = extack,
8188 		.type = type,
8189 		.report_used = &report_used,
8190 	};
8191 	int rc;
8192 
8193 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8194 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8195 					   &info.info);
8196 	*p_used = report_used.used;
8197 	return notifier_to_errno(rc);
8198 }
8199 
8200 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8201 					   enum netdev_offload_xstats_type type,
8202 					   struct rtnl_hw_stats64 *p_stats,
8203 					   bool *p_used,
8204 					   struct netlink_ext_ack *extack)
8205 {
8206 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8207 	struct netdev_notifier_offload_xstats_info info = {
8208 		.info.dev = dev,
8209 		.info.extack = extack,
8210 		.type = type,
8211 		.report_delta = &report_delta,
8212 	};
8213 	struct rtnl_hw_stats64 *stats;
8214 	int rc;
8215 
8216 	stats = netdev_offload_xstats_get_ptr(dev, type);
8217 	if (WARN_ON(!stats))
8218 		return -EINVAL;
8219 
8220 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8221 					   &info.info);
8222 
8223 	/* Cache whatever we got, even if there was an error, otherwise the
8224 	 * successful stats retrievals would get lost.
8225 	 */
8226 	netdev_hw_stats64_add(stats, &report_delta.stats);
8227 
8228 	if (p_stats)
8229 		*p_stats = *stats;
8230 	*p_used = report_delta.used;
8231 
8232 	return notifier_to_errno(rc);
8233 }
8234 
8235 int netdev_offload_xstats_get(struct net_device *dev,
8236 			      enum netdev_offload_xstats_type type,
8237 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8238 			      struct netlink_ext_ack *extack)
8239 {
8240 	ASSERT_RTNL();
8241 
8242 	if (p_stats)
8243 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8244 						       p_used, extack);
8245 	else
8246 		return netdev_offload_xstats_get_used(dev, type, p_used,
8247 						      extack);
8248 }
8249 EXPORT_SYMBOL(netdev_offload_xstats_get);
8250 
8251 void
8252 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8253 				   const struct rtnl_hw_stats64 *stats)
8254 {
8255 	report_delta->used = true;
8256 	netdev_hw_stats64_add(&report_delta->stats, stats);
8257 }
8258 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8259 
8260 void
8261 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8262 {
8263 	report_used->used = true;
8264 }
8265 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8266 
8267 void netdev_offload_xstats_push_delta(struct net_device *dev,
8268 				      enum netdev_offload_xstats_type type,
8269 				      const struct rtnl_hw_stats64 *p_stats)
8270 {
8271 	struct rtnl_hw_stats64 *stats;
8272 
8273 	ASSERT_RTNL();
8274 
8275 	stats = netdev_offload_xstats_get_ptr(dev, type);
8276 	if (WARN_ON(!stats))
8277 		return;
8278 
8279 	netdev_hw_stats64_add(stats, p_stats);
8280 }
8281 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8282 
8283 /**
8284  * netdev_get_xmit_slave - Get the xmit slave of master device
8285  * @dev: device
8286  * @skb: The packet
8287  * @all_slaves: assume all the slaves are active
8288  *
8289  * The reference counters are not incremented so the caller must be
8290  * careful with locks. The caller must hold RCU lock.
8291  * %NULL is returned if no slave is found.
8292  */
8293 
8294 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8295 					 struct sk_buff *skb,
8296 					 bool all_slaves)
8297 {
8298 	const struct net_device_ops *ops = dev->netdev_ops;
8299 
8300 	if (!ops->ndo_get_xmit_slave)
8301 		return NULL;
8302 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8303 }
8304 EXPORT_SYMBOL(netdev_get_xmit_slave);
8305 
8306 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8307 						  struct sock *sk)
8308 {
8309 	const struct net_device_ops *ops = dev->netdev_ops;
8310 
8311 	if (!ops->ndo_sk_get_lower_dev)
8312 		return NULL;
8313 	return ops->ndo_sk_get_lower_dev(dev, sk);
8314 }
8315 
8316 /**
8317  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8318  * @dev: device
8319  * @sk: the socket
8320  *
8321  * %NULL is returned if no lower device is found.
8322  */
8323 
8324 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8325 					    struct sock *sk)
8326 {
8327 	struct net_device *lower;
8328 
8329 	lower = netdev_sk_get_lower_dev(dev, sk);
8330 	while (lower) {
8331 		dev = lower;
8332 		lower = netdev_sk_get_lower_dev(dev, sk);
8333 	}
8334 
8335 	return dev;
8336 }
8337 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8338 
8339 static void netdev_adjacent_add_links(struct net_device *dev)
8340 {
8341 	struct netdev_adjacent *iter;
8342 
8343 	struct net *net = dev_net(dev);
8344 
8345 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8346 		if (!net_eq(net, dev_net(iter->dev)))
8347 			continue;
8348 		netdev_adjacent_sysfs_add(iter->dev, dev,
8349 					  &iter->dev->adj_list.lower);
8350 		netdev_adjacent_sysfs_add(dev, iter->dev,
8351 					  &dev->adj_list.upper);
8352 	}
8353 
8354 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8355 		if (!net_eq(net, dev_net(iter->dev)))
8356 			continue;
8357 		netdev_adjacent_sysfs_add(iter->dev, dev,
8358 					  &iter->dev->adj_list.upper);
8359 		netdev_adjacent_sysfs_add(dev, iter->dev,
8360 					  &dev->adj_list.lower);
8361 	}
8362 }
8363 
8364 static void netdev_adjacent_del_links(struct net_device *dev)
8365 {
8366 	struct netdev_adjacent *iter;
8367 
8368 	struct net *net = dev_net(dev);
8369 
8370 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8371 		if (!net_eq(net, dev_net(iter->dev)))
8372 			continue;
8373 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8374 					  &iter->dev->adj_list.lower);
8375 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8376 					  &dev->adj_list.upper);
8377 	}
8378 
8379 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8380 		if (!net_eq(net, dev_net(iter->dev)))
8381 			continue;
8382 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8383 					  &iter->dev->adj_list.upper);
8384 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8385 					  &dev->adj_list.lower);
8386 	}
8387 }
8388 
8389 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8390 {
8391 	struct netdev_adjacent *iter;
8392 
8393 	struct net *net = dev_net(dev);
8394 
8395 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8396 		if (!net_eq(net, dev_net(iter->dev)))
8397 			continue;
8398 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8399 					  &iter->dev->adj_list.lower);
8400 		netdev_adjacent_sysfs_add(iter->dev, dev,
8401 					  &iter->dev->adj_list.lower);
8402 	}
8403 
8404 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8405 		if (!net_eq(net, dev_net(iter->dev)))
8406 			continue;
8407 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8408 					  &iter->dev->adj_list.upper);
8409 		netdev_adjacent_sysfs_add(iter->dev, dev,
8410 					  &iter->dev->adj_list.upper);
8411 	}
8412 }
8413 
8414 void *netdev_lower_dev_get_private(struct net_device *dev,
8415 				   struct net_device *lower_dev)
8416 {
8417 	struct netdev_adjacent *lower;
8418 
8419 	if (!lower_dev)
8420 		return NULL;
8421 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8422 	if (!lower)
8423 		return NULL;
8424 
8425 	return lower->private;
8426 }
8427 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8428 
8429 
8430 /**
8431  * netdev_lower_state_changed - Dispatch event about lower device state change
8432  * @lower_dev: device
8433  * @lower_state_info: state to dispatch
8434  *
8435  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8436  * The caller must hold the RTNL lock.
8437  */
8438 void netdev_lower_state_changed(struct net_device *lower_dev,
8439 				void *lower_state_info)
8440 {
8441 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8442 		.info.dev = lower_dev,
8443 	};
8444 
8445 	ASSERT_RTNL();
8446 	changelowerstate_info.lower_state_info = lower_state_info;
8447 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8448 				      &changelowerstate_info.info);
8449 }
8450 EXPORT_SYMBOL(netdev_lower_state_changed);
8451 
8452 static void dev_change_rx_flags(struct net_device *dev, int flags)
8453 {
8454 	const struct net_device_ops *ops = dev->netdev_ops;
8455 
8456 	if (ops->ndo_change_rx_flags)
8457 		ops->ndo_change_rx_flags(dev, flags);
8458 }
8459 
8460 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8461 {
8462 	unsigned int old_flags = dev->flags;
8463 	kuid_t uid;
8464 	kgid_t gid;
8465 
8466 	ASSERT_RTNL();
8467 
8468 	dev->flags |= IFF_PROMISC;
8469 	dev->promiscuity += inc;
8470 	if (dev->promiscuity == 0) {
8471 		/*
8472 		 * Avoid overflow.
8473 		 * If inc causes overflow, untouch promisc and return error.
8474 		 */
8475 		if (inc < 0)
8476 			dev->flags &= ~IFF_PROMISC;
8477 		else {
8478 			dev->promiscuity -= inc;
8479 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8480 			return -EOVERFLOW;
8481 		}
8482 	}
8483 	if (dev->flags != old_flags) {
8484 		netdev_info(dev, "%s promiscuous mode\n",
8485 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8486 		if (audit_enabled) {
8487 			current_uid_gid(&uid, &gid);
8488 			audit_log(audit_context(), GFP_ATOMIC,
8489 				  AUDIT_ANOM_PROMISCUOUS,
8490 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8491 				  dev->name, (dev->flags & IFF_PROMISC),
8492 				  (old_flags & IFF_PROMISC),
8493 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8494 				  from_kuid(&init_user_ns, uid),
8495 				  from_kgid(&init_user_ns, gid),
8496 				  audit_get_sessionid(current));
8497 		}
8498 
8499 		dev_change_rx_flags(dev, IFF_PROMISC);
8500 	}
8501 	if (notify)
8502 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8503 	return 0;
8504 }
8505 
8506 /**
8507  *	dev_set_promiscuity	- update promiscuity count on a device
8508  *	@dev: device
8509  *	@inc: modifier
8510  *
8511  *	Add or remove promiscuity from a device. While the count in the device
8512  *	remains above zero the interface remains promiscuous. Once it hits zero
8513  *	the device reverts back to normal filtering operation. A negative inc
8514  *	value is used to drop promiscuity on the device.
8515  *	Return 0 if successful or a negative errno code on error.
8516  */
8517 int dev_set_promiscuity(struct net_device *dev, int inc)
8518 {
8519 	unsigned int old_flags = dev->flags;
8520 	int err;
8521 
8522 	err = __dev_set_promiscuity(dev, inc, true);
8523 	if (err < 0)
8524 		return err;
8525 	if (dev->flags != old_flags)
8526 		dev_set_rx_mode(dev);
8527 	return err;
8528 }
8529 EXPORT_SYMBOL(dev_set_promiscuity);
8530 
8531 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8532 {
8533 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8534 
8535 	ASSERT_RTNL();
8536 
8537 	dev->flags |= IFF_ALLMULTI;
8538 	dev->allmulti += inc;
8539 	if (dev->allmulti == 0) {
8540 		/*
8541 		 * Avoid overflow.
8542 		 * If inc causes overflow, untouch allmulti and return error.
8543 		 */
8544 		if (inc < 0)
8545 			dev->flags &= ~IFF_ALLMULTI;
8546 		else {
8547 			dev->allmulti -= inc;
8548 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8549 			return -EOVERFLOW;
8550 		}
8551 	}
8552 	if (dev->flags ^ old_flags) {
8553 		netdev_info(dev, "%s allmulticast mode\n",
8554 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8555 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8556 		dev_set_rx_mode(dev);
8557 		if (notify)
8558 			__dev_notify_flags(dev, old_flags,
8559 					   dev->gflags ^ old_gflags, 0, NULL);
8560 	}
8561 	return 0;
8562 }
8563 
8564 /**
8565  *	dev_set_allmulti	- update allmulti count on a device
8566  *	@dev: device
8567  *	@inc: modifier
8568  *
8569  *	Add or remove reception of all multicast frames to a device. While the
8570  *	count in the device remains above zero the interface remains listening
8571  *	to all interfaces. Once it hits zero the device reverts back to normal
8572  *	filtering operation. A negative @inc value is used to drop the counter
8573  *	when releasing a resource needing all multicasts.
8574  *	Return 0 if successful or a negative errno code on error.
8575  */
8576 
8577 int dev_set_allmulti(struct net_device *dev, int inc)
8578 {
8579 	return __dev_set_allmulti(dev, inc, true);
8580 }
8581 EXPORT_SYMBOL(dev_set_allmulti);
8582 
8583 /*
8584  *	Upload unicast and multicast address lists to device and
8585  *	configure RX filtering. When the device doesn't support unicast
8586  *	filtering it is put in promiscuous mode while unicast addresses
8587  *	are present.
8588  */
8589 void __dev_set_rx_mode(struct net_device *dev)
8590 {
8591 	const struct net_device_ops *ops = dev->netdev_ops;
8592 
8593 	/* dev_open will call this function so the list will stay sane. */
8594 	if (!(dev->flags&IFF_UP))
8595 		return;
8596 
8597 	if (!netif_device_present(dev))
8598 		return;
8599 
8600 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8601 		/* Unicast addresses changes may only happen under the rtnl,
8602 		 * therefore calling __dev_set_promiscuity here is safe.
8603 		 */
8604 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8605 			__dev_set_promiscuity(dev, 1, false);
8606 			dev->uc_promisc = true;
8607 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8608 			__dev_set_promiscuity(dev, -1, false);
8609 			dev->uc_promisc = false;
8610 		}
8611 	}
8612 
8613 	if (ops->ndo_set_rx_mode)
8614 		ops->ndo_set_rx_mode(dev);
8615 }
8616 
8617 void dev_set_rx_mode(struct net_device *dev)
8618 {
8619 	netif_addr_lock_bh(dev);
8620 	__dev_set_rx_mode(dev);
8621 	netif_addr_unlock_bh(dev);
8622 }
8623 
8624 /**
8625  *	dev_get_flags - get flags reported to userspace
8626  *	@dev: device
8627  *
8628  *	Get the combination of flag bits exported through APIs to userspace.
8629  */
8630 unsigned int dev_get_flags(const struct net_device *dev)
8631 {
8632 	unsigned int flags;
8633 
8634 	flags = (dev->flags & ~(IFF_PROMISC |
8635 				IFF_ALLMULTI |
8636 				IFF_RUNNING |
8637 				IFF_LOWER_UP |
8638 				IFF_DORMANT)) |
8639 		(dev->gflags & (IFF_PROMISC |
8640 				IFF_ALLMULTI));
8641 
8642 	if (netif_running(dev)) {
8643 		if (netif_oper_up(dev))
8644 			flags |= IFF_RUNNING;
8645 		if (netif_carrier_ok(dev))
8646 			flags |= IFF_LOWER_UP;
8647 		if (netif_dormant(dev))
8648 			flags |= IFF_DORMANT;
8649 	}
8650 
8651 	return flags;
8652 }
8653 EXPORT_SYMBOL(dev_get_flags);
8654 
8655 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8656 		       struct netlink_ext_ack *extack)
8657 {
8658 	unsigned int old_flags = dev->flags;
8659 	int ret;
8660 
8661 	ASSERT_RTNL();
8662 
8663 	/*
8664 	 *	Set the flags on our device.
8665 	 */
8666 
8667 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8668 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8669 			       IFF_AUTOMEDIA)) |
8670 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8671 				    IFF_ALLMULTI));
8672 
8673 	/*
8674 	 *	Load in the correct multicast list now the flags have changed.
8675 	 */
8676 
8677 	if ((old_flags ^ flags) & IFF_MULTICAST)
8678 		dev_change_rx_flags(dev, IFF_MULTICAST);
8679 
8680 	dev_set_rx_mode(dev);
8681 
8682 	/*
8683 	 *	Have we downed the interface. We handle IFF_UP ourselves
8684 	 *	according to user attempts to set it, rather than blindly
8685 	 *	setting it.
8686 	 */
8687 
8688 	ret = 0;
8689 	if ((old_flags ^ flags) & IFF_UP) {
8690 		if (old_flags & IFF_UP)
8691 			__dev_close(dev);
8692 		else
8693 			ret = __dev_open(dev, extack);
8694 	}
8695 
8696 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8697 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8698 		unsigned int old_flags = dev->flags;
8699 
8700 		dev->gflags ^= IFF_PROMISC;
8701 
8702 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8703 			if (dev->flags != old_flags)
8704 				dev_set_rx_mode(dev);
8705 	}
8706 
8707 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8708 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8709 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8710 	 */
8711 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8712 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8713 
8714 		dev->gflags ^= IFF_ALLMULTI;
8715 		__dev_set_allmulti(dev, inc, false);
8716 	}
8717 
8718 	return ret;
8719 }
8720 
8721 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8722 			unsigned int gchanges, u32 portid,
8723 			const struct nlmsghdr *nlh)
8724 {
8725 	unsigned int changes = dev->flags ^ old_flags;
8726 
8727 	if (gchanges)
8728 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8729 
8730 	if (changes & IFF_UP) {
8731 		if (dev->flags & IFF_UP)
8732 			call_netdevice_notifiers(NETDEV_UP, dev);
8733 		else
8734 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8735 	}
8736 
8737 	if (dev->flags & IFF_UP &&
8738 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8739 		struct netdev_notifier_change_info change_info = {
8740 			.info = {
8741 				.dev = dev,
8742 			},
8743 			.flags_changed = changes,
8744 		};
8745 
8746 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8747 	}
8748 }
8749 
8750 /**
8751  *	dev_change_flags - change device settings
8752  *	@dev: device
8753  *	@flags: device state flags
8754  *	@extack: netlink extended ack
8755  *
8756  *	Change settings on device based state flags. The flags are
8757  *	in the userspace exported format.
8758  */
8759 int dev_change_flags(struct net_device *dev, unsigned int flags,
8760 		     struct netlink_ext_ack *extack)
8761 {
8762 	int ret;
8763 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8764 
8765 	ret = __dev_change_flags(dev, flags, extack);
8766 	if (ret < 0)
8767 		return ret;
8768 
8769 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8770 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8771 	return ret;
8772 }
8773 EXPORT_SYMBOL(dev_change_flags);
8774 
8775 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8776 {
8777 	const struct net_device_ops *ops = dev->netdev_ops;
8778 
8779 	if (ops->ndo_change_mtu)
8780 		return ops->ndo_change_mtu(dev, new_mtu);
8781 
8782 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8783 	WRITE_ONCE(dev->mtu, new_mtu);
8784 	return 0;
8785 }
8786 EXPORT_SYMBOL(__dev_set_mtu);
8787 
8788 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8789 		     struct netlink_ext_ack *extack)
8790 {
8791 	/* MTU must be positive, and in range */
8792 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8793 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8794 		return -EINVAL;
8795 	}
8796 
8797 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8798 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8799 		return -EINVAL;
8800 	}
8801 	return 0;
8802 }
8803 
8804 /**
8805  *	dev_set_mtu_ext - Change maximum transfer unit
8806  *	@dev: device
8807  *	@new_mtu: new transfer unit
8808  *	@extack: netlink extended ack
8809  *
8810  *	Change the maximum transfer size of the network device.
8811  */
8812 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8813 		    struct netlink_ext_ack *extack)
8814 {
8815 	int err, orig_mtu;
8816 
8817 	if (new_mtu == dev->mtu)
8818 		return 0;
8819 
8820 	err = dev_validate_mtu(dev, new_mtu, extack);
8821 	if (err)
8822 		return err;
8823 
8824 	if (!netif_device_present(dev))
8825 		return -ENODEV;
8826 
8827 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8828 	err = notifier_to_errno(err);
8829 	if (err)
8830 		return err;
8831 
8832 	orig_mtu = dev->mtu;
8833 	err = __dev_set_mtu(dev, new_mtu);
8834 
8835 	if (!err) {
8836 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8837 						   orig_mtu);
8838 		err = notifier_to_errno(err);
8839 		if (err) {
8840 			/* setting mtu back and notifying everyone again,
8841 			 * so that they have a chance to revert changes.
8842 			 */
8843 			__dev_set_mtu(dev, orig_mtu);
8844 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8845 						     new_mtu);
8846 		}
8847 	}
8848 	return err;
8849 }
8850 
8851 int dev_set_mtu(struct net_device *dev, int new_mtu)
8852 {
8853 	struct netlink_ext_ack extack;
8854 	int err;
8855 
8856 	memset(&extack, 0, sizeof(extack));
8857 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8858 	if (err && extack._msg)
8859 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8860 	return err;
8861 }
8862 EXPORT_SYMBOL(dev_set_mtu);
8863 
8864 /**
8865  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8866  *	@dev: device
8867  *	@new_len: new tx queue length
8868  */
8869 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8870 {
8871 	unsigned int orig_len = dev->tx_queue_len;
8872 	int res;
8873 
8874 	if (new_len != (unsigned int)new_len)
8875 		return -ERANGE;
8876 
8877 	if (new_len != orig_len) {
8878 		dev->tx_queue_len = new_len;
8879 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8880 		res = notifier_to_errno(res);
8881 		if (res)
8882 			goto err_rollback;
8883 		res = dev_qdisc_change_tx_queue_len(dev);
8884 		if (res)
8885 			goto err_rollback;
8886 	}
8887 
8888 	return 0;
8889 
8890 err_rollback:
8891 	netdev_err(dev, "refused to change device tx_queue_len\n");
8892 	dev->tx_queue_len = orig_len;
8893 	return res;
8894 }
8895 
8896 /**
8897  *	dev_set_group - Change group this device belongs to
8898  *	@dev: device
8899  *	@new_group: group this device should belong to
8900  */
8901 void dev_set_group(struct net_device *dev, int new_group)
8902 {
8903 	dev->group = new_group;
8904 }
8905 
8906 /**
8907  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8908  *	@dev: device
8909  *	@addr: new address
8910  *	@extack: netlink extended ack
8911  */
8912 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8913 			      struct netlink_ext_ack *extack)
8914 {
8915 	struct netdev_notifier_pre_changeaddr_info info = {
8916 		.info.dev = dev,
8917 		.info.extack = extack,
8918 		.dev_addr = addr,
8919 	};
8920 	int rc;
8921 
8922 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8923 	return notifier_to_errno(rc);
8924 }
8925 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8926 
8927 /**
8928  *	dev_set_mac_address - Change Media Access Control Address
8929  *	@dev: device
8930  *	@sa: new address
8931  *	@extack: netlink extended ack
8932  *
8933  *	Change the hardware (MAC) address of the device
8934  */
8935 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8936 			struct netlink_ext_ack *extack)
8937 {
8938 	const struct net_device_ops *ops = dev->netdev_ops;
8939 	int err;
8940 
8941 	if (!ops->ndo_set_mac_address)
8942 		return -EOPNOTSUPP;
8943 	if (sa->sa_family != dev->type)
8944 		return -EINVAL;
8945 	if (!netif_device_present(dev))
8946 		return -ENODEV;
8947 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8948 	if (err)
8949 		return err;
8950 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8951 		err = ops->ndo_set_mac_address(dev, sa);
8952 		if (err)
8953 			return err;
8954 	}
8955 	dev->addr_assign_type = NET_ADDR_SET;
8956 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8957 	add_device_randomness(dev->dev_addr, dev->addr_len);
8958 	return 0;
8959 }
8960 EXPORT_SYMBOL(dev_set_mac_address);
8961 
8962 static DECLARE_RWSEM(dev_addr_sem);
8963 
8964 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8965 			     struct netlink_ext_ack *extack)
8966 {
8967 	int ret;
8968 
8969 	down_write(&dev_addr_sem);
8970 	ret = dev_set_mac_address(dev, sa, extack);
8971 	up_write(&dev_addr_sem);
8972 	return ret;
8973 }
8974 EXPORT_SYMBOL(dev_set_mac_address_user);
8975 
8976 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8977 {
8978 	size_t size = sizeof(sa->sa_data_min);
8979 	struct net_device *dev;
8980 	int ret = 0;
8981 
8982 	down_read(&dev_addr_sem);
8983 	rcu_read_lock();
8984 
8985 	dev = dev_get_by_name_rcu(net, dev_name);
8986 	if (!dev) {
8987 		ret = -ENODEV;
8988 		goto unlock;
8989 	}
8990 	if (!dev->addr_len)
8991 		memset(sa->sa_data, 0, size);
8992 	else
8993 		memcpy(sa->sa_data, dev->dev_addr,
8994 		       min_t(size_t, size, dev->addr_len));
8995 	sa->sa_family = dev->type;
8996 
8997 unlock:
8998 	rcu_read_unlock();
8999 	up_read(&dev_addr_sem);
9000 	return ret;
9001 }
9002 EXPORT_SYMBOL(dev_get_mac_address);
9003 
9004 /**
9005  *	dev_change_carrier - Change device carrier
9006  *	@dev: device
9007  *	@new_carrier: new value
9008  *
9009  *	Change device carrier
9010  */
9011 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9012 {
9013 	const struct net_device_ops *ops = dev->netdev_ops;
9014 
9015 	if (!ops->ndo_change_carrier)
9016 		return -EOPNOTSUPP;
9017 	if (!netif_device_present(dev))
9018 		return -ENODEV;
9019 	return ops->ndo_change_carrier(dev, new_carrier);
9020 }
9021 
9022 /**
9023  *	dev_get_phys_port_id - Get device physical port ID
9024  *	@dev: device
9025  *	@ppid: port ID
9026  *
9027  *	Get device physical port ID
9028  */
9029 int dev_get_phys_port_id(struct net_device *dev,
9030 			 struct netdev_phys_item_id *ppid)
9031 {
9032 	const struct net_device_ops *ops = dev->netdev_ops;
9033 
9034 	if (!ops->ndo_get_phys_port_id)
9035 		return -EOPNOTSUPP;
9036 	return ops->ndo_get_phys_port_id(dev, ppid);
9037 }
9038 
9039 /**
9040  *	dev_get_phys_port_name - Get device physical port name
9041  *	@dev: device
9042  *	@name: port name
9043  *	@len: limit of bytes to copy to name
9044  *
9045  *	Get device physical port name
9046  */
9047 int dev_get_phys_port_name(struct net_device *dev,
9048 			   char *name, size_t len)
9049 {
9050 	const struct net_device_ops *ops = dev->netdev_ops;
9051 	int err;
9052 
9053 	if (ops->ndo_get_phys_port_name) {
9054 		err = ops->ndo_get_phys_port_name(dev, name, len);
9055 		if (err != -EOPNOTSUPP)
9056 			return err;
9057 	}
9058 	return devlink_compat_phys_port_name_get(dev, name, len);
9059 }
9060 
9061 /**
9062  *	dev_get_port_parent_id - Get the device's port parent identifier
9063  *	@dev: network device
9064  *	@ppid: pointer to a storage for the port's parent identifier
9065  *	@recurse: allow/disallow recursion to lower devices
9066  *
9067  *	Get the devices's port parent identifier
9068  */
9069 int dev_get_port_parent_id(struct net_device *dev,
9070 			   struct netdev_phys_item_id *ppid,
9071 			   bool recurse)
9072 {
9073 	const struct net_device_ops *ops = dev->netdev_ops;
9074 	struct netdev_phys_item_id first = { };
9075 	struct net_device *lower_dev;
9076 	struct list_head *iter;
9077 	int err;
9078 
9079 	if (ops->ndo_get_port_parent_id) {
9080 		err = ops->ndo_get_port_parent_id(dev, ppid);
9081 		if (err != -EOPNOTSUPP)
9082 			return err;
9083 	}
9084 
9085 	err = devlink_compat_switch_id_get(dev, ppid);
9086 	if (!recurse || err != -EOPNOTSUPP)
9087 		return err;
9088 
9089 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9090 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9091 		if (err)
9092 			break;
9093 		if (!first.id_len)
9094 			first = *ppid;
9095 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9096 			return -EOPNOTSUPP;
9097 	}
9098 
9099 	return err;
9100 }
9101 EXPORT_SYMBOL(dev_get_port_parent_id);
9102 
9103 /**
9104  *	netdev_port_same_parent_id - Indicate if two network devices have
9105  *	the same port parent identifier
9106  *	@a: first network device
9107  *	@b: second network device
9108  */
9109 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9110 {
9111 	struct netdev_phys_item_id a_id = { };
9112 	struct netdev_phys_item_id b_id = { };
9113 
9114 	if (dev_get_port_parent_id(a, &a_id, true) ||
9115 	    dev_get_port_parent_id(b, &b_id, true))
9116 		return false;
9117 
9118 	return netdev_phys_item_id_same(&a_id, &b_id);
9119 }
9120 EXPORT_SYMBOL(netdev_port_same_parent_id);
9121 
9122 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9123 {
9124 #if IS_ENABLED(CONFIG_DPLL)
9125 	rtnl_lock();
9126 	dev->dpll_pin = dpll_pin;
9127 	rtnl_unlock();
9128 #endif
9129 }
9130 
9131 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9132 {
9133 	WARN_ON(!dpll_pin);
9134 	netdev_dpll_pin_assign(dev, dpll_pin);
9135 }
9136 EXPORT_SYMBOL(netdev_dpll_pin_set);
9137 
9138 void netdev_dpll_pin_clear(struct net_device *dev)
9139 {
9140 	netdev_dpll_pin_assign(dev, NULL);
9141 }
9142 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9143 
9144 /**
9145  *	dev_change_proto_down - set carrier according to proto_down.
9146  *
9147  *	@dev: device
9148  *	@proto_down: new value
9149  */
9150 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9151 {
9152 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9153 		return -EOPNOTSUPP;
9154 	if (!netif_device_present(dev))
9155 		return -ENODEV;
9156 	if (proto_down)
9157 		netif_carrier_off(dev);
9158 	else
9159 		netif_carrier_on(dev);
9160 	dev->proto_down = proto_down;
9161 	return 0;
9162 }
9163 
9164 /**
9165  *	dev_change_proto_down_reason - proto down reason
9166  *
9167  *	@dev: device
9168  *	@mask: proto down mask
9169  *	@value: proto down value
9170  */
9171 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9172 				  u32 value)
9173 {
9174 	int b;
9175 
9176 	if (!mask) {
9177 		dev->proto_down_reason = value;
9178 	} else {
9179 		for_each_set_bit(b, &mask, 32) {
9180 			if (value & (1 << b))
9181 				dev->proto_down_reason |= BIT(b);
9182 			else
9183 				dev->proto_down_reason &= ~BIT(b);
9184 		}
9185 	}
9186 }
9187 
9188 struct bpf_xdp_link {
9189 	struct bpf_link link;
9190 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9191 	int flags;
9192 };
9193 
9194 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9195 {
9196 	if (flags & XDP_FLAGS_HW_MODE)
9197 		return XDP_MODE_HW;
9198 	if (flags & XDP_FLAGS_DRV_MODE)
9199 		return XDP_MODE_DRV;
9200 	if (flags & XDP_FLAGS_SKB_MODE)
9201 		return XDP_MODE_SKB;
9202 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9203 }
9204 
9205 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9206 {
9207 	switch (mode) {
9208 	case XDP_MODE_SKB:
9209 		return generic_xdp_install;
9210 	case XDP_MODE_DRV:
9211 	case XDP_MODE_HW:
9212 		return dev->netdev_ops->ndo_bpf;
9213 	default:
9214 		return NULL;
9215 	}
9216 }
9217 
9218 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9219 					 enum bpf_xdp_mode mode)
9220 {
9221 	return dev->xdp_state[mode].link;
9222 }
9223 
9224 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9225 				     enum bpf_xdp_mode mode)
9226 {
9227 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9228 
9229 	if (link)
9230 		return link->link.prog;
9231 	return dev->xdp_state[mode].prog;
9232 }
9233 
9234 u8 dev_xdp_prog_count(struct net_device *dev)
9235 {
9236 	u8 count = 0;
9237 	int i;
9238 
9239 	for (i = 0; i < __MAX_XDP_MODE; i++)
9240 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9241 			count++;
9242 	return count;
9243 }
9244 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9245 
9246 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9247 {
9248 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9249 
9250 	return prog ? prog->aux->id : 0;
9251 }
9252 
9253 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9254 			     struct bpf_xdp_link *link)
9255 {
9256 	dev->xdp_state[mode].link = link;
9257 	dev->xdp_state[mode].prog = NULL;
9258 }
9259 
9260 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9261 			     struct bpf_prog *prog)
9262 {
9263 	dev->xdp_state[mode].link = NULL;
9264 	dev->xdp_state[mode].prog = prog;
9265 }
9266 
9267 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9268 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9269 			   u32 flags, struct bpf_prog *prog)
9270 {
9271 	struct netdev_bpf xdp;
9272 	int err;
9273 
9274 	memset(&xdp, 0, sizeof(xdp));
9275 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9276 	xdp.extack = extack;
9277 	xdp.flags = flags;
9278 	xdp.prog = prog;
9279 
9280 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9281 	 * "moved" into driver), so they don't increment it on their own, but
9282 	 * they do decrement refcnt when program is detached or replaced.
9283 	 * Given net_device also owns link/prog, we need to bump refcnt here
9284 	 * to prevent drivers from underflowing it.
9285 	 */
9286 	if (prog)
9287 		bpf_prog_inc(prog);
9288 	err = bpf_op(dev, &xdp);
9289 	if (err) {
9290 		if (prog)
9291 			bpf_prog_put(prog);
9292 		return err;
9293 	}
9294 
9295 	if (mode != XDP_MODE_HW)
9296 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9297 
9298 	return 0;
9299 }
9300 
9301 static void dev_xdp_uninstall(struct net_device *dev)
9302 {
9303 	struct bpf_xdp_link *link;
9304 	struct bpf_prog *prog;
9305 	enum bpf_xdp_mode mode;
9306 	bpf_op_t bpf_op;
9307 
9308 	ASSERT_RTNL();
9309 
9310 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9311 		prog = dev_xdp_prog(dev, mode);
9312 		if (!prog)
9313 			continue;
9314 
9315 		bpf_op = dev_xdp_bpf_op(dev, mode);
9316 		if (!bpf_op)
9317 			continue;
9318 
9319 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9320 
9321 		/* auto-detach link from net device */
9322 		link = dev_xdp_link(dev, mode);
9323 		if (link)
9324 			link->dev = NULL;
9325 		else
9326 			bpf_prog_put(prog);
9327 
9328 		dev_xdp_set_link(dev, mode, NULL);
9329 	}
9330 }
9331 
9332 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9333 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9334 			  struct bpf_prog *old_prog, u32 flags)
9335 {
9336 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9337 	struct bpf_prog *cur_prog;
9338 	struct net_device *upper;
9339 	struct list_head *iter;
9340 	enum bpf_xdp_mode mode;
9341 	bpf_op_t bpf_op;
9342 	int err;
9343 
9344 	ASSERT_RTNL();
9345 
9346 	/* either link or prog attachment, never both */
9347 	if (link && (new_prog || old_prog))
9348 		return -EINVAL;
9349 	/* link supports only XDP mode flags */
9350 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9351 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9352 		return -EINVAL;
9353 	}
9354 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9355 	if (num_modes > 1) {
9356 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9357 		return -EINVAL;
9358 	}
9359 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9360 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9361 		NL_SET_ERR_MSG(extack,
9362 			       "More than one program loaded, unset mode is ambiguous");
9363 		return -EINVAL;
9364 	}
9365 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9366 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9367 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9368 		return -EINVAL;
9369 	}
9370 
9371 	mode = dev_xdp_mode(dev, flags);
9372 	/* can't replace attached link */
9373 	if (dev_xdp_link(dev, mode)) {
9374 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9375 		return -EBUSY;
9376 	}
9377 
9378 	/* don't allow if an upper device already has a program */
9379 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9380 		if (dev_xdp_prog_count(upper) > 0) {
9381 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9382 			return -EEXIST;
9383 		}
9384 	}
9385 
9386 	cur_prog = dev_xdp_prog(dev, mode);
9387 	/* can't replace attached prog with link */
9388 	if (link && cur_prog) {
9389 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9390 		return -EBUSY;
9391 	}
9392 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9393 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9394 		return -EEXIST;
9395 	}
9396 
9397 	/* put effective new program into new_prog */
9398 	if (link)
9399 		new_prog = link->link.prog;
9400 
9401 	if (new_prog) {
9402 		bool offload = mode == XDP_MODE_HW;
9403 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9404 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9405 
9406 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9407 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9408 			return -EBUSY;
9409 		}
9410 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9411 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9412 			return -EEXIST;
9413 		}
9414 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9415 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9416 			return -EINVAL;
9417 		}
9418 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9419 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9420 			return -EINVAL;
9421 		}
9422 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9423 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9424 			return -EINVAL;
9425 		}
9426 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9427 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9428 			return -EINVAL;
9429 		}
9430 	}
9431 
9432 	/* don't call drivers if the effective program didn't change */
9433 	if (new_prog != cur_prog) {
9434 		bpf_op = dev_xdp_bpf_op(dev, mode);
9435 		if (!bpf_op) {
9436 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9437 			return -EOPNOTSUPP;
9438 		}
9439 
9440 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9441 		if (err)
9442 			return err;
9443 	}
9444 
9445 	if (link)
9446 		dev_xdp_set_link(dev, mode, link);
9447 	else
9448 		dev_xdp_set_prog(dev, mode, new_prog);
9449 	if (cur_prog)
9450 		bpf_prog_put(cur_prog);
9451 
9452 	return 0;
9453 }
9454 
9455 static int dev_xdp_attach_link(struct net_device *dev,
9456 			       struct netlink_ext_ack *extack,
9457 			       struct bpf_xdp_link *link)
9458 {
9459 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9460 }
9461 
9462 static int dev_xdp_detach_link(struct net_device *dev,
9463 			       struct netlink_ext_ack *extack,
9464 			       struct bpf_xdp_link *link)
9465 {
9466 	enum bpf_xdp_mode mode;
9467 	bpf_op_t bpf_op;
9468 
9469 	ASSERT_RTNL();
9470 
9471 	mode = dev_xdp_mode(dev, link->flags);
9472 	if (dev_xdp_link(dev, mode) != link)
9473 		return -EINVAL;
9474 
9475 	bpf_op = dev_xdp_bpf_op(dev, mode);
9476 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9477 	dev_xdp_set_link(dev, mode, NULL);
9478 	return 0;
9479 }
9480 
9481 static void bpf_xdp_link_release(struct bpf_link *link)
9482 {
9483 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9484 
9485 	rtnl_lock();
9486 
9487 	/* if racing with net_device's tear down, xdp_link->dev might be
9488 	 * already NULL, in which case link was already auto-detached
9489 	 */
9490 	if (xdp_link->dev) {
9491 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9492 		xdp_link->dev = NULL;
9493 	}
9494 
9495 	rtnl_unlock();
9496 }
9497 
9498 static int bpf_xdp_link_detach(struct bpf_link *link)
9499 {
9500 	bpf_xdp_link_release(link);
9501 	return 0;
9502 }
9503 
9504 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9505 {
9506 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9507 
9508 	kfree(xdp_link);
9509 }
9510 
9511 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9512 				     struct seq_file *seq)
9513 {
9514 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9515 	u32 ifindex = 0;
9516 
9517 	rtnl_lock();
9518 	if (xdp_link->dev)
9519 		ifindex = xdp_link->dev->ifindex;
9520 	rtnl_unlock();
9521 
9522 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9523 }
9524 
9525 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9526 				       struct bpf_link_info *info)
9527 {
9528 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9529 	u32 ifindex = 0;
9530 
9531 	rtnl_lock();
9532 	if (xdp_link->dev)
9533 		ifindex = xdp_link->dev->ifindex;
9534 	rtnl_unlock();
9535 
9536 	info->xdp.ifindex = ifindex;
9537 	return 0;
9538 }
9539 
9540 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9541 			       struct bpf_prog *old_prog)
9542 {
9543 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9544 	enum bpf_xdp_mode mode;
9545 	bpf_op_t bpf_op;
9546 	int err = 0;
9547 
9548 	rtnl_lock();
9549 
9550 	/* link might have been auto-released already, so fail */
9551 	if (!xdp_link->dev) {
9552 		err = -ENOLINK;
9553 		goto out_unlock;
9554 	}
9555 
9556 	if (old_prog && link->prog != old_prog) {
9557 		err = -EPERM;
9558 		goto out_unlock;
9559 	}
9560 	old_prog = link->prog;
9561 	if (old_prog->type != new_prog->type ||
9562 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9563 		err = -EINVAL;
9564 		goto out_unlock;
9565 	}
9566 
9567 	if (old_prog == new_prog) {
9568 		/* no-op, don't disturb drivers */
9569 		bpf_prog_put(new_prog);
9570 		goto out_unlock;
9571 	}
9572 
9573 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9574 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9575 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9576 			      xdp_link->flags, new_prog);
9577 	if (err)
9578 		goto out_unlock;
9579 
9580 	old_prog = xchg(&link->prog, new_prog);
9581 	bpf_prog_put(old_prog);
9582 
9583 out_unlock:
9584 	rtnl_unlock();
9585 	return err;
9586 }
9587 
9588 static const struct bpf_link_ops bpf_xdp_link_lops = {
9589 	.release = bpf_xdp_link_release,
9590 	.dealloc = bpf_xdp_link_dealloc,
9591 	.detach = bpf_xdp_link_detach,
9592 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9593 	.fill_link_info = bpf_xdp_link_fill_link_info,
9594 	.update_prog = bpf_xdp_link_update,
9595 };
9596 
9597 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9598 {
9599 	struct net *net = current->nsproxy->net_ns;
9600 	struct bpf_link_primer link_primer;
9601 	struct netlink_ext_ack extack = {};
9602 	struct bpf_xdp_link *link;
9603 	struct net_device *dev;
9604 	int err, fd;
9605 
9606 	rtnl_lock();
9607 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9608 	if (!dev) {
9609 		rtnl_unlock();
9610 		return -EINVAL;
9611 	}
9612 
9613 	link = kzalloc(sizeof(*link), GFP_USER);
9614 	if (!link) {
9615 		err = -ENOMEM;
9616 		goto unlock;
9617 	}
9618 
9619 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9620 	link->dev = dev;
9621 	link->flags = attr->link_create.flags;
9622 
9623 	err = bpf_link_prime(&link->link, &link_primer);
9624 	if (err) {
9625 		kfree(link);
9626 		goto unlock;
9627 	}
9628 
9629 	err = dev_xdp_attach_link(dev, &extack, link);
9630 	rtnl_unlock();
9631 
9632 	if (err) {
9633 		link->dev = NULL;
9634 		bpf_link_cleanup(&link_primer);
9635 		trace_bpf_xdp_link_attach_failed(extack._msg);
9636 		goto out_put_dev;
9637 	}
9638 
9639 	fd = bpf_link_settle(&link_primer);
9640 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9641 	dev_put(dev);
9642 	return fd;
9643 
9644 unlock:
9645 	rtnl_unlock();
9646 
9647 out_put_dev:
9648 	dev_put(dev);
9649 	return err;
9650 }
9651 
9652 /**
9653  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9654  *	@dev: device
9655  *	@extack: netlink extended ack
9656  *	@fd: new program fd or negative value to clear
9657  *	@expected_fd: old program fd that userspace expects to replace or clear
9658  *	@flags: xdp-related flags
9659  *
9660  *	Set or clear a bpf program for a device
9661  */
9662 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9663 		      int fd, int expected_fd, u32 flags)
9664 {
9665 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9666 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9667 	int err;
9668 
9669 	ASSERT_RTNL();
9670 
9671 	if (fd >= 0) {
9672 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9673 						 mode != XDP_MODE_SKB);
9674 		if (IS_ERR(new_prog))
9675 			return PTR_ERR(new_prog);
9676 	}
9677 
9678 	if (expected_fd >= 0) {
9679 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9680 						 mode != XDP_MODE_SKB);
9681 		if (IS_ERR(old_prog)) {
9682 			err = PTR_ERR(old_prog);
9683 			old_prog = NULL;
9684 			goto err_out;
9685 		}
9686 	}
9687 
9688 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9689 
9690 err_out:
9691 	if (err && new_prog)
9692 		bpf_prog_put(new_prog);
9693 	if (old_prog)
9694 		bpf_prog_put(old_prog);
9695 	return err;
9696 }
9697 
9698 /**
9699  * dev_index_reserve() - allocate an ifindex in a namespace
9700  * @net: the applicable net namespace
9701  * @ifindex: requested ifindex, pass %0 to get one allocated
9702  *
9703  * Allocate a ifindex for a new device. Caller must either use the ifindex
9704  * to store the device (via list_netdevice()) or call dev_index_release()
9705  * to give the index up.
9706  *
9707  * Return: a suitable unique value for a new device interface number or -errno.
9708  */
9709 static int dev_index_reserve(struct net *net, u32 ifindex)
9710 {
9711 	int err;
9712 
9713 	if (ifindex > INT_MAX) {
9714 		DEBUG_NET_WARN_ON_ONCE(1);
9715 		return -EINVAL;
9716 	}
9717 
9718 	if (!ifindex)
9719 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9720 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9721 	else
9722 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9723 	if (err < 0)
9724 		return err;
9725 
9726 	return ifindex;
9727 }
9728 
9729 static void dev_index_release(struct net *net, int ifindex)
9730 {
9731 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9732 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9733 }
9734 
9735 /* Delayed registration/unregisteration */
9736 LIST_HEAD(net_todo_list);
9737 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9738 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9739 
9740 static void net_set_todo(struct net_device *dev)
9741 {
9742 	list_add_tail(&dev->todo_list, &net_todo_list);
9743 }
9744 
9745 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9746 	struct net_device *upper, netdev_features_t features)
9747 {
9748 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9749 	netdev_features_t feature;
9750 	int feature_bit;
9751 
9752 	for_each_netdev_feature(upper_disables, feature_bit) {
9753 		feature = __NETIF_F_BIT(feature_bit);
9754 		if (!(upper->wanted_features & feature)
9755 		    && (features & feature)) {
9756 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9757 				   &feature, upper->name);
9758 			features &= ~feature;
9759 		}
9760 	}
9761 
9762 	return features;
9763 }
9764 
9765 static void netdev_sync_lower_features(struct net_device *upper,
9766 	struct net_device *lower, netdev_features_t features)
9767 {
9768 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9769 	netdev_features_t feature;
9770 	int feature_bit;
9771 
9772 	for_each_netdev_feature(upper_disables, feature_bit) {
9773 		feature = __NETIF_F_BIT(feature_bit);
9774 		if (!(features & feature) && (lower->features & feature)) {
9775 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9776 				   &feature, lower->name);
9777 			lower->wanted_features &= ~feature;
9778 			__netdev_update_features(lower);
9779 
9780 			if (unlikely(lower->features & feature))
9781 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9782 					    &feature, lower->name);
9783 			else
9784 				netdev_features_change(lower);
9785 		}
9786 	}
9787 }
9788 
9789 static netdev_features_t netdev_fix_features(struct net_device *dev,
9790 	netdev_features_t features)
9791 {
9792 	/* Fix illegal checksum combinations */
9793 	if ((features & NETIF_F_HW_CSUM) &&
9794 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9795 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9796 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9797 	}
9798 
9799 	/* TSO requires that SG is present as well. */
9800 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9801 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9802 		features &= ~NETIF_F_ALL_TSO;
9803 	}
9804 
9805 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9806 					!(features & NETIF_F_IP_CSUM)) {
9807 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9808 		features &= ~NETIF_F_TSO;
9809 		features &= ~NETIF_F_TSO_ECN;
9810 	}
9811 
9812 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9813 					 !(features & NETIF_F_IPV6_CSUM)) {
9814 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9815 		features &= ~NETIF_F_TSO6;
9816 	}
9817 
9818 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9819 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9820 		features &= ~NETIF_F_TSO_MANGLEID;
9821 
9822 	/* TSO ECN requires that TSO is present as well. */
9823 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9824 		features &= ~NETIF_F_TSO_ECN;
9825 
9826 	/* Software GSO depends on SG. */
9827 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9828 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9829 		features &= ~NETIF_F_GSO;
9830 	}
9831 
9832 	/* GSO partial features require GSO partial be set */
9833 	if ((features & dev->gso_partial_features) &&
9834 	    !(features & NETIF_F_GSO_PARTIAL)) {
9835 		netdev_dbg(dev,
9836 			   "Dropping partially supported GSO features since no GSO partial.\n");
9837 		features &= ~dev->gso_partial_features;
9838 	}
9839 
9840 	if (!(features & NETIF_F_RXCSUM)) {
9841 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9842 		 * successfully merged by hardware must also have the
9843 		 * checksum verified by hardware.  If the user does not
9844 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9845 		 */
9846 		if (features & NETIF_F_GRO_HW) {
9847 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9848 			features &= ~NETIF_F_GRO_HW;
9849 		}
9850 	}
9851 
9852 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9853 	if (features & NETIF_F_RXFCS) {
9854 		if (features & NETIF_F_LRO) {
9855 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9856 			features &= ~NETIF_F_LRO;
9857 		}
9858 
9859 		if (features & NETIF_F_GRO_HW) {
9860 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9861 			features &= ~NETIF_F_GRO_HW;
9862 		}
9863 	}
9864 
9865 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9866 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9867 		features &= ~NETIF_F_LRO;
9868 	}
9869 
9870 	if (features & NETIF_F_HW_TLS_TX) {
9871 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9872 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9873 		bool hw_csum = features & NETIF_F_HW_CSUM;
9874 
9875 		if (!ip_csum && !hw_csum) {
9876 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9877 			features &= ~NETIF_F_HW_TLS_TX;
9878 		}
9879 	}
9880 
9881 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9882 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9883 		features &= ~NETIF_F_HW_TLS_RX;
9884 	}
9885 
9886 	return features;
9887 }
9888 
9889 int __netdev_update_features(struct net_device *dev)
9890 {
9891 	struct net_device *upper, *lower;
9892 	netdev_features_t features;
9893 	struct list_head *iter;
9894 	int err = -1;
9895 
9896 	ASSERT_RTNL();
9897 
9898 	features = netdev_get_wanted_features(dev);
9899 
9900 	if (dev->netdev_ops->ndo_fix_features)
9901 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9902 
9903 	/* driver might be less strict about feature dependencies */
9904 	features = netdev_fix_features(dev, features);
9905 
9906 	/* some features can't be enabled if they're off on an upper device */
9907 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9908 		features = netdev_sync_upper_features(dev, upper, features);
9909 
9910 	if (dev->features == features)
9911 		goto sync_lower;
9912 
9913 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9914 		&dev->features, &features);
9915 
9916 	if (dev->netdev_ops->ndo_set_features)
9917 		err = dev->netdev_ops->ndo_set_features(dev, features);
9918 	else
9919 		err = 0;
9920 
9921 	if (unlikely(err < 0)) {
9922 		netdev_err(dev,
9923 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9924 			err, &features, &dev->features);
9925 		/* return non-0 since some features might have changed and
9926 		 * it's better to fire a spurious notification than miss it
9927 		 */
9928 		return -1;
9929 	}
9930 
9931 sync_lower:
9932 	/* some features must be disabled on lower devices when disabled
9933 	 * on an upper device (think: bonding master or bridge)
9934 	 */
9935 	netdev_for_each_lower_dev(dev, lower, iter)
9936 		netdev_sync_lower_features(dev, lower, features);
9937 
9938 	if (!err) {
9939 		netdev_features_t diff = features ^ dev->features;
9940 
9941 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9942 			/* udp_tunnel_{get,drop}_rx_info both need
9943 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9944 			 * device, or they won't do anything.
9945 			 * Thus we need to update dev->features
9946 			 * *before* calling udp_tunnel_get_rx_info,
9947 			 * but *after* calling udp_tunnel_drop_rx_info.
9948 			 */
9949 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9950 				dev->features = features;
9951 				udp_tunnel_get_rx_info(dev);
9952 			} else {
9953 				udp_tunnel_drop_rx_info(dev);
9954 			}
9955 		}
9956 
9957 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9958 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9959 				dev->features = features;
9960 				err |= vlan_get_rx_ctag_filter_info(dev);
9961 			} else {
9962 				vlan_drop_rx_ctag_filter_info(dev);
9963 			}
9964 		}
9965 
9966 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9967 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9968 				dev->features = features;
9969 				err |= vlan_get_rx_stag_filter_info(dev);
9970 			} else {
9971 				vlan_drop_rx_stag_filter_info(dev);
9972 			}
9973 		}
9974 
9975 		dev->features = features;
9976 	}
9977 
9978 	return err < 0 ? 0 : 1;
9979 }
9980 
9981 /**
9982  *	netdev_update_features - recalculate device features
9983  *	@dev: the device to check
9984  *
9985  *	Recalculate dev->features set and send notifications if it
9986  *	has changed. Should be called after driver or hardware dependent
9987  *	conditions might have changed that influence the features.
9988  */
9989 void netdev_update_features(struct net_device *dev)
9990 {
9991 	if (__netdev_update_features(dev))
9992 		netdev_features_change(dev);
9993 }
9994 EXPORT_SYMBOL(netdev_update_features);
9995 
9996 /**
9997  *	netdev_change_features - recalculate device features
9998  *	@dev: the device to check
9999  *
10000  *	Recalculate dev->features set and send notifications even
10001  *	if they have not changed. Should be called instead of
10002  *	netdev_update_features() if also dev->vlan_features might
10003  *	have changed to allow the changes to be propagated to stacked
10004  *	VLAN devices.
10005  */
10006 void netdev_change_features(struct net_device *dev)
10007 {
10008 	__netdev_update_features(dev);
10009 	netdev_features_change(dev);
10010 }
10011 EXPORT_SYMBOL(netdev_change_features);
10012 
10013 /**
10014  *	netif_stacked_transfer_operstate -	transfer operstate
10015  *	@rootdev: the root or lower level device to transfer state from
10016  *	@dev: the device to transfer operstate to
10017  *
10018  *	Transfer operational state from root to device. This is normally
10019  *	called when a stacking relationship exists between the root
10020  *	device and the device(a leaf device).
10021  */
10022 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10023 					struct net_device *dev)
10024 {
10025 	if (rootdev->operstate == IF_OPER_DORMANT)
10026 		netif_dormant_on(dev);
10027 	else
10028 		netif_dormant_off(dev);
10029 
10030 	if (rootdev->operstate == IF_OPER_TESTING)
10031 		netif_testing_on(dev);
10032 	else
10033 		netif_testing_off(dev);
10034 
10035 	if (netif_carrier_ok(rootdev))
10036 		netif_carrier_on(dev);
10037 	else
10038 		netif_carrier_off(dev);
10039 }
10040 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10041 
10042 static int netif_alloc_rx_queues(struct net_device *dev)
10043 {
10044 	unsigned int i, count = dev->num_rx_queues;
10045 	struct netdev_rx_queue *rx;
10046 	size_t sz = count * sizeof(*rx);
10047 	int err = 0;
10048 
10049 	BUG_ON(count < 1);
10050 
10051 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10052 	if (!rx)
10053 		return -ENOMEM;
10054 
10055 	dev->_rx = rx;
10056 
10057 	for (i = 0; i < count; i++) {
10058 		rx[i].dev = dev;
10059 
10060 		/* XDP RX-queue setup */
10061 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10062 		if (err < 0)
10063 			goto err_rxq_info;
10064 	}
10065 	return 0;
10066 
10067 err_rxq_info:
10068 	/* Rollback successful reg's and free other resources */
10069 	while (i--)
10070 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10071 	kvfree(dev->_rx);
10072 	dev->_rx = NULL;
10073 	return err;
10074 }
10075 
10076 static void netif_free_rx_queues(struct net_device *dev)
10077 {
10078 	unsigned int i, count = dev->num_rx_queues;
10079 
10080 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10081 	if (!dev->_rx)
10082 		return;
10083 
10084 	for (i = 0; i < count; i++)
10085 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10086 
10087 	kvfree(dev->_rx);
10088 }
10089 
10090 static void netdev_init_one_queue(struct net_device *dev,
10091 				  struct netdev_queue *queue, void *_unused)
10092 {
10093 	/* Initialize queue lock */
10094 	spin_lock_init(&queue->_xmit_lock);
10095 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10096 	queue->xmit_lock_owner = -1;
10097 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10098 	queue->dev = dev;
10099 #ifdef CONFIG_BQL
10100 	dql_init(&queue->dql, HZ);
10101 #endif
10102 }
10103 
10104 static void netif_free_tx_queues(struct net_device *dev)
10105 {
10106 	kvfree(dev->_tx);
10107 }
10108 
10109 static int netif_alloc_netdev_queues(struct net_device *dev)
10110 {
10111 	unsigned int count = dev->num_tx_queues;
10112 	struct netdev_queue *tx;
10113 	size_t sz = count * sizeof(*tx);
10114 
10115 	if (count < 1 || count > 0xffff)
10116 		return -EINVAL;
10117 
10118 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10119 	if (!tx)
10120 		return -ENOMEM;
10121 
10122 	dev->_tx = tx;
10123 
10124 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10125 	spin_lock_init(&dev->tx_global_lock);
10126 
10127 	return 0;
10128 }
10129 
10130 void netif_tx_stop_all_queues(struct net_device *dev)
10131 {
10132 	unsigned int i;
10133 
10134 	for (i = 0; i < dev->num_tx_queues; i++) {
10135 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10136 
10137 		netif_tx_stop_queue(txq);
10138 	}
10139 }
10140 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10141 
10142 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10143 {
10144 	void __percpu *v;
10145 
10146 	/* Drivers implementing ndo_get_peer_dev must support tstat
10147 	 * accounting, so that skb_do_redirect() can bump the dev's
10148 	 * RX stats upon network namespace switch.
10149 	 */
10150 	if (dev->netdev_ops->ndo_get_peer_dev &&
10151 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10152 		return -EOPNOTSUPP;
10153 
10154 	switch (dev->pcpu_stat_type) {
10155 	case NETDEV_PCPU_STAT_NONE:
10156 		return 0;
10157 	case NETDEV_PCPU_STAT_LSTATS:
10158 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10159 		break;
10160 	case NETDEV_PCPU_STAT_TSTATS:
10161 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10162 		break;
10163 	case NETDEV_PCPU_STAT_DSTATS:
10164 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10165 		break;
10166 	default:
10167 		return -EINVAL;
10168 	}
10169 
10170 	return v ? 0 : -ENOMEM;
10171 }
10172 
10173 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10174 {
10175 	switch (dev->pcpu_stat_type) {
10176 	case NETDEV_PCPU_STAT_NONE:
10177 		return;
10178 	case NETDEV_PCPU_STAT_LSTATS:
10179 		free_percpu(dev->lstats);
10180 		break;
10181 	case NETDEV_PCPU_STAT_TSTATS:
10182 		free_percpu(dev->tstats);
10183 		break;
10184 	case NETDEV_PCPU_STAT_DSTATS:
10185 		free_percpu(dev->dstats);
10186 		break;
10187 	}
10188 }
10189 
10190 /**
10191  * register_netdevice() - register a network device
10192  * @dev: device to register
10193  *
10194  * Take a prepared network device structure and make it externally accessible.
10195  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10196  * Callers must hold the rtnl lock - you may want register_netdev()
10197  * instead of this.
10198  */
10199 int register_netdevice(struct net_device *dev)
10200 {
10201 	int ret;
10202 	struct net *net = dev_net(dev);
10203 
10204 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10205 		     NETDEV_FEATURE_COUNT);
10206 	BUG_ON(dev_boot_phase);
10207 	ASSERT_RTNL();
10208 
10209 	might_sleep();
10210 
10211 	/* When net_device's are persistent, this will be fatal. */
10212 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10213 	BUG_ON(!net);
10214 
10215 	ret = ethtool_check_ops(dev->ethtool_ops);
10216 	if (ret)
10217 		return ret;
10218 
10219 	spin_lock_init(&dev->addr_list_lock);
10220 	netdev_set_addr_lockdep_class(dev);
10221 
10222 	ret = dev_get_valid_name(net, dev, dev->name);
10223 	if (ret < 0)
10224 		goto out;
10225 
10226 	ret = -ENOMEM;
10227 	dev->name_node = netdev_name_node_head_alloc(dev);
10228 	if (!dev->name_node)
10229 		goto out;
10230 
10231 	/* Init, if this function is available */
10232 	if (dev->netdev_ops->ndo_init) {
10233 		ret = dev->netdev_ops->ndo_init(dev);
10234 		if (ret) {
10235 			if (ret > 0)
10236 				ret = -EIO;
10237 			goto err_free_name;
10238 		}
10239 	}
10240 
10241 	if (((dev->hw_features | dev->features) &
10242 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10243 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10244 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10245 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10246 		ret = -EINVAL;
10247 		goto err_uninit;
10248 	}
10249 
10250 	ret = netdev_do_alloc_pcpu_stats(dev);
10251 	if (ret)
10252 		goto err_uninit;
10253 
10254 	ret = dev_index_reserve(net, dev->ifindex);
10255 	if (ret < 0)
10256 		goto err_free_pcpu;
10257 	dev->ifindex = ret;
10258 
10259 	/* Transfer changeable features to wanted_features and enable
10260 	 * software offloads (GSO and GRO).
10261 	 */
10262 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10263 	dev->features |= NETIF_F_SOFT_FEATURES;
10264 
10265 	if (dev->udp_tunnel_nic_info) {
10266 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10267 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10268 	}
10269 
10270 	dev->wanted_features = dev->features & dev->hw_features;
10271 
10272 	if (!(dev->flags & IFF_LOOPBACK))
10273 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10274 
10275 	/* If IPv4 TCP segmentation offload is supported we should also
10276 	 * allow the device to enable segmenting the frame with the option
10277 	 * of ignoring a static IP ID value.  This doesn't enable the
10278 	 * feature itself but allows the user to enable it later.
10279 	 */
10280 	if (dev->hw_features & NETIF_F_TSO)
10281 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10282 	if (dev->vlan_features & NETIF_F_TSO)
10283 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10284 	if (dev->mpls_features & NETIF_F_TSO)
10285 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10286 	if (dev->hw_enc_features & NETIF_F_TSO)
10287 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10288 
10289 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10290 	 */
10291 	dev->vlan_features |= NETIF_F_HIGHDMA;
10292 
10293 	/* Make NETIF_F_SG inheritable to tunnel devices.
10294 	 */
10295 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10296 
10297 	/* Make NETIF_F_SG inheritable to MPLS.
10298 	 */
10299 	dev->mpls_features |= NETIF_F_SG;
10300 
10301 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10302 	ret = notifier_to_errno(ret);
10303 	if (ret)
10304 		goto err_ifindex_release;
10305 
10306 	ret = netdev_register_kobject(dev);
10307 	write_lock(&dev_base_lock);
10308 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10309 	write_unlock(&dev_base_lock);
10310 	if (ret)
10311 		goto err_uninit_notify;
10312 
10313 	__netdev_update_features(dev);
10314 
10315 	/*
10316 	 *	Default initial state at registry is that the
10317 	 *	device is present.
10318 	 */
10319 
10320 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10321 
10322 	linkwatch_init_dev(dev);
10323 
10324 	dev_init_scheduler(dev);
10325 
10326 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10327 	list_netdevice(dev);
10328 
10329 	add_device_randomness(dev->dev_addr, dev->addr_len);
10330 
10331 	/* If the device has permanent device address, driver should
10332 	 * set dev_addr and also addr_assign_type should be set to
10333 	 * NET_ADDR_PERM (default value).
10334 	 */
10335 	if (dev->addr_assign_type == NET_ADDR_PERM)
10336 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10337 
10338 	/* Notify protocols, that a new device appeared. */
10339 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10340 	ret = notifier_to_errno(ret);
10341 	if (ret) {
10342 		/* Expect explicit free_netdev() on failure */
10343 		dev->needs_free_netdev = false;
10344 		unregister_netdevice_queue(dev, NULL);
10345 		goto out;
10346 	}
10347 	/*
10348 	 *	Prevent userspace races by waiting until the network
10349 	 *	device is fully setup before sending notifications.
10350 	 */
10351 	if (!dev->rtnl_link_ops ||
10352 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10353 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10354 
10355 out:
10356 	return ret;
10357 
10358 err_uninit_notify:
10359 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10360 err_ifindex_release:
10361 	dev_index_release(net, dev->ifindex);
10362 err_free_pcpu:
10363 	netdev_do_free_pcpu_stats(dev);
10364 err_uninit:
10365 	if (dev->netdev_ops->ndo_uninit)
10366 		dev->netdev_ops->ndo_uninit(dev);
10367 	if (dev->priv_destructor)
10368 		dev->priv_destructor(dev);
10369 err_free_name:
10370 	netdev_name_node_free(dev->name_node);
10371 	goto out;
10372 }
10373 EXPORT_SYMBOL(register_netdevice);
10374 
10375 /**
10376  *	init_dummy_netdev	- init a dummy network device for NAPI
10377  *	@dev: device to init
10378  *
10379  *	This takes a network device structure and initialize the minimum
10380  *	amount of fields so it can be used to schedule NAPI polls without
10381  *	registering a full blown interface. This is to be used by drivers
10382  *	that need to tie several hardware interfaces to a single NAPI
10383  *	poll scheduler due to HW limitations.
10384  */
10385 void init_dummy_netdev(struct net_device *dev)
10386 {
10387 	/* Clear everything. Note we don't initialize spinlocks
10388 	 * are they aren't supposed to be taken by any of the
10389 	 * NAPI code and this dummy netdev is supposed to be
10390 	 * only ever used for NAPI polls
10391 	 */
10392 	memset(dev, 0, sizeof(struct net_device));
10393 
10394 	/* make sure we BUG if trying to hit standard
10395 	 * register/unregister code path
10396 	 */
10397 	dev->reg_state = NETREG_DUMMY;
10398 
10399 	/* NAPI wants this */
10400 	INIT_LIST_HEAD(&dev->napi_list);
10401 
10402 	/* a dummy interface is started by default */
10403 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10404 	set_bit(__LINK_STATE_START, &dev->state);
10405 
10406 	/* napi_busy_loop stats accounting wants this */
10407 	dev_net_set(dev, &init_net);
10408 
10409 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10410 	 * because users of this 'device' dont need to change
10411 	 * its refcount.
10412 	 */
10413 }
10414 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10415 
10416 
10417 /**
10418  *	register_netdev	- register a network device
10419  *	@dev: device to register
10420  *
10421  *	Take a completed network device structure and add it to the kernel
10422  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10423  *	chain. 0 is returned on success. A negative errno code is returned
10424  *	on a failure to set up the device, or if the name is a duplicate.
10425  *
10426  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10427  *	and expands the device name if you passed a format string to
10428  *	alloc_netdev.
10429  */
10430 int register_netdev(struct net_device *dev)
10431 {
10432 	int err;
10433 
10434 	if (rtnl_lock_killable())
10435 		return -EINTR;
10436 	err = register_netdevice(dev);
10437 	rtnl_unlock();
10438 	return err;
10439 }
10440 EXPORT_SYMBOL(register_netdev);
10441 
10442 int netdev_refcnt_read(const struct net_device *dev)
10443 {
10444 #ifdef CONFIG_PCPU_DEV_REFCNT
10445 	int i, refcnt = 0;
10446 
10447 	for_each_possible_cpu(i)
10448 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10449 	return refcnt;
10450 #else
10451 	return refcount_read(&dev->dev_refcnt);
10452 #endif
10453 }
10454 EXPORT_SYMBOL(netdev_refcnt_read);
10455 
10456 int netdev_unregister_timeout_secs __read_mostly = 10;
10457 
10458 #define WAIT_REFS_MIN_MSECS 1
10459 #define WAIT_REFS_MAX_MSECS 250
10460 /**
10461  * netdev_wait_allrefs_any - wait until all references are gone.
10462  * @list: list of net_devices to wait on
10463  *
10464  * This is called when unregistering network devices.
10465  *
10466  * Any protocol or device that holds a reference should register
10467  * for netdevice notification, and cleanup and put back the
10468  * reference if they receive an UNREGISTER event.
10469  * We can get stuck here if buggy protocols don't correctly
10470  * call dev_put.
10471  */
10472 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10473 {
10474 	unsigned long rebroadcast_time, warning_time;
10475 	struct net_device *dev;
10476 	int wait = 0;
10477 
10478 	rebroadcast_time = warning_time = jiffies;
10479 
10480 	list_for_each_entry(dev, list, todo_list)
10481 		if (netdev_refcnt_read(dev) == 1)
10482 			return dev;
10483 
10484 	while (true) {
10485 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10486 			rtnl_lock();
10487 
10488 			/* Rebroadcast unregister notification */
10489 			list_for_each_entry(dev, list, todo_list)
10490 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10491 
10492 			__rtnl_unlock();
10493 			rcu_barrier();
10494 			rtnl_lock();
10495 
10496 			list_for_each_entry(dev, list, todo_list)
10497 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10498 					     &dev->state)) {
10499 					/* We must not have linkwatch events
10500 					 * pending on unregister. If this
10501 					 * happens, we simply run the queue
10502 					 * unscheduled, resulting in a noop
10503 					 * for this device.
10504 					 */
10505 					linkwatch_run_queue();
10506 					break;
10507 				}
10508 
10509 			__rtnl_unlock();
10510 
10511 			rebroadcast_time = jiffies;
10512 		}
10513 
10514 		if (!wait) {
10515 			rcu_barrier();
10516 			wait = WAIT_REFS_MIN_MSECS;
10517 		} else {
10518 			msleep(wait);
10519 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10520 		}
10521 
10522 		list_for_each_entry(dev, list, todo_list)
10523 			if (netdev_refcnt_read(dev) == 1)
10524 				return dev;
10525 
10526 		if (time_after(jiffies, warning_time +
10527 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10528 			list_for_each_entry(dev, list, todo_list) {
10529 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10530 					 dev->name, netdev_refcnt_read(dev));
10531 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10532 			}
10533 
10534 			warning_time = jiffies;
10535 		}
10536 	}
10537 }
10538 
10539 /* The sequence is:
10540  *
10541  *	rtnl_lock();
10542  *	...
10543  *	register_netdevice(x1);
10544  *	register_netdevice(x2);
10545  *	...
10546  *	unregister_netdevice(y1);
10547  *	unregister_netdevice(y2);
10548  *      ...
10549  *	rtnl_unlock();
10550  *	free_netdev(y1);
10551  *	free_netdev(y2);
10552  *
10553  * We are invoked by rtnl_unlock().
10554  * This allows us to deal with problems:
10555  * 1) We can delete sysfs objects which invoke hotplug
10556  *    without deadlocking with linkwatch via keventd.
10557  * 2) Since we run with the RTNL semaphore not held, we can sleep
10558  *    safely in order to wait for the netdev refcnt to drop to zero.
10559  *
10560  * We must not return until all unregister events added during
10561  * the interval the lock was held have been completed.
10562  */
10563 void netdev_run_todo(void)
10564 {
10565 	struct net_device *dev, *tmp;
10566 	struct list_head list;
10567 	int cnt;
10568 #ifdef CONFIG_LOCKDEP
10569 	struct list_head unlink_list;
10570 
10571 	list_replace_init(&net_unlink_list, &unlink_list);
10572 
10573 	while (!list_empty(&unlink_list)) {
10574 		struct net_device *dev = list_first_entry(&unlink_list,
10575 							  struct net_device,
10576 							  unlink_list);
10577 		list_del_init(&dev->unlink_list);
10578 		dev->nested_level = dev->lower_level - 1;
10579 	}
10580 #endif
10581 
10582 	/* Snapshot list, allow later requests */
10583 	list_replace_init(&net_todo_list, &list);
10584 
10585 	__rtnl_unlock();
10586 
10587 	/* Wait for rcu callbacks to finish before next phase */
10588 	if (!list_empty(&list))
10589 		rcu_barrier();
10590 
10591 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10592 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10593 			netdev_WARN(dev, "run_todo but not unregistering\n");
10594 			list_del(&dev->todo_list);
10595 			continue;
10596 		}
10597 
10598 		write_lock(&dev_base_lock);
10599 		dev->reg_state = NETREG_UNREGISTERED;
10600 		write_unlock(&dev_base_lock);
10601 		linkwatch_sync_dev(dev);
10602 	}
10603 
10604 	cnt = 0;
10605 	while (!list_empty(&list)) {
10606 		dev = netdev_wait_allrefs_any(&list);
10607 		list_del(&dev->todo_list);
10608 
10609 		/* paranoia */
10610 		BUG_ON(netdev_refcnt_read(dev) != 1);
10611 		BUG_ON(!list_empty(&dev->ptype_all));
10612 		BUG_ON(!list_empty(&dev->ptype_specific));
10613 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10614 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10615 
10616 		netdev_do_free_pcpu_stats(dev);
10617 		if (dev->priv_destructor)
10618 			dev->priv_destructor(dev);
10619 		if (dev->needs_free_netdev)
10620 			free_netdev(dev);
10621 
10622 		cnt++;
10623 
10624 		/* Free network device */
10625 		kobject_put(&dev->dev.kobj);
10626 	}
10627 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10628 		wake_up(&netdev_unregistering_wq);
10629 }
10630 
10631 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10632  * all the same fields in the same order as net_device_stats, with only
10633  * the type differing, but rtnl_link_stats64 may have additional fields
10634  * at the end for newer counters.
10635  */
10636 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10637 			     const struct net_device_stats *netdev_stats)
10638 {
10639 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10640 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10641 	u64 *dst = (u64 *)stats64;
10642 
10643 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10644 	for (i = 0; i < n; i++)
10645 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10646 	/* zero out counters that only exist in rtnl_link_stats64 */
10647 	memset((char *)stats64 + n * sizeof(u64), 0,
10648 	       sizeof(*stats64) - n * sizeof(u64));
10649 }
10650 EXPORT_SYMBOL(netdev_stats_to_stats64);
10651 
10652 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10653 		struct net_device *dev)
10654 {
10655 	struct net_device_core_stats __percpu *p;
10656 
10657 	p = alloc_percpu_gfp(struct net_device_core_stats,
10658 			     GFP_ATOMIC | __GFP_NOWARN);
10659 
10660 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10661 		free_percpu(p);
10662 
10663 	/* This READ_ONCE() pairs with the cmpxchg() above */
10664 	return READ_ONCE(dev->core_stats);
10665 }
10666 
10667 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10668 {
10669 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10670 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10671 	unsigned long __percpu *field;
10672 
10673 	if (unlikely(!p)) {
10674 		p = netdev_core_stats_alloc(dev);
10675 		if (!p)
10676 			return;
10677 	}
10678 
10679 	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10680 	this_cpu_inc(*field);
10681 }
10682 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10683 
10684 /**
10685  *	dev_get_stats	- get network device statistics
10686  *	@dev: device to get statistics from
10687  *	@storage: place to store stats
10688  *
10689  *	Get network statistics from device. Return @storage.
10690  *	The device driver may provide its own method by setting
10691  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10692  *	otherwise the internal statistics structure is used.
10693  */
10694 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10695 					struct rtnl_link_stats64 *storage)
10696 {
10697 	const struct net_device_ops *ops = dev->netdev_ops;
10698 	const struct net_device_core_stats __percpu *p;
10699 
10700 	if (ops->ndo_get_stats64) {
10701 		memset(storage, 0, sizeof(*storage));
10702 		ops->ndo_get_stats64(dev, storage);
10703 	} else if (ops->ndo_get_stats) {
10704 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10705 	} else {
10706 		netdev_stats_to_stats64(storage, &dev->stats);
10707 	}
10708 
10709 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10710 	p = READ_ONCE(dev->core_stats);
10711 	if (p) {
10712 		const struct net_device_core_stats *core_stats;
10713 		int i;
10714 
10715 		for_each_possible_cpu(i) {
10716 			core_stats = per_cpu_ptr(p, i);
10717 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10718 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10719 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10720 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10721 		}
10722 	}
10723 	return storage;
10724 }
10725 EXPORT_SYMBOL(dev_get_stats);
10726 
10727 /**
10728  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10729  *	@s: place to store stats
10730  *	@netstats: per-cpu network stats to read from
10731  *
10732  *	Read per-cpu network statistics and populate the related fields in @s.
10733  */
10734 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10735 			   const struct pcpu_sw_netstats __percpu *netstats)
10736 {
10737 	int cpu;
10738 
10739 	for_each_possible_cpu(cpu) {
10740 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10741 		const struct pcpu_sw_netstats *stats;
10742 		unsigned int start;
10743 
10744 		stats = per_cpu_ptr(netstats, cpu);
10745 		do {
10746 			start = u64_stats_fetch_begin(&stats->syncp);
10747 			rx_packets = u64_stats_read(&stats->rx_packets);
10748 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10749 			tx_packets = u64_stats_read(&stats->tx_packets);
10750 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10751 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10752 
10753 		s->rx_packets += rx_packets;
10754 		s->rx_bytes   += rx_bytes;
10755 		s->tx_packets += tx_packets;
10756 		s->tx_bytes   += tx_bytes;
10757 	}
10758 }
10759 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10760 
10761 /**
10762  *	dev_get_tstats64 - ndo_get_stats64 implementation
10763  *	@dev: device to get statistics from
10764  *	@s: place to store stats
10765  *
10766  *	Populate @s from dev->stats and dev->tstats. Can be used as
10767  *	ndo_get_stats64() callback.
10768  */
10769 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10770 {
10771 	netdev_stats_to_stats64(s, &dev->stats);
10772 	dev_fetch_sw_netstats(s, dev->tstats);
10773 }
10774 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10775 
10776 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10777 {
10778 	struct netdev_queue *queue = dev_ingress_queue(dev);
10779 
10780 #ifdef CONFIG_NET_CLS_ACT
10781 	if (queue)
10782 		return queue;
10783 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10784 	if (!queue)
10785 		return NULL;
10786 	netdev_init_one_queue(dev, queue, NULL);
10787 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10788 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10789 	rcu_assign_pointer(dev->ingress_queue, queue);
10790 #endif
10791 	return queue;
10792 }
10793 
10794 static const struct ethtool_ops default_ethtool_ops;
10795 
10796 void netdev_set_default_ethtool_ops(struct net_device *dev,
10797 				    const struct ethtool_ops *ops)
10798 {
10799 	if (dev->ethtool_ops == &default_ethtool_ops)
10800 		dev->ethtool_ops = ops;
10801 }
10802 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10803 
10804 /**
10805  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10806  * @dev: netdev to enable the IRQ coalescing on
10807  *
10808  * Sets a conservative default for SW IRQ coalescing. Users can use
10809  * sysfs attributes to override the default values.
10810  */
10811 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10812 {
10813 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10814 
10815 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10816 		dev->gro_flush_timeout = 20000;
10817 		dev->napi_defer_hard_irqs = 1;
10818 	}
10819 }
10820 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10821 
10822 void netdev_freemem(struct net_device *dev)
10823 {
10824 	char *addr = (char *)dev - dev->padded;
10825 
10826 	kvfree(addr);
10827 }
10828 
10829 /**
10830  * alloc_netdev_mqs - allocate network device
10831  * @sizeof_priv: size of private data to allocate space for
10832  * @name: device name format string
10833  * @name_assign_type: origin of device name
10834  * @setup: callback to initialize device
10835  * @txqs: the number of TX subqueues to allocate
10836  * @rxqs: the number of RX subqueues to allocate
10837  *
10838  * Allocates a struct net_device with private data area for driver use
10839  * and performs basic initialization.  Also allocates subqueue structs
10840  * for each queue on the device.
10841  */
10842 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10843 		unsigned char name_assign_type,
10844 		void (*setup)(struct net_device *),
10845 		unsigned int txqs, unsigned int rxqs)
10846 {
10847 	struct net_device *dev;
10848 	unsigned int alloc_size;
10849 	struct net_device *p;
10850 
10851 	BUG_ON(strlen(name) >= sizeof(dev->name));
10852 
10853 	if (txqs < 1) {
10854 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10855 		return NULL;
10856 	}
10857 
10858 	if (rxqs < 1) {
10859 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10860 		return NULL;
10861 	}
10862 
10863 	alloc_size = sizeof(struct net_device);
10864 	if (sizeof_priv) {
10865 		/* ensure 32-byte alignment of private area */
10866 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10867 		alloc_size += sizeof_priv;
10868 	}
10869 	/* ensure 32-byte alignment of whole construct */
10870 	alloc_size += NETDEV_ALIGN - 1;
10871 
10872 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10873 	if (!p)
10874 		return NULL;
10875 
10876 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10877 	dev->padded = (char *)dev - (char *)p;
10878 
10879 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10880 #ifdef CONFIG_PCPU_DEV_REFCNT
10881 	dev->pcpu_refcnt = alloc_percpu(int);
10882 	if (!dev->pcpu_refcnt)
10883 		goto free_dev;
10884 	__dev_hold(dev);
10885 #else
10886 	refcount_set(&dev->dev_refcnt, 1);
10887 #endif
10888 
10889 	if (dev_addr_init(dev))
10890 		goto free_pcpu;
10891 
10892 	dev_mc_init(dev);
10893 	dev_uc_init(dev);
10894 
10895 	dev_net_set(dev, &init_net);
10896 
10897 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10898 	dev->xdp_zc_max_segs = 1;
10899 	dev->gso_max_segs = GSO_MAX_SEGS;
10900 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10901 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10902 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10903 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10904 	dev->tso_max_segs = TSO_MAX_SEGS;
10905 	dev->upper_level = 1;
10906 	dev->lower_level = 1;
10907 #ifdef CONFIG_LOCKDEP
10908 	dev->nested_level = 0;
10909 	INIT_LIST_HEAD(&dev->unlink_list);
10910 #endif
10911 
10912 	INIT_LIST_HEAD(&dev->napi_list);
10913 	INIT_LIST_HEAD(&dev->unreg_list);
10914 	INIT_LIST_HEAD(&dev->close_list);
10915 	INIT_LIST_HEAD(&dev->link_watch_list);
10916 	INIT_LIST_HEAD(&dev->adj_list.upper);
10917 	INIT_LIST_HEAD(&dev->adj_list.lower);
10918 	INIT_LIST_HEAD(&dev->ptype_all);
10919 	INIT_LIST_HEAD(&dev->ptype_specific);
10920 	INIT_LIST_HEAD(&dev->net_notifier_list);
10921 #ifdef CONFIG_NET_SCHED
10922 	hash_init(dev->qdisc_hash);
10923 #endif
10924 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10925 	setup(dev);
10926 
10927 	if (!dev->tx_queue_len) {
10928 		dev->priv_flags |= IFF_NO_QUEUE;
10929 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10930 	}
10931 
10932 	dev->num_tx_queues = txqs;
10933 	dev->real_num_tx_queues = txqs;
10934 	if (netif_alloc_netdev_queues(dev))
10935 		goto free_all;
10936 
10937 	dev->num_rx_queues = rxqs;
10938 	dev->real_num_rx_queues = rxqs;
10939 	if (netif_alloc_rx_queues(dev))
10940 		goto free_all;
10941 
10942 	strcpy(dev->name, name);
10943 	dev->name_assign_type = name_assign_type;
10944 	dev->group = INIT_NETDEV_GROUP;
10945 	if (!dev->ethtool_ops)
10946 		dev->ethtool_ops = &default_ethtool_ops;
10947 
10948 	nf_hook_netdev_init(dev);
10949 
10950 	return dev;
10951 
10952 free_all:
10953 	free_netdev(dev);
10954 	return NULL;
10955 
10956 free_pcpu:
10957 #ifdef CONFIG_PCPU_DEV_REFCNT
10958 	free_percpu(dev->pcpu_refcnt);
10959 free_dev:
10960 #endif
10961 	netdev_freemem(dev);
10962 	return NULL;
10963 }
10964 EXPORT_SYMBOL(alloc_netdev_mqs);
10965 
10966 /**
10967  * free_netdev - free network device
10968  * @dev: device
10969  *
10970  * This function does the last stage of destroying an allocated device
10971  * interface. The reference to the device object is released. If this
10972  * is the last reference then it will be freed.Must be called in process
10973  * context.
10974  */
10975 void free_netdev(struct net_device *dev)
10976 {
10977 	struct napi_struct *p, *n;
10978 
10979 	might_sleep();
10980 
10981 	/* When called immediately after register_netdevice() failed the unwind
10982 	 * handling may still be dismantling the device. Handle that case by
10983 	 * deferring the free.
10984 	 */
10985 	if (dev->reg_state == NETREG_UNREGISTERING) {
10986 		ASSERT_RTNL();
10987 		dev->needs_free_netdev = true;
10988 		return;
10989 	}
10990 
10991 	netif_free_tx_queues(dev);
10992 	netif_free_rx_queues(dev);
10993 
10994 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10995 
10996 	/* Flush device addresses */
10997 	dev_addr_flush(dev);
10998 
10999 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11000 		netif_napi_del(p);
11001 
11002 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11003 #ifdef CONFIG_PCPU_DEV_REFCNT
11004 	free_percpu(dev->pcpu_refcnt);
11005 	dev->pcpu_refcnt = NULL;
11006 #endif
11007 	free_percpu(dev->core_stats);
11008 	dev->core_stats = NULL;
11009 	free_percpu(dev->xdp_bulkq);
11010 	dev->xdp_bulkq = NULL;
11011 
11012 	/*  Compatibility with error handling in drivers */
11013 	if (dev->reg_state == NETREG_UNINITIALIZED) {
11014 		netdev_freemem(dev);
11015 		return;
11016 	}
11017 
11018 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11019 	dev->reg_state = NETREG_RELEASED;
11020 
11021 	/* will free via device release */
11022 	put_device(&dev->dev);
11023 }
11024 EXPORT_SYMBOL(free_netdev);
11025 
11026 /**
11027  *	synchronize_net -  Synchronize with packet receive processing
11028  *
11029  *	Wait for packets currently being received to be done.
11030  *	Does not block later packets from starting.
11031  */
11032 void synchronize_net(void)
11033 {
11034 	might_sleep();
11035 	if (rtnl_is_locked())
11036 		synchronize_rcu_expedited();
11037 	else
11038 		synchronize_rcu();
11039 }
11040 EXPORT_SYMBOL(synchronize_net);
11041 
11042 /**
11043  *	unregister_netdevice_queue - remove device from the kernel
11044  *	@dev: device
11045  *	@head: list
11046  *
11047  *	This function shuts down a device interface and removes it
11048  *	from the kernel tables.
11049  *	If head not NULL, device is queued to be unregistered later.
11050  *
11051  *	Callers must hold the rtnl semaphore.  You may want
11052  *	unregister_netdev() instead of this.
11053  */
11054 
11055 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11056 {
11057 	ASSERT_RTNL();
11058 
11059 	if (head) {
11060 		list_move_tail(&dev->unreg_list, head);
11061 	} else {
11062 		LIST_HEAD(single);
11063 
11064 		list_add(&dev->unreg_list, &single);
11065 		unregister_netdevice_many(&single);
11066 	}
11067 }
11068 EXPORT_SYMBOL(unregister_netdevice_queue);
11069 
11070 void unregister_netdevice_many_notify(struct list_head *head,
11071 				      u32 portid, const struct nlmsghdr *nlh)
11072 {
11073 	struct net_device *dev, *tmp;
11074 	LIST_HEAD(close_head);
11075 	int cnt = 0;
11076 
11077 	BUG_ON(dev_boot_phase);
11078 	ASSERT_RTNL();
11079 
11080 	if (list_empty(head))
11081 		return;
11082 
11083 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11084 		/* Some devices call without registering
11085 		 * for initialization unwind. Remove those
11086 		 * devices and proceed with the remaining.
11087 		 */
11088 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11089 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11090 				 dev->name, dev);
11091 
11092 			WARN_ON(1);
11093 			list_del(&dev->unreg_list);
11094 			continue;
11095 		}
11096 		dev->dismantle = true;
11097 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11098 	}
11099 
11100 	/* If device is running, close it first. */
11101 	list_for_each_entry(dev, head, unreg_list)
11102 		list_add_tail(&dev->close_list, &close_head);
11103 	dev_close_many(&close_head, true);
11104 
11105 	list_for_each_entry(dev, head, unreg_list) {
11106 		/* And unlink it from device chain. */
11107 		write_lock(&dev_base_lock);
11108 		unlist_netdevice(dev, false);
11109 		dev->reg_state = NETREG_UNREGISTERING;
11110 		write_unlock(&dev_base_lock);
11111 	}
11112 	flush_all_backlogs();
11113 
11114 	synchronize_net();
11115 
11116 	list_for_each_entry(dev, head, unreg_list) {
11117 		struct sk_buff *skb = NULL;
11118 
11119 		/* Shutdown queueing discipline. */
11120 		dev_shutdown(dev);
11121 		dev_tcx_uninstall(dev);
11122 		dev_xdp_uninstall(dev);
11123 		bpf_dev_bound_netdev_unregister(dev);
11124 
11125 		netdev_offload_xstats_disable_all(dev);
11126 
11127 		/* Notify protocols, that we are about to destroy
11128 		 * this device. They should clean all the things.
11129 		 */
11130 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11131 
11132 		if (!dev->rtnl_link_ops ||
11133 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11134 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11135 						     GFP_KERNEL, NULL, 0,
11136 						     portid, nlh);
11137 
11138 		/*
11139 		 *	Flush the unicast and multicast chains
11140 		 */
11141 		dev_uc_flush(dev);
11142 		dev_mc_flush(dev);
11143 
11144 		netdev_name_node_alt_flush(dev);
11145 		netdev_name_node_free(dev->name_node);
11146 
11147 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11148 
11149 		if (dev->netdev_ops->ndo_uninit)
11150 			dev->netdev_ops->ndo_uninit(dev);
11151 
11152 		if (skb)
11153 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11154 
11155 		/* Notifier chain MUST detach us all upper devices. */
11156 		WARN_ON(netdev_has_any_upper_dev(dev));
11157 		WARN_ON(netdev_has_any_lower_dev(dev));
11158 
11159 		/* Remove entries from kobject tree */
11160 		netdev_unregister_kobject(dev);
11161 #ifdef CONFIG_XPS
11162 		/* Remove XPS queueing entries */
11163 		netif_reset_xps_queues_gt(dev, 0);
11164 #endif
11165 	}
11166 
11167 	synchronize_net();
11168 
11169 	list_for_each_entry(dev, head, unreg_list) {
11170 		netdev_put(dev, &dev->dev_registered_tracker);
11171 		net_set_todo(dev);
11172 		cnt++;
11173 	}
11174 	atomic_add(cnt, &dev_unreg_count);
11175 
11176 	list_del(head);
11177 }
11178 
11179 /**
11180  *	unregister_netdevice_many - unregister many devices
11181  *	@head: list of devices
11182  *
11183  *  Note: As most callers use a stack allocated list_head,
11184  *  we force a list_del() to make sure stack wont be corrupted later.
11185  */
11186 void unregister_netdevice_many(struct list_head *head)
11187 {
11188 	unregister_netdevice_many_notify(head, 0, NULL);
11189 }
11190 EXPORT_SYMBOL(unregister_netdevice_many);
11191 
11192 /**
11193  *	unregister_netdev - remove device from the kernel
11194  *	@dev: device
11195  *
11196  *	This function shuts down a device interface and removes it
11197  *	from the kernel tables.
11198  *
11199  *	This is just a wrapper for unregister_netdevice that takes
11200  *	the rtnl semaphore.  In general you want to use this and not
11201  *	unregister_netdevice.
11202  */
11203 void unregister_netdev(struct net_device *dev)
11204 {
11205 	rtnl_lock();
11206 	unregister_netdevice(dev);
11207 	rtnl_unlock();
11208 }
11209 EXPORT_SYMBOL(unregister_netdev);
11210 
11211 /**
11212  *	__dev_change_net_namespace - move device to different nethost namespace
11213  *	@dev: device
11214  *	@net: network namespace
11215  *	@pat: If not NULL name pattern to try if the current device name
11216  *	      is already taken in the destination network namespace.
11217  *	@new_ifindex: If not zero, specifies device index in the target
11218  *	              namespace.
11219  *
11220  *	This function shuts down a device interface and moves it
11221  *	to a new network namespace. On success 0 is returned, on
11222  *	a failure a netagive errno code is returned.
11223  *
11224  *	Callers must hold the rtnl semaphore.
11225  */
11226 
11227 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11228 			       const char *pat, int new_ifindex)
11229 {
11230 	struct netdev_name_node *name_node;
11231 	struct net *net_old = dev_net(dev);
11232 	char new_name[IFNAMSIZ] = {};
11233 	int err, new_nsid;
11234 
11235 	ASSERT_RTNL();
11236 
11237 	/* Don't allow namespace local devices to be moved. */
11238 	err = -EINVAL;
11239 	if (dev->features & NETIF_F_NETNS_LOCAL)
11240 		goto out;
11241 
11242 	/* Ensure the device has been registrered */
11243 	if (dev->reg_state != NETREG_REGISTERED)
11244 		goto out;
11245 
11246 	/* Get out if there is nothing todo */
11247 	err = 0;
11248 	if (net_eq(net_old, net))
11249 		goto out;
11250 
11251 	/* Pick the destination device name, and ensure
11252 	 * we can use it in the destination network namespace.
11253 	 */
11254 	err = -EEXIST;
11255 	if (netdev_name_in_use(net, dev->name)) {
11256 		/* We get here if we can't use the current device name */
11257 		if (!pat)
11258 			goto out;
11259 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11260 		if (err < 0)
11261 			goto out;
11262 	}
11263 	/* Check that none of the altnames conflicts. */
11264 	err = -EEXIST;
11265 	netdev_for_each_altname(dev, name_node)
11266 		if (netdev_name_in_use(net, name_node->name))
11267 			goto out;
11268 
11269 	/* Check that new_ifindex isn't used yet. */
11270 	if (new_ifindex) {
11271 		err = dev_index_reserve(net, new_ifindex);
11272 		if (err < 0)
11273 			goto out;
11274 	} else {
11275 		/* If there is an ifindex conflict assign a new one */
11276 		err = dev_index_reserve(net, dev->ifindex);
11277 		if (err == -EBUSY)
11278 			err = dev_index_reserve(net, 0);
11279 		if (err < 0)
11280 			goto out;
11281 		new_ifindex = err;
11282 	}
11283 
11284 	/*
11285 	 * And now a mini version of register_netdevice unregister_netdevice.
11286 	 */
11287 
11288 	/* If device is running close it first. */
11289 	dev_close(dev);
11290 
11291 	/* And unlink it from device chain */
11292 	unlist_netdevice(dev, true);
11293 
11294 	synchronize_net();
11295 
11296 	/* Shutdown queueing discipline. */
11297 	dev_shutdown(dev);
11298 
11299 	/* Notify protocols, that we are about to destroy
11300 	 * this device. They should clean all the things.
11301 	 *
11302 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11303 	 * This is wanted because this way 8021q and macvlan know
11304 	 * the device is just moving and can keep their slaves up.
11305 	 */
11306 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11307 	rcu_barrier();
11308 
11309 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11310 
11311 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11312 			    new_ifindex);
11313 
11314 	/*
11315 	 *	Flush the unicast and multicast chains
11316 	 */
11317 	dev_uc_flush(dev);
11318 	dev_mc_flush(dev);
11319 
11320 	/* Send a netdev-removed uevent to the old namespace */
11321 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11322 	netdev_adjacent_del_links(dev);
11323 
11324 	/* Move per-net netdevice notifiers that are following the netdevice */
11325 	move_netdevice_notifiers_dev_net(dev, net);
11326 
11327 	/* Actually switch the network namespace */
11328 	dev_net_set(dev, net);
11329 	dev->ifindex = new_ifindex;
11330 
11331 	if (new_name[0]) /* Rename the netdev to prepared name */
11332 		strscpy(dev->name, new_name, IFNAMSIZ);
11333 
11334 	/* Fixup kobjects */
11335 	dev_set_uevent_suppress(&dev->dev, 1);
11336 	err = device_rename(&dev->dev, dev->name);
11337 	dev_set_uevent_suppress(&dev->dev, 0);
11338 	WARN_ON(err);
11339 
11340 	/* Send a netdev-add uevent to the new namespace */
11341 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11342 	netdev_adjacent_add_links(dev);
11343 
11344 	/* Adapt owner in case owning user namespace of target network
11345 	 * namespace is different from the original one.
11346 	 */
11347 	err = netdev_change_owner(dev, net_old, net);
11348 	WARN_ON(err);
11349 
11350 	/* Add the device back in the hashes */
11351 	list_netdevice(dev);
11352 
11353 	/* Notify protocols, that a new device appeared. */
11354 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11355 
11356 	/*
11357 	 *	Prevent userspace races by waiting until the network
11358 	 *	device is fully setup before sending notifications.
11359 	 */
11360 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11361 
11362 	synchronize_net();
11363 	err = 0;
11364 out:
11365 	return err;
11366 }
11367 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11368 
11369 static int dev_cpu_dead(unsigned int oldcpu)
11370 {
11371 	struct sk_buff **list_skb;
11372 	struct sk_buff *skb;
11373 	unsigned int cpu;
11374 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11375 
11376 	local_irq_disable();
11377 	cpu = smp_processor_id();
11378 	sd = &per_cpu(softnet_data, cpu);
11379 	oldsd = &per_cpu(softnet_data, oldcpu);
11380 
11381 	/* Find end of our completion_queue. */
11382 	list_skb = &sd->completion_queue;
11383 	while (*list_skb)
11384 		list_skb = &(*list_skb)->next;
11385 	/* Append completion queue from offline CPU. */
11386 	*list_skb = oldsd->completion_queue;
11387 	oldsd->completion_queue = NULL;
11388 
11389 	/* Append output queue from offline CPU. */
11390 	if (oldsd->output_queue) {
11391 		*sd->output_queue_tailp = oldsd->output_queue;
11392 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11393 		oldsd->output_queue = NULL;
11394 		oldsd->output_queue_tailp = &oldsd->output_queue;
11395 	}
11396 	/* Append NAPI poll list from offline CPU, with one exception :
11397 	 * process_backlog() must be called by cpu owning percpu backlog.
11398 	 * We properly handle process_queue & input_pkt_queue later.
11399 	 */
11400 	while (!list_empty(&oldsd->poll_list)) {
11401 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11402 							    struct napi_struct,
11403 							    poll_list);
11404 
11405 		list_del_init(&napi->poll_list);
11406 		if (napi->poll == process_backlog)
11407 			napi->state = 0;
11408 		else
11409 			____napi_schedule(sd, napi);
11410 	}
11411 
11412 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11413 	local_irq_enable();
11414 
11415 #ifdef CONFIG_RPS
11416 	remsd = oldsd->rps_ipi_list;
11417 	oldsd->rps_ipi_list = NULL;
11418 #endif
11419 	/* send out pending IPI's on offline CPU */
11420 	net_rps_send_ipi(remsd);
11421 
11422 	/* Process offline CPU's input_pkt_queue */
11423 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11424 		netif_rx(skb);
11425 		input_queue_head_incr(oldsd);
11426 	}
11427 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11428 		netif_rx(skb);
11429 		input_queue_head_incr(oldsd);
11430 	}
11431 
11432 	return 0;
11433 }
11434 
11435 /**
11436  *	netdev_increment_features - increment feature set by one
11437  *	@all: current feature set
11438  *	@one: new feature set
11439  *	@mask: mask feature set
11440  *
11441  *	Computes a new feature set after adding a device with feature set
11442  *	@one to the master device with current feature set @all.  Will not
11443  *	enable anything that is off in @mask. Returns the new feature set.
11444  */
11445 netdev_features_t netdev_increment_features(netdev_features_t all,
11446 	netdev_features_t one, netdev_features_t mask)
11447 {
11448 	if (mask & NETIF_F_HW_CSUM)
11449 		mask |= NETIF_F_CSUM_MASK;
11450 	mask |= NETIF_F_VLAN_CHALLENGED;
11451 
11452 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11453 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11454 
11455 	/* If one device supports hw checksumming, set for all. */
11456 	if (all & NETIF_F_HW_CSUM)
11457 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11458 
11459 	return all;
11460 }
11461 EXPORT_SYMBOL(netdev_increment_features);
11462 
11463 static struct hlist_head * __net_init netdev_create_hash(void)
11464 {
11465 	int i;
11466 	struct hlist_head *hash;
11467 
11468 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11469 	if (hash != NULL)
11470 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11471 			INIT_HLIST_HEAD(&hash[i]);
11472 
11473 	return hash;
11474 }
11475 
11476 /* Initialize per network namespace state */
11477 static int __net_init netdev_init(struct net *net)
11478 {
11479 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11480 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11481 
11482 	INIT_LIST_HEAD(&net->dev_base_head);
11483 
11484 	net->dev_name_head = netdev_create_hash();
11485 	if (net->dev_name_head == NULL)
11486 		goto err_name;
11487 
11488 	net->dev_index_head = netdev_create_hash();
11489 	if (net->dev_index_head == NULL)
11490 		goto err_idx;
11491 
11492 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11493 
11494 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11495 
11496 	return 0;
11497 
11498 err_idx:
11499 	kfree(net->dev_name_head);
11500 err_name:
11501 	return -ENOMEM;
11502 }
11503 
11504 /**
11505  *	netdev_drivername - network driver for the device
11506  *	@dev: network device
11507  *
11508  *	Determine network driver for device.
11509  */
11510 const char *netdev_drivername(const struct net_device *dev)
11511 {
11512 	const struct device_driver *driver;
11513 	const struct device *parent;
11514 	const char *empty = "";
11515 
11516 	parent = dev->dev.parent;
11517 	if (!parent)
11518 		return empty;
11519 
11520 	driver = parent->driver;
11521 	if (driver && driver->name)
11522 		return driver->name;
11523 	return empty;
11524 }
11525 
11526 static void __netdev_printk(const char *level, const struct net_device *dev,
11527 			    struct va_format *vaf)
11528 {
11529 	if (dev && dev->dev.parent) {
11530 		dev_printk_emit(level[1] - '0',
11531 				dev->dev.parent,
11532 				"%s %s %s%s: %pV",
11533 				dev_driver_string(dev->dev.parent),
11534 				dev_name(dev->dev.parent),
11535 				netdev_name(dev), netdev_reg_state(dev),
11536 				vaf);
11537 	} else if (dev) {
11538 		printk("%s%s%s: %pV",
11539 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11540 	} else {
11541 		printk("%s(NULL net_device): %pV", level, vaf);
11542 	}
11543 }
11544 
11545 void netdev_printk(const char *level, const struct net_device *dev,
11546 		   const char *format, ...)
11547 {
11548 	struct va_format vaf;
11549 	va_list args;
11550 
11551 	va_start(args, format);
11552 
11553 	vaf.fmt = format;
11554 	vaf.va = &args;
11555 
11556 	__netdev_printk(level, dev, &vaf);
11557 
11558 	va_end(args);
11559 }
11560 EXPORT_SYMBOL(netdev_printk);
11561 
11562 #define define_netdev_printk_level(func, level)			\
11563 void func(const struct net_device *dev, const char *fmt, ...)	\
11564 {								\
11565 	struct va_format vaf;					\
11566 	va_list args;						\
11567 								\
11568 	va_start(args, fmt);					\
11569 								\
11570 	vaf.fmt = fmt;						\
11571 	vaf.va = &args;						\
11572 								\
11573 	__netdev_printk(level, dev, &vaf);			\
11574 								\
11575 	va_end(args);						\
11576 }								\
11577 EXPORT_SYMBOL(func);
11578 
11579 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11580 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11581 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11582 define_netdev_printk_level(netdev_err, KERN_ERR);
11583 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11584 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11585 define_netdev_printk_level(netdev_info, KERN_INFO);
11586 
11587 static void __net_exit netdev_exit(struct net *net)
11588 {
11589 	kfree(net->dev_name_head);
11590 	kfree(net->dev_index_head);
11591 	xa_destroy(&net->dev_by_index);
11592 	if (net != &init_net)
11593 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11594 }
11595 
11596 static struct pernet_operations __net_initdata netdev_net_ops = {
11597 	.init = netdev_init,
11598 	.exit = netdev_exit,
11599 };
11600 
11601 static void __net_exit default_device_exit_net(struct net *net)
11602 {
11603 	struct netdev_name_node *name_node, *tmp;
11604 	struct net_device *dev, *aux;
11605 	/*
11606 	 * Push all migratable network devices back to the
11607 	 * initial network namespace
11608 	 */
11609 	ASSERT_RTNL();
11610 	for_each_netdev_safe(net, dev, aux) {
11611 		int err;
11612 		char fb_name[IFNAMSIZ];
11613 
11614 		/* Ignore unmoveable devices (i.e. loopback) */
11615 		if (dev->features & NETIF_F_NETNS_LOCAL)
11616 			continue;
11617 
11618 		/* Leave virtual devices for the generic cleanup */
11619 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11620 			continue;
11621 
11622 		/* Push remaining network devices to init_net */
11623 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11624 		if (netdev_name_in_use(&init_net, fb_name))
11625 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11626 
11627 		netdev_for_each_altname_safe(dev, name_node, tmp)
11628 			if (netdev_name_in_use(&init_net, name_node->name))
11629 				__netdev_name_node_alt_destroy(name_node);
11630 
11631 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11632 		if (err) {
11633 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11634 				 __func__, dev->name, err);
11635 			BUG();
11636 		}
11637 	}
11638 }
11639 
11640 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11641 {
11642 	/* At exit all network devices most be removed from a network
11643 	 * namespace.  Do this in the reverse order of registration.
11644 	 * Do this across as many network namespaces as possible to
11645 	 * improve batching efficiency.
11646 	 */
11647 	struct net_device *dev;
11648 	struct net *net;
11649 	LIST_HEAD(dev_kill_list);
11650 
11651 	rtnl_lock();
11652 	list_for_each_entry(net, net_list, exit_list) {
11653 		default_device_exit_net(net);
11654 		cond_resched();
11655 	}
11656 
11657 	list_for_each_entry(net, net_list, exit_list) {
11658 		for_each_netdev_reverse(net, dev) {
11659 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11660 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11661 			else
11662 				unregister_netdevice_queue(dev, &dev_kill_list);
11663 		}
11664 	}
11665 	unregister_netdevice_many(&dev_kill_list);
11666 	rtnl_unlock();
11667 }
11668 
11669 static struct pernet_operations __net_initdata default_device_ops = {
11670 	.exit_batch = default_device_exit_batch,
11671 };
11672 
11673 static void __init net_dev_struct_check(void)
11674 {
11675 	/* TX read-mostly hotpath */
11676 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11677 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11678 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11679 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11680 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11681 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11682 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11683 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11684 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11685 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11686 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11687 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11688 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11689 #ifdef CONFIG_XPS
11690 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11691 #endif
11692 #ifdef CONFIG_NETFILTER_EGRESS
11693 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11694 #endif
11695 #ifdef CONFIG_NET_XGRESS
11696 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11697 #endif
11698 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11699 
11700 	/* TXRX read-mostly hotpath */
11701 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11702 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11703 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11704 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11705 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 30);
11706 
11707 	/* RX read-mostly hotpath */
11708 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11709 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11710 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11711 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11712 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11713 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11714 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11715 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11716 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11717 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11718 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11719 #ifdef CONFIG_NETPOLL
11720 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11721 #endif
11722 #ifdef CONFIG_NET_XGRESS
11723 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11724 #endif
11725 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11726 }
11727 
11728 /*
11729  *	Initialize the DEV module. At boot time this walks the device list and
11730  *	unhooks any devices that fail to initialise (normally hardware not
11731  *	present) and leaves us with a valid list of present and active devices.
11732  *
11733  */
11734 
11735 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11736 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
11737 
11738 static int net_page_pool_create(int cpuid)
11739 {
11740 #if IS_ENABLED(CONFIG_PAGE_POOL)
11741 	struct page_pool_params page_pool_params = {
11742 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
11743 		.nid = NUMA_NO_NODE,
11744 	};
11745 	struct page_pool *pp_ptr;
11746 
11747 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
11748 	if (IS_ERR(pp_ptr))
11749 		return -ENOMEM;
11750 
11751 	per_cpu(system_page_pool, cpuid) = pp_ptr;
11752 #endif
11753 	return 0;
11754 }
11755 
11756 /*
11757  *       This is called single threaded during boot, so no need
11758  *       to take the rtnl semaphore.
11759  */
11760 static int __init net_dev_init(void)
11761 {
11762 	int i, rc = -ENOMEM;
11763 
11764 	BUG_ON(!dev_boot_phase);
11765 
11766 	net_dev_struct_check();
11767 
11768 	if (dev_proc_init())
11769 		goto out;
11770 
11771 	if (netdev_kobject_init())
11772 		goto out;
11773 
11774 	INIT_LIST_HEAD(&ptype_all);
11775 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11776 		INIT_LIST_HEAD(&ptype_base[i]);
11777 
11778 	if (register_pernet_subsys(&netdev_net_ops))
11779 		goto out;
11780 
11781 	/*
11782 	 *	Initialise the packet receive queues.
11783 	 */
11784 
11785 	for_each_possible_cpu(i) {
11786 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11787 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11788 
11789 		INIT_WORK(flush, flush_backlog);
11790 
11791 		skb_queue_head_init(&sd->input_pkt_queue);
11792 		skb_queue_head_init(&sd->process_queue);
11793 #ifdef CONFIG_XFRM_OFFLOAD
11794 		skb_queue_head_init(&sd->xfrm_backlog);
11795 #endif
11796 		INIT_LIST_HEAD(&sd->poll_list);
11797 		sd->output_queue_tailp = &sd->output_queue;
11798 #ifdef CONFIG_RPS
11799 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11800 		sd->cpu = i;
11801 #endif
11802 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11803 		spin_lock_init(&sd->defer_lock);
11804 
11805 		init_gro_hash(&sd->backlog);
11806 		sd->backlog.poll = process_backlog;
11807 		sd->backlog.weight = weight_p;
11808 
11809 		if (net_page_pool_create(i))
11810 			goto out;
11811 	}
11812 
11813 	dev_boot_phase = 0;
11814 
11815 	/* The loopback device is special if any other network devices
11816 	 * is present in a network namespace the loopback device must
11817 	 * be present. Since we now dynamically allocate and free the
11818 	 * loopback device ensure this invariant is maintained by
11819 	 * keeping the loopback device as the first device on the
11820 	 * list of network devices.  Ensuring the loopback devices
11821 	 * is the first device that appears and the last network device
11822 	 * that disappears.
11823 	 */
11824 	if (register_pernet_device(&loopback_net_ops))
11825 		goto out;
11826 
11827 	if (register_pernet_device(&default_device_ops))
11828 		goto out;
11829 
11830 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11831 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11832 
11833 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11834 				       NULL, dev_cpu_dead);
11835 	WARN_ON(rc < 0);
11836 	rc = 0;
11837 out:
11838 	if (rc < 0) {
11839 		for_each_possible_cpu(i) {
11840 			struct page_pool *pp_ptr;
11841 
11842 			pp_ptr = per_cpu(system_page_pool, i);
11843 			if (!pp_ptr)
11844 				continue;
11845 
11846 			page_pool_destroy(pp_ptr);
11847 			per_cpu(system_page_pool, i) = NULL;
11848 		}
11849 	}
11850 
11851 	return rc;
11852 }
11853 
11854 subsys_initcall(net_dev_init);
11855