1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <net/tcx.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <trace/events/qdisc.h> 136 #include <trace/events/xdp.h> 137 #include <linux/inetdevice.h> 138 #include <linux/cpu_rmap.h> 139 #include <linux/static_key.h> 140 #include <linux/hashtable.h> 141 #include <linux/vmalloc.h> 142 #include <linux/if_macvlan.h> 143 #include <linux/errqueue.h> 144 #include <linux/hrtimer.h> 145 #include <linux/netfilter_netdev.h> 146 #include <linux/crash_dump.h> 147 #include <linux/sctp.h> 148 #include <net/udp_tunnel.h> 149 #include <linux/net_namespace.h> 150 #include <linux/indirect_call_wrapper.h> 151 #include <net/devlink.h> 152 #include <linux/pm_runtime.h> 153 #include <linux/prandom.h> 154 #include <linux/once_lite.h> 155 #include <net/netdev_rx_queue.h> 156 157 #include "dev.h" 158 #include "net-sysfs.h" 159 160 static DEFINE_SPINLOCK(ptype_lock); 161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 162 struct list_head ptype_all __read_mostly; /* Taps */ 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_extack(unsigned long val, 166 struct net_device *dev, 167 struct netlink_ext_ack *extack); 168 static struct napi_struct *napi_by_id(unsigned int napi_id); 169 170 /* 171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 172 * semaphore. 173 * 174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 175 * 176 * Writers must hold the rtnl semaphore while they loop through the 177 * dev_base_head list, and hold dev_base_lock for writing when they do the 178 * actual updates. This allows pure readers to access the list even 179 * while a writer is preparing to update it. 180 * 181 * To put it another way, dev_base_lock is held for writing only to 182 * protect against pure readers; the rtnl semaphore provides the 183 * protection against other writers. 184 * 185 * See, for example usages, register_netdevice() and 186 * unregister_netdevice(), which must be called with the rtnl 187 * semaphore held. 188 */ 189 DEFINE_RWLOCK(dev_base_lock); 190 EXPORT_SYMBOL(dev_base_lock); 191 192 static DEFINE_MUTEX(ifalias_mutex); 193 194 /* protects napi_hash addition/deletion and napi_gen_id */ 195 static DEFINE_SPINLOCK(napi_hash_lock); 196 197 static unsigned int napi_gen_id = NR_CPUS; 198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 199 200 static DECLARE_RWSEM(devnet_rename_sem); 201 202 static inline void dev_base_seq_inc(struct net *net) 203 { 204 while (++net->dev_base_seq == 0) 205 ; 206 } 207 208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 209 { 210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 211 212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 213 } 214 215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 216 { 217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 218 } 219 220 static inline void rps_lock_irqsave(struct softnet_data *sd, 221 unsigned long *flags) 222 { 223 if (IS_ENABLED(CONFIG_RPS)) 224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 226 local_irq_save(*flags); 227 } 228 229 static inline void rps_lock_irq_disable(struct softnet_data *sd) 230 { 231 if (IS_ENABLED(CONFIG_RPS)) 232 spin_lock_irq(&sd->input_pkt_queue.lock); 233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 234 local_irq_disable(); 235 } 236 237 static inline void rps_unlock_irq_restore(struct softnet_data *sd, 238 unsigned long *flags) 239 { 240 if (IS_ENABLED(CONFIG_RPS)) 241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 243 local_irq_restore(*flags); 244 } 245 246 static inline void rps_unlock_irq_enable(struct softnet_data *sd) 247 { 248 if (IS_ENABLED(CONFIG_RPS)) 249 spin_unlock_irq(&sd->input_pkt_queue.lock); 250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 251 local_irq_enable(); 252 } 253 254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 255 const char *name) 256 { 257 struct netdev_name_node *name_node; 258 259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 260 if (!name_node) 261 return NULL; 262 INIT_HLIST_NODE(&name_node->hlist); 263 name_node->dev = dev; 264 name_node->name = name; 265 return name_node; 266 } 267 268 static struct netdev_name_node * 269 netdev_name_node_head_alloc(struct net_device *dev) 270 { 271 struct netdev_name_node *name_node; 272 273 name_node = netdev_name_node_alloc(dev, dev->name); 274 if (!name_node) 275 return NULL; 276 INIT_LIST_HEAD(&name_node->list); 277 return name_node; 278 } 279 280 static void netdev_name_node_free(struct netdev_name_node *name_node) 281 { 282 kfree(name_node); 283 } 284 285 static void netdev_name_node_add(struct net *net, 286 struct netdev_name_node *name_node) 287 { 288 hlist_add_head_rcu(&name_node->hlist, 289 dev_name_hash(net, name_node->name)); 290 } 291 292 static void netdev_name_node_del(struct netdev_name_node *name_node) 293 { 294 hlist_del_rcu(&name_node->hlist); 295 } 296 297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 298 const char *name) 299 { 300 struct hlist_head *head = dev_name_hash(net, name); 301 struct netdev_name_node *name_node; 302 303 hlist_for_each_entry(name_node, head, hlist) 304 if (!strcmp(name_node->name, name)) 305 return name_node; 306 return NULL; 307 } 308 309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 310 const char *name) 311 { 312 struct hlist_head *head = dev_name_hash(net, name); 313 struct netdev_name_node *name_node; 314 315 hlist_for_each_entry_rcu(name_node, head, hlist) 316 if (!strcmp(name_node->name, name)) 317 return name_node; 318 return NULL; 319 } 320 321 bool netdev_name_in_use(struct net *net, const char *name) 322 { 323 return netdev_name_node_lookup(net, name); 324 } 325 EXPORT_SYMBOL(netdev_name_in_use); 326 327 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 328 { 329 struct netdev_name_node *name_node; 330 struct net *net = dev_net(dev); 331 332 name_node = netdev_name_node_lookup(net, name); 333 if (name_node) 334 return -EEXIST; 335 name_node = netdev_name_node_alloc(dev, name); 336 if (!name_node) 337 return -ENOMEM; 338 netdev_name_node_add(net, name_node); 339 /* The node that holds dev->name acts as a head of per-device list. */ 340 list_add_tail(&name_node->list, &dev->name_node->list); 341 342 return 0; 343 } 344 345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 346 { 347 list_del(&name_node->list); 348 kfree(name_node->name); 349 netdev_name_node_free(name_node); 350 } 351 352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 353 { 354 struct netdev_name_node *name_node; 355 struct net *net = dev_net(dev); 356 357 name_node = netdev_name_node_lookup(net, name); 358 if (!name_node) 359 return -ENOENT; 360 /* lookup might have found our primary name or a name belonging 361 * to another device. 362 */ 363 if (name_node == dev->name_node || name_node->dev != dev) 364 return -EINVAL; 365 366 netdev_name_node_del(name_node); 367 synchronize_rcu(); 368 __netdev_name_node_alt_destroy(name_node); 369 370 return 0; 371 } 372 373 static void netdev_name_node_alt_flush(struct net_device *dev) 374 { 375 struct netdev_name_node *name_node, *tmp; 376 377 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 378 __netdev_name_node_alt_destroy(name_node); 379 } 380 381 /* Device list insertion */ 382 static void list_netdevice(struct net_device *dev) 383 { 384 struct netdev_name_node *name_node; 385 struct net *net = dev_net(dev); 386 387 ASSERT_RTNL(); 388 389 write_lock(&dev_base_lock); 390 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 391 netdev_name_node_add(net, dev->name_node); 392 hlist_add_head_rcu(&dev->index_hlist, 393 dev_index_hash(net, dev->ifindex)); 394 write_unlock(&dev_base_lock); 395 396 netdev_for_each_altname(dev, name_node) 397 netdev_name_node_add(net, name_node); 398 399 /* We reserved the ifindex, this can't fail */ 400 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 401 402 dev_base_seq_inc(net); 403 } 404 405 /* Device list removal 406 * caller must respect a RCU grace period before freeing/reusing dev 407 */ 408 static void unlist_netdevice(struct net_device *dev, bool lock) 409 { 410 struct netdev_name_node *name_node; 411 struct net *net = dev_net(dev); 412 413 ASSERT_RTNL(); 414 415 xa_erase(&net->dev_by_index, dev->ifindex); 416 417 netdev_for_each_altname(dev, name_node) 418 netdev_name_node_del(name_node); 419 420 /* Unlink dev from the device chain */ 421 if (lock) 422 write_lock(&dev_base_lock); 423 list_del_rcu(&dev->dev_list); 424 netdev_name_node_del(dev->name_node); 425 hlist_del_rcu(&dev->index_hlist); 426 if (lock) 427 write_unlock(&dev_base_lock); 428 429 dev_base_seq_inc(dev_net(dev)); 430 } 431 432 /* 433 * Our notifier list 434 */ 435 436 static RAW_NOTIFIER_HEAD(netdev_chain); 437 438 /* 439 * Device drivers call our routines to queue packets here. We empty the 440 * queue in the local softnet handler. 441 */ 442 443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 444 EXPORT_PER_CPU_SYMBOL(softnet_data); 445 446 #ifdef CONFIG_LOCKDEP 447 /* 448 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 449 * according to dev->type 450 */ 451 static const unsigned short netdev_lock_type[] = { 452 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 453 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 454 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 455 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 456 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 457 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 458 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 459 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 460 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 461 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 462 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 463 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 464 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 465 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 466 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 467 468 static const char *const netdev_lock_name[] = { 469 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 470 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 471 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 472 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 473 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 474 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 475 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 476 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 477 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 478 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 479 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 480 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 481 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 482 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 483 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 484 485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 487 488 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 489 { 490 int i; 491 492 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 493 if (netdev_lock_type[i] == dev_type) 494 return i; 495 /* the last key is used by default */ 496 return ARRAY_SIZE(netdev_lock_type) - 1; 497 } 498 499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 500 unsigned short dev_type) 501 { 502 int i; 503 504 i = netdev_lock_pos(dev_type); 505 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 506 netdev_lock_name[i]); 507 } 508 509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 510 { 511 int i; 512 513 i = netdev_lock_pos(dev->type); 514 lockdep_set_class_and_name(&dev->addr_list_lock, 515 &netdev_addr_lock_key[i], 516 netdev_lock_name[i]); 517 } 518 #else 519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 520 unsigned short dev_type) 521 { 522 } 523 524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 525 { 526 } 527 #endif 528 529 /******************************************************************************* 530 * 531 * Protocol management and registration routines 532 * 533 *******************************************************************************/ 534 535 536 /* 537 * Add a protocol ID to the list. Now that the input handler is 538 * smarter we can dispense with all the messy stuff that used to be 539 * here. 540 * 541 * BEWARE!!! Protocol handlers, mangling input packets, 542 * MUST BE last in hash buckets and checking protocol handlers 543 * MUST start from promiscuous ptype_all chain in net_bh. 544 * It is true now, do not change it. 545 * Explanation follows: if protocol handler, mangling packet, will 546 * be the first on list, it is not able to sense, that packet 547 * is cloned and should be copied-on-write, so that it will 548 * change it and subsequent readers will get broken packet. 549 * --ANK (980803) 550 */ 551 552 static inline struct list_head *ptype_head(const struct packet_type *pt) 553 { 554 if (pt->type == htons(ETH_P_ALL)) 555 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 556 else 557 return pt->dev ? &pt->dev->ptype_specific : 558 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 559 } 560 561 /** 562 * dev_add_pack - add packet handler 563 * @pt: packet type declaration 564 * 565 * Add a protocol handler to the networking stack. The passed &packet_type 566 * is linked into kernel lists and may not be freed until it has been 567 * removed from the kernel lists. 568 * 569 * This call does not sleep therefore it can not 570 * guarantee all CPU's that are in middle of receiving packets 571 * will see the new packet type (until the next received packet). 572 */ 573 574 void dev_add_pack(struct packet_type *pt) 575 { 576 struct list_head *head = ptype_head(pt); 577 578 spin_lock(&ptype_lock); 579 list_add_rcu(&pt->list, head); 580 spin_unlock(&ptype_lock); 581 } 582 EXPORT_SYMBOL(dev_add_pack); 583 584 /** 585 * __dev_remove_pack - remove packet handler 586 * @pt: packet type declaration 587 * 588 * Remove a protocol handler that was previously added to the kernel 589 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 590 * from the kernel lists and can be freed or reused once this function 591 * returns. 592 * 593 * The packet type might still be in use by receivers 594 * and must not be freed until after all the CPU's have gone 595 * through a quiescent state. 596 */ 597 void __dev_remove_pack(struct packet_type *pt) 598 { 599 struct list_head *head = ptype_head(pt); 600 struct packet_type *pt1; 601 602 spin_lock(&ptype_lock); 603 604 list_for_each_entry(pt1, head, list) { 605 if (pt == pt1) { 606 list_del_rcu(&pt->list); 607 goto out; 608 } 609 } 610 611 pr_warn("dev_remove_pack: %p not found\n", pt); 612 out: 613 spin_unlock(&ptype_lock); 614 } 615 EXPORT_SYMBOL(__dev_remove_pack); 616 617 /** 618 * dev_remove_pack - remove packet handler 619 * @pt: packet type declaration 620 * 621 * Remove a protocol handler that was previously added to the kernel 622 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 623 * from the kernel lists and can be freed or reused once this function 624 * returns. 625 * 626 * This call sleeps to guarantee that no CPU is looking at the packet 627 * type after return. 628 */ 629 void dev_remove_pack(struct packet_type *pt) 630 { 631 __dev_remove_pack(pt); 632 633 synchronize_net(); 634 } 635 EXPORT_SYMBOL(dev_remove_pack); 636 637 638 /******************************************************************************* 639 * 640 * Device Interface Subroutines 641 * 642 *******************************************************************************/ 643 644 /** 645 * dev_get_iflink - get 'iflink' value of a interface 646 * @dev: targeted interface 647 * 648 * Indicates the ifindex the interface is linked to. 649 * Physical interfaces have the same 'ifindex' and 'iflink' values. 650 */ 651 652 int dev_get_iflink(const struct net_device *dev) 653 { 654 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 655 return dev->netdev_ops->ndo_get_iflink(dev); 656 657 return dev->ifindex; 658 } 659 EXPORT_SYMBOL(dev_get_iflink); 660 661 /** 662 * dev_fill_metadata_dst - Retrieve tunnel egress information. 663 * @dev: targeted interface 664 * @skb: The packet. 665 * 666 * For better visibility of tunnel traffic OVS needs to retrieve 667 * egress tunnel information for a packet. Following API allows 668 * user to get this info. 669 */ 670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 671 { 672 struct ip_tunnel_info *info; 673 674 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 675 return -EINVAL; 676 677 info = skb_tunnel_info_unclone(skb); 678 if (!info) 679 return -ENOMEM; 680 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 681 return -EINVAL; 682 683 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 684 } 685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 686 687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 688 { 689 int k = stack->num_paths++; 690 691 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 692 return NULL; 693 694 return &stack->path[k]; 695 } 696 697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 698 struct net_device_path_stack *stack) 699 { 700 const struct net_device *last_dev; 701 struct net_device_path_ctx ctx = { 702 .dev = dev, 703 }; 704 struct net_device_path *path; 705 int ret = 0; 706 707 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 708 stack->num_paths = 0; 709 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 710 last_dev = ctx.dev; 711 path = dev_fwd_path(stack); 712 if (!path) 713 return -1; 714 715 memset(path, 0, sizeof(struct net_device_path)); 716 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 717 if (ret < 0) 718 return -1; 719 720 if (WARN_ON_ONCE(last_dev == ctx.dev)) 721 return -1; 722 } 723 724 if (!ctx.dev) 725 return ret; 726 727 path = dev_fwd_path(stack); 728 if (!path) 729 return -1; 730 path->type = DEV_PATH_ETHERNET; 731 path->dev = ctx.dev; 732 733 return ret; 734 } 735 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 736 737 /** 738 * __dev_get_by_name - find a device by its name 739 * @net: the applicable net namespace 740 * @name: name to find 741 * 742 * Find an interface by name. Must be called under RTNL semaphore 743 * or @dev_base_lock. If the name is found a pointer to the device 744 * is returned. If the name is not found then %NULL is returned. The 745 * reference counters are not incremented so the caller must be 746 * careful with locks. 747 */ 748 749 struct net_device *__dev_get_by_name(struct net *net, const char *name) 750 { 751 struct netdev_name_node *node_name; 752 753 node_name = netdev_name_node_lookup(net, name); 754 return node_name ? node_name->dev : NULL; 755 } 756 EXPORT_SYMBOL(__dev_get_by_name); 757 758 /** 759 * dev_get_by_name_rcu - find a device by its name 760 * @net: the applicable net namespace 761 * @name: name to find 762 * 763 * Find an interface by name. 764 * If the name is found a pointer to the device is returned. 765 * If the name is not found then %NULL is returned. 766 * The reference counters are not incremented so the caller must be 767 * careful with locks. The caller must hold RCU lock. 768 */ 769 770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 771 { 772 struct netdev_name_node *node_name; 773 774 node_name = netdev_name_node_lookup_rcu(net, name); 775 return node_name ? node_name->dev : NULL; 776 } 777 EXPORT_SYMBOL(dev_get_by_name_rcu); 778 779 /* Deprecated for new users, call netdev_get_by_name() instead */ 780 struct net_device *dev_get_by_name(struct net *net, const char *name) 781 { 782 struct net_device *dev; 783 784 rcu_read_lock(); 785 dev = dev_get_by_name_rcu(net, name); 786 dev_hold(dev); 787 rcu_read_unlock(); 788 return dev; 789 } 790 EXPORT_SYMBOL(dev_get_by_name); 791 792 /** 793 * netdev_get_by_name() - find a device by its name 794 * @net: the applicable net namespace 795 * @name: name to find 796 * @tracker: tracking object for the acquired reference 797 * @gfp: allocation flags for the tracker 798 * 799 * Find an interface by name. This can be called from any 800 * context and does its own locking. The returned handle has 801 * the usage count incremented and the caller must use netdev_put() to 802 * release it when it is no longer needed. %NULL is returned if no 803 * matching device is found. 804 */ 805 struct net_device *netdev_get_by_name(struct net *net, const char *name, 806 netdevice_tracker *tracker, gfp_t gfp) 807 { 808 struct net_device *dev; 809 810 dev = dev_get_by_name(net, name); 811 if (dev) 812 netdev_tracker_alloc(dev, tracker, gfp); 813 return dev; 814 } 815 EXPORT_SYMBOL(netdev_get_by_name); 816 817 /** 818 * __dev_get_by_index - find a device by its ifindex 819 * @net: the applicable net namespace 820 * @ifindex: index of device 821 * 822 * Search for an interface by index. Returns %NULL if the device 823 * is not found or a pointer to the device. The device has not 824 * had its reference counter increased so the caller must be careful 825 * about locking. The caller must hold either the RTNL semaphore 826 * or @dev_base_lock. 827 */ 828 829 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 830 { 831 struct net_device *dev; 832 struct hlist_head *head = dev_index_hash(net, ifindex); 833 834 hlist_for_each_entry(dev, head, index_hlist) 835 if (dev->ifindex == ifindex) 836 return dev; 837 838 return NULL; 839 } 840 EXPORT_SYMBOL(__dev_get_by_index); 841 842 /** 843 * dev_get_by_index_rcu - find a device by its ifindex 844 * @net: the applicable net namespace 845 * @ifindex: index of device 846 * 847 * Search for an interface by index. Returns %NULL if the device 848 * is not found or a pointer to the device. The device has not 849 * had its reference counter increased so the caller must be careful 850 * about locking. The caller must hold RCU lock. 851 */ 852 853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 854 { 855 struct net_device *dev; 856 struct hlist_head *head = dev_index_hash(net, ifindex); 857 858 hlist_for_each_entry_rcu(dev, head, index_hlist) 859 if (dev->ifindex == ifindex) 860 return dev; 861 862 return NULL; 863 } 864 EXPORT_SYMBOL(dev_get_by_index_rcu); 865 866 /* Deprecated for new users, call netdev_get_by_index() instead */ 867 struct net_device *dev_get_by_index(struct net *net, int ifindex) 868 { 869 struct net_device *dev; 870 871 rcu_read_lock(); 872 dev = dev_get_by_index_rcu(net, ifindex); 873 dev_hold(dev); 874 rcu_read_unlock(); 875 return dev; 876 } 877 EXPORT_SYMBOL(dev_get_by_index); 878 879 /** 880 * netdev_get_by_index() - find a device by its ifindex 881 * @net: the applicable net namespace 882 * @ifindex: index of device 883 * @tracker: tracking object for the acquired reference 884 * @gfp: allocation flags for the tracker 885 * 886 * Search for an interface by index. Returns NULL if the device 887 * is not found or a pointer to the device. The device returned has 888 * had a reference added and the pointer is safe until the user calls 889 * netdev_put() to indicate they have finished with it. 890 */ 891 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 892 netdevice_tracker *tracker, gfp_t gfp) 893 { 894 struct net_device *dev; 895 896 dev = dev_get_by_index(net, ifindex); 897 if (dev) 898 netdev_tracker_alloc(dev, tracker, gfp); 899 return dev; 900 } 901 EXPORT_SYMBOL(netdev_get_by_index); 902 903 /** 904 * dev_get_by_napi_id - find a device by napi_id 905 * @napi_id: ID of the NAPI struct 906 * 907 * Search for an interface by NAPI ID. Returns %NULL if the device 908 * is not found or a pointer to the device. The device has not had 909 * its reference counter increased so the caller must be careful 910 * about locking. The caller must hold RCU lock. 911 */ 912 913 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 914 { 915 struct napi_struct *napi; 916 917 WARN_ON_ONCE(!rcu_read_lock_held()); 918 919 if (napi_id < MIN_NAPI_ID) 920 return NULL; 921 922 napi = napi_by_id(napi_id); 923 924 return napi ? napi->dev : NULL; 925 } 926 EXPORT_SYMBOL(dev_get_by_napi_id); 927 928 /** 929 * netdev_get_name - get a netdevice name, knowing its ifindex. 930 * @net: network namespace 931 * @name: a pointer to the buffer where the name will be stored. 932 * @ifindex: the ifindex of the interface to get the name from. 933 */ 934 int netdev_get_name(struct net *net, char *name, int ifindex) 935 { 936 struct net_device *dev; 937 int ret; 938 939 down_read(&devnet_rename_sem); 940 rcu_read_lock(); 941 942 dev = dev_get_by_index_rcu(net, ifindex); 943 if (!dev) { 944 ret = -ENODEV; 945 goto out; 946 } 947 948 strcpy(name, dev->name); 949 950 ret = 0; 951 out: 952 rcu_read_unlock(); 953 up_read(&devnet_rename_sem); 954 return ret; 955 } 956 957 /** 958 * dev_getbyhwaddr_rcu - find a device by its hardware address 959 * @net: the applicable net namespace 960 * @type: media type of device 961 * @ha: hardware address 962 * 963 * Search for an interface by MAC address. Returns NULL if the device 964 * is not found or a pointer to the device. 965 * The caller must hold RCU or RTNL. 966 * The returned device has not had its ref count increased 967 * and the caller must therefore be careful about locking 968 * 969 */ 970 971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 972 const char *ha) 973 { 974 struct net_device *dev; 975 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type && 978 !memcmp(dev->dev_addr, ha, dev->addr_len)) 979 return dev; 980 981 return NULL; 982 } 983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 984 985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 986 { 987 struct net_device *dev, *ret = NULL; 988 989 rcu_read_lock(); 990 for_each_netdev_rcu(net, dev) 991 if (dev->type == type) { 992 dev_hold(dev); 993 ret = dev; 994 break; 995 } 996 rcu_read_unlock(); 997 return ret; 998 } 999 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1000 1001 /** 1002 * __dev_get_by_flags - find any device with given flags 1003 * @net: the applicable net namespace 1004 * @if_flags: IFF_* values 1005 * @mask: bitmask of bits in if_flags to check 1006 * 1007 * Search for any interface with the given flags. Returns NULL if a device 1008 * is not found or a pointer to the device. Must be called inside 1009 * rtnl_lock(), and result refcount is unchanged. 1010 */ 1011 1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1013 unsigned short mask) 1014 { 1015 struct net_device *dev, *ret; 1016 1017 ASSERT_RTNL(); 1018 1019 ret = NULL; 1020 for_each_netdev(net, dev) { 1021 if (((dev->flags ^ if_flags) & mask) == 0) { 1022 ret = dev; 1023 break; 1024 } 1025 } 1026 return ret; 1027 } 1028 EXPORT_SYMBOL(__dev_get_by_flags); 1029 1030 /** 1031 * dev_valid_name - check if name is okay for network device 1032 * @name: name string 1033 * 1034 * Network device names need to be valid file names to 1035 * allow sysfs to work. We also disallow any kind of 1036 * whitespace. 1037 */ 1038 bool dev_valid_name(const char *name) 1039 { 1040 if (*name == '\0') 1041 return false; 1042 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1043 return false; 1044 if (!strcmp(name, ".") || !strcmp(name, "..")) 1045 return false; 1046 1047 while (*name) { 1048 if (*name == '/' || *name == ':' || isspace(*name)) 1049 return false; 1050 name++; 1051 } 1052 return true; 1053 } 1054 EXPORT_SYMBOL(dev_valid_name); 1055 1056 /** 1057 * __dev_alloc_name - allocate a name for a device 1058 * @net: network namespace to allocate the device name in 1059 * @name: name format string 1060 * @buf: scratch buffer and result name string 1061 * 1062 * Passed a format string - eg "lt%d" it will try and find a suitable 1063 * id. It scans list of devices to build up a free map, then chooses 1064 * the first empty slot. The caller must hold the dev_base or rtnl lock 1065 * while allocating the name and adding the device in order to avoid 1066 * duplicates. 1067 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1068 * Returns the number of the unit assigned or a negative errno code. 1069 */ 1070 1071 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1072 { 1073 int i = 0; 1074 const char *p; 1075 const int max_netdevices = 8*PAGE_SIZE; 1076 unsigned long *inuse; 1077 struct net_device *d; 1078 1079 if (!dev_valid_name(name)) 1080 return -EINVAL; 1081 1082 p = strchr(name, '%'); 1083 if (p) { 1084 /* 1085 * Verify the string as this thing may have come from 1086 * the user. There must be either one "%d" and no other "%" 1087 * characters. 1088 */ 1089 if (p[1] != 'd' || strchr(p + 2, '%')) 1090 return -EINVAL; 1091 1092 /* Use one page as a bit array of possible slots */ 1093 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1094 if (!inuse) 1095 return -ENOMEM; 1096 1097 for_each_netdev(net, d) { 1098 struct netdev_name_node *name_node; 1099 1100 netdev_for_each_altname(d, name_node) { 1101 if (!sscanf(name_node->name, name, &i)) 1102 continue; 1103 if (i < 0 || i >= max_netdevices) 1104 continue; 1105 1106 /* avoid cases where sscanf is not exact inverse of printf */ 1107 snprintf(buf, IFNAMSIZ, name, i); 1108 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1109 __set_bit(i, inuse); 1110 } 1111 if (!sscanf(d->name, name, &i)) 1112 continue; 1113 if (i < 0 || i >= max_netdevices) 1114 continue; 1115 1116 /* avoid cases where sscanf is not exact inverse of printf */ 1117 snprintf(buf, IFNAMSIZ, name, i); 1118 if (!strncmp(buf, d->name, IFNAMSIZ)) 1119 __set_bit(i, inuse); 1120 } 1121 1122 i = find_first_zero_bit(inuse, max_netdevices); 1123 bitmap_free(inuse); 1124 } 1125 1126 snprintf(buf, IFNAMSIZ, name, i); 1127 if (!netdev_name_in_use(net, buf)) 1128 return i; 1129 1130 /* It is possible to run out of possible slots 1131 * when the name is long and there isn't enough space left 1132 * for the digits, or if all bits are used. 1133 */ 1134 return -ENFILE; 1135 } 1136 1137 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1138 const char *want_name, char *out_name) 1139 { 1140 int ret; 1141 1142 if (!dev_valid_name(want_name)) 1143 return -EINVAL; 1144 1145 if (strchr(want_name, '%')) { 1146 ret = __dev_alloc_name(net, want_name, out_name); 1147 return ret < 0 ? ret : 0; 1148 } else if (netdev_name_in_use(net, want_name)) { 1149 return -EEXIST; 1150 } else if (out_name != want_name) { 1151 strscpy(out_name, want_name, IFNAMSIZ); 1152 } 1153 1154 return 0; 1155 } 1156 1157 static int dev_alloc_name_ns(struct net *net, 1158 struct net_device *dev, 1159 const char *name) 1160 { 1161 char buf[IFNAMSIZ]; 1162 int ret; 1163 1164 BUG_ON(!net); 1165 ret = __dev_alloc_name(net, name, buf); 1166 if (ret >= 0) 1167 strscpy(dev->name, buf, IFNAMSIZ); 1168 return ret; 1169 } 1170 1171 /** 1172 * dev_alloc_name - allocate a name for a device 1173 * @dev: device 1174 * @name: name format string 1175 * 1176 * Passed a format string - eg "lt%d" it will try and find a suitable 1177 * id. It scans list of devices to build up a free map, then chooses 1178 * the first empty slot. The caller must hold the dev_base or rtnl lock 1179 * while allocating the name and adding the device in order to avoid 1180 * duplicates. 1181 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1182 * Returns the number of the unit assigned or a negative errno code. 1183 */ 1184 1185 int dev_alloc_name(struct net_device *dev, const char *name) 1186 { 1187 return dev_alloc_name_ns(dev_net(dev), dev, name); 1188 } 1189 EXPORT_SYMBOL(dev_alloc_name); 1190 1191 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1192 const char *name) 1193 { 1194 char buf[IFNAMSIZ]; 1195 int ret; 1196 1197 ret = dev_prep_valid_name(net, dev, name, buf); 1198 if (ret >= 0) 1199 strscpy(dev->name, buf, IFNAMSIZ); 1200 return ret; 1201 } 1202 1203 /** 1204 * dev_change_name - change name of a device 1205 * @dev: device 1206 * @newname: name (or format string) must be at least IFNAMSIZ 1207 * 1208 * Change name of a device, can pass format strings "eth%d". 1209 * for wildcarding. 1210 */ 1211 int dev_change_name(struct net_device *dev, const char *newname) 1212 { 1213 unsigned char old_assign_type; 1214 char oldname[IFNAMSIZ]; 1215 int err = 0; 1216 int ret; 1217 struct net *net; 1218 1219 ASSERT_RTNL(); 1220 BUG_ON(!dev_net(dev)); 1221 1222 net = dev_net(dev); 1223 1224 down_write(&devnet_rename_sem); 1225 1226 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1227 up_write(&devnet_rename_sem); 1228 return 0; 1229 } 1230 1231 memcpy(oldname, dev->name, IFNAMSIZ); 1232 1233 err = dev_get_valid_name(net, dev, newname); 1234 if (err < 0) { 1235 up_write(&devnet_rename_sem); 1236 return err; 1237 } 1238 1239 if (oldname[0] && !strchr(oldname, '%')) 1240 netdev_info(dev, "renamed from %s%s\n", oldname, 1241 dev->flags & IFF_UP ? " (while UP)" : ""); 1242 1243 old_assign_type = dev->name_assign_type; 1244 dev->name_assign_type = NET_NAME_RENAMED; 1245 1246 rollback: 1247 ret = device_rename(&dev->dev, dev->name); 1248 if (ret) { 1249 memcpy(dev->name, oldname, IFNAMSIZ); 1250 dev->name_assign_type = old_assign_type; 1251 up_write(&devnet_rename_sem); 1252 return ret; 1253 } 1254 1255 up_write(&devnet_rename_sem); 1256 1257 netdev_adjacent_rename_links(dev, oldname); 1258 1259 write_lock(&dev_base_lock); 1260 netdev_name_node_del(dev->name_node); 1261 write_unlock(&dev_base_lock); 1262 1263 synchronize_rcu(); 1264 1265 write_lock(&dev_base_lock); 1266 netdev_name_node_add(net, dev->name_node); 1267 write_unlock(&dev_base_lock); 1268 1269 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1270 ret = notifier_to_errno(ret); 1271 1272 if (ret) { 1273 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1274 if (err >= 0) { 1275 err = ret; 1276 down_write(&devnet_rename_sem); 1277 memcpy(dev->name, oldname, IFNAMSIZ); 1278 memcpy(oldname, newname, IFNAMSIZ); 1279 dev->name_assign_type = old_assign_type; 1280 old_assign_type = NET_NAME_RENAMED; 1281 goto rollback; 1282 } else { 1283 netdev_err(dev, "name change rollback failed: %d\n", 1284 ret); 1285 } 1286 } 1287 1288 return err; 1289 } 1290 1291 /** 1292 * dev_set_alias - change ifalias of a device 1293 * @dev: device 1294 * @alias: name up to IFALIASZ 1295 * @len: limit of bytes to copy from info 1296 * 1297 * Set ifalias for a device, 1298 */ 1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1300 { 1301 struct dev_ifalias *new_alias = NULL; 1302 1303 if (len >= IFALIASZ) 1304 return -EINVAL; 1305 1306 if (len) { 1307 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1308 if (!new_alias) 1309 return -ENOMEM; 1310 1311 memcpy(new_alias->ifalias, alias, len); 1312 new_alias->ifalias[len] = 0; 1313 } 1314 1315 mutex_lock(&ifalias_mutex); 1316 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1317 mutex_is_locked(&ifalias_mutex)); 1318 mutex_unlock(&ifalias_mutex); 1319 1320 if (new_alias) 1321 kfree_rcu(new_alias, rcuhead); 1322 1323 return len; 1324 } 1325 EXPORT_SYMBOL(dev_set_alias); 1326 1327 /** 1328 * dev_get_alias - get ifalias of a device 1329 * @dev: device 1330 * @name: buffer to store name of ifalias 1331 * @len: size of buffer 1332 * 1333 * get ifalias for a device. Caller must make sure dev cannot go 1334 * away, e.g. rcu read lock or own a reference count to device. 1335 */ 1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1337 { 1338 const struct dev_ifalias *alias; 1339 int ret = 0; 1340 1341 rcu_read_lock(); 1342 alias = rcu_dereference(dev->ifalias); 1343 if (alias) 1344 ret = snprintf(name, len, "%s", alias->ifalias); 1345 rcu_read_unlock(); 1346 1347 return ret; 1348 } 1349 1350 /** 1351 * netdev_features_change - device changes features 1352 * @dev: device to cause notification 1353 * 1354 * Called to indicate a device has changed features. 1355 */ 1356 void netdev_features_change(struct net_device *dev) 1357 { 1358 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1359 } 1360 EXPORT_SYMBOL(netdev_features_change); 1361 1362 /** 1363 * netdev_state_change - device changes state 1364 * @dev: device to cause notification 1365 * 1366 * Called to indicate a device has changed state. This function calls 1367 * the notifier chains for netdev_chain and sends a NEWLINK message 1368 * to the routing socket. 1369 */ 1370 void netdev_state_change(struct net_device *dev) 1371 { 1372 if (dev->flags & IFF_UP) { 1373 struct netdev_notifier_change_info change_info = { 1374 .info.dev = dev, 1375 }; 1376 1377 call_netdevice_notifiers_info(NETDEV_CHANGE, 1378 &change_info.info); 1379 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1380 } 1381 } 1382 EXPORT_SYMBOL(netdev_state_change); 1383 1384 /** 1385 * __netdev_notify_peers - notify network peers about existence of @dev, 1386 * to be called when rtnl lock is already held. 1387 * @dev: network device 1388 * 1389 * Generate traffic such that interested network peers are aware of 1390 * @dev, such as by generating a gratuitous ARP. This may be used when 1391 * a device wants to inform the rest of the network about some sort of 1392 * reconfiguration such as a failover event or virtual machine 1393 * migration. 1394 */ 1395 void __netdev_notify_peers(struct net_device *dev) 1396 { 1397 ASSERT_RTNL(); 1398 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1399 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1400 } 1401 EXPORT_SYMBOL(__netdev_notify_peers); 1402 1403 /** 1404 * netdev_notify_peers - notify network peers about existence of @dev 1405 * @dev: network device 1406 * 1407 * Generate traffic such that interested network peers are aware of 1408 * @dev, such as by generating a gratuitous ARP. This may be used when 1409 * a device wants to inform the rest of the network about some sort of 1410 * reconfiguration such as a failover event or virtual machine 1411 * migration. 1412 */ 1413 void netdev_notify_peers(struct net_device *dev) 1414 { 1415 rtnl_lock(); 1416 __netdev_notify_peers(dev); 1417 rtnl_unlock(); 1418 } 1419 EXPORT_SYMBOL(netdev_notify_peers); 1420 1421 static int napi_threaded_poll(void *data); 1422 1423 static int napi_kthread_create(struct napi_struct *n) 1424 { 1425 int err = 0; 1426 1427 /* Create and wake up the kthread once to put it in 1428 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1429 * warning and work with loadavg. 1430 */ 1431 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1432 n->dev->name, n->napi_id); 1433 if (IS_ERR(n->thread)) { 1434 err = PTR_ERR(n->thread); 1435 pr_err("kthread_run failed with err %d\n", err); 1436 n->thread = NULL; 1437 } 1438 1439 return err; 1440 } 1441 1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1443 { 1444 const struct net_device_ops *ops = dev->netdev_ops; 1445 int ret; 1446 1447 ASSERT_RTNL(); 1448 dev_addr_check(dev); 1449 1450 if (!netif_device_present(dev)) { 1451 /* may be detached because parent is runtime-suspended */ 1452 if (dev->dev.parent) 1453 pm_runtime_resume(dev->dev.parent); 1454 if (!netif_device_present(dev)) 1455 return -ENODEV; 1456 } 1457 1458 /* Block netpoll from trying to do any rx path servicing. 1459 * If we don't do this there is a chance ndo_poll_controller 1460 * or ndo_poll may be running while we open the device 1461 */ 1462 netpoll_poll_disable(dev); 1463 1464 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1465 ret = notifier_to_errno(ret); 1466 if (ret) 1467 return ret; 1468 1469 set_bit(__LINK_STATE_START, &dev->state); 1470 1471 if (ops->ndo_validate_addr) 1472 ret = ops->ndo_validate_addr(dev); 1473 1474 if (!ret && ops->ndo_open) 1475 ret = ops->ndo_open(dev); 1476 1477 netpoll_poll_enable(dev); 1478 1479 if (ret) 1480 clear_bit(__LINK_STATE_START, &dev->state); 1481 else { 1482 dev->flags |= IFF_UP; 1483 dev_set_rx_mode(dev); 1484 dev_activate(dev); 1485 add_device_randomness(dev->dev_addr, dev->addr_len); 1486 } 1487 1488 return ret; 1489 } 1490 1491 /** 1492 * dev_open - prepare an interface for use. 1493 * @dev: device to open 1494 * @extack: netlink extended ack 1495 * 1496 * Takes a device from down to up state. The device's private open 1497 * function is invoked and then the multicast lists are loaded. Finally 1498 * the device is moved into the up state and a %NETDEV_UP message is 1499 * sent to the netdev notifier chain. 1500 * 1501 * Calling this function on an active interface is a nop. On a failure 1502 * a negative errno code is returned. 1503 */ 1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1505 { 1506 int ret; 1507 1508 if (dev->flags & IFF_UP) 1509 return 0; 1510 1511 ret = __dev_open(dev, extack); 1512 if (ret < 0) 1513 return ret; 1514 1515 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1516 call_netdevice_notifiers(NETDEV_UP, dev); 1517 1518 return ret; 1519 } 1520 EXPORT_SYMBOL(dev_open); 1521 1522 static void __dev_close_many(struct list_head *head) 1523 { 1524 struct net_device *dev; 1525 1526 ASSERT_RTNL(); 1527 might_sleep(); 1528 1529 list_for_each_entry(dev, head, close_list) { 1530 /* Temporarily disable netpoll until the interface is down */ 1531 netpoll_poll_disable(dev); 1532 1533 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1534 1535 clear_bit(__LINK_STATE_START, &dev->state); 1536 1537 /* Synchronize to scheduled poll. We cannot touch poll list, it 1538 * can be even on different cpu. So just clear netif_running(). 1539 * 1540 * dev->stop() will invoke napi_disable() on all of it's 1541 * napi_struct instances on this device. 1542 */ 1543 smp_mb__after_atomic(); /* Commit netif_running(). */ 1544 } 1545 1546 dev_deactivate_many(head); 1547 1548 list_for_each_entry(dev, head, close_list) { 1549 const struct net_device_ops *ops = dev->netdev_ops; 1550 1551 /* 1552 * Call the device specific close. This cannot fail. 1553 * Only if device is UP 1554 * 1555 * We allow it to be called even after a DETACH hot-plug 1556 * event. 1557 */ 1558 if (ops->ndo_stop) 1559 ops->ndo_stop(dev); 1560 1561 dev->flags &= ~IFF_UP; 1562 netpoll_poll_enable(dev); 1563 } 1564 } 1565 1566 static void __dev_close(struct net_device *dev) 1567 { 1568 LIST_HEAD(single); 1569 1570 list_add(&dev->close_list, &single); 1571 __dev_close_many(&single); 1572 list_del(&single); 1573 } 1574 1575 void dev_close_many(struct list_head *head, bool unlink) 1576 { 1577 struct net_device *dev, *tmp; 1578 1579 /* Remove the devices that don't need to be closed */ 1580 list_for_each_entry_safe(dev, tmp, head, close_list) 1581 if (!(dev->flags & IFF_UP)) 1582 list_del_init(&dev->close_list); 1583 1584 __dev_close_many(head); 1585 1586 list_for_each_entry_safe(dev, tmp, head, close_list) { 1587 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1588 call_netdevice_notifiers(NETDEV_DOWN, dev); 1589 if (unlink) 1590 list_del_init(&dev->close_list); 1591 } 1592 } 1593 EXPORT_SYMBOL(dev_close_many); 1594 1595 /** 1596 * dev_close - shutdown an interface. 1597 * @dev: device to shutdown 1598 * 1599 * This function moves an active device into down state. A 1600 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1601 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1602 * chain. 1603 */ 1604 void dev_close(struct net_device *dev) 1605 { 1606 if (dev->flags & IFF_UP) { 1607 LIST_HEAD(single); 1608 1609 list_add(&dev->close_list, &single); 1610 dev_close_many(&single, true); 1611 list_del(&single); 1612 } 1613 } 1614 EXPORT_SYMBOL(dev_close); 1615 1616 1617 /** 1618 * dev_disable_lro - disable Large Receive Offload on a device 1619 * @dev: device 1620 * 1621 * Disable Large Receive Offload (LRO) on a net device. Must be 1622 * called under RTNL. This is needed if received packets may be 1623 * forwarded to another interface. 1624 */ 1625 void dev_disable_lro(struct net_device *dev) 1626 { 1627 struct net_device *lower_dev; 1628 struct list_head *iter; 1629 1630 dev->wanted_features &= ~NETIF_F_LRO; 1631 netdev_update_features(dev); 1632 1633 if (unlikely(dev->features & NETIF_F_LRO)) 1634 netdev_WARN(dev, "failed to disable LRO!\n"); 1635 1636 netdev_for_each_lower_dev(dev, lower_dev, iter) 1637 dev_disable_lro(lower_dev); 1638 } 1639 EXPORT_SYMBOL(dev_disable_lro); 1640 1641 /** 1642 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1643 * @dev: device 1644 * 1645 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1646 * called under RTNL. This is needed if Generic XDP is installed on 1647 * the device. 1648 */ 1649 static void dev_disable_gro_hw(struct net_device *dev) 1650 { 1651 dev->wanted_features &= ~NETIF_F_GRO_HW; 1652 netdev_update_features(dev); 1653 1654 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1655 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1656 } 1657 1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1659 { 1660 #define N(val) \ 1661 case NETDEV_##val: \ 1662 return "NETDEV_" __stringify(val); 1663 switch (cmd) { 1664 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1665 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1666 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1667 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1668 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1669 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1670 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1671 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1672 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1673 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1674 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1675 N(XDP_FEAT_CHANGE) 1676 } 1677 #undef N 1678 return "UNKNOWN_NETDEV_EVENT"; 1679 } 1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1681 1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1683 struct net_device *dev) 1684 { 1685 struct netdev_notifier_info info = { 1686 .dev = dev, 1687 }; 1688 1689 return nb->notifier_call(nb, val, &info); 1690 } 1691 1692 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1693 struct net_device *dev) 1694 { 1695 int err; 1696 1697 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1698 err = notifier_to_errno(err); 1699 if (err) 1700 return err; 1701 1702 if (!(dev->flags & IFF_UP)) 1703 return 0; 1704 1705 call_netdevice_notifier(nb, NETDEV_UP, dev); 1706 return 0; 1707 } 1708 1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1710 struct net_device *dev) 1711 { 1712 if (dev->flags & IFF_UP) { 1713 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1714 dev); 1715 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1716 } 1717 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1718 } 1719 1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1721 struct net *net) 1722 { 1723 struct net_device *dev; 1724 int err; 1725 1726 for_each_netdev(net, dev) { 1727 err = call_netdevice_register_notifiers(nb, dev); 1728 if (err) 1729 goto rollback; 1730 } 1731 return 0; 1732 1733 rollback: 1734 for_each_netdev_continue_reverse(net, dev) 1735 call_netdevice_unregister_notifiers(nb, dev); 1736 return err; 1737 } 1738 1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1740 struct net *net) 1741 { 1742 struct net_device *dev; 1743 1744 for_each_netdev(net, dev) 1745 call_netdevice_unregister_notifiers(nb, dev); 1746 } 1747 1748 static int dev_boot_phase = 1; 1749 1750 /** 1751 * register_netdevice_notifier - register a network notifier block 1752 * @nb: notifier 1753 * 1754 * Register a notifier to be called when network device events occur. 1755 * The notifier passed is linked into the kernel structures and must 1756 * not be reused until it has been unregistered. A negative errno code 1757 * is returned on a failure. 1758 * 1759 * When registered all registration and up events are replayed 1760 * to the new notifier to allow device to have a race free 1761 * view of the network device list. 1762 */ 1763 1764 int register_netdevice_notifier(struct notifier_block *nb) 1765 { 1766 struct net *net; 1767 int err; 1768 1769 /* Close race with setup_net() and cleanup_net() */ 1770 down_write(&pernet_ops_rwsem); 1771 rtnl_lock(); 1772 err = raw_notifier_chain_register(&netdev_chain, nb); 1773 if (err) 1774 goto unlock; 1775 if (dev_boot_phase) 1776 goto unlock; 1777 for_each_net(net) { 1778 err = call_netdevice_register_net_notifiers(nb, net); 1779 if (err) 1780 goto rollback; 1781 } 1782 1783 unlock: 1784 rtnl_unlock(); 1785 up_write(&pernet_ops_rwsem); 1786 return err; 1787 1788 rollback: 1789 for_each_net_continue_reverse(net) 1790 call_netdevice_unregister_net_notifiers(nb, net); 1791 1792 raw_notifier_chain_unregister(&netdev_chain, nb); 1793 goto unlock; 1794 } 1795 EXPORT_SYMBOL(register_netdevice_notifier); 1796 1797 /** 1798 * unregister_netdevice_notifier - unregister a network notifier block 1799 * @nb: notifier 1800 * 1801 * Unregister a notifier previously registered by 1802 * register_netdevice_notifier(). The notifier is unlinked into the 1803 * kernel structures and may then be reused. A negative errno code 1804 * is returned on a failure. 1805 * 1806 * After unregistering unregister and down device events are synthesized 1807 * for all devices on the device list to the removed notifier to remove 1808 * the need for special case cleanup code. 1809 */ 1810 1811 int unregister_netdevice_notifier(struct notifier_block *nb) 1812 { 1813 struct net *net; 1814 int err; 1815 1816 /* Close race with setup_net() and cleanup_net() */ 1817 down_write(&pernet_ops_rwsem); 1818 rtnl_lock(); 1819 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1820 if (err) 1821 goto unlock; 1822 1823 for_each_net(net) 1824 call_netdevice_unregister_net_notifiers(nb, net); 1825 1826 unlock: 1827 rtnl_unlock(); 1828 up_write(&pernet_ops_rwsem); 1829 return err; 1830 } 1831 EXPORT_SYMBOL(unregister_netdevice_notifier); 1832 1833 static int __register_netdevice_notifier_net(struct net *net, 1834 struct notifier_block *nb, 1835 bool ignore_call_fail) 1836 { 1837 int err; 1838 1839 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1840 if (err) 1841 return err; 1842 if (dev_boot_phase) 1843 return 0; 1844 1845 err = call_netdevice_register_net_notifiers(nb, net); 1846 if (err && !ignore_call_fail) 1847 goto chain_unregister; 1848 1849 return 0; 1850 1851 chain_unregister: 1852 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1853 return err; 1854 } 1855 1856 static int __unregister_netdevice_notifier_net(struct net *net, 1857 struct notifier_block *nb) 1858 { 1859 int err; 1860 1861 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1862 if (err) 1863 return err; 1864 1865 call_netdevice_unregister_net_notifiers(nb, net); 1866 return 0; 1867 } 1868 1869 /** 1870 * register_netdevice_notifier_net - register a per-netns network notifier block 1871 * @net: network namespace 1872 * @nb: notifier 1873 * 1874 * Register a notifier to be called when network device events occur. 1875 * The notifier passed is linked into the kernel structures and must 1876 * not be reused until it has been unregistered. A negative errno code 1877 * is returned on a failure. 1878 * 1879 * When registered all registration and up events are replayed 1880 * to the new notifier to allow device to have a race free 1881 * view of the network device list. 1882 */ 1883 1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1885 { 1886 int err; 1887 1888 rtnl_lock(); 1889 err = __register_netdevice_notifier_net(net, nb, false); 1890 rtnl_unlock(); 1891 return err; 1892 } 1893 EXPORT_SYMBOL(register_netdevice_notifier_net); 1894 1895 /** 1896 * unregister_netdevice_notifier_net - unregister a per-netns 1897 * network notifier block 1898 * @net: network namespace 1899 * @nb: notifier 1900 * 1901 * Unregister a notifier previously registered by 1902 * register_netdevice_notifier_net(). The notifier is unlinked from the 1903 * kernel structures and may then be reused. A negative errno code 1904 * is returned on a failure. 1905 * 1906 * After unregistering unregister and down device events are synthesized 1907 * for all devices on the device list to the removed notifier to remove 1908 * the need for special case cleanup code. 1909 */ 1910 1911 int unregister_netdevice_notifier_net(struct net *net, 1912 struct notifier_block *nb) 1913 { 1914 int err; 1915 1916 rtnl_lock(); 1917 err = __unregister_netdevice_notifier_net(net, nb); 1918 rtnl_unlock(); 1919 return err; 1920 } 1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1922 1923 static void __move_netdevice_notifier_net(struct net *src_net, 1924 struct net *dst_net, 1925 struct notifier_block *nb) 1926 { 1927 __unregister_netdevice_notifier_net(src_net, nb); 1928 __register_netdevice_notifier_net(dst_net, nb, true); 1929 } 1930 1931 int register_netdevice_notifier_dev_net(struct net_device *dev, 1932 struct notifier_block *nb, 1933 struct netdev_net_notifier *nn) 1934 { 1935 int err; 1936 1937 rtnl_lock(); 1938 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1939 if (!err) { 1940 nn->nb = nb; 1941 list_add(&nn->list, &dev->net_notifier_list); 1942 } 1943 rtnl_unlock(); 1944 return err; 1945 } 1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1947 1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1949 struct notifier_block *nb, 1950 struct netdev_net_notifier *nn) 1951 { 1952 int err; 1953 1954 rtnl_lock(); 1955 list_del(&nn->list); 1956 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1957 rtnl_unlock(); 1958 return err; 1959 } 1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1961 1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1963 struct net *net) 1964 { 1965 struct netdev_net_notifier *nn; 1966 1967 list_for_each_entry(nn, &dev->net_notifier_list, list) 1968 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 1969 } 1970 1971 /** 1972 * call_netdevice_notifiers_info - call all network notifier blocks 1973 * @val: value passed unmodified to notifier function 1974 * @info: notifier information data 1975 * 1976 * Call all network notifier blocks. Parameters and return value 1977 * are as for raw_notifier_call_chain(). 1978 */ 1979 1980 int call_netdevice_notifiers_info(unsigned long val, 1981 struct netdev_notifier_info *info) 1982 { 1983 struct net *net = dev_net(info->dev); 1984 int ret; 1985 1986 ASSERT_RTNL(); 1987 1988 /* Run per-netns notifier block chain first, then run the global one. 1989 * Hopefully, one day, the global one is going to be removed after 1990 * all notifier block registrators get converted to be per-netns. 1991 */ 1992 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1993 if (ret & NOTIFY_STOP_MASK) 1994 return ret; 1995 return raw_notifier_call_chain(&netdev_chain, val, info); 1996 } 1997 1998 /** 1999 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2000 * for and rollback on error 2001 * @val_up: value passed unmodified to notifier function 2002 * @val_down: value passed unmodified to the notifier function when 2003 * recovering from an error on @val_up 2004 * @info: notifier information data 2005 * 2006 * Call all per-netns network notifier blocks, but not notifier blocks on 2007 * the global notifier chain. Parameters and return value are as for 2008 * raw_notifier_call_chain_robust(). 2009 */ 2010 2011 static int 2012 call_netdevice_notifiers_info_robust(unsigned long val_up, 2013 unsigned long val_down, 2014 struct netdev_notifier_info *info) 2015 { 2016 struct net *net = dev_net(info->dev); 2017 2018 ASSERT_RTNL(); 2019 2020 return raw_notifier_call_chain_robust(&net->netdev_chain, 2021 val_up, val_down, info); 2022 } 2023 2024 static int call_netdevice_notifiers_extack(unsigned long val, 2025 struct net_device *dev, 2026 struct netlink_ext_ack *extack) 2027 { 2028 struct netdev_notifier_info info = { 2029 .dev = dev, 2030 .extack = extack, 2031 }; 2032 2033 return call_netdevice_notifiers_info(val, &info); 2034 } 2035 2036 /** 2037 * call_netdevice_notifiers - call all network notifier blocks 2038 * @val: value passed unmodified to notifier function 2039 * @dev: net_device pointer passed unmodified to notifier function 2040 * 2041 * Call all network notifier blocks. Parameters and return value 2042 * are as for raw_notifier_call_chain(). 2043 */ 2044 2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2046 { 2047 return call_netdevice_notifiers_extack(val, dev, NULL); 2048 } 2049 EXPORT_SYMBOL(call_netdevice_notifiers); 2050 2051 /** 2052 * call_netdevice_notifiers_mtu - call all network notifier blocks 2053 * @val: value passed unmodified to notifier function 2054 * @dev: net_device pointer passed unmodified to notifier function 2055 * @arg: additional u32 argument passed to the notifier function 2056 * 2057 * Call all network notifier blocks. Parameters and return value 2058 * are as for raw_notifier_call_chain(). 2059 */ 2060 static int call_netdevice_notifiers_mtu(unsigned long val, 2061 struct net_device *dev, u32 arg) 2062 { 2063 struct netdev_notifier_info_ext info = { 2064 .info.dev = dev, 2065 .ext.mtu = arg, 2066 }; 2067 2068 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2069 2070 return call_netdevice_notifiers_info(val, &info.info); 2071 } 2072 2073 #ifdef CONFIG_NET_INGRESS 2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2075 2076 void net_inc_ingress_queue(void) 2077 { 2078 static_branch_inc(&ingress_needed_key); 2079 } 2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2081 2082 void net_dec_ingress_queue(void) 2083 { 2084 static_branch_dec(&ingress_needed_key); 2085 } 2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2087 #endif 2088 2089 #ifdef CONFIG_NET_EGRESS 2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2091 2092 void net_inc_egress_queue(void) 2093 { 2094 static_branch_inc(&egress_needed_key); 2095 } 2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2097 2098 void net_dec_egress_queue(void) 2099 { 2100 static_branch_dec(&egress_needed_key); 2101 } 2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2103 #endif 2104 2105 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2106 EXPORT_SYMBOL(netstamp_needed_key); 2107 #ifdef CONFIG_JUMP_LABEL 2108 static atomic_t netstamp_needed_deferred; 2109 static atomic_t netstamp_wanted; 2110 static void netstamp_clear(struct work_struct *work) 2111 { 2112 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2113 int wanted; 2114 2115 wanted = atomic_add_return(deferred, &netstamp_wanted); 2116 if (wanted > 0) 2117 static_branch_enable(&netstamp_needed_key); 2118 else 2119 static_branch_disable(&netstamp_needed_key); 2120 } 2121 static DECLARE_WORK(netstamp_work, netstamp_clear); 2122 #endif 2123 2124 void net_enable_timestamp(void) 2125 { 2126 #ifdef CONFIG_JUMP_LABEL 2127 int wanted = atomic_read(&netstamp_wanted); 2128 2129 while (wanted > 0) { 2130 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2131 return; 2132 } 2133 atomic_inc(&netstamp_needed_deferred); 2134 schedule_work(&netstamp_work); 2135 #else 2136 static_branch_inc(&netstamp_needed_key); 2137 #endif 2138 } 2139 EXPORT_SYMBOL(net_enable_timestamp); 2140 2141 void net_disable_timestamp(void) 2142 { 2143 #ifdef CONFIG_JUMP_LABEL 2144 int wanted = atomic_read(&netstamp_wanted); 2145 2146 while (wanted > 1) { 2147 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2148 return; 2149 } 2150 atomic_dec(&netstamp_needed_deferred); 2151 schedule_work(&netstamp_work); 2152 #else 2153 static_branch_dec(&netstamp_needed_key); 2154 #endif 2155 } 2156 EXPORT_SYMBOL(net_disable_timestamp); 2157 2158 static inline void net_timestamp_set(struct sk_buff *skb) 2159 { 2160 skb->tstamp = 0; 2161 skb->mono_delivery_time = 0; 2162 if (static_branch_unlikely(&netstamp_needed_key)) 2163 skb->tstamp = ktime_get_real(); 2164 } 2165 2166 #define net_timestamp_check(COND, SKB) \ 2167 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2168 if ((COND) && !(SKB)->tstamp) \ 2169 (SKB)->tstamp = ktime_get_real(); \ 2170 } \ 2171 2172 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2173 { 2174 return __is_skb_forwardable(dev, skb, true); 2175 } 2176 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2177 2178 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2179 bool check_mtu) 2180 { 2181 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2182 2183 if (likely(!ret)) { 2184 skb->protocol = eth_type_trans(skb, dev); 2185 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2186 } 2187 2188 return ret; 2189 } 2190 2191 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2192 { 2193 return __dev_forward_skb2(dev, skb, true); 2194 } 2195 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2196 2197 /** 2198 * dev_forward_skb - loopback an skb to another netif 2199 * 2200 * @dev: destination network device 2201 * @skb: buffer to forward 2202 * 2203 * return values: 2204 * NET_RX_SUCCESS (no congestion) 2205 * NET_RX_DROP (packet was dropped, but freed) 2206 * 2207 * dev_forward_skb can be used for injecting an skb from the 2208 * start_xmit function of one device into the receive queue 2209 * of another device. 2210 * 2211 * The receiving device may be in another namespace, so 2212 * we have to clear all information in the skb that could 2213 * impact namespace isolation. 2214 */ 2215 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2216 { 2217 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2218 } 2219 EXPORT_SYMBOL_GPL(dev_forward_skb); 2220 2221 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2222 { 2223 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2224 } 2225 2226 static inline int deliver_skb(struct sk_buff *skb, 2227 struct packet_type *pt_prev, 2228 struct net_device *orig_dev) 2229 { 2230 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2231 return -ENOMEM; 2232 refcount_inc(&skb->users); 2233 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2234 } 2235 2236 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2237 struct packet_type **pt, 2238 struct net_device *orig_dev, 2239 __be16 type, 2240 struct list_head *ptype_list) 2241 { 2242 struct packet_type *ptype, *pt_prev = *pt; 2243 2244 list_for_each_entry_rcu(ptype, ptype_list, list) { 2245 if (ptype->type != type) 2246 continue; 2247 if (pt_prev) 2248 deliver_skb(skb, pt_prev, orig_dev); 2249 pt_prev = ptype; 2250 } 2251 *pt = pt_prev; 2252 } 2253 2254 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2255 { 2256 if (!ptype->af_packet_priv || !skb->sk) 2257 return false; 2258 2259 if (ptype->id_match) 2260 return ptype->id_match(ptype, skb->sk); 2261 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2262 return true; 2263 2264 return false; 2265 } 2266 2267 /** 2268 * dev_nit_active - return true if any network interface taps are in use 2269 * 2270 * @dev: network device to check for the presence of taps 2271 */ 2272 bool dev_nit_active(struct net_device *dev) 2273 { 2274 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2275 } 2276 EXPORT_SYMBOL_GPL(dev_nit_active); 2277 2278 /* 2279 * Support routine. Sends outgoing frames to any network 2280 * taps currently in use. 2281 */ 2282 2283 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2284 { 2285 struct packet_type *ptype; 2286 struct sk_buff *skb2 = NULL; 2287 struct packet_type *pt_prev = NULL; 2288 struct list_head *ptype_list = &ptype_all; 2289 2290 rcu_read_lock(); 2291 again: 2292 list_for_each_entry_rcu(ptype, ptype_list, list) { 2293 if (ptype->ignore_outgoing) 2294 continue; 2295 2296 /* Never send packets back to the socket 2297 * they originated from - MvS (miquels@drinkel.ow.org) 2298 */ 2299 if (skb_loop_sk(ptype, skb)) 2300 continue; 2301 2302 if (pt_prev) { 2303 deliver_skb(skb2, pt_prev, skb->dev); 2304 pt_prev = ptype; 2305 continue; 2306 } 2307 2308 /* need to clone skb, done only once */ 2309 skb2 = skb_clone(skb, GFP_ATOMIC); 2310 if (!skb2) 2311 goto out_unlock; 2312 2313 net_timestamp_set(skb2); 2314 2315 /* skb->nh should be correctly 2316 * set by sender, so that the second statement is 2317 * just protection against buggy protocols. 2318 */ 2319 skb_reset_mac_header(skb2); 2320 2321 if (skb_network_header(skb2) < skb2->data || 2322 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2323 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2324 ntohs(skb2->protocol), 2325 dev->name); 2326 skb_reset_network_header(skb2); 2327 } 2328 2329 skb2->transport_header = skb2->network_header; 2330 skb2->pkt_type = PACKET_OUTGOING; 2331 pt_prev = ptype; 2332 } 2333 2334 if (ptype_list == &ptype_all) { 2335 ptype_list = &dev->ptype_all; 2336 goto again; 2337 } 2338 out_unlock: 2339 if (pt_prev) { 2340 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2341 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2342 else 2343 kfree_skb(skb2); 2344 } 2345 rcu_read_unlock(); 2346 } 2347 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2348 2349 /** 2350 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2351 * @dev: Network device 2352 * @txq: number of queues available 2353 * 2354 * If real_num_tx_queues is changed the tc mappings may no longer be 2355 * valid. To resolve this verify the tc mapping remains valid and if 2356 * not NULL the mapping. With no priorities mapping to this 2357 * offset/count pair it will no longer be used. In the worst case TC0 2358 * is invalid nothing can be done so disable priority mappings. If is 2359 * expected that drivers will fix this mapping if they can before 2360 * calling netif_set_real_num_tx_queues. 2361 */ 2362 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2363 { 2364 int i; 2365 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2366 2367 /* If TC0 is invalidated disable TC mapping */ 2368 if (tc->offset + tc->count > txq) { 2369 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2370 dev->num_tc = 0; 2371 return; 2372 } 2373 2374 /* Invalidated prio to tc mappings set to TC0 */ 2375 for (i = 1; i < TC_BITMASK + 1; i++) { 2376 int q = netdev_get_prio_tc_map(dev, i); 2377 2378 tc = &dev->tc_to_txq[q]; 2379 if (tc->offset + tc->count > txq) { 2380 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2381 i, q); 2382 netdev_set_prio_tc_map(dev, i, 0); 2383 } 2384 } 2385 } 2386 2387 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2388 { 2389 if (dev->num_tc) { 2390 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2391 int i; 2392 2393 /* walk through the TCs and see if it falls into any of them */ 2394 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2395 if ((txq - tc->offset) < tc->count) 2396 return i; 2397 } 2398 2399 /* didn't find it, just return -1 to indicate no match */ 2400 return -1; 2401 } 2402 2403 return 0; 2404 } 2405 EXPORT_SYMBOL(netdev_txq_to_tc); 2406 2407 #ifdef CONFIG_XPS 2408 static struct static_key xps_needed __read_mostly; 2409 static struct static_key xps_rxqs_needed __read_mostly; 2410 static DEFINE_MUTEX(xps_map_mutex); 2411 #define xmap_dereference(P) \ 2412 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2413 2414 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2415 struct xps_dev_maps *old_maps, int tci, u16 index) 2416 { 2417 struct xps_map *map = NULL; 2418 int pos; 2419 2420 map = xmap_dereference(dev_maps->attr_map[tci]); 2421 if (!map) 2422 return false; 2423 2424 for (pos = map->len; pos--;) { 2425 if (map->queues[pos] != index) 2426 continue; 2427 2428 if (map->len > 1) { 2429 map->queues[pos] = map->queues[--map->len]; 2430 break; 2431 } 2432 2433 if (old_maps) 2434 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2435 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2436 kfree_rcu(map, rcu); 2437 return false; 2438 } 2439 2440 return true; 2441 } 2442 2443 static bool remove_xps_queue_cpu(struct net_device *dev, 2444 struct xps_dev_maps *dev_maps, 2445 int cpu, u16 offset, u16 count) 2446 { 2447 int num_tc = dev_maps->num_tc; 2448 bool active = false; 2449 int tci; 2450 2451 for (tci = cpu * num_tc; num_tc--; tci++) { 2452 int i, j; 2453 2454 for (i = count, j = offset; i--; j++) { 2455 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2456 break; 2457 } 2458 2459 active |= i < 0; 2460 } 2461 2462 return active; 2463 } 2464 2465 static void reset_xps_maps(struct net_device *dev, 2466 struct xps_dev_maps *dev_maps, 2467 enum xps_map_type type) 2468 { 2469 static_key_slow_dec_cpuslocked(&xps_needed); 2470 if (type == XPS_RXQS) 2471 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2472 2473 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2474 2475 kfree_rcu(dev_maps, rcu); 2476 } 2477 2478 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2479 u16 offset, u16 count) 2480 { 2481 struct xps_dev_maps *dev_maps; 2482 bool active = false; 2483 int i, j; 2484 2485 dev_maps = xmap_dereference(dev->xps_maps[type]); 2486 if (!dev_maps) 2487 return; 2488 2489 for (j = 0; j < dev_maps->nr_ids; j++) 2490 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2491 if (!active) 2492 reset_xps_maps(dev, dev_maps, type); 2493 2494 if (type == XPS_CPUS) { 2495 for (i = offset + (count - 1); count--; i--) 2496 netdev_queue_numa_node_write( 2497 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2498 } 2499 } 2500 2501 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2502 u16 count) 2503 { 2504 if (!static_key_false(&xps_needed)) 2505 return; 2506 2507 cpus_read_lock(); 2508 mutex_lock(&xps_map_mutex); 2509 2510 if (static_key_false(&xps_rxqs_needed)) 2511 clean_xps_maps(dev, XPS_RXQS, offset, count); 2512 2513 clean_xps_maps(dev, XPS_CPUS, offset, count); 2514 2515 mutex_unlock(&xps_map_mutex); 2516 cpus_read_unlock(); 2517 } 2518 2519 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2520 { 2521 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2522 } 2523 2524 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2525 u16 index, bool is_rxqs_map) 2526 { 2527 struct xps_map *new_map; 2528 int alloc_len = XPS_MIN_MAP_ALLOC; 2529 int i, pos; 2530 2531 for (pos = 0; map && pos < map->len; pos++) { 2532 if (map->queues[pos] != index) 2533 continue; 2534 return map; 2535 } 2536 2537 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2538 if (map) { 2539 if (pos < map->alloc_len) 2540 return map; 2541 2542 alloc_len = map->alloc_len * 2; 2543 } 2544 2545 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2546 * map 2547 */ 2548 if (is_rxqs_map) 2549 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2550 else 2551 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2552 cpu_to_node(attr_index)); 2553 if (!new_map) 2554 return NULL; 2555 2556 for (i = 0; i < pos; i++) 2557 new_map->queues[i] = map->queues[i]; 2558 new_map->alloc_len = alloc_len; 2559 new_map->len = pos; 2560 2561 return new_map; 2562 } 2563 2564 /* Copy xps maps at a given index */ 2565 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2566 struct xps_dev_maps *new_dev_maps, int index, 2567 int tc, bool skip_tc) 2568 { 2569 int i, tci = index * dev_maps->num_tc; 2570 struct xps_map *map; 2571 2572 /* copy maps belonging to foreign traffic classes */ 2573 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2574 if (i == tc && skip_tc) 2575 continue; 2576 2577 /* fill in the new device map from the old device map */ 2578 map = xmap_dereference(dev_maps->attr_map[tci]); 2579 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2580 } 2581 } 2582 2583 /* Must be called under cpus_read_lock */ 2584 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2585 u16 index, enum xps_map_type type) 2586 { 2587 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2588 const unsigned long *online_mask = NULL; 2589 bool active = false, copy = false; 2590 int i, j, tci, numa_node_id = -2; 2591 int maps_sz, num_tc = 1, tc = 0; 2592 struct xps_map *map, *new_map; 2593 unsigned int nr_ids; 2594 2595 WARN_ON_ONCE(index >= dev->num_tx_queues); 2596 2597 if (dev->num_tc) { 2598 /* Do not allow XPS on subordinate device directly */ 2599 num_tc = dev->num_tc; 2600 if (num_tc < 0) 2601 return -EINVAL; 2602 2603 /* If queue belongs to subordinate dev use its map */ 2604 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2605 2606 tc = netdev_txq_to_tc(dev, index); 2607 if (tc < 0) 2608 return -EINVAL; 2609 } 2610 2611 mutex_lock(&xps_map_mutex); 2612 2613 dev_maps = xmap_dereference(dev->xps_maps[type]); 2614 if (type == XPS_RXQS) { 2615 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2616 nr_ids = dev->num_rx_queues; 2617 } else { 2618 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2619 if (num_possible_cpus() > 1) 2620 online_mask = cpumask_bits(cpu_online_mask); 2621 nr_ids = nr_cpu_ids; 2622 } 2623 2624 if (maps_sz < L1_CACHE_BYTES) 2625 maps_sz = L1_CACHE_BYTES; 2626 2627 /* The old dev_maps could be larger or smaller than the one we're 2628 * setting up now, as dev->num_tc or nr_ids could have been updated in 2629 * between. We could try to be smart, but let's be safe instead and only 2630 * copy foreign traffic classes if the two map sizes match. 2631 */ 2632 if (dev_maps && 2633 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2634 copy = true; 2635 2636 /* allocate memory for queue storage */ 2637 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2638 j < nr_ids;) { 2639 if (!new_dev_maps) { 2640 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2641 if (!new_dev_maps) { 2642 mutex_unlock(&xps_map_mutex); 2643 return -ENOMEM; 2644 } 2645 2646 new_dev_maps->nr_ids = nr_ids; 2647 new_dev_maps->num_tc = num_tc; 2648 } 2649 2650 tci = j * num_tc + tc; 2651 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2652 2653 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2654 if (!map) 2655 goto error; 2656 2657 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2658 } 2659 2660 if (!new_dev_maps) 2661 goto out_no_new_maps; 2662 2663 if (!dev_maps) { 2664 /* Increment static keys at most once per type */ 2665 static_key_slow_inc_cpuslocked(&xps_needed); 2666 if (type == XPS_RXQS) 2667 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2668 } 2669 2670 for (j = 0; j < nr_ids; j++) { 2671 bool skip_tc = false; 2672 2673 tci = j * num_tc + tc; 2674 if (netif_attr_test_mask(j, mask, nr_ids) && 2675 netif_attr_test_online(j, online_mask, nr_ids)) { 2676 /* add tx-queue to CPU/rx-queue maps */ 2677 int pos = 0; 2678 2679 skip_tc = true; 2680 2681 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2682 while ((pos < map->len) && (map->queues[pos] != index)) 2683 pos++; 2684 2685 if (pos == map->len) 2686 map->queues[map->len++] = index; 2687 #ifdef CONFIG_NUMA 2688 if (type == XPS_CPUS) { 2689 if (numa_node_id == -2) 2690 numa_node_id = cpu_to_node(j); 2691 else if (numa_node_id != cpu_to_node(j)) 2692 numa_node_id = -1; 2693 } 2694 #endif 2695 } 2696 2697 if (copy) 2698 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2699 skip_tc); 2700 } 2701 2702 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2703 2704 /* Cleanup old maps */ 2705 if (!dev_maps) 2706 goto out_no_old_maps; 2707 2708 for (j = 0; j < dev_maps->nr_ids; j++) { 2709 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2710 map = xmap_dereference(dev_maps->attr_map[tci]); 2711 if (!map) 2712 continue; 2713 2714 if (copy) { 2715 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2716 if (map == new_map) 2717 continue; 2718 } 2719 2720 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2721 kfree_rcu(map, rcu); 2722 } 2723 } 2724 2725 old_dev_maps = dev_maps; 2726 2727 out_no_old_maps: 2728 dev_maps = new_dev_maps; 2729 active = true; 2730 2731 out_no_new_maps: 2732 if (type == XPS_CPUS) 2733 /* update Tx queue numa node */ 2734 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2735 (numa_node_id >= 0) ? 2736 numa_node_id : NUMA_NO_NODE); 2737 2738 if (!dev_maps) 2739 goto out_no_maps; 2740 2741 /* removes tx-queue from unused CPUs/rx-queues */ 2742 for (j = 0; j < dev_maps->nr_ids; j++) { 2743 tci = j * dev_maps->num_tc; 2744 2745 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2746 if (i == tc && 2747 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2748 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2749 continue; 2750 2751 active |= remove_xps_queue(dev_maps, 2752 copy ? old_dev_maps : NULL, 2753 tci, index); 2754 } 2755 } 2756 2757 if (old_dev_maps) 2758 kfree_rcu(old_dev_maps, rcu); 2759 2760 /* free map if not active */ 2761 if (!active) 2762 reset_xps_maps(dev, dev_maps, type); 2763 2764 out_no_maps: 2765 mutex_unlock(&xps_map_mutex); 2766 2767 return 0; 2768 error: 2769 /* remove any maps that we added */ 2770 for (j = 0; j < nr_ids; j++) { 2771 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2772 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2773 map = copy ? 2774 xmap_dereference(dev_maps->attr_map[tci]) : 2775 NULL; 2776 if (new_map && new_map != map) 2777 kfree(new_map); 2778 } 2779 } 2780 2781 mutex_unlock(&xps_map_mutex); 2782 2783 kfree(new_dev_maps); 2784 return -ENOMEM; 2785 } 2786 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2787 2788 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2789 u16 index) 2790 { 2791 int ret; 2792 2793 cpus_read_lock(); 2794 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2795 cpus_read_unlock(); 2796 2797 return ret; 2798 } 2799 EXPORT_SYMBOL(netif_set_xps_queue); 2800 2801 #endif 2802 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2803 { 2804 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2805 2806 /* Unbind any subordinate channels */ 2807 while (txq-- != &dev->_tx[0]) { 2808 if (txq->sb_dev) 2809 netdev_unbind_sb_channel(dev, txq->sb_dev); 2810 } 2811 } 2812 2813 void netdev_reset_tc(struct net_device *dev) 2814 { 2815 #ifdef CONFIG_XPS 2816 netif_reset_xps_queues_gt(dev, 0); 2817 #endif 2818 netdev_unbind_all_sb_channels(dev); 2819 2820 /* Reset TC configuration of device */ 2821 dev->num_tc = 0; 2822 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2823 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2824 } 2825 EXPORT_SYMBOL(netdev_reset_tc); 2826 2827 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2828 { 2829 if (tc >= dev->num_tc) 2830 return -EINVAL; 2831 2832 #ifdef CONFIG_XPS 2833 netif_reset_xps_queues(dev, offset, count); 2834 #endif 2835 dev->tc_to_txq[tc].count = count; 2836 dev->tc_to_txq[tc].offset = offset; 2837 return 0; 2838 } 2839 EXPORT_SYMBOL(netdev_set_tc_queue); 2840 2841 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2842 { 2843 if (num_tc > TC_MAX_QUEUE) 2844 return -EINVAL; 2845 2846 #ifdef CONFIG_XPS 2847 netif_reset_xps_queues_gt(dev, 0); 2848 #endif 2849 netdev_unbind_all_sb_channels(dev); 2850 2851 dev->num_tc = num_tc; 2852 return 0; 2853 } 2854 EXPORT_SYMBOL(netdev_set_num_tc); 2855 2856 void netdev_unbind_sb_channel(struct net_device *dev, 2857 struct net_device *sb_dev) 2858 { 2859 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2860 2861 #ifdef CONFIG_XPS 2862 netif_reset_xps_queues_gt(sb_dev, 0); 2863 #endif 2864 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2865 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2866 2867 while (txq-- != &dev->_tx[0]) { 2868 if (txq->sb_dev == sb_dev) 2869 txq->sb_dev = NULL; 2870 } 2871 } 2872 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2873 2874 int netdev_bind_sb_channel_queue(struct net_device *dev, 2875 struct net_device *sb_dev, 2876 u8 tc, u16 count, u16 offset) 2877 { 2878 /* Make certain the sb_dev and dev are already configured */ 2879 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2880 return -EINVAL; 2881 2882 /* We cannot hand out queues we don't have */ 2883 if ((offset + count) > dev->real_num_tx_queues) 2884 return -EINVAL; 2885 2886 /* Record the mapping */ 2887 sb_dev->tc_to_txq[tc].count = count; 2888 sb_dev->tc_to_txq[tc].offset = offset; 2889 2890 /* Provide a way for Tx queue to find the tc_to_txq map or 2891 * XPS map for itself. 2892 */ 2893 while (count--) 2894 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2895 2896 return 0; 2897 } 2898 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2899 2900 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2901 { 2902 /* Do not use a multiqueue device to represent a subordinate channel */ 2903 if (netif_is_multiqueue(dev)) 2904 return -ENODEV; 2905 2906 /* We allow channels 1 - 32767 to be used for subordinate channels. 2907 * Channel 0 is meant to be "native" mode and used only to represent 2908 * the main root device. We allow writing 0 to reset the device back 2909 * to normal mode after being used as a subordinate channel. 2910 */ 2911 if (channel > S16_MAX) 2912 return -EINVAL; 2913 2914 dev->num_tc = -channel; 2915 2916 return 0; 2917 } 2918 EXPORT_SYMBOL(netdev_set_sb_channel); 2919 2920 /* 2921 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2922 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2923 */ 2924 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2925 { 2926 bool disabling; 2927 int rc; 2928 2929 disabling = txq < dev->real_num_tx_queues; 2930 2931 if (txq < 1 || txq > dev->num_tx_queues) 2932 return -EINVAL; 2933 2934 if (dev->reg_state == NETREG_REGISTERED || 2935 dev->reg_state == NETREG_UNREGISTERING) { 2936 ASSERT_RTNL(); 2937 2938 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2939 txq); 2940 if (rc) 2941 return rc; 2942 2943 if (dev->num_tc) 2944 netif_setup_tc(dev, txq); 2945 2946 dev_qdisc_change_real_num_tx(dev, txq); 2947 2948 dev->real_num_tx_queues = txq; 2949 2950 if (disabling) { 2951 synchronize_net(); 2952 qdisc_reset_all_tx_gt(dev, txq); 2953 #ifdef CONFIG_XPS 2954 netif_reset_xps_queues_gt(dev, txq); 2955 #endif 2956 } 2957 } else { 2958 dev->real_num_tx_queues = txq; 2959 } 2960 2961 return 0; 2962 } 2963 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2964 2965 #ifdef CONFIG_SYSFS 2966 /** 2967 * netif_set_real_num_rx_queues - set actual number of RX queues used 2968 * @dev: Network device 2969 * @rxq: Actual number of RX queues 2970 * 2971 * This must be called either with the rtnl_lock held or before 2972 * registration of the net device. Returns 0 on success, or a 2973 * negative error code. If called before registration, it always 2974 * succeeds. 2975 */ 2976 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2977 { 2978 int rc; 2979 2980 if (rxq < 1 || rxq > dev->num_rx_queues) 2981 return -EINVAL; 2982 2983 if (dev->reg_state == NETREG_REGISTERED) { 2984 ASSERT_RTNL(); 2985 2986 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2987 rxq); 2988 if (rc) 2989 return rc; 2990 } 2991 2992 dev->real_num_rx_queues = rxq; 2993 return 0; 2994 } 2995 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2996 #endif 2997 2998 /** 2999 * netif_set_real_num_queues - set actual number of RX and TX queues used 3000 * @dev: Network device 3001 * @txq: Actual number of TX queues 3002 * @rxq: Actual number of RX queues 3003 * 3004 * Set the real number of both TX and RX queues. 3005 * Does nothing if the number of queues is already correct. 3006 */ 3007 int netif_set_real_num_queues(struct net_device *dev, 3008 unsigned int txq, unsigned int rxq) 3009 { 3010 unsigned int old_rxq = dev->real_num_rx_queues; 3011 int err; 3012 3013 if (txq < 1 || txq > dev->num_tx_queues || 3014 rxq < 1 || rxq > dev->num_rx_queues) 3015 return -EINVAL; 3016 3017 /* Start from increases, so the error path only does decreases - 3018 * decreases can't fail. 3019 */ 3020 if (rxq > dev->real_num_rx_queues) { 3021 err = netif_set_real_num_rx_queues(dev, rxq); 3022 if (err) 3023 return err; 3024 } 3025 if (txq > dev->real_num_tx_queues) { 3026 err = netif_set_real_num_tx_queues(dev, txq); 3027 if (err) 3028 goto undo_rx; 3029 } 3030 if (rxq < dev->real_num_rx_queues) 3031 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3032 if (txq < dev->real_num_tx_queues) 3033 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3034 3035 return 0; 3036 undo_rx: 3037 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3038 return err; 3039 } 3040 EXPORT_SYMBOL(netif_set_real_num_queues); 3041 3042 /** 3043 * netif_set_tso_max_size() - set the max size of TSO frames supported 3044 * @dev: netdev to update 3045 * @size: max skb->len of a TSO frame 3046 * 3047 * Set the limit on the size of TSO super-frames the device can handle. 3048 * Unless explicitly set the stack will assume the value of 3049 * %GSO_LEGACY_MAX_SIZE. 3050 */ 3051 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3052 { 3053 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3054 if (size < READ_ONCE(dev->gso_max_size)) 3055 netif_set_gso_max_size(dev, size); 3056 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3057 netif_set_gso_ipv4_max_size(dev, size); 3058 } 3059 EXPORT_SYMBOL(netif_set_tso_max_size); 3060 3061 /** 3062 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3063 * @dev: netdev to update 3064 * @segs: max number of TCP segments 3065 * 3066 * Set the limit on the number of TCP segments the device can generate from 3067 * a single TSO super-frame. 3068 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3069 */ 3070 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3071 { 3072 dev->tso_max_segs = segs; 3073 if (segs < READ_ONCE(dev->gso_max_segs)) 3074 netif_set_gso_max_segs(dev, segs); 3075 } 3076 EXPORT_SYMBOL(netif_set_tso_max_segs); 3077 3078 /** 3079 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3080 * @to: netdev to update 3081 * @from: netdev from which to copy the limits 3082 */ 3083 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3084 { 3085 netif_set_tso_max_size(to, from->tso_max_size); 3086 netif_set_tso_max_segs(to, from->tso_max_segs); 3087 } 3088 EXPORT_SYMBOL(netif_inherit_tso_max); 3089 3090 /** 3091 * netif_get_num_default_rss_queues - default number of RSS queues 3092 * 3093 * Default value is the number of physical cores if there are only 1 or 2, or 3094 * divided by 2 if there are more. 3095 */ 3096 int netif_get_num_default_rss_queues(void) 3097 { 3098 cpumask_var_t cpus; 3099 int cpu, count = 0; 3100 3101 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3102 return 1; 3103 3104 cpumask_copy(cpus, cpu_online_mask); 3105 for_each_cpu(cpu, cpus) { 3106 ++count; 3107 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3108 } 3109 free_cpumask_var(cpus); 3110 3111 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3112 } 3113 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3114 3115 static void __netif_reschedule(struct Qdisc *q) 3116 { 3117 struct softnet_data *sd; 3118 unsigned long flags; 3119 3120 local_irq_save(flags); 3121 sd = this_cpu_ptr(&softnet_data); 3122 q->next_sched = NULL; 3123 *sd->output_queue_tailp = q; 3124 sd->output_queue_tailp = &q->next_sched; 3125 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3126 local_irq_restore(flags); 3127 } 3128 3129 void __netif_schedule(struct Qdisc *q) 3130 { 3131 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3132 __netif_reschedule(q); 3133 } 3134 EXPORT_SYMBOL(__netif_schedule); 3135 3136 struct dev_kfree_skb_cb { 3137 enum skb_drop_reason reason; 3138 }; 3139 3140 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3141 { 3142 return (struct dev_kfree_skb_cb *)skb->cb; 3143 } 3144 3145 void netif_schedule_queue(struct netdev_queue *txq) 3146 { 3147 rcu_read_lock(); 3148 if (!netif_xmit_stopped(txq)) { 3149 struct Qdisc *q = rcu_dereference(txq->qdisc); 3150 3151 __netif_schedule(q); 3152 } 3153 rcu_read_unlock(); 3154 } 3155 EXPORT_SYMBOL(netif_schedule_queue); 3156 3157 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3158 { 3159 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3160 struct Qdisc *q; 3161 3162 rcu_read_lock(); 3163 q = rcu_dereference(dev_queue->qdisc); 3164 __netif_schedule(q); 3165 rcu_read_unlock(); 3166 } 3167 } 3168 EXPORT_SYMBOL(netif_tx_wake_queue); 3169 3170 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3171 { 3172 unsigned long flags; 3173 3174 if (unlikely(!skb)) 3175 return; 3176 3177 if (likely(refcount_read(&skb->users) == 1)) { 3178 smp_rmb(); 3179 refcount_set(&skb->users, 0); 3180 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3181 return; 3182 } 3183 get_kfree_skb_cb(skb)->reason = reason; 3184 local_irq_save(flags); 3185 skb->next = __this_cpu_read(softnet_data.completion_queue); 3186 __this_cpu_write(softnet_data.completion_queue, skb); 3187 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3188 local_irq_restore(flags); 3189 } 3190 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3191 3192 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3193 { 3194 if (in_hardirq() || irqs_disabled()) 3195 dev_kfree_skb_irq_reason(skb, reason); 3196 else 3197 kfree_skb_reason(skb, reason); 3198 } 3199 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3200 3201 3202 /** 3203 * netif_device_detach - mark device as removed 3204 * @dev: network device 3205 * 3206 * Mark device as removed from system and therefore no longer available. 3207 */ 3208 void netif_device_detach(struct net_device *dev) 3209 { 3210 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3211 netif_running(dev)) { 3212 netif_tx_stop_all_queues(dev); 3213 } 3214 } 3215 EXPORT_SYMBOL(netif_device_detach); 3216 3217 /** 3218 * netif_device_attach - mark device as attached 3219 * @dev: network device 3220 * 3221 * Mark device as attached from system and restart if needed. 3222 */ 3223 void netif_device_attach(struct net_device *dev) 3224 { 3225 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3226 netif_running(dev)) { 3227 netif_tx_wake_all_queues(dev); 3228 __netdev_watchdog_up(dev); 3229 } 3230 } 3231 EXPORT_SYMBOL(netif_device_attach); 3232 3233 /* 3234 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3235 * to be used as a distribution range. 3236 */ 3237 static u16 skb_tx_hash(const struct net_device *dev, 3238 const struct net_device *sb_dev, 3239 struct sk_buff *skb) 3240 { 3241 u32 hash; 3242 u16 qoffset = 0; 3243 u16 qcount = dev->real_num_tx_queues; 3244 3245 if (dev->num_tc) { 3246 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3247 3248 qoffset = sb_dev->tc_to_txq[tc].offset; 3249 qcount = sb_dev->tc_to_txq[tc].count; 3250 if (unlikely(!qcount)) { 3251 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3252 sb_dev->name, qoffset, tc); 3253 qoffset = 0; 3254 qcount = dev->real_num_tx_queues; 3255 } 3256 } 3257 3258 if (skb_rx_queue_recorded(skb)) { 3259 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3260 hash = skb_get_rx_queue(skb); 3261 if (hash >= qoffset) 3262 hash -= qoffset; 3263 while (unlikely(hash >= qcount)) 3264 hash -= qcount; 3265 return hash + qoffset; 3266 } 3267 3268 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3269 } 3270 3271 void skb_warn_bad_offload(const struct sk_buff *skb) 3272 { 3273 static const netdev_features_t null_features; 3274 struct net_device *dev = skb->dev; 3275 const char *name = ""; 3276 3277 if (!net_ratelimit()) 3278 return; 3279 3280 if (dev) { 3281 if (dev->dev.parent) 3282 name = dev_driver_string(dev->dev.parent); 3283 else 3284 name = netdev_name(dev); 3285 } 3286 skb_dump(KERN_WARNING, skb, false); 3287 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3288 name, dev ? &dev->features : &null_features, 3289 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3290 } 3291 3292 /* 3293 * Invalidate hardware checksum when packet is to be mangled, and 3294 * complete checksum manually on outgoing path. 3295 */ 3296 int skb_checksum_help(struct sk_buff *skb) 3297 { 3298 __wsum csum; 3299 int ret = 0, offset; 3300 3301 if (skb->ip_summed == CHECKSUM_COMPLETE) 3302 goto out_set_summed; 3303 3304 if (unlikely(skb_is_gso(skb))) { 3305 skb_warn_bad_offload(skb); 3306 return -EINVAL; 3307 } 3308 3309 /* Before computing a checksum, we should make sure no frag could 3310 * be modified by an external entity : checksum could be wrong. 3311 */ 3312 if (skb_has_shared_frag(skb)) { 3313 ret = __skb_linearize(skb); 3314 if (ret) 3315 goto out; 3316 } 3317 3318 offset = skb_checksum_start_offset(skb); 3319 ret = -EINVAL; 3320 if (unlikely(offset >= skb_headlen(skb))) { 3321 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3322 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3323 offset, skb_headlen(skb)); 3324 goto out; 3325 } 3326 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3327 3328 offset += skb->csum_offset; 3329 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3330 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3331 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3332 offset + sizeof(__sum16), skb_headlen(skb)); 3333 goto out; 3334 } 3335 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3336 if (ret) 3337 goto out; 3338 3339 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3340 out_set_summed: 3341 skb->ip_summed = CHECKSUM_NONE; 3342 out: 3343 return ret; 3344 } 3345 EXPORT_SYMBOL(skb_checksum_help); 3346 3347 int skb_crc32c_csum_help(struct sk_buff *skb) 3348 { 3349 __le32 crc32c_csum; 3350 int ret = 0, offset, start; 3351 3352 if (skb->ip_summed != CHECKSUM_PARTIAL) 3353 goto out; 3354 3355 if (unlikely(skb_is_gso(skb))) 3356 goto out; 3357 3358 /* Before computing a checksum, we should make sure no frag could 3359 * be modified by an external entity : checksum could be wrong. 3360 */ 3361 if (unlikely(skb_has_shared_frag(skb))) { 3362 ret = __skb_linearize(skb); 3363 if (ret) 3364 goto out; 3365 } 3366 start = skb_checksum_start_offset(skb); 3367 offset = start + offsetof(struct sctphdr, checksum); 3368 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3369 ret = -EINVAL; 3370 goto out; 3371 } 3372 3373 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3374 if (ret) 3375 goto out; 3376 3377 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3378 skb->len - start, ~(__u32)0, 3379 crc32c_csum_stub)); 3380 *(__le32 *)(skb->data + offset) = crc32c_csum; 3381 skb_reset_csum_not_inet(skb); 3382 out: 3383 return ret; 3384 } 3385 3386 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3387 { 3388 __be16 type = skb->protocol; 3389 3390 /* Tunnel gso handlers can set protocol to ethernet. */ 3391 if (type == htons(ETH_P_TEB)) { 3392 struct ethhdr *eth; 3393 3394 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3395 return 0; 3396 3397 eth = (struct ethhdr *)skb->data; 3398 type = eth->h_proto; 3399 } 3400 3401 return vlan_get_protocol_and_depth(skb, type, depth); 3402 } 3403 3404 3405 /* Take action when hardware reception checksum errors are detected. */ 3406 #ifdef CONFIG_BUG 3407 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3408 { 3409 netdev_err(dev, "hw csum failure\n"); 3410 skb_dump(KERN_ERR, skb, true); 3411 dump_stack(); 3412 } 3413 3414 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3415 { 3416 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3417 } 3418 EXPORT_SYMBOL(netdev_rx_csum_fault); 3419 #endif 3420 3421 /* XXX: check that highmem exists at all on the given machine. */ 3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3423 { 3424 #ifdef CONFIG_HIGHMEM 3425 int i; 3426 3427 if (!(dev->features & NETIF_F_HIGHDMA)) { 3428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3429 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3430 3431 if (PageHighMem(skb_frag_page(frag))) 3432 return 1; 3433 } 3434 } 3435 #endif 3436 return 0; 3437 } 3438 3439 /* If MPLS offload request, verify we are testing hardware MPLS features 3440 * instead of standard features for the netdev. 3441 */ 3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3443 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3444 netdev_features_t features, 3445 __be16 type) 3446 { 3447 if (eth_p_mpls(type)) 3448 features &= skb->dev->mpls_features; 3449 3450 return features; 3451 } 3452 #else 3453 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3454 netdev_features_t features, 3455 __be16 type) 3456 { 3457 return features; 3458 } 3459 #endif 3460 3461 static netdev_features_t harmonize_features(struct sk_buff *skb, 3462 netdev_features_t features) 3463 { 3464 __be16 type; 3465 3466 type = skb_network_protocol(skb, NULL); 3467 features = net_mpls_features(skb, features, type); 3468 3469 if (skb->ip_summed != CHECKSUM_NONE && 3470 !can_checksum_protocol(features, type)) { 3471 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3472 } 3473 if (illegal_highdma(skb->dev, skb)) 3474 features &= ~NETIF_F_SG; 3475 3476 return features; 3477 } 3478 3479 netdev_features_t passthru_features_check(struct sk_buff *skb, 3480 struct net_device *dev, 3481 netdev_features_t features) 3482 { 3483 return features; 3484 } 3485 EXPORT_SYMBOL(passthru_features_check); 3486 3487 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3488 struct net_device *dev, 3489 netdev_features_t features) 3490 { 3491 return vlan_features_check(skb, features); 3492 } 3493 3494 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3495 struct net_device *dev, 3496 netdev_features_t features) 3497 { 3498 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3499 3500 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3501 return features & ~NETIF_F_GSO_MASK; 3502 3503 if (!skb_shinfo(skb)->gso_type) { 3504 skb_warn_bad_offload(skb); 3505 return features & ~NETIF_F_GSO_MASK; 3506 } 3507 3508 /* Support for GSO partial features requires software 3509 * intervention before we can actually process the packets 3510 * so we need to strip support for any partial features now 3511 * and we can pull them back in after we have partially 3512 * segmented the frame. 3513 */ 3514 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3515 features &= ~dev->gso_partial_features; 3516 3517 /* Make sure to clear the IPv4 ID mangling feature if the 3518 * IPv4 header has the potential to be fragmented. 3519 */ 3520 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3521 struct iphdr *iph = skb->encapsulation ? 3522 inner_ip_hdr(skb) : ip_hdr(skb); 3523 3524 if (!(iph->frag_off & htons(IP_DF))) 3525 features &= ~NETIF_F_TSO_MANGLEID; 3526 } 3527 3528 return features; 3529 } 3530 3531 netdev_features_t netif_skb_features(struct sk_buff *skb) 3532 { 3533 struct net_device *dev = skb->dev; 3534 netdev_features_t features = dev->features; 3535 3536 if (skb_is_gso(skb)) 3537 features = gso_features_check(skb, dev, features); 3538 3539 /* If encapsulation offload request, verify we are testing 3540 * hardware encapsulation features instead of standard 3541 * features for the netdev 3542 */ 3543 if (skb->encapsulation) 3544 features &= dev->hw_enc_features; 3545 3546 if (skb_vlan_tagged(skb)) 3547 features = netdev_intersect_features(features, 3548 dev->vlan_features | 3549 NETIF_F_HW_VLAN_CTAG_TX | 3550 NETIF_F_HW_VLAN_STAG_TX); 3551 3552 if (dev->netdev_ops->ndo_features_check) 3553 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3554 features); 3555 else 3556 features &= dflt_features_check(skb, dev, features); 3557 3558 return harmonize_features(skb, features); 3559 } 3560 EXPORT_SYMBOL(netif_skb_features); 3561 3562 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3563 struct netdev_queue *txq, bool more) 3564 { 3565 unsigned int len; 3566 int rc; 3567 3568 if (dev_nit_active(dev)) 3569 dev_queue_xmit_nit(skb, dev); 3570 3571 len = skb->len; 3572 trace_net_dev_start_xmit(skb, dev); 3573 rc = netdev_start_xmit(skb, dev, txq, more); 3574 trace_net_dev_xmit(skb, rc, dev, len); 3575 3576 return rc; 3577 } 3578 3579 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3580 struct netdev_queue *txq, int *ret) 3581 { 3582 struct sk_buff *skb = first; 3583 int rc = NETDEV_TX_OK; 3584 3585 while (skb) { 3586 struct sk_buff *next = skb->next; 3587 3588 skb_mark_not_on_list(skb); 3589 rc = xmit_one(skb, dev, txq, next != NULL); 3590 if (unlikely(!dev_xmit_complete(rc))) { 3591 skb->next = next; 3592 goto out; 3593 } 3594 3595 skb = next; 3596 if (netif_tx_queue_stopped(txq) && skb) { 3597 rc = NETDEV_TX_BUSY; 3598 break; 3599 } 3600 } 3601 3602 out: 3603 *ret = rc; 3604 return skb; 3605 } 3606 3607 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3608 netdev_features_t features) 3609 { 3610 if (skb_vlan_tag_present(skb) && 3611 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3612 skb = __vlan_hwaccel_push_inside(skb); 3613 return skb; 3614 } 3615 3616 int skb_csum_hwoffload_help(struct sk_buff *skb, 3617 const netdev_features_t features) 3618 { 3619 if (unlikely(skb_csum_is_sctp(skb))) 3620 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3621 skb_crc32c_csum_help(skb); 3622 3623 if (features & NETIF_F_HW_CSUM) 3624 return 0; 3625 3626 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3627 switch (skb->csum_offset) { 3628 case offsetof(struct tcphdr, check): 3629 case offsetof(struct udphdr, check): 3630 return 0; 3631 } 3632 } 3633 3634 return skb_checksum_help(skb); 3635 } 3636 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3637 3638 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3639 { 3640 netdev_features_t features; 3641 3642 features = netif_skb_features(skb); 3643 skb = validate_xmit_vlan(skb, features); 3644 if (unlikely(!skb)) 3645 goto out_null; 3646 3647 skb = sk_validate_xmit_skb(skb, dev); 3648 if (unlikely(!skb)) 3649 goto out_null; 3650 3651 if (netif_needs_gso(skb, features)) { 3652 struct sk_buff *segs; 3653 3654 segs = skb_gso_segment(skb, features); 3655 if (IS_ERR(segs)) { 3656 goto out_kfree_skb; 3657 } else if (segs) { 3658 consume_skb(skb); 3659 skb = segs; 3660 } 3661 } else { 3662 if (skb_needs_linearize(skb, features) && 3663 __skb_linearize(skb)) 3664 goto out_kfree_skb; 3665 3666 /* If packet is not checksummed and device does not 3667 * support checksumming for this protocol, complete 3668 * checksumming here. 3669 */ 3670 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3671 if (skb->encapsulation) 3672 skb_set_inner_transport_header(skb, 3673 skb_checksum_start_offset(skb)); 3674 else 3675 skb_set_transport_header(skb, 3676 skb_checksum_start_offset(skb)); 3677 if (skb_csum_hwoffload_help(skb, features)) 3678 goto out_kfree_skb; 3679 } 3680 } 3681 3682 skb = validate_xmit_xfrm(skb, features, again); 3683 3684 return skb; 3685 3686 out_kfree_skb: 3687 kfree_skb(skb); 3688 out_null: 3689 dev_core_stats_tx_dropped_inc(dev); 3690 return NULL; 3691 } 3692 3693 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3694 { 3695 struct sk_buff *next, *head = NULL, *tail; 3696 3697 for (; skb != NULL; skb = next) { 3698 next = skb->next; 3699 skb_mark_not_on_list(skb); 3700 3701 /* in case skb wont be segmented, point to itself */ 3702 skb->prev = skb; 3703 3704 skb = validate_xmit_skb(skb, dev, again); 3705 if (!skb) 3706 continue; 3707 3708 if (!head) 3709 head = skb; 3710 else 3711 tail->next = skb; 3712 /* If skb was segmented, skb->prev points to 3713 * the last segment. If not, it still contains skb. 3714 */ 3715 tail = skb->prev; 3716 } 3717 return head; 3718 } 3719 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3720 3721 static void qdisc_pkt_len_init(struct sk_buff *skb) 3722 { 3723 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3724 3725 qdisc_skb_cb(skb)->pkt_len = skb->len; 3726 3727 /* To get more precise estimation of bytes sent on wire, 3728 * we add to pkt_len the headers size of all segments 3729 */ 3730 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3731 u16 gso_segs = shinfo->gso_segs; 3732 unsigned int hdr_len; 3733 3734 /* mac layer + network layer */ 3735 hdr_len = skb_transport_offset(skb); 3736 3737 /* + transport layer */ 3738 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3739 const struct tcphdr *th; 3740 struct tcphdr _tcphdr; 3741 3742 th = skb_header_pointer(skb, hdr_len, 3743 sizeof(_tcphdr), &_tcphdr); 3744 if (likely(th)) 3745 hdr_len += __tcp_hdrlen(th); 3746 } else { 3747 struct udphdr _udphdr; 3748 3749 if (skb_header_pointer(skb, hdr_len, 3750 sizeof(_udphdr), &_udphdr)) 3751 hdr_len += sizeof(struct udphdr); 3752 } 3753 3754 if (shinfo->gso_type & SKB_GSO_DODGY) 3755 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3756 shinfo->gso_size); 3757 3758 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3759 } 3760 } 3761 3762 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3763 struct sk_buff **to_free, 3764 struct netdev_queue *txq) 3765 { 3766 int rc; 3767 3768 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3769 if (rc == NET_XMIT_SUCCESS) 3770 trace_qdisc_enqueue(q, txq, skb); 3771 return rc; 3772 } 3773 3774 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3775 struct net_device *dev, 3776 struct netdev_queue *txq) 3777 { 3778 spinlock_t *root_lock = qdisc_lock(q); 3779 struct sk_buff *to_free = NULL; 3780 bool contended; 3781 int rc; 3782 3783 qdisc_calculate_pkt_len(skb, q); 3784 3785 if (q->flags & TCQ_F_NOLOCK) { 3786 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3787 qdisc_run_begin(q)) { 3788 /* Retest nolock_qdisc_is_empty() within the protection 3789 * of q->seqlock to protect from racing with requeuing. 3790 */ 3791 if (unlikely(!nolock_qdisc_is_empty(q))) { 3792 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3793 __qdisc_run(q); 3794 qdisc_run_end(q); 3795 3796 goto no_lock_out; 3797 } 3798 3799 qdisc_bstats_cpu_update(q, skb); 3800 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3801 !nolock_qdisc_is_empty(q)) 3802 __qdisc_run(q); 3803 3804 qdisc_run_end(q); 3805 return NET_XMIT_SUCCESS; 3806 } 3807 3808 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3809 qdisc_run(q); 3810 3811 no_lock_out: 3812 if (unlikely(to_free)) 3813 kfree_skb_list_reason(to_free, 3814 SKB_DROP_REASON_QDISC_DROP); 3815 return rc; 3816 } 3817 3818 /* 3819 * Heuristic to force contended enqueues to serialize on a 3820 * separate lock before trying to get qdisc main lock. 3821 * This permits qdisc->running owner to get the lock more 3822 * often and dequeue packets faster. 3823 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3824 * and then other tasks will only enqueue packets. The packets will be 3825 * sent after the qdisc owner is scheduled again. To prevent this 3826 * scenario the task always serialize on the lock. 3827 */ 3828 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3829 if (unlikely(contended)) 3830 spin_lock(&q->busylock); 3831 3832 spin_lock(root_lock); 3833 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3834 __qdisc_drop(skb, &to_free); 3835 rc = NET_XMIT_DROP; 3836 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3837 qdisc_run_begin(q)) { 3838 /* 3839 * This is a work-conserving queue; there are no old skbs 3840 * waiting to be sent out; and the qdisc is not running - 3841 * xmit the skb directly. 3842 */ 3843 3844 qdisc_bstats_update(q, skb); 3845 3846 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3847 if (unlikely(contended)) { 3848 spin_unlock(&q->busylock); 3849 contended = false; 3850 } 3851 __qdisc_run(q); 3852 } 3853 3854 qdisc_run_end(q); 3855 rc = NET_XMIT_SUCCESS; 3856 } else { 3857 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3858 if (qdisc_run_begin(q)) { 3859 if (unlikely(contended)) { 3860 spin_unlock(&q->busylock); 3861 contended = false; 3862 } 3863 __qdisc_run(q); 3864 qdisc_run_end(q); 3865 } 3866 } 3867 spin_unlock(root_lock); 3868 if (unlikely(to_free)) 3869 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP); 3870 if (unlikely(contended)) 3871 spin_unlock(&q->busylock); 3872 return rc; 3873 } 3874 3875 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3876 static void skb_update_prio(struct sk_buff *skb) 3877 { 3878 const struct netprio_map *map; 3879 const struct sock *sk; 3880 unsigned int prioidx; 3881 3882 if (skb->priority) 3883 return; 3884 map = rcu_dereference_bh(skb->dev->priomap); 3885 if (!map) 3886 return; 3887 sk = skb_to_full_sk(skb); 3888 if (!sk) 3889 return; 3890 3891 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3892 3893 if (prioidx < map->priomap_len) 3894 skb->priority = map->priomap[prioidx]; 3895 } 3896 #else 3897 #define skb_update_prio(skb) 3898 #endif 3899 3900 /** 3901 * dev_loopback_xmit - loop back @skb 3902 * @net: network namespace this loopback is happening in 3903 * @sk: sk needed to be a netfilter okfn 3904 * @skb: buffer to transmit 3905 */ 3906 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3907 { 3908 skb_reset_mac_header(skb); 3909 __skb_pull(skb, skb_network_offset(skb)); 3910 skb->pkt_type = PACKET_LOOPBACK; 3911 if (skb->ip_summed == CHECKSUM_NONE) 3912 skb->ip_summed = CHECKSUM_UNNECESSARY; 3913 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3914 skb_dst_force(skb); 3915 netif_rx(skb); 3916 return 0; 3917 } 3918 EXPORT_SYMBOL(dev_loopback_xmit); 3919 3920 #ifdef CONFIG_NET_EGRESS 3921 static struct netdev_queue * 3922 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3923 { 3924 int qm = skb_get_queue_mapping(skb); 3925 3926 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3927 } 3928 3929 static bool netdev_xmit_txqueue_skipped(void) 3930 { 3931 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3932 } 3933 3934 void netdev_xmit_skip_txqueue(bool skip) 3935 { 3936 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3937 } 3938 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3939 #endif /* CONFIG_NET_EGRESS */ 3940 3941 #ifdef CONFIG_NET_XGRESS 3942 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 3943 enum skb_drop_reason *drop_reason) 3944 { 3945 int ret = TC_ACT_UNSPEC; 3946 #ifdef CONFIG_NET_CLS_ACT 3947 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 3948 struct tcf_result res; 3949 3950 if (!miniq) 3951 return ret; 3952 3953 tc_skb_cb(skb)->mru = 0; 3954 tc_skb_cb(skb)->post_ct = false; 3955 res.drop_reason = *drop_reason; 3956 3957 mini_qdisc_bstats_cpu_update(miniq, skb); 3958 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 3959 /* Only tcf related quirks below. */ 3960 switch (ret) { 3961 case TC_ACT_SHOT: 3962 *drop_reason = res.drop_reason; 3963 mini_qdisc_qstats_cpu_drop(miniq); 3964 break; 3965 case TC_ACT_OK: 3966 case TC_ACT_RECLASSIFY: 3967 skb->tc_index = TC_H_MIN(res.classid); 3968 break; 3969 } 3970 #endif /* CONFIG_NET_CLS_ACT */ 3971 return ret; 3972 } 3973 3974 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 3975 3976 void tcx_inc(void) 3977 { 3978 static_branch_inc(&tcx_needed_key); 3979 } 3980 3981 void tcx_dec(void) 3982 { 3983 static_branch_dec(&tcx_needed_key); 3984 } 3985 3986 static __always_inline enum tcx_action_base 3987 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 3988 const bool needs_mac) 3989 { 3990 const struct bpf_mprog_fp *fp; 3991 const struct bpf_prog *prog; 3992 int ret = TCX_NEXT; 3993 3994 if (needs_mac) 3995 __skb_push(skb, skb->mac_len); 3996 bpf_mprog_foreach_prog(entry, fp, prog) { 3997 bpf_compute_data_pointers(skb); 3998 ret = bpf_prog_run(prog, skb); 3999 if (ret != TCX_NEXT) 4000 break; 4001 } 4002 if (needs_mac) 4003 __skb_pull(skb, skb->mac_len); 4004 return tcx_action_code(skb, ret); 4005 } 4006 4007 static __always_inline struct sk_buff * 4008 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4009 struct net_device *orig_dev, bool *another) 4010 { 4011 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4012 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4013 int sch_ret; 4014 4015 if (!entry) 4016 return skb; 4017 if (*pt_prev) { 4018 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4019 *pt_prev = NULL; 4020 } 4021 4022 qdisc_skb_cb(skb)->pkt_len = skb->len; 4023 tcx_set_ingress(skb, true); 4024 4025 if (static_branch_unlikely(&tcx_needed_key)) { 4026 sch_ret = tcx_run(entry, skb, true); 4027 if (sch_ret != TC_ACT_UNSPEC) 4028 goto ingress_verdict; 4029 } 4030 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4031 ingress_verdict: 4032 switch (sch_ret) { 4033 case TC_ACT_REDIRECT: 4034 /* skb_mac_header check was done by BPF, so we can safely 4035 * push the L2 header back before redirecting to another 4036 * netdev. 4037 */ 4038 __skb_push(skb, skb->mac_len); 4039 if (skb_do_redirect(skb) == -EAGAIN) { 4040 __skb_pull(skb, skb->mac_len); 4041 *another = true; 4042 break; 4043 } 4044 *ret = NET_RX_SUCCESS; 4045 return NULL; 4046 case TC_ACT_SHOT: 4047 kfree_skb_reason(skb, drop_reason); 4048 *ret = NET_RX_DROP; 4049 return NULL; 4050 /* used by tc_run */ 4051 case TC_ACT_STOLEN: 4052 case TC_ACT_QUEUED: 4053 case TC_ACT_TRAP: 4054 consume_skb(skb); 4055 fallthrough; 4056 case TC_ACT_CONSUMED: 4057 *ret = NET_RX_SUCCESS; 4058 return NULL; 4059 } 4060 4061 return skb; 4062 } 4063 4064 static __always_inline struct sk_buff * 4065 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4066 { 4067 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4068 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4069 int sch_ret; 4070 4071 if (!entry) 4072 return skb; 4073 4074 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4075 * already set by the caller. 4076 */ 4077 if (static_branch_unlikely(&tcx_needed_key)) { 4078 sch_ret = tcx_run(entry, skb, false); 4079 if (sch_ret != TC_ACT_UNSPEC) 4080 goto egress_verdict; 4081 } 4082 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4083 egress_verdict: 4084 switch (sch_ret) { 4085 case TC_ACT_REDIRECT: 4086 /* No need to push/pop skb's mac_header here on egress! */ 4087 skb_do_redirect(skb); 4088 *ret = NET_XMIT_SUCCESS; 4089 return NULL; 4090 case TC_ACT_SHOT: 4091 kfree_skb_reason(skb, drop_reason); 4092 *ret = NET_XMIT_DROP; 4093 return NULL; 4094 /* used by tc_run */ 4095 case TC_ACT_STOLEN: 4096 case TC_ACT_QUEUED: 4097 case TC_ACT_TRAP: 4098 consume_skb(skb); 4099 fallthrough; 4100 case TC_ACT_CONSUMED: 4101 *ret = NET_XMIT_SUCCESS; 4102 return NULL; 4103 } 4104 4105 return skb; 4106 } 4107 #else 4108 static __always_inline struct sk_buff * 4109 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4110 struct net_device *orig_dev, bool *another) 4111 { 4112 return skb; 4113 } 4114 4115 static __always_inline struct sk_buff * 4116 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4117 { 4118 return skb; 4119 } 4120 #endif /* CONFIG_NET_XGRESS */ 4121 4122 #ifdef CONFIG_XPS 4123 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4124 struct xps_dev_maps *dev_maps, unsigned int tci) 4125 { 4126 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4127 struct xps_map *map; 4128 int queue_index = -1; 4129 4130 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4131 return queue_index; 4132 4133 tci *= dev_maps->num_tc; 4134 tci += tc; 4135 4136 map = rcu_dereference(dev_maps->attr_map[tci]); 4137 if (map) { 4138 if (map->len == 1) 4139 queue_index = map->queues[0]; 4140 else 4141 queue_index = map->queues[reciprocal_scale( 4142 skb_get_hash(skb), map->len)]; 4143 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4144 queue_index = -1; 4145 } 4146 return queue_index; 4147 } 4148 #endif 4149 4150 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4151 struct sk_buff *skb) 4152 { 4153 #ifdef CONFIG_XPS 4154 struct xps_dev_maps *dev_maps; 4155 struct sock *sk = skb->sk; 4156 int queue_index = -1; 4157 4158 if (!static_key_false(&xps_needed)) 4159 return -1; 4160 4161 rcu_read_lock(); 4162 if (!static_key_false(&xps_rxqs_needed)) 4163 goto get_cpus_map; 4164 4165 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4166 if (dev_maps) { 4167 int tci = sk_rx_queue_get(sk); 4168 4169 if (tci >= 0) 4170 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4171 tci); 4172 } 4173 4174 get_cpus_map: 4175 if (queue_index < 0) { 4176 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4177 if (dev_maps) { 4178 unsigned int tci = skb->sender_cpu - 1; 4179 4180 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4181 tci); 4182 } 4183 } 4184 rcu_read_unlock(); 4185 4186 return queue_index; 4187 #else 4188 return -1; 4189 #endif 4190 } 4191 4192 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4193 struct net_device *sb_dev) 4194 { 4195 return 0; 4196 } 4197 EXPORT_SYMBOL(dev_pick_tx_zero); 4198 4199 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4200 struct net_device *sb_dev) 4201 { 4202 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4203 } 4204 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4205 4206 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4207 struct net_device *sb_dev) 4208 { 4209 struct sock *sk = skb->sk; 4210 int queue_index = sk_tx_queue_get(sk); 4211 4212 sb_dev = sb_dev ? : dev; 4213 4214 if (queue_index < 0 || skb->ooo_okay || 4215 queue_index >= dev->real_num_tx_queues) { 4216 int new_index = get_xps_queue(dev, sb_dev, skb); 4217 4218 if (new_index < 0) 4219 new_index = skb_tx_hash(dev, sb_dev, skb); 4220 4221 if (queue_index != new_index && sk && 4222 sk_fullsock(sk) && 4223 rcu_access_pointer(sk->sk_dst_cache)) 4224 sk_tx_queue_set(sk, new_index); 4225 4226 queue_index = new_index; 4227 } 4228 4229 return queue_index; 4230 } 4231 EXPORT_SYMBOL(netdev_pick_tx); 4232 4233 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4234 struct sk_buff *skb, 4235 struct net_device *sb_dev) 4236 { 4237 int queue_index = 0; 4238 4239 #ifdef CONFIG_XPS 4240 u32 sender_cpu = skb->sender_cpu - 1; 4241 4242 if (sender_cpu >= (u32)NR_CPUS) 4243 skb->sender_cpu = raw_smp_processor_id() + 1; 4244 #endif 4245 4246 if (dev->real_num_tx_queues != 1) { 4247 const struct net_device_ops *ops = dev->netdev_ops; 4248 4249 if (ops->ndo_select_queue) 4250 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4251 else 4252 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4253 4254 queue_index = netdev_cap_txqueue(dev, queue_index); 4255 } 4256 4257 skb_set_queue_mapping(skb, queue_index); 4258 return netdev_get_tx_queue(dev, queue_index); 4259 } 4260 4261 /** 4262 * __dev_queue_xmit() - transmit a buffer 4263 * @skb: buffer to transmit 4264 * @sb_dev: suboordinate device used for L2 forwarding offload 4265 * 4266 * Queue a buffer for transmission to a network device. The caller must 4267 * have set the device and priority and built the buffer before calling 4268 * this function. The function can be called from an interrupt. 4269 * 4270 * When calling this method, interrupts MUST be enabled. This is because 4271 * the BH enable code must have IRQs enabled so that it will not deadlock. 4272 * 4273 * Regardless of the return value, the skb is consumed, so it is currently 4274 * difficult to retry a send to this method. (You can bump the ref count 4275 * before sending to hold a reference for retry if you are careful.) 4276 * 4277 * Return: 4278 * * 0 - buffer successfully transmitted 4279 * * positive qdisc return code - NET_XMIT_DROP etc. 4280 * * negative errno - other errors 4281 */ 4282 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4283 { 4284 struct net_device *dev = skb->dev; 4285 struct netdev_queue *txq = NULL; 4286 struct Qdisc *q; 4287 int rc = -ENOMEM; 4288 bool again = false; 4289 4290 skb_reset_mac_header(skb); 4291 skb_assert_len(skb); 4292 4293 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4294 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4295 4296 /* Disable soft irqs for various locks below. Also 4297 * stops preemption for RCU. 4298 */ 4299 rcu_read_lock_bh(); 4300 4301 skb_update_prio(skb); 4302 4303 qdisc_pkt_len_init(skb); 4304 tcx_set_ingress(skb, false); 4305 #ifdef CONFIG_NET_EGRESS 4306 if (static_branch_unlikely(&egress_needed_key)) { 4307 if (nf_hook_egress_active()) { 4308 skb = nf_hook_egress(skb, &rc, dev); 4309 if (!skb) 4310 goto out; 4311 } 4312 4313 netdev_xmit_skip_txqueue(false); 4314 4315 nf_skip_egress(skb, true); 4316 skb = sch_handle_egress(skb, &rc, dev); 4317 if (!skb) 4318 goto out; 4319 nf_skip_egress(skb, false); 4320 4321 if (netdev_xmit_txqueue_skipped()) 4322 txq = netdev_tx_queue_mapping(dev, skb); 4323 } 4324 #endif 4325 /* If device/qdisc don't need skb->dst, release it right now while 4326 * its hot in this cpu cache. 4327 */ 4328 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4329 skb_dst_drop(skb); 4330 else 4331 skb_dst_force(skb); 4332 4333 if (!txq) 4334 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4335 4336 q = rcu_dereference_bh(txq->qdisc); 4337 4338 trace_net_dev_queue(skb); 4339 if (q->enqueue) { 4340 rc = __dev_xmit_skb(skb, q, dev, txq); 4341 goto out; 4342 } 4343 4344 /* The device has no queue. Common case for software devices: 4345 * loopback, all the sorts of tunnels... 4346 4347 * Really, it is unlikely that netif_tx_lock protection is necessary 4348 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4349 * counters.) 4350 * However, it is possible, that they rely on protection 4351 * made by us here. 4352 4353 * Check this and shot the lock. It is not prone from deadlocks. 4354 *Either shot noqueue qdisc, it is even simpler 8) 4355 */ 4356 if (dev->flags & IFF_UP) { 4357 int cpu = smp_processor_id(); /* ok because BHs are off */ 4358 4359 /* Other cpus might concurrently change txq->xmit_lock_owner 4360 * to -1 or to their cpu id, but not to our id. 4361 */ 4362 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4363 if (dev_xmit_recursion()) 4364 goto recursion_alert; 4365 4366 skb = validate_xmit_skb(skb, dev, &again); 4367 if (!skb) 4368 goto out; 4369 4370 HARD_TX_LOCK(dev, txq, cpu); 4371 4372 if (!netif_xmit_stopped(txq)) { 4373 dev_xmit_recursion_inc(); 4374 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4375 dev_xmit_recursion_dec(); 4376 if (dev_xmit_complete(rc)) { 4377 HARD_TX_UNLOCK(dev, txq); 4378 goto out; 4379 } 4380 } 4381 HARD_TX_UNLOCK(dev, txq); 4382 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4383 dev->name); 4384 } else { 4385 /* Recursion is detected! It is possible, 4386 * unfortunately 4387 */ 4388 recursion_alert: 4389 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4390 dev->name); 4391 } 4392 } 4393 4394 rc = -ENETDOWN; 4395 rcu_read_unlock_bh(); 4396 4397 dev_core_stats_tx_dropped_inc(dev); 4398 kfree_skb_list(skb); 4399 return rc; 4400 out: 4401 rcu_read_unlock_bh(); 4402 return rc; 4403 } 4404 EXPORT_SYMBOL(__dev_queue_xmit); 4405 4406 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4407 { 4408 struct net_device *dev = skb->dev; 4409 struct sk_buff *orig_skb = skb; 4410 struct netdev_queue *txq; 4411 int ret = NETDEV_TX_BUSY; 4412 bool again = false; 4413 4414 if (unlikely(!netif_running(dev) || 4415 !netif_carrier_ok(dev))) 4416 goto drop; 4417 4418 skb = validate_xmit_skb_list(skb, dev, &again); 4419 if (skb != orig_skb) 4420 goto drop; 4421 4422 skb_set_queue_mapping(skb, queue_id); 4423 txq = skb_get_tx_queue(dev, skb); 4424 4425 local_bh_disable(); 4426 4427 dev_xmit_recursion_inc(); 4428 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4429 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4430 ret = netdev_start_xmit(skb, dev, txq, false); 4431 HARD_TX_UNLOCK(dev, txq); 4432 dev_xmit_recursion_dec(); 4433 4434 local_bh_enable(); 4435 return ret; 4436 drop: 4437 dev_core_stats_tx_dropped_inc(dev); 4438 kfree_skb_list(skb); 4439 return NET_XMIT_DROP; 4440 } 4441 EXPORT_SYMBOL(__dev_direct_xmit); 4442 4443 /************************************************************************* 4444 * Receiver routines 4445 *************************************************************************/ 4446 4447 int netdev_max_backlog __read_mostly = 1000; 4448 EXPORT_SYMBOL(netdev_max_backlog); 4449 4450 int netdev_tstamp_prequeue __read_mostly = 1; 4451 unsigned int sysctl_skb_defer_max __read_mostly = 64; 4452 int netdev_budget __read_mostly = 300; 4453 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4454 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4455 int weight_p __read_mostly = 64; /* old backlog weight */ 4456 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4457 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4458 int dev_rx_weight __read_mostly = 64; 4459 int dev_tx_weight __read_mostly = 64; 4460 4461 /* Called with irq disabled */ 4462 static inline void ____napi_schedule(struct softnet_data *sd, 4463 struct napi_struct *napi) 4464 { 4465 struct task_struct *thread; 4466 4467 lockdep_assert_irqs_disabled(); 4468 4469 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4470 /* Paired with smp_mb__before_atomic() in 4471 * napi_enable()/dev_set_threaded(). 4472 * Use READ_ONCE() to guarantee a complete 4473 * read on napi->thread. Only call 4474 * wake_up_process() when it's not NULL. 4475 */ 4476 thread = READ_ONCE(napi->thread); 4477 if (thread) { 4478 /* Avoid doing set_bit() if the thread is in 4479 * INTERRUPTIBLE state, cause napi_thread_wait() 4480 * makes sure to proceed with napi polling 4481 * if the thread is explicitly woken from here. 4482 */ 4483 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE) 4484 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4485 wake_up_process(thread); 4486 return; 4487 } 4488 } 4489 4490 list_add_tail(&napi->poll_list, &sd->poll_list); 4491 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4492 /* If not called from net_rx_action() 4493 * we have to raise NET_RX_SOFTIRQ. 4494 */ 4495 if (!sd->in_net_rx_action) 4496 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4497 } 4498 4499 #ifdef CONFIG_RPS 4500 4501 /* One global table that all flow-based protocols share. */ 4502 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4503 EXPORT_SYMBOL(rps_sock_flow_table); 4504 u32 rps_cpu_mask __read_mostly; 4505 EXPORT_SYMBOL(rps_cpu_mask); 4506 4507 struct static_key_false rps_needed __read_mostly; 4508 EXPORT_SYMBOL(rps_needed); 4509 struct static_key_false rfs_needed __read_mostly; 4510 EXPORT_SYMBOL(rfs_needed); 4511 4512 static struct rps_dev_flow * 4513 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4514 struct rps_dev_flow *rflow, u16 next_cpu) 4515 { 4516 if (next_cpu < nr_cpu_ids) { 4517 #ifdef CONFIG_RFS_ACCEL 4518 struct netdev_rx_queue *rxqueue; 4519 struct rps_dev_flow_table *flow_table; 4520 struct rps_dev_flow *old_rflow; 4521 u32 flow_id; 4522 u16 rxq_index; 4523 int rc; 4524 4525 /* Should we steer this flow to a different hardware queue? */ 4526 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4527 !(dev->features & NETIF_F_NTUPLE)) 4528 goto out; 4529 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4530 if (rxq_index == skb_get_rx_queue(skb)) 4531 goto out; 4532 4533 rxqueue = dev->_rx + rxq_index; 4534 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4535 if (!flow_table) 4536 goto out; 4537 flow_id = skb_get_hash(skb) & flow_table->mask; 4538 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4539 rxq_index, flow_id); 4540 if (rc < 0) 4541 goto out; 4542 old_rflow = rflow; 4543 rflow = &flow_table->flows[flow_id]; 4544 rflow->filter = rc; 4545 if (old_rflow->filter == rflow->filter) 4546 old_rflow->filter = RPS_NO_FILTER; 4547 out: 4548 #endif 4549 rflow->last_qtail = 4550 per_cpu(softnet_data, next_cpu).input_queue_head; 4551 } 4552 4553 rflow->cpu = next_cpu; 4554 return rflow; 4555 } 4556 4557 /* 4558 * get_rps_cpu is called from netif_receive_skb and returns the target 4559 * CPU from the RPS map of the receiving queue for a given skb. 4560 * rcu_read_lock must be held on entry. 4561 */ 4562 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4563 struct rps_dev_flow **rflowp) 4564 { 4565 const struct rps_sock_flow_table *sock_flow_table; 4566 struct netdev_rx_queue *rxqueue = dev->_rx; 4567 struct rps_dev_flow_table *flow_table; 4568 struct rps_map *map; 4569 int cpu = -1; 4570 u32 tcpu; 4571 u32 hash; 4572 4573 if (skb_rx_queue_recorded(skb)) { 4574 u16 index = skb_get_rx_queue(skb); 4575 4576 if (unlikely(index >= dev->real_num_rx_queues)) { 4577 WARN_ONCE(dev->real_num_rx_queues > 1, 4578 "%s received packet on queue %u, but number " 4579 "of RX queues is %u\n", 4580 dev->name, index, dev->real_num_rx_queues); 4581 goto done; 4582 } 4583 rxqueue += index; 4584 } 4585 4586 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4587 4588 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4589 map = rcu_dereference(rxqueue->rps_map); 4590 if (!flow_table && !map) 4591 goto done; 4592 4593 skb_reset_network_header(skb); 4594 hash = skb_get_hash(skb); 4595 if (!hash) 4596 goto done; 4597 4598 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4599 if (flow_table && sock_flow_table) { 4600 struct rps_dev_flow *rflow; 4601 u32 next_cpu; 4602 u32 ident; 4603 4604 /* First check into global flow table if there is a match. 4605 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4606 */ 4607 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4608 if ((ident ^ hash) & ~rps_cpu_mask) 4609 goto try_rps; 4610 4611 next_cpu = ident & rps_cpu_mask; 4612 4613 /* OK, now we know there is a match, 4614 * we can look at the local (per receive queue) flow table 4615 */ 4616 rflow = &flow_table->flows[hash & flow_table->mask]; 4617 tcpu = rflow->cpu; 4618 4619 /* 4620 * If the desired CPU (where last recvmsg was done) is 4621 * different from current CPU (one in the rx-queue flow 4622 * table entry), switch if one of the following holds: 4623 * - Current CPU is unset (>= nr_cpu_ids). 4624 * - Current CPU is offline. 4625 * - The current CPU's queue tail has advanced beyond the 4626 * last packet that was enqueued using this table entry. 4627 * This guarantees that all previous packets for the flow 4628 * have been dequeued, thus preserving in order delivery. 4629 */ 4630 if (unlikely(tcpu != next_cpu) && 4631 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4632 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4633 rflow->last_qtail)) >= 0)) { 4634 tcpu = next_cpu; 4635 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4636 } 4637 4638 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4639 *rflowp = rflow; 4640 cpu = tcpu; 4641 goto done; 4642 } 4643 } 4644 4645 try_rps: 4646 4647 if (map) { 4648 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4649 if (cpu_online(tcpu)) { 4650 cpu = tcpu; 4651 goto done; 4652 } 4653 } 4654 4655 done: 4656 return cpu; 4657 } 4658 4659 #ifdef CONFIG_RFS_ACCEL 4660 4661 /** 4662 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4663 * @dev: Device on which the filter was set 4664 * @rxq_index: RX queue index 4665 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4666 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4667 * 4668 * Drivers that implement ndo_rx_flow_steer() should periodically call 4669 * this function for each installed filter and remove the filters for 4670 * which it returns %true. 4671 */ 4672 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4673 u32 flow_id, u16 filter_id) 4674 { 4675 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4676 struct rps_dev_flow_table *flow_table; 4677 struct rps_dev_flow *rflow; 4678 bool expire = true; 4679 unsigned int cpu; 4680 4681 rcu_read_lock(); 4682 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4683 if (flow_table && flow_id <= flow_table->mask) { 4684 rflow = &flow_table->flows[flow_id]; 4685 cpu = READ_ONCE(rflow->cpu); 4686 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4687 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4688 rflow->last_qtail) < 4689 (int)(10 * flow_table->mask))) 4690 expire = false; 4691 } 4692 rcu_read_unlock(); 4693 return expire; 4694 } 4695 EXPORT_SYMBOL(rps_may_expire_flow); 4696 4697 #endif /* CONFIG_RFS_ACCEL */ 4698 4699 /* Called from hardirq (IPI) context */ 4700 static void rps_trigger_softirq(void *data) 4701 { 4702 struct softnet_data *sd = data; 4703 4704 ____napi_schedule(sd, &sd->backlog); 4705 sd->received_rps++; 4706 } 4707 4708 #endif /* CONFIG_RPS */ 4709 4710 /* Called from hardirq (IPI) context */ 4711 static void trigger_rx_softirq(void *data) 4712 { 4713 struct softnet_data *sd = data; 4714 4715 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4716 smp_store_release(&sd->defer_ipi_scheduled, 0); 4717 } 4718 4719 /* 4720 * After we queued a packet into sd->input_pkt_queue, 4721 * we need to make sure this queue is serviced soon. 4722 * 4723 * - If this is another cpu queue, link it to our rps_ipi_list, 4724 * and make sure we will process rps_ipi_list from net_rx_action(). 4725 * 4726 * - If this is our own queue, NAPI schedule our backlog. 4727 * Note that this also raises NET_RX_SOFTIRQ. 4728 */ 4729 static void napi_schedule_rps(struct softnet_data *sd) 4730 { 4731 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4732 4733 #ifdef CONFIG_RPS 4734 if (sd != mysd) { 4735 sd->rps_ipi_next = mysd->rps_ipi_list; 4736 mysd->rps_ipi_list = sd; 4737 4738 /* If not called from net_rx_action() or napi_threaded_poll() 4739 * we have to raise NET_RX_SOFTIRQ. 4740 */ 4741 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 4742 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4743 return; 4744 } 4745 #endif /* CONFIG_RPS */ 4746 __napi_schedule_irqoff(&mysd->backlog); 4747 } 4748 4749 #ifdef CONFIG_NET_FLOW_LIMIT 4750 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4751 #endif 4752 4753 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4754 { 4755 #ifdef CONFIG_NET_FLOW_LIMIT 4756 struct sd_flow_limit *fl; 4757 struct softnet_data *sd; 4758 unsigned int old_flow, new_flow; 4759 4760 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1)) 4761 return false; 4762 4763 sd = this_cpu_ptr(&softnet_data); 4764 4765 rcu_read_lock(); 4766 fl = rcu_dereference(sd->flow_limit); 4767 if (fl) { 4768 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4769 old_flow = fl->history[fl->history_head]; 4770 fl->history[fl->history_head] = new_flow; 4771 4772 fl->history_head++; 4773 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4774 4775 if (likely(fl->buckets[old_flow])) 4776 fl->buckets[old_flow]--; 4777 4778 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4779 fl->count++; 4780 rcu_read_unlock(); 4781 return true; 4782 } 4783 } 4784 rcu_read_unlock(); 4785 #endif 4786 return false; 4787 } 4788 4789 /* 4790 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4791 * queue (may be a remote CPU queue). 4792 */ 4793 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4794 unsigned int *qtail) 4795 { 4796 enum skb_drop_reason reason; 4797 struct softnet_data *sd; 4798 unsigned long flags; 4799 unsigned int qlen; 4800 4801 reason = SKB_DROP_REASON_NOT_SPECIFIED; 4802 sd = &per_cpu(softnet_data, cpu); 4803 4804 rps_lock_irqsave(sd, &flags); 4805 if (!netif_running(skb->dev)) 4806 goto drop; 4807 qlen = skb_queue_len(&sd->input_pkt_queue); 4808 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) { 4809 if (qlen) { 4810 enqueue: 4811 __skb_queue_tail(&sd->input_pkt_queue, skb); 4812 input_queue_tail_incr_save(sd, qtail); 4813 rps_unlock_irq_restore(sd, &flags); 4814 return NET_RX_SUCCESS; 4815 } 4816 4817 /* Schedule NAPI for backlog device 4818 * We can use non atomic operation since we own the queue lock 4819 */ 4820 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4821 napi_schedule_rps(sd); 4822 goto enqueue; 4823 } 4824 reason = SKB_DROP_REASON_CPU_BACKLOG; 4825 4826 drop: 4827 sd->dropped++; 4828 rps_unlock_irq_restore(sd, &flags); 4829 4830 dev_core_stats_rx_dropped_inc(skb->dev); 4831 kfree_skb_reason(skb, reason); 4832 return NET_RX_DROP; 4833 } 4834 4835 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4836 { 4837 struct net_device *dev = skb->dev; 4838 struct netdev_rx_queue *rxqueue; 4839 4840 rxqueue = dev->_rx; 4841 4842 if (skb_rx_queue_recorded(skb)) { 4843 u16 index = skb_get_rx_queue(skb); 4844 4845 if (unlikely(index >= dev->real_num_rx_queues)) { 4846 WARN_ONCE(dev->real_num_rx_queues > 1, 4847 "%s received packet on queue %u, but number " 4848 "of RX queues is %u\n", 4849 dev->name, index, dev->real_num_rx_queues); 4850 4851 return rxqueue; /* Return first rxqueue */ 4852 } 4853 rxqueue += index; 4854 } 4855 return rxqueue; 4856 } 4857 4858 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4859 struct bpf_prog *xdp_prog) 4860 { 4861 void *orig_data, *orig_data_end, *hard_start; 4862 struct netdev_rx_queue *rxqueue; 4863 bool orig_bcast, orig_host; 4864 u32 mac_len, frame_sz; 4865 __be16 orig_eth_type; 4866 struct ethhdr *eth; 4867 u32 metalen, act; 4868 int off; 4869 4870 /* The XDP program wants to see the packet starting at the MAC 4871 * header. 4872 */ 4873 mac_len = skb->data - skb_mac_header(skb); 4874 hard_start = skb->data - skb_headroom(skb); 4875 4876 /* SKB "head" area always have tailroom for skb_shared_info */ 4877 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4878 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4879 4880 rxqueue = netif_get_rxqueue(skb); 4881 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4882 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4883 skb_headlen(skb) + mac_len, true); 4884 4885 orig_data_end = xdp->data_end; 4886 orig_data = xdp->data; 4887 eth = (struct ethhdr *)xdp->data; 4888 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4889 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4890 orig_eth_type = eth->h_proto; 4891 4892 act = bpf_prog_run_xdp(xdp_prog, xdp); 4893 4894 /* check if bpf_xdp_adjust_head was used */ 4895 off = xdp->data - orig_data; 4896 if (off) { 4897 if (off > 0) 4898 __skb_pull(skb, off); 4899 else if (off < 0) 4900 __skb_push(skb, -off); 4901 4902 skb->mac_header += off; 4903 skb_reset_network_header(skb); 4904 } 4905 4906 /* check if bpf_xdp_adjust_tail was used */ 4907 off = xdp->data_end - orig_data_end; 4908 if (off != 0) { 4909 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4910 skb->len += off; /* positive on grow, negative on shrink */ 4911 } 4912 4913 /* check if XDP changed eth hdr such SKB needs update */ 4914 eth = (struct ethhdr *)xdp->data; 4915 if ((orig_eth_type != eth->h_proto) || 4916 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4917 skb->dev->dev_addr)) || 4918 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4919 __skb_push(skb, ETH_HLEN); 4920 skb->pkt_type = PACKET_HOST; 4921 skb->protocol = eth_type_trans(skb, skb->dev); 4922 } 4923 4924 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 4925 * before calling us again on redirect path. We do not call do_redirect 4926 * as we leave that up to the caller. 4927 * 4928 * Caller is responsible for managing lifetime of skb (i.e. calling 4929 * kfree_skb in response to actions it cannot handle/XDP_DROP). 4930 */ 4931 switch (act) { 4932 case XDP_REDIRECT: 4933 case XDP_TX: 4934 __skb_push(skb, mac_len); 4935 break; 4936 case XDP_PASS: 4937 metalen = xdp->data - xdp->data_meta; 4938 if (metalen) 4939 skb_metadata_set(skb, metalen); 4940 break; 4941 } 4942 4943 return act; 4944 } 4945 4946 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4947 struct xdp_buff *xdp, 4948 struct bpf_prog *xdp_prog) 4949 { 4950 u32 act = XDP_DROP; 4951 4952 /* Reinjected packets coming from act_mirred or similar should 4953 * not get XDP generic processing. 4954 */ 4955 if (skb_is_redirected(skb)) 4956 return XDP_PASS; 4957 4958 /* XDP packets must be linear and must have sufficient headroom 4959 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4960 * native XDP provides, thus we need to do it here as well. 4961 */ 4962 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4963 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4964 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4965 int troom = skb->tail + skb->data_len - skb->end; 4966 4967 /* In case we have to go down the path and also linearize, 4968 * then lets do the pskb_expand_head() work just once here. 4969 */ 4970 if (pskb_expand_head(skb, 4971 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4972 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4973 goto do_drop; 4974 if (skb_linearize(skb)) 4975 goto do_drop; 4976 } 4977 4978 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog); 4979 switch (act) { 4980 case XDP_REDIRECT: 4981 case XDP_TX: 4982 case XDP_PASS: 4983 break; 4984 default: 4985 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act); 4986 fallthrough; 4987 case XDP_ABORTED: 4988 trace_xdp_exception(skb->dev, xdp_prog, act); 4989 fallthrough; 4990 case XDP_DROP: 4991 do_drop: 4992 kfree_skb(skb); 4993 break; 4994 } 4995 4996 return act; 4997 } 4998 4999 /* When doing generic XDP we have to bypass the qdisc layer and the 5000 * network taps in order to match in-driver-XDP behavior. This also means 5001 * that XDP packets are able to starve other packets going through a qdisc, 5002 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5003 * queues, so they do not have this starvation issue. 5004 */ 5005 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 5006 { 5007 struct net_device *dev = skb->dev; 5008 struct netdev_queue *txq; 5009 bool free_skb = true; 5010 int cpu, rc; 5011 5012 txq = netdev_core_pick_tx(dev, skb, NULL); 5013 cpu = smp_processor_id(); 5014 HARD_TX_LOCK(dev, txq, cpu); 5015 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5016 rc = netdev_start_xmit(skb, dev, txq, 0); 5017 if (dev_xmit_complete(rc)) 5018 free_skb = false; 5019 } 5020 HARD_TX_UNLOCK(dev, txq); 5021 if (free_skb) { 5022 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5023 dev_core_stats_tx_dropped_inc(dev); 5024 kfree_skb(skb); 5025 } 5026 } 5027 5028 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5029 5030 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 5031 { 5032 if (xdp_prog) { 5033 struct xdp_buff xdp; 5034 u32 act; 5035 int err; 5036 5037 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 5038 if (act != XDP_PASS) { 5039 switch (act) { 5040 case XDP_REDIRECT: 5041 err = xdp_do_generic_redirect(skb->dev, skb, 5042 &xdp, xdp_prog); 5043 if (err) 5044 goto out_redir; 5045 break; 5046 case XDP_TX: 5047 generic_xdp_tx(skb, xdp_prog); 5048 break; 5049 } 5050 return XDP_DROP; 5051 } 5052 } 5053 return XDP_PASS; 5054 out_redir: 5055 kfree_skb_reason(skb, SKB_DROP_REASON_XDP); 5056 return XDP_DROP; 5057 } 5058 EXPORT_SYMBOL_GPL(do_xdp_generic); 5059 5060 static int netif_rx_internal(struct sk_buff *skb) 5061 { 5062 int ret; 5063 5064 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5065 5066 trace_netif_rx(skb); 5067 5068 #ifdef CONFIG_RPS 5069 if (static_branch_unlikely(&rps_needed)) { 5070 struct rps_dev_flow voidflow, *rflow = &voidflow; 5071 int cpu; 5072 5073 rcu_read_lock(); 5074 5075 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5076 if (cpu < 0) 5077 cpu = smp_processor_id(); 5078 5079 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5080 5081 rcu_read_unlock(); 5082 } else 5083 #endif 5084 { 5085 unsigned int qtail; 5086 5087 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5088 } 5089 return ret; 5090 } 5091 5092 /** 5093 * __netif_rx - Slightly optimized version of netif_rx 5094 * @skb: buffer to post 5095 * 5096 * This behaves as netif_rx except that it does not disable bottom halves. 5097 * As a result this function may only be invoked from the interrupt context 5098 * (either hard or soft interrupt). 5099 */ 5100 int __netif_rx(struct sk_buff *skb) 5101 { 5102 int ret; 5103 5104 lockdep_assert_once(hardirq_count() | softirq_count()); 5105 5106 trace_netif_rx_entry(skb); 5107 ret = netif_rx_internal(skb); 5108 trace_netif_rx_exit(ret); 5109 return ret; 5110 } 5111 EXPORT_SYMBOL(__netif_rx); 5112 5113 /** 5114 * netif_rx - post buffer to the network code 5115 * @skb: buffer to post 5116 * 5117 * This function receives a packet from a device driver and queues it for 5118 * the upper (protocol) levels to process via the backlog NAPI device. It 5119 * always succeeds. The buffer may be dropped during processing for 5120 * congestion control or by the protocol layers. 5121 * The network buffer is passed via the backlog NAPI device. Modern NIC 5122 * driver should use NAPI and GRO. 5123 * This function can used from interrupt and from process context. The 5124 * caller from process context must not disable interrupts before invoking 5125 * this function. 5126 * 5127 * return values: 5128 * NET_RX_SUCCESS (no congestion) 5129 * NET_RX_DROP (packet was dropped) 5130 * 5131 */ 5132 int netif_rx(struct sk_buff *skb) 5133 { 5134 bool need_bh_off = !(hardirq_count() | softirq_count()); 5135 int ret; 5136 5137 if (need_bh_off) 5138 local_bh_disable(); 5139 trace_netif_rx_entry(skb); 5140 ret = netif_rx_internal(skb); 5141 trace_netif_rx_exit(ret); 5142 if (need_bh_off) 5143 local_bh_enable(); 5144 return ret; 5145 } 5146 EXPORT_SYMBOL(netif_rx); 5147 5148 static __latent_entropy void net_tx_action(struct softirq_action *h) 5149 { 5150 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5151 5152 if (sd->completion_queue) { 5153 struct sk_buff *clist; 5154 5155 local_irq_disable(); 5156 clist = sd->completion_queue; 5157 sd->completion_queue = NULL; 5158 local_irq_enable(); 5159 5160 while (clist) { 5161 struct sk_buff *skb = clist; 5162 5163 clist = clist->next; 5164 5165 WARN_ON(refcount_read(&skb->users)); 5166 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5167 trace_consume_skb(skb, net_tx_action); 5168 else 5169 trace_kfree_skb(skb, net_tx_action, 5170 get_kfree_skb_cb(skb)->reason); 5171 5172 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5173 __kfree_skb(skb); 5174 else 5175 __napi_kfree_skb(skb, 5176 get_kfree_skb_cb(skb)->reason); 5177 } 5178 } 5179 5180 if (sd->output_queue) { 5181 struct Qdisc *head; 5182 5183 local_irq_disable(); 5184 head = sd->output_queue; 5185 sd->output_queue = NULL; 5186 sd->output_queue_tailp = &sd->output_queue; 5187 local_irq_enable(); 5188 5189 rcu_read_lock(); 5190 5191 while (head) { 5192 struct Qdisc *q = head; 5193 spinlock_t *root_lock = NULL; 5194 5195 head = head->next_sched; 5196 5197 /* We need to make sure head->next_sched is read 5198 * before clearing __QDISC_STATE_SCHED 5199 */ 5200 smp_mb__before_atomic(); 5201 5202 if (!(q->flags & TCQ_F_NOLOCK)) { 5203 root_lock = qdisc_lock(q); 5204 spin_lock(root_lock); 5205 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5206 &q->state))) { 5207 /* There is a synchronize_net() between 5208 * STATE_DEACTIVATED flag being set and 5209 * qdisc_reset()/some_qdisc_is_busy() in 5210 * dev_deactivate(), so we can safely bail out 5211 * early here to avoid data race between 5212 * qdisc_deactivate() and some_qdisc_is_busy() 5213 * for lockless qdisc. 5214 */ 5215 clear_bit(__QDISC_STATE_SCHED, &q->state); 5216 continue; 5217 } 5218 5219 clear_bit(__QDISC_STATE_SCHED, &q->state); 5220 qdisc_run(q); 5221 if (root_lock) 5222 spin_unlock(root_lock); 5223 } 5224 5225 rcu_read_unlock(); 5226 } 5227 5228 xfrm_dev_backlog(sd); 5229 } 5230 5231 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5232 /* This hook is defined here for ATM LANE */ 5233 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5234 unsigned char *addr) __read_mostly; 5235 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5236 #endif 5237 5238 /** 5239 * netdev_is_rx_handler_busy - check if receive handler is registered 5240 * @dev: device to check 5241 * 5242 * Check if a receive handler is already registered for a given device. 5243 * Return true if there one. 5244 * 5245 * The caller must hold the rtnl_mutex. 5246 */ 5247 bool netdev_is_rx_handler_busy(struct net_device *dev) 5248 { 5249 ASSERT_RTNL(); 5250 return dev && rtnl_dereference(dev->rx_handler); 5251 } 5252 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5253 5254 /** 5255 * netdev_rx_handler_register - register receive handler 5256 * @dev: device to register a handler for 5257 * @rx_handler: receive handler to register 5258 * @rx_handler_data: data pointer that is used by rx handler 5259 * 5260 * Register a receive handler for a device. This handler will then be 5261 * called from __netif_receive_skb. A negative errno code is returned 5262 * on a failure. 5263 * 5264 * The caller must hold the rtnl_mutex. 5265 * 5266 * For a general description of rx_handler, see enum rx_handler_result. 5267 */ 5268 int netdev_rx_handler_register(struct net_device *dev, 5269 rx_handler_func_t *rx_handler, 5270 void *rx_handler_data) 5271 { 5272 if (netdev_is_rx_handler_busy(dev)) 5273 return -EBUSY; 5274 5275 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5276 return -EINVAL; 5277 5278 /* Note: rx_handler_data must be set before rx_handler */ 5279 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5280 rcu_assign_pointer(dev->rx_handler, rx_handler); 5281 5282 return 0; 5283 } 5284 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5285 5286 /** 5287 * netdev_rx_handler_unregister - unregister receive handler 5288 * @dev: device to unregister a handler from 5289 * 5290 * Unregister a receive handler from a device. 5291 * 5292 * The caller must hold the rtnl_mutex. 5293 */ 5294 void netdev_rx_handler_unregister(struct net_device *dev) 5295 { 5296 5297 ASSERT_RTNL(); 5298 RCU_INIT_POINTER(dev->rx_handler, NULL); 5299 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5300 * section has a guarantee to see a non NULL rx_handler_data 5301 * as well. 5302 */ 5303 synchronize_net(); 5304 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5305 } 5306 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5307 5308 /* 5309 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5310 * the special handling of PFMEMALLOC skbs. 5311 */ 5312 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5313 { 5314 switch (skb->protocol) { 5315 case htons(ETH_P_ARP): 5316 case htons(ETH_P_IP): 5317 case htons(ETH_P_IPV6): 5318 case htons(ETH_P_8021Q): 5319 case htons(ETH_P_8021AD): 5320 return true; 5321 default: 5322 return false; 5323 } 5324 } 5325 5326 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5327 int *ret, struct net_device *orig_dev) 5328 { 5329 if (nf_hook_ingress_active(skb)) { 5330 int ingress_retval; 5331 5332 if (*pt_prev) { 5333 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5334 *pt_prev = NULL; 5335 } 5336 5337 rcu_read_lock(); 5338 ingress_retval = nf_hook_ingress(skb); 5339 rcu_read_unlock(); 5340 return ingress_retval; 5341 } 5342 return 0; 5343 } 5344 5345 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5346 struct packet_type **ppt_prev) 5347 { 5348 struct packet_type *ptype, *pt_prev; 5349 rx_handler_func_t *rx_handler; 5350 struct sk_buff *skb = *pskb; 5351 struct net_device *orig_dev; 5352 bool deliver_exact = false; 5353 int ret = NET_RX_DROP; 5354 __be16 type; 5355 5356 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb); 5357 5358 trace_netif_receive_skb(skb); 5359 5360 orig_dev = skb->dev; 5361 5362 skb_reset_network_header(skb); 5363 if (!skb_transport_header_was_set(skb)) 5364 skb_reset_transport_header(skb); 5365 skb_reset_mac_len(skb); 5366 5367 pt_prev = NULL; 5368 5369 another_round: 5370 skb->skb_iif = skb->dev->ifindex; 5371 5372 __this_cpu_inc(softnet_data.processed); 5373 5374 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5375 int ret2; 5376 5377 migrate_disable(); 5378 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5379 migrate_enable(); 5380 5381 if (ret2 != XDP_PASS) { 5382 ret = NET_RX_DROP; 5383 goto out; 5384 } 5385 } 5386 5387 if (eth_type_vlan(skb->protocol)) { 5388 skb = skb_vlan_untag(skb); 5389 if (unlikely(!skb)) 5390 goto out; 5391 } 5392 5393 if (skb_skip_tc_classify(skb)) 5394 goto skip_classify; 5395 5396 if (pfmemalloc) 5397 goto skip_taps; 5398 5399 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5400 if (pt_prev) 5401 ret = deliver_skb(skb, pt_prev, orig_dev); 5402 pt_prev = ptype; 5403 } 5404 5405 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5406 if (pt_prev) 5407 ret = deliver_skb(skb, pt_prev, orig_dev); 5408 pt_prev = ptype; 5409 } 5410 5411 skip_taps: 5412 #ifdef CONFIG_NET_INGRESS 5413 if (static_branch_unlikely(&ingress_needed_key)) { 5414 bool another = false; 5415 5416 nf_skip_egress(skb, true); 5417 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5418 &another); 5419 if (another) 5420 goto another_round; 5421 if (!skb) 5422 goto out; 5423 5424 nf_skip_egress(skb, false); 5425 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5426 goto out; 5427 } 5428 #endif 5429 skb_reset_redirect(skb); 5430 skip_classify: 5431 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5432 goto drop; 5433 5434 if (skb_vlan_tag_present(skb)) { 5435 if (pt_prev) { 5436 ret = deliver_skb(skb, pt_prev, orig_dev); 5437 pt_prev = NULL; 5438 } 5439 if (vlan_do_receive(&skb)) 5440 goto another_round; 5441 else if (unlikely(!skb)) 5442 goto out; 5443 } 5444 5445 rx_handler = rcu_dereference(skb->dev->rx_handler); 5446 if (rx_handler) { 5447 if (pt_prev) { 5448 ret = deliver_skb(skb, pt_prev, orig_dev); 5449 pt_prev = NULL; 5450 } 5451 switch (rx_handler(&skb)) { 5452 case RX_HANDLER_CONSUMED: 5453 ret = NET_RX_SUCCESS; 5454 goto out; 5455 case RX_HANDLER_ANOTHER: 5456 goto another_round; 5457 case RX_HANDLER_EXACT: 5458 deliver_exact = true; 5459 break; 5460 case RX_HANDLER_PASS: 5461 break; 5462 default: 5463 BUG(); 5464 } 5465 } 5466 5467 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5468 check_vlan_id: 5469 if (skb_vlan_tag_get_id(skb)) { 5470 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5471 * find vlan device. 5472 */ 5473 skb->pkt_type = PACKET_OTHERHOST; 5474 } else if (eth_type_vlan(skb->protocol)) { 5475 /* Outer header is 802.1P with vlan 0, inner header is 5476 * 802.1Q or 802.1AD and vlan_do_receive() above could 5477 * not find vlan dev for vlan id 0. 5478 */ 5479 __vlan_hwaccel_clear_tag(skb); 5480 skb = skb_vlan_untag(skb); 5481 if (unlikely(!skb)) 5482 goto out; 5483 if (vlan_do_receive(&skb)) 5484 /* After stripping off 802.1P header with vlan 0 5485 * vlan dev is found for inner header. 5486 */ 5487 goto another_round; 5488 else if (unlikely(!skb)) 5489 goto out; 5490 else 5491 /* We have stripped outer 802.1P vlan 0 header. 5492 * But could not find vlan dev. 5493 * check again for vlan id to set OTHERHOST. 5494 */ 5495 goto check_vlan_id; 5496 } 5497 /* Note: we might in the future use prio bits 5498 * and set skb->priority like in vlan_do_receive() 5499 * For the time being, just ignore Priority Code Point 5500 */ 5501 __vlan_hwaccel_clear_tag(skb); 5502 } 5503 5504 type = skb->protocol; 5505 5506 /* deliver only exact match when indicated */ 5507 if (likely(!deliver_exact)) { 5508 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5509 &ptype_base[ntohs(type) & 5510 PTYPE_HASH_MASK]); 5511 } 5512 5513 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5514 &orig_dev->ptype_specific); 5515 5516 if (unlikely(skb->dev != orig_dev)) { 5517 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5518 &skb->dev->ptype_specific); 5519 } 5520 5521 if (pt_prev) { 5522 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5523 goto drop; 5524 *ppt_prev = pt_prev; 5525 } else { 5526 drop: 5527 if (!deliver_exact) 5528 dev_core_stats_rx_dropped_inc(skb->dev); 5529 else 5530 dev_core_stats_rx_nohandler_inc(skb->dev); 5531 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5532 /* Jamal, now you will not able to escape explaining 5533 * me how you were going to use this. :-) 5534 */ 5535 ret = NET_RX_DROP; 5536 } 5537 5538 out: 5539 /* The invariant here is that if *ppt_prev is not NULL 5540 * then skb should also be non-NULL. 5541 * 5542 * Apparently *ppt_prev assignment above holds this invariant due to 5543 * skb dereferencing near it. 5544 */ 5545 *pskb = skb; 5546 return ret; 5547 } 5548 5549 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5550 { 5551 struct net_device *orig_dev = skb->dev; 5552 struct packet_type *pt_prev = NULL; 5553 int ret; 5554 5555 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5556 if (pt_prev) 5557 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5558 skb->dev, pt_prev, orig_dev); 5559 return ret; 5560 } 5561 5562 /** 5563 * netif_receive_skb_core - special purpose version of netif_receive_skb 5564 * @skb: buffer to process 5565 * 5566 * More direct receive version of netif_receive_skb(). It should 5567 * only be used by callers that have a need to skip RPS and Generic XDP. 5568 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5569 * 5570 * This function may only be called from softirq context and interrupts 5571 * should be enabled. 5572 * 5573 * Return values (usually ignored): 5574 * NET_RX_SUCCESS: no congestion 5575 * NET_RX_DROP: packet was dropped 5576 */ 5577 int netif_receive_skb_core(struct sk_buff *skb) 5578 { 5579 int ret; 5580 5581 rcu_read_lock(); 5582 ret = __netif_receive_skb_one_core(skb, false); 5583 rcu_read_unlock(); 5584 5585 return ret; 5586 } 5587 EXPORT_SYMBOL(netif_receive_skb_core); 5588 5589 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5590 struct packet_type *pt_prev, 5591 struct net_device *orig_dev) 5592 { 5593 struct sk_buff *skb, *next; 5594 5595 if (!pt_prev) 5596 return; 5597 if (list_empty(head)) 5598 return; 5599 if (pt_prev->list_func != NULL) 5600 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5601 ip_list_rcv, head, pt_prev, orig_dev); 5602 else 5603 list_for_each_entry_safe(skb, next, head, list) { 5604 skb_list_del_init(skb); 5605 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5606 } 5607 } 5608 5609 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5610 { 5611 /* Fast-path assumptions: 5612 * - There is no RX handler. 5613 * - Only one packet_type matches. 5614 * If either of these fails, we will end up doing some per-packet 5615 * processing in-line, then handling the 'last ptype' for the whole 5616 * sublist. This can't cause out-of-order delivery to any single ptype, 5617 * because the 'last ptype' must be constant across the sublist, and all 5618 * other ptypes are handled per-packet. 5619 */ 5620 /* Current (common) ptype of sublist */ 5621 struct packet_type *pt_curr = NULL; 5622 /* Current (common) orig_dev of sublist */ 5623 struct net_device *od_curr = NULL; 5624 struct list_head sublist; 5625 struct sk_buff *skb, *next; 5626 5627 INIT_LIST_HEAD(&sublist); 5628 list_for_each_entry_safe(skb, next, head, list) { 5629 struct net_device *orig_dev = skb->dev; 5630 struct packet_type *pt_prev = NULL; 5631 5632 skb_list_del_init(skb); 5633 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5634 if (!pt_prev) 5635 continue; 5636 if (pt_curr != pt_prev || od_curr != orig_dev) { 5637 /* dispatch old sublist */ 5638 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5639 /* start new sublist */ 5640 INIT_LIST_HEAD(&sublist); 5641 pt_curr = pt_prev; 5642 od_curr = orig_dev; 5643 } 5644 list_add_tail(&skb->list, &sublist); 5645 } 5646 5647 /* dispatch final sublist */ 5648 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5649 } 5650 5651 static int __netif_receive_skb(struct sk_buff *skb) 5652 { 5653 int ret; 5654 5655 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5656 unsigned int noreclaim_flag; 5657 5658 /* 5659 * PFMEMALLOC skbs are special, they should 5660 * - be delivered to SOCK_MEMALLOC sockets only 5661 * - stay away from userspace 5662 * - have bounded memory usage 5663 * 5664 * Use PF_MEMALLOC as this saves us from propagating the allocation 5665 * context down to all allocation sites. 5666 */ 5667 noreclaim_flag = memalloc_noreclaim_save(); 5668 ret = __netif_receive_skb_one_core(skb, true); 5669 memalloc_noreclaim_restore(noreclaim_flag); 5670 } else 5671 ret = __netif_receive_skb_one_core(skb, false); 5672 5673 return ret; 5674 } 5675 5676 static void __netif_receive_skb_list(struct list_head *head) 5677 { 5678 unsigned long noreclaim_flag = 0; 5679 struct sk_buff *skb, *next; 5680 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5681 5682 list_for_each_entry_safe(skb, next, head, list) { 5683 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5684 struct list_head sublist; 5685 5686 /* Handle the previous sublist */ 5687 list_cut_before(&sublist, head, &skb->list); 5688 if (!list_empty(&sublist)) 5689 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5690 pfmemalloc = !pfmemalloc; 5691 /* See comments in __netif_receive_skb */ 5692 if (pfmemalloc) 5693 noreclaim_flag = memalloc_noreclaim_save(); 5694 else 5695 memalloc_noreclaim_restore(noreclaim_flag); 5696 } 5697 } 5698 /* Handle the remaining sublist */ 5699 if (!list_empty(head)) 5700 __netif_receive_skb_list_core(head, pfmemalloc); 5701 /* Restore pflags */ 5702 if (pfmemalloc) 5703 memalloc_noreclaim_restore(noreclaim_flag); 5704 } 5705 5706 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5707 { 5708 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5709 struct bpf_prog *new = xdp->prog; 5710 int ret = 0; 5711 5712 switch (xdp->command) { 5713 case XDP_SETUP_PROG: 5714 rcu_assign_pointer(dev->xdp_prog, new); 5715 if (old) 5716 bpf_prog_put(old); 5717 5718 if (old && !new) { 5719 static_branch_dec(&generic_xdp_needed_key); 5720 } else if (new && !old) { 5721 static_branch_inc(&generic_xdp_needed_key); 5722 dev_disable_lro(dev); 5723 dev_disable_gro_hw(dev); 5724 } 5725 break; 5726 5727 default: 5728 ret = -EINVAL; 5729 break; 5730 } 5731 5732 return ret; 5733 } 5734 5735 static int netif_receive_skb_internal(struct sk_buff *skb) 5736 { 5737 int ret; 5738 5739 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5740 5741 if (skb_defer_rx_timestamp(skb)) 5742 return NET_RX_SUCCESS; 5743 5744 rcu_read_lock(); 5745 #ifdef CONFIG_RPS 5746 if (static_branch_unlikely(&rps_needed)) { 5747 struct rps_dev_flow voidflow, *rflow = &voidflow; 5748 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5749 5750 if (cpu >= 0) { 5751 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5752 rcu_read_unlock(); 5753 return ret; 5754 } 5755 } 5756 #endif 5757 ret = __netif_receive_skb(skb); 5758 rcu_read_unlock(); 5759 return ret; 5760 } 5761 5762 void netif_receive_skb_list_internal(struct list_head *head) 5763 { 5764 struct sk_buff *skb, *next; 5765 struct list_head sublist; 5766 5767 INIT_LIST_HEAD(&sublist); 5768 list_for_each_entry_safe(skb, next, head, list) { 5769 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5770 skb_list_del_init(skb); 5771 if (!skb_defer_rx_timestamp(skb)) 5772 list_add_tail(&skb->list, &sublist); 5773 } 5774 list_splice_init(&sublist, head); 5775 5776 rcu_read_lock(); 5777 #ifdef CONFIG_RPS 5778 if (static_branch_unlikely(&rps_needed)) { 5779 list_for_each_entry_safe(skb, next, head, list) { 5780 struct rps_dev_flow voidflow, *rflow = &voidflow; 5781 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5782 5783 if (cpu >= 0) { 5784 /* Will be handled, remove from list */ 5785 skb_list_del_init(skb); 5786 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5787 } 5788 } 5789 } 5790 #endif 5791 __netif_receive_skb_list(head); 5792 rcu_read_unlock(); 5793 } 5794 5795 /** 5796 * netif_receive_skb - process receive buffer from network 5797 * @skb: buffer to process 5798 * 5799 * netif_receive_skb() is the main receive data processing function. 5800 * It always succeeds. The buffer may be dropped during processing 5801 * for congestion control or by the protocol layers. 5802 * 5803 * This function may only be called from softirq context and interrupts 5804 * should be enabled. 5805 * 5806 * Return values (usually ignored): 5807 * NET_RX_SUCCESS: no congestion 5808 * NET_RX_DROP: packet was dropped 5809 */ 5810 int netif_receive_skb(struct sk_buff *skb) 5811 { 5812 int ret; 5813 5814 trace_netif_receive_skb_entry(skb); 5815 5816 ret = netif_receive_skb_internal(skb); 5817 trace_netif_receive_skb_exit(ret); 5818 5819 return ret; 5820 } 5821 EXPORT_SYMBOL(netif_receive_skb); 5822 5823 /** 5824 * netif_receive_skb_list - process many receive buffers from network 5825 * @head: list of skbs to process. 5826 * 5827 * Since return value of netif_receive_skb() is normally ignored, and 5828 * wouldn't be meaningful for a list, this function returns void. 5829 * 5830 * This function may only be called from softirq context and interrupts 5831 * should be enabled. 5832 */ 5833 void netif_receive_skb_list(struct list_head *head) 5834 { 5835 struct sk_buff *skb; 5836 5837 if (list_empty(head)) 5838 return; 5839 if (trace_netif_receive_skb_list_entry_enabled()) { 5840 list_for_each_entry(skb, head, list) 5841 trace_netif_receive_skb_list_entry(skb); 5842 } 5843 netif_receive_skb_list_internal(head); 5844 trace_netif_receive_skb_list_exit(0); 5845 } 5846 EXPORT_SYMBOL(netif_receive_skb_list); 5847 5848 static DEFINE_PER_CPU(struct work_struct, flush_works); 5849 5850 /* Network device is going away, flush any packets still pending */ 5851 static void flush_backlog(struct work_struct *work) 5852 { 5853 struct sk_buff *skb, *tmp; 5854 struct softnet_data *sd; 5855 5856 local_bh_disable(); 5857 sd = this_cpu_ptr(&softnet_data); 5858 5859 rps_lock_irq_disable(sd); 5860 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5861 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5862 __skb_unlink(skb, &sd->input_pkt_queue); 5863 dev_kfree_skb_irq(skb); 5864 input_queue_head_incr(sd); 5865 } 5866 } 5867 rps_unlock_irq_enable(sd); 5868 5869 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5870 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5871 __skb_unlink(skb, &sd->process_queue); 5872 kfree_skb(skb); 5873 input_queue_head_incr(sd); 5874 } 5875 } 5876 local_bh_enable(); 5877 } 5878 5879 static bool flush_required(int cpu) 5880 { 5881 #if IS_ENABLED(CONFIG_RPS) 5882 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5883 bool do_flush; 5884 5885 rps_lock_irq_disable(sd); 5886 5887 /* as insertion into process_queue happens with the rps lock held, 5888 * process_queue access may race only with dequeue 5889 */ 5890 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5891 !skb_queue_empty_lockless(&sd->process_queue); 5892 rps_unlock_irq_enable(sd); 5893 5894 return do_flush; 5895 #endif 5896 /* without RPS we can't safely check input_pkt_queue: during a 5897 * concurrent remote skb_queue_splice() we can detect as empty both 5898 * input_pkt_queue and process_queue even if the latter could end-up 5899 * containing a lot of packets. 5900 */ 5901 return true; 5902 } 5903 5904 static void flush_all_backlogs(void) 5905 { 5906 static cpumask_t flush_cpus; 5907 unsigned int cpu; 5908 5909 /* since we are under rtnl lock protection we can use static data 5910 * for the cpumask and avoid allocating on stack the possibly 5911 * large mask 5912 */ 5913 ASSERT_RTNL(); 5914 5915 cpus_read_lock(); 5916 5917 cpumask_clear(&flush_cpus); 5918 for_each_online_cpu(cpu) { 5919 if (flush_required(cpu)) { 5920 queue_work_on(cpu, system_highpri_wq, 5921 per_cpu_ptr(&flush_works, cpu)); 5922 cpumask_set_cpu(cpu, &flush_cpus); 5923 } 5924 } 5925 5926 /* we can have in flight packet[s] on the cpus we are not flushing, 5927 * synchronize_net() in unregister_netdevice_many() will take care of 5928 * them 5929 */ 5930 for_each_cpu(cpu, &flush_cpus) 5931 flush_work(per_cpu_ptr(&flush_works, cpu)); 5932 5933 cpus_read_unlock(); 5934 } 5935 5936 static void net_rps_send_ipi(struct softnet_data *remsd) 5937 { 5938 #ifdef CONFIG_RPS 5939 while (remsd) { 5940 struct softnet_data *next = remsd->rps_ipi_next; 5941 5942 if (cpu_online(remsd->cpu)) 5943 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5944 remsd = next; 5945 } 5946 #endif 5947 } 5948 5949 /* 5950 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5951 * Note: called with local irq disabled, but exits with local irq enabled. 5952 */ 5953 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5954 { 5955 #ifdef CONFIG_RPS 5956 struct softnet_data *remsd = sd->rps_ipi_list; 5957 5958 if (remsd) { 5959 sd->rps_ipi_list = NULL; 5960 5961 local_irq_enable(); 5962 5963 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5964 net_rps_send_ipi(remsd); 5965 } else 5966 #endif 5967 local_irq_enable(); 5968 } 5969 5970 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5971 { 5972 #ifdef CONFIG_RPS 5973 return sd->rps_ipi_list != NULL; 5974 #else 5975 return false; 5976 #endif 5977 } 5978 5979 static int process_backlog(struct napi_struct *napi, int quota) 5980 { 5981 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5982 bool again = true; 5983 int work = 0; 5984 5985 /* Check if we have pending ipi, its better to send them now, 5986 * not waiting net_rx_action() end. 5987 */ 5988 if (sd_has_rps_ipi_waiting(sd)) { 5989 local_irq_disable(); 5990 net_rps_action_and_irq_enable(sd); 5991 } 5992 5993 napi->weight = READ_ONCE(dev_rx_weight); 5994 while (again) { 5995 struct sk_buff *skb; 5996 5997 while ((skb = __skb_dequeue(&sd->process_queue))) { 5998 rcu_read_lock(); 5999 __netif_receive_skb(skb); 6000 rcu_read_unlock(); 6001 input_queue_head_incr(sd); 6002 if (++work >= quota) 6003 return work; 6004 6005 } 6006 6007 rps_lock_irq_disable(sd); 6008 if (skb_queue_empty(&sd->input_pkt_queue)) { 6009 /* 6010 * Inline a custom version of __napi_complete(). 6011 * only current cpu owns and manipulates this napi, 6012 * and NAPI_STATE_SCHED is the only possible flag set 6013 * on backlog. 6014 * We can use a plain write instead of clear_bit(), 6015 * and we dont need an smp_mb() memory barrier. 6016 */ 6017 napi->state = 0; 6018 again = false; 6019 } else { 6020 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6021 &sd->process_queue); 6022 } 6023 rps_unlock_irq_enable(sd); 6024 } 6025 6026 return work; 6027 } 6028 6029 /** 6030 * __napi_schedule - schedule for receive 6031 * @n: entry to schedule 6032 * 6033 * The entry's receive function will be scheduled to run. 6034 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6035 */ 6036 void __napi_schedule(struct napi_struct *n) 6037 { 6038 unsigned long flags; 6039 6040 local_irq_save(flags); 6041 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6042 local_irq_restore(flags); 6043 } 6044 EXPORT_SYMBOL(__napi_schedule); 6045 6046 /** 6047 * napi_schedule_prep - check if napi can be scheduled 6048 * @n: napi context 6049 * 6050 * Test if NAPI routine is already running, and if not mark 6051 * it as running. This is used as a condition variable to 6052 * insure only one NAPI poll instance runs. We also make 6053 * sure there is no pending NAPI disable. 6054 */ 6055 bool napi_schedule_prep(struct napi_struct *n) 6056 { 6057 unsigned long new, val = READ_ONCE(n->state); 6058 6059 do { 6060 if (unlikely(val & NAPIF_STATE_DISABLE)) 6061 return false; 6062 new = val | NAPIF_STATE_SCHED; 6063 6064 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6065 * This was suggested by Alexander Duyck, as compiler 6066 * emits better code than : 6067 * if (val & NAPIF_STATE_SCHED) 6068 * new |= NAPIF_STATE_MISSED; 6069 */ 6070 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6071 NAPIF_STATE_MISSED; 6072 } while (!try_cmpxchg(&n->state, &val, new)); 6073 6074 return !(val & NAPIF_STATE_SCHED); 6075 } 6076 EXPORT_SYMBOL(napi_schedule_prep); 6077 6078 /** 6079 * __napi_schedule_irqoff - schedule for receive 6080 * @n: entry to schedule 6081 * 6082 * Variant of __napi_schedule() assuming hard irqs are masked. 6083 * 6084 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6085 * because the interrupt disabled assumption might not be true 6086 * due to force-threaded interrupts and spinlock substitution. 6087 */ 6088 void __napi_schedule_irqoff(struct napi_struct *n) 6089 { 6090 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6091 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6092 else 6093 __napi_schedule(n); 6094 } 6095 EXPORT_SYMBOL(__napi_schedule_irqoff); 6096 6097 bool napi_complete_done(struct napi_struct *n, int work_done) 6098 { 6099 unsigned long flags, val, new, timeout = 0; 6100 bool ret = true; 6101 6102 /* 6103 * 1) Don't let napi dequeue from the cpu poll list 6104 * just in case its running on a different cpu. 6105 * 2) If we are busy polling, do nothing here, we have 6106 * the guarantee we will be called later. 6107 */ 6108 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6109 NAPIF_STATE_IN_BUSY_POLL))) 6110 return false; 6111 6112 if (work_done) { 6113 if (n->gro_bitmask) 6114 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6115 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6116 } 6117 if (n->defer_hard_irqs_count > 0) { 6118 n->defer_hard_irqs_count--; 6119 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6120 if (timeout) 6121 ret = false; 6122 } 6123 if (n->gro_bitmask) { 6124 /* When the NAPI instance uses a timeout and keeps postponing 6125 * it, we need to bound somehow the time packets are kept in 6126 * the GRO layer 6127 */ 6128 napi_gro_flush(n, !!timeout); 6129 } 6130 6131 gro_normal_list(n); 6132 6133 if (unlikely(!list_empty(&n->poll_list))) { 6134 /* If n->poll_list is not empty, we need to mask irqs */ 6135 local_irq_save(flags); 6136 list_del_init(&n->poll_list); 6137 local_irq_restore(flags); 6138 } 6139 WRITE_ONCE(n->list_owner, -1); 6140 6141 val = READ_ONCE(n->state); 6142 do { 6143 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6144 6145 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6146 NAPIF_STATE_SCHED_THREADED | 6147 NAPIF_STATE_PREFER_BUSY_POLL); 6148 6149 /* If STATE_MISSED was set, leave STATE_SCHED set, 6150 * because we will call napi->poll() one more time. 6151 * This C code was suggested by Alexander Duyck to help gcc. 6152 */ 6153 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6154 NAPIF_STATE_SCHED; 6155 } while (!try_cmpxchg(&n->state, &val, new)); 6156 6157 if (unlikely(val & NAPIF_STATE_MISSED)) { 6158 __napi_schedule(n); 6159 return false; 6160 } 6161 6162 if (timeout) 6163 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6164 HRTIMER_MODE_REL_PINNED); 6165 return ret; 6166 } 6167 EXPORT_SYMBOL(napi_complete_done); 6168 6169 /* must be called under rcu_read_lock(), as we dont take a reference */ 6170 static struct napi_struct *napi_by_id(unsigned int napi_id) 6171 { 6172 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6173 struct napi_struct *napi; 6174 6175 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6176 if (napi->napi_id == napi_id) 6177 return napi; 6178 6179 return NULL; 6180 } 6181 6182 #if defined(CONFIG_NET_RX_BUSY_POLL) 6183 6184 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6185 { 6186 if (!skip_schedule) { 6187 gro_normal_list(napi); 6188 __napi_schedule(napi); 6189 return; 6190 } 6191 6192 if (napi->gro_bitmask) { 6193 /* flush too old packets 6194 * If HZ < 1000, flush all packets. 6195 */ 6196 napi_gro_flush(napi, HZ >= 1000); 6197 } 6198 6199 gro_normal_list(napi); 6200 clear_bit(NAPI_STATE_SCHED, &napi->state); 6201 } 6202 6203 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6204 u16 budget) 6205 { 6206 bool skip_schedule = false; 6207 unsigned long timeout; 6208 int rc; 6209 6210 /* Busy polling means there is a high chance device driver hard irq 6211 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6212 * set in napi_schedule_prep(). 6213 * Since we are about to call napi->poll() once more, we can safely 6214 * clear NAPI_STATE_MISSED. 6215 * 6216 * Note: x86 could use a single "lock and ..." instruction 6217 * to perform these two clear_bit() 6218 */ 6219 clear_bit(NAPI_STATE_MISSED, &napi->state); 6220 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6221 6222 local_bh_disable(); 6223 6224 if (prefer_busy_poll) { 6225 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6226 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6227 if (napi->defer_hard_irqs_count && timeout) { 6228 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6229 skip_schedule = true; 6230 } 6231 } 6232 6233 /* All we really want here is to re-enable device interrupts. 6234 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6235 */ 6236 rc = napi->poll(napi, budget); 6237 /* We can't gro_normal_list() here, because napi->poll() might have 6238 * rearmed the napi (napi_complete_done()) in which case it could 6239 * already be running on another CPU. 6240 */ 6241 trace_napi_poll(napi, rc, budget); 6242 netpoll_poll_unlock(have_poll_lock); 6243 if (rc == budget) 6244 __busy_poll_stop(napi, skip_schedule); 6245 local_bh_enable(); 6246 } 6247 6248 void napi_busy_loop(unsigned int napi_id, 6249 bool (*loop_end)(void *, unsigned long), 6250 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6251 { 6252 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6253 int (*napi_poll)(struct napi_struct *napi, int budget); 6254 void *have_poll_lock = NULL; 6255 struct napi_struct *napi; 6256 6257 restart: 6258 napi_poll = NULL; 6259 6260 rcu_read_lock(); 6261 6262 napi = napi_by_id(napi_id); 6263 if (!napi) 6264 goto out; 6265 6266 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6267 preempt_disable(); 6268 for (;;) { 6269 int work = 0; 6270 6271 local_bh_disable(); 6272 if (!napi_poll) { 6273 unsigned long val = READ_ONCE(napi->state); 6274 6275 /* If multiple threads are competing for this napi, 6276 * we avoid dirtying napi->state as much as we can. 6277 */ 6278 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6279 NAPIF_STATE_IN_BUSY_POLL)) { 6280 if (prefer_busy_poll) 6281 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6282 goto count; 6283 } 6284 if (cmpxchg(&napi->state, val, 6285 val | NAPIF_STATE_IN_BUSY_POLL | 6286 NAPIF_STATE_SCHED) != val) { 6287 if (prefer_busy_poll) 6288 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6289 goto count; 6290 } 6291 have_poll_lock = netpoll_poll_lock(napi); 6292 napi_poll = napi->poll; 6293 } 6294 work = napi_poll(napi, budget); 6295 trace_napi_poll(napi, work, budget); 6296 gro_normal_list(napi); 6297 count: 6298 if (work > 0) 6299 __NET_ADD_STATS(dev_net(napi->dev), 6300 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6301 local_bh_enable(); 6302 6303 if (!loop_end || loop_end(loop_end_arg, start_time)) 6304 break; 6305 6306 if (unlikely(need_resched())) { 6307 if (napi_poll) 6308 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6309 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6310 preempt_enable(); 6311 rcu_read_unlock(); 6312 cond_resched(); 6313 if (loop_end(loop_end_arg, start_time)) 6314 return; 6315 goto restart; 6316 } 6317 cpu_relax(); 6318 } 6319 if (napi_poll) 6320 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6321 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6322 preempt_enable(); 6323 out: 6324 rcu_read_unlock(); 6325 } 6326 EXPORT_SYMBOL(napi_busy_loop); 6327 6328 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6329 6330 static void napi_hash_add(struct napi_struct *napi) 6331 { 6332 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6333 return; 6334 6335 spin_lock(&napi_hash_lock); 6336 6337 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6338 do { 6339 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6340 napi_gen_id = MIN_NAPI_ID; 6341 } while (napi_by_id(napi_gen_id)); 6342 napi->napi_id = napi_gen_id; 6343 6344 hlist_add_head_rcu(&napi->napi_hash_node, 6345 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6346 6347 spin_unlock(&napi_hash_lock); 6348 } 6349 6350 /* Warning : caller is responsible to make sure rcu grace period 6351 * is respected before freeing memory containing @napi 6352 */ 6353 static void napi_hash_del(struct napi_struct *napi) 6354 { 6355 spin_lock(&napi_hash_lock); 6356 6357 hlist_del_init_rcu(&napi->napi_hash_node); 6358 6359 spin_unlock(&napi_hash_lock); 6360 } 6361 6362 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6363 { 6364 struct napi_struct *napi; 6365 6366 napi = container_of(timer, struct napi_struct, timer); 6367 6368 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6369 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6370 */ 6371 if (!napi_disable_pending(napi) && 6372 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6373 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6374 __napi_schedule_irqoff(napi); 6375 } 6376 6377 return HRTIMER_NORESTART; 6378 } 6379 6380 static void init_gro_hash(struct napi_struct *napi) 6381 { 6382 int i; 6383 6384 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6385 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6386 napi->gro_hash[i].count = 0; 6387 } 6388 napi->gro_bitmask = 0; 6389 } 6390 6391 int dev_set_threaded(struct net_device *dev, bool threaded) 6392 { 6393 struct napi_struct *napi; 6394 int err = 0; 6395 6396 if (dev->threaded == threaded) 6397 return 0; 6398 6399 if (threaded) { 6400 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6401 if (!napi->thread) { 6402 err = napi_kthread_create(napi); 6403 if (err) { 6404 threaded = false; 6405 break; 6406 } 6407 } 6408 } 6409 } 6410 6411 dev->threaded = threaded; 6412 6413 /* Make sure kthread is created before THREADED bit 6414 * is set. 6415 */ 6416 smp_mb__before_atomic(); 6417 6418 /* Setting/unsetting threaded mode on a napi might not immediately 6419 * take effect, if the current napi instance is actively being 6420 * polled. In this case, the switch between threaded mode and 6421 * softirq mode will happen in the next round of napi_schedule(). 6422 * This should not cause hiccups/stalls to the live traffic. 6423 */ 6424 list_for_each_entry(napi, &dev->napi_list, dev_list) 6425 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6426 6427 return err; 6428 } 6429 EXPORT_SYMBOL(dev_set_threaded); 6430 6431 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6432 int (*poll)(struct napi_struct *, int), int weight) 6433 { 6434 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6435 return; 6436 6437 INIT_LIST_HEAD(&napi->poll_list); 6438 INIT_HLIST_NODE(&napi->napi_hash_node); 6439 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6440 napi->timer.function = napi_watchdog; 6441 init_gro_hash(napi); 6442 napi->skb = NULL; 6443 INIT_LIST_HEAD(&napi->rx_list); 6444 napi->rx_count = 0; 6445 napi->poll = poll; 6446 if (weight > NAPI_POLL_WEIGHT) 6447 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6448 weight); 6449 napi->weight = weight; 6450 napi->dev = dev; 6451 #ifdef CONFIG_NETPOLL 6452 napi->poll_owner = -1; 6453 #endif 6454 napi->list_owner = -1; 6455 set_bit(NAPI_STATE_SCHED, &napi->state); 6456 set_bit(NAPI_STATE_NPSVC, &napi->state); 6457 list_add_rcu(&napi->dev_list, &dev->napi_list); 6458 napi_hash_add(napi); 6459 napi_get_frags_check(napi); 6460 /* Create kthread for this napi if dev->threaded is set. 6461 * Clear dev->threaded if kthread creation failed so that 6462 * threaded mode will not be enabled in napi_enable(). 6463 */ 6464 if (dev->threaded && napi_kthread_create(napi)) 6465 dev->threaded = 0; 6466 } 6467 EXPORT_SYMBOL(netif_napi_add_weight); 6468 6469 void napi_disable(struct napi_struct *n) 6470 { 6471 unsigned long val, new; 6472 6473 might_sleep(); 6474 set_bit(NAPI_STATE_DISABLE, &n->state); 6475 6476 val = READ_ONCE(n->state); 6477 do { 6478 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6479 usleep_range(20, 200); 6480 val = READ_ONCE(n->state); 6481 } 6482 6483 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6484 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6485 } while (!try_cmpxchg(&n->state, &val, new)); 6486 6487 hrtimer_cancel(&n->timer); 6488 6489 clear_bit(NAPI_STATE_DISABLE, &n->state); 6490 } 6491 EXPORT_SYMBOL(napi_disable); 6492 6493 /** 6494 * napi_enable - enable NAPI scheduling 6495 * @n: NAPI context 6496 * 6497 * Resume NAPI from being scheduled on this context. 6498 * Must be paired with napi_disable. 6499 */ 6500 void napi_enable(struct napi_struct *n) 6501 { 6502 unsigned long new, val = READ_ONCE(n->state); 6503 6504 do { 6505 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6506 6507 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6508 if (n->dev->threaded && n->thread) 6509 new |= NAPIF_STATE_THREADED; 6510 } while (!try_cmpxchg(&n->state, &val, new)); 6511 } 6512 EXPORT_SYMBOL(napi_enable); 6513 6514 static void flush_gro_hash(struct napi_struct *napi) 6515 { 6516 int i; 6517 6518 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6519 struct sk_buff *skb, *n; 6520 6521 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6522 kfree_skb(skb); 6523 napi->gro_hash[i].count = 0; 6524 } 6525 } 6526 6527 /* Must be called in process context */ 6528 void __netif_napi_del(struct napi_struct *napi) 6529 { 6530 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6531 return; 6532 6533 napi_hash_del(napi); 6534 list_del_rcu(&napi->dev_list); 6535 napi_free_frags(napi); 6536 6537 flush_gro_hash(napi); 6538 napi->gro_bitmask = 0; 6539 6540 if (napi->thread) { 6541 kthread_stop(napi->thread); 6542 napi->thread = NULL; 6543 } 6544 } 6545 EXPORT_SYMBOL(__netif_napi_del); 6546 6547 static int __napi_poll(struct napi_struct *n, bool *repoll) 6548 { 6549 int work, weight; 6550 6551 weight = n->weight; 6552 6553 /* This NAPI_STATE_SCHED test is for avoiding a race 6554 * with netpoll's poll_napi(). Only the entity which 6555 * obtains the lock and sees NAPI_STATE_SCHED set will 6556 * actually make the ->poll() call. Therefore we avoid 6557 * accidentally calling ->poll() when NAPI is not scheduled. 6558 */ 6559 work = 0; 6560 if (napi_is_scheduled(n)) { 6561 work = n->poll(n, weight); 6562 trace_napi_poll(n, work, weight); 6563 } 6564 6565 if (unlikely(work > weight)) 6566 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6567 n->poll, work, weight); 6568 6569 if (likely(work < weight)) 6570 return work; 6571 6572 /* Drivers must not modify the NAPI state if they 6573 * consume the entire weight. In such cases this code 6574 * still "owns" the NAPI instance and therefore can 6575 * move the instance around on the list at-will. 6576 */ 6577 if (unlikely(napi_disable_pending(n))) { 6578 napi_complete(n); 6579 return work; 6580 } 6581 6582 /* The NAPI context has more processing work, but busy-polling 6583 * is preferred. Exit early. 6584 */ 6585 if (napi_prefer_busy_poll(n)) { 6586 if (napi_complete_done(n, work)) { 6587 /* If timeout is not set, we need to make sure 6588 * that the NAPI is re-scheduled. 6589 */ 6590 napi_schedule(n); 6591 } 6592 return work; 6593 } 6594 6595 if (n->gro_bitmask) { 6596 /* flush too old packets 6597 * If HZ < 1000, flush all packets. 6598 */ 6599 napi_gro_flush(n, HZ >= 1000); 6600 } 6601 6602 gro_normal_list(n); 6603 6604 /* Some drivers may have called napi_schedule 6605 * prior to exhausting their budget. 6606 */ 6607 if (unlikely(!list_empty(&n->poll_list))) { 6608 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6609 n->dev ? n->dev->name : "backlog"); 6610 return work; 6611 } 6612 6613 *repoll = true; 6614 6615 return work; 6616 } 6617 6618 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6619 { 6620 bool do_repoll = false; 6621 void *have; 6622 int work; 6623 6624 list_del_init(&n->poll_list); 6625 6626 have = netpoll_poll_lock(n); 6627 6628 work = __napi_poll(n, &do_repoll); 6629 6630 if (do_repoll) 6631 list_add_tail(&n->poll_list, repoll); 6632 6633 netpoll_poll_unlock(have); 6634 6635 return work; 6636 } 6637 6638 static int napi_thread_wait(struct napi_struct *napi) 6639 { 6640 bool woken = false; 6641 6642 set_current_state(TASK_INTERRUPTIBLE); 6643 6644 while (!kthread_should_stop()) { 6645 /* Testing SCHED_THREADED bit here to make sure the current 6646 * kthread owns this napi and could poll on this napi. 6647 * Testing SCHED bit is not enough because SCHED bit might be 6648 * set by some other busy poll thread or by napi_disable(). 6649 */ 6650 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 6651 WARN_ON(!list_empty(&napi->poll_list)); 6652 __set_current_state(TASK_RUNNING); 6653 return 0; 6654 } 6655 6656 schedule(); 6657 /* woken being true indicates this thread owns this napi. */ 6658 woken = true; 6659 set_current_state(TASK_INTERRUPTIBLE); 6660 } 6661 __set_current_state(TASK_RUNNING); 6662 6663 return -1; 6664 } 6665 6666 static void skb_defer_free_flush(struct softnet_data *sd) 6667 { 6668 struct sk_buff *skb, *next; 6669 6670 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6671 if (!READ_ONCE(sd->defer_list)) 6672 return; 6673 6674 spin_lock(&sd->defer_lock); 6675 skb = sd->defer_list; 6676 sd->defer_list = NULL; 6677 sd->defer_count = 0; 6678 spin_unlock(&sd->defer_lock); 6679 6680 while (skb != NULL) { 6681 next = skb->next; 6682 napi_consume_skb(skb, 1); 6683 skb = next; 6684 } 6685 } 6686 6687 static int napi_threaded_poll(void *data) 6688 { 6689 struct napi_struct *napi = data; 6690 struct softnet_data *sd; 6691 void *have; 6692 6693 while (!napi_thread_wait(napi)) { 6694 for (;;) { 6695 bool repoll = false; 6696 6697 local_bh_disable(); 6698 sd = this_cpu_ptr(&softnet_data); 6699 sd->in_napi_threaded_poll = true; 6700 6701 have = netpoll_poll_lock(napi); 6702 __napi_poll(napi, &repoll); 6703 netpoll_poll_unlock(have); 6704 6705 sd->in_napi_threaded_poll = false; 6706 barrier(); 6707 6708 if (sd_has_rps_ipi_waiting(sd)) { 6709 local_irq_disable(); 6710 net_rps_action_and_irq_enable(sd); 6711 } 6712 skb_defer_free_flush(sd); 6713 local_bh_enable(); 6714 6715 if (!repoll) 6716 break; 6717 6718 cond_resched(); 6719 } 6720 } 6721 return 0; 6722 } 6723 6724 static __latent_entropy void net_rx_action(struct softirq_action *h) 6725 { 6726 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6727 unsigned long time_limit = jiffies + 6728 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs)); 6729 int budget = READ_ONCE(netdev_budget); 6730 LIST_HEAD(list); 6731 LIST_HEAD(repoll); 6732 6733 start: 6734 sd->in_net_rx_action = true; 6735 local_irq_disable(); 6736 list_splice_init(&sd->poll_list, &list); 6737 local_irq_enable(); 6738 6739 for (;;) { 6740 struct napi_struct *n; 6741 6742 skb_defer_free_flush(sd); 6743 6744 if (list_empty(&list)) { 6745 if (list_empty(&repoll)) { 6746 sd->in_net_rx_action = false; 6747 barrier(); 6748 /* We need to check if ____napi_schedule() 6749 * had refilled poll_list while 6750 * sd->in_net_rx_action was true. 6751 */ 6752 if (!list_empty(&sd->poll_list)) 6753 goto start; 6754 if (!sd_has_rps_ipi_waiting(sd)) 6755 goto end; 6756 } 6757 break; 6758 } 6759 6760 n = list_first_entry(&list, struct napi_struct, poll_list); 6761 budget -= napi_poll(n, &repoll); 6762 6763 /* If softirq window is exhausted then punt. 6764 * Allow this to run for 2 jiffies since which will allow 6765 * an average latency of 1.5/HZ. 6766 */ 6767 if (unlikely(budget <= 0 || 6768 time_after_eq(jiffies, time_limit))) { 6769 sd->time_squeeze++; 6770 break; 6771 } 6772 } 6773 6774 local_irq_disable(); 6775 6776 list_splice_tail_init(&sd->poll_list, &list); 6777 list_splice_tail(&repoll, &list); 6778 list_splice(&list, &sd->poll_list); 6779 if (!list_empty(&sd->poll_list)) 6780 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6781 else 6782 sd->in_net_rx_action = false; 6783 6784 net_rps_action_and_irq_enable(sd); 6785 end:; 6786 } 6787 6788 struct netdev_adjacent { 6789 struct net_device *dev; 6790 netdevice_tracker dev_tracker; 6791 6792 /* upper master flag, there can only be one master device per list */ 6793 bool master; 6794 6795 /* lookup ignore flag */ 6796 bool ignore; 6797 6798 /* counter for the number of times this device was added to us */ 6799 u16 ref_nr; 6800 6801 /* private field for the users */ 6802 void *private; 6803 6804 struct list_head list; 6805 struct rcu_head rcu; 6806 }; 6807 6808 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6809 struct list_head *adj_list) 6810 { 6811 struct netdev_adjacent *adj; 6812 6813 list_for_each_entry(adj, adj_list, list) { 6814 if (adj->dev == adj_dev) 6815 return adj; 6816 } 6817 return NULL; 6818 } 6819 6820 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6821 struct netdev_nested_priv *priv) 6822 { 6823 struct net_device *dev = (struct net_device *)priv->data; 6824 6825 return upper_dev == dev; 6826 } 6827 6828 /** 6829 * netdev_has_upper_dev - Check if device is linked to an upper device 6830 * @dev: device 6831 * @upper_dev: upper device to check 6832 * 6833 * Find out if a device is linked to specified upper device and return true 6834 * in case it is. Note that this checks only immediate upper device, 6835 * not through a complete stack of devices. The caller must hold the RTNL lock. 6836 */ 6837 bool netdev_has_upper_dev(struct net_device *dev, 6838 struct net_device *upper_dev) 6839 { 6840 struct netdev_nested_priv priv = { 6841 .data = (void *)upper_dev, 6842 }; 6843 6844 ASSERT_RTNL(); 6845 6846 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6847 &priv); 6848 } 6849 EXPORT_SYMBOL(netdev_has_upper_dev); 6850 6851 /** 6852 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 6853 * @dev: device 6854 * @upper_dev: upper device to check 6855 * 6856 * Find out if a device is linked to specified upper device and return true 6857 * in case it is. Note that this checks the entire upper device chain. 6858 * The caller must hold rcu lock. 6859 */ 6860 6861 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6862 struct net_device *upper_dev) 6863 { 6864 struct netdev_nested_priv priv = { 6865 .data = (void *)upper_dev, 6866 }; 6867 6868 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6869 &priv); 6870 } 6871 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6872 6873 /** 6874 * netdev_has_any_upper_dev - Check if device is linked to some device 6875 * @dev: device 6876 * 6877 * Find out if a device is linked to an upper device and return true in case 6878 * it is. The caller must hold the RTNL lock. 6879 */ 6880 bool netdev_has_any_upper_dev(struct net_device *dev) 6881 { 6882 ASSERT_RTNL(); 6883 6884 return !list_empty(&dev->adj_list.upper); 6885 } 6886 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6887 6888 /** 6889 * netdev_master_upper_dev_get - Get master upper device 6890 * @dev: device 6891 * 6892 * Find a master upper device and return pointer to it or NULL in case 6893 * it's not there. The caller must hold the RTNL lock. 6894 */ 6895 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6896 { 6897 struct netdev_adjacent *upper; 6898 6899 ASSERT_RTNL(); 6900 6901 if (list_empty(&dev->adj_list.upper)) 6902 return NULL; 6903 6904 upper = list_first_entry(&dev->adj_list.upper, 6905 struct netdev_adjacent, list); 6906 if (likely(upper->master)) 6907 return upper->dev; 6908 return NULL; 6909 } 6910 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6911 6912 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6913 { 6914 struct netdev_adjacent *upper; 6915 6916 ASSERT_RTNL(); 6917 6918 if (list_empty(&dev->adj_list.upper)) 6919 return NULL; 6920 6921 upper = list_first_entry(&dev->adj_list.upper, 6922 struct netdev_adjacent, list); 6923 if (likely(upper->master) && !upper->ignore) 6924 return upper->dev; 6925 return NULL; 6926 } 6927 6928 /** 6929 * netdev_has_any_lower_dev - Check if device is linked to some device 6930 * @dev: device 6931 * 6932 * Find out if a device is linked to a lower device and return true in case 6933 * it is. The caller must hold the RTNL lock. 6934 */ 6935 static bool netdev_has_any_lower_dev(struct net_device *dev) 6936 { 6937 ASSERT_RTNL(); 6938 6939 return !list_empty(&dev->adj_list.lower); 6940 } 6941 6942 void *netdev_adjacent_get_private(struct list_head *adj_list) 6943 { 6944 struct netdev_adjacent *adj; 6945 6946 adj = list_entry(adj_list, struct netdev_adjacent, list); 6947 6948 return adj->private; 6949 } 6950 EXPORT_SYMBOL(netdev_adjacent_get_private); 6951 6952 /** 6953 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6954 * @dev: device 6955 * @iter: list_head ** of the current position 6956 * 6957 * Gets the next device from the dev's upper list, starting from iter 6958 * position. The caller must hold RCU read lock. 6959 */ 6960 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6961 struct list_head **iter) 6962 { 6963 struct netdev_adjacent *upper; 6964 6965 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6966 6967 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6968 6969 if (&upper->list == &dev->adj_list.upper) 6970 return NULL; 6971 6972 *iter = &upper->list; 6973 6974 return upper->dev; 6975 } 6976 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6977 6978 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6979 struct list_head **iter, 6980 bool *ignore) 6981 { 6982 struct netdev_adjacent *upper; 6983 6984 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6985 6986 if (&upper->list == &dev->adj_list.upper) 6987 return NULL; 6988 6989 *iter = &upper->list; 6990 *ignore = upper->ignore; 6991 6992 return upper->dev; 6993 } 6994 6995 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6996 struct list_head **iter) 6997 { 6998 struct netdev_adjacent *upper; 6999 7000 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7001 7002 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7003 7004 if (&upper->list == &dev->adj_list.upper) 7005 return NULL; 7006 7007 *iter = &upper->list; 7008 7009 return upper->dev; 7010 } 7011 7012 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7013 int (*fn)(struct net_device *dev, 7014 struct netdev_nested_priv *priv), 7015 struct netdev_nested_priv *priv) 7016 { 7017 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7018 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7019 int ret, cur = 0; 7020 bool ignore; 7021 7022 now = dev; 7023 iter = &dev->adj_list.upper; 7024 7025 while (1) { 7026 if (now != dev) { 7027 ret = fn(now, priv); 7028 if (ret) 7029 return ret; 7030 } 7031 7032 next = NULL; 7033 while (1) { 7034 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7035 if (!udev) 7036 break; 7037 if (ignore) 7038 continue; 7039 7040 next = udev; 7041 niter = &udev->adj_list.upper; 7042 dev_stack[cur] = now; 7043 iter_stack[cur++] = iter; 7044 break; 7045 } 7046 7047 if (!next) { 7048 if (!cur) 7049 return 0; 7050 next = dev_stack[--cur]; 7051 niter = iter_stack[cur]; 7052 } 7053 7054 now = next; 7055 iter = niter; 7056 } 7057 7058 return 0; 7059 } 7060 7061 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7062 int (*fn)(struct net_device *dev, 7063 struct netdev_nested_priv *priv), 7064 struct netdev_nested_priv *priv) 7065 { 7066 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7067 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7068 int ret, cur = 0; 7069 7070 now = dev; 7071 iter = &dev->adj_list.upper; 7072 7073 while (1) { 7074 if (now != dev) { 7075 ret = fn(now, priv); 7076 if (ret) 7077 return ret; 7078 } 7079 7080 next = NULL; 7081 while (1) { 7082 udev = netdev_next_upper_dev_rcu(now, &iter); 7083 if (!udev) 7084 break; 7085 7086 next = udev; 7087 niter = &udev->adj_list.upper; 7088 dev_stack[cur] = now; 7089 iter_stack[cur++] = iter; 7090 break; 7091 } 7092 7093 if (!next) { 7094 if (!cur) 7095 return 0; 7096 next = dev_stack[--cur]; 7097 niter = iter_stack[cur]; 7098 } 7099 7100 now = next; 7101 iter = niter; 7102 } 7103 7104 return 0; 7105 } 7106 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7107 7108 static bool __netdev_has_upper_dev(struct net_device *dev, 7109 struct net_device *upper_dev) 7110 { 7111 struct netdev_nested_priv priv = { 7112 .flags = 0, 7113 .data = (void *)upper_dev, 7114 }; 7115 7116 ASSERT_RTNL(); 7117 7118 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7119 &priv); 7120 } 7121 7122 /** 7123 * netdev_lower_get_next_private - Get the next ->private from the 7124 * lower neighbour list 7125 * @dev: device 7126 * @iter: list_head ** of the current position 7127 * 7128 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7129 * list, starting from iter position. The caller must hold either hold the 7130 * RTNL lock or its own locking that guarantees that the neighbour lower 7131 * list will remain unchanged. 7132 */ 7133 void *netdev_lower_get_next_private(struct net_device *dev, 7134 struct list_head **iter) 7135 { 7136 struct netdev_adjacent *lower; 7137 7138 lower = list_entry(*iter, struct netdev_adjacent, list); 7139 7140 if (&lower->list == &dev->adj_list.lower) 7141 return NULL; 7142 7143 *iter = lower->list.next; 7144 7145 return lower->private; 7146 } 7147 EXPORT_SYMBOL(netdev_lower_get_next_private); 7148 7149 /** 7150 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7151 * lower neighbour list, RCU 7152 * variant 7153 * @dev: device 7154 * @iter: list_head ** of the current position 7155 * 7156 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7157 * list, starting from iter position. The caller must hold RCU read lock. 7158 */ 7159 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7160 struct list_head **iter) 7161 { 7162 struct netdev_adjacent *lower; 7163 7164 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7165 7166 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7167 7168 if (&lower->list == &dev->adj_list.lower) 7169 return NULL; 7170 7171 *iter = &lower->list; 7172 7173 return lower->private; 7174 } 7175 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7176 7177 /** 7178 * netdev_lower_get_next - Get the next device from the lower neighbour 7179 * list 7180 * @dev: device 7181 * @iter: list_head ** of the current position 7182 * 7183 * Gets the next netdev_adjacent from the dev's lower neighbour 7184 * list, starting from iter position. The caller must hold RTNL lock or 7185 * its own locking that guarantees that the neighbour lower 7186 * list will remain unchanged. 7187 */ 7188 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7189 { 7190 struct netdev_adjacent *lower; 7191 7192 lower = list_entry(*iter, struct netdev_adjacent, list); 7193 7194 if (&lower->list == &dev->adj_list.lower) 7195 return NULL; 7196 7197 *iter = lower->list.next; 7198 7199 return lower->dev; 7200 } 7201 EXPORT_SYMBOL(netdev_lower_get_next); 7202 7203 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7204 struct list_head **iter) 7205 { 7206 struct netdev_adjacent *lower; 7207 7208 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7209 7210 if (&lower->list == &dev->adj_list.lower) 7211 return NULL; 7212 7213 *iter = &lower->list; 7214 7215 return lower->dev; 7216 } 7217 7218 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7219 struct list_head **iter, 7220 bool *ignore) 7221 { 7222 struct netdev_adjacent *lower; 7223 7224 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7225 7226 if (&lower->list == &dev->adj_list.lower) 7227 return NULL; 7228 7229 *iter = &lower->list; 7230 *ignore = lower->ignore; 7231 7232 return lower->dev; 7233 } 7234 7235 int netdev_walk_all_lower_dev(struct net_device *dev, 7236 int (*fn)(struct net_device *dev, 7237 struct netdev_nested_priv *priv), 7238 struct netdev_nested_priv *priv) 7239 { 7240 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7241 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7242 int ret, cur = 0; 7243 7244 now = dev; 7245 iter = &dev->adj_list.lower; 7246 7247 while (1) { 7248 if (now != dev) { 7249 ret = fn(now, priv); 7250 if (ret) 7251 return ret; 7252 } 7253 7254 next = NULL; 7255 while (1) { 7256 ldev = netdev_next_lower_dev(now, &iter); 7257 if (!ldev) 7258 break; 7259 7260 next = ldev; 7261 niter = &ldev->adj_list.lower; 7262 dev_stack[cur] = now; 7263 iter_stack[cur++] = iter; 7264 break; 7265 } 7266 7267 if (!next) { 7268 if (!cur) 7269 return 0; 7270 next = dev_stack[--cur]; 7271 niter = iter_stack[cur]; 7272 } 7273 7274 now = next; 7275 iter = niter; 7276 } 7277 7278 return 0; 7279 } 7280 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7281 7282 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7283 int (*fn)(struct net_device *dev, 7284 struct netdev_nested_priv *priv), 7285 struct netdev_nested_priv *priv) 7286 { 7287 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7288 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7289 int ret, cur = 0; 7290 bool ignore; 7291 7292 now = dev; 7293 iter = &dev->adj_list.lower; 7294 7295 while (1) { 7296 if (now != dev) { 7297 ret = fn(now, priv); 7298 if (ret) 7299 return ret; 7300 } 7301 7302 next = NULL; 7303 while (1) { 7304 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7305 if (!ldev) 7306 break; 7307 if (ignore) 7308 continue; 7309 7310 next = ldev; 7311 niter = &ldev->adj_list.lower; 7312 dev_stack[cur] = now; 7313 iter_stack[cur++] = iter; 7314 break; 7315 } 7316 7317 if (!next) { 7318 if (!cur) 7319 return 0; 7320 next = dev_stack[--cur]; 7321 niter = iter_stack[cur]; 7322 } 7323 7324 now = next; 7325 iter = niter; 7326 } 7327 7328 return 0; 7329 } 7330 7331 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7332 struct list_head **iter) 7333 { 7334 struct netdev_adjacent *lower; 7335 7336 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7337 if (&lower->list == &dev->adj_list.lower) 7338 return NULL; 7339 7340 *iter = &lower->list; 7341 7342 return lower->dev; 7343 } 7344 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7345 7346 static u8 __netdev_upper_depth(struct net_device *dev) 7347 { 7348 struct net_device *udev; 7349 struct list_head *iter; 7350 u8 max_depth = 0; 7351 bool ignore; 7352 7353 for (iter = &dev->adj_list.upper, 7354 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7355 udev; 7356 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7357 if (ignore) 7358 continue; 7359 if (max_depth < udev->upper_level) 7360 max_depth = udev->upper_level; 7361 } 7362 7363 return max_depth; 7364 } 7365 7366 static u8 __netdev_lower_depth(struct net_device *dev) 7367 { 7368 struct net_device *ldev; 7369 struct list_head *iter; 7370 u8 max_depth = 0; 7371 bool ignore; 7372 7373 for (iter = &dev->adj_list.lower, 7374 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7375 ldev; 7376 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7377 if (ignore) 7378 continue; 7379 if (max_depth < ldev->lower_level) 7380 max_depth = ldev->lower_level; 7381 } 7382 7383 return max_depth; 7384 } 7385 7386 static int __netdev_update_upper_level(struct net_device *dev, 7387 struct netdev_nested_priv *__unused) 7388 { 7389 dev->upper_level = __netdev_upper_depth(dev) + 1; 7390 return 0; 7391 } 7392 7393 #ifdef CONFIG_LOCKDEP 7394 static LIST_HEAD(net_unlink_list); 7395 7396 static void net_unlink_todo(struct net_device *dev) 7397 { 7398 if (list_empty(&dev->unlink_list)) 7399 list_add_tail(&dev->unlink_list, &net_unlink_list); 7400 } 7401 #endif 7402 7403 static int __netdev_update_lower_level(struct net_device *dev, 7404 struct netdev_nested_priv *priv) 7405 { 7406 dev->lower_level = __netdev_lower_depth(dev) + 1; 7407 7408 #ifdef CONFIG_LOCKDEP 7409 if (!priv) 7410 return 0; 7411 7412 if (priv->flags & NESTED_SYNC_IMM) 7413 dev->nested_level = dev->lower_level - 1; 7414 if (priv->flags & NESTED_SYNC_TODO) 7415 net_unlink_todo(dev); 7416 #endif 7417 return 0; 7418 } 7419 7420 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7421 int (*fn)(struct net_device *dev, 7422 struct netdev_nested_priv *priv), 7423 struct netdev_nested_priv *priv) 7424 { 7425 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7426 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7427 int ret, cur = 0; 7428 7429 now = dev; 7430 iter = &dev->adj_list.lower; 7431 7432 while (1) { 7433 if (now != dev) { 7434 ret = fn(now, priv); 7435 if (ret) 7436 return ret; 7437 } 7438 7439 next = NULL; 7440 while (1) { 7441 ldev = netdev_next_lower_dev_rcu(now, &iter); 7442 if (!ldev) 7443 break; 7444 7445 next = ldev; 7446 niter = &ldev->adj_list.lower; 7447 dev_stack[cur] = now; 7448 iter_stack[cur++] = iter; 7449 break; 7450 } 7451 7452 if (!next) { 7453 if (!cur) 7454 return 0; 7455 next = dev_stack[--cur]; 7456 niter = iter_stack[cur]; 7457 } 7458 7459 now = next; 7460 iter = niter; 7461 } 7462 7463 return 0; 7464 } 7465 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7466 7467 /** 7468 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7469 * lower neighbour list, RCU 7470 * variant 7471 * @dev: device 7472 * 7473 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7474 * list. The caller must hold RCU read lock. 7475 */ 7476 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7477 { 7478 struct netdev_adjacent *lower; 7479 7480 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7481 struct netdev_adjacent, list); 7482 if (lower) 7483 return lower->private; 7484 return NULL; 7485 } 7486 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7487 7488 /** 7489 * netdev_master_upper_dev_get_rcu - Get master upper device 7490 * @dev: device 7491 * 7492 * Find a master upper device and return pointer to it or NULL in case 7493 * it's not there. The caller must hold the RCU read lock. 7494 */ 7495 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7496 { 7497 struct netdev_adjacent *upper; 7498 7499 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7500 struct netdev_adjacent, list); 7501 if (upper && likely(upper->master)) 7502 return upper->dev; 7503 return NULL; 7504 } 7505 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7506 7507 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7508 struct net_device *adj_dev, 7509 struct list_head *dev_list) 7510 { 7511 char linkname[IFNAMSIZ+7]; 7512 7513 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7514 "upper_%s" : "lower_%s", adj_dev->name); 7515 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7516 linkname); 7517 } 7518 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7519 char *name, 7520 struct list_head *dev_list) 7521 { 7522 char linkname[IFNAMSIZ+7]; 7523 7524 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7525 "upper_%s" : "lower_%s", name); 7526 sysfs_remove_link(&(dev->dev.kobj), linkname); 7527 } 7528 7529 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7530 struct net_device *adj_dev, 7531 struct list_head *dev_list) 7532 { 7533 return (dev_list == &dev->adj_list.upper || 7534 dev_list == &dev->adj_list.lower) && 7535 net_eq(dev_net(dev), dev_net(adj_dev)); 7536 } 7537 7538 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7539 struct net_device *adj_dev, 7540 struct list_head *dev_list, 7541 void *private, bool master) 7542 { 7543 struct netdev_adjacent *adj; 7544 int ret; 7545 7546 adj = __netdev_find_adj(adj_dev, dev_list); 7547 7548 if (adj) { 7549 adj->ref_nr += 1; 7550 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7551 dev->name, adj_dev->name, adj->ref_nr); 7552 7553 return 0; 7554 } 7555 7556 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7557 if (!adj) 7558 return -ENOMEM; 7559 7560 adj->dev = adj_dev; 7561 adj->master = master; 7562 adj->ref_nr = 1; 7563 adj->private = private; 7564 adj->ignore = false; 7565 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7566 7567 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7568 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7569 7570 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7571 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7572 if (ret) 7573 goto free_adj; 7574 } 7575 7576 /* Ensure that master link is always the first item in list. */ 7577 if (master) { 7578 ret = sysfs_create_link(&(dev->dev.kobj), 7579 &(adj_dev->dev.kobj), "master"); 7580 if (ret) 7581 goto remove_symlinks; 7582 7583 list_add_rcu(&adj->list, dev_list); 7584 } else { 7585 list_add_tail_rcu(&adj->list, dev_list); 7586 } 7587 7588 return 0; 7589 7590 remove_symlinks: 7591 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7592 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7593 free_adj: 7594 netdev_put(adj_dev, &adj->dev_tracker); 7595 kfree(adj); 7596 7597 return ret; 7598 } 7599 7600 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7601 struct net_device *adj_dev, 7602 u16 ref_nr, 7603 struct list_head *dev_list) 7604 { 7605 struct netdev_adjacent *adj; 7606 7607 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7608 dev->name, adj_dev->name, ref_nr); 7609 7610 adj = __netdev_find_adj(adj_dev, dev_list); 7611 7612 if (!adj) { 7613 pr_err("Adjacency does not exist for device %s from %s\n", 7614 dev->name, adj_dev->name); 7615 WARN_ON(1); 7616 return; 7617 } 7618 7619 if (adj->ref_nr > ref_nr) { 7620 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7621 dev->name, adj_dev->name, ref_nr, 7622 adj->ref_nr - ref_nr); 7623 adj->ref_nr -= ref_nr; 7624 return; 7625 } 7626 7627 if (adj->master) 7628 sysfs_remove_link(&(dev->dev.kobj), "master"); 7629 7630 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7631 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7632 7633 list_del_rcu(&adj->list); 7634 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7635 adj_dev->name, dev->name, adj_dev->name); 7636 netdev_put(adj_dev, &adj->dev_tracker); 7637 kfree_rcu(adj, rcu); 7638 } 7639 7640 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7641 struct net_device *upper_dev, 7642 struct list_head *up_list, 7643 struct list_head *down_list, 7644 void *private, bool master) 7645 { 7646 int ret; 7647 7648 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7649 private, master); 7650 if (ret) 7651 return ret; 7652 7653 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7654 private, false); 7655 if (ret) { 7656 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7657 return ret; 7658 } 7659 7660 return 0; 7661 } 7662 7663 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7664 struct net_device *upper_dev, 7665 u16 ref_nr, 7666 struct list_head *up_list, 7667 struct list_head *down_list) 7668 { 7669 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7670 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7671 } 7672 7673 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7674 struct net_device *upper_dev, 7675 void *private, bool master) 7676 { 7677 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7678 &dev->adj_list.upper, 7679 &upper_dev->adj_list.lower, 7680 private, master); 7681 } 7682 7683 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7684 struct net_device *upper_dev) 7685 { 7686 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7687 &dev->adj_list.upper, 7688 &upper_dev->adj_list.lower); 7689 } 7690 7691 static int __netdev_upper_dev_link(struct net_device *dev, 7692 struct net_device *upper_dev, bool master, 7693 void *upper_priv, void *upper_info, 7694 struct netdev_nested_priv *priv, 7695 struct netlink_ext_ack *extack) 7696 { 7697 struct netdev_notifier_changeupper_info changeupper_info = { 7698 .info = { 7699 .dev = dev, 7700 .extack = extack, 7701 }, 7702 .upper_dev = upper_dev, 7703 .master = master, 7704 .linking = true, 7705 .upper_info = upper_info, 7706 }; 7707 struct net_device *master_dev; 7708 int ret = 0; 7709 7710 ASSERT_RTNL(); 7711 7712 if (dev == upper_dev) 7713 return -EBUSY; 7714 7715 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7716 if (__netdev_has_upper_dev(upper_dev, dev)) 7717 return -EBUSY; 7718 7719 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7720 return -EMLINK; 7721 7722 if (!master) { 7723 if (__netdev_has_upper_dev(dev, upper_dev)) 7724 return -EEXIST; 7725 } else { 7726 master_dev = __netdev_master_upper_dev_get(dev); 7727 if (master_dev) 7728 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7729 } 7730 7731 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7732 &changeupper_info.info); 7733 ret = notifier_to_errno(ret); 7734 if (ret) 7735 return ret; 7736 7737 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7738 master); 7739 if (ret) 7740 return ret; 7741 7742 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7743 &changeupper_info.info); 7744 ret = notifier_to_errno(ret); 7745 if (ret) 7746 goto rollback; 7747 7748 __netdev_update_upper_level(dev, NULL); 7749 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7750 7751 __netdev_update_lower_level(upper_dev, priv); 7752 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7753 priv); 7754 7755 return 0; 7756 7757 rollback: 7758 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7759 7760 return ret; 7761 } 7762 7763 /** 7764 * netdev_upper_dev_link - Add a link to the upper device 7765 * @dev: device 7766 * @upper_dev: new upper device 7767 * @extack: netlink extended ack 7768 * 7769 * Adds a link to device which is upper to this one. The caller must hold 7770 * the RTNL lock. On a failure a negative errno code is returned. 7771 * On success the reference counts are adjusted and the function 7772 * returns zero. 7773 */ 7774 int netdev_upper_dev_link(struct net_device *dev, 7775 struct net_device *upper_dev, 7776 struct netlink_ext_ack *extack) 7777 { 7778 struct netdev_nested_priv priv = { 7779 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7780 .data = NULL, 7781 }; 7782 7783 return __netdev_upper_dev_link(dev, upper_dev, false, 7784 NULL, NULL, &priv, extack); 7785 } 7786 EXPORT_SYMBOL(netdev_upper_dev_link); 7787 7788 /** 7789 * netdev_master_upper_dev_link - Add a master link to the upper device 7790 * @dev: device 7791 * @upper_dev: new upper device 7792 * @upper_priv: upper device private 7793 * @upper_info: upper info to be passed down via notifier 7794 * @extack: netlink extended ack 7795 * 7796 * Adds a link to device which is upper to this one. In this case, only 7797 * one master upper device can be linked, although other non-master devices 7798 * might be linked as well. The caller must hold the RTNL lock. 7799 * On a failure a negative errno code is returned. On success the reference 7800 * counts are adjusted and the function returns zero. 7801 */ 7802 int netdev_master_upper_dev_link(struct net_device *dev, 7803 struct net_device *upper_dev, 7804 void *upper_priv, void *upper_info, 7805 struct netlink_ext_ack *extack) 7806 { 7807 struct netdev_nested_priv priv = { 7808 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7809 .data = NULL, 7810 }; 7811 7812 return __netdev_upper_dev_link(dev, upper_dev, true, 7813 upper_priv, upper_info, &priv, extack); 7814 } 7815 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7816 7817 static void __netdev_upper_dev_unlink(struct net_device *dev, 7818 struct net_device *upper_dev, 7819 struct netdev_nested_priv *priv) 7820 { 7821 struct netdev_notifier_changeupper_info changeupper_info = { 7822 .info = { 7823 .dev = dev, 7824 }, 7825 .upper_dev = upper_dev, 7826 .linking = false, 7827 }; 7828 7829 ASSERT_RTNL(); 7830 7831 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7832 7833 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7834 &changeupper_info.info); 7835 7836 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7837 7838 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7839 &changeupper_info.info); 7840 7841 __netdev_update_upper_level(dev, NULL); 7842 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7843 7844 __netdev_update_lower_level(upper_dev, priv); 7845 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7846 priv); 7847 } 7848 7849 /** 7850 * netdev_upper_dev_unlink - Removes a link to upper device 7851 * @dev: device 7852 * @upper_dev: new upper device 7853 * 7854 * Removes a link to device which is upper to this one. The caller must hold 7855 * the RTNL lock. 7856 */ 7857 void netdev_upper_dev_unlink(struct net_device *dev, 7858 struct net_device *upper_dev) 7859 { 7860 struct netdev_nested_priv priv = { 7861 .flags = NESTED_SYNC_TODO, 7862 .data = NULL, 7863 }; 7864 7865 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7866 } 7867 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7868 7869 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7870 struct net_device *lower_dev, 7871 bool val) 7872 { 7873 struct netdev_adjacent *adj; 7874 7875 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7876 if (adj) 7877 adj->ignore = val; 7878 7879 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7880 if (adj) 7881 adj->ignore = val; 7882 } 7883 7884 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7885 struct net_device *lower_dev) 7886 { 7887 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7888 } 7889 7890 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7891 struct net_device *lower_dev) 7892 { 7893 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7894 } 7895 7896 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7897 struct net_device *new_dev, 7898 struct net_device *dev, 7899 struct netlink_ext_ack *extack) 7900 { 7901 struct netdev_nested_priv priv = { 7902 .flags = 0, 7903 .data = NULL, 7904 }; 7905 int err; 7906 7907 if (!new_dev) 7908 return 0; 7909 7910 if (old_dev && new_dev != old_dev) 7911 netdev_adjacent_dev_disable(dev, old_dev); 7912 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 7913 extack); 7914 if (err) { 7915 if (old_dev && new_dev != old_dev) 7916 netdev_adjacent_dev_enable(dev, old_dev); 7917 return err; 7918 } 7919 7920 return 0; 7921 } 7922 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7923 7924 void netdev_adjacent_change_commit(struct net_device *old_dev, 7925 struct net_device *new_dev, 7926 struct net_device *dev) 7927 { 7928 struct netdev_nested_priv priv = { 7929 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7930 .data = NULL, 7931 }; 7932 7933 if (!new_dev || !old_dev) 7934 return; 7935 7936 if (new_dev == old_dev) 7937 return; 7938 7939 netdev_adjacent_dev_enable(dev, old_dev); 7940 __netdev_upper_dev_unlink(old_dev, dev, &priv); 7941 } 7942 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7943 7944 void netdev_adjacent_change_abort(struct net_device *old_dev, 7945 struct net_device *new_dev, 7946 struct net_device *dev) 7947 { 7948 struct netdev_nested_priv priv = { 7949 .flags = 0, 7950 .data = NULL, 7951 }; 7952 7953 if (!new_dev) 7954 return; 7955 7956 if (old_dev && new_dev != old_dev) 7957 netdev_adjacent_dev_enable(dev, old_dev); 7958 7959 __netdev_upper_dev_unlink(new_dev, dev, &priv); 7960 } 7961 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7962 7963 /** 7964 * netdev_bonding_info_change - Dispatch event about slave change 7965 * @dev: device 7966 * @bonding_info: info to dispatch 7967 * 7968 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7969 * The caller must hold the RTNL lock. 7970 */ 7971 void netdev_bonding_info_change(struct net_device *dev, 7972 struct netdev_bonding_info *bonding_info) 7973 { 7974 struct netdev_notifier_bonding_info info = { 7975 .info.dev = dev, 7976 }; 7977 7978 memcpy(&info.bonding_info, bonding_info, 7979 sizeof(struct netdev_bonding_info)); 7980 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7981 &info.info); 7982 } 7983 EXPORT_SYMBOL(netdev_bonding_info_change); 7984 7985 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 7986 struct netlink_ext_ack *extack) 7987 { 7988 struct netdev_notifier_offload_xstats_info info = { 7989 .info.dev = dev, 7990 .info.extack = extack, 7991 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 7992 }; 7993 int err; 7994 int rc; 7995 7996 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 7997 GFP_KERNEL); 7998 if (!dev->offload_xstats_l3) 7999 return -ENOMEM; 8000 8001 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8002 NETDEV_OFFLOAD_XSTATS_DISABLE, 8003 &info.info); 8004 err = notifier_to_errno(rc); 8005 if (err) 8006 goto free_stats; 8007 8008 return 0; 8009 8010 free_stats: 8011 kfree(dev->offload_xstats_l3); 8012 dev->offload_xstats_l3 = NULL; 8013 return err; 8014 } 8015 8016 int netdev_offload_xstats_enable(struct net_device *dev, 8017 enum netdev_offload_xstats_type type, 8018 struct netlink_ext_ack *extack) 8019 { 8020 ASSERT_RTNL(); 8021 8022 if (netdev_offload_xstats_enabled(dev, type)) 8023 return -EALREADY; 8024 8025 switch (type) { 8026 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8027 return netdev_offload_xstats_enable_l3(dev, extack); 8028 } 8029 8030 WARN_ON(1); 8031 return -EINVAL; 8032 } 8033 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8034 8035 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8036 { 8037 struct netdev_notifier_offload_xstats_info info = { 8038 .info.dev = dev, 8039 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8040 }; 8041 8042 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8043 &info.info); 8044 kfree(dev->offload_xstats_l3); 8045 dev->offload_xstats_l3 = NULL; 8046 } 8047 8048 int netdev_offload_xstats_disable(struct net_device *dev, 8049 enum netdev_offload_xstats_type type) 8050 { 8051 ASSERT_RTNL(); 8052 8053 if (!netdev_offload_xstats_enabled(dev, type)) 8054 return -EALREADY; 8055 8056 switch (type) { 8057 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8058 netdev_offload_xstats_disable_l3(dev); 8059 return 0; 8060 } 8061 8062 WARN_ON(1); 8063 return -EINVAL; 8064 } 8065 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8066 8067 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8068 { 8069 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8070 } 8071 8072 static struct rtnl_hw_stats64 * 8073 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8074 enum netdev_offload_xstats_type type) 8075 { 8076 switch (type) { 8077 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8078 return dev->offload_xstats_l3; 8079 } 8080 8081 WARN_ON(1); 8082 return NULL; 8083 } 8084 8085 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8086 enum netdev_offload_xstats_type type) 8087 { 8088 ASSERT_RTNL(); 8089 8090 return netdev_offload_xstats_get_ptr(dev, type); 8091 } 8092 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8093 8094 struct netdev_notifier_offload_xstats_ru { 8095 bool used; 8096 }; 8097 8098 struct netdev_notifier_offload_xstats_rd { 8099 struct rtnl_hw_stats64 stats; 8100 bool used; 8101 }; 8102 8103 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8104 const struct rtnl_hw_stats64 *src) 8105 { 8106 dest->rx_packets += src->rx_packets; 8107 dest->tx_packets += src->tx_packets; 8108 dest->rx_bytes += src->rx_bytes; 8109 dest->tx_bytes += src->tx_bytes; 8110 dest->rx_errors += src->rx_errors; 8111 dest->tx_errors += src->tx_errors; 8112 dest->rx_dropped += src->rx_dropped; 8113 dest->tx_dropped += src->tx_dropped; 8114 dest->multicast += src->multicast; 8115 } 8116 8117 static int netdev_offload_xstats_get_used(struct net_device *dev, 8118 enum netdev_offload_xstats_type type, 8119 bool *p_used, 8120 struct netlink_ext_ack *extack) 8121 { 8122 struct netdev_notifier_offload_xstats_ru report_used = {}; 8123 struct netdev_notifier_offload_xstats_info info = { 8124 .info.dev = dev, 8125 .info.extack = extack, 8126 .type = type, 8127 .report_used = &report_used, 8128 }; 8129 int rc; 8130 8131 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8132 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8133 &info.info); 8134 *p_used = report_used.used; 8135 return notifier_to_errno(rc); 8136 } 8137 8138 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8139 enum netdev_offload_xstats_type type, 8140 struct rtnl_hw_stats64 *p_stats, 8141 bool *p_used, 8142 struct netlink_ext_ack *extack) 8143 { 8144 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8145 struct netdev_notifier_offload_xstats_info info = { 8146 .info.dev = dev, 8147 .info.extack = extack, 8148 .type = type, 8149 .report_delta = &report_delta, 8150 }; 8151 struct rtnl_hw_stats64 *stats; 8152 int rc; 8153 8154 stats = netdev_offload_xstats_get_ptr(dev, type); 8155 if (WARN_ON(!stats)) 8156 return -EINVAL; 8157 8158 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8159 &info.info); 8160 8161 /* Cache whatever we got, even if there was an error, otherwise the 8162 * successful stats retrievals would get lost. 8163 */ 8164 netdev_hw_stats64_add(stats, &report_delta.stats); 8165 8166 if (p_stats) 8167 *p_stats = *stats; 8168 *p_used = report_delta.used; 8169 8170 return notifier_to_errno(rc); 8171 } 8172 8173 int netdev_offload_xstats_get(struct net_device *dev, 8174 enum netdev_offload_xstats_type type, 8175 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8176 struct netlink_ext_ack *extack) 8177 { 8178 ASSERT_RTNL(); 8179 8180 if (p_stats) 8181 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8182 p_used, extack); 8183 else 8184 return netdev_offload_xstats_get_used(dev, type, p_used, 8185 extack); 8186 } 8187 EXPORT_SYMBOL(netdev_offload_xstats_get); 8188 8189 void 8190 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8191 const struct rtnl_hw_stats64 *stats) 8192 { 8193 report_delta->used = true; 8194 netdev_hw_stats64_add(&report_delta->stats, stats); 8195 } 8196 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8197 8198 void 8199 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8200 { 8201 report_used->used = true; 8202 } 8203 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8204 8205 void netdev_offload_xstats_push_delta(struct net_device *dev, 8206 enum netdev_offload_xstats_type type, 8207 const struct rtnl_hw_stats64 *p_stats) 8208 { 8209 struct rtnl_hw_stats64 *stats; 8210 8211 ASSERT_RTNL(); 8212 8213 stats = netdev_offload_xstats_get_ptr(dev, type); 8214 if (WARN_ON(!stats)) 8215 return; 8216 8217 netdev_hw_stats64_add(stats, p_stats); 8218 } 8219 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8220 8221 /** 8222 * netdev_get_xmit_slave - Get the xmit slave of master device 8223 * @dev: device 8224 * @skb: The packet 8225 * @all_slaves: assume all the slaves are active 8226 * 8227 * The reference counters are not incremented so the caller must be 8228 * careful with locks. The caller must hold RCU lock. 8229 * %NULL is returned if no slave is found. 8230 */ 8231 8232 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8233 struct sk_buff *skb, 8234 bool all_slaves) 8235 { 8236 const struct net_device_ops *ops = dev->netdev_ops; 8237 8238 if (!ops->ndo_get_xmit_slave) 8239 return NULL; 8240 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8241 } 8242 EXPORT_SYMBOL(netdev_get_xmit_slave); 8243 8244 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8245 struct sock *sk) 8246 { 8247 const struct net_device_ops *ops = dev->netdev_ops; 8248 8249 if (!ops->ndo_sk_get_lower_dev) 8250 return NULL; 8251 return ops->ndo_sk_get_lower_dev(dev, sk); 8252 } 8253 8254 /** 8255 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8256 * @dev: device 8257 * @sk: the socket 8258 * 8259 * %NULL is returned if no lower device is found. 8260 */ 8261 8262 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8263 struct sock *sk) 8264 { 8265 struct net_device *lower; 8266 8267 lower = netdev_sk_get_lower_dev(dev, sk); 8268 while (lower) { 8269 dev = lower; 8270 lower = netdev_sk_get_lower_dev(dev, sk); 8271 } 8272 8273 return dev; 8274 } 8275 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8276 8277 static void netdev_adjacent_add_links(struct net_device *dev) 8278 { 8279 struct netdev_adjacent *iter; 8280 8281 struct net *net = dev_net(dev); 8282 8283 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8284 if (!net_eq(net, dev_net(iter->dev))) 8285 continue; 8286 netdev_adjacent_sysfs_add(iter->dev, dev, 8287 &iter->dev->adj_list.lower); 8288 netdev_adjacent_sysfs_add(dev, iter->dev, 8289 &dev->adj_list.upper); 8290 } 8291 8292 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8293 if (!net_eq(net, dev_net(iter->dev))) 8294 continue; 8295 netdev_adjacent_sysfs_add(iter->dev, dev, 8296 &iter->dev->adj_list.upper); 8297 netdev_adjacent_sysfs_add(dev, iter->dev, 8298 &dev->adj_list.lower); 8299 } 8300 } 8301 8302 static void netdev_adjacent_del_links(struct net_device *dev) 8303 { 8304 struct netdev_adjacent *iter; 8305 8306 struct net *net = dev_net(dev); 8307 8308 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8309 if (!net_eq(net, dev_net(iter->dev))) 8310 continue; 8311 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8312 &iter->dev->adj_list.lower); 8313 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8314 &dev->adj_list.upper); 8315 } 8316 8317 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8318 if (!net_eq(net, dev_net(iter->dev))) 8319 continue; 8320 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8321 &iter->dev->adj_list.upper); 8322 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8323 &dev->adj_list.lower); 8324 } 8325 } 8326 8327 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8328 { 8329 struct netdev_adjacent *iter; 8330 8331 struct net *net = dev_net(dev); 8332 8333 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8334 if (!net_eq(net, dev_net(iter->dev))) 8335 continue; 8336 netdev_adjacent_sysfs_del(iter->dev, oldname, 8337 &iter->dev->adj_list.lower); 8338 netdev_adjacent_sysfs_add(iter->dev, dev, 8339 &iter->dev->adj_list.lower); 8340 } 8341 8342 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8343 if (!net_eq(net, dev_net(iter->dev))) 8344 continue; 8345 netdev_adjacent_sysfs_del(iter->dev, oldname, 8346 &iter->dev->adj_list.upper); 8347 netdev_adjacent_sysfs_add(iter->dev, dev, 8348 &iter->dev->adj_list.upper); 8349 } 8350 } 8351 8352 void *netdev_lower_dev_get_private(struct net_device *dev, 8353 struct net_device *lower_dev) 8354 { 8355 struct netdev_adjacent *lower; 8356 8357 if (!lower_dev) 8358 return NULL; 8359 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8360 if (!lower) 8361 return NULL; 8362 8363 return lower->private; 8364 } 8365 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8366 8367 8368 /** 8369 * netdev_lower_state_changed - Dispatch event about lower device state change 8370 * @lower_dev: device 8371 * @lower_state_info: state to dispatch 8372 * 8373 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8374 * The caller must hold the RTNL lock. 8375 */ 8376 void netdev_lower_state_changed(struct net_device *lower_dev, 8377 void *lower_state_info) 8378 { 8379 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8380 .info.dev = lower_dev, 8381 }; 8382 8383 ASSERT_RTNL(); 8384 changelowerstate_info.lower_state_info = lower_state_info; 8385 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8386 &changelowerstate_info.info); 8387 } 8388 EXPORT_SYMBOL(netdev_lower_state_changed); 8389 8390 static void dev_change_rx_flags(struct net_device *dev, int flags) 8391 { 8392 const struct net_device_ops *ops = dev->netdev_ops; 8393 8394 if (ops->ndo_change_rx_flags) 8395 ops->ndo_change_rx_flags(dev, flags); 8396 } 8397 8398 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8399 { 8400 unsigned int old_flags = dev->flags; 8401 kuid_t uid; 8402 kgid_t gid; 8403 8404 ASSERT_RTNL(); 8405 8406 dev->flags |= IFF_PROMISC; 8407 dev->promiscuity += inc; 8408 if (dev->promiscuity == 0) { 8409 /* 8410 * Avoid overflow. 8411 * If inc causes overflow, untouch promisc and return error. 8412 */ 8413 if (inc < 0) 8414 dev->flags &= ~IFF_PROMISC; 8415 else { 8416 dev->promiscuity -= inc; 8417 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8418 return -EOVERFLOW; 8419 } 8420 } 8421 if (dev->flags != old_flags) { 8422 netdev_info(dev, "%s promiscuous mode\n", 8423 dev->flags & IFF_PROMISC ? "entered" : "left"); 8424 if (audit_enabled) { 8425 current_uid_gid(&uid, &gid); 8426 audit_log(audit_context(), GFP_ATOMIC, 8427 AUDIT_ANOM_PROMISCUOUS, 8428 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8429 dev->name, (dev->flags & IFF_PROMISC), 8430 (old_flags & IFF_PROMISC), 8431 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8432 from_kuid(&init_user_ns, uid), 8433 from_kgid(&init_user_ns, gid), 8434 audit_get_sessionid(current)); 8435 } 8436 8437 dev_change_rx_flags(dev, IFF_PROMISC); 8438 } 8439 if (notify) 8440 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 8441 return 0; 8442 } 8443 8444 /** 8445 * dev_set_promiscuity - update promiscuity count on a device 8446 * @dev: device 8447 * @inc: modifier 8448 * 8449 * Add or remove promiscuity from a device. While the count in the device 8450 * remains above zero the interface remains promiscuous. Once it hits zero 8451 * the device reverts back to normal filtering operation. A negative inc 8452 * value is used to drop promiscuity on the device. 8453 * Return 0 if successful or a negative errno code on error. 8454 */ 8455 int dev_set_promiscuity(struct net_device *dev, int inc) 8456 { 8457 unsigned int old_flags = dev->flags; 8458 int err; 8459 8460 err = __dev_set_promiscuity(dev, inc, true); 8461 if (err < 0) 8462 return err; 8463 if (dev->flags != old_flags) 8464 dev_set_rx_mode(dev); 8465 return err; 8466 } 8467 EXPORT_SYMBOL(dev_set_promiscuity); 8468 8469 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8470 { 8471 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8472 8473 ASSERT_RTNL(); 8474 8475 dev->flags |= IFF_ALLMULTI; 8476 dev->allmulti += inc; 8477 if (dev->allmulti == 0) { 8478 /* 8479 * Avoid overflow. 8480 * If inc causes overflow, untouch allmulti and return error. 8481 */ 8482 if (inc < 0) 8483 dev->flags &= ~IFF_ALLMULTI; 8484 else { 8485 dev->allmulti -= inc; 8486 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8487 return -EOVERFLOW; 8488 } 8489 } 8490 if (dev->flags ^ old_flags) { 8491 netdev_info(dev, "%s allmulticast mode\n", 8492 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 8493 dev_change_rx_flags(dev, IFF_ALLMULTI); 8494 dev_set_rx_mode(dev); 8495 if (notify) 8496 __dev_notify_flags(dev, old_flags, 8497 dev->gflags ^ old_gflags, 0, NULL); 8498 } 8499 return 0; 8500 } 8501 8502 /** 8503 * dev_set_allmulti - update allmulti count on a device 8504 * @dev: device 8505 * @inc: modifier 8506 * 8507 * Add or remove reception of all multicast frames to a device. While the 8508 * count in the device remains above zero the interface remains listening 8509 * to all interfaces. Once it hits zero the device reverts back to normal 8510 * filtering operation. A negative @inc value is used to drop the counter 8511 * when releasing a resource needing all multicasts. 8512 * Return 0 if successful or a negative errno code on error. 8513 */ 8514 8515 int dev_set_allmulti(struct net_device *dev, int inc) 8516 { 8517 return __dev_set_allmulti(dev, inc, true); 8518 } 8519 EXPORT_SYMBOL(dev_set_allmulti); 8520 8521 /* 8522 * Upload unicast and multicast address lists to device and 8523 * configure RX filtering. When the device doesn't support unicast 8524 * filtering it is put in promiscuous mode while unicast addresses 8525 * are present. 8526 */ 8527 void __dev_set_rx_mode(struct net_device *dev) 8528 { 8529 const struct net_device_ops *ops = dev->netdev_ops; 8530 8531 /* dev_open will call this function so the list will stay sane. */ 8532 if (!(dev->flags&IFF_UP)) 8533 return; 8534 8535 if (!netif_device_present(dev)) 8536 return; 8537 8538 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8539 /* Unicast addresses changes may only happen under the rtnl, 8540 * therefore calling __dev_set_promiscuity here is safe. 8541 */ 8542 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8543 __dev_set_promiscuity(dev, 1, false); 8544 dev->uc_promisc = true; 8545 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8546 __dev_set_promiscuity(dev, -1, false); 8547 dev->uc_promisc = false; 8548 } 8549 } 8550 8551 if (ops->ndo_set_rx_mode) 8552 ops->ndo_set_rx_mode(dev); 8553 } 8554 8555 void dev_set_rx_mode(struct net_device *dev) 8556 { 8557 netif_addr_lock_bh(dev); 8558 __dev_set_rx_mode(dev); 8559 netif_addr_unlock_bh(dev); 8560 } 8561 8562 /** 8563 * dev_get_flags - get flags reported to userspace 8564 * @dev: device 8565 * 8566 * Get the combination of flag bits exported through APIs to userspace. 8567 */ 8568 unsigned int dev_get_flags(const struct net_device *dev) 8569 { 8570 unsigned int flags; 8571 8572 flags = (dev->flags & ~(IFF_PROMISC | 8573 IFF_ALLMULTI | 8574 IFF_RUNNING | 8575 IFF_LOWER_UP | 8576 IFF_DORMANT)) | 8577 (dev->gflags & (IFF_PROMISC | 8578 IFF_ALLMULTI)); 8579 8580 if (netif_running(dev)) { 8581 if (netif_oper_up(dev)) 8582 flags |= IFF_RUNNING; 8583 if (netif_carrier_ok(dev)) 8584 flags |= IFF_LOWER_UP; 8585 if (netif_dormant(dev)) 8586 flags |= IFF_DORMANT; 8587 } 8588 8589 return flags; 8590 } 8591 EXPORT_SYMBOL(dev_get_flags); 8592 8593 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8594 struct netlink_ext_ack *extack) 8595 { 8596 unsigned int old_flags = dev->flags; 8597 int ret; 8598 8599 ASSERT_RTNL(); 8600 8601 /* 8602 * Set the flags on our device. 8603 */ 8604 8605 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8606 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8607 IFF_AUTOMEDIA)) | 8608 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8609 IFF_ALLMULTI)); 8610 8611 /* 8612 * Load in the correct multicast list now the flags have changed. 8613 */ 8614 8615 if ((old_flags ^ flags) & IFF_MULTICAST) 8616 dev_change_rx_flags(dev, IFF_MULTICAST); 8617 8618 dev_set_rx_mode(dev); 8619 8620 /* 8621 * Have we downed the interface. We handle IFF_UP ourselves 8622 * according to user attempts to set it, rather than blindly 8623 * setting it. 8624 */ 8625 8626 ret = 0; 8627 if ((old_flags ^ flags) & IFF_UP) { 8628 if (old_flags & IFF_UP) 8629 __dev_close(dev); 8630 else 8631 ret = __dev_open(dev, extack); 8632 } 8633 8634 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8635 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8636 unsigned int old_flags = dev->flags; 8637 8638 dev->gflags ^= IFF_PROMISC; 8639 8640 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8641 if (dev->flags != old_flags) 8642 dev_set_rx_mode(dev); 8643 } 8644 8645 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8646 * is important. Some (broken) drivers set IFF_PROMISC, when 8647 * IFF_ALLMULTI is requested not asking us and not reporting. 8648 */ 8649 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8650 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8651 8652 dev->gflags ^= IFF_ALLMULTI; 8653 __dev_set_allmulti(dev, inc, false); 8654 } 8655 8656 return ret; 8657 } 8658 8659 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8660 unsigned int gchanges, u32 portid, 8661 const struct nlmsghdr *nlh) 8662 { 8663 unsigned int changes = dev->flags ^ old_flags; 8664 8665 if (gchanges) 8666 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 8667 8668 if (changes & IFF_UP) { 8669 if (dev->flags & IFF_UP) 8670 call_netdevice_notifiers(NETDEV_UP, dev); 8671 else 8672 call_netdevice_notifiers(NETDEV_DOWN, dev); 8673 } 8674 8675 if (dev->flags & IFF_UP && 8676 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8677 struct netdev_notifier_change_info change_info = { 8678 .info = { 8679 .dev = dev, 8680 }, 8681 .flags_changed = changes, 8682 }; 8683 8684 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8685 } 8686 } 8687 8688 /** 8689 * dev_change_flags - change device settings 8690 * @dev: device 8691 * @flags: device state flags 8692 * @extack: netlink extended ack 8693 * 8694 * Change settings on device based state flags. The flags are 8695 * in the userspace exported format. 8696 */ 8697 int dev_change_flags(struct net_device *dev, unsigned int flags, 8698 struct netlink_ext_ack *extack) 8699 { 8700 int ret; 8701 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8702 8703 ret = __dev_change_flags(dev, flags, extack); 8704 if (ret < 0) 8705 return ret; 8706 8707 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8708 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 8709 return ret; 8710 } 8711 EXPORT_SYMBOL(dev_change_flags); 8712 8713 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8714 { 8715 const struct net_device_ops *ops = dev->netdev_ops; 8716 8717 if (ops->ndo_change_mtu) 8718 return ops->ndo_change_mtu(dev, new_mtu); 8719 8720 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8721 WRITE_ONCE(dev->mtu, new_mtu); 8722 return 0; 8723 } 8724 EXPORT_SYMBOL(__dev_set_mtu); 8725 8726 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8727 struct netlink_ext_ack *extack) 8728 { 8729 /* MTU must be positive, and in range */ 8730 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8731 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8732 return -EINVAL; 8733 } 8734 8735 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8736 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8737 return -EINVAL; 8738 } 8739 return 0; 8740 } 8741 8742 /** 8743 * dev_set_mtu_ext - Change maximum transfer unit 8744 * @dev: device 8745 * @new_mtu: new transfer unit 8746 * @extack: netlink extended ack 8747 * 8748 * Change the maximum transfer size of the network device. 8749 */ 8750 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8751 struct netlink_ext_ack *extack) 8752 { 8753 int err, orig_mtu; 8754 8755 if (new_mtu == dev->mtu) 8756 return 0; 8757 8758 err = dev_validate_mtu(dev, new_mtu, extack); 8759 if (err) 8760 return err; 8761 8762 if (!netif_device_present(dev)) 8763 return -ENODEV; 8764 8765 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8766 err = notifier_to_errno(err); 8767 if (err) 8768 return err; 8769 8770 orig_mtu = dev->mtu; 8771 err = __dev_set_mtu(dev, new_mtu); 8772 8773 if (!err) { 8774 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8775 orig_mtu); 8776 err = notifier_to_errno(err); 8777 if (err) { 8778 /* setting mtu back and notifying everyone again, 8779 * so that they have a chance to revert changes. 8780 */ 8781 __dev_set_mtu(dev, orig_mtu); 8782 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8783 new_mtu); 8784 } 8785 } 8786 return err; 8787 } 8788 8789 int dev_set_mtu(struct net_device *dev, int new_mtu) 8790 { 8791 struct netlink_ext_ack extack; 8792 int err; 8793 8794 memset(&extack, 0, sizeof(extack)); 8795 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8796 if (err && extack._msg) 8797 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8798 return err; 8799 } 8800 EXPORT_SYMBOL(dev_set_mtu); 8801 8802 /** 8803 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8804 * @dev: device 8805 * @new_len: new tx queue length 8806 */ 8807 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8808 { 8809 unsigned int orig_len = dev->tx_queue_len; 8810 int res; 8811 8812 if (new_len != (unsigned int)new_len) 8813 return -ERANGE; 8814 8815 if (new_len != orig_len) { 8816 dev->tx_queue_len = new_len; 8817 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8818 res = notifier_to_errno(res); 8819 if (res) 8820 goto err_rollback; 8821 res = dev_qdisc_change_tx_queue_len(dev); 8822 if (res) 8823 goto err_rollback; 8824 } 8825 8826 return 0; 8827 8828 err_rollback: 8829 netdev_err(dev, "refused to change device tx_queue_len\n"); 8830 dev->tx_queue_len = orig_len; 8831 return res; 8832 } 8833 8834 /** 8835 * dev_set_group - Change group this device belongs to 8836 * @dev: device 8837 * @new_group: group this device should belong to 8838 */ 8839 void dev_set_group(struct net_device *dev, int new_group) 8840 { 8841 dev->group = new_group; 8842 } 8843 8844 /** 8845 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8846 * @dev: device 8847 * @addr: new address 8848 * @extack: netlink extended ack 8849 */ 8850 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8851 struct netlink_ext_ack *extack) 8852 { 8853 struct netdev_notifier_pre_changeaddr_info info = { 8854 .info.dev = dev, 8855 .info.extack = extack, 8856 .dev_addr = addr, 8857 }; 8858 int rc; 8859 8860 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8861 return notifier_to_errno(rc); 8862 } 8863 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8864 8865 /** 8866 * dev_set_mac_address - Change Media Access Control Address 8867 * @dev: device 8868 * @sa: new address 8869 * @extack: netlink extended ack 8870 * 8871 * Change the hardware (MAC) address of the device 8872 */ 8873 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8874 struct netlink_ext_ack *extack) 8875 { 8876 const struct net_device_ops *ops = dev->netdev_ops; 8877 int err; 8878 8879 if (!ops->ndo_set_mac_address) 8880 return -EOPNOTSUPP; 8881 if (sa->sa_family != dev->type) 8882 return -EINVAL; 8883 if (!netif_device_present(dev)) 8884 return -ENODEV; 8885 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8886 if (err) 8887 return err; 8888 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 8889 err = ops->ndo_set_mac_address(dev, sa); 8890 if (err) 8891 return err; 8892 } 8893 dev->addr_assign_type = NET_ADDR_SET; 8894 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8895 add_device_randomness(dev->dev_addr, dev->addr_len); 8896 return 0; 8897 } 8898 EXPORT_SYMBOL(dev_set_mac_address); 8899 8900 static DECLARE_RWSEM(dev_addr_sem); 8901 8902 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 8903 struct netlink_ext_ack *extack) 8904 { 8905 int ret; 8906 8907 down_write(&dev_addr_sem); 8908 ret = dev_set_mac_address(dev, sa, extack); 8909 up_write(&dev_addr_sem); 8910 return ret; 8911 } 8912 EXPORT_SYMBOL(dev_set_mac_address_user); 8913 8914 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 8915 { 8916 size_t size = sizeof(sa->sa_data_min); 8917 struct net_device *dev; 8918 int ret = 0; 8919 8920 down_read(&dev_addr_sem); 8921 rcu_read_lock(); 8922 8923 dev = dev_get_by_name_rcu(net, dev_name); 8924 if (!dev) { 8925 ret = -ENODEV; 8926 goto unlock; 8927 } 8928 if (!dev->addr_len) 8929 memset(sa->sa_data, 0, size); 8930 else 8931 memcpy(sa->sa_data, dev->dev_addr, 8932 min_t(size_t, size, dev->addr_len)); 8933 sa->sa_family = dev->type; 8934 8935 unlock: 8936 rcu_read_unlock(); 8937 up_read(&dev_addr_sem); 8938 return ret; 8939 } 8940 EXPORT_SYMBOL(dev_get_mac_address); 8941 8942 /** 8943 * dev_change_carrier - Change device carrier 8944 * @dev: device 8945 * @new_carrier: new value 8946 * 8947 * Change device carrier 8948 */ 8949 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8950 { 8951 const struct net_device_ops *ops = dev->netdev_ops; 8952 8953 if (!ops->ndo_change_carrier) 8954 return -EOPNOTSUPP; 8955 if (!netif_device_present(dev)) 8956 return -ENODEV; 8957 return ops->ndo_change_carrier(dev, new_carrier); 8958 } 8959 8960 /** 8961 * dev_get_phys_port_id - Get device physical port ID 8962 * @dev: device 8963 * @ppid: port ID 8964 * 8965 * Get device physical port ID 8966 */ 8967 int dev_get_phys_port_id(struct net_device *dev, 8968 struct netdev_phys_item_id *ppid) 8969 { 8970 const struct net_device_ops *ops = dev->netdev_ops; 8971 8972 if (!ops->ndo_get_phys_port_id) 8973 return -EOPNOTSUPP; 8974 return ops->ndo_get_phys_port_id(dev, ppid); 8975 } 8976 8977 /** 8978 * dev_get_phys_port_name - Get device physical port name 8979 * @dev: device 8980 * @name: port name 8981 * @len: limit of bytes to copy to name 8982 * 8983 * Get device physical port name 8984 */ 8985 int dev_get_phys_port_name(struct net_device *dev, 8986 char *name, size_t len) 8987 { 8988 const struct net_device_ops *ops = dev->netdev_ops; 8989 int err; 8990 8991 if (ops->ndo_get_phys_port_name) { 8992 err = ops->ndo_get_phys_port_name(dev, name, len); 8993 if (err != -EOPNOTSUPP) 8994 return err; 8995 } 8996 return devlink_compat_phys_port_name_get(dev, name, len); 8997 } 8998 8999 /** 9000 * dev_get_port_parent_id - Get the device's port parent identifier 9001 * @dev: network device 9002 * @ppid: pointer to a storage for the port's parent identifier 9003 * @recurse: allow/disallow recursion to lower devices 9004 * 9005 * Get the devices's port parent identifier 9006 */ 9007 int dev_get_port_parent_id(struct net_device *dev, 9008 struct netdev_phys_item_id *ppid, 9009 bool recurse) 9010 { 9011 const struct net_device_ops *ops = dev->netdev_ops; 9012 struct netdev_phys_item_id first = { }; 9013 struct net_device *lower_dev; 9014 struct list_head *iter; 9015 int err; 9016 9017 if (ops->ndo_get_port_parent_id) { 9018 err = ops->ndo_get_port_parent_id(dev, ppid); 9019 if (err != -EOPNOTSUPP) 9020 return err; 9021 } 9022 9023 err = devlink_compat_switch_id_get(dev, ppid); 9024 if (!recurse || err != -EOPNOTSUPP) 9025 return err; 9026 9027 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9028 err = dev_get_port_parent_id(lower_dev, ppid, true); 9029 if (err) 9030 break; 9031 if (!first.id_len) 9032 first = *ppid; 9033 else if (memcmp(&first, ppid, sizeof(*ppid))) 9034 return -EOPNOTSUPP; 9035 } 9036 9037 return err; 9038 } 9039 EXPORT_SYMBOL(dev_get_port_parent_id); 9040 9041 /** 9042 * netdev_port_same_parent_id - Indicate if two network devices have 9043 * the same port parent identifier 9044 * @a: first network device 9045 * @b: second network device 9046 */ 9047 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9048 { 9049 struct netdev_phys_item_id a_id = { }; 9050 struct netdev_phys_item_id b_id = { }; 9051 9052 if (dev_get_port_parent_id(a, &a_id, true) || 9053 dev_get_port_parent_id(b, &b_id, true)) 9054 return false; 9055 9056 return netdev_phys_item_id_same(&a_id, &b_id); 9057 } 9058 EXPORT_SYMBOL(netdev_port_same_parent_id); 9059 9060 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin) 9061 { 9062 #if IS_ENABLED(CONFIG_DPLL) 9063 rtnl_lock(); 9064 dev->dpll_pin = dpll_pin; 9065 rtnl_unlock(); 9066 #endif 9067 } 9068 9069 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin) 9070 { 9071 WARN_ON(!dpll_pin); 9072 netdev_dpll_pin_assign(dev, dpll_pin); 9073 } 9074 EXPORT_SYMBOL(netdev_dpll_pin_set); 9075 9076 void netdev_dpll_pin_clear(struct net_device *dev) 9077 { 9078 netdev_dpll_pin_assign(dev, NULL); 9079 } 9080 EXPORT_SYMBOL(netdev_dpll_pin_clear); 9081 9082 /** 9083 * dev_change_proto_down - set carrier according to proto_down. 9084 * 9085 * @dev: device 9086 * @proto_down: new value 9087 */ 9088 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9089 { 9090 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) 9091 return -EOPNOTSUPP; 9092 if (!netif_device_present(dev)) 9093 return -ENODEV; 9094 if (proto_down) 9095 netif_carrier_off(dev); 9096 else 9097 netif_carrier_on(dev); 9098 dev->proto_down = proto_down; 9099 return 0; 9100 } 9101 9102 /** 9103 * dev_change_proto_down_reason - proto down reason 9104 * 9105 * @dev: device 9106 * @mask: proto down mask 9107 * @value: proto down value 9108 */ 9109 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9110 u32 value) 9111 { 9112 int b; 9113 9114 if (!mask) { 9115 dev->proto_down_reason = value; 9116 } else { 9117 for_each_set_bit(b, &mask, 32) { 9118 if (value & (1 << b)) 9119 dev->proto_down_reason |= BIT(b); 9120 else 9121 dev->proto_down_reason &= ~BIT(b); 9122 } 9123 } 9124 } 9125 9126 struct bpf_xdp_link { 9127 struct bpf_link link; 9128 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9129 int flags; 9130 }; 9131 9132 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9133 { 9134 if (flags & XDP_FLAGS_HW_MODE) 9135 return XDP_MODE_HW; 9136 if (flags & XDP_FLAGS_DRV_MODE) 9137 return XDP_MODE_DRV; 9138 if (flags & XDP_FLAGS_SKB_MODE) 9139 return XDP_MODE_SKB; 9140 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9141 } 9142 9143 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9144 { 9145 switch (mode) { 9146 case XDP_MODE_SKB: 9147 return generic_xdp_install; 9148 case XDP_MODE_DRV: 9149 case XDP_MODE_HW: 9150 return dev->netdev_ops->ndo_bpf; 9151 default: 9152 return NULL; 9153 } 9154 } 9155 9156 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9157 enum bpf_xdp_mode mode) 9158 { 9159 return dev->xdp_state[mode].link; 9160 } 9161 9162 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9163 enum bpf_xdp_mode mode) 9164 { 9165 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9166 9167 if (link) 9168 return link->link.prog; 9169 return dev->xdp_state[mode].prog; 9170 } 9171 9172 u8 dev_xdp_prog_count(struct net_device *dev) 9173 { 9174 u8 count = 0; 9175 int i; 9176 9177 for (i = 0; i < __MAX_XDP_MODE; i++) 9178 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9179 count++; 9180 return count; 9181 } 9182 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9183 9184 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9185 { 9186 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9187 9188 return prog ? prog->aux->id : 0; 9189 } 9190 9191 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9192 struct bpf_xdp_link *link) 9193 { 9194 dev->xdp_state[mode].link = link; 9195 dev->xdp_state[mode].prog = NULL; 9196 } 9197 9198 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9199 struct bpf_prog *prog) 9200 { 9201 dev->xdp_state[mode].link = NULL; 9202 dev->xdp_state[mode].prog = prog; 9203 } 9204 9205 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9206 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9207 u32 flags, struct bpf_prog *prog) 9208 { 9209 struct netdev_bpf xdp; 9210 int err; 9211 9212 memset(&xdp, 0, sizeof(xdp)); 9213 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9214 xdp.extack = extack; 9215 xdp.flags = flags; 9216 xdp.prog = prog; 9217 9218 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9219 * "moved" into driver), so they don't increment it on their own, but 9220 * they do decrement refcnt when program is detached or replaced. 9221 * Given net_device also owns link/prog, we need to bump refcnt here 9222 * to prevent drivers from underflowing it. 9223 */ 9224 if (prog) 9225 bpf_prog_inc(prog); 9226 err = bpf_op(dev, &xdp); 9227 if (err) { 9228 if (prog) 9229 bpf_prog_put(prog); 9230 return err; 9231 } 9232 9233 if (mode != XDP_MODE_HW) 9234 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9235 9236 return 0; 9237 } 9238 9239 static void dev_xdp_uninstall(struct net_device *dev) 9240 { 9241 struct bpf_xdp_link *link; 9242 struct bpf_prog *prog; 9243 enum bpf_xdp_mode mode; 9244 bpf_op_t bpf_op; 9245 9246 ASSERT_RTNL(); 9247 9248 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9249 prog = dev_xdp_prog(dev, mode); 9250 if (!prog) 9251 continue; 9252 9253 bpf_op = dev_xdp_bpf_op(dev, mode); 9254 if (!bpf_op) 9255 continue; 9256 9257 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9258 9259 /* auto-detach link from net device */ 9260 link = dev_xdp_link(dev, mode); 9261 if (link) 9262 link->dev = NULL; 9263 else 9264 bpf_prog_put(prog); 9265 9266 dev_xdp_set_link(dev, mode, NULL); 9267 } 9268 } 9269 9270 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9271 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9272 struct bpf_prog *old_prog, u32 flags) 9273 { 9274 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9275 struct bpf_prog *cur_prog; 9276 struct net_device *upper; 9277 struct list_head *iter; 9278 enum bpf_xdp_mode mode; 9279 bpf_op_t bpf_op; 9280 int err; 9281 9282 ASSERT_RTNL(); 9283 9284 /* either link or prog attachment, never both */ 9285 if (link && (new_prog || old_prog)) 9286 return -EINVAL; 9287 /* link supports only XDP mode flags */ 9288 if (link && (flags & ~XDP_FLAGS_MODES)) { 9289 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9290 return -EINVAL; 9291 } 9292 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9293 if (num_modes > 1) { 9294 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9295 return -EINVAL; 9296 } 9297 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9298 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9299 NL_SET_ERR_MSG(extack, 9300 "More than one program loaded, unset mode is ambiguous"); 9301 return -EINVAL; 9302 } 9303 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9304 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9305 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9306 return -EINVAL; 9307 } 9308 9309 mode = dev_xdp_mode(dev, flags); 9310 /* can't replace attached link */ 9311 if (dev_xdp_link(dev, mode)) { 9312 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9313 return -EBUSY; 9314 } 9315 9316 /* don't allow if an upper device already has a program */ 9317 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9318 if (dev_xdp_prog_count(upper) > 0) { 9319 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9320 return -EEXIST; 9321 } 9322 } 9323 9324 cur_prog = dev_xdp_prog(dev, mode); 9325 /* can't replace attached prog with link */ 9326 if (link && cur_prog) { 9327 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9328 return -EBUSY; 9329 } 9330 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9331 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9332 return -EEXIST; 9333 } 9334 9335 /* put effective new program into new_prog */ 9336 if (link) 9337 new_prog = link->link.prog; 9338 9339 if (new_prog) { 9340 bool offload = mode == XDP_MODE_HW; 9341 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9342 ? XDP_MODE_DRV : XDP_MODE_SKB; 9343 9344 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9345 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9346 return -EBUSY; 9347 } 9348 if (!offload && dev_xdp_prog(dev, other_mode)) { 9349 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9350 return -EEXIST; 9351 } 9352 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 9353 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 9354 return -EINVAL; 9355 } 9356 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 9357 NL_SET_ERR_MSG(extack, "Program bound to different device"); 9358 return -EINVAL; 9359 } 9360 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9361 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9362 return -EINVAL; 9363 } 9364 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9365 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9366 return -EINVAL; 9367 } 9368 } 9369 9370 /* don't call drivers if the effective program didn't change */ 9371 if (new_prog != cur_prog) { 9372 bpf_op = dev_xdp_bpf_op(dev, mode); 9373 if (!bpf_op) { 9374 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9375 return -EOPNOTSUPP; 9376 } 9377 9378 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9379 if (err) 9380 return err; 9381 } 9382 9383 if (link) 9384 dev_xdp_set_link(dev, mode, link); 9385 else 9386 dev_xdp_set_prog(dev, mode, new_prog); 9387 if (cur_prog) 9388 bpf_prog_put(cur_prog); 9389 9390 return 0; 9391 } 9392 9393 static int dev_xdp_attach_link(struct net_device *dev, 9394 struct netlink_ext_ack *extack, 9395 struct bpf_xdp_link *link) 9396 { 9397 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9398 } 9399 9400 static int dev_xdp_detach_link(struct net_device *dev, 9401 struct netlink_ext_ack *extack, 9402 struct bpf_xdp_link *link) 9403 { 9404 enum bpf_xdp_mode mode; 9405 bpf_op_t bpf_op; 9406 9407 ASSERT_RTNL(); 9408 9409 mode = dev_xdp_mode(dev, link->flags); 9410 if (dev_xdp_link(dev, mode) != link) 9411 return -EINVAL; 9412 9413 bpf_op = dev_xdp_bpf_op(dev, mode); 9414 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9415 dev_xdp_set_link(dev, mode, NULL); 9416 return 0; 9417 } 9418 9419 static void bpf_xdp_link_release(struct bpf_link *link) 9420 { 9421 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9422 9423 rtnl_lock(); 9424 9425 /* if racing with net_device's tear down, xdp_link->dev might be 9426 * already NULL, in which case link was already auto-detached 9427 */ 9428 if (xdp_link->dev) { 9429 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9430 xdp_link->dev = NULL; 9431 } 9432 9433 rtnl_unlock(); 9434 } 9435 9436 static int bpf_xdp_link_detach(struct bpf_link *link) 9437 { 9438 bpf_xdp_link_release(link); 9439 return 0; 9440 } 9441 9442 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9443 { 9444 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9445 9446 kfree(xdp_link); 9447 } 9448 9449 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9450 struct seq_file *seq) 9451 { 9452 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9453 u32 ifindex = 0; 9454 9455 rtnl_lock(); 9456 if (xdp_link->dev) 9457 ifindex = xdp_link->dev->ifindex; 9458 rtnl_unlock(); 9459 9460 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9461 } 9462 9463 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9464 struct bpf_link_info *info) 9465 { 9466 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9467 u32 ifindex = 0; 9468 9469 rtnl_lock(); 9470 if (xdp_link->dev) 9471 ifindex = xdp_link->dev->ifindex; 9472 rtnl_unlock(); 9473 9474 info->xdp.ifindex = ifindex; 9475 return 0; 9476 } 9477 9478 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9479 struct bpf_prog *old_prog) 9480 { 9481 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9482 enum bpf_xdp_mode mode; 9483 bpf_op_t bpf_op; 9484 int err = 0; 9485 9486 rtnl_lock(); 9487 9488 /* link might have been auto-released already, so fail */ 9489 if (!xdp_link->dev) { 9490 err = -ENOLINK; 9491 goto out_unlock; 9492 } 9493 9494 if (old_prog && link->prog != old_prog) { 9495 err = -EPERM; 9496 goto out_unlock; 9497 } 9498 old_prog = link->prog; 9499 if (old_prog->type != new_prog->type || 9500 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9501 err = -EINVAL; 9502 goto out_unlock; 9503 } 9504 9505 if (old_prog == new_prog) { 9506 /* no-op, don't disturb drivers */ 9507 bpf_prog_put(new_prog); 9508 goto out_unlock; 9509 } 9510 9511 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9512 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9513 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9514 xdp_link->flags, new_prog); 9515 if (err) 9516 goto out_unlock; 9517 9518 old_prog = xchg(&link->prog, new_prog); 9519 bpf_prog_put(old_prog); 9520 9521 out_unlock: 9522 rtnl_unlock(); 9523 return err; 9524 } 9525 9526 static const struct bpf_link_ops bpf_xdp_link_lops = { 9527 .release = bpf_xdp_link_release, 9528 .dealloc = bpf_xdp_link_dealloc, 9529 .detach = bpf_xdp_link_detach, 9530 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9531 .fill_link_info = bpf_xdp_link_fill_link_info, 9532 .update_prog = bpf_xdp_link_update, 9533 }; 9534 9535 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9536 { 9537 struct net *net = current->nsproxy->net_ns; 9538 struct bpf_link_primer link_primer; 9539 struct netlink_ext_ack extack = {}; 9540 struct bpf_xdp_link *link; 9541 struct net_device *dev; 9542 int err, fd; 9543 9544 rtnl_lock(); 9545 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9546 if (!dev) { 9547 rtnl_unlock(); 9548 return -EINVAL; 9549 } 9550 9551 link = kzalloc(sizeof(*link), GFP_USER); 9552 if (!link) { 9553 err = -ENOMEM; 9554 goto unlock; 9555 } 9556 9557 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9558 link->dev = dev; 9559 link->flags = attr->link_create.flags; 9560 9561 err = bpf_link_prime(&link->link, &link_primer); 9562 if (err) { 9563 kfree(link); 9564 goto unlock; 9565 } 9566 9567 err = dev_xdp_attach_link(dev, &extack, link); 9568 rtnl_unlock(); 9569 9570 if (err) { 9571 link->dev = NULL; 9572 bpf_link_cleanup(&link_primer); 9573 trace_bpf_xdp_link_attach_failed(extack._msg); 9574 goto out_put_dev; 9575 } 9576 9577 fd = bpf_link_settle(&link_primer); 9578 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9579 dev_put(dev); 9580 return fd; 9581 9582 unlock: 9583 rtnl_unlock(); 9584 9585 out_put_dev: 9586 dev_put(dev); 9587 return err; 9588 } 9589 9590 /** 9591 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9592 * @dev: device 9593 * @extack: netlink extended ack 9594 * @fd: new program fd or negative value to clear 9595 * @expected_fd: old program fd that userspace expects to replace or clear 9596 * @flags: xdp-related flags 9597 * 9598 * Set or clear a bpf program for a device 9599 */ 9600 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9601 int fd, int expected_fd, u32 flags) 9602 { 9603 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9604 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9605 int err; 9606 9607 ASSERT_RTNL(); 9608 9609 if (fd >= 0) { 9610 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9611 mode != XDP_MODE_SKB); 9612 if (IS_ERR(new_prog)) 9613 return PTR_ERR(new_prog); 9614 } 9615 9616 if (expected_fd >= 0) { 9617 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9618 mode != XDP_MODE_SKB); 9619 if (IS_ERR(old_prog)) { 9620 err = PTR_ERR(old_prog); 9621 old_prog = NULL; 9622 goto err_out; 9623 } 9624 } 9625 9626 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9627 9628 err_out: 9629 if (err && new_prog) 9630 bpf_prog_put(new_prog); 9631 if (old_prog) 9632 bpf_prog_put(old_prog); 9633 return err; 9634 } 9635 9636 /** 9637 * dev_index_reserve() - allocate an ifindex in a namespace 9638 * @net: the applicable net namespace 9639 * @ifindex: requested ifindex, pass %0 to get one allocated 9640 * 9641 * Allocate a ifindex for a new device. Caller must either use the ifindex 9642 * to store the device (via list_netdevice()) or call dev_index_release() 9643 * to give the index up. 9644 * 9645 * Return: a suitable unique value for a new device interface number or -errno. 9646 */ 9647 static int dev_index_reserve(struct net *net, u32 ifindex) 9648 { 9649 int err; 9650 9651 if (ifindex > INT_MAX) { 9652 DEBUG_NET_WARN_ON_ONCE(1); 9653 return -EINVAL; 9654 } 9655 9656 if (!ifindex) 9657 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 9658 xa_limit_31b, &net->ifindex, GFP_KERNEL); 9659 else 9660 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 9661 if (err < 0) 9662 return err; 9663 9664 return ifindex; 9665 } 9666 9667 static void dev_index_release(struct net *net, int ifindex) 9668 { 9669 /* Expect only unused indexes, unlist_netdevice() removes the used */ 9670 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 9671 } 9672 9673 /* Delayed registration/unregisteration */ 9674 LIST_HEAD(net_todo_list); 9675 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9676 9677 static void net_set_todo(struct net_device *dev) 9678 { 9679 list_add_tail(&dev->todo_list, &net_todo_list); 9680 atomic_inc(&dev_net(dev)->dev_unreg_count); 9681 } 9682 9683 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9684 struct net_device *upper, netdev_features_t features) 9685 { 9686 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9687 netdev_features_t feature; 9688 int feature_bit; 9689 9690 for_each_netdev_feature(upper_disables, feature_bit) { 9691 feature = __NETIF_F_BIT(feature_bit); 9692 if (!(upper->wanted_features & feature) 9693 && (features & feature)) { 9694 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9695 &feature, upper->name); 9696 features &= ~feature; 9697 } 9698 } 9699 9700 return features; 9701 } 9702 9703 static void netdev_sync_lower_features(struct net_device *upper, 9704 struct net_device *lower, netdev_features_t features) 9705 { 9706 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9707 netdev_features_t feature; 9708 int feature_bit; 9709 9710 for_each_netdev_feature(upper_disables, feature_bit) { 9711 feature = __NETIF_F_BIT(feature_bit); 9712 if (!(features & feature) && (lower->features & feature)) { 9713 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9714 &feature, lower->name); 9715 lower->wanted_features &= ~feature; 9716 __netdev_update_features(lower); 9717 9718 if (unlikely(lower->features & feature)) 9719 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9720 &feature, lower->name); 9721 else 9722 netdev_features_change(lower); 9723 } 9724 } 9725 } 9726 9727 static netdev_features_t netdev_fix_features(struct net_device *dev, 9728 netdev_features_t features) 9729 { 9730 /* Fix illegal checksum combinations */ 9731 if ((features & NETIF_F_HW_CSUM) && 9732 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9733 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9734 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9735 } 9736 9737 /* TSO requires that SG is present as well. */ 9738 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9739 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9740 features &= ~NETIF_F_ALL_TSO; 9741 } 9742 9743 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9744 !(features & NETIF_F_IP_CSUM)) { 9745 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9746 features &= ~NETIF_F_TSO; 9747 features &= ~NETIF_F_TSO_ECN; 9748 } 9749 9750 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9751 !(features & NETIF_F_IPV6_CSUM)) { 9752 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9753 features &= ~NETIF_F_TSO6; 9754 } 9755 9756 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9757 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9758 features &= ~NETIF_F_TSO_MANGLEID; 9759 9760 /* TSO ECN requires that TSO is present as well. */ 9761 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9762 features &= ~NETIF_F_TSO_ECN; 9763 9764 /* Software GSO depends on SG. */ 9765 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9766 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9767 features &= ~NETIF_F_GSO; 9768 } 9769 9770 /* GSO partial features require GSO partial be set */ 9771 if ((features & dev->gso_partial_features) && 9772 !(features & NETIF_F_GSO_PARTIAL)) { 9773 netdev_dbg(dev, 9774 "Dropping partially supported GSO features since no GSO partial.\n"); 9775 features &= ~dev->gso_partial_features; 9776 } 9777 9778 if (!(features & NETIF_F_RXCSUM)) { 9779 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9780 * successfully merged by hardware must also have the 9781 * checksum verified by hardware. If the user does not 9782 * want to enable RXCSUM, logically, we should disable GRO_HW. 9783 */ 9784 if (features & NETIF_F_GRO_HW) { 9785 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9786 features &= ~NETIF_F_GRO_HW; 9787 } 9788 } 9789 9790 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9791 if (features & NETIF_F_RXFCS) { 9792 if (features & NETIF_F_LRO) { 9793 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9794 features &= ~NETIF_F_LRO; 9795 } 9796 9797 if (features & NETIF_F_GRO_HW) { 9798 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9799 features &= ~NETIF_F_GRO_HW; 9800 } 9801 } 9802 9803 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 9804 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 9805 features &= ~NETIF_F_LRO; 9806 } 9807 9808 if (features & NETIF_F_HW_TLS_TX) { 9809 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9810 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9811 bool hw_csum = features & NETIF_F_HW_CSUM; 9812 9813 if (!ip_csum && !hw_csum) { 9814 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9815 features &= ~NETIF_F_HW_TLS_TX; 9816 } 9817 } 9818 9819 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9820 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9821 features &= ~NETIF_F_HW_TLS_RX; 9822 } 9823 9824 return features; 9825 } 9826 9827 int __netdev_update_features(struct net_device *dev) 9828 { 9829 struct net_device *upper, *lower; 9830 netdev_features_t features; 9831 struct list_head *iter; 9832 int err = -1; 9833 9834 ASSERT_RTNL(); 9835 9836 features = netdev_get_wanted_features(dev); 9837 9838 if (dev->netdev_ops->ndo_fix_features) 9839 features = dev->netdev_ops->ndo_fix_features(dev, features); 9840 9841 /* driver might be less strict about feature dependencies */ 9842 features = netdev_fix_features(dev, features); 9843 9844 /* some features can't be enabled if they're off on an upper device */ 9845 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9846 features = netdev_sync_upper_features(dev, upper, features); 9847 9848 if (dev->features == features) 9849 goto sync_lower; 9850 9851 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9852 &dev->features, &features); 9853 9854 if (dev->netdev_ops->ndo_set_features) 9855 err = dev->netdev_ops->ndo_set_features(dev, features); 9856 else 9857 err = 0; 9858 9859 if (unlikely(err < 0)) { 9860 netdev_err(dev, 9861 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9862 err, &features, &dev->features); 9863 /* return non-0 since some features might have changed and 9864 * it's better to fire a spurious notification than miss it 9865 */ 9866 return -1; 9867 } 9868 9869 sync_lower: 9870 /* some features must be disabled on lower devices when disabled 9871 * on an upper device (think: bonding master or bridge) 9872 */ 9873 netdev_for_each_lower_dev(dev, lower, iter) 9874 netdev_sync_lower_features(dev, lower, features); 9875 9876 if (!err) { 9877 netdev_features_t diff = features ^ dev->features; 9878 9879 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9880 /* udp_tunnel_{get,drop}_rx_info both need 9881 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9882 * device, or they won't do anything. 9883 * Thus we need to update dev->features 9884 * *before* calling udp_tunnel_get_rx_info, 9885 * but *after* calling udp_tunnel_drop_rx_info. 9886 */ 9887 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9888 dev->features = features; 9889 udp_tunnel_get_rx_info(dev); 9890 } else { 9891 udp_tunnel_drop_rx_info(dev); 9892 } 9893 } 9894 9895 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9896 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9897 dev->features = features; 9898 err |= vlan_get_rx_ctag_filter_info(dev); 9899 } else { 9900 vlan_drop_rx_ctag_filter_info(dev); 9901 } 9902 } 9903 9904 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9905 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9906 dev->features = features; 9907 err |= vlan_get_rx_stag_filter_info(dev); 9908 } else { 9909 vlan_drop_rx_stag_filter_info(dev); 9910 } 9911 } 9912 9913 dev->features = features; 9914 } 9915 9916 return err < 0 ? 0 : 1; 9917 } 9918 9919 /** 9920 * netdev_update_features - recalculate device features 9921 * @dev: the device to check 9922 * 9923 * Recalculate dev->features set and send notifications if it 9924 * has changed. Should be called after driver or hardware dependent 9925 * conditions might have changed that influence the features. 9926 */ 9927 void netdev_update_features(struct net_device *dev) 9928 { 9929 if (__netdev_update_features(dev)) 9930 netdev_features_change(dev); 9931 } 9932 EXPORT_SYMBOL(netdev_update_features); 9933 9934 /** 9935 * netdev_change_features - recalculate device features 9936 * @dev: the device to check 9937 * 9938 * Recalculate dev->features set and send notifications even 9939 * if they have not changed. Should be called instead of 9940 * netdev_update_features() if also dev->vlan_features might 9941 * have changed to allow the changes to be propagated to stacked 9942 * VLAN devices. 9943 */ 9944 void netdev_change_features(struct net_device *dev) 9945 { 9946 __netdev_update_features(dev); 9947 netdev_features_change(dev); 9948 } 9949 EXPORT_SYMBOL(netdev_change_features); 9950 9951 /** 9952 * netif_stacked_transfer_operstate - transfer operstate 9953 * @rootdev: the root or lower level device to transfer state from 9954 * @dev: the device to transfer operstate to 9955 * 9956 * Transfer operational state from root to device. This is normally 9957 * called when a stacking relationship exists between the root 9958 * device and the device(a leaf device). 9959 */ 9960 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9961 struct net_device *dev) 9962 { 9963 if (rootdev->operstate == IF_OPER_DORMANT) 9964 netif_dormant_on(dev); 9965 else 9966 netif_dormant_off(dev); 9967 9968 if (rootdev->operstate == IF_OPER_TESTING) 9969 netif_testing_on(dev); 9970 else 9971 netif_testing_off(dev); 9972 9973 if (netif_carrier_ok(rootdev)) 9974 netif_carrier_on(dev); 9975 else 9976 netif_carrier_off(dev); 9977 } 9978 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9979 9980 static int netif_alloc_rx_queues(struct net_device *dev) 9981 { 9982 unsigned int i, count = dev->num_rx_queues; 9983 struct netdev_rx_queue *rx; 9984 size_t sz = count * sizeof(*rx); 9985 int err = 0; 9986 9987 BUG_ON(count < 1); 9988 9989 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 9990 if (!rx) 9991 return -ENOMEM; 9992 9993 dev->_rx = rx; 9994 9995 for (i = 0; i < count; i++) { 9996 rx[i].dev = dev; 9997 9998 /* XDP RX-queue setup */ 9999 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10000 if (err < 0) 10001 goto err_rxq_info; 10002 } 10003 return 0; 10004 10005 err_rxq_info: 10006 /* Rollback successful reg's and free other resources */ 10007 while (i--) 10008 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10009 kvfree(dev->_rx); 10010 dev->_rx = NULL; 10011 return err; 10012 } 10013 10014 static void netif_free_rx_queues(struct net_device *dev) 10015 { 10016 unsigned int i, count = dev->num_rx_queues; 10017 10018 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10019 if (!dev->_rx) 10020 return; 10021 10022 for (i = 0; i < count; i++) 10023 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10024 10025 kvfree(dev->_rx); 10026 } 10027 10028 static void netdev_init_one_queue(struct net_device *dev, 10029 struct netdev_queue *queue, void *_unused) 10030 { 10031 /* Initialize queue lock */ 10032 spin_lock_init(&queue->_xmit_lock); 10033 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10034 queue->xmit_lock_owner = -1; 10035 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10036 queue->dev = dev; 10037 #ifdef CONFIG_BQL 10038 dql_init(&queue->dql, HZ); 10039 #endif 10040 } 10041 10042 static void netif_free_tx_queues(struct net_device *dev) 10043 { 10044 kvfree(dev->_tx); 10045 } 10046 10047 static int netif_alloc_netdev_queues(struct net_device *dev) 10048 { 10049 unsigned int count = dev->num_tx_queues; 10050 struct netdev_queue *tx; 10051 size_t sz = count * sizeof(*tx); 10052 10053 if (count < 1 || count > 0xffff) 10054 return -EINVAL; 10055 10056 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10057 if (!tx) 10058 return -ENOMEM; 10059 10060 dev->_tx = tx; 10061 10062 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10063 spin_lock_init(&dev->tx_global_lock); 10064 10065 return 0; 10066 } 10067 10068 void netif_tx_stop_all_queues(struct net_device *dev) 10069 { 10070 unsigned int i; 10071 10072 for (i = 0; i < dev->num_tx_queues; i++) { 10073 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10074 10075 netif_tx_stop_queue(txq); 10076 } 10077 } 10078 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10079 10080 /** 10081 * register_netdevice() - register a network device 10082 * @dev: device to register 10083 * 10084 * Take a prepared network device structure and make it externally accessible. 10085 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10086 * Callers must hold the rtnl lock - you may want register_netdev() 10087 * instead of this. 10088 */ 10089 int register_netdevice(struct net_device *dev) 10090 { 10091 int ret; 10092 struct net *net = dev_net(dev); 10093 10094 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10095 NETDEV_FEATURE_COUNT); 10096 BUG_ON(dev_boot_phase); 10097 ASSERT_RTNL(); 10098 10099 might_sleep(); 10100 10101 /* When net_device's are persistent, this will be fatal. */ 10102 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10103 BUG_ON(!net); 10104 10105 ret = ethtool_check_ops(dev->ethtool_ops); 10106 if (ret) 10107 return ret; 10108 10109 spin_lock_init(&dev->addr_list_lock); 10110 netdev_set_addr_lockdep_class(dev); 10111 10112 ret = dev_get_valid_name(net, dev, dev->name); 10113 if (ret < 0) 10114 goto out; 10115 10116 ret = -ENOMEM; 10117 dev->name_node = netdev_name_node_head_alloc(dev); 10118 if (!dev->name_node) 10119 goto out; 10120 10121 /* Init, if this function is available */ 10122 if (dev->netdev_ops->ndo_init) { 10123 ret = dev->netdev_ops->ndo_init(dev); 10124 if (ret) { 10125 if (ret > 0) 10126 ret = -EIO; 10127 goto err_free_name; 10128 } 10129 } 10130 10131 if (((dev->hw_features | dev->features) & 10132 NETIF_F_HW_VLAN_CTAG_FILTER) && 10133 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10134 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10135 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10136 ret = -EINVAL; 10137 goto err_uninit; 10138 } 10139 10140 ret = dev_index_reserve(net, dev->ifindex); 10141 if (ret < 0) 10142 goto err_uninit; 10143 dev->ifindex = ret; 10144 10145 /* Transfer changeable features to wanted_features and enable 10146 * software offloads (GSO and GRO). 10147 */ 10148 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10149 dev->features |= NETIF_F_SOFT_FEATURES; 10150 10151 if (dev->udp_tunnel_nic_info) { 10152 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10153 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10154 } 10155 10156 dev->wanted_features = dev->features & dev->hw_features; 10157 10158 if (!(dev->flags & IFF_LOOPBACK)) 10159 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10160 10161 /* If IPv4 TCP segmentation offload is supported we should also 10162 * allow the device to enable segmenting the frame with the option 10163 * of ignoring a static IP ID value. This doesn't enable the 10164 * feature itself but allows the user to enable it later. 10165 */ 10166 if (dev->hw_features & NETIF_F_TSO) 10167 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10168 if (dev->vlan_features & NETIF_F_TSO) 10169 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10170 if (dev->mpls_features & NETIF_F_TSO) 10171 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10172 if (dev->hw_enc_features & NETIF_F_TSO) 10173 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10174 10175 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10176 */ 10177 dev->vlan_features |= NETIF_F_HIGHDMA; 10178 10179 /* Make NETIF_F_SG inheritable to tunnel devices. 10180 */ 10181 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10182 10183 /* Make NETIF_F_SG inheritable to MPLS. 10184 */ 10185 dev->mpls_features |= NETIF_F_SG; 10186 10187 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10188 ret = notifier_to_errno(ret); 10189 if (ret) 10190 goto err_ifindex_release; 10191 10192 ret = netdev_register_kobject(dev); 10193 write_lock(&dev_base_lock); 10194 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED; 10195 write_unlock(&dev_base_lock); 10196 if (ret) 10197 goto err_uninit_notify; 10198 10199 __netdev_update_features(dev); 10200 10201 /* 10202 * Default initial state at registry is that the 10203 * device is present. 10204 */ 10205 10206 set_bit(__LINK_STATE_PRESENT, &dev->state); 10207 10208 linkwatch_init_dev(dev); 10209 10210 dev_init_scheduler(dev); 10211 10212 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10213 list_netdevice(dev); 10214 10215 add_device_randomness(dev->dev_addr, dev->addr_len); 10216 10217 /* If the device has permanent device address, driver should 10218 * set dev_addr and also addr_assign_type should be set to 10219 * NET_ADDR_PERM (default value). 10220 */ 10221 if (dev->addr_assign_type == NET_ADDR_PERM) 10222 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10223 10224 /* Notify protocols, that a new device appeared. */ 10225 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10226 ret = notifier_to_errno(ret); 10227 if (ret) { 10228 /* Expect explicit free_netdev() on failure */ 10229 dev->needs_free_netdev = false; 10230 unregister_netdevice_queue(dev, NULL); 10231 goto out; 10232 } 10233 /* 10234 * Prevent userspace races by waiting until the network 10235 * device is fully setup before sending notifications. 10236 */ 10237 if (!dev->rtnl_link_ops || 10238 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10239 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 10240 10241 out: 10242 return ret; 10243 10244 err_uninit_notify: 10245 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10246 err_ifindex_release: 10247 dev_index_release(net, dev->ifindex); 10248 err_uninit: 10249 if (dev->netdev_ops->ndo_uninit) 10250 dev->netdev_ops->ndo_uninit(dev); 10251 if (dev->priv_destructor) 10252 dev->priv_destructor(dev); 10253 err_free_name: 10254 netdev_name_node_free(dev->name_node); 10255 goto out; 10256 } 10257 EXPORT_SYMBOL(register_netdevice); 10258 10259 /** 10260 * init_dummy_netdev - init a dummy network device for NAPI 10261 * @dev: device to init 10262 * 10263 * This takes a network device structure and initialize the minimum 10264 * amount of fields so it can be used to schedule NAPI polls without 10265 * registering a full blown interface. This is to be used by drivers 10266 * that need to tie several hardware interfaces to a single NAPI 10267 * poll scheduler due to HW limitations. 10268 */ 10269 int init_dummy_netdev(struct net_device *dev) 10270 { 10271 /* Clear everything. Note we don't initialize spinlocks 10272 * are they aren't supposed to be taken by any of the 10273 * NAPI code and this dummy netdev is supposed to be 10274 * only ever used for NAPI polls 10275 */ 10276 memset(dev, 0, sizeof(struct net_device)); 10277 10278 /* make sure we BUG if trying to hit standard 10279 * register/unregister code path 10280 */ 10281 dev->reg_state = NETREG_DUMMY; 10282 10283 /* NAPI wants this */ 10284 INIT_LIST_HEAD(&dev->napi_list); 10285 10286 /* a dummy interface is started by default */ 10287 set_bit(__LINK_STATE_PRESENT, &dev->state); 10288 set_bit(__LINK_STATE_START, &dev->state); 10289 10290 /* napi_busy_loop stats accounting wants this */ 10291 dev_net_set(dev, &init_net); 10292 10293 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10294 * because users of this 'device' dont need to change 10295 * its refcount. 10296 */ 10297 10298 return 0; 10299 } 10300 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10301 10302 10303 /** 10304 * register_netdev - register a network device 10305 * @dev: device to register 10306 * 10307 * Take a completed network device structure and add it to the kernel 10308 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10309 * chain. 0 is returned on success. A negative errno code is returned 10310 * on a failure to set up the device, or if the name is a duplicate. 10311 * 10312 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10313 * and expands the device name if you passed a format string to 10314 * alloc_netdev. 10315 */ 10316 int register_netdev(struct net_device *dev) 10317 { 10318 int err; 10319 10320 if (rtnl_lock_killable()) 10321 return -EINTR; 10322 err = register_netdevice(dev); 10323 rtnl_unlock(); 10324 return err; 10325 } 10326 EXPORT_SYMBOL(register_netdev); 10327 10328 int netdev_refcnt_read(const struct net_device *dev) 10329 { 10330 #ifdef CONFIG_PCPU_DEV_REFCNT 10331 int i, refcnt = 0; 10332 10333 for_each_possible_cpu(i) 10334 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10335 return refcnt; 10336 #else 10337 return refcount_read(&dev->dev_refcnt); 10338 #endif 10339 } 10340 EXPORT_SYMBOL(netdev_refcnt_read); 10341 10342 int netdev_unregister_timeout_secs __read_mostly = 10; 10343 10344 #define WAIT_REFS_MIN_MSECS 1 10345 #define WAIT_REFS_MAX_MSECS 250 10346 /** 10347 * netdev_wait_allrefs_any - wait until all references are gone. 10348 * @list: list of net_devices to wait on 10349 * 10350 * This is called when unregistering network devices. 10351 * 10352 * Any protocol or device that holds a reference should register 10353 * for netdevice notification, and cleanup and put back the 10354 * reference if they receive an UNREGISTER event. 10355 * We can get stuck here if buggy protocols don't correctly 10356 * call dev_put. 10357 */ 10358 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10359 { 10360 unsigned long rebroadcast_time, warning_time; 10361 struct net_device *dev; 10362 int wait = 0; 10363 10364 rebroadcast_time = warning_time = jiffies; 10365 10366 list_for_each_entry(dev, list, todo_list) 10367 if (netdev_refcnt_read(dev) == 1) 10368 return dev; 10369 10370 while (true) { 10371 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10372 rtnl_lock(); 10373 10374 /* Rebroadcast unregister notification */ 10375 list_for_each_entry(dev, list, todo_list) 10376 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10377 10378 __rtnl_unlock(); 10379 rcu_barrier(); 10380 rtnl_lock(); 10381 10382 list_for_each_entry(dev, list, todo_list) 10383 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10384 &dev->state)) { 10385 /* We must not have linkwatch events 10386 * pending on unregister. If this 10387 * happens, we simply run the queue 10388 * unscheduled, resulting in a noop 10389 * for this device. 10390 */ 10391 linkwatch_run_queue(); 10392 break; 10393 } 10394 10395 __rtnl_unlock(); 10396 10397 rebroadcast_time = jiffies; 10398 } 10399 10400 if (!wait) { 10401 rcu_barrier(); 10402 wait = WAIT_REFS_MIN_MSECS; 10403 } else { 10404 msleep(wait); 10405 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10406 } 10407 10408 list_for_each_entry(dev, list, todo_list) 10409 if (netdev_refcnt_read(dev) == 1) 10410 return dev; 10411 10412 if (time_after(jiffies, warning_time + 10413 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 10414 list_for_each_entry(dev, list, todo_list) { 10415 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10416 dev->name, netdev_refcnt_read(dev)); 10417 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10418 } 10419 10420 warning_time = jiffies; 10421 } 10422 } 10423 } 10424 10425 /* The sequence is: 10426 * 10427 * rtnl_lock(); 10428 * ... 10429 * register_netdevice(x1); 10430 * register_netdevice(x2); 10431 * ... 10432 * unregister_netdevice(y1); 10433 * unregister_netdevice(y2); 10434 * ... 10435 * rtnl_unlock(); 10436 * free_netdev(y1); 10437 * free_netdev(y2); 10438 * 10439 * We are invoked by rtnl_unlock(). 10440 * This allows us to deal with problems: 10441 * 1) We can delete sysfs objects which invoke hotplug 10442 * without deadlocking with linkwatch via keventd. 10443 * 2) Since we run with the RTNL semaphore not held, we can sleep 10444 * safely in order to wait for the netdev refcnt to drop to zero. 10445 * 10446 * We must not return until all unregister events added during 10447 * the interval the lock was held have been completed. 10448 */ 10449 void netdev_run_todo(void) 10450 { 10451 struct net_device *dev, *tmp; 10452 struct list_head list; 10453 #ifdef CONFIG_LOCKDEP 10454 struct list_head unlink_list; 10455 10456 list_replace_init(&net_unlink_list, &unlink_list); 10457 10458 while (!list_empty(&unlink_list)) { 10459 struct net_device *dev = list_first_entry(&unlink_list, 10460 struct net_device, 10461 unlink_list); 10462 list_del_init(&dev->unlink_list); 10463 dev->nested_level = dev->lower_level - 1; 10464 } 10465 #endif 10466 10467 /* Snapshot list, allow later requests */ 10468 list_replace_init(&net_todo_list, &list); 10469 10470 __rtnl_unlock(); 10471 10472 /* Wait for rcu callbacks to finish before next phase */ 10473 if (!list_empty(&list)) 10474 rcu_barrier(); 10475 10476 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10477 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10478 netdev_WARN(dev, "run_todo but not unregistering\n"); 10479 list_del(&dev->todo_list); 10480 continue; 10481 } 10482 10483 write_lock(&dev_base_lock); 10484 dev->reg_state = NETREG_UNREGISTERED; 10485 write_unlock(&dev_base_lock); 10486 linkwatch_forget_dev(dev); 10487 } 10488 10489 while (!list_empty(&list)) { 10490 dev = netdev_wait_allrefs_any(&list); 10491 list_del(&dev->todo_list); 10492 10493 /* paranoia */ 10494 BUG_ON(netdev_refcnt_read(dev) != 1); 10495 BUG_ON(!list_empty(&dev->ptype_all)); 10496 BUG_ON(!list_empty(&dev->ptype_specific)); 10497 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10498 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10499 10500 if (dev->priv_destructor) 10501 dev->priv_destructor(dev); 10502 if (dev->needs_free_netdev) 10503 free_netdev(dev); 10504 10505 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count)) 10506 wake_up(&netdev_unregistering_wq); 10507 10508 /* Free network device */ 10509 kobject_put(&dev->dev.kobj); 10510 } 10511 } 10512 10513 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10514 * all the same fields in the same order as net_device_stats, with only 10515 * the type differing, but rtnl_link_stats64 may have additional fields 10516 * at the end for newer counters. 10517 */ 10518 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10519 const struct net_device_stats *netdev_stats) 10520 { 10521 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 10522 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 10523 u64 *dst = (u64 *)stats64; 10524 10525 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10526 for (i = 0; i < n; i++) 10527 dst[i] = (unsigned long)atomic_long_read(&src[i]); 10528 /* zero out counters that only exist in rtnl_link_stats64 */ 10529 memset((char *)stats64 + n * sizeof(u64), 0, 10530 sizeof(*stats64) - n * sizeof(u64)); 10531 } 10532 EXPORT_SYMBOL(netdev_stats_to_stats64); 10533 10534 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 10535 struct net_device *dev) 10536 { 10537 struct net_device_core_stats __percpu *p; 10538 10539 p = alloc_percpu_gfp(struct net_device_core_stats, 10540 GFP_ATOMIC | __GFP_NOWARN); 10541 10542 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10543 free_percpu(p); 10544 10545 /* This READ_ONCE() pairs with the cmpxchg() above */ 10546 return READ_ONCE(dev->core_stats); 10547 } 10548 10549 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 10550 { 10551 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10552 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 10553 unsigned long __percpu *field; 10554 10555 if (unlikely(!p)) { 10556 p = netdev_core_stats_alloc(dev); 10557 if (!p) 10558 return; 10559 } 10560 10561 field = (__force unsigned long __percpu *)((__force void *)p + offset); 10562 this_cpu_inc(*field); 10563 } 10564 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 10565 10566 /** 10567 * dev_get_stats - get network device statistics 10568 * @dev: device to get statistics from 10569 * @storage: place to store stats 10570 * 10571 * Get network statistics from device. Return @storage. 10572 * The device driver may provide its own method by setting 10573 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10574 * otherwise the internal statistics structure is used. 10575 */ 10576 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10577 struct rtnl_link_stats64 *storage) 10578 { 10579 const struct net_device_ops *ops = dev->netdev_ops; 10580 const struct net_device_core_stats __percpu *p; 10581 10582 if (ops->ndo_get_stats64) { 10583 memset(storage, 0, sizeof(*storage)); 10584 ops->ndo_get_stats64(dev, storage); 10585 } else if (ops->ndo_get_stats) { 10586 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10587 } else { 10588 netdev_stats_to_stats64(storage, &dev->stats); 10589 } 10590 10591 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10592 p = READ_ONCE(dev->core_stats); 10593 if (p) { 10594 const struct net_device_core_stats *core_stats; 10595 int i; 10596 10597 for_each_possible_cpu(i) { 10598 core_stats = per_cpu_ptr(p, i); 10599 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 10600 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 10601 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 10602 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 10603 } 10604 } 10605 return storage; 10606 } 10607 EXPORT_SYMBOL(dev_get_stats); 10608 10609 /** 10610 * dev_fetch_sw_netstats - get per-cpu network device statistics 10611 * @s: place to store stats 10612 * @netstats: per-cpu network stats to read from 10613 * 10614 * Read per-cpu network statistics and populate the related fields in @s. 10615 */ 10616 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10617 const struct pcpu_sw_netstats __percpu *netstats) 10618 { 10619 int cpu; 10620 10621 for_each_possible_cpu(cpu) { 10622 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 10623 const struct pcpu_sw_netstats *stats; 10624 unsigned int start; 10625 10626 stats = per_cpu_ptr(netstats, cpu); 10627 do { 10628 start = u64_stats_fetch_begin(&stats->syncp); 10629 rx_packets = u64_stats_read(&stats->rx_packets); 10630 rx_bytes = u64_stats_read(&stats->rx_bytes); 10631 tx_packets = u64_stats_read(&stats->tx_packets); 10632 tx_bytes = u64_stats_read(&stats->tx_bytes); 10633 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10634 10635 s->rx_packets += rx_packets; 10636 s->rx_bytes += rx_bytes; 10637 s->tx_packets += tx_packets; 10638 s->tx_bytes += tx_bytes; 10639 } 10640 } 10641 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10642 10643 /** 10644 * dev_get_tstats64 - ndo_get_stats64 implementation 10645 * @dev: device to get statistics from 10646 * @s: place to store stats 10647 * 10648 * Populate @s from dev->stats and dev->tstats. Can be used as 10649 * ndo_get_stats64() callback. 10650 */ 10651 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10652 { 10653 netdev_stats_to_stats64(s, &dev->stats); 10654 dev_fetch_sw_netstats(s, dev->tstats); 10655 } 10656 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10657 10658 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10659 { 10660 struct netdev_queue *queue = dev_ingress_queue(dev); 10661 10662 #ifdef CONFIG_NET_CLS_ACT 10663 if (queue) 10664 return queue; 10665 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10666 if (!queue) 10667 return NULL; 10668 netdev_init_one_queue(dev, queue, NULL); 10669 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10670 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 10671 rcu_assign_pointer(dev->ingress_queue, queue); 10672 #endif 10673 return queue; 10674 } 10675 10676 static const struct ethtool_ops default_ethtool_ops; 10677 10678 void netdev_set_default_ethtool_ops(struct net_device *dev, 10679 const struct ethtool_ops *ops) 10680 { 10681 if (dev->ethtool_ops == &default_ethtool_ops) 10682 dev->ethtool_ops = ops; 10683 } 10684 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10685 10686 /** 10687 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 10688 * @dev: netdev to enable the IRQ coalescing on 10689 * 10690 * Sets a conservative default for SW IRQ coalescing. Users can use 10691 * sysfs attributes to override the default values. 10692 */ 10693 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 10694 { 10695 WARN_ON(dev->reg_state == NETREG_REGISTERED); 10696 10697 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 10698 dev->gro_flush_timeout = 20000; 10699 dev->napi_defer_hard_irqs = 1; 10700 } 10701 } 10702 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 10703 10704 void netdev_freemem(struct net_device *dev) 10705 { 10706 char *addr = (char *)dev - dev->padded; 10707 10708 kvfree(addr); 10709 } 10710 10711 /** 10712 * alloc_netdev_mqs - allocate network device 10713 * @sizeof_priv: size of private data to allocate space for 10714 * @name: device name format string 10715 * @name_assign_type: origin of device name 10716 * @setup: callback to initialize device 10717 * @txqs: the number of TX subqueues to allocate 10718 * @rxqs: the number of RX subqueues to allocate 10719 * 10720 * Allocates a struct net_device with private data area for driver use 10721 * and performs basic initialization. Also allocates subqueue structs 10722 * for each queue on the device. 10723 */ 10724 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10725 unsigned char name_assign_type, 10726 void (*setup)(struct net_device *), 10727 unsigned int txqs, unsigned int rxqs) 10728 { 10729 struct net_device *dev; 10730 unsigned int alloc_size; 10731 struct net_device *p; 10732 10733 BUG_ON(strlen(name) >= sizeof(dev->name)); 10734 10735 if (txqs < 1) { 10736 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10737 return NULL; 10738 } 10739 10740 if (rxqs < 1) { 10741 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10742 return NULL; 10743 } 10744 10745 alloc_size = sizeof(struct net_device); 10746 if (sizeof_priv) { 10747 /* ensure 32-byte alignment of private area */ 10748 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10749 alloc_size += sizeof_priv; 10750 } 10751 /* ensure 32-byte alignment of whole construct */ 10752 alloc_size += NETDEV_ALIGN - 1; 10753 10754 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10755 if (!p) 10756 return NULL; 10757 10758 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10759 dev->padded = (char *)dev - (char *)p; 10760 10761 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 10762 #ifdef CONFIG_PCPU_DEV_REFCNT 10763 dev->pcpu_refcnt = alloc_percpu(int); 10764 if (!dev->pcpu_refcnt) 10765 goto free_dev; 10766 __dev_hold(dev); 10767 #else 10768 refcount_set(&dev->dev_refcnt, 1); 10769 #endif 10770 10771 if (dev_addr_init(dev)) 10772 goto free_pcpu; 10773 10774 dev_mc_init(dev); 10775 dev_uc_init(dev); 10776 10777 dev_net_set(dev, &init_net); 10778 10779 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 10780 dev->xdp_zc_max_segs = 1; 10781 dev->gso_max_segs = GSO_MAX_SEGS; 10782 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 10783 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 10784 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 10785 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 10786 dev->tso_max_segs = TSO_MAX_SEGS; 10787 dev->upper_level = 1; 10788 dev->lower_level = 1; 10789 #ifdef CONFIG_LOCKDEP 10790 dev->nested_level = 0; 10791 INIT_LIST_HEAD(&dev->unlink_list); 10792 #endif 10793 10794 INIT_LIST_HEAD(&dev->napi_list); 10795 INIT_LIST_HEAD(&dev->unreg_list); 10796 INIT_LIST_HEAD(&dev->close_list); 10797 INIT_LIST_HEAD(&dev->link_watch_list); 10798 INIT_LIST_HEAD(&dev->adj_list.upper); 10799 INIT_LIST_HEAD(&dev->adj_list.lower); 10800 INIT_LIST_HEAD(&dev->ptype_all); 10801 INIT_LIST_HEAD(&dev->ptype_specific); 10802 INIT_LIST_HEAD(&dev->net_notifier_list); 10803 #ifdef CONFIG_NET_SCHED 10804 hash_init(dev->qdisc_hash); 10805 #endif 10806 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10807 setup(dev); 10808 10809 if (!dev->tx_queue_len) { 10810 dev->priv_flags |= IFF_NO_QUEUE; 10811 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10812 } 10813 10814 dev->num_tx_queues = txqs; 10815 dev->real_num_tx_queues = txqs; 10816 if (netif_alloc_netdev_queues(dev)) 10817 goto free_all; 10818 10819 dev->num_rx_queues = rxqs; 10820 dev->real_num_rx_queues = rxqs; 10821 if (netif_alloc_rx_queues(dev)) 10822 goto free_all; 10823 10824 strcpy(dev->name, name); 10825 dev->name_assign_type = name_assign_type; 10826 dev->group = INIT_NETDEV_GROUP; 10827 if (!dev->ethtool_ops) 10828 dev->ethtool_ops = &default_ethtool_ops; 10829 10830 nf_hook_netdev_init(dev); 10831 10832 return dev; 10833 10834 free_all: 10835 free_netdev(dev); 10836 return NULL; 10837 10838 free_pcpu: 10839 #ifdef CONFIG_PCPU_DEV_REFCNT 10840 free_percpu(dev->pcpu_refcnt); 10841 free_dev: 10842 #endif 10843 netdev_freemem(dev); 10844 return NULL; 10845 } 10846 EXPORT_SYMBOL(alloc_netdev_mqs); 10847 10848 /** 10849 * free_netdev - free network device 10850 * @dev: device 10851 * 10852 * This function does the last stage of destroying an allocated device 10853 * interface. The reference to the device object is released. If this 10854 * is the last reference then it will be freed.Must be called in process 10855 * context. 10856 */ 10857 void free_netdev(struct net_device *dev) 10858 { 10859 struct napi_struct *p, *n; 10860 10861 might_sleep(); 10862 10863 /* When called immediately after register_netdevice() failed the unwind 10864 * handling may still be dismantling the device. Handle that case by 10865 * deferring the free. 10866 */ 10867 if (dev->reg_state == NETREG_UNREGISTERING) { 10868 ASSERT_RTNL(); 10869 dev->needs_free_netdev = true; 10870 return; 10871 } 10872 10873 netif_free_tx_queues(dev); 10874 netif_free_rx_queues(dev); 10875 10876 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10877 10878 /* Flush device addresses */ 10879 dev_addr_flush(dev); 10880 10881 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10882 netif_napi_del(p); 10883 10884 ref_tracker_dir_exit(&dev->refcnt_tracker); 10885 #ifdef CONFIG_PCPU_DEV_REFCNT 10886 free_percpu(dev->pcpu_refcnt); 10887 dev->pcpu_refcnt = NULL; 10888 #endif 10889 free_percpu(dev->core_stats); 10890 dev->core_stats = NULL; 10891 free_percpu(dev->xdp_bulkq); 10892 dev->xdp_bulkq = NULL; 10893 10894 /* Compatibility with error handling in drivers */ 10895 if (dev->reg_state == NETREG_UNINITIALIZED) { 10896 netdev_freemem(dev); 10897 return; 10898 } 10899 10900 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10901 dev->reg_state = NETREG_RELEASED; 10902 10903 /* will free via device release */ 10904 put_device(&dev->dev); 10905 } 10906 EXPORT_SYMBOL(free_netdev); 10907 10908 /** 10909 * synchronize_net - Synchronize with packet receive processing 10910 * 10911 * Wait for packets currently being received to be done. 10912 * Does not block later packets from starting. 10913 */ 10914 void synchronize_net(void) 10915 { 10916 might_sleep(); 10917 if (rtnl_is_locked()) 10918 synchronize_rcu_expedited(); 10919 else 10920 synchronize_rcu(); 10921 } 10922 EXPORT_SYMBOL(synchronize_net); 10923 10924 /** 10925 * unregister_netdevice_queue - remove device from the kernel 10926 * @dev: device 10927 * @head: list 10928 * 10929 * This function shuts down a device interface and removes it 10930 * from the kernel tables. 10931 * If head not NULL, device is queued to be unregistered later. 10932 * 10933 * Callers must hold the rtnl semaphore. You may want 10934 * unregister_netdev() instead of this. 10935 */ 10936 10937 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10938 { 10939 ASSERT_RTNL(); 10940 10941 if (head) { 10942 list_move_tail(&dev->unreg_list, head); 10943 } else { 10944 LIST_HEAD(single); 10945 10946 list_add(&dev->unreg_list, &single); 10947 unregister_netdevice_many(&single); 10948 } 10949 } 10950 EXPORT_SYMBOL(unregister_netdevice_queue); 10951 10952 void unregister_netdevice_many_notify(struct list_head *head, 10953 u32 portid, const struct nlmsghdr *nlh) 10954 { 10955 struct net_device *dev, *tmp; 10956 LIST_HEAD(close_head); 10957 10958 BUG_ON(dev_boot_phase); 10959 ASSERT_RTNL(); 10960 10961 if (list_empty(head)) 10962 return; 10963 10964 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 10965 /* Some devices call without registering 10966 * for initialization unwind. Remove those 10967 * devices and proceed with the remaining. 10968 */ 10969 if (dev->reg_state == NETREG_UNINITIALIZED) { 10970 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 10971 dev->name, dev); 10972 10973 WARN_ON(1); 10974 list_del(&dev->unreg_list); 10975 continue; 10976 } 10977 dev->dismantle = true; 10978 BUG_ON(dev->reg_state != NETREG_REGISTERED); 10979 } 10980 10981 /* If device is running, close it first. */ 10982 list_for_each_entry(dev, head, unreg_list) 10983 list_add_tail(&dev->close_list, &close_head); 10984 dev_close_many(&close_head, true); 10985 10986 list_for_each_entry(dev, head, unreg_list) { 10987 /* And unlink it from device chain. */ 10988 write_lock(&dev_base_lock); 10989 unlist_netdevice(dev, false); 10990 dev->reg_state = NETREG_UNREGISTERING; 10991 write_unlock(&dev_base_lock); 10992 } 10993 flush_all_backlogs(); 10994 10995 synchronize_net(); 10996 10997 list_for_each_entry(dev, head, unreg_list) { 10998 struct sk_buff *skb = NULL; 10999 11000 /* Shutdown queueing discipline. */ 11001 dev_shutdown(dev); 11002 dev_tcx_uninstall(dev); 11003 dev_xdp_uninstall(dev); 11004 bpf_dev_bound_netdev_unregister(dev); 11005 11006 netdev_offload_xstats_disable_all(dev); 11007 11008 /* Notify protocols, that we are about to destroy 11009 * this device. They should clean all the things. 11010 */ 11011 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11012 11013 if (!dev->rtnl_link_ops || 11014 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11015 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11016 GFP_KERNEL, NULL, 0, 11017 portid, nlh); 11018 11019 /* 11020 * Flush the unicast and multicast chains 11021 */ 11022 dev_uc_flush(dev); 11023 dev_mc_flush(dev); 11024 11025 netdev_name_node_alt_flush(dev); 11026 netdev_name_node_free(dev->name_node); 11027 11028 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11029 11030 if (dev->netdev_ops->ndo_uninit) 11031 dev->netdev_ops->ndo_uninit(dev); 11032 11033 if (skb) 11034 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 11035 11036 /* Notifier chain MUST detach us all upper devices. */ 11037 WARN_ON(netdev_has_any_upper_dev(dev)); 11038 WARN_ON(netdev_has_any_lower_dev(dev)); 11039 11040 /* Remove entries from kobject tree */ 11041 netdev_unregister_kobject(dev); 11042 #ifdef CONFIG_XPS 11043 /* Remove XPS queueing entries */ 11044 netif_reset_xps_queues_gt(dev, 0); 11045 #endif 11046 } 11047 11048 synchronize_net(); 11049 11050 list_for_each_entry(dev, head, unreg_list) { 11051 netdev_put(dev, &dev->dev_registered_tracker); 11052 net_set_todo(dev); 11053 } 11054 11055 list_del(head); 11056 } 11057 11058 /** 11059 * unregister_netdevice_many - unregister many devices 11060 * @head: list of devices 11061 * 11062 * Note: As most callers use a stack allocated list_head, 11063 * we force a list_del() to make sure stack wont be corrupted later. 11064 */ 11065 void unregister_netdevice_many(struct list_head *head) 11066 { 11067 unregister_netdevice_many_notify(head, 0, NULL); 11068 } 11069 EXPORT_SYMBOL(unregister_netdevice_many); 11070 11071 /** 11072 * unregister_netdev - remove device from the kernel 11073 * @dev: device 11074 * 11075 * This function shuts down a device interface and removes it 11076 * from the kernel tables. 11077 * 11078 * This is just a wrapper for unregister_netdevice that takes 11079 * the rtnl semaphore. In general you want to use this and not 11080 * unregister_netdevice. 11081 */ 11082 void unregister_netdev(struct net_device *dev) 11083 { 11084 rtnl_lock(); 11085 unregister_netdevice(dev); 11086 rtnl_unlock(); 11087 } 11088 EXPORT_SYMBOL(unregister_netdev); 11089 11090 /** 11091 * __dev_change_net_namespace - move device to different nethost namespace 11092 * @dev: device 11093 * @net: network namespace 11094 * @pat: If not NULL name pattern to try if the current device name 11095 * is already taken in the destination network namespace. 11096 * @new_ifindex: If not zero, specifies device index in the target 11097 * namespace. 11098 * 11099 * This function shuts down a device interface and moves it 11100 * to a new network namespace. On success 0 is returned, on 11101 * a failure a netagive errno code is returned. 11102 * 11103 * Callers must hold the rtnl semaphore. 11104 */ 11105 11106 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11107 const char *pat, int new_ifindex) 11108 { 11109 struct netdev_name_node *name_node; 11110 struct net *net_old = dev_net(dev); 11111 char new_name[IFNAMSIZ] = {}; 11112 int err, new_nsid; 11113 11114 ASSERT_RTNL(); 11115 11116 /* Don't allow namespace local devices to be moved. */ 11117 err = -EINVAL; 11118 if (dev->features & NETIF_F_NETNS_LOCAL) 11119 goto out; 11120 11121 /* Ensure the device has been registrered */ 11122 if (dev->reg_state != NETREG_REGISTERED) 11123 goto out; 11124 11125 /* Get out if there is nothing todo */ 11126 err = 0; 11127 if (net_eq(net_old, net)) 11128 goto out; 11129 11130 /* Pick the destination device name, and ensure 11131 * we can use it in the destination network namespace. 11132 */ 11133 err = -EEXIST; 11134 if (netdev_name_in_use(net, dev->name)) { 11135 /* We get here if we can't use the current device name */ 11136 if (!pat) 11137 goto out; 11138 err = dev_prep_valid_name(net, dev, pat, new_name); 11139 if (err < 0) 11140 goto out; 11141 } 11142 /* Check that none of the altnames conflicts. */ 11143 err = -EEXIST; 11144 netdev_for_each_altname(dev, name_node) 11145 if (netdev_name_in_use(net, name_node->name)) 11146 goto out; 11147 11148 /* Check that new_ifindex isn't used yet. */ 11149 if (new_ifindex) { 11150 err = dev_index_reserve(net, new_ifindex); 11151 if (err < 0) 11152 goto out; 11153 } else { 11154 /* If there is an ifindex conflict assign a new one */ 11155 err = dev_index_reserve(net, dev->ifindex); 11156 if (err == -EBUSY) 11157 err = dev_index_reserve(net, 0); 11158 if (err < 0) 11159 goto out; 11160 new_ifindex = err; 11161 } 11162 11163 /* 11164 * And now a mini version of register_netdevice unregister_netdevice. 11165 */ 11166 11167 /* If device is running close it first. */ 11168 dev_close(dev); 11169 11170 /* And unlink it from device chain */ 11171 unlist_netdevice(dev, true); 11172 11173 synchronize_net(); 11174 11175 /* Shutdown queueing discipline. */ 11176 dev_shutdown(dev); 11177 11178 /* Notify protocols, that we are about to destroy 11179 * this device. They should clean all the things. 11180 * 11181 * Note that dev->reg_state stays at NETREG_REGISTERED. 11182 * This is wanted because this way 8021q and macvlan know 11183 * the device is just moving and can keep their slaves up. 11184 */ 11185 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11186 rcu_barrier(); 11187 11188 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11189 11190 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11191 new_ifindex); 11192 11193 /* 11194 * Flush the unicast and multicast chains 11195 */ 11196 dev_uc_flush(dev); 11197 dev_mc_flush(dev); 11198 11199 /* Send a netdev-removed uevent to the old namespace */ 11200 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11201 netdev_adjacent_del_links(dev); 11202 11203 /* Move per-net netdevice notifiers that are following the netdevice */ 11204 move_netdevice_notifiers_dev_net(dev, net); 11205 11206 /* Actually switch the network namespace */ 11207 dev_net_set(dev, net); 11208 dev->ifindex = new_ifindex; 11209 11210 /* Send a netdev-add uevent to the new namespace */ 11211 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11212 netdev_adjacent_add_links(dev); 11213 11214 if (new_name[0]) /* Rename the netdev to prepared name */ 11215 strscpy(dev->name, new_name, IFNAMSIZ); 11216 11217 /* Fixup kobjects */ 11218 err = device_rename(&dev->dev, dev->name); 11219 WARN_ON(err); 11220 11221 /* Adapt owner in case owning user namespace of target network 11222 * namespace is different from the original one. 11223 */ 11224 err = netdev_change_owner(dev, net_old, net); 11225 WARN_ON(err); 11226 11227 /* Add the device back in the hashes */ 11228 list_netdevice(dev); 11229 11230 /* Notify protocols, that a new device appeared. */ 11231 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11232 11233 /* 11234 * Prevent userspace races by waiting until the network 11235 * device is fully setup before sending notifications. 11236 */ 11237 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11238 11239 synchronize_net(); 11240 err = 0; 11241 out: 11242 return err; 11243 } 11244 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11245 11246 static int dev_cpu_dead(unsigned int oldcpu) 11247 { 11248 struct sk_buff **list_skb; 11249 struct sk_buff *skb; 11250 unsigned int cpu; 11251 struct softnet_data *sd, *oldsd, *remsd = NULL; 11252 11253 local_irq_disable(); 11254 cpu = smp_processor_id(); 11255 sd = &per_cpu(softnet_data, cpu); 11256 oldsd = &per_cpu(softnet_data, oldcpu); 11257 11258 /* Find end of our completion_queue. */ 11259 list_skb = &sd->completion_queue; 11260 while (*list_skb) 11261 list_skb = &(*list_skb)->next; 11262 /* Append completion queue from offline CPU. */ 11263 *list_skb = oldsd->completion_queue; 11264 oldsd->completion_queue = NULL; 11265 11266 /* Append output queue from offline CPU. */ 11267 if (oldsd->output_queue) { 11268 *sd->output_queue_tailp = oldsd->output_queue; 11269 sd->output_queue_tailp = oldsd->output_queue_tailp; 11270 oldsd->output_queue = NULL; 11271 oldsd->output_queue_tailp = &oldsd->output_queue; 11272 } 11273 /* Append NAPI poll list from offline CPU, with one exception : 11274 * process_backlog() must be called by cpu owning percpu backlog. 11275 * We properly handle process_queue & input_pkt_queue later. 11276 */ 11277 while (!list_empty(&oldsd->poll_list)) { 11278 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11279 struct napi_struct, 11280 poll_list); 11281 11282 list_del_init(&napi->poll_list); 11283 if (napi->poll == process_backlog) 11284 napi->state = 0; 11285 else 11286 ____napi_schedule(sd, napi); 11287 } 11288 11289 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11290 local_irq_enable(); 11291 11292 #ifdef CONFIG_RPS 11293 remsd = oldsd->rps_ipi_list; 11294 oldsd->rps_ipi_list = NULL; 11295 #endif 11296 /* send out pending IPI's on offline CPU */ 11297 net_rps_send_ipi(remsd); 11298 11299 /* Process offline CPU's input_pkt_queue */ 11300 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11301 netif_rx(skb); 11302 input_queue_head_incr(oldsd); 11303 } 11304 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11305 netif_rx(skb); 11306 input_queue_head_incr(oldsd); 11307 } 11308 11309 return 0; 11310 } 11311 11312 /** 11313 * netdev_increment_features - increment feature set by one 11314 * @all: current feature set 11315 * @one: new feature set 11316 * @mask: mask feature set 11317 * 11318 * Computes a new feature set after adding a device with feature set 11319 * @one to the master device with current feature set @all. Will not 11320 * enable anything that is off in @mask. Returns the new feature set. 11321 */ 11322 netdev_features_t netdev_increment_features(netdev_features_t all, 11323 netdev_features_t one, netdev_features_t mask) 11324 { 11325 if (mask & NETIF_F_HW_CSUM) 11326 mask |= NETIF_F_CSUM_MASK; 11327 mask |= NETIF_F_VLAN_CHALLENGED; 11328 11329 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11330 all &= one | ~NETIF_F_ALL_FOR_ALL; 11331 11332 /* If one device supports hw checksumming, set for all. */ 11333 if (all & NETIF_F_HW_CSUM) 11334 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11335 11336 return all; 11337 } 11338 EXPORT_SYMBOL(netdev_increment_features); 11339 11340 static struct hlist_head * __net_init netdev_create_hash(void) 11341 { 11342 int i; 11343 struct hlist_head *hash; 11344 11345 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11346 if (hash != NULL) 11347 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11348 INIT_HLIST_HEAD(&hash[i]); 11349 11350 return hash; 11351 } 11352 11353 /* Initialize per network namespace state */ 11354 static int __net_init netdev_init(struct net *net) 11355 { 11356 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11357 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11358 11359 INIT_LIST_HEAD(&net->dev_base_head); 11360 11361 net->dev_name_head = netdev_create_hash(); 11362 if (net->dev_name_head == NULL) 11363 goto err_name; 11364 11365 net->dev_index_head = netdev_create_hash(); 11366 if (net->dev_index_head == NULL) 11367 goto err_idx; 11368 11369 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 11370 11371 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11372 11373 return 0; 11374 11375 err_idx: 11376 kfree(net->dev_name_head); 11377 err_name: 11378 return -ENOMEM; 11379 } 11380 11381 /** 11382 * netdev_drivername - network driver for the device 11383 * @dev: network device 11384 * 11385 * Determine network driver for device. 11386 */ 11387 const char *netdev_drivername(const struct net_device *dev) 11388 { 11389 const struct device_driver *driver; 11390 const struct device *parent; 11391 const char *empty = ""; 11392 11393 parent = dev->dev.parent; 11394 if (!parent) 11395 return empty; 11396 11397 driver = parent->driver; 11398 if (driver && driver->name) 11399 return driver->name; 11400 return empty; 11401 } 11402 11403 static void __netdev_printk(const char *level, const struct net_device *dev, 11404 struct va_format *vaf) 11405 { 11406 if (dev && dev->dev.parent) { 11407 dev_printk_emit(level[1] - '0', 11408 dev->dev.parent, 11409 "%s %s %s%s: %pV", 11410 dev_driver_string(dev->dev.parent), 11411 dev_name(dev->dev.parent), 11412 netdev_name(dev), netdev_reg_state(dev), 11413 vaf); 11414 } else if (dev) { 11415 printk("%s%s%s: %pV", 11416 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11417 } else { 11418 printk("%s(NULL net_device): %pV", level, vaf); 11419 } 11420 } 11421 11422 void netdev_printk(const char *level, const struct net_device *dev, 11423 const char *format, ...) 11424 { 11425 struct va_format vaf; 11426 va_list args; 11427 11428 va_start(args, format); 11429 11430 vaf.fmt = format; 11431 vaf.va = &args; 11432 11433 __netdev_printk(level, dev, &vaf); 11434 11435 va_end(args); 11436 } 11437 EXPORT_SYMBOL(netdev_printk); 11438 11439 #define define_netdev_printk_level(func, level) \ 11440 void func(const struct net_device *dev, const char *fmt, ...) \ 11441 { \ 11442 struct va_format vaf; \ 11443 va_list args; \ 11444 \ 11445 va_start(args, fmt); \ 11446 \ 11447 vaf.fmt = fmt; \ 11448 vaf.va = &args; \ 11449 \ 11450 __netdev_printk(level, dev, &vaf); \ 11451 \ 11452 va_end(args); \ 11453 } \ 11454 EXPORT_SYMBOL(func); 11455 11456 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11457 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11458 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11459 define_netdev_printk_level(netdev_err, KERN_ERR); 11460 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11461 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11462 define_netdev_printk_level(netdev_info, KERN_INFO); 11463 11464 static void __net_exit netdev_exit(struct net *net) 11465 { 11466 kfree(net->dev_name_head); 11467 kfree(net->dev_index_head); 11468 xa_destroy(&net->dev_by_index); 11469 if (net != &init_net) 11470 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11471 } 11472 11473 static struct pernet_operations __net_initdata netdev_net_ops = { 11474 .init = netdev_init, 11475 .exit = netdev_exit, 11476 }; 11477 11478 static void __net_exit default_device_exit_net(struct net *net) 11479 { 11480 struct net_device *dev, *aux; 11481 /* 11482 * Push all migratable network devices back to the 11483 * initial network namespace 11484 */ 11485 ASSERT_RTNL(); 11486 for_each_netdev_safe(net, dev, aux) { 11487 int err; 11488 char fb_name[IFNAMSIZ]; 11489 11490 /* Ignore unmoveable devices (i.e. loopback) */ 11491 if (dev->features & NETIF_F_NETNS_LOCAL) 11492 continue; 11493 11494 /* Leave virtual devices for the generic cleanup */ 11495 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11496 continue; 11497 11498 /* Push remaining network devices to init_net */ 11499 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11500 if (netdev_name_in_use(&init_net, fb_name)) 11501 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11502 err = dev_change_net_namespace(dev, &init_net, fb_name); 11503 if (err) { 11504 pr_emerg("%s: failed to move %s to init_net: %d\n", 11505 __func__, dev->name, err); 11506 BUG(); 11507 } 11508 } 11509 } 11510 11511 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11512 { 11513 /* At exit all network devices most be removed from a network 11514 * namespace. Do this in the reverse order of registration. 11515 * Do this across as many network namespaces as possible to 11516 * improve batching efficiency. 11517 */ 11518 struct net_device *dev; 11519 struct net *net; 11520 LIST_HEAD(dev_kill_list); 11521 11522 rtnl_lock(); 11523 list_for_each_entry(net, net_list, exit_list) { 11524 default_device_exit_net(net); 11525 cond_resched(); 11526 } 11527 11528 list_for_each_entry(net, net_list, exit_list) { 11529 for_each_netdev_reverse(net, dev) { 11530 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11531 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11532 else 11533 unregister_netdevice_queue(dev, &dev_kill_list); 11534 } 11535 } 11536 unregister_netdevice_many(&dev_kill_list); 11537 rtnl_unlock(); 11538 } 11539 11540 static struct pernet_operations __net_initdata default_device_ops = { 11541 .exit_batch = default_device_exit_batch, 11542 }; 11543 11544 /* 11545 * Initialize the DEV module. At boot time this walks the device list and 11546 * unhooks any devices that fail to initialise (normally hardware not 11547 * present) and leaves us with a valid list of present and active devices. 11548 * 11549 */ 11550 11551 /* 11552 * This is called single threaded during boot, so no need 11553 * to take the rtnl semaphore. 11554 */ 11555 static int __init net_dev_init(void) 11556 { 11557 int i, rc = -ENOMEM; 11558 11559 BUG_ON(!dev_boot_phase); 11560 11561 if (dev_proc_init()) 11562 goto out; 11563 11564 if (netdev_kobject_init()) 11565 goto out; 11566 11567 INIT_LIST_HEAD(&ptype_all); 11568 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11569 INIT_LIST_HEAD(&ptype_base[i]); 11570 11571 if (register_pernet_subsys(&netdev_net_ops)) 11572 goto out; 11573 11574 /* 11575 * Initialise the packet receive queues. 11576 */ 11577 11578 for_each_possible_cpu(i) { 11579 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11580 struct softnet_data *sd = &per_cpu(softnet_data, i); 11581 11582 INIT_WORK(flush, flush_backlog); 11583 11584 skb_queue_head_init(&sd->input_pkt_queue); 11585 skb_queue_head_init(&sd->process_queue); 11586 #ifdef CONFIG_XFRM_OFFLOAD 11587 skb_queue_head_init(&sd->xfrm_backlog); 11588 #endif 11589 INIT_LIST_HEAD(&sd->poll_list); 11590 sd->output_queue_tailp = &sd->output_queue; 11591 #ifdef CONFIG_RPS 11592 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11593 sd->cpu = i; 11594 #endif 11595 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 11596 spin_lock_init(&sd->defer_lock); 11597 11598 init_gro_hash(&sd->backlog); 11599 sd->backlog.poll = process_backlog; 11600 sd->backlog.weight = weight_p; 11601 } 11602 11603 dev_boot_phase = 0; 11604 11605 /* The loopback device is special if any other network devices 11606 * is present in a network namespace the loopback device must 11607 * be present. Since we now dynamically allocate and free the 11608 * loopback device ensure this invariant is maintained by 11609 * keeping the loopback device as the first device on the 11610 * list of network devices. Ensuring the loopback devices 11611 * is the first device that appears and the last network device 11612 * that disappears. 11613 */ 11614 if (register_pernet_device(&loopback_net_ops)) 11615 goto out; 11616 11617 if (register_pernet_device(&default_device_ops)) 11618 goto out; 11619 11620 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11621 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11622 11623 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11624 NULL, dev_cpu_dead); 11625 WARN_ON(rc < 0); 11626 rc = 0; 11627 out: 11628 return rc; 11629 } 11630 11631 subsys_initcall(net_dev_init); 11632