xref: /linux/net/core/dev.c (revision 2aceb896ee18ae35b21b14c978d8c2ef8c7b439d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 
157 #include "dev.h"
158 #include "net-sysfs.h"
159 
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	kfree(name_node->name);
349 	netdev_name_node_free(name_node);
350 }
351 
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 	struct netdev_name_node *name_node;
355 	struct net *net = dev_net(dev);
356 
357 	name_node = netdev_name_node_lookup(net, name);
358 	if (!name_node)
359 		return -ENOENT;
360 	/* lookup might have found our primary name or a name belonging
361 	 * to another device.
362 	 */
363 	if (name_node == dev->name_node || name_node->dev != dev)
364 		return -EINVAL;
365 
366 	netdev_name_node_del(name_node);
367 	synchronize_rcu();
368 	__netdev_name_node_alt_destroy(name_node);
369 
370 	return 0;
371 }
372 
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 	struct netdev_name_node *name_node, *tmp;
376 
377 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 		__netdev_name_node_alt_destroy(name_node);
379 }
380 
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384 	struct netdev_name_node *name_node;
385 	struct net *net = dev_net(dev);
386 
387 	ASSERT_RTNL();
388 
389 	write_lock(&dev_base_lock);
390 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 	netdev_name_node_add(net, dev->name_node);
392 	hlist_add_head_rcu(&dev->index_hlist,
393 			   dev_index_hash(net, dev->ifindex));
394 	write_unlock(&dev_base_lock);
395 
396 	netdev_for_each_altname(dev, name_node)
397 		netdev_name_node_add(net, name_node);
398 
399 	/* We reserved the ifindex, this can't fail */
400 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401 
402 	dev_base_seq_inc(net);
403 }
404 
405 /* Device list removal
406  * caller must respect a RCU grace period before freeing/reusing dev
407  */
408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410 	struct netdev_name_node *name_node;
411 	struct net *net = dev_net(dev);
412 
413 	ASSERT_RTNL();
414 
415 	xa_erase(&net->dev_by_index, dev->ifindex);
416 
417 	netdev_for_each_altname(dev, name_node)
418 		netdev_name_node_del(name_node);
419 
420 	/* Unlink dev from the device chain */
421 	if (lock)
422 		write_lock(&dev_base_lock);
423 	list_del_rcu(&dev->dev_list);
424 	netdev_name_node_del(dev->name_node);
425 	hlist_del_rcu(&dev->index_hlist);
426 	if (lock)
427 		write_unlock(&dev_base_lock);
428 
429 	dev_base_seq_inc(dev_net(dev));
430 }
431 
432 /*
433  *	Our notifier list
434  */
435 
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437 
438 /*
439  *	Device drivers call our routines to queue packets here. We empty the
440  *	queue in the local softnet handler.
441  */
442 
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445 
446 #ifdef CONFIG_LOCKDEP
447 /*
448  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449  * according to dev->type
450  */
451 static const unsigned short netdev_lock_type[] = {
452 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467 
468 static const char *const netdev_lock_name[] = {
469 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484 
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487 
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490 	int i;
491 
492 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 		if (netdev_lock_type[i] == dev_type)
494 			return i;
495 	/* the last key is used by default */
496 	return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498 
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 						 unsigned short dev_type)
501 {
502 	int i;
503 
504 	i = netdev_lock_pos(dev_type);
505 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 				   netdev_lock_name[i]);
507 }
508 
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511 	int i;
512 
513 	i = netdev_lock_pos(dev->type);
514 	lockdep_set_class_and_name(&dev->addr_list_lock,
515 				   &netdev_addr_lock_key[i],
516 				   netdev_lock_name[i]);
517 }
518 #else
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 						 unsigned short dev_type)
521 {
522 }
523 
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528 
529 /*******************************************************************************
530  *
531  *		Protocol management and registration routines
532  *
533  *******************************************************************************/
534 
535 
536 /*
537  *	Add a protocol ID to the list. Now that the input handler is
538  *	smarter we can dispense with all the messy stuff that used to be
539  *	here.
540  *
541  *	BEWARE!!! Protocol handlers, mangling input packets,
542  *	MUST BE last in hash buckets and checking protocol handlers
543  *	MUST start from promiscuous ptype_all chain in net_bh.
544  *	It is true now, do not change it.
545  *	Explanation follows: if protocol handler, mangling packet, will
546  *	be the first on list, it is not able to sense, that packet
547  *	is cloned and should be copied-on-write, so that it will
548  *	change it and subsequent readers will get broken packet.
549  *							--ANK (980803)
550  */
551 
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554 	if (pt->type == htons(ETH_P_ALL))
555 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556 	else
557 		return pt->dev ? &pt->dev->ptype_specific :
558 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560 
561 /**
562  *	dev_add_pack - add packet handler
563  *	@pt: packet type declaration
564  *
565  *	Add a protocol handler to the networking stack. The passed &packet_type
566  *	is linked into kernel lists and may not be freed until it has been
567  *	removed from the kernel lists.
568  *
569  *	This call does not sleep therefore it can not
570  *	guarantee all CPU's that are in middle of receiving packets
571  *	will see the new packet type (until the next received packet).
572  */
573 
574 void dev_add_pack(struct packet_type *pt)
575 {
576 	struct list_head *head = ptype_head(pt);
577 
578 	spin_lock(&ptype_lock);
579 	list_add_rcu(&pt->list, head);
580 	spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583 
584 /**
585  *	__dev_remove_pack	 - remove packet handler
586  *	@pt: packet type declaration
587  *
588  *	Remove a protocol handler that was previously added to the kernel
589  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
590  *	from the kernel lists and can be freed or reused once this function
591  *	returns.
592  *
593  *      The packet type might still be in use by receivers
594  *	and must not be freed until after all the CPU's have gone
595  *	through a quiescent state.
596  */
597 void __dev_remove_pack(struct packet_type *pt)
598 {
599 	struct list_head *head = ptype_head(pt);
600 	struct packet_type *pt1;
601 
602 	spin_lock(&ptype_lock);
603 
604 	list_for_each_entry(pt1, head, list) {
605 		if (pt == pt1) {
606 			list_del_rcu(&pt->list);
607 			goto out;
608 		}
609 	}
610 
611 	pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613 	spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616 
617 /**
618  *	dev_remove_pack	 - remove packet handler
619  *	@pt: packet type declaration
620  *
621  *	Remove a protocol handler that was previously added to the kernel
622  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
623  *	from the kernel lists and can be freed or reused once this function
624  *	returns.
625  *
626  *	This call sleeps to guarantee that no CPU is looking at the packet
627  *	type after return.
628  */
629 void dev_remove_pack(struct packet_type *pt)
630 {
631 	__dev_remove_pack(pt);
632 
633 	synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636 
637 
638 /*******************************************************************************
639  *
640  *			    Device Interface Subroutines
641  *
642  *******************************************************************************/
643 
644 /**
645  *	dev_get_iflink	- get 'iflink' value of a interface
646  *	@dev: targeted interface
647  *
648  *	Indicates the ifindex the interface is linked to.
649  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
650  */
651 
652 int dev_get_iflink(const struct net_device *dev)
653 {
654 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 		return dev->netdev_ops->ndo_get_iflink(dev);
656 
657 	return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660 
661 /**
662  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
663  *	@dev: targeted interface
664  *	@skb: The packet.
665  *
666  *	For better visibility of tunnel traffic OVS needs to retrieve
667  *	egress tunnel information for a packet. Following API allows
668  *	user to get this info.
669  */
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672 	struct ip_tunnel_info *info;
673 
674 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
675 		return -EINVAL;
676 
677 	info = skb_tunnel_info_unclone(skb);
678 	if (!info)
679 		return -ENOMEM;
680 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681 		return -EINVAL;
682 
683 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686 
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689 	int k = stack->num_paths++;
690 
691 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692 		return NULL;
693 
694 	return &stack->path[k];
695 }
696 
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 			  struct net_device_path_stack *stack)
699 {
700 	const struct net_device *last_dev;
701 	struct net_device_path_ctx ctx = {
702 		.dev	= dev,
703 	};
704 	struct net_device_path *path;
705 	int ret = 0;
706 
707 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 	stack->num_paths = 0;
709 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710 		last_dev = ctx.dev;
711 		path = dev_fwd_path(stack);
712 		if (!path)
713 			return -1;
714 
715 		memset(path, 0, sizeof(struct net_device_path));
716 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717 		if (ret < 0)
718 			return -1;
719 
720 		if (WARN_ON_ONCE(last_dev == ctx.dev))
721 			return -1;
722 	}
723 
724 	if (!ctx.dev)
725 		return ret;
726 
727 	path = dev_fwd_path(stack);
728 	if (!path)
729 		return -1;
730 	path->type = DEV_PATH_ETHERNET;
731 	path->dev = ctx.dev;
732 
733 	return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736 
737 /**
738  *	__dev_get_by_name	- find a device by its name
739  *	@net: the applicable net namespace
740  *	@name: name to find
741  *
742  *	Find an interface by name. Must be called under RTNL semaphore
743  *	or @dev_base_lock. If the name is found a pointer to the device
744  *	is returned. If the name is not found then %NULL is returned. The
745  *	reference counters are not incremented so the caller must be
746  *	careful with locks.
747  */
748 
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751 	struct netdev_name_node *node_name;
752 
753 	node_name = netdev_name_node_lookup(net, name);
754 	return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757 
758 /**
759  * dev_get_by_name_rcu	- find a device by its name
760  * @net: the applicable net namespace
761  * @name: name to find
762  *
763  * Find an interface by name.
764  * If the name is found a pointer to the device is returned.
765  * If the name is not found then %NULL is returned.
766  * The reference counters are not incremented so the caller must be
767  * careful with locks. The caller must hold RCU lock.
768  */
769 
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772 	struct netdev_name_node *node_name;
773 
774 	node_name = netdev_name_node_lookup_rcu(net, name);
775 	return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778 
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782 	struct net_device *dev;
783 
784 	rcu_read_lock();
785 	dev = dev_get_by_name_rcu(net, name);
786 	dev_hold(dev);
787 	rcu_read_unlock();
788 	return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791 
792 /**
793  *	netdev_get_by_name() - find a device by its name
794  *	@net: the applicable net namespace
795  *	@name: name to find
796  *	@tracker: tracking object for the acquired reference
797  *	@gfp: allocation flags for the tracker
798  *
799  *	Find an interface by name. This can be called from any
800  *	context and does its own locking. The returned handle has
801  *	the usage count incremented and the caller must use netdev_put() to
802  *	release it when it is no longer needed. %NULL is returned if no
803  *	matching device is found.
804  */
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 				      netdevice_tracker *tracker, gfp_t gfp)
807 {
808 	struct net_device *dev;
809 
810 	dev = dev_get_by_name(net, name);
811 	if (dev)
812 		netdev_tracker_alloc(dev, tracker, gfp);
813 	return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816 
817 /**
818  *	__dev_get_by_index - find a device by its ifindex
819  *	@net: the applicable net namespace
820  *	@ifindex: index of device
821  *
822  *	Search for an interface by index. Returns %NULL if the device
823  *	is not found or a pointer to the device. The device has not
824  *	had its reference counter increased so the caller must be careful
825  *	about locking. The caller must hold either the RTNL semaphore
826  *	or @dev_base_lock.
827  */
828 
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831 	struct net_device *dev;
832 	struct hlist_head *head = dev_index_hash(net, ifindex);
833 
834 	hlist_for_each_entry(dev, head, index_hlist)
835 		if (dev->ifindex == ifindex)
836 			return dev;
837 
838 	return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841 
842 /**
843  *	dev_get_by_index_rcu - find a device by its ifindex
844  *	@net: the applicable net namespace
845  *	@ifindex: index of device
846  *
847  *	Search for an interface by index. Returns %NULL if the device
848  *	is not found or a pointer to the device. The device has not
849  *	had its reference counter increased so the caller must be careful
850  *	about locking. The caller must hold RCU lock.
851  */
852 
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855 	struct net_device *dev;
856 	struct hlist_head *head = dev_index_hash(net, ifindex);
857 
858 	hlist_for_each_entry_rcu(dev, head, index_hlist)
859 		if (dev->ifindex == ifindex)
860 			return dev;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865 
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869 	struct net_device *dev;
870 
871 	rcu_read_lock();
872 	dev = dev_get_by_index_rcu(net, ifindex);
873 	dev_hold(dev);
874 	rcu_read_unlock();
875 	return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878 
879 /**
880  *	netdev_get_by_index() - find a device by its ifindex
881  *	@net: the applicable net namespace
882  *	@ifindex: index of device
883  *	@tracker: tracking object for the acquired reference
884  *	@gfp: allocation flags for the tracker
885  *
886  *	Search for an interface by index. Returns NULL if the device
887  *	is not found or a pointer to the device. The device returned has
888  *	had a reference added and the pointer is safe until the user calls
889  *	netdev_put() to indicate they have finished with it.
890  */
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 				       netdevice_tracker *tracker, gfp_t gfp)
893 {
894 	struct net_device *dev;
895 
896 	dev = dev_get_by_index(net, ifindex);
897 	if (dev)
898 		netdev_tracker_alloc(dev, tracker, gfp);
899 	return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902 
903 /**
904  *	dev_get_by_napi_id - find a device by napi_id
905  *	@napi_id: ID of the NAPI struct
906  *
907  *	Search for an interface by NAPI ID. Returns %NULL if the device
908  *	is not found or a pointer to the device. The device has not had
909  *	its reference counter increased so the caller must be careful
910  *	about locking. The caller must hold RCU lock.
911  */
912 
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 	struct napi_struct *napi;
916 
917 	WARN_ON_ONCE(!rcu_read_lock_held());
918 
919 	if (napi_id < MIN_NAPI_ID)
920 		return NULL;
921 
922 	napi = napi_by_id(napi_id);
923 
924 	return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927 
928 /**
929  *	netdev_get_name - get a netdevice name, knowing its ifindex.
930  *	@net: network namespace
931  *	@name: a pointer to the buffer where the name will be stored.
932  *	@ifindex: the ifindex of the interface to get the name from.
933  */
934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936 	struct net_device *dev;
937 	int ret;
938 
939 	down_read(&devnet_rename_sem);
940 	rcu_read_lock();
941 
942 	dev = dev_get_by_index_rcu(net, ifindex);
943 	if (!dev) {
944 		ret = -ENODEV;
945 		goto out;
946 	}
947 
948 	strcpy(name, dev->name);
949 
950 	ret = 0;
951 out:
952 	rcu_read_unlock();
953 	up_read(&devnet_rename_sem);
954 	return ret;
955 }
956 
957 /**
958  *	dev_getbyhwaddr_rcu - find a device by its hardware address
959  *	@net: the applicable net namespace
960  *	@type: media type of device
961  *	@ha: hardware address
962  *
963  *	Search for an interface by MAC address. Returns NULL if the device
964  *	is not found or a pointer to the device.
965  *	The caller must hold RCU or RTNL.
966  *	The returned device has not had its ref count increased
967  *	and the caller must therefore be careful about locking
968  *
969  */
970 
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 				       const char *ha)
973 {
974 	struct net_device *dev;
975 
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type &&
978 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
979 			return dev;
980 
981 	return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984 
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987 	struct net_device *dev, *ret = NULL;
988 
989 	rcu_read_lock();
990 	for_each_netdev_rcu(net, dev)
991 		if (dev->type == type) {
992 			dev_hold(dev);
993 			ret = dev;
994 			break;
995 		}
996 	rcu_read_unlock();
997 	return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000 
1001 /**
1002  *	__dev_get_by_flags - find any device with given flags
1003  *	@net: the applicable net namespace
1004  *	@if_flags: IFF_* values
1005  *	@mask: bitmask of bits in if_flags to check
1006  *
1007  *	Search for any interface with the given flags. Returns NULL if a device
1008  *	is not found or a pointer to the device. Must be called inside
1009  *	rtnl_lock(), and result refcount is unchanged.
1010  */
1011 
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013 				      unsigned short mask)
1014 {
1015 	struct net_device *dev, *ret;
1016 
1017 	ASSERT_RTNL();
1018 
1019 	ret = NULL;
1020 	for_each_netdev(net, dev) {
1021 		if (((dev->flags ^ if_flags) & mask) == 0) {
1022 			ret = dev;
1023 			break;
1024 		}
1025 	}
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029 
1030 /**
1031  *	dev_valid_name - check if name is okay for network device
1032  *	@name: name string
1033  *
1034  *	Network device names need to be valid file names to
1035  *	allow sysfs to work.  We also disallow any kind of
1036  *	whitespace.
1037  */
1038 bool dev_valid_name(const char *name)
1039 {
1040 	if (*name == '\0')
1041 		return false;
1042 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043 		return false;
1044 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1045 		return false;
1046 
1047 	while (*name) {
1048 		if (*name == '/' || *name == ':' || isspace(*name))
1049 			return false;
1050 		name++;
1051 	}
1052 	return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055 
1056 /**
1057  *	__dev_alloc_name - allocate a name for a device
1058  *	@net: network namespace to allocate the device name in
1059  *	@name: name format string
1060  *	@buf:  scratch buffer and result name string
1061  *
1062  *	Passed a format string - eg "lt%d" it will try and find a suitable
1063  *	id. It scans list of devices to build up a free map, then chooses
1064  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1065  *	while allocating the name and adding the device in order to avoid
1066  *	duplicates.
1067  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068  *	Returns the number of the unit assigned or a negative errno code.
1069  */
1070 
1071 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1072 {
1073 	int i = 0;
1074 	const char *p;
1075 	const int max_netdevices = 8*PAGE_SIZE;
1076 	unsigned long *inuse;
1077 	struct net_device *d;
1078 
1079 	if (!dev_valid_name(name))
1080 		return -EINVAL;
1081 
1082 	p = strchr(name, '%');
1083 	if (p) {
1084 		/*
1085 		 * Verify the string as this thing may have come from
1086 		 * the user.  There must be either one "%d" and no other "%"
1087 		 * characters.
1088 		 */
1089 		if (p[1] != 'd' || strchr(p + 2, '%'))
1090 			return -EINVAL;
1091 
1092 		/* Use one page as a bit array of possible slots */
1093 		inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1094 		if (!inuse)
1095 			return -ENOMEM;
1096 
1097 		for_each_netdev(net, d) {
1098 			struct netdev_name_node *name_node;
1099 
1100 			netdev_for_each_altname(d, name_node) {
1101 				if (!sscanf(name_node->name, name, &i))
1102 					continue;
1103 				if (i < 0 || i >= max_netdevices)
1104 					continue;
1105 
1106 				/*  avoid cases where sscanf is not exact inverse of printf */
1107 				snprintf(buf, IFNAMSIZ, name, i);
1108 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1109 					__set_bit(i, inuse);
1110 			}
1111 			if (!sscanf(d->name, name, &i))
1112 				continue;
1113 			if (i < 0 || i >= max_netdevices)
1114 				continue;
1115 
1116 			/*  avoid cases where sscanf is not exact inverse of printf */
1117 			snprintf(buf, IFNAMSIZ, name, i);
1118 			if (!strncmp(buf, d->name, IFNAMSIZ))
1119 				__set_bit(i, inuse);
1120 		}
1121 
1122 		i = find_first_zero_bit(inuse, max_netdevices);
1123 		bitmap_free(inuse);
1124 	}
1125 
1126 	snprintf(buf, IFNAMSIZ, name, i);
1127 	if (!netdev_name_in_use(net, buf))
1128 		return i;
1129 
1130 	/* It is possible to run out of possible slots
1131 	 * when the name is long and there isn't enough space left
1132 	 * for the digits, or if all bits are used.
1133 	 */
1134 	return -ENFILE;
1135 }
1136 
1137 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1138 			       const char *want_name, char *out_name)
1139 {
1140 	int ret;
1141 
1142 	if (!dev_valid_name(want_name))
1143 		return -EINVAL;
1144 
1145 	if (strchr(want_name, '%')) {
1146 		ret = __dev_alloc_name(net, want_name, out_name);
1147 		return ret < 0 ? ret : 0;
1148 	} else if (netdev_name_in_use(net, want_name)) {
1149 		return -EEXIST;
1150 	} else if (out_name != want_name) {
1151 		strscpy(out_name, want_name, IFNAMSIZ);
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static int dev_alloc_name_ns(struct net *net,
1158 			     struct net_device *dev,
1159 			     const char *name)
1160 {
1161 	char buf[IFNAMSIZ];
1162 	int ret;
1163 
1164 	BUG_ON(!net);
1165 	ret = __dev_alloc_name(net, name, buf);
1166 	if (ret >= 0)
1167 		strscpy(dev->name, buf, IFNAMSIZ);
1168 	return ret;
1169 }
1170 
1171 /**
1172  *	dev_alloc_name - allocate a name for a device
1173  *	@dev: device
1174  *	@name: name format string
1175  *
1176  *	Passed a format string - eg "lt%d" it will try and find a suitable
1177  *	id. It scans list of devices to build up a free map, then chooses
1178  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1179  *	while allocating the name and adding the device in order to avoid
1180  *	duplicates.
1181  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1182  *	Returns the number of the unit assigned or a negative errno code.
1183  */
1184 
1185 int dev_alloc_name(struct net_device *dev, const char *name)
1186 {
1187 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1188 }
1189 EXPORT_SYMBOL(dev_alloc_name);
1190 
1191 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1192 			      const char *name)
1193 {
1194 	char buf[IFNAMSIZ];
1195 	int ret;
1196 
1197 	ret = dev_prep_valid_name(net, dev, name, buf);
1198 	if (ret >= 0)
1199 		strscpy(dev->name, buf, IFNAMSIZ);
1200 	return ret;
1201 }
1202 
1203 /**
1204  *	dev_change_name - change name of a device
1205  *	@dev: device
1206  *	@newname: name (or format string) must be at least IFNAMSIZ
1207  *
1208  *	Change name of a device, can pass format strings "eth%d".
1209  *	for wildcarding.
1210  */
1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 	unsigned char old_assign_type;
1214 	char oldname[IFNAMSIZ];
1215 	int err = 0;
1216 	int ret;
1217 	struct net *net;
1218 
1219 	ASSERT_RTNL();
1220 	BUG_ON(!dev_net(dev));
1221 
1222 	net = dev_net(dev);
1223 
1224 	down_write(&devnet_rename_sem);
1225 
1226 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 		up_write(&devnet_rename_sem);
1228 		return 0;
1229 	}
1230 
1231 	memcpy(oldname, dev->name, IFNAMSIZ);
1232 
1233 	err = dev_get_valid_name(net, dev, newname);
1234 	if (err < 0) {
1235 		up_write(&devnet_rename_sem);
1236 		return err;
1237 	}
1238 
1239 	if (oldname[0] && !strchr(oldname, '%'))
1240 		netdev_info(dev, "renamed from %s%s\n", oldname,
1241 			    dev->flags & IFF_UP ? " (while UP)" : "");
1242 
1243 	old_assign_type = dev->name_assign_type;
1244 	dev->name_assign_type = NET_NAME_RENAMED;
1245 
1246 rollback:
1247 	ret = device_rename(&dev->dev, dev->name);
1248 	if (ret) {
1249 		memcpy(dev->name, oldname, IFNAMSIZ);
1250 		dev->name_assign_type = old_assign_type;
1251 		up_write(&devnet_rename_sem);
1252 		return ret;
1253 	}
1254 
1255 	up_write(&devnet_rename_sem);
1256 
1257 	netdev_adjacent_rename_links(dev, oldname);
1258 
1259 	write_lock(&dev_base_lock);
1260 	netdev_name_node_del(dev->name_node);
1261 	write_unlock(&dev_base_lock);
1262 
1263 	synchronize_rcu();
1264 
1265 	write_lock(&dev_base_lock);
1266 	netdev_name_node_add(net, dev->name_node);
1267 	write_unlock(&dev_base_lock);
1268 
1269 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1270 	ret = notifier_to_errno(ret);
1271 
1272 	if (ret) {
1273 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1274 		if (err >= 0) {
1275 			err = ret;
1276 			down_write(&devnet_rename_sem);
1277 			memcpy(dev->name, oldname, IFNAMSIZ);
1278 			memcpy(oldname, newname, IFNAMSIZ);
1279 			dev->name_assign_type = old_assign_type;
1280 			old_assign_type = NET_NAME_RENAMED;
1281 			goto rollback;
1282 		} else {
1283 			netdev_err(dev, "name change rollback failed: %d\n",
1284 				   ret);
1285 		}
1286 	}
1287 
1288 	return err;
1289 }
1290 
1291 /**
1292  *	dev_set_alias - change ifalias of a device
1293  *	@dev: device
1294  *	@alias: name up to IFALIASZ
1295  *	@len: limit of bytes to copy from info
1296  *
1297  *	Set ifalias for a device,
1298  */
1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1300 {
1301 	struct dev_ifalias *new_alias = NULL;
1302 
1303 	if (len >= IFALIASZ)
1304 		return -EINVAL;
1305 
1306 	if (len) {
1307 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1308 		if (!new_alias)
1309 			return -ENOMEM;
1310 
1311 		memcpy(new_alias->ifalias, alias, len);
1312 		new_alias->ifalias[len] = 0;
1313 	}
1314 
1315 	mutex_lock(&ifalias_mutex);
1316 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1317 					mutex_is_locked(&ifalias_mutex));
1318 	mutex_unlock(&ifalias_mutex);
1319 
1320 	if (new_alias)
1321 		kfree_rcu(new_alias, rcuhead);
1322 
1323 	return len;
1324 }
1325 EXPORT_SYMBOL(dev_set_alias);
1326 
1327 /**
1328  *	dev_get_alias - get ifalias of a device
1329  *	@dev: device
1330  *	@name: buffer to store name of ifalias
1331  *	@len: size of buffer
1332  *
1333  *	get ifalias for a device.  Caller must make sure dev cannot go
1334  *	away,  e.g. rcu read lock or own a reference count to device.
1335  */
1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1337 {
1338 	const struct dev_ifalias *alias;
1339 	int ret = 0;
1340 
1341 	rcu_read_lock();
1342 	alias = rcu_dereference(dev->ifalias);
1343 	if (alias)
1344 		ret = snprintf(name, len, "%s", alias->ifalias);
1345 	rcu_read_unlock();
1346 
1347 	return ret;
1348 }
1349 
1350 /**
1351  *	netdev_features_change - device changes features
1352  *	@dev: device to cause notification
1353  *
1354  *	Called to indicate a device has changed features.
1355  */
1356 void netdev_features_change(struct net_device *dev)
1357 {
1358 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1359 }
1360 EXPORT_SYMBOL(netdev_features_change);
1361 
1362 /**
1363  *	netdev_state_change - device changes state
1364  *	@dev: device to cause notification
1365  *
1366  *	Called to indicate a device has changed state. This function calls
1367  *	the notifier chains for netdev_chain and sends a NEWLINK message
1368  *	to the routing socket.
1369  */
1370 void netdev_state_change(struct net_device *dev)
1371 {
1372 	if (dev->flags & IFF_UP) {
1373 		struct netdev_notifier_change_info change_info = {
1374 			.info.dev = dev,
1375 		};
1376 
1377 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1378 					      &change_info.info);
1379 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1380 	}
1381 }
1382 EXPORT_SYMBOL(netdev_state_change);
1383 
1384 /**
1385  * __netdev_notify_peers - notify network peers about existence of @dev,
1386  * to be called when rtnl lock is already held.
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
1395 void __netdev_notify_peers(struct net_device *dev)
1396 {
1397 	ASSERT_RTNL();
1398 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 }
1401 EXPORT_SYMBOL(__netdev_notify_peers);
1402 
1403 /**
1404  * netdev_notify_peers - notify network peers about existence of @dev
1405  * @dev: network device
1406  *
1407  * Generate traffic such that interested network peers are aware of
1408  * @dev, such as by generating a gratuitous ARP. This may be used when
1409  * a device wants to inform the rest of the network about some sort of
1410  * reconfiguration such as a failover event or virtual machine
1411  * migration.
1412  */
1413 void netdev_notify_peers(struct net_device *dev)
1414 {
1415 	rtnl_lock();
1416 	__netdev_notify_peers(dev);
1417 	rtnl_unlock();
1418 }
1419 EXPORT_SYMBOL(netdev_notify_peers);
1420 
1421 static int napi_threaded_poll(void *data);
1422 
1423 static int napi_kthread_create(struct napi_struct *n)
1424 {
1425 	int err = 0;
1426 
1427 	/* Create and wake up the kthread once to put it in
1428 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1429 	 * warning and work with loadavg.
1430 	 */
1431 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1432 				n->dev->name, n->napi_id);
1433 	if (IS_ERR(n->thread)) {
1434 		err = PTR_ERR(n->thread);
1435 		pr_err("kthread_run failed with err %d\n", err);
1436 		n->thread = NULL;
1437 	}
1438 
1439 	return err;
1440 }
1441 
1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1443 {
1444 	const struct net_device_ops *ops = dev->netdev_ops;
1445 	int ret;
1446 
1447 	ASSERT_RTNL();
1448 	dev_addr_check(dev);
1449 
1450 	if (!netif_device_present(dev)) {
1451 		/* may be detached because parent is runtime-suspended */
1452 		if (dev->dev.parent)
1453 			pm_runtime_resume(dev->dev.parent);
1454 		if (!netif_device_present(dev))
1455 			return -ENODEV;
1456 	}
1457 
1458 	/* Block netpoll from trying to do any rx path servicing.
1459 	 * If we don't do this there is a chance ndo_poll_controller
1460 	 * or ndo_poll may be running while we open the device
1461 	 */
1462 	netpoll_poll_disable(dev);
1463 
1464 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1465 	ret = notifier_to_errno(ret);
1466 	if (ret)
1467 		return ret;
1468 
1469 	set_bit(__LINK_STATE_START, &dev->state);
1470 
1471 	if (ops->ndo_validate_addr)
1472 		ret = ops->ndo_validate_addr(dev);
1473 
1474 	if (!ret && ops->ndo_open)
1475 		ret = ops->ndo_open(dev);
1476 
1477 	netpoll_poll_enable(dev);
1478 
1479 	if (ret)
1480 		clear_bit(__LINK_STATE_START, &dev->state);
1481 	else {
1482 		dev->flags |= IFF_UP;
1483 		dev_set_rx_mode(dev);
1484 		dev_activate(dev);
1485 		add_device_randomness(dev->dev_addr, dev->addr_len);
1486 	}
1487 
1488 	return ret;
1489 }
1490 
1491 /**
1492  *	dev_open	- prepare an interface for use.
1493  *	@dev: device to open
1494  *	@extack: netlink extended ack
1495  *
1496  *	Takes a device from down to up state. The device's private open
1497  *	function is invoked and then the multicast lists are loaded. Finally
1498  *	the device is moved into the up state and a %NETDEV_UP message is
1499  *	sent to the netdev notifier chain.
1500  *
1501  *	Calling this function on an active interface is a nop. On a failure
1502  *	a negative errno code is returned.
1503  */
1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1505 {
1506 	int ret;
1507 
1508 	if (dev->flags & IFF_UP)
1509 		return 0;
1510 
1511 	ret = __dev_open(dev, extack);
1512 	if (ret < 0)
1513 		return ret;
1514 
1515 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1516 	call_netdevice_notifiers(NETDEV_UP, dev);
1517 
1518 	return ret;
1519 }
1520 EXPORT_SYMBOL(dev_open);
1521 
1522 static void __dev_close_many(struct list_head *head)
1523 {
1524 	struct net_device *dev;
1525 
1526 	ASSERT_RTNL();
1527 	might_sleep();
1528 
1529 	list_for_each_entry(dev, head, close_list) {
1530 		/* Temporarily disable netpoll until the interface is down */
1531 		netpoll_poll_disable(dev);
1532 
1533 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1534 
1535 		clear_bit(__LINK_STATE_START, &dev->state);
1536 
1537 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1538 		 * can be even on different cpu. So just clear netif_running().
1539 		 *
1540 		 * dev->stop() will invoke napi_disable() on all of it's
1541 		 * napi_struct instances on this device.
1542 		 */
1543 		smp_mb__after_atomic(); /* Commit netif_running(). */
1544 	}
1545 
1546 	dev_deactivate_many(head);
1547 
1548 	list_for_each_entry(dev, head, close_list) {
1549 		const struct net_device_ops *ops = dev->netdev_ops;
1550 
1551 		/*
1552 		 *	Call the device specific close. This cannot fail.
1553 		 *	Only if device is UP
1554 		 *
1555 		 *	We allow it to be called even after a DETACH hot-plug
1556 		 *	event.
1557 		 */
1558 		if (ops->ndo_stop)
1559 			ops->ndo_stop(dev);
1560 
1561 		dev->flags &= ~IFF_UP;
1562 		netpoll_poll_enable(dev);
1563 	}
1564 }
1565 
1566 static void __dev_close(struct net_device *dev)
1567 {
1568 	LIST_HEAD(single);
1569 
1570 	list_add(&dev->close_list, &single);
1571 	__dev_close_many(&single);
1572 	list_del(&single);
1573 }
1574 
1575 void dev_close_many(struct list_head *head, bool unlink)
1576 {
1577 	struct net_device *dev, *tmp;
1578 
1579 	/* Remove the devices that don't need to be closed */
1580 	list_for_each_entry_safe(dev, tmp, head, close_list)
1581 		if (!(dev->flags & IFF_UP))
1582 			list_del_init(&dev->close_list);
1583 
1584 	__dev_close_many(head);
1585 
1586 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1587 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1589 		if (unlink)
1590 			list_del_init(&dev->close_list);
1591 	}
1592 }
1593 EXPORT_SYMBOL(dev_close_many);
1594 
1595 /**
1596  *	dev_close - shutdown an interface.
1597  *	@dev: device to shutdown
1598  *
1599  *	This function moves an active device into down state. A
1600  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1601  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1602  *	chain.
1603  */
1604 void dev_close(struct net_device *dev)
1605 {
1606 	if (dev->flags & IFF_UP) {
1607 		LIST_HEAD(single);
1608 
1609 		list_add(&dev->close_list, &single);
1610 		dev_close_many(&single, true);
1611 		list_del(&single);
1612 	}
1613 }
1614 EXPORT_SYMBOL(dev_close);
1615 
1616 
1617 /**
1618  *	dev_disable_lro - disable Large Receive Offload on a device
1619  *	@dev: device
1620  *
1621  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1622  *	called under RTNL.  This is needed if received packets may be
1623  *	forwarded to another interface.
1624  */
1625 void dev_disable_lro(struct net_device *dev)
1626 {
1627 	struct net_device *lower_dev;
1628 	struct list_head *iter;
1629 
1630 	dev->wanted_features &= ~NETIF_F_LRO;
1631 	netdev_update_features(dev);
1632 
1633 	if (unlikely(dev->features & NETIF_F_LRO))
1634 		netdev_WARN(dev, "failed to disable LRO!\n");
1635 
1636 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1637 		dev_disable_lro(lower_dev);
1638 }
1639 EXPORT_SYMBOL(dev_disable_lro);
1640 
1641 /**
1642  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1643  *	@dev: device
1644  *
1645  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1646  *	called under RTNL.  This is needed if Generic XDP is installed on
1647  *	the device.
1648  */
1649 static void dev_disable_gro_hw(struct net_device *dev)
1650 {
1651 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1652 	netdev_update_features(dev);
1653 
1654 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1655 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1656 }
1657 
1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1659 {
1660 #define N(val) 						\
1661 	case NETDEV_##val:				\
1662 		return "NETDEV_" __stringify(val);
1663 	switch (cmd) {
1664 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1665 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1666 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1667 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1668 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1669 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1670 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1671 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1672 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1673 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1674 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1675 	N(XDP_FEAT_CHANGE)
1676 	}
1677 #undef N
1678 	return "UNKNOWN_NETDEV_EVENT";
1679 }
1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1681 
1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1683 				   struct net_device *dev)
1684 {
1685 	struct netdev_notifier_info info = {
1686 		.dev = dev,
1687 	};
1688 
1689 	return nb->notifier_call(nb, val, &info);
1690 }
1691 
1692 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1693 					     struct net_device *dev)
1694 {
1695 	int err;
1696 
1697 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1698 	err = notifier_to_errno(err);
1699 	if (err)
1700 		return err;
1701 
1702 	if (!(dev->flags & IFF_UP))
1703 		return 0;
1704 
1705 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1706 	return 0;
1707 }
1708 
1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1710 						struct net_device *dev)
1711 {
1712 	if (dev->flags & IFF_UP) {
1713 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714 					dev);
1715 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716 	}
1717 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718 }
1719 
1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1721 						 struct net *net)
1722 {
1723 	struct net_device *dev;
1724 	int err;
1725 
1726 	for_each_netdev(net, dev) {
1727 		err = call_netdevice_register_notifiers(nb, dev);
1728 		if (err)
1729 			goto rollback;
1730 	}
1731 	return 0;
1732 
1733 rollback:
1734 	for_each_netdev_continue_reverse(net, dev)
1735 		call_netdevice_unregister_notifiers(nb, dev);
1736 	return err;
1737 }
1738 
1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1740 						    struct net *net)
1741 {
1742 	struct net_device *dev;
1743 
1744 	for_each_netdev(net, dev)
1745 		call_netdevice_unregister_notifiers(nb, dev);
1746 }
1747 
1748 static int dev_boot_phase = 1;
1749 
1750 /**
1751  * register_netdevice_notifier - register a network notifier block
1752  * @nb: notifier
1753  *
1754  * Register a notifier to be called when network device events occur.
1755  * The notifier passed is linked into the kernel structures and must
1756  * not be reused until it has been unregistered. A negative errno code
1757  * is returned on a failure.
1758  *
1759  * When registered all registration and up events are replayed
1760  * to the new notifier to allow device to have a race free
1761  * view of the network device list.
1762  */
1763 
1764 int register_netdevice_notifier(struct notifier_block *nb)
1765 {
1766 	struct net *net;
1767 	int err;
1768 
1769 	/* Close race with setup_net() and cleanup_net() */
1770 	down_write(&pernet_ops_rwsem);
1771 	rtnl_lock();
1772 	err = raw_notifier_chain_register(&netdev_chain, nb);
1773 	if (err)
1774 		goto unlock;
1775 	if (dev_boot_phase)
1776 		goto unlock;
1777 	for_each_net(net) {
1778 		err = call_netdevice_register_net_notifiers(nb, net);
1779 		if (err)
1780 			goto rollback;
1781 	}
1782 
1783 unlock:
1784 	rtnl_unlock();
1785 	up_write(&pernet_ops_rwsem);
1786 	return err;
1787 
1788 rollback:
1789 	for_each_net_continue_reverse(net)
1790 		call_netdevice_unregister_net_notifiers(nb, net);
1791 
1792 	raw_notifier_chain_unregister(&netdev_chain, nb);
1793 	goto unlock;
1794 }
1795 EXPORT_SYMBOL(register_netdevice_notifier);
1796 
1797 /**
1798  * unregister_netdevice_notifier - unregister a network notifier block
1799  * @nb: notifier
1800  *
1801  * Unregister a notifier previously registered by
1802  * register_netdevice_notifier(). The notifier is unlinked into the
1803  * kernel structures and may then be reused. A negative errno code
1804  * is returned on a failure.
1805  *
1806  * After unregistering unregister and down device events are synthesized
1807  * for all devices on the device list to the removed notifier to remove
1808  * the need for special case cleanup code.
1809  */
1810 
1811 int unregister_netdevice_notifier(struct notifier_block *nb)
1812 {
1813 	struct net *net;
1814 	int err;
1815 
1816 	/* Close race with setup_net() and cleanup_net() */
1817 	down_write(&pernet_ops_rwsem);
1818 	rtnl_lock();
1819 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1820 	if (err)
1821 		goto unlock;
1822 
1823 	for_each_net(net)
1824 		call_netdevice_unregister_net_notifiers(nb, net);
1825 
1826 unlock:
1827 	rtnl_unlock();
1828 	up_write(&pernet_ops_rwsem);
1829 	return err;
1830 }
1831 EXPORT_SYMBOL(unregister_netdevice_notifier);
1832 
1833 static int __register_netdevice_notifier_net(struct net *net,
1834 					     struct notifier_block *nb,
1835 					     bool ignore_call_fail)
1836 {
1837 	int err;
1838 
1839 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1840 	if (err)
1841 		return err;
1842 	if (dev_boot_phase)
1843 		return 0;
1844 
1845 	err = call_netdevice_register_net_notifiers(nb, net);
1846 	if (err && !ignore_call_fail)
1847 		goto chain_unregister;
1848 
1849 	return 0;
1850 
1851 chain_unregister:
1852 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1853 	return err;
1854 }
1855 
1856 static int __unregister_netdevice_notifier_net(struct net *net,
1857 					       struct notifier_block *nb)
1858 {
1859 	int err;
1860 
1861 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862 	if (err)
1863 		return err;
1864 
1865 	call_netdevice_unregister_net_notifiers(nb, net);
1866 	return 0;
1867 }
1868 
1869 /**
1870  * register_netdevice_notifier_net - register a per-netns network notifier block
1871  * @net: network namespace
1872  * @nb: notifier
1873  *
1874  * Register a notifier to be called when network device events occur.
1875  * The notifier passed is linked into the kernel structures and must
1876  * not be reused until it has been unregistered. A negative errno code
1877  * is returned on a failure.
1878  *
1879  * When registered all registration and up events are replayed
1880  * to the new notifier to allow device to have a race free
1881  * view of the network device list.
1882  */
1883 
1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1885 {
1886 	int err;
1887 
1888 	rtnl_lock();
1889 	err = __register_netdevice_notifier_net(net, nb, false);
1890 	rtnl_unlock();
1891 	return err;
1892 }
1893 EXPORT_SYMBOL(register_netdevice_notifier_net);
1894 
1895 /**
1896  * unregister_netdevice_notifier_net - unregister a per-netns
1897  *                                     network notifier block
1898  * @net: network namespace
1899  * @nb: notifier
1900  *
1901  * Unregister a notifier previously registered by
1902  * register_netdevice_notifier_net(). The notifier is unlinked from the
1903  * kernel structures and may then be reused. A negative errno code
1904  * is returned on a failure.
1905  *
1906  * After unregistering unregister and down device events are synthesized
1907  * for all devices on the device list to the removed notifier to remove
1908  * the need for special case cleanup code.
1909  */
1910 
1911 int unregister_netdevice_notifier_net(struct net *net,
1912 				      struct notifier_block *nb)
1913 {
1914 	int err;
1915 
1916 	rtnl_lock();
1917 	err = __unregister_netdevice_notifier_net(net, nb);
1918 	rtnl_unlock();
1919 	return err;
1920 }
1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1922 
1923 static void __move_netdevice_notifier_net(struct net *src_net,
1924 					  struct net *dst_net,
1925 					  struct notifier_block *nb)
1926 {
1927 	__unregister_netdevice_notifier_net(src_net, nb);
1928 	__register_netdevice_notifier_net(dst_net, nb, true);
1929 }
1930 
1931 int register_netdevice_notifier_dev_net(struct net_device *dev,
1932 					struct notifier_block *nb,
1933 					struct netdev_net_notifier *nn)
1934 {
1935 	int err;
1936 
1937 	rtnl_lock();
1938 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1939 	if (!err) {
1940 		nn->nb = nb;
1941 		list_add(&nn->list, &dev->net_notifier_list);
1942 	}
1943 	rtnl_unlock();
1944 	return err;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1947 
1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1949 					  struct notifier_block *nb,
1950 					  struct netdev_net_notifier *nn)
1951 {
1952 	int err;
1953 
1954 	rtnl_lock();
1955 	list_del(&nn->list);
1956 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1957 	rtnl_unlock();
1958 	return err;
1959 }
1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1961 
1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1963 					     struct net *net)
1964 {
1965 	struct netdev_net_notifier *nn;
1966 
1967 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1968 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1969 }
1970 
1971 /**
1972  *	call_netdevice_notifiers_info - call all network notifier blocks
1973  *	@val: value passed unmodified to notifier function
1974  *	@info: notifier information data
1975  *
1976  *	Call all network notifier blocks.  Parameters and return value
1977  *	are as for raw_notifier_call_chain().
1978  */
1979 
1980 int call_netdevice_notifiers_info(unsigned long val,
1981 				  struct netdev_notifier_info *info)
1982 {
1983 	struct net *net = dev_net(info->dev);
1984 	int ret;
1985 
1986 	ASSERT_RTNL();
1987 
1988 	/* Run per-netns notifier block chain first, then run the global one.
1989 	 * Hopefully, one day, the global one is going to be removed after
1990 	 * all notifier block registrators get converted to be per-netns.
1991 	 */
1992 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1993 	if (ret & NOTIFY_STOP_MASK)
1994 		return ret;
1995 	return raw_notifier_call_chain(&netdev_chain, val, info);
1996 }
1997 
1998 /**
1999  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2000  *	                                       for and rollback on error
2001  *	@val_up: value passed unmodified to notifier function
2002  *	@val_down: value passed unmodified to the notifier function when
2003  *	           recovering from an error on @val_up
2004  *	@info: notifier information data
2005  *
2006  *	Call all per-netns network notifier blocks, but not notifier blocks on
2007  *	the global notifier chain. Parameters and return value are as for
2008  *	raw_notifier_call_chain_robust().
2009  */
2010 
2011 static int
2012 call_netdevice_notifiers_info_robust(unsigned long val_up,
2013 				     unsigned long val_down,
2014 				     struct netdev_notifier_info *info)
2015 {
2016 	struct net *net = dev_net(info->dev);
2017 
2018 	ASSERT_RTNL();
2019 
2020 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2021 					      val_up, val_down, info);
2022 }
2023 
2024 static int call_netdevice_notifiers_extack(unsigned long val,
2025 					   struct net_device *dev,
2026 					   struct netlink_ext_ack *extack)
2027 {
2028 	struct netdev_notifier_info info = {
2029 		.dev = dev,
2030 		.extack = extack,
2031 	};
2032 
2033 	return call_netdevice_notifiers_info(val, &info);
2034 }
2035 
2036 /**
2037  *	call_netdevice_notifiers - call all network notifier blocks
2038  *      @val: value passed unmodified to notifier function
2039  *      @dev: net_device pointer passed unmodified to notifier function
2040  *
2041  *	Call all network notifier blocks.  Parameters and return value
2042  *	are as for raw_notifier_call_chain().
2043  */
2044 
2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2046 {
2047 	return call_netdevice_notifiers_extack(val, dev, NULL);
2048 }
2049 EXPORT_SYMBOL(call_netdevice_notifiers);
2050 
2051 /**
2052  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2053  *	@val: value passed unmodified to notifier function
2054  *	@dev: net_device pointer passed unmodified to notifier function
2055  *	@arg: additional u32 argument passed to the notifier function
2056  *
2057  *	Call all network notifier blocks.  Parameters and return value
2058  *	are as for raw_notifier_call_chain().
2059  */
2060 static int call_netdevice_notifiers_mtu(unsigned long val,
2061 					struct net_device *dev, u32 arg)
2062 {
2063 	struct netdev_notifier_info_ext info = {
2064 		.info.dev = dev,
2065 		.ext.mtu = arg,
2066 	};
2067 
2068 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2069 
2070 	return call_netdevice_notifiers_info(val, &info.info);
2071 }
2072 
2073 #ifdef CONFIG_NET_INGRESS
2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2075 
2076 void net_inc_ingress_queue(void)
2077 {
2078 	static_branch_inc(&ingress_needed_key);
2079 }
2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2081 
2082 void net_dec_ingress_queue(void)
2083 {
2084 	static_branch_dec(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2087 #endif
2088 
2089 #ifdef CONFIG_NET_EGRESS
2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2091 
2092 void net_inc_egress_queue(void)
2093 {
2094 	static_branch_inc(&egress_needed_key);
2095 }
2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2097 
2098 void net_dec_egress_queue(void)
2099 {
2100 	static_branch_dec(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2103 #endif
2104 
2105 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2106 EXPORT_SYMBOL(netstamp_needed_key);
2107 #ifdef CONFIG_JUMP_LABEL
2108 static atomic_t netstamp_needed_deferred;
2109 static atomic_t netstamp_wanted;
2110 static void netstamp_clear(struct work_struct *work)
2111 {
2112 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2113 	int wanted;
2114 
2115 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2116 	if (wanted > 0)
2117 		static_branch_enable(&netstamp_needed_key);
2118 	else
2119 		static_branch_disable(&netstamp_needed_key);
2120 }
2121 static DECLARE_WORK(netstamp_work, netstamp_clear);
2122 #endif
2123 
2124 void net_enable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127 	int wanted = atomic_read(&netstamp_wanted);
2128 
2129 	while (wanted > 0) {
2130 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2131 			return;
2132 	}
2133 	atomic_inc(&netstamp_needed_deferred);
2134 	schedule_work(&netstamp_work);
2135 #else
2136 	static_branch_inc(&netstamp_needed_key);
2137 #endif
2138 }
2139 EXPORT_SYMBOL(net_enable_timestamp);
2140 
2141 void net_disable_timestamp(void)
2142 {
2143 #ifdef CONFIG_JUMP_LABEL
2144 	int wanted = atomic_read(&netstamp_wanted);
2145 
2146 	while (wanted > 1) {
2147 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2148 			return;
2149 	}
2150 	atomic_dec(&netstamp_needed_deferred);
2151 	schedule_work(&netstamp_work);
2152 #else
2153 	static_branch_dec(&netstamp_needed_key);
2154 #endif
2155 }
2156 EXPORT_SYMBOL(net_disable_timestamp);
2157 
2158 static inline void net_timestamp_set(struct sk_buff *skb)
2159 {
2160 	skb->tstamp = 0;
2161 	skb->mono_delivery_time = 0;
2162 	if (static_branch_unlikely(&netstamp_needed_key))
2163 		skb->tstamp = ktime_get_real();
2164 }
2165 
2166 #define net_timestamp_check(COND, SKB)				\
2167 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2168 		if ((COND) && !(SKB)->tstamp)			\
2169 			(SKB)->tstamp = ktime_get_real();	\
2170 	}							\
2171 
2172 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2173 {
2174 	return __is_skb_forwardable(dev, skb, true);
2175 }
2176 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2177 
2178 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2179 			      bool check_mtu)
2180 {
2181 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2182 
2183 	if (likely(!ret)) {
2184 		skb->protocol = eth_type_trans(skb, dev);
2185 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2186 	}
2187 
2188 	return ret;
2189 }
2190 
2191 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2192 {
2193 	return __dev_forward_skb2(dev, skb, true);
2194 }
2195 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2196 
2197 /**
2198  * dev_forward_skb - loopback an skb to another netif
2199  *
2200  * @dev: destination network device
2201  * @skb: buffer to forward
2202  *
2203  * return values:
2204  *	NET_RX_SUCCESS	(no congestion)
2205  *	NET_RX_DROP     (packet was dropped, but freed)
2206  *
2207  * dev_forward_skb can be used for injecting an skb from the
2208  * start_xmit function of one device into the receive queue
2209  * of another device.
2210  *
2211  * The receiving device may be in another namespace, so
2212  * we have to clear all information in the skb that could
2213  * impact namespace isolation.
2214  */
2215 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2216 {
2217 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2218 }
2219 EXPORT_SYMBOL_GPL(dev_forward_skb);
2220 
2221 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2224 }
2225 
2226 static inline int deliver_skb(struct sk_buff *skb,
2227 			      struct packet_type *pt_prev,
2228 			      struct net_device *orig_dev)
2229 {
2230 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2231 		return -ENOMEM;
2232 	refcount_inc(&skb->users);
2233 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2234 }
2235 
2236 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2237 					  struct packet_type **pt,
2238 					  struct net_device *orig_dev,
2239 					  __be16 type,
2240 					  struct list_head *ptype_list)
2241 {
2242 	struct packet_type *ptype, *pt_prev = *pt;
2243 
2244 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2245 		if (ptype->type != type)
2246 			continue;
2247 		if (pt_prev)
2248 			deliver_skb(skb, pt_prev, orig_dev);
2249 		pt_prev = ptype;
2250 	}
2251 	*pt = pt_prev;
2252 }
2253 
2254 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2255 {
2256 	if (!ptype->af_packet_priv || !skb->sk)
2257 		return false;
2258 
2259 	if (ptype->id_match)
2260 		return ptype->id_match(ptype, skb->sk);
2261 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2262 		return true;
2263 
2264 	return false;
2265 }
2266 
2267 /**
2268  * dev_nit_active - return true if any network interface taps are in use
2269  *
2270  * @dev: network device to check for the presence of taps
2271  */
2272 bool dev_nit_active(struct net_device *dev)
2273 {
2274 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2275 }
2276 EXPORT_SYMBOL_GPL(dev_nit_active);
2277 
2278 /*
2279  *	Support routine. Sends outgoing frames to any network
2280  *	taps currently in use.
2281  */
2282 
2283 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2284 {
2285 	struct packet_type *ptype;
2286 	struct sk_buff *skb2 = NULL;
2287 	struct packet_type *pt_prev = NULL;
2288 	struct list_head *ptype_list = &ptype_all;
2289 
2290 	rcu_read_lock();
2291 again:
2292 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2293 		if (ptype->ignore_outgoing)
2294 			continue;
2295 
2296 		/* Never send packets back to the socket
2297 		 * they originated from - MvS (miquels@drinkel.ow.org)
2298 		 */
2299 		if (skb_loop_sk(ptype, skb))
2300 			continue;
2301 
2302 		if (pt_prev) {
2303 			deliver_skb(skb2, pt_prev, skb->dev);
2304 			pt_prev = ptype;
2305 			continue;
2306 		}
2307 
2308 		/* need to clone skb, done only once */
2309 		skb2 = skb_clone(skb, GFP_ATOMIC);
2310 		if (!skb2)
2311 			goto out_unlock;
2312 
2313 		net_timestamp_set(skb2);
2314 
2315 		/* skb->nh should be correctly
2316 		 * set by sender, so that the second statement is
2317 		 * just protection against buggy protocols.
2318 		 */
2319 		skb_reset_mac_header(skb2);
2320 
2321 		if (skb_network_header(skb2) < skb2->data ||
2322 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2323 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2324 					     ntohs(skb2->protocol),
2325 					     dev->name);
2326 			skb_reset_network_header(skb2);
2327 		}
2328 
2329 		skb2->transport_header = skb2->network_header;
2330 		skb2->pkt_type = PACKET_OUTGOING;
2331 		pt_prev = ptype;
2332 	}
2333 
2334 	if (ptype_list == &ptype_all) {
2335 		ptype_list = &dev->ptype_all;
2336 		goto again;
2337 	}
2338 out_unlock:
2339 	if (pt_prev) {
2340 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2341 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2342 		else
2343 			kfree_skb(skb2);
2344 	}
2345 	rcu_read_unlock();
2346 }
2347 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2348 
2349 /**
2350  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2351  * @dev: Network device
2352  * @txq: number of queues available
2353  *
2354  * If real_num_tx_queues is changed the tc mappings may no longer be
2355  * valid. To resolve this verify the tc mapping remains valid and if
2356  * not NULL the mapping. With no priorities mapping to this
2357  * offset/count pair it will no longer be used. In the worst case TC0
2358  * is invalid nothing can be done so disable priority mappings. If is
2359  * expected that drivers will fix this mapping if they can before
2360  * calling netif_set_real_num_tx_queues.
2361  */
2362 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2363 {
2364 	int i;
2365 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366 
2367 	/* If TC0 is invalidated disable TC mapping */
2368 	if (tc->offset + tc->count > txq) {
2369 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2370 		dev->num_tc = 0;
2371 		return;
2372 	}
2373 
2374 	/* Invalidated prio to tc mappings set to TC0 */
2375 	for (i = 1; i < TC_BITMASK + 1; i++) {
2376 		int q = netdev_get_prio_tc_map(dev, i);
2377 
2378 		tc = &dev->tc_to_txq[q];
2379 		if (tc->offset + tc->count > txq) {
2380 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2381 				    i, q);
2382 			netdev_set_prio_tc_map(dev, i, 0);
2383 		}
2384 	}
2385 }
2386 
2387 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2388 {
2389 	if (dev->num_tc) {
2390 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2391 		int i;
2392 
2393 		/* walk through the TCs and see if it falls into any of them */
2394 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2395 			if ((txq - tc->offset) < tc->count)
2396 				return i;
2397 		}
2398 
2399 		/* didn't find it, just return -1 to indicate no match */
2400 		return -1;
2401 	}
2402 
2403 	return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_txq_to_tc);
2406 
2407 #ifdef CONFIG_XPS
2408 static struct static_key xps_needed __read_mostly;
2409 static struct static_key xps_rxqs_needed __read_mostly;
2410 static DEFINE_MUTEX(xps_map_mutex);
2411 #define xmap_dereference(P)		\
2412 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2413 
2414 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2415 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2416 {
2417 	struct xps_map *map = NULL;
2418 	int pos;
2419 
2420 	map = xmap_dereference(dev_maps->attr_map[tci]);
2421 	if (!map)
2422 		return false;
2423 
2424 	for (pos = map->len; pos--;) {
2425 		if (map->queues[pos] != index)
2426 			continue;
2427 
2428 		if (map->len > 1) {
2429 			map->queues[pos] = map->queues[--map->len];
2430 			break;
2431 		}
2432 
2433 		if (old_maps)
2434 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2435 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2436 		kfree_rcu(map, rcu);
2437 		return false;
2438 	}
2439 
2440 	return true;
2441 }
2442 
2443 static bool remove_xps_queue_cpu(struct net_device *dev,
2444 				 struct xps_dev_maps *dev_maps,
2445 				 int cpu, u16 offset, u16 count)
2446 {
2447 	int num_tc = dev_maps->num_tc;
2448 	bool active = false;
2449 	int tci;
2450 
2451 	for (tci = cpu * num_tc; num_tc--; tci++) {
2452 		int i, j;
2453 
2454 		for (i = count, j = offset; i--; j++) {
2455 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2456 				break;
2457 		}
2458 
2459 		active |= i < 0;
2460 	}
2461 
2462 	return active;
2463 }
2464 
2465 static void reset_xps_maps(struct net_device *dev,
2466 			   struct xps_dev_maps *dev_maps,
2467 			   enum xps_map_type type)
2468 {
2469 	static_key_slow_dec_cpuslocked(&xps_needed);
2470 	if (type == XPS_RXQS)
2471 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2472 
2473 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2474 
2475 	kfree_rcu(dev_maps, rcu);
2476 }
2477 
2478 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2479 			   u16 offset, u16 count)
2480 {
2481 	struct xps_dev_maps *dev_maps;
2482 	bool active = false;
2483 	int i, j;
2484 
2485 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2486 	if (!dev_maps)
2487 		return;
2488 
2489 	for (j = 0; j < dev_maps->nr_ids; j++)
2490 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2491 	if (!active)
2492 		reset_xps_maps(dev, dev_maps, type);
2493 
2494 	if (type == XPS_CPUS) {
2495 		for (i = offset + (count - 1); count--; i--)
2496 			netdev_queue_numa_node_write(
2497 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2498 	}
2499 }
2500 
2501 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2502 				   u16 count)
2503 {
2504 	if (!static_key_false(&xps_needed))
2505 		return;
2506 
2507 	cpus_read_lock();
2508 	mutex_lock(&xps_map_mutex);
2509 
2510 	if (static_key_false(&xps_rxqs_needed))
2511 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2512 
2513 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2514 
2515 	mutex_unlock(&xps_map_mutex);
2516 	cpus_read_unlock();
2517 }
2518 
2519 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2520 {
2521 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2522 }
2523 
2524 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2525 				      u16 index, bool is_rxqs_map)
2526 {
2527 	struct xps_map *new_map;
2528 	int alloc_len = XPS_MIN_MAP_ALLOC;
2529 	int i, pos;
2530 
2531 	for (pos = 0; map && pos < map->len; pos++) {
2532 		if (map->queues[pos] != index)
2533 			continue;
2534 		return map;
2535 	}
2536 
2537 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2538 	if (map) {
2539 		if (pos < map->alloc_len)
2540 			return map;
2541 
2542 		alloc_len = map->alloc_len * 2;
2543 	}
2544 
2545 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2546 	 *  map
2547 	 */
2548 	if (is_rxqs_map)
2549 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2550 	else
2551 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2552 				       cpu_to_node(attr_index));
2553 	if (!new_map)
2554 		return NULL;
2555 
2556 	for (i = 0; i < pos; i++)
2557 		new_map->queues[i] = map->queues[i];
2558 	new_map->alloc_len = alloc_len;
2559 	new_map->len = pos;
2560 
2561 	return new_map;
2562 }
2563 
2564 /* Copy xps maps at a given index */
2565 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2566 			      struct xps_dev_maps *new_dev_maps, int index,
2567 			      int tc, bool skip_tc)
2568 {
2569 	int i, tci = index * dev_maps->num_tc;
2570 	struct xps_map *map;
2571 
2572 	/* copy maps belonging to foreign traffic classes */
2573 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2574 		if (i == tc && skip_tc)
2575 			continue;
2576 
2577 		/* fill in the new device map from the old device map */
2578 		map = xmap_dereference(dev_maps->attr_map[tci]);
2579 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2580 	}
2581 }
2582 
2583 /* Must be called under cpus_read_lock */
2584 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2585 			  u16 index, enum xps_map_type type)
2586 {
2587 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2588 	const unsigned long *online_mask = NULL;
2589 	bool active = false, copy = false;
2590 	int i, j, tci, numa_node_id = -2;
2591 	int maps_sz, num_tc = 1, tc = 0;
2592 	struct xps_map *map, *new_map;
2593 	unsigned int nr_ids;
2594 
2595 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2596 
2597 	if (dev->num_tc) {
2598 		/* Do not allow XPS on subordinate device directly */
2599 		num_tc = dev->num_tc;
2600 		if (num_tc < 0)
2601 			return -EINVAL;
2602 
2603 		/* If queue belongs to subordinate dev use its map */
2604 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2605 
2606 		tc = netdev_txq_to_tc(dev, index);
2607 		if (tc < 0)
2608 			return -EINVAL;
2609 	}
2610 
2611 	mutex_lock(&xps_map_mutex);
2612 
2613 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2614 	if (type == XPS_RXQS) {
2615 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2616 		nr_ids = dev->num_rx_queues;
2617 	} else {
2618 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2619 		if (num_possible_cpus() > 1)
2620 			online_mask = cpumask_bits(cpu_online_mask);
2621 		nr_ids = nr_cpu_ids;
2622 	}
2623 
2624 	if (maps_sz < L1_CACHE_BYTES)
2625 		maps_sz = L1_CACHE_BYTES;
2626 
2627 	/* The old dev_maps could be larger or smaller than the one we're
2628 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2629 	 * between. We could try to be smart, but let's be safe instead and only
2630 	 * copy foreign traffic classes if the two map sizes match.
2631 	 */
2632 	if (dev_maps &&
2633 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2634 		copy = true;
2635 
2636 	/* allocate memory for queue storage */
2637 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2638 	     j < nr_ids;) {
2639 		if (!new_dev_maps) {
2640 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2641 			if (!new_dev_maps) {
2642 				mutex_unlock(&xps_map_mutex);
2643 				return -ENOMEM;
2644 			}
2645 
2646 			new_dev_maps->nr_ids = nr_ids;
2647 			new_dev_maps->num_tc = num_tc;
2648 		}
2649 
2650 		tci = j * num_tc + tc;
2651 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2652 
2653 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2654 		if (!map)
2655 			goto error;
2656 
2657 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2658 	}
2659 
2660 	if (!new_dev_maps)
2661 		goto out_no_new_maps;
2662 
2663 	if (!dev_maps) {
2664 		/* Increment static keys at most once per type */
2665 		static_key_slow_inc_cpuslocked(&xps_needed);
2666 		if (type == XPS_RXQS)
2667 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2668 	}
2669 
2670 	for (j = 0; j < nr_ids; j++) {
2671 		bool skip_tc = false;
2672 
2673 		tci = j * num_tc + tc;
2674 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2675 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2676 			/* add tx-queue to CPU/rx-queue maps */
2677 			int pos = 0;
2678 
2679 			skip_tc = true;
2680 
2681 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2682 			while ((pos < map->len) && (map->queues[pos] != index))
2683 				pos++;
2684 
2685 			if (pos == map->len)
2686 				map->queues[map->len++] = index;
2687 #ifdef CONFIG_NUMA
2688 			if (type == XPS_CPUS) {
2689 				if (numa_node_id == -2)
2690 					numa_node_id = cpu_to_node(j);
2691 				else if (numa_node_id != cpu_to_node(j))
2692 					numa_node_id = -1;
2693 			}
2694 #endif
2695 		}
2696 
2697 		if (copy)
2698 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2699 					  skip_tc);
2700 	}
2701 
2702 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2703 
2704 	/* Cleanup old maps */
2705 	if (!dev_maps)
2706 		goto out_no_old_maps;
2707 
2708 	for (j = 0; j < dev_maps->nr_ids; j++) {
2709 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2710 			map = xmap_dereference(dev_maps->attr_map[tci]);
2711 			if (!map)
2712 				continue;
2713 
2714 			if (copy) {
2715 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2716 				if (map == new_map)
2717 					continue;
2718 			}
2719 
2720 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2721 			kfree_rcu(map, rcu);
2722 		}
2723 	}
2724 
2725 	old_dev_maps = dev_maps;
2726 
2727 out_no_old_maps:
2728 	dev_maps = new_dev_maps;
2729 	active = true;
2730 
2731 out_no_new_maps:
2732 	if (type == XPS_CPUS)
2733 		/* update Tx queue numa node */
2734 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2735 					     (numa_node_id >= 0) ?
2736 					     numa_node_id : NUMA_NO_NODE);
2737 
2738 	if (!dev_maps)
2739 		goto out_no_maps;
2740 
2741 	/* removes tx-queue from unused CPUs/rx-queues */
2742 	for (j = 0; j < dev_maps->nr_ids; j++) {
2743 		tci = j * dev_maps->num_tc;
2744 
2745 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2746 			if (i == tc &&
2747 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2748 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2749 				continue;
2750 
2751 			active |= remove_xps_queue(dev_maps,
2752 						   copy ? old_dev_maps : NULL,
2753 						   tci, index);
2754 		}
2755 	}
2756 
2757 	if (old_dev_maps)
2758 		kfree_rcu(old_dev_maps, rcu);
2759 
2760 	/* free map if not active */
2761 	if (!active)
2762 		reset_xps_maps(dev, dev_maps, type);
2763 
2764 out_no_maps:
2765 	mutex_unlock(&xps_map_mutex);
2766 
2767 	return 0;
2768 error:
2769 	/* remove any maps that we added */
2770 	for (j = 0; j < nr_ids; j++) {
2771 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2772 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2773 			map = copy ?
2774 			      xmap_dereference(dev_maps->attr_map[tci]) :
2775 			      NULL;
2776 			if (new_map && new_map != map)
2777 				kfree(new_map);
2778 		}
2779 	}
2780 
2781 	mutex_unlock(&xps_map_mutex);
2782 
2783 	kfree(new_dev_maps);
2784 	return -ENOMEM;
2785 }
2786 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2787 
2788 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2789 			u16 index)
2790 {
2791 	int ret;
2792 
2793 	cpus_read_lock();
2794 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2795 	cpus_read_unlock();
2796 
2797 	return ret;
2798 }
2799 EXPORT_SYMBOL(netif_set_xps_queue);
2800 
2801 #endif
2802 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2803 {
2804 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2805 
2806 	/* Unbind any subordinate channels */
2807 	while (txq-- != &dev->_tx[0]) {
2808 		if (txq->sb_dev)
2809 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2810 	}
2811 }
2812 
2813 void netdev_reset_tc(struct net_device *dev)
2814 {
2815 #ifdef CONFIG_XPS
2816 	netif_reset_xps_queues_gt(dev, 0);
2817 #endif
2818 	netdev_unbind_all_sb_channels(dev);
2819 
2820 	/* Reset TC configuration of device */
2821 	dev->num_tc = 0;
2822 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2823 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2824 }
2825 EXPORT_SYMBOL(netdev_reset_tc);
2826 
2827 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2828 {
2829 	if (tc >= dev->num_tc)
2830 		return -EINVAL;
2831 
2832 #ifdef CONFIG_XPS
2833 	netif_reset_xps_queues(dev, offset, count);
2834 #endif
2835 	dev->tc_to_txq[tc].count = count;
2836 	dev->tc_to_txq[tc].offset = offset;
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_set_tc_queue);
2840 
2841 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2842 {
2843 	if (num_tc > TC_MAX_QUEUE)
2844 		return -EINVAL;
2845 
2846 #ifdef CONFIG_XPS
2847 	netif_reset_xps_queues_gt(dev, 0);
2848 #endif
2849 	netdev_unbind_all_sb_channels(dev);
2850 
2851 	dev->num_tc = num_tc;
2852 	return 0;
2853 }
2854 EXPORT_SYMBOL(netdev_set_num_tc);
2855 
2856 void netdev_unbind_sb_channel(struct net_device *dev,
2857 			      struct net_device *sb_dev)
2858 {
2859 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2860 
2861 #ifdef CONFIG_XPS
2862 	netif_reset_xps_queues_gt(sb_dev, 0);
2863 #endif
2864 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2865 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2866 
2867 	while (txq-- != &dev->_tx[0]) {
2868 		if (txq->sb_dev == sb_dev)
2869 			txq->sb_dev = NULL;
2870 	}
2871 }
2872 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2873 
2874 int netdev_bind_sb_channel_queue(struct net_device *dev,
2875 				 struct net_device *sb_dev,
2876 				 u8 tc, u16 count, u16 offset)
2877 {
2878 	/* Make certain the sb_dev and dev are already configured */
2879 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2880 		return -EINVAL;
2881 
2882 	/* We cannot hand out queues we don't have */
2883 	if ((offset + count) > dev->real_num_tx_queues)
2884 		return -EINVAL;
2885 
2886 	/* Record the mapping */
2887 	sb_dev->tc_to_txq[tc].count = count;
2888 	sb_dev->tc_to_txq[tc].offset = offset;
2889 
2890 	/* Provide a way for Tx queue to find the tc_to_txq map or
2891 	 * XPS map for itself.
2892 	 */
2893 	while (count--)
2894 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2895 
2896 	return 0;
2897 }
2898 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2899 
2900 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2901 {
2902 	/* Do not use a multiqueue device to represent a subordinate channel */
2903 	if (netif_is_multiqueue(dev))
2904 		return -ENODEV;
2905 
2906 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2907 	 * Channel 0 is meant to be "native" mode and used only to represent
2908 	 * the main root device. We allow writing 0 to reset the device back
2909 	 * to normal mode after being used as a subordinate channel.
2910 	 */
2911 	if (channel > S16_MAX)
2912 		return -EINVAL;
2913 
2914 	dev->num_tc = -channel;
2915 
2916 	return 0;
2917 }
2918 EXPORT_SYMBOL(netdev_set_sb_channel);
2919 
2920 /*
2921  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2922  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2923  */
2924 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2925 {
2926 	bool disabling;
2927 	int rc;
2928 
2929 	disabling = txq < dev->real_num_tx_queues;
2930 
2931 	if (txq < 1 || txq > dev->num_tx_queues)
2932 		return -EINVAL;
2933 
2934 	if (dev->reg_state == NETREG_REGISTERED ||
2935 	    dev->reg_state == NETREG_UNREGISTERING) {
2936 		ASSERT_RTNL();
2937 
2938 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2939 						  txq);
2940 		if (rc)
2941 			return rc;
2942 
2943 		if (dev->num_tc)
2944 			netif_setup_tc(dev, txq);
2945 
2946 		dev_qdisc_change_real_num_tx(dev, txq);
2947 
2948 		dev->real_num_tx_queues = txq;
2949 
2950 		if (disabling) {
2951 			synchronize_net();
2952 			qdisc_reset_all_tx_gt(dev, txq);
2953 #ifdef CONFIG_XPS
2954 			netif_reset_xps_queues_gt(dev, txq);
2955 #endif
2956 		}
2957 	} else {
2958 		dev->real_num_tx_queues = txq;
2959 	}
2960 
2961 	return 0;
2962 }
2963 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2964 
2965 #ifdef CONFIG_SYSFS
2966 /**
2967  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2968  *	@dev: Network device
2969  *	@rxq: Actual number of RX queues
2970  *
2971  *	This must be called either with the rtnl_lock held or before
2972  *	registration of the net device.  Returns 0 on success, or a
2973  *	negative error code.  If called before registration, it always
2974  *	succeeds.
2975  */
2976 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2977 {
2978 	int rc;
2979 
2980 	if (rxq < 1 || rxq > dev->num_rx_queues)
2981 		return -EINVAL;
2982 
2983 	if (dev->reg_state == NETREG_REGISTERED) {
2984 		ASSERT_RTNL();
2985 
2986 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2987 						  rxq);
2988 		if (rc)
2989 			return rc;
2990 	}
2991 
2992 	dev->real_num_rx_queues = rxq;
2993 	return 0;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2996 #endif
2997 
2998 /**
2999  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3000  *	@dev: Network device
3001  *	@txq: Actual number of TX queues
3002  *	@rxq: Actual number of RX queues
3003  *
3004  *	Set the real number of both TX and RX queues.
3005  *	Does nothing if the number of queues is already correct.
3006  */
3007 int netif_set_real_num_queues(struct net_device *dev,
3008 			      unsigned int txq, unsigned int rxq)
3009 {
3010 	unsigned int old_rxq = dev->real_num_rx_queues;
3011 	int err;
3012 
3013 	if (txq < 1 || txq > dev->num_tx_queues ||
3014 	    rxq < 1 || rxq > dev->num_rx_queues)
3015 		return -EINVAL;
3016 
3017 	/* Start from increases, so the error path only does decreases -
3018 	 * decreases can't fail.
3019 	 */
3020 	if (rxq > dev->real_num_rx_queues) {
3021 		err = netif_set_real_num_rx_queues(dev, rxq);
3022 		if (err)
3023 			return err;
3024 	}
3025 	if (txq > dev->real_num_tx_queues) {
3026 		err = netif_set_real_num_tx_queues(dev, txq);
3027 		if (err)
3028 			goto undo_rx;
3029 	}
3030 	if (rxq < dev->real_num_rx_queues)
3031 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3032 	if (txq < dev->real_num_tx_queues)
3033 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3034 
3035 	return 0;
3036 undo_rx:
3037 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3038 	return err;
3039 }
3040 EXPORT_SYMBOL(netif_set_real_num_queues);
3041 
3042 /**
3043  * netif_set_tso_max_size() - set the max size of TSO frames supported
3044  * @dev:	netdev to update
3045  * @size:	max skb->len of a TSO frame
3046  *
3047  * Set the limit on the size of TSO super-frames the device can handle.
3048  * Unless explicitly set the stack will assume the value of
3049  * %GSO_LEGACY_MAX_SIZE.
3050  */
3051 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3052 {
3053 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3054 	if (size < READ_ONCE(dev->gso_max_size))
3055 		netif_set_gso_max_size(dev, size);
3056 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3057 		netif_set_gso_ipv4_max_size(dev, size);
3058 }
3059 EXPORT_SYMBOL(netif_set_tso_max_size);
3060 
3061 /**
3062  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3063  * @dev:	netdev to update
3064  * @segs:	max number of TCP segments
3065  *
3066  * Set the limit on the number of TCP segments the device can generate from
3067  * a single TSO super-frame.
3068  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3069  */
3070 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3071 {
3072 	dev->tso_max_segs = segs;
3073 	if (segs < READ_ONCE(dev->gso_max_segs))
3074 		netif_set_gso_max_segs(dev, segs);
3075 }
3076 EXPORT_SYMBOL(netif_set_tso_max_segs);
3077 
3078 /**
3079  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3080  * @to:		netdev to update
3081  * @from:	netdev from which to copy the limits
3082  */
3083 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3084 {
3085 	netif_set_tso_max_size(to, from->tso_max_size);
3086 	netif_set_tso_max_segs(to, from->tso_max_segs);
3087 }
3088 EXPORT_SYMBOL(netif_inherit_tso_max);
3089 
3090 /**
3091  * netif_get_num_default_rss_queues - default number of RSS queues
3092  *
3093  * Default value is the number of physical cores if there are only 1 or 2, or
3094  * divided by 2 if there are more.
3095  */
3096 int netif_get_num_default_rss_queues(void)
3097 {
3098 	cpumask_var_t cpus;
3099 	int cpu, count = 0;
3100 
3101 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3102 		return 1;
3103 
3104 	cpumask_copy(cpus, cpu_online_mask);
3105 	for_each_cpu(cpu, cpus) {
3106 		++count;
3107 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3108 	}
3109 	free_cpumask_var(cpus);
3110 
3111 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3112 }
3113 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3114 
3115 static void __netif_reschedule(struct Qdisc *q)
3116 {
3117 	struct softnet_data *sd;
3118 	unsigned long flags;
3119 
3120 	local_irq_save(flags);
3121 	sd = this_cpu_ptr(&softnet_data);
3122 	q->next_sched = NULL;
3123 	*sd->output_queue_tailp = q;
3124 	sd->output_queue_tailp = &q->next_sched;
3125 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3126 	local_irq_restore(flags);
3127 }
3128 
3129 void __netif_schedule(struct Qdisc *q)
3130 {
3131 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3132 		__netif_reschedule(q);
3133 }
3134 EXPORT_SYMBOL(__netif_schedule);
3135 
3136 struct dev_kfree_skb_cb {
3137 	enum skb_drop_reason reason;
3138 };
3139 
3140 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3141 {
3142 	return (struct dev_kfree_skb_cb *)skb->cb;
3143 }
3144 
3145 void netif_schedule_queue(struct netdev_queue *txq)
3146 {
3147 	rcu_read_lock();
3148 	if (!netif_xmit_stopped(txq)) {
3149 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3150 
3151 		__netif_schedule(q);
3152 	}
3153 	rcu_read_unlock();
3154 }
3155 EXPORT_SYMBOL(netif_schedule_queue);
3156 
3157 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3158 {
3159 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3160 		struct Qdisc *q;
3161 
3162 		rcu_read_lock();
3163 		q = rcu_dereference(dev_queue->qdisc);
3164 		__netif_schedule(q);
3165 		rcu_read_unlock();
3166 	}
3167 }
3168 EXPORT_SYMBOL(netif_tx_wake_queue);
3169 
3170 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3171 {
3172 	unsigned long flags;
3173 
3174 	if (unlikely(!skb))
3175 		return;
3176 
3177 	if (likely(refcount_read(&skb->users) == 1)) {
3178 		smp_rmb();
3179 		refcount_set(&skb->users, 0);
3180 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3181 		return;
3182 	}
3183 	get_kfree_skb_cb(skb)->reason = reason;
3184 	local_irq_save(flags);
3185 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3186 	__this_cpu_write(softnet_data.completion_queue, skb);
3187 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3188 	local_irq_restore(flags);
3189 }
3190 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3191 
3192 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3193 {
3194 	if (in_hardirq() || irqs_disabled())
3195 		dev_kfree_skb_irq_reason(skb, reason);
3196 	else
3197 		kfree_skb_reason(skb, reason);
3198 }
3199 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3200 
3201 
3202 /**
3203  * netif_device_detach - mark device as removed
3204  * @dev: network device
3205  *
3206  * Mark device as removed from system and therefore no longer available.
3207  */
3208 void netif_device_detach(struct net_device *dev)
3209 {
3210 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3211 	    netif_running(dev)) {
3212 		netif_tx_stop_all_queues(dev);
3213 	}
3214 }
3215 EXPORT_SYMBOL(netif_device_detach);
3216 
3217 /**
3218  * netif_device_attach - mark device as attached
3219  * @dev: network device
3220  *
3221  * Mark device as attached from system and restart if needed.
3222  */
3223 void netif_device_attach(struct net_device *dev)
3224 {
3225 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3226 	    netif_running(dev)) {
3227 		netif_tx_wake_all_queues(dev);
3228 		__netdev_watchdog_up(dev);
3229 	}
3230 }
3231 EXPORT_SYMBOL(netif_device_attach);
3232 
3233 /*
3234  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3235  * to be used as a distribution range.
3236  */
3237 static u16 skb_tx_hash(const struct net_device *dev,
3238 		       const struct net_device *sb_dev,
3239 		       struct sk_buff *skb)
3240 {
3241 	u32 hash;
3242 	u16 qoffset = 0;
3243 	u16 qcount = dev->real_num_tx_queues;
3244 
3245 	if (dev->num_tc) {
3246 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3247 
3248 		qoffset = sb_dev->tc_to_txq[tc].offset;
3249 		qcount = sb_dev->tc_to_txq[tc].count;
3250 		if (unlikely(!qcount)) {
3251 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3252 					     sb_dev->name, qoffset, tc);
3253 			qoffset = 0;
3254 			qcount = dev->real_num_tx_queues;
3255 		}
3256 	}
3257 
3258 	if (skb_rx_queue_recorded(skb)) {
3259 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3260 		hash = skb_get_rx_queue(skb);
3261 		if (hash >= qoffset)
3262 			hash -= qoffset;
3263 		while (unlikely(hash >= qcount))
3264 			hash -= qcount;
3265 		return hash + qoffset;
3266 	}
3267 
3268 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3269 }
3270 
3271 void skb_warn_bad_offload(const struct sk_buff *skb)
3272 {
3273 	static const netdev_features_t null_features;
3274 	struct net_device *dev = skb->dev;
3275 	const char *name = "";
3276 
3277 	if (!net_ratelimit())
3278 		return;
3279 
3280 	if (dev) {
3281 		if (dev->dev.parent)
3282 			name = dev_driver_string(dev->dev.parent);
3283 		else
3284 			name = netdev_name(dev);
3285 	}
3286 	skb_dump(KERN_WARNING, skb, false);
3287 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3288 	     name, dev ? &dev->features : &null_features,
3289 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3290 }
3291 
3292 /*
3293  * Invalidate hardware checksum when packet is to be mangled, and
3294  * complete checksum manually on outgoing path.
3295  */
3296 int skb_checksum_help(struct sk_buff *skb)
3297 {
3298 	__wsum csum;
3299 	int ret = 0, offset;
3300 
3301 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3302 		goto out_set_summed;
3303 
3304 	if (unlikely(skb_is_gso(skb))) {
3305 		skb_warn_bad_offload(skb);
3306 		return -EINVAL;
3307 	}
3308 
3309 	/* Before computing a checksum, we should make sure no frag could
3310 	 * be modified by an external entity : checksum could be wrong.
3311 	 */
3312 	if (skb_has_shared_frag(skb)) {
3313 		ret = __skb_linearize(skb);
3314 		if (ret)
3315 			goto out;
3316 	}
3317 
3318 	offset = skb_checksum_start_offset(skb);
3319 	ret = -EINVAL;
3320 	if (unlikely(offset >= skb_headlen(skb))) {
3321 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3322 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3323 			  offset, skb_headlen(skb));
3324 		goto out;
3325 	}
3326 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3327 
3328 	offset += skb->csum_offset;
3329 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3330 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3331 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3332 			  offset + sizeof(__sum16), skb_headlen(skb));
3333 		goto out;
3334 	}
3335 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3336 	if (ret)
3337 		goto out;
3338 
3339 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3340 out_set_summed:
3341 	skb->ip_summed = CHECKSUM_NONE;
3342 out:
3343 	return ret;
3344 }
3345 EXPORT_SYMBOL(skb_checksum_help);
3346 
3347 int skb_crc32c_csum_help(struct sk_buff *skb)
3348 {
3349 	__le32 crc32c_csum;
3350 	int ret = 0, offset, start;
3351 
3352 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3353 		goto out;
3354 
3355 	if (unlikely(skb_is_gso(skb)))
3356 		goto out;
3357 
3358 	/* Before computing a checksum, we should make sure no frag could
3359 	 * be modified by an external entity : checksum could be wrong.
3360 	 */
3361 	if (unlikely(skb_has_shared_frag(skb))) {
3362 		ret = __skb_linearize(skb);
3363 		if (ret)
3364 			goto out;
3365 	}
3366 	start = skb_checksum_start_offset(skb);
3367 	offset = start + offsetof(struct sctphdr, checksum);
3368 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3369 		ret = -EINVAL;
3370 		goto out;
3371 	}
3372 
3373 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3374 	if (ret)
3375 		goto out;
3376 
3377 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3378 						  skb->len - start, ~(__u32)0,
3379 						  crc32c_csum_stub));
3380 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3381 	skb_reset_csum_not_inet(skb);
3382 out:
3383 	return ret;
3384 }
3385 
3386 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3387 {
3388 	__be16 type = skb->protocol;
3389 
3390 	/* Tunnel gso handlers can set protocol to ethernet. */
3391 	if (type == htons(ETH_P_TEB)) {
3392 		struct ethhdr *eth;
3393 
3394 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3395 			return 0;
3396 
3397 		eth = (struct ethhdr *)skb->data;
3398 		type = eth->h_proto;
3399 	}
3400 
3401 	return vlan_get_protocol_and_depth(skb, type, depth);
3402 }
3403 
3404 
3405 /* Take action when hardware reception checksum errors are detected. */
3406 #ifdef CONFIG_BUG
3407 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3408 {
3409 	netdev_err(dev, "hw csum failure\n");
3410 	skb_dump(KERN_ERR, skb, true);
3411 	dump_stack();
3412 }
3413 
3414 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415 {
3416 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3417 }
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3420 
3421 /* XXX: check that highmem exists at all on the given machine. */
3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 #ifdef CONFIG_HIGHMEM
3425 	int i;
3426 
3427 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3428 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430 
3431 			if (PageHighMem(skb_frag_page(frag)))
3432 				return 1;
3433 		}
3434 	}
3435 #endif
3436 	return 0;
3437 }
3438 
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440  * instead of standard features for the netdev.
3441  */
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 					   netdev_features_t features,
3445 					   __be16 type)
3446 {
3447 	if (eth_p_mpls(type))
3448 		features &= skb->dev->mpls_features;
3449 
3450 	return features;
3451 }
3452 #else
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 					   netdev_features_t features,
3455 					   __be16 type)
3456 {
3457 	return features;
3458 }
3459 #endif
3460 
3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462 	netdev_features_t features)
3463 {
3464 	__be16 type;
3465 
3466 	type = skb_network_protocol(skb, NULL);
3467 	features = net_mpls_features(skb, features, type);
3468 
3469 	if (skb->ip_summed != CHECKSUM_NONE &&
3470 	    !can_checksum_protocol(features, type)) {
3471 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472 	}
3473 	if (illegal_highdma(skb->dev, skb))
3474 		features &= ~NETIF_F_SG;
3475 
3476 	return features;
3477 }
3478 
3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480 					  struct net_device *dev,
3481 					  netdev_features_t features)
3482 {
3483 	return features;
3484 }
3485 EXPORT_SYMBOL(passthru_features_check);
3486 
3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488 					     struct net_device *dev,
3489 					     netdev_features_t features)
3490 {
3491 	return vlan_features_check(skb, features);
3492 }
3493 
3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495 					    struct net_device *dev,
3496 					    netdev_features_t features)
3497 {
3498 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499 
3500 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3501 		return features & ~NETIF_F_GSO_MASK;
3502 
3503 	if (!skb_shinfo(skb)->gso_type) {
3504 		skb_warn_bad_offload(skb);
3505 		return features & ~NETIF_F_GSO_MASK;
3506 	}
3507 
3508 	/* Support for GSO partial features requires software
3509 	 * intervention before we can actually process the packets
3510 	 * so we need to strip support for any partial features now
3511 	 * and we can pull them back in after we have partially
3512 	 * segmented the frame.
3513 	 */
3514 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3515 		features &= ~dev->gso_partial_features;
3516 
3517 	/* Make sure to clear the IPv4 ID mangling feature if the
3518 	 * IPv4 header has the potential to be fragmented.
3519 	 */
3520 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3521 		struct iphdr *iph = skb->encapsulation ?
3522 				    inner_ip_hdr(skb) : ip_hdr(skb);
3523 
3524 		if (!(iph->frag_off & htons(IP_DF)))
3525 			features &= ~NETIF_F_TSO_MANGLEID;
3526 	}
3527 
3528 	return features;
3529 }
3530 
3531 netdev_features_t netif_skb_features(struct sk_buff *skb)
3532 {
3533 	struct net_device *dev = skb->dev;
3534 	netdev_features_t features = dev->features;
3535 
3536 	if (skb_is_gso(skb))
3537 		features = gso_features_check(skb, dev, features);
3538 
3539 	/* If encapsulation offload request, verify we are testing
3540 	 * hardware encapsulation features instead of standard
3541 	 * features for the netdev
3542 	 */
3543 	if (skb->encapsulation)
3544 		features &= dev->hw_enc_features;
3545 
3546 	if (skb_vlan_tagged(skb))
3547 		features = netdev_intersect_features(features,
3548 						     dev->vlan_features |
3549 						     NETIF_F_HW_VLAN_CTAG_TX |
3550 						     NETIF_F_HW_VLAN_STAG_TX);
3551 
3552 	if (dev->netdev_ops->ndo_features_check)
3553 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3554 								features);
3555 	else
3556 		features &= dflt_features_check(skb, dev, features);
3557 
3558 	return harmonize_features(skb, features);
3559 }
3560 EXPORT_SYMBOL(netif_skb_features);
3561 
3562 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3563 		    struct netdev_queue *txq, bool more)
3564 {
3565 	unsigned int len;
3566 	int rc;
3567 
3568 	if (dev_nit_active(dev))
3569 		dev_queue_xmit_nit(skb, dev);
3570 
3571 	len = skb->len;
3572 	trace_net_dev_start_xmit(skb, dev);
3573 	rc = netdev_start_xmit(skb, dev, txq, more);
3574 	trace_net_dev_xmit(skb, rc, dev, len);
3575 
3576 	return rc;
3577 }
3578 
3579 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3580 				    struct netdev_queue *txq, int *ret)
3581 {
3582 	struct sk_buff *skb = first;
3583 	int rc = NETDEV_TX_OK;
3584 
3585 	while (skb) {
3586 		struct sk_buff *next = skb->next;
3587 
3588 		skb_mark_not_on_list(skb);
3589 		rc = xmit_one(skb, dev, txq, next != NULL);
3590 		if (unlikely(!dev_xmit_complete(rc))) {
3591 			skb->next = next;
3592 			goto out;
3593 		}
3594 
3595 		skb = next;
3596 		if (netif_tx_queue_stopped(txq) && skb) {
3597 			rc = NETDEV_TX_BUSY;
3598 			break;
3599 		}
3600 	}
3601 
3602 out:
3603 	*ret = rc;
3604 	return skb;
3605 }
3606 
3607 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3608 					  netdev_features_t features)
3609 {
3610 	if (skb_vlan_tag_present(skb) &&
3611 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3612 		skb = __vlan_hwaccel_push_inside(skb);
3613 	return skb;
3614 }
3615 
3616 int skb_csum_hwoffload_help(struct sk_buff *skb,
3617 			    const netdev_features_t features)
3618 {
3619 	if (unlikely(skb_csum_is_sctp(skb)))
3620 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3621 			skb_crc32c_csum_help(skb);
3622 
3623 	if (features & NETIF_F_HW_CSUM)
3624 		return 0;
3625 
3626 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3627 		switch (skb->csum_offset) {
3628 		case offsetof(struct tcphdr, check):
3629 		case offsetof(struct udphdr, check):
3630 			return 0;
3631 		}
3632 	}
3633 
3634 	return skb_checksum_help(skb);
3635 }
3636 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3637 
3638 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3639 {
3640 	netdev_features_t features;
3641 
3642 	features = netif_skb_features(skb);
3643 	skb = validate_xmit_vlan(skb, features);
3644 	if (unlikely(!skb))
3645 		goto out_null;
3646 
3647 	skb = sk_validate_xmit_skb(skb, dev);
3648 	if (unlikely(!skb))
3649 		goto out_null;
3650 
3651 	if (netif_needs_gso(skb, features)) {
3652 		struct sk_buff *segs;
3653 
3654 		segs = skb_gso_segment(skb, features);
3655 		if (IS_ERR(segs)) {
3656 			goto out_kfree_skb;
3657 		} else if (segs) {
3658 			consume_skb(skb);
3659 			skb = segs;
3660 		}
3661 	} else {
3662 		if (skb_needs_linearize(skb, features) &&
3663 		    __skb_linearize(skb))
3664 			goto out_kfree_skb;
3665 
3666 		/* If packet is not checksummed and device does not
3667 		 * support checksumming for this protocol, complete
3668 		 * checksumming here.
3669 		 */
3670 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3671 			if (skb->encapsulation)
3672 				skb_set_inner_transport_header(skb,
3673 							       skb_checksum_start_offset(skb));
3674 			else
3675 				skb_set_transport_header(skb,
3676 							 skb_checksum_start_offset(skb));
3677 			if (skb_csum_hwoffload_help(skb, features))
3678 				goto out_kfree_skb;
3679 		}
3680 	}
3681 
3682 	skb = validate_xmit_xfrm(skb, features, again);
3683 
3684 	return skb;
3685 
3686 out_kfree_skb:
3687 	kfree_skb(skb);
3688 out_null:
3689 	dev_core_stats_tx_dropped_inc(dev);
3690 	return NULL;
3691 }
3692 
3693 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3694 {
3695 	struct sk_buff *next, *head = NULL, *tail;
3696 
3697 	for (; skb != NULL; skb = next) {
3698 		next = skb->next;
3699 		skb_mark_not_on_list(skb);
3700 
3701 		/* in case skb wont be segmented, point to itself */
3702 		skb->prev = skb;
3703 
3704 		skb = validate_xmit_skb(skb, dev, again);
3705 		if (!skb)
3706 			continue;
3707 
3708 		if (!head)
3709 			head = skb;
3710 		else
3711 			tail->next = skb;
3712 		/* If skb was segmented, skb->prev points to
3713 		 * the last segment. If not, it still contains skb.
3714 		 */
3715 		tail = skb->prev;
3716 	}
3717 	return head;
3718 }
3719 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3720 
3721 static void qdisc_pkt_len_init(struct sk_buff *skb)
3722 {
3723 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3724 
3725 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3726 
3727 	/* To get more precise estimation of bytes sent on wire,
3728 	 * we add to pkt_len the headers size of all segments
3729 	 */
3730 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3731 		u16 gso_segs = shinfo->gso_segs;
3732 		unsigned int hdr_len;
3733 
3734 		/* mac layer + network layer */
3735 		hdr_len = skb_transport_offset(skb);
3736 
3737 		/* + transport layer */
3738 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3739 			const struct tcphdr *th;
3740 			struct tcphdr _tcphdr;
3741 
3742 			th = skb_header_pointer(skb, hdr_len,
3743 						sizeof(_tcphdr), &_tcphdr);
3744 			if (likely(th))
3745 				hdr_len += __tcp_hdrlen(th);
3746 		} else {
3747 			struct udphdr _udphdr;
3748 
3749 			if (skb_header_pointer(skb, hdr_len,
3750 					       sizeof(_udphdr), &_udphdr))
3751 				hdr_len += sizeof(struct udphdr);
3752 		}
3753 
3754 		if (shinfo->gso_type & SKB_GSO_DODGY)
3755 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3756 						shinfo->gso_size);
3757 
3758 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3759 	}
3760 }
3761 
3762 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3763 			     struct sk_buff **to_free,
3764 			     struct netdev_queue *txq)
3765 {
3766 	int rc;
3767 
3768 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3769 	if (rc == NET_XMIT_SUCCESS)
3770 		trace_qdisc_enqueue(q, txq, skb);
3771 	return rc;
3772 }
3773 
3774 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3775 				 struct net_device *dev,
3776 				 struct netdev_queue *txq)
3777 {
3778 	spinlock_t *root_lock = qdisc_lock(q);
3779 	struct sk_buff *to_free = NULL;
3780 	bool contended;
3781 	int rc;
3782 
3783 	qdisc_calculate_pkt_len(skb, q);
3784 
3785 	if (q->flags & TCQ_F_NOLOCK) {
3786 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3787 		    qdisc_run_begin(q)) {
3788 			/* Retest nolock_qdisc_is_empty() within the protection
3789 			 * of q->seqlock to protect from racing with requeuing.
3790 			 */
3791 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3792 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3793 				__qdisc_run(q);
3794 				qdisc_run_end(q);
3795 
3796 				goto no_lock_out;
3797 			}
3798 
3799 			qdisc_bstats_cpu_update(q, skb);
3800 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3801 			    !nolock_qdisc_is_empty(q))
3802 				__qdisc_run(q);
3803 
3804 			qdisc_run_end(q);
3805 			return NET_XMIT_SUCCESS;
3806 		}
3807 
3808 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3809 		qdisc_run(q);
3810 
3811 no_lock_out:
3812 		if (unlikely(to_free))
3813 			kfree_skb_list_reason(to_free,
3814 					      SKB_DROP_REASON_QDISC_DROP);
3815 		return rc;
3816 	}
3817 
3818 	/*
3819 	 * Heuristic to force contended enqueues to serialize on a
3820 	 * separate lock before trying to get qdisc main lock.
3821 	 * This permits qdisc->running owner to get the lock more
3822 	 * often and dequeue packets faster.
3823 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3824 	 * and then other tasks will only enqueue packets. The packets will be
3825 	 * sent after the qdisc owner is scheduled again. To prevent this
3826 	 * scenario the task always serialize on the lock.
3827 	 */
3828 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3829 	if (unlikely(contended))
3830 		spin_lock(&q->busylock);
3831 
3832 	spin_lock(root_lock);
3833 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3834 		__qdisc_drop(skb, &to_free);
3835 		rc = NET_XMIT_DROP;
3836 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3837 		   qdisc_run_begin(q)) {
3838 		/*
3839 		 * This is a work-conserving queue; there are no old skbs
3840 		 * waiting to be sent out; and the qdisc is not running -
3841 		 * xmit the skb directly.
3842 		 */
3843 
3844 		qdisc_bstats_update(q, skb);
3845 
3846 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3847 			if (unlikely(contended)) {
3848 				spin_unlock(&q->busylock);
3849 				contended = false;
3850 			}
3851 			__qdisc_run(q);
3852 		}
3853 
3854 		qdisc_run_end(q);
3855 		rc = NET_XMIT_SUCCESS;
3856 	} else {
3857 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3858 		if (qdisc_run_begin(q)) {
3859 			if (unlikely(contended)) {
3860 				spin_unlock(&q->busylock);
3861 				contended = false;
3862 			}
3863 			__qdisc_run(q);
3864 			qdisc_run_end(q);
3865 		}
3866 	}
3867 	spin_unlock(root_lock);
3868 	if (unlikely(to_free))
3869 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3870 	if (unlikely(contended))
3871 		spin_unlock(&q->busylock);
3872 	return rc;
3873 }
3874 
3875 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3876 static void skb_update_prio(struct sk_buff *skb)
3877 {
3878 	const struct netprio_map *map;
3879 	const struct sock *sk;
3880 	unsigned int prioidx;
3881 
3882 	if (skb->priority)
3883 		return;
3884 	map = rcu_dereference_bh(skb->dev->priomap);
3885 	if (!map)
3886 		return;
3887 	sk = skb_to_full_sk(skb);
3888 	if (!sk)
3889 		return;
3890 
3891 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3892 
3893 	if (prioidx < map->priomap_len)
3894 		skb->priority = map->priomap[prioidx];
3895 }
3896 #else
3897 #define skb_update_prio(skb)
3898 #endif
3899 
3900 /**
3901  *	dev_loopback_xmit - loop back @skb
3902  *	@net: network namespace this loopback is happening in
3903  *	@sk:  sk needed to be a netfilter okfn
3904  *	@skb: buffer to transmit
3905  */
3906 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3907 {
3908 	skb_reset_mac_header(skb);
3909 	__skb_pull(skb, skb_network_offset(skb));
3910 	skb->pkt_type = PACKET_LOOPBACK;
3911 	if (skb->ip_summed == CHECKSUM_NONE)
3912 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3913 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3914 	skb_dst_force(skb);
3915 	netif_rx(skb);
3916 	return 0;
3917 }
3918 EXPORT_SYMBOL(dev_loopback_xmit);
3919 
3920 #ifdef CONFIG_NET_EGRESS
3921 static struct netdev_queue *
3922 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3923 {
3924 	int qm = skb_get_queue_mapping(skb);
3925 
3926 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3927 }
3928 
3929 static bool netdev_xmit_txqueue_skipped(void)
3930 {
3931 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3932 }
3933 
3934 void netdev_xmit_skip_txqueue(bool skip)
3935 {
3936 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3937 }
3938 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3939 #endif /* CONFIG_NET_EGRESS */
3940 
3941 #ifdef CONFIG_NET_XGRESS
3942 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3943 		  enum skb_drop_reason *drop_reason)
3944 {
3945 	int ret = TC_ACT_UNSPEC;
3946 #ifdef CONFIG_NET_CLS_ACT
3947 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3948 	struct tcf_result res;
3949 
3950 	if (!miniq)
3951 		return ret;
3952 
3953 	tc_skb_cb(skb)->mru = 0;
3954 	tc_skb_cb(skb)->post_ct = false;
3955 	res.drop_reason = *drop_reason;
3956 
3957 	mini_qdisc_bstats_cpu_update(miniq, skb);
3958 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3959 	/* Only tcf related quirks below. */
3960 	switch (ret) {
3961 	case TC_ACT_SHOT:
3962 		*drop_reason = res.drop_reason;
3963 		mini_qdisc_qstats_cpu_drop(miniq);
3964 		break;
3965 	case TC_ACT_OK:
3966 	case TC_ACT_RECLASSIFY:
3967 		skb->tc_index = TC_H_MIN(res.classid);
3968 		break;
3969 	}
3970 #endif /* CONFIG_NET_CLS_ACT */
3971 	return ret;
3972 }
3973 
3974 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3975 
3976 void tcx_inc(void)
3977 {
3978 	static_branch_inc(&tcx_needed_key);
3979 }
3980 
3981 void tcx_dec(void)
3982 {
3983 	static_branch_dec(&tcx_needed_key);
3984 }
3985 
3986 static __always_inline enum tcx_action_base
3987 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3988 	const bool needs_mac)
3989 {
3990 	const struct bpf_mprog_fp *fp;
3991 	const struct bpf_prog *prog;
3992 	int ret = TCX_NEXT;
3993 
3994 	if (needs_mac)
3995 		__skb_push(skb, skb->mac_len);
3996 	bpf_mprog_foreach_prog(entry, fp, prog) {
3997 		bpf_compute_data_pointers(skb);
3998 		ret = bpf_prog_run(prog, skb);
3999 		if (ret != TCX_NEXT)
4000 			break;
4001 	}
4002 	if (needs_mac)
4003 		__skb_pull(skb, skb->mac_len);
4004 	return tcx_action_code(skb, ret);
4005 }
4006 
4007 static __always_inline struct sk_buff *
4008 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4009 		   struct net_device *orig_dev, bool *another)
4010 {
4011 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4012 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4013 	int sch_ret;
4014 
4015 	if (!entry)
4016 		return skb;
4017 	if (*pt_prev) {
4018 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4019 		*pt_prev = NULL;
4020 	}
4021 
4022 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4023 	tcx_set_ingress(skb, true);
4024 
4025 	if (static_branch_unlikely(&tcx_needed_key)) {
4026 		sch_ret = tcx_run(entry, skb, true);
4027 		if (sch_ret != TC_ACT_UNSPEC)
4028 			goto ingress_verdict;
4029 	}
4030 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4031 ingress_verdict:
4032 	switch (sch_ret) {
4033 	case TC_ACT_REDIRECT:
4034 		/* skb_mac_header check was done by BPF, so we can safely
4035 		 * push the L2 header back before redirecting to another
4036 		 * netdev.
4037 		 */
4038 		__skb_push(skb, skb->mac_len);
4039 		if (skb_do_redirect(skb) == -EAGAIN) {
4040 			__skb_pull(skb, skb->mac_len);
4041 			*another = true;
4042 			break;
4043 		}
4044 		*ret = NET_RX_SUCCESS;
4045 		return NULL;
4046 	case TC_ACT_SHOT:
4047 		kfree_skb_reason(skb, drop_reason);
4048 		*ret = NET_RX_DROP;
4049 		return NULL;
4050 	/* used by tc_run */
4051 	case TC_ACT_STOLEN:
4052 	case TC_ACT_QUEUED:
4053 	case TC_ACT_TRAP:
4054 		consume_skb(skb);
4055 		fallthrough;
4056 	case TC_ACT_CONSUMED:
4057 		*ret = NET_RX_SUCCESS;
4058 		return NULL;
4059 	}
4060 
4061 	return skb;
4062 }
4063 
4064 static __always_inline struct sk_buff *
4065 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4066 {
4067 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4068 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4069 	int sch_ret;
4070 
4071 	if (!entry)
4072 		return skb;
4073 
4074 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4075 	 * already set by the caller.
4076 	 */
4077 	if (static_branch_unlikely(&tcx_needed_key)) {
4078 		sch_ret = tcx_run(entry, skb, false);
4079 		if (sch_ret != TC_ACT_UNSPEC)
4080 			goto egress_verdict;
4081 	}
4082 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4083 egress_verdict:
4084 	switch (sch_ret) {
4085 	case TC_ACT_REDIRECT:
4086 		/* No need to push/pop skb's mac_header here on egress! */
4087 		skb_do_redirect(skb);
4088 		*ret = NET_XMIT_SUCCESS;
4089 		return NULL;
4090 	case TC_ACT_SHOT:
4091 		kfree_skb_reason(skb, drop_reason);
4092 		*ret = NET_XMIT_DROP;
4093 		return NULL;
4094 	/* used by tc_run */
4095 	case TC_ACT_STOLEN:
4096 	case TC_ACT_QUEUED:
4097 	case TC_ACT_TRAP:
4098 		consume_skb(skb);
4099 		fallthrough;
4100 	case TC_ACT_CONSUMED:
4101 		*ret = NET_XMIT_SUCCESS;
4102 		return NULL;
4103 	}
4104 
4105 	return skb;
4106 }
4107 #else
4108 static __always_inline struct sk_buff *
4109 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4110 		   struct net_device *orig_dev, bool *another)
4111 {
4112 	return skb;
4113 }
4114 
4115 static __always_inline struct sk_buff *
4116 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4117 {
4118 	return skb;
4119 }
4120 #endif /* CONFIG_NET_XGRESS */
4121 
4122 #ifdef CONFIG_XPS
4123 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4124 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4125 {
4126 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4127 	struct xps_map *map;
4128 	int queue_index = -1;
4129 
4130 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4131 		return queue_index;
4132 
4133 	tci *= dev_maps->num_tc;
4134 	tci += tc;
4135 
4136 	map = rcu_dereference(dev_maps->attr_map[tci]);
4137 	if (map) {
4138 		if (map->len == 1)
4139 			queue_index = map->queues[0];
4140 		else
4141 			queue_index = map->queues[reciprocal_scale(
4142 						skb_get_hash(skb), map->len)];
4143 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4144 			queue_index = -1;
4145 	}
4146 	return queue_index;
4147 }
4148 #endif
4149 
4150 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4151 			 struct sk_buff *skb)
4152 {
4153 #ifdef CONFIG_XPS
4154 	struct xps_dev_maps *dev_maps;
4155 	struct sock *sk = skb->sk;
4156 	int queue_index = -1;
4157 
4158 	if (!static_key_false(&xps_needed))
4159 		return -1;
4160 
4161 	rcu_read_lock();
4162 	if (!static_key_false(&xps_rxqs_needed))
4163 		goto get_cpus_map;
4164 
4165 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4166 	if (dev_maps) {
4167 		int tci = sk_rx_queue_get(sk);
4168 
4169 		if (tci >= 0)
4170 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4171 							  tci);
4172 	}
4173 
4174 get_cpus_map:
4175 	if (queue_index < 0) {
4176 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4177 		if (dev_maps) {
4178 			unsigned int tci = skb->sender_cpu - 1;
4179 
4180 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4181 							  tci);
4182 		}
4183 	}
4184 	rcu_read_unlock();
4185 
4186 	return queue_index;
4187 #else
4188 	return -1;
4189 #endif
4190 }
4191 
4192 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4193 		     struct net_device *sb_dev)
4194 {
4195 	return 0;
4196 }
4197 EXPORT_SYMBOL(dev_pick_tx_zero);
4198 
4199 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4200 		       struct net_device *sb_dev)
4201 {
4202 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4203 }
4204 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4205 
4206 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4207 		     struct net_device *sb_dev)
4208 {
4209 	struct sock *sk = skb->sk;
4210 	int queue_index = sk_tx_queue_get(sk);
4211 
4212 	sb_dev = sb_dev ? : dev;
4213 
4214 	if (queue_index < 0 || skb->ooo_okay ||
4215 	    queue_index >= dev->real_num_tx_queues) {
4216 		int new_index = get_xps_queue(dev, sb_dev, skb);
4217 
4218 		if (new_index < 0)
4219 			new_index = skb_tx_hash(dev, sb_dev, skb);
4220 
4221 		if (queue_index != new_index && sk &&
4222 		    sk_fullsock(sk) &&
4223 		    rcu_access_pointer(sk->sk_dst_cache))
4224 			sk_tx_queue_set(sk, new_index);
4225 
4226 		queue_index = new_index;
4227 	}
4228 
4229 	return queue_index;
4230 }
4231 EXPORT_SYMBOL(netdev_pick_tx);
4232 
4233 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4234 					 struct sk_buff *skb,
4235 					 struct net_device *sb_dev)
4236 {
4237 	int queue_index = 0;
4238 
4239 #ifdef CONFIG_XPS
4240 	u32 sender_cpu = skb->sender_cpu - 1;
4241 
4242 	if (sender_cpu >= (u32)NR_CPUS)
4243 		skb->sender_cpu = raw_smp_processor_id() + 1;
4244 #endif
4245 
4246 	if (dev->real_num_tx_queues != 1) {
4247 		const struct net_device_ops *ops = dev->netdev_ops;
4248 
4249 		if (ops->ndo_select_queue)
4250 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4251 		else
4252 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4253 
4254 		queue_index = netdev_cap_txqueue(dev, queue_index);
4255 	}
4256 
4257 	skb_set_queue_mapping(skb, queue_index);
4258 	return netdev_get_tx_queue(dev, queue_index);
4259 }
4260 
4261 /**
4262  * __dev_queue_xmit() - transmit a buffer
4263  * @skb:	buffer to transmit
4264  * @sb_dev:	suboordinate device used for L2 forwarding offload
4265  *
4266  * Queue a buffer for transmission to a network device. The caller must
4267  * have set the device and priority and built the buffer before calling
4268  * this function. The function can be called from an interrupt.
4269  *
4270  * When calling this method, interrupts MUST be enabled. This is because
4271  * the BH enable code must have IRQs enabled so that it will not deadlock.
4272  *
4273  * Regardless of the return value, the skb is consumed, so it is currently
4274  * difficult to retry a send to this method. (You can bump the ref count
4275  * before sending to hold a reference for retry if you are careful.)
4276  *
4277  * Return:
4278  * * 0				- buffer successfully transmitted
4279  * * positive qdisc return code	- NET_XMIT_DROP etc.
4280  * * negative errno		- other errors
4281  */
4282 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4283 {
4284 	struct net_device *dev = skb->dev;
4285 	struct netdev_queue *txq = NULL;
4286 	struct Qdisc *q;
4287 	int rc = -ENOMEM;
4288 	bool again = false;
4289 
4290 	skb_reset_mac_header(skb);
4291 	skb_assert_len(skb);
4292 
4293 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4294 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4295 
4296 	/* Disable soft irqs for various locks below. Also
4297 	 * stops preemption for RCU.
4298 	 */
4299 	rcu_read_lock_bh();
4300 
4301 	skb_update_prio(skb);
4302 
4303 	qdisc_pkt_len_init(skb);
4304 	tcx_set_ingress(skb, false);
4305 #ifdef CONFIG_NET_EGRESS
4306 	if (static_branch_unlikely(&egress_needed_key)) {
4307 		if (nf_hook_egress_active()) {
4308 			skb = nf_hook_egress(skb, &rc, dev);
4309 			if (!skb)
4310 				goto out;
4311 		}
4312 
4313 		netdev_xmit_skip_txqueue(false);
4314 
4315 		nf_skip_egress(skb, true);
4316 		skb = sch_handle_egress(skb, &rc, dev);
4317 		if (!skb)
4318 			goto out;
4319 		nf_skip_egress(skb, false);
4320 
4321 		if (netdev_xmit_txqueue_skipped())
4322 			txq = netdev_tx_queue_mapping(dev, skb);
4323 	}
4324 #endif
4325 	/* If device/qdisc don't need skb->dst, release it right now while
4326 	 * its hot in this cpu cache.
4327 	 */
4328 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4329 		skb_dst_drop(skb);
4330 	else
4331 		skb_dst_force(skb);
4332 
4333 	if (!txq)
4334 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4335 
4336 	q = rcu_dereference_bh(txq->qdisc);
4337 
4338 	trace_net_dev_queue(skb);
4339 	if (q->enqueue) {
4340 		rc = __dev_xmit_skb(skb, q, dev, txq);
4341 		goto out;
4342 	}
4343 
4344 	/* The device has no queue. Common case for software devices:
4345 	 * loopback, all the sorts of tunnels...
4346 
4347 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4348 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4349 	 * counters.)
4350 	 * However, it is possible, that they rely on protection
4351 	 * made by us here.
4352 
4353 	 * Check this and shot the lock. It is not prone from deadlocks.
4354 	 *Either shot noqueue qdisc, it is even simpler 8)
4355 	 */
4356 	if (dev->flags & IFF_UP) {
4357 		int cpu = smp_processor_id(); /* ok because BHs are off */
4358 
4359 		/* Other cpus might concurrently change txq->xmit_lock_owner
4360 		 * to -1 or to their cpu id, but not to our id.
4361 		 */
4362 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4363 			if (dev_xmit_recursion())
4364 				goto recursion_alert;
4365 
4366 			skb = validate_xmit_skb(skb, dev, &again);
4367 			if (!skb)
4368 				goto out;
4369 
4370 			HARD_TX_LOCK(dev, txq, cpu);
4371 
4372 			if (!netif_xmit_stopped(txq)) {
4373 				dev_xmit_recursion_inc();
4374 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4375 				dev_xmit_recursion_dec();
4376 				if (dev_xmit_complete(rc)) {
4377 					HARD_TX_UNLOCK(dev, txq);
4378 					goto out;
4379 				}
4380 			}
4381 			HARD_TX_UNLOCK(dev, txq);
4382 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4383 					     dev->name);
4384 		} else {
4385 			/* Recursion is detected! It is possible,
4386 			 * unfortunately
4387 			 */
4388 recursion_alert:
4389 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4390 					     dev->name);
4391 		}
4392 	}
4393 
4394 	rc = -ENETDOWN;
4395 	rcu_read_unlock_bh();
4396 
4397 	dev_core_stats_tx_dropped_inc(dev);
4398 	kfree_skb_list(skb);
4399 	return rc;
4400 out:
4401 	rcu_read_unlock_bh();
4402 	return rc;
4403 }
4404 EXPORT_SYMBOL(__dev_queue_xmit);
4405 
4406 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4407 {
4408 	struct net_device *dev = skb->dev;
4409 	struct sk_buff *orig_skb = skb;
4410 	struct netdev_queue *txq;
4411 	int ret = NETDEV_TX_BUSY;
4412 	bool again = false;
4413 
4414 	if (unlikely(!netif_running(dev) ||
4415 		     !netif_carrier_ok(dev)))
4416 		goto drop;
4417 
4418 	skb = validate_xmit_skb_list(skb, dev, &again);
4419 	if (skb != orig_skb)
4420 		goto drop;
4421 
4422 	skb_set_queue_mapping(skb, queue_id);
4423 	txq = skb_get_tx_queue(dev, skb);
4424 
4425 	local_bh_disable();
4426 
4427 	dev_xmit_recursion_inc();
4428 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4429 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4430 		ret = netdev_start_xmit(skb, dev, txq, false);
4431 	HARD_TX_UNLOCK(dev, txq);
4432 	dev_xmit_recursion_dec();
4433 
4434 	local_bh_enable();
4435 	return ret;
4436 drop:
4437 	dev_core_stats_tx_dropped_inc(dev);
4438 	kfree_skb_list(skb);
4439 	return NET_XMIT_DROP;
4440 }
4441 EXPORT_SYMBOL(__dev_direct_xmit);
4442 
4443 /*************************************************************************
4444  *			Receiver routines
4445  *************************************************************************/
4446 
4447 int netdev_max_backlog __read_mostly = 1000;
4448 EXPORT_SYMBOL(netdev_max_backlog);
4449 
4450 int netdev_tstamp_prequeue __read_mostly = 1;
4451 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4452 int netdev_budget __read_mostly = 300;
4453 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4454 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4455 int weight_p __read_mostly = 64;           /* old backlog weight */
4456 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4457 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4458 int dev_rx_weight __read_mostly = 64;
4459 int dev_tx_weight __read_mostly = 64;
4460 
4461 /* Called with irq disabled */
4462 static inline void ____napi_schedule(struct softnet_data *sd,
4463 				     struct napi_struct *napi)
4464 {
4465 	struct task_struct *thread;
4466 
4467 	lockdep_assert_irqs_disabled();
4468 
4469 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4470 		/* Paired with smp_mb__before_atomic() in
4471 		 * napi_enable()/dev_set_threaded().
4472 		 * Use READ_ONCE() to guarantee a complete
4473 		 * read on napi->thread. Only call
4474 		 * wake_up_process() when it's not NULL.
4475 		 */
4476 		thread = READ_ONCE(napi->thread);
4477 		if (thread) {
4478 			/* Avoid doing set_bit() if the thread is in
4479 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4480 			 * makes sure to proceed with napi polling
4481 			 * if the thread is explicitly woken from here.
4482 			 */
4483 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4484 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4485 			wake_up_process(thread);
4486 			return;
4487 		}
4488 	}
4489 
4490 	list_add_tail(&napi->poll_list, &sd->poll_list);
4491 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4492 	/* If not called from net_rx_action()
4493 	 * we have to raise NET_RX_SOFTIRQ.
4494 	 */
4495 	if (!sd->in_net_rx_action)
4496 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4497 }
4498 
4499 #ifdef CONFIG_RPS
4500 
4501 /* One global table that all flow-based protocols share. */
4502 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4503 EXPORT_SYMBOL(rps_sock_flow_table);
4504 u32 rps_cpu_mask __read_mostly;
4505 EXPORT_SYMBOL(rps_cpu_mask);
4506 
4507 struct static_key_false rps_needed __read_mostly;
4508 EXPORT_SYMBOL(rps_needed);
4509 struct static_key_false rfs_needed __read_mostly;
4510 EXPORT_SYMBOL(rfs_needed);
4511 
4512 static struct rps_dev_flow *
4513 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4514 	    struct rps_dev_flow *rflow, u16 next_cpu)
4515 {
4516 	if (next_cpu < nr_cpu_ids) {
4517 #ifdef CONFIG_RFS_ACCEL
4518 		struct netdev_rx_queue *rxqueue;
4519 		struct rps_dev_flow_table *flow_table;
4520 		struct rps_dev_flow *old_rflow;
4521 		u32 flow_id;
4522 		u16 rxq_index;
4523 		int rc;
4524 
4525 		/* Should we steer this flow to a different hardware queue? */
4526 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4527 		    !(dev->features & NETIF_F_NTUPLE))
4528 			goto out;
4529 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4530 		if (rxq_index == skb_get_rx_queue(skb))
4531 			goto out;
4532 
4533 		rxqueue = dev->_rx + rxq_index;
4534 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4535 		if (!flow_table)
4536 			goto out;
4537 		flow_id = skb_get_hash(skb) & flow_table->mask;
4538 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4539 							rxq_index, flow_id);
4540 		if (rc < 0)
4541 			goto out;
4542 		old_rflow = rflow;
4543 		rflow = &flow_table->flows[flow_id];
4544 		rflow->filter = rc;
4545 		if (old_rflow->filter == rflow->filter)
4546 			old_rflow->filter = RPS_NO_FILTER;
4547 	out:
4548 #endif
4549 		rflow->last_qtail =
4550 			per_cpu(softnet_data, next_cpu).input_queue_head;
4551 	}
4552 
4553 	rflow->cpu = next_cpu;
4554 	return rflow;
4555 }
4556 
4557 /*
4558  * get_rps_cpu is called from netif_receive_skb and returns the target
4559  * CPU from the RPS map of the receiving queue for a given skb.
4560  * rcu_read_lock must be held on entry.
4561  */
4562 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4563 		       struct rps_dev_flow **rflowp)
4564 {
4565 	const struct rps_sock_flow_table *sock_flow_table;
4566 	struct netdev_rx_queue *rxqueue = dev->_rx;
4567 	struct rps_dev_flow_table *flow_table;
4568 	struct rps_map *map;
4569 	int cpu = -1;
4570 	u32 tcpu;
4571 	u32 hash;
4572 
4573 	if (skb_rx_queue_recorded(skb)) {
4574 		u16 index = skb_get_rx_queue(skb);
4575 
4576 		if (unlikely(index >= dev->real_num_rx_queues)) {
4577 			WARN_ONCE(dev->real_num_rx_queues > 1,
4578 				  "%s received packet on queue %u, but number "
4579 				  "of RX queues is %u\n",
4580 				  dev->name, index, dev->real_num_rx_queues);
4581 			goto done;
4582 		}
4583 		rxqueue += index;
4584 	}
4585 
4586 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4587 
4588 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4589 	map = rcu_dereference(rxqueue->rps_map);
4590 	if (!flow_table && !map)
4591 		goto done;
4592 
4593 	skb_reset_network_header(skb);
4594 	hash = skb_get_hash(skb);
4595 	if (!hash)
4596 		goto done;
4597 
4598 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4599 	if (flow_table && sock_flow_table) {
4600 		struct rps_dev_flow *rflow;
4601 		u32 next_cpu;
4602 		u32 ident;
4603 
4604 		/* First check into global flow table if there is a match.
4605 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4606 		 */
4607 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4608 		if ((ident ^ hash) & ~rps_cpu_mask)
4609 			goto try_rps;
4610 
4611 		next_cpu = ident & rps_cpu_mask;
4612 
4613 		/* OK, now we know there is a match,
4614 		 * we can look at the local (per receive queue) flow table
4615 		 */
4616 		rflow = &flow_table->flows[hash & flow_table->mask];
4617 		tcpu = rflow->cpu;
4618 
4619 		/*
4620 		 * If the desired CPU (where last recvmsg was done) is
4621 		 * different from current CPU (one in the rx-queue flow
4622 		 * table entry), switch if one of the following holds:
4623 		 *   - Current CPU is unset (>= nr_cpu_ids).
4624 		 *   - Current CPU is offline.
4625 		 *   - The current CPU's queue tail has advanced beyond the
4626 		 *     last packet that was enqueued using this table entry.
4627 		 *     This guarantees that all previous packets for the flow
4628 		 *     have been dequeued, thus preserving in order delivery.
4629 		 */
4630 		if (unlikely(tcpu != next_cpu) &&
4631 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4632 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4633 		      rflow->last_qtail)) >= 0)) {
4634 			tcpu = next_cpu;
4635 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4636 		}
4637 
4638 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4639 			*rflowp = rflow;
4640 			cpu = tcpu;
4641 			goto done;
4642 		}
4643 	}
4644 
4645 try_rps:
4646 
4647 	if (map) {
4648 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4649 		if (cpu_online(tcpu)) {
4650 			cpu = tcpu;
4651 			goto done;
4652 		}
4653 	}
4654 
4655 done:
4656 	return cpu;
4657 }
4658 
4659 #ifdef CONFIG_RFS_ACCEL
4660 
4661 /**
4662  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4663  * @dev: Device on which the filter was set
4664  * @rxq_index: RX queue index
4665  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4666  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4667  *
4668  * Drivers that implement ndo_rx_flow_steer() should periodically call
4669  * this function for each installed filter and remove the filters for
4670  * which it returns %true.
4671  */
4672 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4673 			 u32 flow_id, u16 filter_id)
4674 {
4675 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4676 	struct rps_dev_flow_table *flow_table;
4677 	struct rps_dev_flow *rflow;
4678 	bool expire = true;
4679 	unsigned int cpu;
4680 
4681 	rcu_read_lock();
4682 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4683 	if (flow_table && flow_id <= flow_table->mask) {
4684 		rflow = &flow_table->flows[flow_id];
4685 		cpu = READ_ONCE(rflow->cpu);
4686 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4687 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4688 			   rflow->last_qtail) <
4689 		     (int)(10 * flow_table->mask)))
4690 			expire = false;
4691 	}
4692 	rcu_read_unlock();
4693 	return expire;
4694 }
4695 EXPORT_SYMBOL(rps_may_expire_flow);
4696 
4697 #endif /* CONFIG_RFS_ACCEL */
4698 
4699 /* Called from hardirq (IPI) context */
4700 static void rps_trigger_softirq(void *data)
4701 {
4702 	struct softnet_data *sd = data;
4703 
4704 	____napi_schedule(sd, &sd->backlog);
4705 	sd->received_rps++;
4706 }
4707 
4708 #endif /* CONFIG_RPS */
4709 
4710 /* Called from hardirq (IPI) context */
4711 static void trigger_rx_softirq(void *data)
4712 {
4713 	struct softnet_data *sd = data;
4714 
4715 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4716 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4717 }
4718 
4719 /*
4720  * After we queued a packet into sd->input_pkt_queue,
4721  * we need to make sure this queue is serviced soon.
4722  *
4723  * - If this is another cpu queue, link it to our rps_ipi_list,
4724  *   and make sure we will process rps_ipi_list from net_rx_action().
4725  *
4726  * - If this is our own queue, NAPI schedule our backlog.
4727  *   Note that this also raises NET_RX_SOFTIRQ.
4728  */
4729 static void napi_schedule_rps(struct softnet_data *sd)
4730 {
4731 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4732 
4733 #ifdef CONFIG_RPS
4734 	if (sd != mysd) {
4735 		sd->rps_ipi_next = mysd->rps_ipi_list;
4736 		mysd->rps_ipi_list = sd;
4737 
4738 		/* If not called from net_rx_action() or napi_threaded_poll()
4739 		 * we have to raise NET_RX_SOFTIRQ.
4740 		 */
4741 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4742 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4743 		return;
4744 	}
4745 #endif /* CONFIG_RPS */
4746 	__napi_schedule_irqoff(&mysd->backlog);
4747 }
4748 
4749 #ifdef CONFIG_NET_FLOW_LIMIT
4750 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4751 #endif
4752 
4753 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4754 {
4755 #ifdef CONFIG_NET_FLOW_LIMIT
4756 	struct sd_flow_limit *fl;
4757 	struct softnet_data *sd;
4758 	unsigned int old_flow, new_flow;
4759 
4760 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4761 		return false;
4762 
4763 	sd = this_cpu_ptr(&softnet_data);
4764 
4765 	rcu_read_lock();
4766 	fl = rcu_dereference(sd->flow_limit);
4767 	if (fl) {
4768 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4769 		old_flow = fl->history[fl->history_head];
4770 		fl->history[fl->history_head] = new_flow;
4771 
4772 		fl->history_head++;
4773 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4774 
4775 		if (likely(fl->buckets[old_flow]))
4776 			fl->buckets[old_flow]--;
4777 
4778 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4779 			fl->count++;
4780 			rcu_read_unlock();
4781 			return true;
4782 		}
4783 	}
4784 	rcu_read_unlock();
4785 #endif
4786 	return false;
4787 }
4788 
4789 /*
4790  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4791  * queue (may be a remote CPU queue).
4792  */
4793 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4794 			      unsigned int *qtail)
4795 {
4796 	enum skb_drop_reason reason;
4797 	struct softnet_data *sd;
4798 	unsigned long flags;
4799 	unsigned int qlen;
4800 
4801 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4802 	sd = &per_cpu(softnet_data, cpu);
4803 
4804 	rps_lock_irqsave(sd, &flags);
4805 	if (!netif_running(skb->dev))
4806 		goto drop;
4807 	qlen = skb_queue_len(&sd->input_pkt_queue);
4808 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4809 		if (qlen) {
4810 enqueue:
4811 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4812 			input_queue_tail_incr_save(sd, qtail);
4813 			rps_unlock_irq_restore(sd, &flags);
4814 			return NET_RX_SUCCESS;
4815 		}
4816 
4817 		/* Schedule NAPI for backlog device
4818 		 * We can use non atomic operation since we own the queue lock
4819 		 */
4820 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4821 			napi_schedule_rps(sd);
4822 		goto enqueue;
4823 	}
4824 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4825 
4826 drop:
4827 	sd->dropped++;
4828 	rps_unlock_irq_restore(sd, &flags);
4829 
4830 	dev_core_stats_rx_dropped_inc(skb->dev);
4831 	kfree_skb_reason(skb, reason);
4832 	return NET_RX_DROP;
4833 }
4834 
4835 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4836 {
4837 	struct net_device *dev = skb->dev;
4838 	struct netdev_rx_queue *rxqueue;
4839 
4840 	rxqueue = dev->_rx;
4841 
4842 	if (skb_rx_queue_recorded(skb)) {
4843 		u16 index = skb_get_rx_queue(skb);
4844 
4845 		if (unlikely(index >= dev->real_num_rx_queues)) {
4846 			WARN_ONCE(dev->real_num_rx_queues > 1,
4847 				  "%s received packet on queue %u, but number "
4848 				  "of RX queues is %u\n",
4849 				  dev->name, index, dev->real_num_rx_queues);
4850 
4851 			return rxqueue; /* Return first rxqueue */
4852 		}
4853 		rxqueue += index;
4854 	}
4855 	return rxqueue;
4856 }
4857 
4858 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4859 			     struct bpf_prog *xdp_prog)
4860 {
4861 	void *orig_data, *orig_data_end, *hard_start;
4862 	struct netdev_rx_queue *rxqueue;
4863 	bool orig_bcast, orig_host;
4864 	u32 mac_len, frame_sz;
4865 	__be16 orig_eth_type;
4866 	struct ethhdr *eth;
4867 	u32 metalen, act;
4868 	int off;
4869 
4870 	/* The XDP program wants to see the packet starting at the MAC
4871 	 * header.
4872 	 */
4873 	mac_len = skb->data - skb_mac_header(skb);
4874 	hard_start = skb->data - skb_headroom(skb);
4875 
4876 	/* SKB "head" area always have tailroom for skb_shared_info */
4877 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4878 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4879 
4880 	rxqueue = netif_get_rxqueue(skb);
4881 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4882 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4883 			 skb_headlen(skb) + mac_len, true);
4884 
4885 	orig_data_end = xdp->data_end;
4886 	orig_data = xdp->data;
4887 	eth = (struct ethhdr *)xdp->data;
4888 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4889 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4890 	orig_eth_type = eth->h_proto;
4891 
4892 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4893 
4894 	/* check if bpf_xdp_adjust_head was used */
4895 	off = xdp->data - orig_data;
4896 	if (off) {
4897 		if (off > 0)
4898 			__skb_pull(skb, off);
4899 		else if (off < 0)
4900 			__skb_push(skb, -off);
4901 
4902 		skb->mac_header += off;
4903 		skb_reset_network_header(skb);
4904 	}
4905 
4906 	/* check if bpf_xdp_adjust_tail was used */
4907 	off = xdp->data_end - orig_data_end;
4908 	if (off != 0) {
4909 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4910 		skb->len += off; /* positive on grow, negative on shrink */
4911 	}
4912 
4913 	/* check if XDP changed eth hdr such SKB needs update */
4914 	eth = (struct ethhdr *)xdp->data;
4915 	if ((orig_eth_type != eth->h_proto) ||
4916 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4917 						  skb->dev->dev_addr)) ||
4918 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4919 		__skb_push(skb, ETH_HLEN);
4920 		skb->pkt_type = PACKET_HOST;
4921 		skb->protocol = eth_type_trans(skb, skb->dev);
4922 	}
4923 
4924 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4925 	 * before calling us again on redirect path. We do not call do_redirect
4926 	 * as we leave that up to the caller.
4927 	 *
4928 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4929 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4930 	 */
4931 	switch (act) {
4932 	case XDP_REDIRECT:
4933 	case XDP_TX:
4934 		__skb_push(skb, mac_len);
4935 		break;
4936 	case XDP_PASS:
4937 		metalen = xdp->data - xdp->data_meta;
4938 		if (metalen)
4939 			skb_metadata_set(skb, metalen);
4940 		break;
4941 	}
4942 
4943 	return act;
4944 }
4945 
4946 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4947 				     struct xdp_buff *xdp,
4948 				     struct bpf_prog *xdp_prog)
4949 {
4950 	u32 act = XDP_DROP;
4951 
4952 	/* Reinjected packets coming from act_mirred or similar should
4953 	 * not get XDP generic processing.
4954 	 */
4955 	if (skb_is_redirected(skb))
4956 		return XDP_PASS;
4957 
4958 	/* XDP packets must be linear and must have sufficient headroom
4959 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4960 	 * native XDP provides, thus we need to do it here as well.
4961 	 */
4962 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4963 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4964 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4965 		int troom = skb->tail + skb->data_len - skb->end;
4966 
4967 		/* In case we have to go down the path and also linearize,
4968 		 * then lets do the pskb_expand_head() work just once here.
4969 		 */
4970 		if (pskb_expand_head(skb,
4971 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4972 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4973 			goto do_drop;
4974 		if (skb_linearize(skb))
4975 			goto do_drop;
4976 	}
4977 
4978 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4979 	switch (act) {
4980 	case XDP_REDIRECT:
4981 	case XDP_TX:
4982 	case XDP_PASS:
4983 		break;
4984 	default:
4985 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4986 		fallthrough;
4987 	case XDP_ABORTED:
4988 		trace_xdp_exception(skb->dev, xdp_prog, act);
4989 		fallthrough;
4990 	case XDP_DROP:
4991 	do_drop:
4992 		kfree_skb(skb);
4993 		break;
4994 	}
4995 
4996 	return act;
4997 }
4998 
4999 /* When doing generic XDP we have to bypass the qdisc layer and the
5000  * network taps in order to match in-driver-XDP behavior. This also means
5001  * that XDP packets are able to starve other packets going through a qdisc,
5002  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5003  * queues, so they do not have this starvation issue.
5004  */
5005 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5006 {
5007 	struct net_device *dev = skb->dev;
5008 	struct netdev_queue *txq;
5009 	bool free_skb = true;
5010 	int cpu, rc;
5011 
5012 	txq = netdev_core_pick_tx(dev, skb, NULL);
5013 	cpu = smp_processor_id();
5014 	HARD_TX_LOCK(dev, txq, cpu);
5015 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5016 		rc = netdev_start_xmit(skb, dev, txq, 0);
5017 		if (dev_xmit_complete(rc))
5018 			free_skb = false;
5019 	}
5020 	HARD_TX_UNLOCK(dev, txq);
5021 	if (free_skb) {
5022 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5023 		dev_core_stats_tx_dropped_inc(dev);
5024 		kfree_skb(skb);
5025 	}
5026 }
5027 
5028 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5029 
5030 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5031 {
5032 	if (xdp_prog) {
5033 		struct xdp_buff xdp;
5034 		u32 act;
5035 		int err;
5036 
5037 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5038 		if (act != XDP_PASS) {
5039 			switch (act) {
5040 			case XDP_REDIRECT:
5041 				err = xdp_do_generic_redirect(skb->dev, skb,
5042 							      &xdp, xdp_prog);
5043 				if (err)
5044 					goto out_redir;
5045 				break;
5046 			case XDP_TX:
5047 				generic_xdp_tx(skb, xdp_prog);
5048 				break;
5049 			}
5050 			return XDP_DROP;
5051 		}
5052 	}
5053 	return XDP_PASS;
5054 out_redir:
5055 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5056 	return XDP_DROP;
5057 }
5058 EXPORT_SYMBOL_GPL(do_xdp_generic);
5059 
5060 static int netif_rx_internal(struct sk_buff *skb)
5061 {
5062 	int ret;
5063 
5064 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5065 
5066 	trace_netif_rx(skb);
5067 
5068 #ifdef CONFIG_RPS
5069 	if (static_branch_unlikely(&rps_needed)) {
5070 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5071 		int cpu;
5072 
5073 		rcu_read_lock();
5074 
5075 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5076 		if (cpu < 0)
5077 			cpu = smp_processor_id();
5078 
5079 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5080 
5081 		rcu_read_unlock();
5082 	} else
5083 #endif
5084 	{
5085 		unsigned int qtail;
5086 
5087 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5088 	}
5089 	return ret;
5090 }
5091 
5092 /**
5093  *	__netif_rx	-	Slightly optimized version of netif_rx
5094  *	@skb: buffer to post
5095  *
5096  *	This behaves as netif_rx except that it does not disable bottom halves.
5097  *	As a result this function may only be invoked from the interrupt context
5098  *	(either hard or soft interrupt).
5099  */
5100 int __netif_rx(struct sk_buff *skb)
5101 {
5102 	int ret;
5103 
5104 	lockdep_assert_once(hardirq_count() | softirq_count());
5105 
5106 	trace_netif_rx_entry(skb);
5107 	ret = netif_rx_internal(skb);
5108 	trace_netif_rx_exit(ret);
5109 	return ret;
5110 }
5111 EXPORT_SYMBOL(__netif_rx);
5112 
5113 /**
5114  *	netif_rx	-	post buffer to the network code
5115  *	@skb: buffer to post
5116  *
5117  *	This function receives a packet from a device driver and queues it for
5118  *	the upper (protocol) levels to process via the backlog NAPI device. It
5119  *	always succeeds. The buffer may be dropped during processing for
5120  *	congestion control or by the protocol layers.
5121  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5122  *	driver should use NAPI and GRO.
5123  *	This function can used from interrupt and from process context. The
5124  *	caller from process context must not disable interrupts before invoking
5125  *	this function.
5126  *
5127  *	return values:
5128  *	NET_RX_SUCCESS	(no congestion)
5129  *	NET_RX_DROP     (packet was dropped)
5130  *
5131  */
5132 int netif_rx(struct sk_buff *skb)
5133 {
5134 	bool need_bh_off = !(hardirq_count() | softirq_count());
5135 	int ret;
5136 
5137 	if (need_bh_off)
5138 		local_bh_disable();
5139 	trace_netif_rx_entry(skb);
5140 	ret = netif_rx_internal(skb);
5141 	trace_netif_rx_exit(ret);
5142 	if (need_bh_off)
5143 		local_bh_enable();
5144 	return ret;
5145 }
5146 EXPORT_SYMBOL(netif_rx);
5147 
5148 static __latent_entropy void net_tx_action(struct softirq_action *h)
5149 {
5150 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5151 
5152 	if (sd->completion_queue) {
5153 		struct sk_buff *clist;
5154 
5155 		local_irq_disable();
5156 		clist = sd->completion_queue;
5157 		sd->completion_queue = NULL;
5158 		local_irq_enable();
5159 
5160 		while (clist) {
5161 			struct sk_buff *skb = clist;
5162 
5163 			clist = clist->next;
5164 
5165 			WARN_ON(refcount_read(&skb->users));
5166 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5167 				trace_consume_skb(skb, net_tx_action);
5168 			else
5169 				trace_kfree_skb(skb, net_tx_action,
5170 						get_kfree_skb_cb(skb)->reason);
5171 
5172 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5173 				__kfree_skb(skb);
5174 			else
5175 				__napi_kfree_skb(skb,
5176 						 get_kfree_skb_cb(skb)->reason);
5177 		}
5178 	}
5179 
5180 	if (sd->output_queue) {
5181 		struct Qdisc *head;
5182 
5183 		local_irq_disable();
5184 		head = sd->output_queue;
5185 		sd->output_queue = NULL;
5186 		sd->output_queue_tailp = &sd->output_queue;
5187 		local_irq_enable();
5188 
5189 		rcu_read_lock();
5190 
5191 		while (head) {
5192 			struct Qdisc *q = head;
5193 			spinlock_t *root_lock = NULL;
5194 
5195 			head = head->next_sched;
5196 
5197 			/* We need to make sure head->next_sched is read
5198 			 * before clearing __QDISC_STATE_SCHED
5199 			 */
5200 			smp_mb__before_atomic();
5201 
5202 			if (!(q->flags & TCQ_F_NOLOCK)) {
5203 				root_lock = qdisc_lock(q);
5204 				spin_lock(root_lock);
5205 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5206 						     &q->state))) {
5207 				/* There is a synchronize_net() between
5208 				 * STATE_DEACTIVATED flag being set and
5209 				 * qdisc_reset()/some_qdisc_is_busy() in
5210 				 * dev_deactivate(), so we can safely bail out
5211 				 * early here to avoid data race between
5212 				 * qdisc_deactivate() and some_qdisc_is_busy()
5213 				 * for lockless qdisc.
5214 				 */
5215 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5216 				continue;
5217 			}
5218 
5219 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5220 			qdisc_run(q);
5221 			if (root_lock)
5222 				spin_unlock(root_lock);
5223 		}
5224 
5225 		rcu_read_unlock();
5226 	}
5227 
5228 	xfrm_dev_backlog(sd);
5229 }
5230 
5231 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5232 /* This hook is defined here for ATM LANE */
5233 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5234 			     unsigned char *addr) __read_mostly;
5235 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5236 #endif
5237 
5238 /**
5239  *	netdev_is_rx_handler_busy - check if receive handler is registered
5240  *	@dev: device to check
5241  *
5242  *	Check if a receive handler is already registered for a given device.
5243  *	Return true if there one.
5244  *
5245  *	The caller must hold the rtnl_mutex.
5246  */
5247 bool netdev_is_rx_handler_busy(struct net_device *dev)
5248 {
5249 	ASSERT_RTNL();
5250 	return dev && rtnl_dereference(dev->rx_handler);
5251 }
5252 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5253 
5254 /**
5255  *	netdev_rx_handler_register - register receive handler
5256  *	@dev: device to register a handler for
5257  *	@rx_handler: receive handler to register
5258  *	@rx_handler_data: data pointer that is used by rx handler
5259  *
5260  *	Register a receive handler for a device. This handler will then be
5261  *	called from __netif_receive_skb. A negative errno code is returned
5262  *	on a failure.
5263  *
5264  *	The caller must hold the rtnl_mutex.
5265  *
5266  *	For a general description of rx_handler, see enum rx_handler_result.
5267  */
5268 int netdev_rx_handler_register(struct net_device *dev,
5269 			       rx_handler_func_t *rx_handler,
5270 			       void *rx_handler_data)
5271 {
5272 	if (netdev_is_rx_handler_busy(dev))
5273 		return -EBUSY;
5274 
5275 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5276 		return -EINVAL;
5277 
5278 	/* Note: rx_handler_data must be set before rx_handler */
5279 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5280 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5281 
5282 	return 0;
5283 }
5284 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5285 
5286 /**
5287  *	netdev_rx_handler_unregister - unregister receive handler
5288  *	@dev: device to unregister a handler from
5289  *
5290  *	Unregister a receive handler from a device.
5291  *
5292  *	The caller must hold the rtnl_mutex.
5293  */
5294 void netdev_rx_handler_unregister(struct net_device *dev)
5295 {
5296 
5297 	ASSERT_RTNL();
5298 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5299 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5300 	 * section has a guarantee to see a non NULL rx_handler_data
5301 	 * as well.
5302 	 */
5303 	synchronize_net();
5304 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5305 }
5306 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5307 
5308 /*
5309  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5310  * the special handling of PFMEMALLOC skbs.
5311  */
5312 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5313 {
5314 	switch (skb->protocol) {
5315 	case htons(ETH_P_ARP):
5316 	case htons(ETH_P_IP):
5317 	case htons(ETH_P_IPV6):
5318 	case htons(ETH_P_8021Q):
5319 	case htons(ETH_P_8021AD):
5320 		return true;
5321 	default:
5322 		return false;
5323 	}
5324 }
5325 
5326 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5327 			     int *ret, struct net_device *orig_dev)
5328 {
5329 	if (nf_hook_ingress_active(skb)) {
5330 		int ingress_retval;
5331 
5332 		if (*pt_prev) {
5333 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5334 			*pt_prev = NULL;
5335 		}
5336 
5337 		rcu_read_lock();
5338 		ingress_retval = nf_hook_ingress(skb);
5339 		rcu_read_unlock();
5340 		return ingress_retval;
5341 	}
5342 	return 0;
5343 }
5344 
5345 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5346 				    struct packet_type **ppt_prev)
5347 {
5348 	struct packet_type *ptype, *pt_prev;
5349 	rx_handler_func_t *rx_handler;
5350 	struct sk_buff *skb = *pskb;
5351 	struct net_device *orig_dev;
5352 	bool deliver_exact = false;
5353 	int ret = NET_RX_DROP;
5354 	__be16 type;
5355 
5356 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5357 
5358 	trace_netif_receive_skb(skb);
5359 
5360 	orig_dev = skb->dev;
5361 
5362 	skb_reset_network_header(skb);
5363 	if (!skb_transport_header_was_set(skb))
5364 		skb_reset_transport_header(skb);
5365 	skb_reset_mac_len(skb);
5366 
5367 	pt_prev = NULL;
5368 
5369 another_round:
5370 	skb->skb_iif = skb->dev->ifindex;
5371 
5372 	__this_cpu_inc(softnet_data.processed);
5373 
5374 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5375 		int ret2;
5376 
5377 		migrate_disable();
5378 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5379 		migrate_enable();
5380 
5381 		if (ret2 != XDP_PASS) {
5382 			ret = NET_RX_DROP;
5383 			goto out;
5384 		}
5385 	}
5386 
5387 	if (eth_type_vlan(skb->protocol)) {
5388 		skb = skb_vlan_untag(skb);
5389 		if (unlikely(!skb))
5390 			goto out;
5391 	}
5392 
5393 	if (skb_skip_tc_classify(skb))
5394 		goto skip_classify;
5395 
5396 	if (pfmemalloc)
5397 		goto skip_taps;
5398 
5399 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5400 		if (pt_prev)
5401 			ret = deliver_skb(skb, pt_prev, orig_dev);
5402 		pt_prev = ptype;
5403 	}
5404 
5405 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5406 		if (pt_prev)
5407 			ret = deliver_skb(skb, pt_prev, orig_dev);
5408 		pt_prev = ptype;
5409 	}
5410 
5411 skip_taps:
5412 #ifdef CONFIG_NET_INGRESS
5413 	if (static_branch_unlikely(&ingress_needed_key)) {
5414 		bool another = false;
5415 
5416 		nf_skip_egress(skb, true);
5417 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5418 					 &another);
5419 		if (another)
5420 			goto another_round;
5421 		if (!skb)
5422 			goto out;
5423 
5424 		nf_skip_egress(skb, false);
5425 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5426 			goto out;
5427 	}
5428 #endif
5429 	skb_reset_redirect(skb);
5430 skip_classify:
5431 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5432 		goto drop;
5433 
5434 	if (skb_vlan_tag_present(skb)) {
5435 		if (pt_prev) {
5436 			ret = deliver_skb(skb, pt_prev, orig_dev);
5437 			pt_prev = NULL;
5438 		}
5439 		if (vlan_do_receive(&skb))
5440 			goto another_round;
5441 		else if (unlikely(!skb))
5442 			goto out;
5443 	}
5444 
5445 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5446 	if (rx_handler) {
5447 		if (pt_prev) {
5448 			ret = deliver_skb(skb, pt_prev, orig_dev);
5449 			pt_prev = NULL;
5450 		}
5451 		switch (rx_handler(&skb)) {
5452 		case RX_HANDLER_CONSUMED:
5453 			ret = NET_RX_SUCCESS;
5454 			goto out;
5455 		case RX_HANDLER_ANOTHER:
5456 			goto another_round;
5457 		case RX_HANDLER_EXACT:
5458 			deliver_exact = true;
5459 			break;
5460 		case RX_HANDLER_PASS:
5461 			break;
5462 		default:
5463 			BUG();
5464 		}
5465 	}
5466 
5467 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5468 check_vlan_id:
5469 		if (skb_vlan_tag_get_id(skb)) {
5470 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5471 			 * find vlan device.
5472 			 */
5473 			skb->pkt_type = PACKET_OTHERHOST;
5474 		} else if (eth_type_vlan(skb->protocol)) {
5475 			/* Outer header is 802.1P with vlan 0, inner header is
5476 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5477 			 * not find vlan dev for vlan id 0.
5478 			 */
5479 			__vlan_hwaccel_clear_tag(skb);
5480 			skb = skb_vlan_untag(skb);
5481 			if (unlikely(!skb))
5482 				goto out;
5483 			if (vlan_do_receive(&skb))
5484 				/* After stripping off 802.1P header with vlan 0
5485 				 * vlan dev is found for inner header.
5486 				 */
5487 				goto another_round;
5488 			else if (unlikely(!skb))
5489 				goto out;
5490 			else
5491 				/* We have stripped outer 802.1P vlan 0 header.
5492 				 * But could not find vlan dev.
5493 				 * check again for vlan id to set OTHERHOST.
5494 				 */
5495 				goto check_vlan_id;
5496 		}
5497 		/* Note: we might in the future use prio bits
5498 		 * and set skb->priority like in vlan_do_receive()
5499 		 * For the time being, just ignore Priority Code Point
5500 		 */
5501 		__vlan_hwaccel_clear_tag(skb);
5502 	}
5503 
5504 	type = skb->protocol;
5505 
5506 	/* deliver only exact match when indicated */
5507 	if (likely(!deliver_exact)) {
5508 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5509 				       &ptype_base[ntohs(type) &
5510 						   PTYPE_HASH_MASK]);
5511 	}
5512 
5513 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5514 			       &orig_dev->ptype_specific);
5515 
5516 	if (unlikely(skb->dev != orig_dev)) {
5517 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5518 				       &skb->dev->ptype_specific);
5519 	}
5520 
5521 	if (pt_prev) {
5522 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5523 			goto drop;
5524 		*ppt_prev = pt_prev;
5525 	} else {
5526 drop:
5527 		if (!deliver_exact)
5528 			dev_core_stats_rx_dropped_inc(skb->dev);
5529 		else
5530 			dev_core_stats_rx_nohandler_inc(skb->dev);
5531 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5532 		/* Jamal, now you will not able to escape explaining
5533 		 * me how you were going to use this. :-)
5534 		 */
5535 		ret = NET_RX_DROP;
5536 	}
5537 
5538 out:
5539 	/* The invariant here is that if *ppt_prev is not NULL
5540 	 * then skb should also be non-NULL.
5541 	 *
5542 	 * Apparently *ppt_prev assignment above holds this invariant due to
5543 	 * skb dereferencing near it.
5544 	 */
5545 	*pskb = skb;
5546 	return ret;
5547 }
5548 
5549 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5550 {
5551 	struct net_device *orig_dev = skb->dev;
5552 	struct packet_type *pt_prev = NULL;
5553 	int ret;
5554 
5555 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5556 	if (pt_prev)
5557 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5558 					 skb->dev, pt_prev, orig_dev);
5559 	return ret;
5560 }
5561 
5562 /**
5563  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5564  *	@skb: buffer to process
5565  *
5566  *	More direct receive version of netif_receive_skb().  It should
5567  *	only be used by callers that have a need to skip RPS and Generic XDP.
5568  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5569  *
5570  *	This function may only be called from softirq context and interrupts
5571  *	should be enabled.
5572  *
5573  *	Return values (usually ignored):
5574  *	NET_RX_SUCCESS: no congestion
5575  *	NET_RX_DROP: packet was dropped
5576  */
5577 int netif_receive_skb_core(struct sk_buff *skb)
5578 {
5579 	int ret;
5580 
5581 	rcu_read_lock();
5582 	ret = __netif_receive_skb_one_core(skb, false);
5583 	rcu_read_unlock();
5584 
5585 	return ret;
5586 }
5587 EXPORT_SYMBOL(netif_receive_skb_core);
5588 
5589 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5590 						  struct packet_type *pt_prev,
5591 						  struct net_device *orig_dev)
5592 {
5593 	struct sk_buff *skb, *next;
5594 
5595 	if (!pt_prev)
5596 		return;
5597 	if (list_empty(head))
5598 		return;
5599 	if (pt_prev->list_func != NULL)
5600 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5601 				   ip_list_rcv, head, pt_prev, orig_dev);
5602 	else
5603 		list_for_each_entry_safe(skb, next, head, list) {
5604 			skb_list_del_init(skb);
5605 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5606 		}
5607 }
5608 
5609 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5610 {
5611 	/* Fast-path assumptions:
5612 	 * - There is no RX handler.
5613 	 * - Only one packet_type matches.
5614 	 * If either of these fails, we will end up doing some per-packet
5615 	 * processing in-line, then handling the 'last ptype' for the whole
5616 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5617 	 * because the 'last ptype' must be constant across the sublist, and all
5618 	 * other ptypes are handled per-packet.
5619 	 */
5620 	/* Current (common) ptype of sublist */
5621 	struct packet_type *pt_curr = NULL;
5622 	/* Current (common) orig_dev of sublist */
5623 	struct net_device *od_curr = NULL;
5624 	struct list_head sublist;
5625 	struct sk_buff *skb, *next;
5626 
5627 	INIT_LIST_HEAD(&sublist);
5628 	list_for_each_entry_safe(skb, next, head, list) {
5629 		struct net_device *orig_dev = skb->dev;
5630 		struct packet_type *pt_prev = NULL;
5631 
5632 		skb_list_del_init(skb);
5633 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5634 		if (!pt_prev)
5635 			continue;
5636 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5637 			/* dispatch old sublist */
5638 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5639 			/* start new sublist */
5640 			INIT_LIST_HEAD(&sublist);
5641 			pt_curr = pt_prev;
5642 			od_curr = orig_dev;
5643 		}
5644 		list_add_tail(&skb->list, &sublist);
5645 	}
5646 
5647 	/* dispatch final sublist */
5648 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5649 }
5650 
5651 static int __netif_receive_skb(struct sk_buff *skb)
5652 {
5653 	int ret;
5654 
5655 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5656 		unsigned int noreclaim_flag;
5657 
5658 		/*
5659 		 * PFMEMALLOC skbs are special, they should
5660 		 * - be delivered to SOCK_MEMALLOC sockets only
5661 		 * - stay away from userspace
5662 		 * - have bounded memory usage
5663 		 *
5664 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5665 		 * context down to all allocation sites.
5666 		 */
5667 		noreclaim_flag = memalloc_noreclaim_save();
5668 		ret = __netif_receive_skb_one_core(skb, true);
5669 		memalloc_noreclaim_restore(noreclaim_flag);
5670 	} else
5671 		ret = __netif_receive_skb_one_core(skb, false);
5672 
5673 	return ret;
5674 }
5675 
5676 static void __netif_receive_skb_list(struct list_head *head)
5677 {
5678 	unsigned long noreclaim_flag = 0;
5679 	struct sk_buff *skb, *next;
5680 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5681 
5682 	list_for_each_entry_safe(skb, next, head, list) {
5683 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5684 			struct list_head sublist;
5685 
5686 			/* Handle the previous sublist */
5687 			list_cut_before(&sublist, head, &skb->list);
5688 			if (!list_empty(&sublist))
5689 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5690 			pfmemalloc = !pfmemalloc;
5691 			/* See comments in __netif_receive_skb */
5692 			if (pfmemalloc)
5693 				noreclaim_flag = memalloc_noreclaim_save();
5694 			else
5695 				memalloc_noreclaim_restore(noreclaim_flag);
5696 		}
5697 	}
5698 	/* Handle the remaining sublist */
5699 	if (!list_empty(head))
5700 		__netif_receive_skb_list_core(head, pfmemalloc);
5701 	/* Restore pflags */
5702 	if (pfmemalloc)
5703 		memalloc_noreclaim_restore(noreclaim_flag);
5704 }
5705 
5706 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5707 {
5708 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5709 	struct bpf_prog *new = xdp->prog;
5710 	int ret = 0;
5711 
5712 	switch (xdp->command) {
5713 	case XDP_SETUP_PROG:
5714 		rcu_assign_pointer(dev->xdp_prog, new);
5715 		if (old)
5716 			bpf_prog_put(old);
5717 
5718 		if (old && !new) {
5719 			static_branch_dec(&generic_xdp_needed_key);
5720 		} else if (new && !old) {
5721 			static_branch_inc(&generic_xdp_needed_key);
5722 			dev_disable_lro(dev);
5723 			dev_disable_gro_hw(dev);
5724 		}
5725 		break;
5726 
5727 	default:
5728 		ret = -EINVAL;
5729 		break;
5730 	}
5731 
5732 	return ret;
5733 }
5734 
5735 static int netif_receive_skb_internal(struct sk_buff *skb)
5736 {
5737 	int ret;
5738 
5739 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5740 
5741 	if (skb_defer_rx_timestamp(skb))
5742 		return NET_RX_SUCCESS;
5743 
5744 	rcu_read_lock();
5745 #ifdef CONFIG_RPS
5746 	if (static_branch_unlikely(&rps_needed)) {
5747 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5748 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5749 
5750 		if (cpu >= 0) {
5751 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5752 			rcu_read_unlock();
5753 			return ret;
5754 		}
5755 	}
5756 #endif
5757 	ret = __netif_receive_skb(skb);
5758 	rcu_read_unlock();
5759 	return ret;
5760 }
5761 
5762 void netif_receive_skb_list_internal(struct list_head *head)
5763 {
5764 	struct sk_buff *skb, *next;
5765 	struct list_head sublist;
5766 
5767 	INIT_LIST_HEAD(&sublist);
5768 	list_for_each_entry_safe(skb, next, head, list) {
5769 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5770 		skb_list_del_init(skb);
5771 		if (!skb_defer_rx_timestamp(skb))
5772 			list_add_tail(&skb->list, &sublist);
5773 	}
5774 	list_splice_init(&sublist, head);
5775 
5776 	rcu_read_lock();
5777 #ifdef CONFIG_RPS
5778 	if (static_branch_unlikely(&rps_needed)) {
5779 		list_for_each_entry_safe(skb, next, head, list) {
5780 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5781 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5782 
5783 			if (cpu >= 0) {
5784 				/* Will be handled, remove from list */
5785 				skb_list_del_init(skb);
5786 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5787 			}
5788 		}
5789 	}
5790 #endif
5791 	__netif_receive_skb_list(head);
5792 	rcu_read_unlock();
5793 }
5794 
5795 /**
5796  *	netif_receive_skb - process receive buffer from network
5797  *	@skb: buffer to process
5798  *
5799  *	netif_receive_skb() is the main receive data processing function.
5800  *	It always succeeds. The buffer may be dropped during processing
5801  *	for congestion control or by the protocol layers.
5802  *
5803  *	This function may only be called from softirq context and interrupts
5804  *	should be enabled.
5805  *
5806  *	Return values (usually ignored):
5807  *	NET_RX_SUCCESS: no congestion
5808  *	NET_RX_DROP: packet was dropped
5809  */
5810 int netif_receive_skb(struct sk_buff *skb)
5811 {
5812 	int ret;
5813 
5814 	trace_netif_receive_skb_entry(skb);
5815 
5816 	ret = netif_receive_skb_internal(skb);
5817 	trace_netif_receive_skb_exit(ret);
5818 
5819 	return ret;
5820 }
5821 EXPORT_SYMBOL(netif_receive_skb);
5822 
5823 /**
5824  *	netif_receive_skb_list - process many receive buffers from network
5825  *	@head: list of skbs to process.
5826  *
5827  *	Since return value of netif_receive_skb() is normally ignored, and
5828  *	wouldn't be meaningful for a list, this function returns void.
5829  *
5830  *	This function may only be called from softirq context and interrupts
5831  *	should be enabled.
5832  */
5833 void netif_receive_skb_list(struct list_head *head)
5834 {
5835 	struct sk_buff *skb;
5836 
5837 	if (list_empty(head))
5838 		return;
5839 	if (trace_netif_receive_skb_list_entry_enabled()) {
5840 		list_for_each_entry(skb, head, list)
5841 			trace_netif_receive_skb_list_entry(skb);
5842 	}
5843 	netif_receive_skb_list_internal(head);
5844 	trace_netif_receive_skb_list_exit(0);
5845 }
5846 EXPORT_SYMBOL(netif_receive_skb_list);
5847 
5848 static DEFINE_PER_CPU(struct work_struct, flush_works);
5849 
5850 /* Network device is going away, flush any packets still pending */
5851 static void flush_backlog(struct work_struct *work)
5852 {
5853 	struct sk_buff *skb, *tmp;
5854 	struct softnet_data *sd;
5855 
5856 	local_bh_disable();
5857 	sd = this_cpu_ptr(&softnet_data);
5858 
5859 	rps_lock_irq_disable(sd);
5860 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5861 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5862 			__skb_unlink(skb, &sd->input_pkt_queue);
5863 			dev_kfree_skb_irq(skb);
5864 			input_queue_head_incr(sd);
5865 		}
5866 	}
5867 	rps_unlock_irq_enable(sd);
5868 
5869 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5870 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5871 			__skb_unlink(skb, &sd->process_queue);
5872 			kfree_skb(skb);
5873 			input_queue_head_incr(sd);
5874 		}
5875 	}
5876 	local_bh_enable();
5877 }
5878 
5879 static bool flush_required(int cpu)
5880 {
5881 #if IS_ENABLED(CONFIG_RPS)
5882 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5883 	bool do_flush;
5884 
5885 	rps_lock_irq_disable(sd);
5886 
5887 	/* as insertion into process_queue happens with the rps lock held,
5888 	 * process_queue access may race only with dequeue
5889 	 */
5890 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5891 		   !skb_queue_empty_lockless(&sd->process_queue);
5892 	rps_unlock_irq_enable(sd);
5893 
5894 	return do_flush;
5895 #endif
5896 	/* without RPS we can't safely check input_pkt_queue: during a
5897 	 * concurrent remote skb_queue_splice() we can detect as empty both
5898 	 * input_pkt_queue and process_queue even if the latter could end-up
5899 	 * containing a lot of packets.
5900 	 */
5901 	return true;
5902 }
5903 
5904 static void flush_all_backlogs(void)
5905 {
5906 	static cpumask_t flush_cpus;
5907 	unsigned int cpu;
5908 
5909 	/* since we are under rtnl lock protection we can use static data
5910 	 * for the cpumask and avoid allocating on stack the possibly
5911 	 * large mask
5912 	 */
5913 	ASSERT_RTNL();
5914 
5915 	cpus_read_lock();
5916 
5917 	cpumask_clear(&flush_cpus);
5918 	for_each_online_cpu(cpu) {
5919 		if (flush_required(cpu)) {
5920 			queue_work_on(cpu, system_highpri_wq,
5921 				      per_cpu_ptr(&flush_works, cpu));
5922 			cpumask_set_cpu(cpu, &flush_cpus);
5923 		}
5924 	}
5925 
5926 	/* we can have in flight packet[s] on the cpus we are not flushing,
5927 	 * synchronize_net() in unregister_netdevice_many() will take care of
5928 	 * them
5929 	 */
5930 	for_each_cpu(cpu, &flush_cpus)
5931 		flush_work(per_cpu_ptr(&flush_works, cpu));
5932 
5933 	cpus_read_unlock();
5934 }
5935 
5936 static void net_rps_send_ipi(struct softnet_data *remsd)
5937 {
5938 #ifdef CONFIG_RPS
5939 	while (remsd) {
5940 		struct softnet_data *next = remsd->rps_ipi_next;
5941 
5942 		if (cpu_online(remsd->cpu))
5943 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5944 		remsd = next;
5945 	}
5946 #endif
5947 }
5948 
5949 /*
5950  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5951  * Note: called with local irq disabled, but exits with local irq enabled.
5952  */
5953 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5954 {
5955 #ifdef CONFIG_RPS
5956 	struct softnet_data *remsd = sd->rps_ipi_list;
5957 
5958 	if (remsd) {
5959 		sd->rps_ipi_list = NULL;
5960 
5961 		local_irq_enable();
5962 
5963 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5964 		net_rps_send_ipi(remsd);
5965 	} else
5966 #endif
5967 		local_irq_enable();
5968 }
5969 
5970 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5971 {
5972 #ifdef CONFIG_RPS
5973 	return sd->rps_ipi_list != NULL;
5974 #else
5975 	return false;
5976 #endif
5977 }
5978 
5979 static int process_backlog(struct napi_struct *napi, int quota)
5980 {
5981 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5982 	bool again = true;
5983 	int work = 0;
5984 
5985 	/* Check if we have pending ipi, its better to send them now,
5986 	 * not waiting net_rx_action() end.
5987 	 */
5988 	if (sd_has_rps_ipi_waiting(sd)) {
5989 		local_irq_disable();
5990 		net_rps_action_and_irq_enable(sd);
5991 	}
5992 
5993 	napi->weight = READ_ONCE(dev_rx_weight);
5994 	while (again) {
5995 		struct sk_buff *skb;
5996 
5997 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5998 			rcu_read_lock();
5999 			__netif_receive_skb(skb);
6000 			rcu_read_unlock();
6001 			input_queue_head_incr(sd);
6002 			if (++work >= quota)
6003 				return work;
6004 
6005 		}
6006 
6007 		rps_lock_irq_disable(sd);
6008 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6009 			/*
6010 			 * Inline a custom version of __napi_complete().
6011 			 * only current cpu owns and manipulates this napi,
6012 			 * and NAPI_STATE_SCHED is the only possible flag set
6013 			 * on backlog.
6014 			 * We can use a plain write instead of clear_bit(),
6015 			 * and we dont need an smp_mb() memory barrier.
6016 			 */
6017 			napi->state = 0;
6018 			again = false;
6019 		} else {
6020 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6021 						   &sd->process_queue);
6022 		}
6023 		rps_unlock_irq_enable(sd);
6024 	}
6025 
6026 	return work;
6027 }
6028 
6029 /**
6030  * __napi_schedule - schedule for receive
6031  * @n: entry to schedule
6032  *
6033  * The entry's receive function will be scheduled to run.
6034  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6035  */
6036 void __napi_schedule(struct napi_struct *n)
6037 {
6038 	unsigned long flags;
6039 
6040 	local_irq_save(flags);
6041 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6042 	local_irq_restore(flags);
6043 }
6044 EXPORT_SYMBOL(__napi_schedule);
6045 
6046 /**
6047  *	napi_schedule_prep - check if napi can be scheduled
6048  *	@n: napi context
6049  *
6050  * Test if NAPI routine is already running, and if not mark
6051  * it as running.  This is used as a condition variable to
6052  * insure only one NAPI poll instance runs.  We also make
6053  * sure there is no pending NAPI disable.
6054  */
6055 bool napi_schedule_prep(struct napi_struct *n)
6056 {
6057 	unsigned long new, val = READ_ONCE(n->state);
6058 
6059 	do {
6060 		if (unlikely(val & NAPIF_STATE_DISABLE))
6061 			return false;
6062 		new = val | NAPIF_STATE_SCHED;
6063 
6064 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6065 		 * This was suggested by Alexander Duyck, as compiler
6066 		 * emits better code than :
6067 		 * if (val & NAPIF_STATE_SCHED)
6068 		 *     new |= NAPIF_STATE_MISSED;
6069 		 */
6070 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6071 						   NAPIF_STATE_MISSED;
6072 	} while (!try_cmpxchg(&n->state, &val, new));
6073 
6074 	return !(val & NAPIF_STATE_SCHED);
6075 }
6076 EXPORT_SYMBOL(napi_schedule_prep);
6077 
6078 /**
6079  * __napi_schedule_irqoff - schedule for receive
6080  * @n: entry to schedule
6081  *
6082  * Variant of __napi_schedule() assuming hard irqs are masked.
6083  *
6084  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6085  * because the interrupt disabled assumption might not be true
6086  * due to force-threaded interrupts and spinlock substitution.
6087  */
6088 void __napi_schedule_irqoff(struct napi_struct *n)
6089 {
6090 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6091 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6092 	else
6093 		__napi_schedule(n);
6094 }
6095 EXPORT_SYMBOL(__napi_schedule_irqoff);
6096 
6097 bool napi_complete_done(struct napi_struct *n, int work_done)
6098 {
6099 	unsigned long flags, val, new, timeout = 0;
6100 	bool ret = true;
6101 
6102 	/*
6103 	 * 1) Don't let napi dequeue from the cpu poll list
6104 	 *    just in case its running on a different cpu.
6105 	 * 2) If we are busy polling, do nothing here, we have
6106 	 *    the guarantee we will be called later.
6107 	 */
6108 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6109 				 NAPIF_STATE_IN_BUSY_POLL)))
6110 		return false;
6111 
6112 	if (work_done) {
6113 		if (n->gro_bitmask)
6114 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6115 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6116 	}
6117 	if (n->defer_hard_irqs_count > 0) {
6118 		n->defer_hard_irqs_count--;
6119 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6120 		if (timeout)
6121 			ret = false;
6122 	}
6123 	if (n->gro_bitmask) {
6124 		/* When the NAPI instance uses a timeout and keeps postponing
6125 		 * it, we need to bound somehow the time packets are kept in
6126 		 * the GRO layer
6127 		 */
6128 		napi_gro_flush(n, !!timeout);
6129 	}
6130 
6131 	gro_normal_list(n);
6132 
6133 	if (unlikely(!list_empty(&n->poll_list))) {
6134 		/* If n->poll_list is not empty, we need to mask irqs */
6135 		local_irq_save(flags);
6136 		list_del_init(&n->poll_list);
6137 		local_irq_restore(flags);
6138 	}
6139 	WRITE_ONCE(n->list_owner, -1);
6140 
6141 	val = READ_ONCE(n->state);
6142 	do {
6143 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6144 
6145 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6146 			      NAPIF_STATE_SCHED_THREADED |
6147 			      NAPIF_STATE_PREFER_BUSY_POLL);
6148 
6149 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6150 		 * because we will call napi->poll() one more time.
6151 		 * This C code was suggested by Alexander Duyck to help gcc.
6152 		 */
6153 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6154 						    NAPIF_STATE_SCHED;
6155 	} while (!try_cmpxchg(&n->state, &val, new));
6156 
6157 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6158 		__napi_schedule(n);
6159 		return false;
6160 	}
6161 
6162 	if (timeout)
6163 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6164 			      HRTIMER_MODE_REL_PINNED);
6165 	return ret;
6166 }
6167 EXPORT_SYMBOL(napi_complete_done);
6168 
6169 /* must be called under rcu_read_lock(), as we dont take a reference */
6170 static struct napi_struct *napi_by_id(unsigned int napi_id)
6171 {
6172 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6173 	struct napi_struct *napi;
6174 
6175 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6176 		if (napi->napi_id == napi_id)
6177 			return napi;
6178 
6179 	return NULL;
6180 }
6181 
6182 #if defined(CONFIG_NET_RX_BUSY_POLL)
6183 
6184 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6185 {
6186 	if (!skip_schedule) {
6187 		gro_normal_list(napi);
6188 		__napi_schedule(napi);
6189 		return;
6190 	}
6191 
6192 	if (napi->gro_bitmask) {
6193 		/* flush too old packets
6194 		 * If HZ < 1000, flush all packets.
6195 		 */
6196 		napi_gro_flush(napi, HZ >= 1000);
6197 	}
6198 
6199 	gro_normal_list(napi);
6200 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6201 }
6202 
6203 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6204 			   u16 budget)
6205 {
6206 	bool skip_schedule = false;
6207 	unsigned long timeout;
6208 	int rc;
6209 
6210 	/* Busy polling means there is a high chance device driver hard irq
6211 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6212 	 * set in napi_schedule_prep().
6213 	 * Since we are about to call napi->poll() once more, we can safely
6214 	 * clear NAPI_STATE_MISSED.
6215 	 *
6216 	 * Note: x86 could use a single "lock and ..." instruction
6217 	 * to perform these two clear_bit()
6218 	 */
6219 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6220 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6221 
6222 	local_bh_disable();
6223 
6224 	if (prefer_busy_poll) {
6225 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6226 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6227 		if (napi->defer_hard_irqs_count && timeout) {
6228 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6229 			skip_schedule = true;
6230 		}
6231 	}
6232 
6233 	/* All we really want here is to re-enable device interrupts.
6234 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6235 	 */
6236 	rc = napi->poll(napi, budget);
6237 	/* We can't gro_normal_list() here, because napi->poll() might have
6238 	 * rearmed the napi (napi_complete_done()) in which case it could
6239 	 * already be running on another CPU.
6240 	 */
6241 	trace_napi_poll(napi, rc, budget);
6242 	netpoll_poll_unlock(have_poll_lock);
6243 	if (rc == budget)
6244 		__busy_poll_stop(napi, skip_schedule);
6245 	local_bh_enable();
6246 }
6247 
6248 void napi_busy_loop(unsigned int napi_id,
6249 		    bool (*loop_end)(void *, unsigned long),
6250 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6251 {
6252 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6253 	int (*napi_poll)(struct napi_struct *napi, int budget);
6254 	void *have_poll_lock = NULL;
6255 	struct napi_struct *napi;
6256 
6257 restart:
6258 	napi_poll = NULL;
6259 
6260 	rcu_read_lock();
6261 
6262 	napi = napi_by_id(napi_id);
6263 	if (!napi)
6264 		goto out;
6265 
6266 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6267 		preempt_disable();
6268 	for (;;) {
6269 		int work = 0;
6270 
6271 		local_bh_disable();
6272 		if (!napi_poll) {
6273 			unsigned long val = READ_ONCE(napi->state);
6274 
6275 			/* If multiple threads are competing for this napi,
6276 			 * we avoid dirtying napi->state as much as we can.
6277 			 */
6278 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6279 				   NAPIF_STATE_IN_BUSY_POLL)) {
6280 				if (prefer_busy_poll)
6281 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6282 				goto count;
6283 			}
6284 			if (cmpxchg(&napi->state, val,
6285 				    val | NAPIF_STATE_IN_BUSY_POLL |
6286 					  NAPIF_STATE_SCHED) != val) {
6287 				if (prefer_busy_poll)
6288 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6289 				goto count;
6290 			}
6291 			have_poll_lock = netpoll_poll_lock(napi);
6292 			napi_poll = napi->poll;
6293 		}
6294 		work = napi_poll(napi, budget);
6295 		trace_napi_poll(napi, work, budget);
6296 		gro_normal_list(napi);
6297 count:
6298 		if (work > 0)
6299 			__NET_ADD_STATS(dev_net(napi->dev),
6300 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6301 		local_bh_enable();
6302 
6303 		if (!loop_end || loop_end(loop_end_arg, start_time))
6304 			break;
6305 
6306 		if (unlikely(need_resched())) {
6307 			if (napi_poll)
6308 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6309 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6310 				preempt_enable();
6311 			rcu_read_unlock();
6312 			cond_resched();
6313 			if (loop_end(loop_end_arg, start_time))
6314 				return;
6315 			goto restart;
6316 		}
6317 		cpu_relax();
6318 	}
6319 	if (napi_poll)
6320 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6321 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6322 		preempt_enable();
6323 out:
6324 	rcu_read_unlock();
6325 }
6326 EXPORT_SYMBOL(napi_busy_loop);
6327 
6328 #endif /* CONFIG_NET_RX_BUSY_POLL */
6329 
6330 static void napi_hash_add(struct napi_struct *napi)
6331 {
6332 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6333 		return;
6334 
6335 	spin_lock(&napi_hash_lock);
6336 
6337 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6338 	do {
6339 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6340 			napi_gen_id = MIN_NAPI_ID;
6341 	} while (napi_by_id(napi_gen_id));
6342 	napi->napi_id = napi_gen_id;
6343 
6344 	hlist_add_head_rcu(&napi->napi_hash_node,
6345 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6346 
6347 	spin_unlock(&napi_hash_lock);
6348 }
6349 
6350 /* Warning : caller is responsible to make sure rcu grace period
6351  * is respected before freeing memory containing @napi
6352  */
6353 static void napi_hash_del(struct napi_struct *napi)
6354 {
6355 	spin_lock(&napi_hash_lock);
6356 
6357 	hlist_del_init_rcu(&napi->napi_hash_node);
6358 
6359 	spin_unlock(&napi_hash_lock);
6360 }
6361 
6362 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6363 {
6364 	struct napi_struct *napi;
6365 
6366 	napi = container_of(timer, struct napi_struct, timer);
6367 
6368 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6369 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6370 	 */
6371 	if (!napi_disable_pending(napi) &&
6372 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6373 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6374 		__napi_schedule_irqoff(napi);
6375 	}
6376 
6377 	return HRTIMER_NORESTART;
6378 }
6379 
6380 static void init_gro_hash(struct napi_struct *napi)
6381 {
6382 	int i;
6383 
6384 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6385 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6386 		napi->gro_hash[i].count = 0;
6387 	}
6388 	napi->gro_bitmask = 0;
6389 }
6390 
6391 int dev_set_threaded(struct net_device *dev, bool threaded)
6392 {
6393 	struct napi_struct *napi;
6394 	int err = 0;
6395 
6396 	if (dev->threaded == threaded)
6397 		return 0;
6398 
6399 	if (threaded) {
6400 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6401 			if (!napi->thread) {
6402 				err = napi_kthread_create(napi);
6403 				if (err) {
6404 					threaded = false;
6405 					break;
6406 				}
6407 			}
6408 		}
6409 	}
6410 
6411 	dev->threaded = threaded;
6412 
6413 	/* Make sure kthread is created before THREADED bit
6414 	 * is set.
6415 	 */
6416 	smp_mb__before_atomic();
6417 
6418 	/* Setting/unsetting threaded mode on a napi might not immediately
6419 	 * take effect, if the current napi instance is actively being
6420 	 * polled. In this case, the switch between threaded mode and
6421 	 * softirq mode will happen in the next round of napi_schedule().
6422 	 * This should not cause hiccups/stalls to the live traffic.
6423 	 */
6424 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6425 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6426 
6427 	return err;
6428 }
6429 EXPORT_SYMBOL(dev_set_threaded);
6430 
6431 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6432 			   int (*poll)(struct napi_struct *, int), int weight)
6433 {
6434 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6435 		return;
6436 
6437 	INIT_LIST_HEAD(&napi->poll_list);
6438 	INIT_HLIST_NODE(&napi->napi_hash_node);
6439 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6440 	napi->timer.function = napi_watchdog;
6441 	init_gro_hash(napi);
6442 	napi->skb = NULL;
6443 	INIT_LIST_HEAD(&napi->rx_list);
6444 	napi->rx_count = 0;
6445 	napi->poll = poll;
6446 	if (weight > NAPI_POLL_WEIGHT)
6447 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6448 				weight);
6449 	napi->weight = weight;
6450 	napi->dev = dev;
6451 #ifdef CONFIG_NETPOLL
6452 	napi->poll_owner = -1;
6453 #endif
6454 	napi->list_owner = -1;
6455 	set_bit(NAPI_STATE_SCHED, &napi->state);
6456 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6457 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6458 	napi_hash_add(napi);
6459 	napi_get_frags_check(napi);
6460 	/* Create kthread for this napi if dev->threaded is set.
6461 	 * Clear dev->threaded if kthread creation failed so that
6462 	 * threaded mode will not be enabled in napi_enable().
6463 	 */
6464 	if (dev->threaded && napi_kthread_create(napi))
6465 		dev->threaded = 0;
6466 }
6467 EXPORT_SYMBOL(netif_napi_add_weight);
6468 
6469 void napi_disable(struct napi_struct *n)
6470 {
6471 	unsigned long val, new;
6472 
6473 	might_sleep();
6474 	set_bit(NAPI_STATE_DISABLE, &n->state);
6475 
6476 	val = READ_ONCE(n->state);
6477 	do {
6478 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6479 			usleep_range(20, 200);
6480 			val = READ_ONCE(n->state);
6481 		}
6482 
6483 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6484 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6485 	} while (!try_cmpxchg(&n->state, &val, new));
6486 
6487 	hrtimer_cancel(&n->timer);
6488 
6489 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6490 }
6491 EXPORT_SYMBOL(napi_disable);
6492 
6493 /**
6494  *	napi_enable - enable NAPI scheduling
6495  *	@n: NAPI context
6496  *
6497  * Resume NAPI from being scheduled on this context.
6498  * Must be paired with napi_disable.
6499  */
6500 void napi_enable(struct napi_struct *n)
6501 {
6502 	unsigned long new, val = READ_ONCE(n->state);
6503 
6504 	do {
6505 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6506 
6507 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6508 		if (n->dev->threaded && n->thread)
6509 			new |= NAPIF_STATE_THREADED;
6510 	} while (!try_cmpxchg(&n->state, &val, new));
6511 }
6512 EXPORT_SYMBOL(napi_enable);
6513 
6514 static void flush_gro_hash(struct napi_struct *napi)
6515 {
6516 	int i;
6517 
6518 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6519 		struct sk_buff *skb, *n;
6520 
6521 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6522 			kfree_skb(skb);
6523 		napi->gro_hash[i].count = 0;
6524 	}
6525 }
6526 
6527 /* Must be called in process context */
6528 void __netif_napi_del(struct napi_struct *napi)
6529 {
6530 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6531 		return;
6532 
6533 	napi_hash_del(napi);
6534 	list_del_rcu(&napi->dev_list);
6535 	napi_free_frags(napi);
6536 
6537 	flush_gro_hash(napi);
6538 	napi->gro_bitmask = 0;
6539 
6540 	if (napi->thread) {
6541 		kthread_stop(napi->thread);
6542 		napi->thread = NULL;
6543 	}
6544 }
6545 EXPORT_SYMBOL(__netif_napi_del);
6546 
6547 static int __napi_poll(struct napi_struct *n, bool *repoll)
6548 {
6549 	int work, weight;
6550 
6551 	weight = n->weight;
6552 
6553 	/* This NAPI_STATE_SCHED test is for avoiding a race
6554 	 * with netpoll's poll_napi().  Only the entity which
6555 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6556 	 * actually make the ->poll() call.  Therefore we avoid
6557 	 * accidentally calling ->poll() when NAPI is not scheduled.
6558 	 */
6559 	work = 0;
6560 	if (napi_is_scheduled(n)) {
6561 		work = n->poll(n, weight);
6562 		trace_napi_poll(n, work, weight);
6563 	}
6564 
6565 	if (unlikely(work > weight))
6566 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6567 				n->poll, work, weight);
6568 
6569 	if (likely(work < weight))
6570 		return work;
6571 
6572 	/* Drivers must not modify the NAPI state if they
6573 	 * consume the entire weight.  In such cases this code
6574 	 * still "owns" the NAPI instance and therefore can
6575 	 * move the instance around on the list at-will.
6576 	 */
6577 	if (unlikely(napi_disable_pending(n))) {
6578 		napi_complete(n);
6579 		return work;
6580 	}
6581 
6582 	/* The NAPI context has more processing work, but busy-polling
6583 	 * is preferred. Exit early.
6584 	 */
6585 	if (napi_prefer_busy_poll(n)) {
6586 		if (napi_complete_done(n, work)) {
6587 			/* If timeout is not set, we need to make sure
6588 			 * that the NAPI is re-scheduled.
6589 			 */
6590 			napi_schedule(n);
6591 		}
6592 		return work;
6593 	}
6594 
6595 	if (n->gro_bitmask) {
6596 		/* flush too old packets
6597 		 * If HZ < 1000, flush all packets.
6598 		 */
6599 		napi_gro_flush(n, HZ >= 1000);
6600 	}
6601 
6602 	gro_normal_list(n);
6603 
6604 	/* Some drivers may have called napi_schedule
6605 	 * prior to exhausting their budget.
6606 	 */
6607 	if (unlikely(!list_empty(&n->poll_list))) {
6608 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6609 			     n->dev ? n->dev->name : "backlog");
6610 		return work;
6611 	}
6612 
6613 	*repoll = true;
6614 
6615 	return work;
6616 }
6617 
6618 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6619 {
6620 	bool do_repoll = false;
6621 	void *have;
6622 	int work;
6623 
6624 	list_del_init(&n->poll_list);
6625 
6626 	have = netpoll_poll_lock(n);
6627 
6628 	work = __napi_poll(n, &do_repoll);
6629 
6630 	if (do_repoll)
6631 		list_add_tail(&n->poll_list, repoll);
6632 
6633 	netpoll_poll_unlock(have);
6634 
6635 	return work;
6636 }
6637 
6638 static int napi_thread_wait(struct napi_struct *napi)
6639 {
6640 	bool woken = false;
6641 
6642 	set_current_state(TASK_INTERRUPTIBLE);
6643 
6644 	while (!kthread_should_stop()) {
6645 		/* Testing SCHED_THREADED bit here to make sure the current
6646 		 * kthread owns this napi and could poll on this napi.
6647 		 * Testing SCHED bit is not enough because SCHED bit might be
6648 		 * set by some other busy poll thread or by napi_disable().
6649 		 */
6650 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6651 			WARN_ON(!list_empty(&napi->poll_list));
6652 			__set_current_state(TASK_RUNNING);
6653 			return 0;
6654 		}
6655 
6656 		schedule();
6657 		/* woken being true indicates this thread owns this napi. */
6658 		woken = true;
6659 		set_current_state(TASK_INTERRUPTIBLE);
6660 	}
6661 	__set_current_state(TASK_RUNNING);
6662 
6663 	return -1;
6664 }
6665 
6666 static void skb_defer_free_flush(struct softnet_data *sd)
6667 {
6668 	struct sk_buff *skb, *next;
6669 
6670 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6671 	if (!READ_ONCE(sd->defer_list))
6672 		return;
6673 
6674 	spin_lock(&sd->defer_lock);
6675 	skb = sd->defer_list;
6676 	sd->defer_list = NULL;
6677 	sd->defer_count = 0;
6678 	spin_unlock(&sd->defer_lock);
6679 
6680 	while (skb != NULL) {
6681 		next = skb->next;
6682 		napi_consume_skb(skb, 1);
6683 		skb = next;
6684 	}
6685 }
6686 
6687 static int napi_threaded_poll(void *data)
6688 {
6689 	struct napi_struct *napi = data;
6690 	struct softnet_data *sd;
6691 	void *have;
6692 
6693 	while (!napi_thread_wait(napi)) {
6694 		for (;;) {
6695 			bool repoll = false;
6696 
6697 			local_bh_disable();
6698 			sd = this_cpu_ptr(&softnet_data);
6699 			sd->in_napi_threaded_poll = true;
6700 
6701 			have = netpoll_poll_lock(napi);
6702 			__napi_poll(napi, &repoll);
6703 			netpoll_poll_unlock(have);
6704 
6705 			sd->in_napi_threaded_poll = false;
6706 			barrier();
6707 
6708 			if (sd_has_rps_ipi_waiting(sd)) {
6709 				local_irq_disable();
6710 				net_rps_action_and_irq_enable(sd);
6711 			}
6712 			skb_defer_free_flush(sd);
6713 			local_bh_enable();
6714 
6715 			if (!repoll)
6716 				break;
6717 
6718 			cond_resched();
6719 		}
6720 	}
6721 	return 0;
6722 }
6723 
6724 static __latent_entropy void net_rx_action(struct softirq_action *h)
6725 {
6726 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6727 	unsigned long time_limit = jiffies +
6728 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6729 	int budget = READ_ONCE(netdev_budget);
6730 	LIST_HEAD(list);
6731 	LIST_HEAD(repoll);
6732 
6733 start:
6734 	sd->in_net_rx_action = true;
6735 	local_irq_disable();
6736 	list_splice_init(&sd->poll_list, &list);
6737 	local_irq_enable();
6738 
6739 	for (;;) {
6740 		struct napi_struct *n;
6741 
6742 		skb_defer_free_flush(sd);
6743 
6744 		if (list_empty(&list)) {
6745 			if (list_empty(&repoll)) {
6746 				sd->in_net_rx_action = false;
6747 				barrier();
6748 				/* We need to check if ____napi_schedule()
6749 				 * had refilled poll_list while
6750 				 * sd->in_net_rx_action was true.
6751 				 */
6752 				if (!list_empty(&sd->poll_list))
6753 					goto start;
6754 				if (!sd_has_rps_ipi_waiting(sd))
6755 					goto end;
6756 			}
6757 			break;
6758 		}
6759 
6760 		n = list_first_entry(&list, struct napi_struct, poll_list);
6761 		budget -= napi_poll(n, &repoll);
6762 
6763 		/* If softirq window is exhausted then punt.
6764 		 * Allow this to run for 2 jiffies since which will allow
6765 		 * an average latency of 1.5/HZ.
6766 		 */
6767 		if (unlikely(budget <= 0 ||
6768 			     time_after_eq(jiffies, time_limit))) {
6769 			sd->time_squeeze++;
6770 			break;
6771 		}
6772 	}
6773 
6774 	local_irq_disable();
6775 
6776 	list_splice_tail_init(&sd->poll_list, &list);
6777 	list_splice_tail(&repoll, &list);
6778 	list_splice(&list, &sd->poll_list);
6779 	if (!list_empty(&sd->poll_list))
6780 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6781 	else
6782 		sd->in_net_rx_action = false;
6783 
6784 	net_rps_action_and_irq_enable(sd);
6785 end:;
6786 }
6787 
6788 struct netdev_adjacent {
6789 	struct net_device *dev;
6790 	netdevice_tracker dev_tracker;
6791 
6792 	/* upper master flag, there can only be one master device per list */
6793 	bool master;
6794 
6795 	/* lookup ignore flag */
6796 	bool ignore;
6797 
6798 	/* counter for the number of times this device was added to us */
6799 	u16 ref_nr;
6800 
6801 	/* private field for the users */
6802 	void *private;
6803 
6804 	struct list_head list;
6805 	struct rcu_head rcu;
6806 };
6807 
6808 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6809 						 struct list_head *adj_list)
6810 {
6811 	struct netdev_adjacent *adj;
6812 
6813 	list_for_each_entry(adj, adj_list, list) {
6814 		if (adj->dev == adj_dev)
6815 			return adj;
6816 	}
6817 	return NULL;
6818 }
6819 
6820 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6821 				    struct netdev_nested_priv *priv)
6822 {
6823 	struct net_device *dev = (struct net_device *)priv->data;
6824 
6825 	return upper_dev == dev;
6826 }
6827 
6828 /**
6829  * netdev_has_upper_dev - Check if device is linked to an upper device
6830  * @dev: device
6831  * @upper_dev: upper device to check
6832  *
6833  * Find out if a device is linked to specified upper device and return true
6834  * in case it is. Note that this checks only immediate upper device,
6835  * not through a complete stack of devices. The caller must hold the RTNL lock.
6836  */
6837 bool netdev_has_upper_dev(struct net_device *dev,
6838 			  struct net_device *upper_dev)
6839 {
6840 	struct netdev_nested_priv priv = {
6841 		.data = (void *)upper_dev,
6842 	};
6843 
6844 	ASSERT_RTNL();
6845 
6846 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6847 					     &priv);
6848 }
6849 EXPORT_SYMBOL(netdev_has_upper_dev);
6850 
6851 /**
6852  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6853  * @dev: device
6854  * @upper_dev: upper device to check
6855  *
6856  * Find out if a device is linked to specified upper device and return true
6857  * in case it is. Note that this checks the entire upper device chain.
6858  * The caller must hold rcu lock.
6859  */
6860 
6861 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6862 				  struct net_device *upper_dev)
6863 {
6864 	struct netdev_nested_priv priv = {
6865 		.data = (void *)upper_dev,
6866 	};
6867 
6868 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6869 					       &priv);
6870 }
6871 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6872 
6873 /**
6874  * netdev_has_any_upper_dev - Check if device is linked to some device
6875  * @dev: device
6876  *
6877  * Find out if a device is linked to an upper device and return true in case
6878  * it is. The caller must hold the RTNL lock.
6879  */
6880 bool netdev_has_any_upper_dev(struct net_device *dev)
6881 {
6882 	ASSERT_RTNL();
6883 
6884 	return !list_empty(&dev->adj_list.upper);
6885 }
6886 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6887 
6888 /**
6889  * netdev_master_upper_dev_get - Get master upper device
6890  * @dev: device
6891  *
6892  * Find a master upper device and return pointer to it or NULL in case
6893  * it's not there. The caller must hold the RTNL lock.
6894  */
6895 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6896 {
6897 	struct netdev_adjacent *upper;
6898 
6899 	ASSERT_RTNL();
6900 
6901 	if (list_empty(&dev->adj_list.upper))
6902 		return NULL;
6903 
6904 	upper = list_first_entry(&dev->adj_list.upper,
6905 				 struct netdev_adjacent, list);
6906 	if (likely(upper->master))
6907 		return upper->dev;
6908 	return NULL;
6909 }
6910 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6911 
6912 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6913 {
6914 	struct netdev_adjacent *upper;
6915 
6916 	ASSERT_RTNL();
6917 
6918 	if (list_empty(&dev->adj_list.upper))
6919 		return NULL;
6920 
6921 	upper = list_first_entry(&dev->adj_list.upper,
6922 				 struct netdev_adjacent, list);
6923 	if (likely(upper->master) && !upper->ignore)
6924 		return upper->dev;
6925 	return NULL;
6926 }
6927 
6928 /**
6929  * netdev_has_any_lower_dev - Check if device is linked to some device
6930  * @dev: device
6931  *
6932  * Find out if a device is linked to a lower device and return true in case
6933  * it is. The caller must hold the RTNL lock.
6934  */
6935 static bool netdev_has_any_lower_dev(struct net_device *dev)
6936 {
6937 	ASSERT_RTNL();
6938 
6939 	return !list_empty(&dev->adj_list.lower);
6940 }
6941 
6942 void *netdev_adjacent_get_private(struct list_head *adj_list)
6943 {
6944 	struct netdev_adjacent *adj;
6945 
6946 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6947 
6948 	return adj->private;
6949 }
6950 EXPORT_SYMBOL(netdev_adjacent_get_private);
6951 
6952 /**
6953  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6954  * @dev: device
6955  * @iter: list_head ** of the current position
6956  *
6957  * Gets the next device from the dev's upper list, starting from iter
6958  * position. The caller must hold RCU read lock.
6959  */
6960 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6961 						 struct list_head **iter)
6962 {
6963 	struct netdev_adjacent *upper;
6964 
6965 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6966 
6967 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6968 
6969 	if (&upper->list == &dev->adj_list.upper)
6970 		return NULL;
6971 
6972 	*iter = &upper->list;
6973 
6974 	return upper->dev;
6975 }
6976 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6977 
6978 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6979 						  struct list_head **iter,
6980 						  bool *ignore)
6981 {
6982 	struct netdev_adjacent *upper;
6983 
6984 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6985 
6986 	if (&upper->list == &dev->adj_list.upper)
6987 		return NULL;
6988 
6989 	*iter = &upper->list;
6990 	*ignore = upper->ignore;
6991 
6992 	return upper->dev;
6993 }
6994 
6995 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6996 						    struct list_head **iter)
6997 {
6998 	struct netdev_adjacent *upper;
6999 
7000 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7001 
7002 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7003 
7004 	if (&upper->list == &dev->adj_list.upper)
7005 		return NULL;
7006 
7007 	*iter = &upper->list;
7008 
7009 	return upper->dev;
7010 }
7011 
7012 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7013 				       int (*fn)(struct net_device *dev,
7014 					 struct netdev_nested_priv *priv),
7015 				       struct netdev_nested_priv *priv)
7016 {
7017 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7018 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7019 	int ret, cur = 0;
7020 	bool ignore;
7021 
7022 	now = dev;
7023 	iter = &dev->adj_list.upper;
7024 
7025 	while (1) {
7026 		if (now != dev) {
7027 			ret = fn(now, priv);
7028 			if (ret)
7029 				return ret;
7030 		}
7031 
7032 		next = NULL;
7033 		while (1) {
7034 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7035 			if (!udev)
7036 				break;
7037 			if (ignore)
7038 				continue;
7039 
7040 			next = udev;
7041 			niter = &udev->adj_list.upper;
7042 			dev_stack[cur] = now;
7043 			iter_stack[cur++] = iter;
7044 			break;
7045 		}
7046 
7047 		if (!next) {
7048 			if (!cur)
7049 				return 0;
7050 			next = dev_stack[--cur];
7051 			niter = iter_stack[cur];
7052 		}
7053 
7054 		now = next;
7055 		iter = niter;
7056 	}
7057 
7058 	return 0;
7059 }
7060 
7061 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7062 				  int (*fn)(struct net_device *dev,
7063 					    struct netdev_nested_priv *priv),
7064 				  struct netdev_nested_priv *priv)
7065 {
7066 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7067 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7068 	int ret, cur = 0;
7069 
7070 	now = dev;
7071 	iter = &dev->adj_list.upper;
7072 
7073 	while (1) {
7074 		if (now != dev) {
7075 			ret = fn(now, priv);
7076 			if (ret)
7077 				return ret;
7078 		}
7079 
7080 		next = NULL;
7081 		while (1) {
7082 			udev = netdev_next_upper_dev_rcu(now, &iter);
7083 			if (!udev)
7084 				break;
7085 
7086 			next = udev;
7087 			niter = &udev->adj_list.upper;
7088 			dev_stack[cur] = now;
7089 			iter_stack[cur++] = iter;
7090 			break;
7091 		}
7092 
7093 		if (!next) {
7094 			if (!cur)
7095 				return 0;
7096 			next = dev_stack[--cur];
7097 			niter = iter_stack[cur];
7098 		}
7099 
7100 		now = next;
7101 		iter = niter;
7102 	}
7103 
7104 	return 0;
7105 }
7106 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7107 
7108 static bool __netdev_has_upper_dev(struct net_device *dev,
7109 				   struct net_device *upper_dev)
7110 {
7111 	struct netdev_nested_priv priv = {
7112 		.flags = 0,
7113 		.data = (void *)upper_dev,
7114 	};
7115 
7116 	ASSERT_RTNL();
7117 
7118 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7119 					   &priv);
7120 }
7121 
7122 /**
7123  * netdev_lower_get_next_private - Get the next ->private from the
7124  *				   lower neighbour list
7125  * @dev: device
7126  * @iter: list_head ** of the current position
7127  *
7128  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7129  * list, starting from iter position. The caller must hold either hold the
7130  * RTNL lock or its own locking that guarantees that the neighbour lower
7131  * list will remain unchanged.
7132  */
7133 void *netdev_lower_get_next_private(struct net_device *dev,
7134 				    struct list_head **iter)
7135 {
7136 	struct netdev_adjacent *lower;
7137 
7138 	lower = list_entry(*iter, struct netdev_adjacent, list);
7139 
7140 	if (&lower->list == &dev->adj_list.lower)
7141 		return NULL;
7142 
7143 	*iter = lower->list.next;
7144 
7145 	return lower->private;
7146 }
7147 EXPORT_SYMBOL(netdev_lower_get_next_private);
7148 
7149 /**
7150  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7151  *				       lower neighbour list, RCU
7152  *				       variant
7153  * @dev: device
7154  * @iter: list_head ** of the current position
7155  *
7156  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7157  * list, starting from iter position. The caller must hold RCU read lock.
7158  */
7159 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7160 					struct list_head **iter)
7161 {
7162 	struct netdev_adjacent *lower;
7163 
7164 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7165 
7166 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7167 
7168 	if (&lower->list == &dev->adj_list.lower)
7169 		return NULL;
7170 
7171 	*iter = &lower->list;
7172 
7173 	return lower->private;
7174 }
7175 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7176 
7177 /**
7178  * netdev_lower_get_next - Get the next device from the lower neighbour
7179  *                         list
7180  * @dev: device
7181  * @iter: list_head ** of the current position
7182  *
7183  * Gets the next netdev_adjacent from the dev's lower neighbour
7184  * list, starting from iter position. The caller must hold RTNL lock or
7185  * its own locking that guarantees that the neighbour lower
7186  * list will remain unchanged.
7187  */
7188 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7189 {
7190 	struct netdev_adjacent *lower;
7191 
7192 	lower = list_entry(*iter, struct netdev_adjacent, list);
7193 
7194 	if (&lower->list == &dev->adj_list.lower)
7195 		return NULL;
7196 
7197 	*iter = lower->list.next;
7198 
7199 	return lower->dev;
7200 }
7201 EXPORT_SYMBOL(netdev_lower_get_next);
7202 
7203 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7204 						struct list_head **iter)
7205 {
7206 	struct netdev_adjacent *lower;
7207 
7208 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7209 
7210 	if (&lower->list == &dev->adj_list.lower)
7211 		return NULL;
7212 
7213 	*iter = &lower->list;
7214 
7215 	return lower->dev;
7216 }
7217 
7218 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7219 						  struct list_head **iter,
7220 						  bool *ignore)
7221 {
7222 	struct netdev_adjacent *lower;
7223 
7224 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7225 
7226 	if (&lower->list == &dev->adj_list.lower)
7227 		return NULL;
7228 
7229 	*iter = &lower->list;
7230 	*ignore = lower->ignore;
7231 
7232 	return lower->dev;
7233 }
7234 
7235 int netdev_walk_all_lower_dev(struct net_device *dev,
7236 			      int (*fn)(struct net_device *dev,
7237 					struct netdev_nested_priv *priv),
7238 			      struct netdev_nested_priv *priv)
7239 {
7240 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7241 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7242 	int ret, cur = 0;
7243 
7244 	now = dev;
7245 	iter = &dev->adj_list.lower;
7246 
7247 	while (1) {
7248 		if (now != dev) {
7249 			ret = fn(now, priv);
7250 			if (ret)
7251 				return ret;
7252 		}
7253 
7254 		next = NULL;
7255 		while (1) {
7256 			ldev = netdev_next_lower_dev(now, &iter);
7257 			if (!ldev)
7258 				break;
7259 
7260 			next = ldev;
7261 			niter = &ldev->adj_list.lower;
7262 			dev_stack[cur] = now;
7263 			iter_stack[cur++] = iter;
7264 			break;
7265 		}
7266 
7267 		if (!next) {
7268 			if (!cur)
7269 				return 0;
7270 			next = dev_stack[--cur];
7271 			niter = iter_stack[cur];
7272 		}
7273 
7274 		now = next;
7275 		iter = niter;
7276 	}
7277 
7278 	return 0;
7279 }
7280 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7281 
7282 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7283 				       int (*fn)(struct net_device *dev,
7284 					 struct netdev_nested_priv *priv),
7285 				       struct netdev_nested_priv *priv)
7286 {
7287 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7288 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7289 	int ret, cur = 0;
7290 	bool ignore;
7291 
7292 	now = dev;
7293 	iter = &dev->adj_list.lower;
7294 
7295 	while (1) {
7296 		if (now != dev) {
7297 			ret = fn(now, priv);
7298 			if (ret)
7299 				return ret;
7300 		}
7301 
7302 		next = NULL;
7303 		while (1) {
7304 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7305 			if (!ldev)
7306 				break;
7307 			if (ignore)
7308 				continue;
7309 
7310 			next = ldev;
7311 			niter = &ldev->adj_list.lower;
7312 			dev_stack[cur] = now;
7313 			iter_stack[cur++] = iter;
7314 			break;
7315 		}
7316 
7317 		if (!next) {
7318 			if (!cur)
7319 				return 0;
7320 			next = dev_stack[--cur];
7321 			niter = iter_stack[cur];
7322 		}
7323 
7324 		now = next;
7325 		iter = niter;
7326 	}
7327 
7328 	return 0;
7329 }
7330 
7331 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7332 					     struct list_head **iter)
7333 {
7334 	struct netdev_adjacent *lower;
7335 
7336 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7337 	if (&lower->list == &dev->adj_list.lower)
7338 		return NULL;
7339 
7340 	*iter = &lower->list;
7341 
7342 	return lower->dev;
7343 }
7344 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7345 
7346 static u8 __netdev_upper_depth(struct net_device *dev)
7347 {
7348 	struct net_device *udev;
7349 	struct list_head *iter;
7350 	u8 max_depth = 0;
7351 	bool ignore;
7352 
7353 	for (iter = &dev->adj_list.upper,
7354 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7355 	     udev;
7356 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7357 		if (ignore)
7358 			continue;
7359 		if (max_depth < udev->upper_level)
7360 			max_depth = udev->upper_level;
7361 	}
7362 
7363 	return max_depth;
7364 }
7365 
7366 static u8 __netdev_lower_depth(struct net_device *dev)
7367 {
7368 	struct net_device *ldev;
7369 	struct list_head *iter;
7370 	u8 max_depth = 0;
7371 	bool ignore;
7372 
7373 	for (iter = &dev->adj_list.lower,
7374 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7375 	     ldev;
7376 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7377 		if (ignore)
7378 			continue;
7379 		if (max_depth < ldev->lower_level)
7380 			max_depth = ldev->lower_level;
7381 	}
7382 
7383 	return max_depth;
7384 }
7385 
7386 static int __netdev_update_upper_level(struct net_device *dev,
7387 				       struct netdev_nested_priv *__unused)
7388 {
7389 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7390 	return 0;
7391 }
7392 
7393 #ifdef CONFIG_LOCKDEP
7394 static LIST_HEAD(net_unlink_list);
7395 
7396 static void net_unlink_todo(struct net_device *dev)
7397 {
7398 	if (list_empty(&dev->unlink_list))
7399 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7400 }
7401 #endif
7402 
7403 static int __netdev_update_lower_level(struct net_device *dev,
7404 				       struct netdev_nested_priv *priv)
7405 {
7406 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7407 
7408 #ifdef CONFIG_LOCKDEP
7409 	if (!priv)
7410 		return 0;
7411 
7412 	if (priv->flags & NESTED_SYNC_IMM)
7413 		dev->nested_level = dev->lower_level - 1;
7414 	if (priv->flags & NESTED_SYNC_TODO)
7415 		net_unlink_todo(dev);
7416 #endif
7417 	return 0;
7418 }
7419 
7420 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7421 				  int (*fn)(struct net_device *dev,
7422 					    struct netdev_nested_priv *priv),
7423 				  struct netdev_nested_priv *priv)
7424 {
7425 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7426 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7427 	int ret, cur = 0;
7428 
7429 	now = dev;
7430 	iter = &dev->adj_list.lower;
7431 
7432 	while (1) {
7433 		if (now != dev) {
7434 			ret = fn(now, priv);
7435 			if (ret)
7436 				return ret;
7437 		}
7438 
7439 		next = NULL;
7440 		while (1) {
7441 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7442 			if (!ldev)
7443 				break;
7444 
7445 			next = ldev;
7446 			niter = &ldev->adj_list.lower;
7447 			dev_stack[cur] = now;
7448 			iter_stack[cur++] = iter;
7449 			break;
7450 		}
7451 
7452 		if (!next) {
7453 			if (!cur)
7454 				return 0;
7455 			next = dev_stack[--cur];
7456 			niter = iter_stack[cur];
7457 		}
7458 
7459 		now = next;
7460 		iter = niter;
7461 	}
7462 
7463 	return 0;
7464 }
7465 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7466 
7467 /**
7468  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7469  *				       lower neighbour list, RCU
7470  *				       variant
7471  * @dev: device
7472  *
7473  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7474  * list. The caller must hold RCU read lock.
7475  */
7476 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7477 {
7478 	struct netdev_adjacent *lower;
7479 
7480 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7481 			struct netdev_adjacent, list);
7482 	if (lower)
7483 		return lower->private;
7484 	return NULL;
7485 }
7486 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7487 
7488 /**
7489  * netdev_master_upper_dev_get_rcu - Get master upper device
7490  * @dev: device
7491  *
7492  * Find a master upper device and return pointer to it or NULL in case
7493  * it's not there. The caller must hold the RCU read lock.
7494  */
7495 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7496 {
7497 	struct netdev_adjacent *upper;
7498 
7499 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7500 				       struct netdev_adjacent, list);
7501 	if (upper && likely(upper->master))
7502 		return upper->dev;
7503 	return NULL;
7504 }
7505 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7506 
7507 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7508 			      struct net_device *adj_dev,
7509 			      struct list_head *dev_list)
7510 {
7511 	char linkname[IFNAMSIZ+7];
7512 
7513 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7514 		"upper_%s" : "lower_%s", adj_dev->name);
7515 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7516 				 linkname);
7517 }
7518 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7519 			       char *name,
7520 			       struct list_head *dev_list)
7521 {
7522 	char linkname[IFNAMSIZ+7];
7523 
7524 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7525 		"upper_%s" : "lower_%s", name);
7526 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7527 }
7528 
7529 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7530 						 struct net_device *adj_dev,
7531 						 struct list_head *dev_list)
7532 {
7533 	return (dev_list == &dev->adj_list.upper ||
7534 		dev_list == &dev->adj_list.lower) &&
7535 		net_eq(dev_net(dev), dev_net(adj_dev));
7536 }
7537 
7538 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7539 					struct net_device *adj_dev,
7540 					struct list_head *dev_list,
7541 					void *private, bool master)
7542 {
7543 	struct netdev_adjacent *adj;
7544 	int ret;
7545 
7546 	adj = __netdev_find_adj(adj_dev, dev_list);
7547 
7548 	if (adj) {
7549 		adj->ref_nr += 1;
7550 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7551 			 dev->name, adj_dev->name, adj->ref_nr);
7552 
7553 		return 0;
7554 	}
7555 
7556 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7557 	if (!adj)
7558 		return -ENOMEM;
7559 
7560 	adj->dev = adj_dev;
7561 	adj->master = master;
7562 	adj->ref_nr = 1;
7563 	adj->private = private;
7564 	adj->ignore = false;
7565 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7566 
7567 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7568 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7569 
7570 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7571 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7572 		if (ret)
7573 			goto free_adj;
7574 	}
7575 
7576 	/* Ensure that master link is always the first item in list. */
7577 	if (master) {
7578 		ret = sysfs_create_link(&(dev->dev.kobj),
7579 					&(adj_dev->dev.kobj), "master");
7580 		if (ret)
7581 			goto remove_symlinks;
7582 
7583 		list_add_rcu(&adj->list, dev_list);
7584 	} else {
7585 		list_add_tail_rcu(&adj->list, dev_list);
7586 	}
7587 
7588 	return 0;
7589 
7590 remove_symlinks:
7591 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7592 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7593 free_adj:
7594 	netdev_put(adj_dev, &adj->dev_tracker);
7595 	kfree(adj);
7596 
7597 	return ret;
7598 }
7599 
7600 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7601 					 struct net_device *adj_dev,
7602 					 u16 ref_nr,
7603 					 struct list_head *dev_list)
7604 {
7605 	struct netdev_adjacent *adj;
7606 
7607 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7608 		 dev->name, adj_dev->name, ref_nr);
7609 
7610 	adj = __netdev_find_adj(adj_dev, dev_list);
7611 
7612 	if (!adj) {
7613 		pr_err("Adjacency does not exist for device %s from %s\n",
7614 		       dev->name, adj_dev->name);
7615 		WARN_ON(1);
7616 		return;
7617 	}
7618 
7619 	if (adj->ref_nr > ref_nr) {
7620 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7621 			 dev->name, adj_dev->name, ref_nr,
7622 			 adj->ref_nr - ref_nr);
7623 		adj->ref_nr -= ref_nr;
7624 		return;
7625 	}
7626 
7627 	if (adj->master)
7628 		sysfs_remove_link(&(dev->dev.kobj), "master");
7629 
7630 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7631 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7632 
7633 	list_del_rcu(&adj->list);
7634 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7635 		 adj_dev->name, dev->name, adj_dev->name);
7636 	netdev_put(adj_dev, &adj->dev_tracker);
7637 	kfree_rcu(adj, rcu);
7638 }
7639 
7640 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7641 					    struct net_device *upper_dev,
7642 					    struct list_head *up_list,
7643 					    struct list_head *down_list,
7644 					    void *private, bool master)
7645 {
7646 	int ret;
7647 
7648 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7649 					   private, master);
7650 	if (ret)
7651 		return ret;
7652 
7653 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7654 					   private, false);
7655 	if (ret) {
7656 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7657 		return ret;
7658 	}
7659 
7660 	return 0;
7661 }
7662 
7663 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7664 					       struct net_device *upper_dev,
7665 					       u16 ref_nr,
7666 					       struct list_head *up_list,
7667 					       struct list_head *down_list)
7668 {
7669 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7670 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7671 }
7672 
7673 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7674 						struct net_device *upper_dev,
7675 						void *private, bool master)
7676 {
7677 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7678 						&dev->adj_list.upper,
7679 						&upper_dev->adj_list.lower,
7680 						private, master);
7681 }
7682 
7683 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7684 						   struct net_device *upper_dev)
7685 {
7686 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7687 					   &dev->adj_list.upper,
7688 					   &upper_dev->adj_list.lower);
7689 }
7690 
7691 static int __netdev_upper_dev_link(struct net_device *dev,
7692 				   struct net_device *upper_dev, bool master,
7693 				   void *upper_priv, void *upper_info,
7694 				   struct netdev_nested_priv *priv,
7695 				   struct netlink_ext_ack *extack)
7696 {
7697 	struct netdev_notifier_changeupper_info changeupper_info = {
7698 		.info = {
7699 			.dev = dev,
7700 			.extack = extack,
7701 		},
7702 		.upper_dev = upper_dev,
7703 		.master = master,
7704 		.linking = true,
7705 		.upper_info = upper_info,
7706 	};
7707 	struct net_device *master_dev;
7708 	int ret = 0;
7709 
7710 	ASSERT_RTNL();
7711 
7712 	if (dev == upper_dev)
7713 		return -EBUSY;
7714 
7715 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7716 	if (__netdev_has_upper_dev(upper_dev, dev))
7717 		return -EBUSY;
7718 
7719 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7720 		return -EMLINK;
7721 
7722 	if (!master) {
7723 		if (__netdev_has_upper_dev(dev, upper_dev))
7724 			return -EEXIST;
7725 	} else {
7726 		master_dev = __netdev_master_upper_dev_get(dev);
7727 		if (master_dev)
7728 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7729 	}
7730 
7731 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7732 					    &changeupper_info.info);
7733 	ret = notifier_to_errno(ret);
7734 	if (ret)
7735 		return ret;
7736 
7737 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7738 						   master);
7739 	if (ret)
7740 		return ret;
7741 
7742 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7743 					    &changeupper_info.info);
7744 	ret = notifier_to_errno(ret);
7745 	if (ret)
7746 		goto rollback;
7747 
7748 	__netdev_update_upper_level(dev, NULL);
7749 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7750 
7751 	__netdev_update_lower_level(upper_dev, priv);
7752 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7753 				    priv);
7754 
7755 	return 0;
7756 
7757 rollback:
7758 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7759 
7760 	return ret;
7761 }
7762 
7763 /**
7764  * netdev_upper_dev_link - Add a link to the upper device
7765  * @dev: device
7766  * @upper_dev: new upper device
7767  * @extack: netlink extended ack
7768  *
7769  * Adds a link to device which is upper to this one. The caller must hold
7770  * the RTNL lock. On a failure a negative errno code is returned.
7771  * On success the reference counts are adjusted and the function
7772  * returns zero.
7773  */
7774 int netdev_upper_dev_link(struct net_device *dev,
7775 			  struct net_device *upper_dev,
7776 			  struct netlink_ext_ack *extack)
7777 {
7778 	struct netdev_nested_priv priv = {
7779 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7780 		.data = NULL,
7781 	};
7782 
7783 	return __netdev_upper_dev_link(dev, upper_dev, false,
7784 				       NULL, NULL, &priv, extack);
7785 }
7786 EXPORT_SYMBOL(netdev_upper_dev_link);
7787 
7788 /**
7789  * netdev_master_upper_dev_link - Add a master link to the upper device
7790  * @dev: device
7791  * @upper_dev: new upper device
7792  * @upper_priv: upper device private
7793  * @upper_info: upper info to be passed down via notifier
7794  * @extack: netlink extended ack
7795  *
7796  * Adds a link to device which is upper to this one. In this case, only
7797  * one master upper device can be linked, although other non-master devices
7798  * might be linked as well. The caller must hold the RTNL lock.
7799  * On a failure a negative errno code is returned. On success the reference
7800  * counts are adjusted and the function returns zero.
7801  */
7802 int netdev_master_upper_dev_link(struct net_device *dev,
7803 				 struct net_device *upper_dev,
7804 				 void *upper_priv, void *upper_info,
7805 				 struct netlink_ext_ack *extack)
7806 {
7807 	struct netdev_nested_priv priv = {
7808 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7809 		.data = NULL,
7810 	};
7811 
7812 	return __netdev_upper_dev_link(dev, upper_dev, true,
7813 				       upper_priv, upper_info, &priv, extack);
7814 }
7815 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7816 
7817 static void __netdev_upper_dev_unlink(struct net_device *dev,
7818 				      struct net_device *upper_dev,
7819 				      struct netdev_nested_priv *priv)
7820 {
7821 	struct netdev_notifier_changeupper_info changeupper_info = {
7822 		.info = {
7823 			.dev = dev,
7824 		},
7825 		.upper_dev = upper_dev,
7826 		.linking = false,
7827 	};
7828 
7829 	ASSERT_RTNL();
7830 
7831 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7832 
7833 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7834 				      &changeupper_info.info);
7835 
7836 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7837 
7838 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7839 				      &changeupper_info.info);
7840 
7841 	__netdev_update_upper_level(dev, NULL);
7842 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7843 
7844 	__netdev_update_lower_level(upper_dev, priv);
7845 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7846 				    priv);
7847 }
7848 
7849 /**
7850  * netdev_upper_dev_unlink - Removes a link to upper device
7851  * @dev: device
7852  * @upper_dev: new upper device
7853  *
7854  * Removes a link to device which is upper to this one. The caller must hold
7855  * the RTNL lock.
7856  */
7857 void netdev_upper_dev_unlink(struct net_device *dev,
7858 			     struct net_device *upper_dev)
7859 {
7860 	struct netdev_nested_priv priv = {
7861 		.flags = NESTED_SYNC_TODO,
7862 		.data = NULL,
7863 	};
7864 
7865 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7866 }
7867 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7868 
7869 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7870 				      struct net_device *lower_dev,
7871 				      bool val)
7872 {
7873 	struct netdev_adjacent *adj;
7874 
7875 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7876 	if (adj)
7877 		adj->ignore = val;
7878 
7879 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7880 	if (adj)
7881 		adj->ignore = val;
7882 }
7883 
7884 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7885 					struct net_device *lower_dev)
7886 {
7887 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7888 }
7889 
7890 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7891 				       struct net_device *lower_dev)
7892 {
7893 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7894 }
7895 
7896 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7897 				   struct net_device *new_dev,
7898 				   struct net_device *dev,
7899 				   struct netlink_ext_ack *extack)
7900 {
7901 	struct netdev_nested_priv priv = {
7902 		.flags = 0,
7903 		.data = NULL,
7904 	};
7905 	int err;
7906 
7907 	if (!new_dev)
7908 		return 0;
7909 
7910 	if (old_dev && new_dev != old_dev)
7911 		netdev_adjacent_dev_disable(dev, old_dev);
7912 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7913 				      extack);
7914 	if (err) {
7915 		if (old_dev && new_dev != old_dev)
7916 			netdev_adjacent_dev_enable(dev, old_dev);
7917 		return err;
7918 	}
7919 
7920 	return 0;
7921 }
7922 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7923 
7924 void netdev_adjacent_change_commit(struct net_device *old_dev,
7925 				   struct net_device *new_dev,
7926 				   struct net_device *dev)
7927 {
7928 	struct netdev_nested_priv priv = {
7929 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7930 		.data = NULL,
7931 	};
7932 
7933 	if (!new_dev || !old_dev)
7934 		return;
7935 
7936 	if (new_dev == old_dev)
7937 		return;
7938 
7939 	netdev_adjacent_dev_enable(dev, old_dev);
7940 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7941 }
7942 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7943 
7944 void netdev_adjacent_change_abort(struct net_device *old_dev,
7945 				  struct net_device *new_dev,
7946 				  struct net_device *dev)
7947 {
7948 	struct netdev_nested_priv priv = {
7949 		.flags = 0,
7950 		.data = NULL,
7951 	};
7952 
7953 	if (!new_dev)
7954 		return;
7955 
7956 	if (old_dev && new_dev != old_dev)
7957 		netdev_adjacent_dev_enable(dev, old_dev);
7958 
7959 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7960 }
7961 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7962 
7963 /**
7964  * netdev_bonding_info_change - Dispatch event about slave change
7965  * @dev: device
7966  * @bonding_info: info to dispatch
7967  *
7968  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7969  * The caller must hold the RTNL lock.
7970  */
7971 void netdev_bonding_info_change(struct net_device *dev,
7972 				struct netdev_bonding_info *bonding_info)
7973 {
7974 	struct netdev_notifier_bonding_info info = {
7975 		.info.dev = dev,
7976 	};
7977 
7978 	memcpy(&info.bonding_info, bonding_info,
7979 	       sizeof(struct netdev_bonding_info));
7980 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7981 				      &info.info);
7982 }
7983 EXPORT_SYMBOL(netdev_bonding_info_change);
7984 
7985 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7986 					   struct netlink_ext_ack *extack)
7987 {
7988 	struct netdev_notifier_offload_xstats_info info = {
7989 		.info.dev = dev,
7990 		.info.extack = extack,
7991 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7992 	};
7993 	int err;
7994 	int rc;
7995 
7996 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7997 					 GFP_KERNEL);
7998 	if (!dev->offload_xstats_l3)
7999 		return -ENOMEM;
8000 
8001 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8002 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8003 						  &info.info);
8004 	err = notifier_to_errno(rc);
8005 	if (err)
8006 		goto free_stats;
8007 
8008 	return 0;
8009 
8010 free_stats:
8011 	kfree(dev->offload_xstats_l3);
8012 	dev->offload_xstats_l3 = NULL;
8013 	return err;
8014 }
8015 
8016 int netdev_offload_xstats_enable(struct net_device *dev,
8017 				 enum netdev_offload_xstats_type type,
8018 				 struct netlink_ext_ack *extack)
8019 {
8020 	ASSERT_RTNL();
8021 
8022 	if (netdev_offload_xstats_enabled(dev, type))
8023 		return -EALREADY;
8024 
8025 	switch (type) {
8026 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8027 		return netdev_offload_xstats_enable_l3(dev, extack);
8028 	}
8029 
8030 	WARN_ON(1);
8031 	return -EINVAL;
8032 }
8033 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8034 
8035 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8036 {
8037 	struct netdev_notifier_offload_xstats_info info = {
8038 		.info.dev = dev,
8039 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8040 	};
8041 
8042 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8043 				      &info.info);
8044 	kfree(dev->offload_xstats_l3);
8045 	dev->offload_xstats_l3 = NULL;
8046 }
8047 
8048 int netdev_offload_xstats_disable(struct net_device *dev,
8049 				  enum netdev_offload_xstats_type type)
8050 {
8051 	ASSERT_RTNL();
8052 
8053 	if (!netdev_offload_xstats_enabled(dev, type))
8054 		return -EALREADY;
8055 
8056 	switch (type) {
8057 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8058 		netdev_offload_xstats_disable_l3(dev);
8059 		return 0;
8060 	}
8061 
8062 	WARN_ON(1);
8063 	return -EINVAL;
8064 }
8065 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8066 
8067 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8068 {
8069 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8070 }
8071 
8072 static struct rtnl_hw_stats64 *
8073 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8074 			      enum netdev_offload_xstats_type type)
8075 {
8076 	switch (type) {
8077 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8078 		return dev->offload_xstats_l3;
8079 	}
8080 
8081 	WARN_ON(1);
8082 	return NULL;
8083 }
8084 
8085 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8086 				   enum netdev_offload_xstats_type type)
8087 {
8088 	ASSERT_RTNL();
8089 
8090 	return netdev_offload_xstats_get_ptr(dev, type);
8091 }
8092 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8093 
8094 struct netdev_notifier_offload_xstats_ru {
8095 	bool used;
8096 };
8097 
8098 struct netdev_notifier_offload_xstats_rd {
8099 	struct rtnl_hw_stats64 stats;
8100 	bool used;
8101 };
8102 
8103 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8104 				  const struct rtnl_hw_stats64 *src)
8105 {
8106 	dest->rx_packets	  += src->rx_packets;
8107 	dest->tx_packets	  += src->tx_packets;
8108 	dest->rx_bytes		  += src->rx_bytes;
8109 	dest->tx_bytes		  += src->tx_bytes;
8110 	dest->rx_errors		  += src->rx_errors;
8111 	dest->tx_errors		  += src->tx_errors;
8112 	dest->rx_dropped	  += src->rx_dropped;
8113 	dest->tx_dropped	  += src->tx_dropped;
8114 	dest->multicast		  += src->multicast;
8115 }
8116 
8117 static int netdev_offload_xstats_get_used(struct net_device *dev,
8118 					  enum netdev_offload_xstats_type type,
8119 					  bool *p_used,
8120 					  struct netlink_ext_ack *extack)
8121 {
8122 	struct netdev_notifier_offload_xstats_ru report_used = {};
8123 	struct netdev_notifier_offload_xstats_info info = {
8124 		.info.dev = dev,
8125 		.info.extack = extack,
8126 		.type = type,
8127 		.report_used = &report_used,
8128 	};
8129 	int rc;
8130 
8131 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8132 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8133 					   &info.info);
8134 	*p_used = report_used.used;
8135 	return notifier_to_errno(rc);
8136 }
8137 
8138 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8139 					   enum netdev_offload_xstats_type type,
8140 					   struct rtnl_hw_stats64 *p_stats,
8141 					   bool *p_used,
8142 					   struct netlink_ext_ack *extack)
8143 {
8144 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8145 	struct netdev_notifier_offload_xstats_info info = {
8146 		.info.dev = dev,
8147 		.info.extack = extack,
8148 		.type = type,
8149 		.report_delta = &report_delta,
8150 	};
8151 	struct rtnl_hw_stats64 *stats;
8152 	int rc;
8153 
8154 	stats = netdev_offload_xstats_get_ptr(dev, type);
8155 	if (WARN_ON(!stats))
8156 		return -EINVAL;
8157 
8158 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8159 					   &info.info);
8160 
8161 	/* Cache whatever we got, even if there was an error, otherwise the
8162 	 * successful stats retrievals would get lost.
8163 	 */
8164 	netdev_hw_stats64_add(stats, &report_delta.stats);
8165 
8166 	if (p_stats)
8167 		*p_stats = *stats;
8168 	*p_used = report_delta.used;
8169 
8170 	return notifier_to_errno(rc);
8171 }
8172 
8173 int netdev_offload_xstats_get(struct net_device *dev,
8174 			      enum netdev_offload_xstats_type type,
8175 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8176 			      struct netlink_ext_ack *extack)
8177 {
8178 	ASSERT_RTNL();
8179 
8180 	if (p_stats)
8181 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8182 						       p_used, extack);
8183 	else
8184 		return netdev_offload_xstats_get_used(dev, type, p_used,
8185 						      extack);
8186 }
8187 EXPORT_SYMBOL(netdev_offload_xstats_get);
8188 
8189 void
8190 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8191 				   const struct rtnl_hw_stats64 *stats)
8192 {
8193 	report_delta->used = true;
8194 	netdev_hw_stats64_add(&report_delta->stats, stats);
8195 }
8196 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8197 
8198 void
8199 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8200 {
8201 	report_used->used = true;
8202 }
8203 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8204 
8205 void netdev_offload_xstats_push_delta(struct net_device *dev,
8206 				      enum netdev_offload_xstats_type type,
8207 				      const struct rtnl_hw_stats64 *p_stats)
8208 {
8209 	struct rtnl_hw_stats64 *stats;
8210 
8211 	ASSERT_RTNL();
8212 
8213 	stats = netdev_offload_xstats_get_ptr(dev, type);
8214 	if (WARN_ON(!stats))
8215 		return;
8216 
8217 	netdev_hw_stats64_add(stats, p_stats);
8218 }
8219 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8220 
8221 /**
8222  * netdev_get_xmit_slave - Get the xmit slave of master device
8223  * @dev: device
8224  * @skb: The packet
8225  * @all_slaves: assume all the slaves are active
8226  *
8227  * The reference counters are not incremented so the caller must be
8228  * careful with locks. The caller must hold RCU lock.
8229  * %NULL is returned if no slave is found.
8230  */
8231 
8232 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8233 					 struct sk_buff *skb,
8234 					 bool all_slaves)
8235 {
8236 	const struct net_device_ops *ops = dev->netdev_ops;
8237 
8238 	if (!ops->ndo_get_xmit_slave)
8239 		return NULL;
8240 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8241 }
8242 EXPORT_SYMBOL(netdev_get_xmit_slave);
8243 
8244 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8245 						  struct sock *sk)
8246 {
8247 	const struct net_device_ops *ops = dev->netdev_ops;
8248 
8249 	if (!ops->ndo_sk_get_lower_dev)
8250 		return NULL;
8251 	return ops->ndo_sk_get_lower_dev(dev, sk);
8252 }
8253 
8254 /**
8255  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8256  * @dev: device
8257  * @sk: the socket
8258  *
8259  * %NULL is returned if no lower device is found.
8260  */
8261 
8262 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8263 					    struct sock *sk)
8264 {
8265 	struct net_device *lower;
8266 
8267 	lower = netdev_sk_get_lower_dev(dev, sk);
8268 	while (lower) {
8269 		dev = lower;
8270 		lower = netdev_sk_get_lower_dev(dev, sk);
8271 	}
8272 
8273 	return dev;
8274 }
8275 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8276 
8277 static void netdev_adjacent_add_links(struct net_device *dev)
8278 {
8279 	struct netdev_adjacent *iter;
8280 
8281 	struct net *net = dev_net(dev);
8282 
8283 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8284 		if (!net_eq(net, dev_net(iter->dev)))
8285 			continue;
8286 		netdev_adjacent_sysfs_add(iter->dev, dev,
8287 					  &iter->dev->adj_list.lower);
8288 		netdev_adjacent_sysfs_add(dev, iter->dev,
8289 					  &dev->adj_list.upper);
8290 	}
8291 
8292 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8293 		if (!net_eq(net, dev_net(iter->dev)))
8294 			continue;
8295 		netdev_adjacent_sysfs_add(iter->dev, dev,
8296 					  &iter->dev->adj_list.upper);
8297 		netdev_adjacent_sysfs_add(dev, iter->dev,
8298 					  &dev->adj_list.lower);
8299 	}
8300 }
8301 
8302 static void netdev_adjacent_del_links(struct net_device *dev)
8303 {
8304 	struct netdev_adjacent *iter;
8305 
8306 	struct net *net = dev_net(dev);
8307 
8308 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8309 		if (!net_eq(net, dev_net(iter->dev)))
8310 			continue;
8311 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8312 					  &iter->dev->adj_list.lower);
8313 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8314 					  &dev->adj_list.upper);
8315 	}
8316 
8317 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8318 		if (!net_eq(net, dev_net(iter->dev)))
8319 			continue;
8320 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8321 					  &iter->dev->adj_list.upper);
8322 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8323 					  &dev->adj_list.lower);
8324 	}
8325 }
8326 
8327 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8328 {
8329 	struct netdev_adjacent *iter;
8330 
8331 	struct net *net = dev_net(dev);
8332 
8333 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8334 		if (!net_eq(net, dev_net(iter->dev)))
8335 			continue;
8336 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8337 					  &iter->dev->adj_list.lower);
8338 		netdev_adjacent_sysfs_add(iter->dev, dev,
8339 					  &iter->dev->adj_list.lower);
8340 	}
8341 
8342 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8343 		if (!net_eq(net, dev_net(iter->dev)))
8344 			continue;
8345 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8346 					  &iter->dev->adj_list.upper);
8347 		netdev_adjacent_sysfs_add(iter->dev, dev,
8348 					  &iter->dev->adj_list.upper);
8349 	}
8350 }
8351 
8352 void *netdev_lower_dev_get_private(struct net_device *dev,
8353 				   struct net_device *lower_dev)
8354 {
8355 	struct netdev_adjacent *lower;
8356 
8357 	if (!lower_dev)
8358 		return NULL;
8359 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8360 	if (!lower)
8361 		return NULL;
8362 
8363 	return lower->private;
8364 }
8365 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8366 
8367 
8368 /**
8369  * netdev_lower_state_changed - Dispatch event about lower device state change
8370  * @lower_dev: device
8371  * @lower_state_info: state to dispatch
8372  *
8373  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8374  * The caller must hold the RTNL lock.
8375  */
8376 void netdev_lower_state_changed(struct net_device *lower_dev,
8377 				void *lower_state_info)
8378 {
8379 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8380 		.info.dev = lower_dev,
8381 	};
8382 
8383 	ASSERT_RTNL();
8384 	changelowerstate_info.lower_state_info = lower_state_info;
8385 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8386 				      &changelowerstate_info.info);
8387 }
8388 EXPORT_SYMBOL(netdev_lower_state_changed);
8389 
8390 static void dev_change_rx_flags(struct net_device *dev, int flags)
8391 {
8392 	const struct net_device_ops *ops = dev->netdev_ops;
8393 
8394 	if (ops->ndo_change_rx_flags)
8395 		ops->ndo_change_rx_flags(dev, flags);
8396 }
8397 
8398 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8399 {
8400 	unsigned int old_flags = dev->flags;
8401 	kuid_t uid;
8402 	kgid_t gid;
8403 
8404 	ASSERT_RTNL();
8405 
8406 	dev->flags |= IFF_PROMISC;
8407 	dev->promiscuity += inc;
8408 	if (dev->promiscuity == 0) {
8409 		/*
8410 		 * Avoid overflow.
8411 		 * If inc causes overflow, untouch promisc and return error.
8412 		 */
8413 		if (inc < 0)
8414 			dev->flags &= ~IFF_PROMISC;
8415 		else {
8416 			dev->promiscuity -= inc;
8417 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8418 			return -EOVERFLOW;
8419 		}
8420 	}
8421 	if (dev->flags != old_flags) {
8422 		netdev_info(dev, "%s promiscuous mode\n",
8423 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8424 		if (audit_enabled) {
8425 			current_uid_gid(&uid, &gid);
8426 			audit_log(audit_context(), GFP_ATOMIC,
8427 				  AUDIT_ANOM_PROMISCUOUS,
8428 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8429 				  dev->name, (dev->flags & IFF_PROMISC),
8430 				  (old_flags & IFF_PROMISC),
8431 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8432 				  from_kuid(&init_user_ns, uid),
8433 				  from_kgid(&init_user_ns, gid),
8434 				  audit_get_sessionid(current));
8435 		}
8436 
8437 		dev_change_rx_flags(dev, IFF_PROMISC);
8438 	}
8439 	if (notify)
8440 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8441 	return 0;
8442 }
8443 
8444 /**
8445  *	dev_set_promiscuity	- update promiscuity count on a device
8446  *	@dev: device
8447  *	@inc: modifier
8448  *
8449  *	Add or remove promiscuity from a device. While the count in the device
8450  *	remains above zero the interface remains promiscuous. Once it hits zero
8451  *	the device reverts back to normal filtering operation. A negative inc
8452  *	value is used to drop promiscuity on the device.
8453  *	Return 0 if successful or a negative errno code on error.
8454  */
8455 int dev_set_promiscuity(struct net_device *dev, int inc)
8456 {
8457 	unsigned int old_flags = dev->flags;
8458 	int err;
8459 
8460 	err = __dev_set_promiscuity(dev, inc, true);
8461 	if (err < 0)
8462 		return err;
8463 	if (dev->flags != old_flags)
8464 		dev_set_rx_mode(dev);
8465 	return err;
8466 }
8467 EXPORT_SYMBOL(dev_set_promiscuity);
8468 
8469 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8470 {
8471 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8472 
8473 	ASSERT_RTNL();
8474 
8475 	dev->flags |= IFF_ALLMULTI;
8476 	dev->allmulti += inc;
8477 	if (dev->allmulti == 0) {
8478 		/*
8479 		 * Avoid overflow.
8480 		 * If inc causes overflow, untouch allmulti and return error.
8481 		 */
8482 		if (inc < 0)
8483 			dev->flags &= ~IFF_ALLMULTI;
8484 		else {
8485 			dev->allmulti -= inc;
8486 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8487 			return -EOVERFLOW;
8488 		}
8489 	}
8490 	if (dev->flags ^ old_flags) {
8491 		netdev_info(dev, "%s allmulticast mode\n",
8492 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8493 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8494 		dev_set_rx_mode(dev);
8495 		if (notify)
8496 			__dev_notify_flags(dev, old_flags,
8497 					   dev->gflags ^ old_gflags, 0, NULL);
8498 	}
8499 	return 0;
8500 }
8501 
8502 /**
8503  *	dev_set_allmulti	- update allmulti count on a device
8504  *	@dev: device
8505  *	@inc: modifier
8506  *
8507  *	Add or remove reception of all multicast frames to a device. While the
8508  *	count in the device remains above zero the interface remains listening
8509  *	to all interfaces. Once it hits zero the device reverts back to normal
8510  *	filtering operation. A negative @inc value is used to drop the counter
8511  *	when releasing a resource needing all multicasts.
8512  *	Return 0 if successful or a negative errno code on error.
8513  */
8514 
8515 int dev_set_allmulti(struct net_device *dev, int inc)
8516 {
8517 	return __dev_set_allmulti(dev, inc, true);
8518 }
8519 EXPORT_SYMBOL(dev_set_allmulti);
8520 
8521 /*
8522  *	Upload unicast and multicast address lists to device and
8523  *	configure RX filtering. When the device doesn't support unicast
8524  *	filtering it is put in promiscuous mode while unicast addresses
8525  *	are present.
8526  */
8527 void __dev_set_rx_mode(struct net_device *dev)
8528 {
8529 	const struct net_device_ops *ops = dev->netdev_ops;
8530 
8531 	/* dev_open will call this function so the list will stay sane. */
8532 	if (!(dev->flags&IFF_UP))
8533 		return;
8534 
8535 	if (!netif_device_present(dev))
8536 		return;
8537 
8538 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8539 		/* Unicast addresses changes may only happen under the rtnl,
8540 		 * therefore calling __dev_set_promiscuity here is safe.
8541 		 */
8542 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8543 			__dev_set_promiscuity(dev, 1, false);
8544 			dev->uc_promisc = true;
8545 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8546 			__dev_set_promiscuity(dev, -1, false);
8547 			dev->uc_promisc = false;
8548 		}
8549 	}
8550 
8551 	if (ops->ndo_set_rx_mode)
8552 		ops->ndo_set_rx_mode(dev);
8553 }
8554 
8555 void dev_set_rx_mode(struct net_device *dev)
8556 {
8557 	netif_addr_lock_bh(dev);
8558 	__dev_set_rx_mode(dev);
8559 	netif_addr_unlock_bh(dev);
8560 }
8561 
8562 /**
8563  *	dev_get_flags - get flags reported to userspace
8564  *	@dev: device
8565  *
8566  *	Get the combination of flag bits exported through APIs to userspace.
8567  */
8568 unsigned int dev_get_flags(const struct net_device *dev)
8569 {
8570 	unsigned int flags;
8571 
8572 	flags = (dev->flags & ~(IFF_PROMISC |
8573 				IFF_ALLMULTI |
8574 				IFF_RUNNING |
8575 				IFF_LOWER_UP |
8576 				IFF_DORMANT)) |
8577 		(dev->gflags & (IFF_PROMISC |
8578 				IFF_ALLMULTI));
8579 
8580 	if (netif_running(dev)) {
8581 		if (netif_oper_up(dev))
8582 			flags |= IFF_RUNNING;
8583 		if (netif_carrier_ok(dev))
8584 			flags |= IFF_LOWER_UP;
8585 		if (netif_dormant(dev))
8586 			flags |= IFF_DORMANT;
8587 	}
8588 
8589 	return flags;
8590 }
8591 EXPORT_SYMBOL(dev_get_flags);
8592 
8593 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8594 		       struct netlink_ext_ack *extack)
8595 {
8596 	unsigned int old_flags = dev->flags;
8597 	int ret;
8598 
8599 	ASSERT_RTNL();
8600 
8601 	/*
8602 	 *	Set the flags on our device.
8603 	 */
8604 
8605 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8606 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8607 			       IFF_AUTOMEDIA)) |
8608 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8609 				    IFF_ALLMULTI));
8610 
8611 	/*
8612 	 *	Load in the correct multicast list now the flags have changed.
8613 	 */
8614 
8615 	if ((old_flags ^ flags) & IFF_MULTICAST)
8616 		dev_change_rx_flags(dev, IFF_MULTICAST);
8617 
8618 	dev_set_rx_mode(dev);
8619 
8620 	/*
8621 	 *	Have we downed the interface. We handle IFF_UP ourselves
8622 	 *	according to user attempts to set it, rather than blindly
8623 	 *	setting it.
8624 	 */
8625 
8626 	ret = 0;
8627 	if ((old_flags ^ flags) & IFF_UP) {
8628 		if (old_flags & IFF_UP)
8629 			__dev_close(dev);
8630 		else
8631 			ret = __dev_open(dev, extack);
8632 	}
8633 
8634 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8635 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8636 		unsigned int old_flags = dev->flags;
8637 
8638 		dev->gflags ^= IFF_PROMISC;
8639 
8640 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8641 			if (dev->flags != old_flags)
8642 				dev_set_rx_mode(dev);
8643 	}
8644 
8645 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8646 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8647 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8648 	 */
8649 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8650 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8651 
8652 		dev->gflags ^= IFF_ALLMULTI;
8653 		__dev_set_allmulti(dev, inc, false);
8654 	}
8655 
8656 	return ret;
8657 }
8658 
8659 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8660 			unsigned int gchanges, u32 portid,
8661 			const struct nlmsghdr *nlh)
8662 {
8663 	unsigned int changes = dev->flags ^ old_flags;
8664 
8665 	if (gchanges)
8666 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8667 
8668 	if (changes & IFF_UP) {
8669 		if (dev->flags & IFF_UP)
8670 			call_netdevice_notifiers(NETDEV_UP, dev);
8671 		else
8672 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8673 	}
8674 
8675 	if (dev->flags & IFF_UP &&
8676 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8677 		struct netdev_notifier_change_info change_info = {
8678 			.info = {
8679 				.dev = dev,
8680 			},
8681 			.flags_changed = changes,
8682 		};
8683 
8684 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8685 	}
8686 }
8687 
8688 /**
8689  *	dev_change_flags - change device settings
8690  *	@dev: device
8691  *	@flags: device state flags
8692  *	@extack: netlink extended ack
8693  *
8694  *	Change settings on device based state flags. The flags are
8695  *	in the userspace exported format.
8696  */
8697 int dev_change_flags(struct net_device *dev, unsigned int flags,
8698 		     struct netlink_ext_ack *extack)
8699 {
8700 	int ret;
8701 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8702 
8703 	ret = __dev_change_flags(dev, flags, extack);
8704 	if (ret < 0)
8705 		return ret;
8706 
8707 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8708 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8709 	return ret;
8710 }
8711 EXPORT_SYMBOL(dev_change_flags);
8712 
8713 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8714 {
8715 	const struct net_device_ops *ops = dev->netdev_ops;
8716 
8717 	if (ops->ndo_change_mtu)
8718 		return ops->ndo_change_mtu(dev, new_mtu);
8719 
8720 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8721 	WRITE_ONCE(dev->mtu, new_mtu);
8722 	return 0;
8723 }
8724 EXPORT_SYMBOL(__dev_set_mtu);
8725 
8726 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8727 		     struct netlink_ext_ack *extack)
8728 {
8729 	/* MTU must be positive, and in range */
8730 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8731 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8732 		return -EINVAL;
8733 	}
8734 
8735 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8736 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8737 		return -EINVAL;
8738 	}
8739 	return 0;
8740 }
8741 
8742 /**
8743  *	dev_set_mtu_ext - Change maximum transfer unit
8744  *	@dev: device
8745  *	@new_mtu: new transfer unit
8746  *	@extack: netlink extended ack
8747  *
8748  *	Change the maximum transfer size of the network device.
8749  */
8750 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8751 		    struct netlink_ext_ack *extack)
8752 {
8753 	int err, orig_mtu;
8754 
8755 	if (new_mtu == dev->mtu)
8756 		return 0;
8757 
8758 	err = dev_validate_mtu(dev, new_mtu, extack);
8759 	if (err)
8760 		return err;
8761 
8762 	if (!netif_device_present(dev))
8763 		return -ENODEV;
8764 
8765 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8766 	err = notifier_to_errno(err);
8767 	if (err)
8768 		return err;
8769 
8770 	orig_mtu = dev->mtu;
8771 	err = __dev_set_mtu(dev, new_mtu);
8772 
8773 	if (!err) {
8774 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8775 						   orig_mtu);
8776 		err = notifier_to_errno(err);
8777 		if (err) {
8778 			/* setting mtu back and notifying everyone again,
8779 			 * so that they have a chance to revert changes.
8780 			 */
8781 			__dev_set_mtu(dev, orig_mtu);
8782 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8783 						     new_mtu);
8784 		}
8785 	}
8786 	return err;
8787 }
8788 
8789 int dev_set_mtu(struct net_device *dev, int new_mtu)
8790 {
8791 	struct netlink_ext_ack extack;
8792 	int err;
8793 
8794 	memset(&extack, 0, sizeof(extack));
8795 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8796 	if (err && extack._msg)
8797 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8798 	return err;
8799 }
8800 EXPORT_SYMBOL(dev_set_mtu);
8801 
8802 /**
8803  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8804  *	@dev: device
8805  *	@new_len: new tx queue length
8806  */
8807 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8808 {
8809 	unsigned int orig_len = dev->tx_queue_len;
8810 	int res;
8811 
8812 	if (new_len != (unsigned int)new_len)
8813 		return -ERANGE;
8814 
8815 	if (new_len != orig_len) {
8816 		dev->tx_queue_len = new_len;
8817 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8818 		res = notifier_to_errno(res);
8819 		if (res)
8820 			goto err_rollback;
8821 		res = dev_qdisc_change_tx_queue_len(dev);
8822 		if (res)
8823 			goto err_rollback;
8824 	}
8825 
8826 	return 0;
8827 
8828 err_rollback:
8829 	netdev_err(dev, "refused to change device tx_queue_len\n");
8830 	dev->tx_queue_len = orig_len;
8831 	return res;
8832 }
8833 
8834 /**
8835  *	dev_set_group - Change group this device belongs to
8836  *	@dev: device
8837  *	@new_group: group this device should belong to
8838  */
8839 void dev_set_group(struct net_device *dev, int new_group)
8840 {
8841 	dev->group = new_group;
8842 }
8843 
8844 /**
8845  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8846  *	@dev: device
8847  *	@addr: new address
8848  *	@extack: netlink extended ack
8849  */
8850 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8851 			      struct netlink_ext_ack *extack)
8852 {
8853 	struct netdev_notifier_pre_changeaddr_info info = {
8854 		.info.dev = dev,
8855 		.info.extack = extack,
8856 		.dev_addr = addr,
8857 	};
8858 	int rc;
8859 
8860 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8861 	return notifier_to_errno(rc);
8862 }
8863 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8864 
8865 /**
8866  *	dev_set_mac_address - Change Media Access Control Address
8867  *	@dev: device
8868  *	@sa: new address
8869  *	@extack: netlink extended ack
8870  *
8871  *	Change the hardware (MAC) address of the device
8872  */
8873 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8874 			struct netlink_ext_ack *extack)
8875 {
8876 	const struct net_device_ops *ops = dev->netdev_ops;
8877 	int err;
8878 
8879 	if (!ops->ndo_set_mac_address)
8880 		return -EOPNOTSUPP;
8881 	if (sa->sa_family != dev->type)
8882 		return -EINVAL;
8883 	if (!netif_device_present(dev))
8884 		return -ENODEV;
8885 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8886 	if (err)
8887 		return err;
8888 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8889 		err = ops->ndo_set_mac_address(dev, sa);
8890 		if (err)
8891 			return err;
8892 	}
8893 	dev->addr_assign_type = NET_ADDR_SET;
8894 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8895 	add_device_randomness(dev->dev_addr, dev->addr_len);
8896 	return 0;
8897 }
8898 EXPORT_SYMBOL(dev_set_mac_address);
8899 
8900 static DECLARE_RWSEM(dev_addr_sem);
8901 
8902 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8903 			     struct netlink_ext_ack *extack)
8904 {
8905 	int ret;
8906 
8907 	down_write(&dev_addr_sem);
8908 	ret = dev_set_mac_address(dev, sa, extack);
8909 	up_write(&dev_addr_sem);
8910 	return ret;
8911 }
8912 EXPORT_SYMBOL(dev_set_mac_address_user);
8913 
8914 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8915 {
8916 	size_t size = sizeof(sa->sa_data_min);
8917 	struct net_device *dev;
8918 	int ret = 0;
8919 
8920 	down_read(&dev_addr_sem);
8921 	rcu_read_lock();
8922 
8923 	dev = dev_get_by_name_rcu(net, dev_name);
8924 	if (!dev) {
8925 		ret = -ENODEV;
8926 		goto unlock;
8927 	}
8928 	if (!dev->addr_len)
8929 		memset(sa->sa_data, 0, size);
8930 	else
8931 		memcpy(sa->sa_data, dev->dev_addr,
8932 		       min_t(size_t, size, dev->addr_len));
8933 	sa->sa_family = dev->type;
8934 
8935 unlock:
8936 	rcu_read_unlock();
8937 	up_read(&dev_addr_sem);
8938 	return ret;
8939 }
8940 EXPORT_SYMBOL(dev_get_mac_address);
8941 
8942 /**
8943  *	dev_change_carrier - Change device carrier
8944  *	@dev: device
8945  *	@new_carrier: new value
8946  *
8947  *	Change device carrier
8948  */
8949 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8950 {
8951 	const struct net_device_ops *ops = dev->netdev_ops;
8952 
8953 	if (!ops->ndo_change_carrier)
8954 		return -EOPNOTSUPP;
8955 	if (!netif_device_present(dev))
8956 		return -ENODEV;
8957 	return ops->ndo_change_carrier(dev, new_carrier);
8958 }
8959 
8960 /**
8961  *	dev_get_phys_port_id - Get device physical port ID
8962  *	@dev: device
8963  *	@ppid: port ID
8964  *
8965  *	Get device physical port ID
8966  */
8967 int dev_get_phys_port_id(struct net_device *dev,
8968 			 struct netdev_phys_item_id *ppid)
8969 {
8970 	const struct net_device_ops *ops = dev->netdev_ops;
8971 
8972 	if (!ops->ndo_get_phys_port_id)
8973 		return -EOPNOTSUPP;
8974 	return ops->ndo_get_phys_port_id(dev, ppid);
8975 }
8976 
8977 /**
8978  *	dev_get_phys_port_name - Get device physical port name
8979  *	@dev: device
8980  *	@name: port name
8981  *	@len: limit of bytes to copy to name
8982  *
8983  *	Get device physical port name
8984  */
8985 int dev_get_phys_port_name(struct net_device *dev,
8986 			   char *name, size_t len)
8987 {
8988 	const struct net_device_ops *ops = dev->netdev_ops;
8989 	int err;
8990 
8991 	if (ops->ndo_get_phys_port_name) {
8992 		err = ops->ndo_get_phys_port_name(dev, name, len);
8993 		if (err != -EOPNOTSUPP)
8994 			return err;
8995 	}
8996 	return devlink_compat_phys_port_name_get(dev, name, len);
8997 }
8998 
8999 /**
9000  *	dev_get_port_parent_id - Get the device's port parent identifier
9001  *	@dev: network device
9002  *	@ppid: pointer to a storage for the port's parent identifier
9003  *	@recurse: allow/disallow recursion to lower devices
9004  *
9005  *	Get the devices's port parent identifier
9006  */
9007 int dev_get_port_parent_id(struct net_device *dev,
9008 			   struct netdev_phys_item_id *ppid,
9009 			   bool recurse)
9010 {
9011 	const struct net_device_ops *ops = dev->netdev_ops;
9012 	struct netdev_phys_item_id first = { };
9013 	struct net_device *lower_dev;
9014 	struct list_head *iter;
9015 	int err;
9016 
9017 	if (ops->ndo_get_port_parent_id) {
9018 		err = ops->ndo_get_port_parent_id(dev, ppid);
9019 		if (err != -EOPNOTSUPP)
9020 			return err;
9021 	}
9022 
9023 	err = devlink_compat_switch_id_get(dev, ppid);
9024 	if (!recurse || err != -EOPNOTSUPP)
9025 		return err;
9026 
9027 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9028 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9029 		if (err)
9030 			break;
9031 		if (!first.id_len)
9032 			first = *ppid;
9033 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9034 			return -EOPNOTSUPP;
9035 	}
9036 
9037 	return err;
9038 }
9039 EXPORT_SYMBOL(dev_get_port_parent_id);
9040 
9041 /**
9042  *	netdev_port_same_parent_id - Indicate if two network devices have
9043  *	the same port parent identifier
9044  *	@a: first network device
9045  *	@b: second network device
9046  */
9047 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9048 {
9049 	struct netdev_phys_item_id a_id = { };
9050 	struct netdev_phys_item_id b_id = { };
9051 
9052 	if (dev_get_port_parent_id(a, &a_id, true) ||
9053 	    dev_get_port_parent_id(b, &b_id, true))
9054 		return false;
9055 
9056 	return netdev_phys_item_id_same(&a_id, &b_id);
9057 }
9058 EXPORT_SYMBOL(netdev_port_same_parent_id);
9059 
9060 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9061 {
9062 #if IS_ENABLED(CONFIG_DPLL)
9063 	rtnl_lock();
9064 	dev->dpll_pin = dpll_pin;
9065 	rtnl_unlock();
9066 #endif
9067 }
9068 
9069 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9070 {
9071 	WARN_ON(!dpll_pin);
9072 	netdev_dpll_pin_assign(dev, dpll_pin);
9073 }
9074 EXPORT_SYMBOL(netdev_dpll_pin_set);
9075 
9076 void netdev_dpll_pin_clear(struct net_device *dev)
9077 {
9078 	netdev_dpll_pin_assign(dev, NULL);
9079 }
9080 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9081 
9082 /**
9083  *	dev_change_proto_down - set carrier according to proto_down.
9084  *
9085  *	@dev: device
9086  *	@proto_down: new value
9087  */
9088 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9089 {
9090 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9091 		return -EOPNOTSUPP;
9092 	if (!netif_device_present(dev))
9093 		return -ENODEV;
9094 	if (proto_down)
9095 		netif_carrier_off(dev);
9096 	else
9097 		netif_carrier_on(dev);
9098 	dev->proto_down = proto_down;
9099 	return 0;
9100 }
9101 
9102 /**
9103  *	dev_change_proto_down_reason - proto down reason
9104  *
9105  *	@dev: device
9106  *	@mask: proto down mask
9107  *	@value: proto down value
9108  */
9109 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9110 				  u32 value)
9111 {
9112 	int b;
9113 
9114 	if (!mask) {
9115 		dev->proto_down_reason = value;
9116 	} else {
9117 		for_each_set_bit(b, &mask, 32) {
9118 			if (value & (1 << b))
9119 				dev->proto_down_reason |= BIT(b);
9120 			else
9121 				dev->proto_down_reason &= ~BIT(b);
9122 		}
9123 	}
9124 }
9125 
9126 struct bpf_xdp_link {
9127 	struct bpf_link link;
9128 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9129 	int flags;
9130 };
9131 
9132 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9133 {
9134 	if (flags & XDP_FLAGS_HW_MODE)
9135 		return XDP_MODE_HW;
9136 	if (flags & XDP_FLAGS_DRV_MODE)
9137 		return XDP_MODE_DRV;
9138 	if (flags & XDP_FLAGS_SKB_MODE)
9139 		return XDP_MODE_SKB;
9140 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9141 }
9142 
9143 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9144 {
9145 	switch (mode) {
9146 	case XDP_MODE_SKB:
9147 		return generic_xdp_install;
9148 	case XDP_MODE_DRV:
9149 	case XDP_MODE_HW:
9150 		return dev->netdev_ops->ndo_bpf;
9151 	default:
9152 		return NULL;
9153 	}
9154 }
9155 
9156 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9157 					 enum bpf_xdp_mode mode)
9158 {
9159 	return dev->xdp_state[mode].link;
9160 }
9161 
9162 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9163 				     enum bpf_xdp_mode mode)
9164 {
9165 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9166 
9167 	if (link)
9168 		return link->link.prog;
9169 	return dev->xdp_state[mode].prog;
9170 }
9171 
9172 u8 dev_xdp_prog_count(struct net_device *dev)
9173 {
9174 	u8 count = 0;
9175 	int i;
9176 
9177 	for (i = 0; i < __MAX_XDP_MODE; i++)
9178 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9179 			count++;
9180 	return count;
9181 }
9182 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9183 
9184 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9185 {
9186 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9187 
9188 	return prog ? prog->aux->id : 0;
9189 }
9190 
9191 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9192 			     struct bpf_xdp_link *link)
9193 {
9194 	dev->xdp_state[mode].link = link;
9195 	dev->xdp_state[mode].prog = NULL;
9196 }
9197 
9198 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9199 			     struct bpf_prog *prog)
9200 {
9201 	dev->xdp_state[mode].link = NULL;
9202 	dev->xdp_state[mode].prog = prog;
9203 }
9204 
9205 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9206 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9207 			   u32 flags, struct bpf_prog *prog)
9208 {
9209 	struct netdev_bpf xdp;
9210 	int err;
9211 
9212 	memset(&xdp, 0, sizeof(xdp));
9213 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9214 	xdp.extack = extack;
9215 	xdp.flags = flags;
9216 	xdp.prog = prog;
9217 
9218 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9219 	 * "moved" into driver), so they don't increment it on their own, but
9220 	 * they do decrement refcnt when program is detached or replaced.
9221 	 * Given net_device also owns link/prog, we need to bump refcnt here
9222 	 * to prevent drivers from underflowing it.
9223 	 */
9224 	if (prog)
9225 		bpf_prog_inc(prog);
9226 	err = bpf_op(dev, &xdp);
9227 	if (err) {
9228 		if (prog)
9229 			bpf_prog_put(prog);
9230 		return err;
9231 	}
9232 
9233 	if (mode != XDP_MODE_HW)
9234 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9235 
9236 	return 0;
9237 }
9238 
9239 static void dev_xdp_uninstall(struct net_device *dev)
9240 {
9241 	struct bpf_xdp_link *link;
9242 	struct bpf_prog *prog;
9243 	enum bpf_xdp_mode mode;
9244 	bpf_op_t bpf_op;
9245 
9246 	ASSERT_RTNL();
9247 
9248 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9249 		prog = dev_xdp_prog(dev, mode);
9250 		if (!prog)
9251 			continue;
9252 
9253 		bpf_op = dev_xdp_bpf_op(dev, mode);
9254 		if (!bpf_op)
9255 			continue;
9256 
9257 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9258 
9259 		/* auto-detach link from net device */
9260 		link = dev_xdp_link(dev, mode);
9261 		if (link)
9262 			link->dev = NULL;
9263 		else
9264 			bpf_prog_put(prog);
9265 
9266 		dev_xdp_set_link(dev, mode, NULL);
9267 	}
9268 }
9269 
9270 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9271 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9272 			  struct bpf_prog *old_prog, u32 flags)
9273 {
9274 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9275 	struct bpf_prog *cur_prog;
9276 	struct net_device *upper;
9277 	struct list_head *iter;
9278 	enum bpf_xdp_mode mode;
9279 	bpf_op_t bpf_op;
9280 	int err;
9281 
9282 	ASSERT_RTNL();
9283 
9284 	/* either link or prog attachment, never both */
9285 	if (link && (new_prog || old_prog))
9286 		return -EINVAL;
9287 	/* link supports only XDP mode flags */
9288 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9289 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9290 		return -EINVAL;
9291 	}
9292 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9293 	if (num_modes > 1) {
9294 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9295 		return -EINVAL;
9296 	}
9297 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9298 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9299 		NL_SET_ERR_MSG(extack,
9300 			       "More than one program loaded, unset mode is ambiguous");
9301 		return -EINVAL;
9302 	}
9303 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9304 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9305 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9306 		return -EINVAL;
9307 	}
9308 
9309 	mode = dev_xdp_mode(dev, flags);
9310 	/* can't replace attached link */
9311 	if (dev_xdp_link(dev, mode)) {
9312 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9313 		return -EBUSY;
9314 	}
9315 
9316 	/* don't allow if an upper device already has a program */
9317 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9318 		if (dev_xdp_prog_count(upper) > 0) {
9319 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9320 			return -EEXIST;
9321 		}
9322 	}
9323 
9324 	cur_prog = dev_xdp_prog(dev, mode);
9325 	/* can't replace attached prog with link */
9326 	if (link && cur_prog) {
9327 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9328 		return -EBUSY;
9329 	}
9330 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9331 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9332 		return -EEXIST;
9333 	}
9334 
9335 	/* put effective new program into new_prog */
9336 	if (link)
9337 		new_prog = link->link.prog;
9338 
9339 	if (new_prog) {
9340 		bool offload = mode == XDP_MODE_HW;
9341 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9342 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9343 
9344 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9345 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9346 			return -EBUSY;
9347 		}
9348 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9349 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9350 			return -EEXIST;
9351 		}
9352 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9353 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9354 			return -EINVAL;
9355 		}
9356 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9357 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9358 			return -EINVAL;
9359 		}
9360 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9361 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9362 			return -EINVAL;
9363 		}
9364 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9365 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9366 			return -EINVAL;
9367 		}
9368 	}
9369 
9370 	/* don't call drivers if the effective program didn't change */
9371 	if (new_prog != cur_prog) {
9372 		bpf_op = dev_xdp_bpf_op(dev, mode);
9373 		if (!bpf_op) {
9374 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9375 			return -EOPNOTSUPP;
9376 		}
9377 
9378 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9379 		if (err)
9380 			return err;
9381 	}
9382 
9383 	if (link)
9384 		dev_xdp_set_link(dev, mode, link);
9385 	else
9386 		dev_xdp_set_prog(dev, mode, new_prog);
9387 	if (cur_prog)
9388 		bpf_prog_put(cur_prog);
9389 
9390 	return 0;
9391 }
9392 
9393 static int dev_xdp_attach_link(struct net_device *dev,
9394 			       struct netlink_ext_ack *extack,
9395 			       struct bpf_xdp_link *link)
9396 {
9397 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9398 }
9399 
9400 static int dev_xdp_detach_link(struct net_device *dev,
9401 			       struct netlink_ext_ack *extack,
9402 			       struct bpf_xdp_link *link)
9403 {
9404 	enum bpf_xdp_mode mode;
9405 	bpf_op_t bpf_op;
9406 
9407 	ASSERT_RTNL();
9408 
9409 	mode = dev_xdp_mode(dev, link->flags);
9410 	if (dev_xdp_link(dev, mode) != link)
9411 		return -EINVAL;
9412 
9413 	bpf_op = dev_xdp_bpf_op(dev, mode);
9414 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9415 	dev_xdp_set_link(dev, mode, NULL);
9416 	return 0;
9417 }
9418 
9419 static void bpf_xdp_link_release(struct bpf_link *link)
9420 {
9421 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9422 
9423 	rtnl_lock();
9424 
9425 	/* if racing with net_device's tear down, xdp_link->dev might be
9426 	 * already NULL, in which case link was already auto-detached
9427 	 */
9428 	if (xdp_link->dev) {
9429 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9430 		xdp_link->dev = NULL;
9431 	}
9432 
9433 	rtnl_unlock();
9434 }
9435 
9436 static int bpf_xdp_link_detach(struct bpf_link *link)
9437 {
9438 	bpf_xdp_link_release(link);
9439 	return 0;
9440 }
9441 
9442 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9443 {
9444 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9445 
9446 	kfree(xdp_link);
9447 }
9448 
9449 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9450 				     struct seq_file *seq)
9451 {
9452 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9453 	u32 ifindex = 0;
9454 
9455 	rtnl_lock();
9456 	if (xdp_link->dev)
9457 		ifindex = xdp_link->dev->ifindex;
9458 	rtnl_unlock();
9459 
9460 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9461 }
9462 
9463 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9464 				       struct bpf_link_info *info)
9465 {
9466 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9467 	u32 ifindex = 0;
9468 
9469 	rtnl_lock();
9470 	if (xdp_link->dev)
9471 		ifindex = xdp_link->dev->ifindex;
9472 	rtnl_unlock();
9473 
9474 	info->xdp.ifindex = ifindex;
9475 	return 0;
9476 }
9477 
9478 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9479 			       struct bpf_prog *old_prog)
9480 {
9481 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9482 	enum bpf_xdp_mode mode;
9483 	bpf_op_t bpf_op;
9484 	int err = 0;
9485 
9486 	rtnl_lock();
9487 
9488 	/* link might have been auto-released already, so fail */
9489 	if (!xdp_link->dev) {
9490 		err = -ENOLINK;
9491 		goto out_unlock;
9492 	}
9493 
9494 	if (old_prog && link->prog != old_prog) {
9495 		err = -EPERM;
9496 		goto out_unlock;
9497 	}
9498 	old_prog = link->prog;
9499 	if (old_prog->type != new_prog->type ||
9500 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9501 		err = -EINVAL;
9502 		goto out_unlock;
9503 	}
9504 
9505 	if (old_prog == new_prog) {
9506 		/* no-op, don't disturb drivers */
9507 		bpf_prog_put(new_prog);
9508 		goto out_unlock;
9509 	}
9510 
9511 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9512 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9513 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9514 			      xdp_link->flags, new_prog);
9515 	if (err)
9516 		goto out_unlock;
9517 
9518 	old_prog = xchg(&link->prog, new_prog);
9519 	bpf_prog_put(old_prog);
9520 
9521 out_unlock:
9522 	rtnl_unlock();
9523 	return err;
9524 }
9525 
9526 static const struct bpf_link_ops bpf_xdp_link_lops = {
9527 	.release = bpf_xdp_link_release,
9528 	.dealloc = bpf_xdp_link_dealloc,
9529 	.detach = bpf_xdp_link_detach,
9530 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9531 	.fill_link_info = bpf_xdp_link_fill_link_info,
9532 	.update_prog = bpf_xdp_link_update,
9533 };
9534 
9535 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9536 {
9537 	struct net *net = current->nsproxy->net_ns;
9538 	struct bpf_link_primer link_primer;
9539 	struct netlink_ext_ack extack = {};
9540 	struct bpf_xdp_link *link;
9541 	struct net_device *dev;
9542 	int err, fd;
9543 
9544 	rtnl_lock();
9545 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9546 	if (!dev) {
9547 		rtnl_unlock();
9548 		return -EINVAL;
9549 	}
9550 
9551 	link = kzalloc(sizeof(*link), GFP_USER);
9552 	if (!link) {
9553 		err = -ENOMEM;
9554 		goto unlock;
9555 	}
9556 
9557 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9558 	link->dev = dev;
9559 	link->flags = attr->link_create.flags;
9560 
9561 	err = bpf_link_prime(&link->link, &link_primer);
9562 	if (err) {
9563 		kfree(link);
9564 		goto unlock;
9565 	}
9566 
9567 	err = dev_xdp_attach_link(dev, &extack, link);
9568 	rtnl_unlock();
9569 
9570 	if (err) {
9571 		link->dev = NULL;
9572 		bpf_link_cleanup(&link_primer);
9573 		trace_bpf_xdp_link_attach_failed(extack._msg);
9574 		goto out_put_dev;
9575 	}
9576 
9577 	fd = bpf_link_settle(&link_primer);
9578 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9579 	dev_put(dev);
9580 	return fd;
9581 
9582 unlock:
9583 	rtnl_unlock();
9584 
9585 out_put_dev:
9586 	dev_put(dev);
9587 	return err;
9588 }
9589 
9590 /**
9591  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9592  *	@dev: device
9593  *	@extack: netlink extended ack
9594  *	@fd: new program fd or negative value to clear
9595  *	@expected_fd: old program fd that userspace expects to replace or clear
9596  *	@flags: xdp-related flags
9597  *
9598  *	Set or clear a bpf program for a device
9599  */
9600 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9601 		      int fd, int expected_fd, u32 flags)
9602 {
9603 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9604 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9605 	int err;
9606 
9607 	ASSERT_RTNL();
9608 
9609 	if (fd >= 0) {
9610 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9611 						 mode != XDP_MODE_SKB);
9612 		if (IS_ERR(new_prog))
9613 			return PTR_ERR(new_prog);
9614 	}
9615 
9616 	if (expected_fd >= 0) {
9617 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9618 						 mode != XDP_MODE_SKB);
9619 		if (IS_ERR(old_prog)) {
9620 			err = PTR_ERR(old_prog);
9621 			old_prog = NULL;
9622 			goto err_out;
9623 		}
9624 	}
9625 
9626 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9627 
9628 err_out:
9629 	if (err && new_prog)
9630 		bpf_prog_put(new_prog);
9631 	if (old_prog)
9632 		bpf_prog_put(old_prog);
9633 	return err;
9634 }
9635 
9636 /**
9637  * dev_index_reserve() - allocate an ifindex in a namespace
9638  * @net: the applicable net namespace
9639  * @ifindex: requested ifindex, pass %0 to get one allocated
9640  *
9641  * Allocate a ifindex for a new device. Caller must either use the ifindex
9642  * to store the device (via list_netdevice()) or call dev_index_release()
9643  * to give the index up.
9644  *
9645  * Return: a suitable unique value for a new device interface number or -errno.
9646  */
9647 static int dev_index_reserve(struct net *net, u32 ifindex)
9648 {
9649 	int err;
9650 
9651 	if (ifindex > INT_MAX) {
9652 		DEBUG_NET_WARN_ON_ONCE(1);
9653 		return -EINVAL;
9654 	}
9655 
9656 	if (!ifindex)
9657 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9658 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9659 	else
9660 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9661 	if (err < 0)
9662 		return err;
9663 
9664 	return ifindex;
9665 }
9666 
9667 static void dev_index_release(struct net *net, int ifindex)
9668 {
9669 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9670 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9671 }
9672 
9673 /* Delayed registration/unregisteration */
9674 LIST_HEAD(net_todo_list);
9675 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9676 
9677 static void net_set_todo(struct net_device *dev)
9678 {
9679 	list_add_tail(&dev->todo_list, &net_todo_list);
9680 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9681 }
9682 
9683 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9684 	struct net_device *upper, netdev_features_t features)
9685 {
9686 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9687 	netdev_features_t feature;
9688 	int feature_bit;
9689 
9690 	for_each_netdev_feature(upper_disables, feature_bit) {
9691 		feature = __NETIF_F_BIT(feature_bit);
9692 		if (!(upper->wanted_features & feature)
9693 		    && (features & feature)) {
9694 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9695 				   &feature, upper->name);
9696 			features &= ~feature;
9697 		}
9698 	}
9699 
9700 	return features;
9701 }
9702 
9703 static void netdev_sync_lower_features(struct net_device *upper,
9704 	struct net_device *lower, netdev_features_t features)
9705 {
9706 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9707 	netdev_features_t feature;
9708 	int feature_bit;
9709 
9710 	for_each_netdev_feature(upper_disables, feature_bit) {
9711 		feature = __NETIF_F_BIT(feature_bit);
9712 		if (!(features & feature) && (lower->features & feature)) {
9713 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9714 				   &feature, lower->name);
9715 			lower->wanted_features &= ~feature;
9716 			__netdev_update_features(lower);
9717 
9718 			if (unlikely(lower->features & feature))
9719 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9720 					    &feature, lower->name);
9721 			else
9722 				netdev_features_change(lower);
9723 		}
9724 	}
9725 }
9726 
9727 static netdev_features_t netdev_fix_features(struct net_device *dev,
9728 	netdev_features_t features)
9729 {
9730 	/* Fix illegal checksum combinations */
9731 	if ((features & NETIF_F_HW_CSUM) &&
9732 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9733 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9734 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9735 	}
9736 
9737 	/* TSO requires that SG is present as well. */
9738 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9739 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9740 		features &= ~NETIF_F_ALL_TSO;
9741 	}
9742 
9743 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9744 					!(features & NETIF_F_IP_CSUM)) {
9745 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9746 		features &= ~NETIF_F_TSO;
9747 		features &= ~NETIF_F_TSO_ECN;
9748 	}
9749 
9750 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9751 					 !(features & NETIF_F_IPV6_CSUM)) {
9752 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9753 		features &= ~NETIF_F_TSO6;
9754 	}
9755 
9756 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9757 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9758 		features &= ~NETIF_F_TSO_MANGLEID;
9759 
9760 	/* TSO ECN requires that TSO is present as well. */
9761 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9762 		features &= ~NETIF_F_TSO_ECN;
9763 
9764 	/* Software GSO depends on SG. */
9765 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9766 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9767 		features &= ~NETIF_F_GSO;
9768 	}
9769 
9770 	/* GSO partial features require GSO partial be set */
9771 	if ((features & dev->gso_partial_features) &&
9772 	    !(features & NETIF_F_GSO_PARTIAL)) {
9773 		netdev_dbg(dev,
9774 			   "Dropping partially supported GSO features since no GSO partial.\n");
9775 		features &= ~dev->gso_partial_features;
9776 	}
9777 
9778 	if (!(features & NETIF_F_RXCSUM)) {
9779 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9780 		 * successfully merged by hardware must also have the
9781 		 * checksum verified by hardware.  If the user does not
9782 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9783 		 */
9784 		if (features & NETIF_F_GRO_HW) {
9785 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9786 			features &= ~NETIF_F_GRO_HW;
9787 		}
9788 	}
9789 
9790 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9791 	if (features & NETIF_F_RXFCS) {
9792 		if (features & NETIF_F_LRO) {
9793 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9794 			features &= ~NETIF_F_LRO;
9795 		}
9796 
9797 		if (features & NETIF_F_GRO_HW) {
9798 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9799 			features &= ~NETIF_F_GRO_HW;
9800 		}
9801 	}
9802 
9803 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9804 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9805 		features &= ~NETIF_F_LRO;
9806 	}
9807 
9808 	if (features & NETIF_F_HW_TLS_TX) {
9809 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9810 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9811 		bool hw_csum = features & NETIF_F_HW_CSUM;
9812 
9813 		if (!ip_csum && !hw_csum) {
9814 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9815 			features &= ~NETIF_F_HW_TLS_TX;
9816 		}
9817 	}
9818 
9819 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9820 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9821 		features &= ~NETIF_F_HW_TLS_RX;
9822 	}
9823 
9824 	return features;
9825 }
9826 
9827 int __netdev_update_features(struct net_device *dev)
9828 {
9829 	struct net_device *upper, *lower;
9830 	netdev_features_t features;
9831 	struct list_head *iter;
9832 	int err = -1;
9833 
9834 	ASSERT_RTNL();
9835 
9836 	features = netdev_get_wanted_features(dev);
9837 
9838 	if (dev->netdev_ops->ndo_fix_features)
9839 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9840 
9841 	/* driver might be less strict about feature dependencies */
9842 	features = netdev_fix_features(dev, features);
9843 
9844 	/* some features can't be enabled if they're off on an upper device */
9845 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9846 		features = netdev_sync_upper_features(dev, upper, features);
9847 
9848 	if (dev->features == features)
9849 		goto sync_lower;
9850 
9851 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9852 		&dev->features, &features);
9853 
9854 	if (dev->netdev_ops->ndo_set_features)
9855 		err = dev->netdev_ops->ndo_set_features(dev, features);
9856 	else
9857 		err = 0;
9858 
9859 	if (unlikely(err < 0)) {
9860 		netdev_err(dev,
9861 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9862 			err, &features, &dev->features);
9863 		/* return non-0 since some features might have changed and
9864 		 * it's better to fire a spurious notification than miss it
9865 		 */
9866 		return -1;
9867 	}
9868 
9869 sync_lower:
9870 	/* some features must be disabled on lower devices when disabled
9871 	 * on an upper device (think: bonding master or bridge)
9872 	 */
9873 	netdev_for_each_lower_dev(dev, lower, iter)
9874 		netdev_sync_lower_features(dev, lower, features);
9875 
9876 	if (!err) {
9877 		netdev_features_t diff = features ^ dev->features;
9878 
9879 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9880 			/* udp_tunnel_{get,drop}_rx_info both need
9881 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9882 			 * device, or they won't do anything.
9883 			 * Thus we need to update dev->features
9884 			 * *before* calling udp_tunnel_get_rx_info,
9885 			 * but *after* calling udp_tunnel_drop_rx_info.
9886 			 */
9887 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9888 				dev->features = features;
9889 				udp_tunnel_get_rx_info(dev);
9890 			} else {
9891 				udp_tunnel_drop_rx_info(dev);
9892 			}
9893 		}
9894 
9895 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9896 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9897 				dev->features = features;
9898 				err |= vlan_get_rx_ctag_filter_info(dev);
9899 			} else {
9900 				vlan_drop_rx_ctag_filter_info(dev);
9901 			}
9902 		}
9903 
9904 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9905 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9906 				dev->features = features;
9907 				err |= vlan_get_rx_stag_filter_info(dev);
9908 			} else {
9909 				vlan_drop_rx_stag_filter_info(dev);
9910 			}
9911 		}
9912 
9913 		dev->features = features;
9914 	}
9915 
9916 	return err < 0 ? 0 : 1;
9917 }
9918 
9919 /**
9920  *	netdev_update_features - recalculate device features
9921  *	@dev: the device to check
9922  *
9923  *	Recalculate dev->features set and send notifications if it
9924  *	has changed. Should be called after driver or hardware dependent
9925  *	conditions might have changed that influence the features.
9926  */
9927 void netdev_update_features(struct net_device *dev)
9928 {
9929 	if (__netdev_update_features(dev))
9930 		netdev_features_change(dev);
9931 }
9932 EXPORT_SYMBOL(netdev_update_features);
9933 
9934 /**
9935  *	netdev_change_features - recalculate device features
9936  *	@dev: the device to check
9937  *
9938  *	Recalculate dev->features set and send notifications even
9939  *	if they have not changed. Should be called instead of
9940  *	netdev_update_features() if also dev->vlan_features might
9941  *	have changed to allow the changes to be propagated to stacked
9942  *	VLAN devices.
9943  */
9944 void netdev_change_features(struct net_device *dev)
9945 {
9946 	__netdev_update_features(dev);
9947 	netdev_features_change(dev);
9948 }
9949 EXPORT_SYMBOL(netdev_change_features);
9950 
9951 /**
9952  *	netif_stacked_transfer_operstate -	transfer operstate
9953  *	@rootdev: the root or lower level device to transfer state from
9954  *	@dev: the device to transfer operstate to
9955  *
9956  *	Transfer operational state from root to device. This is normally
9957  *	called when a stacking relationship exists between the root
9958  *	device and the device(a leaf device).
9959  */
9960 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9961 					struct net_device *dev)
9962 {
9963 	if (rootdev->operstate == IF_OPER_DORMANT)
9964 		netif_dormant_on(dev);
9965 	else
9966 		netif_dormant_off(dev);
9967 
9968 	if (rootdev->operstate == IF_OPER_TESTING)
9969 		netif_testing_on(dev);
9970 	else
9971 		netif_testing_off(dev);
9972 
9973 	if (netif_carrier_ok(rootdev))
9974 		netif_carrier_on(dev);
9975 	else
9976 		netif_carrier_off(dev);
9977 }
9978 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9979 
9980 static int netif_alloc_rx_queues(struct net_device *dev)
9981 {
9982 	unsigned int i, count = dev->num_rx_queues;
9983 	struct netdev_rx_queue *rx;
9984 	size_t sz = count * sizeof(*rx);
9985 	int err = 0;
9986 
9987 	BUG_ON(count < 1);
9988 
9989 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9990 	if (!rx)
9991 		return -ENOMEM;
9992 
9993 	dev->_rx = rx;
9994 
9995 	for (i = 0; i < count; i++) {
9996 		rx[i].dev = dev;
9997 
9998 		/* XDP RX-queue setup */
9999 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10000 		if (err < 0)
10001 			goto err_rxq_info;
10002 	}
10003 	return 0;
10004 
10005 err_rxq_info:
10006 	/* Rollback successful reg's and free other resources */
10007 	while (i--)
10008 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10009 	kvfree(dev->_rx);
10010 	dev->_rx = NULL;
10011 	return err;
10012 }
10013 
10014 static void netif_free_rx_queues(struct net_device *dev)
10015 {
10016 	unsigned int i, count = dev->num_rx_queues;
10017 
10018 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10019 	if (!dev->_rx)
10020 		return;
10021 
10022 	for (i = 0; i < count; i++)
10023 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10024 
10025 	kvfree(dev->_rx);
10026 }
10027 
10028 static void netdev_init_one_queue(struct net_device *dev,
10029 				  struct netdev_queue *queue, void *_unused)
10030 {
10031 	/* Initialize queue lock */
10032 	spin_lock_init(&queue->_xmit_lock);
10033 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10034 	queue->xmit_lock_owner = -1;
10035 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10036 	queue->dev = dev;
10037 #ifdef CONFIG_BQL
10038 	dql_init(&queue->dql, HZ);
10039 #endif
10040 }
10041 
10042 static void netif_free_tx_queues(struct net_device *dev)
10043 {
10044 	kvfree(dev->_tx);
10045 }
10046 
10047 static int netif_alloc_netdev_queues(struct net_device *dev)
10048 {
10049 	unsigned int count = dev->num_tx_queues;
10050 	struct netdev_queue *tx;
10051 	size_t sz = count * sizeof(*tx);
10052 
10053 	if (count < 1 || count > 0xffff)
10054 		return -EINVAL;
10055 
10056 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10057 	if (!tx)
10058 		return -ENOMEM;
10059 
10060 	dev->_tx = tx;
10061 
10062 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10063 	spin_lock_init(&dev->tx_global_lock);
10064 
10065 	return 0;
10066 }
10067 
10068 void netif_tx_stop_all_queues(struct net_device *dev)
10069 {
10070 	unsigned int i;
10071 
10072 	for (i = 0; i < dev->num_tx_queues; i++) {
10073 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10074 
10075 		netif_tx_stop_queue(txq);
10076 	}
10077 }
10078 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10079 
10080 /**
10081  * register_netdevice() - register a network device
10082  * @dev: device to register
10083  *
10084  * Take a prepared network device structure and make it externally accessible.
10085  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10086  * Callers must hold the rtnl lock - you may want register_netdev()
10087  * instead of this.
10088  */
10089 int register_netdevice(struct net_device *dev)
10090 {
10091 	int ret;
10092 	struct net *net = dev_net(dev);
10093 
10094 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10095 		     NETDEV_FEATURE_COUNT);
10096 	BUG_ON(dev_boot_phase);
10097 	ASSERT_RTNL();
10098 
10099 	might_sleep();
10100 
10101 	/* When net_device's are persistent, this will be fatal. */
10102 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10103 	BUG_ON(!net);
10104 
10105 	ret = ethtool_check_ops(dev->ethtool_ops);
10106 	if (ret)
10107 		return ret;
10108 
10109 	spin_lock_init(&dev->addr_list_lock);
10110 	netdev_set_addr_lockdep_class(dev);
10111 
10112 	ret = dev_get_valid_name(net, dev, dev->name);
10113 	if (ret < 0)
10114 		goto out;
10115 
10116 	ret = -ENOMEM;
10117 	dev->name_node = netdev_name_node_head_alloc(dev);
10118 	if (!dev->name_node)
10119 		goto out;
10120 
10121 	/* Init, if this function is available */
10122 	if (dev->netdev_ops->ndo_init) {
10123 		ret = dev->netdev_ops->ndo_init(dev);
10124 		if (ret) {
10125 			if (ret > 0)
10126 				ret = -EIO;
10127 			goto err_free_name;
10128 		}
10129 	}
10130 
10131 	if (((dev->hw_features | dev->features) &
10132 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10133 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10134 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10135 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10136 		ret = -EINVAL;
10137 		goto err_uninit;
10138 	}
10139 
10140 	ret = dev_index_reserve(net, dev->ifindex);
10141 	if (ret < 0)
10142 		goto err_uninit;
10143 	dev->ifindex = ret;
10144 
10145 	/* Transfer changeable features to wanted_features and enable
10146 	 * software offloads (GSO and GRO).
10147 	 */
10148 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10149 	dev->features |= NETIF_F_SOFT_FEATURES;
10150 
10151 	if (dev->udp_tunnel_nic_info) {
10152 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10153 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10154 	}
10155 
10156 	dev->wanted_features = dev->features & dev->hw_features;
10157 
10158 	if (!(dev->flags & IFF_LOOPBACK))
10159 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10160 
10161 	/* If IPv4 TCP segmentation offload is supported we should also
10162 	 * allow the device to enable segmenting the frame with the option
10163 	 * of ignoring a static IP ID value.  This doesn't enable the
10164 	 * feature itself but allows the user to enable it later.
10165 	 */
10166 	if (dev->hw_features & NETIF_F_TSO)
10167 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10168 	if (dev->vlan_features & NETIF_F_TSO)
10169 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10170 	if (dev->mpls_features & NETIF_F_TSO)
10171 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10172 	if (dev->hw_enc_features & NETIF_F_TSO)
10173 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10174 
10175 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10176 	 */
10177 	dev->vlan_features |= NETIF_F_HIGHDMA;
10178 
10179 	/* Make NETIF_F_SG inheritable to tunnel devices.
10180 	 */
10181 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10182 
10183 	/* Make NETIF_F_SG inheritable to MPLS.
10184 	 */
10185 	dev->mpls_features |= NETIF_F_SG;
10186 
10187 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10188 	ret = notifier_to_errno(ret);
10189 	if (ret)
10190 		goto err_ifindex_release;
10191 
10192 	ret = netdev_register_kobject(dev);
10193 	write_lock(&dev_base_lock);
10194 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10195 	write_unlock(&dev_base_lock);
10196 	if (ret)
10197 		goto err_uninit_notify;
10198 
10199 	__netdev_update_features(dev);
10200 
10201 	/*
10202 	 *	Default initial state at registry is that the
10203 	 *	device is present.
10204 	 */
10205 
10206 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10207 
10208 	linkwatch_init_dev(dev);
10209 
10210 	dev_init_scheduler(dev);
10211 
10212 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10213 	list_netdevice(dev);
10214 
10215 	add_device_randomness(dev->dev_addr, dev->addr_len);
10216 
10217 	/* If the device has permanent device address, driver should
10218 	 * set dev_addr and also addr_assign_type should be set to
10219 	 * NET_ADDR_PERM (default value).
10220 	 */
10221 	if (dev->addr_assign_type == NET_ADDR_PERM)
10222 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10223 
10224 	/* Notify protocols, that a new device appeared. */
10225 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10226 	ret = notifier_to_errno(ret);
10227 	if (ret) {
10228 		/* Expect explicit free_netdev() on failure */
10229 		dev->needs_free_netdev = false;
10230 		unregister_netdevice_queue(dev, NULL);
10231 		goto out;
10232 	}
10233 	/*
10234 	 *	Prevent userspace races by waiting until the network
10235 	 *	device is fully setup before sending notifications.
10236 	 */
10237 	if (!dev->rtnl_link_ops ||
10238 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10239 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10240 
10241 out:
10242 	return ret;
10243 
10244 err_uninit_notify:
10245 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10246 err_ifindex_release:
10247 	dev_index_release(net, dev->ifindex);
10248 err_uninit:
10249 	if (dev->netdev_ops->ndo_uninit)
10250 		dev->netdev_ops->ndo_uninit(dev);
10251 	if (dev->priv_destructor)
10252 		dev->priv_destructor(dev);
10253 err_free_name:
10254 	netdev_name_node_free(dev->name_node);
10255 	goto out;
10256 }
10257 EXPORT_SYMBOL(register_netdevice);
10258 
10259 /**
10260  *	init_dummy_netdev	- init a dummy network device for NAPI
10261  *	@dev: device to init
10262  *
10263  *	This takes a network device structure and initialize the minimum
10264  *	amount of fields so it can be used to schedule NAPI polls without
10265  *	registering a full blown interface. This is to be used by drivers
10266  *	that need to tie several hardware interfaces to a single NAPI
10267  *	poll scheduler due to HW limitations.
10268  */
10269 int init_dummy_netdev(struct net_device *dev)
10270 {
10271 	/* Clear everything. Note we don't initialize spinlocks
10272 	 * are they aren't supposed to be taken by any of the
10273 	 * NAPI code and this dummy netdev is supposed to be
10274 	 * only ever used for NAPI polls
10275 	 */
10276 	memset(dev, 0, sizeof(struct net_device));
10277 
10278 	/* make sure we BUG if trying to hit standard
10279 	 * register/unregister code path
10280 	 */
10281 	dev->reg_state = NETREG_DUMMY;
10282 
10283 	/* NAPI wants this */
10284 	INIT_LIST_HEAD(&dev->napi_list);
10285 
10286 	/* a dummy interface is started by default */
10287 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10288 	set_bit(__LINK_STATE_START, &dev->state);
10289 
10290 	/* napi_busy_loop stats accounting wants this */
10291 	dev_net_set(dev, &init_net);
10292 
10293 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10294 	 * because users of this 'device' dont need to change
10295 	 * its refcount.
10296 	 */
10297 
10298 	return 0;
10299 }
10300 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10301 
10302 
10303 /**
10304  *	register_netdev	- register a network device
10305  *	@dev: device to register
10306  *
10307  *	Take a completed network device structure and add it to the kernel
10308  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10309  *	chain. 0 is returned on success. A negative errno code is returned
10310  *	on a failure to set up the device, or if the name is a duplicate.
10311  *
10312  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10313  *	and expands the device name if you passed a format string to
10314  *	alloc_netdev.
10315  */
10316 int register_netdev(struct net_device *dev)
10317 {
10318 	int err;
10319 
10320 	if (rtnl_lock_killable())
10321 		return -EINTR;
10322 	err = register_netdevice(dev);
10323 	rtnl_unlock();
10324 	return err;
10325 }
10326 EXPORT_SYMBOL(register_netdev);
10327 
10328 int netdev_refcnt_read(const struct net_device *dev)
10329 {
10330 #ifdef CONFIG_PCPU_DEV_REFCNT
10331 	int i, refcnt = 0;
10332 
10333 	for_each_possible_cpu(i)
10334 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10335 	return refcnt;
10336 #else
10337 	return refcount_read(&dev->dev_refcnt);
10338 #endif
10339 }
10340 EXPORT_SYMBOL(netdev_refcnt_read);
10341 
10342 int netdev_unregister_timeout_secs __read_mostly = 10;
10343 
10344 #define WAIT_REFS_MIN_MSECS 1
10345 #define WAIT_REFS_MAX_MSECS 250
10346 /**
10347  * netdev_wait_allrefs_any - wait until all references are gone.
10348  * @list: list of net_devices to wait on
10349  *
10350  * This is called when unregistering network devices.
10351  *
10352  * Any protocol or device that holds a reference should register
10353  * for netdevice notification, and cleanup and put back the
10354  * reference if they receive an UNREGISTER event.
10355  * We can get stuck here if buggy protocols don't correctly
10356  * call dev_put.
10357  */
10358 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10359 {
10360 	unsigned long rebroadcast_time, warning_time;
10361 	struct net_device *dev;
10362 	int wait = 0;
10363 
10364 	rebroadcast_time = warning_time = jiffies;
10365 
10366 	list_for_each_entry(dev, list, todo_list)
10367 		if (netdev_refcnt_read(dev) == 1)
10368 			return dev;
10369 
10370 	while (true) {
10371 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10372 			rtnl_lock();
10373 
10374 			/* Rebroadcast unregister notification */
10375 			list_for_each_entry(dev, list, todo_list)
10376 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10377 
10378 			__rtnl_unlock();
10379 			rcu_barrier();
10380 			rtnl_lock();
10381 
10382 			list_for_each_entry(dev, list, todo_list)
10383 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10384 					     &dev->state)) {
10385 					/* We must not have linkwatch events
10386 					 * pending on unregister. If this
10387 					 * happens, we simply run the queue
10388 					 * unscheduled, resulting in a noop
10389 					 * for this device.
10390 					 */
10391 					linkwatch_run_queue();
10392 					break;
10393 				}
10394 
10395 			__rtnl_unlock();
10396 
10397 			rebroadcast_time = jiffies;
10398 		}
10399 
10400 		if (!wait) {
10401 			rcu_barrier();
10402 			wait = WAIT_REFS_MIN_MSECS;
10403 		} else {
10404 			msleep(wait);
10405 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10406 		}
10407 
10408 		list_for_each_entry(dev, list, todo_list)
10409 			if (netdev_refcnt_read(dev) == 1)
10410 				return dev;
10411 
10412 		if (time_after(jiffies, warning_time +
10413 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10414 			list_for_each_entry(dev, list, todo_list) {
10415 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10416 					 dev->name, netdev_refcnt_read(dev));
10417 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10418 			}
10419 
10420 			warning_time = jiffies;
10421 		}
10422 	}
10423 }
10424 
10425 /* The sequence is:
10426  *
10427  *	rtnl_lock();
10428  *	...
10429  *	register_netdevice(x1);
10430  *	register_netdevice(x2);
10431  *	...
10432  *	unregister_netdevice(y1);
10433  *	unregister_netdevice(y2);
10434  *      ...
10435  *	rtnl_unlock();
10436  *	free_netdev(y1);
10437  *	free_netdev(y2);
10438  *
10439  * We are invoked by rtnl_unlock().
10440  * This allows us to deal with problems:
10441  * 1) We can delete sysfs objects which invoke hotplug
10442  *    without deadlocking with linkwatch via keventd.
10443  * 2) Since we run with the RTNL semaphore not held, we can sleep
10444  *    safely in order to wait for the netdev refcnt to drop to zero.
10445  *
10446  * We must not return until all unregister events added during
10447  * the interval the lock was held have been completed.
10448  */
10449 void netdev_run_todo(void)
10450 {
10451 	struct net_device *dev, *tmp;
10452 	struct list_head list;
10453 #ifdef CONFIG_LOCKDEP
10454 	struct list_head unlink_list;
10455 
10456 	list_replace_init(&net_unlink_list, &unlink_list);
10457 
10458 	while (!list_empty(&unlink_list)) {
10459 		struct net_device *dev = list_first_entry(&unlink_list,
10460 							  struct net_device,
10461 							  unlink_list);
10462 		list_del_init(&dev->unlink_list);
10463 		dev->nested_level = dev->lower_level - 1;
10464 	}
10465 #endif
10466 
10467 	/* Snapshot list, allow later requests */
10468 	list_replace_init(&net_todo_list, &list);
10469 
10470 	__rtnl_unlock();
10471 
10472 	/* Wait for rcu callbacks to finish before next phase */
10473 	if (!list_empty(&list))
10474 		rcu_barrier();
10475 
10476 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10477 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10478 			netdev_WARN(dev, "run_todo but not unregistering\n");
10479 			list_del(&dev->todo_list);
10480 			continue;
10481 		}
10482 
10483 		write_lock(&dev_base_lock);
10484 		dev->reg_state = NETREG_UNREGISTERED;
10485 		write_unlock(&dev_base_lock);
10486 		linkwatch_forget_dev(dev);
10487 	}
10488 
10489 	while (!list_empty(&list)) {
10490 		dev = netdev_wait_allrefs_any(&list);
10491 		list_del(&dev->todo_list);
10492 
10493 		/* paranoia */
10494 		BUG_ON(netdev_refcnt_read(dev) != 1);
10495 		BUG_ON(!list_empty(&dev->ptype_all));
10496 		BUG_ON(!list_empty(&dev->ptype_specific));
10497 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10498 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10499 
10500 		if (dev->priv_destructor)
10501 			dev->priv_destructor(dev);
10502 		if (dev->needs_free_netdev)
10503 			free_netdev(dev);
10504 
10505 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10506 			wake_up(&netdev_unregistering_wq);
10507 
10508 		/* Free network device */
10509 		kobject_put(&dev->dev.kobj);
10510 	}
10511 }
10512 
10513 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10514  * all the same fields in the same order as net_device_stats, with only
10515  * the type differing, but rtnl_link_stats64 may have additional fields
10516  * at the end for newer counters.
10517  */
10518 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10519 			     const struct net_device_stats *netdev_stats)
10520 {
10521 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10522 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10523 	u64 *dst = (u64 *)stats64;
10524 
10525 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10526 	for (i = 0; i < n; i++)
10527 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10528 	/* zero out counters that only exist in rtnl_link_stats64 */
10529 	memset((char *)stats64 + n * sizeof(u64), 0,
10530 	       sizeof(*stats64) - n * sizeof(u64));
10531 }
10532 EXPORT_SYMBOL(netdev_stats_to_stats64);
10533 
10534 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10535 		struct net_device *dev)
10536 {
10537 	struct net_device_core_stats __percpu *p;
10538 
10539 	p = alloc_percpu_gfp(struct net_device_core_stats,
10540 			     GFP_ATOMIC | __GFP_NOWARN);
10541 
10542 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10543 		free_percpu(p);
10544 
10545 	/* This READ_ONCE() pairs with the cmpxchg() above */
10546 	return READ_ONCE(dev->core_stats);
10547 }
10548 
10549 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10550 {
10551 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10552 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10553 	unsigned long __percpu *field;
10554 
10555 	if (unlikely(!p)) {
10556 		p = netdev_core_stats_alloc(dev);
10557 		if (!p)
10558 			return;
10559 	}
10560 
10561 	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10562 	this_cpu_inc(*field);
10563 }
10564 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10565 
10566 /**
10567  *	dev_get_stats	- get network device statistics
10568  *	@dev: device to get statistics from
10569  *	@storage: place to store stats
10570  *
10571  *	Get network statistics from device. Return @storage.
10572  *	The device driver may provide its own method by setting
10573  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10574  *	otherwise the internal statistics structure is used.
10575  */
10576 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10577 					struct rtnl_link_stats64 *storage)
10578 {
10579 	const struct net_device_ops *ops = dev->netdev_ops;
10580 	const struct net_device_core_stats __percpu *p;
10581 
10582 	if (ops->ndo_get_stats64) {
10583 		memset(storage, 0, sizeof(*storage));
10584 		ops->ndo_get_stats64(dev, storage);
10585 	} else if (ops->ndo_get_stats) {
10586 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10587 	} else {
10588 		netdev_stats_to_stats64(storage, &dev->stats);
10589 	}
10590 
10591 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10592 	p = READ_ONCE(dev->core_stats);
10593 	if (p) {
10594 		const struct net_device_core_stats *core_stats;
10595 		int i;
10596 
10597 		for_each_possible_cpu(i) {
10598 			core_stats = per_cpu_ptr(p, i);
10599 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10600 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10601 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10602 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10603 		}
10604 	}
10605 	return storage;
10606 }
10607 EXPORT_SYMBOL(dev_get_stats);
10608 
10609 /**
10610  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10611  *	@s: place to store stats
10612  *	@netstats: per-cpu network stats to read from
10613  *
10614  *	Read per-cpu network statistics and populate the related fields in @s.
10615  */
10616 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10617 			   const struct pcpu_sw_netstats __percpu *netstats)
10618 {
10619 	int cpu;
10620 
10621 	for_each_possible_cpu(cpu) {
10622 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10623 		const struct pcpu_sw_netstats *stats;
10624 		unsigned int start;
10625 
10626 		stats = per_cpu_ptr(netstats, cpu);
10627 		do {
10628 			start = u64_stats_fetch_begin(&stats->syncp);
10629 			rx_packets = u64_stats_read(&stats->rx_packets);
10630 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10631 			tx_packets = u64_stats_read(&stats->tx_packets);
10632 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10633 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10634 
10635 		s->rx_packets += rx_packets;
10636 		s->rx_bytes   += rx_bytes;
10637 		s->tx_packets += tx_packets;
10638 		s->tx_bytes   += tx_bytes;
10639 	}
10640 }
10641 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10642 
10643 /**
10644  *	dev_get_tstats64 - ndo_get_stats64 implementation
10645  *	@dev: device to get statistics from
10646  *	@s: place to store stats
10647  *
10648  *	Populate @s from dev->stats and dev->tstats. Can be used as
10649  *	ndo_get_stats64() callback.
10650  */
10651 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10652 {
10653 	netdev_stats_to_stats64(s, &dev->stats);
10654 	dev_fetch_sw_netstats(s, dev->tstats);
10655 }
10656 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10657 
10658 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10659 {
10660 	struct netdev_queue *queue = dev_ingress_queue(dev);
10661 
10662 #ifdef CONFIG_NET_CLS_ACT
10663 	if (queue)
10664 		return queue;
10665 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10666 	if (!queue)
10667 		return NULL;
10668 	netdev_init_one_queue(dev, queue, NULL);
10669 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10670 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10671 	rcu_assign_pointer(dev->ingress_queue, queue);
10672 #endif
10673 	return queue;
10674 }
10675 
10676 static const struct ethtool_ops default_ethtool_ops;
10677 
10678 void netdev_set_default_ethtool_ops(struct net_device *dev,
10679 				    const struct ethtool_ops *ops)
10680 {
10681 	if (dev->ethtool_ops == &default_ethtool_ops)
10682 		dev->ethtool_ops = ops;
10683 }
10684 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10685 
10686 /**
10687  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10688  * @dev: netdev to enable the IRQ coalescing on
10689  *
10690  * Sets a conservative default for SW IRQ coalescing. Users can use
10691  * sysfs attributes to override the default values.
10692  */
10693 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10694 {
10695 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10696 
10697 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10698 		dev->gro_flush_timeout = 20000;
10699 		dev->napi_defer_hard_irqs = 1;
10700 	}
10701 }
10702 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10703 
10704 void netdev_freemem(struct net_device *dev)
10705 {
10706 	char *addr = (char *)dev - dev->padded;
10707 
10708 	kvfree(addr);
10709 }
10710 
10711 /**
10712  * alloc_netdev_mqs - allocate network device
10713  * @sizeof_priv: size of private data to allocate space for
10714  * @name: device name format string
10715  * @name_assign_type: origin of device name
10716  * @setup: callback to initialize device
10717  * @txqs: the number of TX subqueues to allocate
10718  * @rxqs: the number of RX subqueues to allocate
10719  *
10720  * Allocates a struct net_device with private data area for driver use
10721  * and performs basic initialization.  Also allocates subqueue structs
10722  * for each queue on the device.
10723  */
10724 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10725 		unsigned char name_assign_type,
10726 		void (*setup)(struct net_device *),
10727 		unsigned int txqs, unsigned int rxqs)
10728 {
10729 	struct net_device *dev;
10730 	unsigned int alloc_size;
10731 	struct net_device *p;
10732 
10733 	BUG_ON(strlen(name) >= sizeof(dev->name));
10734 
10735 	if (txqs < 1) {
10736 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10737 		return NULL;
10738 	}
10739 
10740 	if (rxqs < 1) {
10741 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10742 		return NULL;
10743 	}
10744 
10745 	alloc_size = sizeof(struct net_device);
10746 	if (sizeof_priv) {
10747 		/* ensure 32-byte alignment of private area */
10748 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10749 		alloc_size += sizeof_priv;
10750 	}
10751 	/* ensure 32-byte alignment of whole construct */
10752 	alloc_size += NETDEV_ALIGN - 1;
10753 
10754 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10755 	if (!p)
10756 		return NULL;
10757 
10758 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10759 	dev->padded = (char *)dev - (char *)p;
10760 
10761 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10762 #ifdef CONFIG_PCPU_DEV_REFCNT
10763 	dev->pcpu_refcnt = alloc_percpu(int);
10764 	if (!dev->pcpu_refcnt)
10765 		goto free_dev;
10766 	__dev_hold(dev);
10767 #else
10768 	refcount_set(&dev->dev_refcnt, 1);
10769 #endif
10770 
10771 	if (dev_addr_init(dev))
10772 		goto free_pcpu;
10773 
10774 	dev_mc_init(dev);
10775 	dev_uc_init(dev);
10776 
10777 	dev_net_set(dev, &init_net);
10778 
10779 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10780 	dev->xdp_zc_max_segs = 1;
10781 	dev->gso_max_segs = GSO_MAX_SEGS;
10782 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10783 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10784 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10785 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10786 	dev->tso_max_segs = TSO_MAX_SEGS;
10787 	dev->upper_level = 1;
10788 	dev->lower_level = 1;
10789 #ifdef CONFIG_LOCKDEP
10790 	dev->nested_level = 0;
10791 	INIT_LIST_HEAD(&dev->unlink_list);
10792 #endif
10793 
10794 	INIT_LIST_HEAD(&dev->napi_list);
10795 	INIT_LIST_HEAD(&dev->unreg_list);
10796 	INIT_LIST_HEAD(&dev->close_list);
10797 	INIT_LIST_HEAD(&dev->link_watch_list);
10798 	INIT_LIST_HEAD(&dev->adj_list.upper);
10799 	INIT_LIST_HEAD(&dev->adj_list.lower);
10800 	INIT_LIST_HEAD(&dev->ptype_all);
10801 	INIT_LIST_HEAD(&dev->ptype_specific);
10802 	INIT_LIST_HEAD(&dev->net_notifier_list);
10803 #ifdef CONFIG_NET_SCHED
10804 	hash_init(dev->qdisc_hash);
10805 #endif
10806 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10807 	setup(dev);
10808 
10809 	if (!dev->tx_queue_len) {
10810 		dev->priv_flags |= IFF_NO_QUEUE;
10811 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10812 	}
10813 
10814 	dev->num_tx_queues = txqs;
10815 	dev->real_num_tx_queues = txqs;
10816 	if (netif_alloc_netdev_queues(dev))
10817 		goto free_all;
10818 
10819 	dev->num_rx_queues = rxqs;
10820 	dev->real_num_rx_queues = rxqs;
10821 	if (netif_alloc_rx_queues(dev))
10822 		goto free_all;
10823 
10824 	strcpy(dev->name, name);
10825 	dev->name_assign_type = name_assign_type;
10826 	dev->group = INIT_NETDEV_GROUP;
10827 	if (!dev->ethtool_ops)
10828 		dev->ethtool_ops = &default_ethtool_ops;
10829 
10830 	nf_hook_netdev_init(dev);
10831 
10832 	return dev;
10833 
10834 free_all:
10835 	free_netdev(dev);
10836 	return NULL;
10837 
10838 free_pcpu:
10839 #ifdef CONFIG_PCPU_DEV_REFCNT
10840 	free_percpu(dev->pcpu_refcnt);
10841 free_dev:
10842 #endif
10843 	netdev_freemem(dev);
10844 	return NULL;
10845 }
10846 EXPORT_SYMBOL(alloc_netdev_mqs);
10847 
10848 /**
10849  * free_netdev - free network device
10850  * @dev: device
10851  *
10852  * This function does the last stage of destroying an allocated device
10853  * interface. The reference to the device object is released. If this
10854  * is the last reference then it will be freed.Must be called in process
10855  * context.
10856  */
10857 void free_netdev(struct net_device *dev)
10858 {
10859 	struct napi_struct *p, *n;
10860 
10861 	might_sleep();
10862 
10863 	/* When called immediately after register_netdevice() failed the unwind
10864 	 * handling may still be dismantling the device. Handle that case by
10865 	 * deferring the free.
10866 	 */
10867 	if (dev->reg_state == NETREG_UNREGISTERING) {
10868 		ASSERT_RTNL();
10869 		dev->needs_free_netdev = true;
10870 		return;
10871 	}
10872 
10873 	netif_free_tx_queues(dev);
10874 	netif_free_rx_queues(dev);
10875 
10876 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10877 
10878 	/* Flush device addresses */
10879 	dev_addr_flush(dev);
10880 
10881 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10882 		netif_napi_del(p);
10883 
10884 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10885 #ifdef CONFIG_PCPU_DEV_REFCNT
10886 	free_percpu(dev->pcpu_refcnt);
10887 	dev->pcpu_refcnt = NULL;
10888 #endif
10889 	free_percpu(dev->core_stats);
10890 	dev->core_stats = NULL;
10891 	free_percpu(dev->xdp_bulkq);
10892 	dev->xdp_bulkq = NULL;
10893 
10894 	/*  Compatibility with error handling in drivers */
10895 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10896 		netdev_freemem(dev);
10897 		return;
10898 	}
10899 
10900 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10901 	dev->reg_state = NETREG_RELEASED;
10902 
10903 	/* will free via device release */
10904 	put_device(&dev->dev);
10905 }
10906 EXPORT_SYMBOL(free_netdev);
10907 
10908 /**
10909  *	synchronize_net -  Synchronize with packet receive processing
10910  *
10911  *	Wait for packets currently being received to be done.
10912  *	Does not block later packets from starting.
10913  */
10914 void synchronize_net(void)
10915 {
10916 	might_sleep();
10917 	if (rtnl_is_locked())
10918 		synchronize_rcu_expedited();
10919 	else
10920 		synchronize_rcu();
10921 }
10922 EXPORT_SYMBOL(synchronize_net);
10923 
10924 /**
10925  *	unregister_netdevice_queue - remove device from the kernel
10926  *	@dev: device
10927  *	@head: list
10928  *
10929  *	This function shuts down a device interface and removes it
10930  *	from the kernel tables.
10931  *	If head not NULL, device is queued to be unregistered later.
10932  *
10933  *	Callers must hold the rtnl semaphore.  You may want
10934  *	unregister_netdev() instead of this.
10935  */
10936 
10937 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10938 {
10939 	ASSERT_RTNL();
10940 
10941 	if (head) {
10942 		list_move_tail(&dev->unreg_list, head);
10943 	} else {
10944 		LIST_HEAD(single);
10945 
10946 		list_add(&dev->unreg_list, &single);
10947 		unregister_netdevice_many(&single);
10948 	}
10949 }
10950 EXPORT_SYMBOL(unregister_netdevice_queue);
10951 
10952 void unregister_netdevice_many_notify(struct list_head *head,
10953 				      u32 portid, const struct nlmsghdr *nlh)
10954 {
10955 	struct net_device *dev, *tmp;
10956 	LIST_HEAD(close_head);
10957 
10958 	BUG_ON(dev_boot_phase);
10959 	ASSERT_RTNL();
10960 
10961 	if (list_empty(head))
10962 		return;
10963 
10964 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10965 		/* Some devices call without registering
10966 		 * for initialization unwind. Remove those
10967 		 * devices and proceed with the remaining.
10968 		 */
10969 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10970 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10971 				 dev->name, dev);
10972 
10973 			WARN_ON(1);
10974 			list_del(&dev->unreg_list);
10975 			continue;
10976 		}
10977 		dev->dismantle = true;
10978 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10979 	}
10980 
10981 	/* If device is running, close it first. */
10982 	list_for_each_entry(dev, head, unreg_list)
10983 		list_add_tail(&dev->close_list, &close_head);
10984 	dev_close_many(&close_head, true);
10985 
10986 	list_for_each_entry(dev, head, unreg_list) {
10987 		/* And unlink it from device chain. */
10988 		write_lock(&dev_base_lock);
10989 		unlist_netdevice(dev, false);
10990 		dev->reg_state = NETREG_UNREGISTERING;
10991 		write_unlock(&dev_base_lock);
10992 	}
10993 	flush_all_backlogs();
10994 
10995 	synchronize_net();
10996 
10997 	list_for_each_entry(dev, head, unreg_list) {
10998 		struct sk_buff *skb = NULL;
10999 
11000 		/* Shutdown queueing discipline. */
11001 		dev_shutdown(dev);
11002 		dev_tcx_uninstall(dev);
11003 		dev_xdp_uninstall(dev);
11004 		bpf_dev_bound_netdev_unregister(dev);
11005 
11006 		netdev_offload_xstats_disable_all(dev);
11007 
11008 		/* Notify protocols, that we are about to destroy
11009 		 * this device. They should clean all the things.
11010 		 */
11011 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11012 
11013 		if (!dev->rtnl_link_ops ||
11014 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11015 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11016 						     GFP_KERNEL, NULL, 0,
11017 						     portid, nlh);
11018 
11019 		/*
11020 		 *	Flush the unicast and multicast chains
11021 		 */
11022 		dev_uc_flush(dev);
11023 		dev_mc_flush(dev);
11024 
11025 		netdev_name_node_alt_flush(dev);
11026 		netdev_name_node_free(dev->name_node);
11027 
11028 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11029 
11030 		if (dev->netdev_ops->ndo_uninit)
11031 			dev->netdev_ops->ndo_uninit(dev);
11032 
11033 		if (skb)
11034 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11035 
11036 		/* Notifier chain MUST detach us all upper devices. */
11037 		WARN_ON(netdev_has_any_upper_dev(dev));
11038 		WARN_ON(netdev_has_any_lower_dev(dev));
11039 
11040 		/* Remove entries from kobject tree */
11041 		netdev_unregister_kobject(dev);
11042 #ifdef CONFIG_XPS
11043 		/* Remove XPS queueing entries */
11044 		netif_reset_xps_queues_gt(dev, 0);
11045 #endif
11046 	}
11047 
11048 	synchronize_net();
11049 
11050 	list_for_each_entry(dev, head, unreg_list) {
11051 		netdev_put(dev, &dev->dev_registered_tracker);
11052 		net_set_todo(dev);
11053 	}
11054 
11055 	list_del(head);
11056 }
11057 
11058 /**
11059  *	unregister_netdevice_many - unregister many devices
11060  *	@head: list of devices
11061  *
11062  *  Note: As most callers use a stack allocated list_head,
11063  *  we force a list_del() to make sure stack wont be corrupted later.
11064  */
11065 void unregister_netdevice_many(struct list_head *head)
11066 {
11067 	unregister_netdevice_many_notify(head, 0, NULL);
11068 }
11069 EXPORT_SYMBOL(unregister_netdevice_many);
11070 
11071 /**
11072  *	unregister_netdev - remove device from the kernel
11073  *	@dev: device
11074  *
11075  *	This function shuts down a device interface and removes it
11076  *	from the kernel tables.
11077  *
11078  *	This is just a wrapper for unregister_netdevice that takes
11079  *	the rtnl semaphore.  In general you want to use this and not
11080  *	unregister_netdevice.
11081  */
11082 void unregister_netdev(struct net_device *dev)
11083 {
11084 	rtnl_lock();
11085 	unregister_netdevice(dev);
11086 	rtnl_unlock();
11087 }
11088 EXPORT_SYMBOL(unregister_netdev);
11089 
11090 /**
11091  *	__dev_change_net_namespace - move device to different nethost namespace
11092  *	@dev: device
11093  *	@net: network namespace
11094  *	@pat: If not NULL name pattern to try if the current device name
11095  *	      is already taken in the destination network namespace.
11096  *	@new_ifindex: If not zero, specifies device index in the target
11097  *	              namespace.
11098  *
11099  *	This function shuts down a device interface and moves it
11100  *	to a new network namespace. On success 0 is returned, on
11101  *	a failure a netagive errno code is returned.
11102  *
11103  *	Callers must hold the rtnl semaphore.
11104  */
11105 
11106 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11107 			       const char *pat, int new_ifindex)
11108 {
11109 	struct netdev_name_node *name_node;
11110 	struct net *net_old = dev_net(dev);
11111 	char new_name[IFNAMSIZ] = {};
11112 	int err, new_nsid;
11113 
11114 	ASSERT_RTNL();
11115 
11116 	/* Don't allow namespace local devices to be moved. */
11117 	err = -EINVAL;
11118 	if (dev->features & NETIF_F_NETNS_LOCAL)
11119 		goto out;
11120 
11121 	/* Ensure the device has been registrered */
11122 	if (dev->reg_state != NETREG_REGISTERED)
11123 		goto out;
11124 
11125 	/* Get out if there is nothing todo */
11126 	err = 0;
11127 	if (net_eq(net_old, net))
11128 		goto out;
11129 
11130 	/* Pick the destination device name, and ensure
11131 	 * we can use it in the destination network namespace.
11132 	 */
11133 	err = -EEXIST;
11134 	if (netdev_name_in_use(net, dev->name)) {
11135 		/* We get here if we can't use the current device name */
11136 		if (!pat)
11137 			goto out;
11138 		err = dev_prep_valid_name(net, dev, pat, new_name);
11139 		if (err < 0)
11140 			goto out;
11141 	}
11142 	/* Check that none of the altnames conflicts. */
11143 	err = -EEXIST;
11144 	netdev_for_each_altname(dev, name_node)
11145 		if (netdev_name_in_use(net, name_node->name))
11146 			goto out;
11147 
11148 	/* Check that new_ifindex isn't used yet. */
11149 	if (new_ifindex) {
11150 		err = dev_index_reserve(net, new_ifindex);
11151 		if (err < 0)
11152 			goto out;
11153 	} else {
11154 		/* If there is an ifindex conflict assign a new one */
11155 		err = dev_index_reserve(net, dev->ifindex);
11156 		if (err == -EBUSY)
11157 			err = dev_index_reserve(net, 0);
11158 		if (err < 0)
11159 			goto out;
11160 		new_ifindex = err;
11161 	}
11162 
11163 	/*
11164 	 * And now a mini version of register_netdevice unregister_netdevice.
11165 	 */
11166 
11167 	/* If device is running close it first. */
11168 	dev_close(dev);
11169 
11170 	/* And unlink it from device chain */
11171 	unlist_netdevice(dev, true);
11172 
11173 	synchronize_net();
11174 
11175 	/* Shutdown queueing discipline. */
11176 	dev_shutdown(dev);
11177 
11178 	/* Notify protocols, that we are about to destroy
11179 	 * this device. They should clean all the things.
11180 	 *
11181 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11182 	 * This is wanted because this way 8021q and macvlan know
11183 	 * the device is just moving and can keep their slaves up.
11184 	 */
11185 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11186 	rcu_barrier();
11187 
11188 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11189 
11190 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11191 			    new_ifindex);
11192 
11193 	/*
11194 	 *	Flush the unicast and multicast chains
11195 	 */
11196 	dev_uc_flush(dev);
11197 	dev_mc_flush(dev);
11198 
11199 	/* Send a netdev-removed uevent to the old namespace */
11200 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11201 	netdev_adjacent_del_links(dev);
11202 
11203 	/* Move per-net netdevice notifiers that are following the netdevice */
11204 	move_netdevice_notifiers_dev_net(dev, net);
11205 
11206 	/* Actually switch the network namespace */
11207 	dev_net_set(dev, net);
11208 	dev->ifindex = new_ifindex;
11209 
11210 	/* Send a netdev-add uevent to the new namespace */
11211 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11212 	netdev_adjacent_add_links(dev);
11213 
11214 	if (new_name[0]) /* Rename the netdev to prepared name */
11215 		strscpy(dev->name, new_name, IFNAMSIZ);
11216 
11217 	/* Fixup kobjects */
11218 	err = device_rename(&dev->dev, dev->name);
11219 	WARN_ON(err);
11220 
11221 	/* Adapt owner in case owning user namespace of target network
11222 	 * namespace is different from the original one.
11223 	 */
11224 	err = netdev_change_owner(dev, net_old, net);
11225 	WARN_ON(err);
11226 
11227 	/* Add the device back in the hashes */
11228 	list_netdevice(dev);
11229 
11230 	/* Notify protocols, that a new device appeared. */
11231 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11232 
11233 	/*
11234 	 *	Prevent userspace races by waiting until the network
11235 	 *	device is fully setup before sending notifications.
11236 	 */
11237 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11238 
11239 	synchronize_net();
11240 	err = 0;
11241 out:
11242 	return err;
11243 }
11244 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11245 
11246 static int dev_cpu_dead(unsigned int oldcpu)
11247 {
11248 	struct sk_buff **list_skb;
11249 	struct sk_buff *skb;
11250 	unsigned int cpu;
11251 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11252 
11253 	local_irq_disable();
11254 	cpu = smp_processor_id();
11255 	sd = &per_cpu(softnet_data, cpu);
11256 	oldsd = &per_cpu(softnet_data, oldcpu);
11257 
11258 	/* Find end of our completion_queue. */
11259 	list_skb = &sd->completion_queue;
11260 	while (*list_skb)
11261 		list_skb = &(*list_skb)->next;
11262 	/* Append completion queue from offline CPU. */
11263 	*list_skb = oldsd->completion_queue;
11264 	oldsd->completion_queue = NULL;
11265 
11266 	/* Append output queue from offline CPU. */
11267 	if (oldsd->output_queue) {
11268 		*sd->output_queue_tailp = oldsd->output_queue;
11269 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11270 		oldsd->output_queue = NULL;
11271 		oldsd->output_queue_tailp = &oldsd->output_queue;
11272 	}
11273 	/* Append NAPI poll list from offline CPU, with one exception :
11274 	 * process_backlog() must be called by cpu owning percpu backlog.
11275 	 * We properly handle process_queue & input_pkt_queue later.
11276 	 */
11277 	while (!list_empty(&oldsd->poll_list)) {
11278 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11279 							    struct napi_struct,
11280 							    poll_list);
11281 
11282 		list_del_init(&napi->poll_list);
11283 		if (napi->poll == process_backlog)
11284 			napi->state = 0;
11285 		else
11286 			____napi_schedule(sd, napi);
11287 	}
11288 
11289 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11290 	local_irq_enable();
11291 
11292 #ifdef CONFIG_RPS
11293 	remsd = oldsd->rps_ipi_list;
11294 	oldsd->rps_ipi_list = NULL;
11295 #endif
11296 	/* send out pending IPI's on offline CPU */
11297 	net_rps_send_ipi(remsd);
11298 
11299 	/* Process offline CPU's input_pkt_queue */
11300 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11301 		netif_rx(skb);
11302 		input_queue_head_incr(oldsd);
11303 	}
11304 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11305 		netif_rx(skb);
11306 		input_queue_head_incr(oldsd);
11307 	}
11308 
11309 	return 0;
11310 }
11311 
11312 /**
11313  *	netdev_increment_features - increment feature set by one
11314  *	@all: current feature set
11315  *	@one: new feature set
11316  *	@mask: mask feature set
11317  *
11318  *	Computes a new feature set after adding a device with feature set
11319  *	@one to the master device with current feature set @all.  Will not
11320  *	enable anything that is off in @mask. Returns the new feature set.
11321  */
11322 netdev_features_t netdev_increment_features(netdev_features_t all,
11323 	netdev_features_t one, netdev_features_t mask)
11324 {
11325 	if (mask & NETIF_F_HW_CSUM)
11326 		mask |= NETIF_F_CSUM_MASK;
11327 	mask |= NETIF_F_VLAN_CHALLENGED;
11328 
11329 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11330 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11331 
11332 	/* If one device supports hw checksumming, set for all. */
11333 	if (all & NETIF_F_HW_CSUM)
11334 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11335 
11336 	return all;
11337 }
11338 EXPORT_SYMBOL(netdev_increment_features);
11339 
11340 static struct hlist_head * __net_init netdev_create_hash(void)
11341 {
11342 	int i;
11343 	struct hlist_head *hash;
11344 
11345 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11346 	if (hash != NULL)
11347 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11348 			INIT_HLIST_HEAD(&hash[i]);
11349 
11350 	return hash;
11351 }
11352 
11353 /* Initialize per network namespace state */
11354 static int __net_init netdev_init(struct net *net)
11355 {
11356 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11357 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11358 
11359 	INIT_LIST_HEAD(&net->dev_base_head);
11360 
11361 	net->dev_name_head = netdev_create_hash();
11362 	if (net->dev_name_head == NULL)
11363 		goto err_name;
11364 
11365 	net->dev_index_head = netdev_create_hash();
11366 	if (net->dev_index_head == NULL)
11367 		goto err_idx;
11368 
11369 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11370 
11371 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11372 
11373 	return 0;
11374 
11375 err_idx:
11376 	kfree(net->dev_name_head);
11377 err_name:
11378 	return -ENOMEM;
11379 }
11380 
11381 /**
11382  *	netdev_drivername - network driver for the device
11383  *	@dev: network device
11384  *
11385  *	Determine network driver for device.
11386  */
11387 const char *netdev_drivername(const struct net_device *dev)
11388 {
11389 	const struct device_driver *driver;
11390 	const struct device *parent;
11391 	const char *empty = "";
11392 
11393 	parent = dev->dev.parent;
11394 	if (!parent)
11395 		return empty;
11396 
11397 	driver = parent->driver;
11398 	if (driver && driver->name)
11399 		return driver->name;
11400 	return empty;
11401 }
11402 
11403 static void __netdev_printk(const char *level, const struct net_device *dev,
11404 			    struct va_format *vaf)
11405 {
11406 	if (dev && dev->dev.parent) {
11407 		dev_printk_emit(level[1] - '0',
11408 				dev->dev.parent,
11409 				"%s %s %s%s: %pV",
11410 				dev_driver_string(dev->dev.parent),
11411 				dev_name(dev->dev.parent),
11412 				netdev_name(dev), netdev_reg_state(dev),
11413 				vaf);
11414 	} else if (dev) {
11415 		printk("%s%s%s: %pV",
11416 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11417 	} else {
11418 		printk("%s(NULL net_device): %pV", level, vaf);
11419 	}
11420 }
11421 
11422 void netdev_printk(const char *level, const struct net_device *dev,
11423 		   const char *format, ...)
11424 {
11425 	struct va_format vaf;
11426 	va_list args;
11427 
11428 	va_start(args, format);
11429 
11430 	vaf.fmt = format;
11431 	vaf.va = &args;
11432 
11433 	__netdev_printk(level, dev, &vaf);
11434 
11435 	va_end(args);
11436 }
11437 EXPORT_SYMBOL(netdev_printk);
11438 
11439 #define define_netdev_printk_level(func, level)			\
11440 void func(const struct net_device *dev, const char *fmt, ...)	\
11441 {								\
11442 	struct va_format vaf;					\
11443 	va_list args;						\
11444 								\
11445 	va_start(args, fmt);					\
11446 								\
11447 	vaf.fmt = fmt;						\
11448 	vaf.va = &args;						\
11449 								\
11450 	__netdev_printk(level, dev, &vaf);			\
11451 								\
11452 	va_end(args);						\
11453 }								\
11454 EXPORT_SYMBOL(func);
11455 
11456 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11457 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11458 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11459 define_netdev_printk_level(netdev_err, KERN_ERR);
11460 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11461 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11462 define_netdev_printk_level(netdev_info, KERN_INFO);
11463 
11464 static void __net_exit netdev_exit(struct net *net)
11465 {
11466 	kfree(net->dev_name_head);
11467 	kfree(net->dev_index_head);
11468 	xa_destroy(&net->dev_by_index);
11469 	if (net != &init_net)
11470 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11471 }
11472 
11473 static struct pernet_operations __net_initdata netdev_net_ops = {
11474 	.init = netdev_init,
11475 	.exit = netdev_exit,
11476 };
11477 
11478 static void __net_exit default_device_exit_net(struct net *net)
11479 {
11480 	struct net_device *dev, *aux;
11481 	/*
11482 	 * Push all migratable network devices back to the
11483 	 * initial network namespace
11484 	 */
11485 	ASSERT_RTNL();
11486 	for_each_netdev_safe(net, dev, aux) {
11487 		int err;
11488 		char fb_name[IFNAMSIZ];
11489 
11490 		/* Ignore unmoveable devices (i.e. loopback) */
11491 		if (dev->features & NETIF_F_NETNS_LOCAL)
11492 			continue;
11493 
11494 		/* Leave virtual devices for the generic cleanup */
11495 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11496 			continue;
11497 
11498 		/* Push remaining network devices to init_net */
11499 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11500 		if (netdev_name_in_use(&init_net, fb_name))
11501 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11502 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11503 		if (err) {
11504 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11505 				 __func__, dev->name, err);
11506 			BUG();
11507 		}
11508 	}
11509 }
11510 
11511 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11512 {
11513 	/* At exit all network devices most be removed from a network
11514 	 * namespace.  Do this in the reverse order of registration.
11515 	 * Do this across as many network namespaces as possible to
11516 	 * improve batching efficiency.
11517 	 */
11518 	struct net_device *dev;
11519 	struct net *net;
11520 	LIST_HEAD(dev_kill_list);
11521 
11522 	rtnl_lock();
11523 	list_for_each_entry(net, net_list, exit_list) {
11524 		default_device_exit_net(net);
11525 		cond_resched();
11526 	}
11527 
11528 	list_for_each_entry(net, net_list, exit_list) {
11529 		for_each_netdev_reverse(net, dev) {
11530 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11531 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11532 			else
11533 				unregister_netdevice_queue(dev, &dev_kill_list);
11534 		}
11535 	}
11536 	unregister_netdevice_many(&dev_kill_list);
11537 	rtnl_unlock();
11538 }
11539 
11540 static struct pernet_operations __net_initdata default_device_ops = {
11541 	.exit_batch = default_device_exit_batch,
11542 };
11543 
11544 /*
11545  *	Initialize the DEV module. At boot time this walks the device list and
11546  *	unhooks any devices that fail to initialise (normally hardware not
11547  *	present) and leaves us with a valid list of present and active devices.
11548  *
11549  */
11550 
11551 /*
11552  *       This is called single threaded during boot, so no need
11553  *       to take the rtnl semaphore.
11554  */
11555 static int __init net_dev_init(void)
11556 {
11557 	int i, rc = -ENOMEM;
11558 
11559 	BUG_ON(!dev_boot_phase);
11560 
11561 	if (dev_proc_init())
11562 		goto out;
11563 
11564 	if (netdev_kobject_init())
11565 		goto out;
11566 
11567 	INIT_LIST_HEAD(&ptype_all);
11568 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11569 		INIT_LIST_HEAD(&ptype_base[i]);
11570 
11571 	if (register_pernet_subsys(&netdev_net_ops))
11572 		goto out;
11573 
11574 	/*
11575 	 *	Initialise the packet receive queues.
11576 	 */
11577 
11578 	for_each_possible_cpu(i) {
11579 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11580 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11581 
11582 		INIT_WORK(flush, flush_backlog);
11583 
11584 		skb_queue_head_init(&sd->input_pkt_queue);
11585 		skb_queue_head_init(&sd->process_queue);
11586 #ifdef CONFIG_XFRM_OFFLOAD
11587 		skb_queue_head_init(&sd->xfrm_backlog);
11588 #endif
11589 		INIT_LIST_HEAD(&sd->poll_list);
11590 		sd->output_queue_tailp = &sd->output_queue;
11591 #ifdef CONFIG_RPS
11592 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11593 		sd->cpu = i;
11594 #endif
11595 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11596 		spin_lock_init(&sd->defer_lock);
11597 
11598 		init_gro_hash(&sd->backlog);
11599 		sd->backlog.poll = process_backlog;
11600 		sd->backlog.weight = weight_p;
11601 	}
11602 
11603 	dev_boot_phase = 0;
11604 
11605 	/* The loopback device is special if any other network devices
11606 	 * is present in a network namespace the loopback device must
11607 	 * be present. Since we now dynamically allocate and free the
11608 	 * loopback device ensure this invariant is maintained by
11609 	 * keeping the loopback device as the first device on the
11610 	 * list of network devices.  Ensuring the loopback devices
11611 	 * is the first device that appears and the last network device
11612 	 * that disappears.
11613 	 */
11614 	if (register_pernet_device(&loopback_net_ops))
11615 		goto out;
11616 
11617 	if (register_pernet_device(&default_device_ops))
11618 		goto out;
11619 
11620 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11621 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11622 
11623 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11624 				       NULL, dev_cpu_dead);
11625 	WARN_ON(rc < 0);
11626 	rc = 0;
11627 out:
11628 	return rc;
11629 }
11630 
11631 subsys_initcall(net_dev_init);
11632