xref: /linux/net/core/dev.c (revision 2a10154abcb75ad0d7b6bfea6210ac743ec60897)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 
140 #include "net-sysfs.h"
141 
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144 
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147 
148 static DEFINE_SPINLOCK(ptype_lock);
149 static DEFINE_SPINLOCK(offload_lock);
150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151 struct list_head ptype_all __read_mostly;	/* Taps */
152 static struct list_head offload_base __read_mostly;
153 
154 static int netif_rx_internal(struct sk_buff *skb);
155 static int call_netdevice_notifiers_info(unsigned long val,
156 					 struct net_device *dev,
157 					 struct netdev_notifier_info *info);
158 
159 /*
160  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161  * semaphore.
162  *
163  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164  *
165  * Writers must hold the rtnl semaphore while they loop through the
166  * dev_base_head list, and hold dev_base_lock for writing when they do the
167  * actual updates.  This allows pure readers to access the list even
168  * while a writer is preparing to update it.
169  *
170  * To put it another way, dev_base_lock is held for writing only to
171  * protect against pure readers; the rtnl semaphore provides the
172  * protection against other writers.
173  *
174  * See, for example usages, register_netdevice() and
175  * unregister_netdevice(), which must be called with the rtnl
176  * semaphore held.
177  */
178 DEFINE_RWLOCK(dev_base_lock);
179 EXPORT_SYMBOL(dev_base_lock);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id;
185 static DEFINE_HASHTABLE(napi_hash, 8);
186 
187 static seqcount_t devnet_rename_seq;
188 
189 static inline void dev_base_seq_inc(struct net *net)
190 {
191 	while (++net->dev_base_seq == 0);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 static inline void rps_lock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 	spin_lock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212 
213 static inline void rps_unlock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 	spin_unlock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219 
220 /* Device list insertion */
221 static void list_netdevice(struct net_device *dev)
222 {
223 	struct net *net = dev_net(dev);
224 
225 	ASSERT_RTNL();
226 
227 	write_lock_bh(&dev_base_lock);
228 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230 	hlist_add_head_rcu(&dev->index_hlist,
231 			   dev_index_hash(net, dev->ifindex));
232 	write_unlock_bh(&dev_base_lock);
233 
234 	dev_base_seq_inc(net);
235 }
236 
237 /* Device list removal
238  * caller must respect a RCU grace period before freeing/reusing dev
239  */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242 	ASSERT_RTNL();
243 
244 	/* Unlink dev from the device chain */
245 	write_lock_bh(&dev_base_lock);
246 	list_del_rcu(&dev->dev_list);
247 	hlist_del_rcu(&dev->name_hlist);
248 	hlist_del_rcu(&dev->index_hlist);
249 	write_unlock_bh(&dev_base_lock);
250 
251 	dev_base_seq_inc(dev_net(dev));
252 }
253 
254 /*
255  *	Our notifier list
256  */
257 
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259 
260 /*
261  *	Device drivers call our routines to queue packets here. We empty the
262  *	queue in the local softnet handler.
263  */
264 
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267 
268 #ifdef CONFIG_LOCKDEP
269 /*
270  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271  * according to dev->type
272  */
273 static const unsigned short netdev_lock_type[] =
274 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289 
290 static const char *const netdev_lock_name[] =
291 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306 
307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 
310 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 {
312 	int i;
313 
314 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315 		if (netdev_lock_type[i] == dev_type)
316 			return i;
317 	/* the last key is used by default */
318 	return ARRAY_SIZE(netdev_lock_type) - 1;
319 }
320 
321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322 						 unsigned short dev_type)
323 {
324 	int i;
325 
326 	i = netdev_lock_pos(dev_type);
327 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328 				   netdev_lock_name[i]);
329 }
330 
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333 	int i;
334 
335 	i = netdev_lock_pos(dev->type);
336 	lockdep_set_class_and_name(&dev->addr_list_lock,
337 				   &netdev_addr_lock_key[i],
338 				   netdev_lock_name[i]);
339 }
340 #else
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 						 unsigned short dev_type)
343 {
344 }
345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 {
347 }
348 #endif
349 
350 /*******************************************************************************
351 
352 		Protocol management and registration routines
353 
354 *******************************************************************************/
355 
356 /*
357  *	Add a protocol ID to the list. Now that the input handler is
358  *	smarter we can dispense with all the messy stuff that used to be
359  *	here.
360  *
361  *	BEWARE!!! Protocol handlers, mangling input packets,
362  *	MUST BE last in hash buckets and checking protocol handlers
363  *	MUST start from promiscuous ptype_all chain in net_bh.
364  *	It is true now, do not change it.
365  *	Explanation follows: if protocol handler, mangling packet, will
366  *	be the first on list, it is not able to sense, that packet
367  *	is cloned and should be copied-on-write, so that it will
368  *	change it and subsequent readers will get broken packet.
369  *							--ANK (980803)
370  */
371 
372 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 {
374 	if (pt->type == htons(ETH_P_ALL))
375 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376 	else
377 		return pt->dev ? &pt->dev->ptype_specific :
378 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379 }
380 
381 /**
382  *	dev_add_pack - add packet handler
383  *	@pt: packet type declaration
384  *
385  *	Add a protocol handler to the networking stack. The passed &packet_type
386  *	is linked into kernel lists and may not be freed until it has been
387  *	removed from the kernel lists.
388  *
389  *	This call does not sleep therefore it can not
390  *	guarantee all CPU's that are in middle of receiving packets
391  *	will see the new packet type (until the next received packet).
392  */
393 
394 void dev_add_pack(struct packet_type *pt)
395 {
396 	struct list_head *head = ptype_head(pt);
397 
398 	spin_lock(&ptype_lock);
399 	list_add_rcu(&pt->list, head);
400 	spin_unlock(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403 
404 /**
405  *	__dev_remove_pack	 - remove packet handler
406  *	@pt: packet type declaration
407  *
408  *	Remove a protocol handler that was previously added to the kernel
409  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
410  *	from the kernel lists and can be freed or reused once this function
411  *	returns.
412  *
413  *      The packet type might still be in use by receivers
414  *	and must not be freed until after all the CPU's have gone
415  *	through a quiescent state.
416  */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 	struct list_head *head = ptype_head(pt);
420 	struct packet_type *pt1;
421 
422 	spin_lock(&ptype_lock);
423 
424 	list_for_each_entry(pt1, head, list) {
425 		if (pt == pt1) {
426 			list_del_rcu(&pt->list);
427 			goto out;
428 		}
429 	}
430 
431 	pr_warn("dev_remove_pack: %p not found\n", pt);
432 out:
433 	spin_unlock(&ptype_lock);
434 }
435 EXPORT_SYMBOL(__dev_remove_pack);
436 
437 /**
438  *	dev_remove_pack	 - remove packet handler
439  *	@pt: packet type declaration
440  *
441  *	Remove a protocol handler that was previously added to the kernel
442  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
443  *	from the kernel lists and can be freed or reused once this function
444  *	returns.
445  *
446  *	This call sleeps to guarantee that no CPU is looking at the packet
447  *	type after return.
448  */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451 	__dev_remove_pack(pt);
452 
453 	synchronize_net();
454 }
455 EXPORT_SYMBOL(dev_remove_pack);
456 
457 
458 /**
459  *	dev_add_offload - register offload handlers
460  *	@po: protocol offload declaration
461  *
462  *	Add protocol offload handlers to the networking stack. The passed
463  *	&proto_offload is linked into kernel lists and may not be freed until
464  *	it has been removed from the kernel lists.
465  *
466  *	This call does not sleep therefore it can not
467  *	guarantee all CPU's that are in middle of receiving packets
468  *	will see the new offload handlers (until the next received packet).
469  */
470 void dev_add_offload(struct packet_offload *po)
471 {
472 	struct packet_offload *elem;
473 
474 	spin_lock(&offload_lock);
475 	list_for_each_entry(elem, &offload_base, list) {
476 		if (po->priority < elem->priority)
477 			break;
478 	}
479 	list_add_rcu(&po->list, elem->list.prev);
480 	spin_unlock(&offload_lock);
481 }
482 EXPORT_SYMBOL(dev_add_offload);
483 
484 /**
485  *	__dev_remove_offload	 - remove offload handler
486  *	@po: packet offload declaration
487  *
488  *	Remove a protocol offload handler that was previously added to the
489  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
490  *	is removed from the kernel lists and can be freed or reused once this
491  *	function returns.
492  *
493  *      The packet type might still be in use by receivers
494  *	and must not be freed until after all the CPU's have gone
495  *	through a quiescent state.
496  */
497 static void __dev_remove_offload(struct packet_offload *po)
498 {
499 	struct list_head *head = &offload_base;
500 	struct packet_offload *po1;
501 
502 	spin_lock(&offload_lock);
503 
504 	list_for_each_entry(po1, head, list) {
505 		if (po == po1) {
506 			list_del_rcu(&po->list);
507 			goto out;
508 		}
509 	}
510 
511 	pr_warn("dev_remove_offload: %p not found\n", po);
512 out:
513 	spin_unlock(&offload_lock);
514 }
515 
516 /**
517  *	dev_remove_offload	 - remove packet offload handler
518  *	@po: packet offload declaration
519  *
520  *	Remove a packet offload handler that was previously added to the kernel
521  *	offload handlers by dev_add_offload(). The passed &offload_type is
522  *	removed from the kernel lists and can be freed or reused once this
523  *	function returns.
524  *
525  *	This call sleeps to guarantee that no CPU is looking at the packet
526  *	type after return.
527  */
528 void dev_remove_offload(struct packet_offload *po)
529 {
530 	__dev_remove_offload(po);
531 
532 	synchronize_net();
533 }
534 EXPORT_SYMBOL(dev_remove_offload);
535 
536 /******************************************************************************
537 
538 		      Device Boot-time Settings Routines
539 
540 *******************************************************************************/
541 
542 /* Boot time configuration table */
543 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
544 
545 /**
546  *	netdev_boot_setup_add	- add new setup entry
547  *	@name: name of the device
548  *	@map: configured settings for the device
549  *
550  *	Adds new setup entry to the dev_boot_setup list.  The function
551  *	returns 0 on error and 1 on success.  This is a generic routine to
552  *	all netdevices.
553  */
554 static int netdev_boot_setup_add(char *name, struct ifmap *map)
555 {
556 	struct netdev_boot_setup *s;
557 	int i;
558 
559 	s = dev_boot_setup;
560 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
561 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
562 			memset(s[i].name, 0, sizeof(s[i].name));
563 			strlcpy(s[i].name, name, IFNAMSIZ);
564 			memcpy(&s[i].map, map, sizeof(s[i].map));
565 			break;
566 		}
567 	}
568 
569 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
570 }
571 
572 /**
573  *	netdev_boot_setup_check	- check boot time settings
574  *	@dev: the netdevice
575  *
576  * 	Check boot time settings for the device.
577  *	The found settings are set for the device to be used
578  *	later in the device probing.
579  *	Returns 0 if no settings found, 1 if they are.
580  */
581 int netdev_boot_setup_check(struct net_device *dev)
582 {
583 	struct netdev_boot_setup *s = dev_boot_setup;
584 	int i;
585 
586 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
587 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
588 		    !strcmp(dev->name, s[i].name)) {
589 			dev->irq 	= s[i].map.irq;
590 			dev->base_addr 	= s[i].map.base_addr;
591 			dev->mem_start 	= s[i].map.mem_start;
592 			dev->mem_end 	= s[i].map.mem_end;
593 			return 1;
594 		}
595 	}
596 	return 0;
597 }
598 EXPORT_SYMBOL(netdev_boot_setup_check);
599 
600 
601 /**
602  *	netdev_boot_base	- get address from boot time settings
603  *	@prefix: prefix for network device
604  *	@unit: id for network device
605  *
606  * 	Check boot time settings for the base address of device.
607  *	The found settings are set for the device to be used
608  *	later in the device probing.
609  *	Returns 0 if no settings found.
610  */
611 unsigned long netdev_boot_base(const char *prefix, int unit)
612 {
613 	const struct netdev_boot_setup *s = dev_boot_setup;
614 	char name[IFNAMSIZ];
615 	int i;
616 
617 	sprintf(name, "%s%d", prefix, unit);
618 
619 	/*
620 	 * If device already registered then return base of 1
621 	 * to indicate not to probe for this interface
622 	 */
623 	if (__dev_get_by_name(&init_net, name))
624 		return 1;
625 
626 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
627 		if (!strcmp(name, s[i].name))
628 			return s[i].map.base_addr;
629 	return 0;
630 }
631 
632 /*
633  * Saves at boot time configured settings for any netdevice.
634  */
635 int __init netdev_boot_setup(char *str)
636 {
637 	int ints[5];
638 	struct ifmap map;
639 
640 	str = get_options(str, ARRAY_SIZE(ints), ints);
641 	if (!str || !*str)
642 		return 0;
643 
644 	/* Save settings */
645 	memset(&map, 0, sizeof(map));
646 	if (ints[0] > 0)
647 		map.irq = ints[1];
648 	if (ints[0] > 1)
649 		map.base_addr = ints[2];
650 	if (ints[0] > 2)
651 		map.mem_start = ints[3];
652 	if (ints[0] > 3)
653 		map.mem_end = ints[4];
654 
655 	/* Add new entry to the list */
656 	return netdev_boot_setup_add(str, &map);
657 }
658 
659 __setup("netdev=", netdev_boot_setup);
660 
661 /*******************************************************************************
662 
663 			    Device Interface Subroutines
664 
665 *******************************************************************************/
666 
667 /**
668  *	dev_get_iflink	- get 'iflink' value of a interface
669  *	@dev: targeted interface
670  *
671  *	Indicates the ifindex the interface is linked to.
672  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
673  */
674 
675 int dev_get_iflink(const struct net_device *dev)
676 {
677 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
678 		return dev->netdev_ops->ndo_get_iflink(dev);
679 
680 	/* If dev->rtnl_link_ops is set, it's a virtual interface. */
681 	if (dev->rtnl_link_ops)
682 		return 0;
683 
684 	return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687 
688 /**
689  *	__dev_get_by_name	- find a device by its name
690  *	@net: the applicable net namespace
691  *	@name: name to find
692  *
693  *	Find an interface by name. Must be called under RTNL semaphore
694  *	or @dev_base_lock. If the name is found a pointer to the device
695  *	is returned. If the name is not found then %NULL is returned. The
696  *	reference counters are not incremented so the caller must be
697  *	careful with locks.
698  */
699 
700 struct net_device *__dev_get_by_name(struct net *net, const char *name)
701 {
702 	struct net_device *dev;
703 	struct hlist_head *head = dev_name_hash(net, name);
704 
705 	hlist_for_each_entry(dev, head, name_hlist)
706 		if (!strncmp(dev->name, name, IFNAMSIZ))
707 			return dev;
708 
709 	return NULL;
710 }
711 EXPORT_SYMBOL(__dev_get_by_name);
712 
713 /**
714  *	dev_get_by_name_rcu	- find a device by its name
715  *	@net: the applicable net namespace
716  *	@name: name to find
717  *
718  *	Find an interface by name.
719  *	If the name is found a pointer to the device is returned.
720  * 	If the name is not found then %NULL is returned.
721  *	The reference counters are not incremented so the caller must be
722  *	careful with locks. The caller must hold RCU lock.
723  */
724 
725 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
726 {
727 	struct net_device *dev;
728 	struct hlist_head *head = dev_name_hash(net, name);
729 
730 	hlist_for_each_entry_rcu(dev, head, name_hlist)
731 		if (!strncmp(dev->name, name, IFNAMSIZ))
732 			return dev;
733 
734 	return NULL;
735 }
736 EXPORT_SYMBOL(dev_get_by_name_rcu);
737 
738 /**
739  *	dev_get_by_name		- find a device by its name
740  *	@net: the applicable net namespace
741  *	@name: name to find
742  *
743  *	Find an interface by name. This can be called from any
744  *	context and does its own locking. The returned handle has
745  *	the usage count incremented and the caller must use dev_put() to
746  *	release it when it is no longer needed. %NULL is returned if no
747  *	matching device is found.
748  */
749 
750 struct net_device *dev_get_by_name(struct net *net, const char *name)
751 {
752 	struct net_device *dev;
753 
754 	rcu_read_lock();
755 	dev = dev_get_by_name_rcu(net, name);
756 	if (dev)
757 		dev_hold(dev);
758 	rcu_read_unlock();
759 	return dev;
760 }
761 EXPORT_SYMBOL(dev_get_by_name);
762 
763 /**
764  *	__dev_get_by_index - find a device by its ifindex
765  *	@net: the applicable net namespace
766  *	@ifindex: index of device
767  *
768  *	Search for an interface by index. Returns %NULL if the device
769  *	is not found or a pointer to the device. The device has not
770  *	had its reference counter increased so the caller must be careful
771  *	about locking. The caller must hold either the RTNL semaphore
772  *	or @dev_base_lock.
773  */
774 
775 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
776 {
777 	struct net_device *dev;
778 	struct hlist_head *head = dev_index_hash(net, ifindex);
779 
780 	hlist_for_each_entry(dev, head, index_hlist)
781 		if (dev->ifindex == ifindex)
782 			return dev;
783 
784 	return NULL;
785 }
786 EXPORT_SYMBOL(__dev_get_by_index);
787 
788 /**
789  *	dev_get_by_index_rcu - find a device by its ifindex
790  *	@net: the applicable net namespace
791  *	@ifindex: index of device
792  *
793  *	Search for an interface by index. Returns %NULL if the device
794  *	is not found or a pointer to the device. The device has not
795  *	had its reference counter increased so the caller must be careful
796  *	about locking. The caller must hold RCU lock.
797  */
798 
799 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
800 {
801 	struct net_device *dev;
802 	struct hlist_head *head = dev_index_hash(net, ifindex);
803 
804 	hlist_for_each_entry_rcu(dev, head, index_hlist)
805 		if (dev->ifindex == ifindex)
806 			return dev;
807 
808 	return NULL;
809 }
810 EXPORT_SYMBOL(dev_get_by_index_rcu);
811 
812 
813 /**
814  *	dev_get_by_index - find a device by its ifindex
815  *	@net: the applicable net namespace
816  *	@ifindex: index of device
817  *
818  *	Search for an interface by index. Returns NULL if the device
819  *	is not found or a pointer to the device. The device returned has
820  *	had a reference added and the pointer is safe until the user calls
821  *	dev_put to indicate they have finished with it.
822  */
823 
824 struct net_device *dev_get_by_index(struct net *net, int ifindex)
825 {
826 	struct net_device *dev;
827 
828 	rcu_read_lock();
829 	dev = dev_get_by_index_rcu(net, ifindex);
830 	if (dev)
831 		dev_hold(dev);
832 	rcu_read_unlock();
833 	return dev;
834 }
835 EXPORT_SYMBOL(dev_get_by_index);
836 
837 /**
838  *	netdev_get_name - get a netdevice name, knowing its ifindex.
839  *	@net: network namespace
840  *	@name: a pointer to the buffer where the name will be stored.
841  *	@ifindex: the ifindex of the interface to get the name from.
842  *
843  *	The use of raw_seqcount_begin() and cond_resched() before
844  *	retrying is required as we want to give the writers a chance
845  *	to complete when CONFIG_PREEMPT is not set.
846  */
847 int netdev_get_name(struct net *net, char *name, int ifindex)
848 {
849 	struct net_device *dev;
850 	unsigned int seq;
851 
852 retry:
853 	seq = raw_seqcount_begin(&devnet_rename_seq);
854 	rcu_read_lock();
855 	dev = dev_get_by_index_rcu(net, ifindex);
856 	if (!dev) {
857 		rcu_read_unlock();
858 		return -ENODEV;
859 	}
860 
861 	strcpy(name, dev->name);
862 	rcu_read_unlock();
863 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
864 		cond_resched();
865 		goto retry;
866 	}
867 
868 	return 0;
869 }
870 
871 /**
872  *	dev_getbyhwaddr_rcu - find a device by its hardware address
873  *	@net: the applicable net namespace
874  *	@type: media type of device
875  *	@ha: hardware address
876  *
877  *	Search for an interface by MAC address. Returns NULL if the device
878  *	is not found or a pointer to the device.
879  *	The caller must hold RCU or RTNL.
880  *	The returned device has not had its ref count increased
881  *	and the caller must therefore be careful about locking
882  *
883  */
884 
885 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
886 				       const char *ha)
887 {
888 	struct net_device *dev;
889 
890 	for_each_netdev_rcu(net, dev)
891 		if (dev->type == type &&
892 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
893 			return dev;
894 
895 	return NULL;
896 }
897 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
898 
899 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
900 {
901 	struct net_device *dev;
902 
903 	ASSERT_RTNL();
904 	for_each_netdev(net, dev)
905 		if (dev->type == type)
906 			return dev;
907 
908 	return NULL;
909 }
910 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
911 
912 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
913 {
914 	struct net_device *dev, *ret = NULL;
915 
916 	rcu_read_lock();
917 	for_each_netdev_rcu(net, dev)
918 		if (dev->type == type) {
919 			dev_hold(dev);
920 			ret = dev;
921 			break;
922 		}
923 	rcu_read_unlock();
924 	return ret;
925 }
926 EXPORT_SYMBOL(dev_getfirstbyhwtype);
927 
928 /**
929  *	__dev_get_by_flags - find any device with given flags
930  *	@net: the applicable net namespace
931  *	@if_flags: IFF_* values
932  *	@mask: bitmask of bits in if_flags to check
933  *
934  *	Search for any interface with the given flags. Returns NULL if a device
935  *	is not found or a pointer to the device. Must be called inside
936  *	rtnl_lock(), and result refcount is unchanged.
937  */
938 
939 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
940 				      unsigned short mask)
941 {
942 	struct net_device *dev, *ret;
943 
944 	ASSERT_RTNL();
945 
946 	ret = NULL;
947 	for_each_netdev(net, dev) {
948 		if (((dev->flags ^ if_flags) & mask) == 0) {
949 			ret = dev;
950 			break;
951 		}
952 	}
953 	return ret;
954 }
955 EXPORT_SYMBOL(__dev_get_by_flags);
956 
957 /**
958  *	dev_valid_name - check if name is okay for network device
959  *	@name: name string
960  *
961  *	Network device names need to be valid file names to
962  *	to allow sysfs to work.  We also disallow any kind of
963  *	whitespace.
964  */
965 bool dev_valid_name(const char *name)
966 {
967 	if (*name == '\0')
968 		return false;
969 	if (strlen(name) >= IFNAMSIZ)
970 		return false;
971 	if (!strcmp(name, ".") || !strcmp(name, ".."))
972 		return false;
973 
974 	while (*name) {
975 		if (*name == '/' || *name == ':' || isspace(*name))
976 			return false;
977 		name++;
978 	}
979 	return true;
980 }
981 EXPORT_SYMBOL(dev_valid_name);
982 
983 /**
984  *	__dev_alloc_name - allocate a name for a device
985  *	@net: network namespace to allocate the device name in
986  *	@name: name format string
987  *	@buf:  scratch buffer and result name string
988  *
989  *	Passed a format string - eg "lt%d" it will try and find a suitable
990  *	id. It scans list of devices to build up a free map, then chooses
991  *	the first empty slot. The caller must hold the dev_base or rtnl lock
992  *	while allocating the name and adding the device in order to avoid
993  *	duplicates.
994  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
995  *	Returns the number of the unit assigned or a negative errno code.
996  */
997 
998 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
999 {
1000 	int i = 0;
1001 	const char *p;
1002 	const int max_netdevices = 8*PAGE_SIZE;
1003 	unsigned long *inuse;
1004 	struct net_device *d;
1005 
1006 	p = strnchr(name, IFNAMSIZ-1, '%');
1007 	if (p) {
1008 		/*
1009 		 * Verify the string as this thing may have come from
1010 		 * the user.  There must be either one "%d" and no other "%"
1011 		 * characters.
1012 		 */
1013 		if (p[1] != 'd' || strchr(p + 2, '%'))
1014 			return -EINVAL;
1015 
1016 		/* Use one page as a bit array of possible slots */
1017 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1018 		if (!inuse)
1019 			return -ENOMEM;
1020 
1021 		for_each_netdev(net, d) {
1022 			if (!sscanf(d->name, name, &i))
1023 				continue;
1024 			if (i < 0 || i >= max_netdevices)
1025 				continue;
1026 
1027 			/*  avoid cases where sscanf is not exact inverse of printf */
1028 			snprintf(buf, IFNAMSIZ, name, i);
1029 			if (!strncmp(buf, d->name, IFNAMSIZ))
1030 				set_bit(i, inuse);
1031 		}
1032 
1033 		i = find_first_zero_bit(inuse, max_netdevices);
1034 		free_page((unsigned long) inuse);
1035 	}
1036 
1037 	if (buf != name)
1038 		snprintf(buf, IFNAMSIZ, name, i);
1039 	if (!__dev_get_by_name(net, buf))
1040 		return i;
1041 
1042 	/* It is possible to run out of possible slots
1043 	 * when the name is long and there isn't enough space left
1044 	 * for the digits, or if all bits are used.
1045 	 */
1046 	return -ENFILE;
1047 }
1048 
1049 /**
1050  *	dev_alloc_name - allocate a name for a device
1051  *	@dev: device
1052  *	@name: name format string
1053  *
1054  *	Passed a format string - eg "lt%d" it will try and find a suitable
1055  *	id. It scans list of devices to build up a free map, then chooses
1056  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1057  *	while allocating the name and adding the device in order to avoid
1058  *	duplicates.
1059  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1060  *	Returns the number of the unit assigned or a negative errno code.
1061  */
1062 
1063 int dev_alloc_name(struct net_device *dev, const char *name)
1064 {
1065 	char buf[IFNAMSIZ];
1066 	struct net *net;
1067 	int ret;
1068 
1069 	BUG_ON(!dev_net(dev));
1070 	net = dev_net(dev);
1071 	ret = __dev_alloc_name(net, name, buf);
1072 	if (ret >= 0)
1073 		strlcpy(dev->name, buf, IFNAMSIZ);
1074 	return ret;
1075 }
1076 EXPORT_SYMBOL(dev_alloc_name);
1077 
1078 static int dev_alloc_name_ns(struct net *net,
1079 			     struct net_device *dev,
1080 			     const char *name)
1081 {
1082 	char buf[IFNAMSIZ];
1083 	int ret;
1084 
1085 	ret = __dev_alloc_name(net, name, buf);
1086 	if (ret >= 0)
1087 		strlcpy(dev->name, buf, IFNAMSIZ);
1088 	return ret;
1089 }
1090 
1091 static int dev_get_valid_name(struct net *net,
1092 			      struct net_device *dev,
1093 			      const char *name)
1094 {
1095 	BUG_ON(!net);
1096 
1097 	if (!dev_valid_name(name))
1098 		return -EINVAL;
1099 
1100 	if (strchr(name, '%'))
1101 		return dev_alloc_name_ns(net, dev, name);
1102 	else if (__dev_get_by_name(net, name))
1103 		return -EEXIST;
1104 	else if (dev->name != name)
1105 		strlcpy(dev->name, name, IFNAMSIZ);
1106 
1107 	return 0;
1108 }
1109 
1110 /**
1111  *	dev_change_name - change name of a device
1112  *	@dev: device
1113  *	@newname: name (or format string) must be at least IFNAMSIZ
1114  *
1115  *	Change name of a device, can pass format strings "eth%d".
1116  *	for wildcarding.
1117  */
1118 int dev_change_name(struct net_device *dev, const char *newname)
1119 {
1120 	unsigned char old_assign_type;
1121 	char oldname[IFNAMSIZ];
1122 	int err = 0;
1123 	int ret;
1124 	struct net *net;
1125 
1126 	ASSERT_RTNL();
1127 	BUG_ON(!dev_net(dev));
1128 
1129 	net = dev_net(dev);
1130 	if (dev->flags & IFF_UP)
1131 		return -EBUSY;
1132 
1133 	write_seqcount_begin(&devnet_rename_seq);
1134 
1135 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1136 		write_seqcount_end(&devnet_rename_seq);
1137 		return 0;
1138 	}
1139 
1140 	memcpy(oldname, dev->name, IFNAMSIZ);
1141 
1142 	err = dev_get_valid_name(net, dev, newname);
1143 	if (err < 0) {
1144 		write_seqcount_end(&devnet_rename_seq);
1145 		return err;
1146 	}
1147 
1148 	if (oldname[0] && !strchr(oldname, '%'))
1149 		netdev_info(dev, "renamed from %s\n", oldname);
1150 
1151 	old_assign_type = dev->name_assign_type;
1152 	dev->name_assign_type = NET_NAME_RENAMED;
1153 
1154 rollback:
1155 	ret = device_rename(&dev->dev, dev->name);
1156 	if (ret) {
1157 		memcpy(dev->name, oldname, IFNAMSIZ);
1158 		dev->name_assign_type = old_assign_type;
1159 		write_seqcount_end(&devnet_rename_seq);
1160 		return ret;
1161 	}
1162 
1163 	write_seqcount_end(&devnet_rename_seq);
1164 
1165 	netdev_adjacent_rename_links(dev, oldname);
1166 
1167 	write_lock_bh(&dev_base_lock);
1168 	hlist_del_rcu(&dev->name_hlist);
1169 	write_unlock_bh(&dev_base_lock);
1170 
1171 	synchronize_rcu();
1172 
1173 	write_lock_bh(&dev_base_lock);
1174 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1175 	write_unlock_bh(&dev_base_lock);
1176 
1177 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1178 	ret = notifier_to_errno(ret);
1179 
1180 	if (ret) {
1181 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1182 		if (err >= 0) {
1183 			err = ret;
1184 			write_seqcount_begin(&devnet_rename_seq);
1185 			memcpy(dev->name, oldname, IFNAMSIZ);
1186 			memcpy(oldname, newname, IFNAMSIZ);
1187 			dev->name_assign_type = old_assign_type;
1188 			old_assign_type = NET_NAME_RENAMED;
1189 			goto rollback;
1190 		} else {
1191 			pr_err("%s: name change rollback failed: %d\n",
1192 			       dev->name, ret);
1193 		}
1194 	}
1195 
1196 	return err;
1197 }
1198 
1199 /**
1200  *	dev_set_alias - change ifalias of a device
1201  *	@dev: device
1202  *	@alias: name up to IFALIASZ
1203  *	@len: limit of bytes to copy from info
1204  *
1205  *	Set ifalias for a device,
1206  */
1207 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1208 {
1209 	char *new_ifalias;
1210 
1211 	ASSERT_RTNL();
1212 
1213 	if (len >= IFALIASZ)
1214 		return -EINVAL;
1215 
1216 	if (!len) {
1217 		kfree(dev->ifalias);
1218 		dev->ifalias = NULL;
1219 		return 0;
1220 	}
1221 
1222 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1223 	if (!new_ifalias)
1224 		return -ENOMEM;
1225 	dev->ifalias = new_ifalias;
1226 
1227 	strlcpy(dev->ifalias, alias, len+1);
1228 	return len;
1229 }
1230 
1231 
1232 /**
1233  *	netdev_features_change - device changes features
1234  *	@dev: device to cause notification
1235  *
1236  *	Called to indicate a device has changed features.
1237  */
1238 void netdev_features_change(struct net_device *dev)
1239 {
1240 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1241 }
1242 EXPORT_SYMBOL(netdev_features_change);
1243 
1244 /**
1245  *	netdev_state_change - device changes state
1246  *	@dev: device to cause notification
1247  *
1248  *	Called to indicate a device has changed state. This function calls
1249  *	the notifier chains for netdev_chain and sends a NEWLINK message
1250  *	to the routing socket.
1251  */
1252 void netdev_state_change(struct net_device *dev)
1253 {
1254 	if (dev->flags & IFF_UP) {
1255 		struct netdev_notifier_change_info change_info;
1256 
1257 		change_info.flags_changed = 0;
1258 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1259 					      &change_info.info);
1260 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1261 	}
1262 }
1263 EXPORT_SYMBOL(netdev_state_change);
1264 
1265 /**
1266  * 	netdev_notify_peers - notify network peers about existence of @dev
1267  * 	@dev: network device
1268  *
1269  * Generate traffic such that interested network peers are aware of
1270  * @dev, such as by generating a gratuitous ARP. This may be used when
1271  * a device wants to inform the rest of the network about some sort of
1272  * reconfiguration such as a failover event or virtual machine
1273  * migration.
1274  */
1275 void netdev_notify_peers(struct net_device *dev)
1276 {
1277 	rtnl_lock();
1278 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1279 	rtnl_unlock();
1280 }
1281 EXPORT_SYMBOL(netdev_notify_peers);
1282 
1283 static int __dev_open(struct net_device *dev)
1284 {
1285 	const struct net_device_ops *ops = dev->netdev_ops;
1286 	int ret;
1287 
1288 	ASSERT_RTNL();
1289 
1290 	if (!netif_device_present(dev))
1291 		return -ENODEV;
1292 
1293 	/* Block netpoll from trying to do any rx path servicing.
1294 	 * If we don't do this there is a chance ndo_poll_controller
1295 	 * or ndo_poll may be running while we open the device
1296 	 */
1297 	netpoll_poll_disable(dev);
1298 
1299 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1300 	ret = notifier_to_errno(ret);
1301 	if (ret)
1302 		return ret;
1303 
1304 	set_bit(__LINK_STATE_START, &dev->state);
1305 
1306 	if (ops->ndo_validate_addr)
1307 		ret = ops->ndo_validate_addr(dev);
1308 
1309 	if (!ret && ops->ndo_open)
1310 		ret = ops->ndo_open(dev);
1311 
1312 	netpoll_poll_enable(dev);
1313 
1314 	if (ret)
1315 		clear_bit(__LINK_STATE_START, &dev->state);
1316 	else {
1317 		dev->flags |= IFF_UP;
1318 		dev_set_rx_mode(dev);
1319 		dev_activate(dev);
1320 		add_device_randomness(dev->dev_addr, dev->addr_len);
1321 	}
1322 
1323 	return ret;
1324 }
1325 
1326 /**
1327  *	dev_open	- prepare an interface for use.
1328  *	@dev:	device to open
1329  *
1330  *	Takes a device from down to up state. The device's private open
1331  *	function is invoked and then the multicast lists are loaded. Finally
1332  *	the device is moved into the up state and a %NETDEV_UP message is
1333  *	sent to the netdev notifier chain.
1334  *
1335  *	Calling this function on an active interface is a nop. On a failure
1336  *	a negative errno code is returned.
1337  */
1338 int dev_open(struct net_device *dev)
1339 {
1340 	int ret;
1341 
1342 	if (dev->flags & IFF_UP)
1343 		return 0;
1344 
1345 	ret = __dev_open(dev);
1346 	if (ret < 0)
1347 		return ret;
1348 
1349 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1350 	call_netdevice_notifiers(NETDEV_UP, dev);
1351 
1352 	return ret;
1353 }
1354 EXPORT_SYMBOL(dev_open);
1355 
1356 static int __dev_close_many(struct list_head *head)
1357 {
1358 	struct net_device *dev;
1359 
1360 	ASSERT_RTNL();
1361 	might_sleep();
1362 
1363 	list_for_each_entry(dev, head, close_list) {
1364 		/* Temporarily disable netpoll until the interface is down */
1365 		netpoll_poll_disable(dev);
1366 
1367 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1368 
1369 		clear_bit(__LINK_STATE_START, &dev->state);
1370 
1371 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1372 		 * can be even on different cpu. So just clear netif_running().
1373 		 *
1374 		 * dev->stop() will invoke napi_disable() on all of it's
1375 		 * napi_struct instances on this device.
1376 		 */
1377 		smp_mb__after_atomic(); /* Commit netif_running(). */
1378 	}
1379 
1380 	dev_deactivate_many(head);
1381 
1382 	list_for_each_entry(dev, head, close_list) {
1383 		const struct net_device_ops *ops = dev->netdev_ops;
1384 
1385 		/*
1386 		 *	Call the device specific close. This cannot fail.
1387 		 *	Only if device is UP
1388 		 *
1389 		 *	We allow it to be called even after a DETACH hot-plug
1390 		 *	event.
1391 		 */
1392 		if (ops->ndo_stop)
1393 			ops->ndo_stop(dev);
1394 
1395 		dev->flags &= ~IFF_UP;
1396 		netpoll_poll_enable(dev);
1397 	}
1398 
1399 	return 0;
1400 }
1401 
1402 static int __dev_close(struct net_device *dev)
1403 {
1404 	int retval;
1405 	LIST_HEAD(single);
1406 
1407 	list_add(&dev->close_list, &single);
1408 	retval = __dev_close_many(&single);
1409 	list_del(&single);
1410 
1411 	return retval;
1412 }
1413 
1414 int dev_close_many(struct list_head *head, bool unlink)
1415 {
1416 	struct net_device *dev, *tmp;
1417 
1418 	/* Remove the devices that don't need to be closed */
1419 	list_for_each_entry_safe(dev, tmp, head, close_list)
1420 		if (!(dev->flags & IFF_UP))
1421 			list_del_init(&dev->close_list);
1422 
1423 	__dev_close_many(head);
1424 
1425 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1426 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1427 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1428 		if (unlink)
1429 			list_del_init(&dev->close_list);
1430 	}
1431 
1432 	return 0;
1433 }
1434 EXPORT_SYMBOL(dev_close_many);
1435 
1436 /**
1437  *	dev_close - shutdown an interface.
1438  *	@dev: device to shutdown
1439  *
1440  *	This function moves an active device into down state. A
1441  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1442  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1443  *	chain.
1444  */
1445 int dev_close(struct net_device *dev)
1446 {
1447 	if (dev->flags & IFF_UP) {
1448 		LIST_HEAD(single);
1449 
1450 		list_add(&dev->close_list, &single);
1451 		dev_close_many(&single, true);
1452 		list_del(&single);
1453 	}
1454 	return 0;
1455 }
1456 EXPORT_SYMBOL(dev_close);
1457 
1458 
1459 /**
1460  *	dev_disable_lro - disable Large Receive Offload on a device
1461  *	@dev: device
1462  *
1463  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1464  *	called under RTNL.  This is needed if received packets may be
1465  *	forwarded to another interface.
1466  */
1467 void dev_disable_lro(struct net_device *dev)
1468 {
1469 	struct net_device *lower_dev;
1470 	struct list_head *iter;
1471 
1472 	dev->wanted_features &= ~NETIF_F_LRO;
1473 	netdev_update_features(dev);
1474 
1475 	if (unlikely(dev->features & NETIF_F_LRO))
1476 		netdev_WARN(dev, "failed to disable LRO!\n");
1477 
1478 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1479 		dev_disable_lro(lower_dev);
1480 }
1481 EXPORT_SYMBOL(dev_disable_lro);
1482 
1483 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1484 				   struct net_device *dev)
1485 {
1486 	struct netdev_notifier_info info;
1487 
1488 	netdev_notifier_info_init(&info, dev);
1489 	return nb->notifier_call(nb, val, &info);
1490 }
1491 
1492 static int dev_boot_phase = 1;
1493 
1494 /**
1495  *	register_netdevice_notifier - register a network notifier block
1496  *	@nb: notifier
1497  *
1498  *	Register a notifier to be called when network device events occur.
1499  *	The notifier passed is linked into the kernel structures and must
1500  *	not be reused until it has been unregistered. A negative errno code
1501  *	is returned on a failure.
1502  *
1503  * 	When registered all registration and up events are replayed
1504  *	to the new notifier to allow device to have a race free
1505  *	view of the network device list.
1506  */
1507 
1508 int register_netdevice_notifier(struct notifier_block *nb)
1509 {
1510 	struct net_device *dev;
1511 	struct net_device *last;
1512 	struct net *net;
1513 	int err;
1514 
1515 	rtnl_lock();
1516 	err = raw_notifier_chain_register(&netdev_chain, nb);
1517 	if (err)
1518 		goto unlock;
1519 	if (dev_boot_phase)
1520 		goto unlock;
1521 	for_each_net(net) {
1522 		for_each_netdev(net, dev) {
1523 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1524 			err = notifier_to_errno(err);
1525 			if (err)
1526 				goto rollback;
1527 
1528 			if (!(dev->flags & IFF_UP))
1529 				continue;
1530 
1531 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1532 		}
1533 	}
1534 
1535 unlock:
1536 	rtnl_unlock();
1537 	return err;
1538 
1539 rollback:
1540 	last = dev;
1541 	for_each_net(net) {
1542 		for_each_netdev(net, dev) {
1543 			if (dev == last)
1544 				goto outroll;
1545 
1546 			if (dev->flags & IFF_UP) {
1547 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1548 							dev);
1549 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1550 			}
1551 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1552 		}
1553 	}
1554 
1555 outroll:
1556 	raw_notifier_chain_unregister(&netdev_chain, nb);
1557 	goto unlock;
1558 }
1559 EXPORT_SYMBOL(register_netdevice_notifier);
1560 
1561 /**
1562  *	unregister_netdevice_notifier - unregister a network notifier block
1563  *	@nb: notifier
1564  *
1565  *	Unregister a notifier previously registered by
1566  *	register_netdevice_notifier(). The notifier is unlinked into the
1567  *	kernel structures and may then be reused. A negative errno code
1568  *	is returned on a failure.
1569  *
1570  * 	After unregistering unregister and down device events are synthesized
1571  *	for all devices on the device list to the removed notifier to remove
1572  *	the need for special case cleanup code.
1573  */
1574 
1575 int unregister_netdevice_notifier(struct notifier_block *nb)
1576 {
1577 	struct net_device *dev;
1578 	struct net *net;
1579 	int err;
1580 
1581 	rtnl_lock();
1582 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1583 	if (err)
1584 		goto unlock;
1585 
1586 	for_each_net(net) {
1587 		for_each_netdev(net, dev) {
1588 			if (dev->flags & IFF_UP) {
1589 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1590 							dev);
1591 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1592 			}
1593 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1594 		}
1595 	}
1596 unlock:
1597 	rtnl_unlock();
1598 	return err;
1599 }
1600 EXPORT_SYMBOL(unregister_netdevice_notifier);
1601 
1602 /**
1603  *	call_netdevice_notifiers_info - call all network notifier blocks
1604  *	@val: value passed unmodified to notifier function
1605  *	@dev: net_device pointer passed unmodified to notifier function
1606  *	@info: notifier information data
1607  *
1608  *	Call all network notifier blocks.  Parameters and return value
1609  *	are as for raw_notifier_call_chain().
1610  */
1611 
1612 static int call_netdevice_notifiers_info(unsigned long val,
1613 					 struct net_device *dev,
1614 					 struct netdev_notifier_info *info)
1615 {
1616 	ASSERT_RTNL();
1617 	netdev_notifier_info_init(info, dev);
1618 	return raw_notifier_call_chain(&netdev_chain, val, info);
1619 }
1620 
1621 /**
1622  *	call_netdevice_notifiers - call all network notifier blocks
1623  *      @val: value passed unmodified to notifier function
1624  *      @dev: net_device pointer passed unmodified to notifier function
1625  *
1626  *	Call all network notifier blocks.  Parameters and return value
1627  *	are as for raw_notifier_call_chain().
1628  */
1629 
1630 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1631 {
1632 	struct netdev_notifier_info info;
1633 
1634 	return call_netdevice_notifiers_info(val, dev, &info);
1635 }
1636 EXPORT_SYMBOL(call_netdevice_notifiers);
1637 
1638 #ifdef CONFIG_NET_INGRESS
1639 static struct static_key ingress_needed __read_mostly;
1640 
1641 void net_inc_ingress_queue(void)
1642 {
1643 	static_key_slow_inc(&ingress_needed);
1644 }
1645 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1646 
1647 void net_dec_ingress_queue(void)
1648 {
1649 	static_key_slow_dec(&ingress_needed);
1650 }
1651 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1652 #endif
1653 
1654 static struct static_key netstamp_needed __read_mostly;
1655 #ifdef HAVE_JUMP_LABEL
1656 /* We are not allowed to call static_key_slow_dec() from irq context
1657  * If net_disable_timestamp() is called from irq context, defer the
1658  * static_key_slow_dec() calls.
1659  */
1660 static atomic_t netstamp_needed_deferred;
1661 #endif
1662 
1663 void net_enable_timestamp(void)
1664 {
1665 #ifdef HAVE_JUMP_LABEL
1666 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1667 
1668 	if (deferred) {
1669 		while (--deferred)
1670 			static_key_slow_dec(&netstamp_needed);
1671 		return;
1672 	}
1673 #endif
1674 	static_key_slow_inc(&netstamp_needed);
1675 }
1676 EXPORT_SYMBOL(net_enable_timestamp);
1677 
1678 void net_disable_timestamp(void)
1679 {
1680 #ifdef HAVE_JUMP_LABEL
1681 	if (in_interrupt()) {
1682 		atomic_inc(&netstamp_needed_deferred);
1683 		return;
1684 	}
1685 #endif
1686 	static_key_slow_dec(&netstamp_needed);
1687 }
1688 EXPORT_SYMBOL(net_disable_timestamp);
1689 
1690 static inline void net_timestamp_set(struct sk_buff *skb)
1691 {
1692 	skb->tstamp.tv64 = 0;
1693 	if (static_key_false(&netstamp_needed))
1694 		__net_timestamp(skb);
1695 }
1696 
1697 #define net_timestamp_check(COND, SKB)			\
1698 	if (static_key_false(&netstamp_needed)) {		\
1699 		if ((COND) && !(SKB)->tstamp.tv64)	\
1700 			__net_timestamp(SKB);		\
1701 	}						\
1702 
1703 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1704 {
1705 	unsigned int len;
1706 
1707 	if (!(dev->flags & IFF_UP))
1708 		return false;
1709 
1710 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1711 	if (skb->len <= len)
1712 		return true;
1713 
1714 	/* if TSO is enabled, we don't care about the length as the packet
1715 	 * could be forwarded without being segmented before
1716 	 */
1717 	if (skb_is_gso(skb))
1718 		return true;
1719 
1720 	return false;
1721 }
1722 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1723 
1724 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1725 {
1726 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1727 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1728 			atomic_long_inc(&dev->rx_dropped);
1729 			kfree_skb(skb);
1730 			return NET_RX_DROP;
1731 		}
1732 	}
1733 
1734 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1735 		atomic_long_inc(&dev->rx_dropped);
1736 		kfree_skb(skb);
1737 		return NET_RX_DROP;
1738 	}
1739 
1740 	skb_scrub_packet(skb, true);
1741 	skb->priority = 0;
1742 	skb->protocol = eth_type_trans(skb, dev);
1743 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1744 
1745 	return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1748 
1749 /**
1750  * dev_forward_skb - loopback an skb to another netif
1751  *
1752  * @dev: destination network device
1753  * @skb: buffer to forward
1754  *
1755  * return values:
1756  *	NET_RX_SUCCESS	(no congestion)
1757  *	NET_RX_DROP     (packet was dropped, but freed)
1758  *
1759  * dev_forward_skb can be used for injecting an skb from the
1760  * start_xmit function of one device into the receive queue
1761  * of another device.
1762  *
1763  * The receiving device may be in another namespace, so
1764  * we have to clear all information in the skb that could
1765  * impact namespace isolation.
1766  */
1767 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1770 }
1771 EXPORT_SYMBOL_GPL(dev_forward_skb);
1772 
1773 static inline int deliver_skb(struct sk_buff *skb,
1774 			      struct packet_type *pt_prev,
1775 			      struct net_device *orig_dev)
1776 {
1777 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1778 		return -ENOMEM;
1779 	atomic_inc(&skb->users);
1780 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1781 }
1782 
1783 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1784 					  struct packet_type **pt,
1785 					  struct net_device *orig_dev,
1786 					  __be16 type,
1787 					  struct list_head *ptype_list)
1788 {
1789 	struct packet_type *ptype, *pt_prev = *pt;
1790 
1791 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1792 		if (ptype->type != type)
1793 			continue;
1794 		if (pt_prev)
1795 			deliver_skb(skb, pt_prev, orig_dev);
1796 		pt_prev = ptype;
1797 	}
1798 	*pt = pt_prev;
1799 }
1800 
1801 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1802 {
1803 	if (!ptype->af_packet_priv || !skb->sk)
1804 		return false;
1805 
1806 	if (ptype->id_match)
1807 		return ptype->id_match(ptype, skb->sk);
1808 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1809 		return true;
1810 
1811 	return false;
1812 }
1813 
1814 /*
1815  *	Support routine. Sends outgoing frames to any network
1816  *	taps currently in use.
1817  */
1818 
1819 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1820 {
1821 	struct packet_type *ptype;
1822 	struct sk_buff *skb2 = NULL;
1823 	struct packet_type *pt_prev = NULL;
1824 	struct list_head *ptype_list = &ptype_all;
1825 
1826 	rcu_read_lock();
1827 again:
1828 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1829 		/* Never send packets back to the socket
1830 		 * they originated from - MvS (miquels@drinkel.ow.org)
1831 		 */
1832 		if (skb_loop_sk(ptype, skb))
1833 			continue;
1834 
1835 		if (pt_prev) {
1836 			deliver_skb(skb2, pt_prev, skb->dev);
1837 			pt_prev = ptype;
1838 			continue;
1839 		}
1840 
1841 		/* need to clone skb, done only once */
1842 		skb2 = skb_clone(skb, GFP_ATOMIC);
1843 		if (!skb2)
1844 			goto out_unlock;
1845 
1846 		net_timestamp_set(skb2);
1847 
1848 		/* skb->nh should be correctly
1849 		 * set by sender, so that the second statement is
1850 		 * just protection against buggy protocols.
1851 		 */
1852 		skb_reset_mac_header(skb2);
1853 
1854 		if (skb_network_header(skb2) < skb2->data ||
1855 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1856 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1857 					     ntohs(skb2->protocol),
1858 					     dev->name);
1859 			skb_reset_network_header(skb2);
1860 		}
1861 
1862 		skb2->transport_header = skb2->network_header;
1863 		skb2->pkt_type = PACKET_OUTGOING;
1864 		pt_prev = ptype;
1865 	}
1866 
1867 	if (ptype_list == &ptype_all) {
1868 		ptype_list = &dev->ptype_all;
1869 		goto again;
1870 	}
1871 out_unlock:
1872 	if (pt_prev)
1873 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1874 	rcu_read_unlock();
1875 }
1876 
1877 /**
1878  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1879  * @dev: Network device
1880  * @txq: number of queues available
1881  *
1882  * If real_num_tx_queues is changed the tc mappings may no longer be
1883  * valid. To resolve this verify the tc mapping remains valid and if
1884  * not NULL the mapping. With no priorities mapping to this
1885  * offset/count pair it will no longer be used. In the worst case TC0
1886  * is invalid nothing can be done so disable priority mappings. If is
1887  * expected that drivers will fix this mapping if they can before
1888  * calling netif_set_real_num_tx_queues.
1889  */
1890 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1891 {
1892 	int i;
1893 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1894 
1895 	/* If TC0 is invalidated disable TC mapping */
1896 	if (tc->offset + tc->count > txq) {
1897 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1898 		dev->num_tc = 0;
1899 		return;
1900 	}
1901 
1902 	/* Invalidated prio to tc mappings set to TC0 */
1903 	for (i = 1; i < TC_BITMASK + 1; i++) {
1904 		int q = netdev_get_prio_tc_map(dev, i);
1905 
1906 		tc = &dev->tc_to_txq[q];
1907 		if (tc->offset + tc->count > txq) {
1908 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1909 				i, q);
1910 			netdev_set_prio_tc_map(dev, i, 0);
1911 		}
1912 	}
1913 }
1914 
1915 #ifdef CONFIG_XPS
1916 static DEFINE_MUTEX(xps_map_mutex);
1917 #define xmap_dereference(P)		\
1918 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1919 
1920 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1921 					int cpu, u16 index)
1922 {
1923 	struct xps_map *map = NULL;
1924 	int pos;
1925 
1926 	if (dev_maps)
1927 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1928 
1929 	for (pos = 0; map && pos < map->len; pos++) {
1930 		if (map->queues[pos] == index) {
1931 			if (map->len > 1) {
1932 				map->queues[pos] = map->queues[--map->len];
1933 			} else {
1934 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1935 				kfree_rcu(map, rcu);
1936 				map = NULL;
1937 			}
1938 			break;
1939 		}
1940 	}
1941 
1942 	return map;
1943 }
1944 
1945 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1946 {
1947 	struct xps_dev_maps *dev_maps;
1948 	int cpu, i;
1949 	bool active = false;
1950 
1951 	mutex_lock(&xps_map_mutex);
1952 	dev_maps = xmap_dereference(dev->xps_maps);
1953 
1954 	if (!dev_maps)
1955 		goto out_no_maps;
1956 
1957 	for_each_possible_cpu(cpu) {
1958 		for (i = index; i < dev->num_tx_queues; i++) {
1959 			if (!remove_xps_queue(dev_maps, cpu, i))
1960 				break;
1961 		}
1962 		if (i == dev->num_tx_queues)
1963 			active = true;
1964 	}
1965 
1966 	if (!active) {
1967 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1968 		kfree_rcu(dev_maps, rcu);
1969 	}
1970 
1971 	for (i = index; i < dev->num_tx_queues; i++)
1972 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1973 					     NUMA_NO_NODE);
1974 
1975 out_no_maps:
1976 	mutex_unlock(&xps_map_mutex);
1977 }
1978 
1979 static struct xps_map *expand_xps_map(struct xps_map *map,
1980 				      int cpu, u16 index)
1981 {
1982 	struct xps_map *new_map;
1983 	int alloc_len = XPS_MIN_MAP_ALLOC;
1984 	int i, pos;
1985 
1986 	for (pos = 0; map && pos < map->len; pos++) {
1987 		if (map->queues[pos] != index)
1988 			continue;
1989 		return map;
1990 	}
1991 
1992 	/* Need to add queue to this CPU's existing map */
1993 	if (map) {
1994 		if (pos < map->alloc_len)
1995 			return map;
1996 
1997 		alloc_len = map->alloc_len * 2;
1998 	}
1999 
2000 	/* Need to allocate new map to store queue on this CPU's map */
2001 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2002 			       cpu_to_node(cpu));
2003 	if (!new_map)
2004 		return NULL;
2005 
2006 	for (i = 0; i < pos; i++)
2007 		new_map->queues[i] = map->queues[i];
2008 	new_map->alloc_len = alloc_len;
2009 	new_map->len = pos;
2010 
2011 	return new_map;
2012 }
2013 
2014 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2015 			u16 index)
2016 {
2017 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2018 	struct xps_map *map, *new_map;
2019 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2020 	int cpu, numa_node_id = -2;
2021 	bool active = false;
2022 
2023 	mutex_lock(&xps_map_mutex);
2024 
2025 	dev_maps = xmap_dereference(dev->xps_maps);
2026 
2027 	/* allocate memory for queue storage */
2028 	for_each_online_cpu(cpu) {
2029 		if (!cpumask_test_cpu(cpu, mask))
2030 			continue;
2031 
2032 		if (!new_dev_maps)
2033 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2034 		if (!new_dev_maps) {
2035 			mutex_unlock(&xps_map_mutex);
2036 			return -ENOMEM;
2037 		}
2038 
2039 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2040 				 NULL;
2041 
2042 		map = expand_xps_map(map, cpu, index);
2043 		if (!map)
2044 			goto error;
2045 
2046 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2047 	}
2048 
2049 	if (!new_dev_maps)
2050 		goto out_no_new_maps;
2051 
2052 	for_each_possible_cpu(cpu) {
2053 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2054 			/* add queue to CPU maps */
2055 			int pos = 0;
2056 
2057 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2058 			while ((pos < map->len) && (map->queues[pos] != index))
2059 				pos++;
2060 
2061 			if (pos == map->len)
2062 				map->queues[map->len++] = index;
2063 #ifdef CONFIG_NUMA
2064 			if (numa_node_id == -2)
2065 				numa_node_id = cpu_to_node(cpu);
2066 			else if (numa_node_id != cpu_to_node(cpu))
2067 				numa_node_id = -1;
2068 #endif
2069 		} else if (dev_maps) {
2070 			/* fill in the new device map from the old device map */
2071 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2072 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2073 		}
2074 
2075 	}
2076 
2077 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2078 
2079 	/* Cleanup old maps */
2080 	if (dev_maps) {
2081 		for_each_possible_cpu(cpu) {
2082 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2083 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2084 			if (map && map != new_map)
2085 				kfree_rcu(map, rcu);
2086 		}
2087 
2088 		kfree_rcu(dev_maps, rcu);
2089 	}
2090 
2091 	dev_maps = new_dev_maps;
2092 	active = true;
2093 
2094 out_no_new_maps:
2095 	/* update Tx queue numa node */
2096 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2097 				     (numa_node_id >= 0) ? numa_node_id :
2098 				     NUMA_NO_NODE);
2099 
2100 	if (!dev_maps)
2101 		goto out_no_maps;
2102 
2103 	/* removes queue from unused CPUs */
2104 	for_each_possible_cpu(cpu) {
2105 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2106 			continue;
2107 
2108 		if (remove_xps_queue(dev_maps, cpu, index))
2109 			active = true;
2110 	}
2111 
2112 	/* free map if not active */
2113 	if (!active) {
2114 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2115 		kfree_rcu(dev_maps, rcu);
2116 	}
2117 
2118 out_no_maps:
2119 	mutex_unlock(&xps_map_mutex);
2120 
2121 	return 0;
2122 error:
2123 	/* remove any maps that we added */
2124 	for_each_possible_cpu(cpu) {
2125 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2126 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2127 				 NULL;
2128 		if (new_map && new_map != map)
2129 			kfree(new_map);
2130 	}
2131 
2132 	mutex_unlock(&xps_map_mutex);
2133 
2134 	kfree(new_dev_maps);
2135 	return -ENOMEM;
2136 }
2137 EXPORT_SYMBOL(netif_set_xps_queue);
2138 
2139 #endif
2140 /*
2141  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2142  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2143  */
2144 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2145 {
2146 	int rc;
2147 
2148 	if (txq < 1 || txq > dev->num_tx_queues)
2149 		return -EINVAL;
2150 
2151 	if (dev->reg_state == NETREG_REGISTERED ||
2152 	    dev->reg_state == NETREG_UNREGISTERING) {
2153 		ASSERT_RTNL();
2154 
2155 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2156 						  txq);
2157 		if (rc)
2158 			return rc;
2159 
2160 		if (dev->num_tc)
2161 			netif_setup_tc(dev, txq);
2162 
2163 		if (txq < dev->real_num_tx_queues) {
2164 			qdisc_reset_all_tx_gt(dev, txq);
2165 #ifdef CONFIG_XPS
2166 			netif_reset_xps_queues_gt(dev, txq);
2167 #endif
2168 		}
2169 	}
2170 
2171 	dev->real_num_tx_queues = txq;
2172 	return 0;
2173 }
2174 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2175 
2176 #ifdef CONFIG_SYSFS
2177 /**
2178  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2179  *	@dev: Network device
2180  *	@rxq: Actual number of RX queues
2181  *
2182  *	This must be called either with the rtnl_lock held or before
2183  *	registration of the net device.  Returns 0 on success, or a
2184  *	negative error code.  If called before registration, it always
2185  *	succeeds.
2186  */
2187 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2188 {
2189 	int rc;
2190 
2191 	if (rxq < 1 || rxq > dev->num_rx_queues)
2192 		return -EINVAL;
2193 
2194 	if (dev->reg_state == NETREG_REGISTERED) {
2195 		ASSERT_RTNL();
2196 
2197 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2198 						  rxq);
2199 		if (rc)
2200 			return rc;
2201 	}
2202 
2203 	dev->real_num_rx_queues = rxq;
2204 	return 0;
2205 }
2206 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2207 #endif
2208 
2209 /**
2210  * netif_get_num_default_rss_queues - default number of RSS queues
2211  *
2212  * This routine should set an upper limit on the number of RSS queues
2213  * used by default by multiqueue devices.
2214  */
2215 int netif_get_num_default_rss_queues(void)
2216 {
2217 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2218 }
2219 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2220 
2221 static inline void __netif_reschedule(struct Qdisc *q)
2222 {
2223 	struct softnet_data *sd;
2224 	unsigned long flags;
2225 
2226 	local_irq_save(flags);
2227 	sd = this_cpu_ptr(&softnet_data);
2228 	q->next_sched = NULL;
2229 	*sd->output_queue_tailp = q;
2230 	sd->output_queue_tailp = &q->next_sched;
2231 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2232 	local_irq_restore(flags);
2233 }
2234 
2235 void __netif_schedule(struct Qdisc *q)
2236 {
2237 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2238 		__netif_reschedule(q);
2239 }
2240 EXPORT_SYMBOL(__netif_schedule);
2241 
2242 struct dev_kfree_skb_cb {
2243 	enum skb_free_reason reason;
2244 };
2245 
2246 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2247 {
2248 	return (struct dev_kfree_skb_cb *)skb->cb;
2249 }
2250 
2251 void netif_schedule_queue(struct netdev_queue *txq)
2252 {
2253 	rcu_read_lock();
2254 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2255 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2256 
2257 		__netif_schedule(q);
2258 	}
2259 	rcu_read_unlock();
2260 }
2261 EXPORT_SYMBOL(netif_schedule_queue);
2262 
2263 /**
2264  *	netif_wake_subqueue - allow sending packets on subqueue
2265  *	@dev: network device
2266  *	@queue_index: sub queue index
2267  *
2268  * Resume individual transmit queue of a device with multiple transmit queues.
2269  */
2270 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2271 {
2272 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2273 
2274 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2275 		struct Qdisc *q;
2276 
2277 		rcu_read_lock();
2278 		q = rcu_dereference(txq->qdisc);
2279 		__netif_schedule(q);
2280 		rcu_read_unlock();
2281 	}
2282 }
2283 EXPORT_SYMBOL(netif_wake_subqueue);
2284 
2285 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2286 {
2287 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2288 		struct Qdisc *q;
2289 
2290 		rcu_read_lock();
2291 		q = rcu_dereference(dev_queue->qdisc);
2292 		__netif_schedule(q);
2293 		rcu_read_unlock();
2294 	}
2295 }
2296 EXPORT_SYMBOL(netif_tx_wake_queue);
2297 
2298 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2299 {
2300 	unsigned long flags;
2301 
2302 	if (likely(atomic_read(&skb->users) == 1)) {
2303 		smp_rmb();
2304 		atomic_set(&skb->users, 0);
2305 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2306 		return;
2307 	}
2308 	get_kfree_skb_cb(skb)->reason = reason;
2309 	local_irq_save(flags);
2310 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2311 	__this_cpu_write(softnet_data.completion_queue, skb);
2312 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2313 	local_irq_restore(flags);
2314 }
2315 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2316 
2317 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2318 {
2319 	if (in_irq() || irqs_disabled())
2320 		__dev_kfree_skb_irq(skb, reason);
2321 	else
2322 		dev_kfree_skb(skb);
2323 }
2324 EXPORT_SYMBOL(__dev_kfree_skb_any);
2325 
2326 
2327 /**
2328  * netif_device_detach - mark device as removed
2329  * @dev: network device
2330  *
2331  * Mark device as removed from system and therefore no longer available.
2332  */
2333 void netif_device_detach(struct net_device *dev)
2334 {
2335 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2336 	    netif_running(dev)) {
2337 		netif_tx_stop_all_queues(dev);
2338 	}
2339 }
2340 EXPORT_SYMBOL(netif_device_detach);
2341 
2342 /**
2343  * netif_device_attach - mark device as attached
2344  * @dev: network device
2345  *
2346  * Mark device as attached from system and restart if needed.
2347  */
2348 void netif_device_attach(struct net_device *dev)
2349 {
2350 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2351 	    netif_running(dev)) {
2352 		netif_tx_wake_all_queues(dev);
2353 		__netdev_watchdog_up(dev);
2354 	}
2355 }
2356 EXPORT_SYMBOL(netif_device_attach);
2357 
2358 /*
2359  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2360  * to be used as a distribution range.
2361  */
2362 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2363 		  unsigned int num_tx_queues)
2364 {
2365 	u32 hash;
2366 	u16 qoffset = 0;
2367 	u16 qcount = num_tx_queues;
2368 
2369 	if (skb_rx_queue_recorded(skb)) {
2370 		hash = skb_get_rx_queue(skb);
2371 		while (unlikely(hash >= num_tx_queues))
2372 			hash -= num_tx_queues;
2373 		return hash;
2374 	}
2375 
2376 	if (dev->num_tc) {
2377 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2378 		qoffset = dev->tc_to_txq[tc].offset;
2379 		qcount = dev->tc_to_txq[tc].count;
2380 	}
2381 
2382 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2383 }
2384 EXPORT_SYMBOL(__skb_tx_hash);
2385 
2386 static void skb_warn_bad_offload(const struct sk_buff *skb)
2387 {
2388 	static const netdev_features_t null_features = 0;
2389 	struct net_device *dev = skb->dev;
2390 	const char *driver = "";
2391 
2392 	if (!net_ratelimit())
2393 		return;
2394 
2395 	if (dev && dev->dev.parent)
2396 		driver = dev_driver_string(dev->dev.parent);
2397 
2398 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2399 	     "gso_type=%d ip_summed=%d\n",
2400 	     driver, dev ? &dev->features : &null_features,
2401 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2402 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2403 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2404 }
2405 
2406 /*
2407  * Invalidate hardware checksum when packet is to be mangled, and
2408  * complete checksum manually on outgoing path.
2409  */
2410 int skb_checksum_help(struct sk_buff *skb)
2411 {
2412 	__wsum csum;
2413 	int ret = 0, offset;
2414 
2415 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2416 		goto out_set_summed;
2417 
2418 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2419 		skb_warn_bad_offload(skb);
2420 		return -EINVAL;
2421 	}
2422 
2423 	/* Before computing a checksum, we should make sure no frag could
2424 	 * be modified by an external entity : checksum could be wrong.
2425 	 */
2426 	if (skb_has_shared_frag(skb)) {
2427 		ret = __skb_linearize(skb);
2428 		if (ret)
2429 			goto out;
2430 	}
2431 
2432 	offset = skb_checksum_start_offset(skb);
2433 	BUG_ON(offset >= skb_headlen(skb));
2434 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2435 
2436 	offset += skb->csum_offset;
2437 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2438 
2439 	if (skb_cloned(skb) &&
2440 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2441 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2442 		if (ret)
2443 			goto out;
2444 	}
2445 
2446 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2447 out_set_summed:
2448 	skb->ip_summed = CHECKSUM_NONE;
2449 out:
2450 	return ret;
2451 }
2452 EXPORT_SYMBOL(skb_checksum_help);
2453 
2454 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2455 {
2456 	__be16 type = skb->protocol;
2457 
2458 	/* Tunnel gso handlers can set protocol to ethernet. */
2459 	if (type == htons(ETH_P_TEB)) {
2460 		struct ethhdr *eth;
2461 
2462 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2463 			return 0;
2464 
2465 		eth = (struct ethhdr *)skb_mac_header(skb);
2466 		type = eth->h_proto;
2467 	}
2468 
2469 	return __vlan_get_protocol(skb, type, depth);
2470 }
2471 
2472 /**
2473  *	skb_mac_gso_segment - mac layer segmentation handler.
2474  *	@skb: buffer to segment
2475  *	@features: features for the output path (see dev->features)
2476  */
2477 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2478 				    netdev_features_t features)
2479 {
2480 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2481 	struct packet_offload *ptype;
2482 	int vlan_depth = skb->mac_len;
2483 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2484 
2485 	if (unlikely(!type))
2486 		return ERR_PTR(-EINVAL);
2487 
2488 	__skb_pull(skb, vlan_depth);
2489 
2490 	rcu_read_lock();
2491 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2492 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2493 			segs = ptype->callbacks.gso_segment(skb, features);
2494 			break;
2495 		}
2496 	}
2497 	rcu_read_unlock();
2498 
2499 	__skb_push(skb, skb->data - skb_mac_header(skb));
2500 
2501 	return segs;
2502 }
2503 EXPORT_SYMBOL(skb_mac_gso_segment);
2504 
2505 
2506 /* openvswitch calls this on rx path, so we need a different check.
2507  */
2508 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2509 {
2510 	if (tx_path)
2511 		return skb->ip_summed != CHECKSUM_PARTIAL;
2512 	else
2513 		return skb->ip_summed == CHECKSUM_NONE;
2514 }
2515 
2516 /**
2517  *	__skb_gso_segment - Perform segmentation on skb.
2518  *	@skb: buffer to segment
2519  *	@features: features for the output path (see dev->features)
2520  *	@tx_path: whether it is called in TX path
2521  *
2522  *	This function segments the given skb and returns a list of segments.
2523  *
2524  *	It may return NULL if the skb requires no segmentation.  This is
2525  *	only possible when GSO is used for verifying header integrity.
2526  */
2527 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2528 				  netdev_features_t features, bool tx_path)
2529 {
2530 	if (unlikely(skb_needs_check(skb, tx_path))) {
2531 		int err;
2532 
2533 		skb_warn_bad_offload(skb);
2534 
2535 		err = skb_cow_head(skb, 0);
2536 		if (err < 0)
2537 			return ERR_PTR(err);
2538 	}
2539 
2540 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2541 	SKB_GSO_CB(skb)->encap_level = 0;
2542 
2543 	skb_reset_mac_header(skb);
2544 	skb_reset_mac_len(skb);
2545 
2546 	return skb_mac_gso_segment(skb, features);
2547 }
2548 EXPORT_SYMBOL(__skb_gso_segment);
2549 
2550 /* Take action when hardware reception checksum errors are detected. */
2551 #ifdef CONFIG_BUG
2552 void netdev_rx_csum_fault(struct net_device *dev)
2553 {
2554 	if (net_ratelimit()) {
2555 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2556 		dump_stack();
2557 	}
2558 }
2559 EXPORT_SYMBOL(netdev_rx_csum_fault);
2560 #endif
2561 
2562 /* Actually, we should eliminate this check as soon as we know, that:
2563  * 1. IOMMU is present and allows to map all the memory.
2564  * 2. No high memory really exists on this machine.
2565  */
2566 
2567 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2568 {
2569 #ifdef CONFIG_HIGHMEM
2570 	int i;
2571 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2572 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2573 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2574 			if (PageHighMem(skb_frag_page(frag)))
2575 				return 1;
2576 		}
2577 	}
2578 
2579 	if (PCI_DMA_BUS_IS_PHYS) {
2580 		struct device *pdev = dev->dev.parent;
2581 
2582 		if (!pdev)
2583 			return 0;
2584 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2585 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2586 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2587 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2588 				return 1;
2589 		}
2590 	}
2591 #endif
2592 	return 0;
2593 }
2594 
2595 /* If MPLS offload request, verify we are testing hardware MPLS features
2596  * instead of standard features for the netdev.
2597  */
2598 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2599 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2600 					   netdev_features_t features,
2601 					   __be16 type)
2602 {
2603 	if (eth_p_mpls(type))
2604 		features &= skb->dev->mpls_features;
2605 
2606 	return features;
2607 }
2608 #else
2609 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2610 					   netdev_features_t features,
2611 					   __be16 type)
2612 {
2613 	return features;
2614 }
2615 #endif
2616 
2617 static netdev_features_t harmonize_features(struct sk_buff *skb,
2618 	netdev_features_t features)
2619 {
2620 	int tmp;
2621 	__be16 type;
2622 
2623 	type = skb_network_protocol(skb, &tmp);
2624 	features = net_mpls_features(skb, features, type);
2625 
2626 	if (skb->ip_summed != CHECKSUM_NONE &&
2627 	    !can_checksum_protocol(features, type)) {
2628 		features &= ~NETIF_F_ALL_CSUM;
2629 	} else if (illegal_highdma(skb->dev, skb)) {
2630 		features &= ~NETIF_F_SG;
2631 	}
2632 
2633 	return features;
2634 }
2635 
2636 netdev_features_t passthru_features_check(struct sk_buff *skb,
2637 					  struct net_device *dev,
2638 					  netdev_features_t features)
2639 {
2640 	return features;
2641 }
2642 EXPORT_SYMBOL(passthru_features_check);
2643 
2644 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2645 					     struct net_device *dev,
2646 					     netdev_features_t features)
2647 {
2648 	return vlan_features_check(skb, features);
2649 }
2650 
2651 netdev_features_t netif_skb_features(struct sk_buff *skb)
2652 {
2653 	struct net_device *dev = skb->dev;
2654 	netdev_features_t features = dev->features;
2655 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2656 
2657 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2658 		features &= ~NETIF_F_GSO_MASK;
2659 
2660 	/* If encapsulation offload request, verify we are testing
2661 	 * hardware encapsulation features instead of standard
2662 	 * features for the netdev
2663 	 */
2664 	if (skb->encapsulation)
2665 		features &= dev->hw_enc_features;
2666 
2667 	if (skb_vlan_tagged(skb))
2668 		features = netdev_intersect_features(features,
2669 						     dev->vlan_features |
2670 						     NETIF_F_HW_VLAN_CTAG_TX |
2671 						     NETIF_F_HW_VLAN_STAG_TX);
2672 
2673 	if (dev->netdev_ops->ndo_features_check)
2674 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2675 								features);
2676 	else
2677 		features &= dflt_features_check(skb, dev, features);
2678 
2679 	return harmonize_features(skb, features);
2680 }
2681 EXPORT_SYMBOL(netif_skb_features);
2682 
2683 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2684 		    struct netdev_queue *txq, bool more)
2685 {
2686 	unsigned int len;
2687 	int rc;
2688 
2689 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2690 		dev_queue_xmit_nit(skb, dev);
2691 
2692 	len = skb->len;
2693 	trace_net_dev_start_xmit(skb, dev);
2694 	rc = netdev_start_xmit(skb, dev, txq, more);
2695 	trace_net_dev_xmit(skb, rc, dev, len);
2696 
2697 	return rc;
2698 }
2699 
2700 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2701 				    struct netdev_queue *txq, int *ret)
2702 {
2703 	struct sk_buff *skb = first;
2704 	int rc = NETDEV_TX_OK;
2705 
2706 	while (skb) {
2707 		struct sk_buff *next = skb->next;
2708 
2709 		skb->next = NULL;
2710 		rc = xmit_one(skb, dev, txq, next != NULL);
2711 		if (unlikely(!dev_xmit_complete(rc))) {
2712 			skb->next = next;
2713 			goto out;
2714 		}
2715 
2716 		skb = next;
2717 		if (netif_xmit_stopped(txq) && skb) {
2718 			rc = NETDEV_TX_BUSY;
2719 			break;
2720 		}
2721 	}
2722 
2723 out:
2724 	*ret = rc;
2725 	return skb;
2726 }
2727 
2728 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2729 					  netdev_features_t features)
2730 {
2731 	if (skb_vlan_tag_present(skb) &&
2732 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2733 		skb = __vlan_hwaccel_push_inside(skb);
2734 	return skb;
2735 }
2736 
2737 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2738 {
2739 	netdev_features_t features;
2740 
2741 	if (skb->next)
2742 		return skb;
2743 
2744 	features = netif_skb_features(skb);
2745 	skb = validate_xmit_vlan(skb, features);
2746 	if (unlikely(!skb))
2747 		goto out_null;
2748 
2749 	if (netif_needs_gso(skb, features)) {
2750 		struct sk_buff *segs;
2751 
2752 		segs = skb_gso_segment(skb, features);
2753 		if (IS_ERR(segs)) {
2754 			goto out_kfree_skb;
2755 		} else if (segs) {
2756 			consume_skb(skb);
2757 			skb = segs;
2758 		}
2759 	} else {
2760 		if (skb_needs_linearize(skb, features) &&
2761 		    __skb_linearize(skb))
2762 			goto out_kfree_skb;
2763 
2764 		/* If packet is not checksummed and device does not
2765 		 * support checksumming for this protocol, complete
2766 		 * checksumming here.
2767 		 */
2768 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2769 			if (skb->encapsulation)
2770 				skb_set_inner_transport_header(skb,
2771 							       skb_checksum_start_offset(skb));
2772 			else
2773 				skb_set_transport_header(skb,
2774 							 skb_checksum_start_offset(skb));
2775 			if (!(features & NETIF_F_ALL_CSUM) &&
2776 			    skb_checksum_help(skb))
2777 				goto out_kfree_skb;
2778 		}
2779 	}
2780 
2781 	return skb;
2782 
2783 out_kfree_skb:
2784 	kfree_skb(skb);
2785 out_null:
2786 	return NULL;
2787 }
2788 
2789 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2790 {
2791 	struct sk_buff *next, *head = NULL, *tail;
2792 
2793 	for (; skb != NULL; skb = next) {
2794 		next = skb->next;
2795 		skb->next = NULL;
2796 
2797 		/* in case skb wont be segmented, point to itself */
2798 		skb->prev = skb;
2799 
2800 		skb = validate_xmit_skb(skb, dev);
2801 		if (!skb)
2802 			continue;
2803 
2804 		if (!head)
2805 			head = skb;
2806 		else
2807 			tail->next = skb;
2808 		/* If skb was segmented, skb->prev points to
2809 		 * the last segment. If not, it still contains skb.
2810 		 */
2811 		tail = skb->prev;
2812 	}
2813 	return head;
2814 }
2815 
2816 static void qdisc_pkt_len_init(struct sk_buff *skb)
2817 {
2818 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2819 
2820 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2821 
2822 	/* To get more precise estimation of bytes sent on wire,
2823 	 * we add to pkt_len the headers size of all segments
2824 	 */
2825 	if (shinfo->gso_size)  {
2826 		unsigned int hdr_len;
2827 		u16 gso_segs = shinfo->gso_segs;
2828 
2829 		/* mac layer + network layer */
2830 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2831 
2832 		/* + transport layer */
2833 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2834 			hdr_len += tcp_hdrlen(skb);
2835 		else
2836 			hdr_len += sizeof(struct udphdr);
2837 
2838 		if (shinfo->gso_type & SKB_GSO_DODGY)
2839 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2840 						shinfo->gso_size);
2841 
2842 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2843 	}
2844 }
2845 
2846 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2847 				 struct net_device *dev,
2848 				 struct netdev_queue *txq)
2849 {
2850 	spinlock_t *root_lock = qdisc_lock(q);
2851 	bool contended;
2852 	int rc;
2853 
2854 	qdisc_pkt_len_init(skb);
2855 	qdisc_calculate_pkt_len(skb, q);
2856 	/*
2857 	 * Heuristic to force contended enqueues to serialize on a
2858 	 * separate lock before trying to get qdisc main lock.
2859 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2860 	 * often and dequeue packets faster.
2861 	 */
2862 	contended = qdisc_is_running(q);
2863 	if (unlikely(contended))
2864 		spin_lock(&q->busylock);
2865 
2866 	spin_lock(root_lock);
2867 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2868 		kfree_skb(skb);
2869 		rc = NET_XMIT_DROP;
2870 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2871 		   qdisc_run_begin(q)) {
2872 		/*
2873 		 * This is a work-conserving queue; there are no old skbs
2874 		 * waiting to be sent out; and the qdisc is not running -
2875 		 * xmit the skb directly.
2876 		 */
2877 
2878 		qdisc_bstats_update(q, skb);
2879 
2880 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2881 			if (unlikely(contended)) {
2882 				spin_unlock(&q->busylock);
2883 				contended = false;
2884 			}
2885 			__qdisc_run(q);
2886 		} else
2887 			qdisc_run_end(q);
2888 
2889 		rc = NET_XMIT_SUCCESS;
2890 	} else {
2891 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2892 		if (qdisc_run_begin(q)) {
2893 			if (unlikely(contended)) {
2894 				spin_unlock(&q->busylock);
2895 				contended = false;
2896 			}
2897 			__qdisc_run(q);
2898 		}
2899 	}
2900 	spin_unlock(root_lock);
2901 	if (unlikely(contended))
2902 		spin_unlock(&q->busylock);
2903 	return rc;
2904 }
2905 
2906 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2907 static void skb_update_prio(struct sk_buff *skb)
2908 {
2909 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2910 
2911 	if (!skb->priority && skb->sk && map) {
2912 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2913 
2914 		if (prioidx < map->priomap_len)
2915 			skb->priority = map->priomap[prioidx];
2916 	}
2917 }
2918 #else
2919 #define skb_update_prio(skb)
2920 #endif
2921 
2922 DEFINE_PER_CPU(int, xmit_recursion);
2923 EXPORT_SYMBOL(xmit_recursion);
2924 
2925 #define RECURSION_LIMIT 10
2926 
2927 /**
2928  *	dev_loopback_xmit - loop back @skb
2929  *	@skb: buffer to transmit
2930  */
2931 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2932 {
2933 	skb_reset_mac_header(skb);
2934 	__skb_pull(skb, skb_network_offset(skb));
2935 	skb->pkt_type = PACKET_LOOPBACK;
2936 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2937 	WARN_ON(!skb_dst(skb));
2938 	skb_dst_force(skb);
2939 	netif_rx_ni(skb);
2940 	return 0;
2941 }
2942 EXPORT_SYMBOL(dev_loopback_xmit);
2943 
2944 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2945 {
2946 #ifdef CONFIG_XPS
2947 	struct xps_dev_maps *dev_maps;
2948 	struct xps_map *map;
2949 	int queue_index = -1;
2950 
2951 	rcu_read_lock();
2952 	dev_maps = rcu_dereference(dev->xps_maps);
2953 	if (dev_maps) {
2954 		map = rcu_dereference(
2955 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
2956 		if (map) {
2957 			if (map->len == 1)
2958 				queue_index = map->queues[0];
2959 			else
2960 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2961 									   map->len)];
2962 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2963 				queue_index = -1;
2964 		}
2965 	}
2966 	rcu_read_unlock();
2967 
2968 	return queue_index;
2969 #else
2970 	return -1;
2971 #endif
2972 }
2973 
2974 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2975 {
2976 	struct sock *sk = skb->sk;
2977 	int queue_index = sk_tx_queue_get(sk);
2978 
2979 	if (queue_index < 0 || skb->ooo_okay ||
2980 	    queue_index >= dev->real_num_tx_queues) {
2981 		int new_index = get_xps_queue(dev, skb);
2982 		if (new_index < 0)
2983 			new_index = skb_tx_hash(dev, skb);
2984 
2985 		if (queue_index != new_index && sk &&
2986 		    rcu_access_pointer(sk->sk_dst_cache))
2987 			sk_tx_queue_set(sk, new_index);
2988 
2989 		queue_index = new_index;
2990 	}
2991 
2992 	return queue_index;
2993 }
2994 
2995 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2996 				    struct sk_buff *skb,
2997 				    void *accel_priv)
2998 {
2999 	int queue_index = 0;
3000 
3001 #ifdef CONFIG_XPS
3002 	if (skb->sender_cpu == 0)
3003 		skb->sender_cpu = raw_smp_processor_id() + 1;
3004 #endif
3005 
3006 	if (dev->real_num_tx_queues != 1) {
3007 		const struct net_device_ops *ops = dev->netdev_ops;
3008 		if (ops->ndo_select_queue)
3009 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3010 							    __netdev_pick_tx);
3011 		else
3012 			queue_index = __netdev_pick_tx(dev, skb);
3013 
3014 		if (!accel_priv)
3015 			queue_index = netdev_cap_txqueue(dev, queue_index);
3016 	}
3017 
3018 	skb_set_queue_mapping(skb, queue_index);
3019 	return netdev_get_tx_queue(dev, queue_index);
3020 }
3021 
3022 /**
3023  *	__dev_queue_xmit - transmit a buffer
3024  *	@skb: buffer to transmit
3025  *	@accel_priv: private data used for L2 forwarding offload
3026  *
3027  *	Queue a buffer for transmission to a network device. The caller must
3028  *	have set the device and priority and built the buffer before calling
3029  *	this function. The function can be called from an interrupt.
3030  *
3031  *	A negative errno code is returned on a failure. A success does not
3032  *	guarantee the frame will be transmitted as it may be dropped due
3033  *	to congestion or traffic shaping.
3034  *
3035  * -----------------------------------------------------------------------------------
3036  *      I notice this method can also return errors from the queue disciplines,
3037  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3038  *      be positive.
3039  *
3040  *      Regardless of the return value, the skb is consumed, so it is currently
3041  *      difficult to retry a send to this method.  (You can bump the ref count
3042  *      before sending to hold a reference for retry if you are careful.)
3043  *
3044  *      When calling this method, interrupts MUST be enabled.  This is because
3045  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3046  *          --BLG
3047  */
3048 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3049 {
3050 	struct net_device *dev = skb->dev;
3051 	struct netdev_queue *txq;
3052 	struct Qdisc *q;
3053 	int rc = -ENOMEM;
3054 
3055 	skb_reset_mac_header(skb);
3056 
3057 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3058 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3059 
3060 	/* Disable soft irqs for various locks below. Also
3061 	 * stops preemption for RCU.
3062 	 */
3063 	rcu_read_lock_bh();
3064 
3065 	skb_update_prio(skb);
3066 
3067 	/* If device/qdisc don't need skb->dst, release it right now while
3068 	 * its hot in this cpu cache.
3069 	 */
3070 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3071 		skb_dst_drop(skb);
3072 	else
3073 		skb_dst_force(skb);
3074 
3075 	txq = netdev_pick_tx(dev, skb, accel_priv);
3076 	q = rcu_dereference_bh(txq->qdisc);
3077 
3078 #ifdef CONFIG_NET_CLS_ACT
3079 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3080 #endif
3081 	trace_net_dev_queue(skb);
3082 	if (q->enqueue) {
3083 		rc = __dev_xmit_skb(skb, q, dev, txq);
3084 		goto out;
3085 	}
3086 
3087 	/* The device has no queue. Common case for software devices:
3088 	   loopback, all the sorts of tunnels...
3089 
3090 	   Really, it is unlikely that netif_tx_lock protection is necessary
3091 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3092 	   counters.)
3093 	   However, it is possible, that they rely on protection
3094 	   made by us here.
3095 
3096 	   Check this and shot the lock. It is not prone from deadlocks.
3097 	   Either shot noqueue qdisc, it is even simpler 8)
3098 	 */
3099 	if (dev->flags & IFF_UP) {
3100 		int cpu = smp_processor_id(); /* ok because BHs are off */
3101 
3102 		if (txq->xmit_lock_owner != cpu) {
3103 
3104 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3105 				goto recursion_alert;
3106 
3107 			skb = validate_xmit_skb(skb, dev);
3108 			if (!skb)
3109 				goto drop;
3110 
3111 			HARD_TX_LOCK(dev, txq, cpu);
3112 
3113 			if (!netif_xmit_stopped(txq)) {
3114 				__this_cpu_inc(xmit_recursion);
3115 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3116 				__this_cpu_dec(xmit_recursion);
3117 				if (dev_xmit_complete(rc)) {
3118 					HARD_TX_UNLOCK(dev, txq);
3119 					goto out;
3120 				}
3121 			}
3122 			HARD_TX_UNLOCK(dev, txq);
3123 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3124 					     dev->name);
3125 		} else {
3126 			/* Recursion is detected! It is possible,
3127 			 * unfortunately
3128 			 */
3129 recursion_alert:
3130 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3131 					     dev->name);
3132 		}
3133 	}
3134 
3135 	rc = -ENETDOWN;
3136 drop:
3137 	rcu_read_unlock_bh();
3138 
3139 	atomic_long_inc(&dev->tx_dropped);
3140 	kfree_skb_list(skb);
3141 	return rc;
3142 out:
3143 	rcu_read_unlock_bh();
3144 	return rc;
3145 }
3146 
3147 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3148 {
3149 	return __dev_queue_xmit(skb, NULL);
3150 }
3151 EXPORT_SYMBOL(dev_queue_xmit_sk);
3152 
3153 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3154 {
3155 	return __dev_queue_xmit(skb, accel_priv);
3156 }
3157 EXPORT_SYMBOL(dev_queue_xmit_accel);
3158 
3159 
3160 /*=======================================================================
3161 			Receiver routines
3162   =======================================================================*/
3163 
3164 int netdev_max_backlog __read_mostly = 1000;
3165 EXPORT_SYMBOL(netdev_max_backlog);
3166 
3167 int netdev_tstamp_prequeue __read_mostly = 1;
3168 int netdev_budget __read_mostly = 300;
3169 int weight_p __read_mostly = 64;            /* old backlog weight */
3170 
3171 /* Called with irq disabled */
3172 static inline void ____napi_schedule(struct softnet_data *sd,
3173 				     struct napi_struct *napi)
3174 {
3175 	list_add_tail(&napi->poll_list, &sd->poll_list);
3176 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3177 }
3178 
3179 #ifdef CONFIG_RPS
3180 
3181 /* One global table that all flow-based protocols share. */
3182 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3183 EXPORT_SYMBOL(rps_sock_flow_table);
3184 u32 rps_cpu_mask __read_mostly;
3185 EXPORT_SYMBOL(rps_cpu_mask);
3186 
3187 struct static_key rps_needed __read_mostly;
3188 
3189 static struct rps_dev_flow *
3190 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3191 	    struct rps_dev_flow *rflow, u16 next_cpu)
3192 {
3193 	if (next_cpu < nr_cpu_ids) {
3194 #ifdef CONFIG_RFS_ACCEL
3195 		struct netdev_rx_queue *rxqueue;
3196 		struct rps_dev_flow_table *flow_table;
3197 		struct rps_dev_flow *old_rflow;
3198 		u32 flow_id;
3199 		u16 rxq_index;
3200 		int rc;
3201 
3202 		/* Should we steer this flow to a different hardware queue? */
3203 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3204 		    !(dev->features & NETIF_F_NTUPLE))
3205 			goto out;
3206 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3207 		if (rxq_index == skb_get_rx_queue(skb))
3208 			goto out;
3209 
3210 		rxqueue = dev->_rx + rxq_index;
3211 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3212 		if (!flow_table)
3213 			goto out;
3214 		flow_id = skb_get_hash(skb) & flow_table->mask;
3215 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3216 							rxq_index, flow_id);
3217 		if (rc < 0)
3218 			goto out;
3219 		old_rflow = rflow;
3220 		rflow = &flow_table->flows[flow_id];
3221 		rflow->filter = rc;
3222 		if (old_rflow->filter == rflow->filter)
3223 			old_rflow->filter = RPS_NO_FILTER;
3224 	out:
3225 #endif
3226 		rflow->last_qtail =
3227 			per_cpu(softnet_data, next_cpu).input_queue_head;
3228 	}
3229 
3230 	rflow->cpu = next_cpu;
3231 	return rflow;
3232 }
3233 
3234 /*
3235  * get_rps_cpu is called from netif_receive_skb and returns the target
3236  * CPU from the RPS map of the receiving queue for a given skb.
3237  * rcu_read_lock must be held on entry.
3238  */
3239 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3240 		       struct rps_dev_flow **rflowp)
3241 {
3242 	const struct rps_sock_flow_table *sock_flow_table;
3243 	struct netdev_rx_queue *rxqueue = dev->_rx;
3244 	struct rps_dev_flow_table *flow_table;
3245 	struct rps_map *map;
3246 	int cpu = -1;
3247 	u32 tcpu;
3248 	u32 hash;
3249 
3250 	if (skb_rx_queue_recorded(skb)) {
3251 		u16 index = skb_get_rx_queue(skb);
3252 
3253 		if (unlikely(index >= dev->real_num_rx_queues)) {
3254 			WARN_ONCE(dev->real_num_rx_queues > 1,
3255 				  "%s received packet on queue %u, but number "
3256 				  "of RX queues is %u\n",
3257 				  dev->name, index, dev->real_num_rx_queues);
3258 			goto done;
3259 		}
3260 		rxqueue += index;
3261 	}
3262 
3263 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3264 
3265 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3266 	map = rcu_dereference(rxqueue->rps_map);
3267 	if (!flow_table && !map)
3268 		goto done;
3269 
3270 	skb_reset_network_header(skb);
3271 	hash = skb_get_hash(skb);
3272 	if (!hash)
3273 		goto done;
3274 
3275 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3276 	if (flow_table && sock_flow_table) {
3277 		struct rps_dev_flow *rflow;
3278 		u32 next_cpu;
3279 		u32 ident;
3280 
3281 		/* First check into global flow table if there is a match */
3282 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3283 		if ((ident ^ hash) & ~rps_cpu_mask)
3284 			goto try_rps;
3285 
3286 		next_cpu = ident & rps_cpu_mask;
3287 
3288 		/* OK, now we know there is a match,
3289 		 * we can look at the local (per receive queue) flow table
3290 		 */
3291 		rflow = &flow_table->flows[hash & flow_table->mask];
3292 		tcpu = rflow->cpu;
3293 
3294 		/*
3295 		 * If the desired CPU (where last recvmsg was done) is
3296 		 * different from current CPU (one in the rx-queue flow
3297 		 * table entry), switch if one of the following holds:
3298 		 *   - Current CPU is unset (>= nr_cpu_ids).
3299 		 *   - Current CPU is offline.
3300 		 *   - The current CPU's queue tail has advanced beyond the
3301 		 *     last packet that was enqueued using this table entry.
3302 		 *     This guarantees that all previous packets for the flow
3303 		 *     have been dequeued, thus preserving in order delivery.
3304 		 */
3305 		if (unlikely(tcpu != next_cpu) &&
3306 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3307 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3308 		      rflow->last_qtail)) >= 0)) {
3309 			tcpu = next_cpu;
3310 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3311 		}
3312 
3313 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3314 			*rflowp = rflow;
3315 			cpu = tcpu;
3316 			goto done;
3317 		}
3318 	}
3319 
3320 try_rps:
3321 
3322 	if (map) {
3323 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3324 		if (cpu_online(tcpu)) {
3325 			cpu = tcpu;
3326 			goto done;
3327 		}
3328 	}
3329 
3330 done:
3331 	return cpu;
3332 }
3333 
3334 #ifdef CONFIG_RFS_ACCEL
3335 
3336 /**
3337  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3338  * @dev: Device on which the filter was set
3339  * @rxq_index: RX queue index
3340  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3341  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3342  *
3343  * Drivers that implement ndo_rx_flow_steer() should periodically call
3344  * this function for each installed filter and remove the filters for
3345  * which it returns %true.
3346  */
3347 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3348 			 u32 flow_id, u16 filter_id)
3349 {
3350 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3351 	struct rps_dev_flow_table *flow_table;
3352 	struct rps_dev_flow *rflow;
3353 	bool expire = true;
3354 	unsigned int cpu;
3355 
3356 	rcu_read_lock();
3357 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3358 	if (flow_table && flow_id <= flow_table->mask) {
3359 		rflow = &flow_table->flows[flow_id];
3360 		cpu = ACCESS_ONCE(rflow->cpu);
3361 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3362 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3363 			   rflow->last_qtail) <
3364 		     (int)(10 * flow_table->mask)))
3365 			expire = false;
3366 	}
3367 	rcu_read_unlock();
3368 	return expire;
3369 }
3370 EXPORT_SYMBOL(rps_may_expire_flow);
3371 
3372 #endif /* CONFIG_RFS_ACCEL */
3373 
3374 /* Called from hardirq (IPI) context */
3375 static void rps_trigger_softirq(void *data)
3376 {
3377 	struct softnet_data *sd = data;
3378 
3379 	____napi_schedule(sd, &sd->backlog);
3380 	sd->received_rps++;
3381 }
3382 
3383 #endif /* CONFIG_RPS */
3384 
3385 /*
3386  * Check if this softnet_data structure is another cpu one
3387  * If yes, queue it to our IPI list and return 1
3388  * If no, return 0
3389  */
3390 static int rps_ipi_queued(struct softnet_data *sd)
3391 {
3392 #ifdef CONFIG_RPS
3393 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3394 
3395 	if (sd != mysd) {
3396 		sd->rps_ipi_next = mysd->rps_ipi_list;
3397 		mysd->rps_ipi_list = sd;
3398 
3399 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3400 		return 1;
3401 	}
3402 #endif /* CONFIG_RPS */
3403 	return 0;
3404 }
3405 
3406 #ifdef CONFIG_NET_FLOW_LIMIT
3407 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3408 #endif
3409 
3410 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3411 {
3412 #ifdef CONFIG_NET_FLOW_LIMIT
3413 	struct sd_flow_limit *fl;
3414 	struct softnet_data *sd;
3415 	unsigned int old_flow, new_flow;
3416 
3417 	if (qlen < (netdev_max_backlog >> 1))
3418 		return false;
3419 
3420 	sd = this_cpu_ptr(&softnet_data);
3421 
3422 	rcu_read_lock();
3423 	fl = rcu_dereference(sd->flow_limit);
3424 	if (fl) {
3425 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3426 		old_flow = fl->history[fl->history_head];
3427 		fl->history[fl->history_head] = new_flow;
3428 
3429 		fl->history_head++;
3430 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3431 
3432 		if (likely(fl->buckets[old_flow]))
3433 			fl->buckets[old_flow]--;
3434 
3435 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3436 			fl->count++;
3437 			rcu_read_unlock();
3438 			return true;
3439 		}
3440 	}
3441 	rcu_read_unlock();
3442 #endif
3443 	return false;
3444 }
3445 
3446 /*
3447  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3448  * queue (may be a remote CPU queue).
3449  */
3450 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3451 			      unsigned int *qtail)
3452 {
3453 	struct softnet_data *sd;
3454 	unsigned long flags;
3455 	unsigned int qlen;
3456 
3457 	sd = &per_cpu(softnet_data, cpu);
3458 
3459 	local_irq_save(flags);
3460 
3461 	rps_lock(sd);
3462 	qlen = skb_queue_len(&sd->input_pkt_queue);
3463 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3464 		if (qlen) {
3465 enqueue:
3466 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3467 			input_queue_tail_incr_save(sd, qtail);
3468 			rps_unlock(sd);
3469 			local_irq_restore(flags);
3470 			return NET_RX_SUCCESS;
3471 		}
3472 
3473 		/* Schedule NAPI for backlog device
3474 		 * We can use non atomic operation since we own the queue lock
3475 		 */
3476 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3477 			if (!rps_ipi_queued(sd))
3478 				____napi_schedule(sd, &sd->backlog);
3479 		}
3480 		goto enqueue;
3481 	}
3482 
3483 	sd->dropped++;
3484 	rps_unlock(sd);
3485 
3486 	local_irq_restore(flags);
3487 
3488 	atomic_long_inc(&skb->dev->rx_dropped);
3489 	kfree_skb(skb);
3490 	return NET_RX_DROP;
3491 }
3492 
3493 static int netif_rx_internal(struct sk_buff *skb)
3494 {
3495 	int ret;
3496 
3497 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3498 
3499 	trace_netif_rx(skb);
3500 #ifdef CONFIG_RPS
3501 	if (static_key_false(&rps_needed)) {
3502 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3503 		int cpu;
3504 
3505 		preempt_disable();
3506 		rcu_read_lock();
3507 
3508 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3509 		if (cpu < 0)
3510 			cpu = smp_processor_id();
3511 
3512 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3513 
3514 		rcu_read_unlock();
3515 		preempt_enable();
3516 	} else
3517 #endif
3518 	{
3519 		unsigned int qtail;
3520 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3521 		put_cpu();
3522 	}
3523 	return ret;
3524 }
3525 
3526 /**
3527  *	netif_rx	-	post buffer to the network code
3528  *	@skb: buffer to post
3529  *
3530  *	This function receives a packet from a device driver and queues it for
3531  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3532  *	may be dropped during processing for congestion control or by the
3533  *	protocol layers.
3534  *
3535  *	return values:
3536  *	NET_RX_SUCCESS	(no congestion)
3537  *	NET_RX_DROP     (packet was dropped)
3538  *
3539  */
3540 
3541 int netif_rx(struct sk_buff *skb)
3542 {
3543 	trace_netif_rx_entry(skb);
3544 
3545 	return netif_rx_internal(skb);
3546 }
3547 EXPORT_SYMBOL(netif_rx);
3548 
3549 int netif_rx_ni(struct sk_buff *skb)
3550 {
3551 	int err;
3552 
3553 	trace_netif_rx_ni_entry(skb);
3554 
3555 	preempt_disable();
3556 	err = netif_rx_internal(skb);
3557 	if (local_softirq_pending())
3558 		do_softirq();
3559 	preempt_enable();
3560 
3561 	return err;
3562 }
3563 EXPORT_SYMBOL(netif_rx_ni);
3564 
3565 static void net_tx_action(struct softirq_action *h)
3566 {
3567 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3568 
3569 	if (sd->completion_queue) {
3570 		struct sk_buff *clist;
3571 
3572 		local_irq_disable();
3573 		clist = sd->completion_queue;
3574 		sd->completion_queue = NULL;
3575 		local_irq_enable();
3576 
3577 		while (clist) {
3578 			struct sk_buff *skb = clist;
3579 			clist = clist->next;
3580 
3581 			WARN_ON(atomic_read(&skb->users));
3582 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3583 				trace_consume_skb(skb);
3584 			else
3585 				trace_kfree_skb(skb, net_tx_action);
3586 			__kfree_skb(skb);
3587 		}
3588 	}
3589 
3590 	if (sd->output_queue) {
3591 		struct Qdisc *head;
3592 
3593 		local_irq_disable();
3594 		head = sd->output_queue;
3595 		sd->output_queue = NULL;
3596 		sd->output_queue_tailp = &sd->output_queue;
3597 		local_irq_enable();
3598 
3599 		while (head) {
3600 			struct Qdisc *q = head;
3601 			spinlock_t *root_lock;
3602 
3603 			head = head->next_sched;
3604 
3605 			root_lock = qdisc_lock(q);
3606 			if (spin_trylock(root_lock)) {
3607 				smp_mb__before_atomic();
3608 				clear_bit(__QDISC_STATE_SCHED,
3609 					  &q->state);
3610 				qdisc_run(q);
3611 				spin_unlock(root_lock);
3612 			} else {
3613 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3614 					      &q->state)) {
3615 					__netif_reschedule(q);
3616 				} else {
3617 					smp_mb__before_atomic();
3618 					clear_bit(__QDISC_STATE_SCHED,
3619 						  &q->state);
3620 				}
3621 			}
3622 		}
3623 	}
3624 }
3625 
3626 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3627     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3628 /* This hook is defined here for ATM LANE */
3629 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3630 			     unsigned char *addr) __read_mostly;
3631 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3632 #endif
3633 
3634 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3635 					 struct packet_type **pt_prev,
3636 					 int *ret, struct net_device *orig_dev)
3637 {
3638 #ifdef CONFIG_NET_CLS_ACT
3639 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3640 	struct tcf_result cl_res;
3641 
3642 	/* If there's at least one ingress present somewhere (so
3643 	 * we get here via enabled static key), remaining devices
3644 	 * that are not configured with an ingress qdisc will bail
3645 	 * out here.
3646 	 */
3647 	if (!cl)
3648 		return skb;
3649 	if (*pt_prev) {
3650 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3651 		*pt_prev = NULL;
3652 	}
3653 
3654 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3655 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3656 	qdisc_bstats_update_cpu(cl->q, skb);
3657 
3658 	switch (tc_classify(skb, cl, &cl_res)) {
3659 	case TC_ACT_OK:
3660 	case TC_ACT_RECLASSIFY:
3661 		skb->tc_index = TC_H_MIN(cl_res.classid);
3662 		break;
3663 	case TC_ACT_SHOT:
3664 		qdisc_qstats_drop_cpu(cl->q);
3665 	case TC_ACT_STOLEN:
3666 	case TC_ACT_QUEUED:
3667 		kfree_skb(skb);
3668 		return NULL;
3669 	default:
3670 		break;
3671 	}
3672 #endif /* CONFIG_NET_CLS_ACT */
3673 	return skb;
3674 }
3675 
3676 /**
3677  *	netdev_rx_handler_register - register receive handler
3678  *	@dev: device to register a handler for
3679  *	@rx_handler: receive handler to register
3680  *	@rx_handler_data: data pointer that is used by rx handler
3681  *
3682  *	Register a receive handler for a device. This handler will then be
3683  *	called from __netif_receive_skb. A negative errno code is returned
3684  *	on a failure.
3685  *
3686  *	The caller must hold the rtnl_mutex.
3687  *
3688  *	For a general description of rx_handler, see enum rx_handler_result.
3689  */
3690 int netdev_rx_handler_register(struct net_device *dev,
3691 			       rx_handler_func_t *rx_handler,
3692 			       void *rx_handler_data)
3693 {
3694 	ASSERT_RTNL();
3695 
3696 	if (dev->rx_handler)
3697 		return -EBUSY;
3698 
3699 	/* Note: rx_handler_data must be set before rx_handler */
3700 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3701 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3702 
3703 	return 0;
3704 }
3705 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3706 
3707 /**
3708  *	netdev_rx_handler_unregister - unregister receive handler
3709  *	@dev: device to unregister a handler from
3710  *
3711  *	Unregister a receive handler from a device.
3712  *
3713  *	The caller must hold the rtnl_mutex.
3714  */
3715 void netdev_rx_handler_unregister(struct net_device *dev)
3716 {
3717 
3718 	ASSERT_RTNL();
3719 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3720 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3721 	 * section has a guarantee to see a non NULL rx_handler_data
3722 	 * as well.
3723 	 */
3724 	synchronize_net();
3725 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3726 }
3727 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3728 
3729 /*
3730  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3731  * the special handling of PFMEMALLOC skbs.
3732  */
3733 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3734 {
3735 	switch (skb->protocol) {
3736 	case htons(ETH_P_ARP):
3737 	case htons(ETH_P_IP):
3738 	case htons(ETH_P_IPV6):
3739 	case htons(ETH_P_8021Q):
3740 	case htons(ETH_P_8021AD):
3741 		return true;
3742 	default:
3743 		return false;
3744 	}
3745 }
3746 
3747 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3748 			     int *ret, struct net_device *orig_dev)
3749 {
3750 #ifdef CONFIG_NETFILTER_INGRESS
3751 	if (nf_hook_ingress_active(skb)) {
3752 		if (*pt_prev) {
3753 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
3754 			*pt_prev = NULL;
3755 		}
3756 
3757 		return nf_hook_ingress(skb);
3758 	}
3759 #endif /* CONFIG_NETFILTER_INGRESS */
3760 	return 0;
3761 }
3762 
3763 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3764 {
3765 	struct packet_type *ptype, *pt_prev;
3766 	rx_handler_func_t *rx_handler;
3767 	struct net_device *orig_dev;
3768 	bool deliver_exact = false;
3769 	int ret = NET_RX_DROP;
3770 	__be16 type;
3771 
3772 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3773 
3774 	trace_netif_receive_skb(skb);
3775 
3776 	orig_dev = skb->dev;
3777 
3778 	skb_reset_network_header(skb);
3779 	if (!skb_transport_header_was_set(skb))
3780 		skb_reset_transport_header(skb);
3781 	skb_reset_mac_len(skb);
3782 
3783 	pt_prev = NULL;
3784 
3785 	rcu_read_lock();
3786 
3787 another_round:
3788 	skb->skb_iif = skb->dev->ifindex;
3789 
3790 	__this_cpu_inc(softnet_data.processed);
3791 
3792 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3793 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3794 		skb = skb_vlan_untag(skb);
3795 		if (unlikely(!skb))
3796 			goto unlock;
3797 	}
3798 
3799 #ifdef CONFIG_NET_CLS_ACT
3800 	if (skb->tc_verd & TC_NCLS) {
3801 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3802 		goto ncls;
3803 	}
3804 #endif
3805 
3806 	if (pfmemalloc)
3807 		goto skip_taps;
3808 
3809 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3810 		if (pt_prev)
3811 			ret = deliver_skb(skb, pt_prev, orig_dev);
3812 		pt_prev = ptype;
3813 	}
3814 
3815 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3816 		if (pt_prev)
3817 			ret = deliver_skb(skb, pt_prev, orig_dev);
3818 		pt_prev = ptype;
3819 	}
3820 
3821 skip_taps:
3822 #ifdef CONFIG_NET_INGRESS
3823 	if (static_key_false(&ingress_needed)) {
3824 		skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3825 		if (!skb)
3826 			goto unlock;
3827 
3828 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3829 			goto unlock;
3830 	}
3831 #endif
3832 #ifdef CONFIG_NET_CLS_ACT
3833 	skb->tc_verd = 0;
3834 ncls:
3835 #endif
3836 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3837 		goto drop;
3838 
3839 	if (skb_vlan_tag_present(skb)) {
3840 		if (pt_prev) {
3841 			ret = deliver_skb(skb, pt_prev, orig_dev);
3842 			pt_prev = NULL;
3843 		}
3844 		if (vlan_do_receive(&skb))
3845 			goto another_round;
3846 		else if (unlikely(!skb))
3847 			goto unlock;
3848 	}
3849 
3850 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3851 	if (rx_handler) {
3852 		if (pt_prev) {
3853 			ret = deliver_skb(skb, pt_prev, orig_dev);
3854 			pt_prev = NULL;
3855 		}
3856 		switch (rx_handler(&skb)) {
3857 		case RX_HANDLER_CONSUMED:
3858 			ret = NET_RX_SUCCESS;
3859 			goto unlock;
3860 		case RX_HANDLER_ANOTHER:
3861 			goto another_round;
3862 		case RX_HANDLER_EXACT:
3863 			deliver_exact = true;
3864 		case RX_HANDLER_PASS:
3865 			break;
3866 		default:
3867 			BUG();
3868 		}
3869 	}
3870 
3871 	if (unlikely(skb_vlan_tag_present(skb))) {
3872 		if (skb_vlan_tag_get_id(skb))
3873 			skb->pkt_type = PACKET_OTHERHOST;
3874 		/* Note: we might in the future use prio bits
3875 		 * and set skb->priority like in vlan_do_receive()
3876 		 * For the time being, just ignore Priority Code Point
3877 		 */
3878 		skb->vlan_tci = 0;
3879 	}
3880 
3881 	type = skb->protocol;
3882 
3883 	/* deliver only exact match when indicated */
3884 	if (likely(!deliver_exact)) {
3885 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3886 				       &ptype_base[ntohs(type) &
3887 						   PTYPE_HASH_MASK]);
3888 	}
3889 
3890 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3891 			       &orig_dev->ptype_specific);
3892 
3893 	if (unlikely(skb->dev != orig_dev)) {
3894 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3895 				       &skb->dev->ptype_specific);
3896 	}
3897 
3898 	if (pt_prev) {
3899 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3900 			goto drop;
3901 		else
3902 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3903 	} else {
3904 drop:
3905 		atomic_long_inc(&skb->dev->rx_dropped);
3906 		kfree_skb(skb);
3907 		/* Jamal, now you will not able to escape explaining
3908 		 * me how you were going to use this. :-)
3909 		 */
3910 		ret = NET_RX_DROP;
3911 	}
3912 
3913 unlock:
3914 	rcu_read_unlock();
3915 	return ret;
3916 }
3917 
3918 static int __netif_receive_skb(struct sk_buff *skb)
3919 {
3920 	int ret;
3921 
3922 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3923 		unsigned long pflags = current->flags;
3924 
3925 		/*
3926 		 * PFMEMALLOC skbs are special, they should
3927 		 * - be delivered to SOCK_MEMALLOC sockets only
3928 		 * - stay away from userspace
3929 		 * - have bounded memory usage
3930 		 *
3931 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3932 		 * context down to all allocation sites.
3933 		 */
3934 		current->flags |= PF_MEMALLOC;
3935 		ret = __netif_receive_skb_core(skb, true);
3936 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3937 	} else
3938 		ret = __netif_receive_skb_core(skb, false);
3939 
3940 	return ret;
3941 }
3942 
3943 static int netif_receive_skb_internal(struct sk_buff *skb)
3944 {
3945 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3946 
3947 	if (skb_defer_rx_timestamp(skb))
3948 		return NET_RX_SUCCESS;
3949 
3950 #ifdef CONFIG_RPS
3951 	if (static_key_false(&rps_needed)) {
3952 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3953 		int cpu, ret;
3954 
3955 		rcu_read_lock();
3956 
3957 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3958 
3959 		if (cpu >= 0) {
3960 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3961 			rcu_read_unlock();
3962 			return ret;
3963 		}
3964 		rcu_read_unlock();
3965 	}
3966 #endif
3967 	return __netif_receive_skb(skb);
3968 }
3969 
3970 /**
3971  *	netif_receive_skb - process receive buffer from network
3972  *	@skb: buffer to process
3973  *
3974  *	netif_receive_skb() is the main receive data processing function.
3975  *	It always succeeds. The buffer may be dropped during processing
3976  *	for congestion control or by the protocol layers.
3977  *
3978  *	This function may only be called from softirq context and interrupts
3979  *	should be enabled.
3980  *
3981  *	Return values (usually ignored):
3982  *	NET_RX_SUCCESS: no congestion
3983  *	NET_RX_DROP: packet was dropped
3984  */
3985 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3986 {
3987 	trace_netif_receive_skb_entry(skb);
3988 
3989 	return netif_receive_skb_internal(skb);
3990 }
3991 EXPORT_SYMBOL(netif_receive_skb_sk);
3992 
3993 /* Network device is going away, flush any packets still pending
3994  * Called with irqs disabled.
3995  */
3996 static void flush_backlog(void *arg)
3997 {
3998 	struct net_device *dev = arg;
3999 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4000 	struct sk_buff *skb, *tmp;
4001 
4002 	rps_lock(sd);
4003 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4004 		if (skb->dev == dev) {
4005 			__skb_unlink(skb, &sd->input_pkt_queue);
4006 			kfree_skb(skb);
4007 			input_queue_head_incr(sd);
4008 		}
4009 	}
4010 	rps_unlock(sd);
4011 
4012 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4013 		if (skb->dev == dev) {
4014 			__skb_unlink(skb, &sd->process_queue);
4015 			kfree_skb(skb);
4016 			input_queue_head_incr(sd);
4017 		}
4018 	}
4019 }
4020 
4021 static int napi_gro_complete(struct sk_buff *skb)
4022 {
4023 	struct packet_offload *ptype;
4024 	__be16 type = skb->protocol;
4025 	struct list_head *head = &offload_base;
4026 	int err = -ENOENT;
4027 
4028 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4029 
4030 	if (NAPI_GRO_CB(skb)->count == 1) {
4031 		skb_shinfo(skb)->gso_size = 0;
4032 		goto out;
4033 	}
4034 
4035 	rcu_read_lock();
4036 	list_for_each_entry_rcu(ptype, head, list) {
4037 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4038 			continue;
4039 
4040 		err = ptype->callbacks.gro_complete(skb, 0);
4041 		break;
4042 	}
4043 	rcu_read_unlock();
4044 
4045 	if (err) {
4046 		WARN_ON(&ptype->list == head);
4047 		kfree_skb(skb);
4048 		return NET_RX_SUCCESS;
4049 	}
4050 
4051 out:
4052 	return netif_receive_skb_internal(skb);
4053 }
4054 
4055 /* napi->gro_list contains packets ordered by age.
4056  * youngest packets at the head of it.
4057  * Complete skbs in reverse order to reduce latencies.
4058  */
4059 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4060 {
4061 	struct sk_buff *skb, *prev = NULL;
4062 
4063 	/* scan list and build reverse chain */
4064 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4065 		skb->prev = prev;
4066 		prev = skb;
4067 	}
4068 
4069 	for (skb = prev; skb; skb = prev) {
4070 		skb->next = NULL;
4071 
4072 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4073 			return;
4074 
4075 		prev = skb->prev;
4076 		napi_gro_complete(skb);
4077 		napi->gro_count--;
4078 	}
4079 
4080 	napi->gro_list = NULL;
4081 }
4082 EXPORT_SYMBOL(napi_gro_flush);
4083 
4084 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4085 {
4086 	struct sk_buff *p;
4087 	unsigned int maclen = skb->dev->hard_header_len;
4088 	u32 hash = skb_get_hash_raw(skb);
4089 
4090 	for (p = napi->gro_list; p; p = p->next) {
4091 		unsigned long diffs;
4092 
4093 		NAPI_GRO_CB(p)->flush = 0;
4094 
4095 		if (hash != skb_get_hash_raw(p)) {
4096 			NAPI_GRO_CB(p)->same_flow = 0;
4097 			continue;
4098 		}
4099 
4100 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4101 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4102 		if (maclen == ETH_HLEN)
4103 			diffs |= compare_ether_header(skb_mac_header(p),
4104 						      skb_mac_header(skb));
4105 		else if (!diffs)
4106 			diffs = memcmp(skb_mac_header(p),
4107 				       skb_mac_header(skb),
4108 				       maclen);
4109 		NAPI_GRO_CB(p)->same_flow = !diffs;
4110 	}
4111 }
4112 
4113 static void skb_gro_reset_offset(struct sk_buff *skb)
4114 {
4115 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4116 	const skb_frag_t *frag0 = &pinfo->frags[0];
4117 
4118 	NAPI_GRO_CB(skb)->data_offset = 0;
4119 	NAPI_GRO_CB(skb)->frag0 = NULL;
4120 	NAPI_GRO_CB(skb)->frag0_len = 0;
4121 
4122 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4123 	    pinfo->nr_frags &&
4124 	    !PageHighMem(skb_frag_page(frag0))) {
4125 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4126 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4127 	}
4128 }
4129 
4130 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4131 {
4132 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4133 
4134 	BUG_ON(skb->end - skb->tail < grow);
4135 
4136 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4137 
4138 	skb->data_len -= grow;
4139 	skb->tail += grow;
4140 
4141 	pinfo->frags[0].page_offset += grow;
4142 	skb_frag_size_sub(&pinfo->frags[0], grow);
4143 
4144 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4145 		skb_frag_unref(skb, 0);
4146 		memmove(pinfo->frags, pinfo->frags + 1,
4147 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4148 	}
4149 }
4150 
4151 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4152 {
4153 	struct sk_buff **pp = NULL;
4154 	struct packet_offload *ptype;
4155 	__be16 type = skb->protocol;
4156 	struct list_head *head = &offload_base;
4157 	int same_flow;
4158 	enum gro_result ret;
4159 	int grow;
4160 
4161 	if (!(skb->dev->features & NETIF_F_GRO))
4162 		goto normal;
4163 
4164 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4165 		goto normal;
4166 
4167 	gro_list_prepare(napi, skb);
4168 
4169 	rcu_read_lock();
4170 	list_for_each_entry_rcu(ptype, head, list) {
4171 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4172 			continue;
4173 
4174 		skb_set_network_header(skb, skb_gro_offset(skb));
4175 		skb_reset_mac_len(skb);
4176 		NAPI_GRO_CB(skb)->same_flow = 0;
4177 		NAPI_GRO_CB(skb)->flush = 0;
4178 		NAPI_GRO_CB(skb)->free = 0;
4179 		NAPI_GRO_CB(skb)->udp_mark = 0;
4180 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4181 
4182 		/* Setup for GRO checksum validation */
4183 		switch (skb->ip_summed) {
4184 		case CHECKSUM_COMPLETE:
4185 			NAPI_GRO_CB(skb)->csum = skb->csum;
4186 			NAPI_GRO_CB(skb)->csum_valid = 1;
4187 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4188 			break;
4189 		case CHECKSUM_UNNECESSARY:
4190 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4191 			NAPI_GRO_CB(skb)->csum_valid = 0;
4192 			break;
4193 		default:
4194 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4195 			NAPI_GRO_CB(skb)->csum_valid = 0;
4196 		}
4197 
4198 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4199 		break;
4200 	}
4201 	rcu_read_unlock();
4202 
4203 	if (&ptype->list == head)
4204 		goto normal;
4205 
4206 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4207 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4208 
4209 	if (pp) {
4210 		struct sk_buff *nskb = *pp;
4211 
4212 		*pp = nskb->next;
4213 		nskb->next = NULL;
4214 		napi_gro_complete(nskb);
4215 		napi->gro_count--;
4216 	}
4217 
4218 	if (same_flow)
4219 		goto ok;
4220 
4221 	if (NAPI_GRO_CB(skb)->flush)
4222 		goto normal;
4223 
4224 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4225 		struct sk_buff *nskb = napi->gro_list;
4226 
4227 		/* locate the end of the list to select the 'oldest' flow */
4228 		while (nskb->next) {
4229 			pp = &nskb->next;
4230 			nskb = *pp;
4231 		}
4232 		*pp = NULL;
4233 		nskb->next = NULL;
4234 		napi_gro_complete(nskb);
4235 	} else {
4236 		napi->gro_count++;
4237 	}
4238 	NAPI_GRO_CB(skb)->count = 1;
4239 	NAPI_GRO_CB(skb)->age = jiffies;
4240 	NAPI_GRO_CB(skb)->last = skb;
4241 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4242 	skb->next = napi->gro_list;
4243 	napi->gro_list = skb;
4244 	ret = GRO_HELD;
4245 
4246 pull:
4247 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4248 	if (grow > 0)
4249 		gro_pull_from_frag0(skb, grow);
4250 ok:
4251 	return ret;
4252 
4253 normal:
4254 	ret = GRO_NORMAL;
4255 	goto pull;
4256 }
4257 
4258 struct packet_offload *gro_find_receive_by_type(__be16 type)
4259 {
4260 	struct list_head *offload_head = &offload_base;
4261 	struct packet_offload *ptype;
4262 
4263 	list_for_each_entry_rcu(ptype, offload_head, list) {
4264 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4265 			continue;
4266 		return ptype;
4267 	}
4268 	return NULL;
4269 }
4270 EXPORT_SYMBOL(gro_find_receive_by_type);
4271 
4272 struct packet_offload *gro_find_complete_by_type(__be16 type)
4273 {
4274 	struct list_head *offload_head = &offload_base;
4275 	struct packet_offload *ptype;
4276 
4277 	list_for_each_entry_rcu(ptype, offload_head, list) {
4278 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4279 			continue;
4280 		return ptype;
4281 	}
4282 	return NULL;
4283 }
4284 EXPORT_SYMBOL(gro_find_complete_by_type);
4285 
4286 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4287 {
4288 	switch (ret) {
4289 	case GRO_NORMAL:
4290 		if (netif_receive_skb_internal(skb))
4291 			ret = GRO_DROP;
4292 		break;
4293 
4294 	case GRO_DROP:
4295 		kfree_skb(skb);
4296 		break;
4297 
4298 	case GRO_MERGED_FREE:
4299 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4300 			kmem_cache_free(skbuff_head_cache, skb);
4301 		else
4302 			__kfree_skb(skb);
4303 		break;
4304 
4305 	case GRO_HELD:
4306 	case GRO_MERGED:
4307 		break;
4308 	}
4309 
4310 	return ret;
4311 }
4312 
4313 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4314 {
4315 	trace_napi_gro_receive_entry(skb);
4316 
4317 	skb_gro_reset_offset(skb);
4318 
4319 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4320 }
4321 EXPORT_SYMBOL(napi_gro_receive);
4322 
4323 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4324 {
4325 	if (unlikely(skb->pfmemalloc)) {
4326 		consume_skb(skb);
4327 		return;
4328 	}
4329 	__skb_pull(skb, skb_headlen(skb));
4330 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4331 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4332 	skb->vlan_tci = 0;
4333 	skb->dev = napi->dev;
4334 	skb->skb_iif = 0;
4335 	skb->encapsulation = 0;
4336 	skb_shinfo(skb)->gso_type = 0;
4337 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4338 
4339 	napi->skb = skb;
4340 }
4341 
4342 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4343 {
4344 	struct sk_buff *skb = napi->skb;
4345 
4346 	if (!skb) {
4347 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4348 		napi->skb = skb;
4349 	}
4350 	return skb;
4351 }
4352 EXPORT_SYMBOL(napi_get_frags);
4353 
4354 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4355 				      struct sk_buff *skb,
4356 				      gro_result_t ret)
4357 {
4358 	switch (ret) {
4359 	case GRO_NORMAL:
4360 	case GRO_HELD:
4361 		__skb_push(skb, ETH_HLEN);
4362 		skb->protocol = eth_type_trans(skb, skb->dev);
4363 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4364 			ret = GRO_DROP;
4365 		break;
4366 
4367 	case GRO_DROP:
4368 	case GRO_MERGED_FREE:
4369 		napi_reuse_skb(napi, skb);
4370 		break;
4371 
4372 	case GRO_MERGED:
4373 		break;
4374 	}
4375 
4376 	return ret;
4377 }
4378 
4379 /* Upper GRO stack assumes network header starts at gro_offset=0
4380  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4381  * We copy ethernet header into skb->data to have a common layout.
4382  */
4383 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4384 {
4385 	struct sk_buff *skb = napi->skb;
4386 	const struct ethhdr *eth;
4387 	unsigned int hlen = sizeof(*eth);
4388 
4389 	napi->skb = NULL;
4390 
4391 	skb_reset_mac_header(skb);
4392 	skb_gro_reset_offset(skb);
4393 
4394 	eth = skb_gro_header_fast(skb, 0);
4395 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4396 		eth = skb_gro_header_slow(skb, hlen, 0);
4397 		if (unlikely(!eth)) {
4398 			napi_reuse_skb(napi, skb);
4399 			return NULL;
4400 		}
4401 	} else {
4402 		gro_pull_from_frag0(skb, hlen);
4403 		NAPI_GRO_CB(skb)->frag0 += hlen;
4404 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4405 	}
4406 	__skb_pull(skb, hlen);
4407 
4408 	/*
4409 	 * This works because the only protocols we care about don't require
4410 	 * special handling.
4411 	 * We'll fix it up properly in napi_frags_finish()
4412 	 */
4413 	skb->protocol = eth->h_proto;
4414 
4415 	return skb;
4416 }
4417 
4418 gro_result_t napi_gro_frags(struct napi_struct *napi)
4419 {
4420 	struct sk_buff *skb = napi_frags_skb(napi);
4421 
4422 	if (!skb)
4423 		return GRO_DROP;
4424 
4425 	trace_napi_gro_frags_entry(skb);
4426 
4427 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4428 }
4429 EXPORT_SYMBOL(napi_gro_frags);
4430 
4431 /* Compute the checksum from gro_offset and return the folded value
4432  * after adding in any pseudo checksum.
4433  */
4434 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4435 {
4436 	__wsum wsum;
4437 	__sum16 sum;
4438 
4439 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4440 
4441 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4442 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4443 	if (likely(!sum)) {
4444 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4445 		    !skb->csum_complete_sw)
4446 			netdev_rx_csum_fault(skb->dev);
4447 	}
4448 
4449 	NAPI_GRO_CB(skb)->csum = wsum;
4450 	NAPI_GRO_CB(skb)->csum_valid = 1;
4451 
4452 	return sum;
4453 }
4454 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4455 
4456 /*
4457  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4458  * Note: called with local irq disabled, but exits with local irq enabled.
4459  */
4460 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4461 {
4462 #ifdef CONFIG_RPS
4463 	struct softnet_data *remsd = sd->rps_ipi_list;
4464 
4465 	if (remsd) {
4466 		sd->rps_ipi_list = NULL;
4467 
4468 		local_irq_enable();
4469 
4470 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4471 		while (remsd) {
4472 			struct softnet_data *next = remsd->rps_ipi_next;
4473 
4474 			if (cpu_online(remsd->cpu))
4475 				smp_call_function_single_async(remsd->cpu,
4476 							   &remsd->csd);
4477 			remsd = next;
4478 		}
4479 	} else
4480 #endif
4481 		local_irq_enable();
4482 }
4483 
4484 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4485 {
4486 #ifdef CONFIG_RPS
4487 	return sd->rps_ipi_list != NULL;
4488 #else
4489 	return false;
4490 #endif
4491 }
4492 
4493 static int process_backlog(struct napi_struct *napi, int quota)
4494 {
4495 	int work = 0;
4496 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4497 
4498 	/* Check if we have pending ipi, its better to send them now,
4499 	 * not waiting net_rx_action() end.
4500 	 */
4501 	if (sd_has_rps_ipi_waiting(sd)) {
4502 		local_irq_disable();
4503 		net_rps_action_and_irq_enable(sd);
4504 	}
4505 
4506 	napi->weight = weight_p;
4507 	local_irq_disable();
4508 	while (1) {
4509 		struct sk_buff *skb;
4510 
4511 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4512 			local_irq_enable();
4513 			__netif_receive_skb(skb);
4514 			local_irq_disable();
4515 			input_queue_head_incr(sd);
4516 			if (++work >= quota) {
4517 				local_irq_enable();
4518 				return work;
4519 			}
4520 		}
4521 
4522 		rps_lock(sd);
4523 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4524 			/*
4525 			 * Inline a custom version of __napi_complete().
4526 			 * only current cpu owns and manipulates this napi,
4527 			 * and NAPI_STATE_SCHED is the only possible flag set
4528 			 * on backlog.
4529 			 * We can use a plain write instead of clear_bit(),
4530 			 * and we dont need an smp_mb() memory barrier.
4531 			 */
4532 			napi->state = 0;
4533 			rps_unlock(sd);
4534 
4535 			break;
4536 		}
4537 
4538 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4539 					   &sd->process_queue);
4540 		rps_unlock(sd);
4541 	}
4542 	local_irq_enable();
4543 
4544 	return work;
4545 }
4546 
4547 /**
4548  * __napi_schedule - schedule for receive
4549  * @n: entry to schedule
4550  *
4551  * The entry's receive function will be scheduled to run.
4552  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4553  */
4554 void __napi_schedule(struct napi_struct *n)
4555 {
4556 	unsigned long flags;
4557 
4558 	local_irq_save(flags);
4559 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4560 	local_irq_restore(flags);
4561 }
4562 EXPORT_SYMBOL(__napi_schedule);
4563 
4564 /**
4565  * __napi_schedule_irqoff - schedule for receive
4566  * @n: entry to schedule
4567  *
4568  * Variant of __napi_schedule() assuming hard irqs are masked
4569  */
4570 void __napi_schedule_irqoff(struct napi_struct *n)
4571 {
4572 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4573 }
4574 EXPORT_SYMBOL(__napi_schedule_irqoff);
4575 
4576 void __napi_complete(struct napi_struct *n)
4577 {
4578 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4579 
4580 	list_del_init(&n->poll_list);
4581 	smp_mb__before_atomic();
4582 	clear_bit(NAPI_STATE_SCHED, &n->state);
4583 }
4584 EXPORT_SYMBOL(__napi_complete);
4585 
4586 void napi_complete_done(struct napi_struct *n, int work_done)
4587 {
4588 	unsigned long flags;
4589 
4590 	/*
4591 	 * don't let napi dequeue from the cpu poll list
4592 	 * just in case its running on a different cpu
4593 	 */
4594 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4595 		return;
4596 
4597 	if (n->gro_list) {
4598 		unsigned long timeout = 0;
4599 
4600 		if (work_done)
4601 			timeout = n->dev->gro_flush_timeout;
4602 
4603 		if (timeout)
4604 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4605 				      HRTIMER_MODE_REL_PINNED);
4606 		else
4607 			napi_gro_flush(n, false);
4608 	}
4609 	if (likely(list_empty(&n->poll_list))) {
4610 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4611 	} else {
4612 		/* If n->poll_list is not empty, we need to mask irqs */
4613 		local_irq_save(flags);
4614 		__napi_complete(n);
4615 		local_irq_restore(flags);
4616 	}
4617 }
4618 EXPORT_SYMBOL(napi_complete_done);
4619 
4620 /* must be called under rcu_read_lock(), as we dont take a reference */
4621 struct napi_struct *napi_by_id(unsigned int napi_id)
4622 {
4623 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4624 	struct napi_struct *napi;
4625 
4626 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4627 		if (napi->napi_id == napi_id)
4628 			return napi;
4629 
4630 	return NULL;
4631 }
4632 EXPORT_SYMBOL_GPL(napi_by_id);
4633 
4634 void napi_hash_add(struct napi_struct *napi)
4635 {
4636 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4637 
4638 		spin_lock(&napi_hash_lock);
4639 
4640 		/* 0 is not a valid id, we also skip an id that is taken
4641 		 * we expect both events to be extremely rare
4642 		 */
4643 		napi->napi_id = 0;
4644 		while (!napi->napi_id) {
4645 			napi->napi_id = ++napi_gen_id;
4646 			if (napi_by_id(napi->napi_id))
4647 				napi->napi_id = 0;
4648 		}
4649 
4650 		hlist_add_head_rcu(&napi->napi_hash_node,
4651 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4652 
4653 		spin_unlock(&napi_hash_lock);
4654 	}
4655 }
4656 EXPORT_SYMBOL_GPL(napi_hash_add);
4657 
4658 /* Warning : caller is responsible to make sure rcu grace period
4659  * is respected before freeing memory containing @napi
4660  */
4661 void napi_hash_del(struct napi_struct *napi)
4662 {
4663 	spin_lock(&napi_hash_lock);
4664 
4665 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4666 		hlist_del_rcu(&napi->napi_hash_node);
4667 
4668 	spin_unlock(&napi_hash_lock);
4669 }
4670 EXPORT_SYMBOL_GPL(napi_hash_del);
4671 
4672 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4673 {
4674 	struct napi_struct *napi;
4675 
4676 	napi = container_of(timer, struct napi_struct, timer);
4677 	if (napi->gro_list)
4678 		napi_schedule(napi);
4679 
4680 	return HRTIMER_NORESTART;
4681 }
4682 
4683 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4684 		    int (*poll)(struct napi_struct *, int), int weight)
4685 {
4686 	INIT_LIST_HEAD(&napi->poll_list);
4687 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4688 	napi->timer.function = napi_watchdog;
4689 	napi->gro_count = 0;
4690 	napi->gro_list = NULL;
4691 	napi->skb = NULL;
4692 	napi->poll = poll;
4693 	if (weight > NAPI_POLL_WEIGHT)
4694 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4695 			    weight, dev->name);
4696 	napi->weight = weight;
4697 	list_add(&napi->dev_list, &dev->napi_list);
4698 	napi->dev = dev;
4699 #ifdef CONFIG_NETPOLL
4700 	spin_lock_init(&napi->poll_lock);
4701 	napi->poll_owner = -1;
4702 #endif
4703 	set_bit(NAPI_STATE_SCHED, &napi->state);
4704 }
4705 EXPORT_SYMBOL(netif_napi_add);
4706 
4707 void napi_disable(struct napi_struct *n)
4708 {
4709 	might_sleep();
4710 	set_bit(NAPI_STATE_DISABLE, &n->state);
4711 
4712 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4713 		msleep(1);
4714 
4715 	hrtimer_cancel(&n->timer);
4716 
4717 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4718 }
4719 EXPORT_SYMBOL(napi_disable);
4720 
4721 void netif_napi_del(struct napi_struct *napi)
4722 {
4723 	list_del_init(&napi->dev_list);
4724 	napi_free_frags(napi);
4725 
4726 	kfree_skb_list(napi->gro_list);
4727 	napi->gro_list = NULL;
4728 	napi->gro_count = 0;
4729 }
4730 EXPORT_SYMBOL(netif_napi_del);
4731 
4732 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4733 {
4734 	void *have;
4735 	int work, weight;
4736 
4737 	list_del_init(&n->poll_list);
4738 
4739 	have = netpoll_poll_lock(n);
4740 
4741 	weight = n->weight;
4742 
4743 	/* This NAPI_STATE_SCHED test is for avoiding a race
4744 	 * with netpoll's poll_napi().  Only the entity which
4745 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4746 	 * actually make the ->poll() call.  Therefore we avoid
4747 	 * accidentally calling ->poll() when NAPI is not scheduled.
4748 	 */
4749 	work = 0;
4750 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4751 		work = n->poll(n, weight);
4752 		trace_napi_poll(n);
4753 	}
4754 
4755 	WARN_ON_ONCE(work > weight);
4756 
4757 	if (likely(work < weight))
4758 		goto out_unlock;
4759 
4760 	/* Drivers must not modify the NAPI state if they
4761 	 * consume the entire weight.  In such cases this code
4762 	 * still "owns" the NAPI instance and therefore can
4763 	 * move the instance around on the list at-will.
4764 	 */
4765 	if (unlikely(napi_disable_pending(n))) {
4766 		napi_complete(n);
4767 		goto out_unlock;
4768 	}
4769 
4770 	if (n->gro_list) {
4771 		/* flush too old packets
4772 		 * If HZ < 1000, flush all packets.
4773 		 */
4774 		napi_gro_flush(n, HZ >= 1000);
4775 	}
4776 
4777 	/* Some drivers may have called napi_schedule
4778 	 * prior to exhausting their budget.
4779 	 */
4780 	if (unlikely(!list_empty(&n->poll_list))) {
4781 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4782 			     n->dev ? n->dev->name : "backlog");
4783 		goto out_unlock;
4784 	}
4785 
4786 	list_add_tail(&n->poll_list, repoll);
4787 
4788 out_unlock:
4789 	netpoll_poll_unlock(have);
4790 
4791 	return work;
4792 }
4793 
4794 static void net_rx_action(struct softirq_action *h)
4795 {
4796 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4797 	unsigned long time_limit = jiffies + 2;
4798 	int budget = netdev_budget;
4799 	LIST_HEAD(list);
4800 	LIST_HEAD(repoll);
4801 
4802 	local_irq_disable();
4803 	list_splice_init(&sd->poll_list, &list);
4804 	local_irq_enable();
4805 
4806 	for (;;) {
4807 		struct napi_struct *n;
4808 
4809 		if (list_empty(&list)) {
4810 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4811 				return;
4812 			break;
4813 		}
4814 
4815 		n = list_first_entry(&list, struct napi_struct, poll_list);
4816 		budget -= napi_poll(n, &repoll);
4817 
4818 		/* If softirq window is exhausted then punt.
4819 		 * Allow this to run for 2 jiffies since which will allow
4820 		 * an average latency of 1.5/HZ.
4821 		 */
4822 		if (unlikely(budget <= 0 ||
4823 			     time_after_eq(jiffies, time_limit))) {
4824 			sd->time_squeeze++;
4825 			break;
4826 		}
4827 	}
4828 
4829 	local_irq_disable();
4830 
4831 	list_splice_tail_init(&sd->poll_list, &list);
4832 	list_splice_tail(&repoll, &list);
4833 	list_splice(&list, &sd->poll_list);
4834 	if (!list_empty(&sd->poll_list))
4835 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4836 
4837 	net_rps_action_and_irq_enable(sd);
4838 }
4839 
4840 struct netdev_adjacent {
4841 	struct net_device *dev;
4842 
4843 	/* upper master flag, there can only be one master device per list */
4844 	bool master;
4845 
4846 	/* counter for the number of times this device was added to us */
4847 	u16 ref_nr;
4848 
4849 	/* private field for the users */
4850 	void *private;
4851 
4852 	struct list_head list;
4853 	struct rcu_head rcu;
4854 };
4855 
4856 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4857 						 struct net_device *adj_dev,
4858 						 struct list_head *adj_list)
4859 {
4860 	struct netdev_adjacent *adj;
4861 
4862 	list_for_each_entry(adj, adj_list, list) {
4863 		if (adj->dev == adj_dev)
4864 			return adj;
4865 	}
4866 	return NULL;
4867 }
4868 
4869 /**
4870  * netdev_has_upper_dev - Check if device is linked to an upper device
4871  * @dev: device
4872  * @upper_dev: upper device to check
4873  *
4874  * Find out if a device is linked to specified upper device and return true
4875  * in case it is. Note that this checks only immediate upper device,
4876  * not through a complete stack of devices. The caller must hold the RTNL lock.
4877  */
4878 bool netdev_has_upper_dev(struct net_device *dev,
4879 			  struct net_device *upper_dev)
4880 {
4881 	ASSERT_RTNL();
4882 
4883 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4884 }
4885 EXPORT_SYMBOL(netdev_has_upper_dev);
4886 
4887 /**
4888  * netdev_has_any_upper_dev - Check if device is linked to some device
4889  * @dev: device
4890  *
4891  * Find out if a device is linked to an upper device and return true in case
4892  * it is. The caller must hold the RTNL lock.
4893  */
4894 static bool netdev_has_any_upper_dev(struct net_device *dev)
4895 {
4896 	ASSERT_RTNL();
4897 
4898 	return !list_empty(&dev->all_adj_list.upper);
4899 }
4900 
4901 /**
4902  * netdev_master_upper_dev_get - Get master upper device
4903  * @dev: device
4904  *
4905  * Find a master upper device and return pointer to it or NULL in case
4906  * it's not there. The caller must hold the RTNL lock.
4907  */
4908 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4909 {
4910 	struct netdev_adjacent *upper;
4911 
4912 	ASSERT_RTNL();
4913 
4914 	if (list_empty(&dev->adj_list.upper))
4915 		return NULL;
4916 
4917 	upper = list_first_entry(&dev->adj_list.upper,
4918 				 struct netdev_adjacent, list);
4919 	if (likely(upper->master))
4920 		return upper->dev;
4921 	return NULL;
4922 }
4923 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4924 
4925 void *netdev_adjacent_get_private(struct list_head *adj_list)
4926 {
4927 	struct netdev_adjacent *adj;
4928 
4929 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4930 
4931 	return adj->private;
4932 }
4933 EXPORT_SYMBOL(netdev_adjacent_get_private);
4934 
4935 /**
4936  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4937  * @dev: device
4938  * @iter: list_head ** of the current position
4939  *
4940  * Gets the next device from the dev's upper list, starting from iter
4941  * position. The caller must hold RCU read lock.
4942  */
4943 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4944 						 struct list_head **iter)
4945 {
4946 	struct netdev_adjacent *upper;
4947 
4948 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4949 
4950 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4951 
4952 	if (&upper->list == &dev->adj_list.upper)
4953 		return NULL;
4954 
4955 	*iter = &upper->list;
4956 
4957 	return upper->dev;
4958 }
4959 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4960 
4961 /**
4962  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4963  * @dev: device
4964  * @iter: list_head ** of the current position
4965  *
4966  * Gets the next device from the dev's upper list, starting from iter
4967  * position. The caller must hold RCU read lock.
4968  */
4969 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4970 						     struct list_head **iter)
4971 {
4972 	struct netdev_adjacent *upper;
4973 
4974 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4975 
4976 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4977 
4978 	if (&upper->list == &dev->all_adj_list.upper)
4979 		return NULL;
4980 
4981 	*iter = &upper->list;
4982 
4983 	return upper->dev;
4984 }
4985 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4986 
4987 /**
4988  * netdev_lower_get_next_private - Get the next ->private from the
4989  *				   lower neighbour list
4990  * @dev: device
4991  * @iter: list_head ** of the current position
4992  *
4993  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4994  * list, starting from iter position. The caller must hold either hold the
4995  * RTNL lock or its own locking that guarantees that the neighbour lower
4996  * list will remain unchainged.
4997  */
4998 void *netdev_lower_get_next_private(struct net_device *dev,
4999 				    struct list_head **iter)
5000 {
5001 	struct netdev_adjacent *lower;
5002 
5003 	lower = list_entry(*iter, struct netdev_adjacent, list);
5004 
5005 	if (&lower->list == &dev->adj_list.lower)
5006 		return NULL;
5007 
5008 	*iter = lower->list.next;
5009 
5010 	return lower->private;
5011 }
5012 EXPORT_SYMBOL(netdev_lower_get_next_private);
5013 
5014 /**
5015  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5016  *				       lower neighbour list, RCU
5017  *				       variant
5018  * @dev: device
5019  * @iter: list_head ** of the current position
5020  *
5021  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5022  * list, starting from iter position. The caller must hold RCU read lock.
5023  */
5024 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5025 					struct list_head **iter)
5026 {
5027 	struct netdev_adjacent *lower;
5028 
5029 	WARN_ON_ONCE(!rcu_read_lock_held());
5030 
5031 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5032 
5033 	if (&lower->list == &dev->adj_list.lower)
5034 		return NULL;
5035 
5036 	*iter = &lower->list;
5037 
5038 	return lower->private;
5039 }
5040 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5041 
5042 /**
5043  * netdev_lower_get_next - Get the next device from the lower neighbour
5044  *                         list
5045  * @dev: device
5046  * @iter: list_head ** of the current position
5047  *
5048  * Gets the next netdev_adjacent from the dev's lower neighbour
5049  * list, starting from iter position. The caller must hold RTNL lock or
5050  * its own locking that guarantees that the neighbour lower
5051  * list will remain unchainged.
5052  */
5053 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5054 {
5055 	struct netdev_adjacent *lower;
5056 
5057 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5058 
5059 	if (&lower->list == &dev->adj_list.lower)
5060 		return NULL;
5061 
5062 	*iter = &lower->list;
5063 
5064 	return lower->dev;
5065 }
5066 EXPORT_SYMBOL(netdev_lower_get_next);
5067 
5068 /**
5069  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5070  *				       lower neighbour list, RCU
5071  *				       variant
5072  * @dev: device
5073  *
5074  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5075  * list. The caller must hold RCU read lock.
5076  */
5077 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5078 {
5079 	struct netdev_adjacent *lower;
5080 
5081 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5082 			struct netdev_adjacent, list);
5083 	if (lower)
5084 		return lower->private;
5085 	return NULL;
5086 }
5087 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5088 
5089 /**
5090  * netdev_master_upper_dev_get_rcu - Get master upper device
5091  * @dev: device
5092  *
5093  * Find a master upper device and return pointer to it or NULL in case
5094  * it's not there. The caller must hold the RCU read lock.
5095  */
5096 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5097 {
5098 	struct netdev_adjacent *upper;
5099 
5100 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5101 				       struct netdev_adjacent, list);
5102 	if (upper && likely(upper->master))
5103 		return upper->dev;
5104 	return NULL;
5105 }
5106 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5107 
5108 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5109 			      struct net_device *adj_dev,
5110 			      struct list_head *dev_list)
5111 {
5112 	char linkname[IFNAMSIZ+7];
5113 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5114 		"upper_%s" : "lower_%s", adj_dev->name);
5115 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5116 				 linkname);
5117 }
5118 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5119 			       char *name,
5120 			       struct list_head *dev_list)
5121 {
5122 	char linkname[IFNAMSIZ+7];
5123 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5124 		"upper_%s" : "lower_%s", name);
5125 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5126 }
5127 
5128 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5129 						 struct net_device *adj_dev,
5130 						 struct list_head *dev_list)
5131 {
5132 	return (dev_list == &dev->adj_list.upper ||
5133 		dev_list == &dev->adj_list.lower) &&
5134 		net_eq(dev_net(dev), dev_net(adj_dev));
5135 }
5136 
5137 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5138 					struct net_device *adj_dev,
5139 					struct list_head *dev_list,
5140 					void *private, bool master)
5141 {
5142 	struct netdev_adjacent *adj;
5143 	int ret;
5144 
5145 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5146 
5147 	if (adj) {
5148 		adj->ref_nr++;
5149 		return 0;
5150 	}
5151 
5152 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5153 	if (!adj)
5154 		return -ENOMEM;
5155 
5156 	adj->dev = adj_dev;
5157 	adj->master = master;
5158 	adj->ref_nr = 1;
5159 	adj->private = private;
5160 	dev_hold(adj_dev);
5161 
5162 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5163 		 adj_dev->name, dev->name, adj_dev->name);
5164 
5165 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5166 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5167 		if (ret)
5168 			goto free_adj;
5169 	}
5170 
5171 	/* Ensure that master link is always the first item in list. */
5172 	if (master) {
5173 		ret = sysfs_create_link(&(dev->dev.kobj),
5174 					&(adj_dev->dev.kobj), "master");
5175 		if (ret)
5176 			goto remove_symlinks;
5177 
5178 		list_add_rcu(&adj->list, dev_list);
5179 	} else {
5180 		list_add_tail_rcu(&adj->list, dev_list);
5181 	}
5182 
5183 	return 0;
5184 
5185 remove_symlinks:
5186 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5187 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5188 free_adj:
5189 	kfree(adj);
5190 	dev_put(adj_dev);
5191 
5192 	return ret;
5193 }
5194 
5195 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5196 					 struct net_device *adj_dev,
5197 					 struct list_head *dev_list)
5198 {
5199 	struct netdev_adjacent *adj;
5200 
5201 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5202 
5203 	if (!adj) {
5204 		pr_err("tried to remove device %s from %s\n",
5205 		       dev->name, adj_dev->name);
5206 		BUG();
5207 	}
5208 
5209 	if (adj->ref_nr > 1) {
5210 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5211 			 adj->ref_nr-1);
5212 		adj->ref_nr--;
5213 		return;
5214 	}
5215 
5216 	if (adj->master)
5217 		sysfs_remove_link(&(dev->dev.kobj), "master");
5218 
5219 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5220 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5221 
5222 	list_del_rcu(&adj->list);
5223 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5224 		 adj_dev->name, dev->name, adj_dev->name);
5225 	dev_put(adj_dev);
5226 	kfree_rcu(adj, rcu);
5227 }
5228 
5229 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5230 					    struct net_device *upper_dev,
5231 					    struct list_head *up_list,
5232 					    struct list_head *down_list,
5233 					    void *private, bool master)
5234 {
5235 	int ret;
5236 
5237 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5238 					   master);
5239 	if (ret)
5240 		return ret;
5241 
5242 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5243 					   false);
5244 	if (ret) {
5245 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5246 		return ret;
5247 	}
5248 
5249 	return 0;
5250 }
5251 
5252 static int __netdev_adjacent_dev_link(struct net_device *dev,
5253 				      struct net_device *upper_dev)
5254 {
5255 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5256 						&dev->all_adj_list.upper,
5257 						&upper_dev->all_adj_list.lower,
5258 						NULL, false);
5259 }
5260 
5261 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5262 					       struct net_device *upper_dev,
5263 					       struct list_head *up_list,
5264 					       struct list_head *down_list)
5265 {
5266 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5267 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5268 }
5269 
5270 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5271 					 struct net_device *upper_dev)
5272 {
5273 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5274 					   &dev->all_adj_list.upper,
5275 					   &upper_dev->all_adj_list.lower);
5276 }
5277 
5278 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5279 						struct net_device *upper_dev,
5280 						void *private, bool master)
5281 {
5282 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5283 
5284 	if (ret)
5285 		return ret;
5286 
5287 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5288 					       &dev->adj_list.upper,
5289 					       &upper_dev->adj_list.lower,
5290 					       private, master);
5291 	if (ret) {
5292 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5293 		return ret;
5294 	}
5295 
5296 	return 0;
5297 }
5298 
5299 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5300 						   struct net_device *upper_dev)
5301 {
5302 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5303 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5304 					   &dev->adj_list.upper,
5305 					   &upper_dev->adj_list.lower);
5306 }
5307 
5308 static int __netdev_upper_dev_link(struct net_device *dev,
5309 				   struct net_device *upper_dev, bool master,
5310 				   void *private)
5311 {
5312 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5313 	int ret = 0;
5314 
5315 	ASSERT_RTNL();
5316 
5317 	if (dev == upper_dev)
5318 		return -EBUSY;
5319 
5320 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5321 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5322 		return -EBUSY;
5323 
5324 	if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5325 		return -EEXIST;
5326 
5327 	if (master && netdev_master_upper_dev_get(dev))
5328 		return -EBUSY;
5329 
5330 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5331 						   master);
5332 	if (ret)
5333 		return ret;
5334 
5335 	/* Now that we linked these devs, make all the upper_dev's
5336 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5337 	 * versa, and don't forget the devices itself. All of these
5338 	 * links are non-neighbours.
5339 	 */
5340 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5341 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5342 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5343 				 i->dev->name, j->dev->name);
5344 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5345 			if (ret)
5346 				goto rollback_mesh;
5347 		}
5348 	}
5349 
5350 	/* add dev to every upper_dev's upper device */
5351 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5352 		pr_debug("linking %s's upper device %s with %s\n",
5353 			 upper_dev->name, i->dev->name, dev->name);
5354 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5355 		if (ret)
5356 			goto rollback_upper_mesh;
5357 	}
5358 
5359 	/* add upper_dev to every dev's lower device */
5360 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5361 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5362 			 i->dev->name, upper_dev->name);
5363 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5364 		if (ret)
5365 			goto rollback_lower_mesh;
5366 	}
5367 
5368 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5369 	return 0;
5370 
5371 rollback_lower_mesh:
5372 	to_i = i;
5373 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5374 		if (i == to_i)
5375 			break;
5376 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5377 	}
5378 
5379 	i = NULL;
5380 
5381 rollback_upper_mesh:
5382 	to_i = i;
5383 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5384 		if (i == to_i)
5385 			break;
5386 		__netdev_adjacent_dev_unlink(dev, i->dev);
5387 	}
5388 
5389 	i = j = NULL;
5390 
5391 rollback_mesh:
5392 	to_i = i;
5393 	to_j = j;
5394 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5395 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5396 			if (i == to_i && j == to_j)
5397 				break;
5398 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5399 		}
5400 		if (i == to_i)
5401 			break;
5402 	}
5403 
5404 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5405 
5406 	return ret;
5407 }
5408 
5409 /**
5410  * netdev_upper_dev_link - Add a link to the upper device
5411  * @dev: device
5412  * @upper_dev: new upper device
5413  *
5414  * Adds a link to device which is upper to this one. The caller must hold
5415  * the RTNL lock. On a failure a negative errno code is returned.
5416  * On success the reference counts are adjusted and the function
5417  * returns zero.
5418  */
5419 int netdev_upper_dev_link(struct net_device *dev,
5420 			  struct net_device *upper_dev)
5421 {
5422 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5423 }
5424 EXPORT_SYMBOL(netdev_upper_dev_link);
5425 
5426 /**
5427  * netdev_master_upper_dev_link - Add a master link to the upper device
5428  * @dev: device
5429  * @upper_dev: new upper device
5430  *
5431  * Adds a link to device which is upper to this one. In this case, only
5432  * one master upper device can be linked, although other non-master devices
5433  * might be linked as well. The caller must hold the RTNL lock.
5434  * On a failure a negative errno code is returned. On success the reference
5435  * counts are adjusted and the function returns zero.
5436  */
5437 int netdev_master_upper_dev_link(struct net_device *dev,
5438 				 struct net_device *upper_dev)
5439 {
5440 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5441 }
5442 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5443 
5444 int netdev_master_upper_dev_link_private(struct net_device *dev,
5445 					 struct net_device *upper_dev,
5446 					 void *private)
5447 {
5448 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5449 }
5450 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5451 
5452 /**
5453  * netdev_upper_dev_unlink - Removes a link to upper device
5454  * @dev: device
5455  * @upper_dev: new upper device
5456  *
5457  * Removes a link to device which is upper to this one. The caller must hold
5458  * the RTNL lock.
5459  */
5460 void netdev_upper_dev_unlink(struct net_device *dev,
5461 			     struct net_device *upper_dev)
5462 {
5463 	struct netdev_adjacent *i, *j;
5464 	ASSERT_RTNL();
5465 
5466 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5467 
5468 	/* Here is the tricky part. We must remove all dev's lower
5469 	 * devices from all upper_dev's upper devices and vice
5470 	 * versa, to maintain the graph relationship.
5471 	 */
5472 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5473 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5474 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5475 
5476 	/* remove also the devices itself from lower/upper device
5477 	 * list
5478 	 */
5479 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5480 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5481 
5482 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5483 		__netdev_adjacent_dev_unlink(dev, i->dev);
5484 
5485 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5486 }
5487 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5488 
5489 /**
5490  * netdev_bonding_info_change - Dispatch event about slave change
5491  * @dev: device
5492  * @bonding_info: info to dispatch
5493  *
5494  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5495  * The caller must hold the RTNL lock.
5496  */
5497 void netdev_bonding_info_change(struct net_device *dev,
5498 				struct netdev_bonding_info *bonding_info)
5499 {
5500 	struct netdev_notifier_bonding_info	info;
5501 
5502 	memcpy(&info.bonding_info, bonding_info,
5503 	       sizeof(struct netdev_bonding_info));
5504 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5505 				      &info.info);
5506 }
5507 EXPORT_SYMBOL(netdev_bonding_info_change);
5508 
5509 static void netdev_adjacent_add_links(struct net_device *dev)
5510 {
5511 	struct netdev_adjacent *iter;
5512 
5513 	struct net *net = dev_net(dev);
5514 
5515 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5516 		if (!net_eq(net,dev_net(iter->dev)))
5517 			continue;
5518 		netdev_adjacent_sysfs_add(iter->dev, dev,
5519 					  &iter->dev->adj_list.lower);
5520 		netdev_adjacent_sysfs_add(dev, iter->dev,
5521 					  &dev->adj_list.upper);
5522 	}
5523 
5524 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5525 		if (!net_eq(net,dev_net(iter->dev)))
5526 			continue;
5527 		netdev_adjacent_sysfs_add(iter->dev, dev,
5528 					  &iter->dev->adj_list.upper);
5529 		netdev_adjacent_sysfs_add(dev, iter->dev,
5530 					  &dev->adj_list.lower);
5531 	}
5532 }
5533 
5534 static void netdev_adjacent_del_links(struct net_device *dev)
5535 {
5536 	struct netdev_adjacent *iter;
5537 
5538 	struct net *net = dev_net(dev);
5539 
5540 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5541 		if (!net_eq(net,dev_net(iter->dev)))
5542 			continue;
5543 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5544 					  &iter->dev->adj_list.lower);
5545 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5546 					  &dev->adj_list.upper);
5547 	}
5548 
5549 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5550 		if (!net_eq(net,dev_net(iter->dev)))
5551 			continue;
5552 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5553 					  &iter->dev->adj_list.upper);
5554 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5555 					  &dev->adj_list.lower);
5556 	}
5557 }
5558 
5559 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5560 {
5561 	struct netdev_adjacent *iter;
5562 
5563 	struct net *net = dev_net(dev);
5564 
5565 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5566 		if (!net_eq(net,dev_net(iter->dev)))
5567 			continue;
5568 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5569 					  &iter->dev->adj_list.lower);
5570 		netdev_adjacent_sysfs_add(iter->dev, dev,
5571 					  &iter->dev->adj_list.lower);
5572 	}
5573 
5574 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5575 		if (!net_eq(net,dev_net(iter->dev)))
5576 			continue;
5577 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5578 					  &iter->dev->adj_list.upper);
5579 		netdev_adjacent_sysfs_add(iter->dev, dev,
5580 					  &iter->dev->adj_list.upper);
5581 	}
5582 }
5583 
5584 void *netdev_lower_dev_get_private(struct net_device *dev,
5585 				   struct net_device *lower_dev)
5586 {
5587 	struct netdev_adjacent *lower;
5588 
5589 	if (!lower_dev)
5590 		return NULL;
5591 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5592 	if (!lower)
5593 		return NULL;
5594 
5595 	return lower->private;
5596 }
5597 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5598 
5599 
5600 int dev_get_nest_level(struct net_device *dev,
5601 		       bool (*type_check)(struct net_device *dev))
5602 {
5603 	struct net_device *lower = NULL;
5604 	struct list_head *iter;
5605 	int max_nest = -1;
5606 	int nest;
5607 
5608 	ASSERT_RTNL();
5609 
5610 	netdev_for_each_lower_dev(dev, lower, iter) {
5611 		nest = dev_get_nest_level(lower, type_check);
5612 		if (max_nest < nest)
5613 			max_nest = nest;
5614 	}
5615 
5616 	if (type_check(dev))
5617 		max_nest++;
5618 
5619 	return max_nest;
5620 }
5621 EXPORT_SYMBOL(dev_get_nest_level);
5622 
5623 static void dev_change_rx_flags(struct net_device *dev, int flags)
5624 {
5625 	const struct net_device_ops *ops = dev->netdev_ops;
5626 
5627 	if (ops->ndo_change_rx_flags)
5628 		ops->ndo_change_rx_flags(dev, flags);
5629 }
5630 
5631 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5632 {
5633 	unsigned int old_flags = dev->flags;
5634 	kuid_t uid;
5635 	kgid_t gid;
5636 
5637 	ASSERT_RTNL();
5638 
5639 	dev->flags |= IFF_PROMISC;
5640 	dev->promiscuity += inc;
5641 	if (dev->promiscuity == 0) {
5642 		/*
5643 		 * Avoid overflow.
5644 		 * If inc causes overflow, untouch promisc and return error.
5645 		 */
5646 		if (inc < 0)
5647 			dev->flags &= ~IFF_PROMISC;
5648 		else {
5649 			dev->promiscuity -= inc;
5650 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5651 				dev->name);
5652 			return -EOVERFLOW;
5653 		}
5654 	}
5655 	if (dev->flags != old_flags) {
5656 		pr_info("device %s %s promiscuous mode\n",
5657 			dev->name,
5658 			dev->flags & IFF_PROMISC ? "entered" : "left");
5659 		if (audit_enabled) {
5660 			current_uid_gid(&uid, &gid);
5661 			audit_log(current->audit_context, GFP_ATOMIC,
5662 				AUDIT_ANOM_PROMISCUOUS,
5663 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5664 				dev->name, (dev->flags & IFF_PROMISC),
5665 				(old_flags & IFF_PROMISC),
5666 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5667 				from_kuid(&init_user_ns, uid),
5668 				from_kgid(&init_user_ns, gid),
5669 				audit_get_sessionid(current));
5670 		}
5671 
5672 		dev_change_rx_flags(dev, IFF_PROMISC);
5673 	}
5674 	if (notify)
5675 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5676 	return 0;
5677 }
5678 
5679 /**
5680  *	dev_set_promiscuity	- update promiscuity count on a device
5681  *	@dev: device
5682  *	@inc: modifier
5683  *
5684  *	Add or remove promiscuity from a device. While the count in the device
5685  *	remains above zero the interface remains promiscuous. Once it hits zero
5686  *	the device reverts back to normal filtering operation. A negative inc
5687  *	value is used to drop promiscuity on the device.
5688  *	Return 0 if successful or a negative errno code on error.
5689  */
5690 int dev_set_promiscuity(struct net_device *dev, int inc)
5691 {
5692 	unsigned int old_flags = dev->flags;
5693 	int err;
5694 
5695 	err = __dev_set_promiscuity(dev, inc, true);
5696 	if (err < 0)
5697 		return err;
5698 	if (dev->flags != old_flags)
5699 		dev_set_rx_mode(dev);
5700 	return err;
5701 }
5702 EXPORT_SYMBOL(dev_set_promiscuity);
5703 
5704 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5705 {
5706 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5707 
5708 	ASSERT_RTNL();
5709 
5710 	dev->flags |= IFF_ALLMULTI;
5711 	dev->allmulti += inc;
5712 	if (dev->allmulti == 0) {
5713 		/*
5714 		 * Avoid overflow.
5715 		 * If inc causes overflow, untouch allmulti and return error.
5716 		 */
5717 		if (inc < 0)
5718 			dev->flags &= ~IFF_ALLMULTI;
5719 		else {
5720 			dev->allmulti -= inc;
5721 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5722 				dev->name);
5723 			return -EOVERFLOW;
5724 		}
5725 	}
5726 	if (dev->flags ^ old_flags) {
5727 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5728 		dev_set_rx_mode(dev);
5729 		if (notify)
5730 			__dev_notify_flags(dev, old_flags,
5731 					   dev->gflags ^ old_gflags);
5732 	}
5733 	return 0;
5734 }
5735 
5736 /**
5737  *	dev_set_allmulti	- update allmulti count on a device
5738  *	@dev: device
5739  *	@inc: modifier
5740  *
5741  *	Add or remove reception of all multicast frames to a device. While the
5742  *	count in the device remains above zero the interface remains listening
5743  *	to all interfaces. Once it hits zero the device reverts back to normal
5744  *	filtering operation. A negative @inc value is used to drop the counter
5745  *	when releasing a resource needing all multicasts.
5746  *	Return 0 if successful or a negative errno code on error.
5747  */
5748 
5749 int dev_set_allmulti(struct net_device *dev, int inc)
5750 {
5751 	return __dev_set_allmulti(dev, inc, true);
5752 }
5753 EXPORT_SYMBOL(dev_set_allmulti);
5754 
5755 /*
5756  *	Upload unicast and multicast address lists to device and
5757  *	configure RX filtering. When the device doesn't support unicast
5758  *	filtering it is put in promiscuous mode while unicast addresses
5759  *	are present.
5760  */
5761 void __dev_set_rx_mode(struct net_device *dev)
5762 {
5763 	const struct net_device_ops *ops = dev->netdev_ops;
5764 
5765 	/* dev_open will call this function so the list will stay sane. */
5766 	if (!(dev->flags&IFF_UP))
5767 		return;
5768 
5769 	if (!netif_device_present(dev))
5770 		return;
5771 
5772 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5773 		/* Unicast addresses changes may only happen under the rtnl,
5774 		 * therefore calling __dev_set_promiscuity here is safe.
5775 		 */
5776 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5777 			__dev_set_promiscuity(dev, 1, false);
5778 			dev->uc_promisc = true;
5779 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5780 			__dev_set_promiscuity(dev, -1, false);
5781 			dev->uc_promisc = false;
5782 		}
5783 	}
5784 
5785 	if (ops->ndo_set_rx_mode)
5786 		ops->ndo_set_rx_mode(dev);
5787 }
5788 
5789 void dev_set_rx_mode(struct net_device *dev)
5790 {
5791 	netif_addr_lock_bh(dev);
5792 	__dev_set_rx_mode(dev);
5793 	netif_addr_unlock_bh(dev);
5794 }
5795 
5796 /**
5797  *	dev_get_flags - get flags reported to userspace
5798  *	@dev: device
5799  *
5800  *	Get the combination of flag bits exported through APIs to userspace.
5801  */
5802 unsigned int dev_get_flags(const struct net_device *dev)
5803 {
5804 	unsigned int flags;
5805 
5806 	flags = (dev->flags & ~(IFF_PROMISC |
5807 				IFF_ALLMULTI |
5808 				IFF_RUNNING |
5809 				IFF_LOWER_UP |
5810 				IFF_DORMANT)) |
5811 		(dev->gflags & (IFF_PROMISC |
5812 				IFF_ALLMULTI));
5813 
5814 	if (netif_running(dev)) {
5815 		if (netif_oper_up(dev))
5816 			flags |= IFF_RUNNING;
5817 		if (netif_carrier_ok(dev))
5818 			flags |= IFF_LOWER_UP;
5819 		if (netif_dormant(dev))
5820 			flags |= IFF_DORMANT;
5821 	}
5822 
5823 	return flags;
5824 }
5825 EXPORT_SYMBOL(dev_get_flags);
5826 
5827 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5828 {
5829 	unsigned int old_flags = dev->flags;
5830 	int ret;
5831 
5832 	ASSERT_RTNL();
5833 
5834 	/*
5835 	 *	Set the flags on our device.
5836 	 */
5837 
5838 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5839 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5840 			       IFF_AUTOMEDIA)) |
5841 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5842 				    IFF_ALLMULTI));
5843 
5844 	/*
5845 	 *	Load in the correct multicast list now the flags have changed.
5846 	 */
5847 
5848 	if ((old_flags ^ flags) & IFF_MULTICAST)
5849 		dev_change_rx_flags(dev, IFF_MULTICAST);
5850 
5851 	dev_set_rx_mode(dev);
5852 
5853 	/*
5854 	 *	Have we downed the interface. We handle IFF_UP ourselves
5855 	 *	according to user attempts to set it, rather than blindly
5856 	 *	setting it.
5857 	 */
5858 
5859 	ret = 0;
5860 	if ((old_flags ^ flags) & IFF_UP)
5861 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5862 
5863 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5864 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5865 		unsigned int old_flags = dev->flags;
5866 
5867 		dev->gflags ^= IFF_PROMISC;
5868 
5869 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5870 			if (dev->flags != old_flags)
5871 				dev_set_rx_mode(dev);
5872 	}
5873 
5874 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5875 	   is important. Some (broken) drivers set IFF_PROMISC, when
5876 	   IFF_ALLMULTI is requested not asking us and not reporting.
5877 	 */
5878 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5879 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5880 
5881 		dev->gflags ^= IFF_ALLMULTI;
5882 		__dev_set_allmulti(dev, inc, false);
5883 	}
5884 
5885 	return ret;
5886 }
5887 
5888 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5889 			unsigned int gchanges)
5890 {
5891 	unsigned int changes = dev->flags ^ old_flags;
5892 
5893 	if (gchanges)
5894 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5895 
5896 	if (changes & IFF_UP) {
5897 		if (dev->flags & IFF_UP)
5898 			call_netdevice_notifiers(NETDEV_UP, dev);
5899 		else
5900 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5901 	}
5902 
5903 	if (dev->flags & IFF_UP &&
5904 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5905 		struct netdev_notifier_change_info change_info;
5906 
5907 		change_info.flags_changed = changes;
5908 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5909 					      &change_info.info);
5910 	}
5911 }
5912 
5913 /**
5914  *	dev_change_flags - change device settings
5915  *	@dev: device
5916  *	@flags: device state flags
5917  *
5918  *	Change settings on device based state flags. The flags are
5919  *	in the userspace exported format.
5920  */
5921 int dev_change_flags(struct net_device *dev, unsigned int flags)
5922 {
5923 	int ret;
5924 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5925 
5926 	ret = __dev_change_flags(dev, flags);
5927 	if (ret < 0)
5928 		return ret;
5929 
5930 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5931 	__dev_notify_flags(dev, old_flags, changes);
5932 	return ret;
5933 }
5934 EXPORT_SYMBOL(dev_change_flags);
5935 
5936 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5937 {
5938 	const struct net_device_ops *ops = dev->netdev_ops;
5939 
5940 	if (ops->ndo_change_mtu)
5941 		return ops->ndo_change_mtu(dev, new_mtu);
5942 
5943 	dev->mtu = new_mtu;
5944 	return 0;
5945 }
5946 
5947 /**
5948  *	dev_set_mtu - Change maximum transfer unit
5949  *	@dev: device
5950  *	@new_mtu: new transfer unit
5951  *
5952  *	Change the maximum transfer size of the network device.
5953  */
5954 int dev_set_mtu(struct net_device *dev, int new_mtu)
5955 {
5956 	int err, orig_mtu;
5957 
5958 	if (new_mtu == dev->mtu)
5959 		return 0;
5960 
5961 	/*	MTU must be positive.	 */
5962 	if (new_mtu < 0)
5963 		return -EINVAL;
5964 
5965 	if (!netif_device_present(dev))
5966 		return -ENODEV;
5967 
5968 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5969 	err = notifier_to_errno(err);
5970 	if (err)
5971 		return err;
5972 
5973 	orig_mtu = dev->mtu;
5974 	err = __dev_set_mtu(dev, new_mtu);
5975 
5976 	if (!err) {
5977 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5978 		err = notifier_to_errno(err);
5979 		if (err) {
5980 			/* setting mtu back and notifying everyone again,
5981 			 * so that they have a chance to revert changes.
5982 			 */
5983 			__dev_set_mtu(dev, orig_mtu);
5984 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5985 		}
5986 	}
5987 	return err;
5988 }
5989 EXPORT_SYMBOL(dev_set_mtu);
5990 
5991 /**
5992  *	dev_set_group - Change group this device belongs to
5993  *	@dev: device
5994  *	@new_group: group this device should belong to
5995  */
5996 void dev_set_group(struct net_device *dev, int new_group)
5997 {
5998 	dev->group = new_group;
5999 }
6000 EXPORT_SYMBOL(dev_set_group);
6001 
6002 /**
6003  *	dev_set_mac_address - Change Media Access Control Address
6004  *	@dev: device
6005  *	@sa: new address
6006  *
6007  *	Change the hardware (MAC) address of the device
6008  */
6009 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6010 {
6011 	const struct net_device_ops *ops = dev->netdev_ops;
6012 	int err;
6013 
6014 	if (!ops->ndo_set_mac_address)
6015 		return -EOPNOTSUPP;
6016 	if (sa->sa_family != dev->type)
6017 		return -EINVAL;
6018 	if (!netif_device_present(dev))
6019 		return -ENODEV;
6020 	err = ops->ndo_set_mac_address(dev, sa);
6021 	if (err)
6022 		return err;
6023 	dev->addr_assign_type = NET_ADDR_SET;
6024 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6025 	add_device_randomness(dev->dev_addr, dev->addr_len);
6026 	return 0;
6027 }
6028 EXPORT_SYMBOL(dev_set_mac_address);
6029 
6030 /**
6031  *	dev_change_carrier - Change device carrier
6032  *	@dev: device
6033  *	@new_carrier: new value
6034  *
6035  *	Change device carrier
6036  */
6037 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6038 {
6039 	const struct net_device_ops *ops = dev->netdev_ops;
6040 
6041 	if (!ops->ndo_change_carrier)
6042 		return -EOPNOTSUPP;
6043 	if (!netif_device_present(dev))
6044 		return -ENODEV;
6045 	return ops->ndo_change_carrier(dev, new_carrier);
6046 }
6047 EXPORT_SYMBOL(dev_change_carrier);
6048 
6049 /**
6050  *	dev_get_phys_port_id - Get device physical port ID
6051  *	@dev: device
6052  *	@ppid: port ID
6053  *
6054  *	Get device physical port ID
6055  */
6056 int dev_get_phys_port_id(struct net_device *dev,
6057 			 struct netdev_phys_item_id *ppid)
6058 {
6059 	const struct net_device_ops *ops = dev->netdev_ops;
6060 
6061 	if (!ops->ndo_get_phys_port_id)
6062 		return -EOPNOTSUPP;
6063 	return ops->ndo_get_phys_port_id(dev, ppid);
6064 }
6065 EXPORT_SYMBOL(dev_get_phys_port_id);
6066 
6067 /**
6068  *	dev_get_phys_port_name - Get device physical port name
6069  *	@dev: device
6070  *	@name: port name
6071  *
6072  *	Get device physical port name
6073  */
6074 int dev_get_phys_port_name(struct net_device *dev,
6075 			   char *name, size_t len)
6076 {
6077 	const struct net_device_ops *ops = dev->netdev_ops;
6078 
6079 	if (!ops->ndo_get_phys_port_name)
6080 		return -EOPNOTSUPP;
6081 	return ops->ndo_get_phys_port_name(dev, name, len);
6082 }
6083 EXPORT_SYMBOL(dev_get_phys_port_name);
6084 
6085 /**
6086  *	dev_new_index	-	allocate an ifindex
6087  *	@net: the applicable net namespace
6088  *
6089  *	Returns a suitable unique value for a new device interface
6090  *	number.  The caller must hold the rtnl semaphore or the
6091  *	dev_base_lock to be sure it remains unique.
6092  */
6093 static int dev_new_index(struct net *net)
6094 {
6095 	int ifindex = net->ifindex;
6096 	for (;;) {
6097 		if (++ifindex <= 0)
6098 			ifindex = 1;
6099 		if (!__dev_get_by_index(net, ifindex))
6100 			return net->ifindex = ifindex;
6101 	}
6102 }
6103 
6104 /* Delayed registration/unregisteration */
6105 static LIST_HEAD(net_todo_list);
6106 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6107 
6108 static void net_set_todo(struct net_device *dev)
6109 {
6110 	list_add_tail(&dev->todo_list, &net_todo_list);
6111 	dev_net(dev)->dev_unreg_count++;
6112 }
6113 
6114 static void rollback_registered_many(struct list_head *head)
6115 {
6116 	struct net_device *dev, *tmp;
6117 	LIST_HEAD(close_head);
6118 
6119 	BUG_ON(dev_boot_phase);
6120 	ASSERT_RTNL();
6121 
6122 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6123 		/* Some devices call without registering
6124 		 * for initialization unwind. Remove those
6125 		 * devices and proceed with the remaining.
6126 		 */
6127 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6128 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6129 				 dev->name, dev);
6130 
6131 			WARN_ON(1);
6132 			list_del(&dev->unreg_list);
6133 			continue;
6134 		}
6135 		dev->dismantle = true;
6136 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6137 	}
6138 
6139 	/* If device is running, close it first. */
6140 	list_for_each_entry(dev, head, unreg_list)
6141 		list_add_tail(&dev->close_list, &close_head);
6142 	dev_close_many(&close_head, true);
6143 
6144 	list_for_each_entry(dev, head, unreg_list) {
6145 		/* And unlink it from device chain. */
6146 		unlist_netdevice(dev);
6147 
6148 		dev->reg_state = NETREG_UNREGISTERING;
6149 	}
6150 
6151 	synchronize_net();
6152 
6153 	list_for_each_entry(dev, head, unreg_list) {
6154 		struct sk_buff *skb = NULL;
6155 
6156 		/* Shutdown queueing discipline. */
6157 		dev_shutdown(dev);
6158 
6159 
6160 		/* Notify protocols, that we are about to destroy
6161 		   this device. They should clean all the things.
6162 		*/
6163 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6164 
6165 		if (!dev->rtnl_link_ops ||
6166 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6167 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6168 						     GFP_KERNEL);
6169 
6170 		/*
6171 		 *	Flush the unicast and multicast chains
6172 		 */
6173 		dev_uc_flush(dev);
6174 		dev_mc_flush(dev);
6175 
6176 		if (dev->netdev_ops->ndo_uninit)
6177 			dev->netdev_ops->ndo_uninit(dev);
6178 
6179 		if (skb)
6180 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6181 
6182 		/* Notifier chain MUST detach us all upper devices. */
6183 		WARN_ON(netdev_has_any_upper_dev(dev));
6184 
6185 		/* Remove entries from kobject tree */
6186 		netdev_unregister_kobject(dev);
6187 #ifdef CONFIG_XPS
6188 		/* Remove XPS queueing entries */
6189 		netif_reset_xps_queues_gt(dev, 0);
6190 #endif
6191 	}
6192 
6193 	synchronize_net();
6194 
6195 	list_for_each_entry(dev, head, unreg_list)
6196 		dev_put(dev);
6197 }
6198 
6199 static void rollback_registered(struct net_device *dev)
6200 {
6201 	LIST_HEAD(single);
6202 
6203 	list_add(&dev->unreg_list, &single);
6204 	rollback_registered_many(&single);
6205 	list_del(&single);
6206 }
6207 
6208 static netdev_features_t netdev_fix_features(struct net_device *dev,
6209 	netdev_features_t features)
6210 {
6211 	/* Fix illegal checksum combinations */
6212 	if ((features & NETIF_F_HW_CSUM) &&
6213 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6214 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6215 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6216 	}
6217 
6218 	/* TSO requires that SG is present as well. */
6219 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6220 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6221 		features &= ~NETIF_F_ALL_TSO;
6222 	}
6223 
6224 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6225 					!(features & NETIF_F_IP_CSUM)) {
6226 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6227 		features &= ~NETIF_F_TSO;
6228 		features &= ~NETIF_F_TSO_ECN;
6229 	}
6230 
6231 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6232 					 !(features & NETIF_F_IPV6_CSUM)) {
6233 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6234 		features &= ~NETIF_F_TSO6;
6235 	}
6236 
6237 	/* TSO ECN requires that TSO is present as well. */
6238 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6239 		features &= ~NETIF_F_TSO_ECN;
6240 
6241 	/* Software GSO depends on SG. */
6242 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6243 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6244 		features &= ~NETIF_F_GSO;
6245 	}
6246 
6247 	/* UFO needs SG and checksumming */
6248 	if (features & NETIF_F_UFO) {
6249 		/* maybe split UFO into V4 and V6? */
6250 		if (!((features & NETIF_F_GEN_CSUM) ||
6251 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6252 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6253 			netdev_dbg(dev,
6254 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6255 			features &= ~NETIF_F_UFO;
6256 		}
6257 
6258 		if (!(features & NETIF_F_SG)) {
6259 			netdev_dbg(dev,
6260 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6261 			features &= ~NETIF_F_UFO;
6262 		}
6263 	}
6264 
6265 #ifdef CONFIG_NET_RX_BUSY_POLL
6266 	if (dev->netdev_ops->ndo_busy_poll)
6267 		features |= NETIF_F_BUSY_POLL;
6268 	else
6269 #endif
6270 		features &= ~NETIF_F_BUSY_POLL;
6271 
6272 	return features;
6273 }
6274 
6275 int __netdev_update_features(struct net_device *dev)
6276 {
6277 	netdev_features_t features;
6278 	int err = 0;
6279 
6280 	ASSERT_RTNL();
6281 
6282 	features = netdev_get_wanted_features(dev);
6283 
6284 	if (dev->netdev_ops->ndo_fix_features)
6285 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6286 
6287 	/* driver might be less strict about feature dependencies */
6288 	features = netdev_fix_features(dev, features);
6289 
6290 	if (dev->features == features)
6291 		return 0;
6292 
6293 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6294 		&dev->features, &features);
6295 
6296 	if (dev->netdev_ops->ndo_set_features)
6297 		err = dev->netdev_ops->ndo_set_features(dev, features);
6298 
6299 	if (unlikely(err < 0)) {
6300 		netdev_err(dev,
6301 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6302 			err, &features, &dev->features);
6303 		return -1;
6304 	}
6305 
6306 	if (!err)
6307 		dev->features = features;
6308 
6309 	return 1;
6310 }
6311 
6312 /**
6313  *	netdev_update_features - recalculate device features
6314  *	@dev: the device to check
6315  *
6316  *	Recalculate dev->features set and send notifications if it
6317  *	has changed. Should be called after driver or hardware dependent
6318  *	conditions might have changed that influence the features.
6319  */
6320 void netdev_update_features(struct net_device *dev)
6321 {
6322 	if (__netdev_update_features(dev))
6323 		netdev_features_change(dev);
6324 }
6325 EXPORT_SYMBOL(netdev_update_features);
6326 
6327 /**
6328  *	netdev_change_features - recalculate device features
6329  *	@dev: the device to check
6330  *
6331  *	Recalculate dev->features set and send notifications even
6332  *	if they have not changed. Should be called instead of
6333  *	netdev_update_features() if also dev->vlan_features might
6334  *	have changed to allow the changes to be propagated to stacked
6335  *	VLAN devices.
6336  */
6337 void netdev_change_features(struct net_device *dev)
6338 {
6339 	__netdev_update_features(dev);
6340 	netdev_features_change(dev);
6341 }
6342 EXPORT_SYMBOL(netdev_change_features);
6343 
6344 /**
6345  *	netif_stacked_transfer_operstate -	transfer operstate
6346  *	@rootdev: the root or lower level device to transfer state from
6347  *	@dev: the device to transfer operstate to
6348  *
6349  *	Transfer operational state from root to device. This is normally
6350  *	called when a stacking relationship exists between the root
6351  *	device and the device(a leaf device).
6352  */
6353 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6354 					struct net_device *dev)
6355 {
6356 	if (rootdev->operstate == IF_OPER_DORMANT)
6357 		netif_dormant_on(dev);
6358 	else
6359 		netif_dormant_off(dev);
6360 
6361 	if (netif_carrier_ok(rootdev)) {
6362 		if (!netif_carrier_ok(dev))
6363 			netif_carrier_on(dev);
6364 	} else {
6365 		if (netif_carrier_ok(dev))
6366 			netif_carrier_off(dev);
6367 	}
6368 }
6369 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6370 
6371 #ifdef CONFIG_SYSFS
6372 static int netif_alloc_rx_queues(struct net_device *dev)
6373 {
6374 	unsigned int i, count = dev->num_rx_queues;
6375 	struct netdev_rx_queue *rx;
6376 	size_t sz = count * sizeof(*rx);
6377 
6378 	BUG_ON(count < 1);
6379 
6380 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6381 	if (!rx) {
6382 		rx = vzalloc(sz);
6383 		if (!rx)
6384 			return -ENOMEM;
6385 	}
6386 	dev->_rx = rx;
6387 
6388 	for (i = 0; i < count; i++)
6389 		rx[i].dev = dev;
6390 	return 0;
6391 }
6392 #endif
6393 
6394 static void netdev_init_one_queue(struct net_device *dev,
6395 				  struct netdev_queue *queue, void *_unused)
6396 {
6397 	/* Initialize queue lock */
6398 	spin_lock_init(&queue->_xmit_lock);
6399 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6400 	queue->xmit_lock_owner = -1;
6401 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6402 	queue->dev = dev;
6403 #ifdef CONFIG_BQL
6404 	dql_init(&queue->dql, HZ);
6405 #endif
6406 }
6407 
6408 static void netif_free_tx_queues(struct net_device *dev)
6409 {
6410 	kvfree(dev->_tx);
6411 }
6412 
6413 static int netif_alloc_netdev_queues(struct net_device *dev)
6414 {
6415 	unsigned int count = dev->num_tx_queues;
6416 	struct netdev_queue *tx;
6417 	size_t sz = count * sizeof(*tx);
6418 
6419 	BUG_ON(count < 1 || count > 0xffff);
6420 
6421 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6422 	if (!tx) {
6423 		tx = vzalloc(sz);
6424 		if (!tx)
6425 			return -ENOMEM;
6426 	}
6427 	dev->_tx = tx;
6428 
6429 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6430 	spin_lock_init(&dev->tx_global_lock);
6431 
6432 	return 0;
6433 }
6434 
6435 void netif_tx_stop_all_queues(struct net_device *dev)
6436 {
6437 	unsigned int i;
6438 
6439 	for (i = 0; i < dev->num_tx_queues; i++) {
6440 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6441 		netif_tx_stop_queue(txq);
6442 	}
6443 }
6444 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6445 
6446 /**
6447  *	register_netdevice	- register a network device
6448  *	@dev: device to register
6449  *
6450  *	Take a completed network device structure and add it to the kernel
6451  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6452  *	chain. 0 is returned on success. A negative errno code is returned
6453  *	on a failure to set up the device, or if the name is a duplicate.
6454  *
6455  *	Callers must hold the rtnl semaphore. You may want
6456  *	register_netdev() instead of this.
6457  *
6458  *	BUGS:
6459  *	The locking appears insufficient to guarantee two parallel registers
6460  *	will not get the same name.
6461  */
6462 
6463 int register_netdevice(struct net_device *dev)
6464 {
6465 	int ret;
6466 	struct net *net = dev_net(dev);
6467 
6468 	BUG_ON(dev_boot_phase);
6469 	ASSERT_RTNL();
6470 
6471 	might_sleep();
6472 
6473 	/* When net_device's are persistent, this will be fatal. */
6474 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6475 	BUG_ON(!net);
6476 
6477 	spin_lock_init(&dev->addr_list_lock);
6478 	netdev_set_addr_lockdep_class(dev);
6479 
6480 	ret = dev_get_valid_name(net, dev, dev->name);
6481 	if (ret < 0)
6482 		goto out;
6483 
6484 	/* Init, if this function is available */
6485 	if (dev->netdev_ops->ndo_init) {
6486 		ret = dev->netdev_ops->ndo_init(dev);
6487 		if (ret) {
6488 			if (ret > 0)
6489 				ret = -EIO;
6490 			goto out;
6491 		}
6492 	}
6493 
6494 	if (((dev->hw_features | dev->features) &
6495 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6496 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6497 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6498 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6499 		ret = -EINVAL;
6500 		goto err_uninit;
6501 	}
6502 
6503 	ret = -EBUSY;
6504 	if (!dev->ifindex)
6505 		dev->ifindex = dev_new_index(net);
6506 	else if (__dev_get_by_index(net, dev->ifindex))
6507 		goto err_uninit;
6508 
6509 	/* Transfer changeable features to wanted_features and enable
6510 	 * software offloads (GSO and GRO).
6511 	 */
6512 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6513 	dev->features |= NETIF_F_SOFT_FEATURES;
6514 	dev->wanted_features = dev->features & dev->hw_features;
6515 
6516 	if (!(dev->flags & IFF_LOOPBACK)) {
6517 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6518 	}
6519 
6520 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6521 	 */
6522 	dev->vlan_features |= NETIF_F_HIGHDMA;
6523 
6524 	/* Make NETIF_F_SG inheritable to tunnel devices.
6525 	 */
6526 	dev->hw_enc_features |= NETIF_F_SG;
6527 
6528 	/* Make NETIF_F_SG inheritable to MPLS.
6529 	 */
6530 	dev->mpls_features |= NETIF_F_SG;
6531 
6532 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6533 	ret = notifier_to_errno(ret);
6534 	if (ret)
6535 		goto err_uninit;
6536 
6537 	ret = netdev_register_kobject(dev);
6538 	if (ret)
6539 		goto err_uninit;
6540 	dev->reg_state = NETREG_REGISTERED;
6541 
6542 	__netdev_update_features(dev);
6543 
6544 	/*
6545 	 *	Default initial state at registry is that the
6546 	 *	device is present.
6547 	 */
6548 
6549 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6550 
6551 	linkwatch_init_dev(dev);
6552 
6553 	dev_init_scheduler(dev);
6554 	dev_hold(dev);
6555 	list_netdevice(dev);
6556 	add_device_randomness(dev->dev_addr, dev->addr_len);
6557 
6558 	/* If the device has permanent device address, driver should
6559 	 * set dev_addr and also addr_assign_type should be set to
6560 	 * NET_ADDR_PERM (default value).
6561 	 */
6562 	if (dev->addr_assign_type == NET_ADDR_PERM)
6563 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6564 
6565 	/* Notify protocols, that a new device appeared. */
6566 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6567 	ret = notifier_to_errno(ret);
6568 	if (ret) {
6569 		rollback_registered(dev);
6570 		dev->reg_state = NETREG_UNREGISTERED;
6571 	}
6572 	/*
6573 	 *	Prevent userspace races by waiting until the network
6574 	 *	device is fully setup before sending notifications.
6575 	 */
6576 	if (!dev->rtnl_link_ops ||
6577 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6578 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6579 
6580 out:
6581 	return ret;
6582 
6583 err_uninit:
6584 	if (dev->netdev_ops->ndo_uninit)
6585 		dev->netdev_ops->ndo_uninit(dev);
6586 	goto out;
6587 }
6588 EXPORT_SYMBOL(register_netdevice);
6589 
6590 /**
6591  *	init_dummy_netdev	- init a dummy network device for NAPI
6592  *	@dev: device to init
6593  *
6594  *	This takes a network device structure and initialize the minimum
6595  *	amount of fields so it can be used to schedule NAPI polls without
6596  *	registering a full blown interface. This is to be used by drivers
6597  *	that need to tie several hardware interfaces to a single NAPI
6598  *	poll scheduler due to HW limitations.
6599  */
6600 int init_dummy_netdev(struct net_device *dev)
6601 {
6602 	/* Clear everything. Note we don't initialize spinlocks
6603 	 * are they aren't supposed to be taken by any of the
6604 	 * NAPI code and this dummy netdev is supposed to be
6605 	 * only ever used for NAPI polls
6606 	 */
6607 	memset(dev, 0, sizeof(struct net_device));
6608 
6609 	/* make sure we BUG if trying to hit standard
6610 	 * register/unregister code path
6611 	 */
6612 	dev->reg_state = NETREG_DUMMY;
6613 
6614 	/* NAPI wants this */
6615 	INIT_LIST_HEAD(&dev->napi_list);
6616 
6617 	/* a dummy interface is started by default */
6618 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6619 	set_bit(__LINK_STATE_START, &dev->state);
6620 
6621 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6622 	 * because users of this 'device' dont need to change
6623 	 * its refcount.
6624 	 */
6625 
6626 	return 0;
6627 }
6628 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6629 
6630 
6631 /**
6632  *	register_netdev	- register a network device
6633  *	@dev: device to register
6634  *
6635  *	Take a completed network device structure and add it to the kernel
6636  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6637  *	chain. 0 is returned on success. A negative errno code is returned
6638  *	on a failure to set up the device, or if the name is a duplicate.
6639  *
6640  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6641  *	and expands the device name if you passed a format string to
6642  *	alloc_netdev.
6643  */
6644 int register_netdev(struct net_device *dev)
6645 {
6646 	int err;
6647 
6648 	rtnl_lock();
6649 	err = register_netdevice(dev);
6650 	rtnl_unlock();
6651 	return err;
6652 }
6653 EXPORT_SYMBOL(register_netdev);
6654 
6655 int netdev_refcnt_read(const struct net_device *dev)
6656 {
6657 	int i, refcnt = 0;
6658 
6659 	for_each_possible_cpu(i)
6660 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6661 	return refcnt;
6662 }
6663 EXPORT_SYMBOL(netdev_refcnt_read);
6664 
6665 /**
6666  * netdev_wait_allrefs - wait until all references are gone.
6667  * @dev: target net_device
6668  *
6669  * This is called when unregistering network devices.
6670  *
6671  * Any protocol or device that holds a reference should register
6672  * for netdevice notification, and cleanup and put back the
6673  * reference if they receive an UNREGISTER event.
6674  * We can get stuck here if buggy protocols don't correctly
6675  * call dev_put.
6676  */
6677 static void netdev_wait_allrefs(struct net_device *dev)
6678 {
6679 	unsigned long rebroadcast_time, warning_time;
6680 	int refcnt;
6681 
6682 	linkwatch_forget_dev(dev);
6683 
6684 	rebroadcast_time = warning_time = jiffies;
6685 	refcnt = netdev_refcnt_read(dev);
6686 
6687 	while (refcnt != 0) {
6688 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6689 			rtnl_lock();
6690 
6691 			/* Rebroadcast unregister notification */
6692 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6693 
6694 			__rtnl_unlock();
6695 			rcu_barrier();
6696 			rtnl_lock();
6697 
6698 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6699 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6700 				     &dev->state)) {
6701 				/* We must not have linkwatch events
6702 				 * pending on unregister. If this
6703 				 * happens, we simply run the queue
6704 				 * unscheduled, resulting in a noop
6705 				 * for this device.
6706 				 */
6707 				linkwatch_run_queue();
6708 			}
6709 
6710 			__rtnl_unlock();
6711 
6712 			rebroadcast_time = jiffies;
6713 		}
6714 
6715 		msleep(250);
6716 
6717 		refcnt = netdev_refcnt_read(dev);
6718 
6719 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6720 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6721 				 dev->name, refcnt);
6722 			warning_time = jiffies;
6723 		}
6724 	}
6725 }
6726 
6727 /* The sequence is:
6728  *
6729  *	rtnl_lock();
6730  *	...
6731  *	register_netdevice(x1);
6732  *	register_netdevice(x2);
6733  *	...
6734  *	unregister_netdevice(y1);
6735  *	unregister_netdevice(y2);
6736  *      ...
6737  *	rtnl_unlock();
6738  *	free_netdev(y1);
6739  *	free_netdev(y2);
6740  *
6741  * We are invoked by rtnl_unlock().
6742  * This allows us to deal with problems:
6743  * 1) We can delete sysfs objects which invoke hotplug
6744  *    without deadlocking with linkwatch via keventd.
6745  * 2) Since we run with the RTNL semaphore not held, we can sleep
6746  *    safely in order to wait for the netdev refcnt to drop to zero.
6747  *
6748  * We must not return until all unregister events added during
6749  * the interval the lock was held have been completed.
6750  */
6751 void netdev_run_todo(void)
6752 {
6753 	struct list_head list;
6754 
6755 	/* Snapshot list, allow later requests */
6756 	list_replace_init(&net_todo_list, &list);
6757 
6758 	__rtnl_unlock();
6759 
6760 
6761 	/* Wait for rcu callbacks to finish before next phase */
6762 	if (!list_empty(&list))
6763 		rcu_barrier();
6764 
6765 	while (!list_empty(&list)) {
6766 		struct net_device *dev
6767 			= list_first_entry(&list, struct net_device, todo_list);
6768 		list_del(&dev->todo_list);
6769 
6770 		rtnl_lock();
6771 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6772 		__rtnl_unlock();
6773 
6774 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6775 			pr_err("network todo '%s' but state %d\n",
6776 			       dev->name, dev->reg_state);
6777 			dump_stack();
6778 			continue;
6779 		}
6780 
6781 		dev->reg_state = NETREG_UNREGISTERED;
6782 
6783 		on_each_cpu(flush_backlog, dev, 1);
6784 
6785 		netdev_wait_allrefs(dev);
6786 
6787 		/* paranoia */
6788 		BUG_ON(netdev_refcnt_read(dev));
6789 		BUG_ON(!list_empty(&dev->ptype_all));
6790 		BUG_ON(!list_empty(&dev->ptype_specific));
6791 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6792 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6793 		WARN_ON(dev->dn_ptr);
6794 
6795 		if (dev->destructor)
6796 			dev->destructor(dev);
6797 
6798 		/* Report a network device has been unregistered */
6799 		rtnl_lock();
6800 		dev_net(dev)->dev_unreg_count--;
6801 		__rtnl_unlock();
6802 		wake_up(&netdev_unregistering_wq);
6803 
6804 		/* Free network device */
6805 		kobject_put(&dev->dev.kobj);
6806 	}
6807 }
6808 
6809 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6810  * fields in the same order, with only the type differing.
6811  */
6812 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6813 			     const struct net_device_stats *netdev_stats)
6814 {
6815 #if BITS_PER_LONG == 64
6816 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6817 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6818 #else
6819 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6820 	const unsigned long *src = (const unsigned long *)netdev_stats;
6821 	u64 *dst = (u64 *)stats64;
6822 
6823 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6824 		     sizeof(*stats64) / sizeof(u64));
6825 	for (i = 0; i < n; i++)
6826 		dst[i] = src[i];
6827 #endif
6828 }
6829 EXPORT_SYMBOL(netdev_stats_to_stats64);
6830 
6831 /**
6832  *	dev_get_stats	- get network device statistics
6833  *	@dev: device to get statistics from
6834  *	@storage: place to store stats
6835  *
6836  *	Get network statistics from device. Return @storage.
6837  *	The device driver may provide its own method by setting
6838  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6839  *	otherwise the internal statistics structure is used.
6840  */
6841 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6842 					struct rtnl_link_stats64 *storage)
6843 {
6844 	const struct net_device_ops *ops = dev->netdev_ops;
6845 
6846 	if (ops->ndo_get_stats64) {
6847 		memset(storage, 0, sizeof(*storage));
6848 		ops->ndo_get_stats64(dev, storage);
6849 	} else if (ops->ndo_get_stats) {
6850 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6851 	} else {
6852 		netdev_stats_to_stats64(storage, &dev->stats);
6853 	}
6854 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6855 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6856 	return storage;
6857 }
6858 EXPORT_SYMBOL(dev_get_stats);
6859 
6860 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6861 {
6862 	struct netdev_queue *queue = dev_ingress_queue(dev);
6863 
6864 #ifdef CONFIG_NET_CLS_ACT
6865 	if (queue)
6866 		return queue;
6867 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6868 	if (!queue)
6869 		return NULL;
6870 	netdev_init_one_queue(dev, queue, NULL);
6871 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6872 	queue->qdisc_sleeping = &noop_qdisc;
6873 	rcu_assign_pointer(dev->ingress_queue, queue);
6874 #endif
6875 	return queue;
6876 }
6877 
6878 static const struct ethtool_ops default_ethtool_ops;
6879 
6880 void netdev_set_default_ethtool_ops(struct net_device *dev,
6881 				    const struct ethtool_ops *ops)
6882 {
6883 	if (dev->ethtool_ops == &default_ethtool_ops)
6884 		dev->ethtool_ops = ops;
6885 }
6886 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6887 
6888 void netdev_freemem(struct net_device *dev)
6889 {
6890 	char *addr = (char *)dev - dev->padded;
6891 
6892 	kvfree(addr);
6893 }
6894 
6895 /**
6896  *	alloc_netdev_mqs - allocate network device
6897  *	@sizeof_priv:		size of private data to allocate space for
6898  *	@name:			device name format string
6899  *	@name_assign_type: 	origin of device name
6900  *	@setup:			callback to initialize device
6901  *	@txqs:			the number of TX subqueues to allocate
6902  *	@rxqs:			the number of RX subqueues to allocate
6903  *
6904  *	Allocates a struct net_device with private data area for driver use
6905  *	and performs basic initialization.  Also allocates subqueue structs
6906  *	for each queue on the device.
6907  */
6908 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6909 		unsigned char name_assign_type,
6910 		void (*setup)(struct net_device *),
6911 		unsigned int txqs, unsigned int rxqs)
6912 {
6913 	struct net_device *dev;
6914 	size_t alloc_size;
6915 	struct net_device *p;
6916 
6917 	BUG_ON(strlen(name) >= sizeof(dev->name));
6918 
6919 	if (txqs < 1) {
6920 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6921 		return NULL;
6922 	}
6923 
6924 #ifdef CONFIG_SYSFS
6925 	if (rxqs < 1) {
6926 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6927 		return NULL;
6928 	}
6929 #endif
6930 
6931 	alloc_size = sizeof(struct net_device);
6932 	if (sizeof_priv) {
6933 		/* ensure 32-byte alignment of private area */
6934 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6935 		alloc_size += sizeof_priv;
6936 	}
6937 	/* ensure 32-byte alignment of whole construct */
6938 	alloc_size += NETDEV_ALIGN - 1;
6939 
6940 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6941 	if (!p)
6942 		p = vzalloc(alloc_size);
6943 	if (!p)
6944 		return NULL;
6945 
6946 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6947 	dev->padded = (char *)dev - (char *)p;
6948 
6949 	dev->pcpu_refcnt = alloc_percpu(int);
6950 	if (!dev->pcpu_refcnt)
6951 		goto free_dev;
6952 
6953 	if (dev_addr_init(dev))
6954 		goto free_pcpu;
6955 
6956 	dev_mc_init(dev);
6957 	dev_uc_init(dev);
6958 
6959 	dev_net_set(dev, &init_net);
6960 
6961 	dev->gso_max_size = GSO_MAX_SIZE;
6962 	dev->gso_max_segs = GSO_MAX_SEGS;
6963 	dev->gso_min_segs = 0;
6964 
6965 	INIT_LIST_HEAD(&dev->napi_list);
6966 	INIT_LIST_HEAD(&dev->unreg_list);
6967 	INIT_LIST_HEAD(&dev->close_list);
6968 	INIT_LIST_HEAD(&dev->link_watch_list);
6969 	INIT_LIST_HEAD(&dev->adj_list.upper);
6970 	INIT_LIST_HEAD(&dev->adj_list.lower);
6971 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6972 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6973 	INIT_LIST_HEAD(&dev->ptype_all);
6974 	INIT_LIST_HEAD(&dev->ptype_specific);
6975 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6976 	setup(dev);
6977 
6978 	dev->num_tx_queues = txqs;
6979 	dev->real_num_tx_queues = txqs;
6980 	if (netif_alloc_netdev_queues(dev))
6981 		goto free_all;
6982 
6983 #ifdef CONFIG_SYSFS
6984 	dev->num_rx_queues = rxqs;
6985 	dev->real_num_rx_queues = rxqs;
6986 	if (netif_alloc_rx_queues(dev))
6987 		goto free_all;
6988 #endif
6989 
6990 	strcpy(dev->name, name);
6991 	dev->name_assign_type = name_assign_type;
6992 	dev->group = INIT_NETDEV_GROUP;
6993 	if (!dev->ethtool_ops)
6994 		dev->ethtool_ops = &default_ethtool_ops;
6995 
6996 	nf_hook_ingress_init(dev);
6997 
6998 	return dev;
6999 
7000 free_all:
7001 	free_netdev(dev);
7002 	return NULL;
7003 
7004 free_pcpu:
7005 	free_percpu(dev->pcpu_refcnt);
7006 free_dev:
7007 	netdev_freemem(dev);
7008 	return NULL;
7009 }
7010 EXPORT_SYMBOL(alloc_netdev_mqs);
7011 
7012 /**
7013  *	free_netdev - free network device
7014  *	@dev: device
7015  *
7016  *	This function does the last stage of destroying an allocated device
7017  * 	interface. The reference to the device object is released.
7018  *	If this is the last reference then it will be freed.
7019  */
7020 void free_netdev(struct net_device *dev)
7021 {
7022 	struct napi_struct *p, *n;
7023 
7024 	netif_free_tx_queues(dev);
7025 #ifdef CONFIG_SYSFS
7026 	kvfree(dev->_rx);
7027 #endif
7028 
7029 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7030 
7031 	/* Flush device addresses */
7032 	dev_addr_flush(dev);
7033 
7034 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7035 		netif_napi_del(p);
7036 
7037 	free_percpu(dev->pcpu_refcnt);
7038 	dev->pcpu_refcnt = NULL;
7039 
7040 	/*  Compatibility with error handling in drivers */
7041 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7042 		netdev_freemem(dev);
7043 		return;
7044 	}
7045 
7046 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7047 	dev->reg_state = NETREG_RELEASED;
7048 
7049 	/* will free via device release */
7050 	put_device(&dev->dev);
7051 }
7052 EXPORT_SYMBOL(free_netdev);
7053 
7054 /**
7055  *	synchronize_net -  Synchronize with packet receive processing
7056  *
7057  *	Wait for packets currently being received to be done.
7058  *	Does not block later packets from starting.
7059  */
7060 void synchronize_net(void)
7061 {
7062 	might_sleep();
7063 	if (rtnl_is_locked())
7064 		synchronize_rcu_expedited();
7065 	else
7066 		synchronize_rcu();
7067 }
7068 EXPORT_SYMBOL(synchronize_net);
7069 
7070 /**
7071  *	unregister_netdevice_queue - remove device from the kernel
7072  *	@dev: device
7073  *	@head: list
7074  *
7075  *	This function shuts down a device interface and removes it
7076  *	from the kernel tables.
7077  *	If head not NULL, device is queued to be unregistered later.
7078  *
7079  *	Callers must hold the rtnl semaphore.  You may want
7080  *	unregister_netdev() instead of this.
7081  */
7082 
7083 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7084 {
7085 	ASSERT_RTNL();
7086 
7087 	if (head) {
7088 		list_move_tail(&dev->unreg_list, head);
7089 	} else {
7090 		rollback_registered(dev);
7091 		/* Finish processing unregister after unlock */
7092 		net_set_todo(dev);
7093 	}
7094 }
7095 EXPORT_SYMBOL(unregister_netdevice_queue);
7096 
7097 /**
7098  *	unregister_netdevice_many - unregister many devices
7099  *	@head: list of devices
7100  *
7101  *  Note: As most callers use a stack allocated list_head,
7102  *  we force a list_del() to make sure stack wont be corrupted later.
7103  */
7104 void unregister_netdevice_many(struct list_head *head)
7105 {
7106 	struct net_device *dev;
7107 
7108 	if (!list_empty(head)) {
7109 		rollback_registered_many(head);
7110 		list_for_each_entry(dev, head, unreg_list)
7111 			net_set_todo(dev);
7112 		list_del(head);
7113 	}
7114 }
7115 EXPORT_SYMBOL(unregister_netdevice_many);
7116 
7117 /**
7118  *	unregister_netdev - remove device from the kernel
7119  *	@dev: device
7120  *
7121  *	This function shuts down a device interface and removes it
7122  *	from the kernel tables.
7123  *
7124  *	This is just a wrapper for unregister_netdevice that takes
7125  *	the rtnl semaphore.  In general you want to use this and not
7126  *	unregister_netdevice.
7127  */
7128 void unregister_netdev(struct net_device *dev)
7129 {
7130 	rtnl_lock();
7131 	unregister_netdevice(dev);
7132 	rtnl_unlock();
7133 }
7134 EXPORT_SYMBOL(unregister_netdev);
7135 
7136 /**
7137  *	dev_change_net_namespace - move device to different nethost namespace
7138  *	@dev: device
7139  *	@net: network namespace
7140  *	@pat: If not NULL name pattern to try if the current device name
7141  *	      is already taken in the destination network namespace.
7142  *
7143  *	This function shuts down a device interface and moves it
7144  *	to a new network namespace. On success 0 is returned, on
7145  *	a failure a netagive errno code is returned.
7146  *
7147  *	Callers must hold the rtnl semaphore.
7148  */
7149 
7150 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7151 {
7152 	int err;
7153 
7154 	ASSERT_RTNL();
7155 
7156 	/* Don't allow namespace local devices to be moved. */
7157 	err = -EINVAL;
7158 	if (dev->features & NETIF_F_NETNS_LOCAL)
7159 		goto out;
7160 
7161 	/* Ensure the device has been registrered */
7162 	if (dev->reg_state != NETREG_REGISTERED)
7163 		goto out;
7164 
7165 	/* Get out if there is nothing todo */
7166 	err = 0;
7167 	if (net_eq(dev_net(dev), net))
7168 		goto out;
7169 
7170 	/* Pick the destination device name, and ensure
7171 	 * we can use it in the destination network namespace.
7172 	 */
7173 	err = -EEXIST;
7174 	if (__dev_get_by_name(net, dev->name)) {
7175 		/* We get here if we can't use the current device name */
7176 		if (!pat)
7177 			goto out;
7178 		if (dev_get_valid_name(net, dev, pat) < 0)
7179 			goto out;
7180 	}
7181 
7182 	/*
7183 	 * And now a mini version of register_netdevice unregister_netdevice.
7184 	 */
7185 
7186 	/* If device is running close it first. */
7187 	dev_close(dev);
7188 
7189 	/* And unlink it from device chain */
7190 	err = -ENODEV;
7191 	unlist_netdevice(dev);
7192 
7193 	synchronize_net();
7194 
7195 	/* Shutdown queueing discipline. */
7196 	dev_shutdown(dev);
7197 
7198 	/* Notify protocols, that we are about to destroy
7199 	   this device. They should clean all the things.
7200 
7201 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7202 	   This is wanted because this way 8021q and macvlan know
7203 	   the device is just moving and can keep their slaves up.
7204 	*/
7205 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7206 	rcu_barrier();
7207 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7208 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7209 
7210 	/*
7211 	 *	Flush the unicast and multicast chains
7212 	 */
7213 	dev_uc_flush(dev);
7214 	dev_mc_flush(dev);
7215 
7216 	/* Send a netdev-removed uevent to the old namespace */
7217 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7218 	netdev_adjacent_del_links(dev);
7219 
7220 	/* Actually switch the network namespace */
7221 	dev_net_set(dev, net);
7222 
7223 	/* If there is an ifindex conflict assign a new one */
7224 	if (__dev_get_by_index(net, dev->ifindex))
7225 		dev->ifindex = dev_new_index(net);
7226 
7227 	/* Send a netdev-add uevent to the new namespace */
7228 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7229 	netdev_adjacent_add_links(dev);
7230 
7231 	/* Fixup kobjects */
7232 	err = device_rename(&dev->dev, dev->name);
7233 	WARN_ON(err);
7234 
7235 	/* Add the device back in the hashes */
7236 	list_netdevice(dev);
7237 
7238 	/* Notify protocols, that a new device appeared. */
7239 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7240 
7241 	/*
7242 	 *	Prevent userspace races by waiting until the network
7243 	 *	device is fully setup before sending notifications.
7244 	 */
7245 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7246 
7247 	synchronize_net();
7248 	err = 0;
7249 out:
7250 	return err;
7251 }
7252 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7253 
7254 static int dev_cpu_callback(struct notifier_block *nfb,
7255 			    unsigned long action,
7256 			    void *ocpu)
7257 {
7258 	struct sk_buff **list_skb;
7259 	struct sk_buff *skb;
7260 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7261 	struct softnet_data *sd, *oldsd;
7262 
7263 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7264 		return NOTIFY_OK;
7265 
7266 	local_irq_disable();
7267 	cpu = smp_processor_id();
7268 	sd = &per_cpu(softnet_data, cpu);
7269 	oldsd = &per_cpu(softnet_data, oldcpu);
7270 
7271 	/* Find end of our completion_queue. */
7272 	list_skb = &sd->completion_queue;
7273 	while (*list_skb)
7274 		list_skb = &(*list_skb)->next;
7275 	/* Append completion queue from offline CPU. */
7276 	*list_skb = oldsd->completion_queue;
7277 	oldsd->completion_queue = NULL;
7278 
7279 	/* Append output queue from offline CPU. */
7280 	if (oldsd->output_queue) {
7281 		*sd->output_queue_tailp = oldsd->output_queue;
7282 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7283 		oldsd->output_queue = NULL;
7284 		oldsd->output_queue_tailp = &oldsd->output_queue;
7285 	}
7286 	/* Append NAPI poll list from offline CPU, with one exception :
7287 	 * process_backlog() must be called by cpu owning percpu backlog.
7288 	 * We properly handle process_queue & input_pkt_queue later.
7289 	 */
7290 	while (!list_empty(&oldsd->poll_list)) {
7291 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7292 							    struct napi_struct,
7293 							    poll_list);
7294 
7295 		list_del_init(&napi->poll_list);
7296 		if (napi->poll == process_backlog)
7297 			napi->state = 0;
7298 		else
7299 			____napi_schedule(sd, napi);
7300 	}
7301 
7302 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7303 	local_irq_enable();
7304 
7305 	/* Process offline CPU's input_pkt_queue */
7306 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7307 		netif_rx_ni(skb);
7308 		input_queue_head_incr(oldsd);
7309 	}
7310 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7311 		netif_rx_ni(skb);
7312 		input_queue_head_incr(oldsd);
7313 	}
7314 
7315 	return NOTIFY_OK;
7316 }
7317 
7318 
7319 /**
7320  *	netdev_increment_features - increment feature set by one
7321  *	@all: current feature set
7322  *	@one: new feature set
7323  *	@mask: mask feature set
7324  *
7325  *	Computes a new feature set after adding a device with feature set
7326  *	@one to the master device with current feature set @all.  Will not
7327  *	enable anything that is off in @mask. Returns the new feature set.
7328  */
7329 netdev_features_t netdev_increment_features(netdev_features_t all,
7330 	netdev_features_t one, netdev_features_t mask)
7331 {
7332 	if (mask & NETIF_F_GEN_CSUM)
7333 		mask |= NETIF_F_ALL_CSUM;
7334 	mask |= NETIF_F_VLAN_CHALLENGED;
7335 
7336 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7337 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7338 
7339 	/* If one device supports hw checksumming, set for all. */
7340 	if (all & NETIF_F_GEN_CSUM)
7341 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7342 
7343 	return all;
7344 }
7345 EXPORT_SYMBOL(netdev_increment_features);
7346 
7347 static struct hlist_head * __net_init netdev_create_hash(void)
7348 {
7349 	int i;
7350 	struct hlist_head *hash;
7351 
7352 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7353 	if (hash != NULL)
7354 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7355 			INIT_HLIST_HEAD(&hash[i]);
7356 
7357 	return hash;
7358 }
7359 
7360 /* Initialize per network namespace state */
7361 static int __net_init netdev_init(struct net *net)
7362 {
7363 	if (net != &init_net)
7364 		INIT_LIST_HEAD(&net->dev_base_head);
7365 
7366 	net->dev_name_head = netdev_create_hash();
7367 	if (net->dev_name_head == NULL)
7368 		goto err_name;
7369 
7370 	net->dev_index_head = netdev_create_hash();
7371 	if (net->dev_index_head == NULL)
7372 		goto err_idx;
7373 
7374 	return 0;
7375 
7376 err_idx:
7377 	kfree(net->dev_name_head);
7378 err_name:
7379 	return -ENOMEM;
7380 }
7381 
7382 /**
7383  *	netdev_drivername - network driver for the device
7384  *	@dev: network device
7385  *
7386  *	Determine network driver for device.
7387  */
7388 const char *netdev_drivername(const struct net_device *dev)
7389 {
7390 	const struct device_driver *driver;
7391 	const struct device *parent;
7392 	const char *empty = "";
7393 
7394 	parent = dev->dev.parent;
7395 	if (!parent)
7396 		return empty;
7397 
7398 	driver = parent->driver;
7399 	if (driver && driver->name)
7400 		return driver->name;
7401 	return empty;
7402 }
7403 
7404 static void __netdev_printk(const char *level, const struct net_device *dev,
7405 			    struct va_format *vaf)
7406 {
7407 	if (dev && dev->dev.parent) {
7408 		dev_printk_emit(level[1] - '0',
7409 				dev->dev.parent,
7410 				"%s %s %s%s: %pV",
7411 				dev_driver_string(dev->dev.parent),
7412 				dev_name(dev->dev.parent),
7413 				netdev_name(dev), netdev_reg_state(dev),
7414 				vaf);
7415 	} else if (dev) {
7416 		printk("%s%s%s: %pV",
7417 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7418 	} else {
7419 		printk("%s(NULL net_device): %pV", level, vaf);
7420 	}
7421 }
7422 
7423 void netdev_printk(const char *level, const struct net_device *dev,
7424 		   const char *format, ...)
7425 {
7426 	struct va_format vaf;
7427 	va_list args;
7428 
7429 	va_start(args, format);
7430 
7431 	vaf.fmt = format;
7432 	vaf.va = &args;
7433 
7434 	__netdev_printk(level, dev, &vaf);
7435 
7436 	va_end(args);
7437 }
7438 EXPORT_SYMBOL(netdev_printk);
7439 
7440 #define define_netdev_printk_level(func, level)			\
7441 void func(const struct net_device *dev, const char *fmt, ...)	\
7442 {								\
7443 	struct va_format vaf;					\
7444 	va_list args;						\
7445 								\
7446 	va_start(args, fmt);					\
7447 								\
7448 	vaf.fmt = fmt;						\
7449 	vaf.va = &args;						\
7450 								\
7451 	__netdev_printk(level, dev, &vaf);			\
7452 								\
7453 	va_end(args);						\
7454 }								\
7455 EXPORT_SYMBOL(func);
7456 
7457 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7458 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7459 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7460 define_netdev_printk_level(netdev_err, KERN_ERR);
7461 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7462 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7463 define_netdev_printk_level(netdev_info, KERN_INFO);
7464 
7465 static void __net_exit netdev_exit(struct net *net)
7466 {
7467 	kfree(net->dev_name_head);
7468 	kfree(net->dev_index_head);
7469 }
7470 
7471 static struct pernet_operations __net_initdata netdev_net_ops = {
7472 	.init = netdev_init,
7473 	.exit = netdev_exit,
7474 };
7475 
7476 static void __net_exit default_device_exit(struct net *net)
7477 {
7478 	struct net_device *dev, *aux;
7479 	/*
7480 	 * Push all migratable network devices back to the
7481 	 * initial network namespace
7482 	 */
7483 	rtnl_lock();
7484 	for_each_netdev_safe(net, dev, aux) {
7485 		int err;
7486 		char fb_name[IFNAMSIZ];
7487 
7488 		/* Ignore unmoveable devices (i.e. loopback) */
7489 		if (dev->features & NETIF_F_NETNS_LOCAL)
7490 			continue;
7491 
7492 		/* Leave virtual devices for the generic cleanup */
7493 		if (dev->rtnl_link_ops)
7494 			continue;
7495 
7496 		/* Push remaining network devices to init_net */
7497 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7498 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7499 		if (err) {
7500 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7501 				 __func__, dev->name, err);
7502 			BUG();
7503 		}
7504 	}
7505 	rtnl_unlock();
7506 }
7507 
7508 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7509 {
7510 	/* Return with the rtnl_lock held when there are no network
7511 	 * devices unregistering in any network namespace in net_list.
7512 	 */
7513 	struct net *net;
7514 	bool unregistering;
7515 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7516 
7517 	add_wait_queue(&netdev_unregistering_wq, &wait);
7518 	for (;;) {
7519 		unregistering = false;
7520 		rtnl_lock();
7521 		list_for_each_entry(net, net_list, exit_list) {
7522 			if (net->dev_unreg_count > 0) {
7523 				unregistering = true;
7524 				break;
7525 			}
7526 		}
7527 		if (!unregistering)
7528 			break;
7529 		__rtnl_unlock();
7530 
7531 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7532 	}
7533 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7534 }
7535 
7536 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7537 {
7538 	/* At exit all network devices most be removed from a network
7539 	 * namespace.  Do this in the reverse order of registration.
7540 	 * Do this across as many network namespaces as possible to
7541 	 * improve batching efficiency.
7542 	 */
7543 	struct net_device *dev;
7544 	struct net *net;
7545 	LIST_HEAD(dev_kill_list);
7546 
7547 	/* To prevent network device cleanup code from dereferencing
7548 	 * loopback devices or network devices that have been freed
7549 	 * wait here for all pending unregistrations to complete,
7550 	 * before unregistring the loopback device and allowing the
7551 	 * network namespace be freed.
7552 	 *
7553 	 * The netdev todo list containing all network devices
7554 	 * unregistrations that happen in default_device_exit_batch
7555 	 * will run in the rtnl_unlock() at the end of
7556 	 * default_device_exit_batch.
7557 	 */
7558 	rtnl_lock_unregistering(net_list);
7559 	list_for_each_entry(net, net_list, exit_list) {
7560 		for_each_netdev_reverse(net, dev) {
7561 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7562 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7563 			else
7564 				unregister_netdevice_queue(dev, &dev_kill_list);
7565 		}
7566 	}
7567 	unregister_netdevice_many(&dev_kill_list);
7568 	rtnl_unlock();
7569 }
7570 
7571 static struct pernet_operations __net_initdata default_device_ops = {
7572 	.exit = default_device_exit,
7573 	.exit_batch = default_device_exit_batch,
7574 };
7575 
7576 /*
7577  *	Initialize the DEV module. At boot time this walks the device list and
7578  *	unhooks any devices that fail to initialise (normally hardware not
7579  *	present) and leaves us with a valid list of present and active devices.
7580  *
7581  */
7582 
7583 /*
7584  *       This is called single threaded during boot, so no need
7585  *       to take the rtnl semaphore.
7586  */
7587 static int __init net_dev_init(void)
7588 {
7589 	int i, rc = -ENOMEM;
7590 
7591 	BUG_ON(!dev_boot_phase);
7592 
7593 	if (dev_proc_init())
7594 		goto out;
7595 
7596 	if (netdev_kobject_init())
7597 		goto out;
7598 
7599 	INIT_LIST_HEAD(&ptype_all);
7600 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7601 		INIT_LIST_HEAD(&ptype_base[i]);
7602 
7603 	INIT_LIST_HEAD(&offload_base);
7604 
7605 	if (register_pernet_subsys(&netdev_net_ops))
7606 		goto out;
7607 
7608 	/*
7609 	 *	Initialise the packet receive queues.
7610 	 */
7611 
7612 	for_each_possible_cpu(i) {
7613 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7614 
7615 		skb_queue_head_init(&sd->input_pkt_queue);
7616 		skb_queue_head_init(&sd->process_queue);
7617 		INIT_LIST_HEAD(&sd->poll_list);
7618 		sd->output_queue_tailp = &sd->output_queue;
7619 #ifdef CONFIG_RPS
7620 		sd->csd.func = rps_trigger_softirq;
7621 		sd->csd.info = sd;
7622 		sd->cpu = i;
7623 #endif
7624 
7625 		sd->backlog.poll = process_backlog;
7626 		sd->backlog.weight = weight_p;
7627 	}
7628 
7629 	dev_boot_phase = 0;
7630 
7631 	/* The loopback device is special if any other network devices
7632 	 * is present in a network namespace the loopback device must
7633 	 * be present. Since we now dynamically allocate and free the
7634 	 * loopback device ensure this invariant is maintained by
7635 	 * keeping the loopback device as the first device on the
7636 	 * list of network devices.  Ensuring the loopback devices
7637 	 * is the first device that appears and the last network device
7638 	 * that disappears.
7639 	 */
7640 	if (register_pernet_device(&loopback_net_ops))
7641 		goto out;
7642 
7643 	if (register_pernet_device(&default_device_ops))
7644 		goto out;
7645 
7646 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7647 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7648 
7649 	hotcpu_notifier(dev_cpu_callback, 0);
7650 	dst_init();
7651 	rc = 0;
7652 out:
7653 	return rc;
7654 }
7655 
7656 subsys_initcall(net_dev_init);
7657