1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/ethtool_netlink.h> 96 #include <linux/skbuff.h> 97 #include <linux/kthread.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dsa.h> 106 #include <net/dst.h> 107 #include <net/dst_metadata.h> 108 #include <net/gro.h> 109 #include <net/netdev_queues.h> 110 #include <net/pkt_sched.h> 111 #include <net/pkt_cls.h> 112 #include <net/checksum.h> 113 #include <net/xfrm.h> 114 #include <net/tcx.h> 115 #include <linux/highmem.h> 116 #include <linux/init.h> 117 #include <linux/module.h> 118 #include <linux/netpoll.h> 119 #include <linux/rcupdate.h> 120 #include <linux/delay.h> 121 #include <net/iw_handler.h> 122 #include <asm/current.h> 123 #include <linux/audit.h> 124 #include <linux/dmaengine.h> 125 #include <linux/err.h> 126 #include <linux/ctype.h> 127 #include <linux/if_arp.h> 128 #include <linux/if_vlan.h> 129 #include <linux/ip.h> 130 #include <net/ip.h> 131 #include <net/mpls.h> 132 #include <linux/ipv6.h> 133 #include <linux/in.h> 134 #include <linux/jhash.h> 135 #include <linux/random.h> 136 #include <trace/events/napi.h> 137 #include <trace/events/net.h> 138 #include <trace/events/skb.h> 139 #include <trace/events/qdisc.h> 140 #include <trace/events/xdp.h> 141 #include <linux/inetdevice.h> 142 #include <linux/cpu_rmap.h> 143 #include <linux/static_key.h> 144 #include <linux/hashtable.h> 145 #include <linux/vmalloc.h> 146 #include <linux/if_macvlan.h> 147 #include <linux/errqueue.h> 148 #include <linux/hrtimer.h> 149 #include <linux/netfilter_netdev.h> 150 #include <linux/crash_dump.h> 151 #include <linux/sctp.h> 152 #include <net/udp_tunnel.h> 153 #include <linux/net_namespace.h> 154 #include <linux/indirect_call_wrapper.h> 155 #include <net/devlink.h> 156 #include <linux/pm_runtime.h> 157 #include <linux/prandom.h> 158 #include <linux/once_lite.h> 159 #include <net/netdev_lock.h> 160 #include <net/netdev_rx_queue.h> 161 #include <net/page_pool/types.h> 162 #include <net/page_pool/helpers.h> 163 #include <net/page_pool/memory_provider.h> 164 #include <net/rps.h> 165 #include <linux/phy_link_topology.h> 166 167 #include "dev.h" 168 #include "devmem.h" 169 #include "net-sysfs.h" 170 171 static DEFINE_SPINLOCK(ptype_lock); 172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174 static int netif_rx_internal(struct sk_buff *skb); 175 static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179 static DEFINE_MUTEX(ifalias_mutex); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id = NR_CPUS; 185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187 static inline void dev_base_seq_inc(struct net *net) 188 { 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 #ifndef CONFIG_PREEMPT_RT 207 208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210 static int __init setup_backlog_napi_threads(char *arg) 211 { 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214 } 215 early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217 static bool use_backlog_threads(void) 218 { 219 return static_branch_unlikely(&use_backlog_threads_key); 220 } 221 222 #else 223 224 static bool use_backlog_threads(void) 225 { 226 return true; 227 } 228 229 #endif 230 231 static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233 { 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238 } 239 240 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241 { 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246 } 247 248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250 { 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255 } 256 257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258 { 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263 } 264 265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267 { 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277 } 278 279 static struct netdev_name_node * 280 netdev_name_node_head_alloc(struct net_device *dev) 281 { 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289 } 290 291 static void netdev_name_node_free(struct netdev_name_node *name_node) 292 { 293 kfree(name_node); 294 } 295 296 static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298 { 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301 } 302 303 static void netdev_name_node_del(struct netdev_name_node *name_node) 304 { 305 hlist_del_rcu(&name_node->hlist); 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322 { 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330 } 331 332 bool netdev_name_in_use(struct net *net, const char *name) 333 { 334 return netdev_name_node_lookup(net, name); 335 } 336 EXPORT_SYMBOL(netdev_name_in_use); 337 338 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339 { 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354 } 355 356 static void netdev_name_node_alt_free(struct rcu_head *head) 357 { 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363 } 364 365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366 { 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370 } 371 372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373 { 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388 } 389 390 static void netdev_name_node_alt_flush(struct net_device *dev) 391 { 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398 } 399 400 /* Device list insertion */ 401 static void list_netdevice(struct net_device *dev) 402 { 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420 } 421 422 /* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425 static void unlist_netdevice(struct net_device *dev) 426 { 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443 } 444 445 /* 446 * Our notifier list 447 */ 448 449 static RAW_NOTIFIER_HEAD(netdev_chain); 450 451 /* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458 }; 459 EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461 /* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465 DEFINE_PER_CPU(struct page_pool *, system_page_pool); 466 467 #ifdef CONFIG_LOCKDEP 468 /* 469 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 470 * according to dev->type 471 */ 472 static const unsigned short netdev_lock_type[] = { 473 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 474 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 475 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 476 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 477 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 478 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 479 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 480 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 481 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 482 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 483 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 484 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 485 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 486 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 487 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 488 489 static const char *const netdev_lock_name[] = { 490 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 491 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 492 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 493 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 494 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 495 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 496 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 497 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 498 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 499 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 500 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 501 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 502 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 503 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 504 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 505 506 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 507 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 508 509 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 510 { 511 int i; 512 513 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 514 if (netdev_lock_type[i] == dev_type) 515 return i; 516 /* the last key is used by default */ 517 return ARRAY_SIZE(netdev_lock_type) - 1; 518 } 519 520 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 521 unsigned short dev_type) 522 { 523 int i; 524 525 i = netdev_lock_pos(dev_type); 526 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 527 netdev_lock_name[i]); 528 } 529 530 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 531 { 532 int i; 533 534 i = netdev_lock_pos(dev->type); 535 lockdep_set_class_and_name(&dev->addr_list_lock, 536 &netdev_addr_lock_key[i], 537 netdev_lock_name[i]); 538 } 539 #else 540 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 541 unsigned short dev_type) 542 { 543 } 544 545 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 546 { 547 } 548 #endif 549 550 /******************************************************************************* 551 * 552 * Protocol management and registration routines 553 * 554 *******************************************************************************/ 555 556 557 /* 558 * Add a protocol ID to the list. Now that the input handler is 559 * smarter we can dispense with all the messy stuff that used to be 560 * here. 561 * 562 * BEWARE!!! Protocol handlers, mangling input packets, 563 * MUST BE last in hash buckets and checking protocol handlers 564 * MUST start from promiscuous ptype_all chain in net_bh. 565 * It is true now, do not change it. 566 * Explanation follows: if protocol handler, mangling packet, will 567 * be the first on list, it is not able to sense, that packet 568 * is cloned and should be copied-on-write, so that it will 569 * change it and subsequent readers will get broken packet. 570 * --ANK (980803) 571 */ 572 573 static inline struct list_head *ptype_head(const struct packet_type *pt) 574 { 575 if (pt->type == htons(ETH_P_ALL)) { 576 if (!pt->af_packet_net && !pt->dev) 577 return NULL; 578 579 return pt->dev ? &pt->dev->ptype_all : 580 &pt->af_packet_net->ptype_all; 581 } 582 583 if (pt->dev) 584 return &pt->dev->ptype_specific; 585 586 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 587 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 588 } 589 590 /** 591 * dev_add_pack - add packet handler 592 * @pt: packet type declaration 593 * 594 * Add a protocol handler to the networking stack. The passed &packet_type 595 * is linked into kernel lists and may not be freed until it has been 596 * removed from the kernel lists. 597 * 598 * This call does not sleep therefore it can not 599 * guarantee all CPU's that are in middle of receiving packets 600 * will see the new packet type (until the next received packet). 601 */ 602 603 void dev_add_pack(struct packet_type *pt) 604 { 605 struct list_head *head = ptype_head(pt); 606 607 if (WARN_ON_ONCE(!head)) 608 return; 609 610 spin_lock(&ptype_lock); 611 list_add_rcu(&pt->list, head); 612 spin_unlock(&ptype_lock); 613 } 614 EXPORT_SYMBOL(dev_add_pack); 615 616 /** 617 * __dev_remove_pack - remove packet handler 618 * @pt: packet type declaration 619 * 620 * Remove a protocol handler that was previously added to the kernel 621 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 622 * from the kernel lists and can be freed or reused once this function 623 * returns. 624 * 625 * The packet type might still be in use by receivers 626 * and must not be freed until after all the CPU's have gone 627 * through a quiescent state. 628 */ 629 void __dev_remove_pack(struct packet_type *pt) 630 { 631 struct list_head *head = ptype_head(pt); 632 struct packet_type *pt1; 633 634 if (!head) 635 return; 636 637 spin_lock(&ptype_lock); 638 639 list_for_each_entry(pt1, head, list) { 640 if (pt == pt1) { 641 list_del_rcu(&pt->list); 642 goto out; 643 } 644 } 645 646 pr_warn("dev_remove_pack: %p not found\n", pt); 647 out: 648 spin_unlock(&ptype_lock); 649 } 650 EXPORT_SYMBOL(__dev_remove_pack); 651 652 /** 653 * dev_remove_pack - remove packet handler 654 * @pt: packet type declaration 655 * 656 * Remove a protocol handler that was previously added to the kernel 657 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 658 * from the kernel lists and can be freed or reused once this function 659 * returns. 660 * 661 * This call sleeps to guarantee that no CPU is looking at the packet 662 * type after return. 663 */ 664 void dev_remove_pack(struct packet_type *pt) 665 { 666 __dev_remove_pack(pt); 667 668 synchronize_net(); 669 } 670 EXPORT_SYMBOL(dev_remove_pack); 671 672 673 /******************************************************************************* 674 * 675 * Device Interface Subroutines 676 * 677 *******************************************************************************/ 678 679 /** 680 * dev_get_iflink - get 'iflink' value of a interface 681 * @dev: targeted interface 682 * 683 * Indicates the ifindex the interface is linked to. 684 * Physical interfaces have the same 'ifindex' and 'iflink' values. 685 */ 686 687 int dev_get_iflink(const struct net_device *dev) 688 { 689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 690 return dev->netdev_ops->ndo_get_iflink(dev); 691 692 return READ_ONCE(dev->ifindex); 693 } 694 EXPORT_SYMBOL(dev_get_iflink); 695 696 /** 697 * dev_fill_metadata_dst - Retrieve tunnel egress information. 698 * @dev: targeted interface 699 * @skb: The packet. 700 * 701 * For better visibility of tunnel traffic OVS needs to retrieve 702 * egress tunnel information for a packet. Following API allows 703 * user to get this info. 704 */ 705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 706 { 707 struct ip_tunnel_info *info; 708 709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 710 return -EINVAL; 711 712 info = skb_tunnel_info_unclone(skb); 713 if (!info) 714 return -ENOMEM; 715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 716 return -EINVAL; 717 718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 719 } 720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 721 722 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 723 { 724 int k = stack->num_paths++; 725 726 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 727 return NULL; 728 729 return &stack->path[k]; 730 } 731 732 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 733 struct net_device_path_stack *stack) 734 { 735 const struct net_device *last_dev; 736 struct net_device_path_ctx ctx = { 737 .dev = dev, 738 }; 739 struct net_device_path *path; 740 int ret = 0; 741 742 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 743 stack->num_paths = 0; 744 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 745 last_dev = ctx.dev; 746 path = dev_fwd_path(stack); 747 if (!path) 748 return -1; 749 750 memset(path, 0, sizeof(struct net_device_path)); 751 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 752 if (ret < 0) 753 return -1; 754 755 if (WARN_ON_ONCE(last_dev == ctx.dev)) 756 return -1; 757 } 758 759 if (!ctx.dev) 760 return ret; 761 762 path = dev_fwd_path(stack); 763 if (!path) 764 return -1; 765 path->type = DEV_PATH_ETHERNET; 766 path->dev = ctx.dev; 767 768 return ret; 769 } 770 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 771 772 /* must be called under rcu_read_lock(), as we dont take a reference */ 773 static struct napi_struct *napi_by_id(unsigned int napi_id) 774 { 775 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 776 struct napi_struct *napi; 777 778 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 779 if (napi->napi_id == napi_id) 780 return napi; 781 782 return NULL; 783 } 784 785 /* must be called under rcu_read_lock(), as we dont take a reference */ 786 static struct napi_struct * 787 netdev_napi_by_id(struct net *net, unsigned int napi_id) 788 { 789 struct napi_struct *napi; 790 791 napi = napi_by_id(napi_id); 792 if (!napi) 793 return NULL; 794 795 if (WARN_ON_ONCE(!napi->dev)) 796 return NULL; 797 if (!net_eq(net, dev_net(napi->dev))) 798 return NULL; 799 800 return napi; 801 } 802 803 /** 804 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 805 * @net: the applicable net namespace 806 * @napi_id: ID of a NAPI of a target device 807 * 808 * Find a NAPI instance with @napi_id. Lock its device. 809 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 810 * netdev_unlock() must be called to release it. 811 * 812 * Return: pointer to NAPI, its device with lock held, NULL if not found. 813 */ 814 struct napi_struct * 815 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 816 { 817 struct napi_struct *napi; 818 struct net_device *dev; 819 820 rcu_read_lock(); 821 napi = netdev_napi_by_id(net, napi_id); 822 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 823 rcu_read_unlock(); 824 return NULL; 825 } 826 827 dev = napi->dev; 828 dev_hold(dev); 829 rcu_read_unlock(); 830 831 dev = __netdev_put_lock(dev, net); 832 if (!dev) 833 return NULL; 834 835 rcu_read_lock(); 836 napi = netdev_napi_by_id(net, napi_id); 837 if (napi && napi->dev != dev) 838 napi = NULL; 839 rcu_read_unlock(); 840 841 if (!napi) 842 netdev_unlock(dev); 843 return napi; 844 } 845 846 /** 847 * __dev_get_by_name - find a device by its name 848 * @net: the applicable net namespace 849 * @name: name to find 850 * 851 * Find an interface by name. Must be called under RTNL semaphore. 852 * If the name is found a pointer to the device is returned. 853 * If the name is not found then %NULL is returned. The 854 * reference counters are not incremented so the caller must be 855 * careful with locks. 856 */ 857 858 struct net_device *__dev_get_by_name(struct net *net, const char *name) 859 { 860 struct netdev_name_node *node_name; 861 862 node_name = netdev_name_node_lookup(net, name); 863 return node_name ? node_name->dev : NULL; 864 } 865 EXPORT_SYMBOL(__dev_get_by_name); 866 867 /** 868 * dev_get_by_name_rcu - find a device by its name 869 * @net: the applicable net namespace 870 * @name: name to find 871 * 872 * Find an interface by name. 873 * If the name is found a pointer to the device is returned. 874 * If the name is not found then %NULL is returned. 875 * The reference counters are not incremented so the caller must be 876 * careful with locks. The caller must hold RCU lock. 877 */ 878 879 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 880 { 881 struct netdev_name_node *node_name; 882 883 node_name = netdev_name_node_lookup_rcu(net, name); 884 return node_name ? node_name->dev : NULL; 885 } 886 EXPORT_SYMBOL(dev_get_by_name_rcu); 887 888 /* Deprecated for new users, call netdev_get_by_name() instead */ 889 struct net_device *dev_get_by_name(struct net *net, const char *name) 890 { 891 struct net_device *dev; 892 893 rcu_read_lock(); 894 dev = dev_get_by_name_rcu(net, name); 895 dev_hold(dev); 896 rcu_read_unlock(); 897 return dev; 898 } 899 EXPORT_SYMBOL(dev_get_by_name); 900 901 /** 902 * netdev_get_by_name() - find a device by its name 903 * @net: the applicable net namespace 904 * @name: name to find 905 * @tracker: tracking object for the acquired reference 906 * @gfp: allocation flags for the tracker 907 * 908 * Find an interface by name. This can be called from any 909 * context and does its own locking. The returned handle has 910 * the usage count incremented and the caller must use netdev_put() to 911 * release it when it is no longer needed. %NULL is returned if no 912 * matching device is found. 913 */ 914 struct net_device *netdev_get_by_name(struct net *net, const char *name, 915 netdevice_tracker *tracker, gfp_t gfp) 916 { 917 struct net_device *dev; 918 919 dev = dev_get_by_name(net, name); 920 if (dev) 921 netdev_tracker_alloc(dev, tracker, gfp); 922 return dev; 923 } 924 EXPORT_SYMBOL(netdev_get_by_name); 925 926 /** 927 * __dev_get_by_index - find a device by its ifindex 928 * @net: the applicable net namespace 929 * @ifindex: index of device 930 * 931 * Search for an interface by index. Returns %NULL if the device 932 * is not found or a pointer to the device. The device has not 933 * had its reference counter increased so the caller must be careful 934 * about locking. The caller must hold the RTNL semaphore. 935 */ 936 937 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 938 { 939 struct net_device *dev; 940 struct hlist_head *head = dev_index_hash(net, ifindex); 941 942 hlist_for_each_entry(dev, head, index_hlist) 943 if (dev->ifindex == ifindex) 944 return dev; 945 946 return NULL; 947 } 948 EXPORT_SYMBOL(__dev_get_by_index); 949 950 /** 951 * dev_get_by_index_rcu - find a device by its ifindex 952 * @net: the applicable net namespace 953 * @ifindex: index of device 954 * 955 * Search for an interface by index. Returns %NULL if the device 956 * is not found or a pointer to the device. The device has not 957 * had its reference counter increased so the caller must be careful 958 * about locking. The caller must hold RCU lock. 959 */ 960 961 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 962 { 963 struct net_device *dev; 964 struct hlist_head *head = dev_index_hash(net, ifindex); 965 966 hlist_for_each_entry_rcu(dev, head, index_hlist) 967 if (dev->ifindex == ifindex) 968 return dev; 969 970 return NULL; 971 } 972 EXPORT_SYMBOL(dev_get_by_index_rcu); 973 974 /* Deprecated for new users, call netdev_get_by_index() instead */ 975 struct net_device *dev_get_by_index(struct net *net, int ifindex) 976 { 977 struct net_device *dev; 978 979 rcu_read_lock(); 980 dev = dev_get_by_index_rcu(net, ifindex); 981 dev_hold(dev); 982 rcu_read_unlock(); 983 return dev; 984 } 985 EXPORT_SYMBOL(dev_get_by_index); 986 987 /** 988 * netdev_get_by_index() - find a device by its ifindex 989 * @net: the applicable net namespace 990 * @ifindex: index of device 991 * @tracker: tracking object for the acquired reference 992 * @gfp: allocation flags for the tracker 993 * 994 * Search for an interface by index. Returns NULL if the device 995 * is not found or a pointer to the device. The device returned has 996 * had a reference added and the pointer is safe until the user calls 997 * netdev_put() to indicate they have finished with it. 998 */ 999 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1000 netdevice_tracker *tracker, gfp_t gfp) 1001 { 1002 struct net_device *dev; 1003 1004 dev = dev_get_by_index(net, ifindex); 1005 if (dev) 1006 netdev_tracker_alloc(dev, tracker, gfp); 1007 return dev; 1008 } 1009 EXPORT_SYMBOL(netdev_get_by_index); 1010 1011 /** 1012 * dev_get_by_napi_id - find a device by napi_id 1013 * @napi_id: ID of the NAPI struct 1014 * 1015 * Search for an interface by NAPI ID. Returns %NULL if the device 1016 * is not found or a pointer to the device. The device has not had 1017 * its reference counter increased so the caller must be careful 1018 * about locking. The caller must hold RCU lock. 1019 */ 1020 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1021 { 1022 struct napi_struct *napi; 1023 1024 WARN_ON_ONCE(!rcu_read_lock_held()); 1025 1026 if (!napi_id_valid(napi_id)) 1027 return NULL; 1028 1029 napi = napi_by_id(napi_id); 1030 1031 return napi ? napi->dev : NULL; 1032 } 1033 1034 /* Release the held reference on the net_device, and if the net_device 1035 * is still registered try to lock the instance lock. If device is being 1036 * unregistered NULL will be returned (but the reference has been released, 1037 * either way!) 1038 * 1039 * This helper is intended for locking net_device after it has been looked up 1040 * using a lockless lookup helper. Lock prevents the instance from going away. 1041 */ 1042 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1043 { 1044 netdev_lock(dev); 1045 if (dev->reg_state > NETREG_REGISTERED || 1046 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1047 netdev_unlock(dev); 1048 dev_put(dev); 1049 return NULL; 1050 } 1051 dev_put(dev); 1052 return dev; 1053 } 1054 1055 static struct net_device * 1056 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1057 { 1058 netdev_lock_ops_compat(dev); 1059 if (dev->reg_state > NETREG_REGISTERED || 1060 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1061 netdev_unlock_ops_compat(dev); 1062 dev_put(dev); 1063 return NULL; 1064 } 1065 dev_put(dev); 1066 return dev; 1067 } 1068 1069 /** 1070 * netdev_get_by_index_lock() - find a device by its ifindex 1071 * @net: the applicable net namespace 1072 * @ifindex: index of device 1073 * 1074 * Search for an interface by index. If a valid device 1075 * with @ifindex is found it will be returned with netdev->lock held. 1076 * netdev_unlock() must be called to release it. 1077 * 1078 * Return: pointer to a device with lock held, NULL if not found. 1079 */ 1080 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1081 { 1082 struct net_device *dev; 1083 1084 dev = dev_get_by_index(net, ifindex); 1085 if (!dev) 1086 return NULL; 1087 1088 return __netdev_put_lock(dev, net); 1089 } 1090 1091 struct net_device * 1092 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1093 { 1094 struct net_device *dev; 1095 1096 dev = dev_get_by_index(net, ifindex); 1097 if (!dev) 1098 return NULL; 1099 1100 return __netdev_put_lock_ops_compat(dev, net); 1101 } 1102 1103 struct net_device * 1104 netdev_xa_find_lock(struct net *net, struct net_device *dev, 1105 unsigned long *index) 1106 { 1107 if (dev) 1108 netdev_unlock(dev); 1109 1110 do { 1111 rcu_read_lock(); 1112 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1113 if (!dev) { 1114 rcu_read_unlock(); 1115 return NULL; 1116 } 1117 dev_hold(dev); 1118 rcu_read_unlock(); 1119 1120 dev = __netdev_put_lock(dev, net); 1121 if (dev) 1122 return dev; 1123 1124 (*index)++; 1125 } while (true); 1126 } 1127 1128 struct net_device * 1129 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1130 unsigned long *index) 1131 { 1132 if (dev) 1133 netdev_unlock_ops_compat(dev); 1134 1135 do { 1136 rcu_read_lock(); 1137 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1138 if (!dev) { 1139 rcu_read_unlock(); 1140 return NULL; 1141 } 1142 dev_hold(dev); 1143 rcu_read_unlock(); 1144 1145 dev = __netdev_put_lock_ops_compat(dev, net); 1146 if (dev) 1147 return dev; 1148 1149 (*index)++; 1150 } while (true); 1151 } 1152 1153 static DEFINE_SEQLOCK(netdev_rename_lock); 1154 1155 void netdev_copy_name(struct net_device *dev, char *name) 1156 { 1157 unsigned int seq; 1158 1159 do { 1160 seq = read_seqbegin(&netdev_rename_lock); 1161 strscpy(name, dev->name, IFNAMSIZ); 1162 } while (read_seqretry(&netdev_rename_lock, seq)); 1163 } 1164 1165 /** 1166 * netdev_get_name - get a netdevice name, knowing its ifindex. 1167 * @net: network namespace 1168 * @name: a pointer to the buffer where the name will be stored. 1169 * @ifindex: the ifindex of the interface to get the name from. 1170 */ 1171 int netdev_get_name(struct net *net, char *name, int ifindex) 1172 { 1173 struct net_device *dev; 1174 int ret; 1175 1176 rcu_read_lock(); 1177 1178 dev = dev_get_by_index_rcu(net, ifindex); 1179 if (!dev) { 1180 ret = -ENODEV; 1181 goto out; 1182 } 1183 1184 netdev_copy_name(dev, name); 1185 1186 ret = 0; 1187 out: 1188 rcu_read_unlock(); 1189 return ret; 1190 } 1191 1192 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1193 const char *ha) 1194 { 1195 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1196 } 1197 1198 /** 1199 * dev_getbyhwaddr_rcu - find a device by its hardware address 1200 * @net: the applicable net namespace 1201 * @type: media type of device 1202 * @ha: hardware address 1203 * 1204 * Search for an interface by MAC address. Returns NULL if the device 1205 * is not found or a pointer to the device. 1206 * The caller must hold RCU. 1207 * The returned device has not had its ref count increased 1208 * and the caller must therefore be careful about locking 1209 * 1210 */ 1211 1212 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1213 const char *ha) 1214 { 1215 struct net_device *dev; 1216 1217 for_each_netdev_rcu(net, dev) 1218 if (dev_addr_cmp(dev, type, ha)) 1219 return dev; 1220 1221 return NULL; 1222 } 1223 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1224 1225 /** 1226 * dev_getbyhwaddr() - find a device by its hardware address 1227 * @net: the applicable net namespace 1228 * @type: media type of device 1229 * @ha: hardware address 1230 * 1231 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1232 * rtnl_lock. 1233 * 1234 * Context: rtnl_lock() must be held. 1235 * Return: pointer to the net_device, or NULL if not found 1236 */ 1237 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1238 const char *ha) 1239 { 1240 struct net_device *dev; 1241 1242 ASSERT_RTNL(); 1243 for_each_netdev(net, dev) 1244 if (dev_addr_cmp(dev, type, ha)) 1245 return dev; 1246 1247 return NULL; 1248 } 1249 EXPORT_SYMBOL(dev_getbyhwaddr); 1250 1251 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1252 { 1253 struct net_device *dev, *ret = NULL; 1254 1255 rcu_read_lock(); 1256 for_each_netdev_rcu(net, dev) 1257 if (dev->type == type) { 1258 dev_hold(dev); 1259 ret = dev; 1260 break; 1261 } 1262 rcu_read_unlock(); 1263 return ret; 1264 } 1265 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1266 1267 /** 1268 * __dev_get_by_flags - find any device with given flags 1269 * @net: the applicable net namespace 1270 * @if_flags: IFF_* values 1271 * @mask: bitmask of bits in if_flags to check 1272 * 1273 * Search for any interface with the given flags. Returns NULL if a device 1274 * is not found or a pointer to the device. Must be called inside 1275 * rtnl_lock(), and result refcount is unchanged. 1276 */ 1277 1278 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1279 unsigned short mask) 1280 { 1281 struct net_device *dev, *ret; 1282 1283 ASSERT_RTNL(); 1284 1285 ret = NULL; 1286 for_each_netdev(net, dev) { 1287 if (((dev->flags ^ if_flags) & mask) == 0) { 1288 ret = dev; 1289 break; 1290 } 1291 } 1292 return ret; 1293 } 1294 EXPORT_SYMBOL(__dev_get_by_flags); 1295 1296 /** 1297 * dev_valid_name - check if name is okay for network device 1298 * @name: name string 1299 * 1300 * Network device names need to be valid file names to 1301 * allow sysfs to work. We also disallow any kind of 1302 * whitespace. 1303 */ 1304 bool dev_valid_name(const char *name) 1305 { 1306 if (*name == '\0') 1307 return false; 1308 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1309 return false; 1310 if (!strcmp(name, ".") || !strcmp(name, "..")) 1311 return false; 1312 1313 while (*name) { 1314 if (*name == '/' || *name == ':' || isspace(*name)) 1315 return false; 1316 name++; 1317 } 1318 return true; 1319 } 1320 EXPORT_SYMBOL(dev_valid_name); 1321 1322 /** 1323 * __dev_alloc_name - allocate a name for a device 1324 * @net: network namespace to allocate the device name in 1325 * @name: name format string 1326 * @res: result name string 1327 * 1328 * Passed a format string - eg "lt%d" it will try and find a suitable 1329 * id. It scans list of devices to build up a free map, then chooses 1330 * the first empty slot. The caller must hold the dev_base or rtnl lock 1331 * while allocating the name and adding the device in order to avoid 1332 * duplicates. 1333 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1334 * Returns the number of the unit assigned or a negative errno code. 1335 */ 1336 1337 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1338 { 1339 int i = 0; 1340 const char *p; 1341 const int max_netdevices = 8*PAGE_SIZE; 1342 unsigned long *inuse; 1343 struct net_device *d; 1344 char buf[IFNAMSIZ]; 1345 1346 /* Verify the string as this thing may have come from the user. 1347 * There must be one "%d" and no other "%" characters. 1348 */ 1349 p = strchr(name, '%'); 1350 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1351 return -EINVAL; 1352 1353 /* Use one page as a bit array of possible slots */ 1354 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1355 if (!inuse) 1356 return -ENOMEM; 1357 1358 for_each_netdev(net, d) { 1359 struct netdev_name_node *name_node; 1360 1361 netdev_for_each_altname(d, name_node) { 1362 if (!sscanf(name_node->name, name, &i)) 1363 continue; 1364 if (i < 0 || i >= max_netdevices) 1365 continue; 1366 1367 /* avoid cases where sscanf is not exact inverse of printf */ 1368 snprintf(buf, IFNAMSIZ, name, i); 1369 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1370 __set_bit(i, inuse); 1371 } 1372 if (!sscanf(d->name, name, &i)) 1373 continue; 1374 if (i < 0 || i >= max_netdevices) 1375 continue; 1376 1377 /* avoid cases where sscanf is not exact inverse of printf */ 1378 snprintf(buf, IFNAMSIZ, name, i); 1379 if (!strncmp(buf, d->name, IFNAMSIZ)) 1380 __set_bit(i, inuse); 1381 } 1382 1383 i = find_first_zero_bit(inuse, max_netdevices); 1384 bitmap_free(inuse); 1385 if (i == max_netdevices) 1386 return -ENFILE; 1387 1388 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1389 strscpy(buf, name, IFNAMSIZ); 1390 snprintf(res, IFNAMSIZ, buf, i); 1391 return i; 1392 } 1393 1394 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1395 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1396 const char *want_name, char *out_name, 1397 int dup_errno) 1398 { 1399 if (!dev_valid_name(want_name)) 1400 return -EINVAL; 1401 1402 if (strchr(want_name, '%')) 1403 return __dev_alloc_name(net, want_name, out_name); 1404 1405 if (netdev_name_in_use(net, want_name)) 1406 return -dup_errno; 1407 if (out_name != want_name) 1408 strscpy(out_name, want_name, IFNAMSIZ); 1409 return 0; 1410 } 1411 1412 /** 1413 * dev_alloc_name - allocate a name for a device 1414 * @dev: device 1415 * @name: name format string 1416 * 1417 * Passed a format string - eg "lt%d" it will try and find a suitable 1418 * id. It scans list of devices to build up a free map, then chooses 1419 * the first empty slot. The caller must hold the dev_base or rtnl lock 1420 * while allocating the name and adding the device in order to avoid 1421 * duplicates. 1422 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1423 * Returns the number of the unit assigned or a negative errno code. 1424 */ 1425 1426 int dev_alloc_name(struct net_device *dev, const char *name) 1427 { 1428 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1429 } 1430 EXPORT_SYMBOL(dev_alloc_name); 1431 1432 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1433 const char *name) 1434 { 1435 int ret; 1436 1437 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1438 return ret < 0 ? ret : 0; 1439 } 1440 1441 int netif_change_name(struct net_device *dev, const char *newname) 1442 { 1443 struct net *net = dev_net(dev); 1444 unsigned char old_assign_type; 1445 char oldname[IFNAMSIZ]; 1446 int err = 0; 1447 int ret; 1448 1449 ASSERT_RTNL_NET(net); 1450 1451 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1452 return 0; 1453 1454 memcpy(oldname, dev->name, IFNAMSIZ); 1455 1456 write_seqlock_bh(&netdev_rename_lock); 1457 err = dev_get_valid_name(net, dev, newname); 1458 write_sequnlock_bh(&netdev_rename_lock); 1459 1460 if (err < 0) 1461 return err; 1462 1463 if (oldname[0] && !strchr(oldname, '%')) 1464 netdev_info(dev, "renamed from %s%s\n", oldname, 1465 dev->flags & IFF_UP ? " (while UP)" : ""); 1466 1467 old_assign_type = dev->name_assign_type; 1468 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1469 1470 rollback: 1471 ret = device_rename(&dev->dev, dev->name); 1472 if (ret) { 1473 write_seqlock_bh(&netdev_rename_lock); 1474 memcpy(dev->name, oldname, IFNAMSIZ); 1475 write_sequnlock_bh(&netdev_rename_lock); 1476 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1477 return ret; 1478 } 1479 1480 netdev_adjacent_rename_links(dev, oldname); 1481 1482 netdev_name_node_del(dev->name_node); 1483 1484 synchronize_net(); 1485 1486 netdev_name_node_add(net, dev->name_node); 1487 1488 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1489 ret = notifier_to_errno(ret); 1490 1491 if (ret) { 1492 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1493 if (err >= 0) { 1494 err = ret; 1495 write_seqlock_bh(&netdev_rename_lock); 1496 memcpy(dev->name, oldname, IFNAMSIZ); 1497 write_sequnlock_bh(&netdev_rename_lock); 1498 memcpy(oldname, newname, IFNAMSIZ); 1499 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1500 old_assign_type = NET_NAME_RENAMED; 1501 goto rollback; 1502 } else { 1503 netdev_err(dev, "name change rollback failed: %d\n", 1504 ret); 1505 } 1506 } 1507 1508 return err; 1509 } 1510 1511 int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1512 { 1513 struct dev_ifalias *new_alias = NULL; 1514 1515 if (len >= IFALIASZ) 1516 return -EINVAL; 1517 1518 if (len) { 1519 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1520 if (!new_alias) 1521 return -ENOMEM; 1522 1523 memcpy(new_alias->ifalias, alias, len); 1524 new_alias->ifalias[len] = 0; 1525 } 1526 1527 mutex_lock(&ifalias_mutex); 1528 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1529 mutex_is_locked(&ifalias_mutex)); 1530 mutex_unlock(&ifalias_mutex); 1531 1532 if (new_alias) 1533 kfree_rcu(new_alias, rcuhead); 1534 1535 return len; 1536 } 1537 1538 /** 1539 * dev_get_alias - get ifalias of a device 1540 * @dev: device 1541 * @name: buffer to store name of ifalias 1542 * @len: size of buffer 1543 * 1544 * get ifalias for a device. Caller must make sure dev cannot go 1545 * away, e.g. rcu read lock or own a reference count to device. 1546 */ 1547 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1548 { 1549 const struct dev_ifalias *alias; 1550 int ret = 0; 1551 1552 rcu_read_lock(); 1553 alias = rcu_dereference(dev->ifalias); 1554 if (alias) 1555 ret = snprintf(name, len, "%s", alias->ifalias); 1556 rcu_read_unlock(); 1557 1558 return ret; 1559 } 1560 1561 /** 1562 * netdev_features_change - device changes features 1563 * @dev: device to cause notification 1564 * 1565 * Called to indicate a device has changed features. 1566 */ 1567 void netdev_features_change(struct net_device *dev) 1568 { 1569 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1570 } 1571 EXPORT_SYMBOL(netdev_features_change); 1572 1573 void netif_state_change(struct net_device *dev) 1574 { 1575 if (dev->flags & IFF_UP) { 1576 struct netdev_notifier_change_info change_info = { 1577 .info.dev = dev, 1578 }; 1579 1580 call_netdevice_notifiers_info(NETDEV_CHANGE, 1581 &change_info.info); 1582 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1583 } 1584 } 1585 1586 /** 1587 * __netdev_notify_peers - notify network peers about existence of @dev, 1588 * to be called when rtnl lock is already held. 1589 * @dev: network device 1590 * 1591 * Generate traffic such that interested network peers are aware of 1592 * @dev, such as by generating a gratuitous ARP. This may be used when 1593 * a device wants to inform the rest of the network about some sort of 1594 * reconfiguration such as a failover event or virtual machine 1595 * migration. 1596 */ 1597 void __netdev_notify_peers(struct net_device *dev) 1598 { 1599 ASSERT_RTNL(); 1600 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1601 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1602 } 1603 EXPORT_SYMBOL(__netdev_notify_peers); 1604 1605 /** 1606 * netdev_notify_peers - notify network peers about existence of @dev 1607 * @dev: network device 1608 * 1609 * Generate traffic such that interested network peers are aware of 1610 * @dev, such as by generating a gratuitous ARP. This may be used when 1611 * a device wants to inform the rest of the network about some sort of 1612 * reconfiguration such as a failover event or virtual machine 1613 * migration. 1614 */ 1615 void netdev_notify_peers(struct net_device *dev) 1616 { 1617 rtnl_lock(); 1618 __netdev_notify_peers(dev); 1619 rtnl_unlock(); 1620 } 1621 EXPORT_SYMBOL(netdev_notify_peers); 1622 1623 static int napi_threaded_poll(void *data); 1624 1625 static int napi_kthread_create(struct napi_struct *n) 1626 { 1627 int err = 0; 1628 1629 /* Create and wake up the kthread once to put it in 1630 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1631 * warning and work with loadavg. 1632 */ 1633 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1634 n->dev->name, n->napi_id); 1635 if (IS_ERR(n->thread)) { 1636 err = PTR_ERR(n->thread); 1637 pr_err("kthread_run failed with err %d\n", err); 1638 n->thread = NULL; 1639 } 1640 1641 return err; 1642 } 1643 1644 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1645 { 1646 const struct net_device_ops *ops = dev->netdev_ops; 1647 int ret; 1648 1649 ASSERT_RTNL(); 1650 dev_addr_check(dev); 1651 1652 if (!netif_device_present(dev)) { 1653 /* may be detached because parent is runtime-suspended */ 1654 if (dev->dev.parent) 1655 pm_runtime_resume(dev->dev.parent); 1656 if (!netif_device_present(dev)) 1657 return -ENODEV; 1658 } 1659 1660 /* Block netpoll from trying to do any rx path servicing. 1661 * If we don't do this there is a chance ndo_poll_controller 1662 * or ndo_poll may be running while we open the device 1663 */ 1664 netpoll_poll_disable(dev); 1665 1666 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1667 ret = notifier_to_errno(ret); 1668 if (ret) 1669 return ret; 1670 1671 set_bit(__LINK_STATE_START, &dev->state); 1672 1673 netdev_ops_assert_locked(dev); 1674 1675 if (ops->ndo_validate_addr) 1676 ret = ops->ndo_validate_addr(dev); 1677 1678 if (!ret && ops->ndo_open) 1679 ret = ops->ndo_open(dev); 1680 1681 netpoll_poll_enable(dev); 1682 1683 if (ret) 1684 clear_bit(__LINK_STATE_START, &dev->state); 1685 else { 1686 netif_set_up(dev, true); 1687 dev_set_rx_mode(dev); 1688 dev_activate(dev); 1689 add_device_randomness(dev->dev_addr, dev->addr_len); 1690 } 1691 1692 return ret; 1693 } 1694 1695 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1696 { 1697 int ret; 1698 1699 if (dev->flags & IFF_UP) 1700 return 0; 1701 1702 ret = __dev_open(dev, extack); 1703 if (ret < 0) 1704 return ret; 1705 1706 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1707 call_netdevice_notifiers(NETDEV_UP, dev); 1708 1709 return ret; 1710 } 1711 1712 static void __dev_close_many(struct list_head *head) 1713 { 1714 struct net_device *dev; 1715 1716 ASSERT_RTNL(); 1717 might_sleep(); 1718 1719 list_for_each_entry(dev, head, close_list) { 1720 /* Temporarily disable netpoll until the interface is down */ 1721 netpoll_poll_disable(dev); 1722 1723 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1724 1725 clear_bit(__LINK_STATE_START, &dev->state); 1726 1727 /* Synchronize to scheduled poll. We cannot touch poll list, it 1728 * can be even on different cpu. So just clear netif_running(). 1729 * 1730 * dev->stop() will invoke napi_disable() on all of it's 1731 * napi_struct instances on this device. 1732 */ 1733 smp_mb__after_atomic(); /* Commit netif_running(). */ 1734 } 1735 1736 dev_deactivate_many(head); 1737 1738 list_for_each_entry(dev, head, close_list) { 1739 const struct net_device_ops *ops = dev->netdev_ops; 1740 1741 /* 1742 * Call the device specific close. This cannot fail. 1743 * Only if device is UP 1744 * 1745 * We allow it to be called even after a DETACH hot-plug 1746 * event. 1747 */ 1748 1749 netdev_ops_assert_locked(dev); 1750 1751 if (ops->ndo_stop) 1752 ops->ndo_stop(dev); 1753 1754 netif_set_up(dev, false); 1755 netpoll_poll_enable(dev); 1756 } 1757 } 1758 1759 static void __dev_close(struct net_device *dev) 1760 { 1761 LIST_HEAD(single); 1762 1763 list_add(&dev->close_list, &single); 1764 __dev_close_many(&single); 1765 list_del(&single); 1766 } 1767 1768 void dev_close_many(struct list_head *head, bool unlink) 1769 { 1770 struct net_device *dev, *tmp; 1771 1772 /* Remove the devices that don't need to be closed */ 1773 list_for_each_entry_safe(dev, tmp, head, close_list) 1774 if (!(dev->flags & IFF_UP)) 1775 list_del_init(&dev->close_list); 1776 1777 __dev_close_many(head); 1778 1779 list_for_each_entry_safe(dev, tmp, head, close_list) { 1780 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1781 call_netdevice_notifiers(NETDEV_DOWN, dev); 1782 if (unlink) 1783 list_del_init(&dev->close_list); 1784 } 1785 } 1786 EXPORT_SYMBOL(dev_close_many); 1787 1788 void netif_close(struct net_device *dev) 1789 { 1790 if (dev->flags & IFF_UP) { 1791 LIST_HEAD(single); 1792 1793 list_add(&dev->close_list, &single); 1794 dev_close_many(&single, true); 1795 list_del(&single); 1796 } 1797 } 1798 EXPORT_SYMBOL(netif_close); 1799 1800 void netif_disable_lro(struct net_device *dev) 1801 { 1802 struct net_device *lower_dev; 1803 struct list_head *iter; 1804 1805 dev->wanted_features &= ~NETIF_F_LRO; 1806 netdev_update_features(dev); 1807 1808 if (unlikely(dev->features & NETIF_F_LRO)) 1809 netdev_WARN(dev, "failed to disable LRO!\n"); 1810 1811 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1812 netdev_lock_ops(lower_dev); 1813 netif_disable_lro(lower_dev); 1814 netdev_unlock_ops(lower_dev); 1815 } 1816 } 1817 EXPORT_IPV6_MOD(netif_disable_lro); 1818 1819 /** 1820 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1821 * @dev: device 1822 * 1823 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1824 * called under RTNL. This is needed if Generic XDP is installed on 1825 * the device. 1826 */ 1827 static void dev_disable_gro_hw(struct net_device *dev) 1828 { 1829 dev->wanted_features &= ~NETIF_F_GRO_HW; 1830 netdev_update_features(dev); 1831 1832 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1833 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1834 } 1835 1836 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1837 { 1838 #define N(val) \ 1839 case NETDEV_##val: \ 1840 return "NETDEV_" __stringify(val); 1841 switch (cmd) { 1842 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1843 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1844 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1845 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1846 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1847 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1848 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1849 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1850 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1851 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1852 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1853 N(XDP_FEAT_CHANGE) 1854 } 1855 #undef N 1856 return "UNKNOWN_NETDEV_EVENT"; 1857 } 1858 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1859 1860 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1861 struct net_device *dev) 1862 { 1863 struct netdev_notifier_info info = { 1864 .dev = dev, 1865 }; 1866 1867 return nb->notifier_call(nb, val, &info); 1868 } 1869 1870 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1871 struct net_device *dev) 1872 { 1873 int err; 1874 1875 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1876 err = notifier_to_errno(err); 1877 if (err) 1878 return err; 1879 1880 if (!(dev->flags & IFF_UP)) 1881 return 0; 1882 1883 call_netdevice_notifier(nb, NETDEV_UP, dev); 1884 return 0; 1885 } 1886 1887 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1888 struct net_device *dev) 1889 { 1890 if (dev->flags & IFF_UP) { 1891 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1892 dev); 1893 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1894 } 1895 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1896 } 1897 1898 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1899 struct net *net) 1900 { 1901 struct net_device *dev; 1902 int err; 1903 1904 for_each_netdev(net, dev) { 1905 netdev_lock_ops(dev); 1906 err = call_netdevice_register_notifiers(nb, dev); 1907 netdev_unlock_ops(dev); 1908 if (err) 1909 goto rollback; 1910 } 1911 return 0; 1912 1913 rollback: 1914 for_each_netdev_continue_reverse(net, dev) 1915 call_netdevice_unregister_notifiers(nb, dev); 1916 return err; 1917 } 1918 1919 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1920 struct net *net) 1921 { 1922 struct net_device *dev; 1923 1924 for_each_netdev(net, dev) 1925 call_netdevice_unregister_notifiers(nb, dev); 1926 } 1927 1928 static int dev_boot_phase = 1; 1929 1930 /** 1931 * register_netdevice_notifier - register a network notifier block 1932 * @nb: notifier 1933 * 1934 * Register a notifier to be called when network device events occur. 1935 * The notifier passed is linked into the kernel structures and must 1936 * not be reused until it has been unregistered. A negative errno code 1937 * is returned on a failure. 1938 * 1939 * When registered all registration and up events are replayed 1940 * to the new notifier to allow device to have a race free 1941 * view of the network device list. 1942 */ 1943 1944 int register_netdevice_notifier(struct notifier_block *nb) 1945 { 1946 struct net *net; 1947 int err; 1948 1949 /* Close race with setup_net() and cleanup_net() */ 1950 down_write(&pernet_ops_rwsem); 1951 1952 /* When RTNL is removed, we need protection for netdev_chain. */ 1953 rtnl_lock(); 1954 1955 err = raw_notifier_chain_register(&netdev_chain, nb); 1956 if (err) 1957 goto unlock; 1958 if (dev_boot_phase) 1959 goto unlock; 1960 for_each_net(net) { 1961 __rtnl_net_lock(net); 1962 err = call_netdevice_register_net_notifiers(nb, net); 1963 __rtnl_net_unlock(net); 1964 if (err) 1965 goto rollback; 1966 } 1967 1968 unlock: 1969 rtnl_unlock(); 1970 up_write(&pernet_ops_rwsem); 1971 return err; 1972 1973 rollback: 1974 for_each_net_continue_reverse(net) { 1975 __rtnl_net_lock(net); 1976 call_netdevice_unregister_net_notifiers(nb, net); 1977 __rtnl_net_unlock(net); 1978 } 1979 1980 raw_notifier_chain_unregister(&netdev_chain, nb); 1981 goto unlock; 1982 } 1983 EXPORT_SYMBOL(register_netdevice_notifier); 1984 1985 /** 1986 * unregister_netdevice_notifier - unregister a network notifier block 1987 * @nb: notifier 1988 * 1989 * Unregister a notifier previously registered by 1990 * register_netdevice_notifier(). The notifier is unlinked into the 1991 * kernel structures and may then be reused. A negative errno code 1992 * is returned on a failure. 1993 * 1994 * After unregistering unregister and down device events are synthesized 1995 * for all devices on the device list to the removed notifier to remove 1996 * the need for special case cleanup code. 1997 */ 1998 1999 int unregister_netdevice_notifier(struct notifier_block *nb) 2000 { 2001 struct net *net; 2002 int err; 2003 2004 /* Close race with setup_net() and cleanup_net() */ 2005 down_write(&pernet_ops_rwsem); 2006 rtnl_lock(); 2007 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2008 if (err) 2009 goto unlock; 2010 2011 for_each_net(net) { 2012 __rtnl_net_lock(net); 2013 call_netdevice_unregister_net_notifiers(nb, net); 2014 __rtnl_net_unlock(net); 2015 } 2016 2017 unlock: 2018 rtnl_unlock(); 2019 up_write(&pernet_ops_rwsem); 2020 return err; 2021 } 2022 EXPORT_SYMBOL(unregister_netdevice_notifier); 2023 2024 static int __register_netdevice_notifier_net(struct net *net, 2025 struct notifier_block *nb, 2026 bool ignore_call_fail) 2027 { 2028 int err; 2029 2030 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2031 if (err) 2032 return err; 2033 if (dev_boot_phase) 2034 return 0; 2035 2036 err = call_netdevice_register_net_notifiers(nb, net); 2037 if (err && !ignore_call_fail) 2038 goto chain_unregister; 2039 2040 return 0; 2041 2042 chain_unregister: 2043 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2044 return err; 2045 } 2046 2047 static int __unregister_netdevice_notifier_net(struct net *net, 2048 struct notifier_block *nb) 2049 { 2050 int err; 2051 2052 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2053 if (err) 2054 return err; 2055 2056 call_netdevice_unregister_net_notifiers(nb, net); 2057 return 0; 2058 } 2059 2060 /** 2061 * register_netdevice_notifier_net - register a per-netns network notifier block 2062 * @net: network namespace 2063 * @nb: notifier 2064 * 2065 * Register a notifier to be called when network device events occur. 2066 * The notifier passed is linked into the kernel structures and must 2067 * not be reused until it has been unregistered. A negative errno code 2068 * is returned on a failure. 2069 * 2070 * When registered all registration and up events are replayed 2071 * to the new notifier to allow device to have a race free 2072 * view of the network device list. 2073 */ 2074 2075 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2076 { 2077 int err; 2078 2079 rtnl_net_lock(net); 2080 err = __register_netdevice_notifier_net(net, nb, false); 2081 rtnl_net_unlock(net); 2082 2083 return err; 2084 } 2085 EXPORT_SYMBOL(register_netdevice_notifier_net); 2086 2087 /** 2088 * unregister_netdevice_notifier_net - unregister a per-netns 2089 * network notifier block 2090 * @net: network namespace 2091 * @nb: notifier 2092 * 2093 * Unregister a notifier previously registered by 2094 * register_netdevice_notifier_net(). The notifier is unlinked from the 2095 * kernel structures and may then be reused. A negative errno code 2096 * is returned on a failure. 2097 * 2098 * After unregistering unregister and down device events are synthesized 2099 * for all devices on the device list to the removed notifier to remove 2100 * the need for special case cleanup code. 2101 */ 2102 2103 int unregister_netdevice_notifier_net(struct net *net, 2104 struct notifier_block *nb) 2105 { 2106 int err; 2107 2108 rtnl_net_lock(net); 2109 err = __unregister_netdevice_notifier_net(net, nb); 2110 rtnl_net_unlock(net); 2111 2112 return err; 2113 } 2114 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2115 2116 static void __move_netdevice_notifier_net(struct net *src_net, 2117 struct net *dst_net, 2118 struct notifier_block *nb) 2119 { 2120 __unregister_netdevice_notifier_net(src_net, nb); 2121 __register_netdevice_notifier_net(dst_net, nb, true); 2122 } 2123 2124 static void rtnl_net_dev_lock(struct net_device *dev) 2125 { 2126 bool again; 2127 2128 do { 2129 struct net *net; 2130 2131 again = false; 2132 2133 /* netns might be being dismantled. */ 2134 rcu_read_lock(); 2135 net = dev_net_rcu(dev); 2136 net_passive_inc(net); 2137 rcu_read_unlock(); 2138 2139 rtnl_net_lock(net); 2140 2141 #ifdef CONFIG_NET_NS 2142 /* dev might have been moved to another netns. */ 2143 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2144 rtnl_net_unlock(net); 2145 net_passive_dec(net); 2146 again = true; 2147 } 2148 #endif 2149 } while (again); 2150 } 2151 2152 static void rtnl_net_dev_unlock(struct net_device *dev) 2153 { 2154 struct net *net = dev_net(dev); 2155 2156 rtnl_net_unlock(net); 2157 net_passive_dec(net); 2158 } 2159 2160 int register_netdevice_notifier_dev_net(struct net_device *dev, 2161 struct notifier_block *nb, 2162 struct netdev_net_notifier *nn) 2163 { 2164 int err; 2165 2166 rtnl_net_dev_lock(dev); 2167 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2168 if (!err) { 2169 nn->nb = nb; 2170 list_add(&nn->list, &dev->net_notifier_list); 2171 } 2172 rtnl_net_dev_unlock(dev); 2173 2174 return err; 2175 } 2176 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2177 2178 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2179 struct notifier_block *nb, 2180 struct netdev_net_notifier *nn) 2181 { 2182 int err; 2183 2184 rtnl_net_dev_lock(dev); 2185 list_del(&nn->list); 2186 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2187 rtnl_net_dev_unlock(dev); 2188 2189 return err; 2190 } 2191 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2192 2193 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2194 struct net *net) 2195 { 2196 struct netdev_net_notifier *nn; 2197 2198 list_for_each_entry(nn, &dev->net_notifier_list, list) 2199 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2200 } 2201 2202 /** 2203 * call_netdevice_notifiers_info - call all network notifier blocks 2204 * @val: value passed unmodified to notifier function 2205 * @info: notifier information data 2206 * 2207 * Call all network notifier blocks. Parameters and return value 2208 * are as for raw_notifier_call_chain(). 2209 */ 2210 2211 int call_netdevice_notifiers_info(unsigned long val, 2212 struct netdev_notifier_info *info) 2213 { 2214 struct net *net = dev_net(info->dev); 2215 int ret; 2216 2217 ASSERT_RTNL(); 2218 2219 /* Run per-netns notifier block chain first, then run the global one. 2220 * Hopefully, one day, the global one is going to be removed after 2221 * all notifier block registrators get converted to be per-netns. 2222 */ 2223 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2224 if (ret & NOTIFY_STOP_MASK) 2225 return ret; 2226 return raw_notifier_call_chain(&netdev_chain, val, info); 2227 } 2228 2229 /** 2230 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2231 * for and rollback on error 2232 * @val_up: value passed unmodified to notifier function 2233 * @val_down: value passed unmodified to the notifier function when 2234 * recovering from an error on @val_up 2235 * @info: notifier information data 2236 * 2237 * Call all per-netns network notifier blocks, but not notifier blocks on 2238 * the global notifier chain. Parameters and return value are as for 2239 * raw_notifier_call_chain_robust(). 2240 */ 2241 2242 static int 2243 call_netdevice_notifiers_info_robust(unsigned long val_up, 2244 unsigned long val_down, 2245 struct netdev_notifier_info *info) 2246 { 2247 struct net *net = dev_net(info->dev); 2248 2249 ASSERT_RTNL(); 2250 2251 return raw_notifier_call_chain_robust(&net->netdev_chain, 2252 val_up, val_down, info); 2253 } 2254 2255 static int call_netdevice_notifiers_extack(unsigned long val, 2256 struct net_device *dev, 2257 struct netlink_ext_ack *extack) 2258 { 2259 struct netdev_notifier_info info = { 2260 .dev = dev, 2261 .extack = extack, 2262 }; 2263 2264 return call_netdevice_notifiers_info(val, &info); 2265 } 2266 2267 /** 2268 * call_netdevice_notifiers - call all network notifier blocks 2269 * @val: value passed unmodified to notifier function 2270 * @dev: net_device pointer passed unmodified to notifier function 2271 * 2272 * Call all network notifier blocks. Parameters and return value 2273 * are as for raw_notifier_call_chain(). 2274 */ 2275 2276 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2277 { 2278 return call_netdevice_notifiers_extack(val, dev, NULL); 2279 } 2280 EXPORT_SYMBOL(call_netdevice_notifiers); 2281 2282 /** 2283 * call_netdevice_notifiers_mtu - call all network notifier blocks 2284 * @val: value passed unmodified to notifier function 2285 * @dev: net_device pointer passed unmodified to notifier function 2286 * @arg: additional u32 argument passed to the notifier function 2287 * 2288 * Call all network notifier blocks. Parameters and return value 2289 * are as for raw_notifier_call_chain(). 2290 */ 2291 static int call_netdevice_notifiers_mtu(unsigned long val, 2292 struct net_device *dev, u32 arg) 2293 { 2294 struct netdev_notifier_info_ext info = { 2295 .info.dev = dev, 2296 .ext.mtu = arg, 2297 }; 2298 2299 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2300 2301 return call_netdevice_notifiers_info(val, &info.info); 2302 } 2303 2304 #ifdef CONFIG_NET_INGRESS 2305 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2306 2307 void net_inc_ingress_queue(void) 2308 { 2309 static_branch_inc(&ingress_needed_key); 2310 } 2311 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2312 2313 void net_dec_ingress_queue(void) 2314 { 2315 static_branch_dec(&ingress_needed_key); 2316 } 2317 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2318 #endif 2319 2320 #ifdef CONFIG_NET_EGRESS 2321 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2322 2323 void net_inc_egress_queue(void) 2324 { 2325 static_branch_inc(&egress_needed_key); 2326 } 2327 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2328 2329 void net_dec_egress_queue(void) 2330 { 2331 static_branch_dec(&egress_needed_key); 2332 } 2333 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2334 #endif 2335 2336 #ifdef CONFIG_NET_CLS_ACT 2337 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2338 EXPORT_SYMBOL(tcf_sw_enabled_key); 2339 #endif 2340 2341 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2342 EXPORT_SYMBOL(netstamp_needed_key); 2343 #ifdef CONFIG_JUMP_LABEL 2344 static atomic_t netstamp_needed_deferred; 2345 static atomic_t netstamp_wanted; 2346 static void netstamp_clear(struct work_struct *work) 2347 { 2348 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2349 int wanted; 2350 2351 wanted = atomic_add_return(deferred, &netstamp_wanted); 2352 if (wanted > 0) 2353 static_branch_enable(&netstamp_needed_key); 2354 else 2355 static_branch_disable(&netstamp_needed_key); 2356 } 2357 static DECLARE_WORK(netstamp_work, netstamp_clear); 2358 #endif 2359 2360 void net_enable_timestamp(void) 2361 { 2362 #ifdef CONFIG_JUMP_LABEL 2363 int wanted = atomic_read(&netstamp_wanted); 2364 2365 while (wanted > 0) { 2366 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2367 return; 2368 } 2369 atomic_inc(&netstamp_needed_deferred); 2370 schedule_work(&netstamp_work); 2371 #else 2372 static_branch_inc(&netstamp_needed_key); 2373 #endif 2374 } 2375 EXPORT_SYMBOL(net_enable_timestamp); 2376 2377 void net_disable_timestamp(void) 2378 { 2379 #ifdef CONFIG_JUMP_LABEL 2380 int wanted = atomic_read(&netstamp_wanted); 2381 2382 while (wanted > 1) { 2383 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2384 return; 2385 } 2386 atomic_dec(&netstamp_needed_deferred); 2387 schedule_work(&netstamp_work); 2388 #else 2389 static_branch_dec(&netstamp_needed_key); 2390 #endif 2391 } 2392 EXPORT_SYMBOL(net_disable_timestamp); 2393 2394 static inline void net_timestamp_set(struct sk_buff *skb) 2395 { 2396 skb->tstamp = 0; 2397 skb->tstamp_type = SKB_CLOCK_REALTIME; 2398 if (static_branch_unlikely(&netstamp_needed_key)) 2399 skb->tstamp = ktime_get_real(); 2400 } 2401 2402 #define net_timestamp_check(COND, SKB) \ 2403 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2404 if ((COND) && !(SKB)->tstamp) \ 2405 (SKB)->tstamp = ktime_get_real(); \ 2406 } \ 2407 2408 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2409 { 2410 return __is_skb_forwardable(dev, skb, true); 2411 } 2412 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2413 2414 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2415 bool check_mtu) 2416 { 2417 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2418 2419 if (likely(!ret)) { 2420 skb->protocol = eth_type_trans(skb, dev); 2421 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2422 } 2423 2424 return ret; 2425 } 2426 2427 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2428 { 2429 return __dev_forward_skb2(dev, skb, true); 2430 } 2431 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2432 2433 /** 2434 * dev_forward_skb - loopback an skb to another netif 2435 * 2436 * @dev: destination network device 2437 * @skb: buffer to forward 2438 * 2439 * return values: 2440 * NET_RX_SUCCESS (no congestion) 2441 * NET_RX_DROP (packet was dropped, but freed) 2442 * 2443 * dev_forward_skb can be used for injecting an skb from the 2444 * start_xmit function of one device into the receive queue 2445 * of another device. 2446 * 2447 * The receiving device may be in another namespace, so 2448 * we have to clear all information in the skb that could 2449 * impact namespace isolation. 2450 */ 2451 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2452 { 2453 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2454 } 2455 EXPORT_SYMBOL_GPL(dev_forward_skb); 2456 2457 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2458 { 2459 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2460 } 2461 2462 static inline int deliver_skb(struct sk_buff *skb, 2463 struct packet_type *pt_prev, 2464 struct net_device *orig_dev) 2465 { 2466 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2467 return -ENOMEM; 2468 refcount_inc(&skb->users); 2469 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2470 } 2471 2472 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2473 struct packet_type **pt, 2474 struct net_device *orig_dev, 2475 __be16 type, 2476 struct list_head *ptype_list) 2477 { 2478 struct packet_type *ptype, *pt_prev = *pt; 2479 2480 list_for_each_entry_rcu(ptype, ptype_list, list) { 2481 if (ptype->type != type) 2482 continue; 2483 if (pt_prev) 2484 deliver_skb(skb, pt_prev, orig_dev); 2485 pt_prev = ptype; 2486 } 2487 *pt = pt_prev; 2488 } 2489 2490 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2491 { 2492 if (!ptype->af_packet_priv || !skb->sk) 2493 return false; 2494 2495 if (ptype->id_match) 2496 return ptype->id_match(ptype, skb->sk); 2497 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2498 return true; 2499 2500 return false; 2501 } 2502 2503 /** 2504 * dev_nit_active_rcu - return true if any network interface taps are in use 2505 * 2506 * The caller must hold the RCU lock 2507 * 2508 * @dev: network device to check for the presence of taps 2509 */ 2510 bool dev_nit_active_rcu(const struct net_device *dev) 2511 { 2512 /* Callers may hold either RCU or RCU BH lock */ 2513 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2514 2515 return !list_empty(&dev_net(dev)->ptype_all) || 2516 !list_empty(&dev->ptype_all); 2517 } 2518 EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2519 2520 /* 2521 * Support routine. Sends outgoing frames to any network 2522 * taps currently in use. 2523 */ 2524 2525 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2526 { 2527 struct packet_type *ptype, *pt_prev = NULL; 2528 struct list_head *ptype_list; 2529 struct sk_buff *skb2 = NULL; 2530 2531 rcu_read_lock(); 2532 ptype_list = &dev_net_rcu(dev)->ptype_all; 2533 again: 2534 list_for_each_entry_rcu(ptype, ptype_list, list) { 2535 if (READ_ONCE(ptype->ignore_outgoing)) 2536 continue; 2537 2538 /* Never send packets back to the socket 2539 * they originated from - MvS (miquels@drinkel.ow.org) 2540 */ 2541 if (skb_loop_sk(ptype, skb)) 2542 continue; 2543 2544 if (pt_prev) { 2545 deliver_skb(skb2, pt_prev, skb->dev); 2546 pt_prev = ptype; 2547 continue; 2548 } 2549 2550 /* need to clone skb, done only once */ 2551 skb2 = skb_clone(skb, GFP_ATOMIC); 2552 if (!skb2) 2553 goto out_unlock; 2554 2555 net_timestamp_set(skb2); 2556 2557 /* skb->nh should be correctly 2558 * set by sender, so that the second statement is 2559 * just protection against buggy protocols. 2560 */ 2561 skb_reset_mac_header(skb2); 2562 2563 if (skb_network_header(skb2) < skb2->data || 2564 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2565 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2566 ntohs(skb2->protocol), 2567 dev->name); 2568 skb_reset_network_header(skb2); 2569 } 2570 2571 skb2->transport_header = skb2->network_header; 2572 skb2->pkt_type = PACKET_OUTGOING; 2573 pt_prev = ptype; 2574 } 2575 2576 if (ptype_list != &dev->ptype_all) { 2577 ptype_list = &dev->ptype_all; 2578 goto again; 2579 } 2580 out_unlock: 2581 if (pt_prev) { 2582 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2583 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2584 else 2585 kfree_skb(skb2); 2586 } 2587 rcu_read_unlock(); 2588 } 2589 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2590 2591 /** 2592 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2593 * @dev: Network device 2594 * @txq: number of queues available 2595 * 2596 * If real_num_tx_queues is changed the tc mappings may no longer be 2597 * valid. To resolve this verify the tc mapping remains valid and if 2598 * not NULL the mapping. With no priorities mapping to this 2599 * offset/count pair it will no longer be used. In the worst case TC0 2600 * is invalid nothing can be done so disable priority mappings. If is 2601 * expected that drivers will fix this mapping if they can before 2602 * calling netif_set_real_num_tx_queues. 2603 */ 2604 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2605 { 2606 int i; 2607 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2608 2609 /* If TC0 is invalidated disable TC mapping */ 2610 if (tc->offset + tc->count > txq) { 2611 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2612 dev->num_tc = 0; 2613 return; 2614 } 2615 2616 /* Invalidated prio to tc mappings set to TC0 */ 2617 for (i = 1; i < TC_BITMASK + 1; i++) { 2618 int q = netdev_get_prio_tc_map(dev, i); 2619 2620 tc = &dev->tc_to_txq[q]; 2621 if (tc->offset + tc->count > txq) { 2622 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2623 i, q); 2624 netdev_set_prio_tc_map(dev, i, 0); 2625 } 2626 } 2627 } 2628 2629 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2630 { 2631 if (dev->num_tc) { 2632 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2633 int i; 2634 2635 /* walk through the TCs and see if it falls into any of them */ 2636 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2637 if ((txq - tc->offset) < tc->count) 2638 return i; 2639 } 2640 2641 /* didn't find it, just return -1 to indicate no match */ 2642 return -1; 2643 } 2644 2645 return 0; 2646 } 2647 EXPORT_SYMBOL(netdev_txq_to_tc); 2648 2649 #ifdef CONFIG_XPS 2650 static struct static_key xps_needed __read_mostly; 2651 static struct static_key xps_rxqs_needed __read_mostly; 2652 static DEFINE_MUTEX(xps_map_mutex); 2653 #define xmap_dereference(P) \ 2654 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2655 2656 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2657 struct xps_dev_maps *old_maps, int tci, u16 index) 2658 { 2659 struct xps_map *map = NULL; 2660 int pos; 2661 2662 map = xmap_dereference(dev_maps->attr_map[tci]); 2663 if (!map) 2664 return false; 2665 2666 for (pos = map->len; pos--;) { 2667 if (map->queues[pos] != index) 2668 continue; 2669 2670 if (map->len > 1) { 2671 map->queues[pos] = map->queues[--map->len]; 2672 break; 2673 } 2674 2675 if (old_maps) 2676 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2677 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2678 kfree_rcu(map, rcu); 2679 return false; 2680 } 2681 2682 return true; 2683 } 2684 2685 static bool remove_xps_queue_cpu(struct net_device *dev, 2686 struct xps_dev_maps *dev_maps, 2687 int cpu, u16 offset, u16 count) 2688 { 2689 int num_tc = dev_maps->num_tc; 2690 bool active = false; 2691 int tci; 2692 2693 for (tci = cpu * num_tc; num_tc--; tci++) { 2694 int i, j; 2695 2696 for (i = count, j = offset; i--; j++) { 2697 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2698 break; 2699 } 2700 2701 active |= i < 0; 2702 } 2703 2704 return active; 2705 } 2706 2707 static void reset_xps_maps(struct net_device *dev, 2708 struct xps_dev_maps *dev_maps, 2709 enum xps_map_type type) 2710 { 2711 static_key_slow_dec_cpuslocked(&xps_needed); 2712 if (type == XPS_RXQS) 2713 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2714 2715 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2716 2717 kfree_rcu(dev_maps, rcu); 2718 } 2719 2720 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2721 u16 offset, u16 count) 2722 { 2723 struct xps_dev_maps *dev_maps; 2724 bool active = false; 2725 int i, j; 2726 2727 dev_maps = xmap_dereference(dev->xps_maps[type]); 2728 if (!dev_maps) 2729 return; 2730 2731 for (j = 0; j < dev_maps->nr_ids; j++) 2732 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2733 if (!active) 2734 reset_xps_maps(dev, dev_maps, type); 2735 2736 if (type == XPS_CPUS) { 2737 for (i = offset + (count - 1); count--; i--) 2738 netdev_queue_numa_node_write( 2739 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2740 } 2741 } 2742 2743 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2744 u16 count) 2745 { 2746 if (!static_key_false(&xps_needed)) 2747 return; 2748 2749 cpus_read_lock(); 2750 mutex_lock(&xps_map_mutex); 2751 2752 if (static_key_false(&xps_rxqs_needed)) 2753 clean_xps_maps(dev, XPS_RXQS, offset, count); 2754 2755 clean_xps_maps(dev, XPS_CPUS, offset, count); 2756 2757 mutex_unlock(&xps_map_mutex); 2758 cpus_read_unlock(); 2759 } 2760 2761 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2762 { 2763 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2764 } 2765 2766 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2767 u16 index, bool is_rxqs_map) 2768 { 2769 struct xps_map *new_map; 2770 int alloc_len = XPS_MIN_MAP_ALLOC; 2771 int i, pos; 2772 2773 for (pos = 0; map && pos < map->len; pos++) { 2774 if (map->queues[pos] != index) 2775 continue; 2776 return map; 2777 } 2778 2779 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2780 if (map) { 2781 if (pos < map->alloc_len) 2782 return map; 2783 2784 alloc_len = map->alloc_len * 2; 2785 } 2786 2787 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2788 * map 2789 */ 2790 if (is_rxqs_map) 2791 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2792 else 2793 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2794 cpu_to_node(attr_index)); 2795 if (!new_map) 2796 return NULL; 2797 2798 for (i = 0; i < pos; i++) 2799 new_map->queues[i] = map->queues[i]; 2800 new_map->alloc_len = alloc_len; 2801 new_map->len = pos; 2802 2803 return new_map; 2804 } 2805 2806 /* Copy xps maps at a given index */ 2807 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2808 struct xps_dev_maps *new_dev_maps, int index, 2809 int tc, bool skip_tc) 2810 { 2811 int i, tci = index * dev_maps->num_tc; 2812 struct xps_map *map; 2813 2814 /* copy maps belonging to foreign traffic classes */ 2815 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2816 if (i == tc && skip_tc) 2817 continue; 2818 2819 /* fill in the new device map from the old device map */ 2820 map = xmap_dereference(dev_maps->attr_map[tci]); 2821 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2822 } 2823 } 2824 2825 /* Must be called under cpus_read_lock */ 2826 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2827 u16 index, enum xps_map_type type) 2828 { 2829 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2830 const unsigned long *online_mask = NULL; 2831 bool active = false, copy = false; 2832 int i, j, tci, numa_node_id = -2; 2833 int maps_sz, num_tc = 1, tc = 0; 2834 struct xps_map *map, *new_map; 2835 unsigned int nr_ids; 2836 2837 WARN_ON_ONCE(index >= dev->num_tx_queues); 2838 2839 if (dev->num_tc) { 2840 /* Do not allow XPS on subordinate device directly */ 2841 num_tc = dev->num_tc; 2842 if (num_tc < 0) 2843 return -EINVAL; 2844 2845 /* If queue belongs to subordinate dev use its map */ 2846 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2847 2848 tc = netdev_txq_to_tc(dev, index); 2849 if (tc < 0) 2850 return -EINVAL; 2851 } 2852 2853 mutex_lock(&xps_map_mutex); 2854 2855 dev_maps = xmap_dereference(dev->xps_maps[type]); 2856 if (type == XPS_RXQS) { 2857 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2858 nr_ids = dev->num_rx_queues; 2859 } else { 2860 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2861 if (num_possible_cpus() > 1) 2862 online_mask = cpumask_bits(cpu_online_mask); 2863 nr_ids = nr_cpu_ids; 2864 } 2865 2866 if (maps_sz < L1_CACHE_BYTES) 2867 maps_sz = L1_CACHE_BYTES; 2868 2869 /* The old dev_maps could be larger or smaller than the one we're 2870 * setting up now, as dev->num_tc or nr_ids could have been updated in 2871 * between. We could try to be smart, but let's be safe instead and only 2872 * copy foreign traffic classes if the two map sizes match. 2873 */ 2874 if (dev_maps && 2875 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2876 copy = true; 2877 2878 /* allocate memory for queue storage */ 2879 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2880 j < nr_ids;) { 2881 if (!new_dev_maps) { 2882 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2883 if (!new_dev_maps) { 2884 mutex_unlock(&xps_map_mutex); 2885 return -ENOMEM; 2886 } 2887 2888 new_dev_maps->nr_ids = nr_ids; 2889 new_dev_maps->num_tc = num_tc; 2890 } 2891 2892 tci = j * num_tc + tc; 2893 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2894 2895 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2896 if (!map) 2897 goto error; 2898 2899 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2900 } 2901 2902 if (!new_dev_maps) 2903 goto out_no_new_maps; 2904 2905 if (!dev_maps) { 2906 /* Increment static keys at most once per type */ 2907 static_key_slow_inc_cpuslocked(&xps_needed); 2908 if (type == XPS_RXQS) 2909 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2910 } 2911 2912 for (j = 0; j < nr_ids; j++) { 2913 bool skip_tc = false; 2914 2915 tci = j * num_tc + tc; 2916 if (netif_attr_test_mask(j, mask, nr_ids) && 2917 netif_attr_test_online(j, online_mask, nr_ids)) { 2918 /* add tx-queue to CPU/rx-queue maps */ 2919 int pos = 0; 2920 2921 skip_tc = true; 2922 2923 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2924 while ((pos < map->len) && (map->queues[pos] != index)) 2925 pos++; 2926 2927 if (pos == map->len) 2928 map->queues[map->len++] = index; 2929 #ifdef CONFIG_NUMA 2930 if (type == XPS_CPUS) { 2931 if (numa_node_id == -2) 2932 numa_node_id = cpu_to_node(j); 2933 else if (numa_node_id != cpu_to_node(j)) 2934 numa_node_id = -1; 2935 } 2936 #endif 2937 } 2938 2939 if (copy) 2940 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2941 skip_tc); 2942 } 2943 2944 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2945 2946 /* Cleanup old maps */ 2947 if (!dev_maps) 2948 goto out_no_old_maps; 2949 2950 for (j = 0; j < dev_maps->nr_ids; j++) { 2951 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2952 map = xmap_dereference(dev_maps->attr_map[tci]); 2953 if (!map) 2954 continue; 2955 2956 if (copy) { 2957 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2958 if (map == new_map) 2959 continue; 2960 } 2961 2962 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2963 kfree_rcu(map, rcu); 2964 } 2965 } 2966 2967 old_dev_maps = dev_maps; 2968 2969 out_no_old_maps: 2970 dev_maps = new_dev_maps; 2971 active = true; 2972 2973 out_no_new_maps: 2974 if (type == XPS_CPUS) 2975 /* update Tx queue numa node */ 2976 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2977 (numa_node_id >= 0) ? 2978 numa_node_id : NUMA_NO_NODE); 2979 2980 if (!dev_maps) 2981 goto out_no_maps; 2982 2983 /* removes tx-queue from unused CPUs/rx-queues */ 2984 for (j = 0; j < dev_maps->nr_ids; j++) { 2985 tci = j * dev_maps->num_tc; 2986 2987 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2988 if (i == tc && 2989 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2990 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2991 continue; 2992 2993 active |= remove_xps_queue(dev_maps, 2994 copy ? old_dev_maps : NULL, 2995 tci, index); 2996 } 2997 } 2998 2999 if (old_dev_maps) 3000 kfree_rcu(old_dev_maps, rcu); 3001 3002 /* free map if not active */ 3003 if (!active) 3004 reset_xps_maps(dev, dev_maps, type); 3005 3006 out_no_maps: 3007 mutex_unlock(&xps_map_mutex); 3008 3009 return 0; 3010 error: 3011 /* remove any maps that we added */ 3012 for (j = 0; j < nr_ids; j++) { 3013 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3014 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3015 map = copy ? 3016 xmap_dereference(dev_maps->attr_map[tci]) : 3017 NULL; 3018 if (new_map && new_map != map) 3019 kfree(new_map); 3020 } 3021 } 3022 3023 mutex_unlock(&xps_map_mutex); 3024 3025 kfree(new_dev_maps); 3026 return -ENOMEM; 3027 } 3028 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3029 3030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3031 u16 index) 3032 { 3033 int ret; 3034 3035 cpus_read_lock(); 3036 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3037 cpus_read_unlock(); 3038 3039 return ret; 3040 } 3041 EXPORT_SYMBOL(netif_set_xps_queue); 3042 3043 #endif 3044 static void netdev_unbind_all_sb_channels(struct net_device *dev) 3045 { 3046 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3047 3048 /* Unbind any subordinate channels */ 3049 while (txq-- != &dev->_tx[0]) { 3050 if (txq->sb_dev) 3051 netdev_unbind_sb_channel(dev, txq->sb_dev); 3052 } 3053 } 3054 3055 void netdev_reset_tc(struct net_device *dev) 3056 { 3057 #ifdef CONFIG_XPS 3058 netif_reset_xps_queues_gt(dev, 0); 3059 #endif 3060 netdev_unbind_all_sb_channels(dev); 3061 3062 /* Reset TC configuration of device */ 3063 dev->num_tc = 0; 3064 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3065 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3066 } 3067 EXPORT_SYMBOL(netdev_reset_tc); 3068 3069 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3070 { 3071 if (tc >= dev->num_tc) 3072 return -EINVAL; 3073 3074 #ifdef CONFIG_XPS 3075 netif_reset_xps_queues(dev, offset, count); 3076 #endif 3077 dev->tc_to_txq[tc].count = count; 3078 dev->tc_to_txq[tc].offset = offset; 3079 return 0; 3080 } 3081 EXPORT_SYMBOL(netdev_set_tc_queue); 3082 3083 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3084 { 3085 if (num_tc > TC_MAX_QUEUE) 3086 return -EINVAL; 3087 3088 #ifdef CONFIG_XPS 3089 netif_reset_xps_queues_gt(dev, 0); 3090 #endif 3091 netdev_unbind_all_sb_channels(dev); 3092 3093 dev->num_tc = num_tc; 3094 return 0; 3095 } 3096 EXPORT_SYMBOL(netdev_set_num_tc); 3097 3098 void netdev_unbind_sb_channel(struct net_device *dev, 3099 struct net_device *sb_dev) 3100 { 3101 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3102 3103 #ifdef CONFIG_XPS 3104 netif_reset_xps_queues_gt(sb_dev, 0); 3105 #endif 3106 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3107 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3108 3109 while (txq-- != &dev->_tx[0]) { 3110 if (txq->sb_dev == sb_dev) 3111 txq->sb_dev = NULL; 3112 } 3113 } 3114 EXPORT_SYMBOL(netdev_unbind_sb_channel); 3115 3116 int netdev_bind_sb_channel_queue(struct net_device *dev, 3117 struct net_device *sb_dev, 3118 u8 tc, u16 count, u16 offset) 3119 { 3120 /* Make certain the sb_dev and dev are already configured */ 3121 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3122 return -EINVAL; 3123 3124 /* We cannot hand out queues we don't have */ 3125 if ((offset + count) > dev->real_num_tx_queues) 3126 return -EINVAL; 3127 3128 /* Record the mapping */ 3129 sb_dev->tc_to_txq[tc].count = count; 3130 sb_dev->tc_to_txq[tc].offset = offset; 3131 3132 /* Provide a way for Tx queue to find the tc_to_txq map or 3133 * XPS map for itself. 3134 */ 3135 while (count--) 3136 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3137 3138 return 0; 3139 } 3140 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3141 3142 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3143 { 3144 /* Do not use a multiqueue device to represent a subordinate channel */ 3145 if (netif_is_multiqueue(dev)) 3146 return -ENODEV; 3147 3148 /* We allow channels 1 - 32767 to be used for subordinate channels. 3149 * Channel 0 is meant to be "native" mode and used only to represent 3150 * the main root device. We allow writing 0 to reset the device back 3151 * to normal mode after being used as a subordinate channel. 3152 */ 3153 if (channel > S16_MAX) 3154 return -EINVAL; 3155 3156 dev->num_tc = -channel; 3157 3158 return 0; 3159 } 3160 EXPORT_SYMBOL(netdev_set_sb_channel); 3161 3162 /* 3163 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3164 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3165 */ 3166 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3167 { 3168 bool disabling; 3169 int rc; 3170 3171 disabling = txq < dev->real_num_tx_queues; 3172 3173 if (txq < 1 || txq > dev->num_tx_queues) 3174 return -EINVAL; 3175 3176 if (dev->reg_state == NETREG_REGISTERED || 3177 dev->reg_state == NETREG_UNREGISTERING) { 3178 ASSERT_RTNL(); 3179 netdev_ops_assert_locked(dev); 3180 3181 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3182 txq); 3183 if (rc) 3184 return rc; 3185 3186 if (dev->num_tc) 3187 netif_setup_tc(dev, txq); 3188 3189 net_shaper_set_real_num_tx_queues(dev, txq); 3190 3191 dev_qdisc_change_real_num_tx(dev, txq); 3192 3193 dev->real_num_tx_queues = txq; 3194 3195 if (disabling) { 3196 synchronize_net(); 3197 qdisc_reset_all_tx_gt(dev, txq); 3198 #ifdef CONFIG_XPS 3199 netif_reset_xps_queues_gt(dev, txq); 3200 #endif 3201 } 3202 } else { 3203 dev->real_num_tx_queues = txq; 3204 } 3205 3206 return 0; 3207 } 3208 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3209 3210 /** 3211 * netif_set_real_num_rx_queues - set actual number of RX queues used 3212 * @dev: Network device 3213 * @rxq: Actual number of RX queues 3214 * 3215 * This must be called either with the rtnl_lock held or before 3216 * registration of the net device. Returns 0 on success, or a 3217 * negative error code. If called before registration, it always 3218 * succeeds. 3219 */ 3220 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3221 { 3222 int rc; 3223 3224 if (rxq < 1 || rxq > dev->num_rx_queues) 3225 return -EINVAL; 3226 3227 if (dev->reg_state == NETREG_REGISTERED) { 3228 ASSERT_RTNL(); 3229 netdev_ops_assert_locked(dev); 3230 3231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3232 rxq); 3233 if (rc) 3234 return rc; 3235 } 3236 3237 dev->real_num_rx_queues = rxq; 3238 return 0; 3239 } 3240 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3241 3242 /** 3243 * netif_set_real_num_queues - set actual number of RX and TX queues used 3244 * @dev: Network device 3245 * @txq: Actual number of TX queues 3246 * @rxq: Actual number of RX queues 3247 * 3248 * Set the real number of both TX and RX queues. 3249 * Does nothing if the number of queues is already correct. 3250 */ 3251 int netif_set_real_num_queues(struct net_device *dev, 3252 unsigned int txq, unsigned int rxq) 3253 { 3254 unsigned int old_rxq = dev->real_num_rx_queues; 3255 int err; 3256 3257 if (txq < 1 || txq > dev->num_tx_queues || 3258 rxq < 1 || rxq > dev->num_rx_queues) 3259 return -EINVAL; 3260 3261 /* Start from increases, so the error path only does decreases - 3262 * decreases can't fail. 3263 */ 3264 if (rxq > dev->real_num_rx_queues) { 3265 err = netif_set_real_num_rx_queues(dev, rxq); 3266 if (err) 3267 return err; 3268 } 3269 if (txq > dev->real_num_tx_queues) { 3270 err = netif_set_real_num_tx_queues(dev, txq); 3271 if (err) 3272 goto undo_rx; 3273 } 3274 if (rxq < dev->real_num_rx_queues) 3275 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3276 if (txq < dev->real_num_tx_queues) 3277 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3278 3279 return 0; 3280 undo_rx: 3281 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3282 return err; 3283 } 3284 EXPORT_SYMBOL(netif_set_real_num_queues); 3285 3286 /** 3287 * netif_set_tso_max_size() - set the max size of TSO frames supported 3288 * @dev: netdev to update 3289 * @size: max skb->len of a TSO frame 3290 * 3291 * Set the limit on the size of TSO super-frames the device can handle. 3292 * Unless explicitly set the stack will assume the value of 3293 * %GSO_LEGACY_MAX_SIZE. 3294 */ 3295 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3296 { 3297 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3298 if (size < READ_ONCE(dev->gso_max_size)) 3299 netif_set_gso_max_size(dev, size); 3300 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3301 netif_set_gso_ipv4_max_size(dev, size); 3302 } 3303 EXPORT_SYMBOL(netif_set_tso_max_size); 3304 3305 /** 3306 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3307 * @dev: netdev to update 3308 * @segs: max number of TCP segments 3309 * 3310 * Set the limit on the number of TCP segments the device can generate from 3311 * a single TSO super-frame. 3312 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3313 */ 3314 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3315 { 3316 dev->tso_max_segs = segs; 3317 if (segs < READ_ONCE(dev->gso_max_segs)) 3318 netif_set_gso_max_segs(dev, segs); 3319 } 3320 EXPORT_SYMBOL(netif_set_tso_max_segs); 3321 3322 /** 3323 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3324 * @to: netdev to update 3325 * @from: netdev from which to copy the limits 3326 */ 3327 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3328 { 3329 netif_set_tso_max_size(to, from->tso_max_size); 3330 netif_set_tso_max_segs(to, from->tso_max_segs); 3331 } 3332 EXPORT_SYMBOL(netif_inherit_tso_max); 3333 3334 /** 3335 * netif_get_num_default_rss_queues - default number of RSS queues 3336 * 3337 * Default value is the number of physical cores if there are only 1 or 2, or 3338 * divided by 2 if there are more. 3339 */ 3340 int netif_get_num_default_rss_queues(void) 3341 { 3342 cpumask_var_t cpus; 3343 int cpu, count = 0; 3344 3345 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3346 return 1; 3347 3348 cpumask_copy(cpus, cpu_online_mask); 3349 for_each_cpu(cpu, cpus) { 3350 ++count; 3351 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3352 } 3353 free_cpumask_var(cpus); 3354 3355 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3356 } 3357 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3358 3359 static void __netif_reschedule(struct Qdisc *q) 3360 { 3361 struct softnet_data *sd; 3362 unsigned long flags; 3363 3364 local_irq_save(flags); 3365 sd = this_cpu_ptr(&softnet_data); 3366 q->next_sched = NULL; 3367 *sd->output_queue_tailp = q; 3368 sd->output_queue_tailp = &q->next_sched; 3369 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3370 local_irq_restore(flags); 3371 } 3372 3373 void __netif_schedule(struct Qdisc *q) 3374 { 3375 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3376 __netif_reschedule(q); 3377 } 3378 EXPORT_SYMBOL(__netif_schedule); 3379 3380 struct dev_kfree_skb_cb { 3381 enum skb_drop_reason reason; 3382 }; 3383 3384 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3385 { 3386 return (struct dev_kfree_skb_cb *)skb->cb; 3387 } 3388 3389 void netif_schedule_queue(struct netdev_queue *txq) 3390 { 3391 rcu_read_lock(); 3392 if (!netif_xmit_stopped(txq)) { 3393 struct Qdisc *q = rcu_dereference(txq->qdisc); 3394 3395 __netif_schedule(q); 3396 } 3397 rcu_read_unlock(); 3398 } 3399 EXPORT_SYMBOL(netif_schedule_queue); 3400 3401 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3402 { 3403 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3404 struct Qdisc *q; 3405 3406 rcu_read_lock(); 3407 q = rcu_dereference(dev_queue->qdisc); 3408 __netif_schedule(q); 3409 rcu_read_unlock(); 3410 } 3411 } 3412 EXPORT_SYMBOL(netif_tx_wake_queue); 3413 3414 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3415 { 3416 unsigned long flags; 3417 3418 if (unlikely(!skb)) 3419 return; 3420 3421 if (likely(refcount_read(&skb->users) == 1)) { 3422 smp_rmb(); 3423 refcount_set(&skb->users, 0); 3424 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3425 return; 3426 } 3427 get_kfree_skb_cb(skb)->reason = reason; 3428 local_irq_save(flags); 3429 skb->next = __this_cpu_read(softnet_data.completion_queue); 3430 __this_cpu_write(softnet_data.completion_queue, skb); 3431 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3432 local_irq_restore(flags); 3433 } 3434 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3435 3436 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3437 { 3438 if (in_hardirq() || irqs_disabled()) 3439 dev_kfree_skb_irq_reason(skb, reason); 3440 else 3441 kfree_skb_reason(skb, reason); 3442 } 3443 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3444 3445 3446 /** 3447 * netif_device_detach - mark device as removed 3448 * @dev: network device 3449 * 3450 * Mark device as removed from system and therefore no longer available. 3451 */ 3452 void netif_device_detach(struct net_device *dev) 3453 { 3454 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3455 netif_running(dev)) { 3456 netif_tx_stop_all_queues(dev); 3457 } 3458 } 3459 EXPORT_SYMBOL(netif_device_detach); 3460 3461 /** 3462 * netif_device_attach - mark device as attached 3463 * @dev: network device 3464 * 3465 * Mark device as attached from system and restart if needed. 3466 */ 3467 void netif_device_attach(struct net_device *dev) 3468 { 3469 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3470 netif_running(dev)) { 3471 netif_tx_wake_all_queues(dev); 3472 netdev_watchdog_up(dev); 3473 } 3474 } 3475 EXPORT_SYMBOL(netif_device_attach); 3476 3477 /* 3478 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3479 * to be used as a distribution range. 3480 */ 3481 static u16 skb_tx_hash(const struct net_device *dev, 3482 const struct net_device *sb_dev, 3483 struct sk_buff *skb) 3484 { 3485 u32 hash; 3486 u16 qoffset = 0; 3487 u16 qcount = dev->real_num_tx_queues; 3488 3489 if (dev->num_tc) { 3490 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3491 3492 qoffset = sb_dev->tc_to_txq[tc].offset; 3493 qcount = sb_dev->tc_to_txq[tc].count; 3494 if (unlikely(!qcount)) { 3495 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3496 sb_dev->name, qoffset, tc); 3497 qoffset = 0; 3498 qcount = dev->real_num_tx_queues; 3499 } 3500 } 3501 3502 if (skb_rx_queue_recorded(skb)) { 3503 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3504 hash = skb_get_rx_queue(skb); 3505 if (hash >= qoffset) 3506 hash -= qoffset; 3507 while (unlikely(hash >= qcount)) 3508 hash -= qcount; 3509 return hash + qoffset; 3510 } 3511 3512 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3513 } 3514 3515 void skb_warn_bad_offload(const struct sk_buff *skb) 3516 { 3517 static const netdev_features_t null_features; 3518 struct net_device *dev = skb->dev; 3519 const char *name = ""; 3520 3521 if (!net_ratelimit()) 3522 return; 3523 3524 if (dev) { 3525 if (dev->dev.parent) 3526 name = dev_driver_string(dev->dev.parent); 3527 else 3528 name = netdev_name(dev); 3529 } 3530 skb_dump(KERN_WARNING, skb, false); 3531 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3532 name, dev ? &dev->features : &null_features, 3533 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3534 } 3535 3536 /* 3537 * Invalidate hardware checksum when packet is to be mangled, and 3538 * complete checksum manually on outgoing path. 3539 */ 3540 int skb_checksum_help(struct sk_buff *skb) 3541 { 3542 __wsum csum; 3543 int ret = 0, offset; 3544 3545 if (skb->ip_summed == CHECKSUM_COMPLETE) 3546 goto out_set_summed; 3547 3548 if (unlikely(skb_is_gso(skb))) { 3549 skb_warn_bad_offload(skb); 3550 return -EINVAL; 3551 } 3552 3553 if (!skb_frags_readable(skb)) { 3554 return -EFAULT; 3555 } 3556 3557 /* Before computing a checksum, we should make sure no frag could 3558 * be modified by an external entity : checksum could be wrong. 3559 */ 3560 if (skb_has_shared_frag(skb)) { 3561 ret = __skb_linearize(skb); 3562 if (ret) 3563 goto out; 3564 } 3565 3566 offset = skb_checksum_start_offset(skb); 3567 ret = -EINVAL; 3568 if (unlikely(offset >= skb_headlen(skb))) { 3569 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3570 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3571 offset, skb_headlen(skb)); 3572 goto out; 3573 } 3574 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3575 3576 offset += skb->csum_offset; 3577 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3578 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3579 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3580 offset + sizeof(__sum16), skb_headlen(skb)); 3581 goto out; 3582 } 3583 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3584 if (ret) 3585 goto out; 3586 3587 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3588 out_set_summed: 3589 skb->ip_summed = CHECKSUM_NONE; 3590 out: 3591 return ret; 3592 } 3593 EXPORT_SYMBOL(skb_checksum_help); 3594 3595 int skb_crc32c_csum_help(struct sk_buff *skb) 3596 { 3597 __le32 crc32c_csum; 3598 int ret = 0, offset, start; 3599 3600 if (skb->ip_summed != CHECKSUM_PARTIAL) 3601 goto out; 3602 3603 if (unlikely(skb_is_gso(skb))) 3604 goto out; 3605 3606 /* Before computing a checksum, we should make sure no frag could 3607 * be modified by an external entity : checksum could be wrong. 3608 */ 3609 if (unlikely(skb_has_shared_frag(skb))) { 3610 ret = __skb_linearize(skb); 3611 if (ret) 3612 goto out; 3613 } 3614 start = skb_checksum_start_offset(skb); 3615 offset = start + offsetof(struct sctphdr, checksum); 3616 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3617 ret = -EINVAL; 3618 goto out; 3619 } 3620 3621 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3622 if (ret) 3623 goto out; 3624 3625 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3626 skb->len - start, ~(__u32)0, 3627 crc32c_csum_stub)); 3628 *(__le32 *)(skb->data + offset) = crc32c_csum; 3629 skb_reset_csum_not_inet(skb); 3630 out: 3631 return ret; 3632 } 3633 EXPORT_SYMBOL(skb_crc32c_csum_help); 3634 3635 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3636 { 3637 __be16 type = skb->protocol; 3638 3639 /* Tunnel gso handlers can set protocol to ethernet. */ 3640 if (type == htons(ETH_P_TEB)) { 3641 struct ethhdr *eth; 3642 3643 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3644 return 0; 3645 3646 eth = (struct ethhdr *)skb->data; 3647 type = eth->h_proto; 3648 } 3649 3650 return vlan_get_protocol_and_depth(skb, type, depth); 3651 } 3652 3653 3654 /* Take action when hardware reception checksum errors are detected. */ 3655 #ifdef CONFIG_BUG 3656 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3657 { 3658 netdev_err(dev, "hw csum failure\n"); 3659 skb_dump(KERN_ERR, skb, true); 3660 dump_stack(); 3661 } 3662 3663 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3664 { 3665 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3666 } 3667 EXPORT_SYMBOL(netdev_rx_csum_fault); 3668 #endif 3669 3670 /* XXX: check that highmem exists at all on the given machine. */ 3671 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3672 { 3673 #ifdef CONFIG_HIGHMEM 3674 int i; 3675 3676 if (!(dev->features & NETIF_F_HIGHDMA)) { 3677 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3678 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3679 struct page *page = skb_frag_page(frag); 3680 3681 if (page && PageHighMem(page)) 3682 return 1; 3683 } 3684 } 3685 #endif 3686 return 0; 3687 } 3688 3689 /* If MPLS offload request, verify we are testing hardware MPLS features 3690 * instead of standard features for the netdev. 3691 */ 3692 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3693 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3694 netdev_features_t features, 3695 __be16 type) 3696 { 3697 if (eth_p_mpls(type)) 3698 features &= skb->dev->mpls_features; 3699 3700 return features; 3701 } 3702 #else 3703 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3704 netdev_features_t features, 3705 __be16 type) 3706 { 3707 return features; 3708 } 3709 #endif 3710 3711 static netdev_features_t harmonize_features(struct sk_buff *skb, 3712 netdev_features_t features) 3713 { 3714 __be16 type; 3715 3716 type = skb_network_protocol(skb, NULL); 3717 features = net_mpls_features(skb, features, type); 3718 3719 if (skb->ip_summed != CHECKSUM_NONE && 3720 !can_checksum_protocol(features, type)) { 3721 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3722 } 3723 if (illegal_highdma(skb->dev, skb)) 3724 features &= ~NETIF_F_SG; 3725 3726 return features; 3727 } 3728 3729 netdev_features_t passthru_features_check(struct sk_buff *skb, 3730 struct net_device *dev, 3731 netdev_features_t features) 3732 { 3733 return features; 3734 } 3735 EXPORT_SYMBOL(passthru_features_check); 3736 3737 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3738 struct net_device *dev, 3739 netdev_features_t features) 3740 { 3741 return vlan_features_check(skb, features); 3742 } 3743 3744 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3745 struct net_device *dev, 3746 netdev_features_t features) 3747 { 3748 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3749 3750 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3751 return features & ~NETIF_F_GSO_MASK; 3752 3753 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3754 return features & ~NETIF_F_GSO_MASK; 3755 3756 if (!skb_shinfo(skb)->gso_type) { 3757 skb_warn_bad_offload(skb); 3758 return features & ~NETIF_F_GSO_MASK; 3759 } 3760 3761 /* Support for GSO partial features requires software 3762 * intervention before we can actually process the packets 3763 * so we need to strip support for any partial features now 3764 * and we can pull them back in after we have partially 3765 * segmented the frame. 3766 */ 3767 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3768 features &= ~dev->gso_partial_features; 3769 3770 /* Make sure to clear the IPv4 ID mangling feature if the 3771 * IPv4 header has the potential to be fragmented. 3772 */ 3773 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3774 struct iphdr *iph = skb->encapsulation ? 3775 inner_ip_hdr(skb) : ip_hdr(skb); 3776 3777 if (!(iph->frag_off & htons(IP_DF))) 3778 features &= ~NETIF_F_TSO_MANGLEID; 3779 } 3780 3781 return features; 3782 } 3783 3784 netdev_features_t netif_skb_features(struct sk_buff *skb) 3785 { 3786 struct net_device *dev = skb->dev; 3787 netdev_features_t features = dev->features; 3788 3789 if (skb_is_gso(skb)) 3790 features = gso_features_check(skb, dev, features); 3791 3792 /* If encapsulation offload request, verify we are testing 3793 * hardware encapsulation features instead of standard 3794 * features for the netdev 3795 */ 3796 if (skb->encapsulation) 3797 features &= dev->hw_enc_features; 3798 3799 if (skb_vlan_tagged(skb)) 3800 features = netdev_intersect_features(features, 3801 dev->vlan_features | 3802 NETIF_F_HW_VLAN_CTAG_TX | 3803 NETIF_F_HW_VLAN_STAG_TX); 3804 3805 if (dev->netdev_ops->ndo_features_check) 3806 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3807 features); 3808 else 3809 features &= dflt_features_check(skb, dev, features); 3810 3811 return harmonize_features(skb, features); 3812 } 3813 EXPORT_SYMBOL(netif_skb_features); 3814 3815 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3816 struct netdev_queue *txq, bool more) 3817 { 3818 unsigned int len; 3819 int rc; 3820 3821 if (dev_nit_active_rcu(dev)) 3822 dev_queue_xmit_nit(skb, dev); 3823 3824 len = skb->len; 3825 trace_net_dev_start_xmit(skb, dev); 3826 rc = netdev_start_xmit(skb, dev, txq, more); 3827 trace_net_dev_xmit(skb, rc, dev, len); 3828 3829 return rc; 3830 } 3831 3832 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3833 struct netdev_queue *txq, int *ret) 3834 { 3835 struct sk_buff *skb = first; 3836 int rc = NETDEV_TX_OK; 3837 3838 while (skb) { 3839 struct sk_buff *next = skb->next; 3840 3841 skb_mark_not_on_list(skb); 3842 rc = xmit_one(skb, dev, txq, next != NULL); 3843 if (unlikely(!dev_xmit_complete(rc))) { 3844 skb->next = next; 3845 goto out; 3846 } 3847 3848 skb = next; 3849 if (netif_tx_queue_stopped(txq) && skb) { 3850 rc = NETDEV_TX_BUSY; 3851 break; 3852 } 3853 } 3854 3855 out: 3856 *ret = rc; 3857 return skb; 3858 } 3859 3860 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3861 netdev_features_t features) 3862 { 3863 if (skb_vlan_tag_present(skb) && 3864 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3865 skb = __vlan_hwaccel_push_inside(skb); 3866 return skb; 3867 } 3868 3869 int skb_csum_hwoffload_help(struct sk_buff *skb, 3870 const netdev_features_t features) 3871 { 3872 if (unlikely(skb_csum_is_sctp(skb))) 3873 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3874 skb_crc32c_csum_help(skb); 3875 3876 if (features & NETIF_F_HW_CSUM) 3877 return 0; 3878 3879 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3880 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3881 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3882 !ipv6_has_hopopt_jumbo(skb)) 3883 goto sw_checksum; 3884 3885 switch (skb->csum_offset) { 3886 case offsetof(struct tcphdr, check): 3887 case offsetof(struct udphdr, check): 3888 return 0; 3889 } 3890 } 3891 3892 sw_checksum: 3893 return skb_checksum_help(skb); 3894 } 3895 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3896 3897 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3898 { 3899 netdev_features_t features; 3900 3901 if (!skb_frags_readable(skb)) 3902 goto out_kfree_skb; 3903 3904 features = netif_skb_features(skb); 3905 skb = validate_xmit_vlan(skb, features); 3906 if (unlikely(!skb)) 3907 goto out_null; 3908 3909 skb = sk_validate_xmit_skb(skb, dev); 3910 if (unlikely(!skb)) 3911 goto out_null; 3912 3913 if (netif_needs_gso(skb, features)) { 3914 struct sk_buff *segs; 3915 3916 segs = skb_gso_segment(skb, features); 3917 if (IS_ERR(segs)) { 3918 goto out_kfree_skb; 3919 } else if (segs) { 3920 consume_skb(skb); 3921 skb = segs; 3922 } 3923 } else { 3924 if (skb_needs_linearize(skb, features) && 3925 __skb_linearize(skb)) 3926 goto out_kfree_skb; 3927 3928 /* If packet is not checksummed and device does not 3929 * support checksumming for this protocol, complete 3930 * checksumming here. 3931 */ 3932 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3933 if (skb->encapsulation) 3934 skb_set_inner_transport_header(skb, 3935 skb_checksum_start_offset(skb)); 3936 else 3937 skb_set_transport_header(skb, 3938 skb_checksum_start_offset(skb)); 3939 if (skb_csum_hwoffload_help(skb, features)) 3940 goto out_kfree_skb; 3941 } 3942 } 3943 3944 skb = validate_xmit_xfrm(skb, features, again); 3945 3946 return skb; 3947 3948 out_kfree_skb: 3949 kfree_skb(skb); 3950 out_null: 3951 dev_core_stats_tx_dropped_inc(dev); 3952 return NULL; 3953 } 3954 3955 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3956 { 3957 struct sk_buff *next, *head = NULL, *tail; 3958 3959 for (; skb != NULL; skb = next) { 3960 next = skb->next; 3961 skb_mark_not_on_list(skb); 3962 3963 /* in case skb won't be segmented, point to itself */ 3964 skb->prev = skb; 3965 3966 skb = validate_xmit_skb(skb, dev, again); 3967 if (!skb) 3968 continue; 3969 3970 if (!head) 3971 head = skb; 3972 else 3973 tail->next = skb; 3974 /* If skb was segmented, skb->prev points to 3975 * the last segment. If not, it still contains skb. 3976 */ 3977 tail = skb->prev; 3978 } 3979 return head; 3980 } 3981 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3982 3983 static void qdisc_pkt_len_init(struct sk_buff *skb) 3984 { 3985 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3986 3987 qdisc_skb_cb(skb)->pkt_len = skb->len; 3988 3989 /* To get more precise estimation of bytes sent on wire, 3990 * we add to pkt_len the headers size of all segments 3991 */ 3992 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3993 u16 gso_segs = shinfo->gso_segs; 3994 unsigned int hdr_len; 3995 3996 /* mac layer + network layer */ 3997 hdr_len = skb_transport_offset(skb); 3998 3999 /* + transport layer */ 4000 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4001 const struct tcphdr *th; 4002 struct tcphdr _tcphdr; 4003 4004 th = skb_header_pointer(skb, hdr_len, 4005 sizeof(_tcphdr), &_tcphdr); 4006 if (likely(th)) 4007 hdr_len += __tcp_hdrlen(th); 4008 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4009 struct udphdr _udphdr; 4010 4011 if (skb_header_pointer(skb, hdr_len, 4012 sizeof(_udphdr), &_udphdr)) 4013 hdr_len += sizeof(struct udphdr); 4014 } 4015 4016 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4017 int payload = skb->len - hdr_len; 4018 4019 /* Malicious packet. */ 4020 if (payload <= 0) 4021 return; 4022 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4023 } 4024 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4025 } 4026 } 4027 4028 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4029 struct sk_buff **to_free, 4030 struct netdev_queue *txq) 4031 { 4032 int rc; 4033 4034 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4035 if (rc == NET_XMIT_SUCCESS) 4036 trace_qdisc_enqueue(q, txq, skb); 4037 return rc; 4038 } 4039 4040 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4041 struct net_device *dev, 4042 struct netdev_queue *txq) 4043 { 4044 spinlock_t *root_lock = qdisc_lock(q); 4045 struct sk_buff *to_free = NULL; 4046 bool contended; 4047 int rc; 4048 4049 qdisc_calculate_pkt_len(skb, q); 4050 4051 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4052 4053 if (q->flags & TCQ_F_NOLOCK) { 4054 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4055 qdisc_run_begin(q)) { 4056 /* Retest nolock_qdisc_is_empty() within the protection 4057 * of q->seqlock to protect from racing with requeuing. 4058 */ 4059 if (unlikely(!nolock_qdisc_is_empty(q))) { 4060 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4061 __qdisc_run(q); 4062 qdisc_run_end(q); 4063 4064 goto no_lock_out; 4065 } 4066 4067 qdisc_bstats_cpu_update(q, skb); 4068 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4069 !nolock_qdisc_is_empty(q)) 4070 __qdisc_run(q); 4071 4072 qdisc_run_end(q); 4073 return NET_XMIT_SUCCESS; 4074 } 4075 4076 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4077 qdisc_run(q); 4078 4079 no_lock_out: 4080 if (unlikely(to_free)) 4081 kfree_skb_list_reason(to_free, 4082 tcf_get_drop_reason(to_free)); 4083 return rc; 4084 } 4085 4086 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 4087 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 4088 return NET_XMIT_DROP; 4089 } 4090 /* 4091 * Heuristic to force contended enqueues to serialize on a 4092 * separate lock before trying to get qdisc main lock. 4093 * This permits qdisc->running owner to get the lock more 4094 * often and dequeue packets faster. 4095 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 4096 * and then other tasks will only enqueue packets. The packets will be 4097 * sent after the qdisc owner is scheduled again. To prevent this 4098 * scenario the task always serialize on the lock. 4099 */ 4100 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 4101 if (unlikely(contended)) 4102 spin_lock(&q->busylock); 4103 4104 spin_lock(root_lock); 4105 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4106 __qdisc_drop(skb, &to_free); 4107 rc = NET_XMIT_DROP; 4108 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4109 qdisc_run_begin(q)) { 4110 /* 4111 * This is a work-conserving queue; there are no old skbs 4112 * waiting to be sent out; and the qdisc is not running - 4113 * xmit the skb directly. 4114 */ 4115 4116 qdisc_bstats_update(q, skb); 4117 4118 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 4119 if (unlikely(contended)) { 4120 spin_unlock(&q->busylock); 4121 contended = false; 4122 } 4123 __qdisc_run(q); 4124 } 4125 4126 qdisc_run_end(q); 4127 rc = NET_XMIT_SUCCESS; 4128 } else { 4129 WRITE_ONCE(q->owner, smp_processor_id()); 4130 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4131 WRITE_ONCE(q->owner, -1); 4132 if (qdisc_run_begin(q)) { 4133 if (unlikely(contended)) { 4134 spin_unlock(&q->busylock); 4135 contended = false; 4136 } 4137 __qdisc_run(q); 4138 qdisc_run_end(q); 4139 } 4140 } 4141 spin_unlock(root_lock); 4142 if (unlikely(to_free)) 4143 kfree_skb_list_reason(to_free, 4144 tcf_get_drop_reason(to_free)); 4145 if (unlikely(contended)) 4146 spin_unlock(&q->busylock); 4147 return rc; 4148 } 4149 4150 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4151 static void skb_update_prio(struct sk_buff *skb) 4152 { 4153 const struct netprio_map *map; 4154 const struct sock *sk; 4155 unsigned int prioidx; 4156 4157 if (skb->priority) 4158 return; 4159 map = rcu_dereference_bh(skb->dev->priomap); 4160 if (!map) 4161 return; 4162 sk = skb_to_full_sk(skb); 4163 if (!sk) 4164 return; 4165 4166 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4167 4168 if (prioidx < map->priomap_len) 4169 skb->priority = map->priomap[prioidx]; 4170 } 4171 #else 4172 #define skb_update_prio(skb) 4173 #endif 4174 4175 /** 4176 * dev_loopback_xmit - loop back @skb 4177 * @net: network namespace this loopback is happening in 4178 * @sk: sk needed to be a netfilter okfn 4179 * @skb: buffer to transmit 4180 */ 4181 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4182 { 4183 skb_reset_mac_header(skb); 4184 __skb_pull(skb, skb_network_offset(skb)); 4185 skb->pkt_type = PACKET_LOOPBACK; 4186 if (skb->ip_summed == CHECKSUM_NONE) 4187 skb->ip_summed = CHECKSUM_UNNECESSARY; 4188 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4189 skb_dst_force(skb); 4190 netif_rx(skb); 4191 return 0; 4192 } 4193 EXPORT_SYMBOL(dev_loopback_xmit); 4194 4195 #ifdef CONFIG_NET_EGRESS 4196 static struct netdev_queue * 4197 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4198 { 4199 int qm = skb_get_queue_mapping(skb); 4200 4201 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4202 } 4203 4204 #ifndef CONFIG_PREEMPT_RT 4205 static bool netdev_xmit_txqueue_skipped(void) 4206 { 4207 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4208 } 4209 4210 void netdev_xmit_skip_txqueue(bool skip) 4211 { 4212 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4213 } 4214 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4215 4216 #else 4217 static bool netdev_xmit_txqueue_skipped(void) 4218 { 4219 return current->net_xmit.skip_txqueue; 4220 } 4221 4222 void netdev_xmit_skip_txqueue(bool skip) 4223 { 4224 current->net_xmit.skip_txqueue = skip; 4225 } 4226 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4227 #endif 4228 #endif /* CONFIG_NET_EGRESS */ 4229 4230 #ifdef CONFIG_NET_XGRESS 4231 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4232 enum skb_drop_reason *drop_reason) 4233 { 4234 int ret = TC_ACT_UNSPEC; 4235 #ifdef CONFIG_NET_CLS_ACT 4236 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4237 struct tcf_result res; 4238 4239 if (!miniq) 4240 return ret; 4241 4242 /* Global bypass */ 4243 if (!static_branch_likely(&tcf_sw_enabled_key)) 4244 return ret; 4245 4246 /* Block-wise bypass */ 4247 if (tcf_block_bypass_sw(miniq->block)) 4248 return ret; 4249 4250 tc_skb_cb(skb)->mru = 0; 4251 tc_skb_cb(skb)->post_ct = false; 4252 tcf_set_drop_reason(skb, *drop_reason); 4253 4254 mini_qdisc_bstats_cpu_update(miniq, skb); 4255 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4256 /* Only tcf related quirks below. */ 4257 switch (ret) { 4258 case TC_ACT_SHOT: 4259 *drop_reason = tcf_get_drop_reason(skb); 4260 mini_qdisc_qstats_cpu_drop(miniq); 4261 break; 4262 case TC_ACT_OK: 4263 case TC_ACT_RECLASSIFY: 4264 skb->tc_index = TC_H_MIN(res.classid); 4265 break; 4266 } 4267 #endif /* CONFIG_NET_CLS_ACT */ 4268 return ret; 4269 } 4270 4271 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4272 4273 void tcx_inc(void) 4274 { 4275 static_branch_inc(&tcx_needed_key); 4276 } 4277 4278 void tcx_dec(void) 4279 { 4280 static_branch_dec(&tcx_needed_key); 4281 } 4282 4283 static __always_inline enum tcx_action_base 4284 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4285 const bool needs_mac) 4286 { 4287 const struct bpf_mprog_fp *fp; 4288 const struct bpf_prog *prog; 4289 int ret = TCX_NEXT; 4290 4291 if (needs_mac) 4292 __skb_push(skb, skb->mac_len); 4293 bpf_mprog_foreach_prog(entry, fp, prog) { 4294 bpf_compute_data_pointers(skb); 4295 ret = bpf_prog_run(prog, skb); 4296 if (ret != TCX_NEXT) 4297 break; 4298 } 4299 if (needs_mac) 4300 __skb_pull(skb, skb->mac_len); 4301 return tcx_action_code(skb, ret); 4302 } 4303 4304 static __always_inline struct sk_buff * 4305 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4306 struct net_device *orig_dev, bool *another) 4307 { 4308 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4309 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4310 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4311 int sch_ret; 4312 4313 if (!entry) 4314 return skb; 4315 4316 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4317 if (*pt_prev) { 4318 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4319 *pt_prev = NULL; 4320 } 4321 4322 qdisc_skb_cb(skb)->pkt_len = skb->len; 4323 tcx_set_ingress(skb, true); 4324 4325 if (static_branch_unlikely(&tcx_needed_key)) { 4326 sch_ret = tcx_run(entry, skb, true); 4327 if (sch_ret != TC_ACT_UNSPEC) 4328 goto ingress_verdict; 4329 } 4330 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4331 ingress_verdict: 4332 switch (sch_ret) { 4333 case TC_ACT_REDIRECT: 4334 /* skb_mac_header check was done by BPF, so we can safely 4335 * push the L2 header back before redirecting to another 4336 * netdev. 4337 */ 4338 __skb_push(skb, skb->mac_len); 4339 if (skb_do_redirect(skb) == -EAGAIN) { 4340 __skb_pull(skb, skb->mac_len); 4341 *another = true; 4342 break; 4343 } 4344 *ret = NET_RX_SUCCESS; 4345 bpf_net_ctx_clear(bpf_net_ctx); 4346 return NULL; 4347 case TC_ACT_SHOT: 4348 kfree_skb_reason(skb, drop_reason); 4349 *ret = NET_RX_DROP; 4350 bpf_net_ctx_clear(bpf_net_ctx); 4351 return NULL; 4352 /* used by tc_run */ 4353 case TC_ACT_STOLEN: 4354 case TC_ACT_QUEUED: 4355 case TC_ACT_TRAP: 4356 consume_skb(skb); 4357 fallthrough; 4358 case TC_ACT_CONSUMED: 4359 *ret = NET_RX_SUCCESS; 4360 bpf_net_ctx_clear(bpf_net_ctx); 4361 return NULL; 4362 } 4363 bpf_net_ctx_clear(bpf_net_ctx); 4364 4365 return skb; 4366 } 4367 4368 static __always_inline struct sk_buff * 4369 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4370 { 4371 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4372 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4373 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4374 int sch_ret; 4375 4376 if (!entry) 4377 return skb; 4378 4379 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4380 4381 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4382 * already set by the caller. 4383 */ 4384 if (static_branch_unlikely(&tcx_needed_key)) { 4385 sch_ret = tcx_run(entry, skb, false); 4386 if (sch_ret != TC_ACT_UNSPEC) 4387 goto egress_verdict; 4388 } 4389 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4390 egress_verdict: 4391 switch (sch_ret) { 4392 case TC_ACT_REDIRECT: 4393 /* No need to push/pop skb's mac_header here on egress! */ 4394 skb_do_redirect(skb); 4395 *ret = NET_XMIT_SUCCESS; 4396 bpf_net_ctx_clear(bpf_net_ctx); 4397 return NULL; 4398 case TC_ACT_SHOT: 4399 kfree_skb_reason(skb, drop_reason); 4400 *ret = NET_XMIT_DROP; 4401 bpf_net_ctx_clear(bpf_net_ctx); 4402 return NULL; 4403 /* used by tc_run */ 4404 case TC_ACT_STOLEN: 4405 case TC_ACT_QUEUED: 4406 case TC_ACT_TRAP: 4407 consume_skb(skb); 4408 fallthrough; 4409 case TC_ACT_CONSUMED: 4410 *ret = NET_XMIT_SUCCESS; 4411 bpf_net_ctx_clear(bpf_net_ctx); 4412 return NULL; 4413 } 4414 bpf_net_ctx_clear(bpf_net_ctx); 4415 4416 return skb; 4417 } 4418 #else 4419 static __always_inline struct sk_buff * 4420 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4421 struct net_device *orig_dev, bool *another) 4422 { 4423 return skb; 4424 } 4425 4426 static __always_inline struct sk_buff * 4427 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4428 { 4429 return skb; 4430 } 4431 #endif /* CONFIG_NET_XGRESS */ 4432 4433 #ifdef CONFIG_XPS 4434 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4435 struct xps_dev_maps *dev_maps, unsigned int tci) 4436 { 4437 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4438 struct xps_map *map; 4439 int queue_index = -1; 4440 4441 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4442 return queue_index; 4443 4444 tci *= dev_maps->num_tc; 4445 tci += tc; 4446 4447 map = rcu_dereference(dev_maps->attr_map[tci]); 4448 if (map) { 4449 if (map->len == 1) 4450 queue_index = map->queues[0]; 4451 else 4452 queue_index = map->queues[reciprocal_scale( 4453 skb_get_hash(skb), map->len)]; 4454 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4455 queue_index = -1; 4456 } 4457 return queue_index; 4458 } 4459 #endif 4460 4461 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4462 struct sk_buff *skb) 4463 { 4464 #ifdef CONFIG_XPS 4465 struct xps_dev_maps *dev_maps; 4466 struct sock *sk = skb->sk; 4467 int queue_index = -1; 4468 4469 if (!static_key_false(&xps_needed)) 4470 return -1; 4471 4472 rcu_read_lock(); 4473 if (!static_key_false(&xps_rxqs_needed)) 4474 goto get_cpus_map; 4475 4476 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4477 if (dev_maps) { 4478 int tci = sk_rx_queue_get(sk); 4479 4480 if (tci >= 0) 4481 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4482 tci); 4483 } 4484 4485 get_cpus_map: 4486 if (queue_index < 0) { 4487 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4488 if (dev_maps) { 4489 unsigned int tci = skb->sender_cpu - 1; 4490 4491 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4492 tci); 4493 } 4494 } 4495 rcu_read_unlock(); 4496 4497 return queue_index; 4498 #else 4499 return -1; 4500 #endif 4501 } 4502 4503 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4504 struct net_device *sb_dev) 4505 { 4506 return 0; 4507 } 4508 EXPORT_SYMBOL(dev_pick_tx_zero); 4509 4510 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4511 struct net_device *sb_dev) 4512 { 4513 struct sock *sk = skb->sk; 4514 int queue_index = sk_tx_queue_get(sk); 4515 4516 sb_dev = sb_dev ? : dev; 4517 4518 if (queue_index < 0 || skb->ooo_okay || 4519 queue_index >= dev->real_num_tx_queues) { 4520 int new_index = get_xps_queue(dev, sb_dev, skb); 4521 4522 if (new_index < 0) 4523 new_index = skb_tx_hash(dev, sb_dev, skb); 4524 4525 if (queue_index != new_index && sk && 4526 sk_fullsock(sk) && 4527 rcu_access_pointer(sk->sk_dst_cache)) 4528 sk_tx_queue_set(sk, new_index); 4529 4530 queue_index = new_index; 4531 } 4532 4533 return queue_index; 4534 } 4535 EXPORT_SYMBOL(netdev_pick_tx); 4536 4537 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4538 struct sk_buff *skb, 4539 struct net_device *sb_dev) 4540 { 4541 int queue_index = 0; 4542 4543 #ifdef CONFIG_XPS 4544 u32 sender_cpu = skb->sender_cpu - 1; 4545 4546 if (sender_cpu >= (u32)NR_CPUS) 4547 skb->sender_cpu = raw_smp_processor_id() + 1; 4548 #endif 4549 4550 if (dev->real_num_tx_queues != 1) { 4551 const struct net_device_ops *ops = dev->netdev_ops; 4552 4553 if (ops->ndo_select_queue) 4554 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4555 else 4556 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4557 4558 queue_index = netdev_cap_txqueue(dev, queue_index); 4559 } 4560 4561 skb_set_queue_mapping(skb, queue_index); 4562 return netdev_get_tx_queue(dev, queue_index); 4563 } 4564 4565 /** 4566 * __dev_queue_xmit() - transmit a buffer 4567 * @skb: buffer to transmit 4568 * @sb_dev: suboordinate device used for L2 forwarding offload 4569 * 4570 * Queue a buffer for transmission to a network device. The caller must 4571 * have set the device and priority and built the buffer before calling 4572 * this function. The function can be called from an interrupt. 4573 * 4574 * When calling this method, interrupts MUST be enabled. This is because 4575 * the BH enable code must have IRQs enabled so that it will not deadlock. 4576 * 4577 * Regardless of the return value, the skb is consumed, so it is currently 4578 * difficult to retry a send to this method. (You can bump the ref count 4579 * before sending to hold a reference for retry if you are careful.) 4580 * 4581 * Return: 4582 * * 0 - buffer successfully transmitted 4583 * * positive qdisc return code - NET_XMIT_DROP etc. 4584 * * negative errno - other errors 4585 */ 4586 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4587 { 4588 struct net_device *dev = skb->dev; 4589 struct netdev_queue *txq = NULL; 4590 struct Qdisc *q; 4591 int rc = -ENOMEM; 4592 bool again = false; 4593 4594 skb_reset_mac_header(skb); 4595 skb_assert_len(skb); 4596 4597 if (unlikely(skb_shinfo(skb)->tx_flags & 4598 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4599 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4600 4601 /* Disable soft irqs for various locks below. Also 4602 * stops preemption for RCU. 4603 */ 4604 rcu_read_lock_bh(); 4605 4606 skb_update_prio(skb); 4607 4608 qdisc_pkt_len_init(skb); 4609 tcx_set_ingress(skb, false); 4610 #ifdef CONFIG_NET_EGRESS 4611 if (static_branch_unlikely(&egress_needed_key)) { 4612 if (nf_hook_egress_active()) { 4613 skb = nf_hook_egress(skb, &rc, dev); 4614 if (!skb) 4615 goto out; 4616 } 4617 4618 netdev_xmit_skip_txqueue(false); 4619 4620 nf_skip_egress(skb, true); 4621 skb = sch_handle_egress(skb, &rc, dev); 4622 if (!skb) 4623 goto out; 4624 nf_skip_egress(skb, false); 4625 4626 if (netdev_xmit_txqueue_skipped()) 4627 txq = netdev_tx_queue_mapping(dev, skb); 4628 } 4629 #endif 4630 /* If device/qdisc don't need skb->dst, release it right now while 4631 * its hot in this cpu cache. 4632 */ 4633 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4634 skb_dst_drop(skb); 4635 else 4636 skb_dst_force(skb); 4637 4638 if (!txq) 4639 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4640 4641 q = rcu_dereference_bh(txq->qdisc); 4642 4643 trace_net_dev_queue(skb); 4644 if (q->enqueue) { 4645 rc = __dev_xmit_skb(skb, q, dev, txq); 4646 goto out; 4647 } 4648 4649 /* The device has no queue. Common case for software devices: 4650 * loopback, all the sorts of tunnels... 4651 4652 * Really, it is unlikely that netif_tx_lock protection is necessary 4653 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4654 * counters.) 4655 * However, it is possible, that they rely on protection 4656 * made by us here. 4657 4658 * Check this and shot the lock. It is not prone from deadlocks. 4659 *Either shot noqueue qdisc, it is even simpler 8) 4660 */ 4661 if (dev->flags & IFF_UP) { 4662 int cpu = smp_processor_id(); /* ok because BHs are off */ 4663 4664 /* Other cpus might concurrently change txq->xmit_lock_owner 4665 * to -1 or to their cpu id, but not to our id. 4666 */ 4667 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4668 if (dev_xmit_recursion()) 4669 goto recursion_alert; 4670 4671 skb = validate_xmit_skb(skb, dev, &again); 4672 if (!skb) 4673 goto out; 4674 4675 HARD_TX_LOCK(dev, txq, cpu); 4676 4677 if (!netif_xmit_stopped(txq)) { 4678 dev_xmit_recursion_inc(); 4679 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4680 dev_xmit_recursion_dec(); 4681 if (dev_xmit_complete(rc)) { 4682 HARD_TX_UNLOCK(dev, txq); 4683 goto out; 4684 } 4685 } 4686 HARD_TX_UNLOCK(dev, txq); 4687 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4688 dev->name); 4689 } else { 4690 /* Recursion is detected! It is possible, 4691 * unfortunately 4692 */ 4693 recursion_alert: 4694 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4695 dev->name); 4696 } 4697 } 4698 4699 rc = -ENETDOWN; 4700 rcu_read_unlock_bh(); 4701 4702 dev_core_stats_tx_dropped_inc(dev); 4703 kfree_skb_list(skb); 4704 return rc; 4705 out: 4706 rcu_read_unlock_bh(); 4707 return rc; 4708 } 4709 EXPORT_SYMBOL(__dev_queue_xmit); 4710 4711 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4712 { 4713 struct net_device *dev = skb->dev; 4714 struct sk_buff *orig_skb = skb; 4715 struct netdev_queue *txq; 4716 int ret = NETDEV_TX_BUSY; 4717 bool again = false; 4718 4719 if (unlikely(!netif_running(dev) || 4720 !netif_carrier_ok(dev))) 4721 goto drop; 4722 4723 skb = validate_xmit_skb_list(skb, dev, &again); 4724 if (skb != orig_skb) 4725 goto drop; 4726 4727 skb_set_queue_mapping(skb, queue_id); 4728 txq = skb_get_tx_queue(dev, skb); 4729 4730 local_bh_disable(); 4731 4732 dev_xmit_recursion_inc(); 4733 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4734 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4735 ret = netdev_start_xmit(skb, dev, txq, false); 4736 HARD_TX_UNLOCK(dev, txq); 4737 dev_xmit_recursion_dec(); 4738 4739 local_bh_enable(); 4740 return ret; 4741 drop: 4742 dev_core_stats_tx_dropped_inc(dev); 4743 kfree_skb_list(skb); 4744 return NET_XMIT_DROP; 4745 } 4746 EXPORT_SYMBOL(__dev_direct_xmit); 4747 4748 /************************************************************************* 4749 * Receiver routines 4750 *************************************************************************/ 4751 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4752 4753 int weight_p __read_mostly = 64; /* old backlog weight */ 4754 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4755 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4756 4757 /* Called with irq disabled */ 4758 static inline void ____napi_schedule(struct softnet_data *sd, 4759 struct napi_struct *napi) 4760 { 4761 struct task_struct *thread; 4762 4763 lockdep_assert_irqs_disabled(); 4764 4765 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4766 /* Paired with smp_mb__before_atomic() in 4767 * napi_enable()/dev_set_threaded(). 4768 * Use READ_ONCE() to guarantee a complete 4769 * read on napi->thread. Only call 4770 * wake_up_process() when it's not NULL. 4771 */ 4772 thread = READ_ONCE(napi->thread); 4773 if (thread) { 4774 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4775 goto use_local_napi; 4776 4777 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4778 wake_up_process(thread); 4779 return; 4780 } 4781 } 4782 4783 use_local_napi: 4784 list_add_tail(&napi->poll_list, &sd->poll_list); 4785 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4786 /* If not called from net_rx_action() 4787 * we have to raise NET_RX_SOFTIRQ. 4788 */ 4789 if (!sd->in_net_rx_action) 4790 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4791 } 4792 4793 #ifdef CONFIG_RPS 4794 4795 struct static_key_false rps_needed __read_mostly; 4796 EXPORT_SYMBOL(rps_needed); 4797 struct static_key_false rfs_needed __read_mostly; 4798 EXPORT_SYMBOL(rfs_needed); 4799 4800 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4801 { 4802 return hash_32(hash, flow_table->log); 4803 } 4804 4805 static struct rps_dev_flow * 4806 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4807 struct rps_dev_flow *rflow, u16 next_cpu) 4808 { 4809 if (next_cpu < nr_cpu_ids) { 4810 u32 head; 4811 #ifdef CONFIG_RFS_ACCEL 4812 struct netdev_rx_queue *rxqueue; 4813 struct rps_dev_flow_table *flow_table; 4814 struct rps_dev_flow *old_rflow; 4815 u16 rxq_index; 4816 u32 flow_id; 4817 int rc; 4818 4819 /* Should we steer this flow to a different hardware queue? */ 4820 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4821 !(dev->features & NETIF_F_NTUPLE)) 4822 goto out; 4823 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4824 if (rxq_index == skb_get_rx_queue(skb)) 4825 goto out; 4826 4827 rxqueue = dev->_rx + rxq_index; 4828 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4829 if (!flow_table) 4830 goto out; 4831 flow_id = rfs_slot(skb_get_hash(skb), flow_table); 4832 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4833 rxq_index, flow_id); 4834 if (rc < 0) 4835 goto out; 4836 old_rflow = rflow; 4837 rflow = &flow_table->flows[flow_id]; 4838 WRITE_ONCE(rflow->filter, rc); 4839 if (old_rflow->filter == rc) 4840 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4841 out: 4842 #endif 4843 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4844 rps_input_queue_tail_save(&rflow->last_qtail, head); 4845 } 4846 4847 WRITE_ONCE(rflow->cpu, next_cpu); 4848 return rflow; 4849 } 4850 4851 /* 4852 * get_rps_cpu is called from netif_receive_skb and returns the target 4853 * CPU from the RPS map of the receiving queue for a given skb. 4854 * rcu_read_lock must be held on entry. 4855 */ 4856 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4857 struct rps_dev_flow **rflowp) 4858 { 4859 const struct rps_sock_flow_table *sock_flow_table; 4860 struct netdev_rx_queue *rxqueue = dev->_rx; 4861 struct rps_dev_flow_table *flow_table; 4862 struct rps_map *map; 4863 int cpu = -1; 4864 u32 tcpu; 4865 u32 hash; 4866 4867 if (skb_rx_queue_recorded(skb)) { 4868 u16 index = skb_get_rx_queue(skb); 4869 4870 if (unlikely(index >= dev->real_num_rx_queues)) { 4871 WARN_ONCE(dev->real_num_rx_queues > 1, 4872 "%s received packet on queue %u, but number " 4873 "of RX queues is %u\n", 4874 dev->name, index, dev->real_num_rx_queues); 4875 goto done; 4876 } 4877 rxqueue += index; 4878 } 4879 4880 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4881 4882 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4883 map = rcu_dereference(rxqueue->rps_map); 4884 if (!flow_table && !map) 4885 goto done; 4886 4887 skb_reset_network_header(skb); 4888 hash = skb_get_hash(skb); 4889 if (!hash) 4890 goto done; 4891 4892 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4893 if (flow_table && sock_flow_table) { 4894 struct rps_dev_flow *rflow; 4895 u32 next_cpu; 4896 u32 ident; 4897 4898 /* First check into global flow table if there is a match. 4899 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4900 */ 4901 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4902 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4903 goto try_rps; 4904 4905 next_cpu = ident & net_hotdata.rps_cpu_mask; 4906 4907 /* OK, now we know there is a match, 4908 * we can look at the local (per receive queue) flow table 4909 */ 4910 rflow = &flow_table->flows[rfs_slot(hash, flow_table)]; 4911 tcpu = rflow->cpu; 4912 4913 /* 4914 * If the desired CPU (where last recvmsg was done) is 4915 * different from current CPU (one in the rx-queue flow 4916 * table entry), switch if one of the following holds: 4917 * - Current CPU is unset (>= nr_cpu_ids). 4918 * - Current CPU is offline. 4919 * - The current CPU's queue tail has advanced beyond the 4920 * last packet that was enqueued using this table entry. 4921 * This guarantees that all previous packets for the flow 4922 * have been dequeued, thus preserving in order delivery. 4923 */ 4924 if (unlikely(tcpu != next_cpu) && 4925 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4926 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4927 rflow->last_qtail)) >= 0)) { 4928 tcpu = next_cpu; 4929 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4930 } 4931 4932 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4933 *rflowp = rflow; 4934 cpu = tcpu; 4935 goto done; 4936 } 4937 } 4938 4939 try_rps: 4940 4941 if (map) { 4942 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4943 if (cpu_online(tcpu)) { 4944 cpu = tcpu; 4945 goto done; 4946 } 4947 } 4948 4949 done: 4950 return cpu; 4951 } 4952 4953 #ifdef CONFIG_RFS_ACCEL 4954 4955 /** 4956 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4957 * @dev: Device on which the filter was set 4958 * @rxq_index: RX queue index 4959 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4960 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4961 * 4962 * Drivers that implement ndo_rx_flow_steer() should periodically call 4963 * this function for each installed filter and remove the filters for 4964 * which it returns %true. 4965 */ 4966 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4967 u32 flow_id, u16 filter_id) 4968 { 4969 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4970 struct rps_dev_flow_table *flow_table; 4971 struct rps_dev_flow *rflow; 4972 bool expire = true; 4973 unsigned int cpu; 4974 4975 rcu_read_lock(); 4976 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4977 if (flow_table && flow_id < (1UL << flow_table->log)) { 4978 rflow = &flow_table->flows[flow_id]; 4979 cpu = READ_ONCE(rflow->cpu); 4980 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 4981 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 4982 READ_ONCE(rflow->last_qtail)) < 4983 (int)(10 << flow_table->log))) 4984 expire = false; 4985 } 4986 rcu_read_unlock(); 4987 return expire; 4988 } 4989 EXPORT_SYMBOL(rps_may_expire_flow); 4990 4991 #endif /* CONFIG_RFS_ACCEL */ 4992 4993 /* Called from hardirq (IPI) context */ 4994 static void rps_trigger_softirq(void *data) 4995 { 4996 struct softnet_data *sd = data; 4997 4998 ____napi_schedule(sd, &sd->backlog); 4999 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5000 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5001 } 5002 5003 #endif /* CONFIG_RPS */ 5004 5005 /* Called from hardirq (IPI) context */ 5006 static void trigger_rx_softirq(void *data) 5007 { 5008 struct softnet_data *sd = data; 5009 5010 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5011 smp_store_release(&sd->defer_ipi_scheduled, 0); 5012 } 5013 5014 /* 5015 * After we queued a packet into sd->input_pkt_queue, 5016 * we need to make sure this queue is serviced soon. 5017 * 5018 * - If this is another cpu queue, link it to our rps_ipi_list, 5019 * and make sure we will process rps_ipi_list from net_rx_action(). 5020 * 5021 * - If this is our own queue, NAPI schedule our backlog. 5022 * Note that this also raises NET_RX_SOFTIRQ. 5023 */ 5024 static void napi_schedule_rps(struct softnet_data *sd) 5025 { 5026 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5027 5028 #ifdef CONFIG_RPS 5029 if (sd != mysd) { 5030 if (use_backlog_threads()) { 5031 __napi_schedule_irqoff(&sd->backlog); 5032 return; 5033 } 5034 5035 sd->rps_ipi_next = mysd->rps_ipi_list; 5036 mysd->rps_ipi_list = sd; 5037 5038 /* If not called from net_rx_action() or napi_threaded_poll() 5039 * we have to raise NET_RX_SOFTIRQ. 5040 */ 5041 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5042 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5043 return; 5044 } 5045 #endif /* CONFIG_RPS */ 5046 __napi_schedule_irqoff(&mysd->backlog); 5047 } 5048 5049 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 5050 { 5051 unsigned long flags; 5052 5053 if (use_backlog_threads()) { 5054 backlog_lock_irq_save(sd, &flags); 5055 5056 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5057 __napi_schedule_irqoff(&sd->backlog); 5058 5059 backlog_unlock_irq_restore(sd, &flags); 5060 5061 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5062 smp_call_function_single_async(cpu, &sd->defer_csd); 5063 } 5064 } 5065 5066 #ifdef CONFIG_NET_FLOW_LIMIT 5067 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5068 #endif 5069 5070 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 5071 { 5072 #ifdef CONFIG_NET_FLOW_LIMIT 5073 struct sd_flow_limit *fl; 5074 struct softnet_data *sd; 5075 unsigned int old_flow, new_flow; 5076 5077 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 5078 return false; 5079 5080 sd = this_cpu_ptr(&softnet_data); 5081 5082 rcu_read_lock(); 5083 fl = rcu_dereference(sd->flow_limit); 5084 if (fl) { 5085 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5086 old_flow = fl->history[fl->history_head]; 5087 fl->history[fl->history_head] = new_flow; 5088 5089 fl->history_head++; 5090 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5091 5092 if (likely(fl->buckets[old_flow])) 5093 fl->buckets[old_flow]--; 5094 5095 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5096 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5097 WRITE_ONCE(fl->count, fl->count + 1); 5098 rcu_read_unlock(); 5099 return true; 5100 } 5101 } 5102 rcu_read_unlock(); 5103 #endif 5104 return false; 5105 } 5106 5107 /* 5108 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5109 * queue (may be a remote CPU queue). 5110 */ 5111 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5112 unsigned int *qtail) 5113 { 5114 enum skb_drop_reason reason; 5115 struct softnet_data *sd; 5116 unsigned long flags; 5117 unsigned int qlen; 5118 int max_backlog; 5119 u32 tail; 5120 5121 reason = SKB_DROP_REASON_DEV_READY; 5122 if (!netif_running(skb->dev)) 5123 goto bad_dev; 5124 5125 reason = SKB_DROP_REASON_CPU_BACKLOG; 5126 sd = &per_cpu(softnet_data, cpu); 5127 5128 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5129 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5130 if (unlikely(qlen > max_backlog)) 5131 goto cpu_backlog_drop; 5132 backlog_lock_irq_save(sd, &flags); 5133 qlen = skb_queue_len(&sd->input_pkt_queue); 5134 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 5135 if (!qlen) { 5136 /* Schedule NAPI for backlog device. We can use 5137 * non atomic operation as we own the queue lock. 5138 */ 5139 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5140 &sd->backlog.state)) 5141 napi_schedule_rps(sd); 5142 } 5143 __skb_queue_tail(&sd->input_pkt_queue, skb); 5144 tail = rps_input_queue_tail_incr(sd); 5145 backlog_unlock_irq_restore(sd, &flags); 5146 5147 /* save the tail outside of the critical section */ 5148 rps_input_queue_tail_save(qtail, tail); 5149 return NET_RX_SUCCESS; 5150 } 5151 5152 backlog_unlock_irq_restore(sd, &flags); 5153 5154 cpu_backlog_drop: 5155 atomic_inc(&sd->dropped); 5156 bad_dev: 5157 dev_core_stats_rx_dropped_inc(skb->dev); 5158 kfree_skb_reason(skb, reason); 5159 return NET_RX_DROP; 5160 } 5161 5162 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5163 { 5164 struct net_device *dev = skb->dev; 5165 struct netdev_rx_queue *rxqueue; 5166 5167 rxqueue = dev->_rx; 5168 5169 if (skb_rx_queue_recorded(skb)) { 5170 u16 index = skb_get_rx_queue(skb); 5171 5172 if (unlikely(index >= dev->real_num_rx_queues)) { 5173 WARN_ONCE(dev->real_num_rx_queues > 1, 5174 "%s received packet on queue %u, but number " 5175 "of RX queues is %u\n", 5176 dev->name, index, dev->real_num_rx_queues); 5177 5178 return rxqueue; /* Return first rxqueue */ 5179 } 5180 rxqueue += index; 5181 } 5182 return rxqueue; 5183 } 5184 5185 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5186 const struct bpf_prog *xdp_prog) 5187 { 5188 void *orig_data, *orig_data_end, *hard_start; 5189 struct netdev_rx_queue *rxqueue; 5190 bool orig_bcast, orig_host; 5191 u32 mac_len, frame_sz; 5192 __be16 orig_eth_type; 5193 struct ethhdr *eth; 5194 u32 metalen, act; 5195 int off; 5196 5197 /* The XDP program wants to see the packet starting at the MAC 5198 * header. 5199 */ 5200 mac_len = skb->data - skb_mac_header(skb); 5201 hard_start = skb->data - skb_headroom(skb); 5202 5203 /* SKB "head" area always have tailroom for skb_shared_info */ 5204 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5205 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5206 5207 rxqueue = netif_get_rxqueue(skb); 5208 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5209 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5210 skb_headlen(skb) + mac_len, true); 5211 if (skb_is_nonlinear(skb)) { 5212 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5213 xdp_buff_set_frags_flag(xdp); 5214 } else { 5215 xdp_buff_clear_frags_flag(xdp); 5216 } 5217 5218 orig_data_end = xdp->data_end; 5219 orig_data = xdp->data; 5220 eth = (struct ethhdr *)xdp->data; 5221 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5222 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5223 orig_eth_type = eth->h_proto; 5224 5225 act = bpf_prog_run_xdp(xdp_prog, xdp); 5226 5227 /* check if bpf_xdp_adjust_head was used */ 5228 off = xdp->data - orig_data; 5229 if (off) { 5230 if (off > 0) 5231 __skb_pull(skb, off); 5232 else if (off < 0) 5233 __skb_push(skb, -off); 5234 5235 skb->mac_header += off; 5236 skb_reset_network_header(skb); 5237 } 5238 5239 /* check if bpf_xdp_adjust_tail was used */ 5240 off = xdp->data_end - orig_data_end; 5241 if (off != 0) { 5242 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5243 skb->len += off; /* positive on grow, negative on shrink */ 5244 } 5245 5246 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5247 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5248 */ 5249 if (xdp_buff_has_frags(xdp)) 5250 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5251 else 5252 skb->data_len = 0; 5253 5254 /* check if XDP changed eth hdr such SKB needs update */ 5255 eth = (struct ethhdr *)xdp->data; 5256 if ((orig_eth_type != eth->h_proto) || 5257 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5258 skb->dev->dev_addr)) || 5259 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5260 __skb_push(skb, ETH_HLEN); 5261 skb->pkt_type = PACKET_HOST; 5262 skb->protocol = eth_type_trans(skb, skb->dev); 5263 } 5264 5265 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5266 * before calling us again on redirect path. We do not call do_redirect 5267 * as we leave that up to the caller. 5268 * 5269 * Caller is responsible for managing lifetime of skb (i.e. calling 5270 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5271 */ 5272 switch (act) { 5273 case XDP_REDIRECT: 5274 case XDP_TX: 5275 __skb_push(skb, mac_len); 5276 break; 5277 case XDP_PASS: 5278 metalen = xdp->data - xdp->data_meta; 5279 if (metalen) 5280 skb_metadata_set(skb, metalen); 5281 break; 5282 } 5283 5284 return act; 5285 } 5286 5287 static int 5288 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5289 { 5290 struct sk_buff *skb = *pskb; 5291 int err, hroom, troom; 5292 5293 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog)) 5294 return 0; 5295 5296 /* In case we have to go down the path and also linearize, 5297 * then lets do the pskb_expand_head() work just once here. 5298 */ 5299 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5300 troom = skb->tail + skb->data_len - skb->end; 5301 err = pskb_expand_head(skb, 5302 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5303 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5304 if (err) 5305 return err; 5306 5307 return skb_linearize(skb); 5308 } 5309 5310 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5311 struct xdp_buff *xdp, 5312 const struct bpf_prog *xdp_prog) 5313 { 5314 struct sk_buff *skb = *pskb; 5315 u32 mac_len, act = XDP_DROP; 5316 5317 /* Reinjected packets coming from act_mirred or similar should 5318 * not get XDP generic processing. 5319 */ 5320 if (skb_is_redirected(skb)) 5321 return XDP_PASS; 5322 5323 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5324 * bytes. This is the guarantee that also native XDP provides, 5325 * thus we need to do it here as well. 5326 */ 5327 mac_len = skb->data - skb_mac_header(skb); 5328 __skb_push(skb, mac_len); 5329 5330 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5331 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5332 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5333 goto do_drop; 5334 } 5335 5336 __skb_pull(*pskb, mac_len); 5337 5338 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5339 switch (act) { 5340 case XDP_REDIRECT: 5341 case XDP_TX: 5342 case XDP_PASS: 5343 break; 5344 default: 5345 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5346 fallthrough; 5347 case XDP_ABORTED: 5348 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5349 fallthrough; 5350 case XDP_DROP: 5351 do_drop: 5352 kfree_skb(*pskb); 5353 break; 5354 } 5355 5356 return act; 5357 } 5358 5359 /* When doing generic XDP we have to bypass the qdisc layer and the 5360 * network taps in order to match in-driver-XDP behavior. This also means 5361 * that XDP packets are able to starve other packets going through a qdisc, 5362 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5363 * queues, so they do not have this starvation issue. 5364 */ 5365 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5366 { 5367 struct net_device *dev = skb->dev; 5368 struct netdev_queue *txq; 5369 bool free_skb = true; 5370 int cpu, rc; 5371 5372 txq = netdev_core_pick_tx(dev, skb, NULL); 5373 cpu = smp_processor_id(); 5374 HARD_TX_LOCK(dev, txq, cpu); 5375 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5376 rc = netdev_start_xmit(skb, dev, txq, 0); 5377 if (dev_xmit_complete(rc)) 5378 free_skb = false; 5379 } 5380 HARD_TX_UNLOCK(dev, txq); 5381 if (free_skb) { 5382 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5383 dev_core_stats_tx_dropped_inc(dev); 5384 kfree_skb(skb); 5385 } 5386 } 5387 5388 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5389 5390 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5391 { 5392 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5393 5394 if (xdp_prog) { 5395 struct xdp_buff xdp; 5396 u32 act; 5397 int err; 5398 5399 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5400 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5401 if (act != XDP_PASS) { 5402 switch (act) { 5403 case XDP_REDIRECT: 5404 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5405 &xdp, xdp_prog); 5406 if (err) 5407 goto out_redir; 5408 break; 5409 case XDP_TX: 5410 generic_xdp_tx(*pskb, xdp_prog); 5411 break; 5412 } 5413 bpf_net_ctx_clear(bpf_net_ctx); 5414 return XDP_DROP; 5415 } 5416 bpf_net_ctx_clear(bpf_net_ctx); 5417 } 5418 return XDP_PASS; 5419 out_redir: 5420 bpf_net_ctx_clear(bpf_net_ctx); 5421 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5422 return XDP_DROP; 5423 } 5424 EXPORT_SYMBOL_GPL(do_xdp_generic); 5425 5426 static int netif_rx_internal(struct sk_buff *skb) 5427 { 5428 int ret; 5429 5430 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5431 5432 trace_netif_rx(skb); 5433 5434 #ifdef CONFIG_RPS 5435 if (static_branch_unlikely(&rps_needed)) { 5436 struct rps_dev_flow voidflow, *rflow = &voidflow; 5437 int cpu; 5438 5439 rcu_read_lock(); 5440 5441 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5442 if (cpu < 0) 5443 cpu = smp_processor_id(); 5444 5445 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5446 5447 rcu_read_unlock(); 5448 } else 5449 #endif 5450 { 5451 unsigned int qtail; 5452 5453 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5454 } 5455 return ret; 5456 } 5457 5458 /** 5459 * __netif_rx - Slightly optimized version of netif_rx 5460 * @skb: buffer to post 5461 * 5462 * This behaves as netif_rx except that it does not disable bottom halves. 5463 * As a result this function may only be invoked from the interrupt context 5464 * (either hard or soft interrupt). 5465 */ 5466 int __netif_rx(struct sk_buff *skb) 5467 { 5468 int ret; 5469 5470 lockdep_assert_once(hardirq_count() | softirq_count()); 5471 5472 trace_netif_rx_entry(skb); 5473 ret = netif_rx_internal(skb); 5474 trace_netif_rx_exit(ret); 5475 return ret; 5476 } 5477 EXPORT_SYMBOL(__netif_rx); 5478 5479 /** 5480 * netif_rx - post buffer to the network code 5481 * @skb: buffer to post 5482 * 5483 * This function receives a packet from a device driver and queues it for 5484 * the upper (protocol) levels to process via the backlog NAPI device. It 5485 * always succeeds. The buffer may be dropped during processing for 5486 * congestion control or by the protocol layers. 5487 * The network buffer is passed via the backlog NAPI device. Modern NIC 5488 * driver should use NAPI and GRO. 5489 * This function can used from interrupt and from process context. The 5490 * caller from process context must not disable interrupts before invoking 5491 * this function. 5492 * 5493 * return values: 5494 * NET_RX_SUCCESS (no congestion) 5495 * NET_RX_DROP (packet was dropped) 5496 * 5497 */ 5498 int netif_rx(struct sk_buff *skb) 5499 { 5500 bool need_bh_off = !(hardirq_count() | softirq_count()); 5501 int ret; 5502 5503 if (need_bh_off) 5504 local_bh_disable(); 5505 trace_netif_rx_entry(skb); 5506 ret = netif_rx_internal(skb); 5507 trace_netif_rx_exit(ret); 5508 if (need_bh_off) 5509 local_bh_enable(); 5510 return ret; 5511 } 5512 EXPORT_SYMBOL(netif_rx); 5513 5514 static __latent_entropy void net_tx_action(void) 5515 { 5516 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5517 5518 if (sd->completion_queue) { 5519 struct sk_buff *clist; 5520 5521 local_irq_disable(); 5522 clist = sd->completion_queue; 5523 sd->completion_queue = NULL; 5524 local_irq_enable(); 5525 5526 while (clist) { 5527 struct sk_buff *skb = clist; 5528 5529 clist = clist->next; 5530 5531 WARN_ON(refcount_read(&skb->users)); 5532 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5533 trace_consume_skb(skb, net_tx_action); 5534 else 5535 trace_kfree_skb(skb, net_tx_action, 5536 get_kfree_skb_cb(skb)->reason, NULL); 5537 5538 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5539 __kfree_skb(skb); 5540 else 5541 __napi_kfree_skb(skb, 5542 get_kfree_skb_cb(skb)->reason); 5543 } 5544 } 5545 5546 if (sd->output_queue) { 5547 struct Qdisc *head; 5548 5549 local_irq_disable(); 5550 head = sd->output_queue; 5551 sd->output_queue = NULL; 5552 sd->output_queue_tailp = &sd->output_queue; 5553 local_irq_enable(); 5554 5555 rcu_read_lock(); 5556 5557 while (head) { 5558 struct Qdisc *q = head; 5559 spinlock_t *root_lock = NULL; 5560 5561 head = head->next_sched; 5562 5563 /* We need to make sure head->next_sched is read 5564 * before clearing __QDISC_STATE_SCHED 5565 */ 5566 smp_mb__before_atomic(); 5567 5568 if (!(q->flags & TCQ_F_NOLOCK)) { 5569 root_lock = qdisc_lock(q); 5570 spin_lock(root_lock); 5571 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5572 &q->state))) { 5573 /* There is a synchronize_net() between 5574 * STATE_DEACTIVATED flag being set and 5575 * qdisc_reset()/some_qdisc_is_busy() in 5576 * dev_deactivate(), so we can safely bail out 5577 * early here to avoid data race between 5578 * qdisc_deactivate() and some_qdisc_is_busy() 5579 * for lockless qdisc. 5580 */ 5581 clear_bit(__QDISC_STATE_SCHED, &q->state); 5582 continue; 5583 } 5584 5585 clear_bit(__QDISC_STATE_SCHED, &q->state); 5586 qdisc_run(q); 5587 if (root_lock) 5588 spin_unlock(root_lock); 5589 } 5590 5591 rcu_read_unlock(); 5592 } 5593 5594 xfrm_dev_backlog(sd); 5595 } 5596 5597 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5598 /* This hook is defined here for ATM LANE */ 5599 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5600 unsigned char *addr) __read_mostly; 5601 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5602 #endif 5603 5604 /** 5605 * netdev_is_rx_handler_busy - check if receive handler is registered 5606 * @dev: device to check 5607 * 5608 * Check if a receive handler is already registered for a given device. 5609 * Return true if there one. 5610 * 5611 * The caller must hold the rtnl_mutex. 5612 */ 5613 bool netdev_is_rx_handler_busy(struct net_device *dev) 5614 { 5615 ASSERT_RTNL(); 5616 return dev && rtnl_dereference(dev->rx_handler); 5617 } 5618 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5619 5620 /** 5621 * netdev_rx_handler_register - register receive handler 5622 * @dev: device to register a handler for 5623 * @rx_handler: receive handler to register 5624 * @rx_handler_data: data pointer that is used by rx handler 5625 * 5626 * Register a receive handler for a device. This handler will then be 5627 * called from __netif_receive_skb. A negative errno code is returned 5628 * on a failure. 5629 * 5630 * The caller must hold the rtnl_mutex. 5631 * 5632 * For a general description of rx_handler, see enum rx_handler_result. 5633 */ 5634 int netdev_rx_handler_register(struct net_device *dev, 5635 rx_handler_func_t *rx_handler, 5636 void *rx_handler_data) 5637 { 5638 if (netdev_is_rx_handler_busy(dev)) 5639 return -EBUSY; 5640 5641 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5642 return -EINVAL; 5643 5644 /* Note: rx_handler_data must be set before rx_handler */ 5645 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5646 rcu_assign_pointer(dev->rx_handler, rx_handler); 5647 5648 return 0; 5649 } 5650 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5651 5652 /** 5653 * netdev_rx_handler_unregister - unregister receive handler 5654 * @dev: device to unregister a handler from 5655 * 5656 * Unregister a receive handler from a device. 5657 * 5658 * The caller must hold the rtnl_mutex. 5659 */ 5660 void netdev_rx_handler_unregister(struct net_device *dev) 5661 { 5662 5663 ASSERT_RTNL(); 5664 RCU_INIT_POINTER(dev->rx_handler, NULL); 5665 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5666 * section has a guarantee to see a non NULL rx_handler_data 5667 * as well. 5668 */ 5669 synchronize_net(); 5670 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5671 } 5672 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5673 5674 /* 5675 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5676 * the special handling of PFMEMALLOC skbs. 5677 */ 5678 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5679 { 5680 switch (skb->protocol) { 5681 case htons(ETH_P_ARP): 5682 case htons(ETH_P_IP): 5683 case htons(ETH_P_IPV6): 5684 case htons(ETH_P_8021Q): 5685 case htons(ETH_P_8021AD): 5686 return true; 5687 default: 5688 return false; 5689 } 5690 } 5691 5692 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5693 int *ret, struct net_device *orig_dev) 5694 { 5695 if (nf_hook_ingress_active(skb)) { 5696 int ingress_retval; 5697 5698 if (*pt_prev) { 5699 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5700 *pt_prev = NULL; 5701 } 5702 5703 rcu_read_lock(); 5704 ingress_retval = nf_hook_ingress(skb); 5705 rcu_read_unlock(); 5706 return ingress_retval; 5707 } 5708 return 0; 5709 } 5710 5711 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5712 struct packet_type **ppt_prev) 5713 { 5714 struct packet_type *ptype, *pt_prev; 5715 rx_handler_func_t *rx_handler; 5716 struct sk_buff *skb = *pskb; 5717 struct net_device *orig_dev; 5718 bool deliver_exact = false; 5719 int ret = NET_RX_DROP; 5720 __be16 type; 5721 5722 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5723 5724 trace_netif_receive_skb(skb); 5725 5726 orig_dev = skb->dev; 5727 5728 skb_reset_network_header(skb); 5729 #if !defined(CONFIG_DEBUG_NET) 5730 /* We plan to no longer reset the transport header here. 5731 * Give some time to fuzzers and dev build to catch bugs 5732 * in network stacks. 5733 */ 5734 if (!skb_transport_header_was_set(skb)) 5735 skb_reset_transport_header(skb); 5736 #endif 5737 skb_reset_mac_len(skb); 5738 5739 pt_prev = NULL; 5740 5741 another_round: 5742 skb->skb_iif = skb->dev->ifindex; 5743 5744 __this_cpu_inc(softnet_data.processed); 5745 5746 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5747 int ret2; 5748 5749 migrate_disable(); 5750 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5751 &skb); 5752 migrate_enable(); 5753 5754 if (ret2 != XDP_PASS) { 5755 ret = NET_RX_DROP; 5756 goto out; 5757 } 5758 } 5759 5760 if (eth_type_vlan(skb->protocol)) { 5761 skb = skb_vlan_untag(skb); 5762 if (unlikely(!skb)) 5763 goto out; 5764 } 5765 5766 if (skb_skip_tc_classify(skb)) 5767 goto skip_classify; 5768 5769 if (pfmemalloc) 5770 goto skip_taps; 5771 5772 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5773 list) { 5774 if (pt_prev) 5775 ret = deliver_skb(skb, pt_prev, orig_dev); 5776 pt_prev = ptype; 5777 } 5778 5779 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5780 if (pt_prev) 5781 ret = deliver_skb(skb, pt_prev, orig_dev); 5782 pt_prev = ptype; 5783 } 5784 5785 skip_taps: 5786 #ifdef CONFIG_NET_INGRESS 5787 if (static_branch_unlikely(&ingress_needed_key)) { 5788 bool another = false; 5789 5790 nf_skip_egress(skb, true); 5791 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5792 &another); 5793 if (another) 5794 goto another_round; 5795 if (!skb) 5796 goto out; 5797 5798 nf_skip_egress(skb, false); 5799 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5800 goto out; 5801 } 5802 #endif 5803 skb_reset_redirect(skb); 5804 skip_classify: 5805 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5806 goto drop; 5807 5808 if (skb_vlan_tag_present(skb)) { 5809 if (pt_prev) { 5810 ret = deliver_skb(skb, pt_prev, orig_dev); 5811 pt_prev = NULL; 5812 } 5813 if (vlan_do_receive(&skb)) 5814 goto another_round; 5815 else if (unlikely(!skb)) 5816 goto out; 5817 } 5818 5819 rx_handler = rcu_dereference(skb->dev->rx_handler); 5820 if (rx_handler) { 5821 if (pt_prev) { 5822 ret = deliver_skb(skb, pt_prev, orig_dev); 5823 pt_prev = NULL; 5824 } 5825 switch (rx_handler(&skb)) { 5826 case RX_HANDLER_CONSUMED: 5827 ret = NET_RX_SUCCESS; 5828 goto out; 5829 case RX_HANDLER_ANOTHER: 5830 goto another_round; 5831 case RX_HANDLER_EXACT: 5832 deliver_exact = true; 5833 break; 5834 case RX_HANDLER_PASS: 5835 break; 5836 default: 5837 BUG(); 5838 } 5839 } 5840 5841 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5842 check_vlan_id: 5843 if (skb_vlan_tag_get_id(skb)) { 5844 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5845 * find vlan device. 5846 */ 5847 skb->pkt_type = PACKET_OTHERHOST; 5848 } else if (eth_type_vlan(skb->protocol)) { 5849 /* Outer header is 802.1P with vlan 0, inner header is 5850 * 802.1Q or 802.1AD and vlan_do_receive() above could 5851 * not find vlan dev for vlan id 0. 5852 */ 5853 __vlan_hwaccel_clear_tag(skb); 5854 skb = skb_vlan_untag(skb); 5855 if (unlikely(!skb)) 5856 goto out; 5857 if (vlan_do_receive(&skb)) 5858 /* After stripping off 802.1P header with vlan 0 5859 * vlan dev is found for inner header. 5860 */ 5861 goto another_round; 5862 else if (unlikely(!skb)) 5863 goto out; 5864 else 5865 /* We have stripped outer 802.1P vlan 0 header. 5866 * But could not find vlan dev. 5867 * check again for vlan id to set OTHERHOST. 5868 */ 5869 goto check_vlan_id; 5870 } 5871 /* Note: we might in the future use prio bits 5872 * and set skb->priority like in vlan_do_receive() 5873 * For the time being, just ignore Priority Code Point 5874 */ 5875 __vlan_hwaccel_clear_tag(skb); 5876 } 5877 5878 type = skb->protocol; 5879 5880 /* deliver only exact match when indicated */ 5881 if (likely(!deliver_exact)) { 5882 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5883 &ptype_base[ntohs(type) & 5884 PTYPE_HASH_MASK]); 5885 5886 /* orig_dev and skb->dev could belong to different netns; 5887 * Even in such case we need to traverse only the list 5888 * coming from skb->dev, as the ptype owner (packet socket) 5889 * will use dev_net(skb->dev) to do namespace filtering. 5890 */ 5891 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5892 &dev_net_rcu(skb->dev)->ptype_specific); 5893 } 5894 5895 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5896 &orig_dev->ptype_specific); 5897 5898 if (unlikely(skb->dev != orig_dev)) { 5899 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5900 &skb->dev->ptype_specific); 5901 } 5902 5903 if (pt_prev) { 5904 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5905 goto drop; 5906 *ppt_prev = pt_prev; 5907 } else { 5908 drop: 5909 if (!deliver_exact) 5910 dev_core_stats_rx_dropped_inc(skb->dev); 5911 else 5912 dev_core_stats_rx_nohandler_inc(skb->dev); 5913 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5914 /* Jamal, now you will not able to escape explaining 5915 * me how you were going to use this. :-) 5916 */ 5917 ret = NET_RX_DROP; 5918 } 5919 5920 out: 5921 /* The invariant here is that if *ppt_prev is not NULL 5922 * then skb should also be non-NULL. 5923 * 5924 * Apparently *ppt_prev assignment above holds this invariant due to 5925 * skb dereferencing near it. 5926 */ 5927 *pskb = skb; 5928 return ret; 5929 } 5930 5931 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5932 { 5933 struct net_device *orig_dev = skb->dev; 5934 struct packet_type *pt_prev = NULL; 5935 int ret; 5936 5937 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5938 if (pt_prev) 5939 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5940 skb->dev, pt_prev, orig_dev); 5941 return ret; 5942 } 5943 5944 /** 5945 * netif_receive_skb_core - special purpose version of netif_receive_skb 5946 * @skb: buffer to process 5947 * 5948 * More direct receive version of netif_receive_skb(). It should 5949 * only be used by callers that have a need to skip RPS and Generic XDP. 5950 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5951 * 5952 * This function may only be called from softirq context and interrupts 5953 * should be enabled. 5954 * 5955 * Return values (usually ignored): 5956 * NET_RX_SUCCESS: no congestion 5957 * NET_RX_DROP: packet was dropped 5958 */ 5959 int netif_receive_skb_core(struct sk_buff *skb) 5960 { 5961 int ret; 5962 5963 rcu_read_lock(); 5964 ret = __netif_receive_skb_one_core(skb, false); 5965 rcu_read_unlock(); 5966 5967 return ret; 5968 } 5969 EXPORT_SYMBOL(netif_receive_skb_core); 5970 5971 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5972 struct packet_type *pt_prev, 5973 struct net_device *orig_dev) 5974 { 5975 struct sk_buff *skb, *next; 5976 5977 if (!pt_prev) 5978 return; 5979 if (list_empty(head)) 5980 return; 5981 if (pt_prev->list_func != NULL) 5982 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5983 ip_list_rcv, head, pt_prev, orig_dev); 5984 else 5985 list_for_each_entry_safe(skb, next, head, list) { 5986 skb_list_del_init(skb); 5987 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5988 } 5989 } 5990 5991 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5992 { 5993 /* Fast-path assumptions: 5994 * - There is no RX handler. 5995 * - Only one packet_type matches. 5996 * If either of these fails, we will end up doing some per-packet 5997 * processing in-line, then handling the 'last ptype' for the whole 5998 * sublist. This can't cause out-of-order delivery to any single ptype, 5999 * because the 'last ptype' must be constant across the sublist, and all 6000 * other ptypes are handled per-packet. 6001 */ 6002 /* Current (common) ptype of sublist */ 6003 struct packet_type *pt_curr = NULL; 6004 /* Current (common) orig_dev of sublist */ 6005 struct net_device *od_curr = NULL; 6006 struct sk_buff *skb, *next; 6007 LIST_HEAD(sublist); 6008 6009 list_for_each_entry_safe(skb, next, head, list) { 6010 struct net_device *orig_dev = skb->dev; 6011 struct packet_type *pt_prev = NULL; 6012 6013 skb_list_del_init(skb); 6014 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6015 if (!pt_prev) 6016 continue; 6017 if (pt_curr != pt_prev || od_curr != orig_dev) { 6018 /* dispatch old sublist */ 6019 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6020 /* start new sublist */ 6021 INIT_LIST_HEAD(&sublist); 6022 pt_curr = pt_prev; 6023 od_curr = orig_dev; 6024 } 6025 list_add_tail(&skb->list, &sublist); 6026 } 6027 6028 /* dispatch final sublist */ 6029 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6030 } 6031 6032 static int __netif_receive_skb(struct sk_buff *skb) 6033 { 6034 int ret; 6035 6036 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6037 unsigned int noreclaim_flag; 6038 6039 /* 6040 * PFMEMALLOC skbs are special, they should 6041 * - be delivered to SOCK_MEMALLOC sockets only 6042 * - stay away from userspace 6043 * - have bounded memory usage 6044 * 6045 * Use PF_MEMALLOC as this saves us from propagating the allocation 6046 * context down to all allocation sites. 6047 */ 6048 noreclaim_flag = memalloc_noreclaim_save(); 6049 ret = __netif_receive_skb_one_core(skb, true); 6050 memalloc_noreclaim_restore(noreclaim_flag); 6051 } else 6052 ret = __netif_receive_skb_one_core(skb, false); 6053 6054 return ret; 6055 } 6056 6057 static void __netif_receive_skb_list(struct list_head *head) 6058 { 6059 unsigned long noreclaim_flag = 0; 6060 struct sk_buff *skb, *next; 6061 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6062 6063 list_for_each_entry_safe(skb, next, head, list) { 6064 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6065 struct list_head sublist; 6066 6067 /* Handle the previous sublist */ 6068 list_cut_before(&sublist, head, &skb->list); 6069 if (!list_empty(&sublist)) 6070 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6071 pfmemalloc = !pfmemalloc; 6072 /* See comments in __netif_receive_skb */ 6073 if (pfmemalloc) 6074 noreclaim_flag = memalloc_noreclaim_save(); 6075 else 6076 memalloc_noreclaim_restore(noreclaim_flag); 6077 } 6078 } 6079 /* Handle the remaining sublist */ 6080 if (!list_empty(head)) 6081 __netif_receive_skb_list_core(head, pfmemalloc); 6082 /* Restore pflags */ 6083 if (pfmemalloc) 6084 memalloc_noreclaim_restore(noreclaim_flag); 6085 } 6086 6087 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6088 { 6089 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6090 struct bpf_prog *new = xdp->prog; 6091 int ret = 0; 6092 6093 switch (xdp->command) { 6094 case XDP_SETUP_PROG: 6095 rcu_assign_pointer(dev->xdp_prog, new); 6096 if (old) 6097 bpf_prog_put(old); 6098 6099 if (old && !new) { 6100 static_branch_dec(&generic_xdp_needed_key); 6101 } else if (new && !old) { 6102 static_branch_inc(&generic_xdp_needed_key); 6103 netif_disable_lro(dev); 6104 dev_disable_gro_hw(dev); 6105 } 6106 break; 6107 6108 default: 6109 ret = -EINVAL; 6110 break; 6111 } 6112 6113 return ret; 6114 } 6115 6116 static int netif_receive_skb_internal(struct sk_buff *skb) 6117 { 6118 int ret; 6119 6120 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6121 6122 if (skb_defer_rx_timestamp(skb)) 6123 return NET_RX_SUCCESS; 6124 6125 rcu_read_lock(); 6126 #ifdef CONFIG_RPS 6127 if (static_branch_unlikely(&rps_needed)) { 6128 struct rps_dev_flow voidflow, *rflow = &voidflow; 6129 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6130 6131 if (cpu >= 0) { 6132 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6133 rcu_read_unlock(); 6134 return ret; 6135 } 6136 } 6137 #endif 6138 ret = __netif_receive_skb(skb); 6139 rcu_read_unlock(); 6140 return ret; 6141 } 6142 6143 void netif_receive_skb_list_internal(struct list_head *head) 6144 { 6145 struct sk_buff *skb, *next; 6146 LIST_HEAD(sublist); 6147 6148 list_for_each_entry_safe(skb, next, head, list) { 6149 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6150 skb); 6151 skb_list_del_init(skb); 6152 if (!skb_defer_rx_timestamp(skb)) 6153 list_add_tail(&skb->list, &sublist); 6154 } 6155 list_splice_init(&sublist, head); 6156 6157 rcu_read_lock(); 6158 #ifdef CONFIG_RPS 6159 if (static_branch_unlikely(&rps_needed)) { 6160 list_for_each_entry_safe(skb, next, head, list) { 6161 struct rps_dev_flow voidflow, *rflow = &voidflow; 6162 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6163 6164 if (cpu >= 0) { 6165 /* Will be handled, remove from list */ 6166 skb_list_del_init(skb); 6167 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6168 } 6169 } 6170 } 6171 #endif 6172 __netif_receive_skb_list(head); 6173 rcu_read_unlock(); 6174 } 6175 6176 /** 6177 * netif_receive_skb - process receive buffer from network 6178 * @skb: buffer to process 6179 * 6180 * netif_receive_skb() is the main receive data processing function. 6181 * It always succeeds. The buffer may be dropped during processing 6182 * for congestion control or by the protocol layers. 6183 * 6184 * This function may only be called from softirq context and interrupts 6185 * should be enabled. 6186 * 6187 * Return values (usually ignored): 6188 * NET_RX_SUCCESS: no congestion 6189 * NET_RX_DROP: packet was dropped 6190 */ 6191 int netif_receive_skb(struct sk_buff *skb) 6192 { 6193 int ret; 6194 6195 trace_netif_receive_skb_entry(skb); 6196 6197 ret = netif_receive_skb_internal(skb); 6198 trace_netif_receive_skb_exit(ret); 6199 6200 return ret; 6201 } 6202 EXPORT_SYMBOL(netif_receive_skb); 6203 6204 /** 6205 * netif_receive_skb_list - process many receive buffers from network 6206 * @head: list of skbs to process. 6207 * 6208 * Since return value of netif_receive_skb() is normally ignored, and 6209 * wouldn't be meaningful for a list, this function returns void. 6210 * 6211 * This function may only be called from softirq context and interrupts 6212 * should be enabled. 6213 */ 6214 void netif_receive_skb_list(struct list_head *head) 6215 { 6216 struct sk_buff *skb; 6217 6218 if (list_empty(head)) 6219 return; 6220 if (trace_netif_receive_skb_list_entry_enabled()) { 6221 list_for_each_entry(skb, head, list) 6222 trace_netif_receive_skb_list_entry(skb); 6223 } 6224 netif_receive_skb_list_internal(head); 6225 trace_netif_receive_skb_list_exit(0); 6226 } 6227 EXPORT_SYMBOL(netif_receive_skb_list); 6228 6229 /* Network device is going away, flush any packets still pending */ 6230 static void flush_backlog(struct work_struct *work) 6231 { 6232 struct sk_buff *skb, *tmp; 6233 struct sk_buff_head list; 6234 struct softnet_data *sd; 6235 6236 __skb_queue_head_init(&list); 6237 local_bh_disable(); 6238 sd = this_cpu_ptr(&softnet_data); 6239 6240 backlog_lock_irq_disable(sd); 6241 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6242 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6243 __skb_unlink(skb, &sd->input_pkt_queue); 6244 __skb_queue_tail(&list, skb); 6245 rps_input_queue_head_incr(sd); 6246 } 6247 } 6248 backlog_unlock_irq_enable(sd); 6249 6250 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6251 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6252 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6253 __skb_unlink(skb, &sd->process_queue); 6254 __skb_queue_tail(&list, skb); 6255 rps_input_queue_head_incr(sd); 6256 } 6257 } 6258 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6259 local_bh_enable(); 6260 6261 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6262 } 6263 6264 static bool flush_required(int cpu) 6265 { 6266 #if IS_ENABLED(CONFIG_RPS) 6267 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6268 bool do_flush; 6269 6270 backlog_lock_irq_disable(sd); 6271 6272 /* as insertion into process_queue happens with the rps lock held, 6273 * process_queue access may race only with dequeue 6274 */ 6275 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6276 !skb_queue_empty_lockless(&sd->process_queue); 6277 backlog_unlock_irq_enable(sd); 6278 6279 return do_flush; 6280 #endif 6281 /* without RPS we can't safely check input_pkt_queue: during a 6282 * concurrent remote skb_queue_splice() we can detect as empty both 6283 * input_pkt_queue and process_queue even if the latter could end-up 6284 * containing a lot of packets. 6285 */ 6286 return true; 6287 } 6288 6289 struct flush_backlogs { 6290 cpumask_t flush_cpus; 6291 struct work_struct w[]; 6292 }; 6293 6294 static struct flush_backlogs *flush_backlogs_alloc(void) 6295 { 6296 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6297 GFP_KERNEL); 6298 } 6299 6300 static struct flush_backlogs *flush_backlogs_fallback; 6301 static DEFINE_MUTEX(flush_backlogs_mutex); 6302 6303 static void flush_all_backlogs(void) 6304 { 6305 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6306 unsigned int cpu; 6307 6308 if (!ptr) { 6309 mutex_lock(&flush_backlogs_mutex); 6310 ptr = flush_backlogs_fallback; 6311 } 6312 cpumask_clear(&ptr->flush_cpus); 6313 6314 cpus_read_lock(); 6315 6316 for_each_online_cpu(cpu) { 6317 if (flush_required(cpu)) { 6318 INIT_WORK(&ptr->w[cpu], flush_backlog); 6319 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6320 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6321 } 6322 } 6323 6324 /* we can have in flight packet[s] on the cpus we are not flushing, 6325 * synchronize_net() in unregister_netdevice_many() will take care of 6326 * them. 6327 */ 6328 for_each_cpu(cpu, &ptr->flush_cpus) 6329 flush_work(&ptr->w[cpu]); 6330 6331 cpus_read_unlock(); 6332 6333 if (ptr != flush_backlogs_fallback) 6334 kfree(ptr); 6335 else 6336 mutex_unlock(&flush_backlogs_mutex); 6337 } 6338 6339 static void net_rps_send_ipi(struct softnet_data *remsd) 6340 { 6341 #ifdef CONFIG_RPS 6342 while (remsd) { 6343 struct softnet_data *next = remsd->rps_ipi_next; 6344 6345 if (cpu_online(remsd->cpu)) 6346 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6347 remsd = next; 6348 } 6349 #endif 6350 } 6351 6352 /* 6353 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6354 * Note: called with local irq disabled, but exits with local irq enabled. 6355 */ 6356 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6357 { 6358 #ifdef CONFIG_RPS 6359 struct softnet_data *remsd = sd->rps_ipi_list; 6360 6361 if (!use_backlog_threads() && remsd) { 6362 sd->rps_ipi_list = NULL; 6363 6364 local_irq_enable(); 6365 6366 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6367 net_rps_send_ipi(remsd); 6368 } else 6369 #endif 6370 local_irq_enable(); 6371 } 6372 6373 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6374 { 6375 #ifdef CONFIG_RPS 6376 return !use_backlog_threads() && sd->rps_ipi_list; 6377 #else 6378 return false; 6379 #endif 6380 } 6381 6382 static int process_backlog(struct napi_struct *napi, int quota) 6383 { 6384 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6385 bool again = true; 6386 int work = 0; 6387 6388 /* Check if we have pending ipi, its better to send them now, 6389 * not waiting net_rx_action() end. 6390 */ 6391 if (sd_has_rps_ipi_waiting(sd)) { 6392 local_irq_disable(); 6393 net_rps_action_and_irq_enable(sd); 6394 } 6395 6396 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6397 while (again) { 6398 struct sk_buff *skb; 6399 6400 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6401 while ((skb = __skb_dequeue(&sd->process_queue))) { 6402 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6403 rcu_read_lock(); 6404 __netif_receive_skb(skb); 6405 rcu_read_unlock(); 6406 if (++work >= quota) { 6407 rps_input_queue_head_add(sd, work); 6408 return work; 6409 } 6410 6411 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6412 } 6413 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6414 6415 backlog_lock_irq_disable(sd); 6416 if (skb_queue_empty(&sd->input_pkt_queue)) { 6417 /* 6418 * Inline a custom version of __napi_complete(). 6419 * only current cpu owns and manipulates this napi, 6420 * and NAPI_STATE_SCHED is the only possible flag set 6421 * on backlog. 6422 * We can use a plain write instead of clear_bit(), 6423 * and we dont need an smp_mb() memory barrier. 6424 */ 6425 napi->state &= NAPIF_STATE_THREADED; 6426 again = false; 6427 } else { 6428 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6429 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6430 &sd->process_queue); 6431 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6432 } 6433 backlog_unlock_irq_enable(sd); 6434 } 6435 6436 if (work) 6437 rps_input_queue_head_add(sd, work); 6438 return work; 6439 } 6440 6441 /** 6442 * __napi_schedule - schedule for receive 6443 * @n: entry to schedule 6444 * 6445 * The entry's receive function will be scheduled to run. 6446 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6447 */ 6448 void __napi_schedule(struct napi_struct *n) 6449 { 6450 unsigned long flags; 6451 6452 local_irq_save(flags); 6453 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6454 local_irq_restore(flags); 6455 } 6456 EXPORT_SYMBOL(__napi_schedule); 6457 6458 /** 6459 * napi_schedule_prep - check if napi can be scheduled 6460 * @n: napi context 6461 * 6462 * Test if NAPI routine is already running, and if not mark 6463 * it as running. This is used as a condition variable to 6464 * insure only one NAPI poll instance runs. We also make 6465 * sure there is no pending NAPI disable. 6466 */ 6467 bool napi_schedule_prep(struct napi_struct *n) 6468 { 6469 unsigned long new, val = READ_ONCE(n->state); 6470 6471 do { 6472 if (unlikely(val & NAPIF_STATE_DISABLE)) 6473 return false; 6474 new = val | NAPIF_STATE_SCHED; 6475 6476 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6477 * This was suggested by Alexander Duyck, as compiler 6478 * emits better code than : 6479 * if (val & NAPIF_STATE_SCHED) 6480 * new |= NAPIF_STATE_MISSED; 6481 */ 6482 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6483 NAPIF_STATE_MISSED; 6484 } while (!try_cmpxchg(&n->state, &val, new)); 6485 6486 return !(val & NAPIF_STATE_SCHED); 6487 } 6488 EXPORT_SYMBOL(napi_schedule_prep); 6489 6490 /** 6491 * __napi_schedule_irqoff - schedule for receive 6492 * @n: entry to schedule 6493 * 6494 * Variant of __napi_schedule() assuming hard irqs are masked. 6495 * 6496 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6497 * because the interrupt disabled assumption might not be true 6498 * due to force-threaded interrupts and spinlock substitution. 6499 */ 6500 void __napi_schedule_irqoff(struct napi_struct *n) 6501 { 6502 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6503 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6504 else 6505 __napi_schedule(n); 6506 } 6507 EXPORT_SYMBOL(__napi_schedule_irqoff); 6508 6509 bool napi_complete_done(struct napi_struct *n, int work_done) 6510 { 6511 unsigned long flags, val, new, timeout = 0; 6512 bool ret = true; 6513 6514 /* 6515 * 1) Don't let napi dequeue from the cpu poll list 6516 * just in case its running on a different cpu. 6517 * 2) If we are busy polling, do nothing here, we have 6518 * the guarantee we will be called later. 6519 */ 6520 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6521 NAPIF_STATE_IN_BUSY_POLL))) 6522 return false; 6523 6524 if (work_done) { 6525 if (n->gro.bitmask) 6526 timeout = napi_get_gro_flush_timeout(n); 6527 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6528 } 6529 if (n->defer_hard_irqs_count > 0) { 6530 n->defer_hard_irqs_count--; 6531 timeout = napi_get_gro_flush_timeout(n); 6532 if (timeout) 6533 ret = false; 6534 } 6535 6536 /* 6537 * When the NAPI instance uses a timeout and keeps postponing 6538 * it, we need to bound somehow the time packets are kept in 6539 * the GRO layer. 6540 */ 6541 gro_flush(&n->gro, !!timeout); 6542 gro_normal_list(&n->gro); 6543 6544 if (unlikely(!list_empty(&n->poll_list))) { 6545 /* If n->poll_list is not empty, we need to mask irqs */ 6546 local_irq_save(flags); 6547 list_del_init(&n->poll_list); 6548 local_irq_restore(flags); 6549 } 6550 WRITE_ONCE(n->list_owner, -1); 6551 6552 val = READ_ONCE(n->state); 6553 do { 6554 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6555 6556 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6557 NAPIF_STATE_SCHED_THREADED | 6558 NAPIF_STATE_PREFER_BUSY_POLL); 6559 6560 /* If STATE_MISSED was set, leave STATE_SCHED set, 6561 * because we will call napi->poll() one more time. 6562 * This C code was suggested by Alexander Duyck to help gcc. 6563 */ 6564 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6565 NAPIF_STATE_SCHED; 6566 } while (!try_cmpxchg(&n->state, &val, new)); 6567 6568 if (unlikely(val & NAPIF_STATE_MISSED)) { 6569 __napi_schedule(n); 6570 return false; 6571 } 6572 6573 if (timeout) 6574 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6575 HRTIMER_MODE_REL_PINNED); 6576 return ret; 6577 } 6578 EXPORT_SYMBOL(napi_complete_done); 6579 6580 static void skb_defer_free_flush(struct softnet_data *sd) 6581 { 6582 struct sk_buff *skb, *next; 6583 6584 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6585 if (!READ_ONCE(sd->defer_list)) 6586 return; 6587 6588 spin_lock(&sd->defer_lock); 6589 skb = sd->defer_list; 6590 sd->defer_list = NULL; 6591 sd->defer_count = 0; 6592 spin_unlock(&sd->defer_lock); 6593 6594 while (skb != NULL) { 6595 next = skb->next; 6596 napi_consume_skb(skb, 1); 6597 skb = next; 6598 } 6599 } 6600 6601 #if defined(CONFIG_NET_RX_BUSY_POLL) 6602 6603 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6604 { 6605 if (!skip_schedule) { 6606 gro_normal_list(&napi->gro); 6607 __napi_schedule(napi); 6608 return; 6609 } 6610 6611 /* Flush too old packets. If HZ < 1000, flush all packets */ 6612 gro_flush(&napi->gro, HZ >= 1000); 6613 gro_normal_list(&napi->gro); 6614 6615 clear_bit(NAPI_STATE_SCHED, &napi->state); 6616 } 6617 6618 enum { 6619 NAPI_F_PREFER_BUSY_POLL = 1, 6620 NAPI_F_END_ON_RESCHED = 2, 6621 }; 6622 6623 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6624 unsigned flags, u16 budget) 6625 { 6626 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6627 bool skip_schedule = false; 6628 unsigned long timeout; 6629 int rc; 6630 6631 /* Busy polling means there is a high chance device driver hard irq 6632 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6633 * set in napi_schedule_prep(). 6634 * Since we are about to call napi->poll() once more, we can safely 6635 * clear NAPI_STATE_MISSED. 6636 * 6637 * Note: x86 could use a single "lock and ..." instruction 6638 * to perform these two clear_bit() 6639 */ 6640 clear_bit(NAPI_STATE_MISSED, &napi->state); 6641 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6642 6643 local_bh_disable(); 6644 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6645 6646 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6647 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6648 timeout = napi_get_gro_flush_timeout(napi); 6649 if (napi->defer_hard_irqs_count && timeout) { 6650 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6651 skip_schedule = true; 6652 } 6653 } 6654 6655 /* All we really want here is to re-enable device interrupts. 6656 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6657 */ 6658 rc = napi->poll(napi, budget); 6659 /* We can't gro_normal_list() here, because napi->poll() might have 6660 * rearmed the napi (napi_complete_done()) in which case it could 6661 * already be running on another CPU. 6662 */ 6663 trace_napi_poll(napi, rc, budget); 6664 netpoll_poll_unlock(have_poll_lock); 6665 if (rc == budget) 6666 __busy_poll_stop(napi, skip_schedule); 6667 bpf_net_ctx_clear(bpf_net_ctx); 6668 local_bh_enable(); 6669 } 6670 6671 static void __napi_busy_loop(unsigned int napi_id, 6672 bool (*loop_end)(void *, unsigned long), 6673 void *loop_end_arg, unsigned flags, u16 budget) 6674 { 6675 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6676 int (*napi_poll)(struct napi_struct *napi, int budget); 6677 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6678 void *have_poll_lock = NULL; 6679 struct napi_struct *napi; 6680 6681 WARN_ON_ONCE(!rcu_read_lock_held()); 6682 6683 restart: 6684 napi_poll = NULL; 6685 6686 napi = napi_by_id(napi_id); 6687 if (!napi) 6688 return; 6689 6690 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6691 preempt_disable(); 6692 for (;;) { 6693 int work = 0; 6694 6695 local_bh_disable(); 6696 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6697 if (!napi_poll) { 6698 unsigned long val = READ_ONCE(napi->state); 6699 6700 /* If multiple threads are competing for this napi, 6701 * we avoid dirtying napi->state as much as we can. 6702 */ 6703 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6704 NAPIF_STATE_IN_BUSY_POLL)) { 6705 if (flags & NAPI_F_PREFER_BUSY_POLL) 6706 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6707 goto count; 6708 } 6709 if (cmpxchg(&napi->state, val, 6710 val | NAPIF_STATE_IN_BUSY_POLL | 6711 NAPIF_STATE_SCHED) != val) { 6712 if (flags & NAPI_F_PREFER_BUSY_POLL) 6713 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6714 goto count; 6715 } 6716 have_poll_lock = netpoll_poll_lock(napi); 6717 napi_poll = napi->poll; 6718 } 6719 work = napi_poll(napi, budget); 6720 trace_napi_poll(napi, work, budget); 6721 gro_normal_list(&napi->gro); 6722 count: 6723 if (work > 0) 6724 __NET_ADD_STATS(dev_net(napi->dev), 6725 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6726 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6727 bpf_net_ctx_clear(bpf_net_ctx); 6728 local_bh_enable(); 6729 6730 if (!loop_end || loop_end(loop_end_arg, start_time)) 6731 break; 6732 6733 if (unlikely(need_resched())) { 6734 if (flags & NAPI_F_END_ON_RESCHED) 6735 break; 6736 if (napi_poll) 6737 busy_poll_stop(napi, have_poll_lock, flags, budget); 6738 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6739 preempt_enable(); 6740 rcu_read_unlock(); 6741 cond_resched(); 6742 rcu_read_lock(); 6743 if (loop_end(loop_end_arg, start_time)) 6744 return; 6745 goto restart; 6746 } 6747 cpu_relax(); 6748 } 6749 if (napi_poll) 6750 busy_poll_stop(napi, have_poll_lock, flags, budget); 6751 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6752 preempt_enable(); 6753 } 6754 6755 void napi_busy_loop_rcu(unsigned int napi_id, 6756 bool (*loop_end)(void *, unsigned long), 6757 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6758 { 6759 unsigned flags = NAPI_F_END_ON_RESCHED; 6760 6761 if (prefer_busy_poll) 6762 flags |= NAPI_F_PREFER_BUSY_POLL; 6763 6764 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6765 } 6766 6767 void napi_busy_loop(unsigned int napi_id, 6768 bool (*loop_end)(void *, unsigned long), 6769 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6770 { 6771 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6772 6773 rcu_read_lock(); 6774 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6775 rcu_read_unlock(); 6776 } 6777 EXPORT_SYMBOL(napi_busy_loop); 6778 6779 void napi_suspend_irqs(unsigned int napi_id) 6780 { 6781 struct napi_struct *napi; 6782 6783 rcu_read_lock(); 6784 napi = napi_by_id(napi_id); 6785 if (napi) { 6786 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6787 6788 if (timeout) 6789 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6790 HRTIMER_MODE_REL_PINNED); 6791 } 6792 rcu_read_unlock(); 6793 } 6794 6795 void napi_resume_irqs(unsigned int napi_id) 6796 { 6797 struct napi_struct *napi; 6798 6799 rcu_read_lock(); 6800 napi = napi_by_id(napi_id); 6801 if (napi) { 6802 /* If irq_suspend_timeout is set to 0 between the call to 6803 * napi_suspend_irqs and now, the original value still 6804 * determines the safety timeout as intended and napi_watchdog 6805 * will resume irq processing. 6806 */ 6807 if (napi_get_irq_suspend_timeout(napi)) { 6808 local_bh_disable(); 6809 napi_schedule(napi); 6810 local_bh_enable(); 6811 } 6812 } 6813 rcu_read_unlock(); 6814 } 6815 6816 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6817 6818 static void __napi_hash_add_with_id(struct napi_struct *napi, 6819 unsigned int napi_id) 6820 { 6821 napi->gro.cached_napi_id = napi_id; 6822 6823 WRITE_ONCE(napi->napi_id, napi_id); 6824 hlist_add_head_rcu(&napi->napi_hash_node, 6825 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6826 } 6827 6828 static void napi_hash_add_with_id(struct napi_struct *napi, 6829 unsigned int napi_id) 6830 { 6831 unsigned long flags; 6832 6833 spin_lock_irqsave(&napi_hash_lock, flags); 6834 WARN_ON_ONCE(napi_by_id(napi_id)); 6835 __napi_hash_add_with_id(napi, napi_id); 6836 spin_unlock_irqrestore(&napi_hash_lock, flags); 6837 } 6838 6839 static void napi_hash_add(struct napi_struct *napi) 6840 { 6841 unsigned long flags; 6842 6843 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6844 return; 6845 6846 spin_lock_irqsave(&napi_hash_lock, flags); 6847 6848 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6849 do { 6850 if (unlikely(!napi_id_valid(++napi_gen_id))) 6851 napi_gen_id = MIN_NAPI_ID; 6852 } while (napi_by_id(napi_gen_id)); 6853 6854 __napi_hash_add_with_id(napi, napi_gen_id); 6855 6856 spin_unlock_irqrestore(&napi_hash_lock, flags); 6857 } 6858 6859 /* Warning : caller is responsible to make sure rcu grace period 6860 * is respected before freeing memory containing @napi 6861 */ 6862 static void napi_hash_del(struct napi_struct *napi) 6863 { 6864 unsigned long flags; 6865 6866 spin_lock_irqsave(&napi_hash_lock, flags); 6867 6868 hlist_del_init_rcu(&napi->napi_hash_node); 6869 6870 spin_unlock_irqrestore(&napi_hash_lock, flags); 6871 } 6872 6873 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6874 { 6875 struct napi_struct *napi; 6876 6877 napi = container_of(timer, struct napi_struct, timer); 6878 6879 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6880 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6881 */ 6882 if (!napi_disable_pending(napi) && 6883 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6884 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6885 __napi_schedule_irqoff(napi); 6886 } 6887 6888 return HRTIMER_NORESTART; 6889 } 6890 6891 int dev_set_threaded(struct net_device *dev, bool threaded) 6892 { 6893 struct napi_struct *napi; 6894 int err = 0; 6895 6896 netdev_assert_locked_or_invisible(dev); 6897 6898 if (dev->threaded == threaded) 6899 return 0; 6900 6901 if (threaded) { 6902 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6903 if (!napi->thread) { 6904 err = napi_kthread_create(napi); 6905 if (err) { 6906 threaded = false; 6907 break; 6908 } 6909 } 6910 } 6911 } 6912 6913 WRITE_ONCE(dev->threaded, threaded); 6914 6915 /* Make sure kthread is created before THREADED bit 6916 * is set. 6917 */ 6918 smp_mb__before_atomic(); 6919 6920 /* Setting/unsetting threaded mode on a napi might not immediately 6921 * take effect, if the current napi instance is actively being 6922 * polled. In this case, the switch between threaded mode and 6923 * softirq mode will happen in the next round of napi_schedule(). 6924 * This should not cause hiccups/stalls to the live traffic. 6925 */ 6926 list_for_each_entry(napi, &dev->napi_list, dev_list) 6927 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6928 6929 return err; 6930 } 6931 EXPORT_SYMBOL(dev_set_threaded); 6932 6933 /** 6934 * netif_queue_set_napi - Associate queue with the napi 6935 * @dev: device to which NAPI and queue belong 6936 * @queue_index: Index of queue 6937 * @type: queue type as RX or TX 6938 * @napi: NAPI context, pass NULL to clear previously set NAPI 6939 * 6940 * Set queue with its corresponding napi context. This should be done after 6941 * registering the NAPI handler for the queue-vector and the queues have been 6942 * mapped to the corresponding interrupt vector. 6943 */ 6944 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 6945 enum netdev_queue_type type, struct napi_struct *napi) 6946 { 6947 struct netdev_rx_queue *rxq; 6948 struct netdev_queue *txq; 6949 6950 if (WARN_ON_ONCE(napi && !napi->dev)) 6951 return; 6952 netdev_ops_assert_locked_or_invisible(dev); 6953 6954 switch (type) { 6955 case NETDEV_QUEUE_TYPE_RX: 6956 rxq = __netif_get_rx_queue(dev, queue_index); 6957 rxq->napi = napi; 6958 return; 6959 case NETDEV_QUEUE_TYPE_TX: 6960 txq = netdev_get_tx_queue(dev, queue_index); 6961 txq->napi = napi; 6962 return; 6963 default: 6964 return; 6965 } 6966 } 6967 EXPORT_SYMBOL(netif_queue_set_napi); 6968 6969 static void 6970 netif_napi_irq_notify(struct irq_affinity_notify *notify, 6971 const cpumask_t *mask) 6972 { 6973 struct napi_struct *napi = 6974 container_of(notify, struct napi_struct, notify); 6975 #ifdef CONFIG_RFS_ACCEL 6976 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 6977 int err; 6978 #endif 6979 6980 if (napi->config && napi->dev->irq_affinity_auto) 6981 cpumask_copy(&napi->config->affinity_mask, mask); 6982 6983 #ifdef CONFIG_RFS_ACCEL 6984 if (napi->dev->rx_cpu_rmap_auto) { 6985 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 6986 if (err) 6987 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 6988 err); 6989 } 6990 #endif 6991 } 6992 6993 #ifdef CONFIG_RFS_ACCEL 6994 static void netif_napi_affinity_release(struct kref *ref) 6995 { 6996 struct napi_struct *napi = 6997 container_of(ref, struct napi_struct, notify.kref); 6998 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 6999 7000 netdev_assert_locked(napi->dev); 7001 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7002 &napi->state)); 7003 7004 if (!napi->dev->rx_cpu_rmap_auto) 7005 return; 7006 rmap->obj[napi->napi_rmap_idx] = NULL; 7007 napi->napi_rmap_idx = -1; 7008 cpu_rmap_put(rmap); 7009 } 7010 7011 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7012 { 7013 if (dev->rx_cpu_rmap_auto) 7014 return 0; 7015 7016 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7017 if (!dev->rx_cpu_rmap) 7018 return -ENOMEM; 7019 7020 dev->rx_cpu_rmap_auto = true; 7021 return 0; 7022 } 7023 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7024 7025 static void netif_del_cpu_rmap(struct net_device *dev) 7026 { 7027 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7028 7029 if (!dev->rx_cpu_rmap_auto) 7030 return; 7031 7032 /* Free the rmap */ 7033 cpu_rmap_put(rmap); 7034 dev->rx_cpu_rmap = NULL; 7035 dev->rx_cpu_rmap_auto = false; 7036 } 7037 7038 #else 7039 static void netif_napi_affinity_release(struct kref *ref) 7040 { 7041 } 7042 7043 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7044 { 7045 return 0; 7046 } 7047 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7048 7049 static void netif_del_cpu_rmap(struct net_device *dev) 7050 { 7051 } 7052 #endif 7053 7054 void netif_set_affinity_auto(struct net_device *dev) 7055 { 7056 unsigned int i, maxqs, numa; 7057 7058 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7059 numa = dev_to_node(&dev->dev); 7060 7061 for (i = 0; i < maxqs; i++) 7062 cpumask_set_cpu(cpumask_local_spread(i, numa), 7063 &dev->napi_config[i].affinity_mask); 7064 7065 dev->irq_affinity_auto = true; 7066 } 7067 EXPORT_SYMBOL(netif_set_affinity_auto); 7068 7069 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7070 { 7071 int rc; 7072 7073 netdev_assert_locked_or_invisible(napi->dev); 7074 7075 if (napi->irq == irq) 7076 return; 7077 7078 /* Remove existing resources */ 7079 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7080 irq_set_affinity_notifier(napi->irq, NULL); 7081 7082 napi->irq = irq; 7083 if (irq < 0 || 7084 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7085 return; 7086 7087 /* Abort for buggy drivers */ 7088 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7089 return; 7090 7091 #ifdef CONFIG_RFS_ACCEL 7092 if (napi->dev->rx_cpu_rmap_auto) { 7093 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7094 if (rc < 0) 7095 return; 7096 7097 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7098 napi->napi_rmap_idx = rc; 7099 } 7100 #endif 7101 7102 /* Use core IRQ notifier */ 7103 napi->notify.notify = netif_napi_irq_notify; 7104 napi->notify.release = netif_napi_affinity_release; 7105 rc = irq_set_affinity_notifier(irq, &napi->notify); 7106 if (rc) { 7107 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7108 rc); 7109 goto put_rmap; 7110 } 7111 7112 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7113 return; 7114 7115 put_rmap: 7116 #ifdef CONFIG_RFS_ACCEL 7117 if (napi->dev->rx_cpu_rmap_auto) { 7118 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7119 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7120 napi->napi_rmap_idx = -1; 7121 } 7122 #endif 7123 napi->notify.notify = NULL; 7124 napi->notify.release = NULL; 7125 } 7126 EXPORT_SYMBOL(netif_napi_set_irq_locked); 7127 7128 static void napi_restore_config(struct napi_struct *n) 7129 { 7130 n->defer_hard_irqs = n->config->defer_hard_irqs; 7131 n->gro_flush_timeout = n->config->gro_flush_timeout; 7132 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7133 7134 if (n->dev->irq_affinity_auto && 7135 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7136 irq_set_affinity(n->irq, &n->config->affinity_mask); 7137 7138 /* a NAPI ID might be stored in the config, if so use it. if not, use 7139 * napi_hash_add to generate one for us. 7140 */ 7141 if (n->config->napi_id) { 7142 napi_hash_add_with_id(n, n->config->napi_id); 7143 } else { 7144 napi_hash_add(n); 7145 n->config->napi_id = n->napi_id; 7146 } 7147 } 7148 7149 static void napi_save_config(struct napi_struct *n) 7150 { 7151 n->config->defer_hard_irqs = n->defer_hard_irqs; 7152 n->config->gro_flush_timeout = n->gro_flush_timeout; 7153 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7154 napi_hash_del(n); 7155 } 7156 7157 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7158 * inherit an existing ID try to insert it at the right position. 7159 */ 7160 static void 7161 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7162 { 7163 unsigned int new_id, pos_id; 7164 struct list_head *higher; 7165 struct napi_struct *pos; 7166 7167 new_id = UINT_MAX; 7168 if (napi->config && napi->config->napi_id) 7169 new_id = napi->config->napi_id; 7170 7171 higher = &dev->napi_list; 7172 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7173 if (napi_id_valid(pos->napi_id)) 7174 pos_id = pos->napi_id; 7175 else if (pos->config) 7176 pos_id = pos->config->napi_id; 7177 else 7178 pos_id = UINT_MAX; 7179 7180 if (pos_id <= new_id) 7181 break; 7182 higher = &pos->dev_list; 7183 } 7184 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7185 } 7186 7187 /* Double check that napi_get_frags() allocates skbs with 7188 * skb->head being backed by slab, not a page fragment. 7189 * This is to make sure bug fixed in 3226b158e67c 7190 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7191 * does not accidentally come back. 7192 */ 7193 static void napi_get_frags_check(struct napi_struct *napi) 7194 { 7195 struct sk_buff *skb; 7196 7197 local_bh_disable(); 7198 skb = napi_get_frags(napi); 7199 WARN_ON_ONCE(skb && skb->head_frag); 7200 napi_free_frags(napi); 7201 local_bh_enable(); 7202 } 7203 7204 void netif_napi_add_weight_locked(struct net_device *dev, 7205 struct napi_struct *napi, 7206 int (*poll)(struct napi_struct *, int), 7207 int weight) 7208 { 7209 netdev_assert_locked(dev); 7210 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7211 return; 7212 7213 INIT_LIST_HEAD(&napi->poll_list); 7214 INIT_HLIST_NODE(&napi->napi_hash_node); 7215 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7216 gro_init(&napi->gro); 7217 napi->skb = NULL; 7218 napi->poll = poll; 7219 if (weight > NAPI_POLL_WEIGHT) 7220 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7221 weight); 7222 napi->weight = weight; 7223 napi->dev = dev; 7224 #ifdef CONFIG_NETPOLL 7225 napi->poll_owner = -1; 7226 #endif 7227 napi->list_owner = -1; 7228 set_bit(NAPI_STATE_SCHED, &napi->state); 7229 set_bit(NAPI_STATE_NPSVC, &napi->state); 7230 netif_napi_dev_list_add(dev, napi); 7231 7232 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7233 * configuration will be loaded in napi_enable 7234 */ 7235 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7236 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7237 7238 napi_get_frags_check(napi); 7239 /* Create kthread for this napi if dev->threaded is set. 7240 * Clear dev->threaded if kthread creation failed so that 7241 * threaded mode will not be enabled in napi_enable(). 7242 */ 7243 if (dev->threaded && napi_kthread_create(napi)) 7244 dev->threaded = false; 7245 netif_napi_set_irq_locked(napi, -1); 7246 } 7247 EXPORT_SYMBOL(netif_napi_add_weight_locked); 7248 7249 void napi_disable_locked(struct napi_struct *n) 7250 { 7251 unsigned long val, new; 7252 7253 might_sleep(); 7254 netdev_assert_locked(n->dev); 7255 7256 set_bit(NAPI_STATE_DISABLE, &n->state); 7257 7258 val = READ_ONCE(n->state); 7259 do { 7260 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7261 usleep_range(20, 200); 7262 val = READ_ONCE(n->state); 7263 } 7264 7265 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7266 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 7267 } while (!try_cmpxchg(&n->state, &val, new)); 7268 7269 hrtimer_cancel(&n->timer); 7270 7271 if (n->config) 7272 napi_save_config(n); 7273 else 7274 napi_hash_del(n); 7275 7276 clear_bit(NAPI_STATE_DISABLE, &n->state); 7277 } 7278 EXPORT_SYMBOL(napi_disable_locked); 7279 7280 /** 7281 * napi_disable() - prevent NAPI from scheduling 7282 * @n: NAPI context 7283 * 7284 * Stop NAPI from being scheduled on this context. 7285 * Waits till any outstanding processing completes. 7286 * Takes netdev_lock() for associated net_device. 7287 */ 7288 void napi_disable(struct napi_struct *n) 7289 { 7290 netdev_lock(n->dev); 7291 napi_disable_locked(n); 7292 netdev_unlock(n->dev); 7293 } 7294 EXPORT_SYMBOL(napi_disable); 7295 7296 void napi_enable_locked(struct napi_struct *n) 7297 { 7298 unsigned long new, val = READ_ONCE(n->state); 7299 7300 if (n->config) 7301 napi_restore_config(n); 7302 else 7303 napi_hash_add(n); 7304 7305 do { 7306 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7307 7308 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7309 if (n->dev->threaded && n->thread) 7310 new |= NAPIF_STATE_THREADED; 7311 } while (!try_cmpxchg(&n->state, &val, new)); 7312 } 7313 EXPORT_SYMBOL(napi_enable_locked); 7314 7315 /** 7316 * napi_enable() - enable NAPI scheduling 7317 * @n: NAPI context 7318 * 7319 * Enable scheduling of a NAPI instance. 7320 * Must be paired with napi_disable(). 7321 * Takes netdev_lock() for associated net_device. 7322 */ 7323 void napi_enable(struct napi_struct *n) 7324 { 7325 netdev_lock(n->dev); 7326 napi_enable_locked(n); 7327 netdev_unlock(n->dev); 7328 } 7329 EXPORT_SYMBOL(napi_enable); 7330 7331 /* Must be called in process context */ 7332 void __netif_napi_del_locked(struct napi_struct *napi) 7333 { 7334 netdev_assert_locked(napi->dev); 7335 7336 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7337 return; 7338 7339 /* Make sure NAPI is disabled (or was never enabled). */ 7340 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7341 7342 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7343 irq_set_affinity_notifier(napi->irq, NULL); 7344 7345 if (napi->config) { 7346 napi->index = -1; 7347 napi->config = NULL; 7348 } 7349 7350 list_del_rcu(&napi->dev_list); 7351 napi_free_frags(napi); 7352 7353 gro_cleanup(&napi->gro); 7354 7355 if (napi->thread) { 7356 kthread_stop(napi->thread); 7357 napi->thread = NULL; 7358 } 7359 } 7360 EXPORT_SYMBOL(__netif_napi_del_locked); 7361 7362 static int __napi_poll(struct napi_struct *n, bool *repoll) 7363 { 7364 int work, weight; 7365 7366 weight = n->weight; 7367 7368 /* This NAPI_STATE_SCHED test is for avoiding a race 7369 * with netpoll's poll_napi(). Only the entity which 7370 * obtains the lock and sees NAPI_STATE_SCHED set will 7371 * actually make the ->poll() call. Therefore we avoid 7372 * accidentally calling ->poll() when NAPI is not scheduled. 7373 */ 7374 work = 0; 7375 if (napi_is_scheduled(n)) { 7376 work = n->poll(n, weight); 7377 trace_napi_poll(n, work, weight); 7378 7379 xdp_do_check_flushed(n); 7380 } 7381 7382 if (unlikely(work > weight)) 7383 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7384 n->poll, work, weight); 7385 7386 if (likely(work < weight)) 7387 return work; 7388 7389 /* Drivers must not modify the NAPI state if they 7390 * consume the entire weight. In such cases this code 7391 * still "owns" the NAPI instance and therefore can 7392 * move the instance around on the list at-will. 7393 */ 7394 if (unlikely(napi_disable_pending(n))) { 7395 napi_complete(n); 7396 return work; 7397 } 7398 7399 /* The NAPI context has more processing work, but busy-polling 7400 * is preferred. Exit early. 7401 */ 7402 if (napi_prefer_busy_poll(n)) { 7403 if (napi_complete_done(n, work)) { 7404 /* If timeout is not set, we need to make sure 7405 * that the NAPI is re-scheduled. 7406 */ 7407 napi_schedule(n); 7408 } 7409 return work; 7410 } 7411 7412 /* Flush too old packets. If HZ < 1000, flush all packets */ 7413 gro_flush(&n->gro, HZ >= 1000); 7414 gro_normal_list(&n->gro); 7415 7416 /* Some drivers may have called napi_schedule 7417 * prior to exhausting their budget. 7418 */ 7419 if (unlikely(!list_empty(&n->poll_list))) { 7420 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7421 n->dev ? n->dev->name : "backlog"); 7422 return work; 7423 } 7424 7425 *repoll = true; 7426 7427 return work; 7428 } 7429 7430 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7431 { 7432 bool do_repoll = false; 7433 void *have; 7434 int work; 7435 7436 list_del_init(&n->poll_list); 7437 7438 have = netpoll_poll_lock(n); 7439 7440 work = __napi_poll(n, &do_repoll); 7441 7442 if (do_repoll) 7443 list_add_tail(&n->poll_list, repoll); 7444 7445 netpoll_poll_unlock(have); 7446 7447 return work; 7448 } 7449 7450 static int napi_thread_wait(struct napi_struct *napi) 7451 { 7452 set_current_state(TASK_INTERRUPTIBLE); 7453 7454 while (!kthread_should_stop()) { 7455 /* Testing SCHED_THREADED bit here to make sure the current 7456 * kthread owns this napi and could poll on this napi. 7457 * Testing SCHED bit is not enough because SCHED bit might be 7458 * set by some other busy poll thread or by napi_disable(). 7459 */ 7460 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7461 WARN_ON(!list_empty(&napi->poll_list)); 7462 __set_current_state(TASK_RUNNING); 7463 return 0; 7464 } 7465 7466 schedule(); 7467 set_current_state(TASK_INTERRUPTIBLE); 7468 } 7469 __set_current_state(TASK_RUNNING); 7470 7471 return -1; 7472 } 7473 7474 static void napi_threaded_poll_loop(struct napi_struct *napi) 7475 { 7476 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7477 struct softnet_data *sd; 7478 unsigned long last_qs = jiffies; 7479 7480 for (;;) { 7481 bool repoll = false; 7482 void *have; 7483 7484 local_bh_disable(); 7485 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7486 7487 sd = this_cpu_ptr(&softnet_data); 7488 sd->in_napi_threaded_poll = true; 7489 7490 have = netpoll_poll_lock(napi); 7491 __napi_poll(napi, &repoll); 7492 netpoll_poll_unlock(have); 7493 7494 sd->in_napi_threaded_poll = false; 7495 barrier(); 7496 7497 if (sd_has_rps_ipi_waiting(sd)) { 7498 local_irq_disable(); 7499 net_rps_action_and_irq_enable(sd); 7500 } 7501 skb_defer_free_flush(sd); 7502 bpf_net_ctx_clear(bpf_net_ctx); 7503 local_bh_enable(); 7504 7505 if (!repoll) 7506 break; 7507 7508 rcu_softirq_qs_periodic(last_qs); 7509 cond_resched(); 7510 } 7511 } 7512 7513 static int napi_threaded_poll(void *data) 7514 { 7515 struct napi_struct *napi = data; 7516 7517 while (!napi_thread_wait(napi)) 7518 napi_threaded_poll_loop(napi); 7519 7520 return 0; 7521 } 7522 7523 static __latent_entropy void net_rx_action(void) 7524 { 7525 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7526 unsigned long time_limit = jiffies + 7527 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7528 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7529 int budget = READ_ONCE(net_hotdata.netdev_budget); 7530 LIST_HEAD(list); 7531 LIST_HEAD(repoll); 7532 7533 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7534 start: 7535 sd->in_net_rx_action = true; 7536 local_irq_disable(); 7537 list_splice_init(&sd->poll_list, &list); 7538 local_irq_enable(); 7539 7540 for (;;) { 7541 struct napi_struct *n; 7542 7543 skb_defer_free_flush(sd); 7544 7545 if (list_empty(&list)) { 7546 if (list_empty(&repoll)) { 7547 sd->in_net_rx_action = false; 7548 barrier(); 7549 /* We need to check if ____napi_schedule() 7550 * had refilled poll_list while 7551 * sd->in_net_rx_action was true. 7552 */ 7553 if (!list_empty(&sd->poll_list)) 7554 goto start; 7555 if (!sd_has_rps_ipi_waiting(sd)) 7556 goto end; 7557 } 7558 break; 7559 } 7560 7561 n = list_first_entry(&list, struct napi_struct, poll_list); 7562 budget -= napi_poll(n, &repoll); 7563 7564 /* If softirq window is exhausted then punt. 7565 * Allow this to run for 2 jiffies since which will allow 7566 * an average latency of 1.5/HZ. 7567 */ 7568 if (unlikely(budget <= 0 || 7569 time_after_eq(jiffies, time_limit))) { 7570 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7571 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7572 break; 7573 } 7574 } 7575 7576 local_irq_disable(); 7577 7578 list_splice_tail_init(&sd->poll_list, &list); 7579 list_splice_tail(&repoll, &list); 7580 list_splice(&list, &sd->poll_list); 7581 if (!list_empty(&sd->poll_list)) 7582 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7583 else 7584 sd->in_net_rx_action = false; 7585 7586 net_rps_action_and_irq_enable(sd); 7587 end: 7588 bpf_net_ctx_clear(bpf_net_ctx); 7589 } 7590 7591 struct netdev_adjacent { 7592 struct net_device *dev; 7593 netdevice_tracker dev_tracker; 7594 7595 /* upper master flag, there can only be one master device per list */ 7596 bool master; 7597 7598 /* lookup ignore flag */ 7599 bool ignore; 7600 7601 /* counter for the number of times this device was added to us */ 7602 u16 ref_nr; 7603 7604 /* private field for the users */ 7605 void *private; 7606 7607 struct list_head list; 7608 struct rcu_head rcu; 7609 }; 7610 7611 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7612 struct list_head *adj_list) 7613 { 7614 struct netdev_adjacent *adj; 7615 7616 list_for_each_entry(adj, adj_list, list) { 7617 if (adj->dev == adj_dev) 7618 return adj; 7619 } 7620 return NULL; 7621 } 7622 7623 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7624 struct netdev_nested_priv *priv) 7625 { 7626 struct net_device *dev = (struct net_device *)priv->data; 7627 7628 return upper_dev == dev; 7629 } 7630 7631 /** 7632 * netdev_has_upper_dev - Check if device is linked to an upper device 7633 * @dev: device 7634 * @upper_dev: upper device to check 7635 * 7636 * Find out if a device is linked to specified upper device and return true 7637 * in case it is. Note that this checks only immediate upper device, 7638 * not through a complete stack of devices. The caller must hold the RTNL lock. 7639 */ 7640 bool netdev_has_upper_dev(struct net_device *dev, 7641 struct net_device *upper_dev) 7642 { 7643 struct netdev_nested_priv priv = { 7644 .data = (void *)upper_dev, 7645 }; 7646 7647 ASSERT_RTNL(); 7648 7649 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7650 &priv); 7651 } 7652 EXPORT_SYMBOL(netdev_has_upper_dev); 7653 7654 /** 7655 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7656 * @dev: device 7657 * @upper_dev: upper device to check 7658 * 7659 * Find out if a device is linked to specified upper device and return true 7660 * in case it is. Note that this checks the entire upper device chain. 7661 * The caller must hold rcu lock. 7662 */ 7663 7664 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7665 struct net_device *upper_dev) 7666 { 7667 struct netdev_nested_priv priv = { 7668 .data = (void *)upper_dev, 7669 }; 7670 7671 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7672 &priv); 7673 } 7674 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7675 7676 /** 7677 * netdev_has_any_upper_dev - Check if device is linked to some device 7678 * @dev: device 7679 * 7680 * Find out if a device is linked to an upper device and return true in case 7681 * it is. The caller must hold the RTNL lock. 7682 */ 7683 bool netdev_has_any_upper_dev(struct net_device *dev) 7684 { 7685 ASSERT_RTNL(); 7686 7687 return !list_empty(&dev->adj_list.upper); 7688 } 7689 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7690 7691 /** 7692 * netdev_master_upper_dev_get - Get master upper device 7693 * @dev: device 7694 * 7695 * Find a master upper device and return pointer to it or NULL in case 7696 * it's not there. The caller must hold the RTNL lock. 7697 */ 7698 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7699 { 7700 struct netdev_adjacent *upper; 7701 7702 ASSERT_RTNL(); 7703 7704 if (list_empty(&dev->adj_list.upper)) 7705 return NULL; 7706 7707 upper = list_first_entry(&dev->adj_list.upper, 7708 struct netdev_adjacent, list); 7709 if (likely(upper->master)) 7710 return upper->dev; 7711 return NULL; 7712 } 7713 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7714 7715 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7716 { 7717 struct netdev_adjacent *upper; 7718 7719 ASSERT_RTNL(); 7720 7721 if (list_empty(&dev->adj_list.upper)) 7722 return NULL; 7723 7724 upper = list_first_entry(&dev->adj_list.upper, 7725 struct netdev_adjacent, list); 7726 if (likely(upper->master) && !upper->ignore) 7727 return upper->dev; 7728 return NULL; 7729 } 7730 7731 /** 7732 * netdev_has_any_lower_dev - Check if device is linked to some device 7733 * @dev: device 7734 * 7735 * Find out if a device is linked to a lower device and return true in case 7736 * it is. The caller must hold the RTNL lock. 7737 */ 7738 static bool netdev_has_any_lower_dev(struct net_device *dev) 7739 { 7740 ASSERT_RTNL(); 7741 7742 return !list_empty(&dev->adj_list.lower); 7743 } 7744 7745 void *netdev_adjacent_get_private(struct list_head *adj_list) 7746 { 7747 struct netdev_adjacent *adj; 7748 7749 adj = list_entry(adj_list, struct netdev_adjacent, list); 7750 7751 return adj->private; 7752 } 7753 EXPORT_SYMBOL(netdev_adjacent_get_private); 7754 7755 /** 7756 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7757 * @dev: device 7758 * @iter: list_head ** of the current position 7759 * 7760 * Gets the next device from the dev's upper list, starting from iter 7761 * position. The caller must hold RCU read lock. 7762 */ 7763 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7764 struct list_head **iter) 7765 { 7766 struct netdev_adjacent *upper; 7767 7768 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7769 7770 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7771 7772 if (&upper->list == &dev->adj_list.upper) 7773 return NULL; 7774 7775 *iter = &upper->list; 7776 7777 return upper->dev; 7778 } 7779 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7780 7781 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7782 struct list_head **iter, 7783 bool *ignore) 7784 { 7785 struct netdev_adjacent *upper; 7786 7787 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7788 7789 if (&upper->list == &dev->adj_list.upper) 7790 return NULL; 7791 7792 *iter = &upper->list; 7793 *ignore = upper->ignore; 7794 7795 return upper->dev; 7796 } 7797 7798 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7799 struct list_head **iter) 7800 { 7801 struct netdev_adjacent *upper; 7802 7803 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7804 7805 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7806 7807 if (&upper->list == &dev->adj_list.upper) 7808 return NULL; 7809 7810 *iter = &upper->list; 7811 7812 return upper->dev; 7813 } 7814 7815 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7816 int (*fn)(struct net_device *dev, 7817 struct netdev_nested_priv *priv), 7818 struct netdev_nested_priv *priv) 7819 { 7820 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7821 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7822 int ret, cur = 0; 7823 bool ignore; 7824 7825 now = dev; 7826 iter = &dev->adj_list.upper; 7827 7828 while (1) { 7829 if (now != dev) { 7830 ret = fn(now, priv); 7831 if (ret) 7832 return ret; 7833 } 7834 7835 next = NULL; 7836 while (1) { 7837 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7838 if (!udev) 7839 break; 7840 if (ignore) 7841 continue; 7842 7843 next = udev; 7844 niter = &udev->adj_list.upper; 7845 dev_stack[cur] = now; 7846 iter_stack[cur++] = iter; 7847 break; 7848 } 7849 7850 if (!next) { 7851 if (!cur) 7852 return 0; 7853 next = dev_stack[--cur]; 7854 niter = iter_stack[cur]; 7855 } 7856 7857 now = next; 7858 iter = niter; 7859 } 7860 7861 return 0; 7862 } 7863 7864 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7865 int (*fn)(struct net_device *dev, 7866 struct netdev_nested_priv *priv), 7867 struct netdev_nested_priv *priv) 7868 { 7869 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7870 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7871 int ret, cur = 0; 7872 7873 now = dev; 7874 iter = &dev->adj_list.upper; 7875 7876 while (1) { 7877 if (now != dev) { 7878 ret = fn(now, priv); 7879 if (ret) 7880 return ret; 7881 } 7882 7883 next = NULL; 7884 while (1) { 7885 udev = netdev_next_upper_dev_rcu(now, &iter); 7886 if (!udev) 7887 break; 7888 7889 next = udev; 7890 niter = &udev->adj_list.upper; 7891 dev_stack[cur] = now; 7892 iter_stack[cur++] = iter; 7893 break; 7894 } 7895 7896 if (!next) { 7897 if (!cur) 7898 return 0; 7899 next = dev_stack[--cur]; 7900 niter = iter_stack[cur]; 7901 } 7902 7903 now = next; 7904 iter = niter; 7905 } 7906 7907 return 0; 7908 } 7909 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7910 7911 static bool __netdev_has_upper_dev(struct net_device *dev, 7912 struct net_device *upper_dev) 7913 { 7914 struct netdev_nested_priv priv = { 7915 .flags = 0, 7916 .data = (void *)upper_dev, 7917 }; 7918 7919 ASSERT_RTNL(); 7920 7921 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7922 &priv); 7923 } 7924 7925 /** 7926 * netdev_lower_get_next_private - Get the next ->private from the 7927 * lower neighbour list 7928 * @dev: device 7929 * @iter: list_head ** of the current position 7930 * 7931 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7932 * list, starting from iter position. The caller must hold either hold the 7933 * RTNL lock or its own locking that guarantees that the neighbour lower 7934 * list will remain unchanged. 7935 */ 7936 void *netdev_lower_get_next_private(struct net_device *dev, 7937 struct list_head **iter) 7938 { 7939 struct netdev_adjacent *lower; 7940 7941 lower = list_entry(*iter, struct netdev_adjacent, list); 7942 7943 if (&lower->list == &dev->adj_list.lower) 7944 return NULL; 7945 7946 *iter = lower->list.next; 7947 7948 return lower->private; 7949 } 7950 EXPORT_SYMBOL(netdev_lower_get_next_private); 7951 7952 /** 7953 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7954 * lower neighbour list, RCU 7955 * variant 7956 * @dev: device 7957 * @iter: list_head ** of the current position 7958 * 7959 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7960 * list, starting from iter position. The caller must hold RCU read lock. 7961 */ 7962 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7963 struct list_head **iter) 7964 { 7965 struct netdev_adjacent *lower; 7966 7967 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7968 7969 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7970 7971 if (&lower->list == &dev->adj_list.lower) 7972 return NULL; 7973 7974 *iter = &lower->list; 7975 7976 return lower->private; 7977 } 7978 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7979 7980 /** 7981 * netdev_lower_get_next - Get the next device from the lower neighbour 7982 * list 7983 * @dev: device 7984 * @iter: list_head ** of the current position 7985 * 7986 * Gets the next netdev_adjacent from the dev's lower neighbour 7987 * list, starting from iter position. The caller must hold RTNL lock or 7988 * its own locking that guarantees that the neighbour lower 7989 * list will remain unchanged. 7990 */ 7991 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7992 { 7993 struct netdev_adjacent *lower; 7994 7995 lower = list_entry(*iter, struct netdev_adjacent, list); 7996 7997 if (&lower->list == &dev->adj_list.lower) 7998 return NULL; 7999 8000 *iter = lower->list.next; 8001 8002 return lower->dev; 8003 } 8004 EXPORT_SYMBOL(netdev_lower_get_next); 8005 8006 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8007 struct list_head **iter) 8008 { 8009 struct netdev_adjacent *lower; 8010 8011 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8012 8013 if (&lower->list == &dev->adj_list.lower) 8014 return NULL; 8015 8016 *iter = &lower->list; 8017 8018 return lower->dev; 8019 } 8020 8021 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8022 struct list_head **iter, 8023 bool *ignore) 8024 { 8025 struct netdev_adjacent *lower; 8026 8027 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8028 8029 if (&lower->list == &dev->adj_list.lower) 8030 return NULL; 8031 8032 *iter = &lower->list; 8033 *ignore = lower->ignore; 8034 8035 return lower->dev; 8036 } 8037 8038 int netdev_walk_all_lower_dev(struct net_device *dev, 8039 int (*fn)(struct net_device *dev, 8040 struct netdev_nested_priv *priv), 8041 struct netdev_nested_priv *priv) 8042 { 8043 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8044 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8045 int ret, cur = 0; 8046 8047 now = dev; 8048 iter = &dev->adj_list.lower; 8049 8050 while (1) { 8051 if (now != dev) { 8052 ret = fn(now, priv); 8053 if (ret) 8054 return ret; 8055 } 8056 8057 next = NULL; 8058 while (1) { 8059 ldev = netdev_next_lower_dev(now, &iter); 8060 if (!ldev) 8061 break; 8062 8063 next = ldev; 8064 niter = &ldev->adj_list.lower; 8065 dev_stack[cur] = now; 8066 iter_stack[cur++] = iter; 8067 break; 8068 } 8069 8070 if (!next) { 8071 if (!cur) 8072 return 0; 8073 next = dev_stack[--cur]; 8074 niter = iter_stack[cur]; 8075 } 8076 8077 now = next; 8078 iter = niter; 8079 } 8080 8081 return 0; 8082 } 8083 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8084 8085 static int __netdev_walk_all_lower_dev(struct net_device *dev, 8086 int (*fn)(struct net_device *dev, 8087 struct netdev_nested_priv *priv), 8088 struct netdev_nested_priv *priv) 8089 { 8090 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8091 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8092 int ret, cur = 0; 8093 bool ignore; 8094 8095 now = dev; 8096 iter = &dev->adj_list.lower; 8097 8098 while (1) { 8099 if (now != dev) { 8100 ret = fn(now, priv); 8101 if (ret) 8102 return ret; 8103 } 8104 8105 next = NULL; 8106 while (1) { 8107 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8108 if (!ldev) 8109 break; 8110 if (ignore) 8111 continue; 8112 8113 next = ldev; 8114 niter = &ldev->adj_list.lower; 8115 dev_stack[cur] = now; 8116 iter_stack[cur++] = iter; 8117 break; 8118 } 8119 8120 if (!next) { 8121 if (!cur) 8122 return 0; 8123 next = dev_stack[--cur]; 8124 niter = iter_stack[cur]; 8125 } 8126 8127 now = next; 8128 iter = niter; 8129 } 8130 8131 return 0; 8132 } 8133 8134 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8135 struct list_head **iter) 8136 { 8137 struct netdev_adjacent *lower; 8138 8139 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8140 if (&lower->list == &dev->adj_list.lower) 8141 return NULL; 8142 8143 *iter = &lower->list; 8144 8145 return lower->dev; 8146 } 8147 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8148 8149 static u8 __netdev_upper_depth(struct net_device *dev) 8150 { 8151 struct net_device *udev; 8152 struct list_head *iter; 8153 u8 max_depth = 0; 8154 bool ignore; 8155 8156 for (iter = &dev->adj_list.upper, 8157 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8158 udev; 8159 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8160 if (ignore) 8161 continue; 8162 if (max_depth < udev->upper_level) 8163 max_depth = udev->upper_level; 8164 } 8165 8166 return max_depth; 8167 } 8168 8169 static u8 __netdev_lower_depth(struct net_device *dev) 8170 { 8171 struct net_device *ldev; 8172 struct list_head *iter; 8173 u8 max_depth = 0; 8174 bool ignore; 8175 8176 for (iter = &dev->adj_list.lower, 8177 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8178 ldev; 8179 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8180 if (ignore) 8181 continue; 8182 if (max_depth < ldev->lower_level) 8183 max_depth = ldev->lower_level; 8184 } 8185 8186 return max_depth; 8187 } 8188 8189 static int __netdev_update_upper_level(struct net_device *dev, 8190 struct netdev_nested_priv *__unused) 8191 { 8192 dev->upper_level = __netdev_upper_depth(dev) + 1; 8193 return 0; 8194 } 8195 8196 #ifdef CONFIG_LOCKDEP 8197 static LIST_HEAD(net_unlink_list); 8198 8199 static void net_unlink_todo(struct net_device *dev) 8200 { 8201 if (list_empty(&dev->unlink_list)) 8202 list_add_tail(&dev->unlink_list, &net_unlink_list); 8203 } 8204 #endif 8205 8206 static int __netdev_update_lower_level(struct net_device *dev, 8207 struct netdev_nested_priv *priv) 8208 { 8209 dev->lower_level = __netdev_lower_depth(dev) + 1; 8210 8211 #ifdef CONFIG_LOCKDEP 8212 if (!priv) 8213 return 0; 8214 8215 if (priv->flags & NESTED_SYNC_IMM) 8216 dev->nested_level = dev->lower_level - 1; 8217 if (priv->flags & NESTED_SYNC_TODO) 8218 net_unlink_todo(dev); 8219 #endif 8220 return 0; 8221 } 8222 8223 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8224 int (*fn)(struct net_device *dev, 8225 struct netdev_nested_priv *priv), 8226 struct netdev_nested_priv *priv) 8227 { 8228 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8229 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8230 int ret, cur = 0; 8231 8232 now = dev; 8233 iter = &dev->adj_list.lower; 8234 8235 while (1) { 8236 if (now != dev) { 8237 ret = fn(now, priv); 8238 if (ret) 8239 return ret; 8240 } 8241 8242 next = NULL; 8243 while (1) { 8244 ldev = netdev_next_lower_dev_rcu(now, &iter); 8245 if (!ldev) 8246 break; 8247 8248 next = ldev; 8249 niter = &ldev->adj_list.lower; 8250 dev_stack[cur] = now; 8251 iter_stack[cur++] = iter; 8252 break; 8253 } 8254 8255 if (!next) { 8256 if (!cur) 8257 return 0; 8258 next = dev_stack[--cur]; 8259 niter = iter_stack[cur]; 8260 } 8261 8262 now = next; 8263 iter = niter; 8264 } 8265 8266 return 0; 8267 } 8268 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8269 8270 /** 8271 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8272 * lower neighbour list, RCU 8273 * variant 8274 * @dev: device 8275 * 8276 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8277 * list. The caller must hold RCU read lock. 8278 */ 8279 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8280 { 8281 struct netdev_adjacent *lower; 8282 8283 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8284 struct netdev_adjacent, list); 8285 if (lower) 8286 return lower->private; 8287 return NULL; 8288 } 8289 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8290 8291 /** 8292 * netdev_master_upper_dev_get_rcu - Get master upper device 8293 * @dev: device 8294 * 8295 * Find a master upper device and return pointer to it or NULL in case 8296 * it's not there. The caller must hold the RCU read lock. 8297 */ 8298 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8299 { 8300 struct netdev_adjacent *upper; 8301 8302 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8303 struct netdev_adjacent, list); 8304 if (upper && likely(upper->master)) 8305 return upper->dev; 8306 return NULL; 8307 } 8308 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8309 8310 static int netdev_adjacent_sysfs_add(struct net_device *dev, 8311 struct net_device *adj_dev, 8312 struct list_head *dev_list) 8313 { 8314 char linkname[IFNAMSIZ+7]; 8315 8316 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8317 "upper_%s" : "lower_%s", adj_dev->name); 8318 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8319 linkname); 8320 } 8321 static void netdev_adjacent_sysfs_del(struct net_device *dev, 8322 char *name, 8323 struct list_head *dev_list) 8324 { 8325 char linkname[IFNAMSIZ+7]; 8326 8327 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8328 "upper_%s" : "lower_%s", name); 8329 sysfs_remove_link(&(dev->dev.kobj), linkname); 8330 } 8331 8332 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8333 struct net_device *adj_dev, 8334 struct list_head *dev_list) 8335 { 8336 return (dev_list == &dev->adj_list.upper || 8337 dev_list == &dev->adj_list.lower) && 8338 net_eq(dev_net(dev), dev_net(adj_dev)); 8339 } 8340 8341 static int __netdev_adjacent_dev_insert(struct net_device *dev, 8342 struct net_device *adj_dev, 8343 struct list_head *dev_list, 8344 void *private, bool master) 8345 { 8346 struct netdev_adjacent *adj; 8347 int ret; 8348 8349 adj = __netdev_find_adj(adj_dev, dev_list); 8350 8351 if (adj) { 8352 adj->ref_nr += 1; 8353 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8354 dev->name, adj_dev->name, adj->ref_nr); 8355 8356 return 0; 8357 } 8358 8359 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8360 if (!adj) 8361 return -ENOMEM; 8362 8363 adj->dev = adj_dev; 8364 adj->master = master; 8365 adj->ref_nr = 1; 8366 adj->private = private; 8367 adj->ignore = false; 8368 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8369 8370 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8371 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8372 8373 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8374 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8375 if (ret) 8376 goto free_adj; 8377 } 8378 8379 /* Ensure that master link is always the first item in list. */ 8380 if (master) { 8381 ret = sysfs_create_link(&(dev->dev.kobj), 8382 &(adj_dev->dev.kobj), "master"); 8383 if (ret) 8384 goto remove_symlinks; 8385 8386 list_add_rcu(&adj->list, dev_list); 8387 } else { 8388 list_add_tail_rcu(&adj->list, dev_list); 8389 } 8390 8391 return 0; 8392 8393 remove_symlinks: 8394 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8395 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8396 free_adj: 8397 netdev_put(adj_dev, &adj->dev_tracker); 8398 kfree(adj); 8399 8400 return ret; 8401 } 8402 8403 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8404 struct net_device *adj_dev, 8405 u16 ref_nr, 8406 struct list_head *dev_list) 8407 { 8408 struct netdev_adjacent *adj; 8409 8410 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8411 dev->name, adj_dev->name, ref_nr); 8412 8413 adj = __netdev_find_adj(adj_dev, dev_list); 8414 8415 if (!adj) { 8416 pr_err("Adjacency does not exist for device %s from %s\n", 8417 dev->name, adj_dev->name); 8418 WARN_ON(1); 8419 return; 8420 } 8421 8422 if (adj->ref_nr > ref_nr) { 8423 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8424 dev->name, adj_dev->name, ref_nr, 8425 adj->ref_nr - ref_nr); 8426 adj->ref_nr -= ref_nr; 8427 return; 8428 } 8429 8430 if (adj->master) 8431 sysfs_remove_link(&(dev->dev.kobj), "master"); 8432 8433 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8434 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8435 8436 list_del_rcu(&adj->list); 8437 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8438 adj_dev->name, dev->name, adj_dev->name); 8439 netdev_put(adj_dev, &adj->dev_tracker); 8440 kfree_rcu(adj, rcu); 8441 } 8442 8443 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8444 struct net_device *upper_dev, 8445 struct list_head *up_list, 8446 struct list_head *down_list, 8447 void *private, bool master) 8448 { 8449 int ret; 8450 8451 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8452 private, master); 8453 if (ret) 8454 return ret; 8455 8456 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8457 private, false); 8458 if (ret) { 8459 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8460 return ret; 8461 } 8462 8463 return 0; 8464 } 8465 8466 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8467 struct net_device *upper_dev, 8468 u16 ref_nr, 8469 struct list_head *up_list, 8470 struct list_head *down_list) 8471 { 8472 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8473 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8474 } 8475 8476 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8477 struct net_device *upper_dev, 8478 void *private, bool master) 8479 { 8480 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8481 &dev->adj_list.upper, 8482 &upper_dev->adj_list.lower, 8483 private, master); 8484 } 8485 8486 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8487 struct net_device *upper_dev) 8488 { 8489 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8490 &dev->adj_list.upper, 8491 &upper_dev->adj_list.lower); 8492 } 8493 8494 static int __netdev_upper_dev_link(struct net_device *dev, 8495 struct net_device *upper_dev, bool master, 8496 void *upper_priv, void *upper_info, 8497 struct netdev_nested_priv *priv, 8498 struct netlink_ext_ack *extack) 8499 { 8500 struct netdev_notifier_changeupper_info changeupper_info = { 8501 .info = { 8502 .dev = dev, 8503 .extack = extack, 8504 }, 8505 .upper_dev = upper_dev, 8506 .master = master, 8507 .linking = true, 8508 .upper_info = upper_info, 8509 }; 8510 struct net_device *master_dev; 8511 int ret = 0; 8512 8513 ASSERT_RTNL(); 8514 8515 if (dev == upper_dev) 8516 return -EBUSY; 8517 8518 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8519 if (__netdev_has_upper_dev(upper_dev, dev)) 8520 return -EBUSY; 8521 8522 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8523 return -EMLINK; 8524 8525 if (!master) { 8526 if (__netdev_has_upper_dev(dev, upper_dev)) 8527 return -EEXIST; 8528 } else { 8529 master_dev = __netdev_master_upper_dev_get(dev); 8530 if (master_dev) 8531 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8532 } 8533 8534 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8535 &changeupper_info.info); 8536 ret = notifier_to_errno(ret); 8537 if (ret) 8538 return ret; 8539 8540 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8541 master); 8542 if (ret) 8543 return ret; 8544 8545 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8546 &changeupper_info.info); 8547 ret = notifier_to_errno(ret); 8548 if (ret) 8549 goto rollback; 8550 8551 __netdev_update_upper_level(dev, NULL); 8552 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8553 8554 __netdev_update_lower_level(upper_dev, priv); 8555 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8556 priv); 8557 8558 return 0; 8559 8560 rollback: 8561 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8562 8563 return ret; 8564 } 8565 8566 /** 8567 * netdev_upper_dev_link - Add a link to the upper device 8568 * @dev: device 8569 * @upper_dev: new upper device 8570 * @extack: netlink extended ack 8571 * 8572 * Adds a link to device which is upper to this one. The caller must hold 8573 * the RTNL lock. On a failure a negative errno code is returned. 8574 * On success the reference counts are adjusted and the function 8575 * returns zero. 8576 */ 8577 int netdev_upper_dev_link(struct net_device *dev, 8578 struct net_device *upper_dev, 8579 struct netlink_ext_ack *extack) 8580 { 8581 struct netdev_nested_priv priv = { 8582 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8583 .data = NULL, 8584 }; 8585 8586 return __netdev_upper_dev_link(dev, upper_dev, false, 8587 NULL, NULL, &priv, extack); 8588 } 8589 EXPORT_SYMBOL(netdev_upper_dev_link); 8590 8591 /** 8592 * netdev_master_upper_dev_link - Add a master link to the upper device 8593 * @dev: device 8594 * @upper_dev: new upper device 8595 * @upper_priv: upper device private 8596 * @upper_info: upper info to be passed down via notifier 8597 * @extack: netlink extended ack 8598 * 8599 * Adds a link to device which is upper to this one. In this case, only 8600 * one master upper device can be linked, although other non-master devices 8601 * might be linked as well. The caller must hold the RTNL lock. 8602 * On a failure a negative errno code is returned. On success the reference 8603 * counts are adjusted and the function returns zero. 8604 */ 8605 int netdev_master_upper_dev_link(struct net_device *dev, 8606 struct net_device *upper_dev, 8607 void *upper_priv, void *upper_info, 8608 struct netlink_ext_ack *extack) 8609 { 8610 struct netdev_nested_priv priv = { 8611 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8612 .data = NULL, 8613 }; 8614 8615 return __netdev_upper_dev_link(dev, upper_dev, true, 8616 upper_priv, upper_info, &priv, extack); 8617 } 8618 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8619 8620 static void __netdev_upper_dev_unlink(struct net_device *dev, 8621 struct net_device *upper_dev, 8622 struct netdev_nested_priv *priv) 8623 { 8624 struct netdev_notifier_changeupper_info changeupper_info = { 8625 .info = { 8626 .dev = dev, 8627 }, 8628 .upper_dev = upper_dev, 8629 .linking = false, 8630 }; 8631 8632 ASSERT_RTNL(); 8633 8634 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8635 8636 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8637 &changeupper_info.info); 8638 8639 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8640 8641 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8642 &changeupper_info.info); 8643 8644 __netdev_update_upper_level(dev, NULL); 8645 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8646 8647 __netdev_update_lower_level(upper_dev, priv); 8648 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8649 priv); 8650 } 8651 8652 /** 8653 * netdev_upper_dev_unlink - Removes a link to upper device 8654 * @dev: device 8655 * @upper_dev: new upper device 8656 * 8657 * Removes a link to device which is upper to this one. The caller must hold 8658 * the RTNL lock. 8659 */ 8660 void netdev_upper_dev_unlink(struct net_device *dev, 8661 struct net_device *upper_dev) 8662 { 8663 struct netdev_nested_priv priv = { 8664 .flags = NESTED_SYNC_TODO, 8665 .data = NULL, 8666 }; 8667 8668 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8669 } 8670 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8671 8672 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8673 struct net_device *lower_dev, 8674 bool val) 8675 { 8676 struct netdev_adjacent *adj; 8677 8678 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8679 if (adj) 8680 adj->ignore = val; 8681 8682 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8683 if (adj) 8684 adj->ignore = val; 8685 } 8686 8687 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8688 struct net_device *lower_dev) 8689 { 8690 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8691 } 8692 8693 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8694 struct net_device *lower_dev) 8695 { 8696 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8697 } 8698 8699 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8700 struct net_device *new_dev, 8701 struct net_device *dev, 8702 struct netlink_ext_ack *extack) 8703 { 8704 struct netdev_nested_priv priv = { 8705 .flags = 0, 8706 .data = NULL, 8707 }; 8708 int err; 8709 8710 if (!new_dev) 8711 return 0; 8712 8713 if (old_dev && new_dev != old_dev) 8714 netdev_adjacent_dev_disable(dev, old_dev); 8715 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8716 extack); 8717 if (err) { 8718 if (old_dev && new_dev != old_dev) 8719 netdev_adjacent_dev_enable(dev, old_dev); 8720 return err; 8721 } 8722 8723 return 0; 8724 } 8725 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8726 8727 void netdev_adjacent_change_commit(struct net_device *old_dev, 8728 struct net_device *new_dev, 8729 struct net_device *dev) 8730 { 8731 struct netdev_nested_priv priv = { 8732 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8733 .data = NULL, 8734 }; 8735 8736 if (!new_dev || !old_dev) 8737 return; 8738 8739 if (new_dev == old_dev) 8740 return; 8741 8742 netdev_adjacent_dev_enable(dev, old_dev); 8743 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8744 } 8745 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8746 8747 void netdev_adjacent_change_abort(struct net_device *old_dev, 8748 struct net_device *new_dev, 8749 struct net_device *dev) 8750 { 8751 struct netdev_nested_priv priv = { 8752 .flags = 0, 8753 .data = NULL, 8754 }; 8755 8756 if (!new_dev) 8757 return; 8758 8759 if (old_dev && new_dev != old_dev) 8760 netdev_adjacent_dev_enable(dev, old_dev); 8761 8762 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8763 } 8764 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8765 8766 /** 8767 * netdev_bonding_info_change - Dispatch event about slave change 8768 * @dev: device 8769 * @bonding_info: info to dispatch 8770 * 8771 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8772 * The caller must hold the RTNL lock. 8773 */ 8774 void netdev_bonding_info_change(struct net_device *dev, 8775 struct netdev_bonding_info *bonding_info) 8776 { 8777 struct netdev_notifier_bonding_info info = { 8778 .info.dev = dev, 8779 }; 8780 8781 memcpy(&info.bonding_info, bonding_info, 8782 sizeof(struct netdev_bonding_info)); 8783 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8784 &info.info); 8785 } 8786 EXPORT_SYMBOL(netdev_bonding_info_change); 8787 8788 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8789 struct netlink_ext_ack *extack) 8790 { 8791 struct netdev_notifier_offload_xstats_info info = { 8792 .info.dev = dev, 8793 .info.extack = extack, 8794 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8795 }; 8796 int err; 8797 int rc; 8798 8799 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8800 GFP_KERNEL); 8801 if (!dev->offload_xstats_l3) 8802 return -ENOMEM; 8803 8804 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8805 NETDEV_OFFLOAD_XSTATS_DISABLE, 8806 &info.info); 8807 err = notifier_to_errno(rc); 8808 if (err) 8809 goto free_stats; 8810 8811 return 0; 8812 8813 free_stats: 8814 kfree(dev->offload_xstats_l3); 8815 dev->offload_xstats_l3 = NULL; 8816 return err; 8817 } 8818 8819 int netdev_offload_xstats_enable(struct net_device *dev, 8820 enum netdev_offload_xstats_type type, 8821 struct netlink_ext_ack *extack) 8822 { 8823 ASSERT_RTNL(); 8824 8825 if (netdev_offload_xstats_enabled(dev, type)) 8826 return -EALREADY; 8827 8828 switch (type) { 8829 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8830 return netdev_offload_xstats_enable_l3(dev, extack); 8831 } 8832 8833 WARN_ON(1); 8834 return -EINVAL; 8835 } 8836 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8837 8838 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8839 { 8840 struct netdev_notifier_offload_xstats_info info = { 8841 .info.dev = dev, 8842 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8843 }; 8844 8845 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8846 &info.info); 8847 kfree(dev->offload_xstats_l3); 8848 dev->offload_xstats_l3 = NULL; 8849 } 8850 8851 int netdev_offload_xstats_disable(struct net_device *dev, 8852 enum netdev_offload_xstats_type type) 8853 { 8854 ASSERT_RTNL(); 8855 8856 if (!netdev_offload_xstats_enabled(dev, type)) 8857 return -EALREADY; 8858 8859 switch (type) { 8860 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8861 netdev_offload_xstats_disable_l3(dev); 8862 return 0; 8863 } 8864 8865 WARN_ON(1); 8866 return -EINVAL; 8867 } 8868 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8869 8870 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8871 { 8872 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8873 } 8874 8875 static struct rtnl_hw_stats64 * 8876 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8877 enum netdev_offload_xstats_type type) 8878 { 8879 switch (type) { 8880 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8881 return dev->offload_xstats_l3; 8882 } 8883 8884 WARN_ON(1); 8885 return NULL; 8886 } 8887 8888 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8889 enum netdev_offload_xstats_type type) 8890 { 8891 ASSERT_RTNL(); 8892 8893 return netdev_offload_xstats_get_ptr(dev, type); 8894 } 8895 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8896 8897 struct netdev_notifier_offload_xstats_ru { 8898 bool used; 8899 }; 8900 8901 struct netdev_notifier_offload_xstats_rd { 8902 struct rtnl_hw_stats64 stats; 8903 bool used; 8904 }; 8905 8906 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8907 const struct rtnl_hw_stats64 *src) 8908 { 8909 dest->rx_packets += src->rx_packets; 8910 dest->tx_packets += src->tx_packets; 8911 dest->rx_bytes += src->rx_bytes; 8912 dest->tx_bytes += src->tx_bytes; 8913 dest->rx_errors += src->rx_errors; 8914 dest->tx_errors += src->tx_errors; 8915 dest->rx_dropped += src->rx_dropped; 8916 dest->tx_dropped += src->tx_dropped; 8917 dest->multicast += src->multicast; 8918 } 8919 8920 static int netdev_offload_xstats_get_used(struct net_device *dev, 8921 enum netdev_offload_xstats_type type, 8922 bool *p_used, 8923 struct netlink_ext_ack *extack) 8924 { 8925 struct netdev_notifier_offload_xstats_ru report_used = {}; 8926 struct netdev_notifier_offload_xstats_info info = { 8927 .info.dev = dev, 8928 .info.extack = extack, 8929 .type = type, 8930 .report_used = &report_used, 8931 }; 8932 int rc; 8933 8934 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8935 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8936 &info.info); 8937 *p_used = report_used.used; 8938 return notifier_to_errno(rc); 8939 } 8940 8941 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8942 enum netdev_offload_xstats_type type, 8943 struct rtnl_hw_stats64 *p_stats, 8944 bool *p_used, 8945 struct netlink_ext_ack *extack) 8946 { 8947 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8948 struct netdev_notifier_offload_xstats_info info = { 8949 .info.dev = dev, 8950 .info.extack = extack, 8951 .type = type, 8952 .report_delta = &report_delta, 8953 }; 8954 struct rtnl_hw_stats64 *stats; 8955 int rc; 8956 8957 stats = netdev_offload_xstats_get_ptr(dev, type); 8958 if (WARN_ON(!stats)) 8959 return -EINVAL; 8960 8961 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8962 &info.info); 8963 8964 /* Cache whatever we got, even if there was an error, otherwise the 8965 * successful stats retrievals would get lost. 8966 */ 8967 netdev_hw_stats64_add(stats, &report_delta.stats); 8968 8969 if (p_stats) 8970 *p_stats = *stats; 8971 *p_used = report_delta.used; 8972 8973 return notifier_to_errno(rc); 8974 } 8975 8976 int netdev_offload_xstats_get(struct net_device *dev, 8977 enum netdev_offload_xstats_type type, 8978 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8979 struct netlink_ext_ack *extack) 8980 { 8981 ASSERT_RTNL(); 8982 8983 if (p_stats) 8984 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8985 p_used, extack); 8986 else 8987 return netdev_offload_xstats_get_used(dev, type, p_used, 8988 extack); 8989 } 8990 EXPORT_SYMBOL(netdev_offload_xstats_get); 8991 8992 void 8993 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8994 const struct rtnl_hw_stats64 *stats) 8995 { 8996 report_delta->used = true; 8997 netdev_hw_stats64_add(&report_delta->stats, stats); 8998 } 8999 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9000 9001 void 9002 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9003 { 9004 report_used->used = true; 9005 } 9006 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9007 9008 void netdev_offload_xstats_push_delta(struct net_device *dev, 9009 enum netdev_offload_xstats_type type, 9010 const struct rtnl_hw_stats64 *p_stats) 9011 { 9012 struct rtnl_hw_stats64 *stats; 9013 9014 ASSERT_RTNL(); 9015 9016 stats = netdev_offload_xstats_get_ptr(dev, type); 9017 if (WARN_ON(!stats)) 9018 return; 9019 9020 netdev_hw_stats64_add(stats, p_stats); 9021 } 9022 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9023 9024 /** 9025 * netdev_get_xmit_slave - Get the xmit slave of master device 9026 * @dev: device 9027 * @skb: The packet 9028 * @all_slaves: assume all the slaves are active 9029 * 9030 * The reference counters are not incremented so the caller must be 9031 * careful with locks. The caller must hold RCU lock. 9032 * %NULL is returned if no slave is found. 9033 */ 9034 9035 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9036 struct sk_buff *skb, 9037 bool all_slaves) 9038 { 9039 const struct net_device_ops *ops = dev->netdev_ops; 9040 9041 if (!ops->ndo_get_xmit_slave) 9042 return NULL; 9043 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9044 } 9045 EXPORT_SYMBOL(netdev_get_xmit_slave); 9046 9047 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9048 struct sock *sk) 9049 { 9050 const struct net_device_ops *ops = dev->netdev_ops; 9051 9052 if (!ops->ndo_sk_get_lower_dev) 9053 return NULL; 9054 return ops->ndo_sk_get_lower_dev(dev, sk); 9055 } 9056 9057 /** 9058 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9059 * @dev: device 9060 * @sk: the socket 9061 * 9062 * %NULL is returned if no lower device is found. 9063 */ 9064 9065 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9066 struct sock *sk) 9067 { 9068 struct net_device *lower; 9069 9070 lower = netdev_sk_get_lower_dev(dev, sk); 9071 while (lower) { 9072 dev = lower; 9073 lower = netdev_sk_get_lower_dev(dev, sk); 9074 } 9075 9076 return dev; 9077 } 9078 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9079 9080 static void netdev_adjacent_add_links(struct net_device *dev) 9081 { 9082 struct netdev_adjacent *iter; 9083 9084 struct net *net = dev_net(dev); 9085 9086 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9087 if (!net_eq(net, dev_net(iter->dev))) 9088 continue; 9089 netdev_adjacent_sysfs_add(iter->dev, dev, 9090 &iter->dev->adj_list.lower); 9091 netdev_adjacent_sysfs_add(dev, iter->dev, 9092 &dev->adj_list.upper); 9093 } 9094 9095 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9096 if (!net_eq(net, dev_net(iter->dev))) 9097 continue; 9098 netdev_adjacent_sysfs_add(iter->dev, dev, 9099 &iter->dev->adj_list.upper); 9100 netdev_adjacent_sysfs_add(dev, iter->dev, 9101 &dev->adj_list.lower); 9102 } 9103 } 9104 9105 static void netdev_adjacent_del_links(struct net_device *dev) 9106 { 9107 struct netdev_adjacent *iter; 9108 9109 struct net *net = dev_net(dev); 9110 9111 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9112 if (!net_eq(net, dev_net(iter->dev))) 9113 continue; 9114 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9115 &iter->dev->adj_list.lower); 9116 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9117 &dev->adj_list.upper); 9118 } 9119 9120 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9121 if (!net_eq(net, dev_net(iter->dev))) 9122 continue; 9123 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9124 &iter->dev->adj_list.upper); 9125 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9126 &dev->adj_list.lower); 9127 } 9128 } 9129 9130 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9131 { 9132 struct netdev_adjacent *iter; 9133 9134 struct net *net = dev_net(dev); 9135 9136 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9137 if (!net_eq(net, dev_net(iter->dev))) 9138 continue; 9139 netdev_adjacent_sysfs_del(iter->dev, oldname, 9140 &iter->dev->adj_list.lower); 9141 netdev_adjacent_sysfs_add(iter->dev, dev, 9142 &iter->dev->adj_list.lower); 9143 } 9144 9145 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9146 if (!net_eq(net, dev_net(iter->dev))) 9147 continue; 9148 netdev_adjacent_sysfs_del(iter->dev, oldname, 9149 &iter->dev->adj_list.upper); 9150 netdev_adjacent_sysfs_add(iter->dev, dev, 9151 &iter->dev->adj_list.upper); 9152 } 9153 } 9154 9155 void *netdev_lower_dev_get_private(struct net_device *dev, 9156 struct net_device *lower_dev) 9157 { 9158 struct netdev_adjacent *lower; 9159 9160 if (!lower_dev) 9161 return NULL; 9162 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9163 if (!lower) 9164 return NULL; 9165 9166 return lower->private; 9167 } 9168 EXPORT_SYMBOL(netdev_lower_dev_get_private); 9169 9170 9171 /** 9172 * netdev_lower_state_changed - Dispatch event about lower device state change 9173 * @lower_dev: device 9174 * @lower_state_info: state to dispatch 9175 * 9176 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9177 * The caller must hold the RTNL lock. 9178 */ 9179 void netdev_lower_state_changed(struct net_device *lower_dev, 9180 void *lower_state_info) 9181 { 9182 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9183 .info.dev = lower_dev, 9184 }; 9185 9186 ASSERT_RTNL(); 9187 changelowerstate_info.lower_state_info = lower_state_info; 9188 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9189 &changelowerstate_info.info); 9190 } 9191 EXPORT_SYMBOL(netdev_lower_state_changed); 9192 9193 static void dev_change_rx_flags(struct net_device *dev, int flags) 9194 { 9195 const struct net_device_ops *ops = dev->netdev_ops; 9196 9197 if (ops->ndo_change_rx_flags) 9198 ops->ndo_change_rx_flags(dev, flags); 9199 } 9200 9201 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9202 { 9203 unsigned int old_flags = dev->flags; 9204 unsigned int promiscuity, flags; 9205 kuid_t uid; 9206 kgid_t gid; 9207 9208 ASSERT_RTNL(); 9209 9210 promiscuity = dev->promiscuity + inc; 9211 if (promiscuity == 0) { 9212 /* 9213 * Avoid overflow. 9214 * If inc causes overflow, untouch promisc and return error. 9215 */ 9216 if (unlikely(inc > 0)) { 9217 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9218 return -EOVERFLOW; 9219 } 9220 flags = old_flags & ~IFF_PROMISC; 9221 } else { 9222 flags = old_flags | IFF_PROMISC; 9223 } 9224 WRITE_ONCE(dev->promiscuity, promiscuity); 9225 if (flags != old_flags) { 9226 WRITE_ONCE(dev->flags, flags); 9227 netdev_info(dev, "%s promiscuous mode\n", 9228 dev->flags & IFF_PROMISC ? "entered" : "left"); 9229 if (audit_enabled) { 9230 current_uid_gid(&uid, &gid); 9231 audit_log(audit_context(), GFP_ATOMIC, 9232 AUDIT_ANOM_PROMISCUOUS, 9233 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9234 dev->name, (dev->flags & IFF_PROMISC), 9235 (old_flags & IFF_PROMISC), 9236 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9237 from_kuid(&init_user_ns, uid), 9238 from_kgid(&init_user_ns, gid), 9239 audit_get_sessionid(current)); 9240 } 9241 9242 dev_change_rx_flags(dev, IFF_PROMISC); 9243 } 9244 if (notify) 9245 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9246 return 0; 9247 } 9248 9249 /** 9250 * dev_set_promiscuity - update promiscuity count on a device 9251 * @dev: device 9252 * @inc: modifier 9253 * 9254 * Add or remove promiscuity from a device. While the count in the device 9255 * remains above zero the interface remains promiscuous. Once it hits zero 9256 * the device reverts back to normal filtering operation. A negative inc 9257 * value is used to drop promiscuity on the device. 9258 * Return 0 if successful or a negative errno code on error. 9259 */ 9260 int dev_set_promiscuity(struct net_device *dev, int inc) 9261 { 9262 unsigned int old_flags = dev->flags; 9263 int err; 9264 9265 err = __dev_set_promiscuity(dev, inc, true); 9266 if (err < 0) 9267 return err; 9268 if (dev->flags != old_flags) 9269 dev_set_rx_mode(dev); 9270 return err; 9271 } 9272 EXPORT_SYMBOL(dev_set_promiscuity); 9273 9274 int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9275 { 9276 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9277 unsigned int allmulti, flags; 9278 9279 ASSERT_RTNL(); 9280 9281 allmulti = dev->allmulti + inc; 9282 if (allmulti == 0) { 9283 /* 9284 * Avoid overflow. 9285 * If inc causes overflow, untouch allmulti and return error. 9286 */ 9287 if (unlikely(inc > 0)) { 9288 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9289 return -EOVERFLOW; 9290 } 9291 flags = old_flags & ~IFF_ALLMULTI; 9292 } else { 9293 flags = old_flags | IFF_ALLMULTI; 9294 } 9295 WRITE_ONCE(dev->allmulti, allmulti); 9296 if (flags != old_flags) { 9297 WRITE_ONCE(dev->flags, flags); 9298 netdev_info(dev, "%s allmulticast mode\n", 9299 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9300 dev_change_rx_flags(dev, IFF_ALLMULTI); 9301 dev_set_rx_mode(dev); 9302 if (notify) 9303 __dev_notify_flags(dev, old_flags, 9304 dev->gflags ^ old_gflags, 0, NULL); 9305 } 9306 return 0; 9307 } 9308 9309 /* 9310 * Upload unicast and multicast address lists to device and 9311 * configure RX filtering. When the device doesn't support unicast 9312 * filtering it is put in promiscuous mode while unicast addresses 9313 * are present. 9314 */ 9315 void __dev_set_rx_mode(struct net_device *dev) 9316 { 9317 const struct net_device_ops *ops = dev->netdev_ops; 9318 9319 /* dev_open will call this function so the list will stay sane. */ 9320 if (!(dev->flags&IFF_UP)) 9321 return; 9322 9323 if (!netif_device_present(dev)) 9324 return; 9325 9326 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9327 /* Unicast addresses changes may only happen under the rtnl, 9328 * therefore calling __dev_set_promiscuity here is safe. 9329 */ 9330 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9331 __dev_set_promiscuity(dev, 1, false); 9332 dev->uc_promisc = true; 9333 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9334 __dev_set_promiscuity(dev, -1, false); 9335 dev->uc_promisc = false; 9336 } 9337 } 9338 9339 if (ops->ndo_set_rx_mode) 9340 ops->ndo_set_rx_mode(dev); 9341 } 9342 9343 void dev_set_rx_mode(struct net_device *dev) 9344 { 9345 netif_addr_lock_bh(dev); 9346 __dev_set_rx_mode(dev); 9347 netif_addr_unlock_bh(dev); 9348 } 9349 9350 /** 9351 * dev_get_flags - get flags reported to userspace 9352 * @dev: device 9353 * 9354 * Get the combination of flag bits exported through APIs to userspace. 9355 */ 9356 unsigned int dev_get_flags(const struct net_device *dev) 9357 { 9358 unsigned int flags; 9359 9360 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9361 IFF_ALLMULTI | 9362 IFF_RUNNING | 9363 IFF_LOWER_UP | 9364 IFF_DORMANT)) | 9365 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9366 IFF_ALLMULTI)); 9367 9368 if (netif_running(dev)) { 9369 if (netif_oper_up(dev)) 9370 flags |= IFF_RUNNING; 9371 if (netif_carrier_ok(dev)) 9372 flags |= IFF_LOWER_UP; 9373 if (netif_dormant(dev)) 9374 flags |= IFF_DORMANT; 9375 } 9376 9377 return flags; 9378 } 9379 EXPORT_SYMBOL(dev_get_flags); 9380 9381 int __dev_change_flags(struct net_device *dev, unsigned int flags, 9382 struct netlink_ext_ack *extack) 9383 { 9384 unsigned int old_flags = dev->flags; 9385 int ret; 9386 9387 ASSERT_RTNL(); 9388 9389 /* 9390 * Set the flags on our device. 9391 */ 9392 9393 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9394 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9395 IFF_AUTOMEDIA)) | 9396 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9397 IFF_ALLMULTI)); 9398 9399 /* 9400 * Load in the correct multicast list now the flags have changed. 9401 */ 9402 9403 if ((old_flags ^ flags) & IFF_MULTICAST) 9404 dev_change_rx_flags(dev, IFF_MULTICAST); 9405 9406 dev_set_rx_mode(dev); 9407 9408 /* 9409 * Have we downed the interface. We handle IFF_UP ourselves 9410 * according to user attempts to set it, rather than blindly 9411 * setting it. 9412 */ 9413 9414 ret = 0; 9415 if ((old_flags ^ flags) & IFF_UP) { 9416 if (old_flags & IFF_UP) 9417 __dev_close(dev); 9418 else 9419 ret = __dev_open(dev, extack); 9420 } 9421 9422 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9423 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9424 old_flags = dev->flags; 9425 9426 dev->gflags ^= IFF_PROMISC; 9427 9428 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9429 if (dev->flags != old_flags) 9430 dev_set_rx_mode(dev); 9431 } 9432 9433 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9434 * is important. Some (broken) drivers set IFF_PROMISC, when 9435 * IFF_ALLMULTI is requested not asking us and not reporting. 9436 */ 9437 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9438 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9439 9440 dev->gflags ^= IFF_ALLMULTI; 9441 netif_set_allmulti(dev, inc, false); 9442 } 9443 9444 return ret; 9445 } 9446 9447 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9448 unsigned int gchanges, u32 portid, 9449 const struct nlmsghdr *nlh) 9450 { 9451 unsigned int changes = dev->flags ^ old_flags; 9452 9453 if (gchanges) 9454 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9455 9456 if (changes & IFF_UP) { 9457 if (dev->flags & IFF_UP) 9458 call_netdevice_notifiers(NETDEV_UP, dev); 9459 else 9460 call_netdevice_notifiers(NETDEV_DOWN, dev); 9461 } 9462 9463 if (dev->flags & IFF_UP && 9464 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9465 struct netdev_notifier_change_info change_info = { 9466 .info = { 9467 .dev = dev, 9468 }, 9469 .flags_changed = changes, 9470 }; 9471 9472 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9473 } 9474 } 9475 9476 int netif_change_flags(struct net_device *dev, unsigned int flags, 9477 struct netlink_ext_ack *extack) 9478 { 9479 int ret; 9480 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9481 9482 ret = __dev_change_flags(dev, flags, extack); 9483 if (ret < 0) 9484 return ret; 9485 9486 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9487 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9488 return ret; 9489 } 9490 9491 int __dev_set_mtu(struct net_device *dev, int new_mtu) 9492 { 9493 const struct net_device_ops *ops = dev->netdev_ops; 9494 9495 if (ops->ndo_change_mtu) 9496 return ops->ndo_change_mtu(dev, new_mtu); 9497 9498 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9499 WRITE_ONCE(dev->mtu, new_mtu); 9500 return 0; 9501 } 9502 EXPORT_SYMBOL(__dev_set_mtu); 9503 9504 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9505 struct netlink_ext_ack *extack) 9506 { 9507 /* MTU must be positive, and in range */ 9508 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9509 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9510 return -EINVAL; 9511 } 9512 9513 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9514 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9515 return -EINVAL; 9516 } 9517 return 0; 9518 } 9519 9520 /** 9521 * netif_set_mtu_ext - Change maximum transfer unit 9522 * @dev: device 9523 * @new_mtu: new transfer unit 9524 * @extack: netlink extended ack 9525 * 9526 * Change the maximum transfer size of the network device. 9527 */ 9528 int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9529 struct netlink_ext_ack *extack) 9530 { 9531 int err, orig_mtu; 9532 9533 if (new_mtu == dev->mtu) 9534 return 0; 9535 9536 err = dev_validate_mtu(dev, new_mtu, extack); 9537 if (err) 9538 return err; 9539 9540 if (!netif_device_present(dev)) 9541 return -ENODEV; 9542 9543 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9544 err = notifier_to_errno(err); 9545 if (err) 9546 return err; 9547 9548 orig_mtu = dev->mtu; 9549 err = __dev_set_mtu(dev, new_mtu); 9550 9551 if (!err) { 9552 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9553 orig_mtu); 9554 err = notifier_to_errno(err); 9555 if (err) { 9556 /* setting mtu back and notifying everyone again, 9557 * so that they have a chance to revert changes. 9558 */ 9559 __dev_set_mtu(dev, orig_mtu); 9560 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9561 new_mtu); 9562 } 9563 } 9564 return err; 9565 } 9566 9567 int netif_set_mtu(struct net_device *dev, int new_mtu) 9568 { 9569 struct netlink_ext_ack extack; 9570 int err; 9571 9572 memset(&extack, 0, sizeof(extack)); 9573 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9574 if (err && extack._msg) 9575 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9576 return err; 9577 } 9578 EXPORT_SYMBOL(netif_set_mtu); 9579 9580 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9581 { 9582 unsigned int orig_len = dev->tx_queue_len; 9583 int res; 9584 9585 if (new_len != (unsigned int)new_len) 9586 return -ERANGE; 9587 9588 if (new_len != orig_len) { 9589 WRITE_ONCE(dev->tx_queue_len, new_len); 9590 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9591 res = notifier_to_errno(res); 9592 if (res) 9593 goto err_rollback; 9594 res = dev_qdisc_change_tx_queue_len(dev); 9595 if (res) 9596 goto err_rollback; 9597 } 9598 9599 return 0; 9600 9601 err_rollback: 9602 netdev_err(dev, "refused to change device tx_queue_len\n"); 9603 WRITE_ONCE(dev->tx_queue_len, orig_len); 9604 return res; 9605 } 9606 9607 void netif_set_group(struct net_device *dev, int new_group) 9608 { 9609 dev->group = new_group; 9610 } 9611 9612 /** 9613 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 9614 * @dev: device 9615 * @addr: new address 9616 * @extack: netlink extended ack 9617 */ 9618 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9619 struct netlink_ext_ack *extack) 9620 { 9621 struct netdev_notifier_pre_changeaddr_info info = { 9622 .info.dev = dev, 9623 .info.extack = extack, 9624 .dev_addr = addr, 9625 }; 9626 int rc; 9627 9628 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9629 return notifier_to_errno(rc); 9630 } 9631 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9632 9633 int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa, 9634 struct netlink_ext_ack *extack) 9635 { 9636 const struct net_device_ops *ops = dev->netdev_ops; 9637 int err; 9638 9639 if (!ops->ndo_set_mac_address) 9640 return -EOPNOTSUPP; 9641 if (sa->sa_family != dev->type) 9642 return -EINVAL; 9643 if (!netif_device_present(dev)) 9644 return -ENODEV; 9645 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 9646 if (err) 9647 return err; 9648 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 9649 err = ops->ndo_set_mac_address(dev, sa); 9650 if (err) 9651 return err; 9652 } 9653 dev->addr_assign_type = NET_ADDR_SET; 9654 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9655 add_device_randomness(dev->dev_addr, dev->addr_len); 9656 return 0; 9657 } 9658 9659 DECLARE_RWSEM(dev_addr_sem); 9660 9661 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9662 { 9663 size_t size = sizeof(sa->sa_data_min); 9664 struct net_device *dev; 9665 int ret = 0; 9666 9667 down_read(&dev_addr_sem); 9668 rcu_read_lock(); 9669 9670 dev = dev_get_by_name_rcu(net, dev_name); 9671 if (!dev) { 9672 ret = -ENODEV; 9673 goto unlock; 9674 } 9675 if (!dev->addr_len) 9676 memset(sa->sa_data, 0, size); 9677 else 9678 memcpy(sa->sa_data, dev->dev_addr, 9679 min_t(size_t, size, dev->addr_len)); 9680 sa->sa_family = dev->type; 9681 9682 unlock: 9683 rcu_read_unlock(); 9684 up_read(&dev_addr_sem); 9685 return ret; 9686 } 9687 EXPORT_SYMBOL(dev_get_mac_address); 9688 9689 int netif_change_carrier(struct net_device *dev, bool new_carrier) 9690 { 9691 const struct net_device_ops *ops = dev->netdev_ops; 9692 9693 if (!ops->ndo_change_carrier) 9694 return -EOPNOTSUPP; 9695 if (!netif_device_present(dev)) 9696 return -ENODEV; 9697 return ops->ndo_change_carrier(dev, new_carrier); 9698 } 9699 9700 /** 9701 * dev_get_phys_port_id - Get device physical port ID 9702 * @dev: device 9703 * @ppid: port ID 9704 * 9705 * Get device physical port ID 9706 */ 9707 int dev_get_phys_port_id(struct net_device *dev, 9708 struct netdev_phys_item_id *ppid) 9709 { 9710 const struct net_device_ops *ops = dev->netdev_ops; 9711 9712 if (!ops->ndo_get_phys_port_id) 9713 return -EOPNOTSUPP; 9714 return ops->ndo_get_phys_port_id(dev, ppid); 9715 } 9716 9717 /** 9718 * dev_get_phys_port_name - Get device physical port name 9719 * @dev: device 9720 * @name: port name 9721 * @len: limit of bytes to copy to name 9722 * 9723 * Get device physical port name 9724 */ 9725 int dev_get_phys_port_name(struct net_device *dev, 9726 char *name, size_t len) 9727 { 9728 const struct net_device_ops *ops = dev->netdev_ops; 9729 int err; 9730 9731 if (ops->ndo_get_phys_port_name) { 9732 err = ops->ndo_get_phys_port_name(dev, name, len); 9733 if (err != -EOPNOTSUPP) 9734 return err; 9735 } 9736 return devlink_compat_phys_port_name_get(dev, name, len); 9737 } 9738 9739 /** 9740 * dev_get_port_parent_id - Get the device's port parent identifier 9741 * @dev: network device 9742 * @ppid: pointer to a storage for the port's parent identifier 9743 * @recurse: allow/disallow recursion to lower devices 9744 * 9745 * Get the devices's port parent identifier 9746 */ 9747 int dev_get_port_parent_id(struct net_device *dev, 9748 struct netdev_phys_item_id *ppid, 9749 bool recurse) 9750 { 9751 const struct net_device_ops *ops = dev->netdev_ops; 9752 struct netdev_phys_item_id first = { }; 9753 struct net_device *lower_dev; 9754 struct list_head *iter; 9755 int err; 9756 9757 if (ops->ndo_get_port_parent_id) { 9758 err = ops->ndo_get_port_parent_id(dev, ppid); 9759 if (err != -EOPNOTSUPP) 9760 return err; 9761 } 9762 9763 err = devlink_compat_switch_id_get(dev, ppid); 9764 if (!recurse || err != -EOPNOTSUPP) 9765 return err; 9766 9767 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9768 err = dev_get_port_parent_id(lower_dev, ppid, true); 9769 if (err) 9770 break; 9771 if (!first.id_len) 9772 first = *ppid; 9773 else if (memcmp(&first, ppid, sizeof(*ppid))) 9774 return -EOPNOTSUPP; 9775 } 9776 9777 return err; 9778 } 9779 EXPORT_SYMBOL(dev_get_port_parent_id); 9780 9781 /** 9782 * netdev_port_same_parent_id - Indicate if two network devices have 9783 * the same port parent identifier 9784 * @a: first network device 9785 * @b: second network device 9786 */ 9787 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9788 { 9789 struct netdev_phys_item_id a_id = { }; 9790 struct netdev_phys_item_id b_id = { }; 9791 9792 if (dev_get_port_parent_id(a, &a_id, true) || 9793 dev_get_port_parent_id(b, &b_id, true)) 9794 return false; 9795 9796 return netdev_phys_item_id_same(&a_id, &b_id); 9797 } 9798 EXPORT_SYMBOL(netdev_port_same_parent_id); 9799 9800 int netif_change_proto_down(struct net_device *dev, bool proto_down) 9801 { 9802 if (!dev->change_proto_down) 9803 return -EOPNOTSUPP; 9804 if (!netif_device_present(dev)) 9805 return -ENODEV; 9806 if (proto_down) 9807 netif_carrier_off(dev); 9808 else 9809 netif_carrier_on(dev); 9810 WRITE_ONCE(dev->proto_down, proto_down); 9811 return 0; 9812 } 9813 9814 /** 9815 * netdev_change_proto_down_reason_locked - proto down reason 9816 * 9817 * @dev: device 9818 * @mask: proto down mask 9819 * @value: proto down value 9820 */ 9821 void netdev_change_proto_down_reason_locked(struct net_device *dev, 9822 unsigned long mask, u32 value) 9823 { 9824 u32 proto_down_reason; 9825 int b; 9826 9827 if (!mask) { 9828 proto_down_reason = value; 9829 } else { 9830 proto_down_reason = dev->proto_down_reason; 9831 for_each_set_bit(b, &mask, 32) { 9832 if (value & (1 << b)) 9833 proto_down_reason |= BIT(b); 9834 else 9835 proto_down_reason &= ~BIT(b); 9836 } 9837 } 9838 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9839 } 9840 9841 struct bpf_xdp_link { 9842 struct bpf_link link; 9843 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9844 int flags; 9845 }; 9846 9847 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9848 { 9849 if (flags & XDP_FLAGS_HW_MODE) 9850 return XDP_MODE_HW; 9851 if (flags & XDP_FLAGS_DRV_MODE) 9852 return XDP_MODE_DRV; 9853 if (flags & XDP_FLAGS_SKB_MODE) 9854 return XDP_MODE_SKB; 9855 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9856 } 9857 9858 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9859 { 9860 switch (mode) { 9861 case XDP_MODE_SKB: 9862 return generic_xdp_install; 9863 case XDP_MODE_DRV: 9864 case XDP_MODE_HW: 9865 return dev->netdev_ops->ndo_bpf; 9866 default: 9867 return NULL; 9868 } 9869 } 9870 9871 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9872 enum bpf_xdp_mode mode) 9873 { 9874 return dev->xdp_state[mode].link; 9875 } 9876 9877 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9878 enum bpf_xdp_mode mode) 9879 { 9880 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9881 9882 if (link) 9883 return link->link.prog; 9884 return dev->xdp_state[mode].prog; 9885 } 9886 9887 u8 dev_xdp_prog_count(struct net_device *dev) 9888 { 9889 u8 count = 0; 9890 int i; 9891 9892 for (i = 0; i < __MAX_XDP_MODE; i++) 9893 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9894 count++; 9895 return count; 9896 } 9897 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9898 9899 u8 dev_xdp_sb_prog_count(struct net_device *dev) 9900 { 9901 u8 count = 0; 9902 int i; 9903 9904 for (i = 0; i < __MAX_XDP_MODE; i++) 9905 if (dev->xdp_state[i].prog && 9906 !dev->xdp_state[i].prog->aux->xdp_has_frags) 9907 count++; 9908 return count; 9909 } 9910 9911 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 9912 { 9913 if (!dev->netdev_ops->ndo_bpf) 9914 return -EOPNOTSUPP; 9915 9916 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 9917 bpf->command == XDP_SETUP_PROG && 9918 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 9919 NL_SET_ERR_MSG(bpf->extack, 9920 "unable to propagate XDP to device using tcp-data-split"); 9921 return -EBUSY; 9922 } 9923 9924 if (dev_get_min_mp_channel_count(dev)) { 9925 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 9926 return -EBUSY; 9927 } 9928 9929 return dev->netdev_ops->ndo_bpf(dev, bpf); 9930 } 9931 9932 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9933 { 9934 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9935 9936 return prog ? prog->aux->id : 0; 9937 } 9938 9939 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9940 struct bpf_xdp_link *link) 9941 { 9942 dev->xdp_state[mode].link = link; 9943 dev->xdp_state[mode].prog = NULL; 9944 } 9945 9946 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9947 struct bpf_prog *prog) 9948 { 9949 dev->xdp_state[mode].link = NULL; 9950 dev->xdp_state[mode].prog = prog; 9951 } 9952 9953 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9954 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9955 u32 flags, struct bpf_prog *prog) 9956 { 9957 struct netdev_bpf xdp; 9958 int err; 9959 9960 netdev_ops_assert_locked(dev); 9961 9962 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 9963 prog && !prog->aux->xdp_has_frags) { 9964 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 9965 return -EBUSY; 9966 } 9967 9968 if (dev_get_min_mp_channel_count(dev)) { 9969 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 9970 return -EBUSY; 9971 } 9972 9973 memset(&xdp, 0, sizeof(xdp)); 9974 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9975 xdp.extack = extack; 9976 xdp.flags = flags; 9977 xdp.prog = prog; 9978 9979 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9980 * "moved" into driver), so they don't increment it on their own, but 9981 * they do decrement refcnt when program is detached or replaced. 9982 * Given net_device also owns link/prog, we need to bump refcnt here 9983 * to prevent drivers from underflowing it. 9984 */ 9985 if (prog) 9986 bpf_prog_inc(prog); 9987 err = bpf_op(dev, &xdp); 9988 if (err) { 9989 if (prog) 9990 bpf_prog_put(prog); 9991 return err; 9992 } 9993 9994 if (mode != XDP_MODE_HW) 9995 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9996 9997 return 0; 9998 } 9999 10000 static void dev_xdp_uninstall(struct net_device *dev) 10001 { 10002 struct bpf_xdp_link *link; 10003 struct bpf_prog *prog; 10004 enum bpf_xdp_mode mode; 10005 bpf_op_t bpf_op; 10006 10007 ASSERT_RTNL(); 10008 10009 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10010 prog = dev_xdp_prog(dev, mode); 10011 if (!prog) 10012 continue; 10013 10014 bpf_op = dev_xdp_bpf_op(dev, mode); 10015 if (!bpf_op) 10016 continue; 10017 10018 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10019 10020 /* auto-detach link from net device */ 10021 link = dev_xdp_link(dev, mode); 10022 if (link) 10023 link->dev = NULL; 10024 else 10025 bpf_prog_put(prog); 10026 10027 dev_xdp_set_link(dev, mode, NULL); 10028 } 10029 } 10030 10031 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10032 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10033 struct bpf_prog *old_prog, u32 flags) 10034 { 10035 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10036 struct bpf_prog *cur_prog; 10037 struct net_device *upper; 10038 struct list_head *iter; 10039 enum bpf_xdp_mode mode; 10040 bpf_op_t bpf_op; 10041 int err; 10042 10043 ASSERT_RTNL(); 10044 10045 /* either link or prog attachment, never both */ 10046 if (link && (new_prog || old_prog)) 10047 return -EINVAL; 10048 /* link supports only XDP mode flags */ 10049 if (link && (flags & ~XDP_FLAGS_MODES)) { 10050 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10051 return -EINVAL; 10052 } 10053 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10054 if (num_modes > 1) { 10055 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10056 return -EINVAL; 10057 } 10058 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10059 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10060 NL_SET_ERR_MSG(extack, 10061 "More than one program loaded, unset mode is ambiguous"); 10062 return -EINVAL; 10063 } 10064 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10065 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10066 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10067 return -EINVAL; 10068 } 10069 10070 mode = dev_xdp_mode(dev, flags); 10071 /* can't replace attached link */ 10072 if (dev_xdp_link(dev, mode)) { 10073 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10074 return -EBUSY; 10075 } 10076 10077 /* don't allow if an upper device already has a program */ 10078 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10079 if (dev_xdp_prog_count(upper) > 0) { 10080 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10081 return -EEXIST; 10082 } 10083 } 10084 10085 cur_prog = dev_xdp_prog(dev, mode); 10086 /* can't replace attached prog with link */ 10087 if (link && cur_prog) { 10088 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10089 return -EBUSY; 10090 } 10091 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10092 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10093 return -EEXIST; 10094 } 10095 10096 /* put effective new program into new_prog */ 10097 if (link) 10098 new_prog = link->link.prog; 10099 10100 if (new_prog) { 10101 bool offload = mode == XDP_MODE_HW; 10102 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10103 ? XDP_MODE_DRV : XDP_MODE_SKB; 10104 10105 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10106 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10107 return -EBUSY; 10108 } 10109 if (!offload && dev_xdp_prog(dev, other_mode)) { 10110 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10111 return -EEXIST; 10112 } 10113 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10114 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10115 return -EINVAL; 10116 } 10117 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10118 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10119 return -EINVAL; 10120 } 10121 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10122 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10123 return -EINVAL; 10124 } 10125 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10126 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10127 return -EINVAL; 10128 } 10129 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10130 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10131 return -EINVAL; 10132 } 10133 } 10134 10135 /* don't call drivers if the effective program didn't change */ 10136 if (new_prog != cur_prog) { 10137 bpf_op = dev_xdp_bpf_op(dev, mode); 10138 if (!bpf_op) { 10139 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10140 return -EOPNOTSUPP; 10141 } 10142 10143 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10144 if (err) 10145 return err; 10146 } 10147 10148 if (link) 10149 dev_xdp_set_link(dev, mode, link); 10150 else 10151 dev_xdp_set_prog(dev, mode, new_prog); 10152 if (cur_prog) 10153 bpf_prog_put(cur_prog); 10154 10155 return 0; 10156 } 10157 10158 static int dev_xdp_attach_link(struct net_device *dev, 10159 struct netlink_ext_ack *extack, 10160 struct bpf_xdp_link *link) 10161 { 10162 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10163 } 10164 10165 static int dev_xdp_detach_link(struct net_device *dev, 10166 struct netlink_ext_ack *extack, 10167 struct bpf_xdp_link *link) 10168 { 10169 enum bpf_xdp_mode mode; 10170 bpf_op_t bpf_op; 10171 10172 ASSERT_RTNL(); 10173 10174 mode = dev_xdp_mode(dev, link->flags); 10175 if (dev_xdp_link(dev, mode) != link) 10176 return -EINVAL; 10177 10178 bpf_op = dev_xdp_bpf_op(dev, mode); 10179 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10180 dev_xdp_set_link(dev, mode, NULL); 10181 return 0; 10182 } 10183 10184 static void bpf_xdp_link_release(struct bpf_link *link) 10185 { 10186 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10187 10188 rtnl_lock(); 10189 10190 /* if racing with net_device's tear down, xdp_link->dev might be 10191 * already NULL, in which case link was already auto-detached 10192 */ 10193 if (xdp_link->dev) { 10194 netdev_lock_ops(xdp_link->dev); 10195 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10196 netdev_unlock_ops(xdp_link->dev); 10197 xdp_link->dev = NULL; 10198 } 10199 10200 rtnl_unlock(); 10201 } 10202 10203 static int bpf_xdp_link_detach(struct bpf_link *link) 10204 { 10205 bpf_xdp_link_release(link); 10206 return 0; 10207 } 10208 10209 static void bpf_xdp_link_dealloc(struct bpf_link *link) 10210 { 10211 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10212 10213 kfree(xdp_link); 10214 } 10215 10216 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10217 struct seq_file *seq) 10218 { 10219 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10220 u32 ifindex = 0; 10221 10222 rtnl_lock(); 10223 if (xdp_link->dev) 10224 ifindex = xdp_link->dev->ifindex; 10225 rtnl_unlock(); 10226 10227 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10228 } 10229 10230 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10231 struct bpf_link_info *info) 10232 { 10233 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10234 u32 ifindex = 0; 10235 10236 rtnl_lock(); 10237 if (xdp_link->dev) 10238 ifindex = xdp_link->dev->ifindex; 10239 rtnl_unlock(); 10240 10241 info->xdp.ifindex = ifindex; 10242 return 0; 10243 } 10244 10245 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10246 struct bpf_prog *old_prog) 10247 { 10248 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10249 enum bpf_xdp_mode mode; 10250 bpf_op_t bpf_op; 10251 int err = 0; 10252 10253 rtnl_lock(); 10254 10255 /* link might have been auto-released already, so fail */ 10256 if (!xdp_link->dev) { 10257 err = -ENOLINK; 10258 goto out_unlock; 10259 } 10260 10261 if (old_prog && link->prog != old_prog) { 10262 err = -EPERM; 10263 goto out_unlock; 10264 } 10265 old_prog = link->prog; 10266 if (old_prog->type != new_prog->type || 10267 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10268 err = -EINVAL; 10269 goto out_unlock; 10270 } 10271 10272 if (old_prog == new_prog) { 10273 /* no-op, don't disturb drivers */ 10274 bpf_prog_put(new_prog); 10275 goto out_unlock; 10276 } 10277 10278 netdev_lock_ops(xdp_link->dev); 10279 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10280 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10281 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10282 xdp_link->flags, new_prog); 10283 netdev_unlock_ops(xdp_link->dev); 10284 if (err) 10285 goto out_unlock; 10286 10287 old_prog = xchg(&link->prog, new_prog); 10288 bpf_prog_put(old_prog); 10289 10290 out_unlock: 10291 rtnl_unlock(); 10292 return err; 10293 } 10294 10295 static const struct bpf_link_ops bpf_xdp_link_lops = { 10296 .release = bpf_xdp_link_release, 10297 .dealloc = bpf_xdp_link_dealloc, 10298 .detach = bpf_xdp_link_detach, 10299 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10300 .fill_link_info = bpf_xdp_link_fill_link_info, 10301 .update_prog = bpf_xdp_link_update, 10302 }; 10303 10304 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10305 { 10306 struct net *net = current->nsproxy->net_ns; 10307 struct bpf_link_primer link_primer; 10308 struct netlink_ext_ack extack = {}; 10309 struct bpf_xdp_link *link; 10310 struct net_device *dev; 10311 int err, fd; 10312 10313 rtnl_lock(); 10314 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10315 if (!dev) { 10316 rtnl_unlock(); 10317 return -EINVAL; 10318 } 10319 10320 link = kzalloc(sizeof(*link), GFP_USER); 10321 if (!link) { 10322 err = -ENOMEM; 10323 goto unlock; 10324 } 10325 10326 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 10327 link->dev = dev; 10328 link->flags = attr->link_create.flags; 10329 10330 err = bpf_link_prime(&link->link, &link_primer); 10331 if (err) { 10332 kfree(link); 10333 goto unlock; 10334 } 10335 10336 netdev_lock_ops(dev); 10337 err = dev_xdp_attach_link(dev, &extack, link); 10338 netdev_unlock_ops(dev); 10339 rtnl_unlock(); 10340 10341 if (err) { 10342 link->dev = NULL; 10343 bpf_link_cleanup(&link_primer); 10344 trace_bpf_xdp_link_attach_failed(extack._msg); 10345 goto out_put_dev; 10346 } 10347 10348 fd = bpf_link_settle(&link_primer); 10349 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10350 dev_put(dev); 10351 return fd; 10352 10353 unlock: 10354 rtnl_unlock(); 10355 10356 out_put_dev: 10357 dev_put(dev); 10358 return err; 10359 } 10360 10361 /** 10362 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10363 * @dev: device 10364 * @extack: netlink extended ack 10365 * @fd: new program fd or negative value to clear 10366 * @expected_fd: old program fd that userspace expects to replace or clear 10367 * @flags: xdp-related flags 10368 * 10369 * Set or clear a bpf program for a device 10370 */ 10371 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10372 int fd, int expected_fd, u32 flags) 10373 { 10374 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10375 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10376 int err; 10377 10378 ASSERT_RTNL(); 10379 10380 if (fd >= 0) { 10381 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10382 mode != XDP_MODE_SKB); 10383 if (IS_ERR(new_prog)) 10384 return PTR_ERR(new_prog); 10385 } 10386 10387 if (expected_fd >= 0) { 10388 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10389 mode != XDP_MODE_SKB); 10390 if (IS_ERR(old_prog)) { 10391 err = PTR_ERR(old_prog); 10392 old_prog = NULL; 10393 goto err_out; 10394 } 10395 } 10396 10397 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10398 10399 err_out: 10400 if (err && new_prog) 10401 bpf_prog_put(new_prog); 10402 if (old_prog) 10403 bpf_prog_put(old_prog); 10404 return err; 10405 } 10406 10407 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10408 { 10409 int i; 10410 10411 netdev_ops_assert_locked(dev); 10412 10413 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10414 if (dev->_rx[i].mp_params.mp_priv) 10415 /* The channel count is the idx plus 1. */ 10416 return i + 1; 10417 10418 return 0; 10419 } 10420 10421 /** 10422 * dev_index_reserve() - allocate an ifindex in a namespace 10423 * @net: the applicable net namespace 10424 * @ifindex: requested ifindex, pass %0 to get one allocated 10425 * 10426 * Allocate a ifindex for a new device. Caller must either use the ifindex 10427 * to store the device (via list_netdevice()) or call dev_index_release() 10428 * to give the index up. 10429 * 10430 * Return: a suitable unique value for a new device interface number or -errno. 10431 */ 10432 static int dev_index_reserve(struct net *net, u32 ifindex) 10433 { 10434 int err; 10435 10436 if (ifindex > INT_MAX) { 10437 DEBUG_NET_WARN_ON_ONCE(1); 10438 return -EINVAL; 10439 } 10440 10441 if (!ifindex) 10442 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10443 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10444 else 10445 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10446 if (err < 0) 10447 return err; 10448 10449 return ifindex; 10450 } 10451 10452 static void dev_index_release(struct net *net, int ifindex) 10453 { 10454 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10455 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10456 } 10457 10458 static bool from_cleanup_net(void) 10459 { 10460 #ifdef CONFIG_NET_NS 10461 return current == cleanup_net_task; 10462 #else 10463 return false; 10464 #endif 10465 } 10466 10467 /* Delayed registration/unregisteration */ 10468 LIST_HEAD(net_todo_list); 10469 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10470 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10471 10472 static void net_set_todo(struct net_device *dev) 10473 { 10474 list_add_tail(&dev->todo_list, &net_todo_list); 10475 } 10476 10477 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10478 struct net_device *upper, netdev_features_t features) 10479 { 10480 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10481 netdev_features_t feature; 10482 int feature_bit; 10483 10484 for_each_netdev_feature(upper_disables, feature_bit) { 10485 feature = __NETIF_F_BIT(feature_bit); 10486 if (!(upper->wanted_features & feature) 10487 && (features & feature)) { 10488 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10489 &feature, upper->name); 10490 features &= ~feature; 10491 } 10492 } 10493 10494 return features; 10495 } 10496 10497 static void netdev_sync_lower_features(struct net_device *upper, 10498 struct net_device *lower, netdev_features_t features) 10499 { 10500 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10501 netdev_features_t feature; 10502 int feature_bit; 10503 10504 for_each_netdev_feature(upper_disables, feature_bit) { 10505 feature = __NETIF_F_BIT(feature_bit); 10506 if (!(features & feature) && (lower->features & feature)) { 10507 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10508 &feature, lower->name); 10509 lower->wanted_features &= ~feature; 10510 __netdev_update_features(lower); 10511 10512 if (unlikely(lower->features & feature)) 10513 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10514 &feature, lower->name); 10515 else 10516 netdev_features_change(lower); 10517 } 10518 } 10519 } 10520 10521 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10522 { 10523 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10524 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10525 bool hw_csum = features & NETIF_F_HW_CSUM; 10526 10527 return ip_csum || hw_csum; 10528 } 10529 10530 static netdev_features_t netdev_fix_features(struct net_device *dev, 10531 netdev_features_t features) 10532 { 10533 /* Fix illegal checksum combinations */ 10534 if ((features & NETIF_F_HW_CSUM) && 10535 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10536 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10537 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10538 } 10539 10540 /* TSO requires that SG is present as well. */ 10541 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10542 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10543 features &= ~NETIF_F_ALL_TSO; 10544 } 10545 10546 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10547 !(features & NETIF_F_IP_CSUM)) { 10548 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10549 features &= ~NETIF_F_TSO; 10550 features &= ~NETIF_F_TSO_ECN; 10551 } 10552 10553 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10554 !(features & NETIF_F_IPV6_CSUM)) { 10555 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10556 features &= ~NETIF_F_TSO6; 10557 } 10558 10559 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10560 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10561 features &= ~NETIF_F_TSO_MANGLEID; 10562 10563 /* TSO ECN requires that TSO is present as well. */ 10564 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10565 features &= ~NETIF_F_TSO_ECN; 10566 10567 /* Software GSO depends on SG. */ 10568 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10569 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10570 features &= ~NETIF_F_GSO; 10571 } 10572 10573 /* GSO partial features require GSO partial be set */ 10574 if ((features & dev->gso_partial_features) && 10575 !(features & NETIF_F_GSO_PARTIAL)) { 10576 netdev_dbg(dev, 10577 "Dropping partially supported GSO features since no GSO partial.\n"); 10578 features &= ~dev->gso_partial_features; 10579 } 10580 10581 if (!(features & NETIF_F_RXCSUM)) { 10582 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10583 * successfully merged by hardware must also have the 10584 * checksum verified by hardware. If the user does not 10585 * want to enable RXCSUM, logically, we should disable GRO_HW. 10586 */ 10587 if (features & NETIF_F_GRO_HW) { 10588 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10589 features &= ~NETIF_F_GRO_HW; 10590 } 10591 } 10592 10593 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10594 if (features & NETIF_F_RXFCS) { 10595 if (features & NETIF_F_LRO) { 10596 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10597 features &= ~NETIF_F_LRO; 10598 } 10599 10600 if (features & NETIF_F_GRO_HW) { 10601 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10602 features &= ~NETIF_F_GRO_HW; 10603 } 10604 } 10605 10606 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10607 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10608 features &= ~NETIF_F_LRO; 10609 } 10610 10611 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10612 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10613 features &= ~NETIF_F_HW_TLS_TX; 10614 } 10615 10616 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10617 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10618 features &= ~NETIF_F_HW_TLS_RX; 10619 } 10620 10621 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10622 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10623 features &= ~NETIF_F_GSO_UDP_L4; 10624 } 10625 10626 return features; 10627 } 10628 10629 int __netdev_update_features(struct net_device *dev) 10630 { 10631 struct net_device *upper, *lower; 10632 netdev_features_t features; 10633 struct list_head *iter; 10634 int err = -1; 10635 10636 ASSERT_RTNL(); 10637 netdev_ops_assert_locked(dev); 10638 10639 features = netdev_get_wanted_features(dev); 10640 10641 if (dev->netdev_ops->ndo_fix_features) 10642 features = dev->netdev_ops->ndo_fix_features(dev, features); 10643 10644 /* driver might be less strict about feature dependencies */ 10645 features = netdev_fix_features(dev, features); 10646 10647 /* some features can't be enabled if they're off on an upper device */ 10648 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10649 features = netdev_sync_upper_features(dev, upper, features); 10650 10651 if (dev->features == features) 10652 goto sync_lower; 10653 10654 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10655 &dev->features, &features); 10656 10657 if (dev->netdev_ops->ndo_set_features) 10658 err = dev->netdev_ops->ndo_set_features(dev, features); 10659 else 10660 err = 0; 10661 10662 if (unlikely(err < 0)) { 10663 netdev_err(dev, 10664 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10665 err, &features, &dev->features); 10666 /* return non-0 since some features might have changed and 10667 * it's better to fire a spurious notification than miss it 10668 */ 10669 return -1; 10670 } 10671 10672 sync_lower: 10673 /* some features must be disabled on lower devices when disabled 10674 * on an upper device (think: bonding master or bridge) 10675 */ 10676 netdev_for_each_lower_dev(dev, lower, iter) 10677 netdev_sync_lower_features(dev, lower, features); 10678 10679 if (!err) { 10680 netdev_features_t diff = features ^ dev->features; 10681 10682 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10683 /* udp_tunnel_{get,drop}_rx_info both need 10684 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10685 * device, or they won't do anything. 10686 * Thus we need to update dev->features 10687 * *before* calling udp_tunnel_get_rx_info, 10688 * but *after* calling udp_tunnel_drop_rx_info. 10689 */ 10690 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10691 dev->features = features; 10692 udp_tunnel_get_rx_info(dev); 10693 } else { 10694 udp_tunnel_drop_rx_info(dev); 10695 } 10696 } 10697 10698 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10699 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10700 dev->features = features; 10701 err |= vlan_get_rx_ctag_filter_info(dev); 10702 } else { 10703 vlan_drop_rx_ctag_filter_info(dev); 10704 } 10705 } 10706 10707 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10708 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10709 dev->features = features; 10710 err |= vlan_get_rx_stag_filter_info(dev); 10711 } else { 10712 vlan_drop_rx_stag_filter_info(dev); 10713 } 10714 } 10715 10716 dev->features = features; 10717 } 10718 10719 return err < 0 ? 0 : 1; 10720 } 10721 10722 /** 10723 * netdev_update_features - recalculate device features 10724 * @dev: the device to check 10725 * 10726 * Recalculate dev->features set and send notifications if it 10727 * has changed. Should be called after driver or hardware dependent 10728 * conditions might have changed that influence the features. 10729 */ 10730 void netdev_update_features(struct net_device *dev) 10731 { 10732 if (__netdev_update_features(dev)) 10733 netdev_features_change(dev); 10734 } 10735 EXPORT_SYMBOL(netdev_update_features); 10736 10737 /** 10738 * netdev_change_features - recalculate device features 10739 * @dev: the device to check 10740 * 10741 * Recalculate dev->features set and send notifications even 10742 * if they have not changed. Should be called instead of 10743 * netdev_update_features() if also dev->vlan_features might 10744 * have changed to allow the changes to be propagated to stacked 10745 * VLAN devices. 10746 */ 10747 void netdev_change_features(struct net_device *dev) 10748 { 10749 __netdev_update_features(dev); 10750 netdev_features_change(dev); 10751 } 10752 EXPORT_SYMBOL(netdev_change_features); 10753 10754 /** 10755 * netif_stacked_transfer_operstate - transfer operstate 10756 * @rootdev: the root or lower level device to transfer state from 10757 * @dev: the device to transfer operstate to 10758 * 10759 * Transfer operational state from root to device. This is normally 10760 * called when a stacking relationship exists between the root 10761 * device and the device(a leaf device). 10762 */ 10763 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10764 struct net_device *dev) 10765 { 10766 if (rootdev->operstate == IF_OPER_DORMANT) 10767 netif_dormant_on(dev); 10768 else 10769 netif_dormant_off(dev); 10770 10771 if (rootdev->operstate == IF_OPER_TESTING) 10772 netif_testing_on(dev); 10773 else 10774 netif_testing_off(dev); 10775 10776 if (netif_carrier_ok(rootdev)) 10777 netif_carrier_on(dev); 10778 else 10779 netif_carrier_off(dev); 10780 } 10781 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10782 10783 static int netif_alloc_rx_queues(struct net_device *dev) 10784 { 10785 unsigned int i, count = dev->num_rx_queues; 10786 struct netdev_rx_queue *rx; 10787 size_t sz = count * sizeof(*rx); 10788 int err = 0; 10789 10790 BUG_ON(count < 1); 10791 10792 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10793 if (!rx) 10794 return -ENOMEM; 10795 10796 dev->_rx = rx; 10797 10798 for (i = 0; i < count; i++) { 10799 rx[i].dev = dev; 10800 10801 /* XDP RX-queue setup */ 10802 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10803 if (err < 0) 10804 goto err_rxq_info; 10805 } 10806 return 0; 10807 10808 err_rxq_info: 10809 /* Rollback successful reg's and free other resources */ 10810 while (i--) 10811 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10812 kvfree(dev->_rx); 10813 dev->_rx = NULL; 10814 return err; 10815 } 10816 10817 static void netif_free_rx_queues(struct net_device *dev) 10818 { 10819 unsigned int i, count = dev->num_rx_queues; 10820 10821 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10822 if (!dev->_rx) 10823 return; 10824 10825 for (i = 0; i < count; i++) 10826 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10827 10828 kvfree(dev->_rx); 10829 } 10830 10831 static void netdev_init_one_queue(struct net_device *dev, 10832 struct netdev_queue *queue, void *_unused) 10833 { 10834 /* Initialize queue lock */ 10835 spin_lock_init(&queue->_xmit_lock); 10836 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10837 queue->xmit_lock_owner = -1; 10838 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10839 queue->dev = dev; 10840 #ifdef CONFIG_BQL 10841 dql_init(&queue->dql, HZ); 10842 #endif 10843 } 10844 10845 static void netif_free_tx_queues(struct net_device *dev) 10846 { 10847 kvfree(dev->_tx); 10848 } 10849 10850 static int netif_alloc_netdev_queues(struct net_device *dev) 10851 { 10852 unsigned int count = dev->num_tx_queues; 10853 struct netdev_queue *tx; 10854 size_t sz = count * sizeof(*tx); 10855 10856 if (count < 1 || count > 0xffff) 10857 return -EINVAL; 10858 10859 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10860 if (!tx) 10861 return -ENOMEM; 10862 10863 dev->_tx = tx; 10864 10865 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10866 spin_lock_init(&dev->tx_global_lock); 10867 10868 return 0; 10869 } 10870 10871 void netif_tx_stop_all_queues(struct net_device *dev) 10872 { 10873 unsigned int i; 10874 10875 for (i = 0; i < dev->num_tx_queues; i++) { 10876 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10877 10878 netif_tx_stop_queue(txq); 10879 } 10880 } 10881 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10882 10883 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10884 { 10885 void __percpu *v; 10886 10887 /* Drivers implementing ndo_get_peer_dev must support tstat 10888 * accounting, so that skb_do_redirect() can bump the dev's 10889 * RX stats upon network namespace switch. 10890 */ 10891 if (dev->netdev_ops->ndo_get_peer_dev && 10892 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10893 return -EOPNOTSUPP; 10894 10895 switch (dev->pcpu_stat_type) { 10896 case NETDEV_PCPU_STAT_NONE: 10897 return 0; 10898 case NETDEV_PCPU_STAT_LSTATS: 10899 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10900 break; 10901 case NETDEV_PCPU_STAT_TSTATS: 10902 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10903 break; 10904 case NETDEV_PCPU_STAT_DSTATS: 10905 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10906 break; 10907 default: 10908 return -EINVAL; 10909 } 10910 10911 return v ? 0 : -ENOMEM; 10912 } 10913 10914 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10915 { 10916 switch (dev->pcpu_stat_type) { 10917 case NETDEV_PCPU_STAT_NONE: 10918 return; 10919 case NETDEV_PCPU_STAT_LSTATS: 10920 free_percpu(dev->lstats); 10921 break; 10922 case NETDEV_PCPU_STAT_TSTATS: 10923 free_percpu(dev->tstats); 10924 break; 10925 case NETDEV_PCPU_STAT_DSTATS: 10926 free_percpu(dev->dstats); 10927 break; 10928 } 10929 } 10930 10931 static void netdev_free_phy_link_topology(struct net_device *dev) 10932 { 10933 struct phy_link_topology *topo = dev->link_topo; 10934 10935 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 10936 xa_destroy(&topo->phys); 10937 kfree(topo); 10938 dev->link_topo = NULL; 10939 } 10940 } 10941 10942 /** 10943 * register_netdevice() - register a network device 10944 * @dev: device to register 10945 * 10946 * Take a prepared network device structure and make it externally accessible. 10947 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10948 * Callers must hold the rtnl lock - you may want register_netdev() 10949 * instead of this. 10950 */ 10951 int register_netdevice(struct net_device *dev) 10952 { 10953 int ret; 10954 struct net *net = dev_net(dev); 10955 10956 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10957 NETDEV_FEATURE_COUNT); 10958 BUG_ON(dev_boot_phase); 10959 ASSERT_RTNL(); 10960 10961 might_sleep(); 10962 10963 /* When net_device's are persistent, this will be fatal. */ 10964 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10965 BUG_ON(!net); 10966 10967 ret = ethtool_check_ops(dev->ethtool_ops); 10968 if (ret) 10969 return ret; 10970 10971 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 10972 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 10973 mutex_init(&dev->ethtool->rss_lock); 10974 10975 spin_lock_init(&dev->addr_list_lock); 10976 netdev_set_addr_lockdep_class(dev); 10977 10978 ret = dev_get_valid_name(net, dev, dev->name); 10979 if (ret < 0) 10980 goto out; 10981 10982 ret = -ENOMEM; 10983 dev->name_node = netdev_name_node_head_alloc(dev); 10984 if (!dev->name_node) 10985 goto out; 10986 10987 /* Init, if this function is available */ 10988 if (dev->netdev_ops->ndo_init) { 10989 ret = dev->netdev_ops->ndo_init(dev); 10990 if (ret) { 10991 if (ret > 0) 10992 ret = -EIO; 10993 goto err_free_name; 10994 } 10995 } 10996 10997 if (((dev->hw_features | dev->features) & 10998 NETIF_F_HW_VLAN_CTAG_FILTER) && 10999 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11000 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11001 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11002 ret = -EINVAL; 11003 goto err_uninit; 11004 } 11005 11006 ret = netdev_do_alloc_pcpu_stats(dev); 11007 if (ret) 11008 goto err_uninit; 11009 11010 ret = dev_index_reserve(net, dev->ifindex); 11011 if (ret < 0) 11012 goto err_free_pcpu; 11013 dev->ifindex = ret; 11014 11015 /* Transfer changeable features to wanted_features and enable 11016 * software offloads (GSO and GRO). 11017 */ 11018 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11019 dev->features |= NETIF_F_SOFT_FEATURES; 11020 11021 if (dev->udp_tunnel_nic_info) { 11022 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11023 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11024 } 11025 11026 dev->wanted_features = dev->features & dev->hw_features; 11027 11028 if (!(dev->flags & IFF_LOOPBACK)) 11029 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11030 11031 /* If IPv4 TCP segmentation offload is supported we should also 11032 * allow the device to enable segmenting the frame with the option 11033 * of ignoring a static IP ID value. This doesn't enable the 11034 * feature itself but allows the user to enable it later. 11035 */ 11036 if (dev->hw_features & NETIF_F_TSO) 11037 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11038 if (dev->vlan_features & NETIF_F_TSO) 11039 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11040 if (dev->mpls_features & NETIF_F_TSO) 11041 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11042 if (dev->hw_enc_features & NETIF_F_TSO) 11043 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11044 11045 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11046 */ 11047 dev->vlan_features |= NETIF_F_HIGHDMA; 11048 11049 /* Make NETIF_F_SG inheritable to tunnel devices. 11050 */ 11051 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11052 11053 /* Make NETIF_F_SG inheritable to MPLS. 11054 */ 11055 dev->mpls_features |= NETIF_F_SG; 11056 11057 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11058 ret = notifier_to_errno(ret); 11059 if (ret) 11060 goto err_ifindex_release; 11061 11062 ret = netdev_register_kobject(dev); 11063 11064 netdev_lock(dev); 11065 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11066 netdev_unlock(dev); 11067 11068 if (ret) 11069 goto err_uninit_notify; 11070 11071 netdev_lock_ops(dev); 11072 __netdev_update_features(dev); 11073 netdev_unlock_ops(dev); 11074 11075 /* 11076 * Default initial state at registry is that the 11077 * device is present. 11078 */ 11079 11080 set_bit(__LINK_STATE_PRESENT, &dev->state); 11081 11082 linkwatch_init_dev(dev); 11083 11084 dev_init_scheduler(dev); 11085 11086 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11087 list_netdevice(dev); 11088 11089 add_device_randomness(dev->dev_addr, dev->addr_len); 11090 11091 /* If the device has permanent device address, driver should 11092 * set dev_addr and also addr_assign_type should be set to 11093 * NET_ADDR_PERM (default value). 11094 */ 11095 if (dev->addr_assign_type == NET_ADDR_PERM) 11096 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11097 11098 /* Notify protocols, that a new device appeared. */ 11099 netdev_lock_ops(dev); 11100 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11101 netdev_unlock_ops(dev); 11102 ret = notifier_to_errno(ret); 11103 if (ret) { 11104 /* Expect explicit free_netdev() on failure */ 11105 dev->needs_free_netdev = false; 11106 unregister_netdevice_queue(dev, NULL); 11107 goto out; 11108 } 11109 /* 11110 * Prevent userspace races by waiting until the network 11111 * device is fully setup before sending notifications. 11112 */ 11113 if (!dev->rtnl_link_ops || 11114 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11115 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11116 11117 out: 11118 return ret; 11119 11120 err_uninit_notify: 11121 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11122 err_ifindex_release: 11123 dev_index_release(net, dev->ifindex); 11124 err_free_pcpu: 11125 netdev_do_free_pcpu_stats(dev); 11126 err_uninit: 11127 if (dev->netdev_ops->ndo_uninit) 11128 dev->netdev_ops->ndo_uninit(dev); 11129 if (dev->priv_destructor) 11130 dev->priv_destructor(dev); 11131 err_free_name: 11132 netdev_name_node_free(dev->name_node); 11133 goto out; 11134 } 11135 EXPORT_SYMBOL(register_netdevice); 11136 11137 /* Initialize the core of a dummy net device. 11138 * The setup steps dummy netdevs need which normal netdevs get by going 11139 * through register_netdevice(). 11140 */ 11141 static void init_dummy_netdev(struct net_device *dev) 11142 { 11143 /* make sure we BUG if trying to hit standard 11144 * register/unregister code path 11145 */ 11146 dev->reg_state = NETREG_DUMMY; 11147 11148 /* a dummy interface is started by default */ 11149 set_bit(__LINK_STATE_PRESENT, &dev->state); 11150 set_bit(__LINK_STATE_START, &dev->state); 11151 11152 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11153 * because users of this 'device' dont need to change 11154 * its refcount. 11155 */ 11156 } 11157 11158 /** 11159 * register_netdev - register a network device 11160 * @dev: device to register 11161 * 11162 * Take a completed network device structure and add it to the kernel 11163 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11164 * chain. 0 is returned on success. A negative errno code is returned 11165 * on a failure to set up the device, or if the name is a duplicate. 11166 * 11167 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11168 * and expands the device name if you passed a format string to 11169 * alloc_netdev. 11170 */ 11171 int register_netdev(struct net_device *dev) 11172 { 11173 struct net *net = dev_net(dev); 11174 int err; 11175 11176 if (rtnl_net_lock_killable(net)) 11177 return -EINTR; 11178 11179 err = register_netdevice(dev); 11180 11181 rtnl_net_unlock(net); 11182 11183 return err; 11184 } 11185 EXPORT_SYMBOL(register_netdev); 11186 11187 int netdev_refcnt_read(const struct net_device *dev) 11188 { 11189 #ifdef CONFIG_PCPU_DEV_REFCNT 11190 int i, refcnt = 0; 11191 11192 for_each_possible_cpu(i) 11193 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11194 return refcnt; 11195 #else 11196 return refcount_read(&dev->dev_refcnt); 11197 #endif 11198 } 11199 EXPORT_SYMBOL(netdev_refcnt_read); 11200 11201 int netdev_unregister_timeout_secs __read_mostly = 10; 11202 11203 #define WAIT_REFS_MIN_MSECS 1 11204 #define WAIT_REFS_MAX_MSECS 250 11205 /** 11206 * netdev_wait_allrefs_any - wait until all references are gone. 11207 * @list: list of net_devices to wait on 11208 * 11209 * This is called when unregistering network devices. 11210 * 11211 * Any protocol or device that holds a reference should register 11212 * for netdevice notification, and cleanup and put back the 11213 * reference if they receive an UNREGISTER event. 11214 * We can get stuck here if buggy protocols don't correctly 11215 * call dev_put. 11216 */ 11217 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11218 { 11219 unsigned long rebroadcast_time, warning_time; 11220 struct net_device *dev; 11221 int wait = 0; 11222 11223 rebroadcast_time = warning_time = jiffies; 11224 11225 list_for_each_entry(dev, list, todo_list) 11226 if (netdev_refcnt_read(dev) == 1) 11227 return dev; 11228 11229 while (true) { 11230 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11231 rtnl_lock(); 11232 11233 /* Rebroadcast unregister notification */ 11234 list_for_each_entry(dev, list, todo_list) 11235 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11236 11237 __rtnl_unlock(); 11238 rcu_barrier(); 11239 rtnl_lock(); 11240 11241 list_for_each_entry(dev, list, todo_list) 11242 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11243 &dev->state)) { 11244 /* We must not have linkwatch events 11245 * pending on unregister. If this 11246 * happens, we simply run the queue 11247 * unscheduled, resulting in a noop 11248 * for this device. 11249 */ 11250 linkwatch_run_queue(); 11251 break; 11252 } 11253 11254 __rtnl_unlock(); 11255 11256 rebroadcast_time = jiffies; 11257 } 11258 11259 rcu_barrier(); 11260 11261 if (!wait) { 11262 wait = WAIT_REFS_MIN_MSECS; 11263 } else { 11264 msleep(wait); 11265 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11266 } 11267 11268 list_for_each_entry(dev, list, todo_list) 11269 if (netdev_refcnt_read(dev) == 1) 11270 return dev; 11271 11272 if (time_after(jiffies, warning_time + 11273 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11274 list_for_each_entry(dev, list, todo_list) { 11275 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11276 dev->name, netdev_refcnt_read(dev)); 11277 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11278 } 11279 11280 warning_time = jiffies; 11281 } 11282 } 11283 } 11284 11285 /* The sequence is: 11286 * 11287 * rtnl_lock(); 11288 * ... 11289 * register_netdevice(x1); 11290 * register_netdevice(x2); 11291 * ... 11292 * unregister_netdevice(y1); 11293 * unregister_netdevice(y2); 11294 * ... 11295 * rtnl_unlock(); 11296 * free_netdev(y1); 11297 * free_netdev(y2); 11298 * 11299 * We are invoked by rtnl_unlock(). 11300 * This allows us to deal with problems: 11301 * 1) We can delete sysfs objects which invoke hotplug 11302 * without deadlocking with linkwatch via keventd. 11303 * 2) Since we run with the RTNL semaphore not held, we can sleep 11304 * safely in order to wait for the netdev refcnt to drop to zero. 11305 * 11306 * We must not return until all unregister events added during 11307 * the interval the lock was held have been completed. 11308 */ 11309 void netdev_run_todo(void) 11310 { 11311 struct net_device *dev, *tmp; 11312 struct list_head list; 11313 int cnt; 11314 #ifdef CONFIG_LOCKDEP 11315 struct list_head unlink_list; 11316 11317 list_replace_init(&net_unlink_list, &unlink_list); 11318 11319 while (!list_empty(&unlink_list)) { 11320 dev = list_first_entry(&unlink_list, struct net_device, 11321 unlink_list); 11322 list_del_init(&dev->unlink_list); 11323 dev->nested_level = dev->lower_level - 1; 11324 } 11325 #endif 11326 11327 /* Snapshot list, allow later requests */ 11328 list_replace_init(&net_todo_list, &list); 11329 11330 __rtnl_unlock(); 11331 11332 /* Wait for rcu callbacks to finish before next phase */ 11333 if (!list_empty(&list)) 11334 rcu_barrier(); 11335 11336 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11337 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11338 netdev_WARN(dev, "run_todo but not unregistering\n"); 11339 list_del(&dev->todo_list); 11340 continue; 11341 } 11342 11343 netdev_lock(dev); 11344 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11345 netdev_unlock(dev); 11346 linkwatch_sync_dev(dev); 11347 } 11348 11349 cnt = 0; 11350 while (!list_empty(&list)) { 11351 dev = netdev_wait_allrefs_any(&list); 11352 list_del(&dev->todo_list); 11353 11354 /* paranoia */ 11355 BUG_ON(netdev_refcnt_read(dev) != 1); 11356 BUG_ON(!list_empty(&dev->ptype_all)); 11357 BUG_ON(!list_empty(&dev->ptype_specific)); 11358 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11359 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11360 11361 netdev_do_free_pcpu_stats(dev); 11362 if (dev->priv_destructor) 11363 dev->priv_destructor(dev); 11364 if (dev->needs_free_netdev) 11365 free_netdev(dev); 11366 11367 cnt++; 11368 11369 /* Free network device */ 11370 kobject_put(&dev->dev.kobj); 11371 } 11372 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11373 wake_up(&netdev_unregistering_wq); 11374 } 11375 11376 /* Collate per-cpu network dstats statistics 11377 * 11378 * Read per-cpu network statistics from dev->dstats and populate the related 11379 * fields in @s. 11380 */ 11381 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11382 const struct pcpu_dstats __percpu *dstats) 11383 { 11384 int cpu; 11385 11386 for_each_possible_cpu(cpu) { 11387 u64 rx_packets, rx_bytes, rx_drops; 11388 u64 tx_packets, tx_bytes, tx_drops; 11389 const struct pcpu_dstats *stats; 11390 unsigned int start; 11391 11392 stats = per_cpu_ptr(dstats, cpu); 11393 do { 11394 start = u64_stats_fetch_begin(&stats->syncp); 11395 rx_packets = u64_stats_read(&stats->rx_packets); 11396 rx_bytes = u64_stats_read(&stats->rx_bytes); 11397 rx_drops = u64_stats_read(&stats->rx_drops); 11398 tx_packets = u64_stats_read(&stats->tx_packets); 11399 tx_bytes = u64_stats_read(&stats->tx_bytes); 11400 tx_drops = u64_stats_read(&stats->tx_drops); 11401 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11402 11403 s->rx_packets += rx_packets; 11404 s->rx_bytes += rx_bytes; 11405 s->rx_dropped += rx_drops; 11406 s->tx_packets += tx_packets; 11407 s->tx_bytes += tx_bytes; 11408 s->tx_dropped += tx_drops; 11409 } 11410 } 11411 11412 /* ndo_get_stats64 implementation for dtstats-based accounting. 11413 * 11414 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11415 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11416 */ 11417 static void dev_get_dstats64(const struct net_device *dev, 11418 struct rtnl_link_stats64 *s) 11419 { 11420 netdev_stats_to_stats64(s, &dev->stats); 11421 dev_fetch_dstats(s, dev->dstats); 11422 } 11423 11424 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11425 * all the same fields in the same order as net_device_stats, with only 11426 * the type differing, but rtnl_link_stats64 may have additional fields 11427 * at the end for newer counters. 11428 */ 11429 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11430 const struct net_device_stats *netdev_stats) 11431 { 11432 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11433 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11434 u64 *dst = (u64 *)stats64; 11435 11436 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11437 for (i = 0; i < n; i++) 11438 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11439 /* zero out counters that only exist in rtnl_link_stats64 */ 11440 memset((char *)stats64 + n * sizeof(u64), 0, 11441 sizeof(*stats64) - n * sizeof(u64)); 11442 } 11443 EXPORT_SYMBOL(netdev_stats_to_stats64); 11444 11445 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11446 struct net_device *dev) 11447 { 11448 struct net_device_core_stats __percpu *p; 11449 11450 p = alloc_percpu_gfp(struct net_device_core_stats, 11451 GFP_ATOMIC | __GFP_NOWARN); 11452 11453 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11454 free_percpu(p); 11455 11456 /* This READ_ONCE() pairs with the cmpxchg() above */ 11457 return READ_ONCE(dev->core_stats); 11458 } 11459 11460 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11461 { 11462 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11463 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11464 unsigned long __percpu *field; 11465 11466 if (unlikely(!p)) { 11467 p = netdev_core_stats_alloc(dev); 11468 if (!p) 11469 return; 11470 } 11471 11472 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11473 this_cpu_inc(*field); 11474 } 11475 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11476 11477 /** 11478 * dev_get_stats - get network device statistics 11479 * @dev: device to get statistics from 11480 * @storage: place to store stats 11481 * 11482 * Get network statistics from device. Return @storage. 11483 * The device driver may provide its own method by setting 11484 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11485 * otherwise the internal statistics structure is used. 11486 */ 11487 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11488 struct rtnl_link_stats64 *storage) 11489 { 11490 const struct net_device_ops *ops = dev->netdev_ops; 11491 const struct net_device_core_stats __percpu *p; 11492 11493 /* 11494 * IPv{4,6} and udp tunnels share common stat helpers and use 11495 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11496 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11497 */ 11498 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11499 offsetof(struct pcpu_dstats, rx_bytes)); 11500 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11501 offsetof(struct pcpu_dstats, rx_packets)); 11502 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11503 offsetof(struct pcpu_dstats, tx_bytes)); 11504 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11505 offsetof(struct pcpu_dstats, tx_packets)); 11506 11507 if (ops->ndo_get_stats64) { 11508 memset(storage, 0, sizeof(*storage)); 11509 ops->ndo_get_stats64(dev, storage); 11510 } else if (ops->ndo_get_stats) { 11511 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11512 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11513 dev_get_tstats64(dev, storage); 11514 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11515 dev_get_dstats64(dev, storage); 11516 } else { 11517 netdev_stats_to_stats64(storage, &dev->stats); 11518 } 11519 11520 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11521 p = READ_ONCE(dev->core_stats); 11522 if (p) { 11523 const struct net_device_core_stats *core_stats; 11524 int i; 11525 11526 for_each_possible_cpu(i) { 11527 core_stats = per_cpu_ptr(p, i); 11528 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11529 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11530 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11531 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11532 } 11533 } 11534 return storage; 11535 } 11536 EXPORT_SYMBOL(dev_get_stats); 11537 11538 /** 11539 * dev_fetch_sw_netstats - get per-cpu network device statistics 11540 * @s: place to store stats 11541 * @netstats: per-cpu network stats to read from 11542 * 11543 * Read per-cpu network statistics and populate the related fields in @s. 11544 */ 11545 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11546 const struct pcpu_sw_netstats __percpu *netstats) 11547 { 11548 int cpu; 11549 11550 for_each_possible_cpu(cpu) { 11551 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11552 const struct pcpu_sw_netstats *stats; 11553 unsigned int start; 11554 11555 stats = per_cpu_ptr(netstats, cpu); 11556 do { 11557 start = u64_stats_fetch_begin(&stats->syncp); 11558 rx_packets = u64_stats_read(&stats->rx_packets); 11559 rx_bytes = u64_stats_read(&stats->rx_bytes); 11560 tx_packets = u64_stats_read(&stats->tx_packets); 11561 tx_bytes = u64_stats_read(&stats->tx_bytes); 11562 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11563 11564 s->rx_packets += rx_packets; 11565 s->rx_bytes += rx_bytes; 11566 s->tx_packets += tx_packets; 11567 s->tx_bytes += tx_bytes; 11568 } 11569 } 11570 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11571 11572 /** 11573 * dev_get_tstats64 - ndo_get_stats64 implementation 11574 * @dev: device to get statistics from 11575 * @s: place to store stats 11576 * 11577 * Populate @s from dev->stats and dev->tstats. Can be used as 11578 * ndo_get_stats64() callback. 11579 */ 11580 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11581 { 11582 netdev_stats_to_stats64(s, &dev->stats); 11583 dev_fetch_sw_netstats(s, dev->tstats); 11584 } 11585 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11586 11587 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11588 { 11589 struct netdev_queue *queue = dev_ingress_queue(dev); 11590 11591 #ifdef CONFIG_NET_CLS_ACT 11592 if (queue) 11593 return queue; 11594 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11595 if (!queue) 11596 return NULL; 11597 netdev_init_one_queue(dev, queue, NULL); 11598 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11599 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11600 rcu_assign_pointer(dev->ingress_queue, queue); 11601 #endif 11602 return queue; 11603 } 11604 11605 static const struct ethtool_ops default_ethtool_ops; 11606 11607 void netdev_set_default_ethtool_ops(struct net_device *dev, 11608 const struct ethtool_ops *ops) 11609 { 11610 if (dev->ethtool_ops == &default_ethtool_ops) 11611 dev->ethtool_ops = ops; 11612 } 11613 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11614 11615 /** 11616 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11617 * @dev: netdev to enable the IRQ coalescing on 11618 * 11619 * Sets a conservative default for SW IRQ coalescing. Users can use 11620 * sysfs attributes to override the default values. 11621 */ 11622 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11623 { 11624 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11625 11626 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11627 netdev_set_gro_flush_timeout(dev, 20000); 11628 netdev_set_defer_hard_irqs(dev, 1); 11629 } 11630 } 11631 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11632 11633 /** 11634 * alloc_netdev_mqs - allocate network device 11635 * @sizeof_priv: size of private data to allocate space for 11636 * @name: device name format string 11637 * @name_assign_type: origin of device name 11638 * @setup: callback to initialize device 11639 * @txqs: the number of TX subqueues to allocate 11640 * @rxqs: the number of RX subqueues to allocate 11641 * 11642 * Allocates a struct net_device with private data area for driver use 11643 * and performs basic initialization. Also allocates subqueue structs 11644 * for each queue on the device. 11645 */ 11646 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11647 unsigned char name_assign_type, 11648 void (*setup)(struct net_device *), 11649 unsigned int txqs, unsigned int rxqs) 11650 { 11651 struct net_device *dev; 11652 size_t napi_config_sz; 11653 unsigned int maxqs; 11654 11655 BUG_ON(strlen(name) >= sizeof(dev->name)); 11656 11657 if (txqs < 1) { 11658 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11659 return NULL; 11660 } 11661 11662 if (rxqs < 1) { 11663 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11664 return NULL; 11665 } 11666 11667 maxqs = max(txqs, rxqs); 11668 11669 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11670 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11671 if (!dev) 11672 return NULL; 11673 11674 dev->priv_len = sizeof_priv; 11675 11676 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 11677 #ifdef CONFIG_PCPU_DEV_REFCNT 11678 dev->pcpu_refcnt = alloc_percpu(int); 11679 if (!dev->pcpu_refcnt) 11680 goto free_dev; 11681 __dev_hold(dev); 11682 #else 11683 refcount_set(&dev->dev_refcnt, 1); 11684 #endif 11685 11686 if (dev_addr_init(dev)) 11687 goto free_pcpu; 11688 11689 dev_mc_init(dev); 11690 dev_uc_init(dev); 11691 11692 dev_net_set(dev, &init_net); 11693 11694 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11695 dev->xdp_zc_max_segs = 1; 11696 dev->gso_max_segs = GSO_MAX_SEGS; 11697 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11698 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11699 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11700 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11701 dev->tso_max_segs = TSO_MAX_SEGS; 11702 dev->upper_level = 1; 11703 dev->lower_level = 1; 11704 #ifdef CONFIG_LOCKDEP 11705 dev->nested_level = 0; 11706 INIT_LIST_HEAD(&dev->unlink_list); 11707 #endif 11708 11709 INIT_LIST_HEAD(&dev->napi_list); 11710 INIT_LIST_HEAD(&dev->unreg_list); 11711 INIT_LIST_HEAD(&dev->close_list); 11712 INIT_LIST_HEAD(&dev->link_watch_list); 11713 INIT_LIST_HEAD(&dev->adj_list.upper); 11714 INIT_LIST_HEAD(&dev->adj_list.lower); 11715 INIT_LIST_HEAD(&dev->ptype_all); 11716 INIT_LIST_HEAD(&dev->ptype_specific); 11717 INIT_LIST_HEAD(&dev->net_notifier_list); 11718 #ifdef CONFIG_NET_SCHED 11719 hash_init(dev->qdisc_hash); 11720 #endif 11721 11722 mutex_init(&dev->lock); 11723 11724 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11725 setup(dev); 11726 11727 if (!dev->tx_queue_len) { 11728 dev->priv_flags |= IFF_NO_QUEUE; 11729 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11730 } 11731 11732 dev->num_tx_queues = txqs; 11733 dev->real_num_tx_queues = txqs; 11734 if (netif_alloc_netdev_queues(dev)) 11735 goto free_all; 11736 11737 dev->num_rx_queues = rxqs; 11738 dev->real_num_rx_queues = rxqs; 11739 if (netif_alloc_rx_queues(dev)) 11740 goto free_all; 11741 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11742 if (!dev->ethtool) 11743 goto free_all; 11744 11745 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 11746 if (!dev->cfg) 11747 goto free_all; 11748 dev->cfg_pending = dev->cfg; 11749 11750 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 11751 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 11752 if (!dev->napi_config) 11753 goto free_all; 11754 11755 strscpy(dev->name, name); 11756 dev->name_assign_type = name_assign_type; 11757 dev->group = INIT_NETDEV_GROUP; 11758 if (!dev->ethtool_ops) 11759 dev->ethtool_ops = &default_ethtool_ops; 11760 11761 nf_hook_netdev_init(dev); 11762 11763 return dev; 11764 11765 free_all: 11766 free_netdev(dev); 11767 return NULL; 11768 11769 free_pcpu: 11770 #ifdef CONFIG_PCPU_DEV_REFCNT 11771 free_percpu(dev->pcpu_refcnt); 11772 free_dev: 11773 #endif 11774 kvfree(dev); 11775 return NULL; 11776 } 11777 EXPORT_SYMBOL(alloc_netdev_mqs); 11778 11779 static void netdev_napi_exit(struct net_device *dev) 11780 { 11781 if (!list_empty(&dev->napi_list)) { 11782 struct napi_struct *p, *n; 11783 11784 netdev_lock(dev); 11785 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11786 __netif_napi_del_locked(p); 11787 netdev_unlock(dev); 11788 11789 synchronize_net(); 11790 } 11791 11792 kvfree(dev->napi_config); 11793 } 11794 11795 /** 11796 * free_netdev - free network device 11797 * @dev: device 11798 * 11799 * This function does the last stage of destroying an allocated device 11800 * interface. The reference to the device object is released. If this 11801 * is the last reference then it will be freed.Must be called in process 11802 * context. 11803 */ 11804 void free_netdev(struct net_device *dev) 11805 { 11806 might_sleep(); 11807 11808 /* When called immediately after register_netdevice() failed the unwind 11809 * handling may still be dismantling the device. Handle that case by 11810 * deferring the free. 11811 */ 11812 if (dev->reg_state == NETREG_UNREGISTERING) { 11813 ASSERT_RTNL(); 11814 dev->needs_free_netdev = true; 11815 return; 11816 } 11817 11818 WARN_ON(dev->cfg != dev->cfg_pending); 11819 kfree(dev->cfg); 11820 kfree(dev->ethtool); 11821 netif_free_tx_queues(dev); 11822 netif_free_rx_queues(dev); 11823 11824 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11825 11826 /* Flush device addresses */ 11827 dev_addr_flush(dev); 11828 11829 netdev_napi_exit(dev); 11830 11831 netif_del_cpu_rmap(dev); 11832 11833 ref_tracker_dir_exit(&dev->refcnt_tracker); 11834 #ifdef CONFIG_PCPU_DEV_REFCNT 11835 free_percpu(dev->pcpu_refcnt); 11836 dev->pcpu_refcnt = NULL; 11837 #endif 11838 free_percpu(dev->core_stats); 11839 dev->core_stats = NULL; 11840 free_percpu(dev->xdp_bulkq); 11841 dev->xdp_bulkq = NULL; 11842 11843 netdev_free_phy_link_topology(dev); 11844 11845 mutex_destroy(&dev->lock); 11846 11847 /* Compatibility with error handling in drivers */ 11848 if (dev->reg_state == NETREG_UNINITIALIZED || 11849 dev->reg_state == NETREG_DUMMY) { 11850 kvfree(dev); 11851 return; 11852 } 11853 11854 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11855 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11856 11857 /* will free via device release */ 11858 put_device(&dev->dev); 11859 } 11860 EXPORT_SYMBOL(free_netdev); 11861 11862 /** 11863 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11864 * @sizeof_priv: size of private data to allocate space for 11865 * 11866 * Return: the allocated net_device on success, NULL otherwise 11867 */ 11868 struct net_device *alloc_netdev_dummy(int sizeof_priv) 11869 { 11870 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 11871 init_dummy_netdev); 11872 } 11873 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 11874 11875 /** 11876 * synchronize_net - Synchronize with packet receive processing 11877 * 11878 * Wait for packets currently being received to be done. 11879 * Does not block later packets from starting. 11880 */ 11881 void synchronize_net(void) 11882 { 11883 might_sleep(); 11884 if (from_cleanup_net() || rtnl_is_locked()) 11885 synchronize_rcu_expedited(); 11886 else 11887 synchronize_rcu(); 11888 } 11889 EXPORT_SYMBOL(synchronize_net); 11890 11891 static void netdev_rss_contexts_free(struct net_device *dev) 11892 { 11893 struct ethtool_rxfh_context *ctx; 11894 unsigned long context; 11895 11896 mutex_lock(&dev->ethtool->rss_lock); 11897 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 11898 struct ethtool_rxfh_param rxfh; 11899 11900 rxfh.indir = ethtool_rxfh_context_indir(ctx); 11901 rxfh.key = ethtool_rxfh_context_key(ctx); 11902 rxfh.hfunc = ctx->hfunc; 11903 rxfh.input_xfrm = ctx->input_xfrm; 11904 rxfh.rss_context = context; 11905 rxfh.rss_delete = true; 11906 11907 xa_erase(&dev->ethtool->rss_ctx, context); 11908 if (dev->ethtool_ops->create_rxfh_context) 11909 dev->ethtool_ops->remove_rxfh_context(dev, ctx, 11910 context, NULL); 11911 else 11912 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL); 11913 kfree(ctx); 11914 } 11915 xa_destroy(&dev->ethtool->rss_ctx); 11916 mutex_unlock(&dev->ethtool->rss_lock); 11917 } 11918 11919 /** 11920 * unregister_netdevice_queue - remove device from the kernel 11921 * @dev: device 11922 * @head: list 11923 * 11924 * This function shuts down a device interface and removes it 11925 * from the kernel tables. 11926 * If head not NULL, device is queued to be unregistered later. 11927 * 11928 * Callers must hold the rtnl semaphore. You may want 11929 * unregister_netdev() instead of this. 11930 */ 11931 11932 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 11933 { 11934 ASSERT_RTNL(); 11935 11936 if (head) { 11937 list_move_tail(&dev->unreg_list, head); 11938 } else { 11939 LIST_HEAD(single); 11940 11941 list_add(&dev->unreg_list, &single); 11942 unregister_netdevice_many(&single); 11943 } 11944 } 11945 EXPORT_SYMBOL(unregister_netdevice_queue); 11946 11947 static void dev_memory_provider_uninstall(struct net_device *dev) 11948 { 11949 unsigned int i; 11950 11951 for (i = 0; i < dev->real_num_rx_queues; i++) { 11952 struct netdev_rx_queue *rxq = &dev->_rx[i]; 11953 struct pp_memory_provider_params *p = &rxq->mp_params; 11954 11955 if (p->mp_ops && p->mp_ops->uninstall) 11956 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 11957 } 11958 } 11959 11960 void unregister_netdevice_many_notify(struct list_head *head, 11961 u32 portid, const struct nlmsghdr *nlh) 11962 { 11963 struct net_device *dev, *tmp; 11964 LIST_HEAD(close_head); 11965 int cnt = 0; 11966 11967 BUG_ON(dev_boot_phase); 11968 ASSERT_RTNL(); 11969 11970 if (list_empty(head)) 11971 return; 11972 11973 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 11974 /* Some devices call without registering 11975 * for initialization unwind. Remove those 11976 * devices and proceed with the remaining. 11977 */ 11978 if (dev->reg_state == NETREG_UNINITIALIZED) { 11979 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 11980 dev->name, dev); 11981 11982 WARN_ON(1); 11983 list_del(&dev->unreg_list); 11984 continue; 11985 } 11986 dev->dismantle = true; 11987 BUG_ON(dev->reg_state != NETREG_REGISTERED); 11988 } 11989 11990 /* If device is running, close it first. */ 11991 list_for_each_entry(dev, head, unreg_list) { 11992 list_add_tail(&dev->close_list, &close_head); 11993 netdev_lock_ops(dev); 11994 } 11995 dev_close_many(&close_head, true); 11996 11997 list_for_each_entry(dev, head, unreg_list) { 11998 netdev_unlock_ops(dev); 11999 /* And unlink it from device chain. */ 12000 unlist_netdevice(dev); 12001 netdev_lock(dev); 12002 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12003 netdev_unlock(dev); 12004 } 12005 flush_all_backlogs(); 12006 12007 synchronize_net(); 12008 12009 list_for_each_entry(dev, head, unreg_list) { 12010 struct sk_buff *skb = NULL; 12011 12012 /* Shutdown queueing discipline. */ 12013 dev_shutdown(dev); 12014 dev_tcx_uninstall(dev); 12015 netdev_lock_ops(dev); 12016 dev_xdp_uninstall(dev); 12017 dev_memory_provider_uninstall(dev); 12018 netdev_unlock_ops(dev); 12019 bpf_dev_bound_netdev_unregister(dev); 12020 12021 netdev_offload_xstats_disable_all(dev); 12022 12023 /* Notify protocols, that we are about to destroy 12024 * this device. They should clean all the things. 12025 */ 12026 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12027 12028 if (!dev->rtnl_link_ops || 12029 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 12030 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12031 GFP_KERNEL, NULL, 0, 12032 portid, nlh); 12033 12034 /* 12035 * Flush the unicast and multicast chains 12036 */ 12037 dev_uc_flush(dev); 12038 dev_mc_flush(dev); 12039 12040 netdev_name_node_alt_flush(dev); 12041 netdev_name_node_free(dev->name_node); 12042 12043 netdev_rss_contexts_free(dev); 12044 12045 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12046 12047 if (dev->netdev_ops->ndo_uninit) 12048 dev->netdev_ops->ndo_uninit(dev); 12049 12050 mutex_destroy(&dev->ethtool->rss_lock); 12051 12052 net_shaper_flush_netdev(dev); 12053 12054 if (skb) 12055 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12056 12057 /* Notifier chain MUST detach us all upper devices. */ 12058 WARN_ON(netdev_has_any_upper_dev(dev)); 12059 WARN_ON(netdev_has_any_lower_dev(dev)); 12060 12061 /* Remove entries from kobject tree */ 12062 netdev_unregister_kobject(dev); 12063 #ifdef CONFIG_XPS 12064 /* Remove XPS queueing entries */ 12065 netif_reset_xps_queues_gt(dev, 0); 12066 #endif 12067 } 12068 12069 synchronize_net(); 12070 12071 list_for_each_entry(dev, head, unreg_list) { 12072 netdev_put(dev, &dev->dev_registered_tracker); 12073 net_set_todo(dev); 12074 cnt++; 12075 } 12076 atomic_add(cnt, &dev_unreg_count); 12077 12078 list_del(head); 12079 } 12080 12081 /** 12082 * unregister_netdevice_many - unregister many devices 12083 * @head: list of devices 12084 * 12085 * Note: As most callers use a stack allocated list_head, 12086 * we force a list_del() to make sure stack won't be corrupted later. 12087 */ 12088 void unregister_netdevice_many(struct list_head *head) 12089 { 12090 unregister_netdevice_many_notify(head, 0, NULL); 12091 } 12092 EXPORT_SYMBOL(unregister_netdevice_many); 12093 12094 /** 12095 * unregister_netdev - remove device from the kernel 12096 * @dev: device 12097 * 12098 * This function shuts down a device interface and removes it 12099 * from the kernel tables. 12100 * 12101 * This is just a wrapper for unregister_netdevice that takes 12102 * the rtnl semaphore. In general you want to use this and not 12103 * unregister_netdevice. 12104 */ 12105 void unregister_netdev(struct net_device *dev) 12106 { 12107 rtnl_net_dev_lock(dev); 12108 unregister_netdevice(dev); 12109 rtnl_net_dev_unlock(dev); 12110 } 12111 EXPORT_SYMBOL(unregister_netdev); 12112 12113 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12114 const char *pat, int new_ifindex, 12115 struct netlink_ext_ack *extack) 12116 { 12117 struct netdev_name_node *name_node; 12118 struct net *net_old = dev_net(dev); 12119 char new_name[IFNAMSIZ] = {}; 12120 int err, new_nsid; 12121 12122 ASSERT_RTNL(); 12123 12124 /* Don't allow namespace local devices to be moved. */ 12125 err = -EINVAL; 12126 if (dev->netns_immutable) { 12127 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12128 goto out; 12129 } 12130 12131 /* Ensure the device has been registered */ 12132 if (dev->reg_state != NETREG_REGISTERED) { 12133 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12134 goto out; 12135 } 12136 12137 /* Get out if there is nothing todo */ 12138 err = 0; 12139 if (net_eq(net_old, net)) 12140 goto out; 12141 12142 /* Pick the destination device name, and ensure 12143 * we can use it in the destination network namespace. 12144 */ 12145 err = -EEXIST; 12146 if (netdev_name_in_use(net, dev->name)) { 12147 /* We get here if we can't use the current device name */ 12148 if (!pat) { 12149 NL_SET_ERR_MSG(extack, 12150 "An interface with the same name exists in the target netns"); 12151 goto out; 12152 } 12153 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12154 if (err < 0) { 12155 NL_SET_ERR_MSG_FMT(extack, 12156 "Unable to use '%s' for the new interface name in the target netns", 12157 pat); 12158 goto out; 12159 } 12160 } 12161 /* Check that none of the altnames conflicts. */ 12162 err = -EEXIST; 12163 netdev_for_each_altname(dev, name_node) { 12164 if (netdev_name_in_use(net, name_node->name)) { 12165 NL_SET_ERR_MSG_FMT(extack, 12166 "An interface with the altname %s exists in the target netns", 12167 name_node->name); 12168 goto out; 12169 } 12170 } 12171 12172 /* Check that new_ifindex isn't used yet. */ 12173 if (new_ifindex) { 12174 err = dev_index_reserve(net, new_ifindex); 12175 if (err < 0) { 12176 NL_SET_ERR_MSG_FMT(extack, 12177 "The ifindex %d is not available in the target netns", 12178 new_ifindex); 12179 goto out; 12180 } 12181 } else { 12182 /* If there is an ifindex conflict assign a new one */ 12183 err = dev_index_reserve(net, dev->ifindex); 12184 if (err == -EBUSY) 12185 err = dev_index_reserve(net, 0); 12186 if (err < 0) { 12187 NL_SET_ERR_MSG(extack, 12188 "Unable to allocate a new ifindex in the target netns"); 12189 goto out; 12190 } 12191 new_ifindex = err; 12192 } 12193 12194 /* 12195 * And now a mini version of register_netdevice unregister_netdevice. 12196 */ 12197 12198 netdev_lock_ops(dev); 12199 /* If device is running close it first. */ 12200 netif_close(dev); 12201 /* And unlink it from device chain */ 12202 unlist_netdevice(dev); 12203 12204 if (!netdev_need_ops_lock(dev)) 12205 netdev_lock(dev); 12206 dev->moving_ns = true; 12207 netdev_unlock(dev); 12208 12209 synchronize_net(); 12210 12211 /* Shutdown queueing discipline. */ 12212 dev_shutdown(dev); 12213 12214 /* Notify protocols, that we are about to destroy 12215 * this device. They should clean all the things. 12216 * 12217 * Note that dev->reg_state stays at NETREG_REGISTERED. 12218 * This is wanted because this way 8021q and macvlan know 12219 * the device is just moving and can keep their slaves up. 12220 */ 12221 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12222 rcu_barrier(); 12223 12224 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12225 12226 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12227 new_ifindex); 12228 12229 /* 12230 * Flush the unicast and multicast chains 12231 */ 12232 dev_uc_flush(dev); 12233 dev_mc_flush(dev); 12234 12235 /* Send a netdev-removed uevent to the old namespace */ 12236 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12237 netdev_adjacent_del_links(dev); 12238 12239 /* Move per-net netdevice notifiers that are following the netdevice */ 12240 move_netdevice_notifiers_dev_net(dev, net); 12241 12242 /* Actually switch the network namespace */ 12243 netdev_lock(dev); 12244 dev_net_set(dev, net); 12245 netdev_unlock(dev); 12246 dev->ifindex = new_ifindex; 12247 12248 if (new_name[0]) { 12249 /* Rename the netdev to prepared name */ 12250 write_seqlock_bh(&netdev_rename_lock); 12251 strscpy(dev->name, new_name, IFNAMSIZ); 12252 write_sequnlock_bh(&netdev_rename_lock); 12253 } 12254 12255 /* Fixup kobjects */ 12256 dev_set_uevent_suppress(&dev->dev, 1); 12257 err = device_rename(&dev->dev, dev->name); 12258 dev_set_uevent_suppress(&dev->dev, 0); 12259 WARN_ON(err); 12260 12261 /* Send a netdev-add uevent to the new namespace */ 12262 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12263 netdev_adjacent_add_links(dev); 12264 12265 /* Adapt owner in case owning user namespace of target network 12266 * namespace is different from the original one. 12267 */ 12268 err = netdev_change_owner(dev, net_old, net); 12269 WARN_ON(err); 12270 12271 netdev_lock(dev); 12272 dev->moving_ns = false; 12273 if (!netdev_need_ops_lock(dev)) 12274 netdev_unlock(dev); 12275 12276 /* Add the device back in the hashes */ 12277 list_netdevice(dev); 12278 /* Notify protocols, that a new device appeared. */ 12279 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12280 netdev_unlock_ops(dev); 12281 12282 /* 12283 * Prevent userspace races by waiting until the network 12284 * device is fully setup before sending notifications. 12285 */ 12286 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12287 12288 synchronize_net(); 12289 err = 0; 12290 out: 12291 return err; 12292 } 12293 12294 static int dev_cpu_dead(unsigned int oldcpu) 12295 { 12296 struct sk_buff **list_skb; 12297 struct sk_buff *skb; 12298 unsigned int cpu; 12299 struct softnet_data *sd, *oldsd, *remsd = NULL; 12300 12301 local_irq_disable(); 12302 cpu = smp_processor_id(); 12303 sd = &per_cpu(softnet_data, cpu); 12304 oldsd = &per_cpu(softnet_data, oldcpu); 12305 12306 /* Find end of our completion_queue. */ 12307 list_skb = &sd->completion_queue; 12308 while (*list_skb) 12309 list_skb = &(*list_skb)->next; 12310 /* Append completion queue from offline CPU. */ 12311 *list_skb = oldsd->completion_queue; 12312 oldsd->completion_queue = NULL; 12313 12314 /* Append output queue from offline CPU. */ 12315 if (oldsd->output_queue) { 12316 *sd->output_queue_tailp = oldsd->output_queue; 12317 sd->output_queue_tailp = oldsd->output_queue_tailp; 12318 oldsd->output_queue = NULL; 12319 oldsd->output_queue_tailp = &oldsd->output_queue; 12320 } 12321 /* Append NAPI poll list from offline CPU, with one exception : 12322 * process_backlog() must be called by cpu owning percpu backlog. 12323 * We properly handle process_queue & input_pkt_queue later. 12324 */ 12325 while (!list_empty(&oldsd->poll_list)) { 12326 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12327 struct napi_struct, 12328 poll_list); 12329 12330 list_del_init(&napi->poll_list); 12331 if (napi->poll == process_backlog) 12332 napi->state &= NAPIF_STATE_THREADED; 12333 else 12334 ____napi_schedule(sd, napi); 12335 } 12336 12337 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12338 local_irq_enable(); 12339 12340 if (!use_backlog_threads()) { 12341 #ifdef CONFIG_RPS 12342 remsd = oldsd->rps_ipi_list; 12343 oldsd->rps_ipi_list = NULL; 12344 #endif 12345 /* send out pending IPI's on offline CPU */ 12346 net_rps_send_ipi(remsd); 12347 } 12348 12349 /* Process offline CPU's input_pkt_queue */ 12350 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12351 netif_rx(skb); 12352 rps_input_queue_head_incr(oldsd); 12353 } 12354 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12355 netif_rx(skb); 12356 rps_input_queue_head_incr(oldsd); 12357 } 12358 12359 return 0; 12360 } 12361 12362 /** 12363 * netdev_increment_features - increment feature set by one 12364 * @all: current feature set 12365 * @one: new feature set 12366 * @mask: mask feature set 12367 * 12368 * Computes a new feature set after adding a device with feature set 12369 * @one to the master device with current feature set @all. Will not 12370 * enable anything that is off in @mask. Returns the new feature set. 12371 */ 12372 netdev_features_t netdev_increment_features(netdev_features_t all, 12373 netdev_features_t one, netdev_features_t mask) 12374 { 12375 if (mask & NETIF_F_HW_CSUM) 12376 mask |= NETIF_F_CSUM_MASK; 12377 mask |= NETIF_F_VLAN_CHALLENGED; 12378 12379 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12380 all &= one | ~NETIF_F_ALL_FOR_ALL; 12381 12382 /* If one device supports hw checksumming, set for all. */ 12383 if (all & NETIF_F_HW_CSUM) 12384 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12385 12386 return all; 12387 } 12388 EXPORT_SYMBOL(netdev_increment_features); 12389 12390 static struct hlist_head * __net_init netdev_create_hash(void) 12391 { 12392 int i; 12393 struct hlist_head *hash; 12394 12395 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12396 if (hash != NULL) 12397 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12398 INIT_HLIST_HEAD(&hash[i]); 12399 12400 return hash; 12401 } 12402 12403 /* Initialize per network namespace state */ 12404 static int __net_init netdev_init(struct net *net) 12405 { 12406 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12407 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12408 12409 INIT_LIST_HEAD(&net->dev_base_head); 12410 12411 net->dev_name_head = netdev_create_hash(); 12412 if (net->dev_name_head == NULL) 12413 goto err_name; 12414 12415 net->dev_index_head = netdev_create_hash(); 12416 if (net->dev_index_head == NULL) 12417 goto err_idx; 12418 12419 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12420 12421 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12422 12423 return 0; 12424 12425 err_idx: 12426 kfree(net->dev_name_head); 12427 err_name: 12428 return -ENOMEM; 12429 } 12430 12431 /** 12432 * netdev_drivername - network driver for the device 12433 * @dev: network device 12434 * 12435 * Determine network driver for device. 12436 */ 12437 const char *netdev_drivername(const struct net_device *dev) 12438 { 12439 const struct device_driver *driver; 12440 const struct device *parent; 12441 const char *empty = ""; 12442 12443 parent = dev->dev.parent; 12444 if (!parent) 12445 return empty; 12446 12447 driver = parent->driver; 12448 if (driver && driver->name) 12449 return driver->name; 12450 return empty; 12451 } 12452 12453 static void __netdev_printk(const char *level, const struct net_device *dev, 12454 struct va_format *vaf) 12455 { 12456 if (dev && dev->dev.parent) { 12457 dev_printk_emit(level[1] - '0', 12458 dev->dev.parent, 12459 "%s %s %s%s: %pV", 12460 dev_driver_string(dev->dev.parent), 12461 dev_name(dev->dev.parent), 12462 netdev_name(dev), netdev_reg_state(dev), 12463 vaf); 12464 } else if (dev) { 12465 printk("%s%s%s: %pV", 12466 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12467 } else { 12468 printk("%s(NULL net_device): %pV", level, vaf); 12469 } 12470 } 12471 12472 void netdev_printk(const char *level, const struct net_device *dev, 12473 const char *format, ...) 12474 { 12475 struct va_format vaf; 12476 va_list args; 12477 12478 va_start(args, format); 12479 12480 vaf.fmt = format; 12481 vaf.va = &args; 12482 12483 __netdev_printk(level, dev, &vaf); 12484 12485 va_end(args); 12486 } 12487 EXPORT_SYMBOL(netdev_printk); 12488 12489 #define define_netdev_printk_level(func, level) \ 12490 void func(const struct net_device *dev, const char *fmt, ...) \ 12491 { \ 12492 struct va_format vaf; \ 12493 va_list args; \ 12494 \ 12495 va_start(args, fmt); \ 12496 \ 12497 vaf.fmt = fmt; \ 12498 vaf.va = &args; \ 12499 \ 12500 __netdev_printk(level, dev, &vaf); \ 12501 \ 12502 va_end(args); \ 12503 } \ 12504 EXPORT_SYMBOL(func); 12505 12506 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12507 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12508 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12509 define_netdev_printk_level(netdev_err, KERN_ERR); 12510 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12511 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12512 define_netdev_printk_level(netdev_info, KERN_INFO); 12513 12514 static void __net_exit netdev_exit(struct net *net) 12515 { 12516 kfree(net->dev_name_head); 12517 kfree(net->dev_index_head); 12518 xa_destroy(&net->dev_by_index); 12519 if (net != &init_net) 12520 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12521 } 12522 12523 static struct pernet_operations __net_initdata netdev_net_ops = { 12524 .init = netdev_init, 12525 .exit = netdev_exit, 12526 }; 12527 12528 static void __net_exit default_device_exit_net(struct net *net) 12529 { 12530 struct netdev_name_node *name_node, *tmp; 12531 struct net_device *dev, *aux; 12532 /* 12533 * Push all migratable network devices back to the 12534 * initial network namespace 12535 */ 12536 ASSERT_RTNL(); 12537 for_each_netdev_safe(net, dev, aux) { 12538 int err; 12539 char fb_name[IFNAMSIZ]; 12540 12541 /* Ignore unmoveable devices (i.e. loopback) */ 12542 if (dev->netns_immutable) 12543 continue; 12544 12545 /* Leave virtual devices for the generic cleanup */ 12546 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12547 continue; 12548 12549 /* Push remaining network devices to init_net */ 12550 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12551 if (netdev_name_in_use(&init_net, fb_name)) 12552 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12553 12554 netdev_for_each_altname_safe(dev, name_node, tmp) 12555 if (netdev_name_in_use(&init_net, name_node->name)) 12556 __netdev_name_node_alt_destroy(name_node); 12557 12558 err = dev_change_net_namespace(dev, &init_net, fb_name); 12559 if (err) { 12560 pr_emerg("%s: failed to move %s to init_net: %d\n", 12561 __func__, dev->name, err); 12562 BUG(); 12563 } 12564 } 12565 } 12566 12567 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12568 { 12569 /* At exit all network devices most be removed from a network 12570 * namespace. Do this in the reverse order of registration. 12571 * Do this across as many network namespaces as possible to 12572 * improve batching efficiency. 12573 */ 12574 struct net_device *dev; 12575 struct net *net; 12576 LIST_HEAD(dev_kill_list); 12577 12578 rtnl_lock(); 12579 list_for_each_entry(net, net_list, exit_list) { 12580 default_device_exit_net(net); 12581 cond_resched(); 12582 } 12583 12584 list_for_each_entry(net, net_list, exit_list) { 12585 for_each_netdev_reverse(net, dev) { 12586 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12587 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12588 else 12589 unregister_netdevice_queue(dev, &dev_kill_list); 12590 } 12591 } 12592 unregister_netdevice_many(&dev_kill_list); 12593 rtnl_unlock(); 12594 } 12595 12596 static struct pernet_operations __net_initdata default_device_ops = { 12597 .exit_batch = default_device_exit_batch, 12598 }; 12599 12600 static void __init net_dev_struct_check(void) 12601 { 12602 /* TX read-mostly hotpath */ 12603 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12604 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12605 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 12606 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 12607 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 12608 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 12609 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 12610 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 12611 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 12612 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 12613 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 12614 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 12615 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 12616 #ifdef CONFIG_XPS 12617 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 12618 #endif 12619 #ifdef CONFIG_NETFILTER_EGRESS 12620 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 12621 #endif 12622 #ifdef CONFIG_NET_XGRESS 12623 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 12624 #endif 12625 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 12626 12627 /* TXRX read-mostly hotpath */ 12628 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 12629 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 12630 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 12631 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 12632 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 12633 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 12634 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 12635 12636 /* RX read-mostly hotpath */ 12637 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 12638 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 12639 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 12640 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 12641 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12642 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12643 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12644 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12645 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12646 #ifdef CONFIG_NETPOLL 12647 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12648 #endif 12649 #ifdef CONFIG_NET_XGRESS 12650 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12651 #endif 12652 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 12653 } 12654 12655 /* 12656 * Initialize the DEV module. At boot time this walks the device list and 12657 * unhooks any devices that fail to initialise (normally hardware not 12658 * present) and leaves us with a valid list of present and active devices. 12659 * 12660 */ 12661 12662 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12663 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12664 12665 static int net_page_pool_create(int cpuid) 12666 { 12667 #if IS_ENABLED(CONFIG_PAGE_POOL) 12668 struct page_pool_params page_pool_params = { 12669 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12670 .flags = PP_FLAG_SYSTEM_POOL, 12671 .nid = cpu_to_mem(cpuid), 12672 }; 12673 struct page_pool *pp_ptr; 12674 int err; 12675 12676 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12677 if (IS_ERR(pp_ptr)) 12678 return -ENOMEM; 12679 12680 err = xdp_reg_page_pool(pp_ptr); 12681 if (err) { 12682 page_pool_destroy(pp_ptr); 12683 return err; 12684 } 12685 12686 per_cpu(system_page_pool, cpuid) = pp_ptr; 12687 #endif 12688 return 0; 12689 } 12690 12691 static int backlog_napi_should_run(unsigned int cpu) 12692 { 12693 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12694 struct napi_struct *napi = &sd->backlog; 12695 12696 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12697 } 12698 12699 static void run_backlog_napi(unsigned int cpu) 12700 { 12701 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12702 12703 napi_threaded_poll_loop(&sd->backlog); 12704 } 12705 12706 static void backlog_napi_setup(unsigned int cpu) 12707 { 12708 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12709 struct napi_struct *napi = &sd->backlog; 12710 12711 napi->thread = this_cpu_read(backlog_napi); 12712 set_bit(NAPI_STATE_THREADED, &napi->state); 12713 } 12714 12715 static struct smp_hotplug_thread backlog_threads = { 12716 .store = &backlog_napi, 12717 .thread_should_run = backlog_napi_should_run, 12718 .thread_fn = run_backlog_napi, 12719 .thread_comm = "backlog_napi/%u", 12720 .setup = backlog_napi_setup, 12721 }; 12722 12723 /* 12724 * This is called single threaded during boot, so no need 12725 * to take the rtnl semaphore. 12726 */ 12727 static int __init net_dev_init(void) 12728 { 12729 int i, rc = -ENOMEM; 12730 12731 BUG_ON(!dev_boot_phase); 12732 12733 net_dev_struct_check(); 12734 12735 if (dev_proc_init()) 12736 goto out; 12737 12738 if (netdev_kobject_init()) 12739 goto out; 12740 12741 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12742 INIT_LIST_HEAD(&ptype_base[i]); 12743 12744 if (register_pernet_subsys(&netdev_net_ops)) 12745 goto out; 12746 12747 /* 12748 * Initialise the packet receive queues. 12749 */ 12750 12751 flush_backlogs_fallback = flush_backlogs_alloc(); 12752 if (!flush_backlogs_fallback) 12753 goto out; 12754 12755 for_each_possible_cpu(i) { 12756 struct softnet_data *sd = &per_cpu(softnet_data, i); 12757 12758 skb_queue_head_init(&sd->input_pkt_queue); 12759 skb_queue_head_init(&sd->process_queue); 12760 #ifdef CONFIG_XFRM_OFFLOAD 12761 skb_queue_head_init(&sd->xfrm_backlog); 12762 #endif 12763 INIT_LIST_HEAD(&sd->poll_list); 12764 sd->output_queue_tailp = &sd->output_queue; 12765 #ifdef CONFIG_RPS 12766 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12767 sd->cpu = i; 12768 #endif 12769 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12770 spin_lock_init(&sd->defer_lock); 12771 12772 gro_init(&sd->backlog.gro); 12773 sd->backlog.poll = process_backlog; 12774 sd->backlog.weight = weight_p; 12775 INIT_LIST_HEAD(&sd->backlog.poll_list); 12776 12777 if (net_page_pool_create(i)) 12778 goto out; 12779 } 12780 if (use_backlog_threads()) 12781 smpboot_register_percpu_thread(&backlog_threads); 12782 12783 dev_boot_phase = 0; 12784 12785 /* The loopback device is special if any other network devices 12786 * is present in a network namespace the loopback device must 12787 * be present. Since we now dynamically allocate and free the 12788 * loopback device ensure this invariant is maintained by 12789 * keeping the loopback device as the first device on the 12790 * list of network devices. Ensuring the loopback devices 12791 * is the first device that appears and the last network device 12792 * that disappears. 12793 */ 12794 if (register_pernet_device(&loopback_net_ops)) 12795 goto out; 12796 12797 if (register_pernet_device(&default_device_ops)) 12798 goto out; 12799 12800 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 12801 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 12802 12803 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 12804 NULL, dev_cpu_dead); 12805 WARN_ON(rc < 0); 12806 rc = 0; 12807 12808 /* avoid static key IPIs to isolated CPUs */ 12809 if (housekeeping_enabled(HK_TYPE_MISC)) 12810 net_enable_timestamp(); 12811 out: 12812 if (rc < 0) { 12813 for_each_possible_cpu(i) { 12814 struct page_pool *pp_ptr; 12815 12816 pp_ptr = per_cpu(system_page_pool, i); 12817 if (!pp_ptr) 12818 continue; 12819 12820 xdp_unreg_page_pool(pp_ptr); 12821 page_pool_destroy(pp_ptr); 12822 per_cpu(system_page_pool, i) = NULL; 12823 } 12824 } 12825 12826 return rc; 12827 } 12828 12829 subsys_initcall(net_dev_init); 12830