1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/net_tstamp.h> 136 #include <linux/static_key.h> 137 #include <net/flow_keys.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 /* 148 * The list of packet types we will receive (as opposed to discard) 149 * and the routines to invoke. 150 * 151 * Why 16. Because with 16 the only overlap we get on a hash of the 152 * low nibble of the protocol value is RARP/SNAP/X.25. 153 * 154 * NOTE: That is no longer true with the addition of VLAN tags. Not 155 * sure which should go first, but I bet it won't make much 156 * difference if we are running VLANs. The good news is that 157 * this protocol won't be in the list unless compiled in, so 158 * the average user (w/out VLANs) will not be adversely affected. 159 * --BLG 160 * 161 * 0800 IP 162 * 8100 802.1Q VLAN 163 * 0001 802.3 164 * 0002 AX.25 165 * 0004 802.2 166 * 8035 RARP 167 * 0005 SNAP 168 * 0805 X.25 169 * 0806 ARP 170 * 8137 IPX 171 * 0009 Localtalk 172 * 86DD IPv6 173 */ 174 175 #define PTYPE_HASH_SIZE (16) 176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 177 178 static DEFINE_SPINLOCK(ptype_lock); 179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 180 static struct list_head ptype_all __read_mostly; /* Taps */ 181 182 /* 183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 184 * semaphore. 185 * 186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 187 * 188 * Writers must hold the rtnl semaphore while they loop through the 189 * dev_base_head list, and hold dev_base_lock for writing when they do the 190 * actual updates. This allows pure readers to access the list even 191 * while a writer is preparing to update it. 192 * 193 * To put it another way, dev_base_lock is held for writing only to 194 * protect against pure readers; the rtnl semaphore provides the 195 * protection against other writers. 196 * 197 * See, for example usages, register_netdevice() and 198 * unregister_netdevice(), which must be called with the rtnl 199 * semaphore held. 200 */ 201 DEFINE_RWLOCK(dev_base_lock); 202 EXPORT_SYMBOL(dev_base_lock); 203 204 static inline void dev_base_seq_inc(struct net *net) 205 { 206 while (++net->dev_base_seq == 0); 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static int list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 251 return 0; 252 } 253 254 /* Device list removal 255 * caller must respect a RCU grace period before freeing/reusing dev 256 */ 257 static void unlist_netdevice(struct net_device *dev) 258 { 259 ASSERT_RTNL(); 260 261 /* Unlink dev from the device chain */ 262 write_lock_bh(&dev_base_lock); 263 list_del_rcu(&dev->dev_list); 264 hlist_del_rcu(&dev->name_hlist); 265 hlist_del_rcu(&dev->index_hlist); 266 write_unlock_bh(&dev_base_lock); 267 268 dev_base_seq_inc(dev_net(dev)); 269 } 270 271 /* 272 * Our notifier list 273 */ 274 275 static RAW_NOTIFIER_HEAD(netdev_chain); 276 277 /* 278 * Device drivers call our routines to queue packets here. We empty the 279 * queue in the local softnet handler. 280 */ 281 282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 283 EXPORT_PER_CPU_SYMBOL(softnet_data); 284 285 #ifdef CONFIG_LOCKDEP 286 /* 287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 288 * according to dev->type 289 */ 290 static const unsigned short netdev_lock_type[] = 291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 306 307 static const char *const netdev_lock_name[] = 308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 323 324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 326 327 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 328 { 329 int i; 330 331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 332 if (netdev_lock_type[i] == dev_type) 333 return i; 334 /* the last key is used by default */ 335 return ARRAY_SIZE(netdev_lock_type) - 1; 336 } 337 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 int i; 342 343 i = netdev_lock_pos(dev_type); 344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 345 netdev_lock_name[i]); 346 } 347 348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 349 { 350 int i; 351 352 i = netdev_lock_pos(dev->type); 353 lockdep_set_class_and_name(&dev->addr_list_lock, 354 &netdev_addr_lock_key[i], 355 netdev_lock_name[i]); 356 } 357 #else 358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 359 unsigned short dev_type) 360 { 361 } 362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 363 { 364 } 365 #endif 366 367 /******************************************************************************* 368 369 Protocol management and registration routines 370 371 *******************************************************************************/ 372 373 /* 374 * Add a protocol ID to the list. Now that the input handler is 375 * smarter we can dispense with all the messy stuff that used to be 376 * here. 377 * 378 * BEWARE!!! Protocol handlers, mangling input packets, 379 * MUST BE last in hash buckets and checking protocol handlers 380 * MUST start from promiscuous ptype_all chain in net_bh. 381 * It is true now, do not change it. 382 * Explanation follows: if protocol handler, mangling packet, will 383 * be the first on list, it is not able to sense, that packet 384 * is cloned and should be copied-on-write, so that it will 385 * change it and subsequent readers will get broken packet. 386 * --ANK (980803) 387 */ 388 389 static inline struct list_head *ptype_head(const struct packet_type *pt) 390 { 391 if (pt->type == htons(ETH_P_ALL)) 392 return &ptype_all; 393 else 394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 395 } 396 397 /** 398 * dev_add_pack - add packet handler 399 * @pt: packet type declaration 400 * 401 * Add a protocol handler to the networking stack. The passed &packet_type 402 * is linked into kernel lists and may not be freed until it has been 403 * removed from the kernel lists. 404 * 405 * This call does not sleep therefore it can not 406 * guarantee all CPU's that are in middle of receiving packets 407 * will see the new packet type (until the next received packet). 408 */ 409 410 void dev_add_pack(struct packet_type *pt) 411 { 412 struct list_head *head = ptype_head(pt); 413 414 spin_lock(&ptype_lock); 415 list_add_rcu(&pt->list, head); 416 spin_unlock(&ptype_lock); 417 } 418 EXPORT_SYMBOL(dev_add_pack); 419 420 /** 421 * __dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * The packet type might still be in use by receivers 430 * and must not be freed until after all the CPU's have gone 431 * through a quiescent state. 432 */ 433 void __dev_remove_pack(struct packet_type *pt) 434 { 435 struct list_head *head = ptype_head(pt); 436 struct packet_type *pt1; 437 438 spin_lock(&ptype_lock); 439 440 list_for_each_entry(pt1, head, list) { 441 if (pt == pt1) { 442 list_del_rcu(&pt->list); 443 goto out; 444 } 445 } 446 447 pr_warn("dev_remove_pack: %p not found\n", pt); 448 out: 449 spin_unlock(&ptype_lock); 450 } 451 EXPORT_SYMBOL(__dev_remove_pack); 452 453 /** 454 * dev_remove_pack - remove packet handler 455 * @pt: packet type declaration 456 * 457 * Remove a protocol handler that was previously added to the kernel 458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 459 * from the kernel lists and can be freed or reused once this function 460 * returns. 461 * 462 * This call sleeps to guarantee that no CPU is looking at the packet 463 * type after return. 464 */ 465 void dev_remove_pack(struct packet_type *pt) 466 { 467 __dev_remove_pack(pt); 468 469 synchronize_net(); 470 } 471 EXPORT_SYMBOL(dev_remove_pack); 472 473 /****************************************************************************** 474 475 Device Boot-time Settings Routines 476 477 *******************************************************************************/ 478 479 /* Boot time configuration table */ 480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 481 482 /** 483 * netdev_boot_setup_add - add new setup entry 484 * @name: name of the device 485 * @map: configured settings for the device 486 * 487 * Adds new setup entry to the dev_boot_setup list. The function 488 * returns 0 on error and 1 on success. This is a generic routine to 489 * all netdevices. 490 */ 491 static int netdev_boot_setup_add(char *name, struct ifmap *map) 492 { 493 struct netdev_boot_setup *s; 494 int i; 495 496 s = dev_boot_setup; 497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 499 memset(s[i].name, 0, sizeof(s[i].name)); 500 strlcpy(s[i].name, name, IFNAMSIZ); 501 memcpy(&s[i].map, map, sizeof(s[i].map)); 502 break; 503 } 504 } 505 506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 507 } 508 509 /** 510 * netdev_boot_setup_check - check boot time settings 511 * @dev: the netdevice 512 * 513 * Check boot time settings for the device. 514 * The found settings are set for the device to be used 515 * later in the device probing. 516 * Returns 0 if no settings found, 1 if they are. 517 */ 518 int netdev_boot_setup_check(struct net_device *dev) 519 { 520 struct netdev_boot_setup *s = dev_boot_setup; 521 int i; 522 523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 525 !strcmp(dev->name, s[i].name)) { 526 dev->irq = s[i].map.irq; 527 dev->base_addr = s[i].map.base_addr; 528 dev->mem_start = s[i].map.mem_start; 529 dev->mem_end = s[i].map.mem_end; 530 return 1; 531 } 532 } 533 return 0; 534 } 535 EXPORT_SYMBOL(netdev_boot_setup_check); 536 537 538 /** 539 * netdev_boot_base - get address from boot time settings 540 * @prefix: prefix for network device 541 * @unit: id for network device 542 * 543 * Check boot time settings for the base address of device. 544 * The found settings are set for the device to be used 545 * later in the device probing. 546 * Returns 0 if no settings found. 547 */ 548 unsigned long netdev_boot_base(const char *prefix, int unit) 549 { 550 const struct netdev_boot_setup *s = dev_boot_setup; 551 char name[IFNAMSIZ]; 552 int i; 553 554 sprintf(name, "%s%d", prefix, unit); 555 556 /* 557 * If device already registered then return base of 1 558 * to indicate not to probe for this interface 559 */ 560 if (__dev_get_by_name(&init_net, name)) 561 return 1; 562 563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 564 if (!strcmp(name, s[i].name)) 565 return s[i].map.base_addr; 566 return 0; 567 } 568 569 /* 570 * Saves at boot time configured settings for any netdevice. 571 */ 572 int __init netdev_boot_setup(char *str) 573 { 574 int ints[5]; 575 struct ifmap map; 576 577 str = get_options(str, ARRAY_SIZE(ints), ints); 578 if (!str || !*str) 579 return 0; 580 581 /* Save settings */ 582 memset(&map, 0, sizeof(map)); 583 if (ints[0] > 0) 584 map.irq = ints[1]; 585 if (ints[0] > 1) 586 map.base_addr = ints[2]; 587 if (ints[0] > 2) 588 map.mem_start = ints[3]; 589 if (ints[0] > 3) 590 map.mem_end = ints[4]; 591 592 /* Add new entry to the list */ 593 return netdev_boot_setup_add(str, &map); 594 } 595 596 __setup("netdev=", netdev_boot_setup); 597 598 /******************************************************************************* 599 600 Device Interface Subroutines 601 602 *******************************************************************************/ 603 604 /** 605 * __dev_get_by_name - find a device by its name 606 * @net: the applicable net namespace 607 * @name: name to find 608 * 609 * Find an interface by name. Must be called under RTNL semaphore 610 * or @dev_base_lock. If the name is found a pointer to the device 611 * is returned. If the name is not found then %NULL is returned. The 612 * reference counters are not incremented so the caller must be 613 * careful with locks. 614 */ 615 616 struct net_device *__dev_get_by_name(struct net *net, const char *name) 617 { 618 struct hlist_node *p; 619 struct net_device *dev; 620 struct hlist_head *head = dev_name_hash(net, name); 621 622 hlist_for_each_entry(dev, p, head, name_hlist) 623 if (!strncmp(dev->name, name, IFNAMSIZ)) 624 return dev; 625 626 return NULL; 627 } 628 EXPORT_SYMBOL(__dev_get_by_name); 629 630 /** 631 * dev_get_by_name_rcu - find a device by its name 632 * @net: the applicable net namespace 633 * @name: name to find 634 * 635 * Find an interface by name. 636 * If the name is found a pointer to the device is returned. 637 * If the name is not found then %NULL is returned. 638 * The reference counters are not incremented so the caller must be 639 * careful with locks. The caller must hold RCU lock. 640 */ 641 642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 643 { 644 struct hlist_node *p; 645 struct net_device *dev; 646 struct hlist_head *head = dev_name_hash(net, name); 647 648 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 649 if (!strncmp(dev->name, name, IFNAMSIZ)) 650 return dev; 651 652 return NULL; 653 } 654 EXPORT_SYMBOL(dev_get_by_name_rcu); 655 656 /** 657 * dev_get_by_name - find a device by its name 658 * @net: the applicable net namespace 659 * @name: name to find 660 * 661 * Find an interface by name. This can be called from any 662 * context and does its own locking. The returned handle has 663 * the usage count incremented and the caller must use dev_put() to 664 * release it when it is no longer needed. %NULL is returned if no 665 * matching device is found. 666 */ 667 668 struct net_device *dev_get_by_name(struct net *net, const char *name) 669 { 670 struct net_device *dev; 671 672 rcu_read_lock(); 673 dev = dev_get_by_name_rcu(net, name); 674 if (dev) 675 dev_hold(dev); 676 rcu_read_unlock(); 677 return dev; 678 } 679 EXPORT_SYMBOL(dev_get_by_name); 680 681 /** 682 * __dev_get_by_index - find a device by its ifindex 683 * @net: the applicable net namespace 684 * @ifindex: index of device 685 * 686 * Search for an interface by index. Returns %NULL if the device 687 * is not found or a pointer to the device. The device has not 688 * had its reference counter increased so the caller must be careful 689 * about locking. The caller must hold either the RTNL semaphore 690 * or @dev_base_lock. 691 */ 692 693 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 694 { 695 struct hlist_node *p; 696 struct net_device *dev; 697 struct hlist_head *head = dev_index_hash(net, ifindex); 698 699 hlist_for_each_entry(dev, p, head, index_hlist) 700 if (dev->ifindex == ifindex) 701 return dev; 702 703 return NULL; 704 } 705 EXPORT_SYMBOL(__dev_get_by_index); 706 707 /** 708 * dev_get_by_index_rcu - find a device by its ifindex 709 * @net: the applicable net namespace 710 * @ifindex: index of device 711 * 712 * Search for an interface by index. Returns %NULL if the device 713 * is not found or a pointer to the device. The device has not 714 * had its reference counter increased so the caller must be careful 715 * about locking. The caller must hold RCU lock. 716 */ 717 718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 719 { 720 struct hlist_node *p; 721 struct net_device *dev; 722 struct hlist_head *head = dev_index_hash(net, ifindex); 723 724 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 725 if (dev->ifindex == ifindex) 726 return dev; 727 728 return NULL; 729 } 730 EXPORT_SYMBOL(dev_get_by_index_rcu); 731 732 733 /** 734 * dev_get_by_index - find a device by its ifindex 735 * @net: the applicable net namespace 736 * @ifindex: index of device 737 * 738 * Search for an interface by index. Returns NULL if the device 739 * is not found or a pointer to the device. The device returned has 740 * had a reference added and the pointer is safe until the user calls 741 * dev_put to indicate they have finished with it. 742 */ 743 744 struct net_device *dev_get_by_index(struct net *net, int ifindex) 745 { 746 struct net_device *dev; 747 748 rcu_read_lock(); 749 dev = dev_get_by_index_rcu(net, ifindex); 750 if (dev) 751 dev_hold(dev); 752 rcu_read_unlock(); 753 return dev; 754 } 755 EXPORT_SYMBOL(dev_get_by_index); 756 757 /** 758 * dev_getbyhwaddr_rcu - find a device by its hardware address 759 * @net: the applicable net namespace 760 * @type: media type of device 761 * @ha: hardware address 762 * 763 * Search for an interface by MAC address. Returns NULL if the device 764 * is not found or a pointer to the device. 765 * The caller must hold RCU or RTNL. 766 * The returned device has not had its ref count increased 767 * and the caller must therefore be careful about locking 768 * 769 */ 770 771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 772 const char *ha) 773 { 774 struct net_device *dev; 775 776 for_each_netdev_rcu(net, dev) 777 if (dev->type == type && 778 !memcmp(dev->dev_addr, ha, dev->addr_len)) 779 return dev; 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 784 785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 786 { 787 struct net_device *dev; 788 789 ASSERT_RTNL(); 790 for_each_netdev(net, dev) 791 if (dev->type == type) 792 return dev; 793 794 return NULL; 795 } 796 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 797 798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 799 { 800 struct net_device *dev, *ret = NULL; 801 802 rcu_read_lock(); 803 for_each_netdev_rcu(net, dev) 804 if (dev->type == type) { 805 dev_hold(dev); 806 ret = dev; 807 break; 808 } 809 rcu_read_unlock(); 810 return ret; 811 } 812 EXPORT_SYMBOL(dev_getfirstbyhwtype); 813 814 /** 815 * dev_get_by_flags_rcu - find any device with given flags 816 * @net: the applicable net namespace 817 * @if_flags: IFF_* values 818 * @mask: bitmask of bits in if_flags to check 819 * 820 * Search for any interface with the given flags. Returns NULL if a device 821 * is not found or a pointer to the device. Must be called inside 822 * rcu_read_lock(), and result refcount is unchanged. 823 */ 824 825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 826 unsigned short mask) 827 { 828 struct net_device *dev, *ret; 829 830 ret = NULL; 831 for_each_netdev_rcu(net, dev) { 832 if (((dev->flags ^ if_flags) & mask) == 0) { 833 ret = dev; 834 break; 835 } 836 } 837 return ret; 838 } 839 EXPORT_SYMBOL(dev_get_by_flags_rcu); 840 841 /** 842 * dev_valid_name - check if name is okay for network device 843 * @name: name string 844 * 845 * Network device names need to be valid file names to 846 * to allow sysfs to work. We also disallow any kind of 847 * whitespace. 848 */ 849 bool dev_valid_name(const char *name) 850 { 851 if (*name == '\0') 852 return false; 853 if (strlen(name) >= IFNAMSIZ) 854 return false; 855 if (!strcmp(name, ".") || !strcmp(name, "..")) 856 return false; 857 858 while (*name) { 859 if (*name == '/' || isspace(*name)) 860 return false; 861 name++; 862 } 863 return true; 864 } 865 EXPORT_SYMBOL(dev_valid_name); 866 867 /** 868 * __dev_alloc_name - allocate a name for a device 869 * @net: network namespace to allocate the device name in 870 * @name: name format string 871 * @buf: scratch buffer and result name string 872 * 873 * Passed a format string - eg "lt%d" it will try and find a suitable 874 * id. It scans list of devices to build up a free map, then chooses 875 * the first empty slot. The caller must hold the dev_base or rtnl lock 876 * while allocating the name and adding the device in order to avoid 877 * duplicates. 878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 879 * Returns the number of the unit assigned or a negative errno code. 880 */ 881 882 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 883 { 884 int i = 0; 885 const char *p; 886 const int max_netdevices = 8*PAGE_SIZE; 887 unsigned long *inuse; 888 struct net_device *d; 889 890 p = strnchr(name, IFNAMSIZ-1, '%'); 891 if (p) { 892 /* 893 * Verify the string as this thing may have come from 894 * the user. There must be either one "%d" and no other "%" 895 * characters. 896 */ 897 if (p[1] != 'd' || strchr(p + 2, '%')) 898 return -EINVAL; 899 900 /* Use one page as a bit array of possible slots */ 901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 902 if (!inuse) 903 return -ENOMEM; 904 905 for_each_netdev(net, d) { 906 if (!sscanf(d->name, name, &i)) 907 continue; 908 if (i < 0 || i >= max_netdevices) 909 continue; 910 911 /* avoid cases where sscanf is not exact inverse of printf */ 912 snprintf(buf, IFNAMSIZ, name, i); 913 if (!strncmp(buf, d->name, IFNAMSIZ)) 914 set_bit(i, inuse); 915 } 916 917 i = find_first_zero_bit(inuse, max_netdevices); 918 free_page((unsigned long) inuse); 919 } 920 921 if (buf != name) 922 snprintf(buf, IFNAMSIZ, name, i); 923 if (!__dev_get_by_name(net, buf)) 924 return i; 925 926 /* It is possible to run out of possible slots 927 * when the name is long and there isn't enough space left 928 * for the digits, or if all bits are used. 929 */ 930 return -ENFILE; 931 } 932 933 /** 934 * dev_alloc_name - allocate a name for a device 935 * @dev: device 936 * @name: name format string 937 * 938 * Passed a format string - eg "lt%d" it will try and find a suitable 939 * id. It scans list of devices to build up a free map, then chooses 940 * the first empty slot. The caller must hold the dev_base or rtnl lock 941 * while allocating the name and adding the device in order to avoid 942 * duplicates. 943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 944 * Returns the number of the unit assigned or a negative errno code. 945 */ 946 947 int dev_alloc_name(struct net_device *dev, const char *name) 948 { 949 char buf[IFNAMSIZ]; 950 struct net *net; 951 int ret; 952 953 BUG_ON(!dev_net(dev)); 954 net = dev_net(dev); 955 ret = __dev_alloc_name(net, name, buf); 956 if (ret >= 0) 957 strlcpy(dev->name, buf, IFNAMSIZ); 958 return ret; 959 } 960 EXPORT_SYMBOL(dev_alloc_name); 961 962 static int dev_get_valid_name(struct net_device *dev, const char *name) 963 { 964 struct net *net; 965 966 BUG_ON(!dev_net(dev)); 967 net = dev_net(dev); 968 969 if (!dev_valid_name(name)) 970 return -EINVAL; 971 972 if (strchr(name, '%')) 973 return dev_alloc_name(dev, name); 974 else if (__dev_get_by_name(net, name)) 975 return -EEXIST; 976 else if (dev->name != name) 977 strlcpy(dev->name, name, IFNAMSIZ); 978 979 return 0; 980 } 981 982 /** 983 * dev_change_name - change name of a device 984 * @dev: device 985 * @newname: name (or format string) must be at least IFNAMSIZ 986 * 987 * Change name of a device, can pass format strings "eth%d". 988 * for wildcarding. 989 */ 990 int dev_change_name(struct net_device *dev, const char *newname) 991 { 992 char oldname[IFNAMSIZ]; 993 int err = 0; 994 int ret; 995 struct net *net; 996 997 ASSERT_RTNL(); 998 BUG_ON(!dev_net(dev)); 999 1000 net = dev_net(dev); 1001 if (dev->flags & IFF_UP) 1002 return -EBUSY; 1003 1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1005 return 0; 1006 1007 memcpy(oldname, dev->name, IFNAMSIZ); 1008 1009 err = dev_get_valid_name(dev, newname); 1010 if (err < 0) 1011 return err; 1012 1013 rollback: 1014 ret = device_rename(&dev->dev, dev->name); 1015 if (ret) { 1016 memcpy(dev->name, oldname, IFNAMSIZ); 1017 return ret; 1018 } 1019 1020 write_lock_bh(&dev_base_lock); 1021 hlist_del_rcu(&dev->name_hlist); 1022 write_unlock_bh(&dev_base_lock); 1023 1024 synchronize_rcu(); 1025 1026 write_lock_bh(&dev_base_lock); 1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1028 write_unlock_bh(&dev_base_lock); 1029 1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1031 ret = notifier_to_errno(ret); 1032 1033 if (ret) { 1034 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1035 if (err >= 0) { 1036 err = ret; 1037 memcpy(dev->name, oldname, IFNAMSIZ); 1038 goto rollback; 1039 } else { 1040 pr_err("%s: name change rollback failed: %d\n", 1041 dev->name, ret); 1042 } 1043 } 1044 1045 return err; 1046 } 1047 1048 /** 1049 * dev_set_alias - change ifalias of a device 1050 * @dev: device 1051 * @alias: name up to IFALIASZ 1052 * @len: limit of bytes to copy from info 1053 * 1054 * Set ifalias for a device, 1055 */ 1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1057 { 1058 ASSERT_RTNL(); 1059 1060 if (len >= IFALIASZ) 1061 return -EINVAL; 1062 1063 if (!len) { 1064 if (dev->ifalias) { 1065 kfree(dev->ifalias); 1066 dev->ifalias = NULL; 1067 } 1068 return 0; 1069 } 1070 1071 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1072 if (!dev->ifalias) 1073 return -ENOMEM; 1074 1075 strlcpy(dev->ifalias, alias, len+1); 1076 return len; 1077 } 1078 1079 1080 /** 1081 * netdev_features_change - device changes features 1082 * @dev: device to cause notification 1083 * 1084 * Called to indicate a device has changed features. 1085 */ 1086 void netdev_features_change(struct net_device *dev) 1087 { 1088 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1089 } 1090 EXPORT_SYMBOL(netdev_features_change); 1091 1092 /** 1093 * netdev_state_change - device changes state 1094 * @dev: device to cause notification 1095 * 1096 * Called to indicate a device has changed state. This function calls 1097 * the notifier chains for netdev_chain and sends a NEWLINK message 1098 * to the routing socket. 1099 */ 1100 void netdev_state_change(struct net_device *dev) 1101 { 1102 if (dev->flags & IFF_UP) { 1103 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1104 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1105 } 1106 } 1107 EXPORT_SYMBOL(netdev_state_change); 1108 1109 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1110 { 1111 return call_netdevice_notifiers(event, dev); 1112 } 1113 EXPORT_SYMBOL(netdev_bonding_change); 1114 1115 /** 1116 * dev_load - load a network module 1117 * @net: the applicable net namespace 1118 * @name: name of interface 1119 * 1120 * If a network interface is not present and the process has suitable 1121 * privileges this function loads the module. If module loading is not 1122 * available in this kernel then it becomes a nop. 1123 */ 1124 1125 void dev_load(struct net *net, const char *name) 1126 { 1127 struct net_device *dev; 1128 int no_module; 1129 1130 rcu_read_lock(); 1131 dev = dev_get_by_name_rcu(net, name); 1132 rcu_read_unlock(); 1133 1134 no_module = !dev; 1135 if (no_module && capable(CAP_NET_ADMIN)) 1136 no_module = request_module("netdev-%s", name); 1137 if (no_module && capable(CAP_SYS_MODULE)) { 1138 if (!request_module("%s", name)) 1139 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n", 1140 name); 1141 } 1142 } 1143 EXPORT_SYMBOL(dev_load); 1144 1145 static int __dev_open(struct net_device *dev) 1146 { 1147 const struct net_device_ops *ops = dev->netdev_ops; 1148 int ret; 1149 1150 ASSERT_RTNL(); 1151 1152 if (!netif_device_present(dev)) 1153 return -ENODEV; 1154 1155 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1156 ret = notifier_to_errno(ret); 1157 if (ret) 1158 return ret; 1159 1160 set_bit(__LINK_STATE_START, &dev->state); 1161 1162 if (ops->ndo_validate_addr) 1163 ret = ops->ndo_validate_addr(dev); 1164 1165 if (!ret && ops->ndo_open) 1166 ret = ops->ndo_open(dev); 1167 1168 if (ret) 1169 clear_bit(__LINK_STATE_START, &dev->state); 1170 else { 1171 dev->flags |= IFF_UP; 1172 net_dmaengine_get(); 1173 dev_set_rx_mode(dev); 1174 dev_activate(dev); 1175 } 1176 1177 return ret; 1178 } 1179 1180 /** 1181 * dev_open - prepare an interface for use. 1182 * @dev: device to open 1183 * 1184 * Takes a device from down to up state. The device's private open 1185 * function is invoked and then the multicast lists are loaded. Finally 1186 * the device is moved into the up state and a %NETDEV_UP message is 1187 * sent to the netdev notifier chain. 1188 * 1189 * Calling this function on an active interface is a nop. On a failure 1190 * a negative errno code is returned. 1191 */ 1192 int dev_open(struct net_device *dev) 1193 { 1194 int ret; 1195 1196 if (dev->flags & IFF_UP) 1197 return 0; 1198 1199 ret = __dev_open(dev); 1200 if (ret < 0) 1201 return ret; 1202 1203 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1204 call_netdevice_notifiers(NETDEV_UP, dev); 1205 1206 return ret; 1207 } 1208 EXPORT_SYMBOL(dev_open); 1209 1210 static int __dev_close_many(struct list_head *head) 1211 { 1212 struct net_device *dev; 1213 1214 ASSERT_RTNL(); 1215 might_sleep(); 1216 1217 list_for_each_entry(dev, head, unreg_list) { 1218 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1219 1220 clear_bit(__LINK_STATE_START, &dev->state); 1221 1222 /* Synchronize to scheduled poll. We cannot touch poll list, it 1223 * can be even on different cpu. So just clear netif_running(). 1224 * 1225 * dev->stop() will invoke napi_disable() on all of it's 1226 * napi_struct instances on this device. 1227 */ 1228 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1229 } 1230 1231 dev_deactivate_many(head); 1232 1233 list_for_each_entry(dev, head, unreg_list) { 1234 const struct net_device_ops *ops = dev->netdev_ops; 1235 1236 /* 1237 * Call the device specific close. This cannot fail. 1238 * Only if device is UP 1239 * 1240 * We allow it to be called even after a DETACH hot-plug 1241 * event. 1242 */ 1243 if (ops->ndo_stop) 1244 ops->ndo_stop(dev); 1245 1246 dev->flags &= ~IFF_UP; 1247 net_dmaengine_put(); 1248 } 1249 1250 return 0; 1251 } 1252 1253 static int __dev_close(struct net_device *dev) 1254 { 1255 int retval; 1256 LIST_HEAD(single); 1257 1258 list_add(&dev->unreg_list, &single); 1259 retval = __dev_close_many(&single); 1260 list_del(&single); 1261 return retval; 1262 } 1263 1264 static int dev_close_many(struct list_head *head) 1265 { 1266 struct net_device *dev, *tmp; 1267 LIST_HEAD(tmp_list); 1268 1269 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1270 if (!(dev->flags & IFF_UP)) 1271 list_move(&dev->unreg_list, &tmp_list); 1272 1273 __dev_close_many(head); 1274 1275 list_for_each_entry(dev, head, unreg_list) { 1276 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1277 call_netdevice_notifiers(NETDEV_DOWN, dev); 1278 } 1279 1280 /* rollback_registered_many needs the complete original list */ 1281 list_splice(&tmp_list, head); 1282 return 0; 1283 } 1284 1285 /** 1286 * dev_close - shutdown an interface. 1287 * @dev: device to shutdown 1288 * 1289 * This function moves an active device into down state. A 1290 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1291 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1292 * chain. 1293 */ 1294 int dev_close(struct net_device *dev) 1295 { 1296 if (dev->flags & IFF_UP) { 1297 LIST_HEAD(single); 1298 1299 list_add(&dev->unreg_list, &single); 1300 dev_close_many(&single); 1301 list_del(&single); 1302 } 1303 return 0; 1304 } 1305 EXPORT_SYMBOL(dev_close); 1306 1307 1308 /** 1309 * dev_disable_lro - disable Large Receive Offload on a device 1310 * @dev: device 1311 * 1312 * Disable Large Receive Offload (LRO) on a net device. Must be 1313 * called under RTNL. This is needed if received packets may be 1314 * forwarded to another interface. 1315 */ 1316 void dev_disable_lro(struct net_device *dev) 1317 { 1318 /* 1319 * If we're trying to disable lro on a vlan device 1320 * use the underlying physical device instead 1321 */ 1322 if (is_vlan_dev(dev)) 1323 dev = vlan_dev_real_dev(dev); 1324 1325 dev->wanted_features &= ~NETIF_F_LRO; 1326 netdev_update_features(dev); 1327 1328 if (unlikely(dev->features & NETIF_F_LRO)) 1329 netdev_WARN(dev, "failed to disable LRO!\n"); 1330 } 1331 EXPORT_SYMBOL(dev_disable_lro); 1332 1333 1334 static int dev_boot_phase = 1; 1335 1336 /** 1337 * register_netdevice_notifier - register a network notifier block 1338 * @nb: notifier 1339 * 1340 * Register a notifier to be called when network device events occur. 1341 * The notifier passed is linked into the kernel structures and must 1342 * not be reused until it has been unregistered. A negative errno code 1343 * is returned on a failure. 1344 * 1345 * When registered all registration and up events are replayed 1346 * to the new notifier to allow device to have a race free 1347 * view of the network device list. 1348 */ 1349 1350 int register_netdevice_notifier(struct notifier_block *nb) 1351 { 1352 struct net_device *dev; 1353 struct net_device *last; 1354 struct net *net; 1355 int err; 1356 1357 rtnl_lock(); 1358 err = raw_notifier_chain_register(&netdev_chain, nb); 1359 if (err) 1360 goto unlock; 1361 if (dev_boot_phase) 1362 goto unlock; 1363 for_each_net(net) { 1364 for_each_netdev(net, dev) { 1365 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1366 err = notifier_to_errno(err); 1367 if (err) 1368 goto rollback; 1369 1370 if (!(dev->flags & IFF_UP)) 1371 continue; 1372 1373 nb->notifier_call(nb, NETDEV_UP, dev); 1374 } 1375 } 1376 1377 unlock: 1378 rtnl_unlock(); 1379 return err; 1380 1381 rollback: 1382 last = dev; 1383 for_each_net(net) { 1384 for_each_netdev(net, dev) { 1385 if (dev == last) 1386 goto outroll; 1387 1388 if (dev->flags & IFF_UP) { 1389 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1390 nb->notifier_call(nb, NETDEV_DOWN, dev); 1391 } 1392 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1393 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1394 } 1395 } 1396 1397 outroll: 1398 raw_notifier_chain_unregister(&netdev_chain, nb); 1399 goto unlock; 1400 } 1401 EXPORT_SYMBOL(register_netdevice_notifier); 1402 1403 /** 1404 * unregister_netdevice_notifier - unregister a network notifier block 1405 * @nb: notifier 1406 * 1407 * Unregister a notifier previously registered by 1408 * register_netdevice_notifier(). The notifier is unlinked into the 1409 * kernel structures and may then be reused. A negative errno code 1410 * is returned on a failure. 1411 * 1412 * After unregistering unregister and down device events are synthesized 1413 * for all devices on the device list to the removed notifier to remove 1414 * the need for special case cleanup code. 1415 */ 1416 1417 int unregister_netdevice_notifier(struct notifier_block *nb) 1418 { 1419 struct net_device *dev; 1420 struct net *net; 1421 int err; 1422 1423 rtnl_lock(); 1424 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1425 if (err) 1426 goto unlock; 1427 1428 for_each_net(net) { 1429 for_each_netdev(net, dev) { 1430 if (dev->flags & IFF_UP) { 1431 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1432 nb->notifier_call(nb, NETDEV_DOWN, dev); 1433 } 1434 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1435 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1436 } 1437 } 1438 unlock: 1439 rtnl_unlock(); 1440 return err; 1441 } 1442 EXPORT_SYMBOL(unregister_netdevice_notifier); 1443 1444 /** 1445 * call_netdevice_notifiers - call all network notifier blocks 1446 * @val: value passed unmodified to notifier function 1447 * @dev: net_device pointer passed unmodified to notifier function 1448 * 1449 * Call all network notifier blocks. Parameters and return value 1450 * are as for raw_notifier_call_chain(). 1451 */ 1452 1453 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1454 { 1455 ASSERT_RTNL(); 1456 return raw_notifier_call_chain(&netdev_chain, val, dev); 1457 } 1458 EXPORT_SYMBOL(call_netdevice_notifiers); 1459 1460 static struct static_key netstamp_needed __read_mostly; 1461 #ifdef HAVE_JUMP_LABEL 1462 /* We are not allowed to call static_key_slow_dec() from irq context 1463 * If net_disable_timestamp() is called from irq context, defer the 1464 * static_key_slow_dec() calls. 1465 */ 1466 static atomic_t netstamp_needed_deferred; 1467 #endif 1468 1469 void net_enable_timestamp(void) 1470 { 1471 #ifdef HAVE_JUMP_LABEL 1472 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1473 1474 if (deferred) { 1475 while (--deferred) 1476 static_key_slow_dec(&netstamp_needed); 1477 return; 1478 } 1479 #endif 1480 WARN_ON(in_interrupt()); 1481 static_key_slow_inc(&netstamp_needed); 1482 } 1483 EXPORT_SYMBOL(net_enable_timestamp); 1484 1485 void net_disable_timestamp(void) 1486 { 1487 #ifdef HAVE_JUMP_LABEL 1488 if (in_interrupt()) { 1489 atomic_inc(&netstamp_needed_deferred); 1490 return; 1491 } 1492 #endif 1493 static_key_slow_dec(&netstamp_needed); 1494 } 1495 EXPORT_SYMBOL(net_disable_timestamp); 1496 1497 static inline void net_timestamp_set(struct sk_buff *skb) 1498 { 1499 skb->tstamp.tv64 = 0; 1500 if (static_key_false(&netstamp_needed)) 1501 __net_timestamp(skb); 1502 } 1503 1504 #define net_timestamp_check(COND, SKB) \ 1505 if (static_key_false(&netstamp_needed)) { \ 1506 if ((COND) && !(SKB)->tstamp.tv64) \ 1507 __net_timestamp(SKB); \ 1508 } \ 1509 1510 static int net_hwtstamp_validate(struct ifreq *ifr) 1511 { 1512 struct hwtstamp_config cfg; 1513 enum hwtstamp_tx_types tx_type; 1514 enum hwtstamp_rx_filters rx_filter; 1515 int tx_type_valid = 0; 1516 int rx_filter_valid = 0; 1517 1518 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1519 return -EFAULT; 1520 1521 if (cfg.flags) /* reserved for future extensions */ 1522 return -EINVAL; 1523 1524 tx_type = cfg.tx_type; 1525 rx_filter = cfg.rx_filter; 1526 1527 switch (tx_type) { 1528 case HWTSTAMP_TX_OFF: 1529 case HWTSTAMP_TX_ON: 1530 case HWTSTAMP_TX_ONESTEP_SYNC: 1531 tx_type_valid = 1; 1532 break; 1533 } 1534 1535 switch (rx_filter) { 1536 case HWTSTAMP_FILTER_NONE: 1537 case HWTSTAMP_FILTER_ALL: 1538 case HWTSTAMP_FILTER_SOME: 1539 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1540 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1541 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1542 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1543 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1544 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1545 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1546 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1547 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1548 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1549 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1550 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1551 rx_filter_valid = 1; 1552 break; 1553 } 1554 1555 if (!tx_type_valid || !rx_filter_valid) 1556 return -ERANGE; 1557 1558 return 0; 1559 } 1560 1561 static inline bool is_skb_forwardable(struct net_device *dev, 1562 struct sk_buff *skb) 1563 { 1564 unsigned int len; 1565 1566 if (!(dev->flags & IFF_UP)) 1567 return false; 1568 1569 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1570 if (skb->len <= len) 1571 return true; 1572 1573 /* if TSO is enabled, we don't care about the length as the packet 1574 * could be forwarded without being segmented before 1575 */ 1576 if (skb_is_gso(skb)) 1577 return true; 1578 1579 return false; 1580 } 1581 1582 /** 1583 * dev_forward_skb - loopback an skb to another netif 1584 * 1585 * @dev: destination network device 1586 * @skb: buffer to forward 1587 * 1588 * return values: 1589 * NET_RX_SUCCESS (no congestion) 1590 * NET_RX_DROP (packet was dropped, but freed) 1591 * 1592 * dev_forward_skb can be used for injecting an skb from the 1593 * start_xmit function of one device into the receive queue 1594 * of another device. 1595 * 1596 * The receiving device may be in another namespace, so 1597 * we have to clear all information in the skb that could 1598 * impact namespace isolation. 1599 */ 1600 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1601 { 1602 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1603 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1604 atomic_long_inc(&dev->rx_dropped); 1605 kfree_skb(skb); 1606 return NET_RX_DROP; 1607 } 1608 } 1609 1610 skb_orphan(skb); 1611 nf_reset(skb); 1612 1613 if (unlikely(!is_skb_forwardable(dev, skb))) { 1614 atomic_long_inc(&dev->rx_dropped); 1615 kfree_skb(skb); 1616 return NET_RX_DROP; 1617 } 1618 skb->skb_iif = 0; 1619 skb->dev = dev; 1620 skb_dst_drop(skb); 1621 skb->tstamp.tv64 = 0; 1622 skb->pkt_type = PACKET_HOST; 1623 skb->protocol = eth_type_trans(skb, dev); 1624 skb->mark = 0; 1625 secpath_reset(skb); 1626 nf_reset(skb); 1627 return netif_rx(skb); 1628 } 1629 EXPORT_SYMBOL_GPL(dev_forward_skb); 1630 1631 static inline int deliver_skb(struct sk_buff *skb, 1632 struct packet_type *pt_prev, 1633 struct net_device *orig_dev) 1634 { 1635 atomic_inc(&skb->users); 1636 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1637 } 1638 1639 /* 1640 * Support routine. Sends outgoing frames to any network 1641 * taps currently in use. 1642 */ 1643 1644 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1645 { 1646 struct packet_type *ptype; 1647 struct sk_buff *skb2 = NULL; 1648 struct packet_type *pt_prev = NULL; 1649 1650 rcu_read_lock(); 1651 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1652 /* Never send packets back to the socket 1653 * they originated from - MvS (miquels@drinkel.ow.org) 1654 */ 1655 if ((ptype->dev == dev || !ptype->dev) && 1656 (ptype->af_packet_priv == NULL || 1657 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1658 if (pt_prev) { 1659 deliver_skb(skb2, pt_prev, skb->dev); 1660 pt_prev = ptype; 1661 continue; 1662 } 1663 1664 skb2 = skb_clone(skb, GFP_ATOMIC); 1665 if (!skb2) 1666 break; 1667 1668 net_timestamp_set(skb2); 1669 1670 /* skb->nh should be correctly 1671 set by sender, so that the second statement is 1672 just protection against buggy protocols. 1673 */ 1674 skb_reset_mac_header(skb2); 1675 1676 if (skb_network_header(skb2) < skb2->data || 1677 skb2->network_header > skb2->tail) { 1678 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1679 ntohs(skb2->protocol), 1680 dev->name); 1681 skb_reset_network_header(skb2); 1682 } 1683 1684 skb2->transport_header = skb2->network_header; 1685 skb2->pkt_type = PACKET_OUTGOING; 1686 pt_prev = ptype; 1687 } 1688 } 1689 if (pt_prev) 1690 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1691 rcu_read_unlock(); 1692 } 1693 1694 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1695 * @dev: Network device 1696 * @txq: number of queues available 1697 * 1698 * If real_num_tx_queues is changed the tc mappings may no longer be 1699 * valid. To resolve this verify the tc mapping remains valid and if 1700 * not NULL the mapping. With no priorities mapping to this 1701 * offset/count pair it will no longer be used. In the worst case TC0 1702 * is invalid nothing can be done so disable priority mappings. If is 1703 * expected that drivers will fix this mapping if they can before 1704 * calling netif_set_real_num_tx_queues. 1705 */ 1706 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1707 { 1708 int i; 1709 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1710 1711 /* If TC0 is invalidated disable TC mapping */ 1712 if (tc->offset + tc->count > txq) { 1713 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1714 dev->num_tc = 0; 1715 return; 1716 } 1717 1718 /* Invalidated prio to tc mappings set to TC0 */ 1719 for (i = 1; i < TC_BITMASK + 1; i++) { 1720 int q = netdev_get_prio_tc_map(dev, i); 1721 1722 tc = &dev->tc_to_txq[q]; 1723 if (tc->offset + tc->count > txq) { 1724 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1725 i, q); 1726 netdev_set_prio_tc_map(dev, i, 0); 1727 } 1728 } 1729 } 1730 1731 /* 1732 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1733 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1734 */ 1735 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1736 { 1737 int rc; 1738 1739 if (txq < 1 || txq > dev->num_tx_queues) 1740 return -EINVAL; 1741 1742 if (dev->reg_state == NETREG_REGISTERED || 1743 dev->reg_state == NETREG_UNREGISTERING) { 1744 ASSERT_RTNL(); 1745 1746 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1747 txq); 1748 if (rc) 1749 return rc; 1750 1751 if (dev->num_tc) 1752 netif_setup_tc(dev, txq); 1753 1754 if (txq < dev->real_num_tx_queues) 1755 qdisc_reset_all_tx_gt(dev, txq); 1756 } 1757 1758 dev->real_num_tx_queues = txq; 1759 return 0; 1760 } 1761 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1762 1763 #ifdef CONFIG_RPS 1764 /** 1765 * netif_set_real_num_rx_queues - set actual number of RX queues used 1766 * @dev: Network device 1767 * @rxq: Actual number of RX queues 1768 * 1769 * This must be called either with the rtnl_lock held or before 1770 * registration of the net device. Returns 0 on success, or a 1771 * negative error code. If called before registration, it always 1772 * succeeds. 1773 */ 1774 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1775 { 1776 int rc; 1777 1778 if (rxq < 1 || rxq > dev->num_rx_queues) 1779 return -EINVAL; 1780 1781 if (dev->reg_state == NETREG_REGISTERED) { 1782 ASSERT_RTNL(); 1783 1784 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1785 rxq); 1786 if (rc) 1787 return rc; 1788 } 1789 1790 dev->real_num_rx_queues = rxq; 1791 return 0; 1792 } 1793 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1794 #endif 1795 1796 static inline void __netif_reschedule(struct Qdisc *q) 1797 { 1798 struct softnet_data *sd; 1799 unsigned long flags; 1800 1801 local_irq_save(flags); 1802 sd = &__get_cpu_var(softnet_data); 1803 q->next_sched = NULL; 1804 *sd->output_queue_tailp = q; 1805 sd->output_queue_tailp = &q->next_sched; 1806 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1807 local_irq_restore(flags); 1808 } 1809 1810 void __netif_schedule(struct Qdisc *q) 1811 { 1812 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1813 __netif_reschedule(q); 1814 } 1815 EXPORT_SYMBOL(__netif_schedule); 1816 1817 void dev_kfree_skb_irq(struct sk_buff *skb) 1818 { 1819 if (atomic_dec_and_test(&skb->users)) { 1820 struct softnet_data *sd; 1821 unsigned long flags; 1822 1823 local_irq_save(flags); 1824 sd = &__get_cpu_var(softnet_data); 1825 skb->next = sd->completion_queue; 1826 sd->completion_queue = skb; 1827 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1828 local_irq_restore(flags); 1829 } 1830 } 1831 EXPORT_SYMBOL(dev_kfree_skb_irq); 1832 1833 void dev_kfree_skb_any(struct sk_buff *skb) 1834 { 1835 if (in_irq() || irqs_disabled()) 1836 dev_kfree_skb_irq(skb); 1837 else 1838 dev_kfree_skb(skb); 1839 } 1840 EXPORT_SYMBOL(dev_kfree_skb_any); 1841 1842 1843 /** 1844 * netif_device_detach - mark device as removed 1845 * @dev: network device 1846 * 1847 * Mark device as removed from system and therefore no longer available. 1848 */ 1849 void netif_device_detach(struct net_device *dev) 1850 { 1851 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1852 netif_running(dev)) { 1853 netif_tx_stop_all_queues(dev); 1854 } 1855 } 1856 EXPORT_SYMBOL(netif_device_detach); 1857 1858 /** 1859 * netif_device_attach - mark device as attached 1860 * @dev: network device 1861 * 1862 * Mark device as attached from system and restart if needed. 1863 */ 1864 void netif_device_attach(struct net_device *dev) 1865 { 1866 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1867 netif_running(dev)) { 1868 netif_tx_wake_all_queues(dev); 1869 __netdev_watchdog_up(dev); 1870 } 1871 } 1872 EXPORT_SYMBOL(netif_device_attach); 1873 1874 static void skb_warn_bad_offload(const struct sk_buff *skb) 1875 { 1876 static const netdev_features_t null_features = 0; 1877 struct net_device *dev = skb->dev; 1878 const char *driver = ""; 1879 1880 if (dev && dev->dev.parent) 1881 driver = dev_driver_string(dev->dev.parent); 1882 1883 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 1884 "gso_type=%d ip_summed=%d\n", 1885 driver, dev ? &dev->features : &null_features, 1886 skb->sk ? &skb->sk->sk_route_caps : &null_features, 1887 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 1888 skb_shinfo(skb)->gso_type, skb->ip_summed); 1889 } 1890 1891 /* 1892 * Invalidate hardware checksum when packet is to be mangled, and 1893 * complete checksum manually on outgoing path. 1894 */ 1895 int skb_checksum_help(struct sk_buff *skb) 1896 { 1897 __wsum csum; 1898 int ret = 0, offset; 1899 1900 if (skb->ip_summed == CHECKSUM_COMPLETE) 1901 goto out_set_summed; 1902 1903 if (unlikely(skb_shinfo(skb)->gso_size)) { 1904 skb_warn_bad_offload(skb); 1905 return -EINVAL; 1906 } 1907 1908 offset = skb_checksum_start_offset(skb); 1909 BUG_ON(offset >= skb_headlen(skb)); 1910 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1911 1912 offset += skb->csum_offset; 1913 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1914 1915 if (skb_cloned(skb) && 1916 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1917 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1918 if (ret) 1919 goto out; 1920 } 1921 1922 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1923 out_set_summed: 1924 skb->ip_summed = CHECKSUM_NONE; 1925 out: 1926 return ret; 1927 } 1928 EXPORT_SYMBOL(skb_checksum_help); 1929 1930 /** 1931 * skb_gso_segment - Perform segmentation on skb. 1932 * @skb: buffer to segment 1933 * @features: features for the output path (see dev->features) 1934 * 1935 * This function segments the given skb and returns a list of segments. 1936 * 1937 * It may return NULL if the skb requires no segmentation. This is 1938 * only possible when GSO is used for verifying header integrity. 1939 */ 1940 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1941 netdev_features_t features) 1942 { 1943 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1944 struct packet_type *ptype; 1945 __be16 type = skb->protocol; 1946 int vlan_depth = ETH_HLEN; 1947 int err; 1948 1949 while (type == htons(ETH_P_8021Q)) { 1950 struct vlan_hdr *vh; 1951 1952 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1953 return ERR_PTR(-EINVAL); 1954 1955 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1956 type = vh->h_vlan_encapsulated_proto; 1957 vlan_depth += VLAN_HLEN; 1958 } 1959 1960 skb_reset_mac_header(skb); 1961 skb->mac_len = skb->network_header - skb->mac_header; 1962 __skb_pull(skb, skb->mac_len); 1963 1964 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1965 skb_warn_bad_offload(skb); 1966 1967 if (skb_header_cloned(skb) && 1968 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1969 return ERR_PTR(err); 1970 } 1971 1972 rcu_read_lock(); 1973 list_for_each_entry_rcu(ptype, 1974 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1975 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1976 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1977 err = ptype->gso_send_check(skb); 1978 segs = ERR_PTR(err); 1979 if (err || skb_gso_ok(skb, features)) 1980 break; 1981 __skb_push(skb, (skb->data - 1982 skb_network_header(skb))); 1983 } 1984 segs = ptype->gso_segment(skb, features); 1985 break; 1986 } 1987 } 1988 rcu_read_unlock(); 1989 1990 __skb_push(skb, skb->data - skb_mac_header(skb)); 1991 1992 return segs; 1993 } 1994 EXPORT_SYMBOL(skb_gso_segment); 1995 1996 /* Take action when hardware reception checksum errors are detected. */ 1997 #ifdef CONFIG_BUG 1998 void netdev_rx_csum_fault(struct net_device *dev) 1999 { 2000 if (net_ratelimit()) { 2001 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2002 dump_stack(); 2003 } 2004 } 2005 EXPORT_SYMBOL(netdev_rx_csum_fault); 2006 #endif 2007 2008 /* Actually, we should eliminate this check as soon as we know, that: 2009 * 1. IOMMU is present and allows to map all the memory. 2010 * 2. No high memory really exists on this machine. 2011 */ 2012 2013 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2014 { 2015 #ifdef CONFIG_HIGHMEM 2016 int i; 2017 if (!(dev->features & NETIF_F_HIGHDMA)) { 2018 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2019 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2020 if (PageHighMem(skb_frag_page(frag))) 2021 return 1; 2022 } 2023 } 2024 2025 if (PCI_DMA_BUS_IS_PHYS) { 2026 struct device *pdev = dev->dev.parent; 2027 2028 if (!pdev) 2029 return 0; 2030 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2031 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2032 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2033 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2034 return 1; 2035 } 2036 } 2037 #endif 2038 return 0; 2039 } 2040 2041 struct dev_gso_cb { 2042 void (*destructor)(struct sk_buff *skb); 2043 }; 2044 2045 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2046 2047 static void dev_gso_skb_destructor(struct sk_buff *skb) 2048 { 2049 struct dev_gso_cb *cb; 2050 2051 do { 2052 struct sk_buff *nskb = skb->next; 2053 2054 skb->next = nskb->next; 2055 nskb->next = NULL; 2056 kfree_skb(nskb); 2057 } while (skb->next); 2058 2059 cb = DEV_GSO_CB(skb); 2060 if (cb->destructor) 2061 cb->destructor(skb); 2062 } 2063 2064 /** 2065 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2066 * @skb: buffer to segment 2067 * @features: device features as applicable to this skb 2068 * 2069 * This function segments the given skb and stores the list of segments 2070 * in skb->next. 2071 */ 2072 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2073 { 2074 struct sk_buff *segs; 2075 2076 segs = skb_gso_segment(skb, features); 2077 2078 /* Verifying header integrity only. */ 2079 if (!segs) 2080 return 0; 2081 2082 if (IS_ERR(segs)) 2083 return PTR_ERR(segs); 2084 2085 skb->next = segs; 2086 DEV_GSO_CB(skb)->destructor = skb->destructor; 2087 skb->destructor = dev_gso_skb_destructor; 2088 2089 return 0; 2090 } 2091 2092 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2093 { 2094 return ((features & NETIF_F_GEN_CSUM) || 2095 ((features & NETIF_F_V4_CSUM) && 2096 protocol == htons(ETH_P_IP)) || 2097 ((features & NETIF_F_V6_CSUM) && 2098 protocol == htons(ETH_P_IPV6)) || 2099 ((features & NETIF_F_FCOE_CRC) && 2100 protocol == htons(ETH_P_FCOE))); 2101 } 2102 2103 static netdev_features_t harmonize_features(struct sk_buff *skb, 2104 __be16 protocol, netdev_features_t features) 2105 { 2106 if (!can_checksum_protocol(features, protocol)) { 2107 features &= ~NETIF_F_ALL_CSUM; 2108 features &= ~NETIF_F_SG; 2109 } else if (illegal_highdma(skb->dev, skb)) { 2110 features &= ~NETIF_F_SG; 2111 } 2112 2113 return features; 2114 } 2115 2116 netdev_features_t netif_skb_features(struct sk_buff *skb) 2117 { 2118 __be16 protocol = skb->protocol; 2119 netdev_features_t features = skb->dev->features; 2120 2121 if (protocol == htons(ETH_P_8021Q)) { 2122 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2123 protocol = veh->h_vlan_encapsulated_proto; 2124 } else if (!vlan_tx_tag_present(skb)) { 2125 return harmonize_features(skb, protocol, features); 2126 } 2127 2128 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2129 2130 if (protocol != htons(ETH_P_8021Q)) { 2131 return harmonize_features(skb, protocol, features); 2132 } else { 2133 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2134 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2135 return harmonize_features(skb, protocol, features); 2136 } 2137 } 2138 EXPORT_SYMBOL(netif_skb_features); 2139 2140 /* 2141 * Returns true if either: 2142 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2143 * 2. skb is fragmented and the device does not support SG, or if 2144 * at least one of fragments is in highmem and device does not 2145 * support DMA from it. 2146 */ 2147 static inline int skb_needs_linearize(struct sk_buff *skb, 2148 int features) 2149 { 2150 return skb_is_nonlinear(skb) && 2151 ((skb_has_frag_list(skb) && 2152 !(features & NETIF_F_FRAGLIST)) || 2153 (skb_shinfo(skb)->nr_frags && 2154 !(features & NETIF_F_SG))); 2155 } 2156 2157 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2158 struct netdev_queue *txq) 2159 { 2160 const struct net_device_ops *ops = dev->netdev_ops; 2161 int rc = NETDEV_TX_OK; 2162 unsigned int skb_len; 2163 2164 if (likely(!skb->next)) { 2165 netdev_features_t features; 2166 2167 /* 2168 * If device doesn't need skb->dst, release it right now while 2169 * its hot in this cpu cache 2170 */ 2171 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2172 skb_dst_drop(skb); 2173 2174 if (!list_empty(&ptype_all)) 2175 dev_queue_xmit_nit(skb, dev); 2176 2177 features = netif_skb_features(skb); 2178 2179 if (vlan_tx_tag_present(skb) && 2180 !(features & NETIF_F_HW_VLAN_TX)) { 2181 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2182 if (unlikely(!skb)) 2183 goto out; 2184 2185 skb->vlan_tci = 0; 2186 } 2187 2188 if (netif_needs_gso(skb, features)) { 2189 if (unlikely(dev_gso_segment(skb, features))) 2190 goto out_kfree_skb; 2191 if (skb->next) 2192 goto gso; 2193 } else { 2194 if (skb_needs_linearize(skb, features) && 2195 __skb_linearize(skb)) 2196 goto out_kfree_skb; 2197 2198 /* If packet is not checksummed and device does not 2199 * support checksumming for this protocol, complete 2200 * checksumming here. 2201 */ 2202 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2203 skb_set_transport_header(skb, 2204 skb_checksum_start_offset(skb)); 2205 if (!(features & NETIF_F_ALL_CSUM) && 2206 skb_checksum_help(skb)) 2207 goto out_kfree_skb; 2208 } 2209 } 2210 2211 skb_len = skb->len; 2212 rc = ops->ndo_start_xmit(skb, dev); 2213 trace_net_dev_xmit(skb, rc, dev, skb_len); 2214 if (rc == NETDEV_TX_OK) 2215 txq_trans_update(txq); 2216 return rc; 2217 } 2218 2219 gso: 2220 do { 2221 struct sk_buff *nskb = skb->next; 2222 2223 skb->next = nskb->next; 2224 nskb->next = NULL; 2225 2226 /* 2227 * If device doesn't need nskb->dst, release it right now while 2228 * its hot in this cpu cache 2229 */ 2230 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2231 skb_dst_drop(nskb); 2232 2233 skb_len = nskb->len; 2234 rc = ops->ndo_start_xmit(nskb, dev); 2235 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2236 if (unlikely(rc != NETDEV_TX_OK)) { 2237 if (rc & ~NETDEV_TX_MASK) 2238 goto out_kfree_gso_skb; 2239 nskb->next = skb->next; 2240 skb->next = nskb; 2241 return rc; 2242 } 2243 txq_trans_update(txq); 2244 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2245 return NETDEV_TX_BUSY; 2246 } while (skb->next); 2247 2248 out_kfree_gso_skb: 2249 if (likely(skb->next == NULL)) 2250 skb->destructor = DEV_GSO_CB(skb)->destructor; 2251 out_kfree_skb: 2252 kfree_skb(skb); 2253 out: 2254 return rc; 2255 } 2256 2257 static u32 hashrnd __read_mostly; 2258 2259 /* 2260 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2261 * to be used as a distribution range. 2262 */ 2263 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2264 unsigned int num_tx_queues) 2265 { 2266 u32 hash; 2267 u16 qoffset = 0; 2268 u16 qcount = num_tx_queues; 2269 2270 if (skb_rx_queue_recorded(skb)) { 2271 hash = skb_get_rx_queue(skb); 2272 while (unlikely(hash >= num_tx_queues)) 2273 hash -= num_tx_queues; 2274 return hash; 2275 } 2276 2277 if (dev->num_tc) { 2278 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2279 qoffset = dev->tc_to_txq[tc].offset; 2280 qcount = dev->tc_to_txq[tc].count; 2281 } 2282 2283 if (skb->sk && skb->sk->sk_hash) 2284 hash = skb->sk->sk_hash; 2285 else 2286 hash = (__force u16) skb->protocol; 2287 hash = jhash_1word(hash, hashrnd); 2288 2289 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2290 } 2291 EXPORT_SYMBOL(__skb_tx_hash); 2292 2293 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2294 { 2295 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2296 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2297 dev->name, queue_index, 2298 dev->real_num_tx_queues); 2299 return 0; 2300 } 2301 return queue_index; 2302 } 2303 2304 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2305 { 2306 #ifdef CONFIG_XPS 2307 struct xps_dev_maps *dev_maps; 2308 struct xps_map *map; 2309 int queue_index = -1; 2310 2311 rcu_read_lock(); 2312 dev_maps = rcu_dereference(dev->xps_maps); 2313 if (dev_maps) { 2314 map = rcu_dereference( 2315 dev_maps->cpu_map[raw_smp_processor_id()]); 2316 if (map) { 2317 if (map->len == 1) 2318 queue_index = map->queues[0]; 2319 else { 2320 u32 hash; 2321 if (skb->sk && skb->sk->sk_hash) 2322 hash = skb->sk->sk_hash; 2323 else 2324 hash = (__force u16) skb->protocol ^ 2325 skb->rxhash; 2326 hash = jhash_1word(hash, hashrnd); 2327 queue_index = map->queues[ 2328 ((u64)hash * map->len) >> 32]; 2329 } 2330 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2331 queue_index = -1; 2332 } 2333 } 2334 rcu_read_unlock(); 2335 2336 return queue_index; 2337 #else 2338 return -1; 2339 #endif 2340 } 2341 2342 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2343 struct sk_buff *skb) 2344 { 2345 int queue_index; 2346 const struct net_device_ops *ops = dev->netdev_ops; 2347 2348 if (dev->real_num_tx_queues == 1) 2349 queue_index = 0; 2350 else if (ops->ndo_select_queue) { 2351 queue_index = ops->ndo_select_queue(dev, skb); 2352 queue_index = dev_cap_txqueue(dev, queue_index); 2353 } else { 2354 struct sock *sk = skb->sk; 2355 queue_index = sk_tx_queue_get(sk); 2356 2357 if (queue_index < 0 || skb->ooo_okay || 2358 queue_index >= dev->real_num_tx_queues) { 2359 int old_index = queue_index; 2360 2361 queue_index = get_xps_queue(dev, skb); 2362 if (queue_index < 0) 2363 queue_index = skb_tx_hash(dev, skb); 2364 2365 if (queue_index != old_index && sk) { 2366 struct dst_entry *dst = 2367 rcu_dereference_check(sk->sk_dst_cache, 1); 2368 2369 if (dst && skb_dst(skb) == dst) 2370 sk_tx_queue_set(sk, queue_index); 2371 } 2372 } 2373 } 2374 2375 skb_set_queue_mapping(skb, queue_index); 2376 return netdev_get_tx_queue(dev, queue_index); 2377 } 2378 2379 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2380 struct net_device *dev, 2381 struct netdev_queue *txq) 2382 { 2383 spinlock_t *root_lock = qdisc_lock(q); 2384 bool contended; 2385 int rc; 2386 2387 qdisc_skb_cb(skb)->pkt_len = skb->len; 2388 qdisc_calculate_pkt_len(skb, q); 2389 /* 2390 * Heuristic to force contended enqueues to serialize on a 2391 * separate lock before trying to get qdisc main lock. 2392 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2393 * and dequeue packets faster. 2394 */ 2395 contended = qdisc_is_running(q); 2396 if (unlikely(contended)) 2397 spin_lock(&q->busylock); 2398 2399 spin_lock(root_lock); 2400 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2401 kfree_skb(skb); 2402 rc = NET_XMIT_DROP; 2403 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2404 qdisc_run_begin(q)) { 2405 /* 2406 * This is a work-conserving queue; there are no old skbs 2407 * waiting to be sent out; and the qdisc is not running - 2408 * xmit the skb directly. 2409 */ 2410 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2411 skb_dst_force(skb); 2412 2413 qdisc_bstats_update(q, skb); 2414 2415 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2416 if (unlikely(contended)) { 2417 spin_unlock(&q->busylock); 2418 contended = false; 2419 } 2420 __qdisc_run(q); 2421 } else 2422 qdisc_run_end(q); 2423 2424 rc = NET_XMIT_SUCCESS; 2425 } else { 2426 skb_dst_force(skb); 2427 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2428 if (qdisc_run_begin(q)) { 2429 if (unlikely(contended)) { 2430 spin_unlock(&q->busylock); 2431 contended = false; 2432 } 2433 __qdisc_run(q); 2434 } 2435 } 2436 spin_unlock(root_lock); 2437 if (unlikely(contended)) 2438 spin_unlock(&q->busylock); 2439 return rc; 2440 } 2441 2442 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2443 static void skb_update_prio(struct sk_buff *skb) 2444 { 2445 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2446 2447 if ((!skb->priority) && (skb->sk) && map) 2448 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx]; 2449 } 2450 #else 2451 #define skb_update_prio(skb) 2452 #endif 2453 2454 static DEFINE_PER_CPU(int, xmit_recursion); 2455 #define RECURSION_LIMIT 10 2456 2457 /** 2458 * dev_queue_xmit - transmit a buffer 2459 * @skb: buffer to transmit 2460 * 2461 * Queue a buffer for transmission to a network device. The caller must 2462 * have set the device and priority and built the buffer before calling 2463 * this function. The function can be called from an interrupt. 2464 * 2465 * A negative errno code is returned on a failure. A success does not 2466 * guarantee the frame will be transmitted as it may be dropped due 2467 * to congestion or traffic shaping. 2468 * 2469 * ----------------------------------------------------------------------------------- 2470 * I notice this method can also return errors from the queue disciplines, 2471 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2472 * be positive. 2473 * 2474 * Regardless of the return value, the skb is consumed, so it is currently 2475 * difficult to retry a send to this method. (You can bump the ref count 2476 * before sending to hold a reference for retry if you are careful.) 2477 * 2478 * When calling this method, interrupts MUST be enabled. This is because 2479 * the BH enable code must have IRQs enabled so that it will not deadlock. 2480 * --BLG 2481 */ 2482 int dev_queue_xmit(struct sk_buff *skb) 2483 { 2484 struct net_device *dev = skb->dev; 2485 struct netdev_queue *txq; 2486 struct Qdisc *q; 2487 int rc = -ENOMEM; 2488 2489 /* Disable soft irqs for various locks below. Also 2490 * stops preemption for RCU. 2491 */ 2492 rcu_read_lock_bh(); 2493 2494 skb_update_prio(skb); 2495 2496 txq = dev_pick_tx(dev, skb); 2497 q = rcu_dereference_bh(txq->qdisc); 2498 2499 #ifdef CONFIG_NET_CLS_ACT 2500 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2501 #endif 2502 trace_net_dev_queue(skb); 2503 if (q->enqueue) { 2504 rc = __dev_xmit_skb(skb, q, dev, txq); 2505 goto out; 2506 } 2507 2508 /* The device has no queue. Common case for software devices: 2509 loopback, all the sorts of tunnels... 2510 2511 Really, it is unlikely that netif_tx_lock protection is necessary 2512 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2513 counters.) 2514 However, it is possible, that they rely on protection 2515 made by us here. 2516 2517 Check this and shot the lock. It is not prone from deadlocks. 2518 Either shot noqueue qdisc, it is even simpler 8) 2519 */ 2520 if (dev->flags & IFF_UP) { 2521 int cpu = smp_processor_id(); /* ok because BHs are off */ 2522 2523 if (txq->xmit_lock_owner != cpu) { 2524 2525 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2526 goto recursion_alert; 2527 2528 HARD_TX_LOCK(dev, txq, cpu); 2529 2530 if (!netif_xmit_stopped(txq)) { 2531 __this_cpu_inc(xmit_recursion); 2532 rc = dev_hard_start_xmit(skb, dev, txq); 2533 __this_cpu_dec(xmit_recursion); 2534 if (dev_xmit_complete(rc)) { 2535 HARD_TX_UNLOCK(dev, txq); 2536 goto out; 2537 } 2538 } 2539 HARD_TX_UNLOCK(dev, txq); 2540 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2541 dev->name); 2542 } else { 2543 /* Recursion is detected! It is possible, 2544 * unfortunately 2545 */ 2546 recursion_alert: 2547 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2548 dev->name); 2549 } 2550 } 2551 2552 rc = -ENETDOWN; 2553 rcu_read_unlock_bh(); 2554 2555 kfree_skb(skb); 2556 return rc; 2557 out: 2558 rcu_read_unlock_bh(); 2559 return rc; 2560 } 2561 EXPORT_SYMBOL(dev_queue_xmit); 2562 2563 2564 /*======================================================================= 2565 Receiver routines 2566 =======================================================================*/ 2567 2568 int netdev_max_backlog __read_mostly = 1000; 2569 int netdev_tstamp_prequeue __read_mostly = 1; 2570 int netdev_budget __read_mostly = 300; 2571 int weight_p __read_mostly = 64; /* old backlog weight */ 2572 2573 /* Called with irq disabled */ 2574 static inline void ____napi_schedule(struct softnet_data *sd, 2575 struct napi_struct *napi) 2576 { 2577 list_add_tail(&napi->poll_list, &sd->poll_list); 2578 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2579 } 2580 2581 /* 2582 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2583 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2584 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2585 * if hash is a canonical 4-tuple hash over transport ports. 2586 */ 2587 void __skb_get_rxhash(struct sk_buff *skb) 2588 { 2589 struct flow_keys keys; 2590 u32 hash; 2591 2592 if (!skb_flow_dissect(skb, &keys)) 2593 return; 2594 2595 if (keys.ports) { 2596 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]) 2597 swap(keys.port16[0], keys.port16[1]); 2598 skb->l4_rxhash = 1; 2599 } 2600 2601 /* get a consistent hash (same value on both flow directions) */ 2602 if ((__force u32)keys.dst < (__force u32)keys.src) 2603 swap(keys.dst, keys.src); 2604 2605 hash = jhash_3words((__force u32)keys.dst, 2606 (__force u32)keys.src, 2607 (__force u32)keys.ports, hashrnd); 2608 if (!hash) 2609 hash = 1; 2610 2611 skb->rxhash = hash; 2612 } 2613 EXPORT_SYMBOL(__skb_get_rxhash); 2614 2615 #ifdef CONFIG_RPS 2616 2617 /* One global table that all flow-based protocols share. */ 2618 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2619 EXPORT_SYMBOL(rps_sock_flow_table); 2620 2621 struct static_key rps_needed __read_mostly; 2622 2623 static struct rps_dev_flow * 2624 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2625 struct rps_dev_flow *rflow, u16 next_cpu) 2626 { 2627 if (next_cpu != RPS_NO_CPU) { 2628 #ifdef CONFIG_RFS_ACCEL 2629 struct netdev_rx_queue *rxqueue; 2630 struct rps_dev_flow_table *flow_table; 2631 struct rps_dev_flow *old_rflow; 2632 u32 flow_id; 2633 u16 rxq_index; 2634 int rc; 2635 2636 /* Should we steer this flow to a different hardware queue? */ 2637 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2638 !(dev->features & NETIF_F_NTUPLE)) 2639 goto out; 2640 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2641 if (rxq_index == skb_get_rx_queue(skb)) 2642 goto out; 2643 2644 rxqueue = dev->_rx + rxq_index; 2645 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2646 if (!flow_table) 2647 goto out; 2648 flow_id = skb->rxhash & flow_table->mask; 2649 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2650 rxq_index, flow_id); 2651 if (rc < 0) 2652 goto out; 2653 old_rflow = rflow; 2654 rflow = &flow_table->flows[flow_id]; 2655 rflow->filter = rc; 2656 if (old_rflow->filter == rflow->filter) 2657 old_rflow->filter = RPS_NO_FILTER; 2658 out: 2659 #endif 2660 rflow->last_qtail = 2661 per_cpu(softnet_data, next_cpu).input_queue_head; 2662 } 2663 2664 rflow->cpu = next_cpu; 2665 return rflow; 2666 } 2667 2668 /* 2669 * get_rps_cpu is called from netif_receive_skb and returns the target 2670 * CPU from the RPS map of the receiving queue for a given skb. 2671 * rcu_read_lock must be held on entry. 2672 */ 2673 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2674 struct rps_dev_flow **rflowp) 2675 { 2676 struct netdev_rx_queue *rxqueue; 2677 struct rps_map *map; 2678 struct rps_dev_flow_table *flow_table; 2679 struct rps_sock_flow_table *sock_flow_table; 2680 int cpu = -1; 2681 u16 tcpu; 2682 2683 if (skb_rx_queue_recorded(skb)) { 2684 u16 index = skb_get_rx_queue(skb); 2685 if (unlikely(index >= dev->real_num_rx_queues)) { 2686 WARN_ONCE(dev->real_num_rx_queues > 1, 2687 "%s received packet on queue %u, but number " 2688 "of RX queues is %u\n", 2689 dev->name, index, dev->real_num_rx_queues); 2690 goto done; 2691 } 2692 rxqueue = dev->_rx + index; 2693 } else 2694 rxqueue = dev->_rx; 2695 2696 map = rcu_dereference(rxqueue->rps_map); 2697 if (map) { 2698 if (map->len == 1 && 2699 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2700 tcpu = map->cpus[0]; 2701 if (cpu_online(tcpu)) 2702 cpu = tcpu; 2703 goto done; 2704 } 2705 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2706 goto done; 2707 } 2708 2709 skb_reset_network_header(skb); 2710 if (!skb_get_rxhash(skb)) 2711 goto done; 2712 2713 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2714 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2715 if (flow_table && sock_flow_table) { 2716 u16 next_cpu; 2717 struct rps_dev_flow *rflow; 2718 2719 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2720 tcpu = rflow->cpu; 2721 2722 next_cpu = sock_flow_table->ents[skb->rxhash & 2723 sock_flow_table->mask]; 2724 2725 /* 2726 * If the desired CPU (where last recvmsg was done) is 2727 * different from current CPU (one in the rx-queue flow 2728 * table entry), switch if one of the following holds: 2729 * - Current CPU is unset (equal to RPS_NO_CPU). 2730 * - Current CPU is offline. 2731 * - The current CPU's queue tail has advanced beyond the 2732 * last packet that was enqueued using this table entry. 2733 * This guarantees that all previous packets for the flow 2734 * have been dequeued, thus preserving in order delivery. 2735 */ 2736 if (unlikely(tcpu != next_cpu) && 2737 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2738 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2739 rflow->last_qtail)) >= 0)) 2740 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2741 2742 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2743 *rflowp = rflow; 2744 cpu = tcpu; 2745 goto done; 2746 } 2747 } 2748 2749 if (map) { 2750 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2751 2752 if (cpu_online(tcpu)) { 2753 cpu = tcpu; 2754 goto done; 2755 } 2756 } 2757 2758 done: 2759 return cpu; 2760 } 2761 2762 #ifdef CONFIG_RFS_ACCEL 2763 2764 /** 2765 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2766 * @dev: Device on which the filter was set 2767 * @rxq_index: RX queue index 2768 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2769 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2770 * 2771 * Drivers that implement ndo_rx_flow_steer() should periodically call 2772 * this function for each installed filter and remove the filters for 2773 * which it returns %true. 2774 */ 2775 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2776 u32 flow_id, u16 filter_id) 2777 { 2778 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2779 struct rps_dev_flow_table *flow_table; 2780 struct rps_dev_flow *rflow; 2781 bool expire = true; 2782 int cpu; 2783 2784 rcu_read_lock(); 2785 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2786 if (flow_table && flow_id <= flow_table->mask) { 2787 rflow = &flow_table->flows[flow_id]; 2788 cpu = ACCESS_ONCE(rflow->cpu); 2789 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2790 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2791 rflow->last_qtail) < 2792 (int)(10 * flow_table->mask))) 2793 expire = false; 2794 } 2795 rcu_read_unlock(); 2796 return expire; 2797 } 2798 EXPORT_SYMBOL(rps_may_expire_flow); 2799 2800 #endif /* CONFIG_RFS_ACCEL */ 2801 2802 /* Called from hardirq (IPI) context */ 2803 static void rps_trigger_softirq(void *data) 2804 { 2805 struct softnet_data *sd = data; 2806 2807 ____napi_schedule(sd, &sd->backlog); 2808 sd->received_rps++; 2809 } 2810 2811 #endif /* CONFIG_RPS */ 2812 2813 /* 2814 * Check if this softnet_data structure is another cpu one 2815 * If yes, queue it to our IPI list and return 1 2816 * If no, return 0 2817 */ 2818 static int rps_ipi_queued(struct softnet_data *sd) 2819 { 2820 #ifdef CONFIG_RPS 2821 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2822 2823 if (sd != mysd) { 2824 sd->rps_ipi_next = mysd->rps_ipi_list; 2825 mysd->rps_ipi_list = sd; 2826 2827 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2828 return 1; 2829 } 2830 #endif /* CONFIG_RPS */ 2831 return 0; 2832 } 2833 2834 /* 2835 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2836 * queue (may be a remote CPU queue). 2837 */ 2838 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2839 unsigned int *qtail) 2840 { 2841 struct softnet_data *sd; 2842 unsigned long flags; 2843 2844 sd = &per_cpu(softnet_data, cpu); 2845 2846 local_irq_save(flags); 2847 2848 rps_lock(sd); 2849 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2850 if (skb_queue_len(&sd->input_pkt_queue)) { 2851 enqueue: 2852 __skb_queue_tail(&sd->input_pkt_queue, skb); 2853 input_queue_tail_incr_save(sd, qtail); 2854 rps_unlock(sd); 2855 local_irq_restore(flags); 2856 return NET_RX_SUCCESS; 2857 } 2858 2859 /* Schedule NAPI for backlog device 2860 * We can use non atomic operation since we own the queue lock 2861 */ 2862 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2863 if (!rps_ipi_queued(sd)) 2864 ____napi_schedule(sd, &sd->backlog); 2865 } 2866 goto enqueue; 2867 } 2868 2869 sd->dropped++; 2870 rps_unlock(sd); 2871 2872 local_irq_restore(flags); 2873 2874 atomic_long_inc(&skb->dev->rx_dropped); 2875 kfree_skb(skb); 2876 return NET_RX_DROP; 2877 } 2878 2879 /** 2880 * netif_rx - post buffer to the network code 2881 * @skb: buffer to post 2882 * 2883 * This function receives a packet from a device driver and queues it for 2884 * the upper (protocol) levels to process. It always succeeds. The buffer 2885 * may be dropped during processing for congestion control or by the 2886 * protocol layers. 2887 * 2888 * return values: 2889 * NET_RX_SUCCESS (no congestion) 2890 * NET_RX_DROP (packet was dropped) 2891 * 2892 */ 2893 2894 int netif_rx(struct sk_buff *skb) 2895 { 2896 int ret; 2897 2898 /* if netpoll wants it, pretend we never saw it */ 2899 if (netpoll_rx(skb)) 2900 return NET_RX_DROP; 2901 2902 net_timestamp_check(netdev_tstamp_prequeue, skb); 2903 2904 trace_netif_rx(skb); 2905 #ifdef CONFIG_RPS 2906 if (static_key_false(&rps_needed)) { 2907 struct rps_dev_flow voidflow, *rflow = &voidflow; 2908 int cpu; 2909 2910 preempt_disable(); 2911 rcu_read_lock(); 2912 2913 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2914 if (cpu < 0) 2915 cpu = smp_processor_id(); 2916 2917 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2918 2919 rcu_read_unlock(); 2920 preempt_enable(); 2921 } else 2922 #endif 2923 { 2924 unsigned int qtail; 2925 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2926 put_cpu(); 2927 } 2928 return ret; 2929 } 2930 EXPORT_SYMBOL(netif_rx); 2931 2932 int netif_rx_ni(struct sk_buff *skb) 2933 { 2934 int err; 2935 2936 preempt_disable(); 2937 err = netif_rx(skb); 2938 if (local_softirq_pending()) 2939 do_softirq(); 2940 preempt_enable(); 2941 2942 return err; 2943 } 2944 EXPORT_SYMBOL(netif_rx_ni); 2945 2946 static void net_tx_action(struct softirq_action *h) 2947 { 2948 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2949 2950 if (sd->completion_queue) { 2951 struct sk_buff *clist; 2952 2953 local_irq_disable(); 2954 clist = sd->completion_queue; 2955 sd->completion_queue = NULL; 2956 local_irq_enable(); 2957 2958 while (clist) { 2959 struct sk_buff *skb = clist; 2960 clist = clist->next; 2961 2962 WARN_ON(atomic_read(&skb->users)); 2963 trace_kfree_skb(skb, net_tx_action); 2964 __kfree_skb(skb); 2965 } 2966 } 2967 2968 if (sd->output_queue) { 2969 struct Qdisc *head; 2970 2971 local_irq_disable(); 2972 head = sd->output_queue; 2973 sd->output_queue = NULL; 2974 sd->output_queue_tailp = &sd->output_queue; 2975 local_irq_enable(); 2976 2977 while (head) { 2978 struct Qdisc *q = head; 2979 spinlock_t *root_lock; 2980 2981 head = head->next_sched; 2982 2983 root_lock = qdisc_lock(q); 2984 if (spin_trylock(root_lock)) { 2985 smp_mb__before_clear_bit(); 2986 clear_bit(__QDISC_STATE_SCHED, 2987 &q->state); 2988 qdisc_run(q); 2989 spin_unlock(root_lock); 2990 } else { 2991 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2992 &q->state)) { 2993 __netif_reschedule(q); 2994 } else { 2995 smp_mb__before_clear_bit(); 2996 clear_bit(__QDISC_STATE_SCHED, 2997 &q->state); 2998 } 2999 } 3000 } 3001 } 3002 } 3003 3004 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3005 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3006 /* This hook is defined here for ATM LANE */ 3007 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3008 unsigned char *addr) __read_mostly; 3009 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3010 #endif 3011 3012 #ifdef CONFIG_NET_CLS_ACT 3013 /* TODO: Maybe we should just force sch_ingress to be compiled in 3014 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3015 * a compare and 2 stores extra right now if we dont have it on 3016 * but have CONFIG_NET_CLS_ACT 3017 * NOTE: This doesn't stop any functionality; if you dont have 3018 * the ingress scheduler, you just can't add policies on ingress. 3019 * 3020 */ 3021 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3022 { 3023 struct net_device *dev = skb->dev; 3024 u32 ttl = G_TC_RTTL(skb->tc_verd); 3025 int result = TC_ACT_OK; 3026 struct Qdisc *q; 3027 3028 if (unlikely(MAX_RED_LOOP < ttl++)) { 3029 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3030 skb->skb_iif, dev->ifindex); 3031 return TC_ACT_SHOT; 3032 } 3033 3034 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3035 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3036 3037 q = rxq->qdisc; 3038 if (q != &noop_qdisc) { 3039 spin_lock(qdisc_lock(q)); 3040 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3041 result = qdisc_enqueue_root(skb, q); 3042 spin_unlock(qdisc_lock(q)); 3043 } 3044 3045 return result; 3046 } 3047 3048 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3049 struct packet_type **pt_prev, 3050 int *ret, struct net_device *orig_dev) 3051 { 3052 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3053 3054 if (!rxq || rxq->qdisc == &noop_qdisc) 3055 goto out; 3056 3057 if (*pt_prev) { 3058 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3059 *pt_prev = NULL; 3060 } 3061 3062 switch (ing_filter(skb, rxq)) { 3063 case TC_ACT_SHOT: 3064 case TC_ACT_STOLEN: 3065 kfree_skb(skb); 3066 return NULL; 3067 } 3068 3069 out: 3070 skb->tc_verd = 0; 3071 return skb; 3072 } 3073 #endif 3074 3075 /** 3076 * netdev_rx_handler_register - register receive handler 3077 * @dev: device to register a handler for 3078 * @rx_handler: receive handler to register 3079 * @rx_handler_data: data pointer that is used by rx handler 3080 * 3081 * Register a receive hander for a device. This handler will then be 3082 * called from __netif_receive_skb. A negative errno code is returned 3083 * on a failure. 3084 * 3085 * The caller must hold the rtnl_mutex. 3086 * 3087 * For a general description of rx_handler, see enum rx_handler_result. 3088 */ 3089 int netdev_rx_handler_register(struct net_device *dev, 3090 rx_handler_func_t *rx_handler, 3091 void *rx_handler_data) 3092 { 3093 ASSERT_RTNL(); 3094 3095 if (dev->rx_handler) 3096 return -EBUSY; 3097 3098 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3099 rcu_assign_pointer(dev->rx_handler, rx_handler); 3100 3101 return 0; 3102 } 3103 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3104 3105 /** 3106 * netdev_rx_handler_unregister - unregister receive handler 3107 * @dev: device to unregister a handler from 3108 * 3109 * Unregister a receive hander from a device. 3110 * 3111 * The caller must hold the rtnl_mutex. 3112 */ 3113 void netdev_rx_handler_unregister(struct net_device *dev) 3114 { 3115 3116 ASSERT_RTNL(); 3117 RCU_INIT_POINTER(dev->rx_handler, NULL); 3118 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3119 } 3120 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3121 3122 static int __netif_receive_skb(struct sk_buff *skb) 3123 { 3124 struct packet_type *ptype, *pt_prev; 3125 rx_handler_func_t *rx_handler; 3126 struct net_device *orig_dev; 3127 struct net_device *null_or_dev; 3128 bool deliver_exact = false; 3129 int ret = NET_RX_DROP; 3130 __be16 type; 3131 3132 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3133 3134 trace_netif_receive_skb(skb); 3135 3136 /* if we've gotten here through NAPI, check netpoll */ 3137 if (netpoll_receive_skb(skb)) 3138 return NET_RX_DROP; 3139 3140 if (!skb->skb_iif) 3141 skb->skb_iif = skb->dev->ifindex; 3142 orig_dev = skb->dev; 3143 3144 skb_reset_network_header(skb); 3145 skb_reset_transport_header(skb); 3146 skb_reset_mac_len(skb); 3147 3148 pt_prev = NULL; 3149 3150 rcu_read_lock(); 3151 3152 another_round: 3153 3154 __this_cpu_inc(softnet_data.processed); 3155 3156 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3157 skb = vlan_untag(skb); 3158 if (unlikely(!skb)) 3159 goto out; 3160 } 3161 3162 #ifdef CONFIG_NET_CLS_ACT 3163 if (skb->tc_verd & TC_NCLS) { 3164 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3165 goto ncls; 3166 } 3167 #endif 3168 3169 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3170 if (!ptype->dev || ptype->dev == skb->dev) { 3171 if (pt_prev) 3172 ret = deliver_skb(skb, pt_prev, orig_dev); 3173 pt_prev = ptype; 3174 } 3175 } 3176 3177 #ifdef CONFIG_NET_CLS_ACT 3178 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3179 if (!skb) 3180 goto out; 3181 ncls: 3182 #endif 3183 3184 rx_handler = rcu_dereference(skb->dev->rx_handler); 3185 if (vlan_tx_tag_present(skb)) { 3186 if (pt_prev) { 3187 ret = deliver_skb(skb, pt_prev, orig_dev); 3188 pt_prev = NULL; 3189 } 3190 if (vlan_do_receive(&skb, !rx_handler)) 3191 goto another_round; 3192 else if (unlikely(!skb)) 3193 goto out; 3194 } 3195 3196 if (rx_handler) { 3197 if (pt_prev) { 3198 ret = deliver_skb(skb, pt_prev, orig_dev); 3199 pt_prev = NULL; 3200 } 3201 switch (rx_handler(&skb)) { 3202 case RX_HANDLER_CONSUMED: 3203 goto out; 3204 case RX_HANDLER_ANOTHER: 3205 goto another_round; 3206 case RX_HANDLER_EXACT: 3207 deliver_exact = true; 3208 case RX_HANDLER_PASS: 3209 break; 3210 default: 3211 BUG(); 3212 } 3213 } 3214 3215 /* deliver only exact match when indicated */ 3216 null_or_dev = deliver_exact ? skb->dev : NULL; 3217 3218 type = skb->protocol; 3219 list_for_each_entry_rcu(ptype, 3220 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3221 if (ptype->type == type && 3222 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3223 ptype->dev == orig_dev)) { 3224 if (pt_prev) 3225 ret = deliver_skb(skb, pt_prev, orig_dev); 3226 pt_prev = ptype; 3227 } 3228 } 3229 3230 if (pt_prev) { 3231 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3232 } else { 3233 atomic_long_inc(&skb->dev->rx_dropped); 3234 kfree_skb(skb); 3235 /* Jamal, now you will not able to escape explaining 3236 * me how you were going to use this. :-) 3237 */ 3238 ret = NET_RX_DROP; 3239 } 3240 3241 out: 3242 rcu_read_unlock(); 3243 return ret; 3244 } 3245 3246 /** 3247 * netif_receive_skb - process receive buffer from network 3248 * @skb: buffer to process 3249 * 3250 * netif_receive_skb() is the main receive data processing function. 3251 * It always succeeds. The buffer may be dropped during processing 3252 * for congestion control or by the protocol layers. 3253 * 3254 * This function may only be called from softirq context and interrupts 3255 * should be enabled. 3256 * 3257 * Return values (usually ignored): 3258 * NET_RX_SUCCESS: no congestion 3259 * NET_RX_DROP: packet was dropped 3260 */ 3261 int netif_receive_skb(struct sk_buff *skb) 3262 { 3263 net_timestamp_check(netdev_tstamp_prequeue, skb); 3264 3265 if (skb_defer_rx_timestamp(skb)) 3266 return NET_RX_SUCCESS; 3267 3268 #ifdef CONFIG_RPS 3269 if (static_key_false(&rps_needed)) { 3270 struct rps_dev_flow voidflow, *rflow = &voidflow; 3271 int cpu, ret; 3272 3273 rcu_read_lock(); 3274 3275 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3276 3277 if (cpu >= 0) { 3278 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3279 rcu_read_unlock(); 3280 return ret; 3281 } 3282 rcu_read_unlock(); 3283 } 3284 #endif 3285 return __netif_receive_skb(skb); 3286 } 3287 EXPORT_SYMBOL(netif_receive_skb); 3288 3289 /* Network device is going away, flush any packets still pending 3290 * Called with irqs disabled. 3291 */ 3292 static void flush_backlog(void *arg) 3293 { 3294 struct net_device *dev = arg; 3295 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3296 struct sk_buff *skb, *tmp; 3297 3298 rps_lock(sd); 3299 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3300 if (skb->dev == dev) { 3301 __skb_unlink(skb, &sd->input_pkt_queue); 3302 kfree_skb(skb); 3303 input_queue_head_incr(sd); 3304 } 3305 } 3306 rps_unlock(sd); 3307 3308 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3309 if (skb->dev == dev) { 3310 __skb_unlink(skb, &sd->process_queue); 3311 kfree_skb(skb); 3312 input_queue_head_incr(sd); 3313 } 3314 } 3315 } 3316 3317 static int napi_gro_complete(struct sk_buff *skb) 3318 { 3319 struct packet_type *ptype; 3320 __be16 type = skb->protocol; 3321 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3322 int err = -ENOENT; 3323 3324 if (NAPI_GRO_CB(skb)->count == 1) { 3325 skb_shinfo(skb)->gso_size = 0; 3326 goto out; 3327 } 3328 3329 rcu_read_lock(); 3330 list_for_each_entry_rcu(ptype, head, list) { 3331 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3332 continue; 3333 3334 err = ptype->gro_complete(skb); 3335 break; 3336 } 3337 rcu_read_unlock(); 3338 3339 if (err) { 3340 WARN_ON(&ptype->list == head); 3341 kfree_skb(skb); 3342 return NET_RX_SUCCESS; 3343 } 3344 3345 out: 3346 return netif_receive_skb(skb); 3347 } 3348 3349 inline void napi_gro_flush(struct napi_struct *napi) 3350 { 3351 struct sk_buff *skb, *next; 3352 3353 for (skb = napi->gro_list; skb; skb = next) { 3354 next = skb->next; 3355 skb->next = NULL; 3356 napi_gro_complete(skb); 3357 } 3358 3359 napi->gro_count = 0; 3360 napi->gro_list = NULL; 3361 } 3362 EXPORT_SYMBOL(napi_gro_flush); 3363 3364 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3365 { 3366 struct sk_buff **pp = NULL; 3367 struct packet_type *ptype; 3368 __be16 type = skb->protocol; 3369 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3370 int same_flow; 3371 int mac_len; 3372 enum gro_result ret; 3373 3374 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3375 goto normal; 3376 3377 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3378 goto normal; 3379 3380 rcu_read_lock(); 3381 list_for_each_entry_rcu(ptype, head, list) { 3382 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3383 continue; 3384 3385 skb_set_network_header(skb, skb_gro_offset(skb)); 3386 mac_len = skb->network_header - skb->mac_header; 3387 skb->mac_len = mac_len; 3388 NAPI_GRO_CB(skb)->same_flow = 0; 3389 NAPI_GRO_CB(skb)->flush = 0; 3390 NAPI_GRO_CB(skb)->free = 0; 3391 3392 pp = ptype->gro_receive(&napi->gro_list, skb); 3393 break; 3394 } 3395 rcu_read_unlock(); 3396 3397 if (&ptype->list == head) 3398 goto normal; 3399 3400 same_flow = NAPI_GRO_CB(skb)->same_flow; 3401 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3402 3403 if (pp) { 3404 struct sk_buff *nskb = *pp; 3405 3406 *pp = nskb->next; 3407 nskb->next = NULL; 3408 napi_gro_complete(nskb); 3409 napi->gro_count--; 3410 } 3411 3412 if (same_flow) 3413 goto ok; 3414 3415 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3416 goto normal; 3417 3418 napi->gro_count++; 3419 NAPI_GRO_CB(skb)->count = 1; 3420 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3421 skb->next = napi->gro_list; 3422 napi->gro_list = skb; 3423 ret = GRO_HELD; 3424 3425 pull: 3426 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3427 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3428 3429 BUG_ON(skb->end - skb->tail < grow); 3430 3431 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3432 3433 skb->tail += grow; 3434 skb->data_len -= grow; 3435 3436 skb_shinfo(skb)->frags[0].page_offset += grow; 3437 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3438 3439 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3440 skb_frag_unref(skb, 0); 3441 memmove(skb_shinfo(skb)->frags, 3442 skb_shinfo(skb)->frags + 1, 3443 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3444 } 3445 } 3446 3447 ok: 3448 return ret; 3449 3450 normal: 3451 ret = GRO_NORMAL; 3452 goto pull; 3453 } 3454 EXPORT_SYMBOL(dev_gro_receive); 3455 3456 static inline gro_result_t 3457 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3458 { 3459 struct sk_buff *p; 3460 unsigned int maclen = skb->dev->hard_header_len; 3461 3462 for (p = napi->gro_list; p; p = p->next) { 3463 unsigned long diffs; 3464 3465 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3466 diffs |= p->vlan_tci ^ skb->vlan_tci; 3467 if (maclen == ETH_HLEN) 3468 diffs |= compare_ether_header(skb_mac_header(p), 3469 skb_gro_mac_header(skb)); 3470 else if (!diffs) 3471 diffs = memcmp(skb_mac_header(p), 3472 skb_gro_mac_header(skb), 3473 maclen); 3474 NAPI_GRO_CB(p)->same_flow = !diffs; 3475 NAPI_GRO_CB(p)->flush = 0; 3476 } 3477 3478 return dev_gro_receive(napi, skb); 3479 } 3480 3481 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3482 { 3483 switch (ret) { 3484 case GRO_NORMAL: 3485 if (netif_receive_skb(skb)) 3486 ret = GRO_DROP; 3487 break; 3488 3489 case GRO_DROP: 3490 kfree_skb(skb); 3491 break; 3492 3493 case GRO_MERGED_FREE: 3494 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3495 kmem_cache_free(skbuff_head_cache, skb); 3496 else 3497 __kfree_skb(skb); 3498 break; 3499 3500 case GRO_HELD: 3501 case GRO_MERGED: 3502 break; 3503 } 3504 3505 return ret; 3506 } 3507 EXPORT_SYMBOL(napi_skb_finish); 3508 3509 void skb_gro_reset_offset(struct sk_buff *skb) 3510 { 3511 NAPI_GRO_CB(skb)->data_offset = 0; 3512 NAPI_GRO_CB(skb)->frag0 = NULL; 3513 NAPI_GRO_CB(skb)->frag0_len = 0; 3514 3515 if (skb->mac_header == skb->tail && 3516 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3517 NAPI_GRO_CB(skb)->frag0 = 3518 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3519 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3520 } 3521 } 3522 EXPORT_SYMBOL(skb_gro_reset_offset); 3523 3524 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3525 { 3526 skb_gro_reset_offset(skb); 3527 3528 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3529 } 3530 EXPORT_SYMBOL(napi_gro_receive); 3531 3532 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3533 { 3534 __skb_pull(skb, skb_headlen(skb)); 3535 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3536 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3537 skb->vlan_tci = 0; 3538 skb->dev = napi->dev; 3539 skb->skb_iif = 0; 3540 3541 napi->skb = skb; 3542 } 3543 3544 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3545 { 3546 struct sk_buff *skb = napi->skb; 3547 3548 if (!skb) { 3549 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3550 if (skb) 3551 napi->skb = skb; 3552 } 3553 return skb; 3554 } 3555 EXPORT_SYMBOL(napi_get_frags); 3556 3557 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3558 gro_result_t ret) 3559 { 3560 switch (ret) { 3561 case GRO_NORMAL: 3562 case GRO_HELD: 3563 skb->protocol = eth_type_trans(skb, skb->dev); 3564 3565 if (ret == GRO_HELD) 3566 skb_gro_pull(skb, -ETH_HLEN); 3567 else if (netif_receive_skb(skb)) 3568 ret = GRO_DROP; 3569 break; 3570 3571 case GRO_DROP: 3572 case GRO_MERGED_FREE: 3573 napi_reuse_skb(napi, skb); 3574 break; 3575 3576 case GRO_MERGED: 3577 break; 3578 } 3579 3580 return ret; 3581 } 3582 EXPORT_SYMBOL(napi_frags_finish); 3583 3584 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3585 { 3586 struct sk_buff *skb = napi->skb; 3587 struct ethhdr *eth; 3588 unsigned int hlen; 3589 unsigned int off; 3590 3591 napi->skb = NULL; 3592 3593 skb_reset_mac_header(skb); 3594 skb_gro_reset_offset(skb); 3595 3596 off = skb_gro_offset(skb); 3597 hlen = off + sizeof(*eth); 3598 eth = skb_gro_header_fast(skb, off); 3599 if (skb_gro_header_hard(skb, hlen)) { 3600 eth = skb_gro_header_slow(skb, hlen, off); 3601 if (unlikely(!eth)) { 3602 napi_reuse_skb(napi, skb); 3603 skb = NULL; 3604 goto out; 3605 } 3606 } 3607 3608 skb_gro_pull(skb, sizeof(*eth)); 3609 3610 /* 3611 * This works because the only protocols we care about don't require 3612 * special handling. We'll fix it up properly at the end. 3613 */ 3614 skb->protocol = eth->h_proto; 3615 3616 out: 3617 return skb; 3618 } 3619 3620 gro_result_t napi_gro_frags(struct napi_struct *napi) 3621 { 3622 struct sk_buff *skb = napi_frags_skb(napi); 3623 3624 if (!skb) 3625 return GRO_DROP; 3626 3627 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3628 } 3629 EXPORT_SYMBOL(napi_gro_frags); 3630 3631 /* 3632 * net_rps_action sends any pending IPI's for rps. 3633 * Note: called with local irq disabled, but exits with local irq enabled. 3634 */ 3635 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3636 { 3637 #ifdef CONFIG_RPS 3638 struct softnet_data *remsd = sd->rps_ipi_list; 3639 3640 if (remsd) { 3641 sd->rps_ipi_list = NULL; 3642 3643 local_irq_enable(); 3644 3645 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3646 while (remsd) { 3647 struct softnet_data *next = remsd->rps_ipi_next; 3648 3649 if (cpu_online(remsd->cpu)) 3650 __smp_call_function_single(remsd->cpu, 3651 &remsd->csd, 0); 3652 remsd = next; 3653 } 3654 } else 3655 #endif 3656 local_irq_enable(); 3657 } 3658 3659 static int process_backlog(struct napi_struct *napi, int quota) 3660 { 3661 int work = 0; 3662 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3663 3664 #ifdef CONFIG_RPS 3665 /* Check if we have pending ipi, its better to send them now, 3666 * not waiting net_rx_action() end. 3667 */ 3668 if (sd->rps_ipi_list) { 3669 local_irq_disable(); 3670 net_rps_action_and_irq_enable(sd); 3671 } 3672 #endif 3673 napi->weight = weight_p; 3674 local_irq_disable(); 3675 while (work < quota) { 3676 struct sk_buff *skb; 3677 unsigned int qlen; 3678 3679 while ((skb = __skb_dequeue(&sd->process_queue))) { 3680 local_irq_enable(); 3681 __netif_receive_skb(skb); 3682 local_irq_disable(); 3683 input_queue_head_incr(sd); 3684 if (++work >= quota) { 3685 local_irq_enable(); 3686 return work; 3687 } 3688 } 3689 3690 rps_lock(sd); 3691 qlen = skb_queue_len(&sd->input_pkt_queue); 3692 if (qlen) 3693 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3694 &sd->process_queue); 3695 3696 if (qlen < quota - work) { 3697 /* 3698 * Inline a custom version of __napi_complete(). 3699 * only current cpu owns and manipulates this napi, 3700 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3701 * we can use a plain write instead of clear_bit(), 3702 * and we dont need an smp_mb() memory barrier. 3703 */ 3704 list_del(&napi->poll_list); 3705 napi->state = 0; 3706 3707 quota = work + qlen; 3708 } 3709 rps_unlock(sd); 3710 } 3711 local_irq_enable(); 3712 3713 return work; 3714 } 3715 3716 /** 3717 * __napi_schedule - schedule for receive 3718 * @n: entry to schedule 3719 * 3720 * The entry's receive function will be scheduled to run 3721 */ 3722 void __napi_schedule(struct napi_struct *n) 3723 { 3724 unsigned long flags; 3725 3726 local_irq_save(flags); 3727 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3728 local_irq_restore(flags); 3729 } 3730 EXPORT_SYMBOL(__napi_schedule); 3731 3732 void __napi_complete(struct napi_struct *n) 3733 { 3734 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3735 BUG_ON(n->gro_list); 3736 3737 list_del(&n->poll_list); 3738 smp_mb__before_clear_bit(); 3739 clear_bit(NAPI_STATE_SCHED, &n->state); 3740 } 3741 EXPORT_SYMBOL(__napi_complete); 3742 3743 void napi_complete(struct napi_struct *n) 3744 { 3745 unsigned long flags; 3746 3747 /* 3748 * don't let napi dequeue from the cpu poll list 3749 * just in case its running on a different cpu 3750 */ 3751 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3752 return; 3753 3754 napi_gro_flush(n); 3755 local_irq_save(flags); 3756 __napi_complete(n); 3757 local_irq_restore(flags); 3758 } 3759 EXPORT_SYMBOL(napi_complete); 3760 3761 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3762 int (*poll)(struct napi_struct *, int), int weight) 3763 { 3764 INIT_LIST_HEAD(&napi->poll_list); 3765 napi->gro_count = 0; 3766 napi->gro_list = NULL; 3767 napi->skb = NULL; 3768 napi->poll = poll; 3769 napi->weight = weight; 3770 list_add(&napi->dev_list, &dev->napi_list); 3771 napi->dev = dev; 3772 #ifdef CONFIG_NETPOLL 3773 spin_lock_init(&napi->poll_lock); 3774 napi->poll_owner = -1; 3775 #endif 3776 set_bit(NAPI_STATE_SCHED, &napi->state); 3777 } 3778 EXPORT_SYMBOL(netif_napi_add); 3779 3780 void netif_napi_del(struct napi_struct *napi) 3781 { 3782 struct sk_buff *skb, *next; 3783 3784 list_del_init(&napi->dev_list); 3785 napi_free_frags(napi); 3786 3787 for (skb = napi->gro_list; skb; skb = next) { 3788 next = skb->next; 3789 skb->next = NULL; 3790 kfree_skb(skb); 3791 } 3792 3793 napi->gro_list = NULL; 3794 napi->gro_count = 0; 3795 } 3796 EXPORT_SYMBOL(netif_napi_del); 3797 3798 static void net_rx_action(struct softirq_action *h) 3799 { 3800 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3801 unsigned long time_limit = jiffies + 2; 3802 int budget = netdev_budget; 3803 void *have; 3804 3805 local_irq_disable(); 3806 3807 while (!list_empty(&sd->poll_list)) { 3808 struct napi_struct *n; 3809 int work, weight; 3810 3811 /* If softirq window is exhuasted then punt. 3812 * Allow this to run for 2 jiffies since which will allow 3813 * an average latency of 1.5/HZ. 3814 */ 3815 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3816 goto softnet_break; 3817 3818 local_irq_enable(); 3819 3820 /* Even though interrupts have been re-enabled, this 3821 * access is safe because interrupts can only add new 3822 * entries to the tail of this list, and only ->poll() 3823 * calls can remove this head entry from the list. 3824 */ 3825 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3826 3827 have = netpoll_poll_lock(n); 3828 3829 weight = n->weight; 3830 3831 /* This NAPI_STATE_SCHED test is for avoiding a race 3832 * with netpoll's poll_napi(). Only the entity which 3833 * obtains the lock and sees NAPI_STATE_SCHED set will 3834 * actually make the ->poll() call. Therefore we avoid 3835 * accidentally calling ->poll() when NAPI is not scheduled. 3836 */ 3837 work = 0; 3838 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3839 work = n->poll(n, weight); 3840 trace_napi_poll(n); 3841 } 3842 3843 WARN_ON_ONCE(work > weight); 3844 3845 budget -= work; 3846 3847 local_irq_disable(); 3848 3849 /* Drivers must not modify the NAPI state if they 3850 * consume the entire weight. In such cases this code 3851 * still "owns" the NAPI instance and therefore can 3852 * move the instance around on the list at-will. 3853 */ 3854 if (unlikely(work == weight)) { 3855 if (unlikely(napi_disable_pending(n))) { 3856 local_irq_enable(); 3857 napi_complete(n); 3858 local_irq_disable(); 3859 } else 3860 list_move_tail(&n->poll_list, &sd->poll_list); 3861 } 3862 3863 netpoll_poll_unlock(have); 3864 } 3865 out: 3866 net_rps_action_and_irq_enable(sd); 3867 3868 #ifdef CONFIG_NET_DMA 3869 /* 3870 * There may not be any more sk_buffs coming right now, so push 3871 * any pending DMA copies to hardware 3872 */ 3873 dma_issue_pending_all(); 3874 #endif 3875 3876 return; 3877 3878 softnet_break: 3879 sd->time_squeeze++; 3880 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3881 goto out; 3882 } 3883 3884 static gifconf_func_t *gifconf_list[NPROTO]; 3885 3886 /** 3887 * register_gifconf - register a SIOCGIF handler 3888 * @family: Address family 3889 * @gifconf: Function handler 3890 * 3891 * Register protocol dependent address dumping routines. The handler 3892 * that is passed must not be freed or reused until it has been replaced 3893 * by another handler. 3894 */ 3895 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3896 { 3897 if (family >= NPROTO) 3898 return -EINVAL; 3899 gifconf_list[family] = gifconf; 3900 return 0; 3901 } 3902 EXPORT_SYMBOL(register_gifconf); 3903 3904 3905 /* 3906 * Map an interface index to its name (SIOCGIFNAME) 3907 */ 3908 3909 /* 3910 * We need this ioctl for efficient implementation of the 3911 * if_indextoname() function required by the IPv6 API. Without 3912 * it, we would have to search all the interfaces to find a 3913 * match. --pb 3914 */ 3915 3916 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3917 { 3918 struct net_device *dev; 3919 struct ifreq ifr; 3920 3921 /* 3922 * Fetch the caller's info block. 3923 */ 3924 3925 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3926 return -EFAULT; 3927 3928 rcu_read_lock(); 3929 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3930 if (!dev) { 3931 rcu_read_unlock(); 3932 return -ENODEV; 3933 } 3934 3935 strcpy(ifr.ifr_name, dev->name); 3936 rcu_read_unlock(); 3937 3938 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3939 return -EFAULT; 3940 return 0; 3941 } 3942 3943 /* 3944 * Perform a SIOCGIFCONF call. This structure will change 3945 * size eventually, and there is nothing I can do about it. 3946 * Thus we will need a 'compatibility mode'. 3947 */ 3948 3949 static int dev_ifconf(struct net *net, char __user *arg) 3950 { 3951 struct ifconf ifc; 3952 struct net_device *dev; 3953 char __user *pos; 3954 int len; 3955 int total; 3956 int i; 3957 3958 /* 3959 * Fetch the caller's info block. 3960 */ 3961 3962 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3963 return -EFAULT; 3964 3965 pos = ifc.ifc_buf; 3966 len = ifc.ifc_len; 3967 3968 /* 3969 * Loop over the interfaces, and write an info block for each. 3970 */ 3971 3972 total = 0; 3973 for_each_netdev(net, dev) { 3974 for (i = 0; i < NPROTO; i++) { 3975 if (gifconf_list[i]) { 3976 int done; 3977 if (!pos) 3978 done = gifconf_list[i](dev, NULL, 0); 3979 else 3980 done = gifconf_list[i](dev, pos + total, 3981 len - total); 3982 if (done < 0) 3983 return -EFAULT; 3984 total += done; 3985 } 3986 } 3987 } 3988 3989 /* 3990 * All done. Write the updated control block back to the caller. 3991 */ 3992 ifc.ifc_len = total; 3993 3994 /* 3995 * Both BSD and Solaris return 0 here, so we do too. 3996 */ 3997 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3998 } 3999 4000 #ifdef CONFIG_PROC_FS 4001 4002 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1) 4003 4004 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4005 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4006 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4007 4008 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos) 4009 { 4010 struct net *net = seq_file_net(seq); 4011 struct net_device *dev; 4012 struct hlist_node *p; 4013 struct hlist_head *h; 4014 unsigned int count = 0, offset = get_offset(*pos); 4015 4016 h = &net->dev_name_head[get_bucket(*pos)]; 4017 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4018 if (++count == offset) 4019 return dev; 4020 } 4021 4022 return NULL; 4023 } 4024 4025 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos) 4026 { 4027 struct net_device *dev; 4028 unsigned int bucket; 4029 4030 do { 4031 dev = dev_from_same_bucket(seq, pos); 4032 if (dev) 4033 return dev; 4034 4035 bucket = get_bucket(*pos) + 1; 4036 *pos = set_bucket_offset(bucket, 1); 4037 } while (bucket < NETDEV_HASHENTRIES); 4038 4039 return NULL; 4040 } 4041 4042 /* 4043 * This is invoked by the /proc filesystem handler to display a device 4044 * in detail. 4045 */ 4046 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4047 __acquires(RCU) 4048 { 4049 rcu_read_lock(); 4050 if (!*pos) 4051 return SEQ_START_TOKEN; 4052 4053 if (get_bucket(*pos) >= NETDEV_HASHENTRIES) 4054 return NULL; 4055 4056 return dev_from_bucket(seq, pos); 4057 } 4058 4059 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4060 { 4061 ++*pos; 4062 return dev_from_bucket(seq, pos); 4063 } 4064 4065 void dev_seq_stop(struct seq_file *seq, void *v) 4066 __releases(RCU) 4067 { 4068 rcu_read_unlock(); 4069 } 4070 4071 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4072 { 4073 struct rtnl_link_stats64 temp; 4074 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4075 4076 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4077 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4078 dev->name, stats->rx_bytes, stats->rx_packets, 4079 stats->rx_errors, 4080 stats->rx_dropped + stats->rx_missed_errors, 4081 stats->rx_fifo_errors, 4082 stats->rx_length_errors + stats->rx_over_errors + 4083 stats->rx_crc_errors + stats->rx_frame_errors, 4084 stats->rx_compressed, stats->multicast, 4085 stats->tx_bytes, stats->tx_packets, 4086 stats->tx_errors, stats->tx_dropped, 4087 stats->tx_fifo_errors, stats->collisions, 4088 stats->tx_carrier_errors + 4089 stats->tx_aborted_errors + 4090 stats->tx_window_errors + 4091 stats->tx_heartbeat_errors, 4092 stats->tx_compressed); 4093 } 4094 4095 /* 4096 * Called from the PROCfs module. This now uses the new arbitrary sized 4097 * /proc/net interface to create /proc/net/dev 4098 */ 4099 static int dev_seq_show(struct seq_file *seq, void *v) 4100 { 4101 if (v == SEQ_START_TOKEN) 4102 seq_puts(seq, "Inter-| Receive " 4103 " | Transmit\n" 4104 " face |bytes packets errs drop fifo frame " 4105 "compressed multicast|bytes packets errs " 4106 "drop fifo colls carrier compressed\n"); 4107 else 4108 dev_seq_printf_stats(seq, v); 4109 return 0; 4110 } 4111 4112 static struct softnet_data *softnet_get_online(loff_t *pos) 4113 { 4114 struct softnet_data *sd = NULL; 4115 4116 while (*pos < nr_cpu_ids) 4117 if (cpu_online(*pos)) { 4118 sd = &per_cpu(softnet_data, *pos); 4119 break; 4120 } else 4121 ++*pos; 4122 return sd; 4123 } 4124 4125 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4126 { 4127 return softnet_get_online(pos); 4128 } 4129 4130 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4131 { 4132 ++*pos; 4133 return softnet_get_online(pos); 4134 } 4135 4136 static void softnet_seq_stop(struct seq_file *seq, void *v) 4137 { 4138 } 4139 4140 static int softnet_seq_show(struct seq_file *seq, void *v) 4141 { 4142 struct softnet_data *sd = v; 4143 4144 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4145 sd->processed, sd->dropped, sd->time_squeeze, 0, 4146 0, 0, 0, 0, /* was fastroute */ 4147 sd->cpu_collision, sd->received_rps); 4148 return 0; 4149 } 4150 4151 static const struct seq_operations dev_seq_ops = { 4152 .start = dev_seq_start, 4153 .next = dev_seq_next, 4154 .stop = dev_seq_stop, 4155 .show = dev_seq_show, 4156 }; 4157 4158 static int dev_seq_open(struct inode *inode, struct file *file) 4159 { 4160 return seq_open_net(inode, file, &dev_seq_ops, 4161 sizeof(struct seq_net_private)); 4162 } 4163 4164 static const struct file_operations dev_seq_fops = { 4165 .owner = THIS_MODULE, 4166 .open = dev_seq_open, 4167 .read = seq_read, 4168 .llseek = seq_lseek, 4169 .release = seq_release_net, 4170 }; 4171 4172 static const struct seq_operations softnet_seq_ops = { 4173 .start = softnet_seq_start, 4174 .next = softnet_seq_next, 4175 .stop = softnet_seq_stop, 4176 .show = softnet_seq_show, 4177 }; 4178 4179 static int softnet_seq_open(struct inode *inode, struct file *file) 4180 { 4181 return seq_open(file, &softnet_seq_ops); 4182 } 4183 4184 static const struct file_operations softnet_seq_fops = { 4185 .owner = THIS_MODULE, 4186 .open = softnet_seq_open, 4187 .read = seq_read, 4188 .llseek = seq_lseek, 4189 .release = seq_release, 4190 }; 4191 4192 static void *ptype_get_idx(loff_t pos) 4193 { 4194 struct packet_type *pt = NULL; 4195 loff_t i = 0; 4196 int t; 4197 4198 list_for_each_entry_rcu(pt, &ptype_all, list) { 4199 if (i == pos) 4200 return pt; 4201 ++i; 4202 } 4203 4204 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4205 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4206 if (i == pos) 4207 return pt; 4208 ++i; 4209 } 4210 } 4211 return NULL; 4212 } 4213 4214 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4215 __acquires(RCU) 4216 { 4217 rcu_read_lock(); 4218 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4219 } 4220 4221 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4222 { 4223 struct packet_type *pt; 4224 struct list_head *nxt; 4225 int hash; 4226 4227 ++*pos; 4228 if (v == SEQ_START_TOKEN) 4229 return ptype_get_idx(0); 4230 4231 pt = v; 4232 nxt = pt->list.next; 4233 if (pt->type == htons(ETH_P_ALL)) { 4234 if (nxt != &ptype_all) 4235 goto found; 4236 hash = 0; 4237 nxt = ptype_base[0].next; 4238 } else 4239 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4240 4241 while (nxt == &ptype_base[hash]) { 4242 if (++hash >= PTYPE_HASH_SIZE) 4243 return NULL; 4244 nxt = ptype_base[hash].next; 4245 } 4246 found: 4247 return list_entry(nxt, struct packet_type, list); 4248 } 4249 4250 static void ptype_seq_stop(struct seq_file *seq, void *v) 4251 __releases(RCU) 4252 { 4253 rcu_read_unlock(); 4254 } 4255 4256 static int ptype_seq_show(struct seq_file *seq, void *v) 4257 { 4258 struct packet_type *pt = v; 4259 4260 if (v == SEQ_START_TOKEN) 4261 seq_puts(seq, "Type Device Function\n"); 4262 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4263 if (pt->type == htons(ETH_P_ALL)) 4264 seq_puts(seq, "ALL "); 4265 else 4266 seq_printf(seq, "%04x", ntohs(pt->type)); 4267 4268 seq_printf(seq, " %-8s %pF\n", 4269 pt->dev ? pt->dev->name : "", pt->func); 4270 } 4271 4272 return 0; 4273 } 4274 4275 static const struct seq_operations ptype_seq_ops = { 4276 .start = ptype_seq_start, 4277 .next = ptype_seq_next, 4278 .stop = ptype_seq_stop, 4279 .show = ptype_seq_show, 4280 }; 4281 4282 static int ptype_seq_open(struct inode *inode, struct file *file) 4283 { 4284 return seq_open_net(inode, file, &ptype_seq_ops, 4285 sizeof(struct seq_net_private)); 4286 } 4287 4288 static const struct file_operations ptype_seq_fops = { 4289 .owner = THIS_MODULE, 4290 .open = ptype_seq_open, 4291 .read = seq_read, 4292 .llseek = seq_lseek, 4293 .release = seq_release_net, 4294 }; 4295 4296 4297 static int __net_init dev_proc_net_init(struct net *net) 4298 { 4299 int rc = -ENOMEM; 4300 4301 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4302 goto out; 4303 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4304 goto out_dev; 4305 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4306 goto out_softnet; 4307 4308 if (wext_proc_init(net)) 4309 goto out_ptype; 4310 rc = 0; 4311 out: 4312 return rc; 4313 out_ptype: 4314 proc_net_remove(net, "ptype"); 4315 out_softnet: 4316 proc_net_remove(net, "softnet_stat"); 4317 out_dev: 4318 proc_net_remove(net, "dev"); 4319 goto out; 4320 } 4321 4322 static void __net_exit dev_proc_net_exit(struct net *net) 4323 { 4324 wext_proc_exit(net); 4325 4326 proc_net_remove(net, "ptype"); 4327 proc_net_remove(net, "softnet_stat"); 4328 proc_net_remove(net, "dev"); 4329 } 4330 4331 static struct pernet_operations __net_initdata dev_proc_ops = { 4332 .init = dev_proc_net_init, 4333 .exit = dev_proc_net_exit, 4334 }; 4335 4336 static int __init dev_proc_init(void) 4337 { 4338 return register_pernet_subsys(&dev_proc_ops); 4339 } 4340 #else 4341 #define dev_proc_init() 0 4342 #endif /* CONFIG_PROC_FS */ 4343 4344 4345 /** 4346 * netdev_set_master - set up master pointer 4347 * @slave: slave device 4348 * @master: new master device 4349 * 4350 * Changes the master device of the slave. Pass %NULL to break the 4351 * bonding. The caller must hold the RTNL semaphore. On a failure 4352 * a negative errno code is returned. On success the reference counts 4353 * are adjusted and the function returns zero. 4354 */ 4355 int netdev_set_master(struct net_device *slave, struct net_device *master) 4356 { 4357 struct net_device *old = slave->master; 4358 4359 ASSERT_RTNL(); 4360 4361 if (master) { 4362 if (old) 4363 return -EBUSY; 4364 dev_hold(master); 4365 } 4366 4367 slave->master = master; 4368 4369 if (old) 4370 dev_put(old); 4371 return 0; 4372 } 4373 EXPORT_SYMBOL(netdev_set_master); 4374 4375 /** 4376 * netdev_set_bond_master - set up bonding master/slave pair 4377 * @slave: slave device 4378 * @master: new master device 4379 * 4380 * Changes the master device of the slave. Pass %NULL to break the 4381 * bonding. The caller must hold the RTNL semaphore. On a failure 4382 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4383 * to the routing socket and the function returns zero. 4384 */ 4385 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4386 { 4387 int err; 4388 4389 ASSERT_RTNL(); 4390 4391 err = netdev_set_master(slave, master); 4392 if (err) 4393 return err; 4394 if (master) 4395 slave->flags |= IFF_SLAVE; 4396 else 4397 slave->flags &= ~IFF_SLAVE; 4398 4399 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4400 return 0; 4401 } 4402 EXPORT_SYMBOL(netdev_set_bond_master); 4403 4404 static void dev_change_rx_flags(struct net_device *dev, int flags) 4405 { 4406 const struct net_device_ops *ops = dev->netdev_ops; 4407 4408 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4409 ops->ndo_change_rx_flags(dev, flags); 4410 } 4411 4412 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4413 { 4414 unsigned int old_flags = dev->flags; 4415 uid_t uid; 4416 gid_t gid; 4417 4418 ASSERT_RTNL(); 4419 4420 dev->flags |= IFF_PROMISC; 4421 dev->promiscuity += inc; 4422 if (dev->promiscuity == 0) { 4423 /* 4424 * Avoid overflow. 4425 * If inc causes overflow, untouch promisc and return error. 4426 */ 4427 if (inc < 0) 4428 dev->flags &= ~IFF_PROMISC; 4429 else { 4430 dev->promiscuity -= inc; 4431 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4432 dev->name); 4433 return -EOVERFLOW; 4434 } 4435 } 4436 if (dev->flags != old_flags) { 4437 pr_info("device %s %s promiscuous mode\n", 4438 dev->name, 4439 dev->flags & IFF_PROMISC ? "entered" : "left"); 4440 if (audit_enabled) { 4441 current_uid_gid(&uid, &gid); 4442 audit_log(current->audit_context, GFP_ATOMIC, 4443 AUDIT_ANOM_PROMISCUOUS, 4444 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4445 dev->name, (dev->flags & IFF_PROMISC), 4446 (old_flags & IFF_PROMISC), 4447 audit_get_loginuid(current), 4448 uid, gid, 4449 audit_get_sessionid(current)); 4450 } 4451 4452 dev_change_rx_flags(dev, IFF_PROMISC); 4453 } 4454 return 0; 4455 } 4456 4457 /** 4458 * dev_set_promiscuity - update promiscuity count on a device 4459 * @dev: device 4460 * @inc: modifier 4461 * 4462 * Add or remove promiscuity from a device. While the count in the device 4463 * remains above zero the interface remains promiscuous. Once it hits zero 4464 * the device reverts back to normal filtering operation. A negative inc 4465 * value is used to drop promiscuity on the device. 4466 * Return 0 if successful or a negative errno code on error. 4467 */ 4468 int dev_set_promiscuity(struct net_device *dev, int inc) 4469 { 4470 unsigned int old_flags = dev->flags; 4471 int err; 4472 4473 err = __dev_set_promiscuity(dev, inc); 4474 if (err < 0) 4475 return err; 4476 if (dev->flags != old_flags) 4477 dev_set_rx_mode(dev); 4478 return err; 4479 } 4480 EXPORT_SYMBOL(dev_set_promiscuity); 4481 4482 /** 4483 * dev_set_allmulti - update allmulti count on a device 4484 * @dev: device 4485 * @inc: modifier 4486 * 4487 * Add or remove reception of all multicast frames to a device. While the 4488 * count in the device remains above zero the interface remains listening 4489 * to all interfaces. Once it hits zero the device reverts back to normal 4490 * filtering operation. A negative @inc value is used to drop the counter 4491 * when releasing a resource needing all multicasts. 4492 * Return 0 if successful or a negative errno code on error. 4493 */ 4494 4495 int dev_set_allmulti(struct net_device *dev, int inc) 4496 { 4497 unsigned int old_flags = dev->flags; 4498 4499 ASSERT_RTNL(); 4500 4501 dev->flags |= IFF_ALLMULTI; 4502 dev->allmulti += inc; 4503 if (dev->allmulti == 0) { 4504 /* 4505 * Avoid overflow. 4506 * If inc causes overflow, untouch allmulti and return error. 4507 */ 4508 if (inc < 0) 4509 dev->flags &= ~IFF_ALLMULTI; 4510 else { 4511 dev->allmulti -= inc; 4512 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4513 dev->name); 4514 return -EOVERFLOW; 4515 } 4516 } 4517 if (dev->flags ^ old_flags) { 4518 dev_change_rx_flags(dev, IFF_ALLMULTI); 4519 dev_set_rx_mode(dev); 4520 } 4521 return 0; 4522 } 4523 EXPORT_SYMBOL(dev_set_allmulti); 4524 4525 /* 4526 * Upload unicast and multicast address lists to device and 4527 * configure RX filtering. When the device doesn't support unicast 4528 * filtering it is put in promiscuous mode while unicast addresses 4529 * are present. 4530 */ 4531 void __dev_set_rx_mode(struct net_device *dev) 4532 { 4533 const struct net_device_ops *ops = dev->netdev_ops; 4534 4535 /* dev_open will call this function so the list will stay sane. */ 4536 if (!(dev->flags&IFF_UP)) 4537 return; 4538 4539 if (!netif_device_present(dev)) 4540 return; 4541 4542 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4543 /* Unicast addresses changes may only happen under the rtnl, 4544 * therefore calling __dev_set_promiscuity here is safe. 4545 */ 4546 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4547 __dev_set_promiscuity(dev, 1); 4548 dev->uc_promisc = true; 4549 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4550 __dev_set_promiscuity(dev, -1); 4551 dev->uc_promisc = false; 4552 } 4553 } 4554 4555 if (ops->ndo_set_rx_mode) 4556 ops->ndo_set_rx_mode(dev); 4557 } 4558 4559 void dev_set_rx_mode(struct net_device *dev) 4560 { 4561 netif_addr_lock_bh(dev); 4562 __dev_set_rx_mode(dev); 4563 netif_addr_unlock_bh(dev); 4564 } 4565 4566 /** 4567 * dev_get_flags - get flags reported to userspace 4568 * @dev: device 4569 * 4570 * Get the combination of flag bits exported through APIs to userspace. 4571 */ 4572 unsigned int dev_get_flags(const struct net_device *dev) 4573 { 4574 unsigned int flags; 4575 4576 flags = (dev->flags & ~(IFF_PROMISC | 4577 IFF_ALLMULTI | 4578 IFF_RUNNING | 4579 IFF_LOWER_UP | 4580 IFF_DORMANT)) | 4581 (dev->gflags & (IFF_PROMISC | 4582 IFF_ALLMULTI)); 4583 4584 if (netif_running(dev)) { 4585 if (netif_oper_up(dev)) 4586 flags |= IFF_RUNNING; 4587 if (netif_carrier_ok(dev)) 4588 flags |= IFF_LOWER_UP; 4589 if (netif_dormant(dev)) 4590 flags |= IFF_DORMANT; 4591 } 4592 4593 return flags; 4594 } 4595 EXPORT_SYMBOL(dev_get_flags); 4596 4597 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4598 { 4599 unsigned int old_flags = dev->flags; 4600 int ret; 4601 4602 ASSERT_RTNL(); 4603 4604 /* 4605 * Set the flags on our device. 4606 */ 4607 4608 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4609 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4610 IFF_AUTOMEDIA)) | 4611 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4612 IFF_ALLMULTI)); 4613 4614 /* 4615 * Load in the correct multicast list now the flags have changed. 4616 */ 4617 4618 if ((old_flags ^ flags) & IFF_MULTICAST) 4619 dev_change_rx_flags(dev, IFF_MULTICAST); 4620 4621 dev_set_rx_mode(dev); 4622 4623 /* 4624 * Have we downed the interface. We handle IFF_UP ourselves 4625 * according to user attempts to set it, rather than blindly 4626 * setting it. 4627 */ 4628 4629 ret = 0; 4630 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4631 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4632 4633 if (!ret) 4634 dev_set_rx_mode(dev); 4635 } 4636 4637 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4638 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4639 4640 dev->gflags ^= IFF_PROMISC; 4641 dev_set_promiscuity(dev, inc); 4642 } 4643 4644 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4645 is important. Some (broken) drivers set IFF_PROMISC, when 4646 IFF_ALLMULTI is requested not asking us and not reporting. 4647 */ 4648 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4649 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4650 4651 dev->gflags ^= IFF_ALLMULTI; 4652 dev_set_allmulti(dev, inc); 4653 } 4654 4655 return ret; 4656 } 4657 4658 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4659 { 4660 unsigned int changes = dev->flags ^ old_flags; 4661 4662 if (changes & IFF_UP) { 4663 if (dev->flags & IFF_UP) 4664 call_netdevice_notifiers(NETDEV_UP, dev); 4665 else 4666 call_netdevice_notifiers(NETDEV_DOWN, dev); 4667 } 4668 4669 if (dev->flags & IFF_UP && 4670 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4671 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4672 } 4673 4674 /** 4675 * dev_change_flags - change device settings 4676 * @dev: device 4677 * @flags: device state flags 4678 * 4679 * Change settings on device based state flags. The flags are 4680 * in the userspace exported format. 4681 */ 4682 int dev_change_flags(struct net_device *dev, unsigned int flags) 4683 { 4684 int ret; 4685 unsigned int changes, old_flags = dev->flags; 4686 4687 ret = __dev_change_flags(dev, flags); 4688 if (ret < 0) 4689 return ret; 4690 4691 changes = old_flags ^ dev->flags; 4692 if (changes) 4693 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4694 4695 __dev_notify_flags(dev, old_flags); 4696 return ret; 4697 } 4698 EXPORT_SYMBOL(dev_change_flags); 4699 4700 /** 4701 * dev_set_mtu - Change maximum transfer unit 4702 * @dev: device 4703 * @new_mtu: new transfer unit 4704 * 4705 * Change the maximum transfer size of the network device. 4706 */ 4707 int dev_set_mtu(struct net_device *dev, int new_mtu) 4708 { 4709 const struct net_device_ops *ops = dev->netdev_ops; 4710 int err; 4711 4712 if (new_mtu == dev->mtu) 4713 return 0; 4714 4715 /* MTU must be positive. */ 4716 if (new_mtu < 0) 4717 return -EINVAL; 4718 4719 if (!netif_device_present(dev)) 4720 return -ENODEV; 4721 4722 err = 0; 4723 if (ops->ndo_change_mtu) 4724 err = ops->ndo_change_mtu(dev, new_mtu); 4725 else 4726 dev->mtu = new_mtu; 4727 4728 if (!err && dev->flags & IFF_UP) 4729 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4730 return err; 4731 } 4732 EXPORT_SYMBOL(dev_set_mtu); 4733 4734 /** 4735 * dev_set_group - Change group this device belongs to 4736 * @dev: device 4737 * @new_group: group this device should belong to 4738 */ 4739 void dev_set_group(struct net_device *dev, int new_group) 4740 { 4741 dev->group = new_group; 4742 } 4743 EXPORT_SYMBOL(dev_set_group); 4744 4745 /** 4746 * dev_set_mac_address - Change Media Access Control Address 4747 * @dev: device 4748 * @sa: new address 4749 * 4750 * Change the hardware (MAC) address of the device 4751 */ 4752 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4753 { 4754 const struct net_device_ops *ops = dev->netdev_ops; 4755 int err; 4756 4757 if (!ops->ndo_set_mac_address) 4758 return -EOPNOTSUPP; 4759 if (sa->sa_family != dev->type) 4760 return -EINVAL; 4761 if (!netif_device_present(dev)) 4762 return -ENODEV; 4763 err = ops->ndo_set_mac_address(dev, sa); 4764 if (!err) 4765 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4766 return err; 4767 } 4768 EXPORT_SYMBOL(dev_set_mac_address); 4769 4770 /* 4771 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4772 */ 4773 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4774 { 4775 int err; 4776 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4777 4778 if (!dev) 4779 return -ENODEV; 4780 4781 switch (cmd) { 4782 case SIOCGIFFLAGS: /* Get interface flags */ 4783 ifr->ifr_flags = (short) dev_get_flags(dev); 4784 return 0; 4785 4786 case SIOCGIFMETRIC: /* Get the metric on the interface 4787 (currently unused) */ 4788 ifr->ifr_metric = 0; 4789 return 0; 4790 4791 case SIOCGIFMTU: /* Get the MTU of a device */ 4792 ifr->ifr_mtu = dev->mtu; 4793 return 0; 4794 4795 case SIOCGIFHWADDR: 4796 if (!dev->addr_len) 4797 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4798 else 4799 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4800 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4801 ifr->ifr_hwaddr.sa_family = dev->type; 4802 return 0; 4803 4804 case SIOCGIFSLAVE: 4805 err = -EINVAL; 4806 break; 4807 4808 case SIOCGIFMAP: 4809 ifr->ifr_map.mem_start = dev->mem_start; 4810 ifr->ifr_map.mem_end = dev->mem_end; 4811 ifr->ifr_map.base_addr = dev->base_addr; 4812 ifr->ifr_map.irq = dev->irq; 4813 ifr->ifr_map.dma = dev->dma; 4814 ifr->ifr_map.port = dev->if_port; 4815 return 0; 4816 4817 case SIOCGIFINDEX: 4818 ifr->ifr_ifindex = dev->ifindex; 4819 return 0; 4820 4821 case SIOCGIFTXQLEN: 4822 ifr->ifr_qlen = dev->tx_queue_len; 4823 return 0; 4824 4825 default: 4826 /* dev_ioctl() should ensure this case 4827 * is never reached 4828 */ 4829 WARN_ON(1); 4830 err = -ENOTTY; 4831 break; 4832 4833 } 4834 return err; 4835 } 4836 4837 /* 4838 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4839 */ 4840 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4841 { 4842 int err; 4843 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4844 const struct net_device_ops *ops; 4845 4846 if (!dev) 4847 return -ENODEV; 4848 4849 ops = dev->netdev_ops; 4850 4851 switch (cmd) { 4852 case SIOCSIFFLAGS: /* Set interface flags */ 4853 return dev_change_flags(dev, ifr->ifr_flags); 4854 4855 case SIOCSIFMETRIC: /* Set the metric on the interface 4856 (currently unused) */ 4857 return -EOPNOTSUPP; 4858 4859 case SIOCSIFMTU: /* Set the MTU of a device */ 4860 return dev_set_mtu(dev, ifr->ifr_mtu); 4861 4862 case SIOCSIFHWADDR: 4863 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4864 4865 case SIOCSIFHWBROADCAST: 4866 if (ifr->ifr_hwaddr.sa_family != dev->type) 4867 return -EINVAL; 4868 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4869 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4870 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4871 return 0; 4872 4873 case SIOCSIFMAP: 4874 if (ops->ndo_set_config) { 4875 if (!netif_device_present(dev)) 4876 return -ENODEV; 4877 return ops->ndo_set_config(dev, &ifr->ifr_map); 4878 } 4879 return -EOPNOTSUPP; 4880 4881 case SIOCADDMULTI: 4882 if (!ops->ndo_set_rx_mode || 4883 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4884 return -EINVAL; 4885 if (!netif_device_present(dev)) 4886 return -ENODEV; 4887 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4888 4889 case SIOCDELMULTI: 4890 if (!ops->ndo_set_rx_mode || 4891 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4892 return -EINVAL; 4893 if (!netif_device_present(dev)) 4894 return -ENODEV; 4895 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4896 4897 case SIOCSIFTXQLEN: 4898 if (ifr->ifr_qlen < 0) 4899 return -EINVAL; 4900 dev->tx_queue_len = ifr->ifr_qlen; 4901 return 0; 4902 4903 case SIOCSIFNAME: 4904 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4905 return dev_change_name(dev, ifr->ifr_newname); 4906 4907 case SIOCSHWTSTAMP: 4908 err = net_hwtstamp_validate(ifr); 4909 if (err) 4910 return err; 4911 /* fall through */ 4912 4913 /* 4914 * Unknown or private ioctl 4915 */ 4916 default: 4917 if ((cmd >= SIOCDEVPRIVATE && 4918 cmd <= SIOCDEVPRIVATE + 15) || 4919 cmd == SIOCBONDENSLAVE || 4920 cmd == SIOCBONDRELEASE || 4921 cmd == SIOCBONDSETHWADDR || 4922 cmd == SIOCBONDSLAVEINFOQUERY || 4923 cmd == SIOCBONDINFOQUERY || 4924 cmd == SIOCBONDCHANGEACTIVE || 4925 cmd == SIOCGMIIPHY || 4926 cmd == SIOCGMIIREG || 4927 cmd == SIOCSMIIREG || 4928 cmd == SIOCBRADDIF || 4929 cmd == SIOCBRDELIF || 4930 cmd == SIOCSHWTSTAMP || 4931 cmd == SIOCWANDEV) { 4932 err = -EOPNOTSUPP; 4933 if (ops->ndo_do_ioctl) { 4934 if (netif_device_present(dev)) 4935 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4936 else 4937 err = -ENODEV; 4938 } 4939 } else 4940 err = -EINVAL; 4941 4942 } 4943 return err; 4944 } 4945 4946 /* 4947 * This function handles all "interface"-type I/O control requests. The actual 4948 * 'doing' part of this is dev_ifsioc above. 4949 */ 4950 4951 /** 4952 * dev_ioctl - network device ioctl 4953 * @net: the applicable net namespace 4954 * @cmd: command to issue 4955 * @arg: pointer to a struct ifreq in user space 4956 * 4957 * Issue ioctl functions to devices. This is normally called by the 4958 * user space syscall interfaces but can sometimes be useful for 4959 * other purposes. The return value is the return from the syscall if 4960 * positive or a negative errno code on error. 4961 */ 4962 4963 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4964 { 4965 struct ifreq ifr; 4966 int ret; 4967 char *colon; 4968 4969 /* One special case: SIOCGIFCONF takes ifconf argument 4970 and requires shared lock, because it sleeps writing 4971 to user space. 4972 */ 4973 4974 if (cmd == SIOCGIFCONF) { 4975 rtnl_lock(); 4976 ret = dev_ifconf(net, (char __user *) arg); 4977 rtnl_unlock(); 4978 return ret; 4979 } 4980 if (cmd == SIOCGIFNAME) 4981 return dev_ifname(net, (struct ifreq __user *)arg); 4982 4983 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4984 return -EFAULT; 4985 4986 ifr.ifr_name[IFNAMSIZ-1] = 0; 4987 4988 colon = strchr(ifr.ifr_name, ':'); 4989 if (colon) 4990 *colon = 0; 4991 4992 /* 4993 * See which interface the caller is talking about. 4994 */ 4995 4996 switch (cmd) { 4997 /* 4998 * These ioctl calls: 4999 * - can be done by all. 5000 * - atomic and do not require locking. 5001 * - return a value 5002 */ 5003 case SIOCGIFFLAGS: 5004 case SIOCGIFMETRIC: 5005 case SIOCGIFMTU: 5006 case SIOCGIFHWADDR: 5007 case SIOCGIFSLAVE: 5008 case SIOCGIFMAP: 5009 case SIOCGIFINDEX: 5010 case SIOCGIFTXQLEN: 5011 dev_load(net, ifr.ifr_name); 5012 rcu_read_lock(); 5013 ret = dev_ifsioc_locked(net, &ifr, cmd); 5014 rcu_read_unlock(); 5015 if (!ret) { 5016 if (colon) 5017 *colon = ':'; 5018 if (copy_to_user(arg, &ifr, 5019 sizeof(struct ifreq))) 5020 ret = -EFAULT; 5021 } 5022 return ret; 5023 5024 case SIOCETHTOOL: 5025 dev_load(net, ifr.ifr_name); 5026 rtnl_lock(); 5027 ret = dev_ethtool(net, &ifr); 5028 rtnl_unlock(); 5029 if (!ret) { 5030 if (colon) 5031 *colon = ':'; 5032 if (copy_to_user(arg, &ifr, 5033 sizeof(struct ifreq))) 5034 ret = -EFAULT; 5035 } 5036 return ret; 5037 5038 /* 5039 * These ioctl calls: 5040 * - require superuser power. 5041 * - require strict serialization. 5042 * - return a value 5043 */ 5044 case SIOCGMIIPHY: 5045 case SIOCGMIIREG: 5046 case SIOCSIFNAME: 5047 if (!capable(CAP_NET_ADMIN)) 5048 return -EPERM; 5049 dev_load(net, ifr.ifr_name); 5050 rtnl_lock(); 5051 ret = dev_ifsioc(net, &ifr, cmd); 5052 rtnl_unlock(); 5053 if (!ret) { 5054 if (colon) 5055 *colon = ':'; 5056 if (copy_to_user(arg, &ifr, 5057 sizeof(struct ifreq))) 5058 ret = -EFAULT; 5059 } 5060 return ret; 5061 5062 /* 5063 * These ioctl calls: 5064 * - require superuser power. 5065 * - require strict serialization. 5066 * - do not return a value 5067 */ 5068 case SIOCSIFFLAGS: 5069 case SIOCSIFMETRIC: 5070 case SIOCSIFMTU: 5071 case SIOCSIFMAP: 5072 case SIOCSIFHWADDR: 5073 case SIOCSIFSLAVE: 5074 case SIOCADDMULTI: 5075 case SIOCDELMULTI: 5076 case SIOCSIFHWBROADCAST: 5077 case SIOCSIFTXQLEN: 5078 case SIOCSMIIREG: 5079 case SIOCBONDENSLAVE: 5080 case SIOCBONDRELEASE: 5081 case SIOCBONDSETHWADDR: 5082 case SIOCBONDCHANGEACTIVE: 5083 case SIOCBRADDIF: 5084 case SIOCBRDELIF: 5085 case SIOCSHWTSTAMP: 5086 if (!capable(CAP_NET_ADMIN)) 5087 return -EPERM; 5088 /* fall through */ 5089 case SIOCBONDSLAVEINFOQUERY: 5090 case SIOCBONDINFOQUERY: 5091 dev_load(net, ifr.ifr_name); 5092 rtnl_lock(); 5093 ret = dev_ifsioc(net, &ifr, cmd); 5094 rtnl_unlock(); 5095 return ret; 5096 5097 case SIOCGIFMEM: 5098 /* Get the per device memory space. We can add this but 5099 * currently do not support it */ 5100 case SIOCSIFMEM: 5101 /* Set the per device memory buffer space. 5102 * Not applicable in our case */ 5103 case SIOCSIFLINK: 5104 return -ENOTTY; 5105 5106 /* 5107 * Unknown or private ioctl. 5108 */ 5109 default: 5110 if (cmd == SIOCWANDEV || 5111 (cmd >= SIOCDEVPRIVATE && 5112 cmd <= SIOCDEVPRIVATE + 15)) { 5113 dev_load(net, ifr.ifr_name); 5114 rtnl_lock(); 5115 ret = dev_ifsioc(net, &ifr, cmd); 5116 rtnl_unlock(); 5117 if (!ret && copy_to_user(arg, &ifr, 5118 sizeof(struct ifreq))) 5119 ret = -EFAULT; 5120 return ret; 5121 } 5122 /* Take care of Wireless Extensions */ 5123 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5124 return wext_handle_ioctl(net, &ifr, cmd, arg); 5125 return -ENOTTY; 5126 } 5127 } 5128 5129 5130 /** 5131 * dev_new_index - allocate an ifindex 5132 * @net: the applicable net namespace 5133 * 5134 * Returns a suitable unique value for a new device interface 5135 * number. The caller must hold the rtnl semaphore or the 5136 * dev_base_lock to be sure it remains unique. 5137 */ 5138 static int dev_new_index(struct net *net) 5139 { 5140 static int ifindex; 5141 for (;;) { 5142 if (++ifindex <= 0) 5143 ifindex = 1; 5144 if (!__dev_get_by_index(net, ifindex)) 5145 return ifindex; 5146 } 5147 } 5148 5149 /* Delayed registration/unregisteration */ 5150 static LIST_HEAD(net_todo_list); 5151 5152 static void net_set_todo(struct net_device *dev) 5153 { 5154 list_add_tail(&dev->todo_list, &net_todo_list); 5155 } 5156 5157 static void rollback_registered_many(struct list_head *head) 5158 { 5159 struct net_device *dev, *tmp; 5160 5161 BUG_ON(dev_boot_phase); 5162 ASSERT_RTNL(); 5163 5164 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5165 /* Some devices call without registering 5166 * for initialization unwind. Remove those 5167 * devices and proceed with the remaining. 5168 */ 5169 if (dev->reg_state == NETREG_UNINITIALIZED) { 5170 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5171 dev->name, dev); 5172 5173 WARN_ON(1); 5174 list_del(&dev->unreg_list); 5175 continue; 5176 } 5177 dev->dismantle = true; 5178 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5179 } 5180 5181 /* If device is running, close it first. */ 5182 dev_close_many(head); 5183 5184 list_for_each_entry(dev, head, unreg_list) { 5185 /* And unlink it from device chain. */ 5186 unlist_netdevice(dev); 5187 5188 dev->reg_state = NETREG_UNREGISTERING; 5189 } 5190 5191 synchronize_net(); 5192 5193 list_for_each_entry(dev, head, unreg_list) { 5194 /* Shutdown queueing discipline. */ 5195 dev_shutdown(dev); 5196 5197 5198 /* Notify protocols, that we are about to destroy 5199 this device. They should clean all the things. 5200 */ 5201 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5202 5203 if (!dev->rtnl_link_ops || 5204 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5205 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5206 5207 /* 5208 * Flush the unicast and multicast chains 5209 */ 5210 dev_uc_flush(dev); 5211 dev_mc_flush(dev); 5212 5213 if (dev->netdev_ops->ndo_uninit) 5214 dev->netdev_ops->ndo_uninit(dev); 5215 5216 /* Notifier chain MUST detach us from master device. */ 5217 WARN_ON(dev->master); 5218 5219 /* Remove entries from kobject tree */ 5220 netdev_unregister_kobject(dev); 5221 } 5222 5223 /* Process any work delayed until the end of the batch */ 5224 dev = list_first_entry(head, struct net_device, unreg_list); 5225 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5226 5227 synchronize_net(); 5228 5229 list_for_each_entry(dev, head, unreg_list) 5230 dev_put(dev); 5231 } 5232 5233 static void rollback_registered(struct net_device *dev) 5234 { 5235 LIST_HEAD(single); 5236 5237 list_add(&dev->unreg_list, &single); 5238 rollback_registered_many(&single); 5239 list_del(&single); 5240 } 5241 5242 static netdev_features_t netdev_fix_features(struct net_device *dev, 5243 netdev_features_t features) 5244 { 5245 /* Fix illegal checksum combinations */ 5246 if ((features & NETIF_F_HW_CSUM) && 5247 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5248 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5249 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5250 } 5251 5252 /* Fix illegal SG+CSUM combinations. */ 5253 if ((features & NETIF_F_SG) && 5254 !(features & NETIF_F_ALL_CSUM)) { 5255 netdev_dbg(dev, 5256 "Dropping NETIF_F_SG since no checksum feature.\n"); 5257 features &= ~NETIF_F_SG; 5258 } 5259 5260 /* TSO requires that SG is present as well. */ 5261 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5262 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5263 features &= ~NETIF_F_ALL_TSO; 5264 } 5265 5266 /* TSO ECN requires that TSO is present as well. */ 5267 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5268 features &= ~NETIF_F_TSO_ECN; 5269 5270 /* Software GSO depends on SG. */ 5271 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5272 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5273 features &= ~NETIF_F_GSO; 5274 } 5275 5276 /* UFO needs SG and checksumming */ 5277 if (features & NETIF_F_UFO) { 5278 /* maybe split UFO into V4 and V6? */ 5279 if (!((features & NETIF_F_GEN_CSUM) || 5280 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5281 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5282 netdev_dbg(dev, 5283 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5284 features &= ~NETIF_F_UFO; 5285 } 5286 5287 if (!(features & NETIF_F_SG)) { 5288 netdev_dbg(dev, 5289 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5290 features &= ~NETIF_F_UFO; 5291 } 5292 } 5293 5294 return features; 5295 } 5296 5297 int __netdev_update_features(struct net_device *dev) 5298 { 5299 netdev_features_t features; 5300 int err = 0; 5301 5302 ASSERT_RTNL(); 5303 5304 features = netdev_get_wanted_features(dev); 5305 5306 if (dev->netdev_ops->ndo_fix_features) 5307 features = dev->netdev_ops->ndo_fix_features(dev, features); 5308 5309 /* driver might be less strict about feature dependencies */ 5310 features = netdev_fix_features(dev, features); 5311 5312 if (dev->features == features) 5313 return 0; 5314 5315 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5316 &dev->features, &features); 5317 5318 if (dev->netdev_ops->ndo_set_features) 5319 err = dev->netdev_ops->ndo_set_features(dev, features); 5320 5321 if (unlikely(err < 0)) { 5322 netdev_err(dev, 5323 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5324 err, &features, &dev->features); 5325 return -1; 5326 } 5327 5328 if (!err) 5329 dev->features = features; 5330 5331 return 1; 5332 } 5333 5334 /** 5335 * netdev_update_features - recalculate device features 5336 * @dev: the device to check 5337 * 5338 * Recalculate dev->features set and send notifications if it 5339 * has changed. Should be called after driver or hardware dependent 5340 * conditions might have changed that influence the features. 5341 */ 5342 void netdev_update_features(struct net_device *dev) 5343 { 5344 if (__netdev_update_features(dev)) 5345 netdev_features_change(dev); 5346 } 5347 EXPORT_SYMBOL(netdev_update_features); 5348 5349 /** 5350 * netdev_change_features - recalculate device features 5351 * @dev: the device to check 5352 * 5353 * Recalculate dev->features set and send notifications even 5354 * if they have not changed. Should be called instead of 5355 * netdev_update_features() if also dev->vlan_features might 5356 * have changed to allow the changes to be propagated to stacked 5357 * VLAN devices. 5358 */ 5359 void netdev_change_features(struct net_device *dev) 5360 { 5361 __netdev_update_features(dev); 5362 netdev_features_change(dev); 5363 } 5364 EXPORT_SYMBOL(netdev_change_features); 5365 5366 /** 5367 * netif_stacked_transfer_operstate - transfer operstate 5368 * @rootdev: the root or lower level device to transfer state from 5369 * @dev: the device to transfer operstate to 5370 * 5371 * Transfer operational state from root to device. This is normally 5372 * called when a stacking relationship exists between the root 5373 * device and the device(a leaf device). 5374 */ 5375 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5376 struct net_device *dev) 5377 { 5378 if (rootdev->operstate == IF_OPER_DORMANT) 5379 netif_dormant_on(dev); 5380 else 5381 netif_dormant_off(dev); 5382 5383 if (netif_carrier_ok(rootdev)) { 5384 if (!netif_carrier_ok(dev)) 5385 netif_carrier_on(dev); 5386 } else { 5387 if (netif_carrier_ok(dev)) 5388 netif_carrier_off(dev); 5389 } 5390 } 5391 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5392 5393 #ifdef CONFIG_RPS 5394 static int netif_alloc_rx_queues(struct net_device *dev) 5395 { 5396 unsigned int i, count = dev->num_rx_queues; 5397 struct netdev_rx_queue *rx; 5398 5399 BUG_ON(count < 1); 5400 5401 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5402 if (!rx) { 5403 pr_err("netdev: Unable to allocate %u rx queues\n", count); 5404 return -ENOMEM; 5405 } 5406 dev->_rx = rx; 5407 5408 for (i = 0; i < count; i++) 5409 rx[i].dev = dev; 5410 return 0; 5411 } 5412 #endif 5413 5414 static void netdev_init_one_queue(struct net_device *dev, 5415 struct netdev_queue *queue, void *_unused) 5416 { 5417 /* Initialize queue lock */ 5418 spin_lock_init(&queue->_xmit_lock); 5419 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5420 queue->xmit_lock_owner = -1; 5421 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5422 queue->dev = dev; 5423 #ifdef CONFIG_BQL 5424 dql_init(&queue->dql, HZ); 5425 #endif 5426 } 5427 5428 static int netif_alloc_netdev_queues(struct net_device *dev) 5429 { 5430 unsigned int count = dev->num_tx_queues; 5431 struct netdev_queue *tx; 5432 5433 BUG_ON(count < 1); 5434 5435 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5436 if (!tx) { 5437 pr_err("netdev: Unable to allocate %u tx queues\n", count); 5438 return -ENOMEM; 5439 } 5440 dev->_tx = tx; 5441 5442 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5443 spin_lock_init(&dev->tx_global_lock); 5444 5445 return 0; 5446 } 5447 5448 /** 5449 * register_netdevice - register a network device 5450 * @dev: device to register 5451 * 5452 * Take a completed network device structure and add it to the kernel 5453 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5454 * chain. 0 is returned on success. A negative errno code is returned 5455 * on a failure to set up the device, or if the name is a duplicate. 5456 * 5457 * Callers must hold the rtnl semaphore. You may want 5458 * register_netdev() instead of this. 5459 * 5460 * BUGS: 5461 * The locking appears insufficient to guarantee two parallel registers 5462 * will not get the same name. 5463 */ 5464 5465 int register_netdevice(struct net_device *dev) 5466 { 5467 int ret; 5468 struct net *net = dev_net(dev); 5469 5470 BUG_ON(dev_boot_phase); 5471 ASSERT_RTNL(); 5472 5473 might_sleep(); 5474 5475 /* When net_device's are persistent, this will be fatal. */ 5476 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5477 BUG_ON(!net); 5478 5479 spin_lock_init(&dev->addr_list_lock); 5480 netdev_set_addr_lockdep_class(dev); 5481 5482 dev->iflink = -1; 5483 5484 ret = dev_get_valid_name(dev, dev->name); 5485 if (ret < 0) 5486 goto out; 5487 5488 /* Init, if this function is available */ 5489 if (dev->netdev_ops->ndo_init) { 5490 ret = dev->netdev_ops->ndo_init(dev); 5491 if (ret) { 5492 if (ret > 0) 5493 ret = -EIO; 5494 goto out; 5495 } 5496 } 5497 5498 dev->ifindex = dev_new_index(net); 5499 if (dev->iflink == -1) 5500 dev->iflink = dev->ifindex; 5501 5502 /* Transfer changeable features to wanted_features and enable 5503 * software offloads (GSO and GRO). 5504 */ 5505 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5506 dev->features |= NETIF_F_SOFT_FEATURES; 5507 dev->wanted_features = dev->features & dev->hw_features; 5508 5509 /* Turn on no cache copy if HW is doing checksum */ 5510 if (!(dev->flags & IFF_LOOPBACK)) { 5511 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5512 if (dev->features & NETIF_F_ALL_CSUM) { 5513 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5514 dev->features |= NETIF_F_NOCACHE_COPY; 5515 } 5516 } 5517 5518 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5519 */ 5520 dev->vlan_features |= NETIF_F_HIGHDMA; 5521 5522 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5523 ret = notifier_to_errno(ret); 5524 if (ret) 5525 goto err_uninit; 5526 5527 ret = netdev_register_kobject(dev); 5528 if (ret) 5529 goto err_uninit; 5530 dev->reg_state = NETREG_REGISTERED; 5531 5532 __netdev_update_features(dev); 5533 5534 /* 5535 * Default initial state at registry is that the 5536 * device is present. 5537 */ 5538 5539 set_bit(__LINK_STATE_PRESENT, &dev->state); 5540 5541 dev_init_scheduler(dev); 5542 dev_hold(dev); 5543 list_netdevice(dev); 5544 5545 /* Notify protocols, that a new device appeared. */ 5546 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5547 ret = notifier_to_errno(ret); 5548 if (ret) { 5549 rollback_registered(dev); 5550 dev->reg_state = NETREG_UNREGISTERED; 5551 } 5552 /* 5553 * Prevent userspace races by waiting until the network 5554 * device is fully setup before sending notifications. 5555 */ 5556 if (!dev->rtnl_link_ops || 5557 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5558 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5559 5560 out: 5561 return ret; 5562 5563 err_uninit: 5564 if (dev->netdev_ops->ndo_uninit) 5565 dev->netdev_ops->ndo_uninit(dev); 5566 goto out; 5567 } 5568 EXPORT_SYMBOL(register_netdevice); 5569 5570 /** 5571 * init_dummy_netdev - init a dummy network device for NAPI 5572 * @dev: device to init 5573 * 5574 * This takes a network device structure and initialize the minimum 5575 * amount of fields so it can be used to schedule NAPI polls without 5576 * registering a full blown interface. This is to be used by drivers 5577 * that need to tie several hardware interfaces to a single NAPI 5578 * poll scheduler due to HW limitations. 5579 */ 5580 int init_dummy_netdev(struct net_device *dev) 5581 { 5582 /* Clear everything. Note we don't initialize spinlocks 5583 * are they aren't supposed to be taken by any of the 5584 * NAPI code and this dummy netdev is supposed to be 5585 * only ever used for NAPI polls 5586 */ 5587 memset(dev, 0, sizeof(struct net_device)); 5588 5589 /* make sure we BUG if trying to hit standard 5590 * register/unregister code path 5591 */ 5592 dev->reg_state = NETREG_DUMMY; 5593 5594 /* NAPI wants this */ 5595 INIT_LIST_HEAD(&dev->napi_list); 5596 5597 /* a dummy interface is started by default */ 5598 set_bit(__LINK_STATE_PRESENT, &dev->state); 5599 set_bit(__LINK_STATE_START, &dev->state); 5600 5601 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5602 * because users of this 'device' dont need to change 5603 * its refcount. 5604 */ 5605 5606 return 0; 5607 } 5608 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5609 5610 5611 /** 5612 * register_netdev - register a network device 5613 * @dev: device to register 5614 * 5615 * Take a completed network device structure and add it to the kernel 5616 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5617 * chain. 0 is returned on success. A negative errno code is returned 5618 * on a failure to set up the device, or if the name is a duplicate. 5619 * 5620 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5621 * and expands the device name if you passed a format string to 5622 * alloc_netdev. 5623 */ 5624 int register_netdev(struct net_device *dev) 5625 { 5626 int err; 5627 5628 rtnl_lock(); 5629 err = register_netdevice(dev); 5630 rtnl_unlock(); 5631 return err; 5632 } 5633 EXPORT_SYMBOL(register_netdev); 5634 5635 int netdev_refcnt_read(const struct net_device *dev) 5636 { 5637 int i, refcnt = 0; 5638 5639 for_each_possible_cpu(i) 5640 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5641 return refcnt; 5642 } 5643 EXPORT_SYMBOL(netdev_refcnt_read); 5644 5645 /* 5646 * netdev_wait_allrefs - wait until all references are gone. 5647 * 5648 * This is called when unregistering network devices. 5649 * 5650 * Any protocol or device that holds a reference should register 5651 * for netdevice notification, and cleanup and put back the 5652 * reference if they receive an UNREGISTER event. 5653 * We can get stuck here if buggy protocols don't correctly 5654 * call dev_put. 5655 */ 5656 static void netdev_wait_allrefs(struct net_device *dev) 5657 { 5658 unsigned long rebroadcast_time, warning_time; 5659 int refcnt; 5660 5661 linkwatch_forget_dev(dev); 5662 5663 rebroadcast_time = warning_time = jiffies; 5664 refcnt = netdev_refcnt_read(dev); 5665 5666 while (refcnt != 0) { 5667 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5668 rtnl_lock(); 5669 5670 /* Rebroadcast unregister notification */ 5671 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5672 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5673 * should have already handle it the first time */ 5674 5675 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5676 &dev->state)) { 5677 /* We must not have linkwatch events 5678 * pending on unregister. If this 5679 * happens, we simply run the queue 5680 * unscheduled, resulting in a noop 5681 * for this device. 5682 */ 5683 linkwatch_run_queue(); 5684 } 5685 5686 __rtnl_unlock(); 5687 5688 rebroadcast_time = jiffies; 5689 } 5690 5691 msleep(250); 5692 5693 refcnt = netdev_refcnt_read(dev); 5694 5695 if (time_after(jiffies, warning_time + 10 * HZ)) { 5696 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5697 dev->name, refcnt); 5698 warning_time = jiffies; 5699 } 5700 } 5701 } 5702 5703 /* The sequence is: 5704 * 5705 * rtnl_lock(); 5706 * ... 5707 * register_netdevice(x1); 5708 * register_netdevice(x2); 5709 * ... 5710 * unregister_netdevice(y1); 5711 * unregister_netdevice(y2); 5712 * ... 5713 * rtnl_unlock(); 5714 * free_netdev(y1); 5715 * free_netdev(y2); 5716 * 5717 * We are invoked by rtnl_unlock(). 5718 * This allows us to deal with problems: 5719 * 1) We can delete sysfs objects which invoke hotplug 5720 * without deadlocking with linkwatch via keventd. 5721 * 2) Since we run with the RTNL semaphore not held, we can sleep 5722 * safely in order to wait for the netdev refcnt to drop to zero. 5723 * 5724 * We must not return until all unregister events added during 5725 * the interval the lock was held have been completed. 5726 */ 5727 void netdev_run_todo(void) 5728 { 5729 struct list_head list; 5730 5731 /* Snapshot list, allow later requests */ 5732 list_replace_init(&net_todo_list, &list); 5733 5734 __rtnl_unlock(); 5735 5736 /* Wait for rcu callbacks to finish before attempting to drain 5737 * the device list. This usually avoids a 250ms wait. 5738 */ 5739 if (!list_empty(&list)) 5740 rcu_barrier(); 5741 5742 while (!list_empty(&list)) { 5743 struct net_device *dev 5744 = list_first_entry(&list, struct net_device, todo_list); 5745 list_del(&dev->todo_list); 5746 5747 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5748 pr_err("network todo '%s' but state %d\n", 5749 dev->name, dev->reg_state); 5750 dump_stack(); 5751 continue; 5752 } 5753 5754 dev->reg_state = NETREG_UNREGISTERED; 5755 5756 on_each_cpu(flush_backlog, dev, 1); 5757 5758 netdev_wait_allrefs(dev); 5759 5760 /* paranoia */ 5761 BUG_ON(netdev_refcnt_read(dev)); 5762 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5763 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5764 WARN_ON(dev->dn_ptr); 5765 5766 if (dev->destructor) 5767 dev->destructor(dev); 5768 5769 /* Free network device */ 5770 kobject_put(&dev->dev.kobj); 5771 } 5772 } 5773 5774 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5775 * fields in the same order, with only the type differing. 5776 */ 5777 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5778 const struct net_device_stats *netdev_stats) 5779 { 5780 #if BITS_PER_LONG == 64 5781 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5782 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5783 #else 5784 size_t i, n = sizeof(*stats64) / sizeof(u64); 5785 const unsigned long *src = (const unsigned long *)netdev_stats; 5786 u64 *dst = (u64 *)stats64; 5787 5788 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5789 sizeof(*stats64) / sizeof(u64)); 5790 for (i = 0; i < n; i++) 5791 dst[i] = src[i]; 5792 #endif 5793 } 5794 EXPORT_SYMBOL(netdev_stats_to_stats64); 5795 5796 /** 5797 * dev_get_stats - get network device statistics 5798 * @dev: device to get statistics from 5799 * @storage: place to store stats 5800 * 5801 * Get network statistics from device. Return @storage. 5802 * The device driver may provide its own method by setting 5803 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5804 * otherwise the internal statistics structure is used. 5805 */ 5806 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5807 struct rtnl_link_stats64 *storage) 5808 { 5809 const struct net_device_ops *ops = dev->netdev_ops; 5810 5811 if (ops->ndo_get_stats64) { 5812 memset(storage, 0, sizeof(*storage)); 5813 ops->ndo_get_stats64(dev, storage); 5814 } else if (ops->ndo_get_stats) { 5815 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5816 } else { 5817 netdev_stats_to_stats64(storage, &dev->stats); 5818 } 5819 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5820 return storage; 5821 } 5822 EXPORT_SYMBOL(dev_get_stats); 5823 5824 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5825 { 5826 struct netdev_queue *queue = dev_ingress_queue(dev); 5827 5828 #ifdef CONFIG_NET_CLS_ACT 5829 if (queue) 5830 return queue; 5831 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5832 if (!queue) 5833 return NULL; 5834 netdev_init_one_queue(dev, queue, NULL); 5835 queue->qdisc = &noop_qdisc; 5836 queue->qdisc_sleeping = &noop_qdisc; 5837 rcu_assign_pointer(dev->ingress_queue, queue); 5838 #endif 5839 return queue; 5840 } 5841 5842 /** 5843 * alloc_netdev_mqs - allocate network device 5844 * @sizeof_priv: size of private data to allocate space for 5845 * @name: device name format string 5846 * @setup: callback to initialize device 5847 * @txqs: the number of TX subqueues to allocate 5848 * @rxqs: the number of RX subqueues to allocate 5849 * 5850 * Allocates a struct net_device with private data area for driver use 5851 * and performs basic initialization. Also allocates subquue structs 5852 * for each queue on the device. 5853 */ 5854 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5855 void (*setup)(struct net_device *), 5856 unsigned int txqs, unsigned int rxqs) 5857 { 5858 struct net_device *dev; 5859 size_t alloc_size; 5860 struct net_device *p; 5861 5862 BUG_ON(strlen(name) >= sizeof(dev->name)); 5863 5864 if (txqs < 1) { 5865 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5866 return NULL; 5867 } 5868 5869 #ifdef CONFIG_RPS 5870 if (rxqs < 1) { 5871 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5872 return NULL; 5873 } 5874 #endif 5875 5876 alloc_size = sizeof(struct net_device); 5877 if (sizeof_priv) { 5878 /* ensure 32-byte alignment of private area */ 5879 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5880 alloc_size += sizeof_priv; 5881 } 5882 /* ensure 32-byte alignment of whole construct */ 5883 alloc_size += NETDEV_ALIGN - 1; 5884 5885 p = kzalloc(alloc_size, GFP_KERNEL); 5886 if (!p) { 5887 pr_err("alloc_netdev: Unable to allocate device\n"); 5888 return NULL; 5889 } 5890 5891 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5892 dev->padded = (char *)dev - (char *)p; 5893 5894 dev->pcpu_refcnt = alloc_percpu(int); 5895 if (!dev->pcpu_refcnt) 5896 goto free_p; 5897 5898 if (dev_addr_init(dev)) 5899 goto free_pcpu; 5900 5901 dev_mc_init(dev); 5902 dev_uc_init(dev); 5903 5904 dev_net_set(dev, &init_net); 5905 5906 dev->gso_max_size = GSO_MAX_SIZE; 5907 5908 INIT_LIST_HEAD(&dev->napi_list); 5909 INIT_LIST_HEAD(&dev->unreg_list); 5910 INIT_LIST_HEAD(&dev->link_watch_list); 5911 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5912 setup(dev); 5913 5914 dev->num_tx_queues = txqs; 5915 dev->real_num_tx_queues = txqs; 5916 if (netif_alloc_netdev_queues(dev)) 5917 goto free_all; 5918 5919 #ifdef CONFIG_RPS 5920 dev->num_rx_queues = rxqs; 5921 dev->real_num_rx_queues = rxqs; 5922 if (netif_alloc_rx_queues(dev)) 5923 goto free_all; 5924 #endif 5925 5926 strcpy(dev->name, name); 5927 dev->group = INIT_NETDEV_GROUP; 5928 return dev; 5929 5930 free_all: 5931 free_netdev(dev); 5932 return NULL; 5933 5934 free_pcpu: 5935 free_percpu(dev->pcpu_refcnt); 5936 kfree(dev->_tx); 5937 #ifdef CONFIG_RPS 5938 kfree(dev->_rx); 5939 #endif 5940 5941 free_p: 5942 kfree(p); 5943 return NULL; 5944 } 5945 EXPORT_SYMBOL(alloc_netdev_mqs); 5946 5947 /** 5948 * free_netdev - free network device 5949 * @dev: device 5950 * 5951 * This function does the last stage of destroying an allocated device 5952 * interface. The reference to the device object is released. 5953 * If this is the last reference then it will be freed. 5954 */ 5955 void free_netdev(struct net_device *dev) 5956 { 5957 struct napi_struct *p, *n; 5958 5959 release_net(dev_net(dev)); 5960 5961 kfree(dev->_tx); 5962 #ifdef CONFIG_RPS 5963 kfree(dev->_rx); 5964 #endif 5965 5966 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 5967 5968 /* Flush device addresses */ 5969 dev_addr_flush(dev); 5970 5971 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5972 netif_napi_del(p); 5973 5974 free_percpu(dev->pcpu_refcnt); 5975 dev->pcpu_refcnt = NULL; 5976 5977 /* Compatibility with error handling in drivers */ 5978 if (dev->reg_state == NETREG_UNINITIALIZED) { 5979 kfree((char *)dev - dev->padded); 5980 return; 5981 } 5982 5983 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5984 dev->reg_state = NETREG_RELEASED; 5985 5986 /* will free via device release */ 5987 put_device(&dev->dev); 5988 } 5989 EXPORT_SYMBOL(free_netdev); 5990 5991 /** 5992 * synchronize_net - Synchronize with packet receive processing 5993 * 5994 * Wait for packets currently being received to be done. 5995 * Does not block later packets from starting. 5996 */ 5997 void synchronize_net(void) 5998 { 5999 might_sleep(); 6000 if (rtnl_is_locked()) 6001 synchronize_rcu_expedited(); 6002 else 6003 synchronize_rcu(); 6004 } 6005 EXPORT_SYMBOL(synchronize_net); 6006 6007 /** 6008 * unregister_netdevice_queue - remove device from the kernel 6009 * @dev: device 6010 * @head: list 6011 * 6012 * This function shuts down a device interface and removes it 6013 * from the kernel tables. 6014 * If head not NULL, device is queued to be unregistered later. 6015 * 6016 * Callers must hold the rtnl semaphore. You may want 6017 * unregister_netdev() instead of this. 6018 */ 6019 6020 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6021 { 6022 ASSERT_RTNL(); 6023 6024 if (head) { 6025 list_move_tail(&dev->unreg_list, head); 6026 } else { 6027 rollback_registered(dev); 6028 /* Finish processing unregister after unlock */ 6029 net_set_todo(dev); 6030 } 6031 } 6032 EXPORT_SYMBOL(unregister_netdevice_queue); 6033 6034 /** 6035 * unregister_netdevice_many - unregister many devices 6036 * @head: list of devices 6037 */ 6038 void unregister_netdevice_many(struct list_head *head) 6039 { 6040 struct net_device *dev; 6041 6042 if (!list_empty(head)) { 6043 rollback_registered_many(head); 6044 list_for_each_entry(dev, head, unreg_list) 6045 net_set_todo(dev); 6046 } 6047 } 6048 EXPORT_SYMBOL(unregister_netdevice_many); 6049 6050 /** 6051 * unregister_netdev - remove device from the kernel 6052 * @dev: device 6053 * 6054 * This function shuts down a device interface and removes it 6055 * from the kernel tables. 6056 * 6057 * This is just a wrapper for unregister_netdevice that takes 6058 * the rtnl semaphore. In general you want to use this and not 6059 * unregister_netdevice. 6060 */ 6061 void unregister_netdev(struct net_device *dev) 6062 { 6063 rtnl_lock(); 6064 unregister_netdevice(dev); 6065 rtnl_unlock(); 6066 } 6067 EXPORT_SYMBOL(unregister_netdev); 6068 6069 /** 6070 * dev_change_net_namespace - move device to different nethost namespace 6071 * @dev: device 6072 * @net: network namespace 6073 * @pat: If not NULL name pattern to try if the current device name 6074 * is already taken in the destination network namespace. 6075 * 6076 * This function shuts down a device interface and moves it 6077 * to a new network namespace. On success 0 is returned, on 6078 * a failure a netagive errno code is returned. 6079 * 6080 * Callers must hold the rtnl semaphore. 6081 */ 6082 6083 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6084 { 6085 int err; 6086 6087 ASSERT_RTNL(); 6088 6089 /* Don't allow namespace local devices to be moved. */ 6090 err = -EINVAL; 6091 if (dev->features & NETIF_F_NETNS_LOCAL) 6092 goto out; 6093 6094 /* Ensure the device has been registrered */ 6095 err = -EINVAL; 6096 if (dev->reg_state != NETREG_REGISTERED) 6097 goto out; 6098 6099 /* Get out if there is nothing todo */ 6100 err = 0; 6101 if (net_eq(dev_net(dev), net)) 6102 goto out; 6103 6104 /* Pick the destination device name, and ensure 6105 * we can use it in the destination network namespace. 6106 */ 6107 err = -EEXIST; 6108 if (__dev_get_by_name(net, dev->name)) { 6109 /* We get here if we can't use the current device name */ 6110 if (!pat) 6111 goto out; 6112 if (dev_get_valid_name(dev, pat) < 0) 6113 goto out; 6114 } 6115 6116 /* 6117 * And now a mini version of register_netdevice unregister_netdevice. 6118 */ 6119 6120 /* If device is running close it first. */ 6121 dev_close(dev); 6122 6123 /* And unlink it from device chain */ 6124 err = -ENODEV; 6125 unlist_netdevice(dev); 6126 6127 synchronize_net(); 6128 6129 /* Shutdown queueing discipline. */ 6130 dev_shutdown(dev); 6131 6132 /* Notify protocols, that we are about to destroy 6133 this device. They should clean all the things. 6134 6135 Note that dev->reg_state stays at NETREG_REGISTERED. 6136 This is wanted because this way 8021q and macvlan know 6137 the device is just moving and can keep their slaves up. 6138 */ 6139 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6140 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6141 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6142 6143 /* 6144 * Flush the unicast and multicast chains 6145 */ 6146 dev_uc_flush(dev); 6147 dev_mc_flush(dev); 6148 6149 /* Actually switch the network namespace */ 6150 dev_net_set(dev, net); 6151 6152 /* If there is an ifindex conflict assign a new one */ 6153 if (__dev_get_by_index(net, dev->ifindex)) { 6154 int iflink = (dev->iflink == dev->ifindex); 6155 dev->ifindex = dev_new_index(net); 6156 if (iflink) 6157 dev->iflink = dev->ifindex; 6158 } 6159 6160 /* Fixup kobjects */ 6161 err = device_rename(&dev->dev, dev->name); 6162 WARN_ON(err); 6163 6164 /* Add the device back in the hashes */ 6165 list_netdevice(dev); 6166 6167 /* Notify protocols, that a new device appeared. */ 6168 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6169 6170 /* 6171 * Prevent userspace races by waiting until the network 6172 * device is fully setup before sending notifications. 6173 */ 6174 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6175 6176 synchronize_net(); 6177 err = 0; 6178 out: 6179 return err; 6180 } 6181 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6182 6183 static int dev_cpu_callback(struct notifier_block *nfb, 6184 unsigned long action, 6185 void *ocpu) 6186 { 6187 struct sk_buff **list_skb; 6188 struct sk_buff *skb; 6189 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6190 struct softnet_data *sd, *oldsd; 6191 6192 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6193 return NOTIFY_OK; 6194 6195 local_irq_disable(); 6196 cpu = smp_processor_id(); 6197 sd = &per_cpu(softnet_data, cpu); 6198 oldsd = &per_cpu(softnet_data, oldcpu); 6199 6200 /* Find end of our completion_queue. */ 6201 list_skb = &sd->completion_queue; 6202 while (*list_skb) 6203 list_skb = &(*list_skb)->next; 6204 /* Append completion queue from offline CPU. */ 6205 *list_skb = oldsd->completion_queue; 6206 oldsd->completion_queue = NULL; 6207 6208 /* Append output queue from offline CPU. */ 6209 if (oldsd->output_queue) { 6210 *sd->output_queue_tailp = oldsd->output_queue; 6211 sd->output_queue_tailp = oldsd->output_queue_tailp; 6212 oldsd->output_queue = NULL; 6213 oldsd->output_queue_tailp = &oldsd->output_queue; 6214 } 6215 /* Append NAPI poll list from offline CPU. */ 6216 if (!list_empty(&oldsd->poll_list)) { 6217 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6218 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6219 } 6220 6221 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6222 local_irq_enable(); 6223 6224 /* Process offline CPU's input_pkt_queue */ 6225 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6226 netif_rx(skb); 6227 input_queue_head_incr(oldsd); 6228 } 6229 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6230 netif_rx(skb); 6231 input_queue_head_incr(oldsd); 6232 } 6233 6234 return NOTIFY_OK; 6235 } 6236 6237 6238 /** 6239 * netdev_increment_features - increment feature set by one 6240 * @all: current feature set 6241 * @one: new feature set 6242 * @mask: mask feature set 6243 * 6244 * Computes a new feature set after adding a device with feature set 6245 * @one to the master device with current feature set @all. Will not 6246 * enable anything that is off in @mask. Returns the new feature set. 6247 */ 6248 netdev_features_t netdev_increment_features(netdev_features_t all, 6249 netdev_features_t one, netdev_features_t mask) 6250 { 6251 if (mask & NETIF_F_GEN_CSUM) 6252 mask |= NETIF_F_ALL_CSUM; 6253 mask |= NETIF_F_VLAN_CHALLENGED; 6254 6255 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6256 all &= one | ~NETIF_F_ALL_FOR_ALL; 6257 6258 /* If one device supports hw checksumming, set for all. */ 6259 if (all & NETIF_F_GEN_CSUM) 6260 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6261 6262 return all; 6263 } 6264 EXPORT_SYMBOL(netdev_increment_features); 6265 6266 static struct hlist_head *netdev_create_hash(void) 6267 { 6268 int i; 6269 struct hlist_head *hash; 6270 6271 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6272 if (hash != NULL) 6273 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6274 INIT_HLIST_HEAD(&hash[i]); 6275 6276 return hash; 6277 } 6278 6279 /* Initialize per network namespace state */ 6280 static int __net_init netdev_init(struct net *net) 6281 { 6282 INIT_LIST_HEAD(&net->dev_base_head); 6283 6284 net->dev_name_head = netdev_create_hash(); 6285 if (net->dev_name_head == NULL) 6286 goto err_name; 6287 6288 net->dev_index_head = netdev_create_hash(); 6289 if (net->dev_index_head == NULL) 6290 goto err_idx; 6291 6292 return 0; 6293 6294 err_idx: 6295 kfree(net->dev_name_head); 6296 err_name: 6297 return -ENOMEM; 6298 } 6299 6300 /** 6301 * netdev_drivername - network driver for the device 6302 * @dev: network device 6303 * 6304 * Determine network driver for device. 6305 */ 6306 const char *netdev_drivername(const struct net_device *dev) 6307 { 6308 const struct device_driver *driver; 6309 const struct device *parent; 6310 const char *empty = ""; 6311 6312 parent = dev->dev.parent; 6313 if (!parent) 6314 return empty; 6315 6316 driver = parent->driver; 6317 if (driver && driver->name) 6318 return driver->name; 6319 return empty; 6320 } 6321 6322 int __netdev_printk(const char *level, const struct net_device *dev, 6323 struct va_format *vaf) 6324 { 6325 int r; 6326 6327 if (dev && dev->dev.parent) 6328 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6329 netdev_name(dev), vaf); 6330 else if (dev) 6331 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6332 else 6333 r = printk("%s(NULL net_device): %pV", level, vaf); 6334 6335 return r; 6336 } 6337 EXPORT_SYMBOL(__netdev_printk); 6338 6339 int netdev_printk(const char *level, const struct net_device *dev, 6340 const char *format, ...) 6341 { 6342 struct va_format vaf; 6343 va_list args; 6344 int r; 6345 6346 va_start(args, format); 6347 6348 vaf.fmt = format; 6349 vaf.va = &args; 6350 6351 r = __netdev_printk(level, dev, &vaf); 6352 va_end(args); 6353 6354 return r; 6355 } 6356 EXPORT_SYMBOL(netdev_printk); 6357 6358 #define define_netdev_printk_level(func, level) \ 6359 int func(const struct net_device *dev, const char *fmt, ...) \ 6360 { \ 6361 int r; \ 6362 struct va_format vaf; \ 6363 va_list args; \ 6364 \ 6365 va_start(args, fmt); \ 6366 \ 6367 vaf.fmt = fmt; \ 6368 vaf.va = &args; \ 6369 \ 6370 r = __netdev_printk(level, dev, &vaf); \ 6371 va_end(args); \ 6372 \ 6373 return r; \ 6374 } \ 6375 EXPORT_SYMBOL(func); 6376 6377 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6378 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6379 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6380 define_netdev_printk_level(netdev_err, KERN_ERR); 6381 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6382 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6383 define_netdev_printk_level(netdev_info, KERN_INFO); 6384 6385 static void __net_exit netdev_exit(struct net *net) 6386 { 6387 kfree(net->dev_name_head); 6388 kfree(net->dev_index_head); 6389 } 6390 6391 static struct pernet_operations __net_initdata netdev_net_ops = { 6392 .init = netdev_init, 6393 .exit = netdev_exit, 6394 }; 6395 6396 static void __net_exit default_device_exit(struct net *net) 6397 { 6398 struct net_device *dev, *aux; 6399 /* 6400 * Push all migratable network devices back to the 6401 * initial network namespace 6402 */ 6403 rtnl_lock(); 6404 for_each_netdev_safe(net, dev, aux) { 6405 int err; 6406 char fb_name[IFNAMSIZ]; 6407 6408 /* Ignore unmoveable devices (i.e. loopback) */ 6409 if (dev->features & NETIF_F_NETNS_LOCAL) 6410 continue; 6411 6412 /* Leave virtual devices for the generic cleanup */ 6413 if (dev->rtnl_link_ops) 6414 continue; 6415 6416 /* Push remaining network devices to init_net */ 6417 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6418 err = dev_change_net_namespace(dev, &init_net, fb_name); 6419 if (err) { 6420 pr_emerg("%s: failed to move %s to init_net: %d\n", 6421 __func__, dev->name, err); 6422 BUG(); 6423 } 6424 } 6425 rtnl_unlock(); 6426 } 6427 6428 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6429 { 6430 /* At exit all network devices most be removed from a network 6431 * namespace. Do this in the reverse order of registration. 6432 * Do this across as many network namespaces as possible to 6433 * improve batching efficiency. 6434 */ 6435 struct net_device *dev; 6436 struct net *net; 6437 LIST_HEAD(dev_kill_list); 6438 6439 rtnl_lock(); 6440 list_for_each_entry(net, net_list, exit_list) { 6441 for_each_netdev_reverse(net, dev) { 6442 if (dev->rtnl_link_ops) 6443 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6444 else 6445 unregister_netdevice_queue(dev, &dev_kill_list); 6446 } 6447 } 6448 unregister_netdevice_many(&dev_kill_list); 6449 list_del(&dev_kill_list); 6450 rtnl_unlock(); 6451 } 6452 6453 static struct pernet_operations __net_initdata default_device_ops = { 6454 .exit = default_device_exit, 6455 .exit_batch = default_device_exit_batch, 6456 }; 6457 6458 /* 6459 * Initialize the DEV module. At boot time this walks the device list and 6460 * unhooks any devices that fail to initialise (normally hardware not 6461 * present) and leaves us with a valid list of present and active devices. 6462 * 6463 */ 6464 6465 /* 6466 * This is called single threaded during boot, so no need 6467 * to take the rtnl semaphore. 6468 */ 6469 static int __init net_dev_init(void) 6470 { 6471 int i, rc = -ENOMEM; 6472 6473 BUG_ON(!dev_boot_phase); 6474 6475 if (dev_proc_init()) 6476 goto out; 6477 6478 if (netdev_kobject_init()) 6479 goto out; 6480 6481 INIT_LIST_HEAD(&ptype_all); 6482 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6483 INIT_LIST_HEAD(&ptype_base[i]); 6484 6485 if (register_pernet_subsys(&netdev_net_ops)) 6486 goto out; 6487 6488 /* 6489 * Initialise the packet receive queues. 6490 */ 6491 6492 for_each_possible_cpu(i) { 6493 struct softnet_data *sd = &per_cpu(softnet_data, i); 6494 6495 memset(sd, 0, sizeof(*sd)); 6496 skb_queue_head_init(&sd->input_pkt_queue); 6497 skb_queue_head_init(&sd->process_queue); 6498 sd->completion_queue = NULL; 6499 INIT_LIST_HEAD(&sd->poll_list); 6500 sd->output_queue = NULL; 6501 sd->output_queue_tailp = &sd->output_queue; 6502 #ifdef CONFIG_RPS 6503 sd->csd.func = rps_trigger_softirq; 6504 sd->csd.info = sd; 6505 sd->csd.flags = 0; 6506 sd->cpu = i; 6507 #endif 6508 6509 sd->backlog.poll = process_backlog; 6510 sd->backlog.weight = weight_p; 6511 sd->backlog.gro_list = NULL; 6512 sd->backlog.gro_count = 0; 6513 } 6514 6515 dev_boot_phase = 0; 6516 6517 /* The loopback device is special if any other network devices 6518 * is present in a network namespace the loopback device must 6519 * be present. Since we now dynamically allocate and free the 6520 * loopback device ensure this invariant is maintained by 6521 * keeping the loopback device as the first device on the 6522 * list of network devices. Ensuring the loopback devices 6523 * is the first device that appears and the last network device 6524 * that disappears. 6525 */ 6526 if (register_pernet_device(&loopback_net_ops)) 6527 goto out; 6528 6529 if (register_pernet_device(&default_device_ops)) 6530 goto out; 6531 6532 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6533 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6534 6535 hotcpu_notifier(dev_cpu_callback, 0); 6536 dst_init(); 6537 dev_mcast_init(); 6538 rc = 0; 6539 out: 6540 return rc; 6541 } 6542 6543 subsys_initcall(net_dev_init); 6544 6545 static int __init initialize_hashrnd(void) 6546 { 6547 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6548 return 0; 6549 } 6550 6551 late_initcall_sync(initialize_hashrnd); 6552 6553