xref: /linux/net/core/dev.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 /*
148  *	The list of packet types we will receive (as opposed to discard)
149  *	and the routines to invoke.
150  *
151  *	Why 16. Because with 16 the only overlap we get on a hash of the
152  *	low nibble of the protocol value is RARP/SNAP/X.25.
153  *
154  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
155  *             sure which should go first, but I bet it won't make much
156  *             difference if we are running VLANs.  The good news is that
157  *             this protocol won't be in the list unless compiled in, so
158  *             the average user (w/out VLANs) will not be adversely affected.
159  *             --BLG
160  *
161  *		0800	IP
162  *		8100    802.1Q VLAN
163  *		0001	802.3
164  *		0002	AX.25
165  *		0004	802.2
166  *		8035	RARP
167  *		0005	SNAP
168  *		0805	X.25
169  *		0806	ARP
170  *		8137	IPX
171  *		0009	Localtalk
172  *		86DD	IPv6
173  */
174 
175 #define PTYPE_HASH_SIZE	(16)
176 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
177 
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly;	/* Taps */
181 
182 /*
183  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184  * semaphore.
185  *
186  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187  *
188  * Writers must hold the rtnl semaphore while they loop through the
189  * dev_base_head list, and hold dev_base_lock for writing when they do the
190  * actual updates.  This allows pure readers to access the list even
191  * while a writer is preparing to update it.
192  *
193  * To put it another way, dev_base_lock is held for writing only to
194  * protect against pure readers; the rtnl semaphore provides the
195  * protection against other writers.
196  *
197  * See, for example usages, register_netdevice() and
198  * unregister_netdevice(), which must be called with the rtnl
199  * semaphore held.
200  */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203 
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 	while (++net->dev_base_seq == 0);
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 
251 	return 0;
252 }
253 
254 /* Device list removal
255  * caller must respect a RCU grace period before freeing/reusing dev
256  */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 	ASSERT_RTNL();
260 
261 	/* Unlink dev from the device chain */
262 	write_lock_bh(&dev_base_lock);
263 	list_del_rcu(&dev->dev_list);
264 	hlist_del_rcu(&dev->name_hlist);
265 	hlist_del_rcu(&dev->index_hlist);
266 	write_unlock_bh(&dev_base_lock);
267 
268 	dev_base_seq_inc(dev_net(dev));
269 }
270 
271 /*
272  *	Our notifier list
273  */
274 
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276 
277 /*
278  *	Device drivers call our routines to queue packets here. We empty the
279  *	queue in the local softnet handler.
280  */
281 
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284 
285 #ifdef CONFIG_LOCKDEP
286 /*
287  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288  * according to dev->type
289  */
290 static const unsigned short netdev_lock_type[] =
291 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306 
307 static const char *const netdev_lock_name[] =
308 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323 
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 	int i;
330 
331 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 		if (netdev_lock_type[i] == dev_type)
333 			return i;
334 	/* the last key is used by default */
335 	return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337 
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 						 unsigned short dev_type)
340 {
341 	int i;
342 
343 	i = netdev_lock_pos(dev_type);
344 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 				   netdev_lock_name[i]);
346 }
347 
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 	int i;
351 
352 	i = netdev_lock_pos(dev->type);
353 	lockdep_set_class_and_name(&dev->addr_list_lock,
354 				   &netdev_addr_lock_key[i],
355 				   netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 						 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366 
367 /*******************************************************************************
368 
369 		Protocol management and registration routines
370 
371 *******************************************************************************/
372 
373 /*
374  *	Add a protocol ID to the list. Now that the input handler is
375  *	smarter we can dispense with all the messy stuff that used to be
376  *	here.
377  *
378  *	BEWARE!!! Protocol handlers, mangling input packets,
379  *	MUST BE last in hash buckets and checking protocol handlers
380  *	MUST start from promiscuous ptype_all chain in net_bh.
381  *	It is true now, do not change it.
382  *	Explanation follows: if protocol handler, mangling packet, will
383  *	be the first on list, it is not able to sense, that packet
384  *	is cloned and should be copied-on-write, so that it will
385  *	change it and subsequent readers will get broken packet.
386  *							--ANK (980803)
387  */
388 
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 	if (pt->type == htons(ETH_P_ALL))
392 		return &ptype_all;
393 	else
394 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396 
397 /**
398  *	dev_add_pack - add packet handler
399  *	@pt: packet type declaration
400  *
401  *	Add a protocol handler to the networking stack. The passed &packet_type
402  *	is linked into kernel lists and may not be freed until it has been
403  *	removed from the kernel lists.
404  *
405  *	This call does not sleep therefore it can not
406  *	guarantee all CPU's that are in middle of receiving packets
407  *	will see the new packet type (until the next received packet).
408  */
409 
410 void dev_add_pack(struct packet_type *pt)
411 {
412 	struct list_head *head = ptype_head(pt);
413 
414 	spin_lock(&ptype_lock);
415 	list_add_rcu(&pt->list, head);
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419 
420 /**
421  *	__dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *      The packet type might still be in use by receivers
430  *	and must not be freed until after all the CPU's have gone
431  *	through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 	struct list_head *head = ptype_head(pt);
436 	struct packet_type *pt1;
437 
438 	spin_lock(&ptype_lock);
439 
440 	list_for_each_entry(pt1, head, list) {
441 		if (pt == pt1) {
442 			list_del_rcu(&pt->list);
443 			goto out;
444 		}
445 	}
446 
447 	pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 	spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452 
453 /**
454  *	dev_remove_pack	 - remove packet handler
455  *	@pt: packet type declaration
456  *
457  *	Remove a protocol handler that was previously added to the kernel
458  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *	from the kernel lists and can be freed or reused once this function
460  *	returns.
461  *
462  *	This call sleeps to guarantee that no CPU is looking at the packet
463  *	type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 	__dev_remove_pack(pt);
468 
469 	synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472 
473 /******************************************************************************
474 
475 		      Device Boot-time Settings Routines
476 
477 *******************************************************************************/
478 
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481 
482 /**
483  *	netdev_boot_setup_add	- add new setup entry
484  *	@name: name of the device
485  *	@map: configured settings for the device
486  *
487  *	Adds new setup entry to the dev_boot_setup list.  The function
488  *	returns 0 on error and 1 on success.  This is a generic routine to
489  *	all netdevices.
490  */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 	struct netdev_boot_setup *s;
494 	int i;
495 
496 	s = dev_boot_setup;
497 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 			memset(s[i].name, 0, sizeof(s[i].name));
500 			strlcpy(s[i].name, name, IFNAMSIZ);
501 			memcpy(&s[i].map, map, sizeof(s[i].map));
502 			break;
503 		}
504 	}
505 
506 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508 
509 /**
510  *	netdev_boot_setup_check	- check boot time settings
511  *	@dev: the netdevice
512  *
513  * 	Check boot time settings for the device.
514  *	The found settings are set for the device to be used
515  *	later in the device probing.
516  *	Returns 0 if no settings found, 1 if they are.
517  */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 	struct netdev_boot_setup *s = dev_boot_setup;
521 	int i;
522 
523 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 		    !strcmp(dev->name, s[i].name)) {
526 			dev->irq 	= s[i].map.irq;
527 			dev->base_addr 	= s[i].map.base_addr;
528 			dev->mem_start 	= s[i].map.mem_start;
529 			dev->mem_end 	= s[i].map.mem_end;
530 			return 1;
531 		}
532 	}
533 	return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536 
537 
538 /**
539  *	netdev_boot_base	- get address from boot time settings
540  *	@prefix: prefix for network device
541  *	@unit: id for network device
542  *
543  * 	Check boot time settings for the base address of device.
544  *	The found settings are set for the device to be used
545  *	later in the device probing.
546  *	Returns 0 if no settings found.
547  */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 	const struct netdev_boot_setup *s = dev_boot_setup;
551 	char name[IFNAMSIZ];
552 	int i;
553 
554 	sprintf(name, "%s%d", prefix, unit);
555 
556 	/*
557 	 * If device already registered then return base of 1
558 	 * to indicate not to probe for this interface
559 	 */
560 	if (__dev_get_by_name(&init_net, name))
561 		return 1;
562 
563 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 		if (!strcmp(name, s[i].name))
565 			return s[i].map.base_addr;
566 	return 0;
567 }
568 
569 /*
570  * Saves at boot time configured settings for any netdevice.
571  */
572 int __init netdev_boot_setup(char *str)
573 {
574 	int ints[5];
575 	struct ifmap map;
576 
577 	str = get_options(str, ARRAY_SIZE(ints), ints);
578 	if (!str || !*str)
579 		return 0;
580 
581 	/* Save settings */
582 	memset(&map, 0, sizeof(map));
583 	if (ints[0] > 0)
584 		map.irq = ints[1];
585 	if (ints[0] > 1)
586 		map.base_addr = ints[2];
587 	if (ints[0] > 2)
588 		map.mem_start = ints[3];
589 	if (ints[0] > 3)
590 		map.mem_end = ints[4];
591 
592 	/* Add new entry to the list */
593 	return netdev_boot_setup_add(str, &map);
594 }
595 
596 __setup("netdev=", netdev_boot_setup);
597 
598 /*******************************************************************************
599 
600 			    Device Interface Subroutines
601 
602 *******************************************************************************/
603 
604 /**
605  *	__dev_get_by_name	- find a device by its name
606  *	@net: the applicable net namespace
607  *	@name: name to find
608  *
609  *	Find an interface by name. Must be called under RTNL semaphore
610  *	or @dev_base_lock. If the name is found a pointer to the device
611  *	is returned. If the name is not found then %NULL is returned. The
612  *	reference counters are not incremented so the caller must be
613  *	careful with locks.
614  */
615 
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 	struct hlist_node *p;
619 	struct net_device *dev;
620 	struct hlist_head *head = dev_name_hash(net, name);
621 
622 	hlist_for_each_entry(dev, p, head, name_hlist)
623 		if (!strncmp(dev->name, name, IFNAMSIZ))
624 			return dev;
625 
626 	return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629 
630 /**
631  *	dev_get_by_name_rcu	- find a device by its name
632  *	@net: the applicable net namespace
633  *	@name: name to find
634  *
635  *	Find an interface by name.
636  *	If the name is found a pointer to the device is returned.
637  * 	If the name is not found then %NULL is returned.
638  *	The reference counters are not incremented so the caller must be
639  *	careful with locks. The caller must hold RCU lock.
640  */
641 
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 	struct hlist_node *p;
645 	struct net_device *dev;
646 	struct hlist_head *head = dev_name_hash(net, name);
647 
648 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 		if (!strncmp(dev->name, name, IFNAMSIZ))
650 			return dev;
651 
652 	return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655 
656 /**
657  *	dev_get_by_name		- find a device by its name
658  *	@net: the applicable net namespace
659  *	@name: name to find
660  *
661  *	Find an interface by name. This can be called from any
662  *	context and does its own locking. The returned handle has
663  *	the usage count incremented and the caller must use dev_put() to
664  *	release it when it is no longer needed. %NULL is returned if no
665  *	matching device is found.
666  */
667 
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 	struct net_device *dev;
671 
672 	rcu_read_lock();
673 	dev = dev_get_by_name_rcu(net, name);
674 	if (dev)
675 		dev_hold(dev);
676 	rcu_read_unlock();
677 	return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680 
681 /**
682  *	__dev_get_by_index - find a device by its ifindex
683  *	@net: the applicable net namespace
684  *	@ifindex: index of device
685  *
686  *	Search for an interface by index. Returns %NULL if the device
687  *	is not found or a pointer to the device. The device has not
688  *	had its reference counter increased so the caller must be careful
689  *	about locking. The caller must hold either the RTNL semaphore
690  *	or @dev_base_lock.
691  */
692 
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 	struct hlist_node *p;
696 	struct net_device *dev;
697 	struct hlist_head *head = dev_index_hash(net, ifindex);
698 
699 	hlist_for_each_entry(dev, p, head, index_hlist)
700 		if (dev->ifindex == ifindex)
701 			return dev;
702 
703 	return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706 
707 /**
708  *	dev_get_by_index_rcu - find a device by its ifindex
709  *	@net: the applicable net namespace
710  *	@ifindex: index of device
711  *
712  *	Search for an interface by index. Returns %NULL if the device
713  *	is not found or a pointer to the device. The device has not
714  *	had its reference counter increased so the caller must be careful
715  *	about locking. The caller must hold RCU lock.
716  */
717 
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 	struct hlist_node *p;
721 	struct net_device *dev;
722 	struct hlist_head *head = dev_index_hash(net, ifindex);
723 
724 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 		if (dev->ifindex == ifindex)
726 			return dev;
727 
728 	return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731 
732 
733 /**
734  *	dev_get_by_index - find a device by its ifindex
735  *	@net: the applicable net namespace
736  *	@ifindex: index of device
737  *
738  *	Search for an interface by index. Returns NULL if the device
739  *	is not found or a pointer to the device. The device returned has
740  *	had a reference added and the pointer is safe until the user calls
741  *	dev_put to indicate they have finished with it.
742  */
743 
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 	struct net_device *dev;
747 
748 	rcu_read_lock();
749 	dev = dev_get_by_index_rcu(net, ifindex);
750 	if (dev)
751 		dev_hold(dev);
752 	rcu_read_unlock();
753 	return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756 
757 /**
758  *	dev_getbyhwaddr_rcu - find a device by its hardware address
759  *	@net: the applicable net namespace
760  *	@type: media type of device
761  *	@ha: hardware address
762  *
763  *	Search for an interface by MAC address. Returns NULL if the device
764  *	is not found or a pointer to the device.
765  *	The caller must hold RCU or RTNL.
766  *	The returned device has not had its ref count increased
767  *	and the caller must therefore be careful about locking
768  *
769  */
770 
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 				       const char *ha)
773 {
774 	struct net_device *dev;
775 
776 	for_each_netdev_rcu(net, dev)
777 		if (dev->type == type &&
778 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
779 			return dev;
780 
781 	return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784 
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 	struct net_device *dev;
788 
789 	ASSERT_RTNL();
790 	for_each_netdev(net, dev)
791 		if (dev->type == type)
792 			return dev;
793 
794 	return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797 
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 	struct net_device *dev, *ret = NULL;
801 
802 	rcu_read_lock();
803 	for_each_netdev_rcu(net, dev)
804 		if (dev->type == type) {
805 			dev_hold(dev);
806 			ret = dev;
807 			break;
808 		}
809 	rcu_read_unlock();
810 	return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813 
814 /**
815  *	dev_get_by_flags_rcu - find any device with given flags
816  *	@net: the applicable net namespace
817  *	@if_flags: IFF_* values
818  *	@mask: bitmask of bits in if_flags to check
819  *
820  *	Search for any interface with the given flags. Returns NULL if a device
821  *	is not found or a pointer to the device. Must be called inside
822  *	rcu_read_lock(), and result refcount is unchanged.
823  */
824 
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 				    unsigned short mask)
827 {
828 	struct net_device *dev, *ret;
829 
830 	ret = NULL;
831 	for_each_netdev_rcu(net, dev) {
832 		if (((dev->flags ^ if_flags) & mask) == 0) {
833 			ret = dev;
834 			break;
835 		}
836 	}
837 	return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840 
841 /**
842  *	dev_valid_name - check if name is okay for network device
843  *	@name: name string
844  *
845  *	Network device names need to be valid file names to
846  *	to allow sysfs to work.  We also disallow any kind of
847  *	whitespace.
848  */
849 bool dev_valid_name(const char *name)
850 {
851 	if (*name == '\0')
852 		return false;
853 	if (strlen(name) >= IFNAMSIZ)
854 		return false;
855 	if (!strcmp(name, ".") || !strcmp(name, ".."))
856 		return false;
857 
858 	while (*name) {
859 		if (*name == '/' || isspace(*name))
860 			return false;
861 		name++;
862 	}
863 	return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866 
867 /**
868  *	__dev_alloc_name - allocate a name for a device
869  *	@net: network namespace to allocate the device name in
870  *	@name: name format string
871  *	@buf:  scratch buffer and result name string
872  *
873  *	Passed a format string - eg "lt%d" it will try and find a suitable
874  *	id. It scans list of devices to build up a free map, then chooses
875  *	the first empty slot. The caller must hold the dev_base or rtnl lock
876  *	while allocating the name and adding the device in order to avoid
877  *	duplicates.
878  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879  *	Returns the number of the unit assigned or a negative errno code.
880  */
881 
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 	int i = 0;
885 	const char *p;
886 	const int max_netdevices = 8*PAGE_SIZE;
887 	unsigned long *inuse;
888 	struct net_device *d;
889 
890 	p = strnchr(name, IFNAMSIZ-1, '%');
891 	if (p) {
892 		/*
893 		 * Verify the string as this thing may have come from
894 		 * the user.  There must be either one "%d" and no other "%"
895 		 * characters.
896 		 */
897 		if (p[1] != 'd' || strchr(p + 2, '%'))
898 			return -EINVAL;
899 
900 		/* Use one page as a bit array of possible slots */
901 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 		if (!inuse)
903 			return -ENOMEM;
904 
905 		for_each_netdev(net, d) {
906 			if (!sscanf(d->name, name, &i))
907 				continue;
908 			if (i < 0 || i >= max_netdevices)
909 				continue;
910 
911 			/*  avoid cases where sscanf is not exact inverse of printf */
912 			snprintf(buf, IFNAMSIZ, name, i);
913 			if (!strncmp(buf, d->name, IFNAMSIZ))
914 				set_bit(i, inuse);
915 		}
916 
917 		i = find_first_zero_bit(inuse, max_netdevices);
918 		free_page((unsigned long) inuse);
919 	}
920 
921 	if (buf != name)
922 		snprintf(buf, IFNAMSIZ, name, i);
923 	if (!__dev_get_by_name(net, buf))
924 		return i;
925 
926 	/* It is possible to run out of possible slots
927 	 * when the name is long and there isn't enough space left
928 	 * for the digits, or if all bits are used.
929 	 */
930 	return -ENFILE;
931 }
932 
933 /**
934  *	dev_alloc_name - allocate a name for a device
935  *	@dev: device
936  *	@name: name format string
937  *
938  *	Passed a format string - eg "lt%d" it will try and find a suitable
939  *	id. It scans list of devices to build up a free map, then chooses
940  *	the first empty slot. The caller must hold the dev_base or rtnl lock
941  *	while allocating the name and adding the device in order to avoid
942  *	duplicates.
943  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944  *	Returns the number of the unit assigned or a negative errno code.
945  */
946 
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 	char buf[IFNAMSIZ];
950 	struct net *net;
951 	int ret;
952 
953 	BUG_ON(!dev_net(dev));
954 	net = dev_net(dev);
955 	ret = __dev_alloc_name(net, name, buf);
956 	if (ret >= 0)
957 		strlcpy(dev->name, buf, IFNAMSIZ);
958 	return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961 
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 	struct net *net;
965 
966 	BUG_ON(!dev_net(dev));
967 	net = dev_net(dev);
968 
969 	if (!dev_valid_name(name))
970 		return -EINVAL;
971 
972 	if (strchr(name, '%'))
973 		return dev_alloc_name(dev, name);
974 	else if (__dev_get_by_name(net, name))
975 		return -EEXIST;
976 	else if (dev->name != name)
977 		strlcpy(dev->name, name, IFNAMSIZ);
978 
979 	return 0;
980 }
981 
982 /**
983  *	dev_change_name - change name of a device
984  *	@dev: device
985  *	@newname: name (or format string) must be at least IFNAMSIZ
986  *
987  *	Change name of a device, can pass format strings "eth%d".
988  *	for wildcarding.
989  */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 	char oldname[IFNAMSIZ];
993 	int err = 0;
994 	int ret;
995 	struct net *net;
996 
997 	ASSERT_RTNL();
998 	BUG_ON(!dev_net(dev));
999 
1000 	net = dev_net(dev);
1001 	if (dev->flags & IFF_UP)
1002 		return -EBUSY;
1003 
1004 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 		return 0;
1006 
1007 	memcpy(oldname, dev->name, IFNAMSIZ);
1008 
1009 	err = dev_get_valid_name(dev, newname);
1010 	if (err < 0)
1011 		return err;
1012 
1013 rollback:
1014 	ret = device_rename(&dev->dev, dev->name);
1015 	if (ret) {
1016 		memcpy(dev->name, oldname, IFNAMSIZ);
1017 		return ret;
1018 	}
1019 
1020 	write_lock_bh(&dev_base_lock);
1021 	hlist_del_rcu(&dev->name_hlist);
1022 	write_unlock_bh(&dev_base_lock);
1023 
1024 	synchronize_rcu();
1025 
1026 	write_lock_bh(&dev_base_lock);
1027 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 	write_unlock_bh(&dev_base_lock);
1029 
1030 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 	ret = notifier_to_errno(ret);
1032 
1033 	if (ret) {
1034 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1035 		if (err >= 0) {
1036 			err = ret;
1037 			memcpy(dev->name, oldname, IFNAMSIZ);
1038 			goto rollback;
1039 		} else {
1040 			pr_err("%s: name change rollback failed: %d\n",
1041 			       dev->name, ret);
1042 		}
1043 	}
1044 
1045 	return err;
1046 }
1047 
1048 /**
1049  *	dev_set_alias - change ifalias of a device
1050  *	@dev: device
1051  *	@alias: name up to IFALIASZ
1052  *	@len: limit of bytes to copy from info
1053  *
1054  *	Set ifalias for a device,
1055  */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 	ASSERT_RTNL();
1059 
1060 	if (len >= IFALIASZ)
1061 		return -EINVAL;
1062 
1063 	if (!len) {
1064 		if (dev->ifalias) {
1065 			kfree(dev->ifalias);
1066 			dev->ifalias = NULL;
1067 		}
1068 		return 0;
1069 	}
1070 
1071 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1072 	if (!dev->ifalias)
1073 		return -ENOMEM;
1074 
1075 	strlcpy(dev->ifalias, alias, len+1);
1076 	return len;
1077 }
1078 
1079 
1080 /**
1081  *	netdev_features_change - device changes features
1082  *	@dev: device to cause notification
1083  *
1084  *	Called to indicate a device has changed features.
1085  */
1086 void netdev_features_change(struct net_device *dev)
1087 {
1088 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1089 }
1090 EXPORT_SYMBOL(netdev_features_change);
1091 
1092 /**
1093  *	netdev_state_change - device changes state
1094  *	@dev: device to cause notification
1095  *
1096  *	Called to indicate a device has changed state. This function calls
1097  *	the notifier chains for netdev_chain and sends a NEWLINK message
1098  *	to the routing socket.
1099  */
1100 void netdev_state_change(struct net_device *dev)
1101 {
1102 	if (dev->flags & IFF_UP) {
1103 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1104 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1105 	}
1106 }
1107 EXPORT_SYMBOL(netdev_state_change);
1108 
1109 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1110 {
1111 	return call_netdevice_notifiers(event, dev);
1112 }
1113 EXPORT_SYMBOL(netdev_bonding_change);
1114 
1115 /**
1116  *	dev_load 	- load a network module
1117  *	@net: the applicable net namespace
1118  *	@name: name of interface
1119  *
1120  *	If a network interface is not present and the process has suitable
1121  *	privileges this function loads the module. If module loading is not
1122  *	available in this kernel then it becomes a nop.
1123  */
1124 
1125 void dev_load(struct net *net, const char *name)
1126 {
1127 	struct net_device *dev;
1128 	int no_module;
1129 
1130 	rcu_read_lock();
1131 	dev = dev_get_by_name_rcu(net, name);
1132 	rcu_read_unlock();
1133 
1134 	no_module = !dev;
1135 	if (no_module && capable(CAP_NET_ADMIN))
1136 		no_module = request_module("netdev-%s", name);
1137 	if (no_module && capable(CAP_SYS_MODULE)) {
1138 		if (!request_module("%s", name))
1139 			pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1140 				name);
1141 	}
1142 }
1143 EXPORT_SYMBOL(dev_load);
1144 
1145 static int __dev_open(struct net_device *dev)
1146 {
1147 	const struct net_device_ops *ops = dev->netdev_ops;
1148 	int ret;
1149 
1150 	ASSERT_RTNL();
1151 
1152 	if (!netif_device_present(dev))
1153 		return -ENODEV;
1154 
1155 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1156 	ret = notifier_to_errno(ret);
1157 	if (ret)
1158 		return ret;
1159 
1160 	set_bit(__LINK_STATE_START, &dev->state);
1161 
1162 	if (ops->ndo_validate_addr)
1163 		ret = ops->ndo_validate_addr(dev);
1164 
1165 	if (!ret && ops->ndo_open)
1166 		ret = ops->ndo_open(dev);
1167 
1168 	if (ret)
1169 		clear_bit(__LINK_STATE_START, &dev->state);
1170 	else {
1171 		dev->flags |= IFF_UP;
1172 		net_dmaengine_get();
1173 		dev_set_rx_mode(dev);
1174 		dev_activate(dev);
1175 	}
1176 
1177 	return ret;
1178 }
1179 
1180 /**
1181  *	dev_open	- prepare an interface for use.
1182  *	@dev:	device to open
1183  *
1184  *	Takes a device from down to up state. The device's private open
1185  *	function is invoked and then the multicast lists are loaded. Finally
1186  *	the device is moved into the up state and a %NETDEV_UP message is
1187  *	sent to the netdev notifier chain.
1188  *
1189  *	Calling this function on an active interface is a nop. On a failure
1190  *	a negative errno code is returned.
1191  */
1192 int dev_open(struct net_device *dev)
1193 {
1194 	int ret;
1195 
1196 	if (dev->flags & IFF_UP)
1197 		return 0;
1198 
1199 	ret = __dev_open(dev);
1200 	if (ret < 0)
1201 		return ret;
1202 
1203 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1204 	call_netdevice_notifiers(NETDEV_UP, dev);
1205 
1206 	return ret;
1207 }
1208 EXPORT_SYMBOL(dev_open);
1209 
1210 static int __dev_close_many(struct list_head *head)
1211 {
1212 	struct net_device *dev;
1213 
1214 	ASSERT_RTNL();
1215 	might_sleep();
1216 
1217 	list_for_each_entry(dev, head, unreg_list) {
1218 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1219 
1220 		clear_bit(__LINK_STATE_START, &dev->state);
1221 
1222 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1223 		 * can be even on different cpu. So just clear netif_running().
1224 		 *
1225 		 * dev->stop() will invoke napi_disable() on all of it's
1226 		 * napi_struct instances on this device.
1227 		 */
1228 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1229 	}
1230 
1231 	dev_deactivate_many(head);
1232 
1233 	list_for_each_entry(dev, head, unreg_list) {
1234 		const struct net_device_ops *ops = dev->netdev_ops;
1235 
1236 		/*
1237 		 *	Call the device specific close. This cannot fail.
1238 		 *	Only if device is UP
1239 		 *
1240 		 *	We allow it to be called even after a DETACH hot-plug
1241 		 *	event.
1242 		 */
1243 		if (ops->ndo_stop)
1244 			ops->ndo_stop(dev);
1245 
1246 		dev->flags &= ~IFF_UP;
1247 		net_dmaengine_put();
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 static int __dev_close(struct net_device *dev)
1254 {
1255 	int retval;
1256 	LIST_HEAD(single);
1257 
1258 	list_add(&dev->unreg_list, &single);
1259 	retval = __dev_close_many(&single);
1260 	list_del(&single);
1261 	return retval;
1262 }
1263 
1264 static int dev_close_many(struct list_head *head)
1265 {
1266 	struct net_device *dev, *tmp;
1267 	LIST_HEAD(tmp_list);
1268 
1269 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1270 		if (!(dev->flags & IFF_UP))
1271 			list_move(&dev->unreg_list, &tmp_list);
1272 
1273 	__dev_close_many(head);
1274 
1275 	list_for_each_entry(dev, head, unreg_list) {
1276 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1277 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1278 	}
1279 
1280 	/* rollback_registered_many needs the complete original list */
1281 	list_splice(&tmp_list, head);
1282 	return 0;
1283 }
1284 
1285 /**
1286  *	dev_close - shutdown an interface.
1287  *	@dev: device to shutdown
1288  *
1289  *	This function moves an active device into down state. A
1290  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1291  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1292  *	chain.
1293  */
1294 int dev_close(struct net_device *dev)
1295 {
1296 	if (dev->flags & IFF_UP) {
1297 		LIST_HEAD(single);
1298 
1299 		list_add(&dev->unreg_list, &single);
1300 		dev_close_many(&single);
1301 		list_del(&single);
1302 	}
1303 	return 0;
1304 }
1305 EXPORT_SYMBOL(dev_close);
1306 
1307 
1308 /**
1309  *	dev_disable_lro - disable Large Receive Offload on a device
1310  *	@dev: device
1311  *
1312  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1313  *	called under RTNL.  This is needed if received packets may be
1314  *	forwarded to another interface.
1315  */
1316 void dev_disable_lro(struct net_device *dev)
1317 {
1318 	/*
1319 	 * If we're trying to disable lro on a vlan device
1320 	 * use the underlying physical device instead
1321 	 */
1322 	if (is_vlan_dev(dev))
1323 		dev = vlan_dev_real_dev(dev);
1324 
1325 	dev->wanted_features &= ~NETIF_F_LRO;
1326 	netdev_update_features(dev);
1327 
1328 	if (unlikely(dev->features & NETIF_F_LRO))
1329 		netdev_WARN(dev, "failed to disable LRO!\n");
1330 }
1331 EXPORT_SYMBOL(dev_disable_lro);
1332 
1333 
1334 static int dev_boot_phase = 1;
1335 
1336 /**
1337  *	register_netdevice_notifier - register a network notifier block
1338  *	@nb: notifier
1339  *
1340  *	Register a notifier to be called when network device events occur.
1341  *	The notifier passed is linked into the kernel structures and must
1342  *	not be reused until it has been unregistered. A negative errno code
1343  *	is returned on a failure.
1344  *
1345  * 	When registered all registration and up events are replayed
1346  *	to the new notifier to allow device to have a race free
1347  *	view of the network device list.
1348  */
1349 
1350 int register_netdevice_notifier(struct notifier_block *nb)
1351 {
1352 	struct net_device *dev;
1353 	struct net_device *last;
1354 	struct net *net;
1355 	int err;
1356 
1357 	rtnl_lock();
1358 	err = raw_notifier_chain_register(&netdev_chain, nb);
1359 	if (err)
1360 		goto unlock;
1361 	if (dev_boot_phase)
1362 		goto unlock;
1363 	for_each_net(net) {
1364 		for_each_netdev(net, dev) {
1365 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1366 			err = notifier_to_errno(err);
1367 			if (err)
1368 				goto rollback;
1369 
1370 			if (!(dev->flags & IFF_UP))
1371 				continue;
1372 
1373 			nb->notifier_call(nb, NETDEV_UP, dev);
1374 		}
1375 	}
1376 
1377 unlock:
1378 	rtnl_unlock();
1379 	return err;
1380 
1381 rollback:
1382 	last = dev;
1383 	for_each_net(net) {
1384 		for_each_netdev(net, dev) {
1385 			if (dev == last)
1386 				goto outroll;
1387 
1388 			if (dev->flags & IFF_UP) {
1389 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1390 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1391 			}
1392 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1393 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1394 		}
1395 	}
1396 
1397 outroll:
1398 	raw_notifier_chain_unregister(&netdev_chain, nb);
1399 	goto unlock;
1400 }
1401 EXPORT_SYMBOL(register_netdevice_notifier);
1402 
1403 /**
1404  *	unregister_netdevice_notifier - unregister a network notifier block
1405  *	@nb: notifier
1406  *
1407  *	Unregister a notifier previously registered by
1408  *	register_netdevice_notifier(). The notifier is unlinked into the
1409  *	kernel structures and may then be reused. A negative errno code
1410  *	is returned on a failure.
1411  *
1412  * 	After unregistering unregister and down device events are synthesized
1413  *	for all devices on the device list to the removed notifier to remove
1414  *	the need for special case cleanup code.
1415  */
1416 
1417 int unregister_netdevice_notifier(struct notifier_block *nb)
1418 {
1419 	struct net_device *dev;
1420 	struct net *net;
1421 	int err;
1422 
1423 	rtnl_lock();
1424 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1425 	if (err)
1426 		goto unlock;
1427 
1428 	for_each_net(net) {
1429 		for_each_netdev(net, dev) {
1430 			if (dev->flags & IFF_UP) {
1431 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1432 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1433 			}
1434 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1435 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1436 		}
1437 	}
1438 unlock:
1439 	rtnl_unlock();
1440 	return err;
1441 }
1442 EXPORT_SYMBOL(unregister_netdevice_notifier);
1443 
1444 /**
1445  *	call_netdevice_notifiers - call all network notifier blocks
1446  *      @val: value passed unmodified to notifier function
1447  *      @dev: net_device pointer passed unmodified to notifier function
1448  *
1449  *	Call all network notifier blocks.  Parameters and return value
1450  *	are as for raw_notifier_call_chain().
1451  */
1452 
1453 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1454 {
1455 	ASSERT_RTNL();
1456 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1457 }
1458 EXPORT_SYMBOL(call_netdevice_notifiers);
1459 
1460 static struct static_key netstamp_needed __read_mostly;
1461 #ifdef HAVE_JUMP_LABEL
1462 /* We are not allowed to call static_key_slow_dec() from irq context
1463  * If net_disable_timestamp() is called from irq context, defer the
1464  * static_key_slow_dec() calls.
1465  */
1466 static atomic_t netstamp_needed_deferred;
1467 #endif
1468 
1469 void net_enable_timestamp(void)
1470 {
1471 #ifdef HAVE_JUMP_LABEL
1472 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1473 
1474 	if (deferred) {
1475 		while (--deferred)
1476 			static_key_slow_dec(&netstamp_needed);
1477 		return;
1478 	}
1479 #endif
1480 	WARN_ON(in_interrupt());
1481 	static_key_slow_inc(&netstamp_needed);
1482 }
1483 EXPORT_SYMBOL(net_enable_timestamp);
1484 
1485 void net_disable_timestamp(void)
1486 {
1487 #ifdef HAVE_JUMP_LABEL
1488 	if (in_interrupt()) {
1489 		atomic_inc(&netstamp_needed_deferred);
1490 		return;
1491 	}
1492 #endif
1493 	static_key_slow_dec(&netstamp_needed);
1494 }
1495 EXPORT_SYMBOL(net_disable_timestamp);
1496 
1497 static inline void net_timestamp_set(struct sk_buff *skb)
1498 {
1499 	skb->tstamp.tv64 = 0;
1500 	if (static_key_false(&netstamp_needed))
1501 		__net_timestamp(skb);
1502 }
1503 
1504 #define net_timestamp_check(COND, SKB)			\
1505 	if (static_key_false(&netstamp_needed)) {		\
1506 		if ((COND) && !(SKB)->tstamp.tv64)	\
1507 			__net_timestamp(SKB);		\
1508 	}						\
1509 
1510 static int net_hwtstamp_validate(struct ifreq *ifr)
1511 {
1512 	struct hwtstamp_config cfg;
1513 	enum hwtstamp_tx_types tx_type;
1514 	enum hwtstamp_rx_filters rx_filter;
1515 	int tx_type_valid = 0;
1516 	int rx_filter_valid = 0;
1517 
1518 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1519 		return -EFAULT;
1520 
1521 	if (cfg.flags) /* reserved for future extensions */
1522 		return -EINVAL;
1523 
1524 	tx_type = cfg.tx_type;
1525 	rx_filter = cfg.rx_filter;
1526 
1527 	switch (tx_type) {
1528 	case HWTSTAMP_TX_OFF:
1529 	case HWTSTAMP_TX_ON:
1530 	case HWTSTAMP_TX_ONESTEP_SYNC:
1531 		tx_type_valid = 1;
1532 		break;
1533 	}
1534 
1535 	switch (rx_filter) {
1536 	case HWTSTAMP_FILTER_NONE:
1537 	case HWTSTAMP_FILTER_ALL:
1538 	case HWTSTAMP_FILTER_SOME:
1539 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1540 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1541 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1542 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1543 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1544 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1545 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1546 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1547 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1548 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1549 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1550 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1551 		rx_filter_valid = 1;
1552 		break;
1553 	}
1554 
1555 	if (!tx_type_valid || !rx_filter_valid)
1556 		return -ERANGE;
1557 
1558 	return 0;
1559 }
1560 
1561 static inline bool is_skb_forwardable(struct net_device *dev,
1562 				      struct sk_buff *skb)
1563 {
1564 	unsigned int len;
1565 
1566 	if (!(dev->flags & IFF_UP))
1567 		return false;
1568 
1569 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1570 	if (skb->len <= len)
1571 		return true;
1572 
1573 	/* if TSO is enabled, we don't care about the length as the packet
1574 	 * could be forwarded without being segmented before
1575 	 */
1576 	if (skb_is_gso(skb))
1577 		return true;
1578 
1579 	return false;
1580 }
1581 
1582 /**
1583  * dev_forward_skb - loopback an skb to another netif
1584  *
1585  * @dev: destination network device
1586  * @skb: buffer to forward
1587  *
1588  * return values:
1589  *	NET_RX_SUCCESS	(no congestion)
1590  *	NET_RX_DROP     (packet was dropped, but freed)
1591  *
1592  * dev_forward_skb can be used for injecting an skb from the
1593  * start_xmit function of one device into the receive queue
1594  * of another device.
1595  *
1596  * The receiving device may be in another namespace, so
1597  * we have to clear all information in the skb that could
1598  * impact namespace isolation.
1599  */
1600 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1601 {
1602 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1603 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1604 			atomic_long_inc(&dev->rx_dropped);
1605 			kfree_skb(skb);
1606 			return NET_RX_DROP;
1607 		}
1608 	}
1609 
1610 	skb_orphan(skb);
1611 	nf_reset(skb);
1612 
1613 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1614 		atomic_long_inc(&dev->rx_dropped);
1615 		kfree_skb(skb);
1616 		return NET_RX_DROP;
1617 	}
1618 	skb->skb_iif = 0;
1619 	skb->dev = dev;
1620 	skb_dst_drop(skb);
1621 	skb->tstamp.tv64 = 0;
1622 	skb->pkt_type = PACKET_HOST;
1623 	skb->protocol = eth_type_trans(skb, dev);
1624 	skb->mark = 0;
1625 	secpath_reset(skb);
1626 	nf_reset(skb);
1627 	return netif_rx(skb);
1628 }
1629 EXPORT_SYMBOL_GPL(dev_forward_skb);
1630 
1631 static inline int deliver_skb(struct sk_buff *skb,
1632 			      struct packet_type *pt_prev,
1633 			      struct net_device *orig_dev)
1634 {
1635 	atomic_inc(&skb->users);
1636 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1637 }
1638 
1639 /*
1640  *	Support routine. Sends outgoing frames to any network
1641  *	taps currently in use.
1642  */
1643 
1644 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1645 {
1646 	struct packet_type *ptype;
1647 	struct sk_buff *skb2 = NULL;
1648 	struct packet_type *pt_prev = NULL;
1649 
1650 	rcu_read_lock();
1651 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1652 		/* Never send packets back to the socket
1653 		 * they originated from - MvS (miquels@drinkel.ow.org)
1654 		 */
1655 		if ((ptype->dev == dev || !ptype->dev) &&
1656 		    (ptype->af_packet_priv == NULL ||
1657 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1658 			if (pt_prev) {
1659 				deliver_skb(skb2, pt_prev, skb->dev);
1660 				pt_prev = ptype;
1661 				continue;
1662 			}
1663 
1664 			skb2 = skb_clone(skb, GFP_ATOMIC);
1665 			if (!skb2)
1666 				break;
1667 
1668 			net_timestamp_set(skb2);
1669 
1670 			/* skb->nh should be correctly
1671 			   set by sender, so that the second statement is
1672 			   just protection against buggy protocols.
1673 			 */
1674 			skb_reset_mac_header(skb2);
1675 
1676 			if (skb_network_header(skb2) < skb2->data ||
1677 			    skb2->network_header > skb2->tail) {
1678 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1679 						     ntohs(skb2->protocol),
1680 						     dev->name);
1681 				skb_reset_network_header(skb2);
1682 			}
1683 
1684 			skb2->transport_header = skb2->network_header;
1685 			skb2->pkt_type = PACKET_OUTGOING;
1686 			pt_prev = ptype;
1687 		}
1688 	}
1689 	if (pt_prev)
1690 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1691 	rcu_read_unlock();
1692 }
1693 
1694 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1695  * @dev: Network device
1696  * @txq: number of queues available
1697  *
1698  * If real_num_tx_queues is changed the tc mappings may no longer be
1699  * valid. To resolve this verify the tc mapping remains valid and if
1700  * not NULL the mapping. With no priorities mapping to this
1701  * offset/count pair it will no longer be used. In the worst case TC0
1702  * is invalid nothing can be done so disable priority mappings. If is
1703  * expected that drivers will fix this mapping if they can before
1704  * calling netif_set_real_num_tx_queues.
1705  */
1706 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1707 {
1708 	int i;
1709 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1710 
1711 	/* If TC0 is invalidated disable TC mapping */
1712 	if (tc->offset + tc->count > txq) {
1713 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1714 		dev->num_tc = 0;
1715 		return;
1716 	}
1717 
1718 	/* Invalidated prio to tc mappings set to TC0 */
1719 	for (i = 1; i < TC_BITMASK + 1; i++) {
1720 		int q = netdev_get_prio_tc_map(dev, i);
1721 
1722 		tc = &dev->tc_to_txq[q];
1723 		if (tc->offset + tc->count > txq) {
1724 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1725 				i, q);
1726 			netdev_set_prio_tc_map(dev, i, 0);
1727 		}
1728 	}
1729 }
1730 
1731 /*
1732  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1733  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1734  */
1735 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1736 {
1737 	int rc;
1738 
1739 	if (txq < 1 || txq > dev->num_tx_queues)
1740 		return -EINVAL;
1741 
1742 	if (dev->reg_state == NETREG_REGISTERED ||
1743 	    dev->reg_state == NETREG_UNREGISTERING) {
1744 		ASSERT_RTNL();
1745 
1746 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1747 						  txq);
1748 		if (rc)
1749 			return rc;
1750 
1751 		if (dev->num_tc)
1752 			netif_setup_tc(dev, txq);
1753 
1754 		if (txq < dev->real_num_tx_queues)
1755 			qdisc_reset_all_tx_gt(dev, txq);
1756 	}
1757 
1758 	dev->real_num_tx_queues = txq;
1759 	return 0;
1760 }
1761 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1762 
1763 #ifdef CONFIG_RPS
1764 /**
1765  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1766  *	@dev: Network device
1767  *	@rxq: Actual number of RX queues
1768  *
1769  *	This must be called either with the rtnl_lock held or before
1770  *	registration of the net device.  Returns 0 on success, or a
1771  *	negative error code.  If called before registration, it always
1772  *	succeeds.
1773  */
1774 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1775 {
1776 	int rc;
1777 
1778 	if (rxq < 1 || rxq > dev->num_rx_queues)
1779 		return -EINVAL;
1780 
1781 	if (dev->reg_state == NETREG_REGISTERED) {
1782 		ASSERT_RTNL();
1783 
1784 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1785 						  rxq);
1786 		if (rc)
1787 			return rc;
1788 	}
1789 
1790 	dev->real_num_rx_queues = rxq;
1791 	return 0;
1792 }
1793 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1794 #endif
1795 
1796 static inline void __netif_reschedule(struct Qdisc *q)
1797 {
1798 	struct softnet_data *sd;
1799 	unsigned long flags;
1800 
1801 	local_irq_save(flags);
1802 	sd = &__get_cpu_var(softnet_data);
1803 	q->next_sched = NULL;
1804 	*sd->output_queue_tailp = q;
1805 	sd->output_queue_tailp = &q->next_sched;
1806 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1807 	local_irq_restore(flags);
1808 }
1809 
1810 void __netif_schedule(struct Qdisc *q)
1811 {
1812 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1813 		__netif_reschedule(q);
1814 }
1815 EXPORT_SYMBOL(__netif_schedule);
1816 
1817 void dev_kfree_skb_irq(struct sk_buff *skb)
1818 {
1819 	if (atomic_dec_and_test(&skb->users)) {
1820 		struct softnet_data *sd;
1821 		unsigned long flags;
1822 
1823 		local_irq_save(flags);
1824 		sd = &__get_cpu_var(softnet_data);
1825 		skb->next = sd->completion_queue;
1826 		sd->completion_queue = skb;
1827 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1828 		local_irq_restore(flags);
1829 	}
1830 }
1831 EXPORT_SYMBOL(dev_kfree_skb_irq);
1832 
1833 void dev_kfree_skb_any(struct sk_buff *skb)
1834 {
1835 	if (in_irq() || irqs_disabled())
1836 		dev_kfree_skb_irq(skb);
1837 	else
1838 		dev_kfree_skb(skb);
1839 }
1840 EXPORT_SYMBOL(dev_kfree_skb_any);
1841 
1842 
1843 /**
1844  * netif_device_detach - mark device as removed
1845  * @dev: network device
1846  *
1847  * Mark device as removed from system and therefore no longer available.
1848  */
1849 void netif_device_detach(struct net_device *dev)
1850 {
1851 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1852 	    netif_running(dev)) {
1853 		netif_tx_stop_all_queues(dev);
1854 	}
1855 }
1856 EXPORT_SYMBOL(netif_device_detach);
1857 
1858 /**
1859  * netif_device_attach - mark device as attached
1860  * @dev: network device
1861  *
1862  * Mark device as attached from system and restart if needed.
1863  */
1864 void netif_device_attach(struct net_device *dev)
1865 {
1866 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1867 	    netif_running(dev)) {
1868 		netif_tx_wake_all_queues(dev);
1869 		__netdev_watchdog_up(dev);
1870 	}
1871 }
1872 EXPORT_SYMBOL(netif_device_attach);
1873 
1874 static void skb_warn_bad_offload(const struct sk_buff *skb)
1875 {
1876 	static const netdev_features_t null_features = 0;
1877 	struct net_device *dev = skb->dev;
1878 	const char *driver = "";
1879 
1880 	if (dev && dev->dev.parent)
1881 		driver = dev_driver_string(dev->dev.parent);
1882 
1883 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1884 	     "gso_type=%d ip_summed=%d\n",
1885 	     driver, dev ? &dev->features : &null_features,
1886 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1887 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1888 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1889 }
1890 
1891 /*
1892  * Invalidate hardware checksum when packet is to be mangled, and
1893  * complete checksum manually on outgoing path.
1894  */
1895 int skb_checksum_help(struct sk_buff *skb)
1896 {
1897 	__wsum csum;
1898 	int ret = 0, offset;
1899 
1900 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1901 		goto out_set_summed;
1902 
1903 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1904 		skb_warn_bad_offload(skb);
1905 		return -EINVAL;
1906 	}
1907 
1908 	offset = skb_checksum_start_offset(skb);
1909 	BUG_ON(offset >= skb_headlen(skb));
1910 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1911 
1912 	offset += skb->csum_offset;
1913 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1914 
1915 	if (skb_cloned(skb) &&
1916 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1917 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1918 		if (ret)
1919 			goto out;
1920 	}
1921 
1922 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1923 out_set_summed:
1924 	skb->ip_summed = CHECKSUM_NONE;
1925 out:
1926 	return ret;
1927 }
1928 EXPORT_SYMBOL(skb_checksum_help);
1929 
1930 /**
1931  *	skb_gso_segment - Perform segmentation on skb.
1932  *	@skb: buffer to segment
1933  *	@features: features for the output path (see dev->features)
1934  *
1935  *	This function segments the given skb and returns a list of segments.
1936  *
1937  *	It may return NULL if the skb requires no segmentation.  This is
1938  *	only possible when GSO is used for verifying header integrity.
1939  */
1940 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1941 	netdev_features_t features)
1942 {
1943 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1944 	struct packet_type *ptype;
1945 	__be16 type = skb->protocol;
1946 	int vlan_depth = ETH_HLEN;
1947 	int err;
1948 
1949 	while (type == htons(ETH_P_8021Q)) {
1950 		struct vlan_hdr *vh;
1951 
1952 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1953 			return ERR_PTR(-EINVAL);
1954 
1955 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1956 		type = vh->h_vlan_encapsulated_proto;
1957 		vlan_depth += VLAN_HLEN;
1958 	}
1959 
1960 	skb_reset_mac_header(skb);
1961 	skb->mac_len = skb->network_header - skb->mac_header;
1962 	__skb_pull(skb, skb->mac_len);
1963 
1964 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1965 		skb_warn_bad_offload(skb);
1966 
1967 		if (skb_header_cloned(skb) &&
1968 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1969 			return ERR_PTR(err);
1970 	}
1971 
1972 	rcu_read_lock();
1973 	list_for_each_entry_rcu(ptype,
1974 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1975 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1976 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1977 				err = ptype->gso_send_check(skb);
1978 				segs = ERR_PTR(err);
1979 				if (err || skb_gso_ok(skb, features))
1980 					break;
1981 				__skb_push(skb, (skb->data -
1982 						 skb_network_header(skb)));
1983 			}
1984 			segs = ptype->gso_segment(skb, features);
1985 			break;
1986 		}
1987 	}
1988 	rcu_read_unlock();
1989 
1990 	__skb_push(skb, skb->data - skb_mac_header(skb));
1991 
1992 	return segs;
1993 }
1994 EXPORT_SYMBOL(skb_gso_segment);
1995 
1996 /* Take action when hardware reception checksum errors are detected. */
1997 #ifdef CONFIG_BUG
1998 void netdev_rx_csum_fault(struct net_device *dev)
1999 {
2000 	if (net_ratelimit()) {
2001 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2002 		dump_stack();
2003 	}
2004 }
2005 EXPORT_SYMBOL(netdev_rx_csum_fault);
2006 #endif
2007 
2008 /* Actually, we should eliminate this check as soon as we know, that:
2009  * 1. IOMMU is present and allows to map all the memory.
2010  * 2. No high memory really exists on this machine.
2011  */
2012 
2013 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2014 {
2015 #ifdef CONFIG_HIGHMEM
2016 	int i;
2017 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2018 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2019 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2020 			if (PageHighMem(skb_frag_page(frag)))
2021 				return 1;
2022 		}
2023 	}
2024 
2025 	if (PCI_DMA_BUS_IS_PHYS) {
2026 		struct device *pdev = dev->dev.parent;
2027 
2028 		if (!pdev)
2029 			return 0;
2030 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2031 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2032 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2033 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2034 				return 1;
2035 		}
2036 	}
2037 #endif
2038 	return 0;
2039 }
2040 
2041 struct dev_gso_cb {
2042 	void (*destructor)(struct sk_buff *skb);
2043 };
2044 
2045 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2046 
2047 static void dev_gso_skb_destructor(struct sk_buff *skb)
2048 {
2049 	struct dev_gso_cb *cb;
2050 
2051 	do {
2052 		struct sk_buff *nskb = skb->next;
2053 
2054 		skb->next = nskb->next;
2055 		nskb->next = NULL;
2056 		kfree_skb(nskb);
2057 	} while (skb->next);
2058 
2059 	cb = DEV_GSO_CB(skb);
2060 	if (cb->destructor)
2061 		cb->destructor(skb);
2062 }
2063 
2064 /**
2065  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2066  *	@skb: buffer to segment
2067  *	@features: device features as applicable to this skb
2068  *
2069  *	This function segments the given skb and stores the list of segments
2070  *	in skb->next.
2071  */
2072 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2073 {
2074 	struct sk_buff *segs;
2075 
2076 	segs = skb_gso_segment(skb, features);
2077 
2078 	/* Verifying header integrity only. */
2079 	if (!segs)
2080 		return 0;
2081 
2082 	if (IS_ERR(segs))
2083 		return PTR_ERR(segs);
2084 
2085 	skb->next = segs;
2086 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2087 	skb->destructor = dev_gso_skb_destructor;
2088 
2089 	return 0;
2090 }
2091 
2092 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2093 {
2094 	return ((features & NETIF_F_GEN_CSUM) ||
2095 		((features & NETIF_F_V4_CSUM) &&
2096 		 protocol == htons(ETH_P_IP)) ||
2097 		((features & NETIF_F_V6_CSUM) &&
2098 		 protocol == htons(ETH_P_IPV6)) ||
2099 		((features & NETIF_F_FCOE_CRC) &&
2100 		 protocol == htons(ETH_P_FCOE)));
2101 }
2102 
2103 static netdev_features_t harmonize_features(struct sk_buff *skb,
2104 	__be16 protocol, netdev_features_t features)
2105 {
2106 	if (!can_checksum_protocol(features, protocol)) {
2107 		features &= ~NETIF_F_ALL_CSUM;
2108 		features &= ~NETIF_F_SG;
2109 	} else if (illegal_highdma(skb->dev, skb)) {
2110 		features &= ~NETIF_F_SG;
2111 	}
2112 
2113 	return features;
2114 }
2115 
2116 netdev_features_t netif_skb_features(struct sk_buff *skb)
2117 {
2118 	__be16 protocol = skb->protocol;
2119 	netdev_features_t features = skb->dev->features;
2120 
2121 	if (protocol == htons(ETH_P_8021Q)) {
2122 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2123 		protocol = veh->h_vlan_encapsulated_proto;
2124 	} else if (!vlan_tx_tag_present(skb)) {
2125 		return harmonize_features(skb, protocol, features);
2126 	}
2127 
2128 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2129 
2130 	if (protocol != htons(ETH_P_8021Q)) {
2131 		return harmonize_features(skb, protocol, features);
2132 	} else {
2133 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2134 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2135 		return harmonize_features(skb, protocol, features);
2136 	}
2137 }
2138 EXPORT_SYMBOL(netif_skb_features);
2139 
2140 /*
2141  * Returns true if either:
2142  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2143  *	2. skb is fragmented and the device does not support SG, or if
2144  *	   at least one of fragments is in highmem and device does not
2145  *	   support DMA from it.
2146  */
2147 static inline int skb_needs_linearize(struct sk_buff *skb,
2148 				      int features)
2149 {
2150 	return skb_is_nonlinear(skb) &&
2151 			((skb_has_frag_list(skb) &&
2152 				!(features & NETIF_F_FRAGLIST)) ||
2153 			(skb_shinfo(skb)->nr_frags &&
2154 				!(features & NETIF_F_SG)));
2155 }
2156 
2157 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2158 			struct netdev_queue *txq)
2159 {
2160 	const struct net_device_ops *ops = dev->netdev_ops;
2161 	int rc = NETDEV_TX_OK;
2162 	unsigned int skb_len;
2163 
2164 	if (likely(!skb->next)) {
2165 		netdev_features_t features;
2166 
2167 		/*
2168 		 * If device doesn't need skb->dst, release it right now while
2169 		 * its hot in this cpu cache
2170 		 */
2171 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2172 			skb_dst_drop(skb);
2173 
2174 		if (!list_empty(&ptype_all))
2175 			dev_queue_xmit_nit(skb, dev);
2176 
2177 		features = netif_skb_features(skb);
2178 
2179 		if (vlan_tx_tag_present(skb) &&
2180 		    !(features & NETIF_F_HW_VLAN_TX)) {
2181 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2182 			if (unlikely(!skb))
2183 				goto out;
2184 
2185 			skb->vlan_tci = 0;
2186 		}
2187 
2188 		if (netif_needs_gso(skb, features)) {
2189 			if (unlikely(dev_gso_segment(skb, features)))
2190 				goto out_kfree_skb;
2191 			if (skb->next)
2192 				goto gso;
2193 		} else {
2194 			if (skb_needs_linearize(skb, features) &&
2195 			    __skb_linearize(skb))
2196 				goto out_kfree_skb;
2197 
2198 			/* If packet is not checksummed and device does not
2199 			 * support checksumming for this protocol, complete
2200 			 * checksumming here.
2201 			 */
2202 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2203 				skb_set_transport_header(skb,
2204 					skb_checksum_start_offset(skb));
2205 				if (!(features & NETIF_F_ALL_CSUM) &&
2206 				     skb_checksum_help(skb))
2207 					goto out_kfree_skb;
2208 			}
2209 		}
2210 
2211 		skb_len = skb->len;
2212 		rc = ops->ndo_start_xmit(skb, dev);
2213 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2214 		if (rc == NETDEV_TX_OK)
2215 			txq_trans_update(txq);
2216 		return rc;
2217 	}
2218 
2219 gso:
2220 	do {
2221 		struct sk_buff *nskb = skb->next;
2222 
2223 		skb->next = nskb->next;
2224 		nskb->next = NULL;
2225 
2226 		/*
2227 		 * If device doesn't need nskb->dst, release it right now while
2228 		 * its hot in this cpu cache
2229 		 */
2230 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2231 			skb_dst_drop(nskb);
2232 
2233 		skb_len = nskb->len;
2234 		rc = ops->ndo_start_xmit(nskb, dev);
2235 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2236 		if (unlikely(rc != NETDEV_TX_OK)) {
2237 			if (rc & ~NETDEV_TX_MASK)
2238 				goto out_kfree_gso_skb;
2239 			nskb->next = skb->next;
2240 			skb->next = nskb;
2241 			return rc;
2242 		}
2243 		txq_trans_update(txq);
2244 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2245 			return NETDEV_TX_BUSY;
2246 	} while (skb->next);
2247 
2248 out_kfree_gso_skb:
2249 	if (likely(skb->next == NULL))
2250 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2251 out_kfree_skb:
2252 	kfree_skb(skb);
2253 out:
2254 	return rc;
2255 }
2256 
2257 static u32 hashrnd __read_mostly;
2258 
2259 /*
2260  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2261  * to be used as a distribution range.
2262  */
2263 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2264 		  unsigned int num_tx_queues)
2265 {
2266 	u32 hash;
2267 	u16 qoffset = 0;
2268 	u16 qcount = num_tx_queues;
2269 
2270 	if (skb_rx_queue_recorded(skb)) {
2271 		hash = skb_get_rx_queue(skb);
2272 		while (unlikely(hash >= num_tx_queues))
2273 			hash -= num_tx_queues;
2274 		return hash;
2275 	}
2276 
2277 	if (dev->num_tc) {
2278 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2279 		qoffset = dev->tc_to_txq[tc].offset;
2280 		qcount = dev->tc_to_txq[tc].count;
2281 	}
2282 
2283 	if (skb->sk && skb->sk->sk_hash)
2284 		hash = skb->sk->sk_hash;
2285 	else
2286 		hash = (__force u16) skb->protocol;
2287 	hash = jhash_1word(hash, hashrnd);
2288 
2289 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2290 }
2291 EXPORT_SYMBOL(__skb_tx_hash);
2292 
2293 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2294 {
2295 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2296 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2297 				     dev->name, queue_index,
2298 				     dev->real_num_tx_queues);
2299 		return 0;
2300 	}
2301 	return queue_index;
2302 }
2303 
2304 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2305 {
2306 #ifdef CONFIG_XPS
2307 	struct xps_dev_maps *dev_maps;
2308 	struct xps_map *map;
2309 	int queue_index = -1;
2310 
2311 	rcu_read_lock();
2312 	dev_maps = rcu_dereference(dev->xps_maps);
2313 	if (dev_maps) {
2314 		map = rcu_dereference(
2315 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2316 		if (map) {
2317 			if (map->len == 1)
2318 				queue_index = map->queues[0];
2319 			else {
2320 				u32 hash;
2321 				if (skb->sk && skb->sk->sk_hash)
2322 					hash = skb->sk->sk_hash;
2323 				else
2324 					hash = (__force u16) skb->protocol ^
2325 					    skb->rxhash;
2326 				hash = jhash_1word(hash, hashrnd);
2327 				queue_index = map->queues[
2328 				    ((u64)hash * map->len) >> 32];
2329 			}
2330 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2331 				queue_index = -1;
2332 		}
2333 	}
2334 	rcu_read_unlock();
2335 
2336 	return queue_index;
2337 #else
2338 	return -1;
2339 #endif
2340 }
2341 
2342 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2343 					struct sk_buff *skb)
2344 {
2345 	int queue_index;
2346 	const struct net_device_ops *ops = dev->netdev_ops;
2347 
2348 	if (dev->real_num_tx_queues == 1)
2349 		queue_index = 0;
2350 	else if (ops->ndo_select_queue) {
2351 		queue_index = ops->ndo_select_queue(dev, skb);
2352 		queue_index = dev_cap_txqueue(dev, queue_index);
2353 	} else {
2354 		struct sock *sk = skb->sk;
2355 		queue_index = sk_tx_queue_get(sk);
2356 
2357 		if (queue_index < 0 || skb->ooo_okay ||
2358 		    queue_index >= dev->real_num_tx_queues) {
2359 			int old_index = queue_index;
2360 
2361 			queue_index = get_xps_queue(dev, skb);
2362 			if (queue_index < 0)
2363 				queue_index = skb_tx_hash(dev, skb);
2364 
2365 			if (queue_index != old_index && sk) {
2366 				struct dst_entry *dst =
2367 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2368 
2369 				if (dst && skb_dst(skb) == dst)
2370 					sk_tx_queue_set(sk, queue_index);
2371 			}
2372 		}
2373 	}
2374 
2375 	skb_set_queue_mapping(skb, queue_index);
2376 	return netdev_get_tx_queue(dev, queue_index);
2377 }
2378 
2379 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2380 				 struct net_device *dev,
2381 				 struct netdev_queue *txq)
2382 {
2383 	spinlock_t *root_lock = qdisc_lock(q);
2384 	bool contended;
2385 	int rc;
2386 
2387 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2388 	qdisc_calculate_pkt_len(skb, q);
2389 	/*
2390 	 * Heuristic to force contended enqueues to serialize on a
2391 	 * separate lock before trying to get qdisc main lock.
2392 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2393 	 * and dequeue packets faster.
2394 	 */
2395 	contended = qdisc_is_running(q);
2396 	if (unlikely(contended))
2397 		spin_lock(&q->busylock);
2398 
2399 	spin_lock(root_lock);
2400 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2401 		kfree_skb(skb);
2402 		rc = NET_XMIT_DROP;
2403 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2404 		   qdisc_run_begin(q)) {
2405 		/*
2406 		 * This is a work-conserving queue; there are no old skbs
2407 		 * waiting to be sent out; and the qdisc is not running -
2408 		 * xmit the skb directly.
2409 		 */
2410 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2411 			skb_dst_force(skb);
2412 
2413 		qdisc_bstats_update(q, skb);
2414 
2415 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2416 			if (unlikely(contended)) {
2417 				spin_unlock(&q->busylock);
2418 				contended = false;
2419 			}
2420 			__qdisc_run(q);
2421 		} else
2422 			qdisc_run_end(q);
2423 
2424 		rc = NET_XMIT_SUCCESS;
2425 	} else {
2426 		skb_dst_force(skb);
2427 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2428 		if (qdisc_run_begin(q)) {
2429 			if (unlikely(contended)) {
2430 				spin_unlock(&q->busylock);
2431 				contended = false;
2432 			}
2433 			__qdisc_run(q);
2434 		}
2435 	}
2436 	spin_unlock(root_lock);
2437 	if (unlikely(contended))
2438 		spin_unlock(&q->busylock);
2439 	return rc;
2440 }
2441 
2442 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2443 static void skb_update_prio(struct sk_buff *skb)
2444 {
2445 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2446 
2447 	if ((!skb->priority) && (skb->sk) && map)
2448 		skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2449 }
2450 #else
2451 #define skb_update_prio(skb)
2452 #endif
2453 
2454 static DEFINE_PER_CPU(int, xmit_recursion);
2455 #define RECURSION_LIMIT 10
2456 
2457 /**
2458  *	dev_queue_xmit - transmit a buffer
2459  *	@skb: buffer to transmit
2460  *
2461  *	Queue a buffer for transmission to a network device. The caller must
2462  *	have set the device and priority and built the buffer before calling
2463  *	this function. The function can be called from an interrupt.
2464  *
2465  *	A negative errno code is returned on a failure. A success does not
2466  *	guarantee the frame will be transmitted as it may be dropped due
2467  *	to congestion or traffic shaping.
2468  *
2469  * -----------------------------------------------------------------------------------
2470  *      I notice this method can also return errors from the queue disciplines,
2471  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2472  *      be positive.
2473  *
2474  *      Regardless of the return value, the skb is consumed, so it is currently
2475  *      difficult to retry a send to this method.  (You can bump the ref count
2476  *      before sending to hold a reference for retry if you are careful.)
2477  *
2478  *      When calling this method, interrupts MUST be enabled.  This is because
2479  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2480  *          --BLG
2481  */
2482 int dev_queue_xmit(struct sk_buff *skb)
2483 {
2484 	struct net_device *dev = skb->dev;
2485 	struct netdev_queue *txq;
2486 	struct Qdisc *q;
2487 	int rc = -ENOMEM;
2488 
2489 	/* Disable soft irqs for various locks below. Also
2490 	 * stops preemption for RCU.
2491 	 */
2492 	rcu_read_lock_bh();
2493 
2494 	skb_update_prio(skb);
2495 
2496 	txq = dev_pick_tx(dev, skb);
2497 	q = rcu_dereference_bh(txq->qdisc);
2498 
2499 #ifdef CONFIG_NET_CLS_ACT
2500 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2501 #endif
2502 	trace_net_dev_queue(skb);
2503 	if (q->enqueue) {
2504 		rc = __dev_xmit_skb(skb, q, dev, txq);
2505 		goto out;
2506 	}
2507 
2508 	/* The device has no queue. Common case for software devices:
2509 	   loopback, all the sorts of tunnels...
2510 
2511 	   Really, it is unlikely that netif_tx_lock protection is necessary
2512 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2513 	   counters.)
2514 	   However, it is possible, that they rely on protection
2515 	   made by us here.
2516 
2517 	   Check this and shot the lock. It is not prone from deadlocks.
2518 	   Either shot noqueue qdisc, it is even simpler 8)
2519 	 */
2520 	if (dev->flags & IFF_UP) {
2521 		int cpu = smp_processor_id(); /* ok because BHs are off */
2522 
2523 		if (txq->xmit_lock_owner != cpu) {
2524 
2525 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2526 				goto recursion_alert;
2527 
2528 			HARD_TX_LOCK(dev, txq, cpu);
2529 
2530 			if (!netif_xmit_stopped(txq)) {
2531 				__this_cpu_inc(xmit_recursion);
2532 				rc = dev_hard_start_xmit(skb, dev, txq);
2533 				__this_cpu_dec(xmit_recursion);
2534 				if (dev_xmit_complete(rc)) {
2535 					HARD_TX_UNLOCK(dev, txq);
2536 					goto out;
2537 				}
2538 			}
2539 			HARD_TX_UNLOCK(dev, txq);
2540 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2541 					     dev->name);
2542 		} else {
2543 			/* Recursion is detected! It is possible,
2544 			 * unfortunately
2545 			 */
2546 recursion_alert:
2547 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2548 					     dev->name);
2549 		}
2550 	}
2551 
2552 	rc = -ENETDOWN;
2553 	rcu_read_unlock_bh();
2554 
2555 	kfree_skb(skb);
2556 	return rc;
2557 out:
2558 	rcu_read_unlock_bh();
2559 	return rc;
2560 }
2561 EXPORT_SYMBOL(dev_queue_xmit);
2562 
2563 
2564 /*=======================================================================
2565 			Receiver routines
2566   =======================================================================*/
2567 
2568 int netdev_max_backlog __read_mostly = 1000;
2569 int netdev_tstamp_prequeue __read_mostly = 1;
2570 int netdev_budget __read_mostly = 300;
2571 int weight_p __read_mostly = 64;            /* old backlog weight */
2572 
2573 /* Called with irq disabled */
2574 static inline void ____napi_schedule(struct softnet_data *sd,
2575 				     struct napi_struct *napi)
2576 {
2577 	list_add_tail(&napi->poll_list, &sd->poll_list);
2578 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2579 }
2580 
2581 /*
2582  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2583  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2584  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2585  * if hash is a canonical 4-tuple hash over transport ports.
2586  */
2587 void __skb_get_rxhash(struct sk_buff *skb)
2588 {
2589 	struct flow_keys keys;
2590 	u32 hash;
2591 
2592 	if (!skb_flow_dissect(skb, &keys))
2593 		return;
2594 
2595 	if (keys.ports) {
2596 		if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2597 			swap(keys.port16[0], keys.port16[1]);
2598 		skb->l4_rxhash = 1;
2599 	}
2600 
2601 	/* get a consistent hash (same value on both flow directions) */
2602 	if ((__force u32)keys.dst < (__force u32)keys.src)
2603 		swap(keys.dst, keys.src);
2604 
2605 	hash = jhash_3words((__force u32)keys.dst,
2606 			    (__force u32)keys.src,
2607 			    (__force u32)keys.ports, hashrnd);
2608 	if (!hash)
2609 		hash = 1;
2610 
2611 	skb->rxhash = hash;
2612 }
2613 EXPORT_SYMBOL(__skb_get_rxhash);
2614 
2615 #ifdef CONFIG_RPS
2616 
2617 /* One global table that all flow-based protocols share. */
2618 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2619 EXPORT_SYMBOL(rps_sock_flow_table);
2620 
2621 struct static_key rps_needed __read_mostly;
2622 
2623 static struct rps_dev_flow *
2624 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2625 	    struct rps_dev_flow *rflow, u16 next_cpu)
2626 {
2627 	if (next_cpu != RPS_NO_CPU) {
2628 #ifdef CONFIG_RFS_ACCEL
2629 		struct netdev_rx_queue *rxqueue;
2630 		struct rps_dev_flow_table *flow_table;
2631 		struct rps_dev_flow *old_rflow;
2632 		u32 flow_id;
2633 		u16 rxq_index;
2634 		int rc;
2635 
2636 		/* Should we steer this flow to a different hardware queue? */
2637 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2638 		    !(dev->features & NETIF_F_NTUPLE))
2639 			goto out;
2640 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2641 		if (rxq_index == skb_get_rx_queue(skb))
2642 			goto out;
2643 
2644 		rxqueue = dev->_rx + rxq_index;
2645 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2646 		if (!flow_table)
2647 			goto out;
2648 		flow_id = skb->rxhash & flow_table->mask;
2649 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2650 							rxq_index, flow_id);
2651 		if (rc < 0)
2652 			goto out;
2653 		old_rflow = rflow;
2654 		rflow = &flow_table->flows[flow_id];
2655 		rflow->filter = rc;
2656 		if (old_rflow->filter == rflow->filter)
2657 			old_rflow->filter = RPS_NO_FILTER;
2658 	out:
2659 #endif
2660 		rflow->last_qtail =
2661 			per_cpu(softnet_data, next_cpu).input_queue_head;
2662 	}
2663 
2664 	rflow->cpu = next_cpu;
2665 	return rflow;
2666 }
2667 
2668 /*
2669  * get_rps_cpu is called from netif_receive_skb and returns the target
2670  * CPU from the RPS map of the receiving queue for a given skb.
2671  * rcu_read_lock must be held on entry.
2672  */
2673 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2674 		       struct rps_dev_flow **rflowp)
2675 {
2676 	struct netdev_rx_queue *rxqueue;
2677 	struct rps_map *map;
2678 	struct rps_dev_flow_table *flow_table;
2679 	struct rps_sock_flow_table *sock_flow_table;
2680 	int cpu = -1;
2681 	u16 tcpu;
2682 
2683 	if (skb_rx_queue_recorded(skb)) {
2684 		u16 index = skb_get_rx_queue(skb);
2685 		if (unlikely(index >= dev->real_num_rx_queues)) {
2686 			WARN_ONCE(dev->real_num_rx_queues > 1,
2687 				  "%s received packet on queue %u, but number "
2688 				  "of RX queues is %u\n",
2689 				  dev->name, index, dev->real_num_rx_queues);
2690 			goto done;
2691 		}
2692 		rxqueue = dev->_rx + index;
2693 	} else
2694 		rxqueue = dev->_rx;
2695 
2696 	map = rcu_dereference(rxqueue->rps_map);
2697 	if (map) {
2698 		if (map->len == 1 &&
2699 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2700 			tcpu = map->cpus[0];
2701 			if (cpu_online(tcpu))
2702 				cpu = tcpu;
2703 			goto done;
2704 		}
2705 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2706 		goto done;
2707 	}
2708 
2709 	skb_reset_network_header(skb);
2710 	if (!skb_get_rxhash(skb))
2711 		goto done;
2712 
2713 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2714 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2715 	if (flow_table && sock_flow_table) {
2716 		u16 next_cpu;
2717 		struct rps_dev_flow *rflow;
2718 
2719 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2720 		tcpu = rflow->cpu;
2721 
2722 		next_cpu = sock_flow_table->ents[skb->rxhash &
2723 		    sock_flow_table->mask];
2724 
2725 		/*
2726 		 * If the desired CPU (where last recvmsg was done) is
2727 		 * different from current CPU (one in the rx-queue flow
2728 		 * table entry), switch if one of the following holds:
2729 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2730 		 *   - Current CPU is offline.
2731 		 *   - The current CPU's queue tail has advanced beyond the
2732 		 *     last packet that was enqueued using this table entry.
2733 		 *     This guarantees that all previous packets for the flow
2734 		 *     have been dequeued, thus preserving in order delivery.
2735 		 */
2736 		if (unlikely(tcpu != next_cpu) &&
2737 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2738 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2739 		      rflow->last_qtail)) >= 0))
2740 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2741 
2742 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2743 			*rflowp = rflow;
2744 			cpu = tcpu;
2745 			goto done;
2746 		}
2747 	}
2748 
2749 	if (map) {
2750 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2751 
2752 		if (cpu_online(tcpu)) {
2753 			cpu = tcpu;
2754 			goto done;
2755 		}
2756 	}
2757 
2758 done:
2759 	return cpu;
2760 }
2761 
2762 #ifdef CONFIG_RFS_ACCEL
2763 
2764 /**
2765  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2766  * @dev: Device on which the filter was set
2767  * @rxq_index: RX queue index
2768  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2769  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2770  *
2771  * Drivers that implement ndo_rx_flow_steer() should periodically call
2772  * this function for each installed filter and remove the filters for
2773  * which it returns %true.
2774  */
2775 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2776 			 u32 flow_id, u16 filter_id)
2777 {
2778 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2779 	struct rps_dev_flow_table *flow_table;
2780 	struct rps_dev_flow *rflow;
2781 	bool expire = true;
2782 	int cpu;
2783 
2784 	rcu_read_lock();
2785 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2786 	if (flow_table && flow_id <= flow_table->mask) {
2787 		rflow = &flow_table->flows[flow_id];
2788 		cpu = ACCESS_ONCE(rflow->cpu);
2789 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2790 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2791 			   rflow->last_qtail) <
2792 		     (int)(10 * flow_table->mask)))
2793 			expire = false;
2794 	}
2795 	rcu_read_unlock();
2796 	return expire;
2797 }
2798 EXPORT_SYMBOL(rps_may_expire_flow);
2799 
2800 #endif /* CONFIG_RFS_ACCEL */
2801 
2802 /* Called from hardirq (IPI) context */
2803 static void rps_trigger_softirq(void *data)
2804 {
2805 	struct softnet_data *sd = data;
2806 
2807 	____napi_schedule(sd, &sd->backlog);
2808 	sd->received_rps++;
2809 }
2810 
2811 #endif /* CONFIG_RPS */
2812 
2813 /*
2814  * Check if this softnet_data structure is another cpu one
2815  * If yes, queue it to our IPI list and return 1
2816  * If no, return 0
2817  */
2818 static int rps_ipi_queued(struct softnet_data *sd)
2819 {
2820 #ifdef CONFIG_RPS
2821 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2822 
2823 	if (sd != mysd) {
2824 		sd->rps_ipi_next = mysd->rps_ipi_list;
2825 		mysd->rps_ipi_list = sd;
2826 
2827 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2828 		return 1;
2829 	}
2830 #endif /* CONFIG_RPS */
2831 	return 0;
2832 }
2833 
2834 /*
2835  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2836  * queue (may be a remote CPU queue).
2837  */
2838 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2839 			      unsigned int *qtail)
2840 {
2841 	struct softnet_data *sd;
2842 	unsigned long flags;
2843 
2844 	sd = &per_cpu(softnet_data, cpu);
2845 
2846 	local_irq_save(flags);
2847 
2848 	rps_lock(sd);
2849 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2850 		if (skb_queue_len(&sd->input_pkt_queue)) {
2851 enqueue:
2852 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2853 			input_queue_tail_incr_save(sd, qtail);
2854 			rps_unlock(sd);
2855 			local_irq_restore(flags);
2856 			return NET_RX_SUCCESS;
2857 		}
2858 
2859 		/* Schedule NAPI for backlog device
2860 		 * We can use non atomic operation since we own the queue lock
2861 		 */
2862 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2863 			if (!rps_ipi_queued(sd))
2864 				____napi_schedule(sd, &sd->backlog);
2865 		}
2866 		goto enqueue;
2867 	}
2868 
2869 	sd->dropped++;
2870 	rps_unlock(sd);
2871 
2872 	local_irq_restore(flags);
2873 
2874 	atomic_long_inc(&skb->dev->rx_dropped);
2875 	kfree_skb(skb);
2876 	return NET_RX_DROP;
2877 }
2878 
2879 /**
2880  *	netif_rx	-	post buffer to the network code
2881  *	@skb: buffer to post
2882  *
2883  *	This function receives a packet from a device driver and queues it for
2884  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2885  *	may be dropped during processing for congestion control or by the
2886  *	protocol layers.
2887  *
2888  *	return values:
2889  *	NET_RX_SUCCESS	(no congestion)
2890  *	NET_RX_DROP     (packet was dropped)
2891  *
2892  */
2893 
2894 int netif_rx(struct sk_buff *skb)
2895 {
2896 	int ret;
2897 
2898 	/* if netpoll wants it, pretend we never saw it */
2899 	if (netpoll_rx(skb))
2900 		return NET_RX_DROP;
2901 
2902 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2903 
2904 	trace_netif_rx(skb);
2905 #ifdef CONFIG_RPS
2906 	if (static_key_false(&rps_needed)) {
2907 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2908 		int cpu;
2909 
2910 		preempt_disable();
2911 		rcu_read_lock();
2912 
2913 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2914 		if (cpu < 0)
2915 			cpu = smp_processor_id();
2916 
2917 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2918 
2919 		rcu_read_unlock();
2920 		preempt_enable();
2921 	} else
2922 #endif
2923 	{
2924 		unsigned int qtail;
2925 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2926 		put_cpu();
2927 	}
2928 	return ret;
2929 }
2930 EXPORT_SYMBOL(netif_rx);
2931 
2932 int netif_rx_ni(struct sk_buff *skb)
2933 {
2934 	int err;
2935 
2936 	preempt_disable();
2937 	err = netif_rx(skb);
2938 	if (local_softirq_pending())
2939 		do_softirq();
2940 	preempt_enable();
2941 
2942 	return err;
2943 }
2944 EXPORT_SYMBOL(netif_rx_ni);
2945 
2946 static void net_tx_action(struct softirq_action *h)
2947 {
2948 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2949 
2950 	if (sd->completion_queue) {
2951 		struct sk_buff *clist;
2952 
2953 		local_irq_disable();
2954 		clist = sd->completion_queue;
2955 		sd->completion_queue = NULL;
2956 		local_irq_enable();
2957 
2958 		while (clist) {
2959 			struct sk_buff *skb = clist;
2960 			clist = clist->next;
2961 
2962 			WARN_ON(atomic_read(&skb->users));
2963 			trace_kfree_skb(skb, net_tx_action);
2964 			__kfree_skb(skb);
2965 		}
2966 	}
2967 
2968 	if (sd->output_queue) {
2969 		struct Qdisc *head;
2970 
2971 		local_irq_disable();
2972 		head = sd->output_queue;
2973 		sd->output_queue = NULL;
2974 		sd->output_queue_tailp = &sd->output_queue;
2975 		local_irq_enable();
2976 
2977 		while (head) {
2978 			struct Qdisc *q = head;
2979 			spinlock_t *root_lock;
2980 
2981 			head = head->next_sched;
2982 
2983 			root_lock = qdisc_lock(q);
2984 			if (spin_trylock(root_lock)) {
2985 				smp_mb__before_clear_bit();
2986 				clear_bit(__QDISC_STATE_SCHED,
2987 					  &q->state);
2988 				qdisc_run(q);
2989 				spin_unlock(root_lock);
2990 			} else {
2991 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2992 					      &q->state)) {
2993 					__netif_reschedule(q);
2994 				} else {
2995 					smp_mb__before_clear_bit();
2996 					clear_bit(__QDISC_STATE_SCHED,
2997 						  &q->state);
2998 				}
2999 			}
3000 		}
3001 	}
3002 }
3003 
3004 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3005     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3006 /* This hook is defined here for ATM LANE */
3007 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3008 			     unsigned char *addr) __read_mostly;
3009 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3010 #endif
3011 
3012 #ifdef CONFIG_NET_CLS_ACT
3013 /* TODO: Maybe we should just force sch_ingress to be compiled in
3014  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3015  * a compare and 2 stores extra right now if we dont have it on
3016  * but have CONFIG_NET_CLS_ACT
3017  * NOTE: This doesn't stop any functionality; if you dont have
3018  * the ingress scheduler, you just can't add policies on ingress.
3019  *
3020  */
3021 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3022 {
3023 	struct net_device *dev = skb->dev;
3024 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3025 	int result = TC_ACT_OK;
3026 	struct Qdisc *q;
3027 
3028 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3029 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3030 				     skb->skb_iif, dev->ifindex);
3031 		return TC_ACT_SHOT;
3032 	}
3033 
3034 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3035 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3036 
3037 	q = rxq->qdisc;
3038 	if (q != &noop_qdisc) {
3039 		spin_lock(qdisc_lock(q));
3040 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3041 			result = qdisc_enqueue_root(skb, q);
3042 		spin_unlock(qdisc_lock(q));
3043 	}
3044 
3045 	return result;
3046 }
3047 
3048 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3049 					 struct packet_type **pt_prev,
3050 					 int *ret, struct net_device *orig_dev)
3051 {
3052 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3053 
3054 	if (!rxq || rxq->qdisc == &noop_qdisc)
3055 		goto out;
3056 
3057 	if (*pt_prev) {
3058 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3059 		*pt_prev = NULL;
3060 	}
3061 
3062 	switch (ing_filter(skb, rxq)) {
3063 	case TC_ACT_SHOT:
3064 	case TC_ACT_STOLEN:
3065 		kfree_skb(skb);
3066 		return NULL;
3067 	}
3068 
3069 out:
3070 	skb->tc_verd = 0;
3071 	return skb;
3072 }
3073 #endif
3074 
3075 /**
3076  *	netdev_rx_handler_register - register receive handler
3077  *	@dev: device to register a handler for
3078  *	@rx_handler: receive handler to register
3079  *	@rx_handler_data: data pointer that is used by rx handler
3080  *
3081  *	Register a receive hander for a device. This handler will then be
3082  *	called from __netif_receive_skb. A negative errno code is returned
3083  *	on a failure.
3084  *
3085  *	The caller must hold the rtnl_mutex.
3086  *
3087  *	For a general description of rx_handler, see enum rx_handler_result.
3088  */
3089 int netdev_rx_handler_register(struct net_device *dev,
3090 			       rx_handler_func_t *rx_handler,
3091 			       void *rx_handler_data)
3092 {
3093 	ASSERT_RTNL();
3094 
3095 	if (dev->rx_handler)
3096 		return -EBUSY;
3097 
3098 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3099 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3100 
3101 	return 0;
3102 }
3103 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3104 
3105 /**
3106  *	netdev_rx_handler_unregister - unregister receive handler
3107  *	@dev: device to unregister a handler from
3108  *
3109  *	Unregister a receive hander from a device.
3110  *
3111  *	The caller must hold the rtnl_mutex.
3112  */
3113 void netdev_rx_handler_unregister(struct net_device *dev)
3114 {
3115 
3116 	ASSERT_RTNL();
3117 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3118 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3119 }
3120 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3121 
3122 static int __netif_receive_skb(struct sk_buff *skb)
3123 {
3124 	struct packet_type *ptype, *pt_prev;
3125 	rx_handler_func_t *rx_handler;
3126 	struct net_device *orig_dev;
3127 	struct net_device *null_or_dev;
3128 	bool deliver_exact = false;
3129 	int ret = NET_RX_DROP;
3130 	__be16 type;
3131 
3132 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3133 
3134 	trace_netif_receive_skb(skb);
3135 
3136 	/* if we've gotten here through NAPI, check netpoll */
3137 	if (netpoll_receive_skb(skb))
3138 		return NET_RX_DROP;
3139 
3140 	if (!skb->skb_iif)
3141 		skb->skb_iif = skb->dev->ifindex;
3142 	orig_dev = skb->dev;
3143 
3144 	skb_reset_network_header(skb);
3145 	skb_reset_transport_header(skb);
3146 	skb_reset_mac_len(skb);
3147 
3148 	pt_prev = NULL;
3149 
3150 	rcu_read_lock();
3151 
3152 another_round:
3153 
3154 	__this_cpu_inc(softnet_data.processed);
3155 
3156 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3157 		skb = vlan_untag(skb);
3158 		if (unlikely(!skb))
3159 			goto out;
3160 	}
3161 
3162 #ifdef CONFIG_NET_CLS_ACT
3163 	if (skb->tc_verd & TC_NCLS) {
3164 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3165 		goto ncls;
3166 	}
3167 #endif
3168 
3169 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3170 		if (!ptype->dev || ptype->dev == skb->dev) {
3171 			if (pt_prev)
3172 				ret = deliver_skb(skb, pt_prev, orig_dev);
3173 			pt_prev = ptype;
3174 		}
3175 	}
3176 
3177 #ifdef CONFIG_NET_CLS_ACT
3178 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3179 	if (!skb)
3180 		goto out;
3181 ncls:
3182 #endif
3183 
3184 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3185 	if (vlan_tx_tag_present(skb)) {
3186 		if (pt_prev) {
3187 			ret = deliver_skb(skb, pt_prev, orig_dev);
3188 			pt_prev = NULL;
3189 		}
3190 		if (vlan_do_receive(&skb, !rx_handler))
3191 			goto another_round;
3192 		else if (unlikely(!skb))
3193 			goto out;
3194 	}
3195 
3196 	if (rx_handler) {
3197 		if (pt_prev) {
3198 			ret = deliver_skb(skb, pt_prev, orig_dev);
3199 			pt_prev = NULL;
3200 		}
3201 		switch (rx_handler(&skb)) {
3202 		case RX_HANDLER_CONSUMED:
3203 			goto out;
3204 		case RX_HANDLER_ANOTHER:
3205 			goto another_round;
3206 		case RX_HANDLER_EXACT:
3207 			deliver_exact = true;
3208 		case RX_HANDLER_PASS:
3209 			break;
3210 		default:
3211 			BUG();
3212 		}
3213 	}
3214 
3215 	/* deliver only exact match when indicated */
3216 	null_or_dev = deliver_exact ? skb->dev : NULL;
3217 
3218 	type = skb->protocol;
3219 	list_for_each_entry_rcu(ptype,
3220 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3221 		if (ptype->type == type &&
3222 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3223 		     ptype->dev == orig_dev)) {
3224 			if (pt_prev)
3225 				ret = deliver_skb(skb, pt_prev, orig_dev);
3226 			pt_prev = ptype;
3227 		}
3228 	}
3229 
3230 	if (pt_prev) {
3231 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3232 	} else {
3233 		atomic_long_inc(&skb->dev->rx_dropped);
3234 		kfree_skb(skb);
3235 		/* Jamal, now you will not able to escape explaining
3236 		 * me how you were going to use this. :-)
3237 		 */
3238 		ret = NET_RX_DROP;
3239 	}
3240 
3241 out:
3242 	rcu_read_unlock();
3243 	return ret;
3244 }
3245 
3246 /**
3247  *	netif_receive_skb - process receive buffer from network
3248  *	@skb: buffer to process
3249  *
3250  *	netif_receive_skb() is the main receive data processing function.
3251  *	It always succeeds. The buffer may be dropped during processing
3252  *	for congestion control or by the protocol layers.
3253  *
3254  *	This function may only be called from softirq context and interrupts
3255  *	should be enabled.
3256  *
3257  *	Return values (usually ignored):
3258  *	NET_RX_SUCCESS: no congestion
3259  *	NET_RX_DROP: packet was dropped
3260  */
3261 int netif_receive_skb(struct sk_buff *skb)
3262 {
3263 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3264 
3265 	if (skb_defer_rx_timestamp(skb))
3266 		return NET_RX_SUCCESS;
3267 
3268 #ifdef CONFIG_RPS
3269 	if (static_key_false(&rps_needed)) {
3270 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3271 		int cpu, ret;
3272 
3273 		rcu_read_lock();
3274 
3275 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3276 
3277 		if (cpu >= 0) {
3278 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3279 			rcu_read_unlock();
3280 			return ret;
3281 		}
3282 		rcu_read_unlock();
3283 	}
3284 #endif
3285 	return __netif_receive_skb(skb);
3286 }
3287 EXPORT_SYMBOL(netif_receive_skb);
3288 
3289 /* Network device is going away, flush any packets still pending
3290  * Called with irqs disabled.
3291  */
3292 static void flush_backlog(void *arg)
3293 {
3294 	struct net_device *dev = arg;
3295 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3296 	struct sk_buff *skb, *tmp;
3297 
3298 	rps_lock(sd);
3299 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3300 		if (skb->dev == dev) {
3301 			__skb_unlink(skb, &sd->input_pkt_queue);
3302 			kfree_skb(skb);
3303 			input_queue_head_incr(sd);
3304 		}
3305 	}
3306 	rps_unlock(sd);
3307 
3308 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3309 		if (skb->dev == dev) {
3310 			__skb_unlink(skb, &sd->process_queue);
3311 			kfree_skb(skb);
3312 			input_queue_head_incr(sd);
3313 		}
3314 	}
3315 }
3316 
3317 static int napi_gro_complete(struct sk_buff *skb)
3318 {
3319 	struct packet_type *ptype;
3320 	__be16 type = skb->protocol;
3321 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3322 	int err = -ENOENT;
3323 
3324 	if (NAPI_GRO_CB(skb)->count == 1) {
3325 		skb_shinfo(skb)->gso_size = 0;
3326 		goto out;
3327 	}
3328 
3329 	rcu_read_lock();
3330 	list_for_each_entry_rcu(ptype, head, list) {
3331 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3332 			continue;
3333 
3334 		err = ptype->gro_complete(skb);
3335 		break;
3336 	}
3337 	rcu_read_unlock();
3338 
3339 	if (err) {
3340 		WARN_ON(&ptype->list == head);
3341 		kfree_skb(skb);
3342 		return NET_RX_SUCCESS;
3343 	}
3344 
3345 out:
3346 	return netif_receive_skb(skb);
3347 }
3348 
3349 inline void napi_gro_flush(struct napi_struct *napi)
3350 {
3351 	struct sk_buff *skb, *next;
3352 
3353 	for (skb = napi->gro_list; skb; skb = next) {
3354 		next = skb->next;
3355 		skb->next = NULL;
3356 		napi_gro_complete(skb);
3357 	}
3358 
3359 	napi->gro_count = 0;
3360 	napi->gro_list = NULL;
3361 }
3362 EXPORT_SYMBOL(napi_gro_flush);
3363 
3364 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3365 {
3366 	struct sk_buff **pp = NULL;
3367 	struct packet_type *ptype;
3368 	__be16 type = skb->protocol;
3369 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3370 	int same_flow;
3371 	int mac_len;
3372 	enum gro_result ret;
3373 
3374 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3375 		goto normal;
3376 
3377 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3378 		goto normal;
3379 
3380 	rcu_read_lock();
3381 	list_for_each_entry_rcu(ptype, head, list) {
3382 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3383 			continue;
3384 
3385 		skb_set_network_header(skb, skb_gro_offset(skb));
3386 		mac_len = skb->network_header - skb->mac_header;
3387 		skb->mac_len = mac_len;
3388 		NAPI_GRO_CB(skb)->same_flow = 0;
3389 		NAPI_GRO_CB(skb)->flush = 0;
3390 		NAPI_GRO_CB(skb)->free = 0;
3391 
3392 		pp = ptype->gro_receive(&napi->gro_list, skb);
3393 		break;
3394 	}
3395 	rcu_read_unlock();
3396 
3397 	if (&ptype->list == head)
3398 		goto normal;
3399 
3400 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3401 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3402 
3403 	if (pp) {
3404 		struct sk_buff *nskb = *pp;
3405 
3406 		*pp = nskb->next;
3407 		nskb->next = NULL;
3408 		napi_gro_complete(nskb);
3409 		napi->gro_count--;
3410 	}
3411 
3412 	if (same_flow)
3413 		goto ok;
3414 
3415 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3416 		goto normal;
3417 
3418 	napi->gro_count++;
3419 	NAPI_GRO_CB(skb)->count = 1;
3420 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3421 	skb->next = napi->gro_list;
3422 	napi->gro_list = skb;
3423 	ret = GRO_HELD;
3424 
3425 pull:
3426 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3427 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3428 
3429 		BUG_ON(skb->end - skb->tail < grow);
3430 
3431 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3432 
3433 		skb->tail += grow;
3434 		skb->data_len -= grow;
3435 
3436 		skb_shinfo(skb)->frags[0].page_offset += grow;
3437 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3438 
3439 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3440 			skb_frag_unref(skb, 0);
3441 			memmove(skb_shinfo(skb)->frags,
3442 				skb_shinfo(skb)->frags + 1,
3443 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3444 		}
3445 	}
3446 
3447 ok:
3448 	return ret;
3449 
3450 normal:
3451 	ret = GRO_NORMAL;
3452 	goto pull;
3453 }
3454 EXPORT_SYMBOL(dev_gro_receive);
3455 
3456 static inline gro_result_t
3457 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3458 {
3459 	struct sk_buff *p;
3460 	unsigned int maclen = skb->dev->hard_header_len;
3461 
3462 	for (p = napi->gro_list; p; p = p->next) {
3463 		unsigned long diffs;
3464 
3465 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3466 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3467 		if (maclen == ETH_HLEN)
3468 			diffs |= compare_ether_header(skb_mac_header(p),
3469 						      skb_gro_mac_header(skb));
3470 		else if (!diffs)
3471 			diffs = memcmp(skb_mac_header(p),
3472 				       skb_gro_mac_header(skb),
3473 				       maclen);
3474 		NAPI_GRO_CB(p)->same_flow = !diffs;
3475 		NAPI_GRO_CB(p)->flush = 0;
3476 	}
3477 
3478 	return dev_gro_receive(napi, skb);
3479 }
3480 
3481 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3482 {
3483 	switch (ret) {
3484 	case GRO_NORMAL:
3485 		if (netif_receive_skb(skb))
3486 			ret = GRO_DROP;
3487 		break;
3488 
3489 	case GRO_DROP:
3490 		kfree_skb(skb);
3491 		break;
3492 
3493 	case GRO_MERGED_FREE:
3494 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3495 			kmem_cache_free(skbuff_head_cache, skb);
3496 		else
3497 			__kfree_skb(skb);
3498 		break;
3499 
3500 	case GRO_HELD:
3501 	case GRO_MERGED:
3502 		break;
3503 	}
3504 
3505 	return ret;
3506 }
3507 EXPORT_SYMBOL(napi_skb_finish);
3508 
3509 void skb_gro_reset_offset(struct sk_buff *skb)
3510 {
3511 	NAPI_GRO_CB(skb)->data_offset = 0;
3512 	NAPI_GRO_CB(skb)->frag0 = NULL;
3513 	NAPI_GRO_CB(skb)->frag0_len = 0;
3514 
3515 	if (skb->mac_header == skb->tail &&
3516 	    !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3517 		NAPI_GRO_CB(skb)->frag0 =
3518 			skb_frag_address(&skb_shinfo(skb)->frags[0]);
3519 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3520 	}
3521 }
3522 EXPORT_SYMBOL(skb_gro_reset_offset);
3523 
3524 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3525 {
3526 	skb_gro_reset_offset(skb);
3527 
3528 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3529 }
3530 EXPORT_SYMBOL(napi_gro_receive);
3531 
3532 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3533 {
3534 	__skb_pull(skb, skb_headlen(skb));
3535 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3536 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3537 	skb->vlan_tci = 0;
3538 	skb->dev = napi->dev;
3539 	skb->skb_iif = 0;
3540 
3541 	napi->skb = skb;
3542 }
3543 
3544 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3545 {
3546 	struct sk_buff *skb = napi->skb;
3547 
3548 	if (!skb) {
3549 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3550 		if (skb)
3551 			napi->skb = skb;
3552 	}
3553 	return skb;
3554 }
3555 EXPORT_SYMBOL(napi_get_frags);
3556 
3557 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3558 			       gro_result_t ret)
3559 {
3560 	switch (ret) {
3561 	case GRO_NORMAL:
3562 	case GRO_HELD:
3563 		skb->protocol = eth_type_trans(skb, skb->dev);
3564 
3565 		if (ret == GRO_HELD)
3566 			skb_gro_pull(skb, -ETH_HLEN);
3567 		else if (netif_receive_skb(skb))
3568 			ret = GRO_DROP;
3569 		break;
3570 
3571 	case GRO_DROP:
3572 	case GRO_MERGED_FREE:
3573 		napi_reuse_skb(napi, skb);
3574 		break;
3575 
3576 	case GRO_MERGED:
3577 		break;
3578 	}
3579 
3580 	return ret;
3581 }
3582 EXPORT_SYMBOL(napi_frags_finish);
3583 
3584 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3585 {
3586 	struct sk_buff *skb = napi->skb;
3587 	struct ethhdr *eth;
3588 	unsigned int hlen;
3589 	unsigned int off;
3590 
3591 	napi->skb = NULL;
3592 
3593 	skb_reset_mac_header(skb);
3594 	skb_gro_reset_offset(skb);
3595 
3596 	off = skb_gro_offset(skb);
3597 	hlen = off + sizeof(*eth);
3598 	eth = skb_gro_header_fast(skb, off);
3599 	if (skb_gro_header_hard(skb, hlen)) {
3600 		eth = skb_gro_header_slow(skb, hlen, off);
3601 		if (unlikely(!eth)) {
3602 			napi_reuse_skb(napi, skb);
3603 			skb = NULL;
3604 			goto out;
3605 		}
3606 	}
3607 
3608 	skb_gro_pull(skb, sizeof(*eth));
3609 
3610 	/*
3611 	 * This works because the only protocols we care about don't require
3612 	 * special handling.  We'll fix it up properly at the end.
3613 	 */
3614 	skb->protocol = eth->h_proto;
3615 
3616 out:
3617 	return skb;
3618 }
3619 
3620 gro_result_t napi_gro_frags(struct napi_struct *napi)
3621 {
3622 	struct sk_buff *skb = napi_frags_skb(napi);
3623 
3624 	if (!skb)
3625 		return GRO_DROP;
3626 
3627 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3628 }
3629 EXPORT_SYMBOL(napi_gro_frags);
3630 
3631 /*
3632  * net_rps_action sends any pending IPI's for rps.
3633  * Note: called with local irq disabled, but exits with local irq enabled.
3634  */
3635 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3636 {
3637 #ifdef CONFIG_RPS
3638 	struct softnet_data *remsd = sd->rps_ipi_list;
3639 
3640 	if (remsd) {
3641 		sd->rps_ipi_list = NULL;
3642 
3643 		local_irq_enable();
3644 
3645 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3646 		while (remsd) {
3647 			struct softnet_data *next = remsd->rps_ipi_next;
3648 
3649 			if (cpu_online(remsd->cpu))
3650 				__smp_call_function_single(remsd->cpu,
3651 							   &remsd->csd, 0);
3652 			remsd = next;
3653 		}
3654 	} else
3655 #endif
3656 		local_irq_enable();
3657 }
3658 
3659 static int process_backlog(struct napi_struct *napi, int quota)
3660 {
3661 	int work = 0;
3662 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3663 
3664 #ifdef CONFIG_RPS
3665 	/* Check if we have pending ipi, its better to send them now,
3666 	 * not waiting net_rx_action() end.
3667 	 */
3668 	if (sd->rps_ipi_list) {
3669 		local_irq_disable();
3670 		net_rps_action_and_irq_enable(sd);
3671 	}
3672 #endif
3673 	napi->weight = weight_p;
3674 	local_irq_disable();
3675 	while (work < quota) {
3676 		struct sk_buff *skb;
3677 		unsigned int qlen;
3678 
3679 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3680 			local_irq_enable();
3681 			__netif_receive_skb(skb);
3682 			local_irq_disable();
3683 			input_queue_head_incr(sd);
3684 			if (++work >= quota) {
3685 				local_irq_enable();
3686 				return work;
3687 			}
3688 		}
3689 
3690 		rps_lock(sd);
3691 		qlen = skb_queue_len(&sd->input_pkt_queue);
3692 		if (qlen)
3693 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3694 						   &sd->process_queue);
3695 
3696 		if (qlen < quota - work) {
3697 			/*
3698 			 * Inline a custom version of __napi_complete().
3699 			 * only current cpu owns and manipulates this napi,
3700 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3701 			 * we can use a plain write instead of clear_bit(),
3702 			 * and we dont need an smp_mb() memory barrier.
3703 			 */
3704 			list_del(&napi->poll_list);
3705 			napi->state = 0;
3706 
3707 			quota = work + qlen;
3708 		}
3709 		rps_unlock(sd);
3710 	}
3711 	local_irq_enable();
3712 
3713 	return work;
3714 }
3715 
3716 /**
3717  * __napi_schedule - schedule for receive
3718  * @n: entry to schedule
3719  *
3720  * The entry's receive function will be scheduled to run
3721  */
3722 void __napi_schedule(struct napi_struct *n)
3723 {
3724 	unsigned long flags;
3725 
3726 	local_irq_save(flags);
3727 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3728 	local_irq_restore(flags);
3729 }
3730 EXPORT_SYMBOL(__napi_schedule);
3731 
3732 void __napi_complete(struct napi_struct *n)
3733 {
3734 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3735 	BUG_ON(n->gro_list);
3736 
3737 	list_del(&n->poll_list);
3738 	smp_mb__before_clear_bit();
3739 	clear_bit(NAPI_STATE_SCHED, &n->state);
3740 }
3741 EXPORT_SYMBOL(__napi_complete);
3742 
3743 void napi_complete(struct napi_struct *n)
3744 {
3745 	unsigned long flags;
3746 
3747 	/*
3748 	 * don't let napi dequeue from the cpu poll list
3749 	 * just in case its running on a different cpu
3750 	 */
3751 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3752 		return;
3753 
3754 	napi_gro_flush(n);
3755 	local_irq_save(flags);
3756 	__napi_complete(n);
3757 	local_irq_restore(flags);
3758 }
3759 EXPORT_SYMBOL(napi_complete);
3760 
3761 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3762 		    int (*poll)(struct napi_struct *, int), int weight)
3763 {
3764 	INIT_LIST_HEAD(&napi->poll_list);
3765 	napi->gro_count = 0;
3766 	napi->gro_list = NULL;
3767 	napi->skb = NULL;
3768 	napi->poll = poll;
3769 	napi->weight = weight;
3770 	list_add(&napi->dev_list, &dev->napi_list);
3771 	napi->dev = dev;
3772 #ifdef CONFIG_NETPOLL
3773 	spin_lock_init(&napi->poll_lock);
3774 	napi->poll_owner = -1;
3775 #endif
3776 	set_bit(NAPI_STATE_SCHED, &napi->state);
3777 }
3778 EXPORT_SYMBOL(netif_napi_add);
3779 
3780 void netif_napi_del(struct napi_struct *napi)
3781 {
3782 	struct sk_buff *skb, *next;
3783 
3784 	list_del_init(&napi->dev_list);
3785 	napi_free_frags(napi);
3786 
3787 	for (skb = napi->gro_list; skb; skb = next) {
3788 		next = skb->next;
3789 		skb->next = NULL;
3790 		kfree_skb(skb);
3791 	}
3792 
3793 	napi->gro_list = NULL;
3794 	napi->gro_count = 0;
3795 }
3796 EXPORT_SYMBOL(netif_napi_del);
3797 
3798 static void net_rx_action(struct softirq_action *h)
3799 {
3800 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3801 	unsigned long time_limit = jiffies + 2;
3802 	int budget = netdev_budget;
3803 	void *have;
3804 
3805 	local_irq_disable();
3806 
3807 	while (!list_empty(&sd->poll_list)) {
3808 		struct napi_struct *n;
3809 		int work, weight;
3810 
3811 		/* If softirq window is exhuasted then punt.
3812 		 * Allow this to run for 2 jiffies since which will allow
3813 		 * an average latency of 1.5/HZ.
3814 		 */
3815 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3816 			goto softnet_break;
3817 
3818 		local_irq_enable();
3819 
3820 		/* Even though interrupts have been re-enabled, this
3821 		 * access is safe because interrupts can only add new
3822 		 * entries to the tail of this list, and only ->poll()
3823 		 * calls can remove this head entry from the list.
3824 		 */
3825 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3826 
3827 		have = netpoll_poll_lock(n);
3828 
3829 		weight = n->weight;
3830 
3831 		/* This NAPI_STATE_SCHED test is for avoiding a race
3832 		 * with netpoll's poll_napi().  Only the entity which
3833 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3834 		 * actually make the ->poll() call.  Therefore we avoid
3835 		 * accidentally calling ->poll() when NAPI is not scheduled.
3836 		 */
3837 		work = 0;
3838 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3839 			work = n->poll(n, weight);
3840 			trace_napi_poll(n);
3841 		}
3842 
3843 		WARN_ON_ONCE(work > weight);
3844 
3845 		budget -= work;
3846 
3847 		local_irq_disable();
3848 
3849 		/* Drivers must not modify the NAPI state if they
3850 		 * consume the entire weight.  In such cases this code
3851 		 * still "owns" the NAPI instance and therefore can
3852 		 * move the instance around on the list at-will.
3853 		 */
3854 		if (unlikely(work == weight)) {
3855 			if (unlikely(napi_disable_pending(n))) {
3856 				local_irq_enable();
3857 				napi_complete(n);
3858 				local_irq_disable();
3859 			} else
3860 				list_move_tail(&n->poll_list, &sd->poll_list);
3861 		}
3862 
3863 		netpoll_poll_unlock(have);
3864 	}
3865 out:
3866 	net_rps_action_and_irq_enable(sd);
3867 
3868 #ifdef CONFIG_NET_DMA
3869 	/*
3870 	 * There may not be any more sk_buffs coming right now, so push
3871 	 * any pending DMA copies to hardware
3872 	 */
3873 	dma_issue_pending_all();
3874 #endif
3875 
3876 	return;
3877 
3878 softnet_break:
3879 	sd->time_squeeze++;
3880 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3881 	goto out;
3882 }
3883 
3884 static gifconf_func_t *gifconf_list[NPROTO];
3885 
3886 /**
3887  *	register_gifconf	-	register a SIOCGIF handler
3888  *	@family: Address family
3889  *	@gifconf: Function handler
3890  *
3891  *	Register protocol dependent address dumping routines. The handler
3892  *	that is passed must not be freed or reused until it has been replaced
3893  *	by another handler.
3894  */
3895 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3896 {
3897 	if (family >= NPROTO)
3898 		return -EINVAL;
3899 	gifconf_list[family] = gifconf;
3900 	return 0;
3901 }
3902 EXPORT_SYMBOL(register_gifconf);
3903 
3904 
3905 /*
3906  *	Map an interface index to its name (SIOCGIFNAME)
3907  */
3908 
3909 /*
3910  *	We need this ioctl for efficient implementation of the
3911  *	if_indextoname() function required by the IPv6 API.  Without
3912  *	it, we would have to search all the interfaces to find a
3913  *	match.  --pb
3914  */
3915 
3916 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3917 {
3918 	struct net_device *dev;
3919 	struct ifreq ifr;
3920 
3921 	/*
3922 	 *	Fetch the caller's info block.
3923 	 */
3924 
3925 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3926 		return -EFAULT;
3927 
3928 	rcu_read_lock();
3929 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3930 	if (!dev) {
3931 		rcu_read_unlock();
3932 		return -ENODEV;
3933 	}
3934 
3935 	strcpy(ifr.ifr_name, dev->name);
3936 	rcu_read_unlock();
3937 
3938 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3939 		return -EFAULT;
3940 	return 0;
3941 }
3942 
3943 /*
3944  *	Perform a SIOCGIFCONF call. This structure will change
3945  *	size eventually, and there is nothing I can do about it.
3946  *	Thus we will need a 'compatibility mode'.
3947  */
3948 
3949 static int dev_ifconf(struct net *net, char __user *arg)
3950 {
3951 	struct ifconf ifc;
3952 	struct net_device *dev;
3953 	char __user *pos;
3954 	int len;
3955 	int total;
3956 	int i;
3957 
3958 	/*
3959 	 *	Fetch the caller's info block.
3960 	 */
3961 
3962 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3963 		return -EFAULT;
3964 
3965 	pos = ifc.ifc_buf;
3966 	len = ifc.ifc_len;
3967 
3968 	/*
3969 	 *	Loop over the interfaces, and write an info block for each.
3970 	 */
3971 
3972 	total = 0;
3973 	for_each_netdev(net, dev) {
3974 		for (i = 0; i < NPROTO; i++) {
3975 			if (gifconf_list[i]) {
3976 				int done;
3977 				if (!pos)
3978 					done = gifconf_list[i](dev, NULL, 0);
3979 				else
3980 					done = gifconf_list[i](dev, pos + total,
3981 							       len - total);
3982 				if (done < 0)
3983 					return -EFAULT;
3984 				total += done;
3985 			}
3986 		}
3987 	}
3988 
3989 	/*
3990 	 *	All done.  Write the updated control block back to the caller.
3991 	 */
3992 	ifc.ifc_len = total;
3993 
3994 	/*
3995 	 * 	Both BSD and Solaris return 0 here, so we do too.
3996 	 */
3997 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3998 }
3999 
4000 #ifdef CONFIG_PROC_FS
4001 
4002 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4003 
4004 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4005 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4006 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4007 
4008 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4009 {
4010 	struct net *net = seq_file_net(seq);
4011 	struct net_device *dev;
4012 	struct hlist_node *p;
4013 	struct hlist_head *h;
4014 	unsigned int count = 0, offset = get_offset(*pos);
4015 
4016 	h = &net->dev_name_head[get_bucket(*pos)];
4017 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4018 		if (++count == offset)
4019 			return dev;
4020 	}
4021 
4022 	return NULL;
4023 }
4024 
4025 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4026 {
4027 	struct net_device *dev;
4028 	unsigned int bucket;
4029 
4030 	do {
4031 		dev = dev_from_same_bucket(seq, pos);
4032 		if (dev)
4033 			return dev;
4034 
4035 		bucket = get_bucket(*pos) + 1;
4036 		*pos = set_bucket_offset(bucket, 1);
4037 	} while (bucket < NETDEV_HASHENTRIES);
4038 
4039 	return NULL;
4040 }
4041 
4042 /*
4043  *	This is invoked by the /proc filesystem handler to display a device
4044  *	in detail.
4045  */
4046 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4047 	__acquires(RCU)
4048 {
4049 	rcu_read_lock();
4050 	if (!*pos)
4051 		return SEQ_START_TOKEN;
4052 
4053 	if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4054 		return NULL;
4055 
4056 	return dev_from_bucket(seq, pos);
4057 }
4058 
4059 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4060 {
4061 	++*pos;
4062 	return dev_from_bucket(seq, pos);
4063 }
4064 
4065 void dev_seq_stop(struct seq_file *seq, void *v)
4066 	__releases(RCU)
4067 {
4068 	rcu_read_unlock();
4069 }
4070 
4071 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4072 {
4073 	struct rtnl_link_stats64 temp;
4074 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4075 
4076 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4077 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4078 		   dev->name, stats->rx_bytes, stats->rx_packets,
4079 		   stats->rx_errors,
4080 		   stats->rx_dropped + stats->rx_missed_errors,
4081 		   stats->rx_fifo_errors,
4082 		   stats->rx_length_errors + stats->rx_over_errors +
4083 		    stats->rx_crc_errors + stats->rx_frame_errors,
4084 		   stats->rx_compressed, stats->multicast,
4085 		   stats->tx_bytes, stats->tx_packets,
4086 		   stats->tx_errors, stats->tx_dropped,
4087 		   stats->tx_fifo_errors, stats->collisions,
4088 		   stats->tx_carrier_errors +
4089 		    stats->tx_aborted_errors +
4090 		    stats->tx_window_errors +
4091 		    stats->tx_heartbeat_errors,
4092 		   stats->tx_compressed);
4093 }
4094 
4095 /*
4096  *	Called from the PROCfs module. This now uses the new arbitrary sized
4097  *	/proc/net interface to create /proc/net/dev
4098  */
4099 static int dev_seq_show(struct seq_file *seq, void *v)
4100 {
4101 	if (v == SEQ_START_TOKEN)
4102 		seq_puts(seq, "Inter-|   Receive                            "
4103 			      "                    |  Transmit\n"
4104 			      " face |bytes    packets errs drop fifo frame "
4105 			      "compressed multicast|bytes    packets errs "
4106 			      "drop fifo colls carrier compressed\n");
4107 	else
4108 		dev_seq_printf_stats(seq, v);
4109 	return 0;
4110 }
4111 
4112 static struct softnet_data *softnet_get_online(loff_t *pos)
4113 {
4114 	struct softnet_data *sd = NULL;
4115 
4116 	while (*pos < nr_cpu_ids)
4117 		if (cpu_online(*pos)) {
4118 			sd = &per_cpu(softnet_data, *pos);
4119 			break;
4120 		} else
4121 			++*pos;
4122 	return sd;
4123 }
4124 
4125 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4126 {
4127 	return softnet_get_online(pos);
4128 }
4129 
4130 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4131 {
4132 	++*pos;
4133 	return softnet_get_online(pos);
4134 }
4135 
4136 static void softnet_seq_stop(struct seq_file *seq, void *v)
4137 {
4138 }
4139 
4140 static int softnet_seq_show(struct seq_file *seq, void *v)
4141 {
4142 	struct softnet_data *sd = v;
4143 
4144 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4145 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4146 		   0, 0, 0, 0, /* was fastroute */
4147 		   sd->cpu_collision, sd->received_rps);
4148 	return 0;
4149 }
4150 
4151 static const struct seq_operations dev_seq_ops = {
4152 	.start = dev_seq_start,
4153 	.next  = dev_seq_next,
4154 	.stop  = dev_seq_stop,
4155 	.show  = dev_seq_show,
4156 };
4157 
4158 static int dev_seq_open(struct inode *inode, struct file *file)
4159 {
4160 	return seq_open_net(inode, file, &dev_seq_ops,
4161 			    sizeof(struct seq_net_private));
4162 }
4163 
4164 static const struct file_operations dev_seq_fops = {
4165 	.owner	 = THIS_MODULE,
4166 	.open    = dev_seq_open,
4167 	.read    = seq_read,
4168 	.llseek  = seq_lseek,
4169 	.release = seq_release_net,
4170 };
4171 
4172 static const struct seq_operations softnet_seq_ops = {
4173 	.start = softnet_seq_start,
4174 	.next  = softnet_seq_next,
4175 	.stop  = softnet_seq_stop,
4176 	.show  = softnet_seq_show,
4177 };
4178 
4179 static int softnet_seq_open(struct inode *inode, struct file *file)
4180 {
4181 	return seq_open(file, &softnet_seq_ops);
4182 }
4183 
4184 static const struct file_operations softnet_seq_fops = {
4185 	.owner	 = THIS_MODULE,
4186 	.open    = softnet_seq_open,
4187 	.read    = seq_read,
4188 	.llseek  = seq_lseek,
4189 	.release = seq_release,
4190 };
4191 
4192 static void *ptype_get_idx(loff_t pos)
4193 {
4194 	struct packet_type *pt = NULL;
4195 	loff_t i = 0;
4196 	int t;
4197 
4198 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4199 		if (i == pos)
4200 			return pt;
4201 		++i;
4202 	}
4203 
4204 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4205 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4206 			if (i == pos)
4207 				return pt;
4208 			++i;
4209 		}
4210 	}
4211 	return NULL;
4212 }
4213 
4214 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4215 	__acquires(RCU)
4216 {
4217 	rcu_read_lock();
4218 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4219 }
4220 
4221 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4222 {
4223 	struct packet_type *pt;
4224 	struct list_head *nxt;
4225 	int hash;
4226 
4227 	++*pos;
4228 	if (v == SEQ_START_TOKEN)
4229 		return ptype_get_idx(0);
4230 
4231 	pt = v;
4232 	nxt = pt->list.next;
4233 	if (pt->type == htons(ETH_P_ALL)) {
4234 		if (nxt != &ptype_all)
4235 			goto found;
4236 		hash = 0;
4237 		nxt = ptype_base[0].next;
4238 	} else
4239 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4240 
4241 	while (nxt == &ptype_base[hash]) {
4242 		if (++hash >= PTYPE_HASH_SIZE)
4243 			return NULL;
4244 		nxt = ptype_base[hash].next;
4245 	}
4246 found:
4247 	return list_entry(nxt, struct packet_type, list);
4248 }
4249 
4250 static void ptype_seq_stop(struct seq_file *seq, void *v)
4251 	__releases(RCU)
4252 {
4253 	rcu_read_unlock();
4254 }
4255 
4256 static int ptype_seq_show(struct seq_file *seq, void *v)
4257 {
4258 	struct packet_type *pt = v;
4259 
4260 	if (v == SEQ_START_TOKEN)
4261 		seq_puts(seq, "Type Device      Function\n");
4262 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4263 		if (pt->type == htons(ETH_P_ALL))
4264 			seq_puts(seq, "ALL ");
4265 		else
4266 			seq_printf(seq, "%04x", ntohs(pt->type));
4267 
4268 		seq_printf(seq, " %-8s %pF\n",
4269 			   pt->dev ? pt->dev->name : "", pt->func);
4270 	}
4271 
4272 	return 0;
4273 }
4274 
4275 static const struct seq_operations ptype_seq_ops = {
4276 	.start = ptype_seq_start,
4277 	.next  = ptype_seq_next,
4278 	.stop  = ptype_seq_stop,
4279 	.show  = ptype_seq_show,
4280 };
4281 
4282 static int ptype_seq_open(struct inode *inode, struct file *file)
4283 {
4284 	return seq_open_net(inode, file, &ptype_seq_ops,
4285 			sizeof(struct seq_net_private));
4286 }
4287 
4288 static const struct file_operations ptype_seq_fops = {
4289 	.owner	 = THIS_MODULE,
4290 	.open    = ptype_seq_open,
4291 	.read    = seq_read,
4292 	.llseek  = seq_lseek,
4293 	.release = seq_release_net,
4294 };
4295 
4296 
4297 static int __net_init dev_proc_net_init(struct net *net)
4298 {
4299 	int rc = -ENOMEM;
4300 
4301 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4302 		goto out;
4303 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4304 		goto out_dev;
4305 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4306 		goto out_softnet;
4307 
4308 	if (wext_proc_init(net))
4309 		goto out_ptype;
4310 	rc = 0;
4311 out:
4312 	return rc;
4313 out_ptype:
4314 	proc_net_remove(net, "ptype");
4315 out_softnet:
4316 	proc_net_remove(net, "softnet_stat");
4317 out_dev:
4318 	proc_net_remove(net, "dev");
4319 	goto out;
4320 }
4321 
4322 static void __net_exit dev_proc_net_exit(struct net *net)
4323 {
4324 	wext_proc_exit(net);
4325 
4326 	proc_net_remove(net, "ptype");
4327 	proc_net_remove(net, "softnet_stat");
4328 	proc_net_remove(net, "dev");
4329 }
4330 
4331 static struct pernet_operations __net_initdata dev_proc_ops = {
4332 	.init = dev_proc_net_init,
4333 	.exit = dev_proc_net_exit,
4334 };
4335 
4336 static int __init dev_proc_init(void)
4337 {
4338 	return register_pernet_subsys(&dev_proc_ops);
4339 }
4340 #else
4341 #define dev_proc_init() 0
4342 #endif	/* CONFIG_PROC_FS */
4343 
4344 
4345 /**
4346  *	netdev_set_master	-	set up master pointer
4347  *	@slave: slave device
4348  *	@master: new master device
4349  *
4350  *	Changes the master device of the slave. Pass %NULL to break the
4351  *	bonding. The caller must hold the RTNL semaphore. On a failure
4352  *	a negative errno code is returned. On success the reference counts
4353  *	are adjusted and the function returns zero.
4354  */
4355 int netdev_set_master(struct net_device *slave, struct net_device *master)
4356 {
4357 	struct net_device *old = slave->master;
4358 
4359 	ASSERT_RTNL();
4360 
4361 	if (master) {
4362 		if (old)
4363 			return -EBUSY;
4364 		dev_hold(master);
4365 	}
4366 
4367 	slave->master = master;
4368 
4369 	if (old)
4370 		dev_put(old);
4371 	return 0;
4372 }
4373 EXPORT_SYMBOL(netdev_set_master);
4374 
4375 /**
4376  *	netdev_set_bond_master	-	set up bonding master/slave pair
4377  *	@slave: slave device
4378  *	@master: new master device
4379  *
4380  *	Changes the master device of the slave. Pass %NULL to break the
4381  *	bonding. The caller must hold the RTNL semaphore. On a failure
4382  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4383  *	to the routing socket and the function returns zero.
4384  */
4385 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4386 {
4387 	int err;
4388 
4389 	ASSERT_RTNL();
4390 
4391 	err = netdev_set_master(slave, master);
4392 	if (err)
4393 		return err;
4394 	if (master)
4395 		slave->flags |= IFF_SLAVE;
4396 	else
4397 		slave->flags &= ~IFF_SLAVE;
4398 
4399 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4400 	return 0;
4401 }
4402 EXPORT_SYMBOL(netdev_set_bond_master);
4403 
4404 static void dev_change_rx_flags(struct net_device *dev, int flags)
4405 {
4406 	const struct net_device_ops *ops = dev->netdev_ops;
4407 
4408 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4409 		ops->ndo_change_rx_flags(dev, flags);
4410 }
4411 
4412 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4413 {
4414 	unsigned int old_flags = dev->flags;
4415 	uid_t uid;
4416 	gid_t gid;
4417 
4418 	ASSERT_RTNL();
4419 
4420 	dev->flags |= IFF_PROMISC;
4421 	dev->promiscuity += inc;
4422 	if (dev->promiscuity == 0) {
4423 		/*
4424 		 * Avoid overflow.
4425 		 * If inc causes overflow, untouch promisc and return error.
4426 		 */
4427 		if (inc < 0)
4428 			dev->flags &= ~IFF_PROMISC;
4429 		else {
4430 			dev->promiscuity -= inc;
4431 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4432 				dev->name);
4433 			return -EOVERFLOW;
4434 		}
4435 	}
4436 	if (dev->flags != old_flags) {
4437 		pr_info("device %s %s promiscuous mode\n",
4438 			dev->name,
4439 			dev->flags & IFF_PROMISC ? "entered" : "left");
4440 		if (audit_enabled) {
4441 			current_uid_gid(&uid, &gid);
4442 			audit_log(current->audit_context, GFP_ATOMIC,
4443 				AUDIT_ANOM_PROMISCUOUS,
4444 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4445 				dev->name, (dev->flags & IFF_PROMISC),
4446 				(old_flags & IFF_PROMISC),
4447 				audit_get_loginuid(current),
4448 				uid, gid,
4449 				audit_get_sessionid(current));
4450 		}
4451 
4452 		dev_change_rx_flags(dev, IFF_PROMISC);
4453 	}
4454 	return 0;
4455 }
4456 
4457 /**
4458  *	dev_set_promiscuity	- update promiscuity count on a device
4459  *	@dev: device
4460  *	@inc: modifier
4461  *
4462  *	Add or remove promiscuity from a device. While the count in the device
4463  *	remains above zero the interface remains promiscuous. Once it hits zero
4464  *	the device reverts back to normal filtering operation. A negative inc
4465  *	value is used to drop promiscuity on the device.
4466  *	Return 0 if successful or a negative errno code on error.
4467  */
4468 int dev_set_promiscuity(struct net_device *dev, int inc)
4469 {
4470 	unsigned int old_flags = dev->flags;
4471 	int err;
4472 
4473 	err = __dev_set_promiscuity(dev, inc);
4474 	if (err < 0)
4475 		return err;
4476 	if (dev->flags != old_flags)
4477 		dev_set_rx_mode(dev);
4478 	return err;
4479 }
4480 EXPORT_SYMBOL(dev_set_promiscuity);
4481 
4482 /**
4483  *	dev_set_allmulti	- update allmulti count on a device
4484  *	@dev: device
4485  *	@inc: modifier
4486  *
4487  *	Add or remove reception of all multicast frames to a device. While the
4488  *	count in the device remains above zero the interface remains listening
4489  *	to all interfaces. Once it hits zero the device reverts back to normal
4490  *	filtering operation. A negative @inc value is used to drop the counter
4491  *	when releasing a resource needing all multicasts.
4492  *	Return 0 if successful or a negative errno code on error.
4493  */
4494 
4495 int dev_set_allmulti(struct net_device *dev, int inc)
4496 {
4497 	unsigned int old_flags = dev->flags;
4498 
4499 	ASSERT_RTNL();
4500 
4501 	dev->flags |= IFF_ALLMULTI;
4502 	dev->allmulti += inc;
4503 	if (dev->allmulti == 0) {
4504 		/*
4505 		 * Avoid overflow.
4506 		 * If inc causes overflow, untouch allmulti and return error.
4507 		 */
4508 		if (inc < 0)
4509 			dev->flags &= ~IFF_ALLMULTI;
4510 		else {
4511 			dev->allmulti -= inc;
4512 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4513 				dev->name);
4514 			return -EOVERFLOW;
4515 		}
4516 	}
4517 	if (dev->flags ^ old_flags) {
4518 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4519 		dev_set_rx_mode(dev);
4520 	}
4521 	return 0;
4522 }
4523 EXPORT_SYMBOL(dev_set_allmulti);
4524 
4525 /*
4526  *	Upload unicast and multicast address lists to device and
4527  *	configure RX filtering. When the device doesn't support unicast
4528  *	filtering it is put in promiscuous mode while unicast addresses
4529  *	are present.
4530  */
4531 void __dev_set_rx_mode(struct net_device *dev)
4532 {
4533 	const struct net_device_ops *ops = dev->netdev_ops;
4534 
4535 	/* dev_open will call this function so the list will stay sane. */
4536 	if (!(dev->flags&IFF_UP))
4537 		return;
4538 
4539 	if (!netif_device_present(dev))
4540 		return;
4541 
4542 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4543 		/* Unicast addresses changes may only happen under the rtnl,
4544 		 * therefore calling __dev_set_promiscuity here is safe.
4545 		 */
4546 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4547 			__dev_set_promiscuity(dev, 1);
4548 			dev->uc_promisc = true;
4549 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4550 			__dev_set_promiscuity(dev, -1);
4551 			dev->uc_promisc = false;
4552 		}
4553 	}
4554 
4555 	if (ops->ndo_set_rx_mode)
4556 		ops->ndo_set_rx_mode(dev);
4557 }
4558 
4559 void dev_set_rx_mode(struct net_device *dev)
4560 {
4561 	netif_addr_lock_bh(dev);
4562 	__dev_set_rx_mode(dev);
4563 	netif_addr_unlock_bh(dev);
4564 }
4565 
4566 /**
4567  *	dev_get_flags - get flags reported to userspace
4568  *	@dev: device
4569  *
4570  *	Get the combination of flag bits exported through APIs to userspace.
4571  */
4572 unsigned int dev_get_flags(const struct net_device *dev)
4573 {
4574 	unsigned int flags;
4575 
4576 	flags = (dev->flags & ~(IFF_PROMISC |
4577 				IFF_ALLMULTI |
4578 				IFF_RUNNING |
4579 				IFF_LOWER_UP |
4580 				IFF_DORMANT)) |
4581 		(dev->gflags & (IFF_PROMISC |
4582 				IFF_ALLMULTI));
4583 
4584 	if (netif_running(dev)) {
4585 		if (netif_oper_up(dev))
4586 			flags |= IFF_RUNNING;
4587 		if (netif_carrier_ok(dev))
4588 			flags |= IFF_LOWER_UP;
4589 		if (netif_dormant(dev))
4590 			flags |= IFF_DORMANT;
4591 	}
4592 
4593 	return flags;
4594 }
4595 EXPORT_SYMBOL(dev_get_flags);
4596 
4597 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4598 {
4599 	unsigned int old_flags = dev->flags;
4600 	int ret;
4601 
4602 	ASSERT_RTNL();
4603 
4604 	/*
4605 	 *	Set the flags on our device.
4606 	 */
4607 
4608 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4609 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4610 			       IFF_AUTOMEDIA)) |
4611 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4612 				    IFF_ALLMULTI));
4613 
4614 	/*
4615 	 *	Load in the correct multicast list now the flags have changed.
4616 	 */
4617 
4618 	if ((old_flags ^ flags) & IFF_MULTICAST)
4619 		dev_change_rx_flags(dev, IFF_MULTICAST);
4620 
4621 	dev_set_rx_mode(dev);
4622 
4623 	/*
4624 	 *	Have we downed the interface. We handle IFF_UP ourselves
4625 	 *	according to user attempts to set it, rather than blindly
4626 	 *	setting it.
4627 	 */
4628 
4629 	ret = 0;
4630 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4631 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4632 
4633 		if (!ret)
4634 			dev_set_rx_mode(dev);
4635 	}
4636 
4637 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4638 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4639 
4640 		dev->gflags ^= IFF_PROMISC;
4641 		dev_set_promiscuity(dev, inc);
4642 	}
4643 
4644 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4645 	   is important. Some (broken) drivers set IFF_PROMISC, when
4646 	   IFF_ALLMULTI is requested not asking us and not reporting.
4647 	 */
4648 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4649 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4650 
4651 		dev->gflags ^= IFF_ALLMULTI;
4652 		dev_set_allmulti(dev, inc);
4653 	}
4654 
4655 	return ret;
4656 }
4657 
4658 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4659 {
4660 	unsigned int changes = dev->flags ^ old_flags;
4661 
4662 	if (changes & IFF_UP) {
4663 		if (dev->flags & IFF_UP)
4664 			call_netdevice_notifiers(NETDEV_UP, dev);
4665 		else
4666 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4667 	}
4668 
4669 	if (dev->flags & IFF_UP &&
4670 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4671 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4672 }
4673 
4674 /**
4675  *	dev_change_flags - change device settings
4676  *	@dev: device
4677  *	@flags: device state flags
4678  *
4679  *	Change settings on device based state flags. The flags are
4680  *	in the userspace exported format.
4681  */
4682 int dev_change_flags(struct net_device *dev, unsigned int flags)
4683 {
4684 	int ret;
4685 	unsigned int changes, old_flags = dev->flags;
4686 
4687 	ret = __dev_change_flags(dev, flags);
4688 	if (ret < 0)
4689 		return ret;
4690 
4691 	changes = old_flags ^ dev->flags;
4692 	if (changes)
4693 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4694 
4695 	__dev_notify_flags(dev, old_flags);
4696 	return ret;
4697 }
4698 EXPORT_SYMBOL(dev_change_flags);
4699 
4700 /**
4701  *	dev_set_mtu - Change maximum transfer unit
4702  *	@dev: device
4703  *	@new_mtu: new transfer unit
4704  *
4705  *	Change the maximum transfer size of the network device.
4706  */
4707 int dev_set_mtu(struct net_device *dev, int new_mtu)
4708 {
4709 	const struct net_device_ops *ops = dev->netdev_ops;
4710 	int err;
4711 
4712 	if (new_mtu == dev->mtu)
4713 		return 0;
4714 
4715 	/*	MTU must be positive.	 */
4716 	if (new_mtu < 0)
4717 		return -EINVAL;
4718 
4719 	if (!netif_device_present(dev))
4720 		return -ENODEV;
4721 
4722 	err = 0;
4723 	if (ops->ndo_change_mtu)
4724 		err = ops->ndo_change_mtu(dev, new_mtu);
4725 	else
4726 		dev->mtu = new_mtu;
4727 
4728 	if (!err && dev->flags & IFF_UP)
4729 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4730 	return err;
4731 }
4732 EXPORT_SYMBOL(dev_set_mtu);
4733 
4734 /**
4735  *	dev_set_group - Change group this device belongs to
4736  *	@dev: device
4737  *	@new_group: group this device should belong to
4738  */
4739 void dev_set_group(struct net_device *dev, int new_group)
4740 {
4741 	dev->group = new_group;
4742 }
4743 EXPORT_SYMBOL(dev_set_group);
4744 
4745 /**
4746  *	dev_set_mac_address - Change Media Access Control Address
4747  *	@dev: device
4748  *	@sa: new address
4749  *
4750  *	Change the hardware (MAC) address of the device
4751  */
4752 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4753 {
4754 	const struct net_device_ops *ops = dev->netdev_ops;
4755 	int err;
4756 
4757 	if (!ops->ndo_set_mac_address)
4758 		return -EOPNOTSUPP;
4759 	if (sa->sa_family != dev->type)
4760 		return -EINVAL;
4761 	if (!netif_device_present(dev))
4762 		return -ENODEV;
4763 	err = ops->ndo_set_mac_address(dev, sa);
4764 	if (!err)
4765 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4766 	return err;
4767 }
4768 EXPORT_SYMBOL(dev_set_mac_address);
4769 
4770 /*
4771  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4772  */
4773 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4774 {
4775 	int err;
4776 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4777 
4778 	if (!dev)
4779 		return -ENODEV;
4780 
4781 	switch (cmd) {
4782 	case SIOCGIFFLAGS:	/* Get interface flags */
4783 		ifr->ifr_flags = (short) dev_get_flags(dev);
4784 		return 0;
4785 
4786 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4787 				   (currently unused) */
4788 		ifr->ifr_metric = 0;
4789 		return 0;
4790 
4791 	case SIOCGIFMTU:	/* Get the MTU of a device */
4792 		ifr->ifr_mtu = dev->mtu;
4793 		return 0;
4794 
4795 	case SIOCGIFHWADDR:
4796 		if (!dev->addr_len)
4797 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4798 		else
4799 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4800 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4801 		ifr->ifr_hwaddr.sa_family = dev->type;
4802 		return 0;
4803 
4804 	case SIOCGIFSLAVE:
4805 		err = -EINVAL;
4806 		break;
4807 
4808 	case SIOCGIFMAP:
4809 		ifr->ifr_map.mem_start = dev->mem_start;
4810 		ifr->ifr_map.mem_end   = dev->mem_end;
4811 		ifr->ifr_map.base_addr = dev->base_addr;
4812 		ifr->ifr_map.irq       = dev->irq;
4813 		ifr->ifr_map.dma       = dev->dma;
4814 		ifr->ifr_map.port      = dev->if_port;
4815 		return 0;
4816 
4817 	case SIOCGIFINDEX:
4818 		ifr->ifr_ifindex = dev->ifindex;
4819 		return 0;
4820 
4821 	case SIOCGIFTXQLEN:
4822 		ifr->ifr_qlen = dev->tx_queue_len;
4823 		return 0;
4824 
4825 	default:
4826 		/* dev_ioctl() should ensure this case
4827 		 * is never reached
4828 		 */
4829 		WARN_ON(1);
4830 		err = -ENOTTY;
4831 		break;
4832 
4833 	}
4834 	return err;
4835 }
4836 
4837 /*
4838  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4839  */
4840 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4841 {
4842 	int err;
4843 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4844 	const struct net_device_ops *ops;
4845 
4846 	if (!dev)
4847 		return -ENODEV;
4848 
4849 	ops = dev->netdev_ops;
4850 
4851 	switch (cmd) {
4852 	case SIOCSIFFLAGS:	/* Set interface flags */
4853 		return dev_change_flags(dev, ifr->ifr_flags);
4854 
4855 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4856 				   (currently unused) */
4857 		return -EOPNOTSUPP;
4858 
4859 	case SIOCSIFMTU:	/* Set the MTU of a device */
4860 		return dev_set_mtu(dev, ifr->ifr_mtu);
4861 
4862 	case SIOCSIFHWADDR:
4863 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4864 
4865 	case SIOCSIFHWBROADCAST:
4866 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4867 			return -EINVAL;
4868 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4869 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4870 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4871 		return 0;
4872 
4873 	case SIOCSIFMAP:
4874 		if (ops->ndo_set_config) {
4875 			if (!netif_device_present(dev))
4876 				return -ENODEV;
4877 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4878 		}
4879 		return -EOPNOTSUPP;
4880 
4881 	case SIOCADDMULTI:
4882 		if (!ops->ndo_set_rx_mode ||
4883 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4884 			return -EINVAL;
4885 		if (!netif_device_present(dev))
4886 			return -ENODEV;
4887 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4888 
4889 	case SIOCDELMULTI:
4890 		if (!ops->ndo_set_rx_mode ||
4891 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4892 			return -EINVAL;
4893 		if (!netif_device_present(dev))
4894 			return -ENODEV;
4895 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4896 
4897 	case SIOCSIFTXQLEN:
4898 		if (ifr->ifr_qlen < 0)
4899 			return -EINVAL;
4900 		dev->tx_queue_len = ifr->ifr_qlen;
4901 		return 0;
4902 
4903 	case SIOCSIFNAME:
4904 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4905 		return dev_change_name(dev, ifr->ifr_newname);
4906 
4907 	case SIOCSHWTSTAMP:
4908 		err = net_hwtstamp_validate(ifr);
4909 		if (err)
4910 			return err;
4911 		/* fall through */
4912 
4913 	/*
4914 	 *	Unknown or private ioctl
4915 	 */
4916 	default:
4917 		if ((cmd >= SIOCDEVPRIVATE &&
4918 		    cmd <= SIOCDEVPRIVATE + 15) ||
4919 		    cmd == SIOCBONDENSLAVE ||
4920 		    cmd == SIOCBONDRELEASE ||
4921 		    cmd == SIOCBONDSETHWADDR ||
4922 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4923 		    cmd == SIOCBONDINFOQUERY ||
4924 		    cmd == SIOCBONDCHANGEACTIVE ||
4925 		    cmd == SIOCGMIIPHY ||
4926 		    cmd == SIOCGMIIREG ||
4927 		    cmd == SIOCSMIIREG ||
4928 		    cmd == SIOCBRADDIF ||
4929 		    cmd == SIOCBRDELIF ||
4930 		    cmd == SIOCSHWTSTAMP ||
4931 		    cmd == SIOCWANDEV) {
4932 			err = -EOPNOTSUPP;
4933 			if (ops->ndo_do_ioctl) {
4934 				if (netif_device_present(dev))
4935 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4936 				else
4937 					err = -ENODEV;
4938 			}
4939 		} else
4940 			err = -EINVAL;
4941 
4942 	}
4943 	return err;
4944 }
4945 
4946 /*
4947  *	This function handles all "interface"-type I/O control requests. The actual
4948  *	'doing' part of this is dev_ifsioc above.
4949  */
4950 
4951 /**
4952  *	dev_ioctl	-	network device ioctl
4953  *	@net: the applicable net namespace
4954  *	@cmd: command to issue
4955  *	@arg: pointer to a struct ifreq in user space
4956  *
4957  *	Issue ioctl functions to devices. This is normally called by the
4958  *	user space syscall interfaces but can sometimes be useful for
4959  *	other purposes. The return value is the return from the syscall if
4960  *	positive or a negative errno code on error.
4961  */
4962 
4963 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4964 {
4965 	struct ifreq ifr;
4966 	int ret;
4967 	char *colon;
4968 
4969 	/* One special case: SIOCGIFCONF takes ifconf argument
4970 	   and requires shared lock, because it sleeps writing
4971 	   to user space.
4972 	 */
4973 
4974 	if (cmd == SIOCGIFCONF) {
4975 		rtnl_lock();
4976 		ret = dev_ifconf(net, (char __user *) arg);
4977 		rtnl_unlock();
4978 		return ret;
4979 	}
4980 	if (cmd == SIOCGIFNAME)
4981 		return dev_ifname(net, (struct ifreq __user *)arg);
4982 
4983 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4984 		return -EFAULT;
4985 
4986 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4987 
4988 	colon = strchr(ifr.ifr_name, ':');
4989 	if (colon)
4990 		*colon = 0;
4991 
4992 	/*
4993 	 *	See which interface the caller is talking about.
4994 	 */
4995 
4996 	switch (cmd) {
4997 	/*
4998 	 *	These ioctl calls:
4999 	 *	- can be done by all.
5000 	 *	- atomic and do not require locking.
5001 	 *	- return a value
5002 	 */
5003 	case SIOCGIFFLAGS:
5004 	case SIOCGIFMETRIC:
5005 	case SIOCGIFMTU:
5006 	case SIOCGIFHWADDR:
5007 	case SIOCGIFSLAVE:
5008 	case SIOCGIFMAP:
5009 	case SIOCGIFINDEX:
5010 	case SIOCGIFTXQLEN:
5011 		dev_load(net, ifr.ifr_name);
5012 		rcu_read_lock();
5013 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5014 		rcu_read_unlock();
5015 		if (!ret) {
5016 			if (colon)
5017 				*colon = ':';
5018 			if (copy_to_user(arg, &ifr,
5019 					 sizeof(struct ifreq)))
5020 				ret = -EFAULT;
5021 		}
5022 		return ret;
5023 
5024 	case SIOCETHTOOL:
5025 		dev_load(net, ifr.ifr_name);
5026 		rtnl_lock();
5027 		ret = dev_ethtool(net, &ifr);
5028 		rtnl_unlock();
5029 		if (!ret) {
5030 			if (colon)
5031 				*colon = ':';
5032 			if (copy_to_user(arg, &ifr,
5033 					 sizeof(struct ifreq)))
5034 				ret = -EFAULT;
5035 		}
5036 		return ret;
5037 
5038 	/*
5039 	 *	These ioctl calls:
5040 	 *	- require superuser power.
5041 	 *	- require strict serialization.
5042 	 *	- return a value
5043 	 */
5044 	case SIOCGMIIPHY:
5045 	case SIOCGMIIREG:
5046 	case SIOCSIFNAME:
5047 		if (!capable(CAP_NET_ADMIN))
5048 			return -EPERM;
5049 		dev_load(net, ifr.ifr_name);
5050 		rtnl_lock();
5051 		ret = dev_ifsioc(net, &ifr, cmd);
5052 		rtnl_unlock();
5053 		if (!ret) {
5054 			if (colon)
5055 				*colon = ':';
5056 			if (copy_to_user(arg, &ifr,
5057 					 sizeof(struct ifreq)))
5058 				ret = -EFAULT;
5059 		}
5060 		return ret;
5061 
5062 	/*
5063 	 *	These ioctl calls:
5064 	 *	- require superuser power.
5065 	 *	- require strict serialization.
5066 	 *	- do not return a value
5067 	 */
5068 	case SIOCSIFFLAGS:
5069 	case SIOCSIFMETRIC:
5070 	case SIOCSIFMTU:
5071 	case SIOCSIFMAP:
5072 	case SIOCSIFHWADDR:
5073 	case SIOCSIFSLAVE:
5074 	case SIOCADDMULTI:
5075 	case SIOCDELMULTI:
5076 	case SIOCSIFHWBROADCAST:
5077 	case SIOCSIFTXQLEN:
5078 	case SIOCSMIIREG:
5079 	case SIOCBONDENSLAVE:
5080 	case SIOCBONDRELEASE:
5081 	case SIOCBONDSETHWADDR:
5082 	case SIOCBONDCHANGEACTIVE:
5083 	case SIOCBRADDIF:
5084 	case SIOCBRDELIF:
5085 	case SIOCSHWTSTAMP:
5086 		if (!capable(CAP_NET_ADMIN))
5087 			return -EPERM;
5088 		/* fall through */
5089 	case SIOCBONDSLAVEINFOQUERY:
5090 	case SIOCBONDINFOQUERY:
5091 		dev_load(net, ifr.ifr_name);
5092 		rtnl_lock();
5093 		ret = dev_ifsioc(net, &ifr, cmd);
5094 		rtnl_unlock();
5095 		return ret;
5096 
5097 	case SIOCGIFMEM:
5098 		/* Get the per device memory space. We can add this but
5099 		 * currently do not support it */
5100 	case SIOCSIFMEM:
5101 		/* Set the per device memory buffer space.
5102 		 * Not applicable in our case */
5103 	case SIOCSIFLINK:
5104 		return -ENOTTY;
5105 
5106 	/*
5107 	 *	Unknown or private ioctl.
5108 	 */
5109 	default:
5110 		if (cmd == SIOCWANDEV ||
5111 		    (cmd >= SIOCDEVPRIVATE &&
5112 		     cmd <= SIOCDEVPRIVATE + 15)) {
5113 			dev_load(net, ifr.ifr_name);
5114 			rtnl_lock();
5115 			ret = dev_ifsioc(net, &ifr, cmd);
5116 			rtnl_unlock();
5117 			if (!ret && copy_to_user(arg, &ifr,
5118 						 sizeof(struct ifreq)))
5119 				ret = -EFAULT;
5120 			return ret;
5121 		}
5122 		/* Take care of Wireless Extensions */
5123 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5124 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5125 		return -ENOTTY;
5126 	}
5127 }
5128 
5129 
5130 /**
5131  *	dev_new_index	-	allocate an ifindex
5132  *	@net: the applicable net namespace
5133  *
5134  *	Returns a suitable unique value for a new device interface
5135  *	number.  The caller must hold the rtnl semaphore or the
5136  *	dev_base_lock to be sure it remains unique.
5137  */
5138 static int dev_new_index(struct net *net)
5139 {
5140 	static int ifindex;
5141 	for (;;) {
5142 		if (++ifindex <= 0)
5143 			ifindex = 1;
5144 		if (!__dev_get_by_index(net, ifindex))
5145 			return ifindex;
5146 	}
5147 }
5148 
5149 /* Delayed registration/unregisteration */
5150 static LIST_HEAD(net_todo_list);
5151 
5152 static void net_set_todo(struct net_device *dev)
5153 {
5154 	list_add_tail(&dev->todo_list, &net_todo_list);
5155 }
5156 
5157 static void rollback_registered_many(struct list_head *head)
5158 {
5159 	struct net_device *dev, *tmp;
5160 
5161 	BUG_ON(dev_boot_phase);
5162 	ASSERT_RTNL();
5163 
5164 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5165 		/* Some devices call without registering
5166 		 * for initialization unwind. Remove those
5167 		 * devices and proceed with the remaining.
5168 		 */
5169 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5170 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5171 				 dev->name, dev);
5172 
5173 			WARN_ON(1);
5174 			list_del(&dev->unreg_list);
5175 			continue;
5176 		}
5177 		dev->dismantle = true;
5178 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5179 	}
5180 
5181 	/* If device is running, close it first. */
5182 	dev_close_many(head);
5183 
5184 	list_for_each_entry(dev, head, unreg_list) {
5185 		/* And unlink it from device chain. */
5186 		unlist_netdevice(dev);
5187 
5188 		dev->reg_state = NETREG_UNREGISTERING;
5189 	}
5190 
5191 	synchronize_net();
5192 
5193 	list_for_each_entry(dev, head, unreg_list) {
5194 		/* Shutdown queueing discipline. */
5195 		dev_shutdown(dev);
5196 
5197 
5198 		/* Notify protocols, that we are about to destroy
5199 		   this device. They should clean all the things.
5200 		*/
5201 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5202 
5203 		if (!dev->rtnl_link_ops ||
5204 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5205 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5206 
5207 		/*
5208 		 *	Flush the unicast and multicast chains
5209 		 */
5210 		dev_uc_flush(dev);
5211 		dev_mc_flush(dev);
5212 
5213 		if (dev->netdev_ops->ndo_uninit)
5214 			dev->netdev_ops->ndo_uninit(dev);
5215 
5216 		/* Notifier chain MUST detach us from master device. */
5217 		WARN_ON(dev->master);
5218 
5219 		/* Remove entries from kobject tree */
5220 		netdev_unregister_kobject(dev);
5221 	}
5222 
5223 	/* Process any work delayed until the end of the batch */
5224 	dev = list_first_entry(head, struct net_device, unreg_list);
5225 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5226 
5227 	synchronize_net();
5228 
5229 	list_for_each_entry(dev, head, unreg_list)
5230 		dev_put(dev);
5231 }
5232 
5233 static void rollback_registered(struct net_device *dev)
5234 {
5235 	LIST_HEAD(single);
5236 
5237 	list_add(&dev->unreg_list, &single);
5238 	rollback_registered_many(&single);
5239 	list_del(&single);
5240 }
5241 
5242 static netdev_features_t netdev_fix_features(struct net_device *dev,
5243 	netdev_features_t features)
5244 {
5245 	/* Fix illegal checksum combinations */
5246 	if ((features & NETIF_F_HW_CSUM) &&
5247 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5248 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5249 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5250 	}
5251 
5252 	/* Fix illegal SG+CSUM combinations. */
5253 	if ((features & NETIF_F_SG) &&
5254 	    !(features & NETIF_F_ALL_CSUM)) {
5255 		netdev_dbg(dev,
5256 			"Dropping NETIF_F_SG since no checksum feature.\n");
5257 		features &= ~NETIF_F_SG;
5258 	}
5259 
5260 	/* TSO requires that SG is present as well. */
5261 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5262 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5263 		features &= ~NETIF_F_ALL_TSO;
5264 	}
5265 
5266 	/* TSO ECN requires that TSO is present as well. */
5267 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5268 		features &= ~NETIF_F_TSO_ECN;
5269 
5270 	/* Software GSO depends on SG. */
5271 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5272 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5273 		features &= ~NETIF_F_GSO;
5274 	}
5275 
5276 	/* UFO needs SG and checksumming */
5277 	if (features & NETIF_F_UFO) {
5278 		/* maybe split UFO into V4 and V6? */
5279 		if (!((features & NETIF_F_GEN_CSUM) ||
5280 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5281 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5282 			netdev_dbg(dev,
5283 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5284 			features &= ~NETIF_F_UFO;
5285 		}
5286 
5287 		if (!(features & NETIF_F_SG)) {
5288 			netdev_dbg(dev,
5289 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5290 			features &= ~NETIF_F_UFO;
5291 		}
5292 	}
5293 
5294 	return features;
5295 }
5296 
5297 int __netdev_update_features(struct net_device *dev)
5298 {
5299 	netdev_features_t features;
5300 	int err = 0;
5301 
5302 	ASSERT_RTNL();
5303 
5304 	features = netdev_get_wanted_features(dev);
5305 
5306 	if (dev->netdev_ops->ndo_fix_features)
5307 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5308 
5309 	/* driver might be less strict about feature dependencies */
5310 	features = netdev_fix_features(dev, features);
5311 
5312 	if (dev->features == features)
5313 		return 0;
5314 
5315 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5316 		&dev->features, &features);
5317 
5318 	if (dev->netdev_ops->ndo_set_features)
5319 		err = dev->netdev_ops->ndo_set_features(dev, features);
5320 
5321 	if (unlikely(err < 0)) {
5322 		netdev_err(dev,
5323 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5324 			err, &features, &dev->features);
5325 		return -1;
5326 	}
5327 
5328 	if (!err)
5329 		dev->features = features;
5330 
5331 	return 1;
5332 }
5333 
5334 /**
5335  *	netdev_update_features - recalculate device features
5336  *	@dev: the device to check
5337  *
5338  *	Recalculate dev->features set and send notifications if it
5339  *	has changed. Should be called after driver or hardware dependent
5340  *	conditions might have changed that influence the features.
5341  */
5342 void netdev_update_features(struct net_device *dev)
5343 {
5344 	if (__netdev_update_features(dev))
5345 		netdev_features_change(dev);
5346 }
5347 EXPORT_SYMBOL(netdev_update_features);
5348 
5349 /**
5350  *	netdev_change_features - recalculate device features
5351  *	@dev: the device to check
5352  *
5353  *	Recalculate dev->features set and send notifications even
5354  *	if they have not changed. Should be called instead of
5355  *	netdev_update_features() if also dev->vlan_features might
5356  *	have changed to allow the changes to be propagated to stacked
5357  *	VLAN devices.
5358  */
5359 void netdev_change_features(struct net_device *dev)
5360 {
5361 	__netdev_update_features(dev);
5362 	netdev_features_change(dev);
5363 }
5364 EXPORT_SYMBOL(netdev_change_features);
5365 
5366 /**
5367  *	netif_stacked_transfer_operstate -	transfer operstate
5368  *	@rootdev: the root or lower level device to transfer state from
5369  *	@dev: the device to transfer operstate to
5370  *
5371  *	Transfer operational state from root to device. This is normally
5372  *	called when a stacking relationship exists between the root
5373  *	device and the device(a leaf device).
5374  */
5375 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5376 					struct net_device *dev)
5377 {
5378 	if (rootdev->operstate == IF_OPER_DORMANT)
5379 		netif_dormant_on(dev);
5380 	else
5381 		netif_dormant_off(dev);
5382 
5383 	if (netif_carrier_ok(rootdev)) {
5384 		if (!netif_carrier_ok(dev))
5385 			netif_carrier_on(dev);
5386 	} else {
5387 		if (netif_carrier_ok(dev))
5388 			netif_carrier_off(dev);
5389 	}
5390 }
5391 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5392 
5393 #ifdef CONFIG_RPS
5394 static int netif_alloc_rx_queues(struct net_device *dev)
5395 {
5396 	unsigned int i, count = dev->num_rx_queues;
5397 	struct netdev_rx_queue *rx;
5398 
5399 	BUG_ON(count < 1);
5400 
5401 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5402 	if (!rx) {
5403 		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5404 		return -ENOMEM;
5405 	}
5406 	dev->_rx = rx;
5407 
5408 	for (i = 0; i < count; i++)
5409 		rx[i].dev = dev;
5410 	return 0;
5411 }
5412 #endif
5413 
5414 static void netdev_init_one_queue(struct net_device *dev,
5415 				  struct netdev_queue *queue, void *_unused)
5416 {
5417 	/* Initialize queue lock */
5418 	spin_lock_init(&queue->_xmit_lock);
5419 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5420 	queue->xmit_lock_owner = -1;
5421 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5422 	queue->dev = dev;
5423 #ifdef CONFIG_BQL
5424 	dql_init(&queue->dql, HZ);
5425 #endif
5426 }
5427 
5428 static int netif_alloc_netdev_queues(struct net_device *dev)
5429 {
5430 	unsigned int count = dev->num_tx_queues;
5431 	struct netdev_queue *tx;
5432 
5433 	BUG_ON(count < 1);
5434 
5435 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5436 	if (!tx) {
5437 		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5438 		return -ENOMEM;
5439 	}
5440 	dev->_tx = tx;
5441 
5442 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5443 	spin_lock_init(&dev->tx_global_lock);
5444 
5445 	return 0;
5446 }
5447 
5448 /**
5449  *	register_netdevice	- register a network device
5450  *	@dev: device to register
5451  *
5452  *	Take a completed network device structure and add it to the kernel
5453  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5454  *	chain. 0 is returned on success. A negative errno code is returned
5455  *	on a failure to set up the device, or if the name is a duplicate.
5456  *
5457  *	Callers must hold the rtnl semaphore. You may want
5458  *	register_netdev() instead of this.
5459  *
5460  *	BUGS:
5461  *	The locking appears insufficient to guarantee two parallel registers
5462  *	will not get the same name.
5463  */
5464 
5465 int register_netdevice(struct net_device *dev)
5466 {
5467 	int ret;
5468 	struct net *net = dev_net(dev);
5469 
5470 	BUG_ON(dev_boot_phase);
5471 	ASSERT_RTNL();
5472 
5473 	might_sleep();
5474 
5475 	/* When net_device's are persistent, this will be fatal. */
5476 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5477 	BUG_ON(!net);
5478 
5479 	spin_lock_init(&dev->addr_list_lock);
5480 	netdev_set_addr_lockdep_class(dev);
5481 
5482 	dev->iflink = -1;
5483 
5484 	ret = dev_get_valid_name(dev, dev->name);
5485 	if (ret < 0)
5486 		goto out;
5487 
5488 	/* Init, if this function is available */
5489 	if (dev->netdev_ops->ndo_init) {
5490 		ret = dev->netdev_ops->ndo_init(dev);
5491 		if (ret) {
5492 			if (ret > 0)
5493 				ret = -EIO;
5494 			goto out;
5495 		}
5496 	}
5497 
5498 	dev->ifindex = dev_new_index(net);
5499 	if (dev->iflink == -1)
5500 		dev->iflink = dev->ifindex;
5501 
5502 	/* Transfer changeable features to wanted_features and enable
5503 	 * software offloads (GSO and GRO).
5504 	 */
5505 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5506 	dev->features |= NETIF_F_SOFT_FEATURES;
5507 	dev->wanted_features = dev->features & dev->hw_features;
5508 
5509 	/* Turn on no cache copy if HW is doing checksum */
5510 	if (!(dev->flags & IFF_LOOPBACK)) {
5511 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5512 		if (dev->features & NETIF_F_ALL_CSUM) {
5513 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5514 			dev->features |= NETIF_F_NOCACHE_COPY;
5515 		}
5516 	}
5517 
5518 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5519 	 */
5520 	dev->vlan_features |= NETIF_F_HIGHDMA;
5521 
5522 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5523 	ret = notifier_to_errno(ret);
5524 	if (ret)
5525 		goto err_uninit;
5526 
5527 	ret = netdev_register_kobject(dev);
5528 	if (ret)
5529 		goto err_uninit;
5530 	dev->reg_state = NETREG_REGISTERED;
5531 
5532 	__netdev_update_features(dev);
5533 
5534 	/*
5535 	 *	Default initial state at registry is that the
5536 	 *	device is present.
5537 	 */
5538 
5539 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5540 
5541 	dev_init_scheduler(dev);
5542 	dev_hold(dev);
5543 	list_netdevice(dev);
5544 
5545 	/* Notify protocols, that a new device appeared. */
5546 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5547 	ret = notifier_to_errno(ret);
5548 	if (ret) {
5549 		rollback_registered(dev);
5550 		dev->reg_state = NETREG_UNREGISTERED;
5551 	}
5552 	/*
5553 	 *	Prevent userspace races by waiting until the network
5554 	 *	device is fully setup before sending notifications.
5555 	 */
5556 	if (!dev->rtnl_link_ops ||
5557 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5558 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5559 
5560 out:
5561 	return ret;
5562 
5563 err_uninit:
5564 	if (dev->netdev_ops->ndo_uninit)
5565 		dev->netdev_ops->ndo_uninit(dev);
5566 	goto out;
5567 }
5568 EXPORT_SYMBOL(register_netdevice);
5569 
5570 /**
5571  *	init_dummy_netdev	- init a dummy network device for NAPI
5572  *	@dev: device to init
5573  *
5574  *	This takes a network device structure and initialize the minimum
5575  *	amount of fields so it can be used to schedule NAPI polls without
5576  *	registering a full blown interface. This is to be used by drivers
5577  *	that need to tie several hardware interfaces to a single NAPI
5578  *	poll scheduler due to HW limitations.
5579  */
5580 int init_dummy_netdev(struct net_device *dev)
5581 {
5582 	/* Clear everything. Note we don't initialize spinlocks
5583 	 * are they aren't supposed to be taken by any of the
5584 	 * NAPI code and this dummy netdev is supposed to be
5585 	 * only ever used for NAPI polls
5586 	 */
5587 	memset(dev, 0, sizeof(struct net_device));
5588 
5589 	/* make sure we BUG if trying to hit standard
5590 	 * register/unregister code path
5591 	 */
5592 	dev->reg_state = NETREG_DUMMY;
5593 
5594 	/* NAPI wants this */
5595 	INIT_LIST_HEAD(&dev->napi_list);
5596 
5597 	/* a dummy interface is started by default */
5598 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5599 	set_bit(__LINK_STATE_START, &dev->state);
5600 
5601 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5602 	 * because users of this 'device' dont need to change
5603 	 * its refcount.
5604 	 */
5605 
5606 	return 0;
5607 }
5608 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5609 
5610 
5611 /**
5612  *	register_netdev	- register a network device
5613  *	@dev: device to register
5614  *
5615  *	Take a completed network device structure and add it to the kernel
5616  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5617  *	chain. 0 is returned on success. A negative errno code is returned
5618  *	on a failure to set up the device, or if the name is a duplicate.
5619  *
5620  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5621  *	and expands the device name if you passed a format string to
5622  *	alloc_netdev.
5623  */
5624 int register_netdev(struct net_device *dev)
5625 {
5626 	int err;
5627 
5628 	rtnl_lock();
5629 	err = register_netdevice(dev);
5630 	rtnl_unlock();
5631 	return err;
5632 }
5633 EXPORT_SYMBOL(register_netdev);
5634 
5635 int netdev_refcnt_read(const struct net_device *dev)
5636 {
5637 	int i, refcnt = 0;
5638 
5639 	for_each_possible_cpu(i)
5640 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5641 	return refcnt;
5642 }
5643 EXPORT_SYMBOL(netdev_refcnt_read);
5644 
5645 /*
5646  * netdev_wait_allrefs - wait until all references are gone.
5647  *
5648  * This is called when unregistering network devices.
5649  *
5650  * Any protocol or device that holds a reference should register
5651  * for netdevice notification, and cleanup and put back the
5652  * reference if they receive an UNREGISTER event.
5653  * We can get stuck here if buggy protocols don't correctly
5654  * call dev_put.
5655  */
5656 static void netdev_wait_allrefs(struct net_device *dev)
5657 {
5658 	unsigned long rebroadcast_time, warning_time;
5659 	int refcnt;
5660 
5661 	linkwatch_forget_dev(dev);
5662 
5663 	rebroadcast_time = warning_time = jiffies;
5664 	refcnt = netdev_refcnt_read(dev);
5665 
5666 	while (refcnt != 0) {
5667 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5668 			rtnl_lock();
5669 
5670 			/* Rebroadcast unregister notification */
5671 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5672 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5673 			 * should have already handle it the first time */
5674 
5675 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5676 				     &dev->state)) {
5677 				/* We must not have linkwatch events
5678 				 * pending on unregister. If this
5679 				 * happens, we simply run the queue
5680 				 * unscheduled, resulting in a noop
5681 				 * for this device.
5682 				 */
5683 				linkwatch_run_queue();
5684 			}
5685 
5686 			__rtnl_unlock();
5687 
5688 			rebroadcast_time = jiffies;
5689 		}
5690 
5691 		msleep(250);
5692 
5693 		refcnt = netdev_refcnt_read(dev);
5694 
5695 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5696 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5697 				 dev->name, refcnt);
5698 			warning_time = jiffies;
5699 		}
5700 	}
5701 }
5702 
5703 /* The sequence is:
5704  *
5705  *	rtnl_lock();
5706  *	...
5707  *	register_netdevice(x1);
5708  *	register_netdevice(x2);
5709  *	...
5710  *	unregister_netdevice(y1);
5711  *	unregister_netdevice(y2);
5712  *      ...
5713  *	rtnl_unlock();
5714  *	free_netdev(y1);
5715  *	free_netdev(y2);
5716  *
5717  * We are invoked by rtnl_unlock().
5718  * This allows us to deal with problems:
5719  * 1) We can delete sysfs objects which invoke hotplug
5720  *    without deadlocking with linkwatch via keventd.
5721  * 2) Since we run with the RTNL semaphore not held, we can sleep
5722  *    safely in order to wait for the netdev refcnt to drop to zero.
5723  *
5724  * We must not return until all unregister events added during
5725  * the interval the lock was held have been completed.
5726  */
5727 void netdev_run_todo(void)
5728 {
5729 	struct list_head list;
5730 
5731 	/* Snapshot list, allow later requests */
5732 	list_replace_init(&net_todo_list, &list);
5733 
5734 	__rtnl_unlock();
5735 
5736 	/* Wait for rcu callbacks to finish before attempting to drain
5737 	 * the device list.  This usually avoids a 250ms wait.
5738 	 */
5739 	if (!list_empty(&list))
5740 		rcu_barrier();
5741 
5742 	while (!list_empty(&list)) {
5743 		struct net_device *dev
5744 			= list_first_entry(&list, struct net_device, todo_list);
5745 		list_del(&dev->todo_list);
5746 
5747 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5748 			pr_err("network todo '%s' but state %d\n",
5749 			       dev->name, dev->reg_state);
5750 			dump_stack();
5751 			continue;
5752 		}
5753 
5754 		dev->reg_state = NETREG_UNREGISTERED;
5755 
5756 		on_each_cpu(flush_backlog, dev, 1);
5757 
5758 		netdev_wait_allrefs(dev);
5759 
5760 		/* paranoia */
5761 		BUG_ON(netdev_refcnt_read(dev));
5762 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5763 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5764 		WARN_ON(dev->dn_ptr);
5765 
5766 		if (dev->destructor)
5767 			dev->destructor(dev);
5768 
5769 		/* Free network device */
5770 		kobject_put(&dev->dev.kobj);
5771 	}
5772 }
5773 
5774 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5775  * fields in the same order, with only the type differing.
5776  */
5777 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5778 			     const struct net_device_stats *netdev_stats)
5779 {
5780 #if BITS_PER_LONG == 64
5781 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5782 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5783 #else
5784 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5785 	const unsigned long *src = (const unsigned long *)netdev_stats;
5786 	u64 *dst = (u64 *)stats64;
5787 
5788 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5789 		     sizeof(*stats64) / sizeof(u64));
5790 	for (i = 0; i < n; i++)
5791 		dst[i] = src[i];
5792 #endif
5793 }
5794 EXPORT_SYMBOL(netdev_stats_to_stats64);
5795 
5796 /**
5797  *	dev_get_stats	- get network device statistics
5798  *	@dev: device to get statistics from
5799  *	@storage: place to store stats
5800  *
5801  *	Get network statistics from device. Return @storage.
5802  *	The device driver may provide its own method by setting
5803  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5804  *	otherwise the internal statistics structure is used.
5805  */
5806 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5807 					struct rtnl_link_stats64 *storage)
5808 {
5809 	const struct net_device_ops *ops = dev->netdev_ops;
5810 
5811 	if (ops->ndo_get_stats64) {
5812 		memset(storage, 0, sizeof(*storage));
5813 		ops->ndo_get_stats64(dev, storage);
5814 	} else if (ops->ndo_get_stats) {
5815 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5816 	} else {
5817 		netdev_stats_to_stats64(storage, &dev->stats);
5818 	}
5819 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5820 	return storage;
5821 }
5822 EXPORT_SYMBOL(dev_get_stats);
5823 
5824 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5825 {
5826 	struct netdev_queue *queue = dev_ingress_queue(dev);
5827 
5828 #ifdef CONFIG_NET_CLS_ACT
5829 	if (queue)
5830 		return queue;
5831 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5832 	if (!queue)
5833 		return NULL;
5834 	netdev_init_one_queue(dev, queue, NULL);
5835 	queue->qdisc = &noop_qdisc;
5836 	queue->qdisc_sleeping = &noop_qdisc;
5837 	rcu_assign_pointer(dev->ingress_queue, queue);
5838 #endif
5839 	return queue;
5840 }
5841 
5842 /**
5843  *	alloc_netdev_mqs - allocate network device
5844  *	@sizeof_priv:	size of private data to allocate space for
5845  *	@name:		device name format string
5846  *	@setup:		callback to initialize device
5847  *	@txqs:		the number of TX subqueues to allocate
5848  *	@rxqs:		the number of RX subqueues to allocate
5849  *
5850  *	Allocates a struct net_device with private data area for driver use
5851  *	and performs basic initialization.  Also allocates subquue structs
5852  *	for each queue on the device.
5853  */
5854 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5855 		void (*setup)(struct net_device *),
5856 		unsigned int txqs, unsigned int rxqs)
5857 {
5858 	struct net_device *dev;
5859 	size_t alloc_size;
5860 	struct net_device *p;
5861 
5862 	BUG_ON(strlen(name) >= sizeof(dev->name));
5863 
5864 	if (txqs < 1) {
5865 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5866 		return NULL;
5867 	}
5868 
5869 #ifdef CONFIG_RPS
5870 	if (rxqs < 1) {
5871 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5872 		return NULL;
5873 	}
5874 #endif
5875 
5876 	alloc_size = sizeof(struct net_device);
5877 	if (sizeof_priv) {
5878 		/* ensure 32-byte alignment of private area */
5879 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5880 		alloc_size += sizeof_priv;
5881 	}
5882 	/* ensure 32-byte alignment of whole construct */
5883 	alloc_size += NETDEV_ALIGN - 1;
5884 
5885 	p = kzalloc(alloc_size, GFP_KERNEL);
5886 	if (!p) {
5887 		pr_err("alloc_netdev: Unable to allocate device\n");
5888 		return NULL;
5889 	}
5890 
5891 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5892 	dev->padded = (char *)dev - (char *)p;
5893 
5894 	dev->pcpu_refcnt = alloc_percpu(int);
5895 	if (!dev->pcpu_refcnt)
5896 		goto free_p;
5897 
5898 	if (dev_addr_init(dev))
5899 		goto free_pcpu;
5900 
5901 	dev_mc_init(dev);
5902 	dev_uc_init(dev);
5903 
5904 	dev_net_set(dev, &init_net);
5905 
5906 	dev->gso_max_size = GSO_MAX_SIZE;
5907 
5908 	INIT_LIST_HEAD(&dev->napi_list);
5909 	INIT_LIST_HEAD(&dev->unreg_list);
5910 	INIT_LIST_HEAD(&dev->link_watch_list);
5911 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5912 	setup(dev);
5913 
5914 	dev->num_tx_queues = txqs;
5915 	dev->real_num_tx_queues = txqs;
5916 	if (netif_alloc_netdev_queues(dev))
5917 		goto free_all;
5918 
5919 #ifdef CONFIG_RPS
5920 	dev->num_rx_queues = rxqs;
5921 	dev->real_num_rx_queues = rxqs;
5922 	if (netif_alloc_rx_queues(dev))
5923 		goto free_all;
5924 #endif
5925 
5926 	strcpy(dev->name, name);
5927 	dev->group = INIT_NETDEV_GROUP;
5928 	return dev;
5929 
5930 free_all:
5931 	free_netdev(dev);
5932 	return NULL;
5933 
5934 free_pcpu:
5935 	free_percpu(dev->pcpu_refcnt);
5936 	kfree(dev->_tx);
5937 #ifdef CONFIG_RPS
5938 	kfree(dev->_rx);
5939 #endif
5940 
5941 free_p:
5942 	kfree(p);
5943 	return NULL;
5944 }
5945 EXPORT_SYMBOL(alloc_netdev_mqs);
5946 
5947 /**
5948  *	free_netdev - free network device
5949  *	@dev: device
5950  *
5951  *	This function does the last stage of destroying an allocated device
5952  * 	interface. The reference to the device object is released.
5953  *	If this is the last reference then it will be freed.
5954  */
5955 void free_netdev(struct net_device *dev)
5956 {
5957 	struct napi_struct *p, *n;
5958 
5959 	release_net(dev_net(dev));
5960 
5961 	kfree(dev->_tx);
5962 #ifdef CONFIG_RPS
5963 	kfree(dev->_rx);
5964 #endif
5965 
5966 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5967 
5968 	/* Flush device addresses */
5969 	dev_addr_flush(dev);
5970 
5971 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5972 		netif_napi_del(p);
5973 
5974 	free_percpu(dev->pcpu_refcnt);
5975 	dev->pcpu_refcnt = NULL;
5976 
5977 	/*  Compatibility with error handling in drivers */
5978 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5979 		kfree((char *)dev - dev->padded);
5980 		return;
5981 	}
5982 
5983 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5984 	dev->reg_state = NETREG_RELEASED;
5985 
5986 	/* will free via device release */
5987 	put_device(&dev->dev);
5988 }
5989 EXPORT_SYMBOL(free_netdev);
5990 
5991 /**
5992  *	synchronize_net -  Synchronize with packet receive processing
5993  *
5994  *	Wait for packets currently being received to be done.
5995  *	Does not block later packets from starting.
5996  */
5997 void synchronize_net(void)
5998 {
5999 	might_sleep();
6000 	if (rtnl_is_locked())
6001 		synchronize_rcu_expedited();
6002 	else
6003 		synchronize_rcu();
6004 }
6005 EXPORT_SYMBOL(synchronize_net);
6006 
6007 /**
6008  *	unregister_netdevice_queue - remove device from the kernel
6009  *	@dev: device
6010  *	@head: list
6011  *
6012  *	This function shuts down a device interface and removes it
6013  *	from the kernel tables.
6014  *	If head not NULL, device is queued to be unregistered later.
6015  *
6016  *	Callers must hold the rtnl semaphore.  You may want
6017  *	unregister_netdev() instead of this.
6018  */
6019 
6020 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6021 {
6022 	ASSERT_RTNL();
6023 
6024 	if (head) {
6025 		list_move_tail(&dev->unreg_list, head);
6026 	} else {
6027 		rollback_registered(dev);
6028 		/* Finish processing unregister after unlock */
6029 		net_set_todo(dev);
6030 	}
6031 }
6032 EXPORT_SYMBOL(unregister_netdevice_queue);
6033 
6034 /**
6035  *	unregister_netdevice_many - unregister many devices
6036  *	@head: list of devices
6037  */
6038 void unregister_netdevice_many(struct list_head *head)
6039 {
6040 	struct net_device *dev;
6041 
6042 	if (!list_empty(head)) {
6043 		rollback_registered_many(head);
6044 		list_for_each_entry(dev, head, unreg_list)
6045 			net_set_todo(dev);
6046 	}
6047 }
6048 EXPORT_SYMBOL(unregister_netdevice_many);
6049 
6050 /**
6051  *	unregister_netdev - remove device from the kernel
6052  *	@dev: device
6053  *
6054  *	This function shuts down a device interface and removes it
6055  *	from the kernel tables.
6056  *
6057  *	This is just a wrapper for unregister_netdevice that takes
6058  *	the rtnl semaphore.  In general you want to use this and not
6059  *	unregister_netdevice.
6060  */
6061 void unregister_netdev(struct net_device *dev)
6062 {
6063 	rtnl_lock();
6064 	unregister_netdevice(dev);
6065 	rtnl_unlock();
6066 }
6067 EXPORT_SYMBOL(unregister_netdev);
6068 
6069 /**
6070  *	dev_change_net_namespace - move device to different nethost namespace
6071  *	@dev: device
6072  *	@net: network namespace
6073  *	@pat: If not NULL name pattern to try if the current device name
6074  *	      is already taken in the destination network namespace.
6075  *
6076  *	This function shuts down a device interface and moves it
6077  *	to a new network namespace. On success 0 is returned, on
6078  *	a failure a netagive errno code is returned.
6079  *
6080  *	Callers must hold the rtnl semaphore.
6081  */
6082 
6083 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6084 {
6085 	int err;
6086 
6087 	ASSERT_RTNL();
6088 
6089 	/* Don't allow namespace local devices to be moved. */
6090 	err = -EINVAL;
6091 	if (dev->features & NETIF_F_NETNS_LOCAL)
6092 		goto out;
6093 
6094 	/* Ensure the device has been registrered */
6095 	err = -EINVAL;
6096 	if (dev->reg_state != NETREG_REGISTERED)
6097 		goto out;
6098 
6099 	/* Get out if there is nothing todo */
6100 	err = 0;
6101 	if (net_eq(dev_net(dev), net))
6102 		goto out;
6103 
6104 	/* Pick the destination device name, and ensure
6105 	 * we can use it in the destination network namespace.
6106 	 */
6107 	err = -EEXIST;
6108 	if (__dev_get_by_name(net, dev->name)) {
6109 		/* We get here if we can't use the current device name */
6110 		if (!pat)
6111 			goto out;
6112 		if (dev_get_valid_name(dev, pat) < 0)
6113 			goto out;
6114 	}
6115 
6116 	/*
6117 	 * And now a mini version of register_netdevice unregister_netdevice.
6118 	 */
6119 
6120 	/* If device is running close it first. */
6121 	dev_close(dev);
6122 
6123 	/* And unlink it from device chain */
6124 	err = -ENODEV;
6125 	unlist_netdevice(dev);
6126 
6127 	synchronize_net();
6128 
6129 	/* Shutdown queueing discipline. */
6130 	dev_shutdown(dev);
6131 
6132 	/* Notify protocols, that we are about to destroy
6133 	   this device. They should clean all the things.
6134 
6135 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6136 	   This is wanted because this way 8021q and macvlan know
6137 	   the device is just moving and can keep their slaves up.
6138 	*/
6139 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6140 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6141 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6142 
6143 	/*
6144 	 *	Flush the unicast and multicast chains
6145 	 */
6146 	dev_uc_flush(dev);
6147 	dev_mc_flush(dev);
6148 
6149 	/* Actually switch the network namespace */
6150 	dev_net_set(dev, net);
6151 
6152 	/* If there is an ifindex conflict assign a new one */
6153 	if (__dev_get_by_index(net, dev->ifindex)) {
6154 		int iflink = (dev->iflink == dev->ifindex);
6155 		dev->ifindex = dev_new_index(net);
6156 		if (iflink)
6157 			dev->iflink = dev->ifindex;
6158 	}
6159 
6160 	/* Fixup kobjects */
6161 	err = device_rename(&dev->dev, dev->name);
6162 	WARN_ON(err);
6163 
6164 	/* Add the device back in the hashes */
6165 	list_netdevice(dev);
6166 
6167 	/* Notify protocols, that a new device appeared. */
6168 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6169 
6170 	/*
6171 	 *	Prevent userspace races by waiting until the network
6172 	 *	device is fully setup before sending notifications.
6173 	 */
6174 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6175 
6176 	synchronize_net();
6177 	err = 0;
6178 out:
6179 	return err;
6180 }
6181 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6182 
6183 static int dev_cpu_callback(struct notifier_block *nfb,
6184 			    unsigned long action,
6185 			    void *ocpu)
6186 {
6187 	struct sk_buff **list_skb;
6188 	struct sk_buff *skb;
6189 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6190 	struct softnet_data *sd, *oldsd;
6191 
6192 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6193 		return NOTIFY_OK;
6194 
6195 	local_irq_disable();
6196 	cpu = smp_processor_id();
6197 	sd = &per_cpu(softnet_data, cpu);
6198 	oldsd = &per_cpu(softnet_data, oldcpu);
6199 
6200 	/* Find end of our completion_queue. */
6201 	list_skb = &sd->completion_queue;
6202 	while (*list_skb)
6203 		list_skb = &(*list_skb)->next;
6204 	/* Append completion queue from offline CPU. */
6205 	*list_skb = oldsd->completion_queue;
6206 	oldsd->completion_queue = NULL;
6207 
6208 	/* Append output queue from offline CPU. */
6209 	if (oldsd->output_queue) {
6210 		*sd->output_queue_tailp = oldsd->output_queue;
6211 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6212 		oldsd->output_queue = NULL;
6213 		oldsd->output_queue_tailp = &oldsd->output_queue;
6214 	}
6215 	/* Append NAPI poll list from offline CPU. */
6216 	if (!list_empty(&oldsd->poll_list)) {
6217 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6218 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6219 	}
6220 
6221 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6222 	local_irq_enable();
6223 
6224 	/* Process offline CPU's input_pkt_queue */
6225 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6226 		netif_rx(skb);
6227 		input_queue_head_incr(oldsd);
6228 	}
6229 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6230 		netif_rx(skb);
6231 		input_queue_head_incr(oldsd);
6232 	}
6233 
6234 	return NOTIFY_OK;
6235 }
6236 
6237 
6238 /**
6239  *	netdev_increment_features - increment feature set by one
6240  *	@all: current feature set
6241  *	@one: new feature set
6242  *	@mask: mask feature set
6243  *
6244  *	Computes a new feature set after adding a device with feature set
6245  *	@one to the master device with current feature set @all.  Will not
6246  *	enable anything that is off in @mask. Returns the new feature set.
6247  */
6248 netdev_features_t netdev_increment_features(netdev_features_t all,
6249 	netdev_features_t one, netdev_features_t mask)
6250 {
6251 	if (mask & NETIF_F_GEN_CSUM)
6252 		mask |= NETIF_F_ALL_CSUM;
6253 	mask |= NETIF_F_VLAN_CHALLENGED;
6254 
6255 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6256 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6257 
6258 	/* If one device supports hw checksumming, set for all. */
6259 	if (all & NETIF_F_GEN_CSUM)
6260 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6261 
6262 	return all;
6263 }
6264 EXPORT_SYMBOL(netdev_increment_features);
6265 
6266 static struct hlist_head *netdev_create_hash(void)
6267 {
6268 	int i;
6269 	struct hlist_head *hash;
6270 
6271 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6272 	if (hash != NULL)
6273 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6274 			INIT_HLIST_HEAD(&hash[i]);
6275 
6276 	return hash;
6277 }
6278 
6279 /* Initialize per network namespace state */
6280 static int __net_init netdev_init(struct net *net)
6281 {
6282 	INIT_LIST_HEAD(&net->dev_base_head);
6283 
6284 	net->dev_name_head = netdev_create_hash();
6285 	if (net->dev_name_head == NULL)
6286 		goto err_name;
6287 
6288 	net->dev_index_head = netdev_create_hash();
6289 	if (net->dev_index_head == NULL)
6290 		goto err_idx;
6291 
6292 	return 0;
6293 
6294 err_idx:
6295 	kfree(net->dev_name_head);
6296 err_name:
6297 	return -ENOMEM;
6298 }
6299 
6300 /**
6301  *	netdev_drivername - network driver for the device
6302  *	@dev: network device
6303  *
6304  *	Determine network driver for device.
6305  */
6306 const char *netdev_drivername(const struct net_device *dev)
6307 {
6308 	const struct device_driver *driver;
6309 	const struct device *parent;
6310 	const char *empty = "";
6311 
6312 	parent = dev->dev.parent;
6313 	if (!parent)
6314 		return empty;
6315 
6316 	driver = parent->driver;
6317 	if (driver && driver->name)
6318 		return driver->name;
6319 	return empty;
6320 }
6321 
6322 int __netdev_printk(const char *level, const struct net_device *dev,
6323 			   struct va_format *vaf)
6324 {
6325 	int r;
6326 
6327 	if (dev && dev->dev.parent)
6328 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6329 			       netdev_name(dev), vaf);
6330 	else if (dev)
6331 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6332 	else
6333 		r = printk("%s(NULL net_device): %pV", level, vaf);
6334 
6335 	return r;
6336 }
6337 EXPORT_SYMBOL(__netdev_printk);
6338 
6339 int netdev_printk(const char *level, const struct net_device *dev,
6340 		  const char *format, ...)
6341 {
6342 	struct va_format vaf;
6343 	va_list args;
6344 	int r;
6345 
6346 	va_start(args, format);
6347 
6348 	vaf.fmt = format;
6349 	vaf.va = &args;
6350 
6351 	r = __netdev_printk(level, dev, &vaf);
6352 	va_end(args);
6353 
6354 	return r;
6355 }
6356 EXPORT_SYMBOL(netdev_printk);
6357 
6358 #define define_netdev_printk_level(func, level)			\
6359 int func(const struct net_device *dev, const char *fmt, ...)	\
6360 {								\
6361 	int r;							\
6362 	struct va_format vaf;					\
6363 	va_list args;						\
6364 								\
6365 	va_start(args, fmt);					\
6366 								\
6367 	vaf.fmt = fmt;						\
6368 	vaf.va = &args;						\
6369 								\
6370 	r = __netdev_printk(level, dev, &vaf);			\
6371 	va_end(args);						\
6372 								\
6373 	return r;						\
6374 }								\
6375 EXPORT_SYMBOL(func);
6376 
6377 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6378 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6379 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6380 define_netdev_printk_level(netdev_err, KERN_ERR);
6381 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6382 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6383 define_netdev_printk_level(netdev_info, KERN_INFO);
6384 
6385 static void __net_exit netdev_exit(struct net *net)
6386 {
6387 	kfree(net->dev_name_head);
6388 	kfree(net->dev_index_head);
6389 }
6390 
6391 static struct pernet_operations __net_initdata netdev_net_ops = {
6392 	.init = netdev_init,
6393 	.exit = netdev_exit,
6394 };
6395 
6396 static void __net_exit default_device_exit(struct net *net)
6397 {
6398 	struct net_device *dev, *aux;
6399 	/*
6400 	 * Push all migratable network devices back to the
6401 	 * initial network namespace
6402 	 */
6403 	rtnl_lock();
6404 	for_each_netdev_safe(net, dev, aux) {
6405 		int err;
6406 		char fb_name[IFNAMSIZ];
6407 
6408 		/* Ignore unmoveable devices (i.e. loopback) */
6409 		if (dev->features & NETIF_F_NETNS_LOCAL)
6410 			continue;
6411 
6412 		/* Leave virtual devices for the generic cleanup */
6413 		if (dev->rtnl_link_ops)
6414 			continue;
6415 
6416 		/* Push remaining network devices to init_net */
6417 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6418 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6419 		if (err) {
6420 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6421 				 __func__, dev->name, err);
6422 			BUG();
6423 		}
6424 	}
6425 	rtnl_unlock();
6426 }
6427 
6428 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6429 {
6430 	/* At exit all network devices most be removed from a network
6431 	 * namespace.  Do this in the reverse order of registration.
6432 	 * Do this across as many network namespaces as possible to
6433 	 * improve batching efficiency.
6434 	 */
6435 	struct net_device *dev;
6436 	struct net *net;
6437 	LIST_HEAD(dev_kill_list);
6438 
6439 	rtnl_lock();
6440 	list_for_each_entry(net, net_list, exit_list) {
6441 		for_each_netdev_reverse(net, dev) {
6442 			if (dev->rtnl_link_ops)
6443 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6444 			else
6445 				unregister_netdevice_queue(dev, &dev_kill_list);
6446 		}
6447 	}
6448 	unregister_netdevice_many(&dev_kill_list);
6449 	list_del(&dev_kill_list);
6450 	rtnl_unlock();
6451 }
6452 
6453 static struct pernet_operations __net_initdata default_device_ops = {
6454 	.exit = default_device_exit,
6455 	.exit_batch = default_device_exit_batch,
6456 };
6457 
6458 /*
6459  *	Initialize the DEV module. At boot time this walks the device list and
6460  *	unhooks any devices that fail to initialise (normally hardware not
6461  *	present) and leaves us with a valid list of present and active devices.
6462  *
6463  */
6464 
6465 /*
6466  *       This is called single threaded during boot, so no need
6467  *       to take the rtnl semaphore.
6468  */
6469 static int __init net_dev_init(void)
6470 {
6471 	int i, rc = -ENOMEM;
6472 
6473 	BUG_ON(!dev_boot_phase);
6474 
6475 	if (dev_proc_init())
6476 		goto out;
6477 
6478 	if (netdev_kobject_init())
6479 		goto out;
6480 
6481 	INIT_LIST_HEAD(&ptype_all);
6482 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6483 		INIT_LIST_HEAD(&ptype_base[i]);
6484 
6485 	if (register_pernet_subsys(&netdev_net_ops))
6486 		goto out;
6487 
6488 	/*
6489 	 *	Initialise the packet receive queues.
6490 	 */
6491 
6492 	for_each_possible_cpu(i) {
6493 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6494 
6495 		memset(sd, 0, sizeof(*sd));
6496 		skb_queue_head_init(&sd->input_pkt_queue);
6497 		skb_queue_head_init(&sd->process_queue);
6498 		sd->completion_queue = NULL;
6499 		INIT_LIST_HEAD(&sd->poll_list);
6500 		sd->output_queue = NULL;
6501 		sd->output_queue_tailp = &sd->output_queue;
6502 #ifdef CONFIG_RPS
6503 		sd->csd.func = rps_trigger_softirq;
6504 		sd->csd.info = sd;
6505 		sd->csd.flags = 0;
6506 		sd->cpu = i;
6507 #endif
6508 
6509 		sd->backlog.poll = process_backlog;
6510 		sd->backlog.weight = weight_p;
6511 		sd->backlog.gro_list = NULL;
6512 		sd->backlog.gro_count = 0;
6513 	}
6514 
6515 	dev_boot_phase = 0;
6516 
6517 	/* The loopback device is special if any other network devices
6518 	 * is present in a network namespace the loopback device must
6519 	 * be present. Since we now dynamically allocate and free the
6520 	 * loopback device ensure this invariant is maintained by
6521 	 * keeping the loopback device as the first device on the
6522 	 * list of network devices.  Ensuring the loopback devices
6523 	 * is the first device that appears and the last network device
6524 	 * that disappears.
6525 	 */
6526 	if (register_pernet_device(&loopback_net_ops))
6527 		goto out;
6528 
6529 	if (register_pernet_device(&default_device_ops))
6530 		goto out;
6531 
6532 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6533 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6534 
6535 	hotcpu_notifier(dev_cpu_callback, 0);
6536 	dst_init();
6537 	dev_mcast_init();
6538 	rc = 0;
6539 out:
6540 	return rc;
6541 }
6542 
6543 subsys_initcall(net_dev_init);
6544 
6545 static int __init initialize_hashrnd(void)
6546 {
6547 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6548 	return 0;
6549 }
6550 
6551 late_initcall_sync(initialize_hashrnd);
6552 
6553