1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/net_tstamp.h> 136 #include <linux/static_key.h> 137 #include <net/flow_keys.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 /* 148 * The list of packet types we will receive (as opposed to discard) 149 * and the routines to invoke. 150 * 151 * Why 16. Because with 16 the only overlap we get on a hash of the 152 * low nibble of the protocol value is RARP/SNAP/X.25. 153 * 154 * NOTE: That is no longer true with the addition of VLAN tags. Not 155 * sure which should go first, but I bet it won't make much 156 * difference if we are running VLANs. The good news is that 157 * this protocol won't be in the list unless compiled in, so 158 * the average user (w/out VLANs) will not be adversely affected. 159 * --BLG 160 * 161 * 0800 IP 162 * 8100 802.1Q VLAN 163 * 0001 802.3 164 * 0002 AX.25 165 * 0004 802.2 166 * 8035 RARP 167 * 0005 SNAP 168 * 0805 X.25 169 * 0806 ARP 170 * 8137 IPX 171 * 0009 Localtalk 172 * 86DD IPv6 173 */ 174 175 #define PTYPE_HASH_SIZE (16) 176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 177 178 static DEFINE_SPINLOCK(ptype_lock); 179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 180 static struct list_head ptype_all __read_mostly; /* Taps */ 181 182 /* 183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 184 * semaphore. 185 * 186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 187 * 188 * Writers must hold the rtnl semaphore while they loop through the 189 * dev_base_head list, and hold dev_base_lock for writing when they do the 190 * actual updates. This allows pure readers to access the list even 191 * while a writer is preparing to update it. 192 * 193 * To put it another way, dev_base_lock is held for writing only to 194 * protect against pure readers; the rtnl semaphore provides the 195 * protection against other writers. 196 * 197 * See, for example usages, register_netdevice() and 198 * unregister_netdevice(), which must be called with the rtnl 199 * semaphore held. 200 */ 201 DEFINE_RWLOCK(dev_base_lock); 202 EXPORT_SYMBOL(dev_base_lock); 203 204 static inline void dev_base_seq_inc(struct net *net) 205 { 206 while (++net->dev_base_seq == 0); 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static int list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 251 return 0; 252 } 253 254 /* Device list removal 255 * caller must respect a RCU grace period before freeing/reusing dev 256 */ 257 static void unlist_netdevice(struct net_device *dev) 258 { 259 ASSERT_RTNL(); 260 261 /* Unlink dev from the device chain */ 262 write_lock_bh(&dev_base_lock); 263 list_del_rcu(&dev->dev_list); 264 hlist_del_rcu(&dev->name_hlist); 265 hlist_del_rcu(&dev->index_hlist); 266 write_unlock_bh(&dev_base_lock); 267 268 dev_base_seq_inc(dev_net(dev)); 269 } 270 271 /* 272 * Our notifier list 273 */ 274 275 static RAW_NOTIFIER_HEAD(netdev_chain); 276 277 /* 278 * Device drivers call our routines to queue packets here. We empty the 279 * queue in the local softnet handler. 280 */ 281 282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 283 EXPORT_PER_CPU_SYMBOL(softnet_data); 284 285 #ifdef CONFIG_LOCKDEP 286 /* 287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 288 * according to dev->type 289 */ 290 static const unsigned short netdev_lock_type[] = 291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 306 307 static const char *const netdev_lock_name[] = 308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 323 324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 326 327 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 328 { 329 int i; 330 331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 332 if (netdev_lock_type[i] == dev_type) 333 return i; 334 /* the last key is used by default */ 335 return ARRAY_SIZE(netdev_lock_type) - 1; 336 } 337 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 int i; 342 343 i = netdev_lock_pos(dev_type); 344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 345 netdev_lock_name[i]); 346 } 347 348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 349 { 350 int i; 351 352 i = netdev_lock_pos(dev->type); 353 lockdep_set_class_and_name(&dev->addr_list_lock, 354 &netdev_addr_lock_key[i], 355 netdev_lock_name[i]); 356 } 357 #else 358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 359 unsigned short dev_type) 360 { 361 } 362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 363 { 364 } 365 #endif 366 367 /******************************************************************************* 368 369 Protocol management and registration routines 370 371 *******************************************************************************/ 372 373 /* 374 * Add a protocol ID to the list. Now that the input handler is 375 * smarter we can dispense with all the messy stuff that used to be 376 * here. 377 * 378 * BEWARE!!! Protocol handlers, mangling input packets, 379 * MUST BE last in hash buckets and checking protocol handlers 380 * MUST start from promiscuous ptype_all chain in net_bh. 381 * It is true now, do not change it. 382 * Explanation follows: if protocol handler, mangling packet, will 383 * be the first on list, it is not able to sense, that packet 384 * is cloned and should be copied-on-write, so that it will 385 * change it and subsequent readers will get broken packet. 386 * --ANK (980803) 387 */ 388 389 static inline struct list_head *ptype_head(const struct packet_type *pt) 390 { 391 if (pt->type == htons(ETH_P_ALL)) 392 return &ptype_all; 393 else 394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 395 } 396 397 /** 398 * dev_add_pack - add packet handler 399 * @pt: packet type declaration 400 * 401 * Add a protocol handler to the networking stack. The passed &packet_type 402 * is linked into kernel lists and may not be freed until it has been 403 * removed from the kernel lists. 404 * 405 * This call does not sleep therefore it can not 406 * guarantee all CPU's that are in middle of receiving packets 407 * will see the new packet type (until the next received packet). 408 */ 409 410 void dev_add_pack(struct packet_type *pt) 411 { 412 struct list_head *head = ptype_head(pt); 413 414 spin_lock(&ptype_lock); 415 list_add_rcu(&pt->list, head); 416 spin_unlock(&ptype_lock); 417 } 418 EXPORT_SYMBOL(dev_add_pack); 419 420 /** 421 * __dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * The packet type might still be in use by receivers 430 * and must not be freed until after all the CPU's have gone 431 * through a quiescent state. 432 */ 433 void __dev_remove_pack(struct packet_type *pt) 434 { 435 struct list_head *head = ptype_head(pt); 436 struct packet_type *pt1; 437 438 spin_lock(&ptype_lock); 439 440 list_for_each_entry(pt1, head, list) { 441 if (pt == pt1) { 442 list_del_rcu(&pt->list); 443 goto out; 444 } 445 } 446 447 pr_warn("dev_remove_pack: %p not found\n", pt); 448 out: 449 spin_unlock(&ptype_lock); 450 } 451 EXPORT_SYMBOL(__dev_remove_pack); 452 453 /** 454 * dev_remove_pack - remove packet handler 455 * @pt: packet type declaration 456 * 457 * Remove a protocol handler that was previously added to the kernel 458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 459 * from the kernel lists and can be freed or reused once this function 460 * returns. 461 * 462 * This call sleeps to guarantee that no CPU is looking at the packet 463 * type after return. 464 */ 465 void dev_remove_pack(struct packet_type *pt) 466 { 467 __dev_remove_pack(pt); 468 469 synchronize_net(); 470 } 471 EXPORT_SYMBOL(dev_remove_pack); 472 473 /****************************************************************************** 474 475 Device Boot-time Settings Routines 476 477 *******************************************************************************/ 478 479 /* Boot time configuration table */ 480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 481 482 /** 483 * netdev_boot_setup_add - add new setup entry 484 * @name: name of the device 485 * @map: configured settings for the device 486 * 487 * Adds new setup entry to the dev_boot_setup list. The function 488 * returns 0 on error and 1 on success. This is a generic routine to 489 * all netdevices. 490 */ 491 static int netdev_boot_setup_add(char *name, struct ifmap *map) 492 { 493 struct netdev_boot_setup *s; 494 int i; 495 496 s = dev_boot_setup; 497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 499 memset(s[i].name, 0, sizeof(s[i].name)); 500 strlcpy(s[i].name, name, IFNAMSIZ); 501 memcpy(&s[i].map, map, sizeof(s[i].map)); 502 break; 503 } 504 } 505 506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 507 } 508 509 /** 510 * netdev_boot_setup_check - check boot time settings 511 * @dev: the netdevice 512 * 513 * Check boot time settings for the device. 514 * The found settings are set for the device to be used 515 * later in the device probing. 516 * Returns 0 if no settings found, 1 if they are. 517 */ 518 int netdev_boot_setup_check(struct net_device *dev) 519 { 520 struct netdev_boot_setup *s = dev_boot_setup; 521 int i; 522 523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 525 !strcmp(dev->name, s[i].name)) { 526 dev->irq = s[i].map.irq; 527 dev->base_addr = s[i].map.base_addr; 528 dev->mem_start = s[i].map.mem_start; 529 dev->mem_end = s[i].map.mem_end; 530 return 1; 531 } 532 } 533 return 0; 534 } 535 EXPORT_SYMBOL(netdev_boot_setup_check); 536 537 538 /** 539 * netdev_boot_base - get address from boot time settings 540 * @prefix: prefix for network device 541 * @unit: id for network device 542 * 543 * Check boot time settings for the base address of device. 544 * The found settings are set for the device to be used 545 * later in the device probing. 546 * Returns 0 if no settings found. 547 */ 548 unsigned long netdev_boot_base(const char *prefix, int unit) 549 { 550 const struct netdev_boot_setup *s = dev_boot_setup; 551 char name[IFNAMSIZ]; 552 int i; 553 554 sprintf(name, "%s%d", prefix, unit); 555 556 /* 557 * If device already registered then return base of 1 558 * to indicate not to probe for this interface 559 */ 560 if (__dev_get_by_name(&init_net, name)) 561 return 1; 562 563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 564 if (!strcmp(name, s[i].name)) 565 return s[i].map.base_addr; 566 return 0; 567 } 568 569 /* 570 * Saves at boot time configured settings for any netdevice. 571 */ 572 int __init netdev_boot_setup(char *str) 573 { 574 int ints[5]; 575 struct ifmap map; 576 577 str = get_options(str, ARRAY_SIZE(ints), ints); 578 if (!str || !*str) 579 return 0; 580 581 /* Save settings */ 582 memset(&map, 0, sizeof(map)); 583 if (ints[0] > 0) 584 map.irq = ints[1]; 585 if (ints[0] > 1) 586 map.base_addr = ints[2]; 587 if (ints[0] > 2) 588 map.mem_start = ints[3]; 589 if (ints[0] > 3) 590 map.mem_end = ints[4]; 591 592 /* Add new entry to the list */ 593 return netdev_boot_setup_add(str, &map); 594 } 595 596 __setup("netdev=", netdev_boot_setup); 597 598 /******************************************************************************* 599 600 Device Interface Subroutines 601 602 *******************************************************************************/ 603 604 /** 605 * __dev_get_by_name - find a device by its name 606 * @net: the applicable net namespace 607 * @name: name to find 608 * 609 * Find an interface by name. Must be called under RTNL semaphore 610 * or @dev_base_lock. If the name is found a pointer to the device 611 * is returned. If the name is not found then %NULL is returned. The 612 * reference counters are not incremented so the caller must be 613 * careful with locks. 614 */ 615 616 struct net_device *__dev_get_by_name(struct net *net, const char *name) 617 { 618 struct hlist_node *p; 619 struct net_device *dev; 620 struct hlist_head *head = dev_name_hash(net, name); 621 622 hlist_for_each_entry(dev, p, head, name_hlist) 623 if (!strncmp(dev->name, name, IFNAMSIZ)) 624 return dev; 625 626 return NULL; 627 } 628 EXPORT_SYMBOL(__dev_get_by_name); 629 630 /** 631 * dev_get_by_name_rcu - find a device by its name 632 * @net: the applicable net namespace 633 * @name: name to find 634 * 635 * Find an interface by name. 636 * If the name is found a pointer to the device is returned. 637 * If the name is not found then %NULL is returned. 638 * The reference counters are not incremented so the caller must be 639 * careful with locks. The caller must hold RCU lock. 640 */ 641 642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 643 { 644 struct hlist_node *p; 645 struct net_device *dev; 646 struct hlist_head *head = dev_name_hash(net, name); 647 648 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 649 if (!strncmp(dev->name, name, IFNAMSIZ)) 650 return dev; 651 652 return NULL; 653 } 654 EXPORT_SYMBOL(dev_get_by_name_rcu); 655 656 /** 657 * dev_get_by_name - find a device by its name 658 * @net: the applicable net namespace 659 * @name: name to find 660 * 661 * Find an interface by name. This can be called from any 662 * context and does its own locking. The returned handle has 663 * the usage count incremented and the caller must use dev_put() to 664 * release it when it is no longer needed. %NULL is returned if no 665 * matching device is found. 666 */ 667 668 struct net_device *dev_get_by_name(struct net *net, const char *name) 669 { 670 struct net_device *dev; 671 672 rcu_read_lock(); 673 dev = dev_get_by_name_rcu(net, name); 674 if (dev) 675 dev_hold(dev); 676 rcu_read_unlock(); 677 return dev; 678 } 679 EXPORT_SYMBOL(dev_get_by_name); 680 681 /** 682 * __dev_get_by_index - find a device by its ifindex 683 * @net: the applicable net namespace 684 * @ifindex: index of device 685 * 686 * Search for an interface by index. Returns %NULL if the device 687 * is not found or a pointer to the device. The device has not 688 * had its reference counter increased so the caller must be careful 689 * about locking. The caller must hold either the RTNL semaphore 690 * or @dev_base_lock. 691 */ 692 693 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 694 { 695 struct hlist_node *p; 696 struct net_device *dev; 697 struct hlist_head *head = dev_index_hash(net, ifindex); 698 699 hlist_for_each_entry(dev, p, head, index_hlist) 700 if (dev->ifindex == ifindex) 701 return dev; 702 703 return NULL; 704 } 705 EXPORT_SYMBOL(__dev_get_by_index); 706 707 /** 708 * dev_get_by_index_rcu - find a device by its ifindex 709 * @net: the applicable net namespace 710 * @ifindex: index of device 711 * 712 * Search for an interface by index. Returns %NULL if the device 713 * is not found or a pointer to the device. The device has not 714 * had its reference counter increased so the caller must be careful 715 * about locking. The caller must hold RCU lock. 716 */ 717 718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 719 { 720 struct hlist_node *p; 721 struct net_device *dev; 722 struct hlist_head *head = dev_index_hash(net, ifindex); 723 724 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 725 if (dev->ifindex == ifindex) 726 return dev; 727 728 return NULL; 729 } 730 EXPORT_SYMBOL(dev_get_by_index_rcu); 731 732 733 /** 734 * dev_get_by_index - find a device by its ifindex 735 * @net: the applicable net namespace 736 * @ifindex: index of device 737 * 738 * Search for an interface by index. Returns NULL if the device 739 * is not found or a pointer to the device. The device returned has 740 * had a reference added and the pointer is safe until the user calls 741 * dev_put to indicate they have finished with it. 742 */ 743 744 struct net_device *dev_get_by_index(struct net *net, int ifindex) 745 { 746 struct net_device *dev; 747 748 rcu_read_lock(); 749 dev = dev_get_by_index_rcu(net, ifindex); 750 if (dev) 751 dev_hold(dev); 752 rcu_read_unlock(); 753 return dev; 754 } 755 EXPORT_SYMBOL(dev_get_by_index); 756 757 /** 758 * dev_getbyhwaddr_rcu - find a device by its hardware address 759 * @net: the applicable net namespace 760 * @type: media type of device 761 * @ha: hardware address 762 * 763 * Search for an interface by MAC address. Returns NULL if the device 764 * is not found or a pointer to the device. 765 * The caller must hold RCU or RTNL. 766 * The returned device has not had its ref count increased 767 * and the caller must therefore be careful about locking 768 * 769 */ 770 771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 772 const char *ha) 773 { 774 struct net_device *dev; 775 776 for_each_netdev_rcu(net, dev) 777 if (dev->type == type && 778 !memcmp(dev->dev_addr, ha, dev->addr_len)) 779 return dev; 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 784 785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 786 { 787 struct net_device *dev; 788 789 ASSERT_RTNL(); 790 for_each_netdev(net, dev) 791 if (dev->type == type) 792 return dev; 793 794 return NULL; 795 } 796 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 797 798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 799 { 800 struct net_device *dev, *ret = NULL; 801 802 rcu_read_lock(); 803 for_each_netdev_rcu(net, dev) 804 if (dev->type == type) { 805 dev_hold(dev); 806 ret = dev; 807 break; 808 } 809 rcu_read_unlock(); 810 return ret; 811 } 812 EXPORT_SYMBOL(dev_getfirstbyhwtype); 813 814 /** 815 * dev_get_by_flags_rcu - find any device with given flags 816 * @net: the applicable net namespace 817 * @if_flags: IFF_* values 818 * @mask: bitmask of bits in if_flags to check 819 * 820 * Search for any interface with the given flags. Returns NULL if a device 821 * is not found or a pointer to the device. Must be called inside 822 * rcu_read_lock(), and result refcount is unchanged. 823 */ 824 825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 826 unsigned short mask) 827 { 828 struct net_device *dev, *ret; 829 830 ret = NULL; 831 for_each_netdev_rcu(net, dev) { 832 if (((dev->flags ^ if_flags) & mask) == 0) { 833 ret = dev; 834 break; 835 } 836 } 837 return ret; 838 } 839 EXPORT_SYMBOL(dev_get_by_flags_rcu); 840 841 /** 842 * dev_valid_name - check if name is okay for network device 843 * @name: name string 844 * 845 * Network device names need to be valid file names to 846 * to allow sysfs to work. We also disallow any kind of 847 * whitespace. 848 */ 849 bool dev_valid_name(const char *name) 850 { 851 if (*name == '\0') 852 return false; 853 if (strlen(name) >= IFNAMSIZ) 854 return false; 855 if (!strcmp(name, ".") || !strcmp(name, "..")) 856 return false; 857 858 while (*name) { 859 if (*name == '/' || isspace(*name)) 860 return false; 861 name++; 862 } 863 return true; 864 } 865 EXPORT_SYMBOL(dev_valid_name); 866 867 /** 868 * __dev_alloc_name - allocate a name for a device 869 * @net: network namespace to allocate the device name in 870 * @name: name format string 871 * @buf: scratch buffer and result name string 872 * 873 * Passed a format string - eg "lt%d" it will try and find a suitable 874 * id. It scans list of devices to build up a free map, then chooses 875 * the first empty slot. The caller must hold the dev_base or rtnl lock 876 * while allocating the name and adding the device in order to avoid 877 * duplicates. 878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 879 * Returns the number of the unit assigned or a negative errno code. 880 */ 881 882 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 883 { 884 int i = 0; 885 const char *p; 886 const int max_netdevices = 8*PAGE_SIZE; 887 unsigned long *inuse; 888 struct net_device *d; 889 890 p = strnchr(name, IFNAMSIZ-1, '%'); 891 if (p) { 892 /* 893 * Verify the string as this thing may have come from 894 * the user. There must be either one "%d" and no other "%" 895 * characters. 896 */ 897 if (p[1] != 'd' || strchr(p + 2, '%')) 898 return -EINVAL; 899 900 /* Use one page as a bit array of possible slots */ 901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 902 if (!inuse) 903 return -ENOMEM; 904 905 for_each_netdev(net, d) { 906 if (!sscanf(d->name, name, &i)) 907 continue; 908 if (i < 0 || i >= max_netdevices) 909 continue; 910 911 /* avoid cases where sscanf is not exact inverse of printf */ 912 snprintf(buf, IFNAMSIZ, name, i); 913 if (!strncmp(buf, d->name, IFNAMSIZ)) 914 set_bit(i, inuse); 915 } 916 917 i = find_first_zero_bit(inuse, max_netdevices); 918 free_page((unsigned long) inuse); 919 } 920 921 if (buf != name) 922 snprintf(buf, IFNAMSIZ, name, i); 923 if (!__dev_get_by_name(net, buf)) 924 return i; 925 926 /* It is possible to run out of possible slots 927 * when the name is long and there isn't enough space left 928 * for the digits, or if all bits are used. 929 */ 930 return -ENFILE; 931 } 932 933 /** 934 * dev_alloc_name - allocate a name for a device 935 * @dev: device 936 * @name: name format string 937 * 938 * Passed a format string - eg "lt%d" it will try and find a suitable 939 * id. It scans list of devices to build up a free map, then chooses 940 * the first empty slot. The caller must hold the dev_base or rtnl lock 941 * while allocating the name and adding the device in order to avoid 942 * duplicates. 943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 944 * Returns the number of the unit assigned or a negative errno code. 945 */ 946 947 int dev_alloc_name(struct net_device *dev, const char *name) 948 { 949 char buf[IFNAMSIZ]; 950 struct net *net; 951 int ret; 952 953 BUG_ON(!dev_net(dev)); 954 net = dev_net(dev); 955 ret = __dev_alloc_name(net, name, buf); 956 if (ret >= 0) 957 strlcpy(dev->name, buf, IFNAMSIZ); 958 return ret; 959 } 960 EXPORT_SYMBOL(dev_alloc_name); 961 962 static int dev_get_valid_name(struct net_device *dev, const char *name) 963 { 964 struct net *net; 965 966 BUG_ON(!dev_net(dev)); 967 net = dev_net(dev); 968 969 if (!dev_valid_name(name)) 970 return -EINVAL; 971 972 if (strchr(name, '%')) 973 return dev_alloc_name(dev, name); 974 else if (__dev_get_by_name(net, name)) 975 return -EEXIST; 976 else if (dev->name != name) 977 strlcpy(dev->name, name, IFNAMSIZ); 978 979 return 0; 980 } 981 982 /** 983 * dev_change_name - change name of a device 984 * @dev: device 985 * @newname: name (or format string) must be at least IFNAMSIZ 986 * 987 * Change name of a device, can pass format strings "eth%d". 988 * for wildcarding. 989 */ 990 int dev_change_name(struct net_device *dev, const char *newname) 991 { 992 char oldname[IFNAMSIZ]; 993 int err = 0; 994 int ret; 995 struct net *net; 996 997 ASSERT_RTNL(); 998 BUG_ON(!dev_net(dev)); 999 1000 net = dev_net(dev); 1001 if (dev->flags & IFF_UP) 1002 return -EBUSY; 1003 1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1005 return 0; 1006 1007 memcpy(oldname, dev->name, IFNAMSIZ); 1008 1009 err = dev_get_valid_name(dev, newname); 1010 if (err < 0) 1011 return err; 1012 1013 rollback: 1014 ret = device_rename(&dev->dev, dev->name); 1015 if (ret) { 1016 memcpy(dev->name, oldname, IFNAMSIZ); 1017 return ret; 1018 } 1019 1020 write_lock_bh(&dev_base_lock); 1021 hlist_del_rcu(&dev->name_hlist); 1022 write_unlock_bh(&dev_base_lock); 1023 1024 synchronize_rcu(); 1025 1026 write_lock_bh(&dev_base_lock); 1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1028 write_unlock_bh(&dev_base_lock); 1029 1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1031 ret = notifier_to_errno(ret); 1032 1033 if (ret) { 1034 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1035 if (err >= 0) { 1036 err = ret; 1037 memcpy(dev->name, oldname, IFNAMSIZ); 1038 goto rollback; 1039 } else { 1040 pr_err("%s: name change rollback failed: %d\n", 1041 dev->name, ret); 1042 } 1043 } 1044 1045 return err; 1046 } 1047 1048 /** 1049 * dev_set_alias - change ifalias of a device 1050 * @dev: device 1051 * @alias: name up to IFALIASZ 1052 * @len: limit of bytes to copy from info 1053 * 1054 * Set ifalias for a device, 1055 */ 1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1057 { 1058 ASSERT_RTNL(); 1059 1060 if (len >= IFALIASZ) 1061 return -EINVAL; 1062 1063 if (!len) { 1064 if (dev->ifalias) { 1065 kfree(dev->ifalias); 1066 dev->ifalias = NULL; 1067 } 1068 return 0; 1069 } 1070 1071 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1072 if (!dev->ifalias) 1073 return -ENOMEM; 1074 1075 strlcpy(dev->ifalias, alias, len+1); 1076 return len; 1077 } 1078 1079 1080 /** 1081 * netdev_features_change - device changes features 1082 * @dev: device to cause notification 1083 * 1084 * Called to indicate a device has changed features. 1085 */ 1086 void netdev_features_change(struct net_device *dev) 1087 { 1088 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1089 } 1090 EXPORT_SYMBOL(netdev_features_change); 1091 1092 /** 1093 * netdev_state_change - device changes state 1094 * @dev: device to cause notification 1095 * 1096 * Called to indicate a device has changed state. This function calls 1097 * the notifier chains for netdev_chain and sends a NEWLINK message 1098 * to the routing socket. 1099 */ 1100 void netdev_state_change(struct net_device *dev) 1101 { 1102 if (dev->flags & IFF_UP) { 1103 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1104 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1105 } 1106 } 1107 EXPORT_SYMBOL(netdev_state_change); 1108 1109 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1110 { 1111 return call_netdevice_notifiers(event, dev); 1112 } 1113 EXPORT_SYMBOL(netdev_bonding_change); 1114 1115 /** 1116 * dev_load - load a network module 1117 * @net: the applicable net namespace 1118 * @name: name of interface 1119 * 1120 * If a network interface is not present and the process has suitable 1121 * privileges this function loads the module. If module loading is not 1122 * available in this kernel then it becomes a nop. 1123 */ 1124 1125 void dev_load(struct net *net, const char *name) 1126 { 1127 struct net_device *dev; 1128 int no_module; 1129 1130 rcu_read_lock(); 1131 dev = dev_get_by_name_rcu(net, name); 1132 rcu_read_unlock(); 1133 1134 no_module = !dev; 1135 if (no_module && capable(CAP_NET_ADMIN)) 1136 no_module = request_module("netdev-%s", name); 1137 if (no_module && capable(CAP_SYS_MODULE)) { 1138 if (!request_module("%s", name)) 1139 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n", 1140 name); 1141 } 1142 } 1143 EXPORT_SYMBOL(dev_load); 1144 1145 static int __dev_open(struct net_device *dev) 1146 { 1147 const struct net_device_ops *ops = dev->netdev_ops; 1148 int ret; 1149 1150 ASSERT_RTNL(); 1151 1152 if (!netif_device_present(dev)) 1153 return -ENODEV; 1154 1155 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1156 ret = notifier_to_errno(ret); 1157 if (ret) 1158 return ret; 1159 1160 set_bit(__LINK_STATE_START, &dev->state); 1161 1162 if (ops->ndo_validate_addr) 1163 ret = ops->ndo_validate_addr(dev); 1164 1165 if (!ret && ops->ndo_open) 1166 ret = ops->ndo_open(dev); 1167 1168 if (ret) 1169 clear_bit(__LINK_STATE_START, &dev->state); 1170 else { 1171 dev->flags |= IFF_UP; 1172 net_dmaengine_get(); 1173 dev_set_rx_mode(dev); 1174 dev_activate(dev); 1175 add_device_randomness(dev->dev_addr, dev->addr_len); 1176 } 1177 1178 return ret; 1179 } 1180 1181 /** 1182 * dev_open - prepare an interface for use. 1183 * @dev: device to open 1184 * 1185 * Takes a device from down to up state. The device's private open 1186 * function is invoked and then the multicast lists are loaded. Finally 1187 * the device is moved into the up state and a %NETDEV_UP message is 1188 * sent to the netdev notifier chain. 1189 * 1190 * Calling this function on an active interface is a nop. On a failure 1191 * a negative errno code is returned. 1192 */ 1193 int dev_open(struct net_device *dev) 1194 { 1195 int ret; 1196 1197 if (dev->flags & IFF_UP) 1198 return 0; 1199 1200 ret = __dev_open(dev); 1201 if (ret < 0) 1202 return ret; 1203 1204 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1205 call_netdevice_notifiers(NETDEV_UP, dev); 1206 1207 return ret; 1208 } 1209 EXPORT_SYMBOL(dev_open); 1210 1211 static int __dev_close_many(struct list_head *head) 1212 { 1213 struct net_device *dev; 1214 1215 ASSERT_RTNL(); 1216 might_sleep(); 1217 1218 list_for_each_entry(dev, head, unreg_list) { 1219 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1220 1221 clear_bit(__LINK_STATE_START, &dev->state); 1222 1223 /* Synchronize to scheduled poll. We cannot touch poll list, it 1224 * can be even on different cpu. So just clear netif_running(). 1225 * 1226 * dev->stop() will invoke napi_disable() on all of it's 1227 * napi_struct instances on this device. 1228 */ 1229 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1230 } 1231 1232 dev_deactivate_many(head); 1233 1234 list_for_each_entry(dev, head, unreg_list) { 1235 const struct net_device_ops *ops = dev->netdev_ops; 1236 1237 /* 1238 * Call the device specific close. This cannot fail. 1239 * Only if device is UP 1240 * 1241 * We allow it to be called even after a DETACH hot-plug 1242 * event. 1243 */ 1244 if (ops->ndo_stop) 1245 ops->ndo_stop(dev); 1246 1247 dev->flags &= ~IFF_UP; 1248 net_dmaengine_put(); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static int __dev_close(struct net_device *dev) 1255 { 1256 int retval; 1257 LIST_HEAD(single); 1258 1259 list_add(&dev->unreg_list, &single); 1260 retval = __dev_close_many(&single); 1261 list_del(&single); 1262 return retval; 1263 } 1264 1265 static int dev_close_many(struct list_head *head) 1266 { 1267 struct net_device *dev, *tmp; 1268 LIST_HEAD(tmp_list); 1269 1270 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1271 if (!(dev->flags & IFF_UP)) 1272 list_move(&dev->unreg_list, &tmp_list); 1273 1274 __dev_close_many(head); 1275 1276 list_for_each_entry(dev, head, unreg_list) { 1277 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1278 call_netdevice_notifiers(NETDEV_DOWN, dev); 1279 } 1280 1281 /* rollback_registered_many needs the complete original list */ 1282 list_splice(&tmp_list, head); 1283 return 0; 1284 } 1285 1286 /** 1287 * dev_close - shutdown an interface. 1288 * @dev: device to shutdown 1289 * 1290 * This function moves an active device into down state. A 1291 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1292 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1293 * chain. 1294 */ 1295 int dev_close(struct net_device *dev) 1296 { 1297 if (dev->flags & IFF_UP) { 1298 LIST_HEAD(single); 1299 1300 list_add(&dev->unreg_list, &single); 1301 dev_close_many(&single); 1302 list_del(&single); 1303 } 1304 return 0; 1305 } 1306 EXPORT_SYMBOL(dev_close); 1307 1308 1309 /** 1310 * dev_disable_lro - disable Large Receive Offload on a device 1311 * @dev: device 1312 * 1313 * Disable Large Receive Offload (LRO) on a net device. Must be 1314 * called under RTNL. This is needed if received packets may be 1315 * forwarded to another interface. 1316 */ 1317 void dev_disable_lro(struct net_device *dev) 1318 { 1319 /* 1320 * If we're trying to disable lro on a vlan device 1321 * use the underlying physical device instead 1322 */ 1323 if (is_vlan_dev(dev)) 1324 dev = vlan_dev_real_dev(dev); 1325 1326 dev->wanted_features &= ~NETIF_F_LRO; 1327 netdev_update_features(dev); 1328 1329 if (unlikely(dev->features & NETIF_F_LRO)) 1330 netdev_WARN(dev, "failed to disable LRO!\n"); 1331 } 1332 EXPORT_SYMBOL(dev_disable_lro); 1333 1334 1335 static int dev_boot_phase = 1; 1336 1337 /** 1338 * register_netdevice_notifier - register a network notifier block 1339 * @nb: notifier 1340 * 1341 * Register a notifier to be called when network device events occur. 1342 * The notifier passed is linked into the kernel structures and must 1343 * not be reused until it has been unregistered. A negative errno code 1344 * is returned on a failure. 1345 * 1346 * When registered all registration and up events are replayed 1347 * to the new notifier to allow device to have a race free 1348 * view of the network device list. 1349 */ 1350 1351 int register_netdevice_notifier(struct notifier_block *nb) 1352 { 1353 struct net_device *dev; 1354 struct net_device *last; 1355 struct net *net; 1356 int err; 1357 1358 rtnl_lock(); 1359 err = raw_notifier_chain_register(&netdev_chain, nb); 1360 if (err) 1361 goto unlock; 1362 if (dev_boot_phase) 1363 goto unlock; 1364 for_each_net(net) { 1365 for_each_netdev(net, dev) { 1366 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1367 err = notifier_to_errno(err); 1368 if (err) 1369 goto rollback; 1370 1371 if (!(dev->flags & IFF_UP)) 1372 continue; 1373 1374 nb->notifier_call(nb, NETDEV_UP, dev); 1375 } 1376 } 1377 1378 unlock: 1379 rtnl_unlock(); 1380 return err; 1381 1382 rollback: 1383 last = dev; 1384 for_each_net(net) { 1385 for_each_netdev(net, dev) { 1386 if (dev == last) 1387 goto outroll; 1388 1389 if (dev->flags & IFF_UP) { 1390 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1391 nb->notifier_call(nb, NETDEV_DOWN, dev); 1392 } 1393 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1394 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1395 } 1396 } 1397 1398 outroll: 1399 raw_notifier_chain_unregister(&netdev_chain, nb); 1400 goto unlock; 1401 } 1402 EXPORT_SYMBOL(register_netdevice_notifier); 1403 1404 /** 1405 * unregister_netdevice_notifier - unregister a network notifier block 1406 * @nb: notifier 1407 * 1408 * Unregister a notifier previously registered by 1409 * register_netdevice_notifier(). The notifier is unlinked into the 1410 * kernel structures and may then be reused. A negative errno code 1411 * is returned on a failure. 1412 * 1413 * After unregistering unregister and down device events are synthesized 1414 * for all devices on the device list to the removed notifier to remove 1415 * the need for special case cleanup code. 1416 */ 1417 1418 int unregister_netdevice_notifier(struct notifier_block *nb) 1419 { 1420 struct net_device *dev; 1421 struct net *net; 1422 int err; 1423 1424 rtnl_lock(); 1425 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1426 if (err) 1427 goto unlock; 1428 1429 for_each_net(net) { 1430 for_each_netdev(net, dev) { 1431 if (dev->flags & IFF_UP) { 1432 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1433 nb->notifier_call(nb, NETDEV_DOWN, dev); 1434 } 1435 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1436 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1437 } 1438 } 1439 unlock: 1440 rtnl_unlock(); 1441 return err; 1442 } 1443 EXPORT_SYMBOL(unregister_netdevice_notifier); 1444 1445 /** 1446 * call_netdevice_notifiers - call all network notifier blocks 1447 * @val: value passed unmodified to notifier function 1448 * @dev: net_device pointer passed unmodified to notifier function 1449 * 1450 * Call all network notifier blocks. Parameters and return value 1451 * are as for raw_notifier_call_chain(). 1452 */ 1453 1454 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1455 { 1456 ASSERT_RTNL(); 1457 return raw_notifier_call_chain(&netdev_chain, val, dev); 1458 } 1459 EXPORT_SYMBOL(call_netdevice_notifiers); 1460 1461 static struct static_key netstamp_needed __read_mostly; 1462 #ifdef HAVE_JUMP_LABEL 1463 /* We are not allowed to call static_key_slow_dec() from irq context 1464 * If net_disable_timestamp() is called from irq context, defer the 1465 * static_key_slow_dec() calls. 1466 */ 1467 static atomic_t netstamp_needed_deferred; 1468 #endif 1469 1470 void net_enable_timestamp(void) 1471 { 1472 #ifdef HAVE_JUMP_LABEL 1473 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1474 1475 if (deferred) { 1476 while (--deferred) 1477 static_key_slow_dec(&netstamp_needed); 1478 return; 1479 } 1480 #endif 1481 WARN_ON(in_interrupt()); 1482 static_key_slow_inc(&netstamp_needed); 1483 } 1484 EXPORT_SYMBOL(net_enable_timestamp); 1485 1486 void net_disable_timestamp(void) 1487 { 1488 #ifdef HAVE_JUMP_LABEL 1489 if (in_interrupt()) { 1490 atomic_inc(&netstamp_needed_deferred); 1491 return; 1492 } 1493 #endif 1494 static_key_slow_dec(&netstamp_needed); 1495 } 1496 EXPORT_SYMBOL(net_disable_timestamp); 1497 1498 static inline void net_timestamp_set(struct sk_buff *skb) 1499 { 1500 skb->tstamp.tv64 = 0; 1501 if (static_key_false(&netstamp_needed)) 1502 __net_timestamp(skb); 1503 } 1504 1505 #define net_timestamp_check(COND, SKB) \ 1506 if (static_key_false(&netstamp_needed)) { \ 1507 if ((COND) && !(SKB)->tstamp.tv64) \ 1508 __net_timestamp(SKB); \ 1509 } \ 1510 1511 static int net_hwtstamp_validate(struct ifreq *ifr) 1512 { 1513 struct hwtstamp_config cfg; 1514 enum hwtstamp_tx_types tx_type; 1515 enum hwtstamp_rx_filters rx_filter; 1516 int tx_type_valid = 0; 1517 int rx_filter_valid = 0; 1518 1519 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1520 return -EFAULT; 1521 1522 if (cfg.flags) /* reserved for future extensions */ 1523 return -EINVAL; 1524 1525 tx_type = cfg.tx_type; 1526 rx_filter = cfg.rx_filter; 1527 1528 switch (tx_type) { 1529 case HWTSTAMP_TX_OFF: 1530 case HWTSTAMP_TX_ON: 1531 case HWTSTAMP_TX_ONESTEP_SYNC: 1532 tx_type_valid = 1; 1533 break; 1534 } 1535 1536 switch (rx_filter) { 1537 case HWTSTAMP_FILTER_NONE: 1538 case HWTSTAMP_FILTER_ALL: 1539 case HWTSTAMP_FILTER_SOME: 1540 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1541 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1542 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1543 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1544 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1545 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1546 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1547 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1548 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1549 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1550 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1551 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1552 rx_filter_valid = 1; 1553 break; 1554 } 1555 1556 if (!tx_type_valid || !rx_filter_valid) 1557 return -ERANGE; 1558 1559 return 0; 1560 } 1561 1562 static inline bool is_skb_forwardable(struct net_device *dev, 1563 struct sk_buff *skb) 1564 { 1565 unsigned int len; 1566 1567 if (!(dev->flags & IFF_UP)) 1568 return false; 1569 1570 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1571 if (skb->len <= len) 1572 return true; 1573 1574 /* if TSO is enabled, we don't care about the length as the packet 1575 * could be forwarded without being segmented before 1576 */ 1577 if (skb_is_gso(skb)) 1578 return true; 1579 1580 return false; 1581 } 1582 1583 /** 1584 * dev_forward_skb - loopback an skb to another netif 1585 * 1586 * @dev: destination network device 1587 * @skb: buffer to forward 1588 * 1589 * return values: 1590 * NET_RX_SUCCESS (no congestion) 1591 * NET_RX_DROP (packet was dropped, but freed) 1592 * 1593 * dev_forward_skb can be used for injecting an skb from the 1594 * start_xmit function of one device into the receive queue 1595 * of another device. 1596 * 1597 * The receiving device may be in another namespace, so 1598 * we have to clear all information in the skb that could 1599 * impact namespace isolation. 1600 */ 1601 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1602 { 1603 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1604 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1605 atomic_long_inc(&dev->rx_dropped); 1606 kfree_skb(skb); 1607 return NET_RX_DROP; 1608 } 1609 } 1610 1611 skb_orphan(skb); 1612 nf_reset(skb); 1613 1614 if (unlikely(!is_skb_forwardable(dev, skb))) { 1615 atomic_long_inc(&dev->rx_dropped); 1616 kfree_skb(skb); 1617 return NET_RX_DROP; 1618 } 1619 skb->skb_iif = 0; 1620 skb->dev = dev; 1621 skb_dst_drop(skb); 1622 skb->tstamp.tv64 = 0; 1623 skb->pkt_type = PACKET_HOST; 1624 skb->protocol = eth_type_trans(skb, dev); 1625 skb->mark = 0; 1626 secpath_reset(skb); 1627 nf_reset(skb); 1628 return netif_rx(skb); 1629 } 1630 EXPORT_SYMBOL_GPL(dev_forward_skb); 1631 1632 static inline int deliver_skb(struct sk_buff *skb, 1633 struct packet_type *pt_prev, 1634 struct net_device *orig_dev) 1635 { 1636 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1637 return -ENOMEM; 1638 atomic_inc(&skb->users); 1639 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1640 } 1641 1642 /* 1643 * Support routine. Sends outgoing frames to any network 1644 * taps currently in use. 1645 */ 1646 1647 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1648 { 1649 struct packet_type *ptype; 1650 struct sk_buff *skb2 = NULL; 1651 struct packet_type *pt_prev = NULL; 1652 1653 rcu_read_lock(); 1654 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1655 /* Never send packets back to the socket 1656 * they originated from - MvS (miquels@drinkel.ow.org) 1657 */ 1658 if ((ptype->dev == dev || !ptype->dev) && 1659 (ptype->af_packet_priv == NULL || 1660 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1661 if (pt_prev) { 1662 deliver_skb(skb2, pt_prev, skb->dev); 1663 pt_prev = ptype; 1664 continue; 1665 } 1666 1667 skb2 = skb_clone(skb, GFP_ATOMIC); 1668 if (!skb2) 1669 break; 1670 1671 net_timestamp_set(skb2); 1672 1673 /* skb->nh should be correctly 1674 set by sender, so that the second statement is 1675 just protection against buggy protocols. 1676 */ 1677 skb_reset_mac_header(skb2); 1678 1679 if (skb_network_header(skb2) < skb2->data || 1680 skb2->network_header > skb2->tail) { 1681 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1682 ntohs(skb2->protocol), 1683 dev->name); 1684 skb_reset_network_header(skb2); 1685 } 1686 1687 skb2->transport_header = skb2->network_header; 1688 skb2->pkt_type = PACKET_OUTGOING; 1689 pt_prev = ptype; 1690 } 1691 } 1692 if (pt_prev) 1693 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1694 rcu_read_unlock(); 1695 } 1696 1697 /** 1698 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1699 * @dev: Network device 1700 * @txq: number of queues available 1701 * 1702 * If real_num_tx_queues is changed the tc mappings may no longer be 1703 * valid. To resolve this verify the tc mapping remains valid and if 1704 * not NULL the mapping. With no priorities mapping to this 1705 * offset/count pair it will no longer be used. In the worst case TC0 1706 * is invalid nothing can be done so disable priority mappings. If is 1707 * expected that drivers will fix this mapping if they can before 1708 * calling netif_set_real_num_tx_queues. 1709 */ 1710 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1711 { 1712 int i; 1713 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1714 1715 /* If TC0 is invalidated disable TC mapping */ 1716 if (tc->offset + tc->count > txq) { 1717 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1718 dev->num_tc = 0; 1719 return; 1720 } 1721 1722 /* Invalidated prio to tc mappings set to TC0 */ 1723 for (i = 1; i < TC_BITMASK + 1; i++) { 1724 int q = netdev_get_prio_tc_map(dev, i); 1725 1726 tc = &dev->tc_to_txq[q]; 1727 if (tc->offset + tc->count > txq) { 1728 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1729 i, q); 1730 netdev_set_prio_tc_map(dev, i, 0); 1731 } 1732 } 1733 } 1734 1735 /* 1736 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1737 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1738 */ 1739 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1740 { 1741 int rc; 1742 1743 if (txq < 1 || txq > dev->num_tx_queues) 1744 return -EINVAL; 1745 1746 if (dev->reg_state == NETREG_REGISTERED || 1747 dev->reg_state == NETREG_UNREGISTERING) { 1748 ASSERT_RTNL(); 1749 1750 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1751 txq); 1752 if (rc) 1753 return rc; 1754 1755 if (dev->num_tc) 1756 netif_setup_tc(dev, txq); 1757 1758 if (txq < dev->real_num_tx_queues) 1759 qdisc_reset_all_tx_gt(dev, txq); 1760 } 1761 1762 dev->real_num_tx_queues = txq; 1763 return 0; 1764 } 1765 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1766 1767 #ifdef CONFIG_RPS 1768 /** 1769 * netif_set_real_num_rx_queues - set actual number of RX queues used 1770 * @dev: Network device 1771 * @rxq: Actual number of RX queues 1772 * 1773 * This must be called either with the rtnl_lock held or before 1774 * registration of the net device. Returns 0 on success, or a 1775 * negative error code. If called before registration, it always 1776 * succeeds. 1777 */ 1778 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1779 { 1780 int rc; 1781 1782 if (rxq < 1 || rxq > dev->num_rx_queues) 1783 return -EINVAL; 1784 1785 if (dev->reg_state == NETREG_REGISTERED) { 1786 ASSERT_RTNL(); 1787 1788 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1789 rxq); 1790 if (rc) 1791 return rc; 1792 } 1793 1794 dev->real_num_rx_queues = rxq; 1795 return 0; 1796 } 1797 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1798 #endif 1799 1800 /** 1801 * netif_get_num_default_rss_queues - default number of RSS queues 1802 * 1803 * This routine should set an upper limit on the number of RSS queues 1804 * used by default by multiqueue devices. 1805 */ 1806 int netif_get_num_default_rss_queues(void) 1807 { 1808 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 1809 } 1810 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 1811 1812 static inline void __netif_reschedule(struct Qdisc *q) 1813 { 1814 struct softnet_data *sd; 1815 unsigned long flags; 1816 1817 local_irq_save(flags); 1818 sd = &__get_cpu_var(softnet_data); 1819 q->next_sched = NULL; 1820 *sd->output_queue_tailp = q; 1821 sd->output_queue_tailp = &q->next_sched; 1822 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1823 local_irq_restore(flags); 1824 } 1825 1826 void __netif_schedule(struct Qdisc *q) 1827 { 1828 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1829 __netif_reschedule(q); 1830 } 1831 EXPORT_SYMBOL(__netif_schedule); 1832 1833 void dev_kfree_skb_irq(struct sk_buff *skb) 1834 { 1835 if (atomic_dec_and_test(&skb->users)) { 1836 struct softnet_data *sd; 1837 unsigned long flags; 1838 1839 local_irq_save(flags); 1840 sd = &__get_cpu_var(softnet_data); 1841 skb->next = sd->completion_queue; 1842 sd->completion_queue = skb; 1843 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1844 local_irq_restore(flags); 1845 } 1846 } 1847 EXPORT_SYMBOL(dev_kfree_skb_irq); 1848 1849 void dev_kfree_skb_any(struct sk_buff *skb) 1850 { 1851 if (in_irq() || irqs_disabled()) 1852 dev_kfree_skb_irq(skb); 1853 else 1854 dev_kfree_skb(skb); 1855 } 1856 EXPORT_SYMBOL(dev_kfree_skb_any); 1857 1858 1859 /** 1860 * netif_device_detach - mark device as removed 1861 * @dev: network device 1862 * 1863 * Mark device as removed from system and therefore no longer available. 1864 */ 1865 void netif_device_detach(struct net_device *dev) 1866 { 1867 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1868 netif_running(dev)) { 1869 netif_tx_stop_all_queues(dev); 1870 } 1871 } 1872 EXPORT_SYMBOL(netif_device_detach); 1873 1874 /** 1875 * netif_device_attach - mark device as attached 1876 * @dev: network device 1877 * 1878 * Mark device as attached from system and restart if needed. 1879 */ 1880 void netif_device_attach(struct net_device *dev) 1881 { 1882 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1883 netif_running(dev)) { 1884 netif_tx_wake_all_queues(dev); 1885 __netdev_watchdog_up(dev); 1886 } 1887 } 1888 EXPORT_SYMBOL(netif_device_attach); 1889 1890 static void skb_warn_bad_offload(const struct sk_buff *skb) 1891 { 1892 static const netdev_features_t null_features = 0; 1893 struct net_device *dev = skb->dev; 1894 const char *driver = ""; 1895 1896 if (dev && dev->dev.parent) 1897 driver = dev_driver_string(dev->dev.parent); 1898 1899 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 1900 "gso_type=%d ip_summed=%d\n", 1901 driver, dev ? &dev->features : &null_features, 1902 skb->sk ? &skb->sk->sk_route_caps : &null_features, 1903 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 1904 skb_shinfo(skb)->gso_type, skb->ip_summed); 1905 } 1906 1907 /* 1908 * Invalidate hardware checksum when packet is to be mangled, and 1909 * complete checksum manually on outgoing path. 1910 */ 1911 int skb_checksum_help(struct sk_buff *skb) 1912 { 1913 __wsum csum; 1914 int ret = 0, offset; 1915 1916 if (skb->ip_summed == CHECKSUM_COMPLETE) 1917 goto out_set_summed; 1918 1919 if (unlikely(skb_shinfo(skb)->gso_size)) { 1920 skb_warn_bad_offload(skb); 1921 return -EINVAL; 1922 } 1923 1924 offset = skb_checksum_start_offset(skb); 1925 BUG_ON(offset >= skb_headlen(skb)); 1926 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1927 1928 offset += skb->csum_offset; 1929 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1930 1931 if (skb_cloned(skb) && 1932 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1933 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1934 if (ret) 1935 goto out; 1936 } 1937 1938 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1939 out_set_summed: 1940 skb->ip_summed = CHECKSUM_NONE; 1941 out: 1942 return ret; 1943 } 1944 EXPORT_SYMBOL(skb_checksum_help); 1945 1946 /** 1947 * skb_gso_segment - Perform segmentation on skb. 1948 * @skb: buffer to segment 1949 * @features: features for the output path (see dev->features) 1950 * 1951 * This function segments the given skb and returns a list of segments. 1952 * 1953 * It may return NULL if the skb requires no segmentation. This is 1954 * only possible when GSO is used for verifying header integrity. 1955 */ 1956 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1957 netdev_features_t features) 1958 { 1959 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1960 struct packet_type *ptype; 1961 __be16 type = skb->protocol; 1962 int vlan_depth = ETH_HLEN; 1963 int err; 1964 1965 while (type == htons(ETH_P_8021Q)) { 1966 struct vlan_hdr *vh; 1967 1968 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1969 return ERR_PTR(-EINVAL); 1970 1971 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1972 type = vh->h_vlan_encapsulated_proto; 1973 vlan_depth += VLAN_HLEN; 1974 } 1975 1976 skb_reset_mac_header(skb); 1977 skb->mac_len = skb->network_header - skb->mac_header; 1978 __skb_pull(skb, skb->mac_len); 1979 1980 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1981 skb_warn_bad_offload(skb); 1982 1983 if (skb_header_cloned(skb) && 1984 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1985 return ERR_PTR(err); 1986 } 1987 1988 rcu_read_lock(); 1989 list_for_each_entry_rcu(ptype, 1990 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1991 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1992 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1993 err = ptype->gso_send_check(skb); 1994 segs = ERR_PTR(err); 1995 if (err || skb_gso_ok(skb, features)) 1996 break; 1997 __skb_push(skb, (skb->data - 1998 skb_network_header(skb))); 1999 } 2000 segs = ptype->gso_segment(skb, features); 2001 break; 2002 } 2003 } 2004 rcu_read_unlock(); 2005 2006 __skb_push(skb, skb->data - skb_mac_header(skb)); 2007 2008 return segs; 2009 } 2010 EXPORT_SYMBOL(skb_gso_segment); 2011 2012 /* Take action when hardware reception checksum errors are detected. */ 2013 #ifdef CONFIG_BUG 2014 void netdev_rx_csum_fault(struct net_device *dev) 2015 { 2016 if (net_ratelimit()) { 2017 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2018 dump_stack(); 2019 } 2020 } 2021 EXPORT_SYMBOL(netdev_rx_csum_fault); 2022 #endif 2023 2024 /* Actually, we should eliminate this check as soon as we know, that: 2025 * 1. IOMMU is present and allows to map all the memory. 2026 * 2. No high memory really exists on this machine. 2027 */ 2028 2029 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2030 { 2031 #ifdef CONFIG_HIGHMEM 2032 int i; 2033 if (!(dev->features & NETIF_F_HIGHDMA)) { 2034 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2035 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2036 if (PageHighMem(skb_frag_page(frag))) 2037 return 1; 2038 } 2039 } 2040 2041 if (PCI_DMA_BUS_IS_PHYS) { 2042 struct device *pdev = dev->dev.parent; 2043 2044 if (!pdev) 2045 return 0; 2046 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2047 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2048 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2049 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2050 return 1; 2051 } 2052 } 2053 #endif 2054 return 0; 2055 } 2056 2057 struct dev_gso_cb { 2058 void (*destructor)(struct sk_buff *skb); 2059 }; 2060 2061 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2062 2063 static void dev_gso_skb_destructor(struct sk_buff *skb) 2064 { 2065 struct dev_gso_cb *cb; 2066 2067 do { 2068 struct sk_buff *nskb = skb->next; 2069 2070 skb->next = nskb->next; 2071 nskb->next = NULL; 2072 kfree_skb(nskb); 2073 } while (skb->next); 2074 2075 cb = DEV_GSO_CB(skb); 2076 if (cb->destructor) 2077 cb->destructor(skb); 2078 } 2079 2080 /** 2081 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2082 * @skb: buffer to segment 2083 * @features: device features as applicable to this skb 2084 * 2085 * This function segments the given skb and stores the list of segments 2086 * in skb->next. 2087 */ 2088 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2089 { 2090 struct sk_buff *segs; 2091 2092 segs = skb_gso_segment(skb, features); 2093 2094 /* Verifying header integrity only. */ 2095 if (!segs) 2096 return 0; 2097 2098 if (IS_ERR(segs)) 2099 return PTR_ERR(segs); 2100 2101 skb->next = segs; 2102 DEV_GSO_CB(skb)->destructor = skb->destructor; 2103 skb->destructor = dev_gso_skb_destructor; 2104 2105 return 0; 2106 } 2107 2108 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2109 { 2110 return ((features & NETIF_F_GEN_CSUM) || 2111 ((features & NETIF_F_V4_CSUM) && 2112 protocol == htons(ETH_P_IP)) || 2113 ((features & NETIF_F_V6_CSUM) && 2114 protocol == htons(ETH_P_IPV6)) || 2115 ((features & NETIF_F_FCOE_CRC) && 2116 protocol == htons(ETH_P_FCOE))); 2117 } 2118 2119 static netdev_features_t harmonize_features(struct sk_buff *skb, 2120 __be16 protocol, netdev_features_t features) 2121 { 2122 if (!can_checksum_protocol(features, protocol)) { 2123 features &= ~NETIF_F_ALL_CSUM; 2124 features &= ~NETIF_F_SG; 2125 } else if (illegal_highdma(skb->dev, skb)) { 2126 features &= ~NETIF_F_SG; 2127 } 2128 2129 return features; 2130 } 2131 2132 netdev_features_t netif_skb_features(struct sk_buff *skb) 2133 { 2134 __be16 protocol = skb->protocol; 2135 netdev_features_t features = skb->dev->features; 2136 2137 if (protocol == htons(ETH_P_8021Q)) { 2138 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2139 protocol = veh->h_vlan_encapsulated_proto; 2140 } else if (!vlan_tx_tag_present(skb)) { 2141 return harmonize_features(skb, protocol, features); 2142 } 2143 2144 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2145 2146 if (protocol != htons(ETH_P_8021Q)) { 2147 return harmonize_features(skb, protocol, features); 2148 } else { 2149 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2150 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2151 return harmonize_features(skb, protocol, features); 2152 } 2153 } 2154 EXPORT_SYMBOL(netif_skb_features); 2155 2156 /* 2157 * Returns true if either: 2158 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2159 * 2. skb is fragmented and the device does not support SG, or if 2160 * at least one of fragments is in highmem and device does not 2161 * support DMA from it. 2162 */ 2163 static inline int skb_needs_linearize(struct sk_buff *skb, 2164 int features) 2165 { 2166 return skb_is_nonlinear(skb) && 2167 ((skb_has_frag_list(skb) && 2168 !(features & NETIF_F_FRAGLIST)) || 2169 (skb_shinfo(skb)->nr_frags && 2170 !(features & NETIF_F_SG))); 2171 } 2172 2173 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2174 struct netdev_queue *txq) 2175 { 2176 const struct net_device_ops *ops = dev->netdev_ops; 2177 int rc = NETDEV_TX_OK; 2178 unsigned int skb_len; 2179 2180 if (likely(!skb->next)) { 2181 netdev_features_t features; 2182 2183 /* 2184 * If device doesn't need skb->dst, release it right now while 2185 * its hot in this cpu cache 2186 */ 2187 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2188 skb_dst_drop(skb); 2189 2190 if (!list_empty(&ptype_all)) 2191 dev_queue_xmit_nit(skb, dev); 2192 2193 features = netif_skb_features(skb); 2194 2195 if (vlan_tx_tag_present(skb) && 2196 !(features & NETIF_F_HW_VLAN_TX)) { 2197 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2198 if (unlikely(!skb)) 2199 goto out; 2200 2201 skb->vlan_tci = 0; 2202 } 2203 2204 if (netif_needs_gso(skb, features)) { 2205 if (unlikely(dev_gso_segment(skb, features))) 2206 goto out_kfree_skb; 2207 if (skb->next) 2208 goto gso; 2209 } else { 2210 if (skb_needs_linearize(skb, features) && 2211 __skb_linearize(skb)) 2212 goto out_kfree_skb; 2213 2214 /* If packet is not checksummed and device does not 2215 * support checksumming for this protocol, complete 2216 * checksumming here. 2217 */ 2218 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2219 skb_set_transport_header(skb, 2220 skb_checksum_start_offset(skb)); 2221 if (!(features & NETIF_F_ALL_CSUM) && 2222 skb_checksum_help(skb)) 2223 goto out_kfree_skb; 2224 } 2225 } 2226 2227 skb_len = skb->len; 2228 rc = ops->ndo_start_xmit(skb, dev); 2229 trace_net_dev_xmit(skb, rc, dev, skb_len); 2230 if (rc == NETDEV_TX_OK) 2231 txq_trans_update(txq); 2232 return rc; 2233 } 2234 2235 gso: 2236 do { 2237 struct sk_buff *nskb = skb->next; 2238 2239 skb->next = nskb->next; 2240 nskb->next = NULL; 2241 2242 /* 2243 * If device doesn't need nskb->dst, release it right now while 2244 * its hot in this cpu cache 2245 */ 2246 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2247 skb_dst_drop(nskb); 2248 2249 skb_len = nskb->len; 2250 rc = ops->ndo_start_xmit(nskb, dev); 2251 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2252 if (unlikely(rc != NETDEV_TX_OK)) { 2253 if (rc & ~NETDEV_TX_MASK) 2254 goto out_kfree_gso_skb; 2255 nskb->next = skb->next; 2256 skb->next = nskb; 2257 return rc; 2258 } 2259 txq_trans_update(txq); 2260 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2261 return NETDEV_TX_BUSY; 2262 } while (skb->next); 2263 2264 out_kfree_gso_skb: 2265 if (likely(skb->next == NULL)) 2266 skb->destructor = DEV_GSO_CB(skb)->destructor; 2267 out_kfree_skb: 2268 kfree_skb(skb); 2269 out: 2270 return rc; 2271 } 2272 2273 static u32 hashrnd __read_mostly; 2274 2275 /* 2276 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2277 * to be used as a distribution range. 2278 */ 2279 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2280 unsigned int num_tx_queues) 2281 { 2282 u32 hash; 2283 u16 qoffset = 0; 2284 u16 qcount = num_tx_queues; 2285 2286 if (skb_rx_queue_recorded(skb)) { 2287 hash = skb_get_rx_queue(skb); 2288 while (unlikely(hash >= num_tx_queues)) 2289 hash -= num_tx_queues; 2290 return hash; 2291 } 2292 2293 if (dev->num_tc) { 2294 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2295 qoffset = dev->tc_to_txq[tc].offset; 2296 qcount = dev->tc_to_txq[tc].count; 2297 } 2298 2299 if (skb->sk && skb->sk->sk_hash) 2300 hash = skb->sk->sk_hash; 2301 else 2302 hash = (__force u16) skb->protocol; 2303 hash = jhash_1word(hash, hashrnd); 2304 2305 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2306 } 2307 EXPORT_SYMBOL(__skb_tx_hash); 2308 2309 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2310 { 2311 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2312 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2313 dev->name, queue_index, 2314 dev->real_num_tx_queues); 2315 return 0; 2316 } 2317 return queue_index; 2318 } 2319 2320 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2321 { 2322 #ifdef CONFIG_XPS 2323 struct xps_dev_maps *dev_maps; 2324 struct xps_map *map; 2325 int queue_index = -1; 2326 2327 rcu_read_lock(); 2328 dev_maps = rcu_dereference(dev->xps_maps); 2329 if (dev_maps) { 2330 map = rcu_dereference( 2331 dev_maps->cpu_map[raw_smp_processor_id()]); 2332 if (map) { 2333 if (map->len == 1) 2334 queue_index = map->queues[0]; 2335 else { 2336 u32 hash; 2337 if (skb->sk && skb->sk->sk_hash) 2338 hash = skb->sk->sk_hash; 2339 else 2340 hash = (__force u16) skb->protocol ^ 2341 skb->rxhash; 2342 hash = jhash_1word(hash, hashrnd); 2343 queue_index = map->queues[ 2344 ((u64)hash * map->len) >> 32]; 2345 } 2346 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2347 queue_index = -1; 2348 } 2349 } 2350 rcu_read_unlock(); 2351 2352 return queue_index; 2353 #else 2354 return -1; 2355 #endif 2356 } 2357 2358 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2359 struct sk_buff *skb) 2360 { 2361 int queue_index; 2362 const struct net_device_ops *ops = dev->netdev_ops; 2363 2364 if (dev->real_num_tx_queues == 1) 2365 queue_index = 0; 2366 else if (ops->ndo_select_queue) { 2367 queue_index = ops->ndo_select_queue(dev, skb); 2368 queue_index = dev_cap_txqueue(dev, queue_index); 2369 } else { 2370 struct sock *sk = skb->sk; 2371 queue_index = sk_tx_queue_get(sk); 2372 2373 if (queue_index < 0 || skb->ooo_okay || 2374 queue_index >= dev->real_num_tx_queues) { 2375 int old_index = queue_index; 2376 2377 queue_index = get_xps_queue(dev, skb); 2378 if (queue_index < 0) 2379 queue_index = skb_tx_hash(dev, skb); 2380 2381 if (queue_index != old_index && sk) { 2382 struct dst_entry *dst = 2383 rcu_dereference_check(sk->sk_dst_cache, 1); 2384 2385 if (dst && skb_dst(skb) == dst) 2386 sk_tx_queue_set(sk, queue_index); 2387 } 2388 } 2389 } 2390 2391 skb_set_queue_mapping(skb, queue_index); 2392 return netdev_get_tx_queue(dev, queue_index); 2393 } 2394 2395 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2396 struct net_device *dev, 2397 struct netdev_queue *txq) 2398 { 2399 spinlock_t *root_lock = qdisc_lock(q); 2400 bool contended; 2401 int rc; 2402 2403 qdisc_skb_cb(skb)->pkt_len = skb->len; 2404 qdisc_calculate_pkt_len(skb, q); 2405 /* 2406 * Heuristic to force contended enqueues to serialize on a 2407 * separate lock before trying to get qdisc main lock. 2408 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2409 * and dequeue packets faster. 2410 */ 2411 contended = qdisc_is_running(q); 2412 if (unlikely(contended)) 2413 spin_lock(&q->busylock); 2414 2415 spin_lock(root_lock); 2416 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2417 kfree_skb(skb); 2418 rc = NET_XMIT_DROP; 2419 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2420 qdisc_run_begin(q)) { 2421 /* 2422 * This is a work-conserving queue; there are no old skbs 2423 * waiting to be sent out; and the qdisc is not running - 2424 * xmit the skb directly. 2425 */ 2426 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2427 skb_dst_force(skb); 2428 2429 qdisc_bstats_update(q, skb); 2430 2431 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2432 if (unlikely(contended)) { 2433 spin_unlock(&q->busylock); 2434 contended = false; 2435 } 2436 __qdisc_run(q); 2437 } else 2438 qdisc_run_end(q); 2439 2440 rc = NET_XMIT_SUCCESS; 2441 } else { 2442 skb_dst_force(skb); 2443 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2444 if (qdisc_run_begin(q)) { 2445 if (unlikely(contended)) { 2446 spin_unlock(&q->busylock); 2447 contended = false; 2448 } 2449 __qdisc_run(q); 2450 } 2451 } 2452 spin_unlock(root_lock); 2453 if (unlikely(contended)) 2454 spin_unlock(&q->busylock); 2455 return rc; 2456 } 2457 2458 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2459 static void skb_update_prio(struct sk_buff *skb) 2460 { 2461 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2462 2463 if (!skb->priority && skb->sk && map) { 2464 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2465 2466 if (prioidx < map->priomap_len) 2467 skb->priority = map->priomap[prioidx]; 2468 } 2469 } 2470 #else 2471 #define skb_update_prio(skb) 2472 #endif 2473 2474 static DEFINE_PER_CPU(int, xmit_recursion); 2475 #define RECURSION_LIMIT 10 2476 2477 /** 2478 * dev_loopback_xmit - loop back @skb 2479 * @skb: buffer to transmit 2480 */ 2481 int dev_loopback_xmit(struct sk_buff *skb) 2482 { 2483 skb_reset_mac_header(skb); 2484 __skb_pull(skb, skb_network_offset(skb)); 2485 skb->pkt_type = PACKET_LOOPBACK; 2486 skb->ip_summed = CHECKSUM_UNNECESSARY; 2487 WARN_ON(!skb_dst(skb)); 2488 skb_dst_force(skb); 2489 netif_rx_ni(skb); 2490 return 0; 2491 } 2492 EXPORT_SYMBOL(dev_loopback_xmit); 2493 2494 /** 2495 * dev_queue_xmit - transmit a buffer 2496 * @skb: buffer to transmit 2497 * 2498 * Queue a buffer for transmission to a network device. The caller must 2499 * have set the device and priority and built the buffer before calling 2500 * this function. The function can be called from an interrupt. 2501 * 2502 * A negative errno code is returned on a failure. A success does not 2503 * guarantee the frame will be transmitted as it may be dropped due 2504 * to congestion or traffic shaping. 2505 * 2506 * ----------------------------------------------------------------------------------- 2507 * I notice this method can also return errors from the queue disciplines, 2508 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2509 * be positive. 2510 * 2511 * Regardless of the return value, the skb is consumed, so it is currently 2512 * difficult to retry a send to this method. (You can bump the ref count 2513 * before sending to hold a reference for retry if you are careful.) 2514 * 2515 * When calling this method, interrupts MUST be enabled. This is because 2516 * the BH enable code must have IRQs enabled so that it will not deadlock. 2517 * --BLG 2518 */ 2519 int dev_queue_xmit(struct sk_buff *skb) 2520 { 2521 struct net_device *dev = skb->dev; 2522 struct netdev_queue *txq; 2523 struct Qdisc *q; 2524 int rc = -ENOMEM; 2525 2526 /* Disable soft irqs for various locks below. Also 2527 * stops preemption for RCU. 2528 */ 2529 rcu_read_lock_bh(); 2530 2531 skb_update_prio(skb); 2532 2533 txq = dev_pick_tx(dev, skb); 2534 q = rcu_dereference_bh(txq->qdisc); 2535 2536 #ifdef CONFIG_NET_CLS_ACT 2537 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2538 #endif 2539 trace_net_dev_queue(skb); 2540 if (q->enqueue) { 2541 rc = __dev_xmit_skb(skb, q, dev, txq); 2542 goto out; 2543 } 2544 2545 /* The device has no queue. Common case for software devices: 2546 loopback, all the sorts of tunnels... 2547 2548 Really, it is unlikely that netif_tx_lock protection is necessary 2549 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2550 counters.) 2551 However, it is possible, that they rely on protection 2552 made by us here. 2553 2554 Check this and shot the lock. It is not prone from deadlocks. 2555 Either shot noqueue qdisc, it is even simpler 8) 2556 */ 2557 if (dev->flags & IFF_UP) { 2558 int cpu = smp_processor_id(); /* ok because BHs are off */ 2559 2560 if (txq->xmit_lock_owner != cpu) { 2561 2562 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2563 goto recursion_alert; 2564 2565 HARD_TX_LOCK(dev, txq, cpu); 2566 2567 if (!netif_xmit_stopped(txq)) { 2568 __this_cpu_inc(xmit_recursion); 2569 rc = dev_hard_start_xmit(skb, dev, txq); 2570 __this_cpu_dec(xmit_recursion); 2571 if (dev_xmit_complete(rc)) { 2572 HARD_TX_UNLOCK(dev, txq); 2573 goto out; 2574 } 2575 } 2576 HARD_TX_UNLOCK(dev, txq); 2577 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2578 dev->name); 2579 } else { 2580 /* Recursion is detected! It is possible, 2581 * unfortunately 2582 */ 2583 recursion_alert: 2584 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2585 dev->name); 2586 } 2587 } 2588 2589 rc = -ENETDOWN; 2590 rcu_read_unlock_bh(); 2591 2592 kfree_skb(skb); 2593 return rc; 2594 out: 2595 rcu_read_unlock_bh(); 2596 return rc; 2597 } 2598 EXPORT_SYMBOL(dev_queue_xmit); 2599 2600 2601 /*======================================================================= 2602 Receiver routines 2603 =======================================================================*/ 2604 2605 int netdev_max_backlog __read_mostly = 1000; 2606 int netdev_tstamp_prequeue __read_mostly = 1; 2607 int netdev_budget __read_mostly = 300; 2608 int weight_p __read_mostly = 64; /* old backlog weight */ 2609 2610 /* Called with irq disabled */ 2611 static inline void ____napi_schedule(struct softnet_data *sd, 2612 struct napi_struct *napi) 2613 { 2614 list_add_tail(&napi->poll_list, &sd->poll_list); 2615 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2616 } 2617 2618 /* 2619 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2620 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2621 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2622 * if hash is a canonical 4-tuple hash over transport ports. 2623 */ 2624 void __skb_get_rxhash(struct sk_buff *skb) 2625 { 2626 struct flow_keys keys; 2627 u32 hash; 2628 2629 if (!skb_flow_dissect(skb, &keys)) 2630 return; 2631 2632 if (keys.ports) { 2633 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]) 2634 swap(keys.port16[0], keys.port16[1]); 2635 skb->l4_rxhash = 1; 2636 } 2637 2638 /* get a consistent hash (same value on both flow directions) */ 2639 if ((__force u32)keys.dst < (__force u32)keys.src) 2640 swap(keys.dst, keys.src); 2641 2642 hash = jhash_3words((__force u32)keys.dst, 2643 (__force u32)keys.src, 2644 (__force u32)keys.ports, hashrnd); 2645 if (!hash) 2646 hash = 1; 2647 2648 skb->rxhash = hash; 2649 } 2650 EXPORT_SYMBOL(__skb_get_rxhash); 2651 2652 #ifdef CONFIG_RPS 2653 2654 /* One global table that all flow-based protocols share. */ 2655 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2656 EXPORT_SYMBOL(rps_sock_flow_table); 2657 2658 struct static_key rps_needed __read_mostly; 2659 2660 static struct rps_dev_flow * 2661 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2662 struct rps_dev_flow *rflow, u16 next_cpu) 2663 { 2664 if (next_cpu != RPS_NO_CPU) { 2665 #ifdef CONFIG_RFS_ACCEL 2666 struct netdev_rx_queue *rxqueue; 2667 struct rps_dev_flow_table *flow_table; 2668 struct rps_dev_flow *old_rflow; 2669 u32 flow_id; 2670 u16 rxq_index; 2671 int rc; 2672 2673 /* Should we steer this flow to a different hardware queue? */ 2674 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2675 !(dev->features & NETIF_F_NTUPLE)) 2676 goto out; 2677 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2678 if (rxq_index == skb_get_rx_queue(skb)) 2679 goto out; 2680 2681 rxqueue = dev->_rx + rxq_index; 2682 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2683 if (!flow_table) 2684 goto out; 2685 flow_id = skb->rxhash & flow_table->mask; 2686 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2687 rxq_index, flow_id); 2688 if (rc < 0) 2689 goto out; 2690 old_rflow = rflow; 2691 rflow = &flow_table->flows[flow_id]; 2692 rflow->filter = rc; 2693 if (old_rflow->filter == rflow->filter) 2694 old_rflow->filter = RPS_NO_FILTER; 2695 out: 2696 #endif 2697 rflow->last_qtail = 2698 per_cpu(softnet_data, next_cpu).input_queue_head; 2699 } 2700 2701 rflow->cpu = next_cpu; 2702 return rflow; 2703 } 2704 2705 /* 2706 * get_rps_cpu is called from netif_receive_skb and returns the target 2707 * CPU from the RPS map of the receiving queue for a given skb. 2708 * rcu_read_lock must be held on entry. 2709 */ 2710 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2711 struct rps_dev_flow **rflowp) 2712 { 2713 struct netdev_rx_queue *rxqueue; 2714 struct rps_map *map; 2715 struct rps_dev_flow_table *flow_table; 2716 struct rps_sock_flow_table *sock_flow_table; 2717 int cpu = -1; 2718 u16 tcpu; 2719 2720 if (skb_rx_queue_recorded(skb)) { 2721 u16 index = skb_get_rx_queue(skb); 2722 if (unlikely(index >= dev->real_num_rx_queues)) { 2723 WARN_ONCE(dev->real_num_rx_queues > 1, 2724 "%s received packet on queue %u, but number " 2725 "of RX queues is %u\n", 2726 dev->name, index, dev->real_num_rx_queues); 2727 goto done; 2728 } 2729 rxqueue = dev->_rx + index; 2730 } else 2731 rxqueue = dev->_rx; 2732 2733 map = rcu_dereference(rxqueue->rps_map); 2734 if (map) { 2735 if (map->len == 1 && 2736 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2737 tcpu = map->cpus[0]; 2738 if (cpu_online(tcpu)) 2739 cpu = tcpu; 2740 goto done; 2741 } 2742 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2743 goto done; 2744 } 2745 2746 skb_reset_network_header(skb); 2747 if (!skb_get_rxhash(skb)) 2748 goto done; 2749 2750 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2751 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2752 if (flow_table && sock_flow_table) { 2753 u16 next_cpu; 2754 struct rps_dev_flow *rflow; 2755 2756 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2757 tcpu = rflow->cpu; 2758 2759 next_cpu = sock_flow_table->ents[skb->rxhash & 2760 sock_flow_table->mask]; 2761 2762 /* 2763 * If the desired CPU (where last recvmsg was done) is 2764 * different from current CPU (one in the rx-queue flow 2765 * table entry), switch if one of the following holds: 2766 * - Current CPU is unset (equal to RPS_NO_CPU). 2767 * - Current CPU is offline. 2768 * - The current CPU's queue tail has advanced beyond the 2769 * last packet that was enqueued using this table entry. 2770 * This guarantees that all previous packets for the flow 2771 * have been dequeued, thus preserving in order delivery. 2772 */ 2773 if (unlikely(tcpu != next_cpu) && 2774 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2775 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2776 rflow->last_qtail)) >= 0)) 2777 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2778 2779 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2780 *rflowp = rflow; 2781 cpu = tcpu; 2782 goto done; 2783 } 2784 } 2785 2786 if (map) { 2787 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2788 2789 if (cpu_online(tcpu)) { 2790 cpu = tcpu; 2791 goto done; 2792 } 2793 } 2794 2795 done: 2796 return cpu; 2797 } 2798 2799 #ifdef CONFIG_RFS_ACCEL 2800 2801 /** 2802 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2803 * @dev: Device on which the filter was set 2804 * @rxq_index: RX queue index 2805 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2806 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2807 * 2808 * Drivers that implement ndo_rx_flow_steer() should periodically call 2809 * this function for each installed filter and remove the filters for 2810 * which it returns %true. 2811 */ 2812 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2813 u32 flow_id, u16 filter_id) 2814 { 2815 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2816 struct rps_dev_flow_table *flow_table; 2817 struct rps_dev_flow *rflow; 2818 bool expire = true; 2819 int cpu; 2820 2821 rcu_read_lock(); 2822 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2823 if (flow_table && flow_id <= flow_table->mask) { 2824 rflow = &flow_table->flows[flow_id]; 2825 cpu = ACCESS_ONCE(rflow->cpu); 2826 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2827 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2828 rflow->last_qtail) < 2829 (int)(10 * flow_table->mask))) 2830 expire = false; 2831 } 2832 rcu_read_unlock(); 2833 return expire; 2834 } 2835 EXPORT_SYMBOL(rps_may_expire_flow); 2836 2837 #endif /* CONFIG_RFS_ACCEL */ 2838 2839 /* Called from hardirq (IPI) context */ 2840 static void rps_trigger_softirq(void *data) 2841 { 2842 struct softnet_data *sd = data; 2843 2844 ____napi_schedule(sd, &sd->backlog); 2845 sd->received_rps++; 2846 } 2847 2848 #endif /* CONFIG_RPS */ 2849 2850 /* 2851 * Check if this softnet_data structure is another cpu one 2852 * If yes, queue it to our IPI list and return 1 2853 * If no, return 0 2854 */ 2855 static int rps_ipi_queued(struct softnet_data *sd) 2856 { 2857 #ifdef CONFIG_RPS 2858 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2859 2860 if (sd != mysd) { 2861 sd->rps_ipi_next = mysd->rps_ipi_list; 2862 mysd->rps_ipi_list = sd; 2863 2864 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2865 return 1; 2866 } 2867 #endif /* CONFIG_RPS */ 2868 return 0; 2869 } 2870 2871 /* 2872 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2873 * queue (may be a remote CPU queue). 2874 */ 2875 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2876 unsigned int *qtail) 2877 { 2878 struct softnet_data *sd; 2879 unsigned long flags; 2880 2881 sd = &per_cpu(softnet_data, cpu); 2882 2883 local_irq_save(flags); 2884 2885 rps_lock(sd); 2886 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2887 if (skb_queue_len(&sd->input_pkt_queue)) { 2888 enqueue: 2889 __skb_queue_tail(&sd->input_pkt_queue, skb); 2890 input_queue_tail_incr_save(sd, qtail); 2891 rps_unlock(sd); 2892 local_irq_restore(flags); 2893 return NET_RX_SUCCESS; 2894 } 2895 2896 /* Schedule NAPI for backlog device 2897 * We can use non atomic operation since we own the queue lock 2898 */ 2899 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2900 if (!rps_ipi_queued(sd)) 2901 ____napi_schedule(sd, &sd->backlog); 2902 } 2903 goto enqueue; 2904 } 2905 2906 sd->dropped++; 2907 rps_unlock(sd); 2908 2909 local_irq_restore(flags); 2910 2911 atomic_long_inc(&skb->dev->rx_dropped); 2912 kfree_skb(skb); 2913 return NET_RX_DROP; 2914 } 2915 2916 /** 2917 * netif_rx - post buffer to the network code 2918 * @skb: buffer to post 2919 * 2920 * This function receives a packet from a device driver and queues it for 2921 * the upper (protocol) levels to process. It always succeeds. The buffer 2922 * may be dropped during processing for congestion control or by the 2923 * protocol layers. 2924 * 2925 * return values: 2926 * NET_RX_SUCCESS (no congestion) 2927 * NET_RX_DROP (packet was dropped) 2928 * 2929 */ 2930 2931 int netif_rx(struct sk_buff *skb) 2932 { 2933 int ret; 2934 2935 /* if netpoll wants it, pretend we never saw it */ 2936 if (netpoll_rx(skb)) 2937 return NET_RX_DROP; 2938 2939 net_timestamp_check(netdev_tstamp_prequeue, skb); 2940 2941 trace_netif_rx(skb); 2942 #ifdef CONFIG_RPS 2943 if (static_key_false(&rps_needed)) { 2944 struct rps_dev_flow voidflow, *rflow = &voidflow; 2945 int cpu; 2946 2947 preempt_disable(); 2948 rcu_read_lock(); 2949 2950 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2951 if (cpu < 0) 2952 cpu = smp_processor_id(); 2953 2954 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2955 2956 rcu_read_unlock(); 2957 preempt_enable(); 2958 } else 2959 #endif 2960 { 2961 unsigned int qtail; 2962 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2963 put_cpu(); 2964 } 2965 return ret; 2966 } 2967 EXPORT_SYMBOL(netif_rx); 2968 2969 int netif_rx_ni(struct sk_buff *skb) 2970 { 2971 int err; 2972 2973 preempt_disable(); 2974 err = netif_rx(skb); 2975 if (local_softirq_pending()) 2976 do_softirq(); 2977 preempt_enable(); 2978 2979 return err; 2980 } 2981 EXPORT_SYMBOL(netif_rx_ni); 2982 2983 static void net_tx_action(struct softirq_action *h) 2984 { 2985 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2986 2987 if (sd->completion_queue) { 2988 struct sk_buff *clist; 2989 2990 local_irq_disable(); 2991 clist = sd->completion_queue; 2992 sd->completion_queue = NULL; 2993 local_irq_enable(); 2994 2995 while (clist) { 2996 struct sk_buff *skb = clist; 2997 clist = clist->next; 2998 2999 WARN_ON(atomic_read(&skb->users)); 3000 trace_kfree_skb(skb, net_tx_action); 3001 __kfree_skb(skb); 3002 } 3003 } 3004 3005 if (sd->output_queue) { 3006 struct Qdisc *head; 3007 3008 local_irq_disable(); 3009 head = sd->output_queue; 3010 sd->output_queue = NULL; 3011 sd->output_queue_tailp = &sd->output_queue; 3012 local_irq_enable(); 3013 3014 while (head) { 3015 struct Qdisc *q = head; 3016 spinlock_t *root_lock; 3017 3018 head = head->next_sched; 3019 3020 root_lock = qdisc_lock(q); 3021 if (spin_trylock(root_lock)) { 3022 smp_mb__before_clear_bit(); 3023 clear_bit(__QDISC_STATE_SCHED, 3024 &q->state); 3025 qdisc_run(q); 3026 spin_unlock(root_lock); 3027 } else { 3028 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3029 &q->state)) { 3030 __netif_reschedule(q); 3031 } else { 3032 smp_mb__before_clear_bit(); 3033 clear_bit(__QDISC_STATE_SCHED, 3034 &q->state); 3035 } 3036 } 3037 } 3038 } 3039 } 3040 3041 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3042 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3043 /* This hook is defined here for ATM LANE */ 3044 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3045 unsigned char *addr) __read_mostly; 3046 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3047 #endif 3048 3049 #ifdef CONFIG_NET_CLS_ACT 3050 /* TODO: Maybe we should just force sch_ingress to be compiled in 3051 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3052 * a compare and 2 stores extra right now if we dont have it on 3053 * but have CONFIG_NET_CLS_ACT 3054 * NOTE: This doesn't stop any functionality; if you dont have 3055 * the ingress scheduler, you just can't add policies on ingress. 3056 * 3057 */ 3058 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3059 { 3060 struct net_device *dev = skb->dev; 3061 u32 ttl = G_TC_RTTL(skb->tc_verd); 3062 int result = TC_ACT_OK; 3063 struct Qdisc *q; 3064 3065 if (unlikely(MAX_RED_LOOP < ttl++)) { 3066 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3067 skb->skb_iif, dev->ifindex); 3068 return TC_ACT_SHOT; 3069 } 3070 3071 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3072 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3073 3074 q = rxq->qdisc; 3075 if (q != &noop_qdisc) { 3076 spin_lock(qdisc_lock(q)); 3077 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3078 result = qdisc_enqueue_root(skb, q); 3079 spin_unlock(qdisc_lock(q)); 3080 } 3081 3082 return result; 3083 } 3084 3085 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3086 struct packet_type **pt_prev, 3087 int *ret, struct net_device *orig_dev) 3088 { 3089 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3090 3091 if (!rxq || rxq->qdisc == &noop_qdisc) 3092 goto out; 3093 3094 if (*pt_prev) { 3095 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3096 *pt_prev = NULL; 3097 } 3098 3099 switch (ing_filter(skb, rxq)) { 3100 case TC_ACT_SHOT: 3101 case TC_ACT_STOLEN: 3102 kfree_skb(skb); 3103 return NULL; 3104 } 3105 3106 out: 3107 skb->tc_verd = 0; 3108 return skb; 3109 } 3110 #endif 3111 3112 /** 3113 * netdev_rx_handler_register - register receive handler 3114 * @dev: device to register a handler for 3115 * @rx_handler: receive handler to register 3116 * @rx_handler_data: data pointer that is used by rx handler 3117 * 3118 * Register a receive hander for a device. This handler will then be 3119 * called from __netif_receive_skb. A negative errno code is returned 3120 * on a failure. 3121 * 3122 * The caller must hold the rtnl_mutex. 3123 * 3124 * For a general description of rx_handler, see enum rx_handler_result. 3125 */ 3126 int netdev_rx_handler_register(struct net_device *dev, 3127 rx_handler_func_t *rx_handler, 3128 void *rx_handler_data) 3129 { 3130 ASSERT_RTNL(); 3131 3132 if (dev->rx_handler) 3133 return -EBUSY; 3134 3135 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3136 rcu_assign_pointer(dev->rx_handler, rx_handler); 3137 3138 return 0; 3139 } 3140 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3141 3142 /** 3143 * netdev_rx_handler_unregister - unregister receive handler 3144 * @dev: device to unregister a handler from 3145 * 3146 * Unregister a receive hander from a device. 3147 * 3148 * The caller must hold the rtnl_mutex. 3149 */ 3150 void netdev_rx_handler_unregister(struct net_device *dev) 3151 { 3152 3153 ASSERT_RTNL(); 3154 RCU_INIT_POINTER(dev->rx_handler, NULL); 3155 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3156 } 3157 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3158 3159 /* 3160 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3161 * the special handling of PFMEMALLOC skbs. 3162 */ 3163 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3164 { 3165 switch (skb->protocol) { 3166 case __constant_htons(ETH_P_ARP): 3167 case __constant_htons(ETH_P_IP): 3168 case __constant_htons(ETH_P_IPV6): 3169 case __constant_htons(ETH_P_8021Q): 3170 return true; 3171 default: 3172 return false; 3173 } 3174 } 3175 3176 static int __netif_receive_skb(struct sk_buff *skb) 3177 { 3178 struct packet_type *ptype, *pt_prev; 3179 rx_handler_func_t *rx_handler; 3180 struct net_device *orig_dev; 3181 struct net_device *null_or_dev; 3182 bool deliver_exact = false; 3183 int ret = NET_RX_DROP; 3184 __be16 type; 3185 unsigned long pflags = current->flags; 3186 3187 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3188 3189 trace_netif_receive_skb(skb); 3190 3191 /* 3192 * PFMEMALLOC skbs are special, they should 3193 * - be delivered to SOCK_MEMALLOC sockets only 3194 * - stay away from userspace 3195 * - have bounded memory usage 3196 * 3197 * Use PF_MEMALLOC as this saves us from propagating the allocation 3198 * context down to all allocation sites. 3199 */ 3200 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 3201 current->flags |= PF_MEMALLOC; 3202 3203 /* if we've gotten here through NAPI, check netpoll */ 3204 if (netpoll_receive_skb(skb)) 3205 goto out; 3206 3207 orig_dev = skb->dev; 3208 3209 skb_reset_network_header(skb); 3210 skb_reset_transport_header(skb); 3211 skb_reset_mac_len(skb); 3212 3213 pt_prev = NULL; 3214 3215 rcu_read_lock(); 3216 3217 another_round: 3218 skb->skb_iif = skb->dev->ifindex; 3219 3220 __this_cpu_inc(softnet_data.processed); 3221 3222 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3223 skb = vlan_untag(skb); 3224 if (unlikely(!skb)) 3225 goto unlock; 3226 } 3227 3228 #ifdef CONFIG_NET_CLS_ACT 3229 if (skb->tc_verd & TC_NCLS) { 3230 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3231 goto ncls; 3232 } 3233 #endif 3234 3235 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 3236 goto skip_taps; 3237 3238 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3239 if (!ptype->dev || ptype->dev == skb->dev) { 3240 if (pt_prev) 3241 ret = deliver_skb(skb, pt_prev, orig_dev); 3242 pt_prev = ptype; 3243 } 3244 } 3245 3246 skip_taps: 3247 #ifdef CONFIG_NET_CLS_ACT 3248 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3249 if (!skb) 3250 goto unlock; 3251 ncls: 3252 #endif 3253 3254 if (sk_memalloc_socks() && skb_pfmemalloc(skb) 3255 && !skb_pfmemalloc_protocol(skb)) 3256 goto drop; 3257 3258 rx_handler = rcu_dereference(skb->dev->rx_handler); 3259 if (vlan_tx_tag_present(skb)) { 3260 if (pt_prev) { 3261 ret = deliver_skb(skb, pt_prev, orig_dev); 3262 pt_prev = NULL; 3263 } 3264 if (vlan_do_receive(&skb, !rx_handler)) 3265 goto another_round; 3266 else if (unlikely(!skb)) 3267 goto unlock; 3268 } 3269 3270 if (rx_handler) { 3271 if (pt_prev) { 3272 ret = deliver_skb(skb, pt_prev, orig_dev); 3273 pt_prev = NULL; 3274 } 3275 switch (rx_handler(&skb)) { 3276 case RX_HANDLER_CONSUMED: 3277 goto unlock; 3278 case RX_HANDLER_ANOTHER: 3279 goto another_round; 3280 case RX_HANDLER_EXACT: 3281 deliver_exact = true; 3282 case RX_HANDLER_PASS: 3283 break; 3284 default: 3285 BUG(); 3286 } 3287 } 3288 3289 /* deliver only exact match when indicated */ 3290 null_or_dev = deliver_exact ? skb->dev : NULL; 3291 3292 type = skb->protocol; 3293 list_for_each_entry_rcu(ptype, 3294 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3295 if (ptype->type == type && 3296 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3297 ptype->dev == orig_dev)) { 3298 if (pt_prev) 3299 ret = deliver_skb(skb, pt_prev, orig_dev); 3300 pt_prev = ptype; 3301 } 3302 } 3303 3304 if (pt_prev) { 3305 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3306 ret = -ENOMEM; 3307 else 3308 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3309 } else { 3310 drop: 3311 atomic_long_inc(&skb->dev->rx_dropped); 3312 kfree_skb(skb); 3313 /* Jamal, now you will not able to escape explaining 3314 * me how you were going to use this. :-) 3315 */ 3316 ret = NET_RX_DROP; 3317 } 3318 3319 unlock: 3320 rcu_read_unlock(); 3321 out: 3322 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3323 return ret; 3324 } 3325 3326 /** 3327 * netif_receive_skb - process receive buffer from network 3328 * @skb: buffer to process 3329 * 3330 * netif_receive_skb() is the main receive data processing function. 3331 * It always succeeds. The buffer may be dropped during processing 3332 * for congestion control or by the protocol layers. 3333 * 3334 * This function may only be called from softirq context and interrupts 3335 * should be enabled. 3336 * 3337 * Return values (usually ignored): 3338 * NET_RX_SUCCESS: no congestion 3339 * NET_RX_DROP: packet was dropped 3340 */ 3341 int netif_receive_skb(struct sk_buff *skb) 3342 { 3343 net_timestamp_check(netdev_tstamp_prequeue, skb); 3344 3345 if (skb_defer_rx_timestamp(skb)) 3346 return NET_RX_SUCCESS; 3347 3348 #ifdef CONFIG_RPS 3349 if (static_key_false(&rps_needed)) { 3350 struct rps_dev_flow voidflow, *rflow = &voidflow; 3351 int cpu, ret; 3352 3353 rcu_read_lock(); 3354 3355 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3356 3357 if (cpu >= 0) { 3358 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3359 rcu_read_unlock(); 3360 return ret; 3361 } 3362 rcu_read_unlock(); 3363 } 3364 #endif 3365 return __netif_receive_skb(skb); 3366 } 3367 EXPORT_SYMBOL(netif_receive_skb); 3368 3369 /* Network device is going away, flush any packets still pending 3370 * Called with irqs disabled. 3371 */ 3372 static void flush_backlog(void *arg) 3373 { 3374 struct net_device *dev = arg; 3375 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3376 struct sk_buff *skb, *tmp; 3377 3378 rps_lock(sd); 3379 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3380 if (skb->dev == dev) { 3381 __skb_unlink(skb, &sd->input_pkt_queue); 3382 kfree_skb(skb); 3383 input_queue_head_incr(sd); 3384 } 3385 } 3386 rps_unlock(sd); 3387 3388 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3389 if (skb->dev == dev) { 3390 __skb_unlink(skb, &sd->process_queue); 3391 kfree_skb(skb); 3392 input_queue_head_incr(sd); 3393 } 3394 } 3395 } 3396 3397 static int napi_gro_complete(struct sk_buff *skb) 3398 { 3399 struct packet_type *ptype; 3400 __be16 type = skb->protocol; 3401 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3402 int err = -ENOENT; 3403 3404 if (NAPI_GRO_CB(skb)->count == 1) { 3405 skb_shinfo(skb)->gso_size = 0; 3406 goto out; 3407 } 3408 3409 rcu_read_lock(); 3410 list_for_each_entry_rcu(ptype, head, list) { 3411 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3412 continue; 3413 3414 err = ptype->gro_complete(skb); 3415 break; 3416 } 3417 rcu_read_unlock(); 3418 3419 if (err) { 3420 WARN_ON(&ptype->list == head); 3421 kfree_skb(skb); 3422 return NET_RX_SUCCESS; 3423 } 3424 3425 out: 3426 return netif_receive_skb(skb); 3427 } 3428 3429 inline void napi_gro_flush(struct napi_struct *napi) 3430 { 3431 struct sk_buff *skb, *next; 3432 3433 for (skb = napi->gro_list; skb; skb = next) { 3434 next = skb->next; 3435 skb->next = NULL; 3436 napi_gro_complete(skb); 3437 } 3438 3439 napi->gro_count = 0; 3440 napi->gro_list = NULL; 3441 } 3442 EXPORT_SYMBOL(napi_gro_flush); 3443 3444 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3445 { 3446 struct sk_buff **pp = NULL; 3447 struct packet_type *ptype; 3448 __be16 type = skb->protocol; 3449 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3450 int same_flow; 3451 int mac_len; 3452 enum gro_result ret; 3453 3454 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3455 goto normal; 3456 3457 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3458 goto normal; 3459 3460 rcu_read_lock(); 3461 list_for_each_entry_rcu(ptype, head, list) { 3462 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3463 continue; 3464 3465 skb_set_network_header(skb, skb_gro_offset(skb)); 3466 mac_len = skb->network_header - skb->mac_header; 3467 skb->mac_len = mac_len; 3468 NAPI_GRO_CB(skb)->same_flow = 0; 3469 NAPI_GRO_CB(skb)->flush = 0; 3470 NAPI_GRO_CB(skb)->free = 0; 3471 3472 pp = ptype->gro_receive(&napi->gro_list, skb); 3473 break; 3474 } 3475 rcu_read_unlock(); 3476 3477 if (&ptype->list == head) 3478 goto normal; 3479 3480 same_flow = NAPI_GRO_CB(skb)->same_flow; 3481 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3482 3483 if (pp) { 3484 struct sk_buff *nskb = *pp; 3485 3486 *pp = nskb->next; 3487 nskb->next = NULL; 3488 napi_gro_complete(nskb); 3489 napi->gro_count--; 3490 } 3491 3492 if (same_flow) 3493 goto ok; 3494 3495 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3496 goto normal; 3497 3498 napi->gro_count++; 3499 NAPI_GRO_CB(skb)->count = 1; 3500 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3501 skb->next = napi->gro_list; 3502 napi->gro_list = skb; 3503 ret = GRO_HELD; 3504 3505 pull: 3506 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3507 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3508 3509 BUG_ON(skb->end - skb->tail < grow); 3510 3511 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3512 3513 skb->tail += grow; 3514 skb->data_len -= grow; 3515 3516 skb_shinfo(skb)->frags[0].page_offset += grow; 3517 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3518 3519 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3520 skb_frag_unref(skb, 0); 3521 memmove(skb_shinfo(skb)->frags, 3522 skb_shinfo(skb)->frags + 1, 3523 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3524 } 3525 } 3526 3527 ok: 3528 return ret; 3529 3530 normal: 3531 ret = GRO_NORMAL; 3532 goto pull; 3533 } 3534 EXPORT_SYMBOL(dev_gro_receive); 3535 3536 static inline gro_result_t 3537 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3538 { 3539 struct sk_buff *p; 3540 unsigned int maclen = skb->dev->hard_header_len; 3541 3542 for (p = napi->gro_list; p; p = p->next) { 3543 unsigned long diffs; 3544 3545 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3546 diffs |= p->vlan_tci ^ skb->vlan_tci; 3547 if (maclen == ETH_HLEN) 3548 diffs |= compare_ether_header(skb_mac_header(p), 3549 skb_gro_mac_header(skb)); 3550 else if (!diffs) 3551 diffs = memcmp(skb_mac_header(p), 3552 skb_gro_mac_header(skb), 3553 maclen); 3554 NAPI_GRO_CB(p)->same_flow = !diffs; 3555 NAPI_GRO_CB(p)->flush = 0; 3556 } 3557 3558 return dev_gro_receive(napi, skb); 3559 } 3560 3561 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3562 { 3563 switch (ret) { 3564 case GRO_NORMAL: 3565 if (netif_receive_skb(skb)) 3566 ret = GRO_DROP; 3567 break; 3568 3569 case GRO_DROP: 3570 kfree_skb(skb); 3571 break; 3572 3573 case GRO_MERGED_FREE: 3574 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3575 kmem_cache_free(skbuff_head_cache, skb); 3576 else 3577 __kfree_skb(skb); 3578 break; 3579 3580 case GRO_HELD: 3581 case GRO_MERGED: 3582 break; 3583 } 3584 3585 return ret; 3586 } 3587 EXPORT_SYMBOL(napi_skb_finish); 3588 3589 void skb_gro_reset_offset(struct sk_buff *skb) 3590 { 3591 NAPI_GRO_CB(skb)->data_offset = 0; 3592 NAPI_GRO_CB(skb)->frag0 = NULL; 3593 NAPI_GRO_CB(skb)->frag0_len = 0; 3594 3595 if (skb->mac_header == skb->tail && 3596 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3597 NAPI_GRO_CB(skb)->frag0 = 3598 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3599 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3600 } 3601 } 3602 EXPORT_SYMBOL(skb_gro_reset_offset); 3603 3604 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3605 { 3606 skb_gro_reset_offset(skb); 3607 3608 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3609 } 3610 EXPORT_SYMBOL(napi_gro_receive); 3611 3612 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3613 { 3614 __skb_pull(skb, skb_headlen(skb)); 3615 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3616 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3617 skb->vlan_tci = 0; 3618 skb->dev = napi->dev; 3619 skb->skb_iif = 0; 3620 3621 napi->skb = skb; 3622 } 3623 3624 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3625 { 3626 struct sk_buff *skb = napi->skb; 3627 3628 if (!skb) { 3629 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3630 if (skb) 3631 napi->skb = skb; 3632 } 3633 return skb; 3634 } 3635 EXPORT_SYMBOL(napi_get_frags); 3636 3637 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3638 gro_result_t ret) 3639 { 3640 switch (ret) { 3641 case GRO_NORMAL: 3642 case GRO_HELD: 3643 skb->protocol = eth_type_trans(skb, skb->dev); 3644 3645 if (ret == GRO_HELD) 3646 skb_gro_pull(skb, -ETH_HLEN); 3647 else if (netif_receive_skb(skb)) 3648 ret = GRO_DROP; 3649 break; 3650 3651 case GRO_DROP: 3652 case GRO_MERGED_FREE: 3653 napi_reuse_skb(napi, skb); 3654 break; 3655 3656 case GRO_MERGED: 3657 break; 3658 } 3659 3660 return ret; 3661 } 3662 EXPORT_SYMBOL(napi_frags_finish); 3663 3664 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3665 { 3666 struct sk_buff *skb = napi->skb; 3667 struct ethhdr *eth; 3668 unsigned int hlen; 3669 unsigned int off; 3670 3671 napi->skb = NULL; 3672 3673 skb_reset_mac_header(skb); 3674 skb_gro_reset_offset(skb); 3675 3676 off = skb_gro_offset(skb); 3677 hlen = off + sizeof(*eth); 3678 eth = skb_gro_header_fast(skb, off); 3679 if (skb_gro_header_hard(skb, hlen)) { 3680 eth = skb_gro_header_slow(skb, hlen, off); 3681 if (unlikely(!eth)) { 3682 napi_reuse_skb(napi, skb); 3683 skb = NULL; 3684 goto out; 3685 } 3686 } 3687 3688 skb_gro_pull(skb, sizeof(*eth)); 3689 3690 /* 3691 * This works because the only protocols we care about don't require 3692 * special handling. We'll fix it up properly at the end. 3693 */ 3694 skb->protocol = eth->h_proto; 3695 3696 out: 3697 return skb; 3698 } 3699 3700 gro_result_t napi_gro_frags(struct napi_struct *napi) 3701 { 3702 struct sk_buff *skb = napi_frags_skb(napi); 3703 3704 if (!skb) 3705 return GRO_DROP; 3706 3707 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3708 } 3709 EXPORT_SYMBOL(napi_gro_frags); 3710 3711 /* 3712 * net_rps_action sends any pending IPI's for rps. 3713 * Note: called with local irq disabled, but exits with local irq enabled. 3714 */ 3715 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3716 { 3717 #ifdef CONFIG_RPS 3718 struct softnet_data *remsd = sd->rps_ipi_list; 3719 3720 if (remsd) { 3721 sd->rps_ipi_list = NULL; 3722 3723 local_irq_enable(); 3724 3725 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3726 while (remsd) { 3727 struct softnet_data *next = remsd->rps_ipi_next; 3728 3729 if (cpu_online(remsd->cpu)) 3730 __smp_call_function_single(remsd->cpu, 3731 &remsd->csd, 0); 3732 remsd = next; 3733 } 3734 } else 3735 #endif 3736 local_irq_enable(); 3737 } 3738 3739 static int process_backlog(struct napi_struct *napi, int quota) 3740 { 3741 int work = 0; 3742 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3743 3744 #ifdef CONFIG_RPS 3745 /* Check if we have pending ipi, its better to send them now, 3746 * not waiting net_rx_action() end. 3747 */ 3748 if (sd->rps_ipi_list) { 3749 local_irq_disable(); 3750 net_rps_action_and_irq_enable(sd); 3751 } 3752 #endif 3753 napi->weight = weight_p; 3754 local_irq_disable(); 3755 while (work < quota) { 3756 struct sk_buff *skb; 3757 unsigned int qlen; 3758 3759 while ((skb = __skb_dequeue(&sd->process_queue))) { 3760 local_irq_enable(); 3761 __netif_receive_skb(skb); 3762 local_irq_disable(); 3763 input_queue_head_incr(sd); 3764 if (++work >= quota) { 3765 local_irq_enable(); 3766 return work; 3767 } 3768 } 3769 3770 rps_lock(sd); 3771 qlen = skb_queue_len(&sd->input_pkt_queue); 3772 if (qlen) 3773 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3774 &sd->process_queue); 3775 3776 if (qlen < quota - work) { 3777 /* 3778 * Inline a custom version of __napi_complete(). 3779 * only current cpu owns and manipulates this napi, 3780 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3781 * we can use a plain write instead of clear_bit(), 3782 * and we dont need an smp_mb() memory barrier. 3783 */ 3784 list_del(&napi->poll_list); 3785 napi->state = 0; 3786 3787 quota = work + qlen; 3788 } 3789 rps_unlock(sd); 3790 } 3791 local_irq_enable(); 3792 3793 return work; 3794 } 3795 3796 /** 3797 * __napi_schedule - schedule for receive 3798 * @n: entry to schedule 3799 * 3800 * The entry's receive function will be scheduled to run 3801 */ 3802 void __napi_schedule(struct napi_struct *n) 3803 { 3804 unsigned long flags; 3805 3806 local_irq_save(flags); 3807 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3808 local_irq_restore(flags); 3809 } 3810 EXPORT_SYMBOL(__napi_schedule); 3811 3812 void __napi_complete(struct napi_struct *n) 3813 { 3814 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3815 BUG_ON(n->gro_list); 3816 3817 list_del(&n->poll_list); 3818 smp_mb__before_clear_bit(); 3819 clear_bit(NAPI_STATE_SCHED, &n->state); 3820 } 3821 EXPORT_SYMBOL(__napi_complete); 3822 3823 void napi_complete(struct napi_struct *n) 3824 { 3825 unsigned long flags; 3826 3827 /* 3828 * don't let napi dequeue from the cpu poll list 3829 * just in case its running on a different cpu 3830 */ 3831 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3832 return; 3833 3834 napi_gro_flush(n); 3835 local_irq_save(flags); 3836 __napi_complete(n); 3837 local_irq_restore(flags); 3838 } 3839 EXPORT_SYMBOL(napi_complete); 3840 3841 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3842 int (*poll)(struct napi_struct *, int), int weight) 3843 { 3844 INIT_LIST_HEAD(&napi->poll_list); 3845 napi->gro_count = 0; 3846 napi->gro_list = NULL; 3847 napi->skb = NULL; 3848 napi->poll = poll; 3849 napi->weight = weight; 3850 list_add(&napi->dev_list, &dev->napi_list); 3851 napi->dev = dev; 3852 #ifdef CONFIG_NETPOLL 3853 spin_lock_init(&napi->poll_lock); 3854 napi->poll_owner = -1; 3855 #endif 3856 set_bit(NAPI_STATE_SCHED, &napi->state); 3857 } 3858 EXPORT_SYMBOL(netif_napi_add); 3859 3860 void netif_napi_del(struct napi_struct *napi) 3861 { 3862 struct sk_buff *skb, *next; 3863 3864 list_del_init(&napi->dev_list); 3865 napi_free_frags(napi); 3866 3867 for (skb = napi->gro_list; skb; skb = next) { 3868 next = skb->next; 3869 skb->next = NULL; 3870 kfree_skb(skb); 3871 } 3872 3873 napi->gro_list = NULL; 3874 napi->gro_count = 0; 3875 } 3876 EXPORT_SYMBOL(netif_napi_del); 3877 3878 static void net_rx_action(struct softirq_action *h) 3879 { 3880 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3881 unsigned long time_limit = jiffies + 2; 3882 int budget = netdev_budget; 3883 void *have; 3884 3885 local_irq_disable(); 3886 3887 while (!list_empty(&sd->poll_list)) { 3888 struct napi_struct *n; 3889 int work, weight; 3890 3891 /* If softirq window is exhuasted then punt. 3892 * Allow this to run for 2 jiffies since which will allow 3893 * an average latency of 1.5/HZ. 3894 */ 3895 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3896 goto softnet_break; 3897 3898 local_irq_enable(); 3899 3900 /* Even though interrupts have been re-enabled, this 3901 * access is safe because interrupts can only add new 3902 * entries to the tail of this list, and only ->poll() 3903 * calls can remove this head entry from the list. 3904 */ 3905 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3906 3907 have = netpoll_poll_lock(n); 3908 3909 weight = n->weight; 3910 3911 /* This NAPI_STATE_SCHED test is for avoiding a race 3912 * with netpoll's poll_napi(). Only the entity which 3913 * obtains the lock and sees NAPI_STATE_SCHED set will 3914 * actually make the ->poll() call. Therefore we avoid 3915 * accidentally calling ->poll() when NAPI is not scheduled. 3916 */ 3917 work = 0; 3918 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3919 work = n->poll(n, weight); 3920 trace_napi_poll(n); 3921 } 3922 3923 WARN_ON_ONCE(work > weight); 3924 3925 budget -= work; 3926 3927 local_irq_disable(); 3928 3929 /* Drivers must not modify the NAPI state if they 3930 * consume the entire weight. In such cases this code 3931 * still "owns" the NAPI instance and therefore can 3932 * move the instance around on the list at-will. 3933 */ 3934 if (unlikely(work == weight)) { 3935 if (unlikely(napi_disable_pending(n))) { 3936 local_irq_enable(); 3937 napi_complete(n); 3938 local_irq_disable(); 3939 } else 3940 list_move_tail(&n->poll_list, &sd->poll_list); 3941 } 3942 3943 netpoll_poll_unlock(have); 3944 } 3945 out: 3946 net_rps_action_and_irq_enable(sd); 3947 3948 #ifdef CONFIG_NET_DMA 3949 /* 3950 * There may not be any more sk_buffs coming right now, so push 3951 * any pending DMA copies to hardware 3952 */ 3953 dma_issue_pending_all(); 3954 #endif 3955 3956 return; 3957 3958 softnet_break: 3959 sd->time_squeeze++; 3960 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3961 goto out; 3962 } 3963 3964 static gifconf_func_t *gifconf_list[NPROTO]; 3965 3966 /** 3967 * register_gifconf - register a SIOCGIF handler 3968 * @family: Address family 3969 * @gifconf: Function handler 3970 * 3971 * Register protocol dependent address dumping routines. The handler 3972 * that is passed must not be freed or reused until it has been replaced 3973 * by another handler. 3974 */ 3975 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3976 { 3977 if (family >= NPROTO) 3978 return -EINVAL; 3979 gifconf_list[family] = gifconf; 3980 return 0; 3981 } 3982 EXPORT_SYMBOL(register_gifconf); 3983 3984 3985 /* 3986 * Map an interface index to its name (SIOCGIFNAME) 3987 */ 3988 3989 /* 3990 * We need this ioctl for efficient implementation of the 3991 * if_indextoname() function required by the IPv6 API. Without 3992 * it, we would have to search all the interfaces to find a 3993 * match. --pb 3994 */ 3995 3996 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3997 { 3998 struct net_device *dev; 3999 struct ifreq ifr; 4000 4001 /* 4002 * Fetch the caller's info block. 4003 */ 4004 4005 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4006 return -EFAULT; 4007 4008 rcu_read_lock(); 4009 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 4010 if (!dev) { 4011 rcu_read_unlock(); 4012 return -ENODEV; 4013 } 4014 4015 strcpy(ifr.ifr_name, dev->name); 4016 rcu_read_unlock(); 4017 4018 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 4019 return -EFAULT; 4020 return 0; 4021 } 4022 4023 /* 4024 * Perform a SIOCGIFCONF call. This structure will change 4025 * size eventually, and there is nothing I can do about it. 4026 * Thus we will need a 'compatibility mode'. 4027 */ 4028 4029 static int dev_ifconf(struct net *net, char __user *arg) 4030 { 4031 struct ifconf ifc; 4032 struct net_device *dev; 4033 char __user *pos; 4034 int len; 4035 int total; 4036 int i; 4037 4038 /* 4039 * Fetch the caller's info block. 4040 */ 4041 4042 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 4043 return -EFAULT; 4044 4045 pos = ifc.ifc_buf; 4046 len = ifc.ifc_len; 4047 4048 /* 4049 * Loop over the interfaces, and write an info block for each. 4050 */ 4051 4052 total = 0; 4053 for_each_netdev(net, dev) { 4054 for (i = 0; i < NPROTO; i++) { 4055 if (gifconf_list[i]) { 4056 int done; 4057 if (!pos) 4058 done = gifconf_list[i](dev, NULL, 0); 4059 else 4060 done = gifconf_list[i](dev, pos + total, 4061 len - total); 4062 if (done < 0) 4063 return -EFAULT; 4064 total += done; 4065 } 4066 } 4067 } 4068 4069 /* 4070 * All done. Write the updated control block back to the caller. 4071 */ 4072 ifc.ifc_len = total; 4073 4074 /* 4075 * Both BSD and Solaris return 0 here, so we do too. 4076 */ 4077 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4078 } 4079 4080 #ifdef CONFIG_PROC_FS 4081 4082 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1) 4083 4084 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4085 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4086 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4087 4088 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos) 4089 { 4090 struct net *net = seq_file_net(seq); 4091 struct net_device *dev; 4092 struct hlist_node *p; 4093 struct hlist_head *h; 4094 unsigned int count = 0, offset = get_offset(*pos); 4095 4096 h = &net->dev_name_head[get_bucket(*pos)]; 4097 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4098 if (++count == offset) 4099 return dev; 4100 } 4101 4102 return NULL; 4103 } 4104 4105 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos) 4106 { 4107 struct net_device *dev; 4108 unsigned int bucket; 4109 4110 do { 4111 dev = dev_from_same_bucket(seq, pos); 4112 if (dev) 4113 return dev; 4114 4115 bucket = get_bucket(*pos) + 1; 4116 *pos = set_bucket_offset(bucket, 1); 4117 } while (bucket < NETDEV_HASHENTRIES); 4118 4119 return NULL; 4120 } 4121 4122 /* 4123 * This is invoked by the /proc filesystem handler to display a device 4124 * in detail. 4125 */ 4126 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4127 __acquires(RCU) 4128 { 4129 rcu_read_lock(); 4130 if (!*pos) 4131 return SEQ_START_TOKEN; 4132 4133 if (get_bucket(*pos) >= NETDEV_HASHENTRIES) 4134 return NULL; 4135 4136 return dev_from_bucket(seq, pos); 4137 } 4138 4139 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4140 { 4141 ++*pos; 4142 return dev_from_bucket(seq, pos); 4143 } 4144 4145 void dev_seq_stop(struct seq_file *seq, void *v) 4146 __releases(RCU) 4147 { 4148 rcu_read_unlock(); 4149 } 4150 4151 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4152 { 4153 struct rtnl_link_stats64 temp; 4154 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4155 4156 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4157 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4158 dev->name, stats->rx_bytes, stats->rx_packets, 4159 stats->rx_errors, 4160 stats->rx_dropped + stats->rx_missed_errors, 4161 stats->rx_fifo_errors, 4162 stats->rx_length_errors + stats->rx_over_errors + 4163 stats->rx_crc_errors + stats->rx_frame_errors, 4164 stats->rx_compressed, stats->multicast, 4165 stats->tx_bytes, stats->tx_packets, 4166 stats->tx_errors, stats->tx_dropped, 4167 stats->tx_fifo_errors, stats->collisions, 4168 stats->tx_carrier_errors + 4169 stats->tx_aborted_errors + 4170 stats->tx_window_errors + 4171 stats->tx_heartbeat_errors, 4172 stats->tx_compressed); 4173 } 4174 4175 /* 4176 * Called from the PROCfs module. This now uses the new arbitrary sized 4177 * /proc/net interface to create /proc/net/dev 4178 */ 4179 static int dev_seq_show(struct seq_file *seq, void *v) 4180 { 4181 if (v == SEQ_START_TOKEN) 4182 seq_puts(seq, "Inter-| Receive " 4183 " | Transmit\n" 4184 " face |bytes packets errs drop fifo frame " 4185 "compressed multicast|bytes packets errs " 4186 "drop fifo colls carrier compressed\n"); 4187 else 4188 dev_seq_printf_stats(seq, v); 4189 return 0; 4190 } 4191 4192 static struct softnet_data *softnet_get_online(loff_t *pos) 4193 { 4194 struct softnet_data *sd = NULL; 4195 4196 while (*pos < nr_cpu_ids) 4197 if (cpu_online(*pos)) { 4198 sd = &per_cpu(softnet_data, *pos); 4199 break; 4200 } else 4201 ++*pos; 4202 return sd; 4203 } 4204 4205 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4206 { 4207 return softnet_get_online(pos); 4208 } 4209 4210 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4211 { 4212 ++*pos; 4213 return softnet_get_online(pos); 4214 } 4215 4216 static void softnet_seq_stop(struct seq_file *seq, void *v) 4217 { 4218 } 4219 4220 static int softnet_seq_show(struct seq_file *seq, void *v) 4221 { 4222 struct softnet_data *sd = v; 4223 4224 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4225 sd->processed, sd->dropped, sd->time_squeeze, 0, 4226 0, 0, 0, 0, /* was fastroute */ 4227 sd->cpu_collision, sd->received_rps); 4228 return 0; 4229 } 4230 4231 static const struct seq_operations dev_seq_ops = { 4232 .start = dev_seq_start, 4233 .next = dev_seq_next, 4234 .stop = dev_seq_stop, 4235 .show = dev_seq_show, 4236 }; 4237 4238 static int dev_seq_open(struct inode *inode, struct file *file) 4239 { 4240 return seq_open_net(inode, file, &dev_seq_ops, 4241 sizeof(struct seq_net_private)); 4242 } 4243 4244 static const struct file_operations dev_seq_fops = { 4245 .owner = THIS_MODULE, 4246 .open = dev_seq_open, 4247 .read = seq_read, 4248 .llseek = seq_lseek, 4249 .release = seq_release_net, 4250 }; 4251 4252 static const struct seq_operations softnet_seq_ops = { 4253 .start = softnet_seq_start, 4254 .next = softnet_seq_next, 4255 .stop = softnet_seq_stop, 4256 .show = softnet_seq_show, 4257 }; 4258 4259 static int softnet_seq_open(struct inode *inode, struct file *file) 4260 { 4261 return seq_open(file, &softnet_seq_ops); 4262 } 4263 4264 static const struct file_operations softnet_seq_fops = { 4265 .owner = THIS_MODULE, 4266 .open = softnet_seq_open, 4267 .read = seq_read, 4268 .llseek = seq_lseek, 4269 .release = seq_release, 4270 }; 4271 4272 static void *ptype_get_idx(loff_t pos) 4273 { 4274 struct packet_type *pt = NULL; 4275 loff_t i = 0; 4276 int t; 4277 4278 list_for_each_entry_rcu(pt, &ptype_all, list) { 4279 if (i == pos) 4280 return pt; 4281 ++i; 4282 } 4283 4284 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4285 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4286 if (i == pos) 4287 return pt; 4288 ++i; 4289 } 4290 } 4291 return NULL; 4292 } 4293 4294 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4295 __acquires(RCU) 4296 { 4297 rcu_read_lock(); 4298 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4299 } 4300 4301 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4302 { 4303 struct packet_type *pt; 4304 struct list_head *nxt; 4305 int hash; 4306 4307 ++*pos; 4308 if (v == SEQ_START_TOKEN) 4309 return ptype_get_idx(0); 4310 4311 pt = v; 4312 nxt = pt->list.next; 4313 if (pt->type == htons(ETH_P_ALL)) { 4314 if (nxt != &ptype_all) 4315 goto found; 4316 hash = 0; 4317 nxt = ptype_base[0].next; 4318 } else 4319 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4320 4321 while (nxt == &ptype_base[hash]) { 4322 if (++hash >= PTYPE_HASH_SIZE) 4323 return NULL; 4324 nxt = ptype_base[hash].next; 4325 } 4326 found: 4327 return list_entry(nxt, struct packet_type, list); 4328 } 4329 4330 static void ptype_seq_stop(struct seq_file *seq, void *v) 4331 __releases(RCU) 4332 { 4333 rcu_read_unlock(); 4334 } 4335 4336 static int ptype_seq_show(struct seq_file *seq, void *v) 4337 { 4338 struct packet_type *pt = v; 4339 4340 if (v == SEQ_START_TOKEN) 4341 seq_puts(seq, "Type Device Function\n"); 4342 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4343 if (pt->type == htons(ETH_P_ALL)) 4344 seq_puts(seq, "ALL "); 4345 else 4346 seq_printf(seq, "%04x", ntohs(pt->type)); 4347 4348 seq_printf(seq, " %-8s %pF\n", 4349 pt->dev ? pt->dev->name : "", pt->func); 4350 } 4351 4352 return 0; 4353 } 4354 4355 static const struct seq_operations ptype_seq_ops = { 4356 .start = ptype_seq_start, 4357 .next = ptype_seq_next, 4358 .stop = ptype_seq_stop, 4359 .show = ptype_seq_show, 4360 }; 4361 4362 static int ptype_seq_open(struct inode *inode, struct file *file) 4363 { 4364 return seq_open_net(inode, file, &ptype_seq_ops, 4365 sizeof(struct seq_net_private)); 4366 } 4367 4368 static const struct file_operations ptype_seq_fops = { 4369 .owner = THIS_MODULE, 4370 .open = ptype_seq_open, 4371 .read = seq_read, 4372 .llseek = seq_lseek, 4373 .release = seq_release_net, 4374 }; 4375 4376 4377 static int __net_init dev_proc_net_init(struct net *net) 4378 { 4379 int rc = -ENOMEM; 4380 4381 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4382 goto out; 4383 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4384 goto out_dev; 4385 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4386 goto out_softnet; 4387 4388 if (wext_proc_init(net)) 4389 goto out_ptype; 4390 rc = 0; 4391 out: 4392 return rc; 4393 out_ptype: 4394 proc_net_remove(net, "ptype"); 4395 out_softnet: 4396 proc_net_remove(net, "softnet_stat"); 4397 out_dev: 4398 proc_net_remove(net, "dev"); 4399 goto out; 4400 } 4401 4402 static void __net_exit dev_proc_net_exit(struct net *net) 4403 { 4404 wext_proc_exit(net); 4405 4406 proc_net_remove(net, "ptype"); 4407 proc_net_remove(net, "softnet_stat"); 4408 proc_net_remove(net, "dev"); 4409 } 4410 4411 static struct pernet_operations __net_initdata dev_proc_ops = { 4412 .init = dev_proc_net_init, 4413 .exit = dev_proc_net_exit, 4414 }; 4415 4416 static int __init dev_proc_init(void) 4417 { 4418 return register_pernet_subsys(&dev_proc_ops); 4419 } 4420 #else 4421 #define dev_proc_init() 0 4422 #endif /* CONFIG_PROC_FS */ 4423 4424 4425 /** 4426 * netdev_set_master - set up master pointer 4427 * @slave: slave device 4428 * @master: new master device 4429 * 4430 * Changes the master device of the slave. Pass %NULL to break the 4431 * bonding. The caller must hold the RTNL semaphore. On a failure 4432 * a negative errno code is returned. On success the reference counts 4433 * are adjusted and the function returns zero. 4434 */ 4435 int netdev_set_master(struct net_device *slave, struct net_device *master) 4436 { 4437 struct net_device *old = slave->master; 4438 4439 ASSERT_RTNL(); 4440 4441 if (master) { 4442 if (old) 4443 return -EBUSY; 4444 dev_hold(master); 4445 } 4446 4447 slave->master = master; 4448 4449 if (old) 4450 dev_put(old); 4451 return 0; 4452 } 4453 EXPORT_SYMBOL(netdev_set_master); 4454 4455 /** 4456 * netdev_set_bond_master - set up bonding master/slave pair 4457 * @slave: slave device 4458 * @master: new master device 4459 * 4460 * Changes the master device of the slave. Pass %NULL to break the 4461 * bonding. The caller must hold the RTNL semaphore. On a failure 4462 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4463 * to the routing socket and the function returns zero. 4464 */ 4465 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4466 { 4467 int err; 4468 4469 ASSERT_RTNL(); 4470 4471 err = netdev_set_master(slave, master); 4472 if (err) 4473 return err; 4474 if (master) 4475 slave->flags |= IFF_SLAVE; 4476 else 4477 slave->flags &= ~IFF_SLAVE; 4478 4479 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4480 return 0; 4481 } 4482 EXPORT_SYMBOL(netdev_set_bond_master); 4483 4484 static void dev_change_rx_flags(struct net_device *dev, int flags) 4485 { 4486 const struct net_device_ops *ops = dev->netdev_ops; 4487 4488 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4489 ops->ndo_change_rx_flags(dev, flags); 4490 } 4491 4492 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4493 { 4494 unsigned int old_flags = dev->flags; 4495 uid_t uid; 4496 gid_t gid; 4497 4498 ASSERT_RTNL(); 4499 4500 dev->flags |= IFF_PROMISC; 4501 dev->promiscuity += inc; 4502 if (dev->promiscuity == 0) { 4503 /* 4504 * Avoid overflow. 4505 * If inc causes overflow, untouch promisc and return error. 4506 */ 4507 if (inc < 0) 4508 dev->flags &= ~IFF_PROMISC; 4509 else { 4510 dev->promiscuity -= inc; 4511 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4512 dev->name); 4513 return -EOVERFLOW; 4514 } 4515 } 4516 if (dev->flags != old_flags) { 4517 pr_info("device %s %s promiscuous mode\n", 4518 dev->name, 4519 dev->flags & IFF_PROMISC ? "entered" : "left"); 4520 if (audit_enabled) { 4521 current_uid_gid(&uid, &gid); 4522 audit_log(current->audit_context, GFP_ATOMIC, 4523 AUDIT_ANOM_PROMISCUOUS, 4524 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4525 dev->name, (dev->flags & IFF_PROMISC), 4526 (old_flags & IFF_PROMISC), 4527 audit_get_loginuid(current), 4528 uid, gid, 4529 audit_get_sessionid(current)); 4530 } 4531 4532 dev_change_rx_flags(dev, IFF_PROMISC); 4533 } 4534 return 0; 4535 } 4536 4537 /** 4538 * dev_set_promiscuity - update promiscuity count on a device 4539 * @dev: device 4540 * @inc: modifier 4541 * 4542 * Add or remove promiscuity from a device. While the count in the device 4543 * remains above zero the interface remains promiscuous. Once it hits zero 4544 * the device reverts back to normal filtering operation. A negative inc 4545 * value is used to drop promiscuity on the device. 4546 * Return 0 if successful or a negative errno code on error. 4547 */ 4548 int dev_set_promiscuity(struct net_device *dev, int inc) 4549 { 4550 unsigned int old_flags = dev->flags; 4551 int err; 4552 4553 err = __dev_set_promiscuity(dev, inc); 4554 if (err < 0) 4555 return err; 4556 if (dev->flags != old_flags) 4557 dev_set_rx_mode(dev); 4558 return err; 4559 } 4560 EXPORT_SYMBOL(dev_set_promiscuity); 4561 4562 /** 4563 * dev_set_allmulti - update allmulti count on a device 4564 * @dev: device 4565 * @inc: modifier 4566 * 4567 * Add or remove reception of all multicast frames to a device. While the 4568 * count in the device remains above zero the interface remains listening 4569 * to all interfaces. Once it hits zero the device reverts back to normal 4570 * filtering operation. A negative @inc value is used to drop the counter 4571 * when releasing a resource needing all multicasts. 4572 * Return 0 if successful or a negative errno code on error. 4573 */ 4574 4575 int dev_set_allmulti(struct net_device *dev, int inc) 4576 { 4577 unsigned int old_flags = dev->flags; 4578 4579 ASSERT_RTNL(); 4580 4581 dev->flags |= IFF_ALLMULTI; 4582 dev->allmulti += inc; 4583 if (dev->allmulti == 0) { 4584 /* 4585 * Avoid overflow. 4586 * If inc causes overflow, untouch allmulti and return error. 4587 */ 4588 if (inc < 0) 4589 dev->flags &= ~IFF_ALLMULTI; 4590 else { 4591 dev->allmulti -= inc; 4592 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4593 dev->name); 4594 return -EOVERFLOW; 4595 } 4596 } 4597 if (dev->flags ^ old_flags) { 4598 dev_change_rx_flags(dev, IFF_ALLMULTI); 4599 dev_set_rx_mode(dev); 4600 } 4601 return 0; 4602 } 4603 EXPORT_SYMBOL(dev_set_allmulti); 4604 4605 /* 4606 * Upload unicast and multicast address lists to device and 4607 * configure RX filtering. When the device doesn't support unicast 4608 * filtering it is put in promiscuous mode while unicast addresses 4609 * are present. 4610 */ 4611 void __dev_set_rx_mode(struct net_device *dev) 4612 { 4613 const struct net_device_ops *ops = dev->netdev_ops; 4614 4615 /* dev_open will call this function so the list will stay sane. */ 4616 if (!(dev->flags&IFF_UP)) 4617 return; 4618 4619 if (!netif_device_present(dev)) 4620 return; 4621 4622 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4623 /* Unicast addresses changes may only happen under the rtnl, 4624 * therefore calling __dev_set_promiscuity here is safe. 4625 */ 4626 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4627 __dev_set_promiscuity(dev, 1); 4628 dev->uc_promisc = true; 4629 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4630 __dev_set_promiscuity(dev, -1); 4631 dev->uc_promisc = false; 4632 } 4633 } 4634 4635 if (ops->ndo_set_rx_mode) 4636 ops->ndo_set_rx_mode(dev); 4637 } 4638 4639 void dev_set_rx_mode(struct net_device *dev) 4640 { 4641 netif_addr_lock_bh(dev); 4642 __dev_set_rx_mode(dev); 4643 netif_addr_unlock_bh(dev); 4644 } 4645 4646 /** 4647 * dev_get_flags - get flags reported to userspace 4648 * @dev: device 4649 * 4650 * Get the combination of flag bits exported through APIs to userspace. 4651 */ 4652 unsigned int dev_get_flags(const struct net_device *dev) 4653 { 4654 unsigned int flags; 4655 4656 flags = (dev->flags & ~(IFF_PROMISC | 4657 IFF_ALLMULTI | 4658 IFF_RUNNING | 4659 IFF_LOWER_UP | 4660 IFF_DORMANT)) | 4661 (dev->gflags & (IFF_PROMISC | 4662 IFF_ALLMULTI)); 4663 4664 if (netif_running(dev)) { 4665 if (netif_oper_up(dev)) 4666 flags |= IFF_RUNNING; 4667 if (netif_carrier_ok(dev)) 4668 flags |= IFF_LOWER_UP; 4669 if (netif_dormant(dev)) 4670 flags |= IFF_DORMANT; 4671 } 4672 4673 return flags; 4674 } 4675 EXPORT_SYMBOL(dev_get_flags); 4676 4677 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4678 { 4679 unsigned int old_flags = dev->flags; 4680 int ret; 4681 4682 ASSERT_RTNL(); 4683 4684 /* 4685 * Set the flags on our device. 4686 */ 4687 4688 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4689 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4690 IFF_AUTOMEDIA)) | 4691 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4692 IFF_ALLMULTI)); 4693 4694 /* 4695 * Load in the correct multicast list now the flags have changed. 4696 */ 4697 4698 if ((old_flags ^ flags) & IFF_MULTICAST) 4699 dev_change_rx_flags(dev, IFF_MULTICAST); 4700 4701 dev_set_rx_mode(dev); 4702 4703 /* 4704 * Have we downed the interface. We handle IFF_UP ourselves 4705 * according to user attempts to set it, rather than blindly 4706 * setting it. 4707 */ 4708 4709 ret = 0; 4710 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4711 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4712 4713 if (!ret) 4714 dev_set_rx_mode(dev); 4715 } 4716 4717 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4718 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4719 4720 dev->gflags ^= IFF_PROMISC; 4721 dev_set_promiscuity(dev, inc); 4722 } 4723 4724 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4725 is important. Some (broken) drivers set IFF_PROMISC, when 4726 IFF_ALLMULTI is requested not asking us and not reporting. 4727 */ 4728 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4729 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4730 4731 dev->gflags ^= IFF_ALLMULTI; 4732 dev_set_allmulti(dev, inc); 4733 } 4734 4735 return ret; 4736 } 4737 4738 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4739 { 4740 unsigned int changes = dev->flags ^ old_flags; 4741 4742 if (changes & IFF_UP) { 4743 if (dev->flags & IFF_UP) 4744 call_netdevice_notifiers(NETDEV_UP, dev); 4745 else 4746 call_netdevice_notifiers(NETDEV_DOWN, dev); 4747 } 4748 4749 if (dev->flags & IFF_UP && 4750 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4751 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4752 } 4753 4754 /** 4755 * dev_change_flags - change device settings 4756 * @dev: device 4757 * @flags: device state flags 4758 * 4759 * Change settings on device based state flags. The flags are 4760 * in the userspace exported format. 4761 */ 4762 int dev_change_flags(struct net_device *dev, unsigned int flags) 4763 { 4764 int ret; 4765 unsigned int changes, old_flags = dev->flags; 4766 4767 ret = __dev_change_flags(dev, flags); 4768 if (ret < 0) 4769 return ret; 4770 4771 changes = old_flags ^ dev->flags; 4772 if (changes) 4773 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4774 4775 __dev_notify_flags(dev, old_flags); 4776 return ret; 4777 } 4778 EXPORT_SYMBOL(dev_change_flags); 4779 4780 /** 4781 * dev_set_mtu - Change maximum transfer unit 4782 * @dev: device 4783 * @new_mtu: new transfer unit 4784 * 4785 * Change the maximum transfer size of the network device. 4786 */ 4787 int dev_set_mtu(struct net_device *dev, int new_mtu) 4788 { 4789 const struct net_device_ops *ops = dev->netdev_ops; 4790 int err; 4791 4792 if (new_mtu == dev->mtu) 4793 return 0; 4794 4795 /* MTU must be positive. */ 4796 if (new_mtu < 0) 4797 return -EINVAL; 4798 4799 if (!netif_device_present(dev)) 4800 return -ENODEV; 4801 4802 err = 0; 4803 if (ops->ndo_change_mtu) 4804 err = ops->ndo_change_mtu(dev, new_mtu); 4805 else 4806 dev->mtu = new_mtu; 4807 4808 if (!err && dev->flags & IFF_UP) 4809 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4810 return err; 4811 } 4812 EXPORT_SYMBOL(dev_set_mtu); 4813 4814 /** 4815 * dev_set_group - Change group this device belongs to 4816 * @dev: device 4817 * @new_group: group this device should belong to 4818 */ 4819 void dev_set_group(struct net_device *dev, int new_group) 4820 { 4821 dev->group = new_group; 4822 } 4823 EXPORT_SYMBOL(dev_set_group); 4824 4825 /** 4826 * dev_set_mac_address - Change Media Access Control Address 4827 * @dev: device 4828 * @sa: new address 4829 * 4830 * Change the hardware (MAC) address of the device 4831 */ 4832 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4833 { 4834 const struct net_device_ops *ops = dev->netdev_ops; 4835 int err; 4836 4837 if (!ops->ndo_set_mac_address) 4838 return -EOPNOTSUPP; 4839 if (sa->sa_family != dev->type) 4840 return -EINVAL; 4841 if (!netif_device_present(dev)) 4842 return -ENODEV; 4843 err = ops->ndo_set_mac_address(dev, sa); 4844 if (!err) 4845 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4846 add_device_randomness(dev->dev_addr, dev->addr_len); 4847 return err; 4848 } 4849 EXPORT_SYMBOL(dev_set_mac_address); 4850 4851 /* 4852 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4853 */ 4854 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4855 { 4856 int err; 4857 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4858 4859 if (!dev) 4860 return -ENODEV; 4861 4862 switch (cmd) { 4863 case SIOCGIFFLAGS: /* Get interface flags */ 4864 ifr->ifr_flags = (short) dev_get_flags(dev); 4865 return 0; 4866 4867 case SIOCGIFMETRIC: /* Get the metric on the interface 4868 (currently unused) */ 4869 ifr->ifr_metric = 0; 4870 return 0; 4871 4872 case SIOCGIFMTU: /* Get the MTU of a device */ 4873 ifr->ifr_mtu = dev->mtu; 4874 return 0; 4875 4876 case SIOCGIFHWADDR: 4877 if (!dev->addr_len) 4878 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4879 else 4880 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4881 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4882 ifr->ifr_hwaddr.sa_family = dev->type; 4883 return 0; 4884 4885 case SIOCGIFSLAVE: 4886 err = -EINVAL; 4887 break; 4888 4889 case SIOCGIFMAP: 4890 ifr->ifr_map.mem_start = dev->mem_start; 4891 ifr->ifr_map.mem_end = dev->mem_end; 4892 ifr->ifr_map.base_addr = dev->base_addr; 4893 ifr->ifr_map.irq = dev->irq; 4894 ifr->ifr_map.dma = dev->dma; 4895 ifr->ifr_map.port = dev->if_port; 4896 return 0; 4897 4898 case SIOCGIFINDEX: 4899 ifr->ifr_ifindex = dev->ifindex; 4900 return 0; 4901 4902 case SIOCGIFTXQLEN: 4903 ifr->ifr_qlen = dev->tx_queue_len; 4904 return 0; 4905 4906 default: 4907 /* dev_ioctl() should ensure this case 4908 * is never reached 4909 */ 4910 WARN_ON(1); 4911 err = -ENOTTY; 4912 break; 4913 4914 } 4915 return err; 4916 } 4917 4918 /* 4919 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4920 */ 4921 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4922 { 4923 int err; 4924 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4925 const struct net_device_ops *ops; 4926 4927 if (!dev) 4928 return -ENODEV; 4929 4930 ops = dev->netdev_ops; 4931 4932 switch (cmd) { 4933 case SIOCSIFFLAGS: /* Set interface flags */ 4934 return dev_change_flags(dev, ifr->ifr_flags); 4935 4936 case SIOCSIFMETRIC: /* Set the metric on the interface 4937 (currently unused) */ 4938 return -EOPNOTSUPP; 4939 4940 case SIOCSIFMTU: /* Set the MTU of a device */ 4941 return dev_set_mtu(dev, ifr->ifr_mtu); 4942 4943 case SIOCSIFHWADDR: 4944 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4945 4946 case SIOCSIFHWBROADCAST: 4947 if (ifr->ifr_hwaddr.sa_family != dev->type) 4948 return -EINVAL; 4949 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4950 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4951 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4952 return 0; 4953 4954 case SIOCSIFMAP: 4955 if (ops->ndo_set_config) { 4956 if (!netif_device_present(dev)) 4957 return -ENODEV; 4958 return ops->ndo_set_config(dev, &ifr->ifr_map); 4959 } 4960 return -EOPNOTSUPP; 4961 4962 case SIOCADDMULTI: 4963 if (!ops->ndo_set_rx_mode || 4964 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4965 return -EINVAL; 4966 if (!netif_device_present(dev)) 4967 return -ENODEV; 4968 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4969 4970 case SIOCDELMULTI: 4971 if (!ops->ndo_set_rx_mode || 4972 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4973 return -EINVAL; 4974 if (!netif_device_present(dev)) 4975 return -ENODEV; 4976 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4977 4978 case SIOCSIFTXQLEN: 4979 if (ifr->ifr_qlen < 0) 4980 return -EINVAL; 4981 dev->tx_queue_len = ifr->ifr_qlen; 4982 return 0; 4983 4984 case SIOCSIFNAME: 4985 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4986 return dev_change_name(dev, ifr->ifr_newname); 4987 4988 case SIOCSHWTSTAMP: 4989 err = net_hwtstamp_validate(ifr); 4990 if (err) 4991 return err; 4992 /* fall through */ 4993 4994 /* 4995 * Unknown or private ioctl 4996 */ 4997 default: 4998 if ((cmd >= SIOCDEVPRIVATE && 4999 cmd <= SIOCDEVPRIVATE + 15) || 5000 cmd == SIOCBONDENSLAVE || 5001 cmd == SIOCBONDRELEASE || 5002 cmd == SIOCBONDSETHWADDR || 5003 cmd == SIOCBONDSLAVEINFOQUERY || 5004 cmd == SIOCBONDINFOQUERY || 5005 cmd == SIOCBONDCHANGEACTIVE || 5006 cmd == SIOCGMIIPHY || 5007 cmd == SIOCGMIIREG || 5008 cmd == SIOCSMIIREG || 5009 cmd == SIOCBRADDIF || 5010 cmd == SIOCBRDELIF || 5011 cmd == SIOCSHWTSTAMP || 5012 cmd == SIOCWANDEV) { 5013 err = -EOPNOTSUPP; 5014 if (ops->ndo_do_ioctl) { 5015 if (netif_device_present(dev)) 5016 err = ops->ndo_do_ioctl(dev, ifr, cmd); 5017 else 5018 err = -ENODEV; 5019 } 5020 } else 5021 err = -EINVAL; 5022 5023 } 5024 return err; 5025 } 5026 5027 /* 5028 * This function handles all "interface"-type I/O control requests. The actual 5029 * 'doing' part of this is dev_ifsioc above. 5030 */ 5031 5032 /** 5033 * dev_ioctl - network device ioctl 5034 * @net: the applicable net namespace 5035 * @cmd: command to issue 5036 * @arg: pointer to a struct ifreq in user space 5037 * 5038 * Issue ioctl functions to devices. This is normally called by the 5039 * user space syscall interfaces but can sometimes be useful for 5040 * other purposes. The return value is the return from the syscall if 5041 * positive or a negative errno code on error. 5042 */ 5043 5044 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 5045 { 5046 struct ifreq ifr; 5047 int ret; 5048 char *colon; 5049 5050 /* One special case: SIOCGIFCONF takes ifconf argument 5051 and requires shared lock, because it sleeps writing 5052 to user space. 5053 */ 5054 5055 if (cmd == SIOCGIFCONF) { 5056 rtnl_lock(); 5057 ret = dev_ifconf(net, (char __user *) arg); 5058 rtnl_unlock(); 5059 return ret; 5060 } 5061 if (cmd == SIOCGIFNAME) 5062 return dev_ifname(net, (struct ifreq __user *)arg); 5063 5064 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5065 return -EFAULT; 5066 5067 ifr.ifr_name[IFNAMSIZ-1] = 0; 5068 5069 colon = strchr(ifr.ifr_name, ':'); 5070 if (colon) 5071 *colon = 0; 5072 5073 /* 5074 * See which interface the caller is talking about. 5075 */ 5076 5077 switch (cmd) { 5078 /* 5079 * These ioctl calls: 5080 * - can be done by all. 5081 * - atomic and do not require locking. 5082 * - return a value 5083 */ 5084 case SIOCGIFFLAGS: 5085 case SIOCGIFMETRIC: 5086 case SIOCGIFMTU: 5087 case SIOCGIFHWADDR: 5088 case SIOCGIFSLAVE: 5089 case SIOCGIFMAP: 5090 case SIOCGIFINDEX: 5091 case SIOCGIFTXQLEN: 5092 dev_load(net, ifr.ifr_name); 5093 rcu_read_lock(); 5094 ret = dev_ifsioc_locked(net, &ifr, cmd); 5095 rcu_read_unlock(); 5096 if (!ret) { 5097 if (colon) 5098 *colon = ':'; 5099 if (copy_to_user(arg, &ifr, 5100 sizeof(struct ifreq))) 5101 ret = -EFAULT; 5102 } 5103 return ret; 5104 5105 case SIOCETHTOOL: 5106 dev_load(net, ifr.ifr_name); 5107 rtnl_lock(); 5108 ret = dev_ethtool(net, &ifr); 5109 rtnl_unlock(); 5110 if (!ret) { 5111 if (colon) 5112 *colon = ':'; 5113 if (copy_to_user(arg, &ifr, 5114 sizeof(struct ifreq))) 5115 ret = -EFAULT; 5116 } 5117 return ret; 5118 5119 /* 5120 * These ioctl calls: 5121 * - require superuser power. 5122 * - require strict serialization. 5123 * - return a value 5124 */ 5125 case SIOCGMIIPHY: 5126 case SIOCGMIIREG: 5127 case SIOCSIFNAME: 5128 if (!capable(CAP_NET_ADMIN)) 5129 return -EPERM; 5130 dev_load(net, ifr.ifr_name); 5131 rtnl_lock(); 5132 ret = dev_ifsioc(net, &ifr, cmd); 5133 rtnl_unlock(); 5134 if (!ret) { 5135 if (colon) 5136 *colon = ':'; 5137 if (copy_to_user(arg, &ifr, 5138 sizeof(struct ifreq))) 5139 ret = -EFAULT; 5140 } 5141 return ret; 5142 5143 /* 5144 * These ioctl calls: 5145 * - require superuser power. 5146 * - require strict serialization. 5147 * - do not return a value 5148 */ 5149 case SIOCSIFFLAGS: 5150 case SIOCSIFMETRIC: 5151 case SIOCSIFMTU: 5152 case SIOCSIFMAP: 5153 case SIOCSIFHWADDR: 5154 case SIOCSIFSLAVE: 5155 case SIOCADDMULTI: 5156 case SIOCDELMULTI: 5157 case SIOCSIFHWBROADCAST: 5158 case SIOCSIFTXQLEN: 5159 case SIOCSMIIREG: 5160 case SIOCBONDENSLAVE: 5161 case SIOCBONDRELEASE: 5162 case SIOCBONDSETHWADDR: 5163 case SIOCBONDCHANGEACTIVE: 5164 case SIOCBRADDIF: 5165 case SIOCBRDELIF: 5166 case SIOCSHWTSTAMP: 5167 if (!capable(CAP_NET_ADMIN)) 5168 return -EPERM; 5169 /* fall through */ 5170 case SIOCBONDSLAVEINFOQUERY: 5171 case SIOCBONDINFOQUERY: 5172 dev_load(net, ifr.ifr_name); 5173 rtnl_lock(); 5174 ret = dev_ifsioc(net, &ifr, cmd); 5175 rtnl_unlock(); 5176 return ret; 5177 5178 case SIOCGIFMEM: 5179 /* Get the per device memory space. We can add this but 5180 * currently do not support it */ 5181 case SIOCSIFMEM: 5182 /* Set the per device memory buffer space. 5183 * Not applicable in our case */ 5184 case SIOCSIFLINK: 5185 return -ENOTTY; 5186 5187 /* 5188 * Unknown or private ioctl. 5189 */ 5190 default: 5191 if (cmd == SIOCWANDEV || 5192 (cmd >= SIOCDEVPRIVATE && 5193 cmd <= SIOCDEVPRIVATE + 15)) { 5194 dev_load(net, ifr.ifr_name); 5195 rtnl_lock(); 5196 ret = dev_ifsioc(net, &ifr, cmd); 5197 rtnl_unlock(); 5198 if (!ret && copy_to_user(arg, &ifr, 5199 sizeof(struct ifreq))) 5200 ret = -EFAULT; 5201 return ret; 5202 } 5203 /* Take care of Wireless Extensions */ 5204 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5205 return wext_handle_ioctl(net, &ifr, cmd, arg); 5206 return -ENOTTY; 5207 } 5208 } 5209 5210 5211 /** 5212 * dev_new_index - allocate an ifindex 5213 * @net: the applicable net namespace 5214 * 5215 * Returns a suitable unique value for a new device interface 5216 * number. The caller must hold the rtnl semaphore or the 5217 * dev_base_lock to be sure it remains unique. 5218 */ 5219 static int dev_new_index(struct net *net) 5220 { 5221 static int ifindex; 5222 for (;;) { 5223 if (++ifindex <= 0) 5224 ifindex = 1; 5225 if (!__dev_get_by_index(net, ifindex)) 5226 return ifindex; 5227 } 5228 } 5229 5230 /* Delayed registration/unregisteration */ 5231 static LIST_HEAD(net_todo_list); 5232 5233 static void net_set_todo(struct net_device *dev) 5234 { 5235 list_add_tail(&dev->todo_list, &net_todo_list); 5236 } 5237 5238 static void rollback_registered_many(struct list_head *head) 5239 { 5240 struct net_device *dev, *tmp; 5241 5242 BUG_ON(dev_boot_phase); 5243 ASSERT_RTNL(); 5244 5245 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5246 /* Some devices call without registering 5247 * for initialization unwind. Remove those 5248 * devices and proceed with the remaining. 5249 */ 5250 if (dev->reg_state == NETREG_UNINITIALIZED) { 5251 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5252 dev->name, dev); 5253 5254 WARN_ON(1); 5255 list_del(&dev->unreg_list); 5256 continue; 5257 } 5258 dev->dismantle = true; 5259 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5260 } 5261 5262 /* If device is running, close it first. */ 5263 dev_close_many(head); 5264 5265 list_for_each_entry(dev, head, unreg_list) { 5266 /* And unlink it from device chain. */ 5267 unlist_netdevice(dev); 5268 5269 dev->reg_state = NETREG_UNREGISTERING; 5270 } 5271 5272 synchronize_net(); 5273 5274 list_for_each_entry(dev, head, unreg_list) { 5275 /* Shutdown queueing discipline. */ 5276 dev_shutdown(dev); 5277 5278 5279 /* Notify protocols, that we are about to destroy 5280 this device. They should clean all the things. 5281 */ 5282 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5283 5284 if (!dev->rtnl_link_ops || 5285 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5286 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5287 5288 /* 5289 * Flush the unicast and multicast chains 5290 */ 5291 dev_uc_flush(dev); 5292 dev_mc_flush(dev); 5293 5294 if (dev->netdev_ops->ndo_uninit) 5295 dev->netdev_ops->ndo_uninit(dev); 5296 5297 /* Notifier chain MUST detach us from master device. */ 5298 WARN_ON(dev->master); 5299 5300 /* Remove entries from kobject tree */ 5301 netdev_unregister_kobject(dev); 5302 } 5303 5304 /* Process any work delayed until the end of the batch */ 5305 dev = list_first_entry(head, struct net_device, unreg_list); 5306 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5307 5308 synchronize_net(); 5309 5310 list_for_each_entry(dev, head, unreg_list) 5311 dev_put(dev); 5312 } 5313 5314 static void rollback_registered(struct net_device *dev) 5315 { 5316 LIST_HEAD(single); 5317 5318 list_add(&dev->unreg_list, &single); 5319 rollback_registered_many(&single); 5320 list_del(&single); 5321 } 5322 5323 static netdev_features_t netdev_fix_features(struct net_device *dev, 5324 netdev_features_t features) 5325 { 5326 /* Fix illegal checksum combinations */ 5327 if ((features & NETIF_F_HW_CSUM) && 5328 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5329 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5330 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5331 } 5332 5333 /* Fix illegal SG+CSUM combinations. */ 5334 if ((features & NETIF_F_SG) && 5335 !(features & NETIF_F_ALL_CSUM)) { 5336 netdev_dbg(dev, 5337 "Dropping NETIF_F_SG since no checksum feature.\n"); 5338 features &= ~NETIF_F_SG; 5339 } 5340 5341 /* TSO requires that SG is present as well. */ 5342 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5343 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5344 features &= ~NETIF_F_ALL_TSO; 5345 } 5346 5347 /* TSO ECN requires that TSO is present as well. */ 5348 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5349 features &= ~NETIF_F_TSO_ECN; 5350 5351 /* Software GSO depends on SG. */ 5352 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5353 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5354 features &= ~NETIF_F_GSO; 5355 } 5356 5357 /* UFO needs SG and checksumming */ 5358 if (features & NETIF_F_UFO) { 5359 /* maybe split UFO into V4 and V6? */ 5360 if (!((features & NETIF_F_GEN_CSUM) || 5361 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5362 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5363 netdev_dbg(dev, 5364 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5365 features &= ~NETIF_F_UFO; 5366 } 5367 5368 if (!(features & NETIF_F_SG)) { 5369 netdev_dbg(dev, 5370 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5371 features &= ~NETIF_F_UFO; 5372 } 5373 } 5374 5375 return features; 5376 } 5377 5378 int __netdev_update_features(struct net_device *dev) 5379 { 5380 netdev_features_t features; 5381 int err = 0; 5382 5383 ASSERT_RTNL(); 5384 5385 features = netdev_get_wanted_features(dev); 5386 5387 if (dev->netdev_ops->ndo_fix_features) 5388 features = dev->netdev_ops->ndo_fix_features(dev, features); 5389 5390 /* driver might be less strict about feature dependencies */ 5391 features = netdev_fix_features(dev, features); 5392 5393 if (dev->features == features) 5394 return 0; 5395 5396 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5397 &dev->features, &features); 5398 5399 if (dev->netdev_ops->ndo_set_features) 5400 err = dev->netdev_ops->ndo_set_features(dev, features); 5401 5402 if (unlikely(err < 0)) { 5403 netdev_err(dev, 5404 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5405 err, &features, &dev->features); 5406 return -1; 5407 } 5408 5409 if (!err) 5410 dev->features = features; 5411 5412 return 1; 5413 } 5414 5415 /** 5416 * netdev_update_features - recalculate device features 5417 * @dev: the device to check 5418 * 5419 * Recalculate dev->features set and send notifications if it 5420 * has changed. Should be called after driver or hardware dependent 5421 * conditions might have changed that influence the features. 5422 */ 5423 void netdev_update_features(struct net_device *dev) 5424 { 5425 if (__netdev_update_features(dev)) 5426 netdev_features_change(dev); 5427 } 5428 EXPORT_SYMBOL(netdev_update_features); 5429 5430 /** 5431 * netdev_change_features - recalculate device features 5432 * @dev: the device to check 5433 * 5434 * Recalculate dev->features set and send notifications even 5435 * if they have not changed. Should be called instead of 5436 * netdev_update_features() if also dev->vlan_features might 5437 * have changed to allow the changes to be propagated to stacked 5438 * VLAN devices. 5439 */ 5440 void netdev_change_features(struct net_device *dev) 5441 { 5442 __netdev_update_features(dev); 5443 netdev_features_change(dev); 5444 } 5445 EXPORT_SYMBOL(netdev_change_features); 5446 5447 /** 5448 * netif_stacked_transfer_operstate - transfer operstate 5449 * @rootdev: the root or lower level device to transfer state from 5450 * @dev: the device to transfer operstate to 5451 * 5452 * Transfer operational state from root to device. This is normally 5453 * called when a stacking relationship exists between the root 5454 * device and the device(a leaf device). 5455 */ 5456 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5457 struct net_device *dev) 5458 { 5459 if (rootdev->operstate == IF_OPER_DORMANT) 5460 netif_dormant_on(dev); 5461 else 5462 netif_dormant_off(dev); 5463 5464 if (netif_carrier_ok(rootdev)) { 5465 if (!netif_carrier_ok(dev)) 5466 netif_carrier_on(dev); 5467 } else { 5468 if (netif_carrier_ok(dev)) 5469 netif_carrier_off(dev); 5470 } 5471 } 5472 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5473 5474 #ifdef CONFIG_RPS 5475 static int netif_alloc_rx_queues(struct net_device *dev) 5476 { 5477 unsigned int i, count = dev->num_rx_queues; 5478 struct netdev_rx_queue *rx; 5479 5480 BUG_ON(count < 1); 5481 5482 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5483 if (!rx) { 5484 pr_err("netdev: Unable to allocate %u rx queues\n", count); 5485 return -ENOMEM; 5486 } 5487 dev->_rx = rx; 5488 5489 for (i = 0; i < count; i++) 5490 rx[i].dev = dev; 5491 return 0; 5492 } 5493 #endif 5494 5495 static void netdev_init_one_queue(struct net_device *dev, 5496 struct netdev_queue *queue, void *_unused) 5497 { 5498 /* Initialize queue lock */ 5499 spin_lock_init(&queue->_xmit_lock); 5500 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5501 queue->xmit_lock_owner = -1; 5502 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5503 queue->dev = dev; 5504 #ifdef CONFIG_BQL 5505 dql_init(&queue->dql, HZ); 5506 #endif 5507 } 5508 5509 static int netif_alloc_netdev_queues(struct net_device *dev) 5510 { 5511 unsigned int count = dev->num_tx_queues; 5512 struct netdev_queue *tx; 5513 5514 BUG_ON(count < 1); 5515 5516 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5517 if (!tx) { 5518 pr_err("netdev: Unable to allocate %u tx queues\n", count); 5519 return -ENOMEM; 5520 } 5521 dev->_tx = tx; 5522 5523 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5524 spin_lock_init(&dev->tx_global_lock); 5525 5526 return 0; 5527 } 5528 5529 /** 5530 * register_netdevice - register a network device 5531 * @dev: device to register 5532 * 5533 * Take a completed network device structure and add it to the kernel 5534 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5535 * chain. 0 is returned on success. A negative errno code is returned 5536 * on a failure to set up the device, or if the name is a duplicate. 5537 * 5538 * Callers must hold the rtnl semaphore. You may want 5539 * register_netdev() instead of this. 5540 * 5541 * BUGS: 5542 * The locking appears insufficient to guarantee two parallel registers 5543 * will not get the same name. 5544 */ 5545 5546 int register_netdevice(struct net_device *dev) 5547 { 5548 int ret; 5549 struct net *net = dev_net(dev); 5550 5551 BUG_ON(dev_boot_phase); 5552 ASSERT_RTNL(); 5553 5554 might_sleep(); 5555 5556 /* When net_device's are persistent, this will be fatal. */ 5557 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5558 BUG_ON(!net); 5559 5560 spin_lock_init(&dev->addr_list_lock); 5561 netdev_set_addr_lockdep_class(dev); 5562 5563 dev->iflink = -1; 5564 5565 ret = dev_get_valid_name(dev, dev->name); 5566 if (ret < 0) 5567 goto out; 5568 5569 /* Init, if this function is available */ 5570 if (dev->netdev_ops->ndo_init) { 5571 ret = dev->netdev_ops->ndo_init(dev); 5572 if (ret) { 5573 if (ret > 0) 5574 ret = -EIO; 5575 goto out; 5576 } 5577 } 5578 5579 dev->ifindex = dev_new_index(net); 5580 if (dev->iflink == -1) 5581 dev->iflink = dev->ifindex; 5582 5583 /* Transfer changeable features to wanted_features and enable 5584 * software offloads (GSO and GRO). 5585 */ 5586 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5587 dev->features |= NETIF_F_SOFT_FEATURES; 5588 dev->wanted_features = dev->features & dev->hw_features; 5589 5590 /* Turn on no cache copy if HW is doing checksum */ 5591 if (!(dev->flags & IFF_LOOPBACK)) { 5592 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5593 if (dev->features & NETIF_F_ALL_CSUM) { 5594 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5595 dev->features |= NETIF_F_NOCACHE_COPY; 5596 } 5597 } 5598 5599 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5600 */ 5601 dev->vlan_features |= NETIF_F_HIGHDMA; 5602 5603 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5604 ret = notifier_to_errno(ret); 5605 if (ret) 5606 goto err_uninit; 5607 5608 ret = netdev_register_kobject(dev); 5609 if (ret) 5610 goto err_uninit; 5611 dev->reg_state = NETREG_REGISTERED; 5612 5613 __netdev_update_features(dev); 5614 5615 /* 5616 * Default initial state at registry is that the 5617 * device is present. 5618 */ 5619 5620 set_bit(__LINK_STATE_PRESENT, &dev->state); 5621 5622 dev_init_scheduler(dev); 5623 dev_hold(dev); 5624 list_netdevice(dev); 5625 add_device_randomness(dev->dev_addr, dev->addr_len); 5626 5627 /* Notify protocols, that a new device appeared. */ 5628 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5629 ret = notifier_to_errno(ret); 5630 if (ret) { 5631 rollback_registered(dev); 5632 dev->reg_state = NETREG_UNREGISTERED; 5633 } 5634 /* 5635 * Prevent userspace races by waiting until the network 5636 * device is fully setup before sending notifications. 5637 */ 5638 if (!dev->rtnl_link_ops || 5639 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5640 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5641 5642 out: 5643 return ret; 5644 5645 err_uninit: 5646 if (dev->netdev_ops->ndo_uninit) 5647 dev->netdev_ops->ndo_uninit(dev); 5648 goto out; 5649 } 5650 EXPORT_SYMBOL(register_netdevice); 5651 5652 /** 5653 * init_dummy_netdev - init a dummy network device for NAPI 5654 * @dev: device to init 5655 * 5656 * This takes a network device structure and initialize the minimum 5657 * amount of fields so it can be used to schedule NAPI polls without 5658 * registering a full blown interface. This is to be used by drivers 5659 * that need to tie several hardware interfaces to a single NAPI 5660 * poll scheduler due to HW limitations. 5661 */ 5662 int init_dummy_netdev(struct net_device *dev) 5663 { 5664 /* Clear everything. Note we don't initialize spinlocks 5665 * are they aren't supposed to be taken by any of the 5666 * NAPI code and this dummy netdev is supposed to be 5667 * only ever used for NAPI polls 5668 */ 5669 memset(dev, 0, sizeof(struct net_device)); 5670 5671 /* make sure we BUG if trying to hit standard 5672 * register/unregister code path 5673 */ 5674 dev->reg_state = NETREG_DUMMY; 5675 5676 /* NAPI wants this */ 5677 INIT_LIST_HEAD(&dev->napi_list); 5678 5679 /* a dummy interface is started by default */ 5680 set_bit(__LINK_STATE_PRESENT, &dev->state); 5681 set_bit(__LINK_STATE_START, &dev->state); 5682 5683 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5684 * because users of this 'device' dont need to change 5685 * its refcount. 5686 */ 5687 5688 return 0; 5689 } 5690 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5691 5692 5693 /** 5694 * register_netdev - register a network device 5695 * @dev: device to register 5696 * 5697 * Take a completed network device structure and add it to the kernel 5698 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5699 * chain. 0 is returned on success. A negative errno code is returned 5700 * on a failure to set up the device, or if the name is a duplicate. 5701 * 5702 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5703 * and expands the device name if you passed a format string to 5704 * alloc_netdev. 5705 */ 5706 int register_netdev(struct net_device *dev) 5707 { 5708 int err; 5709 5710 rtnl_lock(); 5711 err = register_netdevice(dev); 5712 rtnl_unlock(); 5713 return err; 5714 } 5715 EXPORT_SYMBOL(register_netdev); 5716 5717 int netdev_refcnt_read(const struct net_device *dev) 5718 { 5719 int i, refcnt = 0; 5720 5721 for_each_possible_cpu(i) 5722 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5723 return refcnt; 5724 } 5725 EXPORT_SYMBOL(netdev_refcnt_read); 5726 5727 /** 5728 * netdev_wait_allrefs - wait until all references are gone. 5729 * 5730 * This is called when unregistering network devices. 5731 * 5732 * Any protocol or device that holds a reference should register 5733 * for netdevice notification, and cleanup and put back the 5734 * reference if they receive an UNREGISTER event. 5735 * We can get stuck here if buggy protocols don't correctly 5736 * call dev_put. 5737 */ 5738 static void netdev_wait_allrefs(struct net_device *dev) 5739 { 5740 unsigned long rebroadcast_time, warning_time; 5741 int refcnt; 5742 5743 linkwatch_forget_dev(dev); 5744 5745 rebroadcast_time = warning_time = jiffies; 5746 refcnt = netdev_refcnt_read(dev); 5747 5748 while (refcnt != 0) { 5749 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5750 rtnl_lock(); 5751 5752 /* Rebroadcast unregister notification */ 5753 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5754 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5755 * should have already handle it the first time */ 5756 5757 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5758 &dev->state)) { 5759 /* We must not have linkwatch events 5760 * pending on unregister. If this 5761 * happens, we simply run the queue 5762 * unscheduled, resulting in a noop 5763 * for this device. 5764 */ 5765 linkwatch_run_queue(); 5766 } 5767 5768 __rtnl_unlock(); 5769 5770 rebroadcast_time = jiffies; 5771 } 5772 5773 msleep(250); 5774 5775 refcnt = netdev_refcnt_read(dev); 5776 5777 if (time_after(jiffies, warning_time + 10 * HZ)) { 5778 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5779 dev->name, refcnt); 5780 warning_time = jiffies; 5781 } 5782 } 5783 } 5784 5785 /* The sequence is: 5786 * 5787 * rtnl_lock(); 5788 * ... 5789 * register_netdevice(x1); 5790 * register_netdevice(x2); 5791 * ... 5792 * unregister_netdevice(y1); 5793 * unregister_netdevice(y2); 5794 * ... 5795 * rtnl_unlock(); 5796 * free_netdev(y1); 5797 * free_netdev(y2); 5798 * 5799 * We are invoked by rtnl_unlock(). 5800 * This allows us to deal with problems: 5801 * 1) We can delete sysfs objects which invoke hotplug 5802 * without deadlocking with linkwatch via keventd. 5803 * 2) Since we run with the RTNL semaphore not held, we can sleep 5804 * safely in order to wait for the netdev refcnt to drop to zero. 5805 * 5806 * We must not return until all unregister events added during 5807 * the interval the lock was held have been completed. 5808 */ 5809 void netdev_run_todo(void) 5810 { 5811 struct list_head list; 5812 5813 /* Snapshot list, allow later requests */ 5814 list_replace_init(&net_todo_list, &list); 5815 5816 __rtnl_unlock(); 5817 5818 /* Wait for rcu callbacks to finish before attempting to drain 5819 * the device list. This usually avoids a 250ms wait. 5820 */ 5821 if (!list_empty(&list)) 5822 rcu_barrier(); 5823 5824 while (!list_empty(&list)) { 5825 struct net_device *dev 5826 = list_first_entry(&list, struct net_device, todo_list); 5827 list_del(&dev->todo_list); 5828 5829 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5830 pr_err("network todo '%s' but state %d\n", 5831 dev->name, dev->reg_state); 5832 dump_stack(); 5833 continue; 5834 } 5835 5836 dev->reg_state = NETREG_UNREGISTERED; 5837 5838 on_each_cpu(flush_backlog, dev, 1); 5839 5840 netdev_wait_allrefs(dev); 5841 5842 /* paranoia */ 5843 BUG_ON(netdev_refcnt_read(dev)); 5844 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5845 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5846 WARN_ON(dev->dn_ptr); 5847 5848 if (dev->destructor) 5849 dev->destructor(dev); 5850 5851 /* Free network device */ 5852 kobject_put(&dev->dev.kobj); 5853 } 5854 } 5855 5856 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5857 * fields in the same order, with only the type differing. 5858 */ 5859 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5860 const struct net_device_stats *netdev_stats) 5861 { 5862 #if BITS_PER_LONG == 64 5863 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5864 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5865 #else 5866 size_t i, n = sizeof(*stats64) / sizeof(u64); 5867 const unsigned long *src = (const unsigned long *)netdev_stats; 5868 u64 *dst = (u64 *)stats64; 5869 5870 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5871 sizeof(*stats64) / sizeof(u64)); 5872 for (i = 0; i < n; i++) 5873 dst[i] = src[i]; 5874 #endif 5875 } 5876 EXPORT_SYMBOL(netdev_stats_to_stats64); 5877 5878 /** 5879 * dev_get_stats - get network device statistics 5880 * @dev: device to get statistics from 5881 * @storage: place to store stats 5882 * 5883 * Get network statistics from device. Return @storage. 5884 * The device driver may provide its own method by setting 5885 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5886 * otherwise the internal statistics structure is used. 5887 */ 5888 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5889 struct rtnl_link_stats64 *storage) 5890 { 5891 const struct net_device_ops *ops = dev->netdev_ops; 5892 5893 if (ops->ndo_get_stats64) { 5894 memset(storage, 0, sizeof(*storage)); 5895 ops->ndo_get_stats64(dev, storage); 5896 } else if (ops->ndo_get_stats) { 5897 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5898 } else { 5899 netdev_stats_to_stats64(storage, &dev->stats); 5900 } 5901 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5902 return storage; 5903 } 5904 EXPORT_SYMBOL(dev_get_stats); 5905 5906 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5907 { 5908 struct netdev_queue *queue = dev_ingress_queue(dev); 5909 5910 #ifdef CONFIG_NET_CLS_ACT 5911 if (queue) 5912 return queue; 5913 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5914 if (!queue) 5915 return NULL; 5916 netdev_init_one_queue(dev, queue, NULL); 5917 queue->qdisc = &noop_qdisc; 5918 queue->qdisc_sleeping = &noop_qdisc; 5919 rcu_assign_pointer(dev->ingress_queue, queue); 5920 #endif 5921 return queue; 5922 } 5923 5924 /** 5925 * alloc_netdev_mqs - allocate network device 5926 * @sizeof_priv: size of private data to allocate space for 5927 * @name: device name format string 5928 * @setup: callback to initialize device 5929 * @txqs: the number of TX subqueues to allocate 5930 * @rxqs: the number of RX subqueues to allocate 5931 * 5932 * Allocates a struct net_device with private data area for driver use 5933 * and performs basic initialization. Also allocates subquue structs 5934 * for each queue on the device. 5935 */ 5936 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5937 void (*setup)(struct net_device *), 5938 unsigned int txqs, unsigned int rxqs) 5939 { 5940 struct net_device *dev; 5941 size_t alloc_size; 5942 struct net_device *p; 5943 5944 BUG_ON(strlen(name) >= sizeof(dev->name)); 5945 5946 if (txqs < 1) { 5947 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5948 return NULL; 5949 } 5950 5951 #ifdef CONFIG_RPS 5952 if (rxqs < 1) { 5953 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5954 return NULL; 5955 } 5956 #endif 5957 5958 alloc_size = sizeof(struct net_device); 5959 if (sizeof_priv) { 5960 /* ensure 32-byte alignment of private area */ 5961 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5962 alloc_size += sizeof_priv; 5963 } 5964 /* ensure 32-byte alignment of whole construct */ 5965 alloc_size += NETDEV_ALIGN - 1; 5966 5967 p = kzalloc(alloc_size, GFP_KERNEL); 5968 if (!p) { 5969 pr_err("alloc_netdev: Unable to allocate device\n"); 5970 return NULL; 5971 } 5972 5973 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5974 dev->padded = (char *)dev - (char *)p; 5975 5976 dev->pcpu_refcnt = alloc_percpu(int); 5977 if (!dev->pcpu_refcnt) 5978 goto free_p; 5979 5980 if (dev_addr_init(dev)) 5981 goto free_pcpu; 5982 5983 dev_mc_init(dev); 5984 dev_uc_init(dev); 5985 5986 dev_net_set(dev, &init_net); 5987 5988 dev->gso_max_size = GSO_MAX_SIZE; 5989 5990 INIT_LIST_HEAD(&dev->napi_list); 5991 INIT_LIST_HEAD(&dev->unreg_list); 5992 INIT_LIST_HEAD(&dev->link_watch_list); 5993 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5994 setup(dev); 5995 5996 dev->num_tx_queues = txqs; 5997 dev->real_num_tx_queues = txqs; 5998 if (netif_alloc_netdev_queues(dev)) 5999 goto free_all; 6000 6001 #ifdef CONFIG_RPS 6002 dev->num_rx_queues = rxqs; 6003 dev->real_num_rx_queues = rxqs; 6004 if (netif_alloc_rx_queues(dev)) 6005 goto free_all; 6006 #endif 6007 6008 strcpy(dev->name, name); 6009 dev->group = INIT_NETDEV_GROUP; 6010 return dev; 6011 6012 free_all: 6013 free_netdev(dev); 6014 return NULL; 6015 6016 free_pcpu: 6017 free_percpu(dev->pcpu_refcnt); 6018 kfree(dev->_tx); 6019 #ifdef CONFIG_RPS 6020 kfree(dev->_rx); 6021 #endif 6022 6023 free_p: 6024 kfree(p); 6025 return NULL; 6026 } 6027 EXPORT_SYMBOL(alloc_netdev_mqs); 6028 6029 /** 6030 * free_netdev - free network device 6031 * @dev: device 6032 * 6033 * This function does the last stage of destroying an allocated device 6034 * interface. The reference to the device object is released. 6035 * If this is the last reference then it will be freed. 6036 */ 6037 void free_netdev(struct net_device *dev) 6038 { 6039 struct napi_struct *p, *n; 6040 6041 release_net(dev_net(dev)); 6042 6043 kfree(dev->_tx); 6044 #ifdef CONFIG_RPS 6045 kfree(dev->_rx); 6046 #endif 6047 6048 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6049 6050 /* Flush device addresses */ 6051 dev_addr_flush(dev); 6052 6053 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6054 netif_napi_del(p); 6055 6056 free_percpu(dev->pcpu_refcnt); 6057 dev->pcpu_refcnt = NULL; 6058 6059 /* Compatibility with error handling in drivers */ 6060 if (dev->reg_state == NETREG_UNINITIALIZED) { 6061 kfree((char *)dev - dev->padded); 6062 return; 6063 } 6064 6065 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6066 dev->reg_state = NETREG_RELEASED; 6067 6068 /* will free via device release */ 6069 put_device(&dev->dev); 6070 } 6071 EXPORT_SYMBOL(free_netdev); 6072 6073 /** 6074 * synchronize_net - Synchronize with packet receive processing 6075 * 6076 * Wait for packets currently being received to be done. 6077 * Does not block later packets from starting. 6078 */ 6079 void synchronize_net(void) 6080 { 6081 might_sleep(); 6082 if (rtnl_is_locked()) 6083 synchronize_rcu_expedited(); 6084 else 6085 synchronize_rcu(); 6086 } 6087 EXPORT_SYMBOL(synchronize_net); 6088 6089 /** 6090 * unregister_netdevice_queue - remove device from the kernel 6091 * @dev: device 6092 * @head: list 6093 * 6094 * This function shuts down a device interface and removes it 6095 * from the kernel tables. 6096 * If head not NULL, device is queued to be unregistered later. 6097 * 6098 * Callers must hold the rtnl semaphore. You may want 6099 * unregister_netdev() instead of this. 6100 */ 6101 6102 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6103 { 6104 ASSERT_RTNL(); 6105 6106 if (head) { 6107 list_move_tail(&dev->unreg_list, head); 6108 } else { 6109 rollback_registered(dev); 6110 /* Finish processing unregister after unlock */ 6111 net_set_todo(dev); 6112 } 6113 } 6114 EXPORT_SYMBOL(unregister_netdevice_queue); 6115 6116 /** 6117 * unregister_netdevice_many - unregister many devices 6118 * @head: list of devices 6119 */ 6120 void unregister_netdevice_many(struct list_head *head) 6121 { 6122 struct net_device *dev; 6123 6124 if (!list_empty(head)) { 6125 rollback_registered_many(head); 6126 list_for_each_entry(dev, head, unreg_list) 6127 net_set_todo(dev); 6128 } 6129 } 6130 EXPORT_SYMBOL(unregister_netdevice_many); 6131 6132 /** 6133 * unregister_netdev - remove device from the kernel 6134 * @dev: device 6135 * 6136 * This function shuts down a device interface and removes it 6137 * from the kernel tables. 6138 * 6139 * This is just a wrapper for unregister_netdevice that takes 6140 * the rtnl semaphore. In general you want to use this and not 6141 * unregister_netdevice. 6142 */ 6143 void unregister_netdev(struct net_device *dev) 6144 { 6145 rtnl_lock(); 6146 unregister_netdevice(dev); 6147 rtnl_unlock(); 6148 } 6149 EXPORT_SYMBOL(unregister_netdev); 6150 6151 /** 6152 * dev_change_net_namespace - move device to different nethost namespace 6153 * @dev: device 6154 * @net: network namespace 6155 * @pat: If not NULL name pattern to try if the current device name 6156 * is already taken in the destination network namespace. 6157 * 6158 * This function shuts down a device interface and moves it 6159 * to a new network namespace. On success 0 is returned, on 6160 * a failure a netagive errno code is returned. 6161 * 6162 * Callers must hold the rtnl semaphore. 6163 */ 6164 6165 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6166 { 6167 int err; 6168 6169 ASSERT_RTNL(); 6170 6171 /* Don't allow namespace local devices to be moved. */ 6172 err = -EINVAL; 6173 if (dev->features & NETIF_F_NETNS_LOCAL) 6174 goto out; 6175 6176 /* Ensure the device has been registrered */ 6177 err = -EINVAL; 6178 if (dev->reg_state != NETREG_REGISTERED) 6179 goto out; 6180 6181 /* Get out if there is nothing todo */ 6182 err = 0; 6183 if (net_eq(dev_net(dev), net)) 6184 goto out; 6185 6186 /* Pick the destination device name, and ensure 6187 * we can use it in the destination network namespace. 6188 */ 6189 err = -EEXIST; 6190 if (__dev_get_by_name(net, dev->name)) { 6191 /* We get here if we can't use the current device name */ 6192 if (!pat) 6193 goto out; 6194 if (dev_get_valid_name(dev, pat) < 0) 6195 goto out; 6196 } 6197 6198 /* 6199 * And now a mini version of register_netdevice unregister_netdevice. 6200 */ 6201 6202 /* If device is running close it first. */ 6203 dev_close(dev); 6204 6205 /* And unlink it from device chain */ 6206 err = -ENODEV; 6207 unlist_netdevice(dev); 6208 6209 synchronize_net(); 6210 6211 /* Shutdown queueing discipline. */ 6212 dev_shutdown(dev); 6213 6214 /* Notify protocols, that we are about to destroy 6215 this device. They should clean all the things. 6216 6217 Note that dev->reg_state stays at NETREG_REGISTERED. 6218 This is wanted because this way 8021q and macvlan know 6219 the device is just moving and can keep their slaves up. 6220 */ 6221 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6222 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6223 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6224 6225 /* 6226 * Flush the unicast and multicast chains 6227 */ 6228 dev_uc_flush(dev); 6229 dev_mc_flush(dev); 6230 6231 /* Actually switch the network namespace */ 6232 dev_net_set(dev, net); 6233 6234 /* If there is an ifindex conflict assign a new one */ 6235 if (__dev_get_by_index(net, dev->ifindex)) { 6236 int iflink = (dev->iflink == dev->ifindex); 6237 dev->ifindex = dev_new_index(net); 6238 if (iflink) 6239 dev->iflink = dev->ifindex; 6240 } 6241 6242 /* Fixup kobjects */ 6243 err = device_rename(&dev->dev, dev->name); 6244 WARN_ON(err); 6245 6246 /* Add the device back in the hashes */ 6247 list_netdevice(dev); 6248 6249 /* Notify protocols, that a new device appeared. */ 6250 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6251 6252 /* 6253 * Prevent userspace races by waiting until the network 6254 * device is fully setup before sending notifications. 6255 */ 6256 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6257 6258 synchronize_net(); 6259 err = 0; 6260 out: 6261 return err; 6262 } 6263 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6264 6265 static int dev_cpu_callback(struct notifier_block *nfb, 6266 unsigned long action, 6267 void *ocpu) 6268 { 6269 struct sk_buff **list_skb; 6270 struct sk_buff *skb; 6271 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6272 struct softnet_data *sd, *oldsd; 6273 6274 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6275 return NOTIFY_OK; 6276 6277 local_irq_disable(); 6278 cpu = smp_processor_id(); 6279 sd = &per_cpu(softnet_data, cpu); 6280 oldsd = &per_cpu(softnet_data, oldcpu); 6281 6282 /* Find end of our completion_queue. */ 6283 list_skb = &sd->completion_queue; 6284 while (*list_skb) 6285 list_skb = &(*list_skb)->next; 6286 /* Append completion queue from offline CPU. */ 6287 *list_skb = oldsd->completion_queue; 6288 oldsd->completion_queue = NULL; 6289 6290 /* Append output queue from offline CPU. */ 6291 if (oldsd->output_queue) { 6292 *sd->output_queue_tailp = oldsd->output_queue; 6293 sd->output_queue_tailp = oldsd->output_queue_tailp; 6294 oldsd->output_queue = NULL; 6295 oldsd->output_queue_tailp = &oldsd->output_queue; 6296 } 6297 /* Append NAPI poll list from offline CPU. */ 6298 if (!list_empty(&oldsd->poll_list)) { 6299 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6300 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6301 } 6302 6303 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6304 local_irq_enable(); 6305 6306 /* Process offline CPU's input_pkt_queue */ 6307 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6308 netif_rx(skb); 6309 input_queue_head_incr(oldsd); 6310 } 6311 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6312 netif_rx(skb); 6313 input_queue_head_incr(oldsd); 6314 } 6315 6316 return NOTIFY_OK; 6317 } 6318 6319 6320 /** 6321 * netdev_increment_features - increment feature set by one 6322 * @all: current feature set 6323 * @one: new feature set 6324 * @mask: mask feature set 6325 * 6326 * Computes a new feature set after adding a device with feature set 6327 * @one to the master device with current feature set @all. Will not 6328 * enable anything that is off in @mask. Returns the new feature set. 6329 */ 6330 netdev_features_t netdev_increment_features(netdev_features_t all, 6331 netdev_features_t one, netdev_features_t mask) 6332 { 6333 if (mask & NETIF_F_GEN_CSUM) 6334 mask |= NETIF_F_ALL_CSUM; 6335 mask |= NETIF_F_VLAN_CHALLENGED; 6336 6337 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6338 all &= one | ~NETIF_F_ALL_FOR_ALL; 6339 6340 /* If one device supports hw checksumming, set for all. */ 6341 if (all & NETIF_F_GEN_CSUM) 6342 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6343 6344 return all; 6345 } 6346 EXPORT_SYMBOL(netdev_increment_features); 6347 6348 static struct hlist_head *netdev_create_hash(void) 6349 { 6350 int i; 6351 struct hlist_head *hash; 6352 6353 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6354 if (hash != NULL) 6355 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6356 INIT_HLIST_HEAD(&hash[i]); 6357 6358 return hash; 6359 } 6360 6361 /* Initialize per network namespace state */ 6362 static int __net_init netdev_init(struct net *net) 6363 { 6364 if (net != &init_net) 6365 INIT_LIST_HEAD(&net->dev_base_head); 6366 6367 net->dev_name_head = netdev_create_hash(); 6368 if (net->dev_name_head == NULL) 6369 goto err_name; 6370 6371 net->dev_index_head = netdev_create_hash(); 6372 if (net->dev_index_head == NULL) 6373 goto err_idx; 6374 6375 return 0; 6376 6377 err_idx: 6378 kfree(net->dev_name_head); 6379 err_name: 6380 return -ENOMEM; 6381 } 6382 6383 /** 6384 * netdev_drivername - network driver for the device 6385 * @dev: network device 6386 * 6387 * Determine network driver for device. 6388 */ 6389 const char *netdev_drivername(const struct net_device *dev) 6390 { 6391 const struct device_driver *driver; 6392 const struct device *parent; 6393 const char *empty = ""; 6394 6395 parent = dev->dev.parent; 6396 if (!parent) 6397 return empty; 6398 6399 driver = parent->driver; 6400 if (driver && driver->name) 6401 return driver->name; 6402 return empty; 6403 } 6404 6405 int __netdev_printk(const char *level, const struct net_device *dev, 6406 struct va_format *vaf) 6407 { 6408 int r; 6409 6410 if (dev && dev->dev.parent) 6411 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6412 netdev_name(dev), vaf); 6413 else if (dev) 6414 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6415 else 6416 r = printk("%s(NULL net_device): %pV", level, vaf); 6417 6418 return r; 6419 } 6420 EXPORT_SYMBOL(__netdev_printk); 6421 6422 int netdev_printk(const char *level, const struct net_device *dev, 6423 const char *format, ...) 6424 { 6425 struct va_format vaf; 6426 va_list args; 6427 int r; 6428 6429 va_start(args, format); 6430 6431 vaf.fmt = format; 6432 vaf.va = &args; 6433 6434 r = __netdev_printk(level, dev, &vaf); 6435 va_end(args); 6436 6437 return r; 6438 } 6439 EXPORT_SYMBOL(netdev_printk); 6440 6441 #define define_netdev_printk_level(func, level) \ 6442 int func(const struct net_device *dev, const char *fmt, ...) \ 6443 { \ 6444 int r; \ 6445 struct va_format vaf; \ 6446 va_list args; \ 6447 \ 6448 va_start(args, fmt); \ 6449 \ 6450 vaf.fmt = fmt; \ 6451 vaf.va = &args; \ 6452 \ 6453 r = __netdev_printk(level, dev, &vaf); \ 6454 va_end(args); \ 6455 \ 6456 return r; \ 6457 } \ 6458 EXPORT_SYMBOL(func); 6459 6460 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6461 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6462 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6463 define_netdev_printk_level(netdev_err, KERN_ERR); 6464 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6465 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6466 define_netdev_printk_level(netdev_info, KERN_INFO); 6467 6468 static void __net_exit netdev_exit(struct net *net) 6469 { 6470 kfree(net->dev_name_head); 6471 kfree(net->dev_index_head); 6472 } 6473 6474 static struct pernet_operations __net_initdata netdev_net_ops = { 6475 .init = netdev_init, 6476 .exit = netdev_exit, 6477 }; 6478 6479 static void __net_exit default_device_exit(struct net *net) 6480 { 6481 struct net_device *dev, *aux; 6482 /* 6483 * Push all migratable network devices back to the 6484 * initial network namespace 6485 */ 6486 rtnl_lock(); 6487 for_each_netdev_safe(net, dev, aux) { 6488 int err; 6489 char fb_name[IFNAMSIZ]; 6490 6491 /* Ignore unmoveable devices (i.e. loopback) */ 6492 if (dev->features & NETIF_F_NETNS_LOCAL) 6493 continue; 6494 6495 /* Leave virtual devices for the generic cleanup */ 6496 if (dev->rtnl_link_ops) 6497 continue; 6498 6499 /* Push remaining network devices to init_net */ 6500 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6501 err = dev_change_net_namespace(dev, &init_net, fb_name); 6502 if (err) { 6503 pr_emerg("%s: failed to move %s to init_net: %d\n", 6504 __func__, dev->name, err); 6505 BUG(); 6506 } 6507 } 6508 rtnl_unlock(); 6509 } 6510 6511 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6512 { 6513 /* At exit all network devices most be removed from a network 6514 * namespace. Do this in the reverse order of registration. 6515 * Do this across as many network namespaces as possible to 6516 * improve batching efficiency. 6517 */ 6518 struct net_device *dev; 6519 struct net *net; 6520 LIST_HEAD(dev_kill_list); 6521 6522 rtnl_lock(); 6523 list_for_each_entry(net, net_list, exit_list) { 6524 for_each_netdev_reverse(net, dev) { 6525 if (dev->rtnl_link_ops) 6526 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6527 else 6528 unregister_netdevice_queue(dev, &dev_kill_list); 6529 } 6530 } 6531 unregister_netdevice_many(&dev_kill_list); 6532 list_del(&dev_kill_list); 6533 rtnl_unlock(); 6534 } 6535 6536 static struct pernet_operations __net_initdata default_device_ops = { 6537 .exit = default_device_exit, 6538 .exit_batch = default_device_exit_batch, 6539 }; 6540 6541 /* 6542 * Initialize the DEV module. At boot time this walks the device list and 6543 * unhooks any devices that fail to initialise (normally hardware not 6544 * present) and leaves us with a valid list of present and active devices. 6545 * 6546 */ 6547 6548 /* 6549 * This is called single threaded during boot, so no need 6550 * to take the rtnl semaphore. 6551 */ 6552 static int __init net_dev_init(void) 6553 { 6554 int i, rc = -ENOMEM; 6555 6556 BUG_ON(!dev_boot_phase); 6557 6558 if (dev_proc_init()) 6559 goto out; 6560 6561 if (netdev_kobject_init()) 6562 goto out; 6563 6564 INIT_LIST_HEAD(&ptype_all); 6565 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6566 INIT_LIST_HEAD(&ptype_base[i]); 6567 6568 if (register_pernet_subsys(&netdev_net_ops)) 6569 goto out; 6570 6571 /* 6572 * Initialise the packet receive queues. 6573 */ 6574 6575 for_each_possible_cpu(i) { 6576 struct softnet_data *sd = &per_cpu(softnet_data, i); 6577 6578 memset(sd, 0, sizeof(*sd)); 6579 skb_queue_head_init(&sd->input_pkt_queue); 6580 skb_queue_head_init(&sd->process_queue); 6581 sd->completion_queue = NULL; 6582 INIT_LIST_HEAD(&sd->poll_list); 6583 sd->output_queue = NULL; 6584 sd->output_queue_tailp = &sd->output_queue; 6585 #ifdef CONFIG_RPS 6586 sd->csd.func = rps_trigger_softirq; 6587 sd->csd.info = sd; 6588 sd->csd.flags = 0; 6589 sd->cpu = i; 6590 #endif 6591 6592 sd->backlog.poll = process_backlog; 6593 sd->backlog.weight = weight_p; 6594 sd->backlog.gro_list = NULL; 6595 sd->backlog.gro_count = 0; 6596 } 6597 6598 dev_boot_phase = 0; 6599 6600 /* The loopback device is special if any other network devices 6601 * is present in a network namespace the loopback device must 6602 * be present. Since we now dynamically allocate and free the 6603 * loopback device ensure this invariant is maintained by 6604 * keeping the loopback device as the first device on the 6605 * list of network devices. Ensuring the loopback devices 6606 * is the first device that appears and the last network device 6607 * that disappears. 6608 */ 6609 if (register_pernet_device(&loopback_net_ops)) 6610 goto out; 6611 6612 if (register_pernet_device(&default_device_ops)) 6613 goto out; 6614 6615 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6616 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6617 6618 hotcpu_notifier(dev_cpu_callback, 0); 6619 dst_init(); 6620 dev_mcast_init(); 6621 rc = 0; 6622 out: 6623 return rc; 6624 } 6625 6626 subsys_initcall(net_dev_init); 6627 6628 static int __init initialize_hashrnd(void) 6629 { 6630 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6631 return 0; 6632 } 6633 6634 late_initcall_sync(initialize_hashrnd); 6635 6636