xref: /linux/net/core/dev.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 /*
148  *	The list of packet types we will receive (as opposed to discard)
149  *	and the routines to invoke.
150  *
151  *	Why 16. Because with 16 the only overlap we get on a hash of the
152  *	low nibble of the protocol value is RARP/SNAP/X.25.
153  *
154  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
155  *             sure which should go first, but I bet it won't make much
156  *             difference if we are running VLANs.  The good news is that
157  *             this protocol won't be in the list unless compiled in, so
158  *             the average user (w/out VLANs) will not be adversely affected.
159  *             --BLG
160  *
161  *		0800	IP
162  *		8100    802.1Q VLAN
163  *		0001	802.3
164  *		0002	AX.25
165  *		0004	802.2
166  *		8035	RARP
167  *		0005	SNAP
168  *		0805	X.25
169  *		0806	ARP
170  *		8137	IPX
171  *		0009	Localtalk
172  *		86DD	IPv6
173  */
174 
175 #define PTYPE_HASH_SIZE	(16)
176 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
177 
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly;	/* Taps */
181 
182 /*
183  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184  * semaphore.
185  *
186  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187  *
188  * Writers must hold the rtnl semaphore while they loop through the
189  * dev_base_head list, and hold dev_base_lock for writing when they do the
190  * actual updates.  This allows pure readers to access the list even
191  * while a writer is preparing to update it.
192  *
193  * To put it another way, dev_base_lock is held for writing only to
194  * protect against pure readers; the rtnl semaphore provides the
195  * protection against other writers.
196  *
197  * See, for example usages, register_netdevice() and
198  * unregister_netdevice(), which must be called with the rtnl
199  * semaphore held.
200  */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203 
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 	while (++net->dev_base_seq == 0);
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 
251 	return 0;
252 }
253 
254 /* Device list removal
255  * caller must respect a RCU grace period before freeing/reusing dev
256  */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 	ASSERT_RTNL();
260 
261 	/* Unlink dev from the device chain */
262 	write_lock_bh(&dev_base_lock);
263 	list_del_rcu(&dev->dev_list);
264 	hlist_del_rcu(&dev->name_hlist);
265 	hlist_del_rcu(&dev->index_hlist);
266 	write_unlock_bh(&dev_base_lock);
267 
268 	dev_base_seq_inc(dev_net(dev));
269 }
270 
271 /*
272  *	Our notifier list
273  */
274 
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276 
277 /*
278  *	Device drivers call our routines to queue packets here. We empty the
279  *	queue in the local softnet handler.
280  */
281 
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284 
285 #ifdef CONFIG_LOCKDEP
286 /*
287  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288  * according to dev->type
289  */
290 static const unsigned short netdev_lock_type[] =
291 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306 
307 static const char *const netdev_lock_name[] =
308 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323 
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 	int i;
330 
331 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 		if (netdev_lock_type[i] == dev_type)
333 			return i;
334 	/* the last key is used by default */
335 	return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337 
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 						 unsigned short dev_type)
340 {
341 	int i;
342 
343 	i = netdev_lock_pos(dev_type);
344 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 				   netdev_lock_name[i]);
346 }
347 
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 	int i;
351 
352 	i = netdev_lock_pos(dev->type);
353 	lockdep_set_class_and_name(&dev->addr_list_lock,
354 				   &netdev_addr_lock_key[i],
355 				   netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 						 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366 
367 /*******************************************************************************
368 
369 		Protocol management and registration routines
370 
371 *******************************************************************************/
372 
373 /*
374  *	Add a protocol ID to the list. Now that the input handler is
375  *	smarter we can dispense with all the messy stuff that used to be
376  *	here.
377  *
378  *	BEWARE!!! Protocol handlers, mangling input packets,
379  *	MUST BE last in hash buckets and checking protocol handlers
380  *	MUST start from promiscuous ptype_all chain in net_bh.
381  *	It is true now, do not change it.
382  *	Explanation follows: if protocol handler, mangling packet, will
383  *	be the first on list, it is not able to sense, that packet
384  *	is cloned and should be copied-on-write, so that it will
385  *	change it and subsequent readers will get broken packet.
386  *							--ANK (980803)
387  */
388 
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 	if (pt->type == htons(ETH_P_ALL))
392 		return &ptype_all;
393 	else
394 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396 
397 /**
398  *	dev_add_pack - add packet handler
399  *	@pt: packet type declaration
400  *
401  *	Add a protocol handler to the networking stack. The passed &packet_type
402  *	is linked into kernel lists and may not be freed until it has been
403  *	removed from the kernel lists.
404  *
405  *	This call does not sleep therefore it can not
406  *	guarantee all CPU's that are in middle of receiving packets
407  *	will see the new packet type (until the next received packet).
408  */
409 
410 void dev_add_pack(struct packet_type *pt)
411 {
412 	struct list_head *head = ptype_head(pt);
413 
414 	spin_lock(&ptype_lock);
415 	list_add_rcu(&pt->list, head);
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419 
420 /**
421  *	__dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *      The packet type might still be in use by receivers
430  *	and must not be freed until after all the CPU's have gone
431  *	through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 	struct list_head *head = ptype_head(pt);
436 	struct packet_type *pt1;
437 
438 	spin_lock(&ptype_lock);
439 
440 	list_for_each_entry(pt1, head, list) {
441 		if (pt == pt1) {
442 			list_del_rcu(&pt->list);
443 			goto out;
444 		}
445 	}
446 
447 	pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 	spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452 
453 /**
454  *	dev_remove_pack	 - remove packet handler
455  *	@pt: packet type declaration
456  *
457  *	Remove a protocol handler that was previously added to the kernel
458  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *	from the kernel lists and can be freed or reused once this function
460  *	returns.
461  *
462  *	This call sleeps to guarantee that no CPU is looking at the packet
463  *	type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 	__dev_remove_pack(pt);
468 
469 	synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472 
473 /******************************************************************************
474 
475 		      Device Boot-time Settings Routines
476 
477 *******************************************************************************/
478 
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481 
482 /**
483  *	netdev_boot_setup_add	- add new setup entry
484  *	@name: name of the device
485  *	@map: configured settings for the device
486  *
487  *	Adds new setup entry to the dev_boot_setup list.  The function
488  *	returns 0 on error and 1 on success.  This is a generic routine to
489  *	all netdevices.
490  */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 	struct netdev_boot_setup *s;
494 	int i;
495 
496 	s = dev_boot_setup;
497 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 			memset(s[i].name, 0, sizeof(s[i].name));
500 			strlcpy(s[i].name, name, IFNAMSIZ);
501 			memcpy(&s[i].map, map, sizeof(s[i].map));
502 			break;
503 		}
504 	}
505 
506 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508 
509 /**
510  *	netdev_boot_setup_check	- check boot time settings
511  *	@dev: the netdevice
512  *
513  * 	Check boot time settings for the device.
514  *	The found settings are set for the device to be used
515  *	later in the device probing.
516  *	Returns 0 if no settings found, 1 if they are.
517  */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 	struct netdev_boot_setup *s = dev_boot_setup;
521 	int i;
522 
523 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 		    !strcmp(dev->name, s[i].name)) {
526 			dev->irq 	= s[i].map.irq;
527 			dev->base_addr 	= s[i].map.base_addr;
528 			dev->mem_start 	= s[i].map.mem_start;
529 			dev->mem_end 	= s[i].map.mem_end;
530 			return 1;
531 		}
532 	}
533 	return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536 
537 
538 /**
539  *	netdev_boot_base	- get address from boot time settings
540  *	@prefix: prefix for network device
541  *	@unit: id for network device
542  *
543  * 	Check boot time settings for the base address of device.
544  *	The found settings are set for the device to be used
545  *	later in the device probing.
546  *	Returns 0 if no settings found.
547  */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 	const struct netdev_boot_setup *s = dev_boot_setup;
551 	char name[IFNAMSIZ];
552 	int i;
553 
554 	sprintf(name, "%s%d", prefix, unit);
555 
556 	/*
557 	 * If device already registered then return base of 1
558 	 * to indicate not to probe for this interface
559 	 */
560 	if (__dev_get_by_name(&init_net, name))
561 		return 1;
562 
563 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 		if (!strcmp(name, s[i].name))
565 			return s[i].map.base_addr;
566 	return 0;
567 }
568 
569 /*
570  * Saves at boot time configured settings for any netdevice.
571  */
572 int __init netdev_boot_setup(char *str)
573 {
574 	int ints[5];
575 	struct ifmap map;
576 
577 	str = get_options(str, ARRAY_SIZE(ints), ints);
578 	if (!str || !*str)
579 		return 0;
580 
581 	/* Save settings */
582 	memset(&map, 0, sizeof(map));
583 	if (ints[0] > 0)
584 		map.irq = ints[1];
585 	if (ints[0] > 1)
586 		map.base_addr = ints[2];
587 	if (ints[0] > 2)
588 		map.mem_start = ints[3];
589 	if (ints[0] > 3)
590 		map.mem_end = ints[4];
591 
592 	/* Add new entry to the list */
593 	return netdev_boot_setup_add(str, &map);
594 }
595 
596 __setup("netdev=", netdev_boot_setup);
597 
598 /*******************************************************************************
599 
600 			    Device Interface Subroutines
601 
602 *******************************************************************************/
603 
604 /**
605  *	__dev_get_by_name	- find a device by its name
606  *	@net: the applicable net namespace
607  *	@name: name to find
608  *
609  *	Find an interface by name. Must be called under RTNL semaphore
610  *	or @dev_base_lock. If the name is found a pointer to the device
611  *	is returned. If the name is not found then %NULL is returned. The
612  *	reference counters are not incremented so the caller must be
613  *	careful with locks.
614  */
615 
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 	struct hlist_node *p;
619 	struct net_device *dev;
620 	struct hlist_head *head = dev_name_hash(net, name);
621 
622 	hlist_for_each_entry(dev, p, head, name_hlist)
623 		if (!strncmp(dev->name, name, IFNAMSIZ))
624 			return dev;
625 
626 	return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629 
630 /**
631  *	dev_get_by_name_rcu	- find a device by its name
632  *	@net: the applicable net namespace
633  *	@name: name to find
634  *
635  *	Find an interface by name.
636  *	If the name is found a pointer to the device is returned.
637  * 	If the name is not found then %NULL is returned.
638  *	The reference counters are not incremented so the caller must be
639  *	careful with locks. The caller must hold RCU lock.
640  */
641 
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 	struct hlist_node *p;
645 	struct net_device *dev;
646 	struct hlist_head *head = dev_name_hash(net, name);
647 
648 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 		if (!strncmp(dev->name, name, IFNAMSIZ))
650 			return dev;
651 
652 	return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655 
656 /**
657  *	dev_get_by_name		- find a device by its name
658  *	@net: the applicable net namespace
659  *	@name: name to find
660  *
661  *	Find an interface by name. This can be called from any
662  *	context and does its own locking. The returned handle has
663  *	the usage count incremented and the caller must use dev_put() to
664  *	release it when it is no longer needed. %NULL is returned if no
665  *	matching device is found.
666  */
667 
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 	struct net_device *dev;
671 
672 	rcu_read_lock();
673 	dev = dev_get_by_name_rcu(net, name);
674 	if (dev)
675 		dev_hold(dev);
676 	rcu_read_unlock();
677 	return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680 
681 /**
682  *	__dev_get_by_index - find a device by its ifindex
683  *	@net: the applicable net namespace
684  *	@ifindex: index of device
685  *
686  *	Search for an interface by index. Returns %NULL if the device
687  *	is not found or a pointer to the device. The device has not
688  *	had its reference counter increased so the caller must be careful
689  *	about locking. The caller must hold either the RTNL semaphore
690  *	or @dev_base_lock.
691  */
692 
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 	struct hlist_node *p;
696 	struct net_device *dev;
697 	struct hlist_head *head = dev_index_hash(net, ifindex);
698 
699 	hlist_for_each_entry(dev, p, head, index_hlist)
700 		if (dev->ifindex == ifindex)
701 			return dev;
702 
703 	return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706 
707 /**
708  *	dev_get_by_index_rcu - find a device by its ifindex
709  *	@net: the applicable net namespace
710  *	@ifindex: index of device
711  *
712  *	Search for an interface by index. Returns %NULL if the device
713  *	is not found or a pointer to the device. The device has not
714  *	had its reference counter increased so the caller must be careful
715  *	about locking. The caller must hold RCU lock.
716  */
717 
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 	struct hlist_node *p;
721 	struct net_device *dev;
722 	struct hlist_head *head = dev_index_hash(net, ifindex);
723 
724 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 		if (dev->ifindex == ifindex)
726 			return dev;
727 
728 	return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731 
732 
733 /**
734  *	dev_get_by_index - find a device by its ifindex
735  *	@net: the applicable net namespace
736  *	@ifindex: index of device
737  *
738  *	Search for an interface by index. Returns NULL if the device
739  *	is not found or a pointer to the device. The device returned has
740  *	had a reference added and the pointer is safe until the user calls
741  *	dev_put to indicate they have finished with it.
742  */
743 
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 	struct net_device *dev;
747 
748 	rcu_read_lock();
749 	dev = dev_get_by_index_rcu(net, ifindex);
750 	if (dev)
751 		dev_hold(dev);
752 	rcu_read_unlock();
753 	return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756 
757 /**
758  *	dev_getbyhwaddr_rcu - find a device by its hardware address
759  *	@net: the applicable net namespace
760  *	@type: media type of device
761  *	@ha: hardware address
762  *
763  *	Search for an interface by MAC address. Returns NULL if the device
764  *	is not found or a pointer to the device.
765  *	The caller must hold RCU or RTNL.
766  *	The returned device has not had its ref count increased
767  *	and the caller must therefore be careful about locking
768  *
769  */
770 
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 				       const char *ha)
773 {
774 	struct net_device *dev;
775 
776 	for_each_netdev_rcu(net, dev)
777 		if (dev->type == type &&
778 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
779 			return dev;
780 
781 	return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784 
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 	struct net_device *dev;
788 
789 	ASSERT_RTNL();
790 	for_each_netdev(net, dev)
791 		if (dev->type == type)
792 			return dev;
793 
794 	return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797 
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 	struct net_device *dev, *ret = NULL;
801 
802 	rcu_read_lock();
803 	for_each_netdev_rcu(net, dev)
804 		if (dev->type == type) {
805 			dev_hold(dev);
806 			ret = dev;
807 			break;
808 		}
809 	rcu_read_unlock();
810 	return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813 
814 /**
815  *	dev_get_by_flags_rcu - find any device with given flags
816  *	@net: the applicable net namespace
817  *	@if_flags: IFF_* values
818  *	@mask: bitmask of bits in if_flags to check
819  *
820  *	Search for any interface with the given flags. Returns NULL if a device
821  *	is not found or a pointer to the device. Must be called inside
822  *	rcu_read_lock(), and result refcount is unchanged.
823  */
824 
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 				    unsigned short mask)
827 {
828 	struct net_device *dev, *ret;
829 
830 	ret = NULL;
831 	for_each_netdev_rcu(net, dev) {
832 		if (((dev->flags ^ if_flags) & mask) == 0) {
833 			ret = dev;
834 			break;
835 		}
836 	}
837 	return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840 
841 /**
842  *	dev_valid_name - check if name is okay for network device
843  *	@name: name string
844  *
845  *	Network device names need to be valid file names to
846  *	to allow sysfs to work.  We also disallow any kind of
847  *	whitespace.
848  */
849 bool dev_valid_name(const char *name)
850 {
851 	if (*name == '\0')
852 		return false;
853 	if (strlen(name) >= IFNAMSIZ)
854 		return false;
855 	if (!strcmp(name, ".") || !strcmp(name, ".."))
856 		return false;
857 
858 	while (*name) {
859 		if (*name == '/' || isspace(*name))
860 			return false;
861 		name++;
862 	}
863 	return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866 
867 /**
868  *	__dev_alloc_name - allocate a name for a device
869  *	@net: network namespace to allocate the device name in
870  *	@name: name format string
871  *	@buf:  scratch buffer and result name string
872  *
873  *	Passed a format string - eg "lt%d" it will try and find a suitable
874  *	id. It scans list of devices to build up a free map, then chooses
875  *	the first empty slot. The caller must hold the dev_base or rtnl lock
876  *	while allocating the name and adding the device in order to avoid
877  *	duplicates.
878  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879  *	Returns the number of the unit assigned or a negative errno code.
880  */
881 
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 	int i = 0;
885 	const char *p;
886 	const int max_netdevices = 8*PAGE_SIZE;
887 	unsigned long *inuse;
888 	struct net_device *d;
889 
890 	p = strnchr(name, IFNAMSIZ-1, '%');
891 	if (p) {
892 		/*
893 		 * Verify the string as this thing may have come from
894 		 * the user.  There must be either one "%d" and no other "%"
895 		 * characters.
896 		 */
897 		if (p[1] != 'd' || strchr(p + 2, '%'))
898 			return -EINVAL;
899 
900 		/* Use one page as a bit array of possible slots */
901 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 		if (!inuse)
903 			return -ENOMEM;
904 
905 		for_each_netdev(net, d) {
906 			if (!sscanf(d->name, name, &i))
907 				continue;
908 			if (i < 0 || i >= max_netdevices)
909 				continue;
910 
911 			/*  avoid cases where sscanf is not exact inverse of printf */
912 			snprintf(buf, IFNAMSIZ, name, i);
913 			if (!strncmp(buf, d->name, IFNAMSIZ))
914 				set_bit(i, inuse);
915 		}
916 
917 		i = find_first_zero_bit(inuse, max_netdevices);
918 		free_page((unsigned long) inuse);
919 	}
920 
921 	if (buf != name)
922 		snprintf(buf, IFNAMSIZ, name, i);
923 	if (!__dev_get_by_name(net, buf))
924 		return i;
925 
926 	/* It is possible to run out of possible slots
927 	 * when the name is long and there isn't enough space left
928 	 * for the digits, or if all bits are used.
929 	 */
930 	return -ENFILE;
931 }
932 
933 /**
934  *	dev_alloc_name - allocate a name for a device
935  *	@dev: device
936  *	@name: name format string
937  *
938  *	Passed a format string - eg "lt%d" it will try and find a suitable
939  *	id. It scans list of devices to build up a free map, then chooses
940  *	the first empty slot. The caller must hold the dev_base or rtnl lock
941  *	while allocating the name and adding the device in order to avoid
942  *	duplicates.
943  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944  *	Returns the number of the unit assigned or a negative errno code.
945  */
946 
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 	char buf[IFNAMSIZ];
950 	struct net *net;
951 	int ret;
952 
953 	BUG_ON(!dev_net(dev));
954 	net = dev_net(dev);
955 	ret = __dev_alloc_name(net, name, buf);
956 	if (ret >= 0)
957 		strlcpy(dev->name, buf, IFNAMSIZ);
958 	return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961 
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 	struct net *net;
965 
966 	BUG_ON(!dev_net(dev));
967 	net = dev_net(dev);
968 
969 	if (!dev_valid_name(name))
970 		return -EINVAL;
971 
972 	if (strchr(name, '%'))
973 		return dev_alloc_name(dev, name);
974 	else if (__dev_get_by_name(net, name))
975 		return -EEXIST;
976 	else if (dev->name != name)
977 		strlcpy(dev->name, name, IFNAMSIZ);
978 
979 	return 0;
980 }
981 
982 /**
983  *	dev_change_name - change name of a device
984  *	@dev: device
985  *	@newname: name (or format string) must be at least IFNAMSIZ
986  *
987  *	Change name of a device, can pass format strings "eth%d".
988  *	for wildcarding.
989  */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 	char oldname[IFNAMSIZ];
993 	int err = 0;
994 	int ret;
995 	struct net *net;
996 
997 	ASSERT_RTNL();
998 	BUG_ON(!dev_net(dev));
999 
1000 	net = dev_net(dev);
1001 	if (dev->flags & IFF_UP)
1002 		return -EBUSY;
1003 
1004 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 		return 0;
1006 
1007 	memcpy(oldname, dev->name, IFNAMSIZ);
1008 
1009 	err = dev_get_valid_name(dev, newname);
1010 	if (err < 0)
1011 		return err;
1012 
1013 rollback:
1014 	ret = device_rename(&dev->dev, dev->name);
1015 	if (ret) {
1016 		memcpy(dev->name, oldname, IFNAMSIZ);
1017 		return ret;
1018 	}
1019 
1020 	write_lock_bh(&dev_base_lock);
1021 	hlist_del_rcu(&dev->name_hlist);
1022 	write_unlock_bh(&dev_base_lock);
1023 
1024 	synchronize_rcu();
1025 
1026 	write_lock_bh(&dev_base_lock);
1027 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 	write_unlock_bh(&dev_base_lock);
1029 
1030 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 	ret = notifier_to_errno(ret);
1032 
1033 	if (ret) {
1034 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1035 		if (err >= 0) {
1036 			err = ret;
1037 			memcpy(dev->name, oldname, IFNAMSIZ);
1038 			goto rollback;
1039 		} else {
1040 			pr_err("%s: name change rollback failed: %d\n",
1041 			       dev->name, ret);
1042 		}
1043 	}
1044 
1045 	return err;
1046 }
1047 
1048 /**
1049  *	dev_set_alias - change ifalias of a device
1050  *	@dev: device
1051  *	@alias: name up to IFALIASZ
1052  *	@len: limit of bytes to copy from info
1053  *
1054  *	Set ifalias for a device,
1055  */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 	ASSERT_RTNL();
1059 
1060 	if (len >= IFALIASZ)
1061 		return -EINVAL;
1062 
1063 	if (!len) {
1064 		if (dev->ifalias) {
1065 			kfree(dev->ifalias);
1066 			dev->ifalias = NULL;
1067 		}
1068 		return 0;
1069 	}
1070 
1071 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1072 	if (!dev->ifalias)
1073 		return -ENOMEM;
1074 
1075 	strlcpy(dev->ifalias, alias, len+1);
1076 	return len;
1077 }
1078 
1079 
1080 /**
1081  *	netdev_features_change - device changes features
1082  *	@dev: device to cause notification
1083  *
1084  *	Called to indicate a device has changed features.
1085  */
1086 void netdev_features_change(struct net_device *dev)
1087 {
1088 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1089 }
1090 EXPORT_SYMBOL(netdev_features_change);
1091 
1092 /**
1093  *	netdev_state_change - device changes state
1094  *	@dev: device to cause notification
1095  *
1096  *	Called to indicate a device has changed state. This function calls
1097  *	the notifier chains for netdev_chain and sends a NEWLINK message
1098  *	to the routing socket.
1099  */
1100 void netdev_state_change(struct net_device *dev)
1101 {
1102 	if (dev->flags & IFF_UP) {
1103 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1104 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1105 	}
1106 }
1107 EXPORT_SYMBOL(netdev_state_change);
1108 
1109 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1110 {
1111 	return call_netdevice_notifiers(event, dev);
1112 }
1113 EXPORT_SYMBOL(netdev_bonding_change);
1114 
1115 /**
1116  *	dev_load 	- load a network module
1117  *	@net: the applicable net namespace
1118  *	@name: name of interface
1119  *
1120  *	If a network interface is not present and the process has suitable
1121  *	privileges this function loads the module. If module loading is not
1122  *	available in this kernel then it becomes a nop.
1123  */
1124 
1125 void dev_load(struct net *net, const char *name)
1126 {
1127 	struct net_device *dev;
1128 	int no_module;
1129 
1130 	rcu_read_lock();
1131 	dev = dev_get_by_name_rcu(net, name);
1132 	rcu_read_unlock();
1133 
1134 	no_module = !dev;
1135 	if (no_module && capable(CAP_NET_ADMIN))
1136 		no_module = request_module("netdev-%s", name);
1137 	if (no_module && capable(CAP_SYS_MODULE)) {
1138 		if (!request_module("%s", name))
1139 			pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1140 				name);
1141 	}
1142 }
1143 EXPORT_SYMBOL(dev_load);
1144 
1145 static int __dev_open(struct net_device *dev)
1146 {
1147 	const struct net_device_ops *ops = dev->netdev_ops;
1148 	int ret;
1149 
1150 	ASSERT_RTNL();
1151 
1152 	if (!netif_device_present(dev))
1153 		return -ENODEV;
1154 
1155 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1156 	ret = notifier_to_errno(ret);
1157 	if (ret)
1158 		return ret;
1159 
1160 	set_bit(__LINK_STATE_START, &dev->state);
1161 
1162 	if (ops->ndo_validate_addr)
1163 		ret = ops->ndo_validate_addr(dev);
1164 
1165 	if (!ret && ops->ndo_open)
1166 		ret = ops->ndo_open(dev);
1167 
1168 	if (ret)
1169 		clear_bit(__LINK_STATE_START, &dev->state);
1170 	else {
1171 		dev->flags |= IFF_UP;
1172 		net_dmaengine_get();
1173 		dev_set_rx_mode(dev);
1174 		dev_activate(dev);
1175 		add_device_randomness(dev->dev_addr, dev->addr_len);
1176 	}
1177 
1178 	return ret;
1179 }
1180 
1181 /**
1182  *	dev_open	- prepare an interface for use.
1183  *	@dev:	device to open
1184  *
1185  *	Takes a device from down to up state. The device's private open
1186  *	function is invoked and then the multicast lists are loaded. Finally
1187  *	the device is moved into the up state and a %NETDEV_UP message is
1188  *	sent to the netdev notifier chain.
1189  *
1190  *	Calling this function on an active interface is a nop. On a failure
1191  *	a negative errno code is returned.
1192  */
1193 int dev_open(struct net_device *dev)
1194 {
1195 	int ret;
1196 
1197 	if (dev->flags & IFF_UP)
1198 		return 0;
1199 
1200 	ret = __dev_open(dev);
1201 	if (ret < 0)
1202 		return ret;
1203 
1204 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1205 	call_netdevice_notifiers(NETDEV_UP, dev);
1206 
1207 	return ret;
1208 }
1209 EXPORT_SYMBOL(dev_open);
1210 
1211 static int __dev_close_many(struct list_head *head)
1212 {
1213 	struct net_device *dev;
1214 
1215 	ASSERT_RTNL();
1216 	might_sleep();
1217 
1218 	list_for_each_entry(dev, head, unreg_list) {
1219 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1220 
1221 		clear_bit(__LINK_STATE_START, &dev->state);
1222 
1223 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1224 		 * can be even on different cpu. So just clear netif_running().
1225 		 *
1226 		 * dev->stop() will invoke napi_disable() on all of it's
1227 		 * napi_struct instances on this device.
1228 		 */
1229 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1230 	}
1231 
1232 	dev_deactivate_many(head);
1233 
1234 	list_for_each_entry(dev, head, unreg_list) {
1235 		const struct net_device_ops *ops = dev->netdev_ops;
1236 
1237 		/*
1238 		 *	Call the device specific close. This cannot fail.
1239 		 *	Only if device is UP
1240 		 *
1241 		 *	We allow it to be called even after a DETACH hot-plug
1242 		 *	event.
1243 		 */
1244 		if (ops->ndo_stop)
1245 			ops->ndo_stop(dev);
1246 
1247 		dev->flags &= ~IFF_UP;
1248 		net_dmaengine_put();
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static int __dev_close(struct net_device *dev)
1255 {
1256 	int retval;
1257 	LIST_HEAD(single);
1258 
1259 	list_add(&dev->unreg_list, &single);
1260 	retval = __dev_close_many(&single);
1261 	list_del(&single);
1262 	return retval;
1263 }
1264 
1265 static int dev_close_many(struct list_head *head)
1266 {
1267 	struct net_device *dev, *tmp;
1268 	LIST_HEAD(tmp_list);
1269 
1270 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1271 		if (!(dev->flags & IFF_UP))
1272 			list_move(&dev->unreg_list, &tmp_list);
1273 
1274 	__dev_close_many(head);
1275 
1276 	list_for_each_entry(dev, head, unreg_list) {
1277 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1278 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1279 	}
1280 
1281 	/* rollback_registered_many needs the complete original list */
1282 	list_splice(&tmp_list, head);
1283 	return 0;
1284 }
1285 
1286 /**
1287  *	dev_close - shutdown an interface.
1288  *	@dev: device to shutdown
1289  *
1290  *	This function moves an active device into down state. A
1291  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1292  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1293  *	chain.
1294  */
1295 int dev_close(struct net_device *dev)
1296 {
1297 	if (dev->flags & IFF_UP) {
1298 		LIST_HEAD(single);
1299 
1300 		list_add(&dev->unreg_list, &single);
1301 		dev_close_many(&single);
1302 		list_del(&single);
1303 	}
1304 	return 0;
1305 }
1306 EXPORT_SYMBOL(dev_close);
1307 
1308 
1309 /**
1310  *	dev_disable_lro - disable Large Receive Offload on a device
1311  *	@dev: device
1312  *
1313  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1314  *	called under RTNL.  This is needed if received packets may be
1315  *	forwarded to another interface.
1316  */
1317 void dev_disable_lro(struct net_device *dev)
1318 {
1319 	/*
1320 	 * If we're trying to disable lro on a vlan device
1321 	 * use the underlying physical device instead
1322 	 */
1323 	if (is_vlan_dev(dev))
1324 		dev = vlan_dev_real_dev(dev);
1325 
1326 	dev->wanted_features &= ~NETIF_F_LRO;
1327 	netdev_update_features(dev);
1328 
1329 	if (unlikely(dev->features & NETIF_F_LRO))
1330 		netdev_WARN(dev, "failed to disable LRO!\n");
1331 }
1332 EXPORT_SYMBOL(dev_disable_lro);
1333 
1334 
1335 static int dev_boot_phase = 1;
1336 
1337 /**
1338  *	register_netdevice_notifier - register a network notifier block
1339  *	@nb: notifier
1340  *
1341  *	Register a notifier to be called when network device events occur.
1342  *	The notifier passed is linked into the kernel structures and must
1343  *	not be reused until it has been unregistered. A negative errno code
1344  *	is returned on a failure.
1345  *
1346  * 	When registered all registration and up events are replayed
1347  *	to the new notifier to allow device to have a race free
1348  *	view of the network device list.
1349  */
1350 
1351 int register_netdevice_notifier(struct notifier_block *nb)
1352 {
1353 	struct net_device *dev;
1354 	struct net_device *last;
1355 	struct net *net;
1356 	int err;
1357 
1358 	rtnl_lock();
1359 	err = raw_notifier_chain_register(&netdev_chain, nb);
1360 	if (err)
1361 		goto unlock;
1362 	if (dev_boot_phase)
1363 		goto unlock;
1364 	for_each_net(net) {
1365 		for_each_netdev(net, dev) {
1366 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1367 			err = notifier_to_errno(err);
1368 			if (err)
1369 				goto rollback;
1370 
1371 			if (!(dev->flags & IFF_UP))
1372 				continue;
1373 
1374 			nb->notifier_call(nb, NETDEV_UP, dev);
1375 		}
1376 	}
1377 
1378 unlock:
1379 	rtnl_unlock();
1380 	return err;
1381 
1382 rollback:
1383 	last = dev;
1384 	for_each_net(net) {
1385 		for_each_netdev(net, dev) {
1386 			if (dev == last)
1387 				goto outroll;
1388 
1389 			if (dev->flags & IFF_UP) {
1390 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1391 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1392 			}
1393 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1394 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1395 		}
1396 	}
1397 
1398 outroll:
1399 	raw_notifier_chain_unregister(&netdev_chain, nb);
1400 	goto unlock;
1401 }
1402 EXPORT_SYMBOL(register_netdevice_notifier);
1403 
1404 /**
1405  *	unregister_netdevice_notifier - unregister a network notifier block
1406  *	@nb: notifier
1407  *
1408  *	Unregister a notifier previously registered by
1409  *	register_netdevice_notifier(). The notifier is unlinked into the
1410  *	kernel structures and may then be reused. A negative errno code
1411  *	is returned on a failure.
1412  *
1413  * 	After unregistering unregister and down device events are synthesized
1414  *	for all devices on the device list to the removed notifier to remove
1415  *	the need for special case cleanup code.
1416  */
1417 
1418 int unregister_netdevice_notifier(struct notifier_block *nb)
1419 {
1420 	struct net_device *dev;
1421 	struct net *net;
1422 	int err;
1423 
1424 	rtnl_lock();
1425 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1426 	if (err)
1427 		goto unlock;
1428 
1429 	for_each_net(net) {
1430 		for_each_netdev(net, dev) {
1431 			if (dev->flags & IFF_UP) {
1432 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1433 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1434 			}
1435 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1436 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1437 		}
1438 	}
1439 unlock:
1440 	rtnl_unlock();
1441 	return err;
1442 }
1443 EXPORT_SYMBOL(unregister_netdevice_notifier);
1444 
1445 /**
1446  *	call_netdevice_notifiers - call all network notifier blocks
1447  *      @val: value passed unmodified to notifier function
1448  *      @dev: net_device pointer passed unmodified to notifier function
1449  *
1450  *	Call all network notifier blocks.  Parameters and return value
1451  *	are as for raw_notifier_call_chain().
1452  */
1453 
1454 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1455 {
1456 	ASSERT_RTNL();
1457 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1458 }
1459 EXPORT_SYMBOL(call_netdevice_notifiers);
1460 
1461 static struct static_key netstamp_needed __read_mostly;
1462 #ifdef HAVE_JUMP_LABEL
1463 /* We are not allowed to call static_key_slow_dec() from irq context
1464  * If net_disable_timestamp() is called from irq context, defer the
1465  * static_key_slow_dec() calls.
1466  */
1467 static atomic_t netstamp_needed_deferred;
1468 #endif
1469 
1470 void net_enable_timestamp(void)
1471 {
1472 #ifdef HAVE_JUMP_LABEL
1473 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1474 
1475 	if (deferred) {
1476 		while (--deferred)
1477 			static_key_slow_dec(&netstamp_needed);
1478 		return;
1479 	}
1480 #endif
1481 	WARN_ON(in_interrupt());
1482 	static_key_slow_inc(&netstamp_needed);
1483 }
1484 EXPORT_SYMBOL(net_enable_timestamp);
1485 
1486 void net_disable_timestamp(void)
1487 {
1488 #ifdef HAVE_JUMP_LABEL
1489 	if (in_interrupt()) {
1490 		atomic_inc(&netstamp_needed_deferred);
1491 		return;
1492 	}
1493 #endif
1494 	static_key_slow_dec(&netstamp_needed);
1495 }
1496 EXPORT_SYMBOL(net_disable_timestamp);
1497 
1498 static inline void net_timestamp_set(struct sk_buff *skb)
1499 {
1500 	skb->tstamp.tv64 = 0;
1501 	if (static_key_false(&netstamp_needed))
1502 		__net_timestamp(skb);
1503 }
1504 
1505 #define net_timestamp_check(COND, SKB)			\
1506 	if (static_key_false(&netstamp_needed)) {		\
1507 		if ((COND) && !(SKB)->tstamp.tv64)	\
1508 			__net_timestamp(SKB);		\
1509 	}						\
1510 
1511 static int net_hwtstamp_validate(struct ifreq *ifr)
1512 {
1513 	struct hwtstamp_config cfg;
1514 	enum hwtstamp_tx_types tx_type;
1515 	enum hwtstamp_rx_filters rx_filter;
1516 	int tx_type_valid = 0;
1517 	int rx_filter_valid = 0;
1518 
1519 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1520 		return -EFAULT;
1521 
1522 	if (cfg.flags) /* reserved for future extensions */
1523 		return -EINVAL;
1524 
1525 	tx_type = cfg.tx_type;
1526 	rx_filter = cfg.rx_filter;
1527 
1528 	switch (tx_type) {
1529 	case HWTSTAMP_TX_OFF:
1530 	case HWTSTAMP_TX_ON:
1531 	case HWTSTAMP_TX_ONESTEP_SYNC:
1532 		tx_type_valid = 1;
1533 		break;
1534 	}
1535 
1536 	switch (rx_filter) {
1537 	case HWTSTAMP_FILTER_NONE:
1538 	case HWTSTAMP_FILTER_ALL:
1539 	case HWTSTAMP_FILTER_SOME:
1540 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1541 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1542 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1543 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1544 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1545 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1546 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1547 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1548 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1549 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1550 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1551 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1552 		rx_filter_valid = 1;
1553 		break;
1554 	}
1555 
1556 	if (!tx_type_valid || !rx_filter_valid)
1557 		return -ERANGE;
1558 
1559 	return 0;
1560 }
1561 
1562 static inline bool is_skb_forwardable(struct net_device *dev,
1563 				      struct sk_buff *skb)
1564 {
1565 	unsigned int len;
1566 
1567 	if (!(dev->flags & IFF_UP))
1568 		return false;
1569 
1570 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1571 	if (skb->len <= len)
1572 		return true;
1573 
1574 	/* if TSO is enabled, we don't care about the length as the packet
1575 	 * could be forwarded without being segmented before
1576 	 */
1577 	if (skb_is_gso(skb))
1578 		return true;
1579 
1580 	return false;
1581 }
1582 
1583 /**
1584  * dev_forward_skb - loopback an skb to another netif
1585  *
1586  * @dev: destination network device
1587  * @skb: buffer to forward
1588  *
1589  * return values:
1590  *	NET_RX_SUCCESS	(no congestion)
1591  *	NET_RX_DROP     (packet was dropped, but freed)
1592  *
1593  * dev_forward_skb can be used for injecting an skb from the
1594  * start_xmit function of one device into the receive queue
1595  * of another device.
1596  *
1597  * The receiving device may be in another namespace, so
1598  * we have to clear all information in the skb that could
1599  * impact namespace isolation.
1600  */
1601 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1602 {
1603 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1604 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1605 			atomic_long_inc(&dev->rx_dropped);
1606 			kfree_skb(skb);
1607 			return NET_RX_DROP;
1608 		}
1609 	}
1610 
1611 	skb_orphan(skb);
1612 	nf_reset(skb);
1613 
1614 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1615 		atomic_long_inc(&dev->rx_dropped);
1616 		kfree_skb(skb);
1617 		return NET_RX_DROP;
1618 	}
1619 	skb->skb_iif = 0;
1620 	skb->dev = dev;
1621 	skb_dst_drop(skb);
1622 	skb->tstamp.tv64 = 0;
1623 	skb->pkt_type = PACKET_HOST;
1624 	skb->protocol = eth_type_trans(skb, dev);
1625 	skb->mark = 0;
1626 	secpath_reset(skb);
1627 	nf_reset(skb);
1628 	return netif_rx(skb);
1629 }
1630 EXPORT_SYMBOL_GPL(dev_forward_skb);
1631 
1632 static inline int deliver_skb(struct sk_buff *skb,
1633 			      struct packet_type *pt_prev,
1634 			      struct net_device *orig_dev)
1635 {
1636 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1637 		return -ENOMEM;
1638 	atomic_inc(&skb->users);
1639 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1640 }
1641 
1642 /*
1643  *	Support routine. Sends outgoing frames to any network
1644  *	taps currently in use.
1645  */
1646 
1647 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1648 {
1649 	struct packet_type *ptype;
1650 	struct sk_buff *skb2 = NULL;
1651 	struct packet_type *pt_prev = NULL;
1652 
1653 	rcu_read_lock();
1654 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1655 		/* Never send packets back to the socket
1656 		 * they originated from - MvS (miquels@drinkel.ow.org)
1657 		 */
1658 		if ((ptype->dev == dev || !ptype->dev) &&
1659 		    (ptype->af_packet_priv == NULL ||
1660 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1661 			if (pt_prev) {
1662 				deliver_skb(skb2, pt_prev, skb->dev);
1663 				pt_prev = ptype;
1664 				continue;
1665 			}
1666 
1667 			skb2 = skb_clone(skb, GFP_ATOMIC);
1668 			if (!skb2)
1669 				break;
1670 
1671 			net_timestamp_set(skb2);
1672 
1673 			/* skb->nh should be correctly
1674 			   set by sender, so that the second statement is
1675 			   just protection against buggy protocols.
1676 			 */
1677 			skb_reset_mac_header(skb2);
1678 
1679 			if (skb_network_header(skb2) < skb2->data ||
1680 			    skb2->network_header > skb2->tail) {
1681 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1682 						     ntohs(skb2->protocol),
1683 						     dev->name);
1684 				skb_reset_network_header(skb2);
1685 			}
1686 
1687 			skb2->transport_header = skb2->network_header;
1688 			skb2->pkt_type = PACKET_OUTGOING;
1689 			pt_prev = ptype;
1690 		}
1691 	}
1692 	if (pt_prev)
1693 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1694 	rcu_read_unlock();
1695 }
1696 
1697 /**
1698  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1699  * @dev: Network device
1700  * @txq: number of queues available
1701  *
1702  * If real_num_tx_queues is changed the tc mappings may no longer be
1703  * valid. To resolve this verify the tc mapping remains valid and if
1704  * not NULL the mapping. With no priorities mapping to this
1705  * offset/count pair it will no longer be used. In the worst case TC0
1706  * is invalid nothing can be done so disable priority mappings. If is
1707  * expected that drivers will fix this mapping if they can before
1708  * calling netif_set_real_num_tx_queues.
1709  */
1710 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1711 {
1712 	int i;
1713 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1714 
1715 	/* If TC0 is invalidated disable TC mapping */
1716 	if (tc->offset + tc->count > txq) {
1717 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1718 		dev->num_tc = 0;
1719 		return;
1720 	}
1721 
1722 	/* Invalidated prio to tc mappings set to TC0 */
1723 	for (i = 1; i < TC_BITMASK + 1; i++) {
1724 		int q = netdev_get_prio_tc_map(dev, i);
1725 
1726 		tc = &dev->tc_to_txq[q];
1727 		if (tc->offset + tc->count > txq) {
1728 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1729 				i, q);
1730 			netdev_set_prio_tc_map(dev, i, 0);
1731 		}
1732 	}
1733 }
1734 
1735 /*
1736  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1737  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1738  */
1739 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1740 {
1741 	int rc;
1742 
1743 	if (txq < 1 || txq > dev->num_tx_queues)
1744 		return -EINVAL;
1745 
1746 	if (dev->reg_state == NETREG_REGISTERED ||
1747 	    dev->reg_state == NETREG_UNREGISTERING) {
1748 		ASSERT_RTNL();
1749 
1750 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1751 						  txq);
1752 		if (rc)
1753 			return rc;
1754 
1755 		if (dev->num_tc)
1756 			netif_setup_tc(dev, txq);
1757 
1758 		if (txq < dev->real_num_tx_queues)
1759 			qdisc_reset_all_tx_gt(dev, txq);
1760 	}
1761 
1762 	dev->real_num_tx_queues = txq;
1763 	return 0;
1764 }
1765 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1766 
1767 #ifdef CONFIG_RPS
1768 /**
1769  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1770  *	@dev: Network device
1771  *	@rxq: Actual number of RX queues
1772  *
1773  *	This must be called either with the rtnl_lock held or before
1774  *	registration of the net device.  Returns 0 on success, or a
1775  *	negative error code.  If called before registration, it always
1776  *	succeeds.
1777  */
1778 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1779 {
1780 	int rc;
1781 
1782 	if (rxq < 1 || rxq > dev->num_rx_queues)
1783 		return -EINVAL;
1784 
1785 	if (dev->reg_state == NETREG_REGISTERED) {
1786 		ASSERT_RTNL();
1787 
1788 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1789 						  rxq);
1790 		if (rc)
1791 			return rc;
1792 	}
1793 
1794 	dev->real_num_rx_queues = rxq;
1795 	return 0;
1796 }
1797 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1798 #endif
1799 
1800 /**
1801  * netif_get_num_default_rss_queues - default number of RSS queues
1802  *
1803  * This routine should set an upper limit on the number of RSS queues
1804  * used by default by multiqueue devices.
1805  */
1806 int netif_get_num_default_rss_queues(void)
1807 {
1808 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1809 }
1810 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1811 
1812 static inline void __netif_reschedule(struct Qdisc *q)
1813 {
1814 	struct softnet_data *sd;
1815 	unsigned long flags;
1816 
1817 	local_irq_save(flags);
1818 	sd = &__get_cpu_var(softnet_data);
1819 	q->next_sched = NULL;
1820 	*sd->output_queue_tailp = q;
1821 	sd->output_queue_tailp = &q->next_sched;
1822 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1823 	local_irq_restore(flags);
1824 }
1825 
1826 void __netif_schedule(struct Qdisc *q)
1827 {
1828 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1829 		__netif_reschedule(q);
1830 }
1831 EXPORT_SYMBOL(__netif_schedule);
1832 
1833 void dev_kfree_skb_irq(struct sk_buff *skb)
1834 {
1835 	if (atomic_dec_and_test(&skb->users)) {
1836 		struct softnet_data *sd;
1837 		unsigned long flags;
1838 
1839 		local_irq_save(flags);
1840 		sd = &__get_cpu_var(softnet_data);
1841 		skb->next = sd->completion_queue;
1842 		sd->completion_queue = skb;
1843 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1844 		local_irq_restore(flags);
1845 	}
1846 }
1847 EXPORT_SYMBOL(dev_kfree_skb_irq);
1848 
1849 void dev_kfree_skb_any(struct sk_buff *skb)
1850 {
1851 	if (in_irq() || irqs_disabled())
1852 		dev_kfree_skb_irq(skb);
1853 	else
1854 		dev_kfree_skb(skb);
1855 }
1856 EXPORT_SYMBOL(dev_kfree_skb_any);
1857 
1858 
1859 /**
1860  * netif_device_detach - mark device as removed
1861  * @dev: network device
1862  *
1863  * Mark device as removed from system and therefore no longer available.
1864  */
1865 void netif_device_detach(struct net_device *dev)
1866 {
1867 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1868 	    netif_running(dev)) {
1869 		netif_tx_stop_all_queues(dev);
1870 	}
1871 }
1872 EXPORT_SYMBOL(netif_device_detach);
1873 
1874 /**
1875  * netif_device_attach - mark device as attached
1876  * @dev: network device
1877  *
1878  * Mark device as attached from system and restart if needed.
1879  */
1880 void netif_device_attach(struct net_device *dev)
1881 {
1882 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1883 	    netif_running(dev)) {
1884 		netif_tx_wake_all_queues(dev);
1885 		__netdev_watchdog_up(dev);
1886 	}
1887 }
1888 EXPORT_SYMBOL(netif_device_attach);
1889 
1890 static void skb_warn_bad_offload(const struct sk_buff *skb)
1891 {
1892 	static const netdev_features_t null_features = 0;
1893 	struct net_device *dev = skb->dev;
1894 	const char *driver = "";
1895 
1896 	if (dev && dev->dev.parent)
1897 		driver = dev_driver_string(dev->dev.parent);
1898 
1899 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1900 	     "gso_type=%d ip_summed=%d\n",
1901 	     driver, dev ? &dev->features : &null_features,
1902 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1903 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1904 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1905 }
1906 
1907 /*
1908  * Invalidate hardware checksum when packet is to be mangled, and
1909  * complete checksum manually on outgoing path.
1910  */
1911 int skb_checksum_help(struct sk_buff *skb)
1912 {
1913 	__wsum csum;
1914 	int ret = 0, offset;
1915 
1916 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1917 		goto out_set_summed;
1918 
1919 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1920 		skb_warn_bad_offload(skb);
1921 		return -EINVAL;
1922 	}
1923 
1924 	offset = skb_checksum_start_offset(skb);
1925 	BUG_ON(offset >= skb_headlen(skb));
1926 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1927 
1928 	offset += skb->csum_offset;
1929 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1930 
1931 	if (skb_cloned(skb) &&
1932 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1933 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1934 		if (ret)
1935 			goto out;
1936 	}
1937 
1938 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1939 out_set_summed:
1940 	skb->ip_summed = CHECKSUM_NONE;
1941 out:
1942 	return ret;
1943 }
1944 EXPORT_SYMBOL(skb_checksum_help);
1945 
1946 /**
1947  *	skb_gso_segment - Perform segmentation on skb.
1948  *	@skb: buffer to segment
1949  *	@features: features for the output path (see dev->features)
1950  *
1951  *	This function segments the given skb and returns a list of segments.
1952  *
1953  *	It may return NULL if the skb requires no segmentation.  This is
1954  *	only possible when GSO is used for verifying header integrity.
1955  */
1956 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1957 	netdev_features_t features)
1958 {
1959 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1960 	struct packet_type *ptype;
1961 	__be16 type = skb->protocol;
1962 	int vlan_depth = ETH_HLEN;
1963 	int err;
1964 
1965 	while (type == htons(ETH_P_8021Q)) {
1966 		struct vlan_hdr *vh;
1967 
1968 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1969 			return ERR_PTR(-EINVAL);
1970 
1971 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1972 		type = vh->h_vlan_encapsulated_proto;
1973 		vlan_depth += VLAN_HLEN;
1974 	}
1975 
1976 	skb_reset_mac_header(skb);
1977 	skb->mac_len = skb->network_header - skb->mac_header;
1978 	__skb_pull(skb, skb->mac_len);
1979 
1980 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1981 		skb_warn_bad_offload(skb);
1982 
1983 		if (skb_header_cloned(skb) &&
1984 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1985 			return ERR_PTR(err);
1986 	}
1987 
1988 	rcu_read_lock();
1989 	list_for_each_entry_rcu(ptype,
1990 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1991 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1992 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1993 				err = ptype->gso_send_check(skb);
1994 				segs = ERR_PTR(err);
1995 				if (err || skb_gso_ok(skb, features))
1996 					break;
1997 				__skb_push(skb, (skb->data -
1998 						 skb_network_header(skb)));
1999 			}
2000 			segs = ptype->gso_segment(skb, features);
2001 			break;
2002 		}
2003 	}
2004 	rcu_read_unlock();
2005 
2006 	__skb_push(skb, skb->data - skb_mac_header(skb));
2007 
2008 	return segs;
2009 }
2010 EXPORT_SYMBOL(skb_gso_segment);
2011 
2012 /* Take action when hardware reception checksum errors are detected. */
2013 #ifdef CONFIG_BUG
2014 void netdev_rx_csum_fault(struct net_device *dev)
2015 {
2016 	if (net_ratelimit()) {
2017 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2018 		dump_stack();
2019 	}
2020 }
2021 EXPORT_SYMBOL(netdev_rx_csum_fault);
2022 #endif
2023 
2024 /* Actually, we should eliminate this check as soon as we know, that:
2025  * 1. IOMMU is present and allows to map all the memory.
2026  * 2. No high memory really exists on this machine.
2027  */
2028 
2029 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2030 {
2031 #ifdef CONFIG_HIGHMEM
2032 	int i;
2033 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2034 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2035 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2036 			if (PageHighMem(skb_frag_page(frag)))
2037 				return 1;
2038 		}
2039 	}
2040 
2041 	if (PCI_DMA_BUS_IS_PHYS) {
2042 		struct device *pdev = dev->dev.parent;
2043 
2044 		if (!pdev)
2045 			return 0;
2046 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2047 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2048 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2049 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2050 				return 1;
2051 		}
2052 	}
2053 #endif
2054 	return 0;
2055 }
2056 
2057 struct dev_gso_cb {
2058 	void (*destructor)(struct sk_buff *skb);
2059 };
2060 
2061 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2062 
2063 static void dev_gso_skb_destructor(struct sk_buff *skb)
2064 {
2065 	struct dev_gso_cb *cb;
2066 
2067 	do {
2068 		struct sk_buff *nskb = skb->next;
2069 
2070 		skb->next = nskb->next;
2071 		nskb->next = NULL;
2072 		kfree_skb(nskb);
2073 	} while (skb->next);
2074 
2075 	cb = DEV_GSO_CB(skb);
2076 	if (cb->destructor)
2077 		cb->destructor(skb);
2078 }
2079 
2080 /**
2081  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2082  *	@skb: buffer to segment
2083  *	@features: device features as applicable to this skb
2084  *
2085  *	This function segments the given skb and stores the list of segments
2086  *	in skb->next.
2087  */
2088 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2089 {
2090 	struct sk_buff *segs;
2091 
2092 	segs = skb_gso_segment(skb, features);
2093 
2094 	/* Verifying header integrity only. */
2095 	if (!segs)
2096 		return 0;
2097 
2098 	if (IS_ERR(segs))
2099 		return PTR_ERR(segs);
2100 
2101 	skb->next = segs;
2102 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2103 	skb->destructor = dev_gso_skb_destructor;
2104 
2105 	return 0;
2106 }
2107 
2108 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2109 {
2110 	return ((features & NETIF_F_GEN_CSUM) ||
2111 		((features & NETIF_F_V4_CSUM) &&
2112 		 protocol == htons(ETH_P_IP)) ||
2113 		((features & NETIF_F_V6_CSUM) &&
2114 		 protocol == htons(ETH_P_IPV6)) ||
2115 		((features & NETIF_F_FCOE_CRC) &&
2116 		 protocol == htons(ETH_P_FCOE)));
2117 }
2118 
2119 static netdev_features_t harmonize_features(struct sk_buff *skb,
2120 	__be16 protocol, netdev_features_t features)
2121 {
2122 	if (!can_checksum_protocol(features, protocol)) {
2123 		features &= ~NETIF_F_ALL_CSUM;
2124 		features &= ~NETIF_F_SG;
2125 	} else if (illegal_highdma(skb->dev, skb)) {
2126 		features &= ~NETIF_F_SG;
2127 	}
2128 
2129 	return features;
2130 }
2131 
2132 netdev_features_t netif_skb_features(struct sk_buff *skb)
2133 {
2134 	__be16 protocol = skb->protocol;
2135 	netdev_features_t features = skb->dev->features;
2136 
2137 	if (protocol == htons(ETH_P_8021Q)) {
2138 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2139 		protocol = veh->h_vlan_encapsulated_proto;
2140 	} else if (!vlan_tx_tag_present(skb)) {
2141 		return harmonize_features(skb, protocol, features);
2142 	}
2143 
2144 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2145 
2146 	if (protocol != htons(ETH_P_8021Q)) {
2147 		return harmonize_features(skb, protocol, features);
2148 	} else {
2149 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2150 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2151 		return harmonize_features(skb, protocol, features);
2152 	}
2153 }
2154 EXPORT_SYMBOL(netif_skb_features);
2155 
2156 /*
2157  * Returns true if either:
2158  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2159  *	2. skb is fragmented and the device does not support SG, or if
2160  *	   at least one of fragments is in highmem and device does not
2161  *	   support DMA from it.
2162  */
2163 static inline int skb_needs_linearize(struct sk_buff *skb,
2164 				      int features)
2165 {
2166 	return skb_is_nonlinear(skb) &&
2167 			((skb_has_frag_list(skb) &&
2168 				!(features & NETIF_F_FRAGLIST)) ||
2169 			(skb_shinfo(skb)->nr_frags &&
2170 				!(features & NETIF_F_SG)));
2171 }
2172 
2173 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2174 			struct netdev_queue *txq)
2175 {
2176 	const struct net_device_ops *ops = dev->netdev_ops;
2177 	int rc = NETDEV_TX_OK;
2178 	unsigned int skb_len;
2179 
2180 	if (likely(!skb->next)) {
2181 		netdev_features_t features;
2182 
2183 		/*
2184 		 * If device doesn't need skb->dst, release it right now while
2185 		 * its hot in this cpu cache
2186 		 */
2187 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2188 			skb_dst_drop(skb);
2189 
2190 		if (!list_empty(&ptype_all))
2191 			dev_queue_xmit_nit(skb, dev);
2192 
2193 		features = netif_skb_features(skb);
2194 
2195 		if (vlan_tx_tag_present(skb) &&
2196 		    !(features & NETIF_F_HW_VLAN_TX)) {
2197 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2198 			if (unlikely(!skb))
2199 				goto out;
2200 
2201 			skb->vlan_tci = 0;
2202 		}
2203 
2204 		if (netif_needs_gso(skb, features)) {
2205 			if (unlikely(dev_gso_segment(skb, features)))
2206 				goto out_kfree_skb;
2207 			if (skb->next)
2208 				goto gso;
2209 		} else {
2210 			if (skb_needs_linearize(skb, features) &&
2211 			    __skb_linearize(skb))
2212 				goto out_kfree_skb;
2213 
2214 			/* If packet is not checksummed and device does not
2215 			 * support checksumming for this protocol, complete
2216 			 * checksumming here.
2217 			 */
2218 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2219 				skb_set_transport_header(skb,
2220 					skb_checksum_start_offset(skb));
2221 				if (!(features & NETIF_F_ALL_CSUM) &&
2222 				     skb_checksum_help(skb))
2223 					goto out_kfree_skb;
2224 			}
2225 		}
2226 
2227 		skb_len = skb->len;
2228 		rc = ops->ndo_start_xmit(skb, dev);
2229 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2230 		if (rc == NETDEV_TX_OK)
2231 			txq_trans_update(txq);
2232 		return rc;
2233 	}
2234 
2235 gso:
2236 	do {
2237 		struct sk_buff *nskb = skb->next;
2238 
2239 		skb->next = nskb->next;
2240 		nskb->next = NULL;
2241 
2242 		/*
2243 		 * If device doesn't need nskb->dst, release it right now while
2244 		 * its hot in this cpu cache
2245 		 */
2246 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2247 			skb_dst_drop(nskb);
2248 
2249 		skb_len = nskb->len;
2250 		rc = ops->ndo_start_xmit(nskb, dev);
2251 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2252 		if (unlikely(rc != NETDEV_TX_OK)) {
2253 			if (rc & ~NETDEV_TX_MASK)
2254 				goto out_kfree_gso_skb;
2255 			nskb->next = skb->next;
2256 			skb->next = nskb;
2257 			return rc;
2258 		}
2259 		txq_trans_update(txq);
2260 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2261 			return NETDEV_TX_BUSY;
2262 	} while (skb->next);
2263 
2264 out_kfree_gso_skb:
2265 	if (likely(skb->next == NULL))
2266 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2267 out_kfree_skb:
2268 	kfree_skb(skb);
2269 out:
2270 	return rc;
2271 }
2272 
2273 static u32 hashrnd __read_mostly;
2274 
2275 /*
2276  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2277  * to be used as a distribution range.
2278  */
2279 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2280 		  unsigned int num_tx_queues)
2281 {
2282 	u32 hash;
2283 	u16 qoffset = 0;
2284 	u16 qcount = num_tx_queues;
2285 
2286 	if (skb_rx_queue_recorded(skb)) {
2287 		hash = skb_get_rx_queue(skb);
2288 		while (unlikely(hash >= num_tx_queues))
2289 			hash -= num_tx_queues;
2290 		return hash;
2291 	}
2292 
2293 	if (dev->num_tc) {
2294 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2295 		qoffset = dev->tc_to_txq[tc].offset;
2296 		qcount = dev->tc_to_txq[tc].count;
2297 	}
2298 
2299 	if (skb->sk && skb->sk->sk_hash)
2300 		hash = skb->sk->sk_hash;
2301 	else
2302 		hash = (__force u16) skb->protocol;
2303 	hash = jhash_1word(hash, hashrnd);
2304 
2305 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2306 }
2307 EXPORT_SYMBOL(__skb_tx_hash);
2308 
2309 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2310 {
2311 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2312 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2313 				     dev->name, queue_index,
2314 				     dev->real_num_tx_queues);
2315 		return 0;
2316 	}
2317 	return queue_index;
2318 }
2319 
2320 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2321 {
2322 #ifdef CONFIG_XPS
2323 	struct xps_dev_maps *dev_maps;
2324 	struct xps_map *map;
2325 	int queue_index = -1;
2326 
2327 	rcu_read_lock();
2328 	dev_maps = rcu_dereference(dev->xps_maps);
2329 	if (dev_maps) {
2330 		map = rcu_dereference(
2331 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2332 		if (map) {
2333 			if (map->len == 1)
2334 				queue_index = map->queues[0];
2335 			else {
2336 				u32 hash;
2337 				if (skb->sk && skb->sk->sk_hash)
2338 					hash = skb->sk->sk_hash;
2339 				else
2340 					hash = (__force u16) skb->protocol ^
2341 					    skb->rxhash;
2342 				hash = jhash_1word(hash, hashrnd);
2343 				queue_index = map->queues[
2344 				    ((u64)hash * map->len) >> 32];
2345 			}
2346 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2347 				queue_index = -1;
2348 		}
2349 	}
2350 	rcu_read_unlock();
2351 
2352 	return queue_index;
2353 #else
2354 	return -1;
2355 #endif
2356 }
2357 
2358 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2359 					struct sk_buff *skb)
2360 {
2361 	int queue_index;
2362 	const struct net_device_ops *ops = dev->netdev_ops;
2363 
2364 	if (dev->real_num_tx_queues == 1)
2365 		queue_index = 0;
2366 	else if (ops->ndo_select_queue) {
2367 		queue_index = ops->ndo_select_queue(dev, skb);
2368 		queue_index = dev_cap_txqueue(dev, queue_index);
2369 	} else {
2370 		struct sock *sk = skb->sk;
2371 		queue_index = sk_tx_queue_get(sk);
2372 
2373 		if (queue_index < 0 || skb->ooo_okay ||
2374 		    queue_index >= dev->real_num_tx_queues) {
2375 			int old_index = queue_index;
2376 
2377 			queue_index = get_xps_queue(dev, skb);
2378 			if (queue_index < 0)
2379 				queue_index = skb_tx_hash(dev, skb);
2380 
2381 			if (queue_index != old_index && sk) {
2382 				struct dst_entry *dst =
2383 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2384 
2385 				if (dst && skb_dst(skb) == dst)
2386 					sk_tx_queue_set(sk, queue_index);
2387 			}
2388 		}
2389 	}
2390 
2391 	skb_set_queue_mapping(skb, queue_index);
2392 	return netdev_get_tx_queue(dev, queue_index);
2393 }
2394 
2395 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2396 				 struct net_device *dev,
2397 				 struct netdev_queue *txq)
2398 {
2399 	spinlock_t *root_lock = qdisc_lock(q);
2400 	bool contended;
2401 	int rc;
2402 
2403 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2404 	qdisc_calculate_pkt_len(skb, q);
2405 	/*
2406 	 * Heuristic to force contended enqueues to serialize on a
2407 	 * separate lock before trying to get qdisc main lock.
2408 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2409 	 * and dequeue packets faster.
2410 	 */
2411 	contended = qdisc_is_running(q);
2412 	if (unlikely(contended))
2413 		spin_lock(&q->busylock);
2414 
2415 	spin_lock(root_lock);
2416 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2417 		kfree_skb(skb);
2418 		rc = NET_XMIT_DROP;
2419 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2420 		   qdisc_run_begin(q)) {
2421 		/*
2422 		 * This is a work-conserving queue; there are no old skbs
2423 		 * waiting to be sent out; and the qdisc is not running -
2424 		 * xmit the skb directly.
2425 		 */
2426 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2427 			skb_dst_force(skb);
2428 
2429 		qdisc_bstats_update(q, skb);
2430 
2431 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2432 			if (unlikely(contended)) {
2433 				spin_unlock(&q->busylock);
2434 				contended = false;
2435 			}
2436 			__qdisc_run(q);
2437 		} else
2438 			qdisc_run_end(q);
2439 
2440 		rc = NET_XMIT_SUCCESS;
2441 	} else {
2442 		skb_dst_force(skb);
2443 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2444 		if (qdisc_run_begin(q)) {
2445 			if (unlikely(contended)) {
2446 				spin_unlock(&q->busylock);
2447 				contended = false;
2448 			}
2449 			__qdisc_run(q);
2450 		}
2451 	}
2452 	spin_unlock(root_lock);
2453 	if (unlikely(contended))
2454 		spin_unlock(&q->busylock);
2455 	return rc;
2456 }
2457 
2458 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2459 static void skb_update_prio(struct sk_buff *skb)
2460 {
2461 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2462 
2463 	if (!skb->priority && skb->sk && map) {
2464 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2465 
2466 		if (prioidx < map->priomap_len)
2467 			skb->priority = map->priomap[prioidx];
2468 	}
2469 }
2470 #else
2471 #define skb_update_prio(skb)
2472 #endif
2473 
2474 static DEFINE_PER_CPU(int, xmit_recursion);
2475 #define RECURSION_LIMIT 10
2476 
2477 /**
2478  *	dev_loopback_xmit - loop back @skb
2479  *	@skb: buffer to transmit
2480  */
2481 int dev_loopback_xmit(struct sk_buff *skb)
2482 {
2483 	skb_reset_mac_header(skb);
2484 	__skb_pull(skb, skb_network_offset(skb));
2485 	skb->pkt_type = PACKET_LOOPBACK;
2486 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2487 	WARN_ON(!skb_dst(skb));
2488 	skb_dst_force(skb);
2489 	netif_rx_ni(skb);
2490 	return 0;
2491 }
2492 EXPORT_SYMBOL(dev_loopback_xmit);
2493 
2494 /**
2495  *	dev_queue_xmit - transmit a buffer
2496  *	@skb: buffer to transmit
2497  *
2498  *	Queue a buffer for transmission to a network device. The caller must
2499  *	have set the device and priority and built the buffer before calling
2500  *	this function. The function can be called from an interrupt.
2501  *
2502  *	A negative errno code is returned on a failure. A success does not
2503  *	guarantee the frame will be transmitted as it may be dropped due
2504  *	to congestion or traffic shaping.
2505  *
2506  * -----------------------------------------------------------------------------------
2507  *      I notice this method can also return errors from the queue disciplines,
2508  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2509  *      be positive.
2510  *
2511  *      Regardless of the return value, the skb is consumed, so it is currently
2512  *      difficult to retry a send to this method.  (You can bump the ref count
2513  *      before sending to hold a reference for retry if you are careful.)
2514  *
2515  *      When calling this method, interrupts MUST be enabled.  This is because
2516  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2517  *          --BLG
2518  */
2519 int dev_queue_xmit(struct sk_buff *skb)
2520 {
2521 	struct net_device *dev = skb->dev;
2522 	struct netdev_queue *txq;
2523 	struct Qdisc *q;
2524 	int rc = -ENOMEM;
2525 
2526 	/* Disable soft irqs for various locks below. Also
2527 	 * stops preemption for RCU.
2528 	 */
2529 	rcu_read_lock_bh();
2530 
2531 	skb_update_prio(skb);
2532 
2533 	txq = dev_pick_tx(dev, skb);
2534 	q = rcu_dereference_bh(txq->qdisc);
2535 
2536 #ifdef CONFIG_NET_CLS_ACT
2537 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2538 #endif
2539 	trace_net_dev_queue(skb);
2540 	if (q->enqueue) {
2541 		rc = __dev_xmit_skb(skb, q, dev, txq);
2542 		goto out;
2543 	}
2544 
2545 	/* The device has no queue. Common case for software devices:
2546 	   loopback, all the sorts of tunnels...
2547 
2548 	   Really, it is unlikely that netif_tx_lock protection is necessary
2549 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2550 	   counters.)
2551 	   However, it is possible, that they rely on protection
2552 	   made by us here.
2553 
2554 	   Check this and shot the lock. It is not prone from deadlocks.
2555 	   Either shot noqueue qdisc, it is even simpler 8)
2556 	 */
2557 	if (dev->flags & IFF_UP) {
2558 		int cpu = smp_processor_id(); /* ok because BHs are off */
2559 
2560 		if (txq->xmit_lock_owner != cpu) {
2561 
2562 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2563 				goto recursion_alert;
2564 
2565 			HARD_TX_LOCK(dev, txq, cpu);
2566 
2567 			if (!netif_xmit_stopped(txq)) {
2568 				__this_cpu_inc(xmit_recursion);
2569 				rc = dev_hard_start_xmit(skb, dev, txq);
2570 				__this_cpu_dec(xmit_recursion);
2571 				if (dev_xmit_complete(rc)) {
2572 					HARD_TX_UNLOCK(dev, txq);
2573 					goto out;
2574 				}
2575 			}
2576 			HARD_TX_UNLOCK(dev, txq);
2577 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2578 					     dev->name);
2579 		} else {
2580 			/* Recursion is detected! It is possible,
2581 			 * unfortunately
2582 			 */
2583 recursion_alert:
2584 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2585 					     dev->name);
2586 		}
2587 	}
2588 
2589 	rc = -ENETDOWN;
2590 	rcu_read_unlock_bh();
2591 
2592 	kfree_skb(skb);
2593 	return rc;
2594 out:
2595 	rcu_read_unlock_bh();
2596 	return rc;
2597 }
2598 EXPORT_SYMBOL(dev_queue_xmit);
2599 
2600 
2601 /*=======================================================================
2602 			Receiver routines
2603   =======================================================================*/
2604 
2605 int netdev_max_backlog __read_mostly = 1000;
2606 int netdev_tstamp_prequeue __read_mostly = 1;
2607 int netdev_budget __read_mostly = 300;
2608 int weight_p __read_mostly = 64;            /* old backlog weight */
2609 
2610 /* Called with irq disabled */
2611 static inline void ____napi_schedule(struct softnet_data *sd,
2612 				     struct napi_struct *napi)
2613 {
2614 	list_add_tail(&napi->poll_list, &sd->poll_list);
2615 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2616 }
2617 
2618 /*
2619  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2620  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2621  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2622  * if hash is a canonical 4-tuple hash over transport ports.
2623  */
2624 void __skb_get_rxhash(struct sk_buff *skb)
2625 {
2626 	struct flow_keys keys;
2627 	u32 hash;
2628 
2629 	if (!skb_flow_dissect(skb, &keys))
2630 		return;
2631 
2632 	if (keys.ports) {
2633 		if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2634 			swap(keys.port16[0], keys.port16[1]);
2635 		skb->l4_rxhash = 1;
2636 	}
2637 
2638 	/* get a consistent hash (same value on both flow directions) */
2639 	if ((__force u32)keys.dst < (__force u32)keys.src)
2640 		swap(keys.dst, keys.src);
2641 
2642 	hash = jhash_3words((__force u32)keys.dst,
2643 			    (__force u32)keys.src,
2644 			    (__force u32)keys.ports, hashrnd);
2645 	if (!hash)
2646 		hash = 1;
2647 
2648 	skb->rxhash = hash;
2649 }
2650 EXPORT_SYMBOL(__skb_get_rxhash);
2651 
2652 #ifdef CONFIG_RPS
2653 
2654 /* One global table that all flow-based protocols share. */
2655 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2656 EXPORT_SYMBOL(rps_sock_flow_table);
2657 
2658 struct static_key rps_needed __read_mostly;
2659 
2660 static struct rps_dev_flow *
2661 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2662 	    struct rps_dev_flow *rflow, u16 next_cpu)
2663 {
2664 	if (next_cpu != RPS_NO_CPU) {
2665 #ifdef CONFIG_RFS_ACCEL
2666 		struct netdev_rx_queue *rxqueue;
2667 		struct rps_dev_flow_table *flow_table;
2668 		struct rps_dev_flow *old_rflow;
2669 		u32 flow_id;
2670 		u16 rxq_index;
2671 		int rc;
2672 
2673 		/* Should we steer this flow to a different hardware queue? */
2674 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2675 		    !(dev->features & NETIF_F_NTUPLE))
2676 			goto out;
2677 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2678 		if (rxq_index == skb_get_rx_queue(skb))
2679 			goto out;
2680 
2681 		rxqueue = dev->_rx + rxq_index;
2682 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2683 		if (!flow_table)
2684 			goto out;
2685 		flow_id = skb->rxhash & flow_table->mask;
2686 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2687 							rxq_index, flow_id);
2688 		if (rc < 0)
2689 			goto out;
2690 		old_rflow = rflow;
2691 		rflow = &flow_table->flows[flow_id];
2692 		rflow->filter = rc;
2693 		if (old_rflow->filter == rflow->filter)
2694 			old_rflow->filter = RPS_NO_FILTER;
2695 	out:
2696 #endif
2697 		rflow->last_qtail =
2698 			per_cpu(softnet_data, next_cpu).input_queue_head;
2699 	}
2700 
2701 	rflow->cpu = next_cpu;
2702 	return rflow;
2703 }
2704 
2705 /*
2706  * get_rps_cpu is called from netif_receive_skb and returns the target
2707  * CPU from the RPS map of the receiving queue for a given skb.
2708  * rcu_read_lock must be held on entry.
2709  */
2710 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2711 		       struct rps_dev_flow **rflowp)
2712 {
2713 	struct netdev_rx_queue *rxqueue;
2714 	struct rps_map *map;
2715 	struct rps_dev_flow_table *flow_table;
2716 	struct rps_sock_flow_table *sock_flow_table;
2717 	int cpu = -1;
2718 	u16 tcpu;
2719 
2720 	if (skb_rx_queue_recorded(skb)) {
2721 		u16 index = skb_get_rx_queue(skb);
2722 		if (unlikely(index >= dev->real_num_rx_queues)) {
2723 			WARN_ONCE(dev->real_num_rx_queues > 1,
2724 				  "%s received packet on queue %u, but number "
2725 				  "of RX queues is %u\n",
2726 				  dev->name, index, dev->real_num_rx_queues);
2727 			goto done;
2728 		}
2729 		rxqueue = dev->_rx + index;
2730 	} else
2731 		rxqueue = dev->_rx;
2732 
2733 	map = rcu_dereference(rxqueue->rps_map);
2734 	if (map) {
2735 		if (map->len == 1 &&
2736 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2737 			tcpu = map->cpus[0];
2738 			if (cpu_online(tcpu))
2739 				cpu = tcpu;
2740 			goto done;
2741 		}
2742 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2743 		goto done;
2744 	}
2745 
2746 	skb_reset_network_header(skb);
2747 	if (!skb_get_rxhash(skb))
2748 		goto done;
2749 
2750 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2751 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2752 	if (flow_table && sock_flow_table) {
2753 		u16 next_cpu;
2754 		struct rps_dev_flow *rflow;
2755 
2756 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2757 		tcpu = rflow->cpu;
2758 
2759 		next_cpu = sock_flow_table->ents[skb->rxhash &
2760 		    sock_flow_table->mask];
2761 
2762 		/*
2763 		 * If the desired CPU (where last recvmsg was done) is
2764 		 * different from current CPU (one in the rx-queue flow
2765 		 * table entry), switch if one of the following holds:
2766 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2767 		 *   - Current CPU is offline.
2768 		 *   - The current CPU's queue tail has advanced beyond the
2769 		 *     last packet that was enqueued using this table entry.
2770 		 *     This guarantees that all previous packets for the flow
2771 		 *     have been dequeued, thus preserving in order delivery.
2772 		 */
2773 		if (unlikely(tcpu != next_cpu) &&
2774 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2775 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2776 		      rflow->last_qtail)) >= 0))
2777 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2778 
2779 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2780 			*rflowp = rflow;
2781 			cpu = tcpu;
2782 			goto done;
2783 		}
2784 	}
2785 
2786 	if (map) {
2787 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2788 
2789 		if (cpu_online(tcpu)) {
2790 			cpu = tcpu;
2791 			goto done;
2792 		}
2793 	}
2794 
2795 done:
2796 	return cpu;
2797 }
2798 
2799 #ifdef CONFIG_RFS_ACCEL
2800 
2801 /**
2802  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2803  * @dev: Device on which the filter was set
2804  * @rxq_index: RX queue index
2805  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2806  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2807  *
2808  * Drivers that implement ndo_rx_flow_steer() should periodically call
2809  * this function for each installed filter and remove the filters for
2810  * which it returns %true.
2811  */
2812 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2813 			 u32 flow_id, u16 filter_id)
2814 {
2815 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2816 	struct rps_dev_flow_table *flow_table;
2817 	struct rps_dev_flow *rflow;
2818 	bool expire = true;
2819 	int cpu;
2820 
2821 	rcu_read_lock();
2822 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2823 	if (flow_table && flow_id <= flow_table->mask) {
2824 		rflow = &flow_table->flows[flow_id];
2825 		cpu = ACCESS_ONCE(rflow->cpu);
2826 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2827 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2828 			   rflow->last_qtail) <
2829 		     (int)(10 * flow_table->mask)))
2830 			expire = false;
2831 	}
2832 	rcu_read_unlock();
2833 	return expire;
2834 }
2835 EXPORT_SYMBOL(rps_may_expire_flow);
2836 
2837 #endif /* CONFIG_RFS_ACCEL */
2838 
2839 /* Called from hardirq (IPI) context */
2840 static void rps_trigger_softirq(void *data)
2841 {
2842 	struct softnet_data *sd = data;
2843 
2844 	____napi_schedule(sd, &sd->backlog);
2845 	sd->received_rps++;
2846 }
2847 
2848 #endif /* CONFIG_RPS */
2849 
2850 /*
2851  * Check if this softnet_data structure is another cpu one
2852  * If yes, queue it to our IPI list and return 1
2853  * If no, return 0
2854  */
2855 static int rps_ipi_queued(struct softnet_data *sd)
2856 {
2857 #ifdef CONFIG_RPS
2858 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2859 
2860 	if (sd != mysd) {
2861 		sd->rps_ipi_next = mysd->rps_ipi_list;
2862 		mysd->rps_ipi_list = sd;
2863 
2864 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2865 		return 1;
2866 	}
2867 #endif /* CONFIG_RPS */
2868 	return 0;
2869 }
2870 
2871 /*
2872  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2873  * queue (may be a remote CPU queue).
2874  */
2875 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2876 			      unsigned int *qtail)
2877 {
2878 	struct softnet_data *sd;
2879 	unsigned long flags;
2880 
2881 	sd = &per_cpu(softnet_data, cpu);
2882 
2883 	local_irq_save(flags);
2884 
2885 	rps_lock(sd);
2886 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2887 		if (skb_queue_len(&sd->input_pkt_queue)) {
2888 enqueue:
2889 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2890 			input_queue_tail_incr_save(sd, qtail);
2891 			rps_unlock(sd);
2892 			local_irq_restore(flags);
2893 			return NET_RX_SUCCESS;
2894 		}
2895 
2896 		/* Schedule NAPI for backlog device
2897 		 * We can use non atomic operation since we own the queue lock
2898 		 */
2899 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2900 			if (!rps_ipi_queued(sd))
2901 				____napi_schedule(sd, &sd->backlog);
2902 		}
2903 		goto enqueue;
2904 	}
2905 
2906 	sd->dropped++;
2907 	rps_unlock(sd);
2908 
2909 	local_irq_restore(flags);
2910 
2911 	atomic_long_inc(&skb->dev->rx_dropped);
2912 	kfree_skb(skb);
2913 	return NET_RX_DROP;
2914 }
2915 
2916 /**
2917  *	netif_rx	-	post buffer to the network code
2918  *	@skb: buffer to post
2919  *
2920  *	This function receives a packet from a device driver and queues it for
2921  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2922  *	may be dropped during processing for congestion control or by the
2923  *	protocol layers.
2924  *
2925  *	return values:
2926  *	NET_RX_SUCCESS	(no congestion)
2927  *	NET_RX_DROP     (packet was dropped)
2928  *
2929  */
2930 
2931 int netif_rx(struct sk_buff *skb)
2932 {
2933 	int ret;
2934 
2935 	/* if netpoll wants it, pretend we never saw it */
2936 	if (netpoll_rx(skb))
2937 		return NET_RX_DROP;
2938 
2939 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2940 
2941 	trace_netif_rx(skb);
2942 #ifdef CONFIG_RPS
2943 	if (static_key_false(&rps_needed)) {
2944 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2945 		int cpu;
2946 
2947 		preempt_disable();
2948 		rcu_read_lock();
2949 
2950 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2951 		if (cpu < 0)
2952 			cpu = smp_processor_id();
2953 
2954 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2955 
2956 		rcu_read_unlock();
2957 		preempt_enable();
2958 	} else
2959 #endif
2960 	{
2961 		unsigned int qtail;
2962 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2963 		put_cpu();
2964 	}
2965 	return ret;
2966 }
2967 EXPORT_SYMBOL(netif_rx);
2968 
2969 int netif_rx_ni(struct sk_buff *skb)
2970 {
2971 	int err;
2972 
2973 	preempt_disable();
2974 	err = netif_rx(skb);
2975 	if (local_softirq_pending())
2976 		do_softirq();
2977 	preempt_enable();
2978 
2979 	return err;
2980 }
2981 EXPORT_SYMBOL(netif_rx_ni);
2982 
2983 static void net_tx_action(struct softirq_action *h)
2984 {
2985 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2986 
2987 	if (sd->completion_queue) {
2988 		struct sk_buff *clist;
2989 
2990 		local_irq_disable();
2991 		clist = sd->completion_queue;
2992 		sd->completion_queue = NULL;
2993 		local_irq_enable();
2994 
2995 		while (clist) {
2996 			struct sk_buff *skb = clist;
2997 			clist = clist->next;
2998 
2999 			WARN_ON(atomic_read(&skb->users));
3000 			trace_kfree_skb(skb, net_tx_action);
3001 			__kfree_skb(skb);
3002 		}
3003 	}
3004 
3005 	if (sd->output_queue) {
3006 		struct Qdisc *head;
3007 
3008 		local_irq_disable();
3009 		head = sd->output_queue;
3010 		sd->output_queue = NULL;
3011 		sd->output_queue_tailp = &sd->output_queue;
3012 		local_irq_enable();
3013 
3014 		while (head) {
3015 			struct Qdisc *q = head;
3016 			spinlock_t *root_lock;
3017 
3018 			head = head->next_sched;
3019 
3020 			root_lock = qdisc_lock(q);
3021 			if (spin_trylock(root_lock)) {
3022 				smp_mb__before_clear_bit();
3023 				clear_bit(__QDISC_STATE_SCHED,
3024 					  &q->state);
3025 				qdisc_run(q);
3026 				spin_unlock(root_lock);
3027 			} else {
3028 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3029 					      &q->state)) {
3030 					__netif_reschedule(q);
3031 				} else {
3032 					smp_mb__before_clear_bit();
3033 					clear_bit(__QDISC_STATE_SCHED,
3034 						  &q->state);
3035 				}
3036 			}
3037 		}
3038 	}
3039 }
3040 
3041 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3042     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3043 /* This hook is defined here for ATM LANE */
3044 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3045 			     unsigned char *addr) __read_mostly;
3046 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3047 #endif
3048 
3049 #ifdef CONFIG_NET_CLS_ACT
3050 /* TODO: Maybe we should just force sch_ingress to be compiled in
3051  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3052  * a compare and 2 stores extra right now if we dont have it on
3053  * but have CONFIG_NET_CLS_ACT
3054  * NOTE: This doesn't stop any functionality; if you dont have
3055  * the ingress scheduler, you just can't add policies on ingress.
3056  *
3057  */
3058 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3059 {
3060 	struct net_device *dev = skb->dev;
3061 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3062 	int result = TC_ACT_OK;
3063 	struct Qdisc *q;
3064 
3065 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3066 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3067 				     skb->skb_iif, dev->ifindex);
3068 		return TC_ACT_SHOT;
3069 	}
3070 
3071 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3072 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3073 
3074 	q = rxq->qdisc;
3075 	if (q != &noop_qdisc) {
3076 		spin_lock(qdisc_lock(q));
3077 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3078 			result = qdisc_enqueue_root(skb, q);
3079 		spin_unlock(qdisc_lock(q));
3080 	}
3081 
3082 	return result;
3083 }
3084 
3085 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3086 					 struct packet_type **pt_prev,
3087 					 int *ret, struct net_device *orig_dev)
3088 {
3089 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3090 
3091 	if (!rxq || rxq->qdisc == &noop_qdisc)
3092 		goto out;
3093 
3094 	if (*pt_prev) {
3095 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3096 		*pt_prev = NULL;
3097 	}
3098 
3099 	switch (ing_filter(skb, rxq)) {
3100 	case TC_ACT_SHOT:
3101 	case TC_ACT_STOLEN:
3102 		kfree_skb(skb);
3103 		return NULL;
3104 	}
3105 
3106 out:
3107 	skb->tc_verd = 0;
3108 	return skb;
3109 }
3110 #endif
3111 
3112 /**
3113  *	netdev_rx_handler_register - register receive handler
3114  *	@dev: device to register a handler for
3115  *	@rx_handler: receive handler to register
3116  *	@rx_handler_data: data pointer that is used by rx handler
3117  *
3118  *	Register a receive hander for a device. This handler will then be
3119  *	called from __netif_receive_skb. A negative errno code is returned
3120  *	on a failure.
3121  *
3122  *	The caller must hold the rtnl_mutex.
3123  *
3124  *	For a general description of rx_handler, see enum rx_handler_result.
3125  */
3126 int netdev_rx_handler_register(struct net_device *dev,
3127 			       rx_handler_func_t *rx_handler,
3128 			       void *rx_handler_data)
3129 {
3130 	ASSERT_RTNL();
3131 
3132 	if (dev->rx_handler)
3133 		return -EBUSY;
3134 
3135 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3136 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3137 
3138 	return 0;
3139 }
3140 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3141 
3142 /**
3143  *	netdev_rx_handler_unregister - unregister receive handler
3144  *	@dev: device to unregister a handler from
3145  *
3146  *	Unregister a receive hander from a device.
3147  *
3148  *	The caller must hold the rtnl_mutex.
3149  */
3150 void netdev_rx_handler_unregister(struct net_device *dev)
3151 {
3152 
3153 	ASSERT_RTNL();
3154 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3155 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3156 }
3157 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3158 
3159 /*
3160  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3161  * the special handling of PFMEMALLOC skbs.
3162  */
3163 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3164 {
3165 	switch (skb->protocol) {
3166 	case __constant_htons(ETH_P_ARP):
3167 	case __constant_htons(ETH_P_IP):
3168 	case __constant_htons(ETH_P_IPV6):
3169 	case __constant_htons(ETH_P_8021Q):
3170 		return true;
3171 	default:
3172 		return false;
3173 	}
3174 }
3175 
3176 static int __netif_receive_skb(struct sk_buff *skb)
3177 {
3178 	struct packet_type *ptype, *pt_prev;
3179 	rx_handler_func_t *rx_handler;
3180 	struct net_device *orig_dev;
3181 	struct net_device *null_or_dev;
3182 	bool deliver_exact = false;
3183 	int ret = NET_RX_DROP;
3184 	__be16 type;
3185 	unsigned long pflags = current->flags;
3186 
3187 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3188 
3189 	trace_netif_receive_skb(skb);
3190 
3191 	/*
3192 	 * PFMEMALLOC skbs are special, they should
3193 	 * - be delivered to SOCK_MEMALLOC sockets only
3194 	 * - stay away from userspace
3195 	 * - have bounded memory usage
3196 	 *
3197 	 * Use PF_MEMALLOC as this saves us from propagating the allocation
3198 	 * context down to all allocation sites.
3199 	 */
3200 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3201 		current->flags |= PF_MEMALLOC;
3202 
3203 	/* if we've gotten here through NAPI, check netpoll */
3204 	if (netpoll_receive_skb(skb))
3205 		goto out;
3206 
3207 	orig_dev = skb->dev;
3208 
3209 	skb_reset_network_header(skb);
3210 	skb_reset_transport_header(skb);
3211 	skb_reset_mac_len(skb);
3212 
3213 	pt_prev = NULL;
3214 
3215 	rcu_read_lock();
3216 
3217 another_round:
3218 	skb->skb_iif = skb->dev->ifindex;
3219 
3220 	__this_cpu_inc(softnet_data.processed);
3221 
3222 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3223 		skb = vlan_untag(skb);
3224 		if (unlikely(!skb))
3225 			goto unlock;
3226 	}
3227 
3228 #ifdef CONFIG_NET_CLS_ACT
3229 	if (skb->tc_verd & TC_NCLS) {
3230 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3231 		goto ncls;
3232 	}
3233 #endif
3234 
3235 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3236 		goto skip_taps;
3237 
3238 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3239 		if (!ptype->dev || ptype->dev == skb->dev) {
3240 			if (pt_prev)
3241 				ret = deliver_skb(skb, pt_prev, orig_dev);
3242 			pt_prev = ptype;
3243 		}
3244 	}
3245 
3246 skip_taps:
3247 #ifdef CONFIG_NET_CLS_ACT
3248 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3249 	if (!skb)
3250 		goto unlock;
3251 ncls:
3252 #endif
3253 
3254 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3255 				&& !skb_pfmemalloc_protocol(skb))
3256 		goto drop;
3257 
3258 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3259 	if (vlan_tx_tag_present(skb)) {
3260 		if (pt_prev) {
3261 			ret = deliver_skb(skb, pt_prev, orig_dev);
3262 			pt_prev = NULL;
3263 		}
3264 		if (vlan_do_receive(&skb, !rx_handler))
3265 			goto another_round;
3266 		else if (unlikely(!skb))
3267 			goto unlock;
3268 	}
3269 
3270 	if (rx_handler) {
3271 		if (pt_prev) {
3272 			ret = deliver_skb(skb, pt_prev, orig_dev);
3273 			pt_prev = NULL;
3274 		}
3275 		switch (rx_handler(&skb)) {
3276 		case RX_HANDLER_CONSUMED:
3277 			goto unlock;
3278 		case RX_HANDLER_ANOTHER:
3279 			goto another_round;
3280 		case RX_HANDLER_EXACT:
3281 			deliver_exact = true;
3282 		case RX_HANDLER_PASS:
3283 			break;
3284 		default:
3285 			BUG();
3286 		}
3287 	}
3288 
3289 	/* deliver only exact match when indicated */
3290 	null_or_dev = deliver_exact ? skb->dev : NULL;
3291 
3292 	type = skb->protocol;
3293 	list_for_each_entry_rcu(ptype,
3294 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3295 		if (ptype->type == type &&
3296 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3297 		     ptype->dev == orig_dev)) {
3298 			if (pt_prev)
3299 				ret = deliver_skb(skb, pt_prev, orig_dev);
3300 			pt_prev = ptype;
3301 		}
3302 	}
3303 
3304 	if (pt_prev) {
3305 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3306 			ret = -ENOMEM;
3307 		else
3308 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3309 	} else {
3310 drop:
3311 		atomic_long_inc(&skb->dev->rx_dropped);
3312 		kfree_skb(skb);
3313 		/* Jamal, now you will not able to escape explaining
3314 		 * me how you were going to use this. :-)
3315 		 */
3316 		ret = NET_RX_DROP;
3317 	}
3318 
3319 unlock:
3320 	rcu_read_unlock();
3321 out:
3322 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
3323 	return ret;
3324 }
3325 
3326 /**
3327  *	netif_receive_skb - process receive buffer from network
3328  *	@skb: buffer to process
3329  *
3330  *	netif_receive_skb() is the main receive data processing function.
3331  *	It always succeeds. The buffer may be dropped during processing
3332  *	for congestion control or by the protocol layers.
3333  *
3334  *	This function may only be called from softirq context and interrupts
3335  *	should be enabled.
3336  *
3337  *	Return values (usually ignored):
3338  *	NET_RX_SUCCESS: no congestion
3339  *	NET_RX_DROP: packet was dropped
3340  */
3341 int netif_receive_skb(struct sk_buff *skb)
3342 {
3343 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3344 
3345 	if (skb_defer_rx_timestamp(skb))
3346 		return NET_RX_SUCCESS;
3347 
3348 #ifdef CONFIG_RPS
3349 	if (static_key_false(&rps_needed)) {
3350 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3351 		int cpu, ret;
3352 
3353 		rcu_read_lock();
3354 
3355 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3356 
3357 		if (cpu >= 0) {
3358 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3359 			rcu_read_unlock();
3360 			return ret;
3361 		}
3362 		rcu_read_unlock();
3363 	}
3364 #endif
3365 	return __netif_receive_skb(skb);
3366 }
3367 EXPORT_SYMBOL(netif_receive_skb);
3368 
3369 /* Network device is going away, flush any packets still pending
3370  * Called with irqs disabled.
3371  */
3372 static void flush_backlog(void *arg)
3373 {
3374 	struct net_device *dev = arg;
3375 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3376 	struct sk_buff *skb, *tmp;
3377 
3378 	rps_lock(sd);
3379 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3380 		if (skb->dev == dev) {
3381 			__skb_unlink(skb, &sd->input_pkt_queue);
3382 			kfree_skb(skb);
3383 			input_queue_head_incr(sd);
3384 		}
3385 	}
3386 	rps_unlock(sd);
3387 
3388 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3389 		if (skb->dev == dev) {
3390 			__skb_unlink(skb, &sd->process_queue);
3391 			kfree_skb(skb);
3392 			input_queue_head_incr(sd);
3393 		}
3394 	}
3395 }
3396 
3397 static int napi_gro_complete(struct sk_buff *skb)
3398 {
3399 	struct packet_type *ptype;
3400 	__be16 type = skb->protocol;
3401 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3402 	int err = -ENOENT;
3403 
3404 	if (NAPI_GRO_CB(skb)->count == 1) {
3405 		skb_shinfo(skb)->gso_size = 0;
3406 		goto out;
3407 	}
3408 
3409 	rcu_read_lock();
3410 	list_for_each_entry_rcu(ptype, head, list) {
3411 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3412 			continue;
3413 
3414 		err = ptype->gro_complete(skb);
3415 		break;
3416 	}
3417 	rcu_read_unlock();
3418 
3419 	if (err) {
3420 		WARN_ON(&ptype->list == head);
3421 		kfree_skb(skb);
3422 		return NET_RX_SUCCESS;
3423 	}
3424 
3425 out:
3426 	return netif_receive_skb(skb);
3427 }
3428 
3429 inline void napi_gro_flush(struct napi_struct *napi)
3430 {
3431 	struct sk_buff *skb, *next;
3432 
3433 	for (skb = napi->gro_list; skb; skb = next) {
3434 		next = skb->next;
3435 		skb->next = NULL;
3436 		napi_gro_complete(skb);
3437 	}
3438 
3439 	napi->gro_count = 0;
3440 	napi->gro_list = NULL;
3441 }
3442 EXPORT_SYMBOL(napi_gro_flush);
3443 
3444 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3445 {
3446 	struct sk_buff **pp = NULL;
3447 	struct packet_type *ptype;
3448 	__be16 type = skb->protocol;
3449 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3450 	int same_flow;
3451 	int mac_len;
3452 	enum gro_result ret;
3453 
3454 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3455 		goto normal;
3456 
3457 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3458 		goto normal;
3459 
3460 	rcu_read_lock();
3461 	list_for_each_entry_rcu(ptype, head, list) {
3462 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3463 			continue;
3464 
3465 		skb_set_network_header(skb, skb_gro_offset(skb));
3466 		mac_len = skb->network_header - skb->mac_header;
3467 		skb->mac_len = mac_len;
3468 		NAPI_GRO_CB(skb)->same_flow = 0;
3469 		NAPI_GRO_CB(skb)->flush = 0;
3470 		NAPI_GRO_CB(skb)->free = 0;
3471 
3472 		pp = ptype->gro_receive(&napi->gro_list, skb);
3473 		break;
3474 	}
3475 	rcu_read_unlock();
3476 
3477 	if (&ptype->list == head)
3478 		goto normal;
3479 
3480 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3481 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3482 
3483 	if (pp) {
3484 		struct sk_buff *nskb = *pp;
3485 
3486 		*pp = nskb->next;
3487 		nskb->next = NULL;
3488 		napi_gro_complete(nskb);
3489 		napi->gro_count--;
3490 	}
3491 
3492 	if (same_flow)
3493 		goto ok;
3494 
3495 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3496 		goto normal;
3497 
3498 	napi->gro_count++;
3499 	NAPI_GRO_CB(skb)->count = 1;
3500 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3501 	skb->next = napi->gro_list;
3502 	napi->gro_list = skb;
3503 	ret = GRO_HELD;
3504 
3505 pull:
3506 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3507 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3508 
3509 		BUG_ON(skb->end - skb->tail < grow);
3510 
3511 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3512 
3513 		skb->tail += grow;
3514 		skb->data_len -= grow;
3515 
3516 		skb_shinfo(skb)->frags[0].page_offset += grow;
3517 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3518 
3519 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3520 			skb_frag_unref(skb, 0);
3521 			memmove(skb_shinfo(skb)->frags,
3522 				skb_shinfo(skb)->frags + 1,
3523 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3524 		}
3525 	}
3526 
3527 ok:
3528 	return ret;
3529 
3530 normal:
3531 	ret = GRO_NORMAL;
3532 	goto pull;
3533 }
3534 EXPORT_SYMBOL(dev_gro_receive);
3535 
3536 static inline gro_result_t
3537 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3538 {
3539 	struct sk_buff *p;
3540 	unsigned int maclen = skb->dev->hard_header_len;
3541 
3542 	for (p = napi->gro_list; p; p = p->next) {
3543 		unsigned long diffs;
3544 
3545 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3546 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3547 		if (maclen == ETH_HLEN)
3548 			diffs |= compare_ether_header(skb_mac_header(p),
3549 						      skb_gro_mac_header(skb));
3550 		else if (!diffs)
3551 			diffs = memcmp(skb_mac_header(p),
3552 				       skb_gro_mac_header(skb),
3553 				       maclen);
3554 		NAPI_GRO_CB(p)->same_flow = !diffs;
3555 		NAPI_GRO_CB(p)->flush = 0;
3556 	}
3557 
3558 	return dev_gro_receive(napi, skb);
3559 }
3560 
3561 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3562 {
3563 	switch (ret) {
3564 	case GRO_NORMAL:
3565 		if (netif_receive_skb(skb))
3566 			ret = GRO_DROP;
3567 		break;
3568 
3569 	case GRO_DROP:
3570 		kfree_skb(skb);
3571 		break;
3572 
3573 	case GRO_MERGED_FREE:
3574 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3575 			kmem_cache_free(skbuff_head_cache, skb);
3576 		else
3577 			__kfree_skb(skb);
3578 		break;
3579 
3580 	case GRO_HELD:
3581 	case GRO_MERGED:
3582 		break;
3583 	}
3584 
3585 	return ret;
3586 }
3587 EXPORT_SYMBOL(napi_skb_finish);
3588 
3589 void skb_gro_reset_offset(struct sk_buff *skb)
3590 {
3591 	NAPI_GRO_CB(skb)->data_offset = 0;
3592 	NAPI_GRO_CB(skb)->frag0 = NULL;
3593 	NAPI_GRO_CB(skb)->frag0_len = 0;
3594 
3595 	if (skb->mac_header == skb->tail &&
3596 	    !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3597 		NAPI_GRO_CB(skb)->frag0 =
3598 			skb_frag_address(&skb_shinfo(skb)->frags[0]);
3599 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3600 	}
3601 }
3602 EXPORT_SYMBOL(skb_gro_reset_offset);
3603 
3604 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3605 {
3606 	skb_gro_reset_offset(skb);
3607 
3608 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3609 }
3610 EXPORT_SYMBOL(napi_gro_receive);
3611 
3612 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3613 {
3614 	__skb_pull(skb, skb_headlen(skb));
3615 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3616 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3617 	skb->vlan_tci = 0;
3618 	skb->dev = napi->dev;
3619 	skb->skb_iif = 0;
3620 
3621 	napi->skb = skb;
3622 }
3623 
3624 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3625 {
3626 	struct sk_buff *skb = napi->skb;
3627 
3628 	if (!skb) {
3629 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3630 		if (skb)
3631 			napi->skb = skb;
3632 	}
3633 	return skb;
3634 }
3635 EXPORT_SYMBOL(napi_get_frags);
3636 
3637 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3638 			       gro_result_t ret)
3639 {
3640 	switch (ret) {
3641 	case GRO_NORMAL:
3642 	case GRO_HELD:
3643 		skb->protocol = eth_type_trans(skb, skb->dev);
3644 
3645 		if (ret == GRO_HELD)
3646 			skb_gro_pull(skb, -ETH_HLEN);
3647 		else if (netif_receive_skb(skb))
3648 			ret = GRO_DROP;
3649 		break;
3650 
3651 	case GRO_DROP:
3652 	case GRO_MERGED_FREE:
3653 		napi_reuse_skb(napi, skb);
3654 		break;
3655 
3656 	case GRO_MERGED:
3657 		break;
3658 	}
3659 
3660 	return ret;
3661 }
3662 EXPORT_SYMBOL(napi_frags_finish);
3663 
3664 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3665 {
3666 	struct sk_buff *skb = napi->skb;
3667 	struct ethhdr *eth;
3668 	unsigned int hlen;
3669 	unsigned int off;
3670 
3671 	napi->skb = NULL;
3672 
3673 	skb_reset_mac_header(skb);
3674 	skb_gro_reset_offset(skb);
3675 
3676 	off = skb_gro_offset(skb);
3677 	hlen = off + sizeof(*eth);
3678 	eth = skb_gro_header_fast(skb, off);
3679 	if (skb_gro_header_hard(skb, hlen)) {
3680 		eth = skb_gro_header_slow(skb, hlen, off);
3681 		if (unlikely(!eth)) {
3682 			napi_reuse_skb(napi, skb);
3683 			skb = NULL;
3684 			goto out;
3685 		}
3686 	}
3687 
3688 	skb_gro_pull(skb, sizeof(*eth));
3689 
3690 	/*
3691 	 * This works because the only protocols we care about don't require
3692 	 * special handling.  We'll fix it up properly at the end.
3693 	 */
3694 	skb->protocol = eth->h_proto;
3695 
3696 out:
3697 	return skb;
3698 }
3699 
3700 gro_result_t napi_gro_frags(struct napi_struct *napi)
3701 {
3702 	struct sk_buff *skb = napi_frags_skb(napi);
3703 
3704 	if (!skb)
3705 		return GRO_DROP;
3706 
3707 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3708 }
3709 EXPORT_SYMBOL(napi_gro_frags);
3710 
3711 /*
3712  * net_rps_action sends any pending IPI's for rps.
3713  * Note: called with local irq disabled, but exits with local irq enabled.
3714  */
3715 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3716 {
3717 #ifdef CONFIG_RPS
3718 	struct softnet_data *remsd = sd->rps_ipi_list;
3719 
3720 	if (remsd) {
3721 		sd->rps_ipi_list = NULL;
3722 
3723 		local_irq_enable();
3724 
3725 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3726 		while (remsd) {
3727 			struct softnet_data *next = remsd->rps_ipi_next;
3728 
3729 			if (cpu_online(remsd->cpu))
3730 				__smp_call_function_single(remsd->cpu,
3731 							   &remsd->csd, 0);
3732 			remsd = next;
3733 		}
3734 	} else
3735 #endif
3736 		local_irq_enable();
3737 }
3738 
3739 static int process_backlog(struct napi_struct *napi, int quota)
3740 {
3741 	int work = 0;
3742 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3743 
3744 #ifdef CONFIG_RPS
3745 	/* Check if we have pending ipi, its better to send them now,
3746 	 * not waiting net_rx_action() end.
3747 	 */
3748 	if (sd->rps_ipi_list) {
3749 		local_irq_disable();
3750 		net_rps_action_and_irq_enable(sd);
3751 	}
3752 #endif
3753 	napi->weight = weight_p;
3754 	local_irq_disable();
3755 	while (work < quota) {
3756 		struct sk_buff *skb;
3757 		unsigned int qlen;
3758 
3759 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3760 			local_irq_enable();
3761 			__netif_receive_skb(skb);
3762 			local_irq_disable();
3763 			input_queue_head_incr(sd);
3764 			if (++work >= quota) {
3765 				local_irq_enable();
3766 				return work;
3767 			}
3768 		}
3769 
3770 		rps_lock(sd);
3771 		qlen = skb_queue_len(&sd->input_pkt_queue);
3772 		if (qlen)
3773 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3774 						   &sd->process_queue);
3775 
3776 		if (qlen < quota - work) {
3777 			/*
3778 			 * Inline a custom version of __napi_complete().
3779 			 * only current cpu owns and manipulates this napi,
3780 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3781 			 * we can use a plain write instead of clear_bit(),
3782 			 * and we dont need an smp_mb() memory barrier.
3783 			 */
3784 			list_del(&napi->poll_list);
3785 			napi->state = 0;
3786 
3787 			quota = work + qlen;
3788 		}
3789 		rps_unlock(sd);
3790 	}
3791 	local_irq_enable();
3792 
3793 	return work;
3794 }
3795 
3796 /**
3797  * __napi_schedule - schedule for receive
3798  * @n: entry to schedule
3799  *
3800  * The entry's receive function will be scheduled to run
3801  */
3802 void __napi_schedule(struct napi_struct *n)
3803 {
3804 	unsigned long flags;
3805 
3806 	local_irq_save(flags);
3807 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3808 	local_irq_restore(flags);
3809 }
3810 EXPORT_SYMBOL(__napi_schedule);
3811 
3812 void __napi_complete(struct napi_struct *n)
3813 {
3814 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3815 	BUG_ON(n->gro_list);
3816 
3817 	list_del(&n->poll_list);
3818 	smp_mb__before_clear_bit();
3819 	clear_bit(NAPI_STATE_SCHED, &n->state);
3820 }
3821 EXPORT_SYMBOL(__napi_complete);
3822 
3823 void napi_complete(struct napi_struct *n)
3824 {
3825 	unsigned long flags;
3826 
3827 	/*
3828 	 * don't let napi dequeue from the cpu poll list
3829 	 * just in case its running on a different cpu
3830 	 */
3831 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3832 		return;
3833 
3834 	napi_gro_flush(n);
3835 	local_irq_save(flags);
3836 	__napi_complete(n);
3837 	local_irq_restore(flags);
3838 }
3839 EXPORT_SYMBOL(napi_complete);
3840 
3841 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3842 		    int (*poll)(struct napi_struct *, int), int weight)
3843 {
3844 	INIT_LIST_HEAD(&napi->poll_list);
3845 	napi->gro_count = 0;
3846 	napi->gro_list = NULL;
3847 	napi->skb = NULL;
3848 	napi->poll = poll;
3849 	napi->weight = weight;
3850 	list_add(&napi->dev_list, &dev->napi_list);
3851 	napi->dev = dev;
3852 #ifdef CONFIG_NETPOLL
3853 	spin_lock_init(&napi->poll_lock);
3854 	napi->poll_owner = -1;
3855 #endif
3856 	set_bit(NAPI_STATE_SCHED, &napi->state);
3857 }
3858 EXPORT_SYMBOL(netif_napi_add);
3859 
3860 void netif_napi_del(struct napi_struct *napi)
3861 {
3862 	struct sk_buff *skb, *next;
3863 
3864 	list_del_init(&napi->dev_list);
3865 	napi_free_frags(napi);
3866 
3867 	for (skb = napi->gro_list; skb; skb = next) {
3868 		next = skb->next;
3869 		skb->next = NULL;
3870 		kfree_skb(skb);
3871 	}
3872 
3873 	napi->gro_list = NULL;
3874 	napi->gro_count = 0;
3875 }
3876 EXPORT_SYMBOL(netif_napi_del);
3877 
3878 static void net_rx_action(struct softirq_action *h)
3879 {
3880 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3881 	unsigned long time_limit = jiffies + 2;
3882 	int budget = netdev_budget;
3883 	void *have;
3884 
3885 	local_irq_disable();
3886 
3887 	while (!list_empty(&sd->poll_list)) {
3888 		struct napi_struct *n;
3889 		int work, weight;
3890 
3891 		/* If softirq window is exhuasted then punt.
3892 		 * Allow this to run for 2 jiffies since which will allow
3893 		 * an average latency of 1.5/HZ.
3894 		 */
3895 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3896 			goto softnet_break;
3897 
3898 		local_irq_enable();
3899 
3900 		/* Even though interrupts have been re-enabled, this
3901 		 * access is safe because interrupts can only add new
3902 		 * entries to the tail of this list, and only ->poll()
3903 		 * calls can remove this head entry from the list.
3904 		 */
3905 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3906 
3907 		have = netpoll_poll_lock(n);
3908 
3909 		weight = n->weight;
3910 
3911 		/* This NAPI_STATE_SCHED test is for avoiding a race
3912 		 * with netpoll's poll_napi().  Only the entity which
3913 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3914 		 * actually make the ->poll() call.  Therefore we avoid
3915 		 * accidentally calling ->poll() when NAPI is not scheduled.
3916 		 */
3917 		work = 0;
3918 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3919 			work = n->poll(n, weight);
3920 			trace_napi_poll(n);
3921 		}
3922 
3923 		WARN_ON_ONCE(work > weight);
3924 
3925 		budget -= work;
3926 
3927 		local_irq_disable();
3928 
3929 		/* Drivers must not modify the NAPI state if they
3930 		 * consume the entire weight.  In such cases this code
3931 		 * still "owns" the NAPI instance and therefore can
3932 		 * move the instance around on the list at-will.
3933 		 */
3934 		if (unlikely(work == weight)) {
3935 			if (unlikely(napi_disable_pending(n))) {
3936 				local_irq_enable();
3937 				napi_complete(n);
3938 				local_irq_disable();
3939 			} else
3940 				list_move_tail(&n->poll_list, &sd->poll_list);
3941 		}
3942 
3943 		netpoll_poll_unlock(have);
3944 	}
3945 out:
3946 	net_rps_action_and_irq_enable(sd);
3947 
3948 #ifdef CONFIG_NET_DMA
3949 	/*
3950 	 * There may not be any more sk_buffs coming right now, so push
3951 	 * any pending DMA copies to hardware
3952 	 */
3953 	dma_issue_pending_all();
3954 #endif
3955 
3956 	return;
3957 
3958 softnet_break:
3959 	sd->time_squeeze++;
3960 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3961 	goto out;
3962 }
3963 
3964 static gifconf_func_t *gifconf_list[NPROTO];
3965 
3966 /**
3967  *	register_gifconf	-	register a SIOCGIF handler
3968  *	@family: Address family
3969  *	@gifconf: Function handler
3970  *
3971  *	Register protocol dependent address dumping routines. The handler
3972  *	that is passed must not be freed or reused until it has been replaced
3973  *	by another handler.
3974  */
3975 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3976 {
3977 	if (family >= NPROTO)
3978 		return -EINVAL;
3979 	gifconf_list[family] = gifconf;
3980 	return 0;
3981 }
3982 EXPORT_SYMBOL(register_gifconf);
3983 
3984 
3985 /*
3986  *	Map an interface index to its name (SIOCGIFNAME)
3987  */
3988 
3989 /*
3990  *	We need this ioctl for efficient implementation of the
3991  *	if_indextoname() function required by the IPv6 API.  Without
3992  *	it, we would have to search all the interfaces to find a
3993  *	match.  --pb
3994  */
3995 
3996 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3997 {
3998 	struct net_device *dev;
3999 	struct ifreq ifr;
4000 
4001 	/*
4002 	 *	Fetch the caller's info block.
4003 	 */
4004 
4005 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4006 		return -EFAULT;
4007 
4008 	rcu_read_lock();
4009 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4010 	if (!dev) {
4011 		rcu_read_unlock();
4012 		return -ENODEV;
4013 	}
4014 
4015 	strcpy(ifr.ifr_name, dev->name);
4016 	rcu_read_unlock();
4017 
4018 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4019 		return -EFAULT;
4020 	return 0;
4021 }
4022 
4023 /*
4024  *	Perform a SIOCGIFCONF call. This structure will change
4025  *	size eventually, and there is nothing I can do about it.
4026  *	Thus we will need a 'compatibility mode'.
4027  */
4028 
4029 static int dev_ifconf(struct net *net, char __user *arg)
4030 {
4031 	struct ifconf ifc;
4032 	struct net_device *dev;
4033 	char __user *pos;
4034 	int len;
4035 	int total;
4036 	int i;
4037 
4038 	/*
4039 	 *	Fetch the caller's info block.
4040 	 */
4041 
4042 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4043 		return -EFAULT;
4044 
4045 	pos = ifc.ifc_buf;
4046 	len = ifc.ifc_len;
4047 
4048 	/*
4049 	 *	Loop over the interfaces, and write an info block for each.
4050 	 */
4051 
4052 	total = 0;
4053 	for_each_netdev(net, dev) {
4054 		for (i = 0; i < NPROTO; i++) {
4055 			if (gifconf_list[i]) {
4056 				int done;
4057 				if (!pos)
4058 					done = gifconf_list[i](dev, NULL, 0);
4059 				else
4060 					done = gifconf_list[i](dev, pos + total,
4061 							       len - total);
4062 				if (done < 0)
4063 					return -EFAULT;
4064 				total += done;
4065 			}
4066 		}
4067 	}
4068 
4069 	/*
4070 	 *	All done.  Write the updated control block back to the caller.
4071 	 */
4072 	ifc.ifc_len = total;
4073 
4074 	/*
4075 	 * 	Both BSD and Solaris return 0 here, so we do too.
4076 	 */
4077 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4078 }
4079 
4080 #ifdef CONFIG_PROC_FS
4081 
4082 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4083 
4084 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4085 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4086 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4087 
4088 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4089 {
4090 	struct net *net = seq_file_net(seq);
4091 	struct net_device *dev;
4092 	struct hlist_node *p;
4093 	struct hlist_head *h;
4094 	unsigned int count = 0, offset = get_offset(*pos);
4095 
4096 	h = &net->dev_name_head[get_bucket(*pos)];
4097 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4098 		if (++count == offset)
4099 			return dev;
4100 	}
4101 
4102 	return NULL;
4103 }
4104 
4105 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4106 {
4107 	struct net_device *dev;
4108 	unsigned int bucket;
4109 
4110 	do {
4111 		dev = dev_from_same_bucket(seq, pos);
4112 		if (dev)
4113 			return dev;
4114 
4115 		bucket = get_bucket(*pos) + 1;
4116 		*pos = set_bucket_offset(bucket, 1);
4117 	} while (bucket < NETDEV_HASHENTRIES);
4118 
4119 	return NULL;
4120 }
4121 
4122 /*
4123  *	This is invoked by the /proc filesystem handler to display a device
4124  *	in detail.
4125  */
4126 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4127 	__acquires(RCU)
4128 {
4129 	rcu_read_lock();
4130 	if (!*pos)
4131 		return SEQ_START_TOKEN;
4132 
4133 	if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4134 		return NULL;
4135 
4136 	return dev_from_bucket(seq, pos);
4137 }
4138 
4139 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4140 {
4141 	++*pos;
4142 	return dev_from_bucket(seq, pos);
4143 }
4144 
4145 void dev_seq_stop(struct seq_file *seq, void *v)
4146 	__releases(RCU)
4147 {
4148 	rcu_read_unlock();
4149 }
4150 
4151 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4152 {
4153 	struct rtnl_link_stats64 temp;
4154 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4155 
4156 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4157 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4158 		   dev->name, stats->rx_bytes, stats->rx_packets,
4159 		   stats->rx_errors,
4160 		   stats->rx_dropped + stats->rx_missed_errors,
4161 		   stats->rx_fifo_errors,
4162 		   stats->rx_length_errors + stats->rx_over_errors +
4163 		    stats->rx_crc_errors + stats->rx_frame_errors,
4164 		   stats->rx_compressed, stats->multicast,
4165 		   stats->tx_bytes, stats->tx_packets,
4166 		   stats->tx_errors, stats->tx_dropped,
4167 		   stats->tx_fifo_errors, stats->collisions,
4168 		   stats->tx_carrier_errors +
4169 		    stats->tx_aborted_errors +
4170 		    stats->tx_window_errors +
4171 		    stats->tx_heartbeat_errors,
4172 		   stats->tx_compressed);
4173 }
4174 
4175 /*
4176  *	Called from the PROCfs module. This now uses the new arbitrary sized
4177  *	/proc/net interface to create /proc/net/dev
4178  */
4179 static int dev_seq_show(struct seq_file *seq, void *v)
4180 {
4181 	if (v == SEQ_START_TOKEN)
4182 		seq_puts(seq, "Inter-|   Receive                            "
4183 			      "                    |  Transmit\n"
4184 			      " face |bytes    packets errs drop fifo frame "
4185 			      "compressed multicast|bytes    packets errs "
4186 			      "drop fifo colls carrier compressed\n");
4187 	else
4188 		dev_seq_printf_stats(seq, v);
4189 	return 0;
4190 }
4191 
4192 static struct softnet_data *softnet_get_online(loff_t *pos)
4193 {
4194 	struct softnet_data *sd = NULL;
4195 
4196 	while (*pos < nr_cpu_ids)
4197 		if (cpu_online(*pos)) {
4198 			sd = &per_cpu(softnet_data, *pos);
4199 			break;
4200 		} else
4201 			++*pos;
4202 	return sd;
4203 }
4204 
4205 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4206 {
4207 	return softnet_get_online(pos);
4208 }
4209 
4210 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4211 {
4212 	++*pos;
4213 	return softnet_get_online(pos);
4214 }
4215 
4216 static void softnet_seq_stop(struct seq_file *seq, void *v)
4217 {
4218 }
4219 
4220 static int softnet_seq_show(struct seq_file *seq, void *v)
4221 {
4222 	struct softnet_data *sd = v;
4223 
4224 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4225 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4226 		   0, 0, 0, 0, /* was fastroute */
4227 		   sd->cpu_collision, sd->received_rps);
4228 	return 0;
4229 }
4230 
4231 static const struct seq_operations dev_seq_ops = {
4232 	.start = dev_seq_start,
4233 	.next  = dev_seq_next,
4234 	.stop  = dev_seq_stop,
4235 	.show  = dev_seq_show,
4236 };
4237 
4238 static int dev_seq_open(struct inode *inode, struct file *file)
4239 {
4240 	return seq_open_net(inode, file, &dev_seq_ops,
4241 			    sizeof(struct seq_net_private));
4242 }
4243 
4244 static const struct file_operations dev_seq_fops = {
4245 	.owner	 = THIS_MODULE,
4246 	.open    = dev_seq_open,
4247 	.read    = seq_read,
4248 	.llseek  = seq_lseek,
4249 	.release = seq_release_net,
4250 };
4251 
4252 static const struct seq_operations softnet_seq_ops = {
4253 	.start = softnet_seq_start,
4254 	.next  = softnet_seq_next,
4255 	.stop  = softnet_seq_stop,
4256 	.show  = softnet_seq_show,
4257 };
4258 
4259 static int softnet_seq_open(struct inode *inode, struct file *file)
4260 {
4261 	return seq_open(file, &softnet_seq_ops);
4262 }
4263 
4264 static const struct file_operations softnet_seq_fops = {
4265 	.owner	 = THIS_MODULE,
4266 	.open    = softnet_seq_open,
4267 	.read    = seq_read,
4268 	.llseek  = seq_lseek,
4269 	.release = seq_release,
4270 };
4271 
4272 static void *ptype_get_idx(loff_t pos)
4273 {
4274 	struct packet_type *pt = NULL;
4275 	loff_t i = 0;
4276 	int t;
4277 
4278 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4279 		if (i == pos)
4280 			return pt;
4281 		++i;
4282 	}
4283 
4284 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4285 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4286 			if (i == pos)
4287 				return pt;
4288 			++i;
4289 		}
4290 	}
4291 	return NULL;
4292 }
4293 
4294 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4295 	__acquires(RCU)
4296 {
4297 	rcu_read_lock();
4298 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4299 }
4300 
4301 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4302 {
4303 	struct packet_type *pt;
4304 	struct list_head *nxt;
4305 	int hash;
4306 
4307 	++*pos;
4308 	if (v == SEQ_START_TOKEN)
4309 		return ptype_get_idx(0);
4310 
4311 	pt = v;
4312 	nxt = pt->list.next;
4313 	if (pt->type == htons(ETH_P_ALL)) {
4314 		if (nxt != &ptype_all)
4315 			goto found;
4316 		hash = 0;
4317 		nxt = ptype_base[0].next;
4318 	} else
4319 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4320 
4321 	while (nxt == &ptype_base[hash]) {
4322 		if (++hash >= PTYPE_HASH_SIZE)
4323 			return NULL;
4324 		nxt = ptype_base[hash].next;
4325 	}
4326 found:
4327 	return list_entry(nxt, struct packet_type, list);
4328 }
4329 
4330 static void ptype_seq_stop(struct seq_file *seq, void *v)
4331 	__releases(RCU)
4332 {
4333 	rcu_read_unlock();
4334 }
4335 
4336 static int ptype_seq_show(struct seq_file *seq, void *v)
4337 {
4338 	struct packet_type *pt = v;
4339 
4340 	if (v == SEQ_START_TOKEN)
4341 		seq_puts(seq, "Type Device      Function\n");
4342 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4343 		if (pt->type == htons(ETH_P_ALL))
4344 			seq_puts(seq, "ALL ");
4345 		else
4346 			seq_printf(seq, "%04x", ntohs(pt->type));
4347 
4348 		seq_printf(seq, " %-8s %pF\n",
4349 			   pt->dev ? pt->dev->name : "", pt->func);
4350 	}
4351 
4352 	return 0;
4353 }
4354 
4355 static const struct seq_operations ptype_seq_ops = {
4356 	.start = ptype_seq_start,
4357 	.next  = ptype_seq_next,
4358 	.stop  = ptype_seq_stop,
4359 	.show  = ptype_seq_show,
4360 };
4361 
4362 static int ptype_seq_open(struct inode *inode, struct file *file)
4363 {
4364 	return seq_open_net(inode, file, &ptype_seq_ops,
4365 			sizeof(struct seq_net_private));
4366 }
4367 
4368 static const struct file_operations ptype_seq_fops = {
4369 	.owner	 = THIS_MODULE,
4370 	.open    = ptype_seq_open,
4371 	.read    = seq_read,
4372 	.llseek  = seq_lseek,
4373 	.release = seq_release_net,
4374 };
4375 
4376 
4377 static int __net_init dev_proc_net_init(struct net *net)
4378 {
4379 	int rc = -ENOMEM;
4380 
4381 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4382 		goto out;
4383 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4384 		goto out_dev;
4385 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4386 		goto out_softnet;
4387 
4388 	if (wext_proc_init(net))
4389 		goto out_ptype;
4390 	rc = 0;
4391 out:
4392 	return rc;
4393 out_ptype:
4394 	proc_net_remove(net, "ptype");
4395 out_softnet:
4396 	proc_net_remove(net, "softnet_stat");
4397 out_dev:
4398 	proc_net_remove(net, "dev");
4399 	goto out;
4400 }
4401 
4402 static void __net_exit dev_proc_net_exit(struct net *net)
4403 {
4404 	wext_proc_exit(net);
4405 
4406 	proc_net_remove(net, "ptype");
4407 	proc_net_remove(net, "softnet_stat");
4408 	proc_net_remove(net, "dev");
4409 }
4410 
4411 static struct pernet_operations __net_initdata dev_proc_ops = {
4412 	.init = dev_proc_net_init,
4413 	.exit = dev_proc_net_exit,
4414 };
4415 
4416 static int __init dev_proc_init(void)
4417 {
4418 	return register_pernet_subsys(&dev_proc_ops);
4419 }
4420 #else
4421 #define dev_proc_init() 0
4422 #endif	/* CONFIG_PROC_FS */
4423 
4424 
4425 /**
4426  *	netdev_set_master	-	set up master pointer
4427  *	@slave: slave device
4428  *	@master: new master device
4429  *
4430  *	Changes the master device of the slave. Pass %NULL to break the
4431  *	bonding. The caller must hold the RTNL semaphore. On a failure
4432  *	a negative errno code is returned. On success the reference counts
4433  *	are adjusted and the function returns zero.
4434  */
4435 int netdev_set_master(struct net_device *slave, struct net_device *master)
4436 {
4437 	struct net_device *old = slave->master;
4438 
4439 	ASSERT_RTNL();
4440 
4441 	if (master) {
4442 		if (old)
4443 			return -EBUSY;
4444 		dev_hold(master);
4445 	}
4446 
4447 	slave->master = master;
4448 
4449 	if (old)
4450 		dev_put(old);
4451 	return 0;
4452 }
4453 EXPORT_SYMBOL(netdev_set_master);
4454 
4455 /**
4456  *	netdev_set_bond_master	-	set up bonding master/slave pair
4457  *	@slave: slave device
4458  *	@master: new master device
4459  *
4460  *	Changes the master device of the slave. Pass %NULL to break the
4461  *	bonding. The caller must hold the RTNL semaphore. On a failure
4462  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4463  *	to the routing socket and the function returns zero.
4464  */
4465 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4466 {
4467 	int err;
4468 
4469 	ASSERT_RTNL();
4470 
4471 	err = netdev_set_master(slave, master);
4472 	if (err)
4473 		return err;
4474 	if (master)
4475 		slave->flags |= IFF_SLAVE;
4476 	else
4477 		slave->flags &= ~IFF_SLAVE;
4478 
4479 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4480 	return 0;
4481 }
4482 EXPORT_SYMBOL(netdev_set_bond_master);
4483 
4484 static void dev_change_rx_flags(struct net_device *dev, int flags)
4485 {
4486 	const struct net_device_ops *ops = dev->netdev_ops;
4487 
4488 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4489 		ops->ndo_change_rx_flags(dev, flags);
4490 }
4491 
4492 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4493 {
4494 	unsigned int old_flags = dev->flags;
4495 	uid_t uid;
4496 	gid_t gid;
4497 
4498 	ASSERT_RTNL();
4499 
4500 	dev->flags |= IFF_PROMISC;
4501 	dev->promiscuity += inc;
4502 	if (dev->promiscuity == 0) {
4503 		/*
4504 		 * Avoid overflow.
4505 		 * If inc causes overflow, untouch promisc and return error.
4506 		 */
4507 		if (inc < 0)
4508 			dev->flags &= ~IFF_PROMISC;
4509 		else {
4510 			dev->promiscuity -= inc;
4511 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4512 				dev->name);
4513 			return -EOVERFLOW;
4514 		}
4515 	}
4516 	if (dev->flags != old_flags) {
4517 		pr_info("device %s %s promiscuous mode\n",
4518 			dev->name,
4519 			dev->flags & IFF_PROMISC ? "entered" : "left");
4520 		if (audit_enabled) {
4521 			current_uid_gid(&uid, &gid);
4522 			audit_log(current->audit_context, GFP_ATOMIC,
4523 				AUDIT_ANOM_PROMISCUOUS,
4524 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4525 				dev->name, (dev->flags & IFF_PROMISC),
4526 				(old_flags & IFF_PROMISC),
4527 				audit_get_loginuid(current),
4528 				uid, gid,
4529 				audit_get_sessionid(current));
4530 		}
4531 
4532 		dev_change_rx_flags(dev, IFF_PROMISC);
4533 	}
4534 	return 0;
4535 }
4536 
4537 /**
4538  *	dev_set_promiscuity	- update promiscuity count on a device
4539  *	@dev: device
4540  *	@inc: modifier
4541  *
4542  *	Add or remove promiscuity from a device. While the count in the device
4543  *	remains above zero the interface remains promiscuous. Once it hits zero
4544  *	the device reverts back to normal filtering operation. A negative inc
4545  *	value is used to drop promiscuity on the device.
4546  *	Return 0 if successful or a negative errno code on error.
4547  */
4548 int dev_set_promiscuity(struct net_device *dev, int inc)
4549 {
4550 	unsigned int old_flags = dev->flags;
4551 	int err;
4552 
4553 	err = __dev_set_promiscuity(dev, inc);
4554 	if (err < 0)
4555 		return err;
4556 	if (dev->flags != old_flags)
4557 		dev_set_rx_mode(dev);
4558 	return err;
4559 }
4560 EXPORT_SYMBOL(dev_set_promiscuity);
4561 
4562 /**
4563  *	dev_set_allmulti	- update allmulti count on a device
4564  *	@dev: device
4565  *	@inc: modifier
4566  *
4567  *	Add or remove reception of all multicast frames to a device. While the
4568  *	count in the device remains above zero the interface remains listening
4569  *	to all interfaces. Once it hits zero the device reverts back to normal
4570  *	filtering operation. A negative @inc value is used to drop the counter
4571  *	when releasing a resource needing all multicasts.
4572  *	Return 0 if successful or a negative errno code on error.
4573  */
4574 
4575 int dev_set_allmulti(struct net_device *dev, int inc)
4576 {
4577 	unsigned int old_flags = dev->flags;
4578 
4579 	ASSERT_RTNL();
4580 
4581 	dev->flags |= IFF_ALLMULTI;
4582 	dev->allmulti += inc;
4583 	if (dev->allmulti == 0) {
4584 		/*
4585 		 * Avoid overflow.
4586 		 * If inc causes overflow, untouch allmulti and return error.
4587 		 */
4588 		if (inc < 0)
4589 			dev->flags &= ~IFF_ALLMULTI;
4590 		else {
4591 			dev->allmulti -= inc;
4592 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4593 				dev->name);
4594 			return -EOVERFLOW;
4595 		}
4596 	}
4597 	if (dev->flags ^ old_flags) {
4598 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4599 		dev_set_rx_mode(dev);
4600 	}
4601 	return 0;
4602 }
4603 EXPORT_SYMBOL(dev_set_allmulti);
4604 
4605 /*
4606  *	Upload unicast and multicast address lists to device and
4607  *	configure RX filtering. When the device doesn't support unicast
4608  *	filtering it is put in promiscuous mode while unicast addresses
4609  *	are present.
4610  */
4611 void __dev_set_rx_mode(struct net_device *dev)
4612 {
4613 	const struct net_device_ops *ops = dev->netdev_ops;
4614 
4615 	/* dev_open will call this function so the list will stay sane. */
4616 	if (!(dev->flags&IFF_UP))
4617 		return;
4618 
4619 	if (!netif_device_present(dev))
4620 		return;
4621 
4622 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4623 		/* Unicast addresses changes may only happen under the rtnl,
4624 		 * therefore calling __dev_set_promiscuity here is safe.
4625 		 */
4626 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4627 			__dev_set_promiscuity(dev, 1);
4628 			dev->uc_promisc = true;
4629 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4630 			__dev_set_promiscuity(dev, -1);
4631 			dev->uc_promisc = false;
4632 		}
4633 	}
4634 
4635 	if (ops->ndo_set_rx_mode)
4636 		ops->ndo_set_rx_mode(dev);
4637 }
4638 
4639 void dev_set_rx_mode(struct net_device *dev)
4640 {
4641 	netif_addr_lock_bh(dev);
4642 	__dev_set_rx_mode(dev);
4643 	netif_addr_unlock_bh(dev);
4644 }
4645 
4646 /**
4647  *	dev_get_flags - get flags reported to userspace
4648  *	@dev: device
4649  *
4650  *	Get the combination of flag bits exported through APIs to userspace.
4651  */
4652 unsigned int dev_get_flags(const struct net_device *dev)
4653 {
4654 	unsigned int flags;
4655 
4656 	flags = (dev->flags & ~(IFF_PROMISC |
4657 				IFF_ALLMULTI |
4658 				IFF_RUNNING |
4659 				IFF_LOWER_UP |
4660 				IFF_DORMANT)) |
4661 		(dev->gflags & (IFF_PROMISC |
4662 				IFF_ALLMULTI));
4663 
4664 	if (netif_running(dev)) {
4665 		if (netif_oper_up(dev))
4666 			flags |= IFF_RUNNING;
4667 		if (netif_carrier_ok(dev))
4668 			flags |= IFF_LOWER_UP;
4669 		if (netif_dormant(dev))
4670 			flags |= IFF_DORMANT;
4671 	}
4672 
4673 	return flags;
4674 }
4675 EXPORT_SYMBOL(dev_get_flags);
4676 
4677 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4678 {
4679 	unsigned int old_flags = dev->flags;
4680 	int ret;
4681 
4682 	ASSERT_RTNL();
4683 
4684 	/*
4685 	 *	Set the flags on our device.
4686 	 */
4687 
4688 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4689 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4690 			       IFF_AUTOMEDIA)) |
4691 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4692 				    IFF_ALLMULTI));
4693 
4694 	/*
4695 	 *	Load in the correct multicast list now the flags have changed.
4696 	 */
4697 
4698 	if ((old_flags ^ flags) & IFF_MULTICAST)
4699 		dev_change_rx_flags(dev, IFF_MULTICAST);
4700 
4701 	dev_set_rx_mode(dev);
4702 
4703 	/*
4704 	 *	Have we downed the interface. We handle IFF_UP ourselves
4705 	 *	according to user attempts to set it, rather than blindly
4706 	 *	setting it.
4707 	 */
4708 
4709 	ret = 0;
4710 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4711 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4712 
4713 		if (!ret)
4714 			dev_set_rx_mode(dev);
4715 	}
4716 
4717 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4718 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4719 
4720 		dev->gflags ^= IFF_PROMISC;
4721 		dev_set_promiscuity(dev, inc);
4722 	}
4723 
4724 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4725 	   is important. Some (broken) drivers set IFF_PROMISC, when
4726 	   IFF_ALLMULTI is requested not asking us and not reporting.
4727 	 */
4728 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4729 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4730 
4731 		dev->gflags ^= IFF_ALLMULTI;
4732 		dev_set_allmulti(dev, inc);
4733 	}
4734 
4735 	return ret;
4736 }
4737 
4738 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4739 {
4740 	unsigned int changes = dev->flags ^ old_flags;
4741 
4742 	if (changes & IFF_UP) {
4743 		if (dev->flags & IFF_UP)
4744 			call_netdevice_notifiers(NETDEV_UP, dev);
4745 		else
4746 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4747 	}
4748 
4749 	if (dev->flags & IFF_UP &&
4750 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4751 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4752 }
4753 
4754 /**
4755  *	dev_change_flags - change device settings
4756  *	@dev: device
4757  *	@flags: device state flags
4758  *
4759  *	Change settings on device based state flags. The flags are
4760  *	in the userspace exported format.
4761  */
4762 int dev_change_flags(struct net_device *dev, unsigned int flags)
4763 {
4764 	int ret;
4765 	unsigned int changes, old_flags = dev->flags;
4766 
4767 	ret = __dev_change_flags(dev, flags);
4768 	if (ret < 0)
4769 		return ret;
4770 
4771 	changes = old_flags ^ dev->flags;
4772 	if (changes)
4773 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4774 
4775 	__dev_notify_flags(dev, old_flags);
4776 	return ret;
4777 }
4778 EXPORT_SYMBOL(dev_change_flags);
4779 
4780 /**
4781  *	dev_set_mtu - Change maximum transfer unit
4782  *	@dev: device
4783  *	@new_mtu: new transfer unit
4784  *
4785  *	Change the maximum transfer size of the network device.
4786  */
4787 int dev_set_mtu(struct net_device *dev, int new_mtu)
4788 {
4789 	const struct net_device_ops *ops = dev->netdev_ops;
4790 	int err;
4791 
4792 	if (new_mtu == dev->mtu)
4793 		return 0;
4794 
4795 	/*	MTU must be positive.	 */
4796 	if (new_mtu < 0)
4797 		return -EINVAL;
4798 
4799 	if (!netif_device_present(dev))
4800 		return -ENODEV;
4801 
4802 	err = 0;
4803 	if (ops->ndo_change_mtu)
4804 		err = ops->ndo_change_mtu(dev, new_mtu);
4805 	else
4806 		dev->mtu = new_mtu;
4807 
4808 	if (!err && dev->flags & IFF_UP)
4809 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4810 	return err;
4811 }
4812 EXPORT_SYMBOL(dev_set_mtu);
4813 
4814 /**
4815  *	dev_set_group - Change group this device belongs to
4816  *	@dev: device
4817  *	@new_group: group this device should belong to
4818  */
4819 void dev_set_group(struct net_device *dev, int new_group)
4820 {
4821 	dev->group = new_group;
4822 }
4823 EXPORT_SYMBOL(dev_set_group);
4824 
4825 /**
4826  *	dev_set_mac_address - Change Media Access Control Address
4827  *	@dev: device
4828  *	@sa: new address
4829  *
4830  *	Change the hardware (MAC) address of the device
4831  */
4832 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4833 {
4834 	const struct net_device_ops *ops = dev->netdev_ops;
4835 	int err;
4836 
4837 	if (!ops->ndo_set_mac_address)
4838 		return -EOPNOTSUPP;
4839 	if (sa->sa_family != dev->type)
4840 		return -EINVAL;
4841 	if (!netif_device_present(dev))
4842 		return -ENODEV;
4843 	err = ops->ndo_set_mac_address(dev, sa);
4844 	if (!err)
4845 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4846 	add_device_randomness(dev->dev_addr, dev->addr_len);
4847 	return err;
4848 }
4849 EXPORT_SYMBOL(dev_set_mac_address);
4850 
4851 /*
4852  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4853  */
4854 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4855 {
4856 	int err;
4857 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4858 
4859 	if (!dev)
4860 		return -ENODEV;
4861 
4862 	switch (cmd) {
4863 	case SIOCGIFFLAGS:	/* Get interface flags */
4864 		ifr->ifr_flags = (short) dev_get_flags(dev);
4865 		return 0;
4866 
4867 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4868 				   (currently unused) */
4869 		ifr->ifr_metric = 0;
4870 		return 0;
4871 
4872 	case SIOCGIFMTU:	/* Get the MTU of a device */
4873 		ifr->ifr_mtu = dev->mtu;
4874 		return 0;
4875 
4876 	case SIOCGIFHWADDR:
4877 		if (!dev->addr_len)
4878 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4879 		else
4880 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4881 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4882 		ifr->ifr_hwaddr.sa_family = dev->type;
4883 		return 0;
4884 
4885 	case SIOCGIFSLAVE:
4886 		err = -EINVAL;
4887 		break;
4888 
4889 	case SIOCGIFMAP:
4890 		ifr->ifr_map.mem_start = dev->mem_start;
4891 		ifr->ifr_map.mem_end   = dev->mem_end;
4892 		ifr->ifr_map.base_addr = dev->base_addr;
4893 		ifr->ifr_map.irq       = dev->irq;
4894 		ifr->ifr_map.dma       = dev->dma;
4895 		ifr->ifr_map.port      = dev->if_port;
4896 		return 0;
4897 
4898 	case SIOCGIFINDEX:
4899 		ifr->ifr_ifindex = dev->ifindex;
4900 		return 0;
4901 
4902 	case SIOCGIFTXQLEN:
4903 		ifr->ifr_qlen = dev->tx_queue_len;
4904 		return 0;
4905 
4906 	default:
4907 		/* dev_ioctl() should ensure this case
4908 		 * is never reached
4909 		 */
4910 		WARN_ON(1);
4911 		err = -ENOTTY;
4912 		break;
4913 
4914 	}
4915 	return err;
4916 }
4917 
4918 /*
4919  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4920  */
4921 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4922 {
4923 	int err;
4924 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4925 	const struct net_device_ops *ops;
4926 
4927 	if (!dev)
4928 		return -ENODEV;
4929 
4930 	ops = dev->netdev_ops;
4931 
4932 	switch (cmd) {
4933 	case SIOCSIFFLAGS:	/* Set interface flags */
4934 		return dev_change_flags(dev, ifr->ifr_flags);
4935 
4936 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4937 				   (currently unused) */
4938 		return -EOPNOTSUPP;
4939 
4940 	case SIOCSIFMTU:	/* Set the MTU of a device */
4941 		return dev_set_mtu(dev, ifr->ifr_mtu);
4942 
4943 	case SIOCSIFHWADDR:
4944 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4945 
4946 	case SIOCSIFHWBROADCAST:
4947 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4948 			return -EINVAL;
4949 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4950 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4951 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4952 		return 0;
4953 
4954 	case SIOCSIFMAP:
4955 		if (ops->ndo_set_config) {
4956 			if (!netif_device_present(dev))
4957 				return -ENODEV;
4958 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4959 		}
4960 		return -EOPNOTSUPP;
4961 
4962 	case SIOCADDMULTI:
4963 		if (!ops->ndo_set_rx_mode ||
4964 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4965 			return -EINVAL;
4966 		if (!netif_device_present(dev))
4967 			return -ENODEV;
4968 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4969 
4970 	case SIOCDELMULTI:
4971 		if (!ops->ndo_set_rx_mode ||
4972 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4973 			return -EINVAL;
4974 		if (!netif_device_present(dev))
4975 			return -ENODEV;
4976 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4977 
4978 	case SIOCSIFTXQLEN:
4979 		if (ifr->ifr_qlen < 0)
4980 			return -EINVAL;
4981 		dev->tx_queue_len = ifr->ifr_qlen;
4982 		return 0;
4983 
4984 	case SIOCSIFNAME:
4985 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4986 		return dev_change_name(dev, ifr->ifr_newname);
4987 
4988 	case SIOCSHWTSTAMP:
4989 		err = net_hwtstamp_validate(ifr);
4990 		if (err)
4991 			return err;
4992 		/* fall through */
4993 
4994 	/*
4995 	 *	Unknown or private ioctl
4996 	 */
4997 	default:
4998 		if ((cmd >= SIOCDEVPRIVATE &&
4999 		    cmd <= SIOCDEVPRIVATE + 15) ||
5000 		    cmd == SIOCBONDENSLAVE ||
5001 		    cmd == SIOCBONDRELEASE ||
5002 		    cmd == SIOCBONDSETHWADDR ||
5003 		    cmd == SIOCBONDSLAVEINFOQUERY ||
5004 		    cmd == SIOCBONDINFOQUERY ||
5005 		    cmd == SIOCBONDCHANGEACTIVE ||
5006 		    cmd == SIOCGMIIPHY ||
5007 		    cmd == SIOCGMIIREG ||
5008 		    cmd == SIOCSMIIREG ||
5009 		    cmd == SIOCBRADDIF ||
5010 		    cmd == SIOCBRDELIF ||
5011 		    cmd == SIOCSHWTSTAMP ||
5012 		    cmd == SIOCWANDEV) {
5013 			err = -EOPNOTSUPP;
5014 			if (ops->ndo_do_ioctl) {
5015 				if (netif_device_present(dev))
5016 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
5017 				else
5018 					err = -ENODEV;
5019 			}
5020 		} else
5021 			err = -EINVAL;
5022 
5023 	}
5024 	return err;
5025 }
5026 
5027 /*
5028  *	This function handles all "interface"-type I/O control requests. The actual
5029  *	'doing' part of this is dev_ifsioc above.
5030  */
5031 
5032 /**
5033  *	dev_ioctl	-	network device ioctl
5034  *	@net: the applicable net namespace
5035  *	@cmd: command to issue
5036  *	@arg: pointer to a struct ifreq in user space
5037  *
5038  *	Issue ioctl functions to devices. This is normally called by the
5039  *	user space syscall interfaces but can sometimes be useful for
5040  *	other purposes. The return value is the return from the syscall if
5041  *	positive or a negative errno code on error.
5042  */
5043 
5044 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5045 {
5046 	struct ifreq ifr;
5047 	int ret;
5048 	char *colon;
5049 
5050 	/* One special case: SIOCGIFCONF takes ifconf argument
5051 	   and requires shared lock, because it sleeps writing
5052 	   to user space.
5053 	 */
5054 
5055 	if (cmd == SIOCGIFCONF) {
5056 		rtnl_lock();
5057 		ret = dev_ifconf(net, (char __user *) arg);
5058 		rtnl_unlock();
5059 		return ret;
5060 	}
5061 	if (cmd == SIOCGIFNAME)
5062 		return dev_ifname(net, (struct ifreq __user *)arg);
5063 
5064 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5065 		return -EFAULT;
5066 
5067 	ifr.ifr_name[IFNAMSIZ-1] = 0;
5068 
5069 	colon = strchr(ifr.ifr_name, ':');
5070 	if (colon)
5071 		*colon = 0;
5072 
5073 	/*
5074 	 *	See which interface the caller is talking about.
5075 	 */
5076 
5077 	switch (cmd) {
5078 	/*
5079 	 *	These ioctl calls:
5080 	 *	- can be done by all.
5081 	 *	- atomic and do not require locking.
5082 	 *	- return a value
5083 	 */
5084 	case SIOCGIFFLAGS:
5085 	case SIOCGIFMETRIC:
5086 	case SIOCGIFMTU:
5087 	case SIOCGIFHWADDR:
5088 	case SIOCGIFSLAVE:
5089 	case SIOCGIFMAP:
5090 	case SIOCGIFINDEX:
5091 	case SIOCGIFTXQLEN:
5092 		dev_load(net, ifr.ifr_name);
5093 		rcu_read_lock();
5094 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5095 		rcu_read_unlock();
5096 		if (!ret) {
5097 			if (colon)
5098 				*colon = ':';
5099 			if (copy_to_user(arg, &ifr,
5100 					 sizeof(struct ifreq)))
5101 				ret = -EFAULT;
5102 		}
5103 		return ret;
5104 
5105 	case SIOCETHTOOL:
5106 		dev_load(net, ifr.ifr_name);
5107 		rtnl_lock();
5108 		ret = dev_ethtool(net, &ifr);
5109 		rtnl_unlock();
5110 		if (!ret) {
5111 			if (colon)
5112 				*colon = ':';
5113 			if (copy_to_user(arg, &ifr,
5114 					 sizeof(struct ifreq)))
5115 				ret = -EFAULT;
5116 		}
5117 		return ret;
5118 
5119 	/*
5120 	 *	These ioctl calls:
5121 	 *	- require superuser power.
5122 	 *	- require strict serialization.
5123 	 *	- return a value
5124 	 */
5125 	case SIOCGMIIPHY:
5126 	case SIOCGMIIREG:
5127 	case SIOCSIFNAME:
5128 		if (!capable(CAP_NET_ADMIN))
5129 			return -EPERM;
5130 		dev_load(net, ifr.ifr_name);
5131 		rtnl_lock();
5132 		ret = dev_ifsioc(net, &ifr, cmd);
5133 		rtnl_unlock();
5134 		if (!ret) {
5135 			if (colon)
5136 				*colon = ':';
5137 			if (copy_to_user(arg, &ifr,
5138 					 sizeof(struct ifreq)))
5139 				ret = -EFAULT;
5140 		}
5141 		return ret;
5142 
5143 	/*
5144 	 *	These ioctl calls:
5145 	 *	- require superuser power.
5146 	 *	- require strict serialization.
5147 	 *	- do not return a value
5148 	 */
5149 	case SIOCSIFFLAGS:
5150 	case SIOCSIFMETRIC:
5151 	case SIOCSIFMTU:
5152 	case SIOCSIFMAP:
5153 	case SIOCSIFHWADDR:
5154 	case SIOCSIFSLAVE:
5155 	case SIOCADDMULTI:
5156 	case SIOCDELMULTI:
5157 	case SIOCSIFHWBROADCAST:
5158 	case SIOCSIFTXQLEN:
5159 	case SIOCSMIIREG:
5160 	case SIOCBONDENSLAVE:
5161 	case SIOCBONDRELEASE:
5162 	case SIOCBONDSETHWADDR:
5163 	case SIOCBONDCHANGEACTIVE:
5164 	case SIOCBRADDIF:
5165 	case SIOCBRDELIF:
5166 	case SIOCSHWTSTAMP:
5167 		if (!capable(CAP_NET_ADMIN))
5168 			return -EPERM;
5169 		/* fall through */
5170 	case SIOCBONDSLAVEINFOQUERY:
5171 	case SIOCBONDINFOQUERY:
5172 		dev_load(net, ifr.ifr_name);
5173 		rtnl_lock();
5174 		ret = dev_ifsioc(net, &ifr, cmd);
5175 		rtnl_unlock();
5176 		return ret;
5177 
5178 	case SIOCGIFMEM:
5179 		/* Get the per device memory space. We can add this but
5180 		 * currently do not support it */
5181 	case SIOCSIFMEM:
5182 		/* Set the per device memory buffer space.
5183 		 * Not applicable in our case */
5184 	case SIOCSIFLINK:
5185 		return -ENOTTY;
5186 
5187 	/*
5188 	 *	Unknown or private ioctl.
5189 	 */
5190 	default:
5191 		if (cmd == SIOCWANDEV ||
5192 		    (cmd >= SIOCDEVPRIVATE &&
5193 		     cmd <= SIOCDEVPRIVATE + 15)) {
5194 			dev_load(net, ifr.ifr_name);
5195 			rtnl_lock();
5196 			ret = dev_ifsioc(net, &ifr, cmd);
5197 			rtnl_unlock();
5198 			if (!ret && copy_to_user(arg, &ifr,
5199 						 sizeof(struct ifreq)))
5200 				ret = -EFAULT;
5201 			return ret;
5202 		}
5203 		/* Take care of Wireless Extensions */
5204 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5205 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5206 		return -ENOTTY;
5207 	}
5208 }
5209 
5210 
5211 /**
5212  *	dev_new_index	-	allocate an ifindex
5213  *	@net: the applicable net namespace
5214  *
5215  *	Returns a suitable unique value for a new device interface
5216  *	number.  The caller must hold the rtnl semaphore or the
5217  *	dev_base_lock to be sure it remains unique.
5218  */
5219 static int dev_new_index(struct net *net)
5220 {
5221 	static int ifindex;
5222 	for (;;) {
5223 		if (++ifindex <= 0)
5224 			ifindex = 1;
5225 		if (!__dev_get_by_index(net, ifindex))
5226 			return ifindex;
5227 	}
5228 }
5229 
5230 /* Delayed registration/unregisteration */
5231 static LIST_HEAD(net_todo_list);
5232 
5233 static void net_set_todo(struct net_device *dev)
5234 {
5235 	list_add_tail(&dev->todo_list, &net_todo_list);
5236 }
5237 
5238 static void rollback_registered_many(struct list_head *head)
5239 {
5240 	struct net_device *dev, *tmp;
5241 
5242 	BUG_ON(dev_boot_phase);
5243 	ASSERT_RTNL();
5244 
5245 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5246 		/* Some devices call without registering
5247 		 * for initialization unwind. Remove those
5248 		 * devices and proceed with the remaining.
5249 		 */
5250 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5251 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5252 				 dev->name, dev);
5253 
5254 			WARN_ON(1);
5255 			list_del(&dev->unreg_list);
5256 			continue;
5257 		}
5258 		dev->dismantle = true;
5259 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5260 	}
5261 
5262 	/* If device is running, close it first. */
5263 	dev_close_many(head);
5264 
5265 	list_for_each_entry(dev, head, unreg_list) {
5266 		/* And unlink it from device chain. */
5267 		unlist_netdevice(dev);
5268 
5269 		dev->reg_state = NETREG_UNREGISTERING;
5270 	}
5271 
5272 	synchronize_net();
5273 
5274 	list_for_each_entry(dev, head, unreg_list) {
5275 		/* Shutdown queueing discipline. */
5276 		dev_shutdown(dev);
5277 
5278 
5279 		/* Notify protocols, that we are about to destroy
5280 		   this device. They should clean all the things.
5281 		*/
5282 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5283 
5284 		if (!dev->rtnl_link_ops ||
5285 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5286 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5287 
5288 		/*
5289 		 *	Flush the unicast and multicast chains
5290 		 */
5291 		dev_uc_flush(dev);
5292 		dev_mc_flush(dev);
5293 
5294 		if (dev->netdev_ops->ndo_uninit)
5295 			dev->netdev_ops->ndo_uninit(dev);
5296 
5297 		/* Notifier chain MUST detach us from master device. */
5298 		WARN_ON(dev->master);
5299 
5300 		/* Remove entries from kobject tree */
5301 		netdev_unregister_kobject(dev);
5302 	}
5303 
5304 	/* Process any work delayed until the end of the batch */
5305 	dev = list_first_entry(head, struct net_device, unreg_list);
5306 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5307 
5308 	synchronize_net();
5309 
5310 	list_for_each_entry(dev, head, unreg_list)
5311 		dev_put(dev);
5312 }
5313 
5314 static void rollback_registered(struct net_device *dev)
5315 {
5316 	LIST_HEAD(single);
5317 
5318 	list_add(&dev->unreg_list, &single);
5319 	rollback_registered_many(&single);
5320 	list_del(&single);
5321 }
5322 
5323 static netdev_features_t netdev_fix_features(struct net_device *dev,
5324 	netdev_features_t features)
5325 {
5326 	/* Fix illegal checksum combinations */
5327 	if ((features & NETIF_F_HW_CSUM) &&
5328 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5329 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5330 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5331 	}
5332 
5333 	/* Fix illegal SG+CSUM combinations. */
5334 	if ((features & NETIF_F_SG) &&
5335 	    !(features & NETIF_F_ALL_CSUM)) {
5336 		netdev_dbg(dev,
5337 			"Dropping NETIF_F_SG since no checksum feature.\n");
5338 		features &= ~NETIF_F_SG;
5339 	}
5340 
5341 	/* TSO requires that SG is present as well. */
5342 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5343 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5344 		features &= ~NETIF_F_ALL_TSO;
5345 	}
5346 
5347 	/* TSO ECN requires that TSO is present as well. */
5348 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5349 		features &= ~NETIF_F_TSO_ECN;
5350 
5351 	/* Software GSO depends on SG. */
5352 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5353 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5354 		features &= ~NETIF_F_GSO;
5355 	}
5356 
5357 	/* UFO needs SG and checksumming */
5358 	if (features & NETIF_F_UFO) {
5359 		/* maybe split UFO into V4 and V6? */
5360 		if (!((features & NETIF_F_GEN_CSUM) ||
5361 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5362 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5363 			netdev_dbg(dev,
5364 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5365 			features &= ~NETIF_F_UFO;
5366 		}
5367 
5368 		if (!(features & NETIF_F_SG)) {
5369 			netdev_dbg(dev,
5370 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5371 			features &= ~NETIF_F_UFO;
5372 		}
5373 	}
5374 
5375 	return features;
5376 }
5377 
5378 int __netdev_update_features(struct net_device *dev)
5379 {
5380 	netdev_features_t features;
5381 	int err = 0;
5382 
5383 	ASSERT_RTNL();
5384 
5385 	features = netdev_get_wanted_features(dev);
5386 
5387 	if (dev->netdev_ops->ndo_fix_features)
5388 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5389 
5390 	/* driver might be less strict about feature dependencies */
5391 	features = netdev_fix_features(dev, features);
5392 
5393 	if (dev->features == features)
5394 		return 0;
5395 
5396 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5397 		&dev->features, &features);
5398 
5399 	if (dev->netdev_ops->ndo_set_features)
5400 		err = dev->netdev_ops->ndo_set_features(dev, features);
5401 
5402 	if (unlikely(err < 0)) {
5403 		netdev_err(dev,
5404 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5405 			err, &features, &dev->features);
5406 		return -1;
5407 	}
5408 
5409 	if (!err)
5410 		dev->features = features;
5411 
5412 	return 1;
5413 }
5414 
5415 /**
5416  *	netdev_update_features - recalculate device features
5417  *	@dev: the device to check
5418  *
5419  *	Recalculate dev->features set and send notifications if it
5420  *	has changed. Should be called after driver or hardware dependent
5421  *	conditions might have changed that influence the features.
5422  */
5423 void netdev_update_features(struct net_device *dev)
5424 {
5425 	if (__netdev_update_features(dev))
5426 		netdev_features_change(dev);
5427 }
5428 EXPORT_SYMBOL(netdev_update_features);
5429 
5430 /**
5431  *	netdev_change_features - recalculate device features
5432  *	@dev: the device to check
5433  *
5434  *	Recalculate dev->features set and send notifications even
5435  *	if they have not changed. Should be called instead of
5436  *	netdev_update_features() if also dev->vlan_features might
5437  *	have changed to allow the changes to be propagated to stacked
5438  *	VLAN devices.
5439  */
5440 void netdev_change_features(struct net_device *dev)
5441 {
5442 	__netdev_update_features(dev);
5443 	netdev_features_change(dev);
5444 }
5445 EXPORT_SYMBOL(netdev_change_features);
5446 
5447 /**
5448  *	netif_stacked_transfer_operstate -	transfer operstate
5449  *	@rootdev: the root or lower level device to transfer state from
5450  *	@dev: the device to transfer operstate to
5451  *
5452  *	Transfer operational state from root to device. This is normally
5453  *	called when a stacking relationship exists between the root
5454  *	device and the device(a leaf device).
5455  */
5456 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5457 					struct net_device *dev)
5458 {
5459 	if (rootdev->operstate == IF_OPER_DORMANT)
5460 		netif_dormant_on(dev);
5461 	else
5462 		netif_dormant_off(dev);
5463 
5464 	if (netif_carrier_ok(rootdev)) {
5465 		if (!netif_carrier_ok(dev))
5466 			netif_carrier_on(dev);
5467 	} else {
5468 		if (netif_carrier_ok(dev))
5469 			netif_carrier_off(dev);
5470 	}
5471 }
5472 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5473 
5474 #ifdef CONFIG_RPS
5475 static int netif_alloc_rx_queues(struct net_device *dev)
5476 {
5477 	unsigned int i, count = dev->num_rx_queues;
5478 	struct netdev_rx_queue *rx;
5479 
5480 	BUG_ON(count < 1);
5481 
5482 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5483 	if (!rx) {
5484 		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5485 		return -ENOMEM;
5486 	}
5487 	dev->_rx = rx;
5488 
5489 	for (i = 0; i < count; i++)
5490 		rx[i].dev = dev;
5491 	return 0;
5492 }
5493 #endif
5494 
5495 static void netdev_init_one_queue(struct net_device *dev,
5496 				  struct netdev_queue *queue, void *_unused)
5497 {
5498 	/* Initialize queue lock */
5499 	spin_lock_init(&queue->_xmit_lock);
5500 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5501 	queue->xmit_lock_owner = -1;
5502 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5503 	queue->dev = dev;
5504 #ifdef CONFIG_BQL
5505 	dql_init(&queue->dql, HZ);
5506 #endif
5507 }
5508 
5509 static int netif_alloc_netdev_queues(struct net_device *dev)
5510 {
5511 	unsigned int count = dev->num_tx_queues;
5512 	struct netdev_queue *tx;
5513 
5514 	BUG_ON(count < 1);
5515 
5516 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5517 	if (!tx) {
5518 		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5519 		return -ENOMEM;
5520 	}
5521 	dev->_tx = tx;
5522 
5523 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5524 	spin_lock_init(&dev->tx_global_lock);
5525 
5526 	return 0;
5527 }
5528 
5529 /**
5530  *	register_netdevice	- register a network device
5531  *	@dev: device to register
5532  *
5533  *	Take a completed network device structure and add it to the kernel
5534  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5535  *	chain. 0 is returned on success. A negative errno code is returned
5536  *	on a failure to set up the device, or if the name is a duplicate.
5537  *
5538  *	Callers must hold the rtnl semaphore. You may want
5539  *	register_netdev() instead of this.
5540  *
5541  *	BUGS:
5542  *	The locking appears insufficient to guarantee two parallel registers
5543  *	will not get the same name.
5544  */
5545 
5546 int register_netdevice(struct net_device *dev)
5547 {
5548 	int ret;
5549 	struct net *net = dev_net(dev);
5550 
5551 	BUG_ON(dev_boot_phase);
5552 	ASSERT_RTNL();
5553 
5554 	might_sleep();
5555 
5556 	/* When net_device's are persistent, this will be fatal. */
5557 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5558 	BUG_ON(!net);
5559 
5560 	spin_lock_init(&dev->addr_list_lock);
5561 	netdev_set_addr_lockdep_class(dev);
5562 
5563 	dev->iflink = -1;
5564 
5565 	ret = dev_get_valid_name(dev, dev->name);
5566 	if (ret < 0)
5567 		goto out;
5568 
5569 	/* Init, if this function is available */
5570 	if (dev->netdev_ops->ndo_init) {
5571 		ret = dev->netdev_ops->ndo_init(dev);
5572 		if (ret) {
5573 			if (ret > 0)
5574 				ret = -EIO;
5575 			goto out;
5576 		}
5577 	}
5578 
5579 	dev->ifindex = dev_new_index(net);
5580 	if (dev->iflink == -1)
5581 		dev->iflink = dev->ifindex;
5582 
5583 	/* Transfer changeable features to wanted_features and enable
5584 	 * software offloads (GSO and GRO).
5585 	 */
5586 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5587 	dev->features |= NETIF_F_SOFT_FEATURES;
5588 	dev->wanted_features = dev->features & dev->hw_features;
5589 
5590 	/* Turn on no cache copy if HW is doing checksum */
5591 	if (!(dev->flags & IFF_LOOPBACK)) {
5592 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5593 		if (dev->features & NETIF_F_ALL_CSUM) {
5594 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5595 			dev->features |= NETIF_F_NOCACHE_COPY;
5596 		}
5597 	}
5598 
5599 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5600 	 */
5601 	dev->vlan_features |= NETIF_F_HIGHDMA;
5602 
5603 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5604 	ret = notifier_to_errno(ret);
5605 	if (ret)
5606 		goto err_uninit;
5607 
5608 	ret = netdev_register_kobject(dev);
5609 	if (ret)
5610 		goto err_uninit;
5611 	dev->reg_state = NETREG_REGISTERED;
5612 
5613 	__netdev_update_features(dev);
5614 
5615 	/*
5616 	 *	Default initial state at registry is that the
5617 	 *	device is present.
5618 	 */
5619 
5620 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5621 
5622 	dev_init_scheduler(dev);
5623 	dev_hold(dev);
5624 	list_netdevice(dev);
5625 	add_device_randomness(dev->dev_addr, dev->addr_len);
5626 
5627 	/* Notify protocols, that a new device appeared. */
5628 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5629 	ret = notifier_to_errno(ret);
5630 	if (ret) {
5631 		rollback_registered(dev);
5632 		dev->reg_state = NETREG_UNREGISTERED;
5633 	}
5634 	/*
5635 	 *	Prevent userspace races by waiting until the network
5636 	 *	device is fully setup before sending notifications.
5637 	 */
5638 	if (!dev->rtnl_link_ops ||
5639 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5640 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5641 
5642 out:
5643 	return ret;
5644 
5645 err_uninit:
5646 	if (dev->netdev_ops->ndo_uninit)
5647 		dev->netdev_ops->ndo_uninit(dev);
5648 	goto out;
5649 }
5650 EXPORT_SYMBOL(register_netdevice);
5651 
5652 /**
5653  *	init_dummy_netdev	- init a dummy network device for NAPI
5654  *	@dev: device to init
5655  *
5656  *	This takes a network device structure and initialize the minimum
5657  *	amount of fields so it can be used to schedule NAPI polls without
5658  *	registering a full blown interface. This is to be used by drivers
5659  *	that need to tie several hardware interfaces to a single NAPI
5660  *	poll scheduler due to HW limitations.
5661  */
5662 int init_dummy_netdev(struct net_device *dev)
5663 {
5664 	/* Clear everything. Note we don't initialize spinlocks
5665 	 * are they aren't supposed to be taken by any of the
5666 	 * NAPI code and this dummy netdev is supposed to be
5667 	 * only ever used for NAPI polls
5668 	 */
5669 	memset(dev, 0, sizeof(struct net_device));
5670 
5671 	/* make sure we BUG if trying to hit standard
5672 	 * register/unregister code path
5673 	 */
5674 	dev->reg_state = NETREG_DUMMY;
5675 
5676 	/* NAPI wants this */
5677 	INIT_LIST_HEAD(&dev->napi_list);
5678 
5679 	/* a dummy interface is started by default */
5680 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5681 	set_bit(__LINK_STATE_START, &dev->state);
5682 
5683 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5684 	 * because users of this 'device' dont need to change
5685 	 * its refcount.
5686 	 */
5687 
5688 	return 0;
5689 }
5690 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5691 
5692 
5693 /**
5694  *	register_netdev	- register a network device
5695  *	@dev: device to register
5696  *
5697  *	Take a completed network device structure and add it to the kernel
5698  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5699  *	chain. 0 is returned on success. A negative errno code is returned
5700  *	on a failure to set up the device, or if the name is a duplicate.
5701  *
5702  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5703  *	and expands the device name if you passed a format string to
5704  *	alloc_netdev.
5705  */
5706 int register_netdev(struct net_device *dev)
5707 {
5708 	int err;
5709 
5710 	rtnl_lock();
5711 	err = register_netdevice(dev);
5712 	rtnl_unlock();
5713 	return err;
5714 }
5715 EXPORT_SYMBOL(register_netdev);
5716 
5717 int netdev_refcnt_read(const struct net_device *dev)
5718 {
5719 	int i, refcnt = 0;
5720 
5721 	for_each_possible_cpu(i)
5722 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5723 	return refcnt;
5724 }
5725 EXPORT_SYMBOL(netdev_refcnt_read);
5726 
5727 /**
5728  * netdev_wait_allrefs - wait until all references are gone.
5729  *
5730  * This is called when unregistering network devices.
5731  *
5732  * Any protocol or device that holds a reference should register
5733  * for netdevice notification, and cleanup and put back the
5734  * reference if they receive an UNREGISTER event.
5735  * We can get stuck here if buggy protocols don't correctly
5736  * call dev_put.
5737  */
5738 static void netdev_wait_allrefs(struct net_device *dev)
5739 {
5740 	unsigned long rebroadcast_time, warning_time;
5741 	int refcnt;
5742 
5743 	linkwatch_forget_dev(dev);
5744 
5745 	rebroadcast_time = warning_time = jiffies;
5746 	refcnt = netdev_refcnt_read(dev);
5747 
5748 	while (refcnt != 0) {
5749 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5750 			rtnl_lock();
5751 
5752 			/* Rebroadcast unregister notification */
5753 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5754 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5755 			 * should have already handle it the first time */
5756 
5757 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5758 				     &dev->state)) {
5759 				/* We must not have linkwatch events
5760 				 * pending on unregister. If this
5761 				 * happens, we simply run the queue
5762 				 * unscheduled, resulting in a noop
5763 				 * for this device.
5764 				 */
5765 				linkwatch_run_queue();
5766 			}
5767 
5768 			__rtnl_unlock();
5769 
5770 			rebroadcast_time = jiffies;
5771 		}
5772 
5773 		msleep(250);
5774 
5775 		refcnt = netdev_refcnt_read(dev);
5776 
5777 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5778 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5779 				 dev->name, refcnt);
5780 			warning_time = jiffies;
5781 		}
5782 	}
5783 }
5784 
5785 /* The sequence is:
5786  *
5787  *	rtnl_lock();
5788  *	...
5789  *	register_netdevice(x1);
5790  *	register_netdevice(x2);
5791  *	...
5792  *	unregister_netdevice(y1);
5793  *	unregister_netdevice(y2);
5794  *      ...
5795  *	rtnl_unlock();
5796  *	free_netdev(y1);
5797  *	free_netdev(y2);
5798  *
5799  * We are invoked by rtnl_unlock().
5800  * This allows us to deal with problems:
5801  * 1) We can delete sysfs objects which invoke hotplug
5802  *    without deadlocking with linkwatch via keventd.
5803  * 2) Since we run with the RTNL semaphore not held, we can sleep
5804  *    safely in order to wait for the netdev refcnt to drop to zero.
5805  *
5806  * We must not return until all unregister events added during
5807  * the interval the lock was held have been completed.
5808  */
5809 void netdev_run_todo(void)
5810 {
5811 	struct list_head list;
5812 
5813 	/* Snapshot list, allow later requests */
5814 	list_replace_init(&net_todo_list, &list);
5815 
5816 	__rtnl_unlock();
5817 
5818 	/* Wait for rcu callbacks to finish before attempting to drain
5819 	 * the device list.  This usually avoids a 250ms wait.
5820 	 */
5821 	if (!list_empty(&list))
5822 		rcu_barrier();
5823 
5824 	while (!list_empty(&list)) {
5825 		struct net_device *dev
5826 			= list_first_entry(&list, struct net_device, todo_list);
5827 		list_del(&dev->todo_list);
5828 
5829 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5830 			pr_err("network todo '%s' but state %d\n",
5831 			       dev->name, dev->reg_state);
5832 			dump_stack();
5833 			continue;
5834 		}
5835 
5836 		dev->reg_state = NETREG_UNREGISTERED;
5837 
5838 		on_each_cpu(flush_backlog, dev, 1);
5839 
5840 		netdev_wait_allrefs(dev);
5841 
5842 		/* paranoia */
5843 		BUG_ON(netdev_refcnt_read(dev));
5844 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5845 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5846 		WARN_ON(dev->dn_ptr);
5847 
5848 		if (dev->destructor)
5849 			dev->destructor(dev);
5850 
5851 		/* Free network device */
5852 		kobject_put(&dev->dev.kobj);
5853 	}
5854 }
5855 
5856 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5857  * fields in the same order, with only the type differing.
5858  */
5859 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5860 			     const struct net_device_stats *netdev_stats)
5861 {
5862 #if BITS_PER_LONG == 64
5863 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5864 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5865 #else
5866 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5867 	const unsigned long *src = (const unsigned long *)netdev_stats;
5868 	u64 *dst = (u64 *)stats64;
5869 
5870 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5871 		     sizeof(*stats64) / sizeof(u64));
5872 	for (i = 0; i < n; i++)
5873 		dst[i] = src[i];
5874 #endif
5875 }
5876 EXPORT_SYMBOL(netdev_stats_to_stats64);
5877 
5878 /**
5879  *	dev_get_stats	- get network device statistics
5880  *	@dev: device to get statistics from
5881  *	@storage: place to store stats
5882  *
5883  *	Get network statistics from device. Return @storage.
5884  *	The device driver may provide its own method by setting
5885  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5886  *	otherwise the internal statistics structure is used.
5887  */
5888 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5889 					struct rtnl_link_stats64 *storage)
5890 {
5891 	const struct net_device_ops *ops = dev->netdev_ops;
5892 
5893 	if (ops->ndo_get_stats64) {
5894 		memset(storage, 0, sizeof(*storage));
5895 		ops->ndo_get_stats64(dev, storage);
5896 	} else if (ops->ndo_get_stats) {
5897 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5898 	} else {
5899 		netdev_stats_to_stats64(storage, &dev->stats);
5900 	}
5901 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5902 	return storage;
5903 }
5904 EXPORT_SYMBOL(dev_get_stats);
5905 
5906 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5907 {
5908 	struct netdev_queue *queue = dev_ingress_queue(dev);
5909 
5910 #ifdef CONFIG_NET_CLS_ACT
5911 	if (queue)
5912 		return queue;
5913 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5914 	if (!queue)
5915 		return NULL;
5916 	netdev_init_one_queue(dev, queue, NULL);
5917 	queue->qdisc = &noop_qdisc;
5918 	queue->qdisc_sleeping = &noop_qdisc;
5919 	rcu_assign_pointer(dev->ingress_queue, queue);
5920 #endif
5921 	return queue;
5922 }
5923 
5924 /**
5925  *	alloc_netdev_mqs - allocate network device
5926  *	@sizeof_priv:	size of private data to allocate space for
5927  *	@name:		device name format string
5928  *	@setup:		callback to initialize device
5929  *	@txqs:		the number of TX subqueues to allocate
5930  *	@rxqs:		the number of RX subqueues to allocate
5931  *
5932  *	Allocates a struct net_device with private data area for driver use
5933  *	and performs basic initialization.  Also allocates subquue structs
5934  *	for each queue on the device.
5935  */
5936 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5937 		void (*setup)(struct net_device *),
5938 		unsigned int txqs, unsigned int rxqs)
5939 {
5940 	struct net_device *dev;
5941 	size_t alloc_size;
5942 	struct net_device *p;
5943 
5944 	BUG_ON(strlen(name) >= sizeof(dev->name));
5945 
5946 	if (txqs < 1) {
5947 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5948 		return NULL;
5949 	}
5950 
5951 #ifdef CONFIG_RPS
5952 	if (rxqs < 1) {
5953 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5954 		return NULL;
5955 	}
5956 #endif
5957 
5958 	alloc_size = sizeof(struct net_device);
5959 	if (sizeof_priv) {
5960 		/* ensure 32-byte alignment of private area */
5961 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5962 		alloc_size += sizeof_priv;
5963 	}
5964 	/* ensure 32-byte alignment of whole construct */
5965 	alloc_size += NETDEV_ALIGN - 1;
5966 
5967 	p = kzalloc(alloc_size, GFP_KERNEL);
5968 	if (!p) {
5969 		pr_err("alloc_netdev: Unable to allocate device\n");
5970 		return NULL;
5971 	}
5972 
5973 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5974 	dev->padded = (char *)dev - (char *)p;
5975 
5976 	dev->pcpu_refcnt = alloc_percpu(int);
5977 	if (!dev->pcpu_refcnt)
5978 		goto free_p;
5979 
5980 	if (dev_addr_init(dev))
5981 		goto free_pcpu;
5982 
5983 	dev_mc_init(dev);
5984 	dev_uc_init(dev);
5985 
5986 	dev_net_set(dev, &init_net);
5987 
5988 	dev->gso_max_size = GSO_MAX_SIZE;
5989 
5990 	INIT_LIST_HEAD(&dev->napi_list);
5991 	INIT_LIST_HEAD(&dev->unreg_list);
5992 	INIT_LIST_HEAD(&dev->link_watch_list);
5993 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5994 	setup(dev);
5995 
5996 	dev->num_tx_queues = txqs;
5997 	dev->real_num_tx_queues = txqs;
5998 	if (netif_alloc_netdev_queues(dev))
5999 		goto free_all;
6000 
6001 #ifdef CONFIG_RPS
6002 	dev->num_rx_queues = rxqs;
6003 	dev->real_num_rx_queues = rxqs;
6004 	if (netif_alloc_rx_queues(dev))
6005 		goto free_all;
6006 #endif
6007 
6008 	strcpy(dev->name, name);
6009 	dev->group = INIT_NETDEV_GROUP;
6010 	return dev;
6011 
6012 free_all:
6013 	free_netdev(dev);
6014 	return NULL;
6015 
6016 free_pcpu:
6017 	free_percpu(dev->pcpu_refcnt);
6018 	kfree(dev->_tx);
6019 #ifdef CONFIG_RPS
6020 	kfree(dev->_rx);
6021 #endif
6022 
6023 free_p:
6024 	kfree(p);
6025 	return NULL;
6026 }
6027 EXPORT_SYMBOL(alloc_netdev_mqs);
6028 
6029 /**
6030  *	free_netdev - free network device
6031  *	@dev: device
6032  *
6033  *	This function does the last stage of destroying an allocated device
6034  * 	interface. The reference to the device object is released.
6035  *	If this is the last reference then it will be freed.
6036  */
6037 void free_netdev(struct net_device *dev)
6038 {
6039 	struct napi_struct *p, *n;
6040 
6041 	release_net(dev_net(dev));
6042 
6043 	kfree(dev->_tx);
6044 #ifdef CONFIG_RPS
6045 	kfree(dev->_rx);
6046 #endif
6047 
6048 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6049 
6050 	/* Flush device addresses */
6051 	dev_addr_flush(dev);
6052 
6053 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6054 		netif_napi_del(p);
6055 
6056 	free_percpu(dev->pcpu_refcnt);
6057 	dev->pcpu_refcnt = NULL;
6058 
6059 	/*  Compatibility with error handling in drivers */
6060 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6061 		kfree((char *)dev - dev->padded);
6062 		return;
6063 	}
6064 
6065 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6066 	dev->reg_state = NETREG_RELEASED;
6067 
6068 	/* will free via device release */
6069 	put_device(&dev->dev);
6070 }
6071 EXPORT_SYMBOL(free_netdev);
6072 
6073 /**
6074  *	synchronize_net -  Synchronize with packet receive processing
6075  *
6076  *	Wait for packets currently being received to be done.
6077  *	Does not block later packets from starting.
6078  */
6079 void synchronize_net(void)
6080 {
6081 	might_sleep();
6082 	if (rtnl_is_locked())
6083 		synchronize_rcu_expedited();
6084 	else
6085 		synchronize_rcu();
6086 }
6087 EXPORT_SYMBOL(synchronize_net);
6088 
6089 /**
6090  *	unregister_netdevice_queue - remove device from the kernel
6091  *	@dev: device
6092  *	@head: list
6093  *
6094  *	This function shuts down a device interface and removes it
6095  *	from the kernel tables.
6096  *	If head not NULL, device is queued to be unregistered later.
6097  *
6098  *	Callers must hold the rtnl semaphore.  You may want
6099  *	unregister_netdev() instead of this.
6100  */
6101 
6102 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6103 {
6104 	ASSERT_RTNL();
6105 
6106 	if (head) {
6107 		list_move_tail(&dev->unreg_list, head);
6108 	} else {
6109 		rollback_registered(dev);
6110 		/* Finish processing unregister after unlock */
6111 		net_set_todo(dev);
6112 	}
6113 }
6114 EXPORT_SYMBOL(unregister_netdevice_queue);
6115 
6116 /**
6117  *	unregister_netdevice_many - unregister many devices
6118  *	@head: list of devices
6119  */
6120 void unregister_netdevice_many(struct list_head *head)
6121 {
6122 	struct net_device *dev;
6123 
6124 	if (!list_empty(head)) {
6125 		rollback_registered_many(head);
6126 		list_for_each_entry(dev, head, unreg_list)
6127 			net_set_todo(dev);
6128 	}
6129 }
6130 EXPORT_SYMBOL(unregister_netdevice_many);
6131 
6132 /**
6133  *	unregister_netdev - remove device from the kernel
6134  *	@dev: device
6135  *
6136  *	This function shuts down a device interface and removes it
6137  *	from the kernel tables.
6138  *
6139  *	This is just a wrapper for unregister_netdevice that takes
6140  *	the rtnl semaphore.  In general you want to use this and not
6141  *	unregister_netdevice.
6142  */
6143 void unregister_netdev(struct net_device *dev)
6144 {
6145 	rtnl_lock();
6146 	unregister_netdevice(dev);
6147 	rtnl_unlock();
6148 }
6149 EXPORT_SYMBOL(unregister_netdev);
6150 
6151 /**
6152  *	dev_change_net_namespace - move device to different nethost namespace
6153  *	@dev: device
6154  *	@net: network namespace
6155  *	@pat: If not NULL name pattern to try if the current device name
6156  *	      is already taken in the destination network namespace.
6157  *
6158  *	This function shuts down a device interface and moves it
6159  *	to a new network namespace. On success 0 is returned, on
6160  *	a failure a netagive errno code is returned.
6161  *
6162  *	Callers must hold the rtnl semaphore.
6163  */
6164 
6165 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6166 {
6167 	int err;
6168 
6169 	ASSERT_RTNL();
6170 
6171 	/* Don't allow namespace local devices to be moved. */
6172 	err = -EINVAL;
6173 	if (dev->features & NETIF_F_NETNS_LOCAL)
6174 		goto out;
6175 
6176 	/* Ensure the device has been registrered */
6177 	err = -EINVAL;
6178 	if (dev->reg_state != NETREG_REGISTERED)
6179 		goto out;
6180 
6181 	/* Get out if there is nothing todo */
6182 	err = 0;
6183 	if (net_eq(dev_net(dev), net))
6184 		goto out;
6185 
6186 	/* Pick the destination device name, and ensure
6187 	 * we can use it in the destination network namespace.
6188 	 */
6189 	err = -EEXIST;
6190 	if (__dev_get_by_name(net, dev->name)) {
6191 		/* We get here if we can't use the current device name */
6192 		if (!pat)
6193 			goto out;
6194 		if (dev_get_valid_name(dev, pat) < 0)
6195 			goto out;
6196 	}
6197 
6198 	/*
6199 	 * And now a mini version of register_netdevice unregister_netdevice.
6200 	 */
6201 
6202 	/* If device is running close it first. */
6203 	dev_close(dev);
6204 
6205 	/* And unlink it from device chain */
6206 	err = -ENODEV;
6207 	unlist_netdevice(dev);
6208 
6209 	synchronize_net();
6210 
6211 	/* Shutdown queueing discipline. */
6212 	dev_shutdown(dev);
6213 
6214 	/* Notify protocols, that we are about to destroy
6215 	   this device. They should clean all the things.
6216 
6217 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6218 	   This is wanted because this way 8021q and macvlan know
6219 	   the device is just moving and can keep their slaves up.
6220 	*/
6221 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6222 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6223 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6224 
6225 	/*
6226 	 *	Flush the unicast and multicast chains
6227 	 */
6228 	dev_uc_flush(dev);
6229 	dev_mc_flush(dev);
6230 
6231 	/* Actually switch the network namespace */
6232 	dev_net_set(dev, net);
6233 
6234 	/* If there is an ifindex conflict assign a new one */
6235 	if (__dev_get_by_index(net, dev->ifindex)) {
6236 		int iflink = (dev->iflink == dev->ifindex);
6237 		dev->ifindex = dev_new_index(net);
6238 		if (iflink)
6239 			dev->iflink = dev->ifindex;
6240 	}
6241 
6242 	/* Fixup kobjects */
6243 	err = device_rename(&dev->dev, dev->name);
6244 	WARN_ON(err);
6245 
6246 	/* Add the device back in the hashes */
6247 	list_netdevice(dev);
6248 
6249 	/* Notify protocols, that a new device appeared. */
6250 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6251 
6252 	/*
6253 	 *	Prevent userspace races by waiting until the network
6254 	 *	device is fully setup before sending notifications.
6255 	 */
6256 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6257 
6258 	synchronize_net();
6259 	err = 0;
6260 out:
6261 	return err;
6262 }
6263 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6264 
6265 static int dev_cpu_callback(struct notifier_block *nfb,
6266 			    unsigned long action,
6267 			    void *ocpu)
6268 {
6269 	struct sk_buff **list_skb;
6270 	struct sk_buff *skb;
6271 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6272 	struct softnet_data *sd, *oldsd;
6273 
6274 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6275 		return NOTIFY_OK;
6276 
6277 	local_irq_disable();
6278 	cpu = smp_processor_id();
6279 	sd = &per_cpu(softnet_data, cpu);
6280 	oldsd = &per_cpu(softnet_data, oldcpu);
6281 
6282 	/* Find end of our completion_queue. */
6283 	list_skb = &sd->completion_queue;
6284 	while (*list_skb)
6285 		list_skb = &(*list_skb)->next;
6286 	/* Append completion queue from offline CPU. */
6287 	*list_skb = oldsd->completion_queue;
6288 	oldsd->completion_queue = NULL;
6289 
6290 	/* Append output queue from offline CPU. */
6291 	if (oldsd->output_queue) {
6292 		*sd->output_queue_tailp = oldsd->output_queue;
6293 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6294 		oldsd->output_queue = NULL;
6295 		oldsd->output_queue_tailp = &oldsd->output_queue;
6296 	}
6297 	/* Append NAPI poll list from offline CPU. */
6298 	if (!list_empty(&oldsd->poll_list)) {
6299 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6300 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6301 	}
6302 
6303 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6304 	local_irq_enable();
6305 
6306 	/* Process offline CPU's input_pkt_queue */
6307 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6308 		netif_rx(skb);
6309 		input_queue_head_incr(oldsd);
6310 	}
6311 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6312 		netif_rx(skb);
6313 		input_queue_head_incr(oldsd);
6314 	}
6315 
6316 	return NOTIFY_OK;
6317 }
6318 
6319 
6320 /**
6321  *	netdev_increment_features - increment feature set by one
6322  *	@all: current feature set
6323  *	@one: new feature set
6324  *	@mask: mask feature set
6325  *
6326  *	Computes a new feature set after adding a device with feature set
6327  *	@one to the master device with current feature set @all.  Will not
6328  *	enable anything that is off in @mask. Returns the new feature set.
6329  */
6330 netdev_features_t netdev_increment_features(netdev_features_t all,
6331 	netdev_features_t one, netdev_features_t mask)
6332 {
6333 	if (mask & NETIF_F_GEN_CSUM)
6334 		mask |= NETIF_F_ALL_CSUM;
6335 	mask |= NETIF_F_VLAN_CHALLENGED;
6336 
6337 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6338 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6339 
6340 	/* If one device supports hw checksumming, set for all. */
6341 	if (all & NETIF_F_GEN_CSUM)
6342 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6343 
6344 	return all;
6345 }
6346 EXPORT_SYMBOL(netdev_increment_features);
6347 
6348 static struct hlist_head *netdev_create_hash(void)
6349 {
6350 	int i;
6351 	struct hlist_head *hash;
6352 
6353 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6354 	if (hash != NULL)
6355 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6356 			INIT_HLIST_HEAD(&hash[i]);
6357 
6358 	return hash;
6359 }
6360 
6361 /* Initialize per network namespace state */
6362 static int __net_init netdev_init(struct net *net)
6363 {
6364 	if (net != &init_net)
6365 		INIT_LIST_HEAD(&net->dev_base_head);
6366 
6367 	net->dev_name_head = netdev_create_hash();
6368 	if (net->dev_name_head == NULL)
6369 		goto err_name;
6370 
6371 	net->dev_index_head = netdev_create_hash();
6372 	if (net->dev_index_head == NULL)
6373 		goto err_idx;
6374 
6375 	return 0;
6376 
6377 err_idx:
6378 	kfree(net->dev_name_head);
6379 err_name:
6380 	return -ENOMEM;
6381 }
6382 
6383 /**
6384  *	netdev_drivername - network driver for the device
6385  *	@dev: network device
6386  *
6387  *	Determine network driver for device.
6388  */
6389 const char *netdev_drivername(const struct net_device *dev)
6390 {
6391 	const struct device_driver *driver;
6392 	const struct device *parent;
6393 	const char *empty = "";
6394 
6395 	parent = dev->dev.parent;
6396 	if (!parent)
6397 		return empty;
6398 
6399 	driver = parent->driver;
6400 	if (driver && driver->name)
6401 		return driver->name;
6402 	return empty;
6403 }
6404 
6405 int __netdev_printk(const char *level, const struct net_device *dev,
6406 			   struct va_format *vaf)
6407 {
6408 	int r;
6409 
6410 	if (dev && dev->dev.parent)
6411 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6412 			       netdev_name(dev), vaf);
6413 	else if (dev)
6414 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6415 	else
6416 		r = printk("%s(NULL net_device): %pV", level, vaf);
6417 
6418 	return r;
6419 }
6420 EXPORT_SYMBOL(__netdev_printk);
6421 
6422 int netdev_printk(const char *level, const struct net_device *dev,
6423 		  const char *format, ...)
6424 {
6425 	struct va_format vaf;
6426 	va_list args;
6427 	int r;
6428 
6429 	va_start(args, format);
6430 
6431 	vaf.fmt = format;
6432 	vaf.va = &args;
6433 
6434 	r = __netdev_printk(level, dev, &vaf);
6435 	va_end(args);
6436 
6437 	return r;
6438 }
6439 EXPORT_SYMBOL(netdev_printk);
6440 
6441 #define define_netdev_printk_level(func, level)			\
6442 int func(const struct net_device *dev, const char *fmt, ...)	\
6443 {								\
6444 	int r;							\
6445 	struct va_format vaf;					\
6446 	va_list args;						\
6447 								\
6448 	va_start(args, fmt);					\
6449 								\
6450 	vaf.fmt = fmt;						\
6451 	vaf.va = &args;						\
6452 								\
6453 	r = __netdev_printk(level, dev, &vaf);			\
6454 	va_end(args);						\
6455 								\
6456 	return r;						\
6457 }								\
6458 EXPORT_SYMBOL(func);
6459 
6460 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6461 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6462 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6463 define_netdev_printk_level(netdev_err, KERN_ERR);
6464 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6465 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6466 define_netdev_printk_level(netdev_info, KERN_INFO);
6467 
6468 static void __net_exit netdev_exit(struct net *net)
6469 {
6470 	kfree(net->dev_name_head);
6471 	kfree(net->dev_index_head);
6472 }
6473 
6474 static struct pernet_operations __net_initdata netdev_net_ops = {
6475 	.init = netdev_init,
6476 	.exit = netdev_exit,
6477 };
6478 
6479 static void __net_exit default_device_exit(struct net *net)
6480 {
6481 	struct net_device *dev, *aux;
6482 	/*
6483 	 * Push all migratable network devices back to the
6484 	 * initial network namespace
6485 	 */
6486 	rtnl_lock();
6487 	for_each_netdev_safe(net, dev, aux) {
6488 		int err;
6489 		char fb_name[IFNAMSIZ];
6490 
6491 		/* Ignore unmoveable devices (i.e. loopback) */
6492 		if (dev->features & NETIF_F_NETNS_LOCAL)
6493 			continue;
6494 
6495 		/* Leave virtual devices for the generic cleanup */
6496 		if (dev->rtnl_link_ops)
6497 			continue;
6498 
6499 		/* Push remaining network devices to init_net */
6500 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6501 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6502 		if (err) {
6503 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6504 				 __func__, dev->name, err);
6505 			BUG();
6506 		}
6507 	}
6508 	rtnl_unlock();
6509 }
6510 
6511 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6512 {
6513 	/* At exit all network devices most be removed from a network
6514 	 * namespace.  Do this in the reverse order of registration.
6515 	 * Do this across as many network namespaces as possible to
6516 	 * improve batching efficiency.
6517 	 */
6518 	struct net_device *dev;
6519 	struct net *net;
6520 	LIST_HEAD(dev_kill_list);
6521 
6522 	rtnl_lock();
6523 	list_for_each_entry(net, net_list, exit_list) {
6524 		for_each_netdev_reverse(net, dev) {
6525 			if (dev->rtnl_link_ops)
6526 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6527 			else
6528 				unregister_netdevice_queue(dev, &dev_kill_list);
6529 		}
6530 	}
6531 	unregister_netdevice_many(&dev_kill_list);
6532 	list_del(&dev_kill_list);
6533 	rtnl_unlock();
6534 }
6535 
6536 static struct pernet_operations __net_initdata default_device_ops = {
6537 	.exit = default_device_exit,
6538 	.exit_batch = default_device_exit_batch,
6539 };
6540 
6541 /*
6542  *	Initialize the DEV module. At boot time this walks the device list and
6543  *	unhooks any devices that fail to initialise (normally hardware not
6544  *	present) and leaves us with a valid list of present and active devices.
6545  *
6546  */
6547 
6548 /*
6549  *       This is called single threaded during boot, so no need
6550  *       to take the rtnl semaphore.
6551  */
6552 static int __init net_dev_init(void)
6553 {
6554 	int i, rc = -ENOMEM;
6555 
6556 	BUG_ON(!dev_boot_phase);
6557 
6558 	if (dev_proc_init())
6559 		goto out;
6560 
6561 	if (netdev_kobject_init())
6562 		goto out;
6563 
6564 	INIT_LIST_HEAD(&ptype_all);
6565 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6566 		INIT_LIST_HEAD(&ptype_base[i]);
6567 
6568 	if (register_pernet_subsys(&netdev_net_ops))
6569 		goto out;
6570 
6571 	/*
6572 	 *	Initialise the packet receive queues.
6573 	 */
6574 
6575 	for_each_possible_cpu(i) {
6576 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6577 
6578 		memset(sd, 0, sizeof(*sd));
6579 		skb_queue_head_init(&sd->input_pkt_queue);
6580 		skb_queue_head_init(&sd->process_queue);
6581 		sd->completion_queue = NULL;
6582 		INIT_LIST_HEAD(&sd->poll_list);
6583 		sd->output_queue = NULL;
6584 		sd->output_queue_tailp = &sd->output_queue;
6585 #ifdef CONFIG_RPS
6586 		sd->csd.func = rps_trigger_softirq;
6587 		sd->csd.info = sd;
6588 		sd->csd.flags = 0;
6589 		sd->cpu = i;
6590 #endif
6591 
6592 		sd->backlog.poll = process_backlog;
6593 		sd->backlog.weight = weight_p;
6594 		sd->backlog.gro_list = NULL;
6595 		sd->backlog.gro_count = 0;
6596 	}
6597 
6598 	dev_boot_phase = 0;
6599 
6600 	/* The loopback device is special if any other network devices
6601 	 * is present in a network namespace the loopback device must
6602 	 * be present. Since we now dynamically allocate and free the
6603 	 * loopback device ensure this invariant is maintained by
6604 	 * keeping the loopback device as the first device on the
6605 	 * list of network devices.  Ensuring the loopback devices
6606 	 * is the first device that appears and the last network device
6607 	 * that disappears.
6608 	 */
6609 	if (register_pernet_device(&loopback_net_ops))
6610 		goto out;
6611 
6612 	if (register_pernet_device(&default_device_ops))
6613 		goto out;
6614 
6615 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6616 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6617 
6618 	hotcpu_notifier(dev_cpu_callback, 0);
6619 	dst_init();
6620 	dev_mcast_init();
6621 	rc = 0;
6622 out:
6623 	return rc;
6624 }
6625 
6626 subsys_initcall(net_dev_init);
6627 
6628 static int __init initialize_hashrnd(void)
6629 {
6630 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6631 	return 0;
6632 }
6633 
6634 late_initcall_sync(initialize_hashrnd);
6635 
6636