1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/ethtool_netlink.h> 96 #include <linux/skbuff.h> 97 #include <linux/kthread.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dsa.h> 106 #include <net/dst.h> 107 #include <net/dst_metadata.h> 108 #include <net/gro.h> 109 #include <net/netdev_queues.h> 110 #include <net/pkt_sched.h> 111 #include <net/pkt_cls.h> 112 #include <net/checksum.h> 113 #include <net/xfrm.h> 114 #include <net/tcx.h> 115 #include <linux/highmem.h> 116 #include <linux/init.h> 117 #include <linux/module.h> 118 #include <linux/netpoll.h> 119 #include <linux/rcupdate.h> 120 #include <linux/delay.h> 121 #include <net/iw_handler.h> 122 #include <asm/current.h> 123 #include <linux/audit.h> 124 #include <linux/dmaengine.h> 125 #include <linux/err.h> 126 #include <linux/ctype.h> 127 #include <linux/if_arp.h> 128 #include <linux/if_vlan.h> 129 #include <linux/ip.h> 130 #include <net/ip.h> 131 #include <net/mpls.h> 132 #include <linux/ipv6.h> 133 #include <linux/in.h> 134 #include <linux/jhash.h> 135 #include <linux/random.h> 136 #include <trace/events/napi.h> 137 #include <trace/events/net.h> 138 #include <trace/events/skb.h> 139 #include <trace/events/qdisc.h> 140 #include <trace/events/xdp.h> 141 #include <linux/inetdevice.h> 142 #include <linux/cpu_rmap.h> 143 #include <linux/static_key.h> 144 #include <linux/hashtable.h> 145 #include <linux/vmalloc.h> 146 #include <linux/if_macvlan.h> 147 #include <linux/errqueue.h> 148 #include <linux/hrtimer.h> 149 #include <linux/netfilter_netdev.h> 150 #include <linux/crash_dump.h> 151 #include <linux/sctp.h> 152 #include <net/udp_tunnel.h> 153 #include <linux/net_namespace.h> 154 #include <linux/indirect_call_wrapper.h> 155 #include <net/devlink.h> 156 #include <linux/pm_runtime.h> 157 #include <linux/prandom.h> 158 #include <linux/once_lite.h> 159 #include <net/netdev_lock.h> 160 #include <net/netdev_rx_queue.h> 161 #include <net/page_pool/types.h> 162 #include <net/page_pool/helpers.h> 163 #include <net/page_pool/memory_provider.h> 164 #include <net/rps.h> 165 #include <linux/phy_link_topology.h> 166 167 #include "dev.h" 168 #include "devmem.h" 169 #include "net-sysfs.h" 170 171 static DEFINE_SPINLOCK(ptype_lock); 172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174 static int netif_rx_internal(struct sk_buff *skb); 175 static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179 static DEFINE_MUTEX(ifalias_mutex); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id = NR_CPUS; 185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187 static inline void dev_base_seq_inc(struct net *net) 188 { 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 #ifndef CONFIG_PREEMPT_RT 207 208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210 static int __init setup_backlog_napi_threads(char *arg) 211 { 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214 } 215 early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217 static bool use_backlog_threads(void) 218 { 219 return static_branch_unlikely(&use_backlog_threads_key); 220 } 221 222 #else 223 224 static bool use_backlog_threads(void) 225 { 226 return true; 227 } 228 229 #endif 230 231 static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233 { 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238 } 239 240 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241 { 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246 } 247 248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250 { 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255 } 256 257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258 { 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263 } 264 265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267 { 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277 } 278 279 static struct netdev_name_node * 280 netdev_name_node_head_alloc(struct net_device *dev) 281 { 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289 } 290 291 static void netdev_name_node_free(struct netdev_name_node *name_node) 292 { 293 kfree(name_node); 294 } 295 296 static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298 { 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301 } 302 303 static void netdev_name_node_del(struct netdev_name_node *name_node) 304 { 305 hlist_del_rcu(&name_node->hlist); 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322 { 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330 } 331 332 bool netdev_name_in_use(struct net *net, const char *name) 333 { 334 return netdev_name_node_lookup(net, name); 335 } 336 EXPORT_SYMBOL(netdev_name_in_use); 337 338 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339 { 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354 } 355 356 static void netdev_name_node_alt_free(struct rcu_head *head) 357 { 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363 } 364 365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366 { 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370 } 371 372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373 { 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388 } 389 390 static void netdev_name_node_alt_flush(struct net_device *dev) 391 { 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398 } 399 400 /* Device list insertion */ 401 static void list_netdevice(struct net_device *dev) 402 { 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420 } 421 422 /* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425 static void unlist_netdevice(struct net_device *dev) 426 { 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443 } 444 445 /* 446 * Our notifier list 447 */ 448 449 static RAW_NOTIFIER_HEAD(netdev_chain); 450 451 /* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458 }; 459 EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461 /* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { 466 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 467 }; 468 469 #ifdef CONFIG_LOCKDEP 470 /* 471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 472 * according to dev->type 473 */ 474 static const unsigned short netdev_lock_type[] = { 475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 490 491 static const char *const netdev_lock_name[] = { 492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 507 508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 510 511 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 512 { 513 int i; 514 515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 516 if (netdev_lock_type[i] == dev_type) 517 return i; 518 /* the last key is used by default */ 519 return ARRAY_SIZE(netdev_lock_type) - 1; 520 } 521 522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 523 unsigned short dev_type) 524 { 525 int i; 526 527 i = netdev_lock_pos(dev_type); 528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 529 netdev_lock_name[i]); 530 } 531 532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 533 { 534 int i; 535 536 i = netdev_lock_pos(dev->type); 537 lockdep_set_class_and_name(&dev->addr_list_lock, 538 &netdev_addr_lock_key[i], 539 netdev_lock_name[i]); 540 } 541 #else 542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 543 unsigned short dev_type) 544 { 545 } 546 547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 548 { 549 } 550 #endif 551 552 /******************************************************************************* 553 * 554 * Protocol management and registration routines 555 * 556 *******************************************************************************/ 557 558 559 /* 560 * Add a protocol ID to the list. Now that the input handler is 561 * smarter we can dispense with all the messy stuff that used to be 562 * here. 563 * 564 * BEWARE!!! Protocol handlers, mangling input packets, 565 * MUST BE last in hash buckets and checking protocol handlers 566 * MUST start from promiscuous ptype_all chain in net_bh. 567 * It is true now, do not change it. 568 * Explanation follows: if protocol handler, mangling packet, will 569 * be the first on list, it is not able to sense, that packet 570 * is cloned and should be copied-on-write, so that it will 571 * change it and subsequent readers will get broken packet. 572 * --ANK (980803) 573 */ 574 575 static inline struct list_head *ptype_head(const struct packet_type *pt) 576 { 577 if (pt->type == htons(ETH_P_ALL)) { 578 if (!pt->af_packet_net && !pt->dev) 579 return NULL; 580 581 return pt->dev ? &pt->dev->ptype_all : 582 &pt->af_packet_net->ptype_all; 583 } 584 585 if (pt->dev) 586 return &pt->dev->ptype_specific; 587 588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 590 } 591 592 /** 593 * dev_add_pack - add packet handler 594 * @pt: packet type declaration 595 * 596 * Add a protocol handler to the networking stack. The passed &packet_type 597 * is linked into kernel lists and may not be freed until it has been 598 * removed from the kernel lists. 599 * 600 * This call does not sleep therefore it can not 601 * guarantee all CPU's that are in middle of receiving packets 602 * will see the new packet type (until the next received packet). 603 */ 604 605 void dev_add_pack(struct packet_type *pt) 606 { 607 struct list_head *head = ptype_head(pt); 608 609 if (WARN_ON_ONCE(!head)) 610 return; 611 612 spin_lock(&ptype_lock); 613 list_add_rcu(&pt->list, head); 614 spin_unlock(&ptype_lock); 615 } 616 EXPORT_SYMBOL(dev_add_pack); 617 618 /** 619 * __dev_remove_pack - remove packet handler 620 * @pt: packet type declaration 621 * 622 * Remove a protocol handler that was previously added to the kernel 623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 624 * from the kernel lists and can be freed or reused once this function 625 * returns. 626 * 627 * The packet type might still be in use by receivers 628 * and must not be freed until after all the CPU's have gone 629 * through a quiescent state. 630 */ 631 void __dev_remove_pack(struct packet_type *pt) 632 { 633 struct list_head *head = ptype_head(pt); 634 struct packet_type *pt1; 635 636 if (!head) 637 return; 638 639 spin_lock(&ptype_lock); 640 641 list_for_each_entry(pt1, head, list) { 642 if (pt == pt1) { 643 list_del_rcu(&pt->list); 644 goto out; 645 } 646 } 647 648 pr_warn("dev_remove_pack: %p not found\n", pt); 649 out: 650 spin_unlock(&ptype_lock); 651 } 652 EXPORT_SYMBOL(__dev_remove_pack); 653 654 /** 655 * dev_remove_pack - remove packet handler 656 * @pt: packet type declaration 657 * 658 * Remove a protocol handler that was previously added to the kernel 659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 660 * from the kernel lists and can be freed or reused once this function 661 * returns. 662 * 663 * This call sleeps to guarantee that no CPU is looking at the packet 664 * type after return. 665 */ 666 void dev_remove_pack(struct packet_type *pt) 667 { 668 __dev_remove_pack(pt); 669 670 synchronize_net(); 671 } 672 EXPORT_SYMBOL(dev_remove_pack); 673 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return READ_ONCE(dev->ifindex); 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 725 { 726 int k = stack->num_paths++; 727 728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 729 return NULL; 730 731 return &stack->path[k]; 732 } 733 734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 735 struct net_device_path_stack *stack) 736 { 737 const struct net_device *last_dev; 738 struct net_device_path_ctx ctx = { 739 .dev = dev, 740 }; 741 struct net_device_path *path; 742 int ret = 0; 743 744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 745 stack->num_paths = 0; 746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 747 last_dev = ctx.dev; 748 path = dev_fwd_path(stack); 749 if (!path) 750 return -1; 751 752 memset(path, 0, sizeof(struct net_device_path)); 753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 754 if (ret < 0) 755 return -1; 756 757 if (WARN_ON_ONCE(last_dev == ctx.dev)) 758 return -1; 759 } 760 761 if (!ctx.dev) 762 return ret; 763 764 path = dev_fwd_path(stack); 765 if (!path) 766 return -1; 767 path->type = DEV_PATH_ETHERNET; 768 path->dev = ctx.dev; 769 770 return ret; 771 } 772 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 773 774 /* must be called under rcu_read_lock(), as we dont take a reference */ 775 static struct napi_struct *napi_by_id(unsigned int napi_id) 776 { 777 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 778 struct napi_struct *napi; 779 780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 781 if (napi->napi_id == napi_id) 782 return napi; 783 784 return NULL; 785 } 786 787 /* must be called under rcu_read_lock(), as we dont take a reference */ 788 static struct napi_struct * 789 netdev_napi_by_id(struct net *net, unsigned int napi_id) 790 { 791 struct napi_struct *napi; 792 793 napi = napi_by_id(napi_id); 794 if (!napi) 795 return NULL; 796 797 if (WARN_ON_ONCE(!napi->dev)) 798 return NULL; 799 if (!net_eq(net, dev_net(napi->dev))) 800 return NULL; 801 802 return napi; 803 } 804 805 /** 806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 807 * @net: the applicable net namespace 808 * @napi_id: ID of a NAPI of a target device 809 * 810 * Find a NAPI instance with @napi_id. Lock its device. 811 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 812 * netdev_unlock() must be called to release it. 813 * 814 * Return: pointer to NAPI, its device with lock held, NULL if not found. 815 */ 816 struct napi_struct * 817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 818 { 819 struct napi_struct *napi; 820 struct net_device *dev; 821 822 rcu_read_lock(); 823 napi = netdev_napi_by_id(net, napi_id); 824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 825 rcu_read_unlock(); 826 return NULL; 827 } 828 829 dev = napi->dev; 830 dev_hold(dev); 831 rcu_read_unlock(); 832 833 dev = __netdev_put_lock(dev, net); 834 if (!dev) 835 return NULL; 836 837 rcu_read_lock(); 838 napi = netdev_napi_by_id(net, napi_id); 839 if (napi && napi->dev != dev) 840 napi = NULL; 841 rcu_read_unlock(); 842 843 if (!napi) 844 netdev_unlock(dev); 845 return napi; 846 } 847 848 /** 849 * __dev_get_by_name - find a device by its name 850 * @net: the applicable net namespace 851 * @name: name to find 852 * 853 * Find an interface by name. Must be called under RTNL semaphore. 854 * If the name is found a pointer to the device is returned. 855 * If the name is not found then %NULL is returned. The 856 * reference counters are not incremented so the caller must be 857 * careful with locks. 858 */ 859 860 struct net_device *__dev_get_by_name(struct net *net, const char *name) 861 { 862 struct netdev_name_node *node_name; 863 864 node_name = netdev_name_node_lookup(net, name); 865 return node_name ? node_name->dev : NULL; 866 } 867 EXPORT_SYMBOL(__dev_get_by_name); 868 869 /** 870 * dev_get_by_name_rcu - find a device by its name 871 * @net: the applicable net namespace 872 * @name: name to find 873 * 874 * Find an interface by name. 875 * If the name is found a pointer to the device is returned. 876 * If the name is not found then %NULL is returned. 877 * The reference counters are not incremented so the caller must be 878 * careful with locks. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 882 { 883 struct netdev_name_node *node_name; 884 885 node_name = netdev_name_node_lookup_rcu(net, name); 886 return node_name ? node_name->dev : NULL; 887 } 888 EXPORT_SYMBOL(dev_get_by_name_rcu); 889 890 /* Deprecated for new users, call netdev_get_by_name() instead */ 891 struct net_device *dev_get_by_name(struct net *net, const char *name) 892 { 893 struct net_device *dev; 894 895 rcu_read_lock(); 896 dev = dev_get_by_name_rcu(net, name); 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900 } 901 EXPORT_SYMBOL(dev_get_by_name); 902 903 /** 904 * netdev_get_by_name() - find a device by its name 905 * @net: the applicable net namespace 906 * @name: name to find 907 * @tracker: tracking object for the acquired reference 908 * @gfp: allocation flags for the tracker 909 * 910 * Find an interface by name. This can be called from any 911 * context and does its own locking. The returned handle has 912 * the usage count incremented and the caller must use netdev_put() to 913 * release it when it is no longer needed. %NULL is returned if no 914 * matching device is found. 915 */ 916 struct net_device *netdev_get_by_name(struct net *net, const char *name, 917 netdevice_tracker *tracker, gfp_t gfp) 918 { 919 struct net_device *dev; 920 921 dev = dev_get_by_name(net, name); 922 if (dev) 923 netdev_tracker_alloc(dev, tracker, gfp); 924 return dev; 925 } 926 EXPORT_SYMBOL(netdev_get_by_name); 927 928 /** 929 * __dev_get_by_index - find a device by its ifindex 930 * @net: the applicable net namespace 931 * @ifindex: index of device 932 * 933 * Search for an interface by index. Returns %NULL if the device 934 * is not found or a pointer to the device. The device has not 935 * had its reference counter increased so the caller must be careful 936 * about locking. The caller must hold the RTNL semaphore. 937 */ 938 939 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 940 { 941 struct net_device *dev; 942 struct hlist_head *head = dev_index_hash(net, ifindex); 943 944 hlist_for_each_entry(dev, head, index_hlist) 945 if (dev->ifindex == ifindex) 946 return dev; 947 948 return NULL; 949 } 950 EXPORT_SYMBOL(__dev_get_by_index); 951 952 /** 953 * dev_get_by_index_rcu - find a device by its ifindex 954 * @net: the applicable net namespace 955 * @ifindex: index of device 956 * 957 * Search for an interface by index. Returns %NULL if the device 958 * is not found or a pointer to the device. The device has not 959 * had its reference counter increased so the caller must be careful 960 * about locking. The caller must hold RCU lock. 961 */ 962 963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 964 { 965 struct net_device *dev; 966 struct hlist_head *head = dev_index_hash(net, ifindex); 967 968 hlist_for_each_entry_rcu(dev, head, index_hlist) 969 if (dev->ifindex == ifindex) 970 return dev; 971 972 return NULL; 973 } 974 EXPORT_SYMBOL(dev_get_by_index_rcu); 975 976 /* Deprecated for new users, call netdev_get_by_index() instead */ 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 dev_hold(dev); 984 rcu_read_unlock(); 985 return dev; 986 } 987 EXPORT_SYMBOL(dev_get_by_index); 988 989 /** 990 * netdev_get_by_index() - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * @tracker: tracking object for the acquired reference 994 * @gfp: allocation flags for the tracker 995 * 996 * Search for an interface by index. Returns NULL if the device 997 * is not found or a pointer to the device. The device returned has 998 * had a reference added and the pointer is safe until the user calls 999 * netdev_put() to indicate they have finished with it. 1000 */ 1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1002 netdevice_tracker *tracker, gfp_t gfp) 1003 { 1004 struct net_device *dev; 1005 1006 dev = dev_get_by_index(net, ifindex); 1007 if (dev) 1008 netdev_tracker_alloc(dev, tracker, gfp); 1009 return dev; 1010 } 1011 EXPORT_SYMBOL(netdev_get_by_index); 1012 1013 /** 1014 * dev_get_by_napi_id - find a device by napi_id 1015 * @napi_id: ID of the NAPI struct 1016 * 1017 * Search for an interface by NAPI ID. Returns %NULL if the device 1018 * is not found or a pointer to the device. The device has not had 1019 * its reference counter increased so the caller must be careful 1020 * about locking. The caller must hold RCU lock. 1021 */ 1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1023 { 1024 struct napi_struct *napi; 1025 1026 WARN_ON_ONCE(!rcu_read_lock_held()); 1027 1028 if (!napi_id_valid(napi_id)) 1029 return NULL; 1030 1031 napi = napi_by_id(napi_id); 1032 1033 return napi ? napi->dev : NULL; 1034 } 1035 1036 /* Release the held reference on the net_device, and if the net_device 1037 * is still registered try to lock the instance lock. If device is being 1038 * unregistered NULL will be returned (but the reference has been released, 1039 * either way!) 1040 * 1041 * This helper is intended for locking net_device after it has been looked up 1042 * using a lockless lookup helper. Lock prevents the instance from going away. 1043 */ 1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1045 { 1046 netdev_lock(dev); 1047 if (dev->reg_state > NETREG_REGISTERED || 1048 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1049 netdev_unlock(dev); 1050 dev_put(dev); 1051 return NULL; 1052 } 1053 dev_put(dev); 1054 return dev; 1055 } 1056 1057 static struct net_device * 1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1059 { 1060 netdev_lock_ops_compat(dev); 1061 if (dev->reg_state > NETREG_REGISTERED || 1062 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1063 netdev_unlock_ops_compat(dev); 1064 dev_put(dev); 1065 return NULL; 1066 } 1067 dev_put(dev); 1068 return dev; 1069 } 1070 1071 /** 1072 * netdev_get_by_index_lock() - find a device by its ifindex 1073 * @net: the applicable net namespace 1074 * @ifindex: index of device 1075 * 1076 * Search for an interface by index. If a valid device 1077 * with @ifindex is found it will be returned with netdev->lock held. 1078 * netdev_unlock() must be called to release it. 1079 * 1080 * Return: pointer to a device with lock held, NULL if not found. 1081 */ 1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1083 { 1084 struct net_device *dev; 1085 1086 dev = dev_get_by_index(net, ifindex); 1087 if (!dev) 1088 return NULL; 1089 1090 return __netdev_put_lock(dev, net); 1091 } 1092 1093 struct net_device * 1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1095 { 1096 struct net_device *dev; 1097 1098 dev = dev_get_by_index(net, ifindex); 1099 if (!dev) 1100 return NULL; 1101 1102 return __netdev_put_lock_ops_compat(dev, net); 1103 } 1104 1105 struct net_device * 1106 netdev_xa_find_lock(struct net *net, struct net_device *dev, 1107 unsigned long *index) 1108 { 1109 if (dev) 1110 netdev_unlock(dev); 1111 1112 do { 1113 rcu_read_lock(); 1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1115 if (!dev) { 1116 rcu_read_unlock(); 1117 return NULL; 1118 } 1119 dev_hold(dev); 1120 rcu_read_unlock(); 1121 1122 dev = __netdev_put_lock(dev, net); 1123 if (dev) 1124 return dev; 1125 1126 (*index)++; 1127 } while (true); 1128 } 1129 1130 struct net_device * 1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1132 unsigned long *index) 1133 { 1134 if (dev) 1135 netdev_unlock_ops_compat(dev); 1136 1137 do { 1138 rcu_read_lock(); 1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1140 if (!dev) { 1141 rcu_read_unlock(); 1142 return NULL; 1143 } 1144 dev_hold(dev); 1145 rcu_read_unlock(); 1146 1147 dev = __netdev_put_lock_ops_compat(dev, net); 1148 if (dev) 1149 return dev; 1150 1151 (*index)++; 1152 } while (true); 1153 } 1154 1155 static DEFINE_SEQLOCK(netdev_rename_lock); 1156 1157 void netdev_copy_name(struct net_device *dev, char *name) 1158 { 1159 unsigned int seq; 1160 1161 do { 1162 seq = read_seqbegin(&netdev_rename_lock); 1163 strscpy(name, dev->name, IFNAMSIZ); 1164 } while (read_seqretry(&netdev_rename_lock, seq)); 1165 } 1166 1167 /** 1168 * netdev_get_name - get a netdevice name, knowing its ifindex. 1169 * @net: network namespace 1170 * @name: a pointer to the buffer where the name will be stored. 1171 * @ifindex: the ifindex of the interface to get the name from. 1172 */ 1173 int netdev_get_name(struct net *net, char *name, int ifindex) 1174 { 1175 struct net_device *dev; 1176 int ret; 1177 1178 rcu_read_lock(); 1179 1180 dev = dev_get_by_index_rcu(net, ifindex); 1181 if (!dev) { 1182 ret = -ENODEV; 1183 goto out; 1184 } 1185 1186 netdev_copy_name(dev, name); 1187 1188 ret = 0; 1189 out: 1190 rcu_read_unlock(); 1191 return ret; 1192 } 1193 1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1195 const char *ha) 1196 { 1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1198 } 1199 1200 /** 1201 * dev_getbyhwaddr_rcu - find a device by its hardware address 1202 * @net: the applicable net namespace 1203 * @type: media type of device 1204 * @ha: hardware address 1205 * 1206 * Search for an interface by MAC address. Returns NULL if the device 1207 * is not found or a pointer to the device. 1208 * The caller must hold RCU. 1209 * The returned device has not had its ref count increased 1210 * and the caller must therefore be careful about locking 1211 * 1212 */ 1213 1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1215 const char *ha) 1216 { 1217 struct net_device *dev; 1218 1219 for_each_netdev_rcu(net, dev) 1220 if (dev_addr_cmp(dev, type, ha)) 1221 return dev; 1222 1223 return NULL; 1224 } 1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1226 1227 /** 1228 * dev_getbyhwaddr() - find a device by its hardware address 1229 * @net: the applicable net namespace 1230 * @type: media type of device 1231 * @ha: hardware address 1232 * 1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1234 * rtnl_lock. 1235 * 1236 * Context: rtnl_lock() must be held. 1237 * Return: pointer to the net_device, or NULL if not found 1238 */ 1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1240 const char *ha) 1241 { 1242 struct net_device *dev; 1243 1244 ASSERT_RTNL(); 1245 for_each_netdev(net, dev) 1246 if (dev_addr_cmp(dev, type, ha)) 1247 return dev; 1248 1249 return NULL; 1250 } 1251 EXPORT_SYMBOL(dev_getbyhwaddr); 1252 1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1254 { 1255 struct net_device *dev, *ret = NULL; 1256 1257 rcu_read_lock(); 1258 for_each_netdev_rcu(net, dev) 1259 if (dev->type == type) { 1260 dev_hold(dev); 1261 ret = dev; 1262 break; 1263 } 1264 rcu_read_unlock(); 1265 return ret; 1266 } 1267 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1268 1269 /** 1270 * __dev_get_by_flags - find any device with given flags 1271 * @net: the applicable net namespace 1272 * @if_flags: IFF_* values 1273 * @mask: bitmask of bits in if_flags to check 1274 * 1275 * Search for any interface with the given flags. Returns NULL if a device 1276 * is not found or a pointer to the device. Must be called inside 1277 * rtnl_lock(), and result refcount is unchanged. 1278 */ 1279 1280 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1281 unsigned short mask) 1282 { 1283 struct net_device *dev, *ret; 1284 1285 ASSERT_RTNL(); 1286 1287 ret = NULL; 1288 for_each_netdev(net, dev) { 1289 if (((dev->flags ^ if_flags) & mask) == 0) { 1290 ret = dev; 1291 break; 1292 } 1293 } 1294 return ret; 1295 } 1296 EXPORT_SYMBOL(__dev_get_by_flags); 1297 1298 /** 1299 * dev_valid_name - check if name is okay for network device 1300 * @name: name string 1301 * 1302 * Network device names need to be valid file names to 1303 * allow sysfs to work. We also disallow any kind of 1304 * whitespace. 1305 */ 1306 bool dev_valid_name(const char *name) 1307 { 1308 if (*name == '\0') 1309 return false; 1310 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1311 return false; 1312 if (!strcmp(name, ".") || !strcmp(name, "..")) 1313 return false; 1314 1315 while (*name) { 1316 if (*name == '/' || *name == ':' || isspace(*name)) 1317 return false; 1318 name++; 1319 } 1320 return true; 1321 } 1322 EXPORT_SYMBOL(dev_valid_name); 1323 1324 /** 1325 * __dev_alloc_name - allocate a name for a device 1326 * @net: network namespace to allocate the device name in 1327 * @name: name format string 1328 * @res: result name string 1329 * 1330 * Passed a format string - eg "lt%d" it will try and find a suitable 1331 * id. It scans list of devices to build up a free map, then chooses 1332 * the first empty slot. The caller must hold the dev_base or rtnl lock 1333 * while allocating the name and adding the device in order to avoid 1334 * duplicates. 1335 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1336 * Returns the number of the unit assigned or a negative errno code. 1337 */ 1338 1339 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1340 { 1341 int i = 0; 1342 const char *p; 1343 const int max_netdevices = 8*PAGE_SIZE; 1344 unsigned long *inuse; 1345 struct net_device *d; 1346 char buf[IFNAMSIZ]; 1347 1348 /* Verify the string as this thing may have come from the user. 1349 * There must be one "%d" and no other "%" characters. 1350 */ 1351 p = strchr(name, '%'); 1352 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1353 return -EINVAL; 1354 1355 /* Use one page as a bit array of possible slots */ 1356 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1357 if (!inuse) 1358 return -ENOMEM; 1359 1360 for_each_netdev(net, d) { 1361 struct netdev_name_node *name_node; 1362 1363 netdev_for_each_altname(d, name_node) { 1364 if (!sscanf(name_node->name, name, &i)) 1365 continue; 1366 if (i < 0 || i >= max_netdevices) 1367 continue; 1368 1369 /* avoid cases where sscanf is not exact inverse of printf */ 1370 snprintf(buf, IFNAMSIZ, name, i); 1371 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1372 __set_bit(i, inuse); 1373 } 1374 if (!sscanf(d->name, name, &i)) 1375 continue; 1376 if (i < 0 || i >= max_netdevices) 1377 continue; 1378 1379 /* avoid cases where sscanf is not exact inverse of printf */ 1380 snprintf(buf, IFNAMSIZ, name, i); 1381 if (!strncmp(buf, d->name, IFNAMSIZ)) 1382 __set_bit(i, inuse); 1383 } 1384 1385 i = find_first_zero_bit(inuse, max_netdevices); 1386 bitmap_free(inuse); 1387 if (i == max_netdevices) 1388 return -ENFILE; 1389 1390 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1391 strscpy(buf, name, IFNAMSIZ); 1392 snprintf(res, IFNAMSIZ, buf, i); 1393 return i; 1394 } 1395 1396 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1397 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1398 const char *want_name, char *out_name, 1399 int dup_errno) 1400 { 1401 if (!dev_valid_name(want_name)) 1402 return -EINVAL; 1403 1404 if (strchr(want_name, '%')) 1405 return __dev_alloc_name(net, want_name, out_name); 1406 1407 if (netdev_name_in_use(net, want_name)) 1408 return -dup_errno; 1409 if (out_name != want_name) 1410 strscpy(out_name, want_name, IFNAMSIZ); 1411 return 0; 1412 } 1413 1414 /** 1415 * dev_alloc_name - allocate a name for a device 1416 * @dev: device 1417 * @name: name format string 1418 * 1419 * Passed a format string - eg "lt%d" it will try and find a suitable 1420 * id. It scans list of devices to build up a free map, then chooses 1421 * the first empty slot. The caller must hold the dev_base or rtnl lock 1422 * while allocating the name and adding the device in order to avoid 1423 * duplicates. 1424 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1425 * Returns the number of the unit assigned or a negative errno code. 1426 */ 1427 1428 int dev_alloc_name(struct net_device *dev, const char *name) 1429 { 1430 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1431 } 1432 EXPORT_SYMBOL(dev_alloc_name); 1433 1434 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1435 const char *name) 1436 { 1437 int ret; 1438 1439 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1440 return ret < 0 ? ret : 0; 1441 } 1442 1443 int netif_change_name(struct net_device *dev, const char *newname) 1444 { 1445 struct net *net = dev_net(dev); 1446 unsigned char old_assign_type; 1447 char oldname[IFNAMSIZ]; 1448 int err = 0; 1449 int ret; 1450 1451 ASSERT_RTNL_NET(net); 1452 1453 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1454 return 0; 1455 1456 memcpy(oldname, dev->name, IFNAMSIZ); 1457 1458 write_seqlock_bh(&netdev_rename_lock); 1459 err = dev_get_valid_name(net, dev, newname); 1460 write_sequnlock_bh(&netdev_rename_lock); 1461 1462 if (err < 0) 1463 return err; 1464 1465 if (oldname[0] && !strchr(oldname, '%')) 1466 netdev_info(dev, "renamed from %s%s\n", oldname, 1467 dev->flags & IFF_UP ? " (while UP)" : ""); 1468 1469 old_assign_type = dev->name_assign_type; 1470 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1471 1472 rollback: 1473 ret = device_rename(&dev->dev, dev->name); 1474 if (ret) { 1475 write_seqlock_bh(&netdev_rename_lock); 1476 memcpy(dev->name, oldname, IFNAMSIZ); 1477 write_sequnlock_bh(&netdev_rename_lock); 1478 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1479 return ret; 1480 } 1481 1482 netdev_adjacent_rename_links(dev, oldname); 1483 1484 netdev_name_node_del(dev->name_node); 1485 1486 synchronize_net(); 1487 1488 netdev_name_node_add(net, dev->name_node); 1489 1490 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1491 ret = notifier_to_errno(ret); 1492 1493 if (ret) { 1494 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1495 if (err >= 0) { 1496 err = ret; 1497 write_seqlock_bh(&netdev_rename_lock); 1498 memcpy(dev->name, oldname, IFNAMSIZ); 1499 write_sequnlock_bh(&netdev_rename_lock); 1500 memcpy(oldname, newname, IFNAMSIZ); 1501 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1502 old_assign_type = NET_NAME_RENAMED; 1503 goto rollback; 1504 } else { 1505 netdev_err(dev, "name change rollback failed: %d\n", 1506 ret); 1507 } 1508 } 1509 1510 return err; 1511 } 1512 1513 int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1514 { 1515 struct dev_ifalias *new_alias = NULL; 1516 1517 if (len >= IFALIASZ) 1518 return -EINVAL; 1519 1520 if (len) { 1521 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1522 if (!new_alias) 1523 return -ENOMEM; 1524 1525 memcpy(new_alias->ifalias, alias, len); 1526 new_alias->ifalias[len] = 0; 1527 } 1528 1529 mutex_lock(&ifalias_mutex); 1530 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1531 mutex_is_locked(&ifalias_mutex)); 1532 mutex_unlock(&ifalias_mutex); 1533 1534 if (new_alias) 1535 kfree_rcu(new_alias, rcuhead); 1536 1537 return len; 1538 } 1539 1540 /** 1541 * dev_get_alias - get ifalias of a device 1542 * @dev: device 1543 * @name: buffer to store name of ifalias 1544 * @len: size of buffer 1545 * 1546 * get ifalias for a device. Caller must make sure dev cannot go 1547 * away, e.g. rcu read lock or own a reference count to device. 1548 */ 1549 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1550 { 1551 const struct dev_ifalias *alias; 1552 int ret = 0; 1553 1554 rcu_read_lock(); 1555 alias = rcu_dereference(dev->ifalias); 1556 if (alias) 1557 ret = snprintf(name, len, "%s", alias->ifalias); 1558 rcu_read_unlock(); 1559 1560 return ret; 1561 } 1562 1563 /** 1564 * netdev_features_change - device changes features 1565 * @dev: device to cause notification 1566 * 1567 * Called to indicate a device has changed features. 1568 */ 1569 void netdev_features_change(struct net_device *dev) 1570 { 1571 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1572 } 1573 EXPORT_SYMBOL(netdev_features_change); 1574 1575 void netif_state_change(struct net_device *dev) 1576 { 1577 netdev_ops_assert_locked_or_invisible(dev); 1578 1579 if (dev->flags & IFF_UP) { 1580 struct netdev_notifier_change_info change_info = { 1581 .info.dev = dev, 1582 }; 1583 1584 call_netdevice_notifiers_info(NETDEV_CHANGE, 1585 &change_info.info); 1586 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1587 } 1588 } 1589 1590 /** 1591 * __netdev_notify_peers - notify network peers about existence of @dev, 1592 * to be called when rtnl lock is already held. 1593 * @dev: network device 1594 * 1595 * Generate traffic such that interested network peers are aware of 1596 * @dev, such as by generating a gratuitous ARP. This may be used when 1597 * a device wants to inform the rest of the network about some sort of 1598 * reconfiguration such as a failover event or virtual machine 1599 * migration. 1600 */ 1601 void __netdev_notify_peers(struct net_device *dev) 1602 { 1603 ASSERT_RTNL(); 1604 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1605 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1606 } 1607 EXPORT_SYMBOL(__netdev_notify_peers); 1608 1609 /** 1610 * netdev_notify_peers - notify network peers about existence of @dev 1611 * @dev: network device 1612 * 1613 * Generate traffic such that interested network peers are aware of 1614 * @dev, such as by generating a gratuitous ARP. This may be used when 1615 * a device wants to inform the rest of the network about some sort of 1616 * reconfiguration such as a failover event or virtual machine 1617 * migration. 1618 */ 1619 void netdev_notify_peers(struct net_device *dev) 1620 { 1621 rtnl_lock(); 1622 __netdev_notify_peers(dev); 1623 rtnl_unlock(); 1624 } 1625 EXPORT_SYMBOL(netdev_notify_peers); 1626 1627 static int napi_threaded_poll(void *data); 1628 1629 static int napi_kthread_create(struct napi_struct *n) 1630 { 1631 int err = 0; 1632 1633 /* Create and wake up the kthread once to put it in 1634 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1635 * warning and work with loadavg. 1636 */ 1637 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1638 n->dev->name, n->napi_id); 1639 if (IS_ERR(n->thread)) { 1640 err = PTR_ERR(n->thread); 1641 pr_err("kthread_run failed with err %d\n", err); 1642 n->thread = NULL; 1643 } 1644 1645 return err; 1646 } 1647 1648 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1649 { 1650 const struct net_device_ops *ops = dev->netdev_ops; 1651 int ret; 1652 1653 ASSERT_RTNL(); 1654 dev_addr_check(dev); 1655 1656 if (!netif_device_present(dev)) { 1657 /* may be detached because parent is runtime-suspended */ 1658 if (dev->dev.parent) 1659 pm_runtime_resume(dev->dev.parent); 1660 if (!netif_device_present(dev)) 1661 return -ENODEV; 1662 } 1663 1664 /* Block netpoll from trying to do any rx path servicing. 1665 * If we don't do this there is a chance ndo_poll_controller 1666 * or ndo_poll may be running while we open the device 1667 */ 1668 netpoll_poll_disable(dev); 1669 1670 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1671 ret = notifier_to_errno(ret); 1672 if (ret) 1673 return ret; 1674 1675 set_bit(__LINK_STATE_START, &dev->state); 1676 1677 netdev_ops_assert_locked(dev); 1678 1679 if (ops->ndo_validate_addr) 1680 ret = ops->ndo_validate_addr(dev); 1681 1682 if (!ret && ops->ndo_open) 1683 ret = ops->ndo_open(dev); 1684 1685 netpoll_poll_enable(dev); 1686 1687 if (ret) 1688 clear_bit(__LINK_STATE_START, &dev->state); 1689 else { 1690 netif_set_up(dev, true); 1691 dev_set_rx_mode(dev); 1692 dev_activate(dev); 1693 add_device_randomness(dev->dev_addr, dev->addr_len); 1694 } 1695 1696 return ret; 1697 } 1698 1699 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1700 { 1701 int ret; 1702 1703 if (dev->flags & IFF_UP) 1704 return 0; 1705 1706 ret = __dev_open(dev, extack); 1707 if (ret < 0) 1708 return ret; 1709 1710 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1711 call_netdevice_notifiers(NETDEV_UP, dev); 1712 1713 return ret; 1714 } 1715 1716 static void __dev_close_many(struct list_head *head) 1717 { 1718 struct net_device *dev; 1719 1720 ASSERT_RTNL(); 1721 might_sleep(); 1722 1723 list_for_each_entry(dev, head, close_list) { 1724 /* Temporarily disable netpoll until the interface is down */ 1725 netpoll_poll_disable(dev); 1726 1727 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1728 1729 clear_bit(__LINK_STATE_START, &dev->state); 1730 1731 /* Synchronize to scheduled poll. We cannot touch poll list, it 1732 * can be even on different cpu. So just clear netif_running(). 1733 * 1734 * dev->stop() will invoke napi_disable() on all of it's 1735 * napi_struct instances on this device. 1736 */ 1737 smp_mb__after_atomic(); /* Commit netif_running(). */ 1738 } 1739 1740 dev_deactivate_many(head); 1741 1742 list_for_each_entry(dev, head, close_list) { 1743 const struct net_device_ops *ops = dev->netdev_ops; 1744 1745 /* 1746 * Call the device specific close. This cannot fail. 1747 * Only if device is UP 1748 * 1749 * We allow it to be called even after a DETACH hot-plug 1750 * event. 1751 */ 1752 1753 netdev_ops_assert_locked(dev); 1754 1755 if (ops->ndo_stop) 1756 ops->ndo_stop(dev); 1757 1758 netif_set_up(dev, false); 1759 netpoll_poll_enable(dev); 1760 } 1761 } 1762 1763 static void __dev_close(struct net_device *dev) 1764 { 1765 LIST_HEAD(single); 1766 1767 list_add(&dev->close_list, &single); 1768 __dev_close_many(&single); 1769 list_del(&single); 1770 } 1771 1772 void dev_close_many(struct list_head *head, bool unlink) 1773 { 1774 struct net_device *dev, *tmp; 1775 1776 /* Remove the devices that don't need to be closed */ 1777 list_for_each_entry_safe(dev, tmp, head, close_list) 1778 if (!(dev->flags & IFF_UP)) 1779 list_del_init(&dev->close_list); 1780 1781 __dev_close_many(head); 1782 1783 list_for_each_entry_safe(dev, tmp, head, close_list) { 1784 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1785 call_netdevice_notifiers(NETDEV_DOWN, dev); 1786 if (unlink) 1787 list_del_init(&dev->close_list); 1788 } 1789 } 1790 EXPORT_SYMBOL(dev_close_many); 1791 1792 void netif_close(struct net_device *dev) 1793 { 1794 if (dev->flags & IFF_UP) { 1795 LIST_HEAD(single); 1796 1797 list_add(&dev->close_list, &single); 1798 dev_close_many(&single, true); 1799 list_del(&single); 1800 } 1801 } 1802 EXPORT_SYMBOL(netif_close); 1803 1804 void netif_disable_lro(struct net_device *dev) 1805 { 1806 struct net_device *lower_dev; 1807 struct list_head *iter; 1808 1809 dev->wanted_features &= ~NETIF_F_LRO; 1810 netdev_update_features(dev); 1811 1812 if (unlikely(dev->features & NETIF_F_LRO)) 1813 netdev_WARN(dev, "failed to disable LRO!\n"); 1814 1815 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1816 netdev_lock_ops(lower_dev); 1817 netif_disable_lro(lower_dev); 1818 netdev_unlock_ops(lower_dev); 1819 } 1820 } 1821 EXPORT_IPV6_MOD(netif_disable_lro); 1822 1823 /** 1824 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1825 * @dev: device 1826 * 1827 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1828 * called under RTNL. This is needed if Generic XDP is installed on 1829 * the device. 1830 */ 1831 static void dev_disable_gro_hw(struct net_device *dev) 1832 { 1833 dev->wanted_features &= ~NETIF_F_GRO_HW; 1834 netdev_update_features(dev); 1835 1836 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1837 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1838 } 1839 1840 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1841 { 1842 #define N(val) \ 1843 case NETDEV_##val: \ 1844 return "NETDEV_" __stringify(val); 1845 switch (cmd) { 1846 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1847 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1848 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1849 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1850 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1851 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1852 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1853 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1854 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1855 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1856 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1857 N(XDP_FEAT_CHANGE) 1858 } 1859 #undef N 1860 return "UNKNOWN_NETDEV_EVENT"; 1861 } 1862 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1863 1864 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1865 struct net_device *dev) 1866 { 1867 struct netdev_notifier_info info = { 1868 .dev = dev, 1869 }; 1870 1871 return nb->notifier_call(nb, val, &info); 1872 } 1873 1874 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1875 struct net_device *dev) 1876 { 1877 int err; 1878 1879 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1880 err = notifier_to_errno(err); 1881 if (err) 1882 return err; 1883 1884 if (!(dev->flags & IFF_UP)) 1885 return 0; 1886 1887 call_netdevice_notifier(nb, NETDEV_UP, dev); 1888 return 0; 1889 } 1890 1891 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1892 struct net_device *dev) 1893 { 1894 if (dev->flags & IFF_UP) { 1895 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1896 dev); 1897 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1898 } 1899 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1900 } 1901 1902 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1903 struct net *net) 1904 { 1905 struct net_device *dev; 1906 int err; 1907 1908 for_each_netdev(net, dev) { 1909 netdev_lock_ops(dev); 1910 err = call_netdevice_register_notifiers(nb, dev); 1911 netdev_unlock_ops(dev); 1912 if (err) 1913 goto rollback; 1914 } 1915 return 0; 1916 1917 rollback: 1918 for_each_netdev_continue_reverse(net, dev) 1919 call_netdevice_unregister_notifiers(nb, dev); 1920 return err; 1921 } 1922 1923 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1924 struct net *net) 1925 { 1926 struct net_device *dev; 1927 1928 for_each_netdev(net, dev) 1929 call_netdevice_unregister_notifiers(nb, dev); 1930 } 1931 1932 static int dev_boot_phase = 1; 1933 1934 /** 1935 * register_netdevice_notifier - register a network notifier block 1936 * @nb: notifier 1937 * 1938 * Register a notifier to be called when network device events occur. 1939 * The notifier passed is linked into the kernel structures and must 1940 * not be reused until it has been unregistered. A negative errno code 1941 * is returned on a failure. 1942 * 1943 * When registered all registration and up events are replayed 1944 * to the new notifier to allow device to have a race free 1945 * view of the network device list. 1946 */ 1947 1948 int register_netdevice_notifier(struct notifier_block *nb) 1949 { 1950 struct net *net; 1951 int err; 1952 1953 /* Close race with setup_net() and cleanup_net() */ 1954 down_write(&pernet_ops_rwsem); 1955 1956 /* When RTNL is removed, we need protection for netdev_chain. */ 1957 rtnl_lock(); 1958 1959 err = raw_notifier_chain_register(&netdev_chain, nb); 1960 if (err) 1961 goto unlock; 1962 if (dev_boot_phase) 1963 goto unlock; 1964 for_each_net(net) { 1965 __rtnl_net_lock(net); 1966 err = call_netdevice_register_net_notifiers(nb, net); 1967 __rtnl_net_unlock(net); 1968 if (err) 1969 goto rollback; 1970 } 1971 1972 unlock: 1973 rtnl_unlock(); 1974 up_write(&pernet_ops_rwsem); 1975 return err; 1976 1977 rollback: 1978 for_each_net_continue_reverse(net) { 1979 __rtnl_net_lock(net); 1980 call_netdevice_unregister_net_notifiers(nb, net); 1981 __rtnl_net_unlock(net); 1982 } 1983 1984 raw_notifier_chain_unregister(&netdev_chain, nb); 1985 goto unlock; 1986 } 1987 EXPORT_SYMBOL(register_netdevice_notifier); 1988 1989 /** 1990 * unregister_netdevice_notifier - unregister a network notifier block 1991 * @nb: notifier 1992 * 1993 * Unregister a notifier previously registered by 1994 * register_netdevice_notifier(). The notifier is unlinked into the 1995 * kernel structures and may then be reused. A negative errno code 1996 * is returned on a failure. 1997 * 1998 * After unregistering unregister and down device events are synthesized 1999 * for all devices on the device list to the removed notifier to remove 2000 * the need for special case cleanup code. 2001 */ 2002 2003 int unregister_netdevice_notifier(struct notifier_block *nb) 2004 { 2005 struct net *net; 2006 int err; 2007 2008 /* Close race with setup_net() and cleanup_net() */ 2009 down_write(&pernet_ops_rwsem); 2010 rtnl_lock(); 2011 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2012 if (err) 2013 goto unlock; 2014 2015 for_each_net(net) { 2016 __rtnl_net_lock(net); 2017 call_netdevice_unregister_net_notifiers(nb, net); 2018 __rtnl_net_unlock(net); 2019 } 2020 2021 unlock: 2022 rtnl_unlock(); 2023 up_write(&pernet_ops_rwsem); 2024 return err; 2025 } 2026 EXPORT_SYMBOL(unregister_netdevice_notifier); 2027 2028 static int __register_netdevice_notifier_net(struct net *net, 2029 struct notifier_block *nb, 2030 bool ignore_call_fail) 2031 { 2032 int err; 2033 2034 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2035 if (err) 2036 return err; 2037 if (dev_boot_phase) 2038 return 0; 2039 2040 err = call_netdevice_register_net_notifiers(nb, net); 2041 if (err && !ignore_call_fail) 2042 goto chain_unregister; 2043 2044 return 0; 2045 2046 chain_unregister: 2047 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2048 return err; 2049 } 2050 2051 static int __unregister_netdevice_notifier_net(struct net *net, 2052 struct notifier_block *nb) 2053 { 2054 int err; 2055 2056 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2057 if (err) 2058 return err; 2059 2060 call_netdevice_unregister_net_notifiers(nb, net); 2061 return 0; 2062 } 2063 2064 /** 2065 * register_netdevice_notifier_net - register a per-netns network notifier block 2066 * @net: network namespace 2067 * @nb: notifier 2068 * 2069 * Register a notifier to be called when network device events occur. 2070 * The notifier passed is linked into the kernel structures and must 2071 * not be reused until it has been unregistered. A negative errno code 2072 * is returned on a failure. 2073 * 2074 * When registered all registration and up events are replayed 2075 * to the new notifier to allow device to have a race free 2076 * view of the network device list. 2077 */ 2078 2079 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2080 { 2081 int err; 2082 2083 rtnl_net_lock(net); 2084 err = __register_netdevice_notifier_net(net, nb, false); 2085 rtnl_net_unlock(net); 2086 2087 return err; 2088 } 2089 EXPORT_SYMBOL(register_netdevice_notifier_net); 2090 2091 /** 2092 * unregister_netdevice_notifier_net - unregister a per-netns 2093 * network notifier block 2094 * @net: network namespace 2095 * @nb: notifier 2096 * 2097 * Unregister a notifier previously registered by 2098 * register_netdevice_notifier_net(). The notifier is unlinked from the 2099 * kernel structures and may then be reused. A negative errno code 2100 * is returned on a failure. 2101 * 2102 * After unregistering unregister and down device events are synthesized 2103 * for all devices on the device list to the removed notifier to remove 2104 * the need for special case cleanup code. 2105 */ 2106 2107 int unregister_netdevice_notifier_net(struct net *net, 2108 struct notifier_block *nb) 2109 { 2110 int err; 2111 2112 rtnl_net_lock(net); 2113 err = __unregister_netdevice_notifier_net(net, nb); 2114 rtnl_net_unlock(net); 2115 2116 return err; 2117 } 2118 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2119 2120 static void __move_netdevice_notifier_net(struct net *src_net, 2121 struct net *dst_net, 2122 struct notifier_block *nb) 2123 { 2124 __unregister_netdevice_notifier_net(src_net, nb); 2125 __register_netdevice_notifier_net(dst_net, nb, true); 2126 } 2127 2128 static void rtnl_net_dev_lock(struct net_device *dev) 2129 { 2130 bool again; 2131 2132 do { 2133 struct net *net; 2134 2135 again = false; 2136 2137 /* netns might be being dismantled. */ 2138 rcu_read_lock(); 2139 net = dev_net_rcu(dev); 2140 net_passive_inc(net); 2141 rcu_read_unlock(); 2142 2143 rtnl_net_lock(net); 2144 2145 #ifdef CONFIG_NET_NS 2146 /* dev might have been moved to another netns. */ 2147 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2148 rtnl_net_unlock(net); 2149 net_passive_dec(net); 2150 again = true; 2151 } 2152 #endif 2153 } while (again); 2154 } 2155 2156 static void rtnl_net_dev_unlock(struct net_device *dev) 2157 { 2158 struct net *net = dev_net(dev); 2159 2160 rtnl_net_unlock(net); 2161 net_passive_dec(net); 2162 } 2163 2164 int register_netdevice_notifier_dev_net(struct net_device *dev, 2165 struct notifier_block *nb, 2166 struct netdev_net_notifier *nn) 2167 { 2168 int err; 2169 2170 rtnl_net_dev_lock(dev); 2171 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2172 if (!err) { 2173 nn->nb = nb; 2174 list_add(&nn->list, &dev->net_notifier_list); 2175 } 2176 rtnl_net_dev_unlock(dev); 2177 2178 return err; 2179 } 2180 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2181 2182 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2183 struct notifier_block *nb, 2184 struct netdev_net_notifier *nn) 2185 { 2186 int err; 2187 2188 rtnl_net_dev_lock(dev); 2189 list_del(&nn->list); 2190 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2191 rtnl_net_dev_unlock(dev); 2192 2193 return err; 2194 } 2195 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2196 2197 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2198 struct net *net) 2199 { 2200 struct netdev_net_notifier *nn; 2201 2202 list_for_each_entry(nn, &dev->net_notifier_list, list) 2203 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2204 } 2205 2206 /** 2207 * call_netdevice_notifiers_info - call all network notifier blocks 2208 * @val: value passed unmodified to notifier function 2209 * @info: notifier information data 2210 * 2211 * Call all network notifier blocks. Parameters and return value 2212 * are as for raw_notifier_call_chain(). 2213 */ 2214 2215 int call_netdevice_notifiers_info(unsigned long val, 2216 struct netdev_notifier_info *info) 2217 { 2218 struct net *net = dev_net(info->dev); 2219 int ret; 2220 2221 ASSERT_RTNL(); 2222 2223 /* Run per-netns notifier block chain first, then run the global one. 2224 * Hopefully, one day, the global one is going to be removed after 2225 * all notifier block registrators get converted to be per-netns. 2226 */ 2227 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2228 if (ret & NOTIFY_STOP_MASK) 2229 return ret; 2230 return raw_notifier_call_chain(&netdev_chain, val, info); 2231 } 2232 2233 /** 2234 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2235 * for and rollback on error 2236 * @val_up: value passed unmodified to notifier function 2237 * @val_down: value passed unmodified to the notifier function when 2238 * recovering from an error on @val_up 2239 * @info: notifier information data 2240 * 2241 * Call all per-netns network notifier blocks, but not notifier blocks on 2242 * the global notifier chain. Parameters and return value are as for 2243 * raw_notifier_call_chain_robust(). 2244 */ 2245 2246 static int 2247 call_netdevice_notifiers_info_robust(unsigned long val_up, 2248 unsigned long val_down, 2249 struct netdev_notifier_info *info) 2250 { 2251 struct net *net = dev_net(info->dev); 2252 2253 ASSERT_RTNL(); 2254 2255 return raw_notifier_call_chain_robust(&net->netdev_chain, 2256 val_up, val_down, info); 2257 } 2258 2259 static int call_netdevice_notifiers_extack(unsigned long val, 2260 struct net_device *dev, 2261 struct netlink_ext_ack *extack) 2262 { 2263 struct netdev_notifier_info info = { 2264 .dev = dev, 2265 .extack = extack, 2266 }; 2267 2268 return call_netdevice_notifiers_info(val, &info); 2269 } 2270 2271 /** 2272 * call_netdevice_notifiers - call all network notifier blocks 2273 * @val: value passed unmodified to notifier function 2274 * @dev: net_device pointer passed unmodified to notifier function 2275 * 2276 * Call all network notifier blocks. Parameters and return value 2277 * are as for raw_notifier_call_chain(). 2278 */ 2279 2280 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2281 { 2282 return call_netdevice_notifiers_extack(val, dev, NULL); 2283 } 2284 EXPORT_SYMBOL(call_netdevice_notifiers); 2285 2286 /** 2287 * call_netdevice_notifiers_mtu - call all network notifier blocks 2288 * @val: value passed unmodified to notifier function 2289 * @dev: net_device pointer passed unmodified to notifier function 2290 * @arg: additional u32 argument passed to the notifier function 2291 * 2292 * Call all network notifier blocks. Parameters and return value 2293 * are as for raw_notifier_call_chain(). 2294 */ 2295 static int call_netdevice_notifiers_mtu(unsigned long val, 2296 struct net_device *dev, u32 arg) 2297 { 2298 struct netdev_notifier_info_ext info = { 2299 .info.dev = dev, 2300 .ext.mtu = arg, 2301 }; 2302 2303 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2304 2305 return call_netdevice_notifiers_info(val, &info.info); 2306 } 2307 2308 #ifdef CONFIG_NET_INGRESS 2309 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2310 2311 void net_inc_ingress_queue(void) 2312 { 2313 static_branch_inc(&ingress_needed_key); 2314 } 2315 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2316 2317 void net_dec_ingress_queue(void) 2318 { 2319 static_branch_dec(&ingress_needed_key); 2320 } 2321 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2322 #endif 2323 2324 #ifdef CONFIG_NET_EGRESS 2325 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2326 2327 void net_inc_egress_queue(void) 2328 { 2329 static_branch_inc(&egress_needed_key); 2330 } 2331 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2332 2333 void net_dec_egress_queue(void) 2334 { 2335 static_branch_dec(&egress_needed_key); 2336 } 2337 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2338 #endif 2339 2340 #ifdef CONFIG_NET_CLS_ACT 2341 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2342 EXPORT_SYMBOL(tcf_sw_enabled_key); 2343 #endif 2344 2345 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2346 EXPORT_SYMBOL(netstamp_needed_key); 2347 #ifdef CONFIG_JUMP_LABEL 2348 static atomic_t netstamp_needed_deferred; 2349 static atomic_t netstamp_wanted; 2350 static void netstamp_clear(struct work_struct *work) 2351 { 2352 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2353 int wanted; 2354 2355 wanted = atomic_add_return(deferred, &netstamp_wanted); 2356 if (wanted > 0) 2357 static_branch_enable(&netstamp_needed_key); 2358 else 2359 static_branch_disable(&netstamp_needed_key); 2360 } 2361 static DECLARE_WORK(netstamp_work, netstamp_clear); 2362 #endif 2363 2364 void net_enable_timestamp(void) 2365 { 2366 #ifdef CONFIG_JUMP_LABEL 2367 int wanted = atomic_read(&netstamp_wanted); 2368 2369 while (wanted > 0) { 2370 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2371 return; 2372 } 2373 atomic_inc(&netstamp_needed_deferred); 2374 schedule_work(&netstamp_work); 2375 #else 2376 static_branch_inc(&netstamp_needed_key); 2377 #endif 2378 } 2379 EXPORT_SYMBOL(net_enable_timestamp); 2380 2381 void net_disable_timestamp(void) 2382 { 2383 #ifdef CONFIG_JUMP_LABEL 2384 int wanted = atomic_read(&netstamp_wanted); 2385 2386 while (wanted > 1) { 2387 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2388 return; 2389 } 2390 atomic_dec(&netstamp_needed_deferred); 2391 schedule_work(&netstamp_work); 2392 #else 2393 static_branch_dec(&netstamp_needed_key); 2394 #endif 2395 } 2396 EXPORT_SYMBOL(net_disable_timestamp); 2397 2398 static inline void net_timestamp_set(struct sk_buff *skb) 2399 { 2400 skb->tstamp = 0; 2401 skb->tstamp_type = SKB_CLOCK_REALTIME; 2402 if (static_branch_unlikely(&netstamp_needed_key)) 2403 skb->tstamp = ktime_get_real(); 2404 } 2405 2406 #define net_timestamp_check(COND, SKB) \ 2407 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2408 if ((COND) && !(SKB)->tstamp) \ 2409 (SKB)->tstamp = ktime_get_real(); \ 2410 } \ 2411 2412 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2413 { 2414 return __is_skb_forwardable(dev, skb, true); 2415 } 2416 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2417 2418 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2419 bool check_mtu) 2420 { 2421 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2422 2423 if (likely(!ret)) { 2424 skb->protocol = eth_type_trans(skb, dev); 2425 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2426 } 2427 2428 return ret; 2429 } 2430 2431 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2432 { 2433 return __dev_forward_skb2(dev, skb, true); 2434 } 2435 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2436 2437 /** 2438 * dev_forward_skb - loopback an skb to another netif 2439 * 2440 * @dev: destination network device 2441 * @skb: buffer to forward 2442 * 2443 * return values: 2444 * NET_RX_SUCCESS (no congestion) 2445 * NET_RX_DROP (packet was dropped, but freed) 2446 * 2447 * dev_forward_skb can be used for injecting an skb from the 2448 * start_xmit function of one device into the receive queue 2449 * of another device. 2450 * 2451 * The receiving device may be in another namespace, so 2452 * we have to clear all information in the skb that could 2453 * impact namespace isolation. 2454 */ 2455 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2456 { 2457 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2458 } 2459 EXPORT_SYMBOL_GPL(dev_forward_skb); 2460 2461 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2462 { 2463 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2464 } 2465 2466 static inline int deliver_skb(struct sk_buff *skb, 2467 struct packet_type *pt_prev, 2468 struct net_device *orig_dev) 2469 { 2470 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2471 return -ENOMEM; 2472 refcount_inc(&skb->users); 2473 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2474 } 2475 2476 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2477 struct packet_type **pt, 2478 struct net_device *orig_dev, 2479 __be16 type, 2480 struct list_head *ptype_list) 2481 { 2482 struct packet_type *ptype, *pt_prev = *pt; 2483 2484 list_for_each_entry_rcu(ptype, ptype_list, list) { 2485 if (ptype->type != type) 2486 continue; 2487 if (pt_prev) 2488 deliver_skb(skb, pt_prev, orig_dev); 2489 pt_prev = ptype; 2490 } 2491 *pt = pt_prev; 2492 } 2493 2494 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2495 { 2496 if (!ptype->af_packet_priv || !skb->sk) 2497 return false; 2498 2499 if (ptype->id_match) 2500 return ptype->id_match(ptype, skb->sk); 2501 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2502 return true; 2503 2504 return false; 2505 } 2506 2507 /** 2508 * dev_nit_active_rcu - return true if any network interface taps are in use 2509 * 2510 * The caller must hold the RCU lock 2511 * 2512 * @dev: network device to check for the presence of taps 2513 */ 2514 bool dev_nit_active_rcu(const struct net_device *dev) 2515 { 2516 /* Callers may hold either RCU or RCU BH lock */ 2517 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2518 2519 return !list_empty(&dev_net(dev)->ptype_all) || 2520 !list_empty(&dev->ptype_all); 2521 } 2522 EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2523 2524 /* 2525 * Support routine. Sends outgoing frames to any network 2526 * taps currently in use. 2527 */ 2528 2529 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2530 { 2531 struct packet_type *ptype, *pt_prev = NULL; 2532 struct list_head *ptype_list; 2533 struct sk_buff *skb2 = NULL; 2534 2535 rcu_read_lock(); 2536 ptype_list = &dev_net_rcu(dev)->ptype_all; 2537 again: 2538 list_for_each_entry_rcu(ptype, ptype_list, list) { 2539 if (READ_ONCE(ptype->ignore_outgoing)) 2540 continue; 2541 2542 /* Never send packets back to the socket 2543 * they originated from - MvS (miquels@drinkel.ow.org) 2544 */ 2545 if (skb_loop_sk(ptype, skb)) 2546 continue; 2547 2548 if (pt_prev) { 2549 deliver_skb(skb2, pt_prev, skb->dev); 2550 pt_prev = ptype; 2551 continue; 2552 } 2553 2554 /* need to clone skb, done only once */ 2555 skb2 = skb_clone(skb, GFP_ATOMIC); 2556 if (!skb2) 2557 goto out_unlock; 2558 2559 net_timestamp_set(skb2); 2560 2561 /* skb->nh should be correctly 2562 * set by sender, so that the second statement is 2563 * just protection against buggy protocols. 2564 */ 2565 skb_reset_mac_header(skb2); 2566 2567 if (skb_network_header(skb2) < skb2->data || 2568 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2569 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2570 ntohs(skb2->protocol), 2571 dev->name); 2572 skb_reset_network_header(skb2); 2573 } 2574 2575 skb2->transport_header = skb2->network_header; 2576 skb2->pkt_type = PACKET_OUTGOING; 2577 pt_prev = ptype; 2578 } 2579 2580 if (ptype_list != &dev->ptype_all) { 2581 ptype_list = &dev->ptype_all; 2582 goto again; 2583 } 2584 out_unlock: 2585 if (pt_prev) { 2586 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2587 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2588 else 2589 kfree_skb(skb2); 2590 } 2591 rcu_read_unlock(); 2592 } 2593 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2594 2595 /** 2596 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2597 * @dev: Network device 2598 * @txq: number of queues available 2599 * 2600 * If real_num_tx_queues is changed the tc mappings may no longer be 2601 * valid. To resolve this verify the tc mapping remains valid and if 2602 * not NULL the mapping. With no priorities mapping to this 2603 * offset/count pair it will no longer be used. In the worst case TC0 2604 * is invalid nothing can be done so disable priority mappings. If is 2605 * expected that drivers will fix this mapping if they can before 2606 * calling netif_set_real_num_tx_queues. 2607 */ 2608 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2609 { 2610 int i; 2611 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2612 2613 /* If TC0 is invalidated disable TC mapping */ 2614 if (tc->offset + tc->count > txq) { 2615 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2616 dev->num_tc = 0; 2617 return; 2618 } 2619 2620 /* Invalidated prio to tc mappings set to TC0 */ 2621 for (i = 1; i < TC_BITMASK + 1; i++) { 2622 int q = netdev_get_prio_tc_map(dev, i); 2623 2624 tc = &dev->tc_to_txq[q]; 2625 if (tc->offset + tc->count > txq) { 2626 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2627 i, q); 2628 netdev_set_prio_tc_map(dev, i, 0); 2629 } 2630 } 2631 } 2632 2633 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2634 { 2635 if (dev->num_tc) { 2636 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2637 int i; 2638 2639 /* walk through the TCs and see if it falls into any of them */ 2640 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2641 if ((txq - tc->offset) < tc->count) 2642 return i; 2643 } 2644 2645 /* didn't find it, just return -1 to indicate no match */ 2646 return -1; 2647 } 2648 2649 return 0; 2650 } 2651 EXPORT_SYMBOL(netdev_txq_to_tc); 2652 2653 #ifdef CONFIG_XPS 2654 static struct static_key xps_needed __read_mostly; 2655 static struct static_key xps_rxqs_needed __read_mostly; 2656 static DEFINE_MUTEX(xps_map_mutex); 2657 #define xmap_dereference(P) \ 2658 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2659 2660 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2661 struct xps_dev_maps *old_maps, int tci, u16 index) 2662 { 2663 struct xps_map *map = NULL; 2664 int pos; 2665 2666 map = xmap_dereference(dev_maps->attr_map[tci]); 2667 if (!map) 2668 return false; 2669 2670 for (pos = map->len; pos--;) { 2671 if (map->queues[pos] != index) 2672 continue; 2673 2674 if (map->len > 1) { 2675 map->queues[pos] = map->queues[--map->len]; 2676 break; 2677 } 2678 2679 if (old_maps) 2680 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2681 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2682 kfree_rcu(map, rcu); 2683 return false; 2684 } 2685 2686 return true; 2687 } 2688 2689 static bool remove_xps_queue_cpu(struct net_device *dev, 2690 struct xps_dev_maps *dev_maps, 2691 int cpu, u16 offset, u16 count) 2692 { 2693 int num_tc = dev_maps->num_tc; 2694 bool active = false; 2695 int tci; 2696 2697 for (tci = cpu * num_tc; num_tc--; tci++) { 2698 int i, j; 2699 2700 for (i = count, j = offset; i--; j++) { 2701 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2702 break; 2703 } 2704 2705 active |= i < 0; 2706 } 2707 2708 return active; 2709 } 2710 2711 static void reset_xps_maps(struct net_device *dev, 2712 struct xps_dev_maps *dev_maps, 2713 enum xps_map_type type) 2714 { 2715 static_key_slow_dec_cpuslocked(&xps_needed); 2716 if (type == XPS_RXQS) 2717 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2718 2719 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2720 2721 kfree_rcu(dev_maps, rcu); 2722 } 2723 2724 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2725 u16 offset, u16 count) 2726 { 2727 struct xps_dev_maps *dev_maps; 2728 bool active = false; 2729 int i, j; 2730 2731 dev_maps = xmap_dereference(dev->xps_maps[type]); 2732 if (!dev_maps) 2733 return; 2734 2735 for (j = 0; j < dev_maps->nr_ids; j++) 2736 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2737 if (!active) 2738 reset_xps_maps(dev, dev_maps, type); 2739 2740 if (type == XPS_CPUS) { 2741 for (i = offset + (count - 1); count--; i--) 2742 netdev_queue_numa_node_write( 2743 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2744 } 2745 } 2746 2747 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2748 u16 count) 2749 { 2750 if (!static_key_false(&xps_needed)) 2751 return; 2752 2753 cpus_read_lock(); 2754 mutex_lock(&xps_map_mutex); 2755 2756 if (static_key_false(&xps_rxqs_needed)) 2757 clean_xps_maps(dev, XPS_RXQS, offset, count); 2758 2759 clean_xps_maps(dev, XPS_CPUS, offset, count); 2760 2761 mutex_unlock(&xps_map_mutex); 2762 cpus_read_unlock(); 2763 } 2764 2765 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2766 { 2767 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2768 } 2769 2770 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2771 u16 index, bool is_rxqs_map) 2772 { 2773 struct xps_map *new_map; 2774 int alloc_len = XPS_MIN_MAP_ALLOC; 2775 int i, pos; 2776 2777 for (pos = 0; map && pos < map->len; pos++) { 2778 if (map->queues[pos] != index) 2779 continue; 2780 return map; 2781 } 2782 2783 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2784 if (map) { 2785 if (pos < map->alloc_len) 2786 return map; 2787 2788 alloc_len = map->alloc_len * 2; 2789 } 2790 2791 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2792 * map 2793 */ 2794 if (is_rxqs_map) 2795 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2796 else 2797 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2798 cpu_to_node(attr_index)); 2799 if (!new_map) 2800 return NULL; 2801 2802 for (i = 0; i < pos; i++) 2803 new_map->queues[i] = map->queues[i]; 2804 new_map->alloc_len = alloc_len; 2805 new_map->len = pos; 2806 2807 return new_map; 2808 } 2809 2810 /* Copy xps maps at a given index */ 2811 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2812 struct xps_dev_maps *new_dev_maps, int index, 2813 int tc, bool skip_tc) 2814 { 2815 int i, tci = index * dev_maps->num_tc; 2816 struct xps_map *map; 2817 2818 /* copy maps belonging to foreign traffic classes */ 2819 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2820 if (i == tc && skip_tc) 2821 continue; 2822 2823 /* fill in the new device map from the old device map */ 2824 map = xmap_dereference(dev_maps->attr_map[tci]); 2825 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2826 } 2827 } 2828 2829 /* Must be called under cpus_read_lock */ 2830 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2831 u16 index, enum xps_map_type type) 2832 { 2833 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2834 const unsigned long *online_mask = NULL; 2835 bool active = false, copy = false; 2836 int i, j, tci, numa_node_id = -2; 2837 int maps_sz, num_tc = 1, tc = 0; 2838 struct xps_map *map, *new_map; 2839 unsigned int nr_ids; 2840 2841 WARN_ON_ONCE(index >= dev->num_tx_queues); 2842 2843 if (dev->num_tc) { 2844 /* Do not allow XPS on subordinate device directly */ 2845 num_tc = dev->num_tc; 2846 if (num_tc < 0) 2847 return -EINVAL; 2848 2849 /* If queue belongs to subordinate dev use its map */ 2850 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2851 2852 tc = netdev_txq_to_tc(dev, index); 2853 if (tc < 0) 2854 return -EINVAL; 2855 } 2856 2857 mutex_lock(&xps_map_mutex); 2858 2859 dev_maps = xmap_dereference(dev->xps_maps[type]); 2860 if (type == XPS_RXQS) { 2861 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2862 nr_ids = dev->num_rx_queues; 2863 } else { 2864 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2865 if (num_possible_cpus() > 1) 2866 online_mask = cpumask_bits(cpu_online_mask); 2867 nr_ids = nr_cpu_ids; 2868 } 2869 2870 if (maps_sz < L1_CACHE_BYTES) 2871 maps_sz = L1_CACHE_BYTES; 2872 2873 /* The old dev_maps could be larger or smaller than the one we're 2874 * setting up now, as dev->num_tc or nr_ids could have been updated in 2875 * between. We could try to be smart, but let's be safe instead and only 2876 * copy foreign traffic classes if the two map sizes match. 2877 */ 2878 if (dev_maps && 2879 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2880 copy = true; 2881 2882 /* allocate memory for queue storage */ 2883 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2884 j < nr_ids;) { 2885 if (!new_dev_maps) { 2886 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2887 if (!new_dev_maps) { 2888 mutex_unlock(&xps_map_mutex); 2889 return -ENOMEM; 2890 } 2891 2892 new_dev_maps->nr_ids = nr_ids; 2893 new_dev_maps->num_tc = num_tc; 2894 } 2895 2896 tci = j * num_tc + tc; 2897 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2898 2899 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2900 if (!map) 2901 goto error; 2902 2903 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2904 } 2905 2906 if (!new_dev_maps) 2907 goto out_no_new_maps; 2908 2909 if (!dev_maps) { 2910 /* Increment static keys at most once per type */ 2911 static_key_slow_inc_cpuslocked(&xps_needed); 2912 if (type == XPS_RXQS) 2913 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2914 } 2915 2916 for (j = 0; j < nr_ids; j++) { 2917 bool skip_tc = false; 2918 2919 tci = j * num_tc + tc; 2920 if (netif_attr_test_mask(j, mask, nr_ids) && 2921 netif_attr_test_online(j, online_mask, nr_ids)) { 2922 /* add tx-queue to CPU/rx-queue maps */ 2923 int pos = 0; 2924 2925 skip_tc = true; 2926 2927 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2928 while ((pos < map->len) && (map->queues[pos] != index)) 2929 pos++; 2930 2931 if (pos == map->len) 2932 map->queues[map->len++] = index; 2933 #ifdef CONFIG_NUMA 2934 if (type == XPS_CPUS) { 2935 if (numa_node_id == -2) 2936 numa_node_id = cpu_to_node(j); 2937 else if (numa_node_id != cpu_to_node(j)) 2938 numa_node_id = -1; 2939 } 2940 #endif 2941 } 2942 2943 if (copy) 2944 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2945 skip_tc); 2946 } 2947 2948 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2949 2950 /* Cleanup old maps */ 2951 if (!dev_maps) 2952 goto out_no_old_maps; 2953 2954 for (j = 0; j < dev_maps->nr_ids; j++) { 2955 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2956 map = xmap_dereference(dev_maps->attr_map[tci]); 2957 if (!map) 2958 continue; 2959 2960 if (copy) { 2961 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2962 if (map == new_map) 2963 continue; 2964 } 2965 2966 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2967 kfree_rcu(map, rcu); 2968 } 2969 } 2970 2971 old_dev_maps = dev_maps; 2972 2973 out_no_old_maps: 2974 dev_maps = new_dev_maps; 2975 active = true; 2976 2977 out_no_new_maps: 2978 if (type == XPS_CPUS) 2979 /* update Tx queue numa node */ 2980 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2981 (numa_node_id >= 0) ? 2982 numa_node_id : NUMA_NO_NODE); 2983 2984 if (!dev_maps) 2985 goto out_no_maps; 2986 2987 /* removes tx-queue from unused CPUs/rx-queues */ 2988 for (j = 0; j < dev_maps->nr_ids; j++) { 2989 tci = j * dev_maps->num_tc; 2990 2991 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2992 if (i == tc && 2993 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2994 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2995 continue; 2996 2997 active |= remove_xps_queue(dev_maps, 2998 copy ? old_dev_maps : NULL, 2999 tci, index); 3000 } 3001 } 3002 3003 if (old_dev_maps) 3004 kfree_rcu(old_dev_maps, rcu); 3005 3006 /* free map if not active */ 3007 if (!active) 3008 reset_xps_maps(dev, dev_maps, type); 3009 3010 out_no_maps: 3011 mutex_unlock(&xps_map_mutex); 3012 3013 return 0; 3014 error: 3015 /* remove any maps that we added */ 3016 for (j = 0; j < nr_ids; j++) { 3017 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3018 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3019 map = copy ? 3020 xmap_dereference(dev_maps->attr_map[tci]) : 3021 NULL; 3022 if (new_map && new_map != map) 3023 kfree(new_map); 3024 } 3025 } 3026 3027 mutex_unlock(&xps_map_mutex); 3028 3029 kfree(new_dev_maps); 3030 return -ENOMEM; 3031 } 3032 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3033 3034 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3035 u16 index) 3036 { 3037 int ret; 3038 3039 cpus_read_lock(); 3040 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3041 cpus_read_unlock(); 3042 3043 return ret; 3044 } 3045 EXPORT_SYMBOL(netif_set_xps_queue); 3046 3047 #endif 3048 static void netdev_unbind_all_sb_channels(struct net_device *dev) 3049 { 3050 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3051 3052 /* Unbind any subordinate channels */ 3053 while (txq-- != &dev->_tx[0]) { 3054 if (txq->sb_dev) 3055 netdev_unbind_sb_channel(dev, txq->sb_dev); 3056 } 3057 } 3058 3059 void netdev_reset_tc(struct net_device *dev) 3060 { 3061 #ifdef CONFIG_XPS 3062 netif_reset_xps_queues_gt(dev, 0); 3063 #endif 3064 netdev_unbind_all_sb_channels(dev); 3065 3066 /* Reset TC configuration of device */ 3067 dev->num_tc = 0; 3068 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3069 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3070 } 3071 EXPORT_SYMBOL(netdev_reset_tc); 3072 3073 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3074 { 3075 if (tc >= dev->num_tc) 3076 return -EINVAL; 3077 3078 #ifdef CONFIG_XPS 3079 netif_reset_xps_queues(dev, offset, count); 3080 #endif 3081 dev->tc_to_txq[tc].count = count; 3082 dev->tc_to_txq[tc].offset = offset; 3083 return 0; 3084 } 3085 EXPORT_SYMBOL(netdev_set_tc_queue); 3086 3087 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3088 { 3089 if (num_tc > TC_MAX_QUEUE) 3090 return -EINVAL; 3091 3092 #ifdef CONFIG_XPS 3093 netif_reset_xps_queues_gt(dev, 0); 3094 #endif 3095 netdev_unbind_all_sb_channels(dev); 3096 3097 dev->num_tc = num_tc; 3098 return 0; 3099 } 3100 EXPORT_SYMBOL(netdev_set_num_tc); 3101 3102 void netdev_unbind_sb_channel(struct net_device *dev, 3103 struct net_device *sb_dev) 3104 { 3105 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3106 3107 #ifdef CONFIG_XPS 3108 netif_reset_xps_queues_gt(sb_dev, 0); 3109 #endif 3110 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3111 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3112 3113 while (txq-- != &dev->_tx[0]) { 3114 if (txq->sb_dev == sb_dev) 3115 txq->sb_dev = NULL; 3116 } 3117 } 3118 EXPORT_SYMBOL(netdev_unbind_sb_channel); 3119 3120 int netdev_bind_sb_channel_queue(struct net_device *dev, 3121 struct net_device *sb_dev, 3122 u8 tc, u16 count, u16 offset) 3123 { 3124 /* Make certain the sb_dev and dev are already configured */ 3125 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3126 return -EINVAL; 3127 3128 /* We cannot hand out queues we don't have */ 3129 if ((offset + count) > dev->real_num_tx_queues) 3130 return -EINVAL; 3131 3132 /* Record the mapping */ 3133 sb_dev->tc_to_txq[tc].count = count; 3134 sb_dev->tc_to_txq[tc].offset = offset; 3135 3136 /* Provide a way for Tx queue to find the tc_to_txq map or 3137 * XPS map for itself. 3138 */ 3139 while (count--) 3140 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3141 3142 return 0; 3143 } 3144 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3145 3146 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3147 { 3148 /* Do not use a multiqueue device to represent a subordinate channel */ 3149 if (netif_is_multiqueue(dev)) 3150 return -ENODEV; 3151 3152 /* We allow channels 1 - 32767 to be used for subordinate channels. 3153 * Channel 0 is meant to be "native" mode and used only to represent 3154 * the main root device. We allow writing 0 to reset the device back 3155 * to normal mode after being used as a subordinate channel. 3156 */ 3157 if (channel > S16_MAX) 3158 return -EINVAL; 3159 3160 dev->num_tc = -channel; 3161 3162 return 0; 3163 } 3164 EXPORT_SYMBOL(netdev_set_sb_channel); 3165 3166 /* 3167 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3168 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3169 */ 3170 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3171 { 3172 bool disabling; 3173 int rc; 3174 3175 disabling = txq < dev->real_num_tx_queues; 3176 3177 if (txq < 1 || txq > dev->num_tx_queues) 3178 return -EINVAL; 3179 3180 if (dev->reg_state == NETREG_REGISTERED || 3181 dev->reg_state == NETREG_UNREGISTERING) { 3182 netdev_ops_assert_locked(dev); 3183 3184 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3185 txq); 3186 if (rc) 3187 return rc; 3188 3189 if (dev->num_tc) 3190 netif_setup_tc(dev, txq); 3191 3192 net_shaper_set_real_num_tx_queues(dev, txq); 3193 3194 dev_qdisc_change_real_num_tx(dev, txq); 3195 3196 dev->real_num_tx_queues = txq; 3197 3198 if (disabling) { 3199 synchronize_net(); 3200 qdisc_reset_all_tx_gt(dev, txq); 3201 #ifdef CONFIG_XPS 3202 netif_reset_xps_queues_gt(dev, txq); 3203 #endif 3204 } 3205 } else { 3206 dev->real_num_tx_queues = txq; 3207 } 3208 3209 return 0; 3210 } 3211 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3212 3213 /** 3214 * netif_set_real_num_rx_queues - set actual number of RX queues used 3215 * @dev: Network device 3216 * @rxq: Actual number of RX queues 3217 * 3218 * This must be called either with the rtnl_lock held or before 3219 * registration of the net device. Returns 0 on success, or a 3220 * negative error code. If called before registration, it always 3221 * succeeds. 3222 */ 3223 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3224 { 3225 int rc; 3226 3227 if (rxq < 1 || rxq > dev->num_rx_queues) 3228 return -EINVAL; 3229 3230 if (dev->reg_state == NETREG_REGISTERED) { 3231 netdev_ops_assert_locked(dev); 3232 3233 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3234 rxq); 3235 if (rc) 3236 return rc; 3237 } 3238 3239 dev->real_num_rx_queues = rxq; 3240 return 0; 3241 } 3242 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3243 3244 /** 3245 * netif_set_real_num_queues - set actual number of RX and TX queues used 3246 * @dev: Network device 3247 * @txq: Actual number of TX queues 3248 * @rxq: Actual number of RX queues 3249 * 3250 * Set the real number of both TX and RX queues. 3251 * Does nothing if the number of queues is already correct. 3252 */ 3253 int netif_set_real_num_queues(struct net_device *dev, 3254 unsigned int txq, unsigned int rxq) 3255 { 3256 unsigned int old_rxq = dev->real_num_rx_queues; 3257 int err; 3258 3259 if (txq < 1 || txq > dev->num_tx_queues || 3260 rxq < 1 || rxq > dev->num_rx_queues) 3261 return -EINVAL; 3262 3263 /* Start from increases, so the error path only does decreases - 3264 * decreases can't fail. 3265 */ 3266 if (rxq > dev->real_num_rx_queues) { 3267 err = netif_set_real_num_rx_queues(dev, rxq); 3268 if (err) 3269 return err; 3270 } 3271 if (txq > dev->real_num_tx_queues) { 3272 err = netif_set_real_num_tx_queues(dev, txq); 3273 if (err) 3274 goto undo_rx; 3275 } 3276 if (rxq < dev->real_num_rx_queues) 3277 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3278 if (txq < dev->real_num_tx_queues) 3279 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3280 3281 return 0; 3282 undo_rx: 3283 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3284 return err; 3285 } 3286 EXPORT_SYMBOL(netif_set_real_num_queues); 3287 3288 /** 3289 * netif_set_tso_max_size() - set the max size of TSO frames supported 3290 * @dev: netdev to update 3291 * @size: max skb->len of a TSO frame 3292 * 3293 * Set the limit on the size of TSO super-frames the device can handle. 3294 * Unless explicitly set the stack will assume the value of 3295 * %GSO_LEGACY_MAX_SIZE. 3296 */ 3297 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3298 { 3299 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3300 if (size < READ_ONCE(dev->gso_max_size)) 3301 netif_set_gso_max_size(dev, size); 3302 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3303 netif_set_gso_ipv4_max_size(dev, size); 3304 } 3305 EXPORT_SYMBOL(netif_set_tso_max_size); 3306 3307 /** 3308 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3309 * @dev: netdev to update 3310 * @segs: max number of TCP segments 3311 * 3312 * Set the limit on the number of TCP segments the device can generate from 3313 * a single TSO super-frame. 3314 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3315 */ 3316 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3317 { 3318 dev->tso_max_segs = segs; 3319 if (segs < READ_ONCE(dev->gso_max_segs)) 3320 netif_set_gso_max_segs(dev, segs); 3321 } 3322 EXPORT_SYMBOL(netif_set_tso_max_segs); 3323 3324 /** 3325 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3326 * @to: netdev to update 3327 * @from: netdev from which to copy the limits 3328 */ 3329 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3330 { 3331 netif_set_tso_max_size(to, from->tso_max_size); 3332 netif_set_tso_max_segs(to, from->tso_max_segs); 3333 } 3334 EXPORT_SYMBOL(netif_inherit_tso_max); 3335 3336 /** 3337 * netif_get_num_default_rss_queues - default number of RSS queues 3338 * 3339 * Default value is the number of physical cores if there are only 1 or 2, or 3340 * divided by 2 if there are more. 3341 */ 3342 int netif_get_num_default_rss_queues(void) 3343 { 3344 cpumask_var_t cpus; 3345 int cpu, count = 0; 3346 3347 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3348 return 1; 3349 3350 cpumask_copy(cpus, cpu_online_mask); 3351 for_each_cpu(cpu, cpus) { 3352 ++count; 3353 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3354 } 3355 free_cpumask_var(cpus); 3356 3357 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3358 } 3359 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3360 3361 static void __netif_reschedule(struct Qdisc *q) 3362 { 3363 struct softnet_data *sd; 3364 unsigned long flags; 3365 3366 local_irq_save(flags); 3367 sd = this_cpu_ptr(&softnet_data); 3368 q->next_sched = NULL; 3369 *sd->output_queue_tailp = q; 3370 sd->output_queue_tailp = &q->next_sched; 3371 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3372 local_irq_restore(flags); 3373 } 3374 3375 void __netif_schedule(struct Qdisc *q) 3376 { 3377 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3378 __netif_reschedule(q); 3379 } 3380 EXPORT_SYMBOL(__netif_schedule); 3381 3382 struct dev_kfree_skb_cb { 3383 enum skb_drop_reason reason; 3384 }; 3385 3386 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3387 { 3388 return (struct dev_kfree_skb_cb *)skb->cb; 3389 } 3390 3391 void netif_schedule_queue(struct netdev_queue *txq) 3392 { 3393 rcu_read_lock(); 3394 if (!netif_xmit_stopped(txq)) { 3395 struct Qdisc *q = rcu_dereference(txq->qdisc); 3396 3397 __netif_schedule(q); 3398 } 3399 rcu_read_unlock(); 3400 } 3401 EXPORT_SYMBOL(netif_schedule_queue); 3402 3403 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3404 { 3405 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3406 struct Qdisc *q; 3407 3408 rcu_read_lock(); 3409 q = rcu_dereference(dev_queue->qdisc); 3410 __netif_schedule(q); 3411 rcu_read_unlock(); 3412 } 3413 } 3414 EXPORT_SYMBOL(netif_tx_wake_queue); 3415 3416 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3417 { 3418 unsigned long flags; 3419 3420 if (unlikely(!skb)) 3421 return; 3422 3423 if (likely(refcount_read(&skb->users) == 1)) { 3424 smp_rmb(); 3425 refcount_set(&skb->users, 0); 3426 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3427 return; 3428 } 3429 get_kfree_skb_cb(skb)->reason = reason; 3430 local_irq_save(flags); 3431 skb->next = __this_cpu_read(softnet_data.completion_queue); 3432 __this_cpu_write(softnet_data.completion_queue, skb); 3433 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3434 local_irq_restore(flags); 3435 } 3436 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3437 3438 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3439 { 3440 if (in_hardirq() || irqs_disabled()) 3441 dev_kfree_skb_irq_reason(skb, reason); 3442 else 3443 kfree_skb_reason(skb, reason); 3444 } 3445 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3446 3447 3448 /** 3449 * netif_device_detach - mark device as removed 3450 * @dev: network device 3451 * 3452 * Mark device as removed from system and therefore no longer available. 3453 */ 3454 void netif_device_detach(struct net_device *dev) 3455 { 3456 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3457 netif_running(dev)) { 3458 netif_tx_stop_all_queues(dev); 3459 } 3460 } 3461 EXPORT_SYMBOL(netif_device_detach); 3462 3463 /** 3464 * netif_device_attach - mark device as attached 3465 * @dev: network device 3466 * 3467 * Mark device as attached from system and restart if needed. 3468 */ 3469 void netif_device_attach(struct net_device *dev) 3470 { 3471 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3472 netif_running(dev)) { 3473 netif_tx_wake_all_queues(dev); 3474 netdev_watchdog_up(dev); 3475 } 3476 } 3477 EXPORT_SYMBOL(netif_device_attach); 3478 3479 /* 3480 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3481 * to be used as a distribution range. 3482 */ 3483 static u16 skb_tx_hash(const struct net_device *dev, 3484 const struct net_device *sb_dev, 3485 struct sk_buff *skb) 3486 { 3487 u32 hash; 3488 u16 qoffset = 0; 3489 u16 qcount = dev->real_num_tx_queues; 3490 3491 if (dev->num_tc) { 3492 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3493 3494 qoffset = sb_dev->tc_to_txq[tc].offset; 3495 qcount = sb_dev->tc_to_txq[tc].count; 3496 if (unlikely(!qcount)) { 3497 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3498 sb_dev->name, qoffset, tc); 3499 qoffset = 0; 3500 qcount = dev->real_num_tx_queues; 3501 } 3502 } 3503 3504 if (skb_rx_queue_recorded(skb)) { 3505 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3506 hash = skb_get_rx_queue(skb); 3507 if (hash >= qoffset) 3508 hash -= qoffset; 3509 while (unlikely(hash >= qcount)) 3510 hash -= qcount; 3511 return hash + qoffset; 3512 } 3513 3514 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3515 } 3516 3517 void skb_warn_bad_offload(const struct sk_buff *skb) 3518 { 3519 static const netdev_features_t null_features; 3520 struct net_device *dev = skb->dev; 3521 const char *name = ""; 3522 3523 if (!net_ratelimit()) 3524 return; 3525 3526 if (dev) { 3527 if (dev->dev.parent) 3528 name = dev_driver_string(dev->dev.parent); 3529 else 3530 name = netdev_name(dev); 3531 } 3532 skb_dump(KERN_WARNING, skb, false); 3533 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3534 name, dev ? &dev->features : &null_features, 3535 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3536 } 3537 3538 /* 3539 * Invalidate hardware checksum when packet is to be mangled, and 3540 * complete checksum manually on outgoing path. 3541 */ 3542 int skb_checksum_help(struct sk_buff *skb) 3543 { 3544 __wsum csum; 3545 int ret = 0, offset; 3546 3547 if (skb->ip_summed == CHECKSUM_COMPLETE) 3548 goto out_set_summed; 3549 3550 if (unlikely(skb_is_gso(skb))) { 3551 skb_warn_bad_offload(skb); 3552 return -EINVAL; 3553 } 3554 3555 if (!skb_frags_readable(skb)) { 3556 return -EFAULT; 3557 } 3558 3559 /* Before computing a checksum, we should make sure no frag could 3560 * be modified by an external entity : checksum could be wrong. 3561 */ 3562 if (skb_has_shared_frag(skb)) { 3563 ret = __skb_linearize(skb); 3564 if (ret) 3565 goto out; 3566 } 3567 3568 offset = skb_checksum_start_offset(skb); 3569 ret = -EINVAL; 3570 if (unlikely(offset >= skb_headlen(skb))) { 3571 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3572 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3573 offset, skb_headlen(skb)); 3574 goto out; 3575 } 3576 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3577 3578 offset += skb->csum_offset; 3579 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3580 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3581 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3582 offset + sizeof(__sum16), skb_headlen(skb)); 3583 goto out; 3584 } 3585 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3586 if (ret) 3587 goto out; 3588 3589 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3590 out_set_summed: 3591 skb->ip_summed = CHECKSUM_NONE; 3592 out: 3593 return ret; 3594 } 3595 EXPORT_SYMBOL(skb_checksum_help); 3596 3597 #ifdef CONFIG_NET_CRC32C 3598 int skb_crc32c_csum_help(struct sk_buff *skb) 3599 { 3600 u32 crc; 3601 int ret = 0, offset, start; 3602 3603 if (skb->ip_summed != CHECKSUM_PARTIAL) 3604 goto out; 3605 3606 if (unlikely(skb_is_gso(skb))) 3607 goto out; 3608 3609 /* Before computing a checksum, we should make sure no frag could 3610 * be modified by an external entity : checksum could be wrong. 3611 */ 3612 if (unlikely(skb_has_shared_frag(skb))) { 3613 ret = __skb_linearize(skb); 3614 if (ret) 3615 goto out; 3616 } 3617 start = skb_checksum_start_offset(skb); 3618 offset = start + offsetof(struct sctphdr, checksum); 3619 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3620 ret = -EINVAL; 3621 goto out; 3622 } 3623 3624 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3625 if (ret) 3626 goto out; 3627 3628 crc = ~skb_crc32c(skb, start, skb->len - start, ~0); 3629 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); 3630 skb_reset_csum_not_inet(skb); 3631 out: 3632 return ret; 3633 } 3634 EXPORT_SYMBOL(skb_crc32c_csum_help); 3635 #endif /* CONFIG_NET_CRC32C */ 3636 3637 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3638 { 3639 __be16 type = skb->protocol; 3640 3641 /* Tunnel gso handlers can set protocol to ethernet. */ 3642 if (type == htons(ETH_P_TEB)) { 3643 struct ethhdr *eth; 3644 3645 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3646 return 0; 3647 3648 eth = (struct ethhdr *)skb->data; 3649 type = eth->h_proto; 3650 } 3651 3652 return vlan_get_protocol_and_depth(skb, type, depth); 3653 } 3654 3655 3656 /* Take action when hardware reception checksum errors are detected. */ 3657 #ifdef CONFIG_BUG 3658 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3659 { 3660 netdev_err(dev, "hw csum failure\n"); 3661 skb_dump(KERN_ERR, skb, true); 3662 dump_stack(); 3663 } 3664 3665 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3666 { 3667 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3668 } 3669 EXPORT_SYMBOL(netdev_rx_csum_fault); 3670 #endif 3671 3672 /* XXX: check that highmem exists at all on the given machine. */ 3673 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3674 { 3675 #ifdef CONFIG_HIGHMEM 3676 int i; 3677 3678 if (!(dev->features & NETIF_F_HIGHDMA)) { 3679 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3680 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3681 struct page *page = skb_frag_page(frag); 3682 3683 if (page && PageHighMem(page)) 3684 return 1; 3685 } 3686 } 3687 #endif 3688 return 0; 3689 } 3690 3691 /* If MPLS offload request, verify we are testing hardware MPLS features 3692 * instead of standard features for the netdev. 3693 */ 3694 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3695 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3696 netdev_features_t features, 3697 __be16 type) 3698 { 3699 if (eth_p_mpls(type)) 3700 features &= skb->dev->mpls_features; 3701 3702 return features; 3703 } 3704 #else 3705 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3706 netdev_features_t features, 3707 __be16 type) 3708 { 3709 return features; 3710 } 3711 #endif 3712 3713 static netdev_features_t harmonize_features(struct sk_buff *skb, 3714 netdev_features_t features) 3715 { 3716 __be16 type; 3717 3718 type = skb_network_protocol(skb, NULL); 3719 features = net_mpls_features(skb, features, type); 3720 3721 if (skb->ip_summed != CHECKSUM_NONE && 3722 !can_checksum_protocol(features, type)) { 3723 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3724 } 3725 if (illegal_highdma(skb->dev, skb)) 3726 features &= ~NETIF_F_SG; 3727 3728 return features; 3729 } 3730 3731 netdev_features_t passthru_features_check(struct sk_buff *skb, 3732 struct net_device *dev, 3733 netdev_features_t features) 3734 { 3735 return features; 3736 } 3737 EXPORT_SYMBOL(passthru_features_check); 3738 3739 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3740 struct net_device *dev, 3741 netdev_features_t features) 3742 { 3743 return vlan_features_check(skb, features); 3744 } 3745 3746 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3747 struct net_device *dev, 3748 netdev_features_t features) 3749 { 3750 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3751 3752 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3753 return features & ~NETIF_F_GSO_MASK; 3754 3755 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3756 return features & ~NETIF_F_GSO_MASK; 3757 3758 if (!skb_shinfo(skb)->gso_type) { 3759 skb_warn_bad_offload(skb); 3760 return features & ~NETIF_F_GSO_MASK; 3761 } 3762 3763 /* Support for GSO partial features requires software 3764 * intervention before we can actually process the packets 3765 * so we need to strip support for any partial features now 3766 * and we can pull them back in after we have partially 3767 * segmented the frame. 3768 */ 3769 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3770 features &= ~dev->gso_partial_features; 3771 3772 /* Make sure to clear the IPv4 ID mangling feature if the 3773 * IPv4 header has the potential to be fragmented. 3774 */ 3775 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3776 struct iphdr *iph = skb->encapsulation ? 3777 inner_ip_hdr(skb) : ip_hdr(skb); 3778 3779 if (!(iph->frag_off & htons(IP_DF))) 3780 features &= ~NETIF_F_TSO_MANGLEID; 3781 } 3782 3783 return features; 3784 } 3785 3786 netdev_features_t netif_skb_features(struct sk_buff *skb) 3787 { 3788 struct net_device *dev = skb->dev; 3789 netdev_features_t features = dev->features; 3790 3791 if (skb_is_gso(skb)) 3792 features = gso_features_check(skb, dev, features); 3793 3794 /* If encapsulation offload request, verify we are testing 3795 * hardware encapsulation features instead of standard 3796 * features for the netdev 3797 */ 3798 if (skb->encapsulation) 3799 features &= dev->hw_enc_features; 3800 3801 if (skb_vlan_tagged(skb)) 3802 features = netdev_intersect_features(features, 3803 dev->vlan_features | 3804 NETIF_F_HW_VLAN_CTAG_TX | 3805 NETIF_F_HW_VLAN_STAG_TX); 3806 3807 if (dev->netdev_ops->ndo_features_check) 3808 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3809 features); 3810 else 3811 features &= dflt_features_check(skb, dev, features); 3812 3813 return harmonize_features(skb, features); 3814 } 3815 EXPORT_SYMBOL(netif_skb_features); 3816 3817 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3818 struct netdev_queue *txq, bool more) 3819 { 3820 unsigned int len; 3821 int rc; 3822 3823 if (dev_nit_active_rcu(dev)) 3824 dev_queue_xmit_nit(skb, dev); 3825 3826 len = skb->len; 3827 trace_net_dev_start_xmit(skb, dev); 3828 rc = netdev_start_xmit(skb, dev, txq, more); 3829 trace_net_dev_xmit(skb, rc, dev, len); 3830 3831 return rc; 3832 } 3833 3834 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3835 struct netdev_queue *txq, int *ret) 3836 { 3837 struct sk_buff *skb = first; 3838 int rc = NETDEV_TX_OK; 3839 3840 while (skb) { 3841 struct sk_buff *next = skb->next; 3842 3843 skb_mark_not_on_list(skb); 3844 rc = xmit_one(skb, dev, txq, next != NULL); 3845 if (unlikely(!dev_xmit_complete(rc))) { 3846 skb->next = next; 3847 goto out; 3848 } 3849 3850 skb = next; 3851 if (netif_tx_queue_stopped(txq) && skb) { 3852 rc = NETDEV_TX_BUSY; 3853 break; 3854 } 3855 } 3856 3857 out: 3858 *ret = rc; 3859 return skb; 3860 } 3861 3862 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3863 netdev_features_t features) 3864 { 3865 if (skb_vlan_tag_present(skb) && 3866 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3867 skb = __vlan_hwaccel_push_inside(skb); 3868 return skb; 3869 } 3870 3871 int skb_csum_hwoffload_help(struct sk_buff *skb, 3872 const netdev_features_t features) 3873 { 3874 if (unlikely(skb_csum_is_sctp(skb))) 3875 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3876 skb_crc32c_csum_help(skb); 3877 3878 if (features & NETIF_F_HW_CSUM) 3879 return 0; 3880 3881 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3882 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3883 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3884 !ipv6_has_hopopt_jumbo(skb)) 3885 goto sw_checksum; 3886 3887 switch (skb->csum_offset) { 3888 case offsetof(struct tcphdr, check): 3889 case offsetof(struct udphdr, check): 3890 return 0; 3891 } 3892 } 3893 3894 sw_checksum: 3895 return skb_checksum_help(skb); 3896 } 3897 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3898 3899 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, 3900 struct net_device *dev) 3901 { 3902 struct skb_shared_info *shinfo; 3903 struct net_iov *niov; 3904 3905 if (likely(skb_frags_readable(skb))) 3906 goto out; 3907 3908 if (!dev->netmem_tx) 3909 goto out_free; 3910 3911 shinfo = skb_shinfo(skb); 3912 3913 if (shinfo->nr_frags > 0) { 3914 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0])); 3915 if (net_is_devmem_iov(niov) && 3916 net_devmem_iov_binding(niov)->dev != dev) 3917 goto out_free; 3918 } 3919 3920 out: 3921 return skb; 3922 3923 out_free: 3924 kfree_skb(skb); 3925 return NULL; 3926 } 3927 3928 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3929 { 3930 netdev_features_t features; 3931 3932 skb = validate_xmit_unreadable_skb(skb, dev); 3933 if (unlikely(!skb)) 3934 goto out_null; 3935 3936 features = netif_skb_features(skb); 3937 skb = validate_xmit_vlan(skb, features); 3938 if (unlikely(!skb)) 3939 goto out_null; 3940 3941 skb = sk_validate_xmit_skb(skb, dev); 3942 if (unlikely(!skb)) 3943 goto out_null; 3944 3945 if (netif_needs_gso(skb, features)) { 3946 struct sk_buff *segs; 3947 3948 segs = skb_gso_segment(skb, features); 3949 if (IS_ERR(segs)) { 3950 goto out_kfree_skb; 3951 } else if (segs) { 3952 consume_skb(skb); 3953 skb = segs; 3954 } 3955 } else { 3956 if (skb_needs_linearize(skb, features) && 3957 __skb_linearize(skb)) 3958 goto out_kfree_skb; 3959 3960 /* If packet is not checksummed and device does not 3961 * support checksumming for this protocol, complete 3962 * checksumming here. 3963 */ 3964 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3965 if (skb->encapsulation) 3966 skb_set_inner_transport_header(skb, 3967 skb_checksum_start_offset(skb)); 3968 else 3969 skb_set_transport_header(skb, 3970 skb_checksum_start_offset(skb)); 3971 if (skb_csum_hwoffload_help(skb, features)) 3972 goto out_kfree_skb; 3973 } 3974 } 3975 3976 skb = validate_xmit_xfrm(skb, features, again); 3977 3978 return skb; 3979 3980 out_kfree_skb: 3981 kfree_skb(skb); 3982 out_null: 3983 dev_core_stats_tx_dropped_inc(dev); 3984 return NULL; 3985 } 3986 3987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3988 { 3989 struct sk_buff *next, *head = NULL, *tail; 3990 3991 for (; skb != NULL; skb = next) { 3992 next = skb->next; 3993 skb_mark_not_on_list(skb); 3994 3995 /* in case skb won't be segmented, point to itself */ 3996 skb->prev = skb; 3997 3998 skb = validate_xmit_skb(skb, dev, again); 3999 if (!skb) 4000 continue; 4001 4002 if (!head) 4003 head = skb; 4004 else 4005 tail->next = skb; 4006 /* If skb was segmented, skb->prev points to 4007 * the last segment. If not, it still contains skb. 4008 */ 4009 tail = skb->prev; 4010 } 4011 return head; 4012 } 4013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 4014 4015 static void qdisc_pkt_len_init(struct sk_buff *skb) 4016 { 4017 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4018 4019 qdisc_skb_cb(skb)->pkt_len = skb->len; 4020 4021 /* To get more precise estimation of bytes sent on wire, 4022 * we add to pkt_len the headers size of all segments 4023 */ 4024 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 4025 u16 gso_segs = shinfo->gso_segs; 4026 unsigned int hdr_len; 4027 4028 /* mac layer + network layer */ 4029 hdr_len = skb_transport_offset(skb); 4030 4031 /* + transport layer */ 4032 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4033 const struct tcphdr *th; 4034 struct tcphdr _tcphdr; 4035 4036 th = skb_header_pointer(skb, hdr_len, 4037 sizeof(_tcphdr), &_tcphdr); 4038 if (likely(th)) 4039 hdr_len += __tcp_hdrlen(th); 4040 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4041 struct udphdr _udphdr; 4042 4043 if (skb_header_pointer(skb, hdr_len, 4044 sizeof(_udphdr), &_udphdr)) 4045 hdr_len += sizeof(struct udphdr); 4046 } 4047 4048 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4049 int payload = skb->len - hdr_len; 4050 4051 /* Malicious packet. */ 4052 if (payload <= 0) 4053 return; 4054 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4055 } 4056 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4057 } 4058 } 4059 4060 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4061 struct sk_buff **to_free, 4062 struct netdev_queue *txq) 4063 { 4064 int rc; 4065 4066 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4067 if (rc == NET_XMIT_SUCCESS) 4068 trace_qdisc_enqueue(q, txq, skb); 4069 return rc; 4070 } 4071 4072 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4073 struct net_device *dev, 4074 struct netdev_queue *txq) 4075 { 4076 spinlock_t *root_lock = qdisc_lock(q); 4077 struct sk_buff *to_free = NULL; 4078 bool contended; 4079 int rc; 4080 4081 qdisc_calculate_pkt_len(skb, q); 4082 4083 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4084 4085 if (q->flags & TCQ_F_NOLOCK) { 4086 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4087 qdisc_run_begin(q)) { 4088 /* Retest nolock_qdisc_is_empty() within the protection 4089 * of q->seqlock to protect from racing with requeuing. 4090 */ 4091 if (unlikely(!nolock_qdisc_is_empty(q))) { 4092 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4093 __qdisc_run(q); 4094 qdisc_run_end(q); 4095 4096 goto no_lock_out; 4097 } 4098 4099 qdisc_bstats_cpu_update(q, skb); 4100 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4101 !nolock_qdisc_is_empty(q)) 4102 __qdisc_run(q); 4103 4104 qdisc_run_end(q); 4105 return NET_XMIT_SUCCESS; 4106 } 4107 4108 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4109 qdisc_run(q); 4110 4111 no_lock_out: 4112 if (unlikely(to_free)) 4113 kfree_skb_list_reason(to_free, 4114 tcf_get_drop_reason(to_free)); 4115 return rc; 4116 } 4117 4118 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 4119 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 4120 return NET_XMIT_DROP; 4121 } 4122 /* 4123 * Heuristic to force contended enqueues to serialize on a 4124 * separate lock before trying to get qdisc main lock. 4125 * This permits qdisc->running owner to get the lock more 4126 * often and dequeue packets faster. 4127 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 4128 * and then other tasks will only enqueue packets. The packets will be 4129 * sent after the qdisc owner is scheduled again. To prevent this 4130 * scenario the task always serialize on the lock. 4131 */ 4132 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 4133 if (unlikely(contended)) 4134 spin_lock(&q->busylock); 4135 4136 spin_lock(root_lock); 4137 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4138 __qdisc_drop(skb, &to_free); 4139 rc = NET_XMIT_DROP; 4140 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4141 qdisc_run_begin(q)) { 4142 /* 4143 * This is a work-conserving queue; there are no old skbs 4144 * waiting to be sent out; and the qdisc is not running - 4145 * xmit the skb directly. 4146 */ 4147 4148 qdisc_bstats_update(q, skb); 4149 4150 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 4151 if (unlikely(contended)) { 4152 spin_unlock(&q->busylock); 4153 contended = false; 4154 } 4155 __qdisc_run(q); 4156 } 4157 4158 qdisc_run_end(q); 4159 rc = NET_XMIT_SUCCESS; 4160 } else { 4161 WRITE_ONCE(q->owner, smp_processor_id()); 4162 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4163 WRITE_ONCE(q->owner, -1); 4164 if (qdisc_run_begin(q)) { 4165 if (unlikely(contended)) { 4166 spin_unlock(&q->busylock); 4167 contended = false; 4168 } 4169 __qdisc_run(q); 4170 qdisc_run_end(q); 4171 } 4172 } 4173 spin_unlock(root_lock); 4174 if (unlikely(to_free)) 4175 kfree_skb_list_reason(to_free, 4176 tcf_get_drop_reason(to_free)); 4177 if (unlikely(contended)) 4178 spin_unlock(&q->busylock); 4179 return rc; 4180 } 4181 4182 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4183 static void skb_update_prio(struct sk_buff *skb) 4184 { 4185 const struct netprio_map *map; 4186 const struct sock *sk; 4187 unsigned int prioidx; 4188 4189 if (skb->priority) 4190 return; 4191 map = rcu_dereference_bh(skb->dev->priomap); 4192 if (!map) 4193 return; 4194 sk = skb_to_full_sk(skb); 4195 if (!sk) 4196 return; 4197 4198 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4199 4200 if (prioidx < map->priomap_len) 4201 skb->priority = map->priomap[prioidx]; 4202 } 4203 #else 4204 #define skb_update_prio(skb) 4205 #endif 4206 4207 /** 4208 * dev_loopback_xmit - loop back @skb 4209 * @net: network namespace this loopback is happening in 4210 * @sk: sk needed to be a netfilter okfn 4211 * @skb: buffer to transmit 4212 */ 4213 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4214 { 4215 skb_reset_mac_header(skb); 4216 __skb_pull(skb, skb_network_offset(skb)); 4217 skb->pkt_type = PACKET_LOOPBACK; 4218 if (skb->ip_summed == CHECKSUM_NONE) 4219 skb->ip_summed = CHECKSUM_UNNECESSARY; 4220 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4221 skb_dst_force(skb); 4222 netif_rx(skb); 4223 return 0; 4224 } 4225 EXPORT_SYMBOL(dev_loopback_xmit); 4226 4227 #ifdef CONFIG_NET_EGRESS 4228 static struct netdev_queue * 4229 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4230 { 4231 int qm = skb_get_queue_mapping(skb); 4232 4233 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4234 } 4235 4236 #ifndef CONFIG_PREEMPT_RT 4237 static bool netdev_xmit_txqueue_skipped(void) 4238 { 4239 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4240 } 4241 4242 void netdev_xmit_skip_txqueue(bool skip) 4243 { 4244 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4245 } 4246 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4247 4248 #else 4249 static bool netdev_xmit_txqueue_skipped(void) 4250 { 4251 return current->net_xmit.skip_txqueue; 4252 } 4253 4254 void netdev_xmit_skip_txqueue(bool skip) 4255 { 4256 current->net_xmit.skip_txqueue = skip; 4257 } 4258 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4259 #endif 4260 #endif /* CONFIG_NET_EGRESS */ 4261 4262 #ifdef CONFIG_NET_XGRESS 4263 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4264 enum skb_drop_reason *drop_reason) 4265 { 4266 int ret = TC_ACT_UNSPEC; 4267 #ifdef CONFIG_NET_CLS_ACT 4268 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4269 struct tcf_result res; 4270 4271 if (!miniq) 4272 return ret; 4273 4274 /* Global bypass */ 4275 if (!static_branch_likely(&tcf_sw_enabled_key)) 4276 return ret; 4277 4278 /* Block-wise bypass */ 4279 if (tcf_block_bypass_sw(miniq->block)) 4280 return ret; 4281 4282 tc_skb_cb(skb)->mru = 0; 4283 tc_skb_cb(skb)->post_ct = false; 4284 tcf_set_drop_reason(skb, *drop_reason); 4285 4286 mini_qdisc_bstats_cpu_update(miniq, skb); 4287 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4288 /* Only tcf related quirks below. */ 4289 switch (ret) { 4290 case TC_ACT_SHOT: 4291 *drop_reason = tcf_get_drop_reason(skb); 4292 mini_qdisc_qstats_cpu_drop(miniq); 4293 break; 4294 case TC_ACT_OK: 4295 case TC_ACT_RECLASSIFY: 4296 skb->tc_index = TC_H_MIN(res.classid); 4297 break; 4298 } 4299 #endif /* CONFIG_NET_CLS_ACT */ 4300 return ret; 4301 } 4302 4303 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4304 4305 void tcx_inc(void) 4306 { 4307 static_branch_inc(&tcx_needed_key); 4308 } 4309 4310 void tcx_dec(void) 4311 { 4312 static_branch_dec(&tcx_needed_key); 4313 } 4314 4315 static __always_inline enum tcx_action_base 4316 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4317 const bool needs_mac) 4318 { 4319 const struct bpf_mprog_fp *fp; 4320 const struct bpf_prog *prog; 4321 int ret = TCX_NEXT; 4322 4323 if (needs_mac) 4324 __skb_push(skb, skb->mac_len); 4325 bpf_mprog_foreach_prog(entry, fp, prog) { 4326 bpf_compute_data_pointers(skb); 4327 ret = bpf_prog_run(prog, skb); 4328 if (ret != TCX_NEXT) 4329 break; 4330 } 4331 if (needs_mac) 4332 __skb_pull(skb, skb->mac_len); 4333 return tcx_action_code(skb, ret); 4334 } 4335 4336 static __always_inline struct sk_buff * 4337 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4338 struct net_device *orig_dev, bool *another) 4339 { 4340 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4341 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4342 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4343 int sch_ret; 4344 4345 if (!entry) 4346 return skb; 4347 4348 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4349 if (*pt_prev) { 4350 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4351 *pt_prev = NULL; 4352 } 4353 4354 qdisc_skb_cb(skb)->pkt_len = skb->len; 4355 tcx_set_ingress(skb, true); 4356 4357 if (static_branch_unlikely(&tcx_needed_key)) { 4358 sch_ret = tcx_run(entry, skb, true); 4359 if (sch_ret != TC_ACT_UNSPEC) 4360 goto ingress_verdict; 4361 } 4362 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4363 ingress_verdict: 4364 switch (sch_ret) { 4365 case TC_ACT_REDIRECT: 4366 /* skb_mac_header check was done by BPF, so we can safely 4367 * push the L2 header back before redirecting to another 4368 * netdev. 4369 */ 4370 __skb_push(skb, skb->mac_len); 4371 if (skb_do_redirect(skb) == -EAGAIN) { 4372 __skb_pull(skb, skb->mac_len); 4373 *another = true; 4374 break; 4375 } 4376 *ret = NET_RX_SUCCESS; 4377 bpf_net_ctx_clear(bpf_net_ctx); 4378 return NULL; 4379 case TC_ACT_SHOT: 4380 kfree_skb_reason(skb, drop_reason); 4381 *ret = NET_RX_DROP; 4382 bpf_net_ctx_clear(bpf_net_ctx); 4383 return NULL; 4384 /* used by tc_run */ 4385 case TC_ACT_STOLEN: 4386 case TC_ACT_QUEUED: 4387 case TC_ACT_TRAP: 4388 consume_skb(skb); 4389 fallthrough; 4390 case TC_ACT_CONSUMED: 4391 *ret = NET_RX_SUCCESS; 4392 bpf_net_ctx_clear(bpf_net_ctx); 4393 return NULL; 4394 } 4395 bpf_net_ctx_clear(bpf_net_ctx); 4396 4397 return skb; 4398 } 4399 4400 static __always_inline struct sk_buff * 4401 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4402 { 4403 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4404 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4405 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4406 int sch_ret; 4407 4408 if (!entry) 4409 return skb; 4410 4411 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4412 4413 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4414 * already set by the caller. 4415 */ 4416 if (static_branch_unlikely(&tcx_needed_key)) { 4417 sch_ret = tcx_run(entry, skb, false); 4418 if (sch_ret != TC_ACT_UNSPEC) 4419 goto egress_verdict; 4420 } 4421 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4422 egress_verdict: 4423 switch (sch_ret) { 4424 case TC_ACT_REDIRECT: 4425 /* No need to push/pop skb's mac_header here on egress! */ 4426 skb_do_redirect(skb); 4427 *ret = NET_XMIT_SUCCESS; 4428 bpf_net_ctx_clear(bpf_net_ctx); 4429 return NULL; 4430 case TC_ACT_SHOT: 4431 kfree_skb_reason(skb, drop_reason); 4432 *ret = NET_XMIT_DROP; 4433 bpf_net_ctx_clear(bpf_net_ctx); 4434 return NULL; 4435 /* used by tc_run */ 4436 case TC_ACT_STOLEN: 4437 case TC_ACT_QUEUED: 4438 case TC_ACT_TRAP: 4439 consume_skb(skb); 4440 fallthrough; 4441 case TC_ACT_CONSUMED: 4442 *ret = NET_XMIT_SUCCESS; 4443 bpf_net_ctx_clear(bpf_net_ctx); 4444 return NULL; 4445 } 4446 bpf_net_ctx_clear(bpf_net_ctx); 4447 4448 return skb; 4449 } 4450 #else 4451 static __always_inline struct sk_buff * 4452 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4453 struct net_device *orig_dev, bool *another) 4454 { 4455 return skb; 4456 } 4457 4458 static __always_inline struct sk_buff * 4459 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4460 { 4461 return skb; 4462 } 4463 #endif /* CONFIG_NET_XGRESS */ 4464 4465 #ifdef CONFIG_XPS 4466 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4467 struct xps_dev_maps *dev_maps, unsigned int tci) 4468 { 4469 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4470 struct xps_map *map; 4471 int queue_index = -1; 4472 4473 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4474 return queue_index; 4475 4476 tci *= dev_maps->num_tc; 4477 tci += tc; 4478 4479 map = rcu_dereference(dev_maps->attr_map[tci]); 4480 if (map) { 4481 if (map->len == 1) 4482 queue_index = map->queues[0]; 4483 else 4484 queue_index = map->queues[reciprocal_scale( 4485 skb_get_hash(skb), map->len)]; 4486 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4487 queue_index = -1; 4488 } 4489 return queue_index; 4490 } 4491 #endif 4492 4493 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4494 struct sk_buff *skb) 4495 { 4496 #ifdef CONFIG_XPS 4497 struct xps_dev_maps *dev_maps; 4498 struct sock *sk = skb->sk; 4499 int queue_index = -1; 4500 4501 if (!static_key_false(&xps_needed)) 4502 return -1; 4503 4504 rcu_read_lock(); 4505 if (!static_key_false(&xps_rxqs_needed)) 4506 goto get_cpus_map; 4507 4508 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4509 if (dev_maps) { 4510 int tci = sk_rx_queue_get(sk); 4511 4512 if (tci >= 0) 4513 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4514 tci); 4515 } 4516 4517 get_cpus_map: 4518 if (queue_index < 0) { 4519 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4520 if (dev_maps) { 4521 unsigned int tci = skb->sender_cpu - 1; 4522 4523 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4524 tci); 4525 } 4526 } 4527 rcu_read_unlock(); 4528 4529 return queue_index; 4530 #else 4531 return -1; 4532 #endif 4533 } 4534 4535 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4536 struct net_device *sb_dev) 4537 { 4538 return 0; 4539 } 4540 EXPORT_SYMBOL(dev_pick_tx_zero); 4541 4542 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4543 struct net_device *sb_dev) 4544 { 4545 struct sock *sk = skb->sk; 4546 int queue_index = sk_tx_queue_get(sk); 4547 4548 sb_dev = sb_dev ? : dev; 4549 4550 if (queue_index < 0 || skb->ooo_okay || 4551 queue_index >= dev->real_num_tx_queues) { 4552 int new_index = get_xps_queue(dev, sb_dev, skb); 4553 4554 if (new_index < 0) 4555 new_index = skb_tx_hash(dev, sb_dev, skb); 4556 4557 if (queue_index != new_index && sk && 4558 sk_fullsock(sk) && 4559 rcu_access_pointer(sk->sk_dst_cache)) 4560 sk_tx_queue_set(sk, new_index); 4561 4562 queue_index = new_index; 4563 } 4564 4565 return queue_index; 4566 } 4567 EXPORT_SYMBOL(netdev_pick_tx); 4568 4569 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4570 struct sk_buff *skb, 4571 struct net_device *sb_dev) 4572 { 4573 int queue_index = 0; 4574 4575 #ifdef CONFIG_XPS 4576 u32 sender_cpu = skb->sender_cpu - 1; 4577 4578 if (sender_cpu >= (u32)NR_CPUS) 4579 skb->sender_cpu = raw_smp_processor_id() + 1; 4580 #endif 4581 4582 if (dev->real_num_tx_queues != 1) { 4583 const struct net_device_ops *ops = dev->netdev_ops; 4584 4585 if (ops->ndo_select_queue) 4586 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4587 else 4588 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4589 4590 queue_index = netdev_cap_txqueue(dev, queue_index); 4591 } 4592 4593 skb_set_queue_mapping(skb, queue_index); 4594 return netdev_get_tx_queue(dev, queue_index); 4595 } 4596 4597 /** 4598 * __dev_queue_xmit() - transmit a buffer 4599 * @skb: buffer to transmit 4600 * @sb_dev: suboordinate device used for L2 forwarding offload 4601 * 4602 * Queue a buffer for transmission to a network device. The caller must 4603 * have set the device and priority and built the buffer before calling 4604 * this function. The function can be called from an interrupt. 4605 * 4606 * When calling this method, interrupts MUST be enabled. This is because 4607 * the BH enable code must have IRQs enabled so that it will not deadlock. 4608 * 4609 * Regardless of the return value, the skb is consumed, so it is currently 4610 * difficult to retry a send to this method. (You can bump the ref count 4611 * before sending to hold a reference for retry if you are careful.) 4612 * 4613 * Return: 4614 * * 0 - buffer successfully transmitted 4615 * * positive qdisc return code - NET_XMIT_DROP etc. 4616 * * negative errno - other errors 4617 */ 4618 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4619 { 4620 struct net_device *dev = skb->dev; 4621 struct netdev_queue *txq = NULL; 4622 struct Qdisc *q; 4623 int rc = -ENOMEM; 4624 bool again = false; 4625 4626 skb_reset_mac_header(skb); 4627 skb_assert_len(skb); 4628 4629 if (unlikely(skb_shinfo(skb)->tx_flags & 4630 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4631 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4632 4633 /* Disable soft irqs for various locks below. Also 4634 * stops preemption for RCU. 4635 */ 4636 rcu_read_lock_bh(); 4637 4638 skb_update_prio(skb); 4639 4640 qdisc_pkt_len_init(skb); 4641 tcx_set_ingress(skb, false); 4642 #ifdef CONFIG_NET_EGRESS 4643 if (static_branch_unlikely(&egress_needed_key)) { 4644 if (nf_hook_egress_active()) { 4645 skb = nf_hook_egress(skb, &rc, dev); 4646 if (!skb) 4647 goto out; 4648 } 4649 4650 netdev_xmit_skip_txqueue(false); 4651 4652 nf_skip_egress(skb, true); 4653 skb = sch_handle_egress(skb, &rc, dev); 4654 if (!skb) 4655 goto out; 4656 nf_skip_egress(skb, false); 4657 4658 if (netdev_xmit_txqueue_skipped()) 4659 txq = netdev_tx_queue_mapping(dev, skb); 4660 } 4661 #endif 4662 /* If device/qdisc don't need skb->dst, release it right now while 4663 * its hot in this cpu cache. 4664 */ 4665 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4666 skb_dst_drop(skb); 4667 else 4668 skb_dst_force(skb); 4669 4670 if (!txq) 4671 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4672 4673 q = rcu_dereference_bh(txq->qdisc); 4674 4675 trace_net_dev_queue(skb); 4676 if (q->enqueue) { 4677 rc = __dev_xmit_skb(skb, q, dev, txq); 4678 goto out; 4679 } 4680 4681 /* The device has no queue. Common case for software devices: 4682 * loopback, all the sorts of tunnels... 4683 4684 * Really, it is unlikely that netif_tx_lock protection is necessary 4685 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4686 * counters.) 4687 * However, it is possible, that they rely on protection 4688 * made by us here. 4689 4690 * Check this and shot the lock. It is not prone from deadlocks. 4691 *Either shot noqueue qdisc, it is even simpler 8) 4692 */ 4693 if (dev->flags & IFF_UP) { 4694 int cpu = smp_processor_id(); /* ok because BHs are off */ 4695 4696 /* Other cpus might concurrently change txq->xmit_lock_owner 4697 * to -1 or to their cpu id, but not to our id. 4698 */ 4699 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4700 if (dev_xmit_recursion()) 4701 goto recursion_alert; 4702 4703 skb = validate_xmit_skb(skb, dev, &again); 4704 if (!skb) 4705 goto out; 4706 4707 HARD_TX_LOCK(dev, txq, cpu); 4708 4709 if (!netif_xmit_stopped(txq)) { 4710 dev_xmit_recursion_inc(); 4711 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4712 dev_xmit_recursion_dec(); 4713 if (dev_xmit_complete(rc)) { 4714 HARD_TX_UNLOCK(dev, txq); 4715 goto out; 4716 } 4717 } 4718 HARD_TX_UNLOCK(dev, txq); 4719 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4720 dev->name); 4721 } else { 4722 /* Recursion is detected! It is possible, 4723 * unfortunately 4724 */ 4725 recursion_alert: 4726 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4727 dev->name); 4728 } 4729 } 4730 4731 rc = -ENETDOWN; 4732 rcu_read_unlock_bh(); 4733 4734 dev_core_stats_tx_dropped_inc(dev); 4735 kfree_skb_list(skb); 4736 return rc; 4737 out: 4738 rcu_read_unlock_bh(); 4739 return rc; 4740 } 4741 EXPORT_SYMBOL(__dev_queue_xmit); 4742 4743 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4744 { 4745 struct net_device *dev = skb->dev; 4746 struct sk_buff *orig_skb = skb; 4747 struct netdev_queue *txq; 4748 int ret = NETDEV_TX_BUSY; 4749 bool again = false; 4750 4751 if (unlikely(!netif_running(dev) || 4752 !netif_carrier_ok(dev))) 4753 goto drop; 4754 4755 skb = validate_xmit_skb_list(skb, dev, &again); 4756 if (skb != orig_skb) 4757 goto drop; 4758 4759 skb_set_queue_mapping(skb, queue_id); 4760 txq = skb_get_tx_queue(dev, skb); 4761 4762 local_bh_disable(); 4763 4764 dev_xmit_recursion_inc(); 4765 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4766 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4767 ret = netdev_start_xmit(skb, dev, txq, false); 4768 HARD_TX_UNLOCK(dev, txq); 4769 dev_xmit_recursion_dec(); 4770 4771 local_bh_enable(); 4772 return ret; 4773 drop: 4774 dev_core_stats_tx_dropped_inc(dev); 4775 kfree_skb_list(skb); 4776 return NET_XMIT_DROP; 4777 } 4778 EXPORT_SYMBOL(__dev_direct_xmit); 4779 4780 /************************************************************************* 4781 * Receiver routines 4782 *************************************************************************/ 4783 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4784 4785 int weight_p __read_mostly = 64; /* old backlog weight */ 4786 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4787 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4788 4789 /* Called with irq disabled */ 4790 static inline void ____napi_schedule(struct softnet_data *sd, 4791 struct napi_struct *napi) 4792 { 4793 struct task_struct *thread; 4794 4795 lockdep_assert_irqs_disabled(); 4796 4797 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4798 /* Paired with smp_mb__before_atomic() in 4799 * napi_enable()/dev_set_threaded(). 4800 * Use READ_ONCE() to guarantee a complete 4801 * read on napi->thread. Only call 4802 * wake_up_process() when it's not NULL. 4803 */ 4804 thread = READ_ONCE(napi->thread); 4805 if (thread) { 4806 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4807 goto use_local_napi; 4808 4809 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4810 wake_up_process(thread); 4811 return; 4812 } 4813 } 4814 4815 use_local_napi: 4816 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); 4817 list_add_tail(&napi->poll_list, &sd->poll_list); 4818 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4819 /* If not called from net_rx_action() 4820 * we have to raise NET_RX_SOFTIRQ. 4821 */ 4822 if (!sd->in_net_rx_action) 4823 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4824 } 4825 4826 #ifdef CONFIG_RPS 4827 4828 struct static_key_false rps_needed __read_mostly; 4829 EXPORT_SYMBOL(rps_needed); 4830 struct static_key_false rfs_needed __read_mostly; 4831 EXPORT_SYMBOL(rfs_needed); 4832 4833 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4834 { 4835 return hash_32(hash, flow_table->log); 4836 } 4837 4838 static struct rps_dev_flow * 4839 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4840 struct rps_dev_flow *rflow, u16 next_cpu) 4841 { 4842 if (next_cpu < nr_cpu_ids) { 4843 u32 head; 4844 #ifdef CONFIG_RFS_ACCEL 4845 struct netdev_rx_queue *rxqueue; 4846 struct rps_dev_flow_table *flow_table; 4847 struct rps_dev_flow *old_rflow; 4848 u16 rxq_index; 4849 u32 flow_id; 4850 int rc; 4851 4852 /* Should we steer this flow to a different hardware queue? */ 4853 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4854 !(dev->features & NETIF_F_NTUPLE)) 4855 goto out; 4856 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4857 if (rxq_index == skb_get_rx_queue(skb)) 4858 goto out; 4859 4860 rxqueue = dev->_rx + rxq_index; 4861 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4862 if (!flow_table) 4863 goto out; 4864 flow_id = rfs_slot(skb_get_hash(skb), flow_table); 4865 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4866 rxq_index, flow_id); 4867 if (rc < 0) 4868 goto out; 4869 old_rflow = rflow; 4870 rflow = &flow_table->flows[flow_id]; 4871 WRITE_ONCE(rflow->filter, rc); 4872 if (old_rflow->filter == rc) 4873 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4874 out: 4875 #endif 4876 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4877 rps_input_queue_tail_save(&rflow->last_qtail, head); 4878 } 4879 4880 WRITE_ONCE(rflow->cpu, next_cpu); 4881 return rflow; 4882 } 4883 4884 /* 4885 * get_rps_cpu is called from netif_receive_skb and returns the target 4886 * CPU from the RPS map of the receiving queue for a given skb. 4887 * rcu_read_lock must be held on entry. 4888 */ 4889 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4890 struct rps_dev_flow **rflowp) 4891 { 4892 const struct rps_sock_flow_table *sock_flow_table; 4893 struct netdev_rx_queue *rxqueue = dev->_rx; 4894 struct rps_dev_flow_table *flow_table; 4895 struct rps_map *map; 4896 int cpu = -1; 4897 u32 tcpu; 4898 u32 hash; 4899 4900 if (skb_rx_queue_recorded(skb)) { 4901 u16 index = skb_get_rx_queue(skb); 4902 4903 if (unlikely(index >= dev->real_num_rx_queues)) { 4904 WARN_ONCE(dev->real_num_rx_queues > 1, 4905 "%s received packet on queue %u, but number " 4906 "of RX queues is %u\n", 4907 dev->name, index, dev->real_num_rx_queues); 4908 goto done; 4909 } 4910 rxqueue += index; 4911 } 4912 4913 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4914 4915 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4916 map = rcu_dereference(rxqueue->rps_map); 4917 if (!flow_table && !map) 4918 goto done; 4919 4920 skb_reset_network_header(skb); 4921 hash = skb_get_hash(skb); 4922 if (!hash) 4923 goto done; 4924 4925 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4926 if (flow_table && sock_flow_table) { 4927 struct rps_dev_flow *rflow; 4928 u32 next_cpu; 4929 u32 ident; 4930 4931 /* First check into global flow table if there is a match. 4932 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4933 */ 4934 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4935 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4936 goto try_rps; 4937 4938 next_cpu = ident & net_hotdata.rps_cpu_mask; 4939 4940 /* OK, now we know there is a match, 4941 * we can look at the local (per receive queue) flow table 4942 */ 4943 rflow = &flow_table->flows[rfs_slot(hash, flow_table)]; 4944 tcpu = rflow->cpu; 4945 4946 /* 4947 * If the desired CPU (where last recvmsg was done) is 4948 * different from current CPU (one in the rx-queue flow 4949 * table entry), switch if one of the following holds: 4950 * - Current CPU is unset (>= nr_cpu_ids). 4951 * - Current CPU is offline. 4952 * - The current CPU's queue tail has advanced beyond the 4953 * last packet that was enqueued using this table entry. 4954 * This guarantees that all previous packets for the flow 4955 * have been dequeued, thus preserving in order delivery. 4956 */ 4957 if (unlikely(tcpu != next_cpu) && 4958 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4959 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4960 rflow->last_qtail)) >= 0)) { 4961 tcpu = next_cpu; 4962 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4963 } 4964 4965 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4966 *rflowp = rflow; 4967 cpu = tcpu; 4968 goto done; 4969 } 4970 } 4971 4972 try_rps: 4973 4974 if (map) { 4975 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4976 if (cpu_online(tcpu)) { 4977 cpu = tcpu; 4978 goto done; 4979 } 4980 } 4981 4982 done: 4983 return cpu; 4984 } 4985 4986 #ifdef CONFIG_RFS_ACCEL 4987 4988 /** 4989 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4990 * @dev: Device on which the filter was set 4991 * @rxq_index: RX queue index 4992 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4993 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4994 * 4995 * Drivers that implement ndo_rx_flow_steer() should periodically call 4996 * this function for each installed filter and remove the filters for 4997 * which it returns %true. 4998 */ 4999 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 5000 u32 flow_id, u16 filter_id) 5001 { 5002 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 5003 struct rps_dev_flow_table *flow_table; 5004 struct rps_dev_flow *rflow; 5005 bool expire = true; 5006 unsigned int cpu; 5007 5008 rcu_read_lock(); 5009 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5010 if (flow_table && flow_id < (1UL << flow_table->log)) { 5011 rflow = &flow_table->flows[flow_id]; 5012 cpu = READ_ONCE(rflow->cpu); 5013 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 5014 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 5015 READ_ONCE(rflow->last_qtail)) < 5016 (int)(10 << flow_table->log))) 5017 expire = false; 5018 } 5019 rcu_read_unlock(); 5020 return expire; 5021 } 5022 EXPORT_SYMBOL(rps_may_expire_flow); 5023 5024 #endif /* CONFIG_RFS_ACCEL */ 5025 5026 /* Called from hardirq (IPI) context */ 5027 static void rps_trigger_softirq(void *data) 5028 { 5029 struct softnet_data *sd = data; 5030 5031 ____napi_schedule(sd, &sd->backlog); 5032 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5033 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5034 } 5035 5036 #endif /* CONFIG_RPS */ 5037 5038 /* Called from hardirq (IPI) context */ 5039 static void trigger_rx_softirq(void *data) 5040 { 5041 struct softnet_data *sd = data; 5042 5043 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5044 smp_store_release(&sd->defer_ipi_scheduled, 0); 5045 } 5046 5047 /* 5048 * After we queued a packet into sd->input_pkt_queue, 5049 * we need to make sure this queue is serviced soon. 5050 * 5051 * - If this is another cpu queue, link it to our rps_ipi_list, 5052 * and make sure we will process rps_ipi_list from net_rx_action(). 5053 * 5054 * - If this is our own queue, NAPI schedule our backlog. 5055 * Note that this also raises NET_RX_SOFTIRQ. 5056 */ 5057 static void napi_schedule_rps(struct softnet_data *sd) 5058 { 5059 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5060 5061 #ifdef CONFIG_RPS 5062 if (sd != mysd) { 5063 if (use_backlog_threads()) { 5064 __napi_schedule_irqoff(&sd->backlog); 5065 return; 5066 } 5067 5068 sd->rps_ipi_next = mysd->rps_ipi_list; 5069 mysd->rps_ipi_list = sd; 5070 5071 /* If not called from net_rx_action() or napi_threaded_poll() 5072 * we have to raise NET_RX_SOFTIRQ. 5073 */ 5074 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5075 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5076 return; 5077 } 5078 #endif /* CONFIG_RPS */ 5079 __napi_schedule_irqoff(&mysd->backlog); 5080 } 5081 5082 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 5083 { 5084 unsigned long flags; 5085 5086 if (use_backlog_threads()) { 5087 backlog_lock_irq_save(sd, &flags); 5088 5089 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5090 __napi_schedule_irqoff(&sd->backlog); 5091 5092 backlog_unlock_irq_restore(sd, &flags); 5093 5094 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5095 smp_call_function_single_async(cpu, &sd->defer_csd); 5096 } 5097 } 5098 5099 #ifdef CONFIG_NET_FLOW_LIMIT 5100 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5101 #endif 5102 5103 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 5104 { 5105 #ifdef CONFIG_NET_FLOW_LIMIT 5106 struct sd_flow_limit *fl; 5107 struct softnet_data *sd; 5108 unsigned int old_flow, new_flow; 5109 5110 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 5111 return false; 5112 5113 sd = this_cpu_ptr(&softnet_data); 5114 5115 rcu_read_lock(); 5116 fl = rcu_dereference(sd->flow_limit); 5117 if (fl) { 5118 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5119 old_flow = fl->history[fl->history_head]; 5120 fl->history[fl->history_head] = new_flow; 5121 5122 fl->history_head++; 5123 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5124 5125 if (likely(fl->buckets[old_flow])) 5126 fl->buckets[old_flow]--; 5127 5128 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5129 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5130 WRITE_ONCE(fl->count, fl->count + 1); 5131 rcu_read_unlock(); 5132 return true; 5133 } 5134 } 5135 rcu_read_unlock(); 5136 #endif 5137 return false; 5138 } 5139 5140 /* 5141 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5142 * queue (may be a remote CPU queue). 5143 */ 5144 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5145 unsigned int *qtail) 5146 { 5147 enum skb_drop_reason reason; 5148 struct softnet_data *sd; 5149 unsigned long flags; 5150 unsigned int qlen; 5151 int max_backlog; 5152 u32 tail; 5153 5154 reason = SKB_DROP_REASON_DEV_READY; 5155 if (!netif_running(skb->dev)) 5156 goto bad_dev; 5157 5158 reason = SKB_DROP_REASON_CPU_BACKLOG; 5159 sd = &per_cpu(softnet_data, cpu); 5160 5161 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5162 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5163 if (unlikely(qlen > max_backlog)) 5164 goto cpu_backlog_drop; 5165 backlog_lock_irq_save(sd, &flags); 5166 qlen = skb_queue_len(&sd->input_pkt_queue); 5167 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 5168 if (!qlen) { 5169 /* Schedule NAPI for backlog device. We can use 5170 * non atomic operation as we own the queue lock. 5171 */ 5172 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5173 &sd->backlog.state)) 5174 napi_schedule_rps(sd); 5175 } 5176 __skb_queue_tail(&sd->input_pkt_queue, skb); 5177 tail = rps_input_queue_tail_incr(sd); 5178 backlog_unlock_irq_restore(sd, &flags); 5179 5180 /* save the tail outside of the critical section */ 5181 rps_input_queue_tail_save(qtail, tail); 5182 return NET_RX_SUCCESS; 5183 } 5184 5185 backlog_unlock_irq_restore(sd, &flags); 5186 5187 cpu_backlog_drop: 5188 atomic_inc(&sd->dropped); 5189 bad_dev: 5190 dev_core_stats_rx_dropped_inc(skb->dev); 5191 kfree_skb_reason(skb, reason); 5192 return NET_RX_DROP; 5193 } 5194 5195 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5196 { 5197 struct net_device *dev = skb->dev; 5198 struct netdev_rx_queue *rxqueue; 5199 5200 rxqueue = dev->_rx; 5201 5202 if (skb_rx_queue_recorded(skb)) { 5203 u16 index = skb_get_rx_queue(skb); 5204 5205 if (unlikely(index >= dev->real_num_rx_queues)) { 5206 WARN_ONCE(dev->real_num_rx_queues > 1, 5207 "%s received packet on queue %u, but number " 5208 "of RX queues is %u\n", 5209 dev->name, index, dev->real_num_rx_queues); 5210 5211 return rxqueue; /* Return first rxqueue */ 5212 } 5213 rxqueue += index; 5214 } 5215 return rxqueue; 5216 } 5217 5218 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5219 const struct bpf_prog *xdp_prog) 5220 { 5221 void *orig_data, *orig_data_end, *hard_start; 5222 struct netdev_rx_queue *rxqueue; 5223 bool orig_bcast, orig_host; 5224 u32 mac_len, frame_sz; 5225 __be16 orig_eth_type; 5226 struct ethhdr *eth; 5227 u32 metalen, act; 5228 int off; 5229 5230 /* The XDP program wants to see the packet starting at the MAC 5231 * header. 5232 */ 5233 mac_len = skb->data - skb_mac_header(skb); 5234 hard_start = skb->data - skb_headroom(skb); 5235 5236 /* SKB "head" area always have tailroom for skb_shared_info */ 5237 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5238 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5239 5240 rxqueue = netif_get_rxqueue(skb); 5241 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5242 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5243 skb_headlen(skb) + mac_len, true); 5244 if (skb_is_nonlinear(skb)) { 5245 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5246 xdp_buff_set_frags_flag(xdp); 5247 } else { 5248 xdp_buff_clear_frags_flag(xdp); 5249 } 5250 5251 orig_data_end = xdp->data_end; 5252 orig_data = xdp->data; 5253 eth = (struct ethhdr *)xdp->data; 5254 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5255 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5256 orig_eth_type = eth->h_proto; 5257 5258 act = bpf_prog_run_xdp(xdp_prog, xdp); 5259 5260 /* check if bpf_xdp_adjust_head was used */ 5261 off = xdp->data - orig_data; 5262 if (off) { 5263 if (off > 0) 5264 __skb_pull(skb, off); 5265 else if (off < 0) 5266 __skb_push(skb, -off); 5267 5268 skb->mac_header += off; 5269 skb_reset_network_header(skb); 5270 } 5271 5272 /* check if bpf_xdp_adjust_tail was used */ 5273 off = xdp->data_end - orig_data_end; 5274 if (off != 0) { 5275 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5276 skb->len += off; /* positive on grow, negative on shrink */ 5277 } 5278 5279 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5280 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5281 */ 5282 if (xdp_buff_has_frags(xdp)) 5283 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5284 else 5285 skb->data_len = 0; 5286 5287 /* check if XDP changed eth hdr such SKB needs update */ 5288 eth = (struct ethhdr *)xdp->data; 5289 if ((orig_eth_type != eth->h_proto) || 5290 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5291 skb->dev->dev_addr)) || 5292 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5293 __skb_push(skb, ETH_HLEN); 5294 skb->pkt_type = PACKET_HOST; 5295 skb->protocol = eth_type_trans(skb, skb->dev); 5296 } 5297 5298 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5299 * before calling us again on redirect path. We do not call do_redirect 5300 * as we leave that up to the caller. 5301 * 5302 * Caller is responsible for managing lifetime of skb (i.e. calling 5303 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5304 */ 5305 switch (act) { 5306 case XDP_REDIRECT: 5307 case XDP_TX: 5308 __skb_push(skb, mac_len); 5309 break; 5310 case XDP_PASS: 5311 metalen = xdp->data - xdp->data_meta; 5312 if (metalen) 5313 skb_metadata_set(skb, metalen); 5314 break; 5315 } 5316 5317 return act; 5318 } 5319 5320 static int 5321 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5322 { 5323 struct sk_buff *skb = *pskb; 5324 int err, hroom, troom; 5325 5326 local_lock_nested_bh(&system_page_pool.bh_lock); 5327 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); 5328 local_unlock_nested_bh(&system_page_pool.bh_lock); 5329 if (!err) 5330 return 0; 5331 5332 /* In case we have to go down the path and also linearize, 5333 * then lets do the pskb_expand_head() work just once here. 5334 */ 5335 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5336 troom = skb->tail + skb->data_len - skb->end; 5337 err = pskb_expand_head(skb, 5338 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5339 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5340 if (err) 5341 return err; 5342 5343 return skb_linearize(skb); 5344 } 5345 5346 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5347 struct xdp_buff *xdp, 5348 const struct bpf_prog *xdp_prog) 5349 { 5350 struct sk_buff *skb = *pskb; 5351 u32 mac_len, act = XDP_DROP; 5352 5353 /* Reinjected packets coming from act_mirred or similar should 5354 * not get XDP generic processing. 5355 */ 5356 if (skb_is_redirected(skb)) 5357 return XDP_PASS; 5358 5359 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5360 * bytes. This is the guarantee that also native XDP provides, 5361 * thus we need to do it here as well. 5362 */ 5363 mac_len = skb->data - skb_mac_header(skb); 5364 __skb_push(skb, mac_len); 5365 5366 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5367 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5368 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5369 goto do_drop; 5370 } 5371 5372 __skb_pull(*pskb, mac_len); 5373 5374 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5375 switch (act) { 5376 case XDP_REDIRECT: 5377 case XDP_TX: 5378 case XDP_PASS: 5379 break; 5380 default: 5381 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5382 fallthrough; 5383 case XDP_ABORTED: 5384 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5385 fallthrough; 5386 case XDP_DROP: 5387 do_drop: 5388 kfree_skb(*pskb); 5389 break; 5390 } 5391 5392 return act; 5393 } 5394 5395 /* When doing generic XDP we have to bypass the qdisc layer and the 5396 * network taps in order to match in-driver-XDP behavior. This also means 5397 * that XDP packets are able to starve other packets going through a qdisc, 5398 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5399 * queues, so they do not have this starvation issue. 5400 */ 5401 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5402 { 5403 struct net_device *dev = skb->dev; 5404 struct netdev_queue *txq; 5405 bool free_skb = true; 5406 int cpu, rc; 5407 5408 txq = netdev_core_pick_tx(dev, skb, NULL); 5409 cpu = smp_processor_id(); 5410 HARD_TX_LOCK(dev, txq, cpu); 5411 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5412 rc = netdev_start_xmit(skb, dev, txq, 0); 5413 if (dev_xmit_complete(rc)) 5414 free_skb = false; 5415 } 5416 HARD_TX_UNLOCK(dev, txq); 5417 if (free_skb) { 5418 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5419 dev_core_stats_tx_dropped_inc(dev); 5420 kfree_skb(skb); 5421 } 5422 } 5423 5424 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5425 5426 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5427 { 5428 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5429 5430 if (xdp_prog) { 5431 struct xdp_buff xdp; 5432 u32 act; 5433 int err; 5434 5435 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5436 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5437 if (act != XDP_PASS) { 5438 switch (act) { 5439 case XDP_REDIRECT: 5440 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5441 &xdp, xdp_prog); 5442 if (err) 5443 goto out_redir; 5444 break; 5445 case XDP_TX: 5446 generic_xdp_tx(*pskb, xdp_prog); 5447 break; 5448 } 5449 bpf_net_ctx_clear(bpf_net_ctx); 5450 return XDP_DROP; 5451 } 5452 bpf_net_ctx_clear(bpf_net_ctx); 5453 } 5454 return XDP_PASS; 5455 out_redir: 5456 bpf_net_ctx_clear(bpf_net_ctx); 5457 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5458 return XDP_DROP; 5459 } 5460 EXPORT_SYMBOL_GPL(do_xdp_generic); 5461 5462 static int netif_rx_internal(struct sk_buff *skb) 5463 { 5464 int ret; 5465 5466 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5467 5468 trace_netif_rx(skb); 5469 5470 #ifdef CONFIG_RPS 5471 if (static_branch_unlikely(&rps_needed)) { 5472 struct rps_dev_flow voidflow, *rflow = &voidflow; 5473 int cpu; 5474 5475 rcu_read_lock(); 5476 5477 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5478 if (cpu < 0) 5479 cpu = smp_processor_id(); 5480 5481 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5482 5483 rcu_read_unlock(); 5484 } else 5485 #endif 5486 { 5487 unsigned int qtail; 5488 5489 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5490 } 5491 return ret; 5492 } 5493 5494 /** 5495 * __netif_rx - Slightly optimized version of netif_rx 5496 * @skb: buffer to post 5497 * 5498 * This behaves as netif_rx except that it does not disable bottom halves. 5499 * As a result this function may only be invoked from the interrupt context 5500 * (either hard or soft interrupt). 5501 */ 5502 int __netif_rx(struct sk_buff *skb) 5503 { 5504 int ret; 5505 5506 lockdep_assert_once(hardirq_count() | softirq_count()); 5507 5508 trace_netif_rx_entry(skb); 5509 ret = netif_rx_internal(skb); 5510 trace_netif_rx_exit(ret); 5511 return ret; 5512 } 5513 EXPORT_SYMBOL(__netif_rx); 5514 5515 /** 5516 * netif_rx - post buffer to the network code 5517 * @skb: buffer to post 5518 * 5519 * This function receives a packet from a device driver and queues it for 5520 * the upper (protocol) levels to process via the backlog NAPI device. It 5521 * always succeeds. The buffer may be dropped during processing for 5522 * congestion control or by the protocol layers. 5523 * The network buffer is passed via the backlog NAPI device. Modern NIC 5524 * driver should use NAPI and GRO. 5525 * This function can used from interrupt and from process context. The 5526 * caller from process context must not disable interrupts before invoking 5527 * this function. 5528 * 5529 * return values: 5530 * NET_RX_SUCCESS (no congestion) 5531 * NET_RX_DROP (packet was dropped) 5532 * 5533 */ 5534 int netif_rx(struct sk_buff *skb) 5535 { 5536 bool need_bh_off = !(hardirq_count() | softirq_count()); 5537 int ret; 5538 5539 if (need_bh_off) 5540 local_bh_disable(); 5541 trace_netif_rx_entry(skb); 5542 ret = netif_rx_internal(skb); 5543 trace_netif_rx_exit(ret); 5544 if (need_bh_off) 5545 local_bh_enable(); 5546 return ret; 5547 } 5548 EXPORT_SYMBOL(netif_rx); 5549 5550 static __latent_entropy void net_tx_action(void) 5551 { 5552 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5553 5554 if (sd->completion_queue) { 5555 struct sk_buff *clist; 5556 5557 local_irq_disable(); 5558 clist = sd->completion_queue; 5559 sd->completion_queue = NULL; 5560 local_irq_enable(); 5561 5562 while (clist) { 5563 struct sk_buff *skb = clist; 5564 5565 clist = clist->next; 5566 5567 WARN_ON(refcount_read(&skb->users)); 5568 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5569 trace_consume_skb(skb, net_tx_action); 5570 else 5571 trace_kfree_skb(skb, net_tx_action, 5572 get_kfree_skb_cb(skb)->reason, NULL); 5573 5574 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5575 __kfree_skb(skb); 5576 else 5577 __napi_kfree_skb(skb, 5578 get_kfree_skb_cb(skb)->reason); 5579 } 5580 } 5581 5582 if (sd->output_queue) { 5583 struct Qdisc *head; 5584 5585 local_irq_disable(); 5586 head = sd->output_queue; 5587 sd->output_queue = NULL; 5588 sd->output_queue_tailp = &sd->output_queue; 5589 local_irq_enable(); 5590 5591 rcu_read_lock(); 5592 5593 while (head) { 5594 struct Qdisc *q = head; 5595 spinlock_t *root_lock = NULL; 5596 5597 head = head->next_sched; 5598 5599 /* We need to make sure head->next_sched is read 5600 * before clearing __QDISC_STATE_SCHED 5601 */ 5602 smp_mb__before_atomic(); 5603 5604 if (!(q->flags & TCQ_F_NOLOCK)) { 5605 root_lock = qdisc_lock(q); 5606 spin_lock(root_lock); 5607 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5608 &q->state))) { 5609 /* There is a synchronize_net() between 5610 * STATE_DEACTIVATED flag being set and 5611 * qdisc_reset()/some_qdisc_is_busy() in 5612 * dev_deactivate(), so we can safely bail out 5613 * early here to avoid data race between 5614 * qdisc_deactivate() and some_qdisc_is_busy() 5615 * for lockless qdisc. 5616 */ 5617 clear_bit(__QDISC_STATE_SCHED, &q->state); 5618 continue; 5619 } 5620 5621 clear_bit(__QDISC_STATE_SCHED, &q->state); 5622 qdisc_run(q); 5623 if (root_lock) 5624 spin_unlock(root_lock); 5625 } 5626 5627 rcu_read_unlock(); 5628 } 5629 5630 xfrm_dev_backlog(sd); 5631 } 5632 5633 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5634 /* This hook is defined here for ATM LANE */ 5635 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5636 unsigned char *addr) __read_mostly; 5637 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5638 #endif 5639 5640 /** 5641 * netdev_is_rx_handler_busy - check if receive handler is registered 5642 * @dev: device to check 5643 * 5644 * Check if a receive handler is already registered for a given device. 5645 * Return true if there one. 5646 * 5647 * The caller must hold the rtnl_mutex. 5648 */ 5649 bool netdev_is_rx_handler_busy(struct net_device *dev) 5650 { 5651 ASSERT_RTNL(); 5652 return dev && rtnl_dereference(dev->rx_handler); 5653 } 5654 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5655 5656 /** 5657 * netdev_rx_handler_register - register receive handler 5658 * @dev: device to register a handler for 5659 * @rx_handler: receive handler to register 5660 * @rx_handler_data: data pointer that is used by rx handler 5661 * 5662 * Register a receive handler for a device. This handler will then be 5663 * called from __netif_receive_skb. A negative errno code is returned 5664 * on a failure. 5665 * 5666 * The caller must hold the rtnl_mutex. 5667 * 5668 * For a general description of rx_handler, see enum rx_handler_result. 5669 */ 5670 int netdev_rx_handler_register(struct net_device *dev, 5671 rx_handler_func_t *rx_handler, 5672 void *rx_handler_data) 5673 { 5674 if (netdev_is_rx_handler_busy(dev)) 5675 return -EBUSY; 5676 5677 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5678 return -EINVAL; 5679 5680 /* Note: rx_handler_data must be set before rx_handler */ 5681 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5682 rcu_assign_pointer(dev->rx_handler, rx_handler); 5683 5684 return 0; 5685 } 5686 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5687 5688 /** 5689 * netdev_rx_handler_unregister - unregister receive handler 5690 * @dev: device to unregister a handler from 5691 * 5692 * Unregister a receive handler from a device. 5693 * 5694 * The caller must hold the rtnl_mutex. 5695 */ 5696 void netdev_rx_handler_unregister(struct net_device *dev) 5697 { 5698 5699 ASSERT_RTNL(); 5700 RCU_INIT_POINTER(dev->rx_handler, NULL); 5701 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5702 * section has a guarantee to see a non NULL rx_handler_data 5703 * as well. 5704 */ 5705 synchronize_net(); 5706 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5707 } 5708 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5709 5710 /* 5711 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5712 * the special handling of PFMEMALLOC skbs. 5713 */ 5714 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5715 { 5716 switch (skb->protocol) { 5717 case htons(ETH_P_ARP): 5718 case htons(ETH_P_IP): 5719 case htons(ETH_P_IPV6): 5720 case htons(ETH_P_8021Q): 5721 case htons(ETH_P_8021AD): 5722 return true; 5723 default: 5724 return false; 5725 } 5726 } 5727 5728 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5729 int *ret, struct net_device *orig_dev) 5730 { 5731 if (nf_hook_ingress_active(skb)) { 5732 int ingress_retval; 5733 5734 if (*pt_prev) { 5735 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5736 *pt_prev = NULL; 5737 } 5738 5739 rcu_read_lock(); 5740 ingress_retval = nf_hook_ingress(skb); 5741 rcu_read_unlock(); 5742 return ingress_retval; 5743 } 5744 return 0; 5745 } 5746 5747 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5748 struct packet_type **ppt_prev) 5749 { 5750 struct packet_type *ptype, *pt_prev; 5751 rx_handler_func_t *rx_handler; 5752 struct sk_buff *skb = *pskb; 5753 struct net_device *orig_dev; 5754 bool deliver_exact = false; 5755 int ret = NET_RX_DROP; 5756 __be16 type; 5757 5758 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5759 5760 trace_netif_receive_skb(skb); 5761 5762 orig_dev = skb->dev; 5763 5764 skb_reset_network_header(skb); 5765 #if !defined(CONFIG_DEBUG_NET) 5766 /* We plan to no longer reset the transport header here. 5767 * Give some time to fuzzers and dev build to catch bugs 5768 * in network stacks. 5769 */ 5770 if (!skb_transport_header_was_set(skb)) 5771 skb_reset_transport_header(skb); 5772 #endif 5773 skb_reset_mac_len(skb); 5774 5775 pt_prev = NULL; 5776 5777 another_round: 5778 skb->skb_iif = skb->dev->ifindex; 5779 5780 __this_cpu_inc(softnet_data.processed); 5781 5782 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5783 int ret2; 5784 5785 migrate_disable(); 5786 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5787 &skb); 5788 migrate_enable(); 5789 5790 if (ret2 != XDP_PASS) { 5791 ret = NET_RX_DROP; 5792 goto out; 5793 } 5794 } 5795 5796 if (eth_type_vlan(skb->protocol)) { 5797 skb = skb_vlan_untag(skb); 5798 if (unlikely(!skb)) 5799 goto out; 5800 } 5801 5802 if (skb_skip_tc_classify(skb)) 5803 goto skip_classify; 5804 5805 if (pfmemalloc) 5806 goto skip_taps; 5807 5808 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5809 list) { 5810 if (pt_prev) 5811 ret = deliver_skb(skb, pt_prev, orig_dev); 5812 pt_prev = ptype; 5813 } 5814 5815 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5816 if (pt_prev) 5817 ret = deliver_skb(skb, pt_prev, orig_dev); 5818 pt_prev = ptype; 5819 } 5820 5821 skip_taps: 5822 #ifdef CONFIG_NET_INGRESS 5823 if (static_branch_unlikely(&ingress_needed_key)) { 5824 bool another = false; 5825 5826 nf_skip_egress(skb, true); 5827 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5828 &another); 5829 if (another) 5830 goto another_round; 5831 if (!skb) 5832 goto out; 5833 5834 nf_skip_egress(skb, false); 5835 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5836 goto out; 5837 } 5838 #endif 5839 skb_reset_redirect(skb); 5840 skip_classify: 5841 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5842 goto drop; 5843 5844 if (skb_vlan_tag_present(skb)) { 5845 if (pt_prev) { 5846 ret = deliver_skb(skb, pt_prev, orig_dev); 5847 pt_prev = NULL; 5848 } 5849 if (vlan_do_receive(&skb)) 5850 goto another_round; 5851 else if (unlikely(!skb)) 5852 goto out; 5853 } 5854 5855 rx_handler = rcu_dereference(skb->dev->rx_handler); 5856 if (rx_handler) { 5857 if (pt_prev) { 5858 ret = deliver_skb(skb, pt_prev, orig_dev); 5859 pt_prev = NULL; 5860 } 5861 switch (rx_handler(&skb)) { 5862 case RX_HANDLER_CONSUMED: 5863 ret = NET_RX_SUCCESS; 5864 goto out; 5865 case RX_HANDLER_ANOTHER: 5866 goto another_round; 5867 case RX_HANDLER_EXACT: 5868 deliver_exact = true; 5869 break; 5870 case RX_HANDLER_PASS: 5871 break; 5872 default: 5873 BUG(); 5874 } 5875 } 5876 5877 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5878 check_vlan_id: 5879 if (skb_vlan_tag_get_id(skb)) { 5880 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5881 * find vlan device. 5882 */ 5883 skb->pkt_type = PACKET_OTHERHOST; 5884 } else if (eth_type_vlan(skb->protocol)) { 5885 /* Outer header is 802.1P with vlan 0, inner header is 5886 * 802.1Q or 802.1AD and vlan_do_receive() above could 5887 * not find vlan dev for vlan id 0. 5888 */ 5889 __vlan_hwaccel_clear_tag(skb); 5890 skb = skb_vlan_untag(skb); 5891 if (unlikely(!skb)) 5892 goto out; 5893 if (vlan_do_receive(&skb)) 5894 /* After stripping off 802.1P header with vlan 0 5895 * vlan dev is found for inner header. 5896 */ 5897 goto another_round; 5898 else if (unlikely(!skb)) 5899 goto out; 5900 else 5901 /* We have stripped outer 802.1P vlan 0 header. 5902 * But could not find vlan dev. 5903 * check again for vlan id to set OTHERHOST. 5904 */ 5905 goto check_vlan_id; 5906 } 5907 /* Note: we might in the future use prio bits 5908 * and set skb->priority like in vlan_do_receive() 5909 * For the time being, just ignore Priority Code Point 5910 */ 5911 __vlan_hwaccel_clear_tag(skb); 5912 } 5913 5914 type = skb->protocol; 5915 5916 /* deliver only exact match when indicated */ 5917 if (likely(!deliver_exact)) { 5918 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5919 &ptype_base[ntohs(type) & 5920 PTYPE_HASH_MASK]); 5921 5922 /* orig_dev and skb->dev could belong to different netns; 5923 * Even in such case we need to traverse only the list 5924 * coming from skb->dev, as the ptype owner (packet socket) 5925 * will use dev_net(skb->dev) to do namespace filtering. 5926 */ 5927 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5928 &dev_net_rcu(skb->dev)->ptype_specific); 5929 } 5930 5931 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5932 &orig_dev->ptype_specific); 5933 5934 if (unlikely(skb->dev != orig_dev)) { 5935 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5936 &skb->dev->ptype_specific); 5937 } 5938 5939 if (pt_prev) { 5940 *ppt_prev = pt_prev; 5941 } else { 5942 drop: 5943 if (!deliver_exact) 5944 dev_core_stats_rx_dropped_inc(skb->dev); 5945 else 5946 dev_core_stats_rx_nohandler_inc(skb->dev); 5947 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5948 /* Jamal, now you will not able to escape explaining 5949 * me how you were going to use this. :-) 5950 */ 5951 ret = NET_RX_DROP; 5952 } 5953 5954 out: 5955 /* The invariant here is that if *ppt_prev is not NULL 5956 * then skb should also be non-NULL. 5957 * 5958 * Apparently *ppt_prev assignment above holds this invariant due to 5959 * skb dereferencing near it. 5960 */ 5961 *pskb = skb; 5962 return ret; 5963 } 5964 5965 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5966 { 5967 struct net_device *orig_dev = skb->dev; 5968 struct packet_type *pt_prev = NULL; 5969 int ret; 5970 5971 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5972 if (pt_prev) 5973 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5974 skb->dev, pt_prev, orig_dev); 5975 return ret; 5976 } 5977 5978 /** 5979 * netif_receive_skb_core - special purpose version of netif_receive_skb 5980 * @skb: buffer to process 5981 * 5982 * More direct receive version of netif_receive_skb(). It should 5983 * only be used by callers that have a need to skip RPS and Generic XDP. 5984 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5985 * 5986 * This function may only be called from softirq context and interrupts 5987 * should be enabled. 5988 * 5989 * Return values (usually ignored): 5990 * NET_RX_SUCCESS: no congestion 5991 * NET_RX_DROP: packet was dropped 5992 */ 5993 int netif_receive_skb_core(struct sk_buff *skb) 5994 { 5995 int ret; 5996 5997 rcu_read_lock(); 5998 ret = __netif_receive_skb_one_core(skb, false); 5999 rcu_read_unlock(); 6000 6001 return ret; 6002 } 6003 EXPORT_SYMBOL(netif_receive_skb_core); 6004 6005 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 6006 struct packet_type *pt_prev, 6007 struct net_device *orig_dev) 6008 { 6009 struct sk_buff *skb, *next; 6010 6011 if (!pt_prev) 6012 return; 6013 if (list_empty(head)) 6014 return; 6015 if (pt_prev->list_func != NULL) 6016 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 6017 ip_list_rcv, head, pt_prev, orig_dev); 6018 else 6019 list_for_each_entry_safe(skb, next, head, list) { 6020 skb_list_del_init(skb); 6021 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 6022 } 6023 } 6024 6025 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 6026 { 6027 /* Fast-path assumptions: 6028 * - There is no RX handler. 6029 * - Only one packet_type matches. 6030 * If either of these fails, we will end up doing some per-packet 6031 * processing in-line, then handling the 'last ptype' for the whole 6032 * sublist. This can't cause out-of-order delivery to any single ptype, 6033 * because the 'last ptype' must be constant across the sublist, and all 6034 * other ptypes are handled per-packet. 6035 */ 6036 /* Current (common) ptype of sublist */ 6037 struct packet_type *pt_curr = NULL; 6038 /* Current (common) orig_dev of sublist */ 6039 struct net_device *od_curr = NULL; 6040 struct sk_buff *skb, *next; 6041 LIST_HEAD(sublist); 6042 6043 list_for_each_entry_safe(skb, next, head, list) { 6044 struct net_device *orig_dev = skb->dev; 6045 struct packet_type *pt_prev = NULL; 6046 6047 skb_list_del_init(skb); 6048 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6049 if (!pt_prev) 6050 continue; 6051 if (pt_curr != pt_prev || od_curr != orig_dev) { 6052 /* dispatch old sublist */ 6053 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6054 /* start new sublist */ 6055 INIT_LIST_HEAD(&sublist); 6056 pt_curr = pt_prev; 6057 od_curr = orig_dev; 6058 } 6059 list_add_tail(&skb->list, &sublist); 6060 } 6061 6062 /* dispatch final sublist */ 6063 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6064 } 6065 6066 static int __netif_receive_skb(struct sk_buff *skb) 6067 { 6068 int ret; 6069 6070 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6071 unsigned int noreclaim_flag; 6072 6073 /* 6074 * PFMEMALLOC skbs are special, they should 6075 * - be delivered to SOCK_MEMALLOC sockets only 6076 * - stay away from userspace 6077 * - have bounded memory usage 6078 * 6079 * Use PF_MEMALLOC as this saves us from propagating the allocation 6080 * context down to all allocation sites. 6081 */ 6082 noreclaim_flag = memalloc_noreclaim_save(); 6083 ret = __netif_receive_skb_one_core(skb, true); 6084 memalloc_noreclaim_restore(noreclaim_flag); 6085 } else 6086 ret = __netif_receive_skb_one_core(skb, false); 6087 6088 return ret; 6089 } 6090 6091 static void __netif_receive_skb_list(struct list_head *head) 6092 { 6093 unsigned long noreclaim_flag = 0; 6094 struct sk_buff *skb, *next; 6095 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6096 6097 list_for_each_entry_safe(skb, next, head, list) { 6098 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6099 struct list_head sublist; 6100 6101 /* Handle the previous sublist */ 6102 list_cut_before(&sublist, head, &skb->list); 6103 if (!list_empty(&sublist)) 6104 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6105 pfmemalloc = !pfmemalloc; 6106 /* See comments in __netif_receive_skb */ 6107 if (pfmemalloc) 6108 noreclaim_flag = memalloc_noreclaim_save(); 6109 else 6110 memalloc_noreclaim_restore(noreclaim_flag); 6111 } 6112 } 6113 /* Handle the remaining sublist */ 6114 if (!list_empty(head)) 6115 __netif_receive_skb_list_core(head, pfmemalloc); 6116 /* Restore pflags */ 6117 if (pfmemalloc) 6118 memalloc_noreclaim_restore(noreclaim_flag); 6119 } 6120 6121 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6122 { 6123 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6124 struct bpf_prog *new = xdp->prog; 6125 int ret = 0; 6126 6127 switch (xdp->command) { 6128 case XDP_SETUP_PROG: 6129 rcu_assign_pointer(dev->xdp_prog, new); 6130 if (old) 6131 bpf_prog_put(old); 6132 6133 if (old && !new) { 6134 static_branch_dec(&generic_xdp_needed_key); 6135 } else if (new && !old) { 6136 static_branch_inc(&generic_xdp_needed_key); 6137 netif_disable_lro(dev); 6138 dev_disable_gro_hw(dev); 6139 } 6140 break; 6141 6142 default: 6143 ret = -EINVAL; 6144 break; 6145 } 6146 6147 return ret; 6148 } 6149 6150 static int netif_receive_skb_internal(struct sk_buff *skb) 6151 { 6152 int ret; 6153 6154 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6155 6156 if (skb_defer_rx_timestamp(skb)) 6157 return NET_RX_SUCCESS; 6158 6159 rcu_read_lock(); 6160 #ifdef CONFIG_RPS 6161 if (static_branch_unlikely(&rps_needed)) { 6162 struct rps_dev_flow voidflow, *rflow = &voidflow; 6163 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6164 6165 if (cpu >= 0) { 6166 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6167 rcu_read_unlock(); 6168 return ret; 6169 } 6170 } 6171 #endif 6172 ret = __netif_receive_skb(skb); 6173 rcu_read_unlock(); 6174 return ret; 6175 } 6176 6177 void netif_receive_skb_list_internal(struct list_head *head) 6178 { 6179 struct sk_buff *skb, *next; 6180 LIST_HEAD(sublist); 6181 6182 list_for_each_entry_safe(skb, next, head, list) { 6183 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6184 skb); 6185 skb_list_del_init(skb); 6186 if (!skb_defer_rx_timestamp(skb)) 6187 list_add_tail(&skb->list, &sublist); 6188 } 6189 list_splice_init(&sublist, head); 6190 6191 rcu_read_lock(); 6192 #ifdef CONFIG_RPS 6193 if (static_branch_unlikely(&rps_needed)) { 6194 list_for_each_entry_safe(skb, next, head, list) { 6195 struct rps_dev_flow voidflow, *rflow = &voidflow; 6196 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6197 6198 if (cpu >= 0) { 6199 /* Will be handled, remove from list */ 6200 skb_list_del_init(skb); 6201 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6202 } 6203 } 6204 } 6205 #endif 6206 __netif_receive_skb_list(head); 6207 rcu_read_unlock(); 6208 } 6209 6210 /** 6211 * netif_receive_skb - process receive buffer from network 6212 * @skb: buffer to process 6213 * 6214 * netif_receive_skb() is the main receive data processing function. 6215 * It always succeeds. The buffer may be dropped during processing 6216 * for congestion control or by the protocol layers. 6217 * 6218 * This function may only be called from softirq context and interrupts 6219 * should be enabled. 6220 * 6221 * Return values (usually ignored): 6222 * NET_RX_SUCCESS: no congestion 6223 * NET_RX_DROP: packet was dropped 6224 */ 6225 int netif_receive_skb(struct sk_buff *skb) 6226 { 6227 int ret; 6228 6229 trace_netif_receive_skb_entry(skb); 6230 6231 ret = netif_receive_skb_internal(skb); 6232 trace_netif_receive_skb_exit(ret); 6233 6234 return ret; 6235 } 6236 EXPORT_SYMBOL(netif_receive_skb); 6237 6238 /** 6239 * netif_receive_skb_list - process many receive buffers from network 6240 * @head: list of skbs to process. 6241 * 6242 * Since return value of netif_receive_skb() is normally ignored, and 6243 * wouldn't be meaningful for a list, this function returns void. 6244 * 6245 * This function may only be called from softirq context and interrupts 6246 * should be enabled. 6247 */ 6248 void netif_receive_skb_list(struct list_head *head) 6249 { 6250 struct sk_buff *skb; 6251 6252 if (list_empty(head)) 6253 return; 6254 if (trace_netif_receive_skb_list_entry_enabled()) { 6255 list_for_each_entry(skb, head, list) 6256 trace_netif_receive_skb_list_entry(skb); 6257 } 6258 netif_receive_skb_list_internal(head); 6259 trace_netif_receive_skb_list_exit(0); 6260 } 6261 EXPORT_SYMBOL(netif_receive_skb_list); 6262 6263 /* Network device is going away, flush any packets still pending */ 6264 static void flush_backlog(struct work_struct *work) 6265 { 6266 struct sk_buff *skb, *tmp; 6267 struct sk_buff_head list; 6268 struct softnet_data *sd; 6269 6270 __skb_queue_head_init(&list); 6271 local_bh_disable(); 6272 sd = this_cpu_ptr(&softnet_data); 6273 6274 backlog_lock_irq_disable(sd); 6275 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6276 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6277 __skb_unlink(skb, &sd->input_pkt_queue); 6278 __skb_queue_tail(&list, skb); 6279 rps_input_queue_head_incr(sd); 6280 } 6281 } 6282 backlog_unlock_irq_enable(sd); 6283 6284 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6285 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6286 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6287 __skb_unlink(skb, &sd->process_queue); 6288 __skb_queue_tail(&list, skb); 6289 rps_input_queue_head_incr(sd); 6290 } 6291 } 6292 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6293 local_bh_enable(); 6294 6295 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6296 } 6297 6298 static bool flush_required(int cpu) 6299 { 6300 #if IS_ENABLED(CONFIG_RPS) 6301 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6302 bool do_flush; 6303 6304 backlog_lock_irq_disable(sd); 6305 6306 /* as insertion into process_queue happens with the rps lock held, 6307 * process_queue access may race only with dequeue 6308 */ 6309 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6310 !skb_queue_empty_lockless(&sd->process_queue); 6311 backlog_unlock_irq_enable(sd); 6312 6313 return do_flush; 6314 #endif 6315 /* without RPS we can't safely check input_pkt_queue: during a 6316 * concurrent remote skb_queue_splice() we can detect as empty both 6317 * input_pkt_queue and process_queue even if the latter could end-up 6318 * containing a lot of packets. 6319 */ 6320 return true; 6321 } 6322 6323 struct flush_backlogs { 6324 cpumask_t flush_cpus; 6325 struct work_struct w[]; 6326 }; 6327 6328 static struct flush_backlogs *flush_backlogs_alloc(void) 6329 { 6330 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6331 GFP_KERNEL); 6332 } 6333 6334 static struct flush_backlogs *flush_backlogs_fallback; 6335 static DEFINE_MUTEX(flush_backlogs_mutex); 6336 6337 static void flush_all_backlogs(void) 6338 { 6339 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6340 unsigned int cpu; 6341 6342 if (!ptr) { 6343 mutex_lock(&flush_backlogs_mutex); 6344 ptr = flush_backlogs_fallback; 6345 } 6346 cpumask_clear(&ptr->flush_cpus); 6347 6348 cpus_read_lock(); 6349 6350 for_each_online_cpu(cpu) { 6351 if (flush_required(cpu)) { 6352 INIT_WORK(&ptr->w[cpu], flush_backlog); 6353 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6354 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6355 } 6356 } 6357 6358 /* we can have in flight packet[s] on the cpus we are not flushing, 6359 * synchronize_net() in unregister_netdevice_many() will take care of 6360 * them. 6361 */ 6362 for_each_cpu(cpu, &ptr->flush_cpus) 6363 flush_work(&ptr->w[cpu]); 6364 6365 cpus_read_unlock(); 6366 6367 if (ptr != flush_backlogs_fallback) 6368 kfree(ptr); 6369 else 6370 mutex_unlock(&flush_backlogs_mutex); 6371 } 6372 6373 static void net_rps_send_ipi(struct softnet_data *remsd) 6374 { 6375 #ifdef CONFIG_RPS 6376 while (remsd) { 6377 struct softnet_data *next = remsd->rps_ipi_next; 6378 6379 if (cpu_online(remsd->cpu)) 6380 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6381 remsd = next; 6382 } 6383 #endif 6384 } 6385 6386 /* 6387 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6388 * Note: called with local irq disabled, but exits with local irq enabled. 6389 */ 6390 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6391 { 6392 #ifdef CONFIG_RPS 6393 struct softnet_data *remsd = sd->rps_ipi_list; 6394 6395 if (!use_backlog_threads() && remsd) { 6396 sd->rps_ipi_list = NULL; 6397 6398 local_irq_enable(); 6399 6400 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6401 net_rps_send_ipi(remsd); 6402 } else 6403 #endif 6404 local_irq_enable(); 6405 } 6406 6407 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6408 { 6409 #ifdef CONFIG_RPS 6410 return !use_backlog_threads() && sd->rps_ipi_list; 6411 #else 6412 return false; 6413 #endif 6414 } 6415 6416 static int process_backlog(struct napi_struct *napi, int quota) 6417 { 6418 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6419 bool again = true; 6420 int work = 0; 6421 6422 /* Check if we have pending ipi, its better to send them now, 6423 * not waiting net_rx_action() end. 6424 */ 6425 if (sd_has_rps_ipi_waiting(sd)) { 6426 local_irq_disable(); 6427 net_rps_action_and_irq_enable(sd); 6428 } 6429 6430 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6431 while (again) { 6432 struct sk_buff *skb; 6433 6434 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6435 while ((skb = __skb_dequeue(&sd->process_queue))) { 6436 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6437 rcu_read_lock(); 6438 __netif_receive_skb(skb); 6439 rcu_read_unlock(); 6440 if (++work >= quota) { 6441 rps_input_queue_head_add(sd, work); 6442 return work; 6443 } 6444 6445 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6446 } 6447 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6448 6449 backlog_lock_irq_disable(sd); 6450 if (skb_queue_empty(&sd->input_pkt_queue)) { 6451 /* 6452 * Inline a custom version of __napi_complete(). 6453 * only current cpu owns and manipulates this napi, 6454 * and NAPI_STATE_SCHED is the only possible flag set 6455 * on backlog. 6456 * We can use a plain write instead of clear_bit(), 6457 * and we dont need an smp_mb() memory barrier. 6458 */ 6459 napi->state &= NAPIF_STATE_THREADED; 6460 again = false; 6461 } else { 6462 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6463 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6464 &sd->process_queue); 6465 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6466 } 6467 backlog_unlock_irq_enable(sd); 6468 } 6469 6470 if (work) 6471 rps_input_queue_head_add(sd, work); 6472 return work; 6473 } 6474 6475 /** 6476 * __napi_schedule - schedule for receive 6477 * @n: entry to schedule 6478 * 6479 * The entry's receive function will be scheduled to run. 6480 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6481 */ 6482 void __napi_schedule(struct napi_struct *n) 6483 { 6484 unsigned long flags; 6485 6486 local_irq_save(flags); 6487 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6488 local_irq_restore(flags); 6489 } 6490 EXPORT_SYMBOL(__napi_schedule); 6491 6492 /** 6493 * napi_schedule_prep - check if napi can be scheduled 6494 * @n: napi context 6495 * 6496 * Test if NAPI routine is already running, and if not mark 6497 * it as running. This is used as a condition variable to 6498 * insure only one NAPI poll instance runs. We also make 6499 * sure there is no pending NAPI disable. 6500 */ 6501 bool napi_schedule_prep(struct napi_struct *n) 6502 { 6503 unsigned long new, val = READ_ONCE(n->state); 6504 6505 do { 6506 if (unlikely(val & NAPIF_STATE_DISABLE)) 6507 return false; 6508 new = val | NAPIF_STATE_SCHED; 6509 6510 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6511 * This was suggested by Alexander Duyck, as compiler 6512 * emits better code than : 6513 * if (val & NAPIF_STATE_SCHED) 6514 * new |= NAPIF_STATE_MISSED; 6515 */ 6516 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6517 NAPIF_STATE_MISSED; 6518 } while (!try_cmpxchg(&n->state, &val, new)); 6519 6520 return !(val & NAPIF_STATE_SCHED); 6521 } 6522 EXPORT_SYMBOL(napi_schedule_prep); 6523 6524 /** 6525 * __napi_schedule_irqoff - schedule for receive 6526 * @n: entry to schedule 6527 * 6528 * Variant of __napi_schedule() assuming hard irqs are masked. 6529 * 6530 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6531 * because the interrupt disabled assumption might not be true 6532 * due to force-threaded interrupts and spinlock substitution. 6533 */ 6534 void __napi_schedule_irqoff(struct napi_struct *n) 6535 { 6536 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6537 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6538 else 6539 __napi_schedule(n); 6540 } 6541 EXPORT_SYMBOL(__napi_schedule_irqoff); 6542 6543 bool napi_complete_done(struct napi_struct *n, int work_done) 6544 { 6545 unsigned long flags, val, new, timeout = 0; 6546 bool ret = true; 6547 6548 /* 6549 * 1) Don't let napi dequeue from the cpu poll list 6550 * just in case its running on a different cpu. 6551 * 2) If we are busy polling, do nothing here, we have 6552 * the guarantee we will be called later. 6553 */ 6554 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6555 NAPIF_STATE_IN_BUSY_POLL))) 6556 return false; 6557 6558 if (work_done) { 6559 if (n->gro.bitmask) 6560 timeout = napi_get_gro_flush_timeout(n); 6561 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6562 } 6563 if (n->defer_hard_irqs_count > 0) { 6564 n->defer_hard_irqs_count--; 6565 timeout = napi_get_gro_flush_timeout(n); 6566 if (timeout) 6567 ret = false; 6568 } 6569 6570 /* 6571 * When the NAPI instance uses a timeout and keeps postponing 6572 * it, we need to bound somehow the time packets are kept in 6573 * the GRO layer. 6574 */ 6575 gro_flush(&n->gro, !!timeout); 6576 gro_normal_list(&n->gro); 6577 6578 if (unlikely(!list_empty(&n->poll_list))) { 6579 /* If n->poll_list is not empty, we need to mask irqs */ 6580 local_irq_save(flags); 6581 list_del_init(&n->poll_list); 6582 local_irq_restore(flags); 6583 } 6584 WRITE_ONCE(n->list_owner, -1); 6585 6586 val = READ_ONCE(n->state); 6587 do { 6588 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6589 6590 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6591 NAPIF_STATE_SCHED_THREADED | 6592 NAPIF_STATE_PREFER_BUSY_POLL); 6593 6594 /* If STATE_MISSED was set, leave STATE_SCHED set, 6595 * because we will call napi->poll() one more time. 6596 * This C code was suggested by Alexander Duyck to help gcc. 6597 */ 6598 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6599 NAPIF_STATE_SCHED; 6600 } while (!try_cmpxchg(&n->state, &val, new)); 6601 6602 if (unlikely(val & NAPIF_STATE_MISSED)) { 6603 __napi_schedule(n); 6604 return false; 6605 } 6606 6607 if (timeout) 6608 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6609 HRTIMER_MODE_REL_PINNED); 6610 return ret; 6611 } 6612 EXPORT_SYMBOL(napi_complete_done); 6613 6614 static void skb_defer_free_flush(struct softnet_data *sd) 6615 { 6616 struct sk_buff *skb, *next; 6617 6618 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6619 if (!READ_ONCE(sd->defer_list)) 6620 return; 6621 6622 spin_lock(&sd->defer_lock); 6623 skb = sd->defer_list; 6624 sd->defer_list = NULL; 6625 sd->defer_count = 0; 6626 spin_unlock(&sd->defer_lock); 6627 6628 while (skb != NULL) { 6629 next = skb->next; 6630 napi_consume_skb(skb, 1); 6631 skb = next; 6632 } 6633 } 6634 6635 #if defined(CONFIG_NET_RX_BUSY_POLL) 6636 6637 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6638 { 6639 if (!skip_schedule) { 6640 gro_normal_list(&napi->gro); 6641 __napi_schedule(napi); 6642 return; 6643 } 6644 6645 /* Flush too old packets. If HZ < 1000, flush all packets */ 6646 gro_flush(&napi->gro, HZ >= 1000); 6647 gro_normal_list(&napi->gro); 6648 6649 clear_bit(NAPI_STATE_SCHED, &napi->state); 6650 } 6651 6652 enum { 6653 NAPI_F_PREFER_BUSY_POLL = 1, 6654 NAPI_F_END_ON_RESCHED = 2, 6655 }; 6656 6657 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6658 unsigned flags, u16 budget) 6659 { 6660 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6661 bool skip_schedule = false; 6662 unsigned long timeout; 6663 int rc; 6664 6665 /* Busy polling means there is a high chance device driver hard irq 6666 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6667 * set in napi_schedule_prep(). 6668 * Since we are about to call napi->poll() once more, we can safely 6669 * clear NAPI_STATE_MISSED. 6670 * 6671 * Note: x86 could use a single "lock and ..." instruction 6672 * to perform these two clear_bit() 6673 */ 6674 clear_bit(NAPI_STATE_MISSED, &napi->state); 6675 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6676 6677 local_bh_disable(); 6678 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6679 6680 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6681 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6682 timeout = napi_get_gro_flush_timeout(napi); 6683 if (napi->defer_hard_irqs_count && timeout) { 6684 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6685 skip_schedule = true; 6686 } 6687 } 6688 6689 /* All we really want here is to re-enable device interrupts. 6690 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6691 */ 6692 rc = napi->poll(napi, budget); 6693 /* We can't gro_normal_list() here, because napi->poll() might have 6694 * rearmed the napi (napi_complete_done()) in which case it could 6695 * already be running on another CPU. 6696 */ 6697 trace_napi_poll(napi, rc, budget); 6698 netpoll_poll_unlock(have_poll_lock); 6699 if (rc == budget) 6700 __busy_poll_stop(napi, skip_schedule); 6701 bpf_net_ctx_clear(bpf_net_ctx); 6702 local_bh_enable(); 6703 } 6704 6705 static void __napi_busy_loop(unsigned int napi_id, 6706 bool (*loop_end)(void *, unsigned long), 6707 void *loop_end_arg, unsigned flags, u16 budget) 6708 { 6709 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6710 int (*napi_poll)(struct napi_struct *napi, int budget); 6711 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6712 void *have_poll_lock = NULL; 6713 struct napi_struct *napi; 6714 6715 WARN_ON_ONCE(!rcu_read_lock_held()); 6716 6717 restart: 6718 napi_poll = NULL; 6719 6720 napi = napi_by_id(napi_id); 6721 if (!napi) 6722 return; 6723 6724 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6725 preempt_disable(); 6726 for (;;) { 6727 int work = 0; 6728 6729 local_bh_disable(); 6730 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6731 if (!napi_poll) { 6732 unsigned long val = READ_ONCE(napi->state); 6733 6734 /* If multiple threads are competing for this napi, 6735 * we avoid dirtying napi->state as much as we can. 6736 */ 6737 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6738 NAPIF_STATE_IN_BUSY_POLL)) { 6739 if (flags & NAPI_F_PREFER_BUSY_POLL) 6740 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6741 goto count; 6742 } 6743 if (cmpxchg(&napi->state, val, 6744 val | NAPIF_STATE_IN_BUSY_POLL | 6745 NAPIF_STATE_SCHED) != val) { 6746 if (flags & NAPI_F_PREFER_BUSY_POLL) 6747 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6748 goto count; 6749 } 6750 have_poll_lock = netpoll_poll_lock(napi); 6751 napi_poll = napi->poll; 6752 } 6753 work = napi_poll(napi, budget); 6754 trace_napi_poll(napi, work, budget); 6755 gro_normal_list(&napi->gro); 6756 count: 6757 if (work > 0) 6758 __NET_ADD_STATS(dev_net(napi->dev), 6759 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6760 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6761 bpf_net_ctx_clear(bpf_net_ctx); 6762 local_bh_enable(); 6763 6764 if (!loop_end || loop_end(loop_end_arg, start_time)) 6765 break; 6766 6767 if (unlikely(need_resched())) { 6768 if (flags & NAPI_F_END_ON_RESCHED) 6769 break; 6770 if (napi_poll) 6771 busy_poll_stop(napi, have_poll_lock, flags, budget); 6772 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6773 preempt_enable(); 6774 rcu_read_unlock(); 6775 cond_resched(); 6776 rcu_read_lock(); 6777 if (loop_end(loop_end_arg, start_time)) 6778 return; 6779 goto restart; 6780 } 6781 cpu_relax(); 6782 } 6783 if (napi_poll) 6784 busy_poll_stop(napi, have_poll_lock, flags, budget); 6785 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6786 preempt_enable(); 6787 } 6788 6789 void napi_busy_loop_rcu(unsigned int napi_id, 6790 bool (*loop_end)(void *, unsigned long), 6791 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6792 { 6793 unsigned flags = NAPI_F_END_ON_RESCHED; 6794 6795 if (prefer_busy_poll) 6796 flags |= NAPI_F_PREFER_BUSY_POLL; 6797 6798 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6799 } 6800 6801 void napi_busy_loop(unsigned int napi_id, 6802 bool (*loop_end)(void *, unsigned long), 6803 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6804 { 6805 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6806 6807 rcu_read_lock(); 6808 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6809 rcu_read_unlock(); 6810 } 6811 EXPORT_SYMBOL(napi_busy_loop); 6812 6813 void napi_suspend_irqs(unsigned int napi_id) 6814 { 6815 struct napi_struct *napi; 6816 6817 rcu_read_lock(); 6818 napi = napi_by_id(napi_id); 6819 if (napi) { 6820 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6821 6822 if (timeout) 6823 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6824 HRTIMER_MODE_REL_PINNED); 6825 } 6826 rcu_read_unlock(); 6827 } 6828 6829 void napi_resume_irqs(unsigned int napi_id) 6830 { 6831 struct napi_struct *napi; 6832 6833 rcu_read_lock(); 6834 napi = napi_by_id(napi_id); 6835 if (napi) { 6836 /* If irq_suspend_timeout is set to 0 between the call to 6837 * napi_suspend_irqs and now, the original value still 6838 * determines the safety timeout as intended and napi_watchdog 6839 * will resume irq processing. 6840 */ 6841 if (napi_get_irq_suspend_timeout(napi)) { 6842 local_bh_disable(); 6843 napi_schedule(napi); 6844 local_bh_enable(); 6845 } 6846 } 6847 rcu_read_unlock(); 6848 } 6849 6850 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6851 6852 static void __napi_hash_add_with_id(struct napi_struct *napi, 6853 unsigned int napi_id) 6854 { 6855 napi->gro.cached_napi_id = napi_id; 6856 6857 WRITE_ONCE(napi->napi_id, napi_id); 6858 hlist_add_head_rcu(&napi->napi_hash_node, 6859 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6860 } 6861 6862 static void napi_hash_add_with_id(struct napi_struct *napi, 6863 unsigned int napi_id) 6864 { 6865 unsigned long flags; 6866 6867 spin_lock_irqsave(&napi_hash_lock, flags); 6868 WARN_ON_ONCE(napi_by_id(napi_id)); 6869 __napi_hash_add_with_id(napi, napi_id); 6870 spin_unlock_irqrestore(&napi_hash_lock, flags); 6871 } 6872 6873 static void napi_hash_add(struct napi_struct *napi) 6874 { 6875 unsigned long flags; 6876 6877 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6878 return; 6879 6880 spin_lock_irqsave(&napi_hash_lock, flags); 6881 6882 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6883 do { 6884 if (unlikely(!napi_id_valid(++napi_gen_id))) 6885 napi_gen_id = MIN_NAPI_ID; 6886 } while (napi_by_id(napi_gen_id)); 6887 6888 __napi_hash_add_with_id(napi, napi_gen_id); 6889 6890 spin_unlock_irqrestore(&napi_hash_lock, flags); 6891 } 6892 6893 /* Warning : caller is responsible to make sure rcu grace period 6894 * is respected before freeing memory containing @napi 6895 */ 6896 static void napi_hash_del(struct napi_struct *napi) 6897 { 6898 unsigned long flags; 6899 6900 spin_lock_irqsave(&napi_hash_lock, flags); 6901 6902 hlist_del_init_rcu(&napi->napi_hash_node); 6903 6904 spin_unlock_irqrestore(&napi_hash_lock, flags); 6905 } 6906 6907 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6908 { 6909 struct napi_struct *napi; 6910 6911 napi = container_of(timer, struct napi_struct, timer); 6912 6913 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6914 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6915 */ 6916 if (!napi_disable_pending(napi) && 6917 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6918 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6919 __napi_schedule_irqoff(napi); 6920 } 6921 6922 return HRTIMER_NORESTART; 6923 } 6924 6925 static void napi_stop_kthread(struct napi_struct *napi) 6926 { 6927 unsigned long val, new; 6928 6929 /* Wait until the napi STATE_THREADED is unset. */ 6930 while (true) { 6931 val = READ_ONCE(napi->state); 6932 6933 /* If napi kthread own this napi or the napi is idle, 6934 * STATE_THREADED can be unset here. 6935 */ 6936 if ((val & NAPIF_STATE_SCHED_THREADED) || 6937 !(val & NAPIF_STATE_SCHED)) { 6938 new = val & (~NAPIF_STATE_THREADED); 6939 } else { 6940 msleep(20); 6941 continue; 6942 } 6943 6944 if (try_cmpxchg(&napi->state, &val, new)) 6945 break; 6946 } 6947 6948 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by 6949 * the kthread. 6950 */ 6951 while (true) { 6952 if (!test_bit(NAPIF_STATE_SCHED_THREADED, &napi->state)) 6953 break; 6954 6955 msleep(20); 6956 } 6957 6958 kthread_stop(napi->thread); 6959 napi->thread = NULL; 6960 } 6961 6962 int dev_set_threaded(struct net_device *dev, bool threaded) 6963 { 6964 struct napi_struct *napi; 6965 int err = 0; 6966 6967 netdev_assert_locked_or_invisible(dev); 6968 6969 if (dev->threaded == threaded) 6970 return 0; 6971 6972 if (threaded) { 6973 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6974 if (!napi->thread) { 6975 err = napi_kthread_create(napi); 6976 if (err) { 6977 threaded = false; 6978 break; 6979 } 6980 } 6981 } 6982 } 6983 6984 WRITE_ONCE(dev->threaded, threaded); 6985 6986 /* Make sure kthread is created before THREADED bit 6987 * is set. 6988 */ 6989 smp_mb__before_atomic(); 6990 6991 /* Setting/unsetting threaded mode on a napi might not immediately 6992 * take effect, if the current napi instance is actively being 6993 * polled. In this case, the switch between threaded mode and 6994 * softirq mode will happen in the next round of napi_schedule(). 6995 * This should not cause hiccups/stalls to the live traffic. 6996 */ 6997 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6998 if (!threaded && napi->thread) 6999 napi_stop_kthread(napi); 7000 else 7001 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 7002 } 7003 7004 return err; 7005 } 7006 EXPORT_SYMBOL(dev_set_threaded); 7007 7008 /** 7009 * netif_queue_set_napi - Associate queue with the napi 7010 * @dev: device to which NAPI and queue belong 7011 * @queue_index: Index of queue 7012 * @type: queue type as RX or TX 7013 * @napi: NAPI context, pass NULL to clear previously set NAPI 7014 * 7015 * Set queue with its corresponding napi context. This should be done after 7016 * registering the NAPI handler for the queue-vector and the queues have been 7017 * mapped to the corresponding interrupt vector. 7018 */ 7019 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 7020 enum netdev_queue_type type, struct napi_struct *napi) 7021 { 7022 struct netdev_rx_queue *rxq; 7023 struct netdev_queue *txq; 7024 7025 if (WARN_ON_ONCE(napi && !napi->dev)) 7026 return; 7027 netdev_ops_assert_locked_or_invisible(dev); 7028 7029 switch (type) { 7030 case NETDEV_QUEUE_TYPE_RX: 7031 rxq = __netif_get_rx_queue(dev, queue_index); 7032 rxq->napi = napi; 7033 return; 7034 case NETDEV_QUEUE_TYPE_TX: 7035 txq = netdev_get_tx_queue(dev, queue_index); 7036 txq->napi = napi; 7037 return; 7038 default: 7039 return; 7040 } 7041 } 7042 EXPORT_SYMBOL(netif_queue_set_napi); 7043 7044 static void 7045 netif_napi_irq_notify(struct irq_affinity_notify *notify, 7046 const cpumask_t *mask) 7047 { 7048 struct napi_struct *napi = 7049 container_of(notify, struct napi_struct, notify); 7050 #ifdef CONFIG_RFS_ACCEL 7051 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7052 int err; 7053 #endif 7054 7055 if (napi->config && napi->dev->irq_affinity_auto) 7056 cpumask_copy(&napi->config->affinity_mask, mask); 7057 7058 #ifdef CONFIG_RFS_ACCEL 7059 if (napi->dev->rx_cpu_rmap_auto) { 7060 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 7061 if (err) 7062 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 7063 err); 7064 } 7065 #endif 7066 } 7067 7068 #ifdef CONFIG_RFS_ACCEL 7069 static void netif_napi_affinity_release(struct kref *ref) 7070 { 7071 struct napi_struct *napi = 7072 container_of(ref, struct napi_struct, notify.kref); 7073 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7074 7075 netdev_assert_locked(napi->dev); 7076 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7077 &napi->state)); 7078 7079 if (!napi->dev->rx_cpu_rmap_auto) 7080 return; 7081 rmap->obj[napi->napi_rmap_idx] = NULL; 7082 napi->napi_rmap_idx = -1; 7083 cpu_rmap_put(rmap); 7084 } 7085 7086 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7087 { 7088 if (dev->rx_cpu_rmap_auto) 7089 return 0; 7090 7091 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7092 if (!dev->rx_cpu_rmap) 7093 return -ENOMEM; 7094 7095 dev->rx_cpu_rmap_auto = true; 7096 return 0; 7097 } 7098 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7099 7100 static void netif_del_cpu_rmap(struct net_device *dev) 7101 { 7102 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7103 7104 if (!dev->rx_cpu_rmap_auto) 7105 return; 7106 7107 /* Free the rmap */ 7108 cpu_rmap_put(rmap); 7109 dev->rx_cpu_rmap = NULL; 7110 dev->rx_cpu_rmap_auto = false; 7111 } 7112 7113 #else 7114 static void netif_napi_affinity_release(struct kref *ref) 7115 { 7116 } 7117 7118 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7119 { 7120 return 0; 7121 } 7122 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7123 7124 static void netif_del_cpu_rmap(struct net_device *dev) 7125 { 7126 } 7127 #endif 7128 7129 void netif_set_affinity_auto(struct net_device *dev) 7130 { 7131 unsigned int i, maxqs, numa; 7132 7133 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7134 numa = dev_to_node(&dev->dev); 7135 7136 for (i = 0; i < maxqs; i++) 7137 cpumask_set_cpu(cpumask_local_spread(i, numa), 7138 &dev->napi_config[i].affinity_mask); 7139 7140 dev->irq_affinity_auto = true; 7141 } 7142 EXPORT_SYMBOL(netif_set_affinity_auto); 7143 7144 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7145 { 7146 int rc; 7147 7148 netdev_assert_locked_or_invisible(napi->dev); 7149 7150 if (napi->irq == irq) 7151 return; 7152 7153 /* Remove existing resources */ 7154 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7155 irq_set_affinity_notifier(napi->irq, NULL); 7156 7157 napi->irq = irq; 7158 if (irq < 0 || 7159 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7160 return; 7161 7162 /* Abort for buggy drivers */ 7163 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7164 return; 7165 7166 #ifdef CONFIG_RFS_ACCEL 7167 if (napi->dev->rx_cpu_rmap_auto) { 7168 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7169 if (rc < 0) 7170 return; 7171 7172 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7173 napi->napi_rmap_idx = rc; 7174 } 7175 #endif 7176 7177 /* Use core IRQ notifier */ 7178 napi->notify.notify = netif_napi_irq_notify; 7179 napi->notify.release = netif_napi_affinity_release; 7180 rc = irq_set_affinity_notifier(irq, &napi->notify); 7181 if (rc) { 7182 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7183 rc); 7184 goto put_rmap; 7185 } 7186 7187 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7188 return; 7189 7190 put_rmap: 7191 #ifdef CONFIG_RFS_ACCEL 7192 if (napi->dev->rx_cpu_rmap_auto) { 7193 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7194 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7195 napi->napi_rmap_idx = -1; 7196 } 7197 #endif 7198 napi->notify.notify = NULL; 7199 napi->notify.release = NULL; 7200 } 7201 EXPORT_SYMBOL(netif_napi_set_irq_locked); 7202 7203 static void napi_restore_config(struct napi_struct *n) 7204 { 7205 n->defer_hard_irqs = n->config->defer_hard_irqs; 7206 n->gro_flush_timeout = n->config->gro_flush_timeout; 7207 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7208 7209 if (n->dev->irq_affinity_auto && 7210 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7211 irq_set_affinity(n->irq, &n->config->affinity_mask); 7212 7213 /* a NAPI ID might be stored in the config, if so use it. if not, use 7214 * napi_hash_add to generate one for us. 7215 */ 7216 if (n->config->napi_id) { 7217 napi_hash_add_with_id(n, n->config->napi_id); 7218 } else { 7219 napi_hash_add(n); 7220 n->config->napi_id = n->napi_id; 7221 } 7222 } 7223 7224 static void napi_save_config(struct napi_struct *n) 7225 { 7226 n->config->defer_hard_irqs = n->defer_hard_irqs; 7227 n->config->gro_flush_timeout = n->gro_flush_timeout; 7228 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7229 napi_hash_del(n); 7230 } 7231 7232 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7233 * inherit an existing ID try to insert it at the right position. 7234 */ 7235 static void 7236 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7237 { 7238 unsigned int new_id, pos_id; 7239 struct list_head *higher; 7240 struct napi_struct *pos; 7241 7242 new_id = UINT_MAX; 7243 if (napi->config && napi->config->napi_id) 7244 new_id = napi->config->napi_id; 7245 7246 higher = &dev->napi_list; 7247 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7248 if (napi_id_valid(pos->napi_id)) 7249 pos_id = pos->napi_id; 7250 else if (pos->config) 7251 pos_id = pos->config->napi_id; 7252 else 7253 pos_id = UINT_MAX; 7254 7255 if (pos_id <= new_id) 7256 break; 7257 higher = &pos->dev_list; 7258 } 7259 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7260 } 7261 7262 /* Double check that napi_get_frags() allocates skbs with 7263 * skb->head being backed by slab, not a page fragment. 7264 * This is to make sure bug fixed in 3226b158e67c 7265 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7266 * does not accidentally come back. 7267 */ 7268 static void napi_get_frags_check(struct napi_struct *napi) 7269 { 7270 struct sk_buff *skb; 7271 7272 local_bh_disable(); 7273 skb = napi_get_frags(napi); 7274 WARN_ON_ONCE(skb && skb->head_frag); 7275 napi_free_frags(napi); 7276 local_bh_enable(); 7277 } 7278 7279 void netif_napi_add_weight_locked(struct net_device *dev, 7280 struct napi_struct *napi, 7281 int (*poll)(struct napi_struct *, int), 7282 int weight) 7283 { 7284 netdev_assert_locked(dev); 7285 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7286 return; 7287 7288 INIT_LIST_HEAD(&napi->poll_list); 7289 INIT_HLIST_NODE(&napi->napi_hash_node); 7290 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7291 gro_init(&napi->gro); 7292 napi->skb = NULL; 7293 napi->poll = poll; 7294 if (weight > NAPI_POLL_WEIGHT) 7295 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7296 weight); 7297 napi->weight = weight; 7298 napi->dev = dev; 7299 #ifdef CONFIG_NETPOLL 7300 napi->poll_owner = -1; 7301 #endif 7302 napi->list_owner = -1; 7303 set_bit(NAPI_STATE_SCHED, &napi->state); 7304 set_bit(NAPI_STATE_NPSVC, &napi->state); 7305 netif_napi_dev_list_add(dev, napi); 7306 7307 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7308 * configuration will be loaded in napi_enable 7309 */ 7310 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7311 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7312 7313 napi_get_frags_check(napi); 7314 /* Create kthread for this napi if dev->threaded is set. 7315 * Clear dev->threaded if kthread creation failed so that 7316 * threaded mode will not be enabled in napi_enable(). 7317 */ 7318 if (dev->threaded && napi_kthread_create(napi)) 7319 dev->threaded = false; 7320 netif_napi_set_irq_locked(napi, -1); 7321 } 7322 EXPORT_SYMBOL(netif_napi_add_weight_locked); 7323 7324 void napi_disable_locked(struct napi_struct *n) 7325 { 7326 unsigned long val, new; 7327 7328 might_sleep(); 7329 netdev_assert_locked(n->dev); 7330 7331 set_bit(NAPI_STATE_DISABLE, &n->state); 7332 7333 val = READ_ONCE(n->state); 7334 do { 7335 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7336 usleep_range(20, 200); 7337 val = READ_ONCE(n->state); 7338 } 7339 7340 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7341 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 7342 } while (!try_cmpxchg(&n->state, &val, new)); 7343 7344 hrtimer_cancel(&n->timer); 7345 7346 if (n->config) 7347 napi_save_config(n); 7348 else 7349 napi_hash_del(n); 7350 7351 clear_bit(NAPI_STATE_DISABLE, &n->state); 7352 } 7353 EXPORT_SYMBOL(napi_disable_locked); 7354 7355 /** 7356 * napi_disable() - prevent NAPI from scheduling 7357 * @n: NAPI context 7358 * 7359 * Stop NAPI from being scheduled on this context. 7360 * Waits till any outstanding processing completes. 7361 * Takes netdev_lock() for associated net_device. 7362 */ 7363 void napi_disable(struct napi_struct *n) 7364 { 7365 netdev_lock(n->dev); 7366 napi_disable_locked(n); 7367 netdev_unlock(n->dev); 7368 } 7369 EXPORT_SYMBOL(napi_disable); 7370 7371 void napi_enable_locked(struct napi_struct *n) 7372 { 7373 unsigned long new, val = READ_ONCE(n->state); 7374 7375 if (n->config) 7376 napi_restore_config(n); 7377 else 7378 napi_hash_add(n); 7379 7380 do { 7381 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7382 7383 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7384 if (n->dev->threaded && n->thread) 7385 new |= NAPIF_STATE_THREADED; 7386 } while (!try_cmpxchg(&n->state, &val, new)); 7387 } 7388 EXPORT_SYMBOL(napi_enable_locked); 7389 7390 /** 7391 * napi_enable() - enable NAPI scheduling 7392 * @n: NAPI context 7393 * 7394 * Enable scheduling of a NAPI instance. 7395 * Must be paired with napi_disable(). 7396 * Takes netdev_lock() for associated net_device. 7397 */ 7398 void napi_enable(struct napi_struct *n) 7399 { 7400 netdev_lock(n->dev); 7401 napi_enable_locked(n); 7402 netdev_unlock(n->dev); 7403 } 7404 EXPORT_SYMBOL(napi_enable); 7405 7406 /* Must be called in process context */ 7407 void __netif_napi_del_locked(struct napi_struct *napi) 7408 { 7409 netdev_assert_locked(napi->dev); 7410 7411 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7412 return; 7413 7414 /* Make sure NAPI is disabled (or was never enabled). */ 7415 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7416 7417 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7418 irq_set_affinity_notifier(napi->irq, NULL); 7419 7420 if (napi->config) { 7421 napi->index = -1; 7422 napi->config = NULL; 7423 } 7424 7425 list_del_rcu(&napi->dev_list); 7426 napi_free_frags(napi); 7427 7428 gro_cleanup(&napi->gro); 7429 7430 if (napi->thread) { 7431 kthread_stop(napi->thread); 7432 napi->thread = NULL; 7433 } 7434 } 7435 EXPORT_SYMBOL(__netif_napi_del_locked); 7436 7437 static int __napi_poll(struct napi_struct *n, bool *repoll) 7438 { 7439 int work, weight; 7440 7441 weight = n->weight; 7442 7443 /* This NAPI_STATE_SCHED test is for avoiding a race 7444 * with netpoll's poll_napi(). Only the entity which 7445 * obtains the lock and sees NAPI_STATE_SCHED set will 7446 * actually make the ->poll() call. Therefore we avoid 7447 * accidentally calling ->poll() when NAPI is not scheduled. 7448 */ 7449 work = 0; 7450 if (napi_is_scheduled(n)) { 7451 work = n->poll(n, weight); 7452 trace_napi_poll(n, work, weight); 7453 7454 xdp_do_check_flushed(n); 7455 } 7456 7457 if (unlikely(work > weight)) 7458 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7459 n->poll, work, weight); 7460 7461 if (likely(work < weight)) 7462 return work; 7463 7464 /* Drivers must not modify the NAPI state if they 7465 * consume the entire weight. In such cases this code 7466 * still "owns" the NAPI instance and therefore can 7467 * move the instance around on the list at-will. 7468 */ 7469 if (unlikely(napi_disable_pending(n))) { 7470 napi_complete(n); 7471 return work; 7472 } 7473 7474 /* The NAPI context has more processing work, but busy-polling 7475 * is preferred. Exit early. 7476 */ 7477 if (napi_prefer_busy_poll(n)) { 7478 if (napi_complete_done(n, work)) { 7479 /* If timeout is not set, we need to make sure 7480 * that the NAPI is re-scheduled. 7481 */ 7482 napi_schedule(n); 7483 } 7484 return work; 7485 } 7486 7487 /* Flush too old packets. If HZ < 1000, flush all packets */ 7488 gro_flush(&n->gro, HZ >= 1000); 7489 gro_normal_list(&n->gro); 7490 7491 /* Some drivers may have called napi_schedule 7492 * prior to exhausting their budget. 7493 */ 7494 if (unlikely(!list_empty(&n->poll_list))) { 7495 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7496 n->dev ? n->dev->name : "backlog"); 7497 return work; 7498 } 7499 7500 *repoll = true; 7501 7502 return work; 7503 } 7504 7505 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7506 { 7507 bool do_repoll = false; 7508 void *have; 7509 int work; 7510 7511 list_del_init(&n->poll_list); 7512 7513 have = netpoll_poll_lock(n); 7514 7515 work = __napi_poll(n, &do_repoll); 7516 7517 if (do_repoll) { 7518 #if defined(CONFIG_DEBUG_NET) 7519 if (unlikely(!napi_is_scheduled(n))) 7520 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", 7521 n->dev->name, n->poll); 7522 #endif 7523 list_add_tail(&n->poll_list, repoll); 7524 } 7525 netpoll_poll_unlock(have); 7526 7527 return work; 7528 } 7529 7530 static int napi_thread_wait(struct napi_struct *napi) 7531 { 7532 set_current_state(TASK_INTERRUPTIBLE); 7533 7534 while (!kthread_should_stop()) { 7535 /* Testing SCHED_THREADED bit here to make sure the current 7536 * kthread owns this napi and could poll on this napi. 7537 * Testing SCHED bit is not enough because SCHED bit might be 7538 * set by some other busy poll thread or by napi_disable(). 7539 */ 7540 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7541 WARN_ON(!list_empty(&napi->poll_list)); 7542 __set_current_state(TASK_RUNNING); 7543 return 0; 7544 } 7545 7546 schedule(); 7547 set_current_state(TASK_INTERRUPTIBLE); 7548 } 7549 __set_current_state(TASK_RUNNING); 7550 7551 return -1; 7552 } 7553 7554 static void napi_threaded_poll_loop(struct napi_struct *napi) 7555 { 7556 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7557 struct softnet_data *sd; 7558 unsigned long last_qs = jiffies; 7559 7560 for (;;) { 7561 bool repoll = false; 7562 void *have; 7563 7564 local_bh_disable(); 7565 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7566 7567 sd = this_cpu_ptr(&softnet_data); 7568 sd->in_napi_threaded_poll = true; 7569 7570 have = netpoll_poll_lock(napi); 7571 __napi_poll(napi, &repoll); 7572 netpoll_poll_unlock(have); 7573 7574 sd->in_napi_threaded_poll = false; 7575 barrier(); 7576 7577 if (sd_has_rps_ipi_waiting(sd)) { 7578 local_irq_disable(); 7579 net_rps_action_and_irq_enable(sd); 7580 } 7581 skb_defer_free_flush(sd); 7582 bpf_net_ctx_clear(bpf_net_ctx); 7583 local_bh_enable(); 7584 7585 if (!repoll) 7586 break; 7587 7588 rcu_softirq_qs_periodic(last_qs); 7589 cond_resched(); 7590 } 7591 } 7592 7593 static int napi_threaded_poll(void *data) 7594 { 7595 struct napi_struct *napi = data; 7596 7597 while (!napi_thread_wait(napi)) 7598 napi_threaded_poll_loop(napi); 7599 7600 return 0; 7601 } 7602 7603 static __latent_entropy void net_rx_action(void) 7604 { 7605 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7606 unsigned long time_limit = jiffies + 7607 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7608 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7609 int budget = READ_ONCE(net_hotdata.netdev_budget); 7610 LIST_HEAD(list); 7611 LIST_HEAD(repoll); 7612 7613 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7614 start: 7615 sd->in_net_rx_action = true; 7616 local_irq_disable(); 7617 list_splice_init(&sd->poll_list, &list); 7618 local_irq_enable(); 7619 7620 for (;;) { 7621 struct napi_struct *n; 7622 7623 skb_defer_free_flush(sd); 7624 7625 if (list_empty(&list)) { 7626 if (list_empty(&repoll)) { 7627 sd->in_net_rx_action = false; 7628 barrier(); 7629 /* We need to check if ____napi_schedule() 7630 * had refilled poll_list while 7631 * sd->in_net_rx_action was true. 7632 */ 7633 if (!list_empty(&sd->poll_list)) 7634 goto start; 7635 if (!sd_has_rps_ipi_waiting(sd)) 7636 goto end; 7637 } 7638 break; 7639 } 7640 7641 n = list_first_entry(&list, struct napi_struct, poll_list); 7642 budget -= napi_poll(n, &repoll); 7643 7644 /* If softirq window is exhausted then punt. 7645 * Allow this to run for 2 jiffies since which will allow 7646 * an average latency of 1.5/HZ. 7647 */ 7648 if (unlikely(budget <= 0 || 7649 time_after_eq(jiffies, time_limit))) { 7650 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7651 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7652 break; 7653 } 7654 } 7655 7656 local_irq_disable(); 7657 7658 list_splice_tail_init(&sd->poll_list, &list); 7659 list_splice_tail(&repoll, &list); 7660 list_splice(&list, &sd->poll_list); 7661 if (!list_empty(&sd->poll_list)) 7662 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7663 else 7664 sd->in_net_rx_action = false; 7665 7666 net_rps_action_and_irq_enable(sd); 7667 end: 7668 bpf_net_ctx_clear(bpf_net_ctx); 7669 } 7670 7671 struct netdev_adjacent { 7672 struct net_device *dev; 7673 netdevice_tracker dev_tracker; 7674 7675 /* upper master flag, there can only be one master device per list */ 7676 bool master; 7677 7678 /* lookup ignore flag */ 7679 bool ignore; 7680 7681 /* counter for the number of times this device was added to us */ 7682 u16 ref_nr; 7683 7684 /* private field for the users */ 7685 void *private; 7686 7687 struct list_head list; 7688 struct rcu_head rcu; 7689 }; 7690 7691 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7692 struct list_head *adj_list) 7693 { 7694 struct netdev_adjacent *adj; 7695 7696 list_for_each_entry(adj, adj_list, list) { 7697 if (adj->dev == adj_dev) 7698 return adj; 7699 } 7700 return NULL; 7701 } 7702 7703 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7704 struct netdev_nested_priv *priv) 7705 { 7706 struct net_device *dev = (struct net_device *)priv->data; 7707 7708 return upper_dev == dev; 7709 } 7710 7711 /** 7712 * netdev_has_upper_dev - Check if device is linked to an upper device 7713 * @dev: device 7714 * @upper_dev: upper device to check 7715 * 7716 * Find out if a device is linked to specified upper device and return true 7717 * in case it is. Note that this checks only immediate upper device, 7718 * not through a complete stack of devices. The caller must hold the RTNL lock. 7719 */ 7720 bool netdev_has_upper_dev(struct net_device *dev, 7721 struct net_device *upper_dev) 7722 { 7723 struct netdev_nested_priv priv = { 7724 .data = (void *)upper_dev, 7725 }; 7726 7727 ASSERT_RTNL(); 7728 7729 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7730 &priv); 7731 } 7732 EXPORT_SYMBOL(netdev_has_upper_dev); 7733 7734 /** 7735 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7736 * @dev: device 7737 * @upper_dev: upper device to check 7738 * 7739 * Find out if a device is linked to specified upper device and return true 7740 * in case it is. Note that this checks the entire upper device chain. 7741 * The caller must hold rcu lock. 7742 */ 7743 7744 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7745 struct net_device *upper_dev) 7746 { 7747 struct netdev_nested_priv priv = { 7748 .data = (void *)upper_dev, 7749 }; 7750 7751 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7752 &priv); 7753 } 7754 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7755 7756 /** 7757 * netdev_has_any_upper_dev - Check if device is linked to some device 7758 * @dev: device 7759 * 7760 * Find out if a device is linked to an upper device and return true in case 7761 * it is. The caller must hold the RTNL lock. 7762 */ 7763 bool netdev_has_any_upper_dev(struct net_device *dev) 7764 { 7765 ASSERT_RTNL(); 7766 7767 return !list_empty(&dev->adj_list.upper); 7768 } 7769 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7770 7771 /** 7772 * netdev_master_upper_dev_get - Get master upper device 7773 * @dev: device 7774 * 7775 * Find a master upper device and return pointer to it or NULL in case 7776 * it's not there. The caller must hold the RTNL lock. 7777 */ 7778 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7779 { 7780 struct netdev_adjacent *upper; 7781 7782 ASSERT_RTNL(); 7783 7784 if (list_empty(&dev->adj_list.upper)) 7785 return NULL; 7786 7787 upper = list_first_entry(&dev->adj_list.upper, 7788 struct netdev_adjacent, list); 7789 if (likely(upper->master)) 7790 return upper->dev; 7791 return NULL; 7792 } 7793 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7794 7795 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7796 { 7797 struct netdev_adjacent *upper; 7798 7799 ASSERT_RTNL(); 7800 7801 if (list_empty(&dev->adj_list.upper)) 7802 return NULL; 7803 7804 upper = list_first_entry(&dev->adj_list.upper, 7805 struct netdev_adjacent, list); 7806 if (likely(upper->master) && !upper->ignore) 7807 return upper->dev; 7808 return NULL; 7809 } 7810 7811 /** 7812 * netdev_has_any_lower_dev - Check if device is linked to some device 7813 * @dev: device 7814 * 7815 * Find out if a device is linked to a lower device and return true in case 7816 * it is. The caller must hold the RTNL lock. 7817 */ 7818 static bool netdev_has_any_lower_dev(struct net_device *dev) 7819 { 7820 ASSERT_RTNL(); 7821 7822 return !list_empty(&dev->adj_list.lower); 7823 } 7824 7825 void *netdev_adjacent_get_private(struct list_head *adj_list) 7826 { 7827 struct netdev_adjacent *adj; 7828 7829 adj = list_entry(adj_list, struct netdev_adjacent, list); 7830 7831 return adj->private; 7832 } 7833 EXPORT_SYMBOL(netdev_adjacent_get_private); 7834 7835 /** 7836 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7837 * @dev: device 7838 * @iter: list_head ** of the current position 7839 * 7840 * Gets the next device from the dev's upper list, starting from iter 7841 * position. The caller must hold RCU read lock. 7842 */ 7843 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7844 struct list_head **iter) 7845 { 7846 struct netdev_adjacent *upper; 7847 7848 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7849 7850 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7851 7852 if (&upper->list == &dev->adj_list.upper) 7853 return NULL; 7854 7855 *iter = &upper->list; 7856 7857 return upper->dev; 7858 } 7859 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7860 7861 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7862 struct list_head **iter, 7863 bool *ignore) 7864 { 7865 struct netdev_adjacent *upper; 7866 7867 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7868 7869 if (&upper->list == &dev->adj_list.upper) 7870 return NULL; 7871 7872 *iter = &upper->list; 7873 *ignore = upper->ignore; 7874 7875 return upper->dev; 7876 } 7877 7878 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7879 struct list_head **iter) 7880 { 7881 struct netdev_adjacent *upper; 7882 7883 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7884 7885 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7886 7887 if (&upper->list == &dev->adj_list.upper) 7888 return NULL; 7889 7890 *iter = &upper->list; 7891 7892 return upper->dev; 7893 } 7894 7895 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7896 int (*fn)(struct net_device *dev, 7897 struct netdev_nested_priv *priv), 7898 struct netdev_nested_priv *priv) 7899 { 7900 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7901 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7902 int ret, cur = 0; 7903 bool ignore; 7904 7905 now = dev; 7906 iter = &dev->adj_list.upper; 7907 7908 while (1) { 7909 if (now != dev) { 7910 ret = fn(now, priv); 7911 if (ret) 7912 return ret; 7913 } 7914 7915 next = NULL; 7916 while (1) { 7917 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7918 if (!udev) 7919 break; 7920 if (ignore) 7921 continue; 7922 7923 next = udev; 7924 niter = &udev->adj_list.upper; 7925 dev_stack[cur] = now; 7926 iter_stack[cur++] = iter; 7927 break; 7928 } 7929 7930 if (!next) { 7931 if (!cur) 7932 return 0; 7933 next = dev_stack[--cur]; 7934 niter = iter_stack[cur]; 7935 } 7936 7937 now = next; 7938 iter = niter; 7939 } 7940 7941 return 0; 7942 } 7943 7944 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7945 int (*fn)(struct net_device *dev, 7946 struct netdev_nested_priv *priv), 7947 struct netdev_nested_priv *priv) 7948 { 7949 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7950 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7951 int ret, cur = 0; 7952 7953 now = dev; 7954 iter = &dev->adj_list.upper; 7955 7956 while (1) { 7957 if (now != dev) { 7958 ret = fn(now, priv); 7959 if (ret) 7960 return ret; 7961 } 7962 7963 next = NULL; 7964 while (1) { 7965 udev = netdev_next_upper_dev_rcu(now, &iter); 7966 if (!udev) 7967 break; 7968 7969 next = udev; 7970 niter = &udev->adj_list.upper; 7971 dev_stack[cur] = now; 7972 iter_stack[cur++] = iter; 7973 break; 7974 } 7975 7976 if (!next) { 7977 if (!cur) 7978 return 0; 7979 next = dev_stack[--cur]; 7980 niter = iter_stack[cur]; 7981 } 7982 7983 now = next; 7984 iter = niter; 7985 } 7986 7987 return 0; 7988 } 7989 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7990 7991 static bool __netdev_has_upper_dev(struct net_device *dev, 7992 struct net_device *upper_dev) 7993 { 7994 struct netdev_nested_priv priv = { 7995 .flags = 0, 7996 .data = (void *)upper_dev, 7997 }; 7998 7999 ASSERT_RTNL(); 8000 8001 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 8002 &priv); 8003 } 8004 8005 /** 8006 * netdev_lower_get_next_private - Get the next ->private from the 8007 * lower neighbour list 8008 * @dev: device 8009 * @iter: list_head ** of the current position 8010 * 8011 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8012 * list, starting from iter position. The caller must hold either hold the 8013 * RTNL lock or its own locking that guarantees that the neighbour lower 8014 * list will remain unchanged. 8015 */ 8016 void *netdev_lower_get_next_private(struct net_device *dev, 8017 struct list_head **iter) 8018 { 8019 struct netdev_adjacent *lower; 8020 8021 lower = list_entry(*iter, struct netdev_adjacent, list); 8022 8023 if (&lower->list == &dev->adj_list.lower) 8024 return NULL; 8025 8026 *iter = lower->list.next; 8027 8028 return lower->private; 8029 } 8030 EXPORT_SYMBOL(netdev_lower_get_next_private); 8031 8032 /** 8033 * netdev_lower_get_next_private_rcu - Get the next ->private from the 8034 * lower neighbour list, RCU 8035 * variant 8036 * @dev: device 8037 * @iter: list_head ** of the current position 8038 * 8039 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8040 * list, starting from iter position. The caller must hold RCU read lock. 8041 */ 8042 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 8043 struct list_head **iter) 8044 { 8045 struct netdev_adjacent *lower; 8046 8047 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 8048 8049 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8050 8051 if (&lower->list == &dev->adj_list.lower) 8052 return NULL; 8053 8054 *iter = &lower->list; 8055 8056 return lower->private; 8057 } 8058 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 8059 8060 /** 8061 * netdev_lower_get_next - Get the next device from the lower neighbour 8062 * list 8063 * @dev: device 8064 * @iter: list_head ** of the current position 8065 * 8066 * Gets the next netdev_adjacent from the dev's lower neighbour 8067 * list, starting from iter position. The caller must hold RTNL lock or 8068 * its own locking that guarantees that the neighbour lower 8069 * list will remain unchanged. 8070 */ 8071 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 8072 { 8073 struct netdev_adjacent *lower; 8074 8075 lower = list_entry(*iter, struct netdev_adjacent, list); 8076 8077 if (&lower->list == &dev->adj_list.lower) 8078 return NULL; 8079 8080 *iter = lower->list.next; 8081 8082 return lower->dev; 8083 } 8084 EXPORT_SYMBOL(netdev_lower_get_next); 8085 8086 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8087 struct list_head **iter) 8088 { 8089 struct netdev_adjacent *lower; 8090 8091 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8092 8093 if (&lower->list == &dev->adj_list.lower) 8094 return NULL; 8095 8096 *iter = &lower->list; 8097 8098 return lower->dev; 8099 } 8100 8101 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8102 struct list_head **iter, 8103 bool *ignore) 8104 { 8105 struct netdev_adjacent *lower; 8106 8107 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8108 8109 if (&lower->list == &dev->adj_list.lower) 8110 return NULL; 8111 8112 *iter = &lower->list; 8113 *ignore = lower->ignore; 8114 8115 return lower->dev; 8116 } 8117 8118 int netdev_walk_all_lower_dev(struct net_device *dev, 8119 int (*fn)(struct net_device *dev, 8120 struct netdev_nested_priv *priv), 8121 struct netdev_nested_priv *priv) 8122 { 8123 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8124 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8125 int ret, cur = 0; 8126 8127 now = dev; 8128 iter = &dev->adj_list.lower; 8129 8130 while (1) { 8131 if (now != dev) { 8132 ret = fn(now, priv); 8133 if (ret) 8134 return ret; 8135 } 8136 8137 next = NULL; 8138 while (1) { 8139 ldev = netdev_next_lower_dev(now, &iter); 8140 if (!ldev) 8141 break; 8142 8143 next = ldev; 8144 niter = &ldev->adj_list.lower; 8145 dev_stack[cur] = now; 8146 iter_stack[cur++] = iter; 8147 break; 8148 } 8149 8150 if (!next) { 8151 if (!cur) 8152 return 0; 8153 next = dev_stack[--cur]; 8154 niter = iter_stack[cur]; 8155 } 8156 8157 now = next; 8158 iter = niter; 8159 } 8160 8161 return 0; 8162 } 8163 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8164 8165 static int __netdev_walk_all_lower_dev(struct net_device *dev, 8166 int (*fn)(struct net_device *dev, 8167 struct netdev_nested_priv *priv), 8168 struct netdev_nested_priv *priv) 8169 { 8170 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8171 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8172 int ret, cur = 0; 8173 bool ignore; 8174 8175 now = dev; 8176 iter = &dev->adj_list.lower; 8177 8178 while (1) { 8179 if (now != dev) { 8180 ret = fn(now, priv); 8181 if (ret) 8182 return ret; 8183 } 8184 8185 next = NULL; 8186 while (1) { 8187 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8188 if (!ldev) 8189 break; 8190 if (ignore) 8191 continue; 8192 8193 next = ldev; 8194 niter = &ldev->adj_list.lower; 8195 dev_stack[cur] = now; 8196 iter_stack[cur++] = iter; 8197 break; 8198 } 8199 8200 if (!next) { 8201 if (!cur) 8202 return 0; 8203 next = dev_stack[--cur]; 8204 niter = iter_stack[cur]; 8205 } 8206 8207 now = next; 8208 iter = niter; 8209 } 8210 8211 return 0; 8212 } 8213 8214 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8215 struct list_head **iter) 8216 { 8217 struct netdev_adjacent *lower; 8218 8219 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8220 if (&lower->list == &dev->adj_list.lower) 8221 return NULL; 8222 8223 *iter = &lower->list; 8224 8225 return lower->dev; 8226 } 8227 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8228 8229 static u8 __netdev_upper_depth(struct net_device *dev) 8230 { 8231 struct net_device *udev; 8232 struct list_head *iter; 8233 u8 max_depth = 0; 8234 bool ignore; 8235 8236 for (iter = &dev->adj_list.upper, 8237 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8238 udev; 8239 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8240 if (ignore) 8241 continue; 8242 if (max_depth < udev->upper_level) 8243 max_depth = udev->upper_level; 8244 } 8245 8246 return max_depth; 8247 } 8248 8249 static u8 __netdev_lower_depth(struct net_device *dev) 8250 { 8251 struct net_device *ldev; 8252 struct list_head *iter; 8253 u8 max_depth = 0; 8254 bool ignore; 8255 8256 for (iter = &dev->adj_list.lower, 8257 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8258 ldev; 8259 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8260 if (ignore) 8261 continue; 8262 if (max_depth < ldev->lower_level) 8263 max_depth = ldev->lower_level; 8264 } 8265 8266 return max_depth; 8267 } 8268 8269 static int __netdev_update_upper_level(struct net_device *dev, 8270 struct netdev_nested_priv *__unused) 8271 { 8272 dev->upper_level = __netdev_upper_depth(dev) + 1; 8273 return 0; 8274 } 8275 8276 #ifdef CONFIG_LOCKDEP 8277 static LIST_HEAD(net_unlink_list); 8278 8279 static void net_unlink_todo(struct net_device *dev) 8280 { 8281 if (list_empty(&dev->unlink_list)) 8282 list_add_tail(&dev->unlink_list, &net_unlink_list); 8283 } 8284 #endif 8285 8286 static int __netdev_update_lower_level(struct net_device *dev, 8287 struct netdev_nested_priv *priv) 8288 { 8289 dev->lower_level = __netdev_lower_depth(dev) + 1; 8290 8291 #ifdef CONFIG_LOCKDEP 8292 if (!priv) 8293 return 0; 8294 8295 if (priv->flags & NESTED_SYNC_IMM) 8296 dev->nested_level = dev->lower_level - 1; 8297 if (priv->flags & NESTED_SYNC_TODO) 8298 net_unlink_todo(dev); 8299 #endif 8300 return 0; 8301 } 8302 8303 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8304 int (*fn)(struct net_device *dev, 8305 struct netdev_nested_priv *priv), 8306 struct netdev_nested_priv *priv) 8307 { 8308 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8309 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8310 int ret, cur = 0; 8311 8312 now = dev; 8313 iter = &dev->adj_list.lower; 8314 8315 while (1) { 8316 if (now != dev) { 8317 ret = fn(now, priv); 8318 if (ret) 8319 return ret; 8320 } 8321 8322 next = NULL; 8323 while (1) { 8324 ldev = netdev_next_lower_dev_rcu(now, &iter); 8325 if (!ldev) 8326 break; 8327 8328 next = ldev; 8329 niter = &ldev->adj_list.lower; 8330 dev_stack[cur] = now; 8331 iter_stack[cur++] = iter; 8332 break; 8333 } 8334 8335 if (!next) { 8336 if (!cur) 8337 return 0; 8338 next = dev_stack[--cur]; 8339 niter = iter_stack[cur]; 8340 } 8341 8342 now = next; 8343 iter = niter; 8344 } 8345 8346 return 0; 8347 } 8348 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8349 8350 /** 8351 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8352 * lower neighbour list, RCU 8353 * variant 8354 * @dev: device 8355 * 8356 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8357 * list. The caller must hold RCU read lock. 8358 */ 8359 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8360 { 8361 struct netdev_adjacent *lower; 8362 8363 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8364 struct netdev_adjacent, list); 8365 if (lower) 8366 return lower->private; 8367 return NULL; 8368 } 8369 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8370 8371 /** 8372 * netdev_master_upper_dev_get_rcu - Get master upper device 8373 * @dev: device 8374 * 8375 * Find a master upper device and return pointer to it or NULL in case 8376 * it's not there. The caller must hold the RCU read lock. 8377 */ 8378 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8379 { 8380 struct netdev_adjacent *upper; 8381 8382 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8383 struct netdev_adjacent, list); 8384 if (upper && likely(upper->master)) 8385 return upper->dev; 8386 return NULL; 8387 } 8388 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8389 8390 static int netdev_adjacent_sysfs_add(struct net_device *dev, 8391 struct net_device *adj_dev, 8392 struct list_head *dev_list) 8393 { 8394 char linkname[IFNAMSIZ+7]; 8395 8396 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8397 "upper_%s" : "lower_%s", adj_dev->name); 8398 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8399 linkname); 8400 } 8401 static void netdev_adjacent_sysfs_del(struct net_device *dev, 8402 char *name, 8403 struct list_head *dev_list) 8404 { 8405 char linkname[IFNAMSIZ+7]; 8406 8407 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8408 "upper_%s" : "lower_%s", name); 8409 sysfs_remove_link(&(dev->dev.kobj), linkname); 8410 } 8411 8412 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8413 struct net_device *adj_dev, 8414 struct list_head *dev_list) 8415 { 8416 return (dev_list == &dev->adj_list.upper || 8417 dev_list == &dev->adj_list.lower) && 8418 net_eq(dev_net(dev), dev_net(adj_dev)); 8419 } 8420 8421 static int __netdev_adjacent_dev_insert(struct net_device *dev, 8422 struct net_device *adj_dev, 8423 struct list_head *dev_list, 8424 void *private, bool master) 8425 { 8426 struct netdev_adjacent *adj; 8427 int ret; 8428 8429 adj = __netdev_find_adj(adj_dev, dev_list); 8430 8431 if (adj) { 8432 adj->ref_nr += 1; 8433 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8434 dev->name, adj_dev->name, adj->ref_nr); 8435 8436 return 0; 8437 } 8438 8439 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8440 if (!adj) 8441 return -ENOMEM; 8442 8443 adj->dev = adj_dev; 8444 adj->master = master; 8445 adj->ref_nr = 1; 8446 adj->private = private; 8447 adj->ignore = false; 8448 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8449 8450 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8451 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8452 8453 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8454 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8455 if (ret) 8456 goto free_adj; 8457 } 8458 8459 /* Ensure that master link is always the first item in list. */ 8460 if (master) { 8461 ret = sysfs_create_link(&(dev->dev.kobj), 8462 &(adj_dev->dev.kobj), "master"); 8463 if (ret) 8464 goto remove_symlinks; 8465 8466 list_add_rcu(&adj->list, dev_list); 8467 } else { 8468 list_add_tail_rcu(&adj->list, dev_list); 8469 } 8470 8471 return 0; 8472 8473 remove_symlinks: 8474 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8475 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8476 free_adj: 8477 netdev_put(adj_dev, &adj->dev_tracker); 8478 kfree(adj); 8479 8480 return ret; 8481 } 8482 8483 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8484 struct net_device *adj_dev, 8485 u16 ref_nr, 8486 struct list_head *dev_list) 8487 { 8488 struct netdev_adjacent *adj; 8489 8490 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8491 dev->name, adj_dev->name, ref_nr); 8492 8493 adj = __netdev_find_adj(adj_dev, dev_list); 8494 8495 if (!adj) { 8496 pr_err("Adjacency does not exist for device %s from %s\n", 8497 dev->name, adj_dev->name); 8498 WARN_ON(1); 8499 return; 8500 } 8501 8502 if (adj->ref_nr > ref_nr) { 8503 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8504 dev->name, adj_dev->name, ref_nr, 8505 adj->ref_nr - ref_nr); 8506 adj->ref_nr -= ref_nr; 8507 return; 8508 } 8509 8510 if (adj->master) 8511 sysfs_remove_link(&(dev->dev.kobj), "master"); 8512 8513 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8514 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8515 8516 list_del_rcu(&adj->list); 8517 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8518 adj_dev->name, dev->name, adj_dev->name); 8519 netdev_put(adj_dev, &adj->dev_tracker); 8520 kfree_rcu(adj, rcu); 8521 } 8522 8523 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8524 struct net_device *upper_dev, 8525 struct list_head *up_list, 8526 struct list_head *down_list, 8527 void *private, bool master) 8528 { 8529 int ret; 8530 8531 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8532 private, master); 8533 if (ret) 8534 return ret; 8535 8536 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8537 private, false); 8538 if (ret) { 8539 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8540 return ret; 8541 } 8542 8543 return 0; 8544 } 8545 8546 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8547 struct net_device *upper_dev, 8548 u16 ref_nr, 8549 struct list_head *up_list, 8550 struct list_head *down_list) 8551 { 8552 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8553 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8554 } 8555 8556 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8557 struct net_device *upper_dev, 8558 void *private, bool master) 8559 { 8560 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8561 &dev->adj_list.upper, 8562 &upper_dev->adj_list.lower, 8563 private, master); 8564 } 8565 8566 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8567 struct net_device *upper_dev) 8568 { 8569 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8570 &dev->adj_list.upper, 8571 &upper_dev->adj_list.lower); 8572 } 8573 8574 static int __netdev_upper_dev_link(struct net_device *dev, 8575 struct net_device *upper_dev, bool master, 8576 void *upper_priv, void *upper_info, 8577 struct netdev_nested_priv *priv, 8578 struct netlink_ext_ack *extack) 8579 { 8580 struct netdev_notifier_changeupper_info changeupper_info = { 8581 .info = { 8582 .dev = dev, 8583 .extack = extack, 8584 }, 8585 .upper_dev = upper_dev, 8586 .master = master, 8587 .linking = true, 8588 .upper_info = upper_info, 8589 }; 8590 struct net_device *master_dev; 8591 int ret = 0; 8592 8593 ASSERT_RTNL(); 8594 8595 if (dev == upper_dev) 8596 return -EBUSY; 8597 8598 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8599 if (__netdev_has_upper_dev(upper_dev, dev)) 8600 return -EBUSY; 8601 8602 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8603 return -EMLINK; 8604 8605 if (!master) { 8606 if (__netdev_has_upper_dev(dev, upper_dev)) 8607 return -EEXIST; 8608 } else { 8609 master_dev = __netdev_master_upper_dev_get(dev); 8610 if (master_dev) 8611 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8612 } 8613 8614 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8615 &changeupper_info.info); 8616 ret = notifier_to_errno(ret); 8617 if (ret) 8618 return ret; 8619 8620 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8621 master); 8622 if (ret) 8623 return ret; 8624 8625 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8626 &changeupper_info.info); 8627 ret = notifier_to_errno(ret); 8628 if (ret) 8629 goto rollback; 8630 8631 __netdev_update_upper_level(dev, NULL); 8632 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8633 8634 __netdev_update_lower_level(upper_dev, priv); 8635 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8636 priv); 8637 8638 return 0; 8639 8640 rollback: 8641 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8642 8643 return ret; 8644 } 8645 8646 /** 8647 * netdev_upper_dev_link - Add a link to the upper device 8648 * @dev: device 8649 * @upper_dev: new upper device 8650 * @extack: netlink extended ack 8651 * 8652 * Adds a link to device which is upper to this one. The caller must hold 8653 * the RTNL lock. On a failure a negative errno code is returned. 8654 * On success the reference counts are adjusted and the function 8655 * returns zero. 8656 */ 8657 int netdev_upper_dev_link(struct net_device *dev, 8658 struct net_device *upper_dev, 8659 struct netlink_ext_ack *extack) 8660 { 8661 struct netdev_nested_priv priv = { 8662 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8663 .data = NULL, 8664 }; 8665 8666 return __netdev_upper_dev_link(dev, upper_dev, false, 8667 NULL, NULL, &priv, extack); 8668 } 8669 EXPORT_SYMBOL(netdev_upper_dev_link); 8670 8671 /** 8672 * netdev_master_upper_dev_link - Add a master link to the upper device 8673 * @dev: device 8674 * @upper_dev: new upper device 8675 * @upper_priv: upper device private 8676 * @upper_info: upper info to be passed down via notifier 8677 * @extack: netlink extended ack 8678 * 8679 * Adds a link to device which is upper to this one. In this case, only 8680 * one master upper device can be linked, although other non-master devices 8681 * might be linked as well. The caller must hold the RTNL lock. 8682 * On a failure a negative errno code is returned. On success the reference 8683 * counts are adjusted and the function returns zero. 8684 */ 8685 int netdev_master_upper_dev_link(struct net_device *dev, 8686 struct net_device *upper_dev, 8687 void *upper_priv, void *upper_info, 8688 struct netlink_ext_ack *extack) 8689 { 8690 struct netdev_nested_priv priv = { 8691 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8692 .data = NULL, 8693 }; 8694 8695 return __netdev_upper_dev_link(dev, upper_dev, true, 8696 upper_priv, upper_info, &priv, extack); 8697 } 8698 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8699 8700 static void __netdev_upper_dev_unlink(struct net_device *dev, 8701 struct net_device *upper_dev, 8702 struct netdev_nested_priv *priv) 8703 { 8704 struct netdev_notifier_changeupper_info changeupper_info = { 8705 .info = { 8706 .dev = dev, 8707 }, 8708 .upper_dev = upper_dev, 8709 .linking = false, 8710 }; 8711 8712 ASSERT_RTNL(); 8713 8714 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8715 8716 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8717 &changeupper_info.info); 8718 8719 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8720 8721 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8722 &changeupper_info.info); 8723 8724 __netdev_update_upper_level(dev, NULL); 8725 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8726 8727 __netdev_update_lower_level(upper_dev, priv); 8728 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8729 priv); 8730 } 8731 8732 /** 8733 * netdev_upper_dev_unlink - Removes a link to upper device 8734 * @dev: device 8735 * @upper_dev: new upper device 8736 * 8737 * Removes a link to device which is upper to this one. The caller must hold 8738 * the RTNL lock. 8739 */ 8740 void netdev_upper_dev_unlink(struct net_device *dev, 8741 struct net_device *upper_dev) 8742 { 8743 struct netdev_nested_priv priv = { 8744 .flags = NESTED_SYNC_TODO, 8745 .data = NULL, 8746 }; 8747 8748 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8749 } 8750 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8751 8752 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8753 struct net_device *lower_dev, 8754 bool val) 8755 { 8756 struct netdev_adjacent *adj; 8757 8758 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8759 if (adj) 8760 adj->ignore = val; 8761 8762 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8763 if (adj) 8764 adj->ignore = val; 8765 } 8766 8767 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8768 struct net_device *lower_dev) 8769 { 8770 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8771 } 8772 8773 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8774 struct net_device *lower_dev) 8775 { 8776 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8777 } 8778 8779 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8780 struct net_device *new_dev, 8781 struct net_device *dev, 8782 struct netlink_ext_ack *extack) 8783 { 8784 struct netdev_nested_priv priv = { 8785 .flags = 0, 8786 .data = NULL, 8787 }; 8788 int err; 8789 8790 if (!new_dev) 8791 return 0; 8792 8793 if (old_dev && new_dev != old_dev) 8794 netdev_adjacent_dev_disable(dev, old_dev); 8795 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8796 extack); 8797 if (err) { 8798 if (old_dev && new_dev != old_dev) 8799 netdev_adjacent_dev_enable(dev, old_dev); 8800 return err; 8801 } 8802 8803 return 0; 8804 } 8805 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8806 8807 void netdev_adjacent_change_commit(struct net_device *old_dev, 8808 struct net_device *new_dev, 8809 struct net_device *dev) 8810 { 8811 struct netdev_nested_priv priv = { 8812 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8813 .data = NULL, 8814 }; 8815 8816 if (!new_dev || !old_dev) 8817 return; 8818 8819 if (new_dev == old_dev) 8820 return; 8821 8822 netdev_adjacent_dev_enable(dev, old_dev); 8823 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8824 } 8825 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8826 8827 void netdev_adjacent_change_abort(struct net_device *old_dev, 8828 struct net_device *new_dev, 8829 struct net_device *dev) 8830 { 8831 struct netdev_nested_priv priv = { 8832 .flags = 0, 8833 .data = NULL, 8834 }; 8835 8836 if (!new_dev) 8837 return; 8838 8839 if (old_dev && new_dev != old_dev) 8840 netdev_adjacent_dev_enable(dev, old_dev); 8841 8842 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8843 } 8844 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8845 8846 /** 8847 * netdev_bonding_info_change - Dispatch event about slave change 8848 * @dev: device 8849 * @bonding_info: info to dispatch 8850 * 8851 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8852 * The caller must hold the RTNL lock. 8853 */ 8854 void netdev_bonding_info_change(struct net_device *dev, 8855 struct netdev_bonding_info *bonding_info) 8856 { 8857 struct netdev_notifier_bonding_info info = { 8858 .info.dev = dev, 8859 }; 8860 8861 memcpy(&info.bonding_info, bonding_info, 8862 sizeof(struct netdev_bonding_info)); 8863 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8864 &info.info); 8865 } 8866 EXPORT_SYMBOL(netdev_bonding_info_change); 8867 8868 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8869 struct netlink_ext_ack *extack) 8870 { 8871 struct netdev_notifier_offload_xstats_info info = { 8872 .info.dev = dev, 8873 .info.extack = extack, 8874 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8875 }; 8876 int err; 8877 int rc; 8878 8879 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8880 GFP_KERNEL); 8881 if (!dev->offload_xstats_l3) 8882 return -ENOMEM; 8883 8884 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8885 NETDEV_OFFLOAD_XSTATS_DISABLE, 8886 &info.info); 8887 err = notifier_to_errno(rc); 8888 if (err) 8889 goto free_stats; 8890 8891 return 0; 8892 8893 free_stats: 8894 kfree(dev->offload_xstats_l3); 8895 dev->offload_xstats_l3 = NULL; 8896 return err; 8897 } 8898 8899 int netdev_offload_xstats_enable(struct net_device *dev, 8900 enum netdev_offload_xstats_type type, 8901 struct netlink_ext_ack *extack) 8902 { 8903 ASSERT_RTNL(); 8904 8905 if (netdev_offload_xstats_enabled(dev, type)) 8906 return -EALREADY; 8907 8908 switch (type) { 8909 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8910 return netdev_offload_xstats_enable_l3(dev, extack); 8911 } 8912 8913 WARN_ON(1); 8914 return -EINVAL; 8915 } 8916 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8917 8918 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8919 { 8920 struct netdev_notifier_offload_xstats_info info = { 8921 .info.dev = dev, 8922 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8923 }; 8924 8925 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8926 &info.info); 8927 kfree(dev->offload_xstats_l3); 8928 dev->offload_xstats_l3 = NULL; 8929 } 8930 8931 int netdev_offload_xstats_disable(struct net_device *dev, 8932 enum netdev_offload_xstats_type type) 8933 { 8934 ASSERT_RTNL(); 8935 8936 if (!netdev_offload_xstats_enabled(dev, type)) 8937 return -EALREADY; 8938 8939 switch (type) { 8940 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8941 netdev_offload_xstats_disable_l3(dev); 8942 return 0; 8943 } 8944 8945 WARN_ON(1); 8946 return -EINVAL; 8947 } 8948 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8949 8950 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8951 { 8952 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8953 } 8954 8955 static struct rtnl_hw_stats64 * 8956 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8957 enum netdev_offload_xstats_type type) 8958 { 8959 switch (type) { 8960 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8961 return dev->offload_xstats_l3; 8962 } 8963 8964 WARN_ON(1); 8965 return NULL; 8966 } 8967 8968 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8969 enum netdev_offload_xstats_type type) 8970 { 8971 ASSERT_RTNL(); 8972 8973 return netdev_offload_xstats_get_ptr(dev, type); 8974 } 8975 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8976 8977 struct netdev_notifier_offload_xstats_ru { 8978 bool used; 8979 }; 8980 8981 struct netdev_notifier_offload_xstats_rd { 8982 struct rtnl_hw_stats64 stats; 8983 bool used; 8984 }; 8985 8986 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8987 const struct rtnl_hw_stats64 *src) 8988 { 8989 dest->rx_packets += src->rx_packets; 8990 dest->tx_packets += src->tx_packets; 8991 dest->rx_bytes += src->rx_bytes; 8992 dest->tx_bytes += src->tx_bytes; 8993 dest->rx_errors += src->rx_errors; 8994 dest->tx_errors += src->tx_errors; 8995 dest->rx_dropped += src->rx_dropped; 8996 dest->tx_dropped += src->tx_dropped; 8997 dest->multicast += src->multicast; 8998 } 8999 9000 static int netdev_offload_xstats_get_used(struct net_device *dev, 9001 enum netdev_offload_xstats_type type, 9002 bool *p_used, 9003 struct netlink_ext_ack *extack) 9004 { 9005 struct netdev_notifier_offload_xstats_ru report_used = {}; 9006 struct netdev_notifier_offload_xstats_info info = { 9007 .info.dev = dev, 9008 .info.extack = extack, 9009 .type = type, 9010 .report_used = &report_used, 9011 }; 9012 int rc; 9013 9014 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 9015 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 9016 &info.info); 9017 *p_used = report_used.used; 9018 return notifier_to_errno(rc); 9019 } 9020 9021 static int netdev_offload_xstats_get_stats(struct net_device *dev, 9022 enum netdev_offload_xstats_type type, 9023 struct rtnl_hw_stats64 *p_stats, 9024 bool *p_used, 9025 struct netlink_ext_ack *extack) 9026 { 9027 struct netdev_notifier_offload_xstats_rd report_delta = {}; 9028 struct netdev_notifier_offload_xstats_info info = { 9029 .info.dev = dev, 9030 .info.extack = extack, 9031 .type = type, 9032 .report_delta = &report_delta, 9033 }; 9034 struct rtnl_hw_stats64 *stats; 9035 int rc; 9036 9037 stats = netdev_offload_xstats_get_ptr(dev, type); 9038 if (WARN_ON(!stats)) 9039 return -EINVAL; 9040 9041 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 9042 &info.info); 9043 9044 /* Cache whatever we got, even if there was an error, otherwise the 9045 * successful stats retrievals would get lost. 9046 */ 9047 netdev_hw_stats64_add(stats, &report_delta.stats); 9048 9049 if (p_stats) 9050 *p_stats = *stats; 9051 *p_used = report_delta.used; 9052 9053 return notifier_to_errno(rc); 9054 } 9055 9056 int netdev_offload_xstats_get(struct net_device *dev, 9057 enum netdev_offload_xstats_type type, 9058 struct rtnl_hw_stats64 *p_stats, bool *p_used, 9059 struct netlink_ext_ack *extack) 9060 { 9061 ASSERT_RTNL(); 9062 9063 if (p_stats) 9064 return netdev_offload_xstats_get_stats(dev, type, p_stats, 9065 p_used, extack); 9066 else 9067 return netdev_offload_xstats_get_used(dev, type, p_used, 9068 extack); 9069 } 9070 EXPORT_SYMBOL(netdev_offload_xstats_get); 9071 9072 void 9073 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 9074 const struct rtnl_hw_stats64 *stats) 9075 { 9076 report_delta->used = true; 9077 netdev_hw_stats64_add(&report_delta->stats, stats); 9078 } 9079 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9080 9081 void 9082 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9083 { 9084 report_used->used = true; 9085 } 9086 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9087 9088 void netdev_offload_xstats_push_delta(struct net_device *dev, 9089 enum netdev_offload_xstats_type type, 9090 const struct rtnl_hw_stats64 *p_stats) 9091 { 9092 struct rtnl_hw_stats64 *stats; 9093 9094 ASSERT_RTNL(); 9095 9096 stats = netdev_offload_xstats_get_ptr(dev, type); 9097 if (WARN_ON(!stats)) 9098 return; 9099 9100 netdev_hw_stats64_add(stats, p_stats); 9101 } 9102 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9103 9104 /** 9105 * netdev_get_xmit_slave - Get the xmit slave of master device 9106 * @dev: device 9107 * @skb: The packet 9108 * @all_slaves: assume all the slaves are active 9109 * 9110 * The reference counters are not incremented so the caller must be 9111 * careful with locks. The caller must hold RCU lock. 9112 * %NULL is returned if no slave is found. 9113 */ 9114 9115 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9116 struct sk_buff *skb, 9117 bool all_slaves) 9118 { 9119 const struct net_device_ops *ops = dev->netdev_ops; 9120 9121 if (!ops->ndo_get_xmit_slave) 9122 return NULL; 9123 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9124 } 9125 EXPORT_SYMBOL(netdev_get_xmit_slave); 9126 9127 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9128 struct sock *sk) 9129 { 9130 const struct net_device_ops *ops = dev->netdev_ops; 9131 9132 if (!ops->ndo_sk_get_lower_dev) 9133 return NULL; 9134 return ops->ndo_sk_get_lower_dev(dev, sk); 9135 } 9136 9137 /** 9138 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9139 * @dev: device 9140 * @sk: the socket 9141 * 9142 * %NULL is returned if no lower device is found. 9143 */ 9144 9145 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9146 struct sock *sk) 9147 { 9148 struct net_device *lower; 9149 9150 lower = netdev_sk_get_lower_dev(dev, sk); 9151 while (lower) { 9152 dev = lower; 9153 lower = netdev_sk_get_lower_dev(dev, sk); 9154 } 9155 9156 return dev; 9157 } 9158 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9159 9160 static void netdev_adjacent_add_links(struct net_device *dev) 9161 { 9162 struct netdev_adjacent *iter; 9163 9164 struct net *net = dev_net(dev); 9165 9166 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9167 if (!net_eq(net, dev_net(iter->dev))) 9168 continue; 9169 netdev_adjacent_sysfs_add(iter->dev, dev, 9170 &iter->dev->adj_list.lower); 9171 netdev_adjacent_sysfs_add(dev, iter->dev, 9172 &dev->adj_list.upper); 9173 } 9174 9175 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9176 if (!net_eq(net, dev_net(iter->dev))) 9177 continue; 9178 netdev_adjacent_sysfs_add(iter->dev, dev, 9179 &iter->dev->adj_list.upper); 9180 netdev_adjacent_sysfs_add(dev, iter->dev, 9181 &dev->adj_list.lower); 9182 } 9183 } 9184 9185 static void netdev_adjacent_del_links(struct net_device *dev) 9186 { 9187 struct netdev_adjacent *iter; 9188 9189 struct net *net = dev_net(dev); 9190 9191 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9192 if (!net_eq(net, dev_net(iter->dev))) 9193 continue; 9194 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9195 &iter->dev->adj_list.lower); 9196 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9197 &dev->adj_list.upper); 9198 } 9199 9200 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9201 if (!net_eq(net, dev_net(iter->dev))) 9202 continue; 9203 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9204 &iter->dev->adj_list.upper); 9205 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9206 &dev->adj_list.lower); 9207 } 9208 } 9209 9210 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9211 { 9212 struct netdev_adjacent *iter; 9213 9214 struct net *net = dev_net(dev); 9215 9216 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9217 if (!net_eq(net, dev_net(iter->dev))) 9218 continue; 9219 netdev_adjacent_sysfs_del(iter->dev, oldname, 9220 &iter->dev->adj_list.lower); 9221 netdev_adjacent_sysfs_add(iter->dev, dev, 9222 &iter->dev->adj_list.lower); 9223 } 9224 9225 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9226 if (!net_eq(net, dev_net(iter->dev))) 9227 continue; 9228 netdev_adjacent_sysfs_del(iter->dev, oldname, 9229 &iter->dev->adj_list.upper); 9230 netdev_adjacent_sysfs_add(iter->dev, dev, 9231 &iter->dev->adj_list.upper); 9232 } 9233 } 9234 9235 void *netdev_lower_dev_get_private(struct net_device *dev, 9236 struct net_device *lower_dev) 9237 { 9238 struct netdev_adjacent *lower; 9239 9240 if (!lower_dev) 9241 return NULL; 9242 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9243 if (!lower) 9244 return NULL; 9245 9246 return lower->private; 9247 } 9248 EXPORT_SYMBOL(netdev_lower_dev_get_private); 9249 9250 9251 /** 9252 * netdev_lower_state_changed - Dispatch event about lower device state change 9253 * @lower_dev: device 9254 * @lower_state_info: state to dispatch 9255 * 9256 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9257 * The caller must hold the RTNL lock. 9258 */ 9259 void netdev_lower_state_changed(struct net_device *lower_dev, 9260 void *lower_state_info) 9261 { 9262 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9263 .info.dev = lower_dev, 9264 }; 9265 9266 ASSERT_RTNL(); 9267 changelowerstate_info.lower_state_info = lower_state_info; 9268 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9269 &changelowerstate_info.info); 9270 } 9271 EXPORT_SYMBOL(netdev_lower_state_changed); 9272 9273 static void dev_change_rx_flags(struct net_device *dev, int flags) 9274 { 9275 const struct net_device_ops *ops = dev->netdev_ops; 9276 9277 if (ops->ndo_change_rx_flags) 9278 ops->ndo_change_rx_flags(dev, flags); 9279 } 9280 9281 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9282 { 9283 unsigned int old_flags = dev->flags; 9284 unsigned int promiscuity, flags; 9285 kuid_t uid; 9286 kgid_t gid; 9287 9288 ASSERT_RTNL(); 9289 9290 promiscuity = dev->promiscuity + inc; 9291 if (promiscuity == 0) { 9292 /* 9293 * Avoid overflow. 9294 * If inc causes overflow, untouch promisc and return error. 9295 */ 9296 if (unlikely(inc > 0)) { 9297 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9298 return -EOVERFLOW; 9299 } 9300 flags = old_flags & ~IFF_PROMISC; 9301 } else { 9302 flags = old_flags | IFF_PROMISC; 9303 } 9304 WRITE_ONCE(dev->promiscuity, promiscuity); 9305 if (flags != old_flags) { 9306 WRITE_ONCE(dev->flags, flags); 9307 netdev_info(dev, "%s promiscuous mode\n", 9308 dev->flags & IFF_PROMISC ? "entered" : "left"); 9309 if (audit_enabled) { 9310 current_uid_gid(&uid, &gid); 9311 audit_log(audit_context(), GFP_ATOMIC, 9312 AUDIT_ANOM_PROMISCUOUS, 9313 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9314 dev->name, (dev->flags & IFF_PROMISC), 9315 (old_flags & IFF_PROMISC), 9316 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9317 from_kuid(&init_user_ns, uid), 9318 from_kgid(&init_user_ns, gid), 9319 audit_get_sessionid(current)); 9320 } 9321 9322 dev_change_rx_flags(dev, IFF_PROMISC); 9323 } 9324 if (notify) { 9325 /* The ops lock is only required to ensure consistent locking 9326 * for `NETDEV_CHANGE` notifiers. This function is sometimes 9327 * called without the lock, even for devices that are ops 9328 * locked, such as in `dev_uc_sync_multiple` when using 9329 * bonding or teaming. 9330 */ 9331 netdev_ops_assert_locked(dev); 9332 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9333 } 9334 return 0; 9335 } 9336 9337 int netif_set_promiscuity(struct net_device *dev, int inc) 9338 { 9339 unsigned int old_flags = dev->flags; 9340 int err; 9341 9342 err = __dev_set_promiscuity(dev, inc, true); 9343 if (err < 0) 9344 return err; 9345 if (dev->flags != old_flags) 9346 dev_set_rx_mode(dev); 9347 return err; 9348 } 9349 9350 int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9351 { 9352 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9353 unsigned int allmulti, flags; 9354 9355 ASSERT_RTNL(); 9356 9357 allmulti = dev->allmulti + inc; 9358 if (allmulti == 0) { 9359 /* 9360 * Avoid overflow. 9361 * If inc causes overflow, untouch allmulti and return error. 9362 */ 9363 if (unlikely(inc > 0)) { 9364 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9365 return -EOVERFLOW; 9366 } 9367 flags = old_flags & ~IFF_ALLMULTI; 9368 } else { 9369 flags = old_flags | IFF_ALLMULTI; 9370 } 9371 WRITE_ONCE(dev->allmulti, allmulti); 9372 if (flags != old_flags) { 9373 WRITE_ONCE(dev->flags, flags); 9374 netdev_info(dev, "%s allmulticast mode\n", 9375 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9376 dev_change_rx_flags(dev, IFF_ALLMULTI); 9377 dev_set_rx_mode(dev); 9378 if (notify) 9379 __dev_notify_flags(dev, old_flags, 9380 dev->gflags ^ old_gflags, 0, NULL); 9381 } 9382 return 0; 9383 } 9384 9385 /* 9386 * Upload unicast and multicast address lists to device and 9387 * configure RX filtering. When the device doesn't support unicast 9388 * filtering it is put in promiscuous mode while unicast addresses 9389 * are present. 9390 */ 9391 void __dev_set_rx_mode(struct net_device *dev) 9392 { 9393 const struct net_device_ops *ops = dev->netdev_ops; 9394 9395 /* dev_open will call this function so the list will stay sane. */ 9396 if (!(dev->flags&IFF_UP)) 9397 return; 9398 9399 if (!netif_device_present(dev)) 9400 return; 9401 9402 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9403 /* Unicast addresses changes may only happen under the rtnl, 9404 * therefore calling __dev_set_promiscuity here is safe. 9405 */ 9406 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9407 __dev_set_promiscuity(dev, 1, false); 9408 dev->uc_promisc = true; 9409 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9410 __dev_set_promiscuity(dev, -1, false); 9411 dev->uc_promisc = false; 9412 } 9413 } 9414 9415 if (ops->ndo_set_rx_mode) 9416 ops->ndo_set_rx_mode(dev); 9417 } 9418 9419 void dev_set_rx_mode(struct net_device *dev) 9420 { 9421 netif_addr_lock_bh(dev); 9422 __dev_set_rx_mode(dev); 9423 netif_addr_unlock_bh(dev); 9424 } 9425 9426 /** 9427 * dev_get_flags - get flags reported to userspace 9428 * @dev: device 9429 * 9430 * Get the combination of flag bits exported through APIs to userspace. 9431 */ 9432 unsigned int dev_get_flags(const struct net_device *dev) 9433 { 9434 unsigned int flags; 9435 9436 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9437 IFF_ALLMULTI | 9438 IFF_RUNNING | 9439 IFF_LOWER_UP | 9440 IFF_DORMANT)) | 9441 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9442 IFF_ALLMULTI)); 9443 9444 if (netif_running(dev)) { 9445 if (netif_oper_up(dev)) 9446 flags |= IFF_RUNNING; 9447 if (netif_carrier_ok(dev)) 9448 flags |= IFF_LOWER_UP; 9449 if (netif_dormant(dev)) 9450 flags |= IFF_DORMANT; 9451 } 9452 9453 return flags; 9454 } 9455 EXPORT_SYMBOL(dev_get_flags); 9456 9457 int __dev_change_flags(struct net_device *dev, unsigned int flags, 9458 struct netlink_ext_ack *extack) 9459 { 9460 unsigned int old_flags = dev->flags; 9461 int ret; 9462 9463 ASSERT_RTNL(); 9464 9465 /* 9466 * Set the flags on our device. 9467 */ 9468 9469 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9470 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9471 IFF_AUTOMEDIA)) | 9472 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9473 IFF_ALLMULTI)); 9474 9475 /* 9476 * Load in the correct multicast list now the flags have changed. 9477 */ 9478 9479 if ((old_flags ^ flags) & IFF_MULTICAST) 9480 dev_change_rx_flags(dev, IFF_MULTICAST); 9481 9482 dev_set_rx_mode(dev); 9483 9484 /* 9485 * Have we downed the interface. We handle IFF_UP ourselves 9486 * according to user attempts to set it, rather than blindly 9487 * setting it. 9488 */ 9489 9490 ret = 0; 9491 if ((old_flags ^ flags) & IFF_UP) { 9492 if (old_flags & IFF_UP) 9493 __dev_close(dev); 9494 else 9495 ret = __dev_open(dev, extack); 9496 } 9497 9498 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9499 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9500 old_flags = dev->flags; 9501 9502 dev->gflags ^= IFF_PROMISC; 9503 9504 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9505 if (dev->flags != old_flags) 9506 dev_set_rx_mode(dev); 9507 } 9508 9509 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9510 * is important. Some (broken) drivers set IFF_PROMISC, when 9511 * IFF_ALLMULTI is requested not asking us and not reporting. 9512 */ 9513 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9514 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9515 9516 dev->gflags ^= IFF_ALLMULTI; 9517 netif_set_allmulti(dev, inc, false); 9518 } 9519 9520 return ret; 9521 } 9522 9523 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9524 unsigned int gchanges, u32 portid, 9525 const struct nlmsghdr *nlh) 9526 { 9527 unsigned int changes = dev->flags ^ old_flags; 9528 9529 if (gchanges) 9530 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9531 9532 if (changes & IFF_UP) { 9533 if (dev->flags & IFF_UP) 9534 call_netdevice_notifiers(NETDEV_UP, dev); 9535 else 9536 call_netdevice_notifiers(NETDEV_DOWN, dev); 9537 } 9538 9539 if (dev->flags & IFF_UP && 9540 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9541 struct netdev_notifier_change_info change_info = { 9542 .info = { 9543 .dev = dev, 9544 }, 9545 .flags_changed = changes, 9546 }; 9547 9548 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9549 } 9550 } 9551 9552 int netif_change_flags(struct net_device *dev, unsigned int flags, 9553 struct netlink_ext_ack *extack) 9554 { 9555 int ret; 9556 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9557 9558 ret = __dev_change_flags(dev, flags, extack); 9559 if (ret < 0) 9560 return ret; 9561 9562 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9563 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9564 return ret; 9565 } 9566 9567 int __dev_set_mtu(struct net_device *dev, int new_mtu) 9568 { 9569 const struct net_device_ops *ops = dev->netdev_ops; 9570 9571 if (ops->ndo_change_mtu) 9572 return ops->ndo_change_mtu(dev, new_mtu); 9573 9574 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9575 WRITE_ONCE(dev->mtu, new_mtu); 9576 return 0; 9577 } 9578 EXPORT_SYMBOL(__dev_set_mtu); 9579 9580 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9581 struct netlink_ext_ack *extack) 9582 { 9583 /* MTU must be positive, and in range */ 9584 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9585 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9586 return -EINVAL; 9587 } 9588 9589 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9590 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9591 return -EINVAL; 9592 } 9593 return 0; 9594 } 9595 9596 /** 9597 * netif_set_mtu_ext - Change maximum transfer unit 9598 * @dev: device 9599 * @new_mtu: new transfer unit 9600 * @extack: netlink extended ack 9601 * 9602 * Change the maximum transfer size of the network device. 9603 */ 9604 int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9605 struct netlink_ext_ack *extack) 9606 { 9607 int err, orig_mtu; 9608 9609 if (new_mtu == dev->mtu) 9610 return 0; 9611 9612 err = dev_validate_mtu(dev, new_mtu, extack); 9613 if (err) 9614 return err; 9615 9616 if (!netif_device_present(dev)) 9617 return -ENODEV; 9618 9619 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9620 err = notifier_to_errno(err); 9621 if (err) 9622 return err; 9623 9624 orig_mtu = dev->mtu; 9625 err = __dev_set_mtu(dev, new_mtu); 9626 9627 if (!err) { 9628 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9629 orig_mtu); 9630 err = notifier_to_errno(err); 9631 if (err) { 9632 /* setting mtu back and notifying everyone again, 9633 * so that they have a chance to revert changes. 9634 */ 9635 __dev_set_mtu(dev, orig_mtu); 9636 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9637 new_mtu); 9638 } 9639 } 9640 return err; 9641 } 9642 9643 int netif_set_mtu(struct net_device *dev, int new_mtu) 9644 { 9645 struct netlink_ext_ack extack; 9646 int err; 9647 9648 memset(&extack, 0, sizeof(extack)); 9649 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9650 if (err && extack._msg) 9651 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9652 return err; 9653 } 9654 EXPORT_SYMBOL(netif_set_mtu); 9655 9656 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9657 { 9658 unsigned int orig_len = dev->tx_queue_len; 9659 int res; 9660 9661 if (new_len != (unsigned int)new_len) 9662 return -ERANGE; 9663 9664 if (new_len != orig_len) { 9665 WRITE_ONCE(dev->tx_queue_len, new_len); 9666 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9667 res = notifier_to_errno(res); 9668 if (res) 9669 goto err_rollback; 9670 res = dev_qdisc_change_tx_queue_len(dev); 9671 if (res) 9672 goto err_rollback; 9673 } 9674 9675 return 0; 9676 9677 err_rollback: 9678 netdev_err(dev, "refused to change device tx_queue_len\n"); 9679 WRITE_ONCE(dev->tx_queue_len, orig_len); 9680 return res; 9681 } 9682 9683 void netif_set_group(struct net_device *dev, int new_group) 9684 { 9685 dev->group = new_group; 9686 } 9687 9688 /** 9689 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 9690 * @dev: device 9691 * @addr: new address 9692 * @extack: netlink extended ack 9693 */ 9694 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9695 struct netlink_ext_ack *extack) 9696 { 9697 struct netdev_notifier_pre_changeaddr_info info = { 9698 .info.dev = dev, 9699 .info.extack = extack, 9700 .dev_addr = addr, 9701 }; 9702 int rc; 9703 9704 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9705 return notifier_to_errno(rc); 9706 } 9707 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9708 9709 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 9710 struct netlink_ext_ack *extack) 9711 { 9712 const struct net_device_ops *ops = dev->netdev_ops; 9713 int err; 9714 9715 if (!ops->ndo_set_mac_address) 9716 return -EOPNOTSUPP; 9717 if (ss->ss_family != dev->type) 9718 return -EINVAL; 9719 if (!netif_device_present(dev)) 9720 return -ENODEV; 9721 err = dev_pre_changeaddr_notify(dev, ss->__data, extack); 9722 if (err) 9723 return err; 9724 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) { 9725 err = ops->ndo_set_mac_address(dev, ss); 9726 if (err) 9727 return err; 9728 } 9729 dev->addr_assign_type = NET_ADDR_SET; 9730 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9731 add_device_randomness(dev->dev_addr, dev->addr_len); 9732 return 0; 9733 } 9734 9735 DECLARE_RWSEM(dev_addr_sem); 9736 9737 /* "sa" is a true struct sockaddr with limited "sa_data" member. */ 9738 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9739 { 9740 size_t size = sizeof(sa->sa_data_min); 9741 struct net_device *dev; 9742 int ret = 0; 9743 9744 down_read(&dev_addr_sem); 9745 rcu_read_lock(); 9746 9747 dev = dev_get_by_name_rcu(net, dev_name); 9748 if (!dev) { 9749 ret = -ENODEV; 9750 goto unlock; 9751 } 9752 if (!dev->addr_len) 9753 memset(sa->sa_data, 0, size); 9754 else 9755 memcpy(sa->sa_data, dev->dev_addr, 9756 min_t(size_t, size, dev->addr_len)); 9757 sa->sa_family = dev->type; 9758 9759 unlock: 9760 rcu_read_unlock(); 9761 up_read(&dev_addr_sem); 9762 return ret; 9763 } 9764 EXPORT_SYMBOL(dev_get_mac_address); 9765 9766 int netif_change_carrier(struct net_device *dev, bool new_carrier) 9767 { 9768 const struct net_device_ops *ops = dev->netdev_ops; 9769 9770 if (!ops->ndo_change_carrier) 9771 return -EOPNOTSUPP; 9772 if (!netif_device_present(dev)) 9773 return -ENODEV; 9774 return ops->ndo_change_carrier(dev, new_carrier); 9775 } 9776 9777 /** 9778 * dev_get_phys_port_id - Get device physical port ID 9779 * @dev: device 9780 * @ppid: port ID 9781 * 9782 * Get device physical port ID 9783 */ 9784 int dev_get_phys_port_id(struct net_device *dev, 9785 struct netdev_phys_item_id *ppid) 9786 { 9787 const struct net_device_ops *ops = dev->netdev_ops; 9788 9789 if (!ops->ndo_get_phys_port_id) 9790 return -EOPNOTSUPP; 9791 return ops->ndo_get_phys_port_id(dev, ppid); 9792 } 9793 9794 /** 9795 * dev_get_phys_port_name - Get device physical port name 9796 * @dev: device 9797 * @name: port name 9798 * @len: limit of bytes to copy to name 9799 * 9800 * Get device physical port name 9801 */ 9802 int dev_get_phys_port_name(struct net_device *dev, 9803 char *name, size_t len) 9804 { 9805 const struct net_device_ops *ops = dev->netdev_ops; 9806 int err; 9807 9808 if (ops->ndo_get_phys_port_name) { 9809 err = ops->ndo_get_phys_port_name(dev, name, len); 9810 if (err != -EOPNOTSUPP) 9811 return err; 9812 } 9813 return devlink_compat_phys_port_name_get(dev, name, len); 9814 } 9815 9816 /** 9817 * dev_get_port_parent_id - Get the device's port parent identifier 9818 * @dev: network device 9819 * @ppid: pointer to a storage for the port's parent identifier 9820 * @recurse: allow/disallow recursion to lower devices 9821 * 9822 * Get the devices's port parent identifier 9823 */ 9824 int dev_get_port_parent_id(struct net_device *dev, 9825 struct netdev_phys_item_id *ppid, 9826 bool recurse) 9827 { 9828 const struct net_device_ops *ops = dev->netdev_ops; 9829 struct netdev_phys_item_id first = { }; 9830 struct net_device *lower_dev; 9831 struct list_head *iter; 9832 int err; 9833 9834 if (ops->ndo_get_port_parent_id) { 9835 err = ops->ndo_get_port_parent_id(dev, ppid); 9836 if (err != -EOPNOTSUPP) 9837 return err; 9838 } 9839 9840 err = devlink_compat_switch_id_get(dev, ppid); 9841 if (!recurse || err != -EOPNOTSUPP) 9842 return err; 9843 9844 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9845 err = dev_get_port_parent_id(lower_dev, ppid, true); 9846 if (err) 9847 break; 9848 if (!first.id_len) 9849 first = *ppid; 9850 else if (memcmp(&first, ppid, sizeof(*ppid))) 9851 return -EOPNOTSUPP; 9852 } 9853 9854 return err; 9855 } 9856 EXPORT_SYMBOL(dev_get_port_parent_id); 9857 9858 /** 9859 * netdev_port_same_parent_id - Indicate if two network devices have 9860 * the same port parent identifier 9861 * @a: first network device 9862 * @b: second network device 9863 */ 9864 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9865 { 9866 struct netdev_phys_item_id a_id = { }; 9867 struct netdev_phys_item_id b_id = { }; 9868 9869 if (dev_get_port_parent_id(a, &a_id, true) || 9870 dev_get_port_parent_id(b, &b_id, true)) 9871 return false; 9872 9873 return netdev_phys_item_id_same(&a_id, &b_id); 9874 } 9875 EXPORT_SYMBOL(netdev_port_same_parent_id); 9876 9877 int netif_change_proto_down(struct net_device *dev, bool proto_down) 9878 { 9879 if (!dev->change_proto_down) 9880 return -EOPNOTSUPP; 9881 if (!netif_device_present(dev)) 9882 return -ENODEV; 9883 if (proto_down) 9884 netif_carrier_off(dev); 9885 else 9886 netif_carrier_on(dev); 9887 WRITE_ONCE(dev->proto_down, proto_down); 9888 return 0; 9889 } 9890 9891 /** 9892 * netdev_change_proto_down_reason_locked - proto down reason 9893 * 9894 * @dev: device 9895 * @mask: proto down mask 9896 * @value: proto down value 9897 */ 9898 void netdev_change_proto_down_reason_locked(struct net_device *dev, 9899 unsigned long mask, u32 value) 9900 { 9901 u32 proto_down_reason; 9902 int b; 9903 9904 if (!mask) { 9905 proto_down_reason = value; 9906 } else { 9907 proto_down_reason = dev->proto_down_reason; 9908 for_each_set_bit(b, &mask, 32) { 9909 if (value & (1 << b)) 9910 proto_down_reason |= BIT(b); 9911 else 9912 proto_down_reason &= ~BIT(b); 9913 } 9914 } 9915 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9916 } 9917 9918 struct bpf_xdp_link { 9919 struct bpf_link link; 9920 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9921 int flags; 9922 }; 9923 9924 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9925 { 9926 if (flags & XDP_FLAGS_HW_MODE) 9927 return XDP_MODE_HW; 9928 if (flags & XDP_FLAGS_DRV_MODE) 9929 return XDP_MODE_DRV; 9930 if (flags & XDP_FLAGS_SKB_MODE) 9931 return XDP_MODE_SKB; 9932 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9933 } 9934 9935 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9936 { 9937 switch (mode) { 9938 case XDP_MODE_SKB: 9939 return generic_xdp_install; 9940 case XDP_MODE_DRV: 9941 case XDP_MODE_HW: 9942 return dev->netdev_ops->ndo_bpf; 9943 default: 9944 return NULL; 9945 } 9946 } 9947 9948 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9949 enum bpf_xdp_mode mode) 9950 { 9951 return dev->xdp_state[mode].link; 9952 } 9953 9954 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9955 enum bpf_xdp_mode mode) 9956 { 9957 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9958 9959 if (link) 9960 return link->link.prog; 9961 return dev->xdp_state[mode].prog; 9962 } 9963 9964 u8 dev_xdp_prog_count(struct net_device *dev) 9965 { 9966 u8 count = 0; 9967 int i; 9968 9969 for (i = 0; i < __MAX_XDP_MODE; i++) 9970 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9971 count++; 9972 return count; 9973 } 9974 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9975 9976 u8 dev_xdp_sb_prog_count(struct net_device *dev) 9977 { 9978 u8 count = 0; 9979 int i; 9980 9981 for (i = 0; i < __MAX_XDP_MODE; i++) 9982 if (dev->xdp_state[i].prog && 9983 !dev->xdp_state[i].prog->aux->xdp_has_frags) 9984 count++; 9985 return count; 9986 } 9987 9988 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 9989 { 9990 if (!dev->netdev_ops->ndo_bpf) 9991 return -EOPNOTSUPP; 9992 9993 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 9994 bpf->command == XDP_SETUP_PROG && 9995 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 9996 NL_SET_ERR_MSG(bpf->extack, 9997 "unable to propagate XDP to device using tcp-data-split"); 9998 return -EBUSY; 9999 } 10000 10001 if (dev_get_min_mp_channel_count(dev)) { 10002 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 10003 return -EBUSY; 10004 } 10005 10006 return dev->netdev_ops->ndo_bpf(dev, bpf); 10007 } 10008 EXPORT_SYMBOL_GPL(netif_xdp_propagate); 10009 10010 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 10011 { 10012 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 10013 10014 return prog ? prog->aux->id : 0; 10015 } 10016 10017 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 10018 struct bpf_xdp_link *link) 10019 { 10020 dev->xdp_state[mode].link = link; 10021 dev->xdp_state[mode].prog = NULL; 10022 } 10023 10024 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 10025 struct bpf_prog *prog) 10026 { 10027 dev->xdp_state[mode].link = NULL; 10028 dev->xdp_state[mode].prog = prog; 10029 } 10030 10031 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 10032 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 10033 u32 flags, struct bpf_prog *prog) 10034 { 10035 struct netdev_bpf xdp; 10036 int err; 10037 10038 netdev_ops_assert_locked(dev); 10039 10040 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10041 prog && !prog->aux->xdp_has_frags) { 10042 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 10043 return -EBUSY; 10044 } 10045 10046 if (dev_get_min_mp_channel_count(dev)) { 10047 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 10048 return -EBUSY; 10049 } 10050 10051 memset(&xdp, 0, sizeof(xdp)); 10052 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 10053 xdp.extack = extack; 10054 xdp.flags = flags; 10055 xdp.prog = prog; 10056 10057 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 10058 * "moved" into driver), so they don't increment it on their own, but 10059 * they do decrement refcnt when program is detached or replaced. 10060 * Given net_device also owns link/prog, we need to bump refcnt here 10061 * to prevent drivers from underflowing it. 10062 */ 10063 if (prog) 10064 bpf_prog_inc(prog); 10065 err = bpf_op(dev, &xdp); 10066 if (err) { 10067 if (prog) 10068 bpf_prog_put(prog); 10069 return err; 10070 } 10071 10072 if (mode != XDP_MODE_HW) 10073 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 10074 10075 return 0; 10076 } 10077 10078 static void dev_xdp_uninstall(struct net_device *dev) 10079 { 10080 struct bpf_xdp_link *link; 10081 struct bpf_prog *prog; 10082 enum bpf_xdp_mode mode; 10083 bpf_op_t bpf_op; 10084 10085 ASSERT_RTNL(); 10086 10087 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10088 prog = dev_xdp_prog(dev, mode); 10089 if (!prog) 10090 continue; 10091 10092 bpf_op = dev_xdp_bpf_op(dev, mode); 10093 if (!bpf_op) 10094 continue; 10095 10096 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10097 10098 /* auto-detach link from net device */ 10099 link = dev_xdp_link(dev, mode); 10100 if (link) 10101 link->dev = NULL; 10102 else 10103 bpf_prog_put(prog); 10104 10105 dev_xdp_set_link(dev, mode, NULL); 10106 } 10107 } 10108 10109 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10110 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10111 struct bpf_prog *old_prog, u32 flags) 10112 { 10113 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10114 struct bpf_prog *cur_prog; 10115 struct net_device *upper; 10116 struct list_head *iter; 10117 enum bpf_xdp_mode mode; 10118 bpf_op_t bpf_op; 10119 int err; 10120 10121 ASSERT_RTNL(); 10122 10123 /* either link or prog attachment, never both */ 10124 if (link && (new_prog || old_prog)) 10125 return -EINVAL; 10126 /* link supports only XDP mode flags */ 10127 if (link && (flags & ~XDP_FLAGS_MODES)) { 10128 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10129 return -EINVAL; 10130 } 10131 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10132 if (num_modes > 1) { 10133 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10134 return -EINVAL; 10135 } 10136 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10137 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10138 NL_SET_ERR_MSG(extack, 10139 "More than one program loaded, unset mode is ambiguous"); 10140 return -EINVAL; 10141 } 10142 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10143 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10144 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10145 return -EINVAL; 10146 } 10147 10148 mode = dev_xdp_mode(dev, flags); 10149 /* can't replace attached link */ 10150 if (dev_xdp_link(dev, mode)) { 10151 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10152 return -EBUSY; 10153 } 10154 10155 /* don't allow if an upper device already has a program */ 10156 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10157 if (dev_xdp_prog_count(upper) > 0) { 10158 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10159 return -EEXIST; 10160 } 10161 } 10162 10163 cur_prog = dev_xdp_prog(dev, mode); 10164 /* can't replace attached prog with link */ 10165 if (link && cur_prog) { 10166 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10167 return -EBUSY; 10168 } 10169 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10170 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10171 return -EEXIST; 10172 } 10173 10174 /* put effective new program into new_prog */ 10175 if (link) 10176 new_prog = link->link.prog; 10177 10178 if (new_prog) { 10179 bool offload = mode == XDP_MODE_HW; 10180 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10181 ? XDP_MODE_DRV : XDP_MODE_SKB; 10182 10183 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10184 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10185 return -EBUSY; 10186 } 10187 if (!offload && dev_xdp_prog(dev, other_mode)) { 10188 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10189 return -EEXIST; 10190 } 10191 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10192 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10193 return -EINVAL; 10194 } 10195 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10196 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10197 return -EINVAL; 10198 } 10199 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10200 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10201 return -EINVAL; 10202 } 10203 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10204 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10205 return -EINVAL; 10206 } 10207 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10208 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10209 return -EINVAL; 10210 } 10211 } 10212 10213 /* don't call drivers if the effective program didn't change */ 10214 if (new_prog != cur_prog) { 10215 bpf_op = dev_xdp_bpf_op(dev, mode); 10216 if (!bpf_op) { 10217 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10218 return -EOPNOTSUPP; 10219 } 10220 10221 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10222 if (err) 10223 return err; 10224 } 10225 10226 if (link) 10227 dev_xdp_set_link(dev, mode, link); 10228 else 10229 dev_xdp_set_prog(dev, mode, new_prog); 10230 if (cur_prog) 10231 bpf_prog_put(cur_prog); 10232 10233 return 0; 10234 } 10235 10236 static int dev_xdp_attach_link(struct net_device *dev, 10237 struct netlink_ext_ack *extack, 10238 struct bpf_xdp_link *link) 10239 { 10240 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10241 } 10242 10243 static int dev_xdp_detach_link(struct net_device *dev, 10244 struct netlink_ext_ack *extack, 10245 struct bpf_xdp_link *link) 10246 { 10247 enum bpf_xdp_mode mode; 10248 bpf_op_t bpf_op; 10249 10250 ASSERT_RTNL(); 10251 10252 mode = dev_xdp_mode(dev, link->flags); 10253 if (dev_xdp_link(dev, mode) != link) 10254 return -EINVAL; 10255 10256 bpf_op = dev_xdp_bpf_op(dev, mode); 10257 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10258 dev_xdp_set_link(dev, mode, NULL); 10259 return 0; 10260 } 10261 10262 static void bpf_xdp_link_release(struct bpf_link *link) 10263 { 10264 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10265 10266 rtnl_lock(); 10267 10268 /* if racing with net_device's tear down, xdp_link->dev might be 10269 * already NULL, in which case link was already auto-detached 10270 */ 10271 if (xdp_link->dev) { 10272 netdev_lock_ops(xdp_link->dev); 10273 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10274 netdev_unlock_ops(xdp_link->dev); 10275 xdp_link->dev = NULL; 10276 } 10277 10278 rtnl_unlock(); 10279 } 10280 10281 static int bpf_xdp_link_detach(struct bpf_link *link) 10282 { 10283 bpf_xdp_link_release(link); 10284 return 0; 10285 } 10286 10287 static void bpf_xdp_link_dealloc(struct bpf_link *link) 10288 { 10289 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10290 10291 kfree(xdp_link); 10292 } 10293 10294 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10295 struct seq_file *seq) 10296 { 10297 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10298 u32 ifindex = 0; 10299 10300 rtnl_lock(); 10301 if (xdp_link->dev) 10302 ifindex = xdp_link->dev->ifindex; 10303 rtnl_unlock(); 10304 10305 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10306 } 10307 10308 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10309 struct bpf_link_info *info) 10310 { 10311 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10312 u32 ifindex = 0; 10313 10314 rtnl_lock(); 10315 if (xdp_link->dev) 10316 ifindex = xdp_link->dev->ifindex; 10317 rtnl_unlock(); 10318 10319 info->xdp.ifindex = ifindex; 10320 return 0; 10321 } 10322 10323 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10324 struct bpf_prog *old_prog) 10325 { 10326 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10327 enum bpf_xdp_mode mode; 10328 bpf_op_t bpf_op; 10329 int err = 0; 10330 10331 rtnl_lock(); 10332 10333 /* link might have been auto-released already, so fail */ 10334 if (!xdp_link->dev) { 10335 err = -ENOLINK; 10336 goto out_unlock; 10337 } 10338 10339 if (old_prog && link->prog != old_prog) { 10340 err = -EPERM; 10341 goto out_unlock; 10342 } 10343 old_prog = link->prog; 10344 if (old_prog->type != new_prog->type || 10345 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10346 err = -EINVAL; 10347 goto out_unlock; 10348 } 10349 10350 if (old_prog == new_prog) { 10351 /* no-op, don't disturb drivers */ 10352 bpf_prog_put(new_prog); 10353 goto out_unlock; 10354 } 10355 10356 netdev_lock_ops(xdp_link->dev); 10357 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10358 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10359 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10360 xdp_link->flags, new_prog); 10361 netdev_unlock_ops(xdp_link->dev); 10362 if (err) 10363 goto out_unlock; 10364 10365 old_prog = xchg(&link->prog, new_prog); 10366 bpf_prog_put(old_prog); 10367 10368 out_unlock: 10369 rtnl_unlock(); 10370 return err; 10371 } 10372 10373 static const struct bpf_link_ops bpf_xdp_link_lops = { 10374 .release = bpf_xdp_link_release, 10375 .dealloc = bpf_xdp_link_dealloc, 10376 .detach = bpf_xdp_link_detach, 10377 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10378 .fill_link_info = bpf_xdp_link_fill_link_info, 10379 .update_prog = bpf_xdp_link_update, 10380 }; 10381 10382 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10383 { 10384 struct net *net = current->nsproxy->net_ns; 10385 struct bpf_link_primer link_primer; 10386 struct netlink_ext_ack extack = {}; 10387 struct bpf_xdp_link *link; 10388 struct net_device *dev; 10389 int err, fd; 10390 10391 rtnl_lock(); 10392 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10393 if (!dev) { 10394 rtnl_unlock(); 10395 return -EINVAL; 10396 } 10397 10398 link = kzalloc(sizeof(*link), GFP_USER); 10399 if (!link) { 10400 err = -ENOMEM; 10401 goto unlock; 10402 } 10403 10404 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 10405 link->dev = dev; 10406 link->flags = attr->link_create.flags; 10407 10408 err = bpf_link_prime(&link->link, &link_primer); 10409 if (err) { 10410 kfree(link); 10411 goto unlock; 10412 } 10413 10414 netdev_lock_ops(dev); 10415 err = dev_xdp_attach_link(dev, &extack, link); 10416 netdev_unlock_ops(dev); 10417 rtnl_unlock(); 10418 10419 if (err) { 10420 link->dev = NULL; 10421 bpf_link_cleanup(&link_primer); 10422 trace_bpf_xdp_link_attach_failed(extack._msg); 10423 goto out_put_dev; 10424 } 10425 10426 fd = bpf_link_settle(&link_primer); 10427 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10428 dev_put(dev); 10429 return fd; 10430 10431 unlock: 10432 rtnl_unlock(); 10433 10434 out_put_dev: 10435 dev_put(dev); 10436 return err; 10437 } 10438 10439 /** 10440 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10441 * @dev: device 10442 * @extack: netlink extended ack 10443 * @fd: new program fd or negative value to clear 10444 * @expected_fd: old program fd that userspace expects to replace or clear 10445 * @flags: xdp-related flags 10446 * 10447 * Set or clear a bpf program for a device 10448 */ 10449 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10450 int fd, int expected_fd, u32 flags) 10451 { 10452 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10453 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10454 int err; 10455 10456 ASSERT_RTNL(); 10457 10458 if (fd >= 0) { 10459 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10460 mode != XDP_MODE_SKB); 10461 if (IS_ERR(new_prog)) 10462 return PTR_ERR(new_prog); 10463 } 10464 10465 if (expected_fd >= 0) { 10466 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10467 mode != XDP_MODE_SKB); 10468 if (IS_ERR(old_prog)) { 10469 err = PTR_ERR(old_prog); 10470 old_prog = NULL; 10471 goto err_out; 10472 } 10473 } 10474 10475 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10476 10477 err_out: 10478 if (err && new_prog) 10479 bpf_prog_put(new_prog); 10480 if (old_prog) 10481 bpf_prog_put(old_prog); 10482 return err; 10483 } 10484 10485 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10486 { 10487 int i; 10488 10489 netdev_ops_assert_locked(dev); 10490 10491 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10492 if (dev->_rx[i].mp_params.mp_priv) 10493 /* The channel count is the idx plus 1. */ 10494 return i + 1; 10495 10496 return 0; 10497 } 10498 10499 /** 10500 * dev_index_reserve() - allocate an ifindex in a namespace 10501 * @net: the applicable net namespace 10502 * @ifindex: requested ifindex, pass %0 to get one allocated 10503 * 10504 * Allocate a ifindex for a new device. Caller must either use the ifindex 10505 * to store the device (via list_netdevice()) or call dev_index_release() 10506 * to give the index up. 10507 * 10508 * Return: a suitable unique value for a new device interface number or -errno. 10509 */ 10510 static int dev_index_reserve(struct net *net, u32 ifindex) 10511 { 10512 int err; 10513 10514 if (ifindex > INT_MAX) { 10515 DEBUG_NET_WARN_ON_ONCE(1); 10516 return -EINVAL; 10517 } 10518 10519 if (!ifindex) 10520 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10521 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10522 else 10523 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10524 if (err < 0) 10525 return err; 10526 10527 return ifindex; 10528 } 10529 10530 static void dev_index_release(struct net *net, int ifindex) 10531 { 10532 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10533 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10534 } 10535 10536 static bool from_cleanup_net(void) 10537 { 10538 #ifdef CONFIG_NET_NS 10539 return current == READ_ONCE(cleanup_net_task); 10540 #else 10541 return false; 10542 #endif 10543 } 10544 10545 /* Delayed registration/unregisteration */ 10546 LIST_HEAD(net_todo_list); 10547 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10548 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10549 10550 static void net_set_todo(struct net_device *dev) 10551 { 10552 list_add_tail(&dev->todo_list, &net_todo_list); 10553 } 10554 10555 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10556 struct net_device *upper, netdev_features_t features) 10557 { 10558 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10559 netdev_features_t feature; 10560 int feature_bit; 10561 10562 for_each_netdev_feature(upper_disables, feature_bit) { 10563 feature = __NETIF_F_BIT(feature_bit); 10564 if (!(upper->wanted_features & feature) 10565 && (features & feature)) { 10566 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10567 &feature, upper->name); 10568 features &= ~feature; 10569 } 10570 } 10571 10572 return features; 10573 } 10574 10575 static void netdev_sync_lower_features(struct net_device *upper, 10576 struct net_device *lower, netdev_features_t features) 10577 { 10578 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10579 netdev_features_t feature; 10580 int feature_bit; 10581 10582 for_each_netdev_feature(upper_disables, feature_bit) { 10583 feature = __NETIF_F_BIT(feature_bit); 10584 if (!(features & feature) && (lower->features & feature)) { 10585 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10586 &feature, lower->name); 10587 netdev_lock_ops(lower); 10588 lower->wanted_features &= ~feature; 10589 __netdev_update_features(lower); 10590 10591 if (unlikely(lower->features & feature)) 10592 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10593 &feature, lower->name); 10594 else 10595 netdev_features_change(lower); 10596 netdev_unlock_ops(lower); 10597 } 10598 } 10599 } 10600 10601 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10602 { 10603 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10604 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10605 bool hw_csum = features & NETIF_F_HW_CSUM; 10606 10607 return ip_csum || hw_csum; 10608 } 10609 10610 static netdev_features_t netdev_fix_features(struct net_device *dev, 10611 netdev_features_t features) 10612 { 10613 /* Fix illegal checksum combinations */ 10614 if ((features & NETIF_F_HW_CSUM) && 10615 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10616 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10617 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10618 } 10619 10620 /* TSO requires that SG is present as well. */ 10621 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10622 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10623 features &= ~NETIF_F_ALL_TSO; 10624 } 10625 10626 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10627 !(features & NETIF_F_IP_CSUM)) { 10628 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10629 features &= ~NETIF_F_TSO; 10630 features &= ~NETIF_F_TSO_ECN; 10631 } 10632 10633 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10634 !(features & NETIF_F_IPV6_CSUM)) { 10635 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10636 features &= ~NETIF_F_TSO6; 10637 } 10638 10639 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10640 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10641 features &= ~NETIF_F_TSO_MANGLEID; 10642 10643 /* TSO ECN requires that TSO is present as well. */ 10644 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10645 features &= ~NETIF_F_TSO_ECN; 10646 10647 /* Software GSO depends on SG. */ 10648 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10649 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10650 features &= ~NETIF_F_GSO; 10651 } 10652 10653 /* GSO partial features require GSO partial be set */ 10654 if ((features & dev->gso_partial_features) && 10655 !(features & NETIF_F_GSO_PARTIAL)) { 10656 netdev_dbg(dev, 10657 "Dropping partially supported GSO features since no GSO partial.\n"); 10658 features &= ~dev->gso_partial_features; 10659 } 10660 10661 if (!(features & NETIF_F_RXCSUM)) { 10662 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10663 * successfully merged by hardware must also have the 10664 * checksum verified by hardware. If the user does not 10665 * want to enable RXCSUM, logically, we should disable GRO_HW. 10666 */ 10667 if (features & NETIF_F_GRO_HW) { 10668 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10669 features &= ~NETIF_F_GRO_HW; 10670 } 10671 } 10672 10673 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10674 if (features & NETIF_F_RXFCS) { 10675 if (features & NETIF_F_LRO) { 10676 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10677 features &= ~NETIF_F_LRO; 10678 } 10679 10680 if (features & NETIF_F_GRO_HW) { 10681 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10682 features &= ~NETIF_F_GRO_HW; 10683 } 10684 } 10685 10686 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10687 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10688 features &= ~NETIF_F_LRO; 10689 } 10690 10691 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10692 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10693 features &= ~NETIF_F_HW_TLS_TX; 10694 } 10695 10696 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10697 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10698 features &= ~NETIF_F_HW_TLS_RX; 10699 } 10700 10701 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10702 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10703 features &= ~NETIF_F_GSO_UDP_L4; 10704 } 10705 10706 return features; 10707 } 10708 10709 int __netdev_update_features(struct net_device *dev) 10710 { 10711 struct net_device *upper, *lower; 10712 netdev_features_t features; 10713 struct list_head *iter; 10714 int err = -1; 10715 10716 ASSERT_RTNL(); 10717 netdev_ops_assert_locked(dev); 10718 10719 features = netdev_get_wanted_features(dev); 10720 10721 if (dev->netdev_ops->ndo_fix_features) 10722 features = dev->netdev_ops->ndo_fix_features(dev, features); 10723 10724 /* driver might be less strict about feature dependencies */ 10725 features = netdev_fix_features(dev, features); 10726 10727 /* some features can't be enabled if they're off on an upper device */ 10728 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10729 features = netdev_sync_upper_features(dev, upper, features); 10730 10731 if (dev->features == features) 10732 goto sync_lower; 10733 10734 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10735 &dev->features, &features); 10736 10737 if (dev->netdev_ops->ndo_set_features) 10738 err = dev->netdev_ops->ndo_set_features(dev, features); 10739 else 10740 err = 0; 10741 10742 if (unlikely(err < 0)) { 10743 netdev_err(dev, 10744 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10745 err, &features, &dev->features); 10746 /* return non-0 since some features might have changed and 10747 * it's better to fire a spurious notification than miss it 10748 */ 10749 return -1; 10750 } 10751 10752 sync_lower: 10753 /* some features must be disabled on lower devices when disabled 10754 * on an upper device (think: bonding master or bridge) 10755 */ 10756 netdev_for_each_lower_dev(dev, lower, iter) 10757 netdev_sync_lower_features(dev, lower, features); 10758 10759 if (!err) { 10760 netdev_features_t diff = features ^ dev->features; 10761 10762 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10763 /* udp_tunnel_{get,drop}_rx_info both need 10764 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10765 * device, or they won't do anything. 10766 * Thus we need to update dev->features 10767 * *before* calling udp_tunnel_get_rx_info, 10768 * but *after* calling udp_tunnel_drop_rx_info. 10769 */ 10770 udp_tunnel_nic_lock(dev); 10771 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10772 dev->features = features; 10773 udp_tunnel_get_rx_info(dev); 10774 } else { 10775 udp_tunnel_drop_rx_info(dev); 10776 } 10777 udp_tunnel_nic_unlock(dev); 10778 } 10779 10780 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10781 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10782 dev->features = features; 10783 err |= vlan_get_rx_ctag_filter_info(dev); 10784 } else { 10785 vlan_drop_rx_ctag_filter_info(dev); 10786 } 10787 } 10788 10789 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10790 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10791 dev->features = features; 10792 err |= vlan_get_rx_stag_filter_info(dev); 10793 } else { 10794 vlan_drop_rx_stag_filter_info(dev); 10795 } 10796 } 10797 10798 dev->features = features; 10799 } 10800 10801 return err < 0 ? 0 : 1; 10802 } 10803 10804 /** 10805 * netdev_update_features - recalculate device features 10806 * @dev: the device to check 10807 * 10808 * Recalculate dev->features set and send notifications if it 10809 * has changed. Should be called after driver or hardware dependent 10810 * conditions might have changed that influence the features. 10811 */ 10812 void netdev_update_features(struct net_device *dev) 10813 { 10814 if (__netdev_update_features(dev)) 10815 netdev_features_change(dev); 10816 } 10817 EXPORT_SYMBOL(netdev_update_features); 10818 10819 /** 10820 * netdev_change_features - recalculate device features 10821 * @dev: the device to check 10822 * 10823 * Recalculate dev->features set and send notifications even 10824 * if they have not changed. Should be called instead of 10825 * netdev_update_features() if also dev->vlan_features might 10826 * have changed to allow the changes to be propagated to stacked 10827 * VLAN devices. 10828 */ 10829 void netdev_change_features(struct net_device *dev) 10830 { 10831 __netdev_update_features(dev); 10832 netdev_features_change(dev); 10833 } 10834 EXPORT_SYMBOL(netdev_change_features); 10835 10836 /** 10837 * netif_stacked_transfer_operstate - transfer operstate 10838 * @rootdev: the root or lower level device to transfer state from 10839 * @dev: the device to transfer operstate to 10840 * 10841 * Transfer operational state from root to device. This is normally 10842 * called when a stacking relationship exists between the root 10843 * device and the device(a leaf device). 10844 */ 10845 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10846 struct net_device *dev) 10847 { 10848 if (rootdev->operstate == IF_OPER_DORMANT) 10849 netif_dormant_on(dev); 10850 else 10851 netif_dormant_off(dev); 10852 10853 if (rootdev->operstate == IF_OPER_TESTING) 10854 netif_testing_on(dev); 10855 else 10856 netif_testing_off(dev); 10857 10858 if (netif_carrier_ok(rootdev)) 10859 netif_carrier_on(dev); 10860 else 10861 netif_carrier_off(dev); 10862 } 10863 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10864 10865 static int netif_alloc_rx_queues(struct net_device *dev) 10866 { 10867 unsigned int i, count = dev->num_rx_queues; 10868 struct netdev_rx_queue *rx; 10869 size_t sz = count * sizeof(*rx); 10870 int err = 0; 10871 10872 BUG_ON(count < 1); 10873 10874 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10875 if (!rx) 10876 return -ENOMEM; 10877 10878 dev->_rx = rx; 10879 10880 for (i = 0; i < count; i++) { 10881 rx[i].dev = dev; 10882 10883 /* XDP RX-queue setup */ 10884 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10885 if (err < 0) 10886 goto err_rxq_info; 10887 } 10888 return 0; 10889 10890 err_rxq_info: 10891 /* Rollback successful reg's and free other resources */ 10892 while (i--) 10893 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10894 kvfree(dev->_rx); 10895 dev->_rx = NULL; 10896 return err; 10897 } 10898 10899 static void netif_free_rx_queues(struct net_device *dev) 10900 { 10901 unsigned int i, count = dev->num_rx_queues; 10902 10903 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10904 if (!dev->_rx) 10905 return; 10906 10907 for (i = 0; i < count; i++) 10908 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10909 10910 kvfree(dev->_rx); 10911 } 10912 10913 static void netdev_init_one_queue(struct net_device *dev, 10914 struct netdev_queue *queue, void *_unused) 10915 { 10916 /* Initialize queue lock */ 10917 spin_lock_init(&queue->_xmit_lock); 10918 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10919 queue->xmit_lock_owner = -1; 10920 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10921 queue->dev = dev; 10922 #ifdef CONFIG_BQL 10923 dql_init(&queue->dql, HZ); 10924 #endif 10925 } 10926 10927 static void netif_free_tx_queues(struct net_device *dev) 10928 { 10929 kvfree(dev->_tx); 10930 } 10931 10932 static int netif_alloc_netdev_queues(struct net_device *dev) 10933 { 10934 unsigned int count = dev->num_tx_queues; 10935 struct netdev_queue *tx; 10936 size_t sz = count * sizeof(*tx); 10937 10938 if (count < 1 || count > 0xffff) 10939 return -EINVAL; 10940 10941 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10942 if (!tx) 10943 return -ENOMEM; 10944 10945 dev->_tx = tx; 10946 10947 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10948 spin_lock_init(&dev->tx_global_lock); 10949 10950 return 0; 10951 } 10952 10953 void netif_tx_stop_all_queues(struct net_device *dev) 10954 { 10955 unsigned int i; 10956 10957 for (i = 0; i < dev->num_tx_queues; i++) { 10958 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10959 10960 netif_tx_stop_queue(txq); 10961 } 10962 } 10963 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10964 10965 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10966 { 10967 void __percpu *v; 10968 10969 /* Drivers implementing ndo_get_peer_dev must support tstat 10970 * accounting, so that skb_do_redirect() can bump the dev's 10971 * RX stats upon network namespace switch. 10972 */ 10973 if (dev->netdev_ops->ndo_get_peer_dev && 10974 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10975 return -EOPNOTSUPP; 10976 10977 switch (dev->pcpu_stat_type) { 10978 case NETDEV_PCPU_STAT_NONE: 10979 return 0; 10980 case NETDEV_PCPU_STAT_LSTATS: 10981 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10982 break; 10983 case NETDEV_PCPU_STAT_TSTATS: 10984 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10985 break; 10986 case NETDEV_PCPU_STAT_DSTATS: 10987 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10988 break; 10989 default: 10990 return -EINVAL; 10991 } 10992 10993 return v ? 0 : -ENOMEM; 10994 } 10995 10996 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10997 { 10998 switch (dev->pcpu_stat_type) { 10999 case NETDEV_PCPU_STAT_NONE: 11000 return; 11001 case NETDEV_PCPU_STAT_LSTATS: 11002 free_percpu(dev->lstats); 11003 break; 11004 case NETDEV_PCPU_STAT_TSTATS: 11005 free_percpu(dev->tstats); 11006 break; 11007 case NETDEV_PCPU_STAT_DSTATS: 11008 free_percpu(dev->dstats); 11009 break; 11010 } 11011 } 11012 11013 static void netdev_free_phy_link_topology(struct net_device *dev) 11014 { 11015 struct phy_link_topology *topo = dev->link_topo; 11016 11017 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 11018 xa_destroy(&topo->phys); 11019 kfree(topo); 11020 dev->link_topo = NULL; 11021 } 11022 } 11023 11024 /** 11025 * register_netdevice() - register a network device 11026 * @dev: device to register 11027 * 11028 * Take a prepared network device structure and make it externally accessible. 11029 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 11030 * Callers must hold the rtnl lock - you may want register_netdev() 11031 * instead of this. 11032 */ 11033 int register_netdevice(struct net_device *dev) 11034 { 11035 int ret; 11036 struct net *net = dev_net(dev); 11037 11038 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 11039 NETDEV_FEATURE_COUNT); 11040 BUG_ON(dev_boot_phase); 11041 ASSERT_RTNL(); 11042 11043 might_sleep(); 11044 11045 /* When net_device's are persistent, this will be fatal. */ 11046 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 11047 BUG_ON(!net); 11048 11049 ret = ethtool_check_ops(dev->ethtool_ops); 11050 if (ret) 11051 return ret; 11052 11053 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 11054 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 11055 mutex_init(&dev->ethtool->rss_lock); 11056 11057 spin_lock_init(&dev->addr_list_lock); 11058 netdev_set_addr_lockdep_class(dev); 11059 11060 ret = dev_get_valid_name(net, dev, dev->name); 11061 if (ret < 0) 11062 goto out; 11063 11064 ret = -ENOMEM; 11065 dev->name_node = netdev_name_node_head_alloc(dev); 11066 if (!dev->name_node) 11067 goto out; 11068 11069 /* Init, if this function is available */ 11070 if (dev->netdev_ops->ndo_init) { 11071 ret = dev->netdev_ops->ndo_init(dev); 11072 if (ret) { 11073 if (ret > 0) 11074 ret = -EIO; 11075 goto err_free_name; 11076 } 11077 } 11078 11079 if (((dev->hw_features | dev->features) & 11080 NETIF_F_HW_VLAN_CTAG_FILTER) && 11081 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11082 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11083 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11084 ret = -EINVAL; 11085 goto err_uninit; 11086 } 11087 11088 ret = netdev_do_alloc_pcpu_stats(dev); 11089 if (ret) 11090 goto err_uninit; 11091 11092 ret = dev_index_reserve(net, dev->ifindex); 11093 if (ret < 0) 11094 goto err_free_pcpu; 11095 dev->ifindex = ret; 11096 11097 /* Transfer changeable features to wanted_features and enable 11098 * software offloads (GSO and GRO). 11099 */ 11100 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11101 dev->features |= NETIF_F_SOFT_FEATURES; 11102 11103 if (dev->udp_tunnel_nic_info) { 11104 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11105 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11106 } 11107 11108 dev->wanted_features = dev->features & dev->hw_features; 11109 11110 if (!(dev->flags & IFF_LOOPBACK)) 11111 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11112 11113 /* If IPv4 TCP segmentation offload is supported we should also 11114 * allow the device to enable segmenting the frame with the option 11115 * of ignoring a static IP ID value. This doesn't enable the 11116 * feature itself but allows the user to enable it later. 11117 */ 11118 if (dev->hw_features & NETIF_F_TSO) 11119 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11120 if (dev->vlan_features & NETIF_F_TSO) 11121 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11122 if (dev->mpls_features & NETIF_F_TSO) 11123 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11124 if (dev->hw_enc_features & NETIF_F_TSO) 11125 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11126 11127 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11128 */ 11129 dev->vlan_features |= NETIF_F_HIGHDMA; 11130 11131 /* Make NETIF_F_SG inheritable to tunnel devices. 11132 */ 11133 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11134 11135 /* Make NETIF_F_SG inheritable to MPLS. 11136 */ 11137 dev->mpls_features |= NETIF_F_SG; 11138 11139 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11140 ret = notifier_to_errno(ret); 11141 if (ret) 11142 goto err_ifindex_release; 11143 11144 ret = netdev_register_kobject(dev); 11145 11146 netdev_lock(dev); 11147 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11148 netdev_unlock(dev); 11149 11150 if (ret) 11151 goto err_uninit_notify; 11152 11153 netdev_lock_ops(dev); 11154 __netdev_update_features(dev); 11155 netdev_unlock_ops(dev); 11156 11157 /* 11158 * Default initial state at registry is that the 11159 * device is present. 11160 */ 11161 11162 set_bit(__LINK_STATE_PRESENT, &dev->state); 11163 11164 linkwatch_init_dev(dev); 11165 11166 dev_init_scheduler(dev); 11167 11168 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11169 list_netdevice(dev); 11170 11171 add_device_randomness(dev->dev_addr, dev->addr_len); 11172 11173 /* If the device has permanent device address, driver should 11174 * set dev_addr and also addr_assign_type should be set to 11175 * NET_ADDR_PERM (default value). 11176 */ 11177 if (dev->addr_assign_type == NET_ADDR_PERM) 11178 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11179 11180 /* Notify protocols, that a new device appeared. */ 11181 netdev_lock_ops(dev); 11182 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11183 netdev_unlock_ops(dev); 11184 ret = notifier_to_errno(ret); 11185 if (ret) { 11186 /* Expect explicit free_netdev() on failure */ 11187 dev->needs_free_netdev = false; 11188 unregister_netdevice_queue(dev, NULL); 11189 goto out; 11190 } 11191 /* 11192 * Prevent userspace races by waiting until the network 11193 * device is fully setup before sending notifications. 11194 */ 11195 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 11196 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11197 11198 out: 11199 return ret; 11200 11201 err_uninit_notify: 11202 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11203 err_ifindex_release: 11204 dev_index_release(net, dev->ifindex); 11205 err_free_pcpu: 11206 netdev_do_free_pcpu_stats(dev); 11207 err_uninit: 11208 if (dev->netdev_ops->ndo_uninit) 11209 dev->netdev_ops->ndo_uninit(dev); 11210 if (dev->priv_destructor) 11211 dev->priv_destructor(dev); 11212 err_free_name: 11213 netdev_name_node_free(dev->name_node); 11214 goto out; 11215 } 11216 EXPORT_SYMBOL(register_netdevice); 11217 11218 /* Initialize the core of a dummy net device. 11219 * The setup steps dummy netdevs need which normal netdevs get by going 11220 * through register_netdevice(). 11221 */ 11222 static void init_dummy_netdev(struct net_device *dev) 11223 { 11224 /* make sure we BUG if trying to hit standard 11225 * register/unregister code path 11226 */ 11227 dev->reg_state = NETREG_DUMMY; 11228 11229 /* a dummy interface is started by default */ 11230 set_bit(__LINK_STATE_PRESENT, &dev->state); 11231 set_bit(__LINK_STATE_START, &dev->state); 11232 11233 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11234 * because users of this 'device' dont need to change 11235 * its refcount. 11236 */ 11237 } 11238 11239 /** 11240 * register_netdev - register a network device 11241 * @dev: device to register 11242 * 11243 * Take a completed network device structure and add it to the kernel 11244 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11245 * chain. 0 is returned on success. A negative errno code is returned 11246 * on a failure to set up the device, or if the name is a duplicate. 11247 * 11248 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11249 * and expands the device name if you passed a format string to 11250 * alloc_netdev. 11251 */ 11252 int register_netdev(struct net_device *dev) 11253 { 11254 struct net *net = dev_net(dev); 11255 int err; 11256 11257 if (rtnl_net_lock_killable(net)) 11258 return -EINTR; 11259 11260 err = register_netdevice(dev); 11261 11262 rtnl_net_unlock(net); 11263 11264 return err; 11265 } 11266 EXPORT_SYMBOL(register_netdev); 11267 11268 int netdev_refcnt_read(const struct net_device *dev) 11269 { 11270 #ifdef CONFIG_PCPU_DEV_REFCNT 11271 int i, refcnt = 0; 11272 11273 for_each_possible_cpu(i) 11274 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11275 return refcnt; 11276 #else 11277 return refcount_read(&dev->dev_refcnt); 11278 #endif 11279 } 11280 EXPORT_SYMBOL(netdev_refcnt_read); 11281 11282 int netdev_unregister_timeout_secs __read_mostly = 10; 11283 11284 #define WAIT_REFS_MIN_MSECS 1 11285 #define WAIT_REFS_MAX_MSECS 250 11286 /** 11287 * netdev_wait_allrefs_any - wait until all references are gone. 11288 * @list: list of net_devices to wait on 11289 * 11290 * This is called when unregistering network devices. 11291 * 11292 * Any protocol or device that holds a reference should register 11293 * for netdevice notification, and cleanup and put back the 11294 * reference if they receive an UNREGISTER event. 11295 * We can get stuck here if buggy protocols don't correctly 11296 * call dev_put. 11297 */ 11298 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11299 { 11300 unsigned long rebroadcast_time, warning_time; 11301 struct net_device *dev; 11302 int wait = 0; 11303 11304 rebroadcast_time = warning_time = jiffies; 11305 11306 list_for_each_entry(dev, list, todo_list) 11307 if (netdev_refcnt_read(dev) == 1) 11308 return dev; 11309 11310 while (true) { 11311 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11312 rtnl_lock(); 11313 11314 /* Rebroadcast unregister notification */ 11315 list_for_each_entry(dev, list, todo_list) 11316 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11317 11318 __rtnl_unlock(); 11319 rcu_barrier(); 11320 rtnl_lock(); 11321 11322 list_for_each_entry(dev, list, todo_list) 11323 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11324 &dev->state)) { 11325 /* We must not have linkwatch events 11326 * pending on unregister. If this 11327 * happens, we simply run the queue 11328 * unscheduled, resulting in a noop 11329 * for this device. 11330 */ 11331 linkwatch_run_queue(); 11332 break; 11333 } 11334 11335 __rtnl_unlock(); 11336 11337 rebroadcast_time = jiffies; 11338 } 11339 11340 rcu_barrier(); 11341 11342 if (!wait) { 11343 wait = WAIT_REFS_MIN_MSECS; 11344 } else { 11345 msleep(wait); 11346 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11347 } 11348 11349 list_for_each_entry(dev, list, todo_list) 11350 if (netdev_refcnt_read(dev) == 1) 11351 return dev; 11352 11353 if (time_after(jiffies, warning_time + 11354 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11355 list_for_each_entry(dev, list, todo_list) { 11356 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11357 dev->name, netdev_refcnt_read(dev)); 11358 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11359 } 11360 11361 warning_time = jiffies; 11362 } 11363 } 11364 } 11365 11366 /* The sequence is: 11367 * 11368 * rtnl_lock(); 11369 * ... 11370 * register_netdevice(x1); 11371 * register_netdevice(x2); 11372 * ... 11373 * unregister_netdevice(y1); 11374 * unregister_netdevice(y2); 11375 * ... 11376 * rtnl_unlock(); 11377 * free_netdev(y1); 11378 * free_netdev(y2); 11379 * 11380 * We are invoked by rtnl_unlock(). 11381 * This allows us to deal with problems: 11382 * 1) We can delete sysfs objects which invoke hotplug 11383 * without deadlocking with linkwatch via keventd. 11384 * 2) Since we run with the RTNL semaphore not held, we can sleep 11385 * safely in order to wait for the netdev refcnt to drop to zero. 11386 * 11387 * We must not return until all unregister events added during 11388 * the interval the lock was held have been completed. 11389 */ 11390 void netdev_run_todo(void) 11391 { 11392 struct net_device *dev, *tmp; 11393 struct list_head list; 11394 int cnt; 11395 #ifdef CONFIG_LOCKDEP 11396 struct list_head unlink_list; 11397 11398 list_replace_init(&net_unlink_list, &unlink_list); 11399 11400 while (!list_empty(&unlink_list)) { 11401 dev = list_first_entry(&unlink_list, struct net_device, 11402 unlink_list); 11403 list_del_init(&dev->unlink_list); 11404 dev->nested_level = dev->lower_level - 1; 11405 } 11406 #endif 11407 11408 /* Snapshot list, allow later requests */ 11409 list_replace_init(&net_todo_list, &list); 11410 11411 __rtnl_unlock(); 11412 11413 /* Wait for rcu callbacks to finish before next phase */ 11414 if (!list_empty(&list)) 11415 rcu_barrier(); 11416 11417 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11418 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11419 netdev_WARN(dev, "run_todo but not unregistering\n"); 11420 list_del(&dev->todo_list); 11421 continue; 11422 } 11423 11424 netdev_lock(dev); 11425 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11426 netdev_unlock(dev); 11427 linkwatch_sync_dev(dev); 11428 } 11429 11430 cnt = 0; 11431 while (!list_empty(&list)) { 11432 dev = netdev_wait_allrefs_any(&list); 11433 list_del(&dev->todo_list); 11434 11435 /* paranoia */ 11436 BUG_ON(netdev_refcnt_read(dev) != 1); 11437 BUG_ON(!list_empty(&dev->ptype_all)); 11438 BUG_ON(!list_empty(&dev->ptype_specific)); 11439 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11440 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11441 11442 netdev_do_free_pcpu_stats(dev); 11443 if (dev->priv_destructor) 11444 dev->priv_destructor(dev); 11445 if (dev->needs_free_netdev) 11446 free_netdev(dev); 11447 11448 cnt++; 11449 11450 /* Free network device */ 11451 kobject_put(&dev->dev.kobj); 11452 } 11453 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11454 wake_up(&netdev_unregistering_wq); 11455 } 11456 11457 /* Collate per-cpu network dstats statistics 11458 * 11459 * Read per-cpu network statistics from dev->dstats and populate the related 11460 * fields in @s. 11461 */ 11462 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11463 const struct pcpu_dstats __percpu *dstats) 11464 { 11465 int cpu; 11466 11467 for_each_possible_cpu(cpu) { 11468 u64 rx_packets, rx_bytes, rx_drops; 11469 u64 tx_packets, tx_bytes, tx_drops; 11470 const struct pcpu_dstats *stats; 11471 unsigned int start; 11472 11473 stats = per_cpu_ptr(dstats, cpu); 11474 do { 11475 start = u64_stats_fetch_begin(&stats->syncp); 11476 rx_packets = u64_stats_read(&stats->rx_packets); 11477 rx_bytes = u64_stats_read(&stats->rx_bytes); 11478 rx_drops = u64_stats_read(&stats->rx_drops); 11479 tx_packets = u64_stats_read(&stats->tx_packets); 11480 tx_bytes = u64_stats_read(&stats->tx_bytes); 11481 tx_drops = u64_stats_read(&stats->tx_drops); 11482 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11483 11484 s->rx_packets += rx_packets; 11485 s->rx_bytes += rx_bytes; 11486 s->rx_dropped += rx_drops; 11487 s->tx_packets += tx_packets; 11488 s->tx_bytes += tx_bytes; 11489 s->tx_dropped += tx_drops; 11490 } 11491 } 11492 11493 /* ndo_get_stats64 implementation for dtstats-based accounting. 11494 * 11495 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11496 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11497 */ 11498 static void dev_get_dstats64(const struct net_device *dev, 11499 struct rtnl_link_stats64 *s) 11500 { 11501 netdev_stats_to_stats64(s, &dev->stats); 11502 dev_fetch_dstats(s, dev->dstats); 11503 } 11504 11505 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11506 * all the same fields in the same order as net_device_stats, with only 11507 * the type differing, but rtnl_link_stats64 may have additional fields 11508 * at the end for newer counters. 11509 */ 11510 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11511 const struct net_device_stats *netdev_stats) 11512 { 11513 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11514 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11515 u64 *dst = (u64 *)stats64; 11516 11517 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11518 for (i = 0; i < n; i++) 11519 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11520 /* zero out counters that only exist in rtnl_link_stats64 */ 11521 memset((char *)stats64 + n * sizeof(u64), 0, 11522 sizeof(*stats64) - n * sizeof(u64)); 11523 } 11524 EXPORT_SYMBOL(netdev_stats_to_stats64); 11525 11526 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11527 struct net_device *dev) 11528 { 11529 struct net_device_core_stats __percpu *p; 11530 11531 p = alloc_percpu_gfp(struct net_device_core_stats, 11532 GFP_ATOMIC | __GFP_NOWARN); 11533 11534 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11535 free_percpu(p); 11536 11537 /* This READ_ONCE() pairs with the cmpxchg() above */ 11538 return READ_ONCE(dev->core_stats); 11539 } 11540 11541 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11542 { 11543 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11544 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11545 unsigned long __percpu *field; 11546 11547 if (unlikely(!p)) { 11548 p = netdev_core_stats_alloc(dev); 11549 if (!p) 11550 return; 11551 } 11552 11553 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11554 this_cpu_inc(*field); 11555 } 11556 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11557 11558 /** 11559 * dev_get_stats - get network device statistics 11560 * @dev: device to get statistics from 11561 * @storage: place to store stats 11562 * 11563 * Get network statistics from device. Return @storage. 11564 * The device driver may provide its own method by setting 11565 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11566 * otherwise the internal statistics structure is used. 11567 */ 11568 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11569 struct rtnl_link_stats64 *storage) 11570 { 11571 const struct net_device_ops *ops = dev->netdev_ops; 11572 const struct net_device_core_stats __percpu *p; 11573 11574 /* 11575 * IPv{4,6} and udp tunnels share common stat helpers and use 11576 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11577 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11578 */ 11579 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11580 offsetof(struct pcpu_dstats, rx_bytes)); 11581 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11582 offsetof(struct pcpu_dstats, rx_packets)); 11583 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11584 offsetof(struct pcpu_dstats, tx_bytes)); 11585 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11586 offsetof(struct pcpu_dstats, tx_packets)); 11587 11588 if (ops->ndo_get_stats64) { 11589 memset(storage, 0, sizeof(*storage)); 11590 ops->ndo_get_stats64(dev, storage); 11591 } else if (ops->ndo_get_stats) { 11592 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11593 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11594 dev_get_tstats64(dev, storage); 11595 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11596 dev_get_dstats64(dev, storage); 11597 } else { 11598 netdev_stats_to_stats64(storage, &dev->stats); 11599 } 11600 11601 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11602 p = READ_ONCE(dev->core_stats); 11603 if (p) { 11604 const struct net_device_core_stats *core_stats; 11605 int i; 11606 11607 for_each_possible_cpu(i) { 11608 core_stats = per_cpu_ptr(p, i); 11609 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11610 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11611 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11612 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11613 } 11614 } 11615 return storage; 11616 } 11617 EXPORT_SYMBOL(dev_get_stats); 11618 11619 /** 11620 * dev_fetch_sw_netstats - get per-cpu network device statistics 11621 * @s: place to store stats 11622 * @netstats: per-cpu network stats to read from 11623 * 11624 * Read per-cpu network statistics and populate the related fields in @s. 11625 */ 11626 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11627 const struct pcpu_sw_netstats __percpu *netstats) 11628 { 11629 int cpu; 11630 11631 for_each_possible_cpu(cpu) { 11632 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11633 const struct pcpu_sw_netstats *stats; 11634 unsigned int start; 11635 11636 stats = per_cpu_ptr(netstats, cpu); 11637 do { 11638 start = u64_stats_fetch_begin(&stats->syncp); 11639 rx_packets = u64_stats_read(&stats->rx_packets); 11640 rx_bytes = u64_stats_read(&stats->rx_bytes); 11641 tx_packets = u64_stats_read(&stats->tx_packets); 11642 tx_bytes = u64_stats_read(&stats->tx_bytes); 11643 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11644 11645 s->rx_packets += rx_packets; 11646 s->rx_bytes += rx_bytes; 11647 s->tx_packets += tx_packets; 11648 s->tx_bytes += tx_bytes; 11649 } 11650 } 11651 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11652 11653 /** 11654 * dev_get_tstats64 - ndo_get_stats64 implementation 11655 * @dev: device to get statistics from 11656 * @s: place to store stats 11657 * 11658 * Populate @s from dev->stats and dev->tstats. Can be used as 11659 * ndo_get_stats64() callback. 11660 */ 11661 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11662 { 11663 netdev_stats_to_stats64(s, &dev->stats); 11664 dev_fetch_sw_netstats(s, dev->tstats); 11665 } 11666 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11667 11668 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11669 { 11670 struct netdev_queue *queue = dev_ingress_queue(dev); 11671 11672 #ifdef CONFIG_NET_CLS_ACT 11673 if (queue) 11674 return queue; 11675 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11676 if (!queue) 11677 return NULL; 11678 netdev_init_one_queue(dev, queue, NULL); 11679 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11680 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11681 rcu_assign_pointer(dev->ingress_queue, queue); 11682 #endif 11683 return queue; 11684 } 11685 11686 static const struct ethtool_ops default_ethtool_ops; 11687 11688 void netdev_set_default_ethtool_ops(struct net_device *dev, 11689 const struct ethtool_ops *ops) 11690 { 11691 if (dev->ethtool_ops == &default_ethtool_ops) 11692 dev->ethtool_ops = ops; 11693 } 11694 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11695 11696 /** 11697 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11698 * @dev: netdev to enable the IRQ coalescing on 11699 * 11700 * Sets a conservative default for SW IRQ coalescing. Users can use 11701 * sysfs attributes to override the default values. 11702 */ 11703 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11704 { 11705 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11706 11707 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11708 netdev_set_gro_flush_timeout(dev, 20000); 11709 netdev_set_defer_hard_irqs(dev, 1); 11710 } 11711 } 11712 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11713 11714 /** 11715 * alloc_netdev_mqs - allocate network device 11716 * @sizeof_priv: size of private data to allocate space for 11717 * @name: device name format string 11718 * @name_assign_type: origin of device name 11719 * @setup: callback to initialize device 11720 * @txqs: the number of TX subqueues to allocate 11721 * @rxqs: the number of RX subqueues to allocate 11722 * 11723 * Allocates a struct net_device with private data area for driver use 11724 * and performs basic initialization. Also allocates subqueue structs 11725 * for each queue on the device. 11726 */ 11727 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11728 unsigned char name_assign_type, 11729 void (*setup)(struct net_device *), 11730 unsigned int txqs, unsigned int rxqs) 11731 { 11732 struct net_device *dev; 11733 size_t napi_config_sz; 11734 unsigned int maxqs; 11735 11736 BUG_ON(strlen(name) >= sizeof(dev->name)); 11737 11738 if (txqs < 1) { 11739 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11740 return NULL; 11741 } 11742 11743 if (rxqs < 1) { 11744 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11745 return NULL; 11746 } 11747 11748 maxqs = max(txqs, rxqs); 11749 11750 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11751 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11752 if (!dev) 11753 return NULL; 11754 11755 dev->priv_len = sizeof_priv; 11756 11757 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev"); 11758 #ifdef CONFIG_PCPU_DEV_REFCNT 11759 dev->pcpu_refcnt = alloc_percpu(int); 11760 if (!dev->pcpu_refcnt) 11761 goto free_dev; 11762 __dev_hold(dev); 11763 #else 11764 refcount_set(&dev->dev_refcnt, 1); 11765 #endif 11766 11767 if (dev_addr_init(dev)) 11768 goto free_pcpu; 11769 11770 dev_mc_init(dev); 11771 dev_uc_init(dev); 11772 11773 dev_net_set(dev, &init_net); 11774 11775 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11776 dev->xdp_zc_max_segs = 1; 11777 dev->gso_max_segs = GSO_MAX_SEGS; 11778 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11779 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11780 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11781 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11782 dev->tso_max_segs = TSO_MAX_SEGS; 11783 dev->upper_level = 1; 11784 dev->lower_level = 1; 11785 #ifdef CONFIG_LOCKDEP 11786 dev->nested_level = 0; 11787 INIT_LIST_HEAD(&dev->unlink_list); 11788 #endif 11789 11790 INIT_LIST_HEAD(&dev->napi_list); 11791 INIT_LIST_HEAD(&dev->unreg_list); 11792 INIT_LIST_HEAD(&dev->close_list); 11793 INIT_LIST_HEAD(&dev->link_watch_list); 11794 INIT_LIST_HEAD(&dev->adj_list.upper); 11795 INIT_LIST_HEAD(&dev->adj_list.lower); 11796 INIT_LIST_HEAD(&dev->ptype_all); 11797 INIT_LIST_HEAD(&dev->ptype_specific); 11798 INIT_LIST_HEAD(&dev->net_notifier_list); 11799 #ifdef CONFIG_NET_SCHED 11800 hash_init(dev->qdisc_hash); 11801 #endif 11802 11803 mutex_init(&dev->lock); 11804 11805 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11806 setup(dev); 11807 11808 if (!dev->tx_queue_len) { 11809 dev->priv_flags |= IFF_NO_QUEUE; 11810 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11811 } 11812 11813 dev->num_tx_queues = txqs; 11814 dev->real_num_tx_queues = txqs; 11815 if (netif_alloc_netdev_queues(dev)) 11816 goto free_all; 11817 11818 dev->num_rx_queues = rxqs; 11819 dev->real_num_rx_queues = rxqs; 11820 if (netif_alloc_rx_queues(dev)) 11821 goto free_all; 11822 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11823 if (!dev->ethtool) 11824 goto free_all; 11825 11826 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 11827 if (!dev->cfg) 11828 goto free_all; 11829 dev->cfg_pending = dev->cfg; 11830 11831 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 11832 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 11833 if (!dev->napi_config) 11834 goto free_all; 11835 11836 strscpy(dev->name, name); 11837 dev->name_assign_type = name_assign_type; 11838 dev->group = INIT_NETDEV_GROUP; 11839 if (!dev->ethtool_ops) 11840 dev->ethtool_ops = &default_ethtool_ops; 11841 11842 nf_hook_netdev_init(dev); 11843 11844 return dev; 11845 11846 free_all: 11847 free_netdev(dev); 11848 return NULL; 11849 11850 free_pcpu: 11851 #ifdef CONFIG_PCPU_DEV_REFCNT 11852 free_percpu(dev->pcpu_refcnt); 11853 free_dev: 11854 #endif 11855 kvfree(dev); 11856 return NULL; 11857 } 11858 EXPORT_SYMBOL(alloc_netdev_mqs); 11859 11860 static void netdev_napi_exit(struct net_device *dev) 11861 { 11862 if (!list_empty(&dev->napi_list)) { 11863 struct napi_struct *p, *n; 11864 11865 netdev_lock(dev); 11866 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11867 __netif_napi_del_locked(p); 11868 netdev_unlock(dev); 11869 11870 synchronize_net(); 11871 } 11872 11873 kvfree(dev->napi_config); 11874 } 11875 11876 /** 11877 * free_netdev - free network device 11878 * @dev: device 11879 * 11880 * This function does the last stage of destroying an allocated device 11881 * interface. The reference to the device object is released. If this 11882 * is the last reference then it will be freed.Must be called in process 11883 * context. 11884 */ 11885 void free_netdev(struct net_device *dev) 11886 { 11887 might_sleep(); 11888 11889 /* When called immediately after register_netdevice() failed the unwind 11890 * handling may still be dismantling the device. Handle that case by 11891 * deferring the free. 11892 */ 11893 if (dev->reg_state == NETREG_UNREGISTERING) { 11894 ASSERT_RTNL(); 11895 dev->needs_free_netdev = true; 11896 return; 11897 } 11898 11899 WARN_ON(dev->cfg != dev->cfg_pending); 11900 kfree(dev->cfg); 11901 kfree(dev->ethtool); 11902 netif_free_tx_queues(dev); 11903 netif_free_rx_queues(dev); 11904 11905 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11906 11907 /* Flush device addresses */ 11908 dev_addr_flush(dev); 11909 11910 netdev_napi_exit(dev); 11911 11912 netif_del_cpu_rmap(dev); 11913 11914 ref_tracker_dir_exit(&dev->refcnt_tracker); 11915 #ifdef CONFIG_PCPU_DEV_REFCNT 11916 free_percpu(dev->pcpu_refcnt); 11917 dev->pcpu_refcnt = NULL; 11918 #endif 11919 free_percpu(dev->core_stats); 11920 dev->core_stats = NULL; 11921 free_percpu(dev->xdp_bulkq); 11922 dev->xdp_bulkq = NULL; 11923 11924 netdev_free_phy_link_topology(dev); 11925 11926 mutex_destroy(&dev->lock); 11927 11928 /* Compatibility with error handling in drivers */ 11929 if (dev->reg_state == NETREG_UNINITIALIZED || 11930 dev->reg_state == NETREG_DUMMY) { 11931 kvfree(dev); 11932 return; 11933 } 11934 11935 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11936 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11937 11938 /* will free via device release */ 11939 put_device(&dev->dev); 11940 } 11941 EXPORT_SYMBOL(free_netdev); 11942 11943 /** 11944 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11945 * @sizeof_priv: size of private data to allocate space for 11946 * 11947 * Return: the allocated net_device on success, NULL otherwise 11948 */ 11949 struct net_device *alloc_netdev_dummy(int sizeof_priv) 11950 { 11951 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 11952 init_dummy_netdev); 11953 } 11954 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 11955 11956 /** 11957 * synchronize_net - Synchronize with packet receive processing 11958 * 11959 * Wait for packets currently being received to be done. 11960 * Does not block later packets from starting. 11961 */ 11962 void synchronize_net(void) 11963 { 11964 might_sleep(); 11965 if (from_cleanup_net() || rtnl_is_locked()) 11966 synchronize_rcu_expedited(); 11967 else 11968 synchronize_rcu(); 11969 } 11970 EXPORT_SYMBOL(synchronize_net); 11971 11972 static void netdev_rss_contexts_free(struct net_device *dev) 11973 { 11974 struct ethtool_rxfh_context *ctx; 11975 unsigned long context; 11976 11977 mutex_lock(&dev->ethtool->rss_lock); 11978 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 11979 struct ethtool_rxfh_param rxfh; 11980 11981 rxfh.indir = ethtool_rxfh_context_indir(ctx); 11982 rxfh.key = ethtool_rxfh_context_key(ctx); 11983 rxfh.hfunc = ctx->hfunc; 11984 rxfh.input_xfrm = ctx->input_xfrm; 11985 rxfh.rss_context = context; 11986 rxfh.rss_delete = true; 11987 11988 xa_erase(&dev->ethtool->rss_ctx, context); 11989 if (dev->ethtool_ops->create_rxfh_context) 11990 dev->ethtool_ops->remove_rxfh_context(dev, ctx, 11991 context, NULL); 11992 else 11993 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL); 11994 kfree(ctx); 11995 } 11996 xa_destroy(&dev->ethtool->rss_ctx); 11997 mutex_unlock(&dev->ethtool->rss_lock); 11998 } 11999 12000 /** 12001 * unregister_netdevice_queue - remove device from the kernel 12002 * @dev: device 12003 * @head: list 12004 * 12005 * This function shuts down a device interface and removes it 12006 * from the kernel tables. 12007 * If head not NULL, device is queued to be unregistered later. 12008 * 12009 * Callers must hold the rtnl semaphore. You may want 12010 * unregister_netdev() instead of this. 12011 */ 12012 12013 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 12014 { 12015 ASSERT_RTNL(); 12016 12017 if (head) { 12018 list_move_tail(&dev->unreg_list, head); 12019 } else { 12020 LIST_HEAD(single); 12021 12022 list_add(&dev->unreg_list, &single); 12023 unregister_netdevice_many(&single); 12024 } 12025 } 12026 EXPORT_SYMBOL(unregister_netdevice_queue); 12027 12028 static void dev_memory_provider_uninstall(struct net_device *dev) 12029 { 12030 unsigned int i; 12031 12032 for (i = 0; i < dev->real_num_rx_queues; i++) { 12033 struct netdev_rx_queue *rxq = &dev->_rx[i]; 12034 struct pp_memory_provider_params *p = &rxq->mp_params; 12035 12036 if (p->mp_ops && p->mp_ops->uninstall) 12037 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 12038 } 12039 } 12040 12041 void unregister_netdevice_many_notify(struct list_head *head, 12042 u32 portid, const struct nlmsghdr *nlh) 12043 { 12044 struct net_device *dev, *tmp; 12045 LIST_HEAD(close_head); 12046 int cnt = 0; 12047 12048 BUG_ON(dev_boot_phase); 12049 ASSERT_RTNL(); 12050 12051 if (list_empty(head)) 12052 return; 12053 12054 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 12055 /* Some devices call without registering 12056 * for initialization unwind. Remove those 12057 * devices and proceed with the remaining. 12058 */ 12059 if (dev->reg_state == NETREG_UNINITIALIZED) { 12060 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 12061 dev->name, dev); 12062 12063 WARN_ON(1); 12064 list_del(&dev->unreg_list); 12065 continue; 12066 } 12067 dev->dismantle = true; 12068 BUG_ON(dev->reg_state != NETREG_REGISTERED); 12069 } 12070 12071 /* If device is running, close it first. Start with ops locked... */ 12072 list_for_each_entry(dev, head, unreg_list) { 12073 if (netdev_need_ops_lock(dev)) { 12074 list_add_tail(&dev->close_list, &close_head); 12075 netdev_lock(dev); 12076 } 12077 } 12078 dev_close_many(&close_head, true); 12079 /* ... now unlock them and go over the rest. */ 12080 list_for_each_entry(dev, head, unreg_list) { 12081 if (netdev_need_ops_lock(dev)) 12082 netdev_unlock(dev); 12083 else 12084 list_add_tail(&dev->close_list, &close_head); 12085 } 12086 dev_close_many(&close_head, true); 12087 12088 list_for_each_entry(dev, head, unreg_list) { 12089 /* And unlink it from device chain. */ 12090 unlist_netdevice(dev); 12091 netdev_lock(dev); 12092 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12093 netdev_unlock(dev); 12094 } 12095 flush_all_backlogs(); 12096 12097 synchronize_net(); 12098 12099 list_for_each_entry(dev, head, unreg_list) { 12100 struct sk_buff *skb = NULL; 12101 12102 /* Shutdown queueing discipline. */ 12103 netdev_lock_ops(dev); 12104 dev_shutdown(dev); 12105 dev_tcx_uninstall(dev); 12106 dev_xdp_uninstall(dev); 12107 dev_memory_provider_uninstall(dev); 12108 netdev_unlock_ops(dev); 12109 bpf_dev_bound_netdev_unregister(dev); 12110 12111 netdev_offload_xstats_disable_all(dev); 12112 12113 /* Notify protocols, that we are about to destroy 12114 * this device. They should clean all the things. 12115 */ 12116 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12117 12118 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 12119 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12120 GFP_KERNEL, NULL, 0, 12121 portid, nlh); 12122 12123 /* 12124 * Flush the unicast and multicast chains 12125 */ 12126 dev_uc_flush(dev); 12127 dev_mc_flush(dev); 12128 12129 netdev_name_node_alt_flush(dev); 12130 netdev_name_node_free(dev->name_node); 12131 12132 netdev_rss_contexts_free(dev); 12133 12134 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12135 12136 if (dev->netdev_ops->ndo_uninit) 12137 dev->netdev_ops->ndo_uninit(dev); 12138 12139 mutex_destroy(&dev->ethtool->rss_lock); 12140 12141 net_shaper_flush_netdev(dev); 12142 12143 if (skb) 12144 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12145 12146 /* Notifier chain MUST detach us all upper devices. */ 12147 WARN_ON(netdev_has_any_upper_dev(dev)); 12148 WARN_ON(netdev_has_any_lower_dev(dev)); 12149 12150 /* Remove entries from kobject tree */ 12151 netdev_unregister_kobject(dev); 12152 #ifdef CONFIG_XPS 12153 /* Remove XPS queueing entries */ 12154 netif_reset_xps_queues_gt(dev, 0); 12155 #endif 12156 } 12157 12158 synchronize_net(); 12159 12160 list_for_each_entry(dev, head, unreg_list) { 12161 netdev_put(dev, &dev->dev_registered_tracker); 12162 net_set_todo(dev); 12163 cnt++; 12164 } 12165 atomic_add(cnt, &dev_unreg_count); 12166 12167 list_del(head); 12168 } 12169 12170 /** 12171 * unregister_netdevice_many - unregister many devices 12172 * @head: list of devices 12173 * 12174 * Note: As most callers use a stack allocated list_head, 12175 * we force a list_del() to make sure stack won't be corrupted later. 12176 */ 12177 void unregister_netdevice_many(struct list_head *head) 12178 { 12179 unregister_netdevice_many_notify(head, 0, NULL); 12180 } 12181 EXPORT_SYMBOL(unregister_netdevice_many); 12182 12183 /** 12184 * unregister_netdev - remove device from the kernel 12185 * @dev: device 12186 * 12187 * This function shuts down a device interface and removes it 12188 * from the kernel tables. 12189 * 12190 * This is just a wrapper for unregister_netdevice that takes 12191 * the rtnl semaphore. In general you want to use this and not 12192 * unregister_netdevice. 12193 */ 12194 void unregister_netdev(struct net_device *dev) 12195 { 12196 rtnl_net_dev_lock(dev); 12197 unregister_netdevice(dev); 12198 rtnl_net_dev_unlock(dev); 12199 } 12200 EXPORT_SYMBOL(unregister_netdev); 12201 12202 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12203 const char *pat, int new_ifindex, 12204 struct netlink_ext_ack *extack) 12205 { 12206 struct netdev_name_node *name_node; 12207 struct net *net_old = dev_net(dev); 12208 char new_name[IFNAMSIZ] = {}; 12209 int err, new_nsid; 12210 12211 ASSERT_RTNL(); 12212 12213 /* Don't allow namespace local devices to be moved. */ 12214 err = -EINVAL; 12215 if (dev->netns_immutable) { 12216 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12217 goto out; 12218 } 12219 12220 /* Ensure the device has been registered */ 12221 if (dev->reg_state != NETREG_REGISTERED) { 12222 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12223 goto out; 12224 } 12225 12226 /* Get out if there is nothing todo */ 12227 err = 0; 12228 if (net_eq(net_old, net)) 12229 goto out; 12230 12231 /* Pick the destination device name, and ensure 12232 * we can use it in the destination network namespace. 12233 */ 12234 err = -EEXIST; 12235 if (netdev_name_in_use(net, dev->name)) { 12236 /* We get here if we can't use the current device name */ 12237 if (!pat) { 12238 NL_SET_ERR_MSG(extack, 12239 "An interface with the same name exists in the target netns"); 12240 goto out; 12241 } 12242 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12243 if (err < 0) { 12244 NL_SET_ERR_MSG_FMT(extack, 12245 "Unable to use '%s' for the new interface name in the target netns", 12246 pat); 12247 goto out; 12248 } 12249 } 12250 /* Check that none of the altnames conflicts. */ 12251 err = -EEXIST; 12252 netdev_for_each_altname(dev, name_node) { 12253 if (netdev_name_in_use(net, name_node->name)) { 12254 NL_SET_ERR_MSG_FMT(extack, 12255 "An interface with the altname %s exists in the target netns", 12256 name_node->name); 12257 goto out; 12258 } 12259 } 12260 12261 /* Check that new_ifindex isn't used yet. */ 12262 if (new_ifindex) { 12263 err = dev_index_reserve(net, new_ifindex); 12264 if (err < 0) { 12265 NL_SET_ERR_MSG_FMT(extack, 12266 "The ifindex %d is not available in the target netns", 12267 new_ifindex); 12268 goto out; 12269 } 12270 } else { 12271 /* If there is an ifindex conflict assign a new one */ 12272 err = dev_index_reserve(net, dev->ifindex); 12273 if (err == -EBUSY) 12274 err = dev_index_reserve(net, 0); 12275 if (err < 0) { 12276 NL_SET_ERR_MSG(extack, 12277 "Unable to allocate a new ifindex in the target netns"); 12278 goto out; 12279 } 12280 new_ifindex = err; 12281 } 12282 12283 /* 12284 * And now a mini version of register_netdevice unregister_netdevice. 12285 */ 12286 12287 netdev_lock_ops(dev); 12288 /* If device is running close it first. */ 12289 netif_close(dev); 12290 /* And unlink it from device chain */ 12291 unlist_netdevice(dev); 12292 12293 if (!netdev_need_ops_lock(dev)) 12294 netdev_lock(dev); 12295 dev->moving_ns = true; 12296 netdev_unlock(dev); 12297 12298 synchronize_net(); 12299 12300 /* Shutdown queueing discipline. */ 12301 netdev_lock_ops(dev); 12302 dev_shutdown(dev); 12303 netdev_unlock_ops(dev); 12304 12305 /* Notify protocols, that we are about to destroy 12306 * this device. They should clean all the things. 12307 * 12308 * Note that dev->reg_state stays at NETREG_REGISTERED. 12309 * This is wanted because this way 8021q and macvlan know 12310 * the device is just moving and can keep their slaves up. 12311 */ 12312 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12313 rcu_barrier(); 12314 12315 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12316 12317 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12318 new_ifindex); 12319 12320 /* 12321 * Flush the unicast and multicast chains 12322 */ 12323 dev_uc_flush(dev); 12324 dev_mc_flush(dev); 12325 12326 /* Send a netdev-removed uevent to the old namespace */ 12327 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12328 netdev_adjacent_del_links(dev); 12329 12330 /* Move per-net netdevice notifiers that are following the netdevice */ 12331 move_netdevice_notifiers_dev_net(dev, net); 12332 12333 /* Actually switch the network namespace */ 12334 netdev_lock(dev); 12335 dev_net_set(dev, net); 12336 netdev_unlock(dev); 12337 dev->ifindex = new_ifindex; 12338 12339 if (new_name[0]) { 12340 /* Rename the netdev to prepared name */ 12341 write_seqlock_bh(&netdev_rename_lock); 12342 strscpy(dev->name, new_name, IFNAMSIZ); 12343 write_sequnlock_bh(&netdev_rename_lock); 12344 } 12345 12346 /* Fixup kobjects */ 12347 dev_set_uevent_suppress(&dev->dev, 1); 12348 err = device_rename(&dev->dev, dev->name); 12349 dev_set_uevent_suppress(&dev->dev, 0); 12350 WARN_ON(err); 12351 12352 /* Send a netdev-add uevent to the new namespace */ 12353 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12354 netdev_adjacent_add_links(dev); 12355 12356 /* Adapt owner in case owning user namespace of target network 12357 * namespace is different from the original one. 12358 */ 12359 err = netdev_change_owner(dev, net_old, net); 12360 WARN_ON(err); 12361 12362 netdev_lock(dev); 12363 dev->moving_ns = false; 12364 if (!netdev_need_ops_lock(dev)) 12365 netdev_unlock(dev); 12366 12367 /* Add the device back in the hashes */ 12368 list_netdevice(dev); 12369 /* Notify protocols, that a new device appeared. */ 12370 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12371 netdev_unlock_ops(dev); 12372 12373 /* 12374 * Prevent userspace races by waiting until the network 12375 * device is fully setup before sending notifications. 12376 */ 12377 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12378 12379 synchronize_net(); 12380 err = 0; 12381 out: 12382 return err; 12383 } 12384 12385 static int dev_cpu_dead(unsigned int oldcpu) 12386 { 12387 struct sk_buff **list_skb; 12388 struct sk_buff *skb; 12389 unsigned int cpu; 12390 struct softnet_data *sd, *oldsd, *remsd = NULL; 12391 12392 local_irq_disable(); 12393 cpu = smp_processor_id(); 12394 sd = &per_cpu(softnet_data, cpu); 12395 oldsd = &per_cpu(softnet_data, oldcpu); 12396 12397 /* Find end of our completion_queue. */ 12398 list_skb = &sd->completion_queue; 12399 while (*list_skb) 12400 list_skb = &(*list_skb)->next; 12401 /* Append completion queue from offline CPU. */ 12402 *list_skb = oldsd->completion_queue; 12403 oldsd->completion_queue = NULL; 12404 12405 /* Append output queue from offline CPU. */ 12406 if (oldsd->output_queue) { 12407 *sd->output_queue_tailp = oldsd->output_queue; 12408 sd->output_queue_tailp = oldsd->output_queue_tailp; 12409 oldsd->output_queue = NULL; 12410 oldsd->output_queue_tailp = &oldsd->output_queue; 12411 } 12412 /* Append NAPI poll list from offline CPU, with one exception : 12413 * process_backlog() must be called by cpu owning percpu backlog. 12414 * We properly handle process_queue & input_pkt_queue later. 12415 */ 12416 while (!list_empty(&oldsd->poll_list)) { 12417 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12418 struct napi_struct, 12419 poll_list); 12420 12421 list_del_init(&napi->poll_list); 12422 if (napi->poll == process_backlog) 12423 napi->state &= NAPIF_STATE_THREADED; 12424 else 12425 ____napi_schedule(sd, napi); 12426 } 12427 12428 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12429 local_irq_enable(); 12430 12431 if (!use_backlog_threads()) { 12432 #ifdef CONFIG_RPS 12433 remsd = oldsd->rps_ipi_list; 12434 oldsd->rps_ipi_list = NULL; 12435 #endif 12436 /* send out pending IPI's on offline CPU */ 12437 net_rps_send_ipi(remsd); 12438 } 12439 12440 /* Process offline CPU's input_pkt_queue */ 12441 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12442 netif_rx(skb); 12443 rps_input_queue_head_incr(oldsd); 12444 } 12445 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12446 netif_rx(skb); 12447 rps_input_queue_head_incr(oldsd); 12448 } 12449 12450 return 0; 12451 } 12452 12453 /** 12454 * netdev_increment_features - increment feature set by one 12455 * @all: current feature set 12456 * @one: new feature set 12457 * @mask: mask feature set 12458 * 12459 * Computes a new feature set after adding a device with feature set 12460 * @one to the master device with current feature set @all. Will not 12461 * enable anything that is off in @mask. Returns the new feature set. 12462 */ 12463 netdev_features_t netdev_increment_features(netdev_features_t all, 12464 netdev_features_t one, netdev_features_t mask) 12465 { 12466 if (mask & NETIF_F_HW_CSUM) 12467 mask |= NETIF_F_CSUM_MASK; 12468 mask |= NETIF_F_VLAN_CHALLENGED; 12469 12470 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12471 all &= one | ~NETIF_F_ALL_FOR_ALL; 12472 12473 /* If one device supports hw checksumming, set for all. */ 12474 if (all & NETIF_F_HW_CSUM) 12475 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12476 12477 return all; 12478 } 12479 EXPORT_SYMBOL(netdev_increment_features); 12480 12481 static struct hlist_head * __net_init netdev_create_hash(void) 12482 { 12483 int i; 12484 struct hlist_head *hash; 12485 12486 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12487 if (hash != NULL) 12488 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12489 INIT_HLIST_HEAD(&hash[i]); 12490 12491 return hash; 12492 } 12493 12494 /* Initialize per network namespace state */ 12495 static int __net_init netdev_init(struct net *net) 12496 { 12497 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12498 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12499 12500 INIT_LIST_HEAD(&net->dev_base_head); 12501 12502 net->dev_name_head = netdev_create_hash(); 12503 if (net->dev_name_head == NULL) 12504 goto err_name; 12505 12506 net->dev_index_head = netdev_create_hash(); 12507 if (net->dev_index_head == NULL) 12508 goto err_idx; 12509 12510 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12511 12512 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12513 12514 return 0; 12515 12516 err_idx: 12517 kfree(net->dev_name_head); 12518 err_name: 12519 return -ENOMEM; 12520 } 12521 12522 /** 12523 * netdev_drivername - network driver for the device 12524 * @dev: network device 12525 * 12526 * Determine network driver for device. 12527 */ 12528 const char *netdev_drivername(const struct net_device *dev) 12529 { 12530 const struct device_driver *driver; 12531 const struct device *parent; 12532 const char *empty = ""; 12533 12534 parent = dev->dev.parent; 12535 if (!parent) 12536 return empty; 12537 12538 driver = parent->driver; 12539 if (driver && driver->name) 12540 return driver->name; 12541 return empty; 12542 } 12543 12544 static void __netdev_printk(const char *level, const struct net_device *dev, 12545 struct va_format *vaf) 12546 { 12547 if (dev && dev->dev.parent) { 12548 dev_printk_emit(level[1] - '0', 12549 dev->dev.parent, 12550 "%s %s %s%s: %pV", 12551 dev_driver_string(dev->dev.parent), 12552 dev_name(dev->dev.parent), 12553 netdev_name(dev), netdev_reg_state(dev), 12554 vaf); 12555 } else if (dev) { 12556 printk("%s%s%s: %pV", 12557 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12558 } else { 12559 printk("%s(NULL net_device): %pV", level, vaf); 12560 } 12561 } 12562 12563 void netdev_printk(const char *level, const struct net_device *dev, 12564 const char *format, ...) 12565 { 12566 struct va_format vaf; 12567 va_list args; 12568 12569 va_start(args, format); 12570 12571 vaf.fmt = format; 12572 vaf.va = &args; 12573 12574 __netdev_printk(level, dev, &vaf); 12575 12576 va_end(args); 12577 } 12578 EXPORT_SYMBOL(netdev_printk); 12579 12580 #define define_netdev_printk_level(func, level) \ 12581 void func(const struct net_device *dev, const char *fmt, ...) \ 12582 { \ 12583 struct va_format vaf; \ 12584 va_list args; \ 12585 \ 12586 va_start(args, fmt); \ 12587 \ 12588 vaf.fmt = fmt; \ 12589 vaf.va = &args; \ 12590 \ 12591 __netdev_printk(level, dev, &vaf); \ 12592 \ 12593 va_end(args); \ 12594 } \ 12595 EXPORT_SYMBOL(func); 12596 12597 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12598 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12599 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12600 define_netdev_printk_level(netdev_err, KERN_ERR); 12601 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12602 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12603 define_netdev_printk_level(netdev_info, KERN_INFO); 12604 12605 static void __net_exit netdev_exit(struct net *net) 12606 { 12607 kfree(net->dev_name_head); 12608 kfree(net->dev_index_head); 12609 xa_destroy(&net->dev_by_index); 12610 if (net != &init_net) 12611 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12612 } 12613 12614 static struct pernet_operations __net_initdata netdev_net_ops = { 12615 .init = netdev_init, 12616 .exit = netdev_exit, 12617 }; 12618 12619 static void __net_exit default_device_exit_net(struct net *net) 12620 { 12621 struct netdev_name_node *name_node, *tmp; 12622 struct net_device *dev, *aux; 12623 /* 12624 * Push all migratable network devices back to the 12625 * initial network namespace 12626 */ 12627 ASSERT_RTNL(); 12628 for_each_netdev_safe(net, dev, aux) { 12629 int err; 12630 char fb_name[IFNAMSIZ]; 12631 12632 /* Ignore unmoveable devices (i.e. loopback) */ 12633 if (dev->netns_immutable) 12634 continue; 12635 12636 /* Leave virtual devices for the generic cleanup */ 12637 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12638 continue; 12639 12640 /* Push remaining network devices to init_net */ 12641 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12642 if (netdev_name_in_use(&init_net, fb_name)) 12643 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12644 12645 netdev_for_each_altname_safe(dev, name_node, tmp) 12646 if (netdev_name_in_use(&init_net, name_node->name)) 12647 __netdev_name_node_alt_destroy(name_node); 12648 12649 err = dev_change_net_namespace(dev, &init_net, fb_name); 12650 if (err) { 12651 pr_emerg("%s: failed to move %s to init_net: %d\n", 12652 __func__, dev->name, err); 12653 BUG(); 12654 } 12655 } 12656 } 12657 12658 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12659 { 12660 /* At exit all network devices most be removed from a network 12661 * namespace. Do this in the reverse order of registration. 12662 * Do this across as many network namespaces as possible to 12663 * improve batching efficiency. 12664 */ 12665 struct net_device *dev; 12666 struct net *net; 12667 LIST_HEAD(dev_kill_list); 12668 12669 rtnl_lock(); 12670 list_for_each_entry(net, net_list, exit_list) { 12671 default_device_exit_net(net); 12672 cond_resched(); 12673 } 12674 12675 list_for_each_entry(net, net_list, exit_list) { 12676 for_each_netdev_reverse(net, dev) { 12677 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12678 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12679 else 12680 unregister_netdevice_queue(dev, &dev_kill_list); 12681 } 12682 } 12683 unregister_netdevice_many(&dev_kill_list); 12684 rtnl_unlock(); 12685 } 12686 12687 static struct pernet_operations __net_initdata default_device_ops = { 12688 .exit_batch = default_device_exit_batch, 12689 }; 12690 12691 static void __init net_dev_struct_check(void) 12692 { 12693 /* TX read-mostly hotpath */ 12694 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12695 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12696 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 12697 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 12698 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 12699 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 12700 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 12701 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 12702 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 12703 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 12704 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 12705 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 12706 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 12707 #ifdef CONFIG_XPS 12708 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 12709 #endif 12710 #ifdef CONFIG_NETFILTER_EGRESS 12711 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 12712 #endif 12713 #ifdef CONFIG_NET_XGRESS 12714 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 12715 #endif 12716 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 12717 12718 /* TXRX read-mostly hotpath */ 12719 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 12720 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 12721 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 12722 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 12723 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 12724 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 12725 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 12726 12727 /* RX read-mostly hotpath */ 12728 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 12729 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 12730 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 12731 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 12732 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12733 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12734 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12735 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12736 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12737 #ifdef CONFIG_NETPOLL 12738 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12739 #endif 12740 #ifdef CONFIG_NET_XGRESS 12741 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12742 #endif 12743 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 12744 } 12745 12746 /* 12747 * Initialize the DEV module. At boot time this walks the device list and 12748 * unhooks any devices that fail to initialise (normally hardware not 12749 * present) and leaves us with a valid list of present and active devices. 12750 * 12751 */ 12752 12753 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12754 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12755 12756 static int net_page_pool_create(int cpuid) 12757 { 12758 #if IS_ENABLED(CONFIG_PAGE_POOL) 12759 struct page_pool_params page_pool_params = { 12760 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12761 .flags = PP_FLAG_SYSTEM_POOL, 12762 .nid = cpu_to_mem(cpuid), 12763 }; 12764 struct page_pool *pp_ptr; 12765 int err; 12766 12767 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12768 if (IS_ERR(pp_ptr)) 12769 return -ENOMEM; 12770 12771 err = xdp_reg_page_pool(pp_ptr); 12772 if (err) { 12773 page_pool_destroy(pp_ptr); 12774 return err; 12775 } 12776 12777 per_cpu(system_page_pool.pool, cpuid) = pp_ptr; 12778 #endif 12779 return 0; 12780 } 12781 12782 static int backlog_napi_should_run(unsigned int cpu) 12783 { 12784 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12785 struct napi_struct *napi = &sd->backlog; 12786 12787 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12788 } 12789 12790 static void run_backlog_napi(unsigned int cpu) 12791 { 12792 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12793 12794 napi_threaded_poll_loop(&sd->backlog); 12795 } 12796 12797 static void backlog_napi_setup(unsigned int cpu) 12798 { 12799 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12800 struct napi_struct *napi = &sd->backlog; 12801 12802 napi->thread = this_cpu_read(backlog_napi); 12803 set_bit(NAPI_STATE_THREADED, &napi->state); 12804 } 12805 12806 static struct smp_hotplug_thread backlog_threads = { 12807 .store = &backlog_napi, 12808 .thread_should_run = backlog_napi_should_run, 12809 .thread_fn = run_backlog_napi, 12810 .thread_comm = "backlog_napi/%u", 12811 .setup = backlog_napi_setup, 12812 }; 12813 12814 /* 12815 * This is called single threaded during boot, so no need 12816 * to take the rtnl semaphore. 12817 */ 12818 static int __init net_dev_init(void) 12819 { 12820 int i, rc = -ENOMEM; 12821 12822 BUG_ON(!dev_boot_phase); 12823 12824 net_dev_struct_check(); 12825 12826 if (dev_proc_init()) 12827 goto out; 12828 12829 if (netdev_kobject_init()) 12830 goto out; 12831 12832 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12833 INIT_LIST_HEAD(&ptype_base[i]); 12834 12835 if (register_pernet_subsys(&netdev_net_ops)) 12836 goto out; 12837 12838 /* 12839 * Initialise the packet receive queues. 12840 */ 12841 12842 flush_backlogs_fallback = flush_backlogs_alloc(); 12843 if (!flush_backlogs_fallback) 12844 goto out; 12845 12846 for_each_possible_cpu(i) { 12847 struct softnet_data *sd = &per_cpu(softnet_data, i); 12848 12849 skb_queue_head_init(&sd->input_pkt_queue); 12850 skb_queue_head_init(&sd->process_queue); 12851 #ifdef CONFIG_XFRM_OFFLOAD 12852 skb_queue_head_init(&sd->xfrm_backlog); 12853 #endif 12854 INIT_LIST_HEAD(&sd->poll_list); 12855 sd->output_queue_tailp = &sd->output_queue; 12856 #ifdef CONFIG_RPS 12857 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12858 sd->cpu = i; 12859 #endif 12860 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12861 spin_lock_init(&sd->defer_lock); 12862 12863 gro_init(&sd->backlog.gro); 12864 sd->backlog.poll = process_backlog; 12865 sd->backlog.weight = weight_p; 12866 INIT_LIST_HEAD(&sd->backlog.poll_list); 12867 12868 if (net_page_pool_create(i)) 12869 goto out; 12870 } 12871 if (use_backlog_threads()) 12872 smpboot_register_percpu_thread(&backlog_threads); 12873 12874 dev_boot_phase = 0; 12875 12876 /* The loopback device is special if any other network devices 12877 * is present in a network namespace the loopback device must 12878 * be present. Since we now dynamically allocate and free the 12879 * loopback device ensure this invariant is maintained by 12880 * keeping the loopback device as the first device on the 12881 * list of network devices. Ensuring the loopback devices 12882 * is the first device that appears and the last network device 12883 * that disappears. 12884 */ 12885 if (register_pernet_device(&loopback_net_ops)) 12886 goto out; 12887 12888 if (register_pernet_device(&default_device_ops)) 12889 goto out; 12890 12891 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 12892 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 12893 12894 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 12895 NULL, dev_cpu_dead); 12896 WARN_ON(rc < 0); 12897 rc = 0; 12898 12899 /* avoid static key IPIs to isolated CPUs */ 12900 if (housekeeping_enabled(HK_TYPE_MISC)) 12901 net_enable_timestamp(); 12902 out: 12903 if (rc < 0) { 12904 for_each_possible_cpu(i) { 12905 struct page_pool *pp_ptr; 12906 12907 pp_ptr = per_cpu(system_page_pool.pool, i); 12908 if (!pp_ptr) 12909 continue; 12910 12911 xdp_unreg_page_pool(pp_ptr); 12912 page_pool_destroy(pp_ptr); 12913 per_cpu(system_page_pool.pool, i) = NULL; 12914 } 12915 } 12916 12917 return rc; 12918 } 12919 12920 subsys_initcall(net_dev_init); 12921