1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/ethtool_netlink.h> 96 #include <linux/skbuff.h> 97 #include <linux/kthread.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dsa.h> 106 #include <net/dst.h> 107 #include <net/dst_metadata.h> 108 #include <net/gro.h> 109 #include <net/netdev_queues.h> 110 #include <net/pkt_sched.h> 111 #include <net/pkt_cls.h> 112 #include <net/checksum.h> 113 #include <net/xfrm.h> 114 #include <net/tcx.h> 115 #include <linux/highmem.h> 116 #include <linux/init.h> 117 #include <linux/module.h> 118 #include <linux/netpoll.h> 119 #include <linux/rcupdate.h> 120 #include <linux/delay.h> 121 #include <net/iw_handler.h> 122 #include <asm/current.h> 123 #include <linux/audit.h> 124 #include <linux/dmaengine.h> 125 #include <linux/err.h> 126 #include <linux/ctype.h> 127 #include <linux/if_arp.h> 128 #include <linux/if_vlan.h> 129 #include <linux/ip.h> 130 #include <net/ip.h> 131 #include <net/mpls.h> 132 #include <linux/ipv6.h> 133 #include <linux/in.h> 134 #include <linux/jhash.h> 135 #include <linux/random.h> 136 #include <trace/events/napi.h> 137 #include <trace/events/net.h> 138 #include <trace/events/skb.h> 139 #include <trace/events/qdisc.h> 140 #include <trace/events/xdp.h> 141 #include <linux/inetdevice.h> 142 #include <linux/cpu_rmap.h> 143 #include <linux/static_key.h> 144 #include <linux/hashtable.h> 145 #include <linux/vmalloc.h> 146 #include <linux/if_macvlan.h> 147 #include <linux/errqueue.h> 148 #include <linux/hrtimer.h> 149 #include <linux/netfilter_netdev.h> 150 #include <linux/crash_dump.h> 151 #include <linux/sctp.h> 152 #include <net/udp_tunnel.h> 153 #include <linux/net_namespace.h> 154 #include <linux/indirect_call_wrapper.h> 155 #include <net/devlink.h> 156 #include <linux/pm_runtime.h> 157 #include <linux/prandom.h> 158 #include <linux/once_lite.h> 159 #include <net/netdev_lock.h> 160 #include <net/netdev_rx_queue.h> 161 #include <net/page_pool/types.h> 162 #include <net/page_pool/helpers.h> 163 #include <net/page_pool/memory_provider.h> 164 #include <net/rps.h> 165 #include <linux/phy_link_topology.h> 166 167 #include "dev.h" 168 #include "devmem.h" 169 #include "net-sysfs.h" 170 171 static DEFINE_SPINLOCK(ptype_lock); 172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174 static int netif_rx_internal(struct sk_buff *skb); 175 static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179 static DEFINE_MUTEX(ifalias_mutex); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id = NR_CPUS; 185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187 static inline void dev_base_seq_inc(struct net *net) 188 { 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 #ifndef CONFIG_PREEMPT_RT 207 208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210 static int __init setup_backlog_napi_threads(char *arg) 211 { 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214 } 215 early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217 static bool use_backlog_threads(void) 218 { 219 return static_branch_unlikely(&use_backlog_threads_key); 220 } 221 222 #else 223 224 static bool use_backlog_threads(void) 225 { 226 return true; 227 } 228 229 #endif 230 231 static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233 { 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238 } 239 240 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241 { 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246 } 247 248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250 { 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255 } 256 257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258 { 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263 } 264 265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267 { 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277 } 278 279 static struct netdev_name_node * 280 netdev_name_node_head_alloc(struct net_device *dev) 281 { 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289 } 290 291 static void netdev_name_node_free(struct netdev_name_node *name_node) 292 { 293 kfree(name_node); 294 } 295 296 static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298 { 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301 } 302 303 static void netdev_name_node_del(struct netdev_name_node *name_node) 304 { 305 hlist_del_rcu(&name_node->hlist); 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322 { 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330 } 331 332 bool netdev_name_in_use(struct net *net, const char *name) 333 { 334 return netdev_name_node_lookup(net, name); 335 } 336 EXPORT_SYMBOL(netdev_name_in_use); 337 338 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339 { 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354 } 355 356 static void netdev_name_node_alt_free(struct rcu_head *head) 357 { 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363 } 364 365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366 { 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370 } 371 372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373 { 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388 } 389 390 static void netdev_name_node_alt_flush(struct net_device *dev) 391 { 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398 } 399 400 /* Device list insertion */ 401 static void list_netdevice(struct net_device *dev) 402 { 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420 } 421 422 /* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425 static void unlist_netdevice(struct net_device *dev) 426 { 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443 } 444 445 /* 446 * Our notifier list 447 */ 448 449 static RAW_NOTIFIER_HEAD(netdev_chain); 450 451 /* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458 }; 459 EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461 /* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { 466 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 467 }; 468 469 #ifdef CONFIG_LOCKDEP 470 /* 471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 472 * according to dev->type 473 */ 474 static const unsigned short netdev_lock_type[] = { 475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 490 491 static const char *const netdev_lock_name[] = { 492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 507 508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 510 511 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 512 { 513 int i; 514 515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 516 if (netdev_lock_type[i] == dev_type) 517 return i; 518 /* the last key is used by default */ 519 return ARRAY_SIZE(netdev_lock_type) - 1; 520 } 521 522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 523 unsigned short dev_type) 524 { 525 int i; 526 527 i = netdev_lock_pos(dev_type); 528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 529 netdev_lock_name[i]); 530 } 531 532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 533 { 534 int i; 535 536 i = netdev_lock_pos(dev->type); 537 lockdep_set_class_and_name(&dev->addr_list_lock, 538 &netdev_addr_lock_key[i], 539 netdev_lock_name[i]); 540 } 541 #else 542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 543 unsigned short dev_type) 544 { 545 } 546 547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 548 { 549 } 550 #endif 551 552 /******************************************************************************* 553 * 554 * Protocol management and registration routines 555 * 556 *******************************************************************************/ 557 558 559 /* 560 * Add a protocol ID to the list. Now that the input handler is 561 * smarter we can dispense with all the messy stuff that used to be 562 * here. 563 * 564 * BEWARE!!! Protocol handlers, mangling input packets, 565 * MUST BE last in hash buckets and checking protocol handlers 566 * MUST start from promiscuous ptype_all chain in net_bh. 567 * It is true now, do not change it. 568 * Explanation follows: if protocol handler, mangling packet, will 569 * be the first on list, it is not able to sense, that packet 570 * is cloned and should be copied-on-write, so that it will 571 * change it and subsequent readers will get broken packet. 572 * --ANK (980803) 573 */ 574 575 static inline struct list_head *ptype_head(const struct packet_type *pt) 576 { 577 if (pt->type == htons(ETH_P_ALL)) { 578 if (!pt->af_packet_net && !pt->dev) 579 return NULL; 580 581 return pt->dev ? &pt->dev->ptype_all : 582 &pt->af_packet_net->ptype_all; 583 } 584 585 if (pt->dev) 586 return &pt->dev->ptype_specific; 587 588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 590 } 591 592 /** 593 * dev_add_pack - add packet handler 594 * @pt: packet type declaration 595 * 596 * Add a protocol handler to the networking stack. The passed &packet_type 597 * is linked into kernel lists and may not be freed until it has been 598 * removed from the kernel lists. 599 * 600 * This call does not sleep therefore it can not 601 * guarantee all CPU's that are in middle of receiving packets 602 * will see the new packet type (until the next received packet). 603 */ 604 605 void dev_add_pack(struct packet_type *pt) 606 { 607 struct list_head *head = ptype_head(pt); 608 609 if (WARN_ON_ONCE(!head)) 610 return; 611 612 spin_lock(&ptype_lock); 613 list_add_rcu(&pt->list, head); 614 spin_unlock(&ptype_lock); 615 } 616 EXPORT_SYMBOL(dev_add_pack); 617 618 /** 619 * __dev_remove_pack - remove packet handler 620 * @pt: packet type declaration 621 * 622 * Remove a protocol handler that was previously added to the kernel 623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 624 * from the kernel lists and can be freed or reused once this function 625 * returns. 626 * 627 * The packet type might still be in use by receivers 628 * and must not be freed until after all the CPU's have gone 629 * through a quiescent state. 630 */ 631 void __dev_remove_pack(struct packet_type *pt) 632 { 633 struct list_head *head = ptype_head(pt); 634 struct packet_type *pt1; 635 636 if (!head) 637 return; 638 639 spin_lock(&ptype_lock); 640 641 list_for_each_entry(pt1, head, list) { 642 if (pt == pt1) { 643 list_del_rcu(&pt->list); 644 goto out; 645 } 646 } 647 648 pr_warn("dev_remove_pack: %p not found\n", pt); 649 out: 650 spin_unlock(&ptype_lock); 651 } 652 EXPORT_SYMBOL(__dev_remove_pack); 653 654 /** 655 * dev_remove_pack - remove packet handler 656 * @pt: packet type declaration 657 * 658 * Remove a protocol handler that was previously added to the kernel 659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 660 * from the kernel lists and can be freed or reused once this function 661 * returns. 662 * 663 * This call sleeps to guarantee that no CPU is looking at the packet 664 * type after return. 665 */ 666 void dev_remove_pack(struct packet_type *pt) 667 { 668 __dev_remove_pack(pt); 669 670 synchronize_net(); 671 } 672 EXPORT_SYMBOL(dev_remove_pack); 673 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return READ_ONCE(dev->ifindex); 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 725 { 726 int k = stack->num_paths++; 727 728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 729 return NULL; 730 731 return &stack->path[k]; 732 } 733 734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 735 struct net_device_path_stack *stack) 736 { 737 const struct net_device *last_dev; 738 struct net_device_path_ctx ctx = { 739 .dev = dev, 740 }; 741 struct net_device_path *path; 742 int ret = 0; 743 744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 745 stack->num_paths = 0; 746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 747 last_dev = ctx.dev; 748 path = dev_fwd_path(stack); 749 if (!path) 750 return -1; 751 752 memset(path, 0, sizeof(struct net_device_path)); 753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 754 if (ret < 0) 755 return -1; 756 757 if (WARN_ON_ONCE(last_dev == ctx.dev)) 758 return -1; 759 } 760 761 if (!ctx.dev) 762 return ret; 763 764 path = dev_fwd_path(stack); 765 if (!path) 766 return -1; 767 path->type = DEV_PATH_ETHERNET; 768 path->dev = ctx.dev; 769 770 return ret; 771 } 772 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 773 774 /* must be called under rcu_read_lock(), as we dont take a reference */ 775 static struct napi_struct *napi_by_id(unsigned int napi_id) 776 { 777 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 778 struct napi_struct *napi; 779 780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 781 if (napi->napi_id == napi_id) 782 return napi; 783 784 return NULL; 785 } 786 787 /* must be called under rcu_read_lock(), as we dont take a reference */ 788 static struct napi_struct * 789 netdev_napi_by_id(struct net *net, unsigned int napi_id) 790 { 791 struct napi_struct *napi; 792 793 napi = napi_by_id(napi_id); 794 if (!napi) 795 return NULL; 796 797 if (WARN_ON_ONCE(!napi->dev)) 798 return NULL; 799 if (!net_eq(net, dev_net(napi->dev))) 800 return NULL; 801 802 return napi; 803 } 804 805 /** 806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 807 * @net: the applicable net namespace 808 * @napi_id: ID of a NAPI of a target device 809 * 810 * Find a NAPI instance with @napi_id. Lock its device. 811 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 812 * netdev_unlock() must be called to release it. 813 * 814 * Return: pointer to NAPI, its device with lock held, NULL if not found. 815 */ 816 struct napi_struct * 817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 818 { 819 struct napi_struct *napi; 820 struct net_device *dev; 821 822 rcu_read_lock(); 823 napi = netdev_napi_by_id(net, napi_id); 824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 825 rcu_read_unlock(); 826 return NULL; 827 } 828 829 dev = napi->dev; 830 dev_hold(dev); 831 rcu_read_unlock(); 832 833 dev = __netdev_put_lock(dev, net); 834 if (!dev) 835 return NULL; 836 837 rcu_read_lock(); 838 napi = netdev_napi_by_id(net, napi_id); 839 if (napi && napi->dev != dev) 840 napi = NULL; 841 rcu_read_unlock(); 842 843 if (!napi) 844 netdev_unlock(dev); 845 return napi; 846 } 847 848 /** 849 * __dev_get_by_name - find a device by its name 850 * @net: the applicable net namespace 851 * @name: name to find 852 * 853 * Find an interface by name. Must be called under RTNL semaphore. 854 * If the name is found a pointer to the device is returned. 855 * If the name is not found then %NULL is returned. The 856 * reference counters are not incremented so the caller must be 857 * careful with locks. 858 */ 859 860 struct net_device *__dev_get_by_name(struct net *net, const char *name) 861 { 862 struct netdev_name_node *node_name; 863 864 node_name = netdev_name_node_lookup(net, name); 865 return node_name ? node_name->dev : NULL; 866 } 867 EXPORT_SYMBOL(__dev_get_by_name); 868 869 /** 870 * dev_get_by_name_rcu - find a device by its name 871 * @net: the applicable net namespace 872 * @name: name to find 873 * 874 * Find an interface by name. 875 * If the name is found a pointer to the device is returned. 876 * If the name is not found then %NULL is returned. 877 * The reference counters are not incremented so the caller must be 878 * careful with locks. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 882 { 883 struct netdev_name_node *node_name; 884 885 node_name = netdev_name_node_lookup_rcu(net, name); 886 return node_name ? node_name->dev : NULL; 887 } 888 EXPORT_SYMBOL(dev_get_by_name_rcu); 889 890 /* Deprecated for new users, call netdev_get_by_name() instead */ 891 struct net_device *dev_get_by_name(struct net *net, const char *name) 892 { 893 struct net_device *dev; 894 895 rcu_read_lock(); 896 dev = dev_get_by_name_rcu(net, name); 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900 } 901 EXPORT_SYMBOL(dev_get_by_name); 902 903 /** 904 * netdev_get_by_name() - find a device by its name 905 * @net: the applicable net namespace 906 * @name: name to find 907 * @tracker: tracking object for the acquired reference 908 * @gfp: allocation flags for the tracker 909 * 910 * Find an interface by name. This can be called from any 911 * context and does its own locking. The returned handle has 912 * the usage count incremented and the caller must use netdev_put() to 913 * release it when it is no longer needed. %NULL is returned if no 914 * matching device is found. 915 */ 916 struct net_device *netdev_get_by_name(struct net *net, const char *name, 917 netdevice_tracker *tracker, gfp_t gfp) 918 { 919 struct net_device *dev; 920 921 dev = dev_get_by_name(net, name); 922 if (dev) 923 netdev_tracker_alloc(dev, tracker, gfp); 924 return dev; 925 } 926 EXPORT_SYMBOL(netdev_get_by_name); 927 928 /** 929 * __dev_get_by_index - find a device by its ifindex 930 * @net: the applicable net namespace 931 * @ifindex: index of device 932 * 933 * Search for an interface by index. Returns %NULL if the device 934 * is not found or a pointer to the device. The device has not 935 * had its reference counter increased so the caller must be careful 936 * about locking. The caller must hold the RTNL semaphore. 937 */ 938 939 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 940 { 941 struct net_device *dev; 942 struct hlist_head *head = dev_index_hash(net, ifindex); 943 944 hlist_for_each_entry(dev, head, index_hlist) 945 if (dev->ifindex == ifindex) 946 return dev; 947 948 return NULL; 949 } 950 EXPORT_SYMBOL(__dev_get_by_index); 951 952 /** 953 * dev_get_by_index_rcu - find a device by its ifindex 954 * @net: the applicable net namespace 955 * @ifindex: index of device 956 * 957 * Search for an interface by index. Returns %NULL if the device 958 * is not found or a pointer to the device. The device has not 959 * had its reference counter increased so the caller must be careful 960 * about locking. The caller must hold RCU lock. 961 */ 962 963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 964 { 965 struct net_device *dev; 966 struct hlist_head *head = dev_index_hash(net, ifindex); 967 968 hlist_for_each_entry_rcu(dev, head, index_hlist) 969 if (dev->ifindex == ifindex) 970 return dev; 971 972 return NULL; 973 } 974 EXPORT_SYMBOL(dev_get_by_index_rcu); 975 976 /* Deprecated for new users, call netdev_get_by_index() instead */ 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 dev_hold(dev); 984 rcu_read_unlock(); 985 return dev; 986 } 987 EXPORT_SYMBOL(dev_get_by_index); 988 989 /** 990 * netdev_get_by_index() - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * @tracker: tracking object for the acquired reference 994 * @gfp: allocation flags for the tracker 995 * 996 * Search for an interface by index. Returns NULL if the device 997 * is not found or a pointer to the device. The device returned has 998 * had a reference added and the pointer is safe until the user calls 999 * netdev_put() to indicate they have finished with it. 1000 */ 1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1002 netdevice_tracker *tracker, gfp_t gfp) 1003 { 1004 struct net_device *dev; 1005 1006 dev = dev_get_by_index(net, ifindex); 1007 if (dev) 1008 netdev_tracker_alloc(dev, tracker, gfp); 1009 return dev; 1010 } 1011 EXPORT_SYMBOL(netdev_get_by_index); 1012 1013 /** 1014 * dev_get_by_napi_id - find a device by napi_id 1015 * @napi_id: ID of the NAPI struct 1016 * 1017 * Search for an interface by NAPI ID. Returns %NULL if the device 1018 * is not found or a pointer to the device. The device has not had 1019 * its reference counter increased so the caller must be careful 1020 * about locking. The caller must hold RCU lock. 1021 */ 1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1023 { 1024 struct napi_struct *napi; 1025 1026 WARN_ON_ONCE(!rcu_read_lock_held()); 1027 1028 if (!napi_id_valid(napi_id)) 1029 return NULL; 1030 1031 napi = napi_by_id(napi_id); 1032 1033 return napi ? napi->dev : NULL; 1034 } 1035 1036 /* Release the held reference on the net_device, and if the net_device 1037 * is still registered try to lock the instance lock. If device is being 1038 * unregistered NULL will be returned (but the reference has been released, 1039 * either way!) 1040 * 1041 * This helper is intended for locking net_device after it has been looked up 1042 * using a lockless lookup helper. Lock prevents the instance from going away. 1043 */ 1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1045 { 1046 netdev_lock(dev); 1047 if (dev->reg_state > NETREG_REGISTERED || 1048 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1049 netdev_unlock(dev); 1050 dev_put(dev); 1051 return NULL; 1052 } 1053 dev_put(dev); 1054 return dev; 1055 } 1056 1057 static struct net_device * 1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1059 { 1060 netdev_lock_ops_compat(dev); 1061 if (dev->reg_state > NETREG_REGISTERED || 1062 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1063 netdev_unlock_ops_compat(dev); 1064 dev_put(dev); 1065 return NULL; 1066 } 1067 dev_put(dev); 1068 return dev; 1069 } 1070 1071 /** 1072 * netdev_get_by_index_lock() - find a device by its ifindex 1073 * @net: the applicable net namespace 1074 * @ifindex: index of device 1075 * 1076 * Search for an interface by index. If a valid device 1077 * with @ifindex is found it will be returned with netdev->lock held. 1078 * netdev_unlock() must be called to release it. 1079 * 1080 * Return: pointer to a device with lock held, NULL if not found. 1081 */ 1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1083 { 1084 struct net_device *dev; 1085 1086 dev = dev_get_by_index(net, ifindex); 1087 if (!dev) 1088 return NULL; 1089 1090 return __netdev_put_lock(dev, net); 1091 } 1092 1093 struct net_device * 1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1095 { 1096 struct net_device *dev; 1097 1098 dev = dev_get_by_index(net, ifindex); 1099 if (!dev) 1100 return NULL; 1101 1102 return __netdev_put_lock_ops_compat(dev, net); 1103 } 1104 1105 struct net_device * 1106 netdev_xa_find_lock(struct net *net, struct net_device *dev, 1107 unsigned long *index) 1108 { 1109 if (dev) 1110 netdev_unlock(dev); 1111 1112 do { 1113 rcu_read_lock(); 1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1115 if (!dev) { 1116 rcu_read_unlock(); 1117 return NULL; 1118 } 1119 dev_hold(dev); 1120 rcu_read_unlock(); 1121 1122 dev = __netdev_put_lock(dev, net); 1123 if (dev) 1124 return dev; 1125 1126 (*index)++; 1127 } while (true); 1128 } 1129 1130 struct net_device * 1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1132 unsigned long *index) 1133 { 1134 if (dev) 1135 netdev_unlock_ops_compat(dev); 1136 1137 do { 1138 rcu_read_lock(); 1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1140 if (!dev) { 1141 rcu_read_unlock(); 1142 return NULL; 1143 } 1144 dev_hold(dev); 1145 rcu_read_unlock(); 1146 1147 dev = __netdev_put_lock_ops_compat(dev, net); 1148 if (dev) 1149 return dev; 1150 1151 (*index)++; 1152 } while (true); 1153 } 1154 1155 static DEFINE_SEQLOCK(netdev_rename_lock); 1156 1157 void netdev_copy_name(struct net_device *dev, char *name) 1158 { 1159 unsigned int seq; 1160 1161 do { 1162 seq = read_seqbegin(&netdev_rename_lock); 1163 strscpy(name, dev->name, IFNAMSIZ); 1164 } while (read_seqretry(&netdev_rename_lock, seq)); 1165 } 1166 1167 /** 1168 * netdev_get_name - get a netdevice name, knowing its ifindex. 1169 * @net: network namespace 1170 * @name: a pointer to the buffer where the name will be stored. 1171 * @ifindex: the ifindex of the interface to get the name from. 1172 */ 1173 int netdev_get_name(struct net *net, char *name, int ifindex) 1174 { 1175 struct net_device *dev; 1176 int ret; 1177 1178 rcu_read_lock(); 1179 1180 dev = dev_get_by_index_rcu(net, ifindex); 1181 if (!dev) { 1182 ret = -ENODEV; 1183 goto out; 1184 } 1185 1186 netdev_copy_name(dev, name); 1187 1188 ret = 0; 1189 out: 1190 rcu_read_unlock(); 1191 return ret; 1192 } 1193 1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1195 const char *ha) 1196 { 1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1198 } 1199 1200 /** 1201 * dev_getbyhwaddr_rcu - find a device by its hardware address 1202 * @net: the applicable net namespace 1203 * @type: media type of device 1204 * @ha: hardware address 1205 * 1206 * Search for an interface by MAC address. Returns NULL if the device 1207 * is not found or a pointer to the device. 1208 * The caller must hold RCU. 1209 * The returned device has not had its ref count increased 1210 * and the caller must therefore be careful about locking 1211 * 1212 */ 1213 1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1215 const char *ha) 1216 { 1217 struct net_device *dev; 1218 1219 for_each_netdev_rcu(net, dev) 1220 if (dev_addr_cmp(dev, type, ha)) 1221 return dev; 1222 1223 return NULL; 1224 } 1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1226 1227 /** 1228 * dev_getbyhwaddr() - find a device by its hardware address 1229 * @net: the applicable net namespace 1230 * @type: media type of device 1231 * @ha: hardware address 1232 * 1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1234 * rtnl_lock. 1235 * 1236 * Context: rtnl_lock() must be held. 1237 * Return: pointer to the net_device, or NULL if not found 1238 */ 1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1240 const char *ha) 1241 { 1242 struct net_device *dev; 1243 1244 ASSERT_RTNL(); 1245 for_each_netdev(net, dev) 1246 if (dev_addr_cmp(dev, type, ha)) 1247 return dev; 1248 1249 return NULL; 1250 } 1251 EXPORT_SYMBOL(dev_getbyhwaddr); 1252 1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1254 { 1255 struct net_device *dev, *ret = NULL; 1256 1257 rcu_read_lock(); 1258 for_each_netdev_rcu(net, dev) 1259 if (dev->type == type) { 1260 dev_hold(dev); 1261 ret = dev; 1262 break; 1263 } 1264 rcu_read_unlock(); 1265 return ret; 1266 } 1267 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1268 1269 /** 1270 * netdev_get_by_flags_rcu - find any device with given flags 1271 * @net: the applicable net namespace 1272 * @tracker: tracking object for the acquired reference 1273 * @if_flags: IFF_* values 1274 * @mask: bitmask of bits in if_flags to check 1275 * 1276 * Search for any interface with the given flags. 1277 * 1278 * Context: rcu_read_lock() must be held. 1279 * Returns: NULL if a device is not found or a pointer to the device. 1280 */ 1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker, 1282 unsigned short if_flags, unsigned short mask) 1283 { 1284 struct net_device *dev; 1285 1286 for_each_netdev_rcu(net, dev) { 1287 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) { 1288 netdev_hold(dev, tracker, GFP_ATOMIC); 1289 return dev; 1290 } 1291 } 1292 1293 return NULL; 1294 } 1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu); 1296 1297 /** 1298 * dev_valid_name - check if name is okay for network device 1299 * @name: name string 1300 * 1301 * Network device names need to be valid file names to 1302 * allow sysfs to work. We also disallow any kind of 1303 * whitespace. 1304 */ 1305 bool dev_valid_name(const char *name) 1306 { 1307 if (*name == '\0') 1308 return false; 1309 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1310 return false; 1311 if (!strcmp(name, ".") || !strcmp(name, "..")) 1312 return false; 1313 1314 while (*name) { 1315 if (*name == '/' || *name == ':' || isspace(*name)) 1316 return false; 1317 name++; 1318 } 1319 return true; 1320 } 1321 EXPORT_SYMBOL(dev_valid_name); 1322 1323 /** 1324 * __dev_alloc_name - allocate a name for a device 1325 * @net: network namespace to allocate the device name in 1326 * @name: name format string 1327 * @res: result name string 1328 * 1329 * Passed a format string - eg "lt%d" it will try and find a suitable 1330 * id. It scans list of devices to build up a free map, then chooses 1331 * the first empty slot. The caller must hold the dev_base or rtnl lock 1332 * while allocating the name and adding the device in order to avoid 1333 * duplicates. 1334 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1335 * Returns the number of the unit assigned or a negative errno code. 1336 */ 1337 1338 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1339 { 1340 int i = 0; 1341 const char *p; 1342 const int max_netdevices = 8*PAGE_SIZE; 1343 unsigned long *inuse; 1344 struct net_device *d; 1345 char buf[IFNAMSIZ]; 1346 1347 /* Verify the string as this thing may have come from the user. 1348 * There must be one "%d" and no other "%" characters. 1349 */ 1350 p = strchr(name, '%'); 1351 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1352 return -EINVAL; 1353 1354 /* Use one page as a bit array of possible slots */ 1355 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1356 if (!inuse) 1357 return -ENOMEM; 1358 1359 for_each_netdev(net, d) { 1360 struct netdev_name_node *name_node; 1361 1362 netdev_for_each_altname(d, name_node) { 1363 if (!sscanf(name_node->name, name, &i)) 1364 continue; 1365 if (i < 0 || i >= max_netdevices) 1366 continue; 1367 1368 /* avoid cases where sscanf is not exact inverse of printf */ 1369 snprintf(buf, IFNAMSIZ, name, i); 1370 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1371 __set_bit(i, inuse); 1372 } 1373 if (!sscanf(d->name, name, &i)) 1374 continue; 1375 if (i < 0 || i >= max_netdevices) 1376 continue; 1377 1378 /* avoid cases where sscanf is not exact inverse of printf */ 1379 snprintf(buf, IFNAMSIZ, name, i); 1380 if (!strncmp(buf, d->name, IFNAMSIZ)) 1381 __set_bit(i, inuse); 1382 } 1383 1384 i = find_first_zero_bit(inuse, max_netdevices); 1385 bitmap_free(inuse); 1386 if (i == max_netdevices) 1387 return -ENFILE; 1388 1389 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1390 strscpy(buf, name, IFNAMSIZ); 1391 snprintf(res, IFNAMSIZ, buf, i); 1392 return i; 1393 } 1394 1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1397 const char *want_name, char *out_name, 1398 int dup_errno) 1399 { 1400 if (!dev_valid_name(want_name)) 1401 return -EINVAL; 1402 1403 if (strchr(want_name, '%')) 1404 return __dev_alloc_name(net, want_name, out_name); 1405 1406 if (netdev_name_in_use(net, want_name)) 1407 return -dup_errno; 1408 if (out_name != want_name) 1409 strscpy(out_name, want_name, IFNAMSIZ); 1410 return 0; 1411 } 1412 1413 /** 1414 * dev_alloc_name - allocate a name for a device 1415 * @dev: device 1416 * @name: name format string 1417 * 1418 * Passed a format string - eg "lt%d" it will try and find a suitable 1419 * id. It scans list of devices to build up a free map, then chooses 1420 * the first empty slot. The caller must hold the dev_base or rtnl lock 1421 * while allocating the name and adding the device in order to avoid 1422 * duplicates. 1423 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1424 * Returns the number of the unit assigned or a negative errno code. 1425 */ 1426 1427 int dev_alloc_name(struct net_device *dev, const char *name) 1428 { 1429 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1430 } 1431 EXPORT_SYMBOL(dev_alloc_name); 1432 1433 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1434 const char *name) 1435 { 1436 int ret; 1437 1438 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1439 return ret < 0 ? ret : 0; 1440 } 1441 1442 int netif_change_name(struct net_device *dev, const char *newname) 1443 { 1444 struct net *net = dev_net(dev); 1445 unsigned char old_assign_type; 1446 char oldname[IFNAMSIZ]; 1447 int err = 0; 1448 int ret; 1449 1450 ASSERT_RTNL_NET(net); 1451 1452 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1453 return 0; 1454 1455 memcpy(oldname, dev->name, IFNAMSIZ); 1456 1457 write_seqlock_bh(&netdev_rename_lock); 1458 err = dev_get_valid_name(net, dev, newname); 1459 write_sequnlock_bh(&netdev_rename_lock); 1460 1461 if (err < 0) 1462 return err; 1463 1464 if (oldname[0] && !strchr(oldname, '%')) 1465 netdev_info(dev, "renamed from %s%s\n", oldname, 1466 dev->flags & IFF_UP ? " (while UP)" : ""); 1467 1468 old_assign_type = dev->name_assign_type; 1469 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1470 1471 rollback: 1472 ret = device_rename(&dev->dev, dev->name); 1473 if (ret) { 1474 write_seqlock_bh(&netdev_rename_lock); 1475 memcpy(dev->name, oldname, IFNAMSIZ); 1476 write_sequnlock_bh(&netdev_rename_lock); 1477 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1478 return ret; 1479 } 1480 1481 netdev_adjacent_rename_links(dev, oldname); 1482 1483 netdev_name_node_del(dev->name_node); 1484 1485 synchronize_net(); 1486 1487 netdev_name_node_add(net, dev->name_node); 1488 1489 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1490 ret = notifier_to_errno(ret); 1491 1492 if (ret) { 1493 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1494 if (err >= 0) { 1495 err = ret; 1496 write_seqlock_bh(&netdev_rename_lock); 1497 memcpy(dev->name, oldname, IFNAMSIZ); 1498 write_sequnlock_bh(&netdev_rename_lock); 1499 memcpy(oldname, newname, IFNAMSIZ); 1500 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1501 old_assign_type = NET_NAME_RENAMED; 1502 goto rollback; 1503 } else { 1504 netdev_err(dev, "name change rollback failed: %d\n", 1505 ret); 1506 } 1507 } 1508 1509 return err; 1510 } 1511 1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1513 { 1514 struct dev_ifalias *new_alias = NULL; 1515 1516 if (len >= IFALIASZ) 1517 return -EINVAL; 1518 1519 if (len) { 1520 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1521 if (!new_alias) 1522 return -ENOMEM; 1523 1524 memcpy(new_alias->ifalias, alias, len); 1525 new_alias->ifalias[len] = 0; 1526 } 1527 1528 mutex_lock(&ifalias_mutex); 1529 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1530 mutex_is_locked(&ifalias_mutex)); 1531 mutex_unlock(&ifalias_mutex); 1532 1533 if (new_alias) 1534 kfree_rcu(new_alias, rcuhead); 1535 1536 return len; 1537 } 1538 1539 /** 1540 * dev_get_alias - get ifalias of a device 1541 * @dev: device 1542 * @name: buffer to store name of ifalias 1543 * @len: size of buffer 1544 * 1545 * get ifalias for a device. Caller must make sure dev cannot go 1546 * away, e.g. rcu read lock or own a reference count to device. 1547 */ 1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1549 { 1550 const struct dev_ifalias *alias; 1551 int ret = 0; 1552 1553 rcu_read_lock(); 1554 alias = rcu_dereference(dev->ifalias); 1555 if (alias) 1556 ret = snprintf(name, len, "%s", alias->ifalias); 1557 rcu_read_unlock(); 1558 1559 return ret; 1560 } 1561 1562 /** 1563 * netdev_features_change - device changes features 1564 * @dev: device to cause notification 1565 * 1566 * Called to indicate a device has changed features. 1567 */ 1568 void netdev_features_change(struct net_device *dev) 1569 { 1570 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1571 } 1572 EXPORT_SYMBOL(netdev_features_change); 1573 1574 void netif_state_change(struct net_device *dev) 1575 { 1576 netdev_ops_assert_locked_or_invisible(dev); 1577 1578 if (dev->flags & IFF_UP) { 1579 struct netdev_notifier_change_info change_info = { 1580 .info.dev = dev, 1581 }; 1582 1583 call_netdevice_notifiers_info(NETDEV_CHANGE, 1584 &change_info.info); 1585 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1586 } 1587 } 1588 1589 /** 1590 * __netdev_notify_peers - notify network peers about existence of @dev, 1591 * to be called when rtnl lock is already held. 1592 * @dev: network device 1593 * 1594 * Generate traffic such that interested network peers are aware of 1595 * @dev, such as by generating a gratuitous ARP. This may be used when 1596 * a device wants to inform the rest of the network about some sort of 1597 * reconfiguration such as a failover event or virtual machine 1598 * migration. 1599 */ 1600 void __netdev_notify_peers(struct net_device *dev) 1601 { 1602 ASSERT_RTNL(); 1603 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1604 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1605 } 1606 EXPORT_SYMBOL(__netdev_notify_peers); 1607 1608 /** 1609 * netdev_notify_peers - notify network peers about existence of @dev 1610 * @dev: network device 1611 * 1612 * Generate traffic such that interested network peers are aware of 1613 * @dev, such as by generating a gratuitous ARP. This may be used when 1614 * a device wants to inform the rest of the network about some sort of 1615 * reconfiguration such as a failover event or virtual machine 1616 * migration. 1617 */ 1618 void netdev_notify_peers(struct net_device *dev) 1619 { 1620 rtnl_lock(); 1621 __netdev_notify_peers(dev); 1622 rtnl_unlock(); 1623 } 1624 EXPORT_SYMBOL(netdev_notify_peers); 1625 1626 static int napi_threaded_poll(void *data); 1627 1628 static int napi_kthread_create(struct napi_struct *n) 1629 { 1630 int err = 0; 1631 1632 /* Create and wake up the kthread once to put it in 1633 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1634 * warning and work with loadavg. 1635 */ 1636 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1637 n->dev->name, n->napi_id); 1638 if (IS_ERR(n->thread)) { 1639 err = PTR_ERR(n->thread); 1640 pr_err("kthread_run failed with err %d\n", err); 1641 n->thread = NULL; 1642 } 1643 1644 return err; 1645 } 1646 1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1648 { 1649 const struct net_device_ops *ops = dev->netdev_ops; 1650 int ret; 1651 1652 ASSERT_RTNL(); 1653 dev_addr_check(dev); 1654 1655 if (!netif_device_present(dev)) { 1656 /* may be detached because parent is runtime-suspended */ 1657 if (dev->dev.parent) 1658 pm_runtime_resume(dev->dev.parent); 1659 if (!netif_device_present(dev)) 1660 return -ENODEV; 1661 } 1662 1663 /* Block netpoll from trying to do any rx path servicing. 1664 * If we don't do this there is a chance ndo_poll_controller 1665 * or ndo_poll may be running while we open the device 1666 */ 1667 netpoll_poll_disable(dev); 1668 1669 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1670 ret = notifier_to_errno(ret); 1671 if (ret) 1672 return ret; 1673 1674 set_bit(__LINK_STATE_START, &dev->state); 1675 1676 netdev_ops_assert_locked(dev); 1677 1678 if (ops->ndo_validate_addr) 1679 ret = ops->ndo_validate_addr(dev); 1680 1681 if (!ret && ops->ndo_open) 1682 ret = ops->ndo_open(dev); 1683 1684 netpoll_poll_enable(dev); 1685 1686 if (ret) 1687 clear_bit(__LINK_STATE_START, &dev->state); 1688 else { 1689 netif_set_up(dev, true); 1690 dev_set_rx_mode(dev); 1691 dev_activate(dev); 1692 add_device_randomness(dev->dev_addr, dev->addr_len); 1693 } 1694 1695 return ret; 1696 } 1697 1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1699 { 1700 int ret; 1701 1702 if (dev->flags & IFF_UP) 1703 return 0; 1704 1705 ret = __dev_open(dev, extack); 1706 if (ret < 0) 1707 return ret; 1708 1709 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1710 call_netdevice_notifiers(NETDEV_UP, dev); 1711 1712 return ret; 1713 } 1714 1715 static void __dev_close_many(struct list_head *head) 1716 { 1717 struct net_device *dev; 1718 1719 ASSERT_RTNL(); 1720 might_sleep(); 1721 1722 list_for_each_entry(dev, head, close_list) { 1723 /* Temporarily disable netpoll until the interface is down */ 1724 netpoll_poll_disable(dev); 1725 1726 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1727 1728 clear_bit(__LINK_STATE_START, &dev->state); 1729 1730 /* Synchronize to scheduled poll. We cannot touch poll list, it 1731 * can be even on different cpu. So just clear netif_running(). 1732 * 1733 * dev->stop() will invoke napi_disable() on all of it's 1734 * napi_struct instances on this device. 1735 */ 1736 smp_mb__after_atomic(); /* Commit netif_running(). */ 1737 } 1738 1739 dev_deactivate_many(head); 1740 1741 list_for_each_entry(dev, head, close_list) { 1742 const struct net_device_ops *ops = dev->netdev_ops; 1743 1744 /* 1745 * Call the device specific close. This cannot fail. 1746 * Only if device is UP 1747 * 1748 * We allow it to be called even after a DETACH hot-plug 1749 * event. 1750 */ 1751 1752 netdev_ops_assert_locked(dev); 1753 1754 if (ops->ndo_stop) 1755 ops->ndo_stop(dev); 1756 1757 netif_set_up(dev, false); 1758 netpoll_poll_enable(dev); 1759 } 1760 } 1761 1762 static void __dev_close(struct net_device *dev) 1763 { 1764 LIST_HEAD(single); 1765 1766 list_add(&dev->close_list, &single); 1767 __dev_close_many(&single); 1768 list_del(&single); 1769 } 1770 1771 void netif_close_many(struct list_head *head, bool unlink) 1772 { 1773 struct net_device *dev, *tmp; 1774 1775 /* Remove the devices that don't need to be closed */ 1776 list_for_each_entry_safe(dev, tmp, head, close_list) 1777 if (!(dev->flags & IFF_UP)) 1778 list_del_init(&dev->close_list); 1779 1780 __dev_close_many(head); 1781 1782 list_for_each_entry_safe(dev, tmp, head, close_list) { 1783 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1784 call_netdevice_notifiers(NETDEV_DOWN, dev); 1785 if (unlink) 1786 list_del_init(&dev->close_list); 1787 } 1788 } 1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL"); 1790 1791 void netif_close(struct net_device *dev) 1792 { 1793 if (dev->flags & IFF_UP) { 1794 LIST_HEAD(single); 1795 1796 list_add(&dev->close_list, &single); 1797 netif_close_many(&single, true); 1798 list_del(&single); 1799 } 1800 } 1801 EXPORT_SYMBOL(netif_close); 1802 1803 void netif_disable_lro(struct net_device *dev) 1804 { 1805 struct net_device *lower_dev; 1806 struct list_head *iter; 1807 1808 dev->wanted_features &= ~NETIF_F_LRO; 1809 netdev_update_features(dev); 1810 1811 if (unlikely(dev->features & NETIF_F_LRO)) 1812 netdev_WARN(dev, "failed to disable LRO!\n"); 1813 1814 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1815 netdev_lock_ops(lower_dev); 1816 netif_disable_lro(lower_dev); 1817 netdev_unlock_ops(lower_dev); 1818 } 1819 } 1820 EXPORT_IPV6_MOD(netif_disable_lro); 1821 1822 /** 1823 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1824 * @dev: device 1825 * 1826 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1827 * called under RTNL. This is needed if Generic XDP is installed on 1828 * the device. 1829 */ 1830 static void dev_disable_gro_hw(struct net_device *dev) 1831 { 1832 dev->wanted_features &= ~NETIF_F_GRO_HW; 1833 netdev_update_features(dev); 1834 1835 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1836 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1837 } 1838 1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1840 { 1841 #define N(val) \ 1842 case NETDEV_##val: \ 1843 return "NETDEV_" __stringify(val); 1844 switch (cmd) { 1845 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1846 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1847 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1848 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1849 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1850 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1851 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1852 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1853 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1854 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1855 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1856 N(XDP_FEAT_CHANGE) 1857 } 1858 #undef N 1859 return "UNKNOWN_NETDEV_EVENT"; 1860 } 1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1862 1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1864 struct net_device *dev) 1865 { 1866 struct netdev_notifier_info info = { 1867 .dev = dev, 1868 }; 1869 1870 return nb->notifier_call(nb, val, &info); 1871 } 1872 1873 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1874 struct net_device *dev) 1875 { 1876 int err; 1877 1878 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1879 err = notifier_to_errno(err); 1880 if (err) 1881 return err; 1882 1883 if (!(dev->flags & IFF_UP)) 1884 return 0; 1885 1886 call_netdevice_notifier(nb, NETDEV_UP, dev); 1887 return 0; 1888 } 1889 1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1891 struct net_device *dev) 1892 { 1893 if (dev->flags & IFF_UP) { 1894 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1895 dev); 1896 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1897 } 1898 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1899 } 1900 1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1902 struct net *net) 1903 { 1904 struct net_device *dev; 1905 int err; 1906 1907 for_each_netdev(net, dev) { 1908 netdev_lock_ops(dev); 1909 err = call_netdevice_register_notifiers(nb, dev); 1910 netdev_unlock_ops(dev); 1911 if (err) 1912 goto rollback; 1913 } 1914 return 0; 1915 1916 rollback: 1917 for_each_netdev_continue_reverse(net, dev) 1918 call_netdevice_unregister_notifiers(nb, dev); 1919 return err; 1920 } 1921 1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1923 struct net *net) 1924 { 1925 struct net_device *dev; 1926 1927 for_each_netdev(net, dev) 1928 call_netdevice_unregister_notifiers(nb, dev); 1929 } 1930 1931 static int dev_boot_phase = 1; 1932 1933 /** 1934 * register_netdevice_notifier - register a network notifier block 1935 * @nb: notifier 1936 * 1937 * Register a notifier to be called when network device events occur. 1938 * The notifier passed is linked into the kernel structures and must 1939 * not be reused until it has been unregistered. A negative errno code 1940 * is returned on a failure. 1941 * 1942 * When registered all registration and up events are replayed 1943 * to the new notifier to allow device to have a race free 1944 * view of the network device list. 1945 */ 1946 1947 int register_netdevice_notifier(struct notifier_block *nb) 1948 { 1949 struct net *net; 1950 int err; 1951 1952 /* Close race with setup_net() and cleanup_net() */ 1953 down_write(&pernet_ops_rwsem); 1954 1955 /* When RTNL is removed, we need protection for netdev_chain. */ 1956 rtnl_lock(); 1957 1958 err = raw_notifier_chain_register(&netdev_chain, nb); 1959 if (err) 1960 goto unlock; 1961 if (dev_boot_phase) 1962 goto unlock; 1963 for_each_net(net) { 1964 __rtnl_net_lock(net); 1965 err = call_netdevice_register_net_notifiers(nb, net); 1966 __rtnl_net_unlock(net); 1967 if (err) 1968 goto rollback; 1969 } 1970 1971 unlock: 1972 rtnl_unlock(); 1973 up_write(&pernet_ops_rwsem); 1974 return err; 1975 1976 rollback: 1977 for_each_net_continue_reverse(net) { 1978 __rtnl_net_lock(net); 1979 call_netdevice_unregister_net_notifiers(nb, net); 1980 __rtnl_net_unlock(net); 1981 } 1982 1983 raw_notifier_chain_unregister(&netdev_chain, nb); 1984 goto unlock; 1985 } 1986 EXPORT_SYMBOL(register_netdevice_notifier); 1987 1988 /** 1989 * unregister_netdevice_notifier - unregister a network notifier block 1990 * @nb: notifier 1991 * 1992 * Unregister a notifier previously registered by 1993 * register_netdevice_notifier(). The notifier is unlinked into the 1994 * kernel structures and may then be reused. A negative errno code 1995 * is returned on a failure. 1996 * 1997 * After unregistering unregister and down device events are synthesized 1998 * for all devices on the device list to the removed notifier to remove 1999 * the need for special case cleanup code. 2000 */ 2001 2002 int unregister_netdevice_notifier(struct notifier_block *nb) 2003 { 2004 struct net *net; 2005 int err; 2006 2007 /* Close race with setup_net() and cleanup_net() */ 2008 down_write(&pernet_ops_rwsem); 2009 rtnl_lock(); 2010 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2011 if (err) 2012 goto unlock; 2013 2014 for_each_net(net) { 2015 __rtnl_net_lock(net); 2016 call_netdevice_unregister_net_notifiers(nb, net); 2017 __rtnl_net_unlock(net); 2018 } 2019 2020 unlock: 2021 rtnl_unlock(); 2022 up_write(&pernet_ops_rwsem); 2023 return err; 2024 } 2025 EXPORT_SYMBOL(unregister_netdevice_notifier); 2026 2027 static int __register_netdevice_notifier_net(struct net *net, 2028 struct notifier_block *nb, 2029 bool ignore_call_fail) 2030 { 2031 int err; 2032 2033 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2034 if (err) 2035 return err; 2036 if (dev_boot_phase) 2037 return 0; 2038 2039 err = call_netdevice_register_net_notifiers(nb, net); 2040 if (err && !ignore_call_fail) 2041 goto chain_unregister; 2042 2043 return 0; 2044 2045 chain_unregister: 2046 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2047 return err; 2048 } 2049 2050 static int __unregister_netdevice_notifier_net(struct net *net, 2051 struct notifier_block *nb) 2052 { 2053 int err; 2054 2055 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2056 if (err) 2057 return err; 2058 2059 call_netdevice_unregister_net_notifiers(nb, net); 2060 return 0; 2061 } 2062 2063 /** 2064 * register_netdevice_notifier_net - register a per-netns network notifier block 2065 * @net: network namespace 2066 * @nb: notifier 2067 * 2068 * Register a notifier to be called when network device events occur. 2069 * The notifier passed is linked into the kernel structures and must 2070 * not be reused until it has been unregistered. A negative errno code 2071 * is returned on a failure. 2072 * 2073 * When registered all registration and up events are replayed 2074 * to the new notifier to allow device to have a race free 2075 * view of the network device list. 2076 */ 2077 2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2079 { 2080 int err; 2081 2082 rtnl_net_lock(net); 2083 err = __register_netdevice_notifier_net(net, nb, false); 2084 rtnl_net_unlock(net); 2085 2086 return err; 2087 } 2088 EXPORT_SYMBOL(register_netdevice_notifier_net); 2089 2090 /** 2091 * unregister_netdevice_notifier_net - unregister a per-netns 2092 * network notifier block 2093 * @net: network namespace 2094 * @nb: notifier 2095 * 2096 * Unregister a notifier previously registered by 2097 * register_netdevice_notifier_net(). The notifier is unlinked from the 2098 * kernel structures and may then be reused. A negative errno code 2099 * is returned on a failure. 2100 * 2101 * After unregistering unregister and down device events are synthesized 2102 * for all devices on the device list to the removed notifier to remove 2103 * the need for special case cleanup code. 2104 */ 2105 2106 int unregister_netdevice_notifier_net(struct net *net, 2107 struct notifier_block *nb) 2108 { 2109 int err; 2110 2111 rtnl_net_lock(net); 2112 err = __unregister_netdevice_notifier_net(net, nb); 2113 rtnl_net_unlock(net); 2114 2115 return err; 2116 } 2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2118 2119 static void __move_netdevice_notifier_net(struct net *src_net, 2120 struct net *dst_net, 2121 struct notifier_block *nb) 2122 { 2123 __unregister_netdevice_notifier_net(src_net, nb); 2124 __register_netdevice_notifier_net(dst_net, nb, true); 2125 } 2126 2127 static void rtnl_net_dev_lock(struct net_device *dev) 2128 { 2129 bool again; 2130 2131 do { 2132 struct net *net; 2133 2134 again = false; 2135 2136 /* netns might be being dismantled. */ 2137 rcu_read_lock(); 2138 net = dev_net_rcu(dev); 2139 net_passive_inc(net); 2140 rcu_read_unlock(); 2141 2142 rtnl_net_lock(net); 2143 2144 #ifdef CONFIG_NET_NS 2145 /* dev might have been moved to another netns. */ 2146 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2147 rtnl_net_unlock(net); 2148 net_passive_dec(net); 2149 again = true; 2150 } 2151 #endif 2152 } while (again); 2153 } 2154 2155 static void rtnl_net_dev_unlock(struct net_device *dev) 2156 { 2157 struct net *net = dev_net(dev); 2158 2159 rtnl_net_unlock(net); 2160 net_passive_dec(net); 2161 } 2162 2163 int register_netdevice_notifier_dev_net(struct net_device *dev, 2164 struct notifier_block *nb, 2165 struct netdev_net_notifier *nn) 2166 { 2167 int err; 2168 2169 rtnl_net_dev_lock(dev); 2170 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2171 if (!err) { 2172 nn->nb = nb; 2173 list_add(&nn->list, &dev->net_notifier_list); 2174 } 2175 rtnl_net_dev_unlock(dev); 2176 2177 return err; 2178 } 2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2180 2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2182 struct notifier_block *nb, 2183 struct netdev_net_notifier *nn) 2184 { 2185 int err; 2186 2187 rtnl_net_dev_lock(dev); 2188 list_del(&nn->list); 2189 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2190 rtnl_net_dev_unlock(dev); 2191 2192 return err; 2193 } 2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2195 2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2197 struct net *net) 2198 { 2199 struct netdev_net_notifier *nn; 2200 2201 list_for_each_entry(nn, &dev->net_notifier_list, list) 2202 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2203 } 2204 2205 /** 2206 * call_netdevice_notifiers_info - call all network notifier blocks 2207 * @val: value passed unmodified to notifier function 2208 * @info: notifier information data 2209 * 2210 * Call all network notifier blocks. Parameters and return value 2211 * are as for raw_notifier_call_chain(). 2212 */ 2213 2214 int call_netdevice_notifiers_info(unsigned long val, 2215 struct netdev_notifier_info *info) 2216 { 2217 struct net *net = dev_net(info->dev); 2218 int ret; 2219 2220 ASSERT_RTNL(); 2221 2222 /* Run per-netns notifier block chain first, then run the global one. 2223 * Hopefully, one day, the global one is going to be removed after 2224 * all notifier block registrators get converted to be per-netns. 2225 */ 2226 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2227 if (ret & NOTIFY_STOP_MASK) 2228 return ret; 2229 return raw_notifier_call_chain(&netdev_chain, val, info); 2230 } 2231 2232 /** 2233 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2234 * for and rollback on error 2235 * @val_up: value passed unmodified to notifier function 2236 * @val_down: value passed unmodified to the notifier function when 2237 * recovering from an error on @val_up 2238 * @info: notifier information data 2239 * 2240 * Call all per-netns network notifier blocks, but not notifier blocks on 2241 * the global notifier chain. Parameters and return value are as for 2242 * raw_notifier_call_chain_robust(). 2243 */ 2244 2245 static int 2246 call_netdevice_notifiers_info_robust(unsigned long val_up, 2247 unsigned long val_down, 2248 struct netdev_notifier_info *info) 2249 { 2250 struct net *net = dev_net(info->dev); 2251 2252 ASSERT_RTNL(); 2253 2254 return raw_notifier_call_chain_robust(&net->netdev_chain, 2255 val_up, val_down, info); 2256 } 2257 2258 static int call_netdevice_notifiers_extack(unsigned long val, 2259 struct net_device *dev, 2260 struct netlink_ext_ack *extack) 2261 { 2262 struct netdev_notifier_info info = { 2263 .dev = dev, 2264 .extack = extack, 2265 }; 2266 2267 return call_netdevice_notifiers_info(val, &info); 2268 } 2269 2270 /** 2271 * call_netdevice_notifiers - call all network notifier blocks 2272 * @val: value passed unmodified to notifier function 2273 * @dev: net_device pointer passed unmodified to notifier function 2274 * 2275 * Call all network notifier blocks. Parameters and return value 2276 * are as for raw_notifier_call_chain(). 2277 */ 2278 2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2280 { 2281 return call_netdevice_notifiers_extack(val, dev, NULL); 2282 } 2283 EXPORT_SYMBOL(call_netdevice_notifiers); 2284 2285 /** 2286 * call_netdevice_notifiers_mtu - call all network notifier blocks 2287 * @val: value passed unmodified to notifier function 2288 * @dev: net_device pointer passed unmodified to notifier function 2289 * @arg: additional u32 argument passed to the notifier function 2290 * 2291 * Call all network notifier blocks. Parameters and return value 2292 * are as for raw_notifier_call_chain(). 2293 */ 2294 static int call_netdevice_notifiers_mtu(unsigned long val, 2295 struct net_device *dev, u32 arg) 2296 { 2297 struct netdev_notifier_info_ext info = { 2298 .info.dev = dev, 2299 .ext.mtu = arg, 2300 }; 2301 2302 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2303 2304 return call_netdevice_notifiers_info(val, &info.info); 2305 } 2306 2307 #ifdef CONFIG_NET_INGRESS 2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2309 2310 void net_inc_ingress_queue(void) 2311 { 2312 static_branch_inc(&ingress_needed_key); 2313 } 2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2315 2316 void net_dec_ingress_queue(void) 2317 { 2318 static_branch_dec(&ingress_needed_key); 2319 } 2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2321 #endif 2322 2323 #ifdef CONFIG_NET_EGRESS 2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2325 2326 void net_inc_egress_queue(void) 2327 { 2328 static_branch_inc(&egress_needed_key); 2329 } 2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2331 2332 void net_dec_egress_queue(void) 2333 { 2334 static_branch_dec(&egress_needed_key); 2335 } 2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2337 #endif 2338 2339 #ifdef CONFIG_NET_CLS_ACT 2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2341 EXPORT_SYMBOL(tcf_sw_enabled_key); 2342 #endif 2343 2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2345 EXPORT_SYMBOL(netstamp_needed_key); 2346 #ifdef CONFIG_JUMP_LABEL 2347 static atomic_t netstamp_needed_deferred; 2348 static atomic_t netstamp_wanted; 2349 static void netstamp_clear(struct work_struct *work) 2350 { 2351 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2352 int wanted; 2353 2354 wanted = atomic_add_return(deferred, &netstamp_wanted); 2355 if (wanted > 0) 2356 static_branch_enable(&netstamp_needed_key); 2357 else 2358 static_branch_disable(&netstamp_needed_key); 2359 } 2360 static DECLARE_WORK(netstamp_work, netstamp_clear); 2361 #endif 2362 2363 void net_enable_timestamp(void) 2364 { 2365 #ifdef CONFIG_JUMP_LABEL 2366 int wanted = atomic_read(&netstamp_wanted); 2367 2368 while (wanted > 0) { 2369 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2370 return; 2371 } 2372 atomic_inc(&netstamp_needed_deferred); 2373 schedule_work(&netstamp_work); 2374 #else 2375 static_branch_inc(&netstamp_needed_key); 2376 #endif 2377 } 2378 EXPORT_SYMBOL(net_enable_timestamp); 2379 2380 void net_disable_timestamp(void) 2381 { 2382 #ifdef CONFIG_JUMP_LABEL 2383 int wanted = atomic_read(&netstamp_wanted); 2384 2385 while (wanted > 1) { 2386 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2387 return; 2388 } 2389 atomic_dec(&netstamp_needed_deferred); 2390 schedule_work(&netstamp_work); 2391 #else 2392 static_branch_dec(&netstamp_needed_key); 2393 #endif 2394 } 2395 EXPORT_SYMBOL(net_disable_timestamp); 2396 2397 static inline void net_timestamp_set(struct sk_buff *skb) 2398 { 2399 skb->tstamp = 0; 2400 skb->tstamp_type = SKB_CLOCK_REALTIME; 2401 if (static_branch_unlikely(&netstamp_needed_key)) 2402 skb->tstamp = ktime_get_real(); 2403 } 2404 2405 #define net_timestamp_check(COND, SKB) \ 2406 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2407 if ((COND) && !(SKB)->tstamp) \ 2408 (SKB)->tstamp = ktime_get_real(); \ 2409 } \ 2410 2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2412 { 2413 return __is_skb_forwardable(dev, skb, true); 2414 } 2415 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2416 2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2418 bool check_mtu) 2419 { 2420 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2421 2422 if (likely(!ret)) { 2423 skb->protocol = eth_type_trans(skb, dev); 2424 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2425 } 2426 2427 return ret; 2428 } 2429 2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2431 { 2432 return __dev_forward_skb2(dev, skb, true); 2433 } 2434 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2435 2436 /** 2437 * dev_forward_skb - loopback an skb to another netif 2438 * 2439 * @dev: destination network device 2440 * @skb: buffer to forward 2441 * 2442 * return values: 2443 * NET_RX_SUCCESS (no congestion) 2444 * NET_RX_DROP (packet was dropped, but freed) 2445 * 2446 * dev_forward_skb can be used for injecting an skb from the 2447 * start_xmit function of one device into the receive queue 2448 * of another device. 2449 * 2450 * The receiving device may be in another namespace, so 2451 * we have to clear all information in the skb that could 2452 * impact namespace isolation. 2453 */ 2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2455 { 2456 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2457 } 2458 EXPORT_SYMBOL_GPL(dev_forward_skb); 2459 2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2461 { 2462 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2463 } 2464 2465 static inline int deliver_skb(struct sk_buff *skb, 2466 struct packet_type *pt_prev, 2467 struct net_device *orig_dev) 2468 { 2469 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2470 return -ENOMEM; 2471 refcount_inc(&skb->users); 2472 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2473 } 2474 2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2476 struct packet_type **pt, 2477 struct net_device *orig_dev, 2478 __be16 type, 2479 struct list_head *ptype_list) 2480 { 2481 struct packet_type *ptype, *pt_prev = *pt; 2482 2483 list_for_each_entry_rcu(ptype, ptype_list, list) { 2484 if (ptype->type != type) 2485 continue; 2486 if (pt_prev) 2487 deliver_skb(skb, pt_prev, orig_dev); 2488 pt_prev = ptype; 2489 } 2490 *pt = pt_prev; 2491 } 2492 2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2494 { 2495 if (!ptype->af_packet_priv || !skb->sk) 2496 return false; 2497 2498 if (ptype->id_match) 2499 return ptype->id_match(ptype, skb->sk); 2500 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2501 return true; 2502 2503 return false; 2504 } 2505 2506 /** 2507 * dev_nit_active_rcu - return true if any network interface taps are in use 2508 * 2509 * The caller must hold the RCU lock 2510 * 2511 * @dev: network device to check for the presence of taps 2512 */ 2513 bool dev_nit_active_rcu(const struct net_device *dev) 2514 { 2515 /* Callers may hold either RCU or RCU BH lock */ 2516 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2517 2518 return !list_empty(&dev_net(dev)->ptype_all) || 2519 !list_empty(&dev->ptype_all); 2520 } 2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2522 2523 /* 2524 * Support routine. Sends outgoing frames to any network 2525 * taps currently in use. 2526 */ 2527 2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2529 { 2530 struct packet_type *ptype, *pt_prev = NULL; 2531 struct list_head *ptype_list; 2532 struct sk_buff *skb2 = NULL; 2533 2534 rcu_read_lock(); 2535 ptype_list = &dev_net_rcu(dev)->ptype_all; 2536 again: 2537 list_for_each_entry_rcu(ptype, ptype_list, list) { 2538 if (READ_ONCE(ptype->ignore_outgoing)) 2539 continue; 2540 2541 /* Never send packets back to the socket 2542 * they originated from - MvS (miquels@drinkel.ow.org) 2543 */ 2544 if (skb_loop_sk(ptype, skb)) 2545 continue; 2546 2547 if (pt_prev) { 2548 deliver_skb(skb2, pt_prev, skb->dev); 2549 pt_prev = ptype; 2550 continue; 2551 } 2552 2553 /* need to clone skb, done only once */ 2554 skb2 = skb_clone(skb, GFP_ATOMIC); 2555 if (!skb2) 2556 goto out_unlock; 2557 2558 net_timestamp_set(skb2); 2559 2560 /* skb->nh should be correctly 2561 * set by sender, so that the second statement is 2562 * just protection against buggy protocols. 2563 */ 2564 skb_reset_mac_header(skb2); 2565 2566 if (skb_network_header(skb2) < skb2->data || 2567 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2568 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2569 ntohs(skb2->protocol), 2570 dev->name); 2571 skb_reset_network_header(skb2); 2572 } 2573 2574 skb2->transport_header = skb2->network_header; 2575 skb2->pkt_type = PACKET_OUTGOING; 2576 pt_prev = ptype; 2577 } 2578 2579 if (ptype_list != &dev->ptype_all) { 2580 ptype_list = &dev->ptype_all; 2581 goto again; 2582 } 2583 out_unlock: 2584 if (pt_prev) { 2585 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2586 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2587 else 2588 kfree_skb(skb2); 2589 } 2590 rcu_read_unlock(); 2591 } 2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2593 2594 /** 2595 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2596 * @dev: Network device 2597 * @txq: number of queues available 2598 * 2599 * If real_num_tx_queues is changed the tc mappings may no longer be 2600 * valid. To resolve this verify the tc mapping remains valid and if 2601 * not NULL the mapping. With no priorities mapping to this 2602 * offset/count pair it will no longer be used. In the worst case TC0 2603 * is invalid nothing can be done so disable priority mappings. If is 2604 * expected that drivers will fix this mapping if they can before 2605 * calling netif_set_real_num_tx_queues. 2606 */ 2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2608 { 2609 int i; 2610 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2611 2612 /* If TC0 is invalidated disable TC mapping */ 2613 if (tc->offset + tc->count > txq) { 2614 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2615 dev->num_tc = 0; 2616 return; 2617 } 2618 2619 /* Invalidated prio to tc mappings set to TC0 */ 2620 for (i = 1; i < TC_BITMASK + 1; i++) { 2621 int q = netdev_get_prio_tc_map(dev, i); 2622 2623 tc = &dev->tc_to_txq[q]; 2624 if (tc->offset + tc->count > txq) { 2625 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2626 i, q); 2627 netdev_set_prio_tc_map(dev, i, 0); 2628 } 2629 } 2630 } 2631 2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2633 { 2634 if (dev->num_tc) { 2635 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2636 int i; 2637 2638 /* walk through the TCs and see if it falls into any of them */ 2639 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2640 if ((txq - tc->offset) < tc->count) 2641 return i; 2642 } 2643 2644 /* didn't find it, just return -1 to indicate no match */ 2645 return -1; 2646 } 2647 2648 return 0; 2649 } 2650 EXPORT_SYMBOL(netdev_txq_to_tc); 2651 2652 #ifdef CONFIG_XPS 2653 static struct static_key xps_needed __read_mostly; 2654 static struct static_key xps_rxqs_needed __read_mostly; 2655 static DEFINE_MUTEX(xps_map_mutex); 2656 #define xmap_dereference(P) \ 2657 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2658 2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2660 struct xps_dev_maps *old_maps, int tci, u16 index) 2661 { 2662 struct xps_map *map = NULL; 2663 int pos; 2664 2665 map = xmap_dereference(dev_maps->attr_map[tci]); 2666 if (!map) 2667 return false; 2668 2669 for (pos = map->len; pos--;) { 2670 if (map->queues[pos] != index) 2671 continue; 2672 2673 if (map->len > 1) { 2674 map->queues[pos] = map->queues[--map->len]; 2675 break; 2676 } 2677 2678 if (old_maps) 2679 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2680 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2681 kfree_rcu(map, rcu); 2682 return false; 2683 } 2684 2685 return true; 2686 } 2687 2688 static bool remove_xps_queue_cpu(struct net_device *dev, 2689 struct xps_dev_maps *dev_maps, 2690 int cpu, u16 offset, u16 count) 2691 { 2692 int num_tc = dev_maps->num_tc; 2693 bool active = false; 2694 int tci; 2695 2696 for (tci = cpu * num_tc; num_tc--; tci++) { 2697 int i, j; 2698 2699 for (i = count, j = offset; i--; j++) { 2700 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2701 break; 2702 } 2703 2704 active |= i < 0; 2705 } 2706 2707 return active; 2708 } 2709 2710 static void reset_xps_maps(struct net_device *dev, 2711 struct xps_dev_maps *dev_maps, 2712 enum xps_map_type type) 2713 { 2714 static_key_slow_dec_cpuslocked(&xps_needed); 2715 if (type == XPS_RXQS) 2716 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2717 2718 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2719 2720 kfree_rcu(dev_maps, rcu); 2721 } 2722 2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2724 u16 offset, u16 count) 2725 { 2726 struct xps_dev_maps *dev_maps; 2727 bool active = false; 2728 int i, j; 2729 2730 dev_maps = xmap_dereference(dev->xps_maps[type]); 2731 if (!dev_maps) 2732 return; 2733 2734 for (j = 0; j < dev_maps->nr_ids; j++) 2735 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2736 if (!active) 2737 reset_xps_maps(dev, dev_maps, type); 2738 2739 if (type == XPS_CPUS) { 2740 for (i = offset + (count - 1); count--; i--) 2741 netdev_queue_numa_node_write( 2742 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2743 } 2744 } 2745 2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2747 u16 count) 2748 { 2749 if (!static_key_false(&xps_needed)) 2750 return; 2751 2752 cpus_read_lock(); 2753 mutex_lock(&xps_map_mutex); 2754 2755 if (static_key_false(&xps_rxqs_needed)) 2756 clean_xps_maps(dev, XPS_RXQS, offset, count); 2757 2758 clean_xps_maps(dev, XPS_CPUS, offset, count); 2759 2760 mutex_unlock(&xps_map_mutex); 2761 cpus_read_unlock(); 2762 } 2763 2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2765 { 2766 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2767 } 2768 2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2770 u16 index, bool is_rxqs_map) 2771 { 2772 struct xps_map *new_map; 2773 int alloc_len = XPS_MIN_MAP_ALLOC; 2774 int i, pos; 2775 2776 for (pos = 0; map && pos < map->len; pos++) { 2777 if (map->queues[pos] != index) 2778 continue; 2779 return map; 2780 } 2781 2782 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2783 if (map) { 2784 if (pos < map->alloc_len) 2785 return map; 2786 2787 alloc_len = map->alloc_len * 2; 2788 } 2789 2790 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2791 * map 2792 */ 2793 if (is_rxqs_map) 2794 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2795 else 2796 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2797 cpu_to_node(attr_index)); 2798 if (!new_map) 2799 return NULL; 2800 2801 for (i = 0; i < pos; i++) 2802 new_map->queues[i] = map->queues[i]; 2803 new_map->alloc_len = alloc_len; 2804 new_map->len = pos; 2805 2806 return new_map; 2807 } 2808 2809 /* Copy xps maps at a given index */ 2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2811 struct xps_dev_maps *new_dev_maps, int index, 2812 int tc, bool skip_tc) 2813 { 2814 int i, tci = index * dev_maps->num_tc; 2815 struct xps_map *map; 2816 2817 /* copy maps belonging to foreign traffic classes */ 2818 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2819 if (i == tc && skip_tc) 2820 continue; 2821 2822 /* fill in the new device map from the old device map */ 2823 map = xmap_dereference(dev_maps->attr_map[tci]); 2824 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2825 } 2826 } 2827 2828 /* Must be called under cpus_read_lock */ 2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2830 u16 index, enum xps_map_type type) 2831 { 2832 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2833 const unsigned long *online_mask = NULL; 2834 bool active = false, copy = false; 2835 int i, j, tci, numa_node_id = -2; 2836 int maps_sz, num_tc = 1, tc = 0; 2837 struct xps_map *map, *new_map; 2838 unsigned int nr_ids; 2839 2840 WARN_ON_ONCE(index >= dev->num_tx_queues); 2841 2842 if (dev->num_tc) { 2843 /* Do not allow XPS on subordinate device directly */ 2844 num_tc = dev->num_tc; 2845 if (num_tc < 0) 2846 return -EINVAL; 2847 2848 /* If queue belongs to subordinate dev use its map */ 2849 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2850 2851 tc = netdev_txq_to_tc(dev, index); 2852 if (tc < 0) 2853 return -EINVAL; 2854 } 2855 2856 mutex_lock(&xps_map_mutex); 2857 2858 dev_maps = xmap_dereference(dev->xps_maps[type]); 2859 if (type == XPS_RXQS) { 2860 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2861 nr_ids = dev->num_rx_queues; 2862 } else { 2863 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2864 if (num_possible_cpus() > 1) 2865 online_mask = cpumask_bits(cpu_online_mask); 2866 nr_ids = nr_cpu_ids; 2867 } 2868 2869 if (maps_sz < L1_CACHE_BYTES) 2870 maps_sz = L1_CACHE_BYTES; 2871 2872 /* The old dev_maps could be larger or smaller than the one we're 2873 * setting up now, as dev->num_tc or nr_ids could have been updated in 2874 * between. We could try to be smart, but let's be safe instead and only 2875 * copy foreign traffic classes if the two map sizes match. 2876 */ 2877 if (dev_maps && 2878 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2879 copy = true; 2880 2881 /* allocate memory for queue storage */ 2882 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2883 j < nr_ids;) { 2884 if (!new_dev_maps) { 2885 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2886 if (!new_dev_maps) { 2887 mutex_unlock(&xps_map_mutex); 2888 return -ENOMEM; 2889 } 2890 2891 new_dev_maps->nr_ids = nr_ids; 2892 new_dev_maps->num_tc = num_tc; 2893 } 2894 2895 tci = j * num_tc + tc; 2896 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2897 2898 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2899 if (!map) 2900 goto error; 2901 2902 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2903 } 2904 2905 if (!new_dev_maps) 2906 goto out_no_new_maps; 2907 2908 if (!dev_maps) { 2909 /* Increment static keys at most once per type */ 2910 static_key_slow_inc_cpuslocked(&xps_needed); 2911 if (type == XPS_RXQS) 2912 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2913 } 2914 2915 for (j = 0; j < nr_ids; j++) { 2916 bool skip_tc = false; 2917 2918 tci = j * num_tc + tc; 2919 if (netif_attr_test_mask(j, mask, nr_ids) && 2920 netif_attr_test_online(j, online_mask, nr_ids)) { 2921 /* add tx-queue to CPU/rx-queue maps */ 2922 int pos = 0; 2923 2924 skip_tc = true; 2925 2926 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2927 while ((pos < map->len) && (map->queues[pos] != index)) 2928 pos++; 2929 2930 if (pos == map->len) 2931 map->queues[map->len++] = index; 2932 #ifdef CONFIG_NUMA 2933 if (type == XPS_CPUS) { 2934 if (numa_node_id == -2) 2935 numa_node_id = cpu_to_node(j); 2936 else if (numa_node_id != cpu_to_node(j)) 2937 numa_node_id = -1; 2938 } 2939 #endif 2940 } 2941 2942 if (copy) 2943 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2944 skip_tc); 2945 } 2946 2947 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2948 2949 /* Cleanup old maps */ 2950 if (!dev_maps) 2951 goto out_no_old_maps; 2952 2953 for (j = 0; j < dev_maps->nr_ids; j++) { 2954 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2955 map = xmap_dereference(dev_maps->attr_map[tci]); 2956 if (!map) 2957 continue; 2958 2959 if (copy) { 2960 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2961 if (map == new_map) 2962 continue; 2963 } 2964 2965 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2966 kfree_rcu(map, rcu); 2967 } 2968 } 2969 2970 old_dev_maps = dev_maps; 2971 2972 out_no_old_maps: 2973 dev_maps = new_dev_maps; 2974 active = true; 2975 2976 out_no_new_maps: 2977 if (type == XPS_CPUS) 2978 /* update Tx queue numa node */ 2979 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2980 (numa_node_id >= 0) ? 2981 numa_node_id : NUMA_NO_NODE); 2982 2983 if (!dev_maps) 2984 goto out_no_maps; 2985 2986 /* removes tx-queue from unused CPUs/rx-queues */ 2987 for (j = 0; j < dev_maps->nr_ids; j++) { 2988 tci = j * dev_maps->num_tc; 2989 2990 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2991 if (i == tc && 2992 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2993 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2994 continue; 2995 2996 active |= remove_xps_queue(dev_maps, 2997 copy ? old_dev_maps : NULL, 2998 tci, index); 2999 } 3000 } 3001 3002 if (old_dev_maps) 3003 kfree_rcu(old_dev_maps, rcu); 3004 3005 /* free map if not active */ 3006 if (!active) 3007 reset_xps_maps(dev, dev_maps, type); 3008 3009 out_no_maps: 3010 mutex_unlock(&xps_map_mutex); 3011 3012 return 0; 3013 error: 3014 /* remove any maps that we added */ 3015 for (j = 0; j < nr_ids; j++) { 3016 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3017 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3018 map = copy ? 3019 xmap_dereference(dev_maps->attr_map[tci]) : 3020 NULL; 3021 if (new_map && new_map != map) 3022 kfree(new_map); 3023 } 3024 } 3025 3026 mutex_unlock(&xps_map_mutex); 3027 3028 kfree(new_dev_maps); 3029 return -ENOMEM; 3030 } 3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3032 3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3034 u16 index) 3035 { 3036 int ret; 3037 3038 cpus_read_lock(); 3039 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3040 cpus_read_unlock(); 3041 3042 return ret; 3043 } 3044 EXPORT_SYMBOL(netif_set_xps_queue); 3045 3046 #endif 3047 static void netdev_unbind_all_sb_channels(struct net_device *dev) 3048 { 3049 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3050 3051 /* Unbind any subordinate channels */ 3052 while (txq-- != &dev->_tx[0]) { 3053 if (txq->sb_dev) 3054 netdev_unbind_sb_channel(dev, txq->sb_dev); 3055 } 3056 } 3057 3058 void netdev_reset_tc(struct net_device *dev) 3059 { 3060 #ifdef CONFIG_XPS 3061 netif_reset_xps_queues_gt(dev, 0); 3062 #endif 3063 netdev_unbind_all_sb_channels(dev); 3064 3065 /* Reset TC configuration of device */ 3066 dev->num_tc = 0; 3067 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3068 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3069 } 3070 EXPORT_SYMBOL(netdev_reset_tc); 3071 3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3073 { 3074 if (tc >= dev->num_tc) 3075 return -EINVAL; 3076 3077 #ifdef CONFIG_XPS 3078 netif_reset_xps_queues(dev, offset, count); 3079 #endif 3080 dev->tc_to_txq[tc].count = count; 3081 dev->tc_to_txq[tc].offset = offset; 3082 return 0; 3083 } 3084 EXPORT_SYMBOL(netdev_set_tc_queue); 3085 3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3087 { 3088 if (num_tc > TC_MAX_QUEUE) 3089 return -EINVAL; 3090 3091 #ifdef CONFIG_XPS 3092 netif_reset_xps_queues_gt(dev, 0); 3093 #endif 3094 netdev_unbind_all_sb_channels(dev); 3095 3096 dev->num_tc = num_tc; 3097 return 0; 3098 } 3099 EXPORT_SYMBOL(netdev_set_num_tc); 3100 3101 void netdev_unbind_sb_channel(struct net_device *dev, 3102 struct net_device *sb_dev) 3103 { 3104 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3105 3106 #ifdef CONFIG_XPS 3107 netif_reset_xps_queues_gt(sb_dev, 0); 3108 #endif 3109 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3110 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3111 3112 while (txq-- != &dev->_tx[0]) { 3113 if (txq->sb_dev == sb_dev) 3114 txq->sb_dev = NULL; 3115 } 3116 } 3117 EXPORT_SYMBOL(netdev_unbind_sb_channel); 3118 3119 int netdev_bind_sb_channel_queue(struct net_device *dev, 3120 struct net_device *sb_dev, 3121 u8 tc, u16 count, u16 offset) 3122 { 3123 /* Make certain the sb_dev and dev are already configured */ 3124 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3125 return -EINVAL; 3126 3127 /* We cannot hand out queues we don't have */ 3128 if ((offset + count) > dev->real_num_tx_queues) 3129 return -EINVAL; 3130 3131 /* Record the mapping */ 3132 sb_dev->tc_to_txq[tc].count = count; 3133 sb_dev->tc_to_txq[tc].offset = offset; 3134 3135 /* Provide a way for Tx queue to find the tc_to_txq map or 3136 * XPS map for itself. 3137 */ 3138 while (count--) 3139 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3140 3141 return 0; 3142 } 3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3144 3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3146 { 3147 /* Do not use a multiqueue device to represent a subordinate channel */ 3148 if (netif_is_multiqueue(dev)) 3149 return -ENODEV; 3150 3151 /* We allow channels 1 - 32767 to be used for subordinate channels. 3152 * Channel 0 is meant to be "native" mode and used only to represent 3153 * the main root device. We allow writing 0 to reset the device back 3154 * to normal mode after being used as a subordinate channel. 3155 */ 3156 if (channel > S16_MAX) 3157 return -EINVAL; 3158 3159 dev->num_tc = -channel; 3160 3161 return 0; 3162 } 3163 EXPORT_SYMBOL(netdev_set_sb_channel); 3164 3165 /* 3166 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3167 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3168 */ 3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3170 { 3171 bool disabling; 3172 int rc; 3173 3174 disabling = txq < dev->real_num_tx_queues; 3175 3176 if (txq < 1 || txq > dev->num_tx_queues) 3177 return -EINVAL; 3178 3179 if (dev->reg_state == NETREG_REGISTERED || 3180 dev->reg_state == NETREG_UNREGISTERING) { 3181 netdev_ops_assert_locked(dev); 3182 3183 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3184 txq); 3185 if (rc) 3186 return rc; 3187 3188 if (dev->num_tc) 3189 netif_setup_tc(dev, txq); 3190 3191 net_shaper_set_real_num_tx_queues(dev, txq); 3192 3193 dev_qdisc_change_real_num_tx(dev, txq); 3194 3195 dev->real_num_tx_queues = txq; 3196 3197 if (disabling) { 3198 synchronize_net(); 3199 qdisc_reset_all_tx_gt(dev, txq); 3200 #ifdef CONFIG_XPS 3201 netif_reset_xps_queues_gt(dev, txq); 3202 #endif 3203 } 3204 } else { 3205 dev->real_num_tx_queues = txq; 3206 } 3207 3208 return 0; 3209 } 3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3211 3212 /** 3213 * netif_set_real_num_rx_queues - set actual number of RX queues used 3214 * @dev: Network device 3215 * @rxq: Actual number of RX queues 3216 * 3217 * This must be called either with the rtnl_lock held or before 3218 * registration of the net device. Returns 0 on success, or a 3219 * negative error code. If called before registration, it always 3220 * succeeds. 3221 */ 3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3223 { 3224 int rc; 3225 3226 if (rxq < 1 || rxq > dev->num_rx_queues) 3227 return -EINVAL; 3228 3229 if (dev->reg_state == NETREG_REGISTERED) { 3230 netdev_ops_assert_locked(dev); 3231 3232 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3233 rxq); 3234 if (rc) 3235 return rc; 3236 } 3237 3238 dev->real_num_rx_queues = rxq; 3239 return 0; 3240 } 3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3242 3243 /** 3244 * netif_set_real_num_queues - set actual number of RX and TX queues used 3245 * @dev: Network device 3246 * @txq: Actual number of TX queues 3247 * @rxq: Actual number of RX queues 3248 * 3249 * Set the real number of both TX and RX queues. 3250 * Does nothing if the number of queues is already correct. 3251 */ 3252 int netif_set_real_num_queues(struct net_device *dev, 3253 unsigned int txq, unsigned int rxq) 3254 { 3255 unsigned int old_rxq = dev->real_num_rx_queues; 3256 int err; 3257 3258 if (txq < 1 || txq > dev->num_tx_queues || 3259 rxq < 1 || rxq > dev->num_rx_queues) 3260 return -EINVAL; 3261 3262 /* Start from increases, so the error path only does decreases - 3263 * decreases can't fail. 3264 */ 3265 if (rxq > dev->real_num_rx_queues) { 3266 err = netif_set_real_num_rx_queues(dev, rxq); 3267 if (err) 3268 return err; 3269 } 3270 if (txq > dev->real_num_tx_queues) { 3271 err = netif_set_real_num_tx_queues(dev, txq); 3272 if (err) 3273 goto undo_rx; 3274 } 3275 if (rxq < dev->real_num_rx_queues) 3276 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3277 if (txq < dev->real_num_tx_queues) 3278 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3279 3280 return 0; 3281 undo_rx: 3282 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3283 return err; 3284 } 3285 EXPORT_SYMBOL(netif_set_real_num_queues); 3286 3287 /** 3288 * netif_set_tso_max_size() - set the max size of TSO frames supported 3289 * @dev: netdev to update 3290 * @size: max skb->len of a TSO frame 3291 * 3292 * Set the limit on the size of TSO super-frames the device can handle. 3293 * Unless explicitly set the stack will assume the value of 3294 * %GSO_LEGACY_MAX_SIZE. 3295 */ 3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3297 { 3298 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3299 if (size < READ_ONCE(dev->gso_max_size)) 3300 netif_set_gso_max_size(dev, size); 3301 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3302 netif_set_gso_ipv4_max_size(dev, size); 3303 } 3304 EXPORT_SYMBOL(netif_set_tso_max_size); 3305 3306 /** 3307 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3308 * @dev: netdev to update 3309 * @segs: max number of TCP segments 3310 * 3311 * Set the limit on the number of TCP segments the device can generate from 3312 * a single TSO super-frame. 3313 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3314 */ 3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3316 { 3317 dev->tso_max_segs = segs; 3318 if (segs < READ_ONCE(dev->gso_max_segs)) 3319 netif_set_gso_max_segs(dev, segs); 3320 } 3321 EXPORT_SYMBOL(netif_set_tso_max_segs); 3322 3323 /** 3324 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3325 * @to: netdev to update 3326 * @from: netdev from which to copy the limits 3327 */ 3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3329 { 3330 netif_set_tso_max_size(to, from->tso_max_size); 3331 netif_set_tso_max_segs(to, from->tso_max_segs); 3332 } 3333 EXPORT_SYMBOL(netif_inherit_tso_max); 3334 3335 /** 3336 * netif_get_num_default_rss_queues - default number of RSS queues 3337 * 3338 * Default value is the number of physical cores if there are only 1 or 2, or 3339 * divided by 2 if there are more. 3340 */ 3341 int netif_get_num_default_rss_queues(void) 3342 { 3343 cpumask_var_t cpus; 3344 int cpu, count = 0; 3345 3346 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3347 return 1; 3348 3349 cpumask_copy(cpus, cpu_online_mask); 3350 for_each_cpu(cpu, cpus) { 3351 ++count; 3352 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3353 } 3354 free_cpumask_var(cpus); 3355 3356 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3357 } 3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3359 3360 static void __netif_reschedule(struct Qdisc *q) 3361 { 3362 struct softnet_data *sd; 3363 unsigned long flags; 3364 3365 local_irq_save(flags); 3366 sd = this_cpu_ptr(&softnet_data); 3367 q->next_sched = NULL; 3368 *sd->output_queue_tailp = q; 3369 sd->output_queue_tailp = &q->next_sched; 3370 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3371 local_irq_restore(flags); 3372 } 3373 3374 void __netif_schedule(struct Qdisc *q) 3375 { 3376 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3377 __netif_reschedule(q); 3378 } 3379 EXPORT_SYMBOL(__netif_schedule); 3380 3381 struct dev_kfree_skb_cb { 3382 enum skb_drop_reason reason; 3383 }; 3384 3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3386 { 3387 return (struct dev_kfree_skb_cb *)skb->cb; 3388 } 3389 3390 void netif_schedule_queue(struct netdev_queue *txq) 3391 { 3392 rcu_read_lock(); 3393 if (!netif_xmit_stopped(txq)) { 3394 struct Qdisc *q = rcu_dereference(txq->qdisc); 3395 3396 __netif_schedule(q); 3397 } 3398 rcu_read_unlock(); 3399 } 3400 EXPORT_SYMBOL(netif_schedule_queue); 3401 3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3403 { 3404 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3405 struct Qdisc *q; 3406 3407 rcu_read_lock(); 3408 q = rcu_dereference(dev_queue->qdisc); 3409 __netif_schedule(q); 3410 rcu_read_unlock(); 3411 } 3412 } 3413 EXPORT_SYMBOL(netif_tx_wake_queue); 3414 3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3416 { 3417 unsigned long flags; 3418 3419 if (unlikely(!skb)) 3420 return; 3421 3422 if (likely(refcount_read(&skb->users) == 1)) { 3423 smp_rmb(); 3424 refcount_set(&skb->users, 0); 3425 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3426 return; 3427 } 3428 get_kfree_skb_cb(skb)->reason = reason; 3429 local_irq_save(flags); 3430 skb->next = __this_cpu_read(softnet_data.completion_queue); 3431 __this_cpu_write(softnet_data.completion_queue, skb); 3432 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3433 local_irq_restore(flags); 3434 } 3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3436 3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3438 { 3439 if (in_hardirq() || irqs_disabled()) 3440 dev_kfree_skb_irq_reason(skb, reason); 3441 else 3442 kfree_skb_reason(skb, reason); 3443 } 3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3445 3446 3447 /** 3448 * netif_device_detach - mark device as removed 3449 * @dev: network device 3450 * 3451 * Mark device as removed from system and therefore no longer available. 3452 */ 3453 void netif_device_detach(struct net_device *dev) 3454 { 3455 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3456 netif_running(dev)) { 3457 netif_tx_stop_all_queues(dev); 3458 } 3459 } 3460 EXPORT_SYMBOL(netif_device_detach); 3461 3462 /** 3463 * netif_device_attach - mark device as attached 3464 * @dev: network device 3465 * 3466 * Mark device as attached from system and restart if needed. 3467 */ 3468 void netif_device_attach(struct net_device *dev) 3469 { 3470 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3471 netif_running(dev)) { 3472 netif_tx_wake_all_queues(dev); 3473 netdev_watchdog_up(dev); 3474 } 3475 } 3476 EXPORT_SYMBOL(netif_device_attach); 3477 3478 /* 3479 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3480 * to be used as a distribution range. 3481 */ 3482 static u16 skb_tx_hash(const struct net_device *dev, 3483 const struct net_device *sb_dev, 3484 struct sk_buff *skb) 3485 { 3486 u32 hash; 3487 u16 qoffset = 0; 3488 u16 qcount = dev->real_num_tx_queues; 3489 3490 if (dev->num_tc) { 3491 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3492 3493 qoffset = sb_dev->tc_to_txq[tc].offset; 3494 qcount = sb_dev->tc_to_txq[tc].count; 3495 if (unlikely(!qcount)) { 3496 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3497 sb_dev->name, qoffset, tc); 3498 qoffset = 0; 3499 qcount = dev->real_num_tx_queues; 3500 } 3501 } 3502 3503 if (skb_rx_queue_recorded(skb)) { 3504 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3505 hash = skb_get_rx_queue(skb); 3506 if (hash >= qoffset) 3507 hash -= qoffset; 3508 while (unlikely(hash >= qcount)) 3509 hash -= qcount; 3510 return hash + qoffset; 3511 } 3512 3513 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3514 } 3515 3516 void skb_warn_bad_offload(const struct sk_buff *skb) 3517 { 3518 static const netdev_features_t null_features; 3519 struct net_device *dev = skb->dev; 3520 const char *name = ""; 3521 3522 if (!net_ratelimit()) 3523 return; 3524 3525 if (dev) { 3526 if (dev->dev.parent) 3527 name = dev_driver_string(dev->dev.parent); 3528 else 3529 name = netdev_name(dev); 3530 } 3531 skb_dump(KERN_WARNING, skb, false); 3532 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3533 name, dev ? &dev->features : &null_features, 3534 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3535 } 3536 3537 /* 3538 * Invalidate hardware checksum when packet is to be mangled, and 3539 * complete checksum manually on outgoing path. 3540 */ 3541 int skb_checksum_help(struct sk_buff *skb) 3542 { 3543 __wsum csum; 3544 int ret = 0, offset; 3545 3546 if (skb->ip_summed == CHECKSUM_COMPLETE) 3547 goto out_set_summed; 3548 3549 if (unlikely(skb_is_gso(skb))) { 3550 skb_warn_bad_offload(skb); 3551 return -EINVAL; 3552 } 3553 3554 if (!skb_frags_readable(skb)) { 3555 return -EFAULT; 3556 } 3557 3558 /* Before computing a checksum, we should make sure no frag could 3559 * be modified by an external entity : checksum could be wrong. 3560 */ 3561 if (skb_has_shared_frag(skb)) { 3562 ret = __skb_linearize(skb); 3563 if (ret) 3564 goto out; 3565 } 3566 3567 offset = skb_checksum_start_offset(skb); 3568 ret = -EINVAL; 3569 if (unlikely(offset >= skb_headlen(skb))) { 3570 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3571 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3572 offset, skb_headlen(skb)); 3573 goto out; 3574 } 3575 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3576 3577 offset += skb->csum_offset; 3578 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3579 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3580 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3581 offset + sizeof(__sum16), skb_headlen(skb)); 3582 goto out; 3583 } 3584 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3585 if (ret) 3586 goto out; 3587 3588 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3589 out_set_summed: 3590 skb->ip_summed = CHECKSUM_NONE; 3591 out: 3592 return ret; 3593 } 3594 EXPORT_SYMBOL(skb_checksum_help); 3595 3596 #ifdef CONFIG_NET_CRC32C 3597 int skb_crc32c_csum_help(struct sk_buff *skb) 3598 { 3599 u32 crc; 3600 int ret = 0, offset, start; 3601 3602 if (skb->ip_summed != CHECKSUM_PARTIAL) 3603 goto out; 3604 3605 if (unlikely(skb_is_gso(skb))) 3606 goto out; 3607 3608 /* Before computing a checksum, we should make sure no frag could 3609 * be modified by an external entity : checksum could be wrong. 3610 */ 3611 if (unlikely(skb_has_shared_frag(skb))) { 3612 ret = __skb_linearize(skb); 3613 if (ret) 3614 goto out; 3615 } 3616 start = skb_checksum_start_offset(skb); 3617 offset = start + offsetof(struct sctphdr, checksum); 3618 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3619 ret = -EINVAL; 3620 goto out; 3621 } 3622 3623 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3624 if (ret) 3625 goto out; 3626 3627 crc = ~skb_crc32c(skb, start, skb->len - start, ~0); 3628 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); 3629 skb_reset_csum_not_inet(skb); 3630 out: 3631 return ret; 3632 } 3633 EXPORT_SYMBOL(skb_crc32c_csum_help); 3634 #endif /* CONFIG_NET_CRC32C */ 3635 3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3637 { 3638 __be16 type = skb->protocol; 3639 3640 /* Tunnel gso handlers can set protocol to ethernet. */ 3641 if (type == htons(ETH_P_TEB)) { 3642 struct ethhdr *eth; 3643 3644 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3645 return 0; 3646 3647 eth = (struct ethhdr *)skb->data; 3648 type = eth->h_proto; 3649 } 3650 3651 return vlan_get_protocol_and_depth(skb, type, depth); 3652 } 3653 3654 3655 /* Take action when hardware reception checksum errors are detected. */ 3656 #ifdef CONFIG_BUG 3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3658 { 3659 netdev_err(dev, "hw csum failure\n"); 3660 skb_dump(KERN_ERR, skb, true); 3661 dump_stack(); 3662 } 3663 3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3665 { 3666 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3667 } 3668 EXPORT_SYMBOL(netdev_rx_csum_fault); 3669 #endif 3670 3671 /* XXX: check that highmem exists at all on the given machine. */ 3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3673 { 3674 #ifdef CONFIG_HIGHMEM 3675 int i; 3676 3677 if (!(dev->features & NETIF_F_HIGHDMA)) { 3678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3679 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3680 struct page *page = skb_frag_page(frag); 3681 3682 if (page && PageHighMem(page)) 3683 return 1; 3684 } 3685 } 3686 #endif 3687 return 0; 3688 } 3689 3690 /* If MPLS offload request, verify we are testing hardware MPLS features 3691 * instead of standard features for the netdev. 3692 */ 3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3694 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3695 netdev_features_t features, 3696 __be16 type) 3697 { 3698 if (eth_p_mpls(type)) 3699 features &= skb->dev->mpls_features; 3700 3701 return features; 3702 } 3703 #else 3704 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3705 netdev_features_t features, 3706 __be16 type) 3707 { 3708 return features; 3709 } 3710 #endif 3711 3712 static netdev_features_t harmonize_features(struct sk_buff *skb, 3713 netdev_features_t features) 3714 { 3715 __be16 type; 3716 3717 type = skb_network_protocol(skb, NULL); 3718 features = net_mpls_features(skb, features, type); 3719 3720 if (skb->ip_summed != CHECKSUM_NONE && 3721 !can_checksum_protocol(features, type)) { 3722 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3723 } 3724 if (illegal_highdma(skb->dev, skb)) 3725 features &= ~NETIF_F_SG; 3726 3727 return features; 3728 } 3729 3730 netdev_features_t passthru_features_check(struct sk_buff *skb, 3731 struct net_device *dev, 3732 netdev_features_t features) 3733 { 3734 return features; 3735 } 3736 EXPORT_SYMBOL(passthru_features_check); 3737 3738 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3739 struct net_device *dev, 3740 netdev_features_t features) 3741 { 3742 return vlan_features_check(skb, features); 3743 } 3744 3745 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3746 struct net_device *dev, 3747 netdev_features_t features) 3748 { 3749 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3750 3751 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3752 return features & ~NETIF_F_GSO_MASK; 3753 3754 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3755 return features & ~NETIF_F_GSO_MASK; 3756 3757 if (!skb_shinfo(skb)->gso_type) { 3758 skb_warn_bad_offload(skb); 3759 return features & ~NETIF_F_GSO_MASK; 3760 } 3761 3762 /* Support for GSO partial features requires software 3763 * intervention before we can actually process the packets 3764 * so we need to strip support for any partial features now 3765 * and we can pull them back in after we have partially 3766 * segmented the frame. 3767 */ 3768 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3769 features &= ~dev->gso_partial_features; 3770 3771 /* Make sure to clear the IPv4 ID mangling feature if the 3772 * IPv4 header has the potential to be fragmented. 3773 */ 3774 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3775 struct iphdr *iph = skb->encapsulation ? 3776 inner_ip_hdr(skb) : ip_hdr(skb); 3777 3778 if (!(iph->frag_off & htons(IP_DF))) 3779 features &= ~NETIF_F_TSO_MANGLEID; 3780 } 3781 3782 /* NETIF_F_IPV6_CSUM does not support IPv6 extension headers, 3783 * so neither does TSO that depends on it. 3784 */ 3785 if (features & NETIF_F_IPV6_CSUM && 3786 (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 || 3787 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 && 3788 vlan_get_protocol(skb) == htons(ETH_P_IPV6))) && 3789 skb_transport_header_was_set(skb) && 3790 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3791 !ipv6_has_hopopt_jumbo(skb)) 3792 features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4); 3793 3794 return features; 3795 } 3796 3797 netdev_features_t netif_skb_features(struct sk_buff *skb) 3798 { 3799 struct net_device *dev = skb->dev; 3800 netdev_features_t features = dev->features; 3801 3802 if (skb_is_gso(skb)) 3803 features = gso_features_check(skb, dev, features); 3804 3805 /* If encapsulation offload request, verify we are testing 3806 * hardware encapsulation features instead of standard 3807 * features for the netdev 3808 */ 3809 if (skb->encapsulation) 3810 features &= dev->hw_enc_features; 3811 3812 if (skb_vlan_tagged(skb)) 3813 features = netdev_intersect_features(features, 3814 dev->vlan_features | 3815 NETIF_F_HW_VLAN_CTAG_TX | 3816 NETIF_F_HW_VLAN_STAG_TX); 3817 3818 if (dev->netdev_ops->ndo_features_check) 3819 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3820 features); 3821 else 3822 features &= dflt_features_check(skb, dev, features); 3823 3824 return harmonize_features(skb, features); 3825 } 3826 EXPORT_SYMBOL(netif_skb_features); 3827 3828 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3829 struct netdev_queue *txq, bool more) 3830 { 3831 unsigned int len; 3832 int rc; 3833 3834 if (dev_nit_active_rcu(dev)) 3835 dev_queue_xmit_nit(skb, dev); 3836 3837 len = skb->len; 3838 trace_net_dev_start_xmit(skb, dev); 3839 rc = netdev_start_xmit(skb, dev, txq, more); 3840 trace_net_dev_xmit(skb, rc, dev, len); 3841 3842 return rc; 3843 } 3844 3845 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3846 struct netdev_queue *txq, int *ret) 3847 { 3848 struct sk_buff *skb = first; 3849 int rc = NETDEV_TX_OK; 3850 3851 while (skb) { 3852 struct sk_buff *next = skb->next; 3853 3854 skb_mark_not_on_list(skb); 3855 rc = xmit_one(skb, dev, txq, next != NULL); 3856 if (unlikely(!dev_xmit_complete(rc))) { 3857 skb->next = next; 3858 goto out; 3859 } 3860 3861 skb = next; 3862 if (netif_tx_queue_stopped(txq) && skb) { 3863 rc = NETDEV_TX_BUSY; 3864 break; 3865 } 3866 } 3867 3868 out: 3869 *ret = rc; 3870 return skb; 3871 } 3872 3873 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3874 netdev_features_t features) 3875 { 3876 if (skb_vlan_tag_present(skb) && 3877 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3878 skb = __vlan_hwaccel_push_inside(skb); 3879 return skb; 3880 } 3881 3882 int skb_csum_hwoffload_help(struct sk_buff *skb, 3883 const netdev_features_t features) 3884 { 3885 if (unlikely(skb_csum_is_sctp(skb))) 3886 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3887 skb_crc32c_csum_help(skb); 3888 3889 if (features & NETIF_F_HW_CSUM) 3890 return 0; 3891 3892 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3893 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3894 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3895 !ipv6_has_hopopt_jumbo(skb)) 3896 goto sw_checksum; 3897 3898 switch (skb->csum_offset) { 3899 case offsetof(struct tcphdr, check): 3900 case offsetof(struct udphdr, check): 3901 return 0; 3902 } 3903 } 3904 3905 sw_checksum: 3906 return skb_checksum_help(skb); 3907 } 3908 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3909 3910 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, 3911 struct net_device *dev) 3912 { 3913 struct skb_shared_info *shinfo; 3914 struct net_iov *niov; 3915 3916 if (likely(skb_frags_readable(skb))) 3917 goto out; 3918 3919 if (!dev->netmem_tx) 3920 goto out_free; 3921 3922 shinfo = skb_shinfo(skb); 3923 3924 if (shinfo->nr_frags > 0) { 3925 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0])); 3926 if (net_is_devmem_iov(niov) && 3927 net_devmem_iov_binding(niov)->dev != dev) 3928 goto out_free; 3929 } 3930 3931 out: 3932 return skb; 3933 3934 out_free: 3935 kfree_skb(skb); 3936 return NULL; 3937 } 3938 3939 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3940 { 3941 netdev_features_t features; 3942 3943 skb = validate_xmit_unreadable_skb(skb, dev); 3944 if (unlikely(!skb)) 3945 goto out_null; 3946 3947 features = netif_skb_features(skb); 3948 skb = validate_xmit_vlan(skb, features); 3949 if (unlikely(!skb)) 3950 goto out_null; 3951 3952 skb = sk_validate_xmit_skb(skb, dev); 3953 if (unlikely(!skb)) 3954 goto out_null; 3955 3956 if (netif_needs_gso(skb, features)) { 3957 struct sk_buff *segs; 3958 3959 segs = skb_gso_segment(skb, features); 3960 if (IS_ERR(segs)) { 3961 goto out_kfree_skb; 3962 } else if (segs) { 3963 consume_skb(skb); 3964 skb = segs; 3965 } 3966 } else { 3967 if (skb_needs_linearize(skb, features) && 3968 __skb_linearize(skb)) 3969 goto out_kfree_skb; 3970 3971 /* If packet is not checksummed and device does not 3972 * support checksumming for this protocol, complete 3973 * checksumming here. 3974 */ 3975 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3976 if (skb->encapsulation) 3977 skb_set_inner_transport_header(skb, 3978 skb_checksum_start_offset(skb)); 3979 else 3980 skb_set_transport_header(skb, 3981 skb_checksum_start_offset(skb)); 3982 if (skb_csum_hwoffload_help(skb, features)) 3983 goto out_kfree_skb; 3984 } 3985 } 3986 3987 skb = validate_xmit_xfrm(skb, features, again); 3988 3989 return skb; 3990 3991 out_kfree_skb: 3992 kfree_skb(skb); 3993 out_null: 3994 dev_core_stats_tx_dropped_inc(dev); 3995 return NULL; 3996 } 3997 3998 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3999 { 4000 struct sk_buff *next, *head = NULL, *tail; 4001 4002 for (; skb != NULL; skb = next) { 4003 next = skb->next; 4004 skb_mark_not_on_list(skb); 4005 4006 /* in case skb won't be segmented, point to itself */ 4007 skb->prev = skb; 4008 4009 skb = validate_xmit_skb(skb, dev, again); 4010 if (!skb) 4011 continue; 4012 4013 if (!head) 4014 head = skb; 4015 else 4016 tail->next = skb; 4017 /* If skb was segmented, skb->prev points to 4018 * the last segment. If not, it still contains skb. 4019 */ 4020 tail = skb->prev; 4021 } 4022 return head; 4023 } 4024 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 4025 4026 static void qdisc_pkt_len_init(struct sk_buff *skb) 4027 { 4028 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4029 4030 qdisc_skb_cb(skb)->pkt_len = skb->len; 4031 4032 /* To get more precise estimation of bytes sent on wire, 4033 * we add to pkt_len the headers size of all segments 4034 */ 4035 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 4036 u16 gso_segs = shinfo->gso_segs; 4037 unsigned int hdr_len; 4038 4039 /* mac layer + network layer */ 4040 if (!skb->encapsulation) 4041 hdr_len = skb_transport_offset(skb); 4042 else 4043 hdr_len = skb_inner_transport_offset(skb); 4044 4045 /* + transport layer */ 4046 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4047 const struct tcphdr *th; 4048 struct tcphdr _tcphdr; 4049 4050 th = skb_header_pointer(skb, hdr_len, 4051 sizeof(_tcphdr), &_tcphdr); 4052 if (likely(th)) 4053 hdr_len += __tcp_hdrlen(th); 4054 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4055 struct udphdr _udphdr; 4056 4057 if (skb_header_pointer(skb, hdr_len, 4058 sizeof(_udphdr), &_udphdr)) 4059 hdr_len += sizeof(struct udphdr); 4060 } 4061 4062 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4063 int payload = skb->len - hdr_len; 4064 4065 /* Malicious packet. */ 4066 if (payload <= 0) 4067 return; 4068 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4069 } 4070 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4071 } 4072 } 4073 4074 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4075 struct sk_buff **to_free, 4076 struct netdev_queue *txq) 4077 { 4078 int rc; 4079 4080 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4081 if (rc == NET_XMIT_SUCCESS) 4082 trace_qdisc_enqueue(q, txq, skb); 4083 return rc; 4084 } 4085 4086 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4087 struct net_device *dev, 4088 struct netdev_queue *txq) 4089 { 4090 spinlock_t *root_lock = qdisc_lock(q); 4091 struct sk_buff *to_free = NULL; 4092 bool contended; 4093 int rc; 4094 4095 qdisc_calculate_pkt_len(skb, q); 4096 4097 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4098 4099 if (q->flags & TCQ_F_NOLOCK) { 4100 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4101 qdisc_run_begin(q)) { 4102 /* Retest nolock_qdisc_is_empty() within the protection 4103 * of q->seqlock to protect from racing with requeuing. 4104 */ 4105 if (unlikely(!nolock_qdisc_is_empty(q))) { 4106 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4107 __qdisc_run(q); 4108 qdisc_run_end(q); 4109 4110 goto no_lock_out; 4111 } 4112 4113 qdisc_bstats_cpu_update(q, skb); 4114 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4115 !nolock_qdisc_is_empty(q)) 4116 __qdisc_run(q); 4117 4118 qdisc_run_end(q); 4119 return NET_XMIT_SUCCESS; 4120 } 4121 4122 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4123 qdisc_run(q); 4124 4125 no_lock_out: 4126 if (unlikely(to_free)) 4127 kfree_skb_list_reason(to_free, 4128 tcf_get_drop_reason(to_free)); 4129 return rc; 4130 } 4131 4132 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 4133 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 4134 return NET_XMIT_DROP; 4135 } 4136 /* 4137 * Heuristic to force contended enqueues to serialize on a 4138 * separate lock before trying to get qdisc main lock. 4139 * This permits qdisc->running owner to get the lock more 4140 * often and dequeue packets faster. 4141 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 4142 * and then other tasks will only enqueue packets. The packets will be 4143 * sent after the qdisc owner is scheduled again. To prevent this 4144 * scenario the task always serialize on the lock. 4145 */ 4146 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 4147 if (unlikely(contended)) 4148 spin_lock(&q->busylock); 4149 4150 spin_lock(root_lock); 4151 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4152 __qdisc_drop(skb, &to_free); 4153 rc = NET_XMIT_DROP; 4154 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4155 qdisc_run_begin(q)) { 4156 /* 4157 * This is a work-conserving queue; there are no old skbs 4158 * waiting to be sent out; and the qdisc is not running - 4159 * xmit the skb directly. 4160 */ 4161 4162 qdisc_bstats_update(q, skb); 4163 4164 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 4165 if (unlikely(contended)) { 4166 spin_unlock(&q->busylock); 4167 contended = false; 4168 } 4169 __qdisc_run(q); 4170 } 4171 4172 qdisc_run_end(q); 4173 rc = NET_XMIT_SUCCESS; 4174 } else { 4175 WRITE_ONCE(q->owner, smp_processor_id()); 4176 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4177 WRITE_ONCE(q->owner, -1); 4178 if (qdisc_run_begin(q)) { 4179 if (unlikely(contended)) { 4180 spin_unlock(&q->busylock); 4181 contended = false; 4182 } 4183 __qdisc_run(q); 4184 qdisc_run_end(q); 4185 } 4186 } 4187 spin_unlock(root_lock); 4188 if (unlikely(to_free)) 4189 kfree_skb_list_reason(to_free, 4190 tcf_get_drop_reason(to_free)); 4191 if (unlikely(contended)) 4192 spin_unlock(&q->busylock); 4193 return rc; 4194 } 4195 4196 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4197 static void skb_update_prio(struct sk_buff *skb) 4198 { 4199 const struct netprio_map *map; 4200 const struct sock *sk; 4201 unsigned int prioidx; 4202 4203 if (skb->priority) 4204 return; 4205 map = rcu_dereference_bh(skb->dev->priomap); 4206 if (!map) 4207 return; 4208 sk = skb_to_full_sk(skb); 4209 if (!sk) 4210 return; 4211 4212 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4213 4214 if (prioidx < map->priomap_len) 4215 skb->priority = map->priomap[prioidx]; 4216 } 4217 #else 4218 #define skb_update_prio(skb) 4219 #endif 4220 4221 /** 4222 * dev_loopback_xmit - loop back @skb 4223 * @net: network namespace this loopback is happening in 4224 * @sk: sk needed to be a netfilter okfn 4225 * @skb: buffer to transmit 4226 */ 4227 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4228 { 4229 skb_reset_mac_header(skb); 4230 __skb_pull(skb, skb_network_offset(skb)); 4231 skb->pkt_type = PACKET_LOOPBACK; 4232 if (skb->ip_summed == CHECKSUM_NONE) 4233 skb->ip_summed = CHECKSUM_UNNECESSARY; 4234 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4235 skb_dst_force(skb); 4236 netif_rx(skb); 4237 return 0; 4238 } 4239 EXPORT_SYMBOL(dev_loopback_xmit); 4240 4241 #ifdef CONFIG_NET_EGRESS 4242 static struct netdev_queue * 4243 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4244 { 4245 int qm = skb_get_queue_mapping(skb); 4246 4247 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4248 } 4249 4250 #ifndef CONFIG_PREEMPT_RT 4251 static bool netdev_xmit_txqueue_skipped(void) 4252 { 4253 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4254 } 4255 4256 void netdev_xmit_skip_txqueue(bool skip) 4257 { 4258 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4259 } 4260 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4261 4262 #else 4263 static bool netdev_xmit_txqueue_skipped(void) 4264 { 4265 return current->net_xmit.skip_txqueue; 4266 } 4267 4268 void netdev_xmit_skip_txqueue(bool skip) 4269 { 4270 current->net_xmit.skip_txqueue = skip; 4271 } 4272 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4273 #endif 4274 #endif /* CONFIG_NET_EGRESS */ 4275 4276 #ifdef CONFIG_NET_XGRESS 4277 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4278 enum skb_drop_reason *drop_reason) 4279 { 4280 int ret = TC_ACT_UNSPEC; 4281 #ifdef CONFIG_NET_CLS_ACT 4282 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4283 struct tcf_result res; 4284 4285 if (!miniq) 4286 return ret; 4287 4288 /* Global bypass */ 4289 if (!static_branch_likely(&tcf_sw_enabled_key)) 4290 return ret; 4291 4292 /* Block-wise bypass */ 4293 if (tcf_block_bypass_sw(miniq->block)) 4294 return ret; 4295 4296 tc_skb_cb(skb)->mru = 0; 4297 tc_skb_cb(skb)->post_ct = false; 4298 tcf_set_drop_reason(skb, *drop_reason); 4299 4300 mini_qdisc_bstats_cpu_update(miniq, skb); 4301 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4302 /* Only tcf related quirks below. */ 4303 switch (ret) { 4304 case TC_ACT_SHOT: 4305 *drop_reason = tcf_get_drop_reason(skb); 4306 mini_qdisc_qstats_cpu_drop(miniq); 4307 break; 4308 case TC_ACT_OK: 4309 case TC_ACT_RECLASSIFY: 4310 skb->tc_index = TC_H_MIN(res.classid); 4311 break; 4312 } 4313 #endif /* CONFIG_NET_CLS_ACT */ 4314 return ret; 4315 } 4316 4317 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4318 4319 void tcx_inc(void) 4320 { 4321 static_branch_inc(&tcx_needed_key); 4322 } 4323 4324 void tcx_dec(void) 4325 { 4326 static_branch_dec(&tcx_needed_key); 4327 } 4328 4329 static __always_inline enum tcx_action_base 4330 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4331 const bool needs_mac) 4332 { 4333 const struct bpf_mprog_fp *fp; 4334 const struct bpf_prog *prog; 4335 int ret = TCX_NEXT; 4336 4337 if (needs_mac) 4338 __skb_push(skb, skb->mac_len); 4339 bpf_mprog_foreach_prog(entry, fp, prog) { 4340 bpf_compute_data_pointers(skb); 4341 ret = bpf_prog_run(prog, skb); 4342 if (ret != TCX_NEXT) 4343 break; 4344 } 4345 if (needs_mac) 4346 __skb_pull(skb, skb->mac_len); 4347 return tcx_action_code(skb, ret); 4348 } 4349 4350 static __always_inline struct sk_buff * 4351 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4352 struct net_device *orig_dev, bool *another) 4353 { 4354 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4355 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4356 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4357 int sch_ret; 4358 4359 if (!entry) 4360 return skb; 4361 4362 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4363 if (*pt_prev) { 4364 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4365 *pt_prev = NULL; 4366 } 4367 4368 qdisc_skb_cb(skb)->pkt_len = skb->len; 4369 tcx_set_ingress(skb, true); 4370 4371 if (static_branch_unlikely(&tcx_needed_key)) { 4372 sch_ret = tcx_run(entry, skb, true); 4373 if (sch_ret != TC_ACT_UNSPEC) 4374 goto ingress_verdict; 4375 } 4376 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4377 ingress_verdict: 4378 switch (sch_ret) { 4379 case TC_ACT_REDIRECT: 4380 /* skb_mac_header check was done by BPF, so we can safely 4381 * push the L2 header back before redirecting to another 4382 * netdev. 4383 */ 4384 __skb_push(skb, skb->mac_len); 4385 if (skb_do_redirect(skb) == -EAGAIN) { 4386 __skb_pull(skb, skb->mac_len); 4387 *another = true; 4388 break; 4389 } 4390 *ret = NET_RX_SUCCESS; 4391 bpf_net_ctx_clear(bpf_net_ctx); 4392 return NULL; 4393 case TC_ACT_SHOT: 4394 kfree_skb_reason(skb, drop_reason); 4395 *ret = NET_RX_DROP; 4396 bpf_net_ctx_clear(bpf_net_ctx); 4397 return NULL; 4398 /* used by tc_run */ 4399 case TC_ACT_STOLEN: 4400 case TC_ACT_QUEUED: 4401 case TC_ACT_TRAP: 4402 consume_skb(skb); 4403 fallthrough; 4404 case TC_ACT_CONSUMED: 4405 *ret = NET_RX_SUCCESS; 4406 bpf_net_ctx_clear(bpf_net_ctx); 4407 return NULL; 4408 } 4409 bpf_net_ctx_clear(bpf_net_ctx); 4410 4411 return skb; 4412 } 4413 4414 static __always_inline struct sk_buff * 4415 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4416 { 4417 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4418 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4419 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4420 int sch_ret; 4421 4422 if (!entry) 4423 return skb; 4424 4425 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4426 4427 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4428 * already set by the caller. 4429 */ 4430 if (static_branch_unlikely(&tcx_needed_key)) { 4431 sch_ret = tcx_run(entry, skb, false); 4432 if (sch_ret != TC_ACT_UNSPEC) 4433 goto egress_verdict; 4434 } 4435 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4436 egress_verdict: 4437 switch (sch_ret) { 4438 case TC_ACT_REDIRECT: 4439 /* No need to push/pop skb's mac_header here on egress! */ 4440 skb_do_redirect(skb); 4441 *ret = NET_XMIT_SUCCESS; 4442 bpf_net_ctx_clear(bpf_net_ctx); 4443 return NULL; 4444 case TC_ACT_SHOT: 4445 kfree_skb_reason(skb, drop_reason); 4446 *ret = NET_XMIT_DROP; 4447 bpf_net_ctx_clear(bpf_net_ctx); 4448 return NULL; 4449 /* used by tc_run */ 4450 case TC_ACT_STOLEN: 4451 case TC_ACT_QUEUED: 4452 case TC_ACT_TRAP: 4453 consume_skb(skb); 4454 fallthrough; 4455 case TC_ACT_CONSUMED: 4456 *ret = NET_XMIT_SUCCESS; 4457 bpf_net_ctx_clear(bpf_net_ctx); 4458 return NULL; 4459 } 4460 bpf_net_ctx_clear(bpf_net_ctx); 4461 4462 return skb; 4463 } 4464 #else 4465 static __always_inline struct sk_buff * 4466 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4467 struct net_device *orig_dev, bool *another) 4468 { 4469 return skb; 4470 } 4471 4472 static __always_inline struct sk_buff * 4473 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4474 { 4475 return skb; 4476 } 4477 #endif /* CONFIG_NET_XGRESS */ 4478 4479 #ifdef CONFIG_XPS 4480 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4481 struct xps_dev_maps *dev_maps, unsigned int tci) 4482 { 4483 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4484 struct xps_map *map; 4485 int queue_index = -1; 4486 4487 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4488 return queue_index; 4489 4490 tci *= dev_maps->num_tc; 4491 tci += tc; 4492 4493 map = rcu_dereference(dev_maps->attr_map[tci]); 4494 if (map) { 4495 if (map->len == 1) 4496 queue_index = map->queues[0]; 4497 else 4498 queue_index = map->queues[reciprocal_scale( 4499 skb_get_hash(skb), map->len)]; 4500 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4501 queue_index = -1; 4502 } 4503 return queue_index; 4504 } 4505 #endif 4506 4507 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4508 struct sk_buff *skb) 4509 { 4510 #ifdef CONFIG_XPS 4511 struct xps_dev_maps *dev_maps; 4512 struct sock *sk = skb->sk; 4513 int queue_index = -1; 4514 4515 if (!static_key_false(&xps_needed)) 4516 return -1; 4517 4518 rcu_read_lock(); 4519 if (!static_key_false(&xps_rxqs_needed)) 4520 goto get_cpus_map; 4521 4522 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4523 if (dev_maps) { 4524 int tci = sk_rx_queue_get(sk); 4525 4526 if (tci >= 0) 4527 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4528 tci); 4529 } 4530 4531 get_cpus_map: 4532 if (queue_index < 0) { 4533 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4534 if (dev_maps) { 4535 unsigned int tci = skb->sender_cpu - 1; 4536 4537 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4538 tci); 4539 } 4540 } 4541 rcu_read_unlock(); 4542 4543 return queue_index; 4544 #else 4545 return -1; 4546 #endif 4547 } 4548 4549 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4550 struct net_device *sb_dev) 4551 { 4552 return 0; 4553 } 4554 EXPORT_SYMBOL(dev_pick_tx_zero); 4555 4556 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4557 struct net_device *sb_dev) 4558 { 4559 struct sock *sk = skb->sk; 4560 int queue_index = sk_tx_queue_get(sk); 4561 4562 sb_dev = sb_dev ? : dev; 4563 4564 if (queue_index < 0 || skb->ooo_okay || 4565 queue_index >= dev->real_num_tx_queues) { 4566 int new_index = get_xps_queue(dev, sb_dev, skb); 4567 4568 if (new_index < 0) 4569 new_index = skb_tx_hash(dev, sb_dev, skb); 4570 4571 if (queue_index != new_index && sk && 4572 sk_fullsock(sk) && 4573 rcu_access_pointer(sk->sk_dst_cache)) 4574 sk_tx_queue_set(sk, new_index); 4575 4576 queue_index = new_index; 4577 } 4578 4579 return queue_index; 4580 } 4581 EXPORT_SYMBOL(netdev_pick_tx); 4582 4583 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4584 struct sk_buff *skb, 4585 struct net_device *sb_dev) 4586 { 4587 int queue_index = 0; 4588 4589 #ifdef CONFIG_XPS 4590 u32 sender_cpu = skb->sender_cpu - 1; 4591 4592 if (sender_cpu >= (u32)NR_CPUS) 4593 skb->sender_cpu = raw_smp_processor_id() + 1; 4594 #endif 4595 4596 if (dev->real_num_tx_queues != 1) { 4597 const struct net_device_ops *ops = dev->netdev_ops; 4598 4599 if (ops->ndo_select_queue) 4600 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4601 else 4602 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4603 4604 queue_index = netdev_cap_txqueue(dev, queue_index); 4605 } 4606 4607 skb_set_queue_mapping(skb, queue_index); 4608 return netdev_get_tx_queue(dev, queue_index); 4609 } 4610 4611 /** 4612 * __dev_queue_xmit() - transmit a buffer 4613 * @skb: buffer to transmit 4614 * @sb_dev: suboordinate device used for L2 forwarding offload 4615 * 4616 * Queue a buffer for transmission to a network device. The caller must 4617 * have set the device and priority and built the buffer before calling 4618 * this function. The function can be called from an interrupt. 4619 * 4620 * When calling this method, interrupts MUST be enabled. This is because 4621 * the BH enable code must have IRQs enabled so that it will not deadlock. 4622 * 4623 * Regardless of the return value, the skb is consumed, so it is currently 4624 * difficult to retry a send to this method. (You can bump the ref count 4625 * before sending to hold a reference for retry if you are careful.) 4626 * 4627 * Return: 4628 * * 0 - buffer successfully transmitted 4629 * * positive qdisc return code - NET_XMIT_DROP etc. 4630 * * negative errno - other errors 4631 */ 4632 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4633 { 4634 struct net_device *dev = skb->dev; 4635 struct netdev_queue *txq = NULL; 4636 struct Qdisc *q; 4637 int rc = -ENOMEM; 4638 bool again = false; 4639 4640 skb_reset_mac_header(skb); 4641 skb_assert_len(skb); 4642 4643 if (unlikely(skb_shinfo(skb)->tx_flags & 4644 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4645 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4646 4647 /* Disable soft irqs for various locks below. Also 4648 * stops preemption for RCU. 4649 */ 4650 rcu_read_lock_bh(); 4651 4652 skb_update_prio(skb); 4653 4654 qdisc_pkt_len_init(skb); 4655 tcx_set_ingress(skb, false); 4656 #ifdef CONFIG_NET_EGRESS 4657 if (static_branch_unlikely(&egress_needed_key)) { 4658 if (nf_hook_egress_active()) { 4659 skb = nf_hook_egress(skb, &rc, dev); 4660 if (!skb) 4661 goto out; 4662 } 4663 4664 netdev_xmit_skip_txqueue(false); 4665 4666 nf_skip_egress(skb, true); 4667 skb = sch_handle_egress(skb, &rc, dev); 4668 if (!skb) 4669 goto out; 4670 nf_skip_egress(skb, false); 4671 4672 if (netdev_xmit_txqueue_skipped()) 4673 txq = netdev_tx_queue_mapping(dev, skb); 4674 } 4675 #endif 4676 /* If device/qdisc don't need skb->dst, release it right now while 4677 * its hot in this cpu cache. 4678 */ 4679 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4680 skb_dst_drop(skb); 4681 else 4682 skb_dst_force(skb); 4683 4684 if (!txq) 4685 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4686 4687 q = rcu_dereference_bh(txq->qdisc); 4688 4689 trace_net_dev_queue(skb); 4690 if (q->enqueue) { 4691 rc = __dev_xmit_skb(skb, q, dev, txq); 4692 goto out; 4693 } 4694 4695 /* The device has no queue. Common case for software devices: 4696 * loopback, all the sorts of tunnels... 4697 4698 * Really, it is unlikely that netif_tx_lock protection is necessary 4699 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4700 * counters.) 4701 * However, it is possible, that they rely on protection 4702 * made by us here. 4703 4704 * Check this and shot the lock. It is not prone from deadlocks. 4705 *Either shot noqueue qdisc, it is even simpler 8) 4706 */ 4707 if (dev->flags & IFF_UP) { 4708 int cpu = smp_processor_id(); /* ok because BHs are off */ 4709 4710 /* Other cpus might concurrently change txq->xmit_lock_owner 4711 * to -1 or to their cpu id, but not to our id. 4712 */ 4713 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4714 if (dev_xmit_recursion()) 4715 goto recursion_alert; 4716 4717 skb = validate_xmit_skb(skb, dev, &again); 4718 if (!skb) 4719 goto out; 4720 4721 HARD_TX_LOCK(dev, txq, cpu); 4722 4723 if (!netif_xmit_stopped(txq)) { 4724 dev_xmit_recursion_inc(); 4725 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4726 dev_xmit_recursion_dec(); 4727 if (dev_xmit_complete(rc)) { 4728 HARD_TX_UNLOCK(dev, txq); 4729 goto out; 4730 } 4731 } 4732 HARD_TX_UNLOCK(dev, txq); 4733 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4734 dev->name); 4735 } else { 4736 /* Recursion is detected! It is possible, 4737 * unfortunately 4738 */ 4739 recursion_alert: 4740 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4741 dev->name); 4742 } 4743 } 4744 4745 rc = -ENETDOWN; 4746 rcu_read_unlock_bh(); 4747 4748 dev_core_stats_tx_dropped_inc(dev); 4749 kfree_skb_list(skb); 4750 return rc; 4751 out: 4752 rcu_read_unlock_bh(); 4753 return rc; 4754 } 4755 EXPORT_SYMBOL(__dev_queue_xmit); 4756 4757 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4758 { 4759 struct net_device *dev = skb->dev; 4760 struct sk_buff *orig_skb = skb; 4761 struct netdev_queue *txq; 4762 int ret = NETDEV_TX_BUSY; 4763 bool again = false; 4764 4765 if (unlikely(!netif_running(dev) || 4766 !netif_carrier_ok(dev))) 4767 goto drop; 4768 4769 skb = validate_xmit_skb_list(skb, dev, &again); 4770 if (skb != orig_skb) 4771 goto drop; 4772 4773 skb_set_queue_mapping(skb, queue_id); 4774 txq = skb_get_tx_queue(dev, skb); 4775 4776 local_bh_disable(); 4777 4778 dev_xmit_recursion_inc(); 4779 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4780 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4781 ret = netdev_start_xmit(skb, dev, txq, false); 4782 HARD_TX_UNLOCK(dev, txq); 4783 dev_xmit_recursion_dec(); 4784 4785 local_bh_enable(); 4786 return ret; 4787 drop: 4788 dev_core_stats_tx_dropped_inc(dev); 4789 kfree_skb_list(skb); 4790 return NET_XMIT_DROP; 4791 } 4792 EXPORT_SYMBOL(__dev_direct_xmit); 4793 4794 /************************************************************************* 4795 * Receiver routines 4796 *************************************************************************/ 4797 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4798 4799 int weight_p __read_mostly = 64; /* old backlog weight */ 4800 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4801 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4802 4803 /* Called with irq disabled */ 4804 static inline void ____napi_schedule(struct softnet_data *sd, 4805 struct napi_struct *napi) 4806 { 4807 struct task_struct *thread; 4808 4809 lockdep_assert_irqs_disabled(); 4810 4811 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4812 /* Paired with smp_mb__before_atomic() in 4813 * napi_enable()/netif_set_threaded(). 4814 * Use READ_ONCE() to guarantee a complete 4815 * read on napi->thread. Only call 4816 * wake_up_process() when it's not NULL. 4817 */ 4818 thread = READ_ONCE(napi->thread); 4819 if (thread) { 4820 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4821 goto use_local_napi; 4822 4823 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4824 wake_up_process(thread); 4825 return; 4826 } 4827 } 4828 4829 use_local_napi: 4830 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); 4831 list_add_tail(&napi->poll_list, &sd->poll_list); 4832 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4833 /* If not called from net_rx_action() 4834 * we have to raise NET_RX_SOFTIRQ. 4835 */ 4836 if (!sd->in_net_rx_action) 4837 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4838 } 4839 4840 #ifdef CONFIG_RPS 4841 4842 struct static_key_false rps_needed __read_mostly; 4843 EXPORT_SYMBOL(rps_needed); 4844 struct static_key_false rfs_needed __read_mostly; 4845 EXPORT_SYMBOL(rfs_needed); 4846 4847 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4848 { 4849 return hash_32(hash, flow_table->log); 4850 } 4851 4852 static struct rps_dev_flow * 4853 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4854 struct rps_dev_flow *rflow, u16 next_cpu) 4855 { 4856 if (next_cpu < nr_cpu_ids) { 4857 u32 head; 4858 #ifdef CONFIG_RFS_ACCEL 4859 struct netdev_rx_queue *rxqueue; 4860 struct rps_dev_flow_table *flow_table; 4861 struct rps_dev_flow *old_rflow; 4862 u16 rxq_index; 4863 u32 flow_id; 4864 int rc; 4865 4866 /* Should we steer this flow to a different hardware queue? */ 4867 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4868 !(dev->features & NETIF_F_NTUPLE)) 4869 goto out; 4870 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4871 if (rxq_index == skb_get_rx_queue(skb)) 4872 goto out; 4873 4874 rxqueue = dev->_rx + rxq_index; 4875 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4876 if (!flow_table) 4877 goto out; 4878 flow_id = rfs_slot(skb_get_hash(skb), flow_table); 4879 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4880 rxq_index, flow_id); 4881 if (rc < 0) 4882 goto out; 4883 old_rflow = rflow; 4884 rflow = &flow_table->flows[flow_id]; 4885 WRITE_ONCE(rflow->filter, rc); 4886 if (old_rflow->filter == rc) 4887 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4888 out: 4889 #endif 4890 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4891 rps_input_queue_tail_save(&rflow->last_qtail, head); 4892 } 4893 4894 WRITE_ONCE(rflow->cpu, next_cpu); 4895 return rflow; 4896 } 4897 4898 /* 4899 * get_rps_cpu is called from netif_receive_skb and returns the target 4900 * CPU from the RPS map of the receiving queue for a given skb. 4901 * rcu_read_lock must be held on entry. 4902 */ 4903 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4904 struct rps_dev_flow **rflowp) 4905 { 4906 const struct rps_sock_flow_table *sock_flow_table; 4907 struct netdev_rx_queue *rxqueue = dev->_rx; 4908 struct rps_dev_flow_table *flow_table; 4909 struct rps_map *map; 4910 int cpu = -1; 4911 u32 tcpu; 4912 u32 hash; 4913 4914 if (skb_rx_queue_recorded(skb)) { 4915 u16 index = skb_get_rx_queue(skb); 4916 4917 if (unlikely(index >= dev->real_num_rx_queues)) { 4918 WARN_ONCE(dev->real_num_rx_queues > 1, 4919 "%s received packet on queue %u, but number " 4920 "of RX queues is %u\n", 4921 dev->name, index, dev->real_num_rx_queues); 4922 goto done; 4923 } 4924 rxqueue += index; 4925 } 4926 4927 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4928 4929 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4930 map = rcu_dereference(rxqueue->rps_map); 4931 if (!flow_table && !map) 4932 goto done; 4933 4934 skb_reset_network_header(skb); 4935 hash = skb_get_hash(skb); 4936 if (!hash) 4937 goto done; 4938 4939 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4940 if (flow_table && sock_flow_table) { 4941 struct rps_dev_flow *rflow; 4942 u32 next_cpu; 4943 u32 ident; 4944 4945 /* First check into global flow table if there is a match. 4946 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4947 */ 4948 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4949 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4950 goto try_rps; 4951 4952 next_cpu = ident & net_hotdata.rps_cpu_mask; 4953 4954 /* OK, now we know there is a match, 4955 * we can look at the local (per receive queue) flow table 4956 */ 4957 rflow = &flow_table->flows[rfs_slot(hash, flow_table)]; 4958 tcpu = rflow->cpu; 4959 4960 /* 4961 * If the desired CPU (where last recvmsg was done) is 4962 * different from current CPU (one in the rx-queue flow 4963 * table entry), switch if one of the following holds: 4964 * - Current CPU is unset (>= nr_cpu_ids). 4965 * - Current CPU is offline. 4966 * - The current CPU's queue tail has advanced beyond the 4967 * last packet that was enqueued using this table entry. 4968 * This guarantees that all previous packets for the flow 4969 * have been dequeued, thus preserving in order delivery. 4970 */ 4971 if (unlikely(tcpu != next_cpu) && 4972 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4973 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4974 rflow->last_qtail)) >= 0)) { 4975 tcpu = next_cpu; 4976 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4977 } 4978 4979 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4980 *rflowp = rflow; 4981 cpu = tcpu; 4982 goto done; 4983 } 4984 } 4985 4986 try_rps: 4987 4988 if (map) { 4989 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4990 if (cpu_online(tcpu)) { 4991 cpu = tcpu; 4992 goto done; 4993 } 4994 } 4995 4996 done: 4997 return cpu; 4998 } 4999 5000 #ifdef CONFIG_RFS_ACCEL 5001 5002 /** 5003 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 5004 * @dev: Device on which the filter was set 5005 * @rxq_index: RX queue index 5006 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 5007 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 5008 * 5009 * Drivers that implement ndo_rx_flow_steer() should periodically call 5010 * this function for each installed filter and remove the filters for 5011 * which it returns %true. 5012 */ 5013 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 5014 u32 flow_id, u16 filter_id) 5015 { 5016 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 5017 struct rps_dev_flow_table *flow_table; 5018 struct rps_dev_flow *rflow; 5019 bool expire = true; 5020 unsigned int cpu; 5021 5022 rcu_read_lock(); 5023 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5024 if (flow_table && flow_id < (1UL << flow_table->log)) { 5025 rflow = &flow_table->flows[flow_id]; 5026 cpu = READ_ONCE(rflow->cpu); 5027 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 5028 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 5029 READ_ONCE(rflow->last_qtail)) < 5030 (int)(10 << flow_table->log))) 5031 expire = false; 5032 } 5033 rcu_read_unlock(); 5034 return expire; 5035 } 5036 EXPORT_SYMBOL(rps_may_expire_flow); 5037 5038 #endif /* CONFIG_RFS_ACCEL */ 5039 5040 /* Called from hardirq (IPI) context */ 5041 static void rps_trigger_softirq(void *data) 5042 { 5043 struct softnet_data *sd = data; 5044 5045 ____napi_schedule(sd, &sd->backlog); 5046 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5047 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5048 } 5049 5050 #endif /* CONFIG_RPS */ 5051 5052 /* Called from hardirq (IPI) context */ 5053 static void trigger_rx_softirq(void *data) 5054 { 5055 struct softnet_data *sd = data; 5056 5057 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5058 smp_store_release(&sd->defer_ipi_scheduled, 0); 5059 } 5060 5061 /* 5062 * After we queued a packet into sd->input_pkt_queue, 5063 * we need to make sure this queue is serviced soon. 5064 * 5065 * - If this is another cpu queue, link it to our rps_ipi_list, 5066 * and make sure we will process rps_ipi_list from net_rx_action(). 5067 * 5068 * - If this is our own queue, NAPI schedule our backlog. 5069 * Note that this also raises NET_RX_SOFTIRQ. 5070 */ 5071 static void napi_schedule_rps(struct softnet_data *sd) 5072 { 5073 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5074 5075 #ifdef CONFIG_RPS 5076 if (sd != mysd) { 5077 if (use_backlog_threads()) { 5078 __napi_schedule_irqoff(&sd->backlog); 5079 return; 5080 } 5081 5082 sd->rps_ipi_next = mysd->rps_ipi_list; 5083 mysd->rps_ipi_list = sd; 5084 5085 /* If not called from net_rx_action() or napi_threaded_poll() 5086 * we have to raise NET_RX_SOFTIRQ. 5087 */ 5088 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5089 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5090 return; 5091 } 5092 #endif /* CONFIG_RPS */ 5093 __napi_schedule_irqoff(&mysd->backlog); 5094 } 5095 5096 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 5097 { 5098 unsigned long flags; 5099 5100 if (use_backlog_threads()) { 5101 backlog_lock_irq_save(sd, &flags); 5102 5103 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5104 __napi_schedule_irqoff(&sd->backlog); 5105 5106 backlog_unlock_irq_restore(sd, &flags); 5107 5108 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5109 smp_call_function_single_async(cpu, &sd->defer_csd); 5110 } 5111 } 5112 5113 #ifdef CONFIG_NET_FLOW_LIMIT 5114 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5115 #endif 5116 5117 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 5118 { 5119 #ifdef CONFIG_NET_FLOW_LIMIT 5120 struct sd_flow_limit *fl; 5121 struct softnet_data *sd; 5122 unsigned int old_flow, new_flow; 5123 5124 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 5125 return false; 5126 5127 sd = this_cpu_ptr(&softnet_data); 5128 5129 rcu_read_lock(); 5130 fl = rcu_dereference(sd->flow_limit); 5131 if (fl) { 5132 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5133 old_flow = fl->history[fl->history_head]; 5134 fl->history[fl->history_head] = new_flow; 5135 5136 fl->history_head++; 5137 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5138 5139 if (likely(fl->buckets[old_flow])) 5140 fl->buckets[old_flow]--; 5141 5142 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5143 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5144 WRITE_ONCE(fl->count, fl->count + 1); 5145 rcu_read_unlock(); 5146 return true; 5147 } 5148 } 5149 rcu_read_unlock(); 5150 #endif 5151 return false; 5152 } 5153 5154 /* 5155 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5156 * queue (may be a remote CPU queue). 5157 */ 5158 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5159 unsigned int *qtail) 5160 { 5161 enum skb_drop_reason reason; 5162 struct softnet_data *sd; 5163 unsigned long flags; 5164 unsigned int qlen; 5165 int max_backlog; 5166 u32 tail; 5167 5168 reason = SKB_DROP_REASON_DEV_READY; 5169 if (!netif_running(skb->dev)) 5170 goto bad_dev; 5171 5172 reason = SKB_DROP_REASON_CPU_BACKLOG; 5173 sd = &per_cpu(softnet_data, cpu); 5174 5175 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5176 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5177 if (unlikely(qlen > max_backlog)) 5178 goto cpu_backlog_drop; 5179 backlog_lock_irq_save(sd, &flags); 5180 qlen = skb_queue_len(&sd->input_pkt_queue); 5181 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 5182 if (!qlen) { 5183 /* Schedule NAPI for backlog device. We can use 5184 * non atomic operation as we own the queue lock. 5185 */ 5186 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5187 &sd->backlog.state)) 5188 napi_schedule_rps(sd); 5189 } 5190 __skb_queue_tail(&sd->input_pkt_queue, skb); 5191 tail = rps_input_queue_tail_incr(sd); 5192 backlog_unlock_irq_restore(sd, &flags); 5193 5194 /* save the tail outside of the critical section */ 5195 rps_input_queue_tail_save(qtail, tail); 5196 return NET_RX_SUCCESS; 5197 } 5198 5199 backlog_unlock_irq_restore(sd, &flags); 5200 5201 cpu_backlog_drop: 5202 atomic_inc(&sd->dropped); 5203 bad_dev: 5204 dev_core_stats_rx_dropped_inc(skb->dev); 5205 kfree_skb_reason(skb, reason); 5206 return NET_RX_DROP; 5207 } 5208 5209 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5210 { 5211 struct net_device *dev = skb->dev; 5212 struct netdev_rx_queue *rxqueue; 5213 5214 rxqueue = dev->_rx; 5215 5216 if (skb_rx_queue_recorded(skb)) { 5217 u16 index = skb_get_rx_queue(skb); 5218 5219 if (unlikely(index >= dev->real_num_rx_queues)) { 5220 WARN_ONCE(dev->real_num_rx_queues > 1, 5221 "%s received packet on queue %u, but number " 5222 "of RX queues is %u\n", 5223 dev->name, index, dev->real_num_rx_queues); 5224 5225 return rxqueue; /* Return first rxqueue */ 5226 } 5227 rxqueue += index; 5228 } 5229 return rxqueue; 5230 } 5231 5232 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5233 const struct bpf_prog *xdp_prog) 5234 { 5235 void *orig_data, *orig_data_end, *hard_start; 5236 struct netdev_rx_queue *rxqueue; 5237 bool orig_bcast, orig_host; 5238 u32 mac_len, frame_sz; 5239 __be16 orig_eth_type; 5240 struct ethhdr *eth; 5241 u32 metalen, act; 5242 int off; 5243 5244 /* The XDP program wants to see the packet starting at the MAC 5245 * header. 5246 */ 5247 mac_len = skb->data - skb_mac_header(skb); 5248 hard_start = skb->data - skb_headroom(skb); 5249 5250 /* SKB "head" area always have tailroom for skb_shared_info */ 5251 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5252 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5253 5254 rxqueue = netif_get_rxqueue(skb); 5255 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5256 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5257 skb_headlen(skb) + mac_len, true); 5258 if (skb_is_nonlinear(skb)) { 5259 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5260 xdp_buff_set_frags_flag(xdp); 5261 } else { 5262 xdp_buff_clear_frags_flag(xdp); 5263 } 5264 5265 orig_data_end = xdp->data_end; 5266 orig_data = xdp->data; 5267 eth = (struct ethhdr *)xdp->data; 5268 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5269 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5270 orig_eth_type = eth->h_proto; 5271 5272 act = bpf_prog_run_xdp(xdp_prog, xdp); 5273 5274 /* check if bpf_xdp_adjust_head was used */ 5275 off = xdp->data - orig_data; 5276 if (off) { 5277 if (off > 0) 5278 __skb_pull(skb, off); 5279 else if (off < 0) 5280 __skb_push(skb, -off); 5281 5282 skb->mac_header += off; 5283 skb_reset_network_header(skb); 5284 } 5285 5286 /* check if bpf_xdp_adjust_tail was used */ 5287 off = xdp->data_end - orig_data_end; 5288 if (off != 0) { 5289 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5290 skb->len += off; /* positive on grow, negative on shrink */ 5291 } 5292 5293 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5294 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5295 */ 5296 if (xdp_buff_has_frags(xdp)) 5297 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5298 else 5299 skb->data_len = 0; 5300 5301 /* check if XDP changed eth hdr such SKB needs update */ 5302 eth = (struct ethhdr *)xdp->data; 5303 if ((orig_eth_type != eth->h_proto) || 5304 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5305 skb->dev->dev_addr)) || 5306 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5307 __skb_push(skb, ETH_HLEN); 5308 skb->pkt_type = PACKET_HOST; 5309 skb->protocol = eth_type_trans(skb, skb->dev); 5310 } 5311 5312 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5313 * before calling us again on redirect path. We do not call do_redirect 5314 * as we leave that up to the caller. 5315 * 5316 * Caller is responsible for managing lifetime of skb (i.e. calling 5317 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5318 */ 5319 switch (act) { 5320 case XDP_REDIRECT: 5321 case XDP_TX: 5322 __skb_push(skb, mac_len); 5323 break; 5324 case XDP_PASS: 5325 metalen = xdp->data - xdp->data_meta; 5326 if (metalen) 5327 skb_metadata_set(skb, metalen); 5328 break; 5329 } 5330 5331 return act; 5332 } 5333 5334 static int 5335 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5336 { 5337 struct sk_buff *skb = *pskb; 5338 int err, hroom, troom; 5339 5340 local_lock_nested_bh(&system_page_pool.bh_lock); 5341 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); 5342 local_unlock_nested_bh(&system_page_pool.bh_lock); 5343 if (!err) 5344 return 0; 5345 5346 /* In case we have to go down the path and also linearize, 5347 * then lets do the pskb_expand_head() work just once here. 5348 */ 5349 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5350 troom = skb->tail + skb->data_len - skb->end; 5351 err = pskb_expand_head(skb, 5352 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5353 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5354 if (err) 5355 return err; 5356 5357 return skb_linearize(skb); 5358 } 5359 5360 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5361 struct xdp_buff *xdp, 5362 const struct bpf_prog *xdp_prog) 5363 { 5364 struct sk_buff *skb = *pskb; 5365 u32 mac_len, act = XDP_DROP; 5366 5367 /* Reinjected packets coming from act_mirred or similar should 5368 * not get XDP generic processing. 5369 */ 5370 if (skb_is_redirected(skb)) 5371 return XDP_PASS; 5372 5373 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5374 * bytes. This is the guarantee that also native XDP provides, 5375 * thus we need to do it here as well. 5376 */ 5377 mac_len = skb->data - skb_mac_header(skb); 5378 __skb_push(skb, mac_len); 5379 5380 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5381 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5382 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5383 goto do_drop; 5384 } 5385 5386 __skb_pull(*pskb, mac_len); 5387 5388 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5389 switch (act) { 5390 case XDP_REDIRECT: 5391 case XDP_TX: 5392 case XDP_PASS: 5393 break; 5394 default: 5395 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5396 fallthrough; 5397 case XDP_ABORTED: 5398 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5399 fallthrough; 5400 case XDP_DROP: 5401 do_drop: 5402 kfree_skb(*pskb); 5403 break; 5404 } 5405 5406 return act; 5407 } 5408 5409 /* When doing generic XDP we have to bypass the qdisc layer and the 5410 * network taps in order to match in-driver-XDP behavior. This also means 5411 * that XDP packets are able to starve other packets going through a qdisc, 5412 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5413 * queues, so they do not have this starvation issue. 5414 */ 5415 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5416 { 5417 struct net_device *dev = skb->dev; 5418 struct netdev_queue *txq; 5419 bool free_skb = true; 5420 int cpu, rc; 5421 5422 txq = netdev_core_pick_tx(dev, skb, NULL); 5423 cpu = smp_processor_id(); 5424 HARD_TX_LOCK(dev, txq, cpu); 5425 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5426 rc = netdev_start_xmit(skb, dev, txq, 0); 5427 if (dev_xmit_complete(rc)) 5428 free_skb = false; 5429 } 5430 HARD_TX_UNLOCK(dev, txq); 5431 if (free_skb) { 5432 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5433 dev_core_stats_tx_dropped_inc(dev); 5434 kfree_skb(skb); 5435 } 5436 } 5437 5438 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5439 5440 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5441 { 5442 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5443 5444 if (xdp_prog) { 5445 struct xdp_buff xdp; 5446 u32 act; 5447 int err; 5448 5449 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5450 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5451 if (act != XDP_PASS) { 5452 switch (act) { 5453 case XDP_REDIRECT: 5454 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5455 &xdp, xdp_prog); 5456 if (err) 5457 goto out_redir; 5458 break; 5459 case XDP_TX: 5460 generic_xdp_tx(*pskb, xdp_prog); 5461 break; 5462 } 5463 bpf_net_ctx_clear(bpf_net_ctx); 5464 return XDP_DROP; 5465 } 5466 bpf_net_ctx_clear(bpf_net_ctx); 5467 } 5468 return XDP_PASS; 5469 out_redir: 5470 bpf_net_ctx_clear(bpf_net_ctx); 5471 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5472 return XDP_DROP; 5473 } 5474 EXPORT_SYMBOL_GPL(do_xdp_generic); 5475 5476 static int netif_rx_internal(struct sk_buff *skb) 5477 { 5478 int ret; 5479 5480 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5481 5482 trace_netif_rx(skb); 5483 5484 #ifdef CONFIG_RPS 5485 if (static_branch_unlikely(&rps_needed)) { 5486 struct rps_dev_flow voidflow, *rflow = &voidflow; 5487 int cpu; 5488 5489 rcu_read_lock(); 5490 5491 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5492 if (cpu < 0) 5493 cpu = smp_processor_id(); 5494 5495 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5496 5497 rcu_read_unlock(); 5498 } else 5499 #endif 5500 { 5501 unsigned int qtail; 5502 5503 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5504 } 5505 return ret; 5506 } 5507 5508 /** 5509 * __netif_rx - Slightly optimized version of netif_rx 5510 * @skb: buffer to post 5511 * 5512 * This behaves as netif_rx except that it does not disable bottom halves. 5513 * As a result this function may only be invoked from the interrupt context 5514 * (either hard or soft interrupt). 5515 */ 5516 int __netif_rx(struct sk_buff *skb) 5517 { 5518 int ret; 5519 5520 lockdep_assert_once(hardirq_count() | softirq_count()); 5521 5522 trace_netif_rx_entry(skb); 5523 ret = netif_rx_internal(skb); 5524 trace_netif_rx_exit(ret); 5525 return ret; 5526 } 5527 EXPORT_SYMBOL(__netif_rx); 5528 5529 /** 5530 * netif_rx - post buffer to the network code 5531 * @skb: buffer to post 5532 * 5533 * This function receives a packet from a device driver and queues it for 5534 * the upper (protocol) levels to process via the backlog NAPI device. It 5535 * always succeeds. The buffer may be dropped during processing for 5536 * congestion control or by the protocol layers. 5537 * The network buffer is passed via the backlog NAPI device. Modern NIC 5538 * driver should use NAPI and GRO. 5539 * This function can used from interrupt and from process context. The 5540 * caller from process context must not disable interrupts before invoking 5541 * this function. 5542 * 5543 * return values: 5544 * NET_RX_SUCCESS (no congestion) 5545 * NET_RX_DROP (packet was dropped) 5546 * 5547 */ 5548 int netif_rx(struct sk_buff *skb) 5549 { 5550 bool need_bh_off = !(hardirq_count() | softirq_count()); 5551 int ret; 5552 5553 if (need_bh_off) 5554 local_bh_disable(); 5555 trace_netif_rx_entry(skb); 5556 ret = netif_rx_internal(skb); 5557 trace_netif_rx_exit(ret); 5558 if (need_bh_off) 5559 local_bh_enable(); 5560 return ret; 5561 } 5562 EXPORT_SYMBOL(netif_rx); 5563 5564 static __latent_entropy void net_tx_action(void) 5565 { 5566 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5567 5568 if (sd->completion_queue) { 5569 struct sk_buff *clist; 5570 5571 local_irq_disable(); 5572 clist = sd->completion_queue; 5573 sd->completion_queue = NULL; 5574 local_irq_enable(); 5575 5576 while (clist) { 5577 struct sk_buff *skb = clist; 5578 5579 clist = clist->next; 5580 5581 WARN_ON(refcount_read(&skb->users)); 5582 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5583 trace_consume_skb(skb, net_tx_action); 5584 else 5585 trace_kfree_skb(skb, net_tx_action, 5586 get_kfree_skb_cb(skb)->reason, NULL); 5587 5588 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5589 __kfree_skb(skb); 5590 else 5591 __napi_kfree_skb(skb, 5592 get_kfree_skb_cb(skb)->reason); 5593 } 5594 } 5595 5596 if (sd->output_queue) { 5597 struct Qdisc *head; 5598 5599 local_irq_disable(); 5600 head = sd->output_queue; 5601 sd->output_queue = NULL; 5602 sd->output_queue_tailp = &sd->output_queue; 5603 local_irq_enable(); 5604 5605 rcu_read_lock(); 5606 5607 while (head) { 5608 struct Qdisc *q = head; 5609 spinlock_t *root_lock = NULL; 5610 5611 head = head->next_sched; 5612 5613 /* We need to make sure head->next_sched is read 5614 * before clearing __QDISC_STATE_SCHED 5615 */ 5616 smp_mb__before_atomic(); 5617 5618 if (!(q->flags & TCQ_F_NOLOCK)) { 5619 root_lock = qdisc_lock(q); 5620 spin_lock(root_lock); 5621 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5622 &q->state))) { 5623 /* There is a synchronize_net() between 5624 * STATE_DEACTIVATED flag being set and 5625 * qdisc_reset()/some_qdisc_is_busy() in 5626 * dev_deactivate(), so we can safely bail out 5627 * early here to avoid data race between 5628 * qdisc_deactivate() and some_qdisc_is_busy() 5629 * for lockless qdisc. 5630 */ 5631 clear_bit(__QDISC_STATE_SCHED, &q->state); 5632 continue; 5633 } 5634 5635 clear_bit(__QDISC_STATE_SCHED, &q->state); 5636 qdisc_run(q); 5637 if (root_lock) 5638 spin_unlock(root_lock); 5639 } 5640 5641 rcu_read_unlock(); 5642 } 5643 5644 xfrm_dev_backlog(sd); 5645 } 5646 5647 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5648 /* This hook is defined here for ATM LANE */ 5649 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5650 unsigned char *addr) __read_mostly; 5651 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5652 #endif 5653 5654 /** 5655 * netdev_is_rx_handler_busy - check if receive handler is registered 5656 * @dev: device to check 5657 * 5658 * Check if a receive handler is already registered for a given device. 5659 * Return true if there one. 5660 * 5661 * The caller must hold the rtnl_mutex. 5662 */ 5663 bool netdev_is_rx_handler_busy(struct net_device *dev) 5664 { 5665 ASSERT_RTNL(); 5666 return dev && rtnl_dereference(dev->rx_handler); 5667 } 5668 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5669 5670 /** 5671 * netdev_rx_handler_register - register receive handler 5672 * @dev: device to register a handler for 5673 * @rx_handler: receive handler to register 5674 * @rx_handler_data: data pointer that is used by rx handler 5675 * 5676 * Register a receive handler for a device. This handler will then be 5677 * called from __netif_receive_skb. A negative errno code is returned 5678 * on a failure. 5679 * 5680 * The caller must hold the rtnl_mutex. 5681 * 5682 * For a general description of rx_handler, see enum rx_handler_result. 5683 */ 5684 int netdev_rx_handler_register(struct net_device *dev, 5685 rx_handler_func_t *rx_handler, 5686 void *rx_handler_data) 5687 { 5688 if (netdev_is_rx_handler_busy(dev)) 5689 return -EBUSY; 5690 5691 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5692 return -EINVAL; 5693 5694 /* Note: rx_handler_data must be set before rx_handler */ 5695 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5696 rcu_assign_pointer(dev->rx_handler, rx_handler); 5697 5698 return 0; 5699 } 5700 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5701 5702 /** 5703 * netdev_rx_handler_unregister - unregister receive handler 5704 * @dev: device to unregister a handler from 5705 * 5706 * Unregister a receive handler from a device. 5707 * 5708 * The caller must hold the rtnl_mutex. 5709 */ 5710 void netdev_rx_handler_unregister(struct net_device *dev) 5711 { 5712 5713 ASSERT_RTNL(); 5714 RCU_INIT_POINTER(dev->rx_handler, NULL); 5715 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5716 * section has a guarantee to see a non NULL rx_handler_data 5717 * as well. 5718 */ 5719 synchronize_net(); 5720 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5721 } 5722 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5723 5724 /* 5725 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5726 * the special handling of PFMEMALLOC skbs. 5727 */ 5728 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5729 { 5730 switch (skb->protocol) { 5731 case htons(ETH_P_ARP): 5732 case htons(ETH_P_IP): 5733 case htons(ETH_P_IPV6): 5734 case htons(ETH_P_8021Q): 5735 case htons(ETH_P_8021AD): 5736 return true; 5737 default: 5738 return false; 5739 } 5740 } 5741 5742 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5743 int *ret, struct net_device *orig_dev) 5744 { 5745 if (nf_hook_ingress_active(skb)) { 5746 int ingress_retval; 5747 5748 if (*pt_prev) { 5749 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5750 *pt_prev = NULL; 5751 } 5752 5753 rcu_read_lock(); 5754 ingress_retval = nf_hook_ingress(skb); 5755 rcu_read_unlock(); 5756 return ingress_retval; 5757 } 5758 return 0; 5759 } 5760 5761 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5762 struct packet_type **ppt_prev) 5763 { 5764 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO; 5765 struct packet_type *ptype, *pt_prev; 5766 rx_handler_func_t *rx_handler; 5767 struct sk_buff *skb = *pskb; 5768 struct net_device *orig_dev; 5769 bool deliver_exact = false; 5770 int ret = NET_RX_DROP; 5771 __be16 type; 5772 5773 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5774 5775 trace_netif_receive_skb(skb); 5776 5777 orig_dev = skb->dev; 5778 5779 skb_reset_network_header(skb); 5780 #if !defined(CONFIG_DEBUG_NET) 5781 /* We plan to no longer reset the transport header here. 5782 * Give some time to fuzzers and dev build to catch bugs 5783 * in network stacks. 5784 */ 5785 if (!skb_transport_header_was_set(skb)) 5786 skb_reset_transport_header(skb); 5787 #endif 5788 skb_reset_mac_len(skb); 5789 5790 pt_prev = NULL; 5791 5792 another_round: 5793 skb->skb_iif = skb->dev->ifindex; 5794 5795 __this_cpu_inc(softnet_data.processed); 5796 5797 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5798 int ret2; 5799 5800 migrate_disable(); 5801 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5802 &skb); 5803 migrate_enable(); 5804 5805 if (ret2 != XDP_PASS) { 5806 ret = NET_RX_DROP; 5807 goto out; 5808 } 5809 } 5810 5811 if (eth_type_vlan(skb->protocol)) { 5812 skb = skb_vlan_untag(skb); 5813 if (unlikely(!skb)) 5814 goto out; 5815 } 5816 5817 if (skb_skip_tc_classify(skb)) 5818 goto skip_classify; 5819 5820 if (pfmemalloc) 5821 goto skip_taps; 5822 5823 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5824 list) { 5825 if (pt_prev) 5826 ret = deliver_skb(skb, pt_prev, orig_dev); 5827 pt_prev = ptype; 5828 } 5829 5830 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5831 if (pt_prev) 5832 ret = deliver_skb(skb, pt_prev, orig_dev); 5833 pt_prev = ptype; 5834 } 5835 5836 skip_taps: 5837 #ifdef CONFIG_NET_INGRESS 5838 if (static_branch_unlikely(&ingress_needed_key)) { 5839 bool another = false; 5840 5841 nf_skip_egress(skb, true); 5842 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5843 &another); 5844 if (another) 5845 goto another_round; 5846 if (!skb) 5847 goto out; 5848 5849 nf_skip_egress(skb, false); 5850 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5851 goto out; 5852 } 5853 #endif 5854 skb_reset_redirect(skb); 5855 skip_classify: 5856 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) { 5857 drop_reason = SKB_DROP_REASON_PFMEMALLOC; 5858 goto drop; 5859 } 5860 5861 if (skb_vlan_tag_present(skb)) { 5862 if (pt_prev) { 5863 ret = deliver_skb(skb, pt_prev, orig_dev); 5864 pt_prev = NULL; 5865 } 5866 if (vlan_do_receive(&skb)) 5867 goto another_round; 5868 else if (unlikely(!skb)) 5869 goto out; 5870 } 5871 5872 rx_handler = rcu_dereference(skb->dev->rx_handler); 5873 if (rx_handler) { 5874 if (pt_prev) { 5875 ret = deliver_skb(skb, pt_prev, orig_dev); 5876 pt_prev = NULL; 5877 } 5878 switch (rx_handler(&skb)) { 5879 case RX_HANDLER_CONSUMED: 5880 ret = NET_RX_SUCCESS; 5881 goto out; 5882 case RX_HANDLER_ANOTHER: 5883 goto another_round; 5884 case RX_HANDLER_EXACT: 5885 deliver_exact = true; 5886 break; 5887 case RX_HANDLER_PASS: 5888 break; 5889 default: 5890 BUG(); 5891 } 5892 } 5893 5894 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5895 check_vlan_id: 5896 if (skb_vlan_tag_get_id(skb)) { 5897 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5898 * find vlan device. 5899 */ 5900 skb->pkt_type = PACKET_OTHERHOST; 5901 } else if (eth_type_vlan(skb->protocol)) { 5902 /* Outer header is 802.1P with vlan 0, inner header is 5903 * 802.1Q or 802.1AD and vlan_do_receive() above could 5904 * not find vlan dev for vlan id 0. 5905 */ 5906 __vlan_hwaccel_clear_tag(skb); 5907 skb = skb_vlan_untag(skb); 5908 if (unlikely(!skb)) 5909 goto out; 5910 if (vlan_do_receive(&skb)) 5911 /* After stripping off 802.1P header with vlan 0 5912 * vlan dev is found for inner header. 5913 */ 5914 goto another_round; 5915 else if (unlikely(!skb)) 5916 goto out; 5917 else 5918 /* We have stripped outer 802.1P vlan 0 header. 5919 * But could not find vlan dev. 5920 * check again for vlan id to set OTHERHOST. 5921 */ 5922 goto check_vlan_id; 5923 } 5924 /* Note: we might in the future use prio bits 5925 * and set skb->priority like in vlan_do_receive() 5926 * For the time being, just ignore Priority Code Point 5927 */ 5928 __vlan_hwaccel_clear_tag(skb); 5929 } 5930 5931 type = skb->protocol; 5932 5933 /* deliver only exact match when indicated */ 5934 if (likely(!deliver_exact)) { 5935 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5936 &ptype_base[ntohs(type) & 5937 PTYPE_HASH_MASK]); 5938 5939 /* orig_dev and skb->dev could belong to different netns; 5940 * Even in such case we need to traverse only the list 5941 * coming from skb->dev, as the ptype owner (packet socket) 5942 * will use dev_net(skb->dev) to do namespace filtering. 5943 */ 5944 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5945 &dev_net_rcu(skb->dev)->ptype_specific); 5946 } 5947 5948 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5949 &orig_dev->ptype_specific); 5950 5951 if (unlikely(skb->dev != orig_dev)) { 5952 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5953 &skb->dev->ptype_specific); 5954 } 5955 5956 if (pt_prev) { 5957 *ppt_prev = pt_prev; 5958 } else { 5959 drop: 5960 if (!deliver_exact) 5961 dev_core_stats_rx_dropped_inc(skb->dev); 5962 else 5963 dev_core_stats_rx_nohandler_inc(skb->dev); 5964 5965 kfree_skb_reason(skb, drop_reason); 5966 /* Jamal, now you will not able to escape explaining 5967 * me how you were going to use this. :-) 5968 */ 5969 ret = NET_RX_DROP; 5970 } 5971 5972 out: 5973 /* The invariant here is that if *ppt_prev is not NULL 5974 * then skb should also be non-NULL. 5975 * 5976 * Apparently *ppt_prev assignment above holds this invariant due to 5977 * skb dereferencing near it. 5978 */ 5979 *pskb = skb; 5980 return ret; 5981 } 5982 5983 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5984 { 5985 struct net_device *orig_dev = skb->dev; 5986 struct packet_type *pt_prev = NULL; 5987 int ret; 5988 5989 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5990 if (pt_prev) 5991 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5992 skb->dev, pt_prev, orig_dev); 5993 return ret; 5994 } 5995 5996 /** 5997 * netif_receive_skb_core - special purpose version of netif_receive_skb 5998 * @skb: buffer to process 5999 * 6000 * More direct receive version of netif_receive_skb(). It should 6001 * only be used by callers that have a need to skip RPS and Generic XDP. 6002 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 6003 * 6004 * This function may only be called from softirq context and interrupts 6005 * should be enabled. 6006 * 6007 * Return values (usually ignored): 6008 * NET_RX_SUCCESS: no congestion 6009 * NET_RX_DROP: packet was dropped 6010 */ 6011 int netif_receive_skb_core(struct sk_buff *skb) 6012 { 6013 int ret; 6014 6015 rcu_read_lock(); 6016 ret = __netif_receive_skb_one_core(skb, false); 6017 rcu_read_unlock(); 6018 6019 return ret; 6020 } 6021 EXPORT_SYMBOL(netif_receive_skb_core); 6022 6023 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 6024 struct packet_type *pt_prev, 6025 struct net_device *orig_dev) 6026 { 6027 struct sk_buff *skb, *next; 6028 6029 if (!pt_prev) 6030 return; 6031 if (list_empty(head)) 6032 return; 6033 if (pt_prev->list_func != NULL) 6034 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 6035 ip_list_rcv, head, pt_prev, orig_dev); 6036 else 6037 list_for_each_entry_safe(skb, next, head, list) { 6038 skb_list_del_init(skb); 6039 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 6040 } 6041 } 6042 6043 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 6044 { 6045 /* Fast-path assumptions: 6046 * - There is no RX handler. 6047 * - Only one packet_type matches. 6048 * If either of these fails, we will end up doing some per-packet 6049 * processing in-line, then handling the 'last ptype' for the whole 6050 * sublist. This can't cause out-of-order delivery to any single ptype, 6051 * because the 'last ptype' must be constant across the sublist, and all 6052 * other ptypes are handled per-packet. 6053 */ 6054 /* Current (common) ptype of sublist */ 6055 struct packet_type *pt_curr = NULL; 6056 /* Current (common) orig_dev of sublist */ 6057 struct net_device *od_curr = NULL; 6058 struct sk_buff *skb, *next; 6059 LIST_HEAD(sublist); 6060 6061 list_for_each_entry_safe(skb, next, head, list) { 6062 struct net_device *orig_dev = skb->dev; 6063 struct packet_type *pt_prev = NULL; 6064 6065 skb_list_del_init(skb); 6066 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6067 if (!pt_prev) 6068 continue; 6069 if (pt_curr != pt_prev || od_curr != orig_dev) { 6070 /* dispatch old sublist */ 6071 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6072 /* start new sublist */ 6073 INIT_LIST_HEAD(&sublist); 6074 pt_curr = pt_prev; 6075 od_curr = orig_dev; 6076 } 6077 list_add_tail(&skb->list, &sublist); 6078 } 6079 6080 /* dispatch final sublist */ 6081 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6082 } 6083 6084 static int __netif_receive_skb(struct sk_buff *skb) 6085 { 6086 int ret; 6087 6088 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6089 unsigned int noreclaim_flag; 6090 6091 /* 6092 * PFMEMALLOC skbs are special, they should 6093 * - be delivered to SOCK_MEMALLOC sockets only 6094 * - stay away from userspace 6095 * - have bounded memory usage 6096 * 6097 * Use PF_MEMALLOC as this saves us from propagating the allocation 6098 * context down to all allocation sites. 6099 */ 6100 noreclaim_flag = memalloc_noreclaim_save(); 6101 ret = __netif_receive_skb_one_core(skb, true); 6102 memalloc_noreclaim_restore(noreclaim_flag); 6103 } else 6104 ret = __netif_receive_skb_one_core(skb, false); 6105 6106 return ret; 6107 } 6108 6109 static void __netif_receive_skb_list(struct list_head *head) 6110 { 6111 unsigned long noreclaim_flag = 0; 6112 struct sk_buff *skb, *next; 6113 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6114 6115 list_for_each_entry_safe(skb, next, head, list) { 6116 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6117 struct list_head sublist; 6118 6119 /* Handle the previous sublist */ 6120 list_cut_before(&sublist, head, &skb->list); 6121 if (!list_empty(&sublist)) 6122 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6123 pfmemalloc = !pfmemalloc; 6124 /* See comments in __netif_receive_skb */ 6125 if (pfmemalloc) 6126 noreclaim_flag = memalloc_noreclaim_save(); 6127 else 6128 memalloc_noreclaim_restore(noreclaim_flag); 6129 } 6130 } 6131 /* Handle the remaining sublist */ 6132 if (!list_empty(head)) 6133 __netif_receive_skb_list_core(head, pfmemalloc); 6134 /* Restore pflags */ 6135 if (pfmemalloc) 6136 memalloc_noreclaim_restore(noreclaim_flag); 6137 } 6138 6139 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6140 { 6141 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6142 struct bpf_prog *new = xdp->prog; 6143 int ret = 0; 6144 6145 switch (xdp->command) { 6146 case XDP_SETUP_PROG: 6147 rcu_assign_pointer(dev->xdp_prog, new); 6148 if (old) 6149 bpf_prog_put(old); 6150 6151 if (old && !new) { 6152 static_branch_dec(&generic_xdp_needed_key); 6153 } else if (new && !old) { 6154 static_branch_inc(&generic_xdp_needed_key); 6155 netif_disable_lro(dev); 6156 dev_disable_gro_hw(dev); 6157 } 6158 break; 6159 6160 default: 6161 ret = -EINVAL; 6162 break; 6163 } 6164 6165 return ret; 6166 } 6167 6168 static int netif_receive_skb_internal(struct sk_buff *skb) 6169 { 6170 int ret; 6171 6172 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6173 6174 if (skb_defer_rx_timestamp(skb)) 6175 return NET_RX_SUCCESS; 6176 6177 rcu_read_lock(); 6178 #ifdef CONFIG_RPS 6179 if (static_branch_unlikely(&rps_needed)) { 6180 struct rps_dev_flow voidflow, *rflow = &voidflow; 6181 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6182 6183 if (cpu >= 0) { 6184 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6185 rcu_read_unlock(); 6186 return ret; 6187 } 6188 } 6189 #endif 6190 ret = __netif_receive_skb(skb); 6191 rcu_read_unlock(); 6192 return ret; 6193 } 6194 6195 void netif_receive_skb_list_internal(struct list_head *head) 6196 { 6197 struct sk_buff *skb, *next; 6198 LIST_HEAD(sublist); 6199 6200 list_for_each_entry_safe(skb, next, head, list) { 6201 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6202 skb); 6203 skb_list_del_init(skb); 6204 if (!skb_defer_rx_timestamp(skb)) 6205 list_add_tail(&skb->list, &sublist); 6206 } 6207 list_splice_init(&sublist, head); 6208 6209 rcu_read_lock(); 6210 #ifdef CONFIG_RPS 6211 if (static_branch_unlikely(&rps_needed)) { 6212 list_for_each_entry_safe(skb, next, head, list) { 6213 struct rps_dev_flow voidflow, *rflow = &voidflow; 6214 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6215 6216 if (cpu >= 0) { 6217 /* Will be handled, remove from list */ 6218 skb_list_del_init(skb); 6219 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6220 } 6221 } 6222 } 6223 #endif 6224 __netif_receive_skb_list(head); 6225 rcu_read_unlock(); 6226 } 6227 6228 /** 6229 * netif_receive_skb - process receive buffer from network 6230 * @skb: buffer to process 6231 * 6232 * netif_receive_skb() is the main receive data processing function. 6233 * It always succeeds. The buffer may be dropped during processing 6234 * for congestion control or by the protocol layers. 6235 * 6236 * This function may only be called from softirq context and interrupts 6237 * should be enabled. 6238 * 6239 * Return values (usually ignored): 6240 * NET_RX_SUCCESS: no congestion 6241 * NET_RX_DROP: packet was dropped 6242 */ 6243 int netif_receive_skb(struct sk_buff *skb) 6244 { 6245 int ret; 6246 6247 trace_netif_receive_skb_entry(skb); 6248 6249 ret = netif_receive_skb_internal(skb); 6250 trace_netif_receive_skb_exit(ret); 6251 6252 return ret; 6253 } 6254 EXPORT_SYMBOL(netif_receive_skb); 6255 6256 /** 6257 * netif_receive_skb_list - process many receive buffers from network 6258 * @head: list of skbs to process. 6259 * 6260 * Since return value of netif_receive_skb() is normally ignored, and 6261 * wouldn't be meaningful for a list, this function returns void. 6262 * 6263 * This function may only be called from softirq context and interrupts 6264 * should be enabled. 6265 */ 6266 void netif_receive_skb_list(struct list_head *head) 6267 { 6268 struct sk_buff *skb; 6269 6270 if (list_empty(head)) 6271 return; 6272 if (trace_netif_receive_skb_list_entry_enabled()) { 6273 list_for_each_entry(skb, head, list) 6274 trace_netif_receive_skb_list_entry(skb); 6275 } 6276 netif_receive_skb_list_internal(head); 6277 trace_netif_receive_skb_list_exit(0); 6278 } 6279 EXPORT_SYMBOL(netif_receive_skb_list); 6280 6281 /* Network device is going away, flush any packets still pending */ 6282 static void flush_backlog(struct work_struct *work) 6283 { 6284 struct sk_buff *skb, *tmp; 6285 struct sk_buff_head list; 6286 struct softnet_data *sd; 6287 6288 __skb_queue_head_init(&list); 6289 local_bh_disable(); 6290 sd = this_cpu_ptr(&softnet_data); 6291 6292 backlog_lock_irq_disable(sd); 6293 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6294 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6295 __skb_unlink(skb, &sd->input_pkt_queue); 6296 __skb_queue_tail(&list, skb); 6297 rps_input_queue_head_incr(sd); 6298 } 6299 } 6300 backlog_unlock_irq_enable(sd); 6301 6302 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6303 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6304 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6305 __skb_unlink(skb, &sd->process_queue); 6306 __skb_queue_tail(&list, skb); 6307 rps_input_queue_head_incr(sd); 6308 } 6309 } 6310 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6311 local_bh_enable(); 6312 6313 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6314 } 6315 6316 static bool flush_required(int cpu) 6317 { 6318 #if IS_ENABLED(CONFIG_RPS) 6319 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6320 bool do_flush; 6321 6322 backlog_lock_irq_disable(sd); 6323 6324 /* as insertion into process_queue happens with the rps lock held, 6325 * process_queue access may race only with dequeue 6326 */ 6327 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6328 !skb_queue_empty_lockless(&sd->process_queue); 6329 backlog_unlock_irq_enable(sd); 6330 6331 return do_flush; 6332 #endif 6333 /* without RPS we can't safely check input_pkt_queue: during a 6334 * concurrent remote skb_queue_splice() we can detect as empty both 6335 * input_pkt_queue and process_queue even if the latter could end-up 6336 * containing a lot of packets. 6337 */ 6338 return true; 6339 } 6340 6341 struct flush_backlogs { 6342 cpumask_t flush_cpus; 6343 struct work_struct w[]; 6344 }; 6345 6346 static struct flush_backlogs *flush_backlogs_alloc(void) 6347 { 6348 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6349 GFP_KERNEL); 6350 } 6351 6352 static struct flush_backlogs *flush_backlogs_fallback; 6353 static DEFINE_MUTEX(flush_backlogs_mutex); 6354 6355 static void flush_all_backlogs(void) 6356 { 6357 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6358 unsigned int cpu; 6359 6360 if (!ptr) { 6361 mutex_lock(&flush_backlogs_mutex); 6362 ptr = flush_backlogs_fallback; 6363 } 6364 cpumask_clear(&ptr->flush_cpus); 6365 6366 cpus_read_lock(); 6367 6368 for_each_online_cpu(cpu) { 6369 if (flush_required(cpu)) { 6370 INIT_WORK(&ptr->w[cpu], flush_backlog); 6371 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6372 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6373 } 6374 } 6375 6376 /* we can have in flight packet[s] on the cpus we are not flushing, 6377 * synchronize_net() in unregister_netdevice_many() will take care of 6378 * them. 6379 */ 6380 for_each_cpu(cpu, &ptr->flush_cpus) 6381 flush_work(&ptr->w[cpu]); 6382 6383 cpus_read_unlock(); 6384 6385 if (ptr != flush_backlogs_fallback) 6386 kfree(ptr); 6387 else 6388 mutex_unlock(&flush_backlogs_mutex); 6389 } 6390 6391 static void net_rps_send_ipi(struct softnet_data *remsd) 6392 { 6393 #ifdef CONFIG_RPS 6394 while (remsd) { 6395 struct softnet_data *next = remsd->rps_ipi_next; 6396 6397 if (cpu_online(remsd->cpu)) 6398 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6399 remsd = next; 6400 } 6401 #endif 6402 } 6403 6404 /* 6405 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6406 * Note: called with local irq disabled, but exits with local irq enabled. 6407 */ 6408 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6409 { 6410 #ifdef CONFIG_RPS 6411 struct softnet_data *remsd = sd->rps_ipi_list; 6412 6413 if (!use_backlog_threads() && remsd) { 6414 sd->rps_ipi_list = NULL; 6415 6416 local_irq_enable(); 6417 6418 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6419 net_rps_send_ipi(remsd); 6420 } else 6421 #endif 6422 local_irq_enable(); 6423 } 6424 6425 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6426 { 6427 #ifdef CONFIG_RPS 6428 return !use_backlog_threads() && sd->rps_ipi_list; 6429 #else 6430 return false; 6431 #endif 6432 } 6433 6434 static int process_backlog(struct napi_struct *napi, int quota) 6435 { 6436 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6437 bool again = true; 6438 int work = 0; 6439 6440 /* Check if we have pending ipi, its better to send them now, 6441 * not waiting net_rx_action() end. 6442 */ 6443 if (sd_has_rps_ipi_waiting(sd)) { 6444 local_irq_disable(); 6445 net_rps_action_and_irq_enable(sd); 6446 } 6447 6448 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6449 while (again) { 6450 struct sk_buff *skb; 6451 6452 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6453 while ((skb = __skb_dequeue(&sd->process_queue))) { 6454 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6455 rcu_read_lock(); 6456 __netif_receive_skb(skb); 6457 rcu_read_unlock(); 6458 if (++work >= quota) { 6459 rps_input_queue_head_add(sd, work); 6460 return work; 6461 } 6462 6463 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6464 } 6465 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6466 6467 backlog_lock_irq_disable(sd); 6468 if (skb_queue_empty(&sd->input_pkt_queue)) { 6469 /* 6470 * Inline a custom version of __napi_complete(). 6471 * only current cpu owns and manipulates this napi, 6472 * and NAPI_STATE_SCHED is the only possible flag set 6473 * on backlog. 6474 * We can use a plain write instead of clear_bit(), 6475 * and we dont need an smp_mb() memory barrier. 6476 */ 6477 napi->state &= NAPIF_STATE_THREADED; 6478 again = false; 6479 } else { 6480 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6481 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6482 &sd->process_queue); 6483 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6484 } 6485 backlog_unlock_irq_enable(sd); 6486 } 6487 6488 if (work) 6489 rps_input_queue_head_add(sd, work); 6490 return work; 6491 } 6492 6493 /** 6494 * __napi_schedule - schedule for receive 6495 * @n: entry to schedule 6496 * 6497 * The entry's receive function will be scheduled to run. 6498 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6499 */ 6500 void __napi_schedule(struct napi_struct *n) 6501 { 6502 unsigned long flags; 6503 6504 local_irq_save(flags); 6505 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6506 local_irq_restore(flags); 6507 } 6508 EXPORT_SYMBOL(__napi_schedule); 6509 6510 /** 6511 * napi_schedule_prep - check if napi can be scheduled 6512 * @n: napi context 6513 * 6514 * Test if NAPI routine is already running, and if not mark 6515 * it as running. This is used as a condition variable to 6516 * insure only one NAPI poll instance runs. We also make 6517 * sure there is no pending NAPI disable. 6518 */ 6519 bool napi_schedule_prep(struct napi_struct *n) 6520 { 6521 unsigned long new, val = READ_ONCE(n->state); 6522 6523 do { 6524 if (unlikely(val & NAPIF_STATE_DISABLE)) 6525 return false; 6526 new = val | NAPIF_STATE_SCHED; 6527 6528 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6529 * This was suggested by Alexander Duyck, as compiler 6530 * emits better code than : 6531 * if (val & NAPIF_STATE_SCHED) 6532 * new |= NAPIF_STATE_MISSED; 6533 */ 6534 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6535 NAPIF_STATE_MISSED; 6536 } while (!try_cmpxchg(&n->state, &val, new)); 6537 6538 return !(val & NAPIF_STATE_SCHED); 6539 } 6540 EXPORT_SYMBOL(napi_schedule_prep); 6541 6542 /** 6543 * __napi_schedule_irqoff - schedule for receive 6544 * @n: entry to schedule 6545 * 6546 * Variant of __napi_schedule() assuming hard irqs are masked. 6547 * 6548 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6549 * because the interrupt disabled assumption might not be true 6550 * due to force-threaded interrupts and spinlock substitution. 6551 */ 6552 void __napi_schedule_irqoff(struct napi_struct *n) 6553 { 6554 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6555 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6556 else 6557 __napi_schedule(n); 6558 } 6559 EXPORT_SYMBOL(__napi_schedule_irqoff); 6560 6561 bool napi_complete_done(struct napi_struct *n, int work_done) 6562 { 6563 unsigned long flags, val, new, timeout = 0; 6564 bool ret = true; 6565 6566 /* 6567 * 1) Don't let napi dequeue from the cpu poll list 6568 * just in case its running on a different cpu. 6569 * 2) If we are busy polling, do nothing here, we have 6570 * the guarantee we will be called later. 6571 */ 6572 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6573 NAPIF_STATE_IN_BUSY_POLL))) 6574 return false; 6575 6576 if (work_done) { 6577 if (n->gro.bitmask) 6578 timeout = napi_get_gro_flush_timeout(n); 6579 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6580 } 6581 if (n->defer_hard_irqs_count > 0) { 6582 n->defer_hard_irqs_count--; 6583 timeout = napi_get_gro_flush_timeout(n); 6584 if (timeout) 6585 ret = false; 6586 } 6587 6588 /* 6589 * When the NAPI instance uses a timeout and keeps postponing 6590 * it, we need to bound somehow the time packets are kept in 6591 * the GRO layer. 6592 */ 6593 gro_flush_normal(&n->gro, !!timeout); 6594 6595 if (unlikely(!list_empty(&n->poll_list))) { 6596 /* If n->poll_list is not empty, we need to mask irqs */ 6597 local_irq_save(flags); 6598 list_del_init(&n->poll_list); 6599 local_irq_restore(flags); 6600 } 6601 WRITE_ONCE(n->list_owner, -1); 6602 6603 val = READ_ONCE(n->state); 6604 do { 6605 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6606 6607 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6608 NAPIF_STATE_SCHED_THREADED | 6609 NAPIF_STATE_PREFER_BUSY_POLL); 6610 6611 /* If STATE_MISSED was set, leave STATE_SCHED set, 6612 * because we will call napi->poll() one more time. 6613 * This C code was suggested by Alexander Duyck to help gcc. 6614 */ 6615 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6616 NAPIF_STATE_SCHED; 6617 } while (!try_cmpxchg(&n->state, &val, new)); 6618 6619 if (unlikely(val & NAPIF_STATE_MISSED)) { 6620 __napi_schedule(n); 6621 return false; 6622 } 6623 6624 if (timeout) 6625 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6626 HRTIMER_MODE_REL_PINNED); 6627 return ret; 6628 } 6629 EXPORT_SYMBOL(napi_complete_done); 6630 6631 static void skb_defer_free_flush(struct softnet_data *sd) 6632 { 6633 struct sk_buff *skb, *next; 6634 6635 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6636 if (!READ_ONCE(sd->defer_list)) 6637 return; 6638 6639 spin_lock(&sd->defer_lock); 6640 skb = sd->defer_list; 6641 sd->defer_list = NULL; 6642 sd->defer_count = 0; 6643 spin_unlock(&sd->defer_lock); 6644 6645 while (skb != NULL) { 6646 next = skb->next; 6647 napi_consume_skb(skb, 1); 6648 skb = next; 6649 } 6650 } 6651 6652 #if defined(CONFIG_NET_RX_BUSY_POLL) 6653 6654 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6655 { 6656 if (!skip_schedule) { 6657 gro_normal_list(&napi->gro); 6658 __napi_schedule(napi); 6659 return; 6660 } 6661 6662 /* Flush too old packets. If HZ < 1000, flush all packets */ 6663 gro_flush_normal(&napi->gro, HZ >= 1000); 6664 6665 clear_bit(NAPI_STATE_SCHED, &napi->state); 6666 } 6667 6668 enum { 6669 NAPI_F_PREFER_BUSY_POLL = 1, 6670 NAPI_F_END_ON_RESCHED = 2, 6671 }; 6672 6673 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6674 unsigned flags, u16 budget) 6675 { 6676 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6677 bool skip_schedule = false; 6678 unsigned long timeout; 6679 int rc; 6680 6681 /* Busy polling means there is a high chance device driver hard irq 6682 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6683 * set in napi_schedule_prep(). 6684 * Since we are about to call napi->poll() once more, we can safely 6685 * clear NAPI_STATE_MISSED. 6686 * 6687 * Note: x86 could use a single "lock and ..." instruction 6688 * to perform these two clear_bit() 6689 */ 6690 clear_bit(NAPI_STATE_MISSED, &napi->state); 6691 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6692 6693 local_bh_disable(); 6694 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6695 6696 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6697 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6698 timeout = napi_get_gro_flush_timeout(napi); 6699 if (napi->defer_hard_irqs_count && timeout) { 6700 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6701 skip_schedule = true; 6702 } 6703 } 6704 6705 /* All we really want here is to re-enable device interrupts. 6706 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6707 */ 6708 rc = napi->poll(napi, budget); 6709 /* We can't gro_normal_list() here, because napi->poll() might have 6710 * rearmed the napi (napi_complete_done()) in which case it could 6711 * already be running on another CPU. 6712 */ 6713 trace_napi_poll(napi, rc, budget); 6714 netpoll_poll_unlock(have_poll_lock); 6715 if (rc == budget) 6716 __busy_poll_stop(napi, skip_schedule); 6717 bpf_net_ctx_clear(bpf_net_ctx); 6718 local_bh_enable(); 6719 } 6720 6721 static void __napi_busy_loop(unsigned int napi_id, 6722 bool (*loop_end)(void *, unsigned long), 6723 void *loop_end_arg, unsigned flags, u16 budget) 6724 { 6725 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6726 int (*napi_poll)(struct napi_struct *napi, int budget); 6727 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6728 void *have_poll_lock = NULL; 6729 struct napi_struct *napi; 6730 6731 WARN_ON_ONCE(!rcu_read_lock_held()); 6732 6733 restart: 6734 napi_poll = NULL; 6735 6736 napi = napi_by_id(napi_id); 6737 if (!napi) 6738 return; 6739 6740 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6741 preempt_disable(); 6742 for (;;) { 6743 int work = 0; 6744 6745 local_bh_disable(); 6746 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6747 if (!napi_poll) { 6748 unsigned long val = READ_ONCE(napi->state); 6749 6750 /* If multiple threads are competing for this napi, 6751 * we avoid dirtying napi->state as much as we can. 6752 */ 6753 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6754 NAPIF_STATE_IN_BUSY_POLL)) { 6755 if (flags & NAPI_F_PREFER_BUSY_POLL) 6756 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6757 goto count; 6758 } 6759 if (cmpxchg(&napi->state, val, 6760 val | NAPIF_STATE_IN_BUSY_POLL | 6761 NAPIF_STATE_SCHED) != val) { 6762 if (flags & NAPI_F_PREFER_BUSY_POLL) 6763 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6764 goto count; 6765 } 6766 have_poll_lock = netpoll_poll_lock(napi); 6767 napi_poll = napi->poll; 6768 } 6769 work = napi_poll(napi, budget); 6770 trace_napi_poll(napi, work, budget); 6771 gro_normal_list(&napi->gro); 6772 count: 6773 if (work > 0) 6774 __NET_ADD_STATS(dev_net(napi->dev), 6775 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6776 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6777 bpf_net_ctx_clear(bpf_net_ctx); 6778 local_bh_enable(); 6779 6780 if (!loop_end || loop_end(loop_end_arg, start_time)) 6781 break; 6782 6783 if (unlikely(need_resched())) { 6784 if (flags & NAPI_F_END_ON_RESCHED) 6785 break; 6786 if (napi_poll) 6787 busy_poll_stop(napi, have_poll_lock, flags, budget); 6788 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6789 preempt_enable(); 6790 rcu_read_unlock(); 6791 cond_resched(); 6792 rcu_read_lock(); 6793 if (loop_end(loop_end_arg, start_time)) 6794 return; 6795 goto restart; 6796 } 6797 cpu_relax(); 6798 } 6799 if (napi_poll) 6800 busy_poll_stop(napi, have_poll_lock, flags, budget); 6801 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6802 preempt_enable(); 6803 } 6804 6805 void napi_busy_loop_rcu(unsigned int napi_id, 6806 bool (*loop_end)(void *, unsigned long), 6807 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6808 { 6809 unsigned flags = NAPI_F_END_ON_RESCHED; 6810 6811 if (prefer_busy_poll) 6812 flags |= NAPI_F_PREFER_BUSY_POLL; 6813 6814 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6815 } 6816 6817 void napi_busy_loop(unsigned int napi_id, 6818 bool (*loop_end)(void *, unsigned long), 6819 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6820 { 6821 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6822 6823 rcu_read_lock(); 6824 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6825 rcu_read_unlock(); 6826 } 6827 EXPORT_SYMBOL(napi_busy_loop); 6828 6829 void napi_suspend_irqs(unsigned int napi_id) 6830 { 6831 struct napi_struct *napi; 6832 6833 rcu_read_lock(); 6834 napi = napi_by_id(napi_id); 6835 if (napi) { 6836 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6837 6838 if (timeout) 6839 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6840 HRTIMER_MODE_REL_PINNED); 6841 } 6842 rcu_read_unlock(); 6843 } 6844 6845 void napi_resume_irqs(unsigned int napi_id) 6846 { 6847 struct napi_struct *napi; 6848 6849 rcu_read_lock(); 6850 napi = napi_by_id(napi_id); 6851 if (napi) { 6852 /* If irq_suspend_timeout is set to 0 between the call to 6853 * napi_suspend_irqs and now, the original value still 6854 * determines the safety timeout as intended and napi_watchdog 6855 * will resume irq processing. 6856 */ 6857 if (napi_get_irq_suspend_timeout(napi)) { 6858 local_bh_disable(); 6859 napi_schedule(napi); 6860 local_bh_enable(); 6861 } 6862 } 6863 rcu_read_unlock(); 6864 } 6865 6866 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6867 6868 static void __napi_hash_add_with_id(struct napi_struct *napi, 6869 unsigned int napi_id) 6870 { 6871 napi->gro.cached_napi_id = napi_id; 6872 6873 WRITE_ONCE(napi->napi_id, napi_id); 6874 hlist_add_head_rcu(&napi->napi_hash_node, 6875 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6876 } 6877 6878 static void napi_hash_add_with_id(struct napi_struct *napi, 6879 unsigned int napi_id) 6880 { 6881 unsigned long flags; 6882 6883 spin_lock_irqsave(&napi_hash_lock, flags); 6884 WARN_ON_ONCE(napi_by_id(napi_id)); 6885 __napi_hash_add_with_id(napi, napi_id); 6886 spin_unlock_irqrestore(&napi_hash_lock, flags); 6887 } 6888 6889 static void napi_hash_add(struct napi_struct *napi) 6890 { 6891 unsigned long flags; 6892 6893 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6894 return; 6895 6896 spin_lock_irqsave(&napi_hash_lock, flags); 6897 6898 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6899 do { 6900 if (unlikely(!napi_id_valid(++napi_gen_id))) 6901 napi_gen_id = MIN_NAPI_ID; 6902 } while (napi_by_id(napi_gen_id)); 6903 6904 __napi_hash_add_with_id(napi, napi_gen_id); 6905 6906 spin_unlock_irqrestore(&napi_hash_lock, flags); 6907 } 6908 6909 /* Warning : caller is responsible to make sure rcu grace period 6910 * is respected before freeing memory containing @napi 6911 */ 6912 static void napi_hash_del(struct napi_struct *napi) 6913 { 6914 unsigned long flags; 6915 6916 spin_lock_irqsave(&napi_hash_lock, flags); 6917 6918 hlist_del_init_rcu(&napi->napi_hash_node); 6919 6920 spin_unlock_irqrestore(&napi_hash_lock, flags); 6921 } 6922 6923 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6924 { 6925 struct napi_struct *napi; 6926 6927 napi = container_of(timer, struct napi_struct, timer); 6928 6929 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6930 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6931 */ 6932 if (!napi_disable_pending(napi) && 6933 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6934 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6935 __napi_schedule_irqoff(napi); 6936 } 6937 6938 return HRTIMER_NORESTART; 6939 } 6940 6941 static void napi_stop_kthread(struct napi_struct *napi) 6942 { 6943 unsigned long val, new; 6944 6945 /* Wait until the napi STATE_THREADED is unset. */ 6946 while (true) { 6947 val = READ_ONCE(napi->state); 6948 6949 /* If napi kthread own this napi or the napi is idle, 6950 * STATE_THREADED can be unset here. 6951 */ 6952 if ((val & NAPIF_STATE_SCHED_THREADED) || 6953 !(val & NAPIF_STATE_SCHED)) { 6954 new = val & (~NAPIF_STATE_THREADED); 6955 } else { 6956 msleep(20); 6957 continue; 6958 } 6959 6960 if (try_cmpxchg(&napi->state, &val, new)) 6961 break; 6962 } 6963 6964 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by 6965 * the kthread. 6966 */ 6967 while (true) { 6968 if (!test_bit(NAPIF_STATE_SCHED_THREADED, &napi->state)) 6969 break; 6970 6971 msleep(20); 6972 } 6973 6974 kthread_stop(napi->thread); 6975 napi->thread = NULL; 6976 } 6977 6978 int napi_set_threaded(struct napi_struct *napi, 6979 enum netdev_napi_threaded threaded) 6980 { 6981 if (threaded) { 6982 if (!napi->thread) { 6983 int err = napi_kthread_create(napi); 6984 6985 if (err) 6986 return err; 6987 } 6988 } 6989 6990 if (napi->config) 6991 napi->config->threaded = threaded; 6992 6993 /* Setting/unsetting threaded mode on a napi might not immediately 6994 * take effect, if the current napi instance is actively being 6995 * polled. In this case, the switch between threaded mode and 6996 * softirq mode will happen in the next round of napi_schedule(). 6997 * This should not cause hiccups/stalls to the live traffic. 6998 */ 6999 if (!threaded && napi->thread) { 7000 napi_stop_kthread(napi); 7001 } else { 7002 /* Make sure kthread is created before THREADED bit is set. */ 7003 smp_mb__before_atomic(); 7004 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 7005 } 7006 7007 return 0; 7008 } 7009 7010 int netif_set_threaded(struct net_device *dev, 7011 enum netdev_napi_threaded threaded) 7012 { 7013 struct napi_struct *napi; 7014 int i, err = 0; 7015 7016 netdev_assert_locked_or_invisible(dev); 7017 7018 if (threaded) { 7019 list_for_each_entry(napi, &dev->napi_list, dev_list) { 7020 if (!napi->thread) { 7021 err = napi_kthread_create(napi); 7022 if (err) { 7023 threaded = NETDEV_NAPI_THREADED_DISABLED; 7024 break; 7025 } 7026 } 7027 } 7028 } 7029 7030 WRITE_ONCE(dev->threaded, threaded); 7031 7032 /* The error should not occur as the kthreads are already created. */ 7033 list_for_each_entry(napi, &dev->napi_list, dev_list) 7034 WARN_ON_ONCE(napi_set_threaded(napi, threaded)); 7035 7036 /* Override the config for all NAPIs even if currently not listed */ 7037 for (i = 0; i < dev->num_napi_configs; i++) 7038 dev->napi_config[i].threaded = threaded; 7039 7040 return err; 7041 } 7042 7043 /** 7044 * netif_threaded_enable() - enable threaded NAPIs 7045 * @dev: net_device instance 7046 * 7047 * Enable threaded mode for the NAPI instances of the device. This may be useful 7048 * for devices where multiple NAPI instances get scheduled by a single 7049 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other 7050 * than the core where IRQ is mapped. 7051 * 7052 * This function should be called before @dev is registered. 7053 */ 7054 void netif_threaded_enable(struct net_device *dev) 7055 { 7056 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED)); 7057 } 7058 EXPORT_SYMBOL(netif_threaded_enable); 7059 7060 /** 7061 * netif_queue_set_napi - Associate queue with the napi 7062 * @dev: device to which NAPI and queue belong 7063 * @queue_index: Index of queue 7064 * @type: queue type as RX or TX 7065 * @napi: NAPI context, pass NULL to clear previously set NAPI 7066 * 7067 * Set queue with its corresponding napi context. This should be done after 7068 * registering the NAPI handler for the queue-vector and the queues have been 7069 * mapped to the corresponding interrupt vector. 7070 */ 7071 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 7072 enum netdev_queue_type type, struct napi_struct *napi) 7073 { 7074 struct netdev_rx_queue *rxq; 7075 struct netdev_queue *txq; 7076 7077 if (WARN_ON_ONCE(napi && !napi->dev)) 7078 return; 7079 netdev_ops_assert_locked_or_invisible(dev); 7080 7081 switch (type) { 7082 case NETDEV_QUEUE_TYPE_RX: 7083 rxq = __netif_get_rx_queue(dev, queue_index); 7084 rxq->napi = napi; 7085 return; 7086 case NETDEV_QUEUE_TYPE_TX: 7087 txq = netdev_get_tx_queue(dev, queue_index); 7088 txq->napi = napi; 7089 return; 7090 default: 7091 return; 7092 } 7093 } 7094 EXPORT_SYMBOL(netif_queue_set_napi); 7095 7096 static void 7097 netif_napi_irq_notify(struct irq_affinity_notify *notify, 7098 const cpumask_t *mask) 7099 { 7100 struct napi_struct *napi = 7101 container_of(notify, struct napi_struct, notify); 7102 #ifdef CONFIG_RFS_ACCEL 7103 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7104 int err; 7105 #endif 7106 7107 if (napi->config && napi->dev->irq_affinity_auto) 7108 cpumask_copy(&napi->config->affinity_mask, mask); 7109 7110 #ifdef CONFIG_RFS_ACCEL 7111 if (napi->dev->rx_cpu_rmap_auto) { 7112 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 7113 if (err) 7114 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 7115 err); 7116 } 7117 #endif 7118 } 7119 7120 #ifdef CONFIG_RFS_ACCEL 7121 static void netif_napi_affinity_release(struct kref *ref) 7122 { 7123 struct napi_struct *napi = 7124 container_of(ref, struct napi_struct, notify.kref); 7125 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7126 7127 netdev_assert_locked(napi->dev); 7128 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7129 &napi->state)); 7130 7131 if (!napi->dev->rx_cpu_rmap_auto) 7132 return; 7133 rmap->obj[napi->napi_rmap_idx] = NULL; 7134 napi->napi_rmap_idx = -1; 7135 cpu_rmap_put(rmap); 7136 } 7137 7138 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7139 { 7140 if (dev->rx_cpu_rmap_auto) 7141 return 0; 7142 7143 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7144 if (!dev->rx_cpu_rmap) 7145 return -ENOMEM; 7146 7147 dev->rx_cpu_rmap_auto = true; 7148 return 0; 7149 } 7150 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7151 7152 static void netif_del_cpu_rmap(struct net_device *dev) 7153 { 7154 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7155 7156 if (!dev->rx_cpu_rmap_auto) 7157 return; 7158 7159 /* Free the rmap */ 7160 cpu_rmap_put(rmap); 7161 dev->rx_cpu_rmap = NULL; 7162 dev->rx_cpu_rmap_auto = false; 7163 } 7164 7165 #else 7166 static void netif_napi_affinity_release(struct kref *ref) 7167 { 7168 } 7169 7170 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7171 { 7172 return 0; 7173 } 7174 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7175 7176 static void netif_del_cpu_rmap(struct net_device *dev) 7177 { 7178 } 7179 #endif 7180 7181 void netif_set_affinity_auto(struct net_device *dev) 7182 { 7183 unsigned int i, maxqs, numa; 7184 7185 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7186 numa = dev_to_node(&dev->dev); 7187 7188 for (i = 0; i < maxqs; i++) 7189 cpumask_set_cpu(cpumask_local_spread(i, numa), 7190 &dev->napi_config[i].affinity_mask); 7191 7192 dev->irq_affinity_auto = true; 7193 } 7194 EXPORT_SYMBOL(netif_set_affinity_auto); 7195 7196 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7197 { 7198 int rc; 7199 7200 netdev_assert_locked_or_invisible(napi->dev); 7201 7202 if (napi->irq == irq) 7203 return; 7204 7205 /* Remove existing resources */ 7206 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7207 irq_set_affinity_notifier(napi->irq, NULL); 7208 7209 napi->irq = irq; 7210 if (irq < 0 || 7211 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7212 return; 7213 7214 /* Abort for buggy drivers */ 7215 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7216 return; 7217 7218 #ifdef CONFIG_RFS_ACCEL 7219 if (napi->dev->rx_cpu_rmap_auto) { 7220 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7221 if (rc < 0) 7222 return; 7223 7224 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7225 napi->napi_rmap_idx = rc; 7226 } 7227 #endif 7228 7229 /* Use core IRQ notifier */ 7230 napi->notify.notify = netif_napi_irq_notify; 7231 napi->notify.release = netif_napi_affinity_release; 7232 rc = irq_set_affinity_notifier(irq, &napi->notify); 7233 if (rc) { 7234 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7235 rc); 7236 goto put_rmap; 7237 } 7238 7239 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7240 return; 7241 7242 put_rmap: 7243 #ifdef CONFIG_RFS_ACCEL 7244 if (napi->dev->rx_cpu_rmap_auto) { 7245 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7246 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7247 napi->napi_rmap_idx = -1; 7248 } 7249 #endif 7250 napi->notify.notify = NULL; 7251 napi->notify.release = NULL; 7252 } 7253 EXPORT_SYMBOL(netif_napi_set_irq_locked); 7254 7255 static void napi_restore_config(struct napi_struct *n) 7256 { 7257 n->defer_hard_irqs = n->config->defer_hard_irqs; 7258 n->gro_flush_timeout = n->config->gro_flush_timeout; 7259 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7260 7261 if (n->dev->irq_affinity_auto && 7262 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7263 irq_set_affinity(n->irq, &n->config->affinity_mask); 7264 7265 /* a NAPI ID might be stored in the config, if so use it. if not, use 7266 * napi_hash_add to generate one for us. 7267 */ 7268 if (n->config->napi_id) { 7269 napi_hash_add_with_id(n, n->config->napi_id); 7270 } else { 7271 napi_hash_add(n); 7272 n->config->napi_id = n->napi_id; 7273 } 7274 7275 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded)); 7276 } 7277 7278 static void napi_save_config(struct napi_struct *n) 7279 { 7280 n->config->defer_hard_irqs = n->defer_hard_irqs; 7281 n->config->gro_flush_timeout = n->gro_flush_timeout; 7282 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7283 napi_hash_del(n); 7284 } 7285 7286 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7287 * inherit an existing ID try to insert it at the right position. 7288 */ 7289 static void 7290 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7291 { 7292 unsigned int new_id, pos_id; 7293 struct list_head *higher; 7294 struct napi_struct *pos; 7295 7296 new_id = UINT_MAX; 7297 if (napi->config && napi->config->napi_id) 7298 new_id = napi->config->napi_id; 7299 7300 higher = &dev->napi_list; 7301 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7302 if (napi_id_valid(pos->napi_id)) 7303 pos_id = pos->napi_id; 7304 else if (pos->config) 7305 pos_id = pos->config->napi_id; 7306 else 7307 pos_id = UINT_MAX; 7308 7309 if (pos_id <= new_id) 7310 break; 7311 higher = &pos->dev_list; 7312 } 7313 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7314 } 7315 7316 /* Double check that napi_get_frags() allocates skbs with 7317 * skb->head being backed by slab, not a page fragment. 7318 * This is to make sure bug fixed in 3226b158e67c 7319 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7320 * does not accidentally come back. 7321 */ 7322 static void napi_get_frags_check(struct napi_struct *napi) 7323 { 7324 struct sk_buff *skb; 7325 7326 local_bh_disable(); 7327 skb = napi_get_frags(napi); 7328 WARN_ON_ONCE(skb && skb->head_frag); 7329 napi_free_frags(napi); 7330 local_bh_enable(); 7331 } 7332 7333 void netif_napi_add_weight_locked(struct net_device *dev, 7334 struct napi_struct *napi, 7335 int (*poll)(struct napi_struct *, int), 7336 int weight) 7337 { 7338 netdev_assert_locked(dev); 7339 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7340 return; 7341 7342 INIT_LIST_HEAD(&napi->poll_list); 7343 INIT_HLIST_NODE(&napi->napi_hash_node); 7344 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7345 gro_init(&napi->gro); 7346 napi->skb = NULL; 7347 napi->poll = poll; 7348 if (weight > NAPI_POLL_WEIGHT) 7349 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7350 weight); 7351 napi->weight = weight; 7352 napi->dev = dev; 7353 #ifdef CONFIG_NETPOLL 7354 napi->poll_owner = -1; 7355 #endif 7356 napi->list_owner = -1; 7357 set_bit(NAPI_STATE_SCHED, &napi->state); 7358 set_bit(NAPI_STATE_NPSVC, &napi->state); 7359 netif_napi_dev_list_add(dev, napi); 7360 7361 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7362 * configuration will be loaded in napi_enable 7363 */ 7364 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7365 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7366 7367 napi_get_frags_check(napi); 7368 /* Create kthread for this napi if dev->threaded is set. 7369 * Clear dev->threaded if kthread creation failed so that 7370 * threaded mode will not be enabled in napi_enable(). 7371 */ 7372 if (napi_get_threaded_config(dev, napi)) 7373 if (napi_kthread_create(napi)) 7374 dev->threaded = NETDEV_NAPI_THREADED_DISABLED; 7375 netif_napi_set_irq_locked(napi, -1); 7376 } 7377 EXPORT_SYMBOL(netif_napi_add_weight_locked); 7378 7379 void napi_disable_locked(struct napi_struct *n) 7380 { 7381 unsigned long val, new; 7382 7383 might_sleep(); 7384 netdev_assert_locked(n->dev); 7385 7386 set_bit(NAPI_STATE_DISABLE, &n->state); 7387 7388 val = READ_ONCE(n->state); 7389 do { 7390 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7391 usleep_range(20, 200); 7392 val = READ_ONCE(n->state); 7393 } 7394 7395 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7396 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 7397 } while (!try_cmpxchg(&n->state, &val, new)); 7398 7399 hrtimer_cancel(&n->timer); 7400 7401 if (n->config) 7402 napi_save_config(n); 7403 else 7404 napi_hash_del(n); 7405 7406 clear_bit(NAPI_STATE_DISABLE, &n->state); 7407 } 7408 EXPORT_SYMBOL(napi_disable_locked); 7409 7410 /** 7411 * napi_disable() - prevent NAPI from scheduling 7412 * @n: NAPI context 7413 * 7414 * Stop NAPI from being scheduled on this context. 7415 * Waits till any outstanding processing completes. 7416 * Takes netdev_lock() for associated net_device. 7417 */ 7418 void napi_disable(struct napi_struct *n) 7419 { 7420 netdev_lock(n->dev); 7421 napi_disable_locked(n); 7422 netdev_unlock(n->dev); 7423 } 7424 EXPORT_SYMBOL(napi_disable); 7425 7426 void napi_enable_locked(struct napi_struct *n) 7427 { 7428 unsigned long new, val = READ_ONCE(n->state); 7429 7430 if (n->config) 7431 napi_restore_config(n); 7432 else 7433 napi_hash_add(n); 7434 7435 do { 7436 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7437 7438 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7439 if (n->dev->threaded && n->thread) 7440 new |= NAPIF_STATE_THREADED; 7441 } while (!try_cmpxchg(&n->state, &val, new)); 7442 } 7443 EXPORT_SYMBOL(napi_enable_locked); 7444 7445 /** 7446 * napi_enable() - enable NAPI scheduling 7447 * @n: NAPI context 7448 * 7449 * Enable scheduling of a NAPI instance. 7450 * Must be paired with napi_disable(). 7451 * Takes netdev_lock() for associated net_device. 7452 */ 7453 void napi_enable(struct napi_struct *n) 7454 { 7455 netdev_lock(n->dev); 7456 napi_enable_locked(n); 7457 netdev_unlock(n->dev); 7458 } 7459 EXPORT_SYMBOL(napi_enable); 7460 7461 /* Must be called in process context */ 7462 void __netif_napi_del_locked(struct napi_struct *napi) 7463 { 7464 netdev_assert_locked(napi->dev); 7465 7466 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7467 return; 7468 7469 /* Make sure NAPI is disabled (or was never enabled). */ 7470 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7471 7472 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7473 irq_set_affinity_notifier(napi->irq, NULL); 7474 7475 if (napi->config) { 7476 napi->index = -1; 7477 napi->config = NULL; 7478 } 7479 7480 list_del_rcu(&napi->dev_list); 7481 napi_free_frags(napi); 7482 7483 gro_cleanup(&napi->gro); 7484 7485 if (napi->thread) { 7486 kthread_stop(napi->thread); 7487 napi->thread = NULL; 7488 } 7489 } 7490 EXPORT_SYMBOL(__netif_napi_del_locked); 7491 7492 static int __napi_poll(struct napi_struct *n, bool *repoll) 7493 { 7494 int work, weight; 7495 7496 weight = n->weight; 7497 7498 /* This NAPI_STATE_SCHED test is for avoiding a race 7499 * with netpoll's poll_napi(). Only the entity which 7500 * obtains the lock and sees NAPI_STATE_SCHED set will 7501 * actually make the ->poll() call. Therefore we avoid 7502 * accidentally calling ->poll() when NAPI is not scheduled. 7503 */ 7504 work = 0; 7505 if (napi_is_scheduled(n)) { 7506 work = n->poll(n, weight); 7507 trace_napi_poll(n, work, weight); 7508 7509 xdp_do_check_flushed(n); 7510 } 7511 7512 if (unlikely(work > weight)) 7513 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7514 n->poll, work, weight); 7515 7516 if (likely(work < weight)) 7517 return work; 7518 7519 /* Drivers must not modify the NAPI state if they 7520 * consume the entire weight. In such cases this code 7521 * still "owns" the NAPI instance and therefore can 7522 * move the instance around on the list at-will. 7523 */ 7524 if (unlikely(napi_disable_pending(n))) { 7525 napi_complete(n); 7526 return work; 7527 } 7528 7529 /* The NAPI context has more processing work, but busy-polling 7530 * is preferred. Exit early. 7531 */ 7532 if (napi_prefer_busy_poll(n)) { 7533 if (napi_complete_done(n, work)) { 7534 /* If timeout is not set, we need to make sure 7535 * that the NAPI is re-scheduled. 7536 */ 7537 napi_schedule(n); 7538 } 7539 return work; 7540 } 7541 7542 /* Flush too old packets. If HZ < 1000, flush all packets */ 7543 gro_flush_normal(&n->gro, HZ >= 1000); 7544 7545 /* Some drivers may have called napi_schedule 7546 * prior to exhausting their budget. 7547 */ 7548 if (unlikely(!list_empty(&n->poll_list))) { 7549 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7550 n->dev ? n->dev->name : "backlog"); 7551 return work; 7552 } 7553 7554 *repoll = true; 7555 7556 return work; 7557 } 7558 7559 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7560 { 7561 bool do_repoll = false; 7562 void *have; 7563 int work; 7564 7565 list_del_init(&n->poll_list); 7566 7567 have = netpoll_poll_lock(n); 7568 7569 work = __napi_poll(n, &do_repoll); 7570 7571 if (do_repoll) { 7572 #if defined(CONFIG_DEBUG_NET) 7573 if (unlikely(!napi_is_scheduled(n))) 7574 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", 7575 n->dev->name, n->poll); 7576 #endif 7577 list_add_tail(&n->poll_list, repoll); 7578 } 7579 netpoll_poll_unlock(have); 7580 7581 return work; 7582 } 7583 7584 static int napi_thread_wait(struct napi_struct *napi) 7585 { 7586 set_current_state(TASK_INTERRUPTIBLE); 7587 7588 while (!kthread_should_stop()) { 7589 /* Testing SCHED_THREADED bit here to make sure the current 7590 * kthread owns this napi and could poll on this napi. 7591 * Testing SCHED bit is not enough because SCHED bit might be 7592 * set by some other busy poll thread or by napi_disable(). 7593 */ 7594 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7595 WARN_ON(!list_empty(&napi->poll_list)); 7596 __set_current_state(TASK_RUNNING); 7597 return 0; 7598 } 7599 7600 schedule(); 7601 set_current_state(TASK_INTERRUPTIBLE); 7602 } 7603 __set_current_state(TASK_RUNNING); 7604 7605 return -1; 7606 } 7607 7608 static void napi_threaded_poll_loop(struct napi_struct *napi) 7609 { 7610 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7611 struct softnet_data *sd; 7612 unsigned long last_qs = jiffies; 7613 7614 for (;;) { 7615 bool repoll = false; 7616 void *have; 7617 7618 local_bh_disable(); 7619 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7620 7621 sd = this_cpu_ptr(&softnet_data); 7622 sd->in_napi_threaded_poll = true; 7623 7624 have = netpoll_poll_lock(napi); 7625 __napi_poll(napi, &repoll); 7626 netpoll_poll_unlock(have); 7627 7628 sd->in_napi_threaded_poll = false; 7629 barrier(); 7630 7631 if (sd_has_rps_ipi_waiting(sd)) { 7632 local_irq_disable(); 7633 net_rps_action_and_irq_enable(sd); 7634 } 7635 skb_defer_free_flush(sd); 7636 bpf_net_ctx_clear(bpf_net_ctx); 7637 local_bh_enable(); 7638 7639 if (!repoll) 7640 break; 7641 7642 rcu_softirq_qs_periodic(last_qs); 7643 cond_resched(); 7644 } 7645 } 7646 7647 static int napi_threaded_poll(void *data) 7648 { 7649 struct napi_struct *napi = data; 7650 7651 while (!napi_thread_wait(napi)) 7652 napi_threaded_poll_loop(napi); 7653 7654 return 0; 7655 } 7656 7657 static __latent_entropy void net_rx_action(void) 7658 { 7659 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7660 unsigned long time_limit = jiffies + 7661 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7662 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7663 int budget = READ_ONCE(net_hotdata.netdev_budget); 7664 LIST_HEAD(list); 7665 LIST_HEAD(repoll); 7666 7667 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7668 start: 7669 sd->in_net_rx_action = true; 7670 local_irq_disable(); 7671 list_splice_init(&sd->poll_list, &list); 7672 local_irq_enable(); 7673 7674 for (;;) { 7675 struct napi_struct *n; 7676 7677 skb_defer_free_flush(sd); 7678 7679 if (list_empty(&list)) { 7680 if (list_empty(&repoll)) { 7681 sd->in_net_rx_action = false; 7682 barrier(); 7683 /* We need to check if ____napi_schedule() 7684 * had refilled poll_list while 7685 * sd->in_net_rx_action was true. 7686 */ 7687 if (!list_empty(&sd->poll_list)) 7688 goto start; 7689 if (!sd_has_rps_ipi_waiting(sd)) 7690 goto end; 7691 } 7692 break; 7693 } 7694 7695 n = list_first_entry(&list, struct napi_struct, poll_list); 7696 budget -= napi_poll(n, &repoll); 7697 7698 /* If softirq window is exhausted then punt. 7699 * Allow this to run for 2 jiffies since which will allow 7700 * an average latency of 1.5/HZ. 7701 */ 7702 if (unlikely(budget <= 0 || 7703 time_after_eq(jiffies, time_limit))) { 7704 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7705 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7706 break; 7707 } 7708 } 7709 7710 local_irq_disable(); 7711 7712 list_splice_tail_init(&sd->poll_list, &list); 7713 list_splice_tail(&repoll, &list); 7714 list_splice(&list, &sd->poll_list); 7715 if (!list_empty(&sd->poll_list)) 7716 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7717 else 7718 sd->in_net_rx_action = false; 7719 7720 net_rps_action_and_irq_enable(sd); 7721 end: 7722 bpf_net_ctx_clear(bpf_net_ctx); 7723 } 7724 7725 struct netdev_adjacent { 7726 struct net_device *dev; 7727 netdevice_tracker dev_tracker; 7728 7729 /* upper master flag, there can only be one master device per list */ 7730 bool master; 7731 7732 /* lookup ignore flag */ 7733 bool ignore; 7734 7735 /* counter for the number of times this device was added to us */ 7736 u16 ref_nr; 7737 7738 /* private field for the users */ 7739 void *private; 7740 7741 struct list_head list; 7742 struct rcu_head rcu; 7743 }; 7744 7745 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7746 struct list_head *adj_list) 7747 { 7748 struct netdev_adjacent *adj; 7749 7750 list_for_each_entry(adj, adj_list, list) { 7751 if (adj->dev == adj_dev) 7752 return adj; 7753 } 7754 return NULL; 7755 } 7756 7757 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7758 struct netdev_nested_priv *priv) 7759 { 7760 struct net_device *dev = (struct net_device *)priv->data; 7761 7762 return upper_dev == dev; 7763 } 7764 7765 /** 7766 * netdev_has_upper_dev - Check if device is linked to an upper device 7767 * @dev: device 7768 * @upper_dev: upper device to check 7769 * 7770 * Find out if a device is linked to specified upper device and return true 7771 * in case it is. Note that this checks only immediate upper device, 7772 * not through a complete stack of devices. The caller must hold the RTNL lock. 7773 */ 7774 bool netdev_has_upper_dev(struct net_device *dev, 7775 struct net_device *upper_dev) 7776 { 7777 struct netdev_nested_priv priv = { 7778 .data = (void *)upper_dev, 7779 }; 7780 7781 ASSERT_RTNL(); 7782 7783 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7784 &priv); 7785 } 7786 EXPORT_SYMBOL(netdev_has_upper_dev); 7787 7788 /** 7789 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7790 * @dev: device 7791 * @upper_dev: upper device to check 7792 * 7793 * Find out if a device is linked to specified upper device and return true 7794 * in case it is. Note that this checks the entire upper device chain. 7795 * The caller must hold rcu lock. 7796 */ 7797 7798 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7799 struct net_device *upper_dev) 7800 { 7801 struct netdev_nested_priv priv = { 7802 .data = (void *)upper_dev, 7803 }; 7804 7805 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7806 &priv); 7807 } 7808 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7809 7810 /** 7811 * netdev_has_any_upper_dev - Check if device is linked to some device 7812 * @dev: device 7813 * 7814 * Find out if a device is linked to an upper device and return true in case 7815 * it is. The caller must hold the RTNL lock. 7816 */ 7817 bool netdev_has_any_upper_dev(struct net_device *dev) 7818 { 7819 ASSERT_RTNL(); 7820 7821 return !list_empty(&dev->adj_list.upper); 7822 } 7823 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7824 7825 /** 7826 * netdev_master_upper_dev_get - Get master upper device 7827 * @dev: device 7828 * 7829 * Find a master upper device and return pointer to it or NULL in case 7830 * it's not there. The caller must hold the RTNL lock. 7831 */ 7832 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7833 { 7834 struct netdev_adjacent *upper; 7835 7836 ASSERT_RTNL(); 7837 7838 if (list_empty(&dev->adj_list.upper)) 7839 return NULL; 7840 7841 upper = list_first_entry(&dev->adj_list.upper, 7842 struct netdev_adjacent, list); 7843 if (likely(upper->master)) 7844 return upper->dev; 7845 return NULL; 7846 } 7847 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7848 7849 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7850 { 7851 struct netdev_adjacent *upper; 7852 7853 ASSERT_RTNL(); 7854 7855 if (list_empty(&dev->adj_list.upper)) 7856 return NULL; 7857 7858 upper = list_first_entry(&dev->adj_list.upper, 7859 struct netdev_adjacent, list); 7860 if (likely(upper->master) && !upper->ignore) 7861 return upper->dev; 7862 return NULL; 7863 } 7864 7865 /** 7866 * netdev_has_any_lower_dev - Check if device is linked to some device 7867 * @dev: device 7868 * 7869 * Find out if a device is linked to a lower device and return true in case 7870 * it is. The caller must hold the RTNL lock. 7871 */ 7872 static bool netdev_has_any_lower_dev(struct net_device *dev) 7873 { 7874 ASSERT_RTNL(); 7875 7876 return !list_empty(&dev->adj_list.lower); 7877 } 7878 7879 void *netdev_adjacent_get_private(struct list_head *adj_list) 7880 { 7881 struct netdev_adjacent *adj; 7882 7883 adj = list_entry(adj_list, struct netdev_adjacent, list); 7884 7885 return adj->private; 7886 } 7887 EXPORT_SYMBOL(netdev_adjacent_get_private); 7888 7889 /** 7890 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7891 * @dev: device 7892 * @iter: list_head ** of the current position 7893 * 7894 * Gets the next device from the dev's upper list, starting from iter 7895 * position. The caller must hold RCU read lock. 7896 */ 7897 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7898 struct list_head **iter) 7899 { 7900 struct netdev_adjacent *upper; 7901 7902 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7903 7904 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7905 7906 if (&upper->list == &dev->adj_list.upper) 7907 return NULL; 7908 7909 *iter = &upper->list; 7910 7911 return upper->dev; 7912 } 7913 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7914 7915 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7916 struct list_head **iter, 7917 bool *ignore) 7918 { 7919 struct netdev_adjacent *upper; 7920 7921 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7922 7923 if (&upper->list == &dev->adj_list.upper) 7924 return NULL; 7925 7926 *iter = &upper->list; 7927 *ignore = upper->ignore; 7928 7929 return upper->dev; 7930 } 7931 7932 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7933 struct list_head **iter) 7934 { 7935 struct netdev_adjacent *upper; 7936 7937 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7938 7939 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7940 7941 if (&upper->list == &dev->adj_list.upper) 7942 return NULL; 7943 7944 *iter = &upper->list; 7945 7946 return upper->dev; 7947 } 7948 7949 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7950 int (*fn)(struct net_device *dev, 7951 struct netdev_nested_priv *priv), 7952 struct netdev_nested_priv *priv) 7953 { 7954 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7955 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7956 int ret, cur = 0; 7957 bool ignore; 7958 7959 now = dev; 7960 iter = &dev->adj_list.upper; 7961 7962 while (1) { 7963 if (now != dev) { 7964 ret = fn(now, priv); 7965 if (ret) 7966 return ret; 7967 } 7968 7969 next = NULL; 7970 while (1) { 7971 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7972 if (!udev) 7973 break; 7974 if (ignore) 7975 continue; 7976 7977 next = udev; 7978 niter = &udev->adj_list.upper; 7979 dev_stack[cur] = now; 7980 iter_stack[cur++] = iter; 7981 break; 7982 } 7983 7984 if (!next) { 7985 if (!cur) 7986 return 0; 7987 next = dev_stack[--cur]; 7988 niter = iter_stack[cur]; 7989 } 7990 7991 now = next; 7992 iter = niter; 7993 } 7994 7995 return 0; 7996 } 7997 7998 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7999 int (*fn)(struct net_device *dev, 8000 struct netdev_nested_priv *priv), 8001 struct netdev_nested_priv *priv) 8002 { 8003 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8004 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8005 int ret, cur = 0; 8006 8007 now = dev; 8008 iter = &dev->adj_list.upper; 8009 8010 while (1) { 8011 if (now != dev) { 8012 ret = fn(now, priv); 8013 if (ret) 8014 return ret; 8015 } 8016 8017 next = NULL; 8018 while (1) { 8019 udev = netdev_next_upper_dev_rcu(now, &iter); 8020 if (!udev) 8021 break; 8022 8023 next = udev; 8024 niter = &udev->adj_list.upper; 8025 dev_stack[cur] = now; 8026 iter_stack[cur++] = iter; 8027 break; 8028 } 8029 8030 if (!next) { 8031 if (!cur) 8032 return 0; 8033 next = dev_stack[--cur]; 8034 niter = iter_stack[cur]; 8035 } 8036 8037 now = next; 8038 iter = niter; 8039 } 8040 8041 return 0; 8042 } 8043 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 8044 8045 static bool __netdev_has_upper_dev(struct net_device *dev, 8046 struct net_device *upper_dev) 8047 { 8048 struct netdev_nested_priv priv = { 8049 .flags = 0, 8050 .data = (void *)upper_dev, 8051 }; 8052 8053 ASSERT_RTNL(); 8054 8055 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 8056 &priv); 8057 } 8058 8059 /** 8060 * netdev_lower_get_next_private - Get the next ->private from the 8061 * lower neighbour list 8062 * @dev: device 8063 * @iter: list_head ** of the current position 8064 * 8065 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8066 * list, starting from iter position. The caller must hold either hold the 8067 * RTNL lock or its own locking that guarantees that the neighbour lower 8068 * list will remain unchanged. 8069 */ 8070 void *netdev_lower_get_next_private(struct net_device *dev, 8071 struct list_head **iter) 8072 { 8073 struct netdev_adjacent *lower; 8074 8075 lower = list_entry(*iter, struct netdev_adjacent, list); 8076 8077 if (&lower->list == &dev->adj_list.lower) 8078 return NULL; 8079 8080 *iter = lower->list.next; 8081 8082 return lower->private; 8083 } 8084 EXPORT_SYMBOL(netdev_lower_get_next_private); 8085 8086 /** 8087 * netdev_lower_get_next_private_rcu - Get the next ->private from the 8088 * lower neighbour list, RCU 8089 * variant 8090 * @dev: device 8091 * @iter: list_head ** of the current position 8092 * 8093 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8094 * list, starting from iter position. The caller must hold RCU read lock. 8095 */ 8096 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 8097 struct list_head **iter) 8098 { 8099 struct netdev_adjacent *lower; 8100 8101 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 8102 8103 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8104 8105 if (&lower->list == &dev->adj_list.lower) 8106 return NULL; 8107 8108 *iter = &lower->list; 8109 8110 return lower->private; 8111 } 8112 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 8113 8114 /** 8115 * netdev_lower_get_next - Get the next device from the lower neighbour 8116 * list 8117 * @dev: device 8118 * @iter: list_head ** of the current position 8119 * 8120 * Gets the next netdev_adjacent from the dev's lower neighbour 8121 * list, starting from iter position. The caller must hold RTNL lock or 8122 * its own locking that guarantees that the neighbour lower 8123 * list will remain unchanged. 8124 */ 8125 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 8126 { 8127 struct netdev_adjacent *lower; 8128 8129 lower = list_entry(*iter, struct netdev_adjacent, list); 8130 8131 if (&lower->list == &dev->adj_list.lower) 8132 return NULL; 8133 8134 *iter = lower->list.next; 8135 8136 return lower->dev; 8137 } 8138 EXPORT_SYMBOL(netdev_lower_get_next); 8139 8140 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8141 struct list_head **iter) 8142 { 8143 struct netdev_adjacent *lower; 8144 8145 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8146 8147 if (&lower->list == &dev->adj_list.lower) 8148 return NULL; 8149 8150 *iter = &lower->list; 8151 8152 return lower->dev; 8153 } 8154 8155 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8156 struct list_head **iter, 8157 bool *ignore) 8158 { 8159 struct netdev_adjacent *lower; 8160 8161 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8162 8163 if (&lower->list == &dev->adj_list.lower) 8164 return NULL; 8165 8166 *iter = &lower->list; 8167 *ignore = lower->ignore; 8168 8169 return lower->dev; 8170 } 8171 8172 int netdev_walk_all_lower_dev(struct net_device *dev, 8173 int (*fn)(struct net_device *dev, 8174 struct netdev_nested_priv *priv), 8175 struct netdev_nested_priv *priv) 8176 { 8177 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8178 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8179 int ret, cur = 0; 8180 8181 now = dev; 8182 iter = &dev->adj_list.lower; 8183 8184 while (1) { 8185 if (now != dev) { 8186 ret = fn(now, priv); 8187 if (ret) 8188 return ret; 8189 } 8190 8191 next = NULL; 8192 while (1) { 8193 ldev = netdev_next_lower_dev(now, &iter); 8194 if (!ldev) 8195 break; 8196 8197 next = ldev; 8198 niter = &ldev->adj_list.lower; 8199 dev_stack[cur] = now; 8200 iter_stack[cur++] = iter; 8201 break; 8202 } 8203 8204 if (!next) { 8205 if (!cur) 8206 return 0; 8207 next = dev_stack[--cur]; 8208 niter = iter_stack[cur]; 8209 } 8210 8211 now = next; 8212 iter = niter; 8213 } 8214 8215 return 0; 8216 } 8217 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8218 8219 static int __netdev_walk_all_lower_dev(struct net_device *dev, 8220 int (*fn)(struct net_device *dev, 8221 struct netdev_nested_priv *priv), 8222 struct netdev_nested_priv *priv) 8223 { 8224 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8225 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8226 int ret, cur = 0; 8227 bool ignore; 8228 8229 now = dev; 8230 iter = &dev->adj_list.lower; 8231 8232 while (1) { 8233 if (now != dev) { 8234 ret = fn(now, priv); 8235 if (ret) 8236 return ret; 8237 } 8238 8239 next = NULL; 8240 while (1) { 8241 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8242 if (!ldev) 8243 break; 8244 if (ignore) 8245 continue; 8246 8247 next = ldev; 8248 niter = &ldev->adj_list.lower; 8249 dev_stack[cur] = now; 8250 iter_stack[cur++] = iter; 8251 break; 8252 } 8253 8254 if (!next) { 8255 if (!cur) 8256 return 0; 8257 next = dev_stack[--cur]; 8258 niter = iter_stack[cur]; 8259 } 8260 8261 now = next; 8262 iter = niter; 8263 } 8264 8265 return 0; 8266 } 8267 8268 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8269 struct list_head **iter) 8270 { 8271 struct netdev_adjacent *lower; 8272 8273 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8274 if (&lower->list == &dev->adj_list.lower) 8275 return NULL; 8276 8277 *iter = &lower->list; 8278 8279 return lower->dev; 8280 } 8281 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8282 8283 static u8 __netdev_upper_depth(struct net_device *dev) 8284 { 8285 struct net_device *udev; 8286 struct list_head *iter; 8287 u8 max_depth = 0; 8288 bool ignore; 8289 8290 for (iter = &dev->adj_list.upper, 8291 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8292 udev; 8293 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8294 if (ignore) 8295 continue; 8296 if (max_depth < udev->upper_level) 8297 max_depth = udev->upper_level; 8298 } 8299 8300 return max_depth; 8301 } 8302 8303 static u8 __netdev_lower_depth(struct net_device *dev) 8304 { 8305 struct net_device *ldev; 8306 struct list_head *iter; 8307 u8 max_depth = 0; 8308 bool ignore; 8309 8310 for (iter = &dev->adj_list.lower, 8311 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8312 ldev; 8313 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8314 if (ignore) 8315 continue; 8316 if (max_depth < ldev->lower_level) 8317 max_depth = ldev->lower_level; 8318 } 8319 8320 return max_depth; 8321 } 8322 8323 static int __netdev_update_upper_level(struct net_device *dev, 8324 struct netdev_nested_priv *__unused) 8325 { 8326 dev->upper_level = __netdev_upper_depth(dev) + 1; 8327 return 0; 8328 } 8329 8330 #ifdef CONFIG_LOCKDEP 8331 static LIST_HEAD(net_unlink_list); 8332 8333 static void net_unlink_todo(struct net_device *dev) 8334 { 8335 if (list_empty(&dev->unlink_list)) 8336 list_add_tail(&dev->unlink_list, &net_unlink_list); 8337 } 8338 #endif 8339 8340 static int __netdev_update_lower_level(struct net_device *dev, 8341 struct netdev_nested_priv *priv) 8342 { 8343 dev->lower_level = __netdev_lower_depth(dev) + 1; 8344 8345 #ifdef CONFIG_LOCKDEP 8346 if (!priv) 8347 return 0; 8348 8349 if (priv->flags & NESTED_SYNC_IMM) 8350 dev->nested_level = dev->lower_level - 1; 8351 if (priv->flags & NESTED_SYNC_TODO) 8352 net_unlink_todo(dev); 8353 #endif 8354 return 0; 8355 } 8356 8357 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8358 int (*fn)(struct net_device *dev, 8359 struct netdev_nested_priv *priv), 8360 struct netdev_nested_priv *priv) 8361 { 8362 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8363 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8364 int ret, cur = 0; 8365 8366 now = dev; 8367 iter = &dev->adj_list.lower; 8368 8369 while (1) { 8370 if (now != dev) { 8371 ret = fn(now, priv); 8372 if (ret) 8373 return ret; 8374 } 8375 8376 next = NULL; 8377 while (1) { 8378 ldev = netdev_next_lower_dev_rcu(now, &iter); 8379 if (!ldev) 8380 break; 8381 8382 next = ldev; 8383 niter = &ldev->adj_list.lower; 8384 dev_stack[cur] = now; 8385 iter_stack[cur++] = iter; 8386 break; 8387 } 8388 8389 if (!next) { 8390 if (!cur) 8391 return 0; 8392 next = dev_stack[--cur]; 8393 niter = iter_stack[cur]; 8394 } 8395 8396 now = next; 8397 iter = niter; 8398 } 8399 8400 return 0; 8401 } 8402 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8403 8404 /** 8405 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8406 * lower neighbour list, RCU 8407 * variant 8408 * @dev: device 8409 * 8410 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8411 * list. The caller must hold RCU read lock. 8412 */ 8413 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8414 { 8415 struct netdev_adjacent *lower; 8416 8417 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8418 struct netdev_adjacent, list); 8419 if (lower) 8420 return lower->private; 8421 return NULL; 8422 } 8423 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8424 8425 /** 8426 * netdev_master_upper_dev_get_rcu - Get master upper device 8427 * @dev: device 8428 * 8429 * Find a master upper device and return pointer to it or NULL in case 8430 * it's not there. The caller must hold the RCU read lock. 8431 */ 8432 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8433 { 8434 struct netdev_adjacent *upper; 8435 8436 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8437 struct netdev_adjacent, list); 8438 if (upper && likely(upper->master)) 8439 return upper->dev; 8440 return NULL; 8441 } 8442 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8443 8444 static int netdev_adjacent_sysfs_add(struct net_device *dev, 8445 struct net_device *adj_dev, 8446 struct list_head *dev_list) 8447 { 8448 char linkname[IFNAMSIZ+7]; 8449 8450 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8451 "upper_%s" : "lower_%s", adj_dev->name); 8452 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8453 linkname); 8454 } 8455 static void netdev_adjacent_sysfs_del(struct net_device *dev, 8456 char *name, 8457 struct list_head *dev_list) 8458 { 8459 char linkname[IFNAMSIZ+7]; 8460 8461 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8462 "upper_%s" : "lower_%s", name); 8463 sysfs_remove_link(&(dev->dev.kobj), linkname); 8464 } 8465 8466 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8467 struct net_device *adj_dev, 8468 struct list_head *dev_list) 8469 { 8470 return (dev_list == &dev->adj_list.upper || 8471 dev_list == &dev->adj_list.lower) && 8472 net_eq(dev_net(dev), dev_net(adj_dev)); 8473 } 8474 8475 static int __netdev_adjacent_dev_insert(struct net_device *dev, 8476 struct net_device *adj_dev, 8477 struct list_head *dev_list, 8478 void *private, bool master) 8479 { 8480 struct netdev_adjacent *adj; 8481 int ret; 8482 8483 adj = __netdev_find_adj(adj_dev, dev_list); 8484 8485 if (adj) { 8486 adj->ref_nr += 1; 8487 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8488 dev->name, adj_dev->name, adj->ref_nr); 8489 8490 return 0; 8491 } 8492 8493 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8494 if (!adj) 8495 return -ENOMEM; 8496 8497 adj->dev = adj_dev; 8498 adj->master = master; 8499 adj->ref_nr = 1; 8500 adj->private = private; 8501 adj->ignore = false; 8502 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8503 8504 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8505 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8506 8507 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8508 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8509 if (ret) 8510 goto free_adj; 8511 } 8512 8513 /* Ensure that master link is always the first item in list. */ 8514 if (master) { 8515 ret = sysfs_create_link(&(dev->dev.kobj), 8516 &(adj_dev->dev.kobj), "master"); 8517 if (ret) 8518 goto remove_symlinks; 8519 8520 list_add_rcu(&adj->list, dev_list); 8521 } else { 8522 list_add_tail_rcu(&adj->list, dev_list); 8523 } 8524 8525 return 0; 8526 8527 remove_symlinks: 8528 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8529 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8530 free_adj: 8531 netdev_put(adj_dev, &adj->dev_tracker); 8532 kfree(adj); 8533 8534 return ret; 8535 } 8536 8537 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8538 struct net_device *adj_dev, 8539 u16 ref_nr, 8540 struct list_head *dev_list) 8541 { 8542 struct netdev_adjacent *adj; 8543 8544 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8545 dev->name, adj_dev->name, ref_nr); 8546 8547 adj = __netdev_find_adj(adj_dev, dev_list); 8548 8549 if (!adj) { 8550 pr_err("Adjacency does not exist for device %s from %s\n", 8551 dev->name, adj_dev->name); 8552 WARN_ON(1); 8553 return; 8554 } 8555 8556 if (adj->ref_nr > ref_nr) { 8557 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8558 dev->name, adj_dev->name, ref_nr, 8559 adj->ref_nr - ref_nr); 8560 adj->ref_nr -= ref_nr; 8561 return; 8562 } 8563 8564 if (adj->master) 8565 sysfs_remove_link(&(dev->dev.kobj), "master"); 8566 8567 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8568 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8569 8570 list_del_rcu(&adj->list); 8571 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8572 adj_dev->name, dev->name, adj_dev->name); 8573 netdev_put(adj_dev, &adj->dev_tracker); 8574 kfree_rcu(adj, rcu); 8575 } 8576 8577 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8578 struct net_device *upper_dev, 8579 struct list_head *up_list, 8580 struct list_head *down_list, 8581 void *private, bool master) 8582 { 8583 int ret; 8584 8585 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8586 private, master); 8587 if (ret) 8588 return ret; 8589 8590 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8591 private, false); 8592 if (ret) { 8593 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8594 return ret; 8595 } 8596 8597 return 0; 8598 } 8599 8600 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8601 struct net_device *upper_dev, 8602 u16 ref_nr, 8603 struct list_head *up_list, 8604 struct list_head *down_list) 8605 { 8606 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8607 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8608 } 8609 8610 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8611 struct net_device *upper_dev, 8612 void *private, bool master) 8613 { 8614 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8615 &dev->adj_list.upper, 8616 &upper_dev->adj_list.lower, 8617 private, master); 8618 } 8619 8620 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8621 struct net_device *upper_dev) 8622 { 8623 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8624 &dev->adj_list.upper, 8625 &upper_dev->adj_list.lower); 8626 } 8627 8628 static int __netdev_upper_dev_link(struct net_device *dev, 8629 struct net_device *upper_dev, bool master, 8630 void *upper_priv, void *upper_info, 8631 struct netdev_nested_priv *priv, 8632 struct netlink_ext_ack *extack) 8633 { 8634 struct netdev_notifier_changeupper_info changeupper_info = { 8635 .info = { 8636 .dev = dev, 8637 .extack = extack, 8638 }, 8639 .upper_dev = upper_dev, 8640 .master = master, 8641 .linking = true, 8642 .upper_info = upper_info, 8643 }; 8644 struct net_device *master_dev; 8645 int ret = 0; 8646 8647 ASSERT_RTNL(); 8648 8649 if (dev == upper_dev) 8650 return -EBUSY; 8651 8652 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8653 if (__netdev_has_upper_dev(upper_dev, dev)) 8654 return -EBUSY; 8655 8656 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8657 return -EMLINK; 8658 8659 if (!master) { 8660 if (__netdev_has_upper_dev(dev, upper_dev)) 8661 return -EEXIST; 8662 } else { 8663 master_dev = __netdev_master_upper_dev_get(dev); 8664 if (master_dev) 8665 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8666 } 8667 8668 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8669 &changeupper_info.info); 8670 ret = notifier_to_errno(ret); 8671 if (ret) 8672 return ret; 8673 8674 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8675 master); 8676 if (ret) 8677 return ret; 8678 8679 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8680 &changeupper_info.info); 8681 ret = notifier_to_errno(ret); 8682 if (ret) 8683 goto rollback; 8684 8685 __netdev_update_upper_level(dev, NULL); 8686 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8687 8688 __netdev_update_lower_level(upper_dev, priv); 8689 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8690 priv); 8691 8692 return 0; 8693 8694 rollback: 8695 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8696 8697 return ret; 8698 } 8699 8700 /** 8701 * netdev_upper_dev_link - Add a link to the upper device 8702 * @dev: device 8703 * @upper_dev: new upper device 8704 * @extack: netlink extended ack 8705 * 8706 * Adds a link to device which is upper to this one. The caller must hold 8707 * the RTNL lock. On a failure a negative errno code is returned. 8708 * On success the reference counts are adjusted and the function 8709 * returns zero. 8710 */ 8711 int netdev_upper_dev_link(struct net_device *dev, 8712 struct net_device *upper_dev, 8713 struct netlink_ext_ack *extack) 8714 { 8715 struct netdev_nested_priv priv = { 8716 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8717 .data = NULL, 8718 }; 8719 8720 return __netdev_upper_dev_link(dev, upper_dev, false, 8721 NULL, NULL, &priv, extack); 8722 } 8723 EXPORT_SYMBOL(netdev_upper_dev_link); 8724 8725 /** 8726 * netdev_master_upper_dev_link - Add a master link to the upper device 8727 * @dev: device 8728 * @upper_dev: new upper device 8729 * @upper_priv: upper device private 8730 * @upper_info: upper info to be passed down via notifier 8731 * @extack: netlink extended ack 8732 * 8733 * Adds a link to device which is upper to this one. In this case, only 8734 * one master upper device can be linked, although other non-master devices 8735 * might be linked as well. The caller must hold the RTNL lock. 8736 * On a failure a negative errno code is returned. On success the reference 8737 * counts are adjusted and the function returns zero. 8738 */ 8739 int netdev_master_upper_dev_link(struct net_device *dev, 8740 struct net_device *upper_dev, 8741 void *upper_priv, void *upper_info, 8742 struct netlink_ext_ack *extack) 8743 { 8744 struct netdev_nested_priv priv = { 8745 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8746 .data = NULL, 8747 }; 8748 8749 return __netdev_upper_dev_link(dev, upper_dev, true, 8750 upper_priv, upper_info, &priv, extack); 8751 } 8752 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8753 8754 static void __netdev_upper_dev_unlink(struct net_device *dev, 8755 struct net_device *upper_dev, 8756 struct netdev_nested_priv *priv) 8757 { 8758 struct netdev_notifier_changeupper_info changeupper_info = { 8759 .info = { 8760 .dev = dev, 8761 }, 8762 .upper_dev = upper_dev, 8763 .linking = false, 8764 }; 8765 8766 ASSERT_RTNL(); 8767 8768 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8769 8770 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8771 &changeupper_info.info); 8772 8773 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8774 8775 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8776 &changeupper_info.info); 8777 8778 __netdev_update_upper_level(dev, NULL); 8779 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8780 8781 __netdev_update_lower_level(upper_dev, priv); 8782 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8783 priv); 8784 } 8785 8786 /** 8787 * netdev_upper_dev_unlink - Removes a link to upper device 8788 * @dev: device 8789 * @upper_dev: new upper device 8790 * 8791 * Removes a link to device which is upper to this one. The caller must hold 8792 * the RTNL lock. 8793 */ 8794 void netdev_upper_dev_unlink(struct net_device *dev, 8795 struct net_device *upper_dev) 8796 { 8797 struct netdev_nested_priv priv = { 8798 .flags = NESTED_SYNC_TODO, 8799 .data = NULL, 8800 }; 8801 8802 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8803 } 8804 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8805 8806 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8807 struct net_device *lower_dev, 8808 bool val) 8809 { 8810 struct netdev_adjacent *adj; 8811 8812 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8813 if (adj) 8814 adj->ignore = val; 8815 8816 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8817 if (adj) 8818 adj->ignore = val; 8819 } 8820 8821 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8822 struct net_device *lower_dev) 8823 { 8824 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8825 } 8826 8827 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8828 struct net_device *lower_dev) 8829 { 8830 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8831 } 8832 8833 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8834 struct net_device *new_dev, 8835 struct net_device *dev, 8836 struct netlink_ext_ack *extack) 8837 { 8838 struct netdev_nested_priv priv = { 8839 .flags = 0, 8840 .data = NULL, 8841 }; 8842 int err; 8843 8844 if (!new_dev) 8845 return 0; 8846 8847 if (old_dev && new_dev != old_dev) 8848 netdev_adjacent_dev_disable(dev, old_dev); 8849 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8850 extack); 8851 if (err) { 8852 if (old_dev && new_dev != old_dev) 8853 netdev_adjacent_dev_enable(dev, old_dev); 8854 return err; 8855 } 8856 8857 return 0; 8858 } 8859 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8860 8861 void netdev_adjacent_change_commit(struct net_device *old_dev, 8862 struct net_device *new_dev, 8863 struct net_device *dev) 8864 { 8865 struct netdev_nested_priv priv = { 8866 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8867 .data = NULL, 8868 }; 8869 8870 if (!new_dev || !old_dev) 8871 return; 8872 8873 if (new_dev == old_dev) 8874 return; 8875 8876 netdev_adjacent_dev_enable(dev, old_dev); 8877 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8878 } 8879 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8880 8881 void netdev_adjacent_change_abort(struct net_device *old_dev, 8882 struct net_device *new_dev, 8883 struct net_device *dev) 8884 { 8885 struct netdev_nested_priv priv = { 8886 .flags = 0, 8887 .data = NULL, 8888 }; 8889 8890 if (!new_dev) 8891 return; 8892 8893 if (old_dev && new_dev != old_dev) 8894 netdev_adjacent_dev_enable(dev, old_dev); 8895 8896 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8897 } 8898 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8899 8900 /** 8901 * netdev_bonding_info_change - Dispatch event about slave change 8902 * @dev: device 8903 * @bonding_info: info to dispatch 8904 * 8905 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8906 * The caller must hold the RTNL lock. 8907 */ 8908 void netdev_bonding_info_change(struct net_device *dev, 8909 struct netdev_bonding_info *bonding_info) 8910 { 8911 struct netdev_notifier_bonding_info info = { 8912 .info.dev = dev, 8913 }; 8914 8915 memcpy(&info.bonding_info, bonding_info, 8916 sizeof(struct netdev_bonding_info)); 8917 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8918 &info.info); 8919 } 8920 EXPORT_SYMBOL(netdev_bonding_info_change); 8921 8922 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8923 struct netlink_ext_ack *extack) 8924 { 8925 struct netdev_notifier_offload_xstats_info info = { 8926 .info.dev = dev, 8927 .info.extack = extack, 8928 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8929 }; 8930 int err; 8931 int rc; 8932 8933 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8934 GFP_KERNEL); 8935 if (!dev->offload_xstats_l3) 8936 return -ENOMEM; 8937 8938 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8939 NETDEV_OFFLOAD_XSTATS_DISABLE, 8940 &info.info); 8941 err = notifier_to_errno(rc); 8942 if (err) 8943 goto free_stats; 8944 8945 return 0; 8946 8947 free_stats: 8948 kfree(dev->offload_xstats_l3); 8949 dev->offload_xstats_l3 = NULL; 8950 return err; 8951 } 8952 8953 int netdev_offload_xstats_enable(struct net_device *dev, 8954 enum netdev_offload_xstats_type type, 8955 struct netlink_ext_ack *extack) 8956 { 8957 ASSERT_RTNL(); 8958 8959 if (netdev_offload_xstats_enabled(dev, type)) 8960 return -EALREADY; 8961 8962 switch (type) { 8963 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8964 return netdev_offload_xstats_enable_l3(dev, extack); 8965 } 8966 8967 WARN_ON(1); 8968 return -EINVAL; 8969 } 8970 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8971 8972 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8973 { 8974 struct netdev_notifier_offload_xstats_info info = { 8975 .info.dev = dev, 8976 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8977 }; 8978 8979 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8980 &info.info); 8981 kfree(dev->offload_xstats_l3); 8982 dev->offload_xstats_l3 = NULL; 8983 } 8984 8985 int netdev_offload_xstats_disable(struct net_device *dev, 8986 enum netdev_offload_xstats_type type) 8987 { 8988 ASSERT_RTNL(); 8989 8990 if (!netdev_offload_xstats_enabled(dev, type)) 8991 return -EALREADY; 8992 8993 switch (type) { 8994 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8995 netdev_offload_xstats_disable_l3(dev); 8996 return 0; 8997 } 8998 8999 WARN_ON(1); 9000 return -EINVAL; 9001 } 9002 EXPORT_SYMBOL(netdev_offload_xstats_disable); 9003 9004 static void netdev_offload_xstats_disable_all(struct net_device *dev) 9005 { 9006 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 9007 } 9008 9009 static struct rtnl_hw_stats64 * 9010 netdev_offload_xstats_get_ptr(const struct net_device *dev, 9011 enum netdev_offload_xstats_type type) 9012 { 9013 switch (type) { 9014 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9015 return dev->offload_xstats_l3; 9016 } 9017 9018 WARN_ON(1); 9019 return NULL; 9020 } 9021 9022 bool netdev_offload_xstats_enabled(const struct net_device *dev, 9023 enum netdev_offload_xstats_type type) 9024 { 9025 ASSERT_RTNL(); 9026 9027 return netdev_offload_xstats_get_ptr(dev, type); 9028 } 9029 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 9030 9031 struct netdev_notifier_offload_xstats_ru { 9032 bool used; 9033 }; 9034 9035 struct netdev_notifier_offload_xstats_rd { 9036 struct rtnl_hw_stats64 stats; 9037 bool used; 9038 }; 9039 9040 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 9041 const struct rtnl_hw_stats64 *src) 9042 { 9043 dest->rx_packets += src->rx_packets; 9044 dest->tx_packets += src->tx_packets; 9045 dest->rx_bytes += src->rx_bytes; 9046 dest->tx_bytes += src->tx_bytes; 9047 dest->rx_errors += src->rx_errors; 9048 dest->tx_errors += src->tx_errors; 9049 dest->rx_dropped += src->rx_dropped; 9050 dest->tx_dropped += src->tx_dropped; 9051 dest->multicast += src->multicast; 9052 } 9053 9054 static int netdev_offload_xstats_get_used(struct net_device *dev, 9055 enum netdev_offload_xstats_type type, 9056 bool *p_used, 9057 struct netlink_ext_ack *extack) 9058 { 9059 struct netdev_notifier_offload_xstats_ru report_used = {}; 9060 struct netdev_notifier_offload_xstats_info info = { 9061 .info.dev = dev, 9062 .info.extack = extack, 9063 .type = type, 9064 .report_used = &report_used, 9065 }; 9066 int rc; 9067 9068 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 9069 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 9070 &info.info); 9071 *p_used = report_used.used; 9072 return notifier_to_errno(rc); 9073 } 9074 9075 static int netdev_offload_xstats_get_stats(struct net_device *dev, 9076 enum netdev_offload_xstats_type type, 9077 struct rtnl_hw_stats64 *p_stats, 9078 bool *p_used, 9079 struct netlink_ext_ack *extack) 9080 { 9081 struct netdev_notifier_offload_xstats_rd report_delta = {}; 9082 struct netdev_notifier_offload_xstats_info info = { 9083 .info.dev = dev, 9084 .info.extack = extack, 9085 .type = type, 9086 .report_delta = &report_delta, 9087 }; 9088 struct rtnl_hw_stats64 *stats; 9089 int rc; 9090 9091 stats = netdev_offload_xstats_get_ptr(dev, type); 9092 if (WARN_ON(!stats)) 9093 return -EINVAL; 9094 9095 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 9096 &info.info); 9097 9098 /* Cache whatever we got, even if there was an error, otherwise the 9099 * successful stats retrievals would get lost. 9100 */ 9101 netdev_hw_stats64_add(stats, &report_delta.stats); 9102 9103 if (p_stats) 9104 *p_stats = *stats; 9105 *p_used = report_delta.used; 9106 9107 return notifier_to_errno(rc); 9108 } 9109 9110 int netdev_offload_xstats_get(struct net_device *dev, 9111 enum netdev_offload_xstats_type type, 9112 struct rtnl_hw_stats64 *p_stats, bool *p_used, 9113 struct netlink_ext_ack *extack) 9114 { 9115 ASSERT_RTNL(); 9116 9117 if (p_stats) 9118 return netdev_offload_xstats_get_stats(dev, type, p_stats, 9119 p_used, extack); 9120 else 9121 return netdev_offload_xstats_get_used(dev, type, p_used, 9122 extack); 9123 } 9124 EXPORT_SYMBOL(netdev_offload_xstats_get); 9125 9126 void 9127 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 9128 const struct rtnl_hw_stats64 *stats) 9129 { 9130 report_delta->used = true; 9131 netdev_hw_stats64_add(&report_delta->stats, stats); 9132 } 9133 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9134 9135 void 9136 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9137 { 9138 report_used->used = true; 9139 } 9140 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9141 9142 void netdev_offload_xstats_push_delta(struct net_device *dev, 9143 enum netdev_offload_xstats_type type, 9144 const struct rtnl_hw_stats64 *p_stats) 9145 { 9146 struct rtnl_hw_stats64 *stats; 9147 9148 ASSERT_RTNL(); 9149 9150 stats = netdev_offload_xstats_get_ptr(dev, type); 9151 if (WARN_ON(!stats)) 9152 return; 9153 9154 netdev_hw_stats64_add(stats, p_stats); 9155 } 9156 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9157 9158 /** 9159 * netdev_get_xmit_slave - Get the xmit slave of master device 9160 * @dev: device 9161 * @skb: The packet 9162 * @all_slaves: assume all the slaves are active 9163 * 9164 * The reference counters are not incremented so the caller must be 9165 * careful with locks. The caller must hold RCU lock. 9166 * %NULL is returned if no slave is found. 9167 */ 9168 9169 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9170 struct sk_buff *skb, 9171 bool all_slaves) 9172 { 9173 const struct net_device_ops *ops = dev->netdev_ops; 9174 9175 if (!ops->ndo_get_xmit_slave) 9176 return NULL; 9177 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9178 } 9179 EXPORT_SYMBOL(netdev_get_xmit_slave); 9180 9181 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9182 struct sock *sk) 9183 { 9184 const struct net_device_ops *ops = dev->netdev_ops; 9185 9186 if (!ops->ndo_sk_get_lower_dev) 9187 return NULL; 9188 return ops->ndo_sk_get_lower_dev(dev, sk); 9189 } 9190 9191 /** 9192 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9193 * @dev: device 9194 * @sk: the socket 9195 * 9196 * %NULL is returned if no lower device is found. 9197 */ 9198 9199 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9200 struct sock *sk) 9201 { 9202 struct net_device *lower; 9203 9204 lower = netdev_sk_get_lower_dev(dev, sk); 9205 while (lower) { 9206 dev = lower; 9207 lower = netdev_sk_get_lower_dev(dev, sk); 9208 } 9209 9210 return dev; 9211 } 9212 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9213 9214 static void netdev_adjacent_add_links(struct net_device *dev) 9215 { 9216 struct netdev_adjacent *iter; 9217 9218 struct net *net = dev_net(dev); 9219 9220 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9221 if (!net_eq(net, dev_net(iter->dev))) 9222 continue; 9223 netdev_adjacent_sysfs_add(iter->dev, dev, 9224 &iter->dev->adj_list.lower); 9225 netdev_adjacent_sysfs_add(dev, iter->dev, 9226 &dev->adj_list.upper); 9227 } 9228 9229 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9230 if (!net_eq(net, dev_net(iter->dev))) 9231 continue; 9232 netdev_adjacent_sysfs_add(iter->dev, dev, 9233 &iter->dev->adj_list.upper); 9234 netdev_adjacent_sysfs_add(dev, iter->dev, 9235 &dev->adj_list.lower); 9236 } 9237 } 9238 9239 static void netdev_adjacent_del_links(struct net_device *dev) 9240 { 9241 struct netdev_adjacent *iter; 9242 9243 struct net *net = dev_net(dev); 9244 9245 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9246 if (!net_eq(net, dev_net(iter->dev))) 9247 continue; 9248 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9249 &iter->dev->adj_list.lower); 9250 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9251 &dev->adj_list.upper); 9252 } 9253 9254 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9255 if (!net_eq(net, dev_net(iter->dev))) 9256 continue; 9257 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9258 &iter->dev->adj_list.upper); 9259 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9260 &dev->adj_list.lower); 9261 } 9262 } 9263 9264 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9265 { 9266 struct netdev_adjacent *iter; 9267 9268 struct net *net = dev_net(dev); 9269 9270 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9271 if (!net_eq(net, dev_net(iter->dev))) 9272 continue; 9273 netdev_adjacent_sysfs_del(iter->dev, oldname, 9274 &iter->dev->adj_list.lower); 9275 netdev_adjacent_sysfs_add(iter->dev, dev, 9276 &iter->dev->adj_list.lower); 9277 } 9278 9279 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9280 if (!net_eq(net, dev_net(iter->dev))) 9281 continue; 9282 netdev_adjacent_sysfs_del(iter->dev, oldname, 9283 &iter->dev->adj_list.upper); 9284 netdev_adjacent_sysfs_add(iter->dev, dev, 9285 &iter->dev->adj_list.upper); 9286 } 9287 } 9288 9289 void *netdev_lower_dev_get_private(struct net_device *dev, 9290 struct net_device *lower_dev) 9291 { 9292 struct netdev_adjacent *lower; 9293 9294 if (!lower_dev) 9295 return NULL; 9296 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9297 if (!lower) 9298 return NULL; 9299 9300 return lower->private; 9301 } 9302 EXPORT_SYMBOL(netdev_lower_dev_get_private); 9303 9304 9305 /** 9306 * netdev_lower_state_changed - Dispatch event about lower device state change 9307 * @lower_dev: device 9308 * @lower_state_info: state to dispatch 9309 * 9310 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9311 * The caller must hold the RTNL lock. 9312 */ 9313 void netdev_lower_state_changed(struct net_device *lower_dev, 9314 void *lower_state_info) 9315 { 9316 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9317 .info.dev = lower_dev, 9318 }; 9319 9320 ASSERT_RTNL(); 9321 changelowerstate_info.lower_state_info = lower_state_info; 9322 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9323 &changelowerstate_info.info); 9324 } 9325 EXPORT_SYMBOL(netdev_lower_state_changed); 9326 9327 static void dev_change_rx_flags(struct net_device *dev, int flags) 9328 { 9329 const struct net_device_ops *ops = dev->netdev_ops; 9330 9331 if (ops->ndo_change_rx_flags) 9332 ops->ndo_change_rx_flags(dev, flags); 9333 } 9334 9335 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9336 { 9337 unsigned int old_flags = dev->flags; 9338 unsigned int promiscuity, flags; 9339 kuid_t uid; 9340 kgid_t gid; 9341 9342 ASSERT_RTNL(); 9343 9344 promiscuity = dev->promiscuity + inc; 9345 if (promiscuity == 0) { 9346 /* 9347 * Avoid overflow. 9348 * If inc causes overflow, untouch promisc and return error. 9349 */ 9350 if (unlikely(inc > 0)) { 9351 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9352 return -EOVERFLOW; 9353 } 9354 flags = old_flags & ~IFF_PROMISC; 9355 } else { 9356 flags = old_flags | IFF_PROMISC; 9357 } 9358 WRITE_ONCE(dev->promiscuity, promiscuity); 9359 if (flags != old_flags) { 9360 WRITE_ONCE(dev->flags, flags); 9361 netdev_info(dev, "%s promiscuous mode\n", 9362 dev->flags & IFF_PROMISC ? "entered" : "left"); 9363 if (audit_enabled) { 9364 current_uid_gid(&uid, &gid); 9365 audit_log(audit_context(), GFP_ATOMIC, 9366 AUDIT_ANOM_PROMISCUOUS, 9367 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9368 dev->name, (dev->flags & IFF_PROMISC), 9369 (old_flags & IFF_PROMISC), 9370 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9371 from_kuid(&init_user_ns, uid), 9372 from_kgid(&init_user_ns, gid), 9373 audit_get_sessionid(current)); 9374 } 9375 9376 dev_change_rx_flags(dev, IFF_PROMISC); 9377 } 9378 if (notify) { 9379 /* The ops lock is only required to ensure consistent locking 9380 * for `NETDEV_CHANGE` notifiers. This function is sometimes 9381 * called without the lock, even for devices that are ops 9382 * locked, such as in `dev_uc_sync_multiple` when using 9383 * bonding or teaming. 9384 */ 9385 netdev_ops_assert_locked(dev); 9386 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9387 } 9388 return 0; 9389 } 9390 9391 int netif_set_promiscuity(struct net_device *dev, int inc) 9392 { 9393 unsigned int old_flags = dev->flags; 9394 int err; 9395 9396 err = __dev_set_promiscuity(dev, inc, true); 9397 if (err < 0) 9398 return err; 9399 if (dev->flags != old_flags) 9400 dev_set_rx_mode(dev); 9401 return err; 9402 } 9403 9404 int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9405 { 9406 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9407 unsigned int allmulti, flags; 9408 9409 ASSERT_RTNL(); 9410 9411 allmulti = dev->allmulti + inc; 9412 if (allmulti == 0) { 9413 /* 9414 * Avoid overflow. 9415 * If inc causes overflow, untouch allmulti and return error. 9416 */ 9417 if (unlikely(inc > 0)) { 9418 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9419 return -EOVERFLOW; 9420 } 9421 flags = old_flags & ~IFF_ALLMULTI; 9422 } else { 9423 flags = old_flags | IFF_ALLMULTI; 9424 } 9425 WRITE_ONCE(dev->allmulti, allmulti); 9426 if (flags != old_flags) { 9427 WRITE_ONCE(dev->flags, flags); 9428 netdev_info(dev, "%s allmulticast mode\n", 9429 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9430 dev_change_rx_flags(dev, IFF_ALLMULTI); 9431 dev_set_rx_mode(dev); 9432 if (notify) 9433 __dev_notify_flags(dev, old_flags, 9434 dev->gflags ^ old_gflags, 0, NULL); 9435 } 9436 return 0; 9437 } 9438 9439 /* 9440 * Upload unicast and multicast address lists to device and 9441 * configure RX filtering. When the device doesn't support unicast 9442 * filtering it is put in promiscuous mode while unicast addresses 9443 * are present. 9444 */ 9445 void __dev_set_rx_mode(struct net_device *dev) 9446 { 9447 const struct net_device_ops *ops = dev->netdev_ops; 9448 9449 /* dev_open will call this function so the list will stay sane. */ 9450 if (!(dev->flags&IFF_UP)) 9451 return; 9452 9453 if (!netif_device_present(dev)) 9454 return; 9455 9456 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9457 /* Unicast addresses changes may only happen under the rtnl, 9458 * therefore calling __dev_set_promiscuity here is safe. 9459 */ 9460 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9461 __dev_set_promiscuity(dev, 1, false); 9462 dev->uc_promisc = true; 9463 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9464 __dev_set_promiscuity(dev, -1, false); 9465 dev->uc_promisc = false; 9466 } 9467 } 9468 9469 if (ops->ndo_set_rx_mode) 9470 ops->ndo_set_rx_mode(dev); 9471 } 9472 9473 void dev_set_rx_mode(struct net_device *dev) 9474 { 9475 netif_addr_lock_bh(dev); 9476 __dev_set_rx_mode(dev); 9477 netif_addr_unlock_bh(dev); 9478 } 9479 9480 /** 9481 * netif_get_flags() - get flags reported to userspace 9482 * @dev: device 9483 * 9484 * Get the combination of flag bits exported through APIs to userspace. 9485 */ 9486 unsigned int netif_get_flags(const struct net_device *dev) 9487 { 9488 unsigned int flags; 9489 9490 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9491 IFF_ALLMULTI | 9492 IFF_RUNNING | 9493 IFF_LOWER_UP | 9494 IFF_DORMANT)) | 9495 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9496 IFF_ALLMULTI)); 9497 9498 if (netif_running(dev)) { 9499 if (netif_oper_up(dev)) 9500 flags |= IFF_RUNNING; 9501 if (netif_carrier_ok(dev)) 9502 flags |= IFF_LOWER_UP; 9503 if (netif_dormant(dev)) 9504 flags |= IFF_DORMANT; 9505 } 9506 9507 return flags; 9508 } 9509 EXPORT_SYMBOL(netif_get_flags); 9510 9511 int __dev_change_flags(struct net_device *dev, unsigned int flags, 9512 struct netlink_ext_ack *extack) 9513 { 9514 unsigned int old_flags = dev->flags; 9515 int ret; 9516 9517 ASSERT_RTNL(); 9518 9519 /* 9520 * Set the flags on our device. 9521 */ 9522 9523 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9524 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9525 IFF_AUTOMEDIA)) | 9526 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9527 IFF_ALLMULTI)); 9528 9529 /* 9530 * Load in the correct multicast list now the flags have changed. 9531 */ 9532 9533 if ((old_flags ^ flags) & IFF_MULTICAST) 9534 dev_change_rx_flags(dev, IFF_MULTICAST); 9535 9536 dev_set_rx_mode(dev); 9537 9538 /* 9539 * Have we downed the interface. We handle IFF_UP ourselves 9540 * according to user attempts to set it, rather than blindly 9541 * setting it. 9542 */ 9543 9544 ret = 0; 9545 if ((old_flags ^ flags) & IFF_UP) { 9546 if (old_flags & IFF_UP) 9547 __dev_close(dev); 9548 else 9549 ret = __dev_open(dev, extack); 9550 } 9551 9552 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9553 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9554 old_flags = dev->flags; 9555 9556 dev->gflags ^= IFF_PROMISC; 9557 9558 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9559 if (dev->flags != old_flags) 9560 dev_set_rx_mode(dev); 9561 } 9562 9563 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9564 * is important. Some (broken) drivers set IFF_PROMISC, when 9565 * IFF_ALLMULTI is requested not asking us and not reporting. 9566 */ 9567 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9568 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9569 9570 dev->gflags ^= IFF_ALLMULTI; 9571 netif_set_allmulti(dev, inc, false); 9572 } 9573 9574 return ret; 9575 } 9576 9577 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9578 unsigned int gchanges, u32 portid, 9579 const struct nlmsghdr *nlh) 9580 { 9581 unsigned int changes = dev->flags ^ old_flags; 9582 9583 if (gchanges) 9584 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9585 9586 if (changes & IFF_UP) { 9587 if (dev->flags & IFF_UP) 9588 call_netdevice_notifiers(NETDEV_UP, dev); 9589 else 9590 call_netdevice_notifiers(NETDEV_DOWN, dev); 9591 } 9592 9593 if (dev->flags & IFF_UP && 9594 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9595 struct netdev_notifier_change_info change_info = { 9596 .info = { 9597 .dev = dev, 9598 }, 9599 .flags_changed = changes, 9600 }; 9601 9602 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9603 } 9604 } 9605 9606 int netif_change_flags(struct net_device *dev, unsigned int flags, 9607 struct netlink_ext_ack *extack) 9608 { 9609 int ret; 9610 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9611 9612 ret = __dev_change_flags(dev, flags, extack); 9613 if (ret < 0) 9614 return ret; 9615 9616 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9617 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9618 return ret; 9619 } 9620 9621 int __netif_set_mtu(struct net_device *dev, int new_mtu) 9622 { 9623 const struct net_device_ops *ops = dev->netdev_ops; 9624 9625 if (ops->ndo_change_mtu) 9626 return ops->ndo_change_mtu(dev, new_mtu); 9627 9628 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9629 WRITE_ONCE(dev->mtu, new_mtu); 9630 return 0; 9631 } 9632 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL"); 9633 9634 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9635 struct netlink_ext_ack *extack) 9636 { 9637 /* MTU must be positive, and in range */ 9638 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9639 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9640 return -EINVAL; 9641 } 9642 9643 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9644 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9645 return -EINVAL; 9646 } 9647 return 0; 9648 } 9649 9650 /** 9651 * netif_set_mtu_ext() - Change maximum transfer unit 9652 * @dev: device 9653 * @new_mtu: new transfer unit 9654 * @extack: netlink extended ack 9655 * 9656 * Change the maximum transfer size of the network device. 9657 * 9658 * Return: 0 on success, -errno on failure. 9659 */ 9660 int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9661 struct netlink_ext_ack *extack) 9662 { 9663 int err, orig_mtu; 9664 9665 netdev_ops_assert_locked(dev); 9666 9667 if (new_mtu == dev->mtu) 9668 return 0; 9669 9670 err = dev_validate_mtu(dev, new_mtu, extack); 9671 if (err) 9672 return err; 9673 9674 if (!netif_device_present(dev)) 9675 return -ENODEV; 9676 9677 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9678 err = notifier_to_errno(err); 9679 if (err) 9680 return err; 9681 9682 orig_mtu = dev->mtu; 9683 err = __netif_set_mtu(dev, new_mtu); 9684 9685 if (!err) { 9686 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9687 orig_mtu); 9688 err = notifier_to_errno(err); 9689 if (err) { 9690 /* setting mtu back and notifying everyone again, 9691 * so that they have a chance to revert changes. 9692 */ 9693 __netif_set_mtu(dev, orig_mtu); 9694 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9695 new_mtu); 9696 } 9697 } 9698 return err; 9699 } 9700 9701 int netif_set_mtu(struct net_device *dev, int new_mtu) 9702 { 9703 struct netlink_ext_ack extack; 9704 int err; 9705 9706 memset(&extack, 0, sizeof(extack)); 9707 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9708 if (err && extack._msg) 9709 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9710 return err; 9711 } 9712 EXPORT_SYMBOL(netif_set_mtu); 9713 9714 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9715 { 9716 unsigned int orig_len = dev->tx_queue_len; 9717 int res; 9718 9719 if (new_len != (unsigned int)new_len) 9720 return -ERANGE; 9721 9722 if (new_len != orig_len) { 9723 WRITE_ONCE(dev->tx_queue_len, new_len); 9724 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9725 res = notifier_to_errno(res); 9726 if (res) 9727 goto err_rollback; 9728 res = dev_qdisc_change_tx_queue_len(dev); 9729 if (res) 9730 goto err_rollback; 9731 } 9732 9733 return 0; 9734 9735 err_rollback: 9736 netdev_err(dev, "refused to change device tx_queue_len\n"); 9737 WRITE_ONCE(dev->tx_queue_len, orig_len); 9738 return res; 9739 } 9740 9741 void netif_set_group(struct net_device *dev, int new_group) 9742 { 9743 dev->group = new_group; 9744 } 9745 9746 /** 9747 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR. 9748 * @dev: device 9749 * @addr: new address 9750 * @extack: netlink extended ack 9751 * 9752 * Return: 0 on success, -errno on failure. 9753 */ 9754 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9755 struct netlink_ext_ack *extack) 9756 { 9757 struct netdev_notifier_pre_changeaddr_info info = { 9758 .info.dev = dev, 9759 .info.extack = extack, 9760 .dev_addr = addr, 9761 }; 9762 int rc; 9763 9764 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9765 return notifier_to_errno(rc); 9766 } 9767 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL"); 9768 9769 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 9770 struct netlink_ext_ack *extack) 9771 { 9772 const struct net_device_ops *ops = dev->netdev_ops; 9773 int err; 9774 9775 if (!ops->ndo_set_mac_address) 9776 return -EOPNOTSUPP; 9777 if (ss->ss_family != dev->type) 9778 return -EINVAL; 9779 if (!netif_device_present(dev)) 9780 return -ENODEV; 9781 err = netif_pre_changeaddr_notify(dev, ss->__data, extack); 9782 if (err) 9783 return err; 9784 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) { 9785 err = ops->ndo_set_mac_address(dev, ss); 9786 if (err) 9787 return err; 9788 } 9789 dev->addr_assign_type = NET_ADDR_SET; 9790 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9791 add_device_randomness(dev->dev_addr, dev->addr_len); 9792 return 0; 9793 } 9794 9795 DECLARE_RWSEM(dev_addr_sem); 9796 9797 /* "sa" is a true struct sockaddr with limited "sa_data" member. */ 9798 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9799 { 9800 size_t size = sizeof(sa->sa_data_min); 9801 struct net_device *dev; 9802 int ret = 0; 9803 9804 down_read(&dev_addr_sem); 9805 rcu_read_lock(); 9806 9807 dev = dev_get_by_name_rcu(net, dev_name); 9808 if (!dev) { 9809 ret = -ENODEV; 9810 goto unlock; 9811 } 9812 if (!dev->addr_len) 9813 memset(sa->sa_data, 0, size); 9814 else 9815 memcpy(sa->sa_data, dev->dev_addr, 9816 min_t(size_t, size, dev->addr_len)); 9817 sa->sa_family = dev->type; 9818 9819 unlock: 9820 rcu_read_unlock(); 9821 up_read(&dev_addr_sem); 9822 return ret; 9823 } 9824 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL"); 9825 9826 int netif_change_carrier(struct net_device *dev, bool new_carrier) 9827 { 9828 const struct net_device_ops *ops = dev->netdev_ops; 9829 9830 if (!ops->ndo_change_carrier) 9831 return -EOPNOTSUPP; 9832 if (!netif_device_present(dev)) 9833 return -ENODEV; 9834 return ops->ndo_change_carrier(dev, new_carrier); 9835 } 9836 9837 /** 9838 * dev_get_phys_port_id - Get device physical port ID 9839 * @dev: device 9840 * @ppid: port ID 9841 * 9842 * Get device physical port ID 9843 */ 9844 int dev_get_phys_port_id(struct net_device *dev, 9845 struct netdev_phys_item_id *ppid) 9846 { 9847 const struct net_device_ops *ops = dev->netdev_ops; 9848 9849 if (!ops->ndo_get_phys_port_id) 9850 return -EOPNOTSUPP; 9851 return ops->ndo_get_phys_port_id(dev, ppid); 9852 } 9853 9854 /** 9855 * dev_get_phys_port_name - Get device physical port name 9856 * @dev: device 9857 * @name: port name 9858 * @len: limit of bytes to copy to name 9859 * 9860 * Get device physical port name 9861 */ 9862 int dev_get_phys_port_name(struct net_device *dev, 9863 char *name, size_t len) 9864 { 9865 const struct net_device_ops *ops = dev->netdev_ops; 9866 int err; 9867 9868 if (ops->ndo_get_phys_port_name) { 9869 err = ops->ndo_get_phys_port_name(dev, name, len); 9870 if (err != -EOPNOTSUPP) 9871 return err; 9872 } 9873 return devlink_compat_phys_port_name_get(dev, name, len); 9874 } 9875 9876 /** 9877 * netif_get_port_parent_id() - Get the device's port parent identifier 9878 * @dev: network device 9879 * @ppid: pointer to a storage for the port's parent identifier 9880 * @recurse: allow/disallow recursion to lower devices 9881 * 9882 * Get the devices's port parent identifier. 9883 * 9884 * Return: 0 on success, -errno on failure. 9885 */ 9886 int netif_get_port_parent_id(struct net_device *dev, 9887 struct netdev_phys_item_id *ppid, bool recurse) 9888 { 9889 const struct net_device_ops *ops = dev->netdev_ops; 9890 struct netdev_phys_item_id first = { }; 9891 struct net_device *lower_dev; 9892 struct list_head *iter; 9893 int err; 9894 9895 if (ops->ndo_get_port_parent_id) { 9896 err = ops->ndo_get_port_parent_id(dev, ppid); 9897 if (err != -EOPNOTSUPP) 9898 return err; 9899 } 9900 9901 err = devlink_compat_switch_id_get(dev, ppid); 9902 if (!recurse || err != -EOPNOTSUPP) 9903 return err; 9904 9905 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9906 err = netif_get_port_parent_id(lower_dev, ppid, true); 9907 if (err) 9908 break; 9909 if (!first.id_len) 9910 first = *ppid; 9911 else if (memcmp(&first, ppid, sizeof(*ppid))) 9912 return -EOPNOTSUPP; 9913 } 9914 9915 return err; 9916 } 9917 EXPORT_SYMBOL(netif_get_port_parent_id); 9918 9919 /** 9920 * netdev_port_same_parent_id - Indicate if two network devices have 9921 * the same port parent identifier 9922 * @a: first network device 9923 * @b: second network device 9924 */ 9925 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9926 { 9927 struct netdev_phys_item_id a_id = { }; 9928 struct netdev_phys_item_id b_id = { }; 9929 9930 if (netif_get_port_parent_id(a, &a_id, true) || 9931 netif_get_port_parent_id(b, &b_id, true)) 9932 return false; 9933 9934 return netdev_phys_item_id_same(&a_id, &b_id); 9935 } 9936 EXPORT_SYMBOL(netdev_port_same_parent_id); 9937 9938 int netif_change_proto_down(struct net_device *dev, bool proto_down) 9939 { 9940 if (!dev->change_proto_down) 9941 return -EOPNOTSUPP; 9942 if (!netif_device_present(dev)) 9943 return -ENODEV; 9944 if (proto_down) 9945 netif_carrier_off(dev); 9946 else 9947 netif_carrier_on(dev); 9948 WRITE_ONCE(dev->proto_down, proto_down); 9949 return 0; 9950 } 9951 9952 /** 9953 * netdev_change_proto_down_reason_locked - proto down reason 9954 * 9955 * @dev: device 9956 * @mask: proto down mask 9957 * @value: proto down value 9958 */ 9959 void netdev_change_proto_down_reason_locked(struct net_device *dev, 9960 unsigned long mask, u32 value) 9961 { 9962 u32 proto_down_reason; 9963 int b; 9964 9965 if (!mask) { 9966 proto_down_reason = value; 9967 } else { 9968 proto_down_reason = dev->proto_down_reason; 9969 for_each_set_bit(b, &mask, 32) { 9970 if (value & (1 << b)) 9971 proto_down_reason |= BIT(b); 9972 else 9973 proto_down_reason &= ~BIT(b); 9974 } 9975 } 9976 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9977 } 9978 9979 struct bpf_xdp_link { 9980 struct bpf_link link; 9981 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9982 int flags; 9983 }; 9984 9985 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9986 { 9987 if (flags & XDP_FLAGS_HW_MODE) 9988 return XDP_MODE_HW; 9989 if (flags & XDP_FLAGS_DRV_MODE) 9990 return XDP_MODE_DRV; 9991 if (flags & XDP_FLAGS_SKB_MODE) 9992 return XDP_MODE_SKB; 9993 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9994 } 9995 9996 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9997 { 9998 switch (mode) { 9999 case XDP_MODE_SKB: 10000 return generic_xdp_install; 10001 case XDP_MODE_DRV: 10002 case XDP_MODE_HW: 10003 return dev->netdev_ops->ndo_bpf; 10004 default: 10005 return NULL; 10006 } 10007 } 10008 10009 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 10010 enum bpf_xdp_mode mode) 10011 { 10012 return dev->xdp_state[mode].link; 10013 } 10014 10015 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 10016 enum bpf_xdp_mode mode) 10017 { 10018 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 10019 10020 if (link) 10021 return link->link.prog; 10022 return dev->xdp_state[mode].prog; 10023 } 10024 10025 u8 dev_xdp_prog_count(struct net_device *dev) 10026 { 10027 u8 count = 0; 10028 int i; 10029 10030 for (i = 0; i < __MAX_XDP_MODE; i++) 10031 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 10032 count++; 10033 return count; 10034 } 10035 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 10036 10037 u8 dev_xdp_sb_prog_count(struct net_device *dev) 10038 { 10039 u8 count = 0; 10040 int i; 10041 10042 for (i = 0; i < __MAX_XDP_MODE; i++) 10043 if (dev->xdp_state[i].prog && 10044 !dev->xdp_state[i].prog->aux->xdp_has_frags) 10045 count++; 10046 return count; 10047 } 10048 10049 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 10050 { 10051 if (!dev->netdev_ops->ndo_bpf) 10052 return -EOPNOTSUPP; 10053 10054 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10055 bpf->command == XDP_SETUP_PROG && 10056 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 10057 NL_SET_ERR_MSG(bpf->extack, 10058 "unable to propagate XDP to device using tcp-data-split"); 10059 return -EBUSY; 10060 } 10061 10062 if (dev_get_min_mp_channel_count(dev)) { 10063 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 10064 return -EBUSY; 10065 } 10066 10067 return dev->netdev_ops->ndo_bpf(dev, bpf); 10068 } 10069 EXPORT_SYMBOL_GPL(netif_xdp_propagate); 10070 10071 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 10072 { 10073 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 10074 10075 return prog ? prog->aux->id : 0; 10076 } 10077 10078 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 10079 struct bpf_xdp_link *link) 10080 { 10081 dev->xdp_state[mode].link = link; 10082 dev->xdp_state[mode].prog = NULL; 10083 } 10084 10085 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 10086 struct bpf_prog *prog) 10087 { 10088 dev->xdp_state[mode].link = NULL; 10089 dev->xdp_state[mode].prog = prog; 10090 } 10091 10092 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 10093 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 10094 u32 flags, struct bpf_prog *prog) 10095 { 10096 struct netdev_bpf xdp; 10097 int err; 10098 10099 netdev_ops_assert_locked(dev); 10100 10101 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10102 prog && !prog->aux->xdp_has_frags) { 10103 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 10104 return -EBUSY; 10105 } 10106 10107 if (dev_get_min_mp_channel_count(dev)) { 10108 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 10109 return -EBUSY; 10110 } 10111 10112 memset(&xdp, 0, sizeof(xdp)); 10113 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 10114 xdp.extack = extack; 10115 xdp.flags = flags; 10116 xdp.prog = prog; 10117 10118 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 10119 * "moved" into driver), so they don't increment it on their own, but 10120 * they do decrement refcnt when program is detached or replaced. 10121 * Given net_device also owns link/prog, we need to bump refcnt here 10122 * to prevent drivers from underflowing it. 10123 */ 10124 if (prog) 10125 bpf_prog_inc(prog); 10126 err = bpf_op(dev, &xdp); 10127 if (err) { 10128 if (prog) 10129 bpf_prog_put(prog); 10130 return err; 10131 } 10132 10133 if (mode != XDP_MODE_HW) 10134 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 10135 10136 return 0; 10137 } 10138 10139 static void dev_xdp_uninstall(struct net_device *dev) 10140 { 10141 struct bpf_xdp_link *link; 10142 struct bpf_prog *prog; 10143 enum bpf_xdp_mode mode; 10144 bpf_op_t bpf_op; 10145 10146 ASSERT_RTNL(); 10147 10148 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10149 prog = dev_xdp_prog(dev, mode); 10150 if (!prog) 10151 continue; 10152 10153 bpf_op = dev_xdp_bpf_op(dev, mode); 10154 if (!bpf_op) 10155 continue; 10156 10157 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10158 10159 /* auto-detach link from net device */ 10160 link = dev_xdp_link(dev, mode); 10161 if (link) 10162 link->dev = NULL; 10163 else 10164 bpf_prog_put(prog); 10165 10166 dev_xdp_set_link(dev, mode, NULL); 10167 } 10168 } 10169 10170 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10171 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10172 struct bpf_prog *old_prog, u32 flags) 10173 { 10174 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10175 struct bpf_prog *cur_prog; 10176 struct net_device *upper; 10177 struct list_head *iter; 10178 enum bpf_xdp_mode mode; 10179 bpf_op_t bpf_op; 10180 int err; 10181 10182 ASSERT_RTNL(); 10183 10184 /* either link or prog attachment, never both */ 10185 if (link && (new_prog || old_prog)) 10186 return -EINVAL; 10187 /* link supports only XDP mode flags */ 10188 if (link && (flags & ~XDP_FLAGS_MODES)) { 10189 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10190 return -EINVAL; 10191 } 10192 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10193 if (num_modes > 1) { 10194 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10195 return -EINVAL; 10196 } 10197 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10198 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10199 NL_SET_ERR_MSG(extack, 10200 "More than one program loaded, unset mode is ambiguous"); 10201 return -EINVAL; 10202 } 10203 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10204 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10205 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10206 return -EINVAL; 10207 } 10208 10209 mode = dev_xdp_mode(dev, flags); 10210 /* can't replace attached link */ 10211 if (dev_xdp_link(dev, mode)) { 10212 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10213 return -EBUSY; 10214 } 10215 10216 /* don't allow if an upper device already has a program */ 10217 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10218 if (dev_xdp_prog_count(upper) > 0) { 10219 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10220 return -EEXIST; 10221 } 10222 } 10223 10224 cur_prog = dev_xdp_prog(dev, mode); 10225 /* can't replace attached prog with link */ 10226 if (link && cur_prog) { 10227 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10228 return -EBUSY; 10229 } 10230 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10231 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10232 return -EEXIST; 10233 } 10234 10235 /* put effective new program into new_prog */ 10236 if (link) 10237 new_prog = link->link.prog; 10238 10239 if (new_prog) { 10240 bool offload = mode == XDP_MODE_HW; 10241 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10242 ? XDP_MODE_DRV : XDP_MODE_SKB; 10243 10244 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10245 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10246 return -EBUSY; 10247 } 10248 if (!offload && dev_xdp_prog(dev, other_mode)) { 10249 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10250 return -EEXIST; 10251 } 10252 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10253 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10254 return -EINVAL; 10255 } 10256 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10257 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10258 return -EINVAL; 10259 } 10260 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10261 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10262 return -EINVAL; 10263 } 10264 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10265 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10266 return -EINVAL; 10267 } 10268 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10269 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10270 return -EINVAL; 10271 } 10272 } 10273 10274 /* don't call drivers if the effective program didn't change */ 10275 if (new_prog != cur_prog) { 10276 bpf_op = dev_xdp_bpf_op(dev, mode); 10277 if (!bpf_op) { 10278 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10279 return -EOPNOTSUPP; 10280 } 10281 10282 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10283 if (err) 10284 return err; 10285 } 10286 10287 if (link) 10288 dev_xdp_set_link(dev, mode, link); 10289 else 10290 dev_xdp_set_prog(dev, mode, new_prog); 10291 if (cur_prog) 10292 bpf_prog_put(cur_prog); 10293 10294 return 0; 10295 } 10296 10297 static int dev_xdp_attach_link(struct net_device *dev, 10298 struct netlink_ext_ack *extack, 10299 struct bpf_xdp_link *link) 10300 { 10301 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10302 } 10303 10304 static int dev_xdp_detach_link(struct net_device *dev, 10305 struct netlink_ext_ack *extack, 10306 struct bpf_xdp_link *link) 10307 { 10308 enum bpf_xdp_mode mode; 10309 bpf_op_t bpf_op; 10310 10311 ASSERT_RTNL(); 10312 10313 mode = dev_xdp_mode(dev, link->flags); 10314 if (dev_xdp_link(dev, mode) != link) 10315 return -EINVAL; 10316 10317 bpf_op = dev_xdp_bpf_op(dev, mode); 10318 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10319 dev_xdp_set_link(dev, mode, NULL); 10320 return 0; 10321 } 10322 10323 static void bpf_xdp_link_release(struct bpf_link *link) 10324 { 10325 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10326 10327 rtnl_lock(); 10328 10329 /* if racing with net_device's tear down, xdp_link->dev might be 10330 * already NULL, in which case link was already auto-detached 10331 */ 10332 if (xdp_link->dev) { 10333 netdev_lock_ops(xdp_link->dev); 10334 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10335 netdev_unlock_ops(xdp_link->dev); 10336 xdp_link->dev = NULL; 10337 } 10338 10339 rtnl_unlock(); 10340 } 10341 10342 static int bpf_xdp_link_detach(struct bpf_link *link) 10343 { 10344 bpf_xdp_link_release(link); 10345 return 0; 10346 } 10347 10348 static void bpf_xdp_link_dealloc(struct bpf_link *link) 10349 { 10350 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10351 10352 kfree(xdp_link); 10353 } 10354 10355 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10356 struct seq_file *seq) 10357 { 10358 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10359 u32 ifindex = 0; 10360 10361 rtnl_lock(); 10362 if (xdp_link->dev) 10363 ifindex = xdp_link->dev->ifindex; 10364 rtnl_unlock(); 10365 10366 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10367 } 10368 10369 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10370 struct bpf_link_info *info) 10371 { 10372 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10373 u32 ifindex = 0; 10374 10375 rtnl_lock(); 10376 if (xdp_link->dev) 10377 ifindex = xdp_link->dev->ifindex; 10378 rtnl_unlock(); 10379 10380 info->xdp.ifindex = ifindex; 10381 return 0; 10382 } 10383 10384 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10385 struct bpf_prog *old_prog) 10386 { 10387 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10388 enum bpf_xdp_mode mode; 10389 bpf_op_t bpf_op; 10390 int err = 0; 10391 10392 rtnl_lock(); 10393 10394 /* link might have been auto-released already, so fail */ 10395 if (!xdp_link->dev) { 10396 err = -ENOLINK; 10397 goto out_unlock; 10398 } 10399 10400 if (old_prog && link->prog != old_prog) { 10401 err = -EPERM; 10402 goto out_unlock; 10403 } 10404 old_prog = link->prog; 10405 if (old_prog->type != new_prog->type || 10406 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10407 err = -EINVAL; 10408 goto out_unlock; 10409 } 10410 10411 if (old_prog == new_prog) { 10412 /* no-op, don't disturb drivers */ 10413 bpf_prog_put(new_prog); 10414 goto out_unlock; 10415 } 10416 10417 netdev_lock_ops(xdp_link->dev); 10418 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10419 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10420 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10421 xdp_link->flags, new_prog); 10422 netdev_unlock_ops(xdp_link->dev); 10423 if (err) 10424 goto out_unlock; 10425 10426 old_prog = xchg(&link->prog, new_prog); 10427 bpf_prog_put(old_prog); 10428 10429 out_unlock: 10430 rtnl_unlock(); 10431 return err; 10432 } 10433 10434 static const struct bpf_link_ops bpf_xdp_link_lops = { 10435 .release = bpf_xdp_link_release, 10436 .dealloc = bpf_xdp_link_dealloc, 10437 .detach = bpf_xdp_link_detach, 10438 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10439 .fill_link_info = bpf_xdp_link_fill_link_info, 10440 .update_prog = bpf_xdp_link_update, 10441 }; 10442 10443 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10444 { 10445 struct net *net = current->nsproxy->net_ns; 10446 struct bpf_link_primer link_primer; 10447 struct netlink_ext_ack extack = {}; 10448 struct bpf_xdp_link *link; 10449 struct net_device *dev; 10450 int err, fd; 10451 10452 rtnl_lock(); 10453 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10454 if (!dev) { 10455 rtnl_unlock(); 10456 return -EINVAL; 10457 } 10458 10459 link = kzalloc(sizeof(*link), GFP_USER); 10460 if (!link) { 10461 err = -ENOMEM; 10462 goto unlock; 10463 } 10464 10465 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog, 10466 attr->link_create.attach_type); 10467 link->dev = dev; 10468 link->flags = attr->link_create.flags; 10469 10470 err = bpf_link_prime(&link->link, &link_primer); 10471 if (err) { 10472 kfree(link); 10473 goto unlock; 10474 } 10475 10476 netdev_lock_ops(dev); 10477 err = dev_xdp_attach_link(dev, &extack, link); 10478 netdev_unlock_ops(dev); 10479 rtnl_unlock(); 10480 10481 if (err) { 10482 link->dev = NULL; 10483 bpf_link_cleanup(&link_primer); 10484 trace_bpf_xdp_link_attach_failed(extack._msg); 10485 goto out_put_dev; 10486 } 10487 10488 fd = bpf_link_settle(&link_primer); 10489 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10490 dev_put(dev); 10491 return fd; 10492 10493 unlock: 10494 rtnl_unlock(); 10495 10496 out_put_dev: 10497 dev_put(dev); 10498 return err; 10499 } 10500 10501 /** 10502 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10503 * @dev: device 10504 * @extack: netlink extended ack 10505 * @fd: new program fd or negative value to clear 10506 * @expected_fd: old program fd that userspace expects to replace or clear 10507 * @flags: xdp-related flags 10508 * 10509 * Set or clear a bpf program for a device 10510 */ 10511 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10512 int fd, int expected_fd, u32 flags) 10513 { 10514 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10515 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10516 int err; 10517 10518 ASSERT_RTNL(); 10519 10520 if (fd >= 0) { 10521 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10522 mode != XDP_MODE_SKB); 10523 if (IS_ERR(new_prog)) 10524 return PTR_ERR(new_prog); 10525 } 10526 10527 if (expected_fd >= 0) { 10528 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10529 mode != XDP_MODE_SKB); 10530 if (IS_ERR(old_prog)) { 10531 err = PTR_ERR(old_prog); 10532 old_prog = NULL; 10533 goto err_out; 10534 } 10535 } 10536 10537 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10538 10539 err_out: 10540 if (err && new_prog) 10541 bpf_prog_put(new_prog); 10542 if (old_prog) 10543 bpf_prog_put(old_prog); 10544 return err; 10545 } 10546 10547 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10548 { 10549 int i; 10550 10551 netdev_ops_assert_locked(dev); 10552 10553 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10554 if (dev->_rx[i].mp_params.mp_priv) 10555 /* The channel count is the idx plus 1. */ 10556 return i + 1; 10557 10558 return 0; 10559 } 10560 10561 /** 10562 * dev_index_reserve() - allocate an ifindex in a namespace 10563 * @net: the applicable net namespace 10564 * @ifindex: requested ifindex, pass %0 to get one allocated 10565 * 10566 * Allocate a ifindex for a new device. Caller must either use the ifindex 10567 * to store the device (via list_netdevice()) or call dev_index_release() 10568 * to give the index up. 10569 * 10570 * Return: a suitable unique value for a new device interface number or -errno. 10571 */ 10572 static int dev_index_reserve(struct net *net, u32 ifindex) 10573 { 10574 int err; 10575 10576 if (ifindex > INT_MAX) { 10577 DEBUG_NET_WARN_ON_ONCE(1); 10578 return -EINVAL; 10579 } 10580 10581 if (!ifindex) 10582 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10583 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10584 else 10585 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10586 if (err < 0) 10587 return err; 10588 10589 return ifindex; 10590 } 10591 10592 static void dev_index_release(struct net *net, int ifindex) 10593 { 10594 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10595 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10596 } 10597 10598 static bool from_cleanup_net(void) 10599 { 10600 #ifdef CONFIG_NET_NS 10601 return current == READ_ONCE(cleanup_net_task); 10602 #else 10603 return false; 10604 #endif 10605 } 10606 10607 /* Delayed registration/unregisteration */ 10608 LIST_HEAD(net_todo_list); 10609 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10610 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10611 10612 static void net_set_todo(struct net_device *dev) 10613 { 10614 list_add_tail(&dev->todo_list, &net_todo_list); 10615 } 10616 10617 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10618 struct net_device *upper, netdev_features_t features) 10619 { 10620 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10621 netdev_features_t feature; 10622 int feature_bit; 10623 10624 for_each_netdev_feature(upper_disables, feature_bit) { 10625 feature = __NETIF_F_BIT(feature_bit); 10626 if (!(upper->wanted_features & feature) 10627 && (features & feature)) { 10628 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10629 &feature, upper->name); 10630 features &= ~feature; 10631 } 10632 } 10633 10634 return features; 10635 } 10636 10637 static void netdev_sync_lower_features(struct net_device *upper, 10638 struct net_device *lower, netdev_features_t features) 10639 { 10640 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10641 netdev_features_t feature; 10642 int feature_bit; 10643 10644 for_each_netdev_feature(upper_disables, feature_bit) { 10645 feature = __NETIF_F_BIT(feature_bit); 10646 if (!(features & feature) && (lower->features & feature)) { 10647 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10648 &feature, lower->name); 10649 netdev_lock_ops(lower); 10650 lower->wanted_features &= ~feature; 10651 __netdev_update_features(lower); 10652 10653 if (unlikely(lower->features & feature)) 10654 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10655 &feature, lower->name); 10656 else 10657 netdev_features_change(lower); 10658 netdev_unlock_ops(lower); 10659 } 10660 } 10661 } 10662 10663 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10664 { 10665 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10666 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10667 bool hw_csum = features & NETIF_F_HW_CSUM; 10668 10669 return ip_csum || hw_csum; 10670 } 10671 10672 static netdev_features_t netdev_fix_features(struct net_device *dev, 10673 netdev_features_t features) 10674 { 10675 /* Fix illegal checksum combinations */ 10676 if ((features & NETIF_F_HW_CSUM) && 10677 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10678 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10679 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10680 } 10681 10682 /* TSO requires that SG is present as well. */ 10683 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10684 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10685 features &= ~NETIF_F_ALL_TSO; 10686 } 10687 10688 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10689 !(features & NETIF_F_IP_CSUM)) { 10690 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10691 features &= ~NETIF_F_TSO; 10692 features &= ~NETIF_F_TSO_ECN; 10693 } 10694 10695 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10696 !(features & NETIF_F_IPV6_CSUM)) { 10697 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10698 features &= ~NETIF_F_TSO6; 10699 } 10700 10701 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10702 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10703 features &= ~NETIF_F_TSO_MANGLEID; 10704 10705 /* TSO ECN requires that TSO is present as well. */ 10706 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10707 features &= ~NETIF_F_TSO_ECN; 10708 10709 /* Software GSO depends on SG. */ 10710 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10711 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10712 features &= ~NETIF_F_GSO; 10713 } 10714 10715 /* GSO partial features require GSO partial be set */ 10716 if ((features & dev->gso_partial_features) && 10717 !(features & NETIF_F_GSO_PARTIAL)) { 10718 netdev_dbg(dev, 10719 "Dropping partially supported GSO features since no GSO partial.\n"); 10720 features &= ~dev->gso_partial_features; 10721 } 10722 10723 if (!(features & NETIF_F_RXCSUM)) { 10724 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10725 * successfully merged by hardware must also have the 10726 * checksum verified by hardware. If the user does not 10727 * want to enable RXCSUM, logically, we should disable GRO_HW. 10728 */ 10729 if (features & NETIF_F_GRO_HW) { 10730 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10731 features &= ~NETIF_F_GRO_HW; 10732 } 10733 } 10734 10735 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10736 if (features & NETIF_F_RXFCS) { 10737 if (features & NETIF_F_LRO) { 10738 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10739 features &= ~NETIF_F_LRO; 10740 } 10741 10742 if (features & NETIF_F_GRO_HW) { 10743 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10744 features &= ~NETIF_F_GRO_HW; 10745 } 10746 } 10747 10748 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10749 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10750 features &= ~NETIF_F_LRO; 10751 } 10752 10753 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10754 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10755 features &= ~NETIF_F_HW_TLS_TX; 10756 } 10757 10758 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10759 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10760 features &= ~NETIF_F_HW_TLS_RX; 10761 } 10762 10763 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10764 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10765 features &= ~NETIF_F_GSO_UDP_L4; 10766 } 10767 10768 return features; 10769 } 10770 10771 int __netdev_update_features(struct net_device *dev) 10772 { 10773 struct net_device *upper, *lower; 10774 netdev_features_t features; 10775 struct list_head *iter; 10776 int err = -1; 10777 10778 ASSERT_RTNL(); 10779 netdev_ops_assert_locked(dev); 10780 10781 features = netdev_get_wanted_features(dev); 10782 10783 if (dev->netdev_ops->ndo_fix_features) 10784 features = dev->netdev_ops->ndo_fix_features(dev, features); 10785 10786 /* driver might be less strict about feature dependencies */ 10787 features = netdev_fix_features(dev, features); 10788 10789 /* some features can't be enabled if they're off on an upper device */ 10790 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10791 features = netdev_sync_upper_features(dev, upper, features); 10792 10793 if (dev->features == features) 10794 goto sync_lower; 10795 10796 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10797 &dev->features, &features); 10798 10799 if (dev->netdev_ops->ndo_set_features) 10800 err = dev->netdev_ops->ndo_set_features(dev, features); 10801 else 10802 err = 0; 10803 10804 if (unlikely(err < 0)) { 10805 netdev_err(dev, 10806 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10807 err, &features, &dev->features); 10808 /* return non-0 since some features might have changed and 10809 * it's better to fire a spurious notification than miss it 10810 */ 10811 return -1; 10812 } 10813 10814 sync_lower: 10815 /* some features must be disabled on lower devices when disabled 10816 * on an upper device (think: bonding master or bridge) 10817 */ 10818 netdev_for_each_lower_dev(dev, lower, iter) 10819 netdev_sync_lower_features(dev, lower, features); 10820 10821 if (!err) { 10822 netdev_features_t diff = features ^ dev->features; 10823 10824 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10825 /* udp_tunnel_{get,drop}_rx_info both need 10826 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10827 * device, or they won't do anything. 10828 * Thus we need to update dev->features 10829 * *before* calling udp_tunnel_get_rx_info, 10830 * but *after* calling udp_tunnel_drop_rx_info. 10831 */ 10832 udp_tunnel_nic_lock(dev); 10833 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10834 dev->features = features; 10835 udp_tunnel_get_rx_info(dev); 10836 } else { 10837 udp_tunnel_drop_rx_info(dev); 10838 } 10839 udp_tunnel_nic_unlock(dev); 10840 } 10841 10842 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10843 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10844 dev->features = features; 10845 err |= vlan_get_rx_ctag_filter_info(dev); 10846 } else { 10847 vlan_drop_rx_ctag_filter_info(dev); 10848 } 10849 } 10850 10851 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10852 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10853 dev->features = features; 10854 err |= vlan_get_rx_stag_filter_info(dev); 10855 } else { 10856 vlan_drop_rx_stag_filter_info(dev); 10857 } 10858 } 10859 10860 dev->features = features; 10861 } 10862 10863 return err < 0 ? 0 : 1; 10864 } 10865 10866 /** 10867 * netdev_update_features - recalculate device features 10868 * @dev: the device to check 10869 * 10870 * Recalculate dev->features set and send notifications if it 10871 * has changed. Should be called after driver or hardware dependent 10872 * conditions might have changed that influence the features. 10873 */ 10874 void netdev_update_features(struct net_device *dev) 10875 { 10876 if (__netdev_update_features(dev)) 10877 netdev_features_change(dev); 10878 } 10879 EXPORT_SYMBOL(netdev_update_features); 10880 10881 /** 10882 * netdev_change_features - recalculate device features 10883 * @dev: the device to check 10884 * 10885 * Recalculate dev->features set and send notifications even 10886 * if they have not changed. Should be called instead of 10887 * netdev_update_features() if also dev->vlan_features might 10888 * have changed to allow the changes to be propagated to stacked 10889 * VLAN devices. 10890 */ 10891 void netdev_change_features(struct net_device *dev) 10892 { 10893 __netdev_update_features(dev); 10894 netdev_features_change(dev); 10895 } 10896 EXPORT_SYMBOL(netdev_change_features); 10897 10898 /** 10899 * netif_stacked_transfer_operstate - transfer operstate 10900 * @rootdev: the root or lower level device to transfer state from 10901 * @dev: the device to transfer operstate to 10902 * 10903 * Transfer operational state from root to device. This is normally 10904 * called when a stacking relationship exists between the root 10905 * device and the device(a leaf device). 10906 */ 10907 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10908 struct net_device *dev) 10909 { 10910 if (rootdev->operstate == IF_OPER_DORMANT) 10911 netif_dormant_on(dev); 10912 else 10913 netif_dormant_off(dev); 10914 10915 if (rootdev->operstate == IF_OPER_TESTING) 10916 netif_testing_on(dev); 10917 else 10918 netif_testing_off(dev); 10919 10920 if (netif_carrier_ok(rootdev)) 10921 netif_carrier_on(dev); 10922 else 10923 netif_carrier_off(dev); 10924 } 10925 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10926 10927 static int netif_alloc_rx_queues(struct net_device *dev) 10928 { 10929 unsigned int i, count = dev->num_rx_queues; 10930 struct netdev_rx_queue *rx; 10931 size_t sz = count * sizeof(*rx); 10932 int err = 0; 10933 10934 BUG_ON(count < 1); 10935 10936 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10937 if (!rx) 10938 return -ENOMEM; 10939 10940 dev->_rx = rx; 10941 10942 for (i = 0; i < count; i++) { 10943 rx[i].dev = dev; 10944 10945 /* XDP RX-queue setup */ 10946 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10947 if (err < 0) 10948 goto err_rxq_info; 10949 } 10950 return 0; 10951 10952 err_rxq_info: 10953 /* Rollback successful reg's and free other resources */ 10954 while (i--) 10955 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10956 kvfree(dev->_rx); 10957 dev->_rx = NULL; 10958 return err; 10959 } 10960 10961 static void netif_free_rx_queues(struct net_device *dev) 10962 { 10963 unsigned int i, count = dev->num_rx_queues; 10964 10965 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10966 if (!dev->_rx) 10967 return; 10968 10969 for (i = 0; i < count; i++) 10970 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10971 10972 kvfree(dev->_rx); 10973 } 10974 10975 static void netdev_init_one_queue(struct net_device *dev, 10976 struct netdev_queue *queue, void *_unused) 10977 { 10978 /* Initialize queue lock */ 10979 spin_lock_init(&queue->_xmit_lock); 10980 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10981 queue->xmit_lock_owner = -1; 10982 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10983 queue->dev = dev; 10984 #ifdef CONFIG_BQL 10985 dql_init(&queue->dql, HZ); 10986 #endif 10987 } 10988 10989 static void netif_free_tx_queues(struct net_device *dev) 10990 { 10991 kvfree(dev->_tx); 10992 } 10993 10994 static int netif_alloc_netdev_queues(struct net_device *dev) 10995 { 10996 unsigned int count = dev->num_tx_queues; 10997 struct netdev_queue *tx; 10998 size_t sz = count * sizeof(*tx); 10999 11000 if (count < 1 || count > 0xffff) 11001 return -EINVAL; 11002 11003 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11004 if (!tx) 11005 return -ENOMEM; 11006 11007 dev->_tx = tx; 11008 11009 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 11010 spin_lock_init(&dev->tx_global_lock); 11011 11012 return 0; 11013 } 11014 11015 void netif_tx_stop_all_queues(struct net_device *dev) 11016 { 11017 unsigned int i; 11018 11019 for (i = 0; i < dev->num_tx_queues; i++) { 11020 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 11021 11022 netif_tx_stop_queue(txq); 11023 } 11024 } 11025 EXPORT_SYMBOL(netif_tx_stop_all_queues); 11026 11027 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 11028 { 11029 void __percpu *v; 11030 11031 /* Drivers implementing ndo_get_peer_dev must support tstat 11032 * accounting, so that skb_do_redirect() can bump the dev's 11033 * RX stats upon network namespace switch. 11034 */ 11035 if (dev->netdev_ops->ndo_get_peer_dev && 11036 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 11037 return -EOPNOTSUPP; 11038 11039 switch (dev->pcpu_stat_type) { 11040 case NETDEV_PCPU_STAT_NONE: 11041 return 0; 11042 case NETDEV_PCPU_STAT_LSTATS: 11043 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 11044 break; 11045 case NETDEV_PCPU_STAT_TSTATS: 11046 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 11047 break; 11048 case NETDEV_PCPU_STAT_DSTATS: 11049 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 11050 break; 11051 default: 11052 return -EINVAL; 11053 } 11054 11055 return v ? 0 : -ENOMEM; 11056 } 11057 11058 static void netdev_do_free_pcpu_stats(struct net_device *dev) 11059 { 11060 switch (dev->pcpu_stat_type) { 11061 case NETDEV_PCPU_STAT_NONE: 11062 return; 11063 case NETDEV_PCPU_STAT_LSTATS: 11064 free_percpu(dev->lstats); 11065 break; 11066 case NETDEV_PCPU_STAT_TSTATS: 11067 free_percpu(dev->tstats); 11068 break; 11069 case NETDEV_PCPU_STAT_DSTATS: 11070 free_percpu(dev->dstats); 11071 break; 11072 } 11073 } 11074 11075 static void netdev_free_phy_link_topology(struct net_device *dev) 11076 { 11077 struct phy_link_topology *topo = dev->link_topo; 11078 11079 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 11080 xa_destroy(&topo->phys); 11081 kfree(topo); 11082 dev->link_topo = NULL; 11083 } 11084 } 11085 11086 /** 11087 * register_netdevice() - register a network device 11088 * @dev: device to register 11089 * 11090 * Take a prepared network device structure and make it externally accessible. 11091 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 11092 * Callers must hold the rtnl lock - you may want register_netdev() 11093 * instead of this. 11094 */ 11095 int register_netdevice(struct net_device *dev) 11096 { 11097 int ret; 11098 struct net *net = dev_net(dev); 11099 11100 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 11101 NETDEV_FEATURE_COUNT); 11102 BUG_ON(dev_boot_phase); 11103 ASSERT_RTNL(); 11104 11105 might_sleep(); 11106 11107 /* When net_device's are persistent, this will be fatal. */ 11108 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 11109 BUG_ON(!net); 11110 11111 ret = ethtool_check_ops(dev->ethtool_ops); 11112 if (ret) 11113 return ret; 11114 11115 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 11116 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 11117 mutex_init(&dev->ethtool->rss_lock); 11118 11119 spin_lock_init(&dev->addr_list_lock); 11120 netdev_set_addr_lockdep_class(dev); 11121 11122 ret = dev_get_valid_name(net, dev, dev->name); 11123 if (ret < 0) 11124 goto out; 11125 11126 ret = -ENOMEM; 11127 dev->name_node = netdev_name_node_head_alloc(dev); 11128 if (!dev->name_node) 11129 goto out; 11130 11131 /* Init, if this function is available */ 11132 if (dev->netdev_ops->ndo_init) { 11133 ret = dev->netdev_ops->ndo_init(dev); 11134 if (ret) { 11135 if (ret > 0) 11136 ret = -EIO; 11137 goto err_free_name; 11138 } 11139 } 11140 11141 if (((dev->hw_features | dev->features) & 11142 NETIF_F_HW_VLAN_CTAG_FILTER) && 11143 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11144 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11145 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11146 ret = -EINVAL; 11147 goto err_uninit; 11148 } 11149 11150 ret = netdev_do_alloc_pcpu_stats(dev); 11151 if (ret) 11152 goto err_uninit; 11153 11154 ret = dev_index_reserve(net, dev->ifindex); 11155 if (ret < 0) 11156 goto err_free_pcpu; 11157 dev->ifindex = ret; 11158 11159 /* Transfer changeable features to wanted_features and enable 11160 * software offloads (GSO and GRO). 11161 */ 11162 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11163 dev->features |= NETIF_F_SOFT_FEATURES; 11164 11165 if (dev->udp_tunnel_nic_info) { 11166 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11167 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11168 } 11169 11170 dev->wanted_features = dev->features & dev->hw_features; 11171 11172 if (!(dev->flags & IFF_LOOPBACK)) 11173 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11174 11175 /* If IPv4 TCP segmentation offload is supported we should also 11176 * allow the device to enable segmenting the frame with the option 11177 * of ignoring a static IP ID value. This doesn't enable the 11178 * feature itself but allows the user to enable it later. 11179 */ 11180 if (dev->hw_features & NETIF_F_TSO) 11181 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11182 if (dev->vlan_features & NETIF_F_TSO) 11183 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11184 if (dev->mpls_features & NETIF_F_TSO) 11185 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11186 if (dev->hw_enc_features & NETIF_F_TSO) 11187 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11188 11189 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11190 */ 11191 dev->vlan_features |= NETIF_F_HIGHDMA; 11192 11193 /* Make NETIF_F_SG inheritable to tunnel devices. 11194 */ 11195 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11196 11197 /* Make NETIF_F_SG inheritable to MPLS. 11198 */ 11199 dev->mpls_features |= NETIF_F_SG; 11200 11201 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11202 ret = notifier_to_errno(ret); 11203 if (ret) 11204 goto err_ifindex_release; 11205 11206 ret = netdev_register_kobject(dev); 11207 11208 netdev_lock(dev); 11209 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11210 netdev_unlock(dev); 11211 11212 if (ret) 11213 goto err_uninit_notify; 11214 11215 netdev_lock_ops(dev); 11216 __netdev_update_features(dev); 11217 netdev_unlock_ops(dev); 11218 11219 /* 11220 * Default initial state at registry is that the 11221 * device is present. 11222 */ 11223 11224 set_bit(__LINK_STATE_PRESENT, &dev->state); 11225 11226 linkwatch_init_dev(dev); 11227 11228 dev_init_scheduler(dev); 11229 11230 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11231 list_netdevice(dev); 11232 11233 add_device_randomness(dev->dev_addr, dev->addr_len); 11234 11235 /* If the device has permanent device address, driver should 11236 * set dev_addr and also addr_assign_type should be set to 11237 * NET_ADDR_PERM (default value). 11238 */ 11239 if (dev->addr_assign_type == NET_ADDR_PERM) 11240 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11241 11242 /* Notify protocols, that a new device appeared. */ 11243 netdev_lock_ops(dev); 11244 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11245 netdev_unlock_ops(dev); 11246 ret = notifier_to_errno(ret); 11247 if (ret) { 11248 /* Expect explicit free_netdev() on failure */ 11249 dev->needs_free_netdev = false; 11250 unregister_netdevice_queue(dev, NULL); 11251 goto out; 11252 } 11253 /* 11254 * Prevent userspace races by waiting until the network 11255 * device is fully setup before sending notifications. 11256 */ 11257 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 11258 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11259 11260 out: 11261 return ret; 11262 11263 err_uninit_notify: 11264 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11265 err_ifindex_release: 11266 dev_index_release(net, dev->ifindex); 11267 err_free_pcpu: 11268 netdev_do_free_pcpu_stats(dev); 11269 err_uninit: 11270 if (dev->netdev_ops->ndo_uninit) 11271 dev->netdev_ops->ndo_uninit(dev); 11272 if (dev->priv_destructor) 11273 dev->priv_destructor(dev); 11274 err_free_name: 11275 netdev_name_node_free(dev->name_node); 11276 goto out; 11277 } 11278 EXPORT_SYMBOL(register_netdevice); 11279 11280 /* Initialize the core of a dummy net device. 11281 * The setup steps dummy netdevs need which normal netdevs get by going 11282 * through register_netdevice(). 11283 */ 11284 static void init_dummy_netdev(struct net_device *dev) 11285 { 11286 /* make sure we BUG if trying to hit standard 11287 * register/unregister code path 11288 */ 11289 dev->reg_state = NETREG_DUMMY; 11290 11291 /* a dummy interface is started by default */ 11292 set_bit(__LINK_STATE_PRESENT, &dev->state); 11293 set_bit(__LINK_STATE_START, &dev->state); 11294 11295 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11296 * because users of this 'device' dont need to change 11297 * its refcount. 11298 */ 11299 } 11300 11301 /** 11302 * register_netdev - register a network device 11303 * @dev: device to register 11304 * 11305 * Take a completed network device structure and add it to the kernel 11306 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11307 * chain. 0 is returned on success. A negative errno code is returned 11308 * on a failure to set up the device, or if the name is a duplicate. 11309 * 11310 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11311 * and expands the device name if you passed a format string to 11312 * alloc_netdev. 11313 */ 11314 int register_netdev(struct net_device *dev) 11315 { 11316 struct net *net = dev_net(dev); 11317 int err; 11318 11319 if (rtnl_net_lock_killable(net)) 11320 return -EINTR; 11321 11322 err = register_netdevice(dev); 11323 11324 rtnl_net_unlock(net); 11325 11326 return err; 11327 } 11328 EXPORT_SYMBOL(register_netdev); 11329 11330 int netdev_refcnt_read(const struct net_device *dev) 11331 { 11332 #ifdef CONFIG_PCPU_DEV_REFCNT 11333 int i, refcnt = 0; 11334 11335 for_each_possible_cpu(i) 11336 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11337 return refcnt; 11338 #else 11339 return refcount_read(&dev->dev_refcnt); 11340 #endif 11341 } 11342 EXPORT_SYMBOL(netdev_refcnt_read); 11343 11344 int netdev_unregister_timeout_secs __read_mostly = 10; 11345 11346 #define WAIT_REFS_MIN_MSECS 1 11347 #define WAIT_REFS_MAX_MSECS 250 11348 /** 11349 * netdev_wait_allrefs_any - wait until all references are gone. 11350 * @list: list of net_devices to wait on 11351 * 11352 * This is called when unregistering network devices. 11353 * 11354 * Any protocol or device that holds a reference should register 11355 * for netdevice notification, and cleanup and put back the 11356 * reference if they receive an UNREGISTER event. 11357 * We can get stuck here if buggy protocols don't correctly 11358 * call dev_put. 11359 */ 11360 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11361 { 11362 unsigned long rebroadcast_time, warning_time; 11363 struct net_device *dev; 11364 int wait = 0; 11365 11366 rebroadcast_time = warning_time = jiffies; 11367 11368 list_for_each_entry(dev, list, todo_list) 11369 if (netdev_refcnt_read(dev) == 1) 11370 return dev; 11371 11372 while (true) { 11373 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11374 rtnl_lock(); 11375 11376 /* Rebroadcast unregister notification */ 11377 list_for_each_entry(dev, list, todo_list) 11378 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11379 11380 __rtnl_unlock(); 11381 rcu_barrier(); 11382 rtnl_lock(); 11383 11384 list_for_each_entry(dev, list, todo_list) 11385 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11386 &dev->state)) { 11387 /* We must not have linkwatch events 11388 * pending on unregister. If this 11389 * happens, we simply run the queue 11390 * unscheduled, resulting in a noop 11391 * for this device. 11392 */ 11393 linkwatch_run_queue(); 11394 break; 11395 } 11396 11397 __rtnl_unlock(); 11398 11399 rebroadcast_time = jiffies; 11400 } 11401 11402 rcu_barrier(); 11403 11404 if (!wait) { 11405 wait = WAIT_REFS_MIN_MSECS; 11406 } else { 11407 msleep(wait); 11408 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11409 } 11410 11411 list_for_each_entry(dev, list, todo_list) 11412 if (netdev_refcnt_read(dev) == 1) 11413 return dev; 11414 11415 if (time_after(jiffies, warning_time + 11416 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11417 list_for_each_entry(dev, list, todo_list) { 11418 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11419 dev->name, netdev_refcnt_read(dev)); 11420 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11421 } 11422 11423 warning_time = jiffies; 11424 } 11425 } 11426 } 11427 11428 /* The sequence is: 11429 * 11430 * rtnl_lock(); 11431 * ... 11432 * register_netdevice(x1); 11433 * register_netdevice(x2); 11434 * ... 11435 * unregister_netdevice(y1); 11436 * unregister_netdevice(y2); 11437 * ... 11438 * rtnl_unlock(); 11439 * free_netdev(y1); 11440 * free_netdev(y2); 11441 * 11442 * We are invoked by rtnl_unlock(). 11443 * This allows us to deal with problems: 11444 * 1) We can delete sysfs objects which invoke hotplug 11445 * without deadlocking with linkwatch via keventd. 11446 * 2) Since we run with the RTNL semaphore not held, we can sleep 11447 * safely in order to wait for the netdev refcnt to drop to zero. 11448 * 11449 * We must not return until all unregister events added during 11450 * the interval the lock was held have been completed. 11451 */ 11452 void netdev_run_todo(void) 11453 { 11454 struct net_device *dev, *tmp; 11455 struct list_head list; 11456 int cnt; 11457 #ifdef CONFIG_LOCKDEP 11458 struct list_head unlink_list; 11459 11460 list_replace_init(&net_unlink_list, &unlink_list); 11461 11462 while (!list_empty(&unlink_list)) { 11463 dev = list_first_entry(&unlink_list, struct net_device, 11464 unlink_list); 11465 list_del_init(&dev->unlink_list); 11466 dev->nested_level = dev->lower_level - 1; 11467 } 11468 #endif 11469 11470 /* Snapshot list, allow later requests */ 11471 list_replace_init(&net_todo_list, &list); 11472 11473 __rtnl_unlock(); 11474 11475 /* Wait for rcu callbacks to finish before next phase */ 11476 if (!list_empty(&list)) 11477 rcu_barrier(); 11478 11479 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11480 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11481 netdev_WARN(dev, "run_todo but not unregistering\n"); 11482 list_del(&dev->todo_list); 11483 continue; 11484 } 11485 11486 netdev_lock(dev); 11487 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11488 netdev_unlock(dev); 11489 linkwatch_sync_dev(dev); 11490 } 11491 11492 cnt = 0; 11493 while (!list_empty(&list)) { 11494 dev = netdev_wait_allrefs_any(&list); 11495 list_del(&dev->todo_list); 11496 11497 /* paranoia */ 11498 BUG_ON(netdev_refcnt_read(dev) != 1); 11499 BUG_ON(!list_empty(&dev->ptype_all)); 11500 BUG_ON(!list_empty(&dev->ptype_specific)); 11501 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11502 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11503 11504 netdev_do_free_pcpu_stats(dev); 11505 if (dev->priv_destructor) 11506 dev->priv_destructor(dev); 11507 if (dev->needs_free_netdev) 11508 free_netdev(dev); 11509 11510 cnt++; 11511 11512 /* Free network device */ 11513 kobject_put(&dev->dev.kobj); 11514 } 11515 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11516 wake_up(&netdev_unregistering_wq); 11517 } 11518 11519 /* Collate per-cpu network dstats statistics 11520 * 11521 * Read per-cpu network statistics from dev->dstats and populate the related 11522 * fields in @s. 11523 */ 11524 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11525 const struct pcpu_dstats __percpu *dstats) 11526 { 11527 int cpu; 11528 11529 for_each_possible_cpu(cpu) { 11530 u64 rx_packets, rx_bytes, rx_drops; 11531 u64 tx_packets, tx_bytes, tx_drops; 11532 const struct pcpu_dstats *stats; 11533 unsigned int start; 11534 11535 stats = per_cpu_ptr(dstats, cpu); 11536 do { 11537 start = u64_stats_fetch_begin(&stats->syncp); 11538 rx_packets = u64_stats_read(&stats->rx_packets); 11539 rx_bytes = u64_stats_read(&stats->rx_bytes); 11540 rx_drops = u64_stats_read(&stats->rx_drops); 11541 tx_packets = u64_stats_read(&stats->tx_packets); 11542 tx_bytes = u64_stats_read(&stats->tx_bytes); 11543 tx_drops = u64_stats_read(&stats->tx_drops); 11544 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11545 11546 s->rx_packets += rx_packets; 11547 s->rx_bytes += rx_bytes; 11548 s->rx_dropped += rx_drops; 11549 s->tx_packets += tx_packets; 11550 s->tx_bytes += tx_bytes; 11551 s->tx_dropped += tx_drops; 11552 } 11553 } 11554 11555 /* ndo_get_stats64 implementation for dtstats-based accounting. 11556 * 11557 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11558 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11559 */ 11560 static void dev_get_dstats64(const struct net_device *dev, 11561 struct rtnl_link_stats64 *s) 11562 { 11563 netdev_stats_to_stats64(s, &dev->stats); 11564 dev_fetch_dstats(s, dev->dstats); 11565 } 11566 11567 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11568 * all the same fields in the same order as net_device_stats, with only 11569 * the type differing, but rtnl_link_stats64 may have additional fields 11570 * at the end for newer counters. 11571 */ 11572 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11573 const struct net_device_stats *netdev_stats) 11574 { 11575 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11576 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11577 u64 *dst = (u64 *)stats64; 11578 11579 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11580 for (i = 0; i < n; i++) 11581 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11582 /* zero out counters that only exist in rtnl_link_stats64 */ 11583 memset((char *)stats64 + n * sizeof(u64), 0, 11584 sizeof(*stats64) - n * sizeof(u64)); 11585 } 11586 EXPORT_SYMBOL(netdev_stats_to_stats64); 11587 11588 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11589 struct net_device *dev) 11590 { 11591 struct net_device_core_stats __percpu *p; 11592 11593 p = alloc_percpu_gfp(struct net_device_core_stats, 11594 GFP_ATOMIC | __GFP_NOWARN); 11595 11596 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11597 free_percpu(p); 11598 11599 /* This READ_ONCE() pairs with the cmpxchg() above */ 11600 return READ_ONCE(dev->core_stats); 11601 } 11602 11603 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11604 { 11605 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11606 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11607 unsigned long __percpu *field; 11608 11609 if (unlikely(!p)) { 11610 p = netdev_core_stats_alloc(dev); 11611 if (!p) 11612 return; 11613 } 11614 11615 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11616 this_cpu_inc(*field); 11617 } 11618 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11619 11620 /** 11621 * dev_get_stats - get network device statistics 11622 * @dev: device to get statistics from 11623 * @storage: place to store stats 11624 * 11625 * Get network statistics from device. Return @storage. 11626 * The device driver may provide its own method by setting 11627 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11628 * otherwise the internal statistics structure is used. 11629 */ 11630 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11631 struct rtnl_link_stats64 *storage) 11632 { 11633 const struct net_device_ops *ops = dev->netdev_ops; 11634 const struct net_device_core_stats __percpu *p; 11635 11636 /* 11637 * IPv{4,6} and udp tunnels share common stat helpers and use 11638 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11639 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11640 */ 11641 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11642 offsetof(struct pcpu_dstats, rx_bytes)); 11643 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11644 offsetof(struct pcpu_dstats, rx_packets)); 11645 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11646 offsetof(struct pcpu_dstats, tx_bytes)); 11647 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11648 offsetof(struct pcpu_dstats, tx_packets)); 11649 11650 if (ops->ndo_get_stats64) { 11651 memset(storage, 0, sizeof(*storage)); 11652 ops->ndo_get_stats64(dev, storage); 11653 } else if (ops->ndo_get_stats) { 11654 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11655 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11656 dev_get_tstats64(dev, storage); 11657 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11658 dev_get_dstats64(dev, storage); 11659 } else { 11660 netdev_stats_to_stats64(storage, &dev->stats); 11661 } 11662 11663 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11664 p = READ_ONCE(dev->core_stats); 11665 if (p) { 11666 const struct net_device_core_stats *core_stats; 11667 int i; 11668 11669 for_each_possible_cpu(i) { 11670 core_stats = per_cpu_ptr(p, i); 11671 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11672 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11673 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11674 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11675 } 11676 } 11677 return storage; 11678 } 11679 EXPORT_SYMBOL(dev_get_stats); 11680 11681 /** 11682 * dev_fetch_sw_netstats - get per-cpu network device statistics 11683 * @s: place to store stats 11684 * @netstats: per-cpu network stats to read from 11685 * 11686 * Read per-cpu network statistics and populate the related fields in @s. 11687 */ 11688 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11689 const struct pcpu_sw_netstats __percpu *netstats) 11690 { 11691 int cpu; 11692 11693 for_each_possible_cpu(cpu) { 11694 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11695 const struct pcpu_sw_netstats *stats; 11696 unsigned int start; 11697 11698 stats = per_cpu_ptr(netstats, cpu); 11699 do { 11700 start = u64_stats_fetch_begin(&stats->syncp); 11701 rx_packets = u64_stats_read(&stats->rx_packets); 11702 rx_bytes = u64_stats_read(&stats->rx_bytes); 11703 tx_packets = u64_stats_read(&stats->tx_packets); 11704 tx_bytes = u64_stats_read(&stats->tx_bytes); 11705 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11706 11707 s->rx_packets += rx_packets; 11708 s->rx_bytes += rx_bytes; 11709 s->tx_packets += tx_packets; 11710 s->tx_bytes += tx_bytes; 11711 } 11712 } 11713 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11714 11715 /** 11716 * dev_get_tstats64 - ndo_get_stats64 implementation 11717 * @dev: device to get statistics from 11718 * @s: place to store stats 11719 * 11720 * Populate @s from dev->stats and dev->tstats. Can be used as 11721 * ndo_get_stats64() callback. 11722 */ 11723 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11724 { 11725 netdev_stats_to_stats64(s, &dev->stats); 11726 dev_fetch_sw_netstats(s, dev->tstats); 11727 } 11728 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11729 11730 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11731 { 11732 struct netdev_queue *queue = dev_ingress_queue(dev); 11733 11734 #ifdef CONFIG_NET_CLS_ACT 11735 if (queue) 11736 return queue; 11737 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11738 if (!queue) 11739 return NULL; 11740 netdev_init_one_queue(dev, queue, NULL); 11741 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11742 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11743 rcu_assign_pointer(dev->ingress_queue, queue); 11744 #endif 11745 return queue; 11746 } 11747 11748 static const struct ethtool_ops default_ethtool_ops; 11749 11750 void netdev_set_default_ethtool_ops(struct net_device *dev, 11751 const struct ethtool_ops *ops) 11752 { 11753 if (dev->ethtool_ops == &default_ethtool_ops) 11754 dev->ethtool_ops = ops; 11755 } 11756 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11757 11758 /** 11759 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11760 * @dev: netdev to enable the IRQ coalescing on 11761 * 11762 * Sets a conservative default for SW IRQ coalescing. Users can use 11763 * sysfs attributes to override the default values. 11764 */ 11765 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11766 { 11767 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11768 11769 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11770 netdev_set_gro_flush_timeout(dev, 20000); 11771 netdev_set_defer_hard_irqs(dev, 1); 11772 } 11773 } 11774 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11775 11776 /** 11777 * alloc_netdev_mqs - allocate network device 11778 * @sizeof_priv: size of private data to allocate space for 11779 * @name: device name format string 11780 * @name_assign_type: origin of device name 11781 * @setup: callback to initialize device 11782 * @txqs: the number of TX subqueues to allocate 11783 * @rxqs: the number of RX subqueues to allocate 11784 * 11785 * Allocates a struct net_device with private data area for driver use 11786 * and performs basic initialization. Also allocates subqueue structs 11787 * for each queue on the device. 11788 */ 11789 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11790 unsigned char name_assign_type, 11791 void (*setup)(struct net_device *), 11792 unsigned int txqs, unsigned int rxqs) 11793 { 11794 struct net_device *dev; 11795 size_t napi_config_sz; 11796 unsigned int maxqs; 11797 11798 BUG_ON(strlen(name) >= sizeof(dev->name)); 11799 11800 if (txqs < 1) { 11801 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11802 return NULL; 11803 } 11804 11805 if (rxqs < 1) { 11806 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11807 return NULL; 11808 } 11809 11810 maxqs = max(txqs, rxqs); 11811 11812 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11813 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11814 if (!dev) 11815 return NULL; 11816 11817 dev->priv_len = sizeof_priv; 11818 11819 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev"); 11820 #ifdef CONFIG_PCPU_DEV_REFCNT 11821 dev->pcpu_refcnt = alloc_percpu(int); 11822 if (!dev->pcpu_refcnt) 11823 goto free_dev; 11824 __dev_hold(dev); 11825 #else 11826 refcount_set(&dev->dev_refcnt, 1); 11827 #endif 11828 11829 if (dev_addr_init(dev)) 11830 goto free_pcpu; 11831 11832 dev_mc_init(dev); 11833 dev_uc_init(dev); 11834 11835 dev_net_set(dev, &init_net); 11836 11837 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11838 dev->xdp_zc_max_segs = 1; 11839 dev->gso_max_segs = GSO_MAX_SEGS; 11840 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11841 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11842 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11843 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11844 dev->tso_max_segs = TSO_MAX_SEGS; 11845 dev->upper_level = 1; 11846 dev->lower_level = 1; 11847 #ifdef CONFIG_LOCKDEP 11848 dev->nested_level = 0; 11849 INIT_LIST_HEAD(&dev->unlink_list); 11850 #endif 11851 11852 INIT_LIST_HEAD(&dev->napi_list); 11853 INIT_LIST_HEAD(&dev->unreg_list); 11854 INIT_LIST_HEAD(&dev->close_list); 11855 INIT_LIST_HEAD(&dev->link_watch_list); 11856 INIT_LIST_HEAD(&dev->adj_list.upper); 11857 INIT_LIST_HEAD(&dev->adj_list.lower); 11858 INIT_LIST_HEAD(&dev->ptype_all); 11859 INIT_LIST_HEAD(&dev->ptype_specific); 11860 INIT_LIST_HEAD(&dev->net_notifier_list); 11861 #ifdef CONFIG_NET_SCHED 11862 hash_init(dev->qdisc_hash); 11863 #endif 11864 11865 mutex_init(&dev->lock); 11866 11867 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11868 setup(dev); 11869 11870 if (!dev->tx_queue_len) { 11871 dev->priv_flags |= IFF_NO_QUEUE; 11872 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11873 } 11874 11875 dev->num_tx_queues = txqs; 11876 dev->real_num_tx_queues = txqs; 11877 if (netif_alloc_netdev_queues(dev)) 11878 goto free_all; 11879 11880 dev->num_rx_queues = rxqs; 11881 dev->real_num_rx_queues = rxqs; 11882 if (netif_alloc_rx_queues(dev)) 11883 goto free_all; 11884 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11885 if (!dev->ethtool) 11886 goto free_all; 11887 11888 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 11889 if (!dev->cfg) 11890 goto free_all; 11891 dev->cfg_pending = dev->cfg; 11892 11893 dev->num_napi_configs = maxqs; 11894 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 11895 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 11896 if (!dev->napi_config) 11897 goto free_all; 11898 11899 strscpy(dev->name, name); 11900 dev->name_assign_type = name_assign_type; 11901 dev->group = INIT_NETDEV_GROUP; 11902 if (!dev->ethtool_ops) 11903 dev->ethtool_ops = &default_ethtool_ops; 11904 11905 nf_hook_netdev_init(dev); 11906 11907 return dev; 11908 11909 free_all: 11910 free_netdev(dev); 11911 return NULL; 11912 11913 free_pcpu: 11914 #ifdef CONFIG_PCPU_DEV_REFCNT 11915 free_percpu(dev->pcpu_refcnt); 11916 free_dev: 11917 #endif 11918 kvfree(dev); 11919 return NULL; 11920 } 11921 EXPORT_SYMBOL(alloc_netdev_mqs); 11922 11923 static void netdev_napi_exit(struct net_device *dev) 11924 { 11925 if (!list_empty(&dev->napi_list)) { 11926 struct napi_struct *p, *n; 11927 11928 netdev_lock(dev); 11929 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11930 __netif_napi_del_locked(p); 11931 netdev_unlock(dev); 11932 11933 synchronize_net(); 11934 } 11935 11936 kvfree(dev->napi_config); 11937 } 11938 11939 /** 11940 * free_netdev - free network device 11941 * @dev: device 11942 * 11943 * This function does the last stage of destroying an allocated device 11944 * interface. The reference to the device object is released. If this 11945 * is the last reference then it will be freed.Must be called in process 11946 * context. 11947 */ 11948 void free_netdev(struct net_device *dev) 11949 { 11950 might_sleep(); 11951 11952 /* When called immediately after register_netdevice() failed the unwind 11953 * handling may still be dismantling the device. Handle that case by 11954 * deferring the free. 11955 */ 11956 if (dev->reg_state == NETREG_UNREGISTERING) { 11957 ASSERT_RTNL(); 11958 dev->needs_free_netdev = true; 11959 return; 11960 } 11961 11962 WARN_ON(dev->cfg != dev->cfg_pending); 11963 kfree(dev->cfg); 11964 kfree(dev->ethtool); 11965 netif_free_tx_queues(dev); 11966 netif_free_rx_queues(dev); 11967 11968 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11969 11970 /* Flush device addresses */ 11971 dev_addr_flush(dev); 11972 11973 netdev_napi_exit(dev); 11974 11975 netif_del_cpu_rmap(dev); 11976 11977 ref_tracker_dir_exit(&dev->refcnt_tracker); 11978 #ifdef CONFIG_PCPU_DEV_REFCNT 11979 free_percpu(dev->pcpu_refcnt); 11980 dev->pcpu_refcnt = NULL; 11981 #endif 11982 free_percpu(dev->core_stats); 11983 dev->core_stats = NULL; 11984 free_percpu(dev->xdp_bulkq); 11985 dev->xdp_bulkq = NULL; 11986 11987 netdev_free_phy_link_topology(dev); 11988 11989 mutex_destroy(&dev->lock); 11990 11991 /* Compatibility with error handling in drivers */ 11992 if (dev->reg_state == NETREG_UNINITIALIZED || 11993 dev->reg_state == NETREG_DUMMY) { 11994 kvfree(dev); 11995 return; 11996 } 11997 11998 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11999 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 12000 12001 /* will free via device release */ 12002 put_device(&dev->dev); 12003 } 12004 EXPORT_SYMBOL(free_netdev); 12005 12006 /** 12007 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 12008 * @sizeof_priv: size of private data to allocate space for 12009 * 12010 * Return: the allocated net_device on success, NULL otherwise 12011 */ 12012 struct net_device *alloc_netdev_dummy(int sizeof_priv) 12013 { 12014 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 12015 init_dummy_netdev); 12016 } 12017 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 12018 12019 /** 12020 * synchronize_net - Synchronize with packet receive processing 12021 * 12022 * Wait for packets currently being received to be done. 12023 * Does not block later packets from starting. 12024 */ 12025 void synchronize_net(void) 12026 { 12027 might_sleep(); 12028 if (from_cleanup_net() || rtnl_is_locked()) 12029 synchronize_rcu_expedited(); 12030 else 12031 synchronize_rcu(); 12032 } 12033 EXPORT_SYMBOL(synchronize_net); 12034 12035 static void netdev_rss_contexts_free(struct net_device *dev) 12036 { 12037 struct ethtool_rxfh_context *ctx; 12038 unsigned long context; 12039 12040 mutex_lock(&dev->ethtool->rss_lock); 12041 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 12042 xa_erase(&dev->ethtool->rss_ctx, context); 12043 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL); 12044 kfree(ctx); 12045 } 12046 xa_destroy(&dev->ethtool->rss_ctx); 12047 mutex_unlock(&dev->ethtool->rss_lock); 12048 } 12049 12050 /** 12051 * unregister_netdevice_queue - remove device from the kernel 12052 * @dev: device 12053 * @head: list 12054 * 12055 * This function shuts down a device interface and removes it 12056 * from the kernel tables. 12057 * If head not NULL, device is queued to be unregistered later. 12058 * 12059 * Callers must hold the rtnl semaphore. You may want 12060 * unregister_netdev() instead of this. 12061 */ 12062 12063 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 12064 { 12065 ASSERT_RTNL(); 12066 12067 if (head) { 12068 list_move_tail(&dev->unreg_list, head); 12069 } else { 12070 LIST_HEAD(single); 12071 12072 list_add(&dev->unreg_list, &single); 12073 unregister_netdevice_many(&single); 12074 } 12075 } 12076 EXPORT_SYMBOL(unregister_netdevice_queue); 12077 12078 static void dev_memory_provider_uninstall(struct net_device *dev) 12079 { 12080 unsigned int i; 12081 12082 for (i = 0; i < dev->real_num_rx_queues; i++) { 12083 struct netdev_rx_queue *rxq = &dev->_rx[i]; 12084 struct pp_memory_provider_params *p = &rxq->mp_params; 12085 12086 if (p->mp_ops && p->mp_ops->uninstall) 12087 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 12088 } 12089 } 12090 12091 void unregister_netdevice_many_notify(struct list_head *head, 12092 u32 portid, const struct nlmsghdr *nlh) 12093 { 12094 struct net_device *dev, *tmp; 12095 LIST_HEAD(close_head); 12096 int cnt = 0; 12097 12098 BUG_ON(dev_boot_phase); 12099 ASSERT_RTNL(); 12100 12101 if (list_empty(head)) 12102 return; 12103 12104 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 12105 /* Some devices call without registering 12106 * for initialization unwind. Remove those 12107 * devices and proceed with the remaining. 12108 */ 12109 if (dev->reg_state == NETREG_UNINITIALIZED) { 12110 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 12111 dev->name, dev); 12112 12113 WARN_ON(1); 12114 list_del(&dev->unreg_list); 12115 continue; 12116 } 12117 dev->dismantle = true; 12118 BUG_ON(dev->reg_state != NETREG_REGISTERED); 12119 } 12120 12121 /* If device is running, close it first. Start with ops locked... */ 12122 list_for_each_entry(dev, head, unreg_list) { 12123 if (netdev_need_ops_lock(dev)) { 12124 list_add_tail(&dev->close_list, &close_head); 12125 netdev_lock(dev); 12126 } 12127 } 12128 netif_close_many(&close_head, true); 12129 /* ... now unlock them and go over the rest. */ 12130 list_for_each_entry(dev, head, unreg_list) { 12131 if (netdev_need_ops_lock(dev)) 12132 netdev_unlock(dev); 12133 else 12134 list_add_tail(&dev->close_list, &close_head); 12135 } 12136 netif_close_many(&close_head, true); 12137 12138 list_for_each_entry(dev, head, unreg_list) { 12139 /* And unlink it from device chain. */ 12140 unlist_netdevice(dev); 12141 netdev_lock(dev); 12142 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12143 netdev_unlock(dev); 12144 } 12145 flush_all_backlogs(); 12146 12147 synchronize_net(); 12148 12149 list_for_each_entry(dev, head, unreg_list) { 12150 struct sk_buff *skb = NULL; 12151 12152 /* Shutdown queueing discipline. */ 12153 netdev_lock_ops(dev); 12154 dev_shutdown(dev); 12155 dev_tcx_uninstall(dev); 12156 dev_xdp_uninstall(dev); 12157 dev_memory_provider_uninstall(dev); 12158 netdev_unlock_ops(dev); 12159 bpf_dev_bound_netdev_unregister(dev); 12160 12161 netdev_offload_xstats_disable_all(dev); 12162 12163 /* Notify protocols, that we are about to destroy 12164 * this device. They should clean all the things. 12165 */ 12166 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12167 12168 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 12169 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12170 GFP_KERNEL, NULL, 0, 12171 portid, nlh); 12172 12173 /* 12174 * Flush the unicast and multicast chains 12175 */ 12176 dev_uc_flush(dev); 12177 dev_mc_flush(dev); 12178 12179 netdev_name_node_alt_flush(dev); 12180 netdev_name_node_free(dev->name_node); 12181 12182 netdev_rss_contexts_free(dev); 12183 12184 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12185 12186 if (dev->netdev_ops->ndo_uninit) 12187 dev->netdev_ops->ndo_uninit(dev); 12188 12189 mutex_destroy(&dev->ethtool->rss_lock); 12190 12191 net_shaper_flush_netdev(dev); 12192 12193 if (skb) 12194 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12195 12196 /* Notifier chain MUST detach us all upper devices. */ 12197 WARN_ON(netdev_has_any_upper_dev(dev)); 12198 WARN_ON(netdev_has_any_lower_dev(dev)); 12199 12200 /* Remove entries from kobject tree */ 12201 netdev_unregister_kobject(dev); 12202 #ifdef CONFIG_XPS 12203 /* Remove XPS queueing entries */ 12204 netif_reset_xps_queues_gt(dev, 0); 12205 #endif 12206 } 12207 12208 synchronize_net(); 12209 12210 list_for_each_entry(dev, head, unreg_list) { 12211 netdev_put(dev, &dev->dev_registered_tracker); 12212 net_set_todo(dev); 12213 cnt++; 12214 } 12215 atomic_add(cnt, &dev_unreg_count); 12216 12217 list_del(head); 12218 } 12219 12220 /** 12221 * unregister_netdevice_many - unregister many devices 12222 * @head: list of devices 12223 * 12224 * Note: As most callers use a stack allocated list_head, 12225 * we force a list_del() to make sure stack won't be corrupted later. 12226 */ 12227 void unregister_netdevice_many(struct list_head *head) 12228 { 12229 unregister_netdevice_many_notify(head, 0, NULL); 12230 } 12231 EXPORT_SYMBOL(unregister_netdevice_many); 12232 12233 /** 12234 * unregister_netdev - remove device from the kernel 12235 * @dev: device 12236 * 12237 * This function shuts down a device interface and removes it 12238 * from the kernel tables. 12239 * 12240 * This is just a wrapper for unregister_netdevice that takes 12241 * the rtnl semaphore. In general you want to use this and not 12242 * unregister_netdevice. 12243 */ 12244 void unregister_netdev(struct net_device *dev) 12245 { 12246 rtnl_net_dev_lock(dev); 12247 unregister_netdevice(dev); 12248 rtnl_net_dev_unlock(dev); 12249 } 12250 EXPORT_SYMBOL(unregister_netdev); 12251 12252 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12253 const char *pat, int new_ifindex, 12254 struct netlink_ext_ack *extack) 12255 { 12256 struct netdev_name_node *name_node; 12257 struct net *net_old = dev_net(dev); 12258 char new_name[IFNAMSIZ] = {}; 12259 int err, new_nsid; 12260 12261 ASSERT_RTNL(); 12262 12263 /* Don't allow namespace local devices to be moved. */ 12264 err = -EINVAL; 12265 if (dev->netns_immutable) { 12266 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12267 goto out; 12268 } 12269 12270 /* Ensure the device has been registered */ 12271 if (dev->reg_state != NETREG_REGISTERED) { 12272 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12273 goto out; 12274 } 12275 12276 /* Get out if there is nothing todo */ 12277 err = 0; 12278 if (net_eq(net_old, net)) 12279 goto out; 12280 12281 /* Pick the destination device name, and ensure 12282 * we can use it in the destination network namespace. 12283 */ 12284 err = -EEXIST; 12285 if (netdev_name_in_use(net, dev->name)) { 12286 /* We get here if we can't use the current device name */ 12287 if (!pat) { 12288 NL_SET_ERR_MSG(extack, 12289 "An interface with the same name exists in the target netns"); 12290 goto out; 12291 } 12292 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12293 if (err < 0) { 12294 NL_SET_ERR_MSG_FMT(extack, 12295 "Unable to use '%s' for the new interface name in the target netns", 12296 pat); 12297 goto out; 12298 } 12299 } 12300 /* Check that none of the altnames conflicts. */ 12301 err = -EEXIST; 12302 netdev_for_each_altname(dev, name_node) { 12303 if (netdev_name_in_use(net, name_node->name)) { 12304 NL_SET_ERR_MSG_FMT(extack, 12305 "An interface with the altname %s exists in the target netns", 12306 name_node->name); 12307 goto out; 12308 } 12309 } 12310 12311 /* Check that new_ifindex isn't used yet. */ 12312 if (new_ifindex) { 12313 err = dev_index_reserve(net, new_ifindex); 12314 if (err < 0) { 12315 NL_SET_ERR_MSG_FMT(extack, 12316 "The ifindex %d is not available in the target netns", 12317 new_ifindex); 12318 goto out; 12319 } 12320 } else { 12321 /* If there is an ifindex conflict assign a new one */ 12322 err = dev_index_reserve(net, dev->ifindex); 12323 if (err == -EBUSY) 12324 err = dev_index_reserve(net, 0); 12325 if (err < 0) { 12326 NL_SET_ERR_MSG(extack, 12327 "Unable to allocate a new ifindex in the target netns"); 12328 goto out; 12329 } 12330 new_ifindex = err; 12331 } 12332 12333 /* 12334 * And now a mini version of register_netdevice unregister_netdevice. 12335 */ 12336 12337 netdev_lock_ops(dev); 12338 /* If device is running close it first. */ 12339 netif_close(dev); 12340 /* And unlink it from device chain */ 12341 unlist_netdevice(dev); 12342 12343 if (!netdev_need_ops_lock(dev)) 12344 netdev_lock(dev); 12345 dev->moving_ns = true; 12346 netdev_unlock(dev); 12347 12348 synchronize_net(); 12349 12350 /* Shutdown queueing discipline. */ 12351 netdev_lock_ops(dev); 12352 dev_shutdown(dev); 12353 netdev_unlock_ops(dev); 12354 12355 /* Notify protocols, that we are about to destroy 12356 * this device. They should clean all the things. 12357 * 12358 * Note that dev->reg_state stays at NETREG_REGISTERED. 12359 * This is wanted because this way 8021q and macvlan know 12360 * the device is just moving and can keep their slaves up. 12361 */ 12362 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12363 rcu_barrier(); 12364 12365 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12366 12367 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12368 new_ifindex); 12369 12370 /* 12371 * Flush the unicast and multicast chains 12372 */ 12373 dev_uc_flush(dev); 12374 dev_mc_flush(dev); 12375 12376 /* Send a netdev-removed uevent to the old namespace */ 12377 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12378 netdev_adjacent_del_links(dev); 12379 12380 /* Move per-net netdevice notifiers that are following the netdevice */ 12381 move_netdevice_notifiers_dev_net(dev, net); 12382 12383 /* Actually switch the network namespace */ 12384 netdev_lock(dev); 12385 dev_net_set(dev, net); 12386 netdev_unlock(dev); 12387 dev->ifindex = new_ifindex; 12388 12389 if (new_name[0]) { 12390 /* Rename the netdev to prepared name */ 12391 write_seqlock_bh(&netdev_rename_lock); 12392 strscpy(dev->name, new_name, IFNAMSIZ); 12393 write_sequnlock_bh(&netdev_rename_lock); 12394 } 12395 12396 /* Fixup kobjects */ 12397 dev_set_uevent_suppress(&dev->dev, 1); 12398 err = device_rename(&dev->dev, dev->name); 12399 dev_set_uevent_suppress(&dev->dev, 0); 12400 WARN_ON(err); 12401 12402 /* Send a netdev-add uevent to the new namespace */ 12403 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12404 netdev_adjacent_add_links(dev); 12405 12406 /* Adapt owner in case owning user namespace of target network 12407 * namespace is different from the original one. 12408 */ 12409 err = netdev_change_owner(dev, net_old, net); 12410 WARN_ON(err); 12411 12412 netdev_lock(dev); 12413 dev->moving_ns = false; 12414 if (!netdev_need_ops_lock(dev)) 12415 netdev_unlock(dev); 12416 12417 /* Add the device back in the hashes */ 12418 list_netdevice(dev); 12419 /* Notify protocols, that a new device appeared. */ 12420 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12421 netdev_unlock_ops(dev); 12422 12423 /* 12424 * Prevent userspace races by waiting until the network 12425 * device is fully setup before sending notifications. 12426 */ 12427 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12428 12429 synchronize_net(); 12430 err = 0; 12431 out: 12432 return err; 12433 } 12434 12435 static int dev_cpu_dead(unsigned int oldcpu) 12436 { 12437 struct sk_buff **list_skb; 12438 struct sk_buff *skb; 12439 unsigned int cpu; 12440 struct softnet_data *sd, *oldsd, *remsd = NULL; 12441 12442 local_irq_disable(); 12443 cpu = smp_processor_id(); 12444 sd = &per_cpu(softnet_data, cpu); 12445 oldsd = &per_cpu(softnet_data, oldcpu); 12446 12447 /* Find end of our completion_queue. */ 12448 list_skb = &sd->completion_queue; 12449 while (*list_skb) 12450 list_skb = &(*list_skb)->next; 12451 /* Append completion queue from offline CPU. */ 12452 *list_skb = oldsd->completion_queue; 12453 oldsd->completion_queue = NULL; 12454 12455 /* Append output queue from offline CPU. */ 12456 if (oldsd->output_queue) { 12457 *sd->output_queue_tailp = oldsd->output_queue; 12458 sd->output_queue_tailp = oldsd->output_queue_tailp; 12459 oldsd->output_queue = NULL; 12460 oldsd->output_queue_tailp = &oldsd->output_queue; 12461 } 12462 /* Append NAPI poll list from offline CPU, with one exception : 12463 * process_backlog() must be called by cpu owning percpu backlog. 12464 * We properly handle process_queue & input_pkt_queue later. 12465 */ 12466 while (!list_empty(&oldsd->poll_list)) { 12467 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12468 struct napi_struct, 12469 poll_list); 12470 12471 list_del_init(&napi->poll_list); 12472 if (napi->poll == process_backlog) 12473 napi->state &= NAPIF_STATE_THREADED; 12474 else 12475 ____napi_schedule(sd, napi); 12476 } 12477 12478 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12479 local_irq_enable(); 12480 12481 if (!use_backlog_threads()) { 12482 #ifdef CONFIG_RPS 12483 remsd = oldsd->rps_ipi_list; 12484 oldsd->rps_ipi_list = NULL; 12485 #endif 12486 /* send out pending IPI's on offline CPU */ 12487 net_rps_send_ipi(remsd); 12488 } 12489 12490 /* Process offline CPU's input_pkt_queue */ 12491 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12492 netif_rx(skb); 12493 rps_input_queue_head_incr(oldsd); 12494 } 12495 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12496 netif_rx(skb); 12497 rps_input_queue_head_incr(oldsd); 12498 } 12499 12500 return 0; 12501 } 12502 12503 /** 12504 * netdev_increment_features - increment feature set by one 12505 * @all: current feature set 12506 * @one: new feature set 12507 * @mask: mask feature set 12508 * 12509 * Computes a new feature set after adding a device with feature set 12510 * @one to the master device with current feature set @all. Will not 12511 * enable anything that is off in @mask. Returns the new feature set. 12512 */ 12513 netdev_features_t netdev_increment_features(netdev_features_t all, 12514 netdev_features_t one, netdev_features_t mask) 12515 { 12516 if (mask & NETIF_F_HW_CSUM) 12517 mask |= NETIF_F_CSUM_MASK; 12518 mask |= NETIF_F_VLAN_CHALLENGED; 12519 12520 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12521 all &= one | ~NETIF_F_ALL_FOR_ALL; 12522 12523 /* If one device supports hw checksumming, set for all. */ 12524 if (all & NETIF_F_HW_CSUM) 12525 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12526 12527 return all; 12528 } 12529 EXPORT_SYMBOL(netdev_increment_features); 12530 12531 static struct hlist_head * __net_init netdev_create_hash(void) 12532 { 12533 int i; 12534 struct hlist_head *hash; 12535 12536 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12537 if (hash != NULL) 12538 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12539 INIT_HLIST_HEAD(&hash[i]); 12540 12541 return hash; 12542 } 12543 12544 /* Initialize per network namespace state */ 12545 static int __net_init netdev_init(struct net *net) 12546 { 12547 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12548 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12549 12550 INIT_LIST_HEAD(&net->dev_base_head); 12551 12552 net->dev_name_head = netdev_create_hash(); 12553 if (net->dev_name_head == NULL) 12554 goto err_name; 12555 12556 net->dev_index_head = netdev_create_hash(); 12557 if (net->dev_index_head == NULL) 12558 goto err_idx; 12559 12560 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12561 12562 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12563 12564 return 0; 12565 12566 err_idx: 12567 kfree(net->dev_name_head); 12568 err_name: 12569 return -ENOMEM; 12570 } 12571 12572 /** 12573 * netdev_drivername - network driver for the device 12574 * @dev: network device 12575 * 12576 * Determine network driver for device. 12577 */ 12578 const char *netdev_drivername(const struct net_device *dev) 12579 { 12580 const struct device_driver *driver; 12581 const struct device *parent; 12582 const char *empty = ""; 12583 12584 parent = dev->dev.parent; 12585 if (!parent) 12586 return empty; 12587 12588 driver = parent->driver; 12589 if (driver && driver->name) 12590 return driver->name; 12591 return empty; 12592 } 12593 12594 static void __netdev_printk(const char *level, const struct net_device *dev, 12595 struct va_format *vaf) 12596 { 12597 if (dev && dev->dev.parent) { 12598 dev_printk_emit(level[1] - '0', 12599 dev->dev.parent, 12600 "%s %s %s%s: %pV", 12601 dev_driver_string(dev->dev.parent), 12602 dev_name(dev->dev.parent), 12603 netdev_name(dev), netdev_reg_state(dev), 12604 vaf); 12605 } else if (dev) { 12606 printk("%s%s%s: %pV", 12607 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12608 } else { 12609 printk("%s(NULL net_device): %pV", level, vaf); 12610 } 12611 } 12612 12613 void netdev_printk(const char *level, const struct net_device *dev, 12614 const char *format, ...) 12615 { 12616 struct va_format vaf; 12617 va_list args; 12618 12619 va_start(args, format); 12620 12621 vaf.fmt = format; 12622 vaf.va = &args; 12623 12624 __netdev_printk(level, dev, &vaf); 12625 12626 va_end(args); 12627 } 12628 EXPORT_SYMBOL(netdev_printk); 12629 12630 #define define_netdev_printk_level(func, level) \ 12631 void func(const struct net_device *dev, const char *fmt, ...) \ 12632 { \ 12633 struct va_format vaf; \ 12634 va_list args; \ 12635 \ 12636 va_start(args, fmt); \ 12637 \ 12638 vaf.fmt = fmt; \ 12639 vaf.va = &args; \ 12640 \ 12641 __netdev_printk(level, dev, &vaf); \ 12642 \ 12643 va_end(args); \ 12644 } \ 12645 EXPORT_SYMBOL(func); 12646 12647 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12648 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12649 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12650 define_netdev_printk_level(netdev_err, KERN_ERR); 12651 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12652 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12653 define_netdev_printk_level(netdev_info, KERN_INFO); 12654 12655 static void __net_exit netdev_exit(struct net *net) 12656 { 12657 kfree(net->dev_name_head); 12658 kfree(net->dev_index_head); 12659 xa_destroy(&net->dev_by_index); 12660 if (net != &init_net) 12661 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12662 } 12663 12664 static struct pernet_operations __net_initdata netdev_net_ops = { 12665 .init = netdev_init, 12666 .exit = netdev_exit, 12667 }; 12668 12669 static void __net_exit default_device_exit_net(struct net *net) 12670 { 12671 struct netdev_name_node *name_node, *tmp; 12672 struct net_device *dev, *aux; 12673 /* 12674 * Push all migratable network devices back to the 12675 * initial network namespace 12676 */ 12677 ASSERT_RTNL(); 12678 for_each_netdev_safe(net, dev, aux) { 12679 int err; 12680 char fb_name[IFNAMSIZ]; 12681 12682 /* Ignore unmoveable devices (i.e. loopback) */ 12683 if (dev->netns_immutable) 12684 continue; 12685 12686 /* Leave virtual devices for the generic cleanup */ 12687 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12688 continue; 12689 12690 /* Push remaining network devices to init_net */ 12691 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12692 if (netdev_name_in_use(&init_net, fb_name)) 12693 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12694 12695 netdev_for_each_altname_safe(dev, name_node, tmp) 12696 if (netdev_name_in_use(&init_net, name_node->name)) 12697 __netdev_name_node_alt_destroy(name_node); 12698 12699 err = dev_change_net_namespace(dev, &init_net, fb_name); 12700 if (err) { 12701 pr_emerg("%s: failed to move %s to init_net: %d\n", 12702 __func__, dev->name, err); 12703 BUG(); 12704 } 12705 } 12706 } 12707 12708 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12709 { 12710 /* At exit all network devices most be removed from a network 12711 * namespace. Do this in the reverse order of registration. 12712 * Do this across as many network namespaces as possible to 12713 * improve batching efficiency. 12714 */ 12715 struct net_device *dev; 12716 struct net *net; 12717 LIST_HEAD(dev_kill_list); 12718 12719 rtnl_lock(); 12720 list_for_each_entry(net, net_list, exit_list) { 12721 default_device_exit_net(net); 12722 cond_resched(); 12723 } 12724 12725 list_for_each_entry(net, net_list, exit_list) { 12726 for_each_netdev_reverse(net, dev) { 12727 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12728 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12729 else 12730 unregister_netdevice_queue(dev, &dev_kill_list); 12731 } 12732 } 12733 unregister_netdevice_many(&dev_kill_list); 12734 rtnl_unlock(); 12735 } 12736 12737 static struct pernet_operations __net_initdata default_device_ops = { 12738 .exit_batch = default_device_exit_batch, 12739 }; 12740 12741 static void __init net_dev_struct_check(void) 12742 { 12743 /* TX read-mostly hotpath */ 12744 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12745 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12746 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 12747 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 12748 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 12749 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 12750 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 12751 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 12752 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 12753 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 12754 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 12755 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 12756 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 12757 #ifdef CONFIG_XPS 12758 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 12759 #endif 12760 #ifdef CONFIG_NETFILTER_EGRESS 12761 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 12762 #endif 12763 #ifdef CONFIG_NET_XGRESS 12764 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 12765 #endif 12766 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 12767 12768 /* TXRX read-mostly hotpath */ 12769 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 12770 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 12771 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 12772 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 12773 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 12774 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 12775 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 12776 12777 /* RX read-mostly hotpath */ 12778 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 12779 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 12780 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 12781 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 12782 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12783 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12784 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12785 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12786 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12787 #ifdef CONFIG_NETPOLL 12788 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12789 #endif 12790 #ifdef CONFIG_NET_XGRESS 12791 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12792 #endif 12793 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 12794 } 12795 12796 /* 12797 * Initialize the DEV module. At boot time this walks the device list and 12798 * unhooks any devices that fail to initialise (normally hardware not 12799 * present) and leaves us with a valid list of present and active devices. 12800 * 12801 */ 12802 12803 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12804 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12805 12806 static int net_page_pool_create(int cpuid) 12807 { 12808 #if IS_ENABLED(CONFIG_PAGE_POOL) 12809 struct page_pool_params page_pool_params = { 12810 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12811 .flags = PP_FLAG_SYSTEM_POOL, 12812 .nid = cpu_to_mem(cpuid), 12813 }; 12814 struct page_pool *pp_ptr; 12815 int err; 12816 12817 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12818 if (IS_ERR(pp_ptr)) 12819 return -ENOMEM; 12820 12821 err = xdp_reg_page_pool(pp_ptr); 12822 if (err) { 12823 page_pool_destroy(pp_ptr); 12824 return err; 12825 } 12826 12827 per_cpu(system_page_pool.pool, cpuid) = pp_ptr; 12828 #endif 12829 return 0; 12830 } 12831 12832 static int backlog_napi_should_run(unsigned int cpu) 12833 { 12834 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12835 struct napi_struct *napi = &sd->backlog; 12836 12837 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12838 } 12839 12840 static void run_backlog_napi(unsigned int cpu) 12841 { 12842 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12843 12844 napi_threaded_poll_loop(&sd->backlog); 12845 } 12846 12847 static void backlog_napi_setup(unsigned int cpu) 12848 { 12849 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12850 struct napi_struct *napi = &sd->backlog; 12851 12852 napi->thread = this_cpu_read(backlog_napi); 12853 set_bit(NAPI_STATE_THREADED, &napi->state); 12854 } 12855 12856 static struct smp_hotplug_thread backlog_threads = { 12857 .store = &backlog_napi, 12858 .thread_should_run = backlog_napi_should_run, 12859 .thread_fn = run_backlog_napi, 12860 .thread_comm = "backlog_napi/%u", 12861 .setup = backlog_napi_setup, 12862 }; 12863 12864 /* 12865 * This is called single threaded during boot, so no need 12866 * to take the rtnl semaphore. 12867 */ 12868 static int __init net_dev_init(void) 12869 { 12870 int i, rc = -ENOMEM; 12871 12872 BUG_ON(!dev_boot_phase); 12873 12874 net_dev_struct_check(); 12875 12876 if (dev_proc_init()) 12877 goto out; 12878 12879 if (netdev_kobject_init()) 12880 goto out; 12881 12882 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12883 INIT_LIST_HEAD(&ptype_base[i]); 12884 12885 if (register_pernet_subsys(&netdev_net_ops)) 12886 goto out; 12887 12888 /* 12889 * Initialise the packet receive queues. 12890 */ 12891 12892 flush_backlogs_fallback = flush_backlogs_alloc(); 12893 if (!flush_backlogs_fallback) 12894 goto out; 12895 12896 for_each_possible_cpu(i) { 12897 struct softnet_data *sd = &per_cpu(softnet_data, i); 12898 12899 skb_queue_head_init(&sd->input_pkt_queue); 12900 skb_queue_head_init(&sd->process_queue); 12901 #ifdef CONFIG_XFRM_OFFLOAD 12902 skb_queue_head_init(&sd->xfrm_backlog); 12903 #endif 12904 INIT_LIST_HEAD(&sd->poll_list); 12905 sd->output_queue_tailp = &sd->output_queue; 12906 #ifdef CONFIG_RPS 12907 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12908 sd->cpu = i; 12909 #endif 12910 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12911 spin_lock_init(&sd->defer_lock); 12912 12913 gro_init(&sd->backlog.gro); 12914 sd->backlog.poll = process_backlog; 12915 sd->backlog.weight = weight_p; 12916 INIT_LIST_HEAD(&sd->backlog.poll_list); 12917 12918 if (net_page_pool_create(i)) 12919 goto out; 12920 } 12921 if (use_backlog_threads()) 12922 smpboot_register_percpu_thread(&backlog_threads); 12923 12924 dev_boot_phase = 0; 12925 12926 /* The loopback device is special if any other network devices 12927 * is present in a network namespace the loopback device must 12928 * be present. Since we now dynamically allocate and free the 12929 * loopback device ensure this invariant is maintained by 12930 * keeping the loopback device as the first device on the 12931 * list of network devices. Ensuring the loopback devices 12932 * is the first device that appears and the last network device 12933 * that disappears. 12934 */ 12935 if (register_pernet_device(&loopback_net_ops)) 12936 goto out; 12937 12938 if (register_pernet_device(&default_device_ops)) 12939 goto out; 12940 12941 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 12942 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 12943 12944 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 12945 NULL, dev_cpu_dead); 12946 WARN_ON(rc < 0); 12947 rc = 0; 12948 12949 /* avoid static key IPIs to isolated CPUs */ 12950 if (housekeeping_enabled(HK_TYPE_MISC)) 12951 net_enable_timestamp(); 12952 out: 12953 if (rc < 0) { 12954 for_each_possible_cpu(i) { 12955 struct page_pool *pp_ptr; 12956 12957 pp_ptr = per_cpu(system_page_pool.pool, i); 12958 if (!pp_ptr) 12959 continue; 12960 12961 xdp_unreg_page_pool(pp_ptr); 12962 page_pool_destroy(pp_ptr); 12963 per_cpu(system_page_pool.pool, i) = NULL; 12964 } 12965 } 12966 12967 return rc; 12968 } 12969 12970 subsys_initcall(net_dev_init); 12971