xref: /linux/net/core/dev.c (revision 2151003e773c7e7dba4d64bed4bfc483681b5f6a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_rx_queue.h>
160 #include <net/page_pool/types.h>
161 #include <net/page_pool/helpers.h>
162 #include <net/page_pool/memory_provider.h>
163 #include <net/rps.h>
164 #include <linux/phy_link_topology.h>
165 
166 #include "dev.h"
167 #include "devmem.h"
168 #include "net-sysfs.h"
169 
170 static DEFINE_SPINLOCK(ptype_lock);
171 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172 
173 static int netif_rx_internal(struct sk_buff *skb);
174 static int call_netdevice_notifiers_extack(unsigned long val,
175 					   struct net_device *dev,
176 					   struct netlink_ext_ack *extack);
177 
178 static DEFINE_MUTEX(ifalias_mutex);
179 
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182 
183 static unsigned int napi_gen_id = NR_CPUS;
184 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
185 
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 	unsigned int val = net->dev_base_seq + 1;
189 
190 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
191 }
192 
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
196 
197 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199 
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204 
205 #ifndef CONFIG_PREEMPT_RT
206 
207 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
208 
209 static int __init setup_backlog_napi_threads(char *arg)
210 {
211 	static_branch_enable(&use_backlog_threads_key);
212 	return 0;
213 }
214 early_param("thread_backlog_napi", setup_backlog_napi_threads);
215 
216 static bool use_backlog_threads(void)
217 {
218 	return static_branch_unlikely(&use_backlog_threads_key);
219 }
220 
221 #else
222 
223 static bool use_backlog_threads(void)
224 {
225 	return true;
226 }
227 
228 #endif
229 
230 static inline void backlog_lock_irq_save(struct softnet_data *sd,
231 					 unsigned long *flags)
232 {
233 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
234 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
235 	else
236 		local_irq_save(*flags);
237 }
238 
239 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
240 {
241 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
242 		spin_lock_irq(&sd->input_pkt_queue.lock);
243 	else
244 		local_irq_disable();
245 }
246 
247 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
248 					      unsigned long *flags)
249 {
250 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
251 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
252 	else
253 		local_irq_restore(*flags);
254 }
255 
256 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
257 {
258 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
259 		spin_unlock_irq(&sd->input_pkt_queue.lock);
260 	else
261 		local_irq_enable();
262 }
263 
264 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
265 						       const char *name)
266 {
267 	struct netdev_name_node *name_node;
268 
269 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
270 	if (!name_node)
271 		return NULL;
272 	INIT_HLIST_NODE(&name_node->hlist);
273 	name_node->dev = dev;
274 	name_node->name = name;
275 	return name_node;
276 }
277 
278 static struct netdev_name_node *
279 netdev_name_node_head_alloc(struct net_device *dev)
280 {
281 	struct netdev_name_node *name_node;
282 
283 	name_node = netdev_name_node_alloc(dev, dev->name);
284 	if (!name_node)
285 		return NULL;
286 	INIT_LIST_HEAD(&name_node->list);
287 	return name_node;
288 }
289 
290 static void netdev_name_node_free(struct netdev_name_node *name_node)
291 {
292 	kfree(name_node);
293 }
294 
295 static void netdev_name_node_add(struct net *net,
296 				 struct netdev_name_node *name_node)
297 {
298 	hlist_add_head_rcu(&name_node->hlist,
299 			   dev_name_hash(net, name_node->name));
300 }
301 
302 static void netdev_name_node_del(struct netdev_name_node *name_node)
303 {
304 	hlist_del_rcu(&name_node->hlist);
305 }
306 
307 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
308 							const char *name)
309 {
310 	struct hlist_head *head = dev_name_hash(net, name);
311 	struct netdev_name_node *name_node;
312 
313 	hlist_for_each_entry(name_node, head, hlist)
314 		if (!strcmp(name_node->name, name))
315 			return name_node;
316 	return NULL;
317 }
318 
319 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
320 							    const char *name)
321 {
322 	struct hlist_head *head = dev_name_hash(net, name);
323 	struct netdev_name_node *name_node;
324 
325 	hlist_for_each_entry_rcu(name_node, head, hlist)
326 		if (!strcmp(name_node->name, name))
327 			return name_node;
328 	return NULL;
329 }
330 
331 bool netdev_name_in_use(struct net *net, const char *name)
332 {
333 	return netdev_name_node_lookup(net, name);
334 }
335 EXPORT_SYMBOL(netdev_name_in_use);
336 
337 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
338 {
339 	struct netdev_name_node *name_node;
340 	struct net *net = dev_net(dev);
341 
342 	name_node = netdev_name_node_lookup(net, name);
343 	if (name_node)
344 		return -EEXIST;
345 	name_node = netdev_name_node_alloc(dev, name);
346 	if (!name_node)
347 		return -ENOMEM;
348 	netdev_name_node_add(net, name_node);
349 	/* The node that holds dev->name acts as a head of per-device list. */
350 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
351 
352 	return 0;
353 }
354 
355 static void netdev_name_node_alt_free(struct rcu_head *head)
356 {
357 	struct netdev_name_node *name_node =
358 		container_of(head, struct netdev_name_node, rcu);
359 
360 	kfree(name_node->name);
361 	netdev_name_node_free(name_node);
362 }
363 
364 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
365 {
366 	netdev_name_node_del(name_node);
367 	list_del(&name_node->list);
368 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
369 }
370 
371 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
372 {
373 	struct netdev_name_node *name_node;
374 	struct net *net = dev_net(dev);
375 
376 	name_node = netdev_name_node_lookup(net, name);
377 	if (!name_node)
378 		return -ENOENT;
379 	/* lookup might have found our primary name or a name belonging
380 	 * to another device.
381 	 */
382 	if (name_node == dev->name_node || name_node->dev != dev)
383 		return -EINVAL;
384 
385 	__netdev_name_node_alt_destroy(name_node);
386 	return 0;
387 }
388 
389 static void netdev_name_node_alt_flush(struct net_device *dev)
390 {
391 	struct netdev_name_node *name_node, *tmp;
392 
393 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
394 		list_del(&name_node->list);
395 		netdev_name_node_alt_free(&name_node->rcu);
396 	}
397 }
398 
399 /* Device list insertion */
400 static void list_netdevice(struct net_device *dev)
401 {
402 	struct netdev_name_node *name_node;
403 	struct net *net = dev_net(dev);
404 
405 	ASSERT_RTNL();
406 
407 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
408 	netdev_name_node_add(net, dev->name_node);
409 	hlist_add_head_rcu(&dev->index_hlist,
410 			   dev_index_hash(net, dev->ifindex));
411 
412 	netdev_for_each_altname(dev, name_node)
413 		netdev_name_node_add(net, name_node);
414 
415 	/* We reserved the ifindex, this can't fail */
416 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
417 
418 	dev_base_seq_inc(net);
419 }
420 
421 /* Device list removal
422  * caller must respect a RCU grace period before freeing/reusing dev
423  */
424 static void unlist_netdevice(struct net_device *dev)
425 {
426 	struct netdev_name_node *name_node;
427 	struct net *net = dev_net(dev);
428 
429 	ASSERT_RTNL();
430 
431 	xa_erase(&net->dev_by_index, dev->ifindex);
432 
433 	netdev_for_each_altname(dev, name_node)
434 		netdev_name_node_del(name_node);
435 
436 	/* Unlink dev from the device chain */
437 	list_del_rcu(&dev->dev_list);
438 	netdev_name_node_del(dev->name_node);
439 	hlist_del_rcu(&dev->index_hlist);
440 
441 	dev_base_seq_inc(dev_net(dev));
442 }
443 
444 /*
445  *	Our notifier list
446  */
447 
448 static RAW_NOTIFIER_HEAD(netdev_chain);
449 
450 /*
451  *	Device drivers call our routines to queue packets here. We empty the
452  *	queue in the local softnet handler.
453  */
454 
455 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
456 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
457 };
458 EXPORT_PER_CPU_SYMBOL(softnet_data);
459 
460 /* Page_pool has a lockless array/stack to alloc/recycle pages.
461  * PP consumers must pay attention to run APIs in the appropriate context
462  * (e.g. NAPI context).
463  */
464 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
465 
466 #ifdef CONFIG_LOCKDEP
467 /*
468  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
469  * according to dev->type
470  */
471 static const unsigned short netdev_lock_type[] = {
472 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
473 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
474 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
475 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
476 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
477 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
478 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
479 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
480 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
481 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
482 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
483 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
484 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
485 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
486 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
487 
488 static const char *const netdev_lock_name[] = {
489 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
490 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
491 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
492 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
493 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
494 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
495 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
496 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
497 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
498 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
499 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
500 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
501 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
502 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
503 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
504 
505 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
506 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
507 
508 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
509 {
510 	int i;
511 
512 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
513 		if (netdev_lock_type[i] == dev_type)
514 			return i;
515 	/* the last key is used by default */
516 	return ARRAY_SIZE(netdev_lock_type) - 1;
517 }
518 
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 						 unsigned short dev_type)
521 {
522 	int i;
523 
524 	i = netdev_lock_pos(dev_type);
525 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
526 				   netdev_lock_name[i]);
527 }
528 
529 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
530 {
531 	int i;
532 
533 	i = netdev_lock_pos(dev->type);
534 	lockdep_set_class_and_name(&dev->addr_list_lock,
535 				   &netdev_addr_lock_key[i],
536 				   netdev_lock_name[i]);
537 }
538 #else
539 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
540 						 unsigned short dev_type)
541 {
542 }
543 
544 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
545 {
546 }
547 #endif
548 
549 /*******************************************************************************
550  *
551  *		Protocol management and registration routines
552  *
553  *******************************************************************************/
554 
555 
556 /*
557  *	Add a protocol ID to the list. Now that the input handler is
558  *	smarter we can dispense with all the messy stuff that used to be
559  *	here.
560  *
561  *	BEWARE!!! Protocol handlers, mangling input packets,
562  *	MUST BE last in hash buckets and checking protocol handlers
563  *	MUST start from promiscuous ptype_all chain in net_bh.
564  *	It is true now, do not change it.
565  *	Explanation follows: if protocol handler, mangling packet, will
566  *	be the first on list, it is not able to sense, that packet
567  *	is cloned and should be copied-on-write, so that it will
568  *	change it and subsequent readers will get broken packet.
569  *							--ANK (980803)
570  */
571 
572 static inline struct list_head *ptype_head(const struct packet_type *pt)
573 {
574 	if (pt->type == htons(ETH_P_ALL))
575 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
576 	else
577 		return pt->dev ? &pt->dev->ptype_specific :
578 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
579 }
580 
581 /**
582  *	dev_add_pack - add packet handler
583  *	@pt: packet type declaration
584  *
585  *	Add a protocol handler to the networking stack. The passed &packet_type
586  *	is linked into kernel lists and may not be freed until it has been
587  *	removed from the kernel lists.
588  *
589  *	This call does not sleep therefore it can not
590  *	guarantee all CPU's that are in middle of receiving packets
591  *	will see the new packet type (until the next received packet).
592  */
593 
594 void dev_add_pack(struct packet_type *pt)
595 {
596 	struct list_head *head = ptype_head(pt);
597 
598 	spin_lock(&ptype_lock);
599 	list_add_rcu(&pt->list, head);
600 	spin_unlock(&ptype_lock);
601 }
602 EXPORT_SYMBOL(dev_add_pack);
603 
604 /**
605  *	__dev_remove_pack	 - remove packet handler
606  *	@pt: packet type declaration
607  *
608  *	Remove a protocol handler that was previously added to the kernel
609  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
610  *	from the kernel lists and can be freed or reused once this function
611  *	returns.
612  *
613  *      The packet type might still be in use by receivers
614  *	and must not be freed until after all the CPU's have gone
615  *	through a quiescent state.
616  */
617 void __dev_remove_pack(struct packet_type *pt)
618 {
619 	struct list_head *head = ptype_head(pt);
620 	struct packet_type *pt1;
621 
622 	spin_lock(&ptype_lock);
623 
624 	list_for_each_entry(pt1, head, list) {
625 		if (pt == pt1) {
626 			list_del_rcu(&pt->list);
627 			goto out;
628 		}
629 	}
630 
631 	pr_warn("dev_remove_pack: %p not found\n", pt);
632 out:
633 	spin_unlock(&ptype_lock);
634 }
635 EXPORT_SYMBOL(__dev_remove_pack);
636 
637 /**
638  *	dev_remove_pack	 - remove packet handler
639  *	@pt: packet type declaration
640  *
641  *	Remove a protocol handler that was previously added to the kernel
642  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
643  *	from the kernel lists and can be freed or reused once this function
644  *	returns.
645  *
646  *	This call sleeps to guarantee that no CPU is looking at the packet
647  *	type after return.
648  */
649 void dev_remove_pack(struct packet_type *pt)
650 {
651 	__dev_remove_pack(pt);
652 
653 	synchronize_net();
654 }
655 EXPORT_SYMBOL(dev_remove_pack);
656 
657 
658 /*******************************************************************************
659  *
660  *			    Device Interface Subroutines
661  *
662  *******************************************************************************/
663 
664 /**
665  *	dev_get_iflink	- get 'iflink' value of a interface
666  *	@dev: targeted interface
667  *
668  *	Indicates the ifindex the interface is linked to.
669  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
670  */
671 
672 int dev_get_iflink(const struct net_device *dev)
673 {
674 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
675 		return dev->netdev_ops->ndo_get_iflink(dev);
676 
677 	return READ_ONCE(dev->ifindex);
678 }
679 EXPORT_SYMBOL(dev_get_iflink);
680 
681 /**
682  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
683  *	@dev: targeted interface
684  *	@skb: The packet.
685  *
686  *	For better visibility of tunnel traffic OVS needs to retrieve
687  *	egress tunnel information for a packet. Following API allows
688  *	user to get this info.
689  */
690 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
691 {
692 	struct ip_tunnel_info *info;
693 
694 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
695 		return -EINVAL;
696 
697 	info = skb_tunnel_info_unclone(skb);
698 	if (!info)
699 		return -ENOMEM;
700 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
701 		return -EINVAL;
702 
703 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
704 }
705 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
706 
707 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
708 {
709 	int k = stack->num_paths++;
710 
711 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
712 		return NULL;
713 
714 	return &stack->path[k];
715 }
716 
717 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
718 			  struct net_device_path_stack *stack)
719 {
720 	const struct net_device *last_dev;
721 	struct net_device_path_ctx ctx = {
722 		.dev	= dev,
723 	};
724 	struct net_device_path *path;
725 	int ret = 0;
726 
727 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
728 	stack->num_paths = 0;
729 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
730 		last_dev = ctx.dev;
731 		path = dev_fwd_path(stack);
732 		if (!path)
733 			return -1;
734 
735 		memset(path, 0, sizeof(struct net_device_path));
736 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
737 		if (ret < 0)
738 			return -1;
739 
740 		if (WARN_ON_ONCE(last_dev == ctx.dev))
741 			return -1;
742 	}
743 
744 	if (!ctx.dev)
745 		return ret;
746 
747 	path = dev_fwd_path(stack);
748 	if (!path)
749 		return -1;
750 	path->type = DEV_PATH_ETHERNET;
751 	path->dev = ctx.dev;
752 
753 	return ret;
754 }
755 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
756 
757 /* must be called under rcu_read_lock(), as we dont take a reference */
758 static struct napi_struct *napi_by_id(unsigned int napi_id)
759 {
760 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
761 	struct napi_struct *napi;
762 
763 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
764 		if (napi->napi_id == napi_id)
765 			return napi;
766 
767 	return NULL;
768 }
769 
770 /* must be called under rcu_read_lock(), as we dont take a reference */
771 static struct napi_struct *
772 netdev_napi_by_id(struct net *net, unsigned int napi_id)
773 {
774 	struct napi_struct *napi;
775 
776 	napi = napi_by_id(napi_id);
777 	if (!napi)
778 		return NULL;
779 
780 	if (WARN_ON_ONCE(!napi->dev))
781 		return NULL;
782 	if (!net_eq(net, dev_net(napi->dev)))
783 		return NULL;
784 
785 	return napi;
786 }
787 
788 /**
789  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
790  *	@net: the applicable net namespace
791  *	@napi_id: ID of a NAPI of a target device
792  *
793  *	Find a NAPI instance with @napi_id. Lock its device.
794  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
795  *	netdev_unlock() must be called to release it.
796  *
797  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
798  */
799 struct napi_struct *
800 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
801 {
802 	struct napi_struct *napi;
803 	struct net_device *dev;
804 
805 	rcu_read_lock();
806 	napi = netdev_napi_by_id(net, napi_id);
807 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
808 		rcu_read_unlock();
809 		return NULL;
810 	}
811 
812 	dev = napi->dev;
813 	dev_hold(dev);
814 	rcu_read_unlock();
815 
816 	dev = __netdev_put_lock(dev);
817 	if (!dev)
818 		return NULL;
819 
820 	rcu_read_lock();
821 	napi = netdev_napi_by_id(net, napi_id);
822 	if (napi && napi->dev != dev)
823 		napi = NULL;
824 	rcu_read_unlock();
825 
826 	if (!napi)
827 		netdev_unlock(dev);
828 	return napi;
829 }
830 
831 /**
832  *	__dev_get_by_name	- find a device by its name
833  *	@net: the applicable net namespace
834  *	@name: name to find
835  *
836  *	Find an interface by name. Must be called under RTNL semaphore.
837  *	If the name is found a pointer to the device is returned.
838  *	If the name is not found then %NULL is returned. The
839  *	reference counters are not incremented so the caller must be
840  *	careful with locks.
841  */
842 
843 struct net_device *__dev_get_by_name(struct net *net, const char *name)
844 {
845 	struct netdev_name_node *node_name;
846 
847 	node_name = netdev_name_node_lookup(net, name);
848 	return node_name ? node_name->dev : NULL;
849 }
850 EXPORT_SYMBOL(__dev_get_by_name);
851 
852 /**
853  * dev_get_by_name_rcu	- find a device by its name
854  * @net: the applicable net namespace
855  * @name: name to find
856  *
857  * Find an interface by name.
858  * If the name is found a pointer to the device is returned.
859  * If the name is not found then %NULL is returned.
860  * The reference counters are not incremented so the caller must be
861  * careful with locks. The caller must hold RCU lock.
862  */
863 
864 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
865 {
866 	struct netdev_name_node *node_name;
867 
868 	node_name = netdev_name_node_lookup_rcu(net, name);
869 	return node_name ? node_name->dev : NULL;
870 }
871 EXPORT_SYMBOL(dev_get_by_name_rcu);
872 
873 /* Deprecated for new users, call netdev_get_by_name() instead */
874 struct net_device *dev_get_by_name(struct net *net, const char *name)
875 {
876 	struct net_device *dev;
877 
878 	rcu_read_lock();
879 	dev = dev_get_by_name_rcu(net, name);
880 	dev_hold(dev);
881 	rcu_read_unlock();
882 	return dev;
883 }
884 EXPORT_SYMBOL(dev_get_by_name);
885 
886 /**
887  *	netdev_get_by_name() - find a device by its name
888  *	@net: the applicable net namespace
889  *	@name: name to find
890  *	@tracker: tracking object for the acquired reference
891  *	@gfp: allocation flags for the tracker
892  *
893  *	Find an interface by name. This can be called from any
894  *	context and does its own locking. The returned handle has
895  *	the usage count incremented and the caller must use netdev_put() to
896  *	release it when it is no longer needed. %NULL is returned if no
897  *	matching device is found.
898  */
899 struct net_device *netdev_get_by_name(struct net *net, const char *name,
900 				      netdevice_tracker *tracker, gfp_t gfp)
901 {
902 	struct net_device *dev;
903 
904 	dev = dev_get_by_name(net, name);
905 	if (dev)
906 		netdev_tracker_alloc(dev, tracker, gfp);
907 	return dev;
908 }
909 EXPORT_SYMBOL(netdev_get_by_name);
910 
911 /**
912  *	__dev_get_by_index - find a device by its ifindex
913  *	@net: the applicable net namespace
914  *	@ifindex: index of device
915  *
916  *	Search for an interface by index. Returns %NULL if the device
917  *	is not found or a pointer to the device. The device has not
918  *	had its reference counter increased so the caller must be careful
919  *	about locking. The caller must hold the RTNL semaphore.
920  */
921 
922 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
923 {
924 	struct net_device *dev;
925 	struct hlist_head *head = dev_index_hash(net, ifindex);
926 
927 	hlist_for_each_entry(dev, head, index_hlist)
928 		if (dev->ifindex == ifindex)
929 			return dev;
930 
931 	return NULL;
932 }
933 EXPORT_SYMBOL(__dev_get_by_index);
934 
935 /**
936  *	dev_get_by_index_rcu - find a device by its ifindex
937  *	@net: the applicable net namespace
938  *	@ifindex: index of device
939  *
940  *	Search for an interface by index. Returns %NULL if the device
941  *	is not found or a pointer to the device. The device has not
942  *	had its reference counter increased so the caller must be careful
943  *	about locking. The caller must hold RCU lock.
944  */
945 
946 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
947 {
948 	struct net_device *dev;
949 	struct hlist_head *head = dev_index_hash(net, ifindex);
950 
951 	hlist_for_each_entry_rcu(dev, head, index_hlist)
952 		if (dev->ifindex == ifindex)
953 			return dev;
954 
955 	return NULL;
956 }
957 EXPORT_SYMBOL(dev_get_by_index_rcu);
958 
959 /* Deprecated for new users, call netdev_get_by_index() instead */
960 struct net_device *dev_get_by_index(struct net *net, int ifindex)
961 {
962 	struct net_device *dev;
963 
964 	rcu_read_lock();
965 	dev = dev_get_by_index_rcu(net, ifindex);
966 	dev_hold(dev);
967 	rcu_read_unlock();
968 	return dev;
969 }
970 EXPORT_SYMBOL(dev_get_by_index);
971 
972 /**
973  *	netdev_get_by_index() - find a device by its ifindex
974  *	@net: the applicable net namespace
975  *	@ifindex: index of device
976  *	@tracker: tracking object for the acquired reference
977  *	@gfp: allocation flags for the tracker
978  *
979  *	Search for an interface by index. Returns NULL if the device
980  *	is not found or a pointer to the device. The device returned has
981  *	had a reference added and the pointer is safe until the user calls
982  *	netdev_put() to indicate they have finished with it.
983  */
984 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
985 				       netdevice_tracker *tracker, gfp_t gfp)
986 {
987 	struct net_device *dev;
988 
989 	dev = dev_get_by_index(net, ifindex);
990 	if (dev)
991 		netdev_tracker_alloc(dev, tracker, gfp);
992 	return dev;
993 }
994 EXPORT_SYMBOL(netdev_get_by_index);
995 
996 /**
997  *	dev_get_by_napi_id - find a device by napi_id
998  *	@napi_id: ID of the NAPI struct
999  *
1000  *	Search for an interface by NAPI ID. Returns %NULL if the device
1001  *	is not found or a pointer to the device. The device has not had
1002  *	its reference counter increased so the caller must be careful
1003  *	about locking. The caller must hold RCU lock.
1004  */
1005 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1006 {
1007 	struct napi_struct *napi;
1008 
1009 	WARN_ON_ONCE(!rcu_read_lock_held());
1010 
1011 	if (napi_id < MIN_NAPI_ID)
1012 		return NULL;
1013 
1014 	napi = napi_by_id(napi_id);
1015 
1016 	return napi ? napi->dev : NULL;
1017 }
1018 
1019 /* Release the held reference on the net_device, and if the net_device
1020  * is still registered try to lock the instance lock. If device is being
1021  * unregistered NULL will be returned (but the reference has been released,
1022  * either way!)
1023  *
1024  * This helper is intended for locking net_device after it has been looked up
1025  * using a lockless lookup helper. Lock prevents the instance from going away.
1026  */
1027 struct net_device *__netdev_put_lock(struct net_device *dev)
1028 {
1029 	netdev_lock(dev);
1030 	if (dev->reg_state > NETREG_REGISTERED) {
1031 		netdev_unlock(dev);
1032 		dev_put(dev);
1033 		return NULL;
1034 	}
1035 	dev_put(dev);
1036 	return dev;
1037 }
1038 
1039 /**
1040  *	netdev_get_by_index_lock() - find a device by its ifindex
1041  *	@net: the applicable net namespace
1042  *	@ifindex: index of device
1043  *
1044  *	Search for an interface by index. If a valid device
1045  *	with @ifindex is found it will be returned with netdev->lock held.
1046  *	netdev_unlock() must be called to release it.
1047  *
1048  *	Return: pointer to a device with lock held, NULL if not found.
1049  */
1050 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1051 {
1052 	struct net_device *dev;
1053 
1054 	dev = dev_get_by_index(net, ifindex);
1055 	if (!dev)
1056 		return NULL;
1057 
1058 	return __netdev_put_lock(dev);
1059 }
1060 
1061 struct net_device *
1062 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1063 		    unsigned long *index)
1064 {
1065 	if (dev)
1066 		netdev_unlock(dev);
1067 
1068 	do {
1069 		rcu_read_lock();
1070 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1071 		if (!dev) {
1072 			rcu_read_unlock();
1073 			return NULL;
1074 		}
1075 		dev_hold(dev);
1076 		rcu_read_unlock();
1077 
1078 		dev = __netdev_put_lock(dev);
1079 		if (dev)
1080 			return dev;
1081 
1082 		(*index)++;
1083 	} while (true);
1084 }
1085 
1086 static DEFINE_SEQLOCK(netdev_rename_lock);
1087 
1088 void netdev_copy_name(struct net_device *dev, char *name)
1089 {
1090 	unsigned int seq;
1091 
1092 	do {
1093 		seq = read_seqbegin(&netdev_rename_lock);
1094 		strscpy(name, dev->name, IFNAMSIZ);
1095 	} while (read_seqretry(&netdev_rename_lock, seq));
1096 }
1097 
1098 /**
1099  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1100  *	@net: network namespace
1101  *	@name: a pointer to the buffer where the name will be stored.
1102  *	@ifindex: the ifindex of the interface to get the name from.
1103  */
1104 int netdev_get_name(struct net *net, char *name, int ifindex)
1105 {
1106 	struct net_device *dev;
1107 	int ret;
1108 
1109 	rcu_read_lock();
1110 
1111 	dev = dev_get_by_index_rcu(net, ifindex);
1112 	if (!dev) {
1113 		ret = -ENODEV;
1114 		goto out;
1115 	}
1116 
1117 	netdev_copy_name(dev, name);
1118 
1119 	ret = 0;
1120 out:
1121 	rcu_read_unlock();
1122 	return ret;
1123 }
1124 
1125 /**
1126  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1127  *	@net: the applicable net namespace
1128  *	@type: media type of device
1129  *	@ha: hardware address
1130  *
1131  *	Search for an interface by MAC address. Returns NULL if the device
1132  *	is not found or a pointer to the device.
1133  *	The caller must hold RCU or RTNL.
1134  *	The returned device has not had its ref count increased
1135  *	and the caller must therefore be careful about locking
1136  *
1137  */
1138 
1139 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1140 				       const char *ha)
1141 {
1142 	struct net_device *dev;
1143 
1144 	for_each_netdev_rcu(net, dev)
1145 		if (dev->type == type &&
1146 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1147 			return dev;
1148 
1149 	return NULL;
1150 }
1151 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1152 
1153 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1154 {
1155 	struct net_device *dev, *ret = NULL;
1156 
1157 	rcu_read_lock();
1158 	for_each_netdev_rcu(net, dev)
1159 		if (dev->type == type) {
1160 			dev_hold(dev);
1161 			ret = dev;
1162 			break;
1163 		}
1164 	rcu_read_unlock();
1165 	return ret;
1166 }
1167 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1168 
1169 /**
1170  *	__dev_get_by_flags - find any device with given flags
1171  *	@net: the applicable net namespace
1172  *	@if_flags: IFF_* values
1173  *	@mask: bitmask of bits in if_flags to check
1174  *
1175  *	Search for any interface with the given flags. Returns NULL if a device
1176  *	is not found or a pointer to the device. Must be called inside
1177  *	rtnl_lock(), and result refcount is unchanged.
1178  */
1179 
1180 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1181 				      unsigned short mask)
1182 {
1183 	struct net_device *dev, *ret;
1184 
1185 	ASSERT_RTNL();
1186 
1187 	ret = NULL;
1188 	for_each_netdev(net, dev) {
1189 		if (((dev->flags ^ if_flags) & mask) == 0) {
1190 			ret = dev;
1191 			break;
1192 		}
1193 	}
1194 	return ret;
1195 }
1196 EXPORT_SYMBOL(__dev_get_by_flags);
1197 
1198 /**
1199  *	dev_valid_name - check if name is okay for network device
1200  *	@name: name string
1201  *
1202  *	Network device names need to be valid file names to
1203  *	allow sysfs to work.  We also disallow any kind of
1204  *	whitespace.
1205  */
1206 bool dev_valid_name(const char *name)
1207 {
1208 	if (*name == '\0')
1209 		return false;
1210 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1211 		return false;
1212 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1213 		return false;
1214 
1215 	while (*name) {
1216 		if (*name == '/' || *name == ':' || isspace(*name))
1217 			return false;
1218 		name++;
1219 	}
1220 	return true;
1221 }
1222 EXPORT_SYMBOL(dev_valid_name);
1223 
1224 /**
1225  *	__dev_alloc_name - allocate a name for a device
1226  *	@net: network namespace to allocate the device name in
1227  *	@name: name format string
1228  *	@res: result name string
1229  *
1230  *	Passed a format string - eg "lt%d" it will try and find a suitable
1231  *	id. It scans list of devices to build up a free map, then chooses
1232  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1233  *	while allocating the name and adding the device in order to avoid
1234  *	duplicates.
1235  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1236  *	Returns the number of the unit assigned or a negative errno code.
1237  */
1238 
1239 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1240 {
1241 	int i = 0;
1242 	const char *p;
1243 	const int max_netdevices = 8*PAGE_SIZE;
1244 	unsigned long *inuse;
1245 	struct net_device *d;
1246 	char buf[IFNAMSIZ];
1247 
1248 	/* Verify the string as this thing may have come from the user.
1249 	 * There must be one "%d" and no other "%" characters.
1250 	 */
1251 	p = strchr(name, '%');
1252 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1253 		return -EINVAL;
1254 
1255 	/* Use one page as a bit array of possible slots */
1256 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1257 	if (!inuse)
1258 		return -ENOMEM;
1259 
1260 	for_each_netdev(net, d) {
1261 		struct netdev_name_node *name_node;
1262 
1263 		netdev_for_each_altname(d, name_node) {
1264 			if (!sscanf(name_node->name, name, &i))
1265 				continue;
1266 			if (i < 0 || i >= max_netdevices)
1267 				continue;
1268 
1269 			/* avoid cases where sscanf is not exact inverse of printf */
1270 			snprintf(buf, IFNAMSIZ, name, i);
1271 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1272 				__set_bit(i, inuse);
1273 		}
1274 		if (!sscanf(d->name, name, &i))
1275 			continue;
1276 		if (i < 0 || i >= max_netdevices)
1277 			continue;
1278 
1279 		/* avoid cases where sscanf is not exact inverse of printf */
1280 		snprintf(buf, IFNAMSIZ, name, i);
1281 		if (!strncmp(buf, d->name, IFNAMSIZ))
1282 			__set_bit(i, inuse);
1283 	}
1284 
1285 	i = find_first_zero_bit(inuse, max_netdevices);
1286 	bitmap_free(inuse);
1287 	if (i == max_netdevices)
1288 		return -ENFILE;
1289 
1290 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1291 	strscpy(buf, name, IFNAMSIZ);
1292 	snprintf(res, IFNAMSIZ, buf, i);
1293 	return i;
1294 }
1295 
1296 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1297 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1298 			       const char *want_name, char *out_name,
1299 			       int dup_errno)
1300 {
1301 	if (!dev_valid_name(want_name))
1302 		return -EINVAL;
1303 
1304 	if (strchr(want_name, '%'))
1305 		return __dev_alloc_name(net, want_name, out_name);
1306 
1307 	if (netdev_name_in_use(net, want_name))
1308 		return -dup_errno;
1309 	if (out_name != want_name)
1310 		strscpy(out_name, want_name, IFNAMSIZ);
1311 	return 0;
1312 }
1313 
1314 /**
1315  *	dev_alloc_name - allocate a name for a device
1316  *	@dev: device
1317  *	@name: name format string
1318  *
1319  *	Passed a format string - eg "lt%d" it will try and find a suitable
1320  *	id. It scans list of devices to build up a free map, then chooses
1321  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1322  *	while allocating the name and adding the device in order to avoid
1323  *	duplicates.
1324  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1325  *	Returns the number of the unit assigned or a negative errno code.
1326  */
1327 
1328 int dev_alloc_name(struct net_device *dev, const char *name)
1329 {
1330 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1331 }
1332 EXPORT_SYMBOL(dev_alloc_name);
1333 
1334 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1335 			      const char *name)
1336 {
1337 	int ret;
1338 
1339 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1340 	return ret < 0 ? ret : 0;
1341 }
1342 
1343 /**
1344  *	dev_change_name - change name of a device
1345  *	@dev: device
1346  *	@newname: name (or format string) must be at least IFNAMSIZ
1347  *
1348  *	Change name of a device, can pass format strings "eth%d".
1349  *	for wildcarding.
1350  */
1351 int dev_change_name(struct net_device *dev, const char *newname)
1352 {
1353 	struct net *net = dev_net(dev);
1354 	unsigned char old_assign_type;
1355 	char oldname[IFNAMSIZ];
1356 	int err = 0;
1357 	int ret;
1358 
1359 	ASSERT_RTNL_NET(net);
1360 
1361 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1362 		return 0;
1363 
1364 	memcpy(oldname, dev->name, IFNAMSIZ);
1365 
1366 	write_seqlock_bh(&netdev_rename_lock);
1367 	err = dev_get_valid_name(net, dev, newname);
1368 	write_sequnlock_bh(&netdev_rename_lock);
1369 
1370 	if (err < 0)
1371 		return err;
1372 
1373 	if (oldname[0] && !strchr(oldname, '%'))
1374 		netdev_info(dev, "renamed from %s%s\n", oldname,
1375 			    dev->flags & IFF_UP ? " (while UP)" : "");
1376 
1377 	old_assign_type = dev->name_assign_type;
1378 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1379 
1380 rollback:
1381 	ret = device_rename(&dev->dev, dev->name);
1382 	if (ret) {
1383 		write_seqlock_bh(&netdev_rename_lock);
1384 		memcpy(dev->name, oldname, IFNAMSIZ);
1385 		write_sequnlock_bh(&netdev_rename_lock);
1386 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1387 		return ret;
1388 	}
1389 
1390 	netdev_adjacent_rename_links(dev, oldname);
1391 
1392 	netdev_name_node_del(dev->name_node);
1393 
1394 	synchronize_net();
1395 
1396 	netdev_name_node_add(net, dev->name_node);
1397 
1398 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1399 	ret = notifier_to_errno(ret);
1400 
1401 	if (ret) {
1402 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1403 		if (err >= 0) {
1404 			err = ret;
1405 			write_seqlock_bh(&netdev_rename_lock);
1406 			memcpy(dev->name, oldname, IFNAMSIZ);
1407 			write_sequnlock_bh(&netdev_rename_lock);
1408 			memcpy(oldname, newname, IFNAMSIZ);
1409 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1410 			old_assign_type = NET_NAME_RENAMED;
1411 			goto rollback;
1412 		} else {
1413 			netdev_err(dev, "name change rollback failed: %d\n",
1414 				   ret);
1415 		}
1416 	}
1417 
1418 	return err;
1419 }
1420 
1421 /**
1422  *	dev_set_alias - change ifalias of a device
1423  *	@dev: device
1424  *	@alias: name up to IFALIASZ
1425  *	@len: limit of bytes to copy from info
1426  *
1427  *	Set ifalias for a device,
1428  */
1429 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1430 {
1431 	struct dev_ifalias *new_alias = NULL;
1432 
1433 	if (len >= IFALIASZ)
1434 		return -EINVAL;
1435 
1436 	if (len) {
1437 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1438 		if (!new_alias)
1439 			return -ENOMEM;
1440 
1441 		memcpy(new_alias->ifalias, alias, len);
1442 		new_alias->ifalias[len] = 0;
1443 	}
1444 
1445 	mutex_lock(&ifalias_mutex);
1446 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1447 					mutex_is_locked(&ifalias_mutex));
1448 	mutex_unlock(&ifalias_mutex);
1449 
1450 	if (new_alias)
1451 		kfree_rcu(new_alias, rcuhead);
1452 
1453 	return len;
1454 }
1455 EXPORT_SYMBOL(dev_set_alias);
1456 
1457 /**
1458  *	dev_get_alias - get ifalias of a device
1459  *	@dev: device
1460  *	@name: buffer to store name of ifalias
1461  *	@len: size of buffer
1462  *
1463  *	get ifalias for a device.  Caller must make sure dev cannot go
1464  *	away,  e.g. rcu read lock or own a reference count to device.
1465  */
1466 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1467 {
1468 	const struct dev_ifalias *alias;
1469 	int ret = 0;
1470 
1471 	rcu_read_lock();
1472 	alias = rcu_dereference(dev->ifalias);
1473 	if (alias)
1474 		ret = snprintf(name, len, "%s", alias->ifalias);
1475 	rcu_read_unlock();
1476 
1477 	return ret;
1478 }
1479 
1480 /**
1481  *	netdev_features_change - device changes features
1482  *	@dev: device to cause notification
1483  *
1484  *	Called to indicate a device has changed features.
1485  */
1486 void netdev_features_change(struct net_device *dev)
1487 {
1488 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1489 }
1490 EXPORT_SYMBOL(netdev_features_change);
1491 
1492 /**
1493  *	netdev_state_change - device changes state
1494  *	@dev: device to cause notification
1495  *
1496  *	Called to indicate a device has changed state. This function calls
1497  *	the notifier chains for netdev_chain and sends a NEWLINK message
1498  *	to the routing socket.
1499  */
1500 void netdev_state_change(struct net_device *dev)
1501 {
1502 	if (dev->flags & IFF_UP) {
1503 		struct netdev_notifier_change_info change_info = {
1504 			.info.dev = dev,
1505 		};
1506 
1507 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1508 					      &change_info.info);
1509 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1510 	}
1511 }
1512 EXPORT_SYMBOL(netdev_state_change);
1513 
1514 /**
1515  * __netdev_notify_peers - notify network peers about existence of @dev,
1516  * to be called when rtnl lock is already held.
1517  * @dev: network device
1518  *
1519  * Generate traffic such that interested network peers are aware of
1520  * @dev, such as by generating a gratuitous ARP. This may be used when
1521  * a device wants to inform the rest of the network about some sort of
1522  * reconfiguration such as a failover event or virtual machine
1523  * migration.
1524  */
1525 void __netdev_notify_peers(struct net_device *dev)
1526 {
1527 	ASSERT_RTNL();
1528 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1529 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1530 }
1531 EXPORT_SYMBOL(__netdev_notify_peers);
1532 
1533 /**
1534  * netdev_notify_peers - notify network peers about existence of @dev
1535  * @dev: network device
1536  *
1537  * Generate traffic such that interested network peers are aware of
1538  * @dev, such as by generating a gratuitous ARP. This may be used when
1539  * a device wants to inform the rest of the network about some sort of
1540  * reconfiguration such as a failover event or virtual machine
1541  * migration.
1542  */
1543 void netdev_notify_peers(struct net_device *dev)
1544 {
1545 	rtnl_lock();
1546 	__netdev_notify_peers(dev);
1547 	rtnl_unlock();
1548 }
1549 EXPORT_SYMBOL(netdev_notify_peers);
1550 
1551 static int napi_threaded_poll(void *data);
1552 
1553 static int napi_kthread_create(struct napi_struct *n)
1554 {
1555 	int err = 0;
1556 
1557 	/* Create and wake up the kthread once to put it in
1558 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1559 	 * warning and work with loadavg.
1560 	 */
1561 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1562 				n->dev->name, n->napi_id);
1563 	if (IS_ERR(n->thread)) {
1564 		err = PTR_ERR(n->thread);
1565 		pr_err("kthread_run failed with err %d\n", err);
1566 		n->thread = NULL;
1567 	}
1568 
1569 	return err;
1570 }
1571 
1572 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1573 {
1574 	const struct net_device_ops *ops = dev->netdev_ops;
1575 	int ret;
1576 
1577 	ASSERT_RTNL();
1578 	dev_addr_check(dev);
1579 
1580 	if (!netif_device_present(dev)) {
1581 		/* may be detached because parent is runtime-suspended */
1582 		if (dev->dev.parent)
1583 			pm_runtime_resume(dev->dev.parent);
1584 		if (!netif_device_present(dev))
1585 			return -ENODEV;
1586 	}
1587 
1588 	/* Block netpoll from trying to do any rx path servicing.
1589 	 * If we don't do this there is a chance ndo_poll_controller
1590 	 * or ndo_poll may be running while we open the device
1591 	 */
1592 	netpoll_poll_disable(dev);
1593 
1594 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1595 	ret = notifier_to_errno(ret);
1596 	if (ret)
1597 		return ret;
1598 
1599 	set_bit(__LINK_STATE_START, &dev->state);
1600 
1601 	if (ops->ndo_validate_addr)
1602 		ret = ops->ndo_validate_addr(dev);
1603 
1604 	if (!ret && ops->ndo_open)
1605 		ret = ops->ndo_open(dev);
1606 
1607 	netpoll_poll_enable(dev);
1608 
1609 	if (ret)
1610 		clear_bit(__LINK_STATE_START, &dev->state);
1611 	else {
1612 		netif_set_up(dev, true);
1613 		dev_set_rx_mode(dev);
1614 		dev_activate(dev);
1615 		add_device_randomness(dev->dev_addr, dev->addr_len);
1616 	}
1617 
1618 	return ret;
1619 }
1620 
1621 /**
1622  *	dev_open	- prepare an interface for use.
1623  *	@dev: device to open
1624  *	@extack: netlink extended ack
1625  *
1626  *	Takes a device from down to up state. The device's private open
1627  *	function is invoked and then the multicast lists are loaded. Finally
1628  *	the device is moved into the up state and a %NETDEV_UP message is
1629  *	sent to the netdev notifier chain.
1630  *
1631  *	Calling this function on an active interface is a nop. On a failure
1632  *	a negative errno code is returned.
1633  */
1634 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1635 {
1636 	int ret;
1637 
1638 	if (dev->flags & IFF_UP)
1639 		return 0;
1640 
1641 	ret = __dev_open(dev, extack);
1642 	if (ret < 0)
1643 		return ret;
1644 
1645 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1646 	call_netdevice_notifiers(NETDEV_UP, dev);
1647 
1648 	return ret;
1649 }
1650 EXPORT_SYMBOL(dev_open);
1651 
1652 static void __dev_close_many(struct list_head *head)
1653 {
1654 	struct net_device *dev;
1655 
1656 	ASSERT_RTNL();
1657 	might_sleep();
1658 
1659 	list_for_each_entry(dev, head, close_list) {
1660 		/* Temporarily disable netpoll until the interface is down */
1661 		netpoll_poll_disable(dev);
1662 
1663 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1664 
1665 		clear_bit(__LINK_STATE_START, &dev->state);
1666 
1667 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1668 		 * can be even on different cpu. So just clear netif_running().
1669 		 *
1670 		 * dev->stop() will invoke napi_disable() on all of it's
1671 		 * napi_struct instances on this device.
1672 		 */
1673 		smp_mb__after_atomic(); /* Commit netif_running(). */
1674 	}
1675 
1676 	dev_deactivate_many(head);
1677 
1678 	list_for_each_entry(dev, head, close_list) {
1679 		const struct net_device_ops *ops = dev->netdev_ops;
1680 
1681 		/*
1682 		 *	Call the device specific close. This cannot fail.
1683 		 *	Only if device is UP
1684 		 *
1685 		 *	We allow it to be called even after a DETACH hot-plug
1686 		 *	event.
1687 		 */
1688 		if (ops->ndo_stop)
1689 			ops->ndo_stop(dev);
1690 
1691 		netif_set_up(dev, false);
1692 		netpoll_poll_enable(dev);
1693 	}
1694 }
1695 
1696 static void __dev_close(struct net_device *dev)
1697 {
1698 	LIST_HEAD(single);
1699 
1700 	list_add(&dev->close_list, &single);
1701 	__dev_close_many(&single);
1702 	list_del(&single);
1703 }
1704 
1705 void dev_close_many(struct list_head *head, bool unlink)
1706 {
1707 	struct net_device *dev, *tmp;
1708 
1709 	/* Remove the devices that don't need to be closed */
1710 	list_for_each_entry_safe(dev, tmp, head, close_list)
1711 		if (!(dev->flags & IFF_UP))
1712 			list_del_init(&dev->close_list);
1713 
1714 	__dev_close_many(head);
1715 
1716 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1717 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1718 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1719 		if (unlink)
1720 			list_del_init(&dev->close_list);
1721 	}
1722 }
1723 EXPORT_SYMBOL(dev_close_many);
1724 
1725 /**
1726  *	dev_close - shutdown an interface.
1727  *	@dev: device to shutdown
1728  *
1729  *	This function moves an active device into down state. A
1730  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1731  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1732  *	chain.
1733  */
1734 void dev_close(struct net_device *dev)
1735 {
1736 	if (dev->flags & IFF_UP) {
1737 		LIST_HEAD(single);
1738 
1739 		list_add(&dev->close_list, &single);
1740 		dev_close_many(&single, true);
1741 		list_del(&single);
1742 	}
1743 }
1744 EXPORT_SYMBOL(dev_close);
1745 
1746 
1747 /**
1748  *	dev_disable_lro - disable Large Receive Offload on a device
1749  *	@dev: device
1750  *
1751  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1752  *	called under RTNL.  This is needed if received packets may be
1753  *	forwarded to another interface.
1754  */
1755 void dev_disable_lro(struct net_device *dev)
1756 {
1757 	struct net_device *lower_dev;
1758 	struct list_head *iter;
1759 
1760 	dev->wanted_features &= ~NETIF_F_LRO;
1761 	netdev_update_features(dev);
1762 
1763 	if (unlikely(dev->features & NETIF_F_LRO))
1764 		netdev_WARN(dev, "failed to disable LRO!\n");
1765 
1766 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1767 		dev_disable_lro(lower_dev);
1768 }
1769 EXPORT_SYMBOL(dev_disable_lro);
1770 
1771 /**
1772  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1773  *	@dev: device
1774  *
1775  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1776  *	called under RTNL.  This is needed if Generic XDP is installed on
1777  *	the device.
1778  */
1779 static void dev_disable_gro_hw(struct net_device *dev)
1780 {
1781 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1782 	netdev_update_features(dev);
1783 
1784 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1785 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1786 }
1787 
1788 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1789 {
1790 #define N(val) 						\
1791 	case NETDEV_##val:				\
1792 		return "NETDEV_" __stringify(val);
1793 	switch (cmd) {
1794 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1795 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1796 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1797 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1798 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1799 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1800 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1801 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1802 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1803 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1804 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1805 	N(XDP_FEAT_CHANGE)
1806 	}
1807 #undef N
1808 	return "UNKNOWN_NETDEV_EVENT";
1809 }
1810 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1811 
1812 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1813 				   struct net_device *dev)
1814 {
1815 	struct netdev_notifier_info info = {
1816 		.dev = dev,
1817 	};
1818 
1819 	return nb->notifier_call(nb, val, &info);
1820 }
1821 
1822 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1823 					     struct net_device *dev)
1824 {
1825 	int err;
1826 
1827 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1828 	err = notifier_to_errno(err);
1829 	if (err)
1830 		return err;
1831 
1832 	if (!(dev->flags & IFF_UP))
1833 		return 0;
1834 
1835 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1836 	return 0;
1837 }
1838 
1839 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1840 						struct net_device *dev)
1841 {
1842 	if (dev->flags & IFF_UP) {
1843 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1844 					dev);
1845 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1846 	}
1847 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1848 }
1849 
1850 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1851 						 struct net *net)
1852 {
1853 	struct net_device *dev;
1854 	int err;
1855 
1856 	for_each_netdev(net, dev) {
1857 		err = call_netdevice_register_notifiers(nb, dev);
1858 		if (err)
1859 			goto rollback;
1860 	}
1861 	return 0;
1862 
1863 rollback:
1864 	for_each_netdev_continue_reverse(net, dev)
1865 		call_netdevice_unregister_notifiers(nb, dev);
1866 	return err;
1867 }
1868 
1869 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1870 						    struct net *net)
1871 {
1872 	struct net_device *dev;
1873 
1874 	for_each_netdev(net, dev)
1875 		call_netdevice_unregister_notifiers(nb, dev);
1876 }
1877 
1878 static int dev_boot_phase = 1;
1879 
1880 /**
1881  * register_netdevice_notifier - register a network notifier block
1882  * @nb: notifier
1883  *
1884  * Register a notifier to be called when network device events occur.
1885  * The notifier passed is linked into the kernel structures and must
1886  * not be reused until it has been unregistered. A negative errno code
1887  * is returned on a failure.
1888  *
1889  * When registered all registration and up events are replayed
1890  * to the new notifier to allow device to have a race free
1891  * view of the network device list.
1892  */
1893 
1894 int register_netdevice_notifier(struct notifier_block *nb)
1895 {
1896 	struct net *net;
1897 	int err;
1898 
1899 	/* Close race with setup_net() and cleanup_net() */
1900 	down_write(&pernet_ops_rwsem);
1901 
1902 	/* When RTNL is removed, we need protection for netdev_chain. */
1903 	rtnl_lock();
1904 
1905 	err = raw_notifier_chain_register(&netdev_chain, nb);
1906 	if (err)
1907 		goto unlock;
1908 	if (dev_boot_phase)
1909 		goto unlock;
1910 	for_each_net(net) {
1911 		__rtnl_net_lock(net);
1912 		err = call_netdevice_register_net_notifiers(nb, net);
1913 		__rtnl_net_unlock(net);
1914 		if (err)
1915 			goto rollback;
1916 	}
1917 
1918 unlock:
1919 	rtnl_unlock();
1920 	up_write(&pernet_ops_rwsem);
1921 	return err;
1922 
1923 rollback:
1924 	for_each_net_continue_reverse(net) {
1925 		__rtnl_net_lock(net);
1926 		call_netdevice_unregister_net_notifiers(nb, net);
1927 		__rtnl_net_unlock(net);
1928 	}
1929 
1930 	raw_notifier_chain_unregister(&netdev_chain, nb);
1931 	goto unlock;
1932 }
1933 EXPORT_SYMBOL(register_netdevice_notifier);
1934 
1935 /**
1936  * unregister_netdevice_notifier - unregister a network notifier block
1937  * @nb: notifier
1938  *
1939  * Unregister a notifier previously registered by
1940  * register_netdevice_notifier(). The notifier is unlinked into the
1941  * kernel structures and may then be reused. A negative errno code
1942  * is returned on a failure.
1943  *
1944  * After unregistering unregister and down device events are synthesized
1945  * for all devices on the device list to the removed notifier to remove
1946  * the need for special case cleanup code.
1947  */
1948 
1949 int unregister_netdevice_notifier(struct notifier_block *nb)
1950 {
1951 	struct net *net;
1952 	int err;
1953 
1954 	/* Close race with setup_net() and cleanup_net() */
1955 	down_write(&pernet_ops_rwsem);
1956 	rtnl_lock();
1957 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1958 	if (err)
1959 		goto unlock;
1960 
1961 	for_each_net(net) {
1962 		__rtnl_net_lock(net);
1963 		call_netdevice_unregister_net_notifiers(nb, net);
1964 		__rtnl_net_unlock(net);
1965 	}
1966 
1967 unlock:
1968 	rtnl_unlock();
1969 	up_write(&pernet_ops_rwsem);
1970 	return err;
1971 }
1972 EXPORT_SYMBOL(unregister_netdevice_notifier);
1973 
1974 static int __register_netdevice_notifier_net(struct net *net,
1975 					     struct notifier_block *nb,
1976 					     bool ignore_call_fail)
1977 {
1978 	int err;
1979 
1980 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1981 	if (err)
1982 		return err;
1983 	if (dev_boot_phase)
1984 		return 0;
1985 
1986 	err = call_netdevice_register_net_notifiers(nb, net);
1987 	if (err && !ignore_call_fail)
1988 		goto chain_unregister;
1989 
1990 	return 0;
1991 
1992 chain_unregister:
1993 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1994 	return err;
1995 }
1996 
1997 static int __unregister_netdevice_notifier_net(struct net *net,
1998 					       struct notifier_block *nb)
1999 {
2000 	int err;
2001 
2002 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2003 	if (err)
2004 		return err;
2005 
2006 	call_netdevice_unregister_net_notifiers(nb, net);
2007 	return 0;
2008 }
2009 
2010 /**
2011  * register_netdevice_notifier_net - register a per-netns network notifier block
2012  * @net: network namespace
2013  * @nb: notifier
2014  *
2015  * Register a notifier to be called when network device events occur.
2016  * The notifier passed is linked into the kernel structures and must
2017  * not be reused until it has been unregistered. A negative errno code
2018  * is returned on a failure.
2019  *
2020  * When registered all registration and up events are replayed
2021  * to the new notifier to allow device to have a race free
2022  * view of the network device list.
2023  */
2024 
2025 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2026 {
2027 	int err;
2028 
2029 	rtnl_net_lock(net);
2030 	err = __register_netdevice_notifier_net(net, nb, false);
2031 	rtnl_net_unlock(net);
2032 
2033 	return err;
2034 }
2035 EXPORT_SYMBOL(register_netdevice_notifier_net);
2036 
2037 /**
2038  * unregister_netdevice_notifier_net - unregister a per-netns
2039  *                                     network notifier block
2040  * @net: network namespace
2041  * @nb: notifier
2042  *
2043  * Unregister a notifier previously registered by
2044  * register_netdevice_notifier_net(). The notifier is unlinked from the
2045  * kernel structures and may then be reused. A negative errno code
2046  * is returned on a failure.
2047  *
2048  * After unregistering unregister and down device events are synthesized
2049  * for all devices on the device list to the removed notifier to remove
2050  * the need for special case cleanup code.
2051  */
2052 
2053 int unregister_netdevice_notifier_net(struct net *net,
2054 				      struct notifier_block *nb)
2055 {
2056 	int err;
2057 
2058 	rtnl_net_lock(net);
2059 	err = __unregister_netdevice_notifier_net(net, nb);
2060 	rtnl_net_unlock(net);
2061 
2062 	return err;
2063 }
2064 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2065 
2066 static void __move_netdevice_notifier_net(struct net *src_net,
2067 					  struct net *dst_net,
2068 					  struct notifier_block *nb)
2069 {
2070 	__unregister_netdevice_notifier_net(src_net, nb);
2071 	__register_netdevice_notifier_net(dst_net, nb, true);
2072 }
2073 
2074 int register_netdevice_notifier_dev_net(struct net_device *dev,
2075 					struct notifier_block *nb,
2076 					struct netdev_net_notifier *nn)
2077 {
2078 	struct net *net = dev_net(dev);
2079 	int err;
2080 
2081 	rtnl_net_lock(net);
2082 	err = __register_netdevice_notifier_net(net, nb, false);
2083 	if (!err) {
2084 		nn->nb = nb;
2085 		list_add(&nn->list, &dev->net_notifier_list);
2086 	}
2087 	rtnl_net_unlock(net);
2088 
2089 	return err;
2090 }
2091 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2092 
2093 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2094 					  struct notifier_block *nb,
2095 					  struct netdev_net_notifier *nn)
2096 {
2097 	struct net *net = dev_net(dev);
2098 	int err;
2099 
2100 	rtnl_net_lock(net);
2101 	list_del(&nn->list);
2102 	err = __unregister_netdevice_notifier_net(net, nb);
2103 	rtnl_net_unlock(net);
2104 
2105 	return err;
2106 }
2107 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2108 
2109 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2110 					     struct net *net)
2111 {
2112 	struct netdev_net_notifier *nn;
2113 
2114 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2115 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2116 }
2117 
2118 /**
2119  *	call_netdevice_notifiers_info - call all network notifier blocks
2120  *	@val: value passed unmodified to notifier function
2121  *	@info: notifier information data
2122  *
2123  *	Call all network notifier blocks.  Parameters and return value
2124  *	are as for raw_notifier_call_chain().
2125  */
2126 
2127 int call_netdevice_notifiers_info(unsigned long val,
2128 				  struct netdev_notifier_info *info)
2129 {
2130 	struct net *net = dev_net(info->dev);
2131 	int ret;
2132 
2133 	ASSERT_RTNL();
2134 
2135 	/* Run per-netns notifier block chain first, then run the global one.
2136 	 * Hopefully, one day, the global one is going to be removed after
2137 	 * all notifier block registrators get converted to be per-netns.
2138 	 */
2139 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2140 	if (ret & NOTIFY_STOP_MASK)
2141 		return ret;
2142 	return raw_notifier_call_chain(&netdev_chain, val, info);
2143 }
2144 
2145 /**
2146  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2147  *	                                       for and rollback on error
2148  *	@val_up: value passed unmodified to notifier function
2149  *	@val_down: value passed unmodified to the notifier function when
2150  *	           recovering from an error on @val_up
2151  *	@info: notifier information data
2152  *
2153  *	Call all per-netns network notifier blocks, but not notifier blocks on
2154  *	the global notifier chain. Parameters and return value are as for
2155  *	raw_notifier_call_chain_robust().
2156  */
2157 
2158 static int
2159 call_netdevice_notifiers_info_robust(unsigned long val_up,
2160 				     unsigned long val_down,
2161 				     struct netdev_notifier_info *info)
2162 {
2163 	struct net *net = dev_net(info->dev);
2164 
2165 	ASSERT_RTNL();
2166 
2167 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2168 					      val_up, val_down, info);
2169 }
2170 
2171 static int call_netdevice_notifiers_extack(unsigned long val,
2172 					   struct net_device *dev,
2173 					   struct netlink_ext_ack *extack)
2174 {
2175 	struct netdev_notifier_info info = {
2176 		.dev = dev,
2177 		.extack = extack,
2178 	};
2179 
2180 	return call_netdevice_notifiers_info(val, &info);
2181 }
2182 
2183 /**
2184  *	call_netdevice_notifiers - call all network notifier blocks
2185  *      @val: value passed unmodified to notifier function
2186  *      @dev: net_device pointer passed unmodified to notifier function
2187  *
2188  *	Call all network notifier blocks.  Parameters and return value
2189  *	are as for raw_notifier_call_chain().
2190  */
2191 
2192 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2193 {
2194 	return call_netdevice_notifiers_extack(val, dev, NULL);
2195 }
2196 EXPORT_SYMBOL(call_netdevice_notifiers);
2197 
2198 /**
2199  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2200  *	@val: value passed unmodified to notifier function
2201  *	@dev: net_device pointer passed unmodified to notifier function
2202  *	@arg: additional u32 argument passed to the notifier function
2203  *
2204  *	Call all network notifier blocks.  Parameters and return value
2205  *	are as for raw_notifier_call_chain().
2206  */
2207 static int call_netdevice_notifiers_mtu(unsigned long val,
2208 					struct net_device *dev, u32 arg)
2209 {
2210 	struct netdev_notifier_info_ext info = {
2211 		.info.dev = dev,
2212 		.ext.mtu = arg,
2213 	};
2214 
2215 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2216 
2217 	return call_netdevice_notifiers_info(val, &info.info);
2218 }
2219 
2220 #ifdef CONFIG_NET_INGRESS
2221 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2222 
2223 void net_inc_ingress_queue(void)
2224 {
2225 	static_branch_inc(&ingress_needed_key);
2226 }
2227 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2228 
2229 void net_dec_ingress_queue(void)
2230 {
2231 	static_branch_dec(&ingress_needed_key);
2232 }
2233 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2234 #endif
2235 
2236 #ifdef CONFIG_NET_EGRESS
2237 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2238 
2239 void net_inc_egress_queue(void)
2240 {
2241 	static_branch_inc(&egress_needed_key);
2242 }
2243 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2244 
2245 void net_dec_egress_queue(void)
2246 {
2247 	static_branch_dec(&egress_needed_key);
2248 }
2249 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2250 #endif
2251 
2252 #ifdef CONFIG_NET_CLS_ACT
2253 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2254 EXPORT_SYMBOL(tcf_sw_enabled_key);
2255 #endif
2256 
2257 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2258 EXPORT_SYMBOL(netstamp_needed_key);
2259 #ifdef CONFIG_JUMP_LABEL
2260 static atomic_t netstamp_needed_deferred;
2261 static atomic_t netstamp_wanted;
2262 static void netstamp_clear(struct work_struct *work)
2263 {
2264 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2265 	int wanted;
2266 
2267 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2268 	if (wanted > 0)
2269 		static_branch_enable(&netstamp_needed_key);
2270 	else
2271 		static_branch_disable(&netstamp_needed_key);
2272 }
2273 static DECLARE_WORK(netstamp_work, netstamp_clear);
2274 #endif
2275 
2276 void net_enable_timestamp(void)
2277 {
2278 #ifdef CONFIG_JUMP_LABEL
2279 	int wanted = atomic_read(&netstamp_wanted);
2280 
2281 	while (wanted > 0) {
2282 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2283 			return;
2284 	}
2285 	atomic_inc(&netstamp_needed_deferred);
2286 	schedule_work(&netstamp_work);
2287 #else
2288 	static_branch_inc(&netstamp_needed_key);
2289 #endif
2290 }
2291 EXPORT_SYMBOL(net_enable_timestamp);
2292 
2293 void net_disable_timestamp(void)
2294 {
2295 #ifdef CONFIG_JUMP_LABEL
2296 	int wanted = atomic_read(&netstamp_wanted);
2297 
2298 	while (wanted > 1) {
2299 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2300 			return;
2301 	}
2302 	atomic_dec(&netstamp_needed_deferred);
2303 	schedule_work(&netstamp_work);
2304 #else
2305 	static_branch_dec(&netstamp_needed_key);
2306 #endif
2307 }
2308 EXPORT_SYMBOL(net_disable_timestamp);
2309 
2310 static inline void net_timestamp_set(struct sk_buff *skb)
2311 {
2312 	skb->tstamp = 0;
2313 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2314 	if (static_branch_unlikely(&netstamp_needed_key))
2315 		skb->tstamp = ktime_get_real();
2316 }
2317 
2318 #define net_timestamp_check(COND, SKB)				\
2319 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2320 		if ((COND) && !(SKB)->tstamp)			\
2321 			(SKB)->tstamp = ktime_get_real();	\
2322 	}							\
2323 
2324 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2325 {
2326 	return __is_skb_forwardable(dev, skb, true);
2327 }
2328 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2329 
2330 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2331 			      bool check_mtu)
2332 {
2333 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2334 
2335 	if (likely(!ret)) {
2336 		skb->protocol = eth_type_trans(skb, dev);
2337 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2338 	}
2339 
2340 	return ret;
2341 }
2342 
2343 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2344 {
2345 	return __dev_forward_skb2(dev, skb, true);
2346 }
2347 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2348 
2349 /**
2350  * dev_forward_skb - loopback an skb to another netif
2351  *
2352  * @dev: destination network device
2353  * @skb: buffer to forward
2354  *
2355  * return values:
2356  *	NET_RX_SUCCESS	(no congestion)
2357  *	NET_RX_DROP     (packet was dropped, but freed)
2358  *
2359  * dev_forward_skb can be used for injecting an skb from the
2360  * start_xmit function of one device into the receive queue
2361  * of another device.
2362  *
2363  * The receiving device may be in another namespace, so
2364  * we have to clear all information in the skb that could
2365  * impact namespace isolation.
2366  */
2367 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2368 {
2369 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2370 }
2371 EXPORT_SYMBOL_GPL(dev_forward_skb);
2372 
2373 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2374 {
2375 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2376 }
2377 
2378 static inline int deliver_skb(struct sk_buff *skb,
2379 			      struct packet_type *pt_prev,
2380 			      struct net_device *orig_dev)
2381 {
2382 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2383 		return -ENOMEM;
2384 	refcount_inc(&skb->users);
2385 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2386 }
2387 
2388 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2389 					  struct packet_type **pt,
2390 					  struct net_device *orig_dev,
2391 					  __be16 type,
2392 					  struct list_head *ptype_list)
2393 {
2394 	struct packet_type *ptype, *pt_prev = *pt;
2395 
2396 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2397 		if (ptype->type != type)
2398 			continue;
2399 		if (pt_prev)
2400 			deliver_skb(skb, pt_prev, orig_dev);
2401 		pt_prev = ptype;
2402 	}
2403 	*pt = pt_prev;
2404 }
2405 
2406 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2407 {
2408 	if (!ptype->af_packet_priv || !skb->sk)
2409 		return false;
2410 
2411 	if (ptype->id_match)
2412 		return ptype->id_match(ptype, skb->sk);
2413 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2414 		return true;
2415 
2416 	return false;
2417 }
2418 
2419 /**
2420  * dev_nit_active - return true if any network interface taps are in use
2421  *
2422  * @dev: network device to check for the presence of taps
2423  */
2424 bool dev_nit_active(struct net_device *dev)
2425 {
2426 	return !list_empty(&net_hotdata.ptype_all) ||
2427 	       !list_empty(&dev->ptype_all);
2428 }
2429 EXPORT_SYMBOL_GPL(dev_nit_active);
2430 
2431 /*
2432  *	Support routine. Sends outgoing frames to any network
2433  *	taps currently in use.
2434  */
2435 
2436 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2437 {
2438 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2439 	struct packet_type *ptype, *pt_prev = NULL;
2440 	struct sk_buff *skb2 = NULL;
2441 
2442 	rcu_read_lock();
2443 again:
2444 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2445 		if (READ_ONCE(ptype->ignore_outgoing))
2446 			continue;
2447 
2448 		/* Never send packets back to the socket
2449 		 * they originated from - MvS (miquels@drinkel.ow.org)
2450 		 */
2451 		if (skb_loop_sk(ptype, skb))
2452 			continue;
2453 
2454 		if (pt_prev) {
2455 			deliver_skb(skb2, pt_prev, skb->dev);
2456 			pt_prev = ptype;
2457 			continue;
2458 		}
2459 
2460 		/* need to clone skb, done only once */
2461 		skb2 = skb_clone(skb, GFP_ATOMIC);
2462 		if (!skb2)
2463 			goto out_unlock;
2464 
2465 		net_timestamp_set(skb2);
2466 
2467 		/* skb->nh should be correctly
2468 		 * set by sender, so that the second statement is
2469 		 * just protection against buggy protocols.
2470 		 */
2471 		skb_reset_mac_header(skb2);
2472 
2473 		if (skb_network_header(skb2) < skb2->data ||
2474 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2475 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2476 					     ntohs(skb2->protocol),
2477 					     dev->name);
2478 			skb_reset_network_header(skb2);
2479 		}
2480 
2481 		skb2->transport_header = skb2->network_header;
2482 		skb2->pkt_type = PACKET_OUTGOING;
2483 		pt_prev = ptype;
2484 	}
2485 
2486 	if (ptype_list == &net_hotdata.ptype_all) {
2487 		ptype_list = &dev->ptype_all;
2488 		goto again;
2489 	}
2490 out_unlock:
2491 	if (pt_prev) {
2492 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2493 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2494 		else
2495 			kfree_skb(skb2);
2496 	}
2497 	rcu_read_unlock();
2498 }
2499 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2500 
2501 /**
2502  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2503  * @dev: Network device
2504  * @txq: number of queues available
2505  *
2506  * If real_num_tx_queues is changed the tc mappings may no longer be
2507  * valid. To resolve this verify the tc mapping remains valid and if
2508  * not NULL the mapping. With no priorities mapping to this
2509  * offset/count pair it will no longer be used. In the worst case TC0
2510  * is invalid nothing can be done so disable priority mappings. If is
2511  * expected that drivers will fix this mapping if they can before
2512  * calling netif_set_real_num_tx_queues.
2513  */
2514 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2515 {
2516 	int i;
2517 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2518 
2519 	/* If TC0 is invalidated disable TC mapping */
2520 	if (tc->offset + tc->count > txq) {
2521 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2522 		dev->num_tc = 0;
2523 		return;
2524 	}
2525 
2526 	/* Invalidated prio to tc mappings set to TC0 */
2527 	for (i = 1; i < TC_BITMASK + 1; i++) {
2528 		int q = netdev_get_prio_tc_map(dev, i);
2529 
2530 		tc = &dev->tc_to_txq[q];
2531 		if (tc->offset + tc->count > txq) {
2532 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2533 				    i, q);
2534 			netdev_set_prio_tc_map(dev, i, 0);
2535 		}
2536 	}
2537 }
2538 
2539 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2540 {
2541 	if (dev->num_tc) {
2542 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2543 		int i;
2544 
2545 		/* walk through the TCs and see if it falls into any of them */
2546 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2547 			if ((txq - tc->offset) < tc->count)
2548 				return i;
2549 		}
2550 
2551 		/* didn't find it, just return -1 to indicate no match */
2552 		return -1;
2553 	}
2554 
2555 	return 0;
2556 }
2557 EXPORT_SYMBOL(netdev_txq_to_tc);
2558 
2559 #ifdef CONFIG_XPS
2560 static struct static_key xps_needed __read_mostly;
2561 static struct static_key xps_rxqs_needed __read_mostly;
2562 static DEFINE_MUTEX(xps_map_mutex);
2563 #define xmap_dereference(P)		\
2564 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2565 
2566 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2567 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2568 {
2569 	struct xps_map *map = NULL;
2570 	int pos;
2571 
2572 	map = xmap_dereference(dev_maps->attr_map[tci]);
2573 	if (!map)
2574 		return false;
2575 
2576 	for (pos = map->len; pos--;) {
2577 		if (map->queues[pos] != index)
2578 			continue;
2579 
2580 		if (map->len > 1) {
2581 			map->queues[pos] = map->queues[--map->len];
2582 			break;
2583 		}
2584 
2585 		if (old_maps)
2586 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2587 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2588 		kfree_rcu(map, rcu);
2589 		return false;
2590 	}
2591 
2592 	return true;
2593 }
2594 
2595 static bool remove_xps_queue_cpu(struct net_device *dev,
2596 				 struct xps_dev_maps *dev_maps,
2597 				 int cpu, u16 offset, u16 count)
2598 {
2599 	int num_tc = dev_maps->num_tc;
2600 	bool active = false;
2601 	int tci;
2602 
2603 	for (tci = cpu * num_tc; num_tc--; tci++) {
2604 		int i, j;
2605 
2606 		for (i = count, j = offset; i--; j++) {
2607 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2608 				break;
2609 		}
2610 
2611 		active |= i < 0;
2612 	}
2613 
2614 	return active;
2615 }
2616 
2617 static void reset_xps_maps(struct net_device *dev,
2618 			   struct xps_dev_maps *dev_maps,
2619 			   enum xps_map_type type)
2620 {
2621 	static_key_slow_dec_cpuslocked(&xps_needed);
2622 	if (type == XPS_RXQS)
2623 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2624 
2625 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2626 
2627 	kfree_rcu(dev_maps, rcu);
2628 }
2629 
2630 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2631 			   u16 offset, u16 count)
2632 {
2633 	struct xps_dev_maps *dev_maps;
2634 	bool active = false;
2635 	int i, j;
2636 
2637 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2638 	if (!dev_maps)
2639 		return;
2640 
2641 	for (j = 0; j < dev_maps->nr_ids; j++)
2642 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2643 	if (!active)
2644 		reset_xps_maps(dev, dev_maps, type);
2645 
2646 	if (type == XPS_CPUS) {
2647 		for (i = offset + (count - 1); count--; i--)
2648 			netdev_queue_numa_node_write(
2649 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2650 	}
2651 }
2652 
2653 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2654 				   u16 count)
2655 {
2656 	if (!static_key_false(&xps_needed))
2657 		return;
2658 
2659 	cpus_read_lock();
2660 	mutex_lock(&xps_map_mutex);
2661 
2662 	if (static_key_false(&xps_rxqs_needed))
2663 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2664 
2665 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2666 
2667 	mutex_unlock(&xps_map_mutex);
2668 	cpus_read_unlock();
2669 }
2670 
2671 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2672 {
2673 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2674 }
2675 
2676 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2677 				      u16 index, bool is_rxqs_map)
2678 {
2679 	struct xps_map *new_map;
2680 	int alloc_len = XPS_MIN_MAP_ALLOC;
2681 	int i, pos;
2682 
2683 	for (pos = 0; map && pos < map->len; pos++) {
2684 		if (map->queues[pos] != index)
2685 			continue;
2686 		return map;
2687 	}
2688 
2689 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2690 	if (map) {
2691 		if (pos < map->alloc_len)
2692 			return map;
2693 
2694 		alloc_len = map->alloc_len * 2;
2695 	}
2696 
2697 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2698 	 *  map
2699 	 */
2700 	if (is_rxqs_map)
2701 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2702 	else
2703 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2704 				       cpu_to_node(attr_index));
2705 	if (!new_map)
2706 		return NULL;
2707 
2708 	for (i = 0; i < pos; i++)
2709 		new_map->queues[i] = map->queues[i];
2710 	new_map->alloc_len = alloc_len;
2711 	new_map->len = pos;
2712 
2713 	return new_map;
2714 }
2715 
2716 /* Copy xps maps at a given index */
2717 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2718 			      struct xps_dev_maps *new_dev_maps, int index,
2719 			      int tc, bool skip_tc)
2720 {
2721 	int i, tci = index * dev_maps->num_tc;
2722 	struct xps_map *map;
2723 
2724 	/* copy maps belonging to foreign traffic classes */
2725 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2726 		if (i == tc && skip_tc)
2727 			continue;
2728 
2729 		/* fill in the new device map from the old device map */
2730 		map = xmap_dereference(dev_maps->attr_map[tci]);
2731 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2732 	}
2733 }
2734 
2735 /* Must be called under cpus_read_lock */
2736 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2737 			  u16 index, enum xps_map_type type)
2738 {
2739 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2740 	const unsigned long *online_mask = NULL;
2741 	bool active = false, copy = false;
2742 	int i, j, tci, numa_node_id = -2;
2743 	int maps_sz, num_tc = 1, tc = 0;
2744 	struct xps_map *map, *new_map;
2745 	unsigned int nr_ids;
2746 
2747 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2748 
2749 	if (dev->num_tc) {
2750 		/* Do not allow XPS on subordinate device directly */
2751 		num_tc = dev->num_tc;
2752 		if (num_tc < 0)
2753 			return -EINVAL;
2754 
2755 		/* If queue belongs to subordinate dev use its map */
2756 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2757 
2758 		tc = netdev_txq_to_tc(dev, index);
2759 		if (tc < 0)
2760 			return -EINVAL;
2761 	}
2762 
2763 	mutex_lock(&xps_map_mutex);
2764 
2765 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2766 	if (type == XPS_RXQS) {
2767 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2768 		nr_ids = dev->num_rx_queues;
2769 	} else {
2770 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2771 		if (num_possible_cpus() > 1)
2772 			online_mask = cpumask_bits(cpu_online_mask);
2773 		nr_ids = nr_cpu_ids;
2774 	}
2775 
2776 	if (maps_sz < L1_CACHE_BYTES)
2777 		maps_sz = L1_CACHE_BYTES;
2778 
2779 	/* The old dev_maps could be larger or smaller than the one we're
2780 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2781 	 * between. We could try to be smart, but let's be safe instead and only
2782 	 * copy foreign traffic classes if the two map sizes match.
2783 	 */
2784 	if (dev_maps &&
2785 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2786 		copy = true;
2787 
2788 	/* allocate memory for queue storage */
2789 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2790 	     j < nr_ids;) {
2791 		if (!new_dev_maps) {
2792 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2793 			if (!new_dev_maps) {
2794 				mutex_unlock(&xps_map_mutex);
2795 				return -ENOMEM;
2796 			}
2797 
2798 			new_dev_maps->nr_ids = nr_ids;
2799 			new_dev_maps->num_tc = num_tc;
2800 		}
2801 
2802 		tci = j * num_tc + tc;
2803 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2804 
2805 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2806 		if (!map)
2807 			goto error;
2808 
2809 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2810 	}
2811 
2812 	if (!new_dev_maps)
2813 		goto out_no_new_maps;
2814 
2815 	if (!dev_maps) {
2816 		/* Increment static keys at most once per type */
2817 		static_key_slow_inc_cpuslocked(&xps_needed);
2818 		if (type == XPS_RXQS)
2819 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2820 	}
2821 
2822 	for (j = 0; j < nr_ids; j++) {
2823 		bool skip_tc = false;
2824 
2825 		tci = j * num_tc + tc;
2826 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2827 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2828 			/* add tx-queue to CPU/rx-queue maps */
2829 			int pos = 0;
2830 
2831 			skip_tc = true;
2832 
2833 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2834 			while ((pos < map->len) && (map->queues[pos] != index))
2835 				pos++;
2836 
2837 			if (pos == map->len)
2838 				map->queues[map->len++] = index;
2839 #ifdef CONFIG_NUMA
2840 			if (type == XPS_CPUS) {
2841 				if (numa_node_id == -2)
2842 					numa_node_id = cpu_to_node(j);
2843 				else if (numa_node_id != cpu_to_node(j))
2844 					numa_node_id = -1;
2845 			}
2846 #endif
2847 		}
2848 
2849 		if (copy)
2850 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2851 					  skip_tc);
2852 	}
2853 
2854 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2855 
2856 	/* Cleanup old maps */
2857 	if (!dev_maps)
2858 		goto out_no_old_maps;
2859 
2860 	for (j = 0; j < dev_maps->nr_ids; j++) {
2861 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2862 			map = xmap_dereference(dev_maps->attr_map[tci]);
2863 			if (!map)
2864 				continue;
2865 
2866 			if (copy) {
2867 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2868 				if (map == new_map)
2869 					continue;
2870 			}
2871 
2872 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2873 			kfree_rcu(map, rcu);
2874 		}
2875 	}
2876 
2877 	old_dev_maps = dev_maps;
2878 
2879 out_no_old_maps:
2880 	dev_maps = new_dev_maps;
2881 	active = true;
2882 
2883 out_no_new_maps:
2884 	if (type == XPS_CPUS)
2885 		/* update Tx queue numa node */
2886 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2887 					     (numa_node_id >= 0) ?
2888 					     numa_node_id : NUMA_NO_NODE);
2889 
2890 	if (!dev_maps)
2891 		goto out_no_maps;
2892 
2893 	/* removes tx-queue from unused CPUs/rx-queues */
2894 	for (j = 0; j < dev_maps->nr_ids; j++) {
2895 		tci = j * dev_maps->num_tc;
2896 
2897 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2898 			if (i == tc &&
2899 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2900 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2901 				continue;
2902 
2903 			active |= remove_xps_queue(dev_maps,
2904 						   copy ? old_dev_maps : NULL,
2905 						   tci, index);
2906 		}
2907 	}
2908 
2909 	if (old_dev_maps)
2910 		kfree_rcu(old_dev_maps, rcu);
2911 
2912 	/* free map if not active */
2913 	if (!active)
2914 		reset_xps_maps(dev, dev_maps, type);
2915 
2916 out_no_maps:
2917 	mutex_unlock(&xps_map_mutex);
2918 
2919 	return 0;
2920 error:
2921 	/* remove any maps that we added */
2922 	for (j = 0; j < nr_ids; j++) {
2923 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2924 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2925 			map = copy ?
2926 			      xmap_dereference(dev_maps->attr_map[tci]) :
2927 			      NULL;
2928 			if (new_map && new_map != map)
2929 				kfree(new_map);
2930 		}
2931 	}
2932 
2933 	mutex_unlock(&xps_map_mutex);
2934 
2935 	kfree(new_dev_maps);
2936 	return -ENOMEM;
2937 }
2938 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2939 
2940 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2941 			u16 index)
2942 {
2943 	int ret;
2944 
2945 	cpus_read_lock();
2946 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2947 	cpus_read_unlock();
2948 
2949 	return ret;
2950 }
2951 EXPORT_SYMBOL(netif_set_xps_queue);
2952 
2953 #endif
2954 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2955 {
2956 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2957 
2958 	/* Unbind any subordinate channels */
2959 	while (txq-- != &dev->_tx[0]) {
2960 		if (txq->sb_dev)
2961 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2962 	}
2963 }
2964 
2965 void netdev_reset_tc(struct net_device *dev)
2966 {
2967 #ifdef CONFIG_XPS
2968 	netif_reset_xps_queues_gt(dev, 0);
2969 #endif
2970 	netdev_unbind_all_sb_channels(dev);
2971 
2972 	/* Reset TC configuration of device */
2973 	dev->num_tc = 0;
2974 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2975 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2976 }
2977 EXPORT_SYMBOL(netdev_reset_tc);
2978 
2979 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2980 {
2981 	if (tc >= dev->num_tc)
2982 		return -EINVAL;
2983 
2984 #ifdef CONFIG_XPS
2985 	netif_reset_xps_queues(dev, offset, count);
2986 #endif
2987 	dev->tc_to_txq[tc].count = count;
2988 	dev->tc_to_txq[tc].offset = offset;
2989 	return 0;
2990 }
2991 EXPORT_SYMBOL(netdev_set_tc_queue);
2992 
2993 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2994 {
2995 	if (num_tc > TC_MAX_QUEUE)
2996 		return -EINVAL;
2997 
2998 #ifdef CONFIG_XPS
2999 	netif_reset_xps_queues_gt(dev, 0);
3000 #endif
3001 	netdev_unbind_all_sb_channels(dev);
3002 
3003 	dev->num_tc = num_tc;
3004 	return 0;
3005 }
3006 EXPORT_SYMBOL(netdev_set_num_tc);
3007 
3008 void netdev_unbind_sb_channel(struct net_device *dev,
3009 			      struct net_device *sb_dev)
3010 {
3011 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3012 
3013 #ifdef CONFIG_XPS
3014 	netif_reset_xps_queues_gt(sb_dev, 0);
3015 #endif
3016 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3017 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3018 
3019 	while (txq-- != &dev->_tx[0]) {
3020 		if (txq->sb_dev == sb_dev)
3021 			txq->sb_dev = NULL;
3022 	}
3023 }
3024 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3025 
3026 int netdev_bind_sb_channel_queue(struct net_device *dev,
3027 				 struct net_device *sb_dev,
3028 				 u8 tc, u16 count, u16 offset)
3029 {
3030 	/* Make certain the sb_dev and dev are already configured */
3031 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3032 		return -EINVAL;
3033 
3034 	/* We cannot hand out queues we don't have */
3035 	if ((offset + count) > dev->real_num_tx_queues)
3036 		return -EINVAL;
3037 
3038 	/* Record the mapping */
3039 	sb_dev->tc_to_txq[tc].count = count;
3040 	sb_dev->tc_to_txq[tc].offset = offset;
3041 
3042 	/* Provide a way for Tx queue to find the tc_to_txq map or
3043 	 * XPS map for itself.
3044 	 */
3045 	while (count--)
3046 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3047 
3048 	return 0;
3049 }
3050 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3051 
3052 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3053 {
3054 	/* Do not use a multiqueue device to represent a subordinate channel */
3055 	if (netif_is_multiqueue(dev))
3056 		return -ENODEV;
3057 
3058 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3059 	 * Channel 0 is meant to be "native" mode and used only to represent
3060 	 * the main root device. We allow writing 0 to reset the device back
3061 	 * to normal mode after being used as a subordinate channel.
3062 	 */
3063 	if (channel > S16_MAX)
3064 		return -EINVAL;
3065 
3066 	dev->num_tc = -channel;
3067 
3068 	return 0;
3069 }
3070 EXPORT_SYMBOL(netdev_set_sb_channel);
3071 
3072 /*
3073  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3074  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3075  */
3076 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3077 {
3078 	bool disabling;
3079 	int rc;
3080 
3081 	disabling = txq < dev->real_num_tx_queues;
3082 
3083 	if (txq < 1 || txq > dev->num_tx_queues)
3084 		return -EINVAL;
3085 
3086 	if (dev->reg_state == NETREG_REGISTERED ||
3087 	    dev->reg_state == NETREG_UNREGISTERING) {
3088 		ASSERT_RTNL();
3089 
3090 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3091 						  txq);
3092 		if (rc)
3093 			return rc;
3094 
3095 		if (dev->num_tc)
3096 			netif_setup_tc(dev, txq);
3097 
3098 		net_shaper_set_real_num_tx_queues(dev, txq);
3099 
3100 		dev_qdisc_change_real_num_tx(dev, txq);
3101 
3102 		dev->real_num_tx_queues = txq;
3103 
3104 		if (disabling) {
3105 			synchronize_net();
3106 			qdisc_reset_all_tx_gt(dev, txq);
3107 #ifdef CONFIG_XPS
3108 			netif_reset_xps_queues_gt(dev, txq);
3109 #endif
3110 		}
3111 	} else {
3112 		dev->real_num_tx_queues = txq;
3113 	}
3114 
3115 	return 0;
3116 }
3117 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3118 
3119 #ifdef CONFIG_SYSFS
3120 /**
3121  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3122  *	@dev: Network device
3123  *	@rxq: Actual number of RX queues
3124  *
3125  *	This must be called either with the rtnl_lock held or before
3126  *	registration of the net device.  Returns 0 on success, or a
3127  *	negative error code.  If called before registration, it always
3128  *	succeeds.
3129  */
3130 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3131 {
3132 	int rc;
3133 
3134 	if (rxq < 1 || rxq > dev->num_rx_queues)
3135 		return -EINVAL;
3136 
3137 	if (dev->reg_state == NETREG_REGISTERED) {
3138 		ASSERT_RTNL();
3139 
3140 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3141 						  rxq);
3142 		if (rc)
3143 			return rc;
3144 	}
3145 
3146 	dev->real_num_rx_queues = rxq;
3147 	return 0;
3148 }
3149 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3150 #endif
3151 
3152 /**
3153  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3154  *	@dev: Network device
3155  *	@txq: Actual number of TX queues
3156  *	@rxq: Actual number of RX queues
3157  *
3158  *	Set the real number of both TX and RX queues.
3159  *	Does nothing if the number of queues is already correct.
3160  */
3161 int netif_set_real_num_queues(struct net_device *dev,
3162 			      unsigned int txq, unsigned int rxq)
3163 {
3164 	unsigned int old_rxq = dev->real_num_rx_queues;
3165 	int err;
3166 
3167 	if (txq < 1 || txq > dev->num_tx_queues ||
3168 	    rxq < 1 || rxq > dev->num_rx_queues)
3169 		return -EINVAL;
3170 
3171 	/* Start from increases, so the error path only does decreases -
3172 	 * decreases can't fail.
3173 	 */
3174 	if (rxq > dev->real_num_rx_queues) {
3175 		err = netif_set_real_num_rx_queues(dev, rxq);
3176 		if (err)
3177 			return err;
3178 	}
3179 	if (txq > dev->real_num_tx_queues) {
3180 		err = netif_set_real_num_tx_queues(dev, txq);
3181 		if (err)
3182 			goto undo_rx;
3183 	}
3184 	if (rxq < dev->real_num_rx_queues)
3185 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3186 	if (txq < dev->real_num_tx_queues)
3187 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3188 
3189 	return 0;
3190 undo_rx:
3191 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3192 	return err;
3193 }
3194 EXPORT_SYMBOL(netif_set_real_num_queues);
3195 
3196 /**
3197  * netif_set_tso_max_size() - set the max size of TSO frames supported
3198  * @dev:	netdev to update
3199  * @size:	max skb->len of a TSO frame
3200  *
3201  * Set the limit on the size of TSO super-frames the device can handle.
3202  * Unless explicitly set the stack will assume the value of
3203  * %GSO_LEGACY_MAX_SIZE.
3204  */
3205 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3206 {
3207 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3208 	if (size < READ_ONCE(dev->gso_max_size))
3209 		netif_set_gso_max_size(dev, size);
3210 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3211 		netif_set_gso_ipv4_max_size(dev, size);
3212 }
3213 EXPORT_SYMBOL(netif_set_tso_max_size);
3214 
3215 /**
3216  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3217  * @dev:	netdev to update
3218  * @segs:	max number of TCP segments
3219  *
3220  * Set the limit on the number of TCP segments the device can generate from
3221  * a single TSO super-frame.
3222  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3223  */
3224 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3225 {
3226 	dev->tso_max_segs = segs;
3227 	if (segs < READ_ONCE(dev->gso_max_segs))
3228 		netif_set_gso_max_segs(dev, segs);
3229 }
3230 EXPORT_SYMBOL(netif_set_tso_max_segs);
3231 
3232 /**
3233  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3234  * @to:		netdev to update
3235  * @from:	netdev from which to copy the limits
3236  */
3237 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3238 {
3239 	netif_set_tso_max_size(to, from->tso_max_size);
3240 	netif_set_tso_max_segs(to, from->tso_max_segs);
3241 }
3242 EXPORT_SYMBOL(netif_inherit_tso_max);
3243 
3244 /**
3245  * netif_get_num_default_rss_queues - default number of RSS queues
3246  *
3247  * Default value is the number of physical cores if there are only 1 or 2, or
3248  * divided by 2 if there are more.
3249  */
3250 int netif_get_num_default_rss_queues(void)
3251 {
3252 	cpumask_var_t cpus;
3253 	int cpu, count = 0;
3254 
3255 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3256 		return 1;
3257 
3258 	cpumask_copy(cpus, cpu_online_mask);
3259 	for_each_cpu(cpu, cpus) {
3260 		++count;
3261 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3262 	}
3263 	free_cpumask_var(cpus);
3264 
3265 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3266 }
3267 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3268 
3269 static void __netif_reschedule(struct Qdisc *q)
3270 {
3271 	struct softnet_data *sd;
3272 	unsigned long flags;
3273 
3274 	local_irq_save(flags);
3275 	sd = this_cpu_ptr(&softnet_data);
3276 	q->next_sched = NULL;
3277 	*sd->output_queue_tailp = q;
3278 	sd->output_queue_tailp = &q->next_sched;
3279 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3280 	local_irq_restore(flags);
3281 }
3282 
3283 void __netif_schedule(struct Qdisc *q)
3284 {
3285 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3286 		__netif_reschedule(q);
3287 }
3288 EXPORT_SYMBOL(__netif_schedule);
3289 
3290 struct dev_kfree_skb_cb {
3291 	enum skb_drop_reason reason;
3292 };
3293 
3294 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3295 {
3296 	return (struct dev_kfree_skb_cb *)skb->cb;
3297 }
3298 
3299 void netif_schedule_queue(struct netdev_queue *txq)
3300 {
3301 	rcu_read_lock();
3302 	if (!netif_xmit_stopped(txq)) {
3303 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3304 
3305 		__netif_schedule(q);
3306 	}
3307 	rcu_read_unlock();
3308 }
3309 EXPORT_SYMBOL(netif_schedule_queue);
3310 
3311 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3312 {
3313 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3314 		struct Qdisc *q;
3315 
3316 		rcu_read_lock();
3317 		q = rcu_dereference(dev_queue->qdisc);
3318 		__netif_schedule(q);
3319 		rcu_read_unlock();
3320 	}
3321 }
3322 EXPORT_SYMBOL(netif_tx_wake_queue);
3323 
3324 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3325 {
3326 	unsigned long flags;
3327 
3328 	if (unlikely(!skb))
3329 		return;
3330 
3331 	if (likely(refcount_read(&skb->users) == 1)) {
3332 		smp_rmb();
3333 		refcount_set(&skb->users, 0);
3334 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3335 		return;
3336 	}
3337 	get_kfree_skb_cb(skb)->reason = reason;
3338 	local_irq_save(flags);
3339 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3340 	__this_cpu_write(softnet_data.completion_queue, skb);
3341 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3342 	local_irq_restore(flags);
3343 }
3344 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3345 
3346 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3347 {
3348 	if (in_hardirq() || irqs_disabled())
3349 		dev_kfree_skb_irq_reason(skb, reason);
3350 	else
3351 		kfree_skb_reason(skb, reason);
3352 }
3353 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3354 
3355 
3356 /**
3357  * netif_device_detach - mark device as removed
3358  * @dev: network device
3359  *
3360  * Mark device as removed from system and therefore no longer available.
3361  */
3362 void netif_device_detach(struct net_device *dev)
3363 {
3364 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3365 	    netif_running(dev)) {
3366 		netif_tx_stop_all_queues(dev);
3367 	}
3368 }
3369 EXPORT_SYMBOL(netif_device_detach);
3370 
3371 /**
3372  * netif_device_attach - mark device as attached
3373  * @dev: network device
3374  *
3375  * Mark device as attached from system and restart if needed.
3376  */
3377 void netif_device_attach(struct net_device *dev)
3378 {
3379 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3380 	    netif_running(dev)) {
3381 		netif_tx_wake_all_queues(dev);
3382 		netdev_watchdog_up(dev);
3383 	}
3384 }
3385 EXPORT_SYMBOL(netif_device_attach);
3386 
3387 /*
3388  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3389  * to be used as a distribution range.
3390  */
3391 static u16 skb_tx_hash(const struct net_device *dev,
3392 		       const struct net_device *sb_dev,
3393 		       struct sk_buff *skb)
3394 {
3395 	u32 hash;
3396 	u16 qoffset = 0;
3397 	u16 qcount = dev->real_num_tx_queues;
3398 
3399 	if (dev->num_tc) {
3400 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3401 
3402 		qoffset = sb_dev->tc_to_txq[tc].offset;
3403 		qcount = sb_dev->tc_to_txq[tc].count;
3404 		if (unlikely(!qcount)) {
3405 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3406 					     sb_dev->name, qoffset, tc);
3407 			qoffset = 0;
3408 			qcount = dev->real_num_tx_queues;
3409 		}
3410 	}
3411 
3412 	if (skb_rx_queue_recorded(skb)) {
3413 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3414 		hash = skb_get_rx_queue(skb);
3415 		if (hash >= qoffset)
3416 			hash -= qoffset;
3417 		while (unlikely(hash >= qcount))
3418 			hash -= qcount;
3419 		return hash + qoffset;
3420 	}
3421 
3422 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3423 }
3424 
3425 void skb_warn_bad_offload(const struct sk_buff *skb)
3426 {
3427 	static const netdev_features_t null_features;
3428 	struct net_device *dev = skb->dev;
3429 	const char *name = "";
3430 
3431 	if (!net_ratelimit())
3432 		return;
3433 
3434 	if (dev) {
3435 		if (dev->dev.parent)
3436 			name = dev_driver_string(dev->dev.parent);
3437 		else
3438 			name = netdev_name(dev);
3439 	}
3440 	skb_dump(KERN_WARNING, skb, false);
3441 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3442 	     name, dev ? &dev->features : &null_features,
3443 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3444 }
3445 
3446 /*
3447  * Invalidate hardware checksum when packet is to be mangled, and
3448  * complete checksum manually on outgoing path.
3449  */
3450 int skb_checksum_help(struct sk_buff *skb)
3451 {
3452 	__wsum csum;
3453 	int ret = 0, offset;
3454 
3455 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3456 		goto out_set_summed;
3457 
3458 	if (unlikely(skb_is_gso(skb))) {
3459 		skb_warn_bad_offload(skb);
3460 		return -EINVAL;
3461 	}
3462 
3463 	if (!skb_frags_readable(skb)) {
3464 		return -EFAULT;
3465 	}
3466 
3467 	/* Before computing a checksum, we should make sure no frag could
3468 	 * be modified by an external entity : checksum could be wrong.
3469 	 */
3470 	if (skb_has_shared_frag(skb)) {
3471 		ret = __skb_linearize(skb);
3472 		if (ret)
3473 			goto out;
3474 	}
3475 
3476 	offset = skb_checksum_start_offset(skb);
3477 	ret = -EINVAL;
3478 	if (unlikely(offset >= skb_headlen(skb))) {
3479 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3480 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3481 			  offset, skb_headlen(skb));
3482 		goto out;
3483 	}
3484 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3485 
3486 	offset += skb->csum_offset;
3487 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3488 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3489 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3490 			  offset + sizeof(__sum16), skb_headlen(skb));
3491 		goto out;
3492 	}
3493 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3494 	if (ret)
3495 		goto out;
3496 
3497 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3498 out_set_summed:
3499 	skb->ip_summed = CHECKSUM_NONE;
3500 out:
3501 	return ret;
3502 }
3503 EXPORT_SYMBOL(skb_checksum_help);
3504 
3505 int skb_crc32c_csum_help(struct sk_buff *skb)
3506 {
3507 	__le32 crc32c_csum;
3508 	int ret = 0, offset, start;
3509 
3510 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3511 		goto out;
3512 
3513 	if (unlikely(skb_is_gso(skb)))
3514 		goto out;
3515 
3516 	/* Before computing a checksum, we should make sure no frag could
3517 	 * be modified by an external entity : checksum could be wrong.
3518 	 */
3519 	if (unlikely(skb_has_shared_frag(skb))) {
3520 		ret = __skb_linearize(skb);
3521 		if (ret)
3522 			goto out;
3523 	}
3524 	start = skb_checksum_start_offset(skb);
3525 	offset = start + offsetof(struct sctphdr, checksum);
3526 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3527 		ret = -EINVAL;
3528 		goto out;
3529 	}
3530 
3531 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3532 	if (ret)
3533 		goto out;
3534 
3535 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3536 						  skb->len - start, ~(__u32)0,
3537 						  crc32c_csum_stub));
3538 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3539 	skb_reset_csum_not_inet(skb);
3540 out:
3541 	return ret;
3542 }
3543 EXPORT_SYMBOL(skb_crc32c_csum_help);
3544 
3545 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3546 {
3547 	__be16 type = skb->protocol;
3548 
3549 	/* Tunnel gso handlers can set protocol to ethernet. */
3550 	if (type == htons(ETH_P_TEB)) {
3551 		struct ethhdr *eth;
3552 
3553 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3554 			return 0;
3555 
3556 		eth = (struct ethhdr *)skb->data;
3557 		type = eth->h_proto;
3558 	}
3559 
3560 	return vlan_get_protocol_and_depth(skb, type, depth);
3561 }
3562 
3563 
3564 /* Take action when hardware reception checksum errors are detected. */
3565 #ifdef CONFIG_BUG
3566 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3567 {
3568 	netdev_err(dev, "hw csum failure\n");
3569 	skb_dump(KERN_ERR, skb, true);
3570 	dump_stack();
3571 }
3572 
3573 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3574 {
3575 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3576 }
3577 EXPORT_SYMBOL(netdev_rx_csum_fault);
3578 #endif
3579 
3580 /* XXX: check that highmem exists at all on the given machine. */
3581 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3582 {
3583 #ifdef CONFIG_HIGHMEM
3584 	int i;
3585 
3586 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3587 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3588 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3589 			struct page *page = skb_frag_page(frag);
3590 
3591 			if (page && PageHighMem(page))
3592 				return 1;
3593 		}
3594 	}
3595 #endif
3596 	return 0;
3597 }
3598 
3599 /* If MPLS offload request, verify we are testing hardware MPLS features
3600  * instead of standard features for the netdev.
3601  */
3602 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3603 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3604 					   netdev_features_t features,
3605 					   __be16 type)
3606 {
3607 	if (eth_p_mpls(type))
3608 		features &= skb->dev->mpls_features;
3609 
3610 	return features;
3611 }
3612 #else
3613 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3614 					   netdev_features_t features,
3615 					   __be16 type)
3616 {
3617 	return features;
3618 }
3619 #endif
3620 
3621 static netdev_features_t harmonize_features(struct sk_buff *skb,
3622 	netdev_features_t features)
3623 {
3624 	__be16 type;
3625 
3626 	type = skb_network_protocol(skb, NULL);
3627 	features = net_mpls_features(skb, features, type);
3628 
3629 	if (skb->ip_summed != CHECKSUM_NONE &&
3630 	    !can_checksum_protocol(features, type)) {
3631 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3632 	}
3633 	if (illegal_highdma(skb->dev, skb))
3634 		features &= ~NETIF_F_SG;
3635 
3636 	return features;
3637 }
3638 
3639 netdev_features_t passthru_features_check(struct sk_buff *skb,
3640 					  struct net_device *dev,
3641 					  netdev_features_t features)
3642 {
3643 	return features;
3644 }
3645 EXPORT_SYMBOL(passthru_features_check);
3646 
3647 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3648 					     struct net_device *dev,
3649 					     netdev_features_t features)
3650 {
3651 	return vlan_features_check(skb, features);
3652 }
3653 
3654 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3655 					    struct net_device *dev,
3656 					    netdev_features_t features)
3657 {
3658 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3659 
3660 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3661 		return features & ~NETIF_F_GSO_MASK;
3662 
3663 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3664 		return features & ~NETIF_F_GSO_MASK;
3665 
3666 	if (!skb_shinfo(skb)->gso_type) {
3667 		skb_warn_bad_offload(skb);
3668 		return features & ~NETIF_F_GSO_MASK;
3669 	}
3670 
3671 	/* Support for GSO partial features requires software
3672 	 * intervention before we can actually process the packets
3673 	 * so we need to strip support for any partial features now
3674 	 * and we can pull them back in after we have partially
3675 	 * segmented the frame.
3676 	 */
3677 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3678 		features &= ~dev->gso_partial_features;
3679 
3680 	/* Make sure to clear the IPv4 ID mangling feature if the
3681 	 * IPv4 header has the potential to be fragmented.
3682 	 */
3683 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3684 		struct iphdr *iph = skb->encapsulation ?
3685 				    inner_ip_hdr(skb) : ip_hdr(skb);
3686 
3687 		if (!(iph->frag_off & htons(IP_DF)))
3688 			features &= ~NETIF_F_TSO_MANGLEID;
3689 	}
3690 
3691 	return features;
3692 }
3693 
3694 netdev_features_t netif_skb_features(struct sk_buff *skb)
3695 {
3696 	struct net_device *dev = skb->dev;
3697 	netdev_features_t features = dev->features;
3698 
3699 	if (skb_is_gso(skb))
3700 		features = gso_features_check(skb, dev, features);
3701 
3702 	/* If encapsulation offload request, verify we are testing
3703 	 * hardware encapsulation features instead of standard
3704 	 * features for the netdev
3705 	 */
3706 	if (skb->encapsulation)
3707 		features &= dev->hw_enc_features;
3708 
3709 	if (skb_vlan_tagged(skb))
3710 		features = netdev_intersect_features(features,
3711 						     dev->vlan_features |
3712 						     NETIF_F_HW_VLAN_CTAG_TX |
3713 						     NETIF_F_HW_VLAN_STAG_TX);
3714 
3715 	if (dev->netdev_ops->ndo_features_check)
3716 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3717 								features);
3718 	else
3719 		features &= dflt_features_check(skb, dev, features);
3720 
3721 	return harmonize_features(skb, features);
3722 }
3723 EXPORT_SYMBOL(netif_skb_features);
3724 
3725 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3726 		    struct netdev_queue *txq, bool more)
3727 {
3728 	unsigned int len;
3729 	int rc;
3730 
3731 	if (dev_nit_active(dev))
3732 		dev_queue_xmit_nit(skb, dev);
3733 
3734 	len = skb->len;
3735 	trace_net_dev_start_xmit(skb, dev);
3736 	rc = netdev_start_xmit(skb, dev, txq, more);
3737 	trace_net_dev_xmit(skb, rc, dev, len);
3738 
3739 	return rc;
3740 }
3741 
3742 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3743 				    struct netdev_queue *txq, int *ret)
3744 {
3745 	struct sk_buff *skb = first;
3746 	int rc = NETDEV_TX_OK;
3747 
3748 	while (skb) {
3749 		struct sk_buff *next = skb->next;
3750 
3751 		skb_mark_not_on_list(skb);
3752 		rc = xmit_one(skb, dev, txq, next != NULL);
3753 		if (unlikely(!dev_xmit_complete(rc))) {
3754 			skb->next = next;
3755 			goto out;
3756 		}
3757 
3758 		skb = next;
3759 		if (netif_tx_queue_stopped(txq) && skb) {
3760 			rc = NETDEV_TX_BUSY;
3761 			break;
3762 		}
3763 	}
3764 
3765 out:
3766 	*ret = rc;
3767 	return skb;
3768 }
3769 
3770 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3771 					  netdev_features_t features)
3772 {
3773 	if (skb_vlan_tag_present(skb) &&
3774 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3775 		skb = __vlan_hwaccel_push_inside(skb);
3776 	return skb;
3777 }
3778 
3779 int skb_csum_hwoffload_help(struct sk_buff *skb,
3780 			    const netdev_features_t features)
3781 {
3782 	if (unlikely(skb_csum_is_sctp(skb)))
3783 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3784 			skb_crc32c_csum_help(skb);
3785 
3786 	if (features & NETIF_F_HW_CSUM)
3787 		return 0;
3788 
3789 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3790 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3791 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3792 		    !ipv6_has_hopopt_jumbo(skb))
3793 			goto sw_checksum;
3794 
3795 		switch (skb->csum_offset) {
3796 		case offsetof(struct tcphdr, check):
3797 		case offsetof(struct udphdr, check):
3798 			return 0;
3799 		}
3800 	}
3801 
3802 sw_checksum:
3803 	return skb_checksum_help(skb);
3804 }
3805 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3806 
3807 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3808 {
3809 	netdev_features_t features;
3810 
3811 	features = netif_skb_features(skb);
3812 	skb = validate_xmit_vlan(skb, features);
3813 	if (unlikely(!skb))
3814 		goto out_null;
3815 
3816 	skb = sk_validate_xmit_skb(skb, dev);
3817 	if (unlikely(!skb))
3818 		goto out_null;
3819 
3820 	if (netif_needs_gso(skb, features)) {
3821 		struct sk_buff *segs;
3822 
3823 		segs = skb_gso_segment(skb, features);
3824 		if (IS_ERR(segs)) {
3825 			goto out_kfree_skb;
3826 		} else if (segs) {
3827 			consume_skb(skb);
3828 			skb = segs;
3829 		}
3830 	} else {
3831 		if (skb_needs_linearize(skb, features) &&
3832 		    __skb_linearize(skb))
3833 			goto out_kfree_skb;
3834 
3835 		/* If packet is not checksummed and device does not
3836 		 * support checksumming for this protocol, complete
3837 		 * checksumming here.
3838 		 */
3839 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3840 			if (skb->encapsulation)
3841 				skb_set_inner_transport_header(skb,
3842 							       skb_checksum_start_offset(skb));
3843 			else
3844 				skb_set_transport_header(skb,
3845 							 skb_checksum_start_offset(skb));
3846 			if (skb_csum_hwoffload_help(skb, features))
3847 				goto out_kfree_skb;
3848 		}
3849 	}
3850 
3851 	skb = validate_xmit_xfrm(skb, features, again);
3852 
3853 	return skb;
3854 
3855 out_kfree_skb:
3856 	kfree_skb(skb);
3857 out_null:
3858 	dev_core_stats_tx_dropped_inc(dev);
3859 	return NULL;
3860 }
3861 
3862 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3863 {
3864 	struct sk_buff *next, *head = NULL, *tail;
3865 
3866 	for (; skb != NULL; skb = next) {
3867 		next = skb->next;
3868 		skb_mark_not_on_list(skb);
3869 
3870 		/* in case skb won't be segmented, point to itself */
3871 		skb->prev = skb;
3872 
3873 		skb = validate_xmit_skb(skb, dev, again);
3874 		if (!skb)
3875 			continue;
3876 
3877 		if (!head)
3878 			head = skb;
3879 		else
3880 			tail->next = skb;
3881 		/* If skb was segmented, skb->prev points to
3882 		 * the last segment. If not, it still contains skb.
3883 		 */
3884 		tail = skb->prev;
3885 	}
3886 	return head;
3887 }
3888 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3889 
3890 static void qdisc_pkt_len_init(struct sk_buff *skb)
3891 {
3892 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3893 
3894 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3895 
3896 	/* To get more precise estimation of bytes sent on wire,
3897 	 * we add to pkt_len the headers size of all segments
3898 	 */
3899 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3900 		u16 gso_segs = shinfo->gso_segs;
3901 		unsigned int hdr_len;
3902 
3903 		/* mac layer + network layer */
3904 		hdr_len = skb_transport_offset(skb);
3905 
3906 		/* + transport layer */
3907 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3908 			const struct tcphdr *th;
3909 			struct tcphdr _tcphdr;
3910 
3911 			th = skb_header_pointer(skb, hdr_len,
3912 						sizeof(_tcphdr), &_tcphdr);
3913 			if (likely(th))
3914 				hdr_len += __tcp_hdrlen(th);
3915 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3916 			struct udphdr _udphdr;
3917 
3918 			if (skb_header_pointer(skb, hdr_len,
3919 					       sizeof(_udphdr), &_udphdr))
3920 				hdr_len += sizeof(struct udphdr);
3921 		}
3922 
3923 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3924 			int payload = skb->len - hdr_len;
3925 
3926 			/* Malicious packet. */
3927 			if (payload <= 0)
3928 				return;
3929 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3930 		}
3931 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3932 	}
3933 }
3934 
3935 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3936 			     struct sk_buff **to_free,
3937 			     struct netdev_queue *txq)
3938 {
3939 	int rc;
3940 
3941 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3942 	if (rc == NET_XMIT_SUCCESS)
3943 		trace_qdisc_enqueue(q, txq, skb);
3944 	return rc;
3945 }
3946 
3947 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3948 				 struct net_device *dev,
3949 				 struct netdev_queue *txq)
3950 {
3951 	spinlock_t *root_lock = qdisc_lock(q);
3952 	struct sk_buff *to_free = NULL;
3953 	bool contended;
3954 	int rc;
3955 
3956 	qdisc_calculate_pkt_len(skb, q);
3957 
3958 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3959 
3960 	if (q->flags & TCQ_F_NOLOCK) {
3961 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3962 		    qdisc_run_begin(q)) {
3963 			/* Retest nolock_qdisc_is_empty() within the protection
3964 			 * of q->seqlock to protect from racing with requeuing.
3965 			 */
3966 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3967 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3968 				__qdisc_run(q);
3969 				qdisc_run_end(q);
3970 
3971 				goto no_lock_out;
3972 			}
3973 
3974 			qdisc_bstats_cpu_update(q, skb);
3975 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3976 			    !nolock_qdisc_is_empty(q))
3977 				__qdisc_run(q);
3978 
3979 			qdisc_run_end(q);
3980 			return NET_XMIT_SUCCESS;
3981 		}
3982 
3983 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3984 		qdisc_run(q);
3985 
3986 no_lock_out:
3987 		if (unlikely(to_free))
3988 			kfree_skb_list_reason(to_free,
3989 					      tcf_get_drop_reason(to_free));
3990 		return rc;
3991 	}
3992 
3993 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3994 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3995 		return NET_XMIT_DROP;
3996 	}
3997 	/*
3998 	 * Heuristic to force contended enqueues to serialize on a
3999 	 * separate lock before trying to get qdisc main lock.
4000 	 * This permits qdisc->running owner to get the lock more
4001 	 * often and dequeue packets faster.
4002 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4003 	 * and then other tasks will only enqueue packets. The packets will be
4004 	 * sent after the qdisc owner is scheduled again. To prevent this
4005 	 * scenario the task always serialize on the lock.
4006 	 */
4007 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4008 	if (unlikely(contended))
4009 		spin_lock(&q->busylock);
4010 
4011 	spin_lock(root_lock);
4012 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4013 		__qdisc_drop(skb, &to_free);
4014 		rc = NET_XMIT_DROP;
4015 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4016 		   qdisc_run_begin(q)) {
4017 		/*
4018 		 * This is a work-conserving queue; there are no old skbs
4019 		 * waiting to be sent out; and the qdisc is not running -
4020 		 * xmit the skb directly.
4021 		 */
4022 
4023 		qdisc_bstats_update(q, skb);
4024 
4025 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4026 			if (unlikely(contended)) {
4027 				spin_unlock(&q->busylock);
4028 				contended = false;
4029 			}
4030 			__qdisc_run(q);
4031 		}
4032 
4033 		qdisc_run_end(q);
4034 		rc = NET_XMIT_SUCCESS;
4035 	} else {
4036 		WRITE_ONCE(q->owner, smp_processor_id());
4037 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4038 		WRITE_ONCE(q->owner, -1);
4039 		if (qdisc_run_begin(q)) {
4040 			if (unlikely(contended)) {
4041 				spin_unlock(&q->busylock);
4042 				contended = false;
4043 			}
4044 			__qdisc_run(q);
4045 			qdisc_run_end(q);
4046 		}
4047 	}
4048 	spin_unlock(root_lock);
4049 	if (unlikely(to_free))
4050 		kfree_skb_list_reason(to_free,
4051 				      tcf_get_drop_reason(to_free));
4052 	if (unlikely(contended))
4053 		spin_unlock(&q->busylock);
4054 	return rc;
4055 }
4056 
4057 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4058 static void skb_update_prio(struct sk_buff *skb)
4059 {
4060 	const struct netprio_map *map;
4061 	const struct sock *sk;
4062 	unsigned int prioidx;
4063 
4064 	if (skb->priority)
4065 		return;
4066 	map = rcu_dereference_bh(skb->dev->priomap);
4067 	if (!map)
4068 		return;
4069 	sk = skb_to_full_sk(skb);
4070 	if (!sk)
4071 		return;
4072 
4073 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4074 
4075 	if (prioidx < map->priomap_len)
4076 		skb->priority = map->priomap[prioidx];
4077 }
4078 #else
4079 #define skb_update_prio(skb)
4080 #endif
4081 
4082 /**
4083  *	dev_loopback_xmit - loop back @skb
4084  *	@net: network namespace this loopback is happening in
4085  *	@sk:  sk needed to be a netfilter okfn
4086  *	@skb: buffer to transmit
4087  */
4088 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4089 {
4090 	skb_reset_mac_header(skb);
4091 	__skb_pull(skb, skb_network_offset(skb));
4092 	skb->pkt_type = PACKET_LOOPBACK;
4093 	if (skb->ip_summed == CHECKSUM_NONE)
4094 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4095 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4096 	skb_dst_force(skb);
4097 	netif_rx(skb);
4098 	return 0;
4099 }
4100 EXPORT_SYMBOL(dev_loopback_xmit);
4101 
4102 #ifdef CONFIG_NET_EGRESS
4103 static struct netdev_queue *
4104 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4105 {
4106 	int qm = skb_get_queue_mapping(skb);
4107 
4108 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4109 }
4110 
4111 #ifndef CONFIG_PREEMPT_RT
4112 static bool netdev_xmit_txqueue_skipped(void)
4113 {
4114 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4115 }
4116 
4117 void netdev_xmit_skip_txqueue(bool skip)
4118 {
4119 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4120 }
4121 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4122 
4123 #else
4124 static bool netdev_xmit_txqueue_skipped(void)
4125 {
4126 	return current->net_xmit.skip_txqueue;
4127 }
4128 
4129 void netdev_xmit_skip_txqueue(bool skip)
4130 {
4131 	current->net_xmit.skip_txqueue = skip;
4132 }
4133 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4134 #endif
4135 #endif /* CONFIG_NET_EGRESS */
4136 
4137 #ifdef CONFIG_NET_XGRESS
4138 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4139 		  enum skb_drop_reason *drop_reason)
4140 {
4141 	int ret = TC_ACT_UNSPEC;
4142 #ifdef CONFIG_NET_CLS_ACT
4143 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4144 	struct tcf_result res;
4145 
4146 	if (!miniq)
4147 		return ret;
4148 
4149 	/* Global bypass */
4150 	if (!static_branch_likely(&tcf_sw_enabled_key))
4151 		return ret;
4152 
4153 	/* Block-wise bypass */
4154 	if (tcf_block_bypass_sw(miniq->block))
4155 		return ret;
4156 
4157 	tc_skb_cb(skb)->mru = 0;
4158 	tc_skb_cb(skb)->post_ct = false;
4159 	tcf_set_drop_reason(skb, *drop_reason);
4160 
4161 	mini_qdisc_bstats_cpu_update(miniq, skb);
4162 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4163 	/* Only tcf related quirks below. */
4164 	switch (ret) {
4165 	case TC_ACT_SHOT:
4166 		*drop_reason = tcf_get_drop_reason(skb);
4167 		mini_qdisc_qstats_cpu_drop(miniq);
4168 		break;
4169 	case TC_ACT_OK:
4170 	case TC_ACT_RECLASSIFY:
4171 		skb->tc_index = TC_H_MIN(res.classid);
4172 		break;
4173 	}
4174 #endif /* CONFIG_NET_CLS_ACT */
4175 	return ret;
4176 }
4177 
4178 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4179 
4180 void tcx_inc(void)
4181 {
4182 	static_branch_inc(&tcx_needed_key);
4183 }
4184 
4185 void tcx_dec(void)
4186 {
4187 	static_branch_dec(&tcx_needed_key);
4188 }
4189 
4190 static __always_inline enum tcx_action_base
4191 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4192 	const bool needs_mac)
4193 {
4194 	const struct bpf_mprog_fp *fp;
4195 	const struct bpf_prog *prog;
4196 	int ret = TCX_NEXT;
4197 
4198 	if (needs_mac)
4199 		__skb_push(skb, skb->mac_len);
4200 	bpf_mprog_foreach_prog(entry, fp, prog) {
4201 		bpf_compute_data_pointers(skb);
4202 		ret = bpf_prog_run(prog, skb);
4203 		if (ret != TCX_NEXT)
4204 			break;
4205 	}
4206 	if (needs_mac)
4207 		__skb_pull(skb, skb->mac_len);
4208 	return tcx_action_code(skb, ret);
4209 }
4210 
4211 static __always_inline struct sk_buff *
4212 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4213 		   struct net_device *orig_dev, bool *another)
4214 {
4215 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4216 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4217 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4218 	int sch_ret;
4219 
4220 	if (!entry)
4221 		return skb;
4222 
4223 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4224 	if (*pt_prev) {
4225 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4226 		*pt_prev = NULL;
4227 	}
4228 
4229 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4230 	tcx_set_ingress(skb, true);
4231 
4232 	if (static_branch_unlikely(&tcx_needed_key)) {
4233 		sch_ret = tcx_run(entry, skb, true);
4234 		if (sch_ret != TC_ACT_UNSPEC)
4235 			goto ingress_verdict;
4236 	}
4237 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4238 ingress_verdict:
4239 	switch (sch_ret) {
4240 	case TC_ACT_REDIRECT:
4241 		/* skb_mac_header check was done by BPF, so we can safely
4242 		 * push the L2 header back before redirecting to another
4243 		 * netdev.
4244 		 */
4245 		__skb_push(skb, skb->mac_len);
4246 		if (skb_do_redirect(skb) == -EAGAIN) {
4247 			__skb_pull(skb, skb->mac_len);
4248 			*another = true;
4249 			break;
4250 		}
4251 		*ret = NET_RX_SUCCESS;
4252 		bpf_net_ctx_clear(bpf_net_ctx);
4253 		return NULL;
4254 	case TC_ACT_SHOT:
4255 		kfree_skb_reason(skb, drop_reason);
4256 		*ret = NET_RX_DROP;
4257 		bpf_net_ctx_clear(bpf_net_ctx);
4258 		return NULL;
4259 	/* used by tc_run */
4260 	case TC_ACT_STOLEN:
4261 	case TC_ACT_QUEUED:
4262 	case TC_ACT_TRAP:
4263 		consume_skb(skb);
4264 		fallthrough;
4265 	case TC_ACT_CONSUMED:
4266 		*ret = NET_RX_SUCCESS;
4267 		bpf_net_ctx_clear(bpf_net_ctx);
4268 		return NULL;
4269 	}
4270 	bpf_net_ctx_clear(bpf_net_ctx);
4271 
4272 	return skb;
4273 }
4274 
4275 static __always_inline struct sk_buff *
4276 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4277 {
4278 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4279 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4280 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4281 	int sch_ret;
4282 
4283 	if (!entry)
4284 		return skb;
4285 
4286 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4287 
4288 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4289 	 * already set by the caller.
4290 	 */
4291 	if (static_branch_unlikely(&tcx_needed_key)) {
4292 		sch_ret = tcx_run(entry, skb, false);
4293 		if (sch_ret != TC_ACT_UNSPEC)
4294 			goto egress_verdict;
4295 	}
4296 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4297 egress_verdict:
4298 	switch (sch_ret) {
4299 	case TC_ACT_REDIRECT:
4300 		/* No need to push/pop skb's mac_header here on egress! */
4301 		skb_do_redirect(skb);
4302 		*ret = NET_XMIT_SUCCESS;
4303 		bpf_net_ctx_clear(bpf_net_ctx);
4304 		return NULL;
4305 	case TC_ACT_SHOT:
4306 		kfree_skb_reason(skb, drop_reason);
4307 		*ret = NET_XMIT_DROP;
4308 		bpf_net_ctx_clear(bpf_net_ctx);
4309 		return NULL;
4310 	/* used by tc_run */
4311 	case TC_ACT_STOLEN:
4312 	case TC_ACT_QUEUED:
4313 	case TC_ACT_TRAP:
4314 		consume_skb(skb);
4315 		fallthrough;
4316 	case TC_ACT_CONSUMED:
4317 		*ret = NET_XMIT_SUCCESS;
4318 		bpf_net_ctx_clear(bpf_net_ctx);
4319 		return NULL;
4320 	}
4321 	bpf_net_ctx_clear(bpf_net_ctx);
4322 
4323 	return skb;
4324 }
4325 #else
4326 static __always_inline struct sk_buff *
4327 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4328 		   struct net_device *orig_dev, bool *another)
4329 {
4330 	return skb;
4331 }
4332 
4333 static __always_inline struct sk_buff *
4334 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4335 {
4336 	return skb;
4337 }
4338 #endif /* CONFIG_NET_XGRESS */
4339 
4340 #ifdef CONFIG_XPS
4341 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4342 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4343 {
4344 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4345 	struct xps_map *map;
4346 	int queue_index = -1;
4347 
4348 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4349 		return queue_index;
4350 
4351 	tci *= dev_maps->num_tc;
4352 	tci += tc;
4353 
4354 	map = rcu_dereference(dev_maps->attr_map[tci]);
4355 	if (map) {
4356 		if (map->len == 1)
4357 			queue_index = map->queues[0];
4358 		else
4359 			queue_index = map->queues[reciprocal_scale(
4360 						skb_get_hash(skb), map->len)];
4361 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4362 			queue_index = -1;
4363 	}
4364 	return queue_index;
4365 }
4366 #endif
4367 
4368 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4369 			 struct sk_buff *skb)
4370 {
4371 #ifdef CONFIG_XPS
4372 	struct xps_dev_maps *dev_maps;
4373 	struct sock *sk = skb->sk;
4374 	int queue_index = -1;
4375 
4376 	if (!static_key_false(&xps_needed))
4377 		return -1;
4378 
4379 	rcu_read_lock();
4380 	if (!static_key_false(&xps_rxqs_needed))
4381 		goto get_cpus_map;
4382 
4383 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4384 	if (dev_maps) {
4385 		int tci = sk_rx_queue_get(sk);
4386 
4387 		if (tci >= 0)
4388 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4389 							  tci);
4390 	}
4391 
4392 get_cpus_map:
4393 	if (queue_index < 0) {
4394 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4395 		if (dev_maps) {
4396 			unsigned int tci = skb->sender_cpu - 1;
4397 
4398 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4399 							  tci);
4400 		}
4401 	}
4402 	rcu_read_unlock();
4403 
4404 	return queue_index;
4405 #else
4406 	return -1;
4407 #endif
4408 }
4409 
4410 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4411 		     struct net_device *sb_dev)
4412 {
4413 	return 0;
4414 }
4415 EXPORT_SYMBOL(dev_pick_tx_zero);
4416 
4417 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4418 		     struct net_device *sb_dev)
4419 {
4420 	struct sock *sk = skb->sk;
4421 	int queue_index = sk_tx_queue_get(sk);
4422 
4423 	sb_dev = sb_dev ? : dev;
4424 
4425 	if (queue_index < 0 || skb->ooo_okay ||
4426 	    queue_index >= dev->real_num_tx_queues) {
4427 		int new_index = get_xps_queue(dev, sb_dev, skb);
4428 
4429 		if (new_index < 0)
4430 			new_index = skb_tx_hash(dev, sb_dev, skb);
4431 
4432 		if (queue_index != new_index && sk &&
4433 		    sk_fullsock(sk) &&
4434 		    rcu_access_pointer(sk->sk_dst_cache))
4435 			sk_tx_queue_set(sk, new_index);
4436 
4437 		queue_index = new_index;
4438 	}
4439 
4440 	return queue_index;
4441 }
4442 EXPORT_SYMBOL(netdev_pick_tx);
4443 
4444 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4445 					 struct sk_buff *skb,
4446 					 struct net_device *sb_dev)
4447 {
4448 	int queue_index = 0;
4449 
4450 #ifdef CONFIG_XPS
4451 	u32 sender_cpu = skb->sender_cpu - 1;
4452 
4453 	if (sender_cpu >= (u32)NR_CPUS)
4454 		skb->sender_cpu = raw_smp_processor_id() + 1;
4455 #endif
4456 
4457 	if (dev->real_num_tx_queues != 1) {
4458 		const struct net_device_ops *ops = dev->netdev_ops;
4459 
4460 		if (ops->ndo_select_queue)
4461 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4462 		else
4463 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4464 
4465 		queue_index = netdev_cap_txqueue(dev, queue_index);
4466 	}
4467 
4468 	skb_set_queue_mapping(skb, queue_index);
4469 	return netdev_get_tx_queue(dev, queue_index);
4470 }
4471 
4472 /**
4473  * __dev_queue_xmit() - transmit a buffer
4474  * @skb:	buffer to transmit
4475  * @sb_dev:	suboordinate device used for L2 forwarding offload
4476  *
4477  * Queue a buffer for transmission to a network device. The caller must
4478  * have set the device and priority and built the buffer before calling
4479  * this function. The function can be called from an interrupt.
4480  *
4481  * When calling this method, interrupts MUST be enabled. This is because
4482  * the BH enable code must have IRQs enabled so that it will not deadlock.
4483  *
4484  * Regardless of the return value, the skb is consumed, so it is currently
4485  * difficult to retry a send to this method. (You can bump the ref count
4486  * before sending to hold a reference for retry if you are careful.)
4487  *
4488  * Return:
4489  * * 0				- buffer successfully transmitted
4490  * * positive qdisc return code	- NET_XMIT_DROP etc.
4491  * * negative errno		- other errors
4492  */
4493 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4494 {
4495 	struct net_device *dev = skb->dev;
4496 	struct netdev_queue *txq = NULL;
4497 	struct Qdisc *q;
4498 	int rc = -ENOMEM;
4499 	bool again = false;
4500 
4501 	skb_reset_mac_header(skb);
4502 	skb_assert_len(skb);
4503 
4504 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4505 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4506 
4507 	/* Disable soft irqs for various locks below. Also
4508 	 * stops preemption for RCU.
4509 	 */
4510 	rcu_read_lock_bh();
4511 
4512 	skb_update_prio(skb);
4513 
4514 	qdisc_pkt_len_init(skb);
4515 	tcx_set_ingress(skb, false);
4516 #ifdef CONFIG_NET_EGRESS
4517 	if (static_branch_unlikely(&egress_needed_key)) {
4518 		if (nf_hook_egress_active()) {
4519 			skb = nf_hook_egress(skb, &rc, dev);
4520 			if (!skb)
4521 				goto out;
4522 		}
4523 
4524 		netdev_xmit_skip_txqueue(false);
4525 
4526 		nf_skip_egress(skb, true);
4527 		skb = sch_handle_egress(skb, &rc, dev);
4528 		if (!skb)
4529 			goto out;
4530 		nf_skip_egress(skb, false);
4531 
4532 		if (netdev_xmit_txqueue_skipped())
4533 			txq = netdev_tx_queue_mapping(dev, skb);
4534 	}
4535 #endif
4536 	/* If device/qdisc don't need skb->dst, release it right now while
4537 	 * its hot in this cpu cache.
4538 	 */
4539 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4540 		skb_dst_drop(skb);
4541 	else
4542 		skb_dst_force(skb);
4543 
4544 	if (!txq)
4545 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4546 
4547 	q = rcu_dereference_bh(txq->qdisc);
4548 
4549 	trace_net_dev_queue(skb);
4550 	if (q->enqueue) {
4551 		rc = __dev_xmit_skb(skb, q, dev, txq);
4552 		goto out;
4553 	}
4554 
4555 	/* The device has no queue. Common case for software devices:
4556 	 * loopback, all the sorts of tunnels...
4557 
4558 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4559 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4560 	 * counters.)
4561 	 * However, it is possible, that they rely on protection
4562 	 * made by us here.
4563 
4564 	 * Check this and shot the lock. It is not prone from deadlocks.
4565 	 *Either shot noqueue qdisc, it is even simpler 8)
4566 	 */
4567 	if (dev->flags & IFF_UP) {
4568 		int cpu = smp_processor_id(); /* ok because BHs are off */
4569 
4570 		/* Other cpus might concurrently change txq->xmit_lock_owner
4571 		 * to -1 or to their cpu id, but not to our id.
4572 		 */
4573 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4574 			if (dev_xmit_recursion())
4575 				goto recursion_alert;
4576 
4577 			skb = validate_xmit_skb(skb, dev, &again);
4578 			if (!skb)
4579 				goto out;
4580 
4581 			HARD_TX_LOCK(dev, txq, cpu);
4582 
4583 			if (!netif_xmit_stopped(txq)) {
4584 				dev_xmit_recursion_inc();
4585 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4586 				dev_xmit_recursion_dec();
4587 				if (dev_xmit_complete(rc)) {
4588 					HARD_TX_UNLOCK(dev, txq);
4589 					goto out;
4590 				}
4591 			}
4592 			HARD_TX_UNLOCK(dev, txq);
4593 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4594 					     dev->name);
4595 		} else {
4596 			/* Recursion is detected! It is possible,
4597 			 * unfortunately
4598 			 */
4599 recursion_alert:
4600 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4601 					     dev->name);
4602 		}
4603 	}
4604 
4605 	rc = -ENETDOWN;
4606 	rcu_read_unlock_bh();
4607 
4608 	dev_core_stats_tx_dropped_inc(dev);
4609 	kfree_skb_list(skb);
4610 	return rc;
4611 out:
4612 	rcu_read_unlock_bh();
4613 	return rc;
4614 }
4615 EXPORT_SYMBOL(__dev_queue_xmit);
4616 
4617 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4618 {
4619 	struct net_device *dev = skb->dev;
4620 	struct sk_buff *orig_skb = skb;
4621 	struct netdev_queue *txq;
4622 	int ret = NETDEV_TX_BUSY;
4623 	bool again = false;
4624 
4625 	if (unlikely(!netif_running(dev) ||
4626 		     !netif_carrier_ok(dev)))
4627 		goto drop;
4628 
4629 	skb = validate_xmit_skb_list(skb, dev, &again);
4630 	if (skb != orig_skb)
4631 		goto drop;
4632 
4633 	skb_set_queue_mapping(skb, queue_id);
4634 	txq = skb_get_tx_queue(dev, skb);
4635 
4636 	local_bh_disable();
4637 
4638 	dev_xmit_recursion_inc();
4639 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4640 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4641 		ret = netdev_start_xmit(skb, dev, txq, false);
4642 	HARD_TX_UNLOCK(dev, txq);
4643 	dev_xmit_recursion_dec();
4644 
4645 	local_bh_enable();
4646 	return ret;
4647 drop:
4648 	dev_core_stats_tx_dropped_inc(dev);
4649 	kfree_skb_list(skb);
4650 	return NET_XMIT_DROP;
4651 }
4652 EXPORT_SYMBOL(__dev_direct_xmit);
4653 
4654 /*************************************************************************
4655  *			Receiver routines
4656  *************************************************************************/
4657 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4658 
4659 int weight_p __read_mostly = 64;           /* old backlog weight */
4660 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4661 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4662 
4663 /* Called with irq disabled */
4664 static inline void ____napi_schedule(struct softnet_data *sd,
4665 				     struct napi_struct *napi)
4666 {
4667 	struct task_struct *thread;
4668 
4669 	lockdep_assert_irqs_disabled();
4670 
4671 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4672 		/* Paired with smp_mb__before_atomic() in
4673 		 * napi_enable()/dev_set_threaded().
4674 		 * Use READ_ONCE() to guarantee a complete
4675 		 * read on napi->thread. Only call
4676 		 * wake_up_process() when it's not NULL.
4677 		 */
4678 		thread = READ_ONCE(napi->thread);
4679 		if (thread) {
4680 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4681 				goto use_local_napi;
4682 
4683 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4684 			wake_up_process(thread);
4685 			return;
4686 		}
4687 	}
4688 
4689 use_local_napi:
4690 	list_add_tail(&napi->poll_list, &sd->poll_list);
4691 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4692 	/* If not called from net_rx_action()
4693 	 * we have to raise NET_RX_SOFTIRQ.
4694 	 */
4695 	if (!sd->in_net_rx_action)
4696 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4697 }
4698 
4699 #ifdef CONFIG_RPS
4700 
4701 struct static_key_false rps_needed __read_mostly;
4702 EXPORT_SYMBOL(rps_needed);
4703 struct static_key_false rfs_needed __read_mostly;
4704 EXPORT_SYMBOL(rfs_needed);
4705 
4706 static struct rps_dev_flow *
4707 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4708 	    struct rps_dev_flow *rflow, u16 next_cpu)
4709 {
4710 	if (next_cpu < nr_cpu_ids) {
4711 		u32 head;
4712 #ifdef CONFIG_RFS_ACCEL
4713 		struct netdev_rx_queue *rxqueue;
4714 		struct rps_dev_flow_table *flow_table;
4715 		struct rps_dev_flow *old_rflow;
4716 		u16 rxq_index;
4717 		u32 flow_id;
4718 		int rc;
4719 
4720 		/* Should we steer this flow to a different hardware queue? */
4721 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4722 		    !(dev->features & NETIF_F_NTUPLE))
4723 			goto out;
4724 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4725 		if (rxq_index == skb_get_rx_queue(skb))
4726 			goto out;
4727 
4728 		rxqueue = dev->_rx + rxq_index;
4729 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4730 		if (!flow_table)
4731 			goto out;
4732 		flow_id = skb_get_hash(skb) & flow_table->mask;
4733 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4734 							rxq_index, flow_id);
4735 		if (rc < 0)
4736 			goto out;
4737 		old_rflow = rflow;
4738 		rflow = &flow_table->flows[flow_id];
4739 		WRITE_ONCE(rflow->filter, rc);
4740 		if (old_rflow->filter == rc)
4741 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4742 	out:
4743 #endif
4744 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4745 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4746 	}
4747 
4748 	WRITE_ONCE(rflow->cpu, next_cpu);
4749 	return rflow;
4750 }
4751 
4752 /*
4753  * get_rps_cpu is called from netif_receive_skb and returns the target
4754  * CPU from the RPS map of the receiving queue for a given skb.
4755  * rcu_read_lock must be held on entry.
4756  */
4757 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4758 		       struct rps_dev_flow **rflowp)
4759 {
4760 	const struct rps_sock_flow_table *sock_flow_table;
4761 	struct netdev_rx_queue *rxqueue = dev->_rx;
4762 	struct rps_dev_flow_table *flow_table;
4763 	struct rps_map *map;
4764 	int cpu = -1;
4765 	u32 tcpu;
4766 	u32 hash;
4767 
4768 	if (skb_rx_queue_recorded(skb)) {
4769 		u16 index = skb_get_rx_queue(skb);
4770 
4771 		if (unlikely(index >= dev->real_num_rx_queues)) {
4772 			WARN_ONCE(dev->real_num_rx_queues > 1,
4773 				  "%s received packet on queue %u, but number "
4774 				  "of RX queues is %u\n",
4775 				  dev->name, index, dev->real_num_rx_queues);
4776 			goto done;
4777 		}
4778 		rxqueue += index;
4779 	}
4780 
4781 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4782 
4783 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4784 	map = rcu_dereference(rxqueue->rps_map);
4785 	if (!flow_table && !map)
4786 		goto done;
4787 
4788 	skb_reset_network_header(skb);
4789 	hash = skb_get_hash(skb);
4790 	if (!hash)
4791 		goto done;
4792 
4793 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4794 	if (flow_table && sock_flow_table) {
4795 		struct rps_dev_flow *rflow;
4796 		u32 next_cpu;
4797 		u32 ident;
4798 
4799 		/* First check into global flow table if there is a match.
4800 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4801 		 */
4802 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4803 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4804 			goto try_rps;
4805 
4806 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4807 
4808 		/* OK, now we know there is a match,
4809 		 * we can look at the local (per receive queue) flow table
4810 		 */
4811 		rflow = &flow_table->flows[hash & flow_table->mask];
4812 		tcpu = rflow->cpu;
4813 
4814 		/*
4815 		 * If the desired CPU (where last recvmsg was done) is
4816 		 * different from current CPU (one in the rx-queue flow
4817 		 * table entry), switch if one of the following holds:
4818 		 *   - Current CPU is unset (>= nr_cpu_ids).
4819 		 *   - Current CPU is offline.
4820 		 *   - The current CPU's queue tail has advanced beyond the
4821 		 *     last packet that was enqueued using this table entry.
4822 		 *     This guarantees that all previous packets for the flow
4823 		 *     have been dequeued, thus preserving in order delivery.
4824 		 */
4825 		if (unlikely(tcpu != next_cpu) &&
4826 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4827 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4828 		      rflow->last_qtail)) >= 0)) {
4829 			tcpu = next_cpu;
4830 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4831 		}
4832 
4833 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4834 			*rflowp = rflow;
4835 			cpu = tcpu;
4836 			goto done;
4837 		}
4838 	}
4839 
4840 try_rps:
4841 
4842 	if (map) {
4843 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4844 		if (cpu_online(tcpu)) {
4845 			cpu = tcpu;
4846 			goto done;
4847 		}
4848 	}
4849 
4850 done:
4851 	return cpu;
4852 }
4853 
4854 #ifdef CONFIG_RFS_ACCEL
4855 
4856 /**
4857  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4858  * @dev: Device on which the filter was set
4859  * @rxq_index: RX queue index
4860  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4861  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4862  *
4863  * Drivers that implement ndo_rx_flow_steer() should periodically call
4864  * this function for each installed filter and remove the filters for
4865  * which it returns %true.
4866  */
4867 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4868 			 u32 flow_id, u16 filter_id)
4869 {
4870 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4871 	struct rps_dev_flow_table *flow_table;
4872 	struct rps_dev_flow *rflow;
4873 	bool expire = true;
4874 	unsigned int cpu;
4875 
4876 	rcu_read_lock();
4877 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4878 	if (flow_table && flow_id <= flow_table->mask) {
4879 		rflow = &flow_table->flows[flow_id];
4880 		cpu = READ_ONCE(rflow->cpu);
4881 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4882 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4883 			   READ_ONCE(rflow->last_qtail)) <
4884 		     (int)(10 * flow_table->mask)))
4885 			expire = false;
4886 	}
4887 	rcu_read_unlock();
4888 	return expire;
4889 }
4890 EXPORT_SYMBOL(rps_may_expire_flow);
4891 
4892 #endif /* CONFIG_RFS_ACCEL */
4893 
4894 /* Called from hardirq (IPI) context */
4895 static void rps_trigger_softirq(void *data)
4896 {
4897 	struct softnet_data *sd = data;
4898 
4899 	____napi_schedule(sd, &sd->backlog);
4900 	sd->received_rps++;
4901 }
4902 
4903 #endif /* CONFIG_RPS */
4904 
4905 /* Called from hardirq (IPI) context */
4906 static void trigger_rx_softirq(void *data)
4907 {
4908 	struct softnet_data *sd = data;
4909 
4910 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4911 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4912 }
4913 
4914 /*
4915  * After we queued a packet into sd->input_pkt_queue,
4916  * we need to make sure this queue is serviced soon.
4917  *
4918  * - If this is another cpu queue, link it to our rps_ipi_list,
4919  *   and make sure we will process rps_ipi_list from net_rx_action().
4920  *
4921  * - If this is our own queue, NAPI schedule our backlog.
4922  *   Note that this also raises NET_RX_SOFTIRQ.
4923  */
4924 static void napi_schedule_rps(struct softnet_data *sd)
4925 {
4926 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4927 
4928 #ifdef CONFIG_RPS
4929 	if (sd != mysd) {
4930 		if (use_backlog_threads()) {
4931 			__napi_schedule_irqoff(&sd->backlog);
4932 			return;
4933 		}
4934 
4935 		sd->rps_ipi_next = mysd->rps_ipi_list;
4936 		mysd->rps_ipi_list = sd;
4937 
4938 		/* If not called from net_rx_action() or napi_threaded_poll()
4939 		 * we have to raise NET_RX_SOFTIRQ.
4940 		 */
4941 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4942 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4943 		return;
4944 	}
4945 #endif /* CONFIG_RPS */
4946 	__napi_schedule_irqoff(&mysd->backlog);
4947 }
4948 
4949 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4950 {
4951 	unsigned long flags;
4952 
4953 	if (use_backlog_threads()) {
4954 		backlog_lock_irq_save(sd, &flags);
4955 
4956 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4957 			__napi_schedule_irqoff(&sd->backlog);
4958 
4959 		backlog_unlock_irq_restore(sd, &flags);
4960 
4961 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4962 		smp_call_function_single_async(cpu, &sd->defer_csd);
4963 	}
4964 }
4965 
4966 #ifdef CONFIG_NET_FLOW_LIMIT
4967 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4968 #endif
4969 
4970 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4971 {
4972 #ifdef CONFIG_NET_FLOW_LIMIT
4973 	struct sd_flow_limit *fl;
4974 	struct softnet_data *sd;
4975 	unsigned int old_flow, new_flow;
4976 
4977 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4978 		return false;
4979 
4980 	sd = this_cpu_ptr(&softnet_data);
4981 
4982 	rcu_read_lock();
4983 	fl = rcu_dereference(sd->flow_limit);
4984 	if (fl) {
4985 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4986 		old_flow = fl->history[fl->history_head];
4987 		fl->history[fl->history_head] = new_flow;
4988 
4989 		fl->history_head++;
4990 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4991 
4992 		if (likely(fl->buckets[old_flow]))
4993 			fl->buckets[old_flow]--;
4994 
4995 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4996 			fl->count++;
4997 			rcu_read_unlock();
4998 			return true;
4999 		}
5000 	}
5001 	rcu_read_unlock();
5002 #endif
5003 	return false;
5004 }
5005 
5006 /*
5007  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5008  * queue (may be a remote CPU queue).
5009  */
5010 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5011 			      unsigned int *qtail)
5012 {
5013 	enum skb_drop_reason reason;
5014 	struct softnet_data *sd;
5015 	unsigned long flags;
5016 	unsigned int qlen;
5017 	int max_backlog;
5018 	u32 tail;
5019 
5020 	reason = SKB_DROP_REASON_DEV_READY;
5021 	if (!netif_running(skb->dev))
5022 		goto bad_dev;
5023 
5024 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5025 	sd = &per_cpu(softnet_data, cpu);
5026 
5027 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5028 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5029 	if (unlikely(qlen > max_backlog))
5030 		goto cpu_backlog_drop;
5031 	backlog_lock_irq_save(sd, &flags);
5032 	qlen = skb_queue_len(&sd->input_pkt_queue);
5033 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5034 		if (!qlen) {
5035 			/* Schedule NAPI for backlog device. We can use
5036 			 * non atomic operation as we own the queue lock.
5037 			 */
5038 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5039 						&sd->backlog.state))
5040 				napi_schedule_rps(sd);
5041 		}
5042 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5043 		tail = rps_input_queue_tail_incr(sd);
5044 		backlog_unlock_irq_restore(sd, &flags);
5045 
5046 		/* save the tail outside of the critical section */
5047 		rps_input_queue_tail_save(qtail, tail);
5048 		return NET_RX_SUCCESS;
5049 	}
5050 
5051 	backlog_unlock_irq_restore(sd, &flags);
5052 
5053 cpu_backlog_drop:
5054 	atomic_inc(&sd->dropped);
5055 bad_dev:
5056 	dev_core_stats_rx_dropped_inc(skb->dev);
5057 	kfree_skb_reason(skb, reason);
5058 	return NET_RX_DROP;
5059 }
5060 
5061 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5062 {
5063 	struct net_device *dev = skb->dev;
5064 	struct netdev_rx_queue *rxqueue;
5065 
5066 	rxqueue = dev->_rx;
5067 
5068 	if (skb_rx_queue_recorded(skb)) {
5069 		u16 index = skb_get_rx_queue(skb);
5070 
5071 		if (unlikely(index >= dev->real_num_rx_queues)) {
5072 			WARN_ONCE(dev->real_num_rx_queues > 1,
5073 				  "%s received packet on queue %u, but number "
5074 				  "of RX queues is %u\n",
5075 				  dev->name, index, dev->real_num_rx_queues);
5076 
5077 			return rxqueue; /* Return first rxqueue */
5078 		}
5079 		rxqueue += index;
5080 	}
5081 	return rxqueue;
5082 }
5083 
5084 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5085 			     const struct bpf_prog *xdp_prog)
5086 {
5087 	void *orig_data, *orig_data_end, *hard_start;
5088 	struct netdev_rx_queue *rxqueue;
5089 	bool orig_bcast, orig_host;
5090 	u32 mac_len, frame_sz;
5091 	__be16 orig_eth_type;
5092 	struct ethhdr *eth;
5093 	u32 metalen, act;
5094 	int off;
5095 
5096 	/* The XDP program wants to see the packet starting at the MAC
5097 	 * header.
5098 	 */
5099 	mac_len = skb->data - skb_mac_header(skb);
5100 	hard_start = skb->data - skb_headroom(skb);
5101 
5102 	/* SKB "head" area always have tailroom for skb_shared_info */
5103 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5104 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5105 
5106 	rxqueue = netif_get_rxqueue(skb);
5107 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5108 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5109 			 skb_headlen(skb) + mac_len, true);
5110 	if (skb_is_nonlinear(skb)) {
5111 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5112 		xdp_buff_set_frags_flag(xdp);
5113 	} else {
5114 		xdp_buff_clear_frags_flag(xdp);
5115 	}
5116 
5117 	orig_data_end = xdp->data_end;
5118 	orig_data = xdp->data;
5119 	eth = (struct ethhdr *)xdp->data;
5120 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5121 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5122 	orig_eth_type = eth->h_proto;
5123 
5124 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5125 
5126 	/* check if bpf_xdp_adjust_head was used */
5127 	off = xdp->data - orig_data;
5128 	if (off) {
5129 		if (off > 0)
5130 			__skb_pull(skb, off);
5131 		else if (off < 0)
5132 			__skb_push(skb, -off);
5133 
5134 		skb->mac_header += off;
5135 		skb_reset_network_header(skb);
5136 	}
5137 
5138 	/* check if bpf_xdp_adjust_tail was used */
5139 	off = xdp->data_end - orig_data_end;
5140 	if (off != 0) {
5141 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5142 		skb->len += off; /* positive on grow, negative on shrink */
5143 	}
5144 
5145 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5146 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5147 	 */
5148 	if (xdp_buff_has_frags(xdp))
5149 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5150 	else
5151 		skb->data_len = 0;
5152 
5153 	/* check if XDP changed eth hdr such SKB needs update */
5154 	eth = (struct ethhdr *)xdp->data;
5155 	if ((orig_eth_type != eth->h_proto) ||
5156 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5157 						  skb->dev->dev_addr)) ||
5158 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5159 		__skb_push(skb, ETH_HLEN);
5160 		skb->pkt_type = PACKET_HOST;
5161 		skb->protocol = eth_type_trans(skb, skb->dev);
5162 	}
5163 
5164 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5165 	 * before calling us again on redirect path. We do not call do_redirect
5166 	 * as we leave that up to the caller.
5167 	 *
5168 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5169 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5170 	 */
5171 	switch (act) {
5172 	case XDP_REDIRECT:
5173 	case XDP_TX:
5174 		__skb_push(skb, mac_len);
5175 		break;
5176 	case XDP_PASS:
5177 		metalen = xdp->data - xdp->data_meta;
5178 		if (metalen)
5179 			skb_metadata_set(skb, metalen);
5180 		break;
5181 	}
5182 
5183 	return act;
5184 }
5185 
5186 static int
5187 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5188 {
5189 	struct sk_buff *skb = *pskb;
5190 	int err, hroom, troom;
5191 
5192 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5193 		return 0;
5194 
5195 	/* In case we have to go down the path and also linearize,
5196 	 * then lets do the pskb_expand_head() work just once here.
5197 	 */
5198 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5199 	troom = skb->tail + skb->data_len - skb->end;
5200 	err = pskb_expand_head(skb,
5201 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5202 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5203 	if (err)
5204 		return err;
5205 
5206 	return skb_linearize(skb);
5207 }
5208 
5209 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5210 				     struct xdp_buff *xdp,
5211 				     const struct bpf_prog *xdp_prog)
5212 {
5213 	struct sk_buff *skb = *pskb;
5214 	u32 mac_len, act = XDP_DROP;
5215 
5216 	/* Reinjected packets coming from act_mirred or similar should
5217 	 * not get XDP generic processing.
5218 	 */
5219 	if (skb_is_redirected(skb))
5220 		return XDP_PASS;
5221 
5222 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5223 	 * bytes. This is the guarantee that also native XDP provides,
5224 	 * thus we need to do it here as well.
5225 	 */
5226 	mac_len = skb->data - skb_mac_header(skb);
5227 	__skb_push(skb, mac_len);
5228 
5229 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5230 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5231 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5232 			goto do_drop;
5233 	}
5234 
5235 	__skb_pull(*pskb, mac_len);
5236 
5237 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5238 	switch (act) {
5239 	case XDP_REDIRECT:
5240 	case XDP_TX:
5241 	case XDP_PASS:
5242 		break;
5243 	default:
5244 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5245 		fallthrough;
5246 	case XDP_ABORTED:
5247 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5248 		fallthrough;
5249 	case XDP_DROP:
5250 	do_drop:
5251 		kfree_skb(*pskb);
5252 		break;
5253 	}
5254 
5255 	return act;
5256 }
5257 
5258 /* When doing generic XDP we have to bypass the qdisc layer and the
5259  * network taps in order to match in-driver-XDP behavior. This also means
5260  * that XDP packets are able to starve other packets going through a qdisc,
5261  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5262  * queues, so they do not have this starvation issue.
5263  */
5264 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5265 {
5266 	struct net_device *dev = skb->dev;
5267 	struct netdev_queue *txq;
5268 	bool free_skb = true;
5269 	int cpu, rc;
5270 
5271 	txq = netdev_core_pick_tx(dev, skb, NULL);
5272 	cpu = smp_processor_id();
5273 	HARD_TX_LOCK(dev, txq, cpu);
5274 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5275 		rc = netdev_start_xmit(skb, dev, txq, 0);
5276 		if (dev_xmit_complete(rc))
5277 			free_skb = false;
5278 	}
5279 	HARD_TX_UNLOCK(dev, txq);
5280 	if (free_skb) {
5281 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5282 		dev_core_stats_tx_dropped_inc(dev);
5283 		kfree_skb(skb);
5284 	}
5285 }
5286 
5287 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5288 
5289 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5290 {
5291 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5292 
5293 	if (xdp_prog) {
5294 		struct xdp_buff xdp;
5295 		u32 act;
5296 		int err;
5297 
5298 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5299 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5300 		if (act != XDP_PASS) {
5301 			switch (act) {
5302 			case XDP_REDIRECT:
5303 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5304 							      &xdp, xdp_prog);
5305 				if (err)
5306 					goto out_redir;
5307 				break;
5308 			case XDP_TX:
5309 				generic_xdp_tx(*pskb, xdp_prog);
5310 				break;
5311 			}
5312 			bpf_net_ctx_clear(bpf_net_ctx);
5313 			return XDP_DROP;
5314 		}
5315 		bpf_net_ctx_clear(bpf_net_ctx);
5316 	}
5317 	return XDP_PASS;
5318 out_redir:
5319 	bpf_net_ctx_clear(bpf_net_ctx);
5320 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5321 	return XDP_DROP;
5322 }
5323 EXPORT_SYMBOL_GPL(do_xdp_generic);
5324 
5325 static int netif_rx_internal(struct sk_buff *skb)
5326 {
5327 	int ret;
5328 
5329 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5330 
5331 	trace_netif_rx(skb);
5332 
5333 #ifdef CONFIG_RPS
5334 	if (static_branch_unlikely(&rps_needed)) {
5335 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5336 		int cpu;
5337 
5338 		rcu_read_lock();
5339 
5340 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5341 		if (cpu < 0)
5342 			cpu = smp_processor_id();
5343 
5344 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5345 
5346 		rcu_read_unlock();
5347 	} else
5348 #endif
5349 	{
5350 		unsigned int qtail;
5351 
5352 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5353 	}
5354 	return ret;
5355 }
5356 
5357 /**
5358  *	__netif_rx	-	Slightly optimized version of netif_rx
5359  *	@skb: buffer to post
5360  *
5361  *	This behaves as netif_rx except that it does not disable bottom halves.
5362  *	As a result this function may only be invoked from the interrupt context
5363  *	(either hard or soft interrupt).
5364  */
5365 int __netif_rx(struct sk_buff *skb)
5366 {
5367 	int ret;
5368 
5369 	lockdep_assert_once(hardirq_count() | softirq_count());
5370 
5371 	trace_netif_rx_entry(skb);
5372 	ret = netif_rx_internal(skb);
5373 	trace_netif_rx_exit(ret);
5374 	return ret;
5375 }
5376 EXPORT_SYMBOL(__netif_rx);
5377 
5378 /**
5379  *	netif_rx	-	post buffer to the network code
5380  *	@skb: buffer to post
5381  *
5382  *	This function receives a packet from a device driver and queues it for
5383  *	the upper (protocol) levels to process via the backlog NAPI device. It
5384  *	always succeeds. The buffer may be dropped during processing for
5385  *	congestion control or by the protocol layers.
5386  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5387  *	driver should use NAPI and GRO.
5388  *	This function can used from interrupt and from process context. The
5389  *	caller from process context must not disable interrupts before invoking
5390  *	this function.
5391  *
5392  *	return values:
5393  *	NET_RX_SUCCESS	(no congestion)
5394  *	NET_RX_DROP     (packet was dropped)
5395  *
5396  */
5397 int netif_rx(struct sk_buff *skb)
5398 {
5399 	bool need_bh_off = !(hardirq_count() | softirq_count());
5400 	int ret;
5401 
5402 	if (need_bh_off)
5403 		local_bh_disable();
5404 	trace_netif_rx_entry(skb);
5405 	ret = netif_rx_internal(skb);
5406 	trace_netif_rx_exit(ret);
5407 	if (need_bh_off)
5408 		local_bh_enable();
5409 	return ret;
5410 }
5411 EXPORT_SYMBOL(netif_rx);
5412 
5413 static __latent_entropy void net_tx_action(void)
5414 {
5415 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5416 
5417 	if (sd->completion_queue) {
5418 		struct sk_buff *clist;
5419 
5420 		local_irq_disable();
5421 		clist = sd->completion_queue;
5422 		sd->completion_queue = NULL;
5423 		local_irq_enable();
5424 
5425 		while (clist) {
5426 			struct sk_buff *skb = clist;
5427 
5428 			clist = clist->next;
5429 
5430 			WARN_ON(refcount_read(&skb->users));
5431 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5432 				trace_consume_skb(skb, net_tx_action);
5433 			else
5434 				trace_kfree_skb(skb, net_tx_action,
5435 						get_kfree_skb_cb(skb)->reason, NULL);
5436 
5437 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5438 				__kfree_skb(skb);
5439 			else
5440 				__napi_kfree_skb(skb,
5441 						 get_kfree_skb_cb(skb)->reason);
5442 		}
5443 	}
5444 
5445 	if (sd->output_queue) {
5446 		struct Qdisc *head;
5447 
5448 		local_irq_disable();
5449 		head = sd->output_queue;
5450 		sd->output_queue = NULL;
5451 		sd->output_queue_tailp = &sd->output_queue;
5452 		local_irq_enable();
5453 
5454 		rcu_read_lock();
5455 
5456 		while (head) {
5457 			struct Qdisc *q = head;
5458 			spinlock_t *root_lock = NULL;
5459 
5460 			head = head->next_sched;
5461 
5462 			/* We need to make sure head->next_sched is read
5463 			 * before clearing __QDISC_STATE_SCHED
5464 			 */
5465 			smp_mb__before_atomic();
5466 
5467 			if (!(q->flags & TCQ_F_NOLOCK)) {
5468 				root_lock = qdisc_lock(q);
5469 				spin_lock(root_lock);
5470 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5471 						     &q->state))) {
5472 				/* There is a synchronize_net() between
5473 				 * STATE_DEACTIVATED flag being set and
5474 				 * qdisc_reset()/some_qdisc_is_busy() in
5475 				 * dev_deactivate(), so we can safely bail out
5476 				 * early here to avoid data race between
5477 				 * qdisc_deactivate() and some_qdisc_is_busy()
5478 				 * for lockless qdisc.
5479 				 */
5480 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5481 				continue;
5482 			}
5483 
5484 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5485 			qdisc_run(q);
5486 			if (root_lock)
5487 				spin_unlock(root_lock);
5488 		}
5489 
5490 		rcu_read_unlock();
5491 	}
5492 
5493 	xfrm_dev_backlog(sd);
5494 }
5495 
5496 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5497 /* This hook is defined here for ATM LANE */
5498 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5499 			     unsigned char *addr) __read_mostly;
5500 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5501 #endif
5502 
5503 /**
5504  *	netdev_is_rx_handler_busy - check if receive handler is registered
5505  *	@dev: device to check
5506  *
5507  *	Check if a receive handler is already registered for a given device.
5508  *	Return true if there one.
5509  *
5510  *	The caller must hold the rtnl_mutex.
5511  */
5512 bool netdev_is_rx_handler_busy(struct net_device *dev)
5513 {
5514 	ASSERT_RTNL();
5515 	return dev && rtnl_dereference(dev->rx_handler);
5516 }
5517 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5518 
5519 /**
5520  *	netdev_rx_handler_register - register receive handler
5521  *	@dev: device to register a handler for
5522  *	@rx_handler: receive handler to register
5523  *	@rx_handler_data: data pointer that is used by rx handler
5524  *
5525  *	Register a receive handler for a device. This handler will then be
5526  *	called from __netif_receive_skb. A negative errno code is returned
5527  *	on a failure.
5528  *
5529  *	The caller must hold the rtnl_mutex.
5530  *
5531  *	For a general description of rx_handler, see enum rx_handler_result.
5532  */
5533 int netdev_rx_handler_register(struct net_device *dev,
5534 			       rx_handler_func_t *rx_handler,
5535 			       void *rx_handler_data)
5536 {
5537 	if (netdev_is_rx_handler_busy(dev))
5538 		return -EBUSY;
5539 
5540 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5541 		return -EINVAL;
5542 
5543 	/* Note: rx_handler_data must be set before rx_handler */
5544 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5545 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5546 
5547 	return 0;
5548 }
5549 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5550 
5551 /**
5552  *	netdev_rx_handler_unregister - unregister receive handler
5553  *	@dev: device to unregister a handler from
5554  *
5555  *	Unregister a receive handler from a device.
5556  *
5557  *	The caller must hold the rtnl_mutex.
5558  */
5559 void netdev_rx_handler_unregister(struct net_device *dev)
5560 {
5561 
5562 	ASSERT_RTNL();
5563 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5564 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5565 	 * section has a guarantee to see a non NULL rx_handler_data
5566 	 * as well.
5567 	 */
5568 	synchronize_net();
5569 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5570 }
5571 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5572 
5573 /*
5574  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5575  * the special handling of PFMEMALLOC skbs.
5576  */
5577 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5578 {
5579 	switch (skb->protocol) {
5580 	case htons(ETH_P_ARP):
5581 	case htons(ETH_P_IP):
5582 	case htons(ETH_P_IPV6):
5583 	case htons(ETH_P_8021Q):
5584 	case htons(ETH_P_8021AD):
5585 		return true;
5586 	default:
5587 		return false;
5588 	}
5589 }
5590 
5591 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5592 			     int *ret, struct net_device *orig_dev)
5593 {
5594 	if (nf_hook_ingress_active(skb)) {
5595 		int ingress_retval;
5596 
5597 		if (*pt_prev) {
5598 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5599 			*pt_prev = NULL;
5600 		}
5601 
5602 		rcu_read_lock();
5603 		ingress_retval = nf_hook_ingress(skb);
5604 		rcu_read_unlock();
5605 		return ingress_retval;
5606 	}
5607 	return 0;
5608 }
5609 
5610 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5611 				    struct packet_type **ppt_prev)
5612 {
5613 	struct packet_type *ptype, *pt_prev;
5614 	rx_handler_func_t *rx_handler;
5615 	struct sk_buff *skb = *pskb;
5616 	struct net_device *orig_dev;
5617 	bool deliver_exact = false;
5618 	int ret = NET_RX_DROP;
5619 	__be16 type;
5620 
5621 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5622 
5623 	trace_netif_receive_skb(skb);
5624 
5625 	orig_dev = skb->dev;
5626 
5627 	skb_reset_network_header(skb);
5628 #if !defined(CONFIG_DEBUG_NET)
5629 	/* We plan to no longer reset the transport header here.
5630 	 * Give some time to fuzzers and dev build to catch bugs
5631 	 * in network stacks.
5632 	 */
5633 	if (!skb_transport_header_was_set(skb))
5634 		skb_reset_transport_header(skb);
5635 #endif
5636 	skb_reset_mac_len(skb);
5637 
5638 	pt_prev = NULL;
5639 
5640 another_round:
5641 	skb->skb_iif = skb->dev->ifindex;
5642 
5643 	__this_cpu_inc(softnet_data.processed);
5644 
5645 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5646 		int ret2;
5647 
5648 		migrate_disable();
5649 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5650 				      &skb);
5651 		migrate_enable();
5652 
5653 		if (ret2 != XDP_PASS) {
5654 			ret = NET_RX_DROP;
5655 			goto out;
5656 		}
5657 	}
5658 
5659 	if (eth_type_vlan(skb->protocol)) {
5660 		skb = skb_vlan_untag(skb);
5661 		if (unlikely(!skb))
5662 			goto out;
5663 	}
5664 
5665 	if (skb_skip_tc_classify(skb))
5666 		goto skip_classify;
5667 
5668 	if (pfmemalloc)
5669 		goto skip_taps;
5670 
5671 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5672 		if (pt_prev)
5673 			ret = deliver_skb(skb, pt_prev, orig_dev);
5674 		pt_prev = ptype;
5675 	}
5676 
5677 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5678 		if (pt_prev)
5679 			ret = deliver_skb(skb, pt_prev, orig_dev);
5680 		pt_prev = ptype;
5681 	}
5682 
5683 skip_taps:
5684 #ifdef CONFIG_NET_INGRESS
5685 	if (static_branch_unlikely(&ingress_needed_key)) {
5686 		bool another = false;
5687 
5688 		nf_skip_egress(skb, true);
5689 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5690 					 &another);
5691 		if (another)
5692 			goto another_round;
5693 		if (!skb)
5694 			goto out;
5695 
5696 		nf_skip_egress(skb, false);
5697 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5698 			goto out;
5699 	}
5700 #endif
5701 	skb_reset_redirect(skb);
5702 skip_classify:
5703 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5704 		goto drop;
5705 
5706 	if (skb_vlan_tag_present(skb)) {
5707 		if (pt_prev) {
5708 			ret = deliver_skb(skb, pt_prev, orig_dev);
5709 			pt_prev = NULL;
5710 		}
5711 		if (vlan_do_receive(&skb))
5712 			goto another_round;
5713 		else if (unlikely(!skb))
5714 			goto out;
5715 	}
5716 
5717 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5718 	if (rx_handler) {
5719 		if (pt_prev) {
5720 			ret = deliver_skb(skb, pt_prev, orig_dev);
5721 			pt_prev = NULL;
5722 		}
5723 		switch (rx_handler(&skb)) {
5724 		case RX_HANDLER_CONSUMED:
5725 			ret = NET_RX_SUCCESS;
5726 			goto out;
5727 		case RX_HANDLER_ANOTHER:
5728 			goto another_round;
5729 		case RX_HANDLER_EXACT:
5730 			deliver_exact = true;
5731 			break;
5732 		case RX_HANDLER_PASS:
5733 			break;
5734 		default:
5735 			BUG();
5736 		}
5737 	}
5738 
5739 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5740 check_vlan_id:
5741 		if (skb_vlan_tag_get_id(skb)) {
5742 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5743 			 * find vlan device.
5744 			 */
5745 			skb->pkt_type = PACKET_OTHERHOST;
5746 		} else if (eth_type_vlan(skb->protocol)) {
5747 			/* Outer header is 802.1P with vlan 0, inner header is
5748 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5749 			 * not find vlan dev for vlan id 0.
5750 			 */
5751 			__vlan_hwaccel_clear_tag(skb);
5752 			skb = skb_vlan_untag(skb);
5753 			if (unlikely(!skb))
5754 				goto out;
5755 			if (vlan_do_receive(&skb))
5756 				/* After stripping off 802.1P header with vlan 0
5757 				 * vlan dev is found for inner header.
5758 				 */
5759 				goto another_round;
5760 			else if (unlikely(!skb))
5761 				goto out;
5762 			else
5763 				/* We have stripped outer 802.1P vlan 0 header.
5764 				 * But could not find vlan dev.
5765 				 * check again for vlan id to set OTHERHOST.
5766 				 */
5767 				goto check_vlan_id;
5768 		}
5769 		/* Note: we might in the future use prio bits
5770 		 * and set skb->priority like in vlan_do_receive()
5771 		 * For the time being, just ignore Priority Code Point
5772 		 */
5773 		__vlan_hwaccel_clear_tag(skb);
5774 	}
5775 
5776 	type = skb->protocol;
5777 
5778 	/* deliver only exact match when indicated */
5779 	if (likely(!deliver_exact)) {
5780 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5781 				       &ptype_base[ntohs(type) &
5782 						   PTYPE_HASH_MASK]);
5783 	}
5784 
5785 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5786 			       &orig_dev->ptype_specific);
5787 
5788 	if (unlikely(skb->dev != orig_dev)) {
5789 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5790 				       &skb->dev->ptype_specific);
5791 	}
5792 
5793 	if (pt_prev) {
5794 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5795 			goto drop;
5796 		*ppt_prev = pt_prev;
5797 	} else {
5798 drop:
5799 		if (!deliver_exact)
5800 			dev_core_stats_rx_dropped_inc(skb->dev);
5801 		else
5802 			dev_core_stats_rx_nohandler_inc(skb->dev);
5803 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5804 		/* Jamal, now you will not able to escape explaining
5805 		 * me how you were going to use this. :-)
5806 		 */
5807 		ret = NET_RX_DROP;
5808 	}
5809 
5810 out:
5811 	/* The invariant here is that if *ppt_prev is not NULL
5812 	 * then skb should also be non-NULL.
5813 	 *
5814 	 * Apparently *ppt_prev assignment above holds this invariant due to
5815 	 * skb dereferencing near it.
5816 	 */
5817 	*pskb = skb;
5818 	return ret;
5819 }
5820 
5821 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5822 {
5823 	struct net_device *orig_dev = skb->dev;
5824 	struct packet_type *pt_prev = NULL;
5825 	int ret;
5826 
5827 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5828 	if (pt_prev)
5829 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5830 					 skb->dev, pt_prev, orig_dev);
5831 	return ret;
5832 }
5833 
5834 /**
5835  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5836  *	@skb: buffer to process
5837  *
5838  *	More direct receive version of netif_receive_skb().  It should
5839  *	only be used by callers that have a need to skip RPS and Generic XDP.
5840  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5841  *
5842  *	This function may only be called from softirq context and interrupts
5843  *	should be enabled.
5844  *
5845  *	Return values (usually ignored):
5846  *	NET_RX_SUCCESS: no congestion
5847  *	NET_RX_DROP: packet was dropped
5848  */
5849 int netif_receive_skb_core(struct sk_buff *skb)
5850 {
5851 	int ret;
5852 
5853 	rcu_read_lock();
5854 	ret = __netif_receive_skb_one_core(skb, false);
5855 	rcu_read_unlock();
5856 
5857 	return ret;
5858 }
5859 EXPORT_SYMBOL(netif_receive_skb_core);
5860 
5861 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5862 						  struct packet_type *pt_prev,
5863 						  struct net_device *orig_dev)
5864 {
5865 	struct sk_buff *skb, *next;
5866 
5867 	if (!pt_prev)
5868 		return;
5869 	if (list_empty(head))
5870 		return;
5871 	if (pt_prev->list_func != NULL)
5872 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5873 				   ip_list_rcv, head, pt_prev, orig_dev);
5874 	else
5875 		list_for_each_entry_safe(skb, next, head, list) {
5876 			skb_list_del_init(skb);
5877 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5878 		}
5879 }
5880 
5881 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5882 {
5883 	/* Fast-path assumptions:
5884 	 * - There is no RX handler.
5885 	 * - Only one packet_type matches.
5886 	 * If either of these fails, we will end up doing some per-packet
5887 	 * processing in-line, then handling the 'last ptype' for the whole
5888 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5889 	 * because the 'last ptype' must be constant across the sublist, and all
5890 	 * other ptypes are handled per-packet.
5891 	 */
5892 	/* Current (common) ptype of sublist */
5893 	struct packet_type *pt_curr = NULL;
5894 	/* Current (common) orig_dev of sublist */
5895 	struct net_device *od_curr = NULL;
5896 	struct sk_buff *skb, *next;
5897 	LIST_HEAD(sublist);
5898 
5899 	list_for_each_entry_safe(skb, next, head, list) {
5900 		struct net_device *orig_dev = skb->dev;
5901 		struct packet_type *pt_prev = NULL;
5902 
5903 		skb_list_del_init(skb);
5904 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5905 		if (!pt_prev)
5906 			continue;
5907 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5908 			/* dispatch old sublist */
5909 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5910 			/* start new sublist */
5911 			INIT_LIST_HEAD(&sublist);
5912 			pt_curr = pt_prev;
5913 			od_curr = orig_dev;
5914 		}
5915 		list_add_tail(&skb->list, &sublist);
5916 	}
5917 
5918 	/* dispatch final sublist */
5919 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5920 }
5921 
5922 static int __netif_receive_skb(struct sk_buff *skb)
5923 {
5924 	int ret;
5925 
5926 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5927 		unsigned int noreclaim_flag;
5928 
5929 		/*
5930 		 * PFMEMALLOC skbs are special, they should
5931 		 * - be delivered to SOCK_MEMALLOC sockets only
5932 		 * - stay away from userspace
5933 		 * - have bounded memory usage
5934 		 *
5935 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5936 		 * context down to all allocation sites.
5937 		 */
5938 		noreclaim_flag = memalloc_noreclaim_save();
5939 		ret = __netif_receive_skb_one_core(skb, true);
5940 		memalloc_noreclaim_restore(noreclaim_flag);
5941 	} else
5942 		ret = __netif_receive_skb_one_core(skb, false);
5943 
5944 	return ret;
5945 }
5946 
5947 static void __netif_receive_skb_list(struct list_head *head)
5948 {
5949 	unsigned long noreclaim_flag = 0;
5950 	struct sk_buff *skb, *next;
5951 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5952 
5953 	list_for_each_entry_safe(skb, next, head, list) {
5954 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5955 			struct list_head sublist;
5956 
5957 			/* Handle the previous sublist */
5958 			list_cut_before(&sublist, head, &skb->list);
5959 			if (!list_empty(&sublist))
5960 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5961 			pfmemalloc = !pfmemalloc;
5962 			/* See comments in __netif_receive_skb */
5963 			if (pfmemalloc)
5964 				noreclaim_flag = memalloc_noreclaim_save();
5965 			else
5966 				memalloc_noreclaim_restore(noreclaim_flag);
5967 		}
5968 	}
5969 	/* Handle the remaining sublist */
5970 	if (!list_empty(head))
5971 		__netif_receive_skb_list_core(head, pfmemalloc);
5972 	/* Restore pflags */
5973 	if (pfmemalloc)
5974 		memalloc_noreclaim_restore(noreclaim_flag);
5975 }
5976 
5977 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5978 {
5979 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5980 	struct bpf_prog *new = xdp->prog;
5981 	int ret = 0;
5982 
5983 	switch (xdp->command) {
5984 	case XDP_SETUP_PROG:
5985 		rcu_assign_pointer(dev->xdp_prog, new);
5986 		if (old)
5987 			bpf_prog_put(old);
5988 
5989 		if (old && !new) {
5990 			static_branch_dec(&generic_xdp_needed_key);
5991 		} else if (new && !old) {
5992 			static_branch_inc(&generic_xdp_needed_key);
5993 			dev_disable_lro(dev);
5994 			dev_disable_gro_hw(dev);
5995 		}
5996 		break;
5997 
5998 	default:
5999 		ret = -EINVAL;
6000 		break;
6001 	}
6002 
6003 	return ret;
6004 }
6005 
6006 static int netif_receive_skb_internal(struct sk_buff *skb)
6007 {
6008 	int ret;
6009 
6010 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6011 
6012 	if (skb_defer_rx_timestamp(skb))
6013 		return NET_RX_SUCCESS;
6014 
6015 	rcu_read_lock();
6016 #ifdef CONFIG_RPS
6017 	if (static_branch_unlikely(&rps_needed)) {
6018 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6019 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6020 
6021 		if (cpu >= 0) {
6022 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6023 			rcu_read_unlock();
6024 			return ret;
6025 		}
6026 	}
6027 #endif
6028 	ret = __netif_receive_skb(skb);
6029 	rcu_read_unlock();
6030 	return ret;
6031 }
6032 
6033 void netif_receive_skb_list_internal(struct list_head *head)
6034 {
6035 	struct sk_buff *skb, *next;
6036 	LIST_HEAD(sublist);
6037 
6038 	list_for_each_entry_safe(skb, next, head, list) {
6039 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6040 				    skb);
6041 		skb_list_del_init(skb);
6042 		if (!skb_defer_rx_timestamp(skb))
6043 			list_add_tail(&skb->list, &sublist);
6044 	}
6045 	list_splice_init(&sublist, head);
6046 
6047 	rcu_read_lock();
6048 #ifdef CONFIG_RPS
6049 	if (static_branch_unlikely(&rps_needed)) {
6050 		list_for_each_entry_safe(skb, next, head, list) {
6051 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6052 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6053 
6054 			if (cpu >= 0) {
6055 				/* Will be handled, remove from list */
6056 				skb_list_del_init(skb);
6057 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6058 			}
6059 		}
6060 	}
6061 #endif
6062 	__netif_receive_skb_list(head);
6063 	rcu_read_unlock();
6064 }
6065 
6066 /**
6067  *	netif_receive_skb - process receive buffer from network
6068  *	@skb: buffer to process
6069  *
6070  *	netif_receive_skb() is the main receive data processing function.
6071  *	It always succeeds. The buffer may be dropped during processing
6072  *	for congestion control or by the protocol layers.
6073  *
6074  *	This function may only be called from softirq context and interrupts
6075  *	should be enabled.
6076  *
6077  *	Return values (usually ignored):
6078  *	NET_RX_SUCCESS: no congestion
6079  *	NET_RX_DROP: packet was dropped
6080  */
6081 int netif_receive_skb(struct sk_buff *skb)
6082 {
6083 	int ret;
6084 
6085 	trace_netif_receive_skb_entry(skb);
6086 
6087 	ret = netif_receive_skb_internal(skb);
6088 	trace_netif_receive_skb_exit(ret);
6089 
6090 	return ret;
6091 }
6092 EXPORT_SYMBOL(netif_receive_skb);
6093 
6094 /**
6095  *	netif_receive_skb_list - process many receive buffers from network
6096  *	@head: list of skbs to process.
6097  *
6098  *	Since return value of netif_receive_skb() is normally ignored, and
6099  *	wouldn't be meaningful for a list, this function returns void.
6100  *
6101  *	This function may only be called from softirq context and interrupts
6102  *	should be enabled.
6103  */
6104 void netif_receive_skb_list(struct list_head *head)
6105 {
6106 	struct sk_buff *skb;
6107 
6108 	if (list_empty(head))
6109 		return;
6110 	if (trace_netif_receive_skb_list_entry_enabled()) {
6111 		list_for_each_entry(skb, head, list)
6112 			trace_netif_receive_skb_list_entry(skb);
6113 	}
6114 	netif_receive_skb_list_internal(head);
6115 	trace_netif_receive_skb_list_exit(0);
6116 }
6117 EXPORT_SYMBOL(netif_receive_skb_list);
6118 
6119 /* Network device is going away, flush any packets still pending */
6120 static void flush_backlog(struct work_struct *work)
6121 {
6122 	struct sk_buff *skb, *tmp;
6123 	struct sk_buff_head list;
6124 	struct softnet_data *sd;
6125 
6126 	__skb_queue_head_init(&list);
6127 	local_bh_disable();
6128 	sd = this_cpu_ptr(&softnet_data);
6129 
6130 	backlog_lock_irq_disable(sd);
6131 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6132 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6133 			__skb_unlink(skb, &sd->input_pkt_queue);
6134 			__skb_queue_tail(&list, skb);
6135 			rps_input_queue_head_incr(sd);
6136 		}
6137 	}
6138 	backlog_unlock_irq_enable(sd);
6139 
6140 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6141 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6142 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6143 			__skb_unlink(skb, &sd->process_queue);
6144 			__skb_queue_tail(&list, skb);
6145 			rps_input_queue_head_incr(sd);
6146 		}
6147 	}
6148 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6149 	local_bh_enable();
6150 
6151 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6152 }
6153 
6154 static bool flush_required(int cpu)
6155 {
6156 #if IS_ENABLED(CONFIG_RPS)
6157 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6158 	bool do_flush;
6159 
6160 	backlog_lock_irq_disable(sd);
6161 
6162 	/* as insertion into process_queue happens with the rps lock held,
6163 	 * process_queue access may race only with dequeue
6164 	 */
6165 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6166 		   !skb_queue_empty_lockless(&sd->process_queue);
6167 	backlog_unlock_irq_enable(sd);
6168 
6169 	return do_flush;
6170 #endif
6171 	/* without RPS we can't safely check input_pkt_queue: during a
6172 	 * concurrent remote skb_queue_splice() we can detect as empty both
6173 	 * input_pkt_queue and process_queue even if the latter could end-up
6174 	 * containing a lot of packets.
6175 	 */
6176 	return true;
6177 }
6178 
6179 struct flush_backlogs {
6180 	cpumask_t		flush_cpus;
6181 	struct work_struct	w[];
6182 };
6183 
6184 static struct flush_backlogs *flush_backlogs_alloc(void)
6185 {
6186 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6187 		       GFP_KERNEL);
6188 }
6189 
6190 static struct flush_backlogs *flush_backlogs_fallback;
6191 static DEFINE_MUTEX(flush_backlogs_mutex);
6192 
6193 static void flush_all_backlogs(void)
6194 {
6195 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6196 	unsigned int cpu;
6197 
6198 	if (!ptr) {
6199 		mutex_lock(&flush_backlogs_mutex);
6200 		ptr = flush_backlogs_fallback;
6201 	}
6202 	cpumask_clear(&ptr->flush_cpus);
6203 
6204 	cpus_read_lock();
6205 
6206 	for_each_online_cpu(cpu) {
6207 		if (flush_required(cpu)) {
6208 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6209 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6210 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6211 		}
6212 	}
6213 
6214 	/* we can have in flight packet[s] on the cpus we are not flushing,
6215 	 * synchronize_net() in unregister_netdevice_many() will take care of
6216 	 * them.
6217 	 */
6218 	for_each_cpu(cpu, &ptr->flush_cpus)
6219 		flush_work(&ptr->w[cpu]);
6220 
6221 	cpus_read_unlock();
6222 
6223 	if (ptr != flush_backlogs_fallback)
6224 		kfree(ptr);
6225 	else
6226 		mutex_unlock(&flush_backlogs_mutex);
6227 }
6228 
6229 static void net_rps_send_ipi(struct softnet_data *remsd)
6230 {
6231 #ifdef CONFIG_RPS
6232 	while (remsd) {
6233 		struct softnet_data *next = remsd->rps_ipi_next;
6234 
6235 		if (cpu_online(remsd->cpu))
6236 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6237 		remsd = next;
6238 	}
6239 #endif
6240 }
6241 
6242 /*
6243  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6244  * Note: called with local irq disabled, but exits with local irq enabled.
6245  */
6246 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6247 {
6248 #ifdef CONFIG_RPS
6249 	struct softnet_data *remsd = sd->rps_ipi_list;
6250 
6251 	if (!use_backlog_threads() && remsd) {
6252 		sd->rps_ipi_list = NULL;
6253 
6254 		local_irq_enable();
6255 
6256 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6257 		net_rps_send_ipi(remsd);
6258 	} else
6259 #endif
6260 		local_irq_enable();
6261 }
6262 
6263 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6264 {
6265 #ifdef CONFIG_RPS
6266 	return !use_backlog_threads() && sd->rps_ipi_list;
6267 #else
6268 	return false;
6269 #endif
6270 }
6271 
6272 static int process_backlog(struct napi_struct *napi, int quota)
6273 {
6274 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6275 	bool again = true;
6276 	int work = 0;
6277 
6278 	/* Check if we have pending ipi, its better to send them now,
6279 	 * not waiting net_rx_action() end.
6280 	 */
6281 	if (sd_has_rps_ipi_waiting(sd)) {
6282 		local_irq_disable();
6283 		net_rps_action_and_irq_enable(sd);
6284 	}
6285 
6286 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6287 	while (again) {
6288 		struct sk_buff *skb;
6289 
6290 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6291 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6292 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6293 			rcu_read_lock();
6294 			__netif_receive_skb(skb);
6295 			rcu_read_unlock();
6296 			if (++work >= quota) {
6297 				rps_input_queue_head_add(sd, work);
6298 				return work;
6299 			}
6300 
6301 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6302 		}
6303 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6304 
6305 		backlog_lock_irq_disable(sd);
6306 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6307 			/*
6308 			 * Inline a custom version of __napi_complete().
6309 			 * only current cpu owns and manipulates this napi,
6310 			 * and NAPI_STATE_SCHED is the only possible flag set
6311 			 * on backlog.
6312 			 * We can use a plain write instead of clear_bit(),
6313 			 * and we dont need an smp_mb() memory barrier.
6314 			 */
6315 			napi->state &= NAPIF_STATE_THREADED;
6316 			again = false;
6317 		} else {
6318 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6319 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6320 						   &sd->process_queue);
6321 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6322 		}
6323 		backlog_unlock_irq_enable(sd);
6324 	}
6325 
6326 	if (work)
6327 		rps_input_queue_head_add(sd, work);
6328 	return work;
6329 }
6330 
6331 /**
6332  * __napi_schedule - schedule for receive
6333  * @n: entry to schedule
6334  *
6335  * The entry's receive function will be scheduled to run.
6336  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6337  */
6338 void __napi_schedule(struct napi_struct *n)
6339 {
6340 	unsigned long flags;
6341 
6342 	local_irq_save(flags);
6343 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6344 	local_irq_restore(flags);
6345 }
6346 EXPORT_SYMBOL(__napi_schedule);
6347 
6348 /**
6349  *	napi_schedule_prep - check if napi can be scheduled
6350  *	@n: napi context
6351  *
6352  * Test if NAPI routine is already running, and if not mark
6353  * it as running.  This is used as a condition variable to
6354  * insure only one NAPI poll instance runs.  We also make
6355  * sure there is no pending NAPI disable.
6356  */
6357 bool napi_schedule_prep(struct napi_struct *n)
6358 {
6359 	unsigned long new, val = READ_ONCE(n->state);
6360 
6361 	do {
6362 		if (unlikely(val & NAPIF_STATE_DISABLE))
6363 			return false;
6364 		new = val | NAPIF_STATE_SCHED;
6365 
6366 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6367 		 * This was suggested by Alexander Duyck, as compiler
6368 		 * emits better code than :
6369 		 * if (val & NAPIF_STATE_SCHED)
6370 		 *     new |= NAPIF_STATE_MISSED;
6371 		 */
6372 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6373 						   NAPIF_STATE_MISSED;
6374 	} while (!try_cmpxchg(&n->state, &val, new));
6375 
6376 	return !(val & NAPIF_STATE_SCHED);
6377 }
6378 EXPORT_SYMBOL(napi_schedule_prep);
6379 
6380 /**
6381  * __napi_schedule_irqoff - schedule for receive
6382  * @n: entry to schedule
6383  *
6384  * Variant of __napi_schedule() assuming hard irqs are masked.
6385  *
6386  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6387  * because the interrupt disabled assumption might not be true
6388  * due to force-threaded interrupts and spinlock substitution.
6389  */
6390 void __napi_schedule_irqoff(struct napi_struct *n)
6391 {
6392 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6393 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6394 	else
6395 		__napi_schedule(n);
6396 }
6397 EXPORT_SYMBOL(__napi_schedule_irqoff);
6398 
6399 bool napi_complete_done(struct napi_struct *n, int work_done)
6400 {
6401 	unsigned long flags, val, new, timeout = 0;
6402 	bool ret = true;
6403 
6404 	/*
6405 	 * 1) Don't let napi dequeue from the cpu poll list
6406 	 *    just in case its running on a different cpu.
6407 	 * 2) If we are busy polling, do nothing here, we have
6408 	 *    the guarantee we will be called later.
6409 	 */
6410 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6411 				 NAPIF_STATE_IN_BUSY_POLL)))
6412 		return false;
6413 
6414 	if (work_done) {
6415 		if (n->gro_bitmask)
6416 			timeout = napi_get_gro_flush_timeout(n);
6417 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6418 	}
6419 	if (n->defer_hard_irqs_count > 0) {
6420 		n->defer_hard_irqs_count--;
6421 		timeout = napi_get_gro_flush_timeout(n);
6422 		if (timeout)
6423 			ret = false;
6424 	}
6425 	if (n->gro_bitmask) {
6426 		/* When the NAPI instance uses a timeout and keeps postponing
6427 		 * it, we need to bound somehow the time packets are kept in
6428 		 * the GRO layer
6429 		 */
6430 		napi_gro_flush(n, !!timeout);
6431 	}
6432 
6433 	gro_normal_list(n);
6434 
6435 	if (unlikely(!list_empty(&n->poll_list))) {
6436 		/* If n->poll_list is not empty, we need to mask irqs */
6437 		local_irq_save(flags);
6438 		list_del_init(&n->poll_list);
6439 		local_irq_restore(flags);
6440 	}
6441 	WRITE_ONCE(n->list_owner, -1);
6442 
6443 	val = READ_ONCE(n->state);
6444 	do {
6445 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6446 
6447 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6448 			      NAPIF_STATE_SCHED_THREADED |
6449 			      NAPIF_STATE_PREFER_BUSY_POLL);
6450 
6451 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6452 		 * because we will call napi->poll() one more time.
6453 		 * This C code was suggested by Alexander Duyck to help gcc.
6454 		 */
6455 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6456 						    NAPIF_STATE_SCHED;
6457 	} while (!try_cmpxchg(&n->state, &val, new));
6458 
6459 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6460 		__napi_schedule(n);
6461 		return false;
6462 	}
6463 
6464 	if (timeout)
6465 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6466 			      HRTIMER_MODE_REL_PINNED);
6467 	return ret;
6468 }
6469 EXPORT_SYMBOL(napi_complete_done);
6470 
6471 static void skb_defer_free_flush(struct softnet_data *sd)
6472 {
6473 	struct sk_buff *skb, *next;
6474 
6475 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6476 	if (!READ_ONCE(sd->defer_list))
6477 		return;
6478 
6479 	spin_lock(&sd->defer_lock);
6480 	skb = sd->defer_list;
6481 	sd->defer_list = NULL;
6482 	sd->defer_count = 0;
6483 	spin_unlock(&sd->defer_lock);
6484 
6485 	while (skb != NULL) {
6486 		next = skb->next;
6487 		napi_consume_skb(skb, 1);
6488 		skb = next;
6489 	}
6490 }
6491 
6492 #if defined(CONFIG_NET_RX_BUSY_POLL)
6493 
6494 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6495 {
6496 	if (!skip_schedule) {
6497 		gro_normal_list(napi);
6498 		__napi_schedule(napi);
6499 		return;
6500 	}
6501 
6502 	if (napi->gro_bitmask) {
6503 		/* flush too old packets
6504 		 * If HZ < 1000, flush all packets.
6505 		 */
6506 		napi_gro_flush(napi, HZ >= 1000);
6507 	}
6508 
6509 	gro_normal_list(napi);
6510 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6511 }
6512 
6513 enum {
6514 	NAPI_F_PREFER_BUSY_POLL	= 1,
6515 	NAPI_F_END_ON_RESCHED	= 2,
6516 };
6517 
6518 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6519 			   unsigned flags, u16 budget)
6520 {
6521 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6522 	bool skip_schedule = false;
6523 	unsigned long timeout;
6524 	int rc;
6525 
6526 	/* Busy polling means there is a high chance device driver hard irq
6527 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6528 	 * set in napi_schedule_prep().
6529 	 * Since we are about to call napi->poll() once more, we can safely
6530 	 * clear NAPI_STATE_MISSED.
6531 	 *
6532 	 * Note: x86 could use a single "lock and ..." instruction
6533 	 * to perform these two clear_bit()
6534 	 */
6535 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6536 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6537 
6538 	local_bh_disable();
6539 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6540 
6541 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6542 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6543 		timeout = napi_get_gro_flush_timeout(napi);
6544 		if (napi->defer_hard_irqs_count && timeout) {
6545 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6546 			skip_schedule = true;
6547 		}
6548 	}
6549 
6550 	/* All we really want here is to re-enable device interrupts.
6551 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6552 	 */
6553 	rc = napi->poll(napi, budget);
6554 	/* We can't gro_normal_list() here, because napi->poll() might have
6555 	 * rearmed the napi (napi_complete_done()) in which case it could
6556 	 * already be running on another CPU.
6557 	 */
6558 	trace_napi_poll(napi, rc, budget);
6559 	netpoll_poll_unlock(have_poll_lock);
6560 	if (rc == budget)
6561 		__busy_poll_stop(napi, skip_schedule);
6562 	bpf_net_ctx_clear(bpf_net_ctx);
6563 	local_bh_enable();
6564 }
6565 
6566 static void __napi_busy_loop(unsigned int napi_id,
6567 		      bool (*loop_end)(void *, unsigned long),
6568 		      void *loop_end_arg, unsigned flags, u16 budget)
6569 {
6570 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6571 	int (*napi_poll)(struct napi_struct *napi, int budget);
6572 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6573 	void *have_poll_lock = NULL;
6574 	struct napi_struct *napi;
6575 
6576 	WARN_ON_ONCE(!rcu_read_lock_held());
6577 
6578 restart:
6579 	napi_poll = NULL;
6580 
6581 	napi = napi_by_id(napi_id);
6582 	if (!napi)
6583 		return;
6584 
6585 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6586 		preempt_disable();
6587 	for (;;) {
6588 		int work = 0;
6589 
6590 		local_bh_disable();
6591 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6592 		if (!napi_poll) {
6593 			unsigned long val = READ_ONCE(napi->state);
6594 
6595 			/* If multiple threads are competing for this napi,
6596 			 * we avoid dirtying napi->state as much as we can.
6597 			 */
6598 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6599 				   NAPIF_STATE_IN_BUSY_POLL)) {
6600 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6601 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6602 				goto count;
6603 			}
6604 			if (cmpxchg(&napi->state, val,
6605 				    val | NAPIF_STATE_IN_BUSY_POLL |
6606 					  NAPIF_STATE_SCHED) != val) {
6607 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6608 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6609 				goto count;
6610 			}
6611 			have_poll_lock = netpoll_poll_lock(napi);
6612 			napi_poll = napi->poll;
6613 		}
6614 		work = napi_poll(napi, budget);
6615 		trace_napi_poll(napi, work, budget);
6616 		gro_normal_list(napi);
6617 count:
6618 		if (work > 0)
6619 			__NET_ADD_STATS(dev_net(napi->dev),
6620 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6621 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6622 		bpf_net_ctx_clear(bpf_net_ctx);
6623 		local_bh_enable();
6624 
6625 		if (!loop_end || loop_end(loop_end_arg, start_time))
6626 			break;
6627 
6628 		if (unlikely(need_resched())) {
6629 			if (flags & NAPI_F_END_ON_RESCHED)
6630 				break;
6631 			if (napi_poll)
6632 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6633 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6634 				preempt_enable();
6635 			rcu_read_unlock();
6636 			cond_resched();
6637 			rcu_read_lock();
6638 			if (loop_end(loop_end_arg, start_time))
6639 				return;
6640 			goto restart;
6641 		}
6642 		cpu_relax();
6643 	}
6644 	if (napi_poll)
6645 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6646 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6647 		preempt_enable();
6648 }
6649 
6650 void napi_busy_loop_rcu(unsigned int napi_id,
6651 			bool (*loop_end)(void *, unsigned long),
6652 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6653 {
6654 	unsigned flags = NAPI_F_END_ON_RESCHED;
6655 
6656 	if (prefer_busy_poll)
6657 		flags |= NAPI_F_PREFER_BUSY_POLL;
6658 
6659 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6660 }
6661 
6662 void napi_busy_loop(unsigned int napi_id,
6663 		    bool (*loop_end)(void *, unsigned long),
6664 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6665 {
6666 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6667 
6668 	rcu_read_lock();
6669 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6670 	rcu_read_unlock();
6671 }
6672 EXPORT_SYMBOL(napi_busy_loop);
6673 
6674 void napi_suspend_irqs(unsigned int napi_id)
6675 {
6676 	struct napi_struct *napi;
6677 
6678 	rcu_read_lock();
6679 	napi = napi_by_id(napi_id);
6680 	if (napi) {
6681 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6682 
6683 		if (timeout)
6684 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6685 				      HRTIMER_MODE_REL_PINNED);
6686 	}
6687 	rcu_read_unlock();
6688 }
6689 
6690 void napi_resume_irqs(unsigned int napi_id)
6691 {
6692 	struct napi_struct *napi;
6693 
6694 	rcu_read_lock();
6695 	napi = napi_by_id(napi_id);
6696 	if (napi) {
6697 		/* If irq_suspend_timeout is set to 0 between the call to
6698 		 * napi_suspend_irqs and now, the original value still
6699 		 * determines the safety timeout as intended and napi_watchdog
6700 		 * will resume irq processing.
6701 		 */
6702 		if (napi_get_irq_suspend_timeout(napi)) {
6703 			local_bh_disable();
6704 			napi_schedule(napi);
6705 			local_bh_enable();
6706 		}
6707 	}
6708 	rcu_read_unlock();
6709 }
6710 
6711 #endif /* CONFIG_NET_RX_BUSY_POLL */
6712 
6713 static void __napi_hash_add_with_id(struct napi_struct *napi,
6714 				    unsigned int napi_id)
6715 {
6716 	WRITE_ONCE(napi->napi_id, napi_id);
6717 	hlist_add_head_rcu(&napi->napi_hash_node,
6718 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6719 }
6720 
6721 static void napi_hash_add_with_id(struct napi_struct *napi,
6722 				  unsigned int napi_id)
6723 {
6724 	unsigned long flags;
6725 
6726 	spin_lock_irqsave(&napi_hash_lock, flags);
6727 	WARN_ON_ONCE(napi_by_id(napi_id));
6728 	__napi_hash_add_with_id(napi, napi_id);
6729 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6730 }
6731 
6732 static void napi_hash_add(struct napi_struct *napi)
6733 {
6734 	unsigned long flags;
6735 
6736 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6737 		return;
6738 
6739 	spin_lock_irqsave(&napi_hash_lock, flags);
6740 
6741 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6742 	do {
6743 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6744 			napi_gen_id = MIN_NAPI_ID;
6745 	} while (napi_by_id(napi_gen_id));
6746 
6747 	__napi_hash_add_with_id(napi, napi_gen_id);
6748 
6749 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6750 }
6751 
6752 /* Warning : caller is responsible to make sure rcu grace period
6753  * is respected before freeing memory containing @napi
6754  */
6755 static void napi_hash_del(struct napi_struct *napi)
6756 {
6757 	unsigned long flags;
6758 
6759 	spin_lock_irqsave(&napi_hash_lock, flags);
6760 
6761 	hlist_del_init_rcu(&napi->napi_hash_node);
6762 
6763 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6764 }
6765 
6766 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6767 {
6768 	struct napi_struct *napi;
6769 
6770 	napi = container_of(timer, struct napi_struct, timer);
6771 
6772 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6773 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6774 	 */
6775 	if (!napi_disable_pending(napi) &&
6776 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6777 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6778 		__napi_schedule_irqoff(napi);
6779 	}
6780 
6781 	return HRTIMER_NORESTART;
6782 }
6783 
6784 static void init_gro_hash(struct napi_struct *napi)
6785 {
6786 	int i;
6787 
6788 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6789 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6790 		napi->gro_hash[i].count = 0;
6791 	}
6792 	napi->gro_bitmask = 0;
6793 }
6794 
6795 int dev_set_threaded(struct net_device *dev, bool threaded)
6796 {
6797 	struct napi_struct *napi;
6798 	int err = 0;
6799 
6800 	netdev_assert_locked_or_invisible(dev);
6801 
6802 	if (dev->threaded == threaded)
6803 		return 0;
6804 
6805 	if (threaded) {
6806 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6807 			if (!napi->thread) {
6808 				err = napi_kthread_create(napi);
6809 				if (err) {
6810 					threaded = false;
6811 					break;
6812 				}
6813 			}
6814 		}
6815 	}
6816 
6817 	WRITE_ONCE(dev->threaded, threaded);
6818 
6819 	/* Make sure kthread is created before THREADED bit
6820 	 * is set.
6821 	 */
6822 	smp_mb__before_atomic();
6823 
6824 	/* Setting/unsetting threaded mode on a napi might not immediately
6825 	 * take effect, if the current napi instance is actively being
6826 	 * polled. In this case, the switch between threaded mode and
6827 	 * softirq mode will happen in the next round of napi_schedule().
6828 	 * This should not cause hiccups/stalls to the live traffic.
6829 	 */
6830 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6831 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6832 
6833 	return err;
6834 }
6835 EXPORT_SYMBOL(dev_set_threaded);
6836 
6837 /**
6838  * netif_queue_set_napi - Associate queue with the napi
6839  * @dev: device to which NAPI and queue belong
6840  * @queue_index: Index of queue
6841  * @type: queue type as RX or TX
6842  * @napi: NAPI context, pass NULL to clear previously set NAPI
6843  *
6844  * Set queue with its corresponding napi context. This should be done after
6845  * registering the NAPI handler for the queue-vector and the queues have been
6846  * mapped to the corresponding interrupt vector.
6847  */
6848 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6849 			  enum netdev_queue_type type, struct napi_struct *napi)
6850 {
6851 	struct netdev_rx_queue *rxq;
6852 	struct netdev_queue *txq;
6853 
6854 	if (WARN_ON_ONCE(napi && !napi->dev))
6855 		return;
6856 	if (dev->reg_state >= NETREG_REGISTERED)
6857 		ASSERT_RTNL();
6858 
6859 	switch (type) {
6860 	case NETDEV_QUEUE_TYPE_RX:
6861 		rxq = __netif_get_rx_queue(dev, queue_index);
6862 		rxq->napi = napi;
6863 		return;
6864 	case NETDEV_QUEUE_TYPE_TX:
6865 		txq = netdev_get_tx_queue(dev, queue_index);
6866 		txq->napi = napi;
6867 		return;
6868 	default:
6869 		return;
6870 	}
6871 }
6872 EXPORT_SYMBOL(netif_queue_set_napi);
6873 
6874 static void napi_restore_config(struct napi_struct *n)
6875 {
6876 	n->defer_hard_irqs = n->config->defer_hard_irqs;
6877 	n->gro_flush_timeout = n->config->gro_flush_timeout;
6878 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
6879 	/* a NAPI ID might be stored in the config, if so use it. if not, use
6880 	 * napi_hash_add to generate one for us.
6881 	 */
6882 	if (n->config->napi_id) {
6883 		napi_hash_add_with_id(n, n->config->napi_id);
6884 	} else {
6885 		napi_hash_add(n);
6886 		n->config->napi_id = n->napi_id;
6887 	}
6888 }
6889 
6890 static void napi_save_config(struct napi_struct *n)
6891 {
6892 	n->config->defer_hard_irqs = n->defer_hard_irqs;
6893 	n->config->gro_flush_timeout = n->gro_flush_timeout;
6894 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
6895 	napi_hash_del(n);
6896 }
6897 
6898 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
6899  * inherit an existing ID try to insert it at the right position.
6900  */
6901 static void
6902 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
6903 {
6904 	unsigned int new_id, pos_id;
6905 	struct list_head *higher;
6906 	struct napi_struct *pos;
6907 
6908 	new_id = UINT_MAX;
6909 	if (napi->config && napi->config->napi_id)
6910 		new_id = napi->config->napi_id;
6911 
6912 	higher = &dev->napi_list;
6913 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
6914 		if (pos->napi_id >= MIN_NAPI_ID)
6915 			pos_id = pos->napi_id;
6916 		else if (pos->config)
6917 			pos_id = pos->config->napi_id;
6918 		else
6919 			pos_id = UINT_MAX;
6920 
6921 		if (pos_id <= new_id)
6922 			break;
6923 		higher = &pos->dev_list;
6924 	}
6925 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
6926 }
6927 
6928 void netif_napi_add_weight_locked(struct net_device *dev,
6929 				  struct napi_struct *napi,
6930 				  int (*poll)(struct napi_struct *, int),
6931 				  int weight)
6932 {
6933 	netdev_assert_locked(dev);
6934 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6935 		return;
6936 
6937 	INIT_LIST_HEAD(&napi->poll_list);
6938 	INIT_HLIST_NODE(&napi->napi_hash_node);
6939 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6940 	napi->timer.function = napi_watchdog;
6941 	init_gro_hash(napi);
6942 	napi->skb = NULL;
6943 	INIT_LIST_HEAD(&napi->rx_list);
6944 	napi->rx_count = 0;
6945 	napi->poll = poll;
6946 	if (weight > NAPI_POLL_WEIGHT)
6947 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6948 				weight);
6949 	napi->weight = weight;
6950 	napi->dev = dev;
6951 #ifdef CONFIG_NETPOLL
6952 	napi->poll_owner = -1;
6953 #endif
6954 	napi->list_owner = -1;
6955 	set_bit(NAPI_STATE_SCHED, &napi->state);
6956 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6957 	netif_napi_dev_list_add(dev, napi);
6958 
6959 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
6960 	 * configuration will be loaded in napi_enable
6961 	 */
6962 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
6963 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
6964 
6965 	napi_get_frags_check(napi);
6966 	/* Create kthread for this napi if dev->threaded is set.
6967 	 * Clear dev->threaded if kthread creation failed so that
6968 	 * threaded mode will not be enabled in napi_enable().
6969 	 */
6970 	if (dev->threaded && napi_kthread_create(napi))
6971 		dev->threaded = false;
6972 	netif_napi_set_irq_locked(napi, -1);
6973 }
6974 EXPORT_SYMBOL(netif_napi_add_weight_locked);
6975 
6976 void napi_disable_locked(struct napi_struct *n)
6977 {
6978 	unsigned long val, new;
6979 
6980 	might_sleep();
6981 	netdev_assert_locked(n->dev);
6982 
6983 	set_bit(NAPI_STATE_DISABLE, &n->state);
6984 
6985 	val = READ_ONCE(n->state);
6986 	do {
6987 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6988 			usleep_range(20, 200);
6989 			val = READ_ONCE(n->state);
6990 		}
6991 
6992 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6993 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6994 	} while (!try_cmpxchg(&n->state, &val, new));
6995 
6996 	hrtimer_cancel(&n->timer);
6997 
6998 	if (n->config)
6999 		napi_save_config(n);
7000 	else
7001 		napi_hash_del(n);
7002 
7003 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7004 }
7005 EXPORT_SYMBOL(napi_disable_locked);
7006 
7007 /**
7008  * napi_disable() - prevent NAPI from scheduling
7009  * @n: NAPI context
7010  *
7011  * Stop NAPI from being scheduled on this context.
7012  * Waits till any outstanding processing completes.
7013  * Takes netdev_lock() for associated net_device.
7014  */
7015 void napi_disable(struct napi_struct *n)
7016 {
7017 	netdev_lock(n->dev);
7018 	napi_disable_locked(n);
7019 	netdev_unlock(n->dev);
7020 }
7021 EXPORT_SYMBOL(napi_disable);
7022 
7023 void napi_enable_locked(struct napi_struct *n)
7024 {
7025 	unsigned long new, val = READ_ONCE(n->state);
7026 
7027 	if (n->config)
7028 		napi_restore_config(n);
7029 	else
7030 		napi_hash_add(n);
7031 
7032 	do {
7033 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7034 
7035 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7036 		if (n->dev->threaded && n->thread)
7037 			new |= NAPIF_STATE_THREADED;
7038 	} while (!try_cmpxchg(&n->state, &val, new));
7039 }
7040 EXPORT_SYMBOL(napi_enable_locked);
7041 
7042 /**
7043  * napi_enable() - enable NAPI scheduling
7044  * @n: NAPI context
7045  *
7046  * Enable scheduling of a NAPI instance.
7047  * Must be paired with napi_disable().
7048  * Takes netdev_lock() for associated net_device.
7049  */
7050 void napi_enable(struct napi_struct *n)
7051 {
7052 	netdev_lock(n->dev);
7053 	napi_enable_locked(n);
7054 	netdev_unlock(n->dev);
7055 }
7056 EXPORT_SYMBOL(napi_enable);
7057 
7058 static void flush_gro_hash(struct napi_struct *napi)
7059 {
7060 	int i;
7061 
7062 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
7063 		struct sk_buff *skb, *n;
7064 
7065 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
7066 			kfree_skb(skb);
7067 		napi->gro_hash[i].count = 0;
7068 	}
7069 }
7070 
7071 /* Must be called in process context */
7072 void __netif_napi_del_locked(struct napi_struct *napi)
7073 {
7074 	netdev_assert_locked(napi->dev);
7075 
7076 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7077 		return;
7078 
7079 	/* Make sure NAPI is disabled (or was never enabled). */
7080 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7081 
7082 	if (napi->config) {
7083 		napi->index = -1;
7084 		napi->config = NULL;
7085 	}
7086 
7087 	list_del_rcu(&napi->dev_list);
7088 	napi_free_frags(napi);
7089 
7090 	flush_gro_hash(napi);
7091 	napi->gro_bitmask = 0;
7092 
7093 	if (napi->thread) {
7094 		kthread_stop(napi->thread);
7095 		napi->thread = NULL;
7096 	}
7097 }
7098 EXPORT_SYMBOL(__netif_napi_del_locked);
7099 
7100 static int __napi_poll(struct napi_struct *n, bool *repoll)
7101 {
7102 	int work, weight;
7103 
7104 	weight = n->weight;
7105 
7106 	/* This NAPI_STATE_SCHED test is for avoiding a race
7107 	 * with netpoll's poll_napi().  Only the entity which
7108 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7109 	 * actually make the ->poll() call.  Therefore we avoid
7110 	 * accidentally calling ->poll() when NAPI is not scheduled.
7111 	 */
7112 	work = 0;
7113 	if (napi_is_scheduled(n)) {
7114 		work = n->poll(n, weight);
7115 		trace_napi_poll(n, work, weight);
7116 
7117 		xdp_do_check_flushed(n);
7118 	}
7119 
7120 	if (unlikely(work > weight))
7121 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7122 				n->poll, work, weight);
7123 
7124 	if (likely(work < weight))
7125 		return work;
7126 
7127 	/* Drivers must not modify the NAPI state if they
7128 	 * consume the entire weight.  In such cases this code
7129 	 * still "owns" the NAPI instance and therefore can
7130 	 * move the instance around on the list at-will.
7131 	 */
7132 	if (unlikely(napi_disable_pending(n))) {
7133 		napi_complete(n);
7134 		return work;
7135 	}
7136 
7137 	/* The NAPI context has more processing work, but busy-polling
7138 	 * is preferred. Exit early.
7139 	 */
7140 	if (napi_prefer_busy_poll(n)) {
7141 		if (napi_complete_done(n, work)) {
7142 			/* If timeout is not set, we need to make sure
7143 			 * that the NAPI is re-scheduled.
7144 			 */
7145 			napi_schedule(n);
7146 		}
7147 		return work;
7148 	}
7149 
7150 	if (n->gro_bitmask) {
7151 		/* flush too old packets
7152 		 * If HZ < 1000, flush all packets.
7153 		 */
7154 		napi_gro_flush(n, HZ >= 1000);
7155 	}
7156 
7157 	gro_normal_list(n);
7158 
7159 	/* Some drivers may have called napi_schedule
7160 	 * prior to exhausting their budget.
7161 	 */
7162 	if (unlikely(!list_empty(&n->poll_list))) {
7163 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7164 			     n->dev ? n->dev->name : "backlog");
7165 		return work;
7166 	}
7167 
7168 	*repoll = true;
7169 
7170 	return work;
7171 }
7172 
7173 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7174 {
7175 	bool do_repoll = false;
7176 	void *have;
7177 	int work;
7178 
7179 	list_del_init(&n->poll_list);
7180 
7181 	have = netpoll_poll_lock(n);
7182 
7183 	work = __napi_poll(n, &do_repoll);
7184 
7185 	if (do_repoll)
7186 		list_add_tail(&n->poll_list, repoll);
7187 
7188 	netpoll_poll_unlock(have);
7189 
7190 	return work;
7191 }
7192 
7193 static int napi_thread_wait(struct napi_struct *napi)
7194 {
7195 	set_current_state(TASK_INTERRUPTIBLE);
7196 
7197 	while (!kthread_should_stop()) {
7198 		/* Testing SCHED_THREADED bit here to make sure the current
7199 		 * kthread owns this napi and could poll on this napi.
7200 		 * Testing SCHED bit is not enough because SCHED bit might be
7201 		 * set by some other busy poll thread or by napi_disable().
7202 		 */
7203 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7204 			WARN_ON(!list_empty(&napi->poll_list));
7205 			__set_current_state(TASK_RUNNING);
7206 			return 0;
7207 		}
7208 
7209 		schedule();
7210 		set_current_state(TASK_INTERRUPTIBLE);
7211 	}
7212 	__set_current_state(TASK_RUNNING);
7213 
7214 	return -1;
7215 }
7216 
7217 static void napi_threaded_poll_loop(struct napi_struct *napi)
7218 {
7219 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7220 	struct softnet_data *sd;
7221 	unsigned long last_qs = jiffies;
7222 
7223 	for (;;) {
7224 		bool repoll = false;
7225 		void *have;
7226 
7227 		local_bh_disable();
7228 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7229 
7230 		sd = this_cpu_ptr(&softnet_data);
7231 		sd->in_napi_threaded_poll = true;
7232 
7233 		have = netpoll_poll_lock(napi);
7234 		__napi_poll(napi, &repoll);
7235 		netpoll_poll_unlock(have);
7236 
7237 		sd->in_napi_threaded_poll = false;
7238 		barrier();
7239 
7240 		if (sd_has_rps_ipi_waiting(sd)) {
7241 			local_irq_disable();
7242 			net_rps_action_and_irq_enable(sd);
7243 		}
7244 		skb_defer_free_flush(sd);
7245 		bpf_net_ctx_clear(bpf_net_ctx);
7246 		local_bh_enable();
7247 
7248 		if (!repoll)
7249 			break;
7250 
7251 		rcu_softirq_qs_periodic(last_qs);
7252 		cond_resched();
7253 	}
7254 }
7255 
7256 static int napi_threaded_poll(void *data)
7257 {
7258 	struct napi_struct *napi = data;
7259 
7260 	while (!napi_thread_wait(napi))
7261 		napi_threaded_poll_loop(napi);
7262 
7263 	return 0;
7264 }
7265 
7266 static __latent_entropy void net_rx_action(void)
7267 {
7268 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7269 	unsigned long time_limit = jiffies +
7270 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7271 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7272 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7273 	LIST_HEAD(list);
7274 	LIST_HEAD(repoll);
7275 
7276 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7277 start:
7278 	sd->in_net_rx_action = true;
7279 	local_irq_disable();
7280 	list_splice_init(&sd->poll_list, &list);
7281 	local_irq_enable();
7282 
7283 	for (;;) {
7284 		struct napi_struct *n;
7285 
7286 		skb_defer_free_flush(sd);
7287 
7288 		if (list_empty(&list)) {
7289 			if (list_empty(&repoll)) {
7290 				sd->in_net_rx_action = false;
7291 				barrier();
7292 				/* We need to check if ____napi_schedule()
7293 				 * had refilled poll_list while
7294 				 * sd->in_net_rx_action was true.
7295 				 */
7296 				if (!list_empty(&sd->poll_list))
7297 					goto start;
7298 				if (!sd_has_rps_ipi_waiting(sd))
7299 					goto end;
7300 			}
7301 			break;
7302 		}
7303 
7304 		n = list_first_entry(&list, struct napi_struct, poll_list);
7305 		budget -= napi_poll(n, &repoll);
7306 
7307 		/* If softirq window is exhausted then punt.
7308 		 * Allow this to run for 2 jiffies since which will allow
7309 		 * an average latency of 1.5/HZ.
7310 		 */
7311 		if (unlikely(budget <= 0 ||
7312 			     time_after_eq(jiffies, time_limit))) {
7313 			sd->time_squeeze++;
7314 			break;
7315 		}
7316 	}
7317 
7318 	local_irq_disable();
7319 
7320 	list_splice_tail_init(&sd->poll_list, &list);
7321 	list_splice_tail(&repoll, &list);
7322 	list_splice(&list, &sd->poll_list);
7323 	if (!list_empty(&sd->poll_list))
7324 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7325 	else
7326 		sd->in_net_rx_action = false;
7327 
7328 	net_rps_action_and_irq_enable(sd);
7329 end:
7330 	bpf_net_ctx_clear(bpf_net_ctx);
7331 }
7332 
7333 struct netdev_adjacent {
7334 	struct net_device *dev;
7335 	netdevice_tracker dev_tracker;
7336 
7337 	/* upper master flag, there can only be one master device per list */
7338 	bool master;
7339 
7340 	/* lookup ignore flag */
7341 	bool ignore;
7342 
7343 	/* counter for the number of times this device was added to us */
7344 	u16 ref_nr;
7345 
7346 	/* private field for the users */
7347 	void *private;
7348 
7349 	struct list_head list;
7350 	struct rcu_head rcu;
7351 };
7352 
7353 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7354 						 struct list_head *adj_list)
7355 {
7356 	struct netdev_adjacent *adj;
7357 
7358 	list_for_each_entry(adj, adj_list, list) {
7359 		if (adj->dev == adj_dev)
7360 			return adj;
7361 	}
7362 	return NULL;
7363 }
7364 
7365 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7366 				    struct netdev_nested_priv *priv)
7367 {
7368 	struct net_device *dev = (struct net_device *)priv->data;
7369 
7370 	return upper_dev == dev;
7371 }
7372 
7373 /**
7374  * netdev_has_upper_dev - Check if device is linked to an upper device
7375  * @dev: device
7376  * @upper_dev: upper device to check
7377  *
7378  * Find out if a device is linked to specified upper device and return true
7379  * in case it is. Note that this checks only immediate upper device,
7380  * not through a complete stack of devices. The caller must hold the RTNL lock.
7381  */
7382 bool netdev_has_upper_dev(struct net_device *dev,
7383 			  struct net_device *upper_dev)
7384 {
7385 	struct netdev_nested_priv priv = {
7386 		.data = (void *)upper_dev,
7387 	};
7388 
7389 	ASSERT_RTNL();
7390 
7391 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7392 					     &priv);
7393 }
7394 EXPORT_SYMBOL(netdev_has_upper_dev);
7395 
7396 /**
7397  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7398  * @dev: device
7399  * @upper_dev: upper device to check
7400  *
7401  * Find out if a device is linked to specified upper device and return true
7402  * in case it is. Note that this checks the entire upper device chain.
7403  * The caller must hold rcu lock.
7404  */
7405 
7406 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7407 				  struct net_device *upper_dev)
7408 {
7409 	struct netdev_nested_priv priv = {
7410 		.data = (void *)upper_dev,
7411 	};
7412 
7413 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7414 					       &priv);
7415 }
7416 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7417 
7418 /**
7419  * netdev_has_any_upper_dev - Check if device is linked to some device
7420  * @dev: device
7421  *
7422  * Find out if a device is linked to an upper device and return true in case
7423  * it is. The caller must hold the RTNL lock.
7424  */
7425 bool netdev_has_any_upper_dev(struct net_device *dev)
7426 {
7427 	ASSERT_RTNL();
7428 
7429 	return !list_empty(&dev->adj_list.upper);
7430 }
7431 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7432 
7433 /**
7434  * netdev_master_upper_dev_get - Get master upper device
7435  * @dev: device
7436  *
7437  * Find a master upper device and return pointer to it or NULL in case
7438  * it's not there. The caller must hold the RTNL lock.
7439  */
7440 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7441 {
7442 	struct netdev_adjacent *upper;
7443 
7444 	ASSERT_RTNL();
7445 
7446 	if (list_empty(&dev->adj_list.upper))
7447 		return NULL;
7448 
7449 	upper = list_first_entry(&dev->adj_list.upper,
7450 				 struct netdev_adjacent, list);
7451 	if (likely(upper->master))
7452 		return upper->dev;
7453 	return NULL;
7454 }
7455 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7456 
7457 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7458 {
7459 	struct netdev_adjacent *upper;
7460 
7461 	ASSERT_RTNL();
7462 
7463 	if (list_empty(&dev->adj_list.upper))
7464 		return NULL;
7465 
7466 	upper = list_first_entry(&dev->adj_list.upper,
7467 				 struct netdev_adjacent, list);
7468 	if (likely(upper->master) && !upper->ignore)
7469 		return upper->dev;
7470 	return NULL;
7471 }
7472 
7473 /**
7474  * netdev_has_any_lower_dev - Check if device is linked to some device
7475  * @dev: device
7476  *
7477  * Find out if a device is linked to a lower device and return true in case
7478  * it is. The caller must hold the RTNL lock.
7479  */
7480 static bool netdev_has_any_lower_dev(struct net_device *dev)
7481 {
7482 	ASSERT_RTNL();
7483 
7484 	return !list_empty(&dev->adj_list.lower);
7485 }
7486 
7487 void *netdev_adjacent_get_private(struct list_head *adj_list)
7488 {
7489 	struct netdev_adjacent *adj;
7490 
7491 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7492 
7493 	return adj->private;
7494 }
7495 EXPORT_SYMBOL(netdev_adjacent_get_private);
7496 
7497 /**
7498  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7499  * @dev: device
7500  * @iter: list_head ** of the current position
7501  *
7502  * Gets the next device from the dev's upper list, starting from iter
7503  * position. The caller must hold RCU read lock.
7504  */
7505 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7506 						 struct list_head **iter)
7507 {
7508 	struct netdev_adjacent *upper;
7509 
7510 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7511 
7512 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7513 
7514 	if (&upper->list == &dev->adj_list.upper)
7515 		return NULL;
7516 
7517 	*iter = &upper->list;
7518 
7519 	return upper->dev;
7520 }
7521 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7522 
7523 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7524 						  struct list_head **iter,
7525 						  bool *ignore)
7526 {
7527 	struct netdev_adjacent *upper;
7528 
7529 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7530 
7531 	if (&upper->list == &dev->adj_list.upper)
7532 		return NULL;
7533 
7534 	*iter = &upper->list;
7535 	*ignore = upper->ignore;
7536 
7537 	return upper->dev;
7538 }
7539 
7540 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7541 						    struct list_head **iter)
7542 {
7543 	struct netdev_adjacent *upper;
7544 
7545 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7546 
7547 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7548 
7549 	if (&upper->list == &dev->adj_list.upper)
7550 		return NULL;
7551 
7552 	*iter = &upper->list;
7553 
7554 	return upper->dev;
7555 }
7556 
7557 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7558 				       int (*fn)(struct net_device *dev,
7559 					 struct netdev_nested_priv *priv),
7560 				       struct netdev_nested_priv *priv)
7561 {
7562 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7563 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7564 	int ret, cur = 0;
7565 	bool ignore;
7566 
7567 	now = dev;
7568 	iter = &dev->adj_list.upper;
7569 
7570 	while (1) {
7571 		if (now != dev) {
7572 			ret = fn(now, priv);
7573 			if (ret)
7574 				return ret;
7575 		}
7576 
7577 		next = NULL;
7578 		while (1) {
7579 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7580 			if (!udev)
7581 				break;
7582 			if (ignore)
7583 				continue;
7584 
7585 			next = udev;
7586 			niter = &udev->adj_list.upper;
7587 			dev_stack[cur] = now;
7588 			iter_stack[cur++] = iter;
7589 			break;
7590 		}
7591 
7592 		if (!next) {
7593 			if (!cur)
7594 				return 0;
7595 			next = dev_stack[--cur];
7596 			niter = iter_stack[cur];
7597 		}
7598 
7599 		now = next;
7600 		iter = niter;
7601 	}
7602 
7603 	return 0;
7604 }
7605 
7606 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7607 				  int (*fn)(struct net_device *dev,
7608 					    struct netdev_nested_priv *priv),
7609 				  struct netdev_nested_priv *priv)
7610 {
7611 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7612 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7613 	int ret, cur = 0;
7614 
7615 	now = dev;
7616 	iter = &dev->adj_list.upper;
7617 
7618 	while (1) {
7619 		if (now != dev) {
7620 			ret = fn(now, priv);
7621 			if (ret)
7622 				return ret;
7623 		}
7624 
7625 		next = NULL;
7626 		while (1) {
7627 			udev = netdev_next_upper_dev_rcu(now, &iter);
7628 			if (!udev)
7629 				break;
7630 
7631 			next = udev;
7632 			niter = &udev->adj_list.upper;
7633 			dev_stack[cur] = now;
7634 			iter_stack[cur++] = iter;
7635 			break;
7636 		}
7637 
7638 		if (!next) {
7639 			if (!cur)
7640 				return 0;
7641 			next = dev_stack[--cur];
7642 			niter = iter_stack[cur];
7643 		}
7644 
7645 		now = next;
7646 		iter = niter;
7647 	}
7648 
7649 	return 0;
7650 }
7651 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7652 
7653 static bool __netdev_has_upper_dev(struct net_device *dev,
7654 				   struct net_device *upper_dev)
7655 {
7656 	struct netdev_nested_priv priv = {
7657 		.flags = 0,
7658 		.data = (void *)upper_dev,
7659 	};
7660 
7661 	ASSERT_RTNL();
7662 
7663 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7664 					   &priv);
7665 }
7666 
7667 /**
7668  * netdev_lower_get_next_private - Get the next ->private from the
7669  *				   lower neighbour list
7670  * @dev: device
7671  * @iter: list_head ** of the current position
7672  *
7673  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7674  * list, starting from iter position. The caller must hold either hold the
7675  * RTNL lock or its own locking that guarantees that the neighbour lower
7676  * list will remain unchanged.
7677  */
7678 void *netdev_lower_get_next_private(struct net_device *dev,
7679 				    struct list_head **iter)
7680 {
7681 	struct netdev_adjacent *lower;
7682 
7683 	lower = list_entry(*iter, struct netdev_adjacent, list);
7684 
7685 	if (&lower->list == &dev->adj_list.lower)
7686 		return NULL;
7687 
7688 	*iter = lower->list.next;
7689 
7690 	return lower->private;
7691 }
7692 EXPORT_SYMBOL(netdev_lower_get_next_private);
7693 
7694 /**
7695  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7696  *				       lower neighbour list, RCU
7697  *				       variant
7698  * @dev: device
7699  * @iter: list_head ** of the current position
7700  *
7701  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7702  * list, starting from iter position. The caller must hold RCU read lock.
7703  */
7704 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7705 					struct list_head **iter)
7706 {
7707 	struct netdev_adjacent *lower;
7708 
7709 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7710 
7711 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7712 
7713 	if (&lower->list == &dev->adj_list.lower)
7714 		return NULL;
7715 
7716 	*iter = &lower->list;
7717 
7718 	return lower->private;
7719 }
7720 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7721 
7722 /**
7723  * netdev_lower_get_next - Get the next device from the lower neighbour
7724  *                         list
7725  * @dev: device
7726  * @iter: list_head ** of the current position
7727  *
7728  * Gets the next netdev_adjacent from the dev's lower neighbour
7729  * list, starting from iter position. The caller must hold RTNL lock or
7730  * its own locking that guarantees that the neighbour lower
7731  * list will remain unchanged.
7732  */
7733 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7734 {
7735 	struct netdev_adjacent *lower;
7736 
7737 	lower = list_entry(*iter, struct netdev_adjacent, list);
7738 
7739 	if (&lower->list == &dev->adj_list.lower)
7740 		return NULL;
7741 
7742 	*iter = lower->list.next;
7743 
7744 	return lower->dev;
7745 }
7746 EXPORT_SYMBOL(netdev_lower_get_next);
7747 
7748 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7749 						struct list_head **iter)
7750 {
7751 	struct netdev_adjacent *lower;
7752 
7753 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7754 
7755 	if (&lower->list == &dev->adj_list.lower)
7756 		return NULL;
7757 
7758 	*iter = &lower->list;
7759 
7760 	return lower->dev;
7761 }
7762 
7763 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7764 						  struct list_head **iter,
7765 						  bool *ignore)
7766 {
7767 	struct netdev_adjacent *lower;
7768 
7769 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7770 
7771 	if (&lower->list == &dev->adj_list.lower)
7772 		return NULL;
7773 
7774 	*iter = &lower->list;
7775 	*ignore = lower->ignore;
7776 
7777 	return lower->dev;
7778 }
7779 
7780 int netdev_walk_all_lower_dev(struct net_device *dev,
7781 			      int (*fn)(struct net_device *dev,
7782 					struct netdev_nested_priv *priv),
7783 			      struct netdev_nested_priv *priv)
7784 {
7785 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7786 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7787 	int ret, cur = 0;
7788 
7789 	now = dev;
7790 	iter = &dev->adj_list.lower;
7791 
7792 	while (1) {
7793 		if (now != dev) {
7794 			ret = fn(now, priv);
7795 			if (ret)
7796 				return ret;
7797 		}
7798 
7799 		next = NULL;
7800 		while (1) {
7801 			ldev = netdev_next_lower_dev(now, &iter);
7802 			if (!ldev)
7803 				break;
7804 
7805 			next = ldev;
7806 			niter = &ldev->adj_list.lower;
7807 			dev_stack[cur] = now;
7808 			iter_stack[cur++] = iter;
7809 			break;
7810 		}
7811 
7812 		if (!next) {
7813 			if (!cur)
7814 				return 0;
7815 			next = dev_stack[--cur];
7816 			niter = iter_stack[cur];
7817 		}
7818 
7819 		now = next;
7820 		iter = niter;
7821 	}
7822 
7823 	return 0;
7824 }
7825 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7826 
7827 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7828 				       int (*fn)(struct net_device *dev,
7829 					 struct netdev_nested_priv *priv),
7830 				       struct netdev_nested_priv *priv)
7831 {
7832 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7833 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7834 	int ret, cur = 0;
7835 	bool ignore;
7836 
7837 	now = dev;
7838 	iter = &dev->adj_list.lower;
7839 
7840 	while (1) {
7841 		if (now != dev) {
7842 			ret = fn(now, priv);
7843 			if (ret)
7844 				return ret;
7845 		}
7846 
7847 		next = NULL;
7848 		while (1) {
7849 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7850 			if (!ldev)
7851 				break;
7852 			if (ignore)
7853 				continue;
7854 
7855 			next = ldev;
7856 			niter = &ldev->adj_list.lower;
7857 			dev_stack[cur] = now;
7858 			iter_stack[cur++] = iter;
7859 			break;
7860 		}
7861 
7862 		if (!next) {
7863 			if (!cur)
7864 				return 0;
7865 			next = dev_stack[--cur];
7866 			niter = iter_stack[cur];
7867 		}
7868 
7869 		now = next;
7870 		iter = niter;
7871 	}
7872 
7873 	return 0;
7874 }
7875 
7876 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7877 					     struct list_head **iter)
7878 {
7879 	struct netdev_adjacent *lower;
7880 
7881 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7882 	if (&lower->list == &dev->adj_list.lower)
7883 		return NULL;
7884 
7885 	*iter = &lower->list;
7886 
7887 	return lower->dev;
7888 }
7889 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7890 
7891 static u8 __netdev_upper_depth(struct net_device *dev)
7892 {
7893 	struct net_device *udev;
7894 	struct list_head *iter;
7895 	u8 max_depth = 0;
7896 	bool ignore;
7897 
7898 	for (iter = &dev->adj_list.upper,
7899 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7900 	     udev;
7901 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7902 		if (ignore)
7903 			continue;
7904 		if (max_depth < udev->upper_level)
7905 			max_depth = udev->upper_level;
7906 	}
7907 
7908 	return max_depth;
7909 }
7910 
7911 static u8 __netdev_lower_depth(struct net_device *dev)
7912 {
7913 	struct net_device *ldev;
7914 	struct list_head *iter;
7915 	u8 max_depth = 0;
7916 	bool ignore;
7917 
7918 	for (iter = &dev->adj_list.lower,
7919 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7920 	     ldev;
7921 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7922 		if (ignore)
7923 			continue;
7924 		if (max_depth < ldev->lower_level)
7925 			max_depth = ldev->lower_level;
7926 	}
7927 
7928 	return max_depth;
7929 }
7930 
7931 static int __netdev_update_upper_level(struct net_device *dev,
7932 				       struct netdev_nested_priv *__unused)
7933 {
7934 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7935 	return 0;
7936 }
7937 
7938 #ifdef CONFIG_LOCKDEP
7939 static LIST_HEAD(net_unlink_list);
7940 
7941 static void net_unlink_todo(struct net_device *dev)
7942 {
7943 	if (list_empty(&dev->unlink_list))
7944 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7945 }
7946 #endif
7947 
7948 static int __netdev_update_lower_level(struct net_device *dev,
7949 				       struct netdev_nested_priv *priv)
7950 {
7951 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7952 
7953 #ifdef CONFIG_LOCKDEP
7954 	if (!priv)
7955 		return 0;
7956 
7957 	if (priv->flags & NESTED_SYNC_IMM)
7958 		dev->nested_level = dev->lower_level - 1;
7959 	if (priv->flags & NESTED_SYNC_TODO)
7960 		net_unlink_todo(dev);
7961 #endif
7962 	return 0;
7963 }
7964 
7965 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7966 				  int (*fn)(struct net_device *dev,
7967 					    struct netdev_nested_priv *priv),
7968 				  struct netdev_nested_priv *priv)
7969 {
7970 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7971 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7972 	int ret, cur = 0;
7973 
7974 	now = dev;
7975 	iter = &dev->adj_list.lower;
7976 
7977 	while (1) {
7978 		if (now != dev) {
7979 			ret = fn(now, priv);
7980 			if (ret)
7981 				return ret;
7982 		}
7983 
7984 		next = NULL;
7985 		while (1) {
7986 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7987 			if (!ldev)
7988 				break;
7989 
7990 			next = ldev;
7991 			niter = &ldev->adj_list.lower;
7992 			dev_stack[cur] = now;
7993 			iter_stack[cur++] = iter;
7994 			break;
7995 		}
7996 
7997 		if (!next) {
7998 			if (!cur)
7999 				return 0;
8000 			next = dev_stack[--cur];
8001 			niter = iter_stack[cur];
8002 		}
8003 
8004 		now = next;
8005 		iter = niter;
8006 	}
8007 
8008 	return 0;
8009 }
8010 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8011 
8012 /**
8013  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8014  *				       lower neighbour list, RCU
8015  *				       variant
8016  * @dev: device
8017  *
8018  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8019  * list. The caller must hold RCU read lock.
8020  */
8021 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8022 {
8023 	struct netdev_adjacent *lower;
8024 
8025 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8026 			struct netdev_adjacent, list);
8027 	if (lower)
8028 		return lower->private;
8029 	return NULL;
8030 }
8031 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8032 
8033 /**
8034  * netdev_master_upper_dev_get_rcu - Get master upper device
8035  * @dev: device
8036  *
8037  * Find a master upper device and return pointer to it or NULL in case
8038  * it's not there. The caller must hold the RCU read lock.
8039  */
8040 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8041 {
8042 	struct netdev_adjacent *upper;
8043 
8044 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8045 				       struct netdev_adjacent, list);
8046 	if (upper && likely(upper->master))
8047 		return upper->dev;
8048 	return NULL;
8049 }
8050 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8051 
8052 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8053 			      struct net_device *adj_dev,
8054 			      struct list_head *dev_list)
8055 {
8056 	char linkname[IFNAMSIZ+7];
8057 
8058 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8059 		"upper_%s" : "lower_%s", adj_dev->name);
8060 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8061 				 linkname);
8062 }
8063 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8064 			       char *name,
8065 			       struct list_head *dev_list)
8066 {
8067 	char linkname[IFNAMSIZ+7];
8068 
8069 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8070 		"upper_%s" : "lower_%s", name);
8071 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8072 }
8073 
8074 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8075 						 struct net_device *adj_dev,
8076 						 struct list_head *dev_list)
8077 {
8078 	return (dev_list == &dev->adj_list.upper ||
8079 		dev_list == &dev->adj_list.lower) &&
8080 		net_eq(dev_net(dev), dev_net(adj_dev));
8081 }
8082 
8083 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8084 					struct net_device *adj_dev,
8085 					struct list_head *dev_list,
8086 					void *private, bool master)
8087 {
8088 	struct netdev_adjacent *adj;
8089 	int ret;
8090 
8091 	adj = __netdev_find_adj(adj_dev, dev_list);
8092 
8093 	if (adj) {
8094 		adj->ref_nr += 1;
8095 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8096 			 dev->name, adj_dev->name, adj->ref_nr);
8097 
8098 		return 0;
8099 	}
8100 
8101 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8102 	if (!adj)
8103 		return -ENOMEM;
8104 
8105 	adj->dev = adj_dev;
8106 	adj->master = master;
8107 	adj->ref_nr = 1;
8108 	adj->private = private;
8109 	adj->ignore = false;
8110 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8111 
8112 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8113 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8114 
8115 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8116 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8117 		if (ret)
8118 			goto free_adj;
8119 	}
8120 
8121 	/* Ensure that master link is always the first item in list. */
8122 	if (master) {
8123 		ret = sysfs_create_link(&(dev->dev.kobj),
8124 					&(adj_dev->dev.kobj), "master");
8125 		if (ret)
8126 			goto remove_symlinks;
8127 
8128 		list_add_rcu(&adj->list, dev_list);
8129 	} else {
8130 		list_add_tail_rcu(&adj->list, dev_list);
8131 	}
8132 
8133 	return 0;
8134 
8135 remove_symlinks:
8136 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8137 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8138 free_adj:
8139 	netdev_put(adj_dev, &adj->dev_tracker);
8140 	kfree(adj);
8141 
8142 	return ret;
8143 }
8144 
8145 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8146 					 struct net_device *adj_dev,
8147 					 u16 ref_nr,
8148 					 struct list_head *dev_list)
8149 {
8150 	struct netdev_adjacent *adj;
8151 
8152 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8153 		 dev->name, adj_dev->name, ref_nr);
8154 
8155 	adj = __netdev_find_adj(adj_dev, dev_list);
8156 
8157 	if (!adj) {
8158 		pr_err("Adjacency does not exist for device %s from %s\n",
8159 		       dev->name, adj_dev->name);
8160 		WARN_ON(1);
8161 		return;
8162 	}
8163 
8164 	if (adj->ref_nr > ref_nr) {
8165 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8166 			 dev->name, adj_dev->name, ref_nr,
8167 			 adj->ref_nr - ref_nr);
8168 		adj->ref_nr -= ref_nr;
8169 		return;
8170 	}
8171 
8172 	if (adj->master)
8173 		sysfs_remove_link(&(dev->dev.kobj), "master");
8174 
8175 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8176 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8177 
8178 	list_del_rcu(&adj->list);
8179 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8180 		 adj_dev->name, dev->name, adj_dev->name);
8181 	netdev_put(adj_dev, &adj->dev_tracker);
8182 	kfree_rcu(adj, rcu);
8183 }
8184 
8185 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8186 					    struct net_device *upper_dev,
8187 					    struct list_head *up_list,
8188 					    struct list_head *down_list,
8189 					    void *private, bool master)
8190 {
8191 	int ret;
8192 
8193 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8194 					   private, master);
8195 	if (ret)
8196 		return ret;
8197 
8198 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8199 					   private, false);
8200 	if (ret) {
8201 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8202 		return ret;
8203 	}
8204 
8205 	return 0;
8206 }
8207 
8208 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8209 					       struct net_device *upper_dev,
8210 					       u16 ref_nr,
8211 					       struct list_head *up_list,
8212 					       struct list_head *down_list)
8213 {
8214 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8215 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8216 }
8217 
8218 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8219 						struct net_device *upper_dev,
8220 						void *private, bool master)
8221 {
8222 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8223 						&dev->adj_list.upper,
8224 						&upper_dev->adj_list.lower,
8225 						private, master);
8226 }
8227 
8228 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8229 						   struct net_device *upper_dev)
8230 {
8231 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8232 					   &dev->adj_list.upper,
8233 					   &upper_dev->adj_list.lower);
8234 }
8235 
8236 static int __netdev_upper_dev_link(struct net_device *dev,
8237 				   struct net_device *upper_dev, bool master,
8238 				   void *upper_priv, void *upper_info,
8239 				   struct netdev_nested_priv *priv,
8240 				   struct netlink_ext_ack *extack)
8241 {
8242 	struct netdev_notifier_changeupper_info changeupper_info = {
8243 		.info = {
8244 			.dev = dev,
8245 			.extack = extack,
8246 		},
8247 		.upper_dev = upper_dev,
8248 		.master = master,
8249 		.linking = true,
8250 		.upper_info = upper_info,
8251 	};
8252 	struct net_device *master_dev;
8253 	int ret = 0;
8254 
8255 	ASSERT_RTNL();
8256 
8257 	if (dev == upper_dev)
8258 		return -EBUSY;
8259 
8260 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8261 	if (__netdev_has_upper_dev(upper_dev, dev))
8262 		return -EBUSY;
8263 
8264 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8265 		return -EMLINK;
8266 
8267 	if (!master) {
8268 		if (__netdev_has_upper_dev(dev, upper_dev))
8269 			return -EEXIST;
8270 	} else {
8271 		master_dev = __netdev_master_upper_dev_get(dev);
8272 		if (master_dev)
8273 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8274 	}
8275 
8276 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8277 					    &changeupper_info.info);
8278 	ret = notifier_to_errno(ret);
8279 	if (ret)
8280 		return ret;
8281 
8282 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8283 						   master);
8284 	if (ret)
8285 		return ret;
8286 
8287 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8288 					    &changeupper_info.info);
8289 	ret = notifier_to_errno(ret);
8290 	if (ret)
8291 		goto rollback;
8292 
8293 	__netdev_update_upper_level(dev, NULL);
8294 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8295 
8296 	__netdev_update_lower_level(upper_dev, priv);
8297 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8298 				    priv);
8299 
8300 	return 0;
8301 
8302 rollback:
8303 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8304 
8305 	return ret;
8306 }
8307 
8308 /**
8309  * netdev_upper_dev_link - Add a link to the upper device
8310  * @dev: device
8311  * @upper_dev: new upper device
8312  * @extack: netlink extended ack
8313  *
8314  * Adds a link to device which is upper to this one. The caller must hold
8315  * the RTNL lock. On a failure a negative errno code is returned.
8316  * On success the reference counts are adjusted and the function
8317  * returns zero.
8318  */
8319 int netdev_upper_dev_link(struct net_device *dev,
8320 			  struct net_device *upper_dev,
8321 			  struct netlink_ext_ack *extack)
8322 {
8323 	struct netdev_nested_priv priv = {
8324 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8325 		.data = NULL,
8326 	};
8327 
8328 	return __netdev_upper_dev_link(dev, upper_dev, false,
8329 				       NULL, NULL, &priv, extack);
8330 }
8331 EXPORT_SYMBOL(netdev_upper_dev_link);
8332 
8333 /**
8334  * netdev_master_upper_dev_link - Add a master link to the upper device
8335  * @dev: device
8336  * @upper_dev: new upper device
8337  * @upper_priv: upper device private
8338  * @upper_info: upper info to be passed down via notifier
8339  * @extack: netlink extended ack
8340  *
8341  * Adds a link to device which is upper to this one. In this case, only
8342  * one master upper device can be linked, although other non-master devices
8343  * might be linked as well. The caller must hold the RTNL lock.
8344  * On a failure a negative errno code is returned. On success the reference
8345  * counts are adjusted and the function returns zero.
8346  */
8347 int netdev_master_upper_dev_link(struct net_device *dev,
8348 				 struct net_device *upper_dev,
8349 				 void *upper_priv, void *upper_info,
8350 				 struct netlink_ext_ack *extack)
8351 {
8352 	struct netdev_nested_priv priv = {
8353 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8354 		.data = NULL,
8355 	};
8356 
8357 	return __netdev_upper_dev_link(dev, upper_dev, true,
8358 				       upper_priv, upper_info, &priv, extack);
8359 }
8360 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8361 
8362 static void __netdev_upper_dev_unlink(struct net_device *dev,
8363 				      struct net_device *upper_dev,
8364 				      struct netdev_nested_priv *priv)
8365 {
8366 	struct netdev_notifier_changeupper_info changeupper_info = {
8367 		.info = {
8368 			.dev = dev,
8369 		},
8370 		.upper_dev = upper_dev,
8371 		.linking = false,
8372 	};
8373 
8374 	ASSERT_RTNL();
8375 
8376 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8377 
8378 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8379 				      &changeupper_info.info);
8380 
8381 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8382 
8383 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8384 				      &changeupper_info.info);
8385 
8386 	__netdev_update_upper_level(dev, NULL);
8387 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8388 
8389 	__netdev_update_lower_level(upper_dev, priv);
8390 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8391 				    priv);
8392 }
8393 
8394 /**
8395  * netdev_upper_dev_unlink - Removes a link to upper device
8396  * @dev: device
8397  * @upper_dev: new upper device
8398  *
8399  * Removes a link to device which is upper to this one. The caller must hold
8400  * the RTNL lock.
8401  */
8402 void netdev_upper_dev_unlink(struct net_device *dev,
8403 			     struct net_device *upper_dev)
8404 {
8405 	struct netdev_nested_priv priv = {
8406 		.flags = NESTED_SYNC_TODO,
8407 		.data = NULL,
8408 	};
8409 
8410 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8411 }
8412 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8413 
8414 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8415 				      struct net_device *lower_dev,
8416 				      bool val)
8417 {
8418 	struct netdev_adjacent *adj;
8419 
8420 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8421 	if (adj)
8422 		adj->ignore = val;
8423 
8424 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8425 	if (adj)
8426 		adj->ignore = val;
8427 }
8428 
8429 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8430 					struct net_device *lower_dev)
8431 {
8432 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8433 }
8434 
8435 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8436 				       struct net_device *lower_dev)
8437 {
8438 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8439 }
8440 
8441 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8442 				   struct net_device *new_dev,
8443 				   struct net_device *dev,
8444 				   struct netlink_ext_ack *extack)
8445 {
8446 	struct netdev_nested_priv priv = {
8447 		.flags = 0,
8448 		.data = NULL,
8449 	};
8450 	int err;
8451 
8452 	if (!new_dev)
8453 		return 0;
8454 
8455 	if (old_dev && new_dev != old_dev)
8456 		netdev_adjacent_dev_disable(dev, old_dev);
8457 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8458 				      extack);
8459 	if (err) {
8460 		if (old_dev && new_dev != old_dev)
8461 			netdev_adjacent_dev_enable(dev, old_dev);
8462 		return err;
8463 	}
8464 
8465 	return 0;
8466 }
8467 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8468 
8469 void netdev_adjacent_change_commit(struct net_device *old_dev,
8470 				   struct net_device *new_dev,
8471 				   struct net_device *dev)
8472 {
8473 	struct netdev_nested_priv priv = {
8474 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8475 		.data = NULL,
8476 	};
8477 
8478 	if (!new_dev || !old_dev)
8479 		return;
8480 
8481 	if (new_dev == old_dev)
8482 		return;
8483 
8484 	netdev_adjacent_dev_enable(dev, old_dev);
8485 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8486 }
8487 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8488 
8489 void netdev_adjacent_change_abort(struct net_device *old_dev,
8490 				  struct net_device *new_dev,
8491 				  struct net_device *dev)
8492 {
8493 	struct netdev_nested_priv priv = {
8494 		.flags = 0,
8495 		.data = NULL,
8496 	};
8497 
8498 	if (!new_dev)
8499 		return;
8500 
8501 	if (old_dev && new_dev != old_dev)
8502 		netdev_adjacent_dev_enable(dev, old_dev);
8503 
8504 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8505 }
8506 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8507 
8508 /**
8509  * netdev_bonding_info_change - Dispatch event about slave change
8510  * @dev: device
8511  * @bonding_info: info to dispatch
8512  *
8513  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8514  * The caller must hold the RTNL lock.
8515  */
8516 void netdev_bonding_info_change(struct net_device *dev,
8517 				struct netdev_bonding_info *bonding_info)
8518 {
8519 	struct netdev_notifier_bonding_info info = {
8520 		.info.dev = dev,
8521 	};
8522 
8523 	memcpy(&info.bonding_info, bonding_info,
8524 	       sizeof(struct netdev_bonding_info));
8525 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8526 				      &info.info);
8527 }
8528 EXPORT_SYMBOL(netdev_bonding_info_change);
8529 
8530 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8531 					   struct netlink_ext_ack *extack)
8532 {
8533 	struct netdev_notifier_offload_xstats_info info = {
8534 		.info.dev = dev,
8535 		.info.extack = extack,
8536 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8537 	};
8538 	int err;
8539 	int rc;
8540 
8541 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8542 					 GFP_KERNEL);
8543 	if (!dev->offload_xstats_l3)
8544 		return -ENOMEM;
8545 
8546 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8547 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8548 						  &info.info);
8549 	err = notifier_to_errno(rc);
8550 	if (err)
8551 		goto free_stats;
8552 
8553 	return 0;
8554 
8555 free_stats:
8556 	kfree(dev->offload_xstats_l3);
8557 	dev->offload_xstats_l3 = NULL;
8558 	return err;
8559 }
8560 
8561 int netdev_offload_xstats_enable(struct net_device *dev,
8562 				 enum netdev_offload_xstats_type type,
8563 				 struct netlink_ext_ack *extack)
8564 {
8565 	ASSERT_RTNL();
8566 
8567 	if (netdev_offload_xstats_enabled(dev, type))
8568 		return -EALREADY;
8569 
8570 	switch (type) {
8571 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8572 		return netdev_offload_xstats_enable_l3(dev, extack);
8573 	}
8574 
8575 	WARN_ON(1);
8576 	return -EINVAL;
8577 }
8578 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8579 
8580 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8581 {
8582 	struct netdev_notifier_offload_xstats_info info = {
8583 		.info.dev = dev,
8584 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8585 	};
8586 
8587 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8588 				      &info.info);
8589 	kfree(dev->offload_xstats_l3);
8590 	dev->offload_xstats_l3 = NULL;
8591 }
8592 
8593 int netdev_offload_xstats_disable(struct net_device *dev,
8594 				  enum netdev_offload_xstats_type type)
8595 {
8596 	ASSERT_RTNL();
8597 
8598 	if (!netdev_offload_xstats_enabled(dev, type))
8599 		return -EALREADY;
8600 
8601 	switch (type) {
8602 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8603 		netdev_offload_xstats_disable_l3(dev);
8604 		return 0;
8605 	}
8606 
8607 	WARN_ON(1);
8608 	return -EINVAL;
8609 }
8610 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8611 
8612 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8613 {
8614 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8615 }
8616 
8617 static struct rtnl_hw_stats64 *
8618 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8619 			      enum netdev_offload_xstats_type type)
8620 {
8621 	switch (type) {
8622 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8623 		return dev->offload_xstats_l3;
8624 	}
8625 
8626 	WARN_ON(1);
8627 	return NULL;
8628 }
8629 
8630 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8631 				   enum netdev_offload_xstats_type type)
8632 {
8633 	ASSERT_RTNL();
8634 
8635 	return netdev_offload_xstats_get_ptr(dev, type);
8636 }
8637 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8638 
8639 struct netdev_notifier_offload_xstats_ru {
8640 	bool used;
8641 };
8642 
8643 struct netdev_notifier_offload_xstats_rd {
8644 	struct rtnl_hw_stats64 stats;
8645 	bool used;
8646 };
8647 
8648 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8649 				  const struct rtnl_hw_stats64 *src)
8650 {
8651 	dest->rx_packets	  += src->rx_packets;
8652 	dest->tx_packets	  += src->tx_packets;
8653 	dest->rx_bytes		  += src->rx_bytes;
8654 	dest->tx_bytes		  += src->tx_bytes;
8655 	dest->rx_errors		  += src->rx_errors;
8656 	dest->tx_errors		  += src->tx_errors;
8657 	dest->rx_dropped	  += src->rx_dropped;
8658 	dest->tx_dropped	  += src->tx_dropped;
8659 	dest->multicast		  += src->multicast;
8660 }
8661 
8662 static int netdev_offload_xstats_get_used(struct net_device *dev,
8663 					  enum netdev_offload_xstats_type type,
8664 					  bool *p_used,
8665 					  struct netlink_ext_ack *extack)
8666 {
8667 	struct netdev_notifier_offload_xstats_ru report_used = {};
8668 	struct netdev_notifier_offload_xstats_info info = {
8669 		.info.dev = dev,
8670 		.info.extack = extack,
8671 		.type = type,
8672 		.report_used = &report_used,
8673 	};
8674 	int rc;
8675 
8676 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8677 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8678 					   &info.info);
8679 	*p_used = report_used.used;
8680 	return notifier_to_errno(rc);
8681 }
8682 
8683 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8684 					   enum netdev_offload_xstats_type type,
8685 					   struct rtnl_hw_stats64 *p_stats,
8686 					   bool *p_used,
8687 					   struct netlink_ext_ack *extack)
8688 {
8689 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8690 	struct netdev_notifier_offload_xstats_info info = {
8691 		.info.dev = dev,
8692 		.info.extack = extack,
8693 		.type = type,
8694 		.report_delta = &report_delta,
8695 	};
8696 	struct rtnl_hw_stats64 *stats;
8697 	int rc;
8698 
8699 	stats = netdev_offload_xstats_get_ptr(dev, type);
8700 	if (WARN_ON(!stats))
8701 		return -EINVAL;
8702 
8703 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8704 					   &info.info);
8705 
8706 	/* Cache whatever we got, even if there was an error, otherwise the
8707 	 * successful stats retrievals would get lost.
8708 	 */
8709 	netdev_hw_stats64_add(stats, &report_delta.stats);
8710 
8711 	if (p_stats)
8712 		*p_stats = *stats;
8713 	*p_used = report_delta.used;
8714 
8715 	return notifier_to_errno(rc);
8716 }
8717 
8718 int netdev_offload_xstats_get(struct net_device *dev,
8719 			      enum netdev_offload_xstats_type type,
8720 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8721 			      struct netlink_ext_ack *extack)
8722 {
8723 	ASSERT_RTNL();
8724 
8725 	if (p_stats)
8726 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8727 						       p_used, extack);
8728 	else
8729 		return netdev_offload_xstats_get_used(dev, type, p_used,
8730 						      extack);
8731 }
8732 EXPORT_SYMBOL(netdev_offload_xstats_get);
8733 
8734 void
8735 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8736 				   const struct rtnl_hw_stats64 *stats)
8737 {
8738 	report_delta->used = true;
8739 	netdev_hw_stats64_add(&report_delta->stats, stats);
8740 }
8741 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8742 
8743 void
8744 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8745 {
8746 	report_used->used = true;
8747 }
8748 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8749 
8750 void netdev_offload_xstats_push_delta(struct net_device *dev,
8751 				      enum netdev_offload_xstats_type type,
8752 				      const struct rtnl_hw_stats64 *p_stats)
8753 {
8754 	struct rtnl_hw_stats64 *stats;
8755 
8756 	ASSERT_RTNL();
8757 
8758 	stats = netdev_offload_xstats_get_ptr(dev, type);
8759 	if (WARN_ON(!stats))
8760 		return;
8761 
8762 	netdev_hw_stats64_add(stats, p_stats);
8763 }
8764 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8765 
8766 /**
8767  * netdev_get_xmit_slave - Get the xmit slave of master device
8768  * @dev: device
8769  * @skb: The packet
8770  * @all_slaves: assume all the slaves are active
8771  *
8772  * The reference counters are not incremented so the caller must be
8773  * careful with locks. The caller must hold RCU lock.
8774  * %NULL is returned if no slave is found.
8775  */
8776 
8777 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8778 					 struct sk_buff *skb,
8779 					 bool all_slaves)
8780 {
8781 	const struct net_device_ops *ops = dev->netdev_ops;
8782 
8783 	if (!ops->ndo_get_xmit_slave)
8784 		return NULL;
8785 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8786 }
8787 EXPORT_SYMBOL(netdev_get_xmit_slave);
8788 
8789 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8790 						  struct sock *sk)
8791 {
8792 	const struct net_device_ops *ops = dev->netdev_ops;
8793 
8794 	if (!ops->ndo_sk_get_lower_dev)
8795 		return NULL;
8796 	return ops->ndo_sk_get_lower_dev(dev, sk);
8797 }
8798 
8799 /**
8800  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8801  * @dev: device
8802  * @sk: the socket
8803  *
8804  * %NULL is returned if no lower device is found.
8805  */
8806 
8807 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8808 					    struct sock *sk)
8809 {
8810 	struct net_device *lower;
8811 
8812 	lower = netdev_sk_get_lower_dev(dev, sk);
8813 	while (lower) {
8814 		dev = lower;
8815 		lower = netdev_sk_get_lower_dev(dev, sk);
8816 	}
8817 
8818 	return dev;
8819 }
8820 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8821 
8822 static void netdev_adjacent_add_links(struct net_device *dev)
8823 {
8824 	struct netdev_adjacent *iter;
8825 
8826 	struct net *net = dev_net(dev);
8827 
8828 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8829 		if (!net_eq(net, dev_net(iter->dev)))
8830 			continue;
8831 		netdev_adjacent_sysfs_add(iter->dev, dev,
8832 					  &iter->dev->adj_list.lower);
8833 		netdev_adjacent_sysfs_add(dev, iter->dev,
8834 					  &dev->adj_list.upper);
8835 	}
8836 
8837 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8838 		if (!net_eq(net, dev_net(iter->dev)))
8839 			continue;
8840 		netdev_adjacent_sysfs_add(iter->dev, dev,
8841 					  &iter->dev->adj_list.upper);
8842 		netdev_adjacent_sysfs_add(dev, iter->dev,
8843 					  &dev->adj_list.lower);
8844 	}
8845 }
8846 
8847 static void netdev_adjacent_del_links(struct net_device *dev)
8848 {
8849 	struct netdev_adjacent *iter;
8850 
8851 	struct net *net = dev_net(dev);
8852 
8853 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8854 		if (!net_eq(net, dev_net(iter->dev)))
8855 			continue;
8856 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8857 					  &iter->dev->adj_list.lower);
8858 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8859 					  &dev->adj_list.upper);
8860 	}
8861 
8862 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8863 		if (!net_eq(net, dev_net(iter->dev)))
8864 			continue;
8865 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8866 					  &iter->dev->adj_list.upper);
8867 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8868 					  &dev->adj_list.lower);
8869 	}
8870 }
8871 
8872 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8873 {
8874 	struct netdev_adjacent *iter;
8875 
8876 	struct net *net = dev_net(dev);
8877 
8878 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8879 		if (!net_eq(net, dev_net(iter->dev)))
8880 			continue;
8881 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8882 					  &iter->dev->adj_list.lower);
8883 		netdev_adjacent_sysfs_add(iter->dev, dev,
8884 					  &iter->dev->adj_list.lower);
8885 	}
8886 
8887 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8888 		if (!net_eq(net, dev_net(iter->dev)))
8889 			continue;
8890 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8891 					  &iter->dev->adj_list.upper);
8892 		netdev_adjacent_sysfs_add(iter->dev, dev,
8893 					  &iter->dev->adj_list.upper);
8894 	}
8895 }
8896 
8897 void *netdev_lower_dev_get_private(struct net_device *dev,
8898 				   struct net_device *lower_dev)
8899 {
8900 	struct netdev_adjacent *lower;
8901 
8902 	if (!lower_dev)
8903 		return NULL;
8904 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8905 	if (!lower)
8906 		return NULL;
8907 
8908 	return lower->private;
8909 }
8910 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8911 
8912 
8913 /**
8914  * netdev_lower_state_changed - Dispatch event about lower device state change
8915  * @lower_dev: device
8916  * @lower_state_info: state to dispatch
8917  *
8918  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8919  * The caller must hold the RTNL lock.
8920  */
8921 void netdev_lower_state_changed(struct net_device *lower_dev,
8922 				void *lower_state_info)
8923 {
8924 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8925 		.info.dev = lower_dev,
8926 	};
8927 
8928 	ASSERT_RTNL();
8929 	changelowerstate_info.lower_state_info = lower_state_info;
8930 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8931 				      &changelowerstate_info.info);
8932 }
8933 EXPORT_SYMBOL(netdev_lower_state_changed);
8934 
8935 static void dev_change_rx_flags(struct net_device *dev, int flags)
8936 {
8937 	const struct net_device_ops *ops = dev->netdev_ops;
8938 
8939 	if (ops->ndo_change_rx_flags)
8940 		ops->ndo_change_rx_flags(dev, flags);
8941 }
8942 
8943 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8944 {
8945 	unsigned int old_flags = dev->flags;
8946 	unsigned int promiscuity, flags;
8947 	kuid_t uid;
8948 	kgid_t gid;
8949 
8950 	ASSERT_RTNL();
8951 
8952 	promiscuity = dev->promiscuity + inc;
8953 	if (promiscuity == 0) {
8954 		/*
8955 		 * Avoid overflow.
8956 		 * If inc causes overflow, untouch promisc and return error.
8957 		 */
8958 		if (unlikely(inc > 0)) {
8959 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8960 			return -EOVERFLOW;
8961 		}
8962 		flags = old_flags & ~IFF_PROMISC;
8963 	} else {
8964 		flags = old_flags | IFF_PROMISC;
8965 	}
8966 	WRITE_ONCE(dev->promiscuity, promiscuity);
8967 	if (flags != old_flags) {
8968 		WRITE_ONCE(dev->flags, flags);
8969 		netdev_info(dev, "%s promiscuous mode\n",
8970 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8971 		if (audit_enabled) {
8972 			current_uid_gid(&uid, &gid);
8973 			audit_log(audit_context(), GFP_ATOMIC,
8974 				  AUDIT_ANOM_PROMISCUOUS,
8975 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8976 				  dev->name, (dev->flags & IFF_PROMISC),
8977 				  (old_flags & IFF_PROMISC),
8978 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8979 				  from_kuid(&init_user_ns, uid),
8980 				  from_kgid(&init_user_ns, gid),
8981 				  audit_get_sessionid(current));
8982 		}
8983 
8984 		dev_change_rx_flags(dev, IFF_PROMISC);
8985 	}
8986 	if (notify)
8987 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8988 	return 0;
8989 }
8990 
8991 /**
8992  *	dev_set_promiscuity	- update promiscuity count on a device
8993  *	@dev: device
8994  *	@inc: modifier
8995  *
8996  *	Add or remove promiscuity from a device. While the count in the device
8997  *	remains above zero the interface remains promiscuous. Once it hits zero
8998  *	the device reverts back to normal filtering operation. A negative inc
8999  *	value is used to drop promiscuity on the device.
9000  *	Return 0 if successful or a negative errno code on error.
9001  */
9002 int dev_set_promiscuity(struct net_device *dev, int inc)
9003 {
9004 	unsigned int old_flags = dev->flags;
9005 	int err;
9006 
9007 	err = __dev_set_promiscuity(dev, inc, true);
9008 	if (err < 0)
9009 		return err;
9010 	if (dev->flags != old_flags)
9011 		dev_set_rx_mode(dev);
9012 	return err;
9013 }
9014 EXPORT_SYMBOL(dev_set_promiscuity);
9015 
9016 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
9017 {
9018 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9019 	unsigned int allmulti, flags;
9020 
9021 	ASSERT_RTNL();
9022 
9023 	allmulti = dev->allmulti + inc;
9024 	if (allmulti == 0) {
9025 		/*
9026 		 * Avoid overflow.
9027 		 * If inc causes overflow, untouch allmulti and return error.
9028 		 */
9029 		if (unlikely(inc > 0)) {
9030 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9031 			return -EOVERFLOW;
9032 		}
9033 		flags = old_flags & ~IFF_ALLMULTI;
9034 	} else {
9035 		flags = old_flags | IFF_ALLMULTI;
9036 	}
9037 	WRITE_ONCE(dev->allmulti, allmulti);
9038 	if (flags != old_flags) {
9039 		WRITE_ONCE(dev->flags, flags);
9040 		netdev_info(dev, "%s allmulticast mode\n",
9041 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9042 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9043 		dev_set_rx_mode(dev);
9044 		if (notify)
9045 			__dev_notify_flags(dev, old_flags,
9046 					   dev->gflags ^ old_gflags, 0, NULL);
9047 	}
9048 	return 0;
9049 }
9050 
9051 /**
9052  *	dev_set_allmulti	- update allmulti count on a device
9053  *	@dev: device
9054  *	@inc: modifier
9055  *
9056  *	Add or remove reception of all multicast frames to a device. While the
9057  *	count in the device remains above zero the interface remains listening
9058  *	to all interfaces. Once it hits zero the device reverts back to normal
9059  *	filtering operation. A negative @inc value is used to drop the counter
9060  *	when releasing a resource needing all multicasts.
9061  *	Return 0 if successful or a negative errno code on error.
9062  */
9063 
9064 int dev_set_allmulti(struct net_device *dev, int inc)
9065 {
9066 	return __dev_set_allmulti(dev, inc, true);
9067 }
9068 EXPORT_SYMBOL(dev_set_allmulti);
9069 
9070 /*
9071  *	Upload unicast and multicast address lists to device and
9072  *	configure RX filtering. When the device doesn't support unicast
9073  *	filtering it is put in promiscuous mode while unicast addresses
9074  *	are present.
9075  */
9076 void __dev_set_rx_mode(struct net_device *dev)
9077 {
9078 	const struct net_device_ops *ops = dev->netdev_ops;
9079 
9080 	/* dev_open will call this function so the list will stay sane. */
9081 	if (!(dev->flags&IFF_UP))
9082 		return;
9083 
9084 	if (!netif_device_present(dev))
9085 		return;
9086 
9087 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9088 		/* Unicast addresses changes may only happen under the rtnl,
9089 		 * therefore calling __dev_set_promiscuity here is safe.
9090 		 */
9091 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9092 			__dev_set_promiscuity(dev, 1, false);
9093 			dev->uc_promisc = true;
9094 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9095 			__dev_set_promiscuity(dev, -1, false);
9096 			dev->uc_promisc = false;
9097 		}
9098 	}
9099 
9100 	if (ops->ndo_set_rx_mode)
9101 		ops->ndo_set_rx_mode(dev);
9102 }
9103 
9104 void dev_set_rx_mode(struct net_device *dev)
9105 {
9106 	netif_addr_lock_bh(dev);
9107 	__dev_set_rx_mode(dev);
9108 	netif_addr_unlock_bh(dev);
9109 }
9110 
9111 /**
9112  *	dev_get_flags - get flags reported to userspace
9113  *	@dev: device
9114  *
9115  *	Get the combination of flag bits exported through APIs to userspace.
9116  */
9117 unsigned int dev_get_flags(const struct net_device *dev)
9118 {
9119 	unsigned int flags;
9120 
9121 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9122 				IFF_ALLMULTI |
9123 				IFF_RUNNING |
9124 				IFF_LOWER_UP |
9125 				IFF_DORMANT)) |
9126 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9127 				IFF_ALLMULTI));
9128 
9129 	if (netif_running(dev)) {
9130 		if (netif_oper_up(dev))
9131 			flags |= IFF_RUNNING;
9132 		if (netif_carrier_ok(dev))
9133 			flags |= IFF_LOWER_UP;
9134 		if (netif_dormant(dev))
9135 			flags |= IFF_DORMANT;
9136 	}
9137 
9138 	return flags;
9139 }
9140 EXPORT_SYMBOL(dev_get_flags);
9141 
9142 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9143 		       struct netlink_ext_ack *extack)
9144 {
9145 	unsigned int old_flags = dev->flags;
9146 	int ret;
9147 
9148 	ASSERT_RTNL();
9149 
9150 	/*
9151 	 *	Set the flags on our device.
9152 	 */
9153 
9154 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9155 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9156 			       IFF_AUTOMEDIA)) |
9157 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9158 				    IFF_ALLMULTI));
9159 
9160 	/*
9161 	 *	Load in the correct multicast list now the flags have changed.
9162 	 */
9163 
9164 	if ((old_flags ^ flags) & IFF_MULTICAST)
9165 		dev_change_rx_flags(dev, IFF_MULTICAST);
9166 
9167 	dev_set_rx_mode(dev);
9168 
9169 	/*
9170 	 *	Have we downed the interface. We handle IFF_UP ourselves
9171 	 *	according to user attempts to set it, rather than blindly
9172 	 *	setting it.
9173 	 */
9174 
9175 	ret = 0;
9176 	if ((old_flags ^ flags) & IFF_UP) {
9177 		if (old_flags & IFF_UP)
9178 			__dev_close(dev);
9179 		else
9180 			ret = __dev_open(dev, extack);
9181 	}
9182 
9183 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9184 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9185 		unsigned int old_flags = dev->flags;
9186 
9187 		dev->gflags ^= IFF_PROMISC;
9188 
9189 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9190 			if (dev->flags != old_flags)
9191 				dev_set_rx_mode(dev);
9192 	}
9193 
9194 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9195 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9196 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9197 	 */
9198 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9199 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9200 
9201 		dev->gflags ^= IFF_ALLMULTI;
9202 		__dev_set_allmulti(dev, inc, false);
9203 	}
9204 
9205 	return ret;
9206 }
9207 
9208 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9209 			unsigned int gchanges, u32 portid,
9210 			const struct nlmsghdr *nlh)
9211 {
9212 	unsigned int changes = dev->flags ^ old_flags;
9213 
9214 	if (gchanges)
9215 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9216 
9217 	if (changes & IFF_UP) {
9218 		if (dev->flags & IFF_UP)
9219 			call_netdevice_notifiers(NETDEV_UP, dev);
9220 		else
9221 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9222 	}
9223 
9224 	if (dev->flags & IFF_UP &&
9225 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9226 		struct netdev_notifier_change_info change_info = {
9227 			.info = {
9228 				.dev = dev,
9229 			},
9230 			.flags_changed = changes,
9231 		};
9232 
9233 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9234 	}
9235 }
9236 
9237 /**
9238  *	dev_change_flags - change device settings
9239  *	@dev: device
9240  *	@flags: device state flags
9241  *	@extack: netlink extended ack
9242  *
9243  *	Change settings on device based state flags. The flags are
9244  *	in the userspace exported format.
9245  */
9246 int dev_change_flags(struct net_device *dev, unsigned int flags,
9247 		     struct netlink_ext_ack *extack)
9248 {
9249 	int ret;
9250 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9251 
9252 	ret = __dev_change_flags(dev, flags, extack);
9253 	if (ret < 0)
9254 		return ret;
9255 
9256 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9257 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9258 	return ret;
9259 }
9260 EXPORT_SYMBOL(dev_change_flags);
9261 
9262 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9263 {
9264 	const struct net_device_ops *ops = dev->netdev_ops;
9265 
9266 	if (ops->ndo_change_mtu)
9267 		return ops->ndo_change_mtu(dev, new_mtu);
9268 
9269 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9270 	WRITE_ONCE(dev->mtu, new_mtu);
9271 	return 0;
9272 }
9273 EXPORT_SYMBOL(__dev_set_mtu);
9274 
9275 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9276 		     struct netlink_ext_ack *extack)
9277 {
9278 	/* MTU must be positive, and in range */
9279 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9280 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9281 		return -EINVAL;
9282 	}
9283 
9284 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9285 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9286 		return -EINVAL;
9287 	}
9288 	return 0;
9289 }
9290 
9291 /**
9292  *	dev_set_mtu_ext - Change maximum transfer unit
9293  *	@dev: device
9294  *	@new_mtu: new transfer unit
9295  *	@extack: netlink extended ack
9296  *
9297  *	Change the maximum transfer size of the network device.
9298  */
9299 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
9300 		    struct netlink_ext_ack *extack)
9301 {
9302 	int err, orig_mtu;
9303 
9304 	if (new_mtu == dev->mtu)
9305 		return 0;
9306 
9307 	err = dev_validate_mtu(dev, new_mtu, extack);
9308 	if (err)
9309 		return err;
9310 
9311 	if (!netif_device_present(dev))
9312 		return -ENODEV;
9313 
9314 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9315 	err = notifier_to_errno(err);
9316 	if (err)
9317 		return err;
9318 
9319 	orig_mtu = dev->mtu;
9320 	err = __dev_set_mtu(dev, new_mtu);
9321 
9322 	if (!err) {
9323 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9324 						   orig_mtu);
9325 		err = notifier_to_errno(err);
9326 		if (err) {
9327 			/* setting mtu back and notifying everyone again,
9328 			 * so that they have a chance to revert changes.
9329 			 */
9330 			__dev_set_mtu(dev, orig_mtu);
9331 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9332 						     new_mtu);
9333 		}
9334 	}
9335 	return err;
9336 }
9337 
9338 int dev_set_mtu(struct net_device *dev, int new_mtu)
9339 {
9340 	struct netlink_ext_ack extack;
9341 	int err;
9342 
9343 	memset(&extack, 0, sizeof(extack));
9344 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9345 	if (err && extack._msg)
9346 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9347 	return err;
9348 }
9349 EXPORT_SYMBOL(dev_set_mtu);
9350 
9351 /**
9352  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9353  *	@dev: device
9354  *	@new_len: new tx queue length
9355  */
9356 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9357 {
9358 	unsigned int orig_len = dev->tx_queue_len;
9359 	int res;
9360 
9361 	if (new_len != (unsigned int)new_len)
9362 		return -ERANGE;
9363 
9364 	if (new_len != orig_len) {
9365 		WRITE_ONCE(dev->tx_queue_len, new_len);
9366 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9367 		res = notifier_to_errno(res);
9368 		if (res)
9369 			goto err_rollback;
9370 		res = dev_qdisc_change_tx_queue_len(dev);
9371 		if (res)
9372 			goto err_rollback;
9373 	}
9374 
9375 	return 0;
9376 
9377 err_rollback:
9378 	netdev_err(dev, "refused to change device tx_queue_len\n");
9379 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9380 	return res;
9381 }
9382 
9383 /**
9384  *	dev_set_group - Change group this device belongs to
9385  *	@dev: device
9386  *	@new_group: group this device should belong to
9387  */
9388 void dev_set_group(struct net_device *dev, int new_group)
9389 {
9390 	dev->group = new_group;
9391 }
9392 
9393 /**
9394  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9395  *	@dev: device
9396  *	@addr: new address
9397  *	@extack: netlink extended ack
9398  */
9399 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9400 			      struct netlink_ext_ack *extack)
9401 {
9402 	struct netdev_notifier_pre_changeaddr_info info = {
9403 		.info.dev = dev,
9404 		.info.extack = extack,
9405 		.dev_addr = addr,
9406 	};
9407 	int rc;
9408 
9409 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9410 	return notifier_to_errno(rc);
9411 }
9412 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9413 
9414 /**
9415  *	dev_set_mac_address - Change Media Access Control Address
9416  *	@dev: device
9417  *	@sa: new address
9418  *	@extack: netlink extended ack
9419  *
9420  *	Change the hardware (MAC) address of the device
9421  */
9422 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9423 			struct netlink_ext_ack *extack)
9424 {
9425 	const struct net_device_ops *ops = dev->netdev_ops;
9426 	int err;
9427 
9428 	if (!ops->ndo_set_mac_address)
9429 		return -EOPNOTSUPP;
9430 	if (sa->sa_family != dev->type)
9431 		return -EINVAL;
9432 	if (!netif_device_present(dev))
9433 		return -ENODEV;
9434 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9435 	if (err)
9436 		return err;
9437 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9438 		err = ops->ndo_set_mac_address(dev, sa);
9439 		if (err)
9440 			return err;
9441 	}
9442 	dev->addr_assign_type = NET_ADDR_SET;
9443 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9444 	add_device_randomness(dev->dev_addr, dev->addr_len);
9445 	return 0;
9446 }
9447 EXPORT_SYMBOL(dev_set_mac_address);
9448 
9449 DECLARE_RWSEM(dev_addr_sem);
9450 
9451 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9452 			     struct netlink_ext_ack *extack)
9453 {
9454 	int ret;
9455 
9456 	down_write(&dev_addr_sem);
9457 	ret = dev_set_mac_address(dev, sa, extack);
9458 	up_write(&dev_addr_sem);
9459 	return ret;
9460 }
9461 EXPORT_SYMBOL(dev_set_mac_address_user);
9462 
9463 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9464 {
9465 	size_t size = sizeof(sa->sa_data_min);
9466 	struct net_device *dev;
9467 	int ret = 0;
9468 
9469 	down_read(&dev_addr_sem);
9470 	rcu_read_lock();
9471 
9472 	dev = dev_get_by_name_rcu(net, dev_name);
9473 	if (!dev) {
9474 		ret = -ENODEV;
9475 		goto unlock;
9476 	}
9477 	if (!dev->addr_len)
9478 		memset(sa->sa_data, 0, size);
9479 	else
9480 		memcpy(sa->sa_data, dev->dev_addr,
9481 		       min_t(size_t, size, dev->addr_len));
9482 	sa->sa_family = dev->type;
9483 
9484 unlock:
9485 	rcu_read_unlock();
9486 	up_read(&dev_addr_sem);
9487 	return ret;
9488 }
9489 EXPORT_SYMBOL(dev_get_mac_address);
9490 
9491 /**
9492  *	dev_change_carrier - Change device carrier
9493  *	@dev: device
9494  *	@new_carrier: new value
9495  *
9496  *	Change device carrier
9497  */
9498 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9499 {
9500 	const struct net_device_ops *ops = dev->netdev_ops;
9501 
9502 	if (!ops->ndo_change_carrier)
9503 		return -EOPNOTSUPP;
9504 	if (!netif_device_present(dev))
9505 		return -ENODEV;
9506 	return ops->ndo_change_carrier(dev, new_carrier);
9507 }
9508 
9509 /**
9510  *	dev_get_phys_port_id - Get device physical port ID
9511  *	@dev: device
9512  *	@ppid: port ID
9513  *
9514  *	Get device physical port ID
9515  */
9516 int dev_get_phys_port_id(struct net_device *dev,
9517 			 struct netdev_phys_item_id *ppid)
9518 {
9519 	const struct net_device_ops *ops = dev->netdev_ops;
9520 
9521 	if (!ops->ndo_get_phys_port_id)
9522 		return -EOPNOTSUPP;
9523 	return ops->ndo_get_phys_port_id(dev, ppid);
9524 }
9525 
9526 /**
9527  *	dev_get_phys_port_name - Get device physical port name
9528  *	@dev: device
9529  *	@name: port name
9530  *	@len: limit of bytes to copy to name
9531  *
9532  *	Get device physical port name
9533  */
9534 int dev_get_phys_port_name(struct net_device *dev,
9535 			   char *name, size_t len)
9536 {
9537 	const struct net_device_ops *ops = dev->netdev_ops;
9538 	int err;
9539 
9540 	if (ops->ndo_get_phys_port_name) {
9541 		err = ops->ndo_get_phys_port_name(dev, name, len);
9542 		if (err != -EOPNOTSUPP)
9543 			return err;
9544 	}
9545 	return devlink_compat_phys_port_name_get(dev, name, len);
9546 }
9547 
9548 /**
9549  *	dev_get_port_parent_id - Get the device's port parent identifier
9550  *	@dev: network device
9551  *	@ppid: pointer to a storage for the port's parent identifier
9552  *	@recurse: allow/disallow recursion to lower devices
9553  *
9554  *	Get the devices's port parent identifier
9555  */
9556 int dev_get_port_parent_id(struct net_device *dev,
9557 			   struct netdev_phys_item_id *ppid,
9558 			   bool recurse)
9559 {
9560 	const struct net_device_ops *ops = dev->netdev_ops;
9561 	struct netdev_phys_item_id first = { };
9562 	struct net_device *lower_dev;
9563 	struct list_head *iter;
9564 	int err;
9565 
9566 	if (ops->ndo_get_port_parent_id) {
9567 		err = ops->ndo_get_port_parent_id(dev, ppid);
9568 		if (err != -EOPNOTSUPP)
9569 			return err;
9570 	}
9571 
9572 	err = devlink_compat_switch_id_get(dev, ppid);
9573 	if (!recurse || err != -EOPNOTSUPP)
9574 		return err;
9575 
9576 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9577 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9578 		if (err)
9579 			break;
9580 		if (!first.id_len)
9581 			first = *ppid;
9582 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9583 			return -EOPNOTSUPP;
9584 	}
9585 
9586 	return err;
9587 }
9588 EXPORT_SYMBOL(dev_get_port_parent_id);
9589 
9590 /**
9591  *	netdev_port_same_parent_id - Indicate if two network devices have
9592  *	the same port parent identifier
9593  *	@a: first network device
9594  *	@b: second network device
9595  */
9596 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9597 {
9598 	struct netdev_phys_item_id a_id = { };
9599 	struct netdev_phys_item_id b_id = { };
9600 
9601 	if (dev_get_port_parent_id(a, &a_id, true) ||
9602 	    dev_get_port_parent_id(b, &b_id, true))
9603 		return false;
9604 
9605 	return netdev_phys_item_id_same(&a_id, &b_id);
9606 }
9607 EXPORT_SYMBOL(netdev_port_same_parent_id);
9608 
9609 /**
9610  *	dev_change_proto_down - set carrier according to proto_down.
9611  *
9612  *	@dev: device
9613  *	@proto_down: new value
9614  */
9615 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9616 {
9617 	if (!dev->change_proto_down)
9618 		return -EOPNOTSUPP;
9619 	if (!netif_device_present(dev))
9620 		return -ENODEV;
9621 	if (proto_down)
9622 		netif_carrier_off(dev);
9623 	else
9624 		netif_carrier_on(dev);
9625 	WRITE_ONCE(dev->proto_down, proto_down);
9626 	return 0;
9627 }
9628 
9629 /**
9630  *	dev_change_proto_down_reason - proto down reason
9631  *
9632  *	@dev: device
9633  *	@mask: proto down mask
9634  *	@value: proto down value
9635  */
9636 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9637 				  u32 value)
9638 {
9639 	u32 proto_down_reason;
9640 	int b;
9641 
9642 	if (!mask) {
9643 		proto_down_reason = value;
9644 	} else {
9645 		proto_down_reason = dev->proto_down_reason;
9646 		for_each_set_bit(b, &mask, 32) {
9647 			if (value & (1 << b))
9648 				proto_down_reason |= BIT(b);
9649 			else
9650 				proto_down_reason &= ~BIT(b);
9651 		}
9652 	}
9653 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9654 }
9655 
9656 struct bpf_xdp_link {
9657 	struct bpf_link link;
9658 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9659 	int flags;
9660 };
9661 
9662 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9663 {
9664 	if (flags & XDP_FLAGS_HW_MODE)
9665 		return XDP_MODE_HW;
9666 	if (flags & XDP_FLAGS_DRV_MODE)
9667 		return XDP_MODE_DRV;
9668 	if (flags & XDP_FLAGS_SKB_MODE)
9669 		return XDP_MODE_SKB;
9670 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9671 }
9672 
9673 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9674 {
9675 	switch (mode) {
9676 	case XDP_MODE_SKB:
9677 		return generic_xdp_install;
9678 	case XDP_MODE_DRV:
9679 	case XDP_MODE_HW:
9680 		return dev->netdev_ops->ndo_bpf;
9681 	default:
9682 		return NULL;
9683 	}
9684 }
9685 
9686 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9687 					 enum bpf_xdp_mode mode)
9688 {
9689 	return dev->xdp_state[mode].link;
9690 }
9691 
9692 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9693 				     enum bpf_xdp_mode mode)
9694 {
9695 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9696 
9697 	if (link)
9698 		return link->link.prog;
9699 	return dev->xdp_state[mode].prog;
9700 }
9701 
9702 u8 dev_xdp_prog_count(struct net_device *dev)
9703 {
9704 	u8 count = 0;
9705 	int i;
9706 
9707 	for (i = 0; i < __MAX_XDP_MODE; i++)
9708 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9709 			count++;
9710 	return count;
9711 }
9712 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9713 
9714 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9715 {
9716 	u8 count = 0;
9717 	int i;
9718 
9719 	for (i = 0; i < __MAX_XDP_MODE; i++)
9720 		if (dev->xdp_state[i].prog &&
9721 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9722 			count++;
9723 	return count;
9724 }
9725 
9726 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9727 {
9728 	if (!dev->netdev_ops->ndo_bpf)
9729 		return -EOPNOTSUPP;
9730 
9731 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9732 	    bpf->command == XDP_SETUP_PROG &&
9733 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9734 		NL_SET_ERR_MSG(bpf->extack,
9735 			       "unable to propagate XDP to device using tcp-data-split");
9736 		return -EBUSY;
9737 	}
9738 
9739 	if (dev_get_min_mp_channel_count(dev)) {
9740 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9741 		return -EBUSY;
9742 	}
9743 
9744 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9745 }
9746 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9747 
9748 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9749 {
9750 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9751 
9752 	return prog ? prog->aux->id : 0;
9753 }
9754 
9755 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9756 			     struct bpf_xdp_link *link)
9757 {
9758 	dev->xdp_state[mode].link = link;
9759 	dev->xdp_state[mode].prog = NULL;
9760 }
9761 
9762 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9763 			     struct bpf_prog *prog)
9764 {
9765 	dev->xdp_state[mode].link = NULL;
9766 	dev->xdp_state[mode].prog = prog;
9767 }
9768 
9769 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9770 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9771 			   u32 flags, struct bpf_prog *prog)
9772 {
9773 	struct netdev_bpf xdp;
9774 	int err;
9775 
9776 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9777 	    prog && !prog->aux->xdp_has_frags) {
9778 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9779 		return -EBUSY;
9780 	}
9781 
9782 	if (dev_get_min_mp_channel_count(dev)) {
9783 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9784 		return -EBUSY;
9785 	}
9786 
9787 	memset(&xdp, 0, sizeof(xdp));
9788 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9789 	xdp.extack = extack;
9790 	xdp.flags = flags;
9791 	xdp.prog = prog;
9792 
9793 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9794 	 * "moved" into driver), so they don't increment it on their own, but
9795 	 * they do decrement refcnt when program is detached or replaced.
9796 	 * Given net_device also owns link/prog, we need to bump refcnt here
9797 	 * to prevent drivers from underflowing it.
9798 	 */
9799 	if (prog)
9800 		bpf_prog_inc(prog);
9801 	err = bpf_op(dev, &xdp);
9802 	if (err) {
9803 		if (prog)
9804 			bpf_prog_put(prog);
9805 		return err;
9806 	}
9807 
9808 	if (mode != XDP_MODE_HW)
9809 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9810 
9811 	return 0;
9812 }
9813 
9814 static void dev_xdp_uninstall(struct net_device *dev)
9815 {
9816 	struct bpf_xdp_link *link;
9817 	struct bpf_prog *prog;
9818 	enum bpf_xdp_mode mode;
9819 	bpf_op_t bpf_op;
9820 
9821 	ASSERT_RTNL();
9822 
9823 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9824 		prog = dev_xdp_prog(dev, mode);
9825 		if (!prog)
9826 			continue;
9827 
9828 		bpf_op = dev_xdp_bpf_op(dev, mode);
9829 		if (!bpf_op)
9830 			continue;
9831 
9832 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9833 
9834 		/* auto-detach link from net device */
9835 		link = dev_xdp_link(dev, mode);
9836 		if (link)
9837 			link->dev = NULL;
9838 		else
9839 			bpf_prog_put(prog);
9840 
9841 		dev_xdp_set_link(dev, mode, NULL);
9842 	}
9843 }
9844 
9845 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9846 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9847 			  struct bpf_prog *old_prog, u32 flags)
9848 {
9849 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9850 	struct bpf_prog *cur_prog;
9851 	struct net_device *upper;
9852 	struct list_head *iter;
9853 	enum bpf_xdp_mode mode;
9854 	bpf_op_t bpf_op;
9855 	int err;
9856 
9857 	ASSERT_RTNL();
9858 
9859 	/* either link or prog attachment, never both */
9860 	if (link && (new_prog || old_prog))
9861 		return -EINVAL;
9862 	/* link supports only XDP mode flags */
9863 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9864 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9865 		return -EINVAL;
9866 	}
9867 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9868 	if (num_modes > 1) {
9869 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9870 		return -EINVAL;
9871 	}
9872 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9873 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9874 		NL_SET_ERR_MSG(extack,
9875 			       "More than one program loaded, unset mode is ambiguous");
9876 		return -EINVAL;
9877 	}
9878 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9879 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9880 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9881 		return -EINVAL;
9882 	}
9883 
9884 	mode = dev_xdp_mode(dev, flags);
9885 	/* can't replace attached link */
9886 	if (dev_xdp_link(dev, mode)) {
9887 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9888 		return -EBUSY;
9889 	}
9890 
9891 	/* don't allow if an upper device already has a program */
9892 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9893 		if (dev_xdp_prog_count(upper) > 0) {
9894 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9895 			return -EEXIST;
9896 		}
9897 	}
9898 
9899 	cur_prog = dev_xdp_prog(dev, mode);
9900 	/* can't replace attached prog with link */
9901 	if (link && cur_prog) {
9902 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9903 		return -EBUSY;
9904 	}
9905 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9906 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9907 		return -EEXIST;
9908 	}
9909 
9910 	/* put effective new program into new_prog */
9911 	if (link)
9912 		new_prog = link->link.prog;
9913 
9914 	if (new_prog) {
9915 		bool offload = mode == XDP_MODE_HW;
9916 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9917 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9918 
9919 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9920 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9921 			return -EBUSY;
9922 		}
9923 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9924 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9925 			return -EEXIST;
9926 		}
9927 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9928 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9929 			return -EINVAL;
9930 		}
9931 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9932 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9933 			return -EINVAL;
9934 		}
9935 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
9936 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
9937 			return -EINVAL;
9938 		}
9939 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9940 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9941 			return -EINVAL;
9942 		}
9943 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9944 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9945 			return -EINVAL;
9946 		}
9947 	}
9948 
9949 	/* don't call drivers if the effective program didn't change */
9950 	if (new_prog != cur_prog) {
9951 		bpf_op = dev_xdp_bpf_op(dev, mode);
9952 		if (!bpf_op) {
9953 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9954 			return -EOPNOTSUPP;
9955 		}
9956 
9957 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9958 		if (err)
9959 			return err;
9960 	}
9961 
9962 	if (link)
9963 		dev_xdp_set_link(dev, mode, link);
9964 	else
9965 		dev_xdp_set_prog(dev, mode, new_prog);
9966 	if (cur_prog)
9967 		bpf_prog_put(cur_prog);
9968 
9969 	return 0;
9970 }
9971 
9972 static int dev_xdp_attach_link(struct net_device *dev,
9973 			       struct netlink_ext_ack *extack,
9974 			       struct bpf_xdp_link *link)
9975 {
9976 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9977 }
9978 
9979 static int dev_xdp_detach_link(struct net_device *dev,
9980 			       struct netlink_ext_ack *extack,
9981 			       struct bpf_xdp_link *link)
9982 {
9983 	enum bpf_xdp_mode mode;
9984 	bpf_op_t bpf_op;
9985 
9986 	ASSERT_RTNL();
9987 
9988 	mode = dev_xdp_mode(dev, link->flags);
9989 	if (dev_xdp_link(dev, mode) != link)
9990 		return -EINVAL;
9991 
9992 	bpf_op = dev_xdp_bpf_op(dev, mode);
9993 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9994 	dev_xdp_set_link(dev, mode, NULL);
9995 	return 0;
9996 }
9997 
9998 static void bpf_xdp_link_release(struct bpf_link *link)
9999 {
10000 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10001 
10002 	rtnl_lock();
10003 
10004 	/* if racing with net_device's tear down, xdp_link->dev might be
10005 	 * already NULL, in which case link was already auto-detached
10006 	 */
10007 	if (xdp_link->dev) {
10008 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10009 		xdp_link->dev = NULL;
10010 	}
10011 
10012 	rtnl_unlock();
10013 }
10014 
10015 static int bpf_xdp_link_detach(struct bpf_link *link)
10016 {
10017 	bpf_xdp_link_release(link);
10018 	return 0;
10019 }
10020 
10021 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10022 {
10023 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10024 
10025 	kfree(xdp_link);
10026 }
10027 
10028 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10029 				     struct seq_file *seq)
10030 {
10031 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10032 	u32 ifindex = 0;
10033 
10034 	rtnl_lock();
10035 	if (xdp_link->dev)
10036 		ifindex = xdp_link->dev->ifindex;
10037 	rtnl_unlock();
10038 
10039 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10040 }
10041 
10042 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10043 				       struct bpf_link_info *info)
10044 {
10045 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10046 	u32 ifindex = 0;
10047 
10048 	rtnl_lock();
10049 	if (xdp_link->dev)
10050 		ifindex = xdp_link->dev->ifindex;
10051 	rtnl_unlock();
10052 
10053 	info->xdp.ifindex = ifindex;
10054 	return 0;
10055 }
10056 
10057 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10058 			       struct bpf_prog *old_prog)
10059 {
10060 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10061 	enum bpf_xdp_mode mode;
10062 	bpf_op_t bpf_op;
10063 	int err = 0;
10064 
10065 	rtnl_lock();
10066 
10067 	/* link might have been auto-released already, so fail */
10068 	if (!xdp_link->dev) {
10069 		err = -ENOLINK;
10070 		goto out_unlock;
10071 	}
10072 
10073 	if (old_prog && link->prog != old_prog) {
10074 		err = -EPERM;
10075 		goto out_unlock;
10076 	}
10077 	old_prog = link->prog;
10078 	if (old_prog->type != new_prog->type ||
10079 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10080 		err = -EINVAL;
10081 		goto out_unlock;
10082 	}
10083 
10084 	if (old_prog == new_prog) {
10085 		/* no-op, don't disturb drivers */
10086 		bpf_prog_put(new_prog);
10087 		goto out_unlock;
10088 	}
10089 
10090 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10091 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10092 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10093 			      xdp_link->flags, new_prog);
10094 	if (err)
10095 		goto out_unlock;
10096 
10097 	old_prog = xchg(&link->prog, new_prog);
10098 	bpf_prog_put(old_prog);
10099 
10100 out_unlock:
10101 	rtnl_unlock();
10102 	return err;
10103 }
10104 
10105 static const struct bpf_link_ops bpf_xdp_link_lops = {
10106 	.release = bpf_xdp_link_release,
10107 	.dealloc = bpf_xdp_link_dealloc,
10108 	.detach = bpf_xdp_link_detach,
10109 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10110 	.fill_link_info = bpf_xdp_link_fill_link_info,
10111 	.update_prog = bpf_xdp_link_update,
10112 };
10113 
10114 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10115 {
10116 	struct net *net = current->nsproxy->net_ns;
10117 	struct bpf_link_primer link_primer;
10118 	struct netlink_ext_ack extack = {};
10119 	struct bpf_xdp_link *link;
10120 	struct net_device *dev;
10121 	int err, fd;
10122 
10123 	rtnl_lock();
10124 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10125 	if (!dev) {
10126 		rtnl_unlock();
10127 		return -EINVAL;
10128 	}
10129 
10130 	link = kzalloc(sizeof(*link), GFP_USER);
10131 	if (!link) {
10132 		err = -ENOMEM;
10133 		goto unlock;
10134 	}
10135 
10136 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10137 	link->dev = dev;
10138 	link->flags = attr->link_create.flags;
10139 
10140 	err = bpf_link_prime(&link->link, &link_primer);
10141 	if (err) {
10142 		kfree(link);
10143 		goto unlock;
10144 	}
10145 
10146 	err = dev_xdp_attach_link(dev, &extack, link);
10147 	rtnl_unlock();
10148 
10149 	if (err) {
10150 		link->dev = NULL;
10151 		bpf_link_cleanup(&link_primer);
10152 		trace_bpf_xdp_link_attach_failed(extack._msg);
10153 		goto out_put_dev;
10154 	}
10155 
10156 	fd = bpf_link_settle(&link_primer);
10157 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10158 	dev_put(dev);
10159 	return fd;
10160 
10161 unlock:
10162 	rtnl_unlock();
10163 
10164 out_put_dev:
10165 	dev_put(dev);
10166 	return err;
10167 }
10168 
10169 /**
10170  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10171  *	@dev: device
10172  *	@extack: netlink extended ack
10173  *	@fd: new program fd or negative value to clear
10174  *	@expected_fd: old program fd that userspace expects to replace or clear
10175  *	@flags: xdp-related flags
10176  *
10177  *	Set or clear a bpf program for a device
10178  */
10179 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10180 		      int fd, int expected_fd, u32 flags)
10181 {
10182 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10183 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10184 	int err;
10185 
10186 	ASSERT_RTNL();
10187 
10188 	if (fd >= 0) {
10189 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10190 						 mode != XDP_MODE_SKB);
10191 		if (IS_ERR(new_prog))
10192 			return PTR_ERR(new_prog);
10193 	}
10194 
10195 	if (expected_fd >= 0) {
10196 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10197 						 mode != XDP_MODE_SKB);
10198 		if (IS_ERR(old_prog)) {
10199 			err = PTR_ERR(old_prog);
10200 			old_prog = NULL;
10201 			goto err_out;
10202 		}
10203 	}
10204 
10205 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10206 
10207 err_out:
10208 	if (err && new_prog)
10209 		bpf_prog_put(new_prog);
10210 	if (old_prog)
10211 		bpf_prog_put(old_prog);
10212 	return err;
10213 }
10214 
10215 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10216 {
10217 	int i;
10218 
10219 	ASSERT_RTNL();
10220 
10221 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10222 		if (dev->_rx[i].mp_params.mp_priv)
10223 			/* The channel count is the idx plus 1. */
10224 			return i + 1;
10225 
10226 	return 0;
10227 }
10228 
10229 /**
10230  * dev_index_reserve() - allocate an ifindex in a namespace
10231  * @net: the applicable net namespace
10232  * @ifindex: requested ifindex, pass %0 to get one allocated
10233  *
10234  * Allocate a ifindex for a new device. Caller must either use the ifindex
10235  * to store the device (via list_netdevice()) or call dev_index_release()
10236  * to give the index up.
10237  *
10238  * Return: a suitable unique value for a new device interface number or -errno.
10239  */
10240 static int dev_index_reserve(struct net *net, u32 ifindex)
10241 {
10242 	int err;
10243 
10244 	if (ifindex > INT_MAX) {
10245 		DEBUG_NET_WARN_ON_ONCE(1);
10246 		return -EINVAL;
10247 	}
10248 
10249 	if (!ifindex)
10250 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10251 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10252 	else
10253 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10254 	if (err < 0)
10255 		return err;
10256 
10257 	return ifindex;
10258 }
10259 
10260 static void dev_index_release(struct net *net, int ifindex)
10261 {
10262 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10263 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10264 }
10265 
10266 static bool from_cleanup_net(void)
10267 {
10268 #ifdef CONFIG_NET_NS
10269 	return current == cleanup_net_task;
10270 #else
10271 	return false;
10272 #endif
10273 }
10274 
10275 /* Delayed registration/unregisteration */
10276 LIST_HEAD(net_todo_list);
10277 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10278 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10279 
10280 static void net_set_todo(struct net_device *dev)
10281 {
10282 	list_add_tail(&dev->todo_list, &net_todo_list);
10283 }
10284 
10285 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10286 	struct net_device *upper, netdev_features_t features)
10287 {
10288 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10289 	netdev_features_t feature;
10290 	int feature_bit;
10291 
10292 	for_each_netdev_feature(upper_disables, feature_bit) {
10293 		feature = __NETIF_F_BIT(feature_bit);
10294 		if (!(upper->wanted_features & feature)
10295 		    && (features & feature)) {
10296 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10297 				   &feature, upper->name);
10298 			features &= ~feature;
10299 		}
10300 	}
10301 
10302 	return features;
10303 }
10304 
10305 static void netdev_sync_lower_features(struct net_device *upper,
10306 	struct net_device *lower, netdev_features_t features)
10307 {
10308 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10309 	netdev_features_t feature;
10310 	int feature_bit;
10311 
10312 	for_each_netdev_feature(upper_disables, feature_bit) {
10313 		feature = __NETIF_F_BIT(feature_bit);
10314 		if (!(features & feature) && (lower->features & feature)) {
10315 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10316 				   &feature, lower->name);
10317 			lower->wanted_features &= ~feature;
10318 			__netdev_update_features(lower);
10319 
10320 			if (unlikely(lower->features & feature))
10321 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10322 					    &feature, lower->name);
10323 			else
10324 				netdev_features_change(lower);
10325 		}
10326 	}
10327 }
10328 
10329 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10330 {
10331 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10332 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10333 	bool hw_csum = features & NETIF_F_HW_CSUM;
10334 
10335 	return ip_csum || hw_csum;
10336 }
10337 
10338 static netdev_features_t netdev_fix_features(struct net_device *dev,
10339 	netdev_features_t features)
10340 {
10341 	/* Fix illegal checksum combinations */
10342 	if ((features & NETIF_F_HW_CSUM) &&
10343 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10344 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10345 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10346 	}
10347 
10348 	/* TSO requires that SG is present as well. */
10349 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10350 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10351 		features &= ~NETIF_F_ALL_TSO;
10352 	}
10353 
10354 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10355 					!(features & NETIF_F_IP_CSUM)) {
10356 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10357 		features &= ~NETIF_F_TSO;
10358 		features &= ~NETIF_F_TSO_ECN;
10359 	}
10360 
10361 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10362 					 !(features & NETIF_F_IPV6_CSUM)) {
10363 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10364 		features &= ~NETIF_F_TSO6;
10365 	}
10366 
10367 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10368 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10369 		features &= ~NETIF_F_TSO_MANGLEID;
10370 
10371 	/* TSO ECN requires that TSO is present as well. */
10372 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10373 		features &= ~NETIF_F_TSO_ECN;
10374 
10375 	/* Software GSO depends on SG. */
10376 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10377 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10378 		features &= ~NETIF_F_GSO;
10379 	}
10380 
10381 	/* GSO partial features require GSO partial be set */
10382 	if ((features & dev->gso_partial_features) &&
10383 	    !(features & NETIF_F_GSO_PARTIAL)) {
10384 		netdev_dbg(dev,
10385 			   "Dropping partially supported GSO features since no GSO partial.\n");
10386 		features &= ~dev->gso_partial_features;
10387 	}
10388 
10389 	if (!(features & NETIF_F_RXCSUM)) {
10390 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10391 		 * successfully merged by hardware must also have the
10392 		 * checksum verified by hardware.  If the user does not
10393 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10394 		 */
10395 		if (features & NETIF_F_GRO_HW) {
10396 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10397 			features &= ~NETIF_F_GRO_HW;
10398 		}
10399 	}
10400 
10401 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10402 	if (features & NETIF_F_RXFCS) {
10403 		if (features & NETIF_F_LRO) {
10404 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10405 			features &= ~NETIF_F_LRO;
10406 		}
10407 
10408 		if (features & NETIF_F_GRO_HW) {
10409 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10410 			features &= ~NETIF_F_GRO_HW;
10411 		}
10412 	}
10413 
10414 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10415 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10416 		features &= ~NETIF_F_LRO;
10417 	}
10418 
10419 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10420 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10421 		features &= ~NETIF_F_HW_TLS_TX;
10422 	}
10423 
10424 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10425 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10426 		features &= ~NETIF_F_HW_TLS_RX;
10427 	}
10428 
10429 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10430 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10431 		features &= ~NETIF_F_GSO_UDP_L4;
10432 	}
10433 
10434 	return features;
10435 }
10436 
10437 int __netdev_update_features(struct net_device *dev)
10438 {
10439 	struct net_device *upper, *lower;
10440 	netdev_features_t features;
10441 	struct list_head *iter;
10442 	int err = -1;
10443 
10444 	ASSERT_RTNL();
10445 
10446 	features = netdev_get_wanted_features(dev);
10447 
10448 	if (dev->netdev_ops->ndo_fix_features)
10449 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10450 
10451 	/* driver might be less strict about feature dependencies */
10452 	features = netdev_fix_features(dev, features);
10453 
10454 	/* some features can't be enabled if they're off on an upper device */
10455 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10456 		features = netdev_sync_upper_features(dev, upper, features);
10457 
10458 	if (dev->features == features)
10459 		goto sync_lower;
10460 
10461 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10462 		&dev->features, &features);
10463 
10464 	if (dev->netdev_ops->ndo_set_features)
10465 		err = dev->netdev_ops->ndo_set_features(dev, features);
10466 	else
10467 		err = 0;
10468 
10469 	if (unlikely(err < 0)) {
10470 		netdev_err(dev,
10471 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10472 			err, &features, &dev->features);
10473 		/* return non-0 since some features might have changed and
10474 		 * it's better to fire a spurious notification than miss it
10475 		 */
10476 		return -1;
10477 	}
10478 
10479 sync_lower:
10480 	/* some features must be disabled on lower devices when disabled
10481 	 * on an upper device (think: bonding master or bridge)
10482 	 */
10483 	netdev_for_each_lower_dev(dev, lower, iter)
10484 		netdev_sync_lower_features(dev, lower, features);
10485 
10486 	if (!err) {
10487 		netdev_features_t diff = features ^ dev->features;
10488 
10489 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10490 			/* udp_tunnel_{get,drop}_rx_info both need
10491 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10492 			 * device, or they won't do anything.
10493 			 * Thus we need to update dev->features
10494 			 * *before* calling udp_tunnel_get_rx_info,
10495 			 * but *after* calling udp_tunnel_drop_rx_info.
10496 			 */
10497 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10498 				dev->features = features;
10499 				udp_tunnel_get_rx_info(dev);
10500 			} else {
10501 				udp_tunnel_drop_rx_info(dev);
10502 			}
10503 		}
10504 
10505 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10506 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10507 				dev->features = features;
10508 				err |= vlan_get_rx_ctag_filter_info(dev);
10509 			} else {
10510 				vlan_drop_rx_ctag_filter_info(dev);
10511 			}
10512 		}
10513 
10514 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10515 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10516 				dev->features = features;
10517 				err |= vlan_get_rx_stag_filter_info(dev);
10518 			} else {
10519 				vlan_drop_rx_stag_filter_info(dev);
10520 			}
10521 		}
10522 
10523 		dev->features = features;
10524 	}
10525 
10526 	return err < 0 ? 0 : 1;
10527 }
10528 
10529 /**
10530  *	netdev_update_features - recalculate device features
10531  *	@dev: the device to check
10532  *
10533  *	Recalculate dev->features set and send notifications if it
10534  *	has changed. Should be called after driver or hardware dependent
10535  *	conditions might have changed that influence the features.
10536  */
10537 void netdev_update_features(struct net_device *dev)
10538 {
10539 	if (__netdev_update_features(dev))
10540 		netdev_features_change(dev);
10541 }
10542 EXPORT_SYMBOL(netdev_update_features);
10543 
10544 /**
10545  *	netdev_change_features - recalculate device features
10546  *	@dev: the device to check
10547  *
10548  *	Recalculate dev->features set and send notifications even
10549  *	if they have not changed. Should be called instead of
10550  *	netdev_update_features() if also dev->vlan_features might
10551  *	have changed to allow the changes to be propagated to stacked
10552  *	VLAN devices.
10553  */
10554 void netdev_change_features(struct net_device *dev)
10555 {
10556 	__netdev_update_features(dev);
10557 	netdev_features_change(dev);
10558 }
10559 EXPORT_SYMBOL(netdev_change_features);
10560 
10561 /**
10562  *	netif_stacked_transfer_operstate -	transfer operstate
10563  *	@rootdev: the root or lower level device to transfer state from
10564  *	@dev: the device to transfer operstate to
10565  *
10566  *	Transfer operational state from root to device. This is normally
10567  *	called when a stacking relationship exists between the root
10568  *	device and the device(a leaf device).
10569  */
10570 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10571 					struct net_device *dev)
10572 {
10573 	if (rootdev->operstate == IF_OPER_DORMANT)
10574 		netif_dormant_on(dev);
10575 	else
10576 		netif_dormant_off(dev);
10577 
10578 	if (rootdev->operstate == IF_OPER_TESTING)
10579 		netif_testing_on(dev);
10580 	else
10581 		netif_testing_off(dev);
10582 
10583 	if (netif_carrier_ok(rootdev))
10584 		netif_carrier_on(dev);
10585 	else
10586 		netif_carrier_off(dev);
10587 }
10588 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10589 
10590 static int netif_alloc_rx_queues(struct net_device *dev)
10591 {
10592 	unsigned int i, count = dev->num_rx_queues;
10593 	struct netdev_rx_queue *rx;
10594 	size_t sz = count * sizeof(*rx);
10595 	int err = 0;
10596 
10597 	BUG_ON(count < 1);
10598 
10599 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10600 	if (!rx)
10601 		return -ENOMEM;
10602 
10603 	dev->_rx = rx;
10604 
10605 	for (i = 0; i < count; i++) {
10606 		rx[i].dev = dev;
10607 
10608 		/* XDP RX-queue setup */
10609 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10610 		if (err < 0)
10611 			goto err_rxq_info;
10612 	}
10613 	return 0;
10614 
10615 err_rxq_info:
10616 	/* Rollback successful reg's and free other resources */
10617 	while (i--)
10618 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10619 	kvfree(dev->_rx);
10620 	dev->_rx = NULL;
10621 	return err;
10622 }
10623 
10624 static void netif_free_rx_queues(struct net_device *dev)
10625 {
10626 	unsigned int i, count = dev->num_rx_queues;
10627 
10628 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10629 	if (!dev->_rx)
10630 		return;
10631 
10632 	for (i = 0; i < count; i++)
10633 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10634 
10635 	kvfree(dev->_rx);
10636 }
10637 
10638 static void netdev_init_one_queue(struct net_device *dev,
10639 				  struct netdev_queue *queue, void *_unused)
10640 {
10641 	/* Initialize queue lock */
10642 	spin_lock_init(&queue->_xmit_lock);
10643 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10644 	queue->xmit_lock_owner = -1;
10645 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10646 	queue->dev = dev;
10647 #ifdef CONFIG_BQL
10648 	dql_init(&queue->dql, HZ);
10649 #endif
10650 }
10651 
10652 static void netif_free_tx_queues(struct net_device *dev)
10653 {
10654 	kvfree(dev->_tx);
10655 }
10656 
10657 static int netif_alloc_netdev_queues(struct net_device *dev)
10658 {
10659 	unsigned int count = dev->num_tx_queues;
10660 	struct netdev_queue *tx;
10661 	size_t sz = count * sizeof(*tx);
10662 
10663 	if (count < 1 || count > 0xffff)
10664 		return -EINVAL;
10665 
10666 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10667 	if (!tx)
10668 		return -ENOMEM;
10669 
10670 	dev->_tx = tx;
10671 
10672 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10673 	spin_lock_init(&dev->tx_global_lock);
10674 
10675 	return 0;
10676 }
10677 
10678 void netif_tx_stop_all_queues(struct net_device *dev)
10679 {
10680 	unsigned int i;
10681 
10682 	for (i = 0; i < dev->num_tx_queues; i++) {
10683 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10684 
10685 		netif_tx_stop_queue(txq);
10686 	}
10687 }
10688 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10689 
10690 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10691 {
10692 	void __percpu *v;
10693 
10694 	/* Drivers implementing ndo_get_peer_dev must support tstat
10695 	 * accounting, so that skb_do_redirect() can bump the dev's
10696 	 * RX stats upon network namespace switch.
10697 	 */
10698 	if (dev->netdev_ops->ndo_get_peer_dev &&
10699 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10700 		return -EOPNOTSUPP;
10701 
10702 	switch (dev->pcpu_stat_type) {
10703 	case NETDEV_PCPU_STAT_NONE:
10704 		return 0;
10705 	case NETDEV_PCPU_STAT_LSTATS:
10706 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10707 		break;
10708 	case NETDEV_PCPU_STAT_TSTATS:
10709 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10710 		break;
10711 	case NETDEV_PCPU_STAT_DSTATS:
10712 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10713 		break;
10714 	default:
10715 		return -EINVAL;
10716 	}
10717 
10718 	return v ? 0 : -ENOMEM;
10719 }
10720 
10721 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10722 {
10723 	switch (dev->pcpu_stat_type) {
10724 	case NETDEV_PCPU_STAT_NONE:
10725 		return;
10726 	case NETDEV_PCPU_STAT_LSTATS:
10727 		free_percpu(dev->lstats);
10728 		break;
10729 	case NETDEV_PCPU_STAT_TSTATS:
10730 		free_percpu(dev->tstats);
10731 		break;
10732 	case NETDEV_PCPU_STAT_DSTATS:
10733 		free_percpu(dev->dstats);
10734 		break;
10735 	}
10736 }
10737 
10738 static void netdev_free_phy_link_topology(struct net_device *dev)
10739 {
10740 	struct phy_link_topology *topo = dev->link_topo;
10741 
10742 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10743 		xa_destroy(&topo->phys);
10744 		kfree(topo);
10745 		dev->link_topo = NULL;
10746 	}
10747 }
10748 
10749 /**
10750  * register_netdevice() - register a network device
10751  * @dev: device to register
10752  *
10753  * Take a prepared network device structure and make it externally accessible.
10754  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10755  * Callers must hold the rtnl lock - you may want register_netdev()
10756  * instead of this.
10757  */
10758 int register_netdevice(struct net_device *dev)
10759 {
10760 	int ret;
10761 	struct net *net = dev_net(dev);
10762 
10763 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10764 		     NETDEV_FEATURE_COUNT);
10765 	BUG_ON(dev_boot_phase);
10766 	ASSERT_RTNL();
10767 
10768 	might_sleep();
10769 
10770 	/* When net_device's are persistent, this will be fatal. */
10771 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10772 	BUG_ON(!net);
10773 
10774 	ret = ethtool_check_ops(dev->ethtool_ops);
10775 	if (ret)
10776 		return ret;
10777 
10778 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10779 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10780 	mutex_init(&dev->ethtool->rss_lock);
10781 
10782 	spin_lock_init(&dev->addr_list_lock);
10783 	netdev_set_addr_lockdep_class(dev);
10784 
10785 	ret = dev_get_valid_name(net, dev, dev->name);
10786 	if (ret < 0)
10787 		goto out;
10788 
10789 	ret = -ENOMEM;
10790 	dev->name_node = netdev_name_node_head_alloc(dev);
10791 	if (!dev->name_node)
10792 		goto out;
10793 
10794 	/* Init, if this function is available */
10795 	if (dev->netdev_ops->ndo_init) {
10796 		ret = dev->netdev_ops->ndo_init(dev);
10797 		if (ret) {
10798 			if (ret > 0)
10799 				ret = -EIO;
10800 			goto err_free_name;
10801 		}
10802 	}
10803 
10804 	if (((dev->hw_features | dev->features) &
10805 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10806 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10807 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10808 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10809 		ret = -EINVAL;
10810 		goto err_uninit;
10811 	}
10812 
10813 	ret = netdev_do_alloc_pcpu_stats(dev);
10814 	if (ret)
10815 		goto err_uninit;
10816 
10817 	ret = dev_index_reserve(net, dev->ifindex);
10818 	if (ret < 0)
10819 		goto err_free_pcpu;
10820 	dev->ifindex = ret;
10821 
10822 	/* Transfer changeable features to wanted_features and enable
10823 	 * software offloads (GSO and GRO).
10824 	 */
10825 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10826 	dev->features |= NETIF_F_SOFT_FEATURES;
10827 
10828 	if (dev->udp_tunnel_nic_info) {
10829 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10830 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10831 	}
10832 
10833 	dev->wanted_features = dev->features & dev->hw_features;
10834 
10835 	if (!(dev->flags & IFF_LOOPBACK))
10836 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10837 
10838 	/* If IPv4 TCP segmentation offload is supported we should also
10839 	 * allow the device to enable segmenting the frame with the option
10840 	 * of ignoring a static IP ID value.  This doesn't enable the
10841 	 * feature itself but allows the user to enable it later.
10842 	 */
10843 	if (dev->hw_features & NETIF_F_TSO)
10844 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10845 	if (dev->vlan_features & NETIF_F_TSO)
10846 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10847 	if (dev->mpls_features & NETIF_F_TSO)
10848 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10849 	if (dev->hw_enc_features & NETIF_F_TSO)
10850 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10851 
10852 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10853 	 */
10854 	dev->vlan_features |= NETIF_F_HIGHDMA;
10855 
10856 	/* Make NETIF_F_SG inheritable to tunnel devices.
10857 	 */
10858 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10859 
10860 	/* Make NETIF_F_SG inheritable to MPLS.
10861 	 */
10862 	dev->mpls_features |= NETIF_F_SG;
10863 
10864 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10865 	ret = notifier_to_errno(ret);
10866 	if (ret)
10867 		goto err_ifindex_release;
10868 
10869 	ret = netdev_register_kobject(dev);
10870 
10871 	netdev_lock(dev);
10872 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10873 	netdev_unlock(dev);
10874 
10875 	if (ret)
10876 		goto err_uninit_notify;
10877 
10878 	__netdev_update_features(dev);
10879 
10880 	/*
10881 	 *	Default initial state at registry is that the
10882 	 *	device is present.
10883 	 */
10884 
10885 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10886 
10887 	linkwatch_init_dev(dev);
10888 
10889 	dev_init_scheduler(dev);
10890 
10891 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10892 	list_netdevice(dev);
10893 
10894 	add_device_randomness(dev->dev_addr, dev->addr_len);
10895 
10896 	/* If the device has permanent device address, driver should
10897 	 * set dev_addr and also addr_assign_type should be set to
10898 	 * NET_ADDR_PERM (default value).
10899 	 */
10900 	if (dev->addr_assign_type == NET_ADDR_PERM)
10901 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10902 
10903 	/* Notify protocols, that a new device appeared. */
10904 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10905 	ret = notifier_to_errno(ret);
10906 	if (ret) {
10907 		/* Expect explicit free_netdev() on failure */
10908 		dev->needs_free_netdev = false;
10909 		unregister_netdevice_queue(dev, NULL);
10910 		goto out;
10911 	}
10912 	/*
10913 	 *	Prevent userspace races by waiting until the network
10914 	 *	device is fully setup before sending notifications.
10915 	 */
10916 	if (!dev->rtnl_link_ops ||
10917 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10918 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10919 
10920 out:
10921 	return ret;
10922 
10923 err_uninit_notify:
10924 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10925 err_ifindex_release:
10926 	dev_index_release(net, dev->ifindex);
10927 err_free_pcpu:
10928 	netdev_do_free_pcpu_stats(dev);
10929 err_uninit:
10930 	if (dev->netdev_ops->ndo_uninit)
10931 		dev->netdev_ops->ndo_uninit(dev);
10932 	if (dev->priv_destructor)
10933 		dev->priv_destructor(dev);
10934 err_free_name:
10935 	netdev_name_node_free(dev->name_node);
10936 	goto out;
10937 }
10938 EXPORT_SYMBOL(register_netdevice);
10939 
10940 /* Initialize the core of a dummy net device.
10941  * The setup steps dummy netdevs need which normal netdevs get by going
10942  * through register_netdevice().
10943  */
10944 static void init_dummy_netdev(struct net_device *dev)
10945 {
10946 	/* make sure we BUG if trying to hit standard
10947 	 * register/unregister code path
10948 	 */
10949 	dev->reg_state = NETREG_DUMMY;
10950 
10951 	/* a dummy interface is started by default */
10952 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10953 	set_bit(__LINK_STATE_START, &dev->state);
10954 
10955 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10956 	 * because users of this 'device' dont need to change
10957 	 * its refcount.
10958 	 */
10959 }
10960 
10961 /**
10962  *	register_netdev	- register a network device
10963  *	@dev: device to register
10964  *
10965  *	Take a completed network device structure and add it to the kernel
10966  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10967  *	chain. 0 is returned on success. A negative errno code is returned
10968  *	on a failure to set up the device, or if the name is a duplicate.
10969  *
10970  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10971  *	and expands the device name if you passed a format string to
10972  *	alloc_netdev.
10973  */
10974 int register_netdev(struct net_device *dev)
10975 {
10976 	struct net *net = dev_net(dev);
10977 	int err;
10978 
10979 	if (rtnl_net_lock_killable(net))
10980 		return -EINTR;
10981 
10982 	err = register_netdevice(dev);
10983 
10984 	rtnl_net_unlock(net);
10985 
10986 	return err;
10987 }
10988 EXPORT_SYMBOL(register_netdev);
10989 
10990 int netdev_refcnt_read(const struct net_device *dev)
10991 {
10992 #ifdef CONFIG_PCPU_DEV_REFCNT
10993 	int i, refcnt = 0;
10994 
10995 	for_each_possible_cpu(i)
10996 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10997 	return refcnt;
10998 #else
10999 	return refcount_read(&dev->dev_refcnt);
11000 #endif
11001 }
11002 EXPORT_SYMBOL(netdev_refcnt_read);
11003 
11004 int netdev_unregister_timeout_secs __read_mostly = 10;
11005 
11006 #define WAIT_REFS_MIN_MSECS 1
11007 #define WAIT_REFS_MAX_MSECS 250
11008 /**
11009  * netdev_wait_allrefs_any - wait until all references are gone.
11010  * @list: list of net_devices to wait on
11011  *
11012  * This is called when unregistering network devices.
11013  *
11014  * Any protocol or device that holds a reference should register
11015  * for netdevice notification, and cleanup and put back the
11016  * reference if they receive an UNREGISTER event.
11017  * We can get stuck here if buggy protocols don't correctly
11018  * call dev_put.
11019  */
11020 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11021 {
11022 	unsigned long rebroadcast_time, warning_time;
11023 	struct net_device *dev;
11024 	int wait = 0;
11025 
11026 	rebroadcast_time = warning_time = jiffies;
11027 
11028 	list_for_each_entry(dev, list, todo_list)
11029 		if (netdev_refcnt_read(dev) == 1)
11030 			return dev;
11031 
11032 	while (true) {
11033 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11034 			rtnl_lock();
11035 
11036 			/* Rebroadcast unregister notification */
11037 			list_for_each_entry(dev, list, todo_list)
11038 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11039 
11040 			__rtnl_unlock();
11041 			rcu_barrier();
11042 			rtnl_lock();
11043 
11044 			list_for_each_entry(dev, list, todo_list)
11045 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11046 					     &dev->state)) {
11047 					/* We must not have linkwatch events
11048 					 * pending on unregister. If this
11049 					 * happens, we simply run the queue
11050 					 * unscheduled, resulting in a noop
11051 					 * for this device.
11052 					 */
11053 					linkwatch_run_queue();
11054 					break;
11055 				}
11056 
11057 			__rtnl_unlock();
11058 
11059 			rebroadcast_time = jiffies;
11060 		}
11061 
11062 		rcu_barrier();
11063 
11064 		if (!wait) {
11065 			wait = WAIT_REFS_MIN_MSECS;
11066 		} else {
11067 			msleep(wait);
11068 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11069 		}
11070 
11071 		list_for_each_entry(dev, list, todo_list)
11072 			if (netdev_refcnt_read(dev) == 1)
11073 				return dev;
11074 
11075 		if (time_after(jiffies, warning_time +
11076 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11077 			list_for_each_entry(dev, list, todo_list) {
11078 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11079 					 dev->name, netdev_refcnt_read(dev));
11080 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11081 			}
11082 
11083 			warning_time = jiffies;
11084 		}
11085 	}
11086 }
11087 
11088 /* The sequence is:
11089  *
11090  *	rtnl_lock();
11091  *	...
11092  *	register_netdevice(x1);
11093  *	register_netdevice(x2);
11094  *	...
11095  *	unregister_netdevice(y1);
11096  *	unregister_netdevice(y2);
11097  *      ...
11098  *	rtnl_unlock();
11099  *	free_netdev(y1);
11100  *	free_netdev(y2);
11101  *
11102  * We are invoked by rtnl_unlock().
11103  * This allows us to deal with problems:
11104  * 1) We can delete sysfs objects which invoke hotplug
11105  *    without deadlocking with linkwatch via keventd.
11106  * 2) Since we run with the RTNL semaphore not held, we can sleep
11107  *    safely in order to wait for the netdev refcnt to drop to zero.
11108  *
11109  * We must not return until all unregister events added during
11110  * the interval the lock was held have been completed.
11111  */
11112 void netdev_run_todo(void)
11113 {
11114 	struct net_device *dev, *tmp;
11115 	struct list_head list;
11116 	int cnt;
11117 #ifdef CONFIG_LOCKDEP
11118 	struct list_head unlink_list;
11119 
11120 	list_replace_init(&net_unlink_list, &unlink_list);
11121 
11122 	while (!list_empty(&unlink_list)) {
11123 		struct net_device *dev = list_first_entry(&unlink_list,
11124 							  struct net_device,
11125 							  unlink_list);
11126 		list_del_init(&dev->unlink_list);
11127 		dev->nested_level = dev->lower_level - 1;
11128 	}
11129 #endif
11130 
11131 	/* Snapshot list, allow later requests */
11132 	list_replace_init(&net_todo_list, &list);
11133 
11134 	__rtnl_unlock();
11135 
11136 	/* Wait for rcu callbacks to finish before next phase */
11137 	if (!list_empty(&list))
11138 		rcu_barrier();
11139 
11140 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11141 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11142 			netdev_WARN(dev, "run_todo but not unregistering\n");
11143 			list_del(&dev->todo_list);
11144 			continue;
11145 		}
11146 
11147 		netdev_lock(dev);
11148 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11149 		netdev_unlock(dev);
11150 		linkwatch_sync_dev(dev);
11151 	}
11152 
11153 	cnt = 0;
11154 	while (!list_empty(&list)) {
11155 		dev = netdev_wait_allrefs_any(&list);
11156 		list_del(&dev->todo_list);
11157 
11158 		/* paranoia */
11159 		BUG_ON(netdev_refcnt_read(dev) != 1);
11160 		BUG_ON(!list_empty(&dev->ptype_all));
11161 		BUG_ON(!list_empty(&dev->ptype_specific));
11162 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11163 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11164 
11165 		netdev_do_free_pcpu_stats(dev);
11166 		if (dev->priv_destructor)
11167 			dev->priv_destructor(dev);
11168 		if (dev->needs_free_netdev)
11169 			free_netdev(dev);
11170 
11171 		cnt++;
11172 
11173 		/* Free network device */
11174 		kobject_put(&dev->dev.kobj);
11175 	}
11176 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11177 		wake_up(&netdev_unregistering_wq);
11178 }
11179 
11180 /* Collate per-cpu network dstats statistics
11181  *
11182  * Read per-cpu network statistics from dev->dstats and populate the related
11183  * fields in @s.
11184  */
11185 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11186 			     const struct pcpu_dstats __percpu *dstats)
11187 {
11188 	int cpu;
11189 
11190 	for_each_possible_cpu(cpu) {
11191 		u64 rx_packets, rx_bytes, rx_drops;
11192 		u64 tx_packets, tx_bytes, tx_drops;
11193 		const struct pcpu_dstats *stats;
11194 		unsigned int start;
11195 
11196 		stats = per_cpu_ptr(dstats, cpu);
11197 		do {
11198 			start = u64_stats_fetch_begin(&stats->syncp);
11199 			rx_packets = u64_stats_read(&stats->rx_packets);
11200 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11201 			rx_drops   = u64_stats_read(&stats->rx_drops);
11202 			tx_packets = u64_stats_read(&stats->tx_packets);
11203 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11204 			tx_drops   = u64_stats_read(&stats->tx_drops);
11205 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11206 
11207 		s->rx_packets += rx_packets;
11208 		s->rx_bytes   += rx_bytes;
11209 		s->rx_dropped += rx_drops;
11210 		s->tx_packets += tx_packets;
11211 		s->tx_bytes   += tx_bytes;
11212 		s->tx_dropped += tx_drops;
11213 	}
11214 }
11215 
11216 /* ndo_get_stats64 implementation for dtstats-based accounting.
11217  *
11218  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11219  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11220  */
11221 static void dev_get_dstats64(const struct net_device *dev,
11222 			     struct rtnl_link_stats64 *s)
11223 {
11224 	netdev_stats_to_stats64(s, &dev->stats);
11225 	dev_fetch_dstats(s, dev->dstats);
11226 }
11227 
11228 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11229  * all the same fields in the same order as net_device_stats, with only
11230  * the type differing, but rtnl_link_stats64 may have additional fields
11231  * at the end for newer counters.
11232  */
11233 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11234 			     const struct net_device_stats *netdev_stats)
11235 {
11236 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11237 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11238 	u64 *dst = (u64 *)stats64;
11239 
11240 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11241 	for (i = 0; i < n; i++)
11242 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11243 	/* zero out counters that only exist in rtnl_link_stats64 */
11244 	memset((char *)stats64 + n * sizeof(u64), 0,
11245 	       sizeof(*stats64) - n * sizeof(u64));
11246 }
11247 EXPORT_SYMBOL(netdev_stats_to_stats64);
11248 
11249 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11250 		struct net_device *dev)
11251 {
11252 	struct net_device_core_stats __percpu *p;
11253 
11254 	p = alloc_percpu_gfp(struct net_device_core_stats,
11255 			     GFP_ATOMIC | __GFP_NOWARN);
11256 
11257 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11258 		free_percpu(p);
11259 
11260 	/* This READ_ONCE() pairs with the cmpxchg() above */
11261 	return READ_ONCE(dev->core_stats);
11262 }
11263 
11264 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11265 {
11266 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11267 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11268 	unsigned long __percpu *field;
11269 
11270 	if (unlikely(!p)) {
11271 		p = netdev_core_stats_alloc(dev);
11272 		if (!p)
11273 			return;
11274 	}
11275 
11276 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11277 	this_cpu_inc(*field);
11278 }
11279 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11280 
11281 /**
11282  *	dev_get_stats	- get network device statistics
11283  *	@dev: device to get statistics from
11284  *	@storage: place to store stats
11285  *
11286  *	Get network statistics from device. Return @storage.
11287  *	The device driver may provide its own method by setting
11288  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11289  *	otherwise the internal statistics structure is used.
11290  */
11291 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11292 					struct rtnl_link_stats64 *storage)
11293 {
11294 	const struct net_device_ops *ops = dev->netdev_ops;
11295 	const struct net_device_core_stats __percpu *p;
11296 
11297 	/*
11298 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11299 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11300 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11301 	 */
11302 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11303 		     offsetof(struct pcpu_dstats, rx_bytes));
11304 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11305 		     offsetof(struct pcpu_dstats, rx_packets));
11306 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11307 		     offsetof(struct pcpu_dstats, tx_bytes));
11308 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11309 		     offsetof(struct pcpu_dstats, tx_packets));
11310 
11311 	if (ops->ndo_get_stats64) {
11312 		memset(storage, 0, sizeof(*storage));
11313 		ops->ndo_get_stats64(dev, storage);
11314 	} else if (ops->ndo_get_stats) {
11315 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11316 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11317 		dev_get_tstats64(dev, storage);
11318 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11319 		dev_get_dstats64(dev, storage);
11320 	} else {
11321 		netdev_stats_to_stats64(storage, &dev->stats);
11322 	}
11323 
11324 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11325 	p = READ_ONCE(dev->core_stats);
11326 	if (p) {
11327 		const struct net_device_core_stats *core_stats;
11328 		int i;
11329 
11330 		for_each_possible_cpu(i) {
11331 			core_stats = per_cpu_ptr(p, i);
11332 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11333 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11334 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11335 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11336 		}
11337 	}
11338 	return storage;
11339 }
11340 EXPORT_SYMBOL(dev_get_stats);
11341 
11342 /**
11343  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11344  *	@s: place to store stats
11345  *	@netstats: per-cpu network stats to read from
11346  *
11347  *	Read per-cpu network statistics and populate the related fields in @s.
11348  */
11349 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11350 			   const struct pcpu_sw_netstats __percpu *netstats)
11351 {
11352 	int cpu;
11353 
11354 	for_each_possible_cpu(cpu) {
11355 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11356 		const struct pcpu_sw_netstats *stats;
11357 		unsigned int start;
11358 
11359 		stats = per_cpu_ptr(netstats, cpu);
11360 		do {
11361 			start = u64_stats_fetch_begin(&stats->syncp);
11362 			rx_packets = u64_stats_read(&stats->rx_packets);
11363 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11364 			tx_packets = u64_stats_read(&stats->tx_packets);
11365 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11366 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11367 
11368 		s->rx_packets += rx_packets;
11369 		s->rx_bytes   += rx_bytes;
11370 		s->tx_packets += tx_packets;
11371 		s->tx_bytes   += tx_bytes;
11372 	}
11373 }
11374 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11375 
11376 /**
11377  *	dev_get_tstats64 - ndo_get_stats64 implementation
11378  *	@dev: device to get statistics from
11379  *	@s: place to store stats
11380  *
11381  *	Populate @s from dev->stats and dev->tstats. Can be used as
11382  *	ndo_get_stats64() callback.
11383  */
11384 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11385 {
11386 	netdev_stats_to_stats64(s, &dev->stats);
11387 	dev_fetch_sw_netstats(s, dev->tstats);
11388 }
11389 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11390 
11391 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11392 {
11393 	struct netdev_queue *queue = dev_ingress_queue(dev);
11394 
11395 #ifdef CONFIG_NET_CLS_ACT
11396 	if (queue)
11397 		return queue;
11398 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11399 	if (!queue)
11400 		return NULL;
11401 	netdev_init_one_queue(dev, queue, NULL);
11402 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11403 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11404 	rcu_assign_pointer(dev->ingress_queue, queue);
11405 #endif
11406 	return queue;
11407 }
11408 
11409 static const struct ethtool_ops default_ethtool_ops;
11410 
11411 void netdev_set_default_ethtool_ops(struct net_device *dev,
11412 				    const struct ethtool_ops *ops)
11413 {
11414 	if (dev->ethtool_ops == &default_ethtool_ops)
11415 		dev->ethtool_ops = ops;
11416 }
11417 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11418 
11419 /**
11420  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11421  * @dev: netdev to enable the IRQ coalescing on
11422  *
11423  * Sets a conservative default for SW IRQ coalescing. Users can use
11424  * sysfs attributes to override the default values.
11425  */
11426 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11427 {
11428 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11429 
11430 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11431 		netdev_set_gro_flush_timeout(dev, 20000);
11432 		netdev_set_defer_hard_irqs(dev, 1);
11433 	}
11434 }
11435 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11436 
11437 /**
11438  * alloc_netdev_mqs - allocate network device
11439  * @sizeof_priv: size of private data to allocate space for
11440  * @name: device name format string
11441  * @name_assign_type: origin of device name
11442  * @setup: callback to initialize device
11443  * @txqs: the number of TX subqueues to allocate
11444  * @rxqs: the number of RX subqueues to allocate
11445  *
11446  * Allocates a struct net_device with private data area for driver use
11447  * and performs basic initialization.  Also allocates subqueue structs
11448  * for each queue on the device.
11449  */
11450 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11451 		unsigned char name_assign_type,
11452 		void (*setup)(struct net_device *),
11453 		unsigned int txqs, unsigned int rxqs)
11454 {
11455 	struct net_device *dev;
11456 	size_t napi_config_sz;
11457 	unsigned int maxqs;
11458 
11459 	BUG_ON(strlen(name) >= sizeof(dev->name));
11460 
11461 	if (txqs < 1) {
11462 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11463 		return NULL;
11464 	}
11465 
11466 	if (rxqs < 1) {
11467 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11468 		return NULL;
11469 	}
11470 
11471 	maxqs = max(txqs, rxqs);
11472 
11473 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11474 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11475 	if (!dev)
11476 		return NULL;
11477 
11478 	dev->priv_len = sizeof_priv;
11479 
11480 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11481 #ifdef CONFIG_PCPU_DEV_REFCNT
11482 	dev->pcpu_refcnt = alloc_percpu(int);
11483 	if (!dev->pcpu_refcnt)
11484 		goto free_dev;
11485 	__dev_hold(dev);
11486 #else
11487 	refcount_set(&dev->dev_refcnt, 1);
11488 #endif
11489 
11490 	if (dev_addr_init(dev))
11491 		goto free_pcpu;
11492 
11493 	dev_mc_init(dev);
11494 	dev_uc_init(dev);
11495 
11496 	dev_net_set(dev, &init_net);
11497 
11498 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11499 	dev->xdp_zc_max_segs = 1;
11500 	dev->gso_max_segs = GSO_MAX_SEGS;
11501 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11502 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11503 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11504 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11505 	dev->tso_max_segs = TSO_MAX_SEGS;
11506 	dev->upper_level = 1;
11507 	dev->lower_level = 1;
11508 #ifdef CONFIG_LOCKDEP
11509 	dev->nested_level = 0;
11510 	INIT_LIST_HEAD(&dev->unlink_list);
11511 #endif
11512 
11513 	INIT_LIST_HEAD(&dev->napi_list);
11514 	INIT_LIST_HEAD(&dev->unreg_list);
11515 	INIT_LIST_HEAD(&dev->close_list);
11516 	INIT_LIST_HEAD(&dev->link_watch_list);
11517 	INIT_LIST_HEAD(&dev->adj_list.upper);
11518 	INIT_LIST_HEAD(&dev->adj_list.lower);
11519 	INIT_LIST_HEAD(&dev->ptype_all);
11520 	INIT_LIST_HEAD(&dev->ptype_specific);
11521 	INIT_LIST_HEAD(&dev->net_notifier_list);
11522 #ifdef CONFIG_NET_SCHED
11523 	hash_init(dev->qdisc_hash);
11524 #endif
11525 
11526 	mutex_init(&dev->lock);
11527 
11528 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11529 	setup(dev);
11530 
11531 	if (!dev->tx_queue_len) {
11532 		dev->priv_flags |= IFF_NO_QUEUE;
11533 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11534 	}
11535 
11536 	dev->num_tx_queues = txqs;
11537 	dev->real_num_tx_queues = txqs;
11538 	if (netif_alloc_netdev_queues(dev))
11539 		goto free_all;
11540 
11541 	dev->num_rx_queues = rxqs;
11542 	dev->real_num_rx_queues = rxqs;
11543 	if (netif_alloc_rx_queues(dev))
11544 		goto free_all;
11545 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11546 	if (!dev->ethtool)
11547 		goto free_all;
11548 
11549 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11550 	if (!dev->cfg)
11551 		goto free_all;
11552 	dev->cfg_pending = dev->cfg;
11553 
11554 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11555 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11556 	if (!dev->napi_config)
11557 		goto free_all;
11558 
11559 	strscpy(dev->name, name);
11560 	dev->name_assign_type = name_assign_type;
11561 	dev->group = INIT_NETDEV_GROUP;
11562 	if (!dev->ethtool_ops)
11563 		dev->ethtool_ops = &default_ethtool_ops;
11564 
11565 	nf_hook_netdev_init(dev);
11566 
11567 	return dev;
11568 
11569 free_all:
11570 	free_netdev(dev);
11571 	return NULL;
11572 
11573 free_pcpu:
11574 #ifdef CONFIG_PCPU_DEV_REFCNT
11575 	free_percpu(dev->pcpu_refcnt);
11576 free_dev:
11577 #endif
11578 	kvfree(dev);
11579 	return NULL;
11580 }
11581 EXPORT_SYMBOL(alloc_netdev_mqs);
11582 
11583 static void netdev_napi_exit(struct net_device *dev)
11584 {
11585 	if (!list_empty(&dev->napi_list)) {
11586 		struct napi_struct *p, *n;
11587 
11588 		netdev_lock(dev);
11589 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11590 			__netif_napi_del_locked(p);
11591 		netdev_unlock(dev);
11592 
11593 		synchronize_net();
11594 	}
11595 
11596 	kvfree(dev->napi_config);
11597 }
11598 
11599 /**
11600  * free_netdev - free network device
11601  * @dev: device
11602  *
11603  * This function does the last stage of destroying an allocated device
11604  * interface. The reference to the device object is released. If this
11605  * is the last reference then it will be freed.Must be called in process
11606  * context.
11607  */
11608 void free_netdev(struct net_device *dev)
11609 {
11610 	might_sleep();
11611 
11612 	/* When called immediately after register_netdevice() failed the unwind
11613 	 * handling may still be dismantling the device. Handle that case by
11614 	 * deferring the free.
11615 	 */
11616 	if (dev->reg_state == NETREG_UNREGISTERING) {
11617 		ASSERT_RTNL();
11618 		dev->needs_free_netdev = true;
11619 		return;
11620 	}
11621 
11622 	WARN_ON(dev->cfg != dev->cfg_pending);
11623 	kfree(dev->cfg);
11624 	kfree(dev->ethtool);
11625 	netif_free_tx_queues(dev);
11626 	netif_free_rx_queues(dev);
11627 
11628 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11629 
11630 	/* Flush device addresses */
11631 	dev_addr_flush(dev);
11632 
11633 	netdev_napi_exit(dev);
11634 
11635 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11636 #ifdef CONFIG_PCPU_DEV_REFCNT
11637 	free_percpu(dev->pcpu_refcnt);
11638 	dev->pcpu_refcnt = NULL;
11639 #endif
11640 	free_percpu(dev->core_stats);
11641 	dev->core_stats = NULL;
11642 	free_percpu(dev->xdp_bulkq);
11643 	dev->xdp_bulkq = NULL;
11644 
11645 	netdev_free_phy_link_topology(dev);
11646 
11647 	mutex_destroy(&dev->lock);
11648 
11649 	/*  Compatibility with error handling in drivers */
11650 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11651 	    dev->reg_state == NETREG_DUMMY) {
11652 		kvfree(dev);
11653 		return;
11654 	}
11655 
11656 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11657 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11658 
11659 	/* will free via device release */
11660 	put_device(&dev->dev);
11661 }
11662 EXPORT_SYMBOL(free_netdev);
11663 
11664 /**
11665  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11666  * @sizeof_priv: size of private data to allocate space for
11667  *
11668  * Return: the allocated net_device on success, NULL otherwise
11669  */
11670 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11671 {
11672 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11673 			    init_dummy_netdev);
11674 }
11675 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11676 
11677 /**
11678  *	synchronize_net -  Synchronize with packet receive processing
11679  *
11680  *	Wait for packets currently being received to be done.
11681  *	Does not block later packets from starting.
11682  */
11683 void synchronize_net(void)
11684 {
11685 	might_sleep();
11686 	if (from_cleanup_net() || rtnl_is_locked())
11687 		synchronize_rcu_expedited();
11688 	else
11689 		synchronize_rcu();
11690 }
11691 EXPORT_SYMBOL(synchronize_net);
11692 
11693 static void netdev_rss_contexts_free(struct net_device *dev)
11694 {
11695 	struct ethtool_rxfh_context *ctx;
11696 	unsigned long context;
11697 
11698 	mutex_lock(&dev->ethtool->rss_lock);
11699 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11700 		struct ethtool_rxfh_param rxfh;
11701 
11702 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11703 		rxfh.key = ethtool_rxfh_context_key(ctx);
11704 		rxfh.hfunc = ctx->hfunc;
11705 		rxfh.input_xfrm = ctx->input_xfrm;
11706 		rxfh.rss_context = context;
11707 		rxfh.rss_delete = true;
11708 
11709 		xa_erase(&dev->ethtool->rss_ctx, context);
11710 		if (dev->ethtool_ops->create_rxfh_context)
11711 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11712 							      context, NULL);
11713 		else
11714 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11715 		kfree(ctx);
11716 	}
11717 	xa_destroy(&dev->ethtool->rss_ctx);
11718 	mutex_unlock(&dev->ethtool->rss_lock);
11719 }
11720 
11721 /**
11722  *	unregister_netdevice_queue - remove device from the kernel
11723  *	@dev: device
11724  *	@head: list
11725  *
11726  *	This function shuts down a device interface and removes it
11727  *	from the kernel tables.
11728  *	If head not NULL, device is queued to be unregistered later.
11729  *
11730  *	Callers must hold the rtnl semaphore.  You may want
11731  *	unregister_netdev() instead of this.
11732  */
11733 
11734 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11735 {
11736 	ASSERT_RTNL();
11737 
11738 	if (head) {
11739 		list_move_tail(&dev->unreg_list, head);
11740 	} else {
11741 		LIST_HEAD(single);
11742 
11743 		list_add(&dev->unreg_list, &single);
11744 		unregister_netdevice_many(&single);
11745 	}
11746 }
11747 EXPORT_SYMBOL(unregister_netdevice_queue);
11748 
11749 static void dev_memory_provider_uninstall(struct net_device *dev)
11750 {
11751 	unsigned int i;
11752 
11753 	for (i = 0; i < dev->real_num_rx_queues; i++) {
11754 		struct netdev_rx_queue *rxq = &dev->_rx[i];
11755 		struct pp_memory_provider_params *p = &rxq->mp_params;
11756 
11757 		if (p->mp_ops && p->mp_ops->uninstall)
11758 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11759 	}
11760 }
11761 
11762 void unregister_netdevice_many_notify(struct list_head *head,
11763 				      u32 portid, const struct nlmsghdr *nlh)
11764 {
11765 	struct net_device *dev, *tmp;
11766 	LIST_HEAD(close_head);
11767 	int cnt = 0;
11768 
11769 	BUG_ON(dev_boot_phase);
11770 	ASSERT_RTNL();
11771 
11772 	if (list_empty(head))
11773 		return;
11774 
11775 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11776 		/* Some devices call without registering
11777 		 * for initialization unwind. Remove those
11778 		 * devices and proceed with the remaining.
11779 		 */
11780 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11781 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11782 				 dev->name, dev);
11783 
11784 			WARN_ON(1);
11785 			list_del(&dev->unreg_list);
11786 			continue;
11787 		}
11788 		dev->dismantle = true;
11789 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11790 	}
11791 
11792 	/* If device is running, close it first. */
11793 	list_for_each_entry(dev, head, unreg_list)
11794 		list_add_tail(&dev->close_list, &close_head);
11795 	dev_close_many(&close_head, true);
11796 
11797 	list_for_each_entry(dev, head, unreg_list) {
11798 		/* And unlink it from device chain. */
11799 		unlist_netdevice(dev);
11800 		netdev_lock(dev);
11801 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11802 		netdev_unlock(dev);
11803 	}
11804 	flush_all_backlogs();
11805 
11806 	synchronize_net();
11807 
11808 	list_for_each_entry(dev, head, unreg_list) {
11809 		struct sk_buff *skb = NULL;
11810 
11811 		/* Shutdown queueing discipline. */
11812 		dev_shutdown(dev);
11813 		dev_tcx_uninstall(dev);
11814 		dev_xdp_uninstall(dev);
11815 		bpf_dev_bound_netdev_unregister(dev);
11816 		dev_memory_provider_uninstall(dev);
11817 
11818 		netdev_offload_xstats_disable_all(dev);
11819 
11820 		/* Notify protocols, that we are about to destroy
11821 		 * this device. They should clean all the things.
11822 		 */
11823 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11824 
11825 		if (!dev->rtnl_link_ops ||
11826 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11827 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11828 						     GFP_KERNEL, NULL, 0,
11829 						     portid, nlh);
11830 
11831 		/*
11832 		 *	Flush the unicast and multicast chains
11833 		 */
11834 		dev_uc_flush(dev);
11835 		dev_mc_flush(dev);
11836 
11837 		netdev_name_node_alt_flush(dev);
11838 		netdev_name_node_free(dev->name_node);
11839 
11840 		netdev_rss_contexts_free(dev);
11841 
11842 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11843 
11844 		if (dev->netdev_ops->ndo_uninit)
11845 			dev->netdev_ops->ndo_uninit(dev);
11846 
11847 		mutex_destroy(&dev->ethtool->rss_lock);
11848 
11849 		net_shaper_flush_netdev(dev);
11850 
11851 		if (skb)
11852 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11853 
11854 		/* Notifier chain MUST detach us all upper devices. */
11855 		WARN_ON(netdev_has_any_upper_dev(dev));
11856 		WARN_ON(netdev_has_any_lower_dev(dev));
11857 
11858 		/* Remove entries from kobject tree */
11859 		netdev_unregister_kobject(dev);
11860 #ifdef CONFIG_XPS
11861 		/* Remove XPS queueing entries */
11862 		netif_reset_xps_queues_gt(dev, 0);
11863 #endif
11864 	}
11865 
11866 	synchronize_net();
11867 
11868 	list_for_each_entry(dev, head, unreg_list) {
11869 		netdev_put(dev, &dev->dev_registered_tracker);
11870 		net_set_todo(dev);
11871 		cnt++;
11872 	}
11873 	atomic_add(cnt, &dev_unreg_count);
11874 
11875 	list_del(head);
11876 }
11877 
11878 /**
11879  *	unregister_netdevice_many - unregister many devices
11880  *	@head: list of devices
11881  *
11882  *  Note: As most callers use a stack allocated list_head,
11883  *  we force a list_del() to make sure stack won't be corrupted later.
11884  */
11885 void unregister_netdevice_many(struct list_head *head)
11886 {
11887 	unregister_netdevice_many_notify(head, 0, NULL);
11888 }
11889 EXPORT_SYMBOL(unregister_netdevice_many);
11890 
11891 /**
11892  *	unregister_netdev - remove device from the kernel
11893  *	@dev: device
11894  *
11895  *	This function shuts down a device interface and removes it
11896  *	from the kernel tables.
11897  *
11898  *	This is just a wrapper for unregister_netdevice that takes
11899  *	the rtnl semaphore.  In general you want to use this and not
11900  *	unregister_netdevice.
11901  */
11902 void unregister_netdev(struct net_device *dev)
11903 {
11904 	struct net *net = dev_net(dev);
11905 
11906 	rtnl_net_lock(net);
11907 	unregister_netdevice(dev);
11908 	rtnl_net_unlock(net);
11909 }
11910 EXPORT_SYMBOL(unregister_netdev);
11911 
11912 /**
11913  *	__dev_change_net_namespace - move device to different nethost namespace
11914  *	@dev: device
11915  *	@net: network namespace
11916  *	@pat: If not NULL name pattern to try if the current device name
11917  *	      is already taken in the destination network namespace.
11918  *	@new_ifindex: If not zero, specifies device index in the target
11919  *	              namespace.
11920  *
11921  *	This function shuts down a device interface and moves it
11922  *	to a new network namespace. On success 0 is returned, on
11923  *	a failure a netagive errno code is returned.
11924  *
11925  *	Callers must hold the rtnl semaphore.
11926  */
11927 
11928 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11929 			       const char *pat, int new_ifindex)
11930 {
11931 	struct netdev_name_node *name_node;
11932 	struct net *net_old = dev_net(dev);
11933 	char new_name[IFNAMSIZ] = {};
11934 	int err, new_nsid;
11935 
11936 	ASSERT_RTNL();
11937 
11938 	/* Don't allow namespace local devices to be moved. */
11939 	err = -EINVAL;
11940 	if (dev->netns_local)
11941 		goto out;
11942 
11943 	/* Ensure the device has been registered */
11944 	if (dev->reg_state != NETREG_REGISTERED)
11945 		goto out;
11946 
11947 	/* Get out if there is nothing todo */
11948 	err = 0;
11949 	if (net_eq(net_old, net))
11950 		goto out;
11951 
11952 	/* Pick the destination device name, and ensure
11953 	 * we can use it in the destination network namespace.
11954 	 */
11955 	err = -EEXIST;
11956 	if (netdev_name_in_use(net, dev->name)) {
11957 		/* We get here if we can't use the current device name */
11958 		if (!pat)
11959 			goto out;
11960 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11961 		if (err < 0)
11962 			goto out;
11963 	}
11964 	/* Check that none of the altnames conflicts. */
11965 	err = -EEXIST;
11966 	netdev_for_each_altname(dev, name_node)
11967 		if (netdev_name_in_use(net, name_node->name))
11968 			goto out;
11969 
11970 	/* Check that new_ifindex isn't used yet. */
11971 	if (new_ifindex) {
11972 		err = dev_index_reserve(net, new_ifindex);
11973 		if (err < 0)
11974 			goto out;
11975 	} else {
11976 		/* If there is an ifindex conflict assign a new one */
11977 		err = dev_index_reserve(net, dev->ifindex);
11978 		if (err == -EBUSY)
11979 			err = dev_index_reserve(net, 0);
11980 		if (err < 0)
11981 			goto out;
11982 		new_ifindex = err;
11983 	}
11984 
11985 	/*
11986 	 * And now a mini version of register_netdevice unregister_netdevice.
11987 	 */
11988 
11989 	/* If device is running close it first. */
11990 	dev_close(dev);
11991 
11992 	/* And unlink it from device chain */
11993 	unlist_netdevice(dev);
11994 
11995 	synchronize_net();
11996 
11997 	/* Shutdown queueing discipline. */
11998 	dev_shutdown(dev);
11999 
12000 	/* Notify protocols, that we are about to destroy
12001 	 * this device. They should clean all the things.
12002 	 *
12003 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12004 	 * This is wanted because this way 8021q and macvlan know
12005 	 * the device is just moving and can keep their slaves up.
12006 	 */
12007 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12008 	rcu_barrier();
12009 
12010 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12011 
12012 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12013 			    new_ifindex);
12014 
12015 	/*
12016 	 *	Flush the unicast and multicast chains
12017 	 */
12018 	dev_uc_flush(dev);
12019 	dev_mc_flush(dev);
12020 
12021 	/* Send a netdev-removed uevent to the old namespace */
12022 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12023 	netdev_adjacent_del_links(dev);
12024 
12025 	/* Move per-net netdevice notifiers that are following the netdevice */
12026 	move_netdevice_notifiers_dev_net(dev, net);
12027 
12028 	/* Actually switch the network namespace */
12029 	dev_net_set(dev, net);
12030 	dev->ifindex = new_ifindex;
12031 
12032 	if (new_name[0]) {
12033 		/* Rename the netdev to prepared name */
12034 		write_seqlock_bh(&netdev_rename_lock);
12035 		strscpy(dev->name, new_name, IFNAMSIZ);
12036 		write_sequnlock_bh(&netdev_rename_lock);
12037 	}
12038 
12039 	/* Fixup kobjects */
12040 	dev_set_uevent_suppress(&dev->dev, 1);
12041 	err = device_rename(&dev->dev, dev->name);
12042 	dev_set_uevent_suppress(&dev->dev, 0);
12043 	WARN_ON(err);
12044 
12045 	/* Send a netdev-add uevent to the new namespace */
12046 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12047 	netdev_adjacent_add_links(dev);
12048 
12049 	/* Adapt owner in case owning user namespace of target network
12050 	 * namespace is different from the original one.
12051 	 */
12052 	err = netdev_change_owner(dev, net_old, net);
12053 	WARN_ON(err);
12054 
12055 	/* Add the device back in the hashes */
12056 	list_netdevice(dev);
12057 
12058 	/* Notify protocols, that a new device appeared. */
12059 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12060 
12061 	/*
12062 	 *	Prevent userspace races by waiting until the network
12063 	 *	device is fully setup before sending notifications.
12064 	 */
12065 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12066 
12067 	synchronize_net();
12068 	err = 0;
12069 out:
12070 	return err;
12071 }
12072 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
12073 
12074 static int dev_cpu_dead(unsigned int oldcpu)
12075 {
12076 	struct sk_buff **list_skb;
12077 	struct sk_buff *skb;
12078 	unsigned int cpu;
12079 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12080 
12081 	local_irq_disable();
12082 	cpu = smp_processor_id();
12083 	sd = &per_cpu(softnet_data, cpu);
12084 	oldsd = &per_cpu(softnet_data, oldcpu);
12085 
12086 	/* Find end of our completion_queue. */
12087 	list_skb = &sd->completion_queue;
12088 	while (*list_skb)
12089 		list_skb = &(*list_skb)->next;
12090 	/* Append completion queue from offline CPU. */
12091 	*list_skb = oldsd->completion_queue;
12092 	oldsd->completion_queue = NULL;
12093 
12094 	/* Append output queue from offline CPU. */
12095 	if (oldsd->output_queue) {
12096 		*sd->output_queue_tailp = oldsd->output_queue;
12097 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12098 		oldsd->output_queue = NULL;
12099 		oldsd->output_queue_tailp = &oldsd->output_queue;
12100 	}
12101 	/* Append NAPI poll list from offline CPU, with one exception :
12102 	 * process_backlog() must be called by cpu owning percpu backlog.
12103 	 * We properly handle process_queue & input_pkt_queue later.
12104 	 */
12105 	while (!list_empty(&oldsd->poll_list)) {
12106 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12107 							    struct napi_struct,
12108 							    poll_list);
12109 
12110 		list_del_init(&napi->poll_list);
12111 		if (napi->poll == process_backlog)
12112 			napi->state &= NAPIF_STATE_THREADED;
12113 		else
12114 			____napi_schedule(sd, napi);
12115 	}
12116 
12117 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12118 	local_irq_enable();
12119 
12120 	if (!use_backlog_threads()) {
12121 #ifdef CONFIG_RPS
12122 		remsd = oldsd->rps_ipi_list;
12123 		oldsd->rps_ipi_list = NULL;
12124 #endif
12125 		/* send out pending IPI's on offline CPU */
12126 		net_rps_send_ipi(remsd);
12127 	}
12128 
12129 	/* Process offline CPU's input_pkt_queue */
12130 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12131 		netif_rx(skb);
12132 		rps_input_queue_head_incr(oldsd);
12133 	}
12134 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12135 		netif_rx(skb);
12136 		rps_input_queue_head_incr(oldsd);
12137 	}
12138 
12139 	return 0;
12140 }
12141 
12142 /**
12143  *	netdev_increment_features - increment feature set by one
12144  *	@all: current feature set
12145  *	@one: new feature set
12146  *	@mask: mask feature set
12147  *
12148  *	Computes a new feature set after adding a device with feature set
12149  *	@one to the master device with current feature set @all.  Will not
12150  *	enable anything that is off in @mask. Returns the new feature set.
12151  */
12152 netdev_features_t netdev_increment_features(netdev_features_t all,
12153 	netdev_features_t one, netdev_features_t mask)
12154 {
12155 	if (mask & NETIF_F_HW_CSUM)
12156 		mask |= NETIF_F_CSUM_MASK;
12157 	mask |= NETIF_F_VLAN_CHALLENGED;
12158 
12159 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12160 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12161 
12162 	/* If one device supports hw checksumming, set for all. */
12163 	if (all & NETIF_F_HW_CSUM)
12164 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12165 
12166 	return all;
12167 }
12168 EXPORT_SYMBOL(netdev_increment_features);
12169 
12170 static struct hlist_head * __net_init netdev_create_hash(void)
12171 {
12172 	int i;
12173 	struct hlist_head *hash;
12174 
12175 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12176 	if (hash != NULL)
12177 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12178 			INIT_HLIST_HEAD(&hash[i]);
12179 
12180 	return hash;
12181 }
12182 
12183 /* Initialize per network namespace state */
12184 static int __net_init netdev_init(struct net *net)
12185 {
12186 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12187 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
12188 
12189 	INIT_LIST_HEAD(&net->dev_base_head);
12190 
12191 	net->dev_name_head = netdev_create_hash();
12192 	if (net->dev_name_head == NULL)
12193 		goto err_name;
12194 
12195 	net->dev_index_head = netdev_create_hash();
12196 	if (net->dev_index_head == NULL)
12197 		goto err_idx;
12198 
12199 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12200 
12201 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12202 
12203 	return 0;
12204 
12205 err_idx:
12206 	kfree(net->dev_name_head);
12207 err_name:
12208 	return -ENOMEM;
12209 }
12210 
12211 /**
12212  *	netdev_drivername - network driver for the device
12213  *	@dev: network device
12214  *
12215  *	Determine network driver for device.
12216  */
12217 const char *netdev_drivername(const struct net_device *dev)
12218 {
12219 	const struct device_driver *driver;
12220 	const struct device *parent;
12221 	const char *empty = "";
12222 
12223 	parent = dev->dev.parent;
12224 	if (!parent)
12225 		return empty;
12226 
12227 	driver = parent->driver;
12228 	if (driver && driver->name)
12229 		return driver->name;
12230 	return empty;
12231 }
12232 
12233 static void __netdev_printk(const char *level, const struct net_device *dev,
12234 			    struct va_format *vaf)
12235 {
12236 	if (dev && dev->dev.parent) {
12237 		dev_printk_emit(level[1] - '0',
12238 				dev->dev.parent,
12239 				"%s %s %s%s: %pV",
12240 				dev_driver_string(dev->dev.parent),
12241 				dev_name(dev->dev.parent),
12242 				netdev_name(dev), netdev_reg_state(dev),
12243 				vaf);
12244 	} else if (dev) {
12245 		printk("%s%s%s: %pV",
12246 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12247 	} else {
12248 		printk("%s(NULL net_device): %pV", level, vaf);
12249 	}
12250 }
12251 
12252 void netdev_printk(const char *level, const struct net_device *dev,
12253 		   const char *format, ...)
12254 {
12255 	struct va_format vaf;
12256 	va_list args;
12257 
12258 	va_start(args, format);
12259 
12260 	vaf.fmt = format;
12261 	vaf.va = &args;
12262 
12263 	__netdev_printk(level, dev, &vaf);
12264 
12265 	va_end(args);
12266 }
12267 EXPORT_SYMBOL(netdev_printk);
12268 
12269 #define define_netdev_printk_level(func, level)			\
12270 void func(const struct net_device *dev, const char *fmt, ...)	\
12271 {								\
12272 	struct va_format vaf;					\
12273 	va_list args;						\
12274 								\
12275 	va_start(args, fmt);					\
12276 								\
12277 	vaf.fmt = fmt;						\
12278 	vaf.va = &args;						\
12279 								\
12280 	__netdev_printk(level, dev, &vaf);			\
12281 								\
12282 	va_end(args);						\
12283 }								\
12284 EXPORT_SYMBOL(func);
12285 
12286 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12287 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12288 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12289 define_netdev_printk_level(netdev_err, KERN_ERR);
12290 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12291 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12292 define_netdev_printk_level(netdev_info, KERN_INFO);
12293 
12294 static void __net_exit netdev_exit(struct net *net)
12295 {
12296 	kfree(net->dev_name_head);
12297 	kfree(net->dev_index_head);
12298 	xa_destroy(&net->dev_by_index);
12299 	if (net != &init_net)
12300 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12301 }
12302 
12303 static struct pernet_operations __net_initdata netdev_net_ops = {
12304 	.init = netdev_init,
12305 	.exit = netdev_exit,
12306 };
12307 
12308 static void __net_exit default_device_exit_net(struct net *net)
12309 {
12310 	struct netdev_name_node *name_node, *tmp;
12311 	struct net_device *dev, *aux;
12312 	/*
12313 	 * Push all migratable network devices back to the
12314 	 * initial network namespace
12315 	 */
12316 	ASSERT_RTNL();
12317 	for_each_netdev_safe(net, dev, aux) {
12318 		int err;
12319 		char fb_name[IFNAMSIZ];
12320 
12321 		/* Ignore unmoveable devices (i.e. loopback) */
12322 		if (dev->netns_local)
12323 			continue;
12324 
12325 		/* Leave virtual devices for the generic cleanup */
12326 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12327 			continue;
12328 
12329 		/* Push remaining network devices to init_net */
12330 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12331 		if (netdev_name_in_use(&init_net, fb_name))
12332 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12333 
12334 		netdev_for_each_altname_safe(dev, name_node, tmp)
12335 			if (netdev_name_in_use(&init_net, name_node->name))
12336 				__netdev_name_node_alt_destroy(name_node);
12337 
12338 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12339 		if (err) {
12340 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12341 				 __func__, dev->name, err);
12342 			BUG();
12343 		}
12344 	}
12345 }
12346 
12347 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12348 {
12349 	/* At exit all network devices most be removed from a network
12350 	 * namespace.  Do this in the reverse order of registration.
12351 	 * Do this across as many network namespaces as possible to
12352 	 * improve batching efficiency.
12353 	 */
12354 	struct net_device *dev;
12355 	struct net *net;
12356 	LIST_HEAD(dev_kill_list);
12357 
12358 	rtnl_lock();
12359 	list_for_each_entry(net, net_list, exit_list) {
12360 		default_device_exit_net(net);
12361 		cond_resched();
12362 	}
12363 
12364 	list_for_each_entry(net, net_list, exit_list) {
12365 		for_each_netdev_reverse(net, dev) {
12366 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12367 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12368 			else
12369 				unregister_netdevice_queue(dev, &dev_kill_list);
12370 		}
12371 	}
12372 	unregister_netdevice_many(&dev_kill_list);
12373 	rtnl_unlock();
12374 }
12375 
12376 static struct pernet_operations __net_initdata default_device_ops = {
12377 	.exit_batch = default_device_exit_batch,
12378 };
12379 
12380 static void __init net_dev_struct_check(void)
12381 {
12382 	/* TX read-mostly hotpath */
12383 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12384 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12385 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12386 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12387 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12388 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12389 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12390 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12391 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12392 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12393 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12394 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12395 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12396 #ifdef CONFIG_XPS
12397 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12398 #endif
12399 #ifdef CONFIG_NETFILTER_EGRESS
12400 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12401 #endif
12402 #ifdef CONFIG_NET_XGRESS
12403 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12404 #endif
12405 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12406 
12407 	/* TXRX read-mostly hotpath */
12408 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12409 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12410 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12411 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12412 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12413 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12414 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12415 
12416 	/* RX read-mostly hotpath */
12417 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12418 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12419 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12420 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12421 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12422 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12423 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12424 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12425 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12426 #ifdef CONFIG_NETPOLL
12427 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12428 #endif
12429 #ifdef CONFIG_NET_XGRESS
12430 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12431 #endif
12432 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12433 }
12434 
12435 /*
12436  *	Initialize the DEV module. At boot time this walks the device list and
12437  *	unhooks any devices that fail to initialise (normally hardware not
12438  *	present) and leaves us with a valid list of present and active devices.
12439  *
12440  */
12441 
12442 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12443 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12444 
12445 static int net_page_pool_create(int cpuid)
12446 {
12447 #if IS_ENABLED(CONFIG_PAGE_POOL)
12448 	struct page_pool_params page_pool_params = {
12449 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12450 		.flags = PP_FLAG_SYSTEM_POOL,
12451 		.nid = cpu_to_mem(cpuid),
12452 	};
12453 	struct page_pool *pp_ptr;
12454 	int err;
12455 
12456 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12457 	if (IS_ERR(pp_ptr))
12458 		return -ENOMEM;
12459 
12460 	err = xdp_reg_page_pool(pp_ptr);
12461 	if (err) {
12462 		page_pool_destroy(pp_ptr);
12463 		return err;
12464 	}
12465 
12466 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12467 #endif
12468 	return 0;
12469 }
12470 
12471 static int backlog_napi_should_run(unsigned int cpu)
12472 {
12473 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12474 	struct napi_struct *napi = &sd->backlog;
12475 
12476 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12477 }
12478 
12479 static void run_backlog_napi(unsigned int cpu)
12480 {
12481 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12482 
12483 	napi_threaded_poll_loop(&sd->backlog);
12484 }
12485 
12486 static void backlog_napi_setup(unsigned int cpu)
12487 {
12488 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12489 	struct napi_struct *napi = &sd->backlog;
12490 
12491 	napi->thread = this_cpu_read(backlog_napi);
12492 	set_bit(NAPI_STATE_THREADED, &napi->state);
12493 }
12494 
12495 static struct smp_hotplug_thread backlog_threads = {
12496 	.store			= &backlog_napi,
12497 	.thread_should_run	= backlog_napi_should_run,
12498 	.thread_fn		= run_backlog_napi,
12499 	.thread_comm		= "backlog_napi/%u",
12500 	.setup			= backlog_napi_setup,
12501 };
12502 
12503 /*
12504  *       This is called single threaded during boot, so no need
12505  *       to take the rtnl semaphore.
12506  */
12507 static int __init net_dev_init(void)
12508 {
12509 	int i, rc = -ENOMEM;
12510 
12511 	BUG_ON(!dev_boot_phase);
12512 
12513 	net_dev_struct_check();
12514 
12515 	if (dev_proc_init())
12516 		goto out;
12517 
12518 	if (netdev_kobject_init())
12519 		goto out;
12520 
12521 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12522 		INIT_LIST_HEAD(&ptype_base[i]);
12523 
12524 	if (register_pernet_subsys(&netdev_net_ops))
12525 		goto out;
12526 
12527 	/*
12528 	 *	Initialise the packet receive queues.
12529 	 */
12530 
12531 	flush_backlogs_fallback = flush_backlogs_alloc();
12532 	if (!flush_backlogs_fallback)
12533 		goto out;
12534 
12535 	for_each_possible_cpu(i) {
12536 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12537 
12538 		skb_queue_head_init(&sd->input_pkt_queue);
12539 		skb_queue_head_init(&sd->process_queue);
12540 #ifdef CONFIG_XFRM_OFFLOAD
12541 		skb_queue_head_init(&sd->xfrm_backlog);
12542 #endif
12543 		INIT_LIST_HEAD(&sd->poll_list);
12544 		sd->output_queue_tailp = &sd->output_queue;
12545 #ifdef CONFIG_RPS
12546 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12547 		sd->cpu = i;
12548 #endif
12549 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12550 		spin_lock_init(&sd->defer_lock);
12551 
12552 		init_gro_hash(&sd->backlog);
12553 		sd->backlog.poll = process_backlog;
12554 		sd->backlog.weight = weight_p;
12555 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12556 
12557 		if (net_page_pool_create(i))
12558 			goto out;
12559 	}
12560 	if (use_backlog_threads())
12561 		smpboot_register_percpu_thread(&backlog_threads);
12562 
12563 	dev_boot_phase = 0;
12564 
12565 	/* The loopback device is special if any other network devices
12566 	 * is present in a network namespace the loopback device must
12567 	 * be present. Since we now dynamically allocate and free the
12568 	 * loopback device ensure this invariant is maintained by
12569 	 * keeping the loopback device as the first device on the
12570 	 * list of network devices.  Ensuring the loopback devices
12571 	 * is the first device that appears and the last network device
12572 	 * that disappears.
12573 	 */
12574 	if (register_pernet_device(&loopback_net_ops))
12575 		goto out;
12576 
12577 	if (register_pernet_device(&default_device_ops))
12578 		goto out;
12579 
12580 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12581 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12582 
12583 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12584 				       NULL, dev_cpu_dead);
12585 	WARN_ON(rc < 0);
12586 	rc = 0;
12587 
12588 	/* avoid static key IPIs to isolated CPUs */
12589 	if (housekeeping_enabled(HK_TYPE_MISC))
12590 		net_enable_timestamp();
12591 out:
12592 	if (rc < 0) {
12593 		for_each_possible_cpu(i) {
12594 			struct page_pool *pp_ptr;
12595 
12596 			pp_ptr = per_cpu(system_page_pool, i);
12597 			if (!pp_ptr)
12598 				continue;
12599 
12600 			xdp_unreg_page_pool(pp_ptr);
12601 			page_pool_destroy(pp_ptr);
12602 			per_cpu(system_page_pool, i) = NULL;
12603 		}
12604 	}
12605 
12606 	return rc;
12607 }
12608 
12609 subsys_initcall(net_dev_init);
12610