xref: /linux/net/core/dev.c (revision 1ccea77e2a2687cae171b7987eb44730ec8c6d5f)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static seqcount_t devnet_rename_seq;
202 
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static void list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 }
251 
252 /* Device list removal
253  * caller must respect a RCU grace period before freeing/reusing dev
254  */
255 static void unlist_netdevice(struct net_device *dev)
256 {
257 	ASSERT_RTNL();
258 
259 	/* Unlink dev from the device chain */
260 	write_lock_bh(&dev_base_lock);
261 	list_del_rcu(&dev->dev_list);
262 	hlist_del_rcu(&dev->name_hlist);
263 	hlist_del_rcu(&dev->index_hlist);
264 	write_unlock_bh(&dev_base_lock);
265 
266 	dev_base_seq_inc(dev_net(dev));
267 }
268 
269 /*
270  *	Our notifier list
271  */
272 
273 static RAW_NOTIFIER_HEAD(netdev_chain);
274 
275 /*
276  *	Device drivers call our routines to queue packets here. We empty the
277  *	queue in the local softnet handler.
278  */
279 
280 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
281 EXPORT_PER_CPU_SYMBOL(softnet_data);
282 
283 #ifdef CONFIG_LOCKDEP
284 /*
285  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
286  * according to dev->type
287  */
288 static const unsigned short netdev_lock_type[] = {
289 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
290 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
291 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
292 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
293 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
294 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
295 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
296 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
297 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
298 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
299 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
300 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
301 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
302 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
303 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
304 
305 static const char *const netdev_lock_name[] = {
306 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
307 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
308 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
309 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
310 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
311 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
312 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
313 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
314 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
315 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
316 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
317 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
318 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
319 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
320 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
321 
322 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
323 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
324 
325 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
326 {
327 	int i;
328 
329 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
330 		if (netdev_lock_type[i] == dev_type)
331 			return i;
332 	/* the last key is used by default */
333 	return ARRAY_SIZE(netdev_lock_type) - 1;
334 }
335 
336 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
337 						 unsigned short dev_type)
338 {
339 	int i;
340 
341 	i = netdev_lock_pos(dev_type);
342 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 	int i;
349 
350 	i = netdev_lock_pos(dev->type);
351 	lockdep_set_class_and_name(&dev->addr_list_lock,
352 				   &netdev_addr_lock_key[i],
353 				   netdev_lock_name[i]);
354 }
355 #else
356 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
357 						 unsigned short dev_type)
358 {
359 }
360 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361 {
362 }
363 #endif
364 
365 /*******************************************************************************
366  *
367  *		Protocol management and registration routines
368  *
369  *******************************************************************************/
370 
371 
372 /*
373  *	Add a protocol ID to the list. Now that the input handler is
374  *	smarter we can dispense with all the messy stuff that used to be
375  *	here.
376  *
377  *	BEWARE!!! Protocol handlers, mangling input packets,
378  *	MUST BE last in hash buckets and checking protocol handlers
379  *	MUST start from promiscuous ptype_all chain in net_bh.
380  *	It is true now, do not change it.
381  *	Explanation follows: if protocol handler, mangling packet, will
382  *	be the first on list, it is not able to sense, that packet
383  *	is cloned and should be copied-on-write, so that it will
384  *	change it and subsequent readers will get broken packet.
385  *							--ANK (980803)
386  */
387 
388 static inline struct list_head *ptype_head(const struct packet_type *pt)
389 {
390 	if (pt->type == htons(ETH_P_ALL))
391 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
392 	else
393 		return pt->dev ? &pt->dev->ptype_specific :
394 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396 
397 /**
398  *	dev_add_pack - add packet handler
399  *	@pt: packet type declaration
400  *
401  *	Add a protocol handler to the networking stack. The passed &packet_type
402  *	is linked into kernel lists and may not be freed until it has been
403  *	removed from the kernel lists.
404  *
405  *	This call does not sleep therefore it can not
406  *	guarantee all CPU's that are in middle of receiving packets
407  *	will see the new packet type (until the next received packet).
408  */
409 
410 void dev_add_pack(struct packet_type *pt)
411 {
412 	struct list_head *head = ptype_head(pt);
413 
414 	spin_lock(&ptype_lock);
415 	list_add_rcu(&pt->list, head);
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419 
420 /**
421  *	__dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *      The packet type might still be in use by receivers
430  *	and must not be freed until after all the CPU's have gone
431  *	through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 	struct list_head *head = ptype_head(pt);
436 	struct packet_type *pt1;
437 
438 	spin_lock(&ptype_lock);
439 
440 	list_for_each_entry(pt1, head, list) {
441 		if (pt == pt1) {
442 			list_del_rcu(&pt->list);
443 			goto out;
444 		}
445 	}
446 
447 	pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 	spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452 
453 /**
454  *	dev_remove_pack	 - remove packet handler
455  *	@pt: packet type declaration
456  *
457  *	Remove a protocol handler that was previously added to the kernel
458  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *	from the kernel lists and can be freed or reused once this function
460  *	returns.
461  *
462  *	This call sleeps to guarantee that no CPU is looking at the packet
463  *	type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 	__dev_remove_pack(pt);
468 
469 	synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472 
473 
474 /**
475  *	dev_add_offload - register offload handlers
476  *	@po: protocol offload declaration
477  *
478  *	Add protocol offload handlers to the networking stack. The passed
479  *	&proto_offload is linked into kernel lists and may not be freed until
480  *	it has been removed from the kernel lists.
481  *
482  *	This call does not sleep therefore it can not
483  *	guarantee all CPU's that are in middle of receiving packets
484  *	will see the new offload handlers (until the next received packet).
485  */
486 void dev_add_offload(struct packet_offload *po)
487 {
488 	struct packet_offload *elem;
489 
490 	spin_lock(&offload_lock);
491 	list_for_each_entry(elem, &offload_base, list) {
492 		if (po->priority < elem->priority)
493 			break;
494 	}
495 	list_add_rcu(&po->list, elem->list.prev);
496 	spin_unlock(&offload_lock);
497 }
498 EXPORT_SYMBOL(dev_add_offload);
499 
500 /**
501  *	__dev_remove_offload	 - remove offload handler
502  *	@po: packet offload declaration
503  *
504  *	Remove a protocol offload handler that was previously added to the
505  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
506  *	is removed from the kernel lists and can be freed or reused once this
507  *	function returns.
508  *
509  *      The packet type might still be in use by receivers
510  *	and must not be freed until after all the CPU's have gone
511  *	through a quiescent state.
512  */
513 static void __dev_remove_offload(struct packet_offload *po)
514 {
515 	struct list_head *head = &offload_base;
516 	struct packet_offload *po1;
517 
518 	spin_lock(&offload_lock);
519 
520 	list_for_each_entry(po1, head, list) {
521 		if (po == po1) {
522 			list_del_rcu(&po->list);
523 			goto out;
524 		}
525 	}
526 
527 	pr_warn("dev_remove_offload: %p not found\n", po);
528 out:
529 	spin_unlock(&offload_lock);
530 }
531 
532 /**
533  *	dev_remove_offload	 - remove packet offload handler
534  *	@po: packet offload declaration
535  *
536  *	Remove a packet offload handler that was previously added to the kernel
537  *	offload handlers by dev_add_offload(). The passed &offload_type is
538  *	removed from the kernel lists and can be freed or reused once this
539  *	function returns.
540  *
541  *	This call sleeps to guarantee that no CPU is looking at the packet
542  *	type after return.
543  */
544 void dev_remove_offload(struct packet_offload *po)
545 {
546 	__dev_remove_offload(po);
547 
548 	synchronize_net();
549 }
550 EXPORT_SYMBOL(dev_remove_offload);
551 
552 /******************************************************************************
553  *
554  *		      Device Boot-time Settings Routines
555  *
556  ******************************************************************************/
557 
558 /* Boot time configuration table */
559 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560 
561 /**
562  *	netdev_boot_setup_add	- add new setup entry
563  *	@name: name of the device
564  *	@map: configured settings for the device
565  *
566  *	Adds new setup entry to the dev_boot_setup list.  The function
567  *	returns 0 on error and 1 on success.  This is a generic routine to
568  *	all netdevices.
569  */
570 static int netdev_boot_setup_add(char *name, struct ifmap *map)
571 {
572 	struct netdev_boot_setup *s;
573 	int i;
574 
575 	s = dev_boot_setup;
576 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
577 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
578 			memset(s[i].name, 0, sizeof(s[i].name));
579 			strlcpy(s[i].name, name, IFNAMSIZ);
580 			memcpy(&s[i].map, map, sizeof(s[i].map));
581 			break;
582 		}
583 	}
584 
585 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
586 }
587 
588 /**
589  * netdev_boot_setup_check	- check boot time settings
590  * @dev: the netdevice
591  *
592  * Check boot time settings for the device.
593  * The found settings are set for the device to be used
594  * later in the device probing.
595  * Returns 0 if no settings found, 1 if they are.
596  */
597 int netdev_boot_setup_check(struct net_device *dev)
598 {
599 	struct netdev_boot_setup *s = dev_boot_setup;
600 	int i;
601 
602 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
603 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
604 		    !strcmp(dev->name, s[i].name)) {
605 			dev->irq = s[i].map.irq;
606 			dev->base_addr = s[i].map.base_addr;
607 			dev->mem_start = s[i].map.mem_start;
608 			dev->mem_end = s[i].map.mem_end;
609 			return 1;
610 		}
611 	}
612 	return 0;
613 }
614 EXPORT_SYMBOL(netdev_boot_setup_check);
615 
616 
617 /**
618  * netdev_boot_base	- get address from boot time settings
619  * @prefix: prefix for network device
620  * @unit: id for network device
621  *
622  * Check boot time settings for the base address of device.
623  * The found settings are set for the device to be used
624  * later in the device probing.
625  * Returns 0 if no settings found.
626  */
627 unsigned long netdev_boot_base(const char *prefix, int unit)
628 {
629 	const struct netdev_boot_setup *s = dev_boot_setup;
630 	char name[IFNAMSIZ];
631 	int i;
632 
633 	sprintf(name, "%s%d", prefix, unit);
634 
635 	/*
636 	 * If device already registered then return base of 1
637 	 * to indicate not to probe for this interface
638 	 */
639 	if (__dev_get_by_name(&init_net, name))
640 		return 1;
641 
642 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
643 		if (!strcmp(name, s[i].name))
644 			return s[i].map.base_addr;
645 	return 0;
646 }
647 
648 /*
649  * Saves at boot time configured settings for any netdevice.
650  */
651 int __init netdev_boot_setup(char *str)
652 {
653 	int ints[5];
654 	struct ifmap map;
655 
656 	str = get_options(str, ARRAY_SIZE(ints), ints);
657 	if (!str || !*str)
658 		return 0;
659 
660 	/* Save settings */
661 	memset(&map, 0, sizeof(map));
662 	if (ints[0] > 0)
663 		map.irq = ints[1];
664 	if (ints[0] > 1)
665 		map.base_addr = ints[2];
666 	if (ints[0] > 2)
667 		map.mem_start = ints[3];
668 	if (ints[0] > 3)
669 		map.mem_end = ints[4];
670 
671 	/* Add new entry to the list */
672 	return netdev_boot_setup_add(str, &map);
673 }
674 
675 __setup("netdev=", netdev_boot_setup);
676 
677 /*******************************************************************************
678  *
679  *			    Device Interface Subroutines
680  *
681  *******************************************************************************/
682 
683 /**
684  *	dev_get_iflink	- get 'iflink' value of a interface
685  *	@dev: targeted interface
686  *
687  *	Indicates the ifindex the interface is linked to.
688  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
689  */
690 
691 int dev_get_iflink(const struct net_device *dev)
692 {
693 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
694 		return dev->netdev_ops->ndo_get_iflink(dev);
695 
696 	return dev->ifindex;
697 }
698 EXPORT_SYMBOL(dev_get_iflink);
699 
700 /**
701  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
702  *	@dev: targeted interface
703  *	@skb: The packet.
704  *
705  *	For better visibility of tunnel traffic OVS needs to retrieve
706  *	egress tunnel information for a packet. Following API allows
707  *	user to get this info.
708  */
709 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
710 {
711 	struct ip_tunnel_info *info;
712 
713 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
714 		return -EINVAL;
715 
716 	info = skb_tunnel_info_unclone(skb);
717 	if (!info)
718 		return -ENOMEM;
719 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
720 		return -EINVAL;
721 
722 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
723 }
724 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725 
726 /**
727  *	__dev_get_by_name	- find a device by its name
728  *	@net: the applicable net namespace
729  *	@name: name to find
730  *
731  *	Find an interface by name. Must be called under RTNL semaphore
732  *	or @dev_base_lock. If the name is found a pointer to the device
733  *	is returned. If the name is not found then %NULL is returned. The
734  *	reference counters are not incremented so the caller must be
735  *	careful with locks.
736  */
737 
738 struct net_device *__dev_get_by_name(struct net *net, const char *name)
739 {
740 	struct net_device *dev;
741 	struct hlist_head *head = dev_name_hash(net, name);
742 
743 	hlist_for_each_entry(dev, head, name_hlist)
744 		if (!strncmp(dev->name, name, IFNAMSIZ))
745 			return dev;
746 
747 	return NULL;
748 }
749 EXPORT_SYMBOL(__dev_get_by_name);
750 
751 /**
752  * dev_get_by_name_rcu	- find a device by its name
753  * @net: the applicable net namespace
754  * @name: name to find
755  *
756  * Find an interface by name.
757  * If the name is found a pointer to the device is returned.
758  * If the name is not found then %NULL is returned.
759  * The reference counters are not incremented so the caller must be
760  * careful with locks. The caller must hold RCU lock.
761  */
762 
763 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
764 {
765 	struct net_device *dev;
766 	struct hlist_head *head = dev_name_hash(net, name);
767 
768 	hlist_for_each_entry_rcu(dev, head, name_hlist)
769 		if (!strncmp(dev->name, name, IFNAMSIZ))
770 			return dev;
771 
772 	return NULL;
773 }
774 EXPORT_SYMBOL(dev_get_by_name_rcu);
775 
776 /**
777  *	dev_get_by_name		- find a device by its name
778  *	@net: the applicable net namespace
779  *	@name: name to find
780  *
781  *	Find an interface by name. This can be called from any
782  *	context and does its own locking. The returned handle has
783  *	the usage count incremented and the caller must use dev_put() to
784  *	release it when it is no longer needed. %NULL is returned if no
785  *	matching device is found.
786  */
787 
788 struct net_device *dev_get_by_name(struct net *net, const char *name)
789 {
790 	struct net_device *dev;
791 
792 	rcu_read_lock();
793 	dev = dev_get_by_name_rcu(net, name);
794 	if (dev)
795 		dev_hold(dev);
796 	rcu_read_unlock();
797 	return dev;
798 }
799 EXPORT_SYMBOL(dev_get_by_name);
800 
801 /**
802  *	__dev_get_by_index - find a device by its ifindex
803  *	@net: the applicable net namespace
804  *	@ifindex: index of device
805  *
806  *	Search for an interface by index. Returns %NULL if the device
807  *	is not found or a pointer to the device. The device has not
808  *	had its reference counter increased so the caller must be careful
809  *	about locking. The caller must hold either the RTNL semaphore
810  *	or @dev_base_lock.
811  */
812 
813 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
814 {
815 	struct net_device *dev;
816 	struct hlist_head *head = dev_index_hash(net, ifindex);
817 
818 	hlist_for_each_entry(dev, head, index_hlist)
819 		if (dev->ifindex == ifindex)
820 			return dev;
821 
822 	return NULL;
823 }
824 EXPORT_SYMBOL(__dev_get_by_index);
825 
826 /**
827  *	dev_get_by_index_rcu - find a device by its ifindex
828  *	@net: the applicable net namespace
829  *	@ifindex: index of device
830  *
831  *	Search for an interface by index. Returns %NULL if the device
832  *	is not found or a pointer to the device. The device has not
833  *	had its reference counter increased so the caller must be careful
834  *	about locking. The caller must hold RCU lock.
835  */
836 
837 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
838 {
839 	struct net_device *dev;
840 	struct hlist_head *head = dev_index_hash(net, ifindex);
841 
842 	hlist_for_each_entry_rcu(dev, head, index_hlist)
843 		if (dev->ifindex == ifindex)
844 			return dev;
845 
846 	return NULL;
847 }
848 EXPORT_SYMBOL(dev_get_by_index_rcu);
849 
850 
851 /**
852  *	dev_get_by_index - find a device by its ifindex
853  *	@net: the applicable net namespace
854  *	@ifindex: index of device
855  *
856  *	Search for an interface by index. Returns NULL if the device
857  *	is not found or a pointer to the device. The device returned has
858  *	had a reference added and the pointer is safe until the user calls
859  *	dev_put to indicate they have finished with it.
860  */
861 
862 struct net_device *dev_get_by_index(struct net *net, int ifindex)
863 {
864 	struct net_device *dev;
865 
866 	rcu_read_lock();
867 	dev = dev_get_by_index_rcu(net, ifindex);
868 	if (dev)
869 		dev_hold(dev);
870 	rcu_read_unlock();
871 	return dev;
872 }
873 EXPORT_SYMBOL(dev_get_by_index);
874 
875 /**
876  *	dev_get_by_napi_id - find a device by napi_id
877  *	@napi_id: ID of the NAPI struct
878  *
879  *	Search for an interface by NAPI ID. Returns %NULL if the device
880  *	is not found or a pointer to the device. The device has not had
881  *	its reference counter increased so the caller must be careful
882  *	about locking. The caller must hold RCU lock.
883  */
884 
885 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
886 {
887 	struct napi_struct *napi;
888 
889 	WARN_ON_ONCE(!rcu_read_lock_held());
890 
891 	if (napi_id < MIN_NAPI_ID)
892 		return NULL;
893 
894 	napi = napi_by_id(napi_id);
895 
896 	return napi ? napi->dev : NULL;
897 }
898 EXPORT_SYMBOL(dev_get_by_napi_id);
899 
900 /**
901  *	netdev_get_name - get a netdevice name, knowing its ifindex.
902  *	@net: network namespace
903  *	@name: a pointer to the buffer where the name will be stored.
904  *	@ifindex: the ifindex of the interface to get the name from.
905  *
906  *	The use of raw_seqcount_begin() and cond_resched() before
907  *	retrying is required as we want to give the writers a chance
908  *	to complete when CONFIG_PREEMPT is not set.
909  */
910 int netdev_get_name(struct net *net, char *name, int ifindex)
911 {
912 	struct net_device *dev;
913 	unsigned int seq;
914 
915 retry:
916 	seq = raw_seqcount_begin(&devnet_rename_seq);
917 	rcu_read_lock();
918 	dev = dev_get_by_index_rcu(net, ifindex);
919 	if (!dev) {
920 		rcu_read_unlock();
921 		return -ENODEV;
922 	}
923 
924 	strcpy(name, dev->name);
925 	rcu_read_unlock();
926 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
927 		cond_resched();
928 		goto retry;
929 	}
930 
931 	return 0;
932 }
933 
934 /**
935  *	dev_getbyhwaddr_rcu - find a device by its hardware address
936  *	@net: the applicable net namespace
937  *	@type: media type of device
938  *	@ha: hardware address
939  *
940  *	Search for an interface by MAC address. Returns NULL if the device
941  *	is not found or a pointer to the device.
942  *	The caller must hold RCU or RTNL.
943  *	The returned device has not had its ref count increased
944  *	and the caller must therefore be careful about locking
945  *
946  */
947 
948 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
949 				       const char *ha)
950 {
951 	struct net_device *dev;
952 
953 	for_each_netdev_rcu(net, dev)
954 		if (dev->type == type &&
955 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
956 			return dev;
957 
958 	return NULL;
959 }
960 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
961 
962 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
963 {
964 	struct net_device *dev;
965 
966 	ASSERT_RTNL();
967 	for_each_netdev(net, dev)
968 		if (dev->type == type)
969 			return dev;
970 
971 	return NULL;
972 }
973 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
974 
975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976 {
977 	struct net_device *dev, *ret = NULL;
978 
979 	rcu_read_lock();
980 	for_each_netdev_rcu(net, dev)
981 		if (dev->type == type) {
982 			dev_hold(dev);
983 			ret = dev;
984 			break;
985 		}
986 	rcu_read_unlock();
987 	return ret;
988 }
989 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990 
991 /**
992  *	__dev_get_by_flags - find any device with given flags
993  *	@net: the applicable net namespace
994  *	@if_flags: IFF_* values
995  *	@mask: bitmask of bits in if_flags to check
996  *
997  *	Search for any interface with the given flags. Returns NULL if a device
998  *	is not found or a pointer to the device. Must be called inside
999  *	rtnl_lock(), and result refcount is unchanged.
1000  */
1001 
1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003 				      unsigned short mask)
1004 {
1005 	struct net_device *dev, *ret;
1006 
1007 	ASSERT_RTNL();
1008 
1009 	ret = NULL;
1010 	for_each_netdev(net, dev) {
1011 		if (((dev->flags ^ if_flags) & mask) == 0) {
1012 			ret = dev;
1013 			break;
1014 		}
1015 	}
1016 	return ret;
1017 }
1018 EXPORT_SYMBOL(__dev_get_by_flags);
1019 
1020 /**
1021  *	dev_valid_name - check if name is okay for network device
1022  *	@name: name string
1023  *
1024  *	Network device names need to be valid file names to
1025  *	to allow sysfs to work.  We also disallow any kind of
1026  *	whitespace.
1027  */
1028 bool dev_valid_name(const char *name)
1029 {
1030 	if (*name == '\0')
1031 		return false;
1032 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033 		return false;
1034 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1035 		return false;
1036 
1037 	while (*name) {
1038 		if (*name == '/' || *name == ':' || isspace(*name))
1039 			return false;
1040 		name++;
1041 	}
1042 	return true;
1043 }
1044 EXPORT_SYMBOL(dev_valid_name);
1045 
1046 /**
1047  *	__dev_alloc_name - allocate a name for a device
1048  *	@net: network namespace to allocate the device name in
1049  *	@name: name format string
1050  *	@buf:  scratch buffer and result name string
1051  *
1052  *	Passed a format string - eg "lt%d" it will try and find a suitable
1053  *	id. It scans list of devices to build up a free map, then chooses
1054  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1055  *	while allocating the name and adding the device in order to avoid
1056  *	duplicates.
1057  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058  *	Returns the number of the unit assigned or a negative errno code.
1059  */
1060 
1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062 {
1063 	int i = 0;
1064 	const char *p;
1065 	const int max_netdevices = 8*PAGE_SIZE;
1066 	unsigned long *inuse;
1067 	struct net_device *d;
1068 
1069 	if (!dev_valid_name(name))
1070 		return -EINVAL;
1071 
1072 	p = strchr(name, '%');
1073 	if (p) {
1074 		/*
1075 		 * Verify the string as this thing may have come from
1076 		 * the user.  There must be either one "%d" and no other "%"
1077 		 * characters.
1078 		 */
1079 		if (p[1] != 'd' || strchr(p + 2, '%'))
1080 			return -EINVAL;
1081 
1082 		/* Use one page as a bit array of possible slots */
1083 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1084 		if (!inuse)
1085 			return -ENOMEM;
1086 
1087 		for_each_netdev(net, d) {
1088 			if (!sscanf(d->name, name, &i))
1089 				continue;
1090 			if (i < 0 || i >= max_netdevices)
1091 				continue;
1092 
1093 			/*  avoid cases where sscanf is not exact inverse of printf */
1094 			snprintf(buf, IFNAMSIZ, name, i);
1095 			if (!strncmp(buf, d->name, IFNAMSIZ))
1096 				set_bit(i, inuse);
1097 		}
1098 
1099 		i = find_first_zero_bit(inuse, max_netdevices);
1100 		free_page((unsigned long) inuse);
1101 	}
1102 
1103 	snprintf(buf, IFNAMSIZ, name, i);
1104 	if (!__dev_get_by_name(net, buf))
1105 		return i;
1106 
1107 	/* It is possible to run out of possible slots
1108 	 * when the name is long and there isn't enough space left
1109 	 * for the digits, or if all bits are used.
1110 	 */
1111 	return -ENFILE;
1112 }
1113 
1114 static int dev_alloc_name_ns(struct net *net,
1115 			     struct net_device *dev,
1116 			     const char *name)
1117 {
1118 	char buf[IFNAMSIZ];
1119 	int ret;
1120 
1121 	BUG_ON(!net);
1122 	ret = __dev_alloc_name(net, name, buf);
1123 	if (ret >= 0)
1124 		strlcpy(dev->name, buf, IFNAMSIZ);
1125 	return ret;
1126 }
1127 
1128 /**
1129  *	dev_alloc_name - allocate a name for a device
1130  *	@dev: device
1131  *	@name: name format string
1132  *
1133  *	Passed a format string - eg "lt%d" it will try and find a suitable
1134  *	id. It scans list of devices to build up a free map, then chooses
1135  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1136  *	while allocating the name and adding the device in order to avoid
1137  *	duplicates.
1138  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1139  *	Returns the number of the unit assigned or a negative errno code.
1140  */
1141 
1142 int dev_alloc_name(struct net_device *dev, const char *name)
1143 {
1144 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1145 }
1146 EXPORT_SYMBOL(dev_alloc_name);
1147 
1148 int dev_get_valid_name(struct net *net, struct net_device *dev,
1149 		       const char *name)
1150 {
1151 	BUG_ON(!net);
1152 
1153 	if (!dev_valid_name(name))
1154 		return -EINVAL;
1155 
1156 	if (strchr(name, '%'))
1157 		return dev_alloc_name_ns(net, dev, name);
1158 	else if (__dev_get_by_name(net, name))
1159 		return -EEXIST;
1160 	else if (dev->name != name)
1161 		strlcpy(dev->name, name, IFNAMSIZ);
1162 
1163 	return 0;
1164 }
1165 EXPORT_SYMBOL(dev_get_valid_name);
1166 
1167 /**
1168  *	dev_change_name - change name of a device
1169  *	@dev: device
1170  *	@newname: name (or format string) must be at least IFNAMSIZ
1171  *
1172  *	Change name of a device, can pass format strings "eth%d".
1173  *	for wildcarding.
1174  */
1175 int dev_change_name(struct net_device *dev, const char *newname)
1176 {
1177 	unsigned char old_assign_type;
1178 	char oldname[IFNAMSIZ];
1179 	int err = 0;
1180 	int ret;
1181 	struct net *net;
1182 
1183 	ASSERT_RTNL();
1184 	BUG_ON(!dev_net(dev));
1185 
1186 	net = dev_net(dev);
1187 
1188 	/* Some auto-enslaved devices e.g. failover slaves are
1189 	 * special, as userspace might rename the device after
1190 	 * the interface had been brought up and running since
1191 	 * the point kernel initiated auto-enslavement. Allow
1192 	 * live name change even when these slave devices are
1193 	 * up and running.
1194 	 *
1195 	 * Typically, users of these auto-enslaving devices
1196 	 * don't actually care about slave name change, as
1197 	 * they are supposed to operate on master interface
1198 	 * directly.
1199 	 */
1200 	if (dev->flags & IFF_UP &&
1201 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1202 		return -EBUSY;
1203 
1204 	write_seqcount_begin(&devnet_rename_seq);
1205 
1206 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1207 		write_seqcount_end(&devnet_rename_seq);
1208 		return 0;
1209 	}
1210 
1211 	memcpy(oldname, dev->name, IFNAMSIZ);
1212 
1213 	err = dev_get_valid_name(net, dev, newname);
1214 	if (err < 0) {
1215 		write_seqcount_end(&devnet_rename_seq);
1216 		return err;
1217 	}
1218 
1219 	if (oldname[0] && !strchr(oldname, '%'))
1220 		netdev_info(dev, "renamed from %s\n", oldname);
1221 
1222 	old_assign_type = dev->name_assign_type;
1223 	dev->name_assign_type = NET_NAME_RENAMED;
1224 
1225 rollback:
1226 	ret = device_rename(&dev->dev, dev->name);
1227 	if (ret) {
1228 		memcpy(dev->name, oldname, IFNAMSIZ);
1229 		dev->name_assign_type = old_assign_type;
1230 		write_seqcount_end(&devnet_rename_seq);
1231 		return ret;
1232 	}
1233 
1234 	write_seqcount_end(&devnet_rename_seq);
1235 
1236 	netdev_adjacent_rename_links(dev, oldname);
1237 
1238 	write_lock_bh(&dev_base_lock);
1239 	hlist_del_rcu(&dev->name_hlist);
1240 	write_unlock_bh(&dev_base_lock);
1241 
1242 	synchronize_rcu();
1243 
1244 	write_lock_bh(&dev_base_lock);
1245 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1246 	write_unlock_bh(&dev_base_lock);
1247 
1248 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1249 	ret = notifier_to_errno(ret);
1250 
1251 	if (ret) {
1252 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1253 		if (err >= 0) {
1254 			err = ret;
1255 			write_seqcount_begin(&devnet_rename_seq);
1256 			memcpy(dev->name, oldname, IFNAMSIZ);
1257 			memcpy(oldname, newname, IFNAMSIZ);
1258 			dev->name_assign_type = old_assign_type;
1259 			old_assign_type = NET_NAME_RENAMED;
1260 			goto rollback;
1261 		} else {
1262 			pr_err("%s: name change rollback failed: %d\n",
1263 			       dev->name, ret);
1264 		}
1265 	}
1266 
1267 	return err;
1268 }
1269 
1270 /**
1271  *	dev_set_alias - change ifalias of a device
1272  *	@dev: device
1273  *	@alias: name up to IFALIASZ
1274  *	@len: limit of bytes to copy from info
1275  *
1276  *	Set ifalias for a device,
1277  */
1278 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1279 {
1280 	struct dev_ifalias *new_alias = NULL;
1281 
1282 	if (len >= IFALIASZ)
1283 		return -EINVAL;
1284 
1285 	if (len) {
1286 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1287 		if (!new_alias)
1288 			return -ENOMEM;
1289 
1290 		memcpy(new_alias->ifalias, alias, len);
1291 		new_alias->ifalias[len] = 0;
1292 	}
1293 
1294 	mutex_lock(&ifalias_mutex);
1295 	rcu_swap_protected(dev->ifalias, new_alias,
1296 			   mutex_is_locked(&ifalias_mutex));
1297 	mutex_unlock(&ifalias_mutex);
1298 
1299 	if (new_alias)
1300 		kfree_rcu(new_alias, rcuhead);
1301 
1302 	return len;
1303 }
1304 EXPORT_SYMBOL(dev_set_alias);
1305 
1306 /**
1307  *	dev_get_alias - get ifalias of a device
1308  *	@dev: device
1309  *	@name: buffer to store name of ifalias
1310  *	@len: size of buffer
1311  *
1312  *	get ifalias for a device.  Caller must make sure dev cannot go
1313  *	away,  e.g. rcu read lock or own a reference count to device.
1314  */
1315 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1316 {
1317 	const struct dev_ifalias *alias;
1318 	int ret = 0;
1319 
1320 	rcu_read_lock();
1321 	alias = rcu_dereference(dev->ifalias);
1322 	if (alias)
1323 		ret = snprintf(name, len, "%s", alias->ifalias);
1324 	rcu_read_unlock();
1325 
1326 	return ret;
1327 }
1328 
1329 /**
1330  *	netdev_features_change - device changes features
1331  *	@dev: device to cause notification
1332  *
1333  *	Called to indicate a device has changed features.
1334  */
1335 void netdev_features_change(struct net_device *dev)
1336 {
1337 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1338 }
1339 EXPORT_SYMBOL(netdev_features_change);
1340 
1341 /**
1342  *	netdev_state_change - device changes state
1343  *	@dev: device to cause notification
1344  *
1345  *	Called to indicate a device has changed state. This function calls
1346  *	the notifier chains for netdev_chain and sends a NEWLINK message
1347  *	to the routing socket.
1348  */
1349 void netdev_state_change(struct net_device *dev)
1350 {
1351 	if (dev->flags & IFF_UP) {
1352 		struct netdev_notifier_change_info change_info = {
1353 			.info.dev = dev,
1354 		};
1355 
1356 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1357 					      &change_info.info);
1358 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1359 	}
1360 }
1361 EXPORT_SYMBOL(netdev_state_change);
1362 
1363 /**
1364  * netdev_notify_peers - notify network peers about existence of @dev
1365  * @dev: network device
1366  *
1367  * Generate traffic such that interested network peers are aware of
1368  * @dev, such as by generating a gratuitous ARP. This may be used when
1369  * a device wants to inform the rest of the network about some sort of
1370  * reconfiguration such as a failover event or virtual machine
1371  * migration.
1372  */
1373 void netdev_notify_peers(struct net_device *dev)
1374 {
1375 	rtnl_lock();
1376 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1377 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1378 	rtnl_unlock();
1379 }
1380 EXPORT_SYMBOL(netdev_notify_peers);
1381 
1382 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1383 {
1384 	const struct net_device_ops *ops = dev->netdev_ops;
1385 	int ret;
1386 
1387 	ASSERT_RTNL();
1388 
1389 	if (!netif_device_present(dev))
1390 		return -ENODEV;
1391 
1392 	/* Block netpoll from trying to do any rx path servicing.
1393 	 * If we don't do this there is a chance ndo_poll_controller
1394 	 * or ndo_poll may be running while we open the device
1395 	 */
1396 	netpoll_poll_disable(dev);
1397 
1398 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1399 	ret = notifier_to_errno(ret);
1400 	if (ret)
1401 		return ret;
1402 
1403 	set_bit(__LINK_STATE_START, &dev->state);
1404 
1405 	if (ops->ndo_validate_addr)
1406 		ret = ops->ndo_validate_addr(dev);
1407 
1408 	if (!ret && ops->ndo_open)
1409 		ret = ops->ndo_open(dev);
1410 
1411 	netpoll_poll_enable(dev);
1412 
1413 	if (ret)
1414 		clear_bit(__LINK_STATE_START, &dev->state);
1415 	else {
1416 		dev->flags |= IFF_UP;
1417 		dev_set_rx_mode(dev);
1418 		dev_activate(dev);
1419 		add_device_randomness(dev->dev_addr, dev->addr_len);
1420 	}
1421 
1422 	return ret;
1423 }
1424 
1425 /**
1426  *	dev_open	- prepare an interface for use.
1427  *	@dev: device to open
1428  *	@extack: netlink extended ack
1429  *
1430  *	Takes a device from down to up state. The device's private open
1431  *	function is invoked and then the multicast lists are loaded. Finally
1432  *	the device is moved into the up state and a %NETDEV_UP message is
1433  *	sent to the netdev notifier chain.
1434  *
1435  *	Calling this function on an active interface is a nop. On a failure
1436  *	a negative errno code is returned.
1437  */
1438 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1439 {
1440 	int ret;
1441 
1442 	if (dev->flags & IFF_UP)
1443 		return 0;
1444 
1445 	ret = __dev_open(dev, extack);
1446 	if (ret < 0)
1447 		return ret;
1448 
1449 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450 	call_netdevice_notifiers(NETDEV_UP, dev);
1451 
1452 	return ret;
1453 }
1454 EXPORT_SYMBOL(dev_open);
1455 
1456 static void __dev_close_many(struct list_head *head)
1457 {
1458 	struct net_device *dev;
1459 
1460 	ASSERT_RTNL();
1461 	might_sleep();
1462 
1463 	list_for_each_entry(dev, head, close_list) {
1464 		/* Temporarily disable netpoll until the interface is down */
1465 		netpoll_poll_disable(dev);
1466 
1467 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1468 
1469 		clear_bit(__LINK_STATE_START, &dev->state);
1470 
1471 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1472 		 * can be even on different cpu. So just clear netif_running().
1473 		 *
1474 		 * dev->stop() will invoke napi_disable() on all of it's
1475 		 * napi_struct instances on this device.
1476 		 */
1477 		smp_mb__after_atomic(); /* Commit netif_running(). */
1478 	}
1479 
1480 	dev_deactivate_many(head);
1481 
1482 	list_for_each_entry(dev, head, close_list) {
1483 		const struct net_device_ops *ops = dev->netdev_ops;
1484 
1485 		/*
1486 		 *	Call the device specific close. This cannot fail.
1487 		 *	Only if device is UP
1488 		 *
1489 		 *	We allow it to be called even after a DETACH hot-plug
1490 		 *	event.
1491 		 */
1492 		if (ops->ndo_stop)
1493 			ops->ndo_stop(dev);
1494 
1495 		dev->flags &= ~IFF_UP;
1496 		netpoll_poll_enable(dev);
1497 	}
1498 }
1499 
1500 static void __dev_close(struct net_device *dev)
1501 {
1502 	LIST_HEAD(single);
1503 
1504 	list_add(&dev->close_list, &single);
1505 	__dev_close_many(&single);
1506 	list_del(&single);
1507 }
1508 
1509 void dev_close_many(struct list_head *head, bool unlink)
1510 {
1511 	struct net_device *dev, *tmp;
1512 
1513 	/* Remove the devices that don't need to be closed */
1514 	list_for_each_entry_safe(dev, tmp, head, close_list)
1515 		if (!(dev->flags & IFF_UP))
1516 			list_del_init(&dev->close_list);
1517 
1518 	__dev_close_many(head);
1519 
1520 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1521 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1522 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1523 		if (unlink)
1524 			list_del_init(&dev->close_list);
1525 	}
1526 }
1527 EXPORT_SYMBOL(dev_close_many);
1528 
1529 /**
1530  *	dev_close - shutdown an interface.
1531  *	@dev: device to shutdown
1532  *
1533  *	This function moves an active device into down state. A
1534  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1535  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1536  *	chain.
1537  */
1538 void dev_close(struct net_device *dev)
1539 {
1540 	if (dev->flags & IFF_UP) {
1541 		LIST_HEAD(single);
1542 
1543 		list_add(&dev->close_list, &single);
1544 		dev_close_many(&single, true);
1545 		list_del(&single);
1546 	}
1547 }
1548 EXPORT_SYMBOL(dev_close);
1549 
1550 
1551 /**
1552  *	dev_disable_lro - disable Large Receive Offload on a device
1553  *	@dev: device
1554  *
1555  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1556  *	called under RTNL.  This is needed if received packets may be
1557  *	forwarded to another interface.
1558  */
1559 void dev_disable_lro(struct net_device *dev)
1560 {
1561 	struct net_device *lower_dev;
1562 	struct list_head *iter;
1563 
1564 	dev->wanted_features &= ~NETIF_F_LRO;
1565 	netdev_update_features(dev);
1566 
1567 	if (unlikely(dev->features & NETIF_F_LRO))
1568 		netdev_WARN(dev, "failed to disable LRO!\n");
1569 
1570 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1571 		dev_disable_lro(lower_dev);
1572 }
1573 EXPORT_SYMBOL(dev_disable_lro);
1574 
1575 /**
1576  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1577  *	@dev: device
1578  *
1579  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1580  *	called under RTNL.  This is needed if Generic XDP is installed on
1581  *	the device.
1582  */
1583 static void dev_disable_gro_hw(struct net_device *dev)
1584 {
1585 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1586 	netdev_update_features(dev);
1587 
1588 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1589 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1590 }
1591 
1592 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1593 {
1594 #define N(val) 						\
1595 	case NETDEV_##val:				\
1596 		return "NETDEV_" __stringify(val);
1597 	switch (cmd) {
1598 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1599 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1600 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1601 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1602 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1603 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1604 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1605 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1606 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1607 	N(PRE_CHANGEADDR)
1608 	}
1609 #undef N
1610 	return "UNKNOWN_NETDEV_EVENT";
1611 }
1612 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1613 
1614 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1615 				   struct net_device *dev)
1616 {
1617 	struct netdev_notifier_info info = {
1618 		.dev = dev,
1619 	};
1620 
1621 	return nb->notifier_call(nb, val, &info);
1622 }
1623 
1624 static int dev_boot_phase = 1;
1625 
1626 /**
1627  * register_netdevice_notifier - register a network notifier block
1628  * @nb: notifier
1629  *
1630  * Register a notifier to be called when network device events occur.
1631  * The notifier passed is linked into the kernel structures and must
1632  * not be reused until it has been unregistered. A negative errno code
1633  * is returned on a failure.
1634  *
1635  * When registered all registration and up events are replayed
1636  * to the new notifier to allow device to have a race free
1637  * view of the network device list.
1638  */
1639 
1640 int register_netdevice_notifier(struct notifier_block *nb)
1641 {
1642 	struct net_device *dev;
1643 	struct net_device *last;
1644 	struct net *net;
1645 	int err;
1646 
1647 	/* Close race with setup_net() and cleanup_net() */
1648 	down_write(&pernet_ops_rwsem);
1649 	rtnl_lock();
1650 	err = raw_notifier_chain_register(&netdev_chain, nb);
1651 	if (err)
1652 		goto unlock;
1653 	if (dev_boot_phase)
1654 		goto unlock;
1655 	for_each_net(net) {
1656 		for_each_netdev(net, dev) {
1657 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1658 			err = notifier_to_errno(err);
1659 			if (err)
1660 				goto rollback;
1661 
1662 			if (!(dev->flags & IFF_UP))
1663 				continue;
1664 
1665 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1666 		}
1667 	}
1668 
1669 unlock:
1670 	rtnl_unlock();
1671 	up_write(&pernet_ops_rwsem);
1672 	return err;
1673 
1674 rollback:
1675 	last = dev;
1676 	for_each_net(net) {
1677 		for_each_netdev(net, dev) {
1678 			if (dev == last)
1679 				goto outroll;
1680 
1681 			if (dev->flags & IFF_UP) {
1682 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1683 							dev);
1684 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1685 			}
1686 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1687 		}
1688 	}
1689 
1690 outroll:
1691 	raw_notifier_chain_unregister(&netdev_chain, nb);
1692 	goto unlock;
1693 }
1694 EXPORT_SYMBOL(register_netdevice_notifier);
1695 
1696 /**
1697  * unregister_netdevice_notifier - unregister a network notifier block
1698  * @nb: notifier
1699  *
1700  * Unregister a notifier previously registered by
1701  * register_netdevice_notifier(). The notifier is unlinked into the
1702  * kernel structures and may then be reused. A negative errno code
1703  * is returned on a failure.
1704  *
1705  * After unregistering unregister and down device events are synthesized
1706  * for all devices on the device list to the removed notifier to remove
1707  * the need for special case cleanup code.
1708  */
1709 
1710 int unregister_netdevice_notifier(struct notifier_block *nb)
1711 {
1712 	struct net_device *dev;
1713 	struct net *net;
1714 	int err;
1715 
1716 	/* Close race with setup_net() and cleanup_net() */
1717 	down_write(&pernet_ops_rwsem);
1718 	rtnl_lock();
1719 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1720 	if (err)
1721 		goto unlock;
1722 
1723 	for_each_net(net) {
1724 		for_each_netdev(net, dev) {
1725 			if (dev->flags & IFF_UP) {
1726 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727 							dev);
1728 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1729 			}
1730 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731 		}
1732 	}
1733 unlock:
1734 	rtnl_unlock();
1735 	up_write(&pernet_ops_rwsem);
1736 	return err;
1737 }
1738 EXPORT_SYMBOL(unregister_netdevice_notifier);
1739 
1740 /**
1741  *	call_netdevice_notifiers_info - call all network notifier blocks
1742  *	@val: value passed unmodified to notifier function
1743  *	@info: notifier information data
1744  *
1745  *	Call all network notifier blocks.  Parameters and return value
1746  *	are as for raw_notifier_call_chain().
1747  */
1748 
1749 static int call_netdevice_notifiers_info(unsigned long val,
1750 					 struct netdev_notifier_info *info)
1751 {
1752 	ASSERT_RTNL();
1753 	return raw_notifier_call_chain(&netdev_chain, val, info);
1754 }
1755 
1756 static int call_netdevice_notifiers_extack(unsigned long val,
1757 					   struct net_device *dev,
1758 					   struct netlink_ext_ack *extack)
1759 {
1760 	struct netdev_notifier_info info = {
1761 		.dev = dev,
1762 		.extack = extack,
1763 	};
1764 
1765 	return call_netdevice_notifiers_info(val, &info);
1766 }
1767 
1768 /**
1769  *	call_netdevice_notifiers - call all network notifier blocks
1770  *      @val: value passed unmodified to notifier function
1771  *      @dev: net_device pointer passed unmodified to notifier function
1772  *
1773  *	Call all network notifier blocks.  Parameters and return value
1774  *	are as for raw_notifier_call_chain().
1775  */
1776 
1777 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1778 {
1779 	return call_netdevice_notifiers_extack(val, dev, NULL);
1780 }
1781 EXPORT_SYMBOL(call_netdevice_notifiers);
1782 
1783 /**
1784  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1785  *	@val: value passed unmodified to notifier function
1786  *	@dev: net_device pointer passed unmodified to notifier function
1787  *	@arg: additional u32 argument passed to the notifier function
1788  *
1789  *	Call all network notifier blocks.  Parameters and return value
1790  *	are as for raw_notifier_call_chain().
1791  */
1792 static int call_netdevice_notifiers_mtu(unsigned long val,
1793 					struct net_device *dev, u32 arg)
1794 {
1795 	struct netdev_notifier_info_ext info = {
1796 		.info.dev = dev,
1797 		.ext.mtu = arg,
1798 	};
1799 
1800 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1801 
1802 	return call_netdevice_notifiers_info(val, &info.info);
1803 }
1804 
1805 #ifdef CONFIG_NET_INGRESS
1806 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1807 
1808 void net_inc_ingress_queue(void)
1809 {
1810 	static_branch_inc(&ingress_needed_key);
1811 }
1812 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1813 
1814 void net_dec_ingress_queue(void)
1815 {
1816 	static_branch_dec(&ingress_needed_key);
1817 }
1818 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1819 #endif
1820 
1821 #ifdef CONFIG_NET_EGRESS
1822 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1823 
1824 void net_inc_egress_queue(void)
1825 {
1826 	static_branch_inc(&egress_needed_key);
1827 }
1828 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1829 
1830 void net_dec_egress_queue(void)
1831 {
1832 	static_branch_dec(&egress_needed_key);
1833 }
1834 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1835 #endif
1836 
1837 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1838 #ifdef CONFIG_JUMP_LABEL
1839 static atomic_t netstamp_needed_deferred;
1840 static atomic_t netstamp_wanted;
1841 static void netstamp_clear(struct work_struct *work)
1842 {
1843 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1844 	int wanted;
1845 
1846 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1847 	if (wanted > 0)
1848 		static_branch_enable(&netstamp_needed_key);
1849 	else
1850 		static_branch_disable(&netstamp_needed_key);
1851 }
1852 static DECLARE_WORK(netstamp_work, netstamp_clear);
1853 #endif
1854 
1855 void net_enable_timestamp(void)
1856 {
1857 #ifdef CONFIG_JUMP_LABEL
1858 	int wanted;
1859 
1860 	while (1) {
1861 		wanted = atomic_read(&netstamp_wanted);
1862 		if (wanted <= 0)
1863 			break;
1864 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1865 			return;
1866 	}
1867 	atomic_inc(&netstamp_needed_deferred);
1868 	schedule_work(&netstamp_work);
1869 #else
1870 	static_branch_inc(&netstamp_needed_key);
1871 #endif
1872 }
1873 EXPORT_SYMBOL(net_enable_timestamp);
1874 
1875 void net_disable_timestamp(void)
1876 {
1877 #ifdef CONFIG_JUMP_LABEL
1878 	int wanted;
1879 
1880 	while (1) {
1881 		wanted = atomic_read(&netstamp_wanted);
1882 		if (wanted <= 1)
1883 			break;
1884 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1885 			return;
1886 	}
1887 	atomic_dec(&netstamp_needed_deferred);
1888 	schedule_work(&netstamp_work);
1889 #else
1890 	static_branch_dec(&netstamp_needed_key);
1891 #endif
1892 }
1893 EXPORT_SYMBOL(net_disable_timestamp);
1894 
1895 static inline void net_timestamp_set(struct sk_buff *skb)
1896 {
1897 	skb->tstamp = 0;
1898 	if (static_branch_unlikely(&netstamp_needed_key))
1899 		__net_timestamp(skb);
1900 }
1901 
1902 #define net_timestamp_check(COND, SKB)				\
1903 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1904 		if ((COND) && !(SKB)->tstamp)			\
1905 			__net_timestamp(SKB);			\
1906 	}							\
1907 
1908 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1909 {
1910 	unsigned int len;
1911 
1912 	if (!(dev->flags & IFF_UP))
1913 		return false;
1914 
1915 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1916 	if (skb->len <= len)
1917 		return true;
1918 
1919 	/* if TSO is enabled, we don't care about the length as the packet
1920 	 * could be forwarded without being segmented before
1921 	 */
1922 	if (skb_is_gso(skb))
1923 		return true;
1924 
1925 	return false;
1926 }
1927 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1928 
1929 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1930 {
1931 	int ret = ____dev_forward_skb(dev, skb);
1932 
1933 	if (likely(!ret)) {
1934 		skb->protocol = eth_type_trans(skb, dev);
1935 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1936 	}
1937 
1938 	return ret;
1939 }
1940 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1941 
1942 /**
1943  * dev_forward_skb - loopback an skb to another netif
1944  *
1945  * @dev: destination network device
1946  * @skb: buffer to forward
1947  *
1948  * return values:
1949  *	NET_RX_SUCCESS	(no congestion)
1950  *	NET_RX_DROP     (packet was dropped, but freed)
1951  *
1952  * dev_forward_skb can be used for injecting an skb from the
1953  * start_xmit function of one device into the receive queue
1954  * of another device.
1955  *
1956  * The receiving device may be in another namespace, so
1957  * we have to clear all information in the skb that could
1958  * impact namespace isolation.
1959  */
1960 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1961 {
1962 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1963 }
1964 EXPORT_SYMBOL_GPL(dev_forward_skb);
1965 
1966 static inline int deliver_skb(struct sk_buff *skb,
1967 			      struct packet_type *pt_prev,
1968 			      struct net_device *orig_dev)
1969 {
1970 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1971 		return -ENOMEM;
1972 	refcount_inc(&skb->users);
1973 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1974 }
1975 
1976 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1977 					  struct packet_type **pt,
1978 					  struct net_device *orig_dev,
1979 					  __be16 type,
1980 					  struct list_head *ptype_list)
1981 {
1982 	struct packet_type *ptype, *pt_prev = *pt;
1983 
1984 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1985 		if (ptype->type != type)
1986 			continue;
1987 		if (pt_prev)
1988 			deliver_skb(skb, pt_prev, orig_dev);
1989 		pt_prev = ptype;
1990 	}
1991 	*pt = pt_prev;
1992 }
1993 
1994 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1995 {
1996 	if (!ptype->af_packet_priv || !skb->sk)
1997 		return false;
1998 
1999 	if (ptype->id_match)
2000 		return ptype->id_match(ptype, skb->sk);
2001 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2002 		return true;
2003 
2004 	return false;
2005 }
2006 
2007 /**
2008  * dev_nit_active - return true if any network interface taps are in use
2009  *
2010  * @dev: network device to check for the presence of taps
2011  */
2012 bool dev_nit_active(struct net_device *dev)
2013 {
2014 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2015 }
2016 EXPORT_SYMBOL_GPL(dev_nit_active);
2017 
2018 /*
2019  *	Support routine. Sends outgoing frames to any network
2020  *	taps currently in use.
2021  */
2022 
2023 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2024 {
2025 	struct packet_type *ptype;
2026 	struct sk_buff *skb2 = NULL;
2027 	struct packet_type *pt_prev = NULL;
2028 	struct list_head *ptype_list = &ptype_all;
2029 
2030 	rcu_read_lock();
2031 again:
2032 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2033 		if (ptype->ignore_outgoing)
2034 			continue;
2035 
2036 		/* Never send packets back to the socket
2037 		 * they originated from - MvS (miquels@drinkel.ow.org)
2038 		 */
2039 		if (skb_loop_sk(ptype, skb))
2040 			continue;
2041 
2042 		if (pt_prev) {
2043 			deliver_skb(skb2, pt_prev, skb->dev);
2044 			pt_prev = ptype;
2045 			continue;
2046 		}
2047 
2048 		/* need to clone skb, done only once */
2049 		skb2 = skb_clone(skb, GFP_ATOMIC);
2050 		if (!skb2)
2051 			goto out_unlock;
2052 
2053 		net_timestamp_set(skb2);
2054 
2055 		/* skb->nh should be correctly
2056 		 * set by sender, so that the second statement is
2057 		 * just protection against buggy protocols.
2058 		 */
2059 		skb_reset_mac_header(skb2);
2060 
2061 		if (skb_network_header(skb2) < skb2->data ||
2062 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2063 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2064 					     ntohs(skb2->protocol),
2065 					     dev->name);
2066 			skb_reset_network_header(skb2);
2067 		}
2068 
2069 		skb2->transport_header = skb2->network_header;
2070 		skb2->pkt_type = PACKET_OUTGOING;
2071 		pt_prev = ptype;
2072 	}
2073 
2074 	if (ptype_list == &ptype_all) {
2075 		ptype_list = &dev->ptype_all;
2076 		goto again;
2077 	}
2078 out_unlock:
2079 	if (pt_prev) {
2080 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2081 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2082 		else
2083 			kfree_skb(skb2);
2084 	}
2085 	rcu_read_unlock();
2086 }
2087 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2088 
2089 /**
2090  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2091  * @dev: Network device
2092  * @txq: number of queues available
2093  *
2094  * If real_num_tx_queues is changed the tc mappings may no longer be
2095  * valid. To resolve this verify the tc mapping remains valid and if
2096  * not NULL the mapping. With no priorities mapping to this
2097  * offset/count pair it will no longer be used. In the worst case TC0
2098  * is invalid nothing can be done so disable priority mappings. If is
2099  * expected that drivers will fix this mapping if they can before
2100  * calling netif_set_real_num_tx_queues.
2101  */
2102 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2103 {
2104 	int i;
2105 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2106 
2107 	/* If TC0 is invalidated disable TC mapping */
2108 	if (tc->offset + tc->count > txq) {
2109 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2110 		dev->num_tc = 0;
2111 		return;
2112 	}
2113 
2114 	/* Invalidated prio to tc mappings set to TC0 */
2115 	for (i = 1; i < TC_BITMASK + 1; i++) {
2116 		int q = netdev_get_prio_tc_map(dev, i);
2117 
2118 		tc = &dev->tc_to_txq[q];
2119 		if (tc->offset + tc->count > txq) {
2120 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2121 				i, q);
2122 			netdev_set_prio_tc_map(dev, i, 0);
2123 		}
2124 	}
2125 }
2126 
2127 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2128 {
2129 	if (dev->num_tc) {
2130 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2131 		int i;
2132 
2133 		/* walk through the TCs and see if it falls into any of them */
2134 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2135 			if ((txq - tc->offset) < tc->count)
2136 				return i;
2137 		}
2138 
2139 		/* didn't find it, just return -1 to indicate no match */
2140 		return -1;
2141 	}
2142 
2143 	return 0;
2144 }
2145 EXPORT_SYMBOL(netdev_txq_to_tc);
2146 
2147 #ifdef CONFIG_XPS
2148 struct static_key xps_needed __read_mostly;
2149 EXPORT_SYMBOL(xps_needed);
2150 struct static_key xps_rxqs_needed __read_mostly;
2151 EXPORT_SYMBOL(xps_rxqs_needed);
2152 static DEFINE_MUTEX(xps_map_mutex);
2153 #define xmap_dereference(P)		\
2154 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2155 
2156 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2157 			     int tci, u16 index)
2158 {
2159 	struct xps_map *map = NULL;
2160 	int pos;
2161 
2162 	if (dev_maps)
2163 		map = xmap_dereference(dev_maps->attr_map[tci]);
2164 	if (!map)
2165 		return false;
2166 
2167 	for (pos = map->len; pos--;) {
2168 		if (map->queues[pos] != index)
2169 			continue;
2170 
2171 		if (map->len > 1) {
2172 			map->queues[pos] = map->queues[--map->len];
2173 			break;
2174 		}
2175 
2176 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2177 		kfree_rcu(map, rcu);
2178 		return false;
2179 	}
2180 
2181 	return true;
2182 }
2183 
2184 static bool remove_xps_queue_cpu(struct net_device *dev,
2185 				 struct xps_dev_maps *dev_maps,
2186 				 int cpu, u16 offset, u16 count)
2187 {
2188 	int num_tc = dev->num_tc ? : 1;
2189 	bool active = false;
2190 	int tci;
2191 
2192 	for (tci = cpu * num_tc; num_tc--; tci++) {
2193 		int i, j;
2194 
2195 		for (i = count, j = offset; i--; j++) {
2196 			if (!remove_xps_queue(dev_maps, tci, j))
2197 				break;
2198 		}
2199 
2200 		active |= i < 0;
2201 	}
2202 
2203 	return active;
2204 }
2205 
2206 static void reset_xps_maps(struct net_device *dev,
2207 			   struct xps_dev_maps *dev_maps,
2208 			   bool is_rxqs_map)
2209 {
2210 	if (is_rxqs_map) {
2211 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2212 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2213 	} else {
2214 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2215 	}
2216 	static_key_slow_dec_cpuslocked(&xps_needed);
2217 	kfree_rcu(dev_maps, rcu);
2218 }
2219 
2220 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2221 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2222 			   u16 offset, u16 count, bool is_rxqs_map)
2223 {
2224 	bool active = false;
2225 	int i, j;
2226 
2227 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2228 	     j < nr_ids;)
2229 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2230 					       count);
2231 	if (!active)
2232 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2233 
2234 	if (!is_rxqs_map) {
2235 		for (i = offset + (count - 1); count--; i--) {
2236 			netdev_queue_numa_node_write(
2237 				netdev_get_tx_queue(dev, i),
2238 				NUMA_NO_NODE);
2239 		}
2240 	}
2241 }
2242 
2243 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2244 				   u16 count)
2245 {
2246 	const unsigned long *possible_mask = NULL;
2247 	struct xps_dev_maps *dev_maps;
2248 	unsigned int nr_ids;
2249 
2250 	if (!static_key_false(&xps_needed))
2251 		return;
2252 
2253 	cpus_read_lock();
2254 	mutex_lock(&xps_map_mutex);
2255 
2256 	if (static_key_false(&xps_rxqs_needed)) {
2257 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2258 		if (dev_maps) {
2259 			nr_ids = dev->num_rx_queues;
2260 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2261 				       offset, count, true);
2262 		}
2263 	}
2264 
2265 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2266 	if (!dev_maps)
2267 		goto out_no_maps;
2268 
2269 	if (num_possible_cpus() > 1)
2270 		possible_mask = cpumask_bits(cpu_possible_mask);
2271 	nr_ids = nr_cpu_ids;
2272 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2273 		       false);
2274 
2275 out_no_maps:
2276 	mutex_unlock(&xps_map_mutex);
2277 	cpus_read_unlock();
2278 }
2279 
2280 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2281 {
2282 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2283 }
2284 
2285 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2286 				      u16 index, bool is_rxqs_map)
2287 {
2288 	struct xps_map *new_map;
2289 	int alloc_len = XPS_MIN_MAP_ALLOC;
2290 	int i, pos;
2291 
2292 	for (pos = 0; map && pos < map->len; pos++) {
2293 		if (map->queues[pos] != index)
2294 			continue;
2295 		return map;
2296 	}
2297 
2298 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2299 	if (map) {
2300 		if (pos < map->alloc_len)
2301 			return map;
2302 
2303 		alloc_len = map->alloc_len * 2;
2304 	}
2305 
2306 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2307 	 *  map
2308 	 */
2309 	if (is_rxqs_map)
2310 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2311 	else
2312 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2313 				       cpu_to_node(attr_index));
2314 	if (!new_map)
2315 		return NULL;
2316 
2317 	for (i = 0; i < pos; i++)
2318 		new_map->queues[i] = map->queues[i];
2319 	new_map->alloc_len = alloc_len;
2320 	new_map->len = pos;
2321 
2322 	return new_map;
2323 }
2324 
2325 /* Must be called under cpus_read_lock */
2326 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2327 			  u16 index, bool is_rxqs_map)
2328 {
2329 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2330 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2331 	int i, j, tci, numa_node_id = -2;
2332 	int maps_sz, num_tc = 1, tc = 0;
2333 	struct xps_map *map, *new_map;
2334 	bool active = false;
2335 	unsigned int nr_ids;
2336 
2337 	if (dev->num_tc) {
2338 		/* Do not allow XPS on subordinate device directly */
2339 		num_tc = dev->num_tc;
2340 		if (num_tc < 0)
2341 			return -EINVAL;
2342 
2343 		/* If queue belongs to subordinate dev use its map */
2344 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2345 
2346 		tc = netdev_txq_to_tc(dev, index);
2347 		if (tc < 0)
2348 			return -EINVAL;
2349 	}
2350 
2351 	mutex_lock(&xps_map_mutex);
2352 	if (is_rxqs_map) {
2353 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2354 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2355 		nr_ids = dev->num_rx_queues;
2356 	} else {
2357 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2358 		if (num_possible_cpus() > 1) {
2359 			online_mask = cpumask_bits(cpu_online_mask);
2360 			possible_mask = cpumask_bits(cpu_possible_mask);
2361 		}
2362 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2363 		nr_ids = nr_cpu_ids;
2364 	}
2365 
2366 	if (maps_sz < L1_CACHE_BYTES)
2367 		maps_sz = L1_CACHE_BYTES;
2368 
2369 	/* allocate memory for queue storage */
2370 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2371 	     j < nr_ids;) {
2372 		if (!new_dev_maps)
2373 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2374 		if (!new_dev_maps) {
2375 			mutex_unlock(&xps_map_mutex);
2376 			return -ENOMEM;
2377 		}
2378 
2379 		tci = j * num_tc + tc;
2380 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2381 				 NULL;
2382 
2383 		map = expand_xps_map(map, j, index, is_rxqs_map);
2384 		if (!map)
2385 			goto error;
2386 
2387 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2388 	}
2389 
2390 	if (!new_dev_maps)
2391 		goto out_no_new_maps;
2392 
2393 	if (!dev_maps) {
2394 		/* Increment static keys at most once per type */
2395 		static_key_slow_inc_cpuslocked(&xps_needed);
2396 		if (is_rxqs_map)
2397 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2398 	}
2399 
2400 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2401 	     j < nr_ids;) {
2402 		/* copy maps belonging to foreign traffic classes */
2403 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2404 			/* fill in the new device map from the old device map */
2405 			map = xmap_dereference(dev_maps->attr_map[tci]);
2406 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2407 		}
2408 
2409 		/* We need to explicitly update tci as prevous loop
2410 		 * could break out early if dev_maps is NULL.
2411 		 */
2412 		tci = j * num_tc + tc;
2413 
2414 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2415 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2416 			/* add tx-queue to CPU/rx-queue maps */
2417 			int pos = 0;
2418 
2419 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2420 			while ((pos < map->len) && (map->queues[pos] != index))
2421 				pos++;
2422 
2423 			if (pos == map->len)
2424 				map->queues[map->len++] = index;
2425 #ifdef CONFIG_NUMA
2426 			if (!is_rxqs_map) {
2427 				if (numa_node_id == -2)
2428 					numa_node_id = cpu_to_node(j);
2429 				else if (numa_node_id != cpu_to_node(j))
2430 					numa_node_id = -1;
2431 			}
2432 #endif
2433 		} else if (dev_maps) {
2434 			/* fill in the new device map from the old device map */
2435 			map = xmap_dereference(dev_maps->attr_map[tci]);
2436 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2437 		}
2438 
2439 		/* copy maps belonging to foreign traffic classes */
2440 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2441 			/* fill in the new device map from the old device map */
2442 			map = xmap_dereference(dev_maps->attr_map[tci]);
2443 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2444 		}
2445 	}
2446 
2447 	if (is_rxqs_map)
2448 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2449 	else
2450 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2451 
2452 	/* Cleanup old maps */
2453 	if (!dev_maps)
2454 		goto out_no_old_maps;
2455 
2456 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2457 	     j < nr_ids;) {
2458 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2459 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2460 			map = xmap_dereference(dev_maps->attr_map[tci]);
2461 			if (map && map != new_map)
2462 				kfree_rcu(map, rcu);
2463 		}
2464 	}
2465 
2466 	kfree_rcu(dev_maps, rcu);
2467 
2468 out_no_old_maps:
2469 	dev_maps = new_dev_maps;
2470 	active = true;
2471 
2472 out_no_new_maps:
2473 	if (!is_rxqs_map) {
2474 		/* update Tx queue numa node */
2475 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2476 					     (numa_node_id >= 0) ?
2477 					     numa_node_id : NUMA_NO_NODE);
2478 	}
2479 
2480 	if (!dev_maps)
2481 		goto out_no_maps;
2482 
2483 	/* removes tx-queue from unused CPUs/rx-queues */
2484 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2485 	     j < nr_ids;) {
2486 		for (i = tc, tci = j * num_tc; i--; tci++)
2487 			active |= remove_xps_queue(dev_maps, tci, index);
2488 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2489 		    !netif_attr_test_online(j, online_mask, nr_ids))
2490 			active |= remove_xps_queue(dev_maps, tci, index);
2491 		for (i = num_tc - tc, tci++; --i; tci++)
2492 			active |= remove_xps_queue(dev_maps, tci, index);
2493 	}
2494 
2495 	/* free map if not active */
2496 	if (!active)
2497 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2498 
2499 out_no_maps:
2500 	mutex_unlock(&xps_map_mutex);
2501 
2502 	return 0;
2503 error:
2504 	/* remove any maps that we added */
2505 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2506 	     j < nr_ids;) {
2507 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2508 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2509 			map = dev_maps ?
2510 			      xmap_dereference(dev_maps->attr_map[tci]) :
2511 			      NULL;
2512 			if (new_map && new_map != map)
2513 				kfree(new_map);
2514 		}
2515 	}
2516 
2517 	mutex_unlock(&xps_map_mutex);
2518 
2519 	kfree(new_dev_maps);
2520 	return -ENOMEM;
2521 }
2522 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2523 
2524 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2525 			u16 index)
2526 {
2527 	int ret;
2528 
2529 	cpus_read_lock();
2530 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2531 	cpus_read_unlock();
2532 
2533 	return ret;
2534 }
2535 EXPORT_SYMBOL(netif_set_xps_queue);
2536 
2537 #endif
2538 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2539 {
2540 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2541 
2542 	/* Unbind any subordinate channels */
2543 	while (txq-- != &dev->_tx[0]) {
2544 		if (txq->sb_dev)
2545 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2546 	}
2547 }
2548 
2549 void netdev_reset_tc(struct net_device *dev)
2550 {
2551 #ifdef CONFIG_XPS
2552 	netif_reset_xps_queues_gt(dev, 0);
2553 #endif
2554 	netdev_unbind_all_sb_channels(dev);
2555 
2556 	/* Reset TC configuration of device */
2557 	dev->num_tc = 0;
2558 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2559 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2560 }
2561 EXPORT_SYMBOL(netdev_reset_tc);
2562 
2563 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2564 {
2565 	if (tc >= dev->num_tc)
2566 		return -EINVAL;
2567 
2568 #ifdef CONFIG_XPS
2569 	netif_reset_xps_queues(dev, offset, count);
2570 #endif
2571 	dev->tc_to_txq[tc].count = count;
2572 	dev->tc_to_txq[tc].offset = offset;
2573 	return 0;
2574 }
2575 EXPORT_SYMBOL(netdev_set_tc_queue);
2576 
2577 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2578 {
2579 	if (num_tc > TC_MAX_QUEUE)
2580 		return -EINVAL;
2581 
2582 #ifdef CONFIG_XPS
2583 	netif_reset_xps_queues_gt(dev, 0);
2584 #endif
2585 	netdev_unbind_all_sb_channels(dev);
2586 
2587 	dev->num_tc = num_tc;
2588 	return 0;
2589 }
2590 EXPORT_SYMBOL(netdev_set_num_tc);
2591 
2592 void netdev_unbind_sb_channel(struct net_device *dev,
2593 			      struct net_device *sb_dev)
2594 {
2595 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2596 
2597 #ifdef CONFIG_XPS
2598 	netif_reset_xps_queues_gt(sb_dev, 0);
2599 #endif
2600 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2601 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2602 
2603 	while (txq-- != &dev->_tx[0]) {
2604 		if (txq->sb_dev == sb_dev)
2605 			txq->sb_dev = NULL;
2606 	}
2607 }
2608 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2609 
2610 int netdev_bind_sb_channel_queue(struct net_device *dev,
2611 				 struct net_device *sb_dev,
2612 				 u8 tc, u16 count, u16 offset)
2613 {
2614 	/* Make certain the sb_dev and dev are already configured */
2615 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2616 		return -EINVAL;
2617 
2618 	/* We cannot hand out queues we don't have */
2619 	if ((offset + count) > dev->real_num_tx_queues)
2620 		return -EINVAL;
2621 
2622 	/* Record the mapping */
2623 	sb_dev->tc_to_txq[tc].count = count;
2624 	sb_dev->tc_to_txq[tc].offset = offset;
2625 
2626 	/* Provide a way for Tx queue to find the tc_to_txq map or
2627 	 * XPS map for itself.
2628 	 */
2629 	while (count--)
2630 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2631 
2632 	return 0;
2633 }
2634 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2635 
2636 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2637 {
2638 	/* Do not use a multiqueue device to represent a subordinate channel */
2639 	if (netif_is_multiqueue(dev))
2640 		return -ENODEV;
2641 
2642 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2643 	 * Channel 0 is meant to be "native" mode and used only to represent
2644 	 * the main root device. We allow writing 0 to reset the device back
2645 	 * to normal mode after being used as a subordinate channel.
2646 	 */
2647 	if (channel > S16_MAX)
2648 		return -EINVAL;
2649 
2650 	dev->num_tc = -channel;
2651 
2652 	return 0;
2653 }
2654 EXPORT_SYMBOL(netdev_set_sb_channel);
2655 
2656 /*
2657  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2658  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2659  */
2660 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2661 {
2662 	bool disabling;
2663 	int rc;
2664 
2665 	disabling = txq < dev->real_num_tx_queues;
2666 
2667 	if (txq < 1 || txq > dev->num_tx_queues)
2668 		return -EINVAL;
2669 
2670 	if (dev->reg_state == NETREG_REGISTERED ||
2671 	    dev->reg_state == NETREG_UNREGISTERING) {
2672 		ASSERT_RTNL();
2673 
2674 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2675 						  txq);
2676 		if (rc)
2677 			return rc;
2678 
2679 		if (dev->num_tc)
2680 			netif_setup_tc(dev, txq);
2681 
2682 		dev->real_num_tx_queues = txq;
2683 
2684 		if (disabling) {
2685 			synchronize_net();
2686 			qdisc_reset_all_tx_gt(dev, txq);
2687 #ifdef CONFIG_XPS
2688 			netif_reset_xps_queues_gt(dev, txq);
2689 #endif
2690 		}
2691 	} else {
2692 		dev->real_num_tx_queues = txq;
2693 	}
2694 
2695 	return 0;
2696 }
2697 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2698 
2699 #ifdef CONFIG_SYSFS
2700 /**
2701  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2702  *	@dev: Network device
2703  *	@rxq: Actual number of RX queues
2704  *
2705  *	This must be called either with the rtnl_lock held or before
2706  *	registration of the net device.  Returns 0 on success, or a
2707  *	negative error code.  If called before registration, it always
2708  *	succeeds.
2709  */
2710 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2711 {
2712 	int rc;
2713 
2714 	if (rxq < 1 || rxq > dev->num_rx_queues)
2715 		return -EINVAL;
2716 
2717 	if (dev->reg_state == NETREG_REGISTERED) {
2718 		ASSERT_RTNL();
2719 
2720 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2721 						  rxq);
2722 		if (rc)
2723 			return rc;
2724 	}
2725 
2726 	dev->real_num_rx_queues = rxq;
2727 	return 0;
2728 }
2729 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2730 #endif
2731 
2732 /**
2733  * netif_get_num_default_rss_queues - default number of RSS queues
2734  *
2735  * This routine should set an upper limit on the number of RSS queues
2736  * used by default by multiqueue devices.
2737  */
2738 int netif_get_num_default_rss_queues(void)
2739 {
2740 	return is_kdump_kernel() ?
2741 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2742 }
2743 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2744 
2745 static void __netif_reschedule(struct Qdisc *q)
2746 {
2747 	struct softnet_data *sd;
2748 	unsigned long flags;
2749 
2750 	local_irq_save(flags);
2751 	sd = this_cpu_ptr(&softnet_data);
2752 	q->next_sched = NULL;
2753 	*sd->output_queue_tailp = q;
2754 	sd->output_queue_tailp = &q->next_sched;
2755 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2756 	local_irq_restore(flags);
2757 }
2758 
2759 void __netif_schedule(struct Qdisc *q)
2760 {
2761 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2762 		__netif_reschedule(q);
2763 }
2764 EXPORT_SYMBOL(__netif_schedule);
2765 
2766 struct dev_kfree_skb_cb {
2767 	enum skb_free_reason reason;
2768 };
2769 
2770 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2771 {
2772 	return (struct dev_kfree_skb_cb *)skb->cb;
2773 }
2774 
2775 void netif_schedule_queue(struct netdev_queue *txq)
2776 {
2777 	rcu_read_lock();
2778 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2779 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2780 
2781 		__netif_schedule(q);
2782 	}
2783 	rcu_read_unlock();
2784 }
2785 EXPORT_SYMBOL(netif_schedule_queue);
2786 
2787 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2788 {
2789 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2790 		struct Qdisc *q;
2791 
2792 		rcu_read_lock();
2793 		q = rcu_dereference(dev_queue->qdisc);
2794 		__netif_schedule(q);
2795 		rcu_read_unlock();
2796 	}
2797 }
2798 EXPORT_SYMBOL(netif_tx_wake_queue);
2799 
2800 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2801 {
2802 	unsigned long flags;
2803 
2804 	if (unlikely(!skb))
2805 		return;
2806 
2807 	if (likely(refcount_read(&skb->users) == 1)) {
2808 		smp_rmb();
2809 		refcount_set(&skb->users, 0);
2810 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2811 		return;
2812 	}
2813 	get_kfree_skb_cb(skb)->reason = reason;
2814 	local_irq_save(flags);
2815 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2816 	__this_cpu_write(softnet_data.completion_queue, skb);
2817 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2818 	local_irq_restore(flags);
2819 }
2820 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2821 
2822 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2823 {
2824 	if (in_irq() || irqs_disabled())
2825 		__dev_kfree_skb_irq(skb, reason);
2826 	else
2827 		dev_kfree_skb(skb);
2828 }
2829 EXPORT_SYMBOL(__dev_kfree_skb_any);
2830 
2831 
2832 /**
2833  * netif_device_detach - mark device as removed
2834  * @dev: network device
2835  *
2836  * Mark device as removed from system and therefore no longer available.
2837  */
2838 void netif_device_detach(struct net_device *dev)
2839 {
2840 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2841 	    netif_running(dev)) {
2842 		netif_tx_stop_all_queues(dev);
2843 	}
2844 }
2845 EXPORT_SYMBOL(netif_device_detach);
2846 
2847 /**
2848  * netif_device_attach - mark device as attached
2849  * @dev: network device
2850  *
2851  * Mark device as attached from system and restart if needed.
2852  */
2853 void netif_device_attach(struct net_device *dev)
2854 {
2855 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2856 	    netif_running(dev)) {
2857 		netif_tx_wake_all_queues(dev);
2858 		__netdev_watchdog_up(dev);
2859 	}
2860 }
2861 EXPORT_SYMBOL(netif_device_attach);
2862 
2863 /*
2864  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2865  * to be used as a distribution range.
2866  */
2867 static u16 skb_tx_hash(const struct net_device *dev,
2868 		       const struct net_device *sb_dev,
2869 		       struct sk_buff *skb)
2870 {
2871 	u32 hash;
2872 	u16 qoffset = 0;
2873 	u16 qcount = dev->real_num_tx_queues;
2874 
2875 	if (dev->num_tc) {
2876 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2877 
2878 		qoffset = sb_dev->tc_to_txq[tc].offset;
2879 		qcount = sb_dev->tc_to_txq[tc].count;
2880 	}
2881 
2882 	if (skb_rx_queue_recorded(skb)) {
2883 		hash = skb_get_rx_queue(skb);
2884 		while (unlikely(hash >= qcount))
2885 			hash -= qcount;
2886 		return hash + qoffset;
2887 	}
2888 
2889 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2890 }
2891 
2892 static void skb_warn_bad_offload(const struct sk_buff *skb)
2893 {
2894 	static const netdev_features_t null_features;
2895 	struct net_device *dev = skb->dev;
2896 	const char *name = "";
2897 
2898 	if (!net_ratelimit())
2899 		return;
2900 
2901 	if (dev) {
2902 		if (dev->dev.parent)
2903 			name = dev_driver_string(dev->dev.parent);
2904 		else
2905 			name = netdev_name(dev);
2906 	}
2907 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2908 	     "gso_type=%d ip_summed=%d\n",
2909 	     name, dev ? &dev->features : &null_features,
2910 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2911 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2912 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2913 }
2914 
2915 /*
2916  * Invalidate hardware checksum when packet is to be mangled, and
2917  * complete checksum manually on outgoing path.
2918  */
2919 int skb_checksum_help(struct sk_buff *skb)
2920 {
2921 	__wsum csum;
2922 	int ret = 0, offset;
2923 
2924 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2925 		goto out_set_summed;
2926 
2927 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2928 		skb_warn_bad_offload(skb);
2929 		return -EINVAL;
2930 	}
2931 
2932 	/* Before computing a checksum, we should make sure no frag could
2933 	 * be modified by an external entity : checksum could be wrong.
2934 	 */
2935 	if (skb_has_shared_frag(skb)) {
2936 		ret = __skb_linearize(skb);
2937 		if (ret)
2938 			goto out;
2939 	}
2940 
2941 	offset = skb_checksum_start_offset(skb);
2942 	BUG_ON(offset >= skb_headlen(skb));
2943 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2944 
2945 	offset += skb->csum_offset;
2946 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2947 
2948 	if (skb_cloned(skb) &&
2949 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2950 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2951 		if (ret)
2952 			goto out;
2953 	}
2954 
2955 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2956 out_set_summed:
2957 	skb->ip_summed = CHECKSUM_NONE;
2958 out:
2959 	return ret;
2960 }
2961 EXPORT_SYMBOL(skb_checksum_help);
2962 
2963 int skb_crc32c_csum_help(struct sk_buff *skb)
2964 {
2965 	__le32 crc32c_csum;
2966 	int ret = 0, offset, start;
2967 
2968 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2969 		goto out;
2970 
2971 	if (unlikely(skb_is_gso(skb)))
2972 		goto out;
2973 
2974 	/* Before computing a checksum, we should make sure no frag could
2975 	 * be modified by an external entity : checksum could be wrong.
2976 	 */
2977 	if (unlikely(skb_has_shared_frag(skb))) {
2978 		ret = __skb_linearize(skb);
2979 		if (ret)
2980 			goto out;
2981 	}
2982 	start = skb_checksum_start_offset(skb);
2983 	offset = start + offsetof(struct sctphdr, checksum);
2984 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2985 		ret = -EINVAL;
2986 		goto out;
2987 	}
2988 	if (skb_cloned(skb) &&
2989 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2990 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2991 		if (ret)
2992 			goto out;
2993 	}
2994 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2995 						  skb->len - start, ~(__u32)0,
2996 						  crc32c_csum_stub));
2997 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2998 	skb->ip_summed = CHECKSUM_NONE;
2999 	skb->csum_not_inet = 0;
3000 out:
3001 	return ret;
3002 }
3003 
3004 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3005 {
3006 	__be16 type = skb->protocol;
3007 
3008 	/* Tunnel gso handlers can set protocol to ethernet. */
3009 	if (type == htons(ETH_P_TEB)) {
3010 		struct ethhdr *eth;
3011 
3012 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3013 			return 0;
3014 
3015 		eth = (struct ethhdr *)skb->data;
3016 		type = eth->h_proto;
3017 	}
3018 
3019 	return __vlan_get_protocol(skb, type, depth);
3020 }
3021 
3022 /**
3023  *	skb_mac_gso_segment - mac layer segmentation handler.
3024  *	@skb: buffer to segment
3025  *	@features: features for the output path (see dev->features)
3026  */
3027 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3028 				    netdev_features_t features)
3029 {
3030 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3031 	struct packet_offload *ptype;
3032 	int vlan_depth = skb->mac_len;
3033 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3034 
3035 	if (unlikely(!type))
3036 		return ERR_PTR(-EINVAL);
3037 
3038 	__skb_pull(skb, vlan_depth);
3039 
3040 	rcu_read_lock();
3041 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3042 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3043 			segs = ptype->callbacks.gso_segment(skb, features);
3044 			break;
3045 		}
3046 	}
3047 	rcu_read_unlock();
3048 
3049 	__skb_push(skb, skb->data - skb_mac_header(skb));
3050 
3051 	return segs;
3052 }
3053 EXPORT_SYMBOL(skb_mac_gso_segment);
3054 
3055 
3056 /* openvswitch calls this on rx path, so we need a different check.
3057  */
3058 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3059 {
3060 	if (tx_path)
3061 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3062 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3063 
3064 	return skb->ip_summed == CHECKSUM_NONE;
3065 }
3066 
3067 /**
3068  *	__skb_gso_segment - Perform segmentation on skb.
3069  *	@skb: buffer to segment
3070  *	@features: features for the output path (see dev->features)
3071  *	@tx_path: whether it is called in TX path
3072  *
3073  *	This function segments the given skb and returns a list of segments.
3074  *
3075  *	It may return NULL if the skb requires no segmentation.  This is
3076  *	only possible when GSO is used for verifying header integrity.
3077  *
3078  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3079  */
3080 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3081 				  netdev_features_t features, bool tx_path)
3082 {
3083 	struct sk_buff *segs;
3084 
3085 	if (unlikely(skb_needs_check(skb, tx_path))) {
3086 		int err;
3087 
3088 		/* We're going to init ->check field in TCP or UDP header */
3089 		err = skb_cow_head(skb, 0);
3090 		if (err < 0)
3091 			return ERR_PTR(err);
3092 	}
3093 
3094 	/* Only report GSO partial support if it will enable us to
3095 	 * support segmentation on this frame without needing additional
3096 	 * work.
3097 	 */
3098 	if (features & NETIF_F_GSO_PARTIAL) {
3099 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3100 		struct net_device *dev = skb->dev;
3101 
3102 		partial_features |= dev->features & dev->gso_partial_features;
3103 		if (!skb_gso_ok(skb, features | partial_features))
3104 			features &= ~NETIF_F_GSO_PARTIAL;
3105 	}
3106 
3107 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3108 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3109 
3110 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3111 	SKB_GSO_CB(skb)->encap_level = 0;
3112 
3113 	skb_reset_mac_header(skb);
3114 	skb_reset_mac_len(skb);
3115 
3116 	segs = skb_mac_gso_segment(skb, features);
3117 
3118 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3119 		skb_warn_bad_offload(skb);
3120 
3121 	return segs;
3122 }
3123 EXPORT_SYMBOL(__skb_gso_segment);
3124 
3125 /* Take action when hardware reception checksum errors are detected. */
3126 #ifdef CONFIG_BUG
3127 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3128 {
3129 	if (net_ratelimit()) {
3130 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3131 		if (dev)
3132 			pr_err("dev features: %pNF\n", &dev->features);
3133 		pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3134 		       skb->len, skb->data_len, skb->pkt_type,
3135 		       skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3136 		       skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3137 		       skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3138 		dump_stack();
3139 	}
3140 }
3141 EXPORT_SYMBOL(netdev_rx_csum_fault);
3142 #endif
3143 
3144 /* XXX: check that highmem exists at all on the given machine. */
3145 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3146 {
3147 #ifdef CONFIG_HIGHMEM
3148 	int i;
3149 
3150 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3151 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3152 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3153 
3154 			if (PageHighMem(skb_frag_page(frag)))
3155 				return 1;
3156 		}
3157 	}
3158 #endif
3159 	return 0;
3160 }
3161 
3162 /* If MPLS offload request, verify we are testing hardware MPLS features
3163  * instead of standard features for the netdev.
3164  */
3165 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3166 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3167 					   netdev_features_t features,
3168 					   __be16 type)
3169 {
3170 	if (eth_p_mpls(type))
3171 		features &= skb->dev->mpls_features;
3172 
3173 	return features;
3174 }
3175 #else
3176 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3177 					   netdev_features_t features,
3178 					   __be16 type)
3179 {
3180 	return features;
3181 }
3182 #endif
3183 
3184 static netdev_features_t harmonize_features(struct sk_buff *skb,
3185 	netdev_features_t features)
3186 {
3187 	int tmp;
3188 	__be16 type;
3189 
3190 	type = skb_network_protocol(skb, &tmp);
3191 	features = net_mpls_features(skb, features, type);
3192 
3193 	if (skb->ip_summed != CHECKSUM_NONE &&
3194 	    !can_checksum_protocol(features, type)) {
3195 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3196 	}
3197 	if (illegal_highdma(skb->dev, skb))
3198 		features &= ~NETIF_F_SG;
3199 
3200 	return features;
3201 }
3202 
3203 netdev_features_t passthru_features_check(struct sk_buff *skb,
3204 					  struct net_device *dev,
3205 					  netdev_features_t features)
3206 {
3207 	return features;
3208 }
3209 EXPORT_SYMBOL(passthru_features_check);
3210 
3211 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3212 					     struct net_device *dev,
3213 					     netdev_features_t features)
3214 {
3215 	return vlan_features_check(skb, features);
3216 }
3217 
3218 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3219 					    struct net_device *dev,
3220 					    netdev_features_t features)
3221 {
3222 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3223 
3224 	if (gso_segs > dev->gso_max_segs)
3225 		return features & ~NETIF_F_GSO_MASK;
3226 
3227 	/* Support for GSO partial features requires software
3228 	 * intervention before we can actually process the packets
3229 	 * so we need to strip support for any partial features now
3230 	 * and we can pull them back in after we have partially
3231 	 * segmented the frame.
3232 	 */
3233 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3234 		features &= ~dev->gso_partial_features;
3235 
3236 	/* Make sure to clear the IPv4 ID mangling feature if the
3237 	 * IPv4 header has the potential to be fragmented.
3238 	 */
3239 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3240 		struct iphdr *iph = skb->encapsulation ?
3241 				    inner_ip_hdr(skb) : ip_hdr(skb);
3242 
3243 		if (!(iph->frag_off & htons(IP_DF)))
3244 			features &= ~NETIF_F_TSO_MANGLEID;
3245 	}
3246 
3247 	return features;
3248 }
3249 
3250 netdev_features_t netif_skb_features(struct sk_buff *skb)
3251 {
3252 	struct net_device *dev = skb->dev;
3253 	netdev_features_t features = dev->features;
3254 
3255 	if (skb_is_gso(skb))
3256 		features = gso_features_check(skb, dev, features);
3257 
3258 	/* If encapsulation offload request, verify we are testing
3259 	 * hardware encapsulation features instead of standard
3260 	 * features for the netdev
3261 	 */
3262 	if (skb->encapsulation)
3263 		features &= dev->hw_enc_features;
3264 
3265 	if (skb_vlan_tagged(skb))
3266 		features = netdev_intersect_features(features,
3267 						     dev->vlan_features |
3268 						     NETIF_F_HW_VLAN_CTAG_TX |
3269 						     NETIF_F_HW_VLAN_STAG_TX);
3270 
3271 	if (dev->netdev_ops->ndo_features_check)
3272 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3273 								features);
3274 	else
3275 		features &= dflt_features_check(skb, dev, features);
3276 
3277 	return harmonize_features(skb, features);
3278 }
3279 EXPORT_SYMBOL(netif_skb_features);
3280 
3281 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3282 		    struct netdev_queue *txq, bool more)
3283 {
3284 	unsigned int len;
3285 	int rc;
3286 
3287 	if (dev_nit_active(dev))
3288 		dev_queue_xmit_nit(skb, dev);
3289 
3290 	len = skb->len;
3291 	trace_net_dev_start_xmit(skb, dev);
3292 	rc = netdev_start_xmit(skb, dev, txq, more);
3293 	trace_net_dev_xmit(skb, rc, dev, len);
3294 
3295 	return rc;
3296 }
3297 
3298 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3299 				    struct netdev_queue *txq, int *ret)
3300 {
3301 	struct sk_buff *skb = first;
3302 	int rc = NETDEV_TX_OK;
3303 
3304 	while (skb) {
3305 		struct sk_buff *next = skb->next;
3306 
3307 		skb_mark_not_on_list(skb);
3308 		rc = xmit_one(skb, dev, txq, next != NULL);
3309 		if (unlikely(!dev_xmit_complete(rc))) {
3310 			skb->next = next;
3311 			goto out;
3312 		}
3313 
3314 		skb = next;
3315 		if (netif_tx_queue_stopped(txq) && skb) {
3316 			rc = NETDEV_TX_BUSY;
3317 			break;
3318 		}
3319 	}
3320 
3321 out:
3322 	*ret = rc;
3323 	return skb;
3324 }
3325 
3326 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3327 					  netdev_features_t features)
3328 {
3329 	if (skb_vlan_tag_present(skb) &&
3330 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3331 		skb = __vlan_hwaccel_push_inside(skb);
3332 	return skb;
3333 }
3334 
3335 int skb_csum_hwoffload_help(struct sk_buff *skb,
3336 			    const netdev_features_t features)
3337 {
3338 	if (unlikely(skb->csum_not_inet))
3339 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3340 			skb_crc32c_csum_help(skb);
3341 
3342 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3343 }
3344 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3345 
3346 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3347 {
3348 	netdev_features_t features;
3349 
3350 	features = netif_skb_features(skb);
3351 	skb = validate_xmit_vlan(skb, features);
3352 	if (unlikely(!skb))
3353 		goto out_null;
3354 
3355 	skb = sk_validate_xmit_skb(skb, dev);
3356 	if (unlikely(!skb))
3357 		goto out_null;
3358 
3359 	if (netif_needs_gso(skb, features)) {
3360 		struct sk_buff *segs;
3361 
3362 		segs = skb_gso_segment(skb, features);
3363 		if (IS_ERR(segs)) {
3364 			goto out_kfree_skb;
3365 		} else if (segs) {
3366 			consume_skb(skb);
3367 			skb = segs;
3368 		}
3369 	} else {
3370 		if (skb_needs_linearize(skb, features) &&
3371 		    __skb_linearize(skb))
3372 			goto out_kfree_skb;
3373 
3374 		/* If packet is not checksummed and device does not
3375 		 * support checksumming for this protocol, complete
3376 		 * checksumming here.
3377 		 */
3378 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3379 			if (skb->encapsulation)
3380 				skb_set_inner_transport_header(skb,
3381 							       skb_checksum_start_offset(skb));
3382 			else
3383 				skb_set_transport_header(skb,
3384 							 skb_checksum_start_offset(skb));
3385 			if (skb_csum_hwoffload_help(skb, features))
3386 				goto out_kfree_skb;
3387 		}
3388 	}
3389 
3390 	skb = validate_xmit_xfrm(skb, features, again);
3391 
3392 	return skb;
3393 
3394 out_kfree_skb:
3395 	kfree_skb(skb);
3396 out_null:
3397 	atomic_long_inc(&dev->tx_dropped);
3398 	return NULL;
3399 }
3400 
3401 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3402 {
3403 	struct sk_buff *next, *head = NULL, *tail;
3404 
3405 	for (; skb != NULL; skb = next) {
3406 		next = skb->next;
3407 		skb_mark_not_on_list(skb);
3408 
3409 		/* in case skb wont be segmented, point to itself */
3410 		skb->prev = skb;
3411 
3412 		skb = validate_xmit_skb(skb, dev, again);
3413 		if (!skb)
3414 			continue;
3415 
3416 		if (!head)
3417 			head = skb;
3418 		else
3419 			tail->next = skb;
3420 		/* If skb was segmented, skb->prev points to
3421 		 * the last segment. If not, it still contains skb.
3422 		 */
3423 		tail = skb->prev;
3424 	}
3425 	return head;
3426 }
3427 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3428 
3429 static void qdisc_pkt_len_init(struct sk_buff *skb)
3430 {
3431 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3432 
3433 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3434 
3435 	/* To get more precise estimation of bytes sent on wire,
3436 	 * we add to pkt_len the headers size of all segments
3437 	 */
3438 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3439 		unsigned int hdr_len;
3440 		u16 gso_segs = shinfo->gso_segs;
3441 
3442 		/* mac layer + network layer */
3443 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3444 
3445 		/* + transport layer */
3446 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3447 			const struct tcphdr *th;
3448 			struct tcphdr _tcphdr;
3449 
3450 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3451 						sizeof(_tcphdr), &_tcphdr);
3452 			if (likely(th))
3453 				hdr_len += __tcp_hdrlen(th);
3454 		} else {
3455 			struct udphdr _udphdr;
3456 
3457 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3458 					       sizeof(_udphdr), &_udphdr))
3459 				hdr_len += sizeof(struct udphdr);
3460 		}
3461 
3462 		if (shinfo->gso_type & SKB_GSO_DODGY)
3463 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3464 						shinfo->gso_size);
3465 
3466 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3467 	}
3468 }
3469 
3470 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3471 				 struct net_device *dev,
3472 				 struct netdev_queue *txq)
3473 {
3474 	spinlock_t *root_lock = qdisc_lock(q);
3475 	struct sk_buff *to_free = NULL;
3476 	bool contended;
3477 	int rc;
3478 
3479 	qdisc_calculate_pkt_len(skb, q);
3480 
3481 	if (q->flags & TCQ_F_NOLOCK) {
3482 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3483 			__qdisc_drop(skb, &to_free);
3484 			rc = NET_XMIT_DROP;
3485 		} else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3486 			   qdisc_run_begin(q)) {
3487 			qdisc_bstats_cpu_update(q, skb);
3488 
3489 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3490 				__qdisc_run(q);
3491 
3492 			qdisc_run_end(q);
3493 			rc = NET_XMIT_SUCCESS;
3494 		} else {
3495 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3496 			qdisc_run(q);
3497 		}
3498 
3499 		if (unlikely(to_free))
3500 			kfree_skb_list(to_free);
3501 		return rc;
3502 	}
3503 
3504 	/*
3505 	 * Heuristic to force contended enqueues to serialize on a
3506 	 * separate lock before trying to get qdisc main lock.
3507 	 * This permits qdisc->running owner to get the lock more
3508 	 * often and dequeue packets faster.
3509 	 */
3510 	contended = qdisc_is_running(q);
3511 	if (unlikely(contended))
3512 		spin_lock(&q->busylock);
3513 
3514 	spin_lock(root_lock);
3515 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3516 		__qdisc_drop(skb, &to_free);
3517 		rc = NET_XMIT_DROP;
3518 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3519 		   qdisc_run_begin(q)) {
3520 		/*
3521 		 * This is a work-conserving queue; there are no old skbs
3522 		 * waiting to be sent out; and the qdisc is not running -
3523 		 * xmit the skb directly.
3524 		 */
3525 
3526 		qdisc_bstats_update(q, skb);
3527 
3528 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3529 			if (unlikely(contended)) {
3530 				spin_unlock(&q->busylock);
3531 				contended = false;
3532 			}
3533 			__qdisc_run(q);
3534 		}
3535 
3536 		qdisc_run_end(q);
3537 		rc = NET_XMIT_SUCCESS;
3538 	} else {
3539 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3540 		if (qdisc_run_begin(q)) {
3541 			if (unlikely(contended)) {
3542 				spin_unlock(&q->busylock);
3543 				contended = false;
3544 			}
3545 			__qdisc_run(q);
3546 			qdisc_run_end(q);
3547 		}
3548 	}
3549 	spin_unlock(root_lock);
3550 	if (unlikely(to_free))
3551 		kfree_skb_list(to_free);
3552 	if (unlikely(contended))
3553 		spin_unlock(&q->busylock);
3554 	return rc;
3555 }
3556 
3557 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3558 static void skb_update_prio(struct sk_buff *skb)
3559 {
3560 	const struct netprio_map *map;
3561 	const struct sock *sk;
3562 	unsigned int prioidx;
3563 
3564 	if (skb->priority)
3565 		return;
3566 	map = rcu_dereference_bh(skb->dev->priomap);
3567 	if (!map)
3568 		return;
3569 	sk = skb_to_full_sk(skb);
3570 	if (!sk)
3571 		return;
3572 
3573 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3574 
3575 	if (prioidx < map->priomap_len)
3576 		skb->priority = map->priomap[prioidx];
3577 }
3578 #else
3579 #define skb_update_prio(skb)
3580 #endif
3581 
3582 /**
3583  *	dev_loopback_xmit - loop back @skb
3584  *	@net: network namespace this loopback is happening in
3585  *	@sk:  sk needed to be a netfilter okfn
3586  *	@skb: buffer to transmit
3587  */
3588 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3589 {
3590 	skb_reset_mac_header(skb);
3591 	__skb_pull(skb, skb_network_offset(skb));
3592 	skb->pkt_type = PACKET_LOOPBACK;
3593 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3594 	WARN_ON(!skb_dst(skb));
3595 	skb_dst_force(skb);
3596 	netif_rx_ni(skb);
3597 	return 0;
3598 }
3599 EXPORT_SYMBOL(dev_loopback_xmit);
3600 
3601 #ifdef CONFIG_NET_EGRESS
3602 static struct sk_buff *
3603 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3604 {
3605 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3606 	struct tcf_result cl_res;
3607 
3608 	if (!miniq)
3609 		return skb;
3610 
3611 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3612 	mini_qdisc_bstats_cpu_update(miniq, skb);
3613 
3614 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3615 	case TC_ACT_OK:
3616 	case TC_ACT_RECLASSIFY:
3617 		skb->tc_index = TC_H_MIN(cl_res.classid);
3618 		break;
3619 	case TC_ACT_SHOT:
3620 		mini_qdisc_qstats_cpu_drop(miniq);
3621 		*ret = NET_XMIT_DROP;
3622 		kfree_skb(skb);
3623 		return NULL;
3624 	case TC_ACT_STOLEN:
3625 	case TC_ACT_QUEUED:
3626 	case TC_ACT_TRAP:
3627 		*ret = NET_XMIT_SUCCESS;
3628 		consume_skb(skb);
3629 		return NULL;
3630 	case TC_ACT_REDIRECT:
3631 		/* No need to push/pop skb's mac_header here on egress! */
3632 		skb_do_redirect(skb);
3633 		*ret = NET_XMIT_SUCCESS;
3634 		return NULL;
3635 	default:
3636 		break;
3637 	}
3638 
3639 	return skb;
3640 }
3641 #endif /* CONFIG_NET_EGRESS */
3642 
3643 #ifdef CONFIG_XPS
3644 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3645 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3646 {
3647 	struct xps_map *map;
3648 	int queue_index = -1;
3649 
3650 	if (dev->num_tc) {
3651 		tci *= dev->num_tc;
3652 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3653 	}
3654 
3655 	map = rcu_dereference(dev_maps->attr_map[tci]);
3656 	if (map) {
3657 		if (map->len == 1)
3658 			queue_index = map->queues[0];
3659 		else
3660 			queue_index = map->queues[reciprocal_scale(
3661 						skb_get_hash(skb), map->len)];
3662 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3663 			queue_index = -1;
3664 	}
3665 	return queue_index;
3666 }
3667 #endif
3668 
3669 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3670 			 struct sk_buff *skb)
3671 {
3672 #ifdef CONFIG_XPS
3673 	struct xps_dev_maps *dev_maps;
3674 	struct sock *sk = skb->sk;
3675 	int queue_index = -1;
3676 
3677 	if (!static_key_false(&xps_needed))
3678 		return -1;
3679 
3680 	rcu_read_lock();
3681 	if (!static_key_false(&xps_rxqs_needed))
3682 		goto get_cpus_map;
3683 
3684 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3685 	if (dev_maps) {
3686 		int tci = sk_rx_queue_get(sk);
3687 
3688 		if (tci >= 0 && tci < dev->num_rx_queues)
3689 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3690 							  tci);
3691 	}
3692 
3693 get_cpus_map:
3694 	if (queue_index < 0) {
3695 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3696 		if (dev_maps) {
3697 			unsigned int tci = skb->sender_cpu - 1;
3698 
3699 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3700 							  tci);
3701 		}
3702 	}
3703 	rcu_read_unlock();
3704 
3705 	return queue_index;
3706 #else
3707 	return -1;
3708 #endif
3709 }
3710 
3711 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3712 		     struct net_device *sb_dev)
3713 {
3714 	return 0;
3715 }
3716 EXPORT_SYMBOL(dev_pick_tx_zero);
3717 
3718 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3719 		       struct net_device *sb_dev)
3720 {
3721 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3722 }
3723 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3724 
3725 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3726 		     struct net_device *sb_dev)
3727 {
3728 	struct sock *sk = skb->sk;
3729 	int queue_index = sk_tx_queue_get(sk);
3730 
3731 	sb_dev = sb_dev ? : dev;
3732 
3733 	if (queue_index < 0 || skb->ooo_okay ||
3734 	    queue_index >= dev->real_num_tx_queues) {
3735 		int new_index = get_xps_queue(dev, sb_dev, skb);
3736 
3737 		if (new_index < 0)
3738 			new_index = skb_tx_hash(dev, sb_dev, skb);
3739 
3740 		if (queue_index != new_index && sk &&
3741 		    sk_fullsock(sk) &&
3742 		    rcu_access_pointer(sk->sk_dst_cache))
3743 			sk_tx_queue_set(sk, new_index);
3744 
3745 		queue_index = new_index;
3746 	}
3747 
3748 	return queue_index;
3749 }
3750 EXPORT_SYMBOL(netdev_pick_tx);
3751 
3752 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3753 					 struct sk_buff *skb,
3754 					 struct net_device *sb_dev)
3755 {
3756 	int queue_index = 0;
3757 
3758 #ifdef CONFIG_XPS
3759 	u32 sender_cpu = skb->sender_cpu - 1;
3760 
3761 	if (sender_cpu >= (u32)NR_CPUS)
3762 		skb->sender_cpu = raw_smp_processor_id() + 1;
3763 #endif
3764 
3765 	if (dev->real_num_tx_queues != 1) {
3766 		const struct net_device_ops *ops = dev->netdev_ops;
3767 
3768 		if (ops->ndo_select_queue)
3769 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3770 		else
3771 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3772 
3773 		queue_index = netdev_cap_txqueue(dev, queue_index);
3774 	}
3775 
3776 	skb_set_queue_mapping(skb, queue_index);
3777 	return netdev_get_tx_queue(dev, queue_index);
3778 }
3779 
3780 /**
3781  *	__dev_queue_xmit - transmit a buffer
3782  *	@skb: buffer to transmit
3783  *	@sb_dev: suboordinate device used for L2 forwarding offload
3784  *
3785  *	Queue a buffer for transmission to a network device. The caller must
3786  *	have set the device and priority and built the buffer before calling
3787  *	this function. The function can be called from an interrupt.
3788  *
3789  *	A negative errno code is returned on a failure. A success does not
3790  *	guarantee the frame will be transmitted as it may be dropped due
3791  *	to congestion or traffic shaping.
3792  *
3793  * -----------------------------------------------------------------------------------
3794  *      I notice this method can also return errors from the queue disciplines,
3795  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3796  *      be positive.
3797  *
3798  *      Regardless of the return value, the skb is consumed, so it is currently
3799  *      difficult to retry a send to this method.  (You can bump the ref count
3800  *      before sending to hold a reference for retry if you are careful.)
3801  *
3802  *      When calling this method, interrupts MUST be enabled.  This is because
3803  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3804  *          --BLG
3805  */
3806 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3807 {
3808 	struct net_device *dev = skb->dev;
3809 	struct netdev_queue *txq;
3810 	struct Qdisc *q;
3811 	int rc = -ENOMEM;
3812 	bool again = false;
3813 
3814 	skb_reset_mac_header(skb);
3815 
3816 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3817 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3818 
3819 	/* Disable soft irqs for various locks below. Also
3820 	 * stops preemption for RCU.
3821 	 */
3822 	rcu_read_lock_bh();
3823 
3824 	skb_update_prio(skb);
3825 
3826 	qdisc_pkt_len_init(skb);
3827 #ifdef CONFIG_NET_CLS_ACT
3828 	skb->tc_at_ingress = 0;
3829 # ifdef CONFIG_NET_EGRESS
3830 	if (static_branch_unlikely(&egress_needed_key)) {
3831 		skb = sch_handle_egress(skb, &rc, dev);
3832 		if (!skb)
3833 			goto out;
3834 	}
3835 # endif
3836 #endif
3837 	/* If device/qdisc don't need skb->dst, release it right now while
3838 	 * its hot in this cpu cache.
3839 	 */
3840 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3841 		skb_dst_drop(skb);
3842 	else
3843 		skb_dst_force(skb);
3844 
3845 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
3846 	q = rcu_dereference_bh(txq->qdisc);
3847 
3848 	trace_net_dev_queue(skb);
3849 	if (q->enqueue) {
3850 		rc = __dev_xmit_skb(skb, q, dev, txq);
3851 		goto out;
3852 	}
3853 
3854 	/* The device has no queue. Common case for software devices:
3855 	 * loopback, all the sorts of tunnels...
3856 
3857 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3858 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3859 	 * counters.)
3860 	 * However, it is possible, that they rely on protection
3861 	 * made by us here.
3862 
3863 	 * Check this and shot the lock. It is not prone from deadlocks.
3864 	 *Either shot noqueue qdisc, it is even simpler 8)
3865 	 */
3866 	if (dev->flags & IFF_UP) {
3867 		int cpu = smp_processor_id(); /* ok because BHs are off */
3868 
3869 		if (txq->xmit_lock_owner != cpu) {
3870 			if (dev_xmit_recursion())
3871 				goto recursion_alert;
3872 
3873 			skb = validate_xmit_skb(skb, dev, &again);
3874 			if (!skb)
3875 				goto out;
3876 
3877 			HARD_TX_LOCK(dev, txq, cpu);
3878 
3879 			if (!netif_xmit_stopped(txq)) {
3880 				dev_xmit_recursion_inc();
3881 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3882 				dev_xmit_recursion_dec();
3883 				if (dev_xmit_complete(rc)) {
3884 					HARD_TX_UNLOCK(dev, txq);
3885 					goto out;
3886 				}
3887 			}
3888 			HARD_TX_UNLOCK(dev, txq);
3889 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3890 					     dev->name);
3891 		} else {
3892 			/* Recursion is detected! It is possible,
3893 			 * unfortunately
3894 			 */
3895 recursion_alert:
3896 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3897 					     dev->name);
3898 		}
3899 	}
3900 
3901 	rc = -ENETDOWN;
3902 	rcu_read_unlock_bh();
3903 
3904 	atomic_long_inc(&dev->tx_dropped);
3905 	kfree_skb_list(skb);
3906 	return rc;
3907 out:
3908 	rcu_read_unlock_bh();
3909 	return rc;
3910 }
3911 
3912 int dev_queue_xmit(struct sk_buff *skb)
3913 {
3914 	return __dev_queue_xmit(skb, NULL);
3915 }
3916 EXPORT_SYMBOL(dev_queue_xmit);
3917 
3918 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3919 {
3920 	return __dev_queue_xmit(skb, sb_dev);
3921 }
3922 EXPORT_SYMBOL(dev_queue_xmit_accel);
3923 
3924 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3925 {
3926 	struct net_device *dev = skb->dev;
3927 	struct sk_buff *orig_skb = skb;
3928 	struct netdev_queue *txq;
3929 	int ret = NETDEV_TX_BUSY;
3930 	bool again = false;
3931 
3932 	if (unlikely(!netif_running(dev) ||
3933 		     !netif_carrier_ok(dev)))
3934 		goto drop;
3935 
3936 	skb = validate_xmit_skb_list(skb, dev, &again);
3937 	if (skb != orig_skb)
3938 		goto drop;
3939 
3940 	skb_set_queue_mapping(skb, queue_id);
3941 	txq = skb_get_tx_queue(dev, skb);
3942 
3943 	local_bh_disable();
3944 
3945 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3946 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3947 		ret = netdev_start_xmit(skb, dev, txq, false);
3948 	HARD_TX_UNLOCK(dev, txq);
3949 
3950 	local_bh_enable();
3951 
3952 	if (!dev_xmit_complete(ret))
3953 		kfree_skb(skb);
3954 
3955 	return ret;
3956 drop:
3957 	atomic_long_inc(&dev->tx_dropped);
3958 	kfree_skb_list(skb);
3959 	return NET_XMIT_DROP;
3960 }
3961 EXPORT_SYMBOL(dev_direct_xmit);
3962 
3963 /*************************************************************************
3964  *			Receiver routines
3965  *************************************************************************/
3966 
3967 int netdev_max_backlog __read_mostly = 1000;
3968 EXPORT_SYMBOL(netdev_max_backlog);
3969 
3970 int netdev_tstamp_prequeue __read_mostly = 1;
3971 int netdev_budget __read_mostly = 300;
3972 unsigned int __read_mostly netdev_budget_usecs = 2000;
3973 int weight_p __read_mostly = 64;           /* old backlog weight */
3974 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3975 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3976 int dev_rx_weight __read_mostly = 64;
3977 int dev_tx_weight __read_mostly = 64;
3978 
3979 /* Called with irq disabled */
3980 static inline void ____napi_schedule(struct softnet_data *sd,
3981 				     struct napi_struct *napi)
3982 {
3983 	list_add_tail(&napi->poll_list, &sd->poll_list);
3984 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3985 }
3986 
3987 #ifdef CONFIG_RPS
3988 
3989 /* One global table that all flow-based protocols share. */
3990 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3991 EXPORT_SYMBOL(rps_sock_flow_table);
3992 u32 rps_cpu_mask __read_mostly;
3993 EXPORT_SYMBOL(rps_cpu_mask);
3994 
3995 struct static_key_false rps_needed __read_mostly;
3996 EXPORT_SYMBOL(rps_needed);
3997 struct static_key_false rfs_needed __read_mostly;
3998 EXPORT_SYMBOL(rfs_needed);
3999 
4000 static struct rps_dev_flow *
4001 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4002 	    struct rps_dev_flow *rflow, u16 next_cpu)
4003 {
4004 	if (next_cpu < nr_cpu_ids) {
4005 #ifdef CONFIG_RFS_ACCEL
4006 		struct netdev_rx_queue *rxqueue;
4007 		struct rps_dev_flow_table *flow_table;
4008 		struct rps_dev_flow *old_rflow;
4009 		u32 flow_id;
4010 		u16 rxq_index;
4011 		int rc;
4012 
4013 		/* Should we steer this flow to a different hardware queue? */
4014 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4015 		    !(dev->features & NETIF_F_NTUPLE))
4016 			goto out;
4017 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4018 		if (rxq_index == skb_get_rx_queue(skb))
4019 			goto out;
4020 
4021 		rxqueue = dev->_rx + rxq_index;
4022 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4023 		if (!flow_table)
4024 			goto out;
4025 		flow_id = skb_get_hash(skb) & flow_table->mask;
4026 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4027 							rxq_index, flow_id);
4028 		if (rc < 0)
4029 			goto out;
4030 		old_rflow = rflow;
4031 		rflow = &flow_table->flows[flow_id];
4032 		rflow->filter = rc;
4033 		if (old_rflow->filter == rflow->filter)
4034 			old_rflow->filter = RPS_NO_FILTER;
4035 	out:
4036 #endif
4037 		rflow->last_qtail =
4038 			per_cpu(softnet_data, next_cpu).input_queue_head;
4039 	}
4040 
4041 	rflow->cpu = next_cpu;
4042 	return rflow;
4043 }
4044 
4045 /*
4046  * get_rps_cpu is called from netif_receive_skb and returns the target
4047  * CPU from the RPS map of the receiving queue for a given skb.
4048  * rcu_read_lock must be held on entry.
4049  */
4050 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4051 		       struct rps_dev_flow **rflowp)
4052 {
4053 	const struct rps_sock_flow_table *sock_flow_table;
4054 	struct netdev_rx_queue *rxqueue = dev->_rx;
4055 	struct rps_dev_flow_table *flow_table;
4056 	struct rps_map *map;
4057 	int cpu = -1;
4058 	u32 tcpu;
4059 	u32 hash;
4060 
4061 	if (skb_rx_queue_recorded(skb)) {
4062 		u16 index = skb_get_rx_queue(skb);
4063 
4064 		if (unlikely(index >= dev->real_num_rx_queues)) {
4065 			WARN_ONCE(dev->real_num_rx_queues > 1,
4066 				  "%s received packet on queue %u, but number "
4067 				  "of RX queues is %u\n",
4068 				  dev->name, index, dev->real_num_rx_queues);
4069 			goto done;
4070 		}
4071 		rxqueue += index;
4072 	}
4073 
4074 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4075 
4076 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4077 	map = rcu_dereference(rxqueue->rps_map);
4078 	if (!flow_table && !map)
4079 		goto done;
4080 
4081 	skb_reset_network_header(skb);
4082 	hash = skb_get_hash(skb);
4083 	if (!hash)
4084 		goto done;
4085 
4086 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4087 	if (flow_table && sock_flow_table) {
4088 		struct rps_dev_flow *rflow;
4089 		u32 next_cpu;
4090 		u32 ident;
4091 
4092 		/* First check into global flow table if there is a match */
4093 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4094 		if ((ident ^ hash) & ~rps_cpu_mask)
4095 			goto try_rps;
4096 
4097 		next_cpu = ident & rps_cpu_mask;
4098 
4099 		/* OK, now we know there is a match,
4100 		 * we can look at the local (per receive queue) flow table
4101 		 */
4102 		rflow = &flow_table->flows[hash & flow_table->mask];
4103 		tcpu = rflow->cpu;
4104 
4105 		/*
4106 		 * If the desired CPU (where last recvmsg was done) is
4107 		 * different from current CPU (one in the rx-queue flow
4108 		 * table entry), switch if one of the following holds:
4109 		 *   - Current CPU is unset (>= nr_cpu_ids).
4110 		 *   - Current CPU is offline.
4111 		 *   - The current CPU's queue tail has advanced beyond the
4112 		 *     last packet that was enqueued using this table entry.
4113 		 *     This guarantees that all previous packets for the flow
4114 		 *     have been dequeued, thus preserving in order delivery.
4115 		 */
4116 		if (unlikely(tcpu != next_cpu) &&
4117 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4118 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4119 		      rflow->last_qtail)) >= 0)) {
4120 			tcpu = next_cpu;
4121 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4122 		}
4123 
4124 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4125 			*rflowp = rflow;
4126 			cpu = tcpu;
4127 			goto done;
4128 		}
4129 	}
4130 
4131 try_rps:
4132 
4133 	if (map) {
4134 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4135 		if (cpu_online(tcpu)) {
4136 			cpu = tcpu;
4137 			goto done;
4138 		}
4139 	}
4140 
4141 done:
4142 	return cpu;
4143 }
4144 
4145 #ifdef CONFIG_RFS_ACCEL
4146 
4147 /**
4148  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4149  * @dev: Device on which the filter was set
4150  * @rxq_index: RX queue index
4151  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4152  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4153  *
4154  * Drivers that implement ndo_rx_flow_steer() should periodically call
4155  * this function for each installed filter and remove the filters for
4156  * which it returns %true.
4157  */
4158 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4159 			 u32 flow_id, u16 filter_id)
4160 {
4161 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4162 	struct rps_dev_flow_table *flow_table;
4163 	struct rps_dev_flow *rflow;
4164 	bool expire = true;
4165 	unsigned int cpu;
4166 
4167 	rcu_read_lock();
4168 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4169 	if (flow_table && flow_id <= flow_table->mask) {
4170 		rflow = &flow_table->flows[flow_id];
4171 		cpu = READ_ONCE(rflow->cpu);
4172 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4173 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4174 			   rflow->last_qtail) <
4175 		     (int)(10 * flow_table->mask)))
4176 			expire = false;
4177 	}
4178 	rcu_read_unlock();
4179 	return expire;
4180 }
4181 EXPORT_SYMBOL(rps_may_expire_flow);
4182 
4183 #endif /* CONFIG_RFS_ACCEL */
4184 
4185 /* Called from hardirq (IPI) context */
4186 static void rps_trigger_softirq(void *data)
4187 {
4188 	struct softnet_data *sd = data;
4189 
4190 	____napi_schedule(sd, &sd->backlog);
4191 	sd->received_rps++;
4192 }
4193 
4194 #endif /* CONFIG_RPS */
4195 
4196 /*
4197  * Check if this softnet_data structure is another cpu one
4198  * If yes, queue it to our IPI list and return 1
4199  * If no, return 0
4200  */
4201 static int rps_ipi_queued(struct softnet_data *sd)
4202 {
4203 #ifdef CONFIG_RPS
4204 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4205 
4206 	if (sd != mysd) {
4207 		sd->rps_ipi_next = mysd->rps_ipi_list;
4208 		mysd->rps_ipi_list = sd;
4209 
4210 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4211 		return 1;
4212 	}
4213 #endif /* CONFIG_RPS */
4214 	return 0;
4215 }
4216 
4217 #ifdef CONFIG_NET_FLOW_LIMIT
4218 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4219 #endif
4220 
4221 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4222 {
4223 #ifdef CONFIG_NET_FLOW_LIMIT
4224 	struct sd_flow_limit *fl;
4225 	struct softnet_data *sd;
4226 	unsigned int old_flow, new_flow;
4227 
4228 	if (qlen < (netdev_max_backlog >> 1))
4229 		return false;
4230 
4231 	sd = this_cpu_ptr(&softnet_data);
4232 
4233 	rcu_read_lock();
4234 	fl = rcu_dereference(sd->flow_limit);
4235 	if (fl) {
4236 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4237 		old_flow = fl->history[fl->history_head];
4238 		fl->history[fl->history_head] = new_flow;
4239 
4240 		fl->history_head++;
4241 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4242 
4243 		if (likely(fl->buckets[old_flow]))
4244 			fl->buckets[old_flow]--;
4245 
4246 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4247 			fl->count++;
4248 			rcu_read_unlock();
4249 			return true;
4250 		}
4251 	}
4252 	rcu_read_unlock();
4253 #endif
4254 	return false;
4255 }
4256 
4257 /*
4258  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4259  * queue (may be a remote CPU queue).
4260  */
4261 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4262 			      unsigned int *qtail)
4263 {
4264 	struct softnet_data *sd;
4265 	unsigned long flags;
4266 	unsigned int qlen;
4267 
4268 	sd = &per_cpu(softnet_data, cpu);
4269 
4270 	local_irq_save(flags);
4271 
4272 	rps_lock(sd);
4273 	if (!netif_running(skb->dev))
4274 		goto drop;
4275 	qlen = skb_queue_len(&sd->input_pkt_queue);
4276 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4277 		if (qlen) {
4278 enqueue:
4279 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4280 			input_queue_tail_incr_save(sd, qtail);
4281 			rps_unlock(sd);
4282 			local_irq_restore(flags);
4283 			return NET_RX_SUCCESS;
4284 		}
4285 
4286 		/* Schedule NAPI for backlog device
4287 		 * We can use non atomic operation since we own the queue lock
4288 		 */
4289 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4290 			if (!rps_ipi_queued(sd))
4291 				____napi_schedule(sd, &sd->backlog);
4292 		}
4293 		goto enqueue;
4294 	}
4295 
4296 drop:
4297 	sd->dropped++;
4298 	rps_unlock(sd);
4299 
4300 	local_irq_restore(flags);
4301 
4302 	atomic_long_inc(&skb->dev->rx_dropped);
4303 	kfree_skb(skb);
4304 	return NET_RX_DROP;
4305 }
4306 
4307 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4308 {
4309 	struct net_device *dev = skb->dev;
4310 	struct netdev_rx_queue *rxqueue;
4311 
4312 	rxqueue = dev->_rx;
4313 
4314 	if (skb_rx_queue_recorded(skb)) {
4315 		u16 index = skb_get_rx_queue(skb);
4316 
4317 		if (unlikely(index >= dev->real_num_rx_queues)) {
4318 			WARN_ONCE(dev->real_num_rx_queues > 1,
4319 				  "%s received packet on queue %u, but number "
4320 				  "of RX queues is %u\n",
4321 				  dev->name, index, dev->real_num_rx_queues);
4322 
4323 			return rxqueue; /* Return first rxqueue */
4324 		}
4325 		rxqueue += index;
4326 	}
4327 	return rxqueue;
4328 }
4329 
4330 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4331 				     struct xdp_buff *xdp,
4332 				     struct bpf_prog *xdp_prog)
4333 {
4334 	struct netdev_rx_queue *rxqueue;
4335 	void *orig_data, *orig_data_end;
4336 	u32 metalen, act = XDP_DROP;
4337 	__be16 orig_eth_type;
4338 	struct ethhdr *eth;
4339 	bool orig_bcast;
4340 	int hlen, off;
4341 	u32 mac_len;
4342 
4343 	/* Reinjected packets coming from act_mirred or similar should
4344 	 * not get XDP generic processing.
4345 	 */
4346 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4347 		return XDP_PASS;
4348 
4349 	/* XDP packets must be linear and must have sufficient headroom
4350 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4351 	 * native XDP provides, thus we need to do it here as well.
4352 	 */
4353 	if (skb_is_nonlinear(skb) ||
4354 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4355 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4356 		int troom = skb->tail + skb->data_len - skb->end;
4357 
4358 		/* In case we have to go down the path and also linearize,
4359 		 * then lets do the pskb_expand_head() work just once here.
4360 		 */
4361 		if (pskb_expand_head(skb,
4362 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4363 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4364 			goto do_drop;
4365 		if (skb_linearize(skb))
4366 			goto do_drop;
4367 	}
4368 
4369 	/* The XDP program wants to see the packet starting at the MAC
4370 	 * header.
4371 	 */
4372 	mac_len = skb->data - skb_mac_header(skb);
4373 	hlen = skb_headlen(skb) + mac_len;
4374 	xdp->data = skb->data - mac_len;
4375 	xdp->data_meta = xdp->data;
4376 	xdp->data_end = xdp->data + hlen;
4377 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4378 	orig_data_end = xdp->data_end;
4379 	orig_data = xdp->data;
4380 	eth = (struct ethhdr *)xdp->data;
4381 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4382 	orig_eth_type = eth->h_proto;
4383 
4384 	rxqueue = netif_get_rxqueue(skb);
4385 	xdp->rxq = &rxqueue->xdp_rxq;
4386 
4387 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4388 
4389 	off = xdp->data - orig_data;
4390 	if (off > 0)
4391 		__skb_pull(skb, off);
4392 	else if (off < 0)
4393 		__skb_push(skb, -off);
4394 	skb->mac_header += off;
4395 
4396 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4397 	 * pckt.
4398 	 */
4399 	off = orig_data_end - xdp->data_end;
4400 	if (off != 0) {
4401 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4402 		skb->len -= off;
4403 
4404 	}
4405 
4406 	/* check if XDP changed eth hdr such SKB needs update */
4407 	eth = (struct ethhdr *)xdp->data;
4408 	if ((orig_eth_type != eth->h_proto) ||
4409 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4410 		__skb_push(skb, ETH_HLEN);
4411 		skb->protocol = eth_type_trans(skb, skb->dev);
4412 	}
4413 
4414 	switch (act) {
4415 	case XDP_REDIRECT:
4416 	case XDP_TX:
4417 		__skb_push(skb, mac_len);
4418 		break;
4419 	case XDP_PASS:
4420 		metalen = xdp->data - xdp->data_meta;
4421 		if (metalen)
4422 			skb_metadata_set(skb, metalen);
4423 		break;
4424 	default:
4425 		bpf_warn_invalid_xdp_action(act);
4426 		/* fall through */
4427 	case XDP_ABORTED:
4428 		trace_xdp_exception(skb->dev, xdp_prog, act);
4429 		/* fall through */
4430 	case XDP_DROP:
4431 	do_drop:
4432 		kfree_skb(skb);
4433 		break;
4434 	}
4435 
4436 	return act;
4437 }
4438 
4439 /* When doing generic XDP we have to bypass the qdisc layer and the
4440  * network taps in order to match in-driver-XDP behavior.
4441  */
4442 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4443 {
4444 	struct net_device *dev = skb->dev;
4445 	struct netdev_queue *txq;
4446 	bool free_skb = true;
4447 	int cpu, rc;
4448 
4449 	txq = netdev_core_pick_tx(dev, skb, NULL);
4450 	cpu = smp_processor_id();
4451 	HARD_TX_LOCK(dev, txq, cpu);
4452 	if (!netif_xmit_stopped(txq)) {
4453 		rc = netdev_start_xmit(skb, dev, txq, 0);
4454 		if (dev_xmit_complete(rc))
4455 			free_skb = false;
4456 	}
4457 	HARD_TX_UNLOCK(dev, txq);
4458 	if (free_skb) {
4459 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4460 		kfree_skb(skb);
4461 	}
4462 }
4463 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4464 
4465 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4466 
4467 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4468 {
4469 	if (xdp_prog) {
4470 		struct xdp_buff xdp;
4471 		u32 act;
4472 		int err;
4473 
4474 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4475 		if (act != XDP_PASS) {
4476 			switch (act) {
4477 			case XDP_REDIRECT:
4478 				err = xdp_do_generic_redirect(skb->dev, skb,
4479 							      &xdp, xdp_prog);
4480 				if (err)
4481 					goto out_redir;
4482 				break;
4483 			case XDP_TX:
4484 				generic_xdp_tx(skb, xdp_prog);
4485 				break;
4486 			}
4487 			return XDP_DROP;
4488 		}
4489 	}
4490 	return XDP_PASS;
4491 out_redir:
4492 	kfree_skb(skb);
4493 	return XDP_DROP;
4494 }
4495 EXPORT_SYMBOL_GPL(do_xdp_generic);
4496 
4497 static int netif_rx_internal(struct sk_buff *skb)
4498 {
4499 	int ret;
4500 
4501 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4502 
4503 	trace_netif_rx(skb);
4504 
4505 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4506 		int ret;
4507 
4508 		preempt_disable();
4509 		rcu_read_lock();
4510 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4511 		rcu_read_unlock();
4512 		preempt_enable();
4513 
4514 		/* Consider XDP consuming the packet a success from
4515 		 * the netdev point of view we do not want to count
4516 		 * this as an error.
4517 		 */
4518 		if (ret != XDP_PASS)
4519 			return NET_RX_SUCCESS;
4520 	}
4521 
4522 #ifdef CONFIG_RPS
4523 	if (static_branch_unlikely(&rps_needed)) {
4524 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4525 		int cpu;
4526 
4527 		preempt_disable();
4528 		rcu_read_lock();
4529 
4530 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4531 		if (cpu < 0)
4532 			cpu = smp_processor_id();
4533 
4534 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4535 
4536 		rcu_read_unlock();
4537 		preempt_enable();
4538 	} else
4539 #endif
4540 	{
4541 		unsigned int qtail;
4542 
4543 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4544 		put_cpu();
4545 	}
4546 	return ret;
4547 }
4548 
4549 /**
4550  *	netif_rx	-	post buffer to the network code
4551  *	@skb: buffer to post
4552  *
4553  *	This function receives a packet from a device driver and queues it for
4554  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4555  *	may be dropped during processing for congestion control or by the
4556  *	protocol layers.
4557  *
4558  *	return values:
4559  *	NET_RX_SUCCESS	(no congestion)
4560  *	NET_RX_DROP     (packet was dropped)
4561  *
4562  */
4563 
4564 int netif_rx(struct sk_buff *skb)
4565 {
4566 	int ret;
4567 
4568 	trace_netif_rx_entry(skb);
4569 
4570 	ret = netif_rx_internal(skb);
4571 	trace_netif_rx_exit(ret);
4572 
4573 	return ret;
4574 }
4575 EXPORT_SYMBOL(netif_rx);
4576 
4577 int netif_rx_ni(struct sk_buff *skb)
4578 {
4579 	int err;
4580 
4581 	trace_netif_rx_ni_entry(skb);
4582 
4583 	preempt_disable();
4584 	err = netif_rx_internal(skb);
4585 	if (local_softirq_pending())
4586 		do_softirq();
4587 	preempt_enable();
4588 	trace_netif_rx_ni_exit(err);
4589 
4590 	return err;
4591 }
4592 EXPORT_SYMBOL(netif_rx_ni);
4593 
4594 static __latent_entropy void net_tx_action(struct softirq_action *h)
4595 {
4596 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4597 
4598 	if (sd->completion_queue) {
4599 		struct sk_buff *clist;
4600 
4601 		local_irq_disable();
4602 		clist = sd->completion_queue;
4603 		sd->completion_queue = NULL;
4604 		local_irq_enable();
4605 
4606 		while (clist) {
4607 			struct sk_buff *skb = clist;
4608 
4609 			clist = clist->next;
4610 
4611 			WARN_ON(refcount_read(&skb->users));
4612 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4613 				trace_consume_skb(skb);
4614 			else
4615 				trace_kfree_skb(skb, net_tx_action);
4616 
4617 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4618 				__kfree_skb(skb);
4619 			else
4620 				__kfree_skb_defer(skb);
4621 		}
4622 
4623 		__kfree_skb_flush();
4624 	}
4625 
4626 	if (sd->output_queue) {
4627 		struct Qdisc *head;
4628 
4629 		local_irq_disable();
4630 		head = sd->output_queue;
4631 		sd->output_queue = NULL;
4632 		sd->output_queue_tailp = &sd->output_queue;
4633 		local_irq_enable();
4634 
4635 		while (head) {
4636 			struct Qdisc *q = head;
4637 			spinlock_t *root_lock = NULL;
4638 
4639 			head = head->next_sched;
4640 
4641 			if (!(q->flags & TCQ_F_NOLOCK)) {
4642 				root_lock = qdisc_lock(q);
4643 				spin_lock(root_lock);
4644 			}
4645 			/* We need to make sure head->next_sched is read
4646 			 * before clearing __QDISC_STATE_SCHED
4647 			 */
4648 			smp_mb__before_atomic();
4649 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4650 			qdisc_run(q);
4651 			if (root_lock)
4652 				spin_unlock(root_lock);
4653 		}
4654 	}
4655 
4656 	xfrm_dev_backlog(sd);
4657 }
4658 
4659 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4660 /* This hook is defined here for ATM LANE */
4661 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4662 			     unsigned char *addr) __read_mostly;
4663 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4664 #endif
4665 
4666 static inline struct sk_buff *
4667 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4668 		   struct net_device *orig_dev)
4669 {
4670 #ifdef CONFIG_NET_CLS_ACT
4671 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4672 	struct tcf_result cl_res;
4673 
4674 	/* If there's at least one ingress present somewhere (so
4675 	 * we get here via enabled static key), remaining devices
4676 	 * that are not configured with an ingress qdisc will bail
4677 	 * out here.
4678 	 */
4679 	if (!miniq)
4680 		return skb;
4681 
4682 	if (*pt_prev) {
4683 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4684 		*pt_prev = NULL;
4685 	}
4686 
4687 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4688 	skb->tc_at_ingress = 1;
4689 	mini_qdisc_bstats_cpu_update(miniq, skb);
4690 
4691 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4692 	case TC_ACT_OK:
4693 	case TC_ACT_RECLASSIFY:
4694 		skb->tc_index = TC_H_MIN(cl_res.classid);
4695 		break;
4696 	case TC_ACT_SHOT:
4697 		mini_qdisc_qstats_cpu_drop(miniq);
4698 		kfree_skb(skb);
4699 		return NULL;
4700 	case TC_ACT_STOLEN:
4701 	case TC_ACT_QUEUED:
4702 	case TC_ACT_TRAP:
4703 		consume_skb(skb);
4704 		return NULL;
4705 	case TC_ACT_REDIRECT:
4706 		/* skb_mac_header check was done by cls/act_bpf, so
4707 		 * we can safely push the L2 header back before
4708 		 * redirecting to another netdev
4709 		 */
4710 		__skb_push(skb, skb->mac_len);
4711 		skb_do_redirect(skb);
4712 		return NULL;
4713 	case TC_ACT_REINSERT:
4714 		/* this does not scrub the packet, and updates stats on error */
4715 		skb_tc_reinsert(skb, &cl_res);
4716 		return NULL;
4717 	default:
4718 		break;
4719 	}
4720 #endif /* CONFIG_NET_CLS_ACT */
4721 	return skb;
4722 }
4723 
4724 /**
4725  *	netdev_is_rx_handler_busy - check if receive handler is registered
4726  *	@dev: device to check
4727  *
4728  *	Check if a receive handler is already registered for a given device.
4729  *	Return true if there one.
4730  *
4731  *	The caller must hold the rtnl_mutex.
4732  */
4733 bool netdev_is_rx_handler_busy(struct net_device *dev)
4734 {
4735 	ASSERT_RTNL();
4736 	return dev && rtnl_dereference(dev->rx_handler);
4737 }
4738 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4739 
4740 /**
4741  *	netdev_rx_handler_register - register receive handler
4742  *	@dev: device to register a handler for
4743  *	@rx_handler: receive handler to register
4744  *	@rx_handler_data: data pointer that is used by rx handler
4745  *
4746  *	Register a receive handler for a device. This handler will then be
4747  *	called from __netif_receive_skb. A negative errno code is returned
4748  *	on a failure.
4749  *
4750  *	The caller must hold the rtnl_mutex.
4751  *
4752  *	For a general description of rx_handler, see enum rx_handler_result.
4753  */
4754 int netdev_rx_handler_register(struct net_device *dev,
4755 			       rx_handler_func_t *rx_handler,
4756 			       void *rx_handler_data)
4757 {
4758 	if (netdev_is_rx_handler_busy(dev))
4759 		return -EBUSY;
4760 
4761 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4762 		return -EINVAL;
4763 
4764 	/* Note: rx_handler_data must be set before rx_handler */
4765 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4766 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4767 
4768 	return 0;
4769 }
4770 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4771 
4772 /**
4773  *	netdev_rx_handler_unregister - unregister receive handler
4774  *	@dev: device to unregister a handler from
4775  *
4776  *	Unregister a receive handler from a device.
4777  *
4778  *	The caller must hold the rtnl_mutex.
4779  */
4780 void netdev_rx_handler_unregister(struct net_device *dev)
4781 {
4782 
4783 	ASSERT_RTNL();
4784 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4785 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4786 	 * section has a guarantee to see a non NULL rx_handler_data
4787 	 * as well.
4788 	 */
4789 	synchronize_net();
4790 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4791 }
4792 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4793 
4794 /*
4795  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4796  * the special handling of PFMEMALLOC skbs.
4797  */
4798 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4799 {
4800 	switch (skb->protocol) {
4801 	case htons(ETH_P_ARP):
4802 	case htons(ETH_P_IP):
4803 	case htons(ETH_P_IPV6):
4804 	case htons(ETH_P_8021Q):
4805 	case htons(ETH_P_8021AD):
4806 		return true;
4807 	default:
4808 		return false;
4809 	}
4810 }
4811 
4812 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4813 			     int *ret, struct net_device *orig_dev)
4814 {
4815 #ifdef CONFIG_NETFILTER_INGRESS
4816 	if (nf_hook_ingress_active(skb)) {
4817 		int ingress_retval;
4818 
4819 		if (*pt_prev) {
4820 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4821 			*pt_prev = NULL;
4822 		}
4823 
4824 		rcu_read_lock();
4825 		ingress_retval = nf_hook_ingress(skb);
4826 		rcu_read_unlock();
4827 		return ingress_retval;
4828 	}
4829 #endif /* CONFIG_NETFILTER_INGRESS */
4830 	return 0;
4831 }
4832 
4833 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4834 				    struct packet_type **ppt_prev)
4835 {
4836 	struct packet_type *ptype, *pt_prev;
4837 	rx_handler_func_t *rx_handler;
4838 	struct net_device *orig_dev;
4839 	bool deliver_exact = false;
4840 	int ret = NET_RX_DROP;
4841 	__be16 type;
4842 
4843 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4844 
4845 	trace_netif_receive_skb(skb);
4846 
4847 	orig_dev = skb->dev;
4848 
4849 	skb_reset_network_header(skb);
4850 	if (!skb_transport_header_was_set(skb))
4851 		skb_reset_transport_header(skb);
4852 	skb_reset_mac_len(skb);
4853 
4854 	pt_prev = NULL;
4855 
4856 another_round:
4857 	skb->skb_iif = skb->dev->ifindex;
4858 
4859 	__this_cpu_inc(softnet_data.processed);
4860 
4861 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4862 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4863 		skb = skb_vlan_untag(skb);
4864 		if (unlikely(!skb))
4865 			goto out;
4866 	}
4867 
4868 	if (skb_skip_tc_classify(skb))
4869 		goto skip_classify;
4870 
4871 	if (pfmemalloc)
4872 		goto skip_taps;
4873 
4874 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4875 		if (pt_prev)
4876 			ret = deliver_skb(skb, pt_prev, orig_dev);
4877 		pt_prev = ptype;
4878 	}
4879 
4880 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4881 		if (pt_prev)
4882 			ret = deliver_skb(skb, pt_prev, orig_dev);
4883 		pt_prev = ptype;
4884 	}
4885 
4886 skip_taps:
4887 #ifdef CONFIG_NET_INGRESS
4888 	if (static_branch_unlikely(&ingress_needed_key)) {
4889 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4890 		if (!skb)
4891 			goto out;
4892 
4893 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4894 			goto out;
4895 	}
4896 #endif
4897 	skb_reset_tc(skb);
4898 skip_classify:
4899 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4900 		goto drop;
4901 
4902 	if (skb_vlan_tag_present(skb)) {
4903 		if (pt_prev) {
4904 			ret = deliver_skb(skb, pt_prev, orig_dev);
4905 			pt_prev = NULL;
4906 		}
4907 		if (vlan_do_receive(&skb))
4908 			goto another_round;
4909 		else if (unlikely(!skb))
4910 			goto out;
4911 	}
4912 
4913 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4914 	if (rx_handler) {
4915 		if (pt_prev) {
4916 			ret = deliver_skb(skb, pt_prev, orig_dev);
4917 			pt_prev = NULL;
4918 		}
4919 		switch (rx_handler(&skb)) {
4920 		case RX_HANDLER_CONSUMED:
4921 			ret = NET_RX_SUCCESS;
4922 			goto out;
4923 		case RX_HANDLER_ANOTHER:
4924 			goto another_round;
4925 		case RX_HANDLER_EXACT:
4926 			deliver_exact = true;
4927 		case RX_HANDLER_PASS:
4928 			break;
4929 		default:
4930 			BUG();
4931 		}
4932 	}
4933 
4934 	if (unlikely(skb_vlan_tag_present(skb))) {
4935 		if (skb_vlan_tag_get_id(skb))
4936 			skb->pkt_type = PACKET_OTHERHOST;
4937 		/* Note: we might in the future use prio bits
4938 		 * and set skb->priority like in vlan_do_receive()
4939 		 * For the time being, just ignore Priority Code Point
4940 		 */
4941 		__vlan_hwaccel_clear_tag(skb);
4942 	}
4943 
4944 	type = skb->protocol;
4945 
4946 	/* deliver only exact match when indicated */
4947 	if (likely(!deliver_exact)) {
4948 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4949 				       &ptype_base[ntohs(type) &
4950 						   PTYPE_HASH_MASK]);
4951 	}
4952 
4953 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4954 			       &orig_dev->ptype_specific);
4955 
4956 	if (unlikely(skb->dev != orig_dev)) {
4957 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4958 				       &skb->dev->ptype_specific);
4959 	}
4960 
4961 	if (pt_prev) {
4962 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4963 			goto drop;
4964 		*ppt_prev = pt_prev;
4965 	} else {
4966 drop:
4967 		if (!deliver_exact)
4968 			atomic_long_inc(&skb->dev->rx_dropped);
4969 		else
4970 			atomic_long_inc(&skb->dev->rx_nohandler);
4971 		kfree_skb(skb);
4972 		/* Jamal, now you will not able to escape explaining
4973 		 * me how you were going to use this. :-)
4974 		 */
4975 		ret = NET_RX_DROP;
4976 	}
4977 
4978 out:
4979 	return ret;
4980 }
4981 
4982 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4983 {
4984 	struct net_device *orig_dev = skb->dev;
4985 	struct packet_type *pt_prev = NULL;
4986 	int ret;
4987 
4988 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4989 	if (pt_prev)
4990 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4991 					 skb->dev, pt_prev, orig_dev);
4992 	return ret;
4993 }
4994 
4995 /**
4996  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4997  *	@skb: buffer to process
4998  *
4999  *	More direct receive version of netif_receive_skb().  It should
5000  *	only be used by callers that have a need to skip RPS and Generic XDP.
5001  *	Caller must also take care of handling if (page_is_)pfmemalloc.
5002  *
5003  *	This function may only be called from softirq context and interrupts
5004  *	should be enabled.
5005  *
5006  *	Return values (usually ignored):
5007  *	NET_RX_SUCCESS: no congestion
5008  *	NET_RX_DROP: packet was dropped
5009  */
5010 int netif_receive_skb_core(struct sk_buff *skb)
5011 {
5012 	int ret;
5013 
5014 	rcu_read_lock();
5015 	ret = __netif_receive_skb_one_core(skb, false);
5016 	rcu_read_unlock();
5017 
5018 	return ret;
5019 }
5020 EXPORT_SYMBOL(netif_receive_skb_core);
5021 
5022 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5023 						  struct packet_type *pt_prev,
5024 						  struct net_device *orig_dev)
5025 {
5026 	struct sk_buff *skb, *next;
5027 
5028 	if (!pt_prev)
5029 		return;
5030 	if (list_empty(head))
5031 		return;
5032 	if (pt_prev->list_func != NULL)
5033 		pt_prev->list_func(head, pt_prev, orig_dev);
5034 	else
5035 		list_for_each_entry_safe(skb, next, head, list) {
5036 			skb_list_del_init(skb);
5037 			INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5038 					   skb->dev, pt_prev, orig_dev);
5039 		}
5040 }
5041 
5042 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5043 {
5044 	/* Fast-path assumptions:
5045 	 * - There is no RX handler.
5046 	 * - Only one packet_type matches.
5047 	 * If either of these fails, we will end up doing some per-packet
5048 	 * processing in-line, then handling the 'last ptype' for the whole
5049 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5050 	 * because the 'last ptype' must be constant across the sublist, and all
5051 	 * other ptypes are handled per-packet.
5052 	 */
5053 	/* Current (common) ptype of sublist */
5054 	struct packet_type *pt_curr = NULL;
5055 	/* Current (common) orig_dev of sublist */
5056 	struct net_device *od_curr = NULL;
5057 	struct list_head sublist;
5058 	struct sk_buff *skb, *next;
5059 
5060 	INIT_LIST_HEAD(&sublist);
5061 	list_for_each_entry_safe(skb, next, head, list) {
5062 		struct net_device *orig_dev = skb->dev;
5063 		struct packet_type *pt_prev = NULL;
5064 
5065 		skb_list_del_init(skb);
5066 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5067 		if (!pt_prev)
5068 			continue;
5069 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5070 			/* dispatch old sublist */
5071 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5072 			/* start new sublist */
5073 			INIT_LIST_HEAD(&sublist);
5074 			pt_curr = pt_prev;
5075 			od_curr = orig_dev;
5076 		}
5077 		list_add_tail(&skb->list, &sublist);
5078 	}
5079 
5080 	/* dispatch final sublist */
5081 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5082 }
5083 
5084 static int __netif_receive_skb(struct sk_buff *skb)
5085 {
5086 	int ret;
5087 
5088 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5089 		unsigned int noreclaim_flag;
5090 
5091 		/*
5092 		 * PFMEMALLOC skbs are special, they should
5093 		 * - be delivered to SOCK_MEMALLOC sockets only
5094 		 * - stay away from userspace
5095 		 * - have bounded memory usage
5096 		 *
5097 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5098 		 * context down to all allocation sites.
5099 		 */
5100 		noreclaim_flag = memalloc_noreclaim_save();
5101 		ret = __netif_receive_skb_one_core(skb, true);
5102 		memalloc_noreclaim_restore(noreclaim_flag);
5103 	} else
5104 		ret = __netif_receive_skb_one_core(skb, false);
5105 
5106 	return ret;
5107 }
5108 
5109 static void __netif_receive_skb_list(struct list_head *head)
5110 {
5111 	unsigned long noreclaim_flag = 0;
5112 	struct sk_buff *skb, *next;
5113 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5114 
5115 	list_for_each_entry_safe(skb, next, head, list) {
5116 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5117 			struct list_head sublist;
5118 
5119 			/* Handle the previous sublist */
5120 			list_cut_before(&sublist, head, &skb->list);
5121 			if (!list_empty(&sublist))
5122 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5123 			pfmemalloc = !pfmemalloc;
5124 			/* See comments in __netif_receive_skb */
5125 			if (pfmemalloc)
5126 				noreclaim_flag = memalloc_noreclaim_save();
5127 			else
5128 				memalloc_noreclaim_restore(noreclaim_flag);
5129 		}
5130 	}
5131 	/* Handle the remaining sublist */
5132 	if (!list_empty(head))
5133 		__netif_receive_skb_list_core(head, pfmemalloc);
5134 	/* Restore pflags */
5135 	if (pfmemalloc)
5136 		memalloc_noreclaim_restore(noreclaim_flag);
5137 }
5138 
5139 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5140 {
5141 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5142 	struct bpf_prog *new = xdp->prog;
5143 	int ret = 0;
5144 
5145 	switch (xdp->command) {
5146 	case XDP_SETUP_PROG:
5147 		rcu_assign_pointer(dev->xdp_prog, new);
5148 		if (old)
5149 			bpf_prog_put(old);
5150 
5151 		if (old && !new) {
5152 			static_branch_dec(&generic_xdp_needed_key);
5153 		} else if (new && !old) {
5154 			static_branch_inc(&generic_xdp_needed_key);
5155 			dev_disable_lro(dev);
5156 			dev_disable_gro_hw(dev);
5157 		}
5158 		break;
5159 
5160 	case XDP_QUERY_PROG:
5161 		xdp->prog_id = old ? old->aux->id : 0;
5162 		break;
5163 
5164 	default:
5165 		ret = -EINVAL;
5166 		break;
5167 	}
5168 
5169 	return ret;
5170 }
5171 
5172 static int netif_receive_skb_internal(struct sk_buff *skb)
5173 {
5174 	int ret;
5175 
5176 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5177 
5178 	if (skb_defer_rx_timestamp(skb))
5179 		return NET_RX_SUCCESS;
5180 
5181 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5182 		int ret;
5183 
5184 		preempt_disable();
5185 		rcu_read_lock();
5186 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5187 		rcu_read_unlock();
5188 		preempt_enable();
5189 
5190 		if (ret != XDP_PASS)
5191 			return NET_RX_DROP;
5192 	}
5193 
5194 	rcu_read_lock();
5195 #ifdef CONFIG_RPS
5196 	if (static_branch_unlikely(&rps_needed)) {
5197 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5198 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5199 
5200 		if (cpu >= 0) {
5201 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5202 			rcu_read_unlock();
5203 			return ret;
5204 		}
5205 	}
5206 #endif
5207 	ret = __netif_receive_skb(skb);
5208 	rcu_read_unlock();
5209 	return ret;
5210 }
5211 
5212 static void netif_receive_skb_list_internal(struct list_head *head)
5213 {
5214 	struct bpf_prog *xdp_prog = NULL;
5215 	struct sk_buff *skb, *next;
5216 	struct list_head sublist;
5217 
5218 	INIT_LIST_HEAD(&sublist);
5219 	list_for_each_entry_safe(skb, next, head, list) {
5220 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5221 		skb_list_del_init(skb);
5222 		if (!skb_defer_rx_timestamp(skb))
5223 			list_add_tail(&skb->list, &sublist);
5224 	}
5225 	list_splice_init(&sublist, head);
5226 
5227 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5228 		preempt_disable();
5229 		rcu_read_lock();
5230 		list_for_each_entry_safe(skb, next, head, list) {
5231 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5232 			skb_list_del_init(skb);
5233 			if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5234 				list_add_tail(&skb->list, &sublist);
5235 		}
5236 		rcu_read_unlock();
5237 		preempt_enable();
5238 		/* Put passed packets back on main list */
5239 		list_splice_init(&sublist, head);
5240 	}
5241 
5242 	rcu_read_lock();
5243 #ifdef CONFIG_RPS
5244 	if (static_branch_unlikely(&rps_needed)) {
5245 		list_for_each_entry_safe(skb, next, head, list) {
5246 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5247 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5248 
5249 			if (cpu >= 0) {
5250 				/* Will be handled, remove from list */
5251 				skb_list_del_init(skb);
5252 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5253 			}
5254 		}
5255 	}
5256 #endif
5257 	__netif_receive_skb_list(head);
5258 	rcu_read_unlock();
5259 }
5260 
5261 /**
5262  *	netif_receive_skb - process receive buffer from network
5263  *	@skb: buffer to process
5264  *
5265  *	netif_receive_skb() is the main receive data processing function.
5266  *	It always succeeds. The buffer may be dropped during processing
5267  *	for congestion control or by the protocol layers.
5268  *
5269  *	This function may only be called from softirq context and interrupts
5270  *	should be enabled.
5271  *
5272  *	Return values (usually ignored):
5273  *	NET_RX_SUCCESS: no congestion
5274  *	NET_RX_DROP: packet was dropped
5275  */
5276 int netif_receive_skb(struct sk_buff *skb)
5277 {
5278 	int ret;
5279 
5280 	trace_netif_receive_skb_entry(skb);
5281 
5282 	ret = netif_receive_skb_internal(skb);
5283 	trace_netif_receive_skb_exit(ret);
5284 
5285 	return ret;
5286 }
5287 EXPORT_SYMBOL(netif_receive_skb);
5288 
5289 /**
5290  *	netif_receive_skb_list - process many receive buffers from network
5291  *	@head: list of skbs to process.
5292  *
5293  *	Since return value of netif_receive_skb() is normally ignored, and
5294  *	wouldn't be meaningful for a list, this function returns void.
5295  *
5296  *	This function may only be called from softirq context and interrupts
5297  *	should be enabled.
5298  */
5299 void netif_receive_skb_list(struct list_head *head)
5300 {
5301 	struct sk_buff *skb;
5302 
5303 	if (list_empty(head))
5304 		return;
5305 	if (trace_netif_receive_skb_list_entry_enabled()) {
5306 		list_for_each_entry(skb, head, list)
5307 			trace_netif_receive_skb_list_entry(skb);
5308 	}
5309 	netif_receive_skb_list_internal(head);
5310 	trace_netif_receive_skb_list_exit(0);
5311 }
5312 EXPORT_SYMBOL(netif_receive_skb_list);
5313 
5314 DEFINE_PER_CPU(struct work_struct, flush_works);
5315 
5316 /* Network device is going away, flush any packets still pending */
5317 static void flush_backlog(struct work_struct *work)
5318 {
5319 	struct sk_buff *skb, *tmp;
5320 	struct softnet_data *sd;
5321 
5322 	local_bh_disable();
5323 	sd = this_cpu_ptr(&softnet_data);
5324 
5325 	local_irq_disable();
5326 	rps_lock(sd);
5327 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5328 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5329 			__skb_unlink(skb, &sd->input_pkt_queue);
5330 			kfree_skb(skb);
5331 			input_queue_head_incr(sd);
5332 		}
5333 	}
5334 	rps_unlock(sd);
5335 	local_irq_enable();
5336 
5337 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5338 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5339 			__skb_unlink(skb, &sd->process_queue);
5340 			kfree_skb(skb);
5341 			input_queue_head_incr(sd);
5342 		}
5343 	}
5344 	local_bh_enable();
5345 }
5346 
5347 static void flush_all_backlogs(void)
5348 {
5349 	unsigned int cpu;
5350 
5351 	get_online_cpus();
5352 
5353 	for_each_online_cpu(cpu)
5354 		queue_work_on(cpu, system_highpri_wq,
5355 			      per_cpu_ptr(&flush_works, cpu));
5356 
5357 	for_each_online_cpu(cpu)
5358 		flush_work(per_cpu_ptr(&flush_works, cpu));
5359 
5360 	put_online_cpus();
5361 }
5362 
5363 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5364 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5365 static int napi_gro_complete(struct sk_buff *skb)
5366 {
5367 	struct packet_offload *ptype;
5368 	__be16 type = skb->protocol;
5369 	struct list_head *head = &offload_base;
5370 	int err = -ENOENT;
5371 
5372 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5373 
5374 	if (NAPI_GRO_CB(skb)->count == 1) {
5375 		skb_shinfo(skb)->gso_size = 0;
5376 		goto out;
5377 	}
5378 
5379 	rcu_read_lock();
5380 	list_for_each_entry_rcu(ptype, head, list) {
5381 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5382 			continue;
5383 
5384 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5385 					 ipv6_gro_complete, inet_gro_complete,
5386 					 skb, 0);
5387 		break;
5388 	}
5389 	rcu_read_unlock();
5390 
5391 	if (err) {
5392 		WARN_ON(&ptype->list == head);
5393 		kfree_skb(skb);
5394 		return NET_RX_SUCCESS;
5395 	}
5396 
5397 out:
5398 	return netif_receive_skb_internal(skb);
5399 }
5400 
5401 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5402 				   bool flush_old)
5403 {
5404 	struct list_head *head = &napi->gro_hash[index].list;
5405 	struct sk_buff *skb, *p;
5406 
5407 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5408 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5409 			return;
5410 		skb_list_del_init(skb);
5411 		napi_gro_complete(skb);
5412 		napi->gro_hash[index].count--;
5413 	}
5414 
5415 	if (!napi->gro_hash[index].count)
5416 		__clear_bit(index, &napi->gro_bitmask);
5417 }
5418 
5419 /* napi->gro_hash[].list contains packets ordered by age.
5420  * youngest packets at the head of it.
5421  * Complete skbs in reverse order to reduce latencies.
5422  */
5423 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5424 {
5425 	unsigned long bitmask = napi->gro_bitmask;
5426 	unsigned int i, base = ~0U;
5427 
5428 	while ((i = ffs(bitmask)) != 0) {
5429 		bitmask >>= i;
5430 		base += i;
5431 		__napi_gro_flush_chain(napi, base, flush_old);
5432 	}
5433 }
5434 EXPORT_SYMBOL(napi_gro_flush);
5435 
5436 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5437 					  struct sk_buff *skb)
5438 {
5439 	unsigned int maclen = skb->dev->hard_header_len;
5440 	u32 hash = skb_get_hash_raw(skb);
5441 	struct list_head *head;
5442 	struct sk_buff *p;
5443 
5444 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5445 	list_for_each_entry(p, head, list) {
5446 		unsigned long diffs;
5447 
5448 		NAPI_GRO_CB(p)->flush = 0;
5449 
5450 		if (hash != skb_get_hash_raw(p)) {
5451 			NAPI_GRO_CB(p)->same_flow = 0;
5452 			continue;
5453 		}
5454 
5455 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5456 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5457 		if (skb_vlan_tag_present(p))
5458 			diffs |= p->vlan_tci ^ skb->vlan_tci;
5459 		diffs |= skb_metadata_dst_cmp(p, skb);
5460 		diffs |= skb_metadata_differs(p, skb);
5461 		if (maclen == ETH_HLEN)
5462 			diffs |= compare_ether_header(skb_mac_header(p),
5463 						      skb_mac_header(skb));
5464 		else if (!diffs)
5465 			diffs = memcmp(skb_mac_header(p),
5466 				       skb_mac_header(skb),
5467 				       maclen);
5468 		NAPI_GRO_CB(p)->same_flow = !diffs;
5469 	}
5470 
5471 	return head;
5472 }
5473 
5474 static void skb_gro_reset_offset(struct sk_buff *skb)
5475 {
5476 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5477 	const skb_frag_t *frag0 = &pinfo->frags[0];
5478 
5479 	NAPI_GRO_CB(skb)->data_offset = 0;
5480 	NAPI_GRO_CB(skb)->frag0 = NULL;
5481 	NAPI_GRO_CB(skb)->frag0_len = 0;
5482 
5483 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5484 	    pinfo->nr_frags &&
5485 	    !PageHighMem(skb_frag_page(frag0))) {
5486 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5487 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5488 						    skb_frag_size(frag0),
5489 						    skb->end - skb->tail);
5490 	}
5491 }
5492 
5493 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5494 {
5495 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5496 
5497 	BUG_ON(skb->end - skb->tail < grow);
5498 
5499 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5500 
5501 	skb->data_len -= grow;
5502 	skb->tail += grow;
5503 
5504 	pinfo->frags[0].page_offset += grow;
5505 	skb_frag_size_sub(&pinfo->frags[0], grow);
5506 
5507 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5508 		skb_frag_unref(skb, 0);
5509 		memmove(pinfo->frags, pinfo->frags + 1,
5510 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5511 	}
5512 }
5513 
5514 static void gro_flush_oldest(struct list_head *head)
5515 {
5516 	struct sk_buff *oldest;
5517 
5518 	oldest = list_last_entry(head, struct sk_buff, list);
5519 
5520 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5521 	 * impossible.
5522 	 */
5523 	if (WARN_ON_ONCE(!oldest))
5524 		return;
5525 
5526 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5527 	 * SKB to the chain.
5528 	 */
5529 	skb_list_del_init(oldest);
5530 	napi_gro_complete(oldest);
5531 }
5532 
5533 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5534 							   struct sk_buff *));
5535 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5536 							   struct sk_buff *));
5537 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5538 {
5539 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5540 	struct list_head *head = &offload_base;
5541 	struct packet_offload *ptype;
5542 	__be16 type = skb->protocol;
5543 	struct list_head *gro_head;
5544 	struct sk_buff *pp = NULL;
5545 	enum gro_result ret;
5546 	int same_flow;
5547 	int grow;
5548 
5549 	if (netif_elide_gro(skb->dev))
5550 		goto normal;
5551 
5552 	gro_head = gro_list_prepare(napi, skb);
5553 
5554 	rcu_read_lock();
5555 	list_for_each_entry_rcu(ptype, head, list) {
5556 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5557 			continue;
5558 
5559 		skb_set_network_header(skb, skb_gro_offset(skb));
5560 		skb_reset_mac_len(skb);
5561 		NAPI_GRO_CB(skb)->same_flow = 0;
5562 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5563 		NAPI_GRO_CB(skb)->free = 0;
5564 		NAPI_GRO_CB(skb)->encap_mark = 0;
5565 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5566 		NAPI_GRO_CB(skb)->is_fou = 0;
5567 		NAPI_GRO_CB(skb)->is_atomic = 1;
5568 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5569 
5570 		/* Setup for GRO checksum validation */
5571 		switch (skb->ip_summed) {
5572 		case CHECKSUM_COMPLETE:
5573 			NAPI_GRO_CB(skb)->csum = skb->csum;
5574 			NAPI_GRO_CB(skb)->csum_valid = 1;
5575 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5576 			break;
5577 		case CHECKSUM_UNNECESSARY:
5578 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5579 			NAPI_GRO_CB(skb)->csum_valid = 0;
5580 			break;
5581 		default:
5582 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5583 			NAPI_GRO_CB(skb)->csum_valid = 0;
5584 		}
5585 
5586 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5587 					ipv6_gro_receive, inet_gro_receive,
5588 					gro_head, skb);
5589 		break;
5590 	}
5591 	rcu_read_unlock();
5592 
5593 	if (&ptype->list == head)
5594 		goto normal;
5595 
5596 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5597 		ret = GRO_CONSUMED;
5598 		goto ok;
5599 	}
5600 
5601 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5602 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5603 
5604 	if (pp) {
5605 		skb_list_del_init(pp);
5606 		napi_gro_complete(pp);
5607 		napi->gro_hash[hash].count--;
5608 	}
5609 
5610 	if (same_flow)
5611 		goto ok;
5612 
5613 	if (NAPI_GRO_CB(skb)->flush)
5614 		goto normal;
5615 
5616 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5617 		gro_flush_oldest(gro_head);
5618 	} else {
5619 		napi->gro_hash[hash].count++;
5620 	}
5621 	NAPI_GRO_CB(skb)->count = 1;
5622 	NAPI_GRO_CB(skb)->age = jiffies;
5623 	NAPI_GRO_CB(skb)->last = skb;
5624 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5625 	list_add(&skb->list, gro_head);
5626 	ret = GRO_HELD;
5627 
5628 pull:
5629 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5630 	if (grow > 0)
5631 		gro_pull_from_frag0(skb, grow);
5632 ok:
5633 	if (napi->gro_hash[hash].count) {
5634 		if (!test_bit(hash, &napi->gro_bitmask))
5635 			__set_bit(hash, &napi->gro_bitmask);
5636 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5637 		__clear_bit(hash, &napi->gro_bitmask);
5638 	}
5639 
5640 	return ret;
5641 
5642 normal:
5643 	ret = GRO_NORMAL;
5644 	goto pull;
5645 }
5646 
5647 struct packet_offload *gro_find_receive_by_type(__be16 type)
5648 {
5649 	struct list_head *offload_head = &offload_base;
5650 	struct packet_offload *ptype;
5651 
5652 	list_for_each_entry_rcu(ptype, offload_head, list) {
5653 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5654 			continue;
5655 		return ptype;
5656 	}
5657 	return NULL;
5658 }
5659 EXPORT_SYMBOL(gro_find_receive_by_type);
5660 
5661 struct packet_offload *gro_find_complete_by_type(__be16 type)
5662 {
5663 	struct list_head *offload_head = &offload_base;
5664 	struct packet_offload *ptype;
5665 
5666 	list_for_each_entry_rcu(ptype, offload_head, list) {
5667 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5668 			continue;
5669 		return ptype;
5670 	}
5671 	return NULL;
5672 }
5673 EXPORT_SYMBOL(gro_find_complete_by_type);
5674 
5675 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5676 {
5677 	skb_dst_drop(skb);
5678 	secpath_reset(skb);
5679 	kmem_cache_free(skbuff_head_cache, skb);
5680 }
5681 
5682 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5683 {
5684 	switch (ret) {
5685 	case GRO_NORMAL:
5686 		if (netif_receive_skb_internal(skb))
5687 			ret = GRO_DROP;
5688 		break;
5689 
5690 	case GRO_DROP:
5691 		kfree_skb(skb);
5692 		break;
5693 
5694 	case GRO_MERGED_FREE:
5695 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5696 			napi_skb_free_stolen_head(skb);
5697 		else
5698 			__kfree_skb(skb);
5699 		break;
5700 
5701 	case GRO_HELD:
5702 	case GRO_MERGED:
5703 	case GRO_CONSUMED:
5704 		break;
5705 	}
5706 
5707 	return ret;
5708 }
5709 
5710 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5711 {
5712 	gro_result_t ret;
5713 
5714 	skb_mark_napi_id(skb, napi);
5715 	trace_napi_gro_receive_entry(skb);
5716 
5717 	skb_gro_reset_offset(skb);
5718 
5719 	ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5720 	trace_napi_gro_receive_exit(ret);
5721 
5722 	return ret;
5723 }
5724 EXPORT_SYMBOL(napi_gro_receive);
5725 
5726 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5727 {
5728 	if (unlikely(skb->pfmemalloc)) {
5729 		consume_skb(skb);
5730 		return;
5731 	}
5732 	__skb_pull(skb, skb_headlen(skb));
5733 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5734 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5735 	__vlan_hwaccel_clear_tag(skb);
5736 	skb->dev = napi->dev;
5737 	skb->skb_iif = 0;
5738 
5739 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5740 	skb->pkt_type = PACKET_HOST;
5741 
5742 	skb->encapsulation = 0;
5743 	skb_shinfo(skb)->gso_type = 0;
5744 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5745 	secpath_reset(skb);
5746 
5747 	napi->skb = skb;
5748 }
5749 
5750 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5751 {
5752 	struct sk_buff *skb = napi->skb;
5753 
5754 	if (!skb) {
5755 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5756 		if (skb) {
5757 			napi->skb = skb;
5758 			skb_mark_napi_id(skb, napi);
5759 		}
5760 	}
5761 	return skb;
5762 }
5763 EXPORT_SYMBOL(napi_get_frags);
5764 
5765 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5766 				      struct sk_buff *skb,
5767 				      gro_result_t ret)
5768 {
5769 	switch (ret) {
5770 	case GRO_NORMAL:
5771 	case GRO_HELD:
5772 		__skb_push(skb, ETH_HLEN);
5773 		skb->protocol = eth_type_trans(skb, skb->dev);
5774 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5775 			ret = GRO_DROP;
5776 		break;
5777 
5778 	case GRO_DROP:
5779 		napi_reuse_skb(napi, skb);
5780 		break;
5781 
5782 	case GRO_MERGED_FREE:
5783 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5784 			napi_skb_free_stolen_head(skb);
5785 		else
5786 			napi_reuse_skb(napi, skb);
5787 		break;
5788 
5789 	case GRO_MERGED:
5790 	case GRO_CONSUMED:
5791 		break;
5792 	}
5793 
5794 	return ret;
5795 }
5796 
5797 /* Upper GRO stack assumes network header starts at gro_offset=0
5798  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5799  * We copy ethernet header into skb->data to have a common layout.
5800  */
5801 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5802 {
5803 	struct sk_buff *skb = napi->skb;
5804 	const struct ethhdr *eth;
5805 	unsigned int hlen = sizeof(*eth);
5806 
5807 	napi->skb = NULL;
5808 
5809 	skb_reset_mac_header(skb);
5810 	skb_gro_reset_offset(skb);
5811 
5812 	eth = skb_gro_header_fast(skb, 0);
5813 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5814 		eth = skb_gro_header_slow(skb, hlen, 0);
5815 		if (unlikely(!eth)) {
5816 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5817 					     __func__, napi->dev->name);
5818 			napi_reuse_skb(napi, skb);
5819 			return NULL;
5820 		}
5821 	} else {
5822 		gro_pull_from_frag0(skb, hlen);
5823 		NAPI_GRO_CB(skb)->frag0 += hlen;
5824 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5825 	}
5826 	__skb_pull(skb, hlen);
5827 
5828 	/*
5829 	 * This works because the only protocols we care about don't require
5830 	 * special handling.
5831 	 * We'll fix it up properly in napi_frags_finish()
5832 	 */
5833 	skb->protocol = eth->h_proto;
5834 
5835 	return skb;
5836 }
5837 
5838 gro_result_t napi_gro_frags(struct napi_struct *napi)
5839 {
5840 	gro_result_t ret;
5841 	struct sk_buff *skb = napi_frags_skb(napi);
5842 
5843 	if (!skb)
5844 		return GRO_DROP;
5845 
5846 	trace_napi_gro_frags_entry(skb);
5847 
5848 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5849 	trace_napi_gro_frags_exit(ret);
5850 
5851 	return ret;
5852 }
5853 EXPORT_SYMBOL(napi_gro_frags);
5854 
5855 /* Compute the checksum from gro_offset and return the folded value
5856  * after adding in any pseudo checksum.
5857  */
5858 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5859 {
5860 	__wsum wsum;
5861 	__sum16 sum;
5862 
5863 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5864 
5865 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5866 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5867 	/* See comments in __skb_checksum_complete(). */
5868 	if (likely(!sum)) {
5869 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5870 		    !skb->csum_complete_sw)
5871 			netdev_rx_csum_fault(skb->dev, skb);
5872 	}
5873 
5874 	NAPI_GRO_CB(skb)->csum = wsum;
5875 	NAPI_GRO_CB(skb)->csum_valid = 1;
5876 
5877 	return sum;
5878 }
5879 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5880 
5881 static void net_rps_send_ipi(struct softnet_data *remsd)
5882 {
5883 #ifdef CONFIG_RPS
5884 	while (remsd) {
5885 		struct softnet_data *next = remsd->rps_ipi_next;
5886 
5887 		if (cpu_online(remsd->cpu))
5888 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5889 		remsd = next;
5890 	}
5891 #endif
5892 }
5893 
5894 /*
5895  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5896  * Note: called with local irq disabled, but exits with local irq enabled.
5897  */
5898 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5899 {
5900 #ifdef CONFIG_RPS
5901 	struct softnet_data *remsd = sd->rps_ipi_list;
5902 
5903 	if (remsd) {
5904 		sd->rps_ipi_list = NULL;
5905 
5906 		local_irq_enable();
5907 
5908 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5909 		net_rps_send_ipi(remsd);
5910 	} else
5911 #endif
5912 		local_irq_enable();
5913 }
5914 
5915 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5916 {
5917 #ifdef CONFIG_RPS
5918 	return sd->rps_ipi_list != NULL;
5919 #else
5920 	return false;
5921 #endif
5922 }
5923 
5924 static int process_backlog(struct napi_struct *napi, int quota)
5925 {
5926 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5927 	bool again = true;
5928 	int work = 0;
5929 
5930 	/* Check if we have pending ipi, its better to send them now,
5931 	 * not waiting net_rx_action() end.
5932 	 */
5933 	if (sd_has_rps_ipi_waiting(sd)) {
5934 		local_irq_disable();
5935 		net_rps_action_and_irq_enable(sd);
5936 	}
5937 
5938 	napi->weight = dev_rx_weight;
5939 	while (again) {
5940 		struct sk_buff *skb;
5941 
5942 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5943 			rcu_read_lock();
5944 			__netif_receive_skb(skb);
5945 			rcu_read_unlock();
5946 			input_queue_head_incr(sd);
5947 			if (++work >= quota)
5948 				return work;
5949 
5950 		}
5951 
5952 		local_irq_disable();
5953 		rps_lock(sd);
5954 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5955 			/*
5956 			 * Inline a custom version of __napi_complete().
5957 			 * only current cpu owns and manipulates this napi,
5958 			 * and NAPI_STATE_SCHED is the only possible flag set
5959 			 * on backlog.
5960 			 * We can use a plain write instead of clear_bit(),
5961 			 * and we dont need an smp_mb() memory barrier.
5962 			 */
5963 			napi->state = 0;
5964 			again = false;
5965 		} else {
5966 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5967 						   &sd->process_queue);
5968 		}
5969 		rps_unlock(sd);
5970 		local_irq_enable();
5971 	}
5972 
5973 	return work;
5974 }
5975 
5976 /**
5977  * __napi_schedule - schedule for receive
5978  * @n: entry to schedule
5979  *
5980  * The entry's receive function will be scheduled to run.
5981  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5982  */
5983 void __napi_schedule(struct napi_struct *n)
5984 {
5985 	unsigned long flags;
5986 
5987 	local_irq_save(flags);
5988 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5989 	local_irq_restore(flags);
5990 }
5991 EXPORT_SYMBOL(__napi_schedule);
5992 
5993 /**
5994  *	napi_schedule_prep - check if napi can be scheduled
5995  *	@n: napi context
5996  *
5997  * Test if NAPI routine is already running, and if not mark
5998  * it as running.  This is used as a condition variable
5999  * insure only one NAPI poll instance runs.  We also make
6000  * sure there is no pending NAPI disable.
6001  */
6002 bool napi_schedule_prep(struct napi_struct *n)
6003 {
6004 	unsigned long val, new;
6005 
6006 	do {
6007 		val = READ_ONCE(n->state);
6008 		if (unlikely(val & NAPIF_STATE_DISABLE))
6009 			return false;
6010 		new = val | NAPIF_STATE_SCHED;
6011 
6012 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6013 		 * This was suggested by Alexander Duyck, as compiler
6014 		 * emits better code than :
6015 		 * if (val & NAPIF_STATE_SCHED)
6016 		 *     new |= NAPIF_STATE_MISSED;
6017 		 */
6018 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6019 						   NAPIF_STATE_MISSED;
6020 	} while (cmpxchg(&n->state, val, new) != val);
6021 
6022 	return !(val & NAPIF_STATE_SCHED);
6023 }
6024 EXPORT_SYMBOL(napi_schedule_prep);
6025 
6026 /**
6027  * __napi_schedule_irqoff - schedule for receive
6028  * @n: entry to schedule
6029  *
6030  * Variant of __napi_schedule() assuming hard irqs are masked
6031  */
6032 void __napi_schedule_irqoff(struct napi_struct *n)
6033 {
6034 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6035 }
6036 EXPORT_SYMBOL(__napi_schedule_irqoff);
6037 
6038 bool napi_complete_done(struct napi_struct *n, int work_done)
6039 {
6040 	unsigned long flags, val, new;
6041 
6042 	/*
6043 	 * 1) Don't let napi dequeue from the cpu poll list
6044 	 *    just in case its running on a different cpu.
6045 	 * 2) If we are busy polling, do nothing here, we have
6046 	 *    the guarantee we will be called later.
6047 	 */
6048 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6049 				 NAPIF_STATE_IN_BUSY_POLL)))
6050 		return false;
6051 
6052 	if (n->gro_bitmask) {
6053 		unsigned long timeout = 0;
6054 
6055 		if (work_done)
6056 			timeout = n->dev->gro_flush_timeout;
6057 
6058 		/* When the NAPI instance uses a timeout and keeps postponing
6059 		 * it, we need to bound somehow the time packets are kept in
6060 		 * the GRO layer
6061 		 */
6062 		napi_gro_flush(n, !!timeout);
6063 		if (timeout)
6064 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6065 				      HRTIMER_MODE_REL_PINNED);
6066 	}
6067 	if (unlikely(!list_empty(&n->poll_list))) {
6068 		/* If n->poll_list is not empty, we need to mask irqs */
6069 		local_irq_save(flags);
6070 		list_del_init(&n->poll_list);
6071 		local_irq_restore(flags);
6072 	}
6073 
6074 	do {
6075 		val = READ_ONCE(n->state);
6076 
6077 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6078 
6079 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6080 
6081 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6082 		 * because we will call napi->poll() one more time.
6083 		 * This C code was suggested by Alexander Duyck to help gcc.
6084 		 */
6085 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6086 						    NAPIF_STATE_SCHED;
6087 	} while (cmpxchg(&n->state, val, new) != val);
6088 
6089 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6090 		__napi_schedule(n);
6091 		return false;
6092 	}
6093 
6094 	return true;
6095 }
6096 EXPORT_SYMBOL(napi_complete_done);
6097 
6098 /* must be called under rcu_read_lock(), as we dont take a reference */
6099 static struct napi_struct *napi_by_id(unsigned int napi_id)
6100 {
6101 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6102 	struct napi_struct *napi;
6103 
6104 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6105 		if (napi->napi_id == napi_id)
6106 			return napi;
6107 
6108 	return NULL;
6109 }
6110 
6111 #if defined(CONFIG_NET_RX_BUSY_POLL)
6112 
6113 #define BUSY_POLL_BUDGET 8
6114 
6115 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6116 {
6117 	int rc;
6118 
6119 	/* Busy polling means there is a high chance device driver hard irq
6120 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6121 	 * set in napi_schedule_prep().
6122 	 * Since we are about to call napi->poll() once more, we can safely
6123 	 * clear NAPI_STATE_MISSED.
6124 	 *
6125 	 * Note: x86 could use a single "lock and ..." instruction
6126 	 * to perform these two clear_bit()
6127 	 */
6128 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6129 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6130 
6131 	local_bh_disable();
6132 
6133 	/* All we really want here is to re-enable device interrupts.
6134 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6135 	 */
6136 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6137 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6138 	netpoll_poll_unlock(have_poll_lock);
6139 	if (rc == BUSY_POLL_BUDGET)
6140 		__napi_schedule(napi);
6141 	local_bh_enable();
6142 }
6143 
6144 void napi_busy_loop(unsigned int napi_id,
6145 		    bool (*loop_end)(void *, unsigned long),
6146 		    void *loop_end_arg)
6147 {
6148 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6149 	int (*napi_poll)(struct napi_struct *napi, int budget);
6150 	void *have_poll_lock = NULL;
6151 	struct napi_struct *napi;
6152 
6153 restart:
6154 	napi_poll = NULL;
6155 
6156 	rcu_read_lock();
6157 
6158 	napi = napi_by_id(napi_id);
6159 	if (!napi)
6160 		goto out;
6161 
6162 	preempt_disable();
6163 	for (;;) {
6164 		int work = 0;
6165 
6166 		local_bh_disable();
6167 		if (!napi_poll) {
6168 			unsigned long val = READ_ONCE(napi->state);
6169 
6170 			/* If multiple threads are competing for this napi,
6171 			 * we avoid dirtying napi->state as much as we can.
6172 			 */
6173 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6174 				   NAPIF_STATE_IN_BUSY_POLL))
6175 				goto count;
6176 			if (cmpxchg(&napi->state, val,
6177 				    val | NAPIF_STATE_IN_BUSY_POLL |
6178 					  NAPIF_STATE_SCHED) != val)
6179 				goto count;
6180 			have_poll_lock = netpoll_poll_lock(napi);
6181 			napi_poll = napi->poll;
6182 		}
6183 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6184 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6185 count:
6186 		if (work > 0)
6187 			__NET_ADD_STATS(dev_net(napi->dev),
6188 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6189 		local_bh_enable();
6190 
6191 		if (!loop_end || loop_end(loop_end_arg, start_time))
6192 			break;
6193 
6194 		if (unlikely(need_resched())) {
6195 			if (napi_poll)
6196 				busy_poll_stop(napi, have_poll_lock);
6197 			preempt_enable();
6198 			rcu_read_unlock();
6199 			cond_resched();
6200 			if (loop_end(loop_end_arg, start_time))
6201 				return;
6202 			goto restart;
6203 		}
6204 		cpu_relax();
6205 	}
6206 	if (napi_poll)
6207 		busy_poll_stop(napi, have_poll_lock);
6208 	preempt_enable();
6209 out:
6210 	rcu_read_unlock();
6211 }
6212 EXPORT_SYMBOL(napi_busy_loop);
6213 
6214 #endif /* CONFIG_NET_RX_BUSY_POLL */
6215 
6216 static void napi_hash_add(struct napi_struct *napi)
6217 {
6218 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6219 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6220 		return;
6221 
6222 	spin_lock(&napi_hash_lock);
6223 
6224 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6225 	do {
6226 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6227 			napi_gen_id = MIN_NAPI_ID;
6228 	} while (napi_by_id(napi_gen_id));
6229 	napi->napi_id = napi_gen_id;
6230 
6231 	hlist_add_head_rcu(&napi->napi_hash_node,
6232 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6233 
6234 	spin_unlock(&napi_hash_lock);
6235 }
6236 
6237 /* Warning : caller is responsible to make sure rcu grace period
6238  * is respected before freeing memory containing @napi
6239  */
6240 bool napi_hash_del(struct napi_struct *napi)
6241 {
6242 	bool rcu_sync_needed = false;
6243 
6244 	spin_lock(&napi_hash_lock);
6245 
6246 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6247 		rcu_sync_needed = true;
6248 		hlist_del_rcu(&napi->napi_hash_node);
6249 	}
6250 	spin_unlock(&napi_hash_lock);
6251 	return rcu_sync_needed;
6252 }
6253 EXPORT_SYMBOL_GPL(napi_hash_del);
6254 
6255 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6256 {
6257 	struct napi_struct *napi;
6258 
6259 	napi = container_of(timer, struct napi_struct, timer);
6260 
6261 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6262 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6263 	 */
6264 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6265 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6266 		__napi_schedule_irqoff(napi);
6267 
6268 	return HRTIMER_NORESTART;
6269 }
6270 
6271 static void init_gro_hash(struct napi_struct *napi)
6272 {
6273 	int i;
6274 
6275 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6276 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6277 		napi->gro_hash[i].count = 0;
6278 	}
6279 	napi->gro_bitmask = 0;
6280 }
6281 
6282 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6283 		    int (*poll)(struct napi_struct *, int), int weight)
6284 {
6285 	INIT_LIST_HEAD(&napi->poll_list);
6286 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6287 	napi->timer.function = napi_watchdog;
6288 	init_gro_hash(napi);
6289 	napi->skb = NULL;
6290 	napi->poll = poll;
6291 	if (weight > NAPI_POLL_WEIGHT)
6292 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6293 				weight);
6294 	napi->weight = weight;
6295 	list_add(&napi->dev_list, &dev->napi_list);
6296 	napi->dev = dev;
6297 #ifdef CONFIG_NETPOLL
6298 	napi->poll_owner = -1;
6299 #endif
6300 	set_bit(NAPI_STATE_SCHED, &napi->state);
6301 	napi_hash_add(napi);
6302 }
6303 EXPORT_SYMBOL(netif_napi_add);
6304 
6305 void napi_disable(struct napi_struct *n)
6306 {
6307 	might_sleep();
6308 	set_bit(NAPI_STATE_DISABLE, &n->state);
6309 
6310 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6311 		msleep(1);
6312 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6313 		msleep(1);
6314 
6315 	hrtimer_cancel(&n->timer);
6316 
6317 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6318 }
6319 EXPORT_SYMBOL(napi_disable);
6320 
6321 static void flush_gro_hash(struct napi_struct *napi)
6322 {
6323 	int i;
6324 
6325 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6326 		struct sk_buff *skb, *n;
6327 
6328 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6329 			kfree_skb(skb);
6330 		napi->gro_hash[i].count = 0;
6331 	}
6332 }
6333 
6334 /* Must be called in process context */
6335 void netif_napi_del(struct napi_struct *napi)
6336 {
6337 	might_sleep();
6338 	if (napi_hash_del(napi))
6339 		synchronize_net();
6340 	list_del_init(&napi->dev_list);
6341 	napi_free_frags(napi);
6342 
6343 	flush_gro_hash(napi);
6344 	napi->gro_bitmask = 0;
6345 }
6346 EXPORT_SYMBOL(netif_napi_del);
6347 
6348 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6349 {
6350 	void *have;
6351 	int work, weight;
6352 
6353 	list_del_init(&n->poll_list);
6354 
6355 	have = netpoll_poll_lock(n);
6356 
6357 	weight = n->weight;
6358 
6359 	/* This NAPI_STATE_SCHED test is for avoiding a race
6360 	 * with netpoll's poll_napi().  Only the entity which
6361 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6362 	 * actually make the ->poll() call.  Therefore we avoid
6363 	 * accidentally calling ->poll() when NAPI is not scheduled.
6364 	 */
6365 	work = 0;
6366 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6367 		work = n->poll(n, weight);
6368 		trace_napi_poll(n, work, weight);
6369 	}
6370 
6371 	WARN_ON_ONCE(work > weight);
6372 
6373 	if (likely(work < weight))
6374 		goto out_unlock;
6375 
6376 	/* Drivers must not modify the NAPI state if they
6377 	 * consume the entire weight.  In such cases this code
6378 	 * still "owns" the NAPI instance and therefore can
6379 	 * move the instance around on the list at-will.
6380 	 */
6381 	if (unlikely(napi_disable_pending(n))) {
6382 		napi_complete(n);
6383 		goto out_unlock;
6384 	}
6385 
6386 	if (n->gro_bitmask) {
6387 		/* flush too old packets
6388 		 * If HZ < 1000, flush all packets.
6389 		 */
6390 		napi_gro_flush(n, HZ >= 1000);
6391 	}
6392 
6393 	/* Some drivers may have called napi_schedule
6394 	 * prior to exhausting their budget.
6395 	 */
6396 	if (unlikely(!list_empty(&n->poll_list))) {
6397 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6398 			     n->dev ? n->dev->name : "backlog");
6399 		goto out_unlock;
6400 	}
6401 
6402 	list_add_tail(&n->poll_list, repoll);
6403 
6404 out_unlock:
6405 	netpoll_poll_unlock(have);
6406 
6407 	return work;
6408 }
6409 
6410 static __latent_entropy void net_rx_action(struct softirq_action *h)
6411 {
6412 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6413 	unsigned long time_limit = jiffies +
6414 		usecs_to_jiffies(netdev_budget_usecs);
6415 	int budget = netdev_budget;
6416 	LIST_HEAD(list);
6417 	LIST_HEAD(repoll);
6418 
6419 	local_irq_disable();
6420 	list_splice_init(&sd->poll_list, &list);
6421 	local_irq_enable();
6422 
6423 	for (;;) {
6424 		struct napi_struct *n;
6425 
6426 		if (list_empty(&list)) {
6427 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6428 				goto out;
6429 			break;
6430 		}
6431 
6432 		n = list_first_entry(&list, struct napi_struct, poll_list);
6433 		budget -= napi_poll(n, &repoll);
6434 
6435 		/* If softirq window is exhausted then punt.
6436 		 * Allow this to run for 2 jiffies since which will allow
6437 		 * an average latency of 1.5/HZ.
6438 		 */
6439 		if (unlikely(budget <= 0 ||
6440 			     time_after_eq(jiffies, time_limit))) {
6441 			sd->time_squeeze++;
6442 			break;
6443 		}
6444 	}
6445 
6446 	local_irq_disable();
6447 
6448 	list_splice_tail_init(&sd->poll_list, &list);
6449 	list_splice_tail(&repoll, &list);
6450 	list_splice(&list, &sd->poll_list);
6451 	if (!list_empty(&sd->poll_list))
6452 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6453 
6454 	net_rps_action_and_irq_enable(sd);
6455 out:
6456 	__kfree_skb_flush();
6457 }
6458 
6459 struct netdev_adjacent {
6460 	struct net_device *dev;
6461 
6462 	/* upper master flag, there can only be one master device per list */
6463 	bool master;
6464 
6465 	/* counter for the number of times this device was added to us */
6466 	u16 ref_nr;
6467 
6468 	/* private field for the users */
6469 	void *private;
6470 
6471 	struct list_head list;
6472 	struct rcu_head rcu;
6473 };
6474 
6475 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6476 						 struct list_head *adj_list)
6477 {
6478 	struct netdev_adjacent *adj;
6479 
6480 	list_for_each_entry(adj, adj_list, list) {
6481 		if (adj->dev == adj_dev)
6482 			return adj;
6483 	}
6484 	return NULL;
6485 }
6486 
6487 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6488 {
6489 	struct net_device *dev = data;
6490 
6491 	return upper_dev == dev;
6492 }
6493 
6494 /**
6495  * netdev_has_upper_dev - Check if device is linked to an upper device
6496  * @dev: device
6497  * @upper_dev: upper device to check
6498  *
6499  * Find out if a device is linked to specified upper device and return true
6500  * in case it is. Note that this checks only immediate upper device,
6501  * not through a complete stack of devices. The caller must hold the RTNL lock.
6502  */
6503 bool netdev_has_upper_dev(struct net_device *dev,
6504 			  struct net_device *upper_dev)
6505 {
6506 	ASSERT_RTNL();
6507 
6508 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6509 					     upper_dev);
6510 }
6511 EXPORT_SYMBOL(netdev_has_upper_dev);
6512 
6513 /**
6514  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6515  * @dev: device
6516  * @upper_dev: upper device to check
6517  *
6518  * Find out if a device is linked to specified upper device and return true
6519  * in case it is. Note that this checks the entire upper device chain.
6520  * The caller must hold rcu lock.
6521  */
6522 
6523 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6524 				  struct net_device *upper_dev)
6525 {
6526 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6527 					       upper_dev);
6528 }
6529 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6530 
6531 /**
6532  * netdev_has_any_upper_dev - Check if device is linked to some device
6533  * @dev: device
6534  *
6535  * Find out if a device is linked to an upper device and return true in case
6536  * it is. The caller must hold the RTNL lock.
6537  */
6538 bool netdev_has_any_upper_dev(struct net_device *dev)
6539 {
6540 	ASSERT_RTNL();
6541 
6542 	return !list_empty(&dev->adj_list.upper);
6543 }
6544 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6545 
6546 /**
6547  * netdev_master_upper_dev_get - Get master upper device
6548  * @dev: device
6549  *
6550  * Find a master upper device and return pointer to it or NULL in case
6551  * it's not there. The caller must hold the RTNL lock.
6552  */
6553 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6554 {
6555 	struct netdev_adjacent *upper;
6556 
6557 	ASSERT_RTNL();
6558 
6559 	if (list_empty(&dev->adj_list.upper))
6560 		return NULL;
6561 
6562 	upper = list_first_entry(&dev->adj_list.upper,
6563 				 struct netdev_adjacent, list);
6564 	if (likely(upper->master))
6565 		return upper->dev;
6566 	return NULL;
6567 }
6568 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6569 
6570 /**
6571  * netdev_has_any_lower_dev - Check if device is linked to some device
6572  * @dev: device
6573  *
6574  * Find out if a device is linked to a lower device and return true in case
6575  * it is. The caller must hold the RTNL lock.
6576  */
6577 static bool netdev_has_any_lower_dev(struct net_device *dev)
6578 {
6579 	ASSERT_RTNL();
6580 
6581 	return !list_empty(&dev->adj_list.lower);
6582 }
6583 
6584 void *netdev_adjacent_get_private(struct list_head *adj_list)
6585 {
6586 	struct netdev_adjacent *adj;
6587 
6588 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6589 
6590 	return adj->private;
6591 }
6592 EXPORT_SYMBOL(netdev_adjacent_get_private);
6593 
6594 /**
6595  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6596  * @dev: device
6597  * @iter: list_head ** of the current position
6598  *
6599  * Gets the next device from the dev's upper list, starting from iter
6600  * position. The caller must hold RCU read lock.
6601  */
6602 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6603 						 struct list_head **iter)
6604 {
6605 	struct netdev_adjacent *upper;
6606 
6607 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6608 
6609 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6610 
6611 	if (&upper->list == &dev->adj_list.upper)
6612 		return NULL;
6613 
6614 	*iter = &upper->list;
6615 
6616 	return upper->dev;
6617 }
6618 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6619 
6620 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6621 						    struct list_head **iter)
6622 {
6623 	struct netdev_adjacent *upper;
6624 
6625 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6626 
6627 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6628 
6629 	if (&upper->list == &dev->adj_list.upper)
6630 		return NULL;
6631 
6632 	*iter = &upper->list;
6633 
6634 	return upper->dev;
6635 }
6636 
6637 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6638 				  int (*fn)(struct net_device *dev,
6639 					    void *data),
6640 				  void *data)
6641 {
6642 	struct net_device *udev;
6643 	struct list_head *iter;
6644 	int ret;
6645 
6646 	for (iter = &dev->adj_list.upper,
6647 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6648 	     udev;
6649 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6650 		/* first is the upper device itself */
6651 		ret = fn(udev, data);
6652 		if (ret)
6653 			return ret;
6654 
6655 		/* then look at all of its upper devices */
6656 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6657 		if (ret)
6658 			return ret;
6659 	}
6660 
6661 	return 0;
6662 }
6663 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6664 
6665 /**
6666  * netdev_lower_get_next_private - Get the next ->private from the
6667  *				   lower neighbour list
6668  * @dev: device
6669  * @iter: list_head ** of the current position
6670  *
6671  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6672  * list, starting from iter position. The caller must hold either hold the
6673  * RTNL lock or its own locking that guarantees that the neighbour lower
6674  * list will remain unchanged.
6675  */
6676 void *netdev_lower_get_next_private(struct net_device *dev,
6677 				    struct list_head **iter)
6678 {
6679 	struct netdev_adjacent *lower;
6680 
6681 	lower = list_entry(*iter, struct netdev_adjacent, list);
6682 
6683 	if (&lower->list == &dev->adj_list.lower)
6684 		return NULL;
6685 
6686 	*iter = lower->list.next;
6687 
6688 	return lower->private;
6689 }
6690 EXPORT_SYMBOL(netdev_lower_get_next_private);
6691 
6692 /**
6693  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6694  *				       lower neighbour list, RCU
6695  *				       variant
6696  * @dev: device
6697  * @iter: list_head ** of the current position
6698  *
6699  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6700  * list, starting from iter position. The caller must hold RCU read lock.
6701  */
6702 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6703 					struct list_head **iter)
6704 {
6705 	struct netdev_adjacent *lower;
6706 
6707 	WARN_ON_ONCE(!rcu_read_lock_held());
6708 
6709 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6710 
6711 	if (&lower->list == &dev->adj_list.lower)
6712 		return NULL;
6713 
6714 	*iter = &lower->list;
6715 
6716 	return lower->private;
6717 }
6718 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6719 
6720 /**
6721  * netdev_lower_get_next - Get the next device from the lower neighbour
6722  *                         list
6723  * @dev: device
6724  * @iter: list_head ** of the current position
6725  *
6726  * Gets the next netdev_adjacent from the dev's lower neighbour
6727  * list, starting from iter position. The caller must hold RTNL lock or
6728  * its own locking that guarantees that the neighbour lower
6729  * list will remain unchanged.
6730  */
6731 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6732 {
6733 	struct netdev_adjacent *lower;
6734 
6735 	lower = list_entry(*iter, struct netdev_adjacent, list);
6736 
6737 	if (&lower->list == &dev->adj_list.lower)
6738 		return NULL;
6739 
6740 	*iter = lower->list.next;
6741 
6742 	return lower->dev;
6743 }
6744 EXPORT_SYMBOL(netdev_lower_get_next);
6745 
6746 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6747 						struct list_head **iter)
6748 {
6749 	struct netdev_adjacent *lower;
6750 
6751 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6752 
6753 	if (&lower->list == &dev->adj_list.lower)
6754 		return NULL;
6755 
6756 	*iter = &lower->list;
6757 
6758 	return lower->dev;
6759 }
6760 
6761 int netdev_walk_all_lower_dev(struct net_device *dev,
6762 			      int (*fn)(struct net_device *dev,
6763 					void *data),
6764 			      void *data)
6765 {
6766 	struct net_device *ldev;
6767 	struct list_head *iter;
6768 	int ret;
6769 
6770 	for (iter = &dev->adj_list.lower,
6771 	     ldev = netdev_next_lower_dev(dev, &iter);
6772 	     ldev;
6773 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6774 		/* first is the lower device itself */
6775 		ret = fn(ldev, data);
6776 		if (ret)
6777 			return ret;
6778 
6779 		/* then look at all of its lower devices */
6780 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6781 		if (ret)
6782 			return ret;
6783 	}
6784 
6785 	return 0;
6786 }
6787 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6788 
6789 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6790 						    struct list_head **iter)
6791 {
6792 	struct netdev_adjacent *lower;
6793 
6794 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6795 	if (&lower->list == &dev->adj_list.lower)
6796 		return NULL;
6797 
6798 	*iter = &lower->list;
6799 
6800 	return lower->dev;
6801 }
6802 
6803 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6804 				  int (*fn)(struct net_device *dev,
6805 					    void *data),
6806 				  void *data)
6807 {
6808 	struct net_device *ldev;
6809 	struct list_head *iter;
6810 	int ret;
6811 
6812 	for (iter = &dev->adj_list.lower,
6813 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6814 	     ldev;
6815 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6816 		/* first is the lower device itself */
6817 		ret = fn(ldev, data);
6818 		if (ret)
6819 			return ret;
6820 
6821 		/* then look at all of its lower devices */
6822 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6823 		if (ret)
6824 			return ret;
6825 	}
6826 
6827 	return 0;
6828 }
6829 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6830 
6831 /**
6832  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6833  *				       lower neighbour list, RCU
6834  *				       variant
6835  * @dev: device
6836  *
6837  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6838  * list. The caller must hold RCU read lock.
6839  */
6840 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6841 {
6842 	struct netdev_adjacent *lower;
6843 
6844 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6845 			struct netdev_adjacent, list);
6846 	if (lower)
6847 		return lower->private;
6848 	return NULL;
6849 }
6850 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6851 
6852 /**
6853  * netdev_master_upper_dev_get_rcu - Get master upper device
6854  * @dev: device
6855  *
6856  * Find a master upper device and return pointer to it or NULL in case
6857  * it's not there. The caller must hold the RCU read lock.
6858  */
6859 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6860 {
6861 	struct netdev_adjacent *upper;
6862 
6863 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6864 				       struct netdev_adjacent, list);
6865 	if (upper && likely(upper->master))
6866 		return upper->dev;
6867 	return NULL;
6868 }
6869 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6870 
6871 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6872 			      struct net_device *adj_dev,
6873 			      struct list_head *dev_list)
6874 {
6875 	char linkname[IFNAMSIZ+7];
6876 
6877 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6878 		"upper_%s" : "lower_%s", adj_dev->name);
6879 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6880 				 linkname);
6881 }
6882 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6883 			       char *name,
6884 			       struct list_head *dev_list)
6885 {
6886 	char linkname[IFNAMSIZ+7];
6887 
6888 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6889 		"upper_%s" : "lower_%s", name);
6890 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6891 }
6892 
6893 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6894 						 struct net_device *adj_dev,
6895 						 struct list_head *dev_list)
6896 {
6897 	return (dev_list == &dev->adj_list.upper ||
6898 		dev_list == &dev->adj_list.lower) &&
6899 		net_eq(dev_net(dev), dev_net(adj_dev));
6900 }
6901 
6902 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6903 					struct net_device *adj_dev,
6904 					struct list_head *dev_list,
6905 					void *private, bool master)
6906 {
6907 	struct netdev_adjacent *adj;
6908 	int ret;
6909 
6910 	adj = __netdev_find_adj(adj_dev, dev_list);
6911 
6912 	if (adj) {
6913 		adj->ref_nr += 1;
6914 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6915 			 dev->name, adj_dev->name, adj->ref_nr);
6916 
6917 		return 0;
6918 	}
6919 
6920 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6921 	if (!adj)
6922 		return -ENOMEM;
6923 
6924 	adj->dev = adj_dev;
6925 	adj->master = master;
6926 	adj->ref_nr = 1;
6927 	adj->private = private;
6928 	dev_hold(adj_dev);
6929 
6930 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6931 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6932 
6933 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6934 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6935 		if (ret)
6936 			goto free_adj;
6937 	}
6938 
6939 	/* Ensure that master link is always the first item in list. */
6940 	if (master) {
6941 		ret = sysfs_create_link(&(dev->dev.kobj),
6942 					&(adj_dev->dev.kobj), "master");
6943 		if (ret)
6944 			goto remove_symlinks;
6945 
6946 		list_add_rcu(&adj->list, dev_list);
6947 	} else {
6948 		list_add_tail_rcu(&adj->list, dev_list);
6949 	}
6950 
6951 	return 0;
6952 
6953 remove_symlinks:
6954 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6955 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6956 free_adj:
6957 	kfree(adj);
6958 	dev_put(adj_dev);
6959 
6960 	return ret;
6961 }
6962 
6963 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6964 					 struct net_device *adj_dev,
6965 					 u16 ref_nr,
6966 					 struct list_head *dev_list)
6967 {
6968 	struct netdev_adjacent *adj;
6969 
6970 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6971 		 dev->name, adj_dev->name, ref_nr);
6972 
6973 	adj = __netdev_find_adj(adj_dev, dev_list);
6974 
6975 	if (!adj) {
6976 		pr_err("Adjacency does not exist for device %s from %s\n",
6977 		       dev->name, adj_dev->name);
6978 		WARN_ON(1);
6979 		return;
6980 	}
6981 
6982 	if (adj->ref_nr > ref_nr) {
6983 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6984 			 dev->name, adj_dev->name, ref_nr,
6985 			 adj->ref_nr - ref_nr);
6986 		adj->ref_nr -= ref_nr;
6987 		return;
6988 	}
6989 
6990 	if (adj->master)
6991 		sysfs_remove_link(&(dev->dev.kobj), "master");
6992 
6993 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6994 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6995 
6996 	list_del_rcu(&adj->list);
6997 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6998 		 adj_dev->name, dev->name, adj_dev->name);
6999 	dev_put(adj_dev);
7000 	kfree_rcu(adj, rcu);
7001 }
7002 
7003 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7004 					    struct net_device *upper_dev,
7005 					    struct list_head *up_list,
7006 					    struct list_head *down_list,
7007 					    void *private, bool master)
7008 {
7009 	int ret;
7010 
7011 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7012 					   private, master);
7013 	if (ret)
7014 		return ret;
7015 
7016 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7017 					   private, false);
7018 	if (ret) {
7019 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7020 		return ret;
7021 	}
7022 
7023 	return 0;
7024 }
7025 
7026 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7027 					       struct net_device *upper_dev,
7028 					       u16 ref_nr,
7029 					       struct list_head *up_list,
7030 					       struct list_head *down_list)
7031 {
7032 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7033 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7034 }
7035 
7036 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7037 						struct net_device *upper_dev,
7038 						void *private, bool master)
7039 {
7040 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7041 						&dev->adj_list.upper,
7042 						&upper_dev->adj_list.lower,
7043 						private, master);
7044 }
7045 
7046 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7047 						   struct net_device *upper_dev)
7048 {
7049 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7050 					   &dev->adj_list.upper,
7051 					   &upper_dev->adj_list.lower);
7052 }
7053 
7054 static int __netdev_upper_dev_link(struct net_device *dev,
7055 				   struct net_device *upper_dev, bool master,
7056 				   void *upper_priv, void *upper_info,
7057 				   struct netlink_ext_ack *extack)
7058 {
7059 	struct netdev_notifier_changeupper_info changeupper_info = {
7060 		.info = {
7061 			.dev = dev,
7062 			.extack = extack,
7063 		},
7064 		.upper_dev = upper_dev,
7065 		.master = master,
7066 		.linking = true,
7067 		.upper_info = upper_info,
7068 	};
7069 	struct net_device *master_dev;
7070 	int ret = 0;
7071 
7072 	ASSERT_RTNL();
7073 
7074 	if (dev == upper_dev)
7075 		return -EBUSY;
7076 
7077 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7078 	if (netdev_has_upper_dev(upper_dev, dev))
7079 		return -EBUSY;
7080 
7081 	if (!master) {
7082 		if (netdev_has_upper_dev(dev, upper_dev))
7083 			return -EEXIST;
7084 	} else {
7085 		master_dev = netdev_master_upper_dev_get(dev);
7086 		if (master_dev)
7087 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7088 	}
7089 
7090 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7091 					    &changeupper_info.info);
7092 	ret = notifier_to_errno(ret);
7093 	if (ret)
7094 		return ret;
7095 
7096 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7097 						   master);
7098 	if (ret)
7099 		return ret;
7100 
7101 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7102 					    &changeupper_info.info);
7103 	ret = notifier_to_errno(ret);
7104 	if (ret)
7105 		goto rollback;
7106 
7107 	return 0;
7108 
7109 rollback:
7110 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7111 
7112 	return ret;
7113 }
7114 
7115 /**
7116  * netdev_upper_dev_link - Add a link to the upper device
7117  * @dev: device
7118  * @upper_dev: new upper device
7119  * @extack: netlink extended ack
7120  *
7121  * Adds a link to device which is upper to this one. The caller must hold
7122  * the RTNL lock. On a failure a negative errno code is returned.
7123  * On success the reference counts are adjusted and the function
7124  * returns zero.
7125  */
7126 int netdev_upper_dev_link(struct net_device *dev,
7127 			  struct net_device *upper_dev,
7128 			  struct netlink_ext_ack *extack)
7129 {
7130 	return __netdev_upper_dev_link(dev, upper_dev, false,
7131 				       NULL, NULL, extack);
7132 }
7133 EXPORT_SYMBOL(netdev_upper_dev_link);
7134 
7135 /**
7136  * netdev_master_upper_dev_link - Add a master link to the upper device
7137  * @dev: device
7138  * @upper_dev: new upper device
7139  * @upper_priv: upper device private
7140  * @upper_info: upper info to be passed down via notifier
7141  * @extack: netlink extended ack
7142  *
7143  * Adds a link to device which is upper to this one. In this case, only
7144  * one master upper device can be linked, although other non-master devices
7145  * might be linked as well. The caller must hold the RTNL lock.
7146  * On a failure a negative errno code is returned. On success the reference
7147  * counts are adjusted and the function returns zero.
7148  */
7149 int netdev_master_upper_dev_link(struct net_device *dev,
7150 				 struct net_device *upper_dev,
7151 				 void *upper_priv, void *upper_info,
7152 				 struct netlink_ext_ack *extack)
7153 {
7154 	return __netdev_upper_dev_link(dev, upper_dev, true,
7155 				       upper_priv, upper_info, extack);
7156 }
7157 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7158 
7159 /**
7160  * netdev_upper_dev_unlink - Removes a link to upper device
7161  * @dev: device
7162  * @upper_dev: new upper device
7163  *
7164  * Removes a link to device which is upper to this one. The caller must hold
7165  * the RTNL lock.
7166  */
7167 void netdev_upper_dev_unlink(struct net_device *dev,
7168 			     struct net_device *upper_dev)
7169 {
7170 	struct netdev_notifier_changeupper_info changeupper_info = {
7171 		.info = {
7172 			.dev = dev,
7173 		},
7174 		.upper_dev = upper_dev,
7175 		.linking = false,
7176 	};
7177 
7178 	ASSERT_RTNL();
7179 
7180 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7181 
7182 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7183 				      &changeupper_info.info);
7184 
7185 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7186 
7187 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7188 				      &changeupper_info.info);
7189 }
7190 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7191 
7192 /**
7193  * netdev_bonding_info_change - Dispatch event about slave change
7194  * @dev: device
7195  * @bonding_info: info to dispatch
7196  *
7197  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7198  * The caller must hold the RTNL lock.
7199  */
7200 void netdev_bonding_info_change(struct net_device *dev,
7201 				struct netdev_bonding_info *bonding_info)
7202 {
7203 	struct netdev_notifier_bonding_info info = {
7204 		.info.dev = dev,
7205 	};
7206 
7207 	memcpy(&info.bonding_info, bonding_info,
7208 	       sizeof(struct netdev_bonding_info));
7209 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7210 				      &info.info);
7211 }
7212 EXPORT_SYMBOL(netdev_bonding_info_change);
7213 
7214 static void netdev_adjacent_add_links(struct net_device *dev)
7215 {
7216 	struct netdev_adjacent *iter;
7217 
7218 	struct net *net = dev_net(dev);
7219 
7220 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7221 		if (!net_eq(net, dev_net(iter->dev)))
7222 			continue;
7223 		netdev_adjacent_sysfs_add(iter->dev, dev,
7224 					  &iter->dev->adj_list.lower);
7225 		netdev_adjacent_sysfs_add(dev, iter->dev,
7226 					  &dev->adj_list.upper);
7227 	}
7228 
7229 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7230 		if (!net_eq(net, dev_net(iter->dev)))
7231 			continue;
7232 		netdev_adjacent_sysfs_add(iter->dev, dev,
7233 					  &iter->dev->adj_list.upper);
7234 		netdev_adjacent_sysfs_add(dev, iter->dev,
7235 					  &dev->adj_list.lower);
7236 	}
7237 }
7238 
7239 static void netdev_adjacent_del_links(struct net_device *dev)
7240 {
7241 	struct netdev_adjacent *iter;
7242 
7243 	struct net *net = dev_net(dev);
7244 
7245 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7246 		if (!net_eq(net, dev_net(iter->dev)))
7247 			continue;
7248 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7249 					  &iter->dev->adj_list.lower);
7250 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7251 					  &dev->adj_list.upper);
7252 	}
7253 
7254 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7255 		if (!net_eq(net, dev_net(iter->dev)))
7256 			continue;
7257 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7258 					  &iter->dev->adj_list.upper);
7259 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7260 					  &dev->adj_list.lower);
7261 	}
7262 }
7263 
7264 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7265 {
7266 	struct netdev_adjacent *iter;
7267 
7268 	struct net *net = dev_net(dev);
7269 
7270 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7271 		if (!net_eq(net, dev_net(iter->dev)))
7272 			continue;
7273 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7274 					  &iter->dev->adj_list.lower);
7275 		netdev_adjacent_sysfs_add(iter->dev, dev,
7276 					  &iter->dev->adj_list.lower);
7277 	}
7278 
7279 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7280 		if (!net_eq(net, dev_net(iter->dev)))
7281 			continue;
7282 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7283 					  &iter->dev->adj_list.upper);
7284 		netdev_adjacent_sysfs_add(iter->dev, dev,
7285 					  &iter->dev->adj_list.upper);
7286 	}
7287 }
7288 
7289 void *netdev_lower_dev_get_private(struct net_device *dev,
7290 				   struct net_device *lower_dev)
7291 {
7292 	struct netdev_adjacent *lower;
7293 
7294 	if (!lower_dev)
7295 		return NULL;
7296 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7297 	if (!lower)
7298 		return NULL;
7299 
7300 	return lower->private;
7301 }
7302 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7303 
7304 
7305 int dev_get_nest_level(struct net_device *dev)
7306 {
7307 	struct net_device *lower = NULL;
7308 	struct list_head *iter;
7309 	int max_nest = -1;
7310 	int nest;
7311 
7312 	ASSERT_RTNL();
7313 
7314 	netdev_for_each_lower_dev(dev, lower, iter) {
7315 		nest = dev_get_nest_level(lower);
7316 		if (max_nest < nest)
7317 			max_nest = nest;
7318 	}
7319 
7320 	return max_nest + 1;
7321 }
7322 EXPORT_SYMBOL(dev_get_nest_level);
7323 
7324 /**
7325  * netdev_lower_change - Dispatch event about lower device state change
7326  * @lower_dev: device
7327  * @lower_state_info: state to dispatch
7328  *
7329  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7330  * The caller must hold the RTNL lock.
7331  */
7332 void netdev_lower_state_changed(struct net_device *lower_dev,
7333 				void *lower_state_info)
7334 {
7335 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7336 		.info.dev = lower_dev,
7337 	};
7338 
7339 	ASSERT_RTNL();
7340 	changelowerstate_info.lower_state_info = lower_state_info;
7341 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7342 				      &changelowerstate_info.info);
7343 }
7344 EXPORT_SYMBOL(netdev_lower_state_changed);
7345 
7346 static void dev_change_rx_flags(struct net_device *dev, int flags)
7347 {
7348 	const struct net_device_ops *ops = dev->netdev_ops;
7349 
7350 	if (ops->ndo_change_rx_flags)
7351 		ops->ndo_change_rx_flags(dev, flags);
7352 }
7353 
7354 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7355 {
7356 	unsigned int old_flags = dev->flags;
7357 	kuid_t uid;
7358 	kgid_t gid;
7359 
7360 	ASSERT_RTNL();
7361 
7362 	dev->flags |= IFF_PROMISC;
7363 	dev->promiscuity += inc;
7364 	if (dev->promiscuity == 0) {
7365 		/*
7366 		 * Avoid overflow.
7367 		 * If inc causes overflow, untouch promisc and return error.
7368 		 */
7369 		if (inc < 0)
7370 			dev->flags &= ~IFF_PROMISC;
7371 		else {
7372 			dev->promiscuity -= inc;
7373 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7374 				dev->name);
7375 			return -EOVERFLOW;
7376 		}
7377 	}
7378 	if (dev->flags != old_flags) {
7379 		pr_info("device %s %s promiscuous mode\n",
7380 			dev->name,
7381 			dev->flags & IFF_PROMISC ? "entered" : "left");
7382 		if (audit_enabled) {
7383 			current_uid_gid(&uid, &gid);
7384 			audit_log(audit_context(), GFP_ATOMIC,
7385 				  AUDIT_ANOM_PROMISCUOUS,
7386 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7387 				  dev->name, (dev->flags & IFF_PROMISC),
7388 				  (old_flags & IFF_PROMISC),
7389 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7390 				  from_kuid(&init_user_ns, uid),
7391 				  from_kgid(&init_user_ns, gid),
7392 				  audit_get_sessionid(current));
7393 		}
7394 
7395 		dev_change_rx_flags(dev, IFF_PROMISC);
7396 	}
7397 	if (notify)
7398 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7399 	return 0;
7400 }
7401 
7402 /**
7403  *	dev_set_promiscuity	- update promiscuity count on a device
7404  *	@dev: device
7405  *	@inc: modifier
7406  *
7407  *	Add or remove promiscuity from a device. While the count in the device
7408  *	remains above zero the interface remains promiscuous. Once it hits zero
7409  *	the device reverts back to normal filtering operation. A negative inc
7410  *	value is used to drop promiscuity on the device.
7411  *	Return 0 if successful or a negative errno code on error.
7412  */
7413 int dev_set_promiscuity(struct net_device *dev, int inc)
7414 {
7415 	unsigned int old_flags = dev->flags;
7416 	int err;
7417 
7418 	err = __dev_set_promiscuity(dev, inc, true);
7419 	if (err < 0)
7420 		return err;
7421 	if (dev->flags != old_flags)
7422 		dev_set_rx_mode(dev);
7423 	return err;
7424 }
7425 EXPORT_SYMBOL(dev_set_promiscuity);
7426 
7427 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7428 {
7429 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7430 
7431 	ASSERT_RTNL();
7432 
7433 	dev->flags |= IFF_ALLMULTI;
7434 	dev->allmulti += inc;
7435 	if (dev->allmulti == 0) {
7436 		/*
7437 		 * Avoid overflow.
7438 		 * If inc causes overflow, untouch allmulti and return error.
7439 		 */
7440 		if (inc < 0)
7441 			dev->flags &= ~IFF_ALLMULTI;
7442 		else {
7443 			dev->allmulti -= inc;
7444 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7445 				dev->name);
7446 			return -EOVERFLOW;
7447 		}
7448 	}
7449 	if (dev->flags ^ old_flags) {
7450 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7451 		dev_set_rx_mode(dev);
7452 		if (notify)
7453 			__dev_notify_flags(dev, old_flags,
7454 					   dev->gflags ^ old_gflags);
7455 	}
7456 	return 0;
7457 }
7458 
7459 /**
7460  *	dev_set_allmulti	- update allmulti count on a device
7461  *	@dev: device
7462  *	@inc: modifier
7463  *
7464  *	Add or remove reception of all multicast frames to a device. While the
7465  *	count in the device remains above zero the interface remains listening
7466  *	to all interfaces. Once it hits zero the device reverts back to normal
7467  *	filtering operation. A negative @inc value is used to drop the counter
7468  *	when releasing a resource needing all multicasts.
7469  *	Return 0 if successful or a negative errno code on error.
7470  */
7471 
7472 int dev_set_allmulti(struct net_device *dev, int inc)
7473 {
7474 	return __dev_set_allmulti(dev, inc, true);
7475 }
7476 EXPORT_SYMBOL(dev_set_allmulti);
7477 
7478 /*
7479  *	Upload unicast and multicast address lists to device and
7480  *	configure RX filtering. When the device doesn't support unicast
7481  *	filtering it is put in promiscuous mode while unicast addresses
7482  *	are present.
7483  */
7484 void __dev_set_rx_mode(struct net_device *dev)
7485 {
7486 	const struct net_device_ops *ops = dev->netdev_ops;
7487 
7488 	/* dev_open will call this function so the list will stay sane. */
7489 	if (!(dev->flags&IFF_UP))
7490 		return;
7491 
7492 	if (!netif_device_present(dev))
7493 		return;
7494 
7495 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7496 		/* Unicast addresses changes may only happen under the rtnl,
7497 		 * therefore calling __dev_set_promiscuity here is safe.
7498 		 */
7499 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7500 			__dev_set_promiscuity(dev, 1, false);
7501 			dev->uc_promisc = true;
7502 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7503 			__dev_set_promiscuity(dev, -1, false);
7504 			dev->uc_promisc = false;
7505 		}
7506 	}
7507 
7508 	if (ops->ndo_set_rx_mode)
7509 		ops->ndo_set_rx_mode(dev);
7510 }
7511 
7512 void dev_set_rx_mode(struct net_device *dev)
7513 {
7514 	netif_addr_lock_bh(dev);
7515 	__dev_set_rx_mode(dev);
7516 	netif_addr_unlock_bh(dev);
7517 }
7518 
7519 /**
7520  *	dev_get_flags - get flags reported to userspace
7521  *	@dev: device
7522  *
7523  *	Get the combination of flag bits exported through APIs to userspace.
7524  */
7525 unsigned int dev_get_flags(const struct net_device *dev)
7526 {
7527 	unsigned int flags;
7528 
7529 	flags = (dev->flags & ~(IFF_PROMISC |
7530 				IFF_ALLMULTI |
7531 				IFF_RUNNING |
7532 				IFF_LOWER_UP |
7533 				IFF_DORMANT)) |
7534 		(dev->gflags & (IFF_PROMISC |
7535 				IFF_ALLMULTI));
7536 
7537 	if (netif_running(dev)) {
7538 		if (netif_oper_up(dev))
7539 			flags |= IFF_RUNNING;
7540 		if (netif_carrier_ok(dev))
7541 			flags |= IFF_LOWER_UP;
7542 		if (netif_dormant(dev))
7543 			flags |= IFF_DORMANT;
7544 	}
7545 
7546 	return flags;
7547 }
7548 EXPORT_SYMBOL(dev_get_flags);
7549 
7550 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7551 		       struct netlink_ext_ack *extack)
7552 {
7553 	unsigned int old_flags = dev->flags;
7554 	int ret;
7555 
7556 	ASSERT_RTNL();
7557 
7558 	/*
7559 	 *	Set the flags on our device.
7560 	 */
7561 
7562 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7563 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7564 			       IFF_AUTOMEDIA)) |
7565 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7566 				    IFF_ALLMULTI));
7567 
7568 	/*
7569 	 *	Load in the correct multicast list now the flags have changed.
7570 	 */
7571 
7572 	if ((old_flags ^ flags) & IFF_MULTICAST)
7573 		dev_change_rx_flags(dev, IFF_MULTICAST);
7574 
7575 	dev_set_rx_mode(dev);
7576 
7577 	/*
7578 	 *	Have we downed the interface. We handle IFF_UP ourselves
7579 	 *	according to user attempts to set it, rather than blindly
7580 	 *	setting it.
7581 	 */
7582 
7583 	ret = 0;
7584 	if ((old_flags ^ flags) & IFF_UP) {
7585 		if (old_flags & IFF_UP)
7586 			__dev_close(dev);
7587 		else
7588 			ret = __dev_open(dev, extack);
7589 	}
7590 
7591 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7592 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7593 		unsigned int old_flags = dev->flags;
7594 
7595 		dev->gflags ^= IFF_PROMISC;
7596 
7597 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7598 			if (dev->flags != old_flags)
7599 				dev_set_rx_mode(dev);
7600 	}
7601 
7602 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7603 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7604 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7605 	 */
7606 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7607 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7608 
7609 		dev->gflags ^= IFF_ALLMULTI;
7610 		__dev_set_allmulti(dev, inc, false);
7611 	}
7612 
7613 	return ret;
7614 }
7615 
7616 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7617 			unsigned int gchanges)
7618 {
7619 	unsigned int changes = dev->flags ^ old_flags;
7620 
7621 	if (gchanges)
7622 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7623 
7624 	if (changes & IFF_UP) {
7625 		if (dev->flags & IFF_UP)
7626 			call_netdevice_notifiers(NETDEV_UP, dev);
7627 		else
7628 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7629 	}
7630 
7631 	if (dev->flags & IFF_UP &&
7632 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7633 		struct netdev_notifier_change_info change_info = {
7634 			.info = {
7635 				.dev = dev,
7636 			},
7637 			.flags_changed = changes,
7638 		};
7639 
7640 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7641 	}
7642 }
7643 
7644 /**
7645  *	dev_change_flags - change device settings
7646  *	@dev: device
7647  *	@flags: device state flags
7648  *	@extack: netlink extended ack
7649  *
7650  *	Change settings on device based state flags. The flags are
7651  *	in the userspace exported format.
7652  */
7653 int dev_change_flags(struct net_device *dev, unsigned int flags,
7654 		     struct netlink_ext_ack *extack)
7655 {
7656 	int ret;
7657 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7658 
7659 	ret = __dev_change_flags(dev, flags, extack);
7660 	if (ret < 0)
7661 		return ret;
7662 
7663 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7664 	__dev_notify_flags(dev, old_flags, changes);
7665 	return ret;
7666 }
7667 EXPORT_SYMBOL(dev_change_flags);
7668 
7669 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7670 {
7671 	const struct net_device_ops *ops = dev->netdev_ops;
7672 
7673 	if (ops->ndo_change_mtu)
7674 		return ops->ndo_change_mtu(dev, new_mtu);
7675 
7676 	dev->mtu = new_mtu;
7677 	return 0;
7678 }
7679 EXPORT_SYMBOL(__dev_set_mtu);
7680 
7681 /**
7682  *	dev_set_mtu_ext - Change maximum transfer unit
7683  *	@dev: device
7684  *	@new_mtu: new transfer unit
7685  *	@extack: netlink extended ack
7686  *
7687  *	Change the maximum transfer size of the network device.
7688  */
7689 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7690 		    struct netlink_ext_ack *extack)
7691 {
7692 	int err, orig_mtu;
7693 
7694 	if (new_mtu == dev->mtu)
7695 		return 0;
7696 
7697 	/* MTU must be positive, and in range */
7698 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7699 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7700 		return -EINVAL;
7701 	}
7702 
7703 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7704 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7705 		return -EINVAL;
7706 	}
7707 
7708 	if (!netif_device_present(dev))
7709 		return -ENODEV;
7710 
7711 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7712 	err = notifier_to_errno(err);
7713 	if (err)
7714 		return err;
7715 
7716 	orig_mtu = dev->mtu;
7717 	err = __dev_set_mtu(dev, new_mtu);
7718 
7719 	if (!err) {
7720 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7721 						   orig_mtu);
7722 		err = notifier_to_errno(err);
7723 		if (err) {
7724 			/* setting mtu back and notifying everyone again,
7725 			 * so that they have a chance to revert changes.
7726 			 */
7727 			__dev_set_mtu(dev, orig_mtu);
7728 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7729 						     new_mtu);
7730 		}
7731 	}
7732 	return err;
7733 }
7734 
7735 int dev_set_mtu(struct net_device *dev, int new_mtu)
7736 {
7737 	struct netlink_ext_ack extack;
7738 	int err;
7739 
7740 	memset(&extack, 0, sizeof(extack));
7741 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7742 	if (err && extack._msg)
7743 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7744 	return err;
7745 }
7746 EXPORT_SYMBOL(dev_set_mtu);
7747 
7748 /**
7749  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7750  *	@dev: device
7751  *	@new_len: new tx queue length
7752  */
7753 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7754 {
7755 	unsigned int orig_len = dev->tx_queue_len;
7756 	int res;
7757 
7758 	if (new_len != (unsigned int)new_len)
7759 		return -ERANGE;
7760 
7761 	if (new_len != orig_len) {
7762 		dev->tx_queue_len = new_len;
7763 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7764 		res = notifier_to_errno(res);
7765 		if (res)
7766 			goto err_rollback;
7767 		res = dev_qdisc_change_tx_queue_len(dev);
7768 		if (res)
7769 			goto err_rollback;
7770 	}
7771 
7772 	return 0;
7773 
7774 err_rollback:
7775 	netdev_err(dev, "refused to change device tx_queue_len\n");
7776 	dev->tx_queue_len = orig_len;
7777 	return res;
7778 }
7779 
7780 /**
7781  *	dev_set_group - Change group this device belongs to
7782  *	@dev: device
7783  *	@new_group: group this device should belong to
7784  */
7785 void dev_set_group(struct net_device *dev, int new_group)
7786 {
7787 	dev->group = new_group;
7788 }
7789 EXPORT_SYMBOL(dev_set_group);
7790 
7791 /**
7792  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7793  *	@dev: device
7794  *	@addr: new address
7795  *	@extack: netlink extended ack
7796  */
7797 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7798 			      struct netlink_ext_ack *extack)
7799 {
7800 	struct netdev_notifier_pre_changeaddr_info info = {
7801 		.info.dev = dev,
7802 		.info.extack = extack,
7803 		.dev_addr = addr,
7804 	};
7805 	int rc;
7806 
7807 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7808 	return notifier_to_errno(rc);
7809 }
7810 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7811 
7812 /**
7813  *	dev_set_mac_address - Change Media Access Control Address
7814  *	@dev: device
7815  *	@sa: new address
7816  *	@extack: netlink extended ack
7817  *
7818  *	Change the hardware (MAC) address of the device
7819  */
7820 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7821 			struct netlink_ext_ack *extack)
7822 {
7823 	const struct net_device_ops *ops = dev->netdev_ops;
7824 	int err;
7825 
7826 	if (!ops->ndo_set_mac_address)
7827 		return -EOPNOTSUPP;
7828 	if (sa->sa_family != dev->type)
7829 		return -EINVAL;
7830 	if (!netif_device_present(dev))
7831 		return -ENODEV;
7832 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7833 	if (err)
7834 		return err;
7835 	err = ops->ndo_set_mac_address(dev, sa);
7836 	if (err)
7837 		return err;
7838 	dev->addr_assign_type = NET_ADDR_SET;
7839 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7840 	add_device_randomness(dev->dev_addr, dev->addr_len);
7841 	return 0;
7842 }
7843 EXPORT_SYMBOL(dev_set_mac_address);
7844 
7845 /**
7846  *	dev_change_carrier - Change device carrier
7847  *	@dev: device
7848  *	@new_carrier: new value
7849  *
7850  *	Change device carrier
7851  */
7852 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7853 {
7854 	const struct net_device_ops *ops = dev->netdev_ops;
7855 
7856 	if (!ops->ndo_change_carrier)
7857 		return -EOPNOTSUPP;
7858 	if (!netif_device_present(dev))
7859 		return -ENODEV;
7860 	return ops->ndo_change_carrier(dev, new_carrier);
7861 }
7862 EXPORT_SYMBOL(dev_change_carrier);
7863 
7864 /**
7865  *	dev_get_phys_port_id - Get device physical port ID
7866  *	@dev: device
7867  *	@ppid: port ID
7868  *
7869  *	Get device physical port ID
7870  */
7871 int dev_get_phys_port_id(struct net_device *dev,
7872 			 struct netdev_phys_item_id *ppid)
7873 {
7874 	const struct net_device_ops *ops = dev->netdev_ops;
7875 
7876 	if (!ops->ndo_get_phys_port_id)
7877 		return -EOPNOTSUPP;
7878 	return ops->ndo_get_phys_port_id(dev, ppid);
7879 }
7880 EXPORT_SYMBOL(dev_get_phys_port_id);
7881 
7882 /**
7883  *	dev_get_phys_port_name - Get device physical port name
7884  *	@dev: device
7885  *	@name: port name
7886  *	@len: limit of bytes to copy to name
7887  *
7888  *	Get device physical port name
7889  */
7890 int dev_get_phys_port_name(struct net_device *dev,
7891 			   char *name, size_t len)
7892 {
7893 	const struct net_device_ops *ops = dev->netdev_ops;
7894 	int err;
7895 
7896 	if (ops->ndo_get_phys_port_name) {
7897 		err = ops->ndo_get_phys_port_name(dev, name, len);
7898 		if (err != -EOPNOTSUPP)
7899 			return err;
7900 	}
7901 	return devlink_compat_phys_port_name_get(dev, name, len);
7902 }
7903 EXPORT_SYMBOL(dev_get_phys_port_name);
7904 
7905 /**
7906  *	dev_get_port_parent_id - Get the device's port parent identifier
7907  *	@dev: network device
7908  *	@ppid: pointer to a storage for the port's parent identifier
7909  *	@recurse: allow/disallow recursion to lower devices
7910  *
7911  *	Get the devices's port parent identifier
7912  */
7913 int dev_get_port_parent_id(struct net_device *dev,
7914 			   struct netdev_phys_item_id *ppid,
7915 			   bool recurse)
7916 {
7917 	const struct net_device_ops *ops = dev->netdev_ops;
7918 	struct netdev_phys_item_id first = { };
7919 	struct net_device *lower_dev;
7920 	struct list_head *iter;
7921 	int err;
7922 
7923 	if (ops->ndo_get_port_parent_id) {
7924 		err = ops->ndo_get_port_parent_id(dev, ppid);
7925 		if (err != -EOPNOTSUPP)
7926 			return err;
7927 	}
7928 
7929 	err = devlink_compat_switch_id_get(dev, ppid);
7930 	if (!err || err != -EOPNOTSUPP)
7931 		return err;
7932 
7933 	if (!recurse)
7934 		return -EOPNOTSUPP;
7935 
7936 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
7937 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7938 		if (err)
7939 			break;
7940 		if (!first.id_len)
7941 			first = *ppid;
7942 		else if (memcmp(&first, ppid, sizeof(*ppid)))
7943 			return -ENODATA;
7944 	}
7945 
7946 	return err;
7947 }
7948 EXPORT_SYMBOL(dev_get_port_parent_id);
7949 
7950 /**
7951  *	netdev_port_same_parent_id - Indicate if two network devices have
7952  *	the same port parent identifier
7953  *	@a: first network device
7954  *	@b: second network device
7955  */
7956 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7957 {
7958 	struct netdev_phys_item_id a_id = { };
7959 	struct netdev_phys_item_id b_id = { };
7960 
7961 	if (dev_get_port_parent_id(a, &a_id, true) ||
7962 	    dev_get_port_parent_id(b, &b_id, true))
7963 		return false;
7964 
7965 	return netdev_phys_item_id_same(&a_id, &b_id);
7966 }
7967 EXPORT_SYMBOL(netdev_port_same_parent_id);
7968 
7969 /**
7970  *	dev_change_proto_down - update protocol port state information
7971  *	@dev: device
7972  *	@proto_down: new value
7973  *
7974  *	This info can be used by switch drivers to set the phys state of the
7975  *	port.
7976  */
7977 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7978 {
7979 	const struct net_device_ops *ops = dev->netdev_ops;
7980 
7981 	if (!ops->ndo_change_proto_down)
7982 		return -EOPNOTSUPP;
7983 	if (!netif_device_present(dev))
7984 		return -ENODEV;
7985 	return ops->ndo_change_proto_down(dev, proto_down);
7986 }
7987 EXPORT_SYMBOL(dev_change_proto_down);
7988 
7989 /**
7990  *	dev_change_proto_down_generic - generic implementation for
7991  * 	ndo_change_proto_down that sets carrier according to
7992  * 	proto_down.
7993  *
7994  *	@dev: device
7995  *	@proto_down: new value
7996  */
7997 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7998 {
7999 	if (proto_down)
8000 		netif_carrier_off(dev);
8001 	else
8002 		netif_carrier_on(dev);
8003 	dev->proto_down = proto_down;
8004 	return 0;
8005 }
8006 EXPORT_SYMBOL(dev_change_proto_down_generic);
8007 
8008 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8009 		    enum bpf_netdev_command cmd)
8010 {
8011 	struct netdev_bpf xdp;
8012 
8013 	if (!bpf_op)
8014 		return 0;
8015 
8016 	memset(&xdp, 0, sizeof(xdp));
8017 	xdp.command = cmd;
8018 
8019 	/* Query must always succeed. */
8020 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8021 
8022 	return xdp.prog_id;
8023 }
8024 
8025 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8026 			   struct netlink_ext_ack *extack, u32 flags,
8027 			   struct bpf_prog *prog)
8028 {
8029 	struct netdev_bpf xdp;
8030 
8031 	memset(&xdp, 0, sizeof(xdp));
8032 	if (flags & XDP_FLAGS_HW_MODE)
8033 		xdp.command = XDP_SETUP_PROG_HW;
8034 	else
8035 		xdp.command = XDP_SETUP_PROG;
8036 	xdp.extack = extack;
8037 	xdp.flags = flags;
8038 	xdp.prog = prog;
8039 
8040 	return bpf_op(dev, &xdp);
8041 }
8042 
8043 static void dev_xdp_uninstall(struct net_device *dev)
8044 {
8045 	struct netdev_bpf xdp;
8046 	bpf_op_t ndo_bpf;
8047 
8048 	/* Remove generic XDP */
8049 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8050 
8051 	/* Remove from the driver */
8052 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8053 	if (!ndo_bpf)
8054 		return;
8055 
8056 	memset(&xdp, 0, sizeof(xdp));
8057 	xdp.command = XDP_QUERY_PROG;
8058 	WARN_ON(ndo_bpf(dev, &xdp));
8059 	if (xdp.prog_id)
8060 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8061 					NULL));
8062 
8063 	/* Remove HW offload */
8064 	memset(&xdp, 0, sizeof(xdp));
8065 	xdp.command = XDP_QUERY_PROG_HW;
8066 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8067 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8068 					NULL));
8069 }
8070 
8071 /**
8072  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8073  *	@dev: device
8074  *	@extack: netlink extended ack
8075  *	@fd: new program fd or negative value to clear
8076  *	@flags: xdp-related flags
8077  *
8078  *	Set or clear a bpf program for a device
8079  */
8080 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8081 		      int fd, u32 flags)
8082 {
8083 	const struct net_device_ops *ops = dev->netdev_ops;
8084 	enum bpf_netdev_command query;
8085 	struct bpf_prog *prog = NULL;
8086 	bpf_op_t bpf_op, bpf_chk;
8087 	bool offload;
8088 	int err;
8089 
8090 	ASSERT_RTNL();
8091 
8092 	offload = flags & XDP_FLAGS_HW_MODE;
8093 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8094 
8095 	bpf_op = bpf_chk = ops->ndo_bpf;
8096 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8097 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8098 		return -EOPNOTSUPP;
8099 	}
8100 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8101 		bpf_op = generic_xdp_install;
8102 	if (bpf_op == bpf_chk)
8103 		bpf_chk = generic_xdp_install;
8104 
8105 	if (fd >= 0) {
8106 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8107 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8108 			return -EEXIST;
8109 		}
8110 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8111 		    __dev_xdp_query(dev, bpf_op, query)) {
8112 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8113 			return -EBUSY;
8114 		}
8115 
8116 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8117 					     bpf_op == ops->ndo_bpf);
8118 		if (IS_ERR(prog))
8119 			return PTR_ERR(prog);
8120 
8121 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8122 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8123 			bpf_prog_put(prog);
8124 			return -EINVAL;
8125 		}
8126 	}
8127 
8128 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8129 	if (err < 0 && prog)
8130 		bpf_prog_put(prog);
8131 
8132 	return err;
8133 }
8134 
8135 /**
8136  *	dev_new_index	-	allocate an ifindex
8137  *	@net: the applicable net namespace
8138  *
8139  *	Returns a suitable unique value for a new device interface
8140  *	number.  The caller must hold the rtnl semaphore or the
8141  *	dev_base_lock to be sure it remains unique.
8142  */
8143 static int dev_new_index(struct net *net)
8144 {
8145 	int ifindex = net->ifindex;
8146 
8147 	for (;;) {
8148 		if (++ifindex <= 0)
8149 			ifindex = 1;
8150 		if (!__dev_get_by_index(net, ifindex))
8151 			return net->ifindex = ifindex;
8152 	}
8153 }
8154 
8155 /* Delayed registration/unregisteration */
8156 static LIST_HEAD(net_todo_list);
8157 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8158 
8159 static void net_set_todo(struct net_device *dev)
8160 {
8161 	list_add_tail(&dev->todo_list, &net_todo_list);
8162 	dev_net(dev)->dev_unreg_count++;
8163 }
8164 
8165 static void rollback_registered_many(struct list_head *head)
8166 {
8167 	struct net_device *dev, *tmp;
8168 	LIST_HEAD(close_head);
8169 
8170 	BUG_ON(dev_boot_phase);
8171 	ASSERT_RTNL();
8172 
8173 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8174 		/* Some devices call without registering
8175 		 * for initialization unwind. Remove those
8176 		 * devices and proceed with the remaining.
8177 		 */
8178 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8179 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8180 				 dev->name, dev);
8181 
8182 			WARN_ON(1);
8183 			list_del(&dev->unreg_list);
8184 			continue;
8185 		}
8186 		dev->dismantle = true;
8187 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8188 	}
8189 
8190 	/* If device is running, close it first. */
8191 	list_for_each_entry(dev, head, unreg_list)
8192 		list_add_tail(&dev->close_list, &close_head);
8193 	dev_close_many(&close_head, true);
8194 
8195 	list_for_each_entry(dev, head, unreg_list) {
8196 		/* And unlink it from device chain. */
8197 		unlist_netdevice(dev);
8198 
8199 		dev->reg_state = NETREG_UNREGISTERING;
8200 	}
8201 	flush_all_backlogs();
8202 
8203 	synchronize_net();
8204 
8205 	list_for_each_entry(dev, head, unreg_list) {
8206 		struct sk_buff *skb = NULL;
8207 
8208 		/* Shutdown queueing discipline. */
8209 		dev_shutdown(dev);
8210 
8211 		dev_xdp_uninstall(dev);
8212 
8213 		/* Notify protocols, that we are about to destroy
8214 		 * this device. They should clean all the things.
8215 		 */
8216 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8217 
8218 		if (!dev->rtnl_link_ops ||
8219 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8220 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8221 						     GFP_KERNEL, NULL, 0);
8222 
8223 		/*
8224 		 *	Flush the unicast and multicast chains
8225 		 */
8226 		dev_uc_flush(dev);
8227 		dev_mc_flush(dev);
8228 
8229 		if (dev->netdev_ops->ndo_uninit)
8230 			dev->netdev_ops->ndo_uninit(dev);
8231 
8232 		if (skb)
8233 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8234 
8235 		/* Notifier chain MUST detach us all upper devices. */
8236 		WARN_ON(netdev_has_any_upper_dev(dev));
8237 		WARN_ON(netdev_has_any_lower_dev(dev));
8238 
8239 		/* Remove entries from kobject tree */
8240 		netdev_unregister_kobject(dev);
8241 #ifdef CONFIG_XPS
8242 		/* Remove XPS queueing entries */
8243 		netif_reset_xps_queues_gt(dev, 0);
8244 #endif
8245 	}
8246 
8247 	synchronize_net();
8248 
8249 	list_for_each_entry(dev, head, unreg_list)
8250 		dev_put(dev);
8251 }
8252 
8253 static void rollback_registered(struct net_device *dev)
8254 {
8255 	LIST_HEAD(single);
8256 
8257 	list_add(&dev->unreg_list, &single);
8258 	rollback_registered_many(&single);
8259 	list_del(&single);
8260 }
8261 
8262 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8263 	struct net_device *upper, netdev_features_t features)
8264 {
8265 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8266 	netdev_features_t feature;
8267 	int feature_bit;
8268 
8269 	for_each_netdev_feature(upper_disables, feature_bit) {
8270 		feature = __NETIF_F_BIT(feature_bit);
8271 		if (!(upper->wanted_features & feature)
8272 		    && (features & feature)) {
8273 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8274 				   &feature, upper->name);
8275 			features &= ~feature;
8276 		}
8277 	}
8278 
8279 	return features;
8280 }
8281 
8282 static void netdev_sync_lower_features(struct net_device *upper,
8283 	struct net_device *lower, netdev_features_t features)
8284 {
8285 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8286 	netdev_features_t feature;
8287 	int feature_bit;
8288 
8289 	for_each_netdev_feature(upper_disables, feature_bit) {
8290 		feature = __NETIF_F_BIT(feature_bit);
8291 		if (!(features & feature) && (lower->features & feature)) {
8292 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8293 				   &feature, lower->name);
8294 			lower->wanted_features &= ~feature;
8295 			netdev_update_features(lower);
8296 
8297 			if (unlikely(lower->features & feature))
8298 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8299 					    &feature, lower->name);
8300 		}
8301 	}
8302 }
8303 
8304 static netdev_features_t netdev_fix_features(struct net_device *dev,
8305 	netdev_features_t features)
8306 {
8307 	/* Fix illegal checksum combinations */
8308 	if ((features & NETIF_F_HW_CSUM) &&
8309 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8310 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8311 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8312 	}
8313 
8314 	/* TSO requires that SG is present as well. */
8315 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8316 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8317 		features &= ~NETIF_F_ALL_TSO;
8318 	}
8319 
8320 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8321 					!(features & NETIF_F_IP_CSUM)) {
8322 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8323 		features &= ~NETIF_F_TSO;
8324 		features &= ~NETIF_F_TSO_ECN;
8325 	}
8326 
8327 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8328 					 !(features & NETIF_F_IPV6_CSUM)) {
8329 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8330 		features &= ~NETIF_F_TSO6;
8331 	}
8332 
8333 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8334 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8335 		features &= ~NETIF_F_TSO_MANGLEID;
8336 
8337 	/* TSO ECN requires that TSO is present as well. */
8338 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8339 		features &= ~NETIF_F_TSO_ECN;
8340 
8341 	/* Software GSO depends on SG. */
8342 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8343 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8344 		features &= ~NETIF_F_GSO;
8345 	}
8346 
8347 	/* GSO partial features require GSO partial be set */
8348 	if ((features & dev->gso_partial_features) &&
8349 	    !(features & NETIF_F_GSO_PARTIAL)) {
8350 		netdev_dbg(dev,
8351 			   "Dropping partially supported GSO features since no GSO partial.\n");
8352 		features &= ~dev->gso_partial_features;
8353 	}
8354 
8355 	if (!(features & NETIF_F_RXCSUM)) {
8356 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8357 		 * successfully merged by hardware must also have the
8358 		 * checksum verified by hardware.  If the user does not
8359 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8360 		 */
8361 		if (features & NETIF_F_GRO_HW) {
8362 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8363 			features &= ~NETIF_F_GRO_HW;
8364 		}
8365 	}
8366 
8367 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8368 	if (features & NETIF_F_RXFCS) {
8369 		if (features & NETIF_F_LRO) {
8370 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8371 			features &= ~NETIF_F_LRO;
8372 		}
8373 
8374 		if (features & NETIF_F_GRO_HW) {
8375 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8376 			features &= ~NETIF_F_GRO_HW;
8377 		}
8378 	}
8379 
8380 	return features;
8381 }
8382 
8383 int __netdev_update_features(struct net_device *dev)
8384 {
8385 	struct net_device *upper, *lower;
8386 	netdev_features_t features;
8387 	struct list_head *iter;
8388 	int err = -1;
8389 
8390 	ASSERT_RTNL();
8391 
8392 	features = netdev_get_wanted_features(dev);
8393 
8394 	if (dev->netdev_ops->ndo_fix_features)
8395 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8396 
8397 	/* driver might be less strict about feature dependencies */
8398 	features = netdev_fix_features(dev, features);
8399 
8400 	/* some features can't be enabled if they're off an an upper device */
8401 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8402 		features = netdev_sync_upper_features(dev, upper, features);
8403 
8404 	if (dev->features == features)
8405 		goto sync_lower;
8406 
8407 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8408 		&dev->features, &features);
8409 
8410 	if (dev->netdev_ops->ndo_set_features)
8411 		err = dev->netdev_ops->ndo_set_features(dev, features);
8412 	else
8413 		err = 0;
8414 
8415 	if (unlikely(err < 0)) {
8416 		netdev_err(dev,
8417 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8418 			err, &features, &dev->features);
8419 		/* return non-0 since some features might have changed and
8420 		 * it's better to fire a spurious notification than miss it
8421 		 */
8422 		return -1;
8423 	}
8424 
8425 sync_lower:
8426 	/* some features must be disabled on lower devices when disabled
8427 	 * on an upper device (think: bonding master or bridge)
8428 	 */
8429 	netdev_for_each_lower_dev(dev, lower, iter)
8430 		netdev_sync_lower_features(dev, lower, features);
8431 
8432 	if (!err) {
8433 		netdev_features_t diff = features ^ dev->features;
8434 
8435 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8436 			/* udp_tunnel_{get,drop}_rx_info both need
8437 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8438 			 * device, or they won't do anything.
8439 			 * Thus we need to update dev->features
8440 			 * *before* calling udp_tunnel_get_rx_info,
8441 			 * but *after* calling udp_tunnel_drop_rx_info.
8442 			 */
8443 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8444 				dev->features = features;
8445 				udp_tunnel_get_rx_info(dev);
8446 			} else {
8447 				udp_tunnel_drop_rx_info(dev);
8448 			}
8449 		}
8450 
8451 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8452 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8453 				dev->features = features;
8454 				err |= vlan_get_rx_ctag_filter_info(dev);
8455 			} else {
8456 				vlan_drop_rx_ctag_filter_info(dev);
8457 			}
8458 		}
8459 
8460 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8461 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8462 				dev->features = features;
8463 				err |= vlan_get_rx_stag_filter_info(dev);
8464 			} else {
8465 				vlan_drop_rx_stag_filter_info(dev);
8466 			}
8467 		}
8468 
8469 		dev->features = features;
8470 	}
8471 
8472 	return err < 0 ? 0 : 1;
8473 }
8474 
8475 /**
8476  *	netdev_update_features - recalculate device features
8477  *	@dev: the device to check
8478  *
8479  *	Recalculate dev->features set and send notifications if it
8480  *	has changed. Should be called after driver or hardware dependent
8481  *	conditions might have changed that influence the features.
8482  */
8483 void netdev_update_features(struct net_device *dev)
8484 {
8485 	if (__netdev_update_features(dev))
8486 		netdev_features_change(dev);
8487 }
8488 EXPORT_SYMBOL(netdev_update_features);
8489 
8490 /**
8491  *	netdev_change_features - recalculate device features
8492  *	@dev: the device to check
8493  *
8494  *	Recalculate dev->features set and send notifications even
8495  *	if they have not changed. Should be called instead of
8496  *	netdev_update_features() if also dev->vlan_features might
8497  *	have changed to allow the changes to be propagated to stacked
8498  *	VLAN devices.
8499  */
8500 void netdev_change_features(struct net_device *dev)
8501 {
8502 	__netdev_update_features(dev);
8503 	netdev_features_change(dev);
8504 }
8505 EXPORT_SYMBOL(netdev_change_features);
8506 
8507 /**
8508  *	netif_stacked_transfer_operstate -	transfer operstate
8509  *	@rootdev: the root or lower level device to transfer state from
8510  *	@dev: the device to transfer operstate to
8511  *
8512  *	Transfer operational state from root to device. This is normally
8513  *	called when a stacking relationship exists between the root
8514  *	device and the device(a leaf device).
8515  */
8516 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8517 					struct net_device *dev)
8518 {
8519 	if (rootdev->operstate == IF_OPER_DORMANT)
8520 		netif_dormant_on(dev);
8521 	else
8522 		netif_dormant_off(dev);
8523 
8524 	if (netif_carrier_ok(rootdev))
8525 		netif_carrier_on(dev);
8526 	else
8527 		netif_carrier_off(dev);
8528 }
8529 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8530 
8531 static int netif_alloc_rx_queues(struct net_device *dev)
8532 {
8533 	unsigned int i, count = dev->num_rx_queues;
8534 	struct netdev_rx_queue *rx;
8535 	size_t sz = count * sizeof(*rx);
8536 	int err = 0;
8537 
8538 	BUG_ON(count < 1);
8539 
8540 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8541 	if (!rx)
8542 		return -ENOMEM;
8543 
8544 	dev->_rx = rx;
8545 
8546 	for (i = 0; i < count; i++) {
8547 		rx[i].dev = dev;
8548 
8549 		/* XDP RX-queue setup */
8550 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8551 		if (err < 0)
8552 			goto err_rxq_info;
8553 	}
8554 	return 0;
8555 
8556 err_rxq_info:
8557 	/* Rollback successful reg's and free other resources */
8558 	while (i--)
8559 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8560 	kvfree(dev->_rx);
8561 	dev->_rx = NULL;
8562 	return err;
8563 }
8564 
8565 static void netif_free_rx_queues(struct net_device *dev)
8566 {
8567 	unsigned int i, count = dev->num_rx_queues;
8568 
8569 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8570 	if (!dev->_rx)
8571 		return;
8572 
8573 	for (i = 0; i < count; i++)
8574 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8575 
8576 	kvfree(dev->_rx);
8577 }
8578 
8579 static void netdev_init_one_queue(struct net_device *dev,
8580 				  struct netdev_queue *queue, void *_unused)
8581 {
8582 	/* Initialize queue lock */
8583 	spin_lock_init(&queue->_xmit_lock);
8584 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8585 	queue->xmit_lock_owner = -1;
8586 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8587 	queue->dev = dev;
8588 #ifdef CONFIG_BQL
8589 	dql_init(&queue->dql, HZ);
8590 #endif
8591 }
8592 
8593 static void netif_free_tx_queues(struct net_device *dev)
8594 {
8595 	kvfree(dev->_tx);
8596 }
8597 
8598 static int netif_alloc_netdev_queues(struct net_device *dev)
8599 {
8600 	unsigned int count = dev->num_tx_queues;
8601 	struct netdev_queue *tx;
8602 	size_t sz = count * sizeof(*tx);
8603 
8604 	if (count < 1 || count > 0xffff)
8605 		return -EINVAL;
8606 
8607 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8608 	if (!tx)
8609 		return -ENOMEM;
8610 
8611 	dev->_tx = tx;
8612 
8613 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8614 	spin_lock_init(&dev->tx_global_lock);
8615 
8616 	return 0;
8617 }
8618 
8619 void netif_tx_stop_all_queues(struct net_device *dev)
8620 {
8621 	unsigned int i;
8622 
8623 	for (i = 0; i < dev->num_tx_queues; i++) {
8624 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8625 
8626 		netif_tx_stop_queue(txq);
8627 	}
8628 }
8629 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8630 
8631 /**
8632  *	register_netdevice	- register a network device
8633  *	@dev: device to register
8634  *
8635  *	Take a completed network device structure and add it to the kernel
8636  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8637  *	chain. 0 is returned on success. A negative errno code is returned
8638  *	on a failure to set up the device, or if the name is a duplicate.
8639  *
8640  *	Callers must hold the rtnl semaphore. You may want
8641  *	register_netdev() instead of this.
8642  *
8643  *	BUGS:
8644  *	The locking appears insufficient to guarantee two parallel registers
8645  *	will not get the same name.
8646  */
8647 
8648 int register_netdevice(struct net_device *dev)
8649 {
8650 	int ret;
8651 	struct net *net = dev_net(dev);
8652 
8653 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8654 		     NETDEV_FEATURE_COUNT);
8655 	BUG_ON(dev_boot_phase);
8656 	ASSERT_RTNL();
8657 
8658 	might_sleep();
8659 
8660 	/* When net_device's are persistent, this will be fatal. */
8661 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8662 	BUG_ON(!net);
8663 
8664 	spin_lock_init(&dev->addr_list_lock);
8665 	netdev_set_addr_lockdep_class(dev);
8666 
8667 	ret = dev_get_valid_name(net, dev, dev->name);
8668 	if (ret < 0)
8669 		goto out;
8670 
8671 	/* Init, if this function is available */
8672 	if (dev->netdev_ops->ndo_init) {
8673 		ret = dev->netdev_ops->ndo_init(dev);
8674 		if (ret) {
8675 			if (ret > 0)
8676 				ret = -EIO;
8677 			goto out;
8678 		}
8679 	}
8680 
8681 	if (((dev->hw_features | dev->features) &
8682 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8683 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8684 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8685 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8686 		ret = -EINVAL;
8687 		goto err_uninit;
8688 	}
8689 
8690 	ret = -EBUSY;
8691 	if (!dev->ifindex)
8692 		dev->ifindex = dev_new_index(net);
8693 	else if (__dev_get_by_index(net, dev->ifindex))
8694 		goto err_uninit;
8695 
8696 	/* Transfer changeable features to wanted_features and enable
8697 	 * software offloads (GSO and GRO).
8698 	 */
8699 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8700 	dev->features |= NETIF_F_SOFT_FEATURES;
8701 
8702 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8703 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8704 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8705 	}
8706 
8707 	dev->wanted_features = dev->features & dev->hw_features;
8708 
8709 	if (!(dev->flags & IFF_LOOPBACK))
8710 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8711 
8712 	/* If IPv4 TCP segmentation offload is supported we should also
8713 	 * allow the device to enable segmenting the frame with the option
8714 	 * of ignoring a static IP ID value.  This doesn't enable the
8715 	 * feature itself but allows the user to enable it later.
8716 	 */
8717 	if (dev->hw_features & NETIF_F_TSO)
8718 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8719 	if (dev->vlan_features & NETIF_F_TSO)
8720 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8721 	if (dev->mpls_features & NETIF_F_TSO)
8722 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8723 	if (dev->hw_enc_features & NETIF_F_TSO)
8724 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8725 
8726 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8727 	 */
8728 	dev->vlan_features |= NETIF_F_HIGHDMA;
8729 
8730 	/* Make NETIF_F_SG inheritable to tunnel devices.
8731 	 */
8732 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8733 
8734 	/* Make NETIF_F_SG inheritable to MPLS.
8735 	 */
8736 	dev->mpls_features |= NETIF_F_SG;
8737 
8738 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8739 	ret = notifier_to_errno(ret);
8740 	if (ret)
8741 		goto err_uninit;
8742 
8743 	ret = netdev_register_kobject(dev);
8744 	if (ret)
8745 		goto err_uninit;
8746 	dev->reg_state = NETREG_REGISTERED;
8747 
8748 	__netdev_update_features(dev);
8749 
8750 	/*
8751 	 *	Default initial state at registry is that the
8752 	 *	device is present.
8753 	 */
8754 
8755 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8756 
8757 	linkwatch_init_dev(dev);
8758 
8759 	dev_init_scheduler(dev);
8760 	dev_hold(dev);
8761 	list_netdevice(dev);
8762 	add_device_randomness(dev->dev_addr, dev->addr_len);
8763 
8764 	/* If the device has permanent device address, driver should
8765 	 * set dev_addr and also addr_assign_type should be set to
8766 	 * NET_ADDR_PERM (default value).
8767 	 */
8768 	if (dev->addr_assign_type == NET_ADDR_PERM)
8769 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8770 
8771 	/* Notify protocols, that a new device appeared. */
8772 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8773 	ret = notifier_to_errno(ret);
8774 	if (ret) {
8775 		rollback_registered(dev);
8776 		dev->reg_state = NETREG_UNREGISTERED;
8777 	}
8778 	/*
8779 	 *	Prevent userspace races by waiting until the network
8780 	 *	device is fully setup before sending notifications.
8781 	 */
8782 	if (!dev->rtnl_link_ops ||
8783 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8784 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8785 
8786 out:
8787 	return ret;
8788 
8789 err_uninit:
8790 	if (dev->netdev_ops->ndo_uninit)
8791 		dev->netdev_ops->ndo_uninit(dev);
8792 	if (dev->priv_destructor)
8793 		dev->priv_destructor(dev);
8794 	goto out;
8795 }
8796 EXPORT_SYMBOL(register_netdevice);
8797 
8798 /**
8799  *	init_dummy_netdev	- init a dummy network device for NAPI
8800  *	@dev: device to init
8801  *
8802  *	This takes a network device structure and initialize the minimum
8803  *	amount of fields so it can be used to schedule NAPI polls without
8804  *	registering a full blown interface. This is to be used by drivers
8805  *	that need to tie several hardware interfaces to a single NAPI
8806  *	poll scheduler due to HW limitations.
8807  */
8808 int init_dummy_netdev(struct net_device *dev)
8809 {
8810 	/* Clear everything. Note we don't initialize spinlocks
8811 	 * are they aren't supposed to be taken by any of the
8812 	 * NAPI code and this dummy netdev is supposed to be
8813 	 * only ever used for NAPI polls
8814 	 */
8815 	memset(dev, 0, sizeof(struct net_device));
8816 
8817 	/* make sure we BUG if trying to hit standard
8818 	 * register/unregister code path
8819 	 */
8820 	dev->reg_state = NETREG_DUMMY;
8821 
8822 	/* NAPI wants this */
8823 	INIT_LIST_HEAD(&dev->napi_list);
8824 
8825 	/* a dummy interface is started by default */
8826 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8827 	set_bit(__LINK_STATE_START, &dev->state);
8828 
8829 	/* napi_busy_loop stats accounting wants this */
8830 	dev_net_set(dev, &init_net);
8831 
8832 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8833 	 * because users of this 'device' dont need to change
8834 	 * its refcount.
8835 	 */
8836 
8837 	return 0;
8838 }
8839 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8840 
8841 
8842 /**
8843  *	register_netdev	- register a network device
8844  *	@dev: device to register
8845  *
8846  *	Take a completed network device structure and add it to the kernel
8847  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8848  *	chain. 0 is returned on success. A negative errno code is returned
8849  *	on a failure to set up the device, or if the name is a duplicate.
8850  *
8851  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8852  *	and expands the device name if you passed a format string to
8853  *	alloc_netdev.
8854  */
8855 int register_netdev(struct net_device *dev)
8856 {
8857 	int err;
8858 
8859 	if (rtnl_lock_killable())
8860 		return -EINTR;
8861 	err = register_netdevice(dev);
8862 	rtnl_unlock();
8863 	return err;
8864 }
8865 EXPORT_SYMBOL(register_netdev);
8866 
8867 int netdev_refcnt_read(const struct net_device *dev)
8868 {
8869 	int i, refcnt = 0;
8870 
8871 	for_each_possible_cpu(i)
8872 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8873 	return refcnt;
8874 }
8875 EXPORT_SYMBOL(netdev_refcnt_read);
8876 
8877 /**
8878  * netdev_wait_allrefs - wait until all references are gone.
8879  * @dev: target net_device
8880  *
8881  * This is called when unregistering network devices.
8882  *
8883  * Any protocol or device that holds a reference should register
8884  * for netdevice notification, and cleanup and put back the
8885  * reference if they receive an UNREGISTER event.
8886  * We can get stuck here if buggy protocols don't correctly
8887  * call dev_put.
8888  */
8889 static void netdev_wait_allrefs(struct net_device *dev)
8890 {
8891 	unsigned long rebroadcast_time, warning_time;
8892 	int refcnt;
8893 
8894 	linkwatch_forget_dev(dev);
8895 
8896 	rebroadcast_time = warning_time = jiffies;
8897 	refcnt = netdev_refcnt_read(dev);
8898 
8899 	while (refcnt != 0) {
8900 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8901 			rtnl_lock();
8902 
8903 			/* Rebroadcast unregister notification */
8904 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8905 
8906 			__rtnl_unlock();
8907 			rcu_barrier();
8908 			rtnl_lock();
8909 
8910 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8911 				     &dev->state)) {
8912 				/* We must not have linkwatch events
8913 				 * pending on unregister. If this
8914 				 * happens, we simply run the queue
8915 				 * unscheduled, resulting in a noop
8916 				 * for this device.
8917 				 */
8918 				linkwatch_run_queue();
8919 			}
8920 
8921 			__rtnl_unlock();
8922 
8923 			rebroadcast_time = jiffies;
8924 		}
8925 
8926 		msleep(250);
8927 
8928 		refcnt = netdev_refcnt_read(dev);
8929 
8930 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8931 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8932 				 dev->name, refcnt);
8933 			warning_time = jiffies;
8934 		}
8935 	}
8936 }
8937 
8938 /* The sequence is:
8939  *
8940  *	rtnl_lock();
8941  *	...
8942  *	register_netdevice(x1);
8943  *	register_netdevice(x2);
8944  *	...
8945  *	unregister_netdevice(y1);
8946  *	unregister_netdevice(y2);
8947  *      ...
8948  *	rtnl_unlock();
8949  *	free_netdev(y1);
8950  *	free_netdev(y2);
8951  *
8952  * We are invoked by rtnl_unlock().
8953  * This allows us to deal with problems:
8954  * 1) We can delete sysfs objects which invoke hotplug
8955  *    without deadlocking with linkwatch via keventd.
8956  * 2) Since we run with the RTNL semaphore not held, we can sleep
8957  *    safely in order to wait for the netdev refcnt to drop to zero.
8958  *
8959  * We must not return until all unregister events added during
8960  * the interval the lock was held have been completed.
8961  */
8962 void netdev_run_todo(void)
8963 {
8964 	struct list_head list;
8965 
8966 	/* Snapshot list, allow later requests */
8967 	list_replace_init(&net_todo_list, &list);
8968 
8969 	__rtnl_unlock();
8970 
8971 
8972 	/* Wait for rcu callbacks to finish before next phase */
8973 	if (!list_empty(&list))
8974 		rcu_barrier();
8975 
8976 	while (!list_empty(&list)) {
8977 		struct net_device *dev
8978 			= list_first_entry(&list, struct net_device, todo_list);
8979 		list_del(&dev->todo_list);
8980 
8981 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8982 			pr_err("network todo '%s' but state %d\n",
8983 			       dev->name, dev->reg_state);
8984 			dump_stack();
8985 			continue;
8986 		}
8987 
8988 		dev->reg_state = NETREG_UNREGISTERED;
8989 
8990 		netdev_wait_allrefs(dev);
8991 
8992 		/* paranoia */
8993 		BUG_ON(netdev_refcnt_read(dev));
8994 		BUG_ON(!list_empty(&dev->ptype_all));
8995 		BUG_ON(!list_empty(&dev->ptype_specific));
8996 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8997 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8998 #if IS_ENABLED(CONFIG_DECNET)
8999 		WARN_ON(dev->dn_ptr);
9000 #endif
9001 		if (dev->priv_destructor)
9002 			dev->priv_destructor(dev);
9003 		if (dev->needs_free_netdev)
9004 			free_netdev(dev);
9005 
9006 		/* Report a network device has been unregistered */
9007 		rtnl_lock();
9008 		dev_net(dev)->dev_unreg_count--;
9009 		__rtnl_unlock();
9010 		wake_up(&netdev_unregistering_wq);
9011 
9012 		/* Free network device */
9013 		kobject_put(&dev->dev.kobj);
9014 	}
9015 }
9016 
9017 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9018  * all the same fields in the same order as net_device_stats, with only
9019  * the type differing, but rtnl_link_stats64 may have additional fields
9020  * at the end for newer counters.
9021  */
9022 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9023 			     const struct net_device_stats *netdev_stats)
9024 {
9025 #if BITS_PER_LONG == 64
9026 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9027 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9028 	/* zero out counters that only exist in rtnl_link_stats64 */
9029 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9030 	       sizeof(*stats64) - sizeof(*netdev_stats));
9031 #else
9032 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9033 	const unsigned long *src = (const unsigned long *)netdev_stats;
9034 	u64 *dst = (u64 *)stats64;
9035 
9036 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9037 	for (i = 0; i < n; i++)
9038 		dst[i] = src[i];
9039 	/* zero out counters that only exist in rtnl_link_stats64 */
9040 	memset((char *)stats64 + n * sizeof(u64), 0,
9041 	       sizeof(*stats64) - n * sizeof(u64));
9042 #endif
9043 }
9044 EXPORT_SYMBOL(netdev_stats_to_stats64);
9045 
9046 /**
9047  *	dev_get_stats	- get network device statistics
9048  *	@dev: device to get statistics from
9049  *	@storage: place to store stats
9050  *
9051  *	Get network statistics from device. Return @storage.
9052  *	The device driver may provide its own method by setting
9053  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9054  *	otherwise the internal statistics structure is used.
9055  */
9056 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9057 					struct rtnl_link_stats64 *storage)
9058 {
9059 	const struct net_device_ops *ops = dev->netdev_ops;
9060 
9061 	if (ops->ndo_get_stats64) {
9062 		memset(storage, 0, sizeof(*storage));
9063 		ops->ndo_get_stats64(dev, storage);
9064 	} else if (ops->ndo_get_stats) {
9065 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9066 	} else {
9067 		netdev_stats_to_stats64(storage, &dev->stats);
9068 	}
9069 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9070 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9071 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9072 	return storage;
9073 }
9074 EXPORT_SYMBOL(dev_get_stats);
9075 
9076 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9077 {
9078 	struct netdev_queue *queue = dev_ingress_queue(dev);
9079 
9080 #ifdef CONFIG_NET_CLS_ACT
9081 	if (queue)
9082 		return queue;
9083 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9084 	if (!queue)
9085 		return NULL;
9086 	netdev_init_one_queue(dev, queue, NULL);
9087 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9088 	queue->qdisc_sleeping = &noop_qdisc;
9089 	rcu_assign_pointer(dev->ingress_queue, queue);
9090 #endif
9091 	return queue;
9092 }
9093 
9094 static const struct ethtool_ops default_ethtool_ops;
9095 
9096 void netdev_set_default_ethtool_ops(struct net_device *dev,
9097 				    const struct ethtool_ops *ops)
9098 {
9099 	if (dev->ethtool_ops == &default_ethtool_ops)
9100 		dev->ethtool_ops = ops;
9101 }
9102 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9103 
9104 void netdev_freemem(struct net_device *dev)
9105 {
9106 	char *addr = (char *)dev - dev->padded;
9107 
9108 	kvfree(addr);
9109 }
9110 
9111 /**
9112  * alloc_netdev_mqs - allocate network device
9113  * @sizeof_priv: size of private data to allocate space for
9114  * @name: device name format string
9115  * @name_assign_type: origin of device name
9116  * @setup: callback to initialize device
9117  * @txqs: the number of TX subqueues to allocate
9118  * @rxqs: the number of RX subqueues to allocate
9119  *
9120  * Allocates a struct net_device with private data area for driver use
9121  * and performs basic initialization.  Also allocates subqueue structs
9122  * for each queue on the device.
9123  */
9124 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9125 		unsigned char name_assign_type,
9126 		void (*setup)(struct net_device *),
9127 		unsigned int txqs, unsigned int rxqs)
9128 {
9129 	struct net_device *dev;
9130 	unsigned int alloc_size;
9131 	struct net_device *p;
9132 
9133 	BUG_ON(strlen(name) >= sizeof(dev->name));
9134 
9135 	if (txqs < 1) {
9136 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9137 		return NULL;
9138 	}
9139 
9140 	if (rxqs < 1) {
9141 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9142 		return NULL;
9143 	}
9144 
9145 	alloc_size = sizeof(struct net_device);
9146 	if (sizeof_priv) {
9147 		/* ensure 32-byte alignment of private area */
9148 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9149 		alloc_size += sizeof_priv;
9150 	}
9151 	/* ensure 32-byte alignment of whole construct */
9152 	alloc_size += NETDEV_ALIGN - 1;
9153 
9154 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9155 	if (!p)
9156 		return NULL;
9157 
9158 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9159 	dev->padded = (char *)dev - (char *)p;
9160 
9161 	dev->pcpu_refcnt = alloc_percpu(int);
9162 	if (!dev->pcpu_refcnt)
9163 		goto free_dev;
9164 
9165 	if (dev_addr_init(dev))
9166 		goto free_pcpu;
9167 
9168 	dev_mc_init(dev);
9169 	dev_uc_init(dev);
9170 
9171 	dev_net_set(dev, &init_net);
9172 
9173 	dev->gso_max_size = GSO_MAX_SIZE;
9174 	dev->gso_max_segs = GSO_MAX_SEGS;
9175 
9176 	INIT_LIST_HEAD(&dev->napi_list);
9177 	INIT_LIST_HEAD(&dev->unreg_list);
9178 	INIT_LIST_HEAD(&dev->close_list);
9179 	INIT_LIST_HEAD(&dev->link_watch_list);
9180 	INIT_LIST_HEAD(&dev->adj_list.upper);
9181 	INIT_LIST_HEAD(&dev->adj_list.lower);
9182 	INIT_LIST_HEAD(&dev->ptype_all);
9183 	INIT_LIST_HEAD(&dev->ptype_specific);
9184 #ifdef CONFIG_NET_SCHED
9185 	hash_init(dev->qdisc_hash);
9186 #endif
9187 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9188 	setup(dev);
9189 
9190 	if (!dev->tx_queue_len) {
9191 		dev->priv_flags |= IFF_NO_QUEUE;
9192 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9193 	}
9194 
9195 	dev->num_tx_queues = txqs;
9196 	dev->real_num_tx_queues = txqs;
9197 	if (netif_alloc_netdev_queues(dev))
9198 		goto free_all;
9199 
9200 	dev->num_rx_queues = rxqs;
9201 	dev->real_num_rx_queues = rxqs;
9202 	if (netif_alloc_rx_queues(dev))
9203 		goto free_all;
9204 
9205 	strcpy(dev->name, name);
9206 	dev->name_assign_type = name_assign_type;
9207 	dev->group = INIT_NETDEV_GROUP;
9208 	if (!dev->ethtool_ops)
9209 		dev->ethtool_ops = &default_ethtool_ops;
9210 
9211 	nf_hook_ingress_init(dev);
9212 
9213 	return dev;
9214 
9215 free_all:
9216 	free_netdev(dev);
9217 	return NULL;
9218 
9219 free_pcpu:
9220 	free_percpu(dev->pcpu_refcnt);
9221 free_dev:
9222 	netdev_freemem(dev);
9223 	return NULL;
9224 }
9225 EXPORT_SYMBOL(alloc_netdev_mqs);
9226 
9227 /**
9228  * free_netdev - free network device
9229  * @dev: device
9230  *
9231  * This function does the last stage of destroying an allocated device
9232  * interface. The reference to the device object is released. If this
9233  * is the last reference then it will be freed.Must be called in process
9234  * context.
9235  */
9236 void free_netdev(struct net_device *dev)
9237 {
9238 	struct napi_struct *p, *n;
9239 
9240 	might_sleep();
9241 	netif_free_tx_queues(dev);
9242 	netif_free_rx_queues(dev);
9243 
9244 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9245 
9246 	/* Flush device addresses */
9247 	dev_addr_flush(dev);
9248 
9249 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9250 		netif_napi_del(p);
9251 
9252 	free_percpu(dev->pcpu_refcnt);
9253 	dev->pcpu_refcnt = NULL;
9254 
9255 	/*  Compatibility with error handling in drivers */
9256 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9257 		netdev_freemem(dev);
9258 		return;
9259 	}
9260 
9261 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9262 	dev->reg_state = NETREG_RELEASED;
9263 
9264 	/* will free via device release */
9265 	put_device(&dev->dev);
9266 }
9267 EXPORT_SYMBOL(free_netdev);
9268 
9269 /**
9270  *	synchronize_net -  Synchronize with packet receive processing
9271  *
9272  *	Wait for packets currently being received to be done.
9273  *	Does not block later packets from starting.
9274  */
9275 void synchronize_net(void)
9276 {
9277 	might_sleep();
9278 	if (rtnl_is_locked())
9279 		synchronize_rcu_expedited();
9280 	else
9281 		synchronize_rcu();
9282 }
9283 EXPORT_SYMBOL(synchronize_net);
9284 
9285 /**
9286  *	unregister_netdevice_queue - remove device from the kernel
9287  *	@dev: device
9288  *	@head: list
9289  *
9290  *	This function shuts down a device interface and removes it
9291  *	from the kernel tables.
9292  *	If head not NULL, device is queued to be unregistered later.
9293  *
9294  *	Callers must hold the rtnl semaphore.  You may want
9295  *	unregister_netdev() instead of this.
9296  */
9297 
9298 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9299 {
9300 	ASSERT_RTNL();
9301 
9302 	if (head) {
9303 		list_move_tail(&dev->unreg_list, head);
9304 	} else {
9305 		rollback_registered(dev);
9306 		/* Finish processing unregister after unlock */
9307 		net_set_todo(dev);
9308 	}
9309 }
9310 EXPORT_SYMBOL(unregister_netdevice_queue);
9311 
9312 /**
9313  *	unregister_netdevice_many - unregister many devices
9314  *	@head: list of devices
9315  *
9316  *  Note: As most callers use a stack allocated list_head,
9317  *  we force a list_del() to make sure stack wont be corrupted later.
9318  */
9319 void unregister_netdevice_many(struct list_head *head)
9320 {
9321 	struct net_device *dev;
9322 
9323 	if (!list_empty(head)) {
9324 		rollback_registered_many(head);
9325 		list_for_each_entry(dev, head, unreg_list)
9326 			net_set_todo(dev);
9327 		list_del(head);
9328 	}
9329 }
9330 EXPORT_SYMBOL(unregister_netdevice_many);
9331 
9332 /**
9333  *	unregister_netdev - remove device from the kernel
9334  *	@dev: device
9335  *
9336  *	This function shuts down a device interface and removes it
9337  *	from the kernel tables.
9338  *
9339  *	This is just a wrapper for unregister_netdevice that takes
9340  *	the rtnl semaphore.  In general you want to use this and not
9341  *	unregister_netdevice.
9342  */
9343 void unregister_netdev(struct net_device *dev)
9344 {
9345 	rtnl_lock();
9346 	unregister_netdevice(dev);
9347 	rtnl_unlock();
9348 }
9349 EXPORT_SYMBOL(unregister_netdev);
9350 
9351 /**
9352  *	dev_change_net_namespace - move device to different nethost namespace
9353  *	@dev: device
9354  *	@net: network namespace
9355  *	@pat: If not NULL name pattern to try if the current device name
9356  *	      is already taken in the destination network namespace.
9357  *
9358  *	This function shuts down a device interface and moves it
9359  *	to a new network namespace. On success 0 is returned, on
9360  *	a failure a netagive errno code is returned.
9361  *
9362  *	Callers must hold the rtnl semaphore.
9363  */
9364 
9365 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9366 {
9367 	int err, new_nsid, new_ifindex;
9368 
9369 	ASSERT_RTNL();
9370 
9371 	/* Don't allow namespace local devices to be moved. */
9372 	err = -EINVAL;
9373 	if (dev->features & NETIF_F_NETNS_LOCAL)
9374 		goto out;
9375 
9376 	/* Ensure the device has been registrered */
9377 	if (dev->reg_state != NETREG_REGISTERED)
9378 		goto out;
9379 
9380 	/* Get out if there is nothing todo */
9381 	err = 0;
9382 	if (net_eq(dev_net(dev), net))
9383 		goto out;
9384 
9385 	/* Pick the destination device name, and ensure
9386 	 * we can use it in the destination network namespace.
9387 	 */
9388 	err = -EEXIST;
9389 	if (__dev_get_by_name(net, dev->name)) {
9390 		/* We get here if we can't use the current device name */
9391 		if (!pat)
9392 			goto out;
9393 		err = dev_get_valid_name(net, dev, pat);
9394 		if (err < 0)
9395 			goto out;
9396 	}
9397 
9398 	/*
9399 	 * And now a mini version of register_netdevice unregister_netdevice.
9400 	 */
9401 
9402 	/* If device is running close it first. */
9403 	dev_close(dev);
9404 
9405 	/* And unlink it from device chain */
9406 	unlist_netdevice(dev);
9407 
9408 	synchronize_net();
9409 
9410 	/* Shutdown queueing discipline. */
9411 	dev_shutdown(dev);
9412 
9413 	/* Notify protocols, that we are about to destroy
9414 	 * this device. They should clean all the things.
9415 	 *
9416 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9417 	 * This is wanted because this way 8021q and macvlan know
9418 	 * the device is just moving and can keep their slaves up.
9419 	 */
9420 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9421 	rcu_barrier();
9422 
9423 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9424 	/* If there is an ifindex conflict assign a new one */
9425 	if (__dev_get_by_index(net, dev->ifindex))
9426 		new_ifindex = dev_new_index(net);
9427 	else
9428 		new_ifindex = dev->ifindex;
9429 
9430 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9431 			    new_ifindex);
9432 
9433 	/*
9434 	 *	Flush the unicast and multicast chains
9435 	 */
9436 	dev_uc_flush(dev);
9437 	dev_mc_flush(dev);
9438 
9439 	/* Send a netdev-removed uevent to the old namespace */
9440 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9441 	netdev_adjacent_del_links(dev);
9442 
9443 	/* Actually switch the network namespace */
9444 	dev_net_set(dev, net);
9445 	dev->ifindex = new_ifindex;
9446 
9447 	/* Send a netdev-add uevent to the new namespace */
9448 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9449 	netdev_adjacent_add_links(dev);
9450 
9451 	/* Fixup kobjects */
9452 	err = device_rename(&dev->dev, dev->name);
9453 	WARN_ON(err);
9454 
9455 	/* Add the device back in the hashes */
9456 	list_netdevice(dev);
9457 
9458 	/* Notify protocols, that a new device appeared. */
9459 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9460 
9461 	/*
9462 	 *	Prevent userspace races by waiting until the network
9463 	 *	device is fully setup before sending notifications.
9464 	 */
9465 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9466 
9467 	synchronize_net();
9468 	err = 0;
9469 out:
9470 	return err;
9471 }
9472 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9473 
9474 static int dev_cpu_dead(unsigned int oldcpu)
9475 {
9476 	struct sk_buff **list_skb;
9477 	struct sk_buff *skb;
9478 	unsigned int cpu;
9479 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9480 
9481 	local_irq_disable();
9482 	cpu = smp_processor_id();
9483 	sd = &per_cpu(softnet_data, cpu);
9484 	oldsd = &per_cpu(softnet_data, oldcpu);
9485 
9486 	/* Find end of our completion_queue. */
9487 	list_skb = &sd->completion_queue;
9488 	while (*list_skb)
9489 		list_skb = &(*list_skb)->next;
9490 	/* Append completion queue from offline CPU. */
9491 	*list_skb = oldsd->completion_queue;
9492 	oldsd->completion_queue = NULL;
9493 
9494 	/* Append output queue from offline CPU. */
9495 	if (oldsd->output_queue) {
9496 		*sd->output_queue_tailp = oldsd->output_queue;
9497 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9498 		oldsd->output_queue = NULL;
9499 		oldsd->output_queue_tailp = &oldsd->output_queue;
9500 	}
9501 	/* Append NAPI poll list from offline CPU, with one exception :
9502 	 * process_backlog() must be called by cpu owning percpu backlog.
9503 	 * We properly handle process_queue & input_pkt_queue later.
9504 	 */
9505 	while (!list_empty(&oldsd->poll_list)) {
9506 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9507 							    struct napi_struct,
9508 							    poll_list);
9509 
9510 		list_del_init(&napi->poll_list);
9511 		if (napi->poll == process_backlog)
9512 			napi->state = 0;
9513 		else
9514 			____napi_schedule(sd, napi);
9515 	}
9516 
9517 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9518 	local_irq_enable();
9519 
9520 #ifdef CONFIG_RPS
9521 	remsd = oldsd->rps_ipi_list;
9522 	oldsd->rps_ipi_list = NULL;
9523 #endif
9524 	/* send out pending IPI's on offline CPU */
9525 	net_rps_send_ipi(remsd);
9526 
9527 	/* Process offline CPU's input_pkt_queue */
9528 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9529 		netif_rx_ni(skb);
9530 		input_queue_head_incr(oldsd);
9531 	}
9532 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9533 		netif_rx_ni(skb);
9534 		input_queue_head_incr(oldsd);
9535 	}
9536 
9537 	return 0;
9538 }
9539 
9540 /**
9541  *	netdev_increment_features - increment feature set by one
9542  *	@all: current feature set
9543  *	@one: new feature set
9544  *	@mask: mask feature set
9545  *
9546  *	Computes a new feature set after adding a device with feature set
9547  *	@one to the master device with current feature set @all.  Will not
9548  *	enable anything that is off in @mask. Returns the new feature set.
9549  */
9550 netdev_features_t netdev_increment_features(netdev_features_t all,
9551 	netdev_features_t one, netdev_features_t mask)
9552 {
9553 	if (mask & NETIF_F_HW_CSUM)
9554 		mask |= NETIF_F_CSUM_MASK;
9555 	mask |= NETIF_F_VLAN_CHALLENGED;
9556 
9557 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9558 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9559 
9560 	/* If one device supports hw checksumming, set for all. */
9561 	if (all & NETIF_F_HW_CSUM)
9562 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9563 
9564 	return all;
9565 }
9566 EXPORT_SYMBOL(netdev_increment_features);
9567 
9568 static struct hlist_head * __net_init netdev_create_hash(void)
9569 {
9570 	int i;
9571 	struct hlist_head *hash;
9572 
9573 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9574 	if (hash != NULL)
9575 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9576 			INIT_HLIST_HEAD(&hash[i]);
9577 
9578 	return hash;
9579 }
9580 
9581 /* Initialize per network namespace state */
9582 static int __net_init netdev_init(struct net *net)
9583 {
9584 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9585 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9586 
9587 	if (net != &init_net)
9588 		INIT_LIST_HEAD(&net->dev_base_head);
9589 
9590 	net->dev_name_head = netdev_create_hash();
9591 	if (net->dev_name_head == NULL)
9592 		goto err_name;
9593 
9594 	net->dev_index_head = netdev_create_hash();
9595 	if (net->dev_index_head == NULL)
9596 		goto err_idx;
9597 
9598 	return 0;
9599 
9600 err_idx:
9601 	kfree(net->dev_name_head);
9602 err_name:
9603 	return -ENOMEM;
9604 }
9605 
9606 /**
9607  *	netdev_drivername - network driver for the device
9608  *	@dev: network device
9609  *
9610  *	Determine network driver for device.
9611  */
9612 const char *netdev_drivername(const struct net_device *dev)
9613 {
9614 	const struct device_driver *driver;
9615 	const struct device *parent;
9616 	const char *empty = "";
9617 
9618 	parent = dev->dev.parent;
9619 	if (!parent)
9620 		return empty;
9621 
9622 	driver = parent->driver;
9623 	if (driver && driver->name)
9624 		return driver->name;
9625 	return empty;
9626 }
9627 
9628 static void __netdev_printk(const char *level, const struct net_device *dev,
9629 			    struct va_format *vaf)
9630 {
9631 	if (dev && dev->dev.parent) {
9632 		dev_printk_emit(level[1] - '0',
9633 				dev->dev.parent,
9634 				"%s %s %s%s: %pV",
9635 				dev_driver_string(dev->dev.parent),
9636 				dev_name(dev->dev.parent),
9637 				netdev_name(dev), netdev_reg_state(dev),
9638 				vaf);
9639 	} else if (dev) {
9640 		printk("%s%s%s: %pV",
9641 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9642 	} else {
9643 		printk("%s(NULL net_device): %pV", level, vaf);
9644 	}
9645 }
9646 
9647 void netdev_printk(const char *level, const struct net_device *dev,
9648 		   const char *format, ...)
9649 {
9650 	struct va_format vaf;
9651 	va_list args;
9652 
9653 	va_start(args, format);
9654 
9655 	vaf.fmt = format;
9656 	vaf.va = &args;
9657 
9658 	__netdev_printk(level, dev, &vaf);
9659 
9660 	va_end(args);
9661 }
9662 EXPORT_SYMBOL(netdev_printk);
9663 
9664 #define define_netdev_printk_level(func, level)			\
9665 void func(const struct net_device *dev, const char *fmt, ...)	\
9666 {								\
9667 	struct va_format vaf;					\
9668 	va_list args;						\
9669 								\
9670 	va_start(args, fmt);					\
9671 								\
9672 	vaf.fmt = fmt;						\
9673 	vaf.va = &args;						\
9674 								\
9675 	__netdev_printk(level, dev, &vaf);			\
9676 								\
9677 	va_end(args);						\
9678 }								\
9679 EXPORT_SYMBOL(func);
9680 
9681 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9682 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9683 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9684 define_netdev_printk_level(netdev_err, KERN_ERR);
9685 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9686 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9687 define_netdev_printk_level(netdev_info, KERN_INFO);
9688 
9689 static void __net_exit netdev_exit(struct net *net)
9690 {
9691 	kfree(net->dev_name_head);
9692 	kfree(net->dev_index_head);
9693 	if (net != &init_net)
9694 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9695 }
9696 
9697 static struct pernet_operations __net_initdata netdev_net_ops = {
9698 	.init = netdev_init,
9699 	.exit = netdev_exit,
9700 };
9701 
9702 static void __net_exit default_device_exit(struct net *net)
9703 {
9704 	struct net_device *dev, *aux;
9705 	/*
9706 	 * Push all migratable network devices back to the
9707 	 * initial network namespace
9708 	 */
9709 	rtnl_lock();
9710 	for_each_netdev_safe(net, dev, aux) {
9711 		int err;
9712 		char fb_name[IFNAMSIZ];
9713 
9714 		/* Ignore unmoveable devices (i.e. loopback) */
9715 		if (dev->features & NETIF_F_NETNS_LOCAL)
9716 			continue;
9717 
9718 		/* Leave virtual devices for the generic cleanup */
9719 		if (dev->rtnl_link_ops)
9720 			continue;
9721 
9722 		/* Push remaining network devices to init_net */
9723 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9724 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9725 		if (err) {
9726 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9727 				 __func__, dev->name, err);
9728 			BUG();
9729 		}
9730 	}
9731 	rtnl_unlock();
9732 }
9733 
9734 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9735 {
9736 	/* Return with the rtnl_lock held when there are no network
9737 	 * devices unregistering in any network namespace in net_list.
9738 	 */
9739 	struct net *net;
9740 	bool unregistering;
9741 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9742 
9743 	add_wait_queue(&netdev_unregistering_wq, &wait);
9744 	for (;;) {
9745 		unregistering = false;
9746 		rtnl_lock();
9747 		list_for_each_entry(net, net_list, exit_list) {
9748 			if (net->dev_unreg_count > 0) {
9749 				unregistering = true;
9750 				break;
9751 			}
9752 		}
9753 		if (!unregistering)
9754 			break;
9755 		__rtnl_unlock();
9756 
9757 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9758 	}
9759 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9760 }
9761 
9762 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9763 {
9764 	/* At exit all network devices most be removed from a network
9765 	 * namespace.  Do this in the reverse order of registration.
9766 	 * Do this across as many network namespaces as possible to
9767 	 * improve batching efficiency.
9768 	 */
9769 	struct net_device *dev;
9770 	struct net *net;
9771 	LIST_HEAD(dev_kill_list);
9772 
9773 	/* To prevent network device cleanup code from dereferencing
9774 	 * loopback devices or network devices that have been freed
9775 	 * wait here for all pending unregistrations to complete,
9776 	 * before unregistring the loopback device and allowing the
9777 	 * network namespace be freed.
9778 	 *
9779 	 * The netdev todo list containing all network devices
9780 	 * unregistrations that happen in default_device_exit_batch
9781 	 * will run in the rtnl_unlock() at the end of
9782 	 * default_device_exit_batch.
9783 	 */
9784 	rtnl_lock_unregistering(net_list);
9785 	list_for_each_entry(net, net_list, exit_list) {
9786 		for_each_netdev_reverse(net, dev) {
9787 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9788 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9789 			else
9790 				unregister_netdevice_queue(dev, &dev_kill_list);
9791 		}
9792 	}
9793 	unregister_netdevice_many(&dev_kill_list);
9794 	rtnl_unlock();
9795 }
9796 
9797 static struct pernet_operations __net_initdata default_device_ops = {
9798 	.exit = default_device_exit,
9799 	.exit_batch = default_device_exit_batch,
9800 };
9801 
9802 /*
9803  *	Initialize the DEV module. At boot time this walks the device list and
9804  *	unhooks any devices that fail to initialise (normally hardware not
9805  *	present) and leaves us with a valid list of present and active devices.
9806  *
9807  */
9808 
9809 /*
9810  *       This is called single threaded during boot, so no need
9811  *       to take the rtnl semaphore.
9812  */
9813 static int __init net_dev_init(void)
9814 {
9815 	int i, rc = -ENOMEM;
9816 
9817 	BUG_ON(!dev_boot_phase);
9818 
9819 	if (dev_proc_init())
9820 		goto out;
9821 
9822 	if (netdev_kobject_init())
9823 		goto out;
9824 
9825 	INIT_LIST_HEAD(&ptype_all);
9826 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9827 		INIT_LIST_HEAD(&ptype_base[i]);
9828 
9829 	INIT_LIST_HEAD(&offload_base);
9830 
9831 	if (register_pernet_subsys(&netdev_net_ops))
9832 		goto out;
9833 
9834 	/*
9835 	 *	Initialise the packet receive queues.
9836 	 */
9837 
9838 	for_each_possible_cpu(i) {
9839 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9840 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9841 
9842 		INIT_WORK(flush, flush_backlog);
9843 
9844 		skb_queue_head_init(&sd->input_pkt_queue);
9845 		skb_queue_head_init(&sd->process_queue);
9846 #ifdef CONFIG_XFRM_OFFLOAD
9847 		skb_queue_head_init(&sd->xfrm_backlog);
9848 #endif
9849 		INIT_LIST_HEAD(&sd->poll_list);
9850 		sd->output_queue_tailp = &sd->output_queue;
9851 #ifdef CONFIG_RPS
9852 		sd->csd.func = rps_trigger_softirq;
9853 		sd->csd.info = sd;
9854 		sd->cpu = i;
9855 #endif
9856 
9857 		init_gro_hash(&sd->backlog);
9858 		sd->backlog.poll = process_backlog;
9859 		sd->backlog.weight = weight_p;
9860 	}
9861 
9862 	dev_boot_phase = 0;
9863 
9864 	/* The loopback device is special if any other network devices
9865 	 * is present in a network namespace the loopback device must
9866 	 * be present. Since we now dynamically allocate and free the
9867 	 * loopback device ensure this invariant is maintained by
9868 	 * keeping the loopback device as the first device on the
9869 	 * list of network devices.  Ensuring the loopback devices
9870 	 * is the first device that appears and the last network device
9871 	 * that disappears.
9872 	 */
9873 	if (register_pernet_device(&loopback_net_ops))
9874 		goto out;
9875 
9876 	if (register_pernet_device(&default_device_ops))
9877 		goto out;
9878 
9879 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9880 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9881 
9882 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9883 				       NULL, dev_cpu_dead);
9884 	WARN_ON(rc < 0);
9885 	rc = 0;
9886 out:
9887 	return rc;
9888 }
9889 
9890 subsys_initcall(net_dev_init);
9891