1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/ethtool_netlink.h> 96 #include <linux/skbuff.h> 97 #include <linux/kthread.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dsa.h> 106 #include <net/dst.h> 107 #include <net/dst_metadata.h> 108 #include <net/gro.h> 109 #include <net/netdev_queues.h> 110 #include <net/pkt_sched.h> 111 #include <net/pkt_cls.h> 112 #include <net/checksum.h> 113 #include <net/xfrm.h> 114 #include <net/tcx.h> 115 #include <linux/highmem.h> 116 #include <linux/init.h> 117 #include <linux/module.h> 118 #include <linux/netpoll.h> 119 #include <linux/rcupdate.h> 120 #include <linux/delay.h> 121 #include <net/iw_handler.h> 122 #include <asm/current.h> 123 #include <linux/audit.h> 124 #include <linux/dmaengine.h> 125 #include <linux/err.h> 126 #include <linux/ctype.h> 127 #include <linux/if_arp.h> 128 #include <linux/if_vlan.h> 129 #include <linux/ip.h> 130 #include <net/ip.h> 131 #include <net/mpls.h> 132 #include <linux/ipv6.h> 133 #include <linux/in.h> 134 #include <linux/jhash.h> 135 #include <linux/random.h> 136 #include <trace/events/napi.h> 137 #include <trace/events/net.h> 138 #include <trace/events/skb.h> 139 #include <trace/events/qdisc.h> 140 #include <trace/events/xdp.h> 141 #include <linux/inetdevice.h> 142 #include <linux/cpu_rmap.h> 143 #include <linux/static_key.h> 144 #include <linux/hashtable.h> 145 #include <linux/vmalloc.h> 146 #include <linux/if_macvlan.h> 147 #include <linux/errqueue.h> 148 #include <linux/hrtimer.h> 149 #include <linux/netfilter_netdev.h> 150 #include <linux/crash_dump.h> 151 #include <linux/sctp.h> 152 #include <net/udp_tunnel.h> 153 #include <linux/net_namespace.h> 154 #include <linux/indirect_call_wrapper.h> 155 #include <net/devlink.h> 156 #include <linux/pm_runtime.h> 157 #include <linux/prandom.h> 158 #include <linux/once_lite.h> 159 #include <net/netdev_rx_queue.h> 160 #include <net/page_pool/types.h> 161 #include <net/page_pool/helpers.h> 162 #include <net/page_pool/memory_provider.h> 163 #include <net/rps.h> 164 #include <linux/phy_link_topology.h> 165 166 #include "dev.h" 167 #include "devmem.h" 168 #include "net-sysfs.h" 169 170 static DEFINE_SPINLOCK(ptype_lock); 171 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 172 173 static int netif_rx_internal(struct sk_buff *skb); 174 static int call_netdevice_notifiers_extack(unsigned long val, 175 struct net_device *dev, 176 struct netlink_ext_ack *extack); 177 178 static DEFINE_MUTEX(ifalias_mutex); 179 180 /* protects napi_hash addition/deletion and napi_gen_id */ 181 static DEFINE_SPINLOCK(napi_hash_lock); 182 183 static unsigned int napi_gen_id = NR_CPUS; 184 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 185 186 static inline void dev_base_seq_inc(struct net *net) 187 { 188 unsigned int val = net->dev_base_seq + 1; 189 190 WRITE_ONCE(net->dev_base_seq, val ?: 1); 191 } 192 193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 194 { 195 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 196 197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 198 } 199 200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 201 { 202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 203 } 204 205 #ifndef CONFIG_PREEMPT_RT 206 207 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 208 209 static int __init setup_backlog_napi_threads(char *arg) 210 { 211 static_branch_enable(&use_backlog_threads_key); 212 return 0; 213 } 214 early_param("thread_backlog_napi", setup_backlog_napi_threads); 215 216 static bool use_backlog_threads(void) 217 { 218 return static_branch_unlikely(&use_backlog_threads_key); 219 } 220 221 #else 222 223 static bool use_backlog_threads(void) 224 { 225 return true; 226 } 227 228 #endif 229 230 static inline void backlog_lock_irq_save(struct softnet_data *sd, 231 unsigned long *flags) 232 { 233 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 234 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 235 else 236 local_irq_save(*flags); 237 } 238 239 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 240 { 241 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 242 spin_lock_irq(&sd->input_pkt_queue.lock); 243 else 244 local_irq_disable(); 245 } 246 247 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 248 unsigned long *flags) 249 { 250 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 251 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 252 else 253 local_irq_restore(*flags); 254 } 255 256 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 257 { 258 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 259 spin_unlock_irq(&sd->input_pkt_queue.lock); 260 else 261 local_irq_enable(); 262 } 263 264 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 265 const char *name) 266 { 267 struct netdev_name_node *name_node; 268 269 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 270 if (!name_node) 271 return NULL; 272 INIT_HLIST_NODE(&name_node->hlist); 273 name_node->dev = dev; 274 name_node->name = name; 275 return name_node; 276 } 277 278 static struct netdev_name_node * 279 netdev_name_node_head_alloc(struct net_device *dev) 280 { 281 struct netdev_name_node *name_node; 282 283 name_node = netdev_name_node_alloc(dev, dev->name); 284 if (!name_node) 285 return NULL; 286 INIT_LIST_HEAD(&name_node->list); 287 return name_node; 288 } 289 290 static void netdev_name_node_free(struct netdev_name_node *name_node) 291 { 292 kfree(name_node); 293 } 294 295 static void netdev_name_node_add(struct net *net, 296 struct netdev_name_node *name_node) 297 { 298 hlist_add_head_rcu(&name_node->hlist, 299 dev_name_hash(net, name_node->name)); 300 } 301 302 static void netdev_name_node_del(struct netdev_name_node *name_node) 303 { 304 hlist_del_rcu(&name_node->hlist); 305 } 306 307 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 308 const char *name) 309 { 310 struct hlist_head *head = dev_name_hash(net, name); 311 struct netdev_name_node *name_node; 312 313 hlist_for_each_entry(name_node, head, hlist) 314 if (!strcmp(name_node->name, name)) 315 return name_node; 316 return NULL; 317 } 318 319 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 320 const char *name) 321 { 322 struct hlist_head *head = dev_name_hash(net, name); 323 struct netdev_name_node *name_node; 324 325 hlist_for_each_entry_rcu(name_node, head, hlist) 326 if (!strcmp(name_node->name, name)) 327 return name_node; 328 return NULL; 329 } 330 331 bool netdev_name_in_use(struct net *net, const char *name) 332 { 333 return netdev_name_node_lookup(net, name); 334 } 335 EXPORT_SYMBOL(netdev_name_in_use); 336 337 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 338 { 339 struct netdev_name_node *name_node; 340 struct net *net = dev_net(dev); 341 342 name_node = netdev_name_node_lookup(net, name); 343 if (name_node) 344 return -EEXIST; 345 name_node = netdev_name_node_alloc(dev, name); 346 if (!name_node) 347 return -ENOMEM; 348 netdev_name_node_add(net, name_node); 349 /* The node that holds dev->name acts as a head of per-device list. */ 350 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 351 352 return 0; 353 } 354 355 static void netdev_name_node_alt_free(struct rcu_head *head) 356 { 357 struct netdev_name_node *name_node = 358 container_of(head, struct netdev_name_node, rcu); 359 360 kfree(name_node->name); 361 netdev_name_node_free(name_node); 362 } 363 364 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 365 { 366 netdev_name_node_del(name_node); 367 list_del(&name_node->list); 368 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 369 } 370 371 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 372 { 373 struct netdev_name_node *name_node; 374 struct net *net = dev_net(dev); 375 376 name_node = netdev_name_node_lookup(net, name); 377 if (!name_node) 378 return -ENOENT; 379 /* lookup might have found our primary name or a name belonging 380 * to another device. 381 */ 382 if (name_node == dev->name_node || name_node->dev != dev) 383 return -EINVAL; 384 385 __netdev_name_node_alt_destroy(name_node); 386 return 0; 387 } 388 389 static void netdev_name_node_alt_flush(struct net_device *dev) 390 { 391 struct netdev_name_node *name_node, *tmp; 392 393 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 394 list_del(&name_node->list); 395 netdev_name_node_alt_free(&name_node->rcu); 396 } 397 } 398 399 /* Device list insertion */ 400 static void list_netdevice(struct net_device *dev) 401 { 402 struct netdev_name_node *name_node; 403 struct net *net = dev_net(dev); 404 405 ASSERT_RTNL(); 406 407 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 408 netdev_name_node_add(net, dev->name_node); 409 hlist_add_head_rcu(&dev->index_hlist, 410 dev_index_hash(net, dev->ifindex)); 411 412 netdev_for_each_altname(dev, name_node) 413 netdev_name_node_add(net, name_node); 414 415 /* We reserved the ifindex, this can't fail */ 416 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 417 418 dev_base_seq_inc(net); 419 } 420 421 /* Device list removal 422 * caller must respect a RCU grace period before freeing/reusing dev 423 */ 424 static void unlist_netdevice(struct net_device *dev) 425 { 426 struct netdev_name_node *name_node; 427 struct net *net = dev_net(dev); 428 429 ASSERT_RTNL(); 430 431 xa_erase(&net->dev_by_index, dev->ifindex); 432 433 netdev_for_each_altname(dev, name_node) 434 netdev_name_node_del(name_node); 435 436 /* Unlink dev from the device chain */ 437 list_del_rcu(&dev->dev_list); 438 netdev_name_node_del(dev->name_node); 439 hlist_del_rcu(&dev->index_hlist); 440 441 dev_base_seq_inc(dev_net(dev)); 442 } 443 444 /* 445 * Our notifier list 446 */ 447 448 static RAW_NOTIFIER_HEAD(netdev_chain); 449 450 /* 451 * Device drivers call our routines to queue packets here. We empty the 452 * queue in the local softnet handler. 453 */ 454 455 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 456 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 457 }; 458 EXPORT_PER_CPU_SYMBOL(softnet_data); 459 460 /* Page_pool has a lockless array/stack to alloc/recycle pages. 461 * PP consumers must pay attention to run APIs in the appropriate context 462 * (e.g. NAPI context). 463 */ 464 DEFINE_PER_CPU(struct page_pool *, system_page_pool); 465 466 #ifdef CONFIG_LOCKDEP 467 /* 468 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 469 * according to dev->type 470 */ 471 static const unsigned short netdev_lock_type[] = { 472 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 473 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 474 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 475 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 476 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 477 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 478 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 479 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 480 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 481 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 482 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 483 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 484 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 485 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 486 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 487 488 static const char *const netdev_lock_name[] = { 489 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 490 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 491 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 492 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 493 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 494 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 495 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 496 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 497 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 498 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 499 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 500 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 501 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 502 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 503 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 504 505 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 506 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 507 508 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 509 { 510 int i; 511 512 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 513 if (netdev_lock_type[i] == dev_type) 514 return i; 515 /* the last key is used by default */ 516 return ARRAY_SIZE(netdev_lock_type) - 1; 517 } 518 519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 520 unsigned short dev_type) 521 { 522 int i; 523 524 i = netdev_lock_pos(dev_type); 525 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 526 netdev_lock_name[i]); 527 } 528 529 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 530 { 531 int i; 532 533 i = netdev_lock_pos(dev->type); 534 lockdep_set_class_and_name(&dev->addr_list_lock, 535 &netdev_addr_lock_key[i], 536 netdev_lock_name[i]); 537 } 538 #else 539 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 540 unsigned short dev_type) 541 { 542 } 543 544 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 545 { 546 } 547 #endif 548 549 /******************************************************************************* 550 * 551 * Protocol management and registration routines 552 * 553 *******************************************************************************/ 554 555 556 /* 557 * Add a protocol ID to the list. Now that the input handler is 558 * smarter we can dispense with all the messy stuff that used to be 559 * here. 560 * 561 * BEWARE!!! Protocol handlers, mangling input packets, 562 * MUST BE last in hash buckets and checking protocol handlers 563 * MUST start from promiscuous ptype_all chain in net_bh. 564 * It is true now, do not change it. 565 * Explanation follows: if protocol handler, mangling packet, will 566 * be the first on list, it is not able to sense, that packet 567 * is cloned and should be copied-on-write, so that it will 568 * change it and subsequent readers will get broken packet. 569 * --ANK (980803) 570 */ 571 572 static inline struct list_head *ptype_head(const struct packet_type *pt) 573 { 574 if (pt->type == htons(ETH_P_ALL)) 575 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all; 576 else 577 return pt->dev ? &pt->dev->ptype_specific : 578 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 579 } 580 581 /** 582 * dev_add_pack - add packet handler 583 * @pt: packet type declaration 584 * 585 * Add a protocol handler to the networking stack. The passed &packet_type 586 * is linked into kernel lists and may not be freed until it has been 587 * removed from the kernel lists. 588 * 589 * This call does not sleep therefore it can not 590 * guarantee all CPU's that are in middle of receiving packets 591 * will see the new packet type (until the next received packet). 592 */ 593 594 void dev_add_pack(struct packet_type *pt) 595 { 596 struct list_head *head = ptype_head(pt); 597 598 spin_lock(&ptype_lock); 599 list_add_rcu(&pt->list, head); 600 spin_unlock(&ptype_lock); 601 } 602 EXPORT_SYMBOL(dev_add_pack); 603 604 /** 605 * __dev_remove_pack - remove packet handler 606 * @pt: packet type declaration 607 * 608 * Remove a protocol handler that was previously added to the kernel 609 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 610 * from the kernel lists and can be freed or reused once this function 611 * returns. 612 * 613 * The packet type might still be in use by receivers 614 * and must not be freed until after all the CPU's have gone 615 * through a quiescent state. 616 */ 617 void __dev_remove_pack(struct packet_type *pt) 618 { 619 struct list_head *head = ptype_head(pt); 620 struct packet_type *pt1; 621 622 spin_lock(&ptype_lock); 623 624 list_for_each_entry(pt1, head, list) { 625 if (pt == pt1) { 626 list_del_rcu(&pt->list); 627 goto out; 628 } 629 } 630 631 pr_warn("dev_remove_pack: %p not found\n", pt); 632 out: 633 spin_unlock(&ptype_lock); 634 } 635 EXPORT_SYMBOL(__dev_remove_pack); 636 637 /** 638 * dev_remove_pack - remove packet handler 639 * @pt: packet type declaration 640 * 641 * Remove a protocol handler that was previously added to the kernel 642 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 643 * from the kernel lists and can be freed or reused once this function 644 * returns. 645 * 646 * This call sleeps to guarantee that no CPU is looking at the packet 647 * type after return. 648 */ 649 void dev_remove_pack(struct packet_type *pt) 650 { 651 __dev_remove_pack(pt); 652 653 synchronize_net(); 654 } 655 EXPORT_SYMBOL(dev_remove_pack); 656 657 658 /******************************************************************************* 659 * 660 * Device Interface Subroutines 661 * 662 *******************************************************************************/ 663 664 /** 665 * dev_get_iflink - get 'iflink' value of a interface 666 * @dev: targeted interface 667 * 668 * Indicates the ifindex the interface is linked to. 669 * Physical interfaces have the same 'ifindex' and 'iflink' values. 670 */ 671 672 int dev_get_iflink(const struct net_device *dev) 673 { 674 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 675 return dev->netdev_ops->ndo_get_iflink(dev); 676 677 return READ_ONCE(dev->ifindex); 678 } 679 EXPORT_SYMBOL(dev_get_iflink); 680 681 /** 682 * dev_fill_metadata_dst - Retrieve tunnel egress information. 683 * @dev: targeted interface 684 * @skb: The packet. 685 * 686 * For better visibility of tunnel traffic OVS needs to retrieve 687 * egress tunnel information for a packet. Following API allows 688 * user to get this info. 689 */ 690 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 691 { 692 struct ip_tunnel_info *info; 693 694 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 695 return -EINVAL; 696 697 info = skb_tunnel_info_unclone(skb); 698 if (!info) 699 return -ENOMEM; 700 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 701 return -EINVAL; 702 703 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 704 } 705 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 706 707 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 708 { 709 int k = stack->num_paths++; 710 711 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 712 return NULL; 713 714 return &stack->path[k]; 715 } 716 717 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 718 struct net_device_path_stack *stack) 719 { 720 const struct net_device *last_dev; 721 struct net_device_path_ctx ctx = { 722 .dev = dev, 723 }; 724 struct net_device_path *path; 725 int ret = 0; 726 727 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 728 stack->num_paths = 0; 729 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 730 last_dev = ctx.dev; 731 path = dev_fwd_path(stack); 732 if (!path) 733 return -1; 734 735 memset(path, 0, sizeof(struct net_device_path)); 736 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 737 if (ret < 0) 738 return -1; 739 740 if (WARN_ON_ONCE(last_dev == ctx.dev)) 741 return -1; 742 } 743 744 if (!ctx.dev) 745 return ret; 746 747 path = dev_fwd_path(stack); 748 if (!path) 749 return -1; 750 path->type = DEV_PATH_ETHERNET; 751 path->dev = ctx.dev; 752 753 return ret; 754 } 755 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 756 757 /* must be called under rcu_read_lock(), as we dont take a reference */ 758 static struct napi_struct *napi_by_id(unsigned int napi_id) 759 { 760 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 761 struct napi_struct *napi; 762 763 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 764 if (napi->napi_id == napi_id) 765 return napi; 766 767 return NULL; 768 } 769 770 /* must be called under rcu_read_lock(), as we dont take a reference */ 771 static struct napi_struct * 772 netdev_napi_by_id(struct net *net, unsigned int napi_id) 773 { 774 struct napi_struct *napi; 775 776 napi = napi_by_id(napi_id); 777 if (!napi) 778 return NULL; 779 780 if (WARN_ON_ONCE(!napi->dev)) 781 return NULL; 782 if (!net_eq(net, dev_net(napi->dev))) 783 return NULL; 784 785 return napi; 786 } 787 788 /** 789 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 790 * @net: the applicable net namespace 791 * @napi_id: ID of a NAPI of a target device 792 * 793 * Find a NAPI instance with @napi_id. Lock its device. 794 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 795 * netdev_unlock() must be called to release it. 796 * 797 * Return: pointer to NAPI, its device with lock held, NULL if not found. 798 */ 799 struct napi_struct * 800 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 801 { 802 struct napi_struct *napi; 803 struct net_device *dev; 804 805 rcu_read_lock(); 806 napi = netdev_napi_by_id(net, napi_id); 807 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 808 rcu_read_unlock(); 809 return NULL; 810 } 811 812 dev = napi->dev; 813 dev_hold(dev); 814 rcu_read_unlock(); 815 816 dev = __netdev_put_lock(dev); 817 if (!dev) 818 return NULL; 819 820 rcu_read_lock(); 821 napi = netdev_napi_by_id(net, napi_id); 822 if (napi && napi->dev != dev) 823 napi = NULL; 824 rcu_read_unlock(); 825 826 if (!napi) 827 netdev_unlock(dev); 828 return napi; 829 } 830 831 /** 832 * __dev_get_by_name - find a device by its name 833 * @net: the applicable net namespace 834 * @name: name to find 835 * 836 * Find an interface by name. Must be called under RTNL semaphore. 837 * If the name is found a pointer to the device is returned. 838 * If the name is not found then %NULL is returned. The 839 * reference counters are not incremented so the caller must be 840 * careful with locks. 841 */ 842 843 struct net_device *__dev_get_by_name(struct net *net, const char *name) 844 { 845 struct netdev_name_node *node_name; 846 847 node_name = netdev_name_node_lookup(net, name); 848 return node_name ? node_name->dev : NULL; 849 } 850 EXPORT_SYMBOL(__dev_get_by_name); 851 852 /** 853 * dev_get_by_name_rcu - find a device by its name 854 * @net: the applicable net namespace 855 * @name: name to find 856 * 857 * Find an interface by name. 858 * If the name is found a pointer to the device is returned. 859 * If the name is not found then %NULL is returned. 860 * The reference counters are not incremented so the caller must be 861 * careful with locks. The caller must hold RCU lock. 862 */ 863 864 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 865 { 866 struct netdev_name_node *node_name; 867 868 node_name = netdev_name_node_lookup_rcu(net, name); 869 return node_name ? node_name->dev : NULL; 870 } 871 EXPORT_SYMBOL(dev_get_by_name_rcu); 872 873 /* Deprecated for new users, call netdev_get_by_name() instead */ 874 struct net_device *dev_get_by_name(struct net *net, const char *name) 875 { 876 struct net_device *dev; 877 878 rcu_read_lock(); 879 dev = dev_get_by_name_rcu(net, name); 880 dev_hold(dev); 881 rcu_read_unlock(); 882 return dev; 883 } 884 EXPORT_SYMBOL(dev_get_by_name); 885 886 /** 887 * netdev_get_by_name() - find a device by its name 888 * @net: the applicable net namespace 889 * @name: name to find 890 * @tracker: tracking object for the acquired reference 891 * @gfp: allocation flags for the tracker 892 * 893 * Find an interface by name. This can be called from any 894 * context and does its own locking. The returned handle has 895 * the usage count incremented and the caller must use netdev_put() to 896 * release it when it is no longer needed. %NULL is returned if no 897 * matching device is found. 898 */ 899 struct net_device *netdev_get_by_name(struct net *net, const char *name, 900 netdevice_tracker *tracker, gfp_t gfp) 901 { 902 struct net_device *dev; 903 904 dev = dev_get_by_name(net, name); 905 if (dev) 906 netdev_tracker_alloc(dev, tracker, gfp); 907 return dev; 908 } 909 EXPORT_SYMBOL(netdev_get_by_name); 910 911 /** 912 * __dev_get_by_index - find a device by its ifindex 913 * @net: the applicable net namespace 914 * @ifindex: index of device 915 * 916 * Search for an interface by index. Returns %NULL if the device 917 * is not found or a pointer to the device. The device has not 918 * had its reference counter increased so the caller must be careful 919 * about locking. The caller must hold the RTNL semaphore. 920 */ 921 922 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 923 { 924 struct net_device *dev; 925 struct hlist_head *head = dev_index_hash(net, ifindex); 926 927 hlist_for_each_entry(dev, head, index_hlist) 928 if (dev->ifindex == ifindex) 929 return dev; 930 931 return NULL; 932 } 933 EXPORT_SYMBOL(__dev_get_by_index); 934 935 /** 936 * dev_get_by_index_rcu - find a device by its ifindex 937 * @net: the applicable net namespace 938 * @ifindex: index of device 939 * 940 * Search for an interface by index. Returns %NULL if the device 941 * is not found or a pointer to the device. The device has not 942 * had its reference counter increased so the caller must be careful 943 * about locking. The caller must hold RCU lock. 944 */ 945 946 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 947 { 948 struct net_device *dev; 949 struct hlist_head *head = dev_index_hash(net, ifindex); 950 951 hlist_for_each_entry_rcu(dev, head, index_hlist) 952 if (dev->ifindex == ifindex) 953 return dev; 954 955 return NULL; 956 } 957 EXPORT_SYMBOL(dev_get_by_index_rcu); 958 959 /* Deprecated for new users, call netdev_get_by_index() instead */ 960 struct net_device *dev_get_by_index(struct net *net, int ifindex) 961 { 962 struct net_device *dev; 963 964 rcu_read_lock(); 965 dev = dev_get_by_index_rcu(net, ifindex); 966 dev_hold(dev); 967 rcu_read_unlock(); 968 return dev; 969 } 970 EXPORT_SYMBOL(dev_get_by_index); 971 972 /** 973 * netdev_get_by_index() - find a device by its ifindex 974 * @net: the applicable net namespace 975 * @ifindex: index of device 976 * @tracker: tracking object for the acquired reference 977 * @gfp: allocation flags for the tracker 978 * 979 * Search for an interface by index. Returns NULL if the device 980 * is not found or a pointer to the device. The device returned has 981 * had a reference added and the pointer is safe until the user calls 982 * netdev_put() to indicate they have finished with it. 983 */ 984 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 985 netdevice_tracker *tracker, gfp_t gfp) 986 { 987 struct net_device *dev; 988 989 dev = dev_get_by_index(net, ifindex); 990 if (dev) 991 netdev_tracker_alloc(dev, tracker, gfp); 992 return dev; 993 } 994 EXPORT_SYMBOL(netdev_get_by_index); 995 996 /** 997 * dev_get_by_napi_id - find a device by napi_id 998 * @napi_id: ID of the NAPI struct 999 * 1000 * Search for an interface by NAPI ID. Returns %NULL if the device 1001 * is not found or a pointer to the device. The device has not had 1002 * its reference counter increased so the caller must be careful 1003 * about locking. The caller must hold RCU lock. 1004 */ 1005 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1006 { 1007 struct napi_struct *napi; 1008 1009 WARN_ON_ONCE(!rcu_read_lock_held()); 1010 1011 if (!napi_id_valid(napi_id)) 1012 return NULL; 1013 1014 napi = napi_by_id(napi_id); 1015 1016 return napi ? napi->dev : NULL; 1017 } 1018 1019 /* Release the held reference on the net_device, and if the net_device 1020 * is still registered try to lock the instance lock. If device is being 1021 * unregistered NULL will be returned (but the reference has been released, 1022 * either way!) 1023 * 1024 * This helper is intended for locking net_device after it has been looked up 1025 * using a lockless lookup helper. Lock prevents the instance from going away. 1026 */ 1027 struct net_device *__netdev_put_lock(struct net_device *dev) 1028 { 1029 netdev_lock(dev); 1030 if (dev->reg_state > NETREG_REGISTERED) { 1031 netdev_unlock(dev); 1032 dev_put(dev); 1033 return NULL; 1034 } 1035 dev_put(dev); 1036 return dev; 1037 } 1038 1039 /** 1040 * netdev_get_by_index_lock() - find a device by its ifindex 1041 * @net: the applicable net namespace 1042 * @ifindex: index of device 1043 * 1044 * Search for an interface by index. If a valid device 1045 * with @ifindex is found it will be returned with netdev->lock held. 1046 * netdev_unlock() must be called to release it. 1047 * 1048 * Return: pointer to a device with lock held, NULL if not found. 1049 */ 1050 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1051 { 1052 struct net_device *dev; 1053 1054 dev = dev_get_by_index(net, ifindex); 1055 if (!dev) 1056 return NULL; 1057 1058 return __netdev_put_lock(dev); 1059 } 1060 1061 /** 1062 * netdev_get_by_name_lock() - find a device by its name 1063 * @net: the applicable net namespace 1064 * @name: name of device 1065 * 1066 * Search for an interface by name. If a valid device 1067 * with @name is found it will be returned with netdev->lock held. 1068 * netdev_unlock() must be called to release it. 1069 * 1070 * Return: pointer to a device with lock held, NULL if not found. 1071 */ 1072 struct net_device *netdev_get_by_name_lock(struct net *net, const char *name) 1073 { 1074 struct net_device *dev; 1075 1076 dev = dev_get_by_name(net, name); 1077 if (!dev) 1078 return NULL; 1079 1080 return __netdev_put_lock(dev); 1081 } 1082 1083 struct net_device * 1084 netdev_xa_find_lock(struct net *net, struct net_device *dev, 1085 unsigned long *index) 1086 { 1087 if (dev) 1088 netdev_unlock(dev); 1089 1090 do { 1091 rcu_read_lock(); 1092 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1093 if (!dev) { 1094 rcu_read_unlock(); 1095 return NULL; 1096 } 1097 dev_hold(dev); 1098 rcu_read_unlock(); 1099 1100 dev = __netdev_put_lock(dev); 1101 if (dev) 1102 return dev; 1103 1104 (*index)++; 1105 } while (true); 1106 } 1107 1108 static DEFINE_SEQLOCK(netdev_rename_lock); 1109 1110 void netdev_copy_name(struct net_device *dev, char *name) 1111 { 1112 unsigned int seq; 1113 1114 do { 1115 seq = read_seqbegin(&netdev_rename_lock); 1116 strscpy(name, dev->name, IFNAMSIZ); 1117 } while (read_seqretry(&netdev_rename_lock, seq)); 1118 } 1119 1120 /** 1121 * netdev_get_name - get a netdevice name, knowing its ifindex. 1122 * @net: network namespace 1123 * @name: a pointer to the buffer where the name will be stored. 1124 * @ifindex: the ifindex of the interface to get the name from. 1125 */ 1126 int netdev_get_name(struct net *net, char *name, int ifindex) 1127 { 1128 struct net_device *dev; 1129 int ret; 1130 1131 rcu_read_lock(); 1132 1133 dev = dev_get_by_index_rcu(net, ifindex); 1134 if (!dev) { 1135 ret = -ENODEV; 1136 goto out; 1137 } 1138 1139 netdev_copy_name(dev, name); 1140 1141 ret = 0; 1142 out: 1143 rcu_read_unlock(); 1144 return ret; 1145 } 1146 1147 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1148 const char *ha) 1149 { 1150 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1151 } 1152 1153 /** 1154 * dev_getbyhwaddr_rcu - find a device by its hardware address 1155 * @net: the applicable net namespace 1156 * @type: media type of device 1157 * @ha: hardware address 1158 * 1159 * Search for an interface by MAC address. Returns NULL if the device 1160 * is not found or a pointer to the device. 1161 * The caller must hold RCU. 1162 * The returned device has not had its ref count increased 1163 * and the caller must therefore be careful about locking 1164 * 1165 */ 1166 1167 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1168 const char *ha) 1169 { 1170 struct net_device *dev; 1171 1172 for_each_netdev_rcu(net, dev) 1173 if (dev_addr_cmp(dev, type, ha)) 1174 return dev; 1175 1176 return NULL; 1177 } 1178 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1179 1180 /** 1181 * dev_getbyhwaddr() - find a device by its hardware address 1182 * @net: the applicable net namespace 1183 * @type: media type of device 1184 * @ha: hardware address 1185 * 1186 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1187 * rtnl_lock. 1188 * 1189 * Context: rtnl_lock() must be held. 1190 * Return: pointer to the net_device, or NULL if not found 1191 */ 1192 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1193 const char *ha) 1194 { 1195 struct net_device *dev; 1196 1197 ASSERT_RTNL(); 1198 for_each_netdev(net, dev) 1199 if (dev_addr_cmp(dev, type, ha)) 1200 return dev; 1201 1202 return NULL; 1203 } 1204 EXPORT_SYMBOL(dev_getbyhwaddr); 1205 1206 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1207 { 1208 struct net_device *dev, *ret = NULL; 1209 1210 rcu_read_lock(); 1211 for_each_netdev_rcu(net, dev) 1212 if (dev->type == type) { 1213 dev_hold(dev); 1214 ret = dev; 1215 break; 1216 } 1217 rcu_read_unlock(); 1218 return ret; 1219 } 1220 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1221 1222 /** 1223 * __dev_get_by_flags - find any device with given flags 1224 * @net: the applicable net namespace 1225 * @if_flags: IFF_* values 1226 * @mask: bitmask of bits in if_flags to check 1227 * 1228 * Search for any interface with the given flags. Returns NULL if a device 1229 * is not found or a pointer to the device. Must be called inside 1230 * rtnl_lock(), and result refcount is unchanged. 1231 */ 1232 1233 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1234 unsigned short mask) 1235 { 1236 struct net_device *dev, *ret; 1237 1238 ASSERT_RTNL(); 1239 1240 ret = NULL; 1241 for_each_netdev(net, dev) { 1242 if (((dev->flags ^ if_flags) & mask) == 0) { 1243 ret = dev; 1244 break; 1245 } 1246 } 1247 return ret; 1248 } 1249 EXPORT_SYMBOL(__dev_get_by_flags); 1250 1251 /** 1252 * dev_valid_name - check if name is okay for network device 1253 * @name: name string 1254 * 1255 * Network device names need to be valid file names to 1256 * allow sysfs to work. We also disallow any kind of 1257 * whitespace. 1258 */ 1259 bool dev_valid_name(const char *name) 1260 { 1261 if (*name == '\0') 1262 return false; 1263 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1264 return false; 1265 if (!strcmp(name, ".") || !strcmp(name, "..")) 1266 return false; 1267 1268 while (*name) { 1269 if (*name == '/' || *name == ':' || isspace(*name)) 1270 return false; 1271 name++; 1272 } 1273 return true; 1274 } 1275 EXPORT_SYMBOL(dev_valid_name); 1276 1277 /** 1278 * __dev_alloc_name - allocate a name for a device 1279 * @net: network namespace to allocate the device name in 1280 * @name: name format string 1281 * @res: result name string 1282 * 1283 * Passed a format string - eg "lt%d" it will try and find a suitable 1284 * id. It scans list of devices to build up a free map, then chooses 1285 * the first empty slot. The caller must hold the dev_base or rtnl lock 1286 * while allocating the name and adding the device in order to avoid 1287 * duplicates. 1288 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1289 * Returns the number of the unit assigned or a negative errno code. 1290 */ 1291 1292 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1293 { 1294 int i = 0; 1295 const char *p; 1296 const int max_netdevices = 8*PAGE_SIZE; 1297 unsigned long *inuse; 1298 struct net_device *d; 1299 char buf[IFNAMSIZ]; 1300 1301 /* Verify the string as this thing may have come from the user. 1302 * There must be one "%d" and no other "%" characters. 1303 */ 1304 p = strchr(name, '%'); 1305 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1306 return -EINVAL; 1307 1308 /* Use one page as a bit array of possible slots */ 1309 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1310 if (!inuse) 1311 return -ENOMEM; 1312 1313 for_each_netdev(net, d) { 1314 struct netdev_name_node *name_node; 1315 1316 netdev_for_each_altname(d, name_node) { 1317 if (!sscanf(name_node->name, name, &i)) 1318 continue; 1319 if (i < 0 || i >= max_netdevices) 1320 continue; 1321 1322 /* avoid cases where sscanf is not exact inverse of printf */ 1323 snprintf(buf, IFNAMSIZ, name, i); 1324 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1325 __set_bit(i, inuse); 1326 } 1327 if (!sscanf(d->name, name, &i)) 1328 continue; 1329 if (i < 0 || i >= max_netdevices) 1330 continue; 1331 1332 /* avoid cases where sscanf is not exact inverse of printf */ 1333 snprintf(buf, IFNAMSIZ, name, i); 1334 if (!strncmp(buf, d->name, IFNAMSIZ)) 1335 __set_bit(i, inuse); 1336 } 1337 1338 i = find_first_zero_bit(inuse, max_netdevices); 1339 bitmap_free(inuse); 1340 if (i == max_netdevices) 1341 return -ENFILE; 1342 1343 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1344 strscpy(buf, name, IFNAMSIZ); 1345 snprintf(res, IFNAMSIZ, buf, i); 1346 return i; 1347 } 1348 1349 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1350 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1351 const char *want_name, char *out_name, 1352 int dup_errno) 1353 { 1354 if (!dev_valid_name(want_name)) 1355 return -EINVAL; 1356 1357 if (strchr(want_name, '%')) 1358 return __dev_alloc_name(net, want_name, out_name); 1359 1360 if (netdev_name_in_use(net, want_name)) 1361 return -dup_errno; 1362 if (out_name != want_name) 1363 strscpy(out_name, want_name, IFNAMSIZ); 1364 return 0; 1365 } 1366 1367 /** 1368 * dev_alloc_name - allocate a name for a device 1369 * @dev: device 1370 * @name: name format string 1371 * 1372 * Passed a format string - eg "lt%d" it will try and find a suitable 1373 * id. It scans list of devices to build up a free map, then chooses 1374 * the first empty slot. The caller must hold the dev_base or rtnl lock 1375 * while allocating the name and adding the device in order to avoid 1376 * duplicates. 1377 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1378 * Returns the number of the unit assigned or a negative errno code. 1379 */ 1380 1381 int dev_alloc_name(struct net_device *dev, const char *name) 1382 { 1383 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1384 } 1385 EXPORT_SYMBOL(dev_alloc_name); 1386 1387 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1388 const char *name) 1389 { 1390 int ret; 1391 1392 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1393 return ret < 0 ? ret : 0; 1394 } 1395 1396 int netif_change_name(struct net_device *dev, const char *newname) 1397 { 1398 struct net *net = dev_net(dev); 1399 unsigned char old_assign_type; 1400 char oldname[IFNAMSIZ]; 1401 int err = 0; 1402 int ret; 1403 1404 ASSERT_RTNL_NET(net); 1405 1406 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1407 return 0; 1408 1409 memcpy(oldname, dev->name, IFNAMSIZ); 1410 1411 write_seqlock_bh(&netdev_rename_lock); 1412 err = dev_get_valid_name(net, dev, newname); 1413 write_sequnlock_bh(&netdev_rename_lock); 1414 1415 if (err < 0) 1416 return err; 1417 1418 if (oldname[0] && !strchr(oldname, '%')) 1419 netdev_info(dev, "renamed from %s%s\n", oldname, 1420 dev->flags & IFF_UP ? " (while UP)" : ""); 1421 1422 old_assign_type = dev->name_assign_type; 1423 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1424 1425 rollback: 1426 ret = device_rename(&dev->dev, dev->name); 1427 if (ret) { 1428 write_seqlock_bh(&netdev_rename_lock); 1429 memcpy(dev->name, oldname, IFNAMSIZ); 1430 write_sequnlock_bh(&netdev_rename_lock); 1431 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1432 return ret; 1433 } 1434 1435 netdev_adjacent_rename_links(dev, oldname); 1436 1437 netdev_name_node_del(dev->name_node); 1438 1439 synchronize_net(); 1440 1441 netdev_name_node_add(net, dev->name_node); 1442 1443 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1444 ret = notifier_to_errno(ret); 1445 1446 if (ret) { 1447 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1448 if (err >= 0) { 1449 err = ret; 1450 write_seqlock_bh(&netdev_rename_lock); 1451 memcpy(dev->name, oldname, IFNAMSIZ); 1452 write_sequnlock_bh(&netdev_rename_lock); 1453 memcpy(oldname, newname, IFNAMSIZ); 1454 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1455 old_assign_type = NET_NAME_RENAMED; 1456 goto rollback; 1457 } else { 1458 netdev_err(dev, "name change rollback failed: %d\n", 1459 ret); 1460 } 1461 } 1462 1463 return err; 1464 } 1465 1466 int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1467 { 1468 struct dev_ifalias *new_alias = NULL; 1469 1470 if (len >= IFALIASZ) 1471 return -EINVAL; 1472 1473 if (len) { 1474 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1475 if (!new_alias) 1476 return -ENOMEM; 1477 1478 memcpy(new_alias->ifalias, alias, len); 1479 new_alias->ifalias[len] = 0; 1480 } 1481 1482 mutex_lock(&ifalias_mutex); 1483 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1484 mutex_is_locked(&ifalias_mutex)); 1485 mutex_unlock(&ifalias_mutex); 1486 1487 if (new_alias) 1488 kfree_rcu(new_alias, rcuhead); 1489 1490 return len; 1491 } 1492 1493 /** 1494 * dev_get_alias - get ifalias of a device 1495 * @dev: device 1496 * @name: buffer to store name of ifalias 1497 * @len: size of buffer 1498 * 1499 * get ifalias for a device. Caller must make sure dev cannot go 1500 * away, e.g. rcu read lock or own a reference count to device. 1501 */ 1502 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1503 { 1504 const struct dev_ifalias *alias; 1505 int ret = 0; 1506 1507 rcu_read_lock(); 1508 alias = rcu_dereference(dev->ifalias); 1509 if (alias) 1510 ret = snprintf(name, len, "%s", alias->ifalias); 1511 rcu_read_unlock(); 1512 1513 return ret; 1514 } 1515 1516 /** 1517 * netdev_features_change - device changes features 1518 * @dev: device to cause notification 1519 * 1520 * Called to indicate a device has changed features. 1521 */ 1522 void netdev_features_change(struct net_device *dev) 1523 { 1524 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1525 } 1526 EXPORT_SYMBOL(netdev_features_change); 1527 1528 /** 1529 * netdev_state_change - device changes state 1530 * @dev: device to cause notification 1531 * 1532 * Called to indicate a device has changed state. This function calls 1533 * the notifier chains for netdev_chain and sends a NEWLINK message 1534 * to the routing socket. 1535 */ 1536 void netdev_state_change(struct net_device *dev) 1537 { 1538 if (dev->flags & IFF_UP) { 1539 struct netdev_notifier_change_info change_info = { 1540 .info.dev = dev, 1541 }; 1542 1543 call_netdevice_notifiers_info(NETDEV_CHANGE, 1544 &change_info.info); 1545 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1546 } 1547 } 1548 EXPORT_SYMBOL(netdev_state_change); 1549 1550 /** 1551 * __netdev_notify_peers - notify network peers about existence of @dev, 1552 * to be called when rtnl lock is already held. 1553 * @dev: network device 1554 * 1555 * Generate traffic such that interested network peers are aware of 1556 * @dev, such as by generating a gratuitous ARP. This may be used when 1557 * a device wants to inform the rest of the network about some sort of 1558 * reconfiguration such as a failover event or virtual machine 1559 * migration. 1560 */ 1561 void __netdev_notify_peers(struct net_device *dev) 1562 { 1563 ASSERT_RTNL(); 1564 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1565 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1566 } 1567 EXPORT_SYMBOL(__netdev_notify_peers); 1568 1569 /** 1570 * netdev_notify_peers - notify network peers about existence of @dev 1571 * @dev: network device 1572 * 1573 * Generate traffic such that interested network peers are aware of 1574 * @dev, such as by generating a gratuitous ARP. This may be used when 1575 * a device wants to inform the rest of the network about some sort of 1576 * reconfiguration such as a failover event or virtual machine 1577 * migration. 1578 */ 1579 void netdev_notify_peers(struct net_device *dev) 1580 { 1581 rtnl_lock(); 1582 __netdev_notify_peers(dev); 1583 rtnl_unlock(); 1584 } 1585 EXPORT_SYMBOL(netdev_notify_peers); 1586 1587 static int napi_threaded_poll(void *data); 1588 1589 static int napi_kthread_create(struct napi_struct *n) 1590 { 1591 int err = 0; 1592 1593 /* Create and wake up the kthread once to put it in 1594 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1595 * warning and work with loadavg. 1596 */ 1597 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1598 n->dev->name, n->napi_id); 1599 if (IS_ERR(n->thread)) { 1600 err = PTR_ERR(n->thread); 1601 pr_err("kthread_run failed with err %d\n", err); 1602 n->thread = NULL; 1603 } 1604 1605 return err; 1606 } 1607 1608 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1609 { 1610 const struct net_device_ops *ops = dev->netdev_ops; 1611 int ret; 1612 1613 ASSERT_RTNL(); 1614 dev_addr_check(dev); 1615 1616 if (!netif_device_present(dev)) { 1617 /* may be detached because parent is runtime-suspended */ 1618 if (dev->dev.parent) 1619 pm_runtime_resume(dev->dev.parent); 1620 if (!netif_device_present(dev)) 1621 return -ENODEV; 1622 } 1623 1624 /* Block netpoll from trying to do any rx path servicing. 1625 * If we don't do this there is a chance ndo_poll_controller 1626 * or ndo_poll may be running while we open the device 1627 */ 1628 netpoll_poll_disable(dev); 1629 1630 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1631 ret = notifier_to_errno(ret); 1632 if (ret) 1633 return ret; 1634 1635 set_bit(__LINK_STATE_START, &dev->state); 1636 1637 netdev_ops_assert_locked(dev); 1638 1639 if (ops->ndo_validate_addr) 1640 ret = ops->ndo_validate_addr(dev); 1641 1642 if (!ret && ops->ndo_open) 1643 ret = ops->ndo_open(dev); 1644 1645 netpoll_poll_enable(dev); 1646 1647 if (ret) 1648 clear_bit(__LINK_STATE_START, &dev->state); 1649 else { 1650 netif_set_up(dev, true); 1651 dev_set_rx_mode(dev); 1652 dev_activate(dev); 1653 add_device_randomness(dev->dev_addr, dev->addr_len); 1654 } 1655 1656 return ret; 1657 } 1658 1659 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1660 { 1661 int ret; 1662 1663 if (dev->flags & IFF_UP) 1664 return 0; 1665 1666 ret = __dev_open(dev, extack); 1667 if (ret < 0) 1668 return ret; 1669 1670 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1671 call_netdevice_notifiers(NETDEV_UP, dev); 1672 1673 return ret; 1674 } 1675 1676 static void __dev_close_many(struct list_head *head) 1677 { 1678 struct net_device *dev; 1679 1680 ASSERT_RTNL(); 1681 might_sleep(); 1682 1683 list_for_each_entry(dev, head, close_list) { 1684 /* Temporarily disable netpoll until the interface is down */ 1685 netpoll_poll_disable(dev); 1686 1687 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1688 1689 clear_bit(__LINK_STATE_START, &dev->state); 1690 1691 /* Synchronize to scheduled poll. We cannot touch poll list, it 1692 * can be even on different cpu. So just clear netif_running(). 1693 * 1694 * dev->stop() will invoke napi_disable() on all of it's 1695 * napi_struct instances on this device. 1696 */ 1697 smp_mb__after_atomic(); /* Commit netif_running(). */ 1698 } 1699 1700 dev_deactivate_many(head); 1701 1702 list_for_each_entry(dev, head, close_list) { 1703 const struct net_device_ops *ops = dev->netdev_ops; 1704 1705 /* 1706 * Call the device specific close. This cannot fail. 1707 * Only if device is UP 1708 * 1709 * We allow it to be called even after a DETACH hot-plug 1710 * event. 1711 */ 1712 1713 netdev_ops_assert_locked(dev); 1714 1715 if (ops->ndo_stop) 1716 ops->ndo_stop(dev); 1717 1718 netif_set_up(dev, false); 1719 netpoll_poll_enable(dev); 1720 } 1721 } 1722 1723 static void __dev_close(struct net_device *dev) 1724 { 1725 LIST_HEAD(single); 1726 1727 list_add(&dev->close_list, &single); 1728 __dev_close_many(&single); 1729 list_del(&single); 1730 } 1731 1732 void dev_close_many(struct list_head *head, bool unlink) 1733 { 1734 struct net_device *dev, *tmp; 1735 1736 /* Remove the devices that don't need to be closed */ 1737 list_for_each_entry_safe(dev, tmp, head, close_list) 1738 if (!(dev->flags & IFF_UP)) 1739 list_del_init(&dev->close_list); 1740 1741 __dev_close_many(head); 1742 1743 list_for_each_entry_safe(dev, tmp, head, close_list) { 1744 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1745 call_netdevice_notifiers(NETDEV_DOWN, dev); 1746 if (unlink) 1747 list_del_init(&dev->close_list); 1748 } 1749 } 1750 EXPORT_SYMBOL(dev_close_many); 1751 1752 void netif_close(struct net_device *dev) 1753 { 1754 if (dev->flags & IFF_UP) { 1755 LIST_HEAD(single); 1756 1757 list_add(&dev->close_list, &single); 1758 dev_close_many(&single, true); 1759 list_del(&single); 1760 } 1761 } 1762 1763 int dev_setup_tc(struct net_device *dev, enum tc_setup_type type, 1764 void *type_data) 1765 { 1766 const struct net_device_ops *ops = dev->netdev_ops; 1767 int ret; 1768 1769 ASSERT_RTNL(); 1770 1771 if (!ops->ndo_setup_tc) 1772 return -EOPNOTSUPP; 1773 1774 netdev_lock_ops(dev); 1775 ret = ops->ndo_setup_tc(dev, type, type_data); 1776 netdev_unlock_ops(dev); 1777 1778 return ret; 1779 } 1780 EXPORT_SYMBOL(dev_setup_tc); 1781 1782 void netif_disable_lro(struct net_device *dev) 1783 { 1784 struct net_device *lower_dev; 1785 struct list_head *iter; 1786 1787 dev->wanted_features &= ~NETIF_F_LRO; 1788 netdev_update_features(dev); 1789 1790 if (unlikely(dev->features & NETIF_F_LRO)) 1791 netdev_WARN(dev, "failed to disable LRO!\n"); 1792 1793 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1794 netdev_lock_ops(lower_dev); 1795 netif_disable_lro(lower_dev); 1796 netdev_unlock_ops(lower_dev); 1797 } 1798 } 1799 1800 /** 1801 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1802 * @dev: device 1803 * 1804 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1805 * called under RTNL. This is needed if Generic XDP is installed on 1806 * the device. 1807 */ 1808 static void dev_disable_gro_hw(struct net_device *dev) 1809 { 1810 dev->wanted_features &= ~NETIF_F_GRO_HW; 1811 netdev_update_features(dev); 1812 1813 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1814 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1815 } 1816 1817 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1818 { 1819 #define N(val) \ 1820 case NETDEV_##val: \ 1821 return "NETDEV_" __stringify(val); 1822 switch (cmd) { 1823 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1824 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1825 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1826 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1827 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1828 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1829 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1830 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1831 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1832 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1833 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1834 N(XDP_FEAT_CHANGE) 1835 } 1836 #undef N 1837 return "UNKNOWN_NETDEV_EVENT"; 1838 } 1839 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1840 1841 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1842 struct net_device *dev) 1843 { 1844 struct netdev_notifier_info info = { 1845 .dev = dev, 1846 }; 1847 1848 return nb->notifier_call(nb, val, &info); 1849 } 1850 1851 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1852 struct net_device *dev) 1853 { 1854 int err; 1855 1856 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1857 err = notifier_to_errno(err); 1858 if (err) 1859 return err; 1860 1861 if (!(dev->flags & IFF_UP)) 1862 return 0; 1863 1864 call_netdevice_notifier(nb, NETDEV_UP, dev); 1865 return 0; 1866 } 1867 1868 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1869 struct net_device *dev) 1870 { 1871 if (dev->flags & IFF_UP) { 1872 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1873 dev); 1874 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1875 } 1876 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1877 } 1878 1879 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1880 struct net *net) 1881 { 1882 struct net_device *dev; 1883 int err; 1884 1885 for_each_netdev(net, dev) { 1886 err = call_netdevice_register_notifiers(nb, dev); 1887 if (err) 1888 goto rollback; 1889 } 1890 return 0; 1891 1892 rollback: 1893 for_each_netdev_continue_reverse(net, dev) 1894 call_netdevice_unregister_notifiers(nb, dev); 1895 return err; 1896 } 1897 1898 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1899 struct net *net) 1900 { 1901 struct net_device *dev; 1902 1903 for_each_netdev(net, dev) 1904 call_netdevice_unregister_notifiers(nb, dev); 1905 } 1906 1907 static int dev_boot_phase = 1; 1908 1909 /** 1910 * register_netdevice_notifier - register a network notifier block 1911 * @nb: notifier 1912 * 1913 * Register a notifier to be called when network device events occur. 1914 * The notifier passed is linked into the kernel structures and must 1915 * not be reused until it has been unregistered. A negative errno code 1916 * is returned on a failure. 1917 * 1918 * When registered all registration and up events are replayed 1919 * to the new notifier to allow device to have a race free 1920 * view of the network device list. 1921 */ 1922 1923 int register_netdevice_notifier(struct notifier_block *nb) 1924 { 1925 struct net *net; 1926 int err; 1927 1928 /* Close race with setup_net() and cleanup_net() */ 1929 down_write(&pernet_ops_rwsem); 1930 1931 /* When RTNL is removed, we need protection for netdev_chain. */ 1932 rtnl_lock(); 1933 1934 err = raw_notifier_chain_register(&netdev_chain, nb); 1935 if (err) 1936 goto unlock; 1937 if (dev_boot_phase) 1938 goto unlock; 1939 for_each_net(net) { 1940 __rtnl_net_lock(net); 1941 err = call_netdevice_register_net_notifiers(nb, net); 1942 __rtnl_net_unlock(net); 1943 if (err) 1944 goto rollback; 1945 } 1946 1947 unlock: 1948 rtnl_unlock(); 1949 up_write(&pernet_ops_rwsem); 1950 return err; 1951 1952 rollback: 1953 for_each_net_continue_reverse(net) { 1954 __rtnl_net_lock(net); 1955 call_netdevice_unregister_net_notifiers(nb, net); 1956 __rtnl_net_unlock(net); 1957 } 1958 1959 raw_notifier_chain_unregister(&netdev_chain, nb); 1960 goto unlock; 1961 } 1962 EXPORT_SYMBOL(register_netdevice_notifier); 1963 1964 /** 1965 * unregister_netdevice_notifier - unregister a network notifier block 1966 * @nb: notifier 1967 * 1968 * Unregister a notifier previously registered by 1969 * register_netdevice_notifier(). The notifier is unlinked into the 1970 * kernel structures and may then be reused. A negative errno code 1971 * is returned on a failure. 1972 * 1973 * After unregistering unregister and down device events are synthesized 1974 * for all devices on the device list to the removed notifier to remove 1975 * the need for special case cleanup code. 1976 */ 1977 1978 int unregister_netdevice_notifier(struct notifier_block *nb) 1979 { 1980 struct net *net; 1981 int err; 1982 1983 /* Close race with setup_net() and cleanup_net() */ 1984 down_write(&pernet_ops_rwsem); 1985 rtnl_lock(); 1986 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1987 if (err) 1988 goto unlock; 1989 1990 for_each_net(net) { 1991 __rtnl_net_lock(net); 1992 call_netdevice_unregister_net_notifiers(nb, net); 1993 __rtnl_net_unlock(net); 1994 } 1995 1996 unlock: 1997 rtnl_unlock(); 1998 up_write(&pernet_ops_rwsem); 1999 return err; 2000 } 2001 EXPORT_SYMBOL(unregister_netdevice_notifier); 2002 2003 static int __register_netdevice_notifier_net(struct net *net, 2004 struct notifier_block *nb, 2005 bool ignore_call_fail) 2006 { 2007 int err; 2008 2009 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2010 if (err) 2011 return err; 2012 if (dev_boot_phase) 2013 return 0; 2014 2015 err = call_netdevice_register_net_notifiers(nb, net); 2016 if (err && !ignore_call_fail) 2017 goto chain_unregister; 2018 2019 return 0; 2020 2021 chain_unregister: 2022 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2023 return err; 2024 } 2025 2026 static int __unregister_netdevice_notifier_net(struct net *net, 2027 struct notifier_block *nb) 2028 { 2029 int err; 2030 2031 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2032 if (err) 2033 return err; 2034 2035 call_netdevice_unregister_net_notifiers(nb, net); 2036 return 0; 2037 } 2038 2039 /** 2040 * register_netdevice_notifier_net - register a per-netns network notifier block 2041 * @net: network namespace 2042 * @nb: notifier 2043 * 2044 * Register a notifier to be called when network device events occur. 2045 * The notifier passed is linked into the kernel structures and must 2046 * not be reused until it has been unregistered. A negative errno code 2047 * is returned on a failure. 2048 * 2049 * When registered all registration and up events are replayed 2050 * to the new notifier to allow device to have a race free 2051 * view of the network device list. 2052 */ 2053 2054 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2055 { 2056 int err; 2057 2058 rtnl_net_lock(net); 2059 err = __register_netdevice_notifier_net(net, nb, false); 2060 rtnl_net_unlock(net); 2061 2062 return err; 2063 } 2064 EXPORT_SYMBOL(register_netdevice_notifier_net); 2065 2066 /** 2067 * unregister_netdevice_notifier_net - unregister a per-netns 2068 * network notifier block 2069 * @net: network namespace 2070 * @nb: notifier 2071 * 2072 * Unregister a notifier previously registered by 2073 * register_netdevice_notifier_net(). The notifier is unlinked from the 2074 * kernel structures and may then be reused. A negative errno code 2075 * is returned on a failure. 2076 * 2077 * After unregistering unregister and down device events are synthesized 2078 * for all devices on the device list to the removed notifier to remove 2079 * the need for special case cleanup code. 2080 */ 2081 2082 int unregister_netdevice_notifier_net(struct net *net, 2083 struct notifier_block *nb) 2084 { 2085 int err; 2086 2087 rtnl_net_lock(net); 2088 err = __unregister_netdevice_notifier_net(net, nb); 2089 rtnl_net_unlock(net); 2090 2091 return err; 2092 } 2093 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2094 2095 static void __move_netdevice_notifier_net(struct net *src_net, 2096 struct net *dst_net, 2097 struct notifier_block *nb) 2098 { 2099 __unregister_netdevice_notifier_net(src_net, nb); 2100 __register_netdevice_notifier_net(dst_net, nb, true); 2101 } 2102 2103 static void rtnl_net_dev_lock(struct net_device *dev) 2104 { 2105 bool again; 2106 2107 do { 2108 struct net *net; 2109 2110 again = false; 2111 2112 /* netns might be being dismantled. */ 2113 rcu_read_lock(); 2114 net = dev_net_rcu(dev); 2115 net_passive_inc(net); 2116 rcu_read_unlock(); 2117 2118 rtnl_net_lock(net); 2119 2120 #ifdef CONFIG_NET_NS 2121 /* dev might have been moved to another netns. */ 2122 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2123 rtnl_net_unlock(net); 2124 net_passive_dec(net); 2125 again = true; 2126 } 2127 #endif 2128 } while (again); 2129 } 2130 2131 static void rtnl_net_dev_unlock(struct net_device *dev) 2132 { 2133 struct net *net = dev_net(dev); 2134 2135 rtnl_net_unlock(net); 2136 net_passive_dec(net); 2137 } 2138 2139 int register_netdevice_notifier_dev_net(struct net_device *dev, 2140 struct notifier_block *nb, 2141 struct netdev_net_notifier *nn) 2142 { 2143 int err; 2144 2145 rtnl_net_dev_lock(dev); 2146 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2147 if (!err) { 2148 nn->nb = nb; 2149 list_add(&nn->list, &dev->net_notifier_list); 2150 } 2151 rtnl_net_dev_unlock(dev); 2152 2153 return err; 2154 } 2155 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2156 2157 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2158 struct notifier_block *nb, 2159 struct netdev_net_notifier *nn) 2160 { 2161 int err; 2162 2163 rtnl_net_dev_lock(dev); 2164 list_del(&nn->list); 2165 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2166 rtnl_net_dev_unlock(dev); 2167 2168 return err; 2169 } 2170 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2171 2172 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2173 struct net *net) 2174 { 2175 struct netdev_net_notifier *nn; 2176 2177 list_for_each_entry(nn, &dev->net_notifier_list, list) 2178 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2179 } 2180 2181 /** 2182 * call_netdevice_notifiers_info - call all network notifier blocks 2183 * @val: value passed unmodified to notifier function 2184 * @info: notifier information data 2185 * 2186 * Call all network notifier blocks. Parameters and return value 2187 * are as for raw_notifier_call_chain(). 2188 */ 2189 2190 int call_netdevice_notifiers_info(unsigned long val, 2191 struct netdev_notifier_info *info) 2192 { 2193 struct net *net = dev_net(info->dev); 2194 int ret; 2195 2196 ASSERT_RTNL(); 2197 2198 /* Run per-netns notifier block chain first, then run the global one. 2199 * Hopefully, one day, the global one is going to be removed after 2200 * all notifier block registrators get converted to be per-netns. 2201 */ 2202 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2203 if (ret & NOTIFY_STOP_MASK) 2204 return ret; 2205 return raw_notifier_call_chain(&netdev_chain, val, info); 2206 } 2207 2208 /** 2209 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2210 * for and rollback on error 2211 * @val_up: value passed unmodified to notifier function 2212 * @val_down: value passed unmodified to the notifier function when 2213 * recovering from an error on @val_up 2214 * @info: notifier information data 2215 * 2216 * Call all per-netns network notifier blocks, but not notifier blocks on 2217 * the global notifier chain. Parameters and return value are as for 2218 * raw_notifier_call_chain_robust(). 2219 */ 2220 2221 static int 2222 call_netdevice_notifiers_info_robust(unsigned long val_up, 2223 unsigned long val_down, 2224 struct netdev_notifier_info *info) 2225 { 2226 struct net *net = dev_net(info->dev); 2227 2228 ASSERT_RTNL(); 2229 2230 return raw_notifier_call_chain_robust(&net->netdev_chain, 2231 val_up, val_down, info); 2232 } 2233 2234 static int call_netdevice_notifiers_extack(unsigned long val, 2235 struct net_device *dev, 2236 struct netlink_ext_ack *extack) 2237 { 2238 struct netdev_notifier_info info = { 2239 .dev = dev, 2240 .extack = extack, 2241 }; 2242 2243 return call_netdevice_notifiers_info(val, &info); 2244 } 2245 2246 /** 2247 * call_netdevice_notifiers - call all network notifier blocks 2248 * @val: value passed unmodified to notifier function 2249 * @dev: net_device pointer passed unmodified to notifier function 2250 * 2251 * Call all network notifier blocks. Parameters and return value 2252 * are as for raw_notifier_call_chain(). 2253 */ 2254 2255 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2256 { 2257 return call_netdevice_notifiers_extack(val, dev, NULL); 2258 } 2259 EXPORT_SYMBOL(call_netdevice_notifiers); 2260 2261 /** 2262 * call_netdevice_notifiers_mtu - call all network notifier blocks 2263 * @val: value passed unmodified to notifier function 2264 * @dev: net_device pointer passed unmodified to notifier function 2265 * @arg: additional u32 argument passed to the notifier function 2266 * 2267 * Call all network notifier blocks. Parameters and return value 2268 * are as for raw_notifier_call_chain(). 2269 */ 2270 static int call_netdevice_notifiers_mtu(unsigned long val, 2271 struct net_device *dev, u32 arg) 2272 { 2273 struct netdev_notifier_info_ext info = { 2274 .info.dev = dev, 2275 .ext.mtu = arg, 2276 }; 2277 2278 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2279 2280 return call_netdevice_notifiers_info(val, &info.info); 2281 } 2282 2283 #ifdef CONFIG_NET_INGRESS 2284 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2285 2286 void net_inc_ingress_queue(void) 2287 { 2288 static_branch_inc(&ingress_needed_key); 2289 } 2290 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2291 2292 void net_dec_ingress_queue(void) 2293 { 2294 static_branch_dec(&ingress_needed_key); 2295 } 2296 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2297 #endif 2298 2299 #ifdef CONFIG_NET_EGRESS 2300 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2301 2302 void net_inc_egress_queue(void) 2303 { 2304 static_branch_inc(&egress_needed_key); 2305 } 2306 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2307 2308 void net_dec_egress_queue(void) 2309 { 2310 static_branch_dec(&egress_needed_key); 2311 } 2312 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2313 #endif 2314 2315 #ifdef CONFIG_NET_CLS_ACT 2316 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2317 EXPORT_SYMBOL(tcf_sw_enabled_key); 2318 #endif 2319 2320 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2321 EXPORT_SYMBOL(netstamp_needed_key); 2322 #ifdef CONFIG_JUMP_LABEL 2323 static atomic_t netstamp_needed_deferred; 2324 static atomic_t netstamp_wanted; 2325 static void netstamp_clear(struct work_struct *work) 2326 { 2327 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2328 int wanted; 2329 2330 wanted = atomic_add_return(deferred, &netstamp_wanted); 2331 if (wanted > 0) 2332 static_branch_enable(&netstamp_needed_key); 2333 else 2334 static_branch_disable(&netstamp_needed_key); 2335 } 2336 static DECLARE_WORK(netstamp_work, netstamp_clear); 2337 #endif 2338 2339 void net_enable_timestamp(void) 2340 { 2341 #ifdef CONFIG_JUMP_LABEL 2342 int wanted = atomic_read(&netstamp_wanted); 2343 2344 while (wanted > 0) { 2345 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2346 return; 2347 } 2348 atomic_inc(&netstamp_needed_deferred); 2349 schedule_work(&netstamp_work); 2350 #else 2351 static_branch_inc(&netstamp_needed_key); 2352 #endif 2353 } 2354 EXPORT_SYMBOL(net_enable_timestamp); 2355 2356 void net_disable_timestamp(void) 2357 { 2358 #ifdef CONFIG_JUMP_LABEL 2359 int wanted = atomic_read(&netstamp_wanted); 2360 2361 while (wanted > 1) { 2362 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2363 return; 2364 } 2365 atomic_dec(&netstamp_needed_deferred); 2366 schedule_work(&netstamp_work); 2367 #else 2368 static_branch_dec(&netstamp_needed_key); 2369 #endif 2370 } 2371 EXPORT_SYMBOL(net_disable_timestamp); 2372 2373 static inline void net_timestamp_set(struct sk_buff *skb) 2374 { 2375 skb->tstamp = 0; 2376 skb->tstamp_type = SKB_CLOCK_REALTIME; 2377 if (static_branch_unlikely(&netstamp_needed_key)) 2378 skb->tstamp = ktime_get_real(); 2379 } 2380 2381 #define net_timestamp_check(COND, SKB) \ 2382 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2383 if ((COND) && !(SKB)->tstamp) \ 2384 (SKB)->tstamp = ktime_get_real(); \ 2385 } \ 2386 2387 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2388 { 2389 return __is_skb_forwardable(dev, skb, true); 2390 } 2391 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2392 2393 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2394 bool check_mtu) 2395 { 2396 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2397 2398 if (likely(!ret)) { 2399 skb->protocol = eth_type_trans(skb, dev); 2400 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2401 } 2402 2403 return ret; 2404 } 2405 2406 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2407 { 2408 return __dev_forward_skb2(dev, skb, true); 2409 } 2410 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2411 2412 /** 2413 * dev_forward_skb - loopback an skb to another netif 2414 * 2415 * @dev: destination network device 2416 * @skb: buffer to forward 2417 * 2418 * return values: 2419 * NET_RX_SUCCESS (no congestion) 2420 * NET_RX_DROP (packet was dropped, but freed) 2421 * 2422 * dev_forward_skb can be used for injecting an skb from the 2423 * start_xmit function of one device into the receive queue 2424 * of another device. 2425 * 2426 * The receiving device may be in another namespace, so 2427 * we have to clear all information in the skb that could 2428 * impact namespace isolation. 2429 */ 2430 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2431 { 2432 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2433 } 2434 EXPORT_SYMBOL_GPL(dev_forward_skb); 2435 2436 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2437 { 2438 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2439 } 2440 2441 static inline int deliver_skb(struct sk_buff *skb, 2442 struct packet_type *pt_prev, 2443 struct net_device *orig_dev) 2444 { 2445 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2446 return -ENOMEM; 2447 refcount_inc(&skb->users); 2448 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2449 } 2450 2451 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2452 struct packet_type **pt, 2453 struct net_device *orig_dev, 2454 __be16 type, 2455 struct list_head *ptype_list) 2456 { 2457 struct packet_type *ptype, *pt_prev = *pt; 2458 2459 list_for_each_entry_rcu(ptype, ptype_list, list) { 2460 if (ptype->type != type) 2461 continue; 2462 if (pt_prev) 2463 deliver_skb(skb, pt_prev, orig_dev); 2464 pt_prev = ptype; 2465 } 2466 *pt = pt_prev; 2467 } 2468 2469 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2470 { 2471 if (!ptype->af_packet_priv || !skb->sk) 2472 return false; 2473 2474 if (ptype->id_match) 2475 return ptype->id_match(ptype, skb->sk); 2476 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2477 return true; 2478 2479 return false; 2480 } 2481 2482 /** 2483 * dev_nit_active - return true if any network interface taps are in use 2484 * 2485 * @dev: network device to check for the presence of taps 2486 */ 2487 bool dev_nit_active(struct net_device *dev) 2488 { 2489 return !list_empty(&net_hotdata.ptype_all) || 2490 !list_empty(&dev->ptype_all); 2491 } 2492 EXPORT_SYMBOL_GPL(dev_nit_active); 2493 2494 /* 2495 * Support routine. Sends outgoing frames to any network 2496 * taps currently in use. 2497 */ 2498 2499 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2500 { 2501 struct list_head *ptype_list = &net_hotdata.ptype_all; 2502 struct packet_type *ptype, *pt_prev = NULL; 2503 struct sk_buff *skb2 = NULL; 2504 2505 rcu_read_lock(); 2506 again: 2507 list_for_each_entry_rcu(ptype, ptype_list, list) { 2508 if (READ_ONCE(ptype->ignore_outgoing)) 2509 continue; 2510 2511 /* Never send packets back to the socket 2512 * they originated from - MvS (miquels@drinkel.ow.org) 2513 */ 2514 if (skb_loop_sk(ptype, skb)) 2515 continue; 2516 2517 if (pt_prev) { 2518 deliver_skb(skb2, pt_prev, skb->dev); 2519 pt_prev = ptype; 2520 continue; 2521 } 2522 2523 /* need to clone skb, done only once */ 2524 skb2 = skb_clone(skb, GFP_ATOMIC); 2525 if (!skb2) 2526 goto out_unlock; 2527 2528 net_timestamp_set(skb2); 2529 2530 /* skb->nh should be correctly 2531 * set by sender, so that the second statement is 2532 * just protection against buggy protocols. 2533 */ 2534 skb_reset_mac_header(skb2); 2535 2536 if (skb_network_header(skb2) < skb2->data || 2537 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2538 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2539 ntohs(skb2->protocol), 2540 dev->name); 2541 skb_reset_network_header(skb2); 2542 } 2543 2544 skb2->transport_header = skb2->network_header; 2545 skb2->pkt_type = PACKET_OUTGOING; 2546 pt_prev = ptype; 2547 } 2548 2549 if (ptype_list == &net_hotdata.ptype_all) { 2550 ptype_list = &dev->ptype_all; 2551 goto again; 2552 } 2553 out_unlock: 2554 if (pt_prev) { 2555 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2556 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2557 else 2558 kfree_skb(skb2); 2559 } 2560 rcu_read_unlock(); 2561 } 2562 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2563 2564 /** 2565 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2566 * @dev: Network device 2567 * @txq: number of queues available 2568 * 2569 * If real_num_tx_queues is changed the tc mappings may no longer be 2570 * valid. To resolve this verify the tc mapping remains valid and if 2571 * not NULL the mapping. With no priorities mapping to this 2572 * offset/count pair it will no longer be used. In the worst case TC0 2573 * is invalid nothing can be done so disable priority mappings. If is 2574 * expected that drivers will fix this mapping if they can before 2575 * calling netif_set_real_num_tx_queues. 2576 */ 2577 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2578 { 2579 int i; 2580 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2581 2582 /* If TC0 is invalidated disable TC mapping */ 2583 if (tc->offset + tc->count > txq) { 2584 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2585 dev->num_tc = 0; 2586 return; 2587 } 2588 2589 /* Invalidated prio to tc mappings set to TC0 */ 2590 for (i = 1; i < TC_BITMASK + 1; i++) { 2591 int q = netdev_get_prio_tc_map(dev, i); 2592 2593 tc = &dev->tc_to_txq[q]; 2594 if (tc->offset + tc->count > txq) { 2595 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2596 i, q); 2597 netdev_set_prio_tc_map(dev, i, 0); 2598 } 2599 } 2600 } 2601 2602 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2603 { 2604 if (dev->num_tc) { 2605 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2606 int i; 2607 2608 /* walk through the TCs and see if it falls into any of them */ 2609 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2610 if ((txq - tc->offset) < tc->count) 2611 return i; 2612 } 2613 2614 /* didn't find it, just return -1 to indicate no match */ 2615 return -1; 2616 } 2617 2618 return 0; 2619 } 2620 EXPORT_SYMBOL(netdev_txq_to_tc); 2621 2622 #ifdef CONFIG_XPS 2623 static struct static_key xps_needed __read_mostly; 2624 static struct static_key xps_rxqs_needed __read_mostly; 2625 static DEFINE_MUTEX(xps_map_mutex); 2626 #define xmap_dereference(P) \ 2627 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2628 2629 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2630 struct xps_dev_maps *old_maps, int tci, u16 index) 2631 { 2632 struct xps_map *map = NULL; 2633 int pos; 2634 2635 map = xmap_dereference(dev_maps->attr_map[tci]); 2636 if (!map) 2637 return false; 2638 2639 for (pos = map->len; pos--;) { 2640 if (map->queues[pos] != index) 2641 continue; 2642 2643 if (map->len > 1) { 2644 map->queues[pos] = map->queues[--map->len]; 2645 break; 2646 } 2647 2648 if (old_maps) 2649 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2650 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2651 kfree_rcu(map, rcu); 2652 return false; 2653 } 2654 2655 return true; 2656 } 2657 2658 static bool remove_xps_queue_cpu(struct net_device *dev, 2659 struct xps_dev_maps *dev_maps, 2660 int cpu, u16 offset, u16 count) 2661 { 2662 int num_tc = dev_maps->num_tc; 2663 bool active = false; 2664 int tci; 2665 2666 for (tci = cpu * num_tc; num_tc--; tci++) { 2667 int i, j; 2668 2669 for (i = count, j = offset; i--; j++) { 2670 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2671 break; 2672 } 2673 2674 active |= i < 0; 2675 } 2676 2677 return active; 2678 } 2679 2680 static void reset_xps_maps(struct net_device *dev, 2681 struct xps_dev_maps *dev_maps, 2682 enum xps_map_type type) 2683 { 2684 static_key_slow_dec_cpuslocked(&xps_needed); 2685 if (type == XPS_RXQS) 2686 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2687 2688 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2689 2690 kfree_rcu(dev_maps, rcu); 2691 } 2692 2693 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2694 u16 offset, u16 count) 2695 { 2696 struct xps_dev_maps *dev_maps; 2697 bool active = false; 2698 int i, j; 2699 2700 dev_maps = xmap_dereference(dev->xps_maps[type]); 2701 if (!dev_maps) 2702 return; 2703 2704 for (j = 0; j < dev_maps->nr_ids; j++) 2705 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2706 if (!active) 2707 reset_xps_maps(dev, dev_maps, type); 2708 2709 if (type == XPS_CPUS) { 2710 for (i = offset + (count - 1); count--; i--) 2711 netdev_queue_numa_node_write( 2712 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2713 } 2714 } 2715 2716 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2717 u16 count) 2718 { 2719 if (!static_key_false(&xps_needed)) 2720 return; 2721 2722 cpus_read_lock(); 2723 mutex_lock(&xps_map_mutex); 2724 2725 if (static_key_false(&xps_rxqs_needed)) 2726 clean_xps_maps(dev, XPS_RXQS, offset, count); 2727 2728 clean_xps_maps(dev, XPS_CPUS, offset, count); 2729 2730 mutex_unlock(&xps_map_mutex); 2731 cpus_read_unlock(); 2732 } 2733 2734 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2735 { 2736 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2737 } 2738 2739 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2740 u16 index, bool is_rxqs_map) 2741 { 2742 struct xps_map *new_map; 2743 int alloc_len = XPS_MIN_MAP_ALLOC; 2744 int i, pos; 2745 2746 for (pos = 0; map && pos < map->len; pos++) { 2747 if (map->queues[pos] != index) 2748 continue; 2749 return map; 2750 } 2751 2752 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2753 if (map) { 2754 if (pos < map->alloc_len) 2755 return map; 2756 2757 alloc_len = map->alloc_len * 2; 2758 } 2759 2760 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2761 * map 2762 */ 2763 if (is_rxqs_map) 2764 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2765 else 2766 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2767 cpu_to_node(attr_index)); 2768 if (!new_map) 2769 return NULL; 2770 2771 for (i = 0; i < pos; i++) 2772 new_map->queues[i] = map->queues[i]; 2773 new_map->alloc_len = alloc_len; 2774 new_map->len = pos; 2775 2776 return new_map; 2777 } 2778 2779 /* Copy xps maps at a given index */ 2780 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2781 struct xps_dev_maps *new_dev_maps, int index, 2782 int tc, bool skip_tc) 2783 { 2784 int i, tci = index * dev_maps->num_tc; 2785 struct xps_map *map; 2786 2787 /* copy maps belonging to foreign traffic classes */ 2788 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2789 if (i == tc && skip_tc) 2790 continue; 2791 2792 /* fill in the new device map from the old device map */ 2793 map = xmap_dereference(dev_maps->attr_map[tci]); 2794 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2795 } 2796 } 2797 2798 /* Must be called under cpus_read_lock */ 2799 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2800 u16 index, enum xps_map_type type) 2801 { 2802 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2803 const unsigned long *online_mask = NULL; 2804 bool active = false, copy = false; 2805 int i, j, tci, numa_node_id = -2; 2806 int maps_sz, num_tc = 1, tc = 0; 2807 struct xps_map *map, *new_map; 2808 unsigned int nr_ids; 2809 2810 WARN_ON_ONCE(index >= dev->num_tx_queues); 2811 2812 if (dev->num_tc) { 2813 /* Do not allow XPS on subordinate device directly */ 2814 num_tc = dev->num_tc; 2815 if (num_tc < 0) 2816 return -EINVAL; 2817 2818 /* If queue belongs to subordinate dev use its map */ 2819 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2820 2821 tc = netdev_txq_to_tc(dev, index); 2822 if (tc < 0) 2823 return -EINVAL; 2824 } 2825 2826 mutex_lock(&xps_map_mutex); 2827 2828 dev_maps = xmap_dereference(dev->xps_maps[type]); 2829 if (type == XPS_RXQS) { 2830 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2831 nr_ids = dev->num_rx_queues; 2832 } else { 2833 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2834 if (num_possible_cpus() > 1) 2835 online_mask = cpumask_bits(cpu_online_mask); 2836 nr_ids = nr_cpu_ids; 2837 } 2838 2839 if (maps_sz < L1_CACHE_BYTES) 2840 maps_sz = L1_CACHE_BYTES; 2841 2842 /* The old dev_maps could be larger or smaller than the one we're 2843 * setting up now, as dev->num_tc or nr_ids could have been updated in 2844 * between. We could try to be smart, but let's be safe instead and only 2845 * copy foreign traffic classes if the two map sizes match. 2846 */ 2847 if (dev_maps && 2848 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2849 copy = true; 2850 2851 /* allocate memory for queue storage */ 2852 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2853 j < nr_ids;) { 2854 if (!new_dev_maps) { 2855 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2856 if (!new_dev_maps) { 2857 mutex_unlock(&xps_map_mutex); 2858 return -ENOMEM; 2859 } 2860 2861 new_dev_maps->nr_ids = nr_ids; 2862 new_dev_maps->num_tc = num_tc; 2863 } 2864 2865 tci = j * num_tc + tc; 2866 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2867 2868 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2869 if (!map) 2870 goto error; 2871 2872 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2873 } 2874 2875 if (!new_dev_maps) 2876 goto out_no_new_maps; 2877 2878 if (!dev_maps) { 2879 /* Increment static keys at most once per type */ 2880 static_key_slow_inc_cpuslocked(&xps_needed); 2881 if (type == XPS_RXQS) 2882 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2883 } 2884 2885 for (j = 0; j < nr_ids; j++) { 2886 bool skip_tc = false; 2887 2888 tci = j * num_tc + tc; 2889 if (netif_attr_test_mask(j, mask, nr_ids) && 2890 netif_attr_test_online(j, online_mask, nr_ids)) { 2891 /* add tx-queue to CPU/rx-queue maps */ 2892 int pos = 0; 2893 2894 skip_tc = true; 2895 2896 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2897 while ((pos < map->len) && (map->queues[pos] != index)) 2898 pos++; 2899 2900 if (pos == map->len) 2901 map->queues[map->len++] = index; 2902 #ifdef CONFIG_NUMA 2903 if (type == XPS_CPUS) { 2904 if (numa_node_id == -2) 2905 numa_node_id = cpu_to_node(j); 2906 else if (numa_node_id != cpu_to_node(j)) 2907 numa_node_id = -1; 2908 } 2909 #endif 2910 } 2911 2912 if (copy) 2913 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2914 skip_tc); 2915 } 2916 2917 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2918 2919 /* Cleanup old maps */ 2920 if (!dev_maps) 2921 goto out_no_old_maps; 2922 2923 for (j = 0; j < dev_maps->nr_ids; j++) { 2924 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2925 map = xmap_dereference(dev_maps->attr_map[tci]); 2926 if (!map) 2927 continue; 2928 2929 if (copy) { 2930 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2931 if (map == new_map) 2932 continue; 2933 } 2934 2935 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2936 kfree_rcu(map, rcu); 2937 } 2938 } 2939 2940 old_dev_maps = dev_maps; 2941 2942 out_no_old_maps: 2943 dev_maps = new_dev_maps; 2944 active = true; 2945 2946 out_no_new_maps: 2947 if (type == XPS_CPUS) 2948 /* update Tx queue numa node */ 2949 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2950 (numa_node_id >= 0) ? 2951 numa_node_id : NUMA_NO_NODE); 2952 2953 if (!dev_maps) 2954 goto out_no_maps; 2955 2956 /* removes tx-queue from unused CPUs/rx-queues */ 2957 for (j = 0; j < dev_maps->nr_ids; j++) { 2958 tci = j * dev_maps->num_tc; 2959 2960 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2961 if (i == tc && 2962 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2963 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2964 continue; 2965 2966 active |= remove_xps_queue(dev_maps, 2967 copy ? old_dev_maps : NULL, 2968 tci, index); 2969 } 2970 } 2971 2972 if (old_dev_maps) 2973 kfree_rcu(old_dev_maps, rcu); 2974 2975 /* free map if not active */ 2976 if (!active) 2977 reset_xps_maps(dev, dev_maps, type); 2978 2979 out_no_maps: 2980 mutex_unlock(&xps_map_mutex); 2981 2982 return 0; 2983 error: 2984 /* remove any maps that we added */ 2985 for (j = 0; j < nr_ids; j++) { 2986 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2987 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2988 map = copy ? 2989 xmap_dereference(dev_maps->attr_map[tci]) : 2990 NULL; 2991 if (new_map && new_map != map) 2992 kfree(new_map); 2993 } 2994 } 2995 2996 mutex_unlock(&xps_map_mutex); 2997 2998 kfree(new_dev_maps); 2999 return -ENOMEM; 3000 } 3001 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3002 3003 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3004 u16 index) 3005 { 3006 int ret; 3007 3008 cpus_read_lock(); 3009 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3010 cpus_read_unlock(); 3011 3012 return ret; 3013 } 3014 EXPORT_SYMBOL(netif_set_xps_queue); 3015 3016 #endif 3017 static void netdev_unbind_all_sb_channels(struct net_device *dev) 3018 { 3019 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3020 3021 /* Unbind any subordinate channels */ 3022 while (txq-- != &dev->_tx[0]) { 3023 if (txq->sb_dev) 3024 netdev_unbind_sb_channel(dev, txq->sb_dev); 3025 } 3026 } 3027 3028 void netdev_reset_tc(struct net_device *dev) 3029 { 3030 #ifdef CONFIG_XPS 3031 netif_reset_xps_queues_gt(dev, 0); 3032 #endif 3033 netdev_unbind_all_sb_channels(dev); 3034 3035 /* Reset TC configuration of device */ 3036 dev->num_tc = 0; 3037 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3038 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3039 } 3040 EXPORT_SYMBOL(netdev_reset_tc); 3041 3042 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3043 { 3044 if (tc >= dev->num_tc) 3045 return -EINVAL; 3046 3047 #ifdef CONFIG_XPS 3048 netif_reset_xps_queues(dev, offset, count); 3049 #endif 3050 dev->tc_to_txq[tc].count = count; 3051 dev->tc_to_txq[tc].offset = offset; 3052 return 0; 3053 } 3054 EXPORT_SYMBOL(netdev_set_tc_queue); 3055 3056 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3057 { 3058 if (num_tc > TC_MAX_QUEUE) 3059 return -EINVAL; 3060 3061 #ifdef CONFIG_XPS 3062 netif_reset_xps_queues_gt(dev, 0); 3063 #endif 3064 netdev_unbind_all_sb_channels(dev); 3065 3066 dev->num_tc = num_tc; 3067 return 0; 3068 } 3069 EXPORT_SYMBOL(netdev_set_num_tc); 3070 3071 void netdev_unbind_sb_channel(struct net_device *dev, 3072 struct net_device *sb_dev) 3073 { 3074 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3075 3076 #ifdef CONFIG_XPS 3077 netif_reset_xps_queues_gt(sb_dev, 0); 3078 #endif 3079 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3080 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3081 3082 while (txq-- != &dev->_tx[0]) { 3083 if (txq->sb_dev == sb_dev) 3084 txq->sb_dev = NULL; 3085 } 3086 } 3087 EXPORT_SYMBOL(netdev_unbind_sb_channel); 3088 3089 int netdev_bind_sb_channel_queue(struct net_device *dev, 3090 struct net_device *sb_dev, 3091 u8 tc, u16 count, u16 offset) 3092 { 3093 /* Make certain the sb_dev and dev are already configured */ 3094 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3095 return -EINVAL; 3096 3097 /* We cannot hand out queues we don't have */ 3098 if ((offset + count) > dev->real_num_tx_queues) 3099 return -EINVAL; 3100 3101 /* Record the mapping */ 3102 sb_dev->tc_to_txq[tc].count = count; 3103 sb_dev->tc_to_txq[tc].offset = offset; 3104 3105 /* Provide a way for Tx queue to find the tc_to_txq map or 3106 * XPS map for itself. 3107 */ 3108 while (count--) 3109 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3110 3111 return 0; 3112 } 3113 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3114 3115 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3116 { 3117 /* Do not use a multiqueue device to represent a subordinate channel */ 3118 if (netif_is_multiqueue(dev)) 3119 return -ENODEV; 3120 3121 /* We allow channels 1 - 32767 to be used for subordinate channels. 3122 * Channel 0 is meant to be "native" mode and used only to represent 3123 * the main root device. We allow writing 0 to reset the device back 3124 * to normal mode after being used as a subordinate channel. 3125 */ 3126 if (channel > S16_MAX) 3127 return -EINVAL; 3128 3129 dev->num_tc = -channel; 3130 3131 return 0; 3132 } 3133 EXPORT_SYMBOL(netdev_set_sb_channel); 3134 3135 /* 3136 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3137 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3138 */ 3139 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3140 { 3141 bool disabling; 3142 int rc; 3143 3144 disabling = txq < dev->real_num_tx_queues; 3145 3146 if (txq < 1 || txq > dev->num_tx_queues) 3147 return -EINVAL; 3148 3149 if (dev->reg_state == NETREG_REGISTERED || 3150 dev->reg_state == NETREG_UNREGISTERING) { 3151 ASSERT_RTNL(); 3152 3153 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3154 txq); 3155 if (rc) 3156 return rc; 3157 3158 if (dev->num_tc) 3159 netif_setup_tc(dev, txq); 3160 3161 net_shaper_set_real_num_tx_queues(dev, txq); 3162 3163 dev_qdisc_change_real_num_tx(dev, txq); 3164 3165 dev->real_num_tx_queues = txq; 3166 3167 if (disabling) { 3168 synchronize_net(); 3169 qdisc_reset_all_tx_gt(dev, txq); 3170 #ifdef CONFIG_XPS 3171 netif_reset_xps_queues_gt(dev, txq); 3172 #endif 3173 } 3174 } else { 3175 dev->real_num_tx_queues = txq; 3176 } 3177 3178 return 0; 3179 } 3180 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3181 3182 #ifdef CONFIG_SYSFS 3183 /** 3184 * netif_set_real_num_rx_queues - set actual number of RX queues used 3185 * @dev: Network device 3186 * @rxq: Actual number of RX queues 3187 * 3188 * This must be called either with the rtnl_lock held or before 3189 * registration of the net device. Returns 0 on success, or a 3190 * negative error code. If called before registration, it always 3191 * succeeds. 3192 */ 3193 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3194 { 3195 int rc; 3196 3197 if (rxq < 1 || rxq > dev->num_rx_queues) 3198 return -EINVAL; 3199 3200 if (dev->reg_state == NETREG_REGISTERED) { 3201 ASSERT_RTNL(); 3202 3203 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3204 rxq); 3205 if (rc) 3206 return rc; 3207 } 3208 3209 dev->real_num_rx_queues = rxq; 3210 return 0; 3211 } 3212 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3213 #endif 3214 3215 /** 3216 * netif_set_real_num_queues - set actual number of RX and TX queues used 3217 * @dev: Network device 3218 * @txq: Actual number of TX queues 3219 * @rxq: Actual number of RX queues 3220 * 3221 * Set the real number of both TX and RX queues. 3222 * Does nothing if the number of queues is already correct. 3223 */ 3224 int netif_set_real_num_queues(struct net_device *dev, 3225 unsigned int txq, unsigned int rxq) 3226 { 3227 unsigned int old_rxq = dev->real_num_rx_queues; 3228 int err; 3229 3230 if (txq < 1 || txq > dev->num_tx_queues || 3231 rxq < 1 || rxq > dev->num_rx_queues) 3232 return -EINVAL; 3233 3234 /* Start from increases, so the error path only does decreases - 3235 * decreases can't fail. 3236 */ 3237 if (rxq > dev->real_num_rx_queues) { 3238 err = netif_set_real_num_rx_queues(dev, rxq); 3239 if (err) 3240 return err; 3241 } 3242 if (txq > dev->real_num_tx_queues) { 3243 err = netif_set_real_num_tx_queues(dev, txq); 3244 if (err) 3245 goto undo_rx; 3246 } 3247 if (rxq < dev->real_num_rx_queues) 3248 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3249 if (txq < dev->real_num_tx_queues) 3250 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3251 3252 return 0; 3253 undo_rx: 3254 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3255 return err; 3256 } 3257 EXPORT_SYMBOL(netif_set_real_num_queues); 3258 3259 /** 3260 * netif_set_tso_max_size() - set the max size of TSO frames supported 3261 * @dev: netdev to update 3262 * @size: max skb->len of a TSO frame 3263 * 3264 * Set the limit on the size of TSO super-frames the device can handle. 3265 * Unless explicitly set the stack will assume the value of 3266 * %GSO_LEGACY_MAX_SIZE. 3267 */ 3268 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3269 { 3270 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3271 if (size < READ_ONCE(dev->gso_max_size)) 3272 netif_set_gso_max_size(dev, size); 3273 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3274 netif_set_gso_ipv4_max_size(dev, size); 3275 } 3276 EXPORT_SYMBOL(netif_set_tso_max_size); 3277 3278 /** 3279 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3280 * @dev: netdev to update 3281 * @segs: max number of TCP segments 3282 * 3283 * Set the limit on the number of TCP segments the device can generate from 3284 * a single TSO super-frame. 3285 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3286 */ 3287 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3288 { 3289 dev->tso_max_segs = segs; 3290 if (segs < READ_ONCE(dev->gso_max_segs)) 3291 netif_set_gso_max_segs(dev, segs); 3292 } 3293 EXPORT_SYMBOL(netif_set_tso_max_segs); 3294 3295 /** 3296 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3297 * @to: netdev to update 3298 * @from: netdev from which to copy the limits 3299 */ 3300 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3301 { 3302 netif_set_tso_max_size(to, from->tso_max_size); 3303 netif_set_tso_max_segs(to, from->tso_max_segs); 3304 } 3305 EXPORT_SYMBOL(netif_inherit_tso_max); 3306 3307 /** 3308 * netif_get_num_default_rss_queues - default number of RSS queues 3309 * 3310 * Default value is the number of physical cores if there are only 1 or 2, or 3311 * divided by 2 if there are more. 3312 */ 3313 int netif_get_num_default_rss_queues(void) 3314 { 3315 cpumask_var_t cpus; 3316 int cpu, count = 0; 3317 3318 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3319 return 1; 3320 3321 cpumask_copy(cpus, cpu_online_mask); 3322 for_each_cpu(cpu, cpus) { 3323 ++count; 3324 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3325 } 3326 free_cpumask_var(cpus); 3327 3328 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3329 } 3330 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3331 3332 static void __netif_reschedule(struct Qdisc *q) 3333 { 3334 struct softnet_data *sd; 3335 unsigned long flags; 3336 3337 local_irq_save(flags); 3338 sd = this_cpu_ptr(&softnet_data); 3339 q->next_sched = NULL; 3340 *sd->output_queue_tailp = q; 3341 sd->output_queue_tailp = &q->next_sched; 3342 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3343 local_irq_restore(flags); 3344 } 3345 3346 void __netif_schedule(struct Qdisc *q) 3347 { 3348 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3349 __netif_reschedule(q); 3350 } 3351 EXPORT_SYMBOL(__netif_schedule); 3352 3353 struct dev_kfree_skb_cb { 3354 enum skb_drop_reason reason; 3355 }; 3356 3357 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3358 { 3359 return (struct dev_kfree_skb_cb *)skb->cb; 3360 } 3361 3362 void netif_schedule_queue(struct netdev_queue *txq) 3363 { 3364 rcu_read_lock(); 3365 if (!netif_xmit_stopped(txq)) { 3366 struct Qdisc *q = rcu_dereference(txq->qdisc); 3367 3368 __netif_schedule(q); 3369 } 3370 rcu_read_unlock(); 3371 } 3372 EXPORT_SYMBOL(netif_schedule_queue); 3373 3374 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3375 { 3376 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3377 struct Qdisc *q; 3378 3379 rcu_read_lock(); 3380 q = rcu_dereference(dev_queue->qdisc); 3381 __netif_schedule(q); 3382 rcu_read_unlock(); 3383 } 3384 } 3385 EXPORT_SYMBOL(netif_tx_wake_queue); 3386 3387 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3388 { 3389 unsigned long flags; 3390 3391 if (unlikely(!skb)) 3392 return; 3393 3394 if (likely(refcount_read(&skb->users) == 1)) { 3395 smp_rmb(); 3396 refcount_set(&skb->users, 0); 3397 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3398 return; 3399 } 3400 get_kfree_skb_cb(skb)->reason = reason; 3401 local_irq_save(flags); 3402 skb->next = __this_cpu_read(softnet_data.completion_queue); 3403 __this_cpu_write(softnet_data.completion_queue, skb); 3404 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3405 local_irq_restore(flags); 3406 } 3407 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3408 3409 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3410 { 3411 if (in_hardirq() || irqs_disabled()) 3412 dev_kfree_skb_irq_reason(skb, reason); 3413 else 3414 kfree_skb_reason(skb, reason); 3415 } 3416 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3417 3418 3419 /** 3420 * netif_device_detach - mark device as removed 3421 * @dev: network device 3422 * 3423 * Mark device as removed from system and therefore no longer available. 3424 */ 3425 void netif_device_detach(struct net_device *dev) 3426 { 3427 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3428 netif_running(dev)) { 3429 netif_tx_stop_all_queues(dev); 3430 } 3431 } 3432 EXPORT_SYMBOL(netif_device_detach); 3433 3434 /** 3435 * netif_device_attach - mark device as attached 3436 * @dev: network device 3437 * 3438 * Mark device as attached from system and restart if needed. 3439 */ 3440 void netif_device_attach(struct net_device *dev) 3441 { 3442 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3443 netif_running(dev)) { 3444 netif_tx_wake_all_queues(dev); 3445 netdev_watchdog_up(dev); 3446 } 3447 } 3448 EXPORT_SYMBOL(netif_device_attach); 3449 3450 /* 3451 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3452 * to be used as a distribution range. 3453 */ 3454 static u16 skb_tx_hash(const struct net_device *dev, 3455 const struct net_device *sb_dev, 3456 struct sk_buff *skb) 3457 { 3458 u32 hash; 3459 u16 qoffset = 0; 3460 u16 qcount = dev->real_num_tx_queues; 3461 3462 if (dev->num_tc) { 3463 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3464 3465 qoffset = sb_dev->tc_to_txq[tc].offset; 3466 qcount = sb_dev->tc_to_txq[tc].count; 3467 if (unlikely(!qcount)) { 3468 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3469 sb_dev->name, qoffset, tc); 3470 qoffset = 0; 3471 qcount = dev->real_num_tx_queues; 3472 } 3473 } 3474 3475 if (skb_rx_queue_recorded(skb)) { 3476 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3477 hash = skb_get_rx_queue(skb); 3478 if (hash >= qoffset) 3479 hash -= qoffset; 3480 while (unlikely(hash >= qcount)) 3481 hash -= qcount; 3482 return hash + qoffset; 3483 } 3484 3485 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3486 } 3487 3488 void skb_warn_bad_offload(const struct sk_buff *skb) 3489 { 3490 static const netdev_features_t null_features; 3491 struct net_device *dev = skb->dev; 3492 const char *name = ""; 3493 3494 if (!net_ratelimit()) 3495 return; 3496 3497 if (dev) { 3498 if (dev->dev.parent) 3499 name = dev_driver_string(dev->dev.parent); 3500 else 3501 name = netdev_name(dev); 3502 } 3503 skb_dump(KERN_WARNING, skb, false); 3504 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3505 name, dev ? &dev->features : &null_features, 3506 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3507 } 3508 3509 /* 3510 * Invalidate hardware checksum when packet is to be mangled, and 3511 * complete checksum manually on outgoing path. 3512 */ 3513 int skb_checksum_help(struct sk_buff *skb) 3514 { 3515 __wsum csum; 3516 int ret = 0, offset; 3517 3518 if (skb->ip_summed == CHECKSUM_COMPLETE) 3519 goto out_set_summed; 3520 3521 if (unlikely(skb_is_gso(skb))) { 3522 skb_warn_bad_offload(skb); 3523 return -EINVAL; 3524 } 3525 3526 if (!skb_frags_readable(skb)) { 3527 return -EFAULT; 3528 } 3529 3530 /* Before computing a checksum, we should make sure no frag could 3531 * be modified by an external entity : checksum could be wrong. 3532 */ 3533 if (skb_has_shared_frag(skb)) { 3534 ret = __skb_linearize(skb); 3535 if (ret) 3536 goto out; 3537 } 3538 3539 offset = skb_checksum_start_offset(skb); 3540 ret = -EINVAL; 3541 if (unlikely(offset >= skb_headlen(skb))) { 3542 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3543 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3544 offset, skb_headlen(skb)); 3545 goto out; 3546 } 3547 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3548 3549 offset += skb->csum_offset; 3550 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3551 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3552 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3553 offset + sizeof(__sum16), skb_headlen(skb)); 3554 goto out; 3555 } 3556 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3557 if (ret) 3558 goto out; 3559 3560 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3561 out_set_summed: 3562 skb->ip_summed = CHECKSUM_NONE; 3563 out: 3564 return ret; 3565 } 3566 EXPORT_SYMBOL(skb_checksum_help); 3567 3568 int skb_crc32c_csum_help(struct sk_buff *skb) 3569 { 3570 __le32 crc32c_csum; 3571 int ret = 0, offset, start; 3572 3573 if (skb->ip_summed != CHECKSUM_PARTIAL) 3574 goto out; 3575 3576 if (unlikely(skb_is_gso(skb))) 3577 goto out; 3578 3579 /* Before computing a checksum, we should make sure no frag could 3580 * be modified by an external entity : checksum could be wrong. 3581 */ 3582 if (unlikely(skb_has_shared_frag(skb))) { 3583 ret = __skb_linearize(skb); 3584 if (ret) 3585 goto out; 3586 } 3587 start = skb_checksum_start_offset(skb); 3588 offset = start + offsetof(struct sctphdr, checksum); 3589 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3590 ret = -EINVAL; 3591 goto out; 3592 } 3593 3594 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3595 if (ret) 3596 goto out; 3597 3598 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3599 skb->len - start, ~(__u32)0, 3600 crc32c_csum_stub)); 3601 *(__le32 *)(skb->data + offset) = crc32c_csum; 3602 skb_reset_csum_not_inet(skb); 3603 out: 3604 return ret; 3605 } 3606 EXPORT_SYMBOL(skb_crc32c_csum_help); 3607 3608 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3609 { 3610 __be16 type = skb->protocol; 3611 3612 /* Tunnel gso handlers can set protocol to ethernet. */ 3613 if (type == htons(ETH_P_TEB)) { 3614 struct ethhdr *eth; 3615 3616 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3617 return 0; 3618 3619 eth = (struct ethhdr *)skb->data; 3620 type = eth->h_proto; 3621 } 3622 3623 return vlan_get_protocol_and_depth(skb, type, depth); 3624 } 3625 3626 3627 /* Take action when hardware reception checksum errors are detected. */ 3628 #ifdef CONFIG_BUG 3629 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3630 { 3631 netdev_err(dev, "hw csum failure\n"); 3632 skb_dump(KERN_ERR, skb, true); 3633 dump_stack(); 3634 } 3635 3636 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3637 { 3638 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3639 } 3640 EXPORT_SYMBOL(netdev_rx_csum_fault); 3641 #endif 3642 3643 /* XXX: check that highmem exists at all on the given machine. */ 3644 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3645 { 3646 #ifdef CONFIG_HIGHMEM 3647 int i; 3648 3649 if (!(dev->features & NETIF_F_HIGHDMA)) { 3650 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3651 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3652 struct page *page = skb_frag_page(frag); 3653 3654 if (page && PageHighMem(page)) 3655 return 1; 3656 } 3657 } 3658 #endif 3659 return 0; 3660 } 3661 3662 /* If MPLS offload request, verify we are testing hardware MPLS features 3663 * instead of standard features for the netdev. 3664 */ 3665 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3666 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3667 netdev_features_t features, 3668 __be16 type) 3669 { 3670 if (eth_p_mpls(type)) 3671 features &= skb->dev->mpls_features; 3672 3673 return features; 3674 } 3675 #else 3676 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3677 netdev_features_t features, 3678 __be16 type) 3679 { 3680 return features; 3681 } 3682 #endif 3683 3684 static netdev_features_t harmonize_features(struct sk_buff *skb, 3685 netdev_features_t features) 3686 { 3687 __be16 type; 3688 3689 type = skb_network_protocol(skb, NULL); 3690 features = net_mpls_features(skb, features, type); 3691 3692 if (skb->ip_summed != CHECKSUM_NONE && 3693 !can_checksum_protocol(features, type)) { 3694 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3695 } 3696 if (illegal_highdma(skb->dev, skb)) 3697 features &= ~NETIF_F_SG; 3698 3699 return features; 3700 } 3701 3702 netdev_features_t passthru_features_check(struct sk_buff *skb, 3703 struct net_device *dev, 3704 netdev_features_t features) 3705 { 3706 return features; 3707 } 3708 EXPORT_SYMBOL(passthru_features_check); 3709 3710 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3711 struct net_device *dev, 3712 netdev_features_t features) 3713 { 3714 return vlan_features_check(skb, features); 3715 } 3716 3717 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3718 struct net_device *dev, 3719 netdev_features_t features) 3720 { 3721 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3722 3723 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3724 return features & ~NETIF_F_GSO_MASK; 3725 3726 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3727 return features & ~NETIF_F_GSO_MASK; 3728 3729 if (!skb_shinfo(skb)->gso_type) { 3730 skb_warn_bad_offload(skb); 3731 return features & ~NETIF_F_GSO_MASK; 3732 } 3733 3734 /* Support for GSO partial features requires software 3735 * intervention before we can actually process the packets 3736 * so we need to strip support for any partial features now 3737 * and we can pull them back in after we have partially 3738 * segmented the frame. 3739 */ 3740 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3741 features &= ~dev->gso_partial_features; 3742 3743 /* Make sure to clear the IPv4 ID mangling feature if the 3744 * IPv4 header has the potential to be fragmented. 3745 */ 3746 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3747 struct iphdr *iph = skb->encapsulation ? 3748 inner_ip_hdr(skb) : ip_hdr(skb); 3749 3750 if (!(iph->frag_off & htons(IP_DF))) 3751 features &= ~NETIF_F_TSO_MANGLEID; 3752 } 3753 3754 return features; 3755 } 3756 3757 netdev_features_t netif_skb_features(struct sk_buff *skb) 3758 { 3759 struct net_device *dev = skb->dev; 3760 netdev_features_t features = dev->features; 3761 3762 if (skb_is_gso(skb)) 3763 features = gso_features_check(skb, dev, features); 3764 3765 /* If encapsulation offload request, verify we are testing 3766 * hardware encapsulation features instead of standard 3767 * features for the netdev 3768 */ 3769 if (skb->encapsulation) 3770 features &= dev->hw_enc_features; 3771 3772 if (skb_vlan_tagged(skb)) 3773 features = netdev_intersect_features(features, 3774 dev->vlan_features | 3775 NETIF_F_HW_VLAN_CTAG_TX | 3776 NETIF_F_HW_VLAN_STAG_TX); 3777 3778 if (dev->netdev_ops->ndo_features_check) 3779 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3780 features); 3781 else 3782 features &= dflt_features_check(skb, dev, features); 3783 3784 return harmonize_features(skb, features); 3785 } 3786 EXPORT_SYMBOL(netif_skb_features); 3787 3788 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3789 struct netdev_queue *txq, bool more) 3790 { 3791 unsigned int len; 3792 int rc; 3793 3794 if (dev_nit_active(dev)) 3795 dev_queue_xmit_nit(skb, dev); 3796 3797 len = skb->len; 3798 trace_net_dev_start_xmit(skb, dev); 3799 rc = netdev_start_xmit(skb, dev, txq, more); 3800 trace_net_dev_xmit(skb, rc, dev, len); 3801 3802 return rc; 3803 } 3804 3805 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3806 struct netdev_queue *txq, int *ret) 3807 { 3808 struct sk_buff *skb = first; 3809 int rc = NETDEV_TX_OK; 3810 3811 while (skb) { 3812 struct sk_buff *next = skb->next; 3813 3814 skb_mark_not_on_list(skb); 3815 rc = xmit_one(skb, dev, txq, next != NULL); 3816 if (unlikely(!dev_xmit_complete(rc))) { 3817 skb->next = next; 3818 goto out; 3819 } 3820 3821 skb = next; 3822 if (netif_tx_queue_stopped(txq) && skb) { 3823 rc = NETDEV_TX_BUSY; 3824 break; 3825 } 3826 } 3827 3828 out: 3829 *ret = rc; 3830 return skb; 3831 } 3832 3833 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3834 netdev_features_t features) 3835 { 3836 if (skb_vlan_tag_present(skb) && 3837 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3838 skb = __vlan_hwaccel_push_inside(skb); 3839 return skb; 3840 } 3841 3842 int skb_csum_hwoffload_help(struct sk_buff *skb, 3843 const netdev_features_t features) 3844 { 3845 if (unlikely(skb_csum_is_sctp(skb))) 3846 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3847 skb_crc32c_csum_help(skb); 3848 3849 if (features & NETIF_F_HW_CSUM) 3850 return 0; 3851 3852 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3853 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3854 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3855 !ipv6_has_hopopt_jumbo(skb)) 3856 goto sw_checksum; 3857 3858 switch (skb->csum_offset) { 3859 case offsetof(struct tcphdr, check): 3860 case offsetof(struct udphdr, check): 3861 return 0; 3862 } 3863 } 3864 3865 sw_checksum: 3866 return skb_checksum_help(skb); 3867 } 3868 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3869 3870 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3871 { 3872 netdev_features_t features; 3873 3874 features = netif_skb_features(skb); 3875 skb = validate_xmit_vlan(skb, features); 3876 if (unlikely(!skb)) 3877 goto out_null; 3878 3879 skb = sk_validate_xmit_skb(skb, dev); 3880 if (unlikely(!skb)) 3881 goto out_null; 3882 3883 if (netif_needs_gso(skb, features)) { 3884 struct sk_buff *segs; 3885 3886 segs = skb_gso_segment(skb, features); 3887 if (IS_ERR(segs)) { 3888 goto out_kfree_skb; 3889 } else if (segs) { 3890 consume_skb(skb); 3891 skb = segs; 3892 } 3893 } else { 3894 if (skb_needs_linearize(skb, features) && 3895 __skb_linearize(skb)) 3896 goto out_kfree_skb; 3897 3898 /* If packet is not checksummed and device does not 3899 * support checksumming for this protocol, complete 3900 * checksumming here. 3901 */ 3902 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3903 if (skb->encapsulation) 3904 skb_set_inner_transport_header(skb, 3905 skb_checksum_start_offset(skb)); 3906 else 3907 skb_set_transport_header(skb, 3908 skb_checksum_start_offset(skb)); 3909 if (skb_csum_hwoffload_help(skb, features)) 3910 goto out_kfree_skb; 3911 } 3912 } 3913 3914 skb = validate_xmit_xfrm(skb, features, again); 3915 3916 return skb; 3917 3918 out_kfree_skb: 3919 kfree_skb(skb); 3920 out_null: 3921 dev_core_stats_tx_dropped_inc(dev); 3922 return NULL; 3923 } 3924 3925 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3926 { 3927 struct sk_buff *next, *head = NULL, *tail; 3928 3929 for (; skb != NULL; skb = next) { 3930 next = skb->next; 3931 skb_mark_not_on_list(skb); 3932 3933 /* in case skb won't be segmented, point to itself */ 3934 skb->prev = skb; 3935 3936 skb = validate_xmit_skb(skb, dev, again); 3937 if (!skb) 3938 continue; 3939 3940 if (!head) 3941 head = skb; 3942 else 3943 tail->next = skb; 3944 /* If skb was segmented, skb->prev points to 3945 * the last segment. If not, it still contains skb. 3946 */ 3947 tail = skb->prev; 3948 } 3949 return head; 3950 } 3951 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3952 3953 static void qdisc_pkt_len_init(struct sk_buff *skb) 3954 { 3955 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3956 3957 qdisc_skb_cb(skb)->pkt_len = skb->len; 3958 3959 /* To get more precise estimation of bytes sent on wire, 3960 * we add to pkt_len the headers size of all segments 3961 */ 3962 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3963 u16 gso_segs = shinfo->gso_segs; 3964 unsigned int hdr_len; 3965 3966 /* mac layer + network layer */ 3967 hdr_len = skb_transport_offset(skb); 3968 3969 /* + transport layer */ 3970 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3971 const struct tcphdr *th; 3972 struct tcphdr _tcphdr; 3973 3974 th = skb_header_pointer(skb, hdr_len, 3975 sizeof(_tcphdr), &_tcphdr); 3976 if (likely(th)) 3977 hdr_len += __tcp_hdrlen(th); 3978 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 3979 struct udphdr _udphdr; 3980 3981 if (skb_header_pointer(skb, hdr_len, 3982 sizeof(_udphdr), &_udphdr)) 3983 hdr_len += sizeof(struct udphdr); 3984 } 3985 3986 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 3987 int payload = skb->len - hdr_len; 3988 3989 /* Malicious packet. */ 3990 if (payload <= 0) 3991 return; 3992 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 3993 } 3994 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3995 } 3996 } 3997 3998 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3999 struct sk_buff **to_free, 4000 struct netdev_queue *txq) 4001 { 4002 int rc; 4003 4004 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4005 if (rc == NET_XMIT_SUCCESS) 4006 trace_qdisc_enqueue(q, txq, skb); 4007 return rc; 4008 } 4009 4010 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4011 struct net_device *dev, 4012 struct netdev_queue *txq) 4013 { 4014 spinlock_t *root_lock = qdisc_lock(q); 4015 struct sk_buff *to_free = NULL; 4016 bool contended; 4017 int rc; 4018 4019 qdisc_calculate_pkt_len(skb, q); 4020 4021 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4022 4023 if (q->flags & TCQ_F_NOLOCK) { 4024 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4025 qdisc_run_begin(q)) { 4026 /* Retest nolock_qdisc_is_empty() within the protection 4027 * of q->seqlock to protect from racing with requeuing. 4028 */ 4029 if (unlikely(!nolock_qdisc_is_empty(q))) { 4030 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4031 __qdisc_run(q); 4032 qdisc_run_end(q); 4033 4034 goto no_lock_out; 4035 } 4036 4037 qdisc_bstats_cpu_update(q, skb); 4038 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4039 !nolock_qdisc_is_empty(q)) 4040 __qdisc_run(q); 4041 4042 qdisc_run_end(q); 4043 return NET_XMIT_SUCCESS; 4044 } 4045 4046 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4047 qdisc_run(q); 4048 4049 no_lock_out: 4050 if (unlikely(to_free)) 4051 kfree_skb_list_reason(to_free, 4052 tcf_get_drop_reason(to_free)); 4053 return rc; 4054 } 4055 4056 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 4057 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 4058 return NET_XMIT_DROP; 4059 } 4060 /* 4061 * Heuristic to force contended enqueues to serialize on a 4062 * separate lock before trying to get qdisc main lock. 4063 * This permits qdisc->running owner to get the lock more 4064 * often and dequeue packets faster. 4065 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 4066 * and then other tasks will only enqueue packets. The packets will be 4067 * sent after the qdisc owner is scheduled again. To prevent this 4068 * scenario the task always serialize on the lock. 4069 */ 4070 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 4071 if (unlikely(contended)) 4072 spin_lock(&q->busylock); 4073 4074 spin_lock(root_lock); 4075 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4076 __qdisc_drop(skb, &to_free); 4077 rc = NET_XMIT_DROP; 4078 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4079 qdisc_run_begin(q)) { 4080 /* 4081 * This is a work-conserving queue; there are no old skbs 4082 * waiting to be sent out; and the qdisc is not running - 4083 * xmit the skb directly. 4084 */ 4085 4086 qdisc_bstats_update(q, skb); 4087 4088 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 4089 if (unlikely(contended)) { 4090 spin_unlock(&q->busylock); 4091 contended = false; 4092 } 4093 __qdisc_run(q); 4094 } 4095 4096 qdisc_run_end(q); 4097 rc = NET_XMIT_SUCCESS; 4098 } else { 4099 WRITE_ONCE(q->owner, smp_processor_id()); 4100 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4101 WRITE_ONCE(q->owner, -1); 4102 if (qdisc_run_begin(q)) { 4103 if (unlikely(contended)) { 4104 spin_unlock(&q->busylock); 4105 contended = false; 4106 } 4107 __qdisc_run(q); 4108 qdisc_run_end(q); 4109 } 4110 } 4111 spin_unlock(root_lock); 4112 if (unlikely(to_free)) 4113 kfree_skb_list_reason(to_free, 4114 tcf_get_drop_reason(to_free)); 4115 if (unlikely(contended)) 4116 spin_unlock(&q->busylock); 4117 return rc; 4118 } 4119 4120 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4121 static void skb_update_prio(struct sk_buff *skb) 4122 { 4123 const struct netprio_map *map; 4124 const struct sock *sk; 4125 unsigned int prioidx; 4126 4127 if (skb->priority) 4128 return; 4129 map = rcu_dereference_bh(skb->dev->priomap); 4130 if (!map) 4131 return; 4132 sk = skb_to_full_sk(skb); 4133 if (!sk) 4134 return; 4135 4136 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4137 4138 if (prioidx < map->priomap_len) 4139 skb->priority = map->priomap[prioidx]; 4140 } 4141 #else 4142 #define skb_update_prio(skb) 4143 #endif 4144 4145 /** 4146 * dev_loopback_xmit - loop back @skb 4147 * @net: network namespace this loopback is happening in 4148 * @sk: sk needed to be a netfilter okfn 4149 * @skb: buffer to transmit 4150 */ 4151 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4152 { 4153 skb_reset_mac_header(skb); 4154 __skb_pull(skb, skb_network_offset(skb)); 4155 skb->pkt_type = PACKET_LOOPBACK; 4156 if (skb->ip_summed == CHECKSUM_NONE) 4157 skb->ip_summed = CHECKSUM_UNNECESSARY; 4158 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4159 skb_dst_force(skb); 4160 netif_rx(skb); 4161 return 0; 4162 } 4163 EXPORT_SYMBOL(dev_loopback_xmit); 4164 4165 #ifdef CONFIG_NET_EGRESS 4166 static struct netdev_queue * 4167 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4168 { 4169 int qm = skb_get_queue_mapping(skb); 4170 4171 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4172 } 4173 4174 #ifndef CONFIG_PREEMPT_RT 4175 static bool netdev_xmit_txqueue_skipped(void) 4176 { 4177 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4178 } 4179 4180 void netdev_xmit_skip_txqueue(bool skip) 4181 { 4182 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4183 } 4184 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4185 4186 #else 4187 static bool netdev_xmit_txqueue_skipped(void) 4188 { 4189 return current->net_xmit.skip_txqueue; 4190 } 4191 4192 void netdev_xmit_skip_txqueue(bool skip) 4193 { 4194 current->net_xmit.skip_txqueue = skip; 4195 } 4196 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4197 #endif 4198 #endif /* CONFIG_NET_EGRESS */ 4199 4200 #ifdef CONFIG_NET_XGRESS 4201 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4202 enum skb_drop_reason *drop_reason) 4203 { 4204 int ret = TC_ACT_UNSPEC; 4205 #ifdef CONFIG_NET_CLS_ACT 4206 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4207 struct tcf_result res; 4208 4209 if (!miniq) 4210 return ret; 4211 4212 /* Global bypass */ 4213 if (!static_branch_likely(&tcf_sw_enabled_key)) 4214 return ret; 4215 4216 /* Block-wise bypass */ 4217 if (tcf_block_bypass_sw(miniq->block)) 4218 return ret; 4219 4220 tc_skb_cb(skb)->mru = 0; 4221 tc_skb_cb(skb)->post_ct = false; 4222 tcf_set_drop_reason(skb, *drop_reason); 4223 4224 mini_qdisc_bstats_cpu_update(miniq, skb); 4225 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4226 /* Only tcf related quirks below. */ 4227 switch (ret) { 4228 case TC_ACT_SHOT: 4229 *drop_reason = tcf_get_drop_reason(skb); 4230 mini_qdisc_qstats_cpu_drop(miniq); 4231 break; 4232 case TC_ACT_OK: 4233 case TC_ACT_RECLASSIFY: 4234 skb->tc_index = TC_H_MIN(res.classid); 4235 break; 4236 } 4237 #endif /* CONFIG_NET_CLS_ACT */ 4238 return ret; 4239 } 4240 4241 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4242 4243 void tcx_inc(void) 4244 { 4245 static_branch_inc(&tcx_needed_key); 4246 } 4247 4248 void tcx_dec(void) 4249 { 4250 static_branch_dec(&tcx_needed_key); 4251 } 4252 4253 static __always_inline enum tcx_action_base 4254 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4255 const bool needs_mac) 4256 { 4257 const struct bpf_mprog_fp *fp; 4258 const struct bpf_prog *prog; 4259 int ret = TCX_NEXT; 4260 4261 if (needs_mac) 4262 __skb_push(skb, skb->mac_len); 4263 bpf_mprog_foreach_prog(entry, fp, prog) { 4264 bpf_compute_data_pointers(skb); 4265 ret = bpf_prog_run(prog, skb); 4266 if (ret != TCX_NEXT) 4267 break; 4268 } 4269 if (needs_mac) 4270 __skb_pull(skb, skb->mac_len); 4271 return tcx_action_code(skb, ret); 4272 } 4273 4274 static __always_inline struct sk_buff * 4275 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4276 struct net_device *orig_dev, bool *another) 4277 { 4278 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4279 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4280 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4281 int sch_ret; 4282 4283 if (!entry) 4284 return skb; 4285 4286 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4287 if (*pt_prev) { 4288 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4289 *pt_prev = NULL; 4290 } 4291 4292 qdisc_skb_cb(skb)->pkt_len = skb->len; 4293 tcx_set_ingress(skb, true); 4294 4295 if (static_branch_unlikely(&tcx_needed_key)) { 4296 sch_ret = tcx_run(entry, skb, true); 4297 if (sch_ret != TC_ACT_UNSPEC) 4298 goto ingress_verdict; 4299 } 4300 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4301 ingress_verdict: 4302 switch (sch_ret) { 4303 case TC_ACT_REDIRECT: 4304 /* skb_mac_header check was done by BPF, so we can safely 4305 * push the L2 header back before redirecting to another 4306 * netdev. 4307 */ 4308 __skb_push(skb, skb->mac_len); 4309 if (skb_do_redirect(skb) == -EAGAIN) { 4310 __skb_pull(skb, skb->mac_len); 4311 *another = true; 4312 break; 4313 } 4314 *ret = NET_RX_SUCCESS; 4315 bpf_net_ctx_clear(bpf_net_ctx); 4316 return NULL; 4317 case TC_ACT_SHOT: 4318 kfree_skb_reason(skb, drop_reason); 4319 *ret = NET_RX_DROP; 4320 bpf_net_ctx_clear(bpf_net_ctx); 4321 return NULL; 4322 /* used by tc_run */ 4323 case TC_ACT_STOLEN: 4324 case TC_ACT_QUEUED: 4325 case TC_ACT_TRAP: 4326 consume_skb(skb); 4327 fallthrough; 4328 case TC_ACT_CONSUMED: 4329 *ret = NET_RX_SUCCESS; 4330 bpf_net_ctx_clear(bpf_net_ctx); 4331 return NULL; 4332 } 4333 bpf_net_ctx_clear(bpf_net_ctx); 4334 4335 return skb; 4336 } 4337 4338 static __always_inline struct sk_buff * 4339 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4340 { 4341 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4342 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4343 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4344 int sch_ret; 4345 4346 if (!entry) 4347 return skb; 4348 4349 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4350 4351 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4352 * already set by the caller. 4353 */ 4354 if (static_branch_unlikely(&tcx_needed_key)) { 4355 sch_ret = tcx_run(entry, skb, false); 4356 if (sch_ret != TC_ACT_UNSPEC) 4357 goto egress_verdict; 4358 } 4359 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4360 egress_verdict: 4361 switch (sch_ret) { 4362 case TC_ACT_REDIRECT: 4363 /* No need to push/pop skb's mac_header here on egress! */ 4364 skb_do_redirect(skb); 4365 *ret = NET_XMIT_SUCCESS; 4366 bpf_net_ctx_clear(bpf_net_ctx); 4367 return NULL; 4368 case TC_ACT_SHOT: 4369 kfree_skb_reason(skb, drop_reason); 4370 *ret = NET_XMIT_DROP; 4371 bpf_net_ctx_clear(bpf_net_ctx); 4372 return NULL; 4373 /* used by tc_run */ 4374 case TC_ACT_STOLEN: 4375 case TC_ACT_QUEUED: 4376 case TC_ACT_TRAP: 4377 consume_skb(skb); 4378 fallthrough; 4379 case TC_ACT_CONSUMED: 4380 *ret = NET_XMIT_SUCCESS; 4381 bpf_net_ctx_clear(bpf_net_ctx); 4382 return NULL; 4383 } 4384 bpf_net_ctx_clear(bpf_net_ctx); 4385 4386 return skb; 4387 } 4388 #else 4389 static __always_inline struct sk_buff * 4390 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4391 struct net_device *orig_dev, bool *another) 4392 { 4393 return skb; 4394 } 4395 4396 static __always_inline struct sk_buff * 4397 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4398 { 4399 return skb; 4400 } 4401 #endif /* CONFIG_NET_XGRESS */ 4402 4403 #ifdef CONFIG_XPS 4404 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4405 struct xps_dev_maps *dev_maps, unsigned int tci) 4406 { 4407 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4408 struct xps_map *map; 4409 int queue_index = -1; 4410 4411 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4412 return queue_index; 4413 4414 tci *= dev_maps->num_tc; 4415 tci += tc; 4416 4417 map = rcu_dereference(dev_maps->attr_map[tci]); 4418 if (map) { 4419 if (map->len == 1) 4420 queue_index = map->queues[0]; 4421 else 4422 queue_index = map->queues[reciprocal_scale( 4423 skb_get_hash(skb), map->len)]; 4424 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4425 queue_index = -1; 4426 } 4427 return queue_index; 4428 } 4429 #endif 4430 4431 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4432 struct sk_buff *skb) 4433 { 4434 #ifdef CONFIG_XPS 4435 struct xps_dev_maps *dev_maps; 4436 struct sock *sk = skb->sk; 4437 int queue_index = -1; 4438 4439 if (!static_key_false(&xps_needed)) 4440 return -1; 4441 4442 rcu_read_lock(); 4443 if (!static_key_false(&xps_rxqs_needed)) 4444 goto get_cpus_map; 4445 4446 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4447 if (dev_maps) { 4448 int tci = sk_rx_queue_get(sk); 4449 4450 if (tci >= 0) 4451 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4452 tci); 4453 } 4454 4455 get_cpus_map: 4456 if (queue_index < 0) { 4457 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4458 if (dev_maps) { 4459 unsigned int tci = skb->sender_cpu - 1; 4460 4461 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4462 tci); 4463 } 4464 } 4465 rcu_read_unlock(); 4466 4467 return queue_index; 4468 #else 4469 return -1; 4470 #endif 4471 } 4472 4473 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4474 struct net_device *sb_dev) 4475 { 4476 return 0; 4477 } 4478 EXPORT_SYMBOL(dev_pick_tx_zero); 4479 4480 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4481 struct net_device *sb_dev) 4482 { 4483 struct sock *sk = skb->sk; 4484 int queue_index = sk_tx_queue_get(sk); 4485 4486 sb_dev = sb_dev ? : dev; 4487 4488 if (queue_index < 0 || skb->ooo_okay || 4489 queue_index >= dev->real_num_tx_queues) { 4490 int new_index = get_xps_queue(dev, sb_dev, skb); 4491 4492 if (new_index < 0) 4493 new_index = skb_tx_hash(dev, sb_dev, skb); 4494 4495 if (queue_index != new_index && sk && 4496 sk_fullsock(sk) && 4497 rcu_access_pointer(sk->sk_dst_cache)) 4498 sk_tx_queue_set(sk, new_index); 4499 4500 queue_index = new_index; 4501 } 4502 4503 return queue_index; 4504 } 4505 EXPORT_SYMBOL(netdev_pick_tx); 4506 4507 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4508 struct sk_buff *skb, 4509 struct net_device *sb_dev) 4510 { 4511 int queue_index = 0; 4512 4513 #ifdef CONFIG_XPS 4514 u32 sender_cpu = skb->sender_cpu - 1; 4515 4516 if (sender_cpu >= (u32)NR_CPUS) 4517 skb->sender_cpu = raw_smp_processor_id() + 1; 4518 #endif 4519 4520 if (dev->real_num_tx_queues != 1) { 4521 const struct net_device_ops *ops = dev->netdev_ops; 4522 4523 if (ops->ndo_select_queue) 4524 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4525 else 4526 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4527 4528 queue_index = netdev_cap_txqueue(dev, queue_index); 4529 } 4530 4531 skb_set_queue_mapping(skb, queue_index); 4532 return netdev_get_tx_queue(dev, queue_index); 4533 } 4534 4535 /** 4536 * __dev_queue_xmit() - transmit a buffer 4537 * @skb: buffer to transmit 4538 * @sb_dev: suboordinate device used for L2 forwarding offload 4539 * 4540 * Queue a buffer for transmission to a network device. The caller must 4541 * have set the device and priority and built the buffer before calling 4542 * this function. The function can be called from an interrupt. 4543 * 4544 * When calling this method, interrupts MUST be enabled. This is because 4545 * the BH enable code must have IRQs enabled so that it will not deadlock. 4546 * 4547 * Regardless of the return value, the skb is consumed, so it is currently 4548 * difficult to retry a send to this method. (You can bump the ref count 4549 * before sending to hold a reference for retry if you are careful.) 4550 * 4551 * Return: 4552 * * 0 - buffer successfully transmitted 4553 * * positive qdisc return code - NET_XMIT_DROP etc. 4554 * * negative errno - other errors 4555 */ 4556 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4557 { 4558 struct net_device *dev = skb->dev; 4559 struct netdev_queue *txq = NULL; 4560 struct Qdisc *q; 4561 int rc = -ENOMEM; 4562 bool again = false; 4563 4564 skb_reset_mac_header(skb); 4565 skb_assert_len(skb); 4566 4567 if (unlikely(skb_shinfo(skb)->tx_flags & 4568 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4569 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4570 4571 /* Disable soft irqs for various locks below. Also 4572 * stops preemption for RCU. 4573 */ 4574 rcu_read_lock_bh(); 4575 4576 skb_update_prio(skb); 4577 4578 qdisc_pkt_len_init(skb); 4579 tcx_set_ingress(skb, false); 4580 #ifdef CONFIG_NET_EGRESS 4581 if (static_branch_unlikely(&egress_needed_key)) { 4582 if (nf_hook_egress_active()) { 4583 skb = nf_hook_egress(skb, &rc, dev); 4584 if (!skb) 4585 goto out; 4586 } 4587 4588 netdev_xmit_skip_txqueue(false); 4589 4590 nf_skip_egress(skb, true); 4591 skb = sch_handle_egress(skb, &rc, dev); 4592 if (!skb) 4593 goto out; 4594 nf_skip_egress(skb, false); 4595 4596 if (netdev_xmit_txqueue_skipped()) 4597 txq = netdev_tx_queue_mapping(dev, skb); 4598 } 4599 #endif 4600 /* If device/qdisc don't need skb->dst, release it right now while 4601 * its hot in this cpu cache. 4602 */ 4603 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4604 skb_dst_drop(skb); 4605 else 4606 skb_dst_force(skb); 4607 4608 if (!txq) 4609 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4610 4611 q = rcu_dereference_bh(txq->qdisc); 4612 4613 trace_net_dev_queue(skb); 4614 if (q->enqueue) { 4615 rc = __dev_xmit_skb(skb, q, dev, txq); 4616 goto out; 4617 } 4618 4619 /* The device has no queue. Common case for software devices: 4620 * loopback, all the sorts of tunnels... 4621 4622 * Really, it is unlikely that netif_tx_lock protection is necessary 4623 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4624 * counters.) 4625 * However, it is possible, that they rely on protection 4626 * made by us here. 4627 4628 * Check this and shot the lock. It is not prone from deadlocks. 4629 *Either shot noqueue qdisc, it is even simpler 8) 4630 */ 4631 if (dev->flags & IFF_UP) { 4632 int cpu = smp_processor_id(); /* ok because BHs are off */ 4633 4634 /* Other cpus might concurrently change txq->xmit_lock_owner 4635 * to -1 or to their cpu id, but not to our id. 4636 */ 4637 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4638 if (dev_xmit_recursion()) 4639 goto recursion_alert; 4640 4641 skb = validate_xmit_skb(skb, dev, &again); 4642 if (!skb) 4643 goto out; 4644 4645 HARD_TX_LOCK(dev, txq, cpu); 4646 4647 if (!netif_xmit_stopped(txq)) { 4648 dev_xmit_recursion_inc(); 4649 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4650 dev_xmit_recursion_dec(); 4651 if (dev_xmit_complete(rc)) { 4652 HARD_TX_UNLOCK(dev, txq); 4653 goto out; 4654 } 4655 } 4656 HARD_TX_UNLOCK(dev, txq); 4657 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4658 dev->name); 4659 } else { 4660 /* Recursion is detected! It is possible, 4661 * unfortunately 4662 */ 4663 recursion_alert: 4664 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4665 dev->name); 4666 } 4667 } 4668 4669 rc = -ENETDOWN; 4670 rcu_read_unlock_bh(); 4671 4672 dev_core_stats_tx_dropped_inc(dev); 4673 kfree_skb_list(skb); 4674 return rc; 4675 out: 4676 rcu_read_unlock_bh(); 4677 return rc; 4678 } 4679 EXPORT_SYMBOL(__dev_queue_xmit); 4680 4681 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4682 { 4683 struct net_device *dev = skb->dev; 4684 struct sk_buff *orig_skb = skb; 4685 struct netdev_queue *txq; 4686 int ret = NETDEV_TX_BUSY; 4687 bool again = false; 4688 4689 if (unlikely(!netif_running(dev) || 4690 !netif_carrier_ok(dev))) 4691 goto drop; 4692 4693 skb = validate_xmit_skb_list(skb, dev, &again); 4694 if (skb != orig_skb) 4695 goto drop; 4696 4697 skb_set_queue_mapping(skb, queue_id); 4698 txq = skb_get_tx_queue(dev, skb); 4699 4700 local_bh_disable(); 4701 4702 dev_xmit_recursion_inc(); 4703 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4704 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4705 ret = netdev_start_xmit(skb, dev, txq, false); 4706 HARD_TX_UNLOCK(dev, txq); 4707 dev_xmit_recursion_dec(); 4708 4709 local_bh_enable(); 4710 return ret; 4711 drop: 4712 dev_core_stats_tx_dropped_inc(dev); 4713 kfree_skb_list(skb); 4714 return NET_XMIT_DROP; 4715 } 4716 EXPORT_SYMBOL(__dev_direct_xmit); 4717 4718 /************************************************************************* 4719 * Receiver routines 4720 *************************************************************************/ 4721 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4722 4723 int weight_p __read_mostly = 64; /* old backlog weight */ 4724 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4725 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4726 4727 /* Called with irq disabled */ 4728 static inline void ____napi_schedule(struct softnet_data *sd, 4729 struct napi_struct *napi) 4730 { 4731 struct task_struct *thread; 4732 4733 lockdep_assert_irqs_disabled(); 4734 4735 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4736 /* Paired with smp_mb__before_atomic() in 4737 * napi_enable()/dev_set_threaded(). 4738 * Use READ_ONCE() to guarantee a complete 4739 * read on napi->thread. Only call 4740 * wake_up_process() when it's not NULL. 4741 */ 4742 thread = READ_ONCE(napi->thread); 4743 if (thread) { 4744 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4745 goto use_local_napi; 4746 4747 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4748 wake_up_process(thread); 4749 return; 4750 } 4751 } 4752 4753 use_local_napi: 4754 list_add_tail(&napi->poll_list, &sd->poll_list); 4755 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4756 /* If not called from net_rx_action() 4757 * we have to raise NET_RX_SOFTIRQ. 4758 */ 4759 if (!sd->in_net_rx_action) 4760 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4761 } 4762 4763 #ifdef CONFIG_RPS 4764 4765 struct static_key_false rps_needed __read_mostly; 4766 EXPORT_SYMBOL(rps_needed); 4767 struct static_key_false rfs_needed __read_mostly; 4768 EXPORT_SYMBOL(rfs_needed); 4769 4770 static struct rps_dev_flow * 4771 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4772 struct rps_dev_flow *rflow, u16 next_cpu) 4773 { 4774 if (next_cpu < nr_cpu_ids) { 4775 u32 head; 4776 #ifdef CONFIG_RFS_ACCEL 4777 struct netdev_rx_queue *rxqueue; 4778 struct rps_dev_flow_table *flow_table; 4779 struct rps_dev_flow *old_rflow; 4780 u16 rxq_index; 4781 u32 flow_id; 4782 int rc; 4783 4784 /* Should we steer this flow to a different hardware queue? */ 4785 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4786 !(dev->features & NETIF_F_NTUPLE)) 4787 goto out; 4788 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4789 if (rxq_index == skb_get_rx_queue(skb)) 4790 goto out; 4791 4792 rxqueue = dev->_rx + rxq_index; 4793 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4794 if (!flow_table) 4795 goto out; 4796 flow_id = skb_get_hash(skb) & flow_table->mask; 4797 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4798 rxq_index, flow_id); 4799 if (rc < 0) 4800 goto out; 4801 old_rflow = rflow; 4802 rflow = &flow_table->flows[flow_id]; 4803 WRITE_ONCE(rflow->filter, rc); 4804 if (old_rflow->filter == rc) 4805 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4806 out: 4807 #endif 4808 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4809 rps_input_queue_tail_save(&rflow->last_qtail, head); 4810 } 4811 4812 WRITE_ONCE(rflow->cpu, next_cpu); 4813 return rflow; 4814 } 4815 4816 /* 4817 * get_rps_cpu is called from netif_receive_skb and returns the target 4818 * CPU from the RPS map of the receiving queue for a given skb. 4819 * rcu_read_lock must be held on entry. 4820 */ 4821 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4822 struct rps_dev_flow **rflowp) 4823 { 4824 const struct rps_sock_flow_table *sock_flow_table; 4825 struct netdev_rx_queue *rxqueue = dev->_rx; 4826 struct rps_dev_flow_table *flow_table; 4827 struct rps_map *map; 4828 int cpu = -1; 4829 u32 tcpu; 4830 u32 hash; 4831 4832 if (skb_rx_queue_recorded(skb)) { 4833 u16 index = skb_get_rx_queue(skb); 4834 4835 if (unlikely(index >= dev->real_num_rx_queues)) { 4836 WARN_ONCE(dev->real_num_rx_queues > 1, 4837 "%s received packet on queue %u, but number " 4838 "of RX queues is %u\n", 4839 dev->name, index, dev->real_num_rx_queues); 4840 goto done; 4841 } 4842 rxqueue += index; 4843 } 4844 4845 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4846 4847 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4848 map = rcu_dereference(rxqueue->rps_map); 4849 if (!flow_table && !map) 4850 goto done; 4851 4852 skb_reset_network_header(skb); 4853 hash = skb_get_hash(skb); 4854 if (!hash) 4855 goto done; 4856 4857 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4858 if (flow_table && sock_flow_table) { 4859 struct rps_dev_flow *rflow; 4860 u32 next_cpu; 4861 u32 ident; 4862 4863 /* First check into global flow table if there is a match. 4864 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4865 */ 4866 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4867 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4868 goto try_rps; 4869 4870 next_cpu = ident & net_hotdata.rps_cpu_mask; 4871 4872 /* OK, now we know there is a match, 4873 * we can look at the local (per receive queue) flow table 4874 */ 4875 rflow = &flow_table->flows[hash & flow_table->mask]; 4876 tcpu = rflow->cpu; 4877 4878 /* 4879 * If the desired CPU (where last recvmsg was done) is 4880 * different from current CPU (one in the rx-queue flow 4881 * table entry), switch if one of the following holds: 4882 * - Current CPU is unset (>= nr_cpu_ids). 4883 * - Current CPU is offline. 4884 * - The current CPU's queue tail has advanced beyond the 4885 * last packet that was enqueued using this table entry. 4886 * This guarantees that all previous packets for the flow 4887 * have been dequeued, thus preserving in order delivery. 4888 */ 4889 if (unlikely(tcpu != next_cpu) && 4890 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4891 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4892 rflow->last_qtail)) >= 0)) { 4893 tcpu = next_cpu; 4894 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4895 } 4896 4897 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4898 *rflowp = rflow; 4899 cpu = tcpu; 4900 goto done; 4901 } 4902 } 4903 4904 try_rps: 4905 4906 if (map) { 4907 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4908 if (cpu_online(tcpu)) { 4909 cpu = tcpu; 4910 goto done; 4911 } 4912 } 4913 4914 done: 4915 return cpu; 4916 } 4917 4918 #ifdef CONFIG_RFS_ACCEL 4919 4920 /** 4921 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4922 * @dev: Device on which the filter was set 4923 * @rxq_index: RX queue index 4924 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4925 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4926 * 4927 * Drivers that implement ndo_rx_flow_steer() should periodically call 4928 * this function for each installed filter and remove the filters for 4929 * which it returns %true. 4930 */ 4931 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4932 u32 flow_id, u16 filter_id) 4933 { 4934 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4935 struct rps_dev_flow_table *flow_table; 4936 struct rps_dev_flow *rflow; 4937 bool expire = true; 4938 unsigned int cpu; 4939 4940 rcu_read_lock(); 4941 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4942 if (flow_table && flow_id <= flow_table->mask) { 4943 rflow = &flow_table->flows[flow_id]; 4944 cpu = READ_ONCE(rflow->cpu); 4945 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 4946 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 4947 READ_ONCE(rflow->last_qtail)) < 4948 (int)(10 * flow_table->mask))) 4949 expire = false; 4950 } 4951 rcu_read_unlock(); 4952 return expire; 4953 } 4954 EXPORT_SYMBOL(rps_may_expire_flow); 4955 4956 #endif /* CONFIG_RFS_ACCEL */ 4957 4958 /* Called from hardirq (IPI) context */ 4959 static void rps_trigger_softirq(void *data) 4960 { 4961 struct softnet_data *sd = data; 4962 4963 ____napi_schedule(sd, &sd->backlog); 4964 sd->received_rps++; 4965 } 4966 4967 #endif /* CONFIG_RPS */ 4968 4969 /* Called from hardirq (IPI) context */ 4970 static void trigger_rx_softirq(void *data) 4971 { 4972 struct softnet_data *sd = data; 4973 4974 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4975 smp_store_release(&sd->defer_ipi_scheduled, 0); 4976 } 4977 4978 /* 4979 * After we queued a packet into sd->input_pkt_queue, 4980 * we need to make sure this queue is serviced soon. 4981 * 4982 * - If this is another cpu queue, link it to our rps_ipi_list, 4983 * and make sure we will process rps_ipi_list from net_rx_action(). 4984 * 4985 * - If this is our own queue, NAPI schedule our backlog. 4986 * Note that this also raises NET_RX_SOFTIRQ. 4987 */ 4988 static void napi_schedule_rps(struct softnet_data *sd) 4989 { 4990 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4991 4992 #ifdef CONFIG_RPS 4993 if (sd != mysd) { 4994 if (use_backlog_threads()) { 4995 __napi_schedule_irqoff(&sd->backlog); 4996 return; 4997 } 4998 4999 sd->rps_ipi_next = mysd->rps_ipi_list; 5000 mysd->rps_ipi_list = sd; 5001 5002 /* If not called from net_rx_action() or napi_threaded_poll() 5003 * we have to raise NET_RX_SOFTIRQ. 5004 */ 5005 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5006 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5007 return; 5008 } 5009 #endif /* CONFIG_RPS */ 5010 __napi_schedule_irqoff(&mysd->backlog); 5011 } 5012 5013 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 5014 { 5015 unsigned long flags; 5016 5017 if (use_backlog_threads()) { 5018 backlog_lock_irq_save(sd, &flags); 5019 5020 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5021 __napi_schedule_irqoff(&sd->backlog); 5022 5023 backlog_unlock_irq_restore(sd, &flags); 5024 5025 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5026 smp_call_function_single_async(cpu, &sd->defer_csd); 5027 } 5028 } 5029 5030 #ifdef CONFIG_NET_FLOW_LIMIT 5031 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5032 #endif 5033 5034 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 5035 { 5036 #ifdef CONFIG_NET_FLOW_LIMIT 5037 struct sd_flow_limit *fl; 5038 struct softnet_data *sd; 5039 unsigned int old_flow, new_flow; 5040 5041 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 5042 return false; 5043 5044 sd = this_cpu_ptr(&softnet_data); 5045 5046 rcu_read_lock(); 5047 fl = rcu_dereference(sd->flow_limit); 5048 if (fl) { 5049 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 5050 old_flow = fl->history[fl->history_head]; 5051 fl->history[fl->history_head] = new_flow; 5052 5053 fl->history_head++; 5054 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5055 5056 if (likely(fl->buckets[old_flow])) 5057 fl->buckets[old_flow]--; 5058 5059 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5060 fl->count++; 5061 rcu_read_unlock(); 5062 return true; 5063 } 5064 } 5065 rcu_read_unlock(); 5066 #endif 5067 return false; 5068 } 5069 5070 /* 5071 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5072 * queue (may be a remote CPU queue). 5073 */ 5074 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5075 unsigned int *qtail) 5076 { 5077 enum skb_drop_reason reason; 5078 struct softnet_data *sd; 5079 unsigned long flags; 5080 unsigned int qlen; 5081 int max_backlog; 5082 u32 tail; 5083 5084 reason = SKB_DROP_REASON_DEV_READY; 5085 if (!netif_running(skb->dev)) 5086 goto bad_dev; 5087 5088 reason = SKB_DROP_REASON_CPU_BACKLOG; 5089 sd = &per_cpu(softnet_data, cpu); 5090 5091 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5092 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5093 if (unlikely(qlen > max_backlog)) 5094 goto cpu_backlog_drop; 5095 backlog_lock_irq_save(sd, &flags); 5096 qlen = skb_queue_len(&sd->input_pkt_queue); 5097 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 5098 if (!qlen) { 5099 /* Schedule NAPI for backlog device. We can use 5100 * non atomic operation as we own the queue lock. 5101 */ 5102 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5103 &sd->backlog.state)) 5104 napi_schedule_rps(sd); 5105 } 5106 __skb_queue_tail(&sd->input_pkt_queue, skb); 5107 tail = rps_input_queue_tail_incr(sd); 5108 backlog_unlock_irq_restore(sd, &flags); 5109 5110 /* save the tail outside of the critical section */ 5111 rps_input_queue_tail_save(qtail, tail); 5112 return NET_RX_SUCCESS; 5113 } 5114 5115 backlog_unlock_irq_restore(sd, &flags); 5116 5117 cpu_backlog_drop: 5118 atomic_inc(&sd->dropped); 5119 bad_dev: 5120 dev_core_stats_rx_dropped_inc(skb->dev); 5121 kfree_skb_reason(skb, reason); 5122 return NET_RX_DROP; 5123 } 5124 5125 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5126 { 5127 struct net_device *dev = skb->dev; 5128 struct netdev_rx_queue *rxqueue; 5129 5130 rxqueue = dev->_rx; 5131 5132 if (skb_rx_queue_recorded(skb)) { 5133 u16 index = skb_get_rx_queue(skb); 5134 5135 if (unlikely(index >= dev->real_num_rx_queues)) { 5136 WARN_ONCE(dev->real_num_rx_queues > 1, 5137 "%s received packet on queue %u, but number " 5138 "of RX queues is %u\n", 5139 dev->name, index, dev->real_num_rx_queues); 5140 5141 return rxqueue; /* Return first rxqueue */ 5142 } 5143 rxqueue += index; 5144 } 5145 return rxqueue; 5146 } 5147 5148 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5149 const struct bpf_prog *xdp_prog) 5150 { 5151 void *orig_data, *orig_data_end, *hard_start; 5152 struct netdev_rx_queue *rxqueue; 5153 bool orig_bcast, orig_host; 5154 u32 mac_len, frame_sz; 5155 __be16 orig_eth_type; 5156 struct ethhdr *eth; 5157 u32 metalen, act; 5158 int off; 5159 5160 /* The XDP program wants to see the packet starting at the MAC 5161 * header. 5162 */ 5163 mac_len = skb->data - skb_mac_header(skb); 5164 hard_start = skb->data - skb_headroom(skb); 5165 5166 /* SKB "head" area always have tailroom for skb_shared_info */ 5167 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5168 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5169 5170 rxqueue = netif_get_rxqueue(skb); 5171 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5172 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5173 skb_headlen(skb) + mac_len, true); 5174 if (skb_is_nonlinear(skb)) { 5175 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5176 xdp_buff_set_frags_flag(xdp); 5177 } else { 5178 xdp_buff_clear_frags_flag(xdp); 5179 } 5180 5181 orig_data_end = xdp->data_end; 5182 orig_data = xdp->data; 5183 eth = (struct ethhdr *)xdp->data; 5184 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5185 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5186 orig_eth_type = eth->h_proto; 5187 5188 act = bpf_prog_run_xdp(xdp_prog, xdp); 5189 5190 /* check if bpf_xdp_adjust_head was used */ 5191 off = xdp->data - orig_data; 5192 if (off) { 5193 if (off > 0) 5194 __skb_pull(skb, off); 5195 else if (off < 0) 5196 __skb_push(skb, -off); 5197 5198 skb->mac_header += off; 5199 skb_reset_network_header(skb); 5200 } 5201 5202 /* check if bpf_xdp_adjust_tail was used */ 5203 off = xdp->data_end - orig_data_end; 5204 if (off != 0) { 5205 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5206 skb->len += off; /* positive on grow, negative on shrink */ 5207 } 5208 5209 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5210 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5211 */ 5212 if (xdp_buff_has_frags(xdp)) 5213 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5214 else 5215 skb->data_len = 0; 5216 5217 /* check if XDP changed eth hdr such SKB needs update */ 5218 eth = (struct ethhdr *)xdp->data; 5219 if ((orig_eth_type != eth->h_proto) || 5220 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5221 skb->dev->dev_addr)) || 5222 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5223 __skb_push(skb, ETH_HLEN); 5224 skb->pkt_type = PACKET_HOST; 5225 skb->protocol = eth_type_trans(skb, skb->dev); 5226 } 5227 5228 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5229 * before calling us again on redirect path. We do not call do_redirect 5230 * as we leave that up to the caller. 5231 * 5232 * Caller is responsible for managing lifetime of skb (i.e. calling 5233 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5234 */ 5235 switch (act) { 5236 case XDP_REDIRECT: 5237 case XDP_TX: 5238 __skb_push(skb, mac_len); 5239 break; 5240 case XDP_PASS: 5241 metalen = xdp->data - xdp->data_meta; 5242 if (metalen) 5243 skb_metadata_set(skb, metalen); 5244 break; 5245 } 5246 5247 return act; 5248 } 5249 5250 static int 5251 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5252 { 5253 struct sk_buff *skb = *pskb; 5254 int err, hroom, troom; 5255 5256 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog)) 5257 return 0; 5258 5259 /* In case we have to go down the path and also linearize, 5260 * then lets do the pskb_expand_head() work just once here. 5261 */ 5262 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5263 troom = skb->tail + skb->data_len - skb->end; 5264 err = pskb_expand_head(skb, 5265 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5266 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5267 if (err) 5268 return err; 5269 5270 return skb_linearize(skb); 5271 } 5272 5273 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5274 struct xdp_buff *xdp, 5275 const struct bpf_prog *xdp_prog) 5276 { 5277 struct sk_buff *skb = *pskb; 5278 u32 mac_len, act = XDP_DROP; 5279 5280 /* Reinjected packets coming from act_mirred or similar should 5281 * not get XDP generic processing. 5282 */ 5283 if (skb_is_redirected(skb)) 5284 return XDP_PASS; 5285 5286 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5287 * bytes. This is the guarantee that also native XDP provides, 5288 * thus we need to do it here as well. 5289 */ 5290 mac_len = skb->data - skb_mac_header(skb); 5291 __skb_push(skb, mac_len); 5292 5293 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5294 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5295 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5296 goto do_drop; 5297 } 5298 5299 __skb_pull(*pskb, mac_len); 5300 5301 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5302 switch (act) { 5303 case XDP_REDIRECT: 5304 case XDP_TX: 5305 case XDP_PASS: 5306 break; 5307 default: 5308 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5309 fallthrough; 5310 case XDP_ABORTED: 5311 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5312 fallthrough; 5313 case XDP_DROP: 5314 do_drop: 5315 kfree_skb(*pskb); 5316 break; 5317 } 5318 5319 return act; 5320 } 5321 5322 /* When doing generic XDP we have to bypass the qdisc layer and the 5323 * network taps in order to match in-driver-XDP behavior. This also means 5324 * that XDP packets are able to starve other packets going through a qdisc, 5325 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5326 * queues, so they do not have this starvation issue. 5327 */ 5328 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5329 { 5330 struct net_device *dev = skb->dev; 5331 struct netdev_queue *txq; 5332 bool free_skb = true; 5333 int cpu, rc; 5334 5335 txq = netdev_core_pick_tx(dev, skb, NULL); 5336 cpu = smp_processor_id(); 5337 HARD_TX_LOCK(dev, txq, cpu); 5338 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5339 rc = netdev_start_xmit(skb, dev, txq, 0); 5340 if (dev_xmit_complete(rc)) 5341 free_skb = false; 5342 } 5343 HARD_TX_UNLOCK(dev, txq); 5344 if (free_skb) { 5345 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5346 dev_core_stats_tx_dropped_inc(dev); 5347 kfree_skb(skb); 5348 } 5349 } 5350 5351 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5352 5353 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5354 { 5355 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5356 5357 if (xdp_prog) { 5358 struct xdp_buff xdp; 5359 u32 act; 5360 int err; 5361 5362 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5363 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5364 if (act != XDP_PASS) { 5365 switch (act) { 5366 case XDP_REDIRECT: 5367 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5368 &xdp, xdp_prog); 5369 if (err) 5370 goto out_redir; 5371 break; 5372 case XDP_TX: 5373 generic_xdp_tx(*pskb, xdp_prog); 5374 break; 5375 } 5376 bpf_net_ctx_clear(bpf_net_ctx); 5377 return XDP_DROP; 5378 } 5379 bpf_net_ctx_clear(bpf_net_ctx); 5380 } 5381 return XDP_PASS; 5382 out_redir: 5383 bpf_net_ctx_clear(bpf_net_ctx); 5384 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5385 return XDP_DROP; 5386 } 5387 EXPORT_SYMBOL_GPL(do_xdp_generic); 5388 5389 static int netif_rx_internal(struct sk_buff *skb) 5390 { 5391 int ret; 5392 5393 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5394 5395 trace_netif_rx(skb); 5396 5397 #ifdef CONFIG_RPS 5398 if (static_branch_unlikely(&rps_needed)) { 5399 struct rps_dev_flow voidflow, *rflow = &voidflow; 5400 int cpu; 5401 5402 rcu_read_lock(); 5403 5404 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5405 if (cpu < 0) 5406 cpu = smp_processor_id(); 5407 5408 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5409 5410 rcu_read_unlock(); 5411 } else 5412 #endif 5413 { 5414 unsigned int qtail; 5415 5416 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5417 } 5418 return ret; 5419 } 5420 5421 /** 5422 * __netif_rx - Slightly optimized version of netif_rx 5423 * @skb: buffer to post 5424 * 5425 * This behaves as netif_rx except that it does not disable bottom halves. 5426 * As a result this function may only be invoked from the interrupt context 5427 * (either hard or soft interrupt). 5428 */ 5429 int __netif_rx(struct sk_buff *skb) 5430 { 5431 int ret; 5432 5433 lockdep_assert_once(hardirq_count() | softirq_count()); 5434 5435 trace_netif_rx_entry(skb); 5436 ret = netif_rx_internal(skb); 5437 trace_netif_rx_exit(ret); 5438 return ret; 5439 } 5440 EXPORT_SYMBOL(__netif_rx); 5441 5442 /** 5443 * netif_rx - post buffer to the network code 5444 * @skb: buffer to post 5445 * 5446 * This function receives a packet from a device driver and queues it for 5447 * the upper (protocol) levels to process via the backlog NAPI device. It 5448 * always succeeds. The buffer may be dropped during processing for 5449 * congestion control or by the protocol layers. 5450 * The network buffer is passed via the backlog NAPI device. Modern NIC 5451 * driver should use NAPI and GRO. 5452 * This function can used from interrupt and from process context. The 5453 * caller from process context must not disable interrupts before invoking 5454 * this function. 5455 * 5456 * return values: 5457 * NET_RX_SUCCESS (no congestion) 5458 * NET_RX_DROP (packet was dropped) 5459 * 5460 */ 5461 int netif_rx(struct sk_buff *skb) 5462 { 5463 bool need_bh_off = !(hardirq_count() | softirq_count()); 5464 int ret; 5465 5466 if (need_bh_off) 5467 local_bh_disable(); 5468 trace_netif_rx_entry(skb); 5469 ret = netif_rx_internal(skb); 5470 trace_netif_rx_exit(ret); 5471 if (need_bh_off) 5472 local_bh_enable(); 5473 return ret; 5474 } 5475 EXPORT_SYMBOL(netif_rx); 5476 5477 static __latent_entropy void net_tx_action(void) 5478 { 5479 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5480 5481 if (sd->completion_queue) { 5482 struct sk_buff *clist; 5483 5484 local_irq_disable(); 5485 clist = sd->completion_queue; 5486 sd->completion_queue = NULL; 5487 local_irq_enable(); 5488 5489 while (clist) { 5490 struct sk_buff *skb = clist; 5491 5492 clist = clist->next; 5493 5494 WARN_ON(refcount_read(&skb->users)); 5495 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5496 trace_consume_skb(skb, net_tx_action); 5497 else 5498 trace_kfree_skb(skb, net_tx_action, 5499 get_kfree_skb_cb(skb)->reason, NULL); 5500 5501 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5502 __kfree_skb(skb); 5503 else 5504 __napi_kfree_skb(skb, 5505 get_kfree_skb_cb(skb)->reason); 5506 } 5507 } 5508 5509 if (sd->output_queue) { 5510 struct Qdisc *head; 5511 5512 local_irq_disable(); 5513 head = sd->output_queue; 5514 sd->output_queue = NULL; 5515 sd->output_queue_tailp = &sd->output_queue; 5516 local_irq_enable(); 5517 5518 rcu_read_lock(); 5519 5520 while (head) { 5521 struct Qdisc *q = head; 5522 spinlock_t *root_lock = NULL; 5523 5524 head = head->next_sched; 5525 5526 /* We need to make sure head->next_sched is read 5527 * before clearing __QDISC_STATE_SCHED 5528 */ 5529 smp_mb__before_atomic(); 5530 5531 if (!(q->flags & TCQ_F_NOLOCK)) { 5532 root_lock = qdisc_lock(q); 5533 spin_lock(root_lock); 5534 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5535 &q->state))) { 5536 /* There is a synchronize_net() between 5537 * STATE_DEACTIVATED flag being set and 5538 * qdisc_reset()/some_qdisc_is_busy() in 5539 * dev_deactivate(), so we can safely bail out 5540 * early here to avoid data race between 5541 * qdisc_deactivate() and some_qdisc_is_busy() 5542 * for lockless qdisc. 5543 */ 5544 clear_bit(__QDISC_STATE_SCHED, &q->state); 5545 continue; 5546 } 5547 5548 clear_bit(__QDISC_STATE_SCHED, &q->state); 5549 qdisc_run(q); 5550 if (root_lock) 5551 spin_unlock(root_lock); 5552 } 5553 5554 rcu_read_unlock(); 5555 } 5556 5557 xfrm_dev_backlog(sd); 5558 } 5559 5560 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5561 /* This hook is defined here for ATM LANE */ 5562 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5563 unsigned char *addr) __read_mostly; 5564 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5565 #endif 5566 5567 /** 5568 * netdev_is_rx_handler_busy - check if receive handler is registered 5569 * @dev: device to check 5570 * 5571 * Check if a receive handler is already registered for a given device. 5572 * Return true if there one. 5573 * 5574 * The caller must hold the rtnl_mutex. 5575 */ 5576 bool netdev_is_rx_handler_busy(struct net_device *dev) 5577 { 5578 ASSERT_RTNL(); 5579 return dev && rtnl_dereference(dev->rx_handler); 5580 } 5581 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5582 5583 /** 5584 * netdev_rx_handler_register - register receive handler 5585 * @dev: device to register a handler for 5586 * @rx_handler: receive handler to register 5587 * @rx_handler_data: data pointer that is used by rx handler 5588 * 5589 * Register a receive handler for a device. This handler will then be 5590 * called from __netif_receive_skb. A negative errno code is returned 5591 * on a failure. 5592 * 5593 * The caller must hold the rtnl_mutex. 5594 * 5595 * For a general description of rx_handler, see enum rx_handler_result. 5596 */ 5597 int netdev_rx_handler_register(struct net_device *dev, 5598 rx_handler_func_t *rx_handler, 5599 void *rx_handler_data) 5600 { 5601 if (netdev_is_rx_handler_busy(dev)) 5602 return -EBUSY; 5603 5604 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5605 return -EINVAL; 5606 5607 /* Note: rx_handler_data must be set before rx_handler */ 5608 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5609 rcu_assign_pointer(dev->rx_handler, rx_handler); 5610 5611 return 0; 5612 } 5613 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5614 5615 /** 5616 * netdev_rx_handler_unregister - unregister receive handler 5617 * @dev: device to unregister a handler from 5618 * 5619 * Unregister a receive handler from a device. 5620 * 5621 * The caller must hold the rtnl_mutex. 5622 */ 5623 void netdev_rx_handler_unregister(struct net_device *dev) 5624 { 5625 5626 ASSERT_RTNL(); 5627 RCU_INIT_POINTER(dev->rx_handler, NULL); 5628 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5629 * section has a guarantee to see a non NULL rx_handler_data 5630 * as well. 5631 */ 5632 synchronize_net(); 5633 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5634 } 5635 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5636 5637 /* 5638 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5639 * the special handling of PFMEMALLOC skbs. 5640 */ 5641 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5642 { 5643 switch (skb->protocol) { 5644 case htons(ETH_P_ARP): 5645 case htons(ETH_P_IP): 5646 case htons(ETH_P_IPV6): 5647 case htons(ETH_P_8021Q): 5648 case htons(ETH_P_8021AD): 5649 return true; 5650 default: 5651 return false; 5652 } 5653 } 5654 5655 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5656 int *ret, struct net_device *orig_dev) 5657 { 5658 if (nf_hook_ingress_active(skb)) { 5659 int ingress_retval; 5660 5661 if (*pt_prev) { 5662 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5663 *pt_prev = NULL; 5664 } 5665 5666 rcu_read_lock(); 5667 ingress_retval = nf_hook_ingress(skb); 5668 rcu_read_unlock(); 5669 return ingress_retval; 5670 } 5671 return 0; 5672 } 5673 5674 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5675 struct packet_type **ppt_prev) 5676 { 5677 struct packet_type *ptype, *pt_prev; 5678 rx_handler_func_t *rx_handler; 5679 struct sk_buff *skb = *pskb; 5680 struct net_device *orig_dev; 5681 bool deliver_exact = false; 5682 int ret = NET_RX_DROP; 5683 __be16 type; 5684 5685 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5686 5687 trace_netif_receive_skb(skb); 5688 5689 orig_dev = skb->dev; 5690 5691 skb_reset_network_header(skb); 5692 #if !defined(CONFIG_DEBUG_NET) 5693 /* We plan to no longer reset the transport header here. 5694 * Give some time to fuzzers and dev build to catch bugs 5695 * in network stacks. 5696 */ 5697 if (!skb_transport_header_was_set(skb)) 5698 skb_reset_transport_header(skb); 5699 #endif 5700 skb_reset_mac_len(skb); 5701 5702 pt_prev = NULL; 5703 5704 another_round: 5705 skb->skb_iif = skb->dev->ifindex; 5706 5707 __this_cpu_inc(softnet_data.processed); 5708 5709 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5710 int ret2; 5711 5712 migrate_disable(); 5713 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5714 &skb); 5715 migrate_enable(); 5716 5717 if (ret2 != XDP_PASS) { 5718 ret = NET_RX_DROP; 5719 goto out; 5720 } 5721 } 5722 5723 if (eth_type_vlan(skb->protocol)) { 5724 skb = skb_vlan_untag(skb); 5725 if (unlikely(!skb)) 5726 goto out; 5727 } 5728 5729 if (skb_skip_tc_classify(skb)) 5730 goto skip_classify; 5731 5732 if (pfmemalloc) 5733 goto skip_taps; 5734 5735 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) { 5736 if (pt_prev) 5737 ret = deliver_skb(skb, pt_prev, orig_dev); 5738 pt_prev = ptype; 5739 } 5740 5741 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5742 if (pt_prev) 5743 ret = deliver_skb(skb, pt_prev, orig_dev); 5744 pt_prev = ptype; 5745 } 5746 5747 skip_taps: 5748 #ifdef CONFIG_NET_INGRESS 5749 if (static_branch_unlikely(&ingress_needed_key)) { 5750 bool another = false; 5751 5752 nf_skip_egress(skb, true); 5753 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5754 &another); 5755 if (another) 5756 goto another_round; 5757 if (!skb) 5758 goto out; 5759 5760 nf_skip_egress(skb, false); 5761 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5762 goto out; 5763 } 5764 #endif 5765 skb_reset_redirect(skb); 5766 skip_classify: 5767 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5768 goto drop; 5769 5770 if (skb_vlan_tag_present(skb)) { 5771 if (pt_prev) { 5772 ret = deliver_skb(skb, pt_prev, orig_dev); 5773 pt_prev = NULL; 5774 } 5775 if (vlan_do_receive(&skb)) 5776 goto another_round; 5777 else if (unlikely(!skb)) 5778 goto out; 5779 } 5780 5781 rx_handler = rcu_dereference(skb->dev->rx_handler); 5782 if (rx_handler) { 5783 if (pt_prev) { 5784 ret = deliver_skb(skb, pt_prev, orig_dev); 5785 pt_prev = NULL; 5786 } 5787 switch (rx_handler(&skb)) { 5788 case RX_HANDLER_CONSUMED: 5789 ret = NET_RX_SUCCESS; 5790 goto out; 5791 case RX_HANDLER_ANOTHER: 5792 goto another_round; 5793 case RX_HANDLER_EXACT: 5794 deliver_exact = true; 5795 break; 5796 case RX_HANDLER_PASS: 5797 break; 5798 default: 5799 BUG(); 5800 } 5801 } 5802 5803 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5804 check_vlan_id: 5805 if (skb_vlan_tag_get_id(skb)) { 5806 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5807 * find vlan device. 5808 */ 5809 skb->pkt_type = PACKET_OTHERHOST; 5810 } else if (eth_type_vlan(skb->protocol)) { 5811 /* Outer header is 802.1P with vlan 0, inner header is 5812 * 802.1Q or 802.1AD and vlan_do_receive() above could 5813 * not find vlan dev for vlan id 0. 5814 */ 5815 __vlan_hwaccel_clear_tag(skb); 5816 skb = skb_vlan_untag(skb); 5817 if (unlikely(!skb)) 5818 goto out; 5819 if (vlan_do_receive(&skb)) 5820 /* After stripping off 802.1P header with vlan 0 5821 * vlan dev is found for inner header. 5822 */ 5823 goto another_round; 5824 else if (unlikely(!skb)) 5825 goto out; 5826 else 5827 /* We have stripped outer 802.1P vlan 0 header. 5828 * But could not find vlan dev. 5829 * check again for vlan id to set OTHERHOST. 5830 */ 5831 goto check_vlan_id; 5832 } 5833 /* Note: we might in the future use prio bits 5834 * and set skb->priority like in vlan_do_receive() 5835 * For the time being, just ignore Priority Code Point 5836 */ 5837 __vlan_hwaccel_clear_tag(skb); 5838 } 5839 5840 type = skb->protocol; 5841 5842 /* deliver only exact match when indicated */ 5843 if (likely(!deliver_exact)) { 5844 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5845 &ptype_base[ntohs(type) & 5846 PTYPE_HASH_MASK]); 5847 } 5848 5849 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5850 &orig_dev->ptype_specific); 5851 5852 if (unlikely(skb->dev != orig_dev)) { 5853 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5854 &skb->dev->ptype_specific); 5855 } 5856 5857 if (pt_prev) { 5858 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5859 goto drop; 5860 *ppt_prev = pt_prev; 5861 } else { 5862 drop: 5863 if (!deliver_exact) 5864 dev_core_stats_rx_dropped_inc(skb->dev); 5865 else 5866 dev_core_stats_rx_nohandler_inc(skb->dev); 5867 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5868 /* Jamal, now you will not able to escape explaining 5869 * me how you were going to use this. :-) 5870 */ 5871 ret = NET_RX_DROP; 5872 } 5873 5874 out: 5875 /* The invariant here is that if *ppt_prev is not NULL 5876 * then skb should also be non-NULL. 5877 * 5878 * Apparently *ppt_prev assignment above holds this invariant due to 5879 * skb dereferencing near it. 5880 */ 5881 *pskb = skb; 5882 return ret; 5883 } 5884 5885 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5886 { 5887 struct net_device *orig_dev = skb->dev; 5888 struct packet_type *pt_prev = NULL; 5889 int ret; 5890 5891 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5892 if (pt_prev) 5893 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5894 skb->dev, pt_prev, orig_dev); 5895 return ret; 5896 } 5897 5898 /** 5899 * netif_receive_skb_core - special purpose version of netif_receive_skb 5900 * @skb: buffer to process 5901 * 5902 * More direct receive version of netif_receive_skb(). It should 5903 * only be used by callers that have a need to skip RPS and Generic XDP. 5904 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5905 * 5906 * This function may only be called from softirq context and interrupts 5907 * should be enabled. 5908 * 5909 * Return values (usually ignored): 5910 * NET_RX_SUCCESS: no congestion 5911 * NET_RX_DROP: packet was dropped 5912 */ 5913 int netif_receive_skb_core(struct sk_buff *skb) 5914 { 5915 int ret; 5916 5917 rcu_read_lock(); 5918 ret = __netif_receive_skb_one_core(skb, false); 5919 rcu_read_unlock(); 5920 5921 return ret; 5922 } 5923 EXPORT_SYMBOL(netif_receive_skb_core); 5924 5925 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5926 struct packet_type *pt_prev, 5927 struct net_device *orig_dev) 5928 { 5929 struct sk_buff *skb, *next; 5930 5931 if (!pt_prev) 5932 return; 5933 if (list_empty(head)) 5934 return; 5935 if (pt_prev->list_func != NULL) 5936 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5937 ip_list_rcv, head, pt_prev, orig_dev); 5938 else 5939 list_for_each_entry_safe(skb, next, head, list) { 5940 skb_list_del_init(skb); 5941 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5942 } 5943 } 5944 5945 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5946 { 5947 /* Fast-path assumptions: 5948 * - There is no RX handler. 5949 * - Only one packet_type matches. 5950 * If either of these fails, we will end up doing some per-packet 5951 * processing in-line, then handling the 'last ptype' for the whole 5952 * sublist. This can't cause out-of-order delivery to any single ptype, 5953 * because the 'last ptype' must be constant across the sublist, and all 5954 * other ptypes are handled per-packet. 5955 */ 5956 /* Current (common) ptype of sublist */ 5957 struct packet_type *pt_curr = NULL; 5958 /* Current (common) orig_dev of sublist */ 5959 struct net_device *od_curr = NULL; 5960 struct sk_buff *skb, *next; 5961 LIST_HEAD(sublist); 5962 5963 list_for_each_entry_safe(skb, next, head, list) { 5964 struct net_device *orig_dev = skb->dev; 5965 struct packet_type *pt_prev = NULL; 5966 5967 skb_list_del_init(skb); 5968 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5969 if (!pt_prev) 5970 continue; 5971 if (pt_curr != pt_prev || od_curr != orig_dev) { 5972 /* dispatch old sublist */ 5973 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5974 /* start new sublist */ 5975 INIT_LIST_HEAD(&sublist); 5976 pt_curr = pt_prev; 5977 od_curr = orig_dev; 5978 } 5979 list_add_tail(&skb->list, &sublist); 5980 } 5981 5982 /* dispatch final sublist */ 5983 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5984 } 5985 5986 static int __netif_receive_skb(struct sk_buff *skb) 5987 { 5988 int ret; 5989 5990 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5991 unsigned int noreclaim_flag; 5992 5993 /* 5994 * PFMEMALLOC skbs are special, they should 5995 * - be delivered to SOCK_MEMALLOC sockets only 5996 * - stay away from userspace 5997 * - have bounded memory usage 5998 * 5999 * Use PF_MEMALLOC as this saves us from propagating the allocation 6000 * context down to all allocation sites. 6001 */ 6002 noreclaim_flag = memalloc_noreclaim_save(); 6003 ret = __netif_receive_skb_one_core(skb, true); 6004 memalloc_noreclaim_restore(noreclaim_flag); 6005 } else 6006 ret = __netif_receive_skb_one_core(skb, false); 6007 6008 return ret; 6009 } 6010 6011 static void __netif_receive_skb_list(struct list_head *head) 6012 { 6013 unsigned long noreclaim_flag = 0; 6014 struct sk_buff *skb, *next; 6015 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6016 6017 list_for_each_entry_safe(skb, next, head, list) { 6018 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6019 struct list_head sublist; 6020 6021 /* Handle the previous sublist */ 6022 list_cut_before(&sublist, head, &skb->list); 6023 if (!list_empty(&sublist)) 6024 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6025 pfmemalloc = !pfmemalloc; 6026 /* See comments in __netif_receive_skb */ 6027 if (pfmemalloc) 6028 noreclaim_flag = memalloc_noreclaim_save(); 6029 else 6030 memalloc_noreclaim_restore(noreclaim_flag); 6031 } 6032 } 6033 /* Handle the remaining sublist */ 6034 if (!list_empty(head)) 6035 __netif_receive_skb_list_core(head, pfmemalloc); 6036 /* Restore pflags */ 6037 if (pfmemalloc) 6038 memalloc_noreclaim_restore(noreclaim_flag); 6039 } 6040 6041 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6042 { 6043 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6044 struct bpf_prog *new = xdp->prog; 6045 int ret = 0; 6046 6047 switch (xdp->command) { 6048 case XDP_SETUP_PROG: 6049 rcu_assign_pointer(dev->xdp_prog, new); 6050 if (old) 6051 bpf_prog_put(old); 6052 6053 if (old && !new) { 6054 static_branch_dec(&generic_xdp_needed_key); 6055 } else if (new && !old) { 6056 static_branch_inc(&generic_xdp_needed_key); 6057 netif_disable_lro(dev); 6058 dev_disable_gro_hw(dev); 6059 } 6060 break; 6061 6062 default: 6063 ret = -EINVAL; 6064 break; 6065 } 6066 6067 return ret; 6068 } 6069 6070 static int netif_receive_skb_internal(struct sk_buff *skb) 6071 { 6072 int ret; 6073 6074 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6075 6076 if (skb_defer_rx_timestamp(skb)) 6077 return NET_RX_SUCCESS; 6078 6079 rcu_read_lock(); 6080 #ifdef CONFIG_RPS 6081 if (static_branch_unlikely(&rps_needed)) { 6082 struct rps_dev_flow voidflow, *rflow = &voidflow; 6083 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6084 6085 if (cpu >= 0) { 6086 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6087 rcu_read_unlock(); 6088 return ret; 6089 } 6090 } 6091 #endif 6092 ret = __netif_receive_skb(skb); 6093 rcu_read_unlock(); 6094 return ret; 6095 } 6096 6097 void netif_receive_skb_list_internal(struct list_head *head) 6098 { 6099 struct sk_buff *skb, *next; 6100 LIST_HEAD(sublist); 6101 6102 list_for_each_entry_safe(skb, next, head, list) { 6103 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6104 skb); 6105 skb_list_del_init(skb); 6106 if (!skb_defer_rx_timestamp(skb)) 6107 list_add_tail(&skb->list, &sublist); 6108 } 6109 list_splice_init(&sublist, head); 6110 6111 rcu_read_lock(); 6112 #ifdef CONFIG_RPS 6113 if (static_branch_unlikely(&rps_needed)) { 6114 list_for_each_entry_safe(skb, next, head, list) { 6115 struct rps_dev_flow voidflow, *rflow = &voidflow; 6116 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6117 6118 if (cpu >= 0) { 6119 /* Will be handled, remove from list */ 6120 skb_list_del_init(skb); 6121 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6122 } 6123 } 6124 } 6125 #endif 6126 __netif_receive_skb_list(head); 6127 rcu_read_unlock(); 6128 } 6129 6130 /** 6131 * netif_receive_skb - process receive buffer from network 6132 * @skb: buffer to process 6133 * 6134 * netif_receive_skb() is the main receive data processing function. 6135 * It always succeeds. The buffer may be dropped during processing 6136 * for congestion control or by the protocol layers. 6137 * 6138 * This function may only be called from softirq context and interrupts 6139 * should be enabled. 6140 * 6141 * Return values (usually ignored): 6142 * NET_RX_SUCCESS: no congestion 6143 * NET_RX_DROP: packet was dropped 6144 */ 6145 int netif_receive_skb(struct sk_buff *skb) 6146 { 6147 int ret; 6148 6149 trace_netif_receive_skb_entry(skb); 6150 6151 ret = netif_receive_skb_internal(skb); 6152 trace_netif_receive_skb_exit(ret); 6153 6154 return ret; 6155 } 6156 EXPORT_SYMBOL(netif_receive_skb); 6157 6158 /** 6159 * netif_receive_skb_list - process many receive buffers from network 6160 * @head: list of skbs to process. 6161 * 6162 * Since return value of netif_receive_skb() is normally ignored, and 6163 * wouldn't be meaningful for a list, this function returns void. 6164 * 6165 * This function may only be called from softirq context and interrupts 6166 * should be enabled. 6167 */ 6168 void netif_receive_skb_list(struct list_head *head) 6169 { 6170 struct sk_buff *skb; 6171 6172 if (list_empty(head)) 6173 return; 6174 if (trace_netif_receive_skb_list_entry_enabled()) { 6175 list_for_each_entry(skb, head, list) 6176 trace_netif_receive_skb_list_entry(skb); 6177 } 6178 netif_receive_skb_list_internal(head); 6179 trace_netif_receive_skb_list_exit(0); 6180 } 6181 EXPORT_SYMBOL(netif_receive_skb_list); 6182 6183 /* Network device is going away, flush any packets still pending */ 6184 static void flush_backlog(struct work_struct *work) 6185 { 6186 struct sk_buff *skb, *tmp; 6187 struct sk_buff_head list; 6188 struct softnet_data *sd; 6189 6190 __skb_queue_head_init(&list); 6191 local_bh_disable(); 6192 sd = this_cpu_ptr(&softnet_data); 6193 6194 backlog_lock_irq_disable(sd); 6195 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6196 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6197 __skb_unlink(skb, &sd->input_pkt_queue); 6198 __skb_queue_tail(&list, skb); 6199 rps_input_queue_head_incr(sd); 6200 } 6201 } 6202 backlog_unlock_irq_enable(sd); 6203 6204 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6205 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6206 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6207 __skb_unlink(skb, &sd->process_queue); 6208 __skb_queue_tail(&list, skb); 6209 rps_input_queue_head_incr(sd); 6210 } 6211 } 6212 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6213 local_bh_enable(); 6214 6215 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6216 } 6217 6218 static bool flush_required(int cpu) 6219 { 6220 #if IS_ENABLED(CONFIG_RPS) 6221 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6222 bool do_flush; 6223 6224 backlog_lock_irq_disable(sd); 6225 6226 /* as insertion into process_queue happens with the rps lock held, 6227 * process_queue access may race only with dequeue 6228 */ 6229 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6230 !skb_queue_empty_lockless(&sd->process_queue); 6231 backlog_unlock_irq_enable(sd); 6232 6233 return do_flush; 6234 #endif 6235 /* without RPS we can't safely check input_pkt_queue: during a 6236 * concurrent remote skb_queue_splice() we can detect as empty both 6237 * input_pkt_queue and process_queue even if the latter could end-up 6238 * containing a lot of packets. 6239 */ 6240 return true; 6241 } 6242 6243 struct flush_backlogs { 6244 cpumask_t flush_cpus; 6245 struct work_struct w[]; 6246 }; 6247 6248 static struct flush_backlogs *flush_backlogs_alloc(void) 6249 { 6250 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6251 GFP_KERNEL); 6252 } 6253 6254 static struct flush_backlogs *flush_backlogs_fallback; 6255 static DEFINE_MUTEX(flush_backlogs_mutex); 6256 6257 static void flush_all_backlogs(void) 6258 { 6259 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6260 unsigned int cpu; 6261 6262 if (!ptr) { 6263 mutex_lock(&flush_backlogs_mutex); 6264 ptr = flush_backlogs_fallback; 6265 } 6266 cpumask_clear(&ptr->flush_cpus); 6267 6268 cpus_read_lock(); 6269 6270 for_each_online_cpu(cpu) { 6271 if (flush_required(cpu)) { 6272 INIT_WORK(&ptr->w[cpu], flush_backlog); 6273 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6274 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6275 } 6276 } 6277 6278 /* we can have in flight packet[s] on the cpus we are not flushing, 6279 * synchronize_net() in unregister_netdevice_many() will take care of 6280 * them. 6281 */ 6282 for_each_cpu(cpu, &ptr->flush_cpus) 6283 flush_work(&ptr->w[cpu]); 6284 6285 cpus_read_unlock(); 6286 6287 if (ptr != flush_backlogs_fallback) 6288 kfree(ptr); 6289 else 6290 mutex_unlock(&flush_backlogs_mutex); 6291 } 6292 6293 static void net_rps_send_ipi(struct softnet_data *remsd) 6294 { 6295 #ifdef CONFIG_RPS 6296 while (remsd) { 6297 struct softnet_data *next = remsd->rps_ipi_next; 6298 6299 if (cpu_online(remsd->cpu)) 6300 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6301 remsd = next; 6302 } 6303 #endif 6304 } 6305 6306 /* 6307 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6308 * Note: called with local irq disabled, but exits with local irq enabled. 6309 */ 6310 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6311 { 6312 #ifdef CONFIG_RPS 6313 struct softnet_data *remsd = sd->rps_ipi_list; 6314 6315 if (!use_backlog_threads() && remsd) { 6316 sd->rps_ipi_list = NULL; 6317 6318 local_irq_enable(); 6319 6320 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6321 net_rps_send_ipi(remsd); 6322 } else 6323 #endif 6324 local_irq_enable(); 6325 } 6326 6327 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6328 { 6329 #ifdef CONFIG_RPS 6330 return !use_backlog_threads() && sd->rps_ipi_list; 6331 #else 6332 return false; 6333 #endif 6334 } 6335 6336 static int process_backlog(struct napi_struct *napi, int quota) 6337 { 6338 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6339 bool again = true; 6340 int work = 0; 6341 6342 /* Check if we have pending ipi, its better to send them now, 6343 * not waiting net_rx_action() end. 6344 */ 6345 if (sd_has_rps_ipi_waiting(sd)) { 6346 local_irq_disable(); 6347 net_rps_action_and_irq_enable(sd); 6348 } 6349 6350 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6351 while (again) { 6352 struct sk_buff *skb; 6353 6354 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6355 while ((skb = __skb_dequeue(&sd->process_queue))) { 6356 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6357 rcu_read_lock(); 6358 __netif_receive_skb(skb); 6359 rcu_read_unlock(); 6360 if (++work >= quota) { 6361 rps_input_queue_head_add(sd, work); 6362 return work; 6363 } 6364 6365 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6366 } 6367 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6368 6369 backlog_lock_irq_disable(sd); 6370 if (skb_queue_empty(&sd->input_pkt_queue)) { 6371 /* 6372 * Inline a custom version of __napi_complete(). 6373 * only current cpu owns and manipulates this napi, 6374 * and NAPI_STATE_SCHED is the only possible flag set 6375 * on backlog. 6376 * We can use a plain write instead of clear_bit(), 6377 * and we dont need an smp_mb() memory barrier. 6378 */ 6379 napi->state &= NAPIF_STATE_THREADED; 6380 again = false; 6381 } else { 6382 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6383 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6384 &sd->process_queue); 6385 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6386 } 6387 backlog_unlock_irq_enable(sd); 6388 } 6389 6390 if (work) 6391 rps_input_queue_head_add(sd, work); 6392 return work; 6393 } 6394 6395 /** 6396 * __napi_schedule - schedule for receive 6397 * @n: entry to schedule 6398 * 6399 * The entry's receive function will be scheduled to run. 6400 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6401 */ 6402 void __napi_schedule(struct napi_struct *n) 6403 { 6404 unsigned long flags; 6405 6406 local_irq_save(flags); 6407 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6408 local_irq_restore(flags); 6409 } 6410 EXPORT_SYMBOL(__napi_schedule); 6411 6412 /** 6413 * napi_schedule_prep - check if napi can be scheduled 6414 * @n: napi context 6415 * 6416 * Test if NAPI routine is already running, and if not mark 6417 * it as running. This is used as a condition variable to 6418 * insure only one NAPI poll instance runs. We also make 6419 * sure there is no pending NAPI disable. 6420 */ 6421 bool napi_schedule_prep(struct napi_struct *n) 6422 { 6423 unsigned long new, val = READ_ONCE(n->state); 6424 6425 do { 6426 if (unlikely(val & NAPIF_STATE_DISABLE)) 6427 return false; 6428 new = val | NAPIF_STATE_SCHED; 6429 6430 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6431 * This was suggested by Alexander Duyck, as compiler 6432 * emits better code than : 6433 * if (val & NAPIF_STATE_SCHED) 6434 * new |= NAPIF_STATE_MISSED; 6435 */ 6436 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6437 NAPIF_STATE_MISSED; 6438 } while (!try_cmpxchg(&n->state, &val, new)); 6439 6440 return !(val & NAPIF_STATE_SCHED); 6441 } 6442 EXPORT_SYMBOL(napi_schedule_prep); 6443 6444 /** 6445 * __napi_schedule_irqoff - schedule for receive 6446 * @n: entry to schedule 6447 * 6448 * Variant of __napi_schedule() assuming hard irqs are masked. 6449 * 6450 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6451 * because the interrupt disabled assumption might not be true 6452 * due to force-threaded interrupts and spinlock substitution. 6453 */ 6454 void __napi_schedule_irqoff(struct napi_struct *n) 6455 { 6456 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6457 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6458 else 6459 __napi_schedule(n); 6460 } 6461 EXPORT_SYMBOL(__napi_schedule_irqoff); 6462 6463 bool napi_complete_done(struct napi_struct *n, int work_done) 6464 { 6465 unsigned long flags, val, new, timeout = 0; 6466 bool ret = true; 6467 6468 /* 6469 * 1) Don't let napi dequeue from the cpu poll list 6470 * just in case its running on a different cpu. 6471 * 2) If we are busy polling, do nothing here, we have 6472 * the guarantee we will be called later. 6473 */ 6474 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6475 NAPIF_STATE_IN_BUSY_POLL))) 6476 return false; 6477 6478 if (work_done) { 6479 if (n->gro.bitmask) 6480 timeout = napi_get_gro_flush_timeout(n); 6481 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6482 } 6483 if (n->defer_hard_irqs_count > 0) { 6484 n->defer_hard_irqs_count--; 6485 timeout = napi_get_gro_flush_timeout(n); 6486 if (timeout) 6487 ret = false; 6488 } 6489 6490 /* 6491 * When the NAPI instance uses a timeout and keeps postponing 6492 * it, we need to bound somehow the time packets are kept in 6493 * the GRO layer. 6494 */ 6495 gro_flush(&n->gro, !!timeout); 6496 gro_normal_list(&n->gro); 6497 6498 if (unlikely(!list_empty(&n->poll_list))) { 6499 /* If n->poll_list is not empty, we need to mask irqs */ 6500 local_irq_save(flags); 6501 list_del_init(&n->poll_list); 6502 local_irq_restore(flags); 6503 } 6504 WRITE_ONCE(n->list_owner, -1); 6505 6506 val = READ_ONCE(n->state); 6507 do { 6508 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6509 6510 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6511 NAPIF_STATE_SCHED_THREADED | 6512 NAPIF_STATE_PREFER_BUSY_POLL); 6513 6514 /* If STATE_MISSED was set, leave STATE_SCHED set, 6515 * because we will call napi->poll() one more time. 6516 * This C code was suggested by Alexander Duyck to help gcc. 6517 */ 6518 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6519 NAPIF_STATE_SCHED; 6520 } while (!try_cmpxchg(&n->state, &val, new)); 6521 6522 if (unlikely(val & NAPIF_STATE_MISSED)) { 6523 __napi_schedule(n); 6524 return false; 6525 } 6526 6527 if (timeout) 6528 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6529 HRTIMER_MODE_REL_PINNED); 6530 return ret; 6531 } 6532 EXPORT_SYMBOL(napi_complete_done); 6533 6534 static void skb_defer_free_flush(struct softnet_data *sd) 6535 { 6536 struct sk_buff *skb, *next; 6537 6538 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6539 if (!READ_ONCE(sd->defer_list)) 6540 return; 6541 6542 spin_lock(&sd->defer_lock); 6543 skb = sd->defer_list; 6544 sd->defer_list = NULL; 6545 sd->defer_count = 0; 6546 spin_unlock(&sd->defer_lock); 6547 6548 while (skb != NULL) { 6549 next = skb->next; 6550 napi_consume_skb(skb, 1); 6551 skb = next; 6552 } 6553 } 6554 6555 #if defined(CONFIG_NET_RX_BUSY_POLL) 6556 6557 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6558 { 6559 if (!skip_schedule) { 6560 gro_normal_list(&napi->gro); 6561 __napi_schedule(napi); 6562 return; 6563 } 6564 6565 /* Flush too old packets. If HZ < 1000, flush all packets */ 6566 gro_flush(&napi->gro, HZ >= 1000); 6567 gro_normal_list(&napi->gro); 6568 6569 clear_bit(NAPI_STATE_SCHED, &napi->state); 6570 } 6571 6572 enum { 6573 NAPI_F_PREFER_BUSY_POLL = 1, 6574 NAPI_F_END_ON_RESCHED = 2, 6575 }; 6576 6577 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6578 unsigned flags, u16 budget) 6579 { 6580 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6581 bool skip_schedule = false; 6582 unsigned long timeout; 6583 int rc; 6584 6585 /* Busy polling means there is a high chance device driver hard irq 6586 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6587 * set in napi_schedule_prep(). 6588 * Since we are about to call napi->poll() once more, we can safely 6589 * clear NAPI_STATE_MISSED. 6590 * 6591 * Note: x86 could use a single "lock and ..." instruction 6592 * to perform these two clear_bit() 6593 */ 6594 clear_bit(NAPI_STATE_MISSED, &napi->state); 6595 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6596 6597 local_bh_disable(); 6598 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6599 6600 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6601 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6602 timeout = napi_get_gro_flush_timeout(napi); 6603 if (napi->defer_hard_irqs_count && timeout) { 6604 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6605 skip_schedule = true; 6606 } 6607 } 6608 6609 /* All we really want here is to re-enable device interrupts. 6610 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6611 */ 6612 rc = napi->poll(napi, budget); 6613 /* We can't gro_normal_list() here, because napi->poll() might have 6614 * rearmed the napi (napi_complete_done()) in which case it could 6615 * already be running on another CPU. 6616 */ 6617 trace_napi_poll(napi, rc, budget); 6618 netpoll_poll_unlock(have_poll_lock); 6619 if (rc == budget) 6620 __busy_poll_stop(napi, skip_schedule); 6621 bpf_net_ctx_clear(bpf_net_ctx); 6622 local_bh_enable(); 6623 } 6624 6625 static void __napi_busy_loop(unsigned int napi_id, 6626 bool (*loop_end)(void *, unsigned long), 6627 void *loop_end_arg, unsigned flags, u16 budget) 6628 { 6629 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6630 int (*napi_poll)(struct napi_struct *napi, int budget); 6631 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6632 void *have_poll_lock = NULL; 6633 struct napi_struct *napi; 6634 6635 WARN_ON_ONCE(!rcu_read_lock_held()); 6636 6637 restart: 6638 napi_poll = NULL; 6639 6640 napi = napi_by_id(napi_id); 6641 if (!napi) 6642 return; 6643 6644 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6645 preempt_disable(); 6646 for (;;) { 6647 int work = 0; 6648 6649 local_bh_disable(); 6650 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6651 if (!napi_poll) { 6652 unsigned long val = READ_ONCE(napi->state); 6653 6654 /* If multiple threads are competing for this napi, 6655 * we avoid dirtying napi->state as much as we can. 6656 */ 6657 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6658 NAPIF_STATE_IN_BUSY_POLL)) { 6659 if (flags & NAPI_F_PREFER_BUSY_POLL) 6660 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6661 goto count; 6662 } 6663 if (cmpxchg(&napi->state, val, 6664 val | NAPIF_STATE_IN_BUSY_POLL | 6665 NAPIF_STATE_SCHED) != val) { 6666 if (flags & NAPI_F_PREFER_BUSY_POLL) 6667 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6668 goto count; 6669 } 6670 have_poll_lock = netpoll_poll_lock(napi); 6671 napi_poll = napi->poll; 6672 } 6673 work = napi_poll(napi, budget); 6674 trace_napi_poll(napi, work, budget); 6675 gro_normal_list(&napi->gro); 6676 count: 6677 if (work > 0) 6678 __NET_ADD_STATS(dev_net(napi->dev), 6679 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6680 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6681 bpf_net_ctx_clear(bpf_net_ctx); 6682 local_bh_enable(); 6683 6684 if (!loop_end || loop_end(loop_end_arg, start_time)) 6685 break; 6686 6687 if (unlikely(need_resched())) { 6688 if (flags & NAPI_F_END_ON_RESCHED) 6689 break; 6690 if (napi_poll) 6691 busy_poll_stop(napi, have_poll_lock, flags, budget); 6692 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6693 preempt_enable(); 6694 rcu_read_unlock(); 6695 cond_resched(); 6696 rcu_read_lock(); 6697 if (loop_end(loop_end_arg, start_time)) 6698 return; 6699 goto restart; 6700 } 6701 cpu_relax(); 6702 } 6703 if (napi_poll) 6704 busy_poll_stop(napi, have_poll_lock, flags, budget); 6705 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6706 preempt_enable(); 6707 } 6708 6709 void napi_busy_loop_rcu(unsigned int napi_id, 6710 bool (*loop_end)(void *, unsigned long), 6711 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6712 { 6713 unsigned flags = NAPI_F_END_ON_RESCHED; 6714 6715 if (prefer_busy_poll) 6716 flags |= NAPI_F_PREFER_BUSY_POLL; 6717 6718 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6719 } 6720 6721 void napi_busy_loop(unsigned int napi_id, 6722 bool (*loop_end)(void *, unsigned long), 6723 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6724 { 6725 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6726 6727 rcu_read_lock(); 6728 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6729 rcu_read_unlock(); 6730 } 6731 EXPORT_SYMBOL(napi_busy_loop); 6732 6733 void napi_suspend_irqs(unsigned int napi_id) 6734 { 6735 struct napi_struct *napi; 6736 6737 rcu_read_lock(); 6738 napi = napi_by_id(napi_id); 6739 if (napi) { 6740 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6741 6742 if (timeout) 6743 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6744 HRTIMER_MODE_REL_PINNED); 6745 } 6746 rcu_read_unlock(); 6747 } 6748 6749 void napi_resume_irqs(unsigned int napi_id) 6750 { 6751 struct napi_struct *napi; 6752 6753 rcu_read_lock(); 6754 napi = napi_by_id(napi_id); 6755 if (napi) { 6756 /* If irq_suspend_timeout is set to 0 between the call to 6757 * napi_suspend_irqs and now, the original value still 6758 * determines the safety timeout as intended and napi_watchdog 6759 * will resume irq processing. 6760 */ 6761 if (napi_get_irq_suspend_timeout(napi)) { 6762 local_bh_disable(); 6763 napi_schedule(napi); 6764 local_bh_enable(); 6765 } 6766 } 6767 rcu_read_unlock(); 6768 } 6769 6770 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6771 6772 static void __napi_hash_add_with_id(struct napi_struct *napi, 6773 unsigned int napi_id) 6774 { 6775 napi->gro.cached_napi_id = napi_id; 6776 6777 WRITE_ONCE(napi->napi_id, napi_id); 6778 hlist_add_head_rcu(&napi->napi_hash_node, 6779 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6780 } 6781 6782 static void napi_hash_add_with_id(struct napi_struct *napi, 6783 unsigned int napi_id) 6784 { 6785 unsigned long flags; 6786 6787 spin_lock_irqsave(&napi_hash_lock, flags); 6788 WARN_ON_ONCE(napi_by_id(napi_id)); 6789 __napi_hash_add_with_id(napi, napi_id); 6790 spin_unlock_irqrestore(&napi_hash_lock, flags); 6791 } 6792 6793 static void napi_hash_add(struct napi_struct *napi) 6794 { 6795 unsigned long flags; 6796 6797 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6798 return; 6799 6800 spin_lock_irqsave(&napi_hash_lock, flags); 6801 6802 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6803 do { 6804 if (unlikely(!napi_id_valid(++napi_gen_id))) 6805 napi_gen_id = MIN_NAPI_ID; 6806 } while (napi_by_id(napi_gen_id)); 6807 6808 __napi_hash_add_with_id(napi, napi_gen_id); 6809 6810 spin_unlock_irqrestore(&napi_hash_lock, flags); 6811 } 6812 6813 /* Warning : caller is responsible to make sure rcu grace period 6814 * is respected before freeing memory containing @napi 6815 */ 6816 static void napi_hash_del(struct napi_struct *napi) 6817 { 6818 unsigned long flags; 6819 6820 spin_lock_irqsave(&napi_hash_lock, flags); 6821 6822 hlist_del_init_rcu(&napi->napi_hash_node); 6823 6824 spin_unlock_irqrestore(&napi_hash_lock, flags); 6825 } 6826 6827 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6828 { 6829 struct napi_struct *napi; 6830 6831 napi = container_of(timer, struct napi_struct, timer); 6832 6833 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6834 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6835 */ 6836 if (!napi_disable_pending(napi) && 6837 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6838 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6839 __napi_schedule_irqoff(napi); 6840 } 6841 6842 return HRTIMER_NORESTART; 6843 } 6844 6845 int dev_set_threaded(struct net_device *dev, bool threaded) 6846 { 6847 struct napi_struct *napi; 6848 int err = 0; 6849 6850 netdev_assert_locked_or_invisible(dev); 6851 6852 if (dev->threaded == threaded) 6853 return 0; 6854 6855 if (threaded) { 6856 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6857 if (!napi->thread) { 6858 err = napi_kthread_create(napi); 6859 if (err) { 6860 threaded = false; 6861 break; 6862 } 6863 } 6864 } 6865 } 6866 6867 WRITE_ONCE(dev->threaded, threaded); 6868 6869 /* Make sure kthread is created before THREADED bit 6870 * is set. 6871 */ 6872 smp_mb__before_atomic(); 6873 6874 /* Setting/unsetting threaded mode on a napi might not immediately 6875 * take effect, if the current napi instance is actively being 6876 * polled. In this case, the switch between threaded mode and 6877 * softirq mode will happen in the next round of napi_schedule(). 6878 * This should not cause hiccups/stalls to the live traffic. 6879 */ 6880 list_for_each_entry(napi, &dev->napi_list, dev_list) 6881 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6882 6883 return err; 6884 } 6885 EXPORT_SYMBOL(dev_set_threaded); 6886 6887 /** 6888 * netif_queue_set_napi - Associate queue with the napi 6889 * @dev: device to which NAPI and queue belong 6890 * @queue_index: Index of queue 6891 * @type: queue type as RX or TX 6892 * @napi: NAPI context, pass NULL to clear previously set NAPI 6893 * 6894 * Set queue with its corresponding napi context. This should be done after 6895 * registering the NAPI handler for the queue-vector and the queues have been 6896 * mapped to the corresponding interrupt vector. 6897 */ 6898 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 6899 enum netdev_queue_type type, struct napi_struct *napi) 6900 { 6901 struct netdev_rx_queue *rxq; 6902 struct netdev_queue *txq; 6903 6904 if (WARN_ON_ONCE(napi && !napi->dev)) 6905 return; 6906 if (dev->reg_state >= NETREG_REGISTERED) 6907 ASSERT_RTNL(); 6908 6909 switch (type) { 6910 case NETDEV_QUEUE_TYPE_RX: 6911 rxq = __netif_get_rx_queue(dev, queue_index); 6912 rxq->napi = napi; 6913 return; 6914 case NETDEV_QUEUE_TYPE_TX: 6915 txq = netdev_get_tx_queue(dev, queue_index); 6916 txq->napi = napi; 6917 return; 6918 default: 6919 return; 6920 } 6921 } 6922 EXPORT_SYMBOL(netif_queue_set_napi); 6923 6924 static void 6925 netif_napi_irq_notify(struct irq_affinity_notify *notify, 6926 const cpumask_t *mask) 6927 { 6928 struct napi_struct *napi = 6929 container_of(notify, struct napi_struct, notify); 6930 #ifdef CONFIG_RFS_ACCEL 6931 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 6932 int err; 6933 #endif 6934 6935 if (napi->config && napi->dev->irq_affinity_auto) 6936 cpumask_copy(&napi->config->affinity_mask, mask); 6937 6938 #ifdef CONFIG_RFS_ACCEL 6939 if (napi->dev->rx_cpu_rmap_auto) { 6940 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 6941 if (err) 6942 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 6943 err); 6944 } 6945 #endif 6946 } 6947 6948 #ifdef CONFIG_RFS_ACCEL 6949 static void netif_napi_affinity_release(struct kref *ref) 6950 { 6951 struct napi_struct *napi = 6952 container_of(ref, struct napi_struct, notify.kref); 6953 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 6954 6955 netdev_assert_locked(napi->dev); 6956 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 6957 &napi->state)); 6958 6959 if (!napi->dev->rx_cpu_rmap_auto) 6960 return; 6961 rmap->obj[napi->napi_rmap_idx] = NULL; 6962 napi->napi_rmap_idx = -1; 6963 cpu_rmap_put(rmap); 6964 } 6965 6966 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 6967 { 6968 if (dev->rx_cpu_rmap_auto) 6969 return 0; 6970 6971 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 6972 if (!dev->rx_cpu_rmap) 6973 return -ENOMEM; 6974 6975 dev->rx_cpu_rmap_auto = true; 6976 return 0; 6977 } 6978 EXPORT_SYMBOL(netif_enable_cpu_rmap); 6979 6980 static void netif_del_cpu_rmap(struct net_device *dev) 6981 { 6982 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 6983 6984 if (!dev->rx_cpu_rmap_auto) 6985 return; 6986 6987 /* Free the rmap */ 6988 cpu_rmap_put(rmap); 6989 dev->rx_cpu_rmap = NULL; 6990 dev->rx_cpu_rmap_auto = false; 6991 } 6992 6993 #else 6994 static void netif_napi_affinity_release(struct kref *ref) 6995 { 6996 } 6997 6998 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 6999 { 7000 return 0; 7001 } 7002 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7003 7004 static void netif_del_cpu_rmap(struct net_device *dev) 7005 { 7006 } 7007 #endif 7008 7009 void netif_set_affinity_auto(struct net_device *dev) 7010 { 7011 unsigned int i, maxqs, numa; 7012 7013 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7014 numa = dev_to_node(&dev->dev); 7015 7016 for (i = 0; i < maxqs; i++) 7017 cpumask_set_cpu(cpumask_local_spread(i, numa), 7018 &dev->napi_config[i].affinity_mask); 7019 7020 dev->irq_affinity_auto = true; 7021 } 7022 EXPORT_SYMBOL(netif_set_affinity_auto); 7023 7024 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7025 { 7026 int rc; 7027 7028 netdev_assert_locked_or_invisible(napi->dev); 7029 7030 if (napi->irq == irq) 7031 return; 7032 7033 /* Remove existing resources */ 7034 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7035 irq_set_affinity_notifier(napi->irq, NULL); 7036 7037 napi->irq = irq; 7038 if (irq < 0 || 7039 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7040 return; 7041 7042 /* Abort for buggy drivers */ 7043 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7044 return; 7045 7046 #ifdef CONFIG_RFS_ACCEL 7047 if (napi->dev->rx_cpu_rmap_auto) { 7048 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7049 if (rc < 0) 7050 return; 7051 7052 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7053 napi->napi_rmap_idx = rc; 7054 } 7055 #endif 7056 7057 /* Use core IRQ notifier */ 7058 napi->notify.notify = netif_napi_irq_notify; 7059 napi->notify.release = netif_napi_affinity_release; 7060 rc = irq_set_affinity_notifier(irq, &napi->notify); 7061 if (rc) { 7062 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7063 rc); 7064 goto put_rmap; 7065 } 7066 7067 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7068 return; 7069 7070 put_rmap: 7071 #ifdef CONFIG_RFS_ACCEL 7072 if (napi->dev->rx_cpu_rmap_auto) { 7073 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7074 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7075 napi->napi_rmap_idx = -1; 7076 } 7077 #endif 7078 napi->notify.notify = NULL; 7079 napi->notify.release = NULL; 7080 } 7081 EXPORT_SYMBOL(netif_napi_set_irq_locked); 7082 7083 static void napi_restore_config(struct napi_struct *n) 7084 { 7085 n->defer_hard_irqs = n->config->defer_hard_irqs; 7086 n->gro_flush_timeout = n->config->gro_flush_timeout; 7087 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7088 7089 if (n->dev->irq_affinity_auto && 7090 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7091 irq_set_affinity(n->irq, &n->config->affinity_mask); 7092 7093 /* a NAPI ID might be stored in the config, if so use it. if not, use 7094 * napi_hash_add to generate one for us. 7095 */ 7096 if (n->config->napi_id) { 7097 napi_hash_add_with_id(n, n->config->napi_id); 7098 } else { 7099 napi_hash_add(n); 7100 n->config->napi_id = n->napi_id; 7101 } 7102 } 7103 7104 static void napi_save_config(struct napi_struct *n) 7105 { 7106 n->config->defer_hard_irqs = n->defer_hard_irqs; 7107 n->config->gro_flush_timeout = n->gro_flush_timeout; 7108 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7109 napi_hash_del(n); 7110 } 7111 7112 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7113 * inherit an existing ID try to insert it at the right position. 7114 */ 7115 static void 7116 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7117 { 7118 unsigned int new_id, pos_id; 7119 struct list_head *higher; 7120 struct napi_struct *pos; 7121 7122 new_id = UINT_MAX; 7123 if (napi->config && napi->config->napi_id) 7124 new_id = napi->config->napi_id; 7125 7126 higher = &dev->napi_list; 7127 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7128 if (napi_id_valid(pos->napi_id)) 7129 pos_id = pos->napi_id; 7130 else if (pos->config) 7131 pos_id = pos->config->napi_id; 7132 else 7133 pos_id = UINT_MAX; 7134 7135 if (pos_id <= new_id) 7136 break; 7137 higher = &pos->dev_list; 7138 } 7139 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7140 } 7141 7142 /* Double check that napi_get_frags() allocates skbs with 7143 * skb->head being backed by slab, not a page fragment. 7144 * This is to make sure bug fixed in 3226b158e67c 7145 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7146 * does not accidentally come back. 7147 */ 7148 static void napi_get_frags_check(struct napi_struct *napi) 7149 { 7150 struct sk_buff *skb; 7151 7152 local_bh_disable(); 7153 skb = napi_get_frags(napi); 7154 WARN_ON_ONCE(skb && skb->head_frag); 7155 napi_free_frags(napi); 7156 local_bh_enable(); 7157 } 7158 7159 void netif_napi_add_weight_locked(struct net_device *dev, 7160 struct napi_struct *napi, 7161 int (*poll)(struct napi_struct *, int), 7162 int weight) 7163 { 7164 netdev_assert_locked(dev); 7165 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7166 return; 7167 7168 INIT_LIST_HEAD(&napi->poll_list); 7169 INIT_HLIST_NODE(&napi->napi_hash_node); 7170 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7171 napi->timer.function = napi_watchdog; 7172 gro_init(&napi->gro); 7173 napi->skb = NULL; 7174 napi->poll = poll; 7175 if (weight > NAPI_POLL_WEIGHT) 7176 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7177 weight); 7178 napi->weight = weight; 7179 napi->dev = dev; 7180 #ifdef CONFIG_NETPOLL 7181 napi->poll_owner = -1; 7182 #endif 7183 napi->list_owner = -1; 7184 set_bit(NAPI_STATE_SCHED, &napi->state); 7185 set_bit(NAPI_STATE_NPSVC, &napi->state); 7186 netif_napi_dev_list_add(dev, napi); 7187 7188 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7189 * configuration will be loaded in napi_enable 7190 */ 7191 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7192 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7193 7194 napi_get_frags_check(napi); 7195 /* Create kthread for this napi if dev->threaded is set. 7196 * Clear dev->threaded if kthread creation failed so that 7197 * threaded mode will not be enabled in napi_enable(). 7198 */ 7199 if (dev->threaded && napi_kthread_create(napi)) 7200 dev->threaded = false; 7201 netif_napi_set_irq_locked(napi, -1); 7202 } 7203 EXPORT_SYMBOL(netif_napi_add_weight_locked); 7204 7205 void napi_disable_locked(struct napi_struct *n) 7206 { 7207 unsigned long val, new; 7208 7209 might_sleep(); 7210 netdev_assert_locked(n->dev); 7211 7212 set_bit(NAPI_STATE_DISABLE, &n->state); 7213 7214 val = READ_ONCE(n->state); 7215 do { 7216 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7217 usleep_range(20, 200); 7218 val = READ_ONCE(n->state); 7219 } 7220 7221 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7222 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 7223 } while (!try_cmpxchg(&n->state, &val, new)); 7224 7225 hrtimer_cancel(&n->timer); 7226 7227 if (n->config) 7228 napi_save_config(n); 7229 else 7230 napi_hash_del(n); 7231 7232 clear_bit(NAPI_STATE_DISABLE, &n->state); 7233 } 7234 EXPORT_SYMBOL(napi_disable_locked); 7235 7236 /** 7237 * napi_disable() - prevent NAPI from scheduling 7238 * @n: NAPI context 7239 * 7240 * Stop NAPI from being scheduled on this context. 7241 * Waits till any outstanding processing completes. 7242 * Takes netdev_lock() for associated net_device. 7243 */ 7244 void napi_disable(struct napi_struct *n) 7245 { 7246 netdev_lock(n->dev); 7247 napi_disable_locked(n); 7248 netdev_unlock(n->dev); 7249 } 7250 EXPORT_SYMBOL(napi_disable); 7251 7252 void napi_enable_locked(struct napi_struct *n) 7253 { 7254 unsigned long new, val = READ_ONCE(n->state); 7255 7256 if (n->config) 7257 napi_restore_config(n); 7258 else 7259 napi_hash_add(n); 7260 7261 do { 7262 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7263 7264 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7265 if (n->dev->threaded && n->thread) 7266 new |= NAPIF_STATE_THREADED; 7267 } while (!try_cmpxchg(&n->state, &val, new)); 7268 } 7269 EXPORT_SYMBOL(napi_enable_locked); 7270 7271 /** 7272 * napi_enable() - enable NAPI scheduling 7273 * @n: NAPI context 7274 * 7275 * Enable scheduling of a NAPI instance. 7276 * Must be paired with napi_disable(). 7277 * Takes netdev_lock() for associated net_device. 7278 */ 7279 void napi_enable(struct napi_struct *n) 7280 { 7281 netdev_lock(n->dev); 7282 napi_enable_locked(n); 7283 netdev_unlock(n->dev); 7284 } 7285 EXPORT_SYMBOL(napi_enable); 7286 7287 /* Must be called in process context */ 7288 void __netif_napi_del_locked(struct napi_struct *napi) 7289 { 7290 netdev_assert_locked(napi->dev); 7291 7292 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7293 return; 7294 7295 /* Make sure NAPI is disabled (or was never enabled). */ 7296 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7297 7298 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7299 irq_set_affinity_notifier(napi->irq, NULL); 7300 7301 if (napi->config) { 7302 napi->index = -1; 7303 napi->config = NULL; 7304 } 7305 7306 list_del_rcu(&napi->dev_list); 7307 napi_free_frags(napi); 7308 7309 gro_cleanup(&napi->gro); 7310 7311 if (napi->thread) { 7312 kthread_stop(napi->thread); 7313 napi->thread = NULL; 7314 } 7315 } 7316 EXPORT_SYMBOL(__netif_napi_del_locked); 7317 7318 static int __napi_poll(struct napi_struct *n, bool *repoll) 7319 { 7320 int work, weight; 7321 7322 weight = n->weight; 7323 7324 /* This NAPI_STATE_SCHED test is for avoiding a race 7325 * with netpoll's poll_napi(). Only the entity which 7326 * obtains the lock and sees NAPI_STATE_SCHED set will 7327 * actually make the ->poll() call. Therefore we avoid 7328 * accidentally calling ->poll() when NAPI is not scheduled. 7329 */ 7330 work = 0; 7331 if (napi_is_scheduled(n)) { 7332 work = n->poll(n, weight); 7333 trace_napi_poll(n, work, weight); 7334 7335 xdp_do_check_flushed(n); 7336 } 7337 7338 if (unlikely(work > weight)) 7339 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7340 n->poll, work, weight); 7341 7342 if (likely(work < weight)) 7343 return work; 7344 7345 /* Drivers must not modify the NAPI state if they 7346 * consume the entire weight. In such cases this code 7347 * still "owns" the NAPI instance and therefore can 7348 * move the instance around on the list at-will. 7349 */ 7350 if (unlikely(napi_disable_pending(n))) { 7351 napi_complete(n); 7352 return work; 7353 } 7354 7355 /* The NAPI context has more processing work, but busy-polling 7356 * is preferred. Exit early. 7357 */ 7358 if (napi_prefer_busy_poll(n)) { 7359 if (napi_complete_done(n, work)) { 7360 /* If timeout is not set, we need to make sure 7361 * that the NAPI is re-scheduled. 7362 */ 7363 napi_schedule(n); 7364 } 7365 return work; 7366 } 7367 7368 /* Flush too old packets. If HZ < 1000, flush all packets */ 7369 gro_flush(&n->gro, HZ >= 1000); 7370 gro_normal_list(&n->gro); 7371 7372 /* Some drivers may have called napi_schedule 7373 * prior to exhausting their budget. 7374 */ 7375 if (unlikely(!list_empty(&n->poll_list))) { 7376 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7377 n->dev ? n->dev->name : "backlog"); 7378 return work; 7379 } 7380 7381 *repoll = true; 7382 7383 return work; 7384 } 7385 7386 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7387 { 7388 bool do_repoll = false; 7389 void *have; 7390 int work; 7391 7392 list_del_init(&n->poll_list); 7393 7394 have = netpoll_poll_lock(n); 7395 7396 work = __napi_poll(n, &do_repoll); 7397 7398 if (do_repoll) 7399 list_add_tail(&n->poll_list, repoll); 7400 7401 netpoll_poll_unlock(have); 7402 7403 return work; 7404 } 7405 7406 static int napi_thread_wait(struct napi_struct *napi) 7407 { 7408 set_current_state(TASK_INTERRUPTIBLE); 7409 7410 while (!kthread_should_stop()) { 7411 /* Testing SCHED_THREADED bit here to make sure the current 7412 * kthread owns this napi and could poll on this napi. 7413 * Testing SCHED bit is not enough because SCHED bit might be 7414 * set by some other busy poll thread or by napi_disable(). 7415 */ 7416 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7417 WARN_ON(!list_empty(&napi->poll_list)); 7418 __set_current_state(TASK_RUNNING); 7419 return 0; 7420 } 7421 7422 schedule(); 7423 set_current_state(TASK_INTERRUPTIBLE); 7424 } 7425 __set_current_state(TASK_RUNNING); 7426 7427 return -1; 7428 } 7429 7430 static void napi_threaded_poll_loop(struct napi_struct *napi) 7431 { 7432 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7433 struct softnet_data *sd; 7434 unsigned long last_qs = jiffies; 7435 7436 for (;;) { 7437 bool repoll = false; 7438 void *have; 7439 7440 local_bh_disable(); 7441 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7442 7443 sd = this_cpu_ptr(&softnet_data); 7444 sd->in_napi_threaded_poll = true; 7445 7446 have = netpoll_poll_lock(napi); 7447 __napi_poll(napi, &repoll); 7448 netpoll_poll_unlock(have); 7449 7450 sd->in_napi_threaded_poll = false; 7451 barrier(); 7452 7453 if (sd_has_rps_ipi_waiting(sd)) { 7454 local_irq_disable(); 7455 net_rps_action_and_irq_enable(sd); 7456 } 7457 skb_defer_free_flush(sd); 7458 bpf_net_ctx_clear(bpf_net_ctx); 7459 local_bh_enable(); 7460 7461 if (!repoll) 7462 break; 7463 7464 rcu_softirq_qs_periodic(last_qs); 7465 cond_resched(); 7466 } 7467 } 7468 7469 static int napi_threaded_poll(void *data) 7470 { 7471 struct napi_struct *napi = data; 7472 7473 while (!napi_thread_wait(napi)) 7474 napi_threaded_poll_loop(napi); 7475 7476 return 0; 7477 } 7478 7479 static __latent_entropy void net_rx_action(void) 7480 { 7481 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7482 unsigned long time_limit = jiffies + 7483 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7484 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7485 int budget = READ_ONCE(net_hotdata.netdev_budget); 7486 LIST_HEAD(list); 7487 LIST_HEAD(repoll); 7488 7489 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7490 start: 7491 sd->in_net_rx_action = true; 7492 local_irq_disable(); 7493 list_splice_init(&sd->poll_list, &list); 7494 local_irq_enable(); 7495 7496 for (;;) { 7497 struct napi_struct *n; 7498 7499 skb_defer_free_flush(sd); 7500 7501 if (list_empty(&list)) { 7502 if (list_empty(&repoll)) { 7503 sd->in_net_rx_action = false; 7504 barrier(); 7505 /* We need to check if ____napi_schedule() 7506 * had refilled poll_list while 7507 * sd->in_net_rx_action was true. 7508 */ 7509 if (!list_empty(&sd->poll_list)) 7510 goto start; 7511 if (!sd_has_rps_ipi_waiting(sd)) 7512 goto end; 7513 } 7514 break; 7515 } 7516 7517 n = list_first_entry(&list, struct napi_struct, poll_list); 7518 budget -= napi_poll(n, &repoll); 7519 7520 /* If softirq window is exhausted then punt. 7521 * Allow this to run for 2 jiffies since which will allow 7522 * an average latency of 1.5/HZ. 7523 */ 7524 if (unlikely(budget <= 0 || 7525 time_after_eq(jiffies, time_limit))) { 7526 sd->time_squeeze++; 7527 break; 7528 } 7529 } 7530 7531 local_irq_disable(); 7532 7533 list_splice_tail_init(&sd->poll_list, &list); 7534 list_splice_tail(&repoll, &list); 7535 list_splice(&list, &sd->poll_list); 7536 if (!list_empty(&sd->poll_list)) 7537 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7538 else 7539 sd->in_net_rx_action = false; 7540 7541 net_rps_action_and_irq_enable(sd); 7542 end: 7543 bpf_net_ctx_clear(bpf_net_ctx); 7544 } 7545 7546 struct netdev_adjacent { 7547 struct net_device *dev; 7548 netdevice_tracker dev_tracker; 7549 7550 /* upper master flag, there can only be one master device per list */ 7551 bool master; 7552 7553 /* lookup ignore flag */ 7554 bool ignore; 7555 7556 /* counter for the number of times this device was added to us */ 7557 u16 ref_nr; 7558 7559 /* private field for the users */ 7560 void *private; 7561 7562 struct list_head list; 7563 struct rcu_head rcu; 7564 }; 7565 7566 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7567 struct list_head *adj_list) 7568 { 7569 struct netdev_adjacent *adj; 7570 7571 list_for_each_entry(adj, adj_list, list) { 7572 if (adj->dev == adj_dev) 7573 return adj; 7574 } 7575 return NULL; 7576 } 7577 7578 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7579 struct netdev_nested_priv *priv) 7580 { 7581 struct net_device *dev = (struct net_device *)priv->data; 7582 7583 return upper_dev == dev; 7584 } 7585 7586 /** 7587 * netdev_has_upper_dev - Check if device is linked to an upper device 7588 * @dev: device 7589 * @upper_dev: upper device to check 7590 * 7591 * Find out if a device is linked to specified upper device and return true 7592 * in case it is. Note that this checks only immediate upper device, 7593 * not through a complete stack of devices. The caller must hold the RTNL lock. 7594 */ 7595 bool netdev_has_upper_dev(struct net_device *dev, 7596 struct net_device *upper_dev) 7597 { 7598 struct netdev_nested_priv priv = { 7599 .data = (void *)upper_dev, 7600 }; 7601 7602 ASSERT_RTNL(); 7603 7604 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7605 &priv); 7606 } 7607 EXPORT_SYMBOL(netdev_has_upper_dev); 7608 7609 /** 7610 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7611 * @dev: device 7612 * @upper_dev: upper device to check 7613 * 7614 * Find out if a device is linked to specified upper device and return true 7615 * in case it is. Note that this checks the entire upper device chain. 7616 * The caller must hold rcu lock. 7617 */ 7618 7619 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7620 struct net_device *upper_dev) 7621 { 7622 struct netdev_nested_priv priv = { 7623 .data = (void *)upper_dev, 7624 }; 7625 7626 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7627 &priv); 7628 } 7629 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7630 7631 /** 7632 * netdev_has_any_upper_dev - Check if device is linked to some device 7633 * @dev: device 7634 * 7635 * Find out if a device is linked to an upper device and return true in case 7636 * it is. The caller must hold the RTNL lock. 7637 */ 7638 bool netdev_has_any_upper_dev(struct net_device *dev) 7639 { 7640 ASSERT_RTNL(); 7641 7642 return !list_empty(&dev->adj_list.upper); 7643 } 7644 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7645 7646 /** 7647 * netdev_master_upper_dev_get - Get master upper device 7648 * @dev: device 7649 * 7650 * Find a master upper device and return pointer to it or NULL in case 7651 * it's not there. The caller must hold the RTNL lock. 7652 */ 7653 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7654 { 7655 struct netdev_adjacent *upper; 7656 7657 ASSERT_RTNL(); 7658 7659 if (list_empty(&dev->adj_list.upper)) 7660 return NULL; 7661 7662 upper = list_first_entry(&dev->adj_list.upper, 7663 struct netdev_adjacent, list); 7664 if (likely(upper->master)) 7665 return upper->dev; 7666 return NULL; 7667 } 7668 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7669 7670 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7671 { 7672 struct netdev_adjacent *upper; 7673 7674 ASSERT_RTNL(); 7675 7676 if (list_empty(&dev->adj_list.upper)) 7677 return NULL; 7678 7679 upper = list_first_entry(&dev->adj_list.upper, 7680 struct netdev_adjacent, list); 7681 if (likely(upper->master) && !upper->ignore) 7682 return upper->dev; 7683 return NULL; 7684 } 7685 7686 /** 7687 * netdev_has_any_lower_dev - Check if device is linked to some device 7688 * @dev: device 7689 * 7690 * Find out if a device is linked to a lower device and return true in case 7691 * it is. The caller must hold the RTNL lock. 7692 */ 7693 static bool netdev_has_any_lower_dev(struct net_device *dev) 7694 { 7695 ASSERT_RTNL(); 7696 7697 return !list_empty(&dev->adj_list.lower); 7698 } 7699 7700 void *netdev_adjacent_get_private(struct list_head *adj_list) 7701 { 7702 struct netdev_adjacent *adj; 7703 7704 adj = list_entry(adj_list, struct netdev_adjacent, list); 7705 7706 return adj->private; 7707 } 7708 EXPORT_SYMBOL(netdev_adjacent_get_private); 7709 7710 /** 7711 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7712 * @dev: device 7713 * @iter: list_head ** of the current position 7714 * 7715 * Gets the next device from the dev's upper list, starting from iter 7716 * position. The caller must hold RCU read lock. 7717 */ 7718 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7719 struct list_head **iter) 7720 { 7721 struct netdev_adjacent *upper; 7722 7723 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7724 7725 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7726 7727 if (&upper->list == &dev->adj_list.upper) 7728 return NULL; 7729 7730 *iter = &upper->list; 7731 7732 return upper->dev; 7733 } 7734 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7735 7736 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7737 struct list_head **iter, 7738 bool *ignore) 7739 { 7740 struct netdev_adjacent *upper; 7741 7742 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7743 7744 if (&upper->list == &dev->adj_list.upper) 7745 return NULL; 7746 7747 *iter = &upper->list; 7748 *ignore = upper->ignore; 7749 7750 return upper->dev; 7751 } 7752 7753 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7754 struct list_head **iter) 7755 { 7756 struct netdev_adjacent *upper; 7757 7758 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7759 7760 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7761 7762 if (&upper->list == &dev->adj_list.upper) 7763 return NULL; 7764 7765 *iter = &upper->list; 7766 7767 return upper->dev; 7768 } 7769 7770 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7771 int (*fn)(struct net_device *dev, 7772 struct netdev_nested_priv *priv), 7773 struct netdev_nested_priv *priv) 7774 { 7775 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7776 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7777 int ret, cur = 0; 7778 bool ignore; 7779 7780 now = dev; 7781 iter = &dev->adj_list.upper; 7782 7783 while (1) { 7784 if (now != dev) { 7785 ret = fn(now, priv); 7786 if (ret) 7787 return ret; 7788 } 7789 7790 next = NULL; 7791 while (1) { 7792 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7793 if (!udev) 7794 break; 7795 if (ignore) 7796 continue; 7797 7798 next = udev; 7799 niter = &udev->adj_list.upper; 7800 dev_stack[cur] = now; 7801 iter_stack[cur++] = iter; 7802 break; 7803 } 7804 7805 if (!next) { 7806 if (!cur) 7807 return 0; 7808 next = dev_stack[--cur]; 7809 niter = iter_stack[cur]; 7810 } 7811 7812 now = next; 7813 iter = niter; 7814 } 7815 7816 return 0; 7817 } 7818 7819 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7820 int (*fn)(struct net_device *dev, 7821 struct netdev_nested_priv *priv), 7822 struct netdev_nested_priv *priv) 7823 { 7824 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7825 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7826 int ret, cur = 0; 7827 7828 now = dev; 7829 iter = &dev->adj_list.upper; 7830 7831 while (1) { 7832 if (now != dev) { 7833 ret = fn(now, priv); 7834 if (ret) 7835 return ret; 7836 } 7837 7838 next = NULL; 7839 while (1) { 7840 udev = netdev_next_upper_dev_rcu(now, &iter); 7841 if (!udev) 7842 break; 7843 7844 next = udev; 7845 niter = &udev->adj_list.upper; 7846 dev_stack[cur] = now; 7847 iter_stack[cur++] = iter; 7848 break; 7849 } 7850 7851 if (!next) { 7852 if (!cur) 7853 return 0; 7854 next = dev_stack[--cur]; 7855 niter = iter_stack[cur]; 7856 } 7857 7858 now = next; 7859 iter = niter; 7860 } 7861 7862 return 0; 7863 } 7864 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7865 7866 static bool __netdev_has_upper_dev(struct net_device *dev, 7867 struct net_device *upper_dev) 7868 { 7869 struct netdev_nested_priv priv = { 7870 .flags = 0, 7871 .data = (void *)upper_dev, 7872 }; 7873 7874 ASSERT_RTNL(); 7875 7876 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7877 &priv); 7878 } 7879 7880 /** 7881 * netdev_lower_get_next_private - Get the next ->private from the 7882 * lower neighbour list 7883 * @dev: device 7884 * @iter: list_head ** of the current position 7885 * 7886 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7887 * list, starting from iter position. The caller must hold either hold the 7888 * RTNL lock or its own locking that guarantees that the neighbour lower 7889 * list will remain unchanged. 7890 */ 7891 void *netdev_lower_get_next_private(struct net_device *dev, 7892 struct list_head **iter) 7893 { 7894 struct netdev_adjacent *lower; 7895 7896 lower = list_entry(*iter, struct netdev_adjacent, list); 7897 7898 if (&lower->list == &dev->adj_list.lower) 7899 return NULL; 7900 7901 *iter = lower->list.next; 7902 7903 return lower->private; 7904 } 7905 EXPORT_SYMBOL(netdev_lower_get_next_private); 7906 7907 /** 7908 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7909 * lower neighbour list, RCU 7910 * variant 7911 * @dev: device 7912 * @iter: list_head ** of the current position 7913 * 7914 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7915 * list, starting from iter position. The caller must hold RCU read lock. 7916 */ 7917 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7918 struct list_head **iter) 7919 { 7920 struct netdev_adjacent *lower; 7921 7922 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7923 7924 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7925 7926 if (&lower->list == &dev->adj_list.lower) 7927 return NULL; 7928 7929 *iter = &lower->list; 7930 7931 return lower->private; 7932 } 7933 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7934 7935 /** 7936 * netdev_lower_get_next - Get the next device from the lower neighbour 7937 * list 7938 * @dev: device 7939 * @iter: list_head ** of the current position 7940 * 7941 * Gets the next netdev_adjacent from the dev's lower neighbour 7942 * list, starting from iter position. The caller must hold RTNL lock or 7943 * its own locking that guarantees that the neighbour lower 7944 * list will remain unchanged. 7945 */ 7946 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7947 { 7948 struct netdev_adjacent *lower; 7949 7950 lower = list_entry(*iter, struct netdev_adjacent, list); 7951 7952 if (&lower->list == &dev->adj_list.lower) 7953 return NULL; 7954 7955 *iter = lower->list.next; 7956 7957 return lower->dev; 7958 } 7959 EXPORT_SYMBOL(netdev_lower_get_next); 7960 7961 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7962 struct list_head **iter) 7963 { 7964 struct netdev_adjacent *lower; 7965 7966 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7967 7968 if (&lower->list == &dev->adj_list.lower) 7969 return NULL; 7970 7971 *iter = &lower->list; 7972 7973 return lower->dev; 7974 } 7975 7976 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7977 struct list_head **iter, 7978 bool *ignore) 7979 { 7980 struct netdev_adjacent *lower; 7981 7982 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7983 7984 if (&lower->list == &dev->adj_list.lower) 7985 return NULL; 7986 7987 *iter = &lower->list; 7988 *ignore = lower->ignore; 7989 7990 return lower->dev; 7991 } 7992 7993 int netdev_walk_all_lower_dev(struct net_device *dev, 7994 int (*fn)(struct net_device *dev, 7995 struct netdev_nested_priv *priv), 7996 struct netdev_nested_priv *priv) 7997 { 7998 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7999 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8000 int ret, cur = 0; 8001 8002 now = dev; 8003 iter = &dev->adj_list.lower; 8004 8005 while (1) { 8006 if (now != dev) { 8007 ret = fn(now, priv); 8008 if (ret) 8009 return ret; 8010 } 8011 8012 next = NULL; 8013 while (1) { 8014 ldev = netdev_next_lower_dev(now, &iter); 8015 if (!ldev) 8016 break; 8017 8018 next = ldev; 8019 niter = &ldev->adj_list.lower; 8020 dev_stack[cur] = now; 8021 iter_stack[cur++] = iter; 8022 break; 8023 } 8024 8025 if (!next) { 8026 if (!cur) 8027 return 0; 8028 next = dev_stack[--cur]; 8029 niter = iter_stack[cur]; 8030 } 8031 8032 now = next; 8033 iter = niter; 8034 } 8035 8036 return 0; 8037 } 8038 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8039 8040 static int __netdev_walk_all_lower_dev(struct net_device *dev, 8041 int (*fn)(struct net_device *dev, 8042 struct netdev_nested_priv *priv), 8043 struct netdev_nested_priv *priv) 8044 { 8045 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8046 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8047 int ret, cur = 0; 8048 bool ignore; 8049 8050 now = dev; 8051 iter = &dev->adj_list.lower; 8052 8053 while (1) { 8054 if (now != dev) { 8055 ret = fn(now, priv); 8056 if (ret) 8057 return ret; 8058 } 8059 8060 next = NULL; 8061 while (1) { 8062 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8063 if (!ldev) 8064 break; 8065 if (ignore) 8066 continue; 8067 8068 next = ldev; 8069 niter = &ldev->adj_list.lower; 8070 dev_stack[cur] = now; 8071 iter_stack[cur++] = iter; 8072 break; 8073 } 8074 8075 if (!next) { 8076 if (!cur) 8077 return 0; 8078 next = dev_stack[--cur]; 8079 niter = iter_stack[cur]; 8080 } 8081 8082 now = next; 8083 iter = niter; 8084 } 8085 8086 return 0; 8087 } 8088 8089 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8090 struct list_head **iter) 8091 { 8092 struct netdev_adjacent *lower; 8093 8094 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8095 if (&lower->list == &dev->adj_list.lower) 8096 return NULL; 8097 8098 *iter = &lower->list; 8099 8100 return lower->dev; 8101 } 8102 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8103 8104 static u8 __netdev_upper_depth(struct net_device *dev) 8105 { 8106 struct net_device *udev; 8107 struct list_head *iter; 8108 u8 max_depth = 0; 8109 bool ignore; 8110 8111 for (iter = &dev->adj_list.upper, 8112 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8113 udev; 8114 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8115 if (ignore) 8116 continue; 8117 if (max_depth < udev->upper_level) 8118 max_depth = udev->upper_level; 8119 } 8120 8121 return max_depth; 8122 } 8123 8124 static u8 __netdev_lower_depth(struct net_device *dev) 8125 { 8126 struct net_device *ldev; 8127 struct list_head *iter; 8128 u8 max_depth = 0; 8129 bool ignore; 8130 8131 for (iter = &dev->adj_list.lower, 8132 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8133 ldev; 8134 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8135 if (ignore) 8136 continue; 8137 if (max_depth < ldev->lower_level) 8138 max_depth = ldev->lower_level; 8139 } 8140 8141 return max_depth; 8142 } 8143 8144 static int __netdev_update_upper_level(struct net_device *dev, 8145 struct netdev_nested_priv *__unused) 8146 { 8147 dev->upper_level = __netdev_upper_depth(dev) + 1; 8148 return 0; 8149 } 8150 8151 #ifdef CONFIG_LOCKDEP 8152 static LIST_HEAD(net_unlink_list); 8153 8154 static void net_unlink_todo(struct net_device *dev) 8155 { 8156 if (list_empty(&dev->unlink_list)) 8157 list_add_tail(&dev->unlink_list, &net_unlink_list); 8158 } 8159 #endif 8160 8161 static int __netdev_update_lower_level(struct net_device *dev, 8162 struct netdev_nested_priv *priv) 8163 { 8164 dev->lower_level = __netdev_lower_depth(dev) + 1; 8165 8166 #ifdef CONFIG_LOCKDEP 8167 if (!priv) 8168 return 0; 8169 8170 if (priv->flags & NESTED_SYNC_IMM) 8171 dev->nested_level = dev->lower_level - 1; 8172 if (priv->flags & NESTED_SYNC_TODO) 8173 net_unlink_todo(dev); 8174 #endif 8175 return 0; 8176 } 8177 8178 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8179 int (*fn)(struct net_device *dev, 8180 struct netdev_nested_priv *priv), 8181 struct netdev_nested_priv *priv) 8182 { 8183 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8184 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8185 int ret, cur = 0; 8186 8187 now = dev; 8188 iter = &dev->adj_list.lower; 8189 8190 while (1) { 8191 if (now != dev) { 8192 ret = fn(now, priv); 8193 if (ret) 8194 return ret; 8195 } 8196 8197 next = NULL; 8198 while (1) { 8199 ldev = netdev_next_lower_dev_rcu(now, &iter); 8200 if (!ldev) 8201 break; 8202 8203 next = ldev; 8204 niter = &ldev->adj_list.lower; 8205 dev_stack[cur] = now; 8206 iter_stack[cur++] = iter; 8207 break; 8208 } 8209 8210 if (!next) { 8211 if (!cur) 8212 return 0; 8213 next = dev_stack[--cur]; 8214 niter = iter_stack[cur]; 8215 } 8216 8217 now = next; 8218 iter = niter; 8219 } 8220 8221 return 0; 8222 } 8223 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8224 8225 /** 8226 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8227 * lower neighbour list, RCU 8228 * variant 8229 * @dev: device 8230 * 8231 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8232 * list. The caller must hold RCU read lock. 8233 */ 8234 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8235 { 8236 struct netdev_adjacent *lower; 8237 8238 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8239 struct netdev_adjacent, list); 8240 if (lower) 8241 return lower->private; 8242 return NULL; 8243 } 8244 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8245 8246 /** 8247 * netdev_master_upper_dev_get_rcu - Get master upper device 8248 * @dev: device 8249 * 8250 * Find a master upper device and return pointer to it or NULL in case 8251 * it's not there. The caller must hold the RCU read lock. 8252 */ 8253 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8254 { 8255 struct netdev_adjacent *upper; 8256 8257 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8258 struct netdev_adjacent, list); 8259 if (upper && likely(upper->master)) 8260 return upper->dev; 8261 return NULL; 8262 } 8263 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8264 8265 static int netdev_adjacent_sysfs_add(struct net_device *dev, 8266 struct net_device *adj_dev, 8267 struct list_head *dev_list) 8268 { 8269 char linkname[IFNAMSIZ+7]; 8270 8271 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8272 "upper_%s" : "lower_%s", adj_dev->name); 8273 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8274 linkname); 8275 } 8276 static void netdev_adjacent_sysfs_del(struct net_device *dev, 8277 char *name, 8278 struct list_head *dev_list) 8279 { 8280 char linkname[IFNAMSIZ+7]; 8281 8282 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8283 "upper_%s" : "lower_%s", name); 8284 sysfs_remove_link(&(dev->dev.kobj), linkname); 8285 } 8286 8287 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8288 struct net_device *adj_dev, 8289 struct list_head *dev_list) 8290 { 8291 return (dev_list == &dev->adj_list.upper || 8292 dev_list == &dev->adj_list.lower) && 8293 net_eq(dev_net(dev), dev_net(adj_dev)); 8294 } 8295 8296 static int __netdev_adjacent_dev_insert(struct net_device *dev, 8297 struct net_device *adj_dev, 8298 struct list_head *dev_list, 8299 void *private, bool master) 8300 { 8301 struct netdev_adjacent *adj; 8302 int ret; 8303 8304 adj = __netdev_find_adj(adj_dev, dev_list); 8305 8306 if (adj) { 8307 adj->ref_nr += 1; 8308 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8309 dev->name, adj_dev->name, adj->ref_nr); 8310 8311 return 0; 8312 } 8313 8314 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8315 if (!adj) 8316 return -ENOMEM; 8317 8318 adj->dev = adj_dev; 8319 adj->master = master; 8320 adj->ref_nr = 1; 8321 adj->private = private; 8322 adj->ignore = false; 8323 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8324 8325 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8326 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8327 8328 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8329 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8330 if (ret) 8331 goto free_adj; 8332 } 8333 8334 /* Ensure that master link is always the first item in list. */ 8335 if (master) { 8336 ret = sysfs_create_link(&(dev->dev.kobj), 8337 &(adj_dev->dev.kobj), "master"); 8338 if (ret) 8339 goto remove_symlinks; 8340 8341 list_add_rcu(&adj->list, dev_list); 8342 } else { 8343 list_add_tail_rcu(&adj->list, dev_list); 8344 } 8345 8346 return 0; 8347 8348 remove_symlinks: 8349 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8350 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8351 free_adj: 8352 netdev_put(adj_dev, &adj->dev_tracker); 8353 kfree(adj); 8354 8355 return ret; 8356 } 8357 8358 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8359 struct net_device *adj_dev, 8360 u16 ref_nr, 8361 struct list_head *dev_list) 8362 { 8363 struct netdev_adjacent *adj; 8364 8365 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8366 dev->name, adj_dev->name, ref_nr); 8367 8368 adj = __netdev_find_adj(adj_dev, dev_list); 8369 8370 if (!adj) { 8371 pr_err("Adjacency does not exist for device %s from %s\n", 8372 dev->name, adj_dev->name); 8373 WARN_ON(1); 8374 return; 8375 } 8376 8377 if (adj->ref_nr > ref_nr) { 8378 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8379 dev->name, adj_dev->name, ref_nr, 8380 adj->ref_nr - ref_nr); 8381 adj->ref_nr -= ref_nr; 8382 return; 8383 } 8384 8385 if (adj->master) 8386 sysfs_remove_link(&(dev->dev.kobj), "master"); 8387 8388 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8389 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8390 8391 list_del_rcu(&adj->list); 8392 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8393 adj_dev->name, dev->name, adj_dev->name); 8394 netdev_put(adj_dev, &adj->dev_tracker); 8395 kfree_rcu(adj, rcu); 8396 } 8397 8398 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8399 struct net_device *upper_dev, 8400 struct list_head *up_list, 8401 struct list_head *down_list, 8402 void *private, bool master) 8403 { 8404 int ret; 8405 8406 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8407 private, master); 8408 if (ret) 8409 return ret; 8410 8411 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8412 private, false); 8413 if (ret) { 8414 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8415 return ret; 8416 } 8417 8418 return 0; 8419 } 8420 8421 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8422 struct net_device *upper_dev, 8423 u16 ref_nr, 8424 struct list_head *up_list, 8425 struct list_head *down_list) 8426 { 8427 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8428 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8429 } 8430 8431 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8432 struct net_device *upper_dev, 8433 void *private, bool master) 8434 { 8435 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8436 &dev->adj_list.upper, 8437 &upper_dev->adj_list.lower, 8438 private, master); 8439 } 8440 8441 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8442 struct net_device *upper_dev) 8443 { 8444 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8445 &dev->adj_list.upper, 8446 &upper_dev->adj_list.lower); 8447 } 8448 8449 static int __netdev_upper_dev_link(struct net_device *dev, 8450 struct net_device *upper_dev, bool master, 8451 void *upper_priv, void *upper_info, 8452 struct netdev_nested_priv *priv, 8453 struct netlink_ext_ack *extack) 8454 { 8455 struct netdev_notifier_changeupper_info changeupper_info = { 8456 .info = { 8457 .dev = dev, 8458 .extack = extack, 8459 }, 8460 .upper_dev = upper_dev, 8461 .master = master, 8462 .linking = true, 8463 .upper_info = upper_info, 8464 }; 8465 struct net_device *master_dev; 8466 int ret = 0; 8467 8468 ASSERT_RTNL(); 8469 8470 if (dev == upper_dev) 8471 return -EBUSY; 8472 8473 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8474 if (__netdev_has_upper_dev(upper_dev, dev)) 8475 return -EBUSY; 8476 8477 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8478 return -EMLINK; 8479 8480 if (!master) { 8481 if (__netdev_has_upper_dev(dev, upper_dev)) 8482 return -EEXIST; 8483 } else { 8484 master_dev = __netdev_master_upper_dev_get(dev); 8485 if (master_dev) 8486 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8487 } 8488 8489 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8490 &changeupper_info.info); 8491 ret = notifier_to_errno(ret); 8492 if (ret) 8493 return ret; 8494 8495 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8496 master); 8497 if (ret) 8498 return ret; 8499 8500 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8501 &changeupper_info.info); 8502 ret = notifier_to_errno(ret); 8503 if (ret) 8504 goto rollback; 8505 8506 __netdev_update_upper_level(dev, NULL); 8507 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8508 8509 __netdev_update_lower_level(upper_dev, priv); 8510 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8511 priv); 8512 8513 return 0; 8514 8515 rollback: 8516 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8517 8518 return ret; 8519 } 8520 8521 /** 8522 * netdev_upper_dev_link - Add a link to the upper device 8523 * @dev: device 8524 * @upper_dev: new upper device 8525 * @extack: netlink extended ack 8526 * 8527 * Adds a link to device which is upper to this one. The caller must hold 8528 * the RTNL lock. On a failure a negative errno code is returned. 8529 * On success the reference counts are adjusted and the function 8530 * returns zero. 8531 */ 8532 int netdev_upper_dev_link(struct net_device *dev, 8533 struct net_device *upper_dev, 8534 struct netlink_ext_ack *extack) 8535 { 8536 struct netdev_nested_priv priv = { 8537 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8538 .data = NULL, 8539 }; 8540 8541 return __netdev_upper_dev_link(dev, upper_dev, false, 8542 NULL, NULL, &priv, extack); 8543 } 8544 EXPORT_SYMBOL(netdev_upper_dev_link); 8545 8546 /** 8547 * netdev_master_upper_dev_link - Add a master link to the upper device 8548 * @dev: device 8549 * @upper_dev: new upper device 8550 * @upper_priv: upper device private 8551 * @upper_info: upper info to be passed down via notifier 8552 * @extack: netlink extended ack 8553 * 8554 * Adds a link to device which is upper to this one. In this case, only 8555 * one master upper device can be linked, although other non-master devices 8556 * might be linked as well. The caller must hold the RTNL lock. 8557 * On a failure a negative errno code is returned. On success the reference 8558 * counts are adjusted and the function returns zero. 8559 */ 8560 int netdev_master_upper_dev_link(struct net_device *dev, 8561 struct net_device *upper_dev, 8562 void *upper_priv, void *upper_info, 8563 struct netlink_ext_ack *extack) 8564 { 8565 struct netdev_nested_priv priv = { 8566 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8567 .data = NULL, 8568 }; 8569 8570 return __netdev_upper_dev_link(dev, upper_dev, true, 8571 upper_priv, upper_info, &priv, extack); 8572 } 8573 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8574 8575 static void __netdev_upper_dev_unlink(struct net_device *dev, 8576 struct net_device *upper_dev, 8577 struct netdev_nested_priv *priv) 8578 { 8579 struct netdev_notifier_changeupper_info changeupper_info = { 8580 .info = { 8581 .dev = dev, 8582 }, 8583 .upper_dev = upper_dev, 8584 .linking = false, 8585 }; 8586 8587 ASSERT_RTNL(); 8588 8589 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8590 8591 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8592 &changeupper_info.info); 8593 8594 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8595 8596 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8597 &changeupper_info.info); 8598 8599 __netdev_update_upper_level(dev, NULL); 8600 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8601 8602 __netdev_update_lower_level(upper_dev, priv); 8603 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8604 priv); 8605 } 8606 8607 /** 8608 * netdev_upper_dev_unlink - Removes a link to upper device 8609 * @dev: device 8610 * @upper_dev: new upper device 8611 * 8612 * Removes a link to device which is upper to this one. The caller must hold 8613 * the RTNL lock. 8614 */ 8615 void netdev_upper_dev_unlink(struct net_device *dev, 8616 struct net_device *upper_dev) 8617 { 8618 struct netdev_nested_priv priv = { 8619 .flags = NESTED_SYNC_TODO, 8620 .data = NULL, 8621 }; 8622 8623 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8624 } 8625 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8626 8627 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8628 struct net_device *lower_dev, 8629 bool val) 8630 { 8631 struct netdev_adjacent *adj; 8632 8633 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8634 if (adj) 8635 adj->ignore = val; 8636 8637 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8638 if (adj) 8639 adj->ignore = val; 8640 } 8641 8642 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8643 struct net_device *lower_dev) 8644 { 8645 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8646 } 8647 8648 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8649 struct net_device *lower_dev) 8650 { 8651 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8652 } 8653 8654 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8655 struct net_device *new_dev, 8656 struct net_device *dev, 8657 struct netlink_ext_ack *extack) 8658 { 8659 struct netdev_nested_priv priv = { 8660 .flags = 0, 8661 .data = NULL, 8662 }; 8663 int err; 8664 8665 if (!new_dev) 8666 return 0; 8667 8668 if (old_dev && new_dev != old_dev) 8669 netdev_adjacent_dev_disable(dev, old_dev); 8670 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8671 extack); 8672 if (err) { 8673 if (old_dev && new_dev != old_dev) 8674 netdev_adjacent_dev_enable(dev, old_dev); 8675 return err; 8676 } 8677 8678 return 0; 8679 } 8680 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8681 8682 void netdev_adjacent_change_commit(struct net_device *old_dev, 8683 struct net_device *new_dev, 8684 struct net_device *dev) 8685 { 8686 struct netdev_nested_priv priv = { 8687 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8688 .data = NULL, 8689 }; 8690 8691 if (!new_dev || !old_dev) 8692 return; 8693 8694 if (new_dev == old_dev) 8695 return; 8696 8697 netdev_adjacent_dev_enable(dev, old_dev); 8698 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8699 } 8700 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8701 8702 void netdev_adjacent_change_abort(struct net_device *old_dev, 8703 struct net_device *new_dev, 8704 struct net_device *dev) 8705 { 8706 struct netdev_nested_priv priv = { 8707 .flags = 0, 8708 .data = NULL, 8709 }; 8710 8711 if (!new_dev) 8712 return; 8713 8714 if (old_dev && new_dev != old_dev) 8715 netdev_adjacent_dev_enable(dev, old_dev); 8716 8717 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8718 } 8719 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8720 8721 /** 8722 * netdev_bonding_info_change - Dispatch event about slave change 8723 * @dev: device 8724 * @bonding_info: info to dispatch 8725 * 8726 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8727 * The caller must hold the RTNL lock. 8728 */ 8729 void netdev_bonding_info_change(struct net_device *dev, 8730 struct netdev_bonding_info *bonding_info) 8731 { 8732 struct netdev_notifier_bonding_info info = { 8733 .info.dev = dev, 8734 }; 8735 8736 memcpy(&info.bonding_info, bonding_info, 8737 sizeof(struct netdev_bonding_info)); 8738 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8739 &info.info); 8740 } 8741 EXPORT_SYMBOL(netdev_bonding_info_change); 8742 8743 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8744 struct netlink_ext_ack *extack) 8745 { 8746 struct netdev_notifier_offload_xstats_info info = { 8747 .info.dev = dev, 8748 .info.extack = extack, 8749 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8750 }; 8751 int err; 8752 int rc; 8753 8754 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8755 GFP_KERNEL); 8756 if (!dev->offload_xstats_l3) 8757 return -ENOMEM; 8758 8759 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8760 NETDEV_OFFLOAD_XSTATS_DISABLE, 8761 &info.info); 8762 err = notifier_to_errno(rc); 8763 if (err) 8764 goto free_stats; 8765 8766 return 0; 8767 8768 free_stats: 8769 kfree(dev->offload_xstats_l3); 8770 dev->offload_xstats_l3 = NULL; 8771 return err; 8772 } 8773 8774 int netdev_offload_xstats_enable(struct net_device *dev, 8775 enum netdev_offload_xstats_type type, 8776 struct netlink_ext_ack *extack) 8777 { 8778 ASSERT_RTNL(); 8779 8780 if (netdev_offload_xstats_enabled(dev, type)) 8781 return -EALREADY; 8782 8783 switch (type) { 8784 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8785 return netdev_offload_xstats_enable_l3(dev, extack); 8786 } 8787 8788 WARN_ON(1); 8789 return -EINVAL; 8790 } 8791 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8792 8793 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8794 { 8795 struct netdev_notifier_offload_xstats_info info = { 8796 .info.dev = dev, 8797 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8798 }; 8799 8800 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8801 &info.info); 8802 kfree(dev->offload_xstats_l3); 8803 dev->offload_xstats_l3 = NULL; 8804 } 8805 8806 int netdev_offload_xstats_disable(struct net_device *dev, 8807 enum netdev_offload_xstats_type type) 8808 { 8809 ASSERT_RTNL(); 8810 8811 if (!netdev_offload_xstats_enabled(dev, type)) 8812 return -EALREADY; 8813 8814 switch (type) { 8815 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8816 netdev_offload_xstats_disable_l3(dev); 8817 return 0; 8818 } 8819 8820 WARN_ON(1); 8821 return -EINVAL; 8822 } 8823 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8824 8825 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8826 { 8827 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8828 } 8829 8830 static struct rtnl_hw_stats64 * 8831 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8832 enum netdev_offload_xstats_type type) 8833 { 8834 switch (type) { 8835 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8836 return dev->offload_xstats_l3; 8837 } 8838 8839 WARN_ON(1); 8840 return NULL; 8841 } 8842 8843 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8844 enum netdev_offload_xstats_type type) 8845 { 8846 ASSERT_RTNL(); 8847 8848 return netdev_offload_xstats_get_ptr(dev, type); 8849 } 8850 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8851 8852 struct netdev_notifier_offload_xstats_ru { 8853 bool used; 8854 }; 8855 8856 struct netdev_notifier_offload_xstats_rd { 8857 struct rtnl_hw_stats64 stats; 8858 bool used; 8859 }; 8860 8861 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8862 const struct rtnl_hw_stats64 *src) 8863 { 8864 dest->rx_packets += src->rx_packets; 8865 dest->tx_packets += src->tx_packets; 8866 dest->rx_bytes += src->rx_bytes; 8867 dest->tx_bytes += src->tx_bytes; 8868 dest->rx_errors += src->rx_errors; 8869 dest->tx_errors += src->tx_errors; 8870 dest->rx_dropped += src->rx_dropped; 8871 dest->tx_dropped += src->tx_dropped; 8872 dest->multicast += src->multicast; 8873 } 8874 8875 static int netdev_offload_xstats_get_used(struct net_device *dev, 8876 enum netdev_offload_xstats_type type, 8877 bool *p_used, 8878 struct netlink_ext_ack *extack) 8879 { 8880 struct netdev_notifier_offload_xstats_ru report_used = {}; 8881 struct netdev_notifier_offload_xstats_info info = { 8882 .info.dev = dev, 8883 .info.extack = extack, 8884 .type = type, 8885 .report_used = &report_used, 8886 }; 8887 int rc; 8888 8889 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8890 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8891 &info.info); 8892 *p_used = report_used.used; 8893 return notifier_to_errno(rc); 8894 } 8895 8896 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8897 enum netdev_offload_xstats_type type, 8898 struct rtnl_hw_stats64 *p_stats, 8899 bool *p_used, 8900 struct netlink_ext_ack *extack) 8901 { 8902 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8903 struct netdev_notifier_offload_xstats_info info = { 8904 .info.dev = dev, 8905 .info.extack = extack, 8906 .type = type, 8907 .report_delta = &report_delta, 8908 }; 8909 struct rtnl_hw_stats64 *stats; 8910 int rc; 8911 8912 stats = netdev_offload_xstats_get_ptr(dev, type); 8913 if (WARN_ON(!stats)) 8914 return -EINVAL; 8915 8916 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8917 &info.info); 8918 8919 /* Cache whatever we got, even if there was an error, otherwise the 8920 * successful stats retrievals would get lost. 8921 */ 8922 netdev_hw_stats64_add(stats, &report_delta.stats); 8923 8924 if (p_stats) 8925 *p_stats = *stats; 8926 *p_used = report_delta.used; 8927 8928 return notifier_to_errno(rc); 8929 } 8930 8931 int netdev_offload_xstats_get(struct net_device *dev, 8932 enum netdev_offload_xstats_type type, 8933 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8934 struct netlink_ext_ack *extack) 8935 { 8936 ASSERT_RTNL(); 8937 8938 if (p_stats) 8939 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8940 p_used, extack); 8941 else 8942 return netdev_offload_xstats_get_used(dev, type, p_used, 8943 extack); 8944 } 8945 EXPORT_SYMBOL(netdev_offload_xstats_get); 8946 8947 void 8948 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8949 const struct rtnl_hw_stats64 *stats) 8950 { 8951 report_delta->used = true; 8952 netdev_hw_stats64_add(&report_delta->stats, stats); 8953 } 8954 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8955 8956 void 8957 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8958 { 8959 report_used->used = true; 8960 } 8961 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8962 8963 void netdev_offload_xstats_push_delta(struct net_device *dev, 8964 enum netdev_offload_xstats_type type, 8965 const struct rtnl_hw_stats64 *p_stats) 8966 { 8967 struct rtnl_hw_stats64 *stats; 8968 8969 ASSERT_RTNL(); 8970 8971 stats = netdev_offload_xstats_get_ptr(dev, type); 8972 if (WARN_ON(!stats)) 8973 return; 8974 8975 netdev_hw_stats64_add(stats, p_stats); 8976 } 8977 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8978 8979 /** 8980 * netdev_get_xmit_slave - Get the xmit slave of master device 8981 * @dev: device 8982 * @skb: The packet 8983 * @all_slaves: assume all the slaves are active 8984 * 8985 * The reference counters are not incremented so the caller must be 8986 * careful with locks. The caller must hold RCU lock. 8987 * %NULL is returned if no slave is found. 8988 */ 8989 8990 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8991 struct sk_buff *skb, 8992 bool all_slaves) 8993 { 8994 const struct net_device_ops *ops = dev->netdev_ops; 8995 8996 if (!ops->ndo_get_xmit_slave) 8997 return NULL; 8998 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8999 } 9000 EXPORT_SYMBOL(netdev_get_xmit_slave); 9001 9002 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9003 struct sock *sk) 9004 { 9005 const struct net_device_ops *ops = dev->netdev_ops; 9006 9007 if (!ops->ndo_sk_get_lower_dev) 9008 return NULL; 9009 return ops->ndo_sk_get_lower_dev(dev, sk); 9010 } 9011 9012 /** 9013 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9014 * @dev: device 9015 * @sk: the socket 9016 * 9017 * %NULL is returned if no lower device is found. 9018 */ 9019 9020 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9021 struct sock *sk) 9022 { 9023 struct net_device *lower; 9024 9025 lower = netdev_sk_get_lower_dev(dev, sk); 9026 while (lower) { 9027 dev = lower; 9028 lower = netdev_sk_get_lower_dev(dev, sk); 9029 } 9030 9031 return dev; 9032 } 9033 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9034 9035 static void netdev_adjacent_add_links(struct net_device *dev) 9036 { 9037 struct netdev_adjacent *iter; 9038 9039 struct net *net = dev_net(dev); 9040 9041 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9042 if (!net_eq(net, dev_net(iter->dev))) 9043 continue; 9044 netdev_adjacent_sysfs_add(iter->dev, dev, 9045 &iter->dev->adj_list.lower); 9046 netdev_adjacent_sysfs_add(dev, iter->dev, 9047 &dev->adj_list.upper); 9048 } 9049 9050 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9051 if (!net_eq(net, dev_net(iter->dev))) 9052 continue; 9053 netdev_adjacent_sysfs_add(iter->dev, dev, 9054 &iter->dev->adj_list.upper); 9055 netdev_adjacent_sysfs_add(dev, iter->dev, 9056 &dev->adj_list.lower); 9057 } 9058 } 9059 9060 static void netdev_adjacent_del_links(struct net_device *dev) 9061 { 9062 struct netdev_adjacent *iter; 9063 9064 struct net *net = dev_net(dev); 9065 9066 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9067 if (!net_eq(net, dev_net(iter->dev))) 9068 continue; 9069 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9070 &iter->dev->adj_list.lower); 9071 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9072 &dev->adj_list.upper); 9073 } 9074 9075 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9076 if (!net_eq(net, dev_net(iter->dev))) 9077 continue; 9078 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9079 &iter->dev->adj_list.upper); 9080 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9081 &dev->adj_list.lower); 9082 } 9083 } 9084 9085 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9086 { 9087 struct netdev_adjacent *iter; 9088 9089 struct net *net = dev_net(dev); 9090 9091 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9092 if (!net_eq(net, dev_net(iter->dev))) 9093 continue; 9094 netdev_adjacent_sysfs_del(iter->dev, oldname, 9095 &iter->dev->adj_list.lower); 9096 netdev_adjacent_sysfs_add(iter->dev, dev, 9097 &iter->dev->adj_list.lower); 9098 } 9099 9100 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9101 if (!net_eq(net, dev_net(iter->dev))) 9102 continue; 9103 netdev_adjacent_sysfs_del(iter->dev, oldname, 9104 &iter->dev->adj_list.upper); 9105 netdev_adjacent_sysfs_add(iter->dev, dev, 9106 &iter->dev->adj_list.upper); 9107 } 9108 } 9109 9110 void *netdev_lower_dev_get_private(struct net_device *dev, 9111 struct net_device *lower_dev) 9112 { 9113 struct netdev_adjacent *lower; 9114 9115 if (!lower_dev) 9116 return NULL; 9117 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9118 if (!lower) 9119 return NULL; 9120 9121 return lower->private; 9122 } 9123 EXPORT_SYMBOL(netdev_lower_dev_get_private); 9124 9125 9126 /** 9127 * netdev_lower_state_changed - Dispatch event about lower device state change 9128 * @lower_dev: device 9129 * @lower_state_info: state to dispatch 9130 * 9131 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9132 * The caller must hold the RTNL lock. 9133 */ 9134 void netdev_lower_state_changed(struct net_device *lower_dev, 9135 void *lower_state_info) 9136 { 9137 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9138 .info.dev = lower_dev, 9139 }; 9140 9141 ASSERT_RTNL(); 9142 changelowerstate_info.lower_state_info = lower_state_info; 9143 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9144 &changelowerstate_info.info); 9145 } 9146 EXPORT_SYMBOL(netdev_lower_state_changed); 9147 9148 static void dev_change_rx_flags(struct net_device *dev, int flags) 9149 { 9150 const struct net_device_ops *ops = dev->netdev_ops; 9151 9152 if (ops->ndo_change_rx_flags) 9153 ops->ndo_change_rx_flags(dev, flags); 9154 } 9155 9156 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9157 { 9158 unsigned int old_flags = dev->flags; 9159 unsigned int promiscuity, flags; 9160 kuid_t uid; 9161 kgid_t gid; 9162 9163 ASSERT_RTNL(); 9164 9165 promiscuity = dev->promiscuity + inc; 9166 if (promiscuity == 0) { 9167 /* 9168 * Avoid overflow. 9169 * If inc causes overflow, untouch promisc and return error. 9170 */ 9171 if (unlikely(inc > 0)) { 9172 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9173 return -EOVERFLOW; 9174 } 9175 flags = old_flags & ~IFF_PROMISC; 9176 } else { 9177 flags = old_flags | IFF_PROMISC; 9178 } 9179 WRITE_ONCE(dev->promiscuity, promiscuity); 9180 if (flags != old_flags) { 9181 WRITE_ONCE(dev->flags, flags); 9182 netdev_info(dev, "%s promiscuous mode\n", 9183 dev->flags & IFF_PROMISC ? "entered" : "left"); 9184 if (audit_enabled) { 9185 current_uid_gid(&uid, &gid); 9186 audit_log(audit_context(), GFP_ATOMIC, 9187 AUDIT_ANOM_PROMISCUOUS, 9188 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9189 dev->name, (dev->flags & IFF_PROMISC), 9190 (old_flags & IFF_PROMISC), 9191 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9192 from_kuid(&init_user_ns, uid), 9193 from_kgid(&init_user_ns, gid), 9194 audit_get_sessionid(current)); 9195 } 9196 9197 dev_change_rx_flags(dev, IFF_PROMISC); 9198 } 9199 if (notify) 9200 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9201 return 0; 9202 } 9203 9204 /** 9205 * dev_set_promiscuity - update promiscuity count on a device 9206 * @dev: device 9207 * @inc: modifier 9208 * 9209 * Add or remove promiscuity from a device. While the count in the device 9210 * remains above zero the interface remains promiscuous. Once it hits zero 9211 * the device reverts back to normal filtering operation. A negative inc 9212 * value is used to drop promiscuity on the device. 9213 * Return 0 if successful or a negative errno code on error. 9214 */ 9215 int dev_set_promiscuity(struct net_device *dev, int inc) 9216 { 9217 unsigned int old_flags = dev->flags; 9218 int err; 9219 9220 err = __dev_set_promiscuity(dev, inc, true); 9221 if (err < 0) 9222 return err; 9223 if (dev->flags != old_flags) 9224 dev_set_rx_mode(dev); 9225 return err; 9226 } 9227 EXPORT_SYMBOL(dev_set_promiscuity); 9228 9229 int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9230 { 9231 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9232 unsigned int allmulti, flags; 9233 9234 ASSERT_RTNL(); 9235 9236 allmulti = dev->allmulti + inc; 9237 if (allmulti == 0) { 9238 /* 9239 * Avoid overflow. 9240 * If inc causes overflow, untouch allmulti and return error. 9241 */ 9242 if (unlikely(inc > 0)) { 9243 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9244 return -EOVERFLOW; 9245 } 9246 flags = old_flags & ~IFF_ALLMULTI; 9247 } else { 9248 flags = old_flags | IFF_ALLMULTI; 9249 } 9250 WRITE_ONCE(dev->allmulti, allmulti); 9251 if (flags != old_flags) { 9252 WRITE_ONCE(dev->flags, flags); 9253 netdev_info(dev, "%s allmulticast mode\n", 9254 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9255 dev_change_rx_flags(dev, IFF_ALLMULTI); 9256 dev_set_rx_mode(dev); 9257 if (notify) 9258 __dev_notify_flags(dev, old_flags, 9259 dev->gflags ^ old_gflags, 0, NULL); 9260 } 9261 return 0; 9262 } 9263 9264 /* 9265 * Upload unicast and multicast address lists to device and 9266 * configure RX filtering. When the device doesn't support unicast 9267 * filtering it is put in promiscuous mode while unicast addresses 9268 * are present. 9269 */ 9270 void __dev_set_rx_mode(struct net_device *dev) 9271 { 9272 const struct net_device_ops *ops = dev->netdev_ops; 9273 9274 /* dev_open will call this function so the list will stay sane. */ 9275 if (!(dev->flags&IFF_UP)) 9276 return; 9277 9278 if (!netif_device_present(dev)) 9279 return; 9280 9281 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9282 /* Unicast addresses changes may only happen under the rtnl, 9283 * therefore calling __dev_set_promiscuity here is safe. 9284 */ 9285 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9286 __dev_set_promiscuity(dev, 1, false); 9287 dev->uc_promisc = true; 9288 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9289 __dev_set_promiscuity(dev, -1, false); 9290 dev->uc_promisc = false; 9291 } 9292 } 9293 9294 if (ops->ndo_set_rx_mode) 9295 ops->ndo_set_rx_mode(dev); 9296 } 9297 9298 void dev_set_rx_mode(struct net_device *dev) 9299 { 9300 netif_addr_lock_bh(dev); 9301 __dev_set_rx_mode(dev); 9302 netif_addr_unlock_bh(dev); 9303 } 9304 9305 /** 9306 * dev_get_flags - get flags reported to userspace 9307 * @dev: device 9308 * 9309 * Get the combination of flag bits exported through APIs to userspace. 9310 */ 9311 unsigned int dev_get_flags(const struct net_device *dev) 9312 { 9313 unsigned int flags; 9314 9315 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9316 IFF_ALLMULTI | 9317 IFF_RUNNING | 9318 IFF_LOWER_UP | 9319 IFF_DORMANT)) | 9320 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9321 IFF_ALLMULTI)); 9322 9323 if (netif_running(dev)) { 9324 if (netif_oper_up(dev)) 9325 flags |= IFF_RUNNING; 9326 if (netif_carrier_ok(dev)) 9327 flags |= IFF_LOWER_UP; 9328 if (netif_dormant(dev)) 9329 flags |= IFF_DORMANT; 9330 } 9331 9332 return flags; 9333 } 9334 EXPORT_SYMBOL(dev_get_flags); 9335 9336 int __dev_change_flags(struct net_device *dev, unsigned int flags, 9337 struct netlink_ext_ack *extack) 9338 { 9339 unsigned int old_flags = dev->flags; 9340 int ret; 9341 9342 ASSERT_RTNL(); 9343 9344 /* 9345 * Set the flags on our device. 9346 */ 9347 9348 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9349 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9350 IFF_AUTOMEDIA)) | 9351 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9352 IFF_ALLMULTI)); 9353 9354 /* 9355 * Load in the correct multicast list now the flags have changed. 9356 */ 9357 9358 if ((old_flags ^ flags) & IFF_MULTICAST) 9359 dev_change_rx_flags(dev, IFF_MULTICAST); 9360 9361 dev_set_rx_mode(dev); 9362 9363 /* 9364 * Have we downed the interface. We handle IFF_UP ourselves 9365 * according to user attempts to set it, rather than blindly 9366 * setting it. 9367 */ 9368 9369 ret = 0; 9370 if ((old_flags ^ flags) & IFF_UP) { 9371 if (old_flags & IFF_UP) 9372 __dev_close(dev); 9373 else 9374 ret = __dev_open(dev, extack); 9375 } 9376 9377 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9378 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9379 old_flags = dev->flags; 9380 9381 dev->gflags ^= IFF_PROMISC; 9382 9383 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9384 if (dev->flags != old_flags) 9385 dev_set_rx_mode(dev); 9386 } 9387 9388 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9389 * is important. Some (broken) drivers set IFF_PROMISC, when 9390 * IFF_ALLMULTI is requested not asking us and not reporting. 9391 */ 9392 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9393 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9394 9395 dev->gflags ^= IFF_ALLMULTI; 9396 netif_set_allmulti(dev, inc, false); 9397 } 9398 9399 return ret; 9400 } 9401 9402 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9403 unsigned int gchanges, u32 portid, 9404 const struct nlmsghdr *nlh) 9405 { 9406 unsigned int changes = dev->flags ^ old_flags; 9407 9408 if (gchanges) 9409 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9410 9411 if (changes & IFF_UP) { 9412 if (dev->flags & IFF_UP) 9413 call_netdevice_notifiers(NETDEV_UP, dev); 9414 else 9415 call_netdevice_notifiers(NETDEV_DOWN, dev); 9416 } 9417 9418 if (dev->flags & IFF_UP && 9419 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9420 struct netdev_notifier_change_info change_info = { 9421 .info = { 9422 .dev = dev, 9423 }, 9424 .flags_changed = changes, 9425 }; 9426 9427 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9428 } 9429 } 9430 9431 int netif_change_flags(struct net_device *dev, unsigned int flags, 9432 struct netlink_ext_ack *extack) 9433 { 9434 int ret; 9435 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9436 9437 ret = __dev_change_flags(dev, flags, extack); 9438 if (ret < 0) 9439 return ret; 9440 9441 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9442 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9443 return ret; 9444 } 9445 9446 int __dev_set_mtu(struct net_device *dev, int new_mtu) 9447 { 9448 const struct net_device_ops *ops = dev->netdev_ops; 9449 9450 if (ops->ndo_change_mtu) 9451 return ops->ndo_change_mtu(dev, new_mtu); 9452 9453 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9454 WRITE_ONCE(dev->mtu, new_mtu); 9455 return 0; 9456 } 9457 EXPORT_SYMBOL(__dev_set_mtu); 9458 9459 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9460 struct netlink_ext_ack *extack) 9461 { 9462 /* MTU must be positive, and in range */ 9463 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9464 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9465 return -EINVAL; 9466 } 9467 9468 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9469 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9470 return -EINVAL; 9471 } 9472 return 0; 9473 } 9474 9475 /** 9476 * netif_set_mtu_ext - Change maximum transfer unit 9477 * @dev: device 9478 * @new_mtu: new transfer unit 9479 * @extack: netlink extended ack 9480 * 9481 * Change the maximum transfer size of the network device. 9482 */ 9483 int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9484 struct netlink_ext_ack *extack) 9485 { 9486 int err, orig_mtu; 9487 9488 if (new_mtu == dev->mtu) 9489 return 0; 9490 9491 err = dev_validate_mtu(dev, new_mtu, extack); 9492 if (err) 9493 return err; 9494 9495 if (!netif_device_present(dev)) 9496 return -ENODEV; 9497 9498 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9499 err = notifier_to_errno(err); 9500 if (err) 9501 return err; 9502 9503 orig_mtu = dev->mtu; 9504 err = __dev_set_mtu(dev, new_mtu); 9505 9506 if (!err) { 9507 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9508 orig_mtu); 9509 err = notifier_to_errno(err); 9510 if (err) { 9511 /* setting mtu back and notifying everyone again, 9512 * so that they have a chance to revert changes. 9513 */ 9514 __dev_set_mtu(dev, orig_mtu); 9515 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9516 new_mtu); 9517 } 9518 } 9519 return err; 9520 } 9521 9522 int netif_set_mtu(struct net_device *dev, int new_mtu) 9523 { 9524 struct netlink_ext_ack extack; 9525 int err; 9526 9527 memset(&extack, 0, sizeof(extack)); 9528 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9529 if (err && extack._msg) 9530 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9531 return err; 9532 } 9533 EXPORT_SYMBOL(netif_set_mtu); 9534 9535 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9536 { 9537 unsigned int orig_len = dev->tx_queue_len; 9538 int res; 9539 9540 if (new_len != (unsigned int)new_len) 9541 return -ERANGE; 9542 9543 if (new_len != orig_len) { 9544 WRITE_ONCE(dev->tx_queue_len, new_len); 9545 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9546 res = notifier_to_errno(res); 9547 if (res) 9548 goto err_rollback; 9549 res = dev_qdisc_change_tx_queue_len(dev); 9550 if (res) 9551 goto err_rollback; 9552 } 9553 9554 return 0; 9555 9556 err_rollback: 9557 netdev_err(dev, "refused to change device tx_queue_len\n"); 9558 WRITE_ONCE(dev->tx_queue_len, orig_len); 9559 return res; 9560 } 9561 9562 void netif_set_group(struct net_device *dev, int new_group) 9563 { 9564 dev->group = new_group; 9565 } 9566 9567 /** 9568 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 9569 * @dev: device 9570 * @addr: new address 9571 * @extack: netlink extended ack 9572 */ 9573 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9574 struct netlink_ext_ack *extack) 9575 { 9576 struct netdev_notifier_pre_changeaddr_info info = { 9577 .info.dev = dev, 9578 .info.extack = extack, 9579 .dev_addr = addr, 9580 }; 9581 int rc; 9582 9583 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9584 return notifier_to_errno(rc); 9585 } 9586 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9587 9588 int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa, 9589 struct netlink_ext_ack *extack) 9590 { 9591 const struct net_device_ops *ops = dev->netdev_ops; 9592 int err; 9593 9594 if (!ops->ndo_set_mac_address) 9595 return -EOPNOTSUPP; 9596 if (sa->sa_family != dev->type) 9597 return -EINVAL; 9598 if (!netif_device_present(dev)) 9599 return -ENODEV; 9600 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 9601 if (err) 9602 return err; 9603 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 9604 err = ops->ndo_set_mac_address(dev, sa); 9605 if (err) 9606 return err; 9607 } 9608 dev->addr_assign_type = NET_ADDR_SET; 9609 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9610 add_device_randomness(dev->dev_addr, dev->addr_len); 9611 return 0; 9612 } 9613 9614 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9615 { 9616 size_t size = sizeof(sa->sa_data_min); 9617 struct net_device *dev; 9618 9619 dev = netdev_get_by_name_lock(net, dev_name); 9620 if (!dev) 9621 return -ENODEV; 9622 9623 if (!dev->addr_len) 9624 memset(sa->sa_data, 0, size); 9625 else 9626 memcpy(sa->sa_data, dev->dev_addr, 9627 min_t(size_t, size, dev->addr_len)); 9628 sa->sa_family = dev->type; 9629 netdev_unlock(dev); 9630 9631 return 0; 9632 } 9633 EXPORT_SYMBOL(dev_get_mac_address); 9634 9635 int netif_change_carrier(struct net_device *dev, bool new_carrier) 9636 { 9637 const struct net_device_ops *ops = dev->netdev_ops; 9638 9639 if (!ops->ndo_change_carrier) 9640 return -EOPNOTSUPP; 9641 if (!netif_device_present(dev)) 9642 return -ENODEV; 9643 return ops->ndo_change_carrier(dev, new_carrier); 9644 } 9645 9646 /** 9647 * dev_get_phys_port_id - Get device physical port ID 9648 * @dev: device 9649 * @ppid: port ID 9650 * 9651 * Get device physical port ID 9652 */ 9653 int dev_get_phys_port_id(struct net_device *dev, 9654 struct netdev_phys_item_id *ppid) 9655 { 9656 const struct net_device_ops *ops = dev->netdev_ops; 9657 9658 if (!ops->ndo_get_phys_port_id) 9659 return -EOPNOTSUPP; 9660 return ops->ndo_get_phys_port_id(dev, ppid); 9661 } 9662 9663 /** 9664 * dev_get_phys_port_name - Get device physical port name 9665 * @dev: device 9666 * @name: port name 9667 * @len: limit of bytes to copy to name 9668 * 9669 * Get device physical port name 9670 */ 9671 int dev_get_phys_port_name(struct net_device *dev, 9672 char *name, size_t len) 9673 { 9674 const struct net_device_ops *ops = dev->netdev_ops; 9675 int err; 9676 9677 if (ops->ndo_get_phys_port_name) { 9678 err = ops->ndo_get_phys_port_name(dev, name, len); 9679 if (err != -EOPNOTSUPP) 9680 return err; 9681 } 9682 return devlink_compat_phys_port_name_get(dev, name, len); 9683 } 9684 9685 /** 9686 * dev_get_port_parent_id - Get the device's port parent identifier 9687 * @dev: network device 9688 * @ppid: pointer to a storage for the port's parent identifier 9689 * @recurse: allow/disallow recursion to lower devices 9690 * 9691 * Get the devices's port parent identifier 9692 */ 9693 int dev_get_port_parent_id(struct net_device *dev, 9694 struct netdev_phys_item_id *ppid, 9695 bool recurse) 9696 { 9697 const struct net_device_ops *ops = dev->netdev_ops; 9698 struct netdev_phys_item_id first = { }; 9699 struct net_device *lower_dev; 9700 struct list_head *iter; 9701 int err; 9702 9703 if (ops->ndo_get_port_parent_id) { 9704 err = ops->ndo_get_port_parent_id(dev, ppid); 9705 if (err != -EOPNOTSUPP) 9706 return err; 9707 } 9708 9709 err = devlink_compat_switch_id_get(dev, ppid); 9710 if (!recurse || err != -EOPNOTSUPP) 9711 return err; 9712 9713 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9714 err = dev_get_port_parent_id(lower_dev, ppid, true); 9715 if (err) 9716 break; 9717 if (!first.id_len) 9718 first = *ppid; 9719 else if (memcmp(&first, ppid, sizeof(*ppid))) 9720 return -EOPNOTSUPP; 9721 } 9722 9723 return err; 9724 } 9725 EXPORT_SYMBOL(dev_get_port_parent_id); 9726 9727 /** 9728 * netdev_port_same_parent_id - Indicate if two network devices have 9729 * the same port parent identifier 9730 * @a: first network device 9731 * @b: second network device 9732 */ 9733 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9734 { 9735 struct netdev_phys_item_id a_id = { }; 9736 struct netdev_phys_item_id b_id = { }; 9737 9738 if (dev_get_port_parent_id(a, &a_id, true) || 9739 dev_get_port_parent_id(b, &b_id, true)) 9740 return false; 9741 9742 return netdev_phys_item_id_same(&a_id, &b_id); 9743 } 9744 EXPORT_SYMBOL(netdev_port_same_parent_id); 9745 9746 int netif_change_proto_down(struct net_device *dev, bool proto_down) 9747 { 9748 if (!dev->change_proto_down) 9749 return -EOPNOTSUPP; 9750 if (!netif_device_present(dev)) 9751 return -ENODEV; 9752 if (proto_down) 9753 netif_carrier_off(dev); 9754 else 9755 netif_carrier_on(dev); 9756 WRITE_ONCE(dev->proto_down, proto_down); 9757 return 0; 9758 } 9759 9760 /** 9761 * netdev_change_proto_down_reason_locked - proto down reason 9762 * 9763 * @dev: device 9764 * @mask: proto down mask 9765 * @value: proto down value 9766 */ 9767 void netdev_change_proto_down_reason_locked(struct net_device *dev, 9768 unsigned long mask, u32 value) 9769 { 9770 u32 proto_down_reason; 9771 int b; 9772 9773 if (!mask) { 9774 proto_down_reason = value; 9775 } else { 9776 proto_down_reason = dev->proto_down_reason; 9777 for_each_set_bit(b, &mask, 32) { 9778 if (value & (1 << b)) 9779 proto_down_reason |= BIT(b); 9780 else 9781 proto_down_reason &= ~BIT(b); 9782 } 9783 } 9784 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9785 } 9786 9787 struct bpf_xdp_link { 9788 struct bpf_link link; 9789 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9790 int flags; 9791 }; 9792 9793 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9794 { 9795 if (flags & XDP_FLAGS_HW_MODE) 9796 return XDP_MODE_HW; 9797 if (flags & XDP_FLAGS_DRV_MODE) 9798 return XDP_MODE_DRV; 9799 if (flags & XDP_FLAGS_SKB_MODE) 9800 return XDP_MODE_SKB; 9801 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9802 } 9803 9804 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9805 { 9806 switch (mode) { 9807 case XDP_MODE_SKB: 9808 return generic_xdp_install; 9809 case XDP_MODE_DRV: 9810 case XDP_MODE_HW: 9811 return dev->netdev_ops->ndo_bpf; 9812 default: 9813 return NULL; 9814 } 9815 } 9816 9817 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9818 enum bpf_xdp_mode mode) 9819 { 9820 return dev->xdp_state[mode].link; 9821 } 9822 9823 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9824 enum bpf_xdp_mode mode) 9825 { 9826 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9827 9828 if (link) 9829 return link->link.prog; 9830 return dev->xdp_state[mode].prog; 9831 } 9832 9833 u8 dev_xdp_prog_count(struct net_device *dev) 9834 { 9835 u8 count = 0; 9836 int i; 9837 9838 for (i = 0; i < __MAX_XDP_MODE; i++) 9839 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9840 count++; 9841 return count; 9842 } 9843 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9844 9845 u8 dev_xdp_sb_prog_count(struct net_device *dev) 9846 { 9847 u8 count = 0; 9848 int i; 9849 9850 for (i = 0; i < __MAX_XDP_MODE; i++) 9851 if (dev->xdp_state[i].prog && 9852 !dev->xdp_state[i].prog->aux->xdp_has_frags) 9853 count++; 9854 return count; 9855 } 9856 9857 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 9858 { 9859 if (!dev->netdev_ops->ndo_bpf) 9860 return -EOPNOTSUPP; 9861 9862 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 9863 bpf->command == XDP_SETUP_PROG && 9864 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 9865 NL_SET_ERR_MSG(bpf->extack, 9866 "unable to propagate XDP to device using tcp-data-split"); 9867 return -EBUSY; 9868 } 9869 9870 if (dev_get_min_mp_channel_count(dev)) { 9871 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 9872 return -EBUSY; 9873 } 9874 9875 return dev->netdev_ops->ndo_bpf(dev, bpf); 9876 } 9877 9878 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9879 { 9880 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9881 9882 return prog ? prog->aux->id : 0; 9883 } 9884 9885 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9886 struct bpf_xdp_link *link) 9887 { 9888 dev->xdp_state[mode].link = link; 9889 dev->xdp_state[mode].prog = NULL; 9890 } 9891 9892 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9893 struct bpf_prog *prog) 9894 { 9895 dev->xdp_state[mode].link = NULL; 9896 dev->xdp_state[mode].prog = prog; 9897 } 9898 9899 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9900 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9901 u32 flags, struct bpf_prog *prog) 9902 { 9903 struct netdev_bpf xdp; 9904 int err; 9905 9906 netdev_ops_assert_locked(dev); 9907 9908 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 9909 prog && !prog->aux->xdp_has_frags) { 9910 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 9911 return -EBUSY; 9912 } 9913 9914 if (dev_get_min_mp_channel_count(dev)) { 9915 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 9916 return -EBUSY; 9917 } 9918 9919 memset(&xdp, 0, sizeof(xdp)); 9920 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9921 xdp.extack = extack; 9922 xdp.flags = flags; 9923 xdp.prog = prog; 9924 9925 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9926 * "moved" into driver), so they don't increment it on their own, but 9927 * they do decrement refcnt when program is detached or replaced. 9928 * Given net_device also owns link/prog, we need to bump refcnt here 9929 * to prevent drivers from underflowing it. 9930 */ 9931 if (prog) 9932 bpf_prog_inc(prog); 9933 err = bpf_op(dev, &xdp); 9934 if (err) { 9935 if (prog) 9936 bpf_prog_put(prog); 9937 return err; 9938 } 9939 9940 if (mode != XDP_MODE_HW) 9941 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9942 9943 return 0; 9944 } 9945 9946 static void dev_xdp_uninstall(struct net_device *dev) 9947 { 9948 struct bpf_xdp_link *link; 9949 struct bpf_prog *prog; 9950 enum bpf_xdp_mode mode; 9951 bpf_op_t bpf_op; 9952 9953 ASSERT_RTNL(); 9954 9955 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9956 prog = dev_xdp_prog(dev, mode); 9957 if (!prog) 9958 continue; 9959 9960 bpf_op = dev_xdp_bpf_op(dev, mode); 9961 if (!bpf_op) 9962 continue; 9963 9964 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9965 9966 /* auto-detach link from net device */ 9967 link = dev_xdp_link(dev, mode); 9968 if (link) 9969 link->dev = NULL; 9970 else 9971 bpf_prog_put(prog); 9972 9973 dev_xdp_set_link(dev, mode, NULL); 9974 } 9975 } 9976 9977 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9978 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9979 struct bpf_prog *old_prog, u32 flags) 9980 { 9981 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9982 struct bpf_prog *cur_prog; 9983 struct net_device *upper; 9984 struct list_head *iter; 9985 enum bpf_xdp_mode mode; 9986 bpf_op_t bpf_op; 9987 int err; 9988 9989 ASSERT_RTNL(); 9990 9991 /* either link or prog attachment, never both */ 9992 if (link && (new_prog || old_prog)) 9993 return -EINVAL; 9994 /* link supports only XDP mode flags */ 9995 if (link && (flags & ~XDP_FLAGS_MODES)) { 9996 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9997 return -EINVAL; 9998 } 9999 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10000 if (num_modes > 1) { 10001 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10002 return -EINVAL; 10003 } 10004 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10005 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10006 NL_SET_ERR_MSG(extack, 10007 "More than one program loaded, unset mode is ambiguous"); 10008 return -EINVAL; 10009 } 10010 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10011 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10012 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10013 return -EINVAL; 10014 } 10015 10016 mode = dev_xdp_mode(dev, flags); 10017 /* can't replace attached link */ 10018 if (dev_xdp_link(dev, mode)) { 10019 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10020 return -EBUSY; 10021 } 10022 10023 /* don't allow if an upper device already has a program */ 10024 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10025 if (dev_xdp_prog_count(upper) > 0) { 10026 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10027 return -EEXIST; 10028 } 10029 } 10030 10031 cur_prog = dev_xdp_prog(dev, mode); 10032 /* can't replace attached prog with link */ 10033 if (link && cur_prog) { 10034 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10035 return -EBUSY; 10036 } 10037 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10038 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10039 return -EEXIST; 10040 } 10041 10042 /* put effective new program into new_prog */ 10043 if (link) 10044 new_prog = link->link.prog; 10045 10046 if (new_prog) { 10047 bool offload = mode == XDP_MODE_HW; 10048 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10049 ? XDP_MODE_DRV : XDP_MODE_SKB; 10050 10051 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10052 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10053 return -EBUSY; 10054 } 10055 if (!offload && dev_xdp_prog(dev, other_mode)) { 10056 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10057 return -EEXIST; 10058 } 10059 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10060 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10061 return -EINVAL; 10062 } 10063 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10064 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10065 return -EINVAL; 10066 } 10067 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10068 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10069 return -EINVAL; 10070 } 10071 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10072 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10073 return -EINVAL; 10074 } 10075 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10076 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10077 return -EINVAL; 10078 } 10079 } 10080 10081 /* don't call drivers if the effective program didn't change */ 10082 if (new_prog != cur_prog) { 10083 bpf_op = dev_xdp_bpf_op(dev, mode); 10084 if (!bpf_op) { 10085 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10086 return -EOPNOTSUPP; 10087 } 10088 10089 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10090 if (err) 10091 return err; 10092 } 10093 10094 if (link) 10095 dev_xdp_set_link(dev, mode, link); 10096 else 10097 dev_xdp_set_prog(dev, mode, new_prog); 10098 if (cur_prog) 10099 bpf_prog_put(cur_prog); 10100 10101 return 0; 10102 } 10103 10104 static int dev_xdp_attach_link(struct net_device *dev, 10105 struct netlink_ext_ack *extack, 10106 struct bpf_xdp_link *link) 10107 { 10108 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10109 } 10110 10111 static int dev_xdp_detach_link(struct net_device *dev, 10112 struct netlink_ext_ack *extack, 10113 struct bpf_xdp_link *link) 10114 { 10115 enum bpf_xdp_mode mode; 10116 bpf_op_t bpf_op; 10117 10118 ASSERT_RTNL(); 10119 10120 mode = dev_xdp_mode(dev, link->flags); 10121 if (dev_xdp_link(dev, mode) != link) 10122 return -EINVAL; 10123 10124 bpf_op = dev_xdp_bpf_op(dev, mode); 10125 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10126 dev_xdp_set_link(dev, mode, NULL); 10127 return 0; 10128 } 10129 10130 static void bpf_xdp_link_release(struct bpf_link *link) 10131 { 10132 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10133 10134 rtnl_lock(); 10135 10136 /* if racing with net_device's tear down, xdp_link->dev might be 10137 * already NULL, in which case link was already auto-detached 10138 */ 10139 if (xdp_link->dev) { 10140 netdev_lock_ops(xdp_link->dev); 10141 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10142 netdev_unlock_ops(xdp_link->dev); 10143 xdp_link->dev = NULL; 10144 } 10145 10146 rtnl_unlock(); 10147 } 10148 10149 static int bpf_xdp_link_detach(struct bpf_link *link) 10150 { 10151 bpf_xdp_link_release(link); 10152 return 0; 10153 } 10154 10155 static void bpf_xdp_link_dealloc(struct bpf_link *link) 10156 { 10157 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10158 10159 kfree(xdp_link); 10160 } 10161 10162 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10163 struct seq_file *seq) 10164 { 10165 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10166 u32 ifindex = 0; 10167 10168 rtnl_lock(); 10169 if (xdp_link->dev) 10170 ifindex = xdp_link->dev->ifindex; 10171 rtnl_unlock(); 10172 10173 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10174 } 10175 10176 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10177 struct bpf_link_info *info) 10178 { 10179 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10180 u32 ifindex = 0; 10181 10182 rtnl_lock(); 10183 if (xdp_link->dev) 10184 ifindex = xdp_link->dev->ifindex; 10185 rtnl_unlock(); 10186 10187 info->xdp.ifindex = ifindex; 10188 return 0; 10189 } 10190 10191 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10192 struct bpf_prog *old_prog) 10193 { 10194 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10195 enum bpf_xdp_mode mode; 10196 bpf_op_t bpf_op; 10197 int err = 0; 10198 10199 rtnl_lock(); 10200 10201 /* link might have been auto-released already, so fail */ 10202 if (!xdp_link->dev) { 10203 err = -ENOLINK; 10204 goto out_unlock; 10205 } 10206 10207 if (old_prog && link->prog != old_prog) { 10208 err = -EPERM; 10209 goto out_unlock; 10210 } 10211 old_prog = link->prog; 10212 if (old_prog->type != new_prog->type || 10213 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10214 err = -EINVAL; 10215 goto out_unlock; 10216 } 10217 10218 if (old_prog == new_prog) { 10219 /* no-op, don't disturb drivers */ 10220 bpf_prog_put(new_prog); 10221 goto out_unlock; 10222 } 10223 10224 netdev_lock_ops(xdp_link->dev); 10225 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10226 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10227 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10228 xdp_link->flags, new_prog); 10229 netdev_unlock_ops(xdp_link->dev); 10230 if (err) 10231 goto out_unlock; 10232 10233 old_prog = xchg(&link->prog, new_prog); 10234 bpf_prog_put(old_prog); 10235 10236 out_unlock: 10237 rtnl_unlock(); 10238 return err; 10239 } 10240 10241 static const struct bpf_link_ops bpf_xdp_link_lops = { 10242 .release = bpf_xdp_link_release, 10243 .dealloc = bpf_xdp_link_dealloc, 10244 .detach = bpf_xdp_link_detach, 10245 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10246 .fill_link_info = bpf_xdp_link_fill_link_info, 10247 .update_prog = bpf_xdp_link_update, 10248 }; 10249 10250 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10251 { 10252 struct net *net = current->nsproxy->net_ns; 10253 struct bpf_link_primer link_primer; 10254 struct netlink_ext_ack extack = {}; 10255 struct bpf_xdp_link *link; 10256 struct net_device *dev; 10257 int err, fd; 10258 10259 rtnl_lock(); 10260 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10261 if (!dev) { 10262 rtnl_unlock(); 10263 return -EINVAL; 10264 } 10265 10266 link = kzalloc(sizeof(*link), GFP_USER); 10267 if (!link) { 10268 err = -ENOMEM; 10269 goto unlock; 10270 } 10271 10272 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 10273 link->dev = dev; 10274 link->flags = attr->link_create.flags; 10275 10276 err = bpf_link_prime(&link->link, &link_primer); 10277 if (err) { 10278 kfree(link); 10279 goto unlock; 10280 } 10281 10282 err = dev_xdp_attach_link(dev, &extack, link); 10283 rtnl_unlock(); 10284 10285 if (err) { 10286 link->dev = NULL; 10287 bpf_link_cleanup(&link_primer); 10288 trace_bpf_xdp_link_attach_failed(extack._msg); 10289 goto out_put_dev; 10290 } 10291 10292 fd = bpf_link_settle(&link_primer); 10293 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10294 dev_put(dev); 10295 return fd; 10296 10297 unlock: 10298 rtnl_unlock(); 10299 10300 out_put_dev: 10301 dev_put(dev); 10302 return err; 10303 } 10304 10305 /** 10306 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10307 * @dev: device 10308 * @extack: netlink extended ack 10309 * @fd: new program fd or negative value to clear 10310 * @expected_fd: old program fd that userspace expects to replace or clear 10311 * @flags: xdp-related flags 10312 * 10313 * Set or clear a bpf program for a device 10314 */ 10315 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10316 int fd, int expected_fd, u32 flags) 10317 { 10318 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10319 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10320 int err; 10321 10322 ASSERT_RTNL(); 10323 10324 if (fd >= 0) { 10325 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10326 mode != XDP_MODE_SKB); 10327 if (IS_ERR(new_prog)) 10328 return PTR_ERR(new_prog); 10329 } 10330 10331 if (expected_fd >= 0) { 10332 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10333 mode != XDP_MODE_SKB); 10334 if (IS_ERR(old_prog)) { 10335 err = PTR_ERR(old_prog); 10336 old_prog = NULL; 10337 goto err_out; 10338 } 10339 } 10340 10341 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10342 10343 err_out: 10344 if (err && new_prog) 10345 bpf_prog_put(new_prog); 10346 if (old_prog) 10347 bpf_prog_put(old_prog); 10348 return err; 10349 } 10350 10351 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10352 { 10353 int i; 10354 10355 ASSERT_RTNL(); 10356 10357 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10358 if (dev->_rx[i].mp_params.mp_priv) 10359 /* The channel count is the idx plus 1. */ 10360 return i + 1; 10361 10362 return 0; 10363 } 10364 10365 /** 10366 * dev_index_reserve() - allocate an ifindex in a namespace 10367 * @net: the applicable net namespace 10368 * @ifindex: requested ifindex, pass %0 to get one allocated 10369 * 10370 * Allocate a ifindex for a new device. Caller must either use the ifindex 10371 * to store the device (via list_netdevice()) or call dev_index_release() 10372 * to give the index up. 10373 * 10374 * Return: a suitable unique value for a new device interface number or -errno. 10375 */ 10376 static int dev_index_reserve(struct net *net, u32 ifindex) 10377 { 10378 int err; 10379 10380 if (ifindex > INT_MAX) { 10381 DEBUG_NET_WARN_ON_ONCE(1); 10382 return -EINVAL; 10383 } 10384 10385 if (!ifindex) 10386 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10387 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10388 else 10389 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10390 if (err < 0) 10391 return err; 10392 10393 return ifindex; 10394 } 10395 10396 static void dev_index_release(struct net *net, int ifindex) 10397 { 10398 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10399 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10400 } 10401 10402 static bool from_cleanup_net(void) 10403 { 10404 #ifdef CONFIG_NET_NS 10405 return current == cleanup_net_task; 10406 #else 10407 return false; 10408 #endif 10409 } 10410 10411 /* Delayed registration/unregisteration */ 10412 LIST_HEAD(net_todo_list); 10413 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10414 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10415 10416 static void net_set_todo(struct net_device *dev) 10417 { 10418 list_add_tail(&dev->todo_list, &net_todo_list); 10419 } 10420 10421 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10422 struct net_device *upper, netdev_features_t features) 10423 { 10424 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10425 netdev_features_t feature; 10426 int feature_bit; 10427 10428 for_each_netdev_feature(upper_disables, feature_bit) { 10429 feature = __NETIF_F_BIT(feature_bit); 10430 if (!(upper->wanted_features & feature) 10431 && (features & feature)) { 10432 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10433 &feature, upper->name); 10434 features &= ~feature; 10435 } 10436 } 10437 10438 return features; 10439 } 10440 10441 static void netdev_sync_lower_features(struct net_device *upper, 10442 struct net_device *lower, netdev_features_t features) 10443 { 10444 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10445 netdev_features_t feature; 10446 int feature_bit; 10447 10448 for_each_netdev_feature(upper_disables, feature_bit) { 10449 feature = __NETIF_F_BIT(feature_bit); 10450 if (!(features & feature) && (lower->features & feature)) { 10451 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10452 &feature, lower->name); 10453 lower->wanted_features &= ~feature; 10454 __netdev_update_features(lower); 10455 10456 if (unlikely(lower->features & feature)) 10457 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10458 &feature, lower->name); 10459 else 10460 netdev_features_change(lower); 10461 } 10462 } 10463 } 10464 10465 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10466 { 10467 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10468 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10469 bool hw_csum = features & NETIF_F_HW_CSUM; 10470 10471 return ip_csum || hw_csum; 10472 } 10473 10474 static netdev_features_t netdev_fix_features(struct net_device *dev, 10475 netdev_features_t features) 10476 { 10477 /* Fix illegal checksum combinations */ 10478 if ((features & NETIF_F_HW_CSUM) && 10479 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10480 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10481 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10482 } 10483 10484 /* TSO requires that SG is present as well. */ 10485 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10486 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10487 features &= ~NETIF_F_ALL_TSO; 10488 } 10489 10490 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10491 !(features & NETIF_F_IP_CSUM)) { 10492 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10493 features &= ~NETIF_F_TSO; 10494 features &= ~NETIF_F_TSO_ECN; 10495 } 10496 10497 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10498 !(features & NETIF_F_IPV6_CSUM)) { 10499 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10500 features &= ~NETIF_F_TSO6; 10501 } 10502 10503 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10504 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10505 features &= ~NETIF_F_TSO_MANGLEID; 10506 10507 /* TSO ECN requires that TSO is present as well. */ 10508 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10509 features &= ~NETIF_F_TSO_ECN; 10510 10511 /* Software GSO depends on SG. */ 10512 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10513 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10514 features &= ~NETIF_F_GSO; 10515 } 10516 10517 /* GSO partial features require GSO partial be set */ 10518 if ((features & dev->gso_partial_features) && 10519 !(features & NETIF_F_GSO_PARTIAL)) { 10520 netdev_dbg(dev, 10521 "Dropping partially supported GSO features since no GSO partial.\n"); 10522 features &= ~dev->gso_partial_features; 10523 } 10524 10525 if (!(features & NETIF_F_RXCSUM)) { 10526 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10527 * successfully merged by hardware must also have the 10528 * checksum verified by hardware. If the user does not 10529 * want to enable RXCSUM, logically, we should disable GRO_HW. 10530 */ 10531 if (features & NETIF_F_GRO_HW) { 10532 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10533 features &= ~NETIF_F_GRO_HW; 10534 } 10535 } 10536 10537 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10538 if (features & NETIF_F_RXFCS) { 10539 if (features & NETIF_F_LRO) { 10540 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10541 features &= ~NETIF_F_LRO; 10542 } 10543 10544 if (features & NETIF_F_GRO_HW) { 10545 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10546 features &= ~NETIF_F_GRO_HW; 10547 } 10548 } 10549 10550 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10551 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10552 features &= ~NETIF_F_LRO; 10553 } 10554 10555 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10556 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10557 features &= ~NETIF_F_HW_TLS_TX; 10558 } 10559 10560 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10561 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10562 features &= ~NETIF_F_HW_TLS_RX; 10563 } 10564 10565 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10566 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10567 features &= ~NETIF_F_GSO_UDP_L4; 10568 } 10569 10570 return features; 10571 } 10572 10573 int __netdev_update_features(struct net_device *dev) 10574 { 10575 struct net_device *upper, *lower; 10576 netdev_features_t features; 10577 struct list_head *iter; 10578 int err = -1; 10579 10580 ASSERT_RTNL(); 10581 netdev_ops_assert_locked(dev); 10582 10583 features = netdev_get_wanted_features(dev); 10584 10585 if (dev->netdev_ops->ndo_fix_features) 10586 features = dev->netdev_ops->ndo_fix_features(dev, features); 10587 10588 /* driver might be less strict about feature dependencies */ 10589 features = netdev_fix_features(dev, features); 10590 10591 /* some features can't be enabled if they're off on an upper device */ 10592 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10593 features = netdev_sync_upper_features(dev, upper, features); 10594 10595 if (dev->features == features) 10596 goto sync_lower; 10597 10598 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10599 &dev->features, &features); 10600 10601 if (dev->netdev_ops->ndo_set_features) 10602 err = dev->netdev_ops->ndo_set_features(dev, features); 10603 else 10604 err = 0; 10605 10606 if (unlikely(err < 0)) { 10607 netdev_err(dev, 10608 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10609 err, &features, &dev->features); 10610 /* return non-0 since some features might have changed and 10611 * it's better to fire a spurious notification than miss it 10612 */ 10613 return -1; 10614 } 10615 10616 sync_lower: 10617 /* some features must be disabled on lower devices when disabled 10618 * on an upper device (think: bonding master or bridge) 10619 */ 10620 netdev_for_each_lower_dev(dev, lower, iter) 10621 netdev_sync_lower_features(dev, lower, features); 10622 10623 if (!err) { 10624 netdev_features_t diff = features ^ dev->features; 10625 10626 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10627 /* udp_tunnel_{get,drop}_rx_info both need 10628 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10629 * device, or they won't do anything. 10630 * Thus we need to update dev->features 10631 * *before* calling udp_tunnel_get_rx_info, 10632 * but *after* calling udp_tunnel_drop_rx_info. 10633 */ 10634 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10635 dev->features = features; 10636 udp_tunnel_get_rx_info(dev); 10637 } else { 10638 udp_tunnel_drop_rx_info(dev); 10639 } 10640 } 10641 10642 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10643 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10644 dev->features = features; 10645 err |= vlan_get_rx_ctag_filter_info(dev); 10646 } else { 10647 vlan_drop_rx_ctag_filter_info(dev); 10648 } 10649 } 10650 10651 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10652 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10653 dev->features = features; 10654 err |= vlan_get_rx_stag_filter_info(dev); 10655 } else { 10656 vlan_drop_rx_stag_filter_info(dev); 10657 } 10658 } 10659 10660 dev->features = features; 10661 } 10662 10663 return err < 0 ? 0 : 1; 10664 } 10665 10666 /** 10667 * netdev_update_features - recalculate device features 10668 * @dev: the device to check 10669 * 10670 * Recalculate dev->features set and send notifications if it 10671 * has changed. Should be called after driver or hardware dependent 10672 * conditions might have changed that influence the features. 10673 */ 10674 void netdev_update_features(struct net_device *dev) 10675 { 10676 if (__netdev_update_features(dev)) 10677 netdev_features_change(dev); 10678 } 10679 EXPORT_SYMBOL(netdev_update_features); 10680 10681 /** 10682 * netdev_change_features - recalculate device features 10683 * @dev: the device to check 10684 * 10685 * Recalculate dev->features set and send notifications even 10686 * if they have not changed. Should be called instead of 10687 * netdev_update_features() if also dev->vlan_features might 10688 * have changed to allow the changes to be propagated to stacked 10689 * VLAN devices. 10690 */ 10691 void netdev_change_features(struct net_device *dev) 10692 { 10693 __netdev_update_features(dev); 10694 netdev_features_change(dev); 10695 } 10696 EXPORT_SYMBOL(netdev_change_features); 10697 10698 /** 10699 * netif_stacked_transfer_operstate - transfer operstate 10700 * @rootdev: the root or lower level device to transfer state from 10701 * @dev: the device to transfer operstate to 10702 * 10703 * Transfer operational state from root to device. This is normally 10704 * called when a stacking relationship exists between the root 10705 * device and the device(a leaf device). 10706 */ 10707 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10708 struct net_device *dev) 10709 { 10710 if (rootdev->operstate == IF_OPER_DORMANT) 10711 netif_dormant_on(dev); 10712 else 10713 netif_dormant_off(dev); 10714 10715 if (rootdev->operstate == IF_OPER_TESTING) 10716 netif_testing_on(dev); 10717 else 10718 netif_testing_off(dev); 10719 10720 if (netif_carrier_ok(rootdev)) 10721 netif_carrier_on(dev); 10722 else 10723 netif_carrier_off(dev); 10724 } 10725 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10726 10727 static int netif_alloc_rx_queues(struct net_device *dev) 10728 { 10729 unsigned int i, count = dev->num_rx_queues; 10730 struct netdev_rx_queue *rx; 10731 size_t sz = count * sizeof(*rx); 10732 int err = 0; 10733 10734 BUG_ON(count < 1); 10735 10736 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10737 if (!rx) 10738 return -ENOMEM; 10739 10740 dev->_rx = rx; 10741 10742 for (i = 0; i < count; i++) { 10743 rx[i].dev = dev; 10744 10745 /* XDP RX-queue setup */ 10746 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10747 if (err < 0) 10748 goto err_rxq_info; 10749 } 10750 return 0; 10751 10752 err_rxq_info: 10753 /* Rollback successful reg's and free other resources */ 10754 while (i--) 10755 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10756 kvfree(dev->_rx); 10757 dev->_rx = NULL; 10758 return err; 10759 } 10760 10761 static void netif_free_rx_queues(struct net_device *dev) 10762 { 10763 unsigned int i, count = dev->num_rx_queues; 10764 10765 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10766 if (!dev->_rx) 10767 return; 10768 10769 for (i = 0; i < count; i++) 10770 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10771 10772 kvfree(dev->_rx); 10773 } 10774 10775 static void netdev_init_one_queue(struct net_device *dev, 10776 struct netdev_queue *queue, void *_unused) 10777 { 10778 /* Initialize queue lock */ 10779 spin_lock_init(&queue->_xmit_lock); 10780 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10781 queue->xmit_lock_owner = -1; 10782 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10783 queue->dev = dev; 10784 #ifdef CONFIG_BQL 10785 dql_init(&queue->dql, HZ); 10786 #endif 10787 } 10788 10789 static void netif_free_tx_queues(struct net_device *dev) 10790 { 10791 kvfree(dev->_tx); 10792 } 10793 10794 static int netif_alloc_netdev_queues(struct net_device *dev) 10795 { 10796 unsigned int count = dev->num_tx_queues; 10797 struct netdev_queue *tx; 10798 size_t sz = count * sizeof(*tx); 10799 10800 if (count < 1 || count > 0xffff) 10801 return -EINVAL; 10802 10803 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10804 if (!tx) 10805 return -ENOMEM; 10806 10807 dev->_tx = tx; 10808 10809 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10810 spin_lock_init(&dev->tx_global_lock); 10811 10812 return 0; 10813 } 10814 10815 void netif_tx_stop_all_queues(struct net_device *dev) 10816 { 10817 unsigned int i; 10818 10819 for (i = 0; i < dev->num_tx_queues; i++) { 10820 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10821 10822 netif_tx_stop_queue(txq); 10823 } 10824 } 10825 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10826 10827 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10828 { 10829 void __percpu *v; 10830 10831 /* Drivers implementing ndo_get_peer_dev must support tstat 10832 * accounting, so that skb_do_redirect() can bump the dev's 10833 * RX stats upon network namespace switch. 10834 */ 10835 if (dev->netdev_ops->ndo_get_peer_dev && 10836 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10837 return -EOPNOTSUPP; 10838 10839 switch (dev->pcpu_stat_type) { 10840 case NETDEV_PCPU_STAT_NONE: 10841 return 0; 10842 case NETDEV_PCPU_STAT_LSTATS: 10843 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10844 break; 10845 case NETDEV_PCPU_STAT_TSTATS: 10846 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10847 break; 10848 case NETDEV_PCPU_STAT_DSTATS: 10849 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10850 break; 10851 default: 10852 return -EINVAL; 10853 } 10854 10855 return v ? 0 : -ENOMEM; 10856 } 10857 10858 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10859 { 10860 switch (dev->pcpu_stat_type) { 10861 case NETDEV_PCPU_STAT_NONE: 10862 return; 10863 case NETDEV_PCPU_STAT_LSTATS: 10864 free_percpu(dev->lstats); 10865 break; 10866 case NETDEV_PCPU_STAT_TSTATS: 10867 free_percpu(dev->tstats); 10868 break; 10869 case NETDEV_PCPU_STAT_DSTATS: 10870 free_percpu(dev->dstats); 10871 break; 10872 } 10873 } 10874 10875 static void netdev_free_phy_link_topology(struct net_device *dev) 10876 { 10877 struct phy_link_topology *topo = dev->link_topo; 10878 10879 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 10880 xa_destroy(&topo->phys); 10881 kfree(topo); 10882 dev->link_topo = NULL; 10883 } 10884 } 10885 10886 /** 10887 * register_netdevice() - register a network device 10888 * @dev: device to register 10889 * 10890 * Take a prepared network device structure and make it externally accessible. 10891 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10892 * Callers must hold the rtnl lock - you may want register_netdev() 10893 * instead of this. 10894 */ 10895 int register_netdevice(struct net_device *dev) 10896 { 10897 int ret; 10898 struct net *net = dev_net(dev); 10899 10900 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10901 NETDEV_FEATURE_COUNT); 10902 BUG_ON(dev_boot_phase); 10903 ASSERT_RTNL(); 10904 10905 might_sleep(); 10906 10907 /* When net_device's are persistent, this will be fatal. */ 10908 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10909 BUG_ON(!net); 10910 10911 ret = ethtool_check_ops(dev->ethtool_ops); 10912 if (ret) 10913 return ret; 10914 10915 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 10916 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 10917 mutex_init(&dev->ethtool->rss_lock); 10918 10919 spin_lock_init(&dev->addr_list_lock); 10920 netdev_set_addr_lockdep_class(dev); 10921 10922 ret = dev_get_valid_name(net, dev, dev->name); 10923 if (ret < 0) 10924 goto out; 10925 10926 ret = -ENOMEM; 10927 dev->name_node = netdev_name_node_head_alloc(dev); 10928 if (!dev->name_node) 10929 goto out; 10930 10931 /* Init, if this function is available */ 10932 if (dev->netdev_ops->ndo_init) { 10933 ret = dev->netdev_ops->ndo_init(dev); 10934 if (ret) { 10935 if (ret > 0) 10936 ret = -EIO; 10937 goto err_free_name; 10938 } 10939 } 10940 10941 if (((dev->hw_features | dev->features) & 10942 NETIF_F_HW_VLAN_CTAG_FILTER) && 10943 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10944 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10945 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10946 ret = -EINVAL; 10947 goto err_uninit; 10948 } 10949 10950 ret = netdev_do_alloc_pcpu_stats(dev); 10951 if (ret) 10952 goto err_uninit; 10953 10954 ret = dev_index_reserve(net, dev->ifindex); 10955 if (ret < 0) 10956 goto err_free_pcpu; 10957 dev->ifindex = ret; 10958 10959 /* Transfer changeable features to wanted_features and enable 10960 * software offloads (GSO and GRO). 10961 */ 10962 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10963 dev->features |= NETIF_F_SOFT_FEATURES; 10964 10965 if (dev->udp_tunnel_nic_info) { 10966 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10967 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10968 } 10969 10970 dev->wanted_features = dev->features & dev->hw_features; 10971 10972 if (!(dev->flags & IFF_LOOPBACK)) 10973 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10974 10975 /* If IPv4 TCP segmentation offload is supported we should also 10976 * allow the device to enable segmenting the frame with the option 10977 * of ignoring a static IP ID value. This doesn't enable the 10978 * feature itself but allows the user to enable it later. 10979 */ 10980 if (dev->hw_features & NETIF_F_TSO) 10981 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10982 if (dev->vlan_features & NETIF_F_TSO) 10983 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10984 if (dev->mpls_features & NETIF_F_TSO) 10985 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10986 if (dev->hw_enc_features & NETIF_F_TSO) 10987 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10988 10989 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10990 */ 10991 dev->vlan_features |= NETIF_F_HIGHDMA; 10992 10993 /* Make NETIF_F_SG inheritable to tunnel devices. 10994 */ 10995 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10996 10997 /* Make NETIF_F_SG inheritable to MPLS. 10998 */ 10999 dev->mpls_features |= NETIF_F_SG; 11000 11001 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11002 ret = notifier_to_errno(ret); 11003 if (ret) 11004 goto err_ifindex_release; 11005 11006 ret = netdev_register_kobject(dev); 11007 11008 netdev_lock(dev); 11009 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11010 netdev_unlock(dev); 11011 11012 if (ret) 11013 goto err_uninit_notify; 11014 11015 netdev_lock_ops(dev); 11016 __netdev_update_features(dev); 11017 netdev_unlock_ops(dev); 11018 11019 /* 11020 * Default initial state at registry is that the 11021 * device is present. 11022 */ 11023 11024 set_bit(__LINK_STATE_PRESENT, &dev->state); 11025 11026 linkwatch_init_dev(dev); 11027 11028 dev_init_scheduler(dev); 11029 11030 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11031 list_netdevice(dev); 11032 11033 add_device_randomness(dev->dev_addr, dev->addr_len); 11034 11035 /* If the device has permanent device address, driver should 11036 * set dev_addr and also addr_assign_type should be set to 11037 * NET_ADDR_PERM (default value). 11038 */ 11039 if (dev->addr_assign_type == NET_ADDR_PERM) 11040 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11041 11042 /* Notify protocols, that a new device appeared. */ 11043 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11044 ret = notifier_to_errno(ret); 11045 if (ret) { 11046 /* Expect explicit free_netdev() on failure */ 11047 dev->needs_free_netdev = false; 11048 unregister_netdevice_queue(dev, NULL); 11049 goto out; 11050 } 11051 /* 11052 * Prevent userspace races by waiting until the network 11053 * device is fully setup before sending notifications. 11054 */ 11055 if (!dev->rtnl_link_ops || 11056 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11057 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11058 11059 out: 11060 return ret; 11061 11062 err_uninit_notify: 11063 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11064 err_ifindex_release: 11065 dev_index_release(net, dev->ifindex); 11066 err_free_pcpu: 11067 netdev_do_free_pcpu_stats(dev); 11068 err_uninit: 11069 if (dev->netdev_ops->ndo_uninit) 11070 dev->netdev_ops->ndo_uninit(dev); 11071 if (dev->priv_destructor) 11072 dev->priv_destructor(dev); 11073 err_free_name: 11074 netdev_name_node_free(dev->name_node); 11075 goto out; 11076 } 11077 EXPORT_SYMBOL(register_netdevice); 11078 11079 /* Initialize the core of a dummy net device. 11080 * The setup steps dummy netdevs need which normal netdevs get by going 11081 * through register_netdevice(). 11082 */ 11083 static void init_dummy_netdev(struct net_device *dev) 11084 { 11085 /* make sure we BUG if trying to hit standard 11086 * register/unregister code path 11087 */ 11088 dev->reg_state = NETREG_DUMMY; 11089 11090 /* a dummy interface is started by default */ 11091 set_bit(__LINK_STATE_PRESENT, &dev->state); 11092 set_bit(__LINK_STATE_START, &dev->state); 11093 11094 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11095 * because users of this 'device' dont need to change 11096 * its refcount. 11097 */ 11098 } 11099 11100 /** 11101 * register_netdev - register a network device 11102 * @dev: device to register 11103 * 11104 * Take a completed network device structure and add it to the kernel 11105 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11106 * chain. 0 is returned on success. A negative errno code is returned 11107 * on a failure to set up the device, or if the name is a duplicate. 11108 * 11109 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11110 * and expands the device name if you passed a format string to 11111 * alloc_netdev. 11112 */ 11113 int register_netdev(struct net_device *dev) 11114 { 11115 struct net *net = dev_net(dev); 11116 int err; 11117 11118 if (rtnl_net_lock_killable(net)) 11119 return -EINTR; 11120 11121 err = register_netdevice(dev); 11122 11123 rtnl_net_unlock(net); 11124 11125 return err; 11126 } 11127 EXPORT_SYMBOL(register_netdev); 11128 11129 int netdev_refcnt_read(const struct net_device *dev) 11130 { 11131 #ifdef CONFIG_PCPU_DEV_REFCNT 11132 int i, refcnt = 0; 11133 11134 for_each_possible_cpu(i) 11135 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11136 return refcnt; 11137 #else 11138 return refcount_read(&dev->dev_refcnt); 11139 #endif 11140 } 11141 EXPORT_SYMBOL(netdev_refcnt_read); 11142 11143 int netdev_unregister_timeout_secs __read_mostly = 10; 11144 11145 #define WAIT_REFS_MIN_MSECS 1 11146 #define WAIT_REFS_MAX_MSECS 250 11147 /** 11148 * netdev_wait_allrefs_any - wait until all references are gone. 11149 * @list: list of net_devices to wait on 11150 * 11151 * This is called when unregistering network devices. 11152 * 11153 * Any protocol or device that holds a reference should register 11154 * for netdevice notification, and cleanup and put back the 11155 * reference if they receive an UNREGISTER event. 11156 * We can get stuck here if buggy protocols don't correctly 11157 * call dev_put. 11158 */ 11159 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11160 { 11161 unsigned long rebroadcast_time, warning_time; 11162 struct net_device *dev; 11163 int wait = 0; 11164 11165 rebroadcast_time = warning_time = jiffies; 11166 11167 list_for_each_entry(dev, list, todo_list) 11168 if (netdev_refcnt_read(dev) == 1) 11169 return dev; 11170 11171 while (true) { 11172 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11173 rtnl_lock(); 11174 11175 /* Rebroadcast unregister notification */ 11176 list_for_each_entry(dev, list, todo_list) 11177 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11178 11179 __rtnl_unlock(); 11180 rcu_barrier(); 11181 rtnl_lock(); 11182 11183 list_for_each_entry(dev, list, todo_list) 11184 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11185 &dev->state)) { 11186 /* We must not have linkwatch events 11187 * pending on unregister. If this 11188 * happens, we simply run the queue 11189 * unscheduled, resulting in a noop 11190 * for this device. 11191 */ 11192 linkwatch_run_queue(); 11193 break; 11194 } 11195 11196 __rtnl_unlock(); 11197 11198 rebroadcast_time = jiffies; 11199 } 11200 11201 rcu_barrier(); 11202 11203 if (!wait) { 11204 wait = WAIT_REFS_MIN_MSECS; 11205 } else { 11206 msleep(wait); 11207 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11208 } 11209 11210 list_for_each_entry(dev, list, todo_list) 11211 if (netdev_refcnt_read(dev) == 1) 11212 return dev; 11213 11214 if (time_after(jiffies, warning_time + 11215 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11216 list_for_each_entry(dev, list, todo_list) { 11217 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11218 dev->name, netdev_refcnt_read(dev)); 11219 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11220 } 11221 11222 warning_time = jiffies; 11223 } 11224 } 11225 } 11226 11227 /* The sequence is: 11228 * 11229 * rtnl_lock(); 11230 * ... 11231 * register_netdevice(x1); 11232 * register_netdevice(x2); 11233 * ... 11234 * unregister_netdevice(y1); 11235 * unregister_netdevice(y2); 11236 * ... 11237 * rtnl_unlock(); 11238 * free_netdev(y1); 11239 * free_netdev(y2); 11240 * 11241 * We are invoked by rtnl_unlock(). 11242 * This allows us to deal with problems: 11243 * 1) We can delete sysfs objects which invoke hotplug 11244 * without deadlocking with linkwatch via keventd. 11245 * 2) Since we run with the RTNL semaphore not held, we can sleep 11246 * safely in order to wait for the netdev refcnt to drop to zero. 11247 * 11248 * We must not return until all unregister events added during 11249 * the interval the lock was held have been completed. 11250 */ 11251 void netdev_run_todo(void) 11252 { 11253 struct net_device *dev, *tmp; 11254 struct list_head list; 11255 int cnt; 11256 #ifdef CONFIG_LOCKDEP 11257 struct list_head unlink_list; 11258 11259 list_replace_init(&net_unlink_list, &unlink_list); 11260 11261 while (!list_empty(&unlink_list)) { 11262 dev = list_first_entry(&unlink_list, struct net_device, 11263 unlink_list); 11264 list_del_init(&dev->unlink_list); 11265 dev->nested_level = dev->lower_level - 1; 11266 } 11267 #endif 11268 11269 /* Snapshot list, allow later requests */ 11270 list_replace_init(&net_todo_list, &list); 11271 11272 __rtnl_unlock(); 11273 11274 /* Wait for rcu callbacks to finish before next phase */ 11275 if (!list_empty(&list)) 11276 rcu_barrier(); 11277 11278 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11279 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11280 netdev_WARN(dev, "run_todo but not unregistering\n"); 11281 list_del(&dev->todo_list); 11282 continue; 11283 } 11284 11285 netdev_lock(dev); 11286 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11287 netdev_unlock(dev); 11288 linkwatch_sync_dev(dev); 11289 } 11290 11291 cnt = 0; 11292 while (!list_empty(&list)) { 11293 dev = netdev_wait_allrefs_any(&list); 11294 list_del(&dev->todo_list); 11295 11296 /* paranoia */ 11297 BUG_ON(netdev_refcnt_read(dev) != 1); 11298 BUG_ON(!list_empty(&dev->ptype_all)); 11299 BUG_ON(!list_empty(&dev->ptype_specific)); 11300 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11301 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11302 11303 netdev_do_free_pcpu_stats(dev); 11304 if (dev->priv_destructor) 11305 dev->priv_destructor(dev); 11306 if (dev->needs_free_netdev) 11307 free_netdev(dev); 11308 11309 cnt++; 11310 11311 /* Free network device */ 11312 kobject_put(&dev->dev.kobj); 11313 } 11314 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11315 wake_up(&netdev_unregistering_wq); 11316 } 11317 11318 /* Collate per-cpu network dstats statistics 11319 * 11320 * Read per-cpu network statistics from dev->dstats and populate the related 11321 * fields in @s. 11322 */ 11323 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11324 const struct pcpu_dstats __percpu *dstats) 11325 { 11326 int cpu; 11327 11328 for_each_possible_cpu(cpu) { 11329 u64 rx_packets, rx_bytes, rx_drops; 11330 u64 tx_packets, tx_bytes, tx_drops; 11331 const struct pcpu_dstats *stats; 11332 unsigned int start; 11333 11334 stats = per_cpu_ptr(dstats, cpu); 11335 do { 11336 start = u64_stats_fetch_begin(&stats->syncp); 11337 rx_packets = u64_stats_read(&stats->rx_packets); 11338 rx_bytes = u64_stats_read(&stats->rx_bytes); 11339 rx_drops = u64_stats_read(&stats->rx_drops); 11340 tx_packets = u64_stats_read(&stats->tx_packets); 11341 tx_bytes = u64_stats_read(&stats->tx_bytes); 11342 tx_drops = u64_stats_read(&stats->tx_drops); 11343 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11344 11345 s->rx_packets += rx_packets; 11346 s->rx_bytes += rx_bytes; 11347 s->rx_dropped += rx_drops; 11348 s->tx_packets += tx_packets; 11349 s->tx_bytes += tx_bytes; 11350 s->tx_dropped += tx_drops; 11351 } 11352 } 11353 11354 /* ndo_get_stats64 implementation for dtstats-based accounting. 11355 * 11356 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11357 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11358 */ 11359 static void dev_get_dstats64(const struct net_device *dev, 11360 struct rtnl_link_stats64 *s) 11361 { 11362 netdev_stats_to_stats64(s, &dev->stats); 11363 dev_fetch_dstats(s, dev->dstats); 11364 } 11365 11366 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11367 * all the same fields in the same order as net_device_stats, with only 11368 * the type differing, but rtnl_link_stats64 may have additional fields 11369 * at the end for newer counters. 11370 */ 11371 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11372 const struct net_device_stats *netdev_stats) 11373 { 11374 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11375 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11376 u64 *dst = (u64 *)stats64; 11377 11378 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11379 for (i = 0; i < n; i++) 11380 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11381 /* zero out counters that only exist in rtnl_link_stats64 */ 11382 memset((char *)stats64 + n * sizeof(u64), 0, 11383 sizeof(*stats64) - n * sizeof(u64)); 11384 } 11385 EXPORT_SYMBOL(netdev_stats_to_stats64); 11386 11387 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11388 struct net_device *dev) 11389 { 11390 struct net_device_core_stats __percpu *p; 11391 11392 p = alloc_percpu_gfp(struct net_device_core_stats, 11393 GFP_ATOMIC | __GFP_NOWARN); 11394 11395 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11396 free_percpu(p); 11397 11398 /* This READ_ONCE() pairs with the cmpxchg() above */ 11399 return READ_ONCE(dev->core_stats); 11400 } 11401 11402 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11403 { 11404 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11405 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11406 unsigned long __percpu *field; 11407 11408 if (unlikely(!p)) { 11409 p = netdev_core_stats_alloc(dev); 11410 if (!p) 11411 return; 11412 } 11413 11414 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11415 this_cpu_inc(*field); 11416 } 11417 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11418 11419 /** 11420 * dev_get_stats - get network device statistics 11421 * @dev: device to get statistics from 11422 * @storage: place to store stats 11423 * 11424 * Get network statistics from device. Return @storage. 11425 * The device driver may provide its own method by setting 11426 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11427 * otherwise the internal statistics structure is used. 11428 */ 11429 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11430 struct rtnl_link_stats64 *storage) 11431 { 11432 const struct net_device_ops *ops = dev->netdev_ops; 11433 const struct net_device_core_stats __percpu *p; 11434 11435 /* 11436 * IPv{4,6} and udp tunnels share common stat helpers and use 11437 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11438 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11439 */ 11440 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11441 offsetof(struct pcpu_dstats, rx_bytes)); 11442 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11443 offsetof(struct pcpu_dstats, rx_packets)); 11444 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11445 offsetof(struct pcpu_dstats, tx_bytes)); 11446 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11447 offsetof(struct pcpu_dstats, tx_packets)); 11448 11449 if (ops->ndo_get_stats64) { 11450 memset(storage, 0, sizeof(*storage)); 11451 ops->ndo_get_stats64(dev, storage); 11452 } else if (ops->ndo_get_stats) { 11453 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11454 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11455 dev_get_tstats64(dev, storage); 11456 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11457 dev_get_dstats64(dev, storage); 11458 } else { 11459 netdev_stats_to_stats64(storage, &dev->stats); 11460 } 11461 11462 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11463 p = READ_ONCE(dev->core_stats); 11464 if (p) { 11465 const struct net_device_core_stats *core_stats; 11466 int i; 11467 11468 for_each_possible_cpu(i) { 11469 core_stats = per_cpu_ptr(p, i); 11470 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11471 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11472 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11473 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11474 } 11475 } 11476 return storage; 11477 } 11478 EXPORT_SYMBOL(dev_get_stats); 11479 11480 /** 11481 * dev_fetch_sw_netstats - get per-cpu network device statistics 11482 * @s: place to store stats 11483 * @netstats: per-cpu network stats to read from 11484 * 11485 * Read per-cpu network statistics and populate the related fields in @s. 11486 */ 11487 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11488 const struct pcpu_sw_netstats __percpu *netstats) 11489 { 11490 int cpu; 11491 11492 for_each_possible_cpu(cpu) { 11493 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11494 const struct pcpu_sw_netstats *stats; 11495 unsigned int start; 11496 11497 stats = per_cpu_ptr(netstats, cpu); 11498 do { 11499 start = u64_stats_fetch_begin(&stats->syncp); 11500 rx_packets = u64_stats_read(&stats->rx_packets); 11501 rx_bytes = u64_stats_read(&stats->rx_bytes); 11502 tx_packets = u64_stats_read(&stats->tx_packets); 11503 tx_bytes = u64_stats_read(&stats->tx_bytes); 11504 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11505 11506 s->rx_packets += rx_packets; 11507 s->rx_bytes += rx_bytes; 11508 s->tx_packets += tx_packets; 11509 s->tx_bytes += tx_bytes; 11510 } 11511 } 11512 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11513 11514 /** 11515 * dev_get_tstats64 - ndo_get_stats64 implementation 11516 * @dev: device to get statistics from 11517 * @s: place to store stats 11518 * 11519 * Populate @s from dev->stats and dev->tstats. Can be used as 11520 * ndo_get_stats64() callback. 11521 */ 11522 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11523 { 11524 netdev_stats_to_stats64(s, &dev->stats); 11525 dev_fetch_sw_netstats(s, dev->tstats); 11526 } 11527 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11528 11529 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11530 { 11531 struct netdev_queue *queue = dev_ingress_queue(dev); 11532 11533 #ifdef CONFIG_NET_CLS_ACT 11534 if (queue) 11535 return queue; 11536 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11537 if (!queue) 11538 return NULL; 11539 netdev_init_one_queue(dev, queue, NULL); 11540 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11541 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11542 rcu_assign_pointer(dev->ingress_queue, queue); 11543 #endif 11544 return queue; 11545 } 11546 11547 static const struct ethtool_ops default_ethtool_ops; 11548 11549 void netdev_set_default_ethtool_ops(struct net_device *dev, 11550 const struct ethtool_ops *ops) 11551 { 11552 if (dev->ethtool_ops == &default_ethtool_ops) 11553 dev->ethtool_ops = ops; 11554 } 11555 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11556 11557 /** 11558 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11559 * @dev: netdev to enable the IRQ coalescing on 11560 * 11561 * Sets a conservative default for SW IRQ coalescing. Users can use 11562 * sysfs attributes to override the default values. 11563 */ 11564 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11565 { 11566 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11567 11568 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11569 netdev_set_gro_flush_timeout(dev, 20000); 11570 netdev_set_defer_hard_irqs(dev, 1); 11571 } 11572 } 11573 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11574 11575 /** 11576 * alloc_netdev_mqs - allocate network device 11577 * @sizeof_priv: size of private data to allocate space for 11578 * @name: device name format string 11579 * @name_assign_type: origin of device name 11580 * @setup: callback to initialize device 11581 * @txqs: the number of TX subqueues to allocate 11582 * @rxqs: the number of RX subqueues to allocate 11583 * 11584 * Allocates a struct net_device with private data area for driver use 11585 * and performs basic initialization. Also allocates subqueue structs 11586 * for each queue on the device. 11587 */ 11588 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11589 unsigned char name_assign_type, 11590 void (*setup)(struct net_device *), 11591 unsigned int txqs, unsigned int rxqs) 11592 { 11593 struct net_device *dev; 11594 size_t napi_config_sz; 11595 unsigned int maxqs; 11596 11597 BUG_ON(strlen(name) >= sizeof(dev->name)); 11598 11599 if (txqs < 1) { 11600 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11601 return NULL; 11602 } 11603 11604 if (rxqs < 1) { 11605 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11606 return NULL; 11607 } 11608 11609 maxqs = max(txqs, rxqs); 11610 11611 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11612 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11613 if (!dev) 11614 return NULL; 11615 11616 dev->priv_len = sizeof_priv; 11617 11618 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 11619 #ifdef CONFIG_PCPU_DEV_REFCNT 11620 dev->pcpu_refcnt = alloc_percpu(int); 11621 if (!dev->pcpu_refcnt) 11622 goto free_dev; 11623 __dev_hold(dev); 11624 #else 11625 refcount_set(&dev->dev_refcnt, 1); 11626 #endif 11627 11628 if (dev_addr_init(dev)) 11629 goto free_pcpu; 11630 11631 dev_mc_init(dev); 11632 dev_uc_init(dev); 11633 11634 dev_net_set(dev, &init_net); 11635 11636 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11637 dev->xdp_zc_max_segs = 1; 11638 dev->gso_max_segs = GSO_MAX_SEGS; 11639 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11640 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11641 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11642 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11643 dev->tso_max_segs = TSO_MAX_SEGS; 11644 dev->upper_level = 1; 11645 dev->lower_level = 1; 11646 #ifdef CONFIG_LOCKDEP 11647 dev->nested_level = 0; 11648 INIT_LIST_HEAD(&dev->unlink_list); 11649 #endif 11650 11651 INIT_LIST_HEAD(&dev->napi_list); 11652 INIT_LIST_HEAD(&dev->unreg_list); 11653 INIT_LIST_HEAD(&dev->close_list); 11654 INIT_LIST_HEAD(&dev->link_watch_list); 11655 INIT_LIST_HEAD(&dev->adj_list.upper); 11656 INIT_LIST_HEAD(&dev->adj_list.lower); 11657 INIT_LIST_HEAD(&dev->ptype_all); 11658 INIT_LIST_HEAD(&dev->ptype_specific); 11659 INIT_LIST_HEAD(&dev->net_notifier_list); 11660 #ifdef CONFIG_NET_SCHED 11661 hash_init(dev->qdisc_hash); 11662 #endif 11663 11664 mutex_init(&dev->lock); 11665 11666 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11667 setup(dev); 11668 11669 if (!dev->tx_queue_len) { 11670 dev->priv_flags |= IFF_NO_QUEUE; 11671 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11672 } 11673 11674 dev->num_tx_queues = txqs; 11675 dev->real_num_tx_queues = txqs; 11676 if (netif_alloc_netdev_queues(dev)) 11677 goto free_all; 11678 11679 dev->num_rx_queues = rxqs; 11680 dev->real_num_rx_queues = rxqs; 11681 if (netif_alloc_rx_queues(dev)) 11682 goto free_all; 11683 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11684 if (!dev->ethtool) 11685 goto free_all; 11686 11687 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 11688 if (!dev->cfg) 11689 goto free_all; 11690 dev->cfg_pending = dev->cfg; 11691 11692 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 11693 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 11694 if (!dev->napi_config) 11695 goto free_all; 11696 11697 strscpy(dev->name, name); 11698 dev->name_assign_type = name_assign_type; 11699 dev->group = INIT_NETDEV_GROUP; 11700 if (!dev->ethtool_ops) 11701 dev->ethtool_ops = &default_ethtool_ops; 11702 11703 nf_hook_netdev_init(dev); 11704 11705 return dev; 11706 11707 free_all: 11708 free_netdev(dev); 11709 return NULL; 11710 11711 free_pcpu: 11712 #ifdef CONFIG_PCPU_DEV_REFCNT 11713 free_percpu(dev->pcpu_refcnt); 11714 free_dev: 11715 #endif 11716 kvfree(dev); 11717 return NULL; 11718 } 11719 EXPORT_SYMBOL(alloc_netdev_mqs); 11720 11721 static void netdev_napi_exit(struct net_device *dev) 11722 { 11723 if (!list_empty(&dev->napi_list)) { 11724 struct napi_struct *p, *n; 11725 11726 netdev_lock(dev); 11727 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11728 __netif_napi_del_locked(p); 11729 netdev_unlock(dev); 11730 11731 synchronize_net(); 11732 } 11733 11734 kvfree(dev->napi_config); 11735 } 11736 11737 /** 11738 * free_netdev - free network device 11739 * @dev: device 11740 * 11741 * This function does the last stage of destroying an allocated device 11742 * interface. The reference to the device object is released. If this 11743 * is the last reference then it will be freed.Must be called in process 11744 * context. 11745 */ 11746 void free_netdev(struct net_device *dev) 11747 { 11748 might_sleep(); 11749 11750 /* When called immediately after register_netdevice() failed the unwind 11751 * handling may still be dismantling the device. Handle that case by 11752 * deferring the free. 11753 */ 11754 if (dev->reg_state == NETREG_UNREGISTERING) { 11755 ASSERT_RTNL(); 11756 dev->needs_free_netdev = true; 11757 return; 11758 } 11759 11760 WARN_ON(dev->cfg != dev->cfg_pending); 11761 kfree(dev->cfg); 11762 kfree(dev->ethtool); 11763 netif_free_tx_queues(dev); 11764 netif_free_rx_queues(dev); 11765 11766 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11767 11768 /* Flush device addresses */ 11769 dev_addr_flush(dev); 11770 11771 netdev_napi_exit(dev); 11772 11773 netif_del_cpu_rmap(dev); 11774 11775 ref_tracker_dir_exit(&dev->refcnt_tracker); 11776 #ifdef CONFIG_PCPU_DEV_REFCNT 11777 free_percpu(dev->pcpu_refcnt); 11778 dev->pcpu_refcnt = NULL; 11779 #endif 11780 free_percpu(dev->core_stats); 11781 dev->core_stats = NULL; 11782 free_percpu(dev->xdp_bulkq); 11783 dev->xdp_bulkq = NULL; 11784 11785 netdev_free_phy_link_topology(dev); 11786 11787 mutex_destroy(&dev->lock); 11788 11789 /* Compatibility with error handling in drivers */ 11790 if (dev->reg_state == NETREG_UNINITIALIZED || 11791 dev->reg_state == NETREG_DUMMY) { 11792 kvfree(dev); 11793 return; 11794 } 11795 11796 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11797 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11798 11799 /* will free via device release */ 11800 put_device(&dev->dev); 11801 } 11802 EXPORT_SYMBOL(free_netdev); 11803 11804 /** 11805 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11806 * @sizeof_priv: size of private data to allocate space for 11807 * 11808 * Return: the allocated net_device on success, NULL otherwise 11809 */ 11810 struct net_device *alloc_netdev_dummy(int sizeof_priv) 11811 { 11812 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 11813 init_dummy_netdev); 11814 } 11815 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 11816 11817 /** 11818 * synchronize_net - Synchronize with packet receive processing 11819 * 11820 * Wait for packets currently being received to be done. 11821 * Does not block later packets from starting. 11822 */ 11823 void synchronize_net(void) 11824 { 11825 might_sleep(); 11826 if (from_cleanup_net() || rtnl_is_locked()) 11827 synchronize_rcu_expedited(); 11828 else 11829 synchronize_rcu(); 11830 } 11831 EXPORT_SYMBOL(synchronize_net); 11832 11833 static void netdev_rss_contexts_free(struct net_device *dev) 11834 { 11835 struct ethtool_rxfh_context *ctx; 11836 unsigned long context; 11837 11838 mutex_lock(&dev->ethtool->rss_lock); 11839 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 11840 struct ethtool_rxfh_param rxfh; 11841 11842 rxfh.indir = ethtool_rxfh_context_indir(ctx); 11843 rxfh.key = ethtool_rxfh_context_key(ctx); 11844 rxfh.hfunc = ctx->hfunc; 11845 rxfh.input_xfrm = ctx->input_xfrm; 11846 rxfh.rss_context = context; 11847 rxfh.rss_delete = true; 11848 11849 xa_erase(&dev->ethtool->rss_ctx, context); 11850 if (dev->ethtool_ops->create_rxfh_context) 11851 dev->ethtool_ops->remove_rxfh_context(dev, ctx, 11852 context, NULL); 11853 else 11854 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL); 11855 kfree(ctx); 11856 } 11857 xa_destroy(&dev->ethtool->rss_ctx); 11858 mutex_unlock(&dev->ethtool->rss_lock); 11859 } 11860 11861 /** 11862 * unregister_netdevice_queue - remove device from the kernel 11863 * @dev: device 11864 * @head: list 11865 * 11866 * This function shuts down a device interface and removes it 11867 * from the kernel tables. 11868 * If head not NULL, device is queued to be unregistered later. 11869 * 11870 * Callers must hold the rtnl semaphore. You may want 11871 * unregister_netdev() instead of this. 11872 */ 11873 11874 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 11875 { 11876 ASSERT_RTNL(); 11877 11878 if (head) { 11879 list_move_tail(&dev->unreg_list, head); 11880 } else { 11881 LIST_HEAD(single); 11882 11883 list_add(&dev->unreg_list, &single); 11884 unregister_netdevice_many(&single); 11885 } 11886 } 11887 EXPORT_SYMBOL(unregister_netdevice_queue); 11888 11889 static void dev_memory_provider_uninstall(struct net_device *dev) 11890 { 11891 unsigned int i; 11892 11893 for (i = 0; i < dev->real_num_rx_queues; i++) { 11894 struct netdev_rx_queue *rxq = &dev->_rx[i]; 11895 struct pp_memory_provider_params *p = &rxq->mp_params; 11896 11897 if (p->mp_ops && p->mp_ops->uninstall) 11898 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 11899 } 11900 } 11901 11902 void unregister_netdevice_many_notify(struct list_head *head, 11903 u32 portid, const struct nlmsghdr *nlh) 11904 { 11905 struct net_device *dev, *tmp; 11906 LIST_HEAD(close_head); 11907 int cnt = 0; 11908 11909 BUG_ON(dev_boot_phase); 11910 ASSERT_RTNL(); 11911 11912 if (list_empty(head)) 11913 return; 11914 11915 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 11916 /* Some devices call without registering 11917 * for initialization unwind. Remove those 11918 * devices and proceed with the remaining. 11919 */ 11920 if (dev->reg_state == NETREG_UNINITIALIZED) { 11921 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 11922 dev->name, dev); 11923 11924 WARN_ON(1); 11925 list_del(&dev->unreg_list); 11926 continue; 11927 } 11928 dev->dismantle = true; 11929 BUG_ON(dev->reg_state != NETREG_REGISTERED); 11930 } 11931 11932 /* If device is running, close it first. */ 11933 list_for_each_entry(dev, head, unreg_list) { 11934 list_add_tail(&dev->close_list, &close_head); 11935 netdev_lock_ops(dev); 11936 } 11937 dev_close_many(&close_head, true); 11938 11939 list_for_each_entry(dev, head, unreg_list) { 11940 netdev_unlock_ops(dev); 11941 /* And unlink it from device chain. */ 11942 unlist_netdevice(dev); 11943 netdev_lock(dev); 11944 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 11945 netdev_unlock(dev); 11946 } 11947 flush_all_backlogs(); 11948 11949 synchronize_net(); 11950 11951 list_for_each_entry(dev, head, unreg_list) { 11952 struct sk_buff *skb = NULL; 11953 11954 /* Shutdown queueing discipline. */ 11955 dev_shutdown(dev); 11956 dev_tcx_uninstall(dev); 11957 netdev_lock_ops(dev); 11958 dev_xdp_uninstall(dev); 11959 netdev_unlock_ops(dev); 11960 bpf_dev_bound_netdev_unregister(dev); 11961 dev_memory_provider_uninstall(dev); 11962 11963 netdev_offload_xstats_disable_all(dev); 11964 11965 /* Notify protocols, that we are about to destroy 11966 * this device. They should clean all the things. 11967 */ 11968 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11969 11970 if (!dev->rtnl_link_ops || 11971 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11972 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11973 GFP_KERNEL, NULL, 0, 11974 portid, nlh); 11975 11976 /* 11977 * Flush the unicast and multicast chains 11978 */ 11979 dev_uc_flush(dev); 11980 dev_mc_flush(dev); 11981 11982 netdev_name_node_alt_flush(dev); 11983 netdev_name_node_free(dev->name_node); 11984 11985 netdev_rss_contexts_free(dev); 11986 11987 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11988 11989 if (dev->netdev_ops->ndo_uninit) 11990 dev->netdev_ops->ndo_uninit(dev); 11991 11992 mutex_destroy(&dev->ethtool->rss_lock); 11993 11994 net_shaper_flush_netdev(dev); 11995 11996 if (skb) 11997 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 11998 11999 /* Notifier chain MUST detach us all upper devices. */ 12000 WARN_ON(netdev_has_any_upper_dev(dev)); 12001 WARN_ON(netdev_has_any_lower_dev(dev)); 12002 12003 /* Remove entries from kobject tree */ 12004 netdev_unregister_kobject(dev); 12005 #ifdef CONFIG_XPS 12006 /* Remove XPS queueing entries */ 12007 netif_reset_xps_queues_gt(dev, 0); 12008 #endif 12009 } 12010 12011 synchronize_net(); 12012 12013 list_for_each_entry(dev, head, unreg_list) { 12014 netdev_put(dev, &dev->dev_registered_tracker); 12015 net_set_todo(dev); 12016 cnt++; 12017 } 12018 atomic_add(cnt, &dev_unreg_count); 12019 12020 list_del(head); 12021 } 12022 12023 /** 12024 * unregister_netdevice_many - unregister many devices 12025 * @head: list of devices 12026 * 12027 * Note: As most callers use a stack allocated list_head, 12028 * we force a list_del() to make sure stack won't be corrupted later. 12029 */ 12030 void unregister_netdevice_many(struct list_head *head) 12031 { 12032 unregister_netdevice_many_notify(head, 0, NULL); 12033 } 12034 EXPORT_SYMBOL(unregister_netdevice_many); 12035 12036 /** 12037 * unregister_netdev - remove device from the kernel 12038 * @dev: device 12039 * 12040 * This function shuts down a device interface and removes it 12041 * from the kernel tables. 12042 * 12043 * This is just a wrapper for unregister_netdevice that takes 12044 * the rtnl semaphore. In general you want to use this and not 12045 * unregister_netdevice. 12046 */ 12047 void unregister_netdev(struct net_device *dev) 12048 { 12049 rtnl_net_dev_lock(dev); 12050 unregister_netdevice(dev); 12051 rtnl_net_dev_unlock(dev); 12052 } 12053 EXPORT_SYMBOL(unregister_netdev); 12054 12055 int netif_change_net_namespace(struct net_device *dev, struct net *net, 12056 const char *pat, int new_ifindex, 12057 struct netlink_ext_ack *extack) 12058 { 12059 struct netdev_name_node *name_node; 12060 struct net *net_old = dev_net(dev); 12061 char new_name[IFNAMSIZ] = {}; 12062 int err, new_nsid; 12063 12064 ASSERT_RTNL(); 12065 12066 /* Don't allow namespace local devices to be moved. */ 12067 err = -EINVAL; 12068 if (dev->netns_immutable) { 12069 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12070 goto out; 12071 } 12072 12073 /* Ensure the device has been registered */ 12074 if (dev->reg_state != NETREG_REGISTERED) { 12075 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12076 goto out; 12077 } 12078 12079 /* Get out if there is nothing todo */ 12080 err = 0; 12081 if (net_eq(net_old, net)) 12082 goto out; 12083 12084 /* Pick the destination device name, and ensure 12085 * we can use it in the destination network namespace. 12086 */ 12087 err = -EEXIST; 12088 if (netdev_name_in_use(net, dev->name)) { 12089 /* We get here if we can't use the current device name */ 12090 if (!pat) { 12091 NL_SET_ERR_MSG(extack, 12092 "An interface with the same name exists in the target netns"); 12093 goto out; 12094 } 12095 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12096 if (err < 0) { 12097 NL_SET_ERR_MSG_FMT(extack, 12098 "Unable to use '%s' for the new interface name in the target netns", 12099 pat); 12100 goto out; 12101 } 12102 } 12103 /* Check that none of the altnames conflicts. */ 12104 err = -EEXIST; 12105 netdev_for_each_altname(dev, name_node) { 12106 if (netdev_name_in_use(net, name_node->name)) { 12107 NL_SET_ERR_MSG_FMT(extack, 12108 "An interface with the altname %s exists in the target netns", 12109 name_node->name); 12110 goto out; 12111 } 12112 } 12113 12114 /* Check that new_ifindex isn't used yet. */ 12115 if (new_ifindex) { 12116 err = dev_index_reserve(net, new_ifindex); 12117 if (err < 0) { 12118 NL_SET_ERR_MSG_FMT(extack, 12119 "The ifindex %d is not available in the target netns", 12120 new_ifindex); 12121 goto out; 12122 } 12123 } else { 12124 /* If there is an ifindex conflict assign a new one */ 12125 err = dev_index_reserve(net, dev->ifindex); 12126 if (err == -EBUSY) 12127 err = dev_index_reserve(net, 0); 12128 if (err < 0) { 12129 NL_SET_ERR_MSG(extack, 12130 "Unable to allocate a new ifindex in the target netns"); 12131 goto out; 12132 } 12133 new_ifindex = err; 12134 } 12135 12136 /* 12137 * And now a mini version of register_netdevice unregister_netdevice. 12138 */ 12139 12140 /* If device is running close it first. */ 12141 netif_close(dev); 12142 12143 /* And unlink it from device chain */ 12144 unlist_netdevice(dev); 12145 12146 synchronize_net(); 12147 12148 /* Shutdown queueing discipline. */ 12149 dev_shutdown(dev); 12150 12151 /* Notify protocols, that we are about to destroy 12152 * this device. They should clean all the things. 12153 * 12154 * Note that dev->reg_state stays at NETREG_REGISTERED. 12155 * This is wanted because this way 8021q and macvlan know 12156 * the device is just moving and can keep their slaves up. 12157 */ 12158 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12159 rcu_barrier(); 12160 12161 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12162 12163 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12164 new_ifindex); 12165 12166 /* 12167 * Flush the unicast and multicast chains 12168 */ 12169 dev_uc_flush(dev); 12170 dev_mc_flush(dev); 12171 12172 /* Send a netdev-removed uevent to the old namespace */ 12173 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12174 netdev_adjacent_del_links(dev); 12175 12176 /* Move per-net netdevice notifiers that are following the netdevice */ 12177 move_netdevice_notifiers_dev_net(dev, net); 12178 12179 /* Actually switch the network namespace */ 12180 dev_net_set(dev, net); 12181 dev->ifindex = new_ifindex; 12182 12183 if (new_name[0]) { 12184 /* Rename the netdev to prepared name */ 12185 write_seqlock_bh(&netdev_rename_lock); 12186 strscpy(dev->name, new_name, IFNAMSIZ); 12187 write_sequnlock_bh(&netdev_rename_lock); 12188 } 12189 12190 /* Fixup kobjects */ 12191 dev_set_uevent_suppress(&dev->dev, 1); 12192 err = device_rename(&dev->dev, dev->name); 12193 dev_set_uevent_suppress(&dev->dev, 0); 12194 WARN_ON(err); 12195 12196 /* Send a netdev-add uevent to the new namespace */ 12197 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12198 netdev_adjacent_add_links(dev); 12199 12200 /* Adapt owner in case owning user namespace of target network 12201 * namespace is different from the original one. 12202 */ 12203 err = netdev_change_owner(dev, net_old, net); 12204 WARN_ON(err); 12205 12206 /* Add the device back in the hashes */ 12207 list_netdevice(dev); 12208 12209 /* Notify protocols, that a new device appeared. */ 12210 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12211 12212 /* 12213 * Prevent userspace races by waiting until the network 12214 * device is fully setup before sending notifications. 12215 */ 12216 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12217 12218 synchronize_net(); 12219 err = 0; 12220 out: 12221 return err; 12222 } 12223 12224 static int dev_cpu_dead(unsigned int oldcpu) 12225 { 12226 struct sk_buff **list_skb; 12227 struct sk_buff *skb; 12228 unsigned int cpu; 12229 struct softnet_data *sd, *oldsd, *remsd = NULL; 12230 12231 local_irq_disable(); 12232 cpu = smp_processor_id(); 12233 sd = &per_cpu(softnet_data, cpu); 12234 oldsd = &per_cpu(softnet_data, oldcpu); 12235 12236 /* Find end of our completion_queue. */ 12237 list_skb = &sd->completion_queue; 12238 while (*list_skb) 12239 list_skb = &(*list_skb)->next; 12240 /* Append completion queue from offline CPU. */ 12241 *list_skb = oldsd->completion_queue; 12242 oldsd->completion_queue = NULL; 12243 12244 /* Append output queue from offline CPU. */ 12245 if (oldsd->output_queue) { 12246 *sd->output_queue_tailp = oldsd->output_queue; 12247 sd->output_queue_tailp = oldsd->output_queue_tailp; 12248 oldsd->output_queue = NULL; 12249 oldsd->output_queue_tailp = &oldsd->output_queue; 12250 } 12251 /* Append NAPI poll list from offline CPU, with one exception : 12252 * process_backlog() must be called by cpu owning percpu backlog. 12253 * We properly handle process_queue & input_pkt_queue later. 12254 */ 12255 while (!list_empty(&oldsd->poll_list)) { 12256 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12257 struct napi_struct, 12258 poll_list); 12259 12260 list_del_init(&napi->poll_list); 12261 if (napi->poll == process_backlog) 12262 napi->state &= NAPIF_STATE_THREADED; 12263 else 12264 ____napi_schedule(sd, napi); 12265 } 12266 12267 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12268 local_irq_enable(); 12269 12270 if (!use_backlog_threads()) { 12271 #ifdef CONFIG_RPS 12272 remsd = oldsd->rps_ipi_list; 12273 oldsd->rps_ipi_list = NULL; 12274 #endif 12275 /* send out pending IPI's on offline CPU */ 12276 net_rps_send_ipi(remsd); 12277 } 12278 12279 /* Process offline CPU's input_pkt_queue */ 12280 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12281 netif_rx(skb); 12282 rps_input_queue_head_incr(oldsd); 12283 } 12284 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12285 netif_rx(skb); 12286 rps_input_queue_head_incr(oldsd); 12287 } 12288 12289 return 0; 12290 } 12291 12292 /** 12293 * netdev_increment_features - increment feature set by one 12294 * @all: current feature set 12295 * @one: new feature set 12296 * @mask: mask feature set 12297 * 12298 * Computes a new feature set after adding a device with feature set 12299 * @one to the master device with current feature set @all. Will not 12300 * enable anything that is off in @mask. Returns the new feature set. 12301 */ 12302 netdev_features_t netdev_increment_features(netdev_features_t all, 12303 netdev_features_t one, netdev_features_t mask) 12304 { 12305 if (mask & NETIF_F_HW_CSUM) 12306 mask |= NETIF_F_CSUM_MASK; 12307 mask |= NETIF_F_VLAN_CHALLENGED; 12308 12309 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12310 all &= one | ~NETIF_F_ALL_FOR_ALL; 12311 12312 /* If one device supports hw checksumming, set for all. */ 12313 if (all & NETIF_F_HW_CSUM) 12314 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12315 12316 return all; 12317 } 12318 EXPORT_SYMBOL(netdev_increment_features); 12319 12320 static struct hlist_head * __net_init netdev_create_hash(void) 12321 { 12322 int i; 12323 struct hlist_head *hash; 12324 12325 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12326 if (hash != NULL) 12327 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12328 INIT_HLIST_HEAD(&hash[i]); 12329 12330 return hash; 12331 } 12332 12333 /* Initialize per network namespace state */ 12334 static int __net_init netdev_init(struct net *net) 12335 { 12336 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12337 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12338 12339 INIT_LIST_HEAD(&net->dev_base_head); 12340 12341 net->dev_name_head = netdev_create_hash(); 12342 if (net->dev_name_head == NULL) 12343 goto err_name; 12344 12345 net->dev_index_head = netdev_create_hash(); 12346 if (net->dev_index_head == NULL) 12347 goto err_idx; 12348 12349 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12350 12351 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12352 12353 return 0; 12354 12355 err_idx: 12356 kfree(net->dev_name_head); 12357 err_name: 12358 return -ENOMEM; 12359 } 12360 12361 /** 12362 * netdev_drivername - network driver for the device 12363 * @dev: network device 12364 * 12365 * Determine network driver for device. 12366 */ 12367 const char *netdev_drivername(const struct net_device *dev) 12368 { 12369 const struct device_driver *driver; 12370 const struct device *parent; 12371 const char *empty = ""; 12372 12373 parent = dev->dev.parent; 12374 if (!parent) 12375 return empty; 12376 12377 driver = parent->driver; 12378 if (driver && driver->name) 12379 return driver->name; 12380 return empty; 12381 } 12382 12383 static void __netdev_printk(const char *level, const struct net_device *dev, 12384 struct va_format *vaf) 12385 { 12386 if (dev && dev->dev.parent) { 12387 dev_printk_emit(level[1] - '0', 12388 dev->dev.parent, 12389 "%s %s %s%s: %pV", 12390 dev_driver_string(dev->dev.parent), 12391 dev_name(dev->dev.parent), 12392 netdev_name(dev), netdev_reg_state(dev), 12393 vaf); 12394 } else if (dev) { 12395 printk("%s%s%s: %pV", 12396 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12397 } else { 12398 printk("%s(NULL net_device): %pV", level, vaf); 12399 } 12400 } 12401 12402 void netdev_printk(const char *level, const struct net_device *dev, 12403 const char *format, ...) 12404 { 12405 struct va_format vaf; 12406 va_list args; 12407 12408 va_start(args, format); 12409 12410 vaf.fmt = format; 12411 vaf.va = &args; 12412 12413 __netdev_printk(level, dev, &vaf); 12414 12415 va_end(args); 12416 } 12417 EXPORT_SYMBOL(netdev_printk); 12418 12419 #define define_netdev_printk_level(func, level) \ 12420 void func(const struct net_device *dev, const char *fmt, ...) \ 12421 { \ 12422 struct va_format vaf; \ 12423 va_list args; \ 12424 \ 12425 va_start(args, fmt); \ 12426 \ 12427 vaf.fmt = fmt; \ 12428 vaf.va = &args; \ 12429 \ 12430 __netdev_printk(level, dev, &vaf); \ 12431 \ 12432 va_end(args); \ 12433 } \ 12434 EXPORT_SYMBOL(func); 12435 12436 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12437 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12438 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12439 define_netdev_printk_level(netdev_err, KERN_ERR); 12440 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12441 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12442 define_netdev_printk_level(netdev_info, KERN_INFO); 12443 12444 static void __net_exit netdev_exit(struct net *net) 12445 { 12446 kfree(net->dev_name_head); 12447 kfree(net->dev_index_head); 12448 xa_destroy(&net->dev_by_index); 12449 if (net != &init_net) 12450 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12451 } 12452 12453 static struct pernet_operations __net_initdata netdev_net_ops = { 12454 .init = netdev_init, 12455 .exit = netdev_exit, 12456 }; 12457 12458 static void __net_exit default_device_exit_net(struct net *net) 12459 { 12460 struct netdev_name_node *name_node, *tmp; 12461 struct net_device *dev, *aux; 12462 /* 12463 * Push all migratable network devices back to the 12464 * initial network namespace 12465 */ 12466 ASSERT_RTNL(); 12467 for_each_netdev_safe(net, dev, aux) { 12468 int err; 12469 char fb_name[IFNAMSIZ]; 12470 12471 /* Ignore unmoveable devices (i.e. loopback) */ 12472 if (dev->netns_immutable) 12473 continue; 12474 12475 /* Leave virtual devices for the generic cleanup */ 12476 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12477 continue; 12478 12479 /* Push remaining network devices to init_net */ 12480 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12481 if (netdev_name_in_use(&init_net, fb_name)) 12482 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12483 12484 netdev_for_each_altname_safe(dev, name_node, tmp) 12485 if (netdev_name_in_use(&init_net, name_node->name)) 12486 __netdev_name_node_alt_destroy(name_node); 12487 12488 err = dev_change_net_namespace(dev, &init_net, fb_name); 12489 if (err) { 12490 pr_emerg("%s: failed to move %s to init_net: %d\n", 12491 __func__, dev->name, err); 12492 BUG(); 12493 } 12494 } 12495 } 12496 12497 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12498 { 12499 /* At exit all network devices most be removed from a network 12500 * namespace. Do this in the reverse order of registration. 12501 * Do this across as many network namespaces as possible to 12502 * improve batching efficiency. 12503 */ 12504 struct net_device *dev; 12505 struct net *net; 12506 LIST_HEAD(dev_kill_list); 12507 12508 rtnl_lock(); 12509 list_for_each_entry(net, net_list, exit_list) { 12510 default_device_exit_net(net); 12511 cond_resched(); 12512 } 12513 12514 list_for_each_entry(net, net_list, exit_list) { 12515 for_each_netdev_reverse(net, dev) { 12516 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12517 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12518 else 12519 unregister_netdevice_queue(dev, &dev_kill_list); 12520 } 12521 } 12522 unregister_netdevice_many(&dev_kill_list); 12523 rtnl_unlock(); 12524 } 12525 12526 static struct pernet_operations __net_initdata default_device_ops = { 12527 .exit_batch = default_device_exit_batch, 12528 }; 12529 12530 static void __init net_dev_struct_check(void) 12531 { 12532 /* TX read-mostly hotpath */ 12533 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12534 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12535 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 12536 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 12537 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 12538 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 12539 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 12540 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 12541 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 12542 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 12543 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 12544 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 12545 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 12546 #ifdef CONFIG_XPS 12547 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 12548 #endif 12549 #ifdef CONFIG_NETFILTER_EGRESS 12550 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 12551 #endif 12552 #ifdef CONFIG_NET_XGRESS 12553 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 12554 #endif 12555 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 12556 12557 /* TXRX read-mostly hotpath */ 12558 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 12559 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 12560 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 12561 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 12562 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 12563 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 12564 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 12565 12566 /* RX read-mostly hotpath */ 12567 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 12568 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 12569 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 12570 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 12571 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12572 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12573 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12574 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12575 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12576 #ifdef CONFIG_NETPOLL 12577 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12578 #endif 12579 #ifdef CONFIG_NET_XGRESS 12580 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12581 #endif 12582 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 12583 } 12584 12585 /* 12586 * Initialize the DEV module. At boot time this walks the device list and 12587 * unhooks any devices that fail to initialise (normally hardware not 12588 * present) and leaves us with a valid list of present and active devices. 12589 * 12590 */ 12591 12592 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12593 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12594 12595 static int net_page_pool_create(int cpuid) 12596 { 12597 #if IS_ENABLED(CONFIG_PAGE_POOL) 12598 struct page_pool_params page_pool_params = { 12599 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12600 .flags = PP_FLAG_SYSTEM_POOL, 12601 .nid = cpu_to_mem(cpuid), 12602 }; 12603 struct page_pool *pp_ptr; 12604 int err; 12605 12606 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12607 if (IS_ERR(pp_ptr)) 12608 return -ENOMEM; 12609 12610 err = xdp_reg_page_pool(pp_ptr); 12611 if (err) { 12612 page_pool_destroy(pp_ptr); 12613 return err; 12614 } 12615 12616 per_cpu(system_page_pool, cpuid) = pp_ptr; 12617 #endif 12618 return 0; 12619 } 12620 12621 static int backlog_napi_should_run(unsigned int cpu) 12622 { 12623 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12624 struct napi_struct *napi = &sd->backlog; 12625 12626 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12627 } 12628 12629 static void run_backlog_napi(unsigned int cpu) 12630 { 12631 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12632 12633 napi_threaded_poll_loop(&sd->backlog); 12634 } 12635 12636 static void backlog_napi_setup(unsigned int cpu) 12637 { 12638 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12639 struct napi_struct *napi = &sd->backlog; 12640 12641 napi->thread = this_cpu_read(backlog_napi); 12642 set_bit(NAPI_STATE_THREADED, &napi->state); 12643 } 12644 12645 static struct smp_hotplug_thread backlog_threads = { 12646 .store = &backlog_napi, 12647 .thread_should_run = backlog_napi_should_run, 12648 .thread_fn = run_backlog_napi, 12649 .thread_comm = "backlog_napi/%u", 12650 .setup = backlog_napi_setup, 12651 }; 12652 12653 /* 12654 * This is called single threaded during boot, so no need 12655 * to take the rtnl semaphore. 12656 */ 12657 static int __init net_dev_init(void) 12658 { 12659 int i, rc = -ENOMEM; 12660 12661 BUG_ON(!dev_boot_phase); 12662 12663 net_dev_struct_check(); 12664 12665 if (dev_proc_init()) 12666 goto out; 12667 12668 if (netdev_kobject_init()) 12669 goto out; 12670 12671 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12672 INIT_LIST_HEAD(&ptype_base[i]); 12673 12674 if (register_pernet_subsys(&netdev_net_ops)) 12675 goto out; 12676 12677 /* 12678 * Initialise the packet receive queues. 12679 */ 12680 12681 flush_backlogs_fallback = flush_backlogs_alloc(); 12682 if (!flush_backlogs_fallback) 12683 goto out; 12684 12685 for_each_possible_cpu(i) { 12686 struct softnet_data *sd = &per_cpu(softnet_data, i); 12687 12688 skb_queue_head_init(&sd->input_pkt_queue); 12689 skb_queue_head_init(&sd->process_queue); 12690 #ifdef CONFIG_XFRM_OFFLOAD 12691 skb_queue_head_init(&sd->xfrm_backlog); 12692 #endif 12693 INIT_LIST_HEAD(&sd->poll_list); 12694 sd->output_queue_tailp = &sd->output_queue; 12695 #ifdef CONFIG_RPS 12696 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12697 sd->cpu = i; 12698 #endif 12699 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12700 spin_lock_init(&sd->defer_lock); 12701 12702 gro_init(&sd->backlog.gro); 12703 sd->backlog.poll = process_backlog; 12704 sd->backlog.weight = weight_p; 12705 INIT_LIST_HEAD(&sd->backlog.poll_list); 12706 12707 if (net_page_pool_create(i)) 12708 goto out; 12709 } 12710 if (use_backlog_threads()) 12711 smpboot_register_percpu_thread(&backlog_threads); 12712 12713 dev_boot_phase = 0; 12714 12715 /* The loopback device is special if any other network devices 12716 * is present in a network namespace the loopback device must 12717 * be present. Since we now dynamically allocate and free the 12718 * loopback device ensure this invariant is maintained by 12719 * keeping the loopback device as the first device on the 12720 * list of network devices. Ensuring the loopback devices 12721 * is the first device that appears and the last network device 12722 * that disappears. 12723 */ 12724 if (register_pernet_device(&loopback_net_ops)) 12725 goto out; 12726 12727 if (register_pernet_device(&default_device_ops)) 12728 goto out; 12729 12730 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 12731 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 12732 12733 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 12734 NULL, dev_cpu_dead); 12735 WARN_ON(rc < 0); 12736 rc = 0; 12737 12738 /* avoid static key IPIs to isolated CPUs */ 12739 if (housekeeping_enabled(HK_TYPE_MISC)) 12740 net_enable_timestamp(); 12741 out: 12742 if (rc < 0) { 12743 for_each_possible_cpu(i) { 12744 struct page_pool *pp_ptr; 12745 12746 pp_ptr = per_cpu(system_page_pool, i); 12747 if (!pp_ptr) 12748 continue; 12749 12750 xdp_unreg_page_pool(pp_ptr); 12751 page_pool_destroy(pp_ptr); 12752 per_cpu(system_page_pool, i) = NULL; 12753 } 12754 } 12755 12756 return rc; 12757 } 12758 12759 subsys_initcall(net_dev_init); 12760