1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/ethtool_netlink.h> 96 #include <linux/skbuff.h> 97 #include <linux/kthread.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dsa.h> 106 #include <net/dst.h> 107 #include <net/dst_metadata.h> 108 #include <net/gro.h> 109 #include <net/netdev_queues.h> 110 #include <net/pkt_sched.h> 111 #include <net/pkt_cls.h> 112 #include <net/checksum.h> 113 #include <net/xfrm.h> 114 #include <net/tcx.h> 115 #include <linux/highmem.h> 116 #include <linux/init.h> 117 #include <linux/module.h> 118 #include <linux/netpoll.h> 119 #include <linux/rcupdate.h> 120 #include <linux/delay.h> 121 #include <net/iw_handler.h> 122 #include <asm/current.h> 123 #include <linux/audit.h> 124 #include <linux/dmaengine.h> 125 #include <linux/err.h> 126 #include <linux/ctype.h> 127 #include <linux/if_arp.h> 128 #include <linux/if_vlan.h> 129 #include <linux/ip.h> 130 #include <net/ip.h> 131 #include <net/mpls.h> 132 #include <linux/ipv6.h> 133 #include <linux/in.h> 134 #include <linux/jhash.h> 135 #include <linux/random.h> 136 #include <trace/events/napi.h> 137 #include <trace/events/net.h> 138 #include <trace/events/skb.h> 139 #include <trace/events/qdisc.h> 140 #include <trace/events/xdp.h> 141 #include <linux/inetdevice.h> 142 #include <linux/cpu_rmap.h> 143 #include <linux/static_key.h> 144 #include <linux/hashtable.h> 145 #include <linux/vmalloc.h> 146 #include <linux/if_macvlan.h> 147 #include <linux/errqueue.h> 148 #include <linux/hrtimer.h> 149 #include <linux/netfilter_netdev.h> 150 #include <linux/crash_dump.h> 151 #include <linux/sctp.h> 152 #include <net/udp_tunnel.h> 153 #include <linux/net_namespace.h> 154 #include <linux/indirect_call_wrapper.h> 155 #include <net/devlink.h> 156 #include <linux/pm_runtime.h> 157 #include <linux/prandom.h> 158 #include <linux/once_lite.h> 159 #include <net/netdev_lock.h> 160 #include <net/netdev_rx_queue.h> 161 #include <net/page_pool/types.h> 162 #include <net/page_pool/helpers.h> 163 #include <net/page_pool/memory_provider.h> 164 #include <net/rps.h> 165 #include <linux/phy_link_topology.h> 166 167 #include "dev.h" 168 #include "devmem.h" 169 #include "net-sysfs.h" 170 171 static DEFINE_SPINLOCK(ptype_lock); 172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174 static int netif_rx_internal(struct sk_buff *skb); 175 static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179 static DEFINE_MUTEX(ifalias_mutex); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id = NR_CPUS; 185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187 static inline void dev_base_seq_inc(struct net *net) 188 { 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 #ifndef CONFIG_PREEMPT_RT 207 208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210 static int __init setup_backlog_napi_threads(char *arg) 211 { 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214 } 215 early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217 static bool use_backlog_threads(void) 218 { 219 return static_branch_unlikely(&use_backlog_threads_key); 220 } 221 222 #else 223 224 static bool use_backlog_threads(void) 225 { 226 return true; 227 } 228 229 #endif 230 231 static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233 { 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238 } 239 240 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241 { 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246 } 247 248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250 { 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255 } 256 257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258 { 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263 } 264 265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267 { 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277 } 278 279 static struct netdev_name_node * 280 netdev_name_node_head_alloc(struct net_device *dev) 281 { 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289 } 290 291 static void netdev_name_node_free(struct netdev_name_node *name_node) 292 { 293 kfree(name_node); 294 } 295 296 static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298 { 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301 } 302 303 static void netdev_name_node_del(struct netdev_name_node *name_node) 304 { 305 hlist_del_rcu(&name_node->hlist); 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322 { 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330 } 331 332 bool netdev_name_in_use(struct net *net, const char *name) 333 { 334 return netdev_name_node_lookup(net, name); 335 } 336 EXPORT_SYMBOL(netdev_name_in_use); 337 338 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339 { 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354 } 355 356 static void netdev_name_node_alt_free(struct rcu_head *head) 357 { 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363 } 364 365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366 { 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370 } 371 372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373 { 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388 } 389 390 static void netdev_name_node_alt_flush(struct net_device *dev) 391 { 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398 } 399 400 /* Device list insertion */ 401 static void list_netdevice(struct net_device *dev) 402 { 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420 } 421 422 /* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425 static void unlist_netdevice(struct net_device *dev) 426 { 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443 } 444 445 /* 446 * Our notifier list 447 */ 448 449 static RAW_NOTIFIER_HEAD(netdev_chain); 450 451 /* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458 }; 459 EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461 /* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { 466 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 467 }; 468 469 #ifdef CONFIG_LOCKDEP 470 /* 471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 472 * according to dev->type 473 */ 474 static const unsigned short netdev_lock_type[] = { 475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 490 491 static const char *const netdev_lock_name[] = { 492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 507 508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 510 511 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 512 { 513 int i; 514 515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 516 if (netdev_lock_type[i] == dev_type) 517 return i; 518 /* the last key is used by default */ 519 return ARRAY_SIZE(netdev_lock_type) - 1; 520 } 521 522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 523 unsigned short dev_type) 524 { 525 int i; 526 527 i = netdev_lock_pos(dev_type); 528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 529 netdev_lock_name[i]); 530 } 531 532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 533 { 534 int i; 535 536 i = netdev_lock_pos(dev->type); 537 lockdep_set_class_and_name(&dev->addr_list_lock, 538 &netdev_addr_lock_key[i], 539 netdev_lock_name[i]); 540 } 541 #else 542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 543 unsigned short dev_type) 544 { 545 } 546 547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 548 { 549 } 550 #endif 551 552 /******************************************************************************* 553 * 554 * Protocol management and registration routines 555 * 556 *******************************************************************************/ 557 558 559 /* 560 * Add a protocol ID to the list. Now that the input handler is 561 * smarter we can dispense with all the messy stuff that used to be 562 * here. 563 * 564 * BEWARE!!! Protocol handlers, mangling input packets, 565 * MUST BE last in hash buckets and checking protocol handlers 566 * MUST start from promiscuous ptype_all chain in net_bh. 567 * It is true now, do not change it. 568 * Explanation follows: if protocol handler, mangling packet, will 569 * be the first on list, it is not able to sense, that packet 570 * is cloned and should be copied-on-write, so that it will 571 * change it and subsequent readers will get broken packet. 572 * --ANK (980803) 573 */ 574 575 static inline struct list_head *ptype_head(const struct packet_type *pt) 576 { 577 if (pt->type == htons(ETH_P_ALL)) { 578 if (!pt->af_packet_net && !pt->dev) 579 return NULL; 580 581 return pt->dev ? &pt->dev->ptype_all : 582 &pt->af_packet_net->ptype_all; 583 } 584 585 if (pt->dev) 586 return &pt->dev->ptype_specific; 587 588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 590 } 591 592 /** 593 * dev_add_pack - add packet handler 594 * @pt: packet type declaration 595 * 596 * Add a protocol handler to the networking stack. The passed &packet_type 597 * is linked into kernel lists and may not be freed until it has been 598 * removed from the kernel lists. 599 * 600 * This call does not sleep therefore it can not 601 * guarantee all CPU's that are in middle of receiving packets 602 * will see the new packet type (until the next received packet). 603 */ 604 605 void dev_add_pack(struct packet_type *pt) 606 { 607 struct list_head *head = ptype_head(pt); 608 609 if (WARN_ON_ONCE(!head)) 610 return; 611 612 spin_lock(&ptype_lock); 613 list_add_rcu(&pt->list, head); 614 spin_unlock(&ptype_lock); 615 } 616 EXPORT_SYMBOL(dev_add_pack); 617 618 /** 619 * __dev_remove_pack - remove packet handler 620 * @pt: packet type declaration 621 * 622 * Remove a protocol handler that was previously added to the kernel 623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 624 * from the kernel lists and can be freed or reused once this function 625 * returns. 626 * 627 * The packet type might still be in use by receivers 628 * and must not be freed until after all the CPU's have gone 629 * through a quiescent state. 630 */ 631 void __dev_remove_pack(struct packet_type *pt) 632 { 633 struct list_head *head = ptype_head(pt); 634 struct packet_type *pt1; 635 636 if (!head) 637 return; 638 639 spin_lock(&ptype_lock); 640 641 list_for_each_entry(pt1, head, list) { 642 if (pt == pt1) { 643 list_del_rcu(&pt->list); 644 goto out; 645 } 646 } 647 648 pr_warn("dev_remove_pack: %p not found\n", pt); 649 out: 650 spin_unlock(&ptype_lock); 651 } 652 EXPORT_SYMBOL(__dev_remove_pack); 653 654 /** 655 * dev_remove_pack - remove packet handler 656 * @pt: packet type declaration 657 * 658 * Remove a protocol handler that was previously added to the kernel 659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 660 * from the kernel lists and can be freed or reused once this function 661 * returns. 662 * 663 * This call sleeps to guarantee that no CPU is looking at the packet 664 * type after return. 665 */ 666 void dev_remove_pack(struct packet_type *pt) 667 { 668 __dev_remove_pack(pt); 669 670 synchronize_net(); 671 } 672 EXPORT_SYMBOL(dev_remove_pack); 673 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return READ_ONCE(dev->ifindex); 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 725 { 726 int k = stack->num_paths++; 727 728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 729 return NULL; 730 731 return &stack->path[k]; 732 } 733 734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 735 struct net_device_path_stack *stack) 736 { 737 const struct net_device *last_dev; 738 struct net_device_path_ctx ctx = { 739 .dev = dev, 740 }; 741 struct net_device_path *path; 742 int ret = 0; 743 744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 745 stack->num_paths = 0; 746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 747 last_dev = ctx.dev; 748 path = dev_fwd_path(stack); 749 if (!path) 750 return -1; 751 752 memset(path, 0, sizeof(struct net_device_path)); 753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 754 if (ret < 0) 755 return -1; 756 757 if (WARN_ON_ONCE(last_dev == ctx.dev)) 758 return -1; 759 } 760 761 if (!ctx.dev) 762 return ret; 763 764 path = dev_fwd_path(stack); 765 if (!path) 766 return -1; 767 path->type = DEV_PATH_ETHERNET; 768 path->dev = ctx.dev; 769 770 return ret; 771 } 772 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 773 774 /* must be called under rcu_read_lock(), as we dont take a reference */ 775 static struct napi_struct *napi_by_id(unsigned int napi_id) 776 { 777 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 778 struct napi_struct *napi; 779 780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 781 if (napi->napi_id == napi_id) 782 return napi; 783 784 return NULL; 785 } 786 787 /* must be called under rcu_read_lock(), as we dont take a reference */ 788 static struct napi_struct * 789 netdev_napi_by_id(struct net *net, unsigned int napi_id) 790 { 791 struct napi_struct *napi; 792 793 napi = napi_by_id(napi_id); 794 if (!napi) 795 return NULL; 796 797 if (WARN_ON_ONCE(!napi->dev)) 798 return NULL; 799 if (!net_eq(net, dev_net(napi->dev))) 800 return NULL; 801 802 return napi; 803 } 804 805 /** 806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 807 * @net: the applicable net namespace 808 * @napi_id: ID of a NAPI of a target device 809 * 810 * Find a NAPI instance with @napi_id. Lock its device. 811 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 812 * netdev_unlock() must be called to release it. 813 * 814 * Return: pointer to NAPI, its device with lock held, NULL if not found. 815 */ 816 struct napi_struct * 817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 818 { 819 struct napi_struct *napi; 820 struct net_device *dev; 821 822 rcu_read_lock(); 823 napi = netdev_napi_by_id(net, napi_id); 824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 825 rcu_read_unlock(); 826 return NULL; 827 } 828 829 dev = napi->dev; 830 dev_hold(dev); 831 rcu_read_unlock(); 832 833 dev = __netdev_put_lock(dev, net); 834 if (!dev) 835 return NULL; 836 837 rcu_read_lock(); 838 napi = netdev_napi_by_id(net, napi_id); 839 if (napi && napi->dev != dev) 840 napi = NULL; 841 rcu_read_unlock(); 842 843 if (!napi) 844 netdev_unlock(dev); 845 return napi; 846 } 847 848 /** 849 * __dev_get_by_name - find a device by its name 850 * @net: the applicable net namespace 851 * @name: name to find 852 * 853 * Find an interface by name. Must be called under RTNL semaphore. 854 * If the name is found a pointer to the device is returned. 855 * If the name is not found then %NULL is returned. The 856 * reference counters are not incremented so the caller must be 857 * careful with locks. 858 */ 859 860 struct net_device *__dev_get_by_name(struct net *net, const char *name) 861 { 862 struct netdev_name_node *node_name; 863 864 node_name = netdev_name_node_lookup(net, name); 865 return node_name ? node_name->dev : NULL; 866 } 867 EXPORT_SYMBOL(__dev_get_by_name); 868 869 /** 870 * dev_get_by_name_rcu - find a device by its name 871 * @net: the applicable net namespace 872 * @name: name to find 873 * 874 * Find an interface by name. 875 * If the name is found a pointer to the device is returned. 876 * If the name is not found then %NULL is returned. 877 * The reference counters are not incremented so the caller must be 878 * careful with locks. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 882 { 883 struct netdev_name_node *node_name; 884 885 node_name = netdev_name_node_lookup_rcu(net, name); 886 return node_name ? node_name->dev : NULL; 887 } 888 EXPORT_SYMBOL(dev_get_by_name_rcu); 889 890 /* Deprecated for new users, call netdev_get_by_name() instead */ 891 struct net_device *dev_get_by_name(struct net *net, const char *name) 892 { 893 struct net_device *dev; 894 895 rcu_read_lock(); 896 dev = dev_get_by_name_rcu(net, name); 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900 } 901 EXPORT_SYMBOL(dev_get_by_name); 902 903 /** 904 * netdev_get_by_name() - find a device by its name 905 * @net: the applicable net namespace 906 * @name: name to find 907 * @tracker: tracking object for the acquired reference 908 * @gfp: allocation flags for the tracker 909 * 910 * Find an interface by name. This can be called from any 911 * context and does its own locking. The returned handle has 912 * the usage count incremented and the caller must use netdev_put() to 913 * release it when it is no longer needed. %NULL is returned if no 914 * matching device is found. 915 */ 916 struct net_device *netdev_get_by_name(struct net *net, const char *name, 917 netdevice_tracker *tracker, gfp_t gfp) 918 { 919 struct net_device *dev; 920 921 dev = dev_get_by_name(net, name); 922 if (dev) 923 netdev_tracker_alloc(dev, tracker, gfp); 924 return dev; 925 } 926 EXPORT_SYMBOL(netdev_get_by_name); 927 928 /** 929 * __dev_get_by_index - find a device by its ifindex 930 * @net: the applicable net namespace 931 * @ifindex: index of device 932 * 933 * Search for an interface by index. Returns %NULL if the device 934 * is not found or a pointer to the device. The device has not 935 * had its reference counter increased so the caller must be careful 936 * about locking. The caller must hold the RTNL semaphore. 937 */ 938 939 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 940 { 941 struct net_device *dev; 942 struct hlist_head *head = dev_index_hash(net, ifindex); 943 944 hlist_for_each_entry(dev, head, index_hlist) 945 if (dev->ifindex == ifindex) 946 return dev; 947 948 return NULL; 949 } 950 EXPORT_SYMBOL(__dev_get_by_index); 951 952 /** 953 * dev_get_by_index_rcu - find a device by its ifindex 954 * @net: the applicable net namespace 955 * @ifindex: index of device 956 * 957 * Search for an interface by index. Returns %NULL if the device 958 * is not found or a pointer to the device. The device has not 959 * had its reference counter increased so the caller must be careful 960 * about locking. The caller must hold RCU lock. 961 */ 962 963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 964 { 965 struct net_device *dev; 966 struct hlist_head *head = dev_index_hash(net, ifindex); 967 968 hlist_for_each_entry_rcu(dev, head, index_hlist) 969 if (dev->ifindex == ifindex) 970 return dev; 971 972 return NULL; 973 } 974 EXPORT_SYMBOL(dev_get_by_index_rcu); 975 976 /* Deprecated for new users, call netdev_get_by_index() instead */ 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 dev_hold(dev); 984 rcu_read_unlock(); 985 return dev; 986 } 987 EXPORT_SYMBOL(dev_get_by_index); 988 989 /** 990 * netdev_get_by_index() - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * @tracker: tracking object for the acquired reference 994 * @gfp: allocation flags for the tracker 995 * 996 * Search for an interface by index. Returns NULL if the device 997 * is not found or a pointer to the device. The device returned has 998 * had a reference added and the pointer is safe until the user calls 999 * netdev_put() to indicate they have finished with it. 1000 */ 1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1002 netdevice_tracker *tracker, gfp_t gfp) 1003 { 1004 struct net_device *dev; 1005 1006 dev = dev_get_by_index(net, ifindex); 1007 if (dev) 1008 netdev_tracker_alloc(dev, tracker, gfp); 1009 return dev; 1010 } 1011 EXPORT_SYMBOL(netdev_get_by_index); 1012 1013 /** 1014 * dev_get_by_napi_id - find a device by napi_id 1015 * @napi_id: ID of the NAPI struct 1016 * 1017 * Search for an interface by NAPI ID. Returns %NULL if the device 1018 * is not found or a pointer to the device. The device has not had 1019 * its reference counter increased so the caller must be careful 1020 * about locking. The caller must hold RCU lock. 1021 */ 1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1023 { 1024 struct napi_struct *napi; 1025 1026 WARN_ON_ONCE(!rcu_read_lock_held()); 1027 1028 if (!napi_id_valid(napi_id)) 1029 return NULL; 1030 1031 napi = napi_by_id(napi_id); 1032 1033 return napi ? napi->dev : NULL; 1034 } 1035 1036 /* Release the held reference on the net_device, and if the net_device 1037 * is still registered try to lock the instance lock. If device is being 1038 * unregistered NULL will be returned (but the reference has been released, 1039 * either way!) 1040 * 1041 * This helper is intended for locking net_device after it has been looked up 1042 * using a lockless lookup helper. Lock prevents the instance from going away. 1043 */ 1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1045 { 1046 netdev_lock(dev); 1047 if (dev->reg_state > NETREG_REGISTERED || 1048 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1049 netdev_unlock(dev); 1050 dev_put(dev); 1051 return NULL; 1052 } 1053 dev_put(dev); 1054 return dev; 1055 } 1056 1057 static struct net_device * 1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1059 { 1060 netdev_lock_ops_compat(dev); 1061 if (dev->reg_state > NETREG_REGISTERED || 1062 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1063 netdev_unlock_ops_compat(dev); 1064 dev_put(dev); 1065 return NULL; 1066 } 1067 dev_put(dev); 1068 return dev; 1069 } 1070 1071 /** 1072 * netdev_get_by_index_lock() - find a device by its ifindex 1073 * @net: the applicable net namespace 1074 * @ifindex: index of device 1075 * 1076 * Search for an interface by index. If a valid device 1077 * with @ifindex is found it will be returned with netdev->lock held. 1078 * netdev_unlock() must be called to release it. 1079 * 1080 * Return: pointer to a device with lock held, NULL if not found. 1081 */ 1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1083 { 1084 struct net_device *dev; 1085 1086 dev = dev_get_by_index(net, ifindex); 1087 if (!dev) 1088 return NULL; 1089 1090 return __netdev_put_lock(dev, net); 1091 } 1092 1093 struct net_device * 1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1095 { 1096 struct net_device *dev; 1097 1098 dev = dev_get_by_index(net, ifindex); 1099 if (!dev) 1100 return NULL; 1101 1102 return __netdev_put_lock_ops_compat(dev, net); 1103 } 1104 1105 struct net_device * 1106 netdev_xa_find_lock(struct net *net, struct net_device *dev, 1107 unsigned long *index) 1108 { 1109 if (dev) 1110 netdev_unlock(dev); 1111 1112 do { 1113 rcu_read_lock(); 1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1115 if (!dev) { 1116 rcu_read_unlock(); 1117 return NULL; 1118 } 1119 dev_hold(dev); 1120 rcu_read_unlock(); 1121 1122 dev = __netdev_put_lock(dev, net); 1123 if (dev) 1124 return dev; 1125 1126 (*index)++; 1127 } while (true); 1128 } 1129 1130 struct net_device * 1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1132 unsigned long *index) 1133 { 1134 if (dev) 1135 netdev_unlock_ops_compat(dev); 1136 1137 do { 1138 rcu_read_lock(); 1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1140 if (!dev) { 1141 rcu_read_unlock(); 1142 return NULL; 1143 } 1144 dev_hold(dev); 1145 rcu_read_unlock(); 1146 1147 dev = __netdev_put_lock_ops_compat(dev, net); 1148 if (dev) 1149 return dev; 1150 1151 (*index)++; 1152 } while (true); 1153 } 1154 1155 static DEFINE_SEQLOCK(netdev_rename_lock); 1156 1157 void netdev_copy_name(struct net_device *dev, char *name) 1158 { 1159 unsigned int seq; 1160 1161 do { 1162 seq = read_seqbegin(&netdev_rename_lock); 1163 strscpy(name, dev->name, IFNAMSIZ); 1164 } while (read_seqretry(&netdev_rename_lock, seq)); 1165 } 1166 1167 /** 1168 * netdev_get_name - get a netdevice name, knowing its ifindex. 1169 * @net: network namespace 1170 * @name: a pointer to the buffer where the name will be stored. 1171 * @ifindex: the ifindex of the interface to get the name from. 1172 */ 1173 int netdev_get_name(struct net *net, char *name, int ifindex) 1174 { 1175 struct net_device *dev; 1176 int ret; 1177 1178 rcu_read_lock(); 1179 1180 dev = dev_get_by_index_rcu(net, ifindex); 1181 if (!dev) { 1182 ret = -ENODEV; 1183 goto out; 1184 } 1185 1186 netdev_copy_name(dev, name); 1187 1188 ret = 0; 1189 out: 1190 rcu_read_unlock(); 1191 return ret; 1192 } 1193 1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1195 const char *ha) 1196 { 1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1198 } 1199 1200 /** 1201 * dev_getbyhwaddr_rcu - find a device by its hardware address 1202 * @net: the applicable net namespace 1203 * @type: media type of device 1204 * @ha: hardware address 1205 * 1206 * Search for an interface by MAC address. Returns NULL if the device 1207 * is not found or a pointer to the device. 1208 * The caller must hold RCU. 1209 * The returned device has not had its ref count increased 1210 * and the caller must therefore be careful about locking 1211 * 1212 */ 1213 1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1215 const char *ha) 1216 { 1217 struct net_device *dev; 1218 1219 for_each_netdev_rcu(net, dev) 1220 if (dev_addr_cmp(dev, type, ha)) 1221 return dev; 1222 1223 return NULL; 1224 } 1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1226 1227 /** 1228 * dev_getbyhwaddr() - find a device by its hardware address 1229 * @net: the applicable net namespace 1230 * @type: media type of device 1231 * @ha: hardware address 1232 * 1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1234 * rtnl_lock. 1235 * 1236 * Context: rtnl_lock() must be held. 1237 * Return: pointer to the net_device, or NULL if not found 1238 */ 1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1240 const char *ha) 1241 { 1242 struct net_device *dev; 1243 1244 ASSERT_RTNL(); 1245 for_each_netdev(net, dev) 1246 if (dev_addr_cmp(dev, type, ha)) 1247 return dev; 1248 1249 return NULL; 1250 } 1251 EXPORT_SYMBOL(dev_getbyhwaddr); 1252 1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1254 { 1255 struct net_device *dev, *ret = NULL; 1256 1257 rcu_read_lock(); 1258 for_each_netdev_rcu(net, dev) 1259 if (dev->type == type) { 1260 dev_hold(dev); 1261 ret = dev; 1262 break; 1263 } 1264 rcu_read_unlock(); 1265 return ret; 1266 } 1267 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1268 1269 /** 1270 * netdev_get_by_flags_rcu - find any device with given flags 1271 * @net: the applicable net namespace 1272 * @tracker: tracking object for the acquired reference 1273 * @if_flags: IFF_* values 1274 * @mask: bitmask of bits in if_flags to check 1275 * 1276 * Search for any interface with the given flags. 1277 * 1278 * Context: rcu_read_lock() must be held. 1279 * Returns: NULL if a device is not found or a pointer to the device. 1280 */ 1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker, 1282 unsigned short if_flags, unsigned short mask) 1283 { 1284 struct net_device *dev; 1285 1286 for_each_netdev_rcu(net, dev) { 1287 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) { 1288 netdev_hold(dev, tracker, GFP_ATOMIC); 1289 return dev; 1290 } 1291 } 1292 1293 return NULL; 1294 } 1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu); 1296 1297 /** 1298 * dev_valid_name - check if name is okay for network device 1299 * @name: name string 1300 * 1301 * Network device names need to be valid file names to 1302 * allow sysfs to work. We also disallow any kind of 1303 * whitespace. 1304 */ 1305 bool dev_valid_name(const char *name) 1306 { 1307 if (*name == '\0') 1308 return false; 1309 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1310 return false; 1311 if (!strcmp(name, ".") || !strcmp(name, "..")) 1312 return false; 1313 1314 while (*name) { 1315 if (*name == '/' || *name == ':' || isspace(*name)) 1316 return false; 1317 name++; 1318 } 1319 return true; 1320 } 1321 EXPORT_SYMBOL(dev_valid_name); 1322 1323 /** 1324 * __dev_alloc_name - allocate a name for a device 1325 * @net: network namespace to allocate the device name in 1326 * @name: name format string 1327 * @res: result name string 1328 * 1329 * Passed a format string - eg "lt%d" it will try and find a suitable 1330 * id. It scans list of devices to build up a free map, then chooses 1331 * the first empty slot. The caller must hold the dev_base or rtnl lock 1332 * while allocating the name and adding the device in order to avoid 1333 * duplicates. 1334 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1335 * Returns the number of the unit assigned or a negative errno code. 1336 */ 1337 1338 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1339 { 1340 int i = 0; 1341 const char *p; 1342 const int max_netdevices = 8*PAGE_SIZE; 1343 unsigned long *inuse; 1344 struct net_device *d; 1345 char buf[IFNAMSIZ]; 1346 1347 /* Verify the string as this thing may have come from the user. 1348 * There must be one "%d" and no other "%" characters. 1349 */ 1350 p = strchr(name, '%'); 1351 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1352 return -EINVAL; 1353 1354 /* Use one page as a bit array of possible slots */ 1355 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1356 if (!inuse) 1357 return -ENOMEM; 1358 1359 for_each_netdev(net, d) { 1360 struct netdev_name_node *name_node; 1361 1362 netdev_for_each_altname(d, name_node) { 1363 if (!sscanf(name_node->name, name, &i)) 1364 continue; 1365 if (i < 0 || i >= max_netdevices) 1366 continue; 1367 1368 /* avoid cases where sscanf is not exact inverse of printf */ 1369 snprintf(buf, IFNAMSIZ, name, i); 1370 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1371 __set_bit(i, inuse); 1372 } 1373 if (!sscanf(d->name, name, &i)) 1374 continue; 1375 if (i < 0 || i >= max_netdevices) 1376 continue; 1377 1378 /* avoid cases where sscanf is not exact inverse of printf */ 1379 snprintf(buf, IFNAMSIZ, name, i); 1380 if (!strncmp(buf, d->name, IFNAMSIZ)) 1381 __set_bit(i, inuse); 1382 } 1383 1384 i = find_first_zero_bit(inuse, max_netdevices); 1385 bitmap_free(inuse); 1386 if (i == max_netdevices) 1387 return -ENFILE; 1388 1389 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1390 strscpy(buf, name, IFNAMSIZ); 1391 snprintf(res, IFNAMSIZ, buf, i); 1392 return i; 1393 } 1394 1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1397 const char *want_name, char *out_name, 1398 int dup_errno) 1399 { 1400 if (!dev_valid_name(want_name)) 1401 return -EINVAL; 1402 1403 if (strchr(want_name, '%')) 1404 return __dev_alloc_name(net, want_name, out_name); 1405 1406 if (netdev_name_in_use(net, want_name)) 1407 return -dup_errno; 1408 if (out_name != want_name) 1409 strscpy(out_name, want_name, IFNAMSIZ); 1410 return 0; 1411 } 1412 1413 /** 1414 * dev_alloc_name - allocate a name for a device 1415 * @dev: device 1416 * @name: name format string 1417 * 1418 * Passed a format string - eg "lt%d" it will try and find a suitable 1419 * id. It scans list of devices to build up a free map, then chooses 1420 * the first empty slot. The caller must hold the dev_base or rtnl lock 1421 * while allocating the name and adding the device in order to avoid 1422 * duplicates. 1423 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1424 * Returns the number of the unit assigned or a negative errno code. 1425 */ 1426 1427 int dev_alloc_name(struct net_device *dev, const char *name) 1428 { 1429 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1430 } 1431 EXPORT_SYMBOL(dev_alloc_name); 1432 1433 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1434 const char *name) 1435 { 1436 int ret; 1437 1438 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1439 return ret < 0 ? ret : 0; 1440 } 1441 1442 int netif_change_name(struct net_device *dev, const char *newname) 1443 { 1444 struct net *net = dev_net(dev); 1445 unsigned char old_assign_type; 1446 char oldname[IFNAMSIZ]; 1447 int err = 0; 1448 int ret; 1449 1450 ASSERT_RTNL_NET(net); 1451 1452 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1453 return 0; 1454 1455 memcpy(oldname, dev->name, IFNAMSIZ); 1456 1457 write_seqlock_bh(&netdev_rename_lock); 1458 err = dev_get_valid_name(net, dev, newname); 1459 write_sequnlock_bh(&netdev_rename_lock); 1460 1461 if (err < 0) 1462 return err; 1463 1464 if (oldname[0] && !strchr(oldname, '%')) 1465 netdev_info(dev, "renamed from %s%s\n", oldname, 1466 dev->flags & IFF_UP ? " (while UP)" : ""); 1467 1468 old_assign_type = dev->name_assign_type; 1469 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1470 1471 rollback: 1472 ret = device_rename(&dev->dev, dev->name); 1473 if (ret) { 1474 write_seqlock_bh(&netdev_rename_lock); 1475 memcpy(dev->name, oldname, IFNAMSIZ); 1476 write_sequnlock_bh(&netdev_rename_lock); 1477 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1478 return ret; 1479 } 1480 1481 netdev_adjacent_rename_links(dev, oldname); 1482 1483 netdev_name_node_del(dev->name_node); 1484 1485 synchronize_net(); 1486 1487 netdev_name_node_add(net, dev->name_node); 1488 1489 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1490 ret = notifier_to_errno(ret); 1491 1492 if (ret) { 1493 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1494 if (err >= 0) { 1495 err = ret; 1496 write_seqlock_bh(&netdev_rename_lock); 1497 memcpy(dev->name, oldname, IFNAMSIZ); 1498 write_sequnlock_bh(&netdev_rename_lock); 1499 memcpy(oldname, newname, IFNAMSIZ); 1500 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1501 old_assign_type = NET_NAME_RENAMED; 1502 goto rollback; 1503 } else { 1504 netdev_err(dev, "name change rollback failed: %d\n", 1505 ret); 1506 } 1507 } 1508 1509 return err; 1510 } 1511 1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1513 { 1514 struct dev_ifalias *new_alias = NULL; 1515 1516 if (len >= IFALIASZ) 1517 return -EINVAL; 1518 1519 if (len) { 1520 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1521 if (!new_alias) 1522 return -ENOMEM; 1523 1524 memcpy(new_alias->ifalias, alias, len); 1525 new_alias->ifalias[len] = 0; 1526 } 1527 1528 mutex_lock(&ifalias_mutex); 1529 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1530 mutex_is_locked(&ifalias_mutex)); 1531 mutex_unlock(&ifalias_mutex); 1532 1533 if (new_alias) 1534 kfree_rcu(new_alias, rcuhead); 1535 1536 return len; 1537 } 1538 1539 /** 1540 * dev_get_alias - get ifalias of a device 1541 * @dev: device 1542 * @name: buffer to store name of ifalias 1543 * @len: size of buffer 1544 * 1545 * get ifalias for a device. Caller must make sure dev cannot go 1546 * away, e.g. rcu read lock or own a reference count to device. 1547 */ 1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1549 { 1550 const struct dev_ifalias *alias; 1551 int ret = 0; 1552 1553 rcu_read_lock(); 1554 alias = rcu_dereference(dev->ifalias); 1555 if (alias) 1556 ret = snprintf(name, len, "%s", alias->ifalias); 1557 rcu_read_unlock(); 1558 1559 return ret; 1560 } 1561 1562 /** 1563 * netdev_features_change - device changes features 1564 * @dev: device to cause notification 1565 * 1566 * Called to indicate a device has changed features. 1567 */ 1568 void netdev_features_change(struct net_device *dev) 1569 { 1570 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1571 } 1572 EXPORT_SYMBOL(netdev_features_change); 1573 1574 void netif_state_change(struct net_device *dev) 1575 { 1576 netdev_ops_assert_locked_or_invisible(dev); 1577 1578 if (dev->flags & IFF_UP) { 1579 struct netdev_notifier_change_info change_info = { 1580 .info.dev = dev, 1581 }; 1582 1583 call_netdevice_notifiers_info(NETDEV_CHANGE, 1584 &change_info.info); 1585 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1586 } 1587 } 1588 1589 /** 1590 * __netdev_notify_peers - notify network peers about existence of @dev, 1591 * to be called when rtnl lock is already held. 1592 * @dev: network device 1593 * 1594 * Generate traffic such that interested network peers are aware of 1595 * @dev, such as by generating a gratuitous ARP. This may be used when 1596 * a device wants to inform the rest of the network about some sort of 1597 * reconfiguration such as a failover event or virtual machine 1598 * migration. 1599 */ 1600 void __netdev_notify_peers(struct net_device *dev) 1601 { 1602 ASSERT_RTNL(); 1603 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1604 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1605 } 1606 EXPORT_SYMBOL(__netdev_notify_peers); 1607 1608 /** 1609 * netdev_notify_peers - notify network peers about existence of @dev 1610 * @dev: network device 1611 * 1612 * Generate traffic such that interested network peers are aware of 1613 * @dev, such as by generating a gratuitous ARP. This may be used when 1614 * a device wants to inform the rest of the network about some sort of 1615 * reconfiguration such as a failover event or virtual machine 1616 * migration. 1617 */ 1618 void netdev_notify_peers(struct net_device *dev) 1619 { 1620 rtnl_lock(); 1621 __netdev_notify_peers(dev); 1622 rtnl_unlock(); 1623 } 1624 EXPORT_SYMBOL(netdev_notify_peers); 1625 1626 static int napi_threaded_poll(void *data); 1627 1628 static int napi_kthread_create(struct napi_struct *n) 1629 { 1630 int err = 0; 1631 1632 /* Create and wake up the kthread once to put it in 1633 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1634 * warning and work with loadavg. 1635 */ 1636 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1637 n->dev->name, n->napi_id); 1638 if (IS_ERR(n->thread)) { 1639 err = PTR_ERR(n->thread); 1640 pr_err("kthread_run failed with err %d\n", err); 1641 n->thread = NULL; 1642 } 1643 1644 return err; 1645 } 1646 1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1648 { 1649 const struct net_device_ops *ops = dev->netdev_ops; 1650 int ret; 1651 1652 ASSERT_RTNL(); 1653 dev_addr_check(dev); 1654 1655 if (!netif_device_present(dev)) { 1656 /* may be detached because parent is runtime-suspended */ 1657 if (dev->dev.parent) 1658 pm_runtime_resume(dev->dev.parent); 1659 if (!netif_device_present(dev)) 1660 return -ENODEV; 1661 } 1662 1663 /* Block netpoll from trying to do any rx path servicing. 1664 * If we don't do this there is a chance ndo_poll_controller 1665 * or ndo_poll may be running while we open the device 1666 */ 1667 netpoll_poll_disable(dev); 1668 1669 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1670 ret = notifier_to_errno(ret); 1671 if (ret) 1672 return ret; 1673 1674 set_bit(__LINK_STATE_START, &dev->state); 1675 1676 netdev_ops_assert_locked(dev); 1677 1678 if (ops->ndo_validate_addr) 1679 ret = ops->ndo_validate_addr(dev); 1680 1681 if (!ret && ops->ndo_open) 1682 ret = ops->ndo_open(dev); 1683 1684 netpoll_poll_enable(dev); 1685 1686 if (ret) 1687 clear_bit(__LINK_STATE_START, &dev->state); 1688 else { 1689 netif_set_up(dev, true); 1690 dev_set_rx_mode(dev); 1691 dev_activate(dev); 1692 add_device_randomness(dev->dev_addr, dev->addr_len); 1693 } 1694 1695 return ret; 1696 } 1697 1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1699 { 1700 int ret; 1701 1702 if (dev->flags & IFF_UP) 1703 return 0; 1704 1705 ret = __dev_open(dev, extack); 1706 if (ret < 0) 1707 return ret; 1708 1709 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1710 call_netdevice_notifiers(NETDEV_UP, dev); 1711 1712 return ret; 1713 } 1714 1715 static void __dev_close_many(struct list_head *head) 1716 { 1717 struct net_device *dev; 1718 1719 ASSERT_RTNL(); 1720 might_sleep(); 1721 1722 list_for_each_entry(dev, head, close_list) { 1723 /* Temporarily disable netpoll until the interface is down */ 1724 netpoll_poll_disable(dev); 1725 1726 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1727 1728 clear_bit(__LINK_STATE_START, &dev->state); 1729 1730 /* Synchronize to scheduled poll. We cannot touch poll list, it 1731 * can be even on different cpu. So just clear netif_running(). 1732 * 1733 * dev->stop() will invoke napi_disable() on all of it's 1734 * napi_struct instances on this device. 1735 */ 1736 smp_mb__after_atomic(); /* Commit netif_running(). */ 1737 } 1738 1739 dev_deactivate_many(head); 1740 1741 list_for_each_entry(dev, head, close_list) { 1742 const struct net_device_ops *ops = dev->netdev_ops; 1743 1744 /* 1745 * Call the device specific close. This cannot fail. 1746 * Only if device is UP 1747 * 1748 * We allow it to be called even after a DETACH hot-plug 1749 * event. 1750 */ 1751 1752 netdev_ops_assert_locked(dev); 1753 1754 if (ops->ndo_stop) 1755 ops->ndo_stop(dev); 1756 1757 netif_set_up(dev, false); 1758 netpoll_poll_enable(dev); 1759 } 1760 } 1761 1762 static void __dev_close(struct net_device *dev) 1763 { 1764 LIST_HEAD(single); 1765 1766 list_add(&dev->close_list, &single); 1767 __dev_close_many(&single); 1768 list_del(&single); 1769 } 1770 1771 void netif_close_many(struct list_head *head, bool unlink) 1772 { 1773 struct net_device *dev, *tmp; 1774 1775 /* Remove the devices that don't need to be closed */ 1776 list_for_each_entry_safe(dev, tmp, head, close_list) 1777 if (!(dev->flags & IFF_UP)) 1778 list_del_init(&dev->close_list); 1779 1780 __dev_close_many(head); 1781 1782 list_for_each_entry_safe(dev, tmp, head, close_list) { 1783 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1784 call_netdevice_notifiers(NETDEV_DOWN, dev); 1785 if (unlink) 1786 list_del_init(&dev->close_list); 1787 } 1788 } 1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL"); 1790 1791 void netif_close(struct net_device *dev) 1792 { 1793 if (dev->flags & IFF_UP) { 1794 LIST_HEAD(single); 1795 1796 list_add(&dev->close_list, &single); 1797 netif_close_many(&single, true); 1798 list_del(&single); 1799 } 1800 } 1801 EXPORT_SYMBOL(netif_close); 1802 1803 void netif_disable_lro(struct net_device *dev) 1804 { 1805 struct net_device *lower_dev; 1806 struct list_head *iter; 1807 1808 dev->wanted_features &= ~NETIF_F_LRO; 1809 netdev_update_features(dev); 1810 1811 if (unlikely(dev->features & NETIF_F_LRO)) 1812 netdev_WARN(dev, "failed to disable LRO!\n"); 1813 1814 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1815 netdev_lock_ops(lower_dev); 1816 netif_disable_lro(lower_dev); 1817 netdev_unlock_ops(lower_dev); 1818 } 1819 } 1820 EXPORT_IPV6_MOD(netif_disable_lro); 1821 1822 /** 1823 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1824 * @dev: device 1825 * 1826 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1827 * called under RTNL. This is needed if Generic XDP is installed on 1828 * the device. 1829 */ 1830 static void dev_disable_gro_hw(struct net_device *dev) 1831 { 1832 dev->wanted_features &= ~NETIF_F_GRO_HW; 1833 netdev_update_features(dev); 1834 1835 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1836 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1837 } 1838 1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1840 { 1841 #define N(val) \ 1842 case NETDEV_##val: \ 1843 return "NETDEV_" __stringify(val); 1844 switch (cmd) { 1845 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1846 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1847 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1848 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1849 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1850 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1851 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1852 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1853 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1854 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1855 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1856 N(XDP_FEAT_CHANGE) 1857 } 1858 #undef N 1859 return "UNKNOWN_NETDEV_EVENT"; 1860 } 1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1862 1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1864 struct net_device *dev) 1865 { 1866 struct netdev_notifier_info info = { 1867 .dev = dev, 1868 }; 1869 1870 return nb->notifier_call(nb, val, &info); 1871 } 1872 1873 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1874 struct net_device *dev) 1875 { 1876 int err; 1877 1878 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1879 err = notifier_to_errno(err); 1880 if (err) 1881 return err; 1882 1883 if (!(dev->flags & IFF_UP)) 1884 return 0; 1885 1886 call_netdevice_notifier(nb, NETDEV_UP, dev); 1887 return 0; 1888 } 1889 1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1891 struct net_device *dev) 1892 { 1893 if (dev->flags & IFF_UP) { 1894 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1895 dev); 1896 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1897 } 1898 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1899 } 1900 1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1902 struct net *net) 1903 { 1904 struct net_device *dev; 1905 int err; 1906 1907 for_each_netdev(net, dev) { 1908 netdev_lock_ops(dev); 1909 err = call_netdevice_register_notifiers(nb, dev); 1910 netdev_unlock_ops(dev); 1911 if (err) 1912 goto rollback; 1913 } 1914 return 0; 1915 1916 rollback: 1917 for_each_netdev_continue_reverse(net, dev) 1918 call_netdevice_unregister_notifiers(nb, dev); 1919 return err; 1920 } 1921 1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1923 struct net *net) 1924 { 1925 struct net_device *dev; 1926 1927 for_each_netdev(net, dev) 1928 call_netdevice_unregister_notifiers(nb, dev); 1929 } 1930 1931 static int dev_boot_phase = 1; 1932 1933 /** 1934 * register_netdevice_notifier - register a network notifier block 1935 * @nb: notifier 1936 * 1937 * Register a notifier to be called when network device events occur. 1938 * The notifier passed is linked into the kernel structures and must 1939 * not be reused until it has been unregistered. A negative errno code 1940 * is returned on a failure. 1941 * 1942 * When registered all registration and up events are replayed 1943 * to the new notifier to allow device to have a race free 1944 * view of the network device list. 1945 */ 1946 1947 int register_netdevice_notifier(struct notifier_block *nb) 1948 { 1949 struct net *net; 1950 int err; 1951 1952 /* Close race with setup_net() and cleanup_net() */ 1953 down_write(&pernet_ops_rwsem); 1954 1955 /* When RTNL is removed, we need protection for netdev_chain. */ 1956 rtnl_lock(); 1957 1958 err = raw_notifier_chain_register(&netdev_chain, nb); 1959 if (err) 1960 goto unlock; 1961 if (dev_boot_phase) 1962 goto unlock; 1963 for_each_net(net) { 1964 __rtnl_net_lock(net); 1965 err = call_netdevice_register_net_notifiers(nb, net); 1966 __rtnl_net_unlock(net); 1967 if (err) 1968 goto rollback; 1969 } 1970 1971 unlock: 1972 rtnl_unlock(); 1973 up_write(&pernet_ops_rwsem); 1974 return err; 1975 1976 rollback: 1977 for_each_net_continue_reverse(net) { 1978 __rtnl_net_lock(net); 1979 call_netdevice_unregister_net_notifiers(nb, net); 1980 __rtnl_net_unlock(net); 1981 } 1982 1983 raw_notifier_chain_unregister(&netdev_chain, nb); 1984 goto unlock; 1985 } 1986 EXPORT_SYMBOL(register_netdevice_notifier); 1987 1988 /** 1989 * unregister_netdevice_notifier - unregister a network notifier block 1990 * @nb: notifier 1991 * 1992 * Unregister a notifier previously registered by 1993 * register_netdevice_notifier(). The notifier is unlinked into the 1994 * kernel structures and may then be reused. A negative errno code 1995 * is returned on a failure. 1996 * 1997 * After unregistering unregister and down device events are synthesized 1998 * for all devices on the device list to the removed notifier to remove 1999 * the need for special case cleanup code. 2000 */ 2001 2002 int unregister_netdevice_notifier(struct notifier_block *nb) 2003 { 2004 struct net *net; 2005 int err; 2006 2007 /* Close race with setup_net() and cleanup_net() */ 2008 down_write(&pernet_ops_rwsem); 2009 rtnl_lock(); 2010 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2011 if (err) 2012 goto unlock; 2013 2014 for_each_net(net) { 2015 __rtnl_net_lock(net); 2016 call_netdevice_unregister_net_notifiers(nb, net); 2017 __rtnl_net_unlock(net); 2018 } 2019 2020 unlock: 2021 rtnl_unlock(); 2022 up_write(&pernet_ops_rwsem); 2023 return err; 2024 } 2025 EXPORT_SYMBOL(unregister_netdevice_notifier); 2026 2027 static int __register_netdevice_notifier_net(struct net *net, 2028 struct notifier_block *nb, 2029 bool ignore_call_fail) 2030 { 2031 int err; 2032 2033 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2034 if (err) 2035 return err; 2036 if (dev_boot_phase) 2037 return 0; 2038 2039 err = call_netdevice_register_net_notifiers(nb, net); 2040 if (err && !ignore_call_fail) 2041 goto chain_unregister; 2042 2043 return 0; 2044 2045 chain_unregister: 2046 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2047 return err; 2048 } 2049 2050 static int __unregister_netdevice_notifier_net(struct net *net, 2051 struct notifier_block *nb) 2052 { 2053 int err; 2054 2055 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2056 if (err) 2057 return err; 2058 2059 call_netdevice_unregister_net_notifiers(nb, net); 2060 return 0; 2061 } 2062 2063 /** 2064 * register_netdevice_notifier_net - register a per-netns network notifier block 2065 * @net: network namespace 2066 * @nb: notifier 2067 * 2068 * Register a notifier to be called when network device events occur. 2069 * The notifier passed is linked into the kernel structures and must 2070 * not be reused until it has been unregistered. A negative errno code 2071 * is returned on a failure. 2072 * 2073 * When registered all registration and up events are replayed 2074 * to the new notifier to allow device to have a race free 2075 * view of the network device list. 2076 */ 2077 2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2079 { 2080 int err; 2081 2082 rtnl_net_lock(net); 2083 err = __register_netdevice_notifier_net(net, nb, false); 2084 rtnl_net_unlock(net); 2085 2086 return err; 2087 } 2088 EXPORT_SYMBOL(register_netdevice_notifier_net); 2089 2090 /** 2091 * unregister_netdevice_notifier_net - unregister a per-netns 2092 * network notifier block 2093 * @net: network namespace 2094 * @nb: notifier 2095 * 2096 * Unregister a notifier previously registered by 2097 * register_netdevice_notifier_net(). The notifier is unlinked from the 2098 * kernel structures and may then be reused. A negative errno code 2099 * is returned on a failure. 2100 * 2101 * After unregistering unregister and down device events are synthesized 2102 * for all devices on the device list to the removed notifier to remove 2103 * the need for special case cleanup code. 2104 */ 2105 2106 int unregister_netdevice_notifier_net(struct net *net, 2107 struct notifier_block *nb) 2108 { 2109 int err; 2110 2111 rtnl_net_lock(net); 2112 err = __unregister_netdevice_notifier_net(net, nb); 2113 rtnl_net_unlock(net); 2114 2115 return err; 2116 } 2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2118 2119 static void __move_netdevice_notifier_net(struct net *src_net, 2120 struct net *dst_net, 2121 struct notifier_block *nb) 2122 { 2123 __unregister_netdevice_notifier_net(src_net, nb); 2124 __register_netdevice_notifier_net(dst_net, nb, true); 2125 } 2126 2127 static void rtnl_net_dev_lock(struct net_device *dev) 2128 { 2129 bool again; 2130 2131 do { 2132 struct net *net; 2133 2134 again = false; 2135 2136 /* netns might be being dismantled. */ 2137 rcu_read_lock(); 2138 net = dev_net_rcu(dev); 2139 net_passive_inc(net); 2140 rcu_read_unlock(); 2141 2142 rtnl_net_lock(net); 2143 2144 #ifdef CONFIG_NET_NS 2145 /* dev might have been moved to another netns. */ 2146 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2147 rtnl_net_unlock(net); 2148 net_passive_dec(net); 2149 again = true; 2150 } 2151 #endif 2152 } while (again); 2153 } 2154 2155 static void rtnl_net_dev_unlock(struct net_device *dev) 2156 { 2157 struct net *net = dev_net(dev); 2158 2159 rtnl_net_unlock(net); 2160 net_passive_dec(net); 2161 } 2162 2163 int register_netdevice_notifier_dev_net(struct net_device *dev, 2164 struct notifier_block *nb, 2165 struct netdev_net_notifier *nn) 2166 { 2167 int err; 2168 2169 rtnl_net_dev_lock(dev); 2170 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2171 if (!err) { 2172 nn->nb = nb; 2173 list_add(&nn->list, &dev->net_notifier_list); 2174 } 2175 rtnl_net_dev_unlock(dev); 2176 2177 return err; 2178 } 2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2180 2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2182 struct notifier_block *nb, 2183 struct netdev_net_notifier *nn) 2184 { 2185 int err; 2186 2187 rtnl_net_dev_lock(dev); 2188 list_del(&nn->list); 2189 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2190 rtnl_net_dev_unlock(dev); 2191 2192 return err; 2193 } 2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2195 2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2197 struct net *net) 2198 { 2199 struct netdev_net_notifier *nn; 2200 2201 list_for_each_entry(nn, &dev->net_notifier_list, list) 2202 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2203 } 2204 2205 /** 2206 * call_netdevice_notifiers_info - call all network notifier blocks 2207 * @val: value passed unmodified to notifier function 2208 * @info: notifier information data 2209 * 2210 * Call all network notifier blocks. Parameters and return value 2211 * are as for raw_notifier_call_chain(). 2212 */ 2213 2214 int call_netdevice_notifiers_info(unsigned long val, 2215 struct netdev_notifier_info *info) 2216 { 2217 struct net *net = dev_net(info->dev); 2218 int ret; 2219 2220 ASSERT_RTNL(); 2221 2222 /* Run per-netns notifier block chain first, then run the global one. 2223 * Hopefully, one day, the global one is going to be removed after 2224 * all notifier block registrators get converted to be per-netns. 2225 */ 2226 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2227 if (ret & NOTIFY_STOP_MASK) 2228 return ret; 2229 return raw_notifier_call_chain(&netdev_chain, val, info); 2230 } 2231 2232 /** 2233 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2234 * for and rollback on error 2235 * @val_up: value passed unmodified to notifier function 2236 * @val_down: value passed unmodified to the notifier function when 2237 * recovering from an error on @val_up 2238 * @info: notifier information data 2239 * 2240 * Call all per-netns network notifier blocks, but not notifier blocks on 2241 * the global notifier chain. Parameters and return value are as for 2242 * raw_notifier_call_chain_robust(). 2243 */ 2244 2245 static int 2246 call_netdevice_notifiers_info_robust(unsigned long val_up, 2247 unsigned long val_down, 2248 struct netdev_notifier_info *info) 2249 { 2250 struct net *net = dev_net(info->dev); 2251 2252 ASSERT_RTNL(); 2253 2254 return raw_notifier_call_chain_robust(&net->netdev_chain, 2255 val_up, val_down, info); 2256 } 2257 2258 static int call_netdevice_notifiers_extack(unsigned long val, 2259 struct net_device *dev, 2260 struct netlink_ext_ack *extack) 2261 { 2262 struct netdev_notifier_info info = { 2263 .dev = dev, 2264 .extack = extack, 2265 }; 2266 2267 return call_netdevice_notifiers_info(val, &info); 2268 } 2269 2270 /** 2271 * call_netdevice_notifiers - call all network notifier blocks 2272 * @val: value passed unmodified to notifier function 2273 * @dev: net_device pointer passed unmodified to notifier function 2274 * 2275 * Call all network notifier blocks. Parameters and return value 2276 * are as for raw_notifier_call_chain(). 2277 */ 2278 2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2280 { 2281 return call_netdevice_notifiers_extack(val, dev, NULL); 2282 } 2283 EXPORT_SYMBOL(call_netdevice_notifiers); 2284 2285 /** 2286 * call_netdevice_notifiers_mtu - call all network notifier blocks 2287 * @val: value passed unmodified to notifier function 2288 * @dev: net_device pointer passed unmodified to notifier function 2289 * @arg: additional u32 argument passed to the notifier function 2290 * 2291 * Call all network notifier blocks. Parameters and return value 2292 * are as for raw_notifier_call_chain(). 2293 */ 2294 static int call_netdevice_notifiers_mtu(unsigned long val, 2295 struct net_device *dev, u32 arg) 2296 { 2297 struct netdev_notifier_info_ext info = { 2298 .info.dev = dev, 2299 .ext.mtu = arg, 2300 }; 2301 2302 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2303 2304 return call_netdevice_notifiers_info(val, &info.info); 2305 } 2306 2307 #ifdef CONFIG_NET_INGRESS 2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2309 2310 void net_inc_ingress_queue(void) 2311 { 2312 static_branch_inc(&ingress_needed_key); 2313 } 2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2315 2316 void net_dec_ingress_queue(void) 2317 { 2318 static_branch_dec(&ingress_needed_key); 2319 } 2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2321 #endif 2322 2323 #ifdef CONFIG_NET_EGRESS 2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2325 2326 void net_inc_egress_queue(void) 2327 { 2328 static_branch_inc(&egress_needed_key); 2329 } 2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2331 2332 void net_dec_egress_queue(void) 2333 { 2334 static_branch_dec(&egress_needed_key); 2335 } 2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2337 #endif 2338 2339 #ifdef CONFIG_NET_CLS_ACT 2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2341 EXPORT_SYMBOL(tcf_sw_enabled_key); 2342 #endif 2343 2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2345 EXPORT_SYMBOL(netstamp_needed_key); 2346 #ifdef CONFIG_JUMP_LABEL 2347 static atomic_t netstamp_needed_deferred; 2348 static atomic_t netstamp_wanted; 2349 static void netstamp_clear(struct work_struct *work) 2350 { 2351 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2352 int wanted; 2353 2354 wanted = atomic_add_return(deferred, &netstamp_wanted); 2355 if (wanted > 0) 2356 static_branch_enable(&netstamp_needed_key); 2357 else 2358 static_branch_disable(&netstamp_needed_key); 2359 } 2360 static DECLARE_WORK(netstamp_work, netstamp_clear); 2361 #endif 2362 2363 void net_enable_timestamp(void) 2364 { 2365 #ifdef CONFIG_JUMP_LABEL 2366 int wanted = atomic_read(&netstamp_wanted); 2367 2368 while (wanted > 0) { 2369 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2370 return; 2371 } 2372 atomic_inc(&netstamp_needed_deferred); 2373 schedule_work(&netstamp_work); 2374 #else 2375 static_branch_inc(&netstamp_needed_key); 2376 #endif 2377 } 2378 EXPORT_SYMBOL(net_enable_timestamp); 2379 2380 void net_disable_timestamp(void) 2381 { 2382 #ifdef CONFIG_JUMP_LABEL 2383 int wanted = atomic_read(&netstamp_wanted); 2384 2385 while (wanted > 1) { 2386 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2387 return; 2388 } 2389 atomic_dec(&netstamp_needed_deferred); 2390 schedule_work(&netstamp_work); 2391 #else 2392 static_branch_dec(&netstamp_needed_key); 2393 #endif 2394 } 2395 EXPORT_SYMBOL(net_disable_timestamp); 2396 2397 static inline void net_timestamp_set(struct sk_buff *skb) 2398 { 2399 skb->tstamp = 0; 2400 skb->tstamp_type = SKB_CLOCK_REALTIME; 2401 if (static_branch_unlikely(&netstamp_needed_key)) 2402 skb->tstamp = ktime_get_real(); 2403 } 2404 2405 #define net_timestamp_check(COND, SKB) \ 2406 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2407 if ((COND) && !(SKB)->tstamp) \ 2408 (SKB)->tstamp = ktime_get_real(); \ 2409 } \ 2410 2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2412 { 2413 return __is_skb_forwardable(dev, skb, true); 2414 } 2415 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2416 2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2418 bool check_mtu) 2419 { 2420 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2421 2422 if (likely(!ret)) { 2423 skb->protocol = eth_type_trans(skb, dev); 2424 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2425 } 2426 2427 return ret; 2428 } 2429 2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2431 { 2432 return __dev_forward_skb2(dev, skb, true); 2433 } 2434 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2435 2436 /** 2437 * dev_forward_skb - loopback an skb to another netif 2438 * 2439 * @dev: destination network device 2440 * @skb: buffer to forward 2441 * 2442 * return values: 2443 * NET_RX_SUCCESS (no congestion) 2444 * NET_RX_DROP (packet was dropped, but freed) 2445 * 2446 * dev_forward_skb can be used for injecting an skb from the 2447 * start_xmit function of one device into the receive queue 2448 * of another device. 2449 * 2450 * The receiving device may be in another namespace, so 2451 * we have to clear all information in the skb that could 2452 * impact namespace isolation. 2453 */ 2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2455 { 2456 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2457 } 2458 EXPORT_SYMBOL_GPL(dev_forward_skb); 2459 2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2461 { 2462 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2463 } 2464 2465 static inline int deliver_skb(struct sk_buff *skb, 2466 struct packet_type *pt_prev, 2467 struct net_device *orig_dev) 2468 { 2469 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2470 return -ENOMEM; 2471 refcount_inc(&skb->users); 2472 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2473 } 2474 2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2476 struct packet_type **pt, 2477 struct net_device *orig_dev, 2478 __be16 type, 2479 struct list_head *ptype_list) 2480 { 2481 struct packet_type *ptype, *pt_prev = *pt; 2482 2483 list_for_each_entry_rcu(ptype, ptype_list, list) { 2484 if (ptype->type != type) 2485 continue; 2486 if (pt_prev) 2487 deliver_skb(skb, pt_prev, orig_dev); 2488 pt_prev = ptype; 2489 } 2490 *pt = pt_prev; 2491 } 2492 2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2494 { 2495 if (!ptype->af_packet_priv || !skb->sk) 2496 return false; 2497 2498 if (ptype->id_match) 2499 return ptype->id_match(ptype, skb->sk); 2500 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2501 return true; 2502 2503 return false; 2504 } 2505 2506 /** 2507 * dev_nit_active_rcu - return true if any network interface taps are in use 2508 * 2509 * The caller must hold the RCU lock 2510 * 2511 * @dev: network device to check for the presence of taps 2512 */ 2513 bool dev_nit_active_rcu(const struct net_device *dev) 2514 { 2515 /* Callers may hold either RCU or RCU BH lock */ 2516 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2517 2518 return !list_empty(&dev_net(dev)->ptype_all) || 2519 !list_empty(&dev->ptype_all); 2520 } 2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2522 2523 /* 2524 * Support routine. Sends outgoing frames to any network 2525 * taps currently in use. 2526 */ 2527 2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2529 { 2530 struct packet_type *ptype, *pt_prev = NULL; 2531 struct list_head *ptype_list; 2532 struct sk_buff *skb2 = NULL; 2533 2534 rcu_read_lock(); 2535 ptype_list = &dev_net_rcu(dev)->ptype_all; 2536 again: 2537 list_for_each_entry_rcu(ptype, ptype_list, list) { 2538 if (READ_ONCE(ptype->ignore_outgoing)) 2539 continue; 2540 2541 /* Never send packets back to the socket 2542 * they originated from - MvS (miquels@drinkel.ow.org) 2543 */ 2544 if (skb_loop_sk(ptype, skb)) 2545 continue; 2546 2547 if (pt_prev) { 2548 deliver_skb(skb2, pt_prev, skb->dev); 2549 pt_prev = ptype; 2550 continue; 2551 } 2552 2553 /* need to clone skb, done only once */ 2554 skb2 = skb_clone(skb, GFP_ATOMIC); 2555 if (!skb2) 2556 goto out_unlock; 2557 2558 net_timestamp_set(skb2); 2559 2560 /* skb->nh should be correctly 2561 * set by sender, so that the second statement is 2562 * just protection against buggy protocols. 2563 */ 2564 skb_reset_mac_header(skb2); 2565 2566 if (skb_network_header(skb2) < skb2->data || 2567 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2568 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2569 ntohs(skb2->protocol), 2570 dev->name); 2571 skb_reset_network_header(skb2); 2572 } 2573 2574 skb2->transport_header = skb2->network_header; 2575 skb2->pkt_type = PACKET_OUTGOING; 2576 pt_prev = ptype; 2577 } 2578 2579 if (ptype_list != &dev->ptype_all) { 2580 ptype_list = &dev->ptype_all; 2581 goto again; 2582 } 2583 out_unlock: 2584 if (pt_prev) { 2585 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2586 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2587 else 2588 kfree_skb(skb2); 2589 } 2590 rcu_read_unlock(); 2591 } 2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2593 2594 /** 2595 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2596 * @dev: Network device 2597 * @txq: number of queues available 2598 * 2599 * If real_num_tx_queues is changed the tc mappings may no longer be 2600 * valid. To resolve this verify the tc mapping remains valid and if 2601 * not NULL the mapping. With no priorities mapping to this 2602 * offset/count pair it will no longer be used. In the worst case TC0 2603 * is invalid nothing can be done so disable priority mappings. If is 2604 * expected that drivers will fix this mapping if they can before 2605 * calling netif_set_real_num_tx_queues. 2606 */ 2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2608 { 2609 int i; 2610 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2611 2612 /* If TC0 is invalidated disable TC mapping */ 2613 if (tc->offset + tc->count > txq) { 2614 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2615 dev->num_tc = 0; 2616 return; 2617 } 2618 2619 /* Invalidated prio to tc mappings set to TC0 */ 2620 for (i = 1; i < TC_BITMASK + 1; i++) { 2621 int q = netdev_get_prio_tc_map(dev, i); 2622 2623 tc = &dev->tc_to_txq[q]; 2624 if (tc->offset + tc->count > txq) { 2625 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2626 i, q); 2627 netdev_set_prio_tc_map(dev, i, 0); 2628 } 2629 } 2630 } 2631 2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2633 { 2634 if (dev->num_tc) { 2635 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2636 int i; 2637 2638 /* walk through the TCs and see if it falls into any of them */ 2639 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2640 if ((txq - tc->offset) < tc->count) 2641 return i; 2642 } 2643 2644 /* didn't find it, just return -1 to indicate no match */ 2645 return -1; 2646 } 2647 2648 return 0; 2649 } 2650 EXPORT_SYMBOL(netdev_txq_to_tc); 2651 2652 #ifdef CONFIG_XPS 2653 static struct static_key xps_needed __read_mostly; 2654 static struct static_key xps_rxqs_needed __read_mostly; 2655 static DEFINE_MUTEX(xps_map_mutex); 2656 #define xmap_dereference(P) \ 2657 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2658 2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2660 struct xps_dev_maps *old_maps, int tci, u16 index) 2661 { 2662 struct xps_map *map = NULL; 2663 int pos; 2664 2665 map = xmap_dereference(dev_maps->attr_map[tci]); 2666 if (!map) 2667 return false; 2668 2669 for (pos = map->len; pos--;) { 2670 if (map->queues[pos] != index) 2671 continue; 2672 2673 if (map->len > 1) { 2674 map->queues[pos] = map->queues[--map->len]; 2675 break; 2676 } 2677 2678 if (old_maps) 2679 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2680 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2681 kfree_rcu(map, rcu); 2682 return false; 2683 } 2684 2685 return true; 2686 } 2687 2688 static bool remove_xps_queue_cpu(struct net_device *dev, 2689 struct xps_dev_maps *dev_maps, 2690 int cpu, u16 offset, u16 count) 2691 { 2692 int num_tc = dev_maps->num_tc; 2693 bool active = false; 2694 int tci; 2695 2696 for (tci = cpu * num_tc; num_tc--; tci++) { 2697 int i, j; 2698 2699 for (i = count, j = offset; i--; j++) { 2700 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2701 break; 2702 } 2703 2704 active |= i < 0; 2705 } 2706 2707 return active; 2708 } 2709 2710 static void reset_xps_maps(struct net_device *dev, 2711 struct xps_dev_maps *dev_maps, 2712 enum xps_map_type type) 2713 { 2714 static_key_slow_dec_cpuslocked(&xps_needed); 2715 if (type == XPS_RXQS) 2716 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2717 2718 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2719 2720 kfree_rcu(dev_maps, rcu); 2721 } 2722 2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2724 u16 offset, u16 count) 2725 { 2726 struct xps_dev_maps *dev_maps; 2727 bool active = false; 2728 int i, j; 2729 2730 dev_maps = xmap_dereference(dev->xps_maps[type]); 2731 if (!dev_maps) 2732 return; 2733 2734 for (j = 0; j < dev_maps->nr_ids; j++) 2735 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2736 if (!active) 2737 reset_xps_maps(dev, dev_maps, type); 2738 2739 if (type == XPS_CPUS) { 2740 for (i = offset + (count - 1); count--; i--) 2741 netdev_queue_numa_node_write( 2742 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2743 } 2744 } 2745 2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2747 u16 count) 2748 { 2749 if (!static_key_false(&xps_needed)) 2750 return; 2751 2752 cpus_read_lock(); 2753 mutex_lock(&xps_map_mutex); 2754 2755 if (static_key_false(&xps_rxqs_needed)) 2756 clean_xps_maps(dev, XPS_RXQS, offset, count); 2757 2758 clean_xps_maps(dev, XPS_CPUS, offset, count); 2759 2760 mutex_unlock(&xps_map_mutex); 2761 cpus_read_unlock(); 2762 } 2763 2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2765 { 2766 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2767 } 2768 2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2770 u16 index, bool is_rxqs_map) 2771 { 2772 struct xps_map *new_map; 2773 int alloc_len = XPS_MIN_MAP_ALLOC; 2774 int i, pos; 2775 2776 for (pos = 0; map && pos < map->len; pos++) { 2777 if (map->queues[pos] != index) 2778 continue; 2779 return map; 2780 } 2781 2782 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2783 if (map) { 2784 if (pos < map->alloc_len) 2785 return map; 2786 2787 alloc_len = map->alloc_len * 2; 2788 } 2789 2790 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2791 * map 2792 */ 2793 if (is_rxqs_map) 2794 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2795 else 2796 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2797 cpu_to_node(attr_index)); 2798 if (!new_map) 2799 return NULL; 2800 2801 for (i = 0; i < pos; i++) 2802 new_map->queues[i] = map->queues[i]; 2803 new_map->alloc_len = alloc_len; 2804 new_map->len = pos; 2805 2806 return new_map; 2807 } 2808 2809 /* Copy xps maps at a given index */ 2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2811 struct xps_dev_maps *new_dev_maps, int index, 2812 int tc, bool skip_tc) 2813 { 2814 int i, tci = index * dev_maps->num_tc; 2815 struct xps_map *map; 2816 2817 /* copy maps belonging to foreign traffic classes */ 2818 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2819 if (i == tc && skip_tc) 2820 continue; 2821 2822 /* fill in the new device map from the old device map */ 2823 map = xmap_dereference(dev_maps->attr_map[tci]); 2824 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2825 } 2826 } 2827 2828 /* Must be called under cpus_read_lock */ 2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2830 u16 index, enum xps_map_type type) 2831 { 2832 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2833 const unsigned long *online_mask = NULL; 2834 bool active = false, copy = false; 2835 int i, j, tci, numa_node_id = -2; 2836 int maps_sz, num_tc = 1, tc = 0; 2837 struct xps_map *map, *new_map; 2838 unsigned int nr_ids; 2839 2840 WARN_ON_ONCE(index >= dev->num_tx_queues); 2841 2842 if (dev->num_tc) { 2843 /* Do not allow XPS on subordinate device directly */ 2844 num_tc = dev->num_tc; 2845 if (num_tc < 0) 2846 return -EINVAL; 2847 2848 /* If queue belongs to subordinate dev use its map */ 2849 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2850 2851 tc = netdev_txq_to_tc(dev, index); 2852 if (tc < 0) 2853 return -EINVAL; 2854 } 2855 2856 mutex_lock(&xps_map_mutex); 2857 2858 dev_maps = xmap_dereference(dev->xps_maps[type]); 2859 if (type == XPS_RXQS) { 2860 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2861 nr_ids = dev->num_rx_queues; 2862 } else { 2863 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2864 if (num_possible_cpus() > 1) 2865 online_mask = cpumask_bits(cpu_online_mask); 2866 nr_ids = nr_cpu_ids; 2867 } 2868 2869 if (maps_sz < L1_CACHE_BYTES) 2870 maps_sz = L1_CACHE_BYTES; 2871 2872 /* The old dev_maps could be larger or smaller than the one we're 2873 * setting up now, as dev->num_tc or nr_ids could have been updated in 2874 * between. We could try to be smart, but let's be safe instead and only 2875 * copy foreign traffic classes if the two map sizes match. 2876 */ 2877 if (dev_maps && 2878 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2879 copy = true; 2880 2881 /* allocate memory for queue storage */ 2882 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2883 j < nr_ids;) { 2884 if (!new_dev_maps) { 2885 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2886 if (!new_dev_maps) { 2887 mutex_unlock(&xps_map_mutex); 2888 return -ENOMEM; 2889 } 2890 2891 new_dev_maps->nr_ids = nr_ids; 2892 new_dev_maps->num_tc = num_tc; 2893 } 2894 2895 tci = j * num_tc + tc; 2896 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2897 2898 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2899 if (!map) 2900 goto error; 2901 2902 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2903 } 2904 2905 if (!new_dev_maps) 2906 goto out_no_new_maps; 2907 2908 if (!dev_maps) { 2909 /* Increment static keys at most once per type */ 2910 static_key_slow_inc_cpuslocked(&xps_needed); 2911 if (type == XPS_RXQS) 2912 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2913 } 2914 2915 for (j = 0; j < nr_ids; j++) { 2916 bool skip_tc = false; 2917 2918 tci = j * num_tc + tc; 2919 if (netif_attr_test_mask(j, mask, nr_ids) && 2920 netif_attr_test_online(j, online_mask, nr_ids)) { 2921 /* add tx-queue to CPU/rx-queue maps */ 2922 int pos = 0; 2923 2924 skip_tc = true; 2925 2926 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2927 while ((pos < map->len) && (map->queues[pos] != index)) 2928 pos++; 2929 2930 if (pos == map->len) 2931 map->queues[map->len++] = index; 2932 #ifdef CONFIG_NUMA 2933 if (type == XPS_CPUS) { 2934 if (numa_node_id == -2) 2935 numa_node_id = cpu_to_node(j); 2936 else if (numa_node_id != cpu_to_node(j)) 2937 numa_node_id = -1; 2938 } 2939 #endif 2940 } 2941 2942 if (copy) 2943 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2944 skip_tc); 2945 } 2946 2947 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2948 2949 /* Cleanup old maps */ 2950 if (!dev_maps) 2951 goto out_no_old_maps; 2952 2953 for (j = 0; j < dev_maps->nr_ids; j++) { 2954 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2955 map = xmap_dereference(dev_maps->attr_map[tci]); 2956 if (!map) 2957 continue; 2958 2959 if (copy) { 2960 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2961 if (map == new_map) 2962 continue; 2963 } 2964 2965 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2966 kfree_rcu(map, rcu); 2967 } 2968 } 2969 2970 old_dev_maps = dev_maps; 2971 2972 out_no_old_maps: 2973 dev_maps = new_dev_maps; 2974 active = true; 2975 2976 out_no_new_maps: 2977 if (type == XPS_CPUS) 2978 /* update Tx queue numa node */ 2979 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2980 (numa_node_id >= 0) ? 2981 numa_node_id : NUMA_NO_NODE); 2982 2983 if (!dev_maps) 2984 goto out_no_maps; 2985 2986 /* removes tx-queue from unused CPUs/rx-queues */ 2987 for (j = 0; j < dev_maps->nr_ids; j++) { 2988 tci = j * dev_maps->num_tc; 2989 2990 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2991 if (i == tc && 2992 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2993 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2994 continue; 2995 2996 active |= remove_xps_queue(dev_maps, 2997 copy ? old_dev_maps : NULL, 2998 tci, index); 2999 } 3000 } 3001 3002 if (old_dev_maps) 3003 kfree_rcu(old_dev_maps, rcu); 3004 3005 /* free map if not active */ 3006 if (!active) 3007 reset_xps_maps(dev, dev_maps, type); 3008 3009 out_no_maps: 3010 mutex_unlock(&xps_map_mutex); 3011 3012 return 0; 3013 error: 3014 /* remove any maps that we added */ 3015 for (j = 0; j < nr_ids; j++) { 3016 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3017 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3018 map = copy ? 3019 xmap_dereference(dev_maps->attr_map[tci]) : 3020 NULL; 3021 if (new_map && new_map != map) 3022 kfree(new_map); 3023 } 3024 } 3025 3026 mutex_unlock(&xps_map_mutex); 3027 3028 kfree(new_dev_maps); 3029 return -ENOMEM; 3030 } 3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3032 3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3034 u16 index) 3035 { 3036 int ret; 3037 3038 cpus_read_lock(); 3039 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3040 cpus_read_unlock(); 3041 3042 return ret; 3043 } 3044 EXPORT_SYMBOL(netif_set_xps_queue); 3045 3046 #endif 3047 static void netdev_unbind_all_sb_channels(struct net_device *dev) 3048 { 3049 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3050 3051 /* Unbind any subordinate channels */ 3052 while (txq-- != &dev->_tx[0]) { 3053 if (txq->sb_dev) 3054 netdev_unbind_sb_channel(dev, txq->sb_dev); 3055 } 3056 } 3057 3058 void netdev_reset_tc(struct net_device *dev) 3059 { 3060 #ifdef CONFIG_XPS 3061 netif_reset_xps_queues_gt(dev, 0); 3062 #endif 3063 netdev_unbind_all_sb_channels(dev); 3064 3065 /* Reset TC configuration of device */ 3066 dev->num_tc = 0; 3067 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3068 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3069 } 3070 EXPORT_SYMBOL(netdev_reset_tc); 3071 3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3073 { 3074 if (tc >= dev->num_tc) 3075 return -EINVAL; 3076 3077 #ifdef CONFIG_XPS 3078 netif_reset_xps_queues(dev, offset, count); 3079 #endif 3080 dev->tc_to_txq[tc].count = count; 3081 dev->tc_to_txq[tc].offset = offset; 3082 return 0; 3083 } 3084 EXPORT_SYMBOL(netdev_set_tc_queue); 3085 3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3087 { 3088 if (num_tc > TC_MAX_QUEUE) 3089 return -EINVAL; 3090 3091 #ifdef CONFIG_XPS 3092 netif_reset_xps_queues_gt(dev, 0); 3093 #endif 3094 netdev_unbind_all_sb_channels(dev); 3095 3096 dev->num_tc = num_tc; 3097 return 0; 3098 } 3099 EXPORT_SYMBOL(netdev_set_num_tc); 3100 3101 void netdev_unbind_sb_channel(struct net_device *dev, 3102 struct net_device *sb_dev) 3103 { 3104 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3105 3106 #ifdef CONFIG_XPS 3107 netif_reset_xps_queues_gt(sb_dev, 0); 3108 #endif 3109 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3110 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3111 3112 while (txq-- != &dev->_tx[0]) { 3113 if (txq->sb_dev == sb_dev) 3114 txq->sb_dev = NULL; 3115 } 3116 } 3117 EXPORT_SYMBOL(netdev_unbind_sb_channel); 3118 3119 int netdev_bind_sb_channel_queue(struct net_device *dev, 3120 struct net_device *sb_dev, 3121 u8 tc, u16 count, u16 offset) 3122 { 3123 /* Make certain the sb_dev and dev are already configured */ 3124 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3125 return -EINVAL; 3126 3127 /* We cannot hand out queues we don't have */ 3128 if ((offset + count) > dev->real_num_tx_queues) 3129 return -EINVAL; 3130 3131 /* Record the mapping */ 3132 sb_dev->tc_to_txq[tc].count = count; 3133 sb_dev->tc_to_txq[tc].offset = offset; 3134 3135 /* Provide a way for Tx queue to find the tc_to_txq map or 3136 * XPS map for itself. 3137 */ 3138 while (count--) 3139 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3140 3141 return 0; 3142 } 3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3144 3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3146 { 3147 /* Do not use a multiqueue device to represent a subordinate channel */ 3148 if (netif_is_multiqueue(dev)) 3149 return -ENODEV; 3150 3151 /* We allow channels 1 - 32767 to be used for subordinate channels. 3152 * Channel 0 is meant to be "native" mode and used only to represent 3153 * the main root device. We allow writing 0 to reset the device back 3154 * to normal mode after being used as a subordinate channel. 3155 */ 3156 if (channel > S16_MAX) 3157 return -EINVAL; 3158 3159 dev->num_tc = -channel; 3160 3161 return 0; 3162 } 3163 EXPORT_SYMBOL(netdev_set_sb_channel); 3164 3165 /* 3166 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3167 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3168 */ 3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3170 { 3171 bool disabling; 3172 int rc; 3173 3174 disabling = txq < dev->real_num_tx_queues; 3175 3176 if (txq < 1 || txq > dev->num_tx_queues) 3177 return -EINVAL; 3178 3179 if (dev->reg_state == NETREG_REGISTERED || 3180 dev->reg_state == NETREG_UNREGISTERING) { 3181 netdev_ops_assert_locked(dev); 3182 3183 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3184 txq); 3185 if (rc) 3186 return rc; 3187 3188 if (dev->num_tc) 3189 netif_setup_tc(dev, txq); 3190 3191 net_shaper_set_real_num_tx_queues(dev, txq); 3192 3193 dev_qdisc_change_real_num_tx(dev, txq); 3194 3195 dev->real_num_tx_queues = txq; 3196 3197 if (disabling) { 3198 synchronize_net(); 3199 qdisc_reset_all_tx_gt(dev, txq); 3200 #ifdef CONFIG_XPS 3201 netif_reset_xps_queues_gt(dev, txq); 3202 #endif 3203 } 3204 } else { 3205 dev->real_num_tx_queues = txq; 3206 } 3207 3208 return 0; 3209 } 3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3211 3212 /** 3213 * netif_set_real_num_rx_queues - set actual number of RX queues used 3214 * @dev: Network device 3215 * @rxq: Actual number of RX queues 3216 * 3217 * This must be called either with the rtnl_lock held or before 3218 * registration of the net device. Returns 0 on success, or a 3219 * negative error code. If called before registration, it always 3220 * succeeds. 3221 */ 3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3223 { 3224 int rc; 3225 3226 if (rxq < 1 || rxq > dev->num_rx_queues) 3227 return -EINVAL; 3228 3229 if (dev->reg_state == NETREG_REGISTERED) { 3230 netdev_ops_assert_locked(dev); 3231 3232 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3233 rxq); 3234 if (rc) 3235 return rc; 3236 } 3237 3238 dev->real_num_rx_queues = rxq; 3239 return 0; 3240 } 3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3242 3243 /** 3244 * netif_set_real_num_queues - set actual number of RX and TX queues used 3245 * @dev: Network device 3246 * @txq: Actual number of TX queues 3247 * @rxq: Actual number of RX queues 3248 * 3249 * Set the real number of both TX and RX queues. 3250 * Does nothing if the number of queues is already correct. 3251 */ 3252 int netif_set_real_num_queues(struct net_device *dev, 3253 unsigned int txq, unsigned int rxq) 3254 { 3255 unsigned int old_rxq = dev->real_num_rx_queues; 3256 int err; 3257 3258 if (txq < 1 || txq > dev->num_tx_queues || 3259 rxq < 1 || rxq > dev->num_rx_queues) 3260 return -EINVAL; 3261 3262 /* Start from increases, so the error path only does decreases - 3263 * decreases can't fail. 3264 */ 3265 if (rxq > dev->real_num_rx_queues) { 3266 err = netif_set_real_num_rx_queues(dev, rxq); 3267 if (err) 3268 return err; 3269 } 3270 if (txq > dev->real_num_tx_queues) { 3271 err = netif_set_real_num_tx_queues(dev, txq); 3272 if (err) 3273 goto undo_rx; 3274 } 3275 if (rxq < dev->real_num_rx_queues) 3276 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3277 if (txq < dev->real_num_tx_queues) 3278 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3279 3280 return 0; 3281 undo_rx: 3282 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3283 return err; 3284 } 3285 EXPORT_SYMBOL(netif_set_real_num_queues); 3286 3287 /** 3288 * netif_set_tso_max_size() - set the max size of TSO frames supported 3289 * @dev: netdev to update 3290 * @size: max skb->len of a TSO frame 3291 * 3292 * Set the limit on the size of TSO super-frames the device can handle. 3293 * Unless explicitly set the stack will assume the value of 3294 * %GSO_LEGACY_MAX_SIZE. 3295 */ 3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3297 { 3298 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3299 if (size < READ_ONCE(dev->gso_max_size)) 3300 netif_set_gso_max_size(dev, size); 3301 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3302 netif_set_gso_ipv4_max_size(dev, size); 3303 } 3304 EXPORT_SYMBOL(netif_set_tso_max_size); 3305 3306 /** 3307 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3308 * @dev: netdev to update 3309 * @segs: max number of TCP segments 3310 * 3311 * Set the limit on the number of TCP segments the device can generate from 3312 * a single TSO super-frame. 3313 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3314 */ 3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3316 { 3317 dev->tso_max_segs = segs; 3318 if (segs < READ_ONCE(dev->gso_max_segs)) 3319 netif_set_gso_max_segs(dev, segs); 3320 } 3321 EXPORT_SYMBOL(netif_set_tso_max_segs); 3322 3323 /** 3324 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3325 * @to: netdev to update 3326 * @from: netdev from which to copy the limits 3327 */ 3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3329 { 3330 netif_set_tso_max_size(to, from->tso_max_size); 3331 netif_set_tso_max_segs(to, from->tso_max_segs); 3332 } 3333 EXPORT_SYMBOL(netif_inherit_tso_max); 3334 3335 /** 3336 * netif_get_num_default_rss_queues - default number of RSS queues 3337 * 3338 * Default value is the number of physical cores if there are only 1 or 2, or 3339 * divided by 2 if there are more. 3340 */ 3341 int netif_get_num_default_rss_queues(void) 3342 { 3343 cpumask_var_t cpus; 3344 int cpu, count = 0; 3345 3346 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3347 return 1; 3348 3349 cpumask_copy(cpus, cpu_online_mask); 3350 for_each_cpu(cpu, cpus) { 3351 ++count; 3352 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3353 } 3354 free_cpumask_var(cpus); 3355 3356 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3357 } 3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3359 3360 static void __netif_reschedule(struct Qdisc *q) 3361 { 3362 struct softnet_data *sd; 3363 unsigned long flags; 3364 3365 local_irq_save(flags); 3366 sd = this_cpu_ptr(&softnet_data); 3367 q->next_sched = NULL; 3368 *sd->output_queue_tailp = q; 3369 sd->output_queue_tailp = &q->next_sched; 3370 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3371 local_irq_restore(flags); 3372 } 3373 3374 void __netif_schedule(struct Qdisc *q) 3375 { 3376 /* If q->defer_list is not empty, at least one thread is 3377 * in __dev_xmit_skb() before llist_del_all(&q->defer_list). 3378 * This thread will attempt to run the queue. 3379 */ 3380 if (!llist_empty(&q->defer_list)) 3381 return; 3382 3383 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3384 __netif_reschedule(q); 3385 } 3386 EXPORT_SYMBOL(__netif_schedule); 3387 3388 struct dev_kfree_skb_cb { 3389 enum skb_drop_reason reason; 3390 }; 3391 3392 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3393 { 3394 return (struct dev_kfree_skb_cb *)skb->cb; 3395 } 3396 3397 void netif_schedule_queue(struct netdev_queue *txq) 3398 { 3399 rcu_read_lock(); 3400 if (!netif_xmit_stopped(txq)) { 3401 struct Qdisc *q = rcu_dereference(txq->qdisc); 3402 3403 __netif_schedule(q); 3404 } 3405 rcu_read_unlock(); 3406 } 3407 EXPORT_SYMBOL(netif_schedule_queue); 3408 3409 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3410 { 3411 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3412 struct Qdisc *q; 3413 3414 rcu_read_lock(); 3415 q = rcu_dereference(dev_queue->qdisc); 3416 __netif_schedule(q); 3417 rcu_read_unlock(); 3418 } 3419 } 3420 EXPORT_SYMBOL(netif_tx_wake_queue); 3421 3422 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3423 { 3424 unsigned long flags; 3425 3426 if (unlikely(!skb)) 3427 return; 3428 3429 if (likely(refcount_read(&skb->users) == 1)) { 3430 smp_rmb(); 3431 refcount_set(&skb->users, 0); 3432 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3433 return; 3434 } 3435 get_kfree_skb_cb(skb)->reason = reason; 3436 local_irq_save(flags); 3437 skb->next = __this_cpu_read(softnet_data.completion_queue); 3438 __this_cpu_write(softnet_data.completion_queue, skb); 3439 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3440 local_irq_restore(flags); 3441 } 3442 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3443 3444 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3445 { 3446 if (in_hardirq() || irqs_disabled()) 3447 dev_kfree_skb_irq_reason(skb, reason); 3448 else 3449 kfree_skb_reason(skb, reason); 3450 } 3451 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3452 3453 3454 /** 3455 * netif_device_detach - mark device as removed 3456 * @dev: network device 3457 * 3458 * Mark device as removed from system and therefore no longer available. 3459 */ 3460 void netif_device_detach(struct net_device *dev) 3461 { 3462 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3463 netif_running(dev)) { 3464 netif_tx_stop_all_queues(dev); 3465 } 3466 } 3467 EXPORT_SYMBOL(netif_device_detach); 3468 3469 /** 3470 * netif_device_attach - mark device as attached 3471 * @dev: network device 3472 * 3473 * Mark device as attached from system and restart if needed. 3474 */ 3475 void netif_device_attach(struct net_device *dev) 3476 { 3477 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3478 netif_running(dev)) { 3479 netif_tx_wake_all_queues(dev); 3480 netdev_watchdog_up(dev); 3481 } 3482 } 3483 EXPORT_SYMBOL(netif_device_attach); 3484 3485 /* 3486 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3487 * to be used as a distribution range. 3488 */ 3489 static u16 skb_tx_hash(const struct net_device *dev, 3490 const struct net_device *sb_dev, 3491 struct sk_buff *skb) 3492 { 3493 u32 hash; 3494 u16 qoffset = 0; 3495 u16 qcount = dev->real_num_tx_queues; 3496 3497 if (dev->num_tc) { 3498 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3499 3500 qoffset = sb_dev->tc_to_txq[tc].offset; 3501 qcount = sb_dev->tc_to_txq[tc].count; 3502 if (unlikely(!qcount)) { 3503 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3504 sb_dev->name, qoffset, tc); 3505 qoffset = 0; 3506 qcount = dev->real_num_tx_queues; 3507 } 3508 } 3509 3510 if (skb_rx_queue_recorded(skb)) { 3511 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3512 hash = skb_get_rx_queue(skb); 3513 if (hash >= qoffset) 3514 hash -= qoffset; 3515 while (unlikely(hash >= qcount)) 3516 hash -= qcount; 3517 return hash + qoffset; 3518 } 3519 3520 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3521 } 3522 3523 void skb_warn_bad_offload(const struct sk_buff *skb) 3524 { 3525 static const netdev_features_t null_features; 3526 struct net_device *dev = skb->dev; 3527 const char *name = ""; 3528 3529 if (!net_ratelimit()) 3530 return; 3531 3532 if (dev) { 3533 if (dev->dev.parent) 3534 name = dev_driver_string(dev->dev.parent); 3535 else 3536 name = netdev_name(dev); 3537 } 3538 skb_dump(KERN_WARNING, skb, false); 3539 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3540 name, dev ? &dev->features : &null_features, 3541 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3542 } 3543 3544 /* 3545 * Invalidate hardware checksum when packet is to be mangled, and 3546 * complete checksum manually on outgoing path. 3547 */ 3548 int skb_checksum_help(struct sk_buff *skb) 3549 { 3550 __wsum csum; 3551 int ret = 0, offset; 3552 3553 if (skb->ip_summed == CHECKSUM_COMPLETE) 3554 goto out_set_summed; 3555 3556 if (unlikely(skb_is_gso(skb))) { 3557 skb_warn_bad_offload(skb); 3558 return -EINVAL; 3559 } 3560 3561 if (!skb_frags_readable(skb)) { 3562 return -EFAULT; 3563 } 3564 3565 /* Before computing a checksum, we should make sure no frag could 3566 * be modified by an external entity : checksum could be wrong. 3567 */ 3568 if (skb_has_shared_frag(skb)) { 3569 ret = __skb_linearize(skb); 3570 if (ret) 3571 goto out; 3572 } 3573 3574 offset = skb_checksum_start_offset(skb); 3575 ret = -EINVAL; 3576 if (unlikely(offset >= skb_headlen(skb))) { 3577 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3578 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3579 offset, skb_headlen(skb)); 3580 goto out; 3581 } 3582 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3583 3584 offset += skb->csum_offset; 3585 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3586 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3587 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3588 offset + sizeof(__sum16), skb_headlen(skb)); 3589 goto out; 3590 } 3591 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3592 if (ret) 3593 goto out; 3594 3595 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3596 out_set_summed: 3597 skb->ip_summed = CHECKSUM_NONE; 3598 out: 3599 return ret; 3600 } 3601 EXPORT_SYMBOL(skb_checksum_help); 3602 3603 #ifdef CONFIG_NET_CRC32C 3604 int skb_crc32c_csum_help(struct sk_buff *skb) 3605 { 3606 u32 crc; 3607 int ret = 0, offset, start; 3608 3609 if (skb->ip_summed != CHECKSUM_PARTIAL) 3610 goto out; 3611 3612 if (unlikely(skb_is_gso(skb))) 3613 goto out; 3614 3615 /* Before computing a checksum, we should make sure no frag could 3616 * be modified by an external entity : checksum could be wrong. 3617 */ 3618 if (unlikely(skb_has_shared_frag(skb))) { 3619 ret = __skb_linearize(skb); 3620 if (ret) 3621 goto out; 3622 } 3623 start = skb_checksum_start_offset(skb); 3624 offset = start + offsetof(struct sctphdr, checksum); 3625 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3626 ret = -EINVAL; 3627 goto out; 3628 } 3629 3630 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3631 if (ret) 3632 goto out; 3633 3634 crc = ~skb_crc32c(skb, start, skb->len - start, ~0); 3635 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); 3636 skb_reset_csum_not_inet(skb); 3637 out: 3638 return ret; 3639 } 3640 EXPORT_SYMBOL(skb_crc32c_csum_help); 3641 #endif /* CONFIG_NET_CRC32C */ 3642 3643 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3644 { 3645 __be16 type = skb->protocol; 3646 3647 /* Tunnel gso handlers can set protocol to ethernet. */ 3648 if (type == htons(ETH_P_TEB)) { 3649 struct ethhdr *eth; 3650 3651 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3652 return 0; 3653 3654 eth = (struct ethhdr *)skb->data; 3655 type = eth->h_proto; 3656 } 3657 3658 return vlan_get_protocol_and_depth(skb, type, depth); 3659 } 3660 3661 3662 /* Take action when hardware reception checksum errors are detected. */ 3663 #ifdef CONFIG_BUG 3664 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3665 { 3666 netdev_err(dev, "hw csum failure\n"); 3667 skb_dump(KERN_ERR, skb, true); 3668 dump_stack(); 3669 } 3670 3671 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3672 { 3673 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3674 } 3675 EXPORT_SYMBOL(netdev_rx_csum_fault); 3676 #endif 3677 3678 /* XXX: check that highmem exists at all on the given machine. */ 3679 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3680 { 3681 #ifdef CONFIG_HIGHMEM 3682 int i; 3683 3684 if (!(dev->features & NETIF_F_HIGHDMA)) { 3685 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3686 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3687 struct page *page = skb_frag_page(frag); 3688 3689 if (page && PageHighMem(page)) 3690 return 1; 3691 } 3692 } 3693 #endif 3694 return 0; 3695 } 3696 3697 /* If MPLS offload request, verify we are testing hardware MPLS features 3698 * instead of standard features for the netdev. 3699 */ 3700 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3701 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3702 netdev_features_t features, 3703 __be16 type) 3704 { 3705 if (eth_p_mpls(type)) 3706 features &= skb->dev->mpls_features; 3707 3708 return features; 3709 } 3710 #else 3711 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3712 netdev_features_t features, 3713 __be16 type) 3714 { 3715 return features; 3716 } 3717 #endif 3718 3719 static netdev_features_t harmonize_features(struct sk_buff *skb, 3720 netdev_features_t features) 3721 { 3722 __be16 type; 3723 3724 type = skb_network_protocol(skb, NULL); 3725 features = net_mpls_features(skb, features, type); 3726 3727 if (skb->ip_summed != CHECKSUM_NONE && 3728 !can_checksum_protocol(features, type)) { 3729 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3730 } 3731 if (illegal_highdma(skb->dev, skb)) 3732 features &= ~NETIF_F_SG; 3733 3734 return features; 3735 } 3736 3737 netdev_features_t passthru_features_check(struct sk_buff *skb, 3738 struct net_device *dev, 3739 netdev_features_t features) 3740 { 3741 return features; 3742 } 3743 EXPORT_SYMBOL(passthru_features_check); 3744 3745 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3746 struct net_device *dev, 3747 netdev_features_t features) 3748 { 3749 return vlan_features_check(skb, features); 3750 } 3751 3752 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3753 struct net_device *dev, 3754 netdev_features_t features) 3755 { 3756 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3757 3758 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3759 return features & ~NETIF_F_GSO_MASK; 3760 3761 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3762 return features & ~NETIF_F_GSO_MASK; 3763 3764 if (!skb_shinfo(skb)->gso_type) { 3765 skb_warn_bad_offload(skb); 3766 return features & ~NETIF_F_GSO_MASK; 3767 } 3768 3769 /* Support for GSO partial features requires software 3770 * intervention before we can actually process the packets 3771 * so we need to strip support for any partial features now 3772 * and we can pull them back in after we have partially 3773 * segmented the frame. 3774 */ 3775 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3776 features &= ~dev->gso_partial_features; 3777 3778 /* Make sure to clear the IPv4 ID mangling feature if the IPv4 header 3779 * has the potential to be fragmented so that TSO does not generate 3780 * segments with the same ID. For encapsulated packets, the ID mangling 3781 * feature is guaranteed not to use the same ID for the outer IPv4 3782 * headers of the generated segments if the headers have the potential 3783 * to be fragmented, so there is no need to clear the IPv4 ID mangling 3784 * feature (see the section about NETIF_F_TSO_MANGLEID in 3785 * segmentation-offloads.rst). 3786 */ 3787 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3788 struct iphdr *iph = skb->encapsulation ? 3789 inner_ip_hdr(skb) : ip_hdr(skb); 3790 3791 if (!(iph->frag_off & htons(IP_DF))) 3792 features &= ~NETIF_F_TSO_MANGLEID; 3793 } 3794 3795 /* NETIF_F_IPV6_CSUM does not support IPv6 extension headers, 3796 * so neither does TSO that depends on it. 3797 */ 3798 if (features & NETIF_F_IPV6_CSUM && 3799 (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 || 3800 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 && 3801 vlan_get_protocol(skb) == htons(ETH_P_IPV6))) && 3802 skb_transport_header_was_set(skb) && 3803 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3804 !ipv6_has_hopopt_jumbo(skb)) 3805 features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4); 3806 3807 return features; 3808 } 3809 3810 netdev_features_t netif_skb_features(struct sk_buff *skb) 3811 { 3812 struct net_device *dev = skb->dev; 3813 netdev_features_t features = dev->features; 3814 3815 if (skb_is_gso(skb)) 3816 features = gso_features_check(skb, dev, features); 3817 3818 /* If encapsulation offload request, verify we are testing 3819 * hardware encapsulation features instead of standard 3820 * features for the netdev 3821 */ 3822 if (skb->encapsulation) 3823 features &= dev->hw_enc_features; 3824 3825 if (skb_vlan_tagged(skb)) 3826 features = netdev_intersect_features(features, 3827 dev->vlan_features | 3828 NETIF_F_HW_VLAN_CTAG_TX | 3829 NETIF_F_HW_VLAN_STAG_TX); 3830 3831 if (dev->netdev_ops->ndo_features_check) 3832 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3833 features); 3834 else 3835 features &= dflt_features_check(skb, dev, features); 3836 3837 return harmonize_features(skb, features); 3838 } 3839 EXPORT_SYMBOL(netif_skb_features); 3840 3841 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3842 struct netdev_queue *txq, bool more) 3843 { 3844 unsigned int len; 3845 int rc; 3846 3847 if (dev_nit_active_rcu(dev)) 3848 dev_queue_xmit_nit(skb, dev); 3849 3850 len = skb->len; 3851 trace_net_dev_start_xmit(skb, dev); 3852 rc = netdev_start_xmit(skb, dev, txq, more); 3853 trace_net_dev_xmit(skb, rc, dev, len); 3854 3855 return rc; 3856 } 3857 3858 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3859 struct netdev_queue *txq, int *ret) 3860 { 3861 struct sk_buff *skb = first; 3862 int rc = NETDEV_TX_OK; 3863 3864 while (skb) { 3865 struct sk_buff *next = skb->next; 3866 3867 skb_mark_not_on_list(skb); 3868 rc = xmit_one(skb, dev, txq, next != NULL); 3869 if (unlikely(!dev_xmit_complete(rc))) { 3870 skb->next = next; 3871 goto out; 3872 } 3873 3874 skb = next; 3875 if (netif_tx_queue_stopped(txq) && skb) { 3876 rc = NETDEV_TX_BUSY; 3877 break; 3878 } 3879 } 3880 3881 out: 3882 *ret = rc; 3883 return skb; 3884 } 3885 3886 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3887 netdev_features_t features) 3888 { 3889 if (skb_vlan_tag_present(skb) && 3890 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3891 skb = __vlan_hwaccel_push_inside(skb); 3892 return skb; 3893 } 3894 3895 int skb_csum_hwoffload_help(struct sk_buff *skb, 3896 const netdev_features_t features) 3897 { 3898 if (unlikely(skb_csum_is_sctp(skb))) 3899 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3900 skb_crc32c_csum_help(skb); 3901 3902 if (features & NETIF_F_HW_CSUM) 3903 return 0; 3904 3905 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3906 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3907 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3908 !ipv6_has_hopopt_jumbo(skb)) 3909 goto sw_checksum; 3910 3911 switch (skb->csum_offset) { 3912 case offsetof(struct tcphdr, check): 3913 case offsetof(struct udphdr, check): 3914 return 0; 3915 } 3916 } 3917 3918 sw_checksum: 3919 return skb_checksum_help(skb); 3920 } 3921 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3922 3923 /* Checks if this SKB belongs to an HW offloaded socket 3924 * and whether any SW fallbacks are required based on dev. 3925 * Check decrypted mark in case skb_orphan() cleared socket. 3926 */ 3927 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 3928 struct net_device *dev) 3929 { 3930 #ifdef CONFIG_SOCK_VALIDATE_XMIT 3931 struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev, 3932 struct sk_buff *skb); 3933 struct sock *sk = skb->sk; 3934 3935 sk_validate = NULL; 3936 if (sk) { 3937 if (sk_fullsock(sk)) 3938 sk_validate = sk->sk_validate_xmit_skb; 3939 else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT) 3940 sk_validate = inet_twsk(sk)->tw_validate_xmit_skb; 3941 } 3942 3943 if (sk_validate) { 3944 skb = sk_validate(sk, dev, skb); 3945 } else if (unlikely(skb_is_decrypted(skb))) { 3946 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 3947 kfree_skb(skb); 3948 skb = NULL; 3949 } 3950 #endif 3951 3952 return skb; 3953 } 3954 3955 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, 3956 struct net_device *dev) 3957 { 3958 struct skb_shared_info *shinfo; 3959 struct net_iov *niov; 3960 3961 if (likely(skb_frags_readable(skb))) 3962 goto out; 3963 3964 if (!dev->netmem_tx) 3965 goto out_free; 3966 3967 shinfo = skb_shinfo(skb); 3968 3969 if (shinfo->nr_frags > 0) { 3970 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0])); 3971 if (net_is_devmem_iov(niov) && 3972 net_devmem_iov_binding(niov)->dev != dev) 3973 goto out_free; 3974 } 3975 3976 out: 3977 return skb; 3978 3979 out_free: 3980 kfree_skb(skb); 3981 return NULL; 3982 } 3983 3984 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3985 { 3986 netdev_features_t features; 3987 3988 skb = validate_xmit_unreadable_skb(skb, dev); 3989 if (unlikely(!skb)) 3990 goto out_null; 3991 3992 features = netif_skb_features(skb); 3993 skb = validate_xmit_vlan(skb, features); 3994 if (unlikely(!skb)) 3995 goto out_null; 3996 3997 skb = sk_validate_xmit_skb(skb, dev); 3998 if (unlikely(!skb)) 3999 goto out_null; 4000 4001 if (netif_needs_gso(skb, features)) { 4002 struct sk_buff *segs; 4003 4004 segs = skb_gso_segment(skb, features); 4005 if (IS_ERR(segs)) { 4006 goto out_kfree_skb; 4007 } else if (segs) { 4008 consume_skb(skb); 4009 skb = segs; 4010 } 4011 } else { 4012 if (skb_needs_linearize(skb, features) && 4013 __skb_linearize(skb)) 4014 goto out_kfree_skb; 4015 4016 /* If packet is not checksummed and device does not 4017 * support checksumming for this protocol, complete 4018 * checksumming here. 4019 */ 4020 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4021 if (skb->encapsulation) 4022 skb_set_inner_transport_header(skb, 4023 skb_checksum_start_offset(skb)); 4024 else 4025 skb_set_transport_header(skb, 4026 skb_checksum_start_offset(skb)); 4027 if (skb_csum_hwoffload_help(skb, features)) 4028 goto out_kfree_skb; 4029 } 4030 } 4031 4032 skb = validate_xmit_xfrm(skb, features, again); 4033 4034 return skb; 4035 4036 out_kfree_skb: 4037 kfree_skb(skb); 4038 out_null: 4039 dev_core_stats_tx_dropped_inc(dev); 4040 return NULL; 4041 } 4042 4043 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 4044 { 4045 struct sk_buff *next, *head = NULL, *tail; 4046 4047 for (; skb != NULL; skb = next) { 4048 next = skb->next; 4049 skb_mark_not_on_list(skb); 4050 4051 /* in case skb won't be segmented, point to itself */ 4052 skb->prev = skb; 4053 4054 skb = validate_xmit_skb(skb, dev, again); 4055 if (!skb) 4056 continue; 4057 4058 if (!head) 4059 head = skb; 4060 else 4061 tail->next = skb; 4062 /* If skb was segmented, skb->prev points to 4063 * the last segment. If not, it still contains skb. 4064 */ 4065 tail = skb->prev; 4066 } 4067 return head; 4068 } 4069 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 4070 4071 static void qdisc_pkt_len_init(struct sk_buff *skb) 4072 { 4073 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4074 4075 qdisc_skb_cb(skb)->pkt_len = skb->len; 4076 4077 /* To get more precise estimation of bytes sent on wire, 4078 * we add to pkt_len the headers size of all segments 4079 */ 4080 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 4081 u16 gso_segs = shinfo->gso_segs; 4082 unsigned int hdr_len; 4083 4084 /* mac layer + network layer */ 4085 if (!skb->encapsulation) 4086 hdr_len = skb_transport_offset(skb); 4087 else 4088 hdr_len = skb_inner_transport_offset(skb); 4089 4090 /* + transport layer */ 4091 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4092 const struct tcphdr *th; 4093 struct tcphdr _tcphdr; 4094 4095 th = skb_header_pointer(skb, hdr_len, 4096 sizeof(_tcphdr), &_tcphdr); 4097 if (likely(th)) 4098 hdr_len += __tcp_hdrlen(th); 4099 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4100 struct udphdr _udphdr; 4101 4102 if (skb_header_pointer(skb, hdr_len, 4103 sizeof(_udphdr), &_udphdr)) 4104 hdr_len += sizeof(struct udphdr); 4105 } 4106 4107 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4108 int payload = skb->len - hdr_len; 4109 4110 /* Malicious packet. */ 4111 if (payload <= 0) 4112 return; 4113 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4114 } 4115 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4116 } 4117 } 4118 4119 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4120 struct sk_buff **to_free, 4121 struct netdev_queue *txq) 4122 { 4123 int rc; 4124 4125 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4126 if (rc == NET_XMIT_SUCCESS) 4127 trace_qdisc_enqueue(q, txq, skb); 4128 return rc; 4129 } 4130 4131 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4132 struct net_device *dev, 4133 struct netdev_queue *txq) 4134 { 4135 struct sk_buff *next, *to_free = NULL; 4136 spinlock_t *root_lock = qdisc_lock(q); 4137 struct llist_node *ll_list, *first_n; 4138 unsigned long defer_count = 0; 4139 int rc; 4140 4141 qdisc_calculate_pkt_len(skb, q); 4142 4143 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4144 4145 if (q->flags & TCQ_F_NOLOCK) { 4146 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4147 qdisc_run_begin(q)) { 4148 /* Retest nolock_qdisc_is_empty() within the protection 4149 * of q->seqlock to protect from racing with requeuing. 4150 */ 4151 if (unlikely(!nolock_qdisc_is_empty(q))) { 4152 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4153 __qdisc_run(q); 4154 qdisc_run_end(q); 4155 4156 goto no_lock_out; 4157 } 4158 4159 qdisc_bstats_cpu_update(q, skb); 4160 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4161 !nolock_qdisc_is_empty(q)) 4162 __qdisc_run(q); 4163 4164 qdisc_run_end(q); 4165 return NET_XMIT_SUCCESS; 4166 } 4167 4168 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4169 qdisc_run(q); 4170 4171 no_lock_out: 4172 if (unlikely(to_free)) 4173 kfree_skb_list_reason(to_free, 4174 tcf_get_drop_reason(to_free)); 4175 return rc; 4176 } 4177 4178 /* Open code llist_add(&skb->ll_node, &q->defer_list) + queue limit. 4179 * In the try_cmpxchg() loop, we want to increment q->defer_count 4180 * at most once to limit the number of skbs in defer_list. 4181 * We perform the defer_count increment only if the list is not empty, 4182 * because some arches have slow atomic_long_inc_return(). 4183 */ 4184 first_n = READ_ONCE(q->defer_list.first); 4185 do { 4186 if (first_n && !defer_count) { 4187 defer_count = atomic_long_inc_return(&q->defer_count); 4188 if (unlikely(defer_count > q->limit)) { 4189 kfree_skb_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4190 return NET_XMIT_DROP; 4191 } 4192 } 4193 skb->ll_node.next = first_n; 4194 } while (!try_cmpxchg(&q->defer_list.first, &first_n, &skb->ll_node)); 4195 4196 /* If defer_list was not empty, we know the cpu which queued 4197 * the first skb will process the whole list for us. 4198 */ 4199 if (first_n) 4200 return NET_XMIT_SUCCESS; 4201 4202 spin_lock(root_lock); 4203 4204 ll_list = llist_del_all(&q->defer_list); 4205 /* There is a small race because we clear defer_count not atomically 4206 * with the prior llist_del_all(). This means defer_list could grow 4207 * over q->limit. 4208 */ 4209 atomic_long_set(&q->defer_count, 0); 4210 4211 ll_list = llist_reverse_order(ll_list); 4212 4213 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4214 llist_for_each_entry_safe(skb, next, ll_list, ll_node) 4215 __qdisc_drop(skb, &to_free); 4216 rc = NET_XMIT_DROP; 4217 goto unlock; 4218 } 4219 if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4220 !llist_next(ll_list) && qdisc_run_begin(q)) { 4221 /* 4222 * This is a work-conserving queue; there are no old skbs 4223 * waiting to be sent out; and the qdisc is not running - 4224 * xmit the skb directly. 4225 */ 4226 4227 DEBUG_NET_WARN_ON_ONCE(skb != llist_entry(ll_list, 4228 struct sk_buff, 4229 ll_node)); 4230 qdisc_bstats_update(q, skb); 4231 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) 4232 __qdisc_run(q); 4233 qdisc_run_end(q); 4234 rc = NET_XMIT_SUCCESS; 4235 } else { 4236 int count = 0; 4237 4238 llist_for_each_entry_safe(skb, next, ll_list, ll_node) { 4239 prefetch(next); 4240 skb_mark_not_on_list(skb); 4241 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4242 count++; 4243 } 4244 qdisc_run(q); 4245 if (count != 1) 4246 rc = NET_XMIT_SUCCESS; 4247 } 4248 unlock: 4249 spin_unlock(root_lock); 4250 if (unlikely(to_free)) 4251 kfree_skb_list_reason(to_free, 4252 tcf_get_drop_reason(to_free)); 4253 return rc; 4254 } 4255 4256 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4257 static void skb_update_prio(struct sk_buff *skb) 4258 { 4259 const struct netprio_map *map; 4260 const struct sock *sk; 4261 unsigned int prioidx; 4262 4263 if (skb->priority) 4264 return; 4265 map = rcu_dereference_bh(skb->dev->priomap); 4266 if (!map) 4267 return; 4268 sk = skb_to_full_sk(skb); 4269 if (!sk) 4270 return; 4271 4272 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4273 4274 if (prioidx < map->priomap_len) 4275 skb->priority = map->priomap[prioidx]; 4276 } 4277 #else 4278 #define skb_update_prio(skb) 4279 #endif 4280 4281 /** 4282 * dev_loopback_xmit - loop back @skb 4283 * @net: network namespace this loopback is happening in 4284 * @sk: sk needed to be a netfilter okfn 4285 * @skb: buffer to transmit 4286 */ 4287 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4288 { 4289 skb_reset_mac_header(skb); 4290 __skb_pull(skb, skb_network_offset(skb)); 4291 skb->pkt_type = PACKET_LOOPBACK; 4292 if (skb->ip_summed == CHECKSUM_NONE) 4293 skb->ip_summed = CHECKSUM_UNNECESSARY; 4294 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4295 skb_dst_force(skb); 4296 netif_rx(skb); 4297 return 0; 4298 } 4299 EXPORT_SYMBOL(dev_loopback_xmit); 4300 4301 #ifdef CONFIG_NET_EGRESS 4302 static struct netdev_queue * 4303 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4304 { 4305 int qm = skb_get_queue_mapping(skb); 4306 4307 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4308 } 4309 4310 #ifndef CONFIG_PREEMPT_RT 4311 static bool netdev_xmit_txqueue_skipped(void) 4312 { 4313 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4314 } 4315 4316 void netdev_xmit_skip_txqueue(bool skip) 4317 { 4318 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4319 } 4320 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4321 4322 #else 4323 static bool netdev_xmit_txqueue_skipped(void) 4324 { 4325 return current->net_xmit.skip_txqueue; 4326 } 4327 4328 void netdev_xmit_skip_txqueue(bool skip) 4329 { 4330 current->net_xmit.skip_txqueue = skip; 4331 } 4332 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4333 #endif 4334 #endif /* CONFIG_NET_EGRESS */ 4335 4336 #ifdef CONFIG_NET_XGRESS 4337 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4338 enum skb_drop_reason *drop_reason) 4339 { 4340 int ret = TC_ACT_UNSPEC; 4341 #ifdef CONFIG_NET_CLS_ACT 4342 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4343 struct tcf_result res; 4344 4345 if (!miniq) 4346 return ret; 4347 4348 /* Global bypass */ 4349 if (!static_branch_likely(&tcf_sw_enabled_key)) 4350 return ret; 4351 4352 /* Block-wise bypass */ 4353 if (tcf_block_bypass_sw(miniq->block)) 4354 return ret; 4355 4356 tc_skb_cb(skb)->mru = 0; 4357 tc_skb_cb(skb)->post_ct = false; 4358 tcf_set_drop_reason(skb, *drop_reason); 4359 4360 mini_qdisc_bstats_cpu_update(miniq, skb); 4361 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4362 /* Only tcf related quirks below. */ 4363 switch (ret) { 4364 case TC_ACT_SHOT: 4365 *drop_reason = tcf_get_drop_reason(skb); 4366 mini_qdisc_qstats_cpu_drop(miniq); 4367 break; 4368 case TC_ACT_OK: 4369 case TC_ACT_RECLASSIFY: 4370 skb->tc_index = TC_H_MIN(res.classid); 4371 break; 4372 } 4373 #endif /* CONFIG_NET_CLS_ACT */ 4374 return ret; 4375 } 4376 4377 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4378 4379 void tcx_inc(void) 4380 { 4381 static_branch_inc(&tcx_needed_key); 4382 } 4383 4384 void tcx_dec(void) 4385 { 4386 static_branch_dec(&tcx_needed_key); 4387 } 4388 4389 static __always_inline enum tcx_action_base 4390 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4391 const bool needs_mac) 4392 { 4393 const struct bpf_mprog_fp *fp; 4394 const struct bpf_prog *prog; 4395 int ret = TCX_NEXT; 4396 4397 if (needs_mac) 4398 __skb_push(skb, skb->mac_len); 4399 bpf_mprog_foreach_prog(entry, fp, prog) { 4400 bpf_compute_data_pointers(skb); 4401 ret = bpf_prog_run(prog, skb); 4402 if (ret != TCX_NEXT) 4403 break; 4404 } 4405 if (needs_mac) 4406 __skb_pull(skb, skb->mac_len); 4407 return tcx_action_code(skb, ret); 4408 } 4409 4410 static __always_inline struct sk_buff * 4411 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4412 struct net_device *orig_dev, bool *another) 4413 { 4414 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4415 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4416 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4417 int sch_ret; 4418 4419 if (!entry) 4420 return skb; 4421 4422 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4423 if (*pt_prev) { 4424 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4425 *pt_prev = NULL; 4426 } 4427 4428 qdisc_skb_cb(skb)->pkt_len = skb->len; 4429 tcx_set_ingress(skb, true); 4430 4431 if (static_branch_unlikely(&tcx_needed_key)) { 4432 sch_ret = tcx_run(entry, skb, true); 4433 if (sch_ret != TC_ACT_UNSPEC) 4434 goto ingress_verdict; 4435 } 4436 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4437 ingress_verdict: 4438 switch (sch_ret) { 4439 case TC_ACT_REDIRECT: 4440 /* skb_mac_header check was done by BPF, so we can safely 4441 * push the L2 header back before redirecting to another 4442 * netdev. 4443 */ 4444 __skb_push(skb, skb->mac_len); 4445 if (skb_do_redirect(skb) == -EAGAIN) { 4446 __skb_pull(skb, skb->mac_len); 4447 *another = true; 4448 break; 4449 } 4450 *ret = NET_RX_SUCCESS; 4451 bpf_net_ctx_clear(bpf_net_ctx); 4452 return NULL; 4453 case TC_ACT_SHOT: 4454 kfree_skb_reason(skb, drop_reason); 4455 *ret = NET_RX_DROP; 4456 bpf_net_ctx_clear(bpf_net_ctx); 4457 return NULL; 4458 /* used by tc_run */ 4459 case TC_ACT_STOLEN: 4460 case TC_ACT_QUEUED: 4461 case TC_ACT_TRAP: 4462 consume_skb(skb); 4463 fallthrough; 4464 case TC_ACT_CONSUMED: 4465 *ret = NET_RX_SUCCESS; 4466 bpf_net_ctx_clear(bpf_net_ctx); 4467 return NULL; 4468 } 4469 bpf_net_ctx_clear(bpf_net_ctx); 4470 4471 return skb; 4472 } 4473 4474 static __always_inline struct sk_buff * 4475 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4476 { 4477 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4478 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4479 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4480 int sch_ret; 4481 4482 if (!entry) 4483 return skb; 4484 4485 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4486 4487 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4488 * already set by the caller. 4489 */ 4490 if (static_branch_unlikely(&tcx_needed_key)) { 4491 sch_ret = tcx_run(entry, skb, false); 4492 if (sch_ret != TC_ACT_UNSPEC) 4493 goto egress_verdict; 4494 } 4495 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4496 egress_verdict: 4497 switch (sch_ret) { 4498 case TC_ACT_REDIRECT: 4499 /* No need to push/pop skb's mac_header here on egress! */ 4500 skb_do_redirect(skb); 4501 *ret = NET_XMIT_SUCCESS; 4502 bpf_net_ctx_clear(bpf_net_ctx); 4503 return NULL; 4504 case TC_ACT_SHOT: 4505 kfree_skb_reason(skb, drop_reason); 4506 *ret = NET_XMIT_DROP; 4507 bpf_net_ctx_clear(bpf_net_ctx); 4508 return NULL; 4509 /* used by tc_run */ 4510 case TC_ACT_STOLEN: 4511 case TC_ACT_QUEUED: 4512 case TC_ACT_TRAP: 4513 consume_skb(skb); 4514 fallthrough; 4515 case TC_ACT_CONSUMED: 4516 *ret = NET_XMIT_SUCCESS; 4517 bpf_net_ctx_clear(bpf_net_ctx); 4518 return NULL; 4519 } 4520 bpf_net_ctx_clear(bpf_net_ctx); 4521 4522 return skb; 4523 } 4524 #else 4525 static __always_inline struct sk_buff * 4526 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4527 struct net_device *orig_dev, bool *another) 4528 { 4529 return skb; 4530 } 4531 4532 static __always_inline struct sk_buff * 4533 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4534 { 4535 return skb; 4536 } 4537 #endif /* CONFIG_NET_XGRESS */ 4538 4539 #ifdef CONFIG_XPS 4540 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4541 struct xps_dev_maps *dev_maps, unsigned int tci) 4542 { 4543 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4544 struct xps_map *map; 4545 int queue_index = -1; 4546 4547 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4548 return queue_index; 4549 4550 tci *= dev_maps->num_tc; 4551 tci += tc; 4552 4553 map = rcu_dereference(dev_maps->attr_map[tci]); 4554 if (map) { 4555 if (map->len == 1) 4556 queue_index = map->queues[0]; 4557 else 4558 queue_index = map->queues[reciprocal_scale( 4559 skb_get_hash(skb), map->len)]; 4560 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4561 queue_index = -1; 4562 } 4563 return queue_index; 4564 } 4565 #endif 4566 4567 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4568 struct sk_buff *skb) 4569 { 4570 #ifdef CONFIG_XPS 4571 struct xps_dev_maps *dev_maps; 4572 struct sock *sk = skb->sk; 4573 int queue_index = -1; 4574 4575 if (!static_key_false(&xps_needed)) 4576 return -1; 4577 4578 rcu_read_lock(); 4579 if (!static_key_false(&xps_rxqs_needed)) 4580 goto get_cpus_map; 4581 4582 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4583 if (dev_maps) { 4584 int tci = sk_rx_queue_get(sk); 4585 4586 if (tci >= 0) 4587 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4588 tci); 4589 } 4590 4591 get_cpus_map: 4592 if (queue_index < 0) { 4593 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4594 if (dev_maps) { 4595 unsigned int tci = skb->sender_cpu - 1; 4596 4597 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4598 tci); 4599 } 4600 } 4601 rcu_read_unlock(); 4602 4603 return queue_index; 4604 #else 4605 return -1; 4606 #endif 4607 } 4608 4609 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4610 struct net_device *sb_dev) 4611 { 4612 return 0; 4613 } 4614 EXPORT_SYMBOL(dev_pick_tx_zero); 4615 4616 int sk_tx_queue_get(const struct sock *sk) 4617 { 4618 int resel, val; 4619 4620 if (!sk) 4621 return -1; 4622 /* Paired with WRITE_ONCE() in sk_tx_queue_clear() 4623 * and sk_tx_queue_set(). 4624 */ 4625 val = READ_ONCE(sk->sk_tx_queue_mapping); 4626 4627 if (val == NO_QUEUE_MAPPING) 4628 return -1; 4629 4630 if (!sk_fullsock(sk)) 4631 return val; 4632 4633 resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection); 4634 if (resel && time_is_before_jiffies( 4635 READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel)) 4636 return -1; 4637 4638 return val; 4639 } 4640 EXPORT_SYMBOL(sk_tx_queue_get); 4641 4642 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4643 struct net_device *sb_dev) 4644 { 4645 struct sock *sk = skb->sk; 4646 int queue_index = sk_tx_queue_get(sk); 4647 4648 sb_dev = sb_dev ? : dev; 4649 4650 if (queue_index < 0 || skb->ooo_okay || 4651 queue_index >= dev->real_num_tx_queues) { 4652 int new_index = get_xps_queue(dev, sb_dev, skb); 4653 4654 if (new_index < 0) 4655 new_index = skb_tx_hash(dev, sb_dev, skb); 4656 4657 if (sk && sk_fullsock(sk) && 4658 rcu_access_pointer(sk->sk_dst_cache)) 4659 sk_tx_queue_set(sk, new_index); 4660 4661 queue_index = new_index; 4662 } 4663 4664 return queue_index; 4665 } 4666 EXPORT_SYMBOL(netdev_pick_tx); 4667 4668 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4669 struct sk_buff *skb, 4670 struct net_device *sb_dev) 4671 { 4672 int queue_index = 0; 4673 4674 #ifdef CONFIG_XPS 4675 u32 sender_cpu = skb->sender_cpu - 1; 4676 4677 if (sender_cpu >= (u32)NR_CPUS) 4678 skb->sender_cpu = raw_smp_processor_id() + 1; 4679 #endif 4680 4681 if (dev->real_num_tx_queues != 1) { 4682 const struct net_device_ops *ops = dev->netdev_ops; 4683 4684 if (ops->ndo_select_queue) 4685 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4686 else 4687 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4688 4689 queue_index = netdev_cap_txqueue(dev, queue_index); 4690 } 4691 4692 skb_set_queue_mapping(skb, queue_index); 4693 return netdev_get_tx_queue(dev, queue_index); 4694 } 4695 4696 /** 4697 * __dev_queue_xmit() - transmit a buffer 4698 * @skb: buffer to transmit 4699 * @sb_dev: suboordinate device used for L2 forwarding offload 4700 * 4701 * Queue a buffer for transmission to a network device. The caller must 4702 * have set the device and priority and built the buffer before calling 4703 * this function. The function can be called from an interrupt. 4704 * 4705 * When calling this method, interrupts MUST be enabled. This is because 4706 * the BH enable code must have IRQs enabled so that it will not deadlock. 4707 * 4708 * Regardless of the return value, the skb is consumed, so it is currently 4709 * difficult to retry a send to this method. (You can bump the ref count 4710 * before sending to hold a reference for retry if you are careful.) 4711 * 4712 * Return: 4713 * * 0 - buffer successfully transmitted 4714 * * positive qdisc return code - NET_XMIT_DROP etc. 4715 * * negative errno - other errors 4716 */ 4717 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4718 { 4719 struct net_device *dev = skb->dev; 4720 struct netdev_queue *txq = NULL; 4721 struct Qdisc *q; 4722 int rc = -ENOMEM; 4723 bool again = false; 4724 4725 skb_reset_mac_header(skb); 4726 skb_assert_len(skb); 4727 4728 if (unlikely(skb_shinfo(skb)->tx_flags & 4729 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4730 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4731 4732 /* Disable soft irqs for various locks below. Also 4733 * stops preemption for RCU. 4734 */ 4735 rcu_read_lock_bh(); 4736 4737 skb_update_prio(skb); 4738 4739 qdisc_pkt_len_init(skb); 4740 tcx_set_ingress(skb, false); 4741 #ifdef CONFIG_NET_EGRESS 4742 if (static_branch_unlikely(&egress_needed_key)) { 4743 if (nf_hook_egress_active()) { 4744 skb = nf_hook_egress(skb, &rc, dev); 4745 if (!skb) 4746 goto out; 4747 } 4748 4749 netdev_xmit_skip_txqueue(false); 4750 4751 nf_skip_egress(skb, true); 4752 skb = sch_handle_egress(skb, &rc, dev); 4753 if (!skb) 4754 goto out; 4755 nf_skip_egress(skb, false); 4756 4757 if (netdev_xmit_txqueue_skipped()) 4758 txq = netdev_tx_queue_mapping(dev, skb); 4759 } 4760 #endif 4761 /* If device/qdisc don't need skb->dst, release it right now while 4762 * its hot in this cpu cache. 4763 */ 4764 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4765 skb_dst_drop(skb); 4766 else 4767 skb_dst_force(skb); 4768 4769 if (!txq) 4770 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4771 4772 q = rcu_dereference_bh(txq->qdisc); 4773 4774 trace_net_dev_queue(skb); 4775 if (q->enqueue) { 4776 rc = __dev_xmit_skb(skb, q, dev, txq); 4777 goto out; 4778 } 4779 4780 /* The device has no queue. Common case for software devices: 4781 * loopback, all the sorts of tunnels... 4782 4783 * Really, it is unlikely that netif_tx_lock protection is necessary 4784 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4785 * counters.) 4786 * However, it is possible, that they rely on protection 4787 * made by us here. 4788 4789 * Check this and shot the lock. It is not prone from deadlocks. 4790 *Either shot noqueue qdisc, it is even simpler 8) 4791 */ 4792 if (dev->flags & IFF_UP) { 4793 int cpu = smp_processor_id(); /* ok because BHs are off */ 4794 4795 /* Other cpus might concurrently change txq->xmit_lock_owner 4796 * to -1 or to their cpu id, but not to our id. 4797 */ 4798 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4799 if (dev_xmit_recursion()) 4800 goto recursion_alert; 4801 4802 skb = validate_xmit_skb(skb, dev, &again); 4803 if (!skb) 4804 goto out; 4805 4806 HARD_TX_LOCK(dev, txq, cpu); 4807 4808 if (!netif_xmit_stopped(txq)) { 4809 dev_xmit_recursion_inc(); 4810 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4811 dev_xmit_recursion_dec(); 4812 if (dev_xmit_complete(rc)) { 4813 HARD_TX_UNLOCK(dev, txq); 4814 goto out; 4815 } 4816 } 4817 HARD_TX_UNLOCK(dev, txq); 4818 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4819 dev->name); 4820 } else { 4821 /* Recursion is detected! It is possible, 4822 * unfortunately 4823 */ 4824 recursion_alert: 4825 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4826 dev->name); 4827 } 4828 } 4829 4830 rc = -ENETDOWN; 4831 rcu_read_unlock_bh(); 4832 4833 dev_core_stats_tx_dropped_inc(dev); 4834 kfree_skb_list(skb); 4835 return rc; 4836 out: 4837 rcu_read_unlock_bh(); 4838 return rc; 4839 } 4840 EXPORT_SYMBOL(__dev_queue_xmit); 4841 4842 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4843 { 4844 struct net_device *dev = skb->dev; 4845 struct sk_buff *orig_skb = skb; 4846 struct netdev_queue *txq; 4847 int ret = NETDEV_TX_BUSY; 4848 bool again = false; 4849 4850 if (unlikely(!netif_running(dev) || 4851 !netif_carrier_ok(dev))) 4852 goto drop; 4853 4854 skb = validate_xmit_skb_list(skb, dev, &again); 4855 if (skb != orig_skb) 4856 goto drop; 4857 4858 skb_set_queue_mapping(skb, queue_id); 4859 txq = skb_get_tx_queue(dev, skb); 4860 4861 local_bh_disable(); 4862 4863 dev_xmit_recursion_inc(); 4864 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4865 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4866 ret = netdev_start_xmit(skb, dev, txq, false); 4867 HARD_TX_UNLOCK(dev, txq); 4868 dev_xmit_recursion_dec(); 4869 4870 local_bh_enable(); 4871 return ret; 4872 drop: 4873 dev_core_stats_tx_dropped_inc(dev); 4874 kfree_skb_list(skb); 4875 return NET_XMIT_DROP; 4876 } 4877 EXPORT_SYMBOL(__dev_direct_xmit); 4878 4879 /************************************************************************* 4880 * Receiver routines 4881 *************************************************************************/ 4882 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4883 4884 int weight_p __read_mostly = 64; /* old backlog weight */ 4885 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4886 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4887 4888 /* Called with irq disabled */ 4889 static inline void ____napi_schedule(struct softnet_data *sd, 4890 struct napi_struct *napi) 4891 { 4892 struct task_struct *thread; 4893 4894 lockdep_assert_irqs_disabled(); 4895 4896 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4897 /* Paired with smp_mb__before_atomic() in 4898 * napi_enable()/netif_set_threaded(). 4899 * Use READ_ONCE() to guarantee a complete 4900 * read on napi->thread. Only call 4901 * wake_up_process() when it's not NULL. 4902 */ 4903 thread = READ_ONCE(napi->thread); 4904 if (thread) { 4905 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4906 goto use_local_napi; 4907 4908 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4909 wake_up_process(thread); 4910 return; 4911 } 4912 } 4913 4914 use_local_napi: 4915 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); 4916 list_add_tail(&napi->poll_list, &sd->poll_list); 4917 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4918 /* If not called from net_rx_action() 4919 * we have to raise NET_RX_SOFTIRQ. 4920 */ 4921 if (!sd->in_net_rx_action) 4922 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4923 } 4924 4925 #ifdef CONFIG_RPS 4926 4927 struct static_key_false rps_needed __read_mostly; 4928 EXPORT_SYMBOL(rps_needed); 4929 struct static_key_false rfs_needed __read_mostly; 4930 EXPORT_SYMBOL(rfs_needed); 4931 4932 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4933 { 4934 return hash_32(hash, flow_table->log); 4935 } 4936 4937 #ifdef CONFIG_RFS_ACCEL 4938 /** 4939 * rps_flow_is_active - check whether the flow is recently active. 4940 * @rflow: Specific flow to check activity. 4941 * @flow_table: per-queue flowtable that @rflow belongs to. 4942 * @cpu: CPU saved in @rflow. 4943 * 4944 * If the CPU has processed many packets since the flow's last activity 4945 * (beyond 10 times the table size), the flow is considered stale. 4946 * 4947 * Return: true if flow was recently active. 4948 */ 4949 static bool rps_flow_is_active(struct rps_dev_flow *rflow, 4950 struct rps_dev_flow_table *flow_table, 4951 unsigned int cpu) 4952 { 4953 unsigned int flow_last_active; 4954 unsigned int sd_input_head; 4955 4956 if (cpu >= nr_cpu_ids) 4957 return false; 4958 4959 sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head); 4960 flow_last_active = READ_ONCE(rflow->last_qtail); 4961 4962 return (int)(sd_input_head - flow_last_active) < 4963 (int)(10 << flow_table->log); 4964 } 4965 #endif 4966 4967 static struct rps_dev_flow * 4968 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4969 struct rps_dev_flow *rflow, u16 next_cpu, u32 hash, 4970 u32 flow_id) 4971 { 4972 if (next_cpu < nr_cpu_ids) { 4973 u32 head; 4974 #ifdef CONFIG_RFS_ACCEL 4975 struct netdev_rx_queue *rxqueue; 4976 struct rps_dev_flow_table *flow_table; 4977 struct rps_dev_flow *old_rflow; 4978 struct rps_dev_flow *tmp_rflow; 4979 unsigned int tmp_cpu; 4980 u16 rxq_index; 4981 int rc; 4982 4983 /* Should we steer this flow to a different hardware queue? */ 4984 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4985 !(dev->features & NETIF_F_NTUPLE)) 4986 goto out; 4987 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4988 if (rxq_index == skb_get_rx_queue(skb)) 4989 goto out; 4990 4991 rxqueue = dev->_rx + rxq_index; 4992 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4993 if (!flow_table) 4994 goto out; 4995 4996 tmp_rflow = &flow_table->flows[flow_id]; 4997 tmp_cpu = READ_ONCE(tmp_rflow->cpu); 4998 4999 if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) { 5000 if (rps_flow_is_active(tmp_rflow, flow_table, 5001 tmp_cpu)) { 5002 if (hash != READ_ONCE(tmp_rflow->hash) || 5003 next_cpu == tmp_cpu) 5004 goto out; 5005 } 5006 } 5007 5008 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 5009 rxq_index, flow_id); 5010 if (rc < 0) 5011 goto out; 5012 5013 old_rflow = rflow; 5014 rflow = tmp_rflow; 5015 WRITE_ONCE(rflow->filter, rc); 5016 WRITE_ONCE(rflow->hash, hash); 5017 5018 if (old_rflow->filter == rc) 5019 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 5020 out: 5021 #endif 5022 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 5023 rps_input_queue_tail_save(&rflow->last_qtail, head); 5024 } 5025 5026 WRITE_ONCE(rflow->cpu, next_cpu); 5027 return rflow; 5028 } 5029 5030 /* 5031 * get_rps_cpu is called from netif_receive_skb and returns the target 5032 * CPU from the RPS map of the receiving queue for a given skb. 5033 * rcu_read_lock must be held on entry. 5034 */ 5035 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 5036 struct rps_dev_flow **rflowp) 5037 { 5038 const struct rps_sock_flow_table *sock_flow_table; 5039 struct netdev_rx_queue *rxqueue = dev->_rx; 5040 struct rps_dev_flow_table *flow_table; 5041 struct rps_map *map; 5042 int cpu = -1; 5043 u32 flow_id; 5044 u32 tcpu; 5045 u32 hash; 5046 5047 if (skb_rx_queue_recorded(skb)) { 5048 u16 index = skb_get_rx_queue(skb); 5049 5050 if (unlikely(index >= dev->real_num_rx_queues)) { 5051 WARN_ONCE(dev->real_num_rx_queues > 1, 5052 "%s received packet on queue %u, but number " 5053 "of RX queues is %u\n", 5054 dev->name, index, dev->real_num_rx_queues); 5055 goto done; 5056 } 5057 rxqueue += index; 5058 } 5059 5060 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 5061 5062 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5063 map = rcu_dereference(rxqueue->rps_map); 5064 if (!flow_table && !map) 5065 goto done; 5066 5067 skb_reset_network_header(skb); 5068 hash = skb_get_hash(skb); 5069 if (!hash) 5070 goto done; 5071 5072 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 5073 if (flow_table && sock_flow_table) { 5074 struct rps_dev_flow *rflow; 5075 u32 next_cpu; 5076 u32 ident; 5077 5078 /* First check into global flow table if there is a match. 5079 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 5080 */ 5081 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 5082 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 5083 goto try_rps; 5084 5085 next_cpu = ident & net_hotdata.rps_cpu_mask; 5086 5087 /* OK, now we know there is a match, 5088 * we can look at the local (per receive queue) flow table 5089 */ 5090 flow_id = rfs_slot(hash, flow_table); 5091 rflow = &flow_table->flows[flow_id]; 5092 tcpu = rflow->cpu; 5093 5094 /* 5095 * If the desired CPU (where last recvmsg was done) is 5096 * different from current CPU (one in the rx-queue flow 5097 * table entry), switch if one of the following holds: 5098 * - Current CPU is unset (>= nr_cpu_ids). 5099 * - Current CPU is offline. 5100 * - The current CPU's queue tail has advanced beyond the 5101 * last packet that was enqueued using this table entry. 5102 * This guarantees that all previous packets for the flow 5103 * have been dequeued, thus preserving in order delivery. 5104 */ 5105 if (unlikely(tcpu != next_cpu) && 5106 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 5107 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 5108 rflow->last_qtail)) >= 0)) { 5109 tcpu = next_cpu; 5110 rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash, 5111 flow_id); 5112 } 5113 5114 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 5115 *rflowp = rflow; 5116 cpu = tcpu; 5117 goto done; 5118 } 5119 } 5120 5121 try_rps: 5122 5123 if (map) { 5124 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 5125 if (cpu_online(tcpu)) { 5126 cpu = tcpu; 5127 goto done; 5128 } 5129 } 5130 5131 done: 5132 return cpu; 5133 } 5134 5135 #ifdef CONFIG_RFS_ACCEL 5136 5137 /** 5138 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 5139 * @dev: Device on which the filter was set 5140 * @rxq_index: RX queue index 5141 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 5142 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 5143 * 5144 * Drivers that implement ndo_rx_flow_steer() should periodically call 5145 * this function for each installed filter and remove the filters for 5146 * which it returns %true. 5147 */ 5148 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 5149 u32 flow_id, u16 filter_id) 5150 { 5151 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 5152 struct rps_dev_flow_table *flow_table; 5153 struct rps_dev_flow *rflow; 5154 bool expire = true; 5155 5156 rcu_read_lock(); 5157 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5158 if (flow_table && flow_id < (1UL << flow_table->log)) { 5159 unsigned int cpu; 5160 5161 rflow = &flow_table->flows[flow_id]; 5162 cpu = READ_ONCE(rflow->cpu); 5163 if (READ_ONCE(rflow->filter) == filter_id && 5164 rps_flow_is_active(rflow, flow_table, cpu)) 5165 expire = false; 5166 } 5167 rcu_read_unlock(); 5168 return expire; 5169 } 5170 EXPORT_SYMBOL(rps_may_expire_flow); 5171 5172 #endif /* CONFIG_RFS_ACCEL */ 5173 5174 /* Called from hardirq (IPI) context */ 5175 static void rps_trigger_softirq(void *data) 5176 { 5177 struct softnet_data *sd = data; 5178 5179 ____napi_schedule(sd, &sd->backlog); 5180 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5181 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5182 } 5183 5184 #endif /* CONFIG_RPS */ 5185 5186 /* Called from hardirq (IPI) context */ 5187 static void trigger_rx_softirq(void *data) 5188 { 5189 struct softnet_data *sd = data; 5190 5191 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5192 smp_store_release(&sd->defer_ipi_scheduled, 0); 5193 } 5194 5195 /* 5196 * After we queued a packet into sd->input_pkt_queue, 5197 * we need to make sure this queue is serviced soon. 5198 * 5199 * - If this is another cpu queue, link it to our rps_ipi_list, 5200 * and make sure we will process rps_ipi_list from net_rx_action(). 5201 * 5202 * - If this is our own queue, NAPI schedule our backlog. 5203 * Note that this also raises NET_RX_SOFTIRQ. 5204 */ 5205 static void napi_schedule_rps(struct softnet_data *sd) 5206 { 5207 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5208 5209 #ifdef CONFIG_RPS 5210 if (sd != mysd) { 5211 if (use_backlog_threads()) { 5212 __napi_schedule_irqoff(&sd->backlog); 5213 return; 5214 } 5215 5216 sd->rps_ipi_next = mysd->rps_ipi_list; 5217 mysd->rps_ipi_list = sd; 5218 5219 /* If not called from net_rx_action() or napi_threaded_poll() 5220 * we have to raise NET_RX_SOFTIRQ. 5221 */ 5222 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5223 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5224 return; 5225 } 5226 #endif /* CONFIG_RPS */ 5227 __napi_schedule_irqoff(&mysd->backlog); 5228 } 5229 5230 void kick_defer_list_purge(unsigned int cpu) 5231 { 5232 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5233 unsigned long flags; 5234 5235 if (use_backlog_threads()) { 5236 backlog_lock_irq_save(sd, &flags); 5237 5238 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5239 __napi_schedule_irqoff(&sd->backlog); 5240 5241 backlog_unlock_irq_restore(sd, &flags); 5242 5243 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5244 smp_call_function_single_async(cpu, &sd->defer_csd); 5245 } 5246 } 5247 5248 #ifdef CONFIG_NET_FLOW_LIMIT 5249 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5250 #endif 5251 5252 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 5253 { 5254 #ifdef CONFIG_NET_FLOW_LIMIT 5255 struct sd_flow_limit *fl; 5256 struct softnet_data *sd; 5257 unsigned int old_flow, new_flow; 5258 5259 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 5260 return false; 5261 5262 sd = this_cpu_ptr(&softnet_data); 5263 5264 rcu_read_lock(); 5265 fl = rcu_dereference(sd->flow_limit); 5266 if (fl) { 5267 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5268 old_flow = fl->history[fl->history_head]; 5269 fl->history[fl->history_head] = new_flow; 5270 5271 fl->history_head++; 5272 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5273 5274 if (likely(fl->buckets[old_flow])) 5275 fl->buckets[old_flow]--; 5276 5277 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5278 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5279 WRITE_ONCE(fl->count, fl->count + 1); 5280 rcu_read_unlock(); 5281 return true; 5282 } 5283 } 5284 rcu_read_unlock(); 5285 #endif 5286 return false; 5287 } 5288 5289 /* 5290 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5291 * queue (may be a remote CPU queue). 5292 */ 5293 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5294 unsigned int *qtail) 5295 { 5296 enum skb_drop_reason reason; 5297 struct softnet_data *sd; 5298 unsigned long flags; 5299 unsigned int qlen; 5300 int max_backlog; 5301 u32 tail; 5302 5303 reason = SKB_DROP_REASON_DEV_READY; 5304 if (!netif_running(skb->dev)) 5305 goto bad_dev; 5306 5307 reason = SKB_DROP_REASON_CPU_BACKLOG; 5308 sd = &per_cpu(softnet_data, cpu); 5309 5310 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5311 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5312 if (unlikely(qlen > max_backlog)) 5313 goto cpu_backlog_drop; 5314 backlog_lock_irq_save(sd, &flags); 5315 qlen = skb_queue_len(&sd->input_pkt_queue); 5316 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 5317 if (!qlen) { 5318 /* Schedule NAPI for backlog device. We can use 5319 * non atomic operation as we own the queue lock. 5320 */ 5321 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5322 &sd->backlog.state)) 5323 napi_schedule_rps(sd); 5324 } 5325 __skb_queue_tail(&sd->input_pkt_queue, skb); 5326 tail = rps_input_queue_tail_incr(sd); 5327 backlog_unlock_irq_restore(sd, &flags); 5328 5329 /* save the tail outside of the critical section */ 5330 rps_input_queue_tail_save(qtail, tail); 5331 return NET_RX_SUCCESS; 5332 } 5333 5334 backlog_unlock_irq_restore(sd, &flags); 5335 5336 cpu_backlog_drop: 5337 numa_drop_add(&sd->drop_counters, 1); 5338 bad_dev: 5339 dev_core_stats_rx_dropped_inc(skb->dev); 5340 kfree_skb_reason(skb, reason); 5341 return NET_RX_DROP; 5342 } 5343 5344 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5345 { 5346 struct net_device *dev = skb->dev; 5347 struct netdev_rx_queue *rxqueue; 5348 5349 rxqueue = dev->_rx; 5350 5351 if (skb_rx_queue_recorded(skb)) { 5352 u16 index = skb_get_rx_queue(skb); 5353 5354 if (unlikely(index >= dev->real_num_rx_queues)) { 5355 WARN_ONCE(dev->real_num_rx_queues > 1, 5356 "%s received packet on queue %u, but number " 5357 "of RX queues is %u\n", 5358 dev->name, index, dev->real_num_rx_queues); 5359 5360 return rxqueue; /* Return first rxqueue */ 5361 } 5362 rxqueue += index; 5363 } 5364 return rxqueue; 5365 } 5366 5367 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5368 const struct bpf_prog *xdp_prog) 5369 { 5370 void *orig_data, *orig_data_end, *hard_start; 5371 struct netdev_rx_queue *rxqueue; 5372 bool orig_bcast, orig_host; 5373 u32 mac_len, frame_sz; 5374 __be16 orig_eth_type; 5375 struct ethhdr *eth; 5376 u32 metalen, act; 5377 int off; 5378 5379 /* The XDP program wants to see the packet starting at the MAC 5380 * header. 5381 */ 5382 mac_len = skb->data - skb_mac_header(skb); 5383 hard_start = skb->data - skb_headroom(skb); 5384 5385 /* SKB "head" area always have tailroom for skb_shared_info */ 5386 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5387 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5388 5389 rxqueue = netif_get_rxqueue(skb); 5390 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5391 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5392 skb_headlen(skb) + mac_len, true); 5393 if (skb_is_nonlinear(skb)) { 5394 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5395 xdp_buff_set_frags_flag(xdp); 5396 } else { 5397 xdp_buff_clear_frags_flag(xdp); 5398 } 5399 5400 orig_data_end = xdp->data_end; 5401 orig_data = xdp->data; 5402 eth = (struct ethhdr *)xdp->data; 5403 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5404 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5405 orig_eth_type = eth->h_proto; 5406 5407 act = bpf_prog_run_xdp(xdp_prog, xdp); 5408 5409 /* check if bpf_xdp_adjust_head was used */ 5410 off = xdp->data - orig_data; 5411 if (off) { 5412 if (off > 0) 5413 __skb_pull(skb, off); 5414 else if (off < 0) 5415 __skb_push(skb, -off); 5416 5417 skb->mac_header += off; 5418 skb_reset_network_header(skb); 5419 } 5420 5421 /* check if bpf_xdp_adjust_tail was used */ 5422 off = xdp->data_end - orig_data_end; 5423 if (off != 0) { 5424 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5425 skb->len += off; /* positive on grow, negative on shrink */ 5426 } 5427 5428 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5429 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5430 */ 5431 if (xdp_buff_has_frags(xdp)) 5432 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5433 else 5434 skb->data_len = 0; 5435 5436 /* check if XDP changed eth hdr such SKB needs update */ 5437 eth = (struct ethhdr *)xdp->data; 5438 if ((orig_eth_type != eth->h_proto) || 5439 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5440 skb->dev->dev_addr)) || 5441 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5442 __skb_push(skb, ETH_HLEN); 5443 skb->pkt_type = PACKET_HOST; 5444 skb->protocol = eth_type_trans(skb, skb->dev); 5445 } 5446 5447 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5448 * before calling us again on redirect path. We do not call do_redirect 5449 * as we leave that up to the caller. 5450 * 5451 * Caller is responsible for managing lifetime of skb (i.e. calling 5452 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5453 */ 5454 switch (act) { 5455 case XDP_REDIRECT: 5456 case XDP_TX: 5457 __skb_push(skb, mac_len); 5458 break; 5459 case XDP_PASS: 5460 metalen = xdp->data - xdp->data_meta; 5461 if (metalen) 5462 skb_metadata_set(skb, metalen); 5463 break; 5464 } 5465 5466 return act; 5467 } 5468 5469 static int 5470 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5471 { 5472 struct sk_buff *skb = *pskb; 5473 int err, hroom, troom; 5474 5475 local_lock_nested_bh(&system_page_pool.bh_lock); 5476 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); 5477 local_unlock_nested_bh(&system_page_pool.bh_lock); 5478 if (!err) 5479 return 0; 5480 5481 /* In case we have to go down the path and also linearize, 5482 * then lets do the pskb_expand_head() work just once here. 5483 */ 5484 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5485 troom = skb->tail + skb->data_len - skb->end; 5486 err = pskb_expand_head(skb, 5487 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5488 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5489 if (err) 5490 return err; 5491 5492 return skb_linearize(skb); 5493 } 5494 5495 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5496 struct xdp_buff *xdp, 5497 const struct bpf_prog *xdp_prog) 5498 { 5499 struct sk_buff *skb = *pskb; 5500 u32 mac_len, act = XDP_DROP; 5501 5502 /* Reinjected packets coming from act_mirred or similar should 5503 * not get XDP generic processing. 5504 */ 5505 if (skb_is_redirected(skb)) 5506 return XDP_PASS; 5507 5508 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5509 * bytes. This is the guarantee that also native XDP provides, 5510 * thus we need to do it here as well. 5511 */ 5512 mac_len = skb->data - skb_mac_header(skb); 5513 __skb_push(skb, mac_len); 5514 5515 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5516 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5517 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5518 goto do_drop; 5519 } 5520 5521 __skb_pull(*pskb, mac_len); 5522 5523 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5524 switch (act) { 5525 case XDP_REDIRECT: 5526 case XDP_TX: 5527 case XDP_PASS: 5528 break; 5529 default: 5530 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5531 fallthrough; 5532 case XDP_ABORTED: 5533 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5534 fallthrough; 5535 case XDP_DROP: 5536 do_drop: 5537 kfree_skb(*pskb); 5538 break; 5539 } 5540 5541 return act; 5542 } 5543 5544 /* When doing generic XDP we have to bypass the qdisc layer and the 5545 * network taps in order to match in-driver-XDP behavior. This also means 5546 * that XDP packets are able to starve other packets going through a qdisc, 5547 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5548 * queues, so they do not have this starvation issue. 5549 */ 5550 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5551 { 5552 struct net_device *dev = skb->dev; 5553 struct netdev_queue *txq; 5554 bool free_skb = true; 5555 int cpu, rc; 5556 5557 txq = netdev_core_pick_tx(dev, skb, NULL); 5558 cpu = smp_processor_id(); 5559 HARD_TX_LOCK(dev, txq, cpu); 5560 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5561 rc = netdev_start_xmit(skb, dev, txq, 0); 5562 if (dev_xmit_complete(rc)) 5563 free_skb = false; 5564 } 5565 HARD_TX_UNLOCK(dev, txq); 5566 if (free_skb) { 5567 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5568 dev_core_stats_tx_dropped_inc(dev); 5569 kfree_skb(skb); 5570 } 5571 } 5572 5573 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5574 5575 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5576 { 5577 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5578 5579 if (xdp_prog) { 5580 struct xdp_buff xdp; 5581 u32 act; 5582 int err; 5583 5584 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5585 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5586 if (act != XDP_PASS) { 5587 switch (act) { 5588 case XDP_REDIRECT: 5589 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5590 &xdp, xdp_prog); 5591 if (err) 5592 goto out_redir; 5593 break; 5594 case XDP_TX: 5595 generic_xdp_tx(*pskb, xdp_prog); 5596 break; 5597 } 5598 bpf_net_ctx_clear(bpf_net_ctx); 5599 return XDP_DROP; 5600 } 5601 bpf_net_ctx_clear(bpf_net_ctx); 5602 } 5603 return XDP_PASS; 5604 out_redir: 5605 bpf_net_ctx_clear(bpf_net_ctx); 5606 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5607 return XDP_DROP; 5608 } 5609 EXPORT_SYMBOL_GPL(do_xdp_generic); 5610 5611 static int netif_rx_internal(struct sk_buff *skb) 5612 { 5613 int ret; 5614 5615 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5616 5617 trace_netif_rx(skb); 5618 5619 #ifdef CONFIG_RPS 5620 if (static_branch_unlikely(&rps_needed)) { 5621 struct rps_dev_flow voidflow, *rflow = &voidflow; 5622 int cpu; 5623 5624 rcu_read_lock(); 5625 5626 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5627 if (cpu < 0) 5628 cpu = smp_processor_id(); 5629 5630 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5631 5632 rcu_read_unlock(); 5633 } else 5634 #endif 5635 { 5636 unsigned int qtail; 5637 5638 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5639 } 5640 return ret; 5641 } 5642 5643 /** 5644 * __netif_rx - Slightly optimized version of netif_rx 5645 * @skb: buffer to post 5646 * 5647 * This behaves as netif_rx except that it does not disable bottom halves. 5648 * As a result this function may only be invoked from the interrupt context 5649 * (either hard or soft interrupt). 5650 */ 5651 int __netif_rx(struct sk_buff *skb) 5652 { 5653 int ret; 5654 5655 lockdep_assert_once(hardirq_count() | softirq_count()); 5656 5657 trace_netif_rx_entry(skb); 5658 ret = netif_rx_internal(skb); 5659 trace_netif_rx_exit(ret); 5660 return ret; 5661 } 5662 EXPORT_SYMBOL(__netif_rx); 5663 5664 /** 5665 * netif_rx - post buffer to the network code 5666 * @skb: buffer to post 5667 * 5668 * This function receives a packet from a device driver and queues it for 5669 * the upper (protocol) levels to process via the backlog NAPI device. It 5670 * always succeeds. The buffer may be dropped during processing for 5671 * congestion control or by the protocol layers. 5672 * The network buffer is passed via the backlog NAPI device. Modern NIC 5673 * driver should use NAPI and GRO. 5674 * This function can used from interrupt and from process context. The 5675 * caller from process context must not disable interrupts before invoking 5676 * this function. 5677 * 5678 * return values: 5679 * NET_RX_SUCCESS (no congestion) 5680 * NET_RX_DROP (packet was dropped) 5681 * 5682 */ 5683 int netif_rx(struct sk_buff *skb) 5684 { 5685 bool need_bh_off = !(hardirq_count() | softirq_count()); 5686 int ret; 5687 5688 if (need_bh_off) 5689 local_bh_disable(); 5690 trace_netif_rx_entry(skb); 5691 ret = netif_rx_internal(skb); 5692 trace_netif_rx_exit(ret); 5693 if (need_bh_off) 5694 local_bh_enable(); 5695 return ret; 5696 } 5697 EXPORT_SYMBOL(netif_rx); 5698 5699 static __latent_entropy void net_tx_action(void) 5700 { 5701 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5702 5703 if (sd->completion_queue) { 5704 struct sk_buff *clist; 5705 5706 local_irq_disable(); 5707 clist = sd->completion_queue; 5708 sd->completion_queue = NULL; 5709 local_irq_enable(); 5710 5711 while (clist) { 5712 struct sk_buff *skb = clist; 5713 5714 clist = clist->next; 5715 5716 WARN_ON(refcount_read(&skb->users)); 5717 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5718 trace_consume_skb(skb, net_tx_action); 5719 else 5720 trace_kfree_skb(skb, net_tx_action, 5721 get_kfree_skb_cb(skb)->reason, NULL); 5722 5723 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5724 __kfree_skb(skb); 5725 else 5726 __napi_kfree_skb(skb, 5727 get_kfree_skb_cb(skb)->reason); 5728 } 5729 } 5730 5731 if (sd->output_queue) { 5732 struct Qdisc *head; 5733 5734 local_irq_disable(); 5735 head = sd->output_queue; 5736 sd->output_queue = NULL; 5737 sd->output_queue_tailp = &sd->output_queue; 5738 local_irq_enable(); 5739 5740 rcu_read_lock(); 5741 5742 while (head) { 5743 struct Qdisc *q = head; 5744 spinlock_t *root_lock = NULL; 5745 5746 head = head->next_sched; 5747 5748 /* We need to make sure head->next_sched is read 5749 * before clearing __QDISC_STATE_SCHED 5750 */ 5751 smp_mb__before_atomic(); 5752 5753 if (!(q->flags & TCQ_F_NOLOCK)) { 5754 root_lock = qdisc_lock(q); 5755 spin_lock(root_lock); 5756 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5757 &q->state))) { 5758 /* There is a synchronize_net() between 5759 * STATE_DEACTIVATED flag being set and 5760 * qdisc_reset()/some_qdisc_is_busy() in 5761 * dev_deactivate(), so we can safely bail out 5762 * early here to avoid data race between 5763 * qdisc_deactivate() and some_qdisc_is_busy() 5764 * for lockless qdisc. 5765 */ 5766 clear_bit(__QDISC_STATE_SCHED, &q->state); 5767 continue; 5768 } 5769 5770 clear_bit(__QDISC_STATE_SCHED, &q->state); 5771 qdisc_run(q); 5772 if (root_lock) 5773 spin_unlock(root_lock); 5774 } 5775 5776 rcu_read_unlock(); 5777 } 5778 5779 xfrm_dev_backlog(sd); 5780 } 5781 5782 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5783 /* This hook is defined here for ATM LANE */ 5784 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5785 unsigned char *addr) __read_mostly; 5786 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5787 #endif 5788 5789 /** 5790 * netdev_is_rx_handler_busy - check if receive handler is registered 5791 * @dev: device to check 5792 * 5793 * Check if a receive handler is already registered for a given device. 5794 * Return true if there one. 5795 * 5796 * The caller must hold the rtnl_mutex. 5797 */ 5798 bool netdev_is_rx_handler_busy(struct net_device *dev) 5799 { 5800 ASSERT_RTNL(); 5801 return dev && rtnl_dereference(dev->rx_handler); 5802 } 5803 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5804 5805 /** 5806 * netdev_rx_handler_register - register receive handler 5807 * @dev: device to register a handler for 5808 * @rx_handler: receive handler to register 5809 * @rx_handler_data: data pointer that is used by rx handler 5810 * 5811 * Register a receive handler for a device. This handler will then be 5812 * called from __netif_receive_skb. A negative errno code is returned 5813 * on a failure. 5814 * 5815 * The caller must hold the rtnl_mutex. 5816 * 5817 * For a general description of rx_handler, see enum rx_handler_result. 5818 */ 5819 int netdev_rx_handler_register(struct net_device *dev, 5820 rx_handler_func_t *rx_handler, 5821 void *rx_handler_data) 5822 { 5823 if (netdev_is_rx_handler_busy(dev)) 5824 return -EBUSY; 5825 5826 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5827 return -EINVAL; 5828 5829 /* Note: rx_handler_data must be set before rx_handler */ 5830 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5831 rcu_assign_pointer(dev->rx_handler, rx_handler); 5832 5833 return 0; 5834 } 5835 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5836 5837 /** 5838 * netdev_rx_handler_unregister - unregister receive handler 5839 * @dev: device to unregister a handler from 5840 * 5841 * Unregister a receive handler from a device. 5842 * 5843 * The caller must hold the rtnl_mutex. 5844 */ 5845 void netdev_rx_handler_unregister(struct net_device *dev) 5846 { 5847 5848 ASSERT_RTNL(); 5849 RCU_INIT_POINTER(dev->rx_handler, NULL); 5850 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5851 * section has a guarantee to see a non NULL rx_handler_data 5852 * as well. 5853 */ 5854 synchronize_net(); 5855 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5856 } 5857 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5858 5859 /* 5860 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5861 * the special handling of PFMEMALLOC skbs. 5862 */ 5863 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5864 { 5865 switch (skb->protocol) { 5866 case htons(ETH_P_ARP): 5867 case htons(ETH_P_IP): 5868 case htons(ETH_P_IPV6): 5869 case htons(ETH_P_8021Q): 5870 case htons(ETH_P_8021AD): 5871 return true; 5872 default: 5873 return false; 5874 } 5875 } 5876 5877 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5878 int *ret, struct net_device *orig_dev) 5879 { 5880 if (nf_hook_ingress_active(skb)) { 5881 int ingress_retval; 5882 5883 if (*pt_prev) { 5884 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5885 *pt_prev = NULL; 5886 } 5887 5888 rcu_read_lock(); 5889 ingress_retval = nf_hook_ingress(skb); 5890 rcu_read_unlock(); 5891 return ingress_retval; 5892 } 5893 return 0; 5894 } 5895 5896 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5897 struct packet_type **ppt_prev) 5898 { 5899 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO; 5900 struct packet_type *ptype, *pt_prev; 5901 rx_handler_func_t *rx_handler; 5902 struct sk_buff *skb = *pskb; 5903 struct net_device *orig_dev; 5904 bool deliver_exact = false; 5905 int ret = NET_RX_DROP; 5906 __be16 type; 5907 5908 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5909 5910 trace_netif_receive_skb(skb); 5911 5912 orig_dev = skb->dev; 5913 5914 skb_reset_network_header(skb); 5915 #if !defined(CONFIG_DEBUG_NET) 5916 /* We plan to no longer reset the transport header here. 5917 * Give some time to fuzzers and dev build to catch bugs 5918 * in network stacks. 5919 */ 5920 if (!skb_transport_header_was_set(skb)) 5921 skb_reset_transport_header(skb); 5922 #endif 5923 skb_reset_mac_len(skb); 5924 5925 pt_prev = NULL; 5926 5927 another_round: 5928 skb->skb_iif = skb->dev->ifindex; 5929 5930 __this_cpu_inc(softnet_data.processed); 5931 5932 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5933 int ret2; 5934 5935 migrate_disable(); 5936 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5937 &skb); 5938 migrate_enable(); 5939 5940 if (ret2 != XDP_PASS) { 5941 ret = NET_RX_DROP; 5942 goto out; 5943 } 5944 } 5945 5946 if (eth_type_vlan(skb->protocol)) { 5947 skb = skb_vlan_untag(skb); 5948 if (unlikely(!skb)) 5949 goto out; 5950 } 5951 5952 if (skb_skip_tc_classify(skb)) 5953 goto skip_classify; 5954 5955 if (pfmemalloc) 5956 goto skip_taps; 5957 5958 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5959 list) { 5960 if (pt_prev) 5961 ret = deliver_skb(skb, pt_prev, orig_dev); 5962 pt_prev = ptype; 5963 } 5964 5965 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5966 if (pt_prev) 5967 ret = deliver_skb(skb, pt_prev, orig_dev); 5968 pt_prev = ptype; 5969 } 5970 5971 skip_taps: 5972 #ifdef CONFIG_NET_INGRESS 5973 if (static_branch_unlikely(&ingress_needed_key)) { 5974 bool another = false; 5975 5976 nf_skip_egress(skb, true); 5977 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5978 &another); 5979 if (another) 5980 goto another_round; 5981 if (!skb) 5982 goto out; 5983 5984 nf_skip_egress(skb, false); 5985 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5986 goto out; 5987 } 5988 #endif 5989 skb_reset_redirect(skb); 5990 skip_classify: 5991 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) { 5992 drop_reason = SKB_DROP_REASON_PFMEMALLOC; 5993 goto drop; 5994 } 5995 5996 if (skb_vlan_tag_present(skb)) { 5997 if (pt_prev) { 5998 ret = deliver_skb(skb, pt_prev, orig_dev); 5999 pt_prev = NULL; 6000 } 6001 if (vlan_do_receive(&skb)) 6002 goto another_round; 6003 else if (unlikely(!skb)) 6004 goto out; 6005 } 6006 6007 rx_handler = rcu_dereference(skb->dev->rx_handler); 6008 if (rx_handler) { 6009 if (pt_prev) { 6010 ret = deliver_skb(skb, pt_prev, orig_dev); 6011 pt_prev = NULL; 6012 } 6013 switch (rx_handler(&skb)) { 6014 case RX_HANDLER_CONSUMED: 6015 ret = NET_RX_SUCCESS; 6016 goto out; 6017 case RX_HANDLER_ANOTHER: 6018 goto another_round; 6019 case RX_HANDLER_EXACT: 6020 deliver_exact = true; 6021 break; 6022 case RX_HANDLER_PASS: 6023 break; 6024 default: 6025 BUG(); 6026 } 6027 } 6028 6029 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 6030 check_vlan_id: 6031 if (skb_vlan_tag_get_id(skb)) { 6032 /* Vlan id is non 0 and vlan_do_receive() above couldn't 6033 * find vlan device. 6034 */ 6035 skb->pkt_type = PACKET_OTHERHOST; 6036 } else if (eth_type_vlan(skb->protocol)) { 6037 /* Outer header is 802.1P with vlan 0, inner header is 6038 * 802.1Q or 802.1AD and vlan_do_receive() above could 6039 * not find vlan dev for vlan id 0. 6040 */ 6041 __vlan_hwaccel_clear_tag(skb); 6042 skb = skb_vlan_untag(skb); 6043 if (unlikely(!skb)) 6044 goto out; 6045 if (vlan_do_receive(&skb)) 6046 /* After stripping off 802.1P header with vlan 0 6047 * vlan dev is found for inner header. 6048 */ 6049 goto another_round; 6050 else if (unlikely(!skb)) 6051 goto out; 6052 else 6053 /* We have stripped outer 802.1P vlan 0 header. 6054 * But could not find vlan dev. 6055 * check again for vlan id to set OTHERHOST. 6056 */ 6057 goto check_vlan_id; 6058 } 6059 /* Note: we might in the future use prio bits 6060 * and set skb->priority like in vlan_do_receive() 6061 * For the time being, just ignore Priority Code Point 6062 */ 6063 __vlan_hwaccel_clear_tag(skb); 6064 } 6065 6066 type = skb->protocol; 6067 6068 /* deliver only exact match when indicated */ 6069 if (likely(!deliver_exact)) { 6070 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6071 &ptype_base[ntohs(type) & 6072 PTYPE_HASH_MASK]); 6073 6074 /* orig_dev and skb->dev could belong to different netns; 6075 * Even in such case we need to traverse only the list 6076 * coming from skb->dev, as the ptype owner (packet socket) 6077 * will use dev_net(skb->dev) to do namespace filtering. 6078 */ 6079 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6080 &dev_net_rcu(skb->dev)->ptype_specific); 6081 } 6082 6083 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6084 &orig_dev->ptype_specific); 6085 6086 if (unlikely(skb->dev != orig_dev)) { 6087 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6088 &skb->dev->ptype_specific); 6089 } 6090 6091 if (pt_prev) { 6092 *ppt_prev = pt_prev; 6093 } else { 6094 drop: 6095 if (!deliver_exact) 6096 dev_core_stats_rx_dropped_inc(skb->dev); 6097 else 6098 dev_core_stats_rx_nohandler_inc(skb->dev); 6099 6100 kfree_skb_reason(skb, drop_reason); 6101 /* Jamal, now you will not able to escape explaining 6102 * me how you were going to use this. :-) 6103 */ 6104 ret = NET_RX_DROP; 6105 } 6106 6107 out: 6108 /* The invariant here is that if *ppt_prev is not NULL 6109 * then skb should also be non-NULL. 6110 * 6111 * Apparently *ppt_prev assignment above holds this invariant due to 6112 * skb dereferencing near it. 6113 */ 6114 *pskb = skb; 6115 return ret; 6116 } 6117 6118 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 6119 { 6120 struct net_device *orig_dev = skb->dev; 6121 struct packet_type *pt_prev = NULL; 6122 int ret; 6123 6124 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6125 if (pt_prev) 6126 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 6127 skb->dev, pt_prev, orig_dev); 6128 return ret; 6129 } 6130 6131 /** 6132 * netif_receive_skb_core - special purpose version of netif_receive_skb 6133 * @skb: buffer to process 6134 * 6135 * More direct receive version of netif_receive_skb(). It should 6136 * only be used by callers that have a need to skip RPS and Generic XDP. 6137 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 6138 * 6139 * This function may only be called from softirq context and interrupts 6140 * should be enabled. 6141 * 6142 * Return values (usually ignored): 6143 * NET_RX_SUCCESS: no congestion 6144 * NET_RX_DROP: packet was dropped 6145 */ 6146 int netif_receive_skb_core(struct sk_buff *skb) 6147 { 6148 int ret; 6149 6150 rcu_read_lock(); 6151 ret = __netif_receive_skb_one_core(skb, false); 6152 rcu_read_unlock(); 6153 6154 return ret; 6155 } 6156 EXPORT_SYMBOL(netif_receive_skb_core); 6157 6158 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 6159 struct packet_type *pt_prev, 6160 struct net_device *orig_dev) 6161 { 6162 struct sk_buff *skb, *next; 6163 6164 if (!pt_prev) 6165 return; 6166 if (list_empty(head)) 6167 return; 6168 if (pt_prev->list_func != NULL) 6169 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 6170 ip_list_rcv, head, pt_prev, orig_dev); 6171 else 6172 list_for_each_entry_safe(skb, next, head, list) { 6173 skb_list_del_init(skb); 6174 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 6175 } 6176 } 6177 6178 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 6179 { 6180 /* Fast-path assumptions: 6181 * - There is no RX handler. 6182 * - Only one packet_type matches. 6183 * If either of these fails, we will end up doing some per-packet 6184 * processing in-line, then handling the 'last ptype' for the whole 6185 * sublist. This can't cause out-of-order delivery to any single ptype, 6186 * because the 'last ptype' must be constant across the sublist, and all 6187 * other ptypes are handled per-packet. 6188 */ 6189 /* Current (common) ptype of sublist */ 6190 struct packet_type *pt_curr = NULL; 6191 /* Current (common) orig_dev of sublist */ 6192 struct net_device *od_curr = NULL; 6193 struct sk_buff *skb, *next; 6194 LIST_HEAD(sublist); 6195 6196 list_for_each_entry_safe(skb, next, head, list) { 6197 struct net_device *orig_dev = skb->dev; 6198 struct packet_type *pt_prev = NULL; 6199 6200 skb_list_del_init(skb); 6201 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6202 if (!pt_prev) 6203 continue; 6204 if (pt_curr != pt_prev || od_curr != orig_dev) { 6205 /* dispatch old sublist */ 6206 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6207 /* start new sublist */ 6208 INIT_LIST_HEAD(&sublist); 6209 pt_curr = pt_prev; 6210 od_curr = orig_dev; 6211 } 6212 list_add_tail(&skb->list, &sublist); 6213 } 6214 6215 /* dispatch final sublist */ 6216 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6217 } 6218 6219 static int __netif_receive_skb(struct sk_buff *skb) 6220 { 6221 int ret; 6222 6223 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6224 unsigned int noreclaim_flag; 6225 6226 /* 6227 * PFMEMALLOC skbs are special, they should 6228 * - be delivered to SOCK_MEMALLOC sockets only 6229 * - stay away from userspace 6230 * - have bounded memory usage 6231 * 6232 * Use PF_MEMALLOC as this saves us from propagating the allocation 6233 * context down to all allocation sites. 6234 */ 6235 noreclaim_flag = memalloc_noreclaim_save(); 6236 ret = __netif_receive_skb_one_core(skb, true); 6237 memalloc_noreclaim_restore(noreclaim_flag); 6238 } else 6239 ret = __netif_receive_skb_one_core(skb, false); 6240 6241 return ret; 6242 } 6243 6244 static void __netif_receive_skb_list(struct list_head *head) 6245 { 6246 unsigned long noreclaim_flag = 0; 6247 struct sk_buff *skb, *next; 6248 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6249 6250 list_for_each_entry_safe(skb, next, head, list) { 6251 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6252 struct list_head sublist; 6253 6254 /* Handle the previous sublist */ 6255 list_cut_before(&sublist, head, &skb->list); 6256 if (!list_empty(&sublist)) 6257 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6258 pfmemalloc = !pfmemalloc; 6259 /* See comments in __netif_receive_skb */ 6260 if (pfmemalloc) 6261 noreclaim_flag = memalloc_noreclaim_save(); 6262 else 6263 memalloc_noreclaim_restore(noreclaim_flag); 6264 } 6265 } 6266 /* Handle the remaining sublist */ 6267 if (!list_empty(head)) 6268 __netif_receive_skb_list_core(head, pfmemalloc); 6269 /* Restore pflags */ 6270 if (pfmemalloc) 6271 memalloc_noreclaim_restore(noreclaim_flag); 6272 } 6273 6274 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6275 { 6276 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6277 struct bpf_prog *new = xdp->prog; 6278 int ret = 0; 6279 6280 switch (xdp->command) { 6281 case XDP_SETUP_PROG: 6282 rcu_assign_pointer(dev->xdp_prog, new); 6283 if (old) 6284 bpf_prog_put(old); 6285 6286 if (old && !new) { 6287 static_branch_dec(&generic_xdp_needed_key); 6288 } else if (new && !old) { 6289 static_branch_inc(&generic_xdp_needed_key); 6290 netif_disable_lro(dev); 6291 dev_disable_gro_hw(dev); 6292 } 6293 break; 6294 6295 default: 6296 ret = -EINVAL; 6297 break; 6298 } 6299 6300 return ret; 6301 } 6302 6303 static int netif_receive_skb_internal(struct sk_buff *skb) 6304 { 6305 int ret; 6306 6307 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6308 6309 if (skb_defer_rx_timestamp(skb)) 6310 return NET_RX_SUCCESS; 6311 6312 rcu_read_lock(); 6313 #ifdef CONFIG_RPS 6314 if (static_branch_unlikely(&rps_needed)) { 6315 struct rps_dev_flow voidflow, *rflow = &voidflow; 6316 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6317 6318 if (cpu >= 0) { 6319 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6320 rcu_read_unlock(); 6321 return ret; 6322 } 6323 } 6324 #endif 6325 ret = __netif_receive_skb(skb); 6326 rcu_read_unlock(); 6327 return ret; 6328 } 6329 6330 void netif_receive_skb_list_internal(struct list_head *head) 6331 { 6332 struct sk_buff *skb, *next; 6333 LIST_HEAD(sublist); 6334 6335 list_for_each_entry_safe(skb, next, head, list) { 6336 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6337 skb); 6338 skb_list_del_init(skb); 6339 if (!skb_defer_rx_timestamp(skb)) 6340 list_add_tail(&skb->list, &sublist); 6341 } 6342 list_splice_init(&sublist, head); 6343 6344 rcu_read_lock(); 6345 #ifdef CONFIG_RPS 6346 if (static_branch_unlikely(&rps_needed)) { 6347 list_for_each_entry_safe(skb, next, head, list) { 6348 struct rps_dev_flow voidflow, *rflow = &voidflow; 6349 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6350 6351 if (cpu >= 0) { 6352 /* Will be handled, remove from list */ 6353 skb_list_del_init(skb); 6354 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6355 } 6356 } 6357 } 6358 #endif 6359 __netif_receive_skb_list(head); 6360 rcu_read_unlock(); 6361 } 6362 6363 /** 6364 * netif_receive_skb - process receive buffer from network 6365 * @skb: buffer to process 6366 * 6367 * netif_receive_skb() is the main receive data processing function. 6368 * It always succeeds. The buffer may be dropped during processing 6369 * for congestion control or by the protocol layers. 6370 * 6371 * This function may only be called from softirq context and interrupts 6372 * should be enabled. 6373 * 6374 * Return values (usually ignored): 6375 * NET_RX_SUCCESS: no congestion 6376 * NET_RX_DROP: packet was dropped 6377 */ 6378 int netif_receive_skb(struct sk_buff *skb) 6379 { 6380 int ret; 6381 6382 trace_netif_receive_skb_entry(skb); 6383 6384 ret = netif_receive_skb_internal(skb); 6385 trace_netif_receive_skb_exit(ret); 6386 6387 return ret; 6388 } 6389 EXPORT_SYMBOL(netif_receive_skb); 6390 6391 /** 6392 * netif_receive_skb_list - process many receive buffers from network 6393 * @head: list of skbs to process. 6394 * 6395 * Since return value of netif_receive_skb() is normally ignored, and 6396 * wouldn't be meaningful for a list, this function returns void. 6397 * 6398 * This function may only be called from softirq context and interrupts 6399 * should be enabled. 6400 */ 6401 void netif_receive_skb_list(struct list_head *head) 6402 { 6403 struct sk_buff *skb; 6404 6405 if (list_empty(head)) 6406 return; 6407 if (trace_netif_receive_skb_list_entry_enabled()) { 6408 list_for_each_entry(skb, head, list) 6409 trace_netif_receive_skb_list_entry(skb); 6410 } 6411 netif_receive_skb_list_internal(head); 6412 trace_netif_receive_skb_list_exit(0); 6413 } 6414 EXPORT_SYMBOL(netif_receive_skb_list); 6415 6416 /* Network device is going away, flush any packets still pending */ 6417 static void flush_backlog(struct work_struct *work) 6418 { 6419 struct sk_buff *skb, *tmp; 6420 struct sk_buff_head list; 6421 struct softnet_data *sd; 6422 6423 __skb_queue_head_init(&list); 6424 local_bh_disable(); 6425 sd = this_cpu_ptr(&softnet_data); 6426 6427 backlog_lock_irq_disable(sd); 6428 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6429 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6430 __skb_unlink(skb, &sd->input_pkt_queue); 6431 __skb_queue_tail(&list, skb); 6432 rps_input_queue_head_incr(sd); 6433 } 6434 } 6435 backlog_unlock_irq_enable(sd); 6436 6437 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6438 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6439 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6440 __skb_unlink(skb, &sd->process_queue); 6441 __skb_queue_tail(&list, skb); 6442 rps_input_queue_head_incr(sd); 6443 } 6444 } 6445 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6446 local_bh_enable(); 6447 6448 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6449 } 6450 6451 static bool flush_required(int cpu) 6452 { 6453 #if IS_ENABLED(CONFIG_RPS) 6454 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6455 bool do_flush; 6456 6457 backlog_lock_irq_disable(sd); 6458 6459 /* as insertion into process_queue happens with the rps lock held, 6460 * process_queue access may race only with dequeue 6461 */ 6462 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6463 !skb_queue_empty_lockless(&sd->process_queue); 6464 backlog_unlock_irq_enable(sd); 6465 6466 return do_flush; 6467 #endif 6468 /* without RPS we can't safely check input_pkt_queue: during a 6469 * concurrent remote skb_queue_splice() we can detect as empty both 6470 * input_pkt_queue and process_queue even if the latter could end-up 6471 * containing a lot of packets. 6472 */ 6473 return true; 6474 } 6475 6476 struct flush_backlogs { 6477 cpumask_t flush_cpus; 6478 struct work_struct w[]; 6479 }; 6480 6481 static struct flush_backlogs *flush_backlogs_alloc(void) 6482 { 6483 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6484 GFP_KERNEL); 6485 } 6486 6487 static struct flush_backlogs *flush_backlogs_fallback; 6488 static DEFINE_MUTEX(flush_backlogs_mutex); 6489 6490 static void flush_all_backlogs(void) 6491 { 6492 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6493 unsigned int cpu; 6494 6495 if (!ptr) { 6496 mutex_lock(&flush_backlogs_mutex); 6497 ptr = flush_backlogs_fallback; 6498 } 6499 cpumask_clear(&ptr->flush_cpus); 6500 6501 cpus_read_lock(); 6502 6503 for_each_online_cpu(cpu) { 6504 if (flush_required(cpu)) { 6505 INIT_WORK(&ptr->w[cpu], flush_backlog); 6506 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6507 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6508 } 6509 } 6510 6511 /* we can have in flight packet[s] on the cpus we are not flushing, 6512 * synchronize_net() in unregister_netdevice_many() will take care of 6513 * them. 6514 */ 6515 for_each_cpu(cpu, &ptr->flush_cpus) 6516 flush_work(&ptr->w[cpu]); 6517 6518 cpus_read_unlock(); 6519 6520 if (ptr != flush_backlogs_fallback) 6521 kfree(ptr); 6522 else 6523 mutex_unlock(&flush_backlogs_mutex); 6524 } 6525 6526 static void net_rps_send_ipi(struct softnet_data *remsd) 6527 { 6528 #ifdef CONFIG_RPS 6529 while (remsd) { 6530 struct softnet_data *next = remsd->rps_ipi_next; 6531 6532 if (cpu_online(remsd->cpu)) 6533 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6534 remsd = next; 6535 } 6536 #endif 6537 } 6538 6539 /* 6540 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6541 * Note: called with local irq disabled, but exits with local irq enabled. 6542 */ 6543 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6544 { 6545 #ifdef CONFIG_RPS 6546 struct softnet_data *remsd = sd->rps_ipi_list; 6547 6548 if (!use_backlog_threads() && remsd) { 6549 sd->rps_ipi_list = NULL; 6550 6551 local_irq_enable(); 6552 6553 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6554 net_rps_send_ipi(remsd); 6555 } else 6556 #endif 6557 local_irq_enable(); 6558 } 6559 6560 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6561 { 6562 #ifdef CONFIG_RPS 6563 return !use_backlog_threads() && sd->rps_ipi_list; 6564 #else 6565 return false; 6566 #endif 6567 } 6568 6569 static int process_backlog(struct napi_struct *napi, int quota) 6570 { 6571 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6572 bool again = true; 6573 int work = 0; 6574 6575 /* Check if we have pending ipi, its better to send them now, 6576 * not waiting net_rx_action() end. 6577 */ 6578 if (sd_has_rps_ipi_waiting(sd)) { 6579 local_irq_disable(); 6580 net_rps_action_and_irq_enable(sd); 6581 } 6582 6583 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6584 while (again) { 6585 struct sk_buff *skb; 6586 6587 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6588 while ((skb = __skb_dequeue(&sd->process_queue))) { 6589 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6590 rcu_read_lock(); 6591 __netif_receive_skb(skb); 6592 rcu_read_unlock(); 6593 if (++work >= quota) { 6594 rps_input_queue_head_add(sd, work); 6595 return work; 6596 } 6597 6598 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6599 } 6600 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6601 6602 backlog_lock_irq_disable(sd); 6603 if (skb_queue_empty(&sd->input_pkt_queue)) { 6604 /* 6605 * Inline a custom version of __napi_complete(). 6606 * only current cpu owns and manipulates this napi, 6607 * and NAPI_STATE_SCHED is the only possible flag set 6608 * on backlog. 6609 * We can use a plain write instead of clear_bit(), 6610 * and we dont need an smp_mb() memory barrier. 6611 */ 6612 napi->state &= NAPIF_STATE_THREADED; 6613 again = false; 6614 } else { 6615 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6616 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6617 &sd->process_queue); 6618 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6619 } 6620 backlog_unlock_irq_enable(sd); 6621 } 6622 6623 if (work) 6624 rps_input_queue_head_add(sd, work); 6625 return work; 6626 } 6627 6628 /** 6629 * __napi_schedule - schedule for receive 6630 * @n: entry to schedule 6631 * 6632 * The entry's receive function will be scheduled to run. 6633 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6634 */ 6635 void __napi_schedule(struct napi_struct *n) 6636 { 6637 unsigned long flags; 6638 6639 local_irq_save(flags); 6640 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6641 local_irq_restore(flags); 6642 } 6643 EXPORT_SYMBOL(__napi_schedule); 6644 6645 /** 6646 * napi_schedule_prep - check if napi can be scheduled 6647 * @n: napi context 6648 * 6649 * Test if NAPI routine is already running, and if not mark 6650 * it as running. This is used as a condition variable to 6651 * insure only one NAPI poll instance runs. We also make 6652 * sure there is no pending NAPI disable. 6653 */ 6654 bool napi_schedule_prep(struct napi_struct *n) 6655 { 6656 unsigned long new, val = READ_ONCE(n->state); 6657 6658 do { 6659 if (unlikely(val & NAPIF_STATE_DISABLE)) 6660 return false; 6661 new = val | NAPIF_STATE_SCHED; 6662 6663 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6664 * This was suggested by Alexander Duyck, as compiler 6665 * emits better code than : 6666 * if (val & NAPIF_STATE_SCHED) 6667 * new |= NAPIF_STATE_MISSED; 6668 */ 6669 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6670 NAPIF_STATE_MISSED; 6671 } while (!try_cmpxchg(&n->state, &val, new)); 6672 6673 return !(val & NAPIF_STATE_SCHED); 6674 } 6675 EXPORT_SYMBOL(napi_schedule_prep); 6676 6677 /** 6678 * __napi_schedule_irqoff - schedule for receive 6679 * @n: entry to schedule 6680 * 6681 * Variant of __napi_schedule() assuming hard irqs are masked. 6682 * 6683 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6684 * because the interrupt disabled assumption might not be true 6685 * due to force-threaded interrupts and spinlock substitution. 6686 */ 6687 void __napi_schedule_irqoff(struct napi_struct *n) 6688 { 6689 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6690 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6691 else 6692 __napi_schedule(n); 6693 } 6694 EXPORT_SYMBOL(__napi_schedule_irqoff); 6695 6696 bool napi_complete_done(struct napi_struct *n, int work_done) 6697 { 6698 unsigned long flags, val, new, timeout = 0; 6699 bool ret = true; 6700 6701 /* 6702 * 1) Don't let napi dequeue from the cpu poll list 6703 * just in case its running on a different cpu. 6704 * 2) If we are busy polling, do nothing here, we have 6705 * the guarantee we will be called later. 6706 */ 6707 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6708 NAPIF_STATE_IN_BUSY_POLL))) 6709 return false; 6710 6711 if (work_done) { 6712 if (n->gro.bitmask) 6713 timeout = napi_get_gro_flush_timeout(n); 6714 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6715 } 6716 if (n->defer_hard_irqs_count > 0) { 6717 n->defer_hard_irqs_count--; 6718 timeout = napi_get_gro_flush_timeout(n); 6719 if (timeout) 6720 ret = false; 6721 } 6722 6723 /* 6724 * When the NAPI instance uses a timeout and keeps postponing 6725 * it, we need to bound somehow the time packets are kept in 6726 * the GRO layer. 6727 */ 6728 gro_flush_normal(&n->gro, !!timeout); 6729 6730 if (unlikely(!list_empty(&n->poll_list))) { 6731 /* If n->poll_list is not empty, we need to mask irqs */ 6732 local_irq_save(flags); 6733 list_del_init(&n->poll_list); 6734 local_irq_restore(flags); 6735 } 6736 WRITE_ONCE(n->list_owner, -1); 6737 6738 val = READ_ONCE(n->state); 6739 do { 6740 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6741 6742 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6743 NAPIF_STATE_SCHED_THREADED | 6744 NAPIF_STATE_PREFER_BUSY_POLL); 6745 6746 /* If STATE_MISSED was set, leave STATE_SCHED set, 6747 * because we will call napi->poll() one more time. 6748 * This C code was suggested by Alexander Duyck to help gcc. 6749 */ 6750 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6751 NAPIF_STATE_SCHED; 6752 } while (!try_cmpxchg(&n->state, &val, new)); 6753 6754 if (unlikely(val & NAPIF_STATE_MISSED)) { 6755 __napi_schedule(n); 6756 return false; 6757 } 6758 6759 if (timeout) 6760 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6761 HRTIMER_MODE_REL_PINNED); 6762 return ret; 6763 } 6764 EXPORT_SYMBOL(napi_complete_done); 6765 6766 static void skb_defer_free_flush(void) 6767 { 6768 struct llist_node *free_list; 6769 struct sk_buff *skb, *next; 6770 struct skb_defer_node *sdn; 6771 int node; 6772 6773 for_each_node(node) { 6774 sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node; 6775 6776 if (llist_empty(&sdn->defer_list)) 6777 continue; 6778 atomic_long_set(&sdn->defer_count, 0); 6779 free_list = llist_del_all(&sdn->defer_list); 6780 6781 llist_for_each_entry_safe(skb, next, free_list, ll_node) { 6782 napi_consume_skb(skb, 1); 6783 } 6784 } 6785 } 6786 6787 #if defined(CONFIG_NET_RX_BUSY_POLL) 6788 6789 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6790 { 6791 if (!skip_schedule) { 6792 gro_normal_list(&napi->gro); 6793 __napi_schedule(napi); 6794 return; 6795 } 6796 6797 /* Flush too old packets. If HZ < 1000, flush all packets */ 6798 gro_flush_normal(&napi->gro, HZ >= 1000); 6799 6800 clear_bit(NAPI_STATE_SCHED, &napi->state); 6801 } 6802 6803 enum { 6804 NAPI_F_PREFER_BUSY_POLL = 1, 6805 NAPI_F_END_ON_RESCHED = 2, 6806 }; 6807 6808 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6809 unsigned flags, u16 budget) 6810 { 6811 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6812 bool skip_schedule = false; 6813 unsigned long timeout; 6814 int rc; 6815 6816 /* Busy polling means there is a high chance device driver hard irq 6817 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6818 * set in napi_schedule_prep(). 6819 * Since we are about to call napi->poll() once more, we can safely 6820 * clear NAPI_STATE_MISSED. 6821 * 6822 * Note: x86 could use a single "lock and ..." instruction 6823 * to perform these two clear_bit() 6824 */ 6825 clear_bit(NAPI_STATE_MISSED, &napi->state); 6826 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6827 6828 local_bh_disable(); 6829 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6830 6831 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6832 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6833 timeout = napi_get_gro_flush_timeout(napi); 6834 if (napi->defer_hard_irqs_count && timeout) { 6835 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6836 skip_schedule = true; 6837 } 6838 } 6839 6840 /* All we really want here is to re-enable device interrupts. 6841 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6842 */ 6843 rc = napi->poll(napi, budget); 6844 /* We can't gro_normal_list() here, because napi->poll() might have 6845 * rearmed the napi (napi_complete_done()) in which case it could 6846 * already be running on another CPU. 6847 */ 6848 trace_napi_poll(napi, rc, budget); 6849 netpoll_poll_unlock(have_poll_lock); 6850 if (rc == budget) 6851 __busy_poll_stop(napi, skip_schedule); 6852 bpf_net_ctx_clear(bpf_net_ctx); 6853 local_bh_enable(); 6854 } 6855 6856 static void __napi_busy_loop(unsigned int napi_id, 6857 bool (*loop_end)(void *, unsigned long), 6858 void *loop_end_arg, unsigned flags, u16 budget) 6859 { 6860 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6861 int (*napi_poll)(struct napi_struct *napi, int budget); 6862 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6863 void *have_poll_lock = NULL; 6864 struct napi_struct *napi; 6865 6866 WARN_ON_ONCE(!rcu_read_lock_held()); 6867 6868 restart: 6869 napi_poll = NULL; 6870 6871 napi = napi_by_id(napi_id); 6872 if (!napi) 6873 return; 6874 6875 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6876 preempt_disable(); 6877 for (;;) { 6878 int work = 0; 6879 6880 local_bh_disable(); 6881 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6882 if (!napi_poll) { 6883 unsigned long val = READ_ONCE(napi->state); 6884 6885 /* If multiple threads are competing for this napi, 6886 * we avoid dirtying napi->state as much as we can. 6887 */ 6888 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6889 NAPIF_STATE_IN_BUSY_POLL)) { 6890 if (flags & NAPI_F_PREFER_BUSY_POLL) 6891 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6892 goto count; 6893 } 6894 if (cmpxchg(&napi->state, val, 6895 val | NAPIF_STATE_IN_BUSY_POLL | 6896 NAPIF_STATE_SCHED) != val) { 6897 if (flags & NAPI_F_PREFER_BUSY_POLL) 6898 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6899 goto count; 6900 } 6901 have_poll_lock = netpoll_poll_lock(napi); 6902 napi_poll = napi->poll; 6903 } 6904 work = napi_poll(napi, budget); 6905 trace_napi_poll(napi, work, budget); 6906 gro_normal_list(&napi->gro); 6907 count: 6908 if (work > 0) 6909 __NET_ADD_STATS(dev_net(napi->dev), 6910 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6911 skb_defer_free_flush(); 6912 bpf_net_ctx_clear(bpf_net_ctx); 6913 local_bh_enable(); 6914 6915 if (!loop_end || loop_end(loop_end_arg, start_time)) 6916 break; 6917 6918 if (unlikely(need_resched())) { 6919 if (flags & NAPI_F_END_ON_RESCHED) 6920 break; 6921 if (napi_poll) 6922 busy_poll_stop(napi, have_poll_lock, flags, budget); 6923 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6924 preempt_enable(); 6925 rcu_read_unlock(); 6926 cond_resched(); 6927 rcu_read_lock(); 6928 if (loop_end(loop_end_arg, start_time)) 6929 return; 6930 goto restart; 6931 } 6932 cpu_relax(); 6933 } 6934 if (napi_poll) 6935 busy_poll_stop(napi, have_poll_lock, flags, budget); 6936 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6937 preempt_enable(); 6938 } 6939 6940 void napi_busy_loop_rcu(unsigned int napi_id, 6941 bool (*loop_end)(void *, unsigned long), 6942 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6943 { 6944 unsigned flags = NAPI_F_END_ON_RESCHED; 6945 6946 if (prefer_busy_poll) 6947 flags |= NAPI_F_PREFER_BUSY_POLL; 6948 6949 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6950 } 6951 6952 void napi_busy_loop(unsigned int napi_id, 6953 bool (*loop_end)(void *, unsigned long), 6954 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6955 { 6956 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6957 6958 rcu_read_lock(); 6959 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6960 rcu_read_unlock(); 6961 } 6962 EXPORT_SYMBOL(napi_busy_loop); 6963 6964 void napi_suspend_irqs(unsigned int napi_id) 6965 { 6966 struct napi_struct *napi; 6967 6968 rcu_read_lock(); 6969 napi = napi_by_id(napi_id); 6970 if (napi) { 6971 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6972 6973 if (timeout) 6974 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6975 HRTIMER_MODE_REL_PINNED); 6976 } 6977 rcu_read_unlock(); 6978 } 6979 6980 void napi_resume_irqs(unsigned int napi_id) 6981 { 6982 struct napi_struct *napi; 6983 6984 rcu_read_lock(); 6985 napi = napi_by_id(napi_id); 6986 if (napi) { 6987 /* If irq_suspend_timeout is set to 0 between the call to 6988 * napi_suspend_irqs and now, the original value still 6989 * determines the safety timeout as intended and napi_watchdog 6990 * will resume irq processing. 6991 */ 6992 if (napi_get_irq_suspend_timeout(napi)) { 6993 local_bh_disable(); 6994 napi_schedule(napi); 6995 local_bh_enable(); 6996 } 6997 } 6998 rcu_read_unlock(); 6999 } 7000 7001 #endif /* CONFIG_NET_RX_BUSY_POLL */ 7002 7003 static void __napi_hash_add_with_id(struct napi_struct *napi, 7004 unsigned int napi_id) 7005 { 7006 napi->gro.cached_napi_id = napi_id; 7007 7008 WRITE_ONCE(napi->napi_id, napi_id); 7009 hlist_add_head_rcu(&napi->napi_hash_node, 7010 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 7011 } 7012 7013 static void napi_hash_add_with_id(struct napi_struct *napi, 7014 unsigned int napi_id) 7015 { 7016 unsigned long flags; 7017 7018 spin_lock_irqsave(&napi_hash_lock, flags); 7019 WARN_ON_ONCE(napi_by_id(napi_id)); 7020 __napi_hash_add_with_id(napi, napi_id); 7021 spin_unlock_irqrestore(&napi_hash_lock, flags); 7022 } 7023 7024 static void napi_hash_add(struct napi_struct *napi) 7025 { 7026 unsigned long flags; 7027 7028 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 7029 return; 7030 7031 spin_lock_irqsave(&napi_hash_lock, flags); 7032 7033 /* 0..NR_CPUS range is reserved for sender_cpu use */ 7034 do { 7035 if (unlikely(!napi_id_valid(++napi_gen_id))) 7036 napi_gen_id = MIN_NAPI_ID; 7037 } while (napi_by_id(napi_gen_id)); 7038 7039 __napi_hash_add_with_id(napi, napi_gen_id); 7040 7041 spin_unlock_irqrestore(&napi_hash_lock, flags); 7042 } 7043 7044 /* Warning : caller is responsible to make sure rcu grace period 7045 * is respected before freeing memory containing @napi 7046 */ 7047 static void napi_hash_del(struct napi_struct *napi) 7048 { 7049 unsigned long flags; 7050 7051 spin_lock_irqsave(&napi_hash_lock, flags); 7052 7053 hlist_del_init_rcu(&napi->napi_hash_node); 7054 7055 spin_unlock_irqrestore(&napi_hash_lock, flags); 7056 } 7057 7058 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 7059 { 7060 struct napi_struct *napi; 7061 7062 napi = container_of(timer, struct napi_struct, timer); 7063 7064 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 7065 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 7066 */ 7067 if (!napi_disable_pending(napi) && 7068 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 7069 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 7070 __napi_schedule_irqoff(napi); 7071 } 7072 7073 return HRTIMER_NORESTART; 7074 } 7075 7076 static void napi_stop_kthread(struct napi_struct *napi) 7077 { 7078 unsigned long val, new; 7079 7080 /* Wait until the napi STATE_THREADED is unset. */ 7081 while (true) { 7082 val = READ_ONCE(napi->state); 7083 7084 /* If napi kthread own this napi or the napi is idle, 7085 * STATE_THREADED can be unset here. 7086 */ 7087 if ((val & NAPIF_STATE_SCHED_THREADED) || 7088 !(val & NAPIF_STATE_SCHED)) { 7089 new = val & (~NAPIF_STATE_THREADED); 7090 } else { 7091 msleep(20); 7092 continue; 7093 } 7094 7095 if (try_cmpxchg(&napi->state, &val, new)) 7096 break; 7097 } 7098 7099 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by 7100 * the kthread. 7101 */ 7102 while (true) { 7103 if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) 7104 break; 7105 7106 msleep(20); 7107 } 7108 7109 kthread_stop(napi->thread); 7110 napi->thread = NULL; 7111 } 7112 7113 int napi_set_threaded(struct napi_struct *napi, 7114 enum netdev_napi_threaded threaded) 7115 { 7116 if (threaded) { 7117 if (!napi->thread) { 7118 int err = napi_kthread_create(napi); 7119 7120 if (err) 7121 return err; 7122 } 7123 } 7124 7125 if (napi->config) 7126 napi->config->threaded = threaded; 7127 7128 /* Setting/unsetting threaded mode on a napi might not immediately 7129 * take effect, if the current napi instance is actively being 7130 * polled. In this case, the switch between threaded mode and 7131 * softirq mode will happen in the next round of napi_schedule(). 7132 * This should not cause hiccups/stalls to the live traffic. 7133 */ 7134 if (!threaded && napi->thread) { 7135 napi_stop_kthread(napi); 7136 } else { 7137 /* Make sure kthread is created before THREADED bit is set. */ 7138 smp_mb__before_atomic(); 7139 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 7140 } 7141 7142 return 0; 7143 } 7144 7145 int netif_set_threaded(struct net_device *dev, 7146 enum netdev_napi_threaded threaded) 7147 { 7148 struct napi_struct *napi; 7149 int i, err = 0; 7150 7151 netdev_assert_locked_or_invisible(dev); 7152 7153 if (threaded) { 7154 list_for_each_entry(napi, &dev->napi_list, dev_list) { 7155 if (!napi->thread) { 7156 err = napi_kthread_create(napi); 7157 if (err) { 7158 threaded = NETDEV_NAPI_THREADED_DISABLED; 7159 break; 7160 } 7161 } 7162 } 7163 } 7164 7165 WRITE_ONCE(dev->threaded, threaded); 7166 7167 /* The error should not occur as the kthreads are already created. */ 7168 list_for_each_entry(napi, &dev->napi_list, dev_list) 7169 WARN_ON_ONCE(napi_set_threaded(napi, threaded)); 7170 7171 /* Override the config for all NAPIs even if currently not listed */ 7172 for (i = 0; i < dev->num_napi_configs; i++) 7173 dev->napi_config[i].threaded = threaded; 7174 7175 return err; 7176 } 7177 7178 /** 7179 * netif_threaded_enable() - enable threaded NAPIs 7180 * @dev: net_device instance 7181 * 7182 * Enable threaded mode for the NAPI instances of the device. This may be useful 7183 * for devices where multiple NAPI instances get scheduled by a single 7184 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other 7185 * than the core where IRQ is mapped. 7186 * 7187 * This function should be called before @dev is registered. 7188 */ 7189 void netif_threaded_enable(struct net_device *dev) 7190 { 7191 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED)); 7192 } 7193 EXPORT_SYMBOL(netif_threaded_enable); 7194 7195 /** 7196 * netif_queue_set_napi - Associate queue with the napi 7197 * @dev: device to which NAPI and queue belong 7198 * @queue_index: Index of queue 7199 * @type: queue type as RX or TX 7200 * @napi: NAPI context, pass NULL to clear previously set NAPI 7201 * 7202 * Set queue with its corresponding napi context. This should be done after 7203 * registering the NAPI handler for the queue-vector and the queues have been 7204 * mapped to the corresponding interrupt vector. 7205 */ 7206 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 7207 enum netdev_queue_type type, struct napi_struct *napi) 7208 { 7209 struct netdev_rx_queue *rxq; 7210 struct netdev_queue *txq; 7211 7212 if (WARN_ON_ONCE(napi && !napi->dev)) 7213 return; 7214 netdev_ops_assert_locked_or_invisible(dev); 7215 7216 switch (type) { 7217 case NETDEV_QUEUE_TYPE_RX: 7218 rxq = __netif_get_rx_queue(dev, queue_index); 7219 rxq->napi = napi; 7220 return; 7221 case NETDEV_QUEUE_TYPE_TX: 7222 txq = netdev_get_tx_queue(dev, queue_index); 7223 txq->napi = napi; 7224 return; 7225 default: 7226 return; 7227 } 7228 } 7229 EXPORT_SYMBOL(netif_queue_set_napi); 7230 7231 static void 7232 netif_napi_irq_notify(struct irq_affinity_notify *notify, 7233 const cpumask_t *mask) 7234 { 7235 struct napi_struct *napi = 7236 container_of(notify, struct napi_struct, notify); 7237 #ifdef CONFIG_RFS_ACCEL 7238 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7239 int err; 7240 #endif 7241 7242 if (napi->config && napi->dev->irq_affinity_auto) 7243 cpumask_copy(&napi->config->affinity_mask, mask); 7244 7245 #ifdef CONFIG_RFS_ACCEL 7246 if (napi->dev->rx_cpu_rmap_auto) { 7247 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 7248 if (err) 7249 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 7250 err); 7251 } 7252 #endif 7253 } 7254 7255 #ifdef CONFIG_RFS_ACCEL 7256 static void netif_napi_affinity_release(struct kref *ref) 7257 { 7258 struct napi_struct *napi = 7259 container_of(ref, struct napi_struct, notify.kref); 7260 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7261 7262 netdev_assert_locked(napi->dev); 7263 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7264 &napi->state)); 7265 7266 if (!napi->dev->rx_cpu_rmap_auto) 7267 return; 7268 rmap->obj[napi->napi_rmap_idx] = NULL; 7269 napi->napi_rmap_idx = -1; 7270 cpu_rmap_put(rmap); 7271 } 7272 7273 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7274 { 7275 if (dev->rx_cpu_rmap_auto) 7276 return 0; 7277 7278 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7279 if (!dev->rx_cpu_rmap) 7280 return -ENOMEM; 7281 7282 dev->rx_cpu_rmap_auto = true; 7283 return 0; 7284 } 7285 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7286 7287 static void netif_del_cpu_rmap(struct net_device *dev) 7288 { 7289 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7290 7291 if (!dev->rx_cpu_rmap_auto) 7292 return; 7293 7294 /* Free the rmap */ 7295 cpu_rmap_put(rmap); 7296 dev->rx_cpu_rmap = NULL; 7297 dev->rx_cpu_rmap_auto = false; 7298 } 7299 7300 #else 7301 static void netif_napi_affinity_release(struct kref *ref) 7302 { 7303 } 7304 7305 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7306 { 7307 return 0; 7308 } 7309 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7310 7311 static void netif_del_cpu_rmap(struct net_device *dev) 7312 { 7313 } 7314 #endif 7315 7316 void netif_set_affinity_auto(struct net_device *dev) 7317 { 7318 unsigned int i, maxqs, numa; 7319 7320 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7321 numa = dev_to_node(&dev->dev); 7322 7323 for (i = 0; i < maxqs; i++) 7324 cpumask_set_cpu(cpumask_local_spread(i, numa), 7325 &dev->napi_config[i].affinity_mask); 7326 7327 dev->irq_affinity_auto = true; 7328 } 7329 EXPORT_SYMBOL(netif_set_affinity_auto); 7330 7331 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7332 { 7333 int rc; 7334 7335 netdev_assert_locked_or_invisible(napi->dev); 7336 7337 if (napi->irq == irq) 7338 return; 7339 7340 /* Remove existing resources */ 7341 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7342 irq_set_affinity_notifier(napi->irq, NULL); 7343 7344 napi->irq = irq; 7345 if (irq < 0 || 7346 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7347 return; 7348 7349 /* Abort for buggy drivers */ 7350 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7351 return; 7352 7353 #ifdef CONFIG_RFS_ACCEL 7354 if (napi->dev->rx_cpu_rmap_auto) { 7355 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7356 if (rc < 0) 7357 return; 7358 7359 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7360 napi->napi_rmap_idx = rc; 7361 } 7362 #endif 7363 7364 /* Use core IRQ notifier */ 7365 napi->notify.notify = netif_napi_irq_notify; 7366 napi->notify.release = netif_napi_affinity_release; 7367 rc = irq_set_affinity_notifier(irq, &napi->notify); 7368 if (rc) { 7369 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7370 rc); 7371 goto put_rmap; 7372 } 7373 7374 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7375 return; 7376 7377 put_rmap: 7378 #ifdef CONFIG_RFS_ACCEL 7379 if (napi->dev->rx_cpu_rmap_auto) { 7380 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7381 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7382 napi->napi_rmap_idx = -1; 7383 } 7384 #endif 7385 napi->notify.notify = NULL; 7386 napi->notify.release = NULL; 7387 } 7388 EXPORT_SYMBOL(netif_napi_set_irq_locked); 7389 7390 static void napi_restore_config(struct napi_struct *n) 7391 { 7392 n->defer_hard_irqs = n->config->defer_hard_irqs; 7393 n->gro_flush_timeout = n->config->gro_flush_timeout; 7394 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7395 7396 if (n->dev->irq_affinity_auto && 7397 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7398 irq_set_affinity(n->irq, &n->config->affinity_mask); 7399 7400 /* a NAPI ID might be stored in the config, if so use it. if not, use 7401 * napi_hash_add to generate one for us. 7402 */ 7403 if (n->config->napi_id) { 7404 napi_hash_add_with_id(n, n->config->napi_id); 7405 } else { 7406 napi_hash_add(n); 7407 n->config->napi_id = n->napi_id; 7408 } 7409 7410 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded)); 7411 } 7412 7413 static void napi_save_config(struct napi_struct *n) 7414 { 7415 n->config->defer_hard_irqs = n->defer_hard_irqs; 7416 n->config->gro_flush_timeout = n->gro_flush_timeout; 7417 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7418 napi_hash_del(n); 7419 } 7420 7421 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7422 * inherit an existing ID try to insert it at the right position. 7423 */ 7424 static void 7425 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7426 { 7427 unsigned int new_id, pos_id; 7428 struct list_head *higher; 7429 struct napi_struct *pos; 7430 7431 new_id = UINT_MAX; 7432 if (napi->config && napi->config->napi_id) 7433 new_id = napi->config->napi_id; 7434 7435 higher = &dev->napi_list; 7436 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7437 if (napi_id_valid(pos->napi_id)) 7438 pos_id = pos->napi_id; 7439 else if (pos->config) 7440 pos_id = pos->config->napi_id; 7441 else 7442 pos_id = UINT_MAX; 7443 7444 if (pos_id <= new_id) 7445 break; 7446 higher = &pos->dev_list; 7447 } 7448 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7449 } 7450 7451 /* Double check that napi_get_frags() allocates skbs with 7452 * skb->head being backed by slab, not a page fragment. 7453 * This is to make sure bug fixed in 3226b158e67c 7454 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7455 * does not accidentally come back. 7456 */ 7457 static void napi_get_frags_check(struct napi_struct *napi) 7458 { 7459 struct sk_buff *skb; 7460 7461 local_bh_disable(); 7462 skb = napi_get_frags(napi); 7463 WARN_ON_ONCE(skb && skb->head_frag); 7464 napi_free_frags(napi); 7465 local_bh_enable(); 7466 } 7467 7468 void netif_napi_add_weight_locked(struct net_device *dev, 7469 struct napi_struct *napi, 7470 int (*poll)(struct napi_struct *, int), 7471 int weight) 7472 { 7473 netdev_assert_locked(dev); 7474 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7475 return; 7476 7477 INIT_LIST_HEAD(&napi->poll_list); 7478 INIT_HLIST_NODE(&napi->napi_hash_node); 7479 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7480 gro_init(&napi->gro); 7481 napi->skb = NULL; 7482 napi->poll = poll; 7483 if (weight > NAPI_POLL_WEIGHT) 7484 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7485 weight); 7486 napi->weight = weight; 7487 napi->dev = dev; 7488 #ifdef CONFIG_NETPOLL 7489 napi->poll_owner = -1; 7490 #endif 7491 napi->list_owner = -1; 7492 set_bit(NAPI_STATE_SCHED, &napi->state); 7493 set_bit(NAPI_STATE_NPSVC, &napi->state); 7494 netif_napi_dev_list_add(dev, napi); 7495 7496 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7497 * configuration will be loaded in napi_enable 7498 */ 7499 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7500 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7501 7502 napi_get_frags_check(napi); 7503 /* Create kthread for this napi if dev->threaded is set. 7504 * Clear dev->threaded if kthread creation failed so that 7505 * threaded mode will not be enabled in napi_enable(). 7506 */ 7507 if (napi_get_threaded_config(dev, napi)) 7508 if (napi_kthread_create(napi)) 7509 dev->threaded = NETDEV_NAPI_THREADED_DISABLED; 7510 netif_napi_set_irq_locked(napi, -1); 7511 } 7512 EXPORT_SYMBOL(netif_napi_add_weight_locked); 7513 7514 void napi_disable_locked(struct napi_struct *n) 7515 { 7516 unsigned long val, new; 7517 7518 might_sleep(); 7519 netdev_assert_locked(n->dev); 7520 7521 set_bit(NAPI_STATE_DISABLE, &n->state); 7522 7523 val = READ_ONCE(n->state); 7524 do { 7525 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7526 usleep_range(20, 200); 7527 val = READ_ONCE(n->state); 7528 } 7529 7530 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7531 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 7532 } while (!try_cmpxchg(&n->state, &val, new)); 7533 7534 hrtimer_cancel(&n->timer); 7535 7536 if (n->config) 7537 napi_save_config(n); 7538 else 7539 napi_hash_del(n); 7540 7541 clear_bit(NAPI_STATE_DISABLE, &n->state); 7542 } 7543 EXPORT_SYMBOL(napi_disable_locked); 7544 7545 /** 7546 * napi_disable() - prevent NAPI from scheduling 7547 * @n: NAPI context 7548 * 7549 * Stop NAPI from being scheduled on this context. 7550 * Waits till any outstanding processing completes. 7551 * Takes netdev_lock() for associated net_device. 7552 */ 7553 void napi_disable(struct napi_struct *n) 7554 { 7555 netdev_lock(n->dev); 7556 napi_disable_locked(n); 7557 netdev_unlock(n->dev); 7558 } 7559 EXPORT_SYMBOL(napi_disable); 7560 7561 void napi_enable_locked(struct napi_struct *n) 7562 { 7563 unsigned long new, val = READ_ONCE(n->state); 7564 7565 if (n->config) 7566 napi_restore_config(n); 7567 else 7568 napi_hash_add(n); 7569 7570 do { 7571 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7572 7573 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7574 if (n->dev->threaded && n->thread) 7575 new |= NAPIF_STATE_THREADED; 7576 } while (!try_cmpxchg(&n->state, &val, new)); 7577 } 7578 EXPORT_SYMBOL(napi_enable_locked); 7579 7580 /** 7581 * napi_enable() - enable NAPI scheduling 7582 * @n: NAPI context 7583 * 7584 * Enable scheduling of a NAPI instance. 7585 * Must be paired with napi_disable(). 7586 * Takes netdev_lock() for associated net_device. 7587 */ 7588 void napi_enable(struct napi_struct *n) 7589 { 7590 netdev_lock(n->dev); 7591 napi_enable_locked(n); 7592 netdev_unlock(n->dev); 7593 } 7594 EXPORT_SYMBOL(napi_enable); 7595 7596 /* Must be called in process context */ 7597 void __netif_napi_del_locked(struct napi_struct *napi) 7598 { 7599 netdev_assert_locked(napi->dev); 7600 7601 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7602 return; 7603 7604 /* Make sure NAPI is disabled (or was never enabled). */ 7605 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7606 7607 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7608 irq_set_affinity_notifier(napi->irq, NULL); 7609 7610 if (napi->config) { 7611 napi->index = -1; 7612 napi->config = NULL; 7613 } 7614 7615 list_del_rcu(&napi->dev_list); 7616 napi_free_frags(napi); 7617 7618 gro_cleanup(&napi->gro); 7619 7620 if (napi->thread) { 7621 kthread_stop(napi->thread); 7622 napi->thread = NULL; 7623 } 7624 } 7625 EXPORT_SYMBOL(__netif_napi_del_locked); 7626 7627 static int __napi_poll(struct napi_struct *n, bool *repoll) 7628 { 7629 int work, weight; 7630 7631 weight = n->weight; 7632 7633 /* This NAPI_STATE_SCHED test is for avoiding a race 7634 * with netpoll's poll_napi(). Only the entity which 7635 * obtains the lock and sees NAPI_STATE_SCHED set will 7636 * actually make the ->poll() call. Therefore we avoid 7637 * accidentally calling ->poll() when NAPI is not scheduled. 7638 */ 7639 work = 0; 7640 if (napi_is_scheduled(n)) { 7641 work = n->poll(n, weight); 7642 trace_napi_poll(n, work, weight); 7643 7644 xdp_do_check_flushed(n); 7645 } 7646 7647 if (unlikely(work > weight)) 7648 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7649 n->poll, work, weight); 7650 7651 if (likely(work < weight)) 7652 return work; 7653 7654 /* Drivers must not modify the NAPI state if they 7655 * consume the entire weight. In such cases this code 7656 * still "owns" the NAPI instance and therefore can 7657 * move the instance around on the list at-will. 7658 */ 7659 if (unlikely(napi_disable_pending(n))) { 7660 napi_complete(n); 7661 return work; 7662 } 7663 7664 /* The NAPI context has more processing work, but busy-polling 7665 * is preferred. Exit early. 7666 */ 7667 if (napi_prefer_busy_poll(n)) { 7668 if (napi_complete_done(n, work)) { 7669 /* If timeout is not set, we need to make sure 7670 * that the NAPI is re-scheduled. 7671 */ 7672 napi_schedule(n); 7673 } 7674 return work; 7675 } 7676 7677 /* Flush too old packets. If HZ < 1000, flush all packets */ 7678 gro_flush_normal(&n->gro, HZ >= 1000); 7679 7680 /* Some drivers may have called napi_schedule 7681 * prior to exhausting their budget. 7682 */ 7683 if (unlikely(!list_empty(&n->poll_list))) { 7684 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7685 n->dev ? n->dev->name : "backlog"); 7686 return work; 7687 } 7688 7689 *repoll = true; 7690 7691 return work; 7692 } 7693 7694 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7695 { 7696 bool do_repoll = false; 7697 void *have; 7698 int work; 7699 7700 list_del_init(&n->poll_list); 7701 7702 have = netpoll_poll_lock(n); 7703 7704 work = __napi_poll(n, &do_repoll); 7705 7706 if (do_repoll) { 7707 #if defined(CONFIG_DEBUG_NET) 7708 if (unlikely(!napi_is_scheduled(n))) 7709 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", 7710 n->dev->name, n->poll); 7711 #endif 7712 list_add_tail(&n->poll_list, repoll); 7713 } 7714 netpoll_poll_unlock(have); 7715 7716 return work; 7717 } 7718 7719 static int napi_thread_wait(struct napi_struct *napi) 7720 { 7721 set_current_state(TASK_INTERRUPTIBLE); 7722 7723 while (!kthread_should_stop()) { 7724 /* Testing SCHED_THREADED bit here to make sure the current 7725 * kthread owns this napi and could poll on this napi. 7726 * Testing SCHED bit is not enough because SCHED bit might be 7727 * set by some other busy poll thread or by napi_disable(). 7728 */ 7729 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7730 WARN_ON(!list_empty(&napi->poll_list)); 7731 __set_current_state(TASK_RUNNING); 7732 return 0; 7733 } 7734 7735 schedule(); 7736 set_current_state(TASK_INTERRUPTIBLE); 7737 } 7738 __set_current_state(TASK_RUNNING); 7739 7740 return -1; 7741 } 7742 7743 static void napi_threaded_poll_loop(struct napi_struct *napi) 7744 { 7745 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7746 struct softnet_data *sd; 7747 unsigned long last_qs = jiffies; 7748 7749 for (;;) { 7750 bool repoll = false; 7751 void *have; 7752 7753 local_bh_disable(); 7754 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7755 7756 sd = this_cpu_ptr(&softnet_data); 7757 sd->in_napi_threaded_poll = true; 7758 7759 have = netpoll_poll_lock(napi); 7760 __napi_poll(napi, &repoll); 7761 netpoll_poll_unlock(have); 7762 7763 sd->in_napi_threaded_poll = false; 7764 barrier(); 7765 7766 if (sd_has_rps_ipi_waiting(sd)) { 7767 local_irq_disable(); 7768 net_rps_action_and_irq_enable(sd); 7769 } 7770 skb_defer_free_flush(); 7771 bpf_net_ctx_clear(bpf_net_ctx); 7772 local_bh_enable(); 7773 7774 if (!repoll) 7775 break; 7776 7777 rcu_softirq_qs_periodic(last_qs); 7778 cond_resched(); 7779 } 7780 } 7781 7782 static int napi_threaded_poll(void *data) 7783 { 7784 struct napi_struct *napi = data; 7785 7786 while (!napi_thread_wait(napi)) 7787 napi_threaded_poll_loop(napi); 7788 7789 return 0; 7790 } 7791 7792 static __latent_entropy void net_rx_action(void) 7793 { 7794 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7795 unsigned long time_limit = jiffies + 7796 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7797 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7798 int budget = READ_ONCE(net_hotdata.netdev_budget); 7799 LIST_HEAD(list); 7800 LIST_HEAD(repoll); 7801 7802 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7803 start: 7804 sd->in_net_rx_action = true; 7805 local_irq_disable(); 7806 list_splice_init(&sd->poll_list, &list); 7807 local_irq_enable(); 7808 7809 for (;;) { 7810 struct napi_struct *n; 7811 7812 skb_defer_free_flush(); 7813 7814 if (list_empty(&list)) { 7815 if (list_empty(&repoll)) { 7816 sd->in_net_rx_action = false; 7817 barrier(); 7818 /* We need to check if ____napi_schedule() 7819 * had refilled poll_list while 7820 * sd->in_net_rx_action was true. 7821 */ 7822 if (!list_empty(&sd->poll_list)) 7823 goto start; 7824 if (!sd_has_rps_ipi_waiting(sd)) 7825 goto end; 7826 } 7827 break; 7828 } 7829 7830 n = list_first_entry(&list, struct napi_struct, poll_list); 7831 budget -= napi_poll(n, &repoll); 7832 7833 /* If softirq window is exhausted then punt. 7834 * Allow this to run for 2 jiffies since which will allow 7835 * an average latency of 1.5/HZ. 7836 */ 7837 if (unlikely(budget <= 0 || 7838 time_after_eq(jiffies, time_limit))) { 7839 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7840 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7841 break; 7842 } 7843 } 7844 7845 local_irq_disable(); 7846 7847 list_splice_tail_init(&sd->poll_list, &list); 7848 list_splice_tail(&repoll, &list); 7849 list_splice(&list, &sd->poll_list); 7850 if (!list_empty(&sd->poll_list)) 7851 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7852 else 7853 sd->in_net_rx_action = false; 7854 7855 net_rps_action_and_irq_enable(sd); 7856 end: 7857 bpf_net_ctx_clear(bpf_net_ctx); 7858 } 7859 7860 struct netdev_adjacent { 7861 struct net_device *dev; 7862 netdevice_tracker dev_tracker; 7863 7864 /* upper master flag, there can only be one master device per list */ 7865 bool master; 7866 7867 /* lookup ignore flag */ 7868 bool ignore; 7869 7870 /* counter for the number of times this device was added to us */ 7871 u16 ref_nr; 7872 7873 /* private field for the users */ 7874 void *private; 7875 7876 struct list_head list; 7877 struct rcu_head rcu; 7878 }; 7879 7880 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7881 struct list_head *adj_list) 7882 { 7883 struct netdev_adjacent *adj; 7884 7885 list_for_each_entry(adj, adj_list, list) { 7886 if (adj->dev == adj_dev) 7887 return adj; 7888 } 7889 return NULL; 7890 } 7891 7892 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7893 struct netdev_nested_priv *priv) 7894 { 7895 struct net_device *dev = (struct net_device *)priv->data; 7896 7897 return upper_dev == dev; 7898 } 7899 7900 /** 7901 * netdev_has_upper_dev - Check if device is linked to an upper device 7902 * @dev: device 7903 * @upper_dev: upper device to check 7904 * 7905 * Find out if a device is linked to specified upper device and return true 7906 * in case it is. Note that this checks only immediate upper device, 7907 * not through a complete stack of devices. The caller must hold the RTNL lock. 7908 */ 7909 bool netdev_has_upper_dev(struct net_device *dev, 7910 struct net_device *upper_dev) 7911 { 7912 struct netdev_nested_priv priv = { 7913 .data = (void *)upper_dev, 7914 }; 7915 7916 ASSERT_RTNL(); 7917 7918 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7919 &priv); 7920 } 7921 EXPORT_SYMBOL(netdev_has_upper_dev); 7922 7923 /** 7924 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7925 * @dev: device 7926 * @upper_dev: upper device to check 7927 * 7928 * Find out if a device is linked to specified upper device and return true 7929 * in case it is. Note that this checks the entire upper device chain. 7930 * The caller must hold rcu lock. 7931 */ 7932 7933 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7934 struct net_device *upper_dev) 7935 { 7936 struct netdev_nested_priv priv = { 7937 .data = (void *)upper_dev, 7938 }; 7939 7940 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7941 &priv); 7942 } 7943 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7944 7945 /** 7946 * netdev_has_any_upper_dev - Check if device is linked to some device 7947 * @dev: device 7948 * 7949 * Find out if a device is linked to an upper device and return true in case 7950 * it is. The caller must hold the RTNL lock. 7951 */ 7952 bool netdev_has_any_upper_dev(struct net_device *dev) 7953 { 7954 ASSERT_RTNL(); 7955 7956 return !list_empty(&dev->adj_list.upper); 7957 } 7958 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7959 7960 /** 7961 * netdev_master_upper_dev_get - Get master upper device 7962 * @dev: device 7963 * 7964 * Find a master upper device and return pointer to it or NULL in case 7965 * it's not there. The caller must hold the RTNL lock. 7966 */ 7967 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7968 { 7969 struct netdev_adjacent *upper; 7970 7971 ASSERT_RTNL(); 7972 7973 if (list_empty(&dev->adj_list.upper)) 7974 return NULL; 7975 7976 upper = list_first_entry(&dev->adj_list.upper, 7977 struct netdev_adjacent, list); 7978 if (likely(upper->master)) 7979 return upper->dev; 7980 return NULL; 7981 } 7982 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7983 7984 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7985 { 7986 struct netdev_adjacent *upper; 7987 7988 ASSERT_RTNL(); 7989 7990 if (list_empty(&dev->adj_list.upper)) 7991 return NULL; 7992 7993 upper = list_first_entry(&dev->adj_list.upper, 7994 struct netdev_adjacent, list); 7995 if (likely(upper->master) && !upper->ignore) 7996 return upper->dev; 7997 return NULL; 7998 } 7999 8000 /** 8001 * netdev_has_any_lower_dev - Check if device is linked to some device 8002 * @dev: device 8003 * 8004 * Find out if a device is linked to a lower device and return true in case 8005 * it is. The caller must hold the RTNL lock. 8006 */ 8007 static bool netdev_has_any_lower_dev(struct net_device *dev) 8008 { 8009 ASSERT_RTNL(); 8010 8011 return !list_empty(&dev->adj_list.lower); 8012 } 8013 8014 void *netdev_adjacent_get_private(struct list_head *adj_list) 8015 { 8016 struct netdev_adjacent *adj; 8017 8018 adj = list_entry(adj_list, struct netdev_adjacent, list); 8019 8020 return adj->private; 8021 } 8022 EXPORT_SYMBOL(netdev_adjacent_get_private); 8023 8024 /** 8025 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 8026 * @dev: device 8027 * @iter: list_head ** of the current position 8028 * 8029 * Gets the next device from the dev's upper list, starting from iter 8030 * position. The caller must hold RCU read lock. 8031 */ 8032 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 8033 struct list_head **iter) 8034 { 8035 struct netdev_adjacent *upper; 8036 8037 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 8038 8039 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8040 8041 if (&upper->list == &dev->adj_list.upper) 8042 return NULL; 8043 8044 *iter = &upper->list; 8045 8046 return upper->dev; 8047 } 8048 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 8049 8050 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 8051 struct list_head **iter, 8052 bool *ignore) 8053 { 8054 struct netdev_adjacent *upper; 8055 8056 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 8057 8058 if (&upper->list == &dev->adj_list.upper) 8059 return NULL; 8060 8061 *iter = &upper->list; 8062 *ignore = upper->ignore; 8063 8064 return upper->dev; 8065 } 8066 8067 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 8068 struct list_head **iter) 8069 { 8070 struct netdev_adjacent *upper; 8071 8072 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 8073 8074 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8075 8076 if (&upper->list == &dev->adj_list.upper) 8077 return NULL; 8078 8079 *iter = &upper->list; 8080 8081 return upper->dev; 8082 } 8083 8084 static int __netdev_walk_all_upper_dev(struct net_device *dev, 8085 int (*fn)(struct net_device *dev, 8086 struct netdev_nested_priv *priv), 8087 struct netdev_nested_priv *priv) 8088 { 8089 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8090 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8091 int ret, cur = 0; 8092 bool ignore; 8093 8094 now = dev; 8095 iter = &dev->adj_list.upper; 8096 8097 while (1) { 8098 if (now != dev) { 8099 ret = fn(now, priv); 8100 if (ret) 8101 return ret; 8102 } 8103 8104 next = NULL; 8105 while (1) { 8106 udev = __netdev_next_upper_dev(now, &iter, &ignore); 8107 if (!udev) 8108 break; 8109 if (ignore) 8110 continue; 8111 8112 next = udev; 8113 niter = &udev->adj_list.upper; 8114 dev_stack[cur] = now; 8115 iter_stack[cur++] = iter; 8116 break; 8117 } 8118 8119 if (!next) { 8120 if (!cur) 8121 return 0; 8122 next = dev_stack[--cur]; 8123 niter = iter_stack[cur]; 8124 } 8125 8126 now = next; 8127 iter = niter; 8128 } 8129 8130 return 0; 8131 } 8132 8133 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 8134 int (*fn)(struct net_device *dev, 8135 struct netdev_nested_priv *priv), 8136 struct netdev_nested_priv *priv) 8137 { 8138 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8139 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8140 int ret, cur = 0; 8141 8142 now = dev; 8143 iter = &dev->adj_list.upper; 8144 8145 while (1) { 8146 if (now != dev) { 8147 ret = fn(now, priv); 8148 if (ret) 8149 return ret; 8150 } 8151 8152 next = NULL; 8153 while (1) { 8154 udev = netdev_next_upper_dev_rcu(now, &iter); 8155 if (!udev) 8156 break; 8157 8158 next = udev; 8159 niter = &udev->adj_list.upper; 8160 dev_stack[cur] = now; 8161 iter_stack[cur++] = iter; 8162 break; 8163 } 8164 8165 if (!next) { 8166 if (!cur) 8167 return 0; 8168 next = dev_stack[--cur]; 8169 niter = iter_stack[cur]; 8170 } 8171 8172 now = next; 8173 iter = niter; 8174 } 8175 8176 return 0; 8177 } 8178 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 8179 8180 static bool __netdev_has_upper_dev(struct net_device *dev, 8181 struct net_device *upper_dev) 8182 { 8183 struct netdev_nested_priv priv = { 8184 .flags = 0, 8185 .data = (void *)upper_dev, 8186 }; 8187 8188 ASSERT_RTNL(); 8189 8190 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 8191 &priv); 8192 } 8193 8194 /** 8195 * netdev_lower_get_next_private - Get the next ->private from the 8196 * lower neighbour list 8197 * @dev: device 8198 * @iter: list_head ** of the current position 8199 * 8200 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8201 * list, starting from iter position. The caller must hold either hold the 8202 * RTNL lock or its own locking that guarantees that the neighbour lower 8203 * list will remain unchanged. 8204 */ 8205 void *netdev_lower_get_next_private(struct net_device *dev, 8206 struct list_head **iter) 8207 { 8208 struct netdev_adjacent *lower; 8209 8210 lower = list_entry(*iter, struct netdev_adjacent, list); 8211 8212 if (&lower->list == &dev->adj_list.lower) 8213 return NULL; 8214 8215 *iter = lower->list.next; 8216 8217 return lower->private; 8218 } 8219 EXPORT_SYMBOL(netdev_lower_get_next_private); 8220 8221 /** 8222 * netdev_lower_get_next_private_rcu - Get the next ->private from the 8223 * lower neighbour list, RCU 8224 * variant 8225 * @dev: device 8226 * @iter: list_head ** of the current position 8227 * 8228 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8229 * list, starting from iter position. The caller must hold RCU read lock. 8230 */ 8231 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 8232 struct list_head **iter) 8233 { 8234 struct netdev_adjacent *lower; 8235 8236 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 8237 8238 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8239 8240 if (&lower->list == &dev->adj_list.lower) 8241 return NULL; 8242 8243 *iter = &lower->list; 8244 8245 return lower->private; 8246 } 8247 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 8248 8249 /** 8250 * netdev_lower_get_next - Get the next device from the lower neighbour 8251 * list 8252 * @dev: device 8253 * @iter: list_head ** of the current position 8254 * 8255 * Gets the next netdev_adjacent from the dev's lower neighbour 8256 * list, starting from iter position. The caller must hold RTNL lock or 8257 * its own locking that guarantees that the neighbour lower 8258 * list will remain unchanged. 8259 */ 8260 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 8261 { 8262 struct netdev_adjacent *lower; 8263 8264 lower = list_entry(*iter, struct netdev_adjacent, list); 8265 8266 if (&lower->list == &dev->adj_list.lower) 8267 return NULL; 8268 8269 *iter = lower->list.next; 8270 8271 return lower->dev; 8272 } 8273 EXPORT_SYMBOL(netdev_lower_get_next); 8274 8275 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8276 struct list_head **iter) 8277 { 8278 struct netdev_adjacent *lower; 8279 8280 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8281 8282 if (&lower->list == &dev->adj_list.lower) 8283 return NULL; 8284 8285 *iter = &lower->list; 8286 8287 return lower->dev; 8288 } 8289 8290 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8291 struct list_head **iter, 8292 bool *ignore) 8293 { 8294 struct netdev_adjacent *lower; 8295 8296 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8297 8298 if (&lower->list == &dev->adj_list.lower) 8299 return NULL; 8300 8301 *iter = &lower->list; 8302 *ignore = lower->ignore; 8303 8304 return lower->dev; 8305 } 8306 8307 int netdev_walk_all_lower_dev(struct net_device *dev, 8308 int (*fn)(struct net_device *dev, 8309 struct netdev_nested_priv *priv), 8310 struct netdev_nested_priv *priv) 8311 { 8312 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8313 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8314 int ret, cur = 0; 8315 8316 now = dev; 8317 iter = &dev->adj_list.lower; 8318 8319 while (1) { 8320 if (now != dev) { 8321 ret = fn(now, priv); 8322 if (ret) 8323 return ret; 8324 } 8325 8326 next = NULL; 8327 while (1) { 8328 ldev = netdev_next_lower_dev(now, &iter); 8329 if (!ldev) 8330 break; 8331 8332 next = ldev; 8333 niter = &ldev->adj_list.lower; 8334 dev_stack[cur] = now; 8335 iter_stack[cur++] = iter; 8336 break; 8337 } 8338 8339 if (!next) { 8340 if (!cur) 8341 return 0; 8342 next = dev_stack[--cur]; 8343 niter = iter_stack[cur]; 8344 } 8345 8346 now = next; 8347 iter = niter; 8348 } 8349 8350 return 0; 8351 } 8352 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8353 8354 static int __netdev_walk_all_lower_dev(struct net_device *dev, 8355 int (*fn)(struct net_device *dev, 8356 struct netdev_nested_priv *priv), 8357 struct netdev_nested_priv *priv) 8358 { 8359 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8360 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8361 int ret, cur = 0; 8362 bool ignore; 8363 8364 now = dev; 8365 iter = &dev->adj_list.lower; 8366 8367 while (1) { 8368 if (now != dev) { 8369 ret = fn(now, priv); 8370 if (ret) 8371 return ret; 8372 } 8373 8374 next = NULL; 8375 while (1) { 8376 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8377 if (!ldev) 8378 break; 8379 if (ignore) 8380 continue; 8381 8382 next = ldev; 8383 niter = &ldev->adj_list.lower; 8384 dev_stack[cur] = now; 8385 iter_stack[cur++] = iter; 8386 break; 8387 } 8388 8389 if (!next) { 8390 if (!cur) 8391 return 0; 8392 next = dev_stack[--cur]; 8393 niter = iter_stack[cur]; 8394 } 8395 8396 now = next; 8397 iter = niter; 8398 } 8399 8400 return 0; 8401 } 8402 8403 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8404 struct list_head **iter) 8405 { 8406 struct netdev_adjacent *lower; 8407 8408 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8409 if (&lower->list == &dev->adj_list.lower) 8410 return NULL; 8411 8412 *iter = &lower->list; 8413 8414 return lower->dev; 8415 } 8416 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8417 8418 static u8 __netdev_upper_depth(struct net_device *dev) 8419 { 8420 struct net_device *udev; 8421 struct list_head *iter; 8422 u8 max_depth = 0; 8423 bool ignore; 8424 8425 for (iter = &dev->adj_list.upper, 8426 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8427 udev; 8428 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8429 if (ignore) 8430 continue; 8431 if (max_depth < udev->upper_level) 8432 max_depth = udev->upper_level; 8433 } 8434 8435 return max_depth; 8436 } 8437 8438 static u8 __netdev_lower_depth(struct net_device *dev) 8439 { 8440 struct net_device *ldev; 8441 struct list_head *iter; 8442 u8 max_depth = 0; 8443 bool ignore; 8444 8445 for (iter = &dev->adj_list.lower, 8446 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8447 ldev; 8448 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8449 if (ignore) 8450 continue; 8451 if (max_depth < ldev->lower_level) 8452 max_depth = ldev->lower_level; 8453 } 8454 8455 return max_depth; 8456 } 8457 8458 static int __netdev_update_upper_level(struct net_device *dev, 8459 struct netdev_nested_priv *__unused) 8460 { 8461 dev->upper_level = __netdev_upper_depth(dev) + 1; 8462 return 0; 8463 } 8464 8465 #ifdef CONFIG_LOCKDEP 8466 static LIST_HEAD(net_unlink_list); 8467 8468 static void net_unlink_todo(struct net_device *dev) 8469 { 8470 if (list_empty(&dev->unlink_list)) 8471 list_add_tail(&dev->unlink_list, &net_unlink_list); 8472 } 8473 #endif 8474 8475 static int __netdev_update_lower_level(struct net_device *dev, 8476 struct netdev_nested_priv *priv) 8477 { 8478 dev->lower_level = __netdev_lower_depth(dev) + 1; 8479 8480 #ifdef CONFIG_LOCKDEP 8481 if (!priv) 8482 return 0; 8483 8484 if (priv->flags & NESTED_SYNC_IMM) 8485 dev->nested_level = dev->lower_level - 1; 8486 if (priv->flags & NESTED_SYNC_TODO) 8487 net_unlink_todo(dev); 8488 #endif 8489 return 0; 8490 } 8491 8492 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8493 int (*fn)(struct net_device *dev, 8494 struct netdev_nested_priv *priv), 8495 struct netdev_nested_priv *priv) 8496 { 8497 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8498 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8499 int ret, cur = 0; 8500 8501 now = dev; 8502 iter = &dev->adj_list.lower; 8503 8504 while (1) { 8505 if (now != dev) { 8506 ret = fn(now, priv); 8507 if (ret) 8508 return ret; 8509 } 8510 8511 next = NULL; 8512 while (1) { 8513 ldev = netdev_next_lower_dev_rcu(now, &iter); 8514 if (!ldev) 8515 break; 8516 8517 next = ldev; 8518 niter = &ldev->adj_list.lower; 8519 dev_stack[cur] = now; 8520 iter_stack[cur++] = iter; 8521 break; 8522 } 8523 8524 if (!next) { 8525 if (!cur) 8526 return 0; 8527 next = dev_stack[--cur]; 8528 niter = iter_stack[cur]; 8529 } 8530 8531 now = next; 8532 iter = niter; 8533 } 8534 8535 return 0; 8536 } 8537 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8538 8539 /** 8540 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8541 * lower neighbour list, RCU 8542 * variant 8543 * @dev: device 8544 * 8545 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8546 * list. The caller must hold RCU read lock. 8547 */ 8548 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8549 { 8550 struct netdev_adjacent *lower; 8551 8552 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8553 struct netdev_adjacent, list); 8554 if (lower) 8555 return lower->private; 8556 return NULL; 8557 } 8558 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8559 8560 /** 8561 * netdev_master_upper_dev_get_rcu - Get master upper device 8562 * @dev: device 8563 * 8564 * Find a master upper device and return pointer to it or NULL in case 8565 * it's not there. The caller must hold the RCU read lock. 8566 */ 8567 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8568 { 8569 struct netdev_adjacent *upper; 8570 8571 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8572 struct netdev_adjacent, list); 8573 if (upper && likely(upper->master)) 8574 return upper->dev; 8575 return NULL; 8576 } 8577 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8578 8579 static int netdev_adjacent_sysfs_add(struct net_device *dev, 8580 struct net_device *adj_dev, 8581 struct list_head *dev_list) 8582 { 8583 char linkname[IFNAMSIZ+7]; 8584 8585 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8586 "upper_%s" : "lower_%s", adj_dev->name); 8587 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8588 linkname); 8589 } 8590 static void netdev_adjacent_sysfs_del(struct net_device *dev, 8591 char *name, 8592 struct list_head *dev_list) 8593 { 8594 char linkname[IFNAMSIZ+7]; 8595 8596 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8597 "upper_%s" : "lower_%s", name); 8598 sysfs_remove_link(&(dev->dev.kobj), linkname); 8599 } 8600 8601 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8602 struct net_device *adj_dev, 8603 struct list_head *dev_list) 8604 { 8605 return (dev_list == &dev->adj_list.upper || 8606 dev_list == &dev->adj_list.lower) && 8607 net_eq(dev_net(dev), dev_net(adj_dev)); 8608 } 8609 8610 static int __netdev_adjacent_dev_insert(struct net_device *dev, 8611 struct net_device *adj_dev, 8612 struct list_head *dev_list, 8613 void *private, bool master) 8614 { 8615 struct netdev_adjacent *adj; 8616 int ret; 8617 8618 adj = __netdev_find_adj(adj_dev, dev_list); 8619 8620 if (adj) { 8621 adj->ref_nr += 1; 8622 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8623 dev->name, adj_dev->name, adj->ref_nr); 8624 8625 return 0; 8626 } 8627 8628 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8629 if (!adj) 8630 return -ENOMEM; 8631 8632 adj->dev = adj_dev; 8633 adj->master = master; 8634 adj->ref_nr = 1; 8635 adj->private = private; 8636 adj->ignore = false; 8637 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8638 8639 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8640 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8641 8642 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8643 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8644 if (ret) 8645 goto free_adj; 8646 } 8647 8648 /* Ensure that master link is always the first item in list. */ 8649 if (master) { 8650 ret = sysfs_create_link(&(dev->dev.kobj), 8651 &(adj_dev->dev.kobj), "master"); 8652 if (ret) 8653 goto remove_symlinks; 8654 8655 list_add_rcu(&adj->list, dev_list); 8656 } else { 8657 list_add_tail_rcu(&adj->list, dev_list); 8658 } 8659 8660 return 0; 8661 8662 remove_symlinks: 8663 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8664 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8665 free_adj: 8666 netdev_put(adj_dev, &adj->dev_tracker); 8667 kfree(adj); 8668 8669 return ret; 8670 } 8671 8672 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8673 struct net_device *adj_dev, 8674 u16 ref_nr, 8675 struct list_head *dev_list) 8676 { 8677 struct netdev_adjacent *adj; 8678 8679 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8680 dev->name, adj_dev->name, ref_nr); 8681 8682 adj = __netdev_find_adj(adj_dev, dev_list); 8683 8684 if (!adj) { 8685 pr_err("Adjacency does not exist for device %s from %s\n", 8686 dev->name, adj_dev->name); 8687 WARN_ON(1); 8688 return; 8689 } 8690 8691 if (adj->ref_nr > ref_nr) { 8692 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8693 dev->name, adj_dev->name, ref_nr, 8694 adj->ref_nr - ref_nr); 8695 adj->ref_nr -= ref_nr; 8696 return; 8697 } 8698 8699 if (adj->master) 8700 sysfs_remove_link(&(dev->dev.kobj), "master"); 8701 8702 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8703 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8704 8705 list_del_rcu(&adj->list); 8706 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8707 adj_dev->name, dev->name, adj_dev->name); 8708 netdev_put(adj_dev, &adj->dev_tracker); 8709 kfree_rcu(adj, rcu); 8710 } 8711 8712 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8713 struct net_device *upper_dev, 8714 struct list_head *up_list, 8715 struct list_head *down_list, 8716 void *private, bool master) 8717 { 8718 int ret; 8719 8720 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8721 private, master); 8722 if (ret) 8723 return ret; 8724 8725 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8726 private, false); 8727 if (ret) { 8728 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8729 return ret; 8730 } 8731 8732 return 0; 8733 } 8734 8735 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8736 struct net_device *upper_dev, 8737 u16 ref_nr, 8738 struct list_head *up_list, 8739 struct list_head *down_list) 8740 { 8741 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8742 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8743 } 8744 8745 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8746 struct net_device *upper_dev, 8747 void *private, bool master) 8748 { 8749 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8750 &dev->adj_list.upper, 8751 &upper_dev->adj_list.lower, 8752 private, master); 8753 } 8754 8755 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8756 struct net_device *upper_dev) 8757 { 8758 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8759 &dev->adj_list.upper, 8760 &upper_dev->adj_list.lower); 8761 } 8762 8763 static int __netdev_upper_dev_link(struct net_device *dev, 8764 struct net_device *upper_dev, bool master, 8765 void *upper_priv, void *upper_info, 8766 struct netdev_nested_priv *priv, 8767 struct netlink_ext_ack *extack) 8768 { 8769 struct netdev_notifier_changeupper_info changeupper_info = { 8770 .info = { 8771 .dev = dev, 8772 .extack = extack, 8773 }, 8774 .upper_dev = upper_dev, 8775 .master = master, 8776 .linking = true, 8777 .upper_info = upper_info, 8778 }; 8779 struct net_device *master_dev; 8780 int ret = 0; 8781 8782 ASSERT_RTNL(); 8783 8784 if (dev == upper_dev) 8785 return -EBUSY; 8786 8787 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8788 if (__netdev_has_upper_dev(upper_dev, dev)) 8789 return -EBUSY; 8790 8791 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8792 return -EMLINK; 8793 8794 if (!master) { 8795 if (__netdev_has_upper_dev(dev, upper_dev)) 8796 return -EEXIST; 8797 } else { 8798 master_dev = __netdev_master_upper_dev_get(dev); 8799 if (master_dev) 8800 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8801 } 8802 8803 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8804 &changeupper_info.info); 8805 ret = notifier_to_errno(ret); 8806 if (ret) 8807 return ret; 8808 8809 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8810 master); 8811 if (ret) 8812 return ret; 8813 8814 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8815 &changeupper_info.info); 8816 ret = notifier_to_errno(ret); 8817 if (ret) 8818 goto rollback; 8819 8820 __netdev_update_upper_level(dev, NULL); 8821 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8822 8823 __netdev_update_lower_level(upper_dev, priv); 8824 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8825 priv); 8826 8827 return 0; 8828 8829 rollback: 8830 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8831 8832 return ret; 8833 } 8834 8835 /** 8836 * netdev_upper_dev_link - Add a link to the upper device 8837 * @dev: device 8838 * @upper_dev: new upper device 8839 * @extack: netlink extended ack 8840 * 8841 * Adds a link to device which is upper to this one. The caller must hold 8842 * the RTNL lock. On a failure a negative errno code is returned. 8843 * On success the reference counts are adjusted and the function 8844 * returns zero. 8845 */ 8846 int netdev_upper_dev_link(struct net_device *dev, 8847 struct net_device *upper_dev, 8848 struct netlink_ext_ack *extack) 8849 { 8850 struct netdev_nested_priv priv = { 8851 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8852 .data = NULL, 8853 }; 8854 8855 return __netdev_upper_dev_link(dev, upper_dev, false, 8856 NULL, NULL, &priv, extack); 8857 } 8858 EXPORT_SYMBOL(netdev_upper_dev_link); 8859 8860 /** 8861 * netdev_master_upper_dev_link - Add a master link to the upper device 8862 * @dev: device 8863 * @upper_dev: new upper device 8864 * @upper_priv: upper device private 8865 * @upper_info: upper info to be passed down via notifier 8866 * @extack: netlink extended ack 8867 * 8868 * Adds a link to device which is upper to this one. In this case, only 8869 * one master upper device can be linked, although other non-master devices 8870 * might be linked as well. The caller must hold the RTNL lock. 8871 * On a failure a negative errno code is returned. On success the reference 8872 * counts are adjusted and the function returns zero. 8873 */ 8874 int netdev_master_upper_dev_link(struct net_device *dev, 8875 struct net_device *upper_dev, 8876 void *upper_priv, void *upper_info, 8877 struct netlink_ext_ack *extack) 8878 { 8879 struct netdev_nested_priv priv = { 8880 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8881 .data = NULL, 8882 }; 8883 8884 return __netdev_upper_dev_link(dev, upper_dev, true, 8885 upper_priv, upper_info, &priv, extack); 8886 } 8887 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8888 8889 static void __netdev_upper_dev_unlink(struct net_device *dev, 8890 struct net_device *upper_dev, 8891 struct netdev_nested_priv *priv) 8892 { 8893 struct netdev_notifier_changeupper_info changeupper_info = { 8894 .info = { 8895 .dev = dev, 8896 }, 8897 .upper_dev = upper_dev, 8898 .linking = false, 8899 }; 8900 8901 ASSERT_RTNL(); 8902 8903 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8904 8905 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8906 &changeupper_info.info); 8907 8908 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8909 8910 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8911 &changeupper_info.info); 8912 8913 __netdev_update_upper_level(dev, NULL); 8914 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8915 8916 __netdev_update_lower_level(upper_dev, priv); 8917 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8918 priv); 8919 } 8920 8921 /** 8922 * netdev_upper_dev_unlink - Removes a link to upper device 8923 * @dev: device 8924 * @upper_dev: new upper device 8925 * 8926 * Removes a link to device which is upper to this one. The caller must hold 8927 * the RTNL lock. 8928 */ 8929 void netdev_upper_dev_unlink(struct net_device *dev, 8930 struct net_device *upper_dev) 8931 { 8932 struct netdev_nested_priv priv = { 8933 .flags = NESTED_SYNC_TODO, 8934 .data = NULL, 8935 }; 8936 8937 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8938 } 8939 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8940 8941 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8942 struct net_device *lower_dev, 8943 bool val) 8944 { 8945 struct netdev_adjacent *adj; 8946 8947 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8948 if (adj) 8949 adj->ignore = val; 8950 8951 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8952 if (adj) 8953 adj->ignore = val; 8954 } 8955 8956 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8957 struct net_device *lower_dev) 8958 { 8959 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8960 } 8961 8962 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8963 struct net_device *lower_dev) 8964 { 8965 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8966 } 8967 8968 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8969 struct net_device *new_dev, 8970 struct net_device *dev, 8971 struct netlink_ext_ack *extack) 8972 { 8973 struct netdev_nested_priv priv = { 8974 .flags = 0, 8975 .data = NULL, 8976 }; 8977 int err; 8978 8979 if (!new_dev) 8980 return 0; 8981 8982 if (old_dev && new_dev != old_dev) 8983 netdev_adjacent_dev_disable(dev, old_dev); 8984 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8985 extack); 8986 if (err) { 8987 if (old_dev && new_dev != old_dev) 8988 netdev_adjacent_dev_enable(dev, old_dev); 8989 return err; 8990 } 8991 8992 return 0; 8993 } 8994 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8995 8996 void netdev_adjacent_change_commit(struct net_device *old_dev, 8997 struct net_device *new_dev, 8998 struct net_device *dev) 8999 { 9000 struct netdev_nested_priv priv = { 9001 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 9002 .data = NULL, 9003 }; 9004 9005 if (!new_dev || !old_dev) 9006 return; 9007 9008 if (new_dev == old_dev) 9009 return; 9010 9011 netdev_adjacent_dev_enable(dev, old_dev); 9012 __netdev_upper_dev_unlink(old_dev, dev, &priv); 9013 } 9014 EXPORT_SYMBOL(netdev_adjacent_change_commit); 9015 9016 void netdev_adjacent_change_abort(struct net_device *old_dev, 9017 struct net_device *new_dev, 9018 struct net_device *dev) 9019 { 9020 struct netdev_nested_priv priv = { 9021 .flags = 0, 9022 .data = NULL, 9023 }; 9024 9025 if (!new_dev) 9026 return; 9027 9028 if (old_dev && new_dev != old_dev) 9029 netdev_adjacent_dev_enable(dev, old_dev); 9030 9031 __netdev_upper_dev_unlink(new_dev, dev, &priv); 9032 } 9033 EXPORT_SYMBOL(netdev_adjacent_change_abort); 9034 9035 /** 9036 * netdev_bonding_info_change - Dispatch event about slave change 9037 * @dev: device 9038 * @bonding_info: info to dispatch 9039 * 9040 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 9041 * The caller must hold the RTNL lock. 9042 */ 9043 void netdev_bonding_info_change(struct net_device *dev, 9044 struct netdev_bonding_info *bonding_info) 9045 { 9046 struct netdev_notifier_bonding_info info = { 9047 .info.dev = dev, 9048 }; 9049 9050 memcpy(&info.bonding_info, bonding_info, 9051 sizeof(struct netdev_bonding_info)); 9052 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 9053 &info.info); 9054 } 9055 EXPORT_SYMBOL(netdev_bonding_info_change); 9056 9057 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 9058 struct netlink_ext_ack *extack) 9059 { 9060 struct netdev_notifier_offload_xstats_info info = { 9061 .info.dev = dev, 9062 .info.extack = extack, 9063 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 9064 }; 9065 int err; 9066 int rc; 9067 9068 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 9069 GFP_KERNEL); 9070 if (!dev->offload_xstats_l3) 9071 return -ENOMEM; 9072 9073 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 9074 NETDEV_OFFLOAD_XSTATS_DISABLE, 9075 &info.info); 9076 err = notifier_to_errno(rc); 9077 if (err) 9078 goto free_stats; 9079 9080 return 0; 9081 9082 free_stats: 9083 kfree(dev->offload_xstats_l3); 9084 dev->offload_xstats_l3 = NULL; 9085 return err; 9086 } 9087 9088 int netdev_offload_xstats_enable(struct net_device *dev, 9089 enum netdev_offload_xstats_type type, 9090 struct netlink_ext_ack *extack) 9091 { 9092 ASSERT_RTNL(); 9093 9094 if (netdev_offload_xstats_enabled(dev, type)) 9095 return -EALREADY; 9096 9097 switch (type) { 9098 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9099 return netdev_offload_xstats_enable_l3(dev, extack); 9100 } 9101 9102 WARN_ON(1); 9103 return -EINVAL; 9104 } 9105 EXPORT_SYMBOL(netdev_offload_xstats_enable); 9106 9107 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 9108 { 9109 struct netdev_notifier_offload_xstats_info info = { 9110 .info.dev = dev, 9111 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 9112 }; 9113 9114 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 9115 &info.info); 9116 kfree(dev->offload_xstats_l3); 9117 dev->offload_xstats_l3 = NULL; 9118 } 9119 9120 int netdev_offload_xstats_disable(struct net_device *dev, 9121 enum netdev_offload_xstats_type type) 9122 { 9123 ASSERT_RTNL(); 9124 9125 if (!netdev_offload_xstats_enabled(dev, type)) 9126 return -EALREADY; 9127 9128 switch (type) { 9129 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9130 netdev_offload_xstats_disable_l3(dev); 9131 return 0; 9132 } 9133 9134 WARN_ON(1); 9135 return -EINVAL; 9136 } 9137 EXPORT_SYMBOL(netdev_offload_xstats_disable); 9138 9139 static void netdev_offload_xstats_disable_all(struct net_device *dev) 9140 { 9141 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 9142 } 9143 9144 static struct rtnl_hw_stats64 * 9145 netdev_offload_xstats_get_ptr(const struct net_device *dev, 9146 enum netdev_offload_xstats_type type) 9147 { 9148 switch (type) { 9149 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9150 return dev->offload_xstats_l3; 9151 } 9152 9153 WARN_ON(1); 9154 return NULL; 9155 } 9156 9157 bool netdev_offload_xstats_enabled(const struct net_device *dev, 9158 enum netdev_offload_xstats_type type) 9159 { 9160 ASSERT_RTNL(); 9161 9162 return netdev_offload_xstats_get_ptr(dev, type); 9163 } 9164 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 9165 9166 struct netdev_notifier_offload_xstats_ru { 9167 bool used; 9168 }; 9169 9170 struct netdev_notifier_offload_xstats_rd { 9171 struct rtnl_hw_stats64 stats; 9172 bool used; 9173 }; 9174 9175 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 9176 const struct rtnl_hw_stats64 *src) 9177 { 9178 dest->rx_packets += src->rx_packets; 9179 dest->tx_packets += src->tx_packets; 9180 dest->rx_bytes += src->rx_bytes; 9181 dest->tx_bytes += src->tx_bytes; 9182 dest->rx_errors += src->rx_errors; 9183 dest->tx_errors += src->tx_errors; 9184 dest->rx_dropped += src->rx_dropped; 9185 dest->tx_dropped += src->tx_dropped; 9186 dest->multicast += src->multicast; 9187 } 9188 9189 static int netdev_offload_xstats_get_used(struct net_device *dev, 9190 enum netdev_offload_xstats_type type, 9191 bool *p_used, 9192 struct netlink_ext_ack *extack) 9193 { 9194 struct netdev_notifier_offload_xstats_ru report_used = {}; 9195 struct netdev_notifier_offload_xstats_info info = { 9196 .info.dev = dev, 9197 .info.extack = extack, 9198 .type = type, 9199 .report_used = &report_used, 9200 }; 9201 int rc; 9202 9203 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 9204 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 9205 &info.info); 9206 *p_used = report_used.used; 9207 return notifier_to_errno(rc); 9208 } 9209 9210 static int netdev_offload_xstats_get_stats(struct net_device *dev, 9211 enum netdev_offload_xstats_type type, 9212 struct rtnl_hw_stats64 *p_stats, 9213 bool *p_used, 9214 struct netlink_ext_ack *extack) 9215 { 9216 struct netdev_notifier_offload_xstats_rd report_delta = {}; 9217 struct netdev_notifier_offload_xstats_info info = { 9218 .info.dev = dev, 9219 .info.extack = extack, 9220 .type = type, 9221 .report_delta = &report_delta, 9222 }; 9223 struct rtnl_hw_stats64 *stats; 9224 int rc; 9225 9226 stats = netdev_offload_xstats_get_ptr(dev, type); 9227 if (WARN_ON(!stats)) 9228 return -EINVAL; 9229 9230 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 9231 &info.info); 9232 9233 /* Cache whatever we got, even if there was an error, otherwise the 9234 * successful stats retrievals would get lost. 9235 */ 9236 netdev_hw_stats64_add(stats, &report_delta.stats); 9237 9238 if (p_stats) 9239 *p_stats = *stats; 9240 *p_used = report_delta.used; 9241 9242 return notifier_to_errno(rc); 9243 } 9244 9245 int netdev_offload_xstats_get(struct net_device *dev, 9246 enum netdev_offload_xstats_type type, 9247 struct rtnl_hw_stats64 *p_stats, bool *p_used, 9248 struct netlink_ext_ack *extack) 9249 { 9250 ASSERT_RTNL(); 9251 9252 if (p_stats) 9253 return netdev_offload_xstats_get_stats(dev, type, p_stats, 9254 p_used, extack); 9255 else 9256 return netdev_offload_xstats_get_used(dev, type, p_used, 9257 extack); 9258 } 9259 EXPORT_SYMBOL(netdev_offload_xstats_get); 9260 9261 void 9262 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 9263 const struct rtnl_hw_stats64 *stats) 9264 { 9265 report_delta->used = true; 9266 netdev_hw_stats64_add(&report_delta->stats, stats); 9267 } 9268 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9269 9270 void 9271 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9272 { 9273 report_used->used = true; 9274 } 9275 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9276 9277 void netdev_offload_xstats_push_delta(struct net_device *dev, 9278 enum netdev_offload_xstats_type type, 9279 const struct rtnl_hw_stats64 *p_stats) 9280 { 9281 struct rtnl_hw_stats64 *stats; 9282 9283 ASSERT_RTNL(); 9284 9285 stats = netdev_offload_xstats_get_ptr(dev, type); 9286 if (WARN_ON(!stats)) 9287 return; 9288 9289 netdev_hw_stats64_add(stats, p_stats); 9290 } 9291 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9292 9293 /** 9294 * netdev_get_xmit_slave - Get the xmit slave of master device 9295 * @dev: device 9296 * @skb: The packet 9297 * @all_slaves: assume all the slaves are active 9298 * 9299 * The reference counters are not incremented so the caller must be 9300 * careful with locks. The caller must hold RCU lock. 9301 * %NULL is returned if no slave is found. 9302 */ 9303 9304 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9305 struct sk_buff *skb, 9306 bool all_slaves) 9307 { 9308 const struct net_device_ops *ops = dev->netdev_ops; 9309 9310 if (!ops->ndo_get_xmit_slave) 9311 return NULL; 9312 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9313 } 9314 EXPORT_SYMBOL(netdev_get_xmit_slave); 9315 9316 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9317 struct sock *sk) 9318 { 9319 const struct net_device_ops *ops = dev->netdev_ops; 9320 9321 if (!ops->ndo_sk_get_lower_dev) 9322 return NULL; 9323 return ops->ndo_sk_get_lower_dev(dev, sk); 9324 } 9325 9326 /** 9327 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9328 * @dev: device 9329 * @sk: the socket 9330 * 9331 * %NULL is returned if no lower device is found. 9332 */ 9333 9334 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9335 struct sock *sk) 9336 { 9337 struct net_device *lower; 9338 9339 lower = netdev_sk_get_lower_dev(dev, sk); 9340 while (lower) { 9341 dev = lower; 9342 lower = netdev_sk_get_lower_dev(dev, sk); 9343 } 9344 9345 return dev; 9346 } 9347 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9348 9349 static void netdev_adjacent_add_links(struct net_device *dev) 9350 { 9351 struct netdev_adjacent *iter; 9352 9353 struct net *net = dev_net(dev); 9354 9355 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9356 if (!net_eq(net, dev_net(iter->dev))) 9357 continue; 9358 netdev_adjacent_sysfs_add(iter->dev, dev, 9359 &iter->dev->adj_list.lower); 9360 netdev_adjacent_sysfs_add(dev, iter->dev, 9361 &dev->adj_list.upper); 9362 } 9363 9364 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9365 if (!net_eq(net, dev_net(iter->dev))) 9366 continue; 9367 netdev_adjacent_sysfs_add(iter->dev, dev, 9368 &iter->dev->adj_list.upper); 9369 netdev_adjacent_sysfs_add(dev, iter->dev, 9370 &dev->adj_list.lower); 9371 } 9372 } 9373 9374 static void netdev_adjacent_del_links(struct net_device *dev) 9375 { 9376 struct netdev_adjacent *iter; 9377 9378 struct net *net = dev_net(dev); 9379 9380 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9381 if (!net_eq(net, dev_net(iter->dev))) 9382 continue; 9383 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9384 &iter->dev->adj_list.lower); 9385 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9386 &dev->adj_list.upper); 9387 } 9388 9389 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9390 if (!net_eq(net, dev_net(iter->dev))) 9391 continue; 9392 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9393 &iter->dev->adj_list.upper); 9394 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9395 &dev->adj_list.lower); 9396 } 9397 } 9398 9399 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9400 { 9401 struct netdev_adjacent *iter; 9402 9403 struct net *net = dev_net(dev); 9404 9405 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9406 if (!net_eq(net, dev_net(iter->dev))) 9407 continue; 9408 netdev_adjacent_sysfs_del(iter->dev, oldname, 9409 &iter->dev->adj_list.lower); 9410 netdev_adjacent_sysfs_add(iter->dev, dev, 9411 &iter->dev->adj_list.lower); 9412 } 9413 9414 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9415 if (!net_eq(net, dev_net(iter->dev))) 9416 continue; 9417 netdev_adjacent_sysfs_del(iter->dev, oldname, 9418 &iter->dev->adj_list.upper); 9419 netdev_adjacent_sysfs_add(iter->dev, dev, 9420 &iter->dev->adj_list.upper); 9421 } 9422 } 9423 9424 void *netdev_lower_dev_get_private(struct net_device *dev, 9425 struct net_device *lower_dev) 9426 { 9427 struct netdev_adjacent *lower; 9428 9429 if (!lower_dev) 9430 return NULL; 9431 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9432 if (!lower) 9433 return NULL; 9434 9435 return lower->private; 9436 } 9437 EXPORT_SYMBOL(netdev_lower_dev_get_private); 9438 9439 9440 /** 9441 * netdev_lower_state_changed - Dispatch event about lower device state change 9442 * @lower_dev: device 9443 * @lower_state_info: state to dispatch 9444 * 9445 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9446 * The caller must hold the RTNL lock. 9447 */ 9448 void netdev_lower_state_changed(struct net_device *lower_dev, 9449 void *lower_state_info) 9450 { 9451 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9452 .info.dev = lower_dev, 9453 }; 9454 9455 ASSERT_RTNL(); 9456 changelowerstate_info.lower_state_info = lower_state_info; 9457 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9458 &changelowerstate_info.info); 9459 } 9460 EXPORT_SYMBOL(netdev_lower_state_changed); 9461 9462 static void dev_change_rx_flags(struct net_device *dev, int flags) 9463 { 9464 const struct net_device_ops *ops = dev->netdev_ops; 9465 9466 if (ops->ndo_change_rx_flags) 9467 ops->ndo_change_rx_flags(dev, flags); 9468 } 9469 9470 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9471 { 9472 unsigned int old_flags = dev->flags; 9473 unsigned int promiscuity, flags; 9474 kuid_t uid; 9475 kgid_t gid; 9476 9477 ASSERT_RTNL(); 9478 9479 promiscuity = dev->promiscuity + inc; 9480 if (promiscuity == 0) { 9481 /* 9482 * Avoid overflow. 9483 * If inc causes overflow, untouch promisc and return error. 9484 */ 9485 if (unlikely(inc > 0)) { 9486 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9487 return -EOVERFLOW; 9488 } 9489 flags = old_flags & ~IFF_PROMISC; 9490 } else { 9491 flags = old_flags | IFF_PROMISC; 9492 } 9493 WRITE_ONCE(dev->promiscuity, promiscuity); 9494 if (flags != old_flags) { 9495 WRITE_ONCE(dev->flags, flags); 9496 netdev_info(dev, "%s promiscuous mode\n", 9497 dev->flags & IFF_PROMISC ? "entered" : "left"); 9498 if (audit_enabled) { 9499 current_uid_gid(&uid, &gid); 9500 audit_log(audit_context(), GFP_ATOMIC, 9501 AUDIT_ANOM_PROMISCUOUS, 9502 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9503 dev->name, (dev->flags & IFF_PROMISC), 9504 (old_flags & IFF_PROMISC), 9505 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9506 from_kuid(&init_user_ns, uid), 9507 from_kgid(&init_user_ns, gid), 9508 audit_get_sessionid(current)); 9509 } 9510 9511 dev_change_rx_flags(dev, IFF_PROMISC); 9512 } 9513 if (notify) { 9514 /* The ops lock is only required to ensure consistent locking 9515 * for `NETDEV_CHANGE` notifiers. This function is sometimes 9516 * called without the lock, even for devices that are ops 9517 * locked, such as in `dev_uc_sync_multiple` when using 9518 * bonding or teaming. 9519 */ 9520 netdev_ops_assert_locked(dev); 9521 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9522 } 9523 return 0; 9524 } 9525 9526 int netif_set_promiscuity(struct net_device *dev, int inc) 9527 { 9528 unsigned int old_flags = dev->flags; 9529 int err; 9530 9531 err = __dev_set_promiscuity(dev, inc, true); 9532 if (err < 0) 9533 return err; 9534 if (dev->flags != old_flags) 9535 dev_set_rx_mode(dev); 9536 return err; 9537 } 9538 9539 int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9540 { 9541 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9542 unsigned int allmulti, flags; 9543 9544 ASSERT_RTNL(); 9545 9546 allmulti = dev->allmulti + inc; 9547 if (allmulti == 0) { 9548 /* 9549 * Avoid overflow. 9550 * If inc causes overflow, untouch allmulti and return error. 9551 */ 9552 if (unlikely(inc > 0)) { 9553 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9554 return -EOVERFLOW; 9555 } 9556 flags = old_flags & ~IFF_ALLMULTI; 9557 } else { 9558 flags = old_flags | IFF_ALLMULTI; 9559 } 9560 WRITE_ONCE(dev->allmulti, allmulti); 9561 if (flags != old_flags) { 9562 WRITE_ONCE(dev->flags, flags); 9563 netdev_info(dev, "%s allmulticast mode\n", 9564 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9565 dev_change_rx_flags(dev, IFF_ALLMULTI); 9566 dev_set_rx_mode(dev); 9567 if (notify) 9568 __dev_notify_flags(dev, old_flags, 9569 dev->gflags ^ old_gflags, 0, NULL); 9570 } 9571 return 0; 9572 } 9573 9574 /* 9575 * Upload unicast and multicast address lists to device and 9576 * configure RX filtering. When the device doesn't support unicast 9577 * filtering it is put in promiscuous mode while unicast addresses 9578 * are present. 9579 */ 9580 void __dev_set_rx_mode(struct net_device *dev) 9581 { 9582 const struct net_device_ops *ops = dev->netdev_ops; 9583 9584 /* dev_open will call this function so the list will stay sane. */ 9585 if (!(dev->flags&IFF_UP)) 9586 return; 9587 9588 if (!netif_device_present(dev)) 9589 return; 9590 9591 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9592 /* Unicast addresses changes may only happen under the rtnl, 9593 * therefore calling __dev_set_promiscuity here is safe. 9594 */ 9595 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9596 __dev_set_promiscuity(dev, 1, false); 9597 dev->uc_promisc = true; 9598 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9599 __dev_set_promiscuity(dev, -1, false); 9600 dev->uc_promisc = false; 9601 } 9602 } 9603 9604 if (ops->ndo_set_rx_mode) 9605 ops->ndo_set_rx_mode(dev); 9606 } 9607 9608 void dev_set_rx_mode(struct net_device *dev) 9609 { 9610 netif_addr_lock_bh(dev); 9611 __dev_set_rx_mode(dev); 9612 netif_addr_unlock_bh(dev); 9613 } 9614 9615 /** 9616 * netif_get_flags() - get flags reported to userspace 9617 * @dev: device 9618 * 9619 * Get the combination of flag bits exported through APIs to userspace. 9620 */ 9621 unsigned int netif_get_flags(const struct net_device *dev) 9622 { 9623 unsigned int flags; 9624 9625 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9626 IFF_ALLMULTI | 9627 IFF_RUNNING | 9628 IFF_LOWER_UP | 9629 IFF_DORMANT)) | 9630 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9631 IFF_ALLMULTI)); 9632 9633 if (netif_running(dev)) { 9634 if (netif_oper_up(dev)) 9635 flags |= IFF_RUNNING; 9636 if (netif_carrier_ok(dev)) 9637 flags |= IFF_LOWER_UP; 9638 if (netif_dormant(dev)) 9639 flags |= IFF_DORMANT; 9640 } 9641 9642 return flags; 9643 } 9644 EXPORT_SYMBOL(netif_get_flags); 9645 9646 int __dev_change_flags(struct net_device *dev, unsigned int flags, 9647 struct netlink_ext_ack *extack) 9648 { 9649 unsigned int old_flags = dev->flags; 9650 int ret; 9651 9652 ASSERT_RTNL(); 9653 9654 /* 9655 * Set the flags on our device. 9656 */ 9657 9658 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9659 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9660 IFF_AUTOMEDIA)) | 9661 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9662 IFF_ALLMULTI)); 9663 9664 /* 9665 * Load in the correct multicast list now the flags have changed. 9666 */ 9667 9668 if ((old_flags ^ flags) & IFF_MULTICAST) 9669 dev_change_rx_flags(dev, IFF_MULTICAST); 9670 9671 dev_set_rx_mode(dev); 9672 9673 /* 9674 * Have we downed the interface. We handle IFF_UP ourselves 9675 * according to user attempts to set it, rather than blindly 9676 * setting it. 9677 */ 9678 9679 ret = 0; 9680 if ((old_flags ^ flags) & IFF_UP) { 9681 if (old_flags & IFF_UP) 9682 __dev_close(dev); 9683 else 9684 ret = __dev_open(dev, extack); 9685 } 9686 9687 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9688 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9689 old_flags = dev->flags; 9690 9691 dev->gflags ^= IFF_PROMISC; 9692 9693 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9694 if (dev->flags != old_flags) 9695 dev_set_rx_mode(dev); 9696 } 9697 9698 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9699 * is important. Some (broken) drivers set IFF_PROMISC, when 9700 * IFF_ALLMULTI is requested not asking us and not reporting. 9701 */ 9702 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9703 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9704 9705 dev->gflags ^= IFF_ALLMULTI; 9706 netif_set_allmulti(dev, inc, false); 9707 } 9708 9709 return ret; 9710 } 9711 9712 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9713 unsigned int gchanges, u32 portid, 9714 const struct nlmsghdr *nlh) 9715 { 9716 unsigned int changes = dev->flags ^ old_flags; 9717 9718 if (gchanges) 9719 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9720 9721 if (changes & IFF_UP) { 9722 if (dev->flags & IFF_UP) 9723 call_netdevice_notifiers(NETDEV_UP, dev); 9724 else 9725 call_netdevice_notifiers(NETDEV_DOWN, dev); 9726 } 9727 9728 if (dev->flags & IFF_UP && 9729 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9730 struct netdev_notifier_change_info change_info = { 9731 .info = { 9732 .dev = dev, 9733 }, 9734 .flags_changed = changes, 9735 }; 9736 9737 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9738 } 9739 } 9740 9741 int netif_change_flags(struct net_device *dev, unsigned int flags, 9742 struct netlink_ext_ack *extack) 9743 { 9744 int ret; 9745 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9746 9747 ret = __dev_change_flags(dev, flags, extack); 9748 if (ret < 0) 9749 return ret; 9750 9751 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9752 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9753 return ret; 9754 } 9755 9756 int __netif_set_mtu(struct net_device *dev, int new_mtu) 9757 { 9758 const struct net_device_ops *ops = dev->netdev_ops; 9759 9760 if (ops->ndo_change_mtu) 9761 return ops->ndo_change_mtu(dev, new_mtu); 9762 9763 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9764 WRITE_ONCE(dev->mtu, new_mtu); 9765 return 0; 9766 } 9767 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL"); 9768 9769 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9770 struct netlink_ext_ack *extack) 9771 { 9772 /* MTU must be positive, and in range */ 9773 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9774 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9775 return -EINVAL; 9776 } 9777 9778 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9779 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9780 return -EINVAL; 9781 } 9782 return 0; 9783 } 9784 9785 /** 9786 * netif_set_mtu_ext() - Change maximum transfer unit 9787 * @dev: device 9788 * @new_mtu: new transfer unit 9789 * @extack: netlink extended ack 9790 * 9791 * Change the maximum transfer size of the network device. 9792 * 9793 * Return: 0 on success, -errno on failure. 9794 */ 9795 int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9796 struct netlink_ext_ack *extack) 9797 { 9798 int err, orig_mtu; 9799 9800 netdev_ops_assert_locked(dev); 9801 9802 if (new_mtu == dev->mtu) 9803 return 0; 9804 9805 err = dev_validate_mtu(dev, new_mtu, extack); 9806 if (err) 9807 return err; 9808 9809 if (!netif_device_present(dev)) 9810 return -ENODEV; 9811 9812 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9813 err = notifier_to_errno(err); 9814 if (err) 9815 return err; 9816 9817 orig_mtu = dev->mtu; 9818 err = __netif_set_mtu(dev, new_mtu); 9819 9820 if (!err) { 9821 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9822 orig_mtu); 9823 err = notifier_to_errno(err); 9824 if (err) { 9825 /* setting mtu back and notifying everyone again, 9826 * so that they have a chance to revert changes. 9827 */ 9828 __netif_set_mtu(dev, orig_mtu); 9829 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9830 new_mtu); 9831 } 9832 } 9833 return err; 9834 } 9835 9836 int netif_set_mtu(struct net_device *dev, int new_mtu) 9837 { 9838 struct netlink_ext_ack extack; 9839 int err; 9840 9841 memset(&extack, 0, sizeof(extack)); 9842 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9843 if (err && extack._msg) 9844 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9845 return err; 9846 } 9847 EXPORT_SYMBOL(netif_set_mtu); 9848 9849 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9850 { 9851 unsigned int orig_len = dev->tx_queue_len; 9852 int res; 9853 9854 if (new_len != (unsigned int)new_len) 9855 return -ERANGE; 9856 9857 if (new_len != orig_len) { 9858 WRITE_ONCE(dev->tx_queue_len, new_len); 9859 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9860 res = notifier_to_errno(res); 9861 if (res) 9862 goto err_rollback; 9863 res = dev_qdisc_change_tx_queue_len(dev); 9864 if (res) 9865 goto err_rollback; 9866 } 9867 9868 return 0; 9869 9870 err_rollback: 9871 netdev_err(dev, "refused to change device tx_queue_len\n"); 9872 WRITE_ONCE(dev->tx_queue_len, orig_len); 9873 return res; 9874 } 9875 9876 void netif_set_group(struct net_device *dev, int new_group) 9877 { 9878 dev->group = new_group; 9879 } 9880 9881 /** 9882 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR. 9883 * @dev: device 9884 * @addr: new address 9885 * @extack: netlink extended ack 9886 * 9887 * Return: 0 on success, -errno on failure. 9888 */ 9889 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9890 struct netlink_ext_ack *extack) 9891 { 9892 struct netdev_notifier_pre_changeaddr_info info = { 9893 .info.dev = dev, 9894 .info.extack = extack, 9895 .dev_addr = addr, 9896 }; 9897 int rc; 9898 9899 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9900 return notifier_to_errno(rc); 9901 } 9902 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL"); 9903 9904 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 9905 struct netlink_ext_ack *extack) 9906 { 9907 const struct net_device_ops *ops = dev->netdev_ops; 9908 int err; 9909 9910 if (!ops->ndo_set_mac_address) 9911 return -EOPNOTSUPP; 9912 if (ss->ss_family != dev->type) 9913 return -EINVAL; 9914 if (!netif_device_present(dev)) 9915 return -ENODEV; 9916 err = netif_pre_changeaddr_notify(dev, ss->__data, extack); 9917 if (err) 9918 return err; 9919 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) { 9920 err = ops->ndo_set_mac_address(dev, ss); 9921 if (err) 9922 return err; 9923 } 9924 dev->addr_assign_type = NET_ADDR_SET; 9925 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9926 add_device_randomness(dev->dev_addr, dev->addr_len); 9927 return 0; 9928 } 9929 9930 DECLARE_RWSEM(dev_addr_sem); 9931 9932 /* "sa" is a true struct sockaddr with limited "sa_data" member. */ 9933 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9934 { 9935 size_t size = sizeof(sa->sa_data_min); 9936 struct net_device *dev; 9937 int ret = 0; 9938 9939 down_read(&dev_addr_sem); 9940 rcu_read_lock(); 9941 9942 dev = dev_get_by_name_rcu(net, dev_name); 9943 if (!dev) { 9944 ret = -ENODEV; 9945 goto unlock; 9946 } 9947 if (!dev->addr_len) 9948 memset(sa->sa_data, 0, size); 9949 else 9950 memcpy(sa->sa_data, dev->dev_addr, 9951 min_t(size_t, size, dev->addr_len)); 9952 sa->sa_family = dev->type; 9953 9954 unlock: 9955 rcu_read_unlock(); 9956 up_read(&dev_addr_sem); 9957 return ret; 9958 } 9959 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL"); 9960 9961 int netif_change_carrier(struct net_device *dev, bool new_carrier) 9962 { 9963 const struct net_device_ops *ops = dev->netdev_ops; 9964 9965 if (!ops->ndo_change_carrier) 9966 return -EOPNOTSUPP; 9967 if (!netif_device_present(dev)) 9968 return -ENODEV; 9969 return ops->ndo_change_carrier(dev, new_carrier); 9970 } 9971 9972 /** 9973 * dev_get_phys_port_id - Get device physical port ID 9974 * @dev: device 9975 * @ppid: port ID 9976 * 9977 * Get device physical port ID 9978 */ 9979 int dev_get_phys_port_id(struct net_device *dev, 9980 struct netdev_phys_item_id *ppid) 9981 { 9982 const struct net_device_ops *ops = dev->netdev_ops; 9983 9984 if (!ops->ndo_get_phys_port_id) 9985 return -EOPNOTSUPP; 9986 return ops->ndo_get_phys_port_id(dev, ppid); 9987 } 9988 9989 /** 9990 * dev_get_phys_port_name - Get device physical port name 9991 * @dev: device 9992 * @name: port name 9993 * @len: limit of bytes to copy to name 9994 * 9995 * Get device physical port name 9996 */ 9997 int dev_get_phys_port_name(struct net_device *dev, 9998 char *name, size_t len) 9999 { 10000 const struct net_device_ops *ops = dev->netdev_ops; 10001 int err; 10002 10003 if (ops->ndo_get_phys_port_name) { 10004 err = ops->ndo_get_phys_port_name(dev, name, len); 10005 if (err != -EOPNOTSUPP) 10006 return err; 10007 } 10008 return devlink_compat_phys_port_name_get(dev, name, len); 10009 } 10010 10011 /** 10012 * netif_get_port_parent_id() - Get the device's port parent identifier 10013 * @dev: network device 10014 * @ppid: pointer to a storage for the port's parent identifier 10015 * @recurse: allow/disallow recursion to lower devices 10016 * 10017 * Get the devices's port parent identifier. 10018 * 10019 * Return: 0 on success, -errno on failure. 10020 */ 10021 int netif_get_port_parent_id(struct net_device *dev, 10022 struct netdev_phys_item_id *ppid, bool recurse) 10023 { 10024 const struct net_device_ops *ops = dev->netdev_ops; 10025 struct netdev_phys_item_id first = { }; 10026 struct net_device *lower_dev; 10027 struct list_head *iter; 10028 int err; 10029 10030 if (ops->ndo_get_port_parent_id) { 10031 err = ops->ndo_get_port_parent_id(dev, ppid); 10032 if (err != -EOPNOTSUPP) 10033 return err; 10034 } 10035 10036 err = devlink_compat_switch_id_get(dev, ppid); 10037 if (!recurse || err != -EOPNOTSUPP) 10038 return err; 10039 10040 netdev_for_each_lower_dev(dev, lower_dev, iter) { 10041 err = netif_get_port_parent_id(lower_dev, ppid, true); 10042 if (err) 10043 break; 10044 if (!first.id_len) 10045 first = *ppid; 10046 else if (memcmp(&first, ppid, sizeof(*ppid))) 10047 return -EOPNOTSUPP; 10048 } 10049 10050 return err; 10051 } 10052 EXPORT_SYMBOL(netif_get_port_parent_id); 10053 10054 /** 10055 * netdev_port_same_parent_id - Indicate if two network devices have 10056 * the same port parent identifier 10057 * @a: first network device 10058 * @b: second network device 10059 */ 10060 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 10061 { 10062 struct netdev_phys_item_id a_id = { }; 10063 struct netdev_phys_item_id b_id = { }; 10064 10065 if (netif_get_port_parent_id(a, &a_id, true) || 10066 netif_get_port_parent_id(b, &b_id, true)) 10067 return false; 10068 10069 return netdev_phys_item_id_same(&a_id, &b_id); 10070 } 10071 EXPORT_SYMBOL(netdev_port_same_parent_id); 10072 10073 int netif_change_proto_down(struct net_device *dev, bool proto_down) 10074 { 10075 if (!dev->change_proto_down) 10076 return -EOPNOTSUPP; 10077 if (!netif_device_present(dev)) 10078 return -ENODEV; 10079 if (proto_down) 10080 netif_carrier_off(dev); 10081 else 10082 netif_carrier_on(dev); 10083 WRITE_ONCE(dev->proto_down, proto_down); 10084 return 0; 10085 } 10086 10087 /** 10088 * netdev_change_proto_down_reason_locked - proto down reason 10089 * 10090 * @dev: device 10091 * @mask: proto down mask 10092 * @value: proto down value 10093 */ 10094 void netdev_change_proto_down_reason_locked(struct net_device *dev, 10095 unsigned long mask, u32 value) 10096 { 10097 u32 proto_down_reason; 10098 int b; 10099 10100 if (!mask) { 10101 proto_down_reason = value; 10102 } else { 10103 proto_down_reason = dev->proto_down_reason; 10104 for_each_set_bit(b, &mask, 32) { 10105 if (value & (1 << b)) 10106 proto_down_reason |= BIT(b); 10107 else 10108 proto_down_reason &= ~BIT(b); 10109 } 10110 } 10111 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 10112 } 10113 10114 struct bpf_xdp_link { 10115 struct bpf_link link; 10116 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 10117 int flags; 10118 }; 10119 10120 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 10121 { 10122 if (flags & XDP_FLAGS_HW_MODE) 10123 return XDP_MODE_HW; 10124 if (flags & XDP_FLAGS_DRV_MODE) 10125 return XDP_MODE_DRV; 10126 if (flags & XDP_FLAGS_SKB_MODE) 10127 return XDP_MODE_SKB; 10128 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 10129 } 10130 10131 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 10132 { 10133 switch (mode) { 10134 case XDP_MODE_SKB: 10135 return generic_xdp_install; 10136 case XDP_MODE_DRV: 10137 case XDP_MODE_HW: 10138 return dev->netdev_ops->ndo_bpf; 10139 default: 10140 return NULL; 10141 } 10142 } 10143 10144 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 10145 enum bpf_xdp_mode mode) 10146 { 10147 return dev->xdp_state[mode].link; 10148 } 10149 10150 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 10151 enum bpf_xdp_mode mode) 10152 { 10153 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 10154 10155 if (link) 10156 return link->link.prog; 10157 return dev->xdp_state[mode].prog; 10158 } 10159 10160 u8 dev_xdp_prog_count(struct net_device *dev) 10161 { 10162 u8 count = 0; 10163 int i; 10164 10165 for (i = 0; i < __MAX_XDP_MODE; i++) 10166 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 10167 count++; 10168 return count; 10169 } 10170 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 10171 10172 u8 dev_xdp_sb_prog_count(struct net_device *dev) 10173 { 10174 u8 count = 0; 10175 int i; 10176 10177 for (i = 0; i < __MAX_XDP_MODE; i++) 10178 if (dev->xdp_state[i].prog && 10179 !dev->xdp_state[i].prog->aux->xdp_has_frags) 10180 count++; 10181 return count; 10182 } 10183 10184 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 10185 { 10186 if (!dev->netdev_ops->ndo_bpf) 10187 return -EOPNOTSUPP; 10188 10189 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10190 bpf->command == XDP_SETUP_PROG && 10191 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 10192 NL_SET_ERR_MSG(bpf->extack, 10193 "unable to propagate XDP to device using tcp-data-split"); 10194 return -EBUSY; 10195 } 10196 10197 if (dev_get_min_mp_channel_count(dev)) { 10198 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 10199 return -EBUSY; 10200 } 10201 10202 return dev->netdev_ops->ndo_bpf(dev, bpf); 10203 } 10204 EXPORT_SYMBOL_GPL(netif_xdp_propagate); 10205 10206 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 10207 { 10208 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 10209 10210 return prog ? prog->aux->id : 0; 10211 } 10212 10213 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 10214 struct bpf_xdp_link *link) 10215 { 10216 dev->xdp_state[mode].link = link; 10217 dev->xdp_state[mode].prog = NULL; 10218 } 10219 10220 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 10221 struct bpf_prog *prog) 10222 { 10223 dev->xdp_state[mode].link = NULL; 10224 dev->xdp_state[mode].prog = prog; 10225 } 10226 10227 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 10228 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 10229 u32 flags, struct bpf_prog *prog) 10230 { 10231 struct netdev_bpf xdp; 10232 int err; 10233 10234 netdev_ops_assert_locked(dev); 10235 10236 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10237 prog && !prog->aux->xdp_has_frags) { 10238 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 10239 return -EBUSY; 10240 } 10241 10242 if (dev_get_min_mp_channel_count(dev)) { 10243 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 10244 return -EBUSY; 10245 } 10246 10247 memset(&xdp, 0, sizeof(xdp)); 10248 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 10249 xdp.extack = extack; 10250 xdp.flags = flags; 10251 xdp.prog = prog; 10252 10253 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 10254 * "moved" into driver), so they don't increment it on their own, but 10255 * they do decrement refcnt when program is detached or replaced. 10256 * Given net_device also owns link/prog, we need to bump refcnt here 10257 * to prevent drivers from underflowing it. 10258 */ 10259 if (prog) 10260 bpf_prog_inc(prog); 10261 err = bpf_op(dev, &xdp); 10262 if (err) { 10263 if (prog) 10264 bpf_prog_put(prog); 10265 return err; 10266 } 10267 10268 if (mode != XDP_MODE_HW) 10269 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 10270 10271 return 0; 10272 } 10273 10274 static void dev_xdp_uninstall(struct net_device *dev) 10275 { 10276 struct bpf_xdp_link *link; 10277 struct bpf_prog *prog; 10278 enum bpf_xdp_mode mode; 10279 bpf_op_t bpf_op; 10280 10281 ASSERT_RTNL(); 10282 10283 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10284 prog = dev_xdp_prog(dev, mode); 10285 if (!prog) 10286 continue; 10287 10288 bpf_op = dev_xdp_bpf_op(dev, mode); 10289 if (!bpf_op) 10290 continue; 10291 10292 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10293 10294 /* auto-detach link from net device */ 10295 link = dev_xdp_link(dev, mode); 10296 if (link) 10297 link->dev = NULL; 10298 else 10299 bpf_prog_put(prog); 10300 10301 dev_xdp_set_link(dev, mode, NULL); 10302 } 10303 } 10304 10305 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10306 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10307 struct bpf_prog *old_prog, u32 flags) 10308 { 10309 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10310 struct bpf_prog *cur_prog; 10311 struct net_device *upper; 10312 struct list_head *iter; 10313 enum bpf_xdp_mode mode; 10314 bpf_op_t bpf_op; 10315 int err; 10316 10317 ASSERT_RTNL(); 10318 10319 /* either link or prog attachment, never both */ 10320 if (link && (new_prog || old_prog)) 10321 return -EINVAL; 10322 /* link supports only XDP mode flags */ 10323 if (link && (flags & ~XDP_FLAGS_MODES)) { 10324 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10325 return -EINVAL; 10326 } 10327 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10328 if (num_modes > 1) { 10329 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10330 return -EINVAL; 10331 } 10332 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10333 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10334 NL_SET_ERR_MSG(extack, 10335 "More than one program loaded, unset mode is ambiguous"); 10336 return -EINVAL; 10337 } 10338 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10339 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10340 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10341 return -EINVAL; 10342 } 10343 10344 mode = dev_xdp_mode(dev, flags); 10345 /* can't replace attached link */ 10346 if (dev_xdp_link(dev, mode)) { 10347 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10348 return -EBUSY; 10349 } 10350 10351 /* don't allow if an upper device already has a program */ 10352 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10353 if (dev_xdp_prog_count(upper) > 0) { 10354 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10355 return -EEXIST; 10356 } 10357 } 10358 10359 cur_prog = dev_xdp_prog(dev, mode); 10360 /* can't replace attached prog with link */ 10361 if (link && cur_prog) { 10362 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10363 return -EBUSY; 10364 } 10365 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10366 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10367 return -EEXIST; 10368 } 10369 10370 /* put effective new program into new_prog */ 10371 if (link) 10372 new_prog = link->link.prog; 10373 10374 if (new_prog) { 10375 bool offload = mode == XDP_MODE_HW; 10376 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10377 ? XDP_MODE_DRV : XDP_MODE_SKB; 10378 10379 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10380 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10381 return -EBUSY; 10382 } 10383 if (!offload && dev_xdp_prog(dev, other_mode)) { 10384 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10385 return -EEXIST; 10386 } 10387 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10388 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10389 return -EINVAL; 10390 } 10391 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10392 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10393 return -EINVAL; 10394 } 10395 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10396 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10397 return -EINVAL; 10398 } 10399 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10400 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10401 return -EINVAL; 10402 } 10403 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10404 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10405 return -EINVAL; 10406 } 10407 } 10408 10409 /* don't call drivers if the effective program didn't change */ 10410 if (new_prog != cur_prog) { 10411 bpf_op = dev_xdp_bpf_op(dev, mode); 10412 if (!bpf_op) { 10413 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10414 return -EOPNOTSUPP; 10415 } 10416 10417 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10418 if (err) 10419 return err; 10420 } 10421 10422 if (link) 10423 dev_xdp_set_link(dev, mode, link); 10424 else 10425 dev_xdp_set_prog(dev, mode, new_prog); 10426 if (cur_prog) 10427 bpf_prog_put(cur_prog); 10428 10429 return 0; 10430 } 10431 10432 static int dev_xdp_attach_link(struct net_device *dev, 10433 struct netlink_ext_ack *extack, 10434 struct bpf_xdp_link *link) 10435 { 10436 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10437 } 10438 10439 static int dev_xdp_detach_link(struct net_device *dev, 10440 struct netlink_ext_ack *extack, 10441 struct bpf_xdp_link *link) 10442 { 10443 enum bpf_xdp_mode mode; 10444 bpf_op_t bpf_op; 10445 10446 ASSERT_RTNL(); 10447 10448 mode = dev_xdp_mode(dev, link->flags); 10449 if (dev_xdp_link(dev, mode) != link) 10450 return -EINVAL; 10451 10452 bpf_op = dev_xdp_bpf_op(dev, mode); 10453 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10454 dev_xdp_set_link(dev, mode, NULL); 10455 return 0; 10456 } 10457 10458 static void bpf_xdp_link_release(struct bpf_link *link) 10459 { 10460 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10461 10462 rtnl_lock(); 10463 10464 /* if racing with net_device's tear down, xdp_link->dev might be 10465 * already NULL, in which case link was already auto-detached 10466 */ 10467 if (xdp_link->dev) { 10468 netdev_lock_ops(xdp_link->dev); 10469 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10470 netdev_unlock_ops(xdp_link->dev); 10471 xdp_link->dev = NULL; 10472 } 10473 10474 rtnl_unlock(); 10475 } 10476 10477 static int bpf_xdp_link_detach(struct bpf_link *link) 10478 { 10479 bpf_xdp_link_release(link); 10480 return 0; 10481 } 10482 10483 static void bpf_xdp_link_dealloc(struct bpf_link *link) 10484 { 10485 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10486 10487 kfree(xdp_link); 10488 } 10489 10490 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10491 struct seq_file *seq) 10492 { 10493 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10494 u32 ifindex = 0; 10495 10496 rtnl_lock(); 10497 if (xdp_link->dev) 10498 ifindex = xdp_link->dev->ifindex; 10499 rtnl_unlock(); 10500 10501 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10502 } 10503 10504 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10505 struct bpf_link_info *info) 10506 { 10507 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10508 u32 ifindex = 0; 10509 10510 rtnl_lock(); 10511 if (xdp_link->dev) 10512 ifindex = xdp_link->dev->ifindex; 10513 rtnl_unlock(); 10514 10515 info->xdp.ifindex = ifindex; 10516 return 0; 10517 } 10518 10519 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10520 struct bpf_prog *old_prog) 10521 { 10522 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10523 enum bpf_xdp_mode mode; 10524 bpf_op_t bpf_op; 10525 int err = 0; 10526 10527 rtnl_lock(); 10528 10529 /* link might have been auto-released already, so fail */ 10530 if (!xdp_link->dev) { 10531 err = -ENOLINK; 10532 goto out_unlock; 10533 } 10534 10535 if (old_prog && link->prog != old_prog) { 10536 err = -EPERM; 10537 goto out_unlock; 10538 } 10539 old_prog = link->prog; 10540 if (old_prog->type != new_prog->type || 10541 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10542 err = -EINVAL; 10543 goto out_unlock; 10544 } 10545 10546 if (old_prog == new_prog) { 10547 /* no-op, don't disturb drivers */ 10548 bpf_prog_put(new_prog); 10549 goto out_unlock; 10550 } 10551 10552 netdev_lock_ops(xdp_link->dev); 10553 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10554 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10555 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10556 xdp_link->flags, new_prog); 10557 netdev_unlock_ops(xdp_link->dev); 10558 if (err) 10559 goto out_unlock; 10560 10561 old_prog = xchg(&link->prog, new_prog); 10562 bpf_prog_put(old_prog); 10563 10564 out_unlock: 10565 rtnl_unlock(); 10566 return err; 10567 } 10568 10569 static const struct bpf_link_ops bpf_xdp_link_lops = { 10570 .release = bpf_xdp_link_release, 10571 .dealloc = bpf_xdp_link_dealloc, 10572 .detach = bpf_xdp_link_detach, 10573 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10574 .fill_link_info = bpf_xdp_link_fill_link_info, 10575 .update_prog = bpf_xdp_link_update, 10576 }; 10577 10578 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10579 { 10580 struct net *net = current->nsproxy->net_ns; 10581 struct bpf_link_primer link_primer; 10582 struct netlink_ext_ack extack = {}; 10583 struct bpf_xdp_link *link; 10584 struct net_device *dev; 10585 int err, fd; 10586 10587 rtnl_lock(); 10588 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10589 if (!dev) { 10590 rtnl_unlock(); 10591 return -EINVAL; 10592 } 10593 10594 link = kzalloc(sizeof(*link), GFP_USER); 10595 if (!link) { 10596 err = -ENOMEM; 10597 goto unlock; 10598 } 10599 10600 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog, 10601 attr->link_create.attach_type); 10602 link->dev = dev; 10603 link->flags = attr->link_create.flags; 10604 10605 err = bpf_link_prime(&link->link, &link_primer); 10606 if (err) { 10607 kfree(link); 10608 goto unlock; 10609 } 10610 10611 netdev_lock_ops(dev); 10612 err = dev_xdp_attach_link(dev, &extack, link); 10613 netdev_unlock_ops(dev); 10614 rtnl_unlock(); 10615 10616 if (err) { 10617 link->dev = NULL; 10618 bpf_link_cleanup(&link_primer); 10619 trace_bpf_xdp_link_attach_failed(extack._msg); 10620 goto out_put_dev; 10621 } 10622 10623 fd = bpf_link_settle(&link_primer); 10624 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10625 dev_put(dev); 10626 return fd; 10627 10628 unlock: 10629 rtnl_unlock(); 10630 10631 out_put_dev: 10632 dev_put(dev); 10633 return err; 10634 } 10635 10636 /** 10637 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10638 * @dev: device 10639 * @extack: netlink extended ack 10640 * @fd: new program fd or negative value to clear 10641 * @expected_fd: old program fd that userspace expects to replace or clear 10642 * @flags: xdp-related flags 10643 * 10644 * Set or clear a bpf program for a device 10645 */ 10646 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10647 int fd, int expected_fd, u32 flags) 10648 { 10649 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10650 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10651 int err; 10652 10653 ASSERT_RTNL(); 10654 10655 if (fd >= 0) { 10656 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10657 mode != XDP_MODE_SKB); 10658 if (IS_ERR(new_prog)) 10659 return PTR_ERR(new_prog); 10660 } 10661 10662 if (expected_fd >= 0) { 10663 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10664 mode != XDP_MODE_SKB); 10665 if (IS_ERR(old_prog)) { 10666 err = PTR_ERR(old_prog); 10667 old_prog = NULL; 10668 goto err_out; 10669 } 10670 } 10671 10672 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10673 10674 err_out: 10675 if (err && new_prog) 10676 bpf_prog_put(new_prog); 10677 if (old_prog) 10678 bpf_prog_put(old_prog); 10679 return err; 10680 } 10681 10682 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10683 { 10684 int i; 10685 10686 netdev_ops_assert_locked(dev); 10687 10688 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10689 if (dev->_rx[i].mp_params.mp_priv) 10690 /* The channel count is the idx plus 1. */ 10691 return i + 1; 10692 10693 return 0; 10694 } 10695 10696 /** 10697 * dev_index_reserve() - allocate an ifindex in a namespace 10698 * @net: the applicable net namespace 10699 * @ifindex: requested ifindex, pass %0 to get one allocated 10700 * 10701 * Allocate a ifindex for a new device. Caller must either use the ifindex 10702 * to store the device (via list_netdevice()) or call dev_index_release() 10703 * to give the index up. 10704 * 10705 * Return: a suitable unique value for a new device interface number or -errno. 10706 */ 10707 static int dev_index_reserve(struct net *net, u32 ifindex) 10708 { 10709 int err; 10710 10711 if (ifindex > INT_MAX) { 10712 DEBUG_NET_WARN_ON_ONCE(1); 10713 return -EINVAL; 10714 } 10715 10716 if (!ifindex) 10717 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10718 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10719 else 10720 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10721 if (err < 0) 10722 return err; 10723 10724 return ifindex; 10725 } 10726 10727 static void dev_index_release(struct net *net, int ifindex) 10728 { 10729 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10730 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10731 } 10732 10733 static bool from_cleanup_net(void) 10734 { 10735 #ifdef CONFIG_NET_NS 10736 return current == READ_ONCE(cleanup_net_task); 10737 #else 10738 return false; 10739 #endif 10740 } 10741 10742 /* Delayed registration/unregisteration */ 10743 LIST_HEAD(net_todo_list); 10744 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10745 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10746 10747 static void net_set_todo(struct net_device *dev) 10748 { 10749 list_add_tail(&dev->todo_list, &net_todo_list); 10750 } 10751 10752 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10753 struct net_device *upper, netdev_features_t features) 10754 { 10755 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10756 netdev_features_t feature; 10757 int feature_bit; 10758 10759 for_each_netdev_feature(upper_disables, feature_bit) { 10760 feature = __NETIF_F_BIT(feature_bit); 10761 if (!(upper->wanted_features & feature) 10762 && (features & feature)) { 10763 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10764 &feature, upper->name); 10765 features &= ~feature; 10766 } 10767 } 10768 10769 return features; 10770 } 10771 10772 static void netdev_sync_lower_features(struct net_device *upper, 10773 struct net_device *lower, netdev_features_t features) 10774 { 10775 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10776 netdev_features_t feature; 10777 int feature_bit; 10778 10779 for_each_netdev_feature(upper_disables, feature_bit) { 10780 feature = __NETIF_F_BIT(feature_bit); 10781 if (!(features & feature) && (lower->features & feature)) { 10782 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10783 &feature, lower->name); 10784 netdev_lock_ops(lower); 10785 lower->wanted_features &= ~feature; 10786 __netdev_update_features(lower); 10787 10788 if (unlikely(lower->features & feature)) 10789 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10790 &feature, lower->name); 10791 else 10792 netdev_features_change(lower); 10793 netdev_unlock_ops(lower); 10794 } 10795 } 10796 } 10797 10798 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10799 { 10800 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10801 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10802 bool hw_csum = features & NETIF_F_HW_CSUM; 10803 10804 return ip_csum || hw_csum; 10805 } 10806 10807 static netdev_features_t netdev_fix_features(struct net_device *dev, 10808 netdev_features_t features) 10809 { 10810 /* Fix illegal checksum combinations */ 10811 if ((features & NETIF_F_HW_CSUM) && 10812 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10813 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10814 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10815 } 10816 10817 /* TSO requires that SG is present as well. */ 10818 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10819 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10820 features &= ~NETIF_F_ALL_TSO; 10821 } 10822 10823 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10824 !(features & NETIF_F_IP_CSUM)) { 10825 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10826 features &= ~NETIF_F_TSO; 10827 features &= ~NETIF_F_TSO_ECN; 10828 } 10829 10830 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10831 !(features & NETIF_F_IPV6_CSUM)) { 10832 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10833 features &= ~NETIF_F_TSO6; 10834 } 10835 10836 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10837 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10838 features &= ~NETIF_F_TSO_MANGLEID; 10839 10840 /* TSO ECN requires that TSO is present as well. */ 10841 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10842 features &= ~NETIF_F_TSO_ECN; 10843 10844 /* Software GSO depends on SG. */ 10845 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10846 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10847 features &= ~NETIF_F_GSO; 10848 } 10849 10850 /* GSO partial features require GSO partial be set */ 10851 if ((features & dev->gso_partial_features) && 10852 !(features & NETIF_F_GSO_PARTIAL)) { 10853 netdev_dbg(dev, 10854 "Dropping partially supported GSO features since no GSO partial.\n"); 10855 features &= ~dev->gso_partial_features; 10856 } 10857 10858 if (!(features & NETIF_F_RXCSUM)) { 10859 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10860 * successfully merged by hardware must also have the 10861 * checksum verified by hardware. If the user does not 10862 * want to enable RXCSUM, logically, we should disable GRO_HW. 10863 */ 10864 if (features & NETIF_F_GRO_HW) { 10865 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10866 features &= ~NETIF_F_GRO_HW; 10867 } 10868 } 10869 10870 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10871 if (features & NETIF_F_RXFCS) { 10872 if (features & NETIF_F_LRO) { 10873 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10874 features &= ~NETIF_F_LRO; 10875 } 10876 10877 if (features & NETIF_F_GRO_HW) { 10878 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10879 features &= ~NETIF_F_GRO_HW; 10880 } 10881 } 10882 10883 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10884 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10885 features &= ~NETIF_F_LRO; 10886 } 10887 10888 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10889 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10890 features &= ~NETIF_F_HW_TLS_TX; 10891 } 10892 10893 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10894 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10895 features &= ~NETIF_F_HW_TLS_RX; 10896 } 10897 10898 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10899 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10900 features &= ~NETIF_F_GSO_UDP_L4; 10901 } 10902 10903 return features; 10904 } 10905 10906 int __netdev_update_features(struct net_device *dev) 10907 { 10908 struct net_device *upper, *lower; 10909 netdev_features_t features; 10910 struct list_head *iter; 10911 int err = -1; 10912 10913 ASSERT_RTNL(); 10914 netdev_ops_assert_locked(dev); 10915 10916 features = netdev_get_wanted_features(dev); 10917 10918 if (dev->netdev_ops->ndo_fix_features) 10919 features = dev->netdev_ops->ndo_fix_features(dev, features); 10920 10921 /* driver might be less strict about feature dependencies */ 10922 features = netdev_fix_features(dev, features); 10923 10924 /* some features can't be enabled if they're off on an upper device */ 10925 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10926 features = netdev_sync_upper_features(dev, upper, features); 10927 10928 if (dev->features == features) 10929 goto sync_lower; 10930 10931 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10932 &dev->features, &features); 10933 10934 if (dev->netdev_ops->ndo_set_features) 10935 err = dev->netdev_ops->ndo_set_features(dev, features); 10936 else 10937 err = 0; 10938 10939 if (unlikely(err < 0)) { 10940 netdev_err(dev, 10941 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10942 err, &features, &dev->features); 10943 /* return non-0 since some features might have changed and 10944 * it's better to fire a spurious notification than miss it 10945 */ 10946 return -1; 10947 } 10948 10949 sync_lower: 10950 /* some features must be disabled on lower devices when disabled 10951 * on an upper device (think: bonding master or bridge) 10952 */ 10953 netdev_for_each_lower_dev(dev, lower, iter) 10954 netdev_sync_lower_features(dev, lower, features); 10955 10956 if (!err) { 10957 netdev_features_t diff = features ^ dev->features; 10958 10959 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10960 /* udp_tunnel_{get,drop}_rx_info both need 10961 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10962 * device, or they won't do anything. 10963 * Thus we need to update dev->features 10964 * *before* calling udp_tunnel_get_rx_info, 10965 * but *after* calling udp_tunnel_drop_rx_info. 10966 */ 10967 udp_tunnel_nic_lock(dev); 10968 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10969 dev->features = features; 10970 udp_tunnel_get_rx_info(dev); 10971 } else { 10972 udp_tunnel_drop_rx_info(dev); 10973 } 10974 udp_tunnel_nic_unlock(dev); 10975 } 10976 10977 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10978 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10979 dev->features = features; 10980 err |= vlan_get_rx_ctag_filter_info(dev); 10981 } else { 10982 vlan_drop_rx_ctag_filter_info(dev); 10983 } 10984 } 10985 10986 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10987 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10988 dev->features = features; 10989 err |= vlan_get_rx_stag_filter_info(dev); 10990 } else { 10991 vlan_drop_rx_stag_filter_info(dev); 10992 } 10993 } 10994 10995 dev->features = features; 10996 } 10997 10998 return err < 0 ? 0 : 1; 10999 } 11000 11001 /** 11002 * netdev_update_features - recalculate device features 11003 * @dev: the device to check 11004 * 11005 * Recalculate dev->features set and send notifications if it 11006 * has changed. Should be called after driver or hardware dependent 11007 * conditions might have changed that influence the features. 11008 */ 11009 void netdev_update_features(struct net_device *dev) 11010 { 11011 if (__netdev_update_features(dev)) 11012 netdev_features_change(dev); 11013 } 11014 EXPORT_SYMBOL(netdev_update_features); 11015 11016 /** 11017 * netdev_change_features - recalculate device features 11018 * @dev: the device to check 11019 * 11020 * Recalculate dev->features set and send notifications even 11021 * if they have not changed. Should be called instead of 11022 * netdev_update_features() if also dev->vlan_features might 11023 * have changed to allow the changes to be propagated to stacked 11024 * VLAN devices. 11025 */ 11026 void netdev_change_features(struct net_device *dev) 11027 { 11028 __netdev_update_features(dev); 11029 netdev_features_change(dev); 11030 } 11031 EXPORT_SYMBOL(netdev_change_features); 11032 11033 /** 11034 * netif_stacked_transfer_operstate - transfer operstate 11035 * @rootdev: the root or lower level device to transfer state from 11036 * @dev: the device to transfer operstate to 11037 * 11038 * Transfer operational state from root to device. This is normally 11039 * called when a stacking relationship exists between the root 11040 * device and the device(a leaf device). 11041 */ 11042 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 11043 struct net_device *dev) 11044 { 11045 if (rootdev->operstate == IF_OPER_DORMANT) 11046 netif_dormant_on(dev); 11047 else 11048 netif_dormant_off(dev); 11049 11050 if (rootdev->operstate == IF_OPER_TESTING) 11051 netif_testing_on(dev); 11052 else 11053 netif_testing_off(dev); 11054 11055 if (netif_carrier_ok(rootdev)) 11056 netif_carrier_on(dev); 11057 else 11058 netif_carrier_off(dev); 11059 } 11060 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 11061 11062 static int netif_alloc_rx_queues(struct net_device *dev) 11063 { 11064 unsigned int i, count = dev->num_rx_queues; 11065 struct netdev_rx_queue *rx; 11066 size_t sz = count * sizeof(*rx); 11067 int err = 0; 11068 11069 BUG_ON(count < 1); 11070 11071 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11072 if (!rx) 11073 return -ENOMEM; 11074 11075 dev->_rx = rx; 11076 11077 for (i = 0; i < count; i++) { 11078 rx[i].dev = dev; 11079 11080 /* XDP RX-queue setup */ 11081 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 11082 if (err < 0) 11083 goto err_rxq_info; 11084 } 11085 return 0; 11086 11087 err_rxq_info: 11088 /* Rollback successful reg's and free other resources */ 11089 while (i--) 11090 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 11091 kvfree(dev->_rx); 11092 dev->_rx = NULL; 11093 return err; 11094 } 11095 11096 static void netif_free_rx_queues(struct net_device *dev) 11097 { 11098 unsigned int i, count = dev->num_rx_queues; 11099 11100 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 11101 if (!dev->_rx) 11102 return; 11103 11104 for (i = 0; i < count; i++) 11105 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 11106 11107 kvfree(dev->_rx); 11108 } 11109 11110 static void netdev_init_one_queue(struct net_device *dev, 11111 struct netdev_queue *queue, void *_unused) 11112 { 11113 /* Initialize queue lock */ 11114 spin_lock_init(&queue->_xmit_lock); 11115 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 11116 queue->xmit_lock_owner = -1; 11117 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 11118 queue->dev = dev; 11119 #ifdef CONFIG_BQL 11120 dql_init(&queue->dql, HZ); 11121 #endif 11122 } 11123 11124 static void netif_free_tx_queues(struct net_device *dev) 11125 { 11126 kvfree(dev->_tx); 11127 } 11128 11129 static int netif_alloc_netdev_queues(struct net_device *dev) 11130 { 11131 unsigned int count = dev->num_tx_queues; 11132 struct netdev_queue *tx; 11133 size_t sz = count * sizeof(*tx); 11134 11135 if (count < 1 || count > 0xffff) 11136 return -EINVAL; 11137 11138 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11139 if (!tx) 11140 return -ENOMEM; 11141 11142 dev->_tx = tx; 11143 11144 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 11145 spin_lock_init(&dev->tx_global_lock); 11146 11147 return 0; 11148 } 11149 11150 void netif_tx_stop_all_queues(struct net_device *dev) 11151 { 11152 unsigned int i; 11153 11154 for (i = 0; i < dev->num_tx_queues; i++) { 11155 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 11156 11157 netif_tx_stop_queue(txq); 11158 } 11159 } 11160 EXPORT_SYMBOL(netif_tx_stop_all_queues); 11161 11162 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 11163 { 11164 void __percpu *v; 11165 11166 /* Drivers implementing ndo_get_peer_dev must support tstat 11167 * accounting, so that skb_do_redirect() can bump the dev's 11168 * RX stats upon network namespace switch. 11169 */ 11170 if (dev->netdev_ops->ndo_get_peer_dev && 11171 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 11172 return -EOPNOTSUPP; 11173 11174 switch (dev->pcpu_stat_type) { 11175 case NETDEV_PCPU_STAT_NONE: 11176 return 0; 11177 case NETDEV_PCPU_STAT_LSTATS: 11178 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 11179 break; 11180 case NETDEV_PCPU_STAT_TSTATS: 11181 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 11182 break; 11183 case NETDEV_PCPU_STAT_DSTATS: 11184 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 11185 break; 11186 default: 11187 return -EINVAL; 11188 } 11189 11190 return v ? 0 : -ENOMEM; 11191 } 11192 11193 static void netdev_do_free_pcpu_stats(struct net_device *dev) 11194 { 11195 switch (dev->pcpu_stat_type) { 11196 case NETDEV_PCPU_STAT_NONE: 11197 return; 11198 case NETDEV_PCPU_STAT_LSTATS: 11199 free_percpu(dev->lstats); 11200 break; 11201 case NETDEV_PCPU_STAT_TSTATS: 11202 free_percpu(dev->tstats); 11203 break; 11204 case NETDEV_PCPU_STAT_DSTATS: 11205 free_percpu(dev->dstats); 11206 break; 11207 } 11208 } 11209 11210 static void netdev_free_phy_link_topology(struct net_device *dev) 11211 { 11212 struct phy_link_topology *topo = dev->link_topo; 11213 11214 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 11215 xa_destroy(&topo->phys); 11216 kfree(topo); 11217 dev->link_topo = NULL; 11218 } 11219 } 11220 11221 /** 11222 * register_netdevice() - register a network device 11223 * @dev: device to register 11224 * 11225 * Take a prepared network device structure and make it externally accessible. 11226 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 11227 * Callers must hold the rtnl lock - you may want register_netdev() 11228 * instead of this. 11229 */ 11230 int register_netdevice(struct net_device *dev) 11231 { 11232 int ret; 11233 struct net *net = dev_net(dev); 11234 11235 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 11236 NETDEV_FEATURE_COUNT); 11237 BUG_ON(dev_boot_phase); 11238 ASSERT_RTNL(); 11239 11240 might_sleep(); 11241 11242 /* When net_device's are persistent, this will be fatal. */ 11243 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 11244 BUG_ON(!net); 11245 11246 ret = ethtool_check_ops(dev->ethtool_ops); 11247 if (ret) 11248 return ret; 11249 11250 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 11251 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 11252 mutex_init(&dev->ethtool->rss_lock); 11253 11254 spin_lock_init(&dev->addr_list_lock); 11255 netdev_set_addr_lockdep_class(dev); 11256 11257 ret = dev_get_valid_name(net, dev, dev->name); 11258 if (ret < 0) 11259 goto out; 11260 11261 ret = -ENOMEM; 11262 dev->name_node = netdev_name_node_head_alloc(dev); 11263 if (!dev->name_node) 11264 goto out; 11265 11266 /* Init, if this function is available */ 11267 if (dev->netdev_ops->ndo_init) { 11268 ret = dev->netdev_ops->ndo_init(dev); 11269 if (ret) { 11270 if (ret > 0) 11271 ret = -EIO; 11272 goto err_free_name; 11273 } 11274 } 11275 11276 if (((dev->hw_features | dev->features) & 11277 NETIF_F_HW_VLAN_CTAG_FILTER) && 11278 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11279 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11280 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11281 ret = -EINVAL; 11282 goto err_uninit; 11283 } 11284 11285 ret = netdev_do_alloc_pcpu_stats(dev); 11286 if (ret) 11287 goto err_uninit; 11288 11289 ret = dev_index_reserve(net, dev->ifindex); 11290 if (ret < 0) 11291 goto err_free_pcpu; 11292 dev->ifindex = ret; 11293 11294 /* Transfer changeable features to wanted_features and enable 11295 * software offloads (GSO and GRO). 11296 */ 11297 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11298 dev->features |= NETIF_F_SOFT_FEATURES; 11299 11300 if (dev->udp_tunnel_nic_info) { 11301 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11302 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11303 } 11304 11305 dev->wanted_features = dev->features & dev->hw_features; 11306 11307 if (!(dev->flags & IFF_LOOPBACK)) 11308 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11309 11310 /* If IPv4 TCP segmentation offload is supported we should also 11311 * allow the device to enable segmenting the frame with the option 11312 * of ignoring a static IP ID value. This doesn't enable the 11313 * feature itself but allows the user to enable it later. 11314 */ 11315 if (dev->hw_features & NETIF_F_TSO) 11316 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11317 if (dev->vlan_features & NETIF_F_TSO) 11318 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11319 if (dev->mpls_features & NETIF_F_TSO) 11320 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11321 if (dev->hw_enc_features & NETIF_F_TSO) 11322 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11323 11324 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11325 */ 11326 dev->vlan_features |= NETIF_F_HIGHDMA; 11327 11328 /* Make NETIF_F_SG inheritable to tunnel devices. 11329 */ 11330 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11331 11332 /* Make NETIF_F_SG inheritable to MPLS. 11333 */ 11334 dev->mpls_features |= NETIF_F_SG; 11335 11336 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11337 ret = notifier_to_errno(ret); 11338 if (ret) 11339 goto err_ifindex_release; 11340 11341 ret = netdev_register_kobject(dev); 11342 11343 netdev_lock(dev); 11344 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11345 netdev_unlock(dev); 11346 11347 if (ret) 11348 goto err_uninit_notify; 11349 11350 netdev_lock_ops(dev); 11351 __netdev_update_features(dev); 11352 netdev_unlock_ops(dev); 11353 11354 /* 11355 * Default initial state at registry is that the 11356 * device is present. 11357 */ 11358 11359 set_bit(__LINK_STATE_PRESENT, &dev->state); 11360 11361 linkwatch_init_dev(dev); 11362 11363 dev_init_scheduler(dev); 11364 11365 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11366 list_netdevice(dev); 11367 11368 add_device_randomness(dev->dev_addr, dev->addr_len); 11369 11370 /* If the device has permanent device address, driver should 11371 * set dev_addr and also addr_assign_type should be set to 11372 * NET_ADDR_PERM (default value). 11373 */ 11374 if (dev->addr_assign_type == NET_ADDR_PERM) 11375 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11376 11377 /* Notify protocols, that a new device appeared. */ 11378 netdev_lock_ops(dev); 11379 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11380 netdev_unlock_ops(dev); 11381 ret = notifier_to_errno(ret); 11382 if (ret) { 11383 /* Expect explicit free_netdev() on failure */ 11384 dev->needs_free_netdev = false; 11385 unregister_netdevice_queue(dev, NULL); 11386 goto out; 11387 } 11388 /* 11389 * Prevent userspace races by waiting until the network 11390 * device is fully setup before sending notifications. 11391 */ 11392 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 11393 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11394 11395 out: 11396 return ret; 11397 11398 err_uninit_notify: 11399 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11400 err_ifindex_release: 11401 dev_index_release(net, dev->ifindex); 11402 err_free_pcpu: 11403 netdev_do_free_pcpu_stats(dev); 11404 err_uninit: 11405 if (dev->netdev_ops->ndo_uninit) 11406 dev->netdev_ops->ndo_uninit(dev); 11407 if (dev->priv_destructor) 11408 dev->priv_destructor(dev); 11409 err_free_name: 11410 netdev_name_node_free(dev->name_node); 11411 goto out; 11412 } 11413 EXPORT_SYMBOL(register_netdevice); 11414 11415 /* Initialize the core of a dummy net device. 11416 * The setup steps dummy netdevs need which normal netdevs get by going 11417 * through register_netdevice(). 11418 */ 11419 static void init_dummy_netdev(struct net_device *dev) 11420 { 11421 /* make sure we BUG if trying to hit standard 11422 * register/unregister code path 11423 */ 11424 dev->reg_state = NETREG_DUMMY; 11425 11426 /* a dummy interface is started by default */ 11427 set_bit(__LINK_STATE_PRESENT, &dev->state); 11428 set_bit(__LINK_STATE_START, &dev->state); 11429 11430 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11431 * because users of this 'device' dont need to change 11432 * its refcount. 11433 */ 11434 } 11435 11436 /** 11437 * register_netdev - register a network device 11438 * @dev: device to register 11439 * 11440 * Take a completed network device structure and add it to the kernel 11441 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11442 * chain. 0 is returned on success. A negative errno code is returned 11443 * on a failure to set up the device, or if the name is a duplicate. 11444 * 11445 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11446 * and expands the device name if you passed a format string to 11447 * alloc_netdev. 11448 */ 11449 int register_netdev(struct net_device *dev) 11450 { 11451 struct net *net = dev_net(dev); 11452 int err; 11453 11454 if (rtnl_net_lock_killable(net)) 11455 return -EINTR; 11456 11457 err = register_netdevice(dev); 11458 11459 rtnl_net_unlock(net); 11460 11461 return err; 11462 } 11463 EXPORT_SYMBOL(register_netdev); 11464 11465 int netdev_refcnt_read(const struct net_device *dev) 11466 { 11467 #ifdef CONFIG_PCPU_DEV_REFCNT 11468 int i, refcnt = 0; 11469 11470 for_each_possible_cpu(i) 11471 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11472 return refcnt; 11473 #else 11474 return refcount_read(&dev->dev_refcnt); 11475 #endif 11476 } 11477 EXPORT_SYMBOL(netdev_refcnt_read); 11478 11479 int netdev_unregister_timeout_secs __read_mostly = 10; 11480 11481 #define WAIT_REFS_MIN_MSECS 1 11482 #define WAIT_REFS_MAX_MSECS 250 11483 /** 11484 * netdev_wait_allrefs_any - wait until all references are gone. 11485 * @list: list of net_devices to wait on 11486 * 11487 * This is called when unregistering network devices. 11488 * 11489 * Any protocol or device that holds a reference should register 11490 * for netdevice notification, and cleanup and put back the 11491 * reference if they receive an UNREGISTER event. 11492 * We can get stuck here if buggy protocols don't correctly 11493 * call dev_put. 11494 */ 11495 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11496 { 11497 unsigned long rebroadcast_time, warning_time; 11498 struct net_device *dev; 11499 int wait = 0; 11500 11501 rebroadcast_time = warning_time = jiffies; 11502 11503 list_for_each_entry(dev, list, todo_list) 11504 if (netdev_refcnt_read(dev) == 1) 11505 return dev; 11506 11507 while (true) { 11508 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11509 rtnl_lock(); 11510 11511 /* Rebroadcast unregister notification */ 11512 list_for_each_entry(dev, list, todo_list) 11513 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11514 11515 __rtnl_unlock(); 11516 rcu_barrier(); 11517 rtnl_lock(); 11518 11519 list_for_each_entry(dev, list, todo_list) 11520 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11521 &dev->state)) { 11522 /* We must not have linkwatch events 11523 * pending on unregister. If this 11524 * happens, we simply run the queue 11525 * unscheduled, resulting in a noop 11526 * for this device. 11527 */ 11528 linkwatch_run_queue(); 11529 break; 11530 } 11531 11532 __rtnl_unlock(); 11533 11534 rebroadcast_time = jiffies; 11535 } 11536 11537 rcu_barrier(); 11538 11539 if (!wait) { 11540 wait = WAIT_REFS_MIN_MSECS; 11541 } else { 11542 msleep(wait); 11543 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11544 } 11545 11546 list_for_each_entry(dev, list, todo_list) 11547 if (netdev_refcnt_read(dev) == 1) 11548 return dev; 11549 11550 if (time_after(jiffies, warning_time + 11551 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11552 list_for_each_entry(dev, list, todo_list) { 11553 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11554 dev->name, netdev_refcnt_read(dev)); 11555 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11556 } 11557 11558 warning_time = jiffies; 11559 } 11560 } 11561 } 11562 11563 /* The sequence is: 11564 * 11565 * rtnl_lock(); 11566 * ... 11567 * register_netdevice(x1); 11568 * register_netdevice(x2); 11569 * ... 11570 * unregister_netdevice(y1); 11571 * unregister_netdevice(y2); 11572 * ... 11573 * rtnl_unlock(); 11574 * free_netdev(y1); 11575 * free_netdev(y2); 11576 * 11577 * We are invoked by rtnl_unlock(). 11578 * This allows us to deal with problems: 11579 * 1) We can delete sysfs objects which invoke hotplug 11580 * without deadlocking with linkwatch via keventd. 11581 * 2) Since we run with the RTNL semaphore not held, we can sleep 11582 * safely in order to wait for the netdev refcnt to drop to zero. 11583 * 11584 * We must not return until all unregister events added during 11585 * the interval the lock was held have been completed. 11586 */ 11587 void netdev_run_todo(void) 11588 { 11589 struct net_device *dev, *tmp; 11590 struct list_head list; 11591 int cnt; 11592 #ifdef CONFIG_LOCKDEP 11593 struct list_head unlink_list; 11594 11595 list_replace_init(&net_unlink_list, &unlink_list); 11596 11597 while (!list_empty(&unlink_list)) { 11598 dev = list_first_entry(&unlink_list, struct net_device, 11599 unlink_list); 11600 list_del_init(&dev->unlink_list); 11601 dev->nested_level = dev->lower_level - 1; 11602 } 11603 #endif 11604 11605 /* Snapshot list, allow later requests */ 11606 list_replace_init(&net_todo_list, &list); 11607 11608 __rtnl_unlock(); 11609 11610 /* Wait for rcu callbacks to finish before next phase */ 11611 if (!list_empty(&list)) 11612 rcu_barrier(); 11613 11614 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11615 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11616 netdev_WARN(dev, "run_todo but not unregistering\n"); 11617 list_del(&dev->todo_list); 11618 continue; 11619 } 11620 11621 netdev_lock(dev); 11622 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11623 netdev_unlock(dev); 11624 linkwatch_sync_dev(dev); 11625 } 11626 11627 cnt = 0; 11628 while (!list_empty(&list)) { 11629 dev = netdev_wait_allrefs_any(&list); 11630 list_del(&dev->todo_list); 11631 11632 /* paranoia */ 11633 BUG_ON(netdev_refcnt_read(dev) != 1); 11634 BUG_ON(!list_empty(&dev->ptype_all)); 11635 BUG_ON(!list_empty(&dev->ptype_specific)); 11636 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11637 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11638 11639 netdev_do_free_pcpu_stats(dev); 11640 if (dev->priv_destructor) 11641 dev->priv_destructor(dev); 11642 if (dev->needs_free_netdev) 11643 free_netdev(dev); 11644 11645 cnt++; 11646 11647 /* Free network device */ 11648 kobject_put(&dev->dev.kobj); 11649 } 11650 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11651 wake_up(&netdev_unregistering_wq); 11652 } 11653 11654 /* Collate per-cpu network dstats statistics 11655 * 11656 * Read per-cpu network statistics from dev->dstats and populate the related 11657 * fields in @s. 11658 */ 11659 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11660 const struct pcpu_dstats __percpu *dstats) 11661 { 11662 int cpu; 11663 11664 for_each_possible_cpu(cpu) { 11665 u64 rx_packets, rx_bytes, rx_drops; 11666 u64 tx_packets, tx_bytes, tx_drops; 11667 const struct pcpu_dstats *stats; 11668 unsigned int start; 11669 11670 stats = per_cpu_ptr(dstats, cpu); 11671 do { 11672 start = u64_stats_fetch_begin(&stats->syncp); 11673 rx_packets = u64_stats_read(&stats->rx_packets); 11674 rx_bytes = u64_stats_read(&stats->rx_bytes); 11675 rx_drops = u64_stats_read(&stats->rx_drops); 11676 tx_packets = u64_stats_read(&stats->tx_packets); 11677 tx_bytes = u64_stats_read(&stats->tx_bytes); 11678 tx_drops = u64_stats_read(&stats->tx_drops); 11679 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11680 11681 s->rx_packets += rx_packets; 11682 s->rx_bytes += rx_bytes; 11683 s->rx_dropped += rx_drops; 11684 s->tx_packets += tx_packets; 11685 s->tx_bytes += tx_bytes; 11686 s->tx_dropped += tx_drops; 11687 } 11688 } 11689 11690 /* ndo_get_stats64 implementation for dtstats-based accounting. 11691 * 11692 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11693 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11694 */ 11695 static void dev_get_dstats64(const struct net_device *dev, 11696 struct rtnl_link_stats64 *s) 11697 { 11698 netdev_stats_to_stats64(s, &dev->stats); 11699 dev_fetch_dstats(s, dev->dstats); 11700 } 11701 11702 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11703 * all the same fields in the same order as net_device_stats, with only 11704 * the type differing, but rtnl_link_stats64 may have additional fields 11705 * at the end for newer counters. 11706 */ 11707 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11708 const struct net_device_stats *netdev_stats) 11709 { 11710 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11711 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11712 u64 *dst = (u64 *)stats64; 11713 11714 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11715 for (i = 0; i < n; i++) 11716 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11717 /* zero out counters that only exist in rtnl_link_stats64 */ 11718 memset((char *)stats64 + n * sizeof(u64), 0, 11719 sizeof(*stats64) - n * sizeof(u64)); 11720 } 11721 EXPORT_SYMBOL(netdev_stats_to_stats64); 11722 11723 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11724 struct net_device *dev) 11725 { 11726 struct net_device_core_stats __percpu *p; 11727 11728 p = alloc_percpu_gfp(struct net_device_core_stats, 11729 GFP_ATOMIC | __GFP_NOWARN); 11730 11731 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11732 free_percpu(p); 11733 11734 /* This READ_ONCE() pairs with the cmpxchg() above */ 11735 return READ_ONCE(dev->core_stats); 11736 } 11737 11738 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11739 { 11740 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11741 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11742 unsigned long __percpu *field; 11743 11744 if (unlikely(!p)) { 11745 p = netdev_core_stats_alloc(dev); 11746 if (!p) 11747 return; 11748 } 11749 11750 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11751 this_cpu_inc(*field); 11752 } 11753 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11754 11755 /** 11756 * dev_get_stats - get network device statistics 11757 * @dev: device to get statistics from 11758 * @storage: place to store stats 11759 * 11760 * Get network statistics from device. Return @storage. 11761 * The device driver may provide its own method by setting 11762 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11763 * otherwise the internal statistics structure is used. 11764 */ 11765 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11766 struct rtnl_link_stats64 *storage) 11767 { 11768 const struct net_device_ops *ops = dev->netdev_ops; 11769 const struct net_device_core_stats __percpu *p; 11770 11771 /* 11772 * IPv{4,6} and udp tunnels share common stat helpers and use 11773 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11774 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11775 */ 11776 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11777 offsetof(struct pcpu_dstats, rx_bytes)); 11778 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11779 offsetof(struct pcpu_dstats, rx_packets)); 11780 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11781 offsetof(struct pcpu_dstats, tx_bytes)); 11782 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11783 offsetof(struct pcpu_dstats, tx_packets)); 11784 11785 if (ops->ndo_get_stats64) { 11786 memset(storage, 0, sizeof(*storage)); 11787 ops->ndo_get_stats64(dev, storage); 11788 } else if (ops->ndo_get_stats) { 11789 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11790 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11791 dev_get_tstats64(dev, storage); 11792 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11793 dev_get_dstats64(dev, storage); 11794 } else { 11795 netdev_stats_to_stats64(storage, &dev->stats); 11796 } 11797 11798 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11799 p = READ_ONCE(dev->core_stats); 11800 if (p) { 11801 const struct net_device_core_stats *core_stats; 11802 int i; 11803 11804 for_each_possible_cpu(i) { 11805 core_stats = per_cpu_ptr(p, i); 11806 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11807 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11808 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11809 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11810 } 11811 } 11812 return storage; 11813 } 11814 EXPORT_SYMBOL(dev_get_stats); 11815 11816 /** 11817 * dev_fetch_sw_netstats - get per-cpu network device statistics 11818 * @s: place to store stats 11819 * @netstats: per-cpu network stats to read from 11820 * 11821 * Read per-cpu network statistics and populate the related fields in @s. 11822 */ 11823 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11824 const struct pcpu_sw_netstats __percpu *netstats) 11825 { 11826 int cpu; 11827 11828 for_each_possible_cpu(cpu) { 11829 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11830 const struct pcpu_sw_netstats *stats; 11831 unsigned int start; 11832 11833 stats = per_cpu_ptr(netstats, cpu); 11834 do { 11835 start = u64_stats_fetch_begin(&stats->syncp); 11836 rx_packets = u64_stats_read(&stats->rx_packets); 11837 rx_bytes = u64_stats_read(&stats->rx_bytes); 11838 tx_packets = u64_stats_read(&stats->tx_packets); 11839 tx_bytes = u64_stats_read(&stats->tx_bytes); 11840 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11841 11842 s->rx_packets += rx_packets; 11843 s->rx_bytes += rx_bytes; 11844 s->tx_packets += tx_packets; 11845 s->tx_bytes += tx_bytes; 11846 } 11847 } 11848 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11849 11850 /** 11851 * dev_get_tstats64 - ndo_get_stats64 implementation 11852 * @dev: device to get statistics from 11853 * @s: place to store stats 11854 * 11855 * Populate @s from dev->stats and dev->tstats. Can be used as 11856 * ndo_get_stats64() callback. 11857 */ 11858 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11859 { 11860 netdev_stats_to_stats64(s, &dev->stats); 11861 dev_fetch_sw_netstats(s, dev->tstats); 11862 } 11863 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11864 11865 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11866 { 11867 struct netdev_queue *queue = dev_ingress_queue(dev); 11868 11869 #ifdef CONFIG_NET_CLS_ACT 11870 if (queue) 11871 return queue; 11872 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11873 if (!queue) 11874 return NULL; 11875 netdev_init_one_queue(dev, queue, NULL); 11876 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11877 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11878 rcu_assign_pointer(dev->ingress_queue, queue); 11879 #endif 11880 return queue; 11881 } 11882 11883 static const struct ethtool_ops default_ethtool_ops; 11884 11885 void netdev_set_default_ethtool_ops(struct net_device *dev, 11886 const struct ethtool_ops *ops) 11887 { 11888 if (dev->ethtool_ops == &default_ethtool_ops) 11889 dev->ethtool_ops = ops; 11890 } 11891 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11892 11893 /** 11894 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11895 * @dev: netdev to enable the IRQ coalescing on 11896 * 11897 * Sets a conservative default for SW IRQ coalescing. Users can use 11898 * sysfs attributes to override the default values. 11899 */ 11900 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11901 { 11902 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11903 11904 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11905 netdev_set_gro_flush_timeout(dev, 20000); 11906 netdev_set_defer_hard_irqs(dev, 1); 11907 } 11908 } 11909 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11910 11911 /** 11912 * alloc_netdev_mqs - allocate network device 11913 * @sizeof_priv: size of private data to allocate space for 11914 * @name: device name format string 11915 * @name_assign_type: origin of device name 11916 * @setup: callback to initialize device 11917 * @txqs: the number of TX subqueues to allocate 11918 * @rxqs: the number of RX subqueues to allocate 11919 * 11920 * Allocates a struct net_device with private data area for driver use 11921 * and performs basic initialization. Also allocates subqueue structs 11922 * for each queue on the device. 11923 */ 11924 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11925 unsigned char name_assign_type, 11926 void (*setup)(struct net_device *), 11927 unsigned int txqs, unsigned int rxqs) 11928 { 11929 struct net_device *dev; 11930 size_t napi_config_sz; 11931 unsigned int maxqs; 11932 11933 BUG_ON(strlen(name) >= sizeof(dev->name)); 11934 11935 if (txqs < 1) { 11936 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11937 return NULL; 11938 } 11939 11940 if (rxqs < 1) { 11941 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11942 return NULL; 11943 } 11944 11945 maxqs = max(txqs, rxqs); 11946 11947 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11948 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11949 if (!dev) 11950 return NULL; 11951 11952 dev->priv_len = sizeof_priv; 11953 11954 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev"); 11955 #ifdef CONFIG_PCPU_DEV_REFCNT 11956 dev->pcpu_refcnt = alloc_percpu(int); 11957 if (!dev->pcpu_refcnt) 11958 goto free_dev; 11959 __dev_hold(dev); 11960 #else 11961 refcount_set(&dev->dev_refcnt, 1); 11962 #endif 11963 11964 if (dev_addr_init(dev)) 11965 goto free_pcpu; 11966 11967 dev_mc_init(dev); 11968 dev_uc_init(dev); 11969 11970 dev_net_set(dev, &init_net); 11971 11972 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11973 dev->xdp_zc_max_segs = 1; 11974 dev->gso_max_segs = GSO_MAX_SEGS; 11975 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11976 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11977 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11978 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11979 dev->tso_max_segs = TSO_MAX_SEGS; 11980 dev->upper_level = 1; 11981 dev->lower_level = 1; 11982 #ifdef CONFIG_LOCKDEP 11983 dev->nested_level = 0; 11984 INIT_LIST_HEAD(&dev->unlink_list); 11985 #endif 11986 11987 INIT_LIST_HEAD(&dev->napi_list); 11988 INIT_LIST_HEAD(&dev->unreg_list); 11989 INIT_LIST_HEAD(&dev->close_list); 11990 INIT_LIST_HEAD(&dev->link_watch_list); 11991 INIT_LIST_HEAD(&dev->adj_list.upper); 11992 INIT_LIST_HEAD(&dev->adj_list.lower); 11993 INIT_LIST_HEAD(&dev->ptype_all); 11994 INIT_LIST_HEAD(&dev->ptype_specific); 11995 INIT_LIST_HEAD(&dev->net_notifier_list); 11996 #ifdef CONFIG_NET_SCHED 11997 hash_init(dev->qdisc_hash); 11998 #endif 11999 12000 mutex_init(&dev->lock); 12001 12002 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 12003 setup(dev); 12004 12005 if (!dev->tx_queue_len) { 12006 dev->priv_flags |= IFF_NO_QUEUE; 12007 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 12008 } 12009 12010 dev->num_tx_queues = txqs; 12011 dev->real_num_tx_queues = txqs; 12012 if (netif_alloc_netdev_queues(dev)) 12013 goto free_all; 12014 12015 dev->num_rx_queues = rxqs; 12016 dev->real_num_rx_queues = rxqs; 12017 if (netif_alloc_rx_queues(dev)) 12018 goto free_all; 12019 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 12020 if (!dev->ethtool) 12021 goto free_all; 12022 12023 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 12024 if (!dev->cfg) 12025 goto free_all; 12026 dev->cfg_pending = dev->cfg; 12027 12028 dev->num_napi_configs = maxqs; 12029 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 12030 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 12031 if (!dev->napi_config) 12032 goto free_all; 12033 12034 strscpy(dev->name, name); 12035 dev->name_assign_type = name_assign_type; 12036 dev->group = INIT_NETDEV_GROUP; 12037 if (!dev->ethtool_ops) 12038 dev->ethtool_ops = &default_ethtool_ops; 12039 12040 nf_hook_netdev_init(dev); 12041 12042 return dev; 12043 12044 free_all: 12045 free_netdev(dev); 12046 return NULL; 12047 12048 free_pcpu: 12049 #ifdef CONFIG_PCPU_DEV_REFCNT 12050 free_percpu(dev->pcpu_refcnt); 12051 free_dev: 12052 #endif 12053 kvfree(dev); 12054 return NULL; 12055 } 12056 EXPORT_SYMBOL(alloc_netdev_mqs); 12057 12058 static void netdev_napi_exit(struct net_device *dev) 12059 { 12060 if (!list_empty(&dev->napi_list)) { 12061 struct napi_struct *p, *n; 12062 12063 netdev_lock(dev); 12064 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 12065 __netif_napi_del_locked(p); 12066 netdev_unlock(dev); 12067 12068 synchronize_net(); 12069 } 12070 12071 kvfree(dev->napi_config); 12072 } 12073 12074 /** 12075 * free_netdev - free network device 12076 * @dev: device 12077 * 12078 * This function does the last stage of destroying an allocated device 12079 * interface. The reference to the device object is released. If this 12080 * is the last reference then it will be freed.Must be called in process 12081 * context. 12082 */ 12083 void free_netdev(struct net_device *dev) 12084 { 12085 might_sleep(); 12086 12087 /* When called immediately after register_netdevice() failed the unwind 12088 * handling may still be dismantling the device. Handle that case by 12089 * deferring the free. 12090 */ 12091 if (dev->reg_state == NETREG_UNREGISTERING) { 12092 ASSERT_RTNL(); 12093 dev->needs_free_netdev = true; 12094 return; 12095 } 12096 12097 WARN_ON(dev->cfg != dev->cfg_pending); 12098 kfree(dev->cfg); 12099 kfree(dev->ethtool); 12100 netif_free_tx_queues(dev); 12101 netif_free_rx_queues(dev); 12102 12103 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 12104 12105 /* Flush device addresses */ 12106 dev_addr_flush(dev); 12107 12108 netdev_napi_exit(dev); 12109 12110 netif_del_cpu_rmap(dev); 12111 12112 ref_tracker_dir_exit(&dev->refcnt_tracker); 12113 #ifdef CONFIG_PCPU_DEV_REFCNT 12114 free_percpu(dev->pcpu_refcnt); 12115 dev->pcpu_refcnt = NULL; 12116 #endif 12117 free_percpu(dev->core_stats); 12118 dev->core_stats = NULL; 12119 free_percpu(dev->xdp_bulkq); 12120 dev->xdp_bulkq = NULL; 12121 12122 netdev_free_phy_link_topology(dev); 12123 12124 mutex_destroy(&dev->lock); 12125 12126 /* Compatibility with error handling in drivers */ 12127 if (dev->reg_state == NETREG_UNINITIALIZED || 12128 dev->reg_state == NETREG_DUMMY) { 12129 kvfree(dev); 12130 return; 12131 } 12132 12133 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 12134 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 12135 12136 /* will free via device release */ 12137 put_device(&dev->dev); 12138 } 12139 EXPORT_SYMBOL(free_netdev); 12140 12141 /** 12142 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 12143 * @sizeof_priv: size of private data to allocate space for 12144 * 12145 * Return: the allocated net_device on success, NULL otherwise 12146 */ 12147 struct net_device *alloc_netdev_dummy(int sizeof_priv) 12148 { 12149 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 12150 init_dummy_netdev); 12151 } 12152 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 12153 12154 /** 12155 * synchronize_net - Synchronize with packet receive processing 12156 * 12157 * Wait for packets currently being received to be done. 12158 * Does not block later packets from starting. 12159 */ 12160 void synchronize_net(void) 12161 { 12162 might_sleep(); 12163 if (from_cleanup_net() || rtnl_is_locked()) 12164 synchronize_rcu_expedited(); 12165 else 12166 synchronize_rcu(); 12167 } 12168 EXPORT_SYMBOL(synchronize_net); 12169 12170 static void netdev_rss_contexts_free(struct net_device *dev) 12171 { 12172 struct ethtool_rxfh_context *ctx; 12173 unsigned long context; 12174 12175 mutex_lock(&dev->ethtool->rss_lock); 12176 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 12177 xa_erase(&dev->ethtool->rss_ctx, context); 12178 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL); 12179 kfree(ctx); 12180 } 12181 xa_destroy(&dev->ethtool->rss_ctx); 12182 mutex_unlock(&dev->ethtool->rss_lock); 12183 } 12184 12185 /** 12186 * unregister_netdevice_queue - remove device from the kernel 12187 * @dev: device 12188 * @head: list 12189 * 12190 * This function shuts down a device interface and removes it 12191 * from the kernel tables. 12192 * If head not NULL, device is queued to be unregistered later. 12193 * 12194 * Callers must hold the rtnl semaphore. You may want 12195 * unregister_netdev() instead of this. 12196 */ 12197 12198 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 12199 { 12200 ASSERT_RTNL(); 12201 12202 if (head) { 12203 list_move_tail(&dev->unreg_list, head); 12204 } else { 12205 LIST_HEAD(single); 12206 12207 list_add(&dev->unreg_list, &single); 12208 unregister_netdevice_many(&single); 12209 } 12210 } 12211 EXPORT_SYMBOL(unregister_netdevice_queue); 12212 12213 static void dev_memory_provider_uninstall(struct net_device *dev) 12214 { 12215 unsigned int i; 12216 12217 for (i = 0; i < dev->real_num_rx_queues; i++) { 12218 struct netdev_rx_queue *rxq = &dev->_rx[i]; 12219 struct pp_memory_provider_params *p = &rxq->mp_params; 12220 12221 if (p->mp_ops && p->mp_ops->uninstall) 12222 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 12223 } 12224 } 12225 12226 /* devices must be UP and netdev_lock()'d */ 12227 static void netif_close_many_and_unlock(struct list_head *close_head) 12228 { 12229 struct net_device *dev, *tmp; 12230 12231 netif_close_many(close_head, false); 12232 12233 /* ... now unlock them */ 12234 list_for_each_entry_safe(dev, tmp, close_head, close_list) { 12235 netdev_unlock(dev); 12236 list_del_init(&dev->close_list); 12237 } 12238 } 12239 12240 static void netif_close_many_and_unlock_cond(struct list_head *close_head) 12241 { 12242 #ifdef CONFIG_LOCKDEP 12243 /* We can only track up to MAX_LOCK_DEPTH locks per task. 12244 * 12245 * Reserve half the available slots for additional locks possibly 12246 * taken by notifiers and (soft)irqs. 12247 */ 12248 unsigned int limit = MAX_LOCK_DEPTH / 2; 12249 12250 if (lockdep_depth(current) > limit) 12251 netif_close_many_and_unlock(close_head); 12252 #endif 12253 } 12254 12255 void unregister_netdevice_many_notify(struct list_head *head, 12256 u32 portid, const struct nlmsghdr *nlh) 12257 { 12258 struct net_device *dev, *tmp; 12259 LIST_HEAD(close_head); 12260 int cnt = 0; 12261 12262 BUG_ON(dev_boot_phase); 12263 ASSERT_RTNL(); 12264 12265 if (list_empty(head)) 12266 return; 12267 12268 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 12269 /* Some devices call without registering 12270 * for initialization unwind. Remove those 12271 * devices and proceed with the remaining. 12272 */ 12273 if (dev->reg_state == NETREG_UNINITIALIZED) { 12274 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 12275 dev->name, dev); 12276 12277 WARN_ON(1); 12278 list_del(&dev->unreg_list); 12279 continue; 12280 } 12281 dev->dismantle = true; 12282 BUG_ON(dev->reg_state != NETREG_REGISTERED); 12283 } 12284 12285 /* If device is running, close it first. Start with ops locked... */ 12286 list_for_each_entry(dev, head, unreg_list) { 12287 if (!(dev->flags & IFF_UP)) 12288 continue; 12289 if (netdev_need_ops_lock(dev)) { 12290 list_add_tail(&dev->close_list, &close_head); 12291 netdev_lock(dev); 12292 } 12293 netif_close_many_and_unlock_cond(&close_head); 12294 } 12295 netif_close_many_and_unlock(&close_head); 12296 /* ... now go over the rest. */ 12297 list_for_each_entry(dev, head, unreg_list) { 12298 if (!netdev_need_ops_lock(dev)) 12299 list_add_tail(&dev->close_list, &close_head); 12300 } 12301 netif_close_many(&close_head, true); 12302 12303 list_for_each_entry(dev, head, unreg_list) { 12304 /* And unlink it from device chain. */ 12305 unlist_netdevice(dev); 12306 netdev_lock(dev); 12307 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12308 netdev_unlock(dev); 12309 } 12310 flush_all_backlogs(); 12311 12312 synchronize_net(); 12313 12314 list_for_each_entry(dev, head, unreg_list) { 12315 struct sk_buff *skb = NULL; 12316 12317 /* Shutdown queueing discipline. */ 12318 netdev_lock_ops(dev); 12319 dev_shutdown(dev); 12320 dev_tcx_uninstall(dev); 12321 dev_xdp_uninstall(dev); 12322 dev_memory_provider_uninstall(dev); 12323 netdev_unlock_ops(dev); 12324 bpf_dev_bound_netdev_unregister(dev); 12325 12326 netdev_offload_xstats_disable_all(dev); 12327 12328 /* Notify protocols, that we are about to destroy 12329 * this device. They should clean all the things. 12330 */ 12331 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12332 12333 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 12334 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12335 GFP_KERNEL, NULL, 0, 12336 portid, nlh); 12337 12338 /* 12339 * Flush the unicast and multicast chains 12340 */ 12341 dev_uc_flush(dev); 12342 dev_mc_flush(dev); 12343 12344 netdev_name_node_alt_flush(dev); 12345 netdev_name_node_free(dev->name_node); 12346 12347 netdev_rss_contexts_free(dev); 12348 12349 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12350 12351 if (dev->netdev_ops->ndo_uninit) 12352 dev->netdev_ops->ndo_uninit(dev); 12353 12354 mutex_destroy(&dev->ethtool->rss_lock); 12355 12356 net_shaper_flush_netdev(dev); 12357 12358 if (skb) 12359 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12360 12361 /* Notifier chain MUST detach us all upper devices. */ 12362 WARN_ON(netdev_has_any_upper_dev(dev)); 12363 WARN_ON(netdev_has_any_lower_dev(dev)); 12364 12365 /* Remove entries from kobject tree */ 12366 netdev_unregister_kobject(dev); 12367 #ifdef CONFIG_XPS 12368 /* Remove XPS queueing entries */ 12369 netif_reset_xps_queues_gt(dev, 0); 12370 #endif 12371 } 12372 12373 synchronize_net(); 12374 12375 list_for_each_entry(dev, head, unreg_list) { 12376 netdev_put(dev, &dev->dev_registered_tracker); 12377 net_set_todo(dev); 12378 cnt++; 12379 } 12380 atomic_add(cnt, &dev_unreg_count); 12381 12382 list_del(head); 12383 } 12384 12385 /** 12386 * unregister_netdevice_many - unregister many devices 12387 * @head: list of devices 12388 * 12389 * Note: As most callers use a stack allocated list_head, 12390 * we force a list_del() to make sure stack won't be corrupted later. 12391 */ 12392 void unregister_netdevice_many(struct list_head *head) 12393 { 12394 unregister_netdevice_many_notify(head, 0, NULL); 12395 } 12396 EXPORT_SYMBOL(unregister_netdevice_many); 12397 12398 /** 12399 * unregister_netdev - remove device from the kernel 12400 * @dev: device 12401 * 12402 * This function shuts down a device interface and removes it 12403 * from the kernel tables. 12404 * 12405 * This is just a wrapper for unregister_netdevice that takes 12406 * the rtnl semaphore. In general you want to use this and not 12407 * unregister_netdevice. 12408 */ 12409 void unregister_netdev(struct net_device *dev) 12410 { 12411 rtnl_net_dev_lock(dev); 12412 unregister_netdevice(dev); 12413 rtnl_net_dev_unlock(dev); 12414 } 12415 EXPORT_SYMBOL(unregister_netdev); 12416 12417 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12418 const char *pat, int new_ifindex, 12419 struct netlink_ext_ack *extack) 12420 { 12421 struct netdev_name_node *name_node; 12422 struct net *net_old = dev_net(dev); 12423 char new_name[IFNAMSIZ] = {}; 12424 int err, new_nsid; 12425 12426 ASSERT_RTNL(); 12427 12428 /* Don't allow namespace local devices to be moved. */ 12429 err = -EINVAL; 12430 if (dev->netns_immutable) { 12431 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12432 goto out; 12433 } 12434 12435 /* Ensure the device has been registered */ 12436 if (dev->reg_state != NETREG_REGISTERED) { 12437 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12438 goto out; 12439 } 12440 12441 /* Get out if there is nothing todo */ 12442 err = 0; 12443 if (net_eq(net_old, net)) 12444 goto out; 12445 12446 /* Pick the destination device name, and ensure 12447 * we can use it in the destination network namespace. 12448 */ 12449 err = -EEXIST; 12450 if (netdev_name_in_use(net, dev->name)) { 12451 /* We get here if we can't use the current device name */ 12452 if (!pat) { 12453 NL_SET_ERR_MSG(extack, 12454 "An interface with the same name exists in the target netns"); 12455 goto out; 12456 } 12457 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12458 if (err < 0) { 12459 NL_SET_ERR_MSG_FMT(extack, 12460 "Unable to use '%s' for the new interface name in the target netns", 12461 pat); 12462 goto out; 12463 } 12464 } 12465 /* Check that none of the altnames conflicts. */ 12466 err = -EEXIST; 12467 netdev_for_each_altname(dev, name_node) { 12468 if (netdev_name_in_use(net, name_node->name)) { 12469 NL_SET_ERR_MSG_FMT(extack, 12470 "An interface with the altname %s exists in the target netns", 12471 name_node->name); 12472 goto out; 12473 } 12474 } 12475 12476 /* Check that new_ifindex isn't used yet. */ 12477 if (new_ifindex) { 12478 err = dev_index_reserve(net, new_ifindex); 12479 if (err < 0) { 12480 NL_SET_ERR_MSG_FMT(extack, 12481 "The ifindex %d is not available in the target netns", 12482 new_ifindex); 12483 goto out; 12484 } 12485 } else { 12486 /* If there is an ifindex conflict assign a new one */ 12487 err = dev_index_reserve(net, dev->ifindex); 12488 if (err == -EBUSY) 12489 err = dev_index_reserve(net, 0); 12490 if (err < 0) { 12491 NL_SET_ERR_MSG(extack, 12492 "Unable to allocate a new ifindex in the target netns"); 12493 goto out; 12494 } 12495 new_ifindex = err; 12496 } 12497 12498 /* 12499 * And now a mini version of register_netdevice unregister_netdevice. 12500 */ 12501 12502 netdev_lock_ops(dev); 12503 /* If device is running close it first. */ 12504 netif_close(dev); 12505 /* And unlink it from device chain */ 12506 unlist_netdevice(dev); 12507 12508 if (!netdev_need_ops_lock(dev)) 12509 netdev_lock(dev); 12510 dev->moving_ns = true; 12511 netdev_unlock(dev); 12512 12513 synchronize_net(); 12514 12515 /* Shutdown queueing discipline. */ 12516 netdev_lock_ops(dev); 12517 dev_shutdown(dev); 12518 netdev_unlock_ops(dev); 12519 12520 /* Notify protocols, that we are about to destroy 12521 * this device. They should clean all the things. 12522 * 12523 * Note that dev->reg_state stays at NETREG_REGISTERED. 12524 * This is wanted because this way 8021q and macvlan know 12525 * the device is just moving and can keep their slaves up. 12526 */ 12527 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12528 rcu_barrier(); 12529 12530 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12531 12532 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12533 new_ifindex); 12534 12535 /* 12536 * Flush the unicast and multicast chains 12537 */ 12538 dev_uc_flush(dev); 12539 dev_mc_flush(dev); 12540 12541 /* Send a netdev-removed uevent to the old namespace */ 12542 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12543 netdev_adjacent_del_links(dev); 12544 12545 /* Move per-net netdevice notifiers that are following the netdevice */ 12546 move_netdevice_notifiers_dev_net(dev, net); 12547 12548 /* Actually switch the network namespace */ 12549 netdev_lock(dev); 12550 dev_net_set(dev, net); 12551 netdev_unlock(dev); 12552 dev->ifindex = new_ifindex; 12553 12554 if (new_name[0]) { 12555 /* Rename the netdev to prepared name */ 12556 write_seqlock_bh(&netdev_rename_lock); 12557 strscpy(dev->name, new_name, IFNAMSIZ); 12558 write_sequnlock_bh(&netdev_rename_lock); 12559 } 12560 12561 /* Fixup kobjects */ 12562 dev_set_uevent_suppress(&dev->dev, 1); 12563 err = device_rename(&dev->dev, dev->name); 12564 dev_set_uevent_suppress(&dev->dev, 0); 12565 WARN_ON(err); 12566 12567 /* Send a netdev-add uevent to the new namespace */ 12568 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12569 netdev_adjacent_add_links(dev); 12570 12571 /* Adapt owner in case owning user namespace of target network 12572 * namespace is different from the original one. 12573 */ 12574 err = netdev_change_owner(dev, net_old, net); 12575 WARN_ON(err); 12576 12577 netdev_lock(dev); 12578 dev->moving_ns = false; 12579 if (!netdev_need_ops_lock(dev)) 12580 netdev_unlock(dev); 12581 12582 /* Add the device back in the hashes */ 12583 list_netdevice(dev); 12584 /* Notify protocols, that a new device appeared. */ 12585 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12586 netdev_unlock_ops(dev); 12587 12588 /* 12589 * Prevent userspace races by waiting until the network 12590 * device is fully setup before sending notifications. 12591 */ 12592 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12593 12594 synchronize_net(); 12595 err = 0; 12596 out: 12597 return err; 12598 } 12599 12600 static int dev_cpu_dead(unsigned int oldcpu) 12601 { 12602 struct sk_buff **list_skb; 12603 struct sk_buff *skb; 12604 unsigned int cpu; 12605 struct softnet_data *sd, *oldsd, *remsd = NULL; 12606 12607 local_irq_disable(); 12608 cpu = smp_processor_id(); 12609 sd = &per_cpu(softnet_data, cpu); 12610 oldsd = &per_cpu(softnet_data, oldcpu); 12611 12612 /* Find end of our completion_queue. */ 12613 list_skb = &sd->completion_queue; 12614 while (*list_skb) 12615 list_skb = &(*list_skb)->next; 12616 /* Append completion queue from offline CPU. */ 12617 *list_skb = oldsd->completion_queue; 12618 oldsd->completion_queue = NULL; 12619 12620 /* Append output queue from offline CPU. */ 12621 if (oldsd->output_queue) { 12622 *sd->output_queue_tailp = oldsd->output_queue; 12623 sd->output_queue_tailp = oldsd->output_queue_tailp; 12624 oldsd->output_queue = NULL; 12625 oldsd->output_queue_tailp = &oldsd->output_queue; 12626 } 12627 /* Append NAPI poll list from offline CPU, with one exception : 12628 * process_backlog() must be called by cpu owning percpu backlog. 12629 * We properly handle process_queue & input_pkt_queue later. 12630 */ 12631 while (!list_empty(&oldsd->poll_list)) { 12632 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12633 struct napi_struct, 12634 poll_list); 12635 12636 list_del_init(&napi->poll_list); 12637 if (napi->poll == process_backlog) 12638 napi->state &= NAPIF_STATE_THREADED; 12639 else 12640 ____napi_schedule(sd, napi); 12641 } 12642 12643 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12644 local_irq_enable(); 12645 12646 if (!use_backlog_threads()) { 12647 #ifdef CONFIG_RPS 12648 remsd = oldsd->rps_ipi_list; 12649 oldsd->rps_ipi_list = NULL; 12650 #endif 12651 /* send out pending IPI's on offline CPU */ 12652 net_rps_send_ipi(remsd); 12653 } 12654 12655 /* Process offline CPU's input_pkt_queue */ 12656 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12657 netif_rx(skb); 12658 rps_input_queue_head_incr(oldsd); 12659 } 12660 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12661 netif_rx(skb); 12662 rps_input_queue_head_incr(oldsd); 12663 } 12664 12665 return 0; 12666 } 12667 12668 /** 12669 * netdev_increment_features - increment feature set by one 12670 * @all: current feature set 12671 * @one: new feature set 12672 * @mask: mask feature set 12673 * 12674 * Computes a new feature set after adding a device with feature set 12675 * @one to the master device with current feature set @all. Will not 12676 * enable anything that is off in @mask. Returns the new feature set. 12677 */ 12678 netdev_features_t netdev_increment_features(netdev_features_t all, 12679 netdev_features_t one, netdev_features_t mask) 12680 { 12681 if (mask & NETIF_F_HW_CSUM) 12682 mask |= NETIF_F_CSUM_MASK; 12683 mask |= NETIF_F_VLAN_CHALLENGED; 12684 12685 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12686 all &= one | ~NETIF_F_ALL_FOR_ALL; 12687 12688 /* If one device supports hw checksumming, set for all. */ 12689 if (all & NETIF_F_HW_CSUM) 12690 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12691 12692 return all; 12693 } 12694 EXPORT_SYMBOL(netdev_increment_features); 12695 12696 /** 12697 * netdev_compute_master_upper_features - compute feature from lowers 12698 * @dev: the upper device 12699 * @update_header: whether to update upper device's header_len/headroom/tailroom 12700 * 12701 * Recompute the upper device's feature based on all lower devices. 12702 */ 12703 void netdev_compute_master_upper_features(struct net_device *dev, bool update_header) 12704 { 12705 unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 12706 netdev_features_t gso_partial_features = MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES; 12707 netdev_features_t xfrm_features = MASTER_UPPER_DEV_XFRM_FEATURES; 12708 netdev_features_t mpls_features = MASTER_UPPER_DEV_MPLS_FEATURES; 12709 netdev_features_t vlan_features = MASTER_UPPER_DEV_VLAN_FEATURES; 12710 netdev_features_t enc_features = MASTER_UPPER_DEV_ENC_FEATURES; 12711 unsigned short max_header_len = ETH_HLEN; 12712 unsigned int tso_max_size = TSO_MAX_SIZE; 12713 unsigned short max_headroom = 0; 12714 unsigned short max_tailroom = 0; 12715 u16 tso_max_segs = TSO_MAX_SEGS; 12716 struct net_device *lower_dev; 12717 struct list_head *iter; 12718 12719 mpls_features = netdev_base_features(mpls_features); 12720 vlan_features = netdev_base_features(vlan_features); 12721 enc_features = netdev_base_features(enc_features); 12722 12723 netdev_for_each_lower_dev(dev, lower_dev, iter) { 12724 gso_partial_features = netdev_increment_features(gso_partial_features, 12725 lower_dev->gso_partial_features, 12726 MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES); 12727 12728 vlan_features = netdev_increment_features(vlan_features, 12729 lower_dev->vlan_features, 12730 MASTER_UPPER_DEV_VLAN_FEATURES); 12731 12732 enc_features = netdev_increment_features(enc_features, 12733 lower_dev->hw_enc_features, 12734 MASTER_UPPER_DEV_ENC_FEATURES); 12735 12736 if (IS_ENABLED(CONFIG_XFRM_OFFLOAD)) 12737 xfrm_features = netdev_increment_features(xfrm_features, 12738 lower_dev->hw_enc_features, 12739 MASTER_UPPER_DEV_XFRM_FEATURES); 12740 12741 mpls_features = netdev_increment_features(mpls_features, 12742 lower_dev->mpls_features, 12743 MASTER_UPPER_DEV_MPLS_FEATURES); 12744 12745 dst_release_flag &= lower_dev->priv_flags; 12746 12747 if (update_header) { 12748 max_header_len = max(max_header_len, lower_dev->hard_header_len); 12749 max_headroom = max(max_headroom, lower_dev->needed_headroom); 12750 max_tailroom = max(max_tailroom, lower_dev->needed_tailroom); 12751 } 12752 12753 tso_max_size = min(tso_max_size, lower_dev->tso_max_size); 12754 tso_max_segs = min(tso_max_segs, lower_dev->tso_max_segs); 12755 } 12756 12757 dev->gso_partial_features = gso_partial_features; 12758 dev->vlan_features = vlan_features; 12759 dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL | 12760 NETIF_F_HW_VLAN_CTAG_TX | 12761 NETIF_F_HW_VLAN_STAG_TX; 12762 if (IS_ENABLED(CONFIG_XFRM_OFFLOAD)) 12763 dev->hw_enc_features |= xfrm_features; 12764 dev->mpls_features = mpls_features; 12765 12766 dev->priv_flags &= ~IFF_XMIT_DST_RELEASE; 12767 if ((dev->priv_flags & IFF_XMIT_DST_RELEASE_PERM) && 12768 dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM)) 12769 dev->priv_flags |= IFF_XMIT_DST_RELEASE; 12770 12771 if (update_header) { 12772 dev->hard_header_len = max_header_len; 12773 dev->needed_headroom = max_headroom; 12774 dev->needed_tailroom = max_tailroom; 12775 } 12776 12777 netif_set_tso_max_segs(dev, tso_max_segs); 12778 netif_set_tso_max_size(dev, tso_max_size); 12779 12780 netdev_change_features(dev); 12781 } 12782 EXPORT_SYMBOL(netdev_compute_master_upper_features); 12783 12784 static struct hlist_head * __net_init netdev_create_hash(void) 12785 { 12786 int i; 12787 struct hlist_head *hash; 12788 12789 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12790 if (hash != NULL) 12791 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12792 INIT_HLIST_HEAD(&hash[i]); 12793 12794 return hash; 12795 } 12796 12797 /* Initialize per network namespace state */ 12798 static int __net_init netdev_init(struct net *net) 12799 { 12800 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12801 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12802 12803 INIT_LIST_HEAD(&net->dev_base_head); 12804 12805 net->dev_name_head = netdev_create_hash(); 12806 if (net->dev_name_head == NULL) 12807 goto err_name; 12808 12809 net->dev_index_head = netdev_create_hash(); 12810 if (net->dev_index_head == NULL) 12811 goto err_idx; 12812 12813 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12814 12815 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12816 12817 return 0; 12818 12819 err_idx: 12820 kfree(net->dev_name_head); 12821 err_name: 12822 return -ENOMEM; 12823 } 12824 12825 /** 12826 * netdev_drivername - network driver for the device 12827 * @dev: network device 12828 * 12829 * Determine network driver for device. 12830 */ 12831 const char *netdev_drivername(const struct net_device *dev) 12832 { 12833 const struct device_driver *driver; 12834 const struct device *parent; 12835 const char *empty = ""; 12836 12837 parent = dev->dev.parent; 12838 if (!parent) 12839 return empty; 12840 12841 driver = parent->driver; 12842 if (driver && driver->name) 12843 return driver->name; 12844 return empty; 12845 } 12846 12847 static void __netdev_printk(const char *level, const struct net_device *dev, 12848 struct va_format *vaf) 12849 { 12850 if (dev && dev->dev.parent) { 12851 dev_printk_emit(level[1] - '0', 12852 dev->dev.parent, 12853 "%s %s %s%s: %pV", 12854 dev_driver_string(dev->dev.parent), 12855 dev_name(dev->dev.parent), 12856 netdev_name(dev), netdev_reg_state(dev), 12857 vaf); 12858 } else if (dev) { 12859 printk("%s%s%s: %pV", 12860 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12861 } else { 12862 printk("%s(NULL net_device): %pV", level, vaf); 12863 } 12864 } 12865 12866 void netdev_printk(const char *level, const struct net_device *dev, 12867 const char *format, ...) 12868 { 12869 struct va_format vaf; 12870 va_list args; 12871 12872 va_start(args, format); 12873 12874 vaf.fmt = format; 12875 vaf.va = &args; 12876 12877 __netdev_printk(level, dev, &vaf); 12878 12879 va_end(args); 12880 } 12881 EXPORT_SYMBOL(netdev_printk); 12882 12883 #define define_netdev_printk_level(func, level) \ 12884 void func(const struct net_device *dev, const char *fmt, ...) \ 12885 { \ 12886 struct va_format vaf; \ 12887 va_list args; \ 12888 \ 12889 va_start(args, fmt); \ 12890 \ 12891 vaf.fmt = fmt; \ 12892 vaf.va = &args; \ 12893 \ 12894 __netdev_printk(level, dev, &vaf); \ 12895 \ 12896 va_end(args); \ 12897 } \ 12898 EXPORT_SYMBOL(func); 12899 12900 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12901 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12902 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12903 define_netdev_printk_level(netdev_err, KERN_ERR); 12904 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12905 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12906 define_netdev_printk_level(netdev_info, KERN_INFO); 12907 12908 static void __net_exit netdev_exit(struct net *net) 12909 { 12910 kfree(net->dev_name_head); 12911 kfree(net->dev_index_head); 12912 xa_destroy(&net->dev_by_index); 12913 if (net != &init_net) 12914 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12915 } 12916 12917 static struct pernet_operations __net_initdata netdev_net_ops = { 12918 .init = netdev_init, 12919 .exit = netdev_exit, 12920 }; 12921 12922 static void __net_exit default_device_exit_net(struct net *net) 12923 { 12924 struct netdev_name_node *name_node, *tmp; 12925 struct net_device *dev, *aux; 12926 /* 12927 * Push all migratable network devices back to the 12928 * initial network namespace 12929 */ 12930 ASSERT_RTNL(); 12931 for_each_netdev_safe(net, dev, aux) { 12932 int err; 12933 char fb_name[IFNAMSIZ]; 12934 12935 /* Ignore unmoveable devices (i.e. loopback) */ 12936 if (dev->netns_immutable) 12937 continue; 12938 12939 /* Leave virtual devices for the generic cleanup */ 12940 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12941 continue; 12942 12943 /* Push remaining network devices to init_net */ 12944 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12945 if (netdev_name_in_use(&init_net, fb_name)) 12946 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12947 12948 netdev_for_each_altname_safe(dev, name_node, tmp) 12949 if (netdev_name_in_use(&init_net, name_node->name)) 12950 __netdev_name_node_alt_destroy(name_node); 12951 12952 err = dev_change_net_namespace(dev, &init_net, fb_name); 12953 if (err) { 12954 pr_emerg("%s: failed to move %s to init_net: %d\n", 12955 __func__, dev->name, err); 12956 BUG(); 12957 } 12958 } 12959 } 12960 12961 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12962 { 12963 /* At exit all network devices most be removed from a network 12964 * namespace. Do this in the reverse order of registration. 12965 * Do this across as many network namespaces as possible to 12966 * improve batching efficiency. 12967 */ 12968 struct net_device *dev; 12969 struct net *net; 12970 LIST_HEAD(dev_kill_list); 12971 12972 rtnl_lock(); 12973 list_for_each_entry(net, net_list, exit_list) { 12974 default_device_exit_net(net); 12975 cond_resched(); 12976 } 12977 12978 list_for_each_entry(net, net_list, exit_list) { 12979 for_each_netdev_reverse(net, dev) { 12980 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12981 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12982 else 12983 unregister_netdevice_queue(dev, &dev_kill_list); 12984 } 12985 } 12986 unregister_netdevice_many(&dev_kill_list); 12987 rtnl_unlock(); 12988 } 12989 12990 static struct pernet_operations __net_initdata default_device_ops = { 12991 .exit_batch = default_device_exit_batch, 12992 }; 12993 12994 static void __init net_dev_struct_check(void) 12995 { 12996 /* TX read-mostly hotpath */ 12997 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12998 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12999 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 13000 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 13001 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 13002 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 13003 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 13004 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 13005 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 13006 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 13007 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 13008 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 13009 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 13010 #ifdef CONFIG_XPS 13011 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 13012 #endif 13013 #ifdef CONFIG_NETFILTER_EGRESS 13014 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 13015 #endif 13016 #ifdef CONFIG_NET_XGRESS 13017 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 13018 #endif 13019 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 13020 13021 /* TXRX read-mostly hotpath */ 13022 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 13023 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 13024 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 13025 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 13026 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 13027 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 13028 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 13029 13030 /* RX read-mostly hotpath */ 13031 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 13032 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 13033 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 13034 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 13035 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 13036 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 13037 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 13038 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 13039 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 13040 #ifdef CONFIG_NETPOLL 13041 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 13042 #endif 13043 #ifdef CONFIG_NET_XGRESS 13044 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 13045 #endif 13046 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 13047 } 13048 13049 /* 13050 * Initialize the DEV module. At boot time this walks the device list and 13051 * unhooks any devices that fail to initialise (normally hardware not 13052 * present) and leaves us with a valid list of present and active devices. 13053 * 13054 */ 13055 13056 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 13057 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 13058 13059 static int net_page_pool_create(int cpuid) 13060 { 13061 #if IS_ENABLED(CONFIG_PAGE_POOL) 13062 struct page_pool_params page_pool_params = { 13063 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 13064 .flags = PP_FLAG_SYSTEM_POOL, 13065 .nid = cpu_to_mem(cpuid), 13066 }; 13067 struct page_pool *pp_ptr; 13068 int err; 13069 13070 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 13071 if (IS_ERR(pp_ptr)) 13072 return -ENOMEM; 13073 13074 err = xdp_reg_page_pool(pp_ptr); 13075 if (err) { 13076 page_pool_destroy(pp_ptr); 13077 return err; 13078 } 13079 13080 per_cpu(system_page_pool.pool, cpuid) = pp_ptr; 13081 #endif 13082 return 0; 13083 } 13084 13085 static int backlog_napi_should_run(unsigned int cpu) 13086 { 13087 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 13088 struct napi_struct *napi = &sd->backlog; 13089 13090 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 13091 } 13092 13093 static void run_backlog_napi(unsigned int cpu) 13094 { 13095 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 13096 13097 napi_threaded_poll_loop(&sd->backlog); 13098 } 13099 13100 static void backlog_napi_setup(unsigned int cpu) 13101 { 13102 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 13103 struct napi_struct *napi = &sd->backlog; 13104 13105 napi->thread = this_cpu_read(backlog_napi); 13106 set_bit(NAPI_STATE_THREADED, &napi->state); 13107 } 13108 13109 static struct smp_hotplug_thread backlog_threads = { 13110 .store = &backlog_napi, 13111 .thread_should_run = backlog_napi_should_run, 13112 .thread_fn = run_backlog_napi, 13113 .thread_comm = "backlog_napi/%u", 13114 .setup = backlog_napi_setup, 13115 }; 13116 13117 /* 13118 * This is called single threaded during boot, so no need 13119 * to take the rtnl semaphore. 13120 */ 13121 static int __init net_dev_init(void) 13122 { 13123 int i, rc = -ENOMEM; 13124 13125 BUG_ON(!dev_boot_phase); 13126 13127 net_dev_struct_check(); 13128 13129 if (dev_proc_init()) 13130 goto out; 13131 13132 if (netdev_kobject_init()) 13133 goto out; 13134 13135 for (i = 0; i < PTYPE_HASH_SIZE; i++) 13136 INIT_LIST_HEAD(&ptype_base[i]); 13137 13138 if (register_pernet_subsys(&netdev_net_ops)) 13139 goto out; 13140 13141 /* 13142 * Initialise the packet receive queues. 13143 */ 13144 13145 flush_backlogs_fallback = flush_backlogs_alloc(); 13146 if (!flush_backlogs_fallback) 13147 goto out; 13148 13149 for_each_possible_cpu(i) { 13150 struct softnet_data *sd = &per_cpu(softnet_data, i); 13151 13152 skb_queue_head_init(&sd->input_pkt_queue); 13153 skb_queue_head_init(&sd->process_queue); 13154 #ifdef CONFIG_XFRM_OFFLOAD 13155 skb_queue_head_init(&sd->xfrm_backlog); 13156 #endif 13157 INIT_LIST_HEAD(&sd->poll_list); 13158 sd->output_queue_tailp = &sd->output_queue; 13159 #ifdef CONFIG_RPS 13160 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 13161 sd->cpu = i; 13162 #endif 13163 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 13164 13165 gro_init(&sd->backlog.gro); 13166 sd->backlog.poll = process_backlog; 13167 sd->backlog.weight = weight_p; 13168 INIT_LIST_HEAD(&sd->backlog.poll_list); 13169 13170 if (net_page_pool_create(i)) 13171 goto out; 13172 } 13173 net_hotdata.skb_defer_nodes = 13174 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids, 13175 __alignof__(struct skb_defer_node)); 13176 if (!net_hotdata.skb_defer_nodes) 13177 goto out; 13178 if (use_backlog_threads()) 13179 smpboot_register_percpu_thread(&backlog_threads); 13180 13181 dev_boot_phase = 0; 13182 13183 /* The loopback device is special if any other network devices 13184 * is present in a network namespace the loopback device must 13185 * be present. Since we now dynamically allocate and free the 13186 * loopback device ensure this invariant is maintained by 13187 * keeping the loopback device as the first device on the 13188 * list of network devices. Ensuring the loopback devices 13189 * is the first device that appears and the last network device 13190 * that disappears. 13191 */ 13192 if (register_pernet_device(&loopback_net_ops)) 13193 goto out; 13194 13195 if (register_pernet_device(&default_device_ops)) 13196 goto out; 13197 13198 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 13199 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 13200 13201 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 13202 NULL, dev_cpu_dead); 13203 WARN_ON(rc < 0); 13204 rc = 0; 13205 13206 /* avoid static key IPIs to isolated CPUs */ 13207 if (housekeeping_enabled(HK_TYPE_MISC)) 13208 net_enable_timestamp(); 13209 out: 13210 if (rc < 0) { 13211 for_each_possible_cpu(i) { 13212 struct page_pool *pp_ptr; 13213 13214 pp_ptr = per_cpu(system_page_pool.pool, i); 13215 if (!pp_ptr) 13216 continue; 13217 13218 xdp_unreg_page_pool(pp_ptr); 13219 page_pool_destroy(pp_ptr); 13220 per_cpu(system_page_pool.pool, i) = NULL; 13221 } 13222 } 13223 13224 return rc; 13225 } 13226 13227 subsys_initcall(net_dev_init); 13228