xref: /linux/net/core/dev.c (revision 185000fc556372b7fb7f26516c325f212030dbd3)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 
130 #include "net-sysfs.h"
131 
132 /*
133  *	The list of packet types we will receive (as opposed to discard)
134  *	and the routines to invoke.
135  *
136  *	Why 16. Because with 16 the only overlap we get on a hash of the
137  *	low nibble of the protocol value is RARP/SNAP/X.25.
138  *
139  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
140  *             sure which should go first, but I bet it won't make much
141  *             difference if we are running VLANs.  The good news is that
142  *             this protocol won't be in the list unless compiled in, so
143  *             the average user (w/out VLANs) will not be adversely affected.
144  *             --BLG
145  *
146  *		0800	IP
147  *		8100    802.1Q VLAN
148  *		0001	802.3
149  *		0002	AX.25
150  *		0004	802.2
151  *		8035	RARP
152  *		0005	SNAP
153  *		0805	X.25
154  *		0806	ARP
155  *		8137	IPX
156  *		0009	Localtalk
157  *		86DD	IPv6
158  */
159 
160 #define PTYPE_HASH_SIZE	(16)
161 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
162 
163 static DEFINE_SPINLOCK(ptype_lock);
164 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
165 static struct list_head ptype_all __read_mostly;	/* Taps */
166 
167 #ifdef CONFIG_NET_DMA
168 struct net_dma {
169 	struct dma_client client;
170 	spinlock_t lock;
171 	cpumask_t channel_mask;
172 	struct dma_chan **channels;
173 };
174 
175 static enum dma_state_client
176 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
177 	enum dma_state state);
178 
179 static struct net_dma net_dma = {
180 	.client = {
181 		.event_callback = netdev_dma_event,
182 	},
183 };
184 #endif
185 
186 /*
187  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
188  * semaphore.
189  *
190  * Pure readers hold dev_base_lock for reading.
191  *
192  * Writers must hold the rtnl semaphore while they loop through the
193  * dev_base_head list, and hold dev_base_lock for writing when they do the
194  * actual updates.  This allows pure readers to access the list even
195  * while a writer is preparing to update it.
196  *
197  * To put it another way, dev_base_lock is held for writing only to
198  * protect against pure readers; the rtnl semaphore provides the
199  * protection against other writers.
200  *
201  * See, for example usages, register_netdevice() and
202  * unregister_netdevice(), which must be called with the rtnl
203  * semaphore held.
204  */
205 DEFINE_RWLOCK(dev_base_lock);
206 
207 EXPORT_SYMBOL(dev_base_lock);
208 
209 #define NETDEV_HASHBITS	8
210 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
211 
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 {
214 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
215 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
216 }
217 
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
221 }
222 
223 /* Device list insertion */
224 static int list_netdevice(struct net_device *dev)
225 {
226 	struct net *net = dev_net(dev);
227 
228 	ASSERT_RTNL();
229 
230 	write_lock_bh(&dev_base_lock);
231 	list_add_tail(&dev->dev_list, &net->dev_base_head);
232 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
233 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
234 	write_unlock_bh(&dev_base_lock);
235 	return 0;
236 }
237 
238 /* Device list removal */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 	ASSERT_RTNL();
242 
243 	/* Unlink dev from the device chain */
244 	write_lock_bh(&dev_base_lock);
245 	list_del(&dev->dev_list);
246 	hlist_del(&dev->name_hlist);
247 	hlist_del(&dev->index_hlist);
248 	write_unlock_bh(&dev_base_lock);
249 }
250 
251 /*
252  *	Our notifier list
253  */
254 
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256 
257 /*
258  *	Device drivers call our routines to queue packets here. We empty the
259  *	queue in the local softnet handler.
260  */
261 
262 DEFINE_PER_CPU(struct softnet_data, softnet_data);
263 
264 #ifdef CONFIG_DEBUG_LOCK_ALLOC
265 /*
266  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
267  * according to dev->type
268  */
269 static const unsigned short netdev_lock_type[] =
270 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
271 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
272 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
273 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
274 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
275 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
276 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
277 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
278 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
279 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
280 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
281 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
282 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
283 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
284 	 ARPHRD_NONE};
285 
286 static const char *netdev_lock_name[] =
287 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
288 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
289 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
290 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
291 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
292 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
293 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
294 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
295 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
296 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
297 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
298 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
299 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
300 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
301 	 "_xmit_NONE"};
302 
303 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
304 
305 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
306 {
307 	int i;
308 
309 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
310 		if (netdev_lock_type[i] == dev_type)
311 			return i;
312 	/* the last key is used by default */
313 	return ARRAY_SIZE(netdev_lock_type) - 1;
314 }
315 
316 static inline void netdev_set_lockdep_class(spinlock_t *lock,
317 					    unsigned short dev_type)
318 {
319 	int i;
320 
321 	i = netdev_lock_pos(dev_type);
322 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
323 				   netdev_lock_name[i]);
324 }
325 #else
326 static inline void netdev_set_lockdep_class(spinlock_t *lock,
327 					    unsigned short dev_type)
328 {
329 }
330 #endif
331 
332 /*******************************************************************************
333 
334 		Protocol management and registration routines
335 
336 *******************************************************************************/
337 
338 /*
339  *	Add a protocol ID to the list. Now that the input handler is
340  *	smarter we can dispense with all the messy stuff that used to be
341  *	here.
342  *
343  *	BEWARE!!! Protocol handlers, mangling input packets,
344  *	MUST BE last in hash buckets and checking protocol handlers
345  *	MUST start from promiscuous ptype_all chain in net_bh.
346  *	It is true now, do not change it.
347  *	Explanation follows: if protocol handler, mangling packet, will
348  *	be the first on list, it is not able to sense, that packet
349  *	is cloned and should be copied-on-write, so that it will
350  *	change it and subsequent readers will get broken packet.
351  *							--ANK (980803)
352  */
353 
354 /**
355  *	dev_add_pack - add packet handler
356  *	@pt: packet type declaration
357  *
358  *	Add a protocol handler to the networking stack. The passed &packet_type
359  *	is linked into kernel lists and may not be freed until it has been
360  *	removed from the kernel lists.
361  *
362  *	This call does not sleep therefore it can not
363  *	guarantee all CPU's that are in middle of receiving packets
364  *	will see the new packet type (until the next received packet).
365  */
366 
367 void dev_add_pack(struct packet_type *pt)
368 {
369 	int hash;
370 
371 	spin_lock_bh(&ptype_lock);
372 	if (pt->type == htons(ETH_P_ALL))
373 		list_add_rcu(&pt->list, &ptype_all);
374 	else {
375 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
376 		list_add_rcu(&pt->list, &ptype_base[hash]);
377 	}
378 	spin_unlock_bh(&ptype_lock);
379 }
380 
381 /**
382  *	__dev_remove_pack	 - remove packet handler
383  *	@pt: packet type declaration
384  *
385  *	Remove a protocol handler that was previously added to the kernel
386  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
387  *	from the kernel lists and can be freed or reused once this function
388  *	returns.
389  *
390  *      The packet type might still be in use by receivers
391  *	and must not be freed until after all the CPU's have gone
392  *	through a quiescent state.
393  */
394 void __dev_remove_pack(struct packet_type *pt)
395 {
396 	struct list_head *head;
397 	struct packet_type *pt1;
398 
399 	spin_lock_bh(&ptype_lock);
400 
401 	if (pt->type == htons(ETH_P_ALL))
402 		head = &ptype_all;
403 	else
404 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
405 
406 	list_for_each_entry(pt1, head, list) {
407 		if (pt == pt1) {
408 			list_del_rcu(&pt->list);
409 			goto out;
410 		}
411 	}
412 
413 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
414 out:
415 	spin_unlock_bh(&ptype_lock);
416 }
417 /**
418  *	dev_remove_pack	 - remove packet handler
419  *	@pt: packet type declaration
420  *
421  *	Remove a protocol handler that was previously added to the kernel
422  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
423  *	from the kernel lists and can be freed or reused once this function
424  *	returns.
425  *
426  *	This call sleeps to guarantee that no CPU is looking at the packet
427  *	type after return.
428  */
429 void dev_remove_pack(struct packet_type *pt)
430 {
431 	__dev_remove_pack(pt);
432 
433 	synchronize_net();
434 }
435 
436 /******************************************************************************
437 
438 		      Device Boot-time Settings Routines
439 
440 *******************************************************************************/
441 
442 /* Boot time configuration table */
443 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
444 
445 /**
446  *	netdev_boot_setup_add	- add new setup entry
447  *	@name: name of the device
448  *	@map: configured settings for the device
449  *
450  *	Adds new setup entry to the dev_boot_setup list.  The function
451  *	returns 0 on error and 1 on success.  This is a generic routine to
452  *	all netdevices.
453  */
454 static int netdev_boot_setup_add(char *name, struct ifmap *map)
455 {
456 	struct netdev_boot_setup *s;
457 	int i;
458 
459 	s = dev_boot_setup;
460 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
461 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
462 			memset(s[i].name, 0, sizeof(s[i].name));
463 			strlcpy(s[i].name, name, IFNAMSIZ);
464 			memcpy(&s[i].map, map, sizeof(s[i].map));
465 			break;
466 		}
467 	}
468 
469 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
470 }
471 
472 /**
473  *	netdev_boot_setup_check	- check boot time settings
474  *	@dev: the netdevice
475  *
476  * 	Check boot time settings for the device.
477  *	The found settings are set for the device to be used
478  *	later in the device probing.
479  *	Returns 0 if no settings found, 1 if they are.
480  */
481 int netdev_boot_setup_check(struct net_device *dev)
482 {
483 	struct netdev_boot_setup *s = dev_boot_setup;
484 	int i;
485 
486 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
488 		    !strcmp(dev->name, s[i].name)) {
489 			dev->irq 	= s[i].map.irq;
490 			dev->base_addr 	= s[i].map.base_addr;
491 			dev->mem_start 	= s[i].map.mem_start;
492 			dev->mem_end 	= s[i].map.mem_end;
493 			return 1;
494 		}
495 	}
496 	return 0;
497 }
498 
499 
500 /**
501  *	netdev_boot_base	- get address from boot time settings
502  *	@prefix: prefix for network device
503  *	@unit: id for network device
504  *
505  * 	Check boot time settings for the base address of device.
506  *	The found settings are set for the device to be used
507  *	later in the device probing.
508  *	Returns 0 if no settings found.
509  */
510 unsigned long netdev_boot_base(const char *prefix, int unit)
511 {
512 	const struct netdev_boot_setup *s = dev_boot_setup;
513 	char name[IFNAMSIZ];
514 	int i;
515 
516 	sprintf(name, "%s%d", prefix, unit);
517 
518 	/*
519 	 * If device already registered then return base of 1
520 	 * to indicate not to probe for this interface
521 	 */
522 	if (__dev_get_by_name(&init_net, name))
523 		return 1;
524 
525 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
526 		if (!strcmp(name, s[i].name))
527 			return s[i].map.base_addr;
528 	return 0;
529 }
530 
531 /*
532  * Saves at boot time configured settings for any netdevice.
533  */
534 int __init netdev_boot_setup(char *str)
535 {
536 	int ints[5];
537 	struct ifmap map;
538 
539 	str = get_options(str, ARRAY_SIZE(ints), ints);
540 	if (!str || !*str)
541 		return 0;
542 
543 	/* Save settings */
544 	memset(&map, 0, sizeof(map));
545 	if (ints[0] > 0)
546 		map.irq = ints[1];
547 	if (ints[0] > 1)
548 		map.base_addr = ints[2];
549 	if (ints[0] > 2)
550 		map.mem_start = ints[3];
551 	if (ints[0] > 3)
552 		map.mem_end = ints[4];
553 
554 	/* Add new entry to the list */
555 	return netdev_boot_setup_add(str, &map);
556 }
557 
558 __setup("netdev=", netdev_boot_setup);
559 
560 /*******************************************************************************
561 
562 			    Device Interface Subroutines
563 
564 *******************************************************************************/
565 
566 /**
567  *	__dev_get_by_name	- find a device by its name
568  *	@net: the applicable net namespace
569  *	@name: name to find
570  *
571  *	Find an interface by name. Must be called under RTNL semaphore
572  *	or @dev_base_lock. If the name is found a pointer to the device
573  *	is returned. If the name is not found then %NULL is returned. The
574  *	reference counters are not incremented so the caller must be
575  *	careful with locks.
576  */
577 
578 struct net_device *__dev_get_by_name(struct net *net, const char *name)
579 {
580 	struct hlist_node *p;
581 
582 	hlist_for_each(p, dev_name_hash(net, name)) {
583 		struct net_device *dev
584 			= hlist_entry(p, struct net_device, name_hlist);
585 		if (!strncmp(dev->name, name, IFNAMSIZ))
586 			return dev;
587 	}
588 	return NULL;
589 }
590 
591 /**
592  *	dev_get_by_name		- find a device by its name
593  *	@net: the applicable net namespace
594  *	@name: name to find
595  *
596  *	Find an interface by name. This can be called from any
597  *	context and does its own locking. The returned handle has
598  *	the usage count incremented and the caller must use dev_put() to
599  *	release it when it is no longer needed. %NULL is returned if no
600  *	matching device is found.
601  */
602 
603 struct net_device *dev_get_by_name(struct net *net, const char *name)
604 {
605 	struct net_device *dev;
606 
607 	read_lock(&dev_base_lock);
608 	dev = __dev_get_by_name(net, name);
609 	if (dev)
610 		dev_hold(dev);
611 	read_unlock(&dev_base_lock);
612 	return dev;
613 }
614 
615 /**
616  *	__dev_get_by_index - find a device by its ifindex
617  *	@net: the applicable net namespace
618  *	@ifindex: index of device
619  *
620  *	Search for an interface by index. Returns %NULL if the device
621  *	is not found or a pointer to the device. The device has not
622  *	had its reference counter increased so the caller must be careful
623  *	about locking. The caller must hold either the RTNL semaphore
624  *	or @dev_base_lock.
625  */
626 
627 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
628 {
629 	struct hlist_node *p;
630 
631 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
632 		struct net_device *dev
633 			= hlist_entry(p, struct net_device, index_hlist);
634 		if (dev->ifindex == ifindex)
635 			return dev;
636 	}
637 	return NULL;
638 }
639 
640 
641 /**
642  *	dev_get_by_index - find a device by its ifindex
643  *	@net: the applicable net namespace
644  *	@ifindex: index of device
645  *
646  *	Search for an interface by index. Returns NULL if the device
647  *	is not found or a pointer to the device. The device returned has
648  *	had a reference added and the pointer is safe until the user calls
649  *	dev_put to indicate they have finished with it.
650  */
651 
652 struct net_device *dev_get_by_index(struct net *net, int ifindex)
653 {
654 	struct net_device *dev;
655 
656 	read_lock(&dev_base_lock);
657 	dev = __dev_get_by_index(net, ifindex);
658 	if (dev)
659 		dev_hold(dev);
660 	read_unlock(&dev_base_lock);
661 	return dev;
662 }
663 
664 /**
665  *	dev_getbyhwaddr - find a device by its hardware address
666  *	@net: the applicable net namespace
667  *	@type: media type of device
668  *	@ha: hardware address
669  *
670  *	Search for an interface by MAC address. Returns NULL if the device
671  *	is not found or a pointer to the device. The caller must hold the
672  *	rtnl semaphore. The returned device has not had its ref count increased
673  *	and the caller must therefore be careful about locking
674  *
675  *	BUGS:
676  *	If the API was consistent this would be __dev_get_by_hwaddr
677  */
678 
679 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
680 {
681 	struct net_device *dev;
682 
683 	ASSERT_RTNL();
684 
685 	for_each_netdev(net, dev)
686 		if (dev->type == type &&
687 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
688 			return dev;
689 
690 	return NULL;
691 }
692 
693 EXPORT_SYMBOL(dev_getbyhwaddr);
694 
695 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
696 {
697 	struct net_device *dev;
698 
699 	ASSERT_RTNL();
700 	for_each_netdev(net, dev)
701 		if (dev->type == type)
702 			return dev;
703 
704 	return NULL;
705 }
706 
707 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
708 
709 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
710 {
711 	struct net_device *dev;
712 
713 	rtnl_lock();
714 	dev = __dev_getfirstbyhwtype(net, type);
715 	if (dev)
716 		dev_hold(dev);
717 	rtnl_unlock();
718 	return dev;
719 }
720 
721 EXPORT_SYMBOL(dev_getfirstbyhwtype);
722 
723 /**
724  *	dev_get_by_flags - find any device with given flags
725  *	@net: the applicable net namespace
726  *	@if_flags: IFF_* values
727  *	@mask: bitmask of bits in if_flags to check
728  *
729  *	Search for any interface with the given flags. Returns NULL if a device
730  *	is not found or a pointer to the device. The device returned has
731  *	had a reference added and the pointer is safe until the user calls
732  *	dev_put to indicate they have finished with it.
733  */
734 
735 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
736 {
737 	struct net_device *dev, *ret;
738 
739 	ret = NULL;
740 	read_lock(&dev_base_lock);
741 	for_each_netdev(net, dev) {
742 		if (((dev->flags ^ if_flags) & mask) == 0) {
743 			dev_hold(dev);
744 			ret = dev;
745 			break;
746 		}
747 	}
748 	read_unlock(&dev_base_lock);
749 	return ret;
750 }
751 
752 /**
753  *	dev_valid_name - check if name is okay for network device
754  *	@name: name string
755  *
756  *	Network device names need to be valid file names to
757  *	to allow sysfs to work.  We also disallow any kind of
758  *	whitespace.
759  */
760 int dev_valid_name(const char *name)
761 {
762 	if (*name == '\0')
763 		return 0;
764 	if (strlen(name) >= IFNAMSIZ)
765 		return 0;
766 	if (!strcmp(name, ".") || !strcmp(name, ".."))
767 		return 0;
768 
769 	while (*name) {
770 		if (*name == '/' || isspace(*name))
771 			return 0;
772 		name++;
773 	}
774 	return 1;
775 }
776 
777 /**
778  *	__dev_alloc_name - allocate a name for a device
779  *	@net: network namespace to allocate the device name in
780  *	@name: name format string
781  *	@buf:  scratch buffer and result name string
782  *
783  *	Passed a format string - eg "lt%d" it will try and find a suitable
784  *	id. It scans list of devices to build up a free map, then chooses
785  *	the first empty slot. The caller must hold the dev_base or rtnl lock
786  *	while allocating the name and adding the device in order to avoid
787  *	duplicates.
788  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
789  *	Returns the number of the unit assigned or a negative errno code.
790  */
791 
792 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
793 {
794 	int i = 0;
795 	const char *p;
796 	const int max_netdevices = 8*PAGE_SIZE;
797 	unsigned long *inuse;
798 	struct net_device *d;
799 
800 	p = strnchr(name, IFNAMSIZ-1, '%');
801 	if (p) {
802 		/*
803 		 * Verify the string as this thing may have come from
804 		 * the user.  There must be either one "%d" and no other "%"
805 		 * characters.
806 		 */
807 		if (p[1] != 'd' || strchr(p + 2, '%'))
808 			return -EINVAL;
809 
810 		/* Use one page as a bit array of possible slots */
811 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
812 		if (!inuse)
813 			return -ENOMEM;
814 
815 		for_each_netdev(net, d) {
816 			if (!sscanf(d->name, name, &i))
817 				continue;
818 			if (i < 0 || i >= max_netdevices)
819 				continue;
820 
821 			/*  avoid cases where sscanf is not exact inverse of printf */
822 			snprintf(buf, IFNAMSIZ, name, i);
823 			if (!strncmp(buf, d->name, IFNAMSIZ))
824 				set_bit(i, inuse);
825 		}
826 
827 		i = find_first_zero_bit(inuse, max_netdevices);
828 		free_page((unsigned long) inuse);
829 	}
830 
831 	snprintf(buf, IFNAMSIZ, name, i);
832 	if (!__dev_get_by_name(net, buf))
833 		return i;
834 
835 	/* It is possible to run out of possible slots
836 	 * when the name is long and there isn't enough space left
837 	 * for the digits, or if all bits are used.
838 	 */
839 	return -ENFILE;
840 }
841 
842 /**
843  *	dev_alloc_name - allocate a name for a device
844  *	@dev: device
845  *	@name: name format string
846  *
847  *	Passed a format string - eg "lt%d" it will try and find a suitable
848  *	id. It scans list of devices to build up a free map, then chooses
849  *	the first empty slot. The caller must hold the dev_base or rtnl lock
850  *	while allocating the name and adding the device in order to avoid
851  *	duplicates.
852  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
853  *	Returns the number of the unit assigned or a negative errno code.
854  */
855 
856 int dev_alloc_name(struct net_device *dev, const char *name)
857 {
858 	char buf[IFNAMSIZ];
859 	struct net *net;
860 	int ret;
861 
862 	BUG_ON(!dev_net(dev));
863 	net = dev_net(dev);
864 	ret = __dev_alloc_name(net, name, buf);
865 	if (ret >= 0)
866 		strlcpy(dev->name, buf, IFNAMSIZ);
867 	return ret;
868 }
869 
870 
871 /**
872  *	dev_change_name - change name of a device
873  *	@dev: device
874  *	@newname: name (or format string) must be at least IFNAMSIZ
875  *
876  *	Change name of a device, can pass format strings "eth%d".
877  *	for wildcarding.
878  */
879 int dev_change_name(struct net_device *dev, char *newname)
880 {
881 	char oldname[IFNAMSIZ];
882 	int err = 0;
883 	int ret;
884 	struct net *net;
885 
886 	ASSERT_RTNL();
887 	BUG_ON(!dev_net(dev));
888 
889 	net = dev_net(dev);
890 	if (dev->flags & IFF_UP)
891 		return -EBUSY;
892 
893 	if (!dev_valid_name(newname))
894 		return -EINVAL;
895 
896 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
897 		return 0;
898 
899 	memcpy(oldname, dev->name, IFNAMSIZ);
900 
901 	if (strchr(newname, '%')) {
902 		err = dev_alloc_name(dev, newname);
903 		if (err < 0)
904 			return err;
905 		strcpy(newname, dev->name);
906 	}
907 	else if (__dev_get_by_name(net, newname))
908 		return -EEXIST;
909 	else
910 		strlcpy(dev->name, newname, IFNAMSIZ);
911 
912 rollback:
913 	err = device_rename(&dev->dev, dev->name);
914 	if (err) {
915 		memcpy(dev->name, oldname, IFNAMSIZ);
916 		return err;
917 	}
918 
919 	write_lock_bh(&dev_base_lock);
920 	hlist_del(&dev->name_hlist);
921 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
922 	write_unlock_bh(&dev_base_lock);
923 
924 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
925 	ret = notifier_to_errno(ret);
926 
927 	if (ret) {
928 		if (err) {
929 			printk(KERN_ERR
930 			       "%s: name change rollback failed: %d.\n",
931 			       dev->name, ret);
932 		} else {
933 			err = ret;
934 			memcpy(dev->name, oldname, IFNAMSIZ);
935 			goto rollback;
936 		}
937 	}
938 
939 	return err;
940 }
941 
942 /**
943  *	netdev_features_change - device changes features
944  *	@dev: device to cause notification
945  *
946  *	Called to indicate a device has changed features.
947  */
948 void netdev_features_change(struct net_device *dev)
949 {
950 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
951 }
952 EXPORT_SYMBOL(netdev_features_change);
953 
954 /**
955  *	netdev_state_change - device changes state
956  *	@dev: device to cause notification
957  *
958  *	Called to indicate a device has changed state. This function calls
959  *	the notifier chains for netdev_chain and sends a NEWLINK message
960  *	to the routing socket.
961  */
962 void netdev_state_change(struct net_device *dev)
963 {
964 	if (dev->flags & IFF_UP) {
965 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
966 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
967 	}
968 }
969 
970 void netdev_bonding_change(struct net_device *dev)
971 {
972 	call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
973 }
974 EXPORT_SYMBOL(netdev_bonding_change);
975 
976 /**
977  *	dev_load 	- load a network module
978  *	@net: the applicable net namespace
979  *	@name: name of interface
980  *
981  *	If a network interface is not present and the process has suitable
982  *	privileges this function loads the module. If module loading is not
983  *	available in this kernel then it becomes a nop.
984  */
985 
986 void dev_load(struct net *net, const char *name)
987 {
988 	struct net_device *dev;
989 
990 	read_lock(&dev_base_lock);
991 	dev = __dev_get_by_name(net, name);
992 	read_unlock(&dev_base_lock);
993 
994 	if (!dev && capable(CAP_SYS_MODULE))
995 		request_module("%s", name);
996 }
997 
998 /**
999  *	dev_open	- prepare an interface for use.
1000  *	@dev:	device to open
1001  *
1002  *	Takes a device from down to up state. The device's private open
1003  *	function is invoked and then the multicast lists are loaded. Finally
1004  *	the device is moved into the up state and a %NETDEV_UP message is
1005  *	sent to the netdev notifier chain.
1006  *
1007  *	Calling this function on an active interface is a nop. On a failure
1008  *	a negative errno code is returned.
1009  */
1010 int dev_open(struct net_device *dev)
1011 {
1012 	int ret = 0;
1013 
1014 	ASSERT_RTNL();
1015 
1016 	/*
1017 	 *	Is it already up?
1018 	 */
1019 
1020 	if (dev->flags & IFF_UP)
1021 		return 0;
1022 
1023 	/*
1024 	 *	Is it even present?
1025 	 */
1026 	if (!netif_device_present(dev))
1027 		return -ENODEV;
1028 
1029 	/*
1030 	 *	Call device private open method
1031 	 */
1032 	set_bit(__LINK_STATE_START, &dev->state);
1033 
1034 	if (dev->validate_addr)
1035 		ret = dev->validate_addr(dev);
1036 
1037 	if (!ret && dev->open)
1038 		ret = dev->open(dev);
1039 
1040 	/*
1041 	 *	If it went open OK then:
1042 	 */
1043 
1044 	if (ret)
1045 		clear_bit(__LINK_STATE_START, &dev->state);
1046 	else {
1047 		/*
1048 		 *	Set the flags.
1049 		 */
1050 		dev->flags |= IFF_UP;
1051 
1052 		/*
1053 		 *	Initialize multicasting status
1054 		 */
1055 		dev_set_rx_mode(dev);
1056 
1057 		/*
1058 		 *	Wakeup transmit queue engine
1059 		 */
1060 		dev_activate(dev);
1061 
1062 		/*
1063 		 *	... and announce new interface.
1064 		 */
1065 		call_netdevice_notifiers(NETDEV_UP, dev);
1066 	}
1067 
1068 	return ret;
1069 }
1070 
1071 /**
1072  *	dev_close - shutdown an interface.
1073  *	@dev: device to shutdown
1074  *
1075  *	This function moves an active device into down state. A
1076  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1077  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1078  *	chain.
1079  */
1080 int dev_close(struct net_device *dev)
1081 {
1082 	ASSERT_RTNL();
1083 
1084 	might_sleep();
1085 
1086 	if (!(dev->flags & IFF_UP))
1087 		return 0;
1088 
1089 	/*
1090 	 *	Tell people we are going down, so that they can
1091 	 *	prepare to death, when device is still operating.
1092 	 */
1093 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1094 
1095 	clear_bit(__LINK_STATE_START, &dev->state);
1096 
1097 	/* Synchronize to scheduled poll. We cannot touch poll list,
1098 	 * it can be even on different cpu. So just clear netif_running().
1099 	 *
1100 	 * dev->stop() will invoke napi_disable() on all of it's
1101 	 * napi_struct instances on this device.
1102 	 */
1103 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1104 
1105 	dev_deactivate(dev);
1106 
1107 	/*
1108 	 *	Call the device specific close. This cannot fail.
1109 	 *	Only if device is UP
1110 	 *
1111 	 *	We allow it to be called even after a DETACH hot-plug
1112 	 *	event.
1113 	 */
1114 	if (dev->stop)
1115 		dev->stop(dev);
1116 
1117 	/*
1118 	 *	Device is now down.
1119 	 */
1120 
1121 	dev->flags &= ~IFF_UP;
1122 
1123 	/*
1124 	 * Tell people we are down
1125 	 */
1126 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1127 
1128 	return 0;
1129 }
1130 
1131 
1132 /**
1133  *	dev_disable_lro - disable Large Receive Offload on a device
1134  *	@dev: device
1135  *
1136  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1137  *	called under RTNL.  This is needed if received packets may be
1138  *	forwarded to another interface.
1139  */
1140 void dev_disable_lro(struct net_device *dev)
1141 {
1142 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1143 	    dev->ethtool_ops->set_flags) {
1144 		u32 flags = dev->ethtool_ops->get_flags(dev);
1145 		if (flags & ETH_FLAG_LRO) {
1146 			flags &= ~ETH_FLAG_LRO;
1147 			dev->ethtool_ops->set_flags(dev, flags);
1148 		}
1149 	}
1150 	WARN_ON(dev->features & NETIF_F_LRO);
1151 }
1152 EXPORT_SYMBOL(dev_disable_lro);
1153 
1154 
1155 static int dev_boot_phase = 1;
1156 
1157 /*
1158  *	Device change register/unregister. These are not inline or static
1159  *	as we export them to the world.
1160  */
1161 
1162 /**
1163  *	register_netdevice_notifier - register a network notifier block
1164  *	@nb: notifier
1165  *
1166  *	Register a notifier to be called when network device events occur.
1167  *	The notifier passed is linked into the kernel structures and must
1168  *	not be reused until it has been unregistered. A negative errno code
1169  *	is returned on a failure.
1170  *
1171  * 	When registered all registration and up events are replayed
1172  *	to the new notifier to allow device to have a race free
1173  *	view of the network device list.
1174  */
1175 
1176 int register_netdevice_notifier(struct notifier_block *nb)
1177 {
1178 	struct net_device *dev;
1179 	struct net_device *last;
1180 	struct net *net;
1181 	int err;
1182 
1183 	rtnl_lock();
1184 	err = raw_notifier_chain_register(&netdev_chain, nb);
1185 	if (err)
1186 		goto unlock;
1187 	if (dev_boot_phase)
1188 		goto unlock;
1189 	for_each_net(net) {
1190 		for_each_netdev(net, dev) {
1191 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1192 			err = notifier_to_errno(err);
1193 			if (err)
1194 				goto rollback;
1195 
1196 			if (!(dev->flags & IFF_UP))
1197 				continue;
1198 
1199 			nb->notifier_call(nb, NETDEV_UP, dev);
1200 		}
1201 	}
1202 
1203 unlock:
1204 	rtnl_unlock();
1205 	return err;
1206 
1207 rollback:
1208 	last = dev;
1209 	for_each_net(net) {
1210 		for_each_netdev(net, dev) {
1211 			if (dev == last)
1212 				break;
1213 
1214 			if (dev->flags & IFF_UP) {
1215 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1216 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1217 			}
1218 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1219 		}
1220 	}
1221 
1222 	raw_notifier_chain_unregister(&netdev_chain, nb);
1223 	goto unlock;
1224 }
1225 
1226 /**
1227  *	unregister_netdevice_notifier - unregister a network notifier block
1228  *	@nb: notifier
1229  *
1230  *	Unregister a notifier previously registered by
1231  *	register_netdevice_notifier(). The notifier is unlinked into the
1232  *	kernel structures and may then be reused. A negative errno code
1233  *	is returned on a failure.
1234  */
1235 
1236 int unregister_netdevice_notifier(struct notifier_block *nb)
1237 {
1238 	int err;
1239 
1240 	rtnl_lock();
1241 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1242 	rtnl_unlock();
1243 	return err;
1244 }
1245 
1246 /**
1247  *	call_netdevice_notifiers - call all network notifier blocks
1248  *      @val: value passed unmodified to notifier function
1249  *      @dev: net_device pointer passed unmodified to notifier function
1250  *
1251  *	Call all network notifier blocks.  Parameters and return value
1252  *	are as for raw_notifier_call_chain().
1253  */
1254 
1255 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1256 {
1257 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1258 }
1259 
1260 /* When > 0 there are consumers of rx skb time stamps */
1261 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1262 
1263 void net_enable_timestamp(void)
1264 {
1265 	atomic_inc(&netstamp_needed);
1266 }
1267 
1268 void net_disable_timestamp(void)
1269 {
1270 	atomic_dec(&netstamp_needed);
1271 }
1272 
1273 static inline void net_timestamp(struct sk_buff *skb)
1274 {
1275 	if (atomic_read(&netstamp_needed))
1276 		__net_timestamp(skb);
1277 	else
1278 		skb->tstamp.tv64 = 0;
1279 }
1280 
1281 /*
1282  *	Support routine. Sends outgoing frames to any network
1283  *	taps currently in use.
1284  */
1285 
1286 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1287 {
1288 	struct packet_type *ptype;
1289 
1290 	net_timestamp(skb);
1291 
1292 	rcu_read_lock();
1293 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1294 		/* Never send packets back to the socket
1295 		 * they originated from - MvS (miquels@drinkel.ow.org)
1296 		 */
1297 		if ((ptype->dev == dev || !ptype->dev) &&
1298 		    (ptype->af_packet_priv == NULL ||
1299 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1300 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1301 			if (!skb2)
1302 				break;
1303 
1304 			/* skb->nh should be correctly
1305 			   set by sender, so that the second statement is
1306 			   just protection against buggy protocols.
1307 			 */
1308 			skb_reset_mac_header(skb2);
1309 
1310 			if (skb_network_header(skb2) < skb2->data ||
1311 			    skb2->network_header > skb2->tail) {
1312 				if (net_ratelimit())
1313 					printk(KERN_CRIT "protocol %04x is "
1314 					       "buggy, dev %s\n",
1315 					       skb2->protocol, dev->name);
1316 				skb_reset_network_header(skb2);
1317 			}
1318 
1319 			skb2->transport_header = skb2->network_header;
1320 			skb2->pkt_type = PACKET_OUTGOING;
1321 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1322 		}
1323 	}
1324 	rcu_read_unlock();
1325 }
1326 
1327 
1328 void __netif_schedule(struct Qdisc *q)
1329 {
1330 	if (WARN_ON_ONCE(q == &noop_qdisc))
1331 		return;
1332 
1333 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) {
1334 		struct softnet_data *sd;
1335 		unsigned long flags;
1336 
1337 		local_irq_save(flags);
1338 		sd = &__get_cpu_var(softnet_data);
1339 		q->next_sched = sd->output_queue;
1340 		sd->output_queue = q;
1341 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1342 		local_irq_restore(flags);
1343 	}
1344 }
1345 EXPORT_SYMBOL(__netif_schedule);
1346 
1347 void dev_kfree_skb_irq(struct sk_buff *skb)
1348 {
1349 	if (atomic_dec_and_test(&skb->users)) {
1350 		struct softnet_data *sd;
1351 		unsigned long flags;
1352 
1353 		local_irq_save(flags);
1354 		sd = &__get_cpu_var(softnet_data);
1355 		skb->next = sd->completion_queue;
1356 		sd->completion_queue = skb;
1357 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1358 		local_irq_restore(flags);
1359 	}
1360 }
1361 EXPORT_SYMBOL(dev_kfree_skb_irq);
1362 
1363 void dev_kfree_skb_any(struct sk_buff *skb)
1364 {
1365 	if (in_irq() || irqs_disabled())
1366 		dev_kfree_skb_irq(skb);
1367 	else
1368 		dev_kfree_skb(skb);
1369 }
1370 EXPORT_SYMBOL(dev_kfree_skb_any);
1371 
1372 
1373 /**
1374  * netif_device_detach - mark device as removed
1375  * @dev: network device
1376  *
1377  * Mark device as removed from system and therefore no longer available.
1378  */
1379 void netif_device_detach(struct net_device *dev)
1380 {
1381 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1382 	    netif_running(dev)) {
1383 		netif_stop_queue(dev);
1384 	}
1385 }
1386 EXPORT_SYMBOL(netif_device_detach);
1387 
1388 /**
1389  * netif_device_attach - mark device as attached
1390  * @dev: network device
1391  *
1392  * Mark device as attached from system and restart if needed.
1393  */
1394 void netif_device_attach(struct net_device *dev)
1395 {
1396 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1397 	    netif_running(dev)) {
1398 		netif_wake_queue(dev);
1399 		__netdev_watchdog_up(dev);
1400 	}
1401 }
1402 EXPORT_SYMBOL(netif_device_attach);
1403 
1404 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1405 {
1406 	return ((features & NETIF_F_GEN_CSUM) ||
1407 		((features & NETIF_F_IP_CSUM) &&
1408 		 protocol == htons(ETH_P_IP)) ||
1409 		((features & NETIF_F_IPV6_CSUM) &&
1410 		 protocol == htons(ETH_P_IPV6)));
1411 }
1412 
1413 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1414 {
1415 	if (can_checksum_protocol(dev->features, skb->protocol))
1416 		return true;
1417 
1418 	if (skb->protocol == htons(ETH_P_8021Q)) {
1419 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1420 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1421 					  veh->h_vlan_encapsulated_proto))
1422 			return true;
1423 	}
1424 
1425 	return false;
1426 }
1427 
1428 /*
1429  * Invalidate hardware checksum when packet is to be mangled, and
1430  * complete checksum manually on outgoing path.
1431  */
1432 int skb_checksum_help(struct sk_buff *skb)
1433 {
1434 	__wsum csum;
1435 	int ret = 0, offset;
1436 
1437 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1438 		goto out_set_summed;
1439 
1440 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1441 		/* Let GSO fix up the checksum. */
1442 		goto out_set_summed;
1443 	}
1444 
1445 	offset = skb->csum_start - skb_headroom(skb);
1446 	BUG_ON(offset >= skb_headlen(skb));
1447 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1448 
1449 	offset += skb->csum_offset;
1450 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1451 
1452 	if (skb_cloned(skb) &&
1453 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1454 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1455 		if (ret)
1456 			goto out;
1457 	}
1458 
1459 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1460 out_set_summed:
1461 	skb->ip_summed = CHECKSUM_NONE;
1462 out:
1463 	return ret;
1464 }
1465 
1466 /**
1467  *	skb_gso_segment - Perform segmentation on skb.
1468  *	@skb: buffer to segment
1469  *	@features: features for the output path (see dev->features)
1470  *
1471  *	This function segments the given skb and returns a list of segments.
1472  *
1473  *	It may return NULL if the skb requires no segmentation.  This is
1474  *	only possible when GSO is used for verifying header integrity.
1475  */
1476 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1477 {
1478 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1479 	struct packet_type *ptype;
1480 	__be16 type = skb->protocol;
1481 	int err;
1482 
1483 	BUG_ON(skb_shinfo(skb)->frag_list);
1484 
1485 	skb_reset_mac_header(skb);
1486 	skb->mac_len = skb->network_header - skb->mac_header;
1487 	__skb_pull(skb, skb->mac_len);
1488 
1489 	if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1490 		if (skb_header_cloned(skb) &&
1491 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1492 			return ERR_PTR(err);
1493 	}
1494 
1495 	rcu_read_lock();
1496 	list_for_each_entry_rcu(ptype,
1497 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1498 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1499 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1500 				err = ptype->gso_send_check(skb);
1501 				segs = ERR_PTR(err);
1502 				if (err || skb_gso_ok(skb, features))
1503 					break;
1504 				__skb_push(skb, (skb->data -
1505 						 skb_network_header(skb)));
1506 			}
1507 			segs = ptype->gso_segment(skb, features);
1508 			break;
1509 		}
1510 	}
1511 	rcu_read_unlock();
1512 
1513 	__skb_push(skb, skb->data - skb_mac_header(skb));
1514 
1515 	return segs;
1516 }
1517 
1518 EXPORT_SYMBOL(skb_gso_segment);
1519 
1520 /* Take action when hardware reception checksum errors are detected. */
1521 #ifdef CONFIG_BUG
1522 void netdev_rx_csum_fault(struct net_device *dev)
1523 {
1524 	if (net_ratelimit()) {
1525 		printk(KERN_ERR "%s: hw csum failure.\n",
1526 			dev ? dev->name : "<unknown>");
1527 		dump_stack();
1528 	}
1529 }
1530 EXPORT_SYMBOL(netdev_rx_csum_fault);
1531 #endif
1532 
1533 /* Actually, we should eliminate this check as soon as we know, that:
1534  * 1. IOMMU is present and allows to map all the memory.
1535  * 2. No high memory really exists on this machine.
1536  */
1537 
1538 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1539 {
1540 #ifdef CONFIG_HIGHMEM
1541 	int i;
1542 
1543 	if (dev->features & NETIF_F_HIGHDMA)
1544 		return 0;
1545 
1546 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1547 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1548 			return 1;
1549 
1550 #endif
1551 	return 0;
1552 }
1553 
1554 struct dev_gso_cb {
1555 	void (*destructor)(struct sk_buff *skb);
1556 };
1557 
1558 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1559 
1560 static void dev_gso_skb_destructor(struct sk_buff *skb)
1561 {
1562 	struct dev_gso_cb *cb;
1563 
1564 	do {
1565 		struct sk_buff *nskb = skb->next;
1566 
1567 		skb->next = nskb->next;
1568 		nskb->next = NULL;
1569 		kfree_skb(nskb);
1570 	} while (skb->next);
1571 
1572 	cb = DEV_GSO_CB(skb);
1573 	if (cb->destructor)
1574 		cb->destructor(skb);
1575 }
1576 
1577 /**
1578  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1579  *	@skb: buffer to segment
1580  *
1581  *	This function segments the given skb and stores the list of segments
1582  *	in skb->next.
1583  */
1584 static int dev_gso_segment(struct sk_buff *skb)
1585 {
1586 	struct net_device *dev = skb->dev;
1587 	struct sk_buff *segs;
1588 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1589 					 NETIF_F_SG : 0);
1590 
1591 	segs = skb_gso_segment(skb, features);
1592 
1593 	/* Verifying header integrity only. */
1594 	if (!segs)
1595 		return 0;
1596 
1597 	if (IS_ERR(segs))
1598 		return PTR_ERR(segs);
1599 
1600 	skb->next = segs;
1601 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1602 	skb->destructor = dev_gso_skb_destructor;
1603 
1604 	return 0;
1605 }
1606 
1607 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1608 			struct netdev_queue *txq)
1609 {
1610 	if (likely(!skb->next)) {
1611 		if (!list_empty(&ptype_all))
1612 			dev_queue_xmit_nit(skb, dev);
1613 
1614 		if (netif_needs_gso(dev, skb)) {
1615 			if (unlikely(dev_gso_segment(skb)))
1616 				goto out_kfree_skb;
1617 			if (skb->next)
1618 				goto gso;
1619 		}
1620 
1621 		return dev->hard_start_xmit(skb, dev);
1622 	}
1623 
1624 gso:
1625 	do {
1626 		struct sk_buff *nskb = skb->next;
1627 		int rc;
1628 
1629 		skb->next = nskb->next;
1630 		nskb->next = NULL;
1631 		rc = dev->hard_start_xmit(nskb, dev);
1632 		if (unlikely(rc)) {
1633 			nskb->next = skb->next;
1634 			skb->next = nskb;
1635 			return rc;
1636 		}
1637 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1638 			return NETDEV_TX_BUSY;
1639 	} while (skb->next);
1640 
1641 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1642 
1643 out_kfree_skb:
1644 	kfree_skb(skb);
1645 	return 0;
1646 }
1647 
1648 /**
1649  *	dev_queue_xmit - transmit a buffer
1650  *	@skb: buffer to transmit
1651  *
1652  *	Queue a buffer for transmission to a network device. The caller must
1653  *	have set the device and priority and built the buffer before calling
1654  *	this function. The function can be called from an interrupt.
1655  *
1656  *	A negative errno code is returned on a failure. A success does not
1657  *	guarantee the frame will be transmitted as it may be dropped due
1658  *	to congestion or traffic shaping.
1659  *
1660  * -----------------------------------------------------------------------------------
1661  *      I notice this method can also return errors from the queue disciplines,
1662  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1663  *      be positive.
1664  *
1665  *      Regardless of the return value, the skb is consumed, so it is currently
1666  *      difficult to retry a send to this method.  (You can bump the ref count
1667  *      before sending to hold a reference for retry if you are careful.)
1668  *
1669  *      When calling this method, interrupts MUST be enabled.  This is because
1670  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1671  *          --BLG
1672  */
1673 
1674 static u32 simple_tx_hashrnd;
1675 static int simple_tx_hashrnd_initialized = 0;
1676 
1677 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1678 {
1679 	u32 addr1, addr2, ports;
1680 	u32 hash, ihl;
1681 	u8 ip_proto;
1682 
1683 	if (unlikely(!simple_tx_hashrnd_initialized)) {
1684 		get_random_bytes(&simple_tx_hashrnd, 4);
1685 		simple_tx_hashrnd_initialized = 1;
1686 	}
1687 
1688 	switch (skb->protocol) {
1689 	case __constant_htons(ETH_P_IP):
1690 		ip_proto = ip_hdr(skb)->protocol;
1691 		addr1 = ip_hdr(skb)->saddr;
1692 		addr2 = ip_hdr(skb)->daddr;
1693 		ihl = ip_hdr(skb)->ihl;
1694 		break;
1695 	case __constant_htons(ETH_P_IPV6):
1696 		ip_proto = ipv6_hdr(skb)->nexthdr;
1697 		addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1698 		addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1699 		ihl = (40 >> 2);
1700 		break;
1701 	default:
1702 		return 0;
1703 	}
1704 
1705 
1706 	switch (ip_proto) {
1707 	case IPPROTO_TCP:
1708 	case IPPROTO_UDP:
1709 	case IPPROTO_DCCP:
1710 	case IPPROTO_ESP:
1711 	case IPPROTO_AH:
1712 	case IPPROTO_SCTP:
1713 	case IPPROTO_UDPLITE:
1714 		ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1715 		break;
1716 
1717 	default:
1718 		ports = 0;
1719 		break;
1720 	}
1721 
1722 	hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1723 
1724 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1725 }
1726 
1727 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1728 					struct sk_buff *skb)
1729 {
1730 	u16 queue_index = 0;
1731 
1732 	if (dev->select_queue)
1733 		queue_index = dev->select_queue(dev, skb);
1734 	else if (dev->real_num_tx_queues > 1)
1735 		queue_index = simple_tx_hash(dev, skb);
1736 
1737 	skb_set_queue_mapping(skb, queue_index);
1738 	return netdev_get_tx_queue(dev, queue_index);
1739 }
1740 
1741 int dev_queue_xmit(struct sk_buff *skb)
1742 {
1743 	struct net_device *dev = skb->dev;
1744 	struct netdev_queue *txq;
1745 	struct Qdisc *q;
1746 	int rc = -ENOMEM;
1747 
1748 	/* GSO will handle the following emulations directly. */
1749 	if (netif_needs_gso(dev, skb))
1750 		goto gso;
1751 
1752 	if (skb_shinfo(skb)->frag_list &&
1753 	    !(dev->features & NETIF_F_FRAGLIST) &&
1754 	    __skb_linearize(skb))
1755 		goto out_kfree_skb;
1756 
1757 	/* Fragmented skb is linearized if device does not support SG,
1758 	 * or if at least one of fragments is in highmem and device
1759 	 * does not support DMA from it.
1760 	 */
1761 	if (skb_shinfo(skb)->nr_frags &&
1762 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1763 	    __skb_linearize(skb))
1764 		goto out_kfree_skb;
1765 
1766 	/* If packet is not checksummed and device does not support
1767 	 * checksumming for this protocol, complete checksumming here.
1768 	 */
1769 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1770 		skb_set_transport_header(skb, skb->csum_start -
1771 					      skb_headroom(skb));
1772 		if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1773 			goto out_kfree_skb;
1774 	}
1775 
1776 gso:
1777 	/* Disable soft irqs for various locks below. Also
1778 	 * stops preemption for RCU.
1779 	 */
1780 	rcu_read_lock_bh();
1781 
1782 	txq = dev_pick_tx(dev, skb);
1783 	q = rcu_dereference(txq->qdisc);
1784 
1785 #ifdef CONFIG_NET_CLS_ACT
1786 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1787 #endif
1788 	if (q->enqueue) {
1789 		spinlock_t *root_lock = qdisc_root_lock(q);
1790 
1791 		spin_lock(root_lock);
1792 
1793 		rc = qdisc_enqueue_root(skb, q);
1794 		qdisc_run(q);
1795 
1796 		spin_unlock(root_lock);
1797 
1798 		rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1799 		goto out;
1800 	}
1801 
1802 	/* The device has no queue. Common case for software devices:
1803 	   loopback, all the sorts of tunnels...
1804 
1805 	   Really, it is unlikely that netif_tx_lock protection is necessary
1806 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1807 	   counters.)
1808 	   However, it is possible, that they rely on protection
1809 	   made by us here.
1810 
1811 	   Check this and shot the lock. It is not prone from deadlocks.
1812 	   Either shot noqueue qdisc, it is even simpler 8)
1813 	 */
1814 	if (dev->flags & IFF_UP) {
1815 		int cpu = smp_processor_id(); /* ok because BHs are off */
1816 
1817 		if (txq->xmit_lock_owner != cpu) {
1818 
1819 			HARD_TX_LOCK(dev, txq, cpu);
1820 
1821 			if (!netif_tx_queue_stopped(txq)) {
1822 				rc = 0;
1823 				if (!dev_hard_start_xmit(skb, dev, txq)) {
1824 					HARD_TX_UNLOCK(dev, txq);
1825 					goto out;
1826 				}
1827 			}
1828 			HARD_TX_UNLOCK(dev, txq);
1829 			if (net_ratelimit())
1830 				printk(KERN_CRIT "Virtual device %s asks to "
1831 				       "queue packet!\n", dev->name);
1832 		} else {
1833 			/* Recursion is detected! It is possible,
1834 			 * unfortunately */
1835 			if (net_ratelimit())
1836 				printk(KERN_CRIT "Dead loop on virtual device "
1837 				       "%s, fix it urgently!\n", dev->name);
1838 		}
1839 	}
1840 
1841 	rc = -ENETDOWN;
1842 	rcu_read_unlock_bh();
1843 
1844 out_kfree_skb:
1845 	kfree_skb(skb);
1846 	return rc;
1847 out:
1848 	rcu_read_unlock_bh();
1849 	return rc;
1850 }
1851 
1852 
1853 /*=======================================================================
1854 			Receiver routines
1855   =======================================================================*/
1856 
1857 int netdev_max_backlog __read_mostly = 1000;
1858 int netdev_budget __read_mostly = 300;
1859 int weight_p __read_mostly = 64;            /* old backlog weight */
1860 
1861 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1862 
1863 
1864 /**
1865  *	netif_rx	-	post buffer to the network code
1866  *	@skb: buffer to post
1867  *
1868  *	This function receives a packet from a device driver and queues it for
1869  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1870  *	may be dropped during processing for congestion control or by the
1871  *	protocol layers.
1872  *
1873  *	return values:
1874  *	NET_RX_SUCCESS	(no congestion)
1875  *	NET_RX_DROP     (packet was dropped)
1876  *
1877  */
1878 
1879 int netif_rx(struct sk_buff *skb)
1880 {
1881 	struct softnet_data *queue;
1882 	unsigned long flags;
1883 
1884 	/* if netpoll wants it, pretend we never saw it */
1885 	if (netpoll_rx(skb))
1886 		return NET_RX_DROP;
1887 
1888 	if (!skb->tstamp.tv64)
1889 		net_timestamp(skb);
1890 
1891 	/*
1892 	 * The code is rearranged so that the path is the most
1893 	 * short when CPU is congested, but is still operating.
1894 	 */
1895 	local_irq_save(flags);
1896 	queue = &__get_cpu_var(softnet_data);
1897 
1898 	__get_cpu_var(netdev_rx_stat).total++;
1899 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1900 		if (queue->input_pkt_queue.qlen) {
1901 enqueue:
1902 			dev_hold(skb->dev);
1903 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1904 			local_irq_restore(flags);
1905 			return NET_RX_SUCCESS;
1906 		}
1907 
1908 		napi_schedule(&queue->backlog);
1909 		goto enqueue;
1910 	}
1911 
1912 	__get_cpu_var(netdev_rx_stat).dropped++;
1913 	local_irq_restore(flags);
1914 
1915 	kfree_skb(skb);
1916 	return NET_RX_DROP;
1917 }
1918 
1919 int netif_rx_ni(struct sk_buff *skb)
1920 {
1921 	int err;
1922 
1923 	preempt_disable();
1924 	err = netif_rx(skb);
1925 	if (local_softirq_pending())
1926 		do_softirq();
1927 	preempt_enable();
1928 
1929 	return err;
1930 }
1931 
1932 EXPORT_SYMBOL(netif_rx_ni);
1933 
1934 static inline struct net_device *skb_bond(struct sk_buff *skb)
1935 {
1936 	struct net_device *dev = skb->dev;
1937 
1938 	if (dev->master) {
1939 		if (skb_bond_should_drop(skb)) {
1940 			kfree_skb(skb);
1941 			return NULL;
1942 		}
1943 		skb->dev = dev->master;
1944 	}
1945 
1946 	return dev;
1947 }
1948 
1949 
1950 static void net_tx_action(struct softirq_action *h)
1951 {
1952 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1953 
1954 	if (sd->completion_queue) {
1955 		struct sk_buff *clist;
1956 
1957 		local_irq_disable();
1958 		clist = sd->completion_queue;
1959 		sd->completion_queue = NULL;
1960 		local_irq_enable();
1961 
1962 		while (clist) {
1963 			struct sk_buff *skb = clist;
1964 			clist = clist->next;
1965 
1966 			BUG_TRAP(!atomic_read(&skb->users));
1967 			__kfree_skb(skb);
1968 		}
1969 	}
1970 
1971 	if (sd->output_queue) {
1972 		struct Qdisc *head;
1973 
1974 		local_irq_disable();
1975 		head = sd->output_queue;
1976 		sd->output_queue = NULL;
1977 		local_irq_enable();
1978 
1979 		while (head) {
1980 			struct Qdisc *q = head;
1981 			spinlock_t *root_lock;
1982 
1983 			head = head->next_sched;
1984 
1985 			smp_mb__before_clear_bit();
1986 			clear_bit(__QDISC_STATE_SCHED, &q->state);
1987 
1988 			root_lock = qdisc_root_lock(q);
1989 			if (spin_trylock(root_lock)) {
1990 				qdisc_run(q);
1991 				spin_unlock(root_lock);
1992 			} else {
1993 				__netif_schedule(q);
1994 			}
1995 		}
1996 	}
1997 }
1998 
1999 static inline int deliver_skb(struct sk_buff *skb,
2000 			      struct packet_type *pt_prev,
2001 			      struct net_device *orig_dev)
2002 {
2003 	atomic_inc(&skb->users);
2004 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2005 }
2006 
2007 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2008 /* These hooks defined here for ATM */
2009 struct net_bridge;
2010 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2011 						unsigned char *addr);
2012 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2013 
2014 /*
2015  * If bridge module is loaded call bridging hook.
2016  *  returns NULL if packet was consumed.
2017  */
2018 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2019 					struct sk_buff *skb) __read_mostly;
2020 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2021 					    struct packet_type **pt_prev, int *ret,
2022 					    struct net_device *orig_dev)
2023 {
2024 	struct net_bridge_port *port;
2025 
2026 	if (skb->pkt_type == PACKET_LOOPBACK ||
2027 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
2028 		return skb;
2029 
2030 	if (*pt_prev) {
2031 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2032 		*pt_prev = NULL;
2033 	}
2034 
2035 	return br_handle_frame_hook(port, skb);
2036 }
2037 #else
2038 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
2039 #endif
2040 
2041 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2042 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2043 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2044 
2045 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2046 					     struct packet_type **pt_prev,
2047 					     int *ret,
2048 					     struct net_device *orig_dev)
2049 {
2050 	if (skb->dev->macvlan_port == NULL)
2051 		return skb;
2052 
2053 	if (*pt_prev) {
2054 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2055 		*pt_prev = NULL;
2056 	}
2057 	return macvlan_handle_frame_hook(skb);
2058 }
2059 #else
2060 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
2061 #endif
2062 
2063 #ifdef CONFIG_NET_CLS_ACT
2064 /* TODO: Maybe we should just force sch_ingress to be compiled in
2065  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2066  * a compare and 2 stores extra right now if we dont have it on
2067  * but have CONFIG_NET_CLS_ACT
2068  * NOTE: This doesnt stop any functionality; if you dont have
2069  * the ingress scheduler, you just cant add policies on ingress.
2070  *
2071  */
2072 static int ing_filter(struct sk_buff *skb)
2073 {
2074 	struct net_device *dev = skb->dev;
2075 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2076 	struct netdev_queue *rxq;
2077 	int result = TC_ACT_OK;
2078 	struct Qdisc *q;
2079 
2080 	if (MAX_RED_LOOP < ttl++) {
2081 		printk(KERN_WARNING
2082 		       "Redir loop detected Dropping packet (%d->%d)\n",
2083 		       skb->iif, dev->ifindex);
2084 		return TC_ACT_SHOT;
2085 	}
2086 
2087 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2088 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2089 
2090 	rxq = &dev->rx_queue;
2091 
2092 	q = rxq->qdisc;
2093 	if (q) {
2094 		spin_lock(qdisc_lock(q));
2095 		result = qdisc_enqueue_root(skb, q);
2096 		spin_unlock(qdisc_lock(q));
2097 	}
2098 
2099 	return result;
2100 }
2101 
2102 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2103 					 struct packet_type **pt_prev,
2104 					 int *ret, struct net_device *orig_dev)
2105 {
2106 	if (!skb->dev->rx_queue.qdisc)
2107 		goto out;
2108 
2109 	if (*pt_prev) {
2110 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2111 		*pt_prev = NULL;
2112 	} else {
2113 		/* Huh? Why does turning on AF_PACKET affect this? */
2114 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2115 	}
2116 
2117 	switch (ing_filter(skb)) {
2118 	case TC_ACT_SHOT:
2119 	case TC_ACT_STOLEN:
2120 		kfree_skb(skb);
2121 		return NULL;
2122 	}
2123 
2124 out:
2125 	skb->tc_verd = 0;
2126 	return skb;
2127 }
2128 #endif
2129 
2130 /*
2131  * 	netif_nit_deliver - deliver received packets to network taps
2132  * 	@skb: buffer
2133  *
2134  * 	This function is used to deliver incoming packets to network
2135  * 	taps. It should be used when the normal netif_receive_skb path
2136  * 	is bypassed, for example because of VLAN acceleration.
2137  */
2138 void netif_nit_deliver(struct sk_buff *skb)
2139 {
2140 	struct packet_type *ptype;
2141 
2142 	if (list_empty(&ptype_all))
2143 		return;
2144 
2145 	skb_reset_network_header(skb);
2146 	skb_reset_transport_header(skb);
2147 	skb->mac_len = skb->network_header - skb->mac_header;
2148 
2149 	rcu_read_lock();
2150 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2151 		if (!ptype->dev || ptype->dev == skb->dev)
2152 			deliver_skb(skb, ptype, skb->dev);
2153 	}
2154 	rcu_read_unlock();
2155 }
2156 
2157 /**
2158  *	netif_receive_skb - process receive buffer from network
2159  *	@skb: buffer to process
2160  *
2161  *	netif_receive_skb() is the main receive data processing function.
2162  *	It always succeeds. The buffer may be dropped during processing
2163  *	for congestion control or by the protocol layers.
2164  *
2165  *	This function may only be called from softirq context and interrupts
2166  *	should be enabled.
2167  *
2168  *	Return values (usually ignored):
2169  *	NET_RX_SUCCESS: no congestion
2170  *	NET_RX_DROP: packet was dropped
2171  */
2172 int netif_receive_skb(struct sk_buff *skb)
2173 {
2174 	struct packet_type *ptype, *pt_prev;
2175 	struct net_device *orig_dev;
2176 	int ret = NET_RX_DROP;
2177 	__be16 type;
2178 
2179 	/* if we've gotten here through NAPI, check netpoll */
2180 	if (netpoll_receive_skb(skb))
2181 		return NET_RX_DROP;
2182 
2183 	if (!skb->tstamp.tv64)
2184 		net_timestamp(skb);
2185 
2186 	if (!skb->iif)
2187 		skb->iif = skb->dev->ifindex;
2188 
2189 	orig_dev = skb_bond(skb);
2190 
2191 	if (!orig_dev)
2192 		return NET_RX_DROP;
2193 
2194 	__get_cpu_var(netdev_rx_stat).total++;
2195 
2196 	skb_reset_network_header(skb);
2197 	skb_reset_transport_header(skb);
2198 	skb->mac_len = skb->network_header - skb->mac_header;
2199 
2200 	pt_prev = NULL;
2201 
2202 	rcu_read_lock();
2203 
2204 	/* Don't receive packets in an exiting network namespace */
2205 	if (!net_alive(dev_net(skb->dev)))
2206 		goto out;
2207 
2208 #ifdef CONFIG_NET_CLS_ACT
2209 	if (skb->tc_verd & TC_NCLS) {
2210 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2211 		goto ncls;
2212 	}
2213 #endif
2214 
2215 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2216 		if (!ptype->dev || ptype->dev == skb->dev) {
2217 			if (pt_prev)
2218 				ret = deliver_skb(skb, pt_prev, orig_dev);
2219 			pt_prev = ptype;
2220 		}
2221 	}
2222 
2223 #ifdef CONFIG_NET_CLS_ACT
2224 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2225 	if (!skb)
2226 		goto out;
2227 ncls:
2228 #endif
2229 
2230 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2231 	if (!skb)
2232 		goto out;
2233 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2234 	if (!skb)
2235 		goto out;
2236 
2237 	type = skb->protocol;
2238 	list_for_each_entry_rcu(ptype,
2239 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2240 		if (ptype->type == type &&
2241 		    (!ptype->dev || ptype->dev == skb->dev)) {
2242 			if (pt_prev)
2243 				ret = deliver_skb(skb, pt_prev, orig_dev);
2244 			pt_prev = ptype;
2245 		}
2246 	}
2247 
2248 	if (pt_prev) {
2249 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2250 	} else {
2251 		kfree_skb(skb);
2252 		/* Jamal, now you will not able to escape explaining
2253 		 * me how you were going to use this. :-)
2254 		 */
2255 		ret = NET_RX_DROP;
2256 	}
2257 
2258 out:
2259 	rcu_read_unlock();
2260 	return ret;
2261 }
2262 
2263 static int process_backlog(struct napi_struct *napi, int quota)
2264 {
2265 	int work = 0;
2266 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2267 	unsigned long start_time = jiffies;
2268 
2269 	napi->weight = weight_p;
2270 	do {
2271 		struct sk_buff *skb;
2272 		struct net_device *dev;
2273 
2274 		local_irq_disable();
2275 		skb = __skb_dequeue(&queue->input_pkt_queue);
2276 		if (!skb) {
2277 			__napi_complete(napi);
2278 			local_irq_enable();
2279 			break;
2280 		}
2281 
2282 		local_irq_enable();
2283 
2284 		dev = skb->dev;
2285 
2286 		netif_receive_skb(skb);
2287 
2288 		dev_put(dev);
2289 	} while (++work < quota && jiffies == start_time);
2290 
2291 	return work;
2292 }
2293 
2294 /**
2295  * __napi_schedule - schedule for receive
2296  * @n: entry to schedule
2297  *
2298  * The entry's receive function will be scheduled to run
2299  */
2300 void __napi_schedule(struct napi_struct *n)
2301 {
2302 	unsigned long flags;
2303 
2304 	local_irq_save(flags);
2305 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2306 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2307 	local_irq_restore(flags);
2308 }
2309 EXPORT_SYMBOL(__napi_schedule);
2310 
2311 
2312 static void net_rx_action(struct softirq_action *h)
2313 {
2314 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2315 	unsigned long start_time = jiffies;
2316 	int budget = netdev_budget;
2317 	void *have;
2318 
2319 	local_irq_disable();
2320 
2321 	while (!list_empty(list)) {
2322 		struct napi_struct *n;
2323 		int work, weight;
2324 
2325 		/* If softirq window is exhuasted then punt.
2326 		 *
2327 		 * Note that this is a slight policy change from the
2328 		 * previous NAPI code, which would allow up to 2
2329 		 * jiffies to pass before breaking out.  The test
2330 		 * used to be "jiffies - start_time > 1".
2331 		 */
2332 		if (unlikely(budget <= 0 || jiffies != start_time))
2333 			goto softnet_break;
2334 
2335 		local_irq_enable();
2336 
2337 		/* Even though interrupts have been re-enabled, this
2338 		 * access is safe because interrupts can only add new
2339 		 * entries to the tail of this list, and only ->poll()
2340 		 * calls can remove this head entry from the list.
2341 		 */
2342 		n = list_entry(list->next, struct napi_struct, poll_list);
2343 
2344 		have = netpoll_poll_lock(n);
2345 
2346 		weight = n->weight;
2347 
2348 		/* This NAPI_STATE_SCHED test is for avoiding a race
2349 		 * with netpoll's poll_napi().  Only the entity which
2350 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2351 		 * actually make the ->poll() call.  Therefore we avoid
2352 		 * accidently calling ->poll() when NAPI is not scheduled.
2353 		 */
2354 		work = 0;
2355 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2356 			work = n->poll(n, weight);
2357 
2358 		WARN_ON_ONCE(work > weight);
2359 
2360 		budget -= work;
2361 
2362 		local_irq_disable();
2363 
2364 		/* Drivers must not modify the NAPI state if they
2365 		 * consume the entire weight.  In such cases this code
2366 		 * still "owns" the NAPI instance and therefore can
2367 		 * move the instance around on the list at-will.
2368 		 */
2369 		if (unlikely(work == weight)) {
2370 			if (unlikely(napi_disable_pending(n)))
2371 				__napi_complete(n);
2372 			else
2373 				list_move_tail(&n->poll_list, list);
2374 		}
2375 
2376 		netpoll_poll_unlock(have);
2377 	}
2378 out:
2379 	local_irq_enable();
2380 
2381 #ifdef CONFIG_NET_DMA
2382 	/*
2383 	 * There may not be any more sk_buffs coming right now, so push
2384 	 * any pending DMA copies to hardware
2385 	 */
2386 	if (!cpus_empty(net_dma.channel_mask)) {
2387 		int chan_idx;
2388 		for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2389 			struct dma_chan *chan = net_dma.channels[chan_idx];
2390 			if (chan)
2391 				dma_async_memcpy_issue_pending(chan);
2392 		}
2393 	}
2394 #endif
2395 
2396 	return;
2397 
2398 softnet_break:
2399 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2400 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2401 	goto out;
2402 }
2403 
2404 static gifconf_func_t * gifconf_list [NPROTO];
2405 
2406 /**
2407  *	register_gifconf	-	register a SIOCGIF handler
2408  *	@family: Address family
2409  *	@gifconf: Function handler
2410  *
2411  *	Register protocol dependent address dumping routines. The handler
2412  *	that is passed must not be freed or reused until it has been replaced
2413  *	by another handler.
2414  */
2415 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2416 {
2417 	if (family >= NPROTO)
2418 		return -EINVAL;
2419 	gifconf_list[family] = gifconf;
2420 	return 0;
2421 }
2422 
2423 
2424 /*
2425  *	Map an interface index to its name (SIOCGIFNAME)
2426  */
2427 
2428 /*
2429  *	We need this ioctl for efficient implementation of the
2430  *	if_indextoname() function required by the IPv6 API.  Without
2431  *	it, we would have to search all the interfaces to find a
2432  *	match.  --pb
2433  */
2434 
2435 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2436 {
2437 	struct net_device *dev;
2438 	struct ifreq ifr;
2439 
2440 	/*
2441 	 *	Fetch the caller's info block.
2442 	 */
2443 
2444 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2445 		return -EFAULT;
2446 
2447 	read_lock(&dev_base_lock);
2448 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2449 	if (!dev) {
2450 		read_unlock(&dev_base_lock);
2451 		return -ENODEV;
2452 	}
2453 
2454 	strcpy(ifr.ifr_name, dev->name);
2455 	read_unlock(&dev_base_lock);
2456 
2457 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2458 		return -EFAULT;
2459 	return 0;
2460 }
2461 
2462 /*
2463  *	Perform a SIOCGIFCONF call. This structure will change
2464  *	size eventually, and there is nothing I can do about it.
2465  *	Thus we will need a 'compatibility mode'.
2466  */
2467 
2468 static int dev_ifconf(struct net *net, char __user *arg)
2469 {
2470 	struct ifconf ifc;
2471 	struct net_device *dev;
2472 	char __user *pos;
2473 	int len;
2474 	int total;
2475 	int i;
2476 
2477 	/*
2478 	 *	Fetch the caller's info block.
2479 	 */
2480 
2481 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2482 		return -EFAULT;
2483 
2484 	pos = ifc.ifc_buf;
2485 	len = ifc.ifc_len;
2486 
2487 	/*
2488 	 *	Loop over the interfaces, and write an info block for each.
2489 	 */
2490 
2491 	total = 0;
2492 	for_each_netdev(net, dev) {
2493 		for (i = 0; i < NPROTO; i++) {
2494 			if (gifconf_list[i]) {
2495 				int done;
2496 				if (!pos)
2497 					done = gifconf_list[i](dev, NULL, 0);
2498 				else
2499 					done = gifconf_list[i](dev, pos + total,
2500 							       len - total);
2501 				if (done < 0)
2502 					return -EFAULT;
2503 				total += done;
2504 			}
2505 		}
2506 	}
2507 
2508 	/*
2509 	 *	All done.  Write the updated control block back to the caller.
2510 	 */
2511 	ifc.ifc_len = total;
2512 
2513 	/*
2514 	 * 	Both BSD and Solaris return 0 here, so we do too.
2515 	 */
2516 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2517 }
2518 
2519 #ifdef CONFIG_PROC_FS
2520 /*
2521  *	This is invoked by the /proc filesystem handler to display a device
2522  *	in detail.
2523  */
2524 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2525 	__acquires(dev_base_lock)
2526 {
2527 	struct net *net = seq_file_net(seq);
2528 	loff_t off;
2529 	struct net_device *dev;
2530 
2531 	read_lock(&dev_base_lock);
2532 	if (!*pos)
2533 		return SEQ_START_TOKEN;
2534 
2535 	off = 1;
2536 	for_each_netdev(net, dev)
2537 		if (off++ == *pos)
2538 			return dev;
2539 
2540 	return NULL;
2541 }
2542 
2543 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2544 {
2545 	struct net *net = seq_file_net(seq);
2546 	++*pos;
2547 	return v == SEQ_START_TOKEN ?
2548 		first_net_device(net) : next_net_device((struct net_device *)v);
2549 }
2550 
2551 void dev_seq_stop(struct seq_file *seq, void *v)
2552 	__releases(dev_base_lock)
2553 {
2554 	read_unlock(&dev_base_lock);
2555 }
2556 
2557 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2558 {
2559 	struct net_device_stats *stats = dev->get_stats(dev);
2560 
2561 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2562 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2563 		   dev->name, stats->rx_bytes, stats->rx_packets,
2564 		   stats->rx_errors,
2565 		   stats->rx_dropped + stats->rx_missed_errors,
2566 		   stats->rx_fifo_errors,
2567 		   stats->rx_length_errors + stats->rx_over_errors +
2568 		    stats->rx_crc_errors + stats->rx_frame_errors,
2569 		   stats->rx_compressed, stats->multicast,
2570 		   stats->tx_bytes, stats->tx_packets,
2571 		   stats->tx_errors, stats->tx_dropped,
2572 		   stats->tx_fifo_errors, stats->collisions,
2573 		   stats->tx_carrier_errors +
2574 		    stats->tx_aborted_errors +
2575 		    stats->tx_window_errors +
2576 		    stats->tx_heartbeat_errors,
2577 		   stats->tx_compressed);
2578 }
2579 
2580 /*
2581  *	Called from the PROCfs module. This now uses the new arbitrary sized
2582  *	/proc/net interface to create /proc/net/dev
2583  */
2584 static int dev_seq_show(struct seq_file *seq, void *v)
2585 {
2586 	if (v == SEQ_START_TOKEN)
2587 		seq_puts(seq, "Inter-|   Receive                            "
2588 			      "                    |  Transmit\n"
2589 			      " face |bytes    packets errs drop fifo frame "
2590 			      "compressed multicast|bytes    packets errs "
2591 			      "drop fifo colls carrier compressed\n");
2592 	else
2593 		dev_seq_printf_stats(seq, v);
2594 	return 0;
2595 }
2596 
2597 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2598 {
2599 	struct netif_rx_stats *rc = NULL;
2600 
2601 	while (*pos < nr_cpu_ids)
2602 		if (cpu_online(*pos)) {
2603 			rc = &per_cpu(netdev_rx_stat, *pos);
2604 			break;
2605 		} else
2606 			++*pos;
2607 	return rc;
2608 }
2609 
2610 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2611 {
2612 	return softnet_get_online(pos);
2613 }
2614 
2615 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2616 {
2617 	++*pos;
2618 	return softnet_get_online(pos);
2619 }
2620 
2621 static void softnet_seq_stop(struct seq_file *seq, void *v)
2622 {
2623 }
2624 
2625 static int softnet_seq_show(struct seq_file *seq, void *v)
2626 {
2627 	struct netif_rx_stats *s = v;
2628 
2629 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2630 		   s->total, s->dropped, s->time_squeeze, 0,
2631 		   0, 0, 0, 0, /* was fastroute */
2632 		   s->cpu_collision );
2633 	return 0;
2634 }
2635 
2636 static const struct seq_operations dev_seq_ops = {
2637 	.start = dev_seq_start,
2638 	.next  = dev_seq_next,
2639 	.stop  = dev_seq_stop,
2640 	.show  = dev_seq_show,
2641 };
2642 
2643 static int dev_seq_open(struct inode *inode, struct file *file)
2644 {
2645 	return seq_open_net(inode, file, &dev_seq_ops,
2646 			    sizeof(struct seq_net_private));
2647 }
2648 
2649 static const struct file_operations dev_seq_fops = {
2650 	.owner	 = THIS_MODULE,
2651 	.open    = dev_seq_open,
2652 	.read    = seq_read,
2653 	.llseek  = seq_lseek,
2654 	.release = seq_release_net,
2655 };
2656 
2657 static const struct seq_operations softnet_seq_ops = {
2658 	.start = softnet_seq_start,
2659 	.next  = softnet_seq_next,
2660 	.stop  = softnet_seq_stop,
2661 	.show  = softnet_seq_show,
2662 };
2663 
2664 static int softnet_seq_open(struct inode *inode, struct file *file)
2665 {
2666 	return seq_open(file, &softnet_seq_ops);
2667 }
2668 
2669 static const struct file_operations softnet_seq_fops = {
2670 	.owner	 = THIS_MODULE,
2671 	.open    = softnet_seq_open,
2672 	.read    = seq_read,
2673 	.llseek  = seq_lseek,
2674 	.release = seq_release,
2675 };
2676 
2677 static void *ptype_get_idx(loff_t pos)
2678 {
2679 	struct packet_type *pt = NULL;
2680 	loff_t i = 0;
2681 	int t;
2682 
2683 	list_for_each_entry_rcu(pt, &ptype_all, list) {
2684 		if (i == pos)
2685 			return pt;
2686 		++i;
2687 	}
2688 
2689 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2690 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2691 			if (i == pos)
2692 				return pt;
2693 			++i;
2694 		}
2695 	}
2696 	return NULL;
2697 }
2698 
2699 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2700 	__acquires(RCU)
2701 {
2702 	rcu_read_lock();
2703 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2704 }
2705 
2706 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2707 {
2708 	struct packet_type *pt;
2709 	struct list_head *nxt;
2710 	int hash;
2711 
2712 	++*pos;
2713 	if (v == SEQ_START_TOKEN)
2714 		return ptype_get_idx(0);
2715 
2716 	pt = v;
2717 	nxt = pt->list.next;
2718 	if (pt->type == htons(ETH_P_ALL)) {
2719 		if (nxt != &ptype_all)
2720 			goto found;
2721 		hash = 0;
2722 		nxt = ptype_base[0].next;
2723 	} else
2724 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2725 
2726 	while (nxt == &ptype_base[hash]) {
2727 		if (++hash >= PTYPE_HASH_SIZE)
2728 			return NULL;
2729 		nxt = ptype_base[hash].next;
2730 	}
2731 found:
2732 	return list_entry(nxt, struct packet_type, list);
2733 }
2734 
2735 static void ptype_seq_stop(struct seq_file *seq, void *v)
2736 	__releases(RCU)
2737 {
2738 	rcu_read_unlock();
2739 }
2740 
2741 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2742 {
2743 #ifdef CONFIG_KALLSYMS
2744 	unsigned long offset = 0, symsize;
2745 	const char *symname;
2746 	char *modname;
2747 	char namebuf[128];
2748 
2749 	symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2750 				  &modname, namebuf);
2751 
2752 	if (symname) {
2753 		char *delim = ":";
2754 
2755 		if (!modname)
2756 			modname = delim = "";
2757 		seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2758 			   symname, offset);
2759 		return;
2760 	}
2761 #endif
2762 
2763 	seq_printf(seq, "[%p]", sym);
2764 }
2765 
2766 static int ptype_seq_show(struct seq_file *seq, void *v)
2767 {
2768 	struct packet_type *pt = v;
2769 
2770 	if (v == SEQ_START_TOKEN)
2771 		seq_puts(seq, "Type Device      Function\n");
2772 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2773 		if (pt->type == htons(ETH_P_ALL))
2774 			seq_puts(seq, "ALL ");
2775 		else
2776 			seq_printf(seq, "%04x", ntohs(pt->type));
2777 
2778 		seq_printf(seq, " %-8s ",
2779 			   pt->dev ? pt->dev->name : "");
2780 		ptype_seq_decode(seq,  pt->func);
2781 		seq_putc(seq, '\n');
2782 	}
2783 
2784 	return 0;
2785 }
2786 
2787 static const struct seq_operations ptype_seq_ops = {
2788 	.start = ptype_seq_start,
2789 	.next  = ptype_seq_next,
2790 	.stop  = ptype_seq_stop,
2791 	.show  = ptype_seq_show,
2792 };
2793 
2794 static int ptype_seq_open(struct inode *inode, struct file *file)
2795 {
2796 	return seq_open_net(inode, file, &ptype_seq_ops,
2797 			sizeof(struct seq_net_private));
2798 }
2799 
2800 static const struct file_operations ptype_seq_fops = {
2801 	.owner	 = THIS_MODULE,
2802 	.open    = ptype_seq_open,
2803 	.read    = seq_read,
2804 	.llseek  = seq_lseek,
2805 	.release = seq_release_net,
2806 };
2807 
2808 
2809 static int __net_init dev_proc_net_init(struct net *net)
2810 {
2811 	int rc = -ENOMEM;
2812 
2813 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2814 		goto out;
2815 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2816 		goto out_dev;
2817 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2818 		goto out_softnet;
2819 
2820 	if (wext_proc_init(net))
2821 		goto out_ptype;
2822 	rc = 0;
2823 out:
2824 	return rc;
2825 out_ptype:
2826 	proc_net_remove(net, "ptype");
2827 out_softnet:
2828 	proc_net_remove(net, "softnet_stat");
2829 out_dev:
2830 	proc_net_remove(net, "dev");
2831 	goto out;
2832 }
2833 
2834 static void __net_exit dev_proc_net_exit(struct net *net)
2835 {
2836 	wext_proc_exit(net);
2837 
2838 	proc_net_remove(net, "ptype");
2839 	proc_net_remove(net, "softnet_stat");
2840 	proc_net_remove(net, "dev");
2841 }
2842 
2843 static struct pernet_operations __net_initdata dev_proc_ops = {
2844 	.init = dev_proc_net_init,
2845 	.exit = dev_proc_net_exit,
2846 };
2847 
2848 static int __init dev_proc_init(void)
2849 {
2850 	return register_pernet_subsys(&dev_proc_ops);
2851 }
2852 #else
2853 #define dev_proc_init() 0
2854 #endif	/* CONFIG_PROC_FS */
2855 
2856 
2857 /**
2858  *	netdev_set_master	-	set up master/slave pair
2859  *	@slave: slave device
2860  *	@master: new master device
2861  *
2862  *	Changes the master device of the slave. Pass %NULL to break the
2863  *	bonding. The caller must hold the RTNL semaphore. On a failure
2864  *	a negative errno code is returned. On success the reference counts
2865  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2866  *	function returns zero.
2867  */
2868 int netdev_set_master(struct net_device *slave, struct net_device *master)
2869 {
2870 	struct net_device *old = slave->master;
2871 
2872 	ASSERT_RTNL();
2873 
2874 	if (master) {
2875 		if (old)
2876 			return -EBUSY;
2877 		dev_hold(master);
2878 	}
2879 
2880 	slave->master = master;
2881 
2882 	synchronize_net();
2883 
2884 	if (old)
2885 		dev_put(old);
2886 
2887 	if (master)
2888 		slave->flags |= IFF_SLAVE;
2889 	else
2890 		slave->flags &= ~IFF_SLAVE;
2891 
2892 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2893 	return 0;
2894 }
2895 
2896 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2897 {
2898 	unsigned short old_flags = dev->flags;
2899 
2900 	ASSERT_RTNL();
2901 
2902 	dev->flags |= IFF_PROMISC;
2903 	dev->promiscuity += inc;
2904 	if (dev->promiscuity == 0) {
2905 		/*
2906 		 * Avoid overflow.
2907 		 * If inc causes overflow, untouch promisc and return error.
2908 		 */
2909 		if (inc < 0)
2910 			dev->flags &= ~IFF_PROMISC;
2911 		else {
2912 			dev->promiscuity -= inc;
2913 			printk(KERN_WARNING "%s: promiscuity touches roof, "
2914 				"set promiscuity failed, promiscuity feature "
2915 				"of device might be broken.\n", dev->name);
2916 			return -EOVERFLOW;
2917 		}
2918 	}
2919 	if (dev->flags != old_flags) {
2920 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2921 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2922 							       "left");
2923 		if (audit_enabled)
2924 			audit_log(current->audit_context, GFP_ATOMIC,
2925 				AUDIT_ANOM_PROMISCUOUS,
2926 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2927 				dev->name, (dev->flags & IFF_PROMISC),
2928 				(old_flags & IFF_PROMISC),
2929 				audit_get_loginuid(current),
2930 				current->uid, current->gid,
2931 				audit_get_sessionid(current));
2932 
2933 		if (dev->change_rx_flags)
2934 			dev->change_rx_flags(dev, IFF_PROMISC);
2935 	}
2936 	return 0;
2937 }
2938 
2939 /**
2940  *	dev_set_promiscuity	- update promiscuity count on a device
2941  *	@dev: device
2942  *	@inc: modifier
2943  *
2944  *	Add or remove promiscuity from a device. While the count in the device
2945  *	remains above zero the interface remains promiscuous. Once it hits zero
2946  *	the device reverts back to normal filtering operation. A negative inc
2947  *	value is used to drop promiscuity on the device.
2948  *	Return 0 if successful or a negative errno code on error.
2949  */
2950 int dev_set_promiscuity(struct net_device *dev, int inc)
2951 {
2952 	unsigned short old_flags = dev->flags;
2953 	int err;
2954 
2955 	err = __dev_set_promiscuity(dev, inc);
2956 	if (err < 0)
2957 		return err;
2958 	if (dev->flags != old_flags)
2959 		dev_set_rx_mode(dev);
2960 	return err;
2961 }
2962 
2963 /**
2964  *	dev_set_allmulti	- update allmulti count on a device
2965  *	@dev: device
2966  *	@inc: modifier
2967  *
2968  *	Add or remove reception of all multicast frames to a device. While the
2969  *	count in the device remains above zero the interface remains listening
2970  *	to all interfaces. Once it hits zero the device reverts back to normal
2971  *	filtering operation. A negative @inc value is used to drop the counter
2972  *	when releasing a resource needing all multicasts.
2973  *	Return 0 if successful or a negative errno code on error.
2974  */
2975 
2976 int dev_set_allmulti(struct net_device *dev, int inc)
2977 {
2978 	unsigned short old_flags = dev->flags;
2979 
2980 	ASSERT_RTNL();
2981 
2982 	dev->flags |= IFF_ALLMULTI;
2983 	dev->allmulti += inc;
2984 	if (dev->allmulti == 0) {
2985 		/*
2986 		 * Avoid overflow.
2987 		 * If inc causes overflow, untouch allmulti and return error.
2988 		 */
2989 		if (inc < 0)
2990 			dev->flags &= ~IFF_ALLMULTI;
2991 		else {
2992 			dev->allmulti -= inc;
2993 			printk(KERN_WARNING "%s: allmulti touches roof, "
2994 				"set allmulti failed, allmulti feature of "
2995 				"device might be broken.\n", dev->name);
2996 			return -EOVERFLOW;
2997 		}
2998 	}
2999 	if (dev->flags ^ old_flags) {
3000 		if (dev->change_rx_flags)
3001 			dev->change_rx_flags(dev, IFF_ALLMULTI);
3002 		dev_set_rx_mode(dev);
3003 	}
3004 	return 0;
3005 }
3006 
3007 /*
3008  *	Upload unicast and multicast address lists to device and
3009  *	configure RX filtering. When the device doesn't support unicast
3010  *	filtering it is put in promiscuous mode while unicast addresses
3011  *	are present.
3012  */
3013 void __dev_set_rx_mode(struct net_device *dev)
3014 {
3015 	/* dev_open will call this function so the list will stay sane. */
3016 	if (!(dev->flags&IFF_UP))
3017 		return;
3018 
3019 	if (!netif_device_present(dev))
3020 		return;
3021 
3022 	if (dev->set_rx_mode)
3023 		dev->set_rx_mode(dev);
3024 	else {
3025 		/* Unicast addresses changes may only happen under the rtnl,
3026 		 * therefore calling __dev_set_promiscuity here is safe.
3027 		 */
3028 		if (dev->uc_count > 0 && !dev->uc_promisc) {
3029 			__dev_set_promiscuity(dev, 1);
3030 			dev->uc_promisc = 1;
3031 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
3032 			__dev_set_promiscuity(dev, -1);
3033 			dev->uc_promisc = 0;
3034 		}
3035 
3036 		if (dev->set_multicast_list)
3037 			dev->set_multicast_list(dev);
3038 	}
3039 }
3040 
3041 void dev_set_rx_mode(struct net_device *dev)
3042 {
3043 	netif_addr_lock_bh(dev);
3044 	__dev_set_rx_mode(dev);
3045 	netif_addr_unlock_bh(dev);
3046 }
3047 
3048 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3049 		      void *addr, int alen, int glbl)
3050 {
3051 	struct dev_addr_list *da;
3052 
3053 	for (; (da = *list) != NULL; list = &da->next) {
3054 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3055 		    alen == da->da_addrlen) {
3056 			if (glbl) {
3057 				int old_glbl = da->da_gusers;
3058 				da->da_gusers = 0;
3059 				if (old_glbl == 0)
3060 					break;
3061 			}
3062 			if (--da->da_users)
3063 				return 0;
3064 
3065 			*list = da->next;
3066 			kfree(da);
3067 			(*count)--;
3068 			return 0;
3069 		}
3070 	}
3071 	return -ENOENT;
3072 }
3073 
3074 int __dev_addr_add(struct dev_addr_list **list, int *count,
3075 		   void *addr, int alen, int glbl)
3076 {
3077 	struct dev_addr_list *da;
3078 
3079 	for (da = *list; da != NULL; da = da->next) {
3080 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3081 		    da->da_addrlen == alen) {
3082 			if (glbl) {
3083 				int old_glbl = da->da_gusers;
3084 				da->da_gusers = 1;
3085 				if (old_glbl)
3086 					return 0;
3087 			}
3088 			da->da_users++;
3089 			return 0;
3090 		}
3091 	}
3092 
3093 	da = kzalloc(sizeof(*da), GFP_ATOMIC);
3094 	if (da == NULL)
3095 		return -ENOMEM;
3096 	memcpy(da->da_addr, addr, alen);
3097 	da->da_addrlen = alen;
3098 	da->da_users = 1;
3099 	da->da_gusers = glbl ? 1 : 0;
3100 	da->next = *list;
3101 	*list = da;
3102 	(*count)++;
3103 	return 0;
3104 }
3105 
3106 /**
3107  *	dev_unicast_delete	- Release secondary unicast address.
3108  *	@dev: device
3109  *	@addr: address to delete
3110  *	@alen: length of @addr
3111  *
3112  *	Release reference to a secondary unicast address and remove it
3113  *	from the device if the reference count drops to zero.
3114  *
3115  * 	The caller must hold the rtnl_mutex.
3116  */
3117 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3118 {
3119 	int err;
3120 
3121 	ASSERT_RTNL();
3122 
3123 	netif_addr_lock_bh(dev);
3124 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3125 	if (!err)
3126 		__dev_set_rx_mode(dev);
3127 	netif_addr_unlock_bh(dev);
3128 	return err;
3129 }
3130 EXPORT_SYMBOL(dev_unicast_delete);
3131 
3132 /**
3133  *	dev_unicast_add		- add a secondary unicast address
3134  *	@dev: device
3135  *	@addr: address to add
3136  *	@alen: length of @addr
3137  *
3138  *	Add a secondary unicast address to the device or increase
3139  *	the reference count if it already exists.
3140  *
3141  *	The caller must hold the rtnl_mutex.
3142  */
3143 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3144 {
3145 	int err;
3146 
3147 	ASSERT_RTNL();
3148 
3149 	netif_addr_lock_bh(dev);
3150 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3151 	if (!err)
3152 		__dev_set_rx_mode(dev);
3153 	netif_addr_unlock_bh(dev);
3154 	return err;
3155 }
3156 EXPORT_SYMBOL(dev_unicast_add);
3157 
3158 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3159 		    struct dev_addr_list **from, int *from_count)
3160 {
3161 	struct dev_addr_list *da, *next;
3162 	int err = 0;
3163 
3164 	da = *from;
3165 	while (da != NULL) {
3166 		next = da->next;
3167 		if (!da->da_synced) {
3168 			err = __dev_addr_add(to, to_count,
3169 					     da->da_addr, da->da_addrlen, 0);
3170 			if (err < 0)
3171 				break;
3172 			da->da_synced = 1;
3173 			da->da_users++;
3174 		} else if (da->da_users == 1) {
3175 			__dev_addr_delete(to, to_count,
3176 					  da->da_addr, da->da_addrlen, 0);
3177 			__dev_addr_delete(from, from_count,
3178 					  da->da_addr, da->da_addrlen, 0);
3179 		}
3180 		da = next;
3181 	}
3182 	return err;
3183 }
3184 
3185 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3186 		       struct dev_addr_list **from, int *from_count)
3187 {
3188 	struct dev_addr_list *da, *next;
3189 
3190 	da = *from;
3191 	while (da != NULL) {
3192 		next = da->next;
3193 		if (da->da_synced) {
3194 			__dev_addr_delete(to, to_count,
3195 					  da->da_addr, da->da_addrlen, 0);
3196 			da->da_synced = 0;
3197 			__dev_addr_delete(from, from_count,
3198 					  da->da_addr, da->da_addrlen, 0);
3199 		}
3200 		da = next;
3201 	}
3202 }
3203 
3204 /**
3205  *	dev_unicast_sync - Synchronize device's unicast list to another device
3206  *	@to: destination device
3207  *	@from: source device
3208  *
3209  *	Add newly added addresses to the destination device and release
3210  *	addresses that have no users left. The source device must be
3211  *	locked by netif_tx_lock_bh.
3212  *
3213  *	This function is intended to be called from the dev->set_rx_mode
3214  *	function of layered software devices.
3215  */
3216 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3217 {
3218 	int err = 0;
3219 
3220 	netif_addr_lock_bh(to);
3221 	err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3222 			      &from->uc_list, &from->uc_count);
3223 	if (!err)
3224 		__dev_set_rx_mode(to);
3225 	netif_addr_unlock_bh(to);
3226 	return err;
3227 }
3228 EXPORT_SYMBOL(dev_unicast_sync);
3229 
3230 /**
3231  *	dev_unicast_unsync - Remove synchronized addresses from the destination device
3232  *	@to: destination device
3233  *	@from: source device
3234  *
3235  *	Remove all addresses that were added to the destination device by
3236  *	dev_unicast_sync(). This function is intended to be called from the
3237  *	dev->stop function of layered software devices.
3238  */
3239 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3240 {
3241 	netif_addr_lock_bh(from);
3242 	netif_addr_lock(to);
3243 
3244 	__dev_addr_unsync(&to->uc_list, &to->uc_count,
3245 			  &from->uc_list, &from->uc_count);
3246 	__dev_set_rx_mode(to);
3247 
3248 	netif_addr_unlock(to);
3249 	netif_addr_unlock_bh(from);
3250 }
3251 EXPORT_SYMBOL(dev_unicast_unsync);
3252 
3253 static void __dev_addr_discard(struct dev_addr_list **list)
3254 {
3255 	struct dev_addr_list *tmp;
3256 
3257 	while (*list != NULL) {
3258 		tmp = *list;
3259 		*list = tmp->next;
3260 		if (tmp->da_users > tmp->da_gusers)
3261 			printk("__dev_addr_discard: address leakage! "
3262 			       "da_users=%d\n", tmp->da_users);
3263 		kfree(tmp);
3264 	}
3265 }
3266 
3267 static void dev_addr_discard(struct net_device *dev)
3268 {
3269 	netif_addr_lock_bh(dev);
3270 
3271 	__dev_addr_discard(&dev->uc_list);
3272 	dev->uc_count = 0;
3273 
3274 	__dev_addr_discard(&dev->mc_list);
3275 	dev->mc_count = 0;
3276 
3277 	netif_addr_unlock_bh(dev);
3278 }
3279 
3280 unsigned dev_get_flags(const struct net_device *dev)
3281 {
3282 	unsigned flags;
3283 
3284 	flags = (dev->flags & ~(IFF_PROMISC |
3285 				IFF_ALLMULTI |
3286 				IFF_RUNNING |
3287 				IFF_LOWER_UP |
3288 				IFF_DORMANT)) |
3289 		(dev->gflags & (IFF_PROMISC |
3290 				IFF_ALLMULTI));
3291 
3292 	if (netif_running(dev)) {
3293 		if (netif_oper_up(dev))
3294 			flags |= IFF_RUNNING;
3295 		if (netif_carrier_ok(dev))
3296 			flags |= IFF_LOWER_UP;
3297 		if (netif_dormant(dev))
3298 			flags |= IFF_DORMANT;
3299 	}
3300 
3301 	return flags;
3302 }
3303 
3304 int dev_change_flags(struct net_device *dev, unsigned flags)
3305 {
3306 	int ret, changes;
3307 	int old_flags = dev->flags;
3308 
3309 	ASSERT_RTNL();
3310 
3311 	/*
3312 	 *	Set the flags on our device.
3313 	 */
3314 
3315 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3316 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3317 			       IFF_AUTOMEDIA)) |
3318 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3319 				    IFF_ALLMULTI));
3320 
3321 	/*
3322 	 *	Load in the correct multicast list now the flags have changed.
3323 	 */
3324 
3325 	if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3326 		dev->change_rx_flags(dev, IFF_MULTICAST);
3327 
3328 	dev_set_rx_mode(dev);
3329 
3330 	/*
3331 	 *	Have we downed the interface. We handle IFF_UP ourselves
3332 	 *	according to user attempts to set it, rather than blindly
3333 	 *	setting it.
3334 	 */
3335 
3336 	ret = 0;
3337 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3338 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3339 
3340 		if (!ret)
3341 			dev_set_rx_mode(dev);
3342 	}
3343 
3344 	if (dev->flags & IFF_UP &&
3345 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3346 					  IFF_VOLATILE)))
3347 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3348 
3349 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3350 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3351 		dev->gflags ^= IFF_PROMISC;
3352 		dev_set_promiscuity(dev, inc);
3353 	}
3354 
3355 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3356 	   is important. Some (broken) drivers set IFF_PROMISC, when
3357 	   IFF_ALLMULTI is requested not asking us and not reporting.
3358 	 */
3359 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3360 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3361 		dev->gflags ^= IFF_ALLMULTI;
3362 		dev_set_allmulti(dev, inc);
3363 	}
3364 
3365 	/* Exclude state transition flags, already notified */
3366 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3367 	if (changes)
3368 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3369 
3370 	return ret;
3371 }
3372 
3373 int dev_set_mtu(struct net_device *dev, int new_mtu)
3374 {
3375 	int err;
3376 
3377 	if (new_mtu == dev->mtu)
3378 		return 0;
3379 
3380 	/*	MTU must be positive.	 */
3381 	if (new_mtu < 0)
3382 		return -EINVAL;
3383 
3384 	if (!netif_device_present(dev))
3385 		return -ENODEV;
3386 
3387 	err = 0;
3388 	if (dev->change_mtu)
3389 		err = dev->change_mtu(dev, new_mtu);
3390 	else
3391 		dev->mtu = new_mtu;
3392 	if (!err && dev->flags & IFF_UP)
3393 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3394 	return err;
3395 }
3396 
3397 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3398 {
3399 	int err;
3400 
3401 	if (!dev->set_mac_address)
3402 		return -EOPNOTSUPP;
3403 	if (sa->sa_family != dev->type)
3404 		return -EINVAL;
3405 	if (!netif_device_present(dev))
3406 		return -ENODEV;
3407 	err = dev->set_mac_address(dev, sa);
3408 	if (!err)
3409 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3410 	return err;
3411 }
3412 
3413 /*
3414  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3415  */
3416 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3417 {
3418 	int err;
3419 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3420 
3421 	if (!dev)
3422 		return -ENODEV;
3423 
3424 	switch (cmd) {
3425 		case SIOCGIFFLAGS:	/* Get interface flags */
3426 			ifr->ifr_flags = dev_get_flags(dev);
3427 			return 0;
3428 
3429 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3430 					   (currently unused) */
3431 			ifr->ifr_metric = 0;
3432 			return 0;
3433 
3434 		case SIOCGIFMTU:	/* Get the MTU of a device */
3435 			ifr->ifr_mtu = dev->mtu;
3436 			return 0;
3437 
3438 		case SIOCGIFHWADDR:
3439 			if (!dev->addr_len)
3440 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3441 			else
3442 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3443 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3444 			ifr->ifr_hwaddr.sa_family = dev->type;
3445 			return 0;
3446 
3447 		case SIOCGIFSLAVE:
3448 			err = -EINVAL;
3449 			break;
3450 
3451 		case SIOCGIFMAP:
3452 			ifr->ifr_map.mem_start = dev->mem_start;
3453 			ifr->ifr_map.mem_end   = dev->mem_end;
3454 			ifr->ifr_map.base_addr = dev->base_addr;
3455 			ifr->ifr_map.irq       = dev->irq;
3456 			ifr->ifr_map.dma       = dev->dma;
3457 			ifr->ifr_map.port      = dev->if_port;
3458 			return 0;
3459 
3460 		case SIOCGIFINDEX:
3461 			ifr->ifr_ifindex = dev->ifindex;
3462 			return 0;
3463 
3464 		case SIOCGIFTXQLEN:
3465 			ifr->ifr_qlen = dev->tx_queue_len;
3466 			return 0;
3467 
3468 		default:
3469 			/* dev_ioctl() should ensure this case
3470 			 * is never reached
3471 			 */
3472 			WARN_ON(1);
3473 			err = -EINVAL;
3474 			break;
3475 
3476 	}
3477 	return err;
3478 }
3479 
3480 /*
3481  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3482  */
3483 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3484 {
3485 	int err;
3486 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3487 
3488 	if (!dev)
3489 		return -ENODEV;
3490 
3491 	switch (cmd) {
3492 		case SIOCSIFFLAGS:	/* Set interface flags */
3493 			return dev_change_flags(dev, ifr->ifr_flags);
3494 
3495 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3496 					   (currently unused) */
3497 			return -EOPNOTSUPP;
3498 
3499 		case SIOCSIFMTU:	/* Set the MTU of a device */
3500 			return dev_set_mtu(dev, ifr->ifr_mtu);
3501 
3502 		case SIOCSIFHWADDR:
3503 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3504 
3505 		case SIOCSIFHWBROADCAST:
3506 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3507 				return -EINVAL;
3508 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3509 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3510 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3511 			return 0;
3512 
3513 		case SIOCSIFMAP:
3514 			if (dev->set_config) {
3515 				if (!netif_device_present(dev))
3516 					return -ENODEV;
3517 				return dev->set_config(dev, &ifr->ifr_map);
3518 			}
3519 			return -EOPNOTSUPP;
3520 
3521 		case SIOCADDMULTI:
3522 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3523 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3524 				return -EINVAL;
3525 			if (!netif_device_present(dev))
3526 				return -ENODEV;
3527 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3528 					  dev->addr_len, 1);
3529 
3530 		case SIOCDELMULTI:
3531 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3532 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3533 				return -EINVAL;
3534 			if (!netif_device_present(dev))
3535 				return -ENODEV;
3536 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3537 					     dev->addr_len, 1);
3538 
3539 		case SIOCSIFTXQLEN:
3540 			if (ifr->ifr_qlen < 0)
3541 				return -EINVAL;
3542 			dev->tx_queue_len = ifr->ifr_qlen;
3543 			return 0;
3544 
3545 		case SIOCSIFNAME:
3546 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3547 			return dev_change_name(dev, ifr->ifr_newname);
3548 
3549 		/*
3550 		 *	Unknown or private ioctl
3551 		 */
3552 
3553 		default:
3554 			if ((cmd >= SIOCDEVPRIVATE &&
3555 			    cmd <= SIOCDEVPRIVATE + 15) ||
3556 			    cmd == SIOCBONDENSLAVE ||
3557 			    cmd == SIOCBONDRELEASE ||
3558 			    cmd == SIOCBONDSETHWADDR ||
3559 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3560 			    cmd == SIOCBONDINFOQUERY ||
3561 			    cmd == SIOCBONDCHANGEACTIVE ||
3562 			    cmd == SIOCGMIIPHY ||
3563 			    cmd == SIOCGMIIREG ||
3564 			    cmd == SIOCSMIIREG ||
3565 			    cmd == SIOCBRADDIF ||
3566 			    cmd == SIOCBRDELIF ||
3567 			    cmd == SIOCWANDEV) {
3568 				err = -EOPNOTSUPP;
3569 				if (dev->do_ioctl) {
3570 					if (netif_device_present(dev))
3571 						err = dev->do_ioctl(dev, ifr,
3572 								    cmd);
3573 					else
3574 						err = -ENODEV;
3575 				}
3576 			} else
3577 				err = -EINVAL;
3578 
3579 	}
3580 	return err;
3581 }
3582 
3583 /*
3584  *	This function handles all "interface"-type I/O control requests. The actual
3585  *	'doing' part of this is dev_ifsioc above.
3586  */
3587 
3588 /**
3589  *	dev_ioctl	-	network device ioctl
3590  *	@net: the applicable net namespace
3591  *	@cmd: command to issue
3592  *	@arg: pointer to a struct ifreq in user space
3593  *
3594  *	Issue ioctl functions to devices. This is normally called by the
3595  *	user space syscall interfaces but can sometimes be useful for
3596  *	other purposes. The return value is the return from the syscall if
3597  *	positive or a negative errno code on error.
3598  */
3599 
3600 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3601 {
3602 	struct ifreq ifr;
3603 	int ret;
3604 	char *colon;
3605 
3606 	/* One special case: SIOCGIFCONF takes ifconf argument
3607 	   and requires shared lock, because it sleeps writing
3608 	   to user space.
3609 	 */
3610 
3611 	if (cmd == SIOCGIFCONF) {
3612 		rtnl_lock();
3613 		ret = dev_ifconf(net, (char __user *) arg);
3614 		rtnl_unlock();
3615 		return ret;
3616 	}
3617 	if (cmd == SIOCGIFNAME)
3618 		return dev_ifname(net, (struct ifreq __user *)arg);
3619 
3620 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3621 		return -EFAULT;
3622 
3623 	ifr.ifr_name[IFNAMSIZ-1] = 0;
3624 
3625 	colon = strchr(ifr.ifr_name, ':');
3626 	if (colon)
3627 		*colon = 0;
3628 
3629 	/*
3630 	 *	See which interface the caller is talking about.
3631 	 */
3632 
3633 	switch (cmd) {
3634 		/*
3635 		 *	These ioctl calls:
3636 		 *	- can be done by all.
3637 		 *	- atomic and do not require locking.
3638 		 *	- return a value
3639 		 */
3640 		case SIOCGIFFLAGS:
3641 		case SIOCGIFMETRIC:
3642 		case SIOCGIFMTU:
3643 		case SIOCGIFHWADDR:
3644 		case SIOCGIFSLAVE:
3645 		case SIOCGIFMAP:
3646 		case SIOCGIFINDEX:
3647 		case SIOCGIFTXQLEN:
3648 			dev_load(net, ifr.ifr_name);
3649 			read_lock(&dev_base_lock);
3650 			ret = dev_ifsioc_locked(net, &ifr, cmd);
3651 			read_unlock(&dev_base_lock);
3652 			if (!ret) {
3653 				if (colon)
3654 					*colon = ':';
3655 				if (copy_to_user(arg, &ifr,
3656 						 sizeof(struct ifreq)))
3657 					ret = -EFAULT;
3658 			}
3659 			return ret;
3660 
3661 		case SIOCETHTOOL:
3662 			dev_load(net, ifr.ifr_name);
3663 			rtnl_lock();
3664 			ret = dev_ethtool(net, &ifr);
3665 			rtnl_unlock();
3666 			if (!ret) {
3667 				if (colon)
3668 					*colon = ':';
3669 				if (copy_to_user(arg, &ifr,
3670 						 sizeof(struct ifreq)))
3671 					ret = -EFAULT;
3672 			}
3673 			return ret;
3674 
3675 		/*
3676 		 *	These ioctl calls:
3677 		 *	- require superuser power.
3678 		 *	- require strict serialization.
3679 		 *	- return a value
3680 		 */
3681 		case SIOCGMIIPHY:
3682 		case SIOCGMIIREG:
3683 		case SIOCSIFNAME:
3684 			if (!capable(CAP_NET_ADMIN))
3685 				return -EPERM;
3686 			dev_load(net, ifr.ifr_name);
3687 			rtnl_lock();
3688 			ret = dev_ifsioc(net, &ifr, cmd);
3689 			rtnl_unlock();
3690 			if (!ret) {
3691 				if (colon)
3692 					*colon = ':';
3693 				if (copy_to_user(arg, &ifr,
3694 						 sizeof(struct ifreq)))
3695 					ret = -EFAULT;
3696 			}
3697 			return ret;
3698 
3699 		/*
3700 		 *	These ioctl calls:
3701 		 *	- require superuser power.
3702 		 *	- require strict serialization.
3703 		 *	- do not return a value
3704 		 */
3705 		case SIOCSIFFLAGS:
3706 		case SIOCSIFMETRIC:
3707 		case SIOCSIFMTU:
3708 		case SIOCSIFMAP:
3709 		case SIOCSIFHWADDR:
3710 		case SIOCSIFSLAVE:
3711 		case SIOCADDMULTI:
3712 		case SIOCDELMULTI:
3713 		case SIOCSIFHWBROADCAST:
3714 		case SIOCSIFTXQLEN:
3715 		case SIOCSMIIREG:
3716 		case SIOCBONDENSLAVE:
3717 		case SIOCBONDRELEASE:
3718 		case SIOCBONDSETHWADDR:
3719 		case SIOCBONDCHANGEACTIVE:
3720 		case SIOCBRADDIF:
3721 		case SIOCBRDELIF:
3722 			if (!capable(CAP_NET_ADMIN))
3723 				return -EPERM;
3724 			/* fall through */
3725 		case SIOCBONDSLAVEINFOQUERY:
3726 		case SIOCBONDINFOQUERY:
3727 			dev_load(net, ifr.ifr_name);
3728 			rtnl_lock();
3729 			ret = dev_ifsioc(net, &ifr, cmd);
3730 			rtnl_unlock();
3731 			return ret;
3732 
3733 		case SIOCGIFMEM:
3734 			/* Get the per device memory space. We can add this but
3735 			 * currently do not support it */
3736 		case SIOCSIFMEM:
3737 			/* Set the per device memory buffer space.
3738 			 * Not applicable in our case */
3739 		case SIOCSIFLINK:
3740 			return -EINVAL;
3741 
3742 		/*
3743 		 *	Unknown or private ioctl.
3744 		 */
3745 		default:
3746 			if (cmd == SIOCWANDEV ||
3747 			    (cmd >= SIOCDEVPRIVATE &&
3748 			     cmd <= SIOCDEVPRIVATE + 15)) {
3749 				dev_load(net, ifr.ifr_name);
3750 				rtnl_lock();
3751 				ret = dev_ifsioc(net, &ifr, cmd);
3752 				rtnl_unlock();
3753 				if (!ret && copy_to_user(arg, &ifr,
3754 							 sizeof(struct ifreq)))
3755 					ret = -EFAULT;
3756 				return ret;
3757 			}
3758 			/* Take care of Wireless Extensions */
3759 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3760 				return wext_handle_ioctl(net, &ifr, cmd, arg);
3761 			return -EINVAL;
3762 	}
3763 }
3764 
3765 
3766 /**
3767  *	dev_new_index	-	allocate an ifindex
3768  *	@net: the applicable net namespace
3769  *
3770  *	Returns a suitable unique value for a new device interface
3771  *	number.  The caller must hold the rtnl semaphore or the
3772  *	dev_base_lock to be sure it remains unique.
3773  */
3774 static int dev_new_index(struct net *net)
3775 {
3776 	static int ifindex;
3777 	for (;;) {
3778 		if (++ifindex <= 0)
3779 			ifindex = 1;
3780 		if (!__dev_get_by_index(net, ifindex))
3781 			return ifindex;
3782 	}
3783 }
3784 
3785 /* Delayed registration/unregisteration */
3786 static DEFINE_SPINLOCK(net_todo_list_lock);
3787 static LIST_HEAD(net_todo_list);
3788 
3789 static void net_set_todo(struct net_device *dev)
3790 {
3791 	spin_lock(&net_todo_list_lock);
3792 	list_add_tail(&dev->todo_list, &net_todo_list);
3793 	spin_unlock(&net_todo_list_lock);
3794 }
3795 
3796 static void rollback_registered(struct net_device *dev)
3797 {
3798 	BUG_ON(dev_boot_phase);
3799 	ASSERT_RTNL();
3800 
3801 	/* Some devices call without registering for initialization unwind. */
3802 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3803 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3804 				  "was registered\n", dev->name, dev);
3805 
3806 		WARN_ON(1);
3807 		return;
3808 	}
3809 
3810 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3811 
3812 	/* If device is running, close it first. */
3813 	dev_close(dev);
3814 
3815 	/* And unlink it from device chain. */
3816 	unlist_netdevice(dev);
3817 
3818 	dev->reg_state = NETREG_UNREGISTERING;
3819 
3820 	synchronize_net();
3821 
3822 	/* Shutdown queueing discipline. */
3823 	dev_shutdown(dev);
3824 
3825 
3826 	/* Notify protocols, that we are about to destroy
3827 	   this device. They should clean all the things.
3828 	*/
3829 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3830 
3831 	/*
3832 	 *	Flush the unicast and multicast chains
3833 	 */
3834 	dev_addr_discard(dev);
3835 
3836 	if (dev->uninit)
3837 		dev->uninit(dev);
3838 
3839 	/* Notifier chain MUST detach us from master device. */
3840 	BUG_TRAP(!dev->master);
3841 
3842 	/* Remove entries from kobject tree */
3843 	netdev_unregister_kobject(dev);
3844 
3845 	synchronize_net();
3846 
3847 	dev_put(dev);
3848 }
3849 
3850 static void __netdev_init_queue_locks_one(struct net_device *dev,
3851 					  struct netdev_queue *dev_queue,
3852 					  void *_unused)
3853 {
3854 	spin_lock_init(&dev_queue->_xmit_lock);
3855 	netdev_set_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3856 	dev_queue->xmit_lock_owner = -1;
3857 }
3858 
3859 static void netdev_init_queue_locks(struct net_device *dev)
3860 {
3861 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3862 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3863 }
3864 
3865 /**
3866  *	register_netdevice	- register a network device
3867  *	@dev: device to register
3868  *
3869  *	Take a completed network device structure and add it to the kernel
3870  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3871  *	chain. 0 is returned on success. A negative errno code is returned
3872  *	on a failure to set up the device, or if the name is a duplicate.
3873  *
3874  *	Callers must hold the rtnl semaphore. You may want
3875  *	register_netdev() instead of this.
3876  *
3877  *	BUGS:
3878  *	The locking appears insufficient to guarantee two parallel registers
3879  *	will not get the same name.
3880  */
3881 
3882 int register_netdevice(struct net_device *dev)
3883 {
3884 	struct hlist_head *head;
3885 	struct hlist_node *p;
3886 	int ret;
3887 	struct net *net;
3888 
3889 	BUG_ON(dev_boot_phase);
3890 	ASSERT_RTNL();
3891 
3892 	might_sleep();
3893 
3894 	/* When net_device's are persistent, this will be fatal. */
3895 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3896 	BUG_ON(!dev_net(dev));
3897 	net = dev_net(dev);
3898 
3899 	spin_lock_init(&dev->addr_list_lock);
3900 	netdev_init_queue_locks(dev);
3901 
3902 	dev->iflink = -1;
3903 
3904 	/* Init, if this function is available */
3905 	if (dev->init) {
3906 		ret = dev->init(dev);
3907 		if (ret) {
3908 			if (ret > 0)
3909 				ret = -EIO;
3910 			goto out;
3911 		}
3912 	}
3913 
3914 	if (!dev_valid_name(dev->name)) {
3915 		ret = -EINVAL;
3916 		goto err_uninit;
3917 	}
3918 
3919 	dev->ifindex = dev_new_index(net);
3920 	if (dev->iflink == -1)
3921 		dev->iflink = dev->ifindex;
3922 
3923 	/* Check for existence of name */
3924 	head = dev_name_hash(net, dev->name);
3925 	hlist_for_each(p, head) {
3926 		struct net_device *d
3927 			= hlist_entry(p, struct net_device, name_hlist);
3928 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3929 			ret = -EEXIST;
3930 			goto err_uninit;
3931 		}
3932 	}
3933 
3934 	/* Fix illegal checksum combinations */
3935 	if ((dev->features & NETIF_F_HW_CSUM) &&
3936 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3937 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3938 		       dev->name);
3939 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3940 	}
3941 
3942 	if ((dev->features & NETIF_F_NO_CSUM) &&
3943 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3944 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3945 		       dev->name);
3946 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3947 	}
3948 
3949 
3950 	/* Fix illegal SG+CSUM combinations. */
3951 	if ((dev->features & NETIF_F_SG) &&
3952 	    !(dev->features & NETIF_F_ALL_CSUM)) {
3953 		printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3954 		       dev->name);
3955 		dev->features &= ~NETIF_F_SG;
3956 	}
3957 
3958 	/* TSO requires that SG is present as well. */
3959 	if ((dev->features & NETIF_F_TSO) &&
3960 	    !(dev->features & NETIF_F_SG)) {
3961 		printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3962 		       dev->name);
3963 		dev->features &= ~NETIF_F_TSO;
3964 	}
3965 	if (dev->features & NETIF_F_UFO) {
3966 		if (!(dev->features & NETIF_F_HW_CSUM)) {
3967 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3968 					"NETIF_F_HW_CSUM feature.\n",
3969 							dev->name);
3970 			dev->features &= ~NETIF_F_UFO;
3971 		}
3972 		if (!(dev->features & NETIF_F_SG)) {
3973 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3974 					"NETIF_F_SG feature.\n",
3975 					dev->name);
3976 			dev->features &= ~NETIF_F_UFO;
3977 		}
3978 	}
3979 
3980 	netdev_initialize_kobject(dev);
3981 	ret = netdev_register_kobject(dev);
3982 	if (ret)
3983 		goto err_uninit;
3984 	dev->reg_state = NETREG_REGISTERED;
3985 
3986 	/*
3987 	 *	Default initial state at registry is that the
3988 	 *	device is present.
3989 	 */
3990 
3991 	set_bit(__LINK_STATE_PRESENT, &dev->state);
3992 
3993 	dev_init_scheduler(dev);
3994 	dev_hold(dev);
3995 	list_netdevice(dev);
3996 
3997 	/* Notify protocols, that a new device appeared. */
3998 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3999 	ret = notifier_to_errno(ret);
4000 	if (ret) {
4001 		rollback_registered(dev);
4002 		dev->reg_state = NETREG_UNREGISTERED;
4003 	}
4004 
4005 out:
4006 	return ret;
4007 
4008 err_uninit:
4009 	if (dev->uninit)
4010 		dev->uninit(dev);
4011 	goto out;
4012 }
4013 
4014 /**
4015  *	register_netdev	- register a network device
4016  *	@dev: device to register
4017  *
4018  *	Take a completed network device structure and add it to the kernel
4019  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4020  *	chain. 0 is returned on success. A negative errno code is returned
4021  *	on a failure to set up the device, or if the name is a duplicate.
4022  *
4023  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
4024  *	and expands the device name if you passed a format string to
4025  *	alloc_netdev.
4026  */
4027 int register_netdev(struct net_device *dev)
4028 {
4029 	int err;
4030 
4031 	rtnl_lock();
4032 
4033 	/*
4034 	 * If the name is a format string the caller wants us to do a
4035 	 * name allocation.
4036 	 */
4037 	if (strchr(dev->name, '%')) {
4038 		err = dev_alloc_name(dev, dev->name);
4039 		if (err < 0)
4040 			goto out;
4041 	}
4042 
4043 	err = register_netdevice(dev);
4044 out:
4045 	rtnl_unlock();
4046 	return err;
4047 }
4048 EXPORT_SYMBOL(register_netdev);
4049 
4050 /*
4051  * netdev_wait_allrefs - wait until all references are gone.
4052  *
4053  * This is called when unregistering network devices.
4054  *
4055  * Any protocol or device that holds a reference should register
4056  * for netdevice notification, and cleanup and put back the
4057  * reference if they receive an UNREGISTER event.
4058  * We can get stuck here if buggy protocols don't correctly
4059  * call dev_put.
4060  */
4061 static void netdev_wait_allrefs(struct net_device *dev)
4062 {
4063 	unsigned long rebroadcast_time, warning_time;
4064 
4065 	rebroadcast_time = warning_time = jiffies;
4066 	while (atomic_read(&dev->refcnt) != 0) {
4067 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4068 			rtnl_lock();
4069 
4070 			/* Rebroadcast unregister notification */
4071 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4072 
4073 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4074 				     &dev->state)) {
4075 				/* We must not have linkwatch events
4076 				 * pending on unregister. If this
4077 				 * happens, we simply run the queue
4078 				 * unscheduled, resulting in a noop
4079 				 * for this device.
4080 				 */
4081 				linkwatch_run_queue();
4082 			}
4083 
4084 			__rtnl_unlock();
4085 
4086 			rebroadcast_time = jiffies;
4087 		}
4088 
4089 		msleep(250);
4090 
4091 		if (time_after(jiffies, warning_time + 10 * HZ)) {
4092 			printk(KERN_EMERG "unregister_netdevice: "
4093 			       "waiting for %s to become free. Usage "
4094 			       "count = %d\n",
4095 			       dev->name, atomic_read(&dev->refcnt));
4096 			warning_time = jiffies;
4097 		}
4098 	}
4099 }
4100 
4101 /* The sequence is:
4102  *
4103  *	rtnl_lock();
4104  *	...
4105  *	register_netdevice(x1);
4106  *	register_netdevice(x2);
4107  *	...
4108  *	unregister_netdevice(y1);
4109  *	unregister_netdevice(y2);
4110  *      ...
4111  *	rtnl_unlock();
4112  *	free_netdev(y1);
4113  *	free_netdev(y2);
4114  *
4115  * We are invoked by rtnl_unlock() after it drops the semaphore.
4116  * This allows us to deal with problems:
4117  * 1) We can delete sysfs objects which invoke hotplug
4118  *    without deadlocking with linkwatch via keventd.
4119  * 2) Since we run with the RTNL semaphore not held, we can sleep
4120  *    safely in order to wait for the netdev refcnt to drop to zero.
4121  */
4122 static DEFINE_MUTEX(net_todo_run_mutex);
4123 void netdev_run_todo(void)
4124 {
4125 	struct list_head list;
4126 
4127 	/* Need to guard against multiple cpu's getting out of order. */
4128 	mutex_lock(&net_todo_run_mutex);
4129 
4130 	/* Not safe to do outside the semaphore.  We must not return
4131 	 * until all unregister events invoked by the local processor
4132 	 * have been completed (either by this todo run, or one on
4133 	 * another cpu).
4134 	 */
4135 	if (list_empty(&net_todo_list))
4136 		goto out;
4137 
4138 	/* Snapshot list, allow later requests */
4139 	spin_lock(&net_todo_list_lock);
4140 	list_replace_init(&net_todo_list, &list);
4141 	spin_unlock(&net_todo_list_lock);
4142 
4143 	while (!list_empty(&list)) {
4144 		struct net_device *dev
4145 			= list_entry(list.next, struct net_device, todo_list);
4146 		list_del(&dev->todo_list);
4147 
4148 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4149 			printk(KERN_ERR "network todo '%s' but state %d\n",
4150 			       dev->name, dev->reg_state);
4151 			dump_stack();
4152 			continue;
4153 		}
4154 
4155 		dev->reg_state = NETREG_UNREGISTERED;
4156 
4157 		netdev_wait_allrefs(dev);
4158 
4159 		/* paranoia */
4160 		BUG_ON(atomic_read(&dev->refcnt));
4161 		BUG_TRAP(!dev->ip_ptr);
4162 		BUG_TRAP(!dev->ip6_ptr);
4163 		BUG_TRAP(!dev->dn_ptr);
4164 
4165 		if (dev->destructor)
4166 			dev->destructor(dev);
4167 
4168 		/* Free network device */
4169 		kobject_put(&dev->dev.kobj);
4170 	}
4171 
4172 out:
4173 	mutex_unlock(&net_todo_run_mutex);
4174 }
4175 
4176 static struct net_device_stats *internal_stats(struct net_device *dev)
4177 {
4178 	return &dev->stats;
4179 }
4180 
4181 static void netdev_init_one_queue(struct net_device *dev,
4182 				  struct netdev_queue *queue,
4183 				  void *_unused)
4184 {
4185 	queue->dev = dev;
4186 }
4187 
4188 static void netdev_init_queues(struct net_device *dev)
4189 {
4190 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4191 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4192 }
4193 
4194 /**
4195  *	alloc_netdev_mq - allocate network device
4196  *	@sizeof_priv:	size of private data to allocate space for
4197  *	@name:		device name format string
4198  *	@setup:		callback to initialize device
4199  *	@queue_count:	the number of subqueues to allocate
4200  *
4201  *	Allocates a struct net_device with private data area for driver use
4202  *	and performs basic initialization.  Also allocates subquue structs
4203  *	for each queue on the device at the end of the netdevice.
4204  */
4205 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4206 		void (*setup)(struct net_device *), unsigned int queue_count)
4207 {
4208 	struct netdev_queue *tx;
4209 	struct net_device *dev;
4210 	int alloc_size;
4211 	void *p;
4212 
4213 	BUG_ON(strlen(name) >= sizeof(dev->name));
4214 
4215 	alloc_size = sizeof(struct net_device);
4216 	if (sizeof_priv) {
4217 		/* ensure 32-byte alignment of private area */
4218 		alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4219 		alloc_size += sizeof_priv;
4220 	}
4221 	/* ensure 32-byte alignment of whole construct */
4222 	alloc_size += NETDEV_ALIGN_CONST;
4223 
4224 	p = kzalloc(alloc_size, GFP_KERNEL);
4225 	if (!p) {
4226 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4227 		return NULL;
4228 	}
4229 
4230 	tx = kzalloc(sizeof(struct netdev_queue) * queue_count, GFP_KERNEL);
4231 	if (!tx) {
4232 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
4233 		       "tx qdiscs.\n");
4234 		kfree(p);
4235 		return NULL;
4236 	}
4237 
4238 	dev = (struct net_device *)
4239 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4240 	dev->padded = (char *)dev - (char *)p;
4241 	dev_net_set(dev, &init_net);
4242 
4243 	dev->_tx = tx;
4244 	dev->num_tx_queues = queue_count;
4245 	dev->real_num_tx_queues = queue_count;
4246 
4247 	if (sizeof_priv) {
4248 		dev->priv = ((char *)dev +
4249 			     ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4250 			      & ~NETDEV_ALIGN_CONST));
4251 	}
4252 
4253 	dev->gso_max_size = GSO_MAX_SIZE;
4254 
4255 	netdev_init_queues(dev);
4256 
4257 	dev->get_stats = internal_stats;
4258 	netpoll_netdev_init(dev);
4259 	setup(dev);
4260 	strcpy(dev->name, name);
4261 	return dev;
4262 }
4263 EXPORT_SYMBOL(alloc_netdev_mq);
4264 
4265 /**
4266  *	free_netdev - free network device
4267  *	@dev: device
4268  *
4269  *	This function does the last stage of destroying an allocated device
4270  * 	interface. The reference to the device object is released.
4271  *	If this is the last reference then it will be freed.
4272  */
4273 void free_netdev(struct net_device *dev)
4274 {
4275 	release_net(dev_net(dev));
4276 
4277 	kfree(dev->_tx);
4278 
4279 	/*  Compatibility with error handling in drivers */
4280 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4281 		kfree((char *)dev - dev->padded);
4282 		return;
4283 	}
4284 
4285 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4286 	dev->reg_state = NETREG_RELEASED;
4287 
4288 	/* will free via device release */
4289 	put_device(&dev->dev);
4290 }
4291 
4292 /* Synchronize with packet receive processing. */
4293 void synchronize_net(void)
4294 {
4295 	might_sleep();
4296 	synchronize_rcu();
4297 }
4298 
4299 /**
4300  *	unregister_netdevice - remove device from the kernel
4301  *	@dev: device
4302  *
4303  *	This function shuts down a device interface and removes it
4304  *	from the kernel tables.
4305  *
4306  *	Callers must hold the rtnl semaphore.  You may want
4307  *	unregister_netdev() instead of this.
4308  */
4309 
4310 void unregister_netdevice(struct net_device *dev)
4311 {
4312 	ASSERT_RTNL();
4313 
4314 	rollback_registered(dev);
4315 	/* Finish processing unregister after unlock */
4316 	net_set_todo(dev);
4317 }
4318 
4319 /**
4320  *	unregister_netdev - remove device from the kernel
4321  *	@dev: device
4322  *
4323  *	This function shuts down a device interface and removes it
4324  *	from the kernel tables.
4325  *
4326  *	This is just a wrapper for unregister_netdevice that takes
4327  *	the rtnl semaphore.  In general you want to use this and not
4328  *	unregister_netdevice.
4329  */
4330 void unregister_netdev(struct net_device *dev)
4331 {
4332 	rtnl_lock();
4333 	unregister_netdevice(dev);
4334 	rtnl_unlock();
4335 }
4336 
4337 EXPORT_SYMBOL(unregister_netdev);
4338 
4339 /**
4340  *	dev_change_net_namespace - move device to different nethost namespace
4341  *	@dev: device
4342  *	@net: network namespace
4343  *	@pat: If not NULL name pattern to try if the current device name
4344  *	      is already taken in the destination network namespace.
4345  *
4346  *	This function shuts down a device interface and moves it
4347  *	to a new network namespace. On success 0 is returned, on
4348  *	a failure a netagive errno code is returned.
4349  *
4350  *	Callers must hold the rtnl semaphore.
4351  */
4352 
4353 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4354 {
4355 	char buf[IFNAMSIZ];
4356 	const char *destname;
4357 	int err;
4358 
4359 	ASSERT_RTNL();
4360 
4361 	/* Don't allow namespace local devices to be moved. */
4362 	err = -EINVAL;
4363 	if (dev->features & NETIF_F_NETNS_LOCAL)
4364 		goto out;
4365 
4366 	/* Ensure the device has been registrered */
4367 	err = -EINVAL;
4368 	if (dev->reg_state != NETREG_REGISTERED)
4369 		goto out;
4370 
4371 	/* Get out if there is nothing todo */
4372 	err = 0;
4373 	if (net_eq(dev_net(dev), net))
4374 		goto out;
4375 
4376 	/* Pick the destination device name, and ensure
4377 	 * we can use it in the destination network namespace.
4378 	 */
4379 	err = -EEXIST;
4380 	destname = dev->name;
4381 	if (__dev_get_by_name(net, destname)) {
4382 		/* We get here if we can't use the current device name */
4383 		if (!pat)
4384 			goto out;
4385 		if (!dev_valid_name(pat))
4386 			goto out;
4387 		if (strchr(pat, '%')) {
4388 			if (__dev_alloc_name(net, pat, buf) < 0)
4389 				goto out;
4390 			destname = buf;
4391 		} else
4392 			destname = pat;
4393 		if (__dev_get_by_name(net, destname))
4394 			goto out;
4395 	}
4396 
4397 	/*
4398 	 * And now a mini version of register_netdevice unregister_netdevice.
4399 	 */
4400 
4401 	/* If device is running close it first. */
4402 	dev_close(dev);
4403 
4404 	/* And unlink it from device chain */
4405 	err = -ENODEV;
4406 	unlist_netdevice(dev);
4407 
4408 	synchronize_net();
4409 
4410 	/* Shutdown queueing discipline. */
4411 	dev_shutdown(dev);
4412 
4413 	/* Notify protocols, that we are about to destroy
4414 	   this device. They should clean all the things.
4415 	*/
4416 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4417 
4418 	/*
4419 	 *	Flush the unicast and multicast chains
4420 	 */
4421 	dev_addr_discard(dev);
4422 
4423 	/* Actually switch the network namespace */
4424 	dev_net_set(dev, net);
4425 
4426 	/* Assign the new device name */
4427 	if (destname != dev->name)
4428 		strcpy(dev->name, destname);
4429 
4430 	/* If there is an ifindex conflict assign a new one */
4431 	if (__dev_get_by_index(net, dev->ifindex)) {
4432 		int iflink = (dev->iflink == dev->ifindex);
4433 		dev->ifindex = dev_new_index(net);
4434 		if (iflink)
4435 			dev->iflink = dev->ifindex;
4436 	}
4437 
4438 	/* Fixup kobjects */
4439 	netdev_unregister_kobject(dev);
4440 	err = netdev_register_kobject(dev);
4441 	WARN_ON(err);
4442 
4443 	/* Add the device back in the hashes */
4444 	list_netdevice(dev);
4445 
4446 	/* Notify protocols, that a new device appeared. */
4447 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4448 
4449 	synchronize_net();
4450 	err = 0;
4451 out:
4452 	return err;
4453 }
4454 
4455 static int dev_cpu_callback(struct notifier_block *nfb,
4456 			    unsigned long action,
4457 			    void *ocpu)
4458 {
4459 	struct sk_buff **list_skb;
4460 	struct Qdisc **list_net;
4461 	struct sk_buff *skb;
4462 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
4463 	struct softnet_data *sd, *oldsd;
4464 
4465 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4466 		return NOTIFY_OK;
4467 
4468 	local_irq_disable();
4469 	cpu = smp_processor_id();
4470 	sd = &per_cpu(softnet_data, cpu);
4471 	oldsd = &per_cpu(softnet_data, oldcpu);
4472 
4473 	/* Find end of our completion_queue. */
4474 	list_skb = &sd->completion_queue;
4475 	while (*list_skb)
4476 		list_skb = &(*list_skb)->next;
4477 	/* Append completion queue from offline CPU. */
4478 	*list_skb = oldsd->completion_queue;
4479 	oldsd->completion_queue = NULL;
4480 
4481 	/* Find end of our output_queue. */
4482 	list_net = &sd->output_queue;
4483 	while (*list_net)
4484 		list_net = &(*list_net)->next_sched;
4485 	/* Append output queue from offline CPU. */
4486 	*list_net = oldsd->output_queue;
4487 	oldsd->output_queue = NULL;
4488 
4489 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
4490 	local_irq_enable();
4491 
4492 	/* Process offline CPU's input_pkt_queue */
4493 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4494 		netif_rx(skb);
4495 
4496 	return NOTIFY_OK;
4497 }
4498 
4499 #ifdef CONFIG_NET_DMA
4500 /**
4501  * net_dma_rebalance - try to maintain one DMA channel per CPU
4502  * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4503  *
4504  * This is called when the number of channels allocated to the net_dma client
4505  * changes.  The net_dma client tries to have one DMA channel per CPU.
4506  */
4507 
4508 static void net_dma_rebalance(struct net_dma *net_dma)
4509 {
4510 	unsigned int cpu, i, n, chan_idx;
4511 	struct dma_chan *chan;
4512 
4513 	if (cpus_empty(net_dma->channel_mask)) {
4514 		for_each_online_cpu(cpu)
4515 			rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4516 		return;
4517 	}
4518 
4519 	i = 0;
4520 	cpu = first_cpu(cpu_online_map);
4521 
4522 	for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4523 		chan = net_dma->channels[chan_idx];
4524 
4525 		n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4526 		   + (i < (num_online_cpus() %
4527 			cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4528 
4529 		while(n) {
4530 			per_cpu(softnet_data, cpu).net_dma = chan;
4531 			cpu = next_cpu(cpu, cpu_online_map);
4532 			n--;
4533 		}
4534 		i++;
4535 	}
4536 }
4537 
4538 /**
4539  * netdev_dma_event - event callback for the net_dma_client
4540  * @client: should always be net_dma_client
4541  * @chan: DMA channel for the event
4542  * @state: DMA state to be handled
4543  */
4544 static enum dma_state_client
4545 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4546 	enum dma_state state)
4547 {
4548 	int i, found = 0, pos = -1;
4549 	struct net_dma *net_dma =
4550 		container_of(client, struct net_dma, client);
4551 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
4552 
4553 	spin_lock(&net_dma->lock);
4554 	switch (state) {
4555 	case DMA_RESOURCE_AVAILABLE:
4556 		for (i = 0; i < nr_cpu_ids; i++)
4557 			if (net_dma->channels[i] == chan) {
4558 				found = 1;
4559 				break;
4560 			} else if (net_dma->channels[i] == NULL && pos < 0)
4561 				pos = i;
4562 
4563 		if (!found && pos >= 0) {
4564 			ack = DMA_ACK;
4565 			net_dma->channels[pos] = chan;
4566 			cpu_set(pos, net_dma->channel_mask);
4567 			net_dma_rebalance(net_dma);
4568 		}
4569 		break;
4570 	case DMA_RESOURCE_REMOVED:
4571 		for (i = 0; i < nr_cpu_ids; i++)
4572 			if (net_dma->channels[i] == chan) {
4573 				found = 1;
4574 				pos = i;
4575 				break;
4576 			}
4577 
4578 		if (found) {
4579 			ack = DMA_ACK;
4580 			cpu_clear(pos, net_dma->channel_mask);
4581 			net_dma->channels[i] = NULL;
4582 			net_dma_rebalance(net_dma);
4583 		}
4584 		break;
4585 	default:
4586 		break;
4587 	}
4588 	spin_unlock(&net_dma->lock);
4589 
4590 	return ack;
4591 }
4592 
4593 /**
4594  * netdev_dma_regiser - register the networking subsystem as a DMA client
4595  */
4596 static int __init netdev_dma_register(void)
4597 {
4598 	net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4599 								GFP_KERNEL);
4600 	if (unlikely(!net_dma.channels)) {
4601 		printk(KERN_NOTICE
4602 				"netdev_dma: no memory for net_dma.channels\n");
4603 		return -ENOMEM;
4604 	}
4605 	spin_lock_init(&net_dma.lock);
4606 	dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4607 	dma_async_client_register(&net_dma.client);
4608 	dma_async_client_chan_request(&net_dma.client);
4609 	return 0;
4610 }
4611 
4612 #else
4613 static int __init netdev_dma_register(void) { return -ENODEV; }
4614 #endif /* CONFIG_NET_DMA */
4615 
4616 /**
4617  *	netdev_compute_feature - compute conjunction of two feature sets
4618  *	@all: first feature set
4619  *	@one: second feature set
4620  *
4621  *	Computes a new feature set after adding a device with feature set
4622  *	@one to the master device with current feature set @all.  Returns
4623  *	the new feature set.
4624  */
4625 int netdev_compute_features(unsigned long all, unsigned long one)
4626 {
4627 	/* if device needs checksumming, downgrade to hw checksumming */
4628 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4629 		all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4630 
4631 	/* if device can't do all checksum, downgrade to ipv4/ipv6 */
4632 	if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4633 		all ^= NETIF_F_HW_CSUM
4634 			| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4635 
4636 	if (one & NETIF_F_GSO)
4637 		one |= NETIF_F_GSO_SOFTWARE;
4638 	one |= NETIF_F_GSO;
4639 
4640 	/* If even one device supports robust GSO, enable it for all. */
4641 	if (one & NETIF_F_GSO_ROBUST)
4642 		all |= NETIF_F_GSO_ROBUST;
4643 
4644 	all &= one | NETIF_F_LLTX;
4645 
4646 	if (!(all & NETIF_F_ALL_CSUM))
4647 		all &= ~NETIF_F_SG;
4648 	if (!(all & NETIF_F_SG))
4649 		all &= ~NETIF_F_GSO_MASK;
4650 
4651 	return all;
4652 }
4653 EXPORT_SYMBOL(netdev_compute_features);
4654 
4655 static struct hlist_head *netdev_create_hash(void)
4656 {
4657 	int i;
4658 	struct hlist_head *hash;
4659 
4660 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4661 	if (hash != NULL)
4662 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
4663 			INIT_HLIST_HEAD(&hash[i]);
4664 
4665 	return hash;
4666 }
4667 
4668 /* Initialize per network namespace state */
4669 static int __net_init netdev_init(struct net *net)
4670 {
4671 	INIT_LIST_HEAD(&net->dev_base_head);
4672 
4673 	net->dev_name_head = netdev_create_hash();
4674 	if (net->dev_name_head == NULL)
4675 		goto err_name;
4676 
4677 	net->dev_index_head = netdev_create_hash();
4678 	if (net->dev_index_head == NULL)
4679 		goto err_idx;
4680 
4681 	return 0;
4682 
4683 err_idx:
4684 	kfree(net->dev_name_head);
4685 err_name:
4686 	return -ENOMEM;
4687 }
4688 
4689 static void __net_exit netdev_exit(struct net *net)
4690 {
4691 	kfree(net->dev_name_head);
4692 	kfree(net->dev_index_head);
4693 }
4694 
4695 static struct pernet_operations __net_initdata netdev_net_ops = {
4696 	.init = netdev_init,
4697 	.exit = netdev_exit,
4698 };
4699 
4700 static void __net_exit default_device_exit(struct net *net)
4701 {
4702 	struct net_device *dev, *next;
4703 	/*
4704 	 * Push all migratable of the network devices back to the
4705 	 * initial network namespace
4706 	 */
4707 	rtnl_lock();
4708 	for_each_netdev_safe(net, dev, next) {
4709 		int err;
4710 		char fb_name[IFNAMSIZ];
4711 
4712 		/* Ignore unmoveable devices (i.e. loopback) */
4713 		if (dev->features & NETIF_F_NETNS_LOCAL)
4714 			continue;
4715 
4716 		/* Push remaing network devices to init_net */
4717 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4718 		err = dev_change_net_namespace(dev, &init_net, fb_name);
4719 		if (err) {
4720 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4721 				__func__, dev->name, err);
4722 			BUG();
4723 		}
4724 	}
4725 	rtnl_unlock();
4726 }
4727 
4728 static struct pernet_operations __net_initdata default_device_ops = {
4729 	.exit = default_device_exit,
4730 };
4731 
4732 /*
4733  *	Initialize the DEV module. At boot time this walks the device list and
4734  *	unhooks any devices that fail to initialise (normally hardware not
4735  *	present) and leaves us with a valid list of present and active devices.
4736  *
4737  */
4738 
4739 /*
4740  *       This is called single threaded during boot, so no need
4741  *       to take the rtnl semaphore.
4742  */
4743 static int __init net_dev_init(void)
4744 {
4745 	int i, rc = -ENOMEM;
4746 
4747 	BUG_ON(!dev_boot_phase);
4748 
4749 	if (dev_proc_init())
4750 		goto out;
4751 
4752 	if (netdev_kobject_init())
4753 		goto out;
4754 
4755 	INIT_LIST_HEAD(&ptype_all);
4756 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
4757 		INIT_LIST_HEAD(&ptype_base[i]);
4758 
4759 	if (register_pernet_subsys(&netdev_net_ops))
4760 		goto out;
4761 
4762 	if (register_pernet_device(&default_device_ops))
4763 		goto out;
4764 
4765 	/*
4766 	 *	Initialise the packet receive queues.
4767 	 */
4768 
4769 	for_each_possible_cpu(i) {
4770 		struct softnet_data *queue;
4771 
4772 		queue = &per_cpu(softnet_data, i);
4773 		skb_queue_head_init(&queue->input_pkt_queue);
4774 		queue->completion_queue = NULL;
4775 		INIT_LIST_HEAD(&queue->poll_list);
4776 
4777 		queue->backlog.poll = process_backlog;
4778 		queue->backlog.weight = weight_p;
4779 	}
4780 
4781 	netdev_dma_register();
4782 
4783 	dev_boot_phase = 0;
4784 
4785 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4786 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4787 
4788 	hotcpu_notifier(dev_cpu_callback, 0);
4789 	dst_init();
4790 	dev_mcast_init();
4791 	rc = 0;
4792 out:
4793 	return rc;
4794 }
4795 
4796 subsys_initcall(net_dev_init);
4797 
4798 EXPORT_SYMBOL(__dev_get_by_index);
4799 EXPORT_SYMBOL(__dev_get_by_name);
4800 EXPORT_SYMBOL(__dev_remove_pack);
4801 EXPORT_SYMBOL(dev_valid_name);
4802 EXPORT_SYMBOL(dev_add_pack);
4803 EXPORT_SYMBOL(dev_alloc_name);
4804 EXPORT_SYMBOL(dev_close);
4805 EXPORT_SYMBOL(dev_get_by_flags);
4806 EXPORT_SYMBOL(dev_get_by_index);
4807 EXPORT_SYMBOL(dev_get_by_name);
4808 EXPORT_SYMBOL(dev_open);
4809 EXPORT_SYMBOL(dev_queue_xmit);
4810 EXPORT_SYMBOL(dev_remove_pack);
4811 EXPORT_SYMBOL(dev_set_allmulti);
4812 EXPORT_SYMBOL(dev_set_promiscuity);
4813 EXPORT_SYMBOL(dev_change_flags);
4814 EXPORT_SYMBOL(dev_set_mtu);
4815 EXPORT_SYMBOL(dev_set_mac_address);
4816 EXPORT_SYMBOL(free_netdev);
4817 EXPORT_SYMBOL(netdev_boot_setup_check);
4818 EXPORT_SYMBOL(netdev_set_master);
4819 EXPORT_SYMBOL(netdev_state_change);
4820 EXPORT_SYMBOL(netif_receive_skb);
4821 EXPORT_SYMBOL(netif_rx);
4822 EXPORT_SYMBOL(register_gifconf);
4823 EXPORT_SYMBOL(register_netdevice);
4824 EXPORT_SYMBOL(register_netdevice_notifier);
4825 EXPORT_SYMBOL(skb_checksum_help);
4826 EXPORT_SYMBOL(synchronize_net);
4827 EXPORT_SYMBOL(unregister_netdevice);
4828 EXPORT_SYMBOL(unregister_netdevice_notifier);
4829 EXPORT_SYMBOL(net_enable_timestamp);
4830 EXPORT_SYMBOL(net_disable_timestamp);
4831 EXPORT_SYMBOL(dev_get_flags);
4832 
4833 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4834 EXPORT_SYMBOL(br_handle_frame_hook);
4835 EXPORT_SYMBOL(br_fdb_get_hook);
4836 EXPORT_SYMBOL(br_fdb_put_hook);
4837 #endif
4838 
4839 #ifdef CONFIG_KMOD
4840 EXPORT_SYMBOL(dev_load);
4841 #endif
4842 
4843 EXPORT_PER_CPU_SYMBOL(softnet_data);
4844