1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 #include <linux/net_namespace.h> 149 150 #include "net-sysfs.h" 151 152 /* Instead of increasing this, you should create a hash table. */ 153 #define MAX_GRO_SKBS 8 154 155 /* This should be increased if a protocol with a bigger head is added. */ 156 #define GRO_MAX_HEAD (MAX_HEADER + 128) 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 static DEFINE_SPINLOCK(offload_lock); 160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 161 struct list_head ptype_all __read_mostly; /* Taps */ 162 static struct list_head offload_base __read_mostly; 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_info(unsigned long val, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static seqcount_t devnet_rename_seq; 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 static inline void rps_unlock(struct softnet_data *sd) 227 { 228 #ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230 #endif 231 } 232 233 /* Device list insertion */ 234 static void list_netdevice(struct net_device *dev) 235 { 236 struct net *net = dev_net(dev); 237 238 ASSERT_RTNL(); 239 240 write_lock_bh(&dev_base_lock); 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 243 hlist_add_head_rcu(&dev->index_hlist, 244 dev_index_hash(net, dev->ifindex)); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(net); 248 } 249 250 /* Device list removal 251 * caller must respect a RCU grace period before freeing/reusing dev 252 */ 253 static void unlist_netdevice(struct net_device *dev) 254 { 255 ASSERT_RTNL(); 256 257 /* Unlink dev from the device chain */ 258 write_lock_bh(&dev_base_lock); 259 list_del_rcu(&dev->dev_list); 260 hlist_del_rcu(&dev->name_hlist); 261 hlist_del_rcu(&dev->index_hlist); 262 write_unlock_bh(&dev_base_lock); 263 264 dev_base_seq_inc(dev_net(dev)); 265 } 266 267 /* 268 * Our notifier list 269 */ 270 271 static RAW_NOTIFIER_HEAD(netdev_chain); 272 273 /* 274 * Device drivers call our routines to queue packets here. We empty the 275 * queue in the local softnet handler. 276 */ 277 278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 279 EXPORT_PER_CPU_SYMBOL(softnet_data); 280 281 #ifdef CONFIG_LOCKDEP 282 /* 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 284 * according to dev->type 285 */ 286 static const unsigned short netdev_lock_type[] = { 287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 302 303 static const char *const netdev_lock_name[] = { 304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 319 320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 323 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 324 { 325 int i; 326 327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 328 if (netdev_lock_type[i] == dev_type) 329 return i; 330 /* the last key is used by default */ 331 return ARRAY_SIZE(netdev_lock_type) - 1; 332 } 333 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev_type); 340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 int i; 347 348 i = netdev_lock_pos(dev->type); 349 lockdep_set_class_and_name(&dev->addr_list_lock, 350 &netdev_addr_lock_key[i], 351 netdev_lock_name[i]); 352 } 353 #else 354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 355 unsigned short dev_type) 356 { 357 } 358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 359 { 360 } 361 #endif 362 363 /******************************************************************************* 364 * 365 * Protocol management and registration routines 366 * 367 *******************************************************************************/ 368 369 370 /* 371 * Add a protocol ID to the list. Now that the input handler is 372 * smarter we can dispense with all the messy stuff that used to be 373 * here. 374 * 375 * BEWARE!!! Protocol handlers, mangling input packets, 376 * MUST BE last in hash buckets and checking protocol handlers 377 * MUST start from promiscuous ptype_all chain in net_bh. 378 * It is true now, do not change it. 379 * Explanation follows: if protocol handler, mangling packet, will 380 * be the first on list, it is not able to sense, that packet 381 * is cloned and should be copied-on-write, so that it will 382 * change it and subsequent readers will get broken packet. 383 * --ANK (980803) 384 */ 385 386 static inline struct list_head *ptype_head(const struct packet_type *pt) 387 { 388 if (pt->type == htons(ETH_P_ALL)) 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 390 else 391 return pt->dev ? &pt->dev->ptype_specific : 392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 393 } 394 395 /** 396 * dev_add_pack - add packet handler 397 * @pt: packet type declaration 398 * 399 * Add a protocol handler to the networking stack. The passed &packet_type 400 * is linked into kernel lists and may not be freed until it has been 401 * removed from the kernel lists. 402 * 403 * This call does not sleep therefore it can not 404 * guarantee all CPU's that are in middle of receiving packets 405 * will see the new packet type (until the next received packet). 406 */ 407 408 void dev_add_pack(struct packet_type *pt) 409 { 410 struct list_head *head = ptype_head(pt); 411 412 spin_lock(&ptype_lock); 413 list_add_rcu(&pt->list, head); 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(dev_add_pack); 417 418 /** 419 * __dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * The packet type might still be in use by receivers 428 * and must not be freed until after all the CPU's have gone 429 * through a quiescent state. 430 */ 431 void __dev_remove_pack(struct packet_type *pt) 432 { 433 struct list_head *head = ptype_head(pt); 434 struct packet_type *pt1; 435 436 spin_lock(&ptype_lock); 437 438 list_for_each_entry(pt1, head, list) { 439 if (pt == pt1) { 440 list_del_rcu(&pt->list); 441 goto out; 442 } 443 } 444 445 pr_warn("dev_remove_pack: %p not found\n", pt); 446 out: 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(__dev_remove_pack); 450 451 /** 452 * dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * This call sleeps to guarantee that no CPU is looking at the packet 461 * type after return. 462 */ 463 void dev_remove_pack(struct packet_type *pt) 464 { 465 __dev_remove_pack(pt); 466 467 synchronize_net(); 468 } 469 EXPORT_SYMBOL(dev_remove_pack); 470 471 472 /** 473 * dev_add_offload - register offload handlers 474 * @po: protocol offload declaration 475 * 476 * Add protocol offload handlers to the networking stack. The passed 477 * &proto_offload is linked into kernel lists and may not be freed until 478 * it has been removed from the kernel lists. 479 * 480 * This call does not sleep therefore it can not 481 * guarantee all CPU's that are in middle of receiving packets 482 * will see the new offload handlers (until the next received packet). 483 */ 484 void dev_add_offload(struct packet_offload *po) 485 { 486 struct packet_offload *elem; 487 488 spin_lock(&offload_lock); 489 list_for_each_entry(elem, &offload_base, list) { 490 if (po->priority < elem->priority) 491 break; 492 } 493 list_add_rcu(&po->list, elem->list.prev); 494 spin_unlock(&offload_lock); 495 } 496 EXPORT_SYMBOL(dev_add_offload); 497 498 /** 499 * __dev_remove_offload - remove offload handler 500 * @po: packet offload declaration 501 * 502 * Remove a protocol offload handler that was previously added to the 503 * kernel offload handlers by dev_add_offload(). The passed &offload_type 504 * is removed from the kernel lists and can be freed or reused once this 505 * function returns. 506 * 507 * The packet type might still be in use by receivers 508 * and must not be freed until after all the CPU's have gone 509 * through a quiescent state. 510 */ 511 static void __dev_remove_offload(struct packet_offload *po) 512 { 513 struct list_head *head = &offload_base; 514 struct packet_offload *po1; 515 516 spin_lock(&offload_lock); 517 518 list_for_each_entry(po1, head, list) { 519 if (po == po1) { 520 list_del_rcu(&po->list); 521 goto out; 522 } 523 } 524 525 pr_warn("dev_remove_offload: %p not found\n", po); 526 out: 527 spin_unlock(&offload_lock); 528 } 529 530 /** 531 * dev_remove_offload - remove packet offload handler 532 * @po: packet offload declaration 533 * 534 * Remove a packet offload handler that was previously added to the kernel 535 * offload handlers by dev_add_offload(). The passed &offload_type is 536 * removed from the kernel lists and can be freed or reused once this 537 * function returns. 538 * 539 * This call sleeps to guarantee that no CPU is looking at the packet 540 * type after return. 541 */ 542 void dev_remove_offload(struct packet_offload *po) 543 { 544 __dev_remove_offload(po); 545 546 synchronize_net(); 547 } 548 EXPORT_SYMBOL(dev_remove_offload); 549 550 /****************************************************************************** 551 * 552 * Device Boot-time Settings Routines 553 * 554 ******************************************************************************/ 555 556 /* Boot time configuration table */ 557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 558 559 /** 560 * netdev_boot_setup_add - add new setup entry 561 * @name: name of the device 562 * @map: configured settings for the device 563 * 564 * Adds new setup entry to the dev_boot_setup list. The function 565 * returns 0 on error and 1 on success. This is a generic routine to 566 * all netdevices. 567 */ 568 static int netdev_boot_setup_add(char *name, struct ifmap *map) 569 { 570 struct netdev_boot_setup *s; 571 int i; 572 573 s = dev_boot_setup; 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 576 memset(s[i].name, 0, sizeof(s[i].name)); 577 strlcpy(s[i].name, name, IFNAMSIZ); 578 memcpy(&s[i].map, map, sizeof(s[i].map)); 579 break; 580 } 581 } 582 583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 584 } 585 586 /** 587 * netdev_boot_setup_check - check boot time settings 588 * @dev: the netdevice 589 * 590 * Check boot time settings for the device. 591 * The found settings are set for the device to be used 592 * later in the device probing. 593 * Returns 0 if no settings found, 1 if they are. 594 */ 595 int netdev_boot_setup_check(struct net_device *dev) 596 { 597 struct netdev_boot_setup *s = dev_boot_setup; 598 int i; 599 600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 602 !strcmp(dev->name, s[i].name)) { 603 dev->irq = s[i].map.irq; 604 dev->base_addr = s[i].map.base_addr; 605 dev->mem_start = s[i].map.mem_start; 606 dev->mem_end = s[i].map.mem_end; 607 return 1; 608 } 609 } 610 return 0; 611 } 612 EXPORT_SYMBOL(netdev_boot_setup_check); 613 614 615 /** 616 * netdev_boot_base - get address from boot time settings 617 * @prefix: prefix for network device 618 * @unit: id for network device 619 * 620 * Check boot time settings for the base address of device. 621 * The found settings are set for the device to be used 622 * later in the device probing. 623 * Returns 0 if no settings found. 624 */ 625 unsigned long netdev_boot_base(const char *prefix, int unit) 626 { 627 const struct netdev_boot_setup *s = dev_boot_setup; 628 char name[IFNAMSIZ]; 629 int i; 630 631 sprintf(name, "%s%d", prefix, unit); 632 633 /* 634 * If device already registered then return base of 1 635 * to indicate not to probe for this interface 636 */ 637 if (__dev_get_by_name(&init_net, name)) 638 return 1; 639 640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 641 if (!strcmp(name, s[i].name)) 642 return s[i].map.base_addr; 643 return 0; 644 } 645 646 /* 647 * Saves at boot time configured settings for any netdevice. 648 */ 649 int __init netdev_boot_setup(char *str) 650 { 651 int ints[5]; 652 struct ifmap map; 653 654 str = get_options(str, ARRAY_SIZE(ints), ints); 655 if (!str || !*str) 656 return 0; 657 658 /* Save settings */ 659 memset(&map, 0, sizeof(map)); 660 if (ints[0] > 0) 661 map.irq = ints[1]; 662 if (ints[0] > 1) 663 map.base_addr = ints[2]; 664 if (ints[0] > 2) 665 map.mem_start = ints[3]; 666 if (ints[0] > 3) 667 map.mem_end = ints[4]; 668 669 /* Add new entry to the list */ 670 return netdev_boot_setup_add(str, &map); 671 } 672 673 __setup("netdev=", netdev_boot_setup); 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return dev->ifindex; 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 /** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore 730 * or @dev_base_lock. If the name is found a pointer to the device 731 * is returned. If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736 struct net_device *__dev_get_by_name(struct net *net, const char *name) 737 { 738 struct net_device *dev; 739 struct hlist_head *head = dev_name_hash(net, name); 740 741 hlist_for_each_entry(dev, head, name_hlist) 742 if (!strncmp(dev->name, name, IFNAMSIZ)) 743 return dev; 744 745 return NULL; 746 } 747 EXPORT_SYMBOL(__dev_get_by_name); 748 749 /** 750 * dev_get_by_name_rcu - find a device by its name 751 * @net: the applicable net namespace 752 * @name: name to find 753 * 754 * Find an interface by name. 755 * If the name is found a pointer to the device is returned. 756 * If the name is not found then %NULL is returned. 757 * The reference counters are not incremented so the caller must be 758 * careful with locks. The caller must hold RCU lock. 759 */ 760 761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 762 { 763 struct net_device *dev; 764 struct hlist_head *head = dev_name_hash(net, name); 765 766 hlist_for_each_entry_rcu(dev, head, name_hlist) 767 if (!strncmp(dev->name, name, IFNAMSIZ)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_get_by_name_rcu); 773 774 /** 775 * dev_get_by_name - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * 779 * Find an interface by name. This can be called from any 780 * context and does its own locking. The returned handle has 781 * the usage count incremented and the caller must use dev_put() to 782 * release it when it is no longer needed. %NULL is returned if no 783 * matching device is found. 784 */ 785 786 struct net_device *dev_get_by_name(struct net *net, const char *name) 787 { 788 struct net_device *dev; 789 790 rcu_read_lock(); 791 dev = dev_get_by_name_rcu(net, name); 792 if (dev) 793 dev_hold(dev); 794 rcu_read_unlock(); 795 return dev; 796 } 797 EXPORT_SYMBOL(dev_get_by_name); 798 799 /** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812 { 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(__dev_get_by_index); 823 824 /** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836 { 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 849 /** 850 * dev_get_by_index - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns NULL if the device 855 * is not found or a pointer to the device. The device returned has 856 * had a reference added and the pointer is safe until the user calls 857 * dev_put to indicate they have finished with it. 858 */ 859 860 struct net_device *dev_get_by_index(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 864 rcu_read_lock(); 865 dev = dev_get_by_index_rcu(net, ifindex); 866 if (dev) 867 dev_hold(dev); 868 rcu_read_unlock(); 869 return dev; 870 } 871 EXPORT_SYMBOL(dev_get_by_index); 872 873 /** 874 * dev_get_by_napi_id - find a device by napi_id 875 * @napi_id: ID of the NAPI struct 876 * 877 * Search for an interface by NAPI ID. Returns %NULL if the device 878 * is not found or a pointer to the device. The device has not had 879 * its reference counter increased so the caller must be careful 880 * about locking. The caller must hold RCU lock. 881 */ 882 883 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 884 { 885 struct napi_struct *napi; 886 887 WARN_ON_ONCE(!rcu_read_lock_held()); 888 889 if (napi_id < MIN_NAPI_ID) 890 return NULL; 891 892 napi = napi_by_id(napi_id); 893 894 return napi ? napi->dev : NULL; 895 } 896 EXPORT_SYMBOL(dev_get_by_napi_id); 897 898 /** 899 * netdev_get_name - get a netdevice name, knowing its ifindex. 900 * @net: network namespace 901 * @name: a pointer to the buffer where the name will be stored. 902 * @ifindex: the ifindex of the interface to get the name from. 903 * 904 * The use of raw_seqcount_begin() and cond_resched() before 905 * retrying is required as we want to give the writers a chance 906 * to complete when CONFIG_PREEMPT is not set. 907 */ 908 int netdev_get_name(struct net *net, char *name, int ifindex) 909 { 910 struct net_device *dev; 911 unsigned int seq; 912 913 retry: 914 seq = raw_seqcount_begin(&devnet_rename_seq); 915 rcu_read_lock(); 916 dev = dev_get_by_index_rcu(net, ifindex); 917 if (!dev) { 918 rcu_read_unlock(); 919 return -ENODEV; 920 } 921 922 strcpy(name, dev->name); 923 rcu_read_unlock(); 924 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 925 cond_resched(); 926 goto retry; 927 } 928 929 return 0; 930 } 931 932 /** 933 * dev_getbyhwaddr_rcu - find a device by its hardware address 934 * @net: the applicable net namespace 935 * @type: media type of device 936 * @ha: hardware address 937 * 938 * Search for an interface by MAC address. Returns NULL if the device 939 * is not found or a pointer to the device. 940 * The caller must hold RCU or RTNL. 941 * The returned device has not had its ref count increased 942 * and the caller must therefore be careful about locking 943 * 944 */ 945 946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 947 const char *ha) 948 { 949 struct net_device *dev; 950 951 for_each_netdev_rcu(net, dev) 952 if (dev->type == type && 953 !memcmp(dev->dev_addr, ha, dev->addr_len)) 954 return dev; 955 956 return NULL; 957 } 958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 959 960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 961 { 962 struct net_device *dev; 963 964 ASSERT_RTNL(); 965 for_each_netdev(net, dev) 966 if (dev->type == type) 967 return dev; 968 969 return NULL; 970 } 971 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 972 973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 974 { 975 struct net_device *dev, *ret = NULL; 976 977 rcu_read_lock(); 978 for_each_netdev_rcu(net, dev) 979 if (dev->type == type) { 980 dev_hold(dev); 981 ret = dev; 982 break; 983 } 984 rcu_read_unlock(); 985 return ret; 986 } 987 EXPORT_SYMBOL(dev_getfirstbyhwtype); 988 989 /** 990 * __dev_get_by_flags - find any device with given flags 991 * @net: the applicable net namespace 992 * @if_flags: IFF_* values 993 * @mask: bitmask of bits in if_flags to check 994 * 995 * Search for any interface with the given flags. Returns NULL if a device 996 * is not found or a pointer to the device. Must be called inside 997 * rtnl_lock(), and result refcount is unchanged. 998 */ 999 1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1001 unsigned short mask) 1002 { 1003 struct net_device *dev, *ret; 1004 1005 ASSERT_RTNL(); 1006 1007 ret = NULL; 1008 for_each_netdev(net, dev) { 1009 if (((dev->flags ^ if_flags) & mask) == 0) { 1010 ret = dev; 1011 break; 1012 } 1013 } 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(__dev_get_by_flags); 1017 1018 /** 1019 * dev_valid_name - check if name is okay for network device 1020 * @name: name string 1021 * 1022 * Network device names need to be valid file names to 1023 * to allow sysfs to work. We also disallow any kind of 1024 * whitespace. 1025 */ 1026 bool dev_valid_name(const char *name) 1027 { 1028 if (*name == '\0') 1029 return false; 1030 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1031 return false; 1032 if (!strcmp(name, ".") || !strcmp(name, "..")) 1033 return false; 1034 1035 while (*name) { 1036 if (*name == '/' || *name == ':' || isspace(*name)) 1037 return false; 1038 name++; 1039 } 1040 return true; 1041 } 1042 EXPORT_SYMBOL(dev_valid_name); 1043 1044 /** 1045 * __dev_alloc_name - allocate a name for a device 1046 * @net: network namespace to allocate the device name in 1047 * @name: name format string 1048 * @buf: scratch buffer and result name string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1060 { 1061 int i = 0; 1062 const char *p; 1063 const int max_netdevices = 8*PAGE_SIZE; 1064 unsigned long *inuse; 1065 struct net_device *d; 1066 1067 if (!dev_valid_name(name)) 1068 return -EINVAL; 1069 1070 p = strchr(name, '%'); 1071 if (p) { 1072 /* 1073 * Verify the string as this thing may have come from 1074 * the user. There must be either one "%d" and no other "%" 1075 * characters. 1076 */ 1077 if (p[1] != 'd' || strchr(p + 2, '%')) 1078 return -EINVAL; 1079 1080 /* Use one page as a bit array of possible slots */ 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1082 if (!inuse) 1083 return -ENOMEM; 1084 1085 for_each_netdev(net, d) { 1086 if (!sscanf(d->name, name, &i)) 1087 continue; 1088 if (i < 0 || i >= max_netdevices) 1089 continue; 1090 1091 /* avoid cases where sscanf is not exact inverse of printf */ 1092 snprintf(buf, IFNAMSIZ, name, i); 1093 if (!strncmp(buf, d->name, IFNAMSIZ)) 1094 set_bit(i, inuse); 1095 } 1096 1097 i = find_first_zero_bit(inuse, max_netdevices); 1098 free_page((unsigned long) inuse); 1099 } 1100 1101 snprintf(buf, IFNAMSIZ, name, i); 1102 if (!__dev_get_by_name(net, buf)) 1103 return i; 1104 1105 /* It is possible to run out of possible slots 1106 * when the name is long and there isn't enough space left 1107 * for the digits, or if all bits are used. 1108 */ 1109 return -ENFILE; 1110 } 1111 1112 static int dev_alloc_name_ns(struct net *net, 1113 struct net_device *dev, 1114 const char *name) 1115 { 1116 char buf[IFNAMSIZ]; 1117 int ret; 1118 1119 BUG_ON(!net); 1120 ret = __dev_alloc_name(net, name, buf); 1121 if (ret >= 0) 1122 strlcpy(dev->name, buf, IFNAMSIZ); 1123 return ret; 1124 } 1125 1126 /** 1127 * dev_alloc_name - allocate a name for a device 1128 * @dev: device 1129 * @name: name format string 1130 * 1131 * Passed a format string - eg "lt%d" it will try and find a suitable 1132 * id. It scans list of devices to build up a free map, then chooses 1133 * the first empty slot. The caller must hold the dev_base or rtnl lock 1134 * while allocating the name and adding the device in order to avoid 1135 * duplicates. 1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1137 * Returns the number of the unit assigned or a negative errno code. 1138 */ 1139 1140 int dev_alloc_name(struct net_device *dev, const char *name) 1141 { 1142 return dev_alloc_name_ns(dev_net(dev), dev, name); 1143 } 1144 EXPORT_SYMBOL(dev_alloc_name); 1145 1146 int dev_get_valid_name(struct net *net, struct net_device *dev, 1147 const char *name) 1148 { 1149 BUG_ON(!net); 1150 1151 if (!dev_valid_name(name)) 1152 return -EINVAL; 1153 1154 if (strchr(name, '%')) 1155 return dev_alloc_name_ns(net, dev, name); 1156 else if (__dev_get_by_name(net, name)) 1157 return -EEXIST; 1158 else if (dev->name != name) 1159 strlcpy(dev->name, name, IFNAMSIZ); 1160 1161 return 0; 1162 } 1163 EXPORT_SYMBOL(dev_get_valid_name); 1164 1165 /** 1166 * dev_change_name - change name of a device 1167 * @dev: device 1168 * @newname: name (or format string) must be at least IFNAMSIZ 1169 * 1170 * Change name of a device, can pass format strings "eth%d". 1171 * for wildcarding. 1172 */ 1173 int dev_change_name(struct net_device *dev, const char *newname) 1174 { 1175 unsigned char old_assign_type; 1176 char oldname[IFNAMSIZ]; 1177 int err = 0; 1178 int ret; 1179 struct net *net; 1180 1181 ASSERT_RTNL(); 1182 BUG_ON(!dev_net(dev)); 1183 1184 net = dev_net(dev); 1185 if (dev->flags & IFF_UP) 1186 return -EBUSY; 1187 1188 write_seqcount_begin(&devnet_rename_seq); 1189 1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1191 write_seqcount_end(&devnet_rename_seq); 1192 return 0; 1193 } 1194 1195 memcpy(oldname, dev->name, IFNAMSIZ); 1196 1197 err = dev_get_valid_name(net, dev, newname); 1198 if (err < 0) { 1199 write_seqcount_end(&devnet_rename_seq); 1200 return err; 1201 } 1202 1203 if (oldname[0] && !strchr(oldname, '%')) 1204 netdev_info(dev, "renamed from %s\n", oldname); 1205 1206 old_assign_type = dev->name_assign_type; 1207 dev->name_assign_type = NET_NAME_RENAMED; 1208 1209 rollback: 1210 ret = device_rename(&dev->dev, dev->name); 1211 if (ret) { 1212 memcpy(dev->name, oldname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 write_seqcount_end(&devnet_rename_seq); 1215 return ret; 1216 } 1217 1218 write_seqcount_end(&devnet_rename_seq); 1219 1220 netdev_adjacent_rename_links(dev, oldname); 1221 1222 write_lock_bh(&dev_base_lock); 1223 hlist_del_rcu(&dev->name_hlist); 1224 write_unlock_bh(&dev_base_lock); 1225 1226 synchronize_rcu(); 1227 1228 write_lock_bh(&dev_base_lock); 1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1230 write_unlock_bh(&dev_base_lock); 1231 1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1233 ret = notifier_to_errno(ret); 1234 1235 if (ret) { 1236 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1237 if (err >= 0) { 1238 err = ret; 1239 write_seqcount_begin(&devnet_rename_seq); 1240 memcpy(dev->name, oldname, IFNAMSIZ); 1241 memcpy(oldname, newname, IFNAMSIZ); 1242 dev->name_assign_type = old_assign_type; 1243 old_assign_type = NET_NAME_RENAMED; 1244 goto rollback; 1245 } else { 1246 pr_err("%s: name change rollback failed: %d\n", 1247 dev->name, ret); 1248 } 1249 } 1250 1251 return err; 1252 } 1253 1254 /** 1255 * dev_set_alias - change ifalias of a device 1256 * @dev: device 1257 * @alias: name up to IFALIASZ 1258 * @len: limit of bytes to copy from info 1259 * 1260 * Set ifalias for a device, 1261 */ 1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1263 { 1264 struct dev_ifalias *new_alias = NULL; 1265 1266 if (len >= IFALIASZ) 1267 return -EINVAL; 1268 1269 if (len) { 1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1271 if (!new_alias) 1272 return -ENOMEM; 1273 1274 memcpy(new_alias->ifalias, alias, len); 1275 new_alias->ifalias[len] = 0; 1276 } 1277 1278 mutex_lock(&ifalias_mutex); 1279 rcu_swap_protected(dev->ifalias, new_alias, 1280 mutex_is_locked(&ifalias_mutex)); 1281 mutex_unlock(&ifalias_mutex); 1282 1283 if (new_alias) 1284 kfree_rcu(new_alias, rcuhead); 1285 1286 return len; 1287 } 1288 EXPORT_SYMBOL(dev_set_alias); 1289 1290 /** 1291 * dev_get_alias - get ifalias of a device 1292 * @dev: device 1293 * @name: buffer to store name of ifalias 1294 * @len: size of buffer 1295 * 1296 * get ifalias for a device. Caller must make sure dev cannot go 1297 * away, e.g. rcu read lock or own a reference count to device. 1298 */ 1299 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1300 { 1301 const struct dev_ifalias *alias; 1302 int ret = 0; 1303 1304 rcu_read_lock(); 1305 alias = rcu_dereference(dev->ifalias); 1306 if (alias) 1307 ret = snprintf(name, len, "%s", alias->ifalias); 1308 rcu_read_unlock(); 1309 1310 return ret; 1311 } 1312 1313 /** 1314 * netdev_features_change - device changes features 1315 * @dev: device to cause notification 1316 * 1317 * Called to indicate a device has changed features. 1318 */ 1319 void netdev_features_change(struct net_device *dev) 1320 { 1321 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1322 } 1323 EXPORT_SYMBOL(netdev_features_change); 1324 1325 /** 1326 * netdev_state_change - device changes state 1327 * @dev: device to cause notification 1328 * 1329 * Called to indicate a device has changed state. This function calls 1330 * the notifier chains for netdev_chain and sends a NEWLINK message 1331 * to the routing socket. 1332 */ 1333 void netdev_state_change(struct net_device *dev) 1334 { 1335 if (dev->flags & IFF_UP) { 1336 struct netdev_notifier_change_info change_info = { 1337 .info.dev = dev, 1338 }; 1339 1340 call_netdevice_notifiers_info(NETDEV_CHANGE, 1341 &change_info.info); 1342 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1343 } 1344 } 1345 EXPORT_SYMBOL(netdev_state_change); 1346 1347 /** 1348 * netdev_notify_peers - notify network peers about existence of @dev 1349 * @dev: network device 1350 * 1351 * Generate traffic such that interested network peers are aware of 1352 * @dev, such as by generating a gratuitous ARP. This may be used when 1353 * a device wants to inform the rest of the network about some sort of 1354 * reconfiguration such as a failover event or virtual machine 1355 * migration. 1356 */ 1357 void netdev_notify_peers(struct net_device *dev) 1358 { 1359 rtnl_lock(); 1360 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1361 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1362 rtnl_unlock(); 1363 } 1364 EXPORT_SYMBOL(netdev_notify_peers); 1365 1366 static int __dev_open(struct net_device *dev) 1367 { 1368 const struct net_device_ops *ops = dev->netdev_ops; 1369 int ret; 1370 1371 ASSERT_RTNL(); 1372 1373 if (!netif_device_present(dev)) 1374 return -ENODEV; 1375 1376 /* Block netpoll from trying to do any rx path servicing. 1377 * If we don't do this there is a chance ndo_poll_controller 1378 * or ndo_poll may be running while we open the device 1379 */ 1380 netpoll_poll_disable(dev); 1381 1382 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1383 ret = notifier_to_errno(ret); 1384 if (ret) 1385 return ret; 1386 1387 set_bit(__LINK_STATE_START, &dev->state); 1388 1389 if (ops->ndo_validate_addr) 1390 ret = ops->ndo_validate_addr(dev); 1391 1392 if (!ret && ops->ndo_open) 1393 ret = ops->ndo_open(dev); 1394 1395 netpoll_poll_enable(dev); 1396 1397 if (ret) 1398 clear_bit(__LINK_STATE_START, &dev->state); 1399 else { 1400 dev->flags |= IFF_UP; 1401 dev_set_rx_mode(dev); 1402 dev_activate(dev); 1403 add_device_randomness(dev->dev_addr, dev->addr_len); 1404 } 1405 1406 return ret; 1407 } 1408 1409 /** 1410 * dev_open - prepare an interface for use. 1411 * @dev: device to open 1412 * 1413 * Takes a device from down to up state. The device's private open 1414 * function is invoked and then the multicast lists are loaded. Finally 1415 * the device is moved into the up state and a %NETDEV_UP message is 1416 * sent to the netdev notifier chain. 1417 * 1418 * Calling this function on an active interface is a nop. On a failure 1419 * a negative errno code is returned. 1420 */ 1421 int dev_open(struct net_device *dev) 1422 { 1423 int ret; 1424 1425 if (dev->flags & IFF_UP) 1426 return 0; 1427 1428 ret = __dev_open(dev); 1429 if (ret < 0) 1430 return ret; 1431 1432 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1433 call_netdevice_notifiers(NETDEV_UP, dev); 1434 1435 return ret; 1436 } 1437 EXPORT_SYMBOL(dev_open); 1438 1439 static void __dev_close_many(struct list_head *head) 1440 { 1441 struct net_device *dev; 1442 1443 ASSERT_RTNL(); 1444 might_sleep(); 1445 1446 list_for_each_entry(dev, head, close_list) { 1447 /* Temporarily disable netpoll until the interface is down */ 1448 netpoll_poll_disable(dev); 1449 1450 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1451 1452 clear_bit(__LINK_STATE_START, &dev->state); 1453 1454 /* Synchronize to scheduled poll. We cannot touch poll list, it 1455 * can be even on different cpu. So just clear netif_running(). 1456 * 1457 * dev->stop() will invoke napi_disable() on all of it's 1458 * napi_struct instances on this device. 1459 */ 1460 smp_mb__after_atomic(); /* Commit netif_running(). */ 1461 } 1462 1463 dev_deactivate_many(head); 1464 1465 list_for_each_entry(dev, head, close_list) { 1466 const struct net_device_ops *ops = dev->netdev_ops; 1467 1468 /* 1469 * Call the device specific close. This cannot fail. 1470 * Only if device is UP 1471 * 1472 * We allow it to be called even after a DETACH hot-plug 1473 * event. 1474 */ 1475 if (ops->ndo_stop) 1476 ops->ndo_stop(dev); 1477 1478 dev->flags &= ~IFF_UP; 1479 netpoll_poll_enable(dev); 1480 } 1481 } 1482 1483 static void __dev_close(struct net_device *dev) 1484 { 1485 LIST_HEAD(single); 1486 1487 list_add(&dev->close_list, &single); 1488 __dev_close_many(&single); 1489 list_del(&single); 1490 } 1491 1492 void dev_close_many(struct list_head *head, bool unlink) 1493 { 1494 struct net_device *dev, *tmp; 1495 1496 /* Remove the devices that don't need to be closed */ 1497 list_for_each_entry_safe(dev, tmp, head, close_list) 1498 if (!(dev->flags & IFF_UP)) 1499 list_del_init(&dev->close_list); 1500 1501 __dev_close_many(head); 1502 1503 list_for_each_entry_safe(dev, tmp, head, close_list) { 1504 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1505 call_netdevice_notifiers(NETDEV_DOWN, dev); 1506 if (unlink) 1507 list_del_init(&dev->close_list); 1508 } 1509 } 1510 EXPORT_SYMBOL(dev_close_many); 1511 1512 /** 1513 * dev_close - shutdown an interface. 1514 * @dev: device to shutdown 1515 * 1516 * This function moves an active device into down state. A 1517 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1518 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1519 * chain. 1520 */ 1521 void dev_close(struct net_device *dev) 1522 { 1523 if (dev->flags & IFF_UP) { 1524 LIST_HEAD(single); 1525 1526 list_add(&dev->close_list, &single); 1527 dev_close_many(&single, true); 1528 list_del(&single); 1529 } 1530 } 1531 EXPORT_SYMBOL(dev_close); 1532 1533 1534 /** 1535 * dev_disable_lro - disable Large Receive Offload on a device 1536 * @dev: device 1537 * 1538 * Disable Large Receive Offload (LRO) on a net device. Must be 1539 * called under RTNL. This is needed if received packets may be 1540 * forwarded to another interface. 1541 */ 1542 void dev_disable_lro(struct net_device *dev) 1543 { 1544 struct net_device *lower_dev; 1545 struct list_head *iter; 1546 1547 dev->wanted_features &= ~NETIF_F_LRO; 1548 netdev_update_features(dev); 1549 1550 if (unlikely(dev->features & NETIF_F_LRO)) 1551 netdev_WARN(dev, "failed to disable LRO!\n"); 1552 1553 netdev_for_each_lower_dev(dev, lower_dev, iter) 1554 dev_disable_lro(lower_dev); 1555 } 1556 EXPORT_SYMBOL(dev_disable_lro); 1557 1558 /** 1559 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1560 * @dev: device 1561 * 1562 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1563 * called under RTNL. This is needed if Generic XDP is installed on 1564 * the device. 1565 */ 1566 static void dev_disable_gro_hw(struct net_device *dev) 1567 { 1568 dev->wanted_features &= ~NETIF_F_GRO_HW; 1569 netdev_update_features(dev); 1570 1571 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1572 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1573 } 1574 1575 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1576 { 1577 #define N(val) \ 1578 case NETDEV_##val: \ 1579 return "NETDEV_" __stringify(val); 1580 switch (cmd) { 1581 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1582 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1583 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1584 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1585 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1586 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1587 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1588 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1589 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1590 }; 1591 #undef N 1592 return "UNKNOWN_NETDEV_EVENT"; 1593 } 1594 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1595 1596 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1597 struct net_device *dev) 1598 { 1599 struct netdev_notifier_info info = { 1600 .dev = dev, 1601 }; 1602 1603 return nb->notifier_call(nb, val, &info); 1604 } 1605 1606 static int dev_boot_phase = 1; 1607 1608 /** 1609 * register_netdevice_notifier - register a network notifier block 1610 * @nb: notifier 1611 * 1612 * Register a notifier to be called when network device events occur. 1613 * The notifier passed is linked into the kernel structures and must 1614 * not be reused until it has been unregistered. A negative errno code 1615 * is returned on a failure. 1616 * 1617 * When registered all registration and up events are replayed 1618 * to the new notifier to allow device to have a race free 1619 * view of the network device list. 1620 */ 1621 1622 int register_netdevice_notifier(struct notifier_block *nb) 1623 { 1624 struct net_device *dev; 1625 struct net_device *last; 1626 struct net *net; 1627 int err; 1628 1629 /* Close race with setup_net() and cleanup_net() */ 1630 down_write(&pernet_ops_rwsem); 1631 rtnl_lock(); 1632 err = raw_notifier_chain_register(&netdev_chain, nb); 1633 if (err) 1634 goto unlock; 1635 if (dev_boot_phase) 1636 goto unlock; 1637 for_each_net(net) { 1638 for_each_netdev(net, dev) { 1639 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1640 err = notifier_to_errno(err); 1641 if (err) 1642 goto rollback; 1643 1644 if (!(dev->flags & IFF_UP)) 1645 continue; 1646 1647 call_netdevice_notifier(nb, NETDEV_UP, dev); 1648 } 1649 } 1650 1651 unlock: 1652 rtnl_unlock(); 1653 up_write(&pernet_ops_rwsem); 1654 return err; 1655 1656 rollback: 1657 last = dev; 1658 for_each_net(net) { 1659 for_each_netdev(net, dev) { 1660 if (dev == last) 1661 goto outroll; 1662 1663 if (dev->flags & IFF_UP) { 1664 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1665 dev); 1666 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1667 } 1668 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1669 } 1670 } 1671 1672 outroll: 1673 raw_notifier_chain_unregister(&netdev_chain, nb); 1674 goto unlock; 1675 } 1676 EXPORT_SYMBOL(register_netdevice_notifier); 1677 1678 /** 1679 * unregister_netdevice_notifier - unregister a network notifier block 1680 * @nb: notifier 1681 * 1682 * Unregister a notifier previously registered by 1683 * register_netdevice_notifier(). The notifier is unlinked into the 1684 * kernel structures and may then be reused. A negative errno code 1685 * is returned on a failure. 1686 * 1687 * After unregistering unregister and down device events are synthesized 1688 * for all devices on the device list to the removed notifier to remove 1689 * the need for special case cleanup code. 1690 */ 1691 1692 int unregister_netdevice_notifier(struct notifier_block *nb) 1693 { 1694 struct net_device *dev; 1695 struct net *net; 1696 int err; 1697 1698 /* Close race with setup_net() and cleanup_net() */ 1699 down_write(&pernet_ops_rwsem); 1700 rtnl_lock(); 1701 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1702 if (err) 1703 goto unlock; 1704 1705 for_each_net(net) { 1706 for_each_netdev(net, dev) { 1707 if (dev->flags & IFF_UP) { 1708 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1709 dev); 1710 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1711 } 1712 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1713 } 1714 } 1715 unlock: 1716 rtnl_unlock(); 1717 up_write(&pernet_ops_rwsem); 1718 return err; 1719 } 1720 EXPORT_SYMBOL(unregister_netdevice_notifier); 1721 1722 /** 1723 * call_netdevice_notifiers_info - call all network notifier blocks 1724 * @val: value passed unmodified to notifier function 1725 * @info: notifier information data 1726 * 1727 * Call all network notifier blocks. Parameters and return value 1728 * are as for raw_notifier_call_chain(). 1729 */ 1730 1731 static int call_netdevice_notifiers_info(unsigned long val, 1732 struct netdev_notifier_info *info) 1733 { 1734 ASSERT_RTNL(); 1735 return raw_notifier_call_chain(&netdev_chain, val, info); 1736 } 1737 1738 /** 1739 * call_netdevice_notifiers - call all network notifier blocks 1740 * @val: value passed unmodified to notifier function 1741 * @dev: net_device pointer passed unmodified to notifier function 1742 * 1743 * Call all network notifier blocks. Parameters and return value 1744 * are as for raw_notifier_call_chain(). 1745 */ 1746 1747 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1748 { 1749 struct netdev_notifier_info info = { 1750 .dev = dev, 1751 }; 1752 1753 return call_netdevice_notifiers_info(val, &info); 1754 } 1755 EXPORT_SYMBOL(call_netdevice_notifiers); 1756 1757 #ifdef CONFIG_NET_INGRESS 1758 static struct static_key ingress_needed __read_mostly; 1759 1760 void net_inc_ingress_queue(void) 1761 { 1762 static_key_slow_inc(&ingress_needed); 1763 } 1764 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1765 1766 void net_dec_ingress_queue(void) 1767 { 1768 static_key_slow_dec(&ingress_needed); 1769 } 1770 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1771 #endif 1772 1773 #ifdef CONFIG_NET_EGRESS 1774 static struct static_key egress_needed __read_mostly; 1775 1776 void net_inc_egress_queue(void) 1777 { 1778 static_key_slow_inc(&egress_needed); 1779 } 1780 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1781 1782 void net_dec_egress_queue(void) 1783 { 1784 static_key_slow_dec(&egress_needed); 1785 } 1786 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1787 #endif 1788 1789 static struct static_key netstamp_needed __read_mostly; 1790 #ifdef HAVE_JUMP_LABEL 1791 static atomic_t netstamp_needed_deferred; 1792 static atomic_t netstamp_wanted; 1793 static void netstamp_clear(struct work_struct *work) 1794 { 1795 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1796 int wanted; 1797 1798 wanted = atomic_add_return(deferred, &netstamp_wanted); 1799 if (wanted > 0) 1800 static_key_enable(&netstamp_needed); 1801 else 1802 static_key_disable(&netstamp_needed); 1803 } 1804 static DECLARE_WORK(netstamp_work, netstamp_clear); 1805 #endif 1806 1807 void net_enable_timestamp(void) 1808 { 1809 #ifdef HAVE_JUMP_LABEL 1810 int wanted; 1811 1812 while (1) { 1813 wanted = atomic_read(&netstamp_wanted); 1814 if (wanted <= 0) 1815 break; 1816 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1817 return; 1818 } 1819 atomic_inc(&netstamp_needed_deferred); 1820 schedule_work(&netstamp_work); 1821 #else 1822 static_key_slow_inc(&netstamp_needed); 1823 #endif 1824 } 1825 EXPORT_SYMBOL(net_enable_timestamp); 1826 1827 void net_disable_timestamp(void) 1828 { 1829 #ifdef HAVE_JUMP_LABEL 1830 int wanted; 1831 1832 while (1) { 1833 wanted = atomic_read(&netstamp_wanted); 1834 if (wanted <= 1) 1835 break; 1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1837 return; 1838 } 1839 atomic_dec(&netstamp_needed_deferred); 1840 schedule_work(&netstamp_work); 1841 #else 1842 static_key_slow_dec(&netstamp_needed); 1843 #endif 1844 } 1845 EXPORT_SYMBOL(net_disable_timestamp); 1846 1847 static inline void net_timestamp_set(struct sk_buff *skb) 1848 { 1849 skb->tstamp = 0; 1850 if (static_key_false(&netstamp_needed)) 1851 __net_timestamp(skb); 1852 } 1853 1854 #define net_timestamp_check(COND, SKB) \ 1855 if (static_key_false(&netstamp_needed)) { \ 1856 if ((COND) && !(SKB)->tstamp) \ 1857 __net_timestamp(SKB); \ 1858 } \ 1859 1860 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1861 { 1862 unsigned int len; 1863 1864 if (!(dev->flags & IFF_UP)) 1865 return false; 1866 1867 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1868 if (skb->len <= len) 1869 return true; 1870 1871 /* if TSO is enabled, we don't care about the length as the packet 1872 * could be forwarded without being segmented before 1873 */ 1874 if (skb_is_gso(skb)) 1875 return true; 1876 1877 return false; 1878 } 1879 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1880 1881 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1882 { 1883 int ret = ____dev_forward_skb(dev, skb); 1884 1885 if (likely(!ret)) { 1886 skb->protocol = eth_type_trans(skb, dev); 1887 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1888 } 1889 1890 return ret; 1891 } 1892 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1893 1894 /** 1895 * dev_forward_skb - loopback an skb to another netif 1896 * 1897 * @dev: destination network device 1898 * @skb: buffer to forward 1899 * 1900 * return values: 1901 * NET_RX_SUCCESS (no congestion) 1902 * NET_RX_DROP (packet was dropped, but freed) 1903 * 1904 * dev_forward_skb can be used for injecting an skb from the 1905 * start_xmit function of one device into the receive queue 1906 * of another device. 1907 * 1908 * The receiving device may be in another namespace, so 1909 * we have to clear all information in the skb that could 1910 * impact namespace isolation. 1911 */ 1912 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1913 { 1914 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1915 } 1916 EXPORT_SYMBOL_GPL(dev_forward_skb); 1917 1918 static inline int deliver_skb(struct sk_buff *skb, 1919 struct packet_type *pt_prev, 1920 struct net_device *orig_dev) 1921 { 1922 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1923 return -ENOMEM; 1924 refcount_inc(&skb->users); 1925 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1926 } 1927 1928 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1929 struct packet_type **pt, 1930 struct net_device *orig_dev, 1931 __be16 type, 1932 struct list_head *ptype_list) 1933 { 1934 struct packet_type *ptype, *pt_prev = *pt; 1935 1936 list_for_each_entry_rcu(ptype, ptype_list, list) { 1937 if (ptype->type != type) 1938 continue; 1939 if (pt_prev) 1940 deliver_skb(skb, pt_prev, orig_dev); 1941 pt_prev = ptype; 1942 } 1943 *pt = pt_prev; 1944 } 1945 1946 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1947 { 1948 if (!ptype->af_packet_priv || !skb->sk) 1949 return false; 1950 1951 if (ptype->id_match) 1952 return ptype->id_match(ptype, skb->sk); 1953 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1954 return true; 1955 1956 return false; 1957 } 1958 1959 /* 1960 * Support routine. Sends outgoing frames to any network 1961 * taps currently in use. 1962 */ 1963 1964 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1965 { 1966 struct packet_type *ptype; 1967 struct sk_buff *skb2 = NULL; 1968 struct packet_type *pt_prev = NULL; 1969 struct list_head *ptype_list = &ptype_all; 1970 1971 rcu_read_lock(); 1972 again: 1973 list_for_each_entry_rcu(ptype, ptype_list, list) { 1974 /* Never send packets back to the socket 1975 * they originated from - MvS (miquels@drinkel.ow.org) 1976 */ 1977 if (skb_loop_sk(ptype, skb)) 1978 continue; 1979 1980 if (pt_prev) { 1981 deliver_skb(skb2, pt_prev, skb->dev); 1982 pt_prev = ptype; 1983 continue; 1984 } 1985 1986 /* need to clone skb, done only once */ 1987 skb2 = skb_clone(skb, GFP_ATOMIC); 1988 if (!skb2) 1989 goto out_unlock; 1990 1991 net_timestamp_set(skb2); 1992 1993 /* skb->nh should be correctly 1994 * set by sender, so that the second statement is 1995 * just protection against buggy protocols. 1996 */ 1997 skb_reset_mac_header(skb2); 1998 1999 if (skb_network_header(skb2) < skb2->data || 2000 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2001 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2002 ntohs(skb2->protocol), 2003 dev->name); 2004 skb_reset_network_header(skb2); 2005 } 2006 2007 skb2->transport_header = skb2->network_header; 2008 skb2->pkt_type = PACKET_OUTGOING; 2009 pt_prev = ptype; 2010 } 2011 2012 if (ptype_list == &ptype_all) { 2013 ptype_list = &dev->ptype_all; 2014 goto again; 2015 } 2016 out_unlock: 2017 if (pt_prev) { 2018 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2019 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2020 else 2021 kfree_skb(skb2); 2022 } 2023 rcu_read_unlock(); 2024 } 2025 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2026 2027 /** 2028 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2029 * @dev: Network device 2030 * @txq: number of queues available 2031 * 2032 * If real_num_tx_queues is changed the tc mappings may no longer be 2033 * valid. To resolve this verify the tc mapping remains valid and if 2034 * not NULL the mapping. With no priorities mapping to this 2035 * offset/count pair it will no longer be used. In the worst case TC0 2036 * is invalid nothing can be done so disable priority mappings. If is 2037 * expected that drivers will fix this mapping if they can before 2038 * calling netif_set_real_num_tx_queues. 2039 */ 2040 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2041 { 2042 int i; 2043 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2044 2045 /* If TC0 is invalidated disable TC mapping */ 2046 if (tc->offset + tc->count > txq) { 2047 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2048 dev->num_tc = 0; 2049 return; 2050 } 2051 2052 /* Invalidated prio to tc mappings set to TC0 */ 2053 for (i = 1; i < TC_BITMASK + 1; i++) { 2054 int q = netdev_get_prio_tc_map(dev, i); 2055 2056 tc = &dev->tc_to_txq[q]; 2057 if (tc->offset + tc->count > txq) { 2058 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2059 i, q); 2060 netdev_set_prio_tc_map(dev, i, 0); 2061 } 2062 } 2063 } 2064 2065 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2066 { 2067 if (dev->num_tc) { 2068 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2069 int i; 2070 2071 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2072 if ((txq - tc->offset) < tc->count) 2073 return i; 2074 } 2075 2076 return -1; 2077 } 2078 2079 return 0; 2080 } 2081 EXPORT_SYMBOL(netdev_txq_to_tc); 2082 2083 #ifdef CONFIG_XPS 2084 static DEFINE_MUTEX(xps_map_mutex); 2085 #define xmap_dereference(P) \ 2086 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2087 2088 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2089 int tci, u16 index) 2090 { 2091 struct xps_map *map = NULL; 2092 int pos; 2093 2094 if (dev_maps) 2095 map = xmap_dereference(dev_maps->cpu_map[tci]); 2096 if (!map) 2097 return false; 2098 2099 for (pos = map->len; pos--;) { 2100 if (map->queues[pos] != index) 2101 continue; 2102 2103 if (map->len > 1) { 2104 map->queues[pos] = map->queues[--map->len]; 2105 break; 2106 } 2107 2108 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2109 kfree_rcu(map, rcu); 2110 return false; 2111 } 2112 2113 return true; 2114 } 2115 2116 static bool remove_xps_queue_cpu(struct net_device *dev, 2117 struct xps_dev_maps *dev_maps, 2118 int cpu, u16 offset, u16 count) 2119 { 2120 int num_tc = dev->num_tc ? : 1; 2121 bool active = false; 2122 int tci; 2123 2124 for (tci = cpu * num_tc; num_tc--; tci++) { 2125 int i, j; 2126 2127 for (i = count, j = offset; i--; j++) { 2128 if (!remove_xps_queue(dev_maps, cpu, j)) 2129 break; 2130 } 2131 2132 active |= i < 0; 2133 } 2134 2135 return active; 2136 } 2137 2138 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2139 u16 count) 2140 { 2141 struct xps_dev_maps *dev_maps; 2142 int cpu, i; 2143 bool active = false; 2144 2145 mutex_lock(&xps_map_mutex); 2146 dev_maps = xmap_dereference(dev->xps_maps); 2147 2148 if (!dev_maps) 2149 goto out_no_maps; 2150 2151 for_each_possible_cpu(cpu) 2152 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2153 offset, count); 2154 2155 if (!active) { 2156 RCU_INIT_POINTER(dev->xps_maps, NULL); 2157 kfree_rcu(dev_maps, rcu); 2158 } 2159 2160 for (i = offset + (count - 1); count--; i--) 2161 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2162 NUMA_NO_NODE); 2163 2164 out_no_maps: 2165 mutex_unlock(&xps_map_mutex); 2166 } 2167 2168 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2169 { 2170 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2171 } 2172 2173 static struct xps_map *expand_xps_map(struct xps_map *map, 2174 int cpu, u16 index) 2175 { 2176 struct xps_map *new_map; 2177 int alloc_len = XPS_MIN_MAP_ALLOC; 2178 int i, pos; 2179 2180 for (pos = 0; map && pos < map->len; pos++) { 2181 if (map->queues[pos] != index) 2182 continue; 2183 return map; 2184 } 2185 2186 /* Need to add queue to this CPU's existing map */ 2187 if (map) { 2188 if (pos < map->alloc_len) 2189 return map; 2190 2191 alloc_len = map->alloc_len * 2; 2192 } 2193 2194 /* Need to allocate new map to store queue on this CPU's map */ 2195 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2196 cpu_to_node(cpu)); 2197 if (!new_map) 2198 return NULL; 2199 2200 for (i = 0; i < pos; i++) 2201 new_map->queues[i] = map->queues[i]; 2202 new_map->alloc_len = alloc_len; 2203 new_map->len = pos; 2204 2205 return new_map; 2206 } 2207 2208 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2209 u16 index) 2210 { 2211 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2212 int i, cpu, tci, numa_node_id = -2; 2213 int maps_sz, num_tc = 1, tc = 0; 2214 struct xps_map *map, *new_map; 2215 bool active = false; 2216 2217 if (dev->num_tc) { 2218 num_tc = dev->num_tc; 2219 tc = netdev_txq_to_tc(dev, index); 2220 if (tc < 0) 2221 return -EINVAL; 2222 } 2223 2224 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2225 if (maps_sz < L1_CACHE_BYTES) 2226 maps_sz = L1_CACHE_BYTES; 2227 2228 mutex_lock(&xps_map_mutex); 2229 2230 dev_maps = xmap_dereference(dev->xps_maps); 2231 2232 /* allocate memory for queue storage */ 2233 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2234 if (!new_dev_maps) 2235 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2236 if (!new_dev_maps) { 2237 mutex_unlock(&xps_map_mutex); 2238 return -ENOMEM; 2239 } 2240 2241 tci = cpu * num_tc + tc; 2242 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2243 NULL; 2244 2245 map = expand_xps_map(map, cpu, index); 2246 if (!map) 2247 goto error; 2248 2249 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2250 } 2251 2252 if (!new_dev_maps) 2253 goto out_no_new_maps; 2254 2255 for_each_possible_cpu(cpu) { 2256 /* copy maps belonging to foreign traffic classes */ 2257 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2258 /* fill in the new device map from the old device map */ 2259 map = xmap_dereference(dev_maps->cpu_map[tci]); 2260 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2261 } 2262 2263 /* We need to explicitly update tci as prevous loop 2264 * could break out early if dev_maps is NULL. 2265 */ 2266 tci = cpu * num_tc + tc; 2267 2268 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2269 /* add queue to CPU maps */ 2270 int pos = 0; 2271 2272 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2273 while ((pos < map->len) && (map->queues[pos] != index)) 2274 pos++; 2275 2276 if (pos == map->len) 2277 map->queues[map->len++] = index; 2278 #ifdef CONFIG_NUMA 2279 if (numa_node_id == -2) 2280 numa_node_id = cpu_to_node(cpu); 2281 else if (numa_node_id != cpu_to_node(cpu)) 2282 numa_node_id = -1; 2283 #endif 2284 } else if (dev_maps) { 2285 /* fill in the new device map from the old device map */ 2286 map = xmap_dereference(dev_maps->cpu_map[tci]); 2287 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2288 } 2289 2290 /* copy maps belonging to foreign traffic classes */ 2291 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2292 /* fill in the new device map from the old device map */ 2293 map = xmap_dereference(dev_maps->cpu_map[tci]); 2294 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2295 } 2296 } 2297 2298 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2299 2300 /* Cleanup old maps */ 2301 if (!dev_maps) 2302 goto out_no_old_maps; 2303 2304 for_each_possible_cpu(cpu) { 2305 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2306 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2307 map = xmap_dereference(dev_maps->cpu_map[tci]); 2308 if (map && map != new_map) 2309 kfree_rcu(map, rcu); 2310 } 2311 } 2312 2313 kfree_rcu(dev_maps, rcu); 2314 2315 out_no_old_maps: 2316 dev_maps = new_dev_maps; 2317 active = true; 2318 2319 out_no_new_maps: 2320 /* update Tx queue numa node */ 2321 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2322 (numa_node_id >= 0) ? numa_node_id : 2323 NUMA_NO_NODE); 2324 2325 if (!dev_maps) 2326 goto out_no_maps; 2327 2328 /* removes queue from unused CPUs */ 2329 for_each_possible_cpu(cpu) { 2330 for (i = tc, tci = cpu * num_tc; i--; tci++) 2331 active |= remove_xps_queue(dev_maps, tci, index); 2332 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2333 active |= remove_xps_queue(dev_maps, tci, index); 2334 for (i = num_tc - tc, tci++; --i; tci++) 2335 active |= remove_xps_queue(dev_maps, tci, index); 2336 } 2337 2338 /* free map if not active */ 2339 if (!active) { 2340 RCU_INIT_POINTER(dev->xps_maps, NULL); 2341 kfree_rcu(dev_maps, rcu); 2342 } 2343 2344 out_no_maps: 2345 mutex_unlock(&xps_map_mutex); 2346 2347 return 0; 2348 error: 2349 /* remove any maps that we added */ 2350 for_each_possible_cpu(cpu) { 2351 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2352 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2353 map = dev_maps ? 2354 xmap_dereference(dev_maps->cpu_map[tci]) : 2355 NULL; 2356 if (new_map && new_map != map) 2357 kfree(new_map); 2358 } 2359 } 2360 2361 mutex_unlock(&xps_map_mutex); 2362 2363 kfree(new_dev_maps); 2364 return -ENOMEM; 2365 } 2366 EXPORT_SYMBOL(netif_set_xps_queue); 2367 2368 #endif 2369 void netdev_reset_tc(struct net_device *dev) 2370 { 2371 #ifdef CONFIG_XPS 2372 netif_reset_xps_queues_gt(dev, 0); 2373 #endif 2374 dev->num_tc = 0; 2375 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2376 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2377 } 2378 EXPORT_SYMBOL(netdev_reset_tc); 2379 2380 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2381 { 2382 if (tc >= dev->num_tc) 2383 return -EINVAL; 2384 2385 #ifdef CONFIG_XPS 2386 netif_reset_xps_queues(dev, offset, count); 2387 #endif 2388 dev->tc_to_txq[tc].count = count; 2389 dev->tc_to_txq[tc].offset = offset; 2390 return 0; 2391 } 2392 EXPORT_SYMBOL(netdev_set_tc_queue); 2393 2394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2395 { 2396 if (num_tc > TC_MAX_QUEUE) 2397 return -EINVAL; 2398 2399 #ifdef CONFIG_XPS 2400 netif_reset_xps_queues_gt(dev, 0); 2401 #endif 2402 dev->num_tc = num_tc; 2403 return 0; 2404 } 2405 EXPORT_SYMBOL(netdev_set_num_tc); 2406 2407 /* 2408 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2409 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2410 */ 2411 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2412 { 2413 bool disabling; 2414 int rc; 2415 2416 disabling = txq < dev->real_num_tx_queues; 2417 2418 if (txq < 1 || txq > dev->num_tx_queues) 2419 return -EINVAL; 2420 2421 if (dev->reg_state == NETREG_REGISTERED || 2422 dev->reg_state == NETREG_UNREGISTERING) { 2423 ASSERT_RTNL(); 2424 2425 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2426 txq); 2427 if (rc) 2428 return rc; 2429 2430 if (dev->num_tc) 2431 netif_setup_tc(dev, txq); 2432 2433 dev->real_num_tx_queues = txq; 2434 2435 if (disabling) { 2436 synchronize_net(); 2437 qdisc_reset_all_tx_gt(dev, txq); 2438 #ifdef CONFIG_XPS 2439 netif_reset_xps_queues_gt(dev, txq); 2440 #endif 2441 } 2442 } else { 2443 dev->real_num_tx_queues = txq; 2444 } 2445 2446 return 0; 2447 } 2448 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2449 2450 #ifdef CONFIG_SYSFS 2451 /** 2452 * netif_set_real_num_rx_queues - set actual number of RX queues used 2453 * @dev: Network device 2454 * @rxq: Actual number of RX queues 2455 * 2456 * This must be called either with the rtnl_lock held or before 2457 * registration of the net device. Returns 0 on success, or a 2458 * negative error code. If called before registration, it always 2459 * succeeds. 2460 */ 2461 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2462 { 2463 int rc; 2464 2465 if (rxq < 1 || rxq > dev->num_rx_queues) 2466 return -EINVAL; 2467 2468 if (dev->reg_state == NETREG_REGISTERED) { 2469 ASSERT_RTNL(); 2470 2471 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2472 rxq); 2473 if (rc) 2474 return rc; 2475 } 2476 2477 dev->real_num_rx_queues = rxq; 2478 return 0; 2479 } 2480 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2481 #endif 2482 2483 /** 2484 * netif_get_num_default_rss_queues - default number of RSS queues 2485 * 2486 * This routine should set an upper limit on the number of RSS queues 2487 * used by default by multiqueue devices. 2488 */ 2489 int netif_get_num_default_rss_queues(void) 2490 { 2491 return is_kdump_kernel() ? 2492 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2493 } 2494 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2495 2496 static void __netif_reschedule(struct Qdisc *q) 2497 { 2498 struct softnet_data *sd; 2499 unsigned long flags; 2500 2501 local_irq_save(flags); 2502 sd = this_cpu_ptr(&softnet_data); 2503 q->next_sched = NULL; 2504 *sd->output_queue_tailp = q; 2505 sd->output_queue_tailp = &q->next_sched; 2506 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2507 local_irq_restore(flags); 2508 } 2509 2510 void __netif_schedule(struct Qdisc *q) 2511 { 2512 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2513 __netif_reschedule(q); 2514 } 2515 EXPORT_SYMBOL(__netif_schedule); 2516 2517 struct dev_kfree_skb_cb { 2518 enum skb_free_reason reason; 2519 }; 2520 2521 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2522 { 2523 return (struct dev_kfree_skb_cb *)skb->cb; 2524 } 2525 2526 void netif_schedule_queue(struct netdev_queue *txq) 2527 { 2528 rcu_read_lock(); 2529 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2530 struct Qdisc *q = rcu_dereference(txq->qdisc); 2531 2532 __netif_schedule(q); 2533 } 2534 rcu_read_unlock(); 2535 } 2536 EXPORT_SYMBOL(netif_schedule_queue); 2537 2538 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2539 { 2540 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2541 struct Qdisc *q; 2542 2543 rcu_read_lock(); 2544 q = rcu_dereference(dev_queue->qdisc); 2545 __netif_schedule(q); 2546 rcu_read_unlock(); 2547 } 2548 } 2549 EXPORT_SYMBOL(netif_tx_wake_queue); 2550 2551 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2552 { 2553 unsigned long flags; 2554 2555 if (unlikely(!skb)) 2556 return; 2557 2558 if (likely(refcount_read(&skb->users) == 1)) { 2559 smp_rmb(); 2560 refcount_set(&skb->users, 0); 2561 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2562 return; 2563 } 2564 get_kfree_skb_cb(skb)->reason = reason; 2565 local_irq_save(flags); 2566 skb->next = __this_cpu_read(softnet_data.completion_queue); 2567 __this_cpu_write(softnet_data.completion_queue, skb); 2568 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2569 local_irq_restore(flags); 2570 } 2571 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2572 2573 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2574 { 2575 if (in_irq() || irqs_disabled()) 2576 __dev_kfree_skb_irq(skb, reason); 2577 else 2578 dev_kfree_skb(skb); 2579 } 2580 EXPORT_SYMBOL(__dev_kfree_skb_any); 2581 2582 2583 /** 2584 * netif_device_detach - mark device as removed 2585 * @dev: network device 2586 * 2587 * Mark device as removed from system and therefore no longer available. 2588 */ 2589 void netif_device_detach(struct net_device *dev) 2590 { 2591 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2592 netif_running(dev)) { 2593 netif_tx_stop_all_queues(dev); 2594 } 2595 } 2596 EXPORT_SYMBOL(netif_device_detach); 2597 2598 /** 2599 * netif_device_attach - mark device as attached 2600 * @dev: network device 2601 * 2602 * Mark device as attached from system and restart if needed. 2603 */ 2604 void netif_device_attach(struct net_device *dev) 2605 { 2606 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2607 netif_running(dev)) { 2608 netif_tx_wake_all_queues(dev); 2609 __netdev_watchdog_up(dev); 2610 } 2611 } 2612 EXPORT_SYMBOL(netif_device_attach); 2613 2614 /* 2615 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2616 * to be used as a distribution range. 2617 */ 2618 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2619 unsigned int num_tx_queues) 2620 { 2621 u32 hash; 2622 u16 qoffset = 0; 2623 u16 qcount = num_tx_queues; 2624 2625 if (skb_rx_queue_recorded(skb)) { 2626 hash = skb_get_rx_queue(skb); 2627 while (unlikely(hash >= num_tx_queues)) 2628 hash -= num_tx_queues; 2629 return hash; 2630 } 2631 2632 if (dev->num_tc) { 2633 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2634 2635 qoffset = dev->tc_to_txq[tc].offset; 2636 qcount = dev->tc_to_txq[tc].count; 2637 } 2638 2639 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2640 } 2641 EXPORT_SYMBOL(__skb_tx_hash); 2642 2643 static void skb_warn_bad_offload(const struct sk_buff *skb) 2644 { 2645 static const netdev_features_t null_features; 2646 struct net_device *dev = skb->dev; 2647 const char *name = ""; 2648 2649 if (!net_ratelimit()) 2650 return; 2651 2652 if (dev) { 2653 if (dev->dev.parent) 2654 name = dev_driver_string(dev->dev.parent); 2655 else 2656 name = netdev_name(dev); 2657 } 2658 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2659 "gso_type=%d ip_summed=%d\n", 2660 name, dev ? &dev->features : &null_features, 2661 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2662 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2663 skb_shinfo(skb)->gso_type, skb->ip_summed); 2664 } 2665 2666 /* 2667 * Invalidate hardware checksum when packet is to be mangled, and 2668 * complete checksum manually on outgoing path. 2669 */ 2670 int skb_checksum_help(struct sk_buff *skb) 2671 { 2672 __wsum csum; 2673 int ret = 0, offset; 2674 2675 if (skb->ip_summed == CHECKSUM_COMPLETE) 2676 goto out_set_summed; 2677 2678 if (unlikely(skb_shinfo(skb)->gso_size)) { 2679 skb_warn_bad_offload(skb); 2680 return -EINVAL; 2681 } 2682 2683 /* Before computing a checksum, we should make sure no frag could 2684 * be modified by an external entity : checksum could be wrong. 2685 */ 2686 if (skb_has_shared_frag(skb)) { 2687 ret = __skb_linearize(skb); 2688 if (ret) 2689 goto out; 2690 } 2691 2692 offset = skb_checksum_start_offset(skb); 2693 BUG_ON(offset >= skb_headlen(skb)); 2694 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2695 2696 offset += skb->csum_offset; 2697 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2698 2699 if (skb_cloned(skb) && 2700 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2701 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2702 if (ret) 2703 goto out; 2704 } 2705 2706 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2707 out_set_summed: 2708 skb->ip_summed = CHECKSUM_NONE; 2709 out: 2710 return ret; 2711 } 2712 EXPORT_SYMBOL(skb_checksum_help); 2713 2714 int skb_crc32c_csum_help(struct sk_buff *skb) 2715 { 2716 __le32 crc32c_csum; 2717 int ret = 0, offset, start; 2718 2719 if (skb->ip_summed != CHECKSUM_PARTIAL) 2720 goto out; 2721 2722 if (unlikely(skb_is_gso(skb))) 2723 goto out; 2724 2725 /* Before computing a checksum, we should make sure no frag could 2726 * be modified by an external entity : checksum could be wrong. 2727 */ 2728 if (unlikely(skb_has_shared_frag(skb))) { 2729 ret = __skb_linearize(skb); 2730 if (ret) 2731 goto out; 2732 } 2733 start = skb_checksum_start_offset(skb); 2734 offset = start + offsetof(struct sctphdr, checksum); 2735 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2736 ret = -EINVAL; 2737 goto out; 2738 } 2739 if (skb_cloned(skb) && 2740 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2741 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2742 if (ret) 2743 goto out; 2744 } 2745 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2746 skb->len - start, ~(__u32)0, 2747 crc32c_csum_stub)); 2748 *(__le32 *)(skb->data + offset) = crc32c_csum; 2749 skb->ip_summed = CHECKSUM_NONE; 2750 skb->csum_not_inet = 0; 2751 out: 2752 return ret; 2753 } 2754 2755 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2756 { 2757 __be16 type = skb->protocol; 2758 2759 /* Tunnel gso handlers can set protocol to ethernet. */ 2760 if (type == htons(ETH_P_TEB)) { 2761 struct ethhdr *eth; 2762 2763 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2764 return 0; 2765 2766 eth = (struct ethhdr *)skb->data; 2767 type = eth->h_proto; 2768 } 2769 2770 return __vlan_get_protocol(skb, type, depth); 2771 } 2772 2773 /** 2774 * skb_mac_gso_segment - mac layer segmentation handler. 2775 * @skb: buffer to segment 2776 * @features: features for the output path (see dev->features) 2777 */ 2778 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2779 netdev_features_t features) 2780 { 2781 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2782 struct packet_offload *ptype; 2783 int vlan_depth = skb->mac_len; 2784 __be16 type = skb_network_protocol(skb, &vlan_depth); 2785 2786 if (unlikely(!type)) 2787 return ERR_PTR(-EINVAL); 2788 2789 __skb_pull(skb, vlan_depth); 2790 2791 rcu_read_lock(); 2792 list_for_each_entry_rcu(ptype, &offload_base, list) { 2793 if (ptype->type == type && ptype->callbacks.gso_segment) { 2794 segs = ptype->callbacks.gso_segment(skb, features); 2795 break; 2796 } 2797 } 2798 rcu_read_unlock(); 2799 2800 __skb_push(skb, skb->data - skb_mac_header(skb)); 2801 2802 return segs; 2803 } 2804 EXPORT_SYMBOL(skb_mac_gso_segment); 2805 2806 2807 /* openvswitch calls this on rx path, so we need a different check. 2808 */ 2809 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2810 { 2811 if (tx_path) 2812 return skb->ip_summed != CHECKSUM_PARTIAL && 2813 skb->ip_summed != CHECKSUM_UNNECESSARY; 2814 2815 return skb->ip_summed == CHECKSUM_NONE; 2816 } 2817 2818 /** 2819 * __skb_gso_segment - Perform segmentation on skb. 2820 * @skb: buffer to segment 2821 * @features: features for the output path (see dev->features) 2822 * @tx_path: whether it is called in TX path 2823 * 2824 * This function segments the given skb and returns a list of segments. 2825 * 2826 * It may return NULL if the skb requires no segmentation. This is 2827 * only possible when GSO is used for verifying header integrity. 2828 * 2829 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2830 */ 2831 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2832 netdev_features_t features, bool tx_path) 2833 { 2834 struct sk_buff *segs; 2835 2836 if (unlikely(skb_needs_check(skb, tx_path))) { 2837 int err; 2838 2839 /* We're going to init ->check field in TCP or UDP header */ 2840 err = skb_cow_head(skb, 0); 2841 if (err < 0) 2842 return ERR_PTR(err); 2843 } 2844 2845 /* Only report GSO partial support if it will enable us to 2846 * support segmentation on this frame without needing additional 2847 * work. 2848 */ 2849 if (features & NETIF_F_GSO_PARTIAL) { 2850 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2851 struct net_device *dev = skb->dev; 2852 2853 partial_features |= dev->features & dev->gso_partial_features; 2854 if (!skb_gso_ok(skb, features | partial_features)) 2855 features &= ~NETIF_F_GSO_PARTIAL; 2856 } 2857 2858 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2859 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2860 2861 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2862 SKB_GSO_CB(skb)->encap_level = 0; 2863 2864 skb_reset_mac_header(skb); 2865 skb_reset_mac_len(skb); 2866 2867 segs = skb_mac_gso_segment(skb, features); 2868 2869 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 2870 skb_warn_bad_offload(skb); 2871 2872 return segs; 2873 } 2874 EXPORT_SYMBOL(__skb_gso_segment); 2875 2876 /* Take action when hardware reception checksum errors are detected. */ 2877 #ifdef CONFIG_BUG 2878 void netdev_rx_csum_fault(struct net_device *dev) 2879 { 2880 if (net_ratelimit()) { 2881 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2882 dump_stack(); 2883 } 2884 } 2885 EXPORT_SYMBOL(netdev_rx_csum_fault); 2886 #endif 2887 2888 /* Actually, we should eliminate this check as soon as we know, that: 2889 * 1. IOMMU is present and allows to map all the memory. 2890 * 2. No high memory really exists on this machine. 2891 */ 2892 2893 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2894 { 2895 #ifdef CONFIG_HIGHMEM 2896 int i; 2897 2898 if (!(dev->features & NETIF_F_HIGHDMA)) { 2899 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2900 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2901 2902 if (PageHighMem(skb_frag_page(frag))) 2903 return 1; 2904 } 2905 } 2906 2907 if (PCI_DMA_BUS_IS_PHYS) { 2908 struct device *pdev = dev->dev.parent; 2909 2910 if (!pdev) 2911 return 0; 2912 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2913 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2914 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2915 2916 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2917 return 1; 2918 } 2919 } 2920 #endif 2921 return 0; 2922 } 2923 2924 /* If MPLS offload request, verify we are testing hardware MPLS features 2925 * instead of standard features for the netdev. 2926 */ 2927 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2928 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2929 netdev_features_t features, 2930 __be16 type) 2931 { 2932 if (eth_p_mpls(type)) 2933 features &= skb->dev->mpls_features; 2934 2935 return features; 2936 } 2937 #else 2938 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2939 netdev_features_t features, 2940 __be16 type) 2941 { 2942 return features; 2943 } 2944 #endif 2945 2946 static netdev_features_t harmonize_features(struct sk_buff *skb, 2947 netdev_features_t features) 2948 { 2949 int tmp; 2950 __be16 type; 2951 2952 type = skb_network_protocol(skb, &tmp); 2953 features = net_mpls_features(skb, features, type); 2954 2955 if (skb->ip_summed != CHECKSUM_NONE && 2956 !can_checksum_protocol(features, type)) { 2957 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2958 } 2959 if (illegal_highdma(skb->dev, skb)) 2960 features &= ~NETIF_F_SG; 2961 2962 return features; 2963 } 2964 2965 netdev_features_t passthru_features_check(struct sk_buff *skb, 2966 struct net_device *dev, 2967 netdev_features_t features) 2968 { 2969 return features; 2970 } 2971 EXPORT_SYMBOL(passthru_features_check); 2972 2973 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2974 struct net_device *dev, 2975 netdev_features_t features) 2976 { 2977 return vlan_features_check(skb, features); 2978 } 2979 2980 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2981 struct net_device *dev, 2982 netdev_features_t features) 2983 { 2984 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2985 2986 if (gso_segs > dev->gso_max_segs) 2987 return features & ~NETIF_F_GSO_MASK; 2988 2989 /* Support for GSO partial features requires software 2990 * intervention before we can actually process the packets 2991 * so we need to strip support for any partial features now 2992 * and we can pull them back in after we have partially 2993 * segmented the frame. 2994 */ 2995 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2996 features &= ~dev->gso_partial_features; 2997 2998 /* Make sure to clear the IPv4 ID mangling feature if the 2999 * IPv4 header has the potential to be fragmented. 3000 */ 3001 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3002 struct iphdr *iph = skb->encapsulation ? 3003 inner_ip_hdr(skb) : ip_hdr(skb); 3004 3005 if (!(iph->frag_off & htons(IP_DF))) 3006 features &= ~NETIF_F_TSO_MANGLEID; 3007 } 3008 3009 return features; 3010 } 3011 3012 netdev_features_t netif_skb_features(struct sk_buff *skb) 3013 { 3014 struct net_device *dev = skb->dev; 3015 netdev_features_t features = dev->features; 3016 3017 if (skb_is_gso(skb)) 3018 features = gso_features_check(skb, dev, features); 3019 3020 /* If encapsulation offload request, verify we are testing 3021 * hardware encapsulation features instead of standard 3022 * features for the netdev 3023 */ 3024 if (skb->encapsulation) 3025 features &= dev->hw_enc_features; 3026 3027 if (skb_vlan_tagged(skb)) 3028 features = netdev_intersect_features(features, 3029 dev->vlan_features | 3030 NETIF_F_HW_VLAN_CTAG_TX | 3031 NETIF_F_HW_VLAN_STAG_TX); 3032 3033 if (dev->netdev_ops->ndo_features_check) 3034 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3035 features); 3036 else 3037 features &= dflt_features_check(skb, dev, features); 3038 3039 return harmonize_features(skb, features); 3040 } 3041 EXPORT_SYMBOL(netif_skb_features); 3042 3043 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3044 struct netdev_queue *txq, bool more) 3045 { 3046 unsigned int len; 3047 int rc; 3048 3049 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3050 dev_queue_xmit_nit(skb, dev); 3051 3052 len = skb->len; 3053 trace_net_dev_start_xmit(skb, dev); 3054 rc = netdev_start_xmit(skb, dev, txq, more); 3055 trace_net_dev_xmit(skb, rc, dev, len); 3056 3057 return rc; 3058 } 3059 3060 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3061 struct netdev_queue *txq, int *ret) 3062 { 3063 struct sk_buff *skb = first; 3064 int rc = NETDEV_TX_OK; 3065 3066 while (skb) { 3067 struct sk_buff *next = skb->next; 3068 3069 skb->next = NULL; 3070 rc = xmit_one(skb, dev, txq, next != NULL); 3071 if (unlikely(!dev_xmit_complete(rc))) { 3072 skb->next = next; 3073 goto out; 3074 } 3075 3076 skb = next; 3077 if (netif_xmit_stopped(txq) && skb) { 3078 rc = NETDEV_TX_BUSY; 3079 break; 3080 } 3081 } 3082 3083 out: 3084 *ret = rc; 3085 return skb; 3086 } 3087 3088 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3089 netdev_features_t features) 3090 { 3091 if (skb_vlan_tag_present(skb) && 3092 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3093 skb = __vlan_hwaccel_push_inside(skb); 3094 return skb; 3095 } 3096 3097 int skb_csum_hwoffload_help(struct sk_buff *skb, 3098 const netdev_features_t features) 3099 { 3100 if (unlikely(skb->csum_not_inet)) 3101 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3102 skb_crc32c_csum_help(skb); 3103 3104 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3105 } 3106 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3107 3108 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3109 { 3110 netdev_features_t features; 3111 3112 features = netif_skb_features(skb); 3113 skb = validate_xmit_vlan(skb, features); 3114 if (unlikely(!skb)) 3115 goto out_null; 3116 3117 if (netif_needs_gso(skb, features)) { 3118 struct sk_buff *segs; 3119 3120 segs = skb_gso_segment(skb, features); 3121 if (IS_ERR(segs)) { 3122 goto out_kfree_skb; 3123 } else if (segs) { 3124 consume_skb(skb); 3125 skb = segs; 3126 } 3127 } else { 3128 if (skb_needs_linearize(skb, features) && 3129 __skb_linearize(skb)) 3130 goto out_kfree_skb; 3131 3132 /* If packet is not checksummed and device does not 3133 * support checksumming for this protocol, complete 3134 * checksumming here. 3135 */ 3136 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3137 if (skb->encapsulation) 3138 skb_set_inner_transport_header(skb, 3139 skb_checksum_start_offset(skb)); 3140 else 3141 skb_set_transport_header(skb, 3142 skb_checksum_start_offset(skb)); 3143 if (skb_csum_hwoffload_help(skb, features)) 3144 goto out_kfree_skb; 3145 } 3146 } 3147 3148 skb = validate_xmit_xfrm(skb, features, again); 3149 3150 return skb; 3151 3152 out_kfree_skb: 3153 kfree_skb(skb); 3154 out_null: 3155 atomic_long_inc(&dev->tx_dropped); 3156 return NULL; 3157 } 3158 3159 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3160 { 3161 struct sk_buff *next, *head = NULL, *tail; 3162 3163 for (; skb != NULL; skb = next) { 3164 next = skb->next; 3165 skb->next = NULL; 3166 3167 /* in case skb wont be segmented, point to itself */ 3168 skb->prev = skb; 3169 3170 skb = validate_xmit_skb(skb, dev, again); 3171 if (!skb) 3172 continue; 3173 3174 if (!head) 3175 head = skb; 3176 else 3177 tail->next = skb; 3178 /* If skb was segmented, skb->prev points to 3179 * the last segment. If not, it still contains skb. 3180 */ 3181 tail = skb->prev; 3182 } 3183 return head; 3184 } 3185 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3186 3187 static void qdisc_pkt_len_init(struct sk_buff *skb) 3188 { 3189 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3190 3191 qdisc_skb_cb(skb)->pkt_len = skb->len; 3192 3193 /* To get more precise estimation of bytes sent on wire, 3194 * we add to pkt_len the headers size of all segments 3195 */ 3196 if (shinfo->gso_size) { 3197 unsigned int hdr_len; 3198 u16 gso_segs = shinfo->gso_segs; 3199 3200 /* mac layer + network layer */ 3201 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3202 3203 /* + transport layer */ 3204 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3205 const struct tcphdr *th; 3206 struct tcphdr _tcphdr; 3207 3208 th = skb_header_pointer(skb, skb_transport_offset(skb), 3209 sizeof(_tcphdr), &_tcphdr); 3210 if (likely(th)) 3211 hdr_len += __tcp_hdrlen(th); 3212 } else { 3213 struct udphdr _udphdr; 3214 3215 if (skb_header_pointer(skb, skb_transport_offset(skb), 3216 sizeof(_udphdr), &_udphdr)) 3217 hdr_len += sizeof(struct udphdr); 3218 } 3219 3220 if (shinfo->gso_type & SKB_GSO_DODGY) 3221 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3222 shinfo->gso_size); 3223 3224 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3225 } 3226 } 3227 3228 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3229 struct net_device *dev, 3230 struct netdev_queue *txq) 3231 { 3232 spinlock_t *root_lock = qdisc_lock(q); 3233 struct sk_buff *to_free = NULL; 3234 bool contended; 3235 int rc; 3236 3237 qdisc_calculate_pkt_len(skb, q); 3238 3239 if (q->flags & TCQ_F_NOLOCK) { 3240 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3241 __qdisc_drop(skb, &to_free); 3242 rc = NET_XMIT_DROP; 3243 } else { 3244 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3245 __qdisc_run(q); 3246 } 3247 3248 if (unlikely(to_free)) 3249 kfree_skb_list(to_free); 3250 return rc; 3251 } 3252 3253 /* 3254 * Heuristic to force contended enqueues to serialize on a 3255 * separate lock before trying to get qdisc main lock. 3256 * This permits qdisc->running owner to get the lock more 3257 * often and dequeue packets faster. 3258 */ 3259 contended = qdisc_is_running(q); 3260 if (unlikely(contended)) 3261 spin_lock(&q->busylock); 3262 3263 spin_lock(root_lock); 3264 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3265 __qdisc_drop(skb, &to_free); 3266 rc = NET_XMIT_DROP; 3267 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3268 qdisc_run_begin(q)) { 3269 /* 3270 * This is a work-conserving queue; there are no old skbs 3271 * waiting to be sent out; and the qdisc is not running - 3272 * xmit the skb directly. 3273 */ 3274 3275 qdisc_bstats_update(q, skb); 3276 3277 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3278 if (unlikely(contended)) { 3279 spin_unlock(&q->busylock); 3280 contended = false; 3281 } 3282 __qdisc_run(q); 3283 } 3284 3285 qdisc_run_end(q); 3286 rc = NET_XMIT_SUCCESS; 3287 } else { 3288 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3289 if (qdisc_run_begin(q)) { 3290 if (unlikely(contended)) { 3291 spin_unlock(&q->busylock); 3292 contended = false; 3293 } 3294 __qdisc_run(q); 3295 qdisc_run_end(q); 3296 } 3297 } 3298 spin_unlock(root_lock); 3299 if (unlikely(to_free)) 3300 kfree_skb_list(to_free); 3301 if (unlikely(contended)) 3302 spin_unlock(&q->busylock); 3303 return rc; 3304 } 3305 3306 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3307 static void skb_update_prio(struct sk_buff *skb) 3308 { 3309 const struct netprio_map *map; 3310 const struct sock *sk; 3311 unsigned int prioidx; 3312 3313 if (skb->priority) 3314 return; 3315 map = rcu_dereference_bh(skb->dev->priomap); 3316 if (!map) 3317 return; 3318 sk = skb_to_full_sk(skb); 3319 if (!sk) 3320 return; 3321 3322 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3323 3324 if (prioidx < map->priomap_len) 3325 skb->priority = map->priomap[prioidx]; 3326 } 3327 #else 3328 #define skb_update_prio(skb) 3329 #endif 3330 3331 DEFINE_PER_CPU(int, xmit_recursion); 3332 EXPORT_SYMBOL(xmit_recursion); 3333 3334 /** 3335 * dev_loopback_xmit - loop back @skb 3336 * @net: network namespace this loopback is happening in 3337 * @sk: sk needed to be a netfilter okfn 3338 * @skb: buffer to transmit 3339 */ 3340 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3341 { 3342 skb_reset_mac_header(skb); 3343 __skb_pull(skb, skb_network_offset(skb)); 3344 skb->pkt_type = PACKET_LOOPBACK; 3345 skb->ip_summed = CHECKSUM_UNNECESSARY; 3346 WARN_ON(!skb_dst(skb)); 3347 skb_dst_force(skb); 3348 netif_rx_ni(skb); 3349 return 0; 3350 } 3351 EXPORT_SYMBOL(dev_loopback_xmit); 3352 3353 #ifdef CONFIG_NET_EGRESS 3354 static struct sk_buff * 3355 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3356 { 3357 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3358 struct tcf_result cl_res; 3359 3360 if (!miniq) 3361 return skb; 3362 3363 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3364 mini_qdisc_bstats_cpu_update(miniq, skb); 3365 3366 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3367 case TC_ACT_OK: 3368 case TC_ACT_RECLASSIFY: 3369 skb->tc_index = TC_H_MIN(cl_res.classid); 3370 break; 3371 case TC_ACT_SHOT: 3372 mini_qdisc_qstats_cpu_drop(miniq); 3373 *ret = NET_XMIT_DROP; 3374 kfree_skb(skb); 3375 return NULL; 3376 case TC_ACT_STOLEN: 3377 case TC_ACT_QUEUED: 3378 case TC_ACT_TRAP: 3379 *ret = NET_XMIT_SUCCESS; 3380 consume_skb(skb); 3381 return NULL; 3382 case TC_ACT_REDIRECT: 3383 /* No need to push/pop skb's mac_header here on egress! */ 3384 skb_do_redirect(skb); 3385 *ret = NET_XMIT_SUCCESS; 3386 return NULL; 3387 default: 3388 break; 3389 } 3390 3391 return skb; 3392 } 3393 #endif /* CONFIG_NET_EGRESS */ 3394 3395 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3396 { 3397 #ifdef CONFIG_XPS 3398 struct xps_dev_maps *dev_maps; 3399 struct xps_map *map; 3400 int queue_index = -1; 3401 3402 rcu_read_lock(); 3403 dev_maps = rcu_dereference(dev->xps_maps); 3404 if (dev_maps) { 3405 unsigned int tci = skb->sender_cpu - 1; 3406 3407 if (dev->num_tc) { 3408 tci *= dev->num_tc; 3409 tci += netdev_get_prio_tc_map(dev, skb->priority); 3410 } 3411 3412 map = rcu_dereference(dev_maps->cpu_map[tci]); 3413 if (map) { 3414 if (map->len == 1) 3415 queue_index = map->queues[0]; 3416 else 3417 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3418 map->len)]; 3419 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3420 queue_index = -1; 3421 } 3422 } 3423 rcu_read_unlock(); 3424 3425 return queue_index; 3426 #else 3427 return -1; 3428 #endif 3429 } 3430 3431 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3432 { 3433 struct sock *sk = skb->sk; 3434 int queue_index = sk_tx_queue_get(sk); 3435 3436 if (queue_index < 0 || skb->ooo_okay || 3437 queue_index >= dev->real_num_tx_queues) { 3438 int new_index = get_xps_queue(dev, skb); 3439 3440 if (new_index < 0) 3441 new_index = skb_tx_hash(dev, skb); 3442 3443 if (queue_index != new_index && sk && 3444 sk_fullsock(sk) && 3445 rcu_access_pointer(sk->sk_dst_cache)) 3446 sk_tx_queue_set(sk, new_index); 3447 3448 queue_index = new_index; 3449 } 3450 3451 return queue_index; 3452 } 3453 3454 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3455 struct sk_buff *skb, 3456 void *accel_priv) 3457 { 3458 int queue_index = 0; 3459 3460 #ifdef CONFIG_XPS 3461 u32 sender_cpu = skb->sender_cpu - 1; 3462 3463 if (sender_cpu >= (u32)NR_CPUS) 3464 skb->sender_cpu = raw_smp_processor_id() + 1; 3465 #endif 3466 3467 if (dev->real_num_tx_queues != 1) { 3468 const struct net_device_ops *ops = dev->netdev_ops; 3469 3470 if (ops->ndo_select_queue) 3471 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3472 __netdev_pick_tx); 3473 else 3474 queue_index = __netdev_pick_tx(dev, skb); 3475 3476 queue_index = netdev_cap_txqueue(dev, queue_index); 3477 } 3478 3479 skb_set_queue_mapping(skb, queue_index); 3480 return netdev_get_tx_queue(dev, queue_index); 3481 } 3482 3483 /** 3484 * __dev_queue_xmit - transmit a buffer 3485 * @skb: buffer to transmit 3486 * @accel_priv: private data used for L2 forwarding offload 3487 * 3488 * Queue a buffer for transmission to a network device. The caller must 3489 * have set the device and priority and built the buffer before calling 3490 * this function. The function can be called from an interrupt. 3491 * 3492 * A negative errno code is returned on a failure. A success does not 3493 * guarantee the frame will be transmitted as it may be dropped due 3494 * to congestion or traffic shaping. 3495 * 3496 * ----------------------------------------------------------------------------------- 3497 * I notice this method can also return errors from the queue disciplines, 3498 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3499 * be positive. 3500 * 3501 * Regardless of the return value, the skb is consumed, so it is currently 3502 * difficult to retry a send to this method. (You can bump the ref count 3503 * before sending to hold a reference for retry if you are careful.) 3504 * 3505 * When calling this method, interrupts MUST be enabled. This is because 3506 * the BH enable code must have IRQs enabled so that it will not deadlock. 3507 * --BLG 3508 */ 3509 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3510 { 3511 struct net_device *dev = skb->dev; 3512 struct netdev_queue *txq; 3513 struct Qdisc *q; 3514 int rc = -ENOMEM; 3515 bool again = false; 3516 3517 skb_reset_mac_header(skb); 3518 3519 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3520 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3521 3522 /* Disable soft irqs for various locks below. Also 3523 * stops preemption for RCU. 3524 */ 3525 rcu_read_lock_bh(); 3526 3527 skb_update_prio(skb); 3528 3529 qdisc_pkt_len_init(skb); 3530 #ifdef CONFIG_NET_CLS_ACT 3531 skb->tc_at_ingress = 0; 3532 # ifdef CONFIG_NET_EGRESS 3533 if (static_key_false(&egress_needed)) { 3534 skb = sch_handle_egress(skb, &rc, dev); 3535 if (!skb) 3536 goto out; 3537 } 3538 # endif 3539 #endif 3540 /* If device/qdisc don't need skb->dst, release it right now while 3541 * its hot in this cpu cache. 3542 */ 3543 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3544 skb_dst_drop(skb); 3545 else 3546 skb_dst_force(skb); 3547 3548 txq = netdev_pick_tx(dev, skb, accel_priv); 3549 q = rcu_dereference_bh(txq->qdisc); 3550 3551 trace_net_dev_queue(skb); 3552 if (q->enqueue) { 3553 rc = __dev_xmit_skb(skb, q, dev, txq); 3554 goto out; 3555 } 3556 3557 /* The device has no queue. Common case for software devices: 3558 * loopback, all the sorts of tunnels... 3559 3560 * Really, it is unlikely that netif_tx_lock protection is necessary 3561 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3562 * counters.) 3563 * However, it is possible, that they rely on protection 3564 * made by us here. 3565 3566 * Check this and shot the lock. It is not prone from deadlocks. 3567 *Either shot noqueue qdisc, it is even simpler 8) 3568 */ 3569 if (dev->flags & IFF_UP) { 3570 int cpu = smp_processor_id(); /* ok because BHs are off */ 3571 3572 if (txq->xmit_lock_owner != cpu) { 3573 if (unlikely(__this_cpu_read(xmit_recursion) > 3574 XMIT_RECURSION_LIMIT)) 3575 goto recursion_alert; 3576 3577 skb = validate_xmit_skb(skb, dev, &again); 3578 if (!skb) 3579 goto out; 3580 3581 HARD_TX_LOCK(dev, txq, cpu); 3582 3583 if (!netif_xmit_stopped(txq)) { 3584 __this_cpu_inc(xmit_recursion); 3585 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3586 __this_cpu_dec(xmit_recursion); 3587 if (dev_xmit_complete(rc)) { 3588 HARD_TX_UNLOCK(dev, txq); 3589 goto out; 3590 } 3591 } 3592 HARD_TX_UNLOCK(dev, txq); 3593 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3594 dev->name); 3595 } else { 3596 /* Recursion is detected! It is possible, 3597 * unfortunately 3598 */ 3599 recursion_alert: 3600 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3601 dev->name); 3602 } 3603 } 3604 3605 rc = -ENETDOWN; 3606 rcu_read_unlock_bh(); 3607 3608 atomic_long_inc(&dev->tx_dropped); 3609 kfree_skb_list(skb); 3610 return rc; 3611 out: 3612 rcu_read_unlock_bh(); 3613 return rc; 3614 } 3615 3616 int dev_queue_xmit(struct sk_buff *skb) 3617 { 3618 return __dev_queue_xmit(skb, NULL); 3619 } 3620 EXPORT_SYMBOL(dev_queue_xmit); 3621 3622 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3623 { 3624 return __dev_queue_xmit(skb, accel_priv); 3625 } 3626 EXPORT_SYMBOL(dev_queue_xmit_accel); 3627 3628 3629 /************************************************************************* 3630 * Receiver routines 3631 *************************************************************************/ 3632 3633 int netdev_max_backlog __read_mostly = 1000; 3634 EXPORT_SYMBOL(netdev_max_backlog); 3635 3636 int netdev_tstamp_prequeue __read_mostly = 1; 3637 int netdev_budget __read_mostly = 300; 3638 unsigned int __read_mostly netdev_budget_usecs = 2000; 3639 int weight_p __read_mostly = 64; /* old backlog weight */ 3640 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3641 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3642 int dev_rx_weight __read_mostly = 64; 3643 int dev_tx_weight __read_mostly = 64; 3644 3645 /* Called with irq disabled */ 3646 static inline void ____napi_schedule(struct softnet_data *sd, 3647 struct napi_struct *napi) 3648 { 3649 list_add_tail(&napi->poll_list, &sd->poll_list); 3650 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3651 } 3652 3653 #ifdef CONFIG_RPS 3654 3655 /* One global table that all flow-based protocols share. */ 3656 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3657 EXPORT_SYMBOL(rps_sock_flow_table); 3658 u32 rps_cpu_mask __read_mostly; 3659 EXPORT_SYMBOL(rps_cpu_mask); 3660 3661 struct static_key rps_needed __read_mostly; 3662 EXPORT_SYMBOL(rps_needed); 3663 struct static_key rfs_needed __read_mostly; 3664 EXPORT_SYMBOL(rfs_needed); 3665 3666 static struct rps_dev_flow * 3667 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3668 struct rps_dev_flow *rflow, u16 next_cpu) 3669 { 3670 if (next_cpu < nr_cpu_ids) { 3671 #ifdef CONFIG_RFS_ACCEL 3672 struct netdev_rx_queue *rxqueue; 3673 struct rps_dev_flow_table *flow_table; 3674 struct rps_dev_flow *old_rflow; 3675 u32 flow_id; 3676 u16 rxq_index; 3677 int rc; 3678 3679 /* Should we steer this flow to a different hardware queue? */ 3680 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3681 !(dev->features & NETIF_F_NTUPLE)) 3682 goto out; 3683 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3684 if (rxq_index == skb_get_rx_queue(skb)) 3685 goto out; 3686 3687 rxqueue = dev->_rx + rxq_index; 3688 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3689 if (!flow_table) 3690 goto out; 3691 flow_id = skb_get_hash(skb) & flow_table->mask; 3692 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3693 rxq_index, flow_id); 3694 if (rc < 0) 3695 goto out; 3696 old_rflow = rflow; 3697 rflow = &flow_table->flows[flow_id]; 3698 rflow->filter = rc; 3699 if (old_rflow->filter == rflow->filter) 3700 old_rflow->filter = RPS_NO_FILTER; 3701 out: 3702 #endif 3703 rflow->last_qtail = 3704 per_cpu(softnet_data, next_cpu).input_queue_head; 3705 } 3706 3707 rflow->cpu = next_cpu; 3708 return rflow; 3709 } 3710 3711 /* 3712 * get_rps_cpu is called from netif_receive_skb and returns the target 3713 * CPU from the RPS map of the receiving queue for a given skb. 3714 * rcu_read_lock must be held on entry. 3715 */ 3716 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3717 struct rps_dev_flow **rflowp) 3718 { 3719 const struct rps_sock_flow_table *sock_flow_table; 3720 struct netdev_rx_queue *rxqueue = dev->_rx; 3721 struct rps_dev_flow_table *flow_table; 3722 struct rps_map *map; 3723 int cpu = -1; 3724 u32 tcpu; 3725 u32 hash; 3726 3727 if (skb_rx_queue_recorded(skb)) { 3728 u16 index = skb_get_rx_queue(skb); 3729 3730 if (unlikely(index >= dev->real_num_rx_queues)) { 3731 WARN_ONCE(dev->real_num_rx_queues > 1, 3732 "%s received packet on queue %u, but number " 3733 "of RX queues is %u\n", 3734 dev->name, index, dev->real_num_rx_queues); 3735 goto done; 3736 } 3737 rxqueue += index; 3738 } 3739 3740 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3741 3742 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3743 map = rcu_dereference(rxqueue->rps_map); 3744 if (!flow_table && !map) 3745 goto done; 3746 3747 skb_reset_network_header(skb); 3748 hash = skb_get_hash(skb); 3749 if (!hash) 3750 goto done; 3751 3752 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3753 if (flow_table && sock_flow_table) { 3754 struct rps_dev_flow *rflow; 3755 u32 next_cpu; 3756 u32 ident; 3757 3758 /* First check into global flow table if there is a match */ 3759 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3760 if ((ident ^ hash) & ~rps_cpu_mask) 3761 goto try_rps; 3762 3763 next_cpu = ident & rps_cpu_mask; 3764 3765 /* OK, now we know there is a match, 3766 * we can look at the local (per receive queue) flow table 3767 */ 3768 rflow = &flow_table->flows[hash & flow_table->mask]; 3769 tcpu = rflow->cpu; 3770 3771 /* 3772 * If the desired CPU (where last recvmsg was done) is 3773 * different from current CPU (one in the rx-queue flow 3774 * table entry), switch if one of the following holds: 3775 * - Current CPU is unset (>= nr_cpu_ids). 3776 * - Current CPU is offline. 3777 * - The current CPU's queue tail has advanced beyond the 3778 * last packet that was enqueued using this table entry. 3779 * This guarantees that all previous packets for the flow 3780 * have been dequeued, thus preserving in order delivery. 3781 */ 3782 if (unlikely(tcpu != next_cpu) && 3783 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3784 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3785 rflow->last_qtail)) >= 0)) { 3786 tcpu = next_cpu; 3787 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3788 } 3789 3790 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3791 *rflowp = rflow; 3792 cpu = tcpu; 3793 goto done; 3794 } 3795 } 3796 3797 try_rps: 3798 3799 if (map) { 3800 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3801 if (cpu_online(tcpu)) { 3802 cpu = tcpu; 3803 goto done; 3804 } 3805 } 3806 3807 done: 3808 return cpu; 3809 } 3810 3811 #ifdef CONFIG_RFS_ACCEL 3812 3813 /** 3814 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3815 * @dev: Device on which the filter was set 3816 * @rxq_index: RX queue index 3817 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3818 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3819 * 3820 * Drivers that implement ndo_rx_flow_steer() should periodically call 3821 * this function for each installed filter and remove the filters for 3822 * which it returns %true. 3823 */ 3824 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3825 u32 flow_id, u16 filter_id) 3826 { 3827 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3828 struct rps_dev_flow_table *flow_table; 3829 struct rps_dev_flow *rflow; 3830 bool expire = true; 3831 unsigned int cpu; 3832 3833 rcu_read_lock(); 3834 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3835 if (flow_table && flow_id <= flow_table->mask) { 3836 rflow = &flow_table->flows[flow_id]; 3837 cpu = READ_ONCE(rflow->cpu); 3838 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3839 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3840 rflow->last_qtail) < 3841 (int)(10 * flow_table->mask))) 3842 expire = false; 3843 } 3844 rcu_read_unlock(); 3845 return expire; 3846 } 3847 EXPORT_SYMBOL(rps_may_expire_flow); 3848 3849 #endif /* CONFIG_RFS_ACCEL */ 3850 3851 /* Called from hardirq (IPI) context */ 3852 static void rps_trigger_softirq(void *data) 3853 { 3854 struct softnet_data *sd = data; 3855 3856 ____napi_schedule(sd, &sd->backlog); 3857 sd->received_rps++; 3858 } 3859 3860 #endif /* CONFIG_RPS */ 3861 3862 /* 3863 * Check if this softnet_data structure is another cpu one 3864 * If yes, queue it to our IPI list and return 1 3865 * If no, return 0 3866 */ 3867 static int rps_ipi_queued(struct softnet_data *sd) 3868 { 3869 #ifdef CONFIG_RPS 3870 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3871 3872 if (sd != mysd) { 3873 sd->rps_ipi_next = mysd->rps_ipi_list; 3874 mysd->rps_ipi_list = sd; 3875 3876 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3877 return 1; 3878 } 3879 #endif /* CONFIG_RPS */ 3880 return 0; 3881 } 3882 3883 #ifdef CONFIG_NET_FLOW_LIMIT 3884 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3885 #endif 3886 3887 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3888 { 3889 #ifdef CONFIG_NET_FLOW_LIMIT 3890 struct sd_flow_limit *fl; 3891 struct softnet_data *sd; 3892 unsigned int old_flow, new_flow; 3893 3894 if (qlen < (netdev_max_backlog >> 1)) 3895 return false; 3896 3897 sd = this_cpu_ptr(&softnet_data); 3898 3899 rcu_read_lock(); 3900 fl = rcu_dereference(sd->flow_limit); 3901 if (fl) { 3902 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3903 old_flow = fl->history[fl->history_head]; 3904 fl->history[fl->history_head] = new_flow; 3905 3906 fl->history_head++; 3907 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3908 3909 if (likely(fl->buckets[old_flow])) 3910 fl->buckets[old_flow]--; 3911 3912 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3913 fl->count++; 3914 rcu_read_unlock(); 3915 return true; 3916 } 3917 } 3918 rcu_read_unlock(); 3919 #endif 3920 return false; 3921 } 3922 3923 /* 3924 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3925 * queue (may be a remote CPU queue). 3926 */ 3927 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3928 unsigned int *qtail) 3929 { 3930 struct softnet_data *sd; 3931 unsigned long flags; 3932 unsigned int qlen; 3933 3934 sd = &per_cpu(softnet_data, cpu); 3935 3936 local_irq_save(flags); 3937 3938 rps_lock(sd); 3939 if (!netif_running(skb->dev)) 3940 goto drop; 3941 qlen = skb_queue_len(&sd->input_pkt_queue); 3942 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3943 if (qlen) { 3944 enqueue: 3945 __skb_queue_tail(&sd->input_pkt_queue, skb); 3946 input_queue_tail_incr_save(sd, qtail); 3947 rps_unlock(sd); 3948 local_irq_restore(flags); 3949 return NET_RX_SUCCESS; 3950 } 3951 3952 /* Schedule NAPI for backlog device 3953 * We can use non atomic operation since we own the queue lock 3954 */ 3955 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3956 if (!rps_ipi_queued(sd)) 3957 ____napi_schedule(sd, &sd->backlog); 3958 } 3959 goto enqueue; 3960 } 3961 3962 drop: 3963 sd->dropped++; 3964 rps_unlock(sd); 3965 3966 local_irq_restore(flags); 3967 3968 atomic_long_inc(&skb->dev->rx_dropped); 3969 kfree_skb(skb); 3970 return NET_RX_DROP; 3971 } 3972 3973 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 3974 { 3975 struct net_device *dev = skb->dev; 3976 struct netdev_rx_queue *rxqueue; 3977 3978 rxqueue = dev->_rx; 3979 3980 if (skb_rx_queue_recorded(skb)) { 3981 u16 index = skb_get_rx_queue(skb); 3982 3983 if (unlikely(index >= dev->real_num_rx_queues)) { 3984 WARN_ONCE(dev->real_num_rx_queues > 1, 3985 "%s received packet on queue %u, but number " 3986 "of RX queues is %u\n", 3987 dev->name, index, dev->real_num_rx_queues); 3988 3989 return rxqueue; /* Return first rxqueue */ 3990 } 3991 rxqueue += index; 3992 } 3993 return rxqueue; 3994 } 3995 3996 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3997 struct bpf_prog *xdp_prog) 3998 { 3999 struct netdev_rx_queue *rxqueue; 4000 u32 metalen, act = XDP_DROP; 4001 struct xdp_buff xdp; 4002 void *orig_data; 4003 int hlen, off; 4004 u32 mac_len; 4005 4006 /* Reinjected packets coming from act_mirred or similar should 4007 * not get XDP generic processing. 4008 */ 4009 if (skb_cloned(skb)) 4010 return XDP_PASS; 4011 4012 /* XDP packets must be linear and must have sufficient headroom 4013 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4014 * native XDP provides, thus we need to do it here as well. 4015 */ 4016 if (skb_is_nonlinear(skb) || 4017 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4018 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4019 int troom = skb->tail + skb->data_len - skb->end; 4020 4021 /* In case we have to go down the path and also linearize, 4022 * then lets do the pskb_expand_head() work just once here. 4023 */ 4024 if (pskb_expand_head(skb, 4025 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4026 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4027 goto do_drop; 4028 if (skb_linearize(skb)) 4029 goto do_drop; 4030 } 4031 4032 /* The XDP program wants to see the packet starting at the MAC 4033 * header. 4034 */ 4035 mac_len = skb->data - skb_mac_header(skb); 4036 hlen = skb_headlen(skb) + mac_len; 4037 xdp.data = skb->data - mac_len; 4038 xdp.data_meta = xdp.data; 4039 xdp.data_end = xdp.data + hlen; 4040 xdp.data_hard_start = skb->data - skb_headroom(skb); 4041 orig_data = xdp.data; 4042 4043 rxqueue = netif_get_rxqueue(skb); 4044 xdp.rxq = &rxqueue->xdp_rxq; 4045 4046 act = bpf_prog_run_xdp(xdp_prog, &xdp); 4047 4048 off = xdp.data - orig_data; 4049 if (off > 0) 4050 __skb_pull(skb, off); 4051 else if (off < 0) 4052 __skb_push(skb, -off); 4053 skb->mac_header += off; 4054 4055 switch (act) { 4056 case XDP_REDIRECT: 4057 case XDP_TX: 4058 __skb_push(skb, mac_len); 4059 break; 4060 case XDP_PASS: 4061 metalen = xdp.data - xdp.data_meta; 4062 if (metalen) 4063 skb_metadata_set(skb, metalen); 4064 break; 4065 default: 4066 bpf_warn_invalid_xdp_action(act); 4067 /* fall through */ 4068 case XDP_ABORTED: 4069 trace_xdp_exception(skb->dev, xdp_prog, act); 4070 /* fall through */ 4071 case XDP_DROP: 4072 do_drop: 4073 kfree_skb(skb); 4074 break; 4075 } 4076 4077 return act; 4078 } 4079 4080 /* When doing generic XDP we have to bypass the qdisc layer and the 4081 * network taps in order to match in-driver-XDP behavior. 4082 */ 4083 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4084 { 4085 struct net_device *dev = skb->dev; 4086 struct netdev_queue *txq; 4087 bool free_skb = true; 4088 int cpu, rc; 4089 4090 txq = netdev_pick_tx(dev, skb, NULL); 4091 cpu = smp_processor_id(); 4092 HARD_TX_LOCK(dev, txq, cpu); 4093 if (!netif_xmit_stopped(txq)) { 4094 rc = netdev_start_xmit(skb, dev, txq, 0); 4095 if (dev_xmit_complete(rc)) 4096 free_skb = false; 4097 } 4098 HARD_TX_UNLOCK(dev, txq); 4099 if (free_skb) { 4100 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4101 kfree_skb(skb); 4102 } 4103 } 4104 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4105 4106 static struct static_key generic_xdp_needed __read_mostly; 4107 4108 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4109 { 4110 if (xdp_prog) { 4111 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4112 int err; 4113 4114 if (act != XDP_PASS) { 4115 switch (act) { 4116 case XDP_REDIRECT: 4117 err = xdp_do_generic_redirect(skb->dev, skb, 4118 xdp_prog); 4119 if (err) 4120 goto out_redir; 4121 /* fallthru to submit skb */ 4122 case XDP_TX: 4123 generic_xdp_tx(skb, xdp_prog); 4124 break; 4125 } 4126 return XDP_DROP; 4127 } 4128 } 4129 return XDP_PASS; 4130 out_redir: 4131 kfree_skb(skb); 4132 return XDP_DROP; 4133 } 4134 EXPORT_SYMBOL_GPL(do_xdp_generic); 4135 4136 static int netif_rx_internal(struct sk_buff *skb) 4137 { 4138 int ret; 4139 4140 net_timestamp_check(netdev_tstamp_prequeue, skb); 4141 4142 trace_netif_rx(skb); 4143 4144 if (static_key_false(&generic_xdp_needed)) { 4145 int ret; 4146 4147 preempt_disable(); 4148 rcu_read_lock(); 4149 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4150 rcu_read_unlock(); 4151 preempt_enable(); 4152 4153 /* Consider XDP consuming the packet a success from 4154 * the netdev point of view we do not want to count 4155 * this as an error. 4156 */ 4157 if (ret != XDP_PASS) 4158 return NET_RX_SUCCESS; 4159 } 4160 4161 #ifdef CONFIG_RPS 4162 if (static_key_false(&rps_needed)) { 4163 struct rps_dev_flow voidflow, *rflow = &voidflow; 4164 int cpu; 4165 4166 preempt_disable(); 4167 rcu_read_lock(); 4168 4169 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4170 if (cpu < 0) 4171 cpu = smp_processor_id(); 4172 4173 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4174 4175 rcu_read_unlock(); 4176 preempt_enable(); 4177 } else 4178 #endif 4179 { 4180 unsigned int qtail; 4181 4182 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4183 put_cpu(); 4184 } 4185 return ret; 4186 } 4187 4188 /** 4189 * netif_rx - post buffer to the network code 4190 * @skb: buffer to post 4191 * 4192 * This function receives a packet from a device driver and queues it for 4193 * the upper (protocol) levels to process. It always succeeds. The buffer 4194 * may be dropped during processing for congestion control or by the 4195 * protocol layers. 4196 * 4197 * return values: 4198 * NET_RX_SUCCESS (no congestion) 4199 * NET_RX_DROP (packet was dropped) 4200 * 4201 */ 4202 4203 int netif_rx(struct sk_buff *skb) 4204 { 4205 trace_netif_rx_entry(skb); 4206 4207 return netif_rx_internal(skb); 4208 } 4209 EXPORT_SYMBOL(netif_rx); 4210 4211 int netif_rx_ni(struct sk_buff *skb) 4212 { 4213 int err; 4214 4215 trace_netif_rx_ni_entry(skb); 4216 4217 preempt_disable(); 4218 err = netif_rx_internal(skb); 4219 if (local_softirq_pending()) 4220 do_softirq(); 4221 preempt_enable(); 4222 4223 return err; 4224 } 4225 EXPORT_SYMBOL(netif_rx_ni); 4226 4227 static __latent_entropy void net_tx_action(struct softirq_action *h) 4228 { 4229 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4230 4231 if (sd->completion_queue) { 4232 struct sk_buff *clist; 4233 4234 local_irq_disable(); 4235 clist = sd->completion_queue; 4236 sd->completion_queue = NULL; 4237 local_irq_enable(); 4238 4239 while (clist) { 4240 struct sk_buff *skb = clist; 4241 4242 clist = clist->next; 4243 4244 WARN_ON(refcount_read(&skb->users)); 4245 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4246 trace_consume_skb(skb); 4247 else 4248 trace_kfree_skb(skb, net_tx_action); 4249 4250 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4251 __kfree_skb(skb); 4252 else 4253 __kfree_skb_defer(skb); 4254 } 4255 4256 __kfree_skb_flush(); 4257 } 4258 4259 if (sd->output_queue) { 4260 struct Qdisc *head; 4261 4262 local_irq_disable(); 4263 head = sd->output_queue; 4264 sd->output_queue = NULL; 4265 sd->output_queue_tailp = &sd->output_queue; 4266 local_irq_enable(); 4267 4268 while (head) { 4269 struct Qdisc *q = head; 4270 spinlock_t *root_lock = NULL; 4271 4272 head = head->next_sched; 4273 4274 if (!(q->flags & TCQ_F_NOLOCK)) { 4275 root_lock = qdisc_lock(q); 4276 spin_lock(root_lock); 4277 } 4278 /* We need to make sure head->next_sched is read 4279 * before clearing __QDISC_STATE_SCHED 4280 */ 4281 smp_mb__before_atomic(); 4282 clear_bit(__QDISC_STATE_SCHED, &q->state); 4283 qdisc_run(q); 4284 if (root_lock) 4285 spin_unlock(root_lock); 4286 } 4287 } 4288 4289 xfrm_dev_backlog(sd); 4290 } 4291 4292 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4293 /* This hook is defined here for ATM LANE */ 4294 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4295 unsigned char *addr) __read_mostly; 4296 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4297 #endif 4298 4299 static inline struct sk_buff * 4300 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4301 struct net_device *orig_dev) 4302 { 4303 #ifdef CONFIG_NET_CLS_ACT 4304 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4305 struct tcf_result cl_res; 4306 4307 /* If there's at least one ingress present somewhere (so 4308 * we get here via enabled static key), remaining devices 4309 * that are not configured with an ingress qdisc will bail 4310 * out here. 4311 */ 4312 if (!miniq) 4313 return skb; 4314 4315 if (*pt_prev) { 4316 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4317 *pt_prev = NULL; 4318 } 4319 4320 qdisc_skb_cb(skb)->pkt_len = skb->len; 4321 skb->tc_at_ingress = 1; 4322 mini_qdisc_bstats_cpu_update(miniq, skb); 4323 4324 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4325 case TC_ACT_OK: 4326 case TC_ACT_RECLASSIFY: 4327 skb->tc_index = TC_H_MIN(cl_res.classid); 4328 break; 4329 case TC_ACT_SHOT: 4330 mini_qdisc_qstats_cpu_drop(miniq); 4331 kfree_skb(skb); 4332 return NULL; 4333 case TC_ACT_STOLEN: 4334 case TC_ACT_QUEUED: 4335 case TC_ACT_TRAP: 4336 consume_skb(skb); 4337 return NULL; 4338 case TC_ACT_REDIRECT: 4339 /* skb_mac_header check was done by cls/act_bpf, so 4340 * we can safely push the L2 header back before 4341 * redirecting to another netdev 4342 */ 4343 __skb_push(skb, skb->mac_len); 4344 skb_do_redirect(skb); 4345 return NULL; 4346 default: 4347 break; 4348 } 4349 #endif /* CONFIG_NET_CLS_ACT */ 4350 return skb; 4351 } 4352 4353 /** 4354 * netdev_is_rx_handler_busy - check if receive handler is registered 4355 * @dev: device to check 4356 * 4357 * Check if a receive handler is already registered for a given device. 4358 * Return true if there one. 4359 * 4360 * The caller must hold the rtnl_mutex. 4361 */ 4362 bool netdev_is_rx_handler_busy(struct net_device *dev) 4363 { 4364 ASSERT_RTNL(); 4365 return dev && rtnl_dereference(dev->rx_handler); 4366 } 4367 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4368 4369 /** 4370 * netdev_rx_handler_register - register receive handler 4371 * @dev: device to register a handler for 4372 * @rx_handler: receive handler to register 4373 * @rx_handler_data: data pointer that is used by rx handler 4374 * 4375 * Register a receive handler for a device. This handler will then be 4376 * called from __netif_receive_skb. A negative errno code is returned 4377 * on a failure. 4378 * 4379 * The caller must hold the rtnl_mutex. 4380 * 4381 * For a general description of rx_handler, see enum rx_handler_result. 4382 */ 4383 int netdev_rx_handler_register(struct net_device *dev, 4384 rx_handler_func_t *rx_handler, 4385 void *rx_handler_data) 4386 { 4387 if (netdev_is_rx_handler_busy(dev)) 4388 return -EBUSY; 4389 4390 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4391 return -EINVAL; 4392 4393 /* Note: rx_handler_data must be set before rx_handler */ 4394 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4395 rcu_assign_pointer(dev->rx_handler, rx_handler); 4396 4397 return 0; 4398 } 4399 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4400 4401 /** 4402 * netdev_rx_handler_unregister - unregister receive handler 4403 * @dev: device to unregister a handler from 4404 * 4405 * Unregister a receive handler from a device. 4406 * 4407 * The caller must hold the rtnl_mutex. 4408 */ 4409 void netdev_rx_handler_unregister(struct net_device *dev) 4410 { 4411 4412 ASSERT_RTNL(); 4413 RCU_INIT_POINTER(dev->rx_handler, NULL); 4414 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4415 * section has a guarantee to see a non NULL rx_handler_data 4416 * as well. 4417 */ 4418 synchronize_net(); 4419 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4420 } 4421 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4422 4423 /* 4424 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4425 * the special handling of PFMEMALLOC skbs. 4426 */ 4427 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4428 { 4429 switch (skb->protocol) { 4430 case htons(ETH_P_ARP): 4431 case htons(ETH_P_IP): 4432 case htons(ETH_P_IPV6): 4433 case htons(ETH_P_8021Q): 4434 case htons(ETH_P_8021AD): 4435 return true; 4436 default: 4437 return false; 4438 } 4439 } 4440 4441 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4442 int *ret, struct net_device *orig_dev) 4443 { 4444 #ifdef CONFIG_NETFILTER_INGRESS 4445 if (nf_hook_ingress_active(skb)) { 4446 int ingress_retval; 4447 4448 if (*pt_prev) { 4449 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4450 *pt_prev = NULL; 4451 } 4452 4453 rcu_read_lock(); 4454 ingress_retval = nf_hook_ingress(skb); 4455 rcu_read_unlock(); 4456 return ingress_retval; 4457 } 4458 #endif /* CONFIG_NETFILTER_INGRESS */ 4459 return 0; 4460 } 4461 4462 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4463 { 4464 struct packet_type *ptype, *pt_prev; 4465 rx_handler_func_t *rx_handler; 4466 struct net_device *orig_dev; 4467 bool deliver_exact = false; 4468 int ret = NET_RX_DROP; 4469 __be16 type; 4470 4471 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4472 4473 trace_netif_receive_skb(skb); 4474 4475 orig_dev = skb->dev; 4476 4477 skb_reset_network_header(skb); 4478 if (!skb_transport_header_was_set(skb)) 4479 skb_reset_transport_header(skb); 4480 skb_reset_mac_len(skb); 4481 4482 pt_prev = NULL; 4483 4484 another_round: 4485 skb->skb_iif = skb->dev->ifindex; 4486 4487 __this_cpu_inc(softnet_data.processed); 4488 4489 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4490 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4491 skb = skb_vlan_untag(skb); 4492 if (unlikely(!skb)) 4493 goto out; 4494 } 4495 4496 if (skb_skip_tc_classify(skb)) 4497 goto skip_classify; 4498 4499 if (pfmemalloc) 4500 goto skip_taps; 4501 4502 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4503 if (pt_prev) 4504 ret = deliver_skb(skb, pt_prev, orig_dev); 4505 pt_prev = ptype; 4506 } 4507 4508 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4509 if (pt_prev) 4510 ret = deliver_skb(skb, pt_prev, orig_dev); 4511 pt_prev = ptype; 4512 } 4513 4514 skip_taps: 4515 #ifdef CONFIG_NET_INGRESS 4516 if (static_key_false(&ingress_needed)) { 4517 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4518 if (!skb) 4519 goto out; 4520 4521 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4522 goto out; 4523 } 4524 #endif 4525 skb_reset_tc(skb); 4526 skip_classify: 4527 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4528 goto drop; 4529 4530 if (skb_vlan_tag_present(skb)) { 4531 if (pt_prev) { 4532 ret = deliver_skb(skb, pt_prev, orig_dev); 4533 pt_prev = NULL; 4534 } 4535 if (vlan_do_receive(&skb)) 4536 goto another_round; 4537 else if (unlikely(!skb)) 4538 goto out; 4539 } 4540 4541 rx_handler = rcu_dereference(skb->dev->rx_handler); 4542 if (rx_handler) { 4543 if (pt_prev) { 4544 ret = deliver_skb(skb, pt_prev, orig_dev); 4545 pt_prev = NULL; 4546 } 4547 switch (rx_handler(&skb)) { 4548 case RX_HANDLER_CONSUMED: 4549 ret = NET_RX_SUCCESS; 4550 goto out; 4551 case RX_HANDLER_ANOTHER: 4552 goto another_round; 4553 case RX_HANDLER_EXACT: 4554 deliver_exact = true; 4555 case RX_HANDLER_PASS: 4556 break; 4557 default: 4558 BUG(); 4559 } 4560 } 4561 4562 if (unlikely(skb_vlan_tag_present(skb))) { 4563 if (skb_vlan_tag_get_id(skb)) 4564 skb->pkt_type = PACKET_OTHERHOST; 4565 /* Note: we might in the future use prio bits 4566 * and set skb->priority like in vlan_do_receive() 4567 * For the time being, just ignore Priority Code Point 4568 */ 4569 skb->vlan_tci = 0; 4570 } 4571 4572 type = skb->protocol; 4573 4574 /* deliver only exact match when indicated */ 4575 if (likely(!deliver_exact)) { 4576 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4577 &ptype_base[ntohs(type) & 4578 PTYPE_HASH_MASK]); 4579 } 4580 4581 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4582 &orig_dev->ptype_specific); 4583 4584 if (unlikely(skb->dev != orig_dev)) { 4585 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4586 &skb->dev->ptype_specific); 4587 } 4588 4589 if (pt_prev) { 4590 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4591 goto drop; 4592 else 4593 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4594 } else { 4595 drop: 4596 if (!deliver_exact) 4597 atomic_long_inc(&skb->dev->rx_dropped); 4598 else 4599 atomic_long_inc(&skb->dev->rx_nohandler); 4600 kfree_skb(skb); 4601 /* Jamal, now you will not able to escape explaining 4602 * me how you were going to use this. :-) 4603 */ 4604 ret = NET_RX_DROP; 4605 } 4606 4607 out: 4608 return ret; 4609 } 4610 4611 /** 4612 * netif_receive_skb_core - special purpose version of netif_receive_skb 4613 * @skb: buffer to process 4614 * 4615 * More direct receive version of netif_receive_skb(). It should 4616 * only be used by callers that have a need to skip RPS and Generic XDP. 4617 * Caller must also take care of handling if (page_is_)pfmemalloc. 4618 * 4619 * This function may only be called from softirq context and interrupts 4620 * should be enabled. 4621 * 4622 * Return values (usually ignored): 4623 * NET_RX_SUCCESS: no congestion 4624 * NET_RX_DROP: packet was dropped 4625 */ 4626 int netif_receive_skb_core(struct sk_buff *skb) 4627 { 4628 int ret; 4629 4630 rcu_read_lock(); 4631 ret = __netif_receive_skb_core(skb, false); 4632 rcu_read_unlock(); 4633 4634 return ret; 4635 } 4636 EXPORT_SYMBOL(netif_receive_skb_core); 4637 4638 static int __netif_receive_skb(struct sk_buff *skb) 4639 { 4640 int ret; 4641 4642 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4643 unsigned int noreclaim_flag; 4644 4645 /* 4646 * PFMEMALLOC skbs are special, they should 4647 * - be delivered to SOCK_MEMALLOC sockets only 4648 * - stay away from userspace 4649 * - have bounded memory usage 4650 * 4651 * Use PF_MEMALLOC as this saves us from propagating the allocation 4652 * context down to all allocation sites. 4653 */ 4654 noreclaim_flag = memalloc_noreclaim_save(); 4655 ret = __netif_receive_skb_core(skb, true); 4656 memalloc_noreclaim_restore(noreclaim_flag); 4657 } else 4658 ret = __netif_receive_skb_core(skb, false); 4659 4660 return ret; 4661 } 4662 4663 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 4664 { 4665 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4666 struct bpf_prog *new = xdp->prog; 4667 int ret = 0; 4668 4669 switch (xdp->command) { 4670 case XDP_SETUP_PROG: 4671 rcu_assign_pointer(dev->xdp_prog, new); 4672 if (old) 4673 bpf_prog_put(old); 4674 4675 if (old && !new) { 4676 static_key_slow_dec(&generic_xdp_needed); 4677 } else if (new && !old) { 4678 static_key_slow_inc(&generic_xdp_needed); 4679 dev_disable_lro(dev); 4680 dev_disable_gro_hw(dev); 4681 } 4682 break; 4683 4684 case XDP_QUERY_PROG: 4685 xdp->prog_attached = !!old; 4686 xdp->prog_id = old ? old->aux->id : 0; 4687 break; 4688 4689 default: 4690 ret = -EINVAL; 4691 break; 4692 } 4693 4694 return ret; 4695 } 4696 4697 static int netif_receive_skb_internal(struct sk_buff *skb) 4698 { 4699 int ret; 4700 4701 net_timestamp_check(netdev_tstamp_prequeue, skb); 4702 4703 if (skb_defer_rx_timestamp(skb)) 4704 return NET_RX_SUCCESS; 4705 4706 if (static_key_false(&generic_xdp_needed)) { 4707 int ret; 4708 4709 preempt_disable(); 4710 rcu_read_lock(); 4711 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4712 rcu_read_unlock(); 4713 preempt_enable(); 4714 4715 if (ret != XDP_PASS) 4716 return NET_RX_DROP; 4717 } 4718 4719 rcu_read_lock(); 4720 #ifdef CONFIG_RPS 4721 if (static_key_false(&rps_needed)) { 4722 struct rps_dev_flow voidflow, *rflow = &voidflow; 4723 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4724 4725 if (cpu >= 0) { 4726 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4727 rcu_read_unlock(); 4728 return ret; 4729 } 4730 } 4731 #endif 4732 ret = __netif_receive_skb(skb); 4733 rcu_read_unlock(); 4734 return ret; 4735 } 4736 4737 /** 4738 * netif_receive_skb - process receive buffer from network 4739 * @skb: buffer to process 4740 * 4741 * netif_receive_skb() is the main receive data processing function. 4742 * It always succeeds. The buffer may be dropped during processing 4743 * for congestion control or by the protocol layers. 4744 * 4745 * This function may only be called from softirq context and interrupts 4746 * should be enabled. 4747 * 4748 * Return values (usually ignored): 4749 * NET_RX_SUCCESS: no congestion 4750 * NET_RX_DROP: packet was dropped 4751 */ 4752 int netif_receive_skb(struct sk_buff *skb) 4753 { 4754 trace_netif_receive_skb_entry(skb); 4755 4756 return netif_receive_skb_internal(skb); 4757 } 4758 EXPORT_SYMBOL(netif_receive_skb); 4759 4760 DEFINE_PER_CPU(struct work_struct, flush_works); 4761 4762 /* Network device is going away, flush any packets still pending */ 4763 static void flush_backlog(struct work_struct *work) 4764 { 4765 struct sk_buff *skb, *tmp; 4766 struct softnet_data *sd; 4767 4768 local_bh_disable(); 4769 sd = this_cpu_ptr(&softnet_data); 4770 4771 local_irq_disable(); 4772 rps_lock(sd); 4773 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4774 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4775 __skb_unlink(skb, &sd->input_pkt_queue); 4776 kfree_skb(skb); 4777 input_queue_head_incr(sd); 4778 } 4779 } 4780 rps_unlock(sd); 4781 local_irq_enable(); 4782 4783 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4784 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4785 __skb_unlink(skb, &sd->process_queue); 4786 kfree_skb(skb); 4787 input_queue_head_incr(sd); 4788 } 4789 } 4790 local_bh_enable(); 4791 } 4792 4793 static void flush_all_backlogs(void) 4794 { 4795 unsigned int cpu; 4796 4797 get_online_cpus(); 4798 4799 for_each_online_cpu(cpu) 4800 queue_work_on(cpu, system_highpri_wq, 4801 per_cpu_ptr(&flush_works, cpu)); 4802 4803 for_each_online_cpu(cpu) 4804 flush_work(per_cpu_ptr(&flush_works, cpu)); 4805 4806 put_online_cpus(); 4807 } 4808 4809 static int napi_gro_complete(struct sk_buff *skb) 4810 { 4811 struct packet_offload *ptype; 4812 __be16 type = skb->protocol; 4813 struct list_head *head = &offload_base; 4814 int err = -ENOENT; 4815 4816 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4817 4818 if (NAPI_GRO_CB(skb)->count == 1) { 4819 skb_shinfo(skb)->gso_size = 0; 4820 goto out; 4821 } 4822 4823 rcu_read_lock(); 4824 list_for_each_entry_rcu(ptype, head, list) { 4825 if (ptype->type != type || !ptype->callbacks.gro_complete) 4826 continue; 4827 4828 err = ptype->callbacks.gro_complete(skb, 0); 4829 break; 4830 } 4831 rcu_read_unlock(); 4832 4833 if (err) { 4834 WARN_ON(&ptype->list == head); 4835 kfree_skb(skb); 4836 return NET_RX_SUCCESS; 4837 } 4838 4839 out: 4840 return netif_receive_skb_internal(skb); 4841 } 4842 4843 /* napi->gro_list contains packets ordered by age. 4844 * youngest packets at the head of it. 4845 * Complete skbs in reverse order to reduce latencies. 4846 */ 4847 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4848 { 4849 struct sk_buff *skb, *prev = NULL; 4850 4851 /* scan list and build reverse chain */ 4852 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4853 skb->prev = prev; 4854 prev = skb; 4855 } 4856 4857 for (skb = prev; skb; skb = prev) { 4858 skb->next = NULL; 4859 4860 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4861 return; 4862 4863 prev = skb->prev; 4864 napi_gro_complete(skb); 4865 napi->gro_count--; 4866 } 4867 4868 napi->gro_list = NULL; 4869 } 4870 EXPORT_SYMBOL(napi_gro_flush); 4871 4872 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4873 { 4874 struct sk_buff *p; 4875 unsigned int maclen = skb->dev->hard_header_len; 4876 u32 hash = skb_get_hash_raw(skb); 4877 4878 for (p = napi->gro_list; p; p = p->next) { 4879 unsigned long diffs; 4880 4881 NAPI_GRO_CB(p)->flush = 0; 4882 4883 if (hash != skb_get_hash_raw(p)) { 4884 NAPI_GRO_CB(p)->same_flow = 0; 4885 continue; 4886 } 4887 4888 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4889 diffs |= p->vlan_tci ^ skb->vlan_tci; 4890 diffs |= skb_metadata_dst_cmp(p, skb); 4891 diffs |= skb_metadata_differs(p, skb); 4892 if (maclen == ETH_HLEN) 4893 diffs |= compare_ether_header(skb_mac_header(p), 4894 skb_mac_header(skb)); 4895 else if (!diffs) 4896 diffs = memcmp(skb_mac_header(p), 4897 skb_mac_header(skb), 4898 maclen); 4899 NAPI_GRO_CB(p)->same_flow = !diffs; 4900 } 4901 } 4902 4903 static void skb_gro_reset_offset(struct sk_buff *skb) 4904 { 4905 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4906 const skb_frag_t *frag0 = &pinfo->frags[0]; 4907 4908 NAPI_GRO_CB(skb)->data_offset = 0; 4909 NAPI_GRO_CB(skb)->frag0 = NULL; 4910 NAPI_GRO_CB(skb)->frag0_len = 0; 4911 4912 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4913 pinfo->nr_frags && 4914 !PageHighMem(skb_frag_page(frag0))) { 4915 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4916 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4917 skb_frag_size(frag0), 4918 skb->end - skb->tail); 4919 } 4920 } 4921 4922 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4923 { 4924 struct skb_shared_info *pinfo = skb_shinfo(skb); 4925 4926 BUG_ON(skb->end - skb->tail < grow); 4927 4928 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4929 4930 skb->data_len -= grow; 4931 skb->tail += grow; 4932 4933 pinfo->frags[0].page_offset += grow; 4934 skb_frag_size_sub(&pinfo->frags[0], grow); 4935 4936 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4937 skb_frag_unref(skb, 0); 4938 memmove(pinfo->frags, pinfo->frags + 1, 4939 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4940 } 4941 } 4942 4943 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4944 { 4945 struct sk_buff **pp = NULL; 4946 struct packet_offload *ptype; 4947 __be16 type = skb->protocol; 4948 struct list_head *head = &offload_base; 4949 int same_flow; 4950 enum gro_result ret; 4951 int grow; 4952 4953 if (netif_elide_gro(skb->dev)) 4954 goto normal; 4955 4956 gro_list_prepare(napi, skb); 4957 4958 rcu_read_lock(); 4959 list_for_each_entry_rcu(ptype, head, list) { 4960 if (ptype->type != type || !ptype->callbacks.gro_receive) 4961 continue; 4962 4963 skb_set_network_header(skb, skb_gro_offset(skb)); 4964 skb_reset_mac_len(skb); 4965 NAPI_GRO_CB(skb)->same_flow = 0; 4966 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4967 NAPI_GRO_CB(skb)->free = 0; 4968 NAPI_GRO_CB(skb)->encap_mark = 0; 4969 NAPI_GRO_CB(skb)->recursion_counter = 0; 4970 NAPI_GRO_CB(skb)->is_fou = 0; 4971 NAPI_GRO_CB(skb)->is_atomic = 1; 4972 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4973 4974 /* Setup for GRO checksum validation */ 4975 switch (skb->ip_summed) { 4976 case CHECKSUM_COMPLETE: 4977 NAPI_GRO_CB(skb)->csum = skb->csum; 4978 NAPI_GRO_CB(skb)->csum_valid = 1; 4979 NAPI_GRO_CB(skb)->csum_cnt = 0; 4980 break; 4981 case CHECKSUM_UNNECESSARY: 4982 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4983 NAPI_GRO_CB(skb)->csum_valid = 0; 4984 break; 4985 default: 4986 NAPI_GRO_CB(skb)->csum_cnt = 0; 4987 NAPI_GRO_CB(skb)->csum_valid = 0; 4988 } 4989 4990 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4991 break; 4992 } 4993 rcu_read_unlock(); 4994 4995 if (&ptype->list == head) 4996 goto normal; 4997 4998 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4999 ret = GRO_CONSUMED; 5000 goto ok; 5001 } 5002 5003 same_flow = NAPI_GRO_CB(skb)->same_flow; 5004 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5005 5006 if (pp) { 5007 struct sk_buff *nskb = *pp; 5008 5009 *pp = nskb->next; 5010 nskb->next = NULL; 5011 napi_gro_complete(nskb); 5012 napi->gro_count--; 5013 } 5014 5015 if (same_flow) 5016 goto ok; 5017 5018 if (NAPI_GRO_CB(skb)->flush) 5019 goto normal; 5020 5021 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 5022 struct sk_buff *nskb = napi->gro_list; 5023 5024 /* locate the end of the list to select the 'oldest' flow */ 5025 while (nskb->next) { 5026 pp = &nskb->next; 5027 nskb = *pp; 5028 } 5029 *pp = NULL; 5030 nskb->next = NULL; 5031 napi_gro_complete(nskb); 5032 } else { 5033 napi->gro_count++; 5034 } 5035 NAPI_GRO_CB(skb)->count = 1; 5036 NAPI_GRO_CB(skb)->age = jiffies; 5037 NAPI_GRO_CB(skb)->last = skb; 5038 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5039 skb->next = napi->gro_list; 5040 napi->gro_list = skb; 5041 ret = GRO_HELD; 5042 5043 pull: 5044 grow = skb_gro_offset(skb) - skb_headlen(skb); 5045 if (grow > 0) 5046 gro_pull_from_frag0(skb, grow); 5047 ok: 5048 return ret; 5049 5050 normal: 5051 ret = GRO_NORMAL; 5052 goto pull; 5053 } 5054 5055 struct packet_offload *gro_find_receive_by_type(__be16 type) 5056 { 5057 struct list_head *offload_head = &offload_base; 5058 struct packet_offload *ptype; 5059 5060 list_for_each_entry_rcu(ptype, offload_head, list) { 5061 if (ptype->type != type || !ptype->callbacks.gro_receive) 5062 continue; 5063 return ptype; 5064 } 5065 return NULL; 5066 } 5067 EXPORT_SYMBOL(gro_find_receive_by_type); 5068 5069 struct packet_offload *gro_find_complete_by_type(__be16 type) 5070 { 5071 struct list_head *offload_head = &offload_base; 5072 struct packet_offload *ptype; 5073 5074 list_for_each_entry_rcu(ptype, offload_head, list) { 5075 if (ptype->type != type || !ptype->callbacks.gro_complete) 5076 continue; 5077 return ptype; 5078 } 5079 return NULL; 5080 } 5081 EXPORT_SYMBOL(gro_find_complete_by_type); 5082 5083 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5084 { 5085 skb_dst_drop(skb); 5086 secpath_reset(skb); 5087 kmem_cache_free(skbuff_head_cache, skb); 5088 } 5089 5090 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5091 { 5092 switch (ret) { 5093 case GRO_NORMAL: 5094 if (netif_receive_skb_internal(skb)) 5095 ret = GRO_DROP; 5096 break; 5097 5098 case GRO_DROP: 5099 kfree_skb(skb); 5100 break; 5101 5102 case GRO_MERGED_FREE: 5103 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5104 napi_skb_free_stolen_head(skb); 5105 else 5106 __kfree_skb(skb); 5107 break; 5108 5109 case GRO_HELD: 5110 case GRO_MERGED: 5111 case GRO_CONSUMED: 5112 break; 5113 } 5114 5115 return ret; 5116 } 5117 5118 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5119 { 5120 skb_mark_napi_id(skb, napi); 5121 trace_napi_gro_receive_entry(skb); 5122 5123 skb_gro_reset_offset(skb); 5124 5125 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5126 } 5127 EXPORT_SYMBOL(napi_gro_receive); 5128 5129 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5130 { 5131 if (unlikely(skb->pfmemalloc)) { 5132 consume_skb(skb); 5133 return; 5134 } 5135 __skb_pull(skb, skb_headlen(skb)); 5136 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5137 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5138 skb->vlan_tci = 0; 5139 skb->dev = napi->dev; 5140 skb->skb_iif = 0; 5141 skb->encapsulation = 0; 5142 skb_shinfo(skb)->gso_type = 0; 5143 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5144 secpath_reset(skb); 5145 5146 napi->skb = skb; 5147 } 5148 5149 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5150 { 5151 struct sk_buff *skb = napi->skb; 5152 5153 if (!skb) { 5154 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5155 if (skb) { 5156 napi->skb = skb; 5157 skb_mark_napi_id(skb, napi); 5158 } 5159 } 5160 return skb; 5161 } 5162 EXPORT_SYMBOL(napi_get_frags); 5163 5164 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5165 struct sk_buff *skb, 5166 gro_result_t ret) 5167 { 5168 switch (ret) { 5169 case GRO_NORMAL: 5170 case GRO_HELD: 5171 __skb_push(skb, ETH_HLEN); 5172 skb->protocol = eth_type_trans(skb, skb->dev); 5173 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5174 ret = GRO_DROP; 5175 break; 5176 5177 case GRO_DROP: 5178 napi_reuse_skb(napi, skb); 5179 break; 5180 5181 case GRO_MERGED_FREE: 5182 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5183 napi_skb_free_stolen_head(skb); 5184 else 5185 napi_reuse_skb(napi, skb); 5186 break; 5187 5188 case GRO_MERGED: 5189 case GRO_CONSUMED: 5190 break; 5191 } 5192 5193 return ret; 5194 } 5195 5196 /* Upper GRO stack assumes network header starts at gro_offset=0 5197 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5198 * We copy ethernet header into skb->data to have a common layout. 5199 */ 5200 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5201 { 5202 struct sk_buff *skb = napi->skb; 5203 const struct ethhdr *eth; 5204 unsigned int hlen = sizeof(*eth); 5205 5206 napi->skb = NULL; 5207 5208 skb_reset_mac_header(skb); 5209 skb_gro_reset_offset(skb); 5210 5211 eth = skb_gro_header_fast(skb, 0); 5212 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5213 eth = skb_gro_header_slow(skb, hlen, 0); 5214 if (unlikely(!eth)) { 5215 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5216 __func__, napi->dev->name); 5217 napi_reuse_skb(napi, skb); 5218 return NULL; 5219 } 5220 } else { 5221 gro_pull_from_frag0(skb, hlen); 5222 NAPI_GRO_CB(skb)->frag0 += hlen; 5223 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5224 } 5225 __skb_pull(skb, hlen); 5226 5227 /* 5228 * This works because the only protocols we care about don't require 5229 * special handling. 5230 * We'll fix it up properly in napi_frags_finish() 5231 */ 5232 skb->protocol = eth->h_proto; 5233 5234 return skb; 5235 } 5236 5237 gro_result_t napi_gro_frags(struct napi_struct *napi) 5238 { 5239 struct sk_buff *skb = napi_frags_skb(napi); 5240 5241 if (!skb) 5242 return GRO_DROP; 5243 5244 trace_napi_gro_frags_entry(skb); 5245 5246 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5247 } 5248 EXPORT_SYMBOL(napi_gro_frags); 5249 5250 /* Compute the checksum from gro_offset and return the folded value 5251 * after adding in any pseudo checksum. 5252 */ 5253 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5254 { 5255 __wsum wsum; 5256 __sum16 sum; 5257 5258 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5259 5260 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5261 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5262 if (likely(!sum)) { 5263 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5264 !skb->csum_complete_sw) 5265 netdev_rx_csum_fault(skb->dev); 5266 } 5267 5268 NAPI_GRO_CB(skb)->csum = wsum; 5269 NAPI_GRO_CB(skb)->csum_valid = 1; 5270 5271 return sum; 5272 } 5273 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5274 5275 static void net_rps_send_ipi(struct softnet_data *remsd) 5276 { 5277 #ifdef CONFIG_RPS 5278 while (remsd) { 5279 struct softnet_data *next = remsd->rps_ipi_next; 5280 5281 if (cpu_online(remsd->cpu)) 5282 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5283 remsd = next; 5284 } 5285 #endif 5286 } 5287 5288 /* 5289 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5290 * Note: called with local irq disabled, but exits with local irq enabled. 5291 */ 5292 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5293 { 5294 #ifdef CONFIG_RPS 5295 struct softnet_data *remsd = sd->rps_ipi_list; 5296 5297 if (remsd) { 5298 sd->rps_ipi_list = NULL; 5299 5300 local_irq_enable(); 5301 5302 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5303 net_rps_send_ipi(remsd); 5304 } else 5305 #endif 5306 local_irq_enable(); 5307 } 5308 5309 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5310 { 5311 #ifdef CONFIG_RPS 5312 return sd->rps_ipi_list != NULL; 5313 #else 5314 return false; 5315 #endif 5316 } 5317 5318 static int process_backlog(struct napi_struct *napi, int quota) 5319 { 5320 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5321 bool again = true; 5322 int work = 0; 5323 5324 /* Check if we have pending ipi, its better to send them now, 5325 * not waiting net_rx_action() end. 5326 */ 5327 if (sd_has_rps_ipi_waiting(sd)) { 5328 local_irq_disable(); 5329 net_rps_action_and_irq_enable(sd); 5330 } 5331 5332 napi->weight = dev_rx_weight; 5333 while (again) { 5334 struct sk_buff *skb; 5335 5336 while ((skb = __skb_dequeue(&sd->process_queue))) { 5337 rcu_read_lock(); 5338 __netif_receive_skb(skb); 5339 rcu_read_unlock(); 5340 input_queue_head_incr(sd); 5341 if (++work >= quota) 5342 return work; 5343 5344 } 5345 5346 local_irq_disable(); 5347 rps_lock(sd); 5348 if (skb_queue_empty(&sd->input_pkt_queue)) { 5349 /* 5350 * Inline a custom version of __napi_complete(). 5351 * only current cpu owns and manipulates this napi, 5352 * and NAPI_STATE_SCHED is the only possible flag set 5353 * on backlog. 5354 * We can use a plain write instead of clear_bit(), 5355 * and we dont need an smp_mb() memory barrier. 5356 */ 5357 napi->state = 0; 5358 again = false; 5359 } else { 5360 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5361 &sd->process_queue); 5362 } 5363 rps_unlock(sd); 5364 local_irq_enable(); 5365 } 5366 5367 return work; 5368 } 5369 5370 /** 5371 * __napi_schedule - schedule for receive 5372 * @n: entry to schedule 5373 * 5374 * The entry's receive function will be scheduled to run. 5375 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5376 */ 5377 void __napi_schedule(struct napi_struct *n) 5378 { 5379 unsigned long flags; 5380 5381 local_irq_save(flags); 5382 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5383 local_irq_restore(flags); 5384 } 5385 EXPORT_SYMBOL(__napi_schedule); 5386 5387 /** 5388 * napi_schedule_prep - check if napi can be scheduled 5389 * @n: napi context 5390 * 5391 * Test if NAPI routine is already running, and if not mark 5392 * it as running. This is used as a condition variable 5393 * insure only one NAPI poll instance runs. We also make 5394 * sure there is no pending NAPI disable. 5395 */ 5396 bool napi_schedule_prep(struct napi_struct *n) 5397 { 5398 unsigned long val, new; 5399 5400 do { 5401 val = READ_ONCE(n->state); 5402 if (unlikely(val & NAPIF_STATE_DISABLE)) 5403 return false; 5404 new = val | NAPIF_STATE_SCHED; 5405 5406 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5407 * This was suggested by Alexander Duyck, as compiler 5408 * emits better code than : 5409 * if (val & NAPIF_STATE_SCHED) 5410 * new |= NAPIF_STATE_MISSED; 5411 */ 5412 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5413 NAPIF_STATE_MISSED; 5414 } while (cmpxchg(&n->state, val, new) != val); 5415 5416 return !(val & NAPIF_STATE_SCHED); 5417 } 5418 EXPORT_SYMBOL(napi_schedule_prep); 5419 5420 /** 5421 * __napi_schedule_irqoff - schedule for receive 5422 * @n: entry to schedule 5423 * 5424 * Variant of __napi_schedule() assuming hard irqs are masked 5425 */ 5426 void __napi_schedule_irqoff(struct napi_struct *n) 5427 { 5428 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5429 } 5430 EXPORT_SYMBOL(__napi_schedule_irqoff); 5431 5432 bool napi_complete_done(struct napi_struct *n, int work_done) 5433 { 5434 unsigned long flags, val, new; 5435 5436 /* 5437 * 1) Don't let napi dequeue from the cpu poll list 5438 * just in case its running on a different cpu. 5439 * 2) If we are busy polling, do nothing here, we have 5440 * the guarantee we will be called later. 5441 */ 5442 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5443 NAPIF_STATE_IN_BUSY_POLL))) 5444 return false; 5445 5446 if (n->gro_list) { 5447 unsigned long timeout = 0; 5448 5449 if (work_done) 5450 timeout = n->dev->gro_flush_timeout; 5451 5452 if (timeout) 5453 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5454 HRTIMER_MODE_REL_PINNED); 5455 else 5456 napi_gro_flush(n, false); 5457 } 5458 if (unlikely(!list_empty(&n->poll_list))) { 5459 /* If n->poll_list is not empty, we need to mask irqs */ 5460 local_irq_save(flags); 5461 list_del_init(&n->poll_list); 5462 local_irq_restore(flags); 5463 } 5464 5465 do { 5466 val = READ_ONCE(n->state); 5467 5468 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5469 5470 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5471 5472 /* If STATE_MISSED was set, leave STATE_SCHED set, 5473 * because we will call napi->poll() one more time. 5474 * This C code was suggested by Alexander Duyck to help gcc. 5475 */ 5476 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5477 NAPIF_STATE_SCHED; 5478 } while (cmpxchg(&n->state, val, new) != val); 5479 5480 if (unlikely(val & NAPIF_STATE_MISSED)) { 5481 __napi_schedule(n); 5482 return false; 5483 } 5484 5485 return true; 5486 } 5487 EXPORT_SYMBOL(napi_complete_done); 5488 5489 /* must be called under rcu_read_lock(), as we dont take a reference */ 5490 static struct napi_struct *napi_by_id(unsigned int napi_id) 5491 { 5492 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5493 struct napi_struct *napi; 5494 5495 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5496 if (napi->napi_id == napi_id) 5497 return napi; 5498 5499 return NULL; 5500 } 5501 5502 #if defined(CONFIG_NET_RX_BUSY_POLL) 5503 5504 #define BUSY_POLL_BUDGET 8 5505 5506 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5507 { 5508 int rc; 5509 5510 /* Busy polling means there is a high chance device driver hard irq 5511 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5512 * set in napi_schedule_prep(). 5513 * Since we are about to call napi->poll() once more, we can safely 5514 * clear NAPI_STATE_MISSED. 5515 * 5516 * Note: x86 could use a single "lock and ..." instruction 5517 * to perform these two clear_bit() 5518 */ 5519 clear_bit(NAPI_STATE_MISSED, &napi->state); 5520 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5521 5522 local_bh_disable(); 5523 5524 /* All we really want here is to re-enable device interrupts. 5525 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5526 */ 5527 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5528 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5529 netpoll_poll_unlock(have_poll_lock); 5530 if (rc == BUSY_POLL_BUDGET) 5531 __napi_schedule(napi); 5532 local_bh_enable(); 5533 } 5534 5535 void napi_busy_loop(unsigned int napi_id, 5536 bool (*loop_end)(void *, unsigned long), 5537 void *loop_end_arg) 5538 { 5539 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5540 int (*napi_poll)(struct napi_struct *napi, int budget); 5541 void *have_poll_lock = NULL; 5542 struct napi_struct *napi; 5543 5544 restart: 5545 napi_poll = NULL; 5546 5547 rcu_read_lock(); 5548 5549 napi = napi_by_id(napi_id); 5550 if (!napi) 5551 goto out; 5552 5553 preempt_disable(); 5554 for (;;) { 5555 int work = 0; 5556 5557 local_bh_disable(); 5558 if (!napi_poll) { 5559 unsigned long val = READ_ONCE(napi->state); 5560 5561 /* If multiple threads are competing for this napi, 5562 * we avoid dirtying napi->state as much as we can. 5563 */ 5564 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5565 NAPIF_STATE_IN_BUSY_POLL)) 5566 goto count; 5567 if (cmpxchg(&napi->state, val, 5568 val | NAPIF_STATE_IN_BUSY_POLL | 5569 NAPIF_STATE_SCHED) != val) 5570 goto count; 5571 have_poll_lock = netpoll_poll_lock(napi); 5572 napi_poll = napi->poll; 5573 } 5574 work = napi_poll(napi, BUSY_POLL_BUDGET); 5575 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5576 count: 5577 if (work > 0) 5578 __NET_ADD_STATS(dev_net(napi->dev), 5579 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5580 local_bh_enable(); 5581 5582 if (!loop_end || loop_end(loop_end_arg, start_time)) 5583 break; 5584 5585 if (unlikely(need_resched())) { 5586 if (napi_poll) 5587 busy_poll_stop(napi, have_poll_lock); 5588 preempt_enable(); 5589 rcu_read_unlock(); 5590 cond_resched(); 5591 if (loop_end(loop_end_arg, start_time)) 5592 return; 5593 goto restart; 5594 } 5595 cpu_relax(); 5596 } 5597 if (napi_poll) 5598 busy_poll_stop(napi, have_poll_lock); 5599 preempt_enable(); 5600 out: 5601 rcu_read_unlock(); 5602 } 5603 EXPORT_SYMBOL(napi_busy_loop); 5604 5605 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5606 5607 static void napi_hash_add(struct napi_struct *napi) 5608 { 5609 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5610 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5611 return; 5612 5613 spin_lock(&napi_hash_lock); 5614 5615 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5616 do { 5617 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5618 napi_gen_id = MIN_NAPI_ID; 5619 } while (napi_by_id(napi_gen_id)); 5620 napi->napi_id = napi_gen_id; 5621 5622 hlist_add_head_rcu(&napi->napi_hash_node, 5623 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5624 5625 spin_unlock(&napi_hash_lock); 5626 } 5627 5628 /* Warning : caller is responsible to make sure rcu grace period 5629 * is respected before freeing memory containing @napi 5630 */ 5631 bool napi_hash_del(struct napi_struct *napi) 5632 { 5633 bool rcu_sync_needed = false; 5634 5635 spin_lock(&napi_hash_lock); 5636 5637 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5638 rcu_sync_needed = true; 5639 hlist_del_rcu(&napi->napi_hash_node); 5640 } 5641 spin_unlock(&napi_hash_lock); 5642 return rcu_sync_needed; 5643 } 5644 EXPORT_SYMBOL_GPL(napi_hash_del); 5645 5646 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5647 { 5648 struct napi_struct *napi; 5649 5650 napi = container_of(timer, struct napi_struct, timer); 5651 5652 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5653 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5654 */ 5655 if (napi->gro_list && !napi_disable_pending(napi) && 5656 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5657 __napi_schedule_irqoff(napi); 5658 5659 return HRTIMER_NORESTART; 5660 } 5661 5662 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5663 int (*poll)(struct napi_struct *, int), int weight) 5664 { 5665 INIT_LIST_HEAD(&napi->poll_list); 5666 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5667 napi->timer.function = napi_watchdog; 5668 napi->gro_count = 0; 5669 napi->gro_list = NULL; 5670 napi->skb = NULL; 5671 napi->poll = poll; 5672 if (weight > NAPI_POLL_WEIGHT) 5673 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5674 weight, dev->name); 5675 napi->weight = weight; 5676 list_add(&napi->dev_list, &dev->napi_list); 5677 napi->dev = dev; 5678 #ifdef CONFIG_NETPOLL 5679 napi->poll_owner = -1; 5680 #endif 5681 set_bit(NAPI_STATE_SCHED, &napi->state); 5682 napi_hash_add(napi); 5683 } 5684 EXPORT_SYMBOL(netif_napi_add); 5685 5686 void napi_disable(struct napi_struct *n) 5687 { 5688 might_sleep(); 5689 set_bit(NAPI_STATE_DISABLE, &n->state); 5690 5691 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5692 msleep(1); 5693 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5694 msleep(1); 5695 5696 hrtimer_cancel(&n->timer); 5697 5698 clear_bit(NAPI_STATE_DISABLE, &n->state); 5699 } 5700 EXPORT_SYMBOL(napi_disable); 5701 5702 /* Must be called in process context */ 5703 void netif_napi_del(struct napi_struct *napi) 5704 { 5705 might_sleep(); 5706 if (napi_hash_del(napi)) 5707 synchronize_net(); 5708 list_del_init(&napi->dev_list); 5709 napi_free_frags(napi); 5710 5711 kfree_skb_list(napi->gro_list); 5712 napi->gro_list = NULL; 5713 napi->gro_count = 0; 5714 } 5715 EXPORT_SYMBOL(netif_napi_del); 5716 5717 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5718 { 5719 void *have; 5720 int work, weight; 5721 5722 list_del_init(&n->poll_list); 5723 5724 have = netpoll_poll_lock(n); 5725 5726 weight = n->weight; 5727 5728 /* This NAPI_STATE_SCHED test is for avoiding a race 5729 * with netpoll's poll_napi(). Only the entity which 5730 * obtains the lock and sees NAPI_STATE_SCHED set will 5731 * actually make the ->poll() call. Therefore we avoid 5732 * accidentally calling ->poll() when NAPI is not scheduled. 5733 */ 5734 work = 0; 5735 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5736 work = n->poll(n, weight); 5737 trace_napi_poll(n, work, weight); 5738 } 5739 5740 WARN_ON_ONCE(work > weight); 5741 5742 if (likely(work < weight)) 5743 goto out_unlock; 5744 5745 /* Drivers must not modify the NAPI state if they 5746 * consume the entire weight. In such cases this code 5747 * still "owns" the NAPI instance and therefore can 5748 * move the instance around on the list at-will. 5749 */ 5750 if (unlikely(napi_disable_pending(n))) { 5751 napi_complete(n); 5752 goto out_unlock; 5753 } 5754 5755 if (n->gro_list) { 5756 /* flush too old packets 5757 * If HZ < 1000, flush all packets. 5758 */ 5759 napi_gro_flush(n, HZ >= 1000); 5760 } 5761 5762 /* Some drivers may have called napi_schedule 5763 * prior to exhausting their budget. 5764 */ 5765 if (unlikely(!list_empty(&n->poll_list))) { 5766 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5767 n->dev ? n->dev->name : "backlog"); 5768 goto out_unlock; 5769 } 5770 5771 list_add_tail(&n->poll_list, repoll); 5772 5773 out_unlock: 5774 netpoll_poll_unlock(have); 5775 5776 return work; 5777 } 5778 5779 static __latent_entropy void net_rx_action(struct softirq_action *h) 5780 { 5781 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5782 unsigned long time_limit = jiffies + 5783 usecs_to_jiffies(netdev_budget_usecs); 5784 int budget = netdev_budget; 5785 LIST_HEAD(list); 5786 LIST_HEAD(repoll); 5787 5788 local_irq_disable(); 5789 list_splice_init(&sd->poll_list, &list); 5790 local_irq_enable(); 5791 5792 for (;;) { 5793 struct napi_struct *n; 5794 5795 if (list_empty(&list)) { 5796 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5797 goto out; 5798 break; 5799 } 5800 5801 n = list_first_entry(&list, struct napi_struct, poll_list); 5802 budget -= napi_poll(n, &repoll); 5803 5804 /* If softirq window is exhausted then punt. 5805 * Allow this to run for 2 jiffies since which will allow 5806 * an average latency of 1.5/HZ. 5807 */ 5808 if (unlikely(budget <= 0 || 5809 time_after_eq(jiffies, time_limit))) { 5810 sd->time_squeeze++; 5811 break; 5812 } 5813 } 5814 5815 local_irq_disable(); 5816 5817 list_splice_tail_init(&sd->poll_list, &list); 5818 list_splice_tail(&repoll, &list); 5819 list_splice(&list, &sd->poll_list); 5820 if (!list_empty(&sd->poll_list)) 5821 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5822 5823 net_rps_action_and_irq_enable(sd); 5824 out: 5825 __kfree_skb_flush(); 5826 } 5827 5828 struct netdev_adjacent { 5829 struct net_device *dev; 5830 5831 /* upper master flag, there can only be one master device per list */ 5832 bool master; 5833 5834 /* counter for the number of times this device was added to us */ 5835 u16 ref_nr; 5836 5837 /* private field for the users */ 5838 void *private; 5839 5840 struct list_head list; 5841 struct rcu_head rcu; 5842 }; 5843 5844 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5845 struct list_head *adj_list) 5846 { 5847 struct netdev_adjacent *adj; 5848 5849 list_for_each_entry(adj, adj_list, list) { 5850 if (adj->dev == adj_dev) 5851 return adj; 5852 } 5853 return NULL; 5854 } 5855 5856 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5857 { 5858 struct net_device *dev = data; 5859 5860 return upper_dev == dev; 5861 } 5862 5863 /** 5864 * netdev_has_upper_dev - Check if device is linked to an upper device 5865 * @dev: device 5866 * @upper_dev: upper device to check 5867 * 5868 * Find out if a device is linked to specified upper device and return true 5869 * in case it is. Note that this checks only immediate upper device, 5870 * not through a complete stack of devices. The caller must hold the RTNL lock. 5871 */ 5872 bool netdev_has_upper_dev(struct net_device *dev, 5873 struct net_device *upper_dev) 5874 { 5875 ASSERT_RTNL(); 5876 5877 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5878 upper_dev); 5879 } 5880 EXPORT_SYMBOL(netdev_has_upper_dev); 5881 5882 /** 5883 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5884 * @dev: device 5885 * @upper_dev: upper device to check 5886 * 5887 * Find out if a device is linked to specified upper device and return true 5888 * in case it is. Note that this checks the entire upper device chain. 5889 * The caller must hold rcu lock. 5890 */ 5891 5892 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5893 struct net_device *upper_dev) 5894 { 5895 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5896 upper_dev); 5897 } 5898 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5899 5900 /** 5901 * netdev_has_any_upper_dev - Check if device is linked to some device 5902 * @dev: device 5903 * 5904 * Find out if a device is linked to an upper device and return true in case 5905 * it is. The caller must hold the RTNL lock. 5906 */ 5907 bool netdev_has_any_upper_dev(struct net_device *dev) 5908 { 5909 ASSERT_RTNL(); 5910 5911 return !list_empty(&dev->adj_list.upper); 5912 } 5913 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5914 5915 /** 5916 * netdev_master_upper_dev_get - Get master upper device 5917 * @dev: device 5918 * 5919 * Find a master upper device and return pointer to it or NULL in case 5920 * it's not there. The caller must hold the RTNL lock. 5921 */ 5922 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5923 { 5924 struct netdev_adjacent *upper; 5925 5926 ASSERT_RTNL(); 5927 5928 if (list_empty(&dev->adj_list.upper)) 5929 return NULL; 5930 5931 upper = list_first_entry(&dev->adj_list.upper, 5932 struct netdev_adjacent, list); 5933 if (likely(upper->master)) 5934 return upper->dev; 5935 return NULL; 5936 } 5937 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5938 5939 /** 5940 * netdev_has_any_lower_dev - Check if device is linked to some device 5941 * @dev: device 5942 * 5943 * Find out if a device is linked to a lower device and return true in case 5944 * it is. The caller must hold the RTNL lock. 5945 */ 5946 static bool netdev_has_any_lower_dev(struct net_device *dev) 5947 { 5948 ASSERT_RTNL(); 5949 5950 return !list_empty(&dev->adj_list.lower); 5951 } 5952 5953 void *netdev_adjacent_get_private(struct list_head *adj_list) 5954 { 5955 struct netdev_adjacent *adj; 5956 5957 adj = list_entry(adj_list, struct netdev_adjacent, list); 5958 5959 return adj->private; 5960 } 5961 EXPORT_SYMBOL(netdev_adjacent_get_private); 5962 5963 /** 5964 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5965 * @dev: device 5966 * @iter: list_head ** of the current position 5967 * 5968 * Gets the next device from the dev's upper list, starting from iter 5969 * position. The caller must hold RCU read lock. 5970 */ 5971 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5972 struct list_head **iter) 5973 { 5974 struct netdev_adjacent *upper; 5975 5976 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5977 5978 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5979 5980 if (&upper->list == &dev->adj_list.upper) 5981 return NULL; 5982 5983 *iter = &upper->list; 5984 5985 return upper->dev; 5986 } 5987 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5988 5989 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5990 struct list_head **iter) 5991 { 5992 struct netdev_adjacent *upper; 5993 5994 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5995 5996 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5997 5998 if (&upper->list == &dev->adj_list.upper) 5999 return NULL; 6000 6001 *iter = &upper->list; 6002 6003 return upper->dev; 6004 } 6005 6006 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6007 int (*fn)(struct net_device *dev, 6008 void *data), 6009 void *data) 6010 { 6011 struct net_device *udev; 6012 struct list_head *iter; 6013 int ret; 6014 6015 for (iter = &dev->adj_list.upper, 6016 udev = netdev_next_upper_dev_rcu(dev, &iter); 6017 udev; 6018 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6019 /* first is the upper device itself */ 6020 ret = fn(udev, data); 6021 if (ret) 6022 return ret; 6023 6024 /* then look at all of its upper devices */ 6025 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6026 if (ret) 6027 return ret; 6028 } 6029 6030 return 0; 6031 } 6032 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6033 6034 /** 6035 * netdev_lower_get_next_private - Get the next ->private from the 6036 * lower neighbour list 6037 * @dev: device 6038 * @iter: list_head ** of the current position 6039 * 6040 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6041 * list, starting from iter position. The caller must hold either hold the 6042 * RTNL lock or its own locking that guarantees that the neighbour lower 6043 * list will remain unchanged. 6044 */ 6045 void *netdev_lower_get_next_private(struct net_device *dev, 6046 struct list_head **iter) 6047 { 6048 struct netdev_adjacent *lower; 6049 6050 lower = list_entry(*iter, struct netdev_adjacent, list); 6051 6052 if (&lower->list == &dev->adj_list.lower) 6053 return NULL; 6054 6055 *iter = lower->list.next; 6056 6057 return lower->private; 6058 } 6059 EXPORT_SYMBOL(netdev_lower_get_next_private); 6060 6061 /** 6062 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6063 * lower neighbour list, RCU 6064 * variant 6065 * @dev: device 6066 * @iter: list_head ** of the current position 6067 * 6068 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6069 * list, starting from iter position. The caller must hold RCU read lock. 6070 */ 6071 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6072 struct list_head **iter) 6073 { 6074 struct netdev_adjacent *lower; 6075 6076 WARN_ON_ONCE(!rcu_read_lock_held()); 6077 6078 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6079 6080 if (&lower->list == &dev->adj_list.lower) 6081 return NULL; 6082 6083 *iter = &lower->list; 6084 6085 return lower->private; 6086 } 6087 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6088 6089 /** 6090 * netdev_lower_get_next - Get the next device from the lower neighbour 6091 * list 6092 * @dev: device 6093 * @iter: list_head ** of the current position 6094 * 6095 * Gets the next netdev_adjacent from the dev's lower neighbour 6096 * list, starting from iter position. The caller must hold RTNL lock or 6097 * its own locking that guarantees that the neighbour lower 6098 * list will remain unchanged. 6099 */ 6100 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6101 { 6102 struct netdev_adjacent *lower; 6103 6104 lower = list_entry(*iter, struct netdev_adjacent, list); 6105 6106 if (&lower->list == &dev->adj_list.lower) 6107 return NULL; 6108 6109 *iter = lower->list.next; 6110 6111 return lower->dev; 6112 } 6113 EXPORT_SYMBOL(netdev_lower_get_next); 6114 6115 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6116 struct list_head **iter) 6117 { 6118 struct netdev_adjacent *lower; 6119 6120 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6121 6122 if (&lower->list == &dev->adj_list.lower) 6123 return NULL; 6124 6125 *iter = &lower->list; 6126 6127 return lower->dev; 6128 } 6129 6130 int netdev_walk_all_lower_dev(struct net_device *dev, 6131 int (*fn)(struct net_device *dev, 6132 void *data), 6133 void *data) 6134 { 6135 struct net_device *ldev; 6136 struct list_head *iter; 6137 int ret; 6138 6139 for (iter = &dev->adj_list.lower, 6140 ldev = netdev_next_lower_dev(dev, &iter); 6141 ldev; 6142 ldev = netdev_next_lower_dev(dev, &iter)) { 6143 /* first is the lower device itself */ 6144 ret = fn(ldev, data); 6145 if (ret) 6146 return ret; 6147 6148 /* then look at all of its lower devices */ 6149 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6150 if (ret) 6151 return ret; 6152 } 6153 6154 return 0; 6155 } 6156 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6157 6158 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6159 struct list_head **iter) 6160 { 6161 struct netdev_adjacent *lower; 6162 6163 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6164 if (&lower->list == &dev->adj_list.lower) 6165 return NULL; 6166 6167 *iter = &lower->list; 6168 6169 return lower->dev; 6170 } 6171 6172 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6173 int (*fn)(struct net_device *dev, 6174 void *data), 6175 void *data) 6176 { 6177 struct net_device *ldev; 6178 struct list_head *iter; 6179 int ret; 6180 6181 for (iter = &dev->adj_list.lower, 6182 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6183 ldev; 6184 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6185 /* first is the lower device itself */ 6186 ret = fn(ldev, data); 6187 if (ret) 6188 return ret; 6189 6190 /* then look at all of its lower devices */ 6191 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6192 if (ret) 6193 return ret; 6194 } 6195 6196 return 0; 6197 } 6198 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6199 6200 /** 6201 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6202 * lower neighbour list, RCU 6203 * variant 6204 * @dev: device 6205 * 6206 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6207 * list. The caller must hold RCU read lock. 6208 */ 6209 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6210 { 6211 struct netdev_adjacent *lower; 6212 6213 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6214 struct netdev_adjacent, list); 6215 if (lower) 6216 return lower->private; 6217 return NULL; 6218 } 6219 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6220 6221 /** 6222 * netdev_master_upper_dev_get_rcu - Get master upper device 6223 * @dev: device 6224 * 6225 * Find a master upper device and return pointer to it or NULL in case 6226 * it's not there. The caller must hold the RCU read lock. 6227 */ 6228 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6229 { 6230 struct netdev_adjacent *upper; 6231 6232 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6233 struct netdev_adjacent, list); 6234 if (upper && likely(upper->master)) 6235 return upper->dev; 6236 return NULL; 6237 } 6238 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6239 6240 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6241 struct net_device *adj_dev, 6242 struct list_head *dev_list) 6243 { 6244 char linkname[IFNAMSIZ+7]; 6245 6246 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6247 "upper_%s" : "lower_%s", adj_dev->name); 6248 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6249 linkname); 6250 } 6251 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6252 char *name, 6253 struct list_head *dev_list) 6254 { 6255 char linkname[IFNAMSIZ+7]; 6256 6257 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6258 "upper_%s" : "lower_%s", name); 6259 sysfs_remove_link(&(dev->dev.kobj), linkname); 6260 } 6261 6262 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6263 struct net_device *adj_dev, 6264 struct list_head *dev_list) 6265 { 6266 return (dev_list == &dev->adj_list.upper || 6267 dev_list == &dev->adj_list.lower) && 6268 net_eq(dev_net(dev), dev_net(adj_dev)); 6269 } 6270 6271 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6272 struct net_device *adj_dev, 6273 struct list_head *dev_list, 6274 void *private, bool master) 6275 { 6276 struct netdev_adjacent *adj; 6277 int ret; 6278 6279 adj = __netdev_find_adj(adj_dev, dev_list); 6280 6281 if (adj) { 6282 adj->ref_nr += 1; 6283 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6284 dev->name, adj_dev->name, adj->ref_nr); 6285 6286 return 0; 6287 } 6288 6289 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6290 if (!adj) 6291 return -ENOMEM; 6292 6293 adj->dev = adj_dev; 6294 adj->master = master; 6295 adj->ref_nr = 1; 6296 adj->private = private; 6297 dev_hold(adj_dev); 6298 6299 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6300 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6301 6302 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6303 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6304 if (ret) 6305 goto free_adj; 6306 } 6307 6308 /* Ensure that master link is always the first item in list. */ 6309 if (master) { 6310 ret = sysfs_create_link(&(dev->dev.kobj), 6311 &(adj_dev->dev.kobj), "master"); 6312 if (ret) 6313 goto remove_symlinks; 6314 6315 list_add_rcu(&adj->list, dev_list); 6316 } else { 6317 list_add_tail_rcu(&adj->list, dev_list); 6318 } 6319 6320 return 0; 6321 6322 remove_symlinks: 6323 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6324 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6325 free_adj: 6326 kfree(adj); 6327 dev_put(adj_dev); 6328 6329 return ret; 6330 } 6331 6332 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6333 struct net_device *adj_dev, 6334 u16 ref_nr, 6335 struct list_head *dev_list) 6336 { 6337 struct netdev_adjacent *adj; 6338 6339 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6340 dev->name, adj_dev->name, ref_nr); 6341 6342 adj = __netdev_find_adj(adj_dev, dev_list); 6343 6344 if (!adj) { 6345 pr_err("Adjacency does not exist for device %s from %s\n", 6346 dev->name, adj_dev->name); 6347 WARN_ON(1); 6348 return; 6349 } 6350 6351 if (adj->ref_nr > ref_nr) { 6352 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6353 dev->name, adj_dev->name, ref_nr, 6354 adj->ref_nr - ref_nr); 6355 adj->ref_nr -= ref_nr; 6356 return; 6357 } 6358 6359 if (adj->master) 6360 sysfs_remove_link(&(dev->dev.kobj), "master"); 6361 6362 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6363 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6364 6365 list_del_rcu(&adj->list); 6366 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6367 adj_dev->name, dev->name, adj_dev->name); 6368 dev_put(adj_dev); 6369 kfree_rcu(adj, rcu); 6370 } 6371 6372 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6373 struct net_device *upper_dev, 6374 struct list_head *up_list, 6375 struct list_head *down_list, 6376 void *private, bool master) 6377 { 6378 int ret; 6379 6380 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6381 private, master); 6382 if (ret) 6383 return ret; 6384 6385 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6386 private, false); 6387 if (ret) { 6388 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6389 return ret; 6390 } 6391 6392 return 0; 6393 } 6394 6395 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6396 struct net_device *upper_dev, 6397 u16 ref_nr, 6398 struct list_head *up_list, 6399 struct list_head *down_list) 6400 { 6401 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6402 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6403 } 6404 6405 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6406 struct net_device *upper_dev, 6407 void *private, bool master) 6408 { 6409 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6410 &dev->adj_list.upper, 6411 &upper_dev->adj_list.lower, 6412 private, master); 6413 } 6414 6415 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6416 struct net_device *upper_dev) 6417 { 6418 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6419 &dev->adj_list.upper, 6420 &upper_dev->adj_list.lower); 6421 } 6422 6423 static int __netdev_upper_dev_link(struct net_device *dev, 6424 struct net_device *upper_dev, bool master, 6425 void *upper_priv, void *upper_info, 6426 struct netlink_ext_ack *extack) 6427 { 6428 struct netdev_notifier_changeupper_info changeupper_info = { 6429 .info = { 6430 .dev = dev, 6431 .extack = extack, 6432 }, 6433 .upper_dev = upper_dev, 6434 .master = master, 6435 .linking = true, 6436 .upper_info = upper_info, 6437 }; 6438 struct net_device *master_dev; 6439 int ret = 0; 6440 6441 ASSERT_RTNL(); 6442 6443 if (dev == upper_dev) 6444 return -EBUSY; 6445 6446 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6447 if (netdev_has_upper_dev(upper_dev, dev)) 6448 return -EBUSY; 6449 6450 if (!master) { 6451 if (netdev_has_upper_dev(dev, upper_dev)) 6452 return -EEXIST; 6453 } else { 6454 master_dev = netdev_master_upper_dev_get(dev); 6455 if (master_dev) 6456 return master_dev == upper_dev ? -EEXIST : -EBUSY; 6457 } 6458 6459 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6460 &changeupper_info.info); 6461 ret = notifier_to_errno(ret); 6462 if (ret) 6463 return ret; 6464 6465 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6466 master); 6467 if (ret) 6468 return ret; 6469 6470 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6471 &changeupper_info.info); 6472 ret = notifier_to_errno(ret); 6473 if (ret) 6474 goto rollback; 6475 6476 return 0; 6477 6478 rollback: 6479 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6480 6481 return ret; 6482 } 6483 6484 /** 6485 * netdev_upper_dev_link - Add a link to the upper device 6486 * @dev: device 6487 * @upper_dev: new upper device 6488 * @extack: netlink extended ack 6489 * 6490 * Adds a link to device which is upper to this one. The caller must hold 6491 * the RTNL lock. On a failure a negative errno code is returned. 6492 * On success the reference counts are adjusted and the function 6493 * returns zero. 6494 */ 6495 int netdev_upper_dev_link(struct net_device *dev, 6496 struct net_device *upper_dev, 6497 struct netlink_ext_ack *extack) 6498 { 6499 return __netdev_upper_dev_link(dev, upper_dev, false, 6500 NULL, NULL, extack); 6501 } 6502 EXPORT_SYMBOL(netdev_upper_dev_link); 6503 6504 /** 6505 * netdev_master_upper_dev_link - Add a master link to the upper device 6506 * @dev: device 6507 * @upper_dev: new upper device 6508 * @upper_priv: upper device private 6509 * @upper_info: upper info to be passed down via notifier 6510 * @extack: netlink extended ack 6511 * 6512 * Adds a link to device which is upper to this one. In this case, only 6513 * one master upper device can be linked, although other non-master devices 6514 * might be linked as well. The caller must hold the RTNL lock. 6515 * On a failure a negative errno code is returned. On success the reference 6516 * counts are adjusted and the function returns zero. 6517 */ 6518 int netdev_master_upper_dev_link(struct net_device *dev, 6519 struct net_device *upper_dev, 6520 void *upper_priv, void *upper_info, 6521 struct netlink_ext_ack *extack) 6522 { 6523 return __netdev_upper_dev_link(dev, upper_dev, true, 6524 upper_priv, upper_info, extack); 6525 } 6526 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6527 6528 /** 6529 * netdev_upper_dev_unlink - Removes a link to upper device 6530 * @dev: device 6531 * @upper_dev: new upper device 6532 * 6533 * Removes a link to device which is upper to this one. The caller must hold 6534 * the RTNL lock. 6535 */ 6536 void netdev_upper_dev_unlink(struct net_device *dev, 6537 struct net_device *upper_dev) 6538 { 6539 struct netdev_notifier_changeupper_info changeupper_info = { 6540 .info = { 6541 .dev = dev, 6542 }, 6543 .upper_dev = upper_dev, 6544 .linking = false, 6545 }; 6546 6547 ASSERT_RTNL(); 6548 6549 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6550 6551 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6552 &changeupper_info.info); 6553 6554 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6555 6556 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6557 &changeupper_info.info); 6558 } 6559 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6560 6561 /** 6562 * netdev_bonding_info_change - Dispatch event about slave change 6563 * @dev: device 6564 * @bonding_info: info to dispatch 6565 * 6566 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6567 * The caller must hold the RTNL lock. 6568 */ 6569 void netdev_bonding_info_change(struct net_device *dev, 6570 struct netdev_bonding_info *bonding_info) 6571 { 6572 struct netdev_notifier_bonding_info info = { 6573 .info.dev = dev, 6574 }; 6575 6576 memcpy(&info.bonding_info, bonding_info, 6577 sizeof(struct netdev_bonding_info)); 6578 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 6579 &info.info); 6580 } 6581 EXPORT_SYMBOL(netdev_bonding_info_change); 6582 6583 static void netdev_adjacent_add_links(struct net_device *dev) 6584 { 6585 struct netdev_adjacent *iter; 6586 6587 struct net *net = dev_net(dev); 6588 6589 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6590 if (!net_eq(net, dev_net(iter->dev))) 6591 continue; 6592 netdev_adjacent_sysfs_add(iter->dev, dev, 6593 &iter->dev->adj_list.lower); 6594 netdev_adjacent_sysfs_add(dev, iter->dev, 6595 &dev->adj_list.upper); 6596 } 6597 6598 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6599 if (!net_eq(net, dev_net(iter->dev))) 6600 continue; 6601 netdev_adjacent_sysfs_add(iter->dev, dev, 6602 &iter->dev->adj_list.upper); 6603 netdev_adjacent_sysfs_add(dev, iter->dev, 6604 &dev->adj_list.lower); 6605 } 6606 } 6607 6608 static void netdev_adjacent_del_links(struct net_device *dev) 6609 { 6610 struct netdev_adjacent *iter; 6611 6612 struct net *net = dev_net(dev); 6613 6614 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6615 if (!net_eq(net, dev_net(iter->dev))) 6616 continue; 6617 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6618 &iter->dev->adj_list.lower); 6619 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6620 &dev->adj_list.upper); 6621 } 6622 6623 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6624 if (!net_eq(net, dev_net(iter->dev))) 6625 continue; 6626 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6627 &iter->dev->adj_list.upper); 6628 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6629 &dev->adj_list.lower); 6630 } 6631 } 6632 6633 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6634 { 6635 struct netdev_adjacent *iter; 6636 6637 struct net *net = dev_net(dev); 6638 6639 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6640 if (!net_eq(net, dev_net(iter->dev))) 6641 continue; 6642 netdev_adjacent_sysfs_del(iter->dev, oldname, 6643 &iter->dev->adj_list.lower); 6644 netdev_adjacent_sysfs_add(iter->dev, dev, 6645 &iter->dev->adj_list.lower); 6646 } 6647 6648 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6649 if (!net_eq(net, dev_net(iter->dev))) 6650 continue; 6651 netdev_adjacent_sysfs_del(iter->dev, oldname, 6652 &iter->dev->adj_list.upper); 6653 netdev_adjacent_sysfs_add(iter->dev, dev, 6654 &iter->dev->adj_list.upper); 6655 } 6656 } 6657 6658 void *netdev_lower_dev_get_private(struct net_device *dev, 6659 struct net_device *lower_dev) 6660 { 6661 struct netdev_adjacent *lower; 6662 6663 if (!lower_dev) 6664 return NULL; 6665 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6666 if (!lower) 6667 return NULL; 6668 6669 return lower->private; 6670 } 6671 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6672 6673 6674 int dev_get_nest_level(struct net_device *dev) 6675 { 6676 struct net_device *lower = NULL; 6677 struct list_head *iter; 6678 int max_nest = -1; 6679 int nest; 6680 6681 ASSERT_RTNL(); 6682 6683 netdev_for_each_lower_dev(dev, lower, iter) { 6684 nest = dev_get_nest_level(lower); 6685 if (max_nest < nest) 6686 max_nest = nest; 6687 } 6688 6689 return max_nest + 1; 6690 } 6691 EXPORT_SYMBOL(dev_get_nest_level); 6692 6693 /** 6694 * netdev_lower_change - Dispatch event about lower device state change 6695 * @lower_dev: device 6696 * @lower_state_info: state to dispatch 6697 * 6698 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6699 * The caller must hold the RTNL lock. 6700 */ 6701 void netdev_lower_state_changed(struct net_device *lower_dev, 6702 void *lower_state_info) 6703 { 6704 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 6705 .info.dev = lower_dev, 6706 }; 6707 6708 ASSERT_RTNL(); 6709 changelowerstate_info.lower_state_info = lower_state_info; 6710 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 6711 &changelowerstate_info.info); 6712 } 6713 EXPORT_SYMBOL(netdev_lower_state_changed); 6714 6715 static void dev_change_rx_flags(struct net_device *dev, int flags) 6716 { 6717 const struct net_device_ops *ops = dev->netdev_ops; 6718 6719 if (ops->ndo_change_rx_flags) 6720 ops->ndo_change_rx_flags(dev, flags); 6721 } 6722 6723 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6724 { 6725 unsigned int old_flags = dev->flags; 6726 kuid_t uid; 6727 kgid_t gid; 6728 6729 ASSERT_RTNL(); 6730 6731 dev->flags |= IFF_PROMISC; 6732 dev->promiscuity += inc; 6733 if (dev->promiscuity == 0) { 6734 /* 6735 * Avoid overflow. 6736 * If inc causes overflow, untouch promisc and return error. 6737 */ 6738 if (inc < 0) 6739 dev->flags &= ~IFF_PROMISC; 6740 else { 6741 dev->promiscuity -= inc; 6742 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6743 dev->name); 6744 return -EOVERFLOW; 6745 } 6746 } 6747 if (dev->flags != old_flags) { 6748 pr_info("device %s %s promiscuous mode\n", 6749 dev->name, 6750 dev->flags & IFF_PROMISC ? "entered" : "left"); 6751 if (audit_enabled) { 6752 current_uid_gid(&uid, &gid); 6753 audit_log(current->audit_context, GFP_ATOMIC, 6754 AUDIT_ANOM_PROMISCUOUS, 6755 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6756 dev->name, (dev->flags & IFF_PROMISC), 6757 (old_flags & IFF_PROMISC), 6758 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6759 from_kuid(&init_user_ns, uid), 6760 from_kgid(&init_user_ns, gid), 6761 audit_get_sessionid(current)); 6762 } 6763 6764 dev_change_rx_flags(dev, IFF_PROMISC); 6765 } 6766 if (notify) 6767 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6768 return 0; 6769 } 6770 6771 /** 6772 * dev_set_promiscuity - update promiscuity count on a device 6773 * @dev: device 6774 * @inc: modifier 6775 * 6776 * Add or remove promiscuity from a device. While the count in the device 6777 * remains above zero the interface remains promiscuous. Once it hits zero 6778 * the device reverts back to normal filtering operation. A negative inc 6779 * value is used to drop promiscuity on the device. 6780 * Return 0 if successful or a negative errno code on error. 6781 */ 6782 int dev_set_promiscuity(struct net_device *dev, int inc) 6783 { 6784 unsigned int old_flags = dev->flags; 6785 int err; 6786 6787 err = __dev_set_promiscuity(dev, inc, true); 6788 if (err < 0) 6789 return err; 6790 if (dev->flags != old_flags) 6791 dev_set_rx_mode(dev); 6792 return err; 6793 } 6794 EXPORT_SYMBOL(dev_set_promiscuity); 6795 6796 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6797 { 6798 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6799 6800 ASSERT_RTNL(); 6801 6802 dev->flags |= IFF_ALLMULTI; 6803 dev->allmulti += inc; 6804 if (dev->allmulti == 0) { 6805 /* 6806 * Avoid overflow. 6807 * If inc causes overflow, untouch allmulti and return error. 6808 */ 6809 if (inc < 0) 6810 dev->flags &= ~IFF_ALLMULTI; 6811 else { 6812 dev->allmulti -= inc; 6813 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6814 dev->name); 6815 return -EOVERFLOW; 6816 } 6817 } 6818 if (dev->flags ^ old_flags) { 6819 dev_change_rx_flags(dev, IFF_ALLMULTI); 6820 dev_set_rx_mode(dev); 6821 if (notify) 6822 __dev_notify_flags(dev, old_flags, 6823 dev->gflags ^ old_gflags); 6824 } 6825 return 0; 6826 } 6827 6828 /** 6829 * dev_set_allmulti - update allmulti count on a device 6830 * @dev: device 6831 * @inc: modifier 6832 * 6833 * Add or remove reception of all multicast frames to a device. While the 6834 * count in the device remains above zero the interface remains listening 6835 * to all interfaces. Once it hits zero the device reverts back to normal 6836 * filtering operation. A negative @inc value is used to drop the counter 6837 * when releasing a resource needing all multicasts. 6838 * Return 0 if successful or a negative errno code on error. 6839 */ 6840 6841 int dev_set_allmulti(struct net_device *dev, int inc) 6842 { 6843 return __dev_set_allmulti(dev, inc, true); 6844 } 6845 EXPORT_SYMBOL(dev_set_allmulti); 6846 6847 /* 6848 * Upload unicast and multicast address lists to device and 6849 * configure RX filtering. When the device doesn't support unicast 6850 * filtering it is put in promiscuous mode while unicast addresses 6851 * are present. 6852 */ 6853 void __dev_set_rx_mode(struct net_device *dev) 6854 { 6855 const struct net_device_ops *ops = dev->netdev_ops; 6856 6857 /* dev_open will call this function so the list will stay sane. */ 6858 if (!(dev->flags&IFF_UP)) 6859 return; 6860 6861 if (!netif_device_present(dev)) 6862 return; 6863 6864 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6865 /* Unicast addresses changes may only happen under the rtnl, 6866 * therefore calling __dev_set_promiscuity here is safe. 6867 */ 6868 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6869 __dev_set_promiscuity(dev, 1, false); 6870 dev->uc_promisc = true; 6871 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6872 __dev_set_promiscuity(dev, -1, false); 6873 dev->uc_promisc = false; 6874 } 6875 } 6876 6877 if (ops->ndo_set_rx_mode) 6878 ops->ndo_set_rx_mode(dev); 6879 } 6880 6881 void dev_set_rx_mode(struct net_device *dev) 6882 { 6883 netif_addr_lock_bh(dev); 6884 __dev_set_rx_mode(dev); 6885 netif_addr_unlock_bh(dev); 6886 } 6887 6888 /** 6889 * dev_get_flags - get flags reported to userspace 6890 * @dev: device 6891 * 6892 * Get the combination of flag bits exported through APIs to userspace. 6893 */ 6894 unsigned int dev_get_flags(const struct net_device *dev) 6895 { 6896 unsigned int flags; 6897 6898 flags = (dev->flags & ~(IFF_PROMISC | 6899 IFF_ALLMULTI | 6900 IFF_RUNNING | 6901 IFF_LOWER_UP | 6902 IFF_DORMANT)) | 6903 (dev->gflags & (IFF_PROMISC | 6904 IFF_ALLMULTI)); 6905 6906 if (netif_running(dev)) { 6907 if (netif_oper_up(dev)) 6908 flags |= IFF_RUNNING; 6909 if (netif_carrier_ok(dev)) 6910 flags |= IFF_LOWER_UP; 6911 if (netif_dormant(dev)) 6912 flags |= IFF_DORMANT; 6913 } 6914 6915 return flags; 6916 } 6917 EXPORT_SYMBOL(dev_get_flags); 6918 6919 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6920 { 6921 unsigned int old_flags = dev->flags; 6922 int ret; 6923 6924 ASSERT_RTNL(); 6925 6926 /* 6927 * Set the flags on our device. 6928 */ 6929 6930 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6931 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6932 IFF_AUTOMEDIA)) | 6933 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6934 IFF_ALLMULTI)); 6935 6936 /* 6937 * Load in the correct multicast list now the flags have changed. 6938 */ 6939 6940 if ((old_flags ^ flags) & IFF_MULTICAST) 6941 dev_change_rx_flags(dev, IFF_MULTICAST); 6942 6943 dev_set_rx_mode(dev); 6944 6945 /* 6946 * Have we downed the interface. We handle IFF_UP ourselves 6947 * according to user attempts to set it, rather than blindly 6948 * setting it. 6949 */ 6950 6951 ret = 0; 6952 if ((old_flags ^ flags) & IFF_UP) { 6953 if (old_flags & IFF_UP) 6954 __dev_close(dev); 6955 else 6956 ret = __dev_open(dev); 6957 } 6958 6959 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6960 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6961 unsigned int old_flags = dev->flags; 6962 6963 dev->gflags ^= IFF_PROMISC; 6964 6965 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6966 if (dev->flags != old_flags) 6967 dev_set_rx_mode(dev); 6968 } 6969 6970 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6971 * is important. Some (broken) drivers set IFF_PROMISC, when 6972 * IFF_ALLMULTI is requested not asking us and not reporting. 6973 */ 6974 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6975 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6976 6977 dev->gflags ^= IFF_ALLMULTI; 6978 __dev_set_allmulti(dev, inc, false); 6979 } 6980 6981 return ret; 6982 } 6983 6984 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6985 unsigned int gchanges) 6986 { 6987 unsigned int changes = dev->flags ^ old_flags; 6988 6989 if (gchanges) 6990 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6991 6992 if (changes & IFF_UP) { 6993 if (dev->flags & IFF_UP) 6994 call_netdevice_notifiers(NETDEV_UP, dev); 6995 else 6996 call_netdevice_notifiers(NETDEV_DOWN, dev); 6997 } 6998 6999 if (dev->flags & IFF_UP && 7000 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7001 struct netdev_notifier_change_info change_info = { 7002 .info = { 7003 .dev = dev, 7004 }, 7005 .flags_changed = changes, 7006 }; 7007 7008 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7009 } 7010 } 7011 7012 /** 7013 * dev_change_flags - change device settings 7014 * @dev: device 7015 * @flags: device state flags 7016 * 7017 * Change settings on device based state flags. The flags are 7018 * in the userspace exported format. 7019 */ 7020 int dev_change_flags(struct net_device *dev, unsigned int flags) 7021 { 7022 int ret; 7023 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7024 7025 ret = __dev_change_flags(dev, flags); 7026 if (ret < 0) 7027 return ret; 7028 7029 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7030 __dev_notify_flags(dev, old_flags, changes); 7031 return ret; 7032 } 7033 EXPORT_SYMBOL(dev_change_flags); 7034 7035 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7036 { 7037 const struct net_device_ops *ops = dev->netdev_ops; 7038 7039 if (ops->ndo_change_mtu) 7040 return ops->ndo_change_mtu(dev, new_mtu); 7041 7042 dev->mtu = new_mtu; 7043 return 0; 7044 } 7045 EXPORT_SYMBOL(__dev_set_mtu); 7046 7047 /** 7048 * dev_set_mtu - Change maximum transfer unit 7049 * @dev: device 7050 * @new_mtu: new transfer unit 7051 * 7052 * Change the maximum transfer size of the network device. 7053 */ 7054 int dev_set_mtu(struct net_device *dev, int new_mtu) 7055 { 7056 int err, orig_mtu; 7057 7058 if (new_mtu == dev->mtu) 7059 return 0; 7060 7061 /* MTU must be positive, and in range */ 7062 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7063 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 7064 dev->name, new_mtu, dev->min_mtu); 7065 return -EINVAL; 7066 } 7067 7068 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7069 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 7070 dev->name, new_mtu, dev->max_mtu); 7071 return -EINVAL; 7072 } 7073 7074 if (!netif_device_present(dev)) 7075 return -ENODEV; 7076 7077 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7078 err = notifier_to_errno(err); 7079 if (err) 7080 return err; 7081 7082 orig_mtu = dev->mtu; 7083 err = __dev_set_mtu(dev, new_mtu); 7084 7085 if (!err) { 7086 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7087 err = notifier_to_errno(err); 7088 if (err) { 7089 /* setting mtu back and notifying everyone again, 7090 * so that they have a chance to revert changes. 7091 */ 7092 __dev_set_mtu(dev, orig_mtu); 7093 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7094 } 7095 } 7096 return err; 7097 } 7098 EXPORT_SYMBOL(dev_set_mtu); 7099 7100 /** 7101 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7102 * @dev: device 7103 * @new_len: new tx queue length 7104 */ 7105 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7106 { 7107 unsigned int orig_len = dev->tx_queue_len; 7108 int res; 7109 7110 if (new_len != (unsigned int)new_len) 7111 return -ERANGE; 7112 7113 if (new_len != orig_len) { 7114 dev->tx_queue_len = new_len; 7115 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7116 res = notifier_to_errno(res); 7117 if (res) { 7118 netdev_err(dev, 7119 "refused to change device tx_queue_len\n"); 7120 dev->tx_queue_len = orig_len; 7121 return res; 7122 } 7123 return dev_qdisc_change_tx_queue_len(dev); 7124 } 7125 7126 return 0; 7127 } 7128 7129 /** 7130 * dev_set_group - Change group this device belongs to 7131 * @dev: device 7132 * @new_group: group this device should belong to 7133 */ 7134 void dev_set_group(struct net_device *dev, int new_group) 7135 { 7136 dev->group = new_group; 7137 } 7138 EXPORT_SYMBOL(dev_set_group); 7139 7140 /** 7141 * dev_set_mac_address - Change Media Access Control Address 7142 * @dev: device 7143 * @sa: new address 7144 * 7145 * Change the hardware (MAC) address of the device 7146 */ 7147 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7148 { 7149 const struct net_device_ops *ops = dev->netdev_ops; 7150 int err; 7151 7152 if (!ops->ndo_set_mac_address) 7153 return -EOPNOTSUPP; 7154 if (sa->sa_family != dev->type) 7155 return -EINVAL; 7156 if (!netif_device_present(dev)) 7157 return -ENODEV; 7158 err = ops->ndo_set_mac_address(dev, sa); 7159 if (err) 7160 return err; 7161 dev->addr_assign_type = NET_ADDR_SET; 7162 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7163 add_device_randomness(dev->dev_addr, dev->addr_len); 7164 return 0; 7165 } 7166 EXPORT_SYMBOL(dev_set_mac_address); 7167 7168 /** 7169 * dev_change_carrier - Change device carrier 7170 * @dev: device 7171 * @new_carrier: new value 7172 * 7173 * Change device carrier 7174 */ 7175 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7176 { 7177 const struct net_device_ops *ops = dev->netdev_ops; 7178 7179 if (!ops->ndo_change_carrier) 7180 return -EOPNOTSUPP; 7181 if (!netif_device_present(dev)) 7182 return -ENODEV; 7183 return ops->ndo_change_carrier(dev, new_carrier); 7184 } 7185 EXPORT_SYMBOL(dev_change_carrier); 7186 7187 /** 7188 * dev_get_phys_port_id - Get device physical port ID 7189 * @dev: device 7190 * @ppid: port ID 7191 * 7192 * Get device physical port ID 7193 */ 7194 int dev_get_phys_port_id(struct net_device *dev, 7195 struct netdev_phys_item_id *ppid) 7196 { 7197 const struct net_device_ops *ops = dev->netdev_ops; 7198 7199 if (!ops->ndo_get_phys_port_id) 7200 return -EOPNOTSUPP; 7201 return ops->ndo_get_phys_port_id(dev, ppid); 7202 } 7203 EXPORT_SYMBOL(dev_get_phys_port_id); 7204 7205 /** 7206 * dev_get_phys_port_name - Get device physical port name 7207 * @dev: device 7208 * @name: port name 7209 * @len: limit of bytes to copy to name 7210 * 7211 * Get device physical port name 7212 */ 7213 int dev_get_phys_port_name(struct net_device *dev, 7214 char *name, size_t len) 7215 { 7216 const struct net_device_ops *ops = dev->netdev_ops; 7217 7218 if (!ops->ndo_get_phys_port_name) 7219 return -EOPNOTSUPP; 7220 return ops->ndo_get_phys_port_name(dev, name, len); 7221 } 7222 EXPORT_SYMBOL(dev_get_phys_port_name); 7223 7224 /** 7225 * dev_change_proto_down - update protocol port state information 7226 * @dev: device 7227 * @proto_down: new value 7228 * 7229 * This info can be used by switch drivers to set the phys state of the 7230 * port. 7231 */ 7232 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7233 { 7234 const struct net_device_ops *ops = dev->netdev_ops; 7235 7236 if (!ops->ndo_change_proto_down) 7237 return -EOPNOTSUPP; 7238 if (!netif_device_present(dev)) 7239 return -ENODEV; 7240 return ops->ndo_change_proto_down(dev, proto_down); 7241 } 7242 EXPORT_SYMBOL(dev_change_proto_down); 7243 7244 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7245 struct netdev_bpf *xdp) 7246 { 7247 memset(xdp, 0, sizeof(*xdp)); 7248 xdp->command = XDP_QUERY_PROG; 7249 7250 /* Query must always succeed. */ 7251 WARN_ON(bpf_op(dev, xdp) < 0); 7252 } 7253 7254 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op) 7255 { 7256 struct netdev_bpf xdp; 7257 7258 __dev_xdp_query(dev, bpf_op, &xdp); 7259 7260 return xdp.prog_attached; 7261 } 7262 7263 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7264 struct netlink_ext_ack *extack, u32 flags, 7265 struct bpf_prog *prog) 7266 { 7267 struct netdev_bpf xdp; 7268 7269 memset(&xdp, 0, sizeof(xdp)); 7270 if (flags & XDP_FLAGS_HW_MODE) 7271 xdp.command = XDP_SETUP_PROG_HW; 7272 else 7273 xdp.command = XDP_SETUP_PROG; 7274 xdp.extack = extack; 7275 xdp.flags = flags; 7276 xdp.prog = prog; 7277 7278 return bpf_op(dev, &xdp); 7279 } 7280 7281 static void dev_xdp_uninstall(struct net_device *dev) 7282 { 7283 struct netdev_bpf xdp; 7284 bpf_op_t ndo_bpf; 7285 7286 /* Remove generic XDP */ 7287 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7288 7289 /* Remove from the driver */ 7290 ndo_bpf = dev->netdev_ops->ndo_bpf; 7291 if (!ndo_bpf) 7292 return; 7293 7294 __dev_xdp_query(dev, ndo_bpf, &xdp); 7295 if (xdp.prog_attached == XDP_ATTACHED_NONE) 7296 return; 7297 7298 /* Program removal should always succeed */ 7299 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL)); 7300 } 7301 7302 /** 7303 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7304 * @dev: device 7305 * @extack: netlink extended ack 7306 * @fd: new program fd or negative value to clear 7307 * @flags: xdp-related flags 7308 * 7309 * Set or clear a bpf program for a device 7310 */ 7311 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7312 int fd, u32 flags) 7313 { 7314 const struct net_device_ops *ops = dev->netdev_ops; 7315 struct bpf_prog *prog = NULL; 7316 bpf_op_t bpf_op, bpf_chk; 7317 int err; 7318 7319 ASSERT_RTNL(); 7320 7321 bpf_op = bpf_chk = ops->ndo_bpf; 7322 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7323 return -EOPNOTSUPP; 7324 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7325 bpf_op = generic_xdp_install; 7326 if (bpf_op == bpf_chk) 7327 bpf_chk = generic_xdp_install; 7328 7329 if (fd >= 0) { 7330 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk)) 7331 return -EEXIST; 7332 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7333 __dev_xdp_attached(dev, bpf_op)) 7334 return -EBUSY; 7335 7336 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7337 bpf_op == ops->ndo_bpf); 7338 if (IS_ERR(prog)) 7339 return PTR_ERR(prog); 7340 7341 if (!(flags & XDP_FLAGS_HW_MODE) && 7342 bpf_prog_is_dev_bound(prog->aux)) { 7343 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7344 bpf_prog_put(prog); 7345 return -EINVAL; 7346 } 7347 } 7348 7349 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7350 if (err < 0 && prog) 7351 bpf_prog_put(prog); 7352 7353 return err; 7354 } 7355 7356 /** 7357 * dev_new_index - allocate an ifindex 7358 * @net: the applicable net namespace 7359 * 7360 * Returns a suitable unique value for a new device interface 7361 * number. The caller must hold the rtnl semaphore or the 7362 * dev_base_lock to be sure it remains unique. 7363 */ 7364 static int dev_new_index(struct net *net) 7365 { 7366 int ifindex = net->ifindex; 7367 7368 for (;;) { 7369 if (++ifindex <= 0) 7370 ifindex = 1; 7371 if (!__dev_get_by_index(net, ifindex)) 7372 return net->ifindex = ifindex; 7373 } 7374 } 7375 7376 /* Delayed registration/unregisteration */ 7377 static LIST_HEAD(net_todo_list); 7378 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7379 7380 static void net_set_todo(struct net_device *dev) 7381 { 7382 list_add_tail(&dev->todo_list, &net_todo_list); 7383 dev_net(dev)->dev_unreg_count++; 7384 } 7385 7386 static void rollback_registered_many(struct list_head *head) 7387 { 7388 struct net_device *dev, *tmp; 7389 LIST_HEAD(close_head); 7390 7391 BUG_ON(dev_boot_phase); 7392 ASSERT_RTNL(); 7393 7394 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7395 /* Some devices call without registering 7396 * for initialization unwind. Remove those 7397 * devices and proceed with the remaining. 7398 */ 7399 if (dev->reg_state == NETREG_UNINITIALIZED) { 7400 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7401 dev->name, dev); 7402 7403 WARN_ON(1); 7404 list_del(&dev->unreg_list); 7405 continue; 7406 } 7407 dev->dismantle = true; 7408 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7409 } 7410 7411 /* If device is running, close it first. */ 7412 list_for_each_entry(dev, head, unreg_list) 7413 list_add_tail(&dev->close_list, &close_head); 7414 dev_close_many(&close_head, true); 7415 7416 list_for_each_entry(dev, head, unreg_list) { 7417 /* And unlink it from device chain. */ 7418 unlist_netdevice(dev); 7419 7420 dev->reg_state = NETREG_UNREGISTERING; 7421 } 7422 flush_all_backlogs(); 7423 7424 synchronize_net(); 7425 7426 list_for_each_entry(dev, head, unreg_list) { 7427 struct sk_buff *skb = NULL; 7428 7429 /* Shutdown queueing discipline. */ 7430 dev_shutdown(dev); 7431 7432 dev_xdp_uninstall(dev); 7433 7434 /* Notify protocols, that we are about to destroy 7435 * this device. They should clean all the things. 7436 */ 7437 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7438 7439 if (!dev->rtnl_link_ops || 7440 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7441 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7442 GFP_KERNEL, NULL, 0); 7443 7444 /* 7445 * Flush the unicast and multicast chains 7446 */ 7447 dev_uc_flush(dev); 7448 dev_mc_flush(dev); 7449 7450 if (dev->netdev_ops->ndo_uninit) 7451 dev->netdev_ops->ndo_uninit(dev); 7452 7453 if (skb) 7454 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7455 7456 /* Notifier chain MUST detach us all upper devices. */ 7457 WARN_ON(netdev_has_any_upper_dev(dev)); 7458 WARN_ON(netdev_has_any_lower_dev(dev)); 7459 7460 /* Remove entries from kobject tree */ 7461 netdev_unregister_kobject(dev); 7462 #ifdef CONFIG_XPS 7463 /* Remove XPS queueing entries */ 7464 netif_reset_xps_queues_gt(dev, 0); 7465 #endif 7466 } 7467 7468 synchronize_net(); 7469 7470 list_for_each_entry(dev, head, unreg_list) 7471 dev_put(dev); 7472 } 7473 7474 static void rollback_registered(struct net_device *dev) 7475 { 7476 LIST_HEAD(single); 7477 7478 list_add(&dev->unreg_list, &single); 7479 rollback_registered_many(&single); 7480 list_del(&single); 7481 } 7482 7483 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7484 struct net_device *upper, netdev_features_t features) 7485 { 7486 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7487 netdev_features_t feature; 7488 int feature_bit; 7489 7490 for_each_netdev_feature(&upper_disables, feature_bit) { 7491 feature = __NETIF_F_BIT(feature_bit); 7492 if (!(upper->wanted_features & feature) 7493 && (features & feature)) { 7494 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7495 &feature, upper->name); 7496 features &= ~feature; 7497 } 7498 } 7499 7500 return features; 7501 } 7502 7503 static void netdev_sync_lower_features(struct net_device *upper, 7504 struct net_device *lower, netdev_features_t features) 7505 { 7506 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7507 netdev_features_t feature; 7508 int feature_bit; 7509 7510 for_each_netdev_feature(&upper_disables, feature_bit) { 7511 feature = __NETIF_F_BIT(feature_bit); 7512 if (!(features & feature) && (lower->features & feature)) { 7513 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7514 &feature, lower->name); 7515 lower->wanted_features &= ~feature; 7516 netdev_update_features(lower); 7517 7518 if (unlikely(lower->features & feature)) 7519 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7520 &feature, lower->name); 7521 } 7522 } 7523 } 7524 7525 static netdev_features_t netdev_fix_features(struct net_device *dev, 7526 netdev_features_t features) 7527 { 7528 /* Fix illegal checksum combinations */ 7529 if ((features & NETIF_F_HW_CSUM) && 7530 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7531 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7532 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7533 } 7534 7535 /* TSO requires that SG is present as well. */ 7536 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7537 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7538 features &= ~NETIF_F_ALL_TSO; 7539 } 7540 7541 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7542 !(features & NETIF_F_IP_CSUM)) { 7543 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7544 features &= ~NETIF_F_TSO; 7545 features &= ~NETIF_F_TSO_ECN; 7546 } 7547 7548 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7549 !(features & NETIF_F_IPV6_CSUM)) { 7550 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7551 features &= ~NETIF_F_TSO6; 7552 } 7553 7554 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7555 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7556 features &= ~NETIF_F_TSO_MANGLEID; 7557 7558 /* TSO ECN requires that TSO is present as well. */ 7559 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7560 features &= ~NETIF_F_TSO_ECN; 7561 7562 /* Software GSO depends on SG. */ 7563 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7564 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7565 features &= ~NETIF_F_GSO; 7566 } 7567 7568 /* GSO partial features require GSO partial be set */ 7569 if ((features & dev->gso_partial_features) && 7570 !(features & NETIF_F_GSO_PARTIAL)) { 7571 netdev_dbg(dev, 7572 "Dropping partially supported GSO features since no GSO partial.\n"); 7573 features &= ~dev->gso_partial_features; 7574 } 7575 7576 if (!(features & NETIF_F_RXCSUM)) { 7577 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 7578 * successfully merged by hardware must also have the 7579 * checksum verified by hardware. If the user does not 7580 * want to enable RXCSUM, logically, we should disable GRO_HW. 7581 */ 7582 if (features & NETIF_F_GRO_HW) { 7583 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 7584 features &= ~NETIF_F_GRO_HW; 7585 } 7586 } 7587 7588 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 7589 if (features & NETIF_F_RXFCS) { 7590 if (features & NETIF_F_LRO) { 7591 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 7592 features &= ~NETIF_F_LRO; 7593 } 7594 7595 if (features & NETIF_F_GRO_HW) { 7596 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 7597 features &= ~NETIF_F_GRO_HW; 7598 } 7599 } 7600 7601 return features; 7602 } 7603 7604 int __netdev_update_features(struct net_device *dev) 7605 { 7606 struct net_device *upper, *lower; 7607 netdev_features_t features; 7608 struct list_head *iter; 7609 int err = -1; 7610 7611 ASSERT_RTNL(); 7612 7613 features = netdev_get_wanted_features(dev); 7614 7615 if (dev->netdev_ops->ndo_fix_features) 7616 features = dev->netdev_ops->ndo_fix_features(dev, features); 7617 7618 /* driver might be less strict about feature dependencies */ 7619 features = netdev_fix_features(dev, features); 7620 7621 /* some features can't be enabled if they're off an an upper device */ 7622 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7623 features = netdev_sync_upper_features(dev, upper, features); 7624 7625 if (dev->features == features) 7626 goto sync_lower; 7627 7628 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7629 &dev->features, &features); 7630 7631 if (dev->netdev_ops->ndo_set_features) 7632 err = dev->netdev_ops->ndo_set_features(dev, features); 7633 else 7634 err = 0; 7635 7636 if (unlikely(err < 0)) { 7637 netdev_err(dev, 7638 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7639 err, &features, &dev->features); 7640 /* return non-0 since some features might have changed and 7641 * it's better to fire a spurious notification than miss it 7642 */ 7643 return -1; 7644 } 7645 7646 sync_lower: 7647 /* some features must be disabled on lower devices when disabled 7648 * on an upper device (think: bonding master or bridge) 7649 */ 7650 netdev_for_each_lower_dev(dev, lower, iter) 7651 netdev_sync_lower_features(dev, lower, features); 7652 7653 if (!err) { 7654 netdev_features_t diff = features ^ dev->features; 7655 7656 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7657 /* udp_tunnel_{get,drop}_rx_info both need 7658 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7659 * device, or they won't do anything. 7660 * Thus we need to update dev->features 7661 * *before* calling udp_tunnel_get_rx_info, 7662 * but *after* calling udp_tunnel_drop_rx_info. 7663 */ 7664 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7665 dev->features = features; 7666 udp_tunnel_get_rx_info(dev); 7667 } else { 7668 udp_tunnel_drop_rx_info(dev); 7669 } 7670 } 7671 7672 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 7673 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 7674 dev->features = features; 7675 err |= vlan_get_rx_ctag_filter_info(dev); 7676 } else { 7677 vlan_drop_rx_ctag_filter_info(dev); 7678 } 7679 } 7680 7681 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 7682 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 7683 dev->features = features; 7684 err |= vlan_get_rx_stag_filter_info(dev); 7685 } else { 7686 vlan_drop_rx_stag_filter_info(dev); 7687 } 7688 } 7689 7690 dev->features = features; 7691 } 7692 7693 return err < 0 ? 0 : 1; 7694 } 7695 7696 /** 7697 * netdev_update_features - recalculate device features 7698 * @dev: the device to check 7699 * 7700 * Recalculate dev->features set and send notifications if it 7701 * has changed. Should be called after driver or hardware dependent 7702 * conditions might have changed that influence the features. 7703 */ 7704 void netdev_update_features(struct net_device *dev) 7705 { 7706 if (__netdev_update_features(dev)) 7707 netdev_features_change(dev); 7708 } 7709 EXPORT_SYMBOL(netdev_update_features); 7710 7711 /** 7712 * netdev_change_features - recalculate device features 7713 * @dev: the device to check 7714 * 7715 * Recalculate dev->features set and send notifications even 7716 * if they have not changed. Should be called instead of 7717 * netdev_update_features() if also dev->vlan_features might 7718 * have changed to allow the changes to be propagated to stacked 7719 * VLAN devices. 7720 */ 7721 void netdev_change_features(struct net_device *dev) 7722 { 7723 __netdev_update_features(dev); 7724 netdev_features_change(dev); 7725 } 7726 EXPORT_SYMBOL(netdev_change_features); 7727 7728 /** 7729 * netif_stacked_transfer_operstate - transfer operstate 7730 * @rootdev: the root or lower level device to transfer state from 7731 * @dev: the device to transfer operstate to 7732 * 7733 * Transfer operational state from root to device. This is normally 7734 * called when a stacking relationship exists between the root 7735 * device and the device(a leaf device). 7736 */ 7737 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7738 struct net_device *dev) 7739 { 7740 if (rootdev->operstate == IF_OPER_DORMANT) 7741 netif_dormant_on(dev); 7742 else 7743 netif_dormant_off(dev); 7744 7745 if (netif_carrier_ok(rootdev)) 7746 netif_carrier_on(dev); 7747 else 7748 netif_carrier_off(dev); 7749 } 7750 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7751 7752 static int netif_alloc_rx_queues(struct net_device *dev) 7753 { 7754 unsigned int i, count = dev->num_rx_queues; 7755 struct netdev_rx_queue *rx; 7756 size_t sz = count * sizeof(*rx); 7757 int err = 0; 7758 7759 BUG_ON(count < 1); 7760 7761 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7762 if (!rx) 7763 return -ENOMEM; 7764 7765 dev->_rx = rx; 7766 7767 for (i = 0; i < count; i++) { 7768 rx[i].dev = dev; 7769 7770 /* XDP RX-queue setup */ 7771 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 7772 if (err < 0) 7773 goto err_rxq_info; 7774 } 7775 return 0; 7776 7777 err_rxq_info: 7778 /* Rollback successful reg's and free other resources */ 7779 while (i--) 7780 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 7781 kvfree(dev->_rx); 7782 dev->_rx = NULL; 7783 return err; 7784 } 7785 7786 static void netif_free_rx_queues(struct net_device *dev) 7787 { 7788 unsigned int i, count = dev->num_rx_queues; 7789 7790 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 7791 if (!dev->_rx) 7792 return; 7793 7794 for (i = 0; i < count; i++) 7795 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 7796 7797 kvfree(dev->_rx); 7798 } 7799 7800 static void netdev_init_one_queue(struct net_device *dev, 7801 struct netdev_queue *queue, void *_unused) 7802 { 7803 /* Initialize queue lock */ 7804 spin_lock_init(&queue->_xmit_lock); 7805 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7806 queue->xmit_lock_owner = -1; 7807 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7808 queue->dev = dev; 7809 #ifdef CONFIG_BQL 7810 dql_init(&queue->dql, HZ); 7811 #endif 7812 } 7813 7814 static void netif_free_tx_queues(struct net_device *dev) 7815 { 7816 kvfree(dev->_tx); 7817 } 7818 7819 static int netif_alloc_netdev_queues(struct net_device *dev) 7820 { 7821 unsigned int count = dev->num_tx_queues; 7822 struct netdev_queue *tx; 7823 size_t sz = count * sizeof(*tx); 7824 7825 if (count < 1 || count > 0xffff) 7826 return -EINVAL; 7827 7828 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7829 if (!tx) 7830 return -ENOMEM; 7831 7832 dev->_tx = tx; 7833 7834 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7835 spin_lock_init(&dev->tx_global_lock); 7836 7837 return 0; 7838 } 7839 7840 void netif_tx_stop_all_queues(struct net_device *dev) 7841 { 7842 unsigned int i; 7843 7844 for (i = 0; i < dev->num_tx_queues; i++) { 7845 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7846 7847 netif_tx_stop_queue(txq); 7848 } 7849 } 7850 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7851 7852 /** 7853 * register_netdevice - register a network device 7854 * @dev: device to register 7855 * 7856 * Take a completed network device structure and add it to the kernel 7857 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7858 * chain. 0 is returned on success. A negative errno code is returned 7859 * on a failure to set up the device, or if the name is a duplicate. 7860 * 7861 * Callers must hold the rtnl semaphore. You may want 7862 * register_netdev() instead of this. 7863 * 7864 * BUGS: 7865 * The locking appears insufficient to guarantee two parallel registers 7866 * will not get the same name. 7867 */ 7868 7869 int register_netdevice(struct net_device *dev) 7870 { 7871 int ret; 7872 struct net *net = dev_net(dev); 7873 7874 BUG_ON(dev_boot_phase); 7875 ASSERT_RTNL(); 7876 7877 might_sleep(); 7878 7879 /* When net_device's are persistent, this will be fatal. */ 7880 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7881 BUG_ON(!net); 7882 7883 spin_lock_init(&dev->addr_list_lock); 7884 netdev_set_addr_lockdep_class(dev); 7885 7886 ret = dev_get_valid_name(net, dev, dev->name); 7887 if (ret < 0) 7888 goto out; 7889 7890 /* Init, if this function is available */ 7891 if (dev->netdev_ops->ndo_init) { 7892 ret = dev->netdev_ops->ndo_init(dev); 7893 if (ret) { 7894 if (ret > 0) 7895 ret = -EIO; 7896 goto out; 7897 } 7898 } 7899 7900 if (((dev->hw_features | dev->features) & 7901 NETIF_F_HW_VLAN_CTAG_FILTER) && 7902 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7903 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7904 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7905 ret = -EINVAL; 7906 goto err_uninit; 7907 } 7908 7909 ret = -EBUSY; 7910 if (!dev->ifindex) 7911 dev->ifindex = dev_new_index(net); 7912 else if (__dev_get_by_index(net, dev->ifindex)) 7913 goto err_uninit; 7914 7915 /* Transfer changeable features to wanted_features and enable 7916 * software offloads (GSO and GRO). 7917 */ 7918 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7919 dev->features |= NETIF_F_SOFT_FEATURES; 7920 7921 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7922 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7923 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7924 } 7925 7926 dev->wanted_features = dev->features & dev->hw_features; 7927 7928 if (!(dev->flags & IFF_LOOPBACK)) 7929 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7930 7931 /* If IPv4 TCP segmentation offload is supported we should also 7932 * allow the device to enable segmenting the frame with the option 7933 * of ignoring a static IP ID value. This doesn't enable the 7934 * feature itself but allows the user to enable it later. 7935 */ 7936 if (dev->hw_features & NETIF_F_TSO) 7937 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7938 if (dev->vlan_features & NETIF_F_TSO) 7939 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7940 if (dev->mpls_features & NETIF_F_TSO) 7941 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7942 if (dev->hw_enc_features & NETIF_F_TSO) 7943 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7944 7945 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7946 */ 7947 dev->vlan_features |= NETIF_F_HIGHDMA; 7948 7949 /* Make NETIF_F_SG inheritable to tunnel devices. 7950 */ 7951 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7952 7953 /* Make NETIF_F_SG inheritable to MPLS. 7954 */ 7955 dev->mpls_features |= NETIF_F_SG; 7956 7957 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7958 ret = notifier_to_errno(ret); 7959 if (ret) 7960 goto err_uninit; 7961 7962 ret = netdev_register_kobject(dev); 7963 if (ret) 7964 goto err_uninit; 7965 dev->reg_state = NETREG_REGISTERED; 7966 7967 __netdev_update_features(dev); 7968 7969 /* 7970 * Default initial state at registry is that the 7971 * device is present. 7972 */ 7973 7974 set_bit(__LINK_STATE_PRESENT, &dev->state); 7975 7976 linkwatch_init_dev(dev); 7977 7978 dev_init_scheduler(dev); 7979 dev_hold(dev); 7980 list_netdevice(dev); 7981 add_device_randomness(dev->dev_addr, dev->addr_len); 7982 7983 /* If the device has permanent device address, driver should 7984 * set dev_addr and also addr_assign_type should be set to 7985 * NET_ADDR_PERM (default value). 7986 */ 7987 if (dev->addr_assign_type == NET_ADDR_PERM) 7988 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7989 7990 /* Notify protocols, that a new device appeared. */ 7991 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7992 ret = notifier_to_errno(ret); 7993 if (ret) { 7994 rollback_registered(dev); 7995 dev->reg_state = NETREG_UNREGISTERED; 7996 } 7997 /* 7998 * Prevent userspace races by waiting until the network 7999 * device is fully setup before sending notifications. 8000 */ 8001 if (!dev->rtnl_link_ops || 8002 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8003 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8004 8005 out: 8006 return ret; 8007 8008 err_uninit: 8009 if (dev->netdev_ops->ndo_uninit) 8010 dev->netdev_ops->ndo_uninit(dev); 8011 if (dev->priv_destructor) 8012 dev->priv_destructor(dev); 8013 goto out; 8014 } 8015 EXPORT_SYMBOL(register_netdevice); 8016 8017 /** 8018 * init_dummy_netdev - init a dummy network device for NAPI 8019 * @dev: device to init 8020 * 8021 * This takes a network device structure and initialize the minimum 8022 * amount of fields so it can be used to schedule NAPI polls without 8023 * registering a full blown interface. This is to be used by drivers 8024 * that need to tie several hardware interfaces to a single NAPI 8025 * poll scheduler due to HW limitations. 8026 */ 8027 int init_dummy_netdev(struct net_device *dev) 8028 { 8029 /* Clear everything. Note we don't initialize spinlocks 8030 * are they aren't supposed to be taken by any of the 8031 * NAPI code and this dummy netdev is supposed to be 8032 * only ever used for NAPI polls 8033 */ 8034 memset(dev, 0, sizeof(struct net_device)); 8035 8036 /* make sure we BUG if trying to hit standard 8037 * register/unregister code path 8038 */ 8039 dev->reg_state = NETREG_DUMMY; 8040 8041 /* NAPI wants this */ 8042 INIT_LIST_HEAD(&dev->napi_list); 8043 8044 /* a dummy interface is started by default */ 8045 set_bit(__LINK_STATE_PRESENT, &dev->state); 8046 set_bit(__LINK_STATE_START, &dev->state); 8047 8048 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8049 * because users of this 'device' dont need to change 8050 * its refcount. 8051 */ 8052 8053 return 0; 8054 } 8055 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8056 8057 8058 /** 8059 * register_netdev - register a network device 8060 * @dev: device to register 8061 * 8062 * Take a completed network device structure and add it to the kernel 8063 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8064 * chain. 0 is returned on success. A negative errno code is returned 8065 * on a failure to set up the device, or if the name is a duplicate. 8066 * 8067 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8068 * and expands the device name if you passed a format string to 8069 * alloc_netdev. 8070 */ 8071 int register_netdev(struct net_device *dev) 8072 { 8073 int err; 8074 8075 if (rtnl_lock_killable()) 8076 return -EINTR; 8077 err = register_netdevice(dev); 8078 rtnl_unlock(); 8079 return err; 8080 } 8081 EXPORT_SYMBOL(register_netdev); 8082 8083 int netdev_refcnt_read(const struct net_device *dev) 8084 { 8085 int i, refcnt = 0; 8086 8087 for_each_possible_cpu(i) 8088 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8089 return refcnt; 8090 } 8091 EXPORT_SYMBOL(netdev_refcnt_read); 8092 8093 /** 8094 * netdev_wait_allrefs - wait until all references are gone. 8095 * @dev: target net_device 8096 * 8097 * This is called when unregistering network devices. 8098 * 8099 * Any protocol or device that holds a reference should register 8100 * for netdevice notification, and cleanup and put back the 8101 * reference if they receive an UNREGISTER event. 8102 * We can get stuck here if buggy protocols don't correctly 8103 * call dev_put. 8104 */ 8105 static void netdev_wait_allrefs(struct net_device *dev) 8106 { 8107 unsigned long rebroadcast_time, warning_time; 8108 int refcnt; 8109 8110 linkwatch_forget_dev(dev); 8111 8112 rebroadcast_time = warning_time = jiffies; 8113 refcnt = netdev_refcnt_read(dev); 8114 8115 while (refcnt != 0) { 8116 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8117 rtnl_lock(); 8118 8119 /* Rebroadcast unregister notification */ 8120 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8121 8122 __rtnl_unlock(); 8123 rcu_barrier(); 8124 rtnl_lock(); 8125 8126 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8127 &dev->state)) { 8128 /* We must not have linkwatch events 8129 * pending on unregister. If this 8130 * happens, we simply run the queue 8131 * unscheduled, resulting in a noop 8132 * for this device. 8133 */ 8134 linkwatch_run_queue(); 8135 } 8136 8137 __rtnl_unlock(); 8138 8139 rebroadcast_time = jiffies; 8140 } 8141 8142 msleep(250); 8143 8144 refcnt = netdev_refcnt_read(dev); 8145 8146 if (time_after(jiffies, warning_time + 10 * HZ)) { 8147 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8148 dev->name, refcnt); 8149 warning_time = jiffies; 8150 } 8151 } 8152 } 8153 8154 /* The sequence is: 8155 * 8156 * rtnl_lock(); 8157 * ... 8158 * register_netdevice(x1); 8159 * register_netdevice(x2); 8160 * ... 8161 * unregister_netdevice(y1); 8162 * unregister_netdevice(y2); 8163 * ... 8164 * rtnl_unlock(); 8165 * free_netdev(y1); 8166 * free_netdev(y2); 8167 * 8168 * We are invoked by rtnl_unlock(). 8169 * This allows us to deal with problems: 8170 * 1) We can delete sysfs objects which invoke hotplug 8171 * without deadlocking with linkwatch via keventd. 8172 * 2) Since we run with the RTNL semaphore not held, we can sleep 8173 * safely in order to wait for the netdev refcnt to drop to zero. 8174 * 8175 * We must not return until all unregister events added during 8176 * the interval the lock was held have been completed. 8177 */ 8178 void netdev_run_todo(void) 8179 { 8180 struct list_head list; 8181 8182 /* Snapshot list, allow later requests */ 8183 list_replace_init(&net_todo_list, &list); 8184 8185 __rtnl_unlock(); 8186 8187 8188 /* Wait for rcu callbacks to finish before next phase */ 8189 if (!list_empty(&list)) 8190 rcu_barrier(); 8191 8192 while (!list_empty(&list)) { 8193 struct net_device *dev 8194 = list_first_entry(&list, struct net_device, todo_list); 8195 list_del(&dev->todo_list); 8196 8197 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8198 pr_err("network todo '%s' but state %d\n", 8199 dev->name, dev->reg_state); 8200 dump_stack(); 8201 continue; 8202 } 8203 8204 dev->reg_state = NETREG_UNREGISTERED; 8205 8206 netdev_wait_allrefs(dev); 8207 8208 /* paranoia */ 8209 BUG_ON(netdev_refcnt_read(dev)); 8210 BUG_ON(!list_empty(&dev->ptype_all)); 8211 BUG_ON(!list_empty(&dev->ptype_specific)); 8212 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8213 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8214 #if IS_ENABLED(CONFIG_DECNET) 8215 WARN_ON(dev->dn_ptr); 8216 #endif 8217 if (dev->priv_destructor) 8218 dev->priv_destructor(dev); 8219 if (dev->needs_free_netdev) 8220 free_netdev(dev); 8221 8222 /* Report a network device has been unregistered */ 8223 rtnl_lock(); 8224 dev_net(dev)->dev_unreg_count--; 8225 __rtnl_unlock(); 8226 wake_up(&netdev_unregistering_wq); 8227 8228 /* Free network device */ 8229 kobject_put(&dev->dev.kobj); 8230 } 8231 } 8232 8233 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8234 * all the same fields in the same order as net_device_stats, with only 8235 * the type differing, but rtnl_link_stats64 may have additional fields 8236 * at the end for newer counters. 8237 */ 8238 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8239 const struct net_device_stats *netdev_stats) 8240 { 8241 #if BITS_PER_LONG == 64 8242 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8243 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8244 /* zero out counters that only exist in rtnl_link_stats64 */ 8245 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8246 sizeof(*stats64) - sizeof(*netdev_stats)); 8247 #else 8248 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8249 const unsigned long *src = (const unsigned long *)netdev_stats; 8250 u64 *dst = (u64 *)stats64; 8251 8252 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8253 for (i = 0; i < n; i++) 8254 dst[i] = src[i]; 8255 /* zero out counters that only exist in rtnl_link_stats64 */ 8256 memset((char *)stats64 + n * sizeof(u64), 0, 8257 sizeof(*stats64) - n * sizeof(u64)); 8258 #endif 8259 } 8260 EXPORT_SYMBOL(netdev_stats_to_stats64); 8261 8262 /** 8263 * dev_get_stats - get network device statistics 8264 * @dev: device to get statistics from 8265 * @storage: place to store stats 8266 * 8267 * Get network statistics from device. Return @storage. 8268 * The device driver may provide its own method by setting 8269 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8270 * otherwise the internal statistics structure is used. 8271 */ 8272 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8273 struct rtnl_link_stats64 *storage) 8274 { 8275 const struct net_device_ops *ops = dev->netdev_ops; 8276 8277 if (ops->ndo_get_stats64) { 8278 memset(storage, 0, sizeof(*storage)); 8279 ops->ndo_get_stats64(dev, storage); 8280 } else if (ops->ndo_get_stats) { 8281 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8282 } else { 8283 netdev_stats_to_stats64(storage, &dev->stats); 8284 } 8285 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8286 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8287 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8288 return storage; 8289 } 8290 EXPORT_SYMBOL(dev_get_stats); 8291 8292 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8293 { 8294 struct netdev_queue *queue = dev_ingress_queue(dev); 8295 8296 #ifdef CONFIG_NET_CLS_ACT 8297 if (queue) 8298 return queue; 8299 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8300 if (!queue) 8301 return NULL; 8302 netdev_init_one_queue(dev, queue, NULL); 8303 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8304 queue->qdisc_sleeping = &noop_qdisc; 8305 rcu_assign_pointer(dev->ingress_queue, queue); 8306 #endif 8307 return queue; 8308 } 8309 8310 static const struct ethtool_ops default_ethtool_ops; 8311 8312 void netdev_set_default_ethtool_ops(struct net_device *dev, 8313 const struct ethtool_ops *ops) 8314 { 8315 if (dev->ethtool_ops == &default_ethtool_ops) 8316 dev->ethtool_ops = ops; 8317 } 8318 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8319 8320 void netdev_freemem(struct net_device *dev) 8321 { 8322 char *addr = (char *)dev - dev->padded; 8323 8324 kvfree(addr); 8325 } 8326 8327 /** 8328 * alloc_netdev_mqs - allocate network device 8329 * @sizeof_priv: size of private data to allocate space for 8330 * @name: device name format string 8331 * @name_assign_type: origin of device name 8332 * @setup: callback to initialize device 8333 * @txqs: the number of TX subqueues to allocate 8334 * @rxqs: the number of RX subqueues to allocate 8335 * 8336 * Allocates a struct net_device with private data area for driver use 8337 * and performs basic initialization. Also allocates subqueue structs 8338 * for each queue on the device. 8339 */ 8340 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8341 unsigned char name_assign_type, 8342 void (*setup)(struct net_device *), 8343 unsigned int txqs, unsigned int rxqs) 8344 { 8345 struct net_device *dev; 8346 unsigned int alloc_size; 8347 struct net_device *p; 8348 8349 BUG_ON(strlen(name) >= sizeof(dev->name)); 8350 8351 if (txqs < 1) { 8352 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8353 return NULL; 8354 } 8355 8356 if (rxqs < 1) { 8357 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8358 return NULL; 8359 } 8360 8361 alloc_size = sizeof(struct net_device); 8362 if (sizeof_priv) { 8363 /* ensure 32-byte alignment of private area */ 8364 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8365 alloc_size += sizeof_priv; 8366 } 8367 /* ensure 32-byte alignment of whole construct */ 8368 alloc_size += NETDEV_ALIGN - 1; 8369 8370 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8371 if (!p) 8372 return NULL; 8373 8374 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8375 dev->padded = (char *)dev - (char *)p; 8376 8377 dev->pcpu_refcnt = alloc_percpu(int); 8378 if (!dev->pcpu_refcnt) 8379 goto free_dev; 8380 8381 if (dev_addr_init(dev)) 8382 goto free_pcpu; 8383 8384 dev_mc_init(dev); 8385 dev_uc_init(dev); 8386 8387 dev_net_set(dev, &init_net); 8388 8389 dev->gso_max_size = GSO_MAX_SIZE; 8390 dev->gso_max_segs = GSO_MAX_SEGS; 8391 8392 INIT_LIST_HEAD(&dev->napi_list); 8393 INIT_LIST_HEAD(&dev->unreg_list); 8394 INIT_LIST_HEAD(&dev->close_list); 8395 INIT_LIST_HEAD(&dev->link_watch_list); 8396 INIT_LIST_HEAD(&dev->adj_list.upper); 8397 INIT_LIST_HEAD(&dev->adj_list.lower); 8398 INIT_LIST_HEAD(&dev->ptype_all); 8399 INIT_LIST_HEAD(&dev->ptype_specific); 8400 #ifdef CONFIG_NET_SCHED 8401 hash_init(dev->qdisc_hash); 8402 #endif 8403 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8404 setup(dev); 8405 8406 if (!dev->tx_queue_len) { 8407 dev->priv_flags |= IFF_NO_QUEUE; 8408 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8409 } 8410 8411 dev->num_tx_queues = txqs; 8412 dev->real_num_tx_queues = txqs; 8413 if (netif_alloc_netdev_queues(dev)) 8414 goto free_all; 8415 8416 dev->num_rx_queues = rxqs; 8417 dev->real_num_rx_queues = rxqs; 8418 if (netif_alloc_rx_queues(dev)) 8419 goto free_all; 8420 8421 strcpy(dev->name, name); 8422 dev->name_assign_type = name_assign_type; 8423 dev->group = INIT_NETDEV_GROUP; 8424 if (!dev->ethtool_ops) 8425 dev->ethtool_ops = &default_ethtool_ops; 8426 8427 nf_hook_ingress_init(dev); 8428 8429 return dev; 8430 8431 free_all: 8432 free_netdev(dev); 8433 return NULL; 8434 8435 free_pcpu: 8436 free_percpu(dev->pcpu_refcnt); 8437 free_dev: 8438 netdev_freemem(dev); 8439 return NULL; 8440 } 8441 EXPORT_SYMBOL(alloc_netdev_mqs); 8442 8443 /** 8444 * free_netdev - free network device 8445 * @dev: device 8446 * 8447 * This function does the last stage of destroying an allocated device 8448 * interface. The reference to the device object is released. If this 8449 * is the last reference then it will be freed.Must be called in process 8450 * context. 8451 */ 8452 void free_netdev(struct net_device *dev) 8453 { 8454 struct napi_struct *p, *n; 8455 8456 might_sleep(); 8457 netif_free_tx_queues(dev); 8458 netif_free_rx_queues(dev); 8459 8460 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8461 8462 /* Flush device addresses */ 8463 dev_addr_flush(dev); 8464 8465 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8466 netif_napi_del(p); 8467 8468 free_percpu(dev->pcpu_refcnt); 8469 dev->pcpu_refcnt = NULL; 8470 8471 /* Compatibility with error handling in drivers */ 8472 if (dev->reg_state == NETREG_UNINITIALIZED) { 8473 netdev_freemem(dev); 8474 return; 8475 } 8476 8477 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8478 dev->reg_state = NETREG_RELEASED; 8479 8480 /* will free via device release */ 8481 put_device(&dev->dev); 8482 } 8483 EXPORT_SYMBOL(free_netdev); 8484 8485 /** 8486 * synchronize_net - Synchronize with packet receive processing 8487 * 8488 * Wait for packets currently being received to be done. 8489 * Does not block later packets from starting. 8490 */ 8491 void synchronize_net(void) 8492 { 8493 might_sleep(); 8494 if (rtnl_is_locked()) 8495 synchronize_rcu_expedited(); 8496 else 8497 synchronize_rcu(); 8498 } 8499 EXPORT_SYMBOL(synchronize_net); 8500 8501 /** 8502 * unregister_netdevice_queue - remove device from the kernel 8503 * @dev: device 8504 * @head: list 8505 * 8506 * This function shuts down a device interface and removes it 8507 * from the kernel tables. 8508 * If head not NULL, device is queued to be unregistered later. 8509 * 8510 * Callers must hold the rtnl semaphore. You may want 8511 * unregister_netdev() instead of this. 8512 */ 8513 8514 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8515 { 8516 ASSERT_RTNL(); 8517 8518 if (head) { 8519 list_move_tail(&dev->unreg_list, head); 8520 } else { 8521 rollback_registered(dev); 8522 /* Finish processing unregister after unlock */ 8523 net_set_todo(dev); 8524 } 8525 } 8526 EXPORT_SYMBOL(unregister_netdevice_queue); 8527 8528 /** 8529 * unregister_netdevice_many - unregister many devices 8530 * @head: list of devices 8531 * 8532 * Note: As most callers use a stack allocated list_head, 8533 * we force a list_del() to make sure stack wont be corrupted later. 8534 */ 8535 void unregister_netdevice_many(struct list_head *head) 8536 { 8537 struct net_device *dev; 8538 8539 if (!list_empty(head)) { 8540 rollback_registered_many(head); 8541 list_for_each_entry(dev, head, unreg_list) 8542 net_set_todo(dev); 8543 list_del(head); 8544 } 8545 } 8546 EXPORT_SYMBOL(unregister_netdevice_many); 8547 8548 /** 8549 * unregister_netdev - remove device from the kernel 8550 * @dev: device 8551 * 8552 * This function shuts down a device interface and removes it 8553 * from the kernel tables. 8554 * 8555 * This is just a wrapper for unregister_netdevice that takes 8556 * the rtnl semaphore. In general you want to use this and not 8557 * unregister_netdevice. 8558 */ 8559 void unregister_netdev(struct net_device *dev) 8560 { 8561 rtnl_lock(); 8562 unregister_netdevice(dev); 8563 rtnl_unlock(); 8564 } 8565 EXPORT_SYMBOL(unregister_netdev); 8566 8567 /** 8568 * dev_change_net_namespace - move device to different nethost namespace 8569 * @dev: device 8570 * @net: network namespace 8571 * @pat: If not NULL name pattern to try if the current device name 8572 * is already taken in the destination network namespace. 8573 * 8574 * This function shuts down a device interface and moves it 8575 * to a new network namespace. On success 0 is returned, on 8576 * a failure a netagive errno code is returned. 8577 * 8578 * Callers must hold the rtnl semaphore. 8579 */ 8580 8581 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8582 { 8583 int err, new_nsid, new_ifindex; 8584 8585 ASSERT_RTNL(); 8586 8587 /* Don't allow namespace local devices to be moved. */ 8588 err = -EINVAL; 8589 if (dev->features & NETIF_F_NETNS_LOCAL) 8590 goto out; 8591 8592 /* Ensure the device has been registrered */ 8593 if (dev->reg_state != NETREG_REGISTERED) 8594 goto out; 8595 8596 /* Get out if there is nothing todo */ 8597 err = 0; 8598 if (net_eq(dev_net(dev), net)) 8599 goto out; 8600 8601 /* Pick the destination device name, and ensure 8602 * we can use it in the destination network namespace. 8603 */ 8604 err = -EEXIST; 8605 if (__dev_get_by_name(net, dev->name)) { 8606 /* We get here if we can't use the current device name */ 8607 if (!pat) 8608 goto out; 8609 if (dev_get_valid_name(net, dev, pat) < 0) 8610 goto out; 8611 } 8612 8613 /* 8614 * And now a mini version of register_netdevice unregister_netdevice. 8615 */ 8616 8617 /* If device is running close it first. */ 8618 dev_close(dev); 8619 8620 /* And unlink it from device chain */ 8621 err = -ENODEV; 8622 unlist_netdevice(dev); 8623 8624 synchronize_net(); 8625 8626 /* Shutdown queueing discipline. */ 8627 dev_shutdown(dev); 8628 8629 /* Notify protocols, that we are about to destroy 8630 * this device. They should clean all the things. 8631 * 8632 * Note that dev->reg_state stays at NETREG_REGISTERED. 8633 * This is wanted because this way 8021q and macvlan know 8634 * the device is just moving and can keep their slaves up. 8635 */ 8636 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8637 rcu_barrier(); 8638 8639 new_nsid = peernet2id_alloc(dev_net(dev), net); 8640 /* If there is an ifindex conflict assign a new one */ 8641 if (__dev_get_by_index(net, dev->ifindex)) 8642 new_ifindex = dev_new_index(net); 8643 else 8644 new_ifindex = dev->ifindex; 8645 8646 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 8647 new_ifindex); 8648 8649 /* 8650 * Flush the unicast and multicast chains 8651 */ 8652 dev_uc_flush(dev); 8653 dev_mc_flush(dev); 8654 8655 /* Send a netdev-removed uevent to the old namespace */ 8656 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8657 netdev_adjacent_del_links(dev); 8658 8659 /* Actually switch the network namespace */ 8660 dev_net_set(dev, net); 8661 dev->ifindex = new_ifindex; 8662 8663 /* Send a netdev-add uevent to the new namespace */ 8664 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8665 netdev_adjacent_add_links(dev); 8666 8667 /* Fixup kobjects */ 8668 err = device_rename(&dev->dev, dev->name); 8669 WARN_ON(err); 8670 8671 /* Add the device back in the hashes */ 8672 list_netdevice(dev); 8673 8674 /* Notify protocols, that a new device appeared. */ 8675 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8676 8677 /* 8678 * Prevent userspace races by waiting until the network 8679 * device is fully setup before sending notifications. 8680 */ 8681 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8682 8683 synchronize_net(); 8684 err = 0; 8685 out: 8686 return err; 8687 } 8688 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8689 8690 static int dev_cpu_dead(unsigned int oldcpu) 8691 { 8692 struct sk_buff **list_skb; 8693 struct sk_buff *skb; 8694 unsigned int cpu; 8695 struct softnet_data *sd, *oldsd, *remsd = NULL; 8696 8697 local_irq_disable(); 8698 cpu = smp_processor_id(); 8699 sd = &per_cpu(softnet_data, cpu); 8700 oldsd = &per_cpu(softnet_data, oldcpu); 8701 8702 /* Find end of our completion_queue. */ 8703 list_skb = &sd->completion_queue; 8704 while (*list_skb) 8705 list_skb = &(*list_skb)->next; 8706 /* Append completion queue from offline CPU. */ 8707 *list_skb = oldsd->completion_queue; 8708 oldsd->completion_queue = NULL; 8709 8710 /* Append output queue from offline CPU. */ 8711 if (oldsd->output_queue) { 8712 *sd->output_queue_tailp = oldsd->output_queue; 8713 sd->output_queue_tailp = oldsd->output_queue_tailp; 8714 oldsd->output_queue = NULL; 8715 oldsd->output_queue_tailp = &oldsd->output_queue; 8716 } 8717 /* Append NAPI poll list from offline CPU, with one exception : 8718 * process_backlog() must be called by cpu owning percpu backlog. 8719 * We properly handle process_queue & input_pkt_queue later. 8720 */ 8721 while (!list_empty(&oldsd->poll_list)) { 8722 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8723 struct napi_struct, 8724 poll_list); 8725 8726 list_del_init(&napi->poll_list); 8727 if (napi->poll == process_backlog) 8728 napi->state = 0; 8729 else 8730 ____napi_schedule(sd, napi); 8731 } 8732 8733 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8734 local_irq_enable(); 8735 8736 #ifdef CONFIG_RPS 8737 remsd = oldsd->rps_ipi_list; 8738 oldsd->rps_ipi_list = NULL; 8739 #endif 8740 /* send out pending IPI's on offline CPU */ 8741 net_rps_send_ipi(remsd); 8742 8743 /* Process offline CPU's input_pkt_queue */ 8744 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8745 netif_rx_ni(skb); 8746 input_queue_head_incr(oldsd); 8747 } 8748 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8749 netif_rx_ni(skb); 8750 input_queue_head_incr(oldsd); 8751 } 8752 8753 return 0; 8754 } 8755 8756 /** 8757 * netdev_increment_features - increment feature set by one 8758 * @all: current feature set 8759 * @one: new feature set 8760 * @mask: mask feature set 8761 * 8762 * Computes a new feature set after adding a device with feature set 8763 * @one to the master device with current feature set @all. Will not 8764 * enable anything that is off in @mask. Returns the new feature set. 8765 */ 8766 netdev_features_t netdev_increment_features(netdev_features_t all, 8767 netdev_features_t one, netdev_features_t mask) 8768 { 8769 if (mask & NETIF_F_HW_CSUM) 8770 mask |= NETIF_F_CSUM_MASK; 8771 mask |= NETIF_F_VLAN_CHALLENGED; 8772 8773 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8774 all &= one | ~NETIF_F_ALL_FOR_ALL; 8775 8776 /* If one device supports hw checksumming, set for all. */ 8777 if (all & NETIF_F_HW_CSUM) 8778 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8779 8780 return all; 8781 } 8782 EXPORT_SYMBOL(netdev_increment_features); 8783 8784 static struct hlist_head * __net_init netdev_create_hash(void) 8785 { 8786 int i; 8787 struct hlist_head *hash; 8788 8789 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8790 if (hash != NULL) 8791 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8792 INIT_HLIST_HEAD(&hash[i]); 8793 8794 return hash; 8795 } 8796 8797 /* Initialize per network namespace state */ 8798 static int __net_init netdev_init(struct net *net) 8799 { 8800 if (net != &init_net) 8801 INIT_LIST_HEAD(&net->dev_base_head); 8802 8803 net->dev_name_head = netdev_create_hash(); 8804 if (net->dev_name_head == NULL) 8805 goto err_name; 8806 8807 net->dev_index_head = netdev_create_hash(); 8808 if (net->dev_index_head == NULL) 8809 goto err_idx; 8810 8811 return 0; 8812 8813 err_idx: 8814 kfree(net->dev_name_head); 8815 err_name: 8816 return -ENOMEM; 8817 } 8818 8819 /** 8820 * netdev_drivername - network driver for the device 8821 * @dev: network device 8822 * 8823 * Determine network driver for device. 8824 */ 8825 const char *netdev_drivername(const struct net_device *dev) 8826 { 8827 const struct device_driver *driver; 8828 const struct device *parent; 8829 const char *empty = ""; 8830 8831 parent = dev->dev.parent; 8832 if (!parent) 8833 return empty; 8834 8835 driver = parent->driver; 8836 if (driver && driver->name) 8837 return driver->name; 8838 return empty; 8839 } 8840 8841 static void __netdev_printk(const char *level, const struct net_device *dev, 8842 struct va_format *vaf) 8843 { 8844 if (dev && dev->dev.parent) { 8845 dev_printk_emit(level[1] - '0', 8846 dev->dev.parent, 8847 "%s %s %s%s: %pV", 8848 dev_driver_string(dev->dev.parent), 8849 dev_name(dev->dev.parent), 8850 netdev_name(dev), netdev_reg_state(dev), 8851 vaf); 8852 } else if (dev) { 8853 printk("%s%s%s: %pV", 8854 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8855 } else { 8856 printk("%s(NULL net_device): %pV", level, vaf); 8857 } 8858 } 8859 8860 void netdev_printk(const char *level, const struct net_device *dev, 8861 const char *format, ...) 8862 { 8863 struct va_format vaf; 8864 va_list args; 8865 8866 va_start(args, format); 8867 8868 vaf.fmt = format; 8869 vaf.va = &args; 8870 8871 __netdev_printk(level, dev, &vaf); 8872 8873 va_end(args); 8874 } 8875 EXPORT_SYMBOL(netdev_printk); 8876 8877 #define define_netdev_printk_level(func, level) \ 8878 void func(const struct net_device *dev, const char *fmt, ...) \ 8879 { \ 8880 struct va_format vaf; \ 8881 va_list args; \ 8882 \ 8883 va_start(args, fmt); \ 8884 \ 8885 vaf.fmt = fmt; \ 8886 vaf.va = &args; \ 8887 \ 8888 __netdev_printk(level, dev, &vaf); \ 8889 \ 8890 va_end(args); \ 8891 } \ 8892 EXPORT_SYMBOL(func); 8893 8894 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8895 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8896 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8897 define_netdev_printk_level(netdev_err, KERN_ERR); 8898 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8899 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8900 define_netdev_printk_level(netdev_info, KERN_INFO); 8901 8902 static void __net_exit netdev_exit(struct net *net) 8903 { 8904 kfree(net->dev_name_head); 8905 kfree(net->dev_index_head); 8906 if (net != &init_net) 8907 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 8908 } 8909 8910 static struct pernet_operations __net_initdata netdev_net_ops = { 8911 .init = netdev_init, 8912 .exit = netdev_exit, 8913 }; 8914 8915 static void __net_exit default_device_exit(struct net *net) 8916 { 8917 struct net_device *dev, *aux; 8918 /* 8919 * Push all migratable network devices back to the 8920 * initial network namespace 8921 */ 8922 rtnl_lock(); 8923 for_each_netdev_safe(net, dev, aux) { 8924 int err; 8925 char fb_name[IFNAMSIZ]; 8926 8927 /* Ignore unmoveable devices (i.e. loopback) */ 8928 if (dev->features & NETIF_F_NETNS_LOCAL) 8929 continue; 8930 8931 /* Leave virtual devices for the generic cleanup */ 8932 if (dev->rtnl_link_ops) 8933 continue; 8934 8935 /* Push remaining network devices to init_net */ 8936 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8937 err = dev_change_net_namespace(dev, &init_net, fb_name); 8938 if (err) { 8939 pr_emerg("%s: failed to move %s to init_net: %d\n", 8940 __func__, dev->name, err); 8941 BUG(); 8942 } 8943 } 8944 rtnl_unlock(); 8945 } 8946 8947 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8948 { 8949 /* Return with the rtnl_lock held when there are no network 8950 * devices unregistering in any network namespace in net_list. 8951 */ 8952 struct net *net; 8953 bool unregistering; 8954 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8955 8956 add_wait_queue(&netdev_unregistering_wq, &wait); 8957 for (;;) { 8958 unregistering = false; 8959 rtnl_lock(); 8960 list_for_each_entry(net, net_list, exit_list) { 8961 if (net->dev_unreg_count > 0) { 8962 unregistering = true; 8963 break; 8964 } 8965 } 8966 if (!unregistering) 8967 break; 8968 __rtnl_unlock(); 8969 8970 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8971 } 8972 remove_wait_queue(&netdev_unregistering_wq, &wait); 8973 } 8974 8975 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8976 { 8977 /* At exit all network devices most be removed from a network 8978 * namespace. Do this in the reverse order of registration. 8979 * Do this across as many network namespaces as possible to 8980 * improve batching efficiency. 8981 */ 8982 struct net_device *dev; 8983 struct net *net; 8984 LIST_HEAD(dev_kill_list); 8985 8986 /* To prevent network device cleanup code from dereferencing 8987 * loopback devices or network devices that have been freed 8988 * wait here for all pending unregistrations to complete, 8989 * before unregistring the loopback device and allowing the 8990 * network namespace be freed. 8991 * 8992 * The netdev todo list containing all network devices 8993 * unregistrations that happen in default_device_exit_batch 8994 * will run in the rtnl_unlock() at the end of 8995 * default_device_exit_batch. 8996 */ 8997 rtnl_lock_unregistering(net_list); 8998 list_for_each_entry(net, net_list, exit_list) { 8999 for_each_netdev_reverse(net, dev) { 9000 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9001 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9002 else 9003 unregister_netdevice_queue(dev, &dev_kill_list); 9004 } 9005 } 9006 unregister_netdevice_many(&dev_kill_list); 9007 rtnl_unlock(); 9008 } 9009 9010 static struct pernet_operations __net_initdata default_device_ops = { 9011 .exit = default_device_exit, 9012 .exit_batch = default_device_exit_batch, 9013 }; 9014 9015 /* 9016 * Initialize the DEV module. At boot time this walks the device list and 9017 * unhooks any devices that fail to initialise (normally hardware not 9018 * present) and leaves us with a valid list of present and active devices. 9019 * 9020 */ 9021 9022 /* 9023 * This is called single threaded during boot, so no need 9024 * to take the rtnl semaphore. 9025 */ 9026 static int __init net_dev_init(void) 9027 { 9028 int i, rc = -ENOMEM; 9029 9030 BUG_ON(!dev_boot_phase); 9031 9032 if (dev_proc_init()) 9033 goto out; 9034 9035 if (netdev_kobject_init()) 9036 goto out; 9037 9038 INIT_LIST_HEAD(&ptype_all); 9039 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9040 INIT_LIST_HEAD(&ptype_base[i]); 9041 9042 INIT_LIST_HEAD(&offload_base); 9043 9044 if (register_pernet_subsys(&netdev_net_ops)) 9045 goto out; 9046 9047 /* 9048 * Initialise the packet receive queues. 9049 */ 9050 9051 for_each_possible_cpu(i) { 9052 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9053 struct softnet_data *sd = &per_cpu(softnet_data, i); 9054 9055 INIT_WORK(flush, flush_backlog); 9056 9057 skb_queue_head_init(&sd->input_pkt_queue); 9058 skb_queue_head_init(&sd->process_queue); 9059 #ifdef CONFIG_XFRM_OFFLOAD 9060 skb_queue_head_init(&sd->xfrm_backlog); 9061 #endif 9062 INIT_LIST_HEAD(&sd->poll_list); 9063 sd->output_queue_tailp = &sd->output_queue; 9064 #ifdef CONFIG_RPS 9065 sd->csd.func = rps_trigger_softirq; 9066 sd->csd.info = sd; 9067 sd->cpu = i; 9068 #endif 9069 9070 sd->backlog.poll = process_backlog; 9071 sd->backlog.weight = weight_p; 9072 } 9073 9074 dev_boot_phase = 0; 9075 9076 /* The loopback device is special if any other network devices 9077 * is present in a network namespace the loopback device must 9078 * be present. Since we now dynamically allocate and free the 9079 * loopback device ensure this invariant is maintained by 9080 * keeping the loopback device as the first device on the 9081 * list of network devices. Ensuring the loopback devices 9082 * is the first device that appears and the last network device 9083 * that disappears. 9084 */ 9085 if (register_pernet_device(&loopback_net_ops)) 9086 goto out; 9087 9088 if (register_pernet_device(&default_device_ops)) 9089 goto out; 9090 9091 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9092 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9093 9094 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9095 NULL, dev_cpu_dead); 9096 WARN_ON(rc < 0); 9097 rc = 0; 9098 out: 9099 return rc; 9100 } 9101 9102 subsys_initcall(net_dev_init); 9103