xref: /linux/net/core/dev.c (revision 1795cf48b322b4d19230a40dbe7181acedd34a94)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 
130 #include "net-sysfs.h"
131 
132 /*
133  *	The list of packet types we will receive (as opposed to discard)
134  *	and the routines to invoke.
135  *
136  *	Why 16. Because with 16 the only overlap we get on a hash of the
137  *	low nibble of the protocol value is RARP/SNAP/X.25.
138  *
139  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
140  *             sure which should go first, but I bet it won't make much
141  *             difference if we are running VLANs.  The good news is that
142  *             this protocol won't be in the list unless compiled in, so
143  *             the average user (w/out VLANs) will not be adversely affected.
144  *             --BLG
145  *
146  *		0800	IP
147  *		8100    802.1Q VLAN
148  *		0001	802.3
149  *		0002	AX.25
150  *		0004	802.2
151  *		8035	RARP
152  *		0005	SNAP
153  *		0805	X.25
154  *		0806	ARP
155  *		8137	IPX
156  *		0009	Localtalk
157  *		86DD	IPv6
158  */
159 
160 #define PTYPE_HASH_SIZE	(16)
161 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
162 
163 static DEFINE_SPINLOCK(ptype_lock);
164 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
165 static struct list_head ptype_all __read_mostly;	/* Taps */
166 
167 #ifdef CONFIG_NET_DMA
168 struct net_dma {
169 	struct dma_client client;
170 	spinlock_t lock;
171 	cpumask_t channel_mask;
172 	struct dma_chan **channels;
173 };
174 
175 static enum dma_state_client
176 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
177 	enum dma_state state);
178 
179 static struct net_dma net_dma = {
180 	.client = {
181 		.event_callback = netdev_dma_event,
182 	},
183 };
184 #endif
185 
186 /*
187  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
188  * semaphore.
189  *
190  * Pure readers hold dev_base_lock for reading.
191  *
192  * Writers must hold the rtnl semaphore while they loop through the
193  * dev_base_head list, and hold dev_base_lock for writing when they do the
194  * actual updates.  This allows pure readers to access the list even
195  * while a writer is preparing to update it.
196  *
197  * To put it another way, dev_base_lock is held for writing only to
198  * protect against pure readers; the rtnl semaphore provides the
199  * protection against other writers.
200  *
201  * See, for example usages, register_netdevice() and
202  * unregister_netdevice(), which must be called with the rtnl
203  * semaphore held.
204  */
205 DEFINE_RWLOCK(dev_base_lock);
206 
207 EXPORT_SYMBOL(dev_base_lock);
208 
209 #define NETDEV_HASHBITS	8
210 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
211 
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 {
214 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
215 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
216 }
217 
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
221 }
222 
223 /* Device list insertion */
224 static int list_netdevice(struct net_device *dev)
225 {
226 	struct net *net = dev_net(dev);
227 
228 	ASSERT_RTNL();
229 
230 	write_lock_bh(&dev_base_lock);
231 	list_add_tail(&dev->dev_list, &net->dev_base_head);
232 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
233 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
234 	write_unlock_bh(&dev_base_lock);
235 	return 0;
236 }
237 
238 /* Device list removal */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 	ASSERT_RTNL();
242 
243 	/* Unlink dev from the device chain */
244 	write_lock_bh(&dev_base_lock);
245 	list_del(&dev->dev_list);
246 	hlist_del(&dev->name_hlist);
247 	hlist_del(&dev->index_hlist);
248 	write_unlock_bh(&dev_base_lock);
249 }
250 
251 /*
252  *	Our notifier list
253  */
254 
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256 
257 /*
258  *	Device drivers call our routines to queue packets here. We empty the
259  *	queue in the local softnet handler.
260  */
261 
262 DEFINE_PER_CPU(struct softnet_data, softnet_data);
263 
264 #ifdef CONFIG_LOCKDEP
265 /*
266  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
267  * according to dev->type
268  */
269 static const unsigned short netdev_lock_type[] =
270 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
271 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
272 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
273 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
274 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
275 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
276 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
277 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
278 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
279 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
280 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
281 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
282 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
283 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
284 	 ARPHRD_NONE};
285 
286 static const char *netdev_lock_name[] =
287 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
288 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
289 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
290 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
291 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
292 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
293 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
294 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
295 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
296 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
297 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
298 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
299 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
300 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
301 	 "_xmit_NONE"};
302 
303 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
304 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 
306 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
307 {
308 	int i;
309 
310 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
311 		if (netdev_lock_type[i] == dev_type)
312 			return i;
313 	/* the last key is used by default */
314 	return ARRAY_SIZE(netdev_lock_type) - 1;
315 }
316 
317 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
318 						 unsigned short dev_type)
319 {
320 	int i;
321 
322 	i = netdev_lock_pos(dev_type);
323 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
324 				   netdev_lock_name[i]);
325 }
326 
327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev->type);
332 	lockdep_set_class_and_name(&dev->addr_list_lock,
333 				   &netdev_addr_lock_key[i],
334 				   netdev_lock_name[i]);
335 }
336 #else
337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
338 						 unsigned short dev_type)
339 {
340 }
341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 {
343 }
344 #endif
345 
346 /*******************************************************************************
347 
348 		Protocol management and registration routines
349 
350 *******************************************************************************/
351 
352 /*
353  *	Add a protocol ID to the list. Now that the input handler is
354  *	smarter we can dispense with all the messy stuff that used to be
355  *	here.
356  *
357  *	BEWARE!!! Protocol handlers, mangling input packets,
358  *	MUST BE last in hash buckets and checking protocol handlers
359  *	MUST start from promiscuous ptype_all chain in net_bh.
360  *	It is true now, do not change it.
361  *	Explanation follows: if protocol handler, mangling packet, will
362  *	be the first on list, it is not able to sense, that packet
363  *	is cloned and should be copied-on-write, so that it will
364  *	change it and subsequent readers will get broken packet.
365  *							--ANK (980803)
366  */
367 
368 /**
369  *	dev_add_pack - add packet handler
370  *	@pt: packet type declaration
371  *
372  *	Add a protocol handler to the networking stack. The passed &packet_type
373  *	is linked into kernel lists and may not be freed until it has been
374  *	removed from the kernel lists.
375  *
376  *	This call does not sleep therefore it can not
377  *	guarantee all CPU's that are in middle of receiving packets
378  *	will see the new packet type (until the next received packet).
379  */
380 
381 void dev_add_pack(struct packet_type *pt)
382 {
383 	int hash;
384 
385 	spin_lock_bh(&ptype_lock);
386 	if (pt->type == htons(ETH_P_ALL))
387 		list_add_rcu(&pt->list, &ptype_all);
388 	else {
389 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
390 		list_add_rcu(&pt->list, &ptype_base[hash]);
391 	}
392 	spin_unlock_bh(&ptype_lock);
393 }
394 
395 /**
396  *	__dev_remove_pack	 - remove packet handler
397  *	@pt: packet type declaration
398  *
399  *	Remove a protocol handler that was previously added to the kernel
400  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
401  *	from the kernel lists and can be freed or reused once this function
402  *	returns.
403  *
404  *      The packet type might still be in use by receivers
405  *	and must not be freed until after all the CPU's have gone
406  *	through a quiescent state.
407  */
408 void __dev_remove_pack(struct packet_type *pt)
409 {
410 	struct list_head *head;
411 	struct packet_type *pt1;
412 
413 	spin_lock_bh(&ptype_lock);
414 
415 	if (pt->type == htons(ETH_P_ALL))
416 		head = &ptype_all;
417 	else
418 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
419 
420 	list_for_each_entry(pt1, head, list) {
421 		if (pt == pt1) {
422 			list_del_rcu(&pt->list);
423 			goto out;
424 		}
425 	}
426 
427 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
428 out:
429 	spin_unlock_bh(&ptype_lock);
430 }
431 /**
432  *	dev_remove_pack	 - remove packet handler
433  *	@pt: packet type declaration
434  *
435  *	Remove a protocol handler that was previously added to the kernel
436  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
437  *	from the kernel lists and can be freed or reused once this function
438  *	returns.
439  *
440  *	This call sleeps to guarantee that no CPU is looking at the packet
441  *	type after return.
442  */
443 void dev_remove_pack(struct packet_type *pt)
444 {
445 	__dev_remove_pack(pt);
446 
447 	synchronize_net();
448 }
449 
450 /******************************************************************************
451 
452 		      Device Boot-time Settings Routines
453 
454 *******************************************************************************/
455 
456 /* Boot time configuration table */
457 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
458 
459 /**
460  *	netdev_boot_setup_add	- add new setup entry
461  *	@name: name of the device
462  *	@map: configured settings for the device
463  *
464  *	Adds new setup entry to the dev_boot_setup list.  The function
465  *	returns 0 on error and 1 on success.  This is a generic routine to
466  *	all netdevices.
467  */
468 static int netdev_boot_setup_add(char *name, struct ifmap *map)
469 {
470 	struct netdev_boot_setup *s;
471 	int i;
472 
473 	s = dev_boot_setup;
474 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
475 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
476 			memset(s[i].name, 0, sizeof(s[i].name));
477 			strlcpy(s[i].name, name, IFNAMSIZ);
478 			memcpy(&s[i].map, map, sizeof(s[i].map));
479 			break;
480 		}
481 	}
482 
483 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
484 }
485 
486 /**
487  *	netdev_boot_setup_check	- check boot time settings
488  *	@dev: the netdevice
489  *
490  * 	Check boot time settings for the device.
491  *	The found settings are set for the device to be used
492  *	later in the device probing.
493  *	Returns 0 if no settings found, 1 if they are.
494  */
495 int netdev_boot_setup_check(struct net_device *dev)
496 {
497 	struct netdev_boot_setup *s = dev_boot_setup;
498 	int i;
499 
500 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
501 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
502 		    !strcmp(dev->name, s[i].name)) {
503 			dev->irq 	= s[i].map.irq;
504 			dev->base_addr 	= s[i].map.base_addr;
505 			dev->mem_start 	= s[i].map.mem_start;
506 			dev->mem_end 	= s[i].map.mem_end;
507 			return 1;
508 		}
509 	}
510 	return 0;
511 }
512 
513 
514 /**
515  *	netdev_boot_base	- get address from boot time settings
516  *	@prefix: prefix for network device
517  *	@unit: id for network device
518  *
519  * 	Check boot time settings for the base address of device.
520  *	The found settings are set for the device to be used
521  *	later in the device probing.
522  *	Returns 0 if no settings found.
523  */
524 unsigned long netdev_boot_base(const char *prefix, int unit)
525 {
526 	const struct netdev_boot_setup *s = dev_boot_setup;
527 	char name[IFNAMSIZ];
528 	int i;
529 
530 	sprintf(name, "%s%d", prefix, unit);
531 
532 	/*
533 	 * If device already registered then return base of 1
534 	 * to indicate not to probe for this interface
535 	 */
536 	if (__dev_get_by_name(&init_net, name))
537 		return 1;
538 
539 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
540 		if (!strcmp(name, s[i].name))
541 			return s[i].map.base_addr;
542 	return 0;
543 }
544 
545 /*
546  * Saves at boot time configured settings for any netdevice.
547  */
548 int __init netdev_boot_setup(char *str)
549 {
550 	int ints[5];
551 	struct ifmap map;
552 
553 	str = get_options(str, ARRAY_SIZE(ints), ints);
554 	if (!str || !*str)
555 		return 0;
556 
557 	/* Save settings */
558 	memset(&map, 0, sizeof(map));
559 	if (ints[0] > 0)
560 		map.irq = ints[1];
561 	if (ints[0] > 1)
562 		map.base_addr = ints[2];
563 	if (ints[0] > 2)
564 		map.mem_start = ints[3];
565 	if (ints[0] > 3)
566 		map.mem_end = ints[4];
567 
568 	/* Add new entry to the list */
569 	return netdev_boot_setup_add(str, &map);
570 }
571 
572 __setup("netdev=", netdev_boot_setup);
573 
574 /*******************************************************************************
575 
576 			    Device Interface Subroutines
577 
578 *******************************************************************************/
579 
580 /**
581  *	__dev_get_by_name	- find a device by its name
582  *	@net: the applicable net namespace
583  *	@name: name to find
584  *
585  *	Find an interface by name. Must be called under RTNL semaphore
586  *	or @dev_base_lock. If the name is found a pointer to the device
587  *	is returned. If the name is not found then %NULL is returned. The
588  *	reference counters are not incremented so the caller must be
589  *	careful with locks.
590  */
591 
592 struct net_device *__dev_get_by_name(struct net *net, const char *name)
593 {
594 	struct hlist_node *p;
595 
596 	hlist_for_each(p, dev_name_hash(net, name)) {
597 		struct net_device *dev
598 			= hlist_entry(p, struct net_device, name_hlist);
599 		if (!strncmp(dev->name, name, IFNAMSIZ))
600 			return dev;
601 	}
602 	return NULL;
603 }
604 
605 /**
606  *	dev_get_by_name		- find a device by its name
607  *	@net: the applicable net namespace
608  *	@name: name to find
609  *
610  *	Find an interface by name. This can be called from any
611  *	context and does its own locking. The returned handle has
612  *	the usage count incremented and the caller must use dev_put() to
613  *	release it when it is no longer needed. %NULL is returned if no
614  *	matching device is found.
615  */
616 
617 struct net_device *dev_get_by_name(struct net *net, const char *name)
618 {
619 	struct net_device *dev;
620 
621 	read_lock(&dev_base_lock);
622 	dev = __dev_get_by_name(net, name);
623 	if (dev)
624 		dev_hold(dev);
625 	read_unlock(&dev_base_lock);
626 	return dev;
627 }
628 
629 /**
630  *	__dev_get_by_index - find a device by its ifindex
631  *	@net: the applicable net namespace
632  *	@ifindex: index of device
633  *
634  *	Search for an interface by index. Returns %NULL if the device
635  *	is not found or a pointer to the device. The device has not
636  *	had its reference counter increased so the caller must be careful
637  *	about locking. The caller must hold either the RTNL semaphore
638  *	or @dev_base_lock.
639  */
640 
641 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
642 {
643 	struct hlist_node *p;
644 
645 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
646 		struct net_device *dev
647 			= hlist_entry(p, struct net_device, index_hlist);
648 		if (dev->ifindex == ifindex)
649 			return dev;
650 	}
651 	return NULL;
652 }
653 
654 
655 /**
656  *	dev_get_by_index - find a device by its ifindex
657  *	@net: the applicable net namespace
658  *	@ifindex: index of device
659  *
660  *	Search for an interface by index. Returns NULL if the device
661  *	is not found or a pointer to the device. The device returned has
662  *	had a reference added and the pointer is safe until the user calls
663  *	dev_put to indicate they have finished with it.
664  */
665 
666 struct net_device *dev_get_by_index(struct net *net, int ifindex)
667 {
668 	struct net_device *dev;
669 
670 	read_lock(&dev_base_lock);
671 	dev = __dev_get_by_index(net, ifindex);
672 	if (dev)
673 		dev_hold(dev);
674 	read_unlock(&dev_base_lock);
675 	return dev;
676 }
677 
678 /**
679  *	dev_getbyhwaddr - find a device by its hardware address
680  *	@net: the applicable net namespace
681  *	@type: media type of device
682  *	@ha: hardware address
683  *
684  *	Search for an interface by MAC address. Returns NULL if the device
685  *	is not found or a pointer to the device. The caller must hold the
686  *	rtnl semaphore. The returned device has not had its ref count increased
687  *	and the caller must therefore be careful about locking
688  *
689  *	BUGS:
690  *	If the API was consistent this would be __dev_get_by_hwaddr
691  */
692 
693 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
694 {
695 	struct net_device *dev;
696 
697 	ASSERT_RTNL();
698 
699 	for_each_netdev(net, dev)
700 		if (dev->type == type &&
701 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
702 			return dev;
703 
704 	return NULL;
705 }
706 
707 EXPORT_SYMBOL(dev_getbyhwaddr);
708 
709 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
710 {
711 	struct net_device *dev;
712 
713 	ASSERT_RTNL();
714 	for_each_netdev(net, dev)
715 		if (dev->type == type)
716 			return dev;
717 
718 	return NULL;
719 }
720 
721 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
722 
723 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
724 {
725 	struct net_device *dev;
726 
727 	rtnl_lock();
728 	dev = __dev_getfirstbyhwtype(net, type);
729 	if (dev)
730 		dev_hold(dev);
731 	rtnl_unlock();
732 	return dev;
733 }
734 
735 EXPORT_SYMBOL(dev_getfirstbyhwtype);
736 
737 /**
738  *	dev_get_by_flags - find any device with given flags
739  *	@net: the applicable net namespace
740  *	@if_flags: IFF_* values
741  *	@mask: bitmask of bits in if_flags to check
742  *
743  *	Search for any interface with the given flags. Returns NULL if a device
744  *	is not found or a pointer to the device. The device returned has
745  *	had a reference added and the pointer is safe until the user calls
746  *	dev_put to indicate they have finished with it.
747  */
748 
749 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
750 {
751 	struct net_device *dev, *ret;
752 
753 	ret = NULL;
754 	read_lock(&dev_base_lock);
755 	for_each_netdev(net, dev) {
756 		if (((dev->flags ^ if_flags) & mask) == 0) {
757 			dev_hold(dev);
758 			ret = dev;
759 			break;
760 		}
761 	}
762 	read_unlock(&dev_base_lock);
763 	return ret;
764 }
765 
766 /**
767  *	dev_valid_name - check if name is okay for network device
768  *	@name: name string
769  *
770  *	Network device names need to be valid file names to
771  *	to allow sysfs to work.  We also disallow any kind of
772  *	whitespace.
773  */
774 int dev_valid_name(const char *name)
775 {
776 	if (*name == '\0')
777 		return 0;
778 	if (strlen(name) >= IFNAMSIZ)
779 		return 0;
780 	if (!strcmp(name, ".") || !strcmp(name, ".."))
781 		return 0;
782 
783 	while (*name) {
784 		if (*name == '/' || isspace(*name))
785 			return 0;
786 		name++;
787 	}
788 	return 1;
789 }
790 
791 /**
792  *	__dev_alloc_name - allocate a name for a device
793  *	@net: network namespace to allocate the device name in
794  *	@name: name format string
795  *	@buf:  scratch buffer and result name string
796  *
797  *	Passed a format string - eg "lt%d" it will try and find a suitable
798  *	id. It scans list of devices to build up a free map, then chooses
799  *	the first empty slot. The caller must hold the dev_base or rtnl lock
800  *	while allocating the name and adding the device in order to avoid
801  *	duplicates.
802  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
803  *	Returns the number of the unit assigned or a negative errno code.
804  */
805 
806 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
807 {
808 	int i = 0;
809 	const char *p;
810 	const int max_netdevices = 8*PAGE_SIZE;
811 	unsigned long *inuse;
812 	struct net_device *d;
813 
814 	p = strnchr(name, IFNAMSIZ-1, '%');
815 	if (p) {
816 		/*
817 		 * Verify the string as this thing may have come from
818 		 * the user.  There must be either one "%d" and no other "%"
819 		 * characters.
820 		 */
821 		if (p[1] != 'd' || strchr(p + 2, '%'))
822 			return -EINVAL;
823 
824 		/* Use one page as a bit array of possible slots */
825 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
826 		if (!inuse)
827 			return -ENOMEM;
828 
829 		for_each_netdev(net, d) {
830 			if (!sscanf(d->name, name, &i))
831 				continue;
832 			if (i < 0 || i >= max_netdevices)
833 				continue;
834 
835 			/*  avoid cases where sscanf is not exact inverse of printf */
836 			snprintf(buf, IFNAMSIZ, name, i);
837 			if (!strncmp(buf, d->name, IFNAMSIZ))
838 				set_bit(i, inuse);
839 		}
840 
841 		i = find_first_zero_bit(inuse, max_netdevices);
842 		free_page((unsigned long) inuse);
843 	}
844 
845 	snprintf(buf, IFNAMSIZ, name, i);
846 	if (!__dev_get_by_name(net, buf))
847 		return i;
848 
849 	/* It is possible to run out of possible slots
850 	 * when the name is long and there isn't enough space left
851 	 * for the digits, or if all bits are used.
852 	 */
853 	return -ENFILE;
854 }
855 
856 /**
857  *	dev_alloc_name - allocate a name for a device
858  *	@dev: device
859  *	@name: name format string
860  *
861  *	Passed a format string - eg "lt%d" it will try and find a suitable
862  *	id. It scans list of devices to build up a free map, then chooses
863  *	the first empty slot. The caller must hold the dev_base or rtnl lock
864  *	while allocating the name and adding the device in order to avoid
865  *	duplicates.
866  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867  *	Returns the number of the unit assigned or a negative errno code.
868  */
869 
870 int dev_alloc_name(struct net_device *dev, const char *name)
871 {
872 	char buf[IFNAMSIZ];
873 	struct net *net;
874 	int ret;
875 
876 	BUG_ON(!dev_net(dev));
877 	net = dev_net(dev);
878 	ret = __dev_alloc_name(net, name, buf);
879 	if (ret >= 0)
880 		strlcpy(dev->name, buf, IFNAMSIZ);
881 	return ret;
882 }
883 
884 
885 /**
886  *	dev_change_name - change name of a device
887  *	@dev: device
888  *	@newname: name (or format string) must be at least IFNAMSIZ
889  *
890  *	Change name of a device, can pass format strings "eth%d".
891  *	for wildcarding.
892  */
893 int dev_change_name(struct net_device *dev, char *newname)
894 {
895 	char oldname[IFNAMSIZ];
896 	int err = 0;
897 	int ret;
898 	struct net *net;
899 
900 	ASSERT_RTNL();
901 	BUG_ON(!dev_net(dev));
902 
903 	net = dev_net(dev);
904 	if (dev->flags & IFF_UP)
905 		return -EBUSY;
906 
907 	if (!dev_valid_name(newname))
908 		return -EINVAL;
909 
910 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
911 		return 0;
912 
913 	memcpy(oldname, dev->name, IFNAMSIZ);
914 
915 	if (strchr(newname, '%')) {
916 		err = dev_alloc_name(dev, newname);
917 		if (err < 0)
918 			return err;
919 		strcpy(newname, dev->name);
920 	}
921 	else if (__dev_get_by_name(net, newname))
922 		return -EEXIST;
923 	else
924 		strlcpy(dev->name, newname, IFNAMSIZ);
925 
926 rollback:
927 	err = device_rename(&dev->dev, dev->name);
928 	if (err) {
929 		memcpy(dev->name, oldname, IFNAMSIZ);
930 		return err;
931 	}
932 
933 	write_lock_bh(&dev_base_lock);
934 	hlist_del(&dev->name_hlist);
935 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
936 	write_unlock_bh(&dev_base_lock);
937 
938 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
939 	ret = notifier_to_errno(ret);
940 
941 	if (ret) {
942 		if (err) {
943 			printk(KERN_ERR
944 			       "%s: name change rollback failed: %d.\n",
945 			       dev->name, ret);
946 		} else {
947 			err = ret;
948 			memcpy(dev->name, oldname, IFNAMSIZ);
949 			goto rollback;
950 		}
951 	}
952 
953 	return err;
954 }
955 
956 /**
957  *	netdev_features_change - device changes features
958  *	@dev: device to cause notification
959  *
960  *	Called to indicate a device has changed features.
961  */
962 void netdev_features_change(struct net_device *dev)
963 {
964 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
965 }
966 EXPORT_SYMBOL(netdev_features_change);
967 
968 /**
969  *	netdev_state_change - device changes state
970  *	@dev: device to cause notification
971  *
972  *	Called to indicate a device has changed state. This function calls
973  *	the notifier chains for netdev_chain and sends a NEWLINK message
974  *	to the routing socket.
975  */
976 void netdev_state_change(struct net_device *dev)
977 {
978 	if (dev->flags & IFF_UP) {
979 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
980 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
981 	}
982 }
983 
984 void netdev_bonding_change(struct net_device *dev)
985 {
986 	call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
987 }
988 EXPORT_SYMBOL(netdev_bonding_change);
989 
990 /**
991  *	dev_load 	- load a network module
992  *	@net: the applicable net namespace
993  *	@name: name of interface
994  *
995  *	If a network interface is not present and the process has suitable
996  *	privileges this function loads the module. If module loading is not
997  *	available in this kernel then it becomes a nop.
998  */
999 
1000 void dev_load(struct net *net, const char *name)
1001 {
1002 	struct net_device *dev;
1003 
1004 	read_lock(&dev_base_lock);
1005 	dev = __dev_get_by_name(net, name);
1006 	read_unlock(&dev_base_lock);
1007 
1008 	if (!dev && capable(CAP_SYS_MODULE))
1009 		request_module("%s", name);
1010 }
1011 
1012 /**
1013  *	dev_open	- prepare an interface for use.
1014  *	@dev:	device to open
1015  *
1016  *	Takes a device from down to up state. The device's private open
1017  *	function is invoked and then the multicast lists are loaded. Finally
1018  *	the device is moved into the up state and a %NETDEV_UP message is
1019  *	sent to the netdev notifier chain.
1020  *
1021  *	Calling this function on an active interface is a nop. On a failure
1022  *	a negative errno code is returned.
1023  */
1024 int dev_open(struct net_device *dev)
1025 {
1026 	int ret = 0;
1027 
1028 	ASSERT_RTNL();
1029 
1030 	/*
1031 	 *	Is it already up?
1032 	 */
1033 
1034 	if (dev->flags & IFF_UP)
1035 		return 0;
1036 
1037 	/*
1038 	 *	Is it even present?
1039 	 */
1040 	if (!netif_device_present(dev))
1041 		return -ENODEV;
1042 
1043 	/*
1044 	 *	Call device private open method
1045 	 */
1046 	set_bit(__LINK_STATE_START, &dev->state);
1047 
1048 	if (dev->validate_addr)
1049 		ret = dev->validate_addr(dev);
1050 
1051 	if (!ret && dev->open)
1052 		ret = dev->open(dev);
1053 
1054 	/*
1055 	 *	If it went open OK then:
1056 	 */
1057 
1058 	if (ret)
1059 		clear_bit(__LINK_STATE_START, &dev->state);
1060 	else {
1061 		/*
1062 		 *	Set the flags.
1063 		 */
1064 		dev->flags |= IFF_UP;
1065 
1066 		/*
1067 		 *	Initialize multicasting status
1068 		 */
1069 		dev_set_rx_mode(dev);
1070 
1071 		/*
1072 		 *	Wakeup transmit queue engine
1073 		 */
1074 		dev_activate(dev);
1075 
1076 		/*
1077 		 *	... and announce new interface.
1078 		 */
1079 		call_netdevice_notifiers(NETDEV_UP, dev);
1080 	}
1081 
1082 	return ret;
1083 }
1084 
1085 /**
1086  *	dev_close - shutdown an interface.
1087  *	@dev: device to shutdown
1088  *
1089  *	This function moves an active device into down state. A
1090  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1091  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1092  *	chain.
1093  */
1094 int dev_close(struct net_device *dev)
1095 {
1096 	ASSERT_RTNL();
1097 
1098 	might_sleep();
1099 
1100 	if (!(dev->flags & IFF_UP))
1101 		return 0;
1102 
1103 	/*
1104 	 *	Tell people we are going down, so that they can
1105 	 *	prepare to death, when device is still operating.
1106 	 */
1107 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1108 
1109 	clear_bit(__LINK_STATE_START, &dev->state);
1110 
1111 	/* Synchronize to scheduled poll. We cannot touch poll list,
1112 	 * it can be even on different cpu. So just clear netif_running().
1113 	 *
1114 	 * dev->stop() will invoke napi_disable() on all of it's
1115 	 * napi_struct instances on this device.
1116 	 */
1117 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1118 
1119 	dev_deactivate(dev);
1120 
1121 	/*
1122 	 *	Call the device specific close. This cannot fail.
1123 	 *	Only if device is UP
1124 	 *
1125 	 *	We allow it to be called even after a DETACH hot-plug
1126 	 *	event.
1127 	 */
1128 	if (dev->stop)
1129 		dev->stop(dev);
1130 
1131 	/*
1132 	 *	Device is now down.
1133 	 */
1134 
1135 	dev->flags &= ~IFF_UP;
1136 
1137 	/*
1138 	 * Tell people we are down
1139 	 */
1140 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1141 
1142 	return 0;
1143 }
1144 
1145 
1146 /**
1147  *	dev_disable_lro - disable Large Receive Offload on a device
1148  *	@dev: device
1149  *
1150  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1151  *	called under RTNL.  This is needed if received packets may be
1152  *	forwarded to another interface.
1153  */
1154 void dev_disable_lro(struct net_device *dev)
1155 {
1156 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1157 	    dev->ethtool_ops->set_flags) {
1158 		u32 flags = dev->ethtool_ops->get_flags(dev);
1159 		if (flags & ETH_FLAG_LRO) {
1160 			flags &= ~ETH_FLAG_LRO;
1161 			dev->ethtool_ops->set_flags(dev, flags);
1162 		}
1163 	}
1164 	WARN_ON(dev->features & NETIF_F_LRO);
1165 }
1166 EXPORT_SYMBOL(dev_disable_lro);
1167 
1168 
1169 static int dev_boot_phase = 1;
1170 
1171 /*
1172  *	Device change register/unregister. These are not inline or static
1173  *	as we export them to the world.
1174  */
1175 
1176 /**
1177  *	register_netdevice_notifier - register a network notifier block
1178  *	@nb: notifier
1179  *
1180  *	Register a notifier to be called when network device events occur.
1181  *	The notifier passed is linked into the kernel structures and must
1182  *	not be reused until it has been unregistered. A negative errno code
1183  *	is returned on a failure.
1184  *
1185  * 	When registered all registration and up events are replayed
1186  *	to the new notifier to allow device to have a race free
1187  *	view of the network device list.
1188  */
1189 
1190 int register_netdevice_notifier(struct notifier_block *nb)
1191 {
1192 	struct net_device *dev;
1193 	struct net_device *last;
1194 	struct net *net;
1195 	int err;
1196 
1197 	rtnl_lock();
1198 	err = raw_notifier_chain_register(&netdev_chain, nb);
1199 	if (err)
1200 		goto unlock;
1201 	if (dev_boot_phase)
1202 		goto unlock;
1203 	for_each_net(net) {
1204 		for_each_netdev(net, dev) {
1205 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1206 			err = notifier_to_errno(err);
1207 			if (err)
1208 				goto rollback;
1209 
1210 			if (!(dev->flags & IFF_UP))
1211 				continue;
1212 
1213 			nb->notifier_call(nb, NETDEV_UP, dev);
1214 		}
1215 	}
1216 
1217 unlock:
1218 	rtnl_unlock();
1219 	return err;
1220 
1221 rollback:
1222 	last = dev;
1223 	for_each_net(net) {
1224 		for_each_netdev(net, dev) {
1225 			if (dev == last)
1226 				break;
1227 
1228 			if (dev->flags & IFF_UP) {
1229 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1230 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1231 			}
1232 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1233 		}
1234 	}
1235 
1236 	raw_notifier_chain_unregister(&netdev_chain, nb);
1237 	goto unlock;
1238 }
1239 
1240 /**
1241  *	unregister_netdevice_notifier - unregister a network notifier block
1242  *	@nb: notifier
1243  *
1244  *	Unregister a notifier previously registered by
1245  *	register_netdevice_notifier(). The notifier is unlinked into the
1246  *	kernel structures and may then be reused. A negative errno code
1247  *	is returned on a failure.
1248  */
1249 
1250 int unregister_netdevice_notifier(struct notifier_block *nb)
1251 {
1252 	int err;
1253 
1254 	rtnl_lock();
1255 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1256 	rtnl_unlock();
1257 	return err;
1258 }
1259 
1260 /**
1261  *	call_netdevice_notifiers - call all network notifier blocks
1262  *      @val: value passed unmodified to notifier function
1263  *      @dev: net_device pointer passed unmodified to notifier function
1264  *
1265  *	Call all network notifier blocks.  Parameters and return value
1266  *	are as for raw_notifier_call_chain().
1267  */
1268 
1269 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1270 {
1271 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1272 }
1273 
1274 /* When > 0 there are consumers of rx skb time stamps */
1275 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1276 
1277 void net_enable_timestamp(void)
1278 {
1279 	atomic_inc(&netstamp_needed);
1280 }
1281 
1282 void net_disable_timestamp(void)
1283 {
1284 	atomic_dec(&netstamp_needed);
1285 }
1286 
1287 static inline void net_timestamp(struct sk_buff *skb)
1288 {
1289 	if (atomic_read(&netstamp_needed))
1290 		__net_timestamp(skb);
1291 	else
1292 		skb->tstamp.tv64 = 0;
1293 }
1294 
1295 /*
1296  *	Support routine. Sends outgoing frames to any network
1297  *	taps currently in use.
1298  */
1299 
1300 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1301 {
1302 	struct packet_type *ptype;
1303 
1304 	net_timestamp(skb);
1305 
1306 	rcu_read_lock();
1307 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1308 		/* Never send packets back to the socket
1309 		 * they originated from - MvS (miquels@drinkel.ow.org)
1310 		 */
1311 		if ((ptype->dev == dev || !ptype->dev) &&
1312 		    (ptype->af_packet_priv == NULL ||
1313 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1314 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1315 			if (!skb2)
1316 				break;
1317 
1318 			/* skb->nh should be correctly
1319 			   set by sender, so that the second statement is
1320 			   just protection against buggy protocols.
1321 			 */
1322 			skb_reset_mac_header(skb2);
1323 
1324 			if (skb_network_header(skb2) < skb2->data ||
1325 			    skb2->network_header > skb2->tail) {
1326 				if (net_ratelimit())
1327 					printk(KERN_CRIT "protocol %04x is "
1328 					       "buggy, dev %s\n",
1329 					       skb2->protocol, dev->name);
1330 				skb_reset_network_header(skb2);
1331 			}
1332 
1333 			skb2->transport_header = skb2->network_header;
1334 			skb2->pkt_type = PACKET_OUTGOING;
1335 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1336 		}
1337 	}
1338 	rcu_read_unlock();
1339 }
1340 
1341 
1342 void __netif_schedule(struct Qdisc *q)
1343 {
1344 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) {
1345 		struct softnet_data *sd;
1346 		unsigned long flags;
1347 
1348 		local_irq_save(flags);
1349 		sd = &__get_cpu_var(softnet_data);
1350 		q->next_sched = sd->output_queue;
1351 		sd->output_queue = q;
1352 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1353 		local_irq_restore(flags);
1354 	}
1355 }
1356 EXPORT_SYMBOL(__netif_schedule);
1357 
1358 void dev_kfree_skb_irq(struct sk_buff *skb)
1359 {
1360 	if (atomic_dec_and_test(&skb->users)) {
1361 		struct softnet_data *sd;
1362 		unsigned long flags;
1363 
1364 		local_irq_save(flags);
1365 		sd = &__get_cpu_var(softnet_data);
1366 		skb->next = sd->completion_queue;
1367 		sd->completion_queue = skb;
1368 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1369 		local_irq_restore(flags);
1370 	}
1371 }
1372 EXPORT_SYMBOL(dev_kfree_skb_irq);
1373 
1374 void dev_kfree_skb_any(struct sk_buff *skb)
1375 {
1376 	if (in_irq() || irqs_disabled())
1377 		dev_kfree_skb_irq(skb);
1378 	else
1379 		dev_kfree_skb(skb);
1380 }
1381 EXPORT_SYMBOL(dev_kfree_skb_any);
1382 
1383 
1384 /**
1385  * netif_device_detach - mark device as removed
1386  * @dev: network device
1387  *
1388  * Mark device as removed from system and therefore no longer available.
1389  */
1390 void netif_device_detach(struct net_device *dev)
1391 {
1392 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1393 	    netif_running(dev)) {
1394 		netif_stop_queue(dev);
1395 	}
1396 }
1397 EXPORT_SYMBOL(netif_device_detach);
1398 
1399 /**
1400  * netif_device_attach - mark device as attached
1401  * @dev: network device
1402  *
1403  * Mark device as attached from system and restart if needed.
1404  */
1405 void netif_device_attach(struct net_device *dev)
1406 {
1407 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1408 	    netif_running(dev)) {
1409 		netif_wake_queue(dev);
1410 		__netdev_watchdog_up(dev);
1411 	}
1412 }
1413 EXPORT_SYMBOL(netif_device_attach);
1414 
1415 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1416 {
1417 	return ((features & NETIF_F_GEN_CSUM) ||
1418 		((features & NETIF_F_IP_CSUM) &&
1419 		 protocol == htons(ETH_P_IP)) ||
1420 		((features & NETIF_F_IPV6_CSUM) &&
1421 		 protocol == htons(ETH_P_IPV6)));
1422 }
1423 
1424 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1425 {
1426 	if (can_checksum_protocol(dev->features, skb->protocol))
1427 		return true;
1428 
1429 	if (skb->protocol == htons(ETH_P_8021Q)) {
1430 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1431 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1432 					  veh->h_vlan_encapsulated_proto))
1433 			return true;
1434 	}
1435 
1436 	return false;
1437 }
1438 
1439 /*
1440  * Invalidate hardware checksum when packet is to be mangled, and
1441  * complete checksum manually on outgoing path.
1442  */
1443 int skb_checksum_help(struct sk_buff *skb)
1444 {
1445 	__wsum csum;
1446 	int ret = 0, offset;
1447 
1448 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1449 		goto out_set_summed;
1450 
1451 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1452 		/* Let GSO fix up the checksum. */
1453 		goto out_set_summed;
1454 	}
1455 
1456 	offset = skb->csum_start - skb_headroom(skb);
1457 	BUG_ON(offset >= skb_headlen(skb));
1458 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1459 
1460 	offset += skb->csum_offset;
1461 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1462 
1463 	if (skb_cloned(skb) &&
1464 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1465 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1466 		if (ret)
1467 			goto out;
1468 	}
1469 
1470 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1471 out_set_summed:
1472 	skb->ip_summed = CHECKSUM_NONE;
1473 out:
1474 	return ret;
1475 }
1476 
1477 /**
1478  *	skb_gso_segment - Perform segmentation on skb.
1479  *	@skb: buffer to segment
1480  *	@features: features for the output path (see dev->features)
1481  *
1482  *	This function segments the given skb and returns a list of segments.
1483  *
1484  *	It may return NULL if the skb requires no segmentation.  This is
1485  *	only possible when GSO is used for verifying header integrity.
1486  */
1487 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1488 {
1489 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1490 	struct packet_type *ptype;
1491 	__be16 type = skb->protocol;
1492 	int err;
1493 
1494 	BUG_ON(skb_shinfo(skb)->frag_list);
1495 
1496 	skb_reset_mac_header(skb);
1497 	skb->mac_len = skb->network_header - skb->mac_header;
1498 	__skb_pull(skb, skb->mac_len);
1499 
1500 	if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1501 		if (skb_header_cloned(skb) &&
1502 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1503 			return ERR_PTR(err);
1504 	}
1505 
1506 	rcu_read_lock();
1507 	list_for_each_entry_rcu(ptype,
1508 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1509 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1510 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1511 				err = ptype->gso_send_check(skb);
1512 				segs = ERR_PTR(err);
1513 				if (err || skb_gso_ok(skb, features))
1514 					break;
1515 				__skb_push(skb, (skb->data -
1516 						 skb_network_header(skb)));
1517 			}
1518 			segs = ptype->gso_segment(skb, features);
1519 			break;
1520 		}
1521 	}
1522 	rcu_read_unlock();
1523 
1524 	__skb_push(skb, skb->data - skb_mac_header(skb));
1525 
1526 	return segs;
1527 }
1528 
1529 EXPORT_SYMBOL(skb_gso_segment);
1530 
1531 /* Take action when hardware reception checksum errors are detected. */
1532 #ifdef CONFIG_BUG
1533 void netdev_rx_csum_fault(struct net_device *dev)
1534 {
1535 	if (net_ratelimit()) {
1536 		printk(KERN_ERR "%s: hw csum failure.\n",
1537 			dev ? dev->name : "<unknown>");
1538 		dump_stack();
1539 	}
1540 }
1541 EXPORT_SYMBOL(netdev_rx_csum_fault);
1542 #endif
1543 
1544 /* Actually, we should eliminate this check as soon as we know, that:
1545  * 1. IOMMU is present and allows to map all the memory.
1546  * 2. No high memory really exists on this machine.
1547  */
1548 
1549 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1550 {
1551 #ifdef CONFIG_HIGHMEM
1552 	int i;
1553 
1554 	if (dev->features & NETIF_F_HIGHDMA)
1555 		return 0;
1556 
1557 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1558 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1559 			return 1;
1560 
1561 #endif
1562 	return 0;
1563 }
1564 
1565 struct dev_gso_cb {
1566 	void (*destructor)(struct sk_buff *skb);
1567 };
1568 
1569 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1570 
1571 static void dev_gso_skb_destructor(struct sk_buff *skb)
1572 {
1573 	struct dev_gso_cb *cb;
1574 
1575 	do {
1576 		struct sk_buff *nskb = skb->next;
1577 
1578 		skb->next = nskb->next;
1579 		nskb->next = NULL;
1580 		kfree_skb(nskb);
1581 	} while (skb->next);
1582 
1583 	cb = DEV_GSO_CB(skb);
1584 	if (cb->destructor)
1585 		cb->destructor(skb);
1586 }
1587 
1588 /**
1589  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1590  *	@skb: buffer to segment
1591  *
1592  *	This function segments the given skb and stores the list of segments
1593  *	in skb->next.
1594  */
1595 static int dev_gso_segment(struct sk_buff *skb)
1596 {
1597 	struct net_device *dev = skb->dev;
1598 	struct sk_buff *segs;
1599 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1600 					 NETIF_F_SG : 0);
1601 
1602 	segs = skb_gso_segment(skb, features);
1603 
1604 	/* Verifying header integrity only. */
1605 	if (!segs)
1606 		return 0;
1607 
1608 	if (IS_ERR(segs))
1609 		return PTR_ERR(segs);
1610 
1611 	skb->next = segs;
1612 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1613 	skb->destructor = dev_gso_skb_destructor;
1614 
1615 	return 0;
1616 }
1617 
1618 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1619 			struct netdev_queue *txq)
1620 {
1621 	if (likely(!skb->next)) {
1622 		if (!list_empty(&ptype_all))
1623 			dev_queue_xmit_nit(skb, dev);
1624 
1625 		if (netif_needs_gso(dev, skb)) {
1626 			if (unlikely(dev_gso_segment(skb)))
1627 				goto out_kfree_skb;
1628 			if (skb->next)
1629 				goto gso;
1630 		}
1631 
1632 		return dev->hard_start_xmit(skb, dev);
1633 	}
1634 
1635 gso:
1636 	do {
1637 		struct sk_buff *nskb = skb->next;
1638 		int rc;
1639 
1640 		skb->next = nskb->next;
1641 		nskb->next = NULL;
1642 		rc = dev->hard_start_xmit(nskb, dev);
1643 		if (unlikely(rc)) {
1644 			nskb->next = skb->next;
1645 			skb->next = nskb;
1646 			return rc;
1647 		}
1648 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1649 			return NETDEV_TX_BUSY;
1650 	} while (skb->next);
1651 
1652 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1653 
1654 out_kfree_skb:
1655 	kfree_skb(skb);
1656 	return 0;
1657 }
1658 
1659 static u32 simple_tx_hashrnd;
1660 static int simple_tx_hashrnd_initialized = 0;
1661 
1662 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1663 {
1664 	u32 addr1, addr2, ports;
1665 	u32 hash, ihl;
1666 	u8 ip_proto;
1667 
1668 	if (unlikely(!simple_tx_hashrnd_initialized)) {
1669 		get_random_bytes(&simple_tx_hashrnd, 4);
1670 		simple_tx_hashrnd_initialized = 1;
1671 	}
1672 
1673 	switch (skb->protocol) {
1674 	case __constant_htons(ETH_P_IP):
1675 		ip_proto = ip_hdr(skb)->protocol;
1676 		addr1 = ip_hdr(skb)->saddr;
1677 		addr2 = ip_hdr(skb)->daddr;
1678 		ihl = ip_hdr(skb)->ihl;
1679 		break;
1680 	case __constant_htons(ETH_P_IPV6):
1681 		ip_proto = ipv6_hdr(skb)->nexthdr;
1682 		addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1683 		addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1684 		ihl = (40 >> 2);
1685 		break;
1686 	default:
1687 		return 0;
1688 	}
1689 
1690 
1691 	switch (ip_proto) {
1692 	case IPPROTO_TCP:
1693 	case IPPROTO_UDP:
1694 	case IPPROTO_DCCP:
1695 	case IPPROTO_ESP:
1696 	case IPPROTO_AH:
1697 	case IPPROTO_SCTP:
1698 	case IPPROTO_UDPLITE:
1699 		ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1700 		break;
1701 
1702 	default:
1703 		ports = 0;
1704 		break;
1705 	}
1706 
1707 	hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1708 
1709 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1710 }
1711 
1712 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1713 					struct sk_buff *skb)
1714 {
1715 	u16 queue_index = 0;
1716 
1717 	if (dev->select_queue)
1718 		queue_index = dev->select_queue(dev, skb);
1719 	else if (dev->real_num_tx_queues > 1)
1720 		queue_index = simple_tx_hash(dev, skb);
1721 
1722 	skb_set_queue_mapping(skb, queue_index);
1723 	return netdev_get_tx_queue(dev, queue_index);
1724 }
1725 
1726 /**
1727  *	dev_queue_xmit - transmit a buffer
1728  *	@skb: buffer to transmit
1729  *
1730  *	Queue a buffer for transmission to a network device. The caller must
1731  *	have set the device and priority and built the buffer before calling
1732  *	this function. The function can be called from an interrupt.
1733  *
1734  *	A negative errno code is returned on a failure. A success does not
1735  *	guarantee the frame will be transmitted as it may be dropped due
1736  *	to congestion or traffic shaping.
1737  *
1738  * -----------------------------------------------------------------------------------
1739  *      I notice this method can also return errors from the queue disciplines,
1740  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1741  *      be positive.
1742  *
1743  *      Regardless of the return value, the skb is consumed, so it is currently
1744  *      difficult to retry a send to this method.  (You can bump the ref count
1745  *      before sending to hold a reference for retry if you are careful.)
1746  *
1747  *      When calling this method, interrupts MUST be enabled.  This is because
1748  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1749  *          --BLG
1750  */
1751 int dev_queue_xmit(struct sk_buff *skb)
1752 {
1753 	struct net_device *dev = skb->dev;
1754 	struct netdev_queue *txq;
1755 	struct Qdisc *q;
1756 	int rc = -ENOMEM;
1757 
1758 	/* GSO will handle the following emulations directly. */
1759 	if (netif_needs_gso(dev, skb))
1760 		goto gso;
1761 
1762 	if (skb_shinfo(skb)->frag_list &&
1763 	    !(dev->features & NETIF_F_FRAGLIST) &&
1764 	    __skb_linearize(skb))
1765 		goto out_kfree_skb;
1766 
1767 	/* Fragmented skb is linearized if device does not support SG,
1768 	 * or if at least one of fragments is in highmem and device
1769 	 * does not support DMA from it.
1770 	 */
1771 	if (skb_shinfo(skb)->nr_frags &&
1772 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1773 	    __skb_linearize(skb))
1774 		goto out_kfree_skb;
1775 
1776 	/* If packet is not checksummed and device does not support
1777 	 * checksumming for this protocol, complete checksumming here.
1778 	 */
1779 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1780 		skb_set_transport_header(skb, skb->csum_start -
1781 					      skb_headroom(skb));
1782 		if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1783 			goto out_kfree_skb;
1784 	}
1785 
1786 gso:
1787 	/* Disable soft irqs for various locks below. Also
1788 	 * stops preemption for RCU.
1789 	 */
1790 	rcu_read_lock_bh();
1791 
1792 	txq = dev_pick_tx(dev, skb);
1793 	q = rcu_dereference(txq->qdisc);
1794 
1795 #ifdef CONFIG_NET_CLS_ACT
1796 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1797 #endif
1798 	if (q->enqueue) {
1799 		spinlock_t *root_lock = qdisc_root_lock(q);
1800 
1801 		spin_lock(root_lock);
1802 
1803 		rc = qdisc_enqueue_root(skb, q);
1804 		qdisc_run(q);
1805 
1806 		spin_unlock(root_lock);
1807 
1808 		rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1809 		goto out;
1810 	}
1811 
1812 	/* The device has no queue. Common case for software devices:
1813 	   loopback, all the sorts of tunnels...
1814 
1815 	   Really, it is unlikely that netif_tx_lock protection is necessary
1816 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1817 	   counters.)
1818 	   However, it is possible, that they rely on protection
1819 	   made by us here.
1820 
1821 	   Check this and shot the lock. It is not prone from deadlocks.
1822 	   Either shot noqueue qdisc, it is even simpler 8)
1823 	 */
1824 	if (dev->flags & IFF_UP) {
1825 		int cpu = smp_processor_id(); /* ok because BHs are off */
1826 
1827 		if (txq->xmit_lock_owner != cpu) {
1828 
1829 			HARD_TX_LOCK(dev, txq, cpu);
1830 
1831 			if (!netif_tx_queue_stopped(txq)) {
1832 				rc = 0;
1833 				if (!dev_hard_start_xmit(skb, dev, txq)) {
1834 					HARD_TX_UNLOCK(dev, txq);
1835 					goto out;
1836 				}
1837 			}
1838 			HARD_TX_UNLOCK(dev, txq);
1839 			if (net_ratelimit())
1840 				printk(KERN_CRIT "Virtual device %s asks to "
1841 				       "queue packet!\n", dev->name);
1842 		} else {
1843 			/* Recursion is detected! It is possible,
1844 			 * unfortunately */
1845 			if (net_ratelimit())
1846 				printk(KERN_CRIT "Dead loop on virtual device "
1847 				       "%s, fix it urgently!\n", dev->name);
1848 		}
1849 	}
1850 
1851 	rc = -ENETDOWN;
1852 	rcu_read_unlock_bh();
1853 
1854 out_kfree_skb:
1855 	kfree_skb(skb);
1856 	return rc;
1857 out:
1858 	rcu_read_unlock_bh();
1859 	return rc;
1860 }
1861 
1862 
1863 /*=======================================================================
1864 			Receiver routines
1865   =======================================================================*/
1866 
1867 int netdev_max_backlog __read_mostly = 1000;
1868 int netdev_budget __read_mostly = 300;
1869 int weight_p __read_mostly = 64;            /* old backlog weight */
1870 
1871 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1872 
1873 
1874 /**
1875  *	netif_rx	-	post buffer to the network code
1876  *	@skb: buffer to post
1877  *
1878  *	This function receives a packet from a device driver and queues it for
1879  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1880  *	may be dropped during processing for congestion control or by the
1881  *	protocol layers.
1882  *
1883  *	return values:
1884  *	NET_RX_SUCCESS	(no congestion)
1885  *	NET_RX_DROP     (packet was dropped)
1886  *
1887  */
1888 
1889 int netif_rx(struct sk_buff *skb)
1890 {
1891 	struct softnet_data *queue;
1892 	unsigned long flags;
1893 
1894 	/* if netpoll wants it, pretend we never saw it */
1895 	if (netpoll_rx(skb))
1896 		return NET_RX_DROP;
1897 
1898 	if (!skb->tstamp.tv64)
1899 		net_timestamp(skb);
1900 
1901 	/*
1902 	 * The code is rearranged so that the path is the most
1903 	 * short when CPU is congested, but is still operating.
1904 	 */
1905 	local_irq_save(flags);
1906 	queue = &__get_cpu_var(softnet_data);
1907 
1908 	__get_cpu_var(netdev_rx_stat).total++;
1909 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1910 		if (queue->input_pkt_queue.qlen) {
1911 enqueue:
1912 			dev_hold(skb->dev);
1913 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1914 			local_irq_restore(flags);
1915 			return NET_RX_SUCCESS;
1916 		}
1917 
1918 		napi_schedule(&queue->backlog);
1919 		goto enqueue;
1920 	}
1921 
1922 	__get_cpu_var(netdev_rx_stat).dropped++;
1923 	local_irq_restore(flags);
1924 
1925 	kfree_skb(skb);
1926 	return NET_RX_DROP;
1927 }
1928 
1929 int netif_rx_ni(struct sk_buff *skb)
1930 {
1931 	int err;
1932 
1933 	preempt_disable();
1934 	err = netif_rx(skb);
1935 	if (local_softirq_pending())
1936 		do_softirq();
1937 	preempt_enable();
1938 
1939 	return err;
1940 }
1941 
1942 EXPORT_SYMBOL(netif_rx_ni);
1943 
1944 static inline struct net_device *skb_bond(struct sk_buff *skb)
1945 {
1946 	struct net_device *dev = skb->dev;
1947 
1948 	if (dev->master) {
1949 		if (skb_bond_should_drop(skb)) {
1950 			kfree_skb(skb);
1951 			return NULL;
1952 		}
1953 		skb->dev = dev->master;
1954 	}
1955 
1956 	return dev;
1957 }
1958 
1959 
1960 static void net_tx_action(struct softirq_action *h)
1961 {
1962 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1963 
1964 	if (sd->completion_queue) {
1965 		struct sk_buff *clist;
1966 
1967 		local_irq_disable();
1968 		clist = sd->completion_queue;
1969 		sd->completion_queue = NULL;
1970 		local_irq_enable();
1971 
1972 		while (clist) {
1973 			struct sk_buff *skb = clist;
1974 			clist = clist->next;
1975 
1976 			WARN_ON(atomic_read(&skb->users));
1977 			__kfree_skb(skb);
1978 		}
1979 	}
1980 
1981 	if (sd->output_queue) {
1982 		struct Qdisc *head;
1983 
1984 		local_irq_disable();
1985 		head = sd->output_queue;
1986 		sd->output_queue = NULL;
1987 		local_irq_enable();
1988 
1989 		while (head) {
1990 			struct Qdisc *q = head;
1991 			spinlock_t *root_lock;
1992 
1993 			head = head->next_sched;
1994 
1995 			smp_mb__before_clear_bit();
1996 			clear_bit(__QDISC_STATE_SCHED, &q->state);
1997 
1998 			root_lock = qdisc_root_lock(q);
1999 			if (spin_trylock(root_lock)) {
2000 				qdisc_run(q);
2001 				spin_unlock(root_lock);
2002 			} else {
2003 				__netif_schedule(q);
2004 			}
2005 		}
2006 	}
2007 }
2008 
2009 static inline int deliver_skb(struct sk_buff *skb,
2010 			      struct packet_type *pt_prev,
2011 			      struct net_device *orig_dev)
2012 {
2013 	atomic_inc(&skb->users);
2014 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2015 }
2016 
2017 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2018 /* These hooks defined here for ATM */
2019 struct net_bridge;
2020 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2021 						unsigned char *addr);
2022 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2023 
2024 /*
2025  * If bridge module is loaded call bridging hook.
2026  *  returns NULL if packet was consumed.
2027  */
2028 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2029 					struct sk_buff *skb) __read_mostly;
2030 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2031 					    struct packet_type **pt_prev, int *ret,
2032 					    struct net_device *orig_dev)
2033 {
2034 	struct net_bridge_port *port;
2035 
2036 	if (skb->pkt_type == PACKET_LOOPBACK ||
2037 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
2038 		return skb;
2039 
2040 	if (*pt_prev) {
2041 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2042 		*pt_prev = NULL;
2043 	}
2044 
2045 	return br_handle_frame_hook(port, skb);
2046 }
2047 #else
2048 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
2049 #endif
2050 
2051 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2052 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2053 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2054 
2055 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2056 					     struct packet_type **pt_prev,
2057 					     int *ret,
2058 					     struct net_device *orig_dev)
2059 {
2060 	if (skb->dev->macvlan_port == NULL)
2061 		return skb;
2062 
2063 	if (*pt_prev) {
2064 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2065 		*pt_prev = NULL;
2066 	}
2067 	return macvlan_handle_frame_hook(skb);
2068 }
2069 #else
2070 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
2071 #endif
2072 
2073 #ifdef CONFIG_NET_CLS_ACT
2074 /* TODO: Maybe we should just force sch_ingress to be compiled in
2075  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2076  * a compare and 2 stores extra right now if we dont have it on
2077  * but have CONFIG_NET_CLS_ACT
2078  * NOTE: This doesnt stop any functionality; if you dont have
2079  * the ingress scheduler, you just cant add policies on ingress.
2080  *
2081  */
2082 static int ing_filter(struct sk_buff *skb)
2083 {
2084 	struct net_device *dev = skb->dev;
2085 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2086 	struct netdev_queue *rxq;
2087 	int result = TC_ACT_OK;
2088 	struct Qdisc *q;
2089 
2090 	if (MAX_RED_LOOP < ttl++) {
2091 		printk(KERN_WARNING
2092 		       "Redir loop detected Dropping packet (%d->%d)\n",
2093 		       skb->iif, dev->ifindex);
2094 		return TC_ACT_SHOT;
2095 	}
2096 
2097 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2098 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2099 
2100 	rxq = &dev->rx_queue;
2101 
2102 	q = rxq->qdisc;
2103 	if (q) {
2104 		spin_lock(qdisc_lock(q));
2105 		result = qdisc_enqueue_root(skb, q);
2106 		spin_unlock(qdisc_lock(q));
2107 	}
2108 
2109 	return result;
2110 }
2111 
2112 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2113 					 struct packet_type **pt_prev,
2114 					 int *ret, struct net_device *orig_dev)
2115 {
2116 	if (!skb->dev->rx_queue.qdisc)
2117 		goto out;
2118 
2119 	if (*pt_prev) {
2120 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2121 		*pt_prev = NULL;
2122 	} else {
2123 		/* Huh? Why does turning on AF_PACKET affect this? */
2124 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2125 	}
2126 
2127 	switch (ing_filter(skb)) {
2128 	case TC_ACT_SHOT:
2129 	case TC_ACT_STOLEN:
2130 		kfree_skb(skb);
2131 		return NULL;
2132 	}
2133 
2134 out:
2135 	skb->tc_verd = 0;
2136 	return skb;
2137 }
2138 #endif
2139 
2140 /*
2141  * 	netif_nit_deliver - deliver received packets to network taps
2142  * 	@skb: buffer
2143  *
2144  * 	This function is used to deliver incoming packets to network
2145  * 	taps. It should be used when the normal netif_receive_skb path
2146  * 	is bypassed, for example because of VLAN acceleration.
2147  */
2148 void netif_nit_deliver(struct sk_buff *skb)
2149 {
2150 	struct packet_type *ptype;
2151 
2152 	if (list_empty(&ptype_all))
2153 		return;
2154 
2155 	skb_reset_network_header(skb);
2156 	skb_reset_transport_header(skb);
2157 	skb->mac_len = skb->network_header - skb->mac_header;
2158 
2159 	rcu_read_lock();
2160 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2161 		if (!ptype->dev || ptype->dev == skb->dev)
2162 			deliver_skb(skb, ptype, skb->dev);
2163 	}
2164 	rcu_read_unlock();
2165 }
2166 
2167 /**
2168  *	netif_receive_skb - process receive buffer from network
2169  *	@skb: buffer to process
2170  *
2171  *	netif_receive_skb() is the main receive data processing function.
2172  *	It always succeeds. The buffer may be dropped during processing
2173  *	for congestion control or by the protocol layers.
2174  *
2175  *	This function may only be called from softirq context and interrupts
2176  *	should be enabled.
2177  *
2178  *	Return values (usually ignored):
2179  *	NET_RX_SUCCESS: no congestion
2180  *	NET_RX_DROP: packet was dropped
2181  */
2182 int netif_receive_skb(struct sk_buff *skb)
2183 {
2184 	struct packet_type *ptype, *pt_prev;
2185 	struct net_device *orig_dev;
2186 	int ret = NET_RX_DROP;
2187 	__be16 type;
2188 
2189 	/* if we've gotten here through NAPI, check netpoll */
2190 	if (netpoll_receive_skb(skb))
2191 		return NET_RX_DROP;
2192 
2193 	if (!skb->tstamp.tv64)
2194 		net_timestamp(skb);
2195 
2196 	if (!skb->iif)
2197 		skb->iif = skb->dev->ifindex;
2198 
2199 	orig_dev = skb_bond(skb);
2200 
2201 	if (!orig_dev)
2202 		return NET_RX_DROP;
2203 
2204 	__get_cpu_var(netdev_rx_stat).total++;
2205 
2206 	skb_reset_network_header(skb);
2207 	skb_reset_transport_header(skb);
2208 	skb->mac_len = skb->network_header - skb->mac_header;
2209 
2210 	pt_prev = NULL;
2211 
2212 	rcu_read_lock();
2213 
2214 	/* Don't receive packets in an exiting network namespace */
2215 	if (!net_alive(dev_net(skb->dev)))
2216 		goto out;
2217 
2218 #ifdef CONFIG_NET_CLS_ACT
2219 	if (skb->tc_verd & TC_NCLS) {
2220 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2221 		goto ncls;
2222 	}
2223 #endif
2224 
2225 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2226 		if (!ptype->dev || ptype->dev == skb->dev) {
2227 			if (pt_prev)
2228 				ret = deliver_skb(skb, pt_prev, orig_dev);
2229 			pt_prev = ptype;
2230 		}
2231 	}
2232 
2233 #ifdef CONFIG_NET_CLS_ACT
2234 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2235 	if (!skb)
2236 		goto out;
2237 ncls:
2238 #endif
2239 
2240 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2241 	if (!skb)
2242 		goto out;
2243 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2244 	if (!skb)
2245 		goto out;
2246 
2247 	type = skb->protocol;
2248 	list_for_each_entry_rcu(ptype,
2249 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2250 		if (ptype->type == type &&
2251 		    (!ptype->dev || ptype->dev == skb->dev)) {
2252 			if (pt_prev)
2253 				ret = deliver_skb(skb, pt_prev, orig_dev);
2254 			pt_prev = ptype;
2255 		}
2256 	}
2257 
2258 	if (pt_prev) {
2259 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2260 	} else {
2261 		kfree_skb(skb);
2262 		/* Jamal, now you will not able to escape explaining
2263 		 * me how you were going to use this. :-)
2264 		 */
2265 		ret = NET_RX_DROP;
2266 	}
2267 
2268 out:
2269 	rcu_read_unlock();
2270 	return ret;
2271 }
2272 
2273 static int process_backlog(struct napi_struct *napi, int quota)
2274 {
2275 	int work = 0;
2276 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2277 	unsigned long start_time = jiffies;
2278 
2279 	napi->weight = weight_p;
2280 	do {
2281 		struct sk_buff *skb;
2282 		struct net_device *dev;
2283 
2284 		local_irq_disable();
2285 		skb = __skb_dequeue(&queue->input_pkt_queue);
2286 		if (!skb) {
2287 			__napi_complete(napi);
2288 			local_irq_enable();
2289 			break;
2290 		}
2291 
2292 		local_irq_enable();
2293 
2294 		dev = skb->dev;
2295 
2296 		netif_receive_skb(skb);
2297 
2298 		dev_put(dev);
2299 	} while (++work < quota && jiffies == start_time);
2300 
2301 	return work;
2302 }
2303 
2304 /**
2305  * __napi_schedule - schedule for receive
2306  * @n: entry to schedule
2307  *
2308  * The entry's receive function will be scheduled to run
2309  */
2310 void __napi_schedule(struct napi_struct *n)
2311 {
2312 	unsigned long flags;
2313 
2314 	local_irq_save(flags);
2315 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2316 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2317 	local_irq_restore(flags);
2318 }
2319 EXPORT_SYMBOL(__napi_schedule);
2320 
2321 
2322 static void net_rx_action(struct softirq_action *h)
2323 {
2324 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2325 	unsigned long start_time = jiffies;
2326 	int budget = netdev_budget;
2327 	void *have;
2328 
2329 	local_irq_disable();
2330 
2331 	while (!list_empty(list)) {
2332 		struct napi_struct *n;
2333 		int work, weight;
2334 
2335 		/* If softirq window is exhuasted then punt.
2336 		 *
2337 		 * Note that this is a slight policy change from the
2338 		 * previous NAPI code, which would allow up to 2
2339 		 * jiffies to pass before breaking out.  The test
2340 		 * used to be "jiffies - start_time > 1".
2341 		 */
2342 		if (unlikely(budget <= 0 || jiffies != start_time))
2343 			goto softnet_break;
2344 
2345 		local_irq_enable();
2346 
2347 		/* Even though interrupts have been re-enabled, this
2348 		 * access is safe because interrupts can only add new
2349 		 * entries to the tail of this list, and only ->poll()
2350 		 * calls can remove this head entry from the list.
2351 		 */
2352 		n = list_entry(list->next, struct napi_struct, poll_list);
2353 
2354 		have = netpoll_poll_lock(n);
2355 
2356 		weight = n->weight;
2357 
2358 		/* This NAPI_STATE_SCHED test is for avoiding a race
2359 		 * with netpoll's poll_napi().  Only the entity which
2360 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2361 		 * actually make the ->poll() call.  Therefore we avoid
2362 		 * accidently calling ->poll() when NAPI is not scheduled.
2363 		 */
2364 		work = 0;
2365 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2366 			work = n->poll(n, weight);
2367 
2368 		WARN_ON_ONCE(work > weight);
2369 
2370 		budget -= work;
2371 
2372 		local_irq_disable();
2373 
2374 		/* Drivers must not modify the NAPI state if they
2375 		 * consume the entire weight.  In such cases this code
2376 		 * still "owns" the NAPI instance and therefore can
2377 		 * move the instance around on the list at-will.
2378 		 */
2379 		if (unlikely(work == weight)) {
2380 			if (unlikely(napi_disable_pending(n)))
2381 				__napi_complete(n);
2382 			else
2383 				list_move_tail(&n->poll_list, list);
2384 		}
2385 
2386 		netpoll_poll_unlock(have);
2387 	}
2388 out:
2389 	local_irq_enable();
2390 
2391 #ifdef CONFIG_NET_DMA
2392 	/*
2393 	 * There may not be any more sk_buffs coming right now, so push
2394 	 * any pending DMA copies to hardware
2395 	 */
2396 	if (!cpus_empty(net_dma.channel_mask)) {
2397 		int chan_idx;
2398 		for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2399 			struct dma_chan *chan = net_dma.channels[chan_idx];
2400 			if (chan)
2401 				dma_async_memcpy_issue_pending(chan);
2402 		}
2403 	}
2404 #endif
2405 
2406 	return;
2407 
2408 softnet_break:
2409 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2410 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2411 	goto out;
2412 }
2413 
2414 static gifconf_func_t * gifconf_list [NPROTO];
2415 
2416 /**
2417  *	register_gifconf	-	register a SIOCGIF handler
2418  *	@family: Address family
2419  *	@gifconf: Function handler
2420  *
2421  *	Register protocol dependent address dumping routines. The handler
2422  *	that is passed must not be freed or reused until it has been replaced
2423  *	by another handler.
2424  */
2425 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2426 {
2427 	if (family >= NPROTO)
2428 		return -EINVAL;
2429 	gifconf_list[family] = gifconf;
2430 	return 0;
2431 }
2432 
2433 
2434 /*
2435  *	Map an interface index to its name (SIOCGIFNAME)
2436  */
2437 
2438 /*
2439  *	We need this ioctl for efficient implementation of the
2440  *	if_indextoname() function required by the IPv6 API.  Without
2441  *	it, we would have to search all the interfaces to find a
2442  *	match.  --pb
2443  */
2444 
2445 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2446 {
2447 	struct net_device *dev;
2448 	struct ifreq ifr;
2449 
2450 	/*
2451 	 *	Fetch the caller's info block.
2452 	 */
2453 
2454 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2455 		return -EFAULT;
2456 
2457 	read_lock(&dev_base_lock);
2458 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2459 	if (!dev) {
2460 		read_unlock(&dev_base_lock);
2461 		return -ENODEV;
2462 	}
2463 
2464 	strcpy(ifr.ifr_name, dev->name);
2465 	read_unlock(&dev_base_lock);
2466 
2467 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2468 		return -EFAULT;
2469 	return 0;
2470 }
2471 
2472 /*
2473  *	Perform a SIOCGIFCONF call. This structure will change
2474  *	size eventually, and there is nothing I can do about it.
2475  *	Thus we will need a 'compatibility mode'.
2476  */
2477 
2478 static int dev_ifconf(struct net *net, char __user *arg)
2479 {
2480 	struct ifconf ifc;
2481 	struct net_device *dev;
2482 	char __user *pos;
2483 	int len;
2484 	int total;
2485 	int i;
2486 
2487 	/*
2488 	 *	Fetch the caller's info block.
2489 	 */
2490 
2491 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2492 		return -EFAULT;
2493 
2494 	pos = ifc.ifc_buf;
2495 	len = ifc.ifc_len;
2496 
2497 	/*
2498 	 *	Loop over the interfaces, and write an info block for each.
2499 	 */
2500 
2501 	total = 0;
2502 	for_each_netdev(net, dev) {
2503 		for (i = 0; i < NPROTO; i++) {
2504 			if (gifconf_list[i]) {
2505 				int done;
2506 				if (!pos)
2507 					done = gifconf_list[i](dev, NULL, 0);
2508 				else
2509 					done = gifconf_list[i](dev, pos + total,
2510 							       len - total);
2511 				if (done < 0)
2512 					return -EFAULT;
2513 				total += done;
2514 			}
2515 		}
2516 	}
2517 
2518 	/*
2519 	 *	All done.  Write the updated control block back to the caller.
2520 	 */
2521 	ifc.ifc_len = total;
2522 
2523 	/*
2524 	 * 	Both BSD and Solaris return 0 here, so we do too.
2525 	 */
2526 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2527 }
2528 
2529 #ifdef CONFIG_PROC_FS
2530 /*
2531  *	This is invoked by the /proc filesystem handler to display a device
2532  *	in detail.
2533  */
2534 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2535 	__acquires(dev_base_lock)
2536 {
2537 	struct net *net = seq_file_net(seq);
2538 	loff_t off;
2539 	struct net_device *dev;
2540 
2541 	read_lock(&dev_base_lock);
2542 	if (!*pos)
2543 		return SEQ_START_TOKEN;
2544 
2545 	off = 1;
2546 	for_each_netdev(net, dev)
2547 		if (off++ == *pos)
2548 			return dev;
2549 
2550 	return NULL;
2551 }
2552 
2553 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2554 {
2555 	struct net *net = seq_file_net(seq);
2556 	++*pos;
2557 	return v == SEQ_START_TOKEN ?
2558 		first_net_device(net) : next_net_device((struct net_device *)v);
2559 }
2560 
2561 void dev_seq_stop(struct seq_file *seq, void *v)
2562 	__releases(dev_base_lock)
2563 {
2564 	read_unlock(&dev_base_lock);
2565 }
2566 
2567 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2568 {
2569 	struct net_device_stats *stats = dev->get_stats(dev);
2570 
2571 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2572 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2573 		   dev->name, stats->rx_bytes, stats->rx_packets,
2574 		   stats->rx_errors,
2575 		   stats->rx_dropped + stats->rx_missed_errors,
2576 		   stats->rx_fifo_errors,
2577 		   stats->rx_length_errors + stats->rx_over_errors +
2578 		    stats->rx_crc_errors + stats->rx_frame_errors,
2579 		   stats->rx_compressed, stats->multicast,
2580 		   stats->tx_bytes, stats->tx_packets,
2581 		   stats->tx_errors, stats->tx_dropped,
2582 		   stats->tx_fifo_errors, stats->collisions,
2583 		   stats->tx_carrier_errors +
2584 		    stats->tx_aborted_errors +
2585 		    stats->tx_window_errors +
2586 		    stats->tx_heartbeat_errors,
2587 		   stats->tx_compressed);
2588 }
2589 
2590 /*
2591  *	Called from the PROCfs module. This now uses the new arbitrary sized
2592  *	/proc/net interface to create /proc/net/dev
2593  */
2594 static int dev_seq_show(struct seq_file *seq, void *v)
2595 {
2596 	if (v == SEQ_START_TOKEN)
2597 		seq_puts(seq, "Inter-|   Receive                            "
2598 			      "                    |  Transmit\n"
2599 			      " face |bytes    packets errs drop fifo frame "
2600 			      "compressed multicast|bytes    packets errs "
2601 			      "drop fifo colls carrier compressed\n");
2602 	else
2603 		dev_seq_printf_stats(seq, v);
2604 	return 0;
2605 }
2606 
2607 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2608 {
2609 	struct netif_rx_stats *rc = NULL;
2610 
2611 	while (*pos < nr_cpu_ids)
2612 		if (cpu_online(*pos)) {
2613 			rc = &per_cpu(netdev_rx_stat, *pos);
2614 			break;
2615 		} else
2616 			++*pos;
2617 	return rc;
2618 }
2619 
2620 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2621 {
2622 	return softnet_get_online(pos);
2623 }
2624 
2625 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2626 {
2627 	++*pos;
2628 	return softnet_get_online(pos);
2629 }
2630 
2631 static void softnet_seq_stop(struct seq_file *seq, void *v)
2632 {
2633 }
2634 
2635 static int softnet_seq_show(struct seq_file *seq, void *v)
2636 {
2637 	struct netif_rx_stats *s = v;
2638 
2639 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2640 		   s->total, s->dropped, s->time_squeeze, 0,
2641 		   0, 0, 0, 0, /* was fastroute */
2642 		   s->cpu_collision );
2643 	return 0;
2644 }
2645 
2646 static const struct seq_operations dev_seq_ops = {
2647 	.start = dev_seq_start,
2648 	.next  = dev_seq_next,
2649 	.stop  = dev_seq_stop,
2650 	.show  = dev_seq_show,
2651 };
2652 
2653 static int dev_seq_open(struct inode *inode, struct file *file)
2654 {
2655 	return seq_open_net(inode, file, &dev_seq_ops,
2656 			    sizeof(struct seq_net_private));
2657 }
2658 
2659 static const struct file_operations dev_seq_fops = {
2660 	.owner	 = THIS_MODULE,
2661 	.open    = dev_seq_open,
2662 	.read    = seq_read,
2663 	.llseek  = seq_lseek,
2664 	.release = seq_release_net,
2665 };
2666 
2667 static const struct seq_operations softnet_seq_ops = {
2668 	.start = softnet_seq_start,
2669 	.next  = softnet_seq_next,
2670 	.stop  = softnet_seq_stop,
2671 	.show  = softnet_seq_show,
2672 };
2673 
2674 static int softnet_seq_open(struct inode *inode, struct file *file)
2675 {
2676 	return seq_open(file, &softnet_seq_ops);
2677 }
2678 
2679 static const struct file_operations softnet_seq_fops = {
2680 	.owner	 = THIS_MODULE,
2681 	.open    = softnet_seq_open,
2682 	.read    = seq_read,
2683 	.llseek  = seq_lseek,
2684 	.release = seq_release,
2685 };
2686 
2687 static void *ptype_get_idx(loff_t pos)
2688 {
2689 	struct packet_type *pt = NULL;
2690 	loff_t i = 0;
2691 	int t;
2692 
2693 	list_for_each_entry_rcu(pt, &ptype_all, list) {
2694 		if (i == pos)
2695 			return pt;
2696 		++i;
2697 	}
2698 
2699 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2700 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2701 			if (i == pos)
2702 				return pt;
2703 			++i;
2704 		}
2705 	}
2706 	return NULL;
2707 }
2708 
2709 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2710 	__acquires(RCU)
2711 {
2712 	rcu_read_lock();
2713 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2714 }
2715 
2716 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2717 {
2718 	struct packet_type *pt;
2719 	struct list_head *nxt;
2720 	int hash;
2721 
2722 	++*pos;
2723 	if (v == SEQ_START_TOKEN)
2724 		return ptype_get_idx(0);
2725 
2726 	pt = v;
2727 	nxt = pt->list.next;
2728 	if (pt->type == htons(ETH_P_ALL)) {
2729 		if (nxt != &ptype_all)
2730 			goto found;
2731 		hash = 0;
2732 		nxt = ptype_base[0].next;
2733 	} else
2734 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2735 
2736 	while (nxt == &ptype_base[hash]) {
2737 		if (++hash >= PTYPE_HASH_SIZE)
2738 			return NULL;
2739 		nxt = ptype_base[hash].next;
2740 	}
2741 found:
2742 	return list_entry(nxt, struct packet_type, list);
2743 }
2744 
2745 static void ptype_seq_stop(struct seq_file *seq, void *v)
2746 	__releases(RCU)
2747 {
2748 	rcu_read_unlock();
2749 }
2750 
2751 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2752 {
2753 #ifdef CONFIG_KALLSYMS
2754 	unsigned long offset = 0, symsize;
2755 	const char *symname;
2756 	char *modname;
2757 	char namebuf[128];
2758 
2759 	symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2760 				  &modname, namebuf);
2761 
2762 	if (symname) {
2763 		char *delim = ":";
2764 
2765 		if (!modname)
2766 			modname = delim = "";
2767 		seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2768 			   symname, offset);
2769 		return;
2770 	}
2771 #endif
2772 
2773 	seq_printf(seq, "[%p]", sym);
2774 }
2775 
2776 static int ptype_seq_show(struct seq_file *seq, void *v)
2777 {
2778 	struct packet_type *pt = v;
2779 
2780 	if (v == SEQ_START_TOKEN)
2781 		seq_puts(seq, "Type Device      Function\n");
2782 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2783 		if (pt->type == htons(ETH_P_ALL))
2784 			seq_puts(seq, "ALL ");
2785 		else
2786 			seq_printf(seq, "%04x", ntohs(pt->type));
2787 
2788 		seq_printf(seq, " %-8s ",
2789 			   pt->dev ? pt->dev->name : "");
2790 		ptype_seq_decode(seq,  pt->func);
2791 		seq_putc(seq, '\n');
2792 	}
2793 
2794 	return 0;
2795 }
2796 
2797 static const struct seq_operations ptype_seq_ops = {
2798 	.start = ptype_seq_start,
2799 	.next  = ptype_seq_next,
2800 	.stop  = ptype_seq_stop,
2801 	.show  = ptype_seq_show,
2802 };
2803 
2804 static int ptype_seq_open(struct inode *inode, struct file *file)
2805 {
2806 	return seq_open_net(inode, file, &ptype_seq_ops,
2807 			sizeof(struct seq_net_private));
2808 }
2809 
2810 static const struct file_operations ptype_seq_fops = {
2811 	.owner	 = THIS_MODULE,
2812 	.open    = ptype_seq_open,
2813 	.read    = seq_read,
2814 	.llseek  = seq_lseek,
2815 	.release = seq_release_net,
2816 };
2817 
2818 
2819 static int __net_init dev_proc_net_init(struct net *net)
2820 {
2821 	int rc = -ENOMEM;
2822 
2823 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2824 		goto out;
2825 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2826 		goto out_dev;
2827 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2828 		goto out_softnet;
2829 
2830 	if (wext_proc_init(net))
2831 		goto out_ptype;
2832 	rc = 0;
2833 out:
2834 	return rc;
2835 out_ptype:
2836 	proc_net_remove(net, "ptype");
2837 out_softnet:
2838 	proc_net_remove(net, "softnet_stat");
2839 out_dev:
2840 	proc_net_remove(net, "dev");
2841 	goto out;
2842 }
2843 
2844 static void __net_exit dev_proc_net_exit(struct net *net)
2845 {
2846 	wext_proc_exit(net);
2847 
2848 	proc_net_remove(net, "ptype");
2849 	proc_net_remove(net, "softnet_stat");
2850 	proc_net_remove(net, "dev");
2851 }
2852 
2853 static struct pernet_operations __net_initdata dev_proc_ops = {
2854 	.init = dev_proc_net_init,
2855 	.exit = dev_proc_net_exit,
2856 };
2857 
2858 static int __init dev_proc_init(void)
2859 {
2860 	return register_pernet_subsys(&dev_proc_ops);
2861 }
2862 #else
2863 #define dev_proc_init() 0
2864 #endif	/* CONFIG_PROC_FS */
2865 
2866 
2867 /**
2868  *	netdev_set_master	-	set up master/slave pair
2869  *	@slave: slave device
2870  *	@master: new master device
2871  *
2872  *	Changes the master device of the slave. Pass %NULL to break the
2873  *	bonding. The caller must hold the RTNL semaphore. On a failure
2874  *	a negative errno code is returned. On success the reference counts
2875  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2876  *	function returns zero.
2877  */
2878 int netdev_set_master(struct net_device *slave, struct net_device *master)
2879 {
2880 	struct net_device *old = slave->master;
2881 
2882 	ASSERT_RTNL();
2883 
2884 	if (master) {
2885 		if (old)
2886 			return -EBUSY;
2887 		dev_hold(master);
2888 	}
2889 
2890 	slave->master = master;
2891 
2892 	synchronize_net();
2893 
2894 	if (old)
2895 		dev_put(old);
2896 
2897 	if (master)
2898 		slave->flags |= IFF_SLAVE;
2899 	else
2900 		slave->flags &= ~IFF_SLAVE;
2901 
2902 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2903 	return 0;
2904 }
2905 
2906 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2907 {
2908 	unsigned short old_flags = dev->flags;
2909 
2910 	ASSERT_RTNL();
2911 
2912 	dev->flags |= IFF_PROMISC;
2913 	dev->promiscuity += inc;
2914 	if (dev->promiscuity == 0) {
2915 		/*
2916 		 * Avoid overflow.
2917 		 * If inc causes overflow, untouch promisc and return error.
2918 		 */
2919 		if (inc < 0)
2920 			dev->flags &= ~IFF_PROMISC;
2921 		else {
2922 			dev->promiscuity -= inc;
2923 			printk(KERN_WARNING "%s: promiscuity touches roof, "
2924 				"set promiscuity failed, promiscuity feature "
2925 				"of device might be broken.\n", dev->name);
2926 			return -EOVERFLOW;
2927 		}
2928 	}
2929 	if (dev->flags != old_flags) {
2930 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2931 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2932 							       "left");
2933 		if (audit_enabled)
2934 			audit_log(current->audit_context, GFP_ATOMIC,
2935 				AUDIT_ANOM_PROMISCUOUS,
2936 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2937 				dev->name, (dev->flags & IFF_PROMISC),
2938 				(old_flags & IFF_PROMISC),
2939 				audit_get_loginuid(current),
2940 				current->uid, current->gid,
2941 				audit_get_sessionid(current));
2942 
2943 		if (dev->change_rx_flags)
2944 			dev->change_rx_flags(dev, IFF_PROMISC);
2945 	}
2946 	return 0;
2947 }
2948 
2949 /**
2950  *	dev_set_promiscuity	- update promiscuity count on a device
2951  *	@dev: device
2952  *	@inc: modifier
2953  *
2954  *	Add or remove promiscuity from a device. While the count in the device
2955  *	remains above zero the interface remains promiscuous. Once it hits zero
2956  *	the device reverts back to normal filtering operation. A negative inc
2957  *	value is used to drop promiscuity on the device.
2958  *	Return 0 if successful or a negative errno code on error.
2959  */
2960 int dev_set_promiscuity(struct net_device *dev, int inc)
2961 {
2962 	unsigned short old_flags = dev->flags;
2963 	int err;
2964 
2965 	err = __dev_set_promiscuity(dev, inc);
2966 	if (err < 0)
2967 		return err;
2968 	if (dev->flags != old_flags)
2969 		dev_set_rx_mode(dev);
2970 	return err;
2971 }
2972 
2973 /**
2974  *	dev_set_allmulti	- update allmulti count on a device
2975  *	@dev: device
2976  *	@inc: modifier
2977  *
2978  *	Add or remove reception of all multicast frames to a device. While the
2979  *	count in the device remains above zero the interface remains listening
2980  *	to all interfaces. Once it hits zero the device reverts back to normal
2981  *	filtering operation. A negative @inc value is used to drop the counter
2982  *	when releasing a resource needing all multicasts.
2983  *	Return 0 if successful or a negative errno code on error.
2984  */
2985 
2986 int dev_set_allmulti(struct net_device *dev, int inc)
2987 {
2988 	unsigned short old_flags = dev->flags;
2989 
2990 	ASSERT_RTNL();
2991 
2992 	dev->flags |= IFF_ALLMULTI;
2993 	dev->allmulti += inc;
2994 	if (dev->allmulti == 0) {
2995 		/*
2996 		 * Avoid overflow.
2997 		 * If inc causes overflow, untouch allmulti and return error.
2998 		 */
2999 		if (inc < 0)
3000 			dev->flags &= ~IFF_ALLMULTI;
3001 		else {
3002 			dev->allmulti -= inc;
3003 			printk(KERN_WARNING "%s: allmulti touches roof, "
3004 				"set allmulti failed, allmulti feature of "
3005 				"device might be broken.\n", dev->name);
3006 			return -EOVERFLOW;
3007 		}
3008 	}
3009 	if (dev->flags ^ old_flags) {
3010 		if (dev->change_rx_flags)
3011 			dev->change_rx_flags(dev, IFF_ALLMULTI);
3012 		dev_set_rx_mode(dev);
3013 	}
3014 	return 0;
3015 }
3016 
3017 /*
3018  *	Upload unicast and multicast address lists to device and
3019  *	configure RX filtering. When the device doesn't support unicast
3020  *	filtering it is put in promiscuous mode while unicast addresses
3021  *	are present.
3022  */
3023 void __dev_set_rx_mode(struct net_device *dev)
3024 {
3025 	/* dev_open will call this function so the list will stay sane. */
3026 	if (!(dev->flags&IFF_UP))
3027 		return;
3028 
3029 	if (!netif_device_present(dev))
3030 		return;
3031 
3032 	if (dev->set_rx_mode)
3033 		dev->set_rx_mode(dev);
3034 	else {
3035 		/* Unicast addresses changes may only happen under the rtnl,
3036 		 * therefore calling __dev_set_promiscuity here is safe.
3037 		 */
3038 		if (dev->uc_count > 0 && !dev->uc_promisc) {
3039 			__dev_set_promiscuity(dev, 1);
3040 			dev->uc_promisc = 1;
3041 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
3042 			__dev_set_promiscuity(dev, -1);
3043 			dev->uc_promisc = 0;
3044 		}
3045 
3046 		if (dev->set_multicast_list)
3047 			dev->set_multicast_list(dev);
3048 	}
3049 }
3050 
3051 void dev_set_rx_mode(struct net_device *dev)
3052 {
3053 	netif_addr_lock_bh(dev);
3054 	__dev_set_rx_mode(dev);
3055 	netif_addr_unlock_bh(dev);
3056 }
3057 
3058 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3059 		      void *addr, int alen, int glbl)
3060 {
3061 	struct dev_addr_list *da;
3062 
3063 	for (; (da = *list) != NULL; list = &da->next) {
3064 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3065 		    alen == da->da_addrlen) {
3066 			if (glbl) {
3067 				int old_glbl = da->da_gusers;
3068 				da->da_gusers = 0;
3069 				if (old_glbl == 0)
3070 					break;
3071 			}
3072 			if (--da->da_users)
3073 				return 0;
3074 
3075 			*list = da->next;
3076 			kfree(da);
3077 			(*count)--;
3078 			return 0;
3079 		}
3080 	}
3081 	return -ENOENT;
3082 }
3083 
3084 int __dev_addr_add(struct dev_addr_list **list, int *count,
3085 		   void *addr, int alen, int glbl)
3086 {
3087 	struct dev_addr_list *da;
3088 
3089 	for (da = *list; da != NULL; da = da->next) {
3090 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3091 		    da->da_addrlen == alen) {
3092 			if (glbl) {
3093 				int old_glbl = da->da_gusers;
3094 				da->da_gusers = 1;
3095 				if (old_glbl)
3096 					return 0;
3097 			}
3098 			da->da_users++;
3099 			return 0;
3100 		}
3101 	}
3102 
3103 	da = kzalloc(sizeof(*da), GFP_ATOMIC);
3104 	if (da == NULL)
3105 		return -ENOMEM;
3106 	memcpy(da->da_addr, addr, alen);
3107 	da->da_addrlen = alen;
3108 	da->da_users = 1;
3109 	da->da_gusers = glbl ? 1 : 0;
3110 	da->next = *list;
3111 	*list = da;
3112 	(*count)++;
3113 	return 0;
3114 }
3115 
3116 /**
3117  *	dev_unicast_delete	- Release secondary unicast address.
3118  *	@dev: device
3119  *	@addr: address to delete
3120  *	@alen: length of @addr
3121  *
3122  *	Release reference to a secondary unicast address and remove it
3123  *	from the device if the reference count drops to zero.
3124  *
3125  * 	The caller must hold the rtnl_mutex.
3126  */
3127 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3128 {
3129 	int err;
3130 
3131 	ASSERT_RTNL();
3132 
3133 	netif_addr_lock_bh(dev);
3134 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3135 	if (!err)
3136 		__dev_set_rx_mode(dev);
3137 	netif_addr_unlock_bh(dev);
3138 	return err;
3139 }
3140 EXPORT_SYMBOL(dev_unicast_delete);
3141 
3142 /**
3143  *	dev_unicast_add		- add a secondary unicast address
3144  *	@dev: device
3145  *	@addr: address to add
3146  *	@alen: length of @addr
3147  *
3148  *	Add a secondary unicast address to the device or increase
3149  *	the reference count if it already exists.
3150  *
3151  *	The caller must hold the rtnl_mutex.
3152  */
3153 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3154 {
3155 	int err;
3156 
3157 	ASSERT_RTNL();
3158 
3159 	netif_addr_lock_bh(dev);
3160 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3161 	if (!err)
3162 		__dev_set_rx_mode(dev);
3163 	netif_addr_unlock_bh(dev);
3164 	return err;
3165 }
3166 EXPORT_SYMBOL(dev_unicast_add);
3167 
3168 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3169 		    struct dev_addr_list **from, int *from_count)
3170 {
3171 	struct dev_addr_list *da, *next;
3172 	int err = 0;
3173 
3174 	da = *from;
3175 	while (da != NULL) {
3176 		next = da->next;
3177 		if (!da->da_synced) {
3178 			err = __dev_addr_add(to, to_count,
3179 					     da->da_addr, da->da_addrlen, 0);
3180 			if (err < 0)
3181 				break;
3182 			da->da_synced = 1;
3183 			da->da_users++;
3184 		} else if (da->da_users == 1) {
3185 			__dev_addr_delete(to, to_count,
3186 					  da->da_addr, da->da_addrlen, 0);
3187 			__dev_addr_delete(from, from_count,
3188 					  da->da_addr, da->da_addrlen, 0);
3189 		}
3190 		da = next;
3191 	}
3192 	return err;
3193 }
3194 
3195 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3196 		       struct dev_addr_list **from, int *from_count)
3197 {
3198 	struct dev_addr_list *da, *next;
3199 
3200 	da = *from;
3201 	while (da != NULL) {
3202 		next = da->next;
3203 		if (da->da_synced) {
3204 			__dev_addr_delete(to, to_count,
3205 					  da->da_addr, da->da_addrlen, 0);
3206 			da->da_synced = 0;
3207 			__dev_addr_delete(from, from_count,
3208 					  da->da_addr, da->da_addrlen, 0);
3209 		}
3210 		da = next;
3211 	}
3212 }
3213 
3214 /**
3215  *	dev_unicast_sync - Synchronize device's unicast list to another device
3216  *	@to: destination device
3217  *	@from: source device
3218  *
3219  *	Add newly added addresses to the destination device and release
3220  *	addresses that have no users left. The source device must be
3221  *	locked by netif_tx_lock_bh.
3222  *
3223  *	This function is intended to be called from the dev->set_rx_mode
3224  *	function of layered software devices.
3225  */
3226 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3227 {
3228 	int err = 0;
3229 
3230 	netif_addr_lock_bh(to);
3231 	err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3232 			      &from->uc_list, &from->uc_count);
3233 	if (!err)
3234 		__dev_set_rx_mode(to);
3235 	netif_addr_unlock_bh(to);
3236 	return err;
3237 }
3238 EXPORT_SYMBOL(dev_unicast_sync);
3239 
3240 /**
3241  *	dev_unicast_unsync - Remove synchronized addresses from the destination device
3242  *	@to: destination device
3243  *	@from: source device
3244  *
3245  *	Remove all addresses that were added to the destination device by
3246  *	dev_unicast_sync(). This function is intended to be called from the
3247  *	dev->stop function of layered software devices.
3248  */
3249 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3250 {
3251 	netif_addr_lock_bh(from);
3252 	netif_addr_lock(to);
3253 
3254 	__dev_addr_unsync(&to->uc_list, &to->uc_count,
3255 			  &from->uc_list, &from->uc_count);
3256 	__dev_set_rx_mode(to);
3257 
3258 	netif_addr_unlock(to);
3259 	netif_addr_unlock_bh(from);
3260 }
3261 EXPORT_SYMBOL(dev_unicast_unsync);
3262 
3263 static void __dev_addr_discard(struct dev_addr_list **list)
3264 {
3265 	struct dev_addr_list *tmp;
3266 
3267 	while (*list != NULL) {
3268 		tmp = *list;
3269 		*list = tmp->next;
3270 		if (tmp->da_users > tmp->da_gusers)
3271 			printk("__dev_addr_discard: address leakage! "
3272 			       "da_users=%d\n", tmp->da_users);
3273 		kfree(tmp);
3274 	}
3275 }
3276 
3277 static void dev_addr_discard(struct net_device *dev)
3278 {
3279 	netif_addr_lock_bh(dev);
3280 
3281 	__dev_addr_discard(&dev->uc_list);
3282 	dev->uc_count = 0;
3283 
3284 	__dev_addr_discard(&dev->mc_list);
3285 	dev->mc_count = 0;
3286 
3287 	netif_addr_unlock_bh(dev);
3288 }
3289 
3290 unsigned dev_get_flags(const struct net_device *dev)
3291 {
3292 	unsigned flags;
3293 
3294 	flags = (dev->flags & ~(IFF_PROMISC |
3295 				IFF_ALLMULTI |
3296 				IFF_RUNNING |
3297 				IFF_LOWER_UP |
3298 				IFF_DORMANT)) |
3299 		(dev->gflags & (IFF_PROMISC |
3300 				IFF_ALLMULTI));
3301 
3302 	if (netif_running(dev)) {
3303 		if (netif_oper_up(dev))
3304 			flags |= IFF_RUNNING;
3305 		if (netif_carrier_ok(dev))
3306 			flags |= IFF_LOWER_UP;
3307 		if (netif_dormant(dev))
3308 			flags |= IFF_DORMANT;
3309 	}
3310 
3311 	return flags;
3312 }
3313 
3314 int dev_change_flags(struct net_device *dev, unsigned flags)
3315 {
3316 	int ret, changes;
3317 	int old_flags = dev->flags;
3318 
3319 	ASSERT_RTNL();
3320 
3321 	/*
3322 	 *	Set the flags on our device.
3323 	 */
3324 
3325 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3326 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3327 			       IFF_AUTOMEDIA)) |
3328 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3329 				    IFF_ALLMULTI));
3330 
3331 	/*
3332 	 *	Load in the correct multicast list now the flags have changed.
3333 	 */
3334 
3335 	if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3336 		dev->change_rx_flags(dev, IFF_MULTICAST);
3337 
3338 	dev_set_rx_mode(dev);
3339 
3340 	/*
3341 	 *	Have we downed the interface. We handle IFF_UP ourselves
3342 	 *	according to user attempts to set it, rather than blindly
3343 	 *	setting it.
3344 	 */
3345 
3346 	ret = 0;
3347 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3348 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3349 
3350 		if (!ret)
3351 			dev_set_rx_mode(dev);
3352 	}
3353 
3354 	if (dev->flags & IFF_UP &&
3355 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3356 					  IFF_VOLATILE)))
3357 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3358 
3359 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3360 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3361 		dev->gflags ^= IFF_PROMISC;
3362 		dev_set_promiscuity(dev, inc);
3363 	}
3364 
3365 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3366 	   is important. Some (broken) drivers set IFF_PROMISC, when
3367 	   IFF_ALLMULTI is requested not asking us and not reporting.
3368 	 */
3369 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3370 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3371 		dev->gflags ^= IFF_ALLMULTI;
3372 		dev_set_allmulti(dev, inc);
3373 	}
3374 
3375 	/* Exclude state transition flags, already notified */
3376 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3377 	if (changes)
3378 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3379 
3380 	return ret;
3381 }
3382 
3383 int dev_set_mtu(struct net_device *dev, int new_mtu)
3384 {
3385 	int err;
3386 
3387 	if (new_mtu == dev->mtu)
3388 		return 0;
3389 
3390 	/*	MTU must be positive.	 */
3391 	if (new_mtu < 0)
3392 		return -EINVAL;
3393 
3394 	if (!netif_device_present(dev))
3395 		return -ENODEV;
3396 
3397 	err = 0;
3398 	if (dev->change_mtu)
3399 		err = dev->change_mtu(dev, new_mtu);
3400 	else
3401 		dev->mtu = new_mtu;
3402 	if (!err && dev->flags & IFF_UP)
3403 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3404 	return err;
3405 }
3406 
3407 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3408 {
3409 	int err;
3410 
3411 	if (!dev->set_mac_address)
3412 		return -EOPNOTSUPP;
3413 	if (sa->sa_family != dev->type)
3414 		return -EINVAL;
3415 	if (!netif_device_present(dev))
3416 		return -ENODEV;
3417 	err = dev->set_mac_address(dev, sa);
3418 	if (!err)
3419 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3420 	return err;
3421 }
3422 
3423 /*
3424  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3425  */
3426 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3427 {
3428 	int err;
3429 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3430 
3431 	if (!dev)
3432 		return -ENODEV;
3433 
3434 	switch (cmd) {
3435 		case SIOCGIFFLAGS:	/* Get interface flags */
3436 			ifr->ifr_flags = dev_get_flags(dev);
3437 			return 0;
3438 
3439 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3440 					   (currently unused) */
3441 			ifr->ifr_metric = 0;
3442 			return 0;
3443 
3444 		case SIOCGIFMTU:	/* Get the MTU of a device */
3445 			ifr->ifr_mtu = dev->mtu;
3446 			return 0;
3447 
3448 		case SIOCGIFHWADDR:
3449 			if (!dev->addr_len)
3450 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3451 			else
3452 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3453 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3454 			ifr->ifr_hwaddr.sa_family = dev->type;
3455 			return 0;
3456 
3457 		case SIOCGIFSLAVE:
3458 			err = -EINVAL;
3459 			break;
3460 
3461 		case SIOCGIFMAP:
3462 			ifr->ifr_map.mem_start = dev->mem_start;
3463 			ifr->ifr_map.mem_end   = dev->mem_end;
3464 			ifr->ifr_map.base_addr = dev->base_addr;
3465 			ifr->ifr_map.irq       = dev->irq;
3466 			ifr->ifr_map.dma       = dev->dma;
3467 			ifr->ifr_map.port      = dev->if_port;
3468 			return 0;
3469 
3470 		case SIOCGIFINDEX:
3471 			ifr->ifr_ifindex = dev->ifindex;
3472 			return 0;
3473 
3474 		case SIOCGIFTXQLEN:
3475 			ifr->ifr_qlen = dev->tx_queue_len;
3476 			return 0;
3477 
3478 		default:
3479 			/* dev_ioctl() should ensure this case
3480 			 * is never reached
3481 			 */
3482 			WARN_ON(1);
3483 			err = -EINVAL;
3484 			break;
3485 
3486 	}
3487 	return err;
3488 }
3489 
3490 /*
3491  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3492  */
3493 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3494 {
3495 	int err;
3496 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3497 
3498 	if (!dev)
3499 		return -ENODEV;
3500 
3501 	switch (cmd) {
3502 		case SIOCSIFFLAGS:	/* Set interface flags */
3503 			return dev_change_flags(dev, ifr->ifr_flags);
3504 
3505 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3506 					   (currently unused) */
3507 			return -EOPNOTSUPP;
3508 
3509 		case SIOCSIFMTU:	/* Set the MTU of a device */
3510 			return dev_set_mtu(dev, ifr->ifr_mtu);
3511 
3512 		case SIOCSIFHWADDR:
3513 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3514 
3515 		case SIOCSIFHWBROADCAST:
3516 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3517 				return -EINVAL;
3518 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3519 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3520 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3521 			return 0;
3522 
3523 		case SIOCSIFMAP:
3524 			if (dev->set_config) {
3525 				if (!netif_device_present(dev))
3526 					return -ENODEV;
3527 				return dev->set_config(dev, &ifr->ifr_map);
3528 			}
3529 			return -EOPNOTSUPP;
3530 
3531 		case SIOCADDMULTI:
3532 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3533 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3534 				return -EINVAL;
3535 			if (!netif_device_present(dev))
3536 				return -ENODEV;
3537 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3538 					  dev->addr_len, 1);
3539 
3540 		case SIOCDELMULTI:
3541 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3542 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3543 				return -EINVAL;
3544 			if (!netif_device_present(dev))
3545 				return -ENODEV;
3546 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3547 					     dev->addr_len, 1);
3548 
3549 		case SIOCSIFTXQLEN:
3550 			if (ifr->ifr_qlen < 0)
3551 				return -EINVAL;
3552 			dev->tx_queue_len = ifr->ifr_qlen;
3553 			return 0;
3554 
3555 		case SIOCSIFNAME:
3556 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3557 			return dev_change_name(dev, ifr->ifr_newname);
3558 
3559 		/*
3560 		 *	Unknown or private ioctl
3561 		 */
3562 
3563 		default:
3564 			if ((cmd >= SIOCDEVPRIVATE &&
3565 			    cmd <= SIOCDEVPRIVATE + 15) ||
3566 			    cmd == SIOCBONDENSLAVE ||
3567 			    cmd == SIOCBONDRELEASE ||
3568 			    cmd == SIOCBONDSETHWADDR ||
3569 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3570 			    cmd == SIOCBONDINFOQUERY ||
3571 			    cmd == SIOCBONDCHANGEACTIVE ||
3572 			    cmd == SIOCGMIIPHY ||
3573 			    cmd == SIOCGMIIREG ||
3574 			    cmd == SIOCSMIIREG ||
3575 			    cmd == SIOCBRADDIF ||
3576 			    cmd == SIOCBRDELIF ||
3577 			    cmd == SIOCWANDEV) {
3578 				err = -EOPNOTSUPP;
3579 				if (dev->do_ioctl) {
3580 					if (netif_device_present(dev))
3581 						err = dev->do_ioctl(dev, ifr,
3582 								    cmd);
3583 					else
3584 						err = -ENODEV;
3585 				}
3586 			} else
3587 				err = -EINVAL;
3588 
3589 	}
3590 	return err;
3591 }
3592 
3593 /*
3594  *	This function handles all "interface"-type I/O control requests. The actual
3595  *	'doing' part of this is dev_ifsioc above.
3596  */
3597 
3598 /**
3599  *	dev_ioctl	-	network device ioctl
3600  *	@net: the applicable net namespace
3601  *	@cmd: command to issue
3602  *	@arg: pointer to a struct ifreq in user space
3603  *
3604  *	Issue ioctl functions to devices. This is normally called by the
3605  *	user space syscall interfaces but can sometimes be useful for
3606  *	other purposes. The return value is the return from the syscall if
3607  *	positive or a negative errno code on error.
3608  */
3609 
3610 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3611 {
3612 	struct ifreq ifr;
3613 	int ret;
3614 	char *colon;
3615 
3616 	/* One special case: SIOCGIFCONF takes ifconf argument
3617 	   and requires shared lock, because it sleeps writing
3618 	   to user space.
3619 	 */
3620 
3621 	if (cmd == SIOCGIFCONF) {
3622 		rtnl_lock();
3623 		ret = dev_ifconf(net, (char __user *) arg);
3624 		rtnl_unlock();
3625 		return ret;
3626 	}
3627 	if (cmd == SIOCGIFNAME)
3628 		return dev_ifname(net, (struct ifreq __user *)arg);
3629 
3630 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3631 		return -EFAULT;
3632 
3633 	ifr.ifr_name[IFNAMSIZ-1] = 0;
3634 
3635 	colon = strchr(ifr.ifr_name, ':');
3636 	if (colon)
3637 		*colon = 0;
3638 
3639 	/*
3640 	 *	See which interface the caller is talking about.
3641 	 */
3642 
3643 	switch (cmd) {
3644 		/*
3645 		 *	These ioctl calls:
3646 		 *	- can be done by all.
3647 		 *	- atomic and do not require locking.
3648 		 *	- return a value
3649 		 */
3650 		case SIOCGIFFLAGS:
3651 		case SIOCGIFMETRIC:
3652 		case SIOCGIFMTU:
3653 		case SIOCGIFHWADDR:
3654 		case SIOCGIFSLAVE:
3655 		case SIOCGIFMAP:
3656 		case SIOCGIFINDEX:
3657 		case SIOCGIFTXQLEN:
3658 			dev_load(net, ifr.ifr_name);
3659 			read_lock(&dev_base_lock);
3660 			ret = dev_ifsioc_locked(net, &ifr, cmd);
3661 			read_unlock(&dev_base_lock);
3662 			if (!ret) {
3663 				if (colon)
3664 					*colon = ':';
3665 				if (copy_to_user(arg, &ifr,
3666 						 sizeof(struct ifreq)))
3667 					ret = -EFAULT;
3668 			}
3669 			return ret;
3670 
3671 		case SIOCETHTOOL:
3672 			dev_load(net, ifr.ifr_name);
3673 			rtnl_lock();
3674 			ret = dev_ethtool(net, &ifr);
3675 			rtnl_unlock();
3676 			if (!ret) {
3677 				if (colon)
3678 					*colon = ':';
3679 				if (copy_to_user(arg, &ifr,
3680 						 sizeof(struct ifreq)))
3681 					ret = -EFAULT;
3682 			}
3683 			return ret;
3684 
3685 		/*
3686 		 *	These ioctl calls:
3687 		 *	- require superuser power.
3688 		 *	- require strict serialization.
3689 		 *	- return a value
3690 		 */
3691 		case SIOCGMIIPHY:
3692 		case SIOCGMIIREG:
3693 		case SIOCSIFNAME:
3694 			if (!capable(CAP_NET_ADMIN))
3695 				return -EPERM;
3696 			dev_load(net, ifr.ifr_name);
3697 			rtnl_lock();
3698 			ret = dev_ifsioc(net, &ifr, cmd);
3699 			rtnl_unlock();
3700 			if (!ret) {
3701 				if (colon)
3702 					*colon = ':';
3703 				if (copy_to_user(arg, &ifr,
3704 						 sizeof(struct ifreq)))
3705 					ret = -EFAULT;
3706 			}
3707 			return ret;
3708 
3709 		/*
3710 		 *	These ioctl calls:
3711 		 *	- require superuser power.
3712 		 *	- require strict serialization.
3713 		 *	- do not return a value
3714 		 */
3715 		case SIOCSIFFLAGS:
3716 		case SIOCSIFMETRIC:
3717 		case SIOCSIFMTU:
3718 		case SIOCSIFMAP:
3719 		case SIOCSIFHWADDR:
3720 		case SIOCSIFSLAVE:
3721 		case SIOCADDMULTI:
3722 		case SIOCDELMULTI:
3723 		case SIOCSIFHWBROADCAST:
3724 		case SIOCSIFTXQLEN:
3725 		case SIOCSMIIREG:
3726 		case SIOCBONDENSLAVE:
3727 		case SIOCBONDRELEASE:
3728 		case SIOCBONDSETHWADDR:
3729 		case SIOCBONDCHANGEACTIVE:
3730 		case SIOCBRADDIF:
3731 		case SIOCBRDELIF:
3732 			if (!capable(CAP_NET_ADMIN))
3733 				return -EPERM;
3734 			/* fall through */
3735 		case SIOCBONDSLAVEINFOQUERY:
3736 		case SIOCBONDINFOQUERY:
3737 			dev_load(net, ifr.ifr_name);
3738 			rtnl_lock();
3739 			ret = dev_ifsioc(net, &ifr, cmd);
3740 			rtnl_unlock();
3741 			return ret;
3742 
3743 		case SIOCGIFMEM:
3744 			/* Get the per device memory space. We can add this but
3745 			 * currently do not support it */
3746 		case SIOCSIFMEM:
3747 			/* Set the per device memory buffer space.
3748 			 * Not applicable in our case */
3749 		case SIOCSIFLINK:
3750 			return -EINVAL;
3751 
3752 		/*
3753 		 *	Unknown or private ioctl.
3754 		 */
3755 		default:
3756 			if (cmd == SIOCWANDEV ||
3757 			    (cmd >= SIOCDEVPRIVATE &&
3758 			     cmd <= SIOCDEVPRIVATE + 15)) {
3759 				dev_load(net, ifr.ifr_name);
3760 				rtnl_lock();
3761 				ret = dev_ifsioc(net, &ifr, cmd);
3762 				rtnl_unlock();
3763 				if (!ret && copy_to_user(arg, &ifr,
3764 							 sizeof(struct ifreq)))
3765 					ret = -EFAULT;
3766 				return ret;
3767 			}
3768 			/* Take care of Wireless Extensions */
3769 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3770 				return wext_handle_ioctl(net, &ifr, cmd, arg);
3771 			return -EINVAL;
3772 	}
3773 }
3774 
3775 
3776 /**
3777  *	dev_new_index	-	allocate an ifindex
3778  *	@net: the applicable net namespace
3779  *
3780  *	Returns a suitable unique value for a new device interface
3781  *	number.  The caller must hold the rtnl semaphore or the
3782  *	dev_base_lock to be sure it remains unique.
3783  */
3784 static int dev_new_index(struct net *net)
3785 {
3786 	static int ifindex;
3787 	for (;;) {
3788 		if (++ifindex <= 0)
3789 			ifindex = 1;
3790 		if (!__dev_get_by_index(net, ifindex))
3791 			return ifindex;
3792 	}
3793 }
3794 
3795 /* Delayed registration/unregisteration */
3796 static DEFINE_SPINLOCK(net_todo_list_lock);
3797 static LIST_HEAD(net_todo_list);
3798 
3799 static void net_set_todo(struct net_device *dev)
3800 {
3801 	spin_lock(&net_todo_list_lock);
3802 	list_add_tail(&dev->todo_list, &net_todo_list);
3803 	spin_unlock(&net_todo_list_lock);
3804 }
3805 
3806 static void rollback_registered(struct net_device *dev)
3807 {
3808 	BUG_ON(dev_boot_phase);
3809 	ASSERT_RTNL();
3810 
3811 	/* Some devices call without registering for initialization unwind. */
3812 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3813 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3814 				  "was registered\n", dev->name, dev);
3815 
3816 		WARN_ON(1);
3817 		return;
3818 	}
3819 
3820 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3821 
3822 	/* If device is running, close it first. */
3823 	dev_close(dev);
3824 
3825 	/* And unlink it from device chain. */
3826 	unlist_netdevice(dev);
3827 
3828 	dev->reg_state = NETREG_UNREGISTERING;
3829 
3830 	synchronize_net();
3831 
3832 	/* Shutdown queueing discipline. */
3833 	dev_shutdown(dev);
3834 
3835 
3836 	/* Notify protocols, that we are about to destroy
3837 	   this device. They should clean all the things.
3838 	*/
3839 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3840 
3841 	/*
3842 	 *	Flush the unicast and multicast chains
3843 	 */
3844 	dev_addr_discard(dev);
3845 
3846 	if (dev->uninit)
3847 		dev->uninit(dev);
3848 
3849 	/* Notifier chain MUST detach us from master device. */
3850 	WARN_ON(dev->master);
3851 
3852 	/* Remove entries from kobject tree */
3853 	netdev_unregister_kobject(dev);
3854 
3855 	synchronize_net();
3856 
3857 	dev_put(dev);
3858 }
3859 
3860 static void __netdev_init_queue_locks_one(struct net_device *dev,
3861 					  struct netdev_queue *dev_queue,
3862 					  void *_unused)
3863 {
3864 	spin_lock_init(&dev_queue->_xmit_lock);
3865 	netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3866 	dev_queue->xmit_lock_owner = -1;
3867 }
3868 
3869 static void netdev_init_queue_locks(struct net_device *dev)
3870 {
3871 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3872 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3873 }
3874 
3875 /**
3876  *	register_netdevice	- register a network device
3877  *	@dev: device to register
3878  *
3879  *	Take a completed network device structure and add it to the kernel
3880  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3881  *	chain. 0 is returned on success. A negative errno code is returned
3882  *	on a failure to set up the device, or if the name is a duplicate.
3883  *
3884  *	Callers must hold the rtnl semaphore. You may want
3885  *	register_netdev() instead of this.
3886  *
3887  *	BUGS:
3888  *	The locking appears insufficient to guarantee two parallel registers
3889  *	will not get the same name.
3890  */
3891 
3892 int register_netdevice(struct net_device *dev)
3893 {
3894 	struct hlist_head *head;
3895 	struct hlist_node *p;
3896 	int ret;
3897 	struct net *net;
3898 
3899 	BUG_ON(dev_boot_phase);
3900 	ASSERT_RTNL();
3901 
3902 	might_sleep();
3903 
3904 	/* When net_device's are persistent, this will be fatal. */
3905 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3906 	BUG_ON(!dev_net(dev));
3907 	net = dev_net(dev);
3908 
3909 	spin_lock_init(&dev->addr_list_lock);
3910 	netdev_set_addr_lockdep_class(dev);
3911 	netdev_init_queue_locks(dev);
3912 
3913 	dev->iflink = -1;
3914 
3915 	/* Init, if this function is available */
3916 	if (dev->init) {
3917 		ret = dev->init(dev);
3918 		if (ret) {
3919 			if (ret > 0)
3920 				ret = -EIO;
3921 			goto out;
3922 		}
3923 	}
3924 
3925 	if (!dev_valid_name(dev->name)) {
3926 		ret = -EINVAL;
3927 		goto err_uninit;
3928 	}
3929 
3930 	dev->ifindex = dev_new_index(net);
3931 	if (dev->iflink == -1)
3932 		dev->iflink = dev->ifindex;
3933 
3934 	/* Check for existence of name */
3935 	head = dev_name_hash(net, dev->name);
3936 	hlist_for_each(p, head) {
3937 		struct net_device *d
3938 			= hlist_entry(p, struct net_device, name_hlist);
3939 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3940 			ret = -EEXIST;
3941 			goto err_uninit;
3942 		}
3943 	}
3944 
3945 	/* Fix illegal checksum combinations */
3946 	if ((dev->features & NETIF_F_HW_CSUM) &&
3947 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3948 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3949 		       dev->name);
3950 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3951 	}
3952 
3953 	if ((dev->features & NETIF_F_NO_CSUM) &&
3954 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3955 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3956 		       dev->name);
3957 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3958 	}
3959 
3960 
3961 	/* Fix illegal SG+CSUM combinations. */
3962 	if ((dev->features & NETIF_F_SG) &&
3963 	    !(dev->features & NETIF_F_ALL_CSUM)) {
3964 		printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3965 		       dev->name);
3966 		dev->features &= ~NETIF_F_SG;
3967 	}
3968 
3969 	/* TSO requires that SG is present as well. */
3970 	if ((dev->features & NETIF_F_TSO) &&
3971 	    !(dev->features & NETIF_F_SG)) {
3972 		printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3973 		       dev->name);
3974 		dev->features &= ~NETIF_F_TSO;
3975 	}
3976 	if (dev->features & NETIF_F_UFO) {
3977 		if (!(dev->features & NETIF_F_HW_CSUM)) {
3978 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3979 					"NETIF_F_HW_CSUM feature.\n",
3980 							dev->name);
3981 			dev->features &= ~NETIF_F_UFO;
3982 		}
3983 		if (!(dev->features & NETIF_F_SG)) {
3984 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3985 					"NETIF_F_SG feature.\n",
3986 					dev->name);
3987 			dev->features &= ~NETIF_F_UFO;
3988 		}
3989 	}
3990 
3991 	netdev_initialize_kobject(dev);
3992 	ret = netdev_register_kobject(dev);
3993 	if (ret)
3994 		goto err_uninit;
3995 	dev->reg_state = NETREG_REGISTERED;
3996 
3997 	/*
3998 	 *	Default initial state at registry is that the
3999 	 *	device is present.
4000 	 */
4001 
4002 	set_bit(__LINK_STATE_PRESENT, &dev->state);
4003 
4004 	dev_init_scheduler(dev);
4005 	dev_hold(dev);
4006 	list_netdevice(dev);
4007 
4008 	/* Notify protocols, that a new device appeared. */
4009 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4010 	ret = notifier_to_errno(ret);
4011 	if (ret) {
4012 		rollback_registered(dev);
4013 		dev->reg_state = NETREG_UNREGISTERED;
4014 	}
4015 
4016 out:
4017 	return ret;
4018 
4019 err_uninit:
4020 	if (dev->uninit)
4021 		dev->uninit(dev);
4022 	goto out;
4023 }
4024 
4025 /**
4026  *	register_netdev	- register a network device
4027  *	@dev: device to register
4028  *
4029  *	Take a completed network device structure and add it to the kernel
4030  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4031  *	chain. 0 is returned on success. A negative errno code is returned
4032  *	on a failure to set up the device, or if the name is a duplicate.
4033  *
4034  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
4035  *	and expands the device name if you passed a format string to
4036  *	alloc_netdev.
4037  */
4038 int register_netdev(struct net_device *dev)
4039 {
4040 	int err;
4041 
4042 	rtnl_lock();
4043 
4044 	/*
4045 	 * If the name is a format string the caller wants us to do a
4046 	 * name allocation.
4047 	 */
4048 	if (strchr(dev->name, '%')) {
4049 		err = dev_alloc_name(dev, dev->name);
4050 		if (err < 0)
4051 			goto out;
4052 	}
4053 
4054 	err = register_netdevice(dev);
4055 out:
4056 	rtnl_unlock();
4057 	return err;
4058 }
4059 EXPORT_SYMBOL(register_netdev);
4060 
4061 /*
4062  * netdev_wait_allrefs - wait until all references are gone.
4063  *
4064  * This is called when unregistering network devices.
4065  *
4066  * Any protocol or device that holds a reference should register
4067  * for netdevice notification, and cleanup and put back the
4068  * reference if they receive an UNREGISTER event.
4069  * We can get stuck here if buggy protocols don't correctly
4070  * call dev_put.
4071  */
4072 static void netdev_wait_allrefs(struct net_device *dev)
4073 {
4074 	unsigned long rebroadcast_time, warning_time;
4075 
4076 	rebroadcast_time = warning_time = jiffies;
4077 	while (atomic_read(&dev->refcnt) != 0) {
4078 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4079 			rtnl_lock();
4080 
4081 			/* Rebroadcast unregister notification */
4082 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4083 
4084 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4085 				     &dev->state)) {
4086 				/* We must not have linkwatch events
4087 				 * pending on unregister. If this
4088 				 * happens, we simply run the queue
4089 				 * unscheduled, resulting in a noop
4090 				 * for this device.
4091 				 */
4092 				linkwatch_run_queue();
4093 			}
4094 
4095 			__rtnl_unlock();
4096 
4097 			rebroadcast_time = jiffies;
4098 		}
4099 
4100 		msleep(250);
4101 
4102 		if (time_after(jiffies, warning_time + 10 * HZ)) {
4103 			printk(KERN_EMERG "unregister_netdevice: "
4104 			       "waiting for %s to become free. Usage "
4105 			       "count = %d\n",
4106 			       dev->name, atomic_read(&dev->refcnt));
4107 			warning_time = jiffies;
4108 		}
4109 	}
4110 }
4111 
4112 /* The sequence is:
4113  *
4114  *	rtnl_lock();
4115  *	...
4116  *	register_netdevice(x1);
4117  *	register_netdevice(x2);
4118  *	...
4119  *	unregister_netdevice(y1);
4120  *	unregister_netdevice(y2);
4121  *      ...
4122  *	rtnl_unlock();
4123  *	free_netdev(y1);
4124  *	free_netdev(y2);
4125  *
4126  * We are invoked by rtnl_unlock() after it drops the semaphore.
4127  * This allows us to deal with problems:
4128  * 1) We can delete sysfs objects which invoke hotplug
4129  *    without deadlocking with linkwatch via keventd.
4130  * 2) Since we run with the RTNL semaphore not held, we can sleep
4131  *    safely in order to wait for the netdev refcnt to drop to zero.
4132  */
4133 static DEFINE_MUTEX(net_todo_run_mutex);
4134 void netdev_run_todo(void)
4135 {
4136 	struct list_head list;
4137 
4138 	/* Need to guard against multiple cpu's getting out of order. */
4139 	mutex_lock(&net_todo_run_mutex);
4140 
4141 	/* Not safe to do outside the semaphore.  We must not return
4142 	 * until all unregister events invoked by the local processor
4143 	 * have been completed (either by this todo run, or one on
4144 	 * another cpu).
4145 	 */
4146 	if (list_empty(&net_todo_list))
4147 		goto out;
4148 
4149 	/* Snapshot list, allow later requests */
4150 	spin_lock(&net_todo_list_lock);
4151 	list_replace_init(&net_todo_list, &list);
4152 	spin_unlock(&net_todo_list_lock);
4153 
4154 	while (!list_empty(&list)) {
4155 		struct net_device *dev
4156 			= list_entry(list.next, struct net_device, todo_list);
4157 		list_del(&dev->todo_list);
4158 
4159 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4160 			printk(KERN_ERR "network todo '%s' but state %d\n",
4161 			       dev->name, dev->reg_state);
4162 			dump_stack();
4163 			continue;
4164 		}
4165 
4166 		dev->reg_state = NETREG_UNREGISTERED;
4167 
4168 		netdev_wait_allrefs(dev);
4169 
4170 		/* paranoia */
4171 		BUG_ON(atomic_read(&dev->refcnt));
4172 		WARN_ON(dev->ip_ptr);
4173 		WARN_ON(dev->ip6_ptr);
4174 		WARN_ON(dev->dn_ptr);
4175 
4176 		if (dev->destructor)
4177 			dev->destructor(dev);
4178 
4179 		/* Free network device */
4180 		kobject_put(&dev->dev.kobj);
4181 	}
4182 
4183 out:
4184 	mutex_unlock(&net_todo_run_mutex);
4185 }
4186 
4187 static struct net_device_stats *internal_stats(struct net_device *dev)
4188 {
4189 	return &dev->stats;
4190 }
4191 
4192 static void netdev_init_one_queue(struct net_device *dev,
4193 				  struct netdev_queue *queue,
4194 				  void *_unused)
4195 {
4196 	queue->dev = dev;
4197 }
4198 
4199 static void netdev_init_queues(struct net_device *dev)
4200 {
4201 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4202 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4203 }
4204 
4205 /**
4206  *	alloc_netdev_mq - allocate network device
4207  *	@sizeof_priv:	size of private data to allocate space for
4208  *	@name:		device name format string
4209  *	@setup:		callback to initialize device
4210  *	@queue_count:	the number of subqueues to allocate
4211  *
4212  *	Allocates a struct net_device with private data area for driver use
4213  *	and performs basic initialization.  Also allocates subquue structs
4214  *	for each queue on the device at the end of the netdevice.
4215  */
4216 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4217 		void (*setup)(struct net_device *), unsigned int queue_count)
4218 {
4219 	struct netdev_queue *tx;
4220 	struct net_device *dev;
4221 	size_t alloc_size;
4222 	void *p;
4223 
4224 	BUG_ON(strlen(name) >= sizeof(dev->name));
4225 
4226 	alloc_size = sizeof(struct net_device);
4227 	if (sizeof_priv) {
4228 		/* ensure 32-byte alignment of private area */
4229 		alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4230 		alloc_size += sizeof_priv;
4231 	}
4232 	/* ensure 32-byte alignment of whole construct */
4233 	alloc_size += NETDEV_ALIGN_CONST;
4234 
4235 	p = kzalloc(alloc_size, GFP_KERNEL);
4236 	if (!p) {
4237 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4238 		return NULL;
4239 	}
4240 
4241 	tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4242 	if (!tx) {
4243 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
4244 		       "tx qdiscs.\n");
4245 		kfree(p);
4246 		return NULL;
4247 	}
4248 
4249 	dev = (struct net_device *)
4250 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4251 	dev->padded = (char *)dev - (char *)p;
4252 	dev_net_set(dev, &init_net);
4253 
4254 	dev->_tx = tx;
4255 	dev->num_tx_queues = queue_count;
4256 	dev->real_num_tx_queues = queue_count;
4257 
4258 	if (sizeof_priv) {
4259 		dev->priv = ((char *)dev +
4260 			     ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4261 			      & ~NETDEV_ALIGN_CONST));
4262 	}
4263 
4264 	dev->gso_max_size = GSO_MAX_SIZE;
4265 
4266 	netdev_init_queues(dev);
4267 
4268 	dev->get_stats = internal_stats;
4269 	netpoll_netdev_init(dev);
4270 	setup(dev);
4271 	strcpy(dev->name, name);
4272 	return dev;
4273 }
4274 EXPORT_SYMBOL(alloc_netdev_mq);
4275 
4276 /**
4277  *	free_netdev - free network device
4278  *	@dev: device
4279  *
4280  *	This function does the last stage of destroying an allocated device
4281  * 	interface. The reference to the device object is released.
4282  *	If this is the last reference then it will be freed.
4283  */
4284 void free_netdev(struct net_device *dev)
4285 {
4286 	release_net(dev_net(dev));
4287 
4288 	kfree(dev->_tx);
4289 
4290 	/*  Compatibility with error handling in drivers */
4291 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4292 		kfree((char *)dev - dev->padded);
4293 		return;
4294 	}
4295 
4296 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4297 	dev->reg_state = NETREG_RELEASED;
4298 
4299 	/* will free via device release */
4300 	put_device(&dev->dev);
4301 }
4302 
4303 /* Synchronize with packet receive processing. */
4304 void synchronize_net(void)
4305 {
4306 	might_sleep();
4307 	synchronize_rcu();
4308 }
4309 
4310 /**
4311  *	unregister_netdevice - remove device from the kernel
4312  *	@dev: device
4313  *
4314  *	This function shuts down a device interface and removes it
4315  *	from the kernel tables.
4316  *
4317  *	Callers must hold the rtnl semaphore.  You may want
4318  *	unregister_netdev() instead of this.
4319  */
4320 
4321 void unregister_netdevice(struct net_device *dev)
4322 {
4323 	ASSERT_RTNL();
4324 
4325 	rollback_registered(dev);
4326 	/* Finish processing unregister after unlock */
4327 	net_set_todo(dev);
4328 }
4329 
4330 /**
4331  *	unregister_netdev - remove device from the kernel
4332  *	@dev: device
4333  *
4334  *	This function shuts down a device interface and removes it
4335  *	from the kernel tables.
4336  *
4337  *	This is just a wrapper for unregister_netdevice that takes
4338  *	the rtnl semaphore.  In general you want to use this and not
4339  *	unregister_netdevice.
4340  */
4341 void unregister_netdev(struct net_device *dev)
4342 {
4343 	rtnl_lock();
4344 	unregister_netdevice(dev);
4345 	rtnl_unlock();
4346 }
4347 
4348 EXPORT_SYMBOL(unregister_netdev);
4349 
4350 /**
4351  *	dev_change_net_namespace - move device to different nethost namespace
4352  *	@dev: device
4353  *	@net: network namespace
4354  *	@pat: If not NULL name pattern to try if the current device name
4355  *	      is already taken in the destination network namespace.
4356  *
4357  *	This function shuts down a device interface and moves it
4358  *	to a new network namespace. On success 0 is returned, on
4359  *	a failure a netagive errno code is returned.
4360  *
4361  *	Callers must hold the rtnl semaphore.
4362  */
4363 
4364 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4365 {
4366 	char buf[IFNAMSIZ];
4367 	const char *destname;
4368 	int err;
4369 
4370 	ASSERT_RTNL();
4371 
4372 	/* Don't allow namespace local devices to be moved. */
4373 	err = -EINVAL;
4374 	if (dev->features & NETIF_F_NETNS_LOCAL)
4375 		goto out;
4376 
4377 	/* Ensure the device has been registrered */
4378 	err = -EINVAL;
4379 	if (dev->reg_state != NETREG_REGISTERED)
4380 		goto out;
4381 
4382 	/* Get out if there is nothing todo */
4383 	err = 0;
4384 	if (net_eq(dev_net(dev), net))
4385 		goto out;
4386 
4387 	/* Pick the destination device name, and ensure
4388 	 * we can use it in the destination network namespace.
4389 	 */
4390 	err = -EEXIST;
4391 	destname = dev->name;
4392 	if (__dev_get_by_name(net, destname)) {
4393 		/* We get here if we can't use the current device name */
4394 		if (!pat)
4395 			goto out;
4396 		if (!dev_valid_name(pat))
4397 			goto out;
4398 		if (strchr(pat, '%')) {
4399 			if (__dev_alloc_name(net, pat, buf) < 0)
4400 				goto out;
4401 			destname = buf;
4402 		} else
4403 			destname = pat;
4404 		if (__dev_get_by_name(net, destname))
4405 			goto out;
4406 	}
4407 
4408 	/*
4409 	 * And now a mini version of register_netdevice unregister_netdevice.
4410 	 */
4411 
4412 	/* If device is running close it first. */
4413 	dev_close(dev);
4414 
4415 	/* And unlink it from device chain */
4416 	err = -ENODEV;
4417 	unlist_netdevice(dev);
4418 
4419 	synchronize_net();
4420 
4421 	/* Shutdown queueing discipline. */
4422 	dev_shutdown(dev);
4423 
4424 	/* Notify protocols, that we are about to destroy
4425 	   this device. They should clean all the things.
4426 	*/
4427 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4428 
4429 	/*
4430 	 *	Flush the unicast and multicast chains
4431 	 */
4432 	dev_addr_discard(dev);
4433 
4434 	/* Actually switch the network namespace */
4435 	dev_net_set(dev, net);
4436 
4437 	/* Assign the new device name */
4438 	if (destname != dev->name)
4439 		strcpy(dev->name, destname);
4440 
4441 	/* If there is an ifindex conflict assign a new one */
4442 	if (__dev_get_by_index(net, dev->ifindex)) {
4443 		int iflink = (dev->iflink == dev->ifindex);
4444 		dev->ifindex = dev_new_index(net);
4445 		if (iflink)
4446 			dev->iflink = dev->ifindex;
4447 	}
4448 
4449 	/* Fixup kobjects */
4450 	netdev_unregister_kobject(dev);
4451 	err = netdev_register_kobject(dev);
4452 	WARN_ON(err);
4453 
4454 	/* Add the device back in the hashes */
4455 	list_netdevice(dev);
4456 
4457 	/* Notify protocols, that a new device appeared. */
4458 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4459 
4460 	synchronize_net();
4461 	err = 0;
4462 out:
4463 	return err;
4464 }
4465 
4466 static int dev_cpu_callback(struct notifier_block *nfb,
4467 			    unsigned long action,
4468 			    void *ocpu)
4469 {
4470 	struct sk_buff **list_skb;
4471 	struct Qdisc **list_net;
4472 	struct sk_buff *skb;
4473 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
4474 	struct softnet_data *sd, *oldsd;
4475 
4476 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4477 		return NOTIFY_OK;
4478 
4479 	local_irq_disable();
4480 	cpu = smp_processor_id();
4481 	sd = &per_cpu(softnet_data, cpu);
4482 	oldsd = &per_cpu(softnet_data, oldcpu);
4483 
4484 	/* Find end of our completion_queue. */
4485 	list_skb = &sd->completion_queue;
4486 	while (*list_skb)
4487 		list_skb = &(*list_skb)->next;
4488 	/* Append completion queue from offline CPU. */
4489 	*list_skb = oldsd->completion_queue;
4490 	oldsd->completion_queue = NULL;
4491 
4492 	/* Find end of our output_queue. */
4493 	list_net = &sd->output_queue;
4494 	while (*list_net)
4495 		list_net = &(*list_net)->next_sched;
4496 	/* Append output queue from offline CPU. */
4497 	*list_net = oldsd->output_queue;
4498 	oldsd->output_queue = NULL;
4499 
4500 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
4501 	local_irq_enable();
4502 
4503 	/* Process offline CPU's input_pkt_queue */
4504 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4505 		netif_rx(skb);
4506 
4507 	return NOTIFY_OK;
4508 }
4509 
4510 #ifdef CONFIG_NET_DMA
4511 /**
4512  * net_dma_rebalance - try to maintain one DMA channel per CPU
4513  * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4514  *
4515  * This is called when the number of channels allocated to the net_dma client
4516  * changes.  The net_dma client tries to have one DMA channel per CPU.
4517  */
4518 
4519 static void net_dma_rebalance(struct net_dma *net_dma)
4520 {
4521 	unsigned int cpu, i, n, chan_idx;
4522 	struct dma_chan *chan;
4523 
4524 	if (cpus_empty(net_dma->channel_mask)) {
4525 		for_each_online_cpu(cpu)
4526 			rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4527 		return;
4528 	}
4529 
4530 	i = 0;
4531 	cpu = first_cpu(cpu_online_map);
4532 
4533 	for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4534 		chan = net_dma->channels[chan_idx];
4535 
4536 		n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4537 		   + (i < (num_online_cpus() %
4538 			cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4539 
4540 		while(n) {
4541 			per_cpu(softnet_data, cpu).net_dma = chan;
4542 			cpu = next_cpu(cpu, cpu_online_map);
4543 			n--;
4544 		}
4545 		i++;
4546 	}
4547 }
4548 
4549 /**
4550  * netdev_dma_event - event callback for the net_dma_client
4551  * @client: should always be net_dma_client
4552  * @chan: DMA channel for the event
4553  * @state: DMA state to be handled
4554  */
4555 static enum dma_state_client
4556 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4557 	enum dma_state state)
4558 {
4559 	int i, found = 0, pos = -1;
4560 	struct net_dma *net_dma =
4561 		container_of(client, struct net_dma, client);
4562 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
4563 
4564 	spin_lock(&net_dma->lock);
4565 	switch (state) {
4566 	case DMA_RESOURCE_AVAILABLE:
4567 		for (i = 0; i < nr_cpu_ids; i++)
4568 			if (net_dma->channels[i] == chan) {
4569 				found = 1;
4570 				break;
4571 			} else if (net_dma->channels[i] == NULL && pos < 0)
4572 				pos = i;
4573 
4574 		if (!found && pos >= 0) {
4575 			ack = DMA_ACK;
4576 			net_dma->channels[pos] = chan;
4577 			cpu_set(pos, net_dma->channel_mask);
4578 			net_dma_rebalance(net_dma);
4579 		}
4580 		break;
4581 	case DMA_RESOURCE_REMOVED:
4582 		for (i = 0; i < nr_cpu_ids; i++)
4583 			if (net_dma->channels[i] == chan) {
4584 				found = 1;
4585 				pos = i;
4586 				break;
4587 			}
4588 
4589 		if (found) {
4590 			ack = DMA_ACK;
4591 			cpu_clear(pos, net_dma->channel_mask);
4592 			net_dma->channels[i] = NULL;
4593 			net_dma_rebalance(net_dma);
4594 		}
4595 		break;
4596 	default:
4597 		break;
4598 	}
4599 	spin_unlock(&net_dma->lock);
4600 
4601 	return ack;
4602 }
4603 
4604 /**
4605  * netdev_dma_regiser - register the networking subsystem as a DMA client
4606  */
4607 static int __init netdev_dma_register(void)
4608 {
4609 	net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4610 								GFP_KERNEL);
4611 	if (unlikely(!net_dma.channels)) {
4612 		printk(KERN_NOTICE
4613 				"netdev_dma: no memory for net_dma.channels\n");
4614 		return -ENOMEM;
4615 	}
4616 	spin_lock_init(&net_dma.lock);
4617 	dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4618 	dma_async_client_register(&net_dma.client);
4619 	dma_async_client_chan_request(&net_dma.client);
4620 	return 0;
4621 }
4622 
4623 #else
4624 static int __init netdev_dma_register(void) { return -ENODEV; }
4625 #endif /* CONFIG_NET_DMA */
4626 
4627 /**
4628  *	netdev_compute_feature - compute conjunction of two feature sets
4629  *	@all: first feature set
4630  *	@one: second feature set
4631  *
4632  *	Computes a new feature set after adding a device with feature set
4633  *	@one to the master device with current feature set @all.  Returns
4634  *	the new feature set.
4635  */
4636 int netdev_compute_features(unsigned long all, unsigned long one)
4637 {
4638 	/* if device needs checksumming, downgrade to hw checksumming */
4639 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4640 		all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4641 
4642 	/* if device can't do all checksum, downgrade to ipv4/ipv6 */
4643 	if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4644 		all ^= NETIF_F_HW_CSUM
4645 			| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4646 
4647 	if (one & NETIF_F_GSO)
4648 		one |= NETIF_F_GSO_SOFTWARE;
4649 	one |= NETIF_F_GSO;
4650 
4651 	/* If even one device supports robust GSO, enable it for all. */
4652 	if (one & NETIF_F_GSO_ROBUST)
4653 		all |= NETIF_F_GSO_ROBUST;
4654 
4655 	all &= one | NETIF_F_LLTX;
4656 
4657 	if (!(all & NETIF_F_ALL_CSUM))
4658 		all &= ~NETIF_F_SG;
4659 	if (!(all & NETIF_F_SG))
4660 		all &= ~NETIF_F_GSO_MASK;
4661 
4662 	return all;
4663 }
4664 EXPORT_SYMBOL(netdev_compute_features);
4665 
4666 static struct hlist_head *netdev_create_hash(void)
4667 {
4668 	int i;
4669 	struct hlist_head *hash;
4670 
4671 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4672 	if (hash != NULL)
4673 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
4674 			INIT_HLIST_HEAD(&hash[i]);
4675 
4676 	return hash;
4677 }
4678 
4679 /* Initialize per network namespace state */
4680 static int __net_init netdev_init(struct net *net)
4681 {
4682 	INIT_LIST_HEAD(&net->dev_base_head);
4683 
4684 	net->dev_name_head = netdev_create_hash();
4685 	if (net->dev_name_head == NULL)
4686 		goto err_name;
4687 
4688 	net->dev_index_head = netdev_create_hash();
4689 	if (net->dev_index_head == NULL)
4690 		goto err_idx;
4691 
4692 	return 0;
4693 
4694 err_idx:
4695 	kfree(net->dev_name_head);
4696 err_name:
4697 	return -ENOMEM;
4698 }
4699 
4700 char *netdev_drivername(struct net_device *dev, char *buffer, int len)
4701 {
4702 	struct device_driver *driver;
4703 	struct device *parent;
4704 
4705 	if (len <= 0 || !buffer)
4706 		return buffer;
4707 	buffer[0] = 0;
4708 
4709 	parent = dev->dev.parent;
4710 
4711 	if (!parent)
4712 		return buffer;
4713 
4714 	driver = parent->driver;
4715 	if (driver && driver->name)
4716 		strlcpy(buffer, driver->name, len);
4717 	return buffer;
4718 }
4719 
4720 static void __net_exit netdev_exit(struct net *net)
4721 {
4722 	kfree(net->dev_name_head);
4723 	kfree(net->dev_index_head);
4724 }
4725 
4726 static struct pernet_operations __net_initdata netdev_net_ops = {
4727 	.init = netdev_init,
4728 	.exit = netdev_exit,
4729 };
4730 
4731 static void __net_exit default_device_exit(struct net *net)
4732 {
4733 	struct net_device *dev, *next;
4734 	/*
4735 	 * Push all migratable of the network devices back to the
4736 	 * initial network namespace
4737 	 */
4738 	rtnl_lock();
4739 	for_each_netdev_safe(net, dev, next) {
4740 		int err;
4741 		char fb_name[IFNAMSIZ];
4742 
4743 		/* Ignore unmoveable devices (i.e. loopback) */
4744 		if (dev->features & NETIF_F_NETNS_LOCAL)
4745 			continue;
4746 
4747 		/* Push remaing network devices to init_net */
4748 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4749 		err = dev_change_net_namespace(dev, &init_net, fb_name);
4750 		if (err) {
4751 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4752 				__func__, dev->name, err);
4753 			BUG();
4754 		}
4755 	}
4756 	rtnl_unlock();
4757 }
4758 
4759 static struct pernet_operations __net_initdata default_device_ops = {
4760 	.exit = default_device_exit,
4761 };
4762 
4763 /*
4764  *	Initialize the DEV module. At boot time this walks the device list and
4765  *	unhooks any devices that fail to initialise (normally hardware not
4766  *	present) and leaves us with a valid list of present and active devices.
4767  *
4768  */
4769 
4770 /*
4771  *       This is called single threaded during boot, so no need
4772  *       to take the rtnl semaphore.
4773  */
4774 static int __init net_dev_init(void)
4775 {
4776 	int i, rc = -ENOMEM;
4777 
4778 	BUG_ON(!dev_boot_phase);
4779 
4780 	if (dev_proc_init())
4781 		goto out;
4782 
4783 	if (netdev_kobject_init())
4784 		goto out;
4785 
4786 	INIT_LIST_HEAD(&ptype_all);
4787 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
4788 		INIT_LIST_HEAD(&ptype_base[i]);
4789 
4790 	if (register_pernet_subsys(&netdev_net_ops))
4791 		goto out;
4792 
4793 	if (register_pernet_device(&default_device_ops))
4794 		goto out;
4795 
4796 	/*
4797 	 *	Initialise the packet receive queues.
4798 	 */
4799 
4800 	for_each_possible_cpu(i) {
4801 		struct softnet_data *queue;
4802 
4803 		queue = &per_cpu(softnet_data, i);
4804 		skb_queue_head_init(&queue->input_pkt_queue);
4805 		queue->completion_queue = NULL;
4806 		INIT_LIST_HEAD(&queue->poll_list);
4807 
4808 		queue->backlog.poll = process_backlog;
4809 		queue->backlog.weight = weight_p;
4810 	}
4811 
4812 	netdev_dma_register();
4813 
4814 	dev_boot_phase = 0;
4815 
4816 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4817 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4818 
4819 	hotcpu_notifier(dev_cpu_callback, 0);
4820 	dst_init();
4821 	dev_mcast_init();
4822 	rc = 0;
4823 out:
4824 	return rc;
4825 }
4826 
4827 subsys_initcall(net_dev_init);
4828 
4829 EXPORT_SYMBOL(__dev_get_by_index);
4830 EXPORT_SYMBOL(__dev_get_by_name);
4831 EXPORT_SYMBOL(__dev_remove_pack);
4832 EXPORT_SYMBOL(dev_valid_name);
4833 EXPORT_SYMBOL(dev_add_pack);
4834 EXPORT_SYMBOL(dev_alloc_name);
4835 EXPORT_SYMBOL(dev_close);
4836 EXPORT_SYMBOL(dev_get_by_flags);
4837 EXPORT_SYMBOL(dev_get_by_index);
4838 EXPORT_SYMBOL(dev_get_by_name);
4839 EXPORT_SYMBOL(dev_open);
4840 EXPORT_SYMBOL(dev_queue_xmit);
4841 EXPORT_SYMBOL(dev_remove_pack);
4842 EXPORT_SYMBOL(dev_set_allmulti);
4843 EXPORT_SYMBOL(dev_set_promiscuity);
4844 EXPORT_SYMBOL(dev_change_flags);
4845 EXPORT_SYMBOL(dev_set_mtu);
4846 EXPORT_SYMBOL(dev_set_mac_address);
4847 EXPORT_SYMBOL(free_netdev);
4848 EXPORT_SYMBOL(netdev_boot_setup_check);
4849 EXPORT_SYMBOL(netdev_set_master);
4850 EXPORT_SYMBOL(netdev_state_change);
4851 EXPORT_SYMBOL(netif_receive_skb);
4852 EXPORT_SYMBOL(netif_rx);
4853 EXPORT_SYMBOL(register_gifconf);
4854 EXPORT_SYMBOL(register_netdevice);
4855 EXPORT_SYMBOL(register_netdevice_notifier);
4856 EXPORT_SYMBOL(skb_checksum_help);
4857 EXPORT_SYMBOL(synchronize_net);
4858 EXPORT_SYMBOL(unregister_netdevice);
4859 EXPORT_SYMBOL(unregister_netdevice_notifier);
4860 EXPORT_SYMBOL(net_enable_timestamp);
4861 EXPORT_SYMBOL(net_disable_timestamp);
4862 EXPORT_SYMBOL(dev_get_flags);
4863 
4864 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4865 EXPORT_SYMBOL(br_handle_frame_hook);
4866 EXPORT_SYMBOL(br_fdb_get_hook);
4867 EXPORT_SYMBOL(br_fdb_put_hook);
4868 #endif
4869 
4870 #ifdef CONFIG_KMOD
4871 EXPORT_SYMBOL(dev_load);
4872 #endif
4873 
4874 EXPORT_PER_CPU_SYMBOL(softnet_data);
4875