1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/kallsyms.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 130 #include "net-sysfs.h" 131 132 /* 133 * The list of packet types we will receive (as opposed to discard) 134 * and the routines to invoke. 135 * 136 * Why 16. Because with 16 the only overlap we get on a hash of the 137 * low nibble of the protocol value is RARP/SNAP/X.25. 138 * 139 * NOTE: That is no longer true with the addition of VLAN tags. Not 140 * sure which should go first, but I bet it won't make much 141 * difference if we are running VLANs. The good news is that 142 * this protocol won't be in the list unless compiled in, so 143 * the average user (w/out VLANs) will not be adversely affected. 144 * --BLG 145 * 146 * 0800 IP 147 * 8100 802.1Q VLAN 148 * 0001 802.3 149 * 0002 AX.25 150 * 0004 802.2 151 * 8035 RARP 152 * 0005 SNAP 153 * 0805 X.25 154 * 0806 ARP 155 * 8137 IPX 156 * 0009 Localtalk 157 * 86DD IPv6 158 */ 159 160 #define PTYPE_HASH_SIZE (16) 161 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 162 163 static DEFINE_SPINLOCK(ptype_lock); 164 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 165 static struct list_head ptype_all __read_mostly; /* Taps */ 166 167 #ifdef CONFIG_NET_DMA 168 struct net_dma { 169 struct dma_client client; 170 spinlock_t lock; 171 cpumask_t channel_mask; 172 struct dma_chan **channels; 173 }; 174 175 static enum dma_state_client 176 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 177 enum dma_state state); 178 179 static struct net_dma net_dma = { 180 .client = { 181 .event_callback = netdev_dma_event, 182 }, 183 }; 184 #endif 185 186 /* 187 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 188 * semaphore. 189 * 190 * Pure readers hold dev_base_lock for reading. 191 * 192 * Writers must hold the rtnl semaphore while they loop through the 193 * dev_base_head list, and hold dev_base_lock for writing when they do the 194 * actual updates. This allows pure readers to access the list even 195 * while a writer is preparing to update it. 196 * 197 * To put it another way, dev_base_lock is held for writing only to 198 * protect against pure readers; the rtnl semaphore provides the 199 * protection against other writers. 200 * 201 * See, for example usages, register_netdevice() and 202 * unregister_netdevice(), which must be called with the rtnl 203 * semaphore held. 204 */ 205 DEFINE_RWLOCK(dev_base_lock); 206 207 EXPORT_SYMBOL(dev_base_lock); 208 209 #define NETDEV_HASHBITS 8 210 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 211 212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 213 { 214 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 215 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 216 } 217 218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 219 { 220 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 221 } 222 223 /* Device list insertion */ 224 static int list_netdevice(struct net_device *dev) 225 { 226 struct net *net = dev_net(dev); 227 228 ASSERT_RTNL(); 229 230 write_lock_bh(&dev_base_lock); 231 list_add_tail(&dev->dev_list, &net->dev_base_head); 232 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 233 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 234 write_unlock_bh(&dev_base_lock); 235 return 0; 236 } 237 238 /* Device list removal */ 239 static void unlist_netdevice(struct net_device *dev) 240 { 241 ASSERT_RTNL(); 242 243 /* Unlink dev from the device chain */ 244 write_lock_bh(&dev_base_lock); 245 list_del(&dev->dev_list); 246 hlist_del(&dev->name_hlist); 247 hlist_del(&dev->index_hlist); 248 write_unlock_bh(&dev_base_lock); 249 } 250 251 /* 252 * Our notifier list 253 */ 254 255 static RAW_NOTIFIER_HEAD(netdev_chain); 256 257 /* 258 * Device drivers call our routines to queue packets here. We empty the 259 * queue in the local softnet handler. 260 */ 261 262 DEFINE_PER_CPU(struct softnet_data, softnet_data); 263 264 #ifdef CONFIG_LOCKDEP 265 /* 266 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 267 * according to dev->type 268 */ 269 static const unsigned short netdev_lock_type[] = 270 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 271 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 272 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 273 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 274 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 275 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 276 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 277 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 278 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 279 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 280 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 281 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 282 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 283 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 284 ARPHRD_NONE}; 285 286 static const char *netdev_lock_name[] = 287 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 288 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 289 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 290 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 291 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 292 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 293 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 294 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 295 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 296 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 297 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 298 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 299 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 300 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 301 "_xmit_NONE"}; 302 303 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 304 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 305 306 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 307 { 308 int i; 309 310 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 311 if (netdev_lock_type[i] == dev_type) 312 return i; 313 /* the last key is used by default */ 314 return ARRAY_SIZE(netdev_lock_type) - 1; 315 } 316 317 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 318 unsigned short dev_type) 319 { 320 int i; 321 322 i = netdev_lock_pos(dev_type); 323 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 324 netdev_lock_name[i]); 325 } 326 327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 328 { 329 int i; 330 331 i = netdev_lock_pos(dev->type); 332 lockdep_set_class_and_name(&dev->addr_list_lock, 333 &netdev_addr_lock_key[i], 334 netdev_lock_name[i]); 335 } 336 #else 337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 338 unsigned short dev_type) 339 { 340 } 341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 342 { 343 } 344 #endif 345 346 /******************************************************************************* 347 348 Protocol management and registration routines 349 350 *******************************************************************************/ 351 352 /* 353 * Add a protocol ID to the list. Now that the input handler is 354 * smarter we can dispense with all the messy stuff that used to be 355 * here. 356 * 357 * BEWARE!!! Protocol handlers, mangling input packets, 358 * MUST BE last in hash buckets and checking protocol handlers 359 * MUST start from promiscuous ptype_all chain in net_bh. 360 * It is true now, do not change it. 361 * Explanation follows: if protocol handler, mangling packet, will 362 * be the first on list, it is not able to sense, that packet 363 * is cloned and should be copied-on-write, so that it will 364 * change it and subsequent readers will get broken packet. 365 * --ANK (980803) 366 */ 367 368 /** 369 * dev_add_pack - add packet handler 370 * @pt: packet type declaration 371 * 372 * Add a protocol handler to the networking stack. The passed &packet_type 373 * is linked into kernel lists and may not be freed until it has been 374 * removed from the kernel lists. 375 * 376 * This call does not sleep therefore it can not 377 * guarantee all CPU's that are in middle of receiving packets 378 * will see the new packet type (until the next received packet). 379 */ 380 381 void dev_add_pack(struct packet_type *pt) 382 { 383 int hash; 384 385 spin_lock_bh(&ptype_lock); 386 if (pt->type == htons(ETH_P_ALL)) 387 list_add_rcu(&pt->list, &ptype_all); 388 else { 389 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 390 list_add_rcu(&pt->list, &ptype_base[hash]); 391 } 392 spin_unlock_bh(&ptype_lock); 393 } 394 395 /** 396 * __dev_remove_pack - remove packet handler 397 * @pt: packet type declaration 398 * 399 * Remove a protocol handler that was previously added to the kernel 400 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 401 * from the kernel lists and can be freed or reused once this function 402 * returns. 403 * 404 * The packet type might still be in use by receivers 405 * and must not be freed until after all the CPU's have gone 406 * through a quiescent state. 407 */ 408 void __dev_remove_pack(struct packet_type *pt) 409 { 410 struct list_head *head; 411 struct packet_type *pt1; 412 413 spin_lock_bh(&ptype_lock); 414 415 if (pt->type == htons(ETH_P_ALL)) 416 head = &ptype_all; 417 else 418 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 419 420 list_for_each_entry(pt1, head, list) { 421 if (pt == pt1) { 422 list_del_rcu(&pt->list); 423 goto out; 424 } 425 } 426 427 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 428 out: 429 spin_unlock_bh(&ptype_lock); 430 } 431 /** 432 * dev_remove_pack - remove packet handler 433 * @pt: packet type declaration 434 * 435 * Remove a protocol handler that was previously added to the kernel 436 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 437 * from the kernel lists and can be freed or reused once this function 438 * returns. 439 * 440 * This call sleeps to guarantee that no CPU is looking at the packet 441 * type after return. 442 */ 443 void dev_remove_pack(struct packet_type *pt) 444 { 445 __dev_remove_pack(pt); 446 447 synchronize_net(); 448 } 449 450 /****************************************************************************** 451 452 Device Boot-time Settings Routines 453 454 *******************************************************************************/ 455 456 /* Boot time configuration table */ 457 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 458 459 /** 460 * netdev_boot_setup_add - add new setup entry 461 * @name: name of the device 462 * @map: configured settings for the device 463 * 464 * Adds new setup entry to the dev_boot_setup list. The function 465 * returns 0 on error and 1 on success. This is a generic routine to 466 * all netdevices. 467 */ 468 static int netdev_boot_setup_add(char *name, struct ifmap *map) 469 { 470 struct netdev_boot_setup *s; 471 int i; 472 473 s = dev_boot_setup; 474 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 475 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 476 memset(s[i].name, 0, sizeof(s[i].name)); 477 strlcpy(s[i].name, name, IFNAMSIZ); 478 memcpy(&s[i].map, map, sizeof(s[i].map)); 479 break; 480 } 481 } 482 483 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 484 } 485 486 /** 487 * netdev_boot_setup_check - check boot time settings 488 * @dev: the netdevice 489 * 490 * Check boot time settings for the device. 491 * The found settings are set for the device to be used 492 * later in the device probing. 493 * Returns 0 if no settings found, 1 if they are. 494 */ 495 int netdev_boot_setup_check(struct net_device *dev) 496 { 497 struct netdev_boot_setup *s = dev_boot_setup; 498 int i; 499 500 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 501 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 502 !strcmp(dev->name, s[i].name)) { 503 dev->irq = s[i].map.irq; 504 dev->base_addr = s[i].map.base_addr; 505 dev->mem_start = s[i].map.mem_start; 506 dev->mem_end = s[i].map.mem_end; 507 return 1; 508 } 509 } 510 return 0; 511 } 512 513 514 /** 515 * netdev_boot_base - get address from boot time settings 516 * @prefix: prefix for network device 517 * @unit: id for network device 518 * 519 * Check boot time settings for the base address of device. 520 * The found settings are set for the device to be used 521 * later in the device probing. 522 * Returns 0 if no settings found. 523 */ 524 unsigned long netdev_boot_base(const char *prefix, int unit) 525 { 526 const struct netdev_boot_setup *s = dev_boot_setup; 527 char name[IFNAMSIZ]; 528 int i; 529 530 sprintf(name, "%s%d", prefix, unit); 531 532 /* 533 * If device already registered then return base of 1 534 * to indicate not to probe for this interface 535 */ 536 if (__dev_get_by_name(&init_net, name)) 537 return 1; 538 539 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 540 if (!strcmp(name, s[i].name)) 541 return s[i].map.base_addr; 542 return 0; 543 } 544 545 /* 546 * Saves at boot time configured settings for any netdevice. 547 */ 548 int __init netdev_boot_setup(char *str) 549 { 550 int ints[5]; 551 struct ifmap map; 552 553 str = get_options(str, ARRAY_SIZE(ints), ints); 554 if (!str || !*str) 555 return 0; 556 557 /* Save settings */ 558 memset(&map, 0, sizeof(map)); 559 if (ints[0] > 0) 560 map.irq = ints[1]; 561 if (ints[0] > 1) 562 map.base_addr = ints[2]; 563 if (ints[0] > 2) 564 map.mem_start = ints[3]; 565 if (ints[0] > 3) 566 map.mem_end = ints[4]; 567 568 /* Add new entry to the list */ 569 return netdev_boot_setup_add(str, &map); 570 } 571 572 __setup("netdev=", netdev_boot_setup); 573 574 /******************************************************************************* 575 576 Device Interface Subroutines 577 578 *******************************************************************************/ 579 580 /** 581 * __dev_get_by_name - find a device by its name 582 * @net: the applicable net namespace 583 * @name: name to find 584 * 585 * Find an interface by name. Must be called under RTNL semaphore 586 * or @dev_base_lock. If the name is found a pointer to the device 587 * is returned. If the name is not found then %NULL is returned. The 588 * reference counters are not incremented so the caller must be 589 * careful with locks. 590 */ 591 592 struct net_device *__dev_get_by_name(struct net *net, const char *name) 593 { 594 struct hlist_node *p; 595 596 hlist_for_each(p, dev_name_hash(net, name)) { 597 struct net_device *dev 598 = hlist_entry(p, struct net_device, name_hlist); 599 if (!strncmp(dev->name, name, IFNAMSIZ)) 600 return dev; 601 } 602 return NULL; 603 } 604 605 /** 606 * dev_get_by_name - find a device by its name 607 * @net: the applicable net namespace 608 * @name: name to find 609 * 610 * Find an interface by name. This can be called from any 611 * context and does its own locking. The returned handle has 612 * the usage count incremented and the caller must use dev_put() to 613 * release it when it is no longer needed. %NULL is returned if no 614 * matching device is found. 615 */ 616 617 struct net_device *dev_get_by_name(struct net *net, const char *name) 618 { 619 struct net_device *dev; 620 621 read_lock(&dev_base_lock); 622 dev = __dev_get_by_name(net, name); 623 if (dev) 624 dev_hold(dev); 625 read_unlock(&dev_base_lock); 626 return dev; 627 } 628 629 /** 630 * __dev_get_by_index - find a device by its ifindex 631 * @net: the applicable net namespace 632 * @ifindex: index of device 633 * 634 * Search for an interface by index. Returns %NULL if the device 635 * is not found or a pointer to the device. The device has not 636 * had its reference counter increased so the caller must be careful 637 * about locking. The caller must hold either the RTNL semaphore 638 * or @dev_base_lock. 639 */ 640 641 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 642 { 643 struct hlist_node *p; 644 645 hlist_for_each(p, dev_index_hash(net, ifindex)) { 646 struct net_device *dev 647 = hlist_entry(p, struct net_device, index_hlist); 648 if (dev->ifindex == ifindex) 649 return dev; 650 } 651 return NULL; 652 } 653 654 655 /** 656 * dev_get_by_index - find a device by its ifindex 657 * @net: the applicable net namespace 658 * @ifindex: index of device 659 * 660 * Search for an interface by index. Returns NULL if the device 661 * is not found or a pointer to the device. The device returned has 662 * had a reference added and the pointer is safe until the user calls 663 * dev_put to indicate they have finished with it. 664 */ 665 666 struct net_device *dev_get_by_index(struct net *net, int ifindex) 667 { 668 struct net_device *dev; 669 670 read_lock(&dev_base_lock); 671 dev = __dev_get_by_index(net, ifindex); 672 if (dev) 673 dev_hold(dev); 674 read_unlock(&dev_base_lock); 675 return dev; 676 } 677 678 /** 679 * dev_getbyhwaddr - find a device by its hardware address 680 * @net: the applicable net namespace 681 * @type: media type of device 682 * @ha: hardware address 683 * 684 * Search for an interface by MAC address. Returns NULL if the device 685 * is not found or a pointer to the device. The caller must hold the 686 * rtnl semaphore. The returned device has not had its ref count increased 687 * and the caller must therefore be careful about locking 688 * 689 * BUGS: 690 * If the API was consistent this would be __dev_get_by_hwaddr 691 */ 692 693 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 694 { 695 struct net_device *dev; 696 697 ASSERT_RTNL(); 698 699 for_each_netdev(net, dev) 700 if (dev->type == type && 701 !memcmp(dev->dev_addr, ha, dev->addr_len)) 702 return dev; 703 704 return NULL; 705 } 706 707 EXPORT_SYMBOL(dev_getbyhwaddr); 708 709 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 710 { 711 struct net_device *dev; 712 713 ASSERT_RTNL(); 714 for_each_netdev(net, dev) 715 if (dev->type == type) 716 return dev; 717 718 return NULL; 719 } 720 721 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 722 723 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 724 { 725 struct net_device *dev; 726 727 rtnl_lock(); 728 dev = __dev_getfirstbyhwtype(net, type); 729 if (dev) 730 dev_hold(dev); 731 rtnl_unlock(); 732 return dev; 733 } 734 735 EXPORT_SYMBOL(dev_getfirstbyhwtype); 736 737 /** 738 * dev_get_by_flags - find any device with given flags 739 * @net: the applicable net namespace 740 * @if_flags: IFF_* values 741 * @mask: bitmask of bits in if_flags to check 742 * 743 * Search for any interface with the given flags. Returns NULL if a device 744 * is not found or a pointer to the device. The device returned has 745 * had a reference added and the pointer is safe until the user calls 746 * dev_put to indicate they have finished with it. 747 */ 748 749 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 750 { 751 struct net_device *dev, *ret; 752 753 ret = NULL; 754 read_lock(&dev_base_lock); 755 for_each_netdev(net, dev) { 756 if (((dev->flags ^ if_flags) & mask) == 0) { 757 dev_hold(dev); 758 ret = dev; 759 break; 760 } 761 } 762 read_unlock(&dev_base_lock); 763 return ret; 764 } 765 766 /** 767 * dev_valid_name - check if name is okay for network device 768 * @name: name string 769 * 770 * Network device names need to be valid file names to 771 * to allow sysfs to work. We also disallow any kind of 772 * whitespace. 773 */ 774 int dev_valid_name(const char *name) 775 { 776 if (*name == '\0') 777 return 0; 778 if (strlen(name) >= IFNAMSIZ) 779 return 0; 780 if (!strcmp(name, ".") || !strcmp(name, "..")) 781 return 0; 782 783 while (*name) { 784 if (*name == '/' || isspace(*name)) 785 return 0; 786 name++; 787 } 788 return 1; 789 } 790 791 /** 792 * __dev_alloc_name - allocate a name for a device 793 * @net: network namespace to allocate the device name in 794 * @name: name format string 795 * @buf: scratch buffer and result name string 796 * 797 * Passed a format string - eg "lt%d" it will try and find a suitable 798 * id. It scans list of devices to build up a free map, then chooses 799 * the first empty slot. The caller must hold the dev_base or rtnl lock 800 * while allocating the name and adding the device in order to avoid 801 * duplicates. 802 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 803 * Returns the number of the unit assigned or a negative errno code. 804 */ 805 806 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 807 { 808 int i = 0; 809 const char *p; 810 const int max_netdevices = 8*PAGE_SIZE; 811 unsigned long *inuse; 812 struct net_device *d; 813 814 p = strnchr(name, IFNAMSIZ-1, '%'); 815 if (p) { 816 /* 817 * Verify the string as this thing may have come from 818 * the user. There must be either one "%d" and no other "%" 819 * characters. 820 */ 821 if (p[1] != 'd' || strchr(p + 2, '%')) 822 return -EINVAL; 823 824 /* Use one page as a bit array of possible slots */ 825 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 826 if (!inuse) 827 return -ENOMEM; 828 829 for_each_netdev(net, d) { 830 if (!sscanf(d->name, name, &i)) 831 continue; 832 if (i < 0 || i >= max_netdevices) 833 continue; 834 835 /* avoid cases where sscanf is not exact inverse of printf */ 836 snprintf(buf, IFNAMSIZ, name, i); 837 if (!strncmp(buf, d->name, IFNAMSIZ)) 838 set_bit(i, inuse); 839 } 840 841 i = find_first_zero_bit(inuse, max_netdevices); 842 free_page((unsigned long) inuse); 843 } 844 845 snprintf(buf, IFNAMSIZ, name, i); 846 if (!__dev_get_by_name(net, buf)) 847 return i; 848 849 /* It is possible to run out of possible slots 850 * when the name is long and there isn't enough space left 851 * for the digits, or if all bits are used. 852 */ 853 return -ENFILE; 854 } 855 856 /** 857 * dev_alloc_name - allocate a name for a device 858 * @dev: device 859 * @name: name format string 860 * 861 * Passed a format string - eg "lt%d" it will try and find a suitable 862 * id. It scans list of devices to build up a free map, then chooses 863 * the first empty slot. The caller must hold the dev_base or rtnl lock 864 * while allocating the name and adding the device in order to avoid 865 * duplicates. 866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 867 * Returns the number of the unit assigned or a negative errno code. 868 */ 869 870 int dev_alloc_name(struct net_device *dev, const char *name) 871 { 872 char buf[IFNAMSIZ]; 873 struct net *net; 874 int ret; 875 876 BUG_ON(!dev_net(dev)); 877 net = dev_net(dev); 878 ret = __dev_alloc_name(net, name, buf); 879 if (ret >= 0) 880 strlcpy(dev->name, buf, IFNAMSIZ); 881 return ret; 882 } 883 884 885 /** 886 * dev_change_name - change name of a device 887 * @dev: device 888 * @newname: name (or format string) must be at least IFNAMSIZ 889 * 890 * Change name of a device, can pass format strings "eth%d". 891 * for wildcarding. 892 */ 893 int dev_change_name(struct net_device *dev, char *newname) 894 { 895 char oldname[IFNAMSIZ]; 896 int err = 0; 897 int ret; 898 struct net *net; 899 900 ASSERT_RTNL(); 901 BUG_ON(!dev_net(dev)); 902 903 net = dev_net(dev); 904 if (dev->flags & IFF_UP) 905 return -EBUSY; 906 907 if (!dev_valid_name(newname)) 908 return -EINVAL; 909 910 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 911 return 0; 912 913 memcpy(oldname, dev->name, IFNAMSIZ); 914 915 if (strchr(newname, '%')) { 916 err = dev_alloc_name(dev, newname); 917 if (err < 0) 918 return err; 919 strcpy(newname, dev->name); 920 } 921 else if (__dev_get_by_name(net, newname)) 922 return -EEXIST; 923 else 924 strlcpy(dev->name, newname, IFNAMSIZ); 925 926 rollback: 927 err = device_rename(&dev->dev, dev->name); 928 if (err) { 929 memcpy(dev->name, oldname, IFNAMSIZ); 930 return err; 931 } 932 933 write_lock_bh(&dev_base_lock); 934 hlist_del(&dev->name_hlist); 935 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 936 write_unlock_bh(&dev_base_lock); 937 938 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 939 ret = notifier_to_errno(ret); 940 941 if (ret) { 942 if (err) { 943 printk(KERN_ERR 944 "%s: name change rollback failed: %d.\n", 945 dev->name, ret); 946 } else { 947 err = ret; 948 memcpy(dev->name, oldname, IFNAMSIZ); 949 goto rollback; 950 } 951 } 952 953 return err; 954 } 955 956 /** 957 * netdev_features_change - device changes features 958 * @dev: device to cause notification 959 * 960 * Called to indicate a device has changed features. 961 */ 962 void netdev_features_change(struct net_device *dev) 963 { 964 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 965 } 966 EXPORT_SYMBOL(netdev_features_change); 967 968 /** 969 * netdev_state_change - device changes state 970 * @dev: device to cause notification 971 * 972 * Called to indicate a device has changed state. This function calls 973 * the notifier chains for netdev_chain and sends a NEWLINK message 974 * to the routing socket. 975 */ 976 void netdev_state_change(struct net_device *dev) 977 { 978 if (dev->flags & IFF_UP) { 979 call_netdevice_notifiers(NETDEV_CHANGE, dev); 980 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 981 } 982 } 983 984 void netdev_bonding_change(struct net_device *dev) 985 { 986 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 987 } 988 EXPORT_SYMBOL(netdev_bonding_change); 989 990 /** 991 * dev_load - load a network module 992 * @net: the applicable net namespace 993 * @name: name of interface 994 * 995 * If a network interface is not present and the process has suitable 996 * privileges this function loads the module. If module loading is not 997 * available in this kernel then it becomes a nop. 998 */ 999 1000 void dev_load(struct net *net, const char *name) 1001 { 1002 struct net_device *dev; 1003 1004 read_lock(&dev_base_lock); 1005 dev = __dev_get_by_name(net, name); 1006 read_unlock(&dev_base_lock); 1007 1008 if (!dev && capable(CAP_SYS_MODULE)) 1009 request_module("%s", name); 1010 } 1011 1012 /** 1013 * dev_open - prepare an interface for use. 1014 * @dev: device to open 1015 * 1016 * Takes a device from down to up state. The device's private open 1017 * function is invoked and then the multicast lists are loaded. Finally 1018 * the device is moved into the up state and a %NETDEV_UP message is 1019 * sent to the netdev notifier chain. 1020 * 1021 * Calling this function on an active interface is a nop. On a failure 1022 * a negative errno code is returned. 1023 */ 1024 int dev_open(struct net_device *dev) 1025 { 1026 int ret = 0; 1027 1028 ASSERT_RTNL(); 1029 1030 /* 1031 * Is it already up? 1032 */ 1033 1034 if (dev->flags & IFF_UP) 1035 return 0; 1036 1037 /* 1038 * Is it even present? 1039 */ 1040 if (!netif_device_present(dev)) 1041 return -ENODEV; 1042 1043 /* 1044 * Call device private open method 1045 */ 1046 set_bit(__LINK_STATE_START, &dev->state); 1047 1048 if (dev->validate_addr) 1049 ret = dev->validate_addr(dev); 1050 1051 if (!ret && dev->open) 1052 ret = dev->open(dev); 1053 1054 /* 1055 * If it went open OK then: 1056 */ 1057 1058 if (ret) 1059 clear_bit(__LINK_STATE_START, &dev->state); 1060 else { 1061 /* 1062 * Set the flags. 1063 */ 1064 dev->flags |= IFF_UP; 1065 1066 /* 1067 * Initialize multicasting status 1068 */ 1069 dev_set_rx_mode(dev); 1070 1071 /* 1072 * Wakeup transmit queue engine 1073 */ 1074 dev_activate(dev); 1075 1076 /* 1077 * ... and announce new interface. 1078 */ 1079 call_netdevice_notifiers(NETDEV_UP, dev); 1080 } 1081 1082 return ret; 1083 } 1084 1085 /** 1086 * dev_close - shutdown an interface. 1087 * @dev: device to shutdown 1088 * 1089 * This function moves an active device into down state. A 1090 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1091 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1092 * chain. 1093 */ 1094 int dev_close(struct net_device *dev) 1095 { 1096 ASSERT_RTNL(); 1097 1098 might_sleep(); 1099 1100 if (!(dev->flags & IFF_UP)) 1101 return 0; 1102 1103 /* 1104 * Tell people we are going down, so that they can 1105 * prepare to death, when device is still operating. 1106 */ 1107 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1108 1109 clear_bit(__LINK_STATE_START, &dev->state); 1110 1111 /* Synchronize to scheduled poll. We cannot touch poll list, 1112 * it can be even on different cpu. So just clear netif_running(). 1113 * 1114 * dev->stop() will invoke napi_disable() on all of it's 1115 * napi_struct instances on this device. 1116 */ 1117 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1118 1119 dev_deactivate(dev); 1120 1121 /* 1122 * Call the device specific close. This cannot fail. 1123 * Only if device is UP 1124 * 1125 * We allow it to be called even after a DETACH hot-plug 1126 * event. 1127 */ 1128 if (dev->stop) 1129 dev->stop(dev); 1130 1131 /* 1132 * Device is now down. 1133 */ 1134 1135 dev->flags &= ~IFF_UP; 1136 1137 /* 1138 * Tell people we are down 1139 */ 1140 call_netdevice_notifiers(NETDEV_DOWN, dev); 1141 1142 return 0; 1143 } 1144 1145 1146 /** 1147 * dev_disable_lro - disable Large Receive Offload on a device 1148 * @dev: device 1149 * 1150 * Disable Large Receive Offload (LRO) on a net device. Must be 1151 * called under RTNL. This is needed if received packets may be 1152 * forwarded to another interface. 1153 */ 1154 void dev_disable_lro(struct net_device *dev) 1155 { 1156 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1157 dev->ethtool_ops->set_flags) { 1158 u32 flags = dev->ethtool_ops->get_flags(dev); 1159 if (flags & ETH_FLAG_LRO) { 1160 flags &= ~ETH_FLAG_LRO; 1161 dev->ethtool_ops->set_flags(dev, flags); 1162 } 1163 } 1164 WARN_ON(dev->features & NETIF_F_LRO); 1165 } 1166 EXPORT_SYMBOL(dev_disable_lro); 1167 1168 1169 static int dev_boot_phase = 1; 1170 1171 /* 1172 * Device change register/unregister. These are not inline or static 1173 * as we export them to the world. 1174 */ 1175 1176 /** 1177 * register_netdevice_notifier - register a network notifier block 1178 * @nb: notifier 1179 * 1180 * Register a notifier to be called when network device events occur. 1181 * The notifier passed is linked into the kernel structures and must 1182 * not be reused until it has been unregistered. A negative errno code 1183 * is returned on a failure. 1184 * 1185 * When registered all registration and up events are replayed 1186 * to the new notifier to allow device to have a race free 1187 * view of the network device list. 1188 */ 1189 1190 int register_netdevice_notifier(struct notifier_block *nb) 1191 { 1192 struct net_device *dev; 1193 struct net_device *last; 1194 struct net *net; 1195 int err; 1196 1197 rtnl_lock(); 1198 err = raw_notifier_chain_register(&netdev_chain, nb); 1199 if (err) 1200 goto unlock; 1201 if (dev_boot_phase) 1202 goto unlock; 1203 for_each_net(net) { 1204 for_each_netdev(net, dev) { 1205 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1206 err = notifier_to_errno(err); 1207 if (err) 1208 goto rollback; 1209 1210 if (!(dev->flags & IFF_UP)) 1211 continue; 1212 1213 nb->notifier_call(nb, NETDEV_UP, dev); 1214 } 1215 } 1216 1217 unlock: 1218 rtnl_unlock(); 1219 return err; 1220 1221 rollback: 1222 last = dev; 1223 for_each_net(net) { 1224 for_each_netdev(net, dev) { 1225 if (dev == last) 1226 break; 1227 1228 if (dev->flags & IFF_UP) { 1229 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1230 nb->notifier_call(nb, NETDEV_DOWN, dev); 1231 } 1232 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1233 } 1234 } 1235 1236 raw_notifier_chain_unregister(&netdev_chain, nb); 1237 goto unlock; 1238 } 1239 1240 /** 1241 * unregister_netdevice_notifier - unregister a network notifier block 1242 * @nb: notifier 1243 * 1244 * Unregister a notifier previously registered by 1245 * register_netdevice_notifier(). The notifier is unlinked into the 1246 * kernel structures and may then be reused. A negative errno code 1247 * is returned on a failure. 1248 */ 1249 1250 int unregister_netdevice_notifier(struct notifier_block *nb) 1251 { 1252 int err; 1253 1254 rtnl_lock(); 1255 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1256 rtnl_unlock(); 1257 return err; 1258 } 1259 1260 /** 1261 * call_netdevice_notifiers - call all network notifier blocks 1262 * @val: value passed unmodified to notifier function 1263 * @dev: net_device pointer passed unmodified to notifier function 1264 * 1265 * Call all network notifier blocks. Parameters and return value 1266 * are as for raw_notifier_call_chain(). 1267 */ 1268 1269 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1270 { 1271 return raw_notifier_call_chain(&netdev_chain, val, dev); 1272 } 1273 1274 /* When > 0 there are consumers of rx skb time stamps */ 1275 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1276 1277 void net_enable_timestamp(void) 1278 { 1279 atomic_inc(&netstamp_needed); 1280 } 1281 1282 void net_disable_timestamp(void) 1283 { 1284 atomic_dec(&netstamp_needed); 1285 } 1286 1287 static inline void net_timestamp(struct sk_buff *skb) 1288 { 1289 if (atomic_read(&netstamp_needed)) 1290 __net_timestamp(skb); 1291 else 1292 skb->tstamp.tv64 = 0; 1293 } 1294 1295 /* 1296 * Support routine. Sends outgoing frames to any network 1297 * taps currently in use. 1298 */ 1299 1300 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1301 { 1302 struct packet_type *ptype; 1303 1304 net_timestamp(skb); 1305 1306 rcu_read_lock(); 1307 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1308 /* Never send packets back to the socket 1309 * they originated from - MvS (miquels@drinkel.ow.org) 1310 */ 1311 if ((ptype->dev == dev || !ptype->dev) && 1312 (ptype->af_packet_priv == NULL || 1313 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1314 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1315 if (!skb2) 1316 break; 1317 1318 /* skb->nh should be correctly 1319 set by sender, so that the second statement is 1320 just protection against buggy protocols. 1321 */ 1322 skb_reset_mac_header(skb2); 1323 1324 if (skb_network_header(skb2) < skb2->data || 1325 skb2->network_header > skb2->tail) { 1326 if (net_ratelimit()) 1327 printk(KERN_CRIT "protocol %04x is " 1328 "buggy, dev %s\n", 1329 skb2->protocol, dev->name); 1330 skb_reset_network_header(skb2); 1331 } 1332 1333 skb2->transport_header = skb2->network_header; 1334 skb2->pkt_type = PACKET_OUTGOING; 1335 ptype->func(skb2, skb->dev, ptype, skb->dev); 1336 } 1337 } 1338 rcu_read_unlock(); 1339 } 1340 1341 1342 void __netif_schedule(struct Qdisc *q) 1343 { 1344 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) { 1345 struct softnet_data *sd; 1346 unsigned long flags; 1347 1348 local_irq_save(flags); 1349 sd = &__get_cpu_var(softnet_data); 1350 q->next_sched = sd->output_queue; 1351 sd->output_queue = q; 1352 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1353 local_irq_restore(flags); 1354 } 1355 } 1356 EXPORT_SYMBOL(__netif_schedule); 1357 1358 void dev_kfree_skb_irq(struct sk_buff *skb) 1359 { 1360 if (atomic_dec_and_test(&skb->users)) { 1361 struct softnet_data *sd; 1362 unsigned long flags; 1363 1364 local_irq_save(flags); 1365 sd = &__get_cpu_var(softnet_data); 1366 skb->next = sd->completion_queue; 1367 sd->completion_queue = skb; 1368 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1369 local_irq_restore(flags); 1370 } 1371 } 1372 EXPORT_SYMBOL(dev_kfree_skb_irq); 1373 1374 void dev_kfree_skb_any(struct sk_buff *skb) 1375 { 1376 if (in_irq() || irqs_disabled()) 1377 dev_kfree_skb_irq(skb); 1378 else 1379 dev_kfree_skb(skb); 1380 } 1381 EXPORT_SYMBOL(dev_kfree_skb_any); 1382 1383 1384 /** 1385 * netif_device_detach - mark device as removed 1386 * @dev: network device 1387 * 1388 * Mark device as removed from system and therefore no longer available. 1389 */ 1390 void netif_device_detach(struct net_device *dev) 1391 { 1392 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1393 netif_running(dev)) { 1394 netif_stop_queue(dev); 1395 } 1396 } 1397 EXPORT_SYMBOL(netif_device_detach); 1398 1399 /** 1400 * netif_device_attach - mark device as attached 1401 * @dev: network device 1402 * 1403 * Mark device as attached from system and restart if needed. 1404 */ 1405 void netif_device_attach(struct net_device *dev) 1406 { 1407 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1408 netif_running(dev)) { 1409 netif_wake_queue(dev); 1410 __netdev_watchdog_up(dev); 1411 } 1412 } 1413 EXPORT_SYMBOL(netif_device_attach); 1414 1415 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1416 { 1417 return ((features & NETIF_F_GEN_CSUM) || 1418 ((features & NETIF_F_IP_CSUM) && 1419 protocol == htons(ETH_P_IP)) || 1420 ((features & NETIF_F_IPV6_CSUM) && 1421 protocol == htons(ETH_P_IPV6))); 1422 } 1423 1424 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1425 { 1426 if (can_checksum_protocol(dev->features, skb->protocol)) 1427 return true; 1428 1429 if (skb->protocol == htons(ETH_P_8021Q)) { 1430 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1431 if (can_checksum_protocol(dev->features & dev->vlan_features, 1432 veh->h_vlan_encapsulated_proto)) 1433 return true; 1434 } 1435 1436 return false; 1437 } 1438 1439 /* 1440 * Invalidate hardware checksum when packet is to be mangled, and 1441 * complete checksum manually on outgoing path. 1442 */ 1443 int skb_checksum_help(struct sk_buff *skb) 1444 { 1445 __wsum csum; 1446 int ret = 0, offset; 1447 1448 if (skb->ip_summed == CHECKSUM_COMPLETE) 1449 goto out_set_summed; 1450 1451 if (unlikely(skb_shinfo(skb)->gso_size)) { 1452 /* Let GSO fix up the checksum. */ 1453 goto out_set_summed; 1454 } 1455 1456 offset = skb->csum_start - skb_headroom(skb); 1457 BUG_ON(offset >= skb_headlen(skb)); 1458 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1459 1460 offset += skb->csum_offset; 1461 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1462 1463 if (skb_cloned(skb) && 1464 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1465 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1466 if (ret) 1467 goto out; 1468 } 1469 1470 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1471 out_set_summed: 1472 skb->ip_summed = CHECKSUM_NONE; 1473 out: 1474 return ret; 1475 } 1476 1477 /** 1478 * skb_gso_segment - Perform segmentation on skb. 1479 * @skb: buffer to segment 1480 * @features: features for the output path (see dev->features) 1481 * 1482 * This function segments the given skb and returns a list of segments. 1483 * 1484 * It may return NULL if the skb requires no segmentation. This is 1485 * only possible when GSO is used for verifying header integrity. 1486 */ 1487 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1488 { 1489 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1490 struct packet_type *ptype; 1491 __be16 type = skb->protocol; 1492 int err; 1493 1494 BUG_ON(skb_shinfo(skb)->frag_list); 1495 1496 skb_reset_mac_header(skb); 1497 skb->mac_len = skb->network_header - skb->mac_header; 1498 __skb_pull(skb, skb->mac_len); 1499 1500 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1501 if (skb_header_cloned(skb) && 1502 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1503 return ERR_PTR(err); 1504 } 1505 1506 rcu_read_lock(); 1507 list_for_each_entry_rcu(ptype, 1508 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1509 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1510 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1511 err = ptype->gso_send_check(skb); 1512 segs = ERR_PTR(err); 1513 if (err || skb_gso_ok(skb, features)) 1514 break; 1515 __skb_push(skb, (skb->data - 1516 skb_network_header(skb))); 1517 } 1518 segs = ptype->gso_segment(skb, features); 1519 break; 1520 } 1521 } 1522 rcu_read_unlock(); 1523 1524 __skb_push(skb, skb->data - skb_mac_header(skb)); 1525 1526 return segs; 1527 } 1528 1529 EXPORT_SYMBOL(skb_gso_segment); 1530 1531 /* Take action when hardware reception checksum errors are detected. */ 1532 #ifdef CONFIG_BUG 1533 void netdev_rx_csum_fault(struct net_device *dev) 1534 { 1535 if (net_ratelimit()) { 1536 printk(KERN_ERR "%s: hw csum failure.\n", 1537 dev ? dev->name : "<unknown>"); 1538 dump_stack(); 1539 } 1540 } 1541 EXPORT_SYMBOL(netdev_rx_csum_fault); 1542 #endif 1543 1544 /* Actually, we should eliminate this check as soon as we know, that: 1545 * 1. IOMMU is present and allows to map all the memory. 1546 * 2. No high memory really exists on this machine. 1547 */ 1548 1549 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1550 { 1551 #ifdef CONFIG_HIGHMEM 1552 int i; 1553 1554 if (dev->features & NETIF_F_HIGHDMA) 1555 return 0; 1556 1557 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1558 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1559 return 1; 1560 1561 #endif 1562 return 0; 1563 } 1564 1565 struct dev_gso_cb { 1566 void (*destructor)(struct sk_buff *skb); 1567 }; 1568 1569 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1570 1571 static void dev_gso_skb_destructor(struct sk_buff *skb) 1572 { 1573 struct dev_gso_cb *cb; 1574 1575 do { 1576 struct sk_buff *nskb = skb->next; 1577 1578 skb->next = nskb->next; 1579 nskb->next = NULL; 1580 kfree_skb(nskb); 1581 } while (skb->next); 1582 1583 cb = DEV_GSO_CB(skb); 1584 if (cb->destructor) 1585 cb->destructor(skb); 1586 } 1587 1588 /** 1589 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1590 * @skb: buffer to segment 1591 * 1592 * This function segments the given skb and stores the list of segments 1593 * in skb->next. 1594 */ 1595 static int dev_gso_segment(struct sk_buff *skb) 1596 { 1597 struct net_device *dev = skb->dev; 1598 struct sk_buff *segs; 1599 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1600 NETIF_F_SG : 0); 1601 1602 segs = skb_gso_segment(skb, features); 1603 1604 /* Verifying header integrity only. */ 1605 if (!segs) 1606 return 0; 1607 1608 if (IS_ERR(segs)) 1609 return PTR_ERR(segs); 1610 1611 skb->next = segs; 1612 DEV_GSO_CB(skb)->destructor = skb->destructor; 1613 skb->destructor = dev_gso_skb_destructor; 1614 1615 return 0; 1616 } 1617 1618 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1619 struct netdev_queue *txq) 1620 { 1621 if (likely(!skb->next)) { 1622 if (!list_empty(&ptype_all)) 1623 dev_queue_xmit_nit(skb, dev); 1624 1625 if (netif_needs_gso(dev, skb)) { 1626 if (unlikely(dev_gso_segment(skb))) 1627 goto out_kfree_skb; 1628 if (skb->next) 1629 goto gso; 1630 } 1631 1632 return dev->hard_start_xmit(skb, dev); 1633 } 1634 1635 gso: 1636 do { 1637 struct sk_buff *nskb = skb->next; 1638 int rc; 1639 1640 skb->next = nskb->next; 1641 nskb->next = NULL; 1642 rc = dev->hard_start_xmit(nskb, dev); 1643 if (unlikely(rc)) { 1644 nskb->next = skb->next; 1645 skb->next = nskb; 1646 return rc; 1647 } 1648 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1649 return NETDEV_TX_BUSY; 1650 } while (skb->next); 1651 1652 skb->destructor = DEV_GSO_CB(skb)->destructor; 1653 1654 out_kfree_skb: 1655 kfree_skb(skb); 1656 return 0; 1657 } 1658 1659 static u32 simple_tx_hashrnd; 1660 static int simple_tx_hashrnd_initialized = 0; 1661 1662 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb) 1663 { 1664 u32 addr1, addr2, ports; 1665 u32 hash, ihl; 1666 u8 ip_proto; 1667 1668 if (unlikely(!simple_tx_hashrnd_initialized)) { 1669 get_random_bytes(&simple_tx_hashrnd, 4); 1670 simple_tx_hashrnd_initialized = 1; 1671 } 1672 1673 switch (skb->protocol) { 1674 case __constant_htons(ETH_P_IP): 1675 ip_proto = ip_hdr(skb)->protocol; 1676 addr1 = ip_hdr(skb)->saddr; 1677 addr2 = ip_hdr(skb)->daddr; 1678 ihl = ip_hdr(skb)->ihl; 1679 break; 1680 case __constant_htons(ETH_P_IPV6): 1681 ip_proto = ipv6_hdr(skb)->nexthdr; 1682 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3]; 1683 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3]; 1684 ihl = (40 >> 2); 1685 break; 1686 default: 1687 return 0; 1688 } 1689 1690 1691 switch (ip_proto) { 1692 case IPPROTO_TCP: 1693 case IPPROTO_UDP: 1694 case IPPROTO_DCCP: 1695 case IPPROTO_ESP: 1696 case IPPROTO_AH: 1697 case IPPROTO_SCTP: 1698 case IPPROTO_UDPLITE: 1699 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4))); 1700 break; 1701 1702 default: 1703 ports = 0; 1704 break; 1705 } 1706 1707 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd); 1708 1709 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1710 } 1711 1712 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1713 struct sk_buff *skb) 1714 { 1715 u16 queue_index = 0; 1716 1717 if (dev->select_queue) 1718 queue_index = dev->select_queue(dev, skb); 1719 else if (dev->real_num_tx_queues > 1) 1720 queue_index = simple_tx_hash(dev, skb); 1721 1722 skb_set_queue_mapping(skb, queue_index); 1723 return netdev_get_tx_queue(dev, queue_index); 1724 } 1725 1726 /** 1727 * dev_queue_xmit - transmit a buffer 1728 * @skb: buffer to transmit 1729 * 1730 * Queue a buffer for transmission to a network device. The caller must 1731 * have set the device and priority and built the buffer before calling 1732 * this function. The function can be called from an interrupt. 1733 * 1734 * A negative errno code is returned on a failure. A success does not 1735 * guarantee the frame will be transmitted as it may be dropped due 1736 * to congestion or traffic shaping. 1737 * 1738 * ----------------------------------------------------------------------------------- 1739 * I notice this method can also return errors from the queue disciplines, 1740 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1741 * be positive. 1742 * 1743 * Regardless of the return value, the skb is consumed, so it is currently 1744 * difficult to retry a send to this method. (You can bump the ref count 1745 * before sending to hold a reference for retry if you are careful.) 1746 * 1747 * When calling this method, interrupts MUST be enabled. This is because 1748 * the BH enable code must have IRQs enabled so that it will not deadlock. 1749 * --BLG 1750 */ 1751 int dev_queue_xmit(struct sk_buff *skb) 1752 { 1753 struct net_device *dev = skb->dev; 1754 struct netdev_queue *txq; 1755 struct Qdisc *q; 1756 int rc = -ENOMEM; 1757 1758 /* GSO will handle the following emulations directly. */ 1759 if (netif_needs_gso(dev, skb)) 1760 goto gso; 1761 1762 if (skb_shinfo(skb)->frag_list && 1763 !(dev->features & NETIF_F_FRAGLIST) && 1764 __skb_linearize(skb)) 1765 goto out_kfree_skb; 1766 1767 /* Fragmented skb is linearized if device does not support SG, 1768 * or if at least one of fragments is in highmem and device 1769 * does not support DMA from it. 1770 */ 1771 if (skb_shinfo(skb)->nr_frags && 1772 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1773 __skb_linearize(skb)) 1774 goto out_kfree_skb; 1775 1776 /* If packet is not checksummed and device does not support 1777 * checksumming for this protocol, complete checksumming here. 1778 */ 1779 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1780 skb_set_transport_header(skb, skb->csum_start - 1781 skb_headroom(skb)); 1782 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1783 goto out_kfree_skb; 1784 } 1785 1786 gso: 1787 /* Disable soft irqs for various locks below. Also 1788 * stops preemption for RCU. 1789 */ 1790 rcu_read_lock_bh(); 1791 1792 txq = dev_pick_tx(dev, skb); 1793 q = rcu_dereference(txq->qdisc); 1794 1795 #ifdef CONFIG_NET_CLS_ACT 1796 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1797 #endif 1798 if (q->enqueue) { 1799 spinlock_t *root_lock = qdisc_root_lock(q); 1800 1801 spin_lock(root_lock); 1802 1803 rc = qdisc_enqueue_root(skb, q); 1804 qdisc_run(q); 1805 1806 spin_unlock(root_lock); 1807 1808 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1809 goto out; 1810 } 1811 1812 /* The device has no queue. Common case for software devices: 1813 loopback, all the sorts of tunnels... 1814 1815 Really, it is unlikely that netif_tx_lock protection is necessary 1816 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1817 counters.) 1818 However, it is possible, that they rely on protection 1819 made by us here. 1820 1821 Check this and shot the lock. It is not prone from deadlocks. 1822 Either shot noqueue qdisc, it is even simpler 8) 1823 */ 1824 if (dev->flags & IFF_UP) { 1825 int cpu = smp_processor_id(); /* ok because BHs are off */ 1826 1827 if (txq->xmit_lock_owner != cpu) { 1828 1829 HARD_TX_LOCK(dev, txq, cpu); 1830 1831 if (!netif_tx_queue_stopped(txq)) { 1832 rc = 0; 1833 if (!dev_hard_start_xmit(skb, dev, txq)) { 1834 HARD_TX_UNLOCK(dev, txq); 1835 goto out; 1836 } 1837 } 1838 HARD_TX_UNLOCK(dev, txq); 1839 if (net_ratelimit()) 1840 printk(KERN_CRIT "Virtual device %s asks to " 1841 "queue packet!\n", dev->name); 1842 } else { 1843 /* Recursion is detected! It is possible, 1844 * unfortunately */ 1845 if (net_ratelimit()) 1846 printk(KERN_CRIT "Dead loop on virtual device " 1847 "%s, fix it urgently!\n", dev->name); 1848 } 1849 } 1850 1851 rc = -ENETDOWN; 1852 rcu_read_unlock_bh(); 1853 1854 out_kfree_skb: 1855 kfree_skb(skb); 1856 return rc; 1857 out: 1858 rcu_read_unlock_bh(); 1859 return rc; 1860 } 1861 1862 1863 /*======================================================================= 1864 Receiver routines 1865 =======================================================================*/ 1866 1867 int netdev_max_backlog __read_mostly = 1000; 1868 int netdev_budget __read_mostly = 300; 1869 int weight_p __read_mostly = 64; /* old backlog weight */ 1870 1871 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1872 1873 1874 /** 1875 * netif_rx - post buffer to the network code 1876 * @skb: buffer to post 1877 * 1878 * This function receives a packet from a device driver and queues it for 1879 * the upper (protocol) levels to process. It always succeeds. The buffer 1880 * may be dropped during processing for congestion control or by the 1881 * protocol layers. 1882 * 1883 * return values: 1884 * NET_RX_SUCCESS (no congestion) 1885 * NET_RX_DROP (packet was dropped) 1886 * 1887 */ 1888 1889 int netif_rx(struct sk_buff *skb) 1890 { 1891 struct softnet_data *queue; 1892 unsigned long flags; 1893 1894 /* if netpoll wants it, pretend we never saw it */ 1895 if (netpoll_rx(skb)) 1896 return NET_RX_DROP; 1897 1898 if (!skb->tstamp.tv64) 1899 net_timestamp(skb); 1900 1901 /* 1902 * The code is rearranged so that the path is the most 1903 * short when CPU is congested, but is still operating. 1904 */ 1905 local_irq_save(flags); 1906 queue = &__get_cpu_var(softnet_data); 1907 1908 __get_cpu_var(netdev_rx_stat).total++; 1909 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1910 if (queue->input_pkt_queue.qlen) { 1911 enqueue: 1912 dev_hold(skb->dev); 1913 __skb_queue_tail(&queue->input_pkt_queue, skb); 1914 local_irq_restore(flags); 1915 return NET_RX_SUCCESS; 1916 } 1917 1918 napi_schedule(&queue->backlog); 1919 goto enqueue; 1920 } 1921 1922 __get_cpu_var(netdev_rx_stat).dropped++; 1923 local_irq_restore(flags); 1924 1925 kfree_skb(skb); 1926 return NET_RX_DROP; 1927 } 1928 1929 int netif_rx_ni(struct sk_buff *skb) 1930 { 1931 int err; 1932 1933 preempt_disable(); 1934 err = netif_rx(skb); 1935 if (local_softirq_pending()) 1936 do_softirq(); 1937 preempt_enable(); 1938 1939 return err; 1940 } 1941 1942 EXPORT_SYMBOL(netif_rx_ni); 1943 1944 static inline struct net_device *skb_bond(struct sk_buff *skb) 1945 { 1946 struct net_device *dev = skb->dev; 1947 1948 if (dev->master) { 1949 if (skb_bond_should_drop(skb)) { 1950 kfree_skb(skb); 1951 return NULL; 1952 } 1953 skb->dev = dev->master; 1954 } 1955 1956 return dev; 1957 } 1958 1959 1960 static void net_tx_action(struct softirq_action *h) 1961 { 1962 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1963 1964 if (sd->completion_queue) { 1965 struct sk_buff *clist; 1966 1967 local_irq_disable(); 1968 clist = sd->completion_queue; 1969 sd->completion_queue = NULL; 1970 local_irq_enable(); 1971 1972 while (clist) { 1973 struct sk_buff *skb = clist; 1974 clist = clist->next; 1975 1976 WARN_ON(atomic_read(&skb->users)); 1977 __kfree_skb(skb); 1978 } 1979 } 1980 1981 if (sd->output_queue) { 1982 struct Qdisc *head; 1983 1984 local_irq_disable(); 1985 head = sd->output_queue; 1986 sd->output_queue = NULL; 1987 local_irq_enable(); 1988 1989 while (head) { 1990 struct Qdisc *q = head; 1991 spinlock_t *root_lock; 1992 1993 head = head->next_sched; 1994 1995 smp_mb__before_clear_bit(); 1996 clear_bit(__QDISC_STATE_SCHED, &q->state); 1997 1998 root_lock = qdisc_root_lock(q); 1999 if (spin_trylock(root_lock)) { 2000 qdisc_run(q); 2001 spin_unlock(root_lock); 2002 } else { 2003 __netif_schedule(q); 2004 } 2005 } 2006 } 2007 } 2008 2009 static inline int deliver_skb(struct sk_buff *skb, 2010 struct packet_type *pt_prev, 2011 struct net_device *orig_dev) 2012 { 2013 atomic_inc(&skb->users); 2014 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2015 } 2016 2017 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2018 /* These hooks defined here for ATM */ 2019 struct net_bridge; 2020 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2021 unsigned char *addr); 2022 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2023 2024 /* 2025 * If bridge module is loaded call bridging hook. 2026 * returns NULL if packet was consumed. 2027 */ 2028 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2029 struct sk_buff *skb) __read_mostly; 2030 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2031 struct packet_type **pt_prev, int *ret, 2032 struct net_device *orig_dev) 2033 { 2034 struct net_bridge_port *port; 2035 2036 if (skb->pkt_type == PACKET_LOOPBACK || 2037 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2038 return skb; 2039 2040 if (*pt_prev) { 2041 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2042 *pt_prev = NULL; 2043 } 2044 2045 return br_handle_frame_hook(port, skb); 2046 } 2047 #else 2048 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2049 #endif 2050 2051 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2052 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2053 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2054 2055 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2056 struct packet_type **pt_prev, 2057 int *ret, 2058 struct net_device *orig_dev) 2059 { 2060 if (skb->dev->macvlan_port == NULL) 2061 return skb; 2062 2063 if (*pt_prev) { 2064 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2065 *pt_prev = NULL; 2066 } 2067 return macvlan_handle_frame_hook(skb); 2068 } 2069 #else 2070 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2071 #endif 2072 2073 #ifdef CONFIG_NET_CLS_ACT 2074 /* TODO: Maybe we should just force sch_ingress to be compiled in 2075 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2076 * a compare and 2 stores extra right now if we dont have it on 2077 * but have CONFIG_NET_CLS_ACT 2078 * NOTE: This doesnt stop any functionality; if you dont have 2079 * the ingress scheduler, you just cant add policies on ingress. 2080 * 2081 */ 2082 static int ing_filter(struct sk_buff *skb) 2083 { 2084 struct net_device *dev = skb->dev; 2085 u32 ttl = G_TC_RTTL(skb->tc_verd); 2086 struct netdev_queue *rxq; 2087 int result = TC_ACT_OK; 2088 struct Qdisc *q; 2089 2090 if (MAX_RED_LOOP < ttl++) { 2091 printk(KERN_WARNING 2092 "Redir loop detected Dropping packet (%d->%d)\n", 2093 skb->iif, dev->ifindex); 2094 return TC_ACT_SHOT; 2095 } 2096 2097 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2098 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2099 2100 rxq = &dev->rx_queue; 2101 2102 q = rxq->qdisc; 2103 if (q) { 2104 spin_lock(qdisc_lock(q)); 2105 result = qdisc_enqueue_root(skb, q); 2106 spin_unlock(qdisc_lock(q)); 2107 } 2108 2109 return result; 2110 } 2111 2112 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2113 struct packet_type **pt_prev, 2114 int *ret, struct net_device *orig_dev) 2115 { 2116 if (!skb->dev->rx_queue.qdisc) 2117 goto out; 2118 2119 if (*pt_prev) { 2120 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2121 *pt_prev = NULL; 2122 } else { 2123 /* Huh? Why does turning on AF_PACKET affect this? */ 2124 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2125 } 2126 2127 switch (ing_filter(skb)) { 2128 case TC_ACT_SHOT: 2129 case TC_ACT_STOLEN: 2130 kfree_skb(skb); 2131 return NULL; 2132 } 2133 2134 out: 2135 skb->tc_verd = 0; 2136 return skb; 2137 } 2138 #endif 2139 2140 /* 2141 * netif_nit_deliver - deliver received packets to network taps 2142 * @skb: buffer 2143 * 2144 * This function is used to deliver incoming packets to network 2145 * taps. It should be used when the normal netif_receive_skb path 2146 * is bypassed, for example because of VLAN acceleration. 2147 */ 2148 void netif_nit_deliver(struct sk_buff *skb) 2149 { 2150 struct packet_type *ptype; 2151 2152 if (list_empty(&ptype_all)) 2153 return; 2154 2155 skb_reset_network_header(skb); 2156 skb_reset_transport_header(skb); 2157 skb->mac_len = skb->network_header - skb->mac_header; 2158 2159 rcu_read_lock(); 2160 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2161 if (!ptype->dev || ptype->dev == skb->dev) 2162 deliver_skb(skb, ptype, skb->dev); 2163 } 2164 rcu_read_unlock(); 2165 } 2166 2167 /** 2168 * netif_receive_skb - process receive buffer from network 2169 * @skb: buffer to process 2170 * 2171 * netif_receive_skb() is the main receive data processing function. 2172 * It always succeeds. The buffer may be dropped during processing 2173 * for congestion control or by the protocol layers. 2174 * 2175 * This function may only be called from softirq context and interrupts 2176 * should be enabled. 2177 * 2178 * Return values (usually ignored): 2179 * NET_RX_SUCCESS: no congestion 2180 * NET_RX_DROP: packet was dropped 2181 */ 2182 int netif_receive_skb(struct sk_buff *skb) 2183 { 2184 struct packet_type *ptype, *pt_prev; 2185 struct net_device *orig_dev; 2186 int ret = NET_RX_DROP; 2187 __be16 type; 2188 2189 /* if we've gotten here through NAPI, check netpoll */ 2190 if (netpoll_receive_skb(skb)) 2191 return NET_RX_DROP; 2192 2193 if (!skb->tstamp.tv64) 2194 net_timestamp(skb); 2195 2196 if (!skb->iif) 2197 skb->iif = skb->dev->ifindex; 2198 2199 orig_dev = skb_bond(skb); 2200 2201 if (!orig_dev) 2202 return NET_RX_DROP; 2203 2204 __get_cpu_var(netdev_rx_stat).total++; 2205 2206 skb_reset_network_header(skb); 2207 skb_reset_transport_header(skb); 2208 skb->mac_len = skb->network_header - skb->mac_header; 2209 2210 pt_prev = NULL; 2211 2212 rcu_read_lock(); 2213 2214 /* Don't receive packets in an exiting network namespace */ 2215 if (!net_alive(dev_net(skb->dev))) 2216 goto out; 2217 2218 #ifdef CONFIG_NET_CLS_ACT 2219 if (skb->tc_verd & TC_NCLS) { 2220 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2221 goto ncls; 2222 } 2223 #endif 2224 2225 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2226 if (!ptype->dev || ptype->dev == skb->dev) { 2227 if (pt_prev) 2228 ret = deliver_skb(skb, pt_prev, orig_dev); 2229 pt_prev = ptype; 2230 } 2231 } 2232 2233 #ifdef CONFIG_NET_CLS_ACT 2234 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2235 if (!skb) 2236 goto out; 2237 ncls: 2238 #endif 2239 2240 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2241 if (!skb) 2242 goto out; 2243 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2244 if (!skb) 2245 goto out; 2246 2247 type = skb->protocol; 2248 list_for_each_entry_rcu(ptype, 2249 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2250 if (ptype->type == type && 2251 (!ptype->dev || ptype->dev == skb->dev)) { 2252 if (pt_prev) 2253 ret = deliver_skb(skb, pt_prev, orig_dev); 2254 pt_prev = ptype; 2255 } 2256 } 2257 2258 if (pt_prev) { 2259 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2260 } else { 2261 kfree_skb(skb); 2262 /* Jamal, now you will not able to escape explaining 2263 * me how you were going to use this. :-) 2264 */ 2265 ret = NET_RX_DROP; 2266 } 2267 2268 out: 2269 rcu_read_unlock(); 2270 return ret; 2271 } 2272 2273 static int process_backlog(struct napi_struct *napi, int quota) 2274 { 2275 int work = 0; 2276 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2277 unsigned long start_time = jiffies; 2278 2279 napi->weight = weight_p; 2280 do { 2281 struct sk_buff *skb; 2282 struct net_device *dev; 2283 2284 local_irq_disable(); 2285 skb = __skb_dequeue(&queue->input_pkt_queue); 2286 if (!skb) { 2287 __napi_complete(napi); 2288 local_irq_enable(); 2289 break; 2290 } 2291 2292 local_irq_enable(); 2293 2294 dev = skb->dev; 2295 2296 netif_receive_skb(skb); 2297 2298 dev_put(dev); 2299 } while (++work < quota && jiffies == start_time); 2300 2301 return work; 2302 } 2303 2304 /** 2305 * __napi_schedule - schedule for receive 2306 * @n: entry to schedule 2307 * 2308 * The entry's receive function will be scheduled to run 2309 */ 2310 void __napi_schedule(struct napi_struct *n) 2311 { 2312 unsigned long flags; 2313 2314 local_irq_save(flags); 2315 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2316 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2317 local_irq_restore(flags); 2318 } 2319 EXPORT_SYMBOL(__napi_schedule); 2320 2321 2322 static void net_rx_action(struct softirq_action *h) 2323 { 2324 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2325 unsigned long start_time = jiffies; 2326 int budget = netdev_budget; 2327 void *have; 2328 2329 local_irq_disable(); 2330 2331 while (!list_empty(list)) { 2332 struct napi_struct *n; 2333 int work, weight; 2334 2335 /* If softirq window is exhuasted then punt. 2336 * 2337 * Note that this is a slight policy change from the 2338 * previous NAPI code, which would allow up to 2 2339 * jiffies to pass before breaking out. The test 2340 * used to be "jiffies - start_time > 1". 2341 */ 2342 if (unlikely(budget <= 0 || jiffies != start_time)) 2343 goto softnet_break; 2344 2345 local_irq_enable(); 2346 2347 /* Even though interrupts have been re-enabled, this 2348 * access is safe because interrupts can only add new 2349 * entries to the tail of this list, and only ->poll() 2350 * calls can remove this head entry from the list. 2351 */ 2352 n = list_entry(list->next, struct napi_struct, poll_list); 2353 2354 have = netpoll_poll_lock(n); 2355 2356 weight = n->weight; 2357 2358 /* This NAPI_STATE_SCHED test is for avoiding a race 2359 * with netpoll's poll_napi(). Only the entity which 2360 * obtains the lock and sees NAPI_STATE_SCHED set will 2361 * actually make the ->poll() call. Therefore we avoid 2362 * accidently calling ->poll() when NAPI is not scheduled. 2363 */ 2364 work = 0; 2365 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2366 work = n->poll(n, weight); 2367 2368 WARN_ON_ONCE(work > weight); 2369 2370 budget -= work; 2371 2372 local_irq_disable(); 2373 2374 /* Drivers must not modify the NAPI state if they 2375 * consume the entire weight. In such cases this code 2376 * still "owns" the NAPI instance and therefore can 2377 * move the instance around on the list at-will. 2378 */ 2379 if (unlikely(work == weight)) { 2380 if (unlikely(napi_disable_pending(n))) 2381 __napi_complete(n); 2382 else 2383 list_move_tail(&n->poll_list, list); 2384 } 2385 2386 netpoll_poll_unlock(have); 2387 } 2388 out: 2389 local_irq_enable(); 2390 2391 #ifdef CONFIG_NET_DMA 2392 /* 2393 * There may not be any more sk_buffs coming right now, so push 2394 * any pending DMA copies to hardware 2395 */ 2396 if (!cpus_empty(net_dma.channel_mask)) { 2397 int chan_idx; 2398 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) { 2399 struct dma_chan *chan = net_dma.channels[chan_idx]; 2400 if (chan) 2401 dma_async_memcpy_issue_pending(chan); 2402 } 2403 } 2404 #endif 2405 2406 return; 2407 2408 softnet_break: 2409 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2410 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2411 goto out; 2412 } 2413 2414 static gifconf_func_t * gifconf_list [NPROTO]; 2415 2416 /** 2417 * register_gifconf - register a SIOCGIF handler 2418 * @family: Address family 2419 * @gifconf: Function handler 2420 * 2421 * Register protocol dependent address dumping routines. The handler 2422 * that is passed must not be freed or reused until it has been replaced 2423 * by another handler. 2424 */ 2425 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2426 { 2427 if (family >= NPROTO) 2428 return -EINVAL; 2429 gifconf_list[family] = gifconf; 2430 return 0; 2431 } 2432 2433 2434 /* 2435 * Map an interface index to its name (SIOCGIFNAME) 2436 */ 2437 2438 /* 2439 * We need this ioctl for efficient implementation of the 2440 * if_indextoname() function required by the IPv6 API. Without 2441 * it, we would have to search all the interfaces to find a 2442 * match. --pb 2443 */ 2444 2445 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2446 { 2447 struct net_device *dev; 2448 struct ifreq ifr; 2449 2450 /* 2451 * Fetch the caller's info block. 2452 */ 2453 2454 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2455 return -EFAULT; 2456 2457 read_lock(&dev_base_lock); 2458 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2459 if (!dev) { 2460 read_unlock(&dev_base_lock); 2461 return -ENODEV; 2462 } 2463 2464 strcpy(ifr.ifr_name, dev->name); 2465 read_unlock(&dev_base_lock); 2466 2467 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2468 return -EFAULT; 2469 return 0; 2470 } 2471 2472 /* 2473 * Perform a SIOCGIFCONF call. This structure will change 2474 * size eventually, and there is nothing I can do about it. 2475 * Thus we will need a 'compatibility mode'. 2476 */ 2477 2478 static int dev_ifconf(struct net *net, char __user *arg) 2479 { 2480 struct ifconf ifc; 2481 struct net_device *dev; 2482 char __user *pos; 2483 int len; 2484 int total; 2485 int i; 2486 2487 /* 2488 * Fetch the caller's info block. 2489 */ 2490 2491 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2492 return -EFAULT; 2493 2494 pos = ifc.ifc_buf; 2495 len = ifc.ifc_len; 2496 2497 /* 2498 * Loop over the interfaces, and write an info block for each. 2499 */ 2500 2501 total = 0; 2502 for_each_netdev(net, dev) { 2503 for (i = 0; i < NPROTO; i++) { 2504 if (gifconf_list[i]) { 2505 int done; 2506 if (!pos) 2507 done = gifconf_list[i](dev, NULL, 0); 2508 else 2509 done = gifconf_list[i](dev, pos + total, 2510 len - total); 2511 if (done < 0) 2512 return -EFAULT; 2513 total += done; 2514 } 2515 } 2516 } 2517 2518 /* 2519 * All done. Write the updated control block back to the caller. 2520 */ 2521 ifc.ifc_len = total; 2522 2523 /* 2524 * Both BSD and Solaris return 0 here, so we do too. 2525 */ 2526 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2527 } 2528 2529 #ifdef CONFIG_PROC_FS 2530 /* 2531 * This is invoked by the /proc filesystem handler to display a device 2532 * in detail. 2533 */ 2534 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2535 __acquires(dev_base_lock) 2536 { 2537 struct net *net = seq_file_net(seq); 2538 loff_t off; 2539 struct net_device *dev; 2540 2541 read_lock(&dev_base_lock); 2542 if (!*pos) 2543 return SEQ_START_TOKEN; 2544 2545 off = 1; 2546 for_each_netdev(net, dev) 2547 if (off++ == *pos) 2548 return dev; 2549 2550 return NULL; 2551 } 2552 2553 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2554 { 2555 struct net *net = seq_file_net(seq); 2556 ++*pos; 2557 return v == SEQ_START_TOKEN ? 2558 first_net_device(net) : next_net_device((struct net_device *)v); 2559 } 2560 2561 void dev_seq_stop(struct seq_file *seq, void *v) 2562 __releases(dev_base_lock) 2563 { 2564 read_unlock(&dev_base_lock); 2565 } 2566 2567 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2568 { 2569 struct net_device_stats *stats = dev->get_stats(dev); 2570 2571 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2572 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2573 dev->name, stats->rx_bytes, stats->rx_packets, 2574 stats->rx_errors, 2575 stats->rx_dropped + stats->rx_missed_errors, 2576 stats->rx_fifo_errors, 2577 stats->rx_length_errors + stats->rx_over_errors + 2578 stats->rx_crc_errors + stats->rx_frame_errors, 2579 stats->rx_compressed, stats->multicast, 2580 stats->tx_bytes, stats->tx_packets, 2581 stats->tx_errors, stats->tx_dropped, 2582 stats->tx_fifo_errors, stats->collisions, 2583 stats->tx_carrier_errors + 2584 stats->tx_aborted_errors + 2585 stats->tx_window_errors + 2586 stats->tx_heartbeat_errors, 2587 stats->tx_compressed); 2588 } 2589 2590 /* 2591 * Called from the PROCfs module. This now uses the new arbitrary sized 2592 * /proc/net interface to create /proc/net/dev 2593 */ 2594 static int dev_seq_show(struct seq_file *seq, void *v) 2595 { 2596 if (v == SEQ_START_TOKEN) 2597 seq_puts(seq, "Inter-| Receive " 2598 " | Transmit\n" 2599 " face |bytes packets errs drop fifo frame " 2600 "compressed multicast|bytes packets errs " 2601 "drop fifo colls carrier compressed\n"); 2602 else 2603 dev_seq_printf_stats(seq, v); 2604 return 0; 2605 } 2606 2607 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2608 { 2609 struct netif_rx_stats *rc = NULL; 2610 2611 while (*pos < nr_cpu_ids) 2612 if (cpu_online(*pos)) { 2613 rc = &per_cpu(netdev_rx_stat, *pos); 2614 break; 2615 } else 2616 ++*pos; 2617 return rc; 2618 } 2619 2620 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2621 { 2622 return softnet_get_online(pos); 2623 } 2624 2625 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2626 { 2627 ++*pos; 2628 return softnet_get_online(pos); 2629 } 2630 2631 static void softnet_seq_stop(struct seq_file *seq, void *v) 2632 { 2633 } 2634 2635 static int softnet_seq_show(struct seq_file *seq, void *v) 2636 { 2637 struct netif_rx_stats *s = v; 2638 2639 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2640 s->total, s->dropped, s->time_squeeze, 0, 2641 0, 0, 0, 0, /* was fastroute */ 2642 s->cpu_collision ); 2643 return 0; 2644 } 2645 2646 static const struct seq_operations dev_seq_ops = { 2647 .start = dev_seq_start, 2648 .next = dev_seq_next, 2649 .stop = dev_seq_stop, 2650 .show = dev_seq_show, 2651 }; 2652 2653 static int dev_seq_open(struct inode *inode, struct file *file) 2654 { 2655 return seq_open_net(inode, file, &dev_seq_ops, 2656 sizeof(struct seq_net_private)); 2657 } 2658 2659 static const struct file_operations dev_seq_fops = { 2660 .owner = THIS_MODULE, 2661 .open = dev_seq_open, 2662 .read = seq_read, 2663 .llseek = seq_lseek, 2664 .release = seq_release_net, 2665 }; 2666 2667 static const struct seq_operations softnet_seq_ops = { 2668 .start = softnet_seq_start, 2669 .next = softnet_seq_next, 2670 .stop = softnet_seq_stop, 2671 .show = softnet_seq_show, 2672 }; 2673 2674 static int softnet_seq_open(struct inode *inode, struct file *file) 2675 { 2676 return seq_open(file, &softnet_seq_ops); 2677 } 2678 2679 static const struct file_operations softnet_seq_fops = { 2680 .owner = THIS_MODULE, 2681 .open = softnet_seq_open, 2682 .read = seq_read, 2683 .llseek = seq_lseek, 2684 .release = seq_release, 2685 }; 2686 2687 static void *ptype_get_idx(loff_t pos) 2688 { 2689 struct packet_type *pt = NULL; 2690 loff_t i = 0; 2691 int t; 2692 2693 list_for_each_entry_rcu(pt, &ptype_all, list) { 2694 if (i == pos) 2695 return pt; 2696 ++i; 2697 } 2698 2699 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 2700 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2701 if (i == pos) 2702 return pt; 2703 ++i; 2704 } 2705 } 2706 return NULL; 2707 } 2708 2709 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2710 __acquires(RCU) 2711 { 2712 rcu_read_lock(); 2713 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2714 } 2715 2716 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2717 { 2718 struct packet_type *pt; 2719 struct list_head *nxt; 2720 int hash; 2721 2722 ++*pos; 2723 if (v == SEQ_START_TOKEN) 2724 return ptype_get_idx(0); 2725 2726 pt = v; 2727 nxt = pt->list.next; 2728 if (pt->type == htons(ETH_P_ALL)) { 2729 if (nxt != &ptype_all) 2730 goto found; 2731 hash = 0; 2732 nxt = ptype_base[0].next; 2733 } else 2734 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 2735 2736 while (nxt == &ptype_base[hash]) { 2737 if (++hash >= PTYPE_HASH_SIZE) 2738 return NULL; 2739 nxt = ptype_base[hash].next; 2740 } 2741 found: 2742 return list_entry(nxt, struct packet_type, list); 2743 } 2744 2745 static void ptype_seq_stop(struct seq_file *seq, void *v) 2746 __releases(RCU) 2747 { 2748 rcu_read_unlock(); 2749 } 2750 2751 static void ptype_seq_decode(struct seq_file *seq, void *sym) 2752 { 2753 #ifdef CONFIG_KALLSYMS 2754 unsigned long offset = 0, symsize; 2755 const char *symname; 2756 char *modname; 2757 char namebuf[128]; 2758 2759 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2760 &modname, namebuf); 2761 2762 if (symname) { 2763 char *delim = ":"; 2764 2765 if (!modname) 2766 modname = delim = ""; 2767 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2768 symname, offset); 2769 return; 2770 } 2771 #endif 2772 2773 seq_printf(seq, "[%p]", sym); 2774 } 2775 2776 static int ptype_seq_show(struct seq_file *seq, void *v) 2777 { 2778 struct packet_type *pt = v; 2779 2780 if (v == SEQ_START_TOKEN) 2781 seq_puts(seq, "Type Device Function\n"); 2782 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 2783 if (pt->type == htons(ETH_P_ALL)) 2784 seq_puts(seq, "ALL "); 2785 else 2786 seq_printf(seq, "%04x", ntohs(pt->type)); 2787 2788 seq_printf(seq, " %-8s ", 2789 pt->dev ? pt->dev->name : ""); 2790 ptype_seq_decode(seq, pt->func); 2791 seq_putc(seq, '\n'); 2792 } 2793 2794 return 0; 2795 } 2796 2797 static const struct seq_operations ptype_seq_ops = { 2798 .start = ptype_seq_start, 2799 .next = ptype_seq_next, 2800 .stop = ptype_seq_stop, 2801 .show = ptype_seq_show, 2802 }; 2803 2804 static int ptype_seq_open(struct inode *inode, struct file *file) 2805 { 2806 return seq_open_net(inode, file, &ptype_seq_ops, 2807 sizeof(struct seq_net_private)); 2808 } 2809 2810 static const struct file_operations ptype_seq_fops = { 2811 .owner = THIS_MODULE, 2812 .open = ptype_seq_open, 2813 .read = seq_read, 2814 .llseek = seq_lseek, 2815 .release = seq_release_net, 2816 }; 2817 2818 2819 static int __net_init dev_proc_net_init(struct net *net) 2820 { 2821 int rc = -ENOMEM; 2822 2823 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2824 goto out; 2825 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2826 goto out_dev; 2827 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2828 goto out_softnet; 2829 2830 if (wext_proc_init(net)) 2831 goto out_ptype; 2832 rc = 0; 2833 out: 2834 return rc; 2835 out_ptype: 2836 proc_net_remove(net, "ptype"); 2837 out_softnet: 2838 proc_net_remove(net, "softnet_stat"); 2839 out_dev: 2840 proc_net_remove(net, "dev"); 2841 goto out; 2842 } 2843 2844 static void __net_exit dev_proc_net_exit(struct net *net) 2845 { 2846 wext_proc_exit(net); 2847 2848 proc_net_remove(net, "ptype"); 2849 proc_net_remove(net, "softnet_stat"); 2850 proc_net_remove(net, "dev"); 2851 } 2852 2853 static struct pernet_operations __net_initdata dev_proc_ops = { 2854 .init = dev_proc_net_init, 2855 .exit = dev_proc_net_exit, 2856 }; 2857 2858 static int __init dev_proc_init(void) 2859 { 2860 return register_pernet_subsys(&dev_proc_ops); 2861 } 2862 #else 2863 #define dev_proc_init() 0 2864 #endif /* CONFIG_PROC_FS */ 2865 2866 2867 /** 2868 * netdev_set_master - set up master/slave pair 2869 * @slave: slave device 2870 * @master: new master device 2871 * 2872 * Changes the master device of the slave. Pass %NULL to break the 2873 * bonding. The caller must hold the RTNL semaphore. On a failure 2874 * a negative errno code is returned. On success the reference counts 2875 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2876 * function returns zero. 2877 */ 2878 int netdev_set_master(struct net_device *slave, struct net_device *master) 2879 { 2880 struct net_device *old = slave->master; 2881 2882 ASSERT_RTNL(); 2883 2884 if (master) { 2885 if (old) 2886 return -EBUSY; 2887 dev_hold(master); 2888 } 2889 2890 slave->master = master; 2891 2892 synchronize_net(); 2893 2894 if (old) 2895 dev_put(old); 2896 2897 if (master) 2898 slave->flags |= IFF_SLAVE; 2899 else 2900 slave->flags &= ~IFF_SLAVE; 2901 2902 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2903 return 0; 2904 } 2905 2906 static int __dev_set_promiscuity(struct net_device *dev, int inc) 2907 { 2908 unsigned short old_flags = dev->flags; 2909 2910 ASSERT_RTNL(); 2911 2912 dev->flags |= IFF_PROMISC; 2913 dev->promiscuity += inc; 2914 if (dev->promiscuity == 0) { 2915 /* 2916 * Avoid overflow. 2917 * If inc causes overflow, untouch promisc and return error. 2918 */ 2919 if (inc < 0) 2920 dev->flags &= ~IFF_PROMISC; 2921 else { 2922 dev->promiscuity -= inc; 2923 printk(KERN_WARNING "%s: promiscuity touches roof, " 2924 "set promiscuity failed, promiscuity feature " 2925 "of device might be broken.\n", dev->name); 2926 return -EOVERFLOW; 2927 } 2928 } 2929 if (dev->flags != old_flags) { 2930 printk(KERN_INFO "device %s %s promiscuous mode\n", 2931 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2932 "left"); 2933 if (audit_enabled) 2934 audit_log(current->audit_context, GFP_ATOMIC, 2935 AUDIT_ANOM_PROMISCUOUS, 2936 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 2937 dev->name, (dev->flags & IFF_PROMISC), 2938 (old_flags & IFF_PROMISC), 2939 audit_get_loginuid(current), 2940 current->uid, current->gid, 2941 audit_get_sessionid(current)); 2942 2943 if (dev->change_rx_flags) 2944 dev->change_rx_flags(dev, IFF_PROMISC); 2945 } 2946 return 0; 2947 } 2948 2949 /** 2950 * dev_set_promiscuity - update promiscuity count on a device 2951 * @dev: device 2952 * @inc: modifier 2953 * 2954 * Add or remove promiscuity from a device. While the count in the device 2955 * remains above zero the interface remains promiscuous. Once it hits zero 2956 * the device reverts back to normal filtering operation. A negative inc 2957 * value is used to drop promiscuity on the device. 2958 * Return 0 if successful or a negative errno code on error. 2959 */ 2960 int dev_set_promiscuity(struct net_device *dev, int inc) 2961 { 2962 unsigned short old_flags = dev->flags; 2963 int err; 2964 2965 err = __dev_set_promiscuity(dev, inc); 2966 if (err < 0) 2967 return err; 2968 if (dev->flags != old_flags) 2969 dev_set_rx_mode(dev); 2970 return err; 2971 } 2972 2973 /** 2974 * dev_set_allmulti - update allmulti count on a device 2975 * @dev: device 2976 * @inc: modifier 2977 * 2978 * Add or remove reception of all multicast frames to a device. While the 2979 * count in the device remains above zero the interface remains listening 2980 * to all interfaces. Once it hits zero the device reverts back to normal 2981 * filtering operation. A negative @inc value is used to drop the counter 2982 * when releasing a resource needing all multicasts. 2983 * Return 0 if successful or a negative errno code on error. 2984 */ 2985 2986 int dev_set_allmulti(struct net_device *dev, int inc) 2987 { 2988 unsigned short old_flags = dev->flags; 2989 2990 ASSERT_RTNL(); 2991 2992 dev->flags |= IFF_ALLMULTI; 2993 dev->allmulti += inc; 2994 if (dev->allmulti == 0) { 2995 /* 2996 * Avoid overflow. 2997 * If inc causes overflow, untouch allmulti and return error. 2998 */ 2999 if (inc < 0) 3000 dev->flags &= ~IFF_ALLMULTI; 3001 else { 3002 dev->allmulti -= inc; 3003 printk(KERN_WARNING "%s: allmulti touches roof, " 3004 "set allmulti failed, allmulti feature of " 3005 "device might be broken.\n", dev->name); 3006 return -EOVERFLOW; 3007 } 3008 } 3009 if (dev->flags ^ old_flags) { 3010 if (dev->change_rx_flags) 3011 dev->change_rx_flags(dev, IFF_ALLMULTI); 3012 dev_set_rx_mode(dev); 3013 } 3014 return 0; 3015 } 3016 3017 /* 3018 * Upload unicast and multicast address lists to device and 3019 * configure RX filtering. When the device doesn't support unicast 3020 * filtering it is put in promiscuous mode while unicast addresses 3021 * are present. 3022 */ 3023 void __dev_set_rx_mode(struct net_device *dev) 3024 { 3025 /* dev_open will call this function so the list will stay sane. */ 3026 if (!(dev->flags&IFF_UP)) 3027 return; 3028 3029 if (!netif_device_present(dev)) 3030 return; 3031 3032 if (dev->set_rx_mode) 3033 dev->set_rx_mode(dev); 3034 else { 3035 /* Unicast addresses changes may only happen under the rtnl, 3036 * therefore calling __dev_set_promiscuity here is safe. 3037 */ 3038 if (dev->uc_count > 0 && !dev->uc_promisc) { 3039 __dev_set_promiscuity(dev, 1); 3040 dev->uc_promisc = 1; 3041 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3042 __dev_set_promiscuity(dev, -1); 3043 dev->uc_promisc = 0; 3044 } 3045 3046 if (dev->set_multicast_list) 3047 dev->set_multicast_list(dev); 3048 } 3049 } 3050 3051 void dev_set_rx_mode(struct net_device *dev) 3052 { 3053 netif_addr_lock_bh(dev); 3054 __dev_set_rx_mode(dev); 3055 netif_addr_unlock_bh(dev); 3056 } 3057 3058 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3059 void *addr, int alen, int glbl) 3060 { 3061 struct dev_addr_list *da; 3062 3063 for (; (da = *list) != NULL; list = &da->next) { 3064 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3065 alen == da->da_addrlen) { 3066 if (glbl) { 3067 int old_glbl = da->da_gusers; 3068 da->da_gusers = 0; 3069 if (old_glbl == 0) 3070 break; 3071 } 3072 if (--da->da_users) 3073 return 0; 3074 3075 *list = da->next; 3076 kfree(da); 3077 (*count)--; 3078 return 0; 3079 } 3080 } 3081 return -ENOENT; 3082 } 3083 3084 int __dev_addr_add(struct dev_addr_list **list, int *count, 3085 void *addr, int alen, int glbl) 3086 { 3087 struct dev_addr_list *da; 3088 3089 for (da = *list; da != NULL; da = da->next) { 3090 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3091 da->da_addrlen == alen) { 3092 if (glbl) { 3093 int old_glbl = da->da_gusers; 3094 da->da_gusers = 1; 3095 if (old_glbl) 3096 return 0; 3097 } 3098 da->da_users++; 3099 return 0; 3100 } 3101 } 3102 3103 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3104 if (da == NULL) 3105 return -ENOMEM; 3106 memcpy(da->da_addr, addr, alen); 3107 da->da_addrlen = alen; 3108 da->da_users = 1; 3109 da->da_gusers = glbl ? 1 : 0; 3110 da->next = *list; 3111 *list = da; 3112 (*count)++; 3113 return 0; 3114 } 3115 3116 /** 3117 * dev_unicast_delete - Release secondary unicast address. 3118 * @dev: device 3119 * @addr: address to delete 3120 * @alen: length of @addr 3121 * 3122 * Release reference to a secondary unicast address and remove it 3123 * from the device if the reference count drops to zero. 3124 * 3125 * The caller must hold the rtnl_mutex. 3126 */ 3127 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3128 { 3129 int err; 3130 3131 ASSERT_RTNL(); 3132 3133 netif_addr_lock_bh(dev); 3134 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3135 if (!err) 3136 __dev_set_rx_mode(dev); 3137 netif_addr_unlock_bh(dev); 3138 return err; 3139 } 3140 EXPORT_SYMBOL(dev_unicast_delete); 3141 3142 /** 3143 * dev_unicast_add - add a secondary unicast address 3144 * @dev: device 3145 * @addr: address to add 3146 * @alen: length of @addr 3147 * 3148 * Add a secondary unicast address to the device or increase 3149 * the reference count if it already exists. 3150 * 3151 * The caller must hold the rtnl_mutex. 3152 */ 3153 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3154 { 3155 int err; 3156 3157 ASSERT_RTNL(); 3158 3159 netif_addr_lock_bh(dev); 3160 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3161 if (!err) 3162 __dev_set_rx_mode(dev); 3163 netif_addr_unlock_bh(dev); 3164 return err; 3165 } 3166 EXPORT_SYMBOL(dev_unicast_add); 3167 3168 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3169 struct dev_addr_list **from, int *from_count) 3170 { 3171 struct dev_addr_list *da, *next; 3172 int err = 0; 3173 3174 da = *from; 3175 while (da != NULL) { 3176 next = da->next; 3177 if (!da->da_synced) { 3178 err = __dev_addr_add(to, to_count, 3179 da->da_addr, da->da_addrlen, 0); 3180 if (err < 0) 3181 break; 3182 da->da_synced = 1; 3183 da->da_users++; 3184 } else if (da->da_users == 1) { 3185 __dev_addr_delete(to, to_count, 3186 da->da_addr, da->da_addrlen, 0); 3187 __dev_addr_delete(from, from_count, 3188 da->da_addr, da->da_addrlen, 0); 3189 } 3190 da = next; 3191 } 3192 return err; 3193 } 3194 3195 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3196 struct dev_addr_list **from, int *from_count) 3197 { 3198 struct dev_addr_list *da, *next; 3199 3200 da = *from; 3201 while (da != NULL) { 3202 next = da->next; 3203 if (da->da_synced) { 3204 __dev_addr_delete(to, to_count, 3205 da->da_addr, da->da_addrlen, 0); 3206 da->da_synced = 0; 3207 __dev_addr_delete(from, from_count, 3208 da->da_addr, da->da_addrlen, 0); 3209 } 3210 da = next; 3211 } 3212 } 3213 3214 /** 3215 * dev_unicast_sync - Synchronize device's unicast list to another device 3216 * @to: destination device 3217 * @from: source device 3218 * 3219 * Add newly added addresses to the destination device and release 3220 * addresses that have no users left. The source device must be 3221 * locked by netif_tx_lock_bh. 3222 * 3223 * This function is intended to be called from the dev->set_rx_mode 3224 * function of layered software devices. 3225 */ 3226 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3227 { 3228 int err = 0; 3229 3230 netif_addr_lock_bh(to); 3231 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3232 &from->uc_list, &from->uc_count); 3233 if (!err) 3234 __dev_set_rx_mode(to); 3235 netif_addr_unlock_bh(to); 3236 return err; 3237 } 3238 EXPORT_SYMBOL(dev_unicast_sync); 3239 3240 /** 3241 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3242 * @to: destination device 3243 * @from: source device 3244 * 3245 * Remove all addresses that were added to the destination device by 3246 * dev_unicast_sync(). This function is intended to be called from the 3247 * dev->stop function of layered software devices. 3248 */ 3249 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3250 { 3251 netif_addr_lock_bh(from); 3252 netif_addr_lock(to); 3253 3254 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3255 &from->uc_list, &from->uc_count); 3256 __dev_set_rx_mode(to); 3257 3258 netif_addr_unlock(to); 3259 netif_addr_unlock_bh(from); 3260 } 3261 EXPORT_SYMBOL(dev_unicast_unsync); 3262 3263 static void __dev_addr_discard(struct dev_addr_list **list) 3264 { 3265 struct dev_addr_list *tmp; 3266 3267 while (*list != NULL) { 3268 tmp = *list; 3269 *list = tmp->next; 3270 if (tmp->da_users > tmp->da_gusers) 3271 printk("__dev_addr_discard: address leakage! " 3272 "da_users=%d\n", tmp->da_users); 3273 kfree(tmp); 3274 } 3275 } 3276 3277 static void dev_addr_discard(struct net_device *dev) 3278 { 3279 netif_addr_lock_bh(dev); 3280 3281 __dev_addr_discard(&dev->uc_list); 3282 dev->uc_count = 0; 3283 3284 __dev_addr_discard(&dev->mc_list); 3285 dev->mc_count = 0; 3286 3287 netif_addr_unlock_bh(dev); 3288 } 3289 3290 unsigned dev_get_flags(const struct net_device *dev) 3291 { 3292 unsigned flags; 3293 3294 flags = (dev->flags & ~(IFF_PROMISC | 3295 IFF_ALLMULTI | 3296 IFF_RUNNING | 3297 IFF_LOWER_UP | 3298 IFF_DORMANT)) | 3299 (dev->gflags & (IFF_PROMISC | 3300 IFF_ALLMULTI)); 3301 3302 if (netif_running(dev)) { 3303 if (netif_oper_up(dev)) 3304 flags |= IFF_RUNNING; 3305 if (netif_carrier_ok(dev)) 3306 flags |= IFF_LOWER_UP; 3307 if (netif_dormant(dev)) 3308 flags |= IFF_DORMANT; 3309 } 3310 3311 return flags; 3312 } 3313 3314 int dev_change_flags(struct net_device *dev, unsigned flags) 3315 { 3316 int ret, changes; 3317 int old_flags = dev->flags; 3318 3319 ASSERT_RTNL(); 3320 3321 /* 3322 * Set the flags on our device. 3323 */ 3324 3325 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3326 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3327 IFF_AUTOMEDIA)) | 3328 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3329 IFF_ALLMULTI)); 3330 3331 /* 3332 * Load in the correct multicast list now the flags have changed. 3333 */ 3334 3335 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST) 3336 dev->change_rx_flags(dev, IFF_MULTICAST); 3337 3338 dev_set_rx_mode(dev); 3339 3340 /* 3341 * Have we downed the interface. We handle IFF_UP ourselves 3342 * according to user attempts to set it, rather than blindly 3343 * setting it. 3344 */ 3345 3346 ret = 0; 3347 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3348 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3349 3350 if (!ret) 3351 dev_set_rx_mode(dev); 3352 } 3353 3354 if (dev->flags & IFF_UP && 3355 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3356 IFF_VOLATILE))) 3357 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3358 3359 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3360 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3361 dev->gflags ^= IFF_PROMISC; 3362 dev_set_promiscuity(dev, inc); 3363 } 3364 3365 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3366 is important. Some (broken) drivers set IFF_PROMISC, when 3367 IFF_ALLMULTI is requested not asking us and not reporting. 3368 */ 3369 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3370 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3371 dev->gflags ^= IFF_ALLMULTI; 3372 dev_set_allmulti(dev, inc); 3373 } 3374 3375 /* Exclude state transition flags, already notified */ 3376 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3377 if (changes) 3378 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3379 3380 return ret; 3381 } 3382 3383 int dev_set_mtu(struct net_device *dev, int new_mtu) 3384 { 3385 int err; 3386 3387 if (new_mtu == dev->mtu) 3388 return 0; 3389 3390 /* MTU must be positive. */ 3391 if (new_mtu < 0) 3392 return -EINVAL; 3393 3394 if (!netif_device_present(dev)) 3395 return -ENODEV; 3396 3397 err = 0; 3398 if (dev->change_mtu) 3399 err = dev->change_mtu(dev, new_mtu); 3400 else 3401 dev->mtu = new_mtu; 3402 if (!err && dev->flags & IFF_UP) 3403 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3404 return err; 3405 } 3406 3407 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3408 { 3409 int err; 3410 3411 if (!dev->set_mac_address) 3412 return -EOPNOTSUPP; 3413 if (sa->sa_family != dev->type) 3414 return -EINVAL; 3415 if (!netif_device_present(dev)) 3416 return -ENODEV; 3417 err = dev->set_mac_address(dev, sa); 3418 if (!err) 3419 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3420 return err; 3421 } 3422 3423 /* 3424 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3425 */ 3426 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3427 { 3428 int err; 3429 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3430 3431 if (!dev) 3432 return -ENODEV; 3433 3434 switch (cmd) { 3435 case SIOCGIFFLAGS: /* Get interface flags */ 3436 ifr->ifr_flags = dev_get_flags(dev); 3437 return 0; 3438 3439 case SIOCGIFMETRIC: /* Get the metric on the interface 3440 (currently unused) */ 3441 ifr->ifr_metric = 0; 3442 return 0; 3443 3444 case SIOCGIFMTU: /* Get the MTU of a device */ 3445 ifr->ifr_mtu = dev->mtu; 3446 return 0; 3447 3448 case SIOCGIFHWADDR: 3449 if (!dev->addr_len) 3450 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3451 else 3452 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3453 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3454 ifr->ifr_hwaddr.sa_family = dev->type; 3455 return 0; 3456 3457 case SIOCGIFSLAVE: 3458 err = -EINVAL; 3459 break; 3460 3461 case SIOCGIFMAP: 3462 ifr->ifr_map.mem_start = dev->mem_start; 3463 ifr->ifr_map.mem_end = dev->mem_end; 3464 ifr->ifr_map.base_addr = dev->base_addr; 3465 ifr->ifr_map.irq = dev->irq; 3466 ifr->ifr_map.dma = dev->dma; 3467 ifr->ifr_map.port = dev->if_port; 3468 return 0; 3469 3470 case SIOCGIFINDEX: 3471 ifr->ifr_ifindex = dev->ifindex; 3472 return 0; 3473 3474 case SIOCGIFTXQLEN: 3475 ifr->ifr_qlen = dev->tx_queue_len; 3476 return 0; 3477 3478 default: 3479 /* dev_ioctl() should ensure this case 3480 * is never reached 3481 */ 3482 WARN_ON(1); 3483 err = -EINVAL; 3484 break; 3485 3486 } 3487 return err; 3488 } 3489 3490 /* 3491 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3492 */ 3493 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3494 { 3495 int err; 3496 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3497 3498 if (!dev) 3499 return -ENODEV; 3500 3501 switch (cmd) { 3502 case SIOCSIFFLAGS: /* Set interface flags */ 3503 return dev_change_flags(dev, ifr->ifr_flags); 3504 3505 case SIOCSIFMETRIC: /* Set the metric on the interface 3506 (currently unused) */ 3507 return -EOPNOTSUPP; 3508 3509 case SIOCSIFMTU: /* Set the MTU of a device */ 3510 return dev_set_mtu(dev, ifr->ifr_mtu); 3511 3512 case SIOCSIFHWADDR: 3513 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3514 3515 case SIOCSIFHWBROADCAST: 3516 if (ifr->ifr_hwaddr.sa_family != dev->type) 3517 return -EINVAL; 3518 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3519 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3520 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3521 return 0; 3522 3523 case SIOCSIFMAP: 3524 if (dev->set_config) { 3525 if (!netif_device_present(dev)) 3526 return -ENODEV; 3527 return dev->set_config(dev, &ifr->ifr_map); 3528 } 3529 return -EOPNOTSUPP; 3530 3531 case SIOCADDMULTI: 3532 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3533 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3534 return -EINVAL; 3535 if (!netif_device_present(dev)) 3536 return -ENODEV; 3537 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3538 dev->addr_len, 1); 3539 3540 case SIOCDELMULTI: 3541 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3542 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3543 return -EINVAL; 3544 if (!netif_device_present(dev)) 3545 return -ENODEV; 3546 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3547 dev->addr_len, 1); 3548 3549 case SIOCSIFTXQLEN: 3550 if (ifr->ifr_qlen < 0) 3551 return -EINVAL; 3552 dev->tx_queue_len = ifr->ifr_qlen; 3553 return 0; 3554 3555 case SIOCSIFNAME: 3556 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3557 return dev_change_name(dev, ifr->ifr_newname); 3558 3559 /* 3560 * Unknown or private ioctl 3561 */ 3562 3563 default: 3564 if ((cmd >= SIOCDEVPRIVATE && 3565 cmd <= SIOCDEVPRIVATE + 15) || 3566 cmd == SIOCBONDENSLAVE || 3567 cmd == SIOCBONDRELEASE || 3568 cmd == SIOCBONDSETHWADDR || 3569 cmd == SIOCBONDSLAVEINFOQUERY || 3570 cmd == SIOCBONDINFOQUERY || 3571 cmd == SIOCBONDCHANGEACTIVE || 3572 cmd == SIOCGMIIPHY || 3573 cmd == SIOCGMIIREG || 3574 cmd == SIOCSMIIREG || 3575 cmd == SIOCBRADDIF || 3576 cmd == SIOCBRDELIF || 3577 cmd == SIOCWANDEV) { 3578 err = -EOPNOTSUPP; 3579 if (dev->do_ioctl) { 3580 if (netif_device_present(dev)) 3581 err = dev->do_ioctl(dev, ifr, 3582 cmd); 3583 else 3584 err = -ENODEV; 3585 } 3586 } else 3587 err = -EINVAL; 3588 3589 } 3590 return err; 3591 } 3592 3593 /* 3594 * This function handles all "interface"-type I/O control requests. The actual 3595 * 'doing' part of this is dev_ifsioc above. 3596 */ 3597 3598 /** 3599 * dev_ioctl - network device ioctl 3600 * @net: the applicable net namespace 3601 * @cmd: command to issue 3602 * @arg: pointer to a struct ifreq in user space 3603 * 3604 * Issue ioctl functions to devices. This is normally called by the 3605 * user space syscall interfaces but can sometimes be useful for 3606 * other purposes. The return value is the return from the syscall if 3607 * positive or a negative errno code on error. 3608 */ 3609 3610 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3611 { 3612 struct ifreq ifr; 3613 int ret; 3614 char *colon; 3615 3616 /* One special case: SIOCGIFCONF takes ifconf argument 3617 and requires shared lock, because it sleeps writing 3618 to user space. 3619 */ 3620 3621 if (cmd == SIOCGIFCONF) { 3622 rtnl_lock(); 3623 ret = dev_ifconf(net, (char __user *) arg); 3624 rtnl_unlock(); 3625 return ret; 3626 } 3627 if (cmd == SIOCGIFNAME) 3628 return dev_ifname(net, (struct ifreq __user *)arg); 3629 3630 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3631 return -EFAULT; 3632 3633 ifr.ifr_name[IFNAMSIZ-1] = 0; 3634 3635 colon = strchr(ifr.ifr_name, ':'); 3636 if (colon) 3637 *colon = 0; 3638 3639 /* 3640 * See which interface the caller is talking about. 3641 */ 3642 3643 switch (cmd) { 3644 /* 3645 * These ioctl calls: 3646 * - can be done by all. 3647 * - atomic and do not require locking. 3648 * - return a value 3649 */ 3650 case SIOCGIFFLAGS: 3651 case SIOCGIFMETRIC: 3652 case SIOCGIFMTU: 3653 case SIOCGIFHWADDR: 3654 case SIOCGIFSLAVE: 3655 case SIOCGIFMAP: 3656 case SIOCGIFINDEX: 3657 case SIOCGIFTXQLEN: 3658 dev_load(net, ifr.ifr_name); 3659 read_lock(&dev_base_lock); 3660 ret = dev_ifsioc_locked(net, &ifr, cmd); 3661 read_unlock(&dev_base_lock); 3662 if (!ret) { 3663 if (colon) 3664 *colon = ':'; 3665 if (copy_to_user(arg, &ifr, 3666 sizeof(struct ifreq))) 3667 ret = -EFAULT; 3668 } 3669 return ret; 3670 3671 case SIOCETHTOOL: 3672 dev_load(net, ifr.ifr_name); 3673 rtnl_lock(); 3674 ret = dev_ethtool(net, &ifr); 3675 rtnl_unlock(); 3676 if (!ret) { 3677 if (colon) 3678 *colon = ':'; 3679 if (copy_to_user(arg, &ifr, 3680 sizeof(struct ifreq))) 3681 ret = -EFAULT; 3682 } 3683 return ret; 3684 3685 /* 3686 * These ioctl calls: 3687 * - require superuser power. 3688 * - require strict serialization. 3689 * - return a value 3690 */ 3691 case SIOCGMIIPHY: 3692 case SIOCGMIIREG: 3693 case SIOCSIFNAME: 3694 if (!capable(CAP_NET_ADMIN)) 3695 return -EPERM; 3696 dev_load(net, ifr.ifr_name); 3697 rtnl_lock(); 3698 ret = dev_ifsioc(net, &ifr, cmd); 3699 rtnl_unlock(); 3700 if (!ret) { 3701 if (colon) 3702 *colon = ':'; 3703 if (copy_to_user(arg, &ifr, 3704 sizeof(struct ifreq))) 3705 ret = -EFAULT; 3706 } 3707 return ret; 3708 3709 /* 3710 * These ioctl calls: 3711 * - require superuser power. 3712 * - require strict serialization. 3713 * - do not return a value 3714 */ 3715 case SIOCSIFFLAGS: 3716 case SIOCSIFMETRIC: 3717 case SIOCSIFMTU: 3718 case SIOCSIFMAP: 3719 case SIOCSIFHWADDR: 3720 case SIOCSIFSLAVE: 3721 case SIOCADDMULTI: 3722 case SIOCDELMULTI: 3723 case SIOCSIFHWBROADCAST: 3724 case SIOCSIFTXQLEN: 3725 case SIOCSMIIREG: 3726 case SIOCBONDENSLAVE: 3727 case SIOCBONDRELEASE: 3728 case SIOCBONDSETHWADDR: 3729 case SIOCBONDCHANGEACTIVE: 3730 case SIOCBRADDIF: 3731 case SIOCBRDELIF: 3732 if (!capable(CAP_NET_ADMIN)) 3733 return -EPERM; 3734 /* fall through */ 3735 case SIOCBONDSLAVEINFOQUERY: 3736 case SIOCBONDINFOQUERY: 3737 dev_load(net, ifr.ifr_name); 3738 rtnl_lock(); 3739 ret = dev_ifsioc(net, &ifr, cmd); 3740 rtnl_unlock(); 3741 return ret; 3742 3743 case SIOCGIFMEM: 3744 /* Get the per device memory space. We can add this but 3745 * currently do not support it */ 3746 case SIOCSIFMEM: 3747 /* Set the per device memory buffer space. 3748 * Not applicable in our case */ 3749 case SIOCSIFLINK: 3750 return -EINVAL; 3751 3752 /* 3753 * Unknown or private ioctl. 3754 */ 3755 default: 3756 if (cmd == SIOCWANDEV || 3757 (cmd >= SIOCDEVPRIVATE && 3758 cmd <= SIOCDEVPRIVATE + 15)) { 3759 dev_load(net, ifr.ifr_name); 3760 rtnl_lock(); 3761 ret = dev_ifsioc(net, &ifr, cmd); 3762 rtnl_unlock(); 3763 if (!ret && copy_to_user(arg, &ifr, 3764 sizeof(struct ifreq))) 3765 ret = -EFAULT; 3766 return ret; 3767 } 3768 /* Take care of Wireless Extensions */ 3769 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3770 return wext_handle_ioctl(net, &ifr, cmd, arg); 3771 return -EINVAL; 3772 } 3773 } 3774 3775 3776 /** 3777 * dev_new_index - allocate an ifindex 3778 * @net: the applicable net namespace 3779 * 3780 * Returns a suitable unique value for a new device interface 3781 * number. The caller must hold the rtnl semaphore or the 3782 * dev_base_lock to be sure it remains unique. 3783 */ 3784 static int dev_new_index(struct net *net) 3785 { 3786 static int ifindex; 3787 for (;;) { 3788 if (++ifindex <= 0) 3789 ifindex = 1; 3790 if (!__dev_get_by_index(net, ifindex)) 3791 return ifindex; 3792 } 3793 } 3794 3795 /* Delayed registration/unregisteration */ 3796 static DEFINE_SPINLOCK(net_todo_list_lock); 3797 static LIST_HEAD(net_todo_list); 3798 3799 static void net_set_todo(struct net_device *dev) 3800 { 3801 spin_lock(&net_todo_list_lock); 3802 list_add_tail(&dev->todo_list, &net_todo_list); 3803 spin_unlock(&net_todo_list_lock); 3804 } 3805 3806 static void rollback_registered(struct net_device *dev) 3807 { 3808 BUG_ON(dev_boot_phase); 3809 ASSERT_RTNL(); 3810 3811 /* Some devices call without registering for initialization unwind. */ 3812 if (dev->reg_state == NETREG_UNINITIALIZED) { 3813 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3814 "was registered\n", dev->name, dev); 3815 3816 WARN_ON(1); 3817 return; 3818 } 3819 3820 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3821 3822 /* If device is running, close it first. */ 3823 dev_close(dev); 3824 3825 /* And unlink it from device chain. */ 3826 unlist_netdevice(dev); 3827 3828 dev->reg_state = NETREG_UNREGISTERING; 3829 3830 synchronize_net(); 3831 3832 /* Shutdown queueing discipline. */ 3833 dev_shutdown(dev); 3834 3835 3836 /* Notify protocols, that we are about to destroy 3837 this device. They should clean all the things. 3838 */ 3839 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3840 3841 /* 3842 * Flush the unicast and multicast chains 3843 */ 3844 dev_addr_discard(dev); 3845 3846 if (dev->uninit) 3847 dev->uninit(dev); 3848 3849 /* Notifier chain MUST detach us from master device. */ 3850 WARN_ON(dev->master); 3851 3852 /* Remove entries from kobject tree */ 3853 netdev_unregister_kobject(dev); 3854 3855 synchronize_net(); 3856 3857 dev_put(dev); 3858 } 3859 3860 static void __netdev_init_queue_locks_one(struct net_device *dev, 3861 struct netdev_queue *dev_queue, 3862 void *_unused) 3863 { 3864 spin_lock_init(&dev_queue->_xmit_lock); 3865 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 3866 dev_queue->xmit_lock_owner = -1; 3867 } 3868 3869 static void netdev_init_queue_locks(struct net_device *dev) 3870 { 3871 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 3872 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 3873 } 3874 3875 /** 3876 * register_netdevice - register a network device 3877 * @dev: device to register 3878 * 3879 * Take a completed network device structure and add it to the kernel 3880 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3881 * chain. 0 is returned on success. A negative errno code is returned 3882 * on a failure to set up the device, or if the name is a duplicate. 3883 * 3884 * Callers must hold the rtnl semaphore. You may want 3885 * register_netdev() instead of this. 3886 * 3887 * BUGS: 3888 * The locking appears insufficient to guarantee two parallel registers 3889 * will not get the same name. 3890 */ 3891 3892 int register_netdevice(struct net_device *dev) 3893 { 3894 struct hlist_head *head; 3895 struct hlist_node *p; 3896 int ret; 3897 struct net *net; 3898 3899 BUG_ON(dev_boot_phase); 3900 ASSERT_RTNL(); 3901 3902 might_sleep(); 3903 3904 /* When net_device's are persistent, this will be fatal. */ 3905 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3906 BUG_ON(!dev_net(dev)); 3907 net = dev_net(dev); 3908 3909 spin_lock_init(&dev->addr_list_lock); 3910 netdev_set_addr_lockdep_class(dev); 3911 netdev_init_queue_locks(dev); 3912 3913 dev->iflink = -1; 3914 3915 /* Init, if this function is available */ 3916 if (dev->init) { 3917 ret = dev->init(dev); 3918 if (ret) { 3919 if (ret > 0) 3920 ret = -EIO; 3921 goto out; 3922 } 3923 } 3924 3925 if (!dev_valid_name(dev->name)) { 3926 ret = -EINVAL; 3927 goto err_uninit; 3928 } 3929 3930 dev->ifindex = dev_new_index(net); 3931 if (dev->iflink == -1) 3932 dev->iflink = dev->ifindex; 3933 3934 /* Check for existence of name */ 3935 head = dev_name_hash(net, dev->name); 3936 hlist_for_each(p, head) { 3937 struct net_device *d 3938 = hlist_entry(p, struct net_device, name_hlist); 3939 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3940 ret = -EEXIST; 3941 goto err_uninit; 3942 } 3943 } 3944 3945 /* Fix illegal checksum combinations */ 3946 if ((dev->features & NETIF_F_HW_CSUM) && 3947 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3948 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 3949 dev->name); 3950 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3951 } 3952 3953 if ((dev->features & NETIF_F_NO_CSUM) && 3954 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3955 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 3956 dev->name); 3957 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 3958 } 3959 3960 3961 /* Fix illegal SG+CSUM combinations. */ 3962 if ((dev->features & NETIF_F_SG) && 3963 !(dev->features & NETIF_F_ALL_CSUM)) { 3964 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3965 dev->name); 3966 dev->features &= ~NETIF_F_SG; 3967 } 3968 3969 /* TSO requires that SG is present as well. */ 3970 if ((dev->features & NETIF_F_TSO) && 3971 !(dev->features & NETIF_F_SG)) { 3972 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3973 dev->name); 3974 dev->features &= ~NETIF_F_TSO; 3975 } 3976 if (dev->features & NETIF_F_UFO) { 3977 if (!(dev->features & NETIF_F_HW_CSUM)) { 3978 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3979 "NETIF_F_HW_CSUM feature.\n", 3980 dev->name); 3981 dev->features &= ~NETIF_F_UFO; 3982 } 3983 if (!(dev->features & NETIF_F_SG)) { 3984 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3985 "NETIF_F_SG feature.\n", 3986 dev->name); 3987 dev->features &= ~NETIF_F_UFO; 3988 } 3989 } 3990 3991 netdev_initialize_kobject(dev); 3992 ret = netdev_register_kobject(dev); 3993 if (ret) 3994 goto err_uninit; 3995 dev->reg_state = NETREG_REGISTERED; 3996 3997 /* 3998 * Default initial state at registry is that the 3999 * device is present. 4000 */ 4001 4002 set_bit(__LINK_STATE_PRESENT, &dev->state); 4003 4004 dev_init_scheduler(dev); 4005 dev_hold(dev); 4006 list_netdevice(dev); 4007 4008 /* Notify protocols, that a new device appeared. */ 4009 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4010 ret = notifier_to_errno(ret); 4011 if (ret) { 4012 rollback_registered(dev); 4013 dev->reg_state = NETREG_UNREGISTERED; 4014 } 4015 4016 out: 4017 return ret; 4018 4019 err_uninit: 4020 if (dev->uninit) 4021 dev->uninit(dev); 4022 goto out; 4023 } 4024 4025 /** 4026 * register_netdev - register a network device 4027 * @dev: device to register 4028 * 4029 * Take a completed network device structure and add it to the kernel 4030 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4031 * chain. 0 is returned on success. A negative errno code is returned 4032 * on a failure to set up the device, or if the name is a duplicate. 4033 * 4034 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4035 * and expands the device name if you passed a format string to 4036 * alloc_netdev. 4037 */ 4038 int register_netdev(struct net_device *dev) 4039 { 4040 int err; 4041 4042 rtnl_lock(); 4043 4044 /* 4045 * If the name is a format string the caller wants us to do a 4046 * name allocation. 4047 */ 4048 if (strchr(dev->name, '%')) { 4049 err = dev_alloc_name(dev, dev->name); 4050 if (err < 0) 4051 goto out; 4052 } 4053 4054 err = register_netdevice(dev); 4055 out: 4056 rtnl_unlock(); 4057 return err; 4058 } 4059 EXPORT_SYMBOL(register_netdev); 4060 4061 /* 4062 * netdev_wait_allrefs - wait until all references are gone. 4063 * 4064 * This is called when unregistering network devices. 4065 * 4066 * Any protocol or device that holds a reference should register 4067 * for netdevice notification, and cleanup and put back the 4068 * reference if they receive an UNREGISTER event. 4069 * We can get stuck here if buggy protocols don't correctly 4070 * call dev_put. 4071 */ 4072 static void netdev_wait_allrefs(struct net_device *dev) 4073 { 4074 unsigned long rebroadcast_time, warning_time; 4075 4076 rebroadcast_time = warning_time = jiffies; 4077 while (atomic_read(&dev->refcnt) != 0) { 4078 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4079 rtnl_lock(); 4080 4081 /* Rebroadcast unregister notification */ 4082 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4083 4084 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4085 &dev->state)) { 4086 /* We must not have linkwatch events 4087 * pending on unregister. If this 4088 * happens, we simply run the queue 4089 * unscheduled, resulting in a noop 4090 * for this device. 4091 */ 4092 linkwatch_run_queue(); 4093 } 4094 4095 __rtnl_unlock(); 4096 4097 rebroadcast_time = jiffies; 4098 } 4099 4100 msleep(250); 4101 4102 if (time_after(jiffies, warning_time + 10 * HZ)) { 4103 printk(KERN_EMERG "unregister_netdevice: " 4104 "waiting for %s to become free. Usage " 4105 "count = %d\n", 4106 dev->name, atomic_read(&dev->refcnt)); 4107 warning_time = jiffies; 4108 } 4109 } 4110 } 4111 4112 /* The sequence is: 4113 * 4114 * rtnl_lock(); 4115 * ... 4116 * register_netdevice(x1); 4117 * register_netdevice(x2); 4118 * ... 4119 * unregister_netdevice(y1); 4120 * unregister_netdevice(y2); 4121 * ... 4122 * rtnl_unlock(); 4123 * free_netdev(y1); 4124 * free_netdev(y2); 4125 * 4126 * We are invoked by rtnl_unlock() after it drops the semaphore. 4127 * This allows us to deal with problems: 4128 * 1) We can delete sysfs objects which invoke hotplug 4129 * without deadlocking with linkwatch via keventd. 4130 * 2) Since we run with the RTNL semaphore not held, we can sleep 4131 * safely in order to wait for the netdev refcnt to drop to zero. 4132 */ 4133 static DEFINE_MUTEX(net_todo_run_mutex); 4134 void netdev_run_todo(void) 4135 { 4136 struct list_head list; 4137 4138 /* Need to guard against multiple cpu's getting out of order. */ 4139 mutex_lock(&net_todo_run_mutex); 4140 4141 /* Not safe to do outside the semaphore. We must not return 4142 * until all unregister events invoked by the local processor 4143 * have been completed (either by this todo run, or one on 4144 * another cpu). 4145 */ 4146 if (list_empty(&net_todo_list)) 4147 goto out; 4148 4149 /* Snapshot list, allow later requests */ 4150 spin_lock(&net_todo_list_lock); 4151 list_replace_init(&net_todo_list, &list); 4152 spin_unlock(&net_todo_list_lock); 4153 4154 while (!list_empty(&list)) { 4155 struct net_device *dev 4156 = list_entry(list.next, struct net_device, todo_list); 4157 list_del(&dev->todo_list); 4158 4159 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4160 printk(KERN_ERR "network todo '%s' but state %d\n", 4161 dev->name, dev->reg_state); 4162 dump_stack(); 4163 continue; 4164 } 4165 4166 dev->reg_state = NETREG_UNREGISTERED; 4167 4168 netdev_wait_allrefs(dev); 4169 4170 /* paranoia */ 4171 BUG_ON(atomic_read(&dev->refcnt)); 4172 WARN_ON(dev->ip_ptr); 4173 WARN_ON(dev->ip6_ptr); 4174 WARN_ON(dev->dn_ptr); 4175 4176 if (dev->destructor) 4177 dev->destructor(dev); 4178 4179 /* Free network device */ 4180 kobject_put(&dev->dev.kobj); 4181 } 4182 4183 out: 4184 mutex_unlock(&net_todo_run_mutex); 4185 } 4186 4187 static struct net_device_stats *internal_stats(struct net_device *dev) 4188 { 4189 return &dev->stats; 4190 } 4191 4192 static void netdev_init_one_queue(struct net_device *dev, 4193 struct netdev_queue *queue, 4194 void *_unused) 4195 { 4196 queue->dev = dev; 4197 } 4198 4199 static void netdev_init_queues(struct net_device *dev) 4200 { 4201 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4202 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4203 } 4204 4205 /** 4206 * alloc_netdev_mq - allocate network device 4207 * @sizeof_priv: size of private data to allocate space for 4208 * @name: device name format string 4209 * @setup: callback to initialize device 4210 * @queue_count: the number of subqueues to allocate 4211 * 4212 * Allocates a struct net_device with private data area for driver use 4213 * and performs basic initialization. Also allocates subquue structs 4214 * for each queue on the device at the end of the netdevice. 4215 */ 4216 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4217 void (*setup)(struct net_device *), unsigned int queue_count) 4218 { 4219 struct netdev_queue *tx; 4220 struct net_device *dev; 4221 size_t alloc_size; 4222 void *p; 4223 4224 BUG_ON(strlen(name) >= sizeof(dev->name)); 4225 4226 alloc_size = sizeof(struct net_device); 4227 if (sizeof_priv) { 4228 /* ensure 32-byte alignment of private area */ 4229 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4230 alloc_size += sizeof_priv; 4231 } 4232 /* ensure 32-byte alignment of whole construct */ 4233 alloc_size += NETDEV_ALIGN_CONST; 4234 4235 p = kzalloc(alloc_size, GFP_KERNEL); 4236 if (!p) { 4237 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4238 return NULL; 4239 } 4240 4241 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4242 if (!tx) { 4243 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4244 "tx qdiscs.\n"); 4245 kfree(p); 4246 return NULL; 4247 } 4248 4249 dev = (struct net_device *) 4250 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4251 dev->padded = (char *)dev - (char *)p; 4252 dev_net_set(dev, &init_net); 4253 4254 dev->_tx = tx; 4255 dev->num_tx_queues = queue_count; 4256 dev->real_num_tx_queues = queue_count; 4257 4258 if (sizeof_priv) { 4259 dev->priv = ((char *)dev + 4260 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST) 4261 & ~NETDEV_ALIGN_CONST)); 4262 } 4263 4264 dev->gso_max_size = GSO_MAX_SIZE; 4265 4266 netdev_init_queues(dev); 4267 4268 dev->get_stats = internal_stats; 4269 netpoll_netdev_init(dev); 4270 setup(dev); 4271 strcpy(dev->name, name); 4272 return dev; 4273 } 4274 EXPORT_SYMBOL(alloc_netdev_mq); 4275 4276 /** 4277 * free_netdev - free network device 4278 * @dev: device 4279 * 4280 * This function does the last stage of destroying an allocated device 4281 * interface. The reference to the device object is released. 4282 * If this is the last reference then it will be freed. 4283 */ 4284 void free_netdev(struct net_device *dev) 4285 { 4286 release_net(dev_net(dev)); 4287 4288 kfree(dev->_tx); 4289 4290 /* Compatibility with error handling in drivers */ 4291 if (dev->reg_state == NETREG_UNINITIALIZED) { 4292 kfree((char *)dev - dev->padded); 4293 return; 4294 } 4295 4296 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4297 dev->reg_state = NETREG_RELEASED; 4298 4299 /* will free via device release */ 4300 put_device(&dev->dev); 4301 } 4302 4303 /* Synchronize with packet receive processing. */ 4304 void synchronize_net(void) 4305 { 4306 might_sleep(); 4307 synchronize_rcu(); 4308 } 4309 4310 /** 4311 * unregister_netdevice - remove device from the kernel 4312 * @dev: device 4313 * 4314 * This function shuts down a device interface and removes it 4315 * from the kernel tables. 4316 * 4317 * Callers must hold the rtnl semaphore. You may want 4318 * unregister_netdev() instead of this. 4319 */ 4320 4321 void unregister_netdevice(struct net_device *dev) 4322 { 4323 ASSERT_RTNL(); 4324 4325 rollback_registered(dev); 4326 /* Finish processing unregister after unlock */ 4327 net_set_todo(dev); 4328 } 4329 4330 /** 4331 * unregister_netdev - remove device from the kernel 4332 * @dev: device 4333 * 4334 * This function shuts down a device interface and removes it 4335 * from the kernel tables. 4336 * 4337 * This is just a wrapper for unregister_netdevice that takes 4338 * the rtnl semaphore. In general you want to use this and not 4339 * unregister_netdevice. 4340 */ 4341 void unregister_netdev(struct net_device *dev) 4342 { 4343 rtnl_lock(); 4344 unregister_netdevice(dev); 4345 rtnl_unlock(); 4346 } 4347 4348 EXPORT_SYMBOL(unregister_netdev); 4349 4350 /** 4351 * dev_change_net_namespace - move device to different nethost namespace 4352 * @dev: device 4353 * @net: network namespace 4354 * @pat: If not NULL name pattern to try if the current device name 4355 * is already taken in the destination network namespace. 4356 * 4357 * This function shuts down a device interface and moves it 4358 * to a new network namespace. On success 0 is returned, on 4359 * a failure a netagive errno code is returned. 4360 * 4361 * Callers must hold the rtnl semaphore. 4362 */ 4363 4364 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4365 { 4366 char buf[IFNAMSIZ]; 4367 const char *destname; 4368 int err; 4369 4370 ASSERT_RTNL(); 4371 4372 /* Don't allow namespace local devices to be moved. */ 4373 err = -EINVAL; 4374 if (dev->features & NETIF_F_NETNS_LOCAL) 4375 goto out; 4376 4377 /* Ensure the device has been registrered */ 4378 err = -EINVAL; 4379 if (dev->reg_state != NETREG_REGISTERED) 4380 goto out; 4381 4382 /* Get out if there is nothing todo */ 4383 err = 0; 4384 if (net_eq(dev_net(dev), net)) 4385 goto out; 4386 4387 /* Pick the destination device name, and ensure 4388 * we can use it in the destination network namespace. 4389 */ 4390 err = -EEXIST; 4391 destname = dev->name; 4392 if (__dev_get_by_name(net, destname)) { 4393 /* We get here if we can't use the current device name */ 4394 if (!pat) 4395 goto out; 4396 if (!dev_valid_name(pat)) 4397 goto out; 4398 if (strchr(pat, '%')) { 4399 if (__dev_alloc_name(net, pat, buf) < 0) 4400 goto out; 4401 destname = buf; 4402 } else 4403 destname = pat; 4404 if (__dev_get_by_name(net, destname)) 4405 goto out; 4406 } 4407 4408 /* 4409 * And now a mini version of register_netdevice unregister_netdevice. 4410 */ 4411 4412 /* If device is running close it first. */ 4413 dev_close(dev); 4414 4415 /* And unlink it from device chain */ 4416 err = -ENODEV; 4417 unlist_netdevice(dev); 4418 4419 synchronize_net(); 4420 4421 /* Shutdown queueing discipline. */ 4422 dev_shutdown(dev); 4423 4424 /* Notify protocols, that we are about to destroy 4425 this device. They should clean all the things. 4426 */ 4427 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4428 4429 /* 4430 * Flush the unicast and multicast chains 4431 */ 4432 dev_addr_discard(dev); 4433 4434 /* Actually switch the network namespace */ 4435 dev_net_set(dev, net); 4436 4437 /* Assign the new device name */ 4438 if (destname != dev->name) 4439 strcpy(dev->name, destname); 4440 4441 /* If there is an ifindex conflict assign a new one */ 4442 if (__dev_get_by_index(net, dev->ifindex)) { 4443 int iflink = (dev->iflink == dev->ifindex); 4444 dev->ifindex = dev_new_index(net); 4445 if (iflink) 4446 dev->iflink = dev->ifindex; 4447 } 4448 4449 /* Fixup kobjects */ 4450 netdev_unregister_kobject(dev); 4451 err = netdev_register_kobject(dev); 4452 WARN_ON(err); 4453 4454 /* Add the device back in the hashes */ 4455 list_netdevice(dev); 4456 4457 /* Notify protocols, that a new device appeared. */ 4458 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4459 4460 synchronize_net(); 4461 err = 0; 4462 out: 4463 return err; 4464 } 4465 4466 static int dev_cpu_callback(struct notifier_block *nfb, 4467 unsigned long action, 4468 void *ocpu) 4469 { 4470 struct sk_buff **list_skb; 4471 struct Qdisc **list_net; 4472 struct sk_buff *skb; 4473 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4474 struct softnet_data *sd, *oldsd; 4475 4476 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4477 return NOTIFY_OK; 4478 4479 local_irq_disable(); 4480 cpu = smp_processor_id(); 4481 sd = &per_cpu(softnet_data, cpu); 4482 oldsd = &per_cpu(softnet_data, oldcpu); 4483 4484 /* Find end of our completion_queue. */ 4485 list_skb = &sd->completion_queue; 4486 while (*list_skb) 4487 list_skb = &(*list_skb)->next; 4488 /* Append completion queue from offline CPU. */ 4489 *list_skb = oldsd->completion_queue; 4490 oldsd->completion_queue = NULL; 4491 4492 /* Find end of our output_queue. */ 4493 list_net = &sd->output_queue; 4494 while (*list_net) 4495 list_net = &(*list_net)->next_sched; 4496 /* Append output queue from offline CPU. */ 4497 *list_net = oldsd->output_queue; 4498 oldsd->output_queue = NULL; 4499 4500 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4501 local_irq_enable(); 4502 4503 /* Process offline CPU's input_pkt_queue */ 4504 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4505 netif_rx(skb); 4506 4507 return NOTIFY_OK; 4508 } 4509 4510 #ifdef CONFIG_NET_DMA 4511 /** 4512 * net_dma_rebalance - try to maintain one DMA channel per CPU 4513 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4514 * 4515 * This is called when the number of channels allocated to the net_dma client 4516 * changes. The net_dma client tries to have one DMA channel per CPU. 4517 */ 4518 4519 static void net_dma_rebalance(struct net_dma *net_dma) 4520 { 4521 unsigned int cpu, i, n, chan_idx; 4522 struct dma_chan *chan; 4523 4524 if (cpus_empty(net_dma->channel_mask)) { 4525 for_each_online_cpu(cpu) 4526 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4527 return; 4528 } 4529 4530 i = 0; 4531 cpu = first_cpu(cpu_online_map); 4532 4533 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) { 4534 chan = net_dma->channels[chan_idx]; 4535 4536 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4537 + (i < (num_online_cpus() % 4538 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4539 4540 while(n) { 4541 per_cpu(softnet_data, cpu).net_dma = chan; 4542 cpu = next_cpu(cpu, cpu_online_map); 4543 n--; 4544 } 4545 i++; 4546 } 4547 } 4548 4549 /** 4550 * netdev_dma_event - event callback for the net_dma_client 4551 * @client: should always be net_dma_client 4552 * @chan: DMA channel for the event 4553 * @state: DMA state to be handled 4554 */ 4555 static enum dma_state_client 4556 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4557 enum dma_state state) 4558 { 4559 int i, found = 0, pos = -1; 4560 struct net_dma *net_dma = 4561 container_of(client, struct net_dma, client); 4562 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4563 4564 spin_lock(&net_dma->lock); 4565 switch (state) { 4566 case DMA_RESOURCE_AVAILABLE: 4567 for (i = 0; i < nr_cpu_ids; i++) 4568 if (net_dma->channels[i] == chan) { 4569 found = 1; 4570 break; 4571 } else if (net_dma->channels[i] == NULL && pos < 0) 4572 pos = i; 4573 4574 if (!found && pos >= 0) { 4575 ack = DMA_ACK; 4576 net_dma->channels[pos] = chan; 4577 cpu_set(pos, net_dma->channel_mask); 4578 net_dma_rebalance(net_dma); 4579 } 4580 break; 4581 case DMA_RESOURCE_REMOVED: 4582 for (i = 0; i < nr_cpu_ids; i++) 4583 if (net_dma->channels[i] == chan) { 4584 found = 1; 4585 pos = i; 4586 break; 4587 } 4588 4589 if (found) { 4590 ack = DMA_ACK; 4591 cpu_clear(pos, net_dma->channel_mask); 4592 net_dma->channels[i] = NULL; 4593 net_dma_rebalance(net_dma); 4594 } 4595 break; 4596 default: 4597 break; 4598 } 4599 spin_unlock(&net_dma->lock); 4600 4601 return ack; 4602 } 4603 4604 /** 4605 * netdev_dma_regiser - register the networking subsystem as a DMA client 4606 */ 4607 static int __init netdev_dma_register(void) 4608 { 4609 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma), 4610 GFP_KERNEL); 4611 if (unlikely(!net_dma.channels)) { 4612 printk(KERN_NOTICE 4613 "netdev_dma: no memory for net_dma.channels\n"); 4614 return -ENOMEM; 4615 } 4616 spin_lock_init(&net_dma.lock); 4617 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4618 dma_async_client_register(&net_dma.client); 4619 dma_async_client_chan_request(&net_dma.client); 4620 return 0; 4621 } 4622 4623 #else 4624 static int __init netdev_dma_register(void) { return -ENODEV; } 4625 #endif /* CONFIG_NET_DMA */ 4626 4627 /** 4628 * netdev_compute_feature - compute conjunction of two feature sets 4629 * @all: first feature set 4630 * @one: second feature set 4631 * 4632 * Computes a new feature set after adding a device with feature set 4633 * @one to the master device with current feature set @all. Returns 4634 * the new feature set. 4635 */ 4636 int netdev_compute_features(unsigned long all, unsigned long one) 4637 { 4638 /* if device needs checksumming, downgrade to hw checksumming */ 4639 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4640 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM; 4641 4642 /* if device can't do all checksum, downgrade to ipv4/ipv6 */ 4643 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM)) 4644 all ^= NETIF_F_HW_CSUM 4645 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 4646 4647 if (one & NETIF_F_GSO) 4648 one |= NETIF_F_GSO_SOFTWARE; 4649 one |= NETIF_F_GSO; 4650 4651 /* If even one device supports robust GSO, enable it for all. */ 4652 if (one & NETIF_F_GSO_ROBUST) 4653 all |= NETIF_F_GSO_ROBUST; 4654 4655 all &= one | NETIF_F_LLTX; 4656 4657 if (!(all & NETIF_F_ALL_CSUM)) 4658 all &= ~NETIF_F_SG; 4659 if (!(all & NETIF_F_SG)) 4660 all &= ~NETIF_F_GSO_MASK; 4661 4662 return all; 4663 } 4664 EXPORT_SYMBOL(netdev_compute_features); 4665 4666 static struct hlist_head *netdev_create_hash(void) 4667 { 4668 int i; 4669 struct hlist_head *hash; 4670 4671 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4672 if (hash != NULL) 4673 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4674 INIT_HLIST_HEAD(&hash[i]); 4675 4676 return hash; 4677 } 4678 4679 /* Initialize per network namespace state */ 4680 static int __net_init netdev_init(struct net *net) 4681 { 4682 INIT_LIST_HEAD(&net->dev_base_head); 4683 4684 net->dev_name_head = netdev_create_hash(); 4685 if (net->dev_name_head == NULL) 4686 goto err_name; 4687 4688 net->dev_index_head = netdev_create_hash(); 4689 if (net->dev_index_head == NULL) 4690 goto err_idx; 4691 4692 return 0; 4693 4694 err_idx: 4695 kfree(net->dev_name_head); 4696 err_name: 4697 return -ENOMEM; 4698 } 4699 4700 char *netdev_drivername(struct net_device *dev, char *buffer, int len) 4701 { 4702 struct device_driver *driver; 4703 struct device *parent; 4704 4705 if (len <= 0 || !buffer) 4706 return buffer; 4707 buffer[0] = 0; 4708 4709 parent = dev->dev.parent; 4710 4711 if (!parent) 4712 return buffer; 4713 4714 driver = parent->driver; 4715 if (driver && driver->name) 4716 strlcpy(buffer, driver->name, len); 4717 return buffer; 4718 } 4719 4720 static void __net_exit netdev_exit(struct net *net) 4721 { 4722 kfree(net->dev_name_head); 4723 kfree(net->dev_index_head); 4724 } 4725 4726 static struct pernet_operations __net_initdata netdev_net_ops = { 4727 .init = netdev_init, 4728 .exit = netdev_exit, 4729 }; 4730 4731 static void __net_exit default_device_exit(struct net *net) 4732 { 4733 struct net_device *dev, *next; 4734 /* 4735 * Push all migratable of the network devices back to the 4736 * initial network namespace 4737 */ 4738 rtnl_lock(); 4739 for_each_netdev_safe(net, dev, next) { 4740 int err; 4741 char fb_name[IFNAMSIZ]; 4742 4743 /* Ignore unmoveable devices (i.e. loopback) */ 4744 if (dev->features & NETIF_F_NETNS_LOCAL) 4745 continue; 4746 4747 /* Push remaing network devices to init_net */ 4748 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 4749 err = dev_change_net_namespace(dev, &init_net, fb_name); 4750 if (err) { 4751 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 4752 __func__, dev->name, err); 4753 BUG(); 4754 } 4755 } 4756 rtnl_unlock(); 4757 } 4758 4759 static struct pernet_operations __net_initdata default_device_ops = { 4760 .exit = default_device_exit, 4761 }; 4762 4763 /* 4764 * Initialize the DEV module. At boot time this walks the device list and 4765 * unhooks any devices that fail to initialise (normally hardware not 4766 * present) and leaves us with a valid list of present and active devices. 4767 * 4768 */ 4769 4770 /* 4771 * This is called single threaded during boot, so no need 4772 * to take the rtnl semaphore. 4773 */ 4774 static int __init net_dev_init(void) 4775 { 4776 int i, rc = -ENOMEM; 4777 4778 BUG_ON(!dev_boot_phase); 4779 4780 if (dev_proc_init()) 4781 goto out; 4782 4783 if (netdev_kobject_init()) 4784 goto out; 4785 4786 INIT_LIST_HEAD(&ptype_all); 4787 for (i = 0; i < PTYPE_HASH_SIZE; i++) 4788 INIT_LIST_HEAD(&ptype_base[i]); 4789 4790 if (register_pernet_subsys(&netdev_net_ops)) 4791 goto out; 4792 4793 if (register_pernet_device(&default_device_ops)) 4794 goto out; 4795 4796 /* 4797 * Initialise the packet receive queues. 4798 */ 4799 4800 for_each_possible_cpu(i) { 4801 struct softnet_data *queue; 4802 4803 queue = &per_cpu(softnet_data, i); 4804 skb_queue_head_init(&queue->input_pkt_queue); 4805 queue->completion_queue = NULL; 4806 INIT_LIST_HEAD(&queue->poll_list); 4807 4808 queue->backlog.poll = process_backlog; 4809 queue->backlog.weight = weight_p; 4810 } 4811 4812 netdev_dma_register(); 4813 4814 dev_boot_phase = 0; 4815 4816 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 4817 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 4818 4819 hotcpu_notifier(dev_cpu_callback, 0); 4820 dst_init(); 4821 dev_mcast_init(); 4822 rc = 0; 4823 out: 4824 return rc; 4825 } 4826 4827 subsys_initcall(net_dev_init); 4828 4829 EXPORT_SYMBOL(__dev_get_by_index); 4830 EXPORT_SYMBOL(__dev_get_by_name); 4831 EXPORT_SYMBOL(__dev_remove_pack); 4832 EXPORT_SYMBOL(dev_valid_name); 4833 EXPORT_SYMBOL(dev_add_pack); 4834 EXPORT_SYMBOL(dev_alloc_name); 4835 EXPORT_SYMBOL(dev_close); 4836 EXPORT_SYMBOL(dev_get_by_flags); 4837 EXPORT_SYMBOL(dev_get_by_index); 4838 EXPORT_SYMBOL(dev_get_by_name); 4839 EXPORT_SYMBOL(dev_open); 4840 EXPORT_SYMBOL(dev_queue_xmit); 4841 EXPORT_SYMBOL(dev_remove_pack); 4842 EXPORT_SYMBOL(dev_set_allmulti); 4843 EXPORT_SYMBOL(dev_set_promiscuity); 4844 EXPORT_SYMBOL(dev_change_flags); 4845 EXPORT_SYMBOL(dev_set_mtu); 4846 EXPORT_SYMBOL(dev_set_mac_address); 4847 EXPORT_SYMBOL(free_netdev); 4848 EXPORT_SYMBOL(netdev_boot_setup_check); 4849 EXPORT_SYMBOL(netdev_set_master); 4850 EXPORT_SYMBOL(netdev_state_change); 4851 EXPORT_SYMBOL(netif_receive_skb); 4852 EXPORT_SYMBOL(netif_rx); 4853 EXPORT_SYMBOL(register_gifconf); 4854 EXPORT_SYMBOL(register_netdevice); 4855 EXPORT_SYMBOL(register_netdevice_notifier); 4856 EXPORT_SYMBOL(skb_checksum_help); 4857 EXPORT_SYMBOL(synchronize_net); 4858 EXPORT_SYMBOL(unregister_netdevice); 4859 EXPORT_SYMBOL(unregister_netdevice_notifier); 4860 EXPORT_SYMBOL(net_enable_timestamp); 4861 EXPORT_SYMBOL(net_disable_timestamp); 4862 EXPORT_SYMBOL(dev_get_flags); 4863 4864 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4865 EXPORT_SYMBOL(br_handle_frame_hook); 4866 EXPORT_SYMBOL(br_fdb_get_hook); 4867 EXPORT_SYMBOL(br_fdb_put_hook); 4868 #endif 4869 4870 #ifdef CONFIG_KMOD 4871 EXPORT_SYMBOL(dev_load); 4872 #endif 4873 4874 EXPORT_PER_CPU_SYMBOL(softnet_data); 4875