xref: /linux/net/core/dev.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strlen(name) >= IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	if (!dev_valid_name(name))
1068 		return -EINVAL;
1069 
1070 	p = strchr(name, '%');
1071 	if (p) {
1072 		/*
1073 		 * Verify the string as this thing may have come from
1074 		 * the user.  There must be either one "%d" and no other "%"
1075 		 * characters.
1076 		 */
1077 		if (p[1] != 'd' || strchr(p + 2, '%'))
1078 			return -EINVAL;
1079 
1080 		/* Use one page as a bit array of possible slots */
1081 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 		if (!inuse)
1083 			return -ENOMEM;
1084 
1085 		for_each_netdev(net, d) {
1086 			if (!sscanf(d->name, name, &i))
1087 				continue;
1088 			if (i < 0 || i >= max_netdevices)
1089 				continue;
1090 
1091 			/*  avoid cases where sscanf is not exact inverse of printf */
1092 			snprintf(buf, IFNAMSIZ, name, i);
1093 			if (!strncmp(buf, d->name, IFNAMSIZ))
1094 				set_bit(i, inuse);
1095 		}
1096 
1097 		i = find_first_zero_bit(inuse, max_netdevices);
1098 		free_page((unsigned long) inuse);
1099 	}
1100 
1101 	snprintf(buf, IFNAMSIZ, name, i);
1102 	if (!__dev_get_by_name(net, buf))
1103 		return i;
1104 
1105 	/* It is possible to run out of possible slots
1106 	 * when the name is long and there isn't enough space left
1107 	 * for the digits, or if all bits are used.
1108 	 */
1109 	return -ENFILE;
1110 }
1111 
1112 static int dev_alloc_name_ns(struct net *net,
1113 			     struct net_device *dev,
1114 			     const char *name)
1115 {
1116 	char buf[IFNAMSIZ];
1117 	int ret;
1118 
1119 	BUG_ON(!net);
1120 	ret = __dev_alloc_name(net, name, buf);
1121 	if (ret >= 0)
1122 		strlcpy(dev->name, buf, IFNAMSIZ);
1123 	return ret;
1124 }
1125 
1126 /**
1127  *	dev_alloc_name - allocate a name for a device
1128  *	@dev: device
1129  *	@name: name format string
1130  *
1131  *	Passed a format string - eg "lt%d" it will try and find a suitable
1132  *	id. It scans list of devices to build up a free map, then chooses
1133  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *	while allocating the name and adding the device in order to avoid
1135  *	duplicates.
1136  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *	Returns the number of the unit assigned or a negative errno code.
1138  */
1139 
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145 
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 		       const char *name)
1148 {
1149 	BUG_ON(!net);
1150 
1151 	if (!dev_valid_name(name))
1152 		return -EINVAL;
1153 
1154 	if (strchr(name, '%'))
1155 		return dev_alloc_name_ns(net, dev, name);
1156 	else if (__dev_get_by_name(net, name))
1157 		return -EEXIST;
1158 	else if (dev->name != name)
1159 		strlcpy(dev->name, name, IFNAMSIZ);
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164 
1165 /**
1166  *	dev_change_name - change name of a device
1167  *	@dev: device
1168  *	@newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *	Change name of a device, can pass format strings "eth%d".
1171  *	for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175 	unsigned char old_assign_type;
1176 	char oldname[IFNAMSIZ];
1177 	int err = 0;
1178 	int ret;
1179 	struct net *net;
1180 
1181 	ASSERT_RTNL();
1182 	BUG_ON(!dev_net(dev));
1183 
1184 	net = dev_net(dev);
1185 	if (dev->flags & IFF_UP)
1186 		return -EBUSY;
1187 
1188 	write_seqcount_begin(&devnet_rename_seq);
1189 
1190 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 		write_seqcount_end(&devnet_rename_seq);
1192 		return 0;
1193 	}
1194 
1195 	memcpy(oldname, dev->name, IFNAMSIZ);
1196 
1197 	err = dev_get_valid_name(net, dev, newname);
1198 	if (err < 0) {
1199 		write_seqcount_end(&devnet_rename_seq);
1200 		return err;
1201 	}
1202 
1203 	if (oldname[0] && !strchr(oldname, '%'))
1204 		netdev_info(dev, "renamed from %s\n", oldname);
1205 
1206 	old_assign_type = dev->name_assign_type;
1207 	dev->name_assign_type = NET_NAME_RENAMED;
1208 
1209 rollback:
1210 	ret = device_rename(&dev->dev, dev->name);
1211 	if (ret) {
1212 		memcpy(dev->name, oldname, IFNAMSIZ);
1213 		dev->name_assign_type = old_assign_type;
1214 		write_seqcount_end(&devnet_rename_seq);
1215 		return ret;
1216 	}
1217 
1218 	write_seqcount_end(&devnet_rename_seq);
1219 
1220 	netdev_adjacent_rename_links(dev, oldname);
1221 
1222 	write_lock_bh(&dev_base_lock);
1223 	hlist_del_rcu(&dev->name_hlist);
1224 	write_unlock_bh(&dev_base_lock);
1225 
1226 	synchronize_rcu();
1227 
1228 	write_lock_bh(&dev_base_lock);
1229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 	write_unlock_bh(&dev_base_lock);
1231 
1232 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 	ret = notifier_to_errno(ret);
1234 
1235 	if (ret) {
1236 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1237 		if (err >= 0) {
1238 			err = ret;
1239 			write_seqcount_begin(&devnet_rename_seq);
1240 			memcpy(dev->name, oldname, IFNAMSIZ);
1241 			memcpy(oldname, newname, IFNAMSIZ);
1242 			dev->name_assign_type = old_assign_type;
1243 			old_assign_type = NET_NAME_RENAMED;
1244 			goto rollback;
1245 		} else {
1246 			pr_err("%s: name change rollback failed: %d\n",
1247 			       dev->name, ret);
1248 		}
1249 	}
1250 
1251 	return err;
1252 }
1253 
1254 /**
1255  *	dev_set_alias - change ifalias of a device
1256  *	@dev: device
1257  *	@alias: name up to IFALIASZ
1258  *	@len: limit of bytes to copy from info
1259  *
1260  *	Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264 	struct dev_ifalias *new_alias = NULL;
1265 
1266 	if (len >= IFALIASZ)
1267 		return -EINVAL;
1268 
1269 	if (len) {
1270 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 		if (!new_alias)
1272 			return -ENOMEM;
1273 
1274 		memcpy(new_alias->ifalias, alias, len);
1275 		new_alias->ifalias[len] = 0;
1276 	}
1277 
1278 	mutex_lock(&ifalias_mutex);
1279 	rcu_swap_protected(dev->ifalias, new_alias,
1280 			   mutex_is_locked(&ifalias_mutex));
1281 	mutex_unlock(&ifalias_mutex);
1282 
1283 	if (new_alias)
1284 		kfree_rcu(new_alias, rcuhead);
1285 
1286 	return len;
1287 }
1288 
1289 /**
1290  *	dev_get_alias - get ifalias of a device
1291  *	@dev: device
1292  *	@name: buffer to store name of ifalias
1293  *	@len: size of buffer
1294  *
1295  *	get ifalias for a device.  Caller must make sure dev cannot go
1296  *	away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300 	const struct dev_ifalias *alias;
1301 	int ret = 0;
1302 
1303 	rcu_read_lock();
1304 	alias = rcu_dereference(dev->ifalias);
1305 	if (alias)
1306 		ret = snprintf(name, len, "%s", alias->ifalias);
1307 	rcu_read_unlock();
1308 
1309 	return ret;
1310 }
1311 
1312 /**
1313  *	netdev_features_change - device changes features
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323 
1324 /**
1325  *	netdev_state_change - device changes state
1326  *	@dev: device to cause notification
1327  *
1328  *	Called to indicate a device has changed state. This function calls
1329  *	the notifier chains for netdev_chain and sends a NEWLINK message
1330  *	to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334 	if (dev->flags & IFF_UP) {
1335 		struct netdev_notifier_change_info change_info = {
1336 			.info.dev = dev,
1337 		};
1338 
1339 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 					      &change_info.info);
1341 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 	}
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345 
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358 	rtnl_lock();
1359 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 	rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364 
1365 static int __dev_open(struct net_device *dev)
1366 {
1367 	const struct net_device_ops *ops = dev->netdev_ops;
1368 	int ret;
1369 
1370 	ASSERT_RTNL();
1371 
1372 	if (!netif_device_present(dev))
1373 		return -ENODEV;
1374 
1375 	/* Block netpoll from trying to do any rx path servicing.
1376 	 * If we don't do this there is a chance ndo_poll_controller
1377 	 * or ndo_poll may be running while we open the device
1378 	 */
1379 	netpoll_poll_disable(dev);
1380 
1381 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 	ret = notifier_to_errno(ret);
1383 	if (ret)
1384 		return ret;
1385 
1386 	set_bit(__LINK_STATE_START, &dev->state);
1387 
1388 	if (ops->ndo_validate_addr)
1389 		ret = ops->ndo_validate_addr(dev);
1390 
1391 	if (!ret && ops->ndo_open)
1392 		ret = ops->ndo_open(dev);
1393 
1394 	netpoll_poll_enable(dev);
1395 
1396 	if (ret)
1397 		clear_bit(__LINK_STATE_START, &dev->state);
1398 	else {
1399 		dev->flags |= IFF_UP;
1400 		dev_set_rx_mode(dev);
1401 		dev_activate(dev);
1402 		add_device_randomness(dev->dev_addr, dev->addr_len);
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 /**
1409  *	dev_open	- prepare an interface for use.
1410  *	@dev:	device to open
1411  *
1412  *	Takes a device from down to up state. The device's private open
1413  *	function is invoked and then the multicast lists are loaded. Finally
1414  *	the device is moved into the up state and a %NETDEV_UP message is
1415  *	sent to the netdev notifier chain.
1416  *
1417  *	Calling this function on an active interface is a nop. On a failure
1418  *	a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422 	int ret;
1423 
1424 	if (dev->flags & IFF_UP)
1425 		return 0;
1426 
1427 	ret = __dev_open(dev);
1428 	if (ret < 0)
1429 		return ret;
1430 
1431 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 	call_netdevice_notifiers(NETDEV_UP, dev);
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437 
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440 	struct net_device *dev;
1441 
1442 	ASSERT_RTNL();
1443 	might_sleep();
1444 
1445 	list_for_each_entry(dev, head, close_list) {
1446 		/* Temporarily disable netpoll until the interface is down */
1447 		netpoll_poll_disable(dev);
1448 
1449 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450 
1451 		clear_bit(__LINK_STATE_START, &dev->state);
1452 
1453 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1454 		 * can be even on different cpu. So just clear netif_running().
1455 		 *
1456 		 * dev->stop() will invoke napi_disable() on all of it's
1457 		 * napi_struct instances on this device.
1458 		 */
1459 		smp_mb__after_atomic(); /* Commit netif_running(). */
1460 	}
1461 
1462 	dev_deactivate_many(head);
1463 
1464 	list_for_each_entry(dev, head, close_list) {
1465 		const struct net_device_ops *ops = dev->netdev_ops;
1466 
1467 		/*
1468 		 *	Call the device specific close. This cannot fail.
1469 		 *	Only if device is UP
1470 		 *
1471 		 *	We allow it to be called even after a DETACH hot-plug
1472 		 *	event.
1473 		 */
1474 		if (ops->ndo_stop)
1475 			ops->ndo_stop(dev);
1476 
1477 		dev->flags &= ~IFF_UP;
1478 		netpoll_poll_enable(dev);
1479 	}
1480 }
1481 
1482 static void __dev_close(struct net_device *dev)
1483 {
1484 	LIST_HEAD(single);
1485 
1486 	list_add(&dev->close_list, &single);
1487 	__dev_close_many(&single);
1488 	list_del(&single);
1489 }
1490 
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493 	struct net_device *dev, *tmp;
1494 
1495 	/* Remove the devices that don't need to be closed */
1496 	list_for_each_entry_safe(dev, tmp, head, close_list)
1497 		if (!(dev->flags & IFF_UP))
1498 			list_del_init(&dev->close_list);
1499 
1500 	__dev_close_many(head);
1501 
1502 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 		if (unlink)
1506 			list_del_init(&dev->close_list);
1507 	}
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510 
1511 /**
1512  *	dev_close - shutdown an interface.
1513  *	@dev: device to shutdown
1514  *
1515  *	This function moves an active device into down state. A
1516  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *	chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522 	if (dev->flags & IFF_UP) {
1523 		LIST_HEAD(single);
1524 
1525 		list_add(&dev->close_list, &single);
1526 		dev_close_many(&single, true);
1527 		list_del(&single);
1528 	}
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531 
1532 
1533 /**
1534  *	dev_disable_lro - disable Large Receive Offload on a device
1535  *	@dev: device
1536  *
1537  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *	called under RTNL.  This is needed if received packets may be
1539  *	forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543 	struct net_device *lower_dev;
1544 	struct list_head *iter;
1545 
1546 	dev->wanted_features &= ~NETIF_F_LRO;
1547 	netdev_update_features(dev);
1548 
1549 	if (unlikely(dev->features & NETIF_F_LRO))
1550 		netdev_WARN(dev, "failed to disable LRO!\n");
1551 
1552 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 		dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556 
1557 /**
1558  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *	@dev: device
1560  *
1561  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *	called under RTNL.  This is needed if Generic XDP is installed on
1563  *	the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 	netdev_update_features(dev);
1569 
1570 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573 
1574 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1575 				   struct net_device *dev)
1576 {
1577 	struct netdev_notifier_info info = {
1578 		.dev = dev,
1579 	};
1580 
1581 	return nb->notifier_call(nb, val, &info);
1582 }
1583 
1584 static int dev_boot_phase = 1;
1585 
1586 /**
1587  * register_netdevice_notifier - register a network notifier block
1588  * @nb: notifier
1589  *
1590  * Register a notifier to be called when network device events occur.
1591  * The notifier passed is linked into the kernel structures and must
1592  * not be reused until it has been unregistered. A negative errno code
1593  * is returned on a failure.
1594  *
1595  * When registered all registration and up events are replayed
1596  * to the new notifier to allow device to have a race free
1597  * view of the network device list.
1598  */
1599 
1600 int register_netdevice_notifier(struct notifier_block *nb)
1601 {
1602 	struct net_device *dev;
1603 	struct net_device *last;
1604 	struct net *net;
1605 	int err;
1606 
1607 	rtnl_lock();
1608 	err = raw_notifier_chain_register(&netdev_chain, nb);
1609 	if (err)
1610 		goto unlock;
1611 	if (dev_boot_phase)
1612 		goto unlock;
1613 	for_each_net(net) {
1614 		for_each_netdev(net, dev) {
1615 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1616 			err = notifier_to_errno(err);
1617 			if (err)
1618 				goto rollback;
1619 
1620 			if (!(dev->flags & IFF_UP))
1621 				continue;
1622 
1623 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1624 		}
1625 	}
1626 
1627 unlock:
1628 	rtnl_unlock();
1629 	return err;
1630 
1631 rollback:
1632 	last = dev;
1633 	for_each_net(net) {
1634 		for_each_netdev(net, dev) {
1635 			if (dev == last)
1636 				goto outroll;
1637 
1638 			if (dev->flags & IFF_UP) {
1639 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1640 							dev);
1641 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1642 			}
1643 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1644 		}
1645 	}
1646 
1647 outroll:
1648 	raw_notifier_chain_unregister(&netdev_chain, nb);
1649 	goto unlock;
1650 }
1651 EXPORT_SYMBOL(register_netdevice_notifier);
1652 
1653 /**
1654  * unregister_netdevice_notifier - unregister a network notifier block
1655  * @nb: notifier
1656  *
1657  * Unregister a notifier previously registered by
1658  * register_netdevice_notifier(). The notifier is unlinked into the
1659  * kernel structures and may then be reused. A negative errno code
1660  * is returned on a failure.
1661  *
1662  * After unregistering unregister and down device events are synthesized
1663  * for all devices on the device list to the removed notifier to remove
1664  * the need for special case cleanup code.
1665  */
1666 
1667 int unregister_netdevice_notifier(struct notifier_block *nb)
1668 {
1669 	struct net_device *dev;
1670 	struct net *net;
1671 	int err;
1672 
1673 	rtnl_lock();
1674 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1675 	if (err)
1676 		goto unlock;
1677 
1678 	for_each_net(net) {
1679 		for_each_netdev(net, dev) {
1680 			if (dev->flags & IFF_UP) {
1681 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1682 							dev);
1683 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1684 			}
1685 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1686 		}
1687 	}
1688 unlock:
1689 	rtnl_unlock();
1690 	return err;
1691 }
1692 EXPORT_SYMBOL(unregister_netdevice_notifier);
1693 
1694 /**
1695  *	call_netdevice_notifiers_info - call all network notifier blocks
1696  *	@val: value passed unmodified to notifier function
1697  *	@info: notifier information data
1698  *
1699  *	Call all network notifier blocks.  Parameters and return value
1700  *	are as for raw_notifier_call_chain().
1701  */
1702 
1703 static int call_netdevice_notifiers_info(unsigned long val,
1704 					 struct netdev_notifier_info *info)
1705 {
1706 	ASSERT_RTNL();
1707 	return raw_notifier_call_chain(&netdev_chain, val, info);
1708 }
1709 
1710 /**
1711  *	call_netdevice_notifiers - call all network notifier blocks
1712  *      @val: value passed unmodified to notifier function
1713  *      @dev: net_device pointer passed unmodified to notifier function
1714  *
1715  *	Call all network notifier blocks.  Parameters and return value
1716  *	are as for raw_notifier_call_chain().
1717  */
1718 
1719 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1720 {
1721 	struct netdev_notifier_info info = {
1722 		.dev = dev,
1723 	};
1724 
1725 	return call_netdevice_notifiers_info(val, &info);
1726 }
1727 EXPORT_SYMBOL(call_netdevice_notifiers);
1728 
1729 #ifdef CONFIG_NET_INGRESS
1730 static struct static_key ingress_needed __read_mostly;
1731 
1732 void net_inc_ingress_queue(void)
1733 {
1734 	static_key_slow_inc(&ingress_needed);
1735 }
1736 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1737 
1738 void net_dec_ingress_queue(void)
1739 {
1740 	static_key_slow_dec(&ingress_needed);
1741 }
1742 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1743 #endif
1744 
1745 #ifdef CONFIG_NET_EGRESS
1746 static struct static_key egress_needed __read_mostly;
1747 
1748 void net_inc_egress_queue(void)
1749 {
1750 	static_key_slow_inc(&egress_needed);
1751 }
1752 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1753 
1754 void net_dec_egress_queue(void)
1755 {
1756 	static_key_slow_dec(&egress_needed);
1757 }
1758 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1759 #endif
1760 
1761 static struct static_key netstamp_needed __read_mostly;
1762 #ifdef HAVE_JUMP_LABEL
1763 static atomic_t netstamp_needed_deferred;
1764 static atomic_t netstamp_wanted;
1765 static void netstamp_clear(struct work_struct *work)
1766 {
1767 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1768 	int wanted;
1769 
1770 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1771 	if (wanted > 0)
1772 		static_key_enable(&netstamp_needed);
1773 	else
1774 		static_key_disable(&netstamp_needed);
1775 }
1776 static DECLARE_WORK(netstamp_work, netstamp_clear);
1777 #endif
1778 
1779 void net_enable_timestamp(void)
1780 {
1781 #ifdef HAVE_JUMP_LABEL
1782 	int wanted;
1783 
1784 	while (1) {
1785 		wanted = atomic_read(&netstamp_wanted);
1786 		if (wanted <= 0)
1787 			break;
1788 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1789 			return;
1790 	}
1791 	atomic_inc(&netstamp_needed_deferred);
1792 	schedule_work(&netstamp_work);
1793 #else
1794 	static_key_slow_inc(&netstamp_needed);
1795 #endif
1796 }
1797 EXPORT_SYMBOL(net_enable_timestamp);
1798 
1799 void net_disable_timestamp(void)
1800 {
1801 #ifdef HAVE_JUMP_LABEL
1802 	int wanted;
1803 
1804 	while (1) {
1805 		wanted = atomic_read(&netstamp_wanted);
1806 		if (wanted <= 1)
1807 			break;
1808 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1809 			return;
1810 	}
1811 	atomic_dec(&netstamp_needed_deferred);
1812 	schedule_work(&netstamp_work);
1813 #else
1814 	static_key_slow_dec(&netstamp_needed);
1815 #endif
1816 }
1817 EXPORT_SYMBOL(net_disable_timestamp);
1818 
1819 static inline void net_timestamp_set(struct sk_buff *skb)
1820 {
1821 	skb->tstamp = 0;
1822 	if (static_key_false(&netstamp_needed))
1823 		__net_timestamp(skb);
1824 }
1825 
1826 #define net_timestamp_check(COND, SKB)			\
1827 	if (static_key_false(&netstamp_needed)) {		\
1828 		if ((COND) && !(SKB)->tstamp)	\
1829 			__net_timestamp(SKB);		\
1830 	}						\
1831 
1832 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1833 {
1834 	unsigned int len;
1835 
1836 	if (!(dev->flags & IFF_UP))
1837 		return false;
1838 
1839 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1840 	if (skb->len <= len)
1841 		return true;
1842 
1843 	/* if TSO is enabled, we don't care about the length as the packet
1844 	 * could be forwarded without being segmented before
1845 	 */
1846 	if (skb_is_gso(skb))
1847 		return true;
1848 
1849 	return false;
1850 }
1851 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1852 
1853 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1854 {
1855 	int ret = ____dev_forward_skb(dev, skb);
1856 
1857 	if (likely(!ret)) {
1858 		skb->protocol = eth_type_trans(skb, dev);
1859 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1860 	}
1861 
1862 	return ret;
1863 }
1864 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1865 
1866 /**
1867  * dev_forward_skb - loopback an skb to another netif
1868  *
1869  * @dev: destination network device
1870  * @skb: buffer to forward
1871  *
1872  * return values:
1873  *	NET_RX_SUCCESS	(no congestion)
1874  *	NET_RX_DROP     (packet was dropped, but freed)
1875  *
1876  * dev_forward_skb can be used for injecting an skb from the
1877  * start_xmit function of one device into the receive queue
1878  * of another device.
1879  *
1880  * The receiving device may be in another namespace, so
1881  * we have to clear all information in the skb that could
1882  * impact namespace isolation.
1883  */
1884 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1885 {
1886 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1887 }
1888 EXPORT_SYMBOL_GPL(dev_forward_skb);
1889 
1890 static inline int deliver_skb(struct sk_buff *skb,
1891 			      struct packet_type *pt_prev,
1892 			      struct net_device *orig_dev)
1893 {
1894 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1895 		return -ENOMEM;
1896 	refcount_inc(&skb->users);
1897 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1898 }
1899 
1900 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1901 					  struct packet_type **pt,
1902 					  struct net_device *orig_dev,
1903 					  __be16 type,
1904 					  struct list_head *ptype_list)
1905 {
1906 	struct packet_type *ptype, *pt_prev = *pt;
1907 
1908 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1909 		if (ptype->type != type)
1910 			continue;
1911 		if (pt_prev)
1912 			deliver_skb(skb, pt_prev, orig_dev);
1913 		pt_prev = ptype;
1914 	}
1915 	*pt = pt_prev;
1916 }
1917 
1918 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1919 {
1920 	if (!ptype->af_packet_priv || !skb->sk)
1921 		return false;
1922 
1923 	if (ptype->id_match)
1924 		return ptype->id_match(ptype, skb->sk);
1925 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1926 		return true;
1927 
1928 	return false;
1929 }
1930 
1931 /*
1932  *	Support routine. Sends outgoing frames to any network
1933  *	taps currently in use.
1934  */
1935 
1936 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1937 {
1938 	struct packet_type *ptype;
1939 	struct sk_buff *skb2 = NULL;
1940 	struct packet_type *pt_prev = NULL;
1941 	struct list_head *ptype_list = &ptype_all;
1942 
1943 	rcu_read_lock();
1944 again:
1945 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1946 		/* Never send packets back to the socket
1947 		 * they originated from - MvS (miquels@drinkel.ow.org)
1948 		 */
1949 		if (skb_loop_sk(ptype, skb))
1950 			continue;
1951 
1952 		if (pt_prev) {
1953 			deliver_skb(skb2, pt_prev, skb->dev);
1954 			pt_prev = ptype;
1955 			continue;
1956 		}
1957 
1958 		/* need to clone skb, done only once */
1959 		skb2 = skb_clone(skb, GFP_ATOMIC);
1960 		if (!skb2)
1961 			goto out_unlock;
1962 
1963 		net_timestamp_set(skb2);
1964 
1965 		/* skb->nh should be correctly
1966 		 * set by sender, so that the second statement is
1967 		 * just protection against buggy protocols.
1968 		 */
1969 		skb_reset_mac_header(skb2);
1970 
1971 		if (skb_network_header(skb2) < skb2->data ||
1972 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1973 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1974 					     ntohs(skb2->protocol),
1975 					     dev->name);
1976 			skb_reset_network_header(skb2);
1977 		}
1978 
1979 		skb2->transport_header = skb2->network_header;
1980 		skb2->pkt_type = PACKET_OUTGOING;
1981 		pt_prev = ptype;
1982 	}
1983 
1984 	if (ptype_list == &ptype_all) {
1985 		ptype_list = &dev->ptype_all;
1986 		goto again;
1987 	}
1988 out_unlock:
1989 	if (pt_prev) {
1990 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1991 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1992 		else
1993 			kfree_skb(skb2);
1994 	}
1995 	rcu_read_unlock();
1996 }
1997 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1998 
1999 /**
2000  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2001  * @dev: Network device
2002  * @txq: number of queues available
2003  *
2004  * If real_num_tx_queues is changed the tc mappings may no longer be
2005  * valid. To resolve this verify the tc mapping remains valid and if
2006  * not NULL the mapping. With no priorities mapping to this
2007  * offset/count pair it will no longer be used. In the worst case TC0
2008  * is invalid nothing can be done so disable priority mappings. If is
2009  * expected that drivers will fix this mapping if they can before
2010  * calling netif_set_real_num_tx_queues.
2011  */
2012 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2013 {
2014 	int i;
2015 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2016 
2017 	/* If TC0 is invalidated disable TC mapping */
2018 	if (tc->offset + tc->count > txq) {
2019 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2020 		dev->num_tc = 0;
2021 		return;
2022 	}
2023 
2024 	/* Invalidated prio to tc mappings set to TC0 */
2025 	for (i = 1; i < TC_BITMASK + 1; i++) {
2026 		int q = netdev_get_prio_tc_map(dev, i);
2027 
2028 		tc = &dev->tc_to_txq[q];
2029 		if (tc->offset + tc->count > txq) {
2030 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2031 				i, q);
2032 			netdev_set_prio_tc_map(dev, i, 0);
2033 		}
2034 	}
2035 }
2036 
2037 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2038 {
2039 	if (dev->num_tc) {
2040 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2041 		int i;
2042 
2043 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2044 			if ((txq - tc->offset) < tc->count)
2045 				return i;
2046 		}
2047 
2048 		return -1;
2049 	}
2050 
2051 	return 0;
2052 }
2053 EXPORT_SYMBOL(netdev_txq_to_tc);
2054 
2055 #ifdef CONFIG_XPS
2056 static DEFINE_MUTEX(xps_map_mutex);
2057 #define xmap_dereference(P)		\
2058 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2059 
2060 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2061 			     int tci, u16 index)
2062 {
2063 	struct xps_map *map = NULL;
2064 	int pos;
2065 
2066 	if (dev_maps)
2067 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2068 	if (!map)
2069 		return false;
2070 
2071 	for (pos = map->len; pos--;) {
2072 		if (map->queues[pos] != index)
2073 			continue;
2074 
2075 		if (map->len > 1) {
2076 			map->queues[pos] = map->queues[--map->len];
2077 			break;
2078 		}
2079 
2080 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2081 		kfree_rcu(map, rcu);
2082 		return false;
2083 	}
2084 
2085 	return true;
2086 }
2087 
2088 static bool remove_xps_queue_cpu(struct net_device *dev,
2089 				 struct xps_dev_maps *dev_maps,
2090 				 int cpu, u16 offset, u16 count)
2091 {
2092 	int num_tc = dev->num_tc ? : 1;
2093 	bool active = false;
2094 	int tci;
2095 
2096 	for (tci = cpu * num_tc; num_tc--; tci++) {
2097 		int i, j;
2098 
2099 		for (i = count, j = offset; i--; j++) {
2100 			if (!remove_xps_queue(dev_maps, cpu, j))
2101 				break;
2102 		}
2103 
2104 		active |= i < 0;
2105 	}
2106 
2107 	return active;
2108 }
2109 
2110 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2111 				   u16 count)
2112 {
2113 	struct xps_dev_maps *dev_maps;
2114 	int cpu, i;
2115 	bool active = false;
2116 
2117 	mutex_lock(&xps_map_mutex);
2118 	dev_maps = xmap_dereference(dev->xps_maps);
2119 
2120 	if (!dev_maps)
2121 		goto out_no_maps;
2122 
2123 	for_each_possible_cpu(cpu)
2124 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2125 					       offset, count);
2126 
2127 	if (!active) {
2128 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2129 		kfree_rcu(dev_maps, rcu);
2130 	}
2131 
2132 	for (i = offset + (count - 1); count--; i--)
2133 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2134 					     NUMA_NO_NODE);
2135 
2136 out_no_maps:
2137 	mutex_unlock(&xps_map_mutex);
2138 }
2139 
2140 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2141 {
2142 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2143 }
2144 
2145 static struct xps_map *expand_xps_map(struct xps_map *map,
2146 				      int cpu, u16 index)
2147 {
2148 	struct xps_map *new_map;
2149 	int alloc_len = XPS_MIN_MAP_ALLOC;
2150 	int i, pos;
2151 
2152 	for (pos = 0; map && pos < map->len; pos++) {
2153 		if (map->queues[pos] != index)
2154 			continue;
2155 		return map;
2156 	}
2157 
2158 	/* Need to add queue to this CPU's existing map */
2159 	if (map) {
2160 		if (pos < map->alloc_len)
2161 			return map;
2162 
2163 		alloc_len = map->alloc_len * 2;
2164 	}
2165 
2166 	/* Need to allocate new map to store queue on this CPU's map */
2167 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2168 			       cpu_to_node(cpu));
2169 	if (!new_map)
2170 		return NULL;
2171 
2172 	for (i = 0; i < pos; i++)
2173 		new_map->queues[i] = map->queues[i];
2174 	new_map->alloc_len = alloc_len;
2175 	new_map->len = pos;
2176 
2177 	return new_map;
2178 }
2179 
2180 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2181 			u16 index)
2182 {
2183 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2184 	int i, cpu, tci, numa_node_id = -2;
2185 	int maps_sz, num_tc = 1, tc = 0;
2186 	struct xps_map *map, *new_map;
2187 	bool active = false;
2188 
2189 	if (dev->num_tc) {
2190 		num_tc = dev->num_tc;
2191 		tc = netdev_txq_to_tc(dev, index);
2192 		if (tc < 0)
2193 			return -EINVAL;
2194 	}
2195 
2196 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2197 	if (maps_sz < L1_CACHE_BYTES)
2198 		maps_sz = L1_CACHE_BYTES;
2199 
2200 	mutex_lock(&xps_map_mutex);
2201 
2202 	dev_maps = xmap_dereference(dev->xps_maps);
2203 
2204 	/* allocate memory for queue storage */
2205 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2206 		if (!new_dev_maps)
2207 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2208 		if (!new_dev_maps) {
2209 			mutex_unlock(&xps_map_mutex);
2210 			return -ENOMEM;
2211 		}
2212 
2213 		tci = cpu * num_tc + tc;
2214 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2215 				 NULL;
2216 
2217 		map = expand_xps_map(map, cpu, index);
2218 		if (!map)
2219 			goto error;
2220 
2221 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2222 	}
2223 
2224 	if (!new_dev_maps)
2225 		goto out_no_new_maps;
2226 
2227 	for_each_possible_cpu(cpu) {
2228 		/* copy maps belonging to foreign traffic classes */
2229 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2230 			/* fill in the new device map from the old device map */
2231 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2232 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2233 		}
2234 
2235 		/* We need to explicitly update tci as prevous loop
2236 		 * could break out early if dev_maps is NULL.
2237 		 */
2238 		tci = cpu * num_tc + tc;
2239 
2240 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2241 			/* add queue to CPU maps */
2242 			int pos = 0;
2243 
2244 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2245 			while ((pos < map->len) && (map->queues[pos] != index))
2246 				pos++;
2247 
2248 			if (pos == map->len)
2249 				map->queues[map->len++] = index;
2250 #ifdef CONFIG_NUMA
2251 			if (numa_node_id == -2)
2252 				numa_node_id = cpu_to_node(cpu);
2253 			else if (numa_node_id != cpu_to_node(cpu))
2254 				numa_node_id = -1;
2255 #endif
2256 		} else if (dev_maps) {
2257 			/* fill in the new device map from the old device map */
2258 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2259 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2260 		}
2261 
2262 		/* copy maps belonging to foreign traffic classes */
2263 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2264 			/* fill in the new device map from the old device map */
2265 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2266 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2267 		}
2268 	}
2269 
2270 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2271 
2272 	/* Cleanup old maps */
2273 	if (!dev_maps)
2274 		goto out_no_old_maps;
2275 
2276 	for_each_possible_cpu(cpu) {
2277 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2278 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2279 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2280 			if (map && map != new_map)
2281 				kfree_rcu(map, rcu);
2282 		}
2283 	}
2284 
2285 	kfree_rcu(dev_maps, rcu);
2286 
2287 out_no_old_maps:
2288 	dev_maps = new_dev_maps;
2289 	active = true;
2290 
2291 out_no_new_maps:
2292 	/* update Tx queue numa node */
2293 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2294 				     (numa_node_id >= 0) ? numa_node_id :
2295 				     NUMA_NO_NODE);
2296 
2297 	if (!dev_maps)
2298 		goto out_no_maps;
2299 
2300 	/* removes queue from unused CPUs */
2301 	for_each_possible_cpu(cpu) {
2302 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2303 			active |= remove_xps_queue(dev_maps, tci, index);
2304 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2305 			active |= remove_xps_queue(dev_maps, tci, index);
2306 		for (i = num_tc - tc, tci++; --i; tci++)
2307 			active |= remove_xps_queue(dev_maps, tci, index);
2308 	}
2309 
2310 	/* free map if not active */
2311 	if (!active) {
2312 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2313 		kfree_rcu(dev_maps, rcu);
2314 	}
2315 
2316 out_no_maps:
2317 	mutex_unlock(&xps_map_mutex);
2318 
2319 	return 0;
2320 error:
2321 	/* remove any maps that we added */
2322 	for_each_possible_cpu(cpu) {
2323 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2324 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2325 			map = dev_maps ?
2326 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2327 			      NULL;
2328 			if (new_map && new_map != map)
2329 				kfree(new_map);
2330 		}
2331 	}
2332 
2333 	mutex_unlock(&xps_map_mutex);
2334 
2335 	kfree(new_dev_maps);
2336 	return -ENOMEM;
2337 }
2338 EXPORT_SYMBOL(netif_set_xps_queue);
2339 
2340 #endif
2341 void netdev_reset_tc(struct net_device *dev)
2342 {
2343 #ifdef CONFIG_XPS
2344 	netif_reset_xps_queues_gt(dev, 0);
2345 #endif
2346 	dev->num_tc = 0;
2347 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2348 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2349 }
2350 EXPORT_SYMBOL(netdev_reset_tc);
2351 
2352 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2353 {
2354 	if (tc >= dev->num_tc)
2355 		return -EINVAL;
2356 
2357 #ifdef CONFIG_XPS
2358 	netif_reset_xps_queues(dev, offset, count);
2359 #endif
2360 	dev->tc_to_txq[tc].count = count;
2361 	dev->tc_to_txq[tc].offset = offset;
2362 	return 0;
2363 }
2364 EXPORT_SYMBOL(netdev_set_tc_queue);
2365 
2366 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2367 {
2368 	if (num_tc > TC_MAX_QUEUE)
2369 		return -EINVAL;
2370 
2371 #ifdef CONFIG_XPS
2372 	netif_reset_xps_queues_gt(dev, 0);
2373 #endif
2374 	dev->num_tc = num_tc;
2375 	return 0;
2376 }
2377 EXPORT_SYMBOL(netdev_set_num_tc);
2378 
2379 /*
2380  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2381  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2382  */
2383 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2384 {
2385 	int rc;
2386 
2387 	if (txq < 1 || txq > dev->num_tx_queues)
2388 		return -EINVAL;
2389 
2390 	if (dev->reg_state == NETREG_REGISTERED ||
2391 	    dev->reg_state == NETREG_UNREGISTERING) {
2392 		ASSERT_RTNL();
2393 
2394 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2395 						  txq);
2396 		if (rc)
2397 			return rc;
2398 
2399 		if (dev->num_tc)
2400 			netif_setup_tc(dev, txq);
2401 
2402 		if (txq < dev->real_num_tx_queues) {
2403 			qdisc_reset_all_tx_gt(dev, txq);
2404 #ifdef CONFIG_XPS
2405 			netif_reset_xps_queues_gt(dev, txq);
2406 #endif
2407 		}
2408 	}
2409 
2410 	dev->real_num_tx_queues = txq;
2411 	return 0;
2412 }
2413 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2414 
2415 #ifdef CONFIG_SYSFS
2416 /**
2417  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2418  *	@dev: Network device
2419  *	@rxq: Actual number of RX queues
2420  *
2421  *	This must be called either with the rtnl_lock held or before
2422  *	registration of the net device.  Returns 0 on success, or a
2423  *	negative error code.  If called before registration, it always
2424  *	succeeds.
2425  */
2426 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2427 {
2428 	int rc;
2429 
2430 	if (rxq < 1 || rxq > dev->num_rx_queues)
2431 		return -EINVAL;
2432 
2433 	if (dev->reg_state == NETREG_REGISTERED) {
2434 		ASSERT_RTNL();
2435 
2436 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2437 						  rxq);
2438 		if (rc)
2439 			return rc;
2440 	}
2441 
2442 	dev->real_num_rx_queues = rxq;
2443 	return 0;
2444 }
2445 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2446 #endif
2447 
2448 /**
2449  * netif_get_num_default_rss_queues - default number of RSS queues
2450  *
2451  * This routine should set an upper limit on the number of RSS queues
2452  * used by default by multiqueue devices.
2453  */
2454 int netif_get_num_default_rss_queues(void)
2455 {
2456 	return is_kdump_kernel() ?
2457 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2458 }
2459 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2460 
2461 static void __netif_reschedule(struct Qdisc *q)
2462 {
2463 	struct softnet_data *sd;
2464 	unsigned long flags;
2465 
2466 	local_irq_save(flags);
2467 	sd = this_cpu_ptr(&softnet_data);
2468 	q->next_sched = NULL;
2469 	*sd->output_queue_tailp = q;
2470 	sd->output_queue_tailp = &q->next_sched;
2471 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2472 	local_irq_restore(flags);
2473 }
2474 
2475 void __netif_schedule(struct Qdisc *q)
2476 {
2477 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2478 		__netif_reschedule(q);
2479 }
2480 EXPORT_SYMBOL(__netif_schedule);
2481 
2482 struct dev_kfree_skb_cb {
2483 	enum skb_free_reason reason;
2484 };
2485 
2486 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2487 {
2488 	return (struct dev_kfree_skb_cb *)skb->cb;
2489 }
2490 
2491 void netif_schedule_queue(struct netdev_queue *txq)
2492 {
2493 	rcu_read_lock();
2494 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2495 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2496 
2497 		__netif_schedule(q);
2498 	}
2499 	rcu_read_unlock();
2500 }
2501 EXPORT_SYMBOL(netif_schedule_queue);
2502 
2503 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2504 {
2505 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2506 		struct Qdisc *q;
2507 
2508 		rcu_read_lock();
2509 		q = rcu_dereference(dev_queue->qdisc);
2510 		__netif_schedule(q);
2511 		rcu_read_unlock();
2512 	}
2513 }
2514 EXPORT_SYMBOL(netif_tx_wake_queue);
2515 
2516 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2517 {
2518 	unsigned long flags;
2519 
2520 	if (unlikely(!skb))
2521 		return;
2522 
2523 	if (likely(refcount_read(&skb->users) == 1)) {
2524 		smp_rmb();
2525 		refcount_set(&skb->users, 0);
2526 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2527 		return;
2528 	}
2529 	get_kfree_skb_cb(skb)->reason = reason;
2530 	local_irq_save(flags);
2531 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2532 	__this_cpu_write(softnet_data.completion_queue, skb);
2533 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2534 	local_irq_restore(flags);
2535 }
2536 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2537 
2538 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2539 {
2540 	if (in_irq() || irqs_disabled())
2541 		__dev_kfree_skb_irq(skb, reason);
2542 	else
2543 		dev_kfree_skb(skb);
2544 }
2545 EXPORT_SYMBOL(__dev_kfree_skb_any);
2546 
2547 
2548 /**
2549  * netif_device_detach - mark device as removed
2550  * @dev: network device
2551  *
2552  * Mark device as removed from system and therefore no longer available.
2553  */
2554 void netif_device_detach(struct net_device *dev)
2555 {
2556 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2557 	    netif_running(dev)) {
2558 		netif_tx_stop_all_queues(dev);
2559 	}
2560 }
2561 EXPORT_SYMBOL(netif_device_detach);
2562 
2563 /**
2564  * netif_device_attach - mark device as attached
2565  * @dev: network device
2566  *
2567  * Mark device as attached from system and restart if needed.
2568  */
2569 void netif_device_attach(struct net_device *dev)
2570 {
2571 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2572 	    netif_running(dev)) {
2573 		netif_tx_wake_all_queues(dev);
2574 		__netdev_watchdog_up(dev);
2575 	}
2576 }
2577 EXPORT_SYMBOL(netif_device_attach);
2578 
2579 /*
2580  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2581  * to be used as a distribution range.
2582  */
2583 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2584 		  unsigned int num_tx_queues)
2585 {
2586 	u32 hash;
2587 	u16 qoffset = 0;
2588 	u16 qcount = num_tx_queues;
2589 
2590 	if (skb_rx_queue_recorded(skb)) {
2591 		hash = skb_get_rx_queue(skb);
2592 		while (unlikely(hash >= num_tx_queues))
2593 			hash -= num_tx_queues;
2594 		return hash;
2595 	}
2596 
2597 	if (dev->num_tc) {
2598 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2599 
2600 		qoffset = dev->tc_to_txq[tc].offset;
2601 		qcount = dev->tc_to_txq[tc].count;
2602 	}
2603 
2604 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2605 }
2606 EXPORT_SYMBOL(__skb_tx_hash);
2607 
2608 static void skb_warn_bad_offload(const struct sk_buff *skb)
2609 {
2610 	static const netdev_features_t null_features;
2611 	struct net_device *dev = skb->dev;
2612 	const char *name = "";
2613 
2614 	if (!net_ratelimit())
2615 		return;
2616 
2617 	if (dev) {
2618 		if (dev->dev.parent)
2619 			name = dev_driver_string(dev->dev.parent);
2620 		else
2621 			name = netdev_name(dev);
2622 	}
2623 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2624 	     "gso_type=%d ip_summed=%d\n",
2625 	     name, dev ? &dev->features : &null_features,
2626 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2627 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2628 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2629 }
2630 
2631 /*
2632  * Invalidate hardware checksum when packet is to be mangled, and
2633  * complete checksum manually on outgoing path.
2634  */
2635 int skb_checksum_help(struct sk_buff *skb)
2636 {
2637 	__wsum csum;
2638 	int ret = 0, offset;
2639 
2640 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2641 		goto out_set_summed;
2642 
2643 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2644 		skb_warn_bad_offload(skb);
2645 		return -EINVAL;
2646 	}
2647 
2648 	/* Before computing a checksum, we should make sure no frag could
2649 	 * be modified by an external entity : checksum could be wrong.
2650 	 */
2651 	if (skb_has_shared_frag(skb)) {
2652 		ret = __skb_linearize(skb);
2653 		if (ret)
2654 			goto out;
2655 	}
2656 
2657 	offset = skb_checksum_start_offset(skb);
2658 	BUG_ON(offset >= skb_headlen(skb));
2659 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2660 
2661 	offset += skb->csum_offset;
2662 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2663 
2664 	if (skb_cloned(skb) &&
2665 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2666 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2667 		if (ret)
2668 			goto out;
2669 	}
2670 
2671 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2672 out_set_summed:
2673 	skb->ip_summed = CHECKSUM_NONE;
2674 out:
2675 	return ret;
2676 }
2677 EXPORT_SYMBOL(skb_checksum_help);
2678 
2679 int skb_crc32c_csum_help(struct sk_buff *skb)
2680 {
2681 	__le32 crc32c_csum;
2682 	int ret = 0, offset, start;
2683 
2684 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2685 		goto out;
2686 
2687 	if (unlikely(skb_is_gso(skb)))
2688 		goto out;
2689 
2690 	/* Before computing a checksum, we should make sure no frag could
2691 	 * be modified by an external entity : checksum could be wrong.
2692 	 */
2693 	if (unlikely(skb_has_shared_frag(skb))) {
2694 		ret = __skb_linearize(skb);
2695 		if (ret)
2696 			goto out;
2697 	}
2698 	start = skb_checksum_start_offset(skb);
2699 	offset = start + offsetof(struct sctphdr, checksum);
2700 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2701 		ret = -EINVAL;
2702 		goto out;
2703 	}
2704 	if (skb_cloned(skb) &&
2705 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2706 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2707 		if (ret)
2708 			goto out;
2709 	}
2710 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2711 						  skb->len - start, ~(__u32)0,
2712 						  crc32c_csum_stub));
2713 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2714 	skb->ip_summed = CHECKSUM_NONE;
2715 	skb->csum_not_inet = 0;
2716 out:
2717 	return ret;
2718 }
2719 
2720 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2721 {
2722 	__be16 type = skb->protocol;
2723 
2724 	/* Tunnel gso handlers can set protocol to ethernet. */
2725 	if (type == htons(ETH_P_TEB)) {
2726 		struct ethhdr *eth;
2727 
2728 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2729 			return 0;
2730 
2731 		eth = (struct ethhdr *)skb_mac_header(skb);
2732 		type = eth->h_proto;
2733 	}
2734 
2735 	return __vlan_get_protocol(skb, type, depth);
2736 }
2737 
2738 /**
2739  *	skb_mac_gso_segment - mac layer segmentation handler.
2740  *	@skb: buffer to segment
2741  *	@features: features for the output path (see dev->features)
2742  */
2743 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2744 				    netdev_features_t features)
2745 {
2746 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2747 	struct packet_offload *ptype;
2748 	int vlan_depth = skb->mac_len;
2749 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2750 
2751 	if (unlikely(!type))
2752 		return ERR_PTR(-EINVAL);
2753 
2754 	__skb_pull(skb, vlan_depth);
2755 
2756 	rcu_read_lock();
2757 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2758 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2759 			segs = ptype->callbacks.gso_segment(skb, features);
2760 			break;
2761 		}
2762 	}
2763 	rcu_read_unlock();
2764 
2765 	__skb_push(skb, skb->data - skb_mac_header(skb));
2766 
2767 	return segs;
2768 }
2769 EXPORT_SYMBOL(skb_mac_gso_segment);
2770 
2771 
2772 /* openvswitch calls this on rx path, so we need a different check.
2773  */
2774 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2775 {
2776 	if (tx_path)
2777 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2778 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2779 
2780 	return skb->ip_summed == CHECKSUM_NONE;
2781 }
2782 
2783 /**
2784  *	__skb_gso_segment - Perform segmentation on skb.
2785  *	@skb: buffer to segment
2786  *	@features: features for the output path (see dev->features)
2787  *	@tx_path: whether it is called in TX path
2788  *
2789  *	This function segments the given skb and returns a list of segments.
2790  *
2791  *	It may return NULL if the skb requires no segmentation.  This is
2792  *	only possible when GSO is used for verifying header integrity.
2793  *
2794  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2795  */
2796 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2797 				  netdev_features_t features, bool tx_path)
2798 {
2799 	struct sk_buff *segs;
2800 
2801 	if (unlikely(skb_needs_check(skb, tx_path))) {
2802 		int err;
2803 
2804 		/* We're going to init ->check field in TCP or UDP header */
2805 		err = skb_cow_head(skb, 0);
2806 		if (err < 0)
2807 			return ERR_PTR(err);
2808 	}
2809 
2810 	/* Only report GSO partial support if it will enable us to
2811 	 * support segmentation on this frame without needing additional
2812 	 * work.
2813 	 */
2814 	if (features & NETIF_F_GSO_PARTIAL) {
2815 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2816 		struct net_device *dev = skb->dev;
2817 
2818 		partial_features |= dev->features & dev->gso_partial_features;
2819 		if (!skb_gso_ok(skb, features | partial_features))
2820 			features &= ~NETIF_F_GSO_PARTIAL;
2821 	}
2822 
2823 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2824 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2825 
2826 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2827 	SKB_GSO_CB(skb)->encap_level = 0;
2828 
2829 	skb_reset_mac_header(skb);
2830 	skb_reset_mac_len(skb);
2831 
2832 	segs = skb_mac_gso_segment(skb, features);
2833 
2834 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2835 		skb_warn_bad_offload(skb);
2836 
2837 	return segs;
2838 }
2839 EXPORT_SYMBOL(__skb_gso_segment);
2840 
2841 /* Take action when hardware reception checksum errors are detected. */
2842 #ifdef CONFIG_BUG
2843 void netdev_rx_csum_fault(struct net_device *dev)
2844 {
2845 	if (net_ratelimit()) {
2846 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2847 		dump_stack();
2848 	}
2849 }
2850 EXPORT_SYMBOL(netdev_rx_csum_fault);
2851 #endif
2852 
2853 /* Actually, we should eliminate this check as soon as we know, that:
2854  * 1. IOMMU is present and allows to map all the memory.
2855  * 2. No high memory really exists on this machine.
2856  */
2857 
2858 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2859 {
2860 #ifdef CONFIG_HIGHMEM
2861 	int i;
2862 
2863 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2864 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2865 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2866 
2867 			if (PageHighMem(skb_frag_page(frag)))
2868 				return 1;
2869 		}
2870 	}
2871 
2872 	if (PCI_DMA_BUS_IS_PHYS) {
2873 		struct device *pdev = dev->dev.parent;
2874 
2875 		if (!pdev)
2876 			return 0;
2877 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2878 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2879 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2880 
2881 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2882 				return 1;
2883 		}
2884 	}
2885 #endif
2886 	return 0;
2887 }
2888 
2889 /* If MPLS offload request, verify we are testing hardware MPLS features
2890  * instead of standard features for the netdev.
2891  */
2892 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2893 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2894 					   netdev_features_t features,
2895 					   __be16 type)
2896 {
2897 	if (eth_p_mpls(type))
2898 		features &= skb->dev->mpls_features;
2899 
2900 	return features;
2901 }
2902 #else
2903 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2904 					   netdev_features_t features,
2905 					   __be16 type)
2906 {
2907 	return features;
2908 }
2909 #endif
2910 
2911 static netdev_features_t harmonize_features(struct sk_buff *skb,
2912 	netdev_features_t features)
2913 {
2914 	int tmp;
2915 	__be16 type;
2916 
2917 	type = skb_network_protocol(skb, &tmp);
2918 	features = net_mpls_features(skb, features, type);
2919 
2920 	if (skb->ip_summed != CHECKSUM_NONE &&
2921 	    !can_checksum_protocol(features, type)) {
2922 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2923 	}
2924 	if (illegal_highdma(skb->dev, skb))
2925 		features &= ~NETIF_F_SG;
2926 
2927 	return features;
2928 }
2929 
2930 netdev_features_t passthru_features_check(struct sk_buff *skb,
2931 					  struct net_device *dev,
2932 					  netdev_features_t features)
2933 {
2934 	return features;
2935 }
2936 EXPORT_SYMBOL(passthru_features_check);
2937 
2938 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2939 					     struct net_device *dev,
2940 					     netdev_features_t features)
2941 {
2942 	return vlan_features_check(skb, features);
2943 }
2944 
2945 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2946 					    struct net_device *dev,
2947 					    netdev_features_t features)
2948 {
2949 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2950 
2951 	if (gso_segs > dev->gso_max_segs)
2952 		return features & ~NETIF_F_GSO_MASK;
2953 
2954 	/* Support for GSO partial features requires software
2955 	 * intervention before we can actually process the packets
2956 	 * so we need to strip support for any partial features now
2957 	 * and we can pull them back in after we have partially
2958 	 * segmented the frame.
2959 	 */
2960 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2961 		features &= ~dev->gso_partial_features;
2962 
2963 	/* Make sure to clear the IPv4 ID mangling feature if the
2964 	 * IPv4 header has the potential to be fragmented.
2965 	 */
2966 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2967 		struct iphdr *iph = skb->encapsulation ?
2968 				    inner_ip_hdr(skb) : ip_hdr(skb);
2969 
2970 		if (!(iph->frag_off & htons(IP_DF)))
2971 			features &= ~NETIF_F_TSO_MANGLEID;
2972 	}
2973 
2974 	return features;
2975 }
2976 
2977 netdev_features_t netif_skb_features(struct sk_buff *skb)
2978 {
2979 	struct net_device *dev = skb->dev;
2980 	netdev_features_t features = dev->features;
2981 
2982 	if (skb_is_gso(skb))
2983 		features = gso_features_check(skb, dev, features);
2984 
2985 	/* If encapsulation offload request, verify we are testing
2986 	 * hardware encapsulation features instead of standard
2987 	 * features for the netdev
2988 	 */
2989 	if (skb->encapsulation)
2990 		features &= dev->hw_enc_features;
2991 
2992 	if (skb_vlan_tagged(skb))
2993 		features = netdev_intersect_features(features,
2994 						     dev->vlan_features |
2995 						     NETIF_F_HW_VLAN_CTAG_TX |
2996 						     NETIF_F_HW_VLAN_STAG_TX);
2997 
2998 	if (dev->netdev_ops->ndo_features_check)
2999 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3000 								features);
3001 	else
3002 		features &= dflt_features_check(skb, dev, features);
3003 
3004 	return harmonize_features(skb, features);
3005 }
3006 EXPORT_SYMBOL(netif_skb_features);
3007 
3008 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3009 		    struct netdev_queue *txq, bool more)
3010 {
3011 	unsigned int len;
3012 	int rc;
3013 
3014 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3015 		dev_queue_xmit_nit(skb, dev);
3016 
3017 	len = skb->len;
3018 	trace_net_dev_start_xmit(skb, dev);
3019 	rc = netdev_start_xmit(skb, dev, txq, more);
3020 	trace_net_dev_xmit(skb, rc, dev, len);
3021 
3022 	return rc;
3023 }
3024 
3025 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3026 				    struct netdev_queue *txq, int *ret)
3027 {
3028 	struct sk_buff *skb = first;
3029 	int rc = NETDEV_TX_OK;
3030 
3031 	while (skb) {
3032 		struct sk_buff *next = skb->next;
3033 
3034 		skb->next = NULL;
3035 		rc = xmit_one(skb, dev, txq, next != NULL);
3036 		if (unlikely(!dev_xmit_complete(rc))) {
3037 			skb->next = next;
3038 			goto out;
3039 		}
3040 
3041 		skb = next;
3042 		if (netif_xmit_stopped(txq) && skb) {
3043 			rc = NETDEV_TX_BUSY;
3044 			break;
3045 		}
3046 	}
3047 
3048 out:
3049 	*ret = rc;
3050 	return skb;
3051 }
3052 
3053 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3054 					  netdev_features_t features)
3055 {
3056 	if (skb_vlan_tag_present(skb) &&
3057 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3058 		skb = __vlan_hwaccel_push_inside(skb);
3059 	return skb;
3060 }
3061 
3062 int skb_csum_hwoffload_help(struct sk_buff *skb,
3063 			    const netdev_features_t features)
3064 {
3065 	if (unlikely(skb->csum_not_inet))
3066 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3067 			skb_crc32c_csum_help(skb);
3068 
3069 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3070 }
3071 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3072 
3073 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3074 {
3075 	netdev_features_t features;
3076 
3077 	features = netif_skb_features(skb);
3078 	skb = validate_xmit_vlan(skb, features);
3079 	if (unlikely(!skb))
3080 		goto out_null;
3081 
3082 	if (netif_needs_gso(skb, features)) {
3083 		struct sk_buff *segs;
3084 
3085 		segs = skb_gso_segment(skb, features);
3086 		if (IS_ERR(segs)) {
3087 			goto out_kfree_skb;
3088 		} else if (segs) {
3089 			consume_skb(skb);
3090 			skb = segs;
3091 		}
3092 	} else {
3093 		if (skb_needs_linearize(skb, features) &&
3094 		    __skb_linearize(skb))
3095 			goto out_kfree_skb;
3096 
3097 		/* If packet is not checksummed and device does not
3098 		 * support checksumming for this protocol, complete
3099 		 * checksumming here.
3100 		 */
3101 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3102 			if (skb->encapsulation)
3103 				skb_set_inner_transport_header(skb,
3104 							       skb_checksum_start_offset(skb));
3105 			else
3106 				skb_set_transport_header(skb,
3107 							 skb_checksum_start_offset(skb));
3108 			if (skb_csum_hwoffload_help(skb, features))
3109 				goto out_kfree_skb;
3110 		}
3111 	}
3112 
3113 	skb = validate_xmit_xfrm(skb, features, again);
3114 
3115 	return skb;
3116 
3117 out_kfree_skb:
3118 	kfree_skb(skb);
3119 out_null:
3120 	atomic_long_inc(&dev->tx_dropped);
3121 	return NULL;
3122 }
3123 
3124 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3125 {
3126 	struct sk_buff *next, *head = NULL, *tail;
3127 
3128 	for (; skb != NULL; skb = next) {
3129 		next = skb->next;
3130 		skb->next = NULL;
3131 
3132 		/* in case skb wont be segmented, point to itself */
3133 		skb->prev = skb;
3134 
3135 		skb = validate_xmit_skb(skb, dev, again);
3136 		if (!skb)
3137 			continue;
3138 
3139 		if (!head)
3140 			head = skb;
3141 		else
3142 			tail->next = skb;
3143 		/* If skb was segmented, skb->prev points to
3144 		 * the last segment. If not, it still contains skb.
3145 		 */
3146 		tail = skb->prev;
3147 	}
3148 	return head;
3149 }
3150 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3151 
3152 static void qdisc_pkt_len_init(struct sk_buff *skb)
3153 {
3154 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3155 
3156 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3157 
3158 	/* To get more precise estimation of bytes sent on wire,
3159 	 * we add to pkt_len the headers size of all segments
3160 	 */
3161 	if (shinfo->gso_size)  {
3162 		unsigned int hdr_len;
3163 		u16 gso_segs = shinfo->gso_segs;
3164 
3165 		/* mac layer + network layer */
3166 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3167 
3168 		/* + transport layer */
3169 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3170 			const struct tcphdr *th;
3171 			struct tcphdr _tcphdr;
3172 
3173 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3174 						sizeof(_tcphdr), &_tcphdr);
3175 			if (likely(th))
3176 				hdr_len += __tcp_hdrlen(th);
3177 		} else {
3178 			struct udphdr _udphdr;
3179 
3180 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3181 					       sizeof(_udphdr), &_udphdr))
3182 				hdr_len += sizeof(struct udphdr);
3183 		}
3184 
3185 		if (shinfo->gso_type & SKB_GSO_DODGY)
3186 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3187 						shinfo->gso_size);
3188 
3189 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3190 	}
3191 }
3192 
3193 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3194 				 struct net_device *dev,
3195 				 struct netdev_queue *txq)
3196 {
3197 	spinlock_t *root_lock = qdisc_lock(q);
3198 	struct sk_buff *to_free = NULL;
3199 	bool contended;
3200 	int rc;
3201 
3202 	qdisc_calculate_pkt_len(skb, q);
3203 
3204 	if (q->flags & TCQ_F_NOLOCK) {
3205 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3206 			__qdisc_drop(skb, &to_free);
3207 			rc = NET_XMIT_DROP;
3208 		} else {
3209 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3210 			__qdisc_run(q);
3211 		}
3212 
3213 		if (unlikely(to_free))
3214 			kfree_skb_list(to_free);
3215 		return rc;
3216 	}
3217 
3218 	/*
3219 	 * Heuristic to force contended enqueues to serialize on a
3220 	 * separate lock before trying to get qdisc main lock.
3221 	 * This permits qdisc->running owner to get the lock more
3222 	 * often and dequeue packets faster.
3223 	 */
3224 	contended = qdisc_is_running(q);
3225 	if (unlikely(contended))
3226 		spin_lock(&q->busylock);
3227 
3228 	spin_lock(root_lock);
3229 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3230 		__qdisc_drop(skb, &to_free);
3231 		rc = NET_XMIT_DROP;
3232 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3233 		   qdisc_run_begin(q)) {
3234 		/*
3235 		 * This is a work-conserving queue; there are no old skbs
3236 		 * waiting to be sent out; and the qdisc is not running -
3237 		 * xmit the skb directly.
3238 		 */
3239 
3240 		qdisc_bstats_update(q, skb);
3241 
3242 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3243 			if (unlikely(contended)) {
3244 				spin_unlock(&q->busylock);
3245 				contended = false;
3246 			}
3247 			__qdisc_run(q);
3248 		}
3249 
3250 		qdisc_run_end(q);
3251 		rc = NET_XMIT_SUCCESS;
3252 	} else {
3253 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3254 		if (qdisc_run_begin(q)) {
3255 			if (unlikely(contended)) {
3256 				spin_unlock(&q->busylock);
3257 				contended = false;
3258 			}
3259 			__qdisc_run(q);
3260 			qdisc_run_end(q);
3261 		}
3262 	}
3263 	spin_unlock(root_lock);
3264 	if (unlikely(to_free))
3265 		kfree_skb_list(to_free);
3266 	if (unlikely(contended))
3267 		spin_unlock(&q->busylock);
3268 	return rc;
3269 }
3270 
3271 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3272 static void skb_update_prio(struct sk_buff *skb)
3273 {
3274 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3275 
3276 	if (!skb->priority && skb->sk && map) {
3277 		unsigned int prioidx =
3278 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3279 
3280 		if (prioidx < map->priomap_len)
3281 			skb->priority = map->priomap[prioidx];
3282 	}
3283 }
3284 #else
3285 #define skb_update_prio(skb)
3286 #endif
3287 
3288 DEFINE_PER_CPU(int, xmit_recursion);
3289 EXPORT_SYMBOL(xmit_recursion);
3290 
3291 /**
3292  *	dev_loopback_xmit - loop back @skb
3293  *	@net: network namespace this loopback is happening in
3294  *	@sk:  sk needed to be a netfilter okfn
3295  *	@skb: buffer to transmit
3296  */
3297 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3298 {
3299 	skb_reset_mac_header(skb);
3300 	__skb_pull(skb, skb_network_offset(skb));
3301 	skb->pkt_type = PACKET_LOOPBACK;
3302 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3303 	WARN_ON(!skb_dst(skb));
3304 	skb_dst_force(skb);
3305 	netif_rx_ni(skb);
3306 	return 0;
3307 }
3308 EXPORT_SYMBOL(dev_loopback_xmit);
3309 
3310 #ifdef CONFIG_NET_EGRESS
3311 static struct sk_buff *
3312 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3313 {
3314 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3315 	struct tcf_result cl_res;
3316 
3317 	if (!miniq)
3318 		return skb;
3319 
3320 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3321 	mini_qdisc_bstats_cpu_update(miniq, skb);
3322 
3323 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3324 	case TC_ACT_OK:
3325 	case TC_ACT_RECLASSIFY:
3326 		skb->tc_index = TC_H_MIN(cl_res.classid);
3327 		break;
3328 	case TC_ACT_SHOT:
3329 		mini_qdisc_qstats_cpu_drop(miniq);
3330 		*ret = NET_XMIT_DROP;
3331 		kfree_skb(skb);
3332 		return NULL;
3333 	case TC_ACT_STOLEN:
3334 	case TC_ACT_QUEUED:
3335 	case TC_ACT_TRAP:
3336 		*ret = NET_XMIT_SUCCESS;
3337 		consume_skb(skb);
3338 		return NULL;
3339 	case TC_ACT_REDIRECT:
3340 		/* No need to push/pop skb's mac_header here on egress! */
3341 		skb_do_redirect(skb);
3342 		*ret = NET_XMIT_SUCCESS;
3343 		return NULL;
3344 	default:
3345 		break;
3346 	}
3347 
3348 	return skb;
3349 }
3350 #endif /* CONFIG_NET_EGRESS */
3351 
3352 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3353 {
3354 #ifdef CONFIG_XPS
3355 	struct xps_dev_maps *dev_maps;
3356 	struct xps_map *map;
3357 	int queue_index = -1;
3358 
3359 	rcu_read_lock();
3360 	dev_maps = rcu_dereference(dev->xps_maps);
3361 	if (dev_maps) {
3362 		unsigned int tci = skb->sender_cpu - 1;
3363 
3364 		if (dev->num_tc) {
3365 			tci *= dev->num_tc;
3366 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3367 		}
3368 
3369 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3370 		if (map) {
3371 			if (map->len == 1)
3372 				queue_index = map->queues[0];
3373 			else
3374 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3375 									   map->len)];
3376 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3377 				queue_index = -1;
3378 		}
3379 	}
3380 	rcu_read_unlock();
3381 
3382 	return queue_index;
3383 #else
3384 	return -1;
3385 #endif
3386 }
3387 
3388 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3389 {
3390 	struct sock *sk = skb->sk;
3391 	int queue_index = sk_tx_queue_get(sk);
3392 
3393 	if (queue_index < 0 || skb->ooo_okay ||
3394 	    queue_index >= dev->real_num_tx_queues) {
3395 		int new_index = get_xps_queue(dev, skb);
3396 
3397 		if (new_index < 0)
3398 			new_index = skb_tx_hash(dev, skb);
3399 
3400 		if (queue_index != new_index && sk &&
3401 		    sk_fullsock(sk) &&
3402 		    rcu_access_pointer(sk->sk_dst_cache))
3403 			sk_tx_queue_set(sk, new_index);
3404 
3405 		queue_index = new_index;
3406 	}
3407 
3408 	return queue_index;
3409 }
3410 
3411 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3412 				    struct sk_buff *skb,
3413 				    void *accel_priv)
3414 {
3415 	int queue_index = 0;
3416 
3417 #ifdef CONFIG_XPS
3418 	u32 sender_cpu = skb->sender_cpu - 1;
3419 
3420 	if (sender_cpu >= (u32)NR_CPUS)
3421 		skb->sender_cpu = raw_smp_processor_id() + 1;
3422 #endif
3423 
3424 	if (dev->real_num_tx_queues != 1) {
3425 		const struct net_device_ops *ops = dev->netdev_ops;
3426 
3427 		if (ops->ndo_select_queue)
3428 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3429 							    __netdev_pick_tx);
3430 		else
3431 			queue_index = __netdev_pick_tx(dev, skb);
3432 
3433 		queue_index = netdev_cap_txqueue(dev, queue_index);
3434 	}
3435 
3436 	skb_set_queue_mapping(skb, queue_index);
3437 	return netdev_get_tx_queue(dev, queue_index);
3438 }
3439 
3440 /**
3441  *	__dev_queue_xmit - transmit a buffer
3442  *	@skb: buffer to transmit
3443  *	@accel_priv: private data used for L2 forwarding offload
3444  *
3445  *	Queue a buffer for transmission to a network device. The caller must
3446  *	have set the device and priority and built the buffer before calling
3447  *	this function. The function can be called from an interrupt.
3448  *
3449  *	A negative errno code is returned on a failure. A success does not
3450  *	guarantee the frame will be transmitted as it may be dropped due
3451  *	to congestion or traffic shaping.
3452  *
3453  * -----------------------------------------------------------------------------------
3454  *      I notice this method can also return errors from the queue disciplines,
3455  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3456  *      be positive.
3457  *
3458  *      Regardless of the return value, the skb is consumed, so it is currently
3459  *      difficult to retry a send to this method.  (You can bump the ref count
3460  *      before sending to hold a reference for retry if you are careful.)
3461  *
3462  *      When calling this method, interrupts MUST be enabled.  This is because
3463  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3464  *          --BLG
3465  */
3466 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3467 {
3468 	struct net_device *dev = skb->dev;
3469 	struct netdev_queue *txq;
3470 	struct Qdisc *q;
3471 	int rc = -ENOMEM;
3472 	bool again = false;
3473 
3474 	skb_reset_mac_header(skb);
3475 
3476 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3477 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3478 
3479 	/* Disable soft irqs for various locks below. Also
3480 	 * stops preemption for RCU.
3481 	 */
3482 	rcu_read_lock_bh();
3483 
3484 	skb_update_prio(skb);
3485 
3486 	qdisc_pkt_len_init(skb);
3487 #ifdef CONFIG_NET_CLS_ACT
3488 	skb->tc_at_ingress = 0;
3489 # ifdef CONFIG_NET_EGRESS
3490 	if (static_key_false(&egress_needed)) {
3491 		skb = sch_handle_egress(skb, &rc, dev);
3492 		if (!skb)
3493 			goto out;
3494 	}
3495 # endif
3496 #endif
3497 	/* If device/qdisc don't need skb->dst, release it right now while
3498 	 * its hot in this cpu cache.
3499 	 */
3500 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3501 		skb_dst_drop(skb);
3502 	else
3503 		skb_dst_force(skb);
3504 
3505 	txq = netdev_pick_tx(dev, skb, accel_priv);
3506 	q = rcu_dereference_bh(txq->qdisc);
3507 
3508 	trace_net_dev_queue(skb);
3509 	if (q->enqueue) {
3510 		rc = __dev_xmit_skb(skb, q, dev, txq);
3511 		goto out;
3512 	}
3513 
3514 	/* The device has no queue. Common case for software devices:
3515 	 * loopback, all the sorts of tunnels...
3516 
3517 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3518 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3519 	 * counters.)
3520 	 * However, it is possible, that they rely on protection
3521 	 * made by us here.
3522 
3523 	 * Check this and shot the lock. It is not prone from deadlocks.
3524 	 *Either shot noqueue qdisc, it is even simpler 8)
3525 	 */
3526 	if (dev->flags & IFF_UP) {
3527 		int cpu = smp_processor_id(); /* ok because BHs are off */
3528 
3529 		if (txq->xmit_lock_owner != cpu) {
3530 			if (unlikely(__this_cpu_read(xmit_recursion) >
3531 				     XMIT_RECURSION_LIMIT))
3532 				goto recursion_alert;
3533 
3534 			skb = validate_xmit_skb(skb, dev, &again);
3535 			if (!skb)
3536 				goto out;
3537 
3538 			HARD_TX_LOCK(dev, txq, cpu);
3539 
3540 			if (!netif_xmit_stopped(txq)) {
3541 				__this_cpu_inc(xmit_recursion);
3542 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3543 				__this_cpu_dec(xmit_recursion);
3544 				if (dev_xmit_complete(rc)) {
3545 					HARD_TX_UNLOCK(dev, txq);
3546 					goto out;
3547 				}
3548 			}
3549 			HARD_TX_UNLOCK(dev, txq);
3550 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3551 					     dev->name);
3552 		} else {
3553 			/* Recursion is detected! It is possible,
3554 			 * unfortunately
3555 			 */
3556 recursion_alert:
3557 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3558 					     dev->name);
3559 		}
3560 	}
3561 
3562 	rc = -ENETDOWN;
3563 	rcu_read_unlock_bh();
3564 
3565 	atomic_long_inc(&dev->tx_dropped);
3566 	kfree_skb_list(skb);
3567 	return rc;
3568 out:
3569 	rcu_read_unlock_bh();
3570 	return rc;
3571 }
3572 
3573 int dev_queue_xmit(struct sk_buff *skb)
3574 {
3575 	return __dev_queue_xmit(skb, NULL);
3576 }
3577 EXPORT_SYMBOL(dev_queue_xmit);
3578 
3579 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3580 {
3581 	return __dev_queue_xmit(skb, accel_priv);
3582 }
3583 EXPORT_SYMBOL(dev_queue_xmit_accel);
3584 
3585 
3586 /*************************************************************************
3587  *			Receiver routines
3588  *************************************************************************/
3589 
3590 int netdev_max_backlog __read_mostly = 1000;
3591 EXPORT_SYMBOL(netdev_max_backlog);
3592 
3593 int netdev_tstamp_prequeue __read_mostly = 1;
3594 int netdev_budget __read_mostly = 300;
3595 unsigned int __read_mostly netdev_budget_usecs = 2000;
3596 int weight_p __read_mostly = 64;           /* old backlog weight */
3597 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3598 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3599 int dev_rx_weight __read_mostly = 64;
3600 int dev_tx_weight __read_mostly = 64;
3601 
3602 /* Called with irq disabled */
3603 static inline void ____napi_schedule(struct softnet_data *sd,
3604 				     struct napi_struct *napi)
3605 {
3606 	list_add_tail(&napi->poll_list, &sd->poll_list);
3607 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3608 }
3609 
3610 #ifdef CONFIG_RPS
3611 
3612 /* One global table that all flow-based protocols share. */
3613 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3614 EXPORT_SYMBOL(rps_sock_flow_table);
3615 u32 rps_cpu_mask __read_mostly;
3616 EXPORT_SYMBOL(rps_cpu_mask);
3617 
3618 struct static_key rps_needed __read_mostly;
3619 EXPORT_SYMBOL(rps_needed);
3620 struct static_key rfs_needed __read_mostly;
3621 EXPORT_SYMBOL(rfs_needed);
3622 
3623 static struct rps_dev_flow *
3624 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3625 	    struct rps_dev_flow *rflow, u16 next_cpu)
3626 {
3627 	if (next_cpu < nr_cpu_ids) {
3628 #ifdef CONFIG_RFS_ACCEL
3629 		struct netdev_rx_queue *rxqueue;
3630 		struct rps_dev_flow_table *flow_table;
3631 		struct rps_dev_flow *old_rflow;
3632 		u32 flow_id;
3633 		u16 rxq_index;
3634 		int rc;
3635 
3636 		/* Should we steer this flow to a different hardware queue? */
3637 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3638 		    !(dev->features & NETIF_F_NTUPLE))
3639 			goto out;
3640 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3641 		if (rxq_index == skb_get_rx_queue(skb))
3642 			goto out;
3643 
3644 		rxqueue = dev->_rx + rxq_index;
3645 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3646 		if (!flow_table)
3647 			goto out;
3648 		flow_id = skb_get_hash(skb) & flow_table->mask;
3649 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3650 							rxq_index, flow_id);
3651 		if (rc < 0)
3652 			goto out;
3653 		old_rflow = rflow;
3654 		rflow = &flow_table->flows[flow_id];
3655 		rflow->filter = rc;
3656 		if (old_rflow->filter == rflow->filter)
3657 			old_rflow->filter = RPS_NO_FILTER;
3658 	out:
3659 #endif
3660 		rflow->last_qtail =
3661 			per_cpu(softnet_data, next_cpu).input_queue_head;
3662 	}
3663 
3664 	rflow->cpu = next_cpu;
3665 	return rflow;
3666 }
3667 
3668 /*
3669  * get_rps_cpu is called from netif_receive_skb and returns the target
3670  * CPU from the RPS map of the receiving queue for a given skb.
3671  * rcu_read_lock must be held on entry.
3672  */
3673 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3674 		       struct rps_dev_flow **rflowp)
3675 {
3676 	const struct rps_sock_flow_table *sock_flow_table;
3677 	struct netdev_rx_queue *rxqueue = dev->_rx;
3678 	struct rps_dev_flow_table *flow_table;
3679 	struct rps_map *map;
3680 	int cpu = -1;
3681 	u32 tcpu;
3682 	u32 hash;
3683 
3684 	if (skb_rx_queue_recorded(skb)) {
3685 		u16 index = skb_get_rx_queue(skb);
3686 
3687 		if (unlikely(index >= dev->real_num_rx_queues)) {
3688 			WARN_ONCE(dev->real_num_rx_queues > 1,
3689 				  "%s received packet on queue %u, but number "
3690 				  "of RX queues is %u\n",
3691 				  dev->name, index, dev->real_num_rx_queues);
3692 			goto done;
3693 		}
3694 		rxqueue += index;
3695 	}
3696 
3697 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3698 
3699 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3700 	map = rcu_dereference(rxqueue->rps_map);
3701 	if (!flow_table && !map)
3702 		goto done;
3703 
3704 	skb_reset_network_header(skb);
3705 	hash = skb_get_hash(skb);
3706 	if (!hash)
3707 		goto done;
3708 
3709 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3710 	if (flow_table && sock_flow_table) {
3711 		struct rps_dev_flow *rflow;
3712 		u32 next_cpu;
3713 		u32 ident;
3714 
3715 		/* First check into global flow table if there is a match */
3716 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3717 		if ((ident ^ hash) & ~rps_cpu_mask)
3718 			goto try_rps;
3719 
3720 		next_cpu = ident & rps_cpu_mask;
3721 
3722 		/* OK, now we know there is a match,
3723 		 * we can look at the local (per receive queue) flow table
3724 		 */
3725 		rflow = &flow_table->flows[hash & flow_table->mask];
3726 		tcpu = rflow->cpu;
3727 
3728 		/*
3729 		 * If the desired CPU (where last recvmsg was done) is
3730 		 * different from current CPU (one in the rx-queue flow
3731 		 * table entry), switch if one of the following holds:
3732 		 *   - Current CPU is unset (>= nr_cpu_ids).
3733 		 *   - Current CPU is offline.
3734 		 *   - The current CPU's queue tail has advanced beyond the
3735 		 *     last packet that was enqueued using this table entry.
3736 		 *     This guarantees that all previous packets for the flow
3737 		 *     have been dequeued, thus preserving in order delivery.
3738 		 */
3739 		if (unlikely(tcpu != next_cpu) &&
3740 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3741 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3742 		      rflow->last_qtail)) >= 0)) {
3743 			tcpu = next_cpu;
3744 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3745 		}
3746 
3747 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3748 			*rflowp = rflow;
3749 			cpu = tcpu;
3750 			goto done;
3751 		}
3752 	}
3753 
3754 try_rps:
3755 
3756 	if (map) {
3757 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3758 		if (cpu_online(tcpu)) {
3759 			cpu = tcpu;
3760 			goto done;
3761 		}
3762 	}
3763 
3764 done:
3765 	return cpu;
3766 }
3767 
3768 #ifdef CONFIG_RFS_ACCEL
3769 
3770 /**
3771  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3772  * @dev: Device on which the filter was set
3773  * @rxq_index: RX queue index
3774  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3775  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3776  *
3777  * Drivers that implement ndo_rx_flow_steer() should periodically call
3778  * this function for each installed filter and remove the filters for
3779  * which it returns %true.
3780  */
3781 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3782 			 u32 flow_id, u16 filter_id)
3783 {
3784 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3785 	struct rps_dev_flow_table *flow_table;
3786 	struct rps_dev_flow *rflow;
3787 	bool expire = true;
3788 	unsigned int cpu;
3789 
3790 	rcu_read_lock();
3791 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3792 	if (flow_table && flow_id <= flow_table->mask) {
3793 		rflow = &flow_table->flows[flow_id];
3794 		cpu = READ_ONCE(rflow->cpu);
3795 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3796 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3797 			   rflow->last_qtail) <
3798 		     (int)(10 * flow_table->mask)))
3799 			expire = false;
3800 	}
3801 	rcu_read_unlock();
3802 	return expire;
3803 }
3804 EXPORT_SYMBOL(rps_may_expire_flow);
3805 
3806 #endif /* CONFIG_RFS_ACCEL */
3807 
3808 /* Called from hardirq (IPI) context */
3809 static void rps_trigger_softirq(void *data)
3810 {
3811 	struct softnet_data *sd = data;
3812 
3813 	____napi_schedule(sd, &sd->backlog);
3814 	sd->received_rps++;
3815 }
3816 
3817 #endif /* CONFIG_RPS */
3818 
3819 /*
3820  * Check if this softnet_data structure is another cpu one
3821  * If yes, queue it to our IPI list and return 1
3822  * If no, return 0
3823  */
3824 static int rps_ipi_queued(struct softnet_data *sd)
3825 {
3826 #ifdef CONFIG_RPS
3827 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3828 
3829 	if (sd != mysd) {
3830 		sd->rps_ipi_next = mysd->rps_ipi_list;
3831 		mysd->rps_ipi_list = sd;
3832 
3833 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3834 		return 1;
3835 	}
3836 #endif /* CONFIG_RPS */
3837 	return 0;
3838 }
3839 
3840 #ifdef CONFIG_NET_FLOW_LIMIT
3841 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3842 #endif
3843 
3844 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3845 {
3846 #ifdef CONFIG_NET_FLOW_LIMIT
3847 	struct sd_flow_limit *fl;
3848 	struct softnet_data *sd;
3849 	unsigned int old_flow, new_flow;
3850 
3851 	if (qlen < (netdev_max_backlog >> 1))
3852 		return false;
3853 
3854 	sd = this_cpu_ptr(&softnet_data);
3855 
3856 	rcu_read_lock();
3857 	fl = rcu_dereference(sd->flow_limit);
3858 	if (fl) {
3859 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3860 		old_flow = fl->history[fl->history_head];
3861 		fl->history[fl->history_head] = new_flow;
3862 
3863 		fl->history_head++;
3864 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3865 
3866 		if (likely(fl->buckets[old_flow]))
3867 			fl->buckets[old_flow]--;
3868 
3869 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3870 			fl->count++;
3871 			rcu_read_unlock();
3872 			return true;
3873 		}
3874 	}
3875 	rcu_read_unlock();
3876 #endif
3877 	return false;
3878 }
3879 
3880 /*
3881  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3882  * queue (may be a remote CPU queue).
3883  */
3884 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3885 			      unsigned int *qtail)
3886 {
3887 	struct softnet_data *sd;
3888 	unsigned long flags;
3889 	unsigned int qlen;
3890 
3891 	sd = &per_cpu(softnet_data, cpu);
3892 
3893 	local_irq_save(flags);
3894 
3895 	rps_lock(sd);
3896 	if (!netif_running(skb->dev))
3897 		goto drop;
3898 	qlen = skb_queue_len(&sd->input_pkt_queue);
3899 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3900 		if (qlen) {
3901 enqueue:
3902 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3903 			input_queue_tail_incr_save(sd, qtail);
3904 			rps_unlock(sd);
3905 			local_irq_restore(flags);
3906 			return NET_RX_SUCCESS;
3907 		}
3908 
3909 		/* Schedule NAPI for backlog device
3910 		 * We can use non atomic operation since we own the queue lock
3911 		 */
3912 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3913 			if (!rps_ipi_queued(sd))
3914 				____napi_schedule(sd, &sd->backlog);
3915 		}
3916 		goto enqueue;
3917 	}
3918 
3919 drop:
3920 	sd->dropped++;
3921 	rps_unlock(sd);
3922 
3923 	local_irq_restore(flags);
3924 
3925 	atomic_long_inc(&skb->dev->rx_dropped);
3926 	kfree_skb(skb);
3927 	return NET_RX_DROP;
3928 }
3929 
3930 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3931 {
3932 	struct net_device *dev = skb->dev;
3933 	struct netdev_rx_queue *rxqueue;
3934 
3935 	rxqueue = dev->_rx;
3936 
3937 	if (skb_rx_queue_recorded(skb)) {
3938 		u16 index = skb_get_rx_queue(skb);
3939 
3940 		if (unlikely(index >= dev->real_num_rx_queues)) {
3941 			WARN_ONCE(dev->real_num_rx_queues > 1,
3942 				  "%s received packet on queue %u, but number "
3943 				  "of RX queues is %u\n",
3944 				  dev->name, index, dev->real_num_rx_queues);
3945 
3946 			return rxqueue; /* Return first rxqueue */
3947 		}
3948 		rxqueue += index;
3949 	}
3950 	return rxqueue;
3951 }
3952 
3953 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3954 				     struct bpf_prog *xdp_prog)
3955 {
3956 	struct netdev_rx_queue *rxqueue;
3957 	u32 metalen, act = XDP_DROP;
3958 	struct xdp_buff xdp;
3959 	void *orig_data;
3960 	int hlen, off;
3961 	u32 mac_len;
3962 
3963 	/* Reinjected packets coming from act_mirred or similar should
3964 	 * not get XDP generic processing.
3965 	 */
3966 	if (skb_cloned(skb))
3967 		return XDP_PASS;
3968 
3969 	/* XDP packets must be linear and must have sufficient headroom
3970 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3971 	 * native XDP provides, thus we need to do it here as well.
3972 	 */
3973 	if (skb_is_nonlinear(skb) ||
3974 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3975 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3976 		int troom = skb->tail + skb->data_len - skb->end;
3977 
3978 		/* In case we have to go down the path and also linearize,
3979 		 * then lets do the pskb_expand_head() work just once here.
3980 		 */
3981 		if (pskb_expand_head(skb,
3982 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3983 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3984 			goto do_drop;
3985 		if (skb_linearize(skb))
3986 			goto do_drop;
3987 	}
3988 
3989 	/* The XDP program wants to see the packet starting at the MAC
3990 	 * header.
3991 	 */
3992 	mac_len = skb->data - skb_mac_header(skb);
3993 	hlen = skb_headlen(skb) + mac_len;
3994 	xdp.data = skb->data - mac_len;
3995 	xdp.data_meta = xdp.data;
3996 	xdp.data_end = xdp.data + hlen;
3997 	xdp.data_hard_start = skb->data - skb_headroom(skb);
3998 	orig_data = xdp.data;
3999 
4000 	rxqueue = netif_get_rxqueue(skb);
4001 	xdp.rxq = &rxqueue->xdp_rxq;
4002 
4003 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
4004 
4005 	off = xdp.data - orig_data;
4006 	if (off > 0)
4007 		__skb_pull(skb, off);
4008 	else if (off < 0)
4009 		__skb_push(skb, -off);
4010 	skb->mac_header += off;
4011 
4012 	switch (act) {
4013 	case XDP_REDIRECT:
4014 	case XDP_TX:
4015 		__skb_push(skb, mac_len);
4016 		break;
4017 	case XDP_PASS:
4018 		metalen = xdp.data - xdp.data_meta;
4019 		if (metalen)
4020 			skb_metadata_set(skb, metalen);
4021 		break;
4022 	default:
4023 		bpf_warn_invalid_xdp_action(act);
4024 		/* fall through */
4025 	case XDP_ABORTED:
4026 		trace_xdp_exception(skb->dev, xdp_prog, act);
4027 		/* fall through */
4028 	case XDP_DROP:
4029 	do_drop:
4030 		kfree_skb(skb);
4031 		break;
4032 	}
4033 
4034 	return act;
4035 }
4036 
4037 /* When doing generic XDP we have to bypass the qdisc layer and the
4038  * network taps in order to match in-driver-XDP behavior.
4039  */
4040 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4041 {
4042 	struct net_device *dev = skb->dev;
4043 	struct netdev_queue *txq;
4044 	bool free_skb = true;
4045 	int cpu, rc;
4046 
4047 	txq = netdev_pick_tx(dev, skb, NULL);
4048 	cpu = smp_processor_id();
4049 	HARD_TX_LOCK(dev, txq, cpu);
4050 	if (!netif_xmit_stopped(txq)) {
4051 		rc = netdev_start_xmit(skb, dev, txq, 0);
4052 		if (dev_xmit_complete(rc))
4053 			free_skb = false;
4054 	}
4055 	HARD_TX_UNLOCK(dev, txq);
4056 	if (free_skb) {
4057 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4058 		kfree_skb(skb);
4059 	}
4060 }
4061 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4062 
4063 static struct static_key generic_xdp_needed __read_mostly;
4064 
4065 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4066 {
4067 	if (xdp_prog) {
4068 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4069 		int err;
4070 
4071 		if (act != XDP_PASS) {
4072 			switch (act) {
4073 			case XDP_REDIRECT:
4074 				err = xdp_do_generic_redirect(skb->dev, skb,
4075 							      xdp_prog);
4076 				if (err)
4077 					goto out_redir;
4078 			/* fallthru to submit skb */
4079 			case XDP_TX:
4080 				generic_xdp_tx(skb, xdp_prog);
4081 				break;
4082 			}
4083 			return XDP_DROP;
4084 		}
4085 	}
4086 	return XDP_PASS;
4087 out_redir:
4088 	kfree_skb(skb);
4089 	return XDP_DROP;
4090 }
4091 EXPORT_SYMBOL_GPL(do_xdp_generic);
4092 
4093 static int netif_rx_internal(struct sk_buff *skb)
4094 {
4095 	int ret;
4096 
4097 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4098 
4099 	trace_netif_rx(skb);
4100 
4101 	if (static_key_false(&generic_xdp_needed)) {
4102 		int ret;
4103 
4104 		preempt_disable();
4105 		rcu_read_lock();
4106 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4107 		rcu_read_unlock();
4108 		preempt_enable();
4109 
4110 		/* Consider XDP consuming the packet a success from
4111 		 * the netdev point of view we do not want to count
4112 		 * this as an error.
4113 		 */
4114 		if (ret != XDP_PASS)
4115 			return NET_RX_SUCCESS;
4116 	}
4117 
4118 #ifdef CONFIG_RPS
4119 	if (static_key_false(&rps_needed)) {
4120 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4121 		int cpu;
4122 
4123 		preempt_disable();
4124 		rcu_read_lock();
4125 
4126 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4127 		if (cpu < 0)
4128 			cpu = smp_processor_id();
4129 
4130 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4131 
4132 		rcu_read_unlock();
4133 		preempt_enable();
4134 	} else
4135 #endif
4136 	{
4137 		unsigned int qtail;
4138 
4139 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4140 		put_cpu();
4141 	}
4142 	return ret;
4143 }
4144 
4145 /**
4146  *	netif_rx	-	post buffer to the network code
4147  *	@skb: buffer to post
4148  *
4149  *	This function receives a packet from a device driver and queues it for
4150  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4151  *	may be dropped during processing for congestion control or by the
4152  *	protocol layers.
4153  *
4154  *	return values:
4155  *	NET_RX_SUCCESS	(no congestion)
4156  *	NET_RX_DROP     (packet was dropped)
4157  *
4158  */
4159 
4160 int netif_rx(struct sk_buff *skb)
4161 {
4162 	trace_netif_rx_entry(skb);
4163 
4164 	return netif_rx_internal(skb);
4165 }
4166 EXPORT_SYMBOL(netif_rx);
4167 
4168 int netif_rx_ni(struct sk_buff *skb)
4169 {
4170 	int err;
4171 
4172 	trace_netif_rx_ni_entry(skb);
4173 
4174 	preempt_disable();
4175 	err = netif_rx_internal(skb);
4176 	if (local_softirq_pending())
4177 		do_softirq();
4178 	preempt_enable();
4179 
4180 	return err;
4181 }
4182 EXPORT_SYMBOL(netif_rx_ni);
4183 
4184 static __latent_entropy void net_tx_action(struct softirq_action *h)
4185 {
4186 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4187 
4188 	if (sd->completion_queue) {
4189 		struct sk_buff *clist;
4190 
4191 		local_irq_disable();
4192 		clist = sd->completion_queue;
4193 		sd->completion_queue = NULL;
4194 		local_irq_enable();
4195 
4196 		while (clist) {
4197 			struct sk_buff *skb = clist;
4198 
4199 			clist = clist->next;
4200 
4201 			WARN_ON(refcount_read(&skb->users));
4202 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4203 				trace_consume_skb(skb);
4204 			else
4205 				trace_kfree_skb(skb, net_tx_action);
4206 
4207 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4208 				__kfree_skb(skb);
4209 			else
4210 				__kfree_skb_defer(skb);
4211 		}
4212 
4213 		__kfree_skb_flush();
4214 	}
4215 
4216 	if (sd->output_queue) {
4217 		struct Qdisc *head;
4218 
4219 		local_irq_disable();
4220 		head = sd->output_queue;
4221 		sd->output_queue = NULL;
4222 		sd->output_queue_tailp = &sd->output_queue;
4223 		local_irq_enable();
4224 
4225 		while (head) {
4226 			struct Qdisc *q = head;
4227 			spinlock_t *root_lock = NULL;
4228 
4229 			head = head->next_sched;
4230 
4231 			if (!(q->flags & TCQ_F_NOLOCK)) {
4232 				root_lock = qdisc_lock(q);
4233 				spin_lock(root_lock);
4234 			}
4235 			/* We need to make sure head->next_sched is read
4236 			 * before clearing __QDISC_STATE_SCHED
4237 			 */
4238 			smp_mb__before_atomic();
4239 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4240 			qdisc_run(q);
4241 			if (root_lock)
4242 				spin_unlock(root_lock);
4243 		}
4244 	}
4245 
4246 	xfrm_dev_backlog(sd);
4247 }
4248 
4249 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4250 /* This hook is defined here for ATM LANE */
4251 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4252 			     unsigned char *addr) __read_mostly;
4253 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4254 #endif
4255 
4256 static inline struct sk_buff *
4257 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4258 		   struct net_device *orig_dev)
4259 {
4260 #ifdef CONFIG_NET_CLS_ACT
4261 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4262 	struct tcf_result cl_res;
4263 
4264 	/* If there's at least one ingress present somewhere (so
4265 	 * we get here via enabled static key), remaining devices
4266 	 * that are not configured with an ingress qdisc will bail
4267 	 * out here.
4268 	 */
4269 	if (!miniq)
4270 		return skb;
4271 
4272 	if (*pt_prev) {
4273 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4274 		*pt_prev = NULL;
4275 	}
4276 
4277 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4278 	skb->tc_at_ingress = 1;
4279 	mini_qdisc_bstats_cpu_update(miniq, skb);
4280 
4281 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4282 	case TC_ACT_OK:
4283 	case TC_ACT_RECLASSIFY:
4284 		skb->tc_index = TC_H_MIN(cl_res.classid);
4285 		break;
4286 	case TC_ACT_SHOT:
4287 		mini_qdisc_qstats_cpu_drop(miniq);
4288 		kfree_skb(skb);
4289 		return NULL;
4290 	case TC_ACT_STOLEN:
4291 	case TC_ACT_QUEUED:
4292 	case TC_ACT_TRAP:
4293 		consume_skb(skb);
4294 		return NULL;
4295 	case TC_ACT_REDIRECT:
4296 		/* skb_mac_header check was done by cls/act_bpf, so
4297 		 * we can safely push the L2 header back before
4298 		 * redirecting to another netdev
4299 		 */
4300 		__skb_push(skb, skb->mac_len);
4301 		skb_do_redirect(skb);
4302 		return NULL;
4303 	default:
4304 		break;
4305 	}
4306 #endif /* CONFIG_NET_CLS_ACT */
4307 	return skb;
4308 }
4309 
4310 /**
4311  *	netdev_is_rx_handler_busy - check if receive handler is registered
4312  *	@dev: device to check
4313  *
4314  *	Check if a receive handler is already registered for a given device.
4315  *	Return true if there one.
4316  *
4317  *	The caller must hold the rtnl_mutex.
4318  */
4319 bool netdev_is_rx_handler_busy(struct net_device *dev)
4320 {
4321 	ASSERT_RTNL();
4322 	return dev && rtnl_dereference(dev->rx_handler);
4323 }
4324 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4325 
4326 /**
4327  *	netdev_rx_handler_register - register receive handler
4328  *	@dev: device to register a handler for
4329  *	@rx_handler: receive handler to register
4330  *	@rx_handler_data: data pointer that is used by rx handler
4331  *
4332  *	Register a receive handler for a device. This handler will then be
4333  *	called from __netif_receive_skb. A negative errno code is returned
4334  *	on a failure.
4335  *
4336  *	The caller must hold the rtnl_mutex.
4337  *
4338  *	For a general description of rx_handler, see enum rx_handler_result.
4339  */
4340 int netdev_rx_handler_register(struct net_device *dev,
4341 			       rx_handler_func_t *rx_handler,
4342 			       void *rx_handler_data)
4343 {
4344 	if (netdev_is_rx_handler_busy(dev))
4345 		return -EBUSY;
4346 
4347 	/* Note: rx_handler_data must be set before rx_handler */
4348 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4349 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4350 
4351 	return 0;
4352 }
4353 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4354 
4355 /**
4356  *	netdev_rx_handler_unregister - unregister receive handler
4357  *	@dev: device to unregister a handler from
4358  *
4359  *	Unregister a receive handler from a device.
4360  *
4361  *	The caller must hold the rtnl_mutex.
4362  */
4363 void netdev_rx_handler_unregister(struct net_device *dev)
4364 {
4365 
4366 	ASSERT_RTNL();
4367 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4368 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4369 	 * section has a guarantee to see a non NULL rx_handler_data
4370 	 * as well.
4371 	 */
4372 	synchronize_net();
4373 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4374 }
4375 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4376 
4377 /*
4378  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4379  * the special handling of PFMEMALLOC skbs.
4380  */
4381 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4382 {
4383 	switch (skb->protocol) {
4384 	case htons(ETH_P_ARP):
4385 	case htons(ETH_P_IP):
4386 	case htons(ETH_P_IPV6):
4387 	case htons(ETH_P_8021Q):
4388 	case htons(ETH_P_8021AD):
4389 		return true;
4390 	default:
4391 		return false;
4392 	}
4393 }
4394 
4395 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4396 			     int *ret, struct net_device *orig_dev)
4397 {
4398 #ifdef CONFIG_NETFILTER_INGRESS
4399 	if (nf_hook_ingress_active(skb)) {
4400 		int ingress_retval;
4401 
4402 		if (*pt_prev) {
4403 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4404 			*pt_prev = NULL;
4405 		}
4406 
4407 		rcu_read_lock();
4408 		ingress_retval = nf_hook_ingress(skb);
4409 		rcu_read_unlock();
4410 		return ingress_retval;
4411 	}
4412 #endif /* CONFIG_NETFILTER_INGRESS */
4413 	return 0;
4414 }
4415 
4416 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4417 {
4418 	struct packet_type *ptype, *pt_prev;
4419 	rx_handler_func_t *rx_handler;
4420 	struct net_device *orig_dev;
4421 	bool deliver_exact = false;
4422 	int ret = NET_RX_DROP;
4423 	__be16 type;
4424 
4425 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4426 
4427 	trace_netif_receive_skb(skb);
4428 
4429 	orig_dev = skb->dev;
4430 
4431 	skb_reset_network_header(skb);
4432 	if (!skb_transport_header_was_set(skb))
4433 		skb_reset_transport_header(skb);
4434 	skb_reset_mac_len(skb);
4435 
4436 	pt_prev = NULL;
4437 
4438 another_round:
4439 	skb->skb_iif = skb->dev->ifindex;
4440 
4441 	__this_cpu_inc(softnet_data.processed);
4442 
4443 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4444 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4445 		skb = skb_vlan_untag(skb);
4446 		if (unlikely(!skb))
4447 			goto out;
4448 	}
4449 
4450 	if (skb_skip_tc_classify(skb))
4451 		goto skip_classify;
4452 
4453 	if (pfmemalloc)
4454 		goto skip_taps;
4455 
4456 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4457 		if (pt_prev)
4458 			ret = deliver_skb(skb, pt_prev, orig_dev);
4459 		pt_prev = ptype;
4460 	}
4461 
4462 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4463 		if (pt_prev)
4464 			ret = deliver_skb(skb, pt_prev, orig_dev);
4465 		pt_prev = ptype;
4466 	}
4467 
4468 skip_taps:
4469 #ifdef CONFIG_NET_INGRESS
4470 	if (static_key_false(&ingress_needed)) {
4471 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4472 		if (!skb)
4473 			goto out;
4474 
4475 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4476 			goto out;
4477 	}
4478 #endif
4479 	skb_reset_tc(skb);
4480 skip_classify:
4481 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4482 		goto drop;
4483 
4484 	if (skb_vlan_tag_present(skb)) {
4485 		if (pt_prev) {
4486 			ret = deliver_skb(skb, pt_prev, orig_dev);
4487 			pt_prev = NULL;
4488 		}
4489 		if (vlan_do_receive(&skb))
4490 			goto another_round;
4491 		else if (unlikely(!skb))
4492 			goto out;
4493 	}
4494 
4495 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4496 	if (rx_handler) {
4497 		if (pt_prev) {
4498 			ret = deliver_skb(skb, pt_prev, orig_dev);
4499 			pt_prev = NULL;
4500 		}
4501 		switch (rx_handler(&skb)) {
4502 		case RX_HANDLER_CONSUMED:
4503 			ret = NET_RX_SUCCESS;
4504 			goto out;
4505 		case RX_HANDLER_ANOTHER:
4506 			goto another_round;
4507 		case RX_HANDLER_EXACT:
4508 			deliver_exact = true;
4509 		case RX_HANDLER_PASS:
4510 			break;
4511 		default:
4512 			BUG();
4513 		}
4514 	}
4515 
4516 	if (unlikely(skb_vlan_tag_present(skb))) {
4517 		if (skb_vlan_tag_get_id(skb))
4518 			skb->pkt_type = PACKET_OTHERHOST;
4519 		/* Note: we might in the future use prio bits
4520 		 * and set skb->priority like in vlan_do_receive()
4521 		 * For the time being, just ignore Priority Code Point
4522 		 */
4523 		skb->vlan_tci = 0;
4524 	}
4525 
4526 	type = skb->protocol;
4527 
4528 	/* deliver only exact match when indicated */
4529 	if (likely(!deliver_exact)) {
4530 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4531 				       &ptype_base[ntohs(type) &
4532 						   PTYPE_HASH_MASK]);
4533 	}
4534 
4535 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4536 			       &orig_dev->ptype_specific);
4537 
4538 	if (unlikely(skb->dev != orig_dev)) {
4539 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4540 				       &skb->dev->ptype_specific);
4541 	}
4542 
4543 	if (pt_prev) {
4544 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4545 			goto drop;
4546 		else
4547 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4548 	} else {
4549 drop:
4550 		if (!deliver_exact)
4551 			atomic_long_inc(&skb->dev->rx_dropped);
4552 		else
4553 			atomic_long_inc(&skb->dev->rx_nohandler);
4554 		kfree_skb(skb);
4555 		/* Jamal, now you will not able to escape explaining
4556 		 * me how you were going to use this. :-)
4557 		 */
4558 		ret = NET_RX_DROP;
4559 	}
4560 
4561 out:
4562 	return ret;
4563 }
4564 
4565 /**
4566  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4567  *	@skb: buffer to process
4568  *
4569  *	More direct receive version of netif_receive_skb().  It should
4570  *	only be used by callers that have a need to skip RPS and Generic XDP.
4571  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4572  *
4573  *	This function may only be called from softirq context and interrupts
4574  *	should be enabled.
4575  *
4576  *	Return values (usually ignored):
4577  *	NET_RX_SUCCESS: no congestion
4578  *	NET_RX_DROP: packet was dropped
4579  */
4580 int netif_receive_skb_core(struct sk_buff *skb)
4581 {
4582 	int ret;
4583 
4584 	rcu_read_lock();
4585 	ret = __netif_receive_skb_core(skb, false);
4586 	rcu_read_unlock();
4587 
4588 	return ret;
4589 }
4590 EXPORT_SYMBOL(netif_receive_skb_core);
4591 
4592 static int __netif_receive_skb(struct sk_buff *skb)
4593 {
4594 	int ret;
4595 
4596 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4597 		unsigned int noreclaim_flag;
4598 
4599 		/*
4600 		 * PFMEMALLOC skbs are special, they should
4601 		 * - be delivered to SOCK_MEMALLOC sockets only
4602 		 * - stay away from userspace
4603 		 * - have bounded memory usage
4604 		 *
4605 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4606 		 * context down to all allocation sites.
4607 		 */
4608 		noreclaim_flag = memalloc_noreclaim_save();
4609 		ret = __netif_receive_skb_core(skb, true);
4610 		memalloc_noreclaim_restore(noreclaim_flag);
4611 	} else
4612 		ret = __netif_receive_skb_core(skb, false);
4613 
4614 	return ret;
4615 }
4616 
4617 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4618 {
4619 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4620 	struct bpf_prog *new = xdp->prog;
4621 	int ret = 0;
4622 
4623 	switch (xdp->command) {
4624 	case XDP_SETUP_PROG:
4625 		rcu_assign_pointer(dev->xdp_prog, new);
4626 		if (old)
4627 			bpf_prog_put(old);
4628 
4629 		if (old && !new) {
4630 			static_key_slow_dec(&generic_xdp_needed);
4631 		} else if (new && !old) {
4632 			static_key_slow_inc(&generic_xdp_needed);
4633 			dev_disable_lro(dev);
4634 			dev_disable_gro_hw(dev);
4635 		}
4636 		break;
4637 
4638 	case XDP_QUERY_PROG:
4639 		xdp->prog_attached = !!old;
4640 		xdp->prog_id = old ? old->aux->id : 0;
4641 		break;
4642 
4643 	default:
4644 		ret = -EINVAL;
4645 		break;
4646 	}
4647 
4648 	return ret;
4649 }
4650 
4651 static int netif_receive_skb_internal(struct sk_buff *skb)
4652 {
4653 	int ret;
4654 
4655 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4656 
4657 	if (skb_defer_rx_timestamp(skb))
4658 		return NET_RX_SUCCESS;
4659 
4660 	if (static_key_false(&generic_xdp_needed)) {
4661 		int ret;
4662 
4663 		preempt_disable();
4664 		rcu_read_lock();
4665 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4666 		rcu_read_unlock();
4667 		preempt_enable();
4668 
4669 		if (ret != XDP_PASS)
4670 			return NET_RX_DROP;
4671 	}
4672 
4673 	rcu_read_lock();
4674 #ifdef CONFIG_RPS
4675 	if (static_key_false(&rps_needed)) {
4676 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4677 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4678 
4679 		if (cpu >= 0) {
4680 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4681 			rcu_read_unlock();
4682 			return ret;
4683 		}
4684 	}
4685 #endif
4686 	ret = __netif_receive_skb(skb);
4687 	rcu_read_unlock();
4688 	return ret;
4689 }
4690 
4691 /**
4692  *	netif_receive_skb - process receive buffer from network
4693  *	@skb: buffer to process
4694  *
4695  *	netif_receive_skb() is the main receive data processing function.
4696  *	It always succeeds. The buffer may be dropped during processing
4697  *	for congestion control or by the protocol layers.
4698  *
4699  *	This function may only be called from softirq context and interrupts
4700  *	should be enabled.
4701  *
4702  *	Return values (usually ignored):
4703  *	NET_RX_SUCCESS: no congestion
4704  *	NET_RX_DROP: packet was dropped
4705  */
4706 int netif_receive_skb(struct sk_buff *skb)
4707 {
4708 	trace_netif_receive_skb_entry(skb);
4709 
4710 	return netif_receive_skb_internal(skb);
4711 }
4712 EXPORT_SYMBOL(netif_receive_skb);
4713 
4714 DEFINE_PER_CPU(struct work_struct, flush_works);
4715 
4716 /* Network device is going away, flush any packets still pending */
4717 static void flush_backlog(struct work_struct *work)
4718 {
4719 	struct sk_buff *skb, *tmp;
4720 	struct softnet_data *sd;
4721 
4722 	local_bh_disable();
4723 	sd = this_cpu_ptr(&softnet_data);
4724 
4725 	local_irq_disable();
4726 	rps_lock(sd);
4727 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4728 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4729 			__skb_unlink(skb, &sd->input_pkt_queue);
4730 			kfree_skb(skb);
4731 			input_queue_head_incr(sd);
4732 		}
4733 	}
4734 	rps_unlock(sd);
4735 	local_irq_enable();
4736 
4737 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4738 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4739 			__skb_unlink(skb, &sd->process_queue);
4740 			kfree_skb(skb);
4741 			input_queue_head_incr(sd);
4742 		}
4743 	}
4744 	local_bh_enable();
4745 }
4746 
4747 static void flush_all_backlogs(void)
4748 {
4749 	unsigned int cpu;
4750 
4751 	get_online_cpus();
4752 
4753 	for_each_online_cpu(cpu)
4754 		queue_work_on(cpu, system_highpri_wq,
4755 			      per_cpu_ptr(&flush_works, cpu));
4756 
4757 	for_each_online_cpu(cpu)
4758 		flush_work(per_cpu_ptr(&flush_works, cpu));
4759 
4760 	put_online_cpus();
4761 }
4762 
4763 static int napi_gro_complete(struct sk_buff *skb)
4764 {
4765 	struct packet_offload *ptype;
4766 	__be16 type = skb->protocol;
4767 	struct list_head *head = &offload_base;
4768 	int err = -ENOENT;
4769 
4770 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4771 
4772 	if (NAPI_GRO_CB(skb)->count == 1) {
4773 		skb_shinfo(skb)->gso_size = 0;
4774 		goto out;
4775 	}
4776 
4777 	rcu_read_lock();
4778 	list_for_each_entry_rcu(ptype, head, list) {
4779 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4780 			continue;
4781 
4782 		err = ptype->callbacks.gro_complete(skb, 0);
4783 		break;
4784 	}
4785 	rcu_read_unlock();
4786 
4787 	if (err) {
4788 		WARN_ON(&ptype->list == head);
4789 		kfree_skb(skb);
4790 		return NET_RX_SUCCESS;
4791 	}
4792 
4793 out:
4794 	return netif_receive_skb_internal(skb);
4795 }
4796 
4797 /* napi->gro_list contains packets ordered by age.
4798  * youngest packets at the head of it.
4799  * Complete skbs in reverse order to reduce latencies.
4800  */
4801 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4802 {
4803 	struct sk_buff *skb, *prev = NULL;
4804 
4805 	/* scan list and build reverse chain */
4806 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4807 		skb->prev = prev;
4808 		prev = skb;
4809 	}
4810 
4811 	for (skb = prev; skb; skb = prev) {
4812 		skb->next = NULL;
4813 
4814 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4815 			return;
4816 
4817 		prev = skb->prev;
4818 		napi_gro_complete(skb);
4819 		napi->gro_count--;
4820 	}
4821 
4822 	napi->gro_list = NULL;
4823 }
4824 EXPORT_SYMBOL(napi_gro_flush);
4825 
4826 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4827 {
4828 	struct sk_buff *p;
4829 	unsigned int maclen = skb->dev->hard_header_len;
4830 	u32 hash = skb_get_hash_raw(skb);
4831 
4832 	for (p = napi->gro_list; p; p = p->next) {
4833 		unsigned long diffs;
4834 
4835 		NAPI_GRO_CB(p)->flush = 0;
4836 
4837 		if (hash != skb_get_hash_raw(p)) {
4838 			NAPI_GRO_CB(p)->same_flow = 0;
4839 			continue;
4840 		}
4841 
4842 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4843 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4844 		diffs |= skb_metadata_dst_cmp(p, skb);
4845 		diffs |= skb_metadata_differs(p, skb);
4846 		if (maclen == ETH_HLEN)
4847 			diffs |= compare_ether_header(skb_mac_header(p),
4848 						      skb_mac_header(skb));
4849 		else if (!diffs)
4850 			diffs = memcmp(skb_mac_header(p),
4851 				       skb_mac_header(skb),
4852 				       maclen);
4853 		NAPI_GRO_CB(p)->same_flow = !diffs;
4854 	}
4855 }
4856 
4857 static void skb_gro_reset_offset(struct sk_buff *skb)
4858 {
4859 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4860 	const skb_frag_t *frag0 = &pinfo->frags[0];
4861 
4862 	NAPI_GRO_CB(skb)->data_offset = 0;
4863 	NAPI_GRO_CB(skb)->frag0 = NULL;
4864 	NAPI_GRO_CB(skb)->frag0_len = 0;
4865 
4866 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4867 	    pinfo->nr_frags &&
4868 	    !PageHighMem(skb_frag_page(frag0))) {
4869 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4870 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4871 						    skb_frag_size(frag0),
4872 						    skb->end - skb->tail);
4873 	}
4874 }
4875 
4876 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4877 {
4878 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4879 
4880 	BUG_ON(skb->end - skb->tail < grow);
4881 
4882 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4883 
4884 	skb->data_len -= grow;
4885 	skb->tail += grow;
4886 
4887 	pinfo->frags[0].page_offset += grow;
4888 	skb_frag_size_sub(&pinfo->frags[0], grow);
4889 
4890 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4891 		skb_frag_unref(skb, 0);
4892 		memmove(pinfo->frags, pinfo->frags + 1,
4893 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4894 	}
4895 }
4896 
4897 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4898 {
4899 	struct sk_buff **pp = NULL;
4900 	struct packet_offload *ptype;
4901 	__be16 type = skb->protocol;
4902 	struct list_head *head = &offload_base;
4903 	int same_flow;
4904 	enum gro_result ret;
4905 	int grow;
4906 
4907 	if (netif_elide_gro(skb->dev))
4908 		goto normal;
4909 
4910 	gro_list_prepare(napi, skb);
4911 
4912 	rcu_read_lock();
4913 	list_for_each_entry_rcu(ptype, head, list) {
4914 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4915 			continue;
4916 
4917 		skb_set_network_header(skb, skb_gro_offset(skb));
4918 		skb_reset_mac_len(skb);
4919 		NAPI_GRO_CB(skb)->same_flow = 0;
4920 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4921 		NAPI_GRO_CB(skb)->free = 0;
4922 		NAPI_GRO_CB(skb)->encap_mark = 0;
4923 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4924 		NAPI_GRO_CB(skb)->is_fou = 0;
4925 		NAPI_GRO_CB(skb)->is_atomic = 1;
4926 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4927 
4928 		/* Setup for GRO checksum validation */
4929 		switch (skb->ip_summed) {
4930 		case CHECKSUM_COMPLETE:
4931 			NAPI_GRO_CB(skb)->csum = skb->csum;
4932 			NAPI_GRO_CB(skb)->csum_valid = 1;
4933 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4934 			break;
4935 		case CHECKSUM_UNNECESSARY:
4936 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4937 			NAPI_GRO_CB(skb)->csum_valid = 0;
4938 			break;
4939 		default:
4940 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4941 			NAPI_GRO_CB(skb)->csum_valid = 0;
4942 		}
4943 
4944 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4945 		break;
4946 	}
4947 	rcu_read_unlock();
4948 
4949 	if (&ptype->list == head)
4950 		goto normal;
4951 
4952 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4953 		ret = GRO_CONSUMED;
4954 		goto ok;
4955 	}
4956 
4957 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4958 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4959 
4960 	if (pp) {
4961 		struct sk_buff *nskb = *pp;
4962 
4963 		*pp = nskb->next;
4964 		nskb->next = NULL;
4965 		napi_gro_complete(nskb);
4966 		napi->gro_count--;
4967 	}
4968 
4969 	if (same_flow)
4970 		goto ok;
4971 
4972 	if (NAPI_GRO_CB(skb)->flush)
4973 		goto normal;
4974 
4975 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4976 		struct sk_buff *nskb = napi->gro_list;
4977 
4978 		/* locate the end of the list to select the 'oldest' flow */
4979 		while (nskb->next) {
4980 			pp = &nskb->next;
4981 			nskb = *pp;
4982 		}
4983 		*pp = NULL;
4984 		nskb->next = NULL;
4985 		napi_gro_complete(nskb);
4986 	} else {
4987 		napi->gro_count++;
4988 	}
4989 	NAPI_GRO_CB(skb)->count = 1;
4990 	NAPI_GRO_CB(skb)->age = jiffies;
4991 	NAPI_GRO_CB(skb)->last = skb;
4992 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4993 	skb->next = napi->gro_list;
4994 	napi->gro_list = skb;
4995 	ret = GRO_HELD;
4996 
4997 pull:
4998 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4999 	if (grow > 0)
5000 		gro_pull_from_frag0(skb, grow);
5001 ok:
5002 	return ret;
5003 
5004 normal:
5005 	ret = GRO_NORMAL;
5006 	goto pull;
5007 }
5008 
5009 struct packet_offload *gro_find_receive_by_type(__be16 type)
5010 {
5011 	struct list_head *offload_head = &offload_base;
5012 	struct packet_offload *ptype;
5013 
5014 	list_for_each_entry_rcu(ptype, offload_head, list) {
5015 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5016 			continue;
5017 		return ptype;
5018 	}
5019 	return NULL;
5020 }
5021 EXPORT_SYMBOL(gro_find_receive_by_type);
5022 
5023 struct packet_offload *gro_find_complete_by_type(__be16 type)
5024 {
5025 	struct list_head *offload_head = &offload_base;
5026 	struct packet_offload *ptype;
5027 
5028 	list_for_each_entry_rcu(ptype, offload_head, list) {
5029 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5030 			continue;
5031 		return ptype;
5032 	}
5033 	return NULL;
5034 }
5035 EXPORT_SYMBOL(gro_find_complete_by_type);
5036 
5037 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5038 {
5039 	skb_dst_drop(skb);
5040 	secpath_reset(skb);
5041 	kmem_cache_free(skbuff_head_cache, skb);
5042 }
5043 
5044 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5045 {
5046 	switch (ret) {
5047 	case GRO_NORMAL:
5048 		if (netif_receive_skb_internal(skb))
5049 			ret = GRO_DROP;
5050 		break;
5051 
5052 	case GRO_DROP:
5053 		kfree_skb(skb);
5054 		break;
5055 
5056 	case GRO_MERGED_FREE:
5057 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5058 			napi_skb_free_stolen_head(skb);
5059 		else
5060 			__kfree_skb(skb);
5061 		break;
5062 
5063 	case GRO_HELD:
5064 	case GRO_MERGED:
5065 	case GRO_CONSUMED:
5066 		break;
5067 	}
5068 
5069 	return ret;
5070 }
5071 
5072 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5073 {
5074 	skb_mark_napi_id(skb, napi);
5075 	trace_napi_gro_receive_entry(skb);
5076 
5077 	skb_gro_reset_offset(skb);
5078 
5079 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5080 }
5081 EXPORT_SYMBOL(napi_gro_receive);
5082 
5083 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5084 {
5085 	if (unlikely(skb->pfmemalloc)) {
5086 		consume_skb(skb);
5087 		return;
5088 	}
5089 	__skb_pull(skb, skb_headlen(skb));
5090 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5091 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5092 	skb->vlan_tci = 0;
5093 	skb->dev = napi->dev;
5094 	skb->skb_iif = 0;
5095 	skb->encapsulation = 0;
5096 	skb_shinfo(skb)->gso_type = 0;
5097 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5098 	secpath_reset(skb);
5099 
5100 	napi->skb = skb;
5101 }
5102 
5103 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5104 {
5105 	struct sk_buff *skb = napi->skb;
5106 
5107 	if (!skb) {
5108 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5109 		if (skb) {
5110 			napi->skb = skb;
5111 			skb_mark_napi_id(skb, napi);
5112 		}
5113 	}
5114 	return skb;
5115 }
5116 EXPORT_SYMBOL(napi_get_frags);
5117 
5118 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5119 				      struct sk_buff *skb,
5120 				      gro_result_t ret)
5121 {
5122 	switch (ret) {
5123 	case GRO_NORMAL:
5124 	case GRO_HELD:
5125 		__skb_push(skb, ETH_HLEN);
5126 		skb->protocol = eth_type_trans(skb, skb->dev);
5127 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5128 			ret = GRO_DROP;
5129 		break;
5130 
5131 	case GRO_DROP:
5132 		napi_reuse_skb(napi, skb);
5133 		break;
5134 
5135 	case GRO_MERGED_FREE:
5136 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5137 			napi_skb_free_stolen_head(skb);
5138 		else
5139 			napi_reuse_skb(napi, skb);
5140 		break;
5141 
5142 	case GRO_MERGED:
5143 	case GRO_CONSUMED:
5144 		break;
5145 	}
5146 
5147 	return ret;
5148 }
5149 
5150 /* Upper GRO stack assumes network header starts at gro_offset=0
5151  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5152  * We copy ethernet header into skb->data to have a common layout.
5153  */
5154 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5155 {
5156 	struct sk_buff *skb = napi->skb;
5157 	const struct ethhdr *eth;
5158 	unsigned int hlen = sizeof(*eth);
5159 
5160 	napi->skb = NULL;
5161 
5162 	skb_reset_mac_header(skb);
5163 	skb_gro_reset_offset(skb);
5164 
5165 	eth = skb_gro_header_fast(skb, 0);
5166 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5167 		eth = skb_gro_header_slow(skb, hlen, 0);
5168 		if (unlikely(!eth)) {
5169 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5170 					     __func__, napi->dev->name);
5171 			napi_reuse_skb(napi, skb);
5172 			return NULL;
5173 		}
5174 	} else {
5175 		gro_pull_from_frag0(skb, hlen);
5176 		NAPI_GRO_CB(skb)->frag0 += hlen;
5177 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5178 	}
5179 	__skb_pull(skb, hlen);
5180 
5181 	/*
5182 	 * This works because the only protocols we care about don't require
5183 	 * special handling.
5184 	 * We'll fix it up properly in napi_frags_finish()
5185 	 */
5186 	skb->protocol = eth->h_proto;
5187 
5188 	return skb;
5189 }
5190 
5191 gro_result_t napi_gro_frags(struct napi_struct *napi)
5192 {
5193 	struct sk_buff *skb = napi_frags_skb(napi);
5194 
5195 	if (!skb)
5196 		return GRO_DROP;
5197 
5198 	trace_napi_gro_frags_entry(skb);
5199 
5200 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5201 }
5202 EXPORT_SYMBOL(napi_gro_frags);
5203 
5204 /* Compute the checksum from gro_offset and return the folded value
5205  * after adding in any pseudo checksum.
5206  */
5207 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5208 {
5209 	__wsum wsum;
5210 	__sum16 sum;
5211 
5212 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5213 
5214 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5215 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5216 	if (likely(!sum)) {
5217 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5218 		    !skb->csum_complete_sw)
5219 			netdev_rx_csum_fault(skb->dev);
5220 	}
5221 
5222 	NAPI_GRO_CB(skb)->csum = wsum;
5223 	NAPI_GRO_CB(skb)->csum_valid = 1;
5224 
5225 	return sum;
5226 }
5227 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5228 
5229 static void net_rps_send_ipi(struct softnet_data *remsd)
5230 {
5231 #ifdef CONFIG_RPS
5232 	while (remsd) {
5233 		struct softnet_data *next = remsd->rps_ipi_next;
5234 
5235 		if (cpu_online(remsd->cpu))
5236 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5237 		remsd = next;
5238 	}
5239 #endif
5240 }
5241 
5242 /*
5243  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5244  * Note: called with local irq disabled, but exits with local irq enabled.
5245  */
5246 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5247 {
5248 #ifdef CONFIG_RPS
5249 	struct softnet_data *remsd = sd->rps_ipi_list;
5250 
5251 	if (remsd) {
5252 		sd->rps_ipi_list = NULL;
5253 
5254 		local_irq_enable();
5255 
5256 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5257 		net_rps_send_ipi(remsd);
5258 	} else
5259 #endif
5260 		local_irq_enable();
5261 }
5262 
5263 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5264 {
5265 #ifdef CONFIG_RPS
5266 	return sd->rps_ipi_list != NULL;
5267 #else
5268 	return false;
5269 #endif
5270 }
5271 
5272 static int process_backlog(struct napi_struct *napi, int quota)
5273 {
5274 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5275 	bool again = true;
5276 	int work = 0;
5277 
5278 	/* Check if we have pending ipi, its better to send them now,
5279 	 * not waiting net_rx_action() end.
5280 	 */
5281 	if (sd_has_rps_ipi_waiting(sd)) {
5282 		local_irq_disable();
5283 		net_rps_action_and_irq_enable(sd);
5284 	}
5285 
5286 	napi->weight = dev_rx_weight;
5287 	while (again) {
5288 		struct sk_buff *skb;
5289 
5290 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5291 			rcu_read_lock();
5292 			__netif_receive_skb(skb);
5293 			rcu_read_unlock();
5294 			input_queue_head_incr(sd);
5295 			if (++work >= quota)
5296 				return work;
5297 
5298 		}
5299 
5300 		local_irq_disable();
5301 		rps_lock(sd);
5302 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5303 			/*
5304 			 * Inline a custom version of __napi_complete().
5305 			 * only current cpu owns and manipulates this napi,
5306 			 * and NAPI_STATE_SCHED is the only possible flag set
5307 			 * on backlog.
5308 			 * We can use a plain write instead of clear_bit(),
5309 			 * and we dont need an smp_mb() memory barrier.
5310 			 */
5311 			napi->state = 0;
5312 			again = false;
5313 		} else {
5314 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5315 						   &sd->process_queue);
5316 		}
5317 		rps_unlock(sd);
5318 		local_irq_enable();
5319 	}
5320 
5321 	return work;
5322 }
5323 
5324 /**
5325  * __napi_schedule - schedule for receive
5326  * @n: entry to schedule
5327  *
5328  * The entry's receive function will be scheduled to run.
5329  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5330  */
5331 void __napi_schedule(struct napi_struct *n)
5332 {
5333 	unsigned long flags;
5334 
5335 	local_irq_save(flags);
5336 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5337 	local_irq_restore(flags);
5338 }
5339 EXPORT_SYMBOL(__napi_schedule);
5340 
5341 /**
5342  *	napi_schedule_prep - check if napi can be scheduled
5343  *	@n: napi context
5344  *
5345  * Test if NAPI routine is already running, and if not mark
5346  * it as running.  This is used as a condition variable
5347  * insure only one NAPI poll instance runs.  We also make
5348  * sure there is no pending NAPI disable.
5349  */
5350 bool napi_schedule_prep(struct napi_struct *n)
5351 {
5352 	unsigned long val, new;
5353 
5354 	do {
5355 		val = READ_ONCE(n->state);
5356 		if (unlikely(val & NAPIF_STATE_DISABLE))
5357 			return false;
5358 		new = val | NAPIF_STATE_SCHED;
5359 
5360 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5361 		 * This was suggested by Alexander Duyck, as compiler
5362 		 * emits better code than :
5363 		 * if (val & NAPIF_STATE_SCHED)
5364 		 *     new |= NAPIF_STATE_MISSED;
5365 		 */
5366 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5367 						   NAPIF_STATE_MISSED;
5368 	} while (cmpxchg(&n->state, val, new) != val);
5369 
5370 	return !(val & NAPIF_STATE_SCHED);
5371 }
5372 EXPORT_SYMBOL(napi_schedule_prep);
5373 
5374 /**
5375  * __napi_schedule_irqoff - schedule for receive
5376  * @n: entry to schedule
5377  *
5378  * Variant of __napi_schedule() assuming hard irqs are masked
5379  */
5380 void __napi_schedule_irqoff(struct napi_struct *n)
5381 {
5382 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5383 }
5384 EXPORT_SYMBOL(__napi_schedule_irqoff);
5385 
5386 bool napi_complete_done(struct napi_struct *n, int work_done)
5387 {
5388 	unsigned long flags, val, new;
5389 
5390 	/*
5391 	 * 1) Don't let napi dequeue from the cpu poll list
5392 	 *    just in case its running on a different cpu.
5393 	 * 2) If we are busy polling, do nothing here, we have
5394 	 *    the guarantee we will be called later.
5395 	 */
5396 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5397 				 NAPIF_STATE_IN_BUSY_POLL)))
5398 		return false;
5399 
5400 	if (n->gro_list) {
5401 		unsigned long timeout = 0;
5402 
5403 		if (work_done)
5404 			timeout = n->dev->gro_flush_timeout;
5405 
5406 		if (timeout)
5407 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5408 				      HRTIMER_MODE_REL_PINNED);
5409 		else
5410 			napi_gro_flush(n, false);
5411 	}
5412 	if (unlikely(!list_empty(&n->poll_list))) {
5413 		/* If n->poll_list is not empty, we need to mask irqs */
5414 		local_irq_save(flags);
5415 		list_del_init(&n->poll_list);
5416 		local_irq_restore(flags);
5417 	}
5418 
5419 	do {
5420 		val = READ_ONCE(n->state);
5421 
5422 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5423 
5424 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5425 
5426 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5427 		 * because we will call napi->poll() one more time.
5428 		 * This C code was suggested by Alexander Duyck to help gcc.
5429 		 */
5430 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5431 						    NAPIF_STATE_SCHED;
5432 	} while (cmpxchg(&n->state, val, new) != val);
5433 
5434 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5435 		__napi_schedule(n);
5436 		return false;
5437 	}
5438 
5439 	return true;
5440 }
5441 EXPORT_SYMBOL(napi_complete_done);
5442 
5443 /* must be called under rcu_read_lock(), as we dont take a reference */
5444 static struct napi_struct *napi_by_id(unsigned int napi_id)
5445 {
5446 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5447 	struct napi_struct *napi;
5448 
5449 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5450 		if (napi->napi_id == napi_id)
5451 			return napi;
5452 
5453 	return NULL;
5454 }
5455 
5456 #if defined(CONFIG_NET_RX_BUSY_POLL)
5457 
5458 #define BUSY_POLL_BUDGET 8
5459 
5460 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5461 {
5462 	int rc;
5463 
5464 	/* Busy polling means there is a high chance device driver hard irq
5465 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5466 	 * set in napi_schedule_prep().
5467 	 * Since we are about to call napi->poll() once more, we can safely
5468 	 * clear NAPI_STATE_MISSED.
5469 	 *
5470 	 * Note: x86 could use a single "lock and ..." instruction
5471 	 * to perform these two clear_bit()
5472 	 */
5473 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5474 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5475 
5476 	local_bh_disable();
5477 
5478 	/* All we really want here is to re-enable device interrupts.
5479 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5480 	 */
5481 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5482 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5483 	netpoll_poll_unlock(have_poll_lock);
5484 	if (rc == BUSY_POLL_BUDGET)
5485 		__napi_schedule(napi);
5486 	local_bh_enable();
5487 }
5488 
5489 void napi_busy_loop(unsigned int napi_id,
5490 		    bool (*loop_end)(void *, unsigned long),
5491 		    void *loop_end_arg)
5492 {
5493 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5494 	int (*napi_poll)(struct napi_struct *napi, int budget);
5495 	void *have_poll_lock = NULL;
5496 	struct napi_struct *napi;
5497 
5498 restart:
5499 	napi_poll = NULL;
5500 
5501 	rcu_read_lock();
5502 
5503 	napi = napi_by_id(napi_id);
5504 	if (!napi)
5505 		goto out;
5506 
5507 	preempt_disable();
5508 	for (;;) {
5509 		int work = 0;
5510 
5511 		local_bh_disable();
5512 		if (!napi_poll) {
5513 			unsigned long val = READ_ONCE(napi->state);
5514 
5515 			/* If multiple threads are competing for this napi,
5516 			 * we avoid dirtying napi->state as much as we can.
5517 			 */
5518 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5519 				   NAPIF_STATE_IN_BUSY_POLL))
5520 				goto count;
5521 			if (cmpxchg(&napi->state, val,
5522 				    val | NAPIF_STATE_IN_BUSY_POLL |
5523 					  NAPIF_STATE_SCHED) != val)
5524 				goto count;
5525 			have_poll_lock = netpoll_poll_lock(napi);
5526 			napi_poll = napi->poll;
5527 		}
5528 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5529 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5530 count:
5531 		if (work > 0)
5532 			__NET_ADD_STATS(dev_net(napi->dev),
5533 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5534 		local_bh_enable();
5535 
5536 		if (!loop_end || loop_end(loop_end_arg, start_time))
5537 			break;
5538 
5539 		if (unlikely(need_resched())) {
5540 			if (napi_poll)
5541 				busy_poll_stop(napi, have_poll_lock);
5542 			preempt_enable();
5543 			rcu_read_unlock();
5544 			cond_resched();
5545 			if (loop_end(loop_end_arg, start_time))
5546 				return;
5547 			goto restart;
5548 		}
5549 		cpu_relax();
5550 	}
5551 	if (napi_poll)
5552 		busy_poll_stop(napi, have_poll_lock);
5553 	preempt_enable();
5554 out:
5555 	rcu_read_unlock();
5556 }
5557 EXPORT_SYMBOL(napi_busy_loop);
5558 
5559 #endif /* CONFIG_NET_RX_BUSY_POLL */
5560 
5561 static void napi_hash_add(struct napi_struct *napi)
5562 {
5563 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5564 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5565 		return;
5566 
5567 	spin_lock(&napi_hash_lock);
5568 
5569 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5570 	do {
5571 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5572 			napi_gen_id = MIN_NAPI_ID;
5573 	} while (napi_by_id(napi_gen_id));
5574 	napi->napi_id = napi_gen_id;
5575 
5576 	hlist_add_head_rcu(&napi->napi_hash_node,
5577 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5578 
5579 	spin_unlock(&napi_hash_lock);
5580 }
5581 
5582 /* Warning : caller is responsible to make sure rcu grace period
5583  * is respected before freeing memory containing @napi
5584  */
5585 bool napi_hash_del(struct napi_struct *napi)
5586 {
5587 	bool rcu_sync_needed = false;
5588 
5589 	spin_lock(&napi_hash_lock);
5590 
5591 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5592 		rcu_sync_needed = true;
5593 		hlist_del_rcu(&napi->napi_hash_node);
5594 	}
5595 	spin_unlock(&napi_hash_lock);
5596 	return rcu_sync_needed;
5597 }
5598 EXPORT_SYMBOL_GPL(napi_hash_del);
5599 
5600 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5601 {
5602 	struct napi_struct *napi;
5603 
5604 	napi = container_of(timer, struct napi_struct, timer);
5605 
5606 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5607 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5608 	 */
5609 	if (napi->gro_list && !napi_disable_pending(napi) &&
5610 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5611 		__napi_schedule_irqoff(napi);
5612 
5613 	return HRTIMER_NORESTART;
5614 }
5615 
5616 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5617 		    int (*poll)(struct napi_struct *, int), int weight)
5618 {
5619 	INIT_LIST_HEAD(&napi->poll_list);
5620 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5621 	napi->timer.function = napi_watchdog;
5622 	napi->gro_count = 0;
5623 	napi->gro_list = NULL;
5624 	napi->skb = NULL;
5625 	napi->poll = poll;
5626 	if (weight > NAPI_POLL_WEIGHT)
5627 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5628 			    weight, dev->name);
5629 	napi->weight = weight;
5630 	list_add(&napi->dev_list, &dev->napi_list);
5631 	napi->dev = dev;
5632 #ifdef CONFIG_NETPOLL
5633 	napi->poll_owner = -1;
5634 #endif
5635 	set_bit(NAPI_STATE_SCHED, &napi->state);
5636 	napi_hash_add(napi);
5637 }
5638 EXPORT_SYMBOL(netif_napi_add);
5639 
5640 void napi_disable(struct napi_struct *n)
5641 {
5642 	might_sleep();
5643 	set_bit(NAPI_STATE_DISABLE, &n->state);
5644 
5645 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5646 		msleep(1);
5647 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5648 		msleep(1);
5649 
5650 	hrtimer_cancel(&n->timer);
5651 
5652 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5653 }
5654 EXPORT_SYMBOL(napi_disable);
5655 
5656 /* Must be called in process context */
5657 void netif_napi_del(struct napi_struct *napi)
5658 {
5659 	might_sleep();
5660 	if (napi_hash_del(napi))
5661 		synchronize_net();
5662 	list_del_init(&napi->dev_list);
5663 	napi_free_frags(napi);
5664 
5665 	kfree_skb_list(napi->gro_list);
5666 	napi->gro_list = NULL;
5667 	napi->gro_count = 0;
5668 }
5669 EXPORT_SYMBOL(netif_napi_del);
5670 
5671 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5672 {
5673 	void *have;
5674 	int work, weight;
5675 
5676 	list_del_init(&n->poll_list);
5677 
5678 	have = netpoll_poll_lock(n);
5679 
5680 	weight = n->weight;
5681 
5682 	/* This NAPI_STATE_SCHED test is for avoiding a race
5683 	 * with netpoll's poll_napi().  Only the entity which
5684 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5685 	 * actually make the ->poll() call.  Therefore we avoid
5686 	 * accidentally calling ->poll() when NAPI is not scheduled.
5687 	 */
5688 	work = 0;
5689 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5690 		work = n->poll(n, weight);
5691 		trace_napi_poll(n, work, weight);
5692 	}
5693 
5694 	WARN_ON_ONCE(work > weight);
5695 
5696 	if (likely(work < weight))
5697 		goto out_unlock;
5698 
5699 	/* Drivers must not modify the NAPI state if they
5700 	 * consume the entire weight.  In such cases this code
5701 	 * still "owns" the NAPI instance and therefore can
5702 	 * move the instance around on the list at-will.
5703 	 */
5704 	if (unlikely(napi_disable_pending(n))) {
5705 		napi_complete(n);
5706 		goto out_unlock;
5707 	}
5708 
5709 	if (n->gro_list) {
5710 		/* flush too old packets
5711 		 * If HZ < 1000, flush all packets.
5712 		 */
5713 		napi_gro_flush(n, HZ >= 1000);
5714 	}
5715 
5716 	/* Some drivers may have called napi_schedule
5717 	 * prior to exhausting their budget.
5718 	 */
5719 	if (unlikely(!list_empty(&n->poll_list))) {
5720 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5721 			     n->dev ? n->dev->name : "backlog");
5722 		goto out_unlock;
5723 	}
5724 
5725 	list_add_tail(&n->poll_list, repoll);
5726 
5727 out_unlock:
5728 	netpoll_poll_unlock(have);
5729 
5730 	return work;
5731 }
5732 
5733 static __latent_entropy void net_rx_action(struct softirq_action *h)
5734 {
5735 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5736 	unsigned long time_limit = jiffies +
5737 		usecs_to_jiffies(netdev_budget_usecs);
5738 	int budget = netdev_budget;
5739 	LIST_HEAD(list);
5740 	LIST_HEAD(repoll);
5741 
5742 	local_irq_disable();
5743 	list_splice_init(&sd->poll_list, &list);
5744 	local_irq_enable();
5745 
5746 	for (;;) {
5747 		struct napi_struct *n;
5748 
5749 		if (list_empty(&list)) {
5750 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5751 				goto out;
5752 			break;
5753 		}
5754 
5755 		n = list_first_entry(&list, struct napi_struct, poll_list);
5756 		budget -= napi_poll(n, &repoll);
5757 
5758 		/* If softirq window is exhausted then punt.
5759 		 * Allow this to run for 2 jiffies since which will allow
5760 		 * an average latency of 1.5/HZ.
5761 		 */
5762 		if (unlikely(budget <= 0 ||
5763 			     time_after_eq(jiffies, time_limit))) {
5764 			sd->time_squeeze++;
5765 			break;
5766 		}
5767 	}
5768 
5769 	local_irq_disable();
5770 
5771 	list_splice_tail_init(&sd->poll_list, &list);
5772 	list_splice_tail(&repoll, &list);
5773 	list_splice(&list, &sd->poll_list);
5774 	if (!list_empty(&sd->poll_list))
5775 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5776 
5777 	net_rps_action_and_irq_enable(sd);
5778 out:
5779 	__kfree_skb_flush();
5780 }
5781 
5782 struct netdev_adjacent {
5783 	struct net_device *dev;
5784 
5785 	/* upper master flag, there can only be one master device per list */
5786 	bool master;
5787 
5788 	/* counter for the number of times this device was added to us */
5789 	u16 ref_nr;
5790 
5791 	/* private field for the users */
5792 	void *private;
5793 
5794 	struct list_head list;
5795 	struct rcu_head rcu;
5796 };
5797 
5798 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5799 						 struct list_head *adj_list)
5800 {
5801 	struct netdev_adjacent *adj;
5802 
5803 	list_for_each_entry(adj, adj_list, list) {
5804 		if (adj->dev == adj_dev)
5805 			return adj;
5806 	}
5807 	return NULL;
5808 }
5809 
5810 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5811 {
5812 	struct net_device *dev = data;
5813 
5814 	return upper_dev == dev;
5815 }
5816 
5817 /**
5818  * netdev_has_upper_dev - Check if device is linked to an upper device
5819  * @dev: device
5820  * @upper_dev: upper device to check
5821  *
5822  * Find out if a device is linked to specified upper device and return true
5823  * in case it is. Note that this checks only immediate upper device,
5824  * not through a complete stack of devices. The caller must hold the RTNL lock.
5825  */
5826 bool netdev_has_upper_dev(struct net_device *dev,
5827 			  struct net_device *upper_dev)
5828 {
5829 	ASSERT_RTNL();
5830 
5831 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5832 					     upper_dev);
5833 }
5834 EXPORT_SYMBOL(netdev_has_upper_dev);
5835 
5836 /**
5837  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5838  * @dev: device
5839  * @upper_dev: upper device to check
5840  *
5841  * Find out if a device is linked to specified upper device and return true
5842  * in case it is. Note that this checks the entire upper device chain.
5843  * The caller must hold rcu lock.
5844  */
5845 
5846 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5847 				  struct net_device *upper_dev)
5848 {
5849 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5850 					       upper_dev);
5851 }
5852 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5853 
5854 /**
5855  * netdev_has_any_upper_dev - Check if device is linked to some device
5856  * @dev: device
5857  *
5858  * Find out if a device is linked to an upper device and return true in case
5859  * it is. The caller must hold the RTNL lock.
5860  */
5861 bool netdev_has_any_upper_dev(struct net_device *dev)
5862 {
5863 	ASSERT_RTNL();
5864 
5865 	return !list_empty(&dev->adj_list.upper);
5866 }
5867 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5868 
5869 /**
5870  * netdev_master_upper_dev_get - Get master upper device
5871  * @dev: device
5872  *
5873  * Find a master upper device and return pointer to it or NULL in case
5874  * it's not there. The caller must hold the RTNL lock.
5875  */
5876 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5877 {
5878 	struct netdev_adjacent *upper;
5879 
5880 	ASSERT_RTNL();
5881 
5882 	if (list_empty(&dev->adj_list.upper))
5883 		return NULL;
5884 
5885 	upper = list_first_entry(&dev->adj_list.upper,
5886 				 struct netdev_adjacent, list);
5887 	if (likely(upper->master))
5888 		return upper->dev;
5889 	return NULL;
5890 }
5891 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5892 
5893 /**
5894  * netdev_has_any_lower_dev - Check if device is linked to some device
5895  * @dev: device
5896  *
5897  * Find out if a device is linked to a lower device and return true in case
5898  * it is. The caller must hold the RTNL lock.
5899  */
5900 static bool netdev_has_any_lower_dev(struct net_device *dev)
5901 {
5902 	ASSERT_RTNL();
5903 
5904 	return !list_empty(&dev->adj_list.lower);
5905 }
5906 
5907 void *netdev_adjacent_get_private(struct list_head *adj_list)
5908 {
5909 	struct netdev_adjacent *adj;
5910 
5911 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5912 
5913 	return adj->private;
5914 }
5915 EXPORT_SYMBOL(netdev_adjacent_get_private);
5916 
5917 /**
5918  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5919  * @dev: device
5920  * @iter: list_head ** of the current position
5921  *
5922  * Gets the next device from the dev's upper list, starting from iter
5923  * position. The caller must hold RCU read lock.
5924  */
5925 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5926 						 struct list_head **iter)
5927 {
5928 	struct netdev_adjacent *upper;
5929 
5930 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5931 
5932 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5933 
5934 	if (&upper->list == &dev->adj_list.upper)
5935 		return NULL;
5936 
5937 	*iter = &upper->list;
5938 
5939 	return upper->dev;
5940 }
5941 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5942 
5943 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5944 						    struct list_head **iter)
5945 {
5946 	struct netdev_adjacent *upper;
5947 
5948 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5949 
5950 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5951 
5952 	if (&upper->list == &dev->adj_list.upper)
5953 		return NULL;
5954 
5955 	*iter = &upper->list;
5956 
5957 	return upper->dev;
5958 }
5959 
5960 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5961 				  int (*fn)(struct net_device *dev,
5962 					    void *data),
5963 				  void *data)
5964 {
5965 	struct net_device *udev;
5966 	struct list_head *iter;
5967 	int ret;
5968 
5969 	for (iter = &dev->adj_list.upper,
5970 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5971 	     udev;
5972 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5973 		/* first is the upper device itself */
5974 		ret = fn(udev, data);
5975 		if (ret)
5976 			return ret;
5977 
5978 		/* then look at all of its upper devices */
5979 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5980 		if (ret)
5981 			return ret;
5982 	}
5983 
5984 	return 0;
5985 }
5986 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5987 
5988 /**
5989  * netdev_lower_get_next_private - Get the next ->private from the
5990  *				   lower neighbour list
5991  * @dev: device
5992  * @iter: list_head ** of the current position
5993  *
5994  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5995  * list, starting from iter position. The caller must hold either hold the
5996  * RTNL lock or its own locking that guarantees that the neighbour lower
5997  * list will remain unchanged.
5998  */
5999 void *netdev_lower_get_next_private(struct net_device *dev,
6000 				    struct list_head **iter)
6001 {
6002 	struct netdev_adjacent *lower;
6003 
6004 	lower = list_entry(*iter, struct netdev_adjacent, list);
6005 
6006 	if (&lower->list == &dev->adj_list.lower)
6007 		return NULL;
6008 
6009 	*iter = lower->list.next;
6010 
6011 	return lower->private;
6012 }
6013 EXPORT_SYMBOL(netdev_lower_get_next_private);
6014 
6015 /**
6016  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6017  *				       lower neighbour list, RCU
6018  *				       variant
6019  * @dev: device
6020  * @iter: list_head ** of the current position
6021  *
6022  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6023  * list, starting from iter position. The caller must hold RCU read lock.
6024  */
6025 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6026 					struct list_head **iter)
6027 {
6028 	struct netdev_adjacent *lower;
6029 
6030 	WARN_ON_ONCE(!rcu_read_lock_held());
6031 
6032 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6033 
6034 	if (&lower->list == &dev->adj_list.lower)
6035 		return NULL;
6036 
6037 	*iter = &lower->list;
6038 
6039 	return lower->private;
6040 }
6041 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6042 
6043 /**
6044  * netdev_lower_get_next - Get the next device from the lower neighbour
6045  *                         list
6046  * @dev: device
6047  * @iter: list_head ** of the current position
6048  *
6049  * Gets the next netdev_adjacent from the dev's lower neighbour
6050  * list, starting from iter position. The caller must hold RTNL lock or
6051  * its own locking that guarantees that the neighbour lower
6052  * list will remain unchanged.
6053  */
6054 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6055 {
6056 	struct netdev_adjacent *lower;
6057 
6058 	lower = list_entry(*iter, struct netdev_adjacent, list);
6059 
6060 	if (&lower->list == &dev->adj_list.lower)
6061 		return NULL;
6062 
6063 	*iter = lower->list.next;
6064 
6065 	return lower->dev;
6066 }
6067 EXPORT_SYMBOL(netdev_lower_get_next);
6068 
6069 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6070 						struct list_head **iter)
6071 {
6072 	struct netdev_adjacent *lower;
6073 
6074 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6075 
6076 	if (&lower->list == &dev->adj_list.lower)
6077 		return NULL;
6078 
6079 	*iter = &lower->list;
6080 
6081 	return lower->dev;
6082 }
6083 
6084 int netdev_walk_all_lower_dev(struct net_device *dev,
6085 			      int (*fn)(struct net_device *dev,
6086 					void *data),
6087 			      void *data)
6088 {
6089 	struct net_device *ldev;
6090 	struct list_head *iter;
6091 	int ret;
6092 
6093 	for (iter = &dev->adj_list.lower,
6094 	     ldev = netdev_next_lower_dev(dev, &iter);
6095 	     ldev;
6096 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6097 		/* first is the lower device itself */
6098 		ret = fn(ldev, data);
6099 		if (ret)
6100 			return ret;
6101 
6102 		/* then look at all of its lower devices */
6103 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6104 		if (ret)
6105 			return ret;
6106 	}
6107 
6108 	return 0;
6109 }
6110 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6111 
6112 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6113 						    struct list_head **iter)
6114 {
6115 	struct netdev_adjacent *lower;
6116 
6117 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6118 	if (&lower->list == &dev->adj_list.lower)
6119 		return NULL;
6120 
6121 	*iter = &lower->list;
6122 
6123 	return lower->dev;
6124 }
6125 
6126 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6127 				  int (*fn)(struct net_device *dev,
6128 					    void *data),
6129 				  void *data)
6130 {
6131 	struct net_device *ldev;
6132 	struct list_head *iter;
6133 	int ret;
6134 
6135 	for (iter = &dev->adj_list.lower,
6136 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6137 	     ldev;
6138 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6139 		/* first is the lower device itself */
6140 		ret = fn(ldev, data);
6141 		if (ret)
6142 			return ret;
6143 
6144 		/* then look at all of its lower devices */
6145 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6146 		if (ret)
6147 			return ret;
6148 	}
6149 
6150 	return 0;
6151 }
6152 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6153 
6154 /**
6155  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6156  *				       lower neighbour list, RCU
6157  *				       variant
6158  * @dev: device
6159  *
6160  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6161  * list. The caller must hold RCU read lock.
6162  */
6163 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6164 {
6165 	struct netdev_adjacent *lower;
6166 
6167 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6168 			struct netdev_adjacent, list);
6169 	if (lower)
6170 		return lower->private;
6171 	return NULL;
6172 }
6173 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6174 
6175 /**
6176  * netdev_master_upper_dev_get_rcu - Get master upper device
6177  * @dev: device
6178  *
6179  * Find a master upper device and return pointer to it or NULL in case
6180  * it's not there. The caller must hold the RCU read lock.
6181  */
6182 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6183 {
6184 	struct netdev_adjacent *upper;
6185 
6186 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6187 				       struct netdev_adjacent, list);
6188 	if (upper && likely(upper->master))
6189 		return upper->dev;
6190 	return NULL;
6191 }
6192 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6193 
6194 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6195 			      struct net_device *adj_dev,
6196 			      struct list_head *dev_list)
6197 {
6198 	char linkname[IFNAMSIZ+7];
6199 
6200 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6201 		"upper_%s" : "lower_%s", adj_dev->name);
6202 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6203 				 linkname);
6204 }
6205 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6206 			       char *name,
6207 			       struct list_head *dev_list)
6208 {
6209 	char linkname[IFNAMSIZ+7];
6210 
6211 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6212 		"upper_%s" : "lower_%s", name);
6213 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6214 }
6215 
6216 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6217 						 struct net_device *adj_dev,
6218 						 struct list_head *dev_list)
6219 {
6220 	return (dev_list == &dev->adj_list.upper ||
6221 		dev_list == &dev->adj_list.lower) &&
6222 		net_eq(dev_net(dev), dev_net(adj_dev));
6223 }
6224 
6225 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6226 					struct net_device *adj_dev,
6227 					struct list_head *dev_list,
6228 					void *private, bool master)
6229 {
6230 	struct netdev_adjacent *adj;
6231 	int ret;
6232 
6233 	adj = __netdev_find_adj(adj_dev, dev_list);
6234 
6235 	if (adj) {
6236 		adj->ref_nr += 1;
6237 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6238 			 dev->name, adj_dev->name, adj->ref_nr);
6239 
6240 		return 0;
6241 	}
6242 
6243 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6244 	if (!adj)
6245 		return -ENOMEM;
6246 
6247 	adj->dev = adj_dev;
6248 	adj->master = master;
6249 	adj->ref_nr = 1;
6250 	adj->private = private;
6251 	dev_hold(adj_dev);
6252 
6253 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6254 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6255 
6256 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6257 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6258 		if (ret)
6259 			goto free_adj;
6260 	}
6261 
6262 	/* Ensure that master link is always the first item in list. */
6263 	if (master) {
6264 		ret = sysfs_create_link(&(dev->dev.kobj),
6265 					&(adj_dev->dev.kobj), "master");
6266 		if (ret)
6267 			goto remove_symlinks;
6268 
6269 		list_add_rcu(&adj->list, dev_list);
6270 	} else {
6271 		list_add_tail_rcu(&adj->list, dev_list);
6272 	}
6273 
6274 	return 0;
6275 
6276 remove_symlinks:
6277 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6278 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6279 free_adj:
6280 	kfree(adj);
6281 	dev_put(adj_dev);
6282 
6283 	return ret;
6284 }
6285 
6286 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6287 					 struct net_device *adj_dev,
6288 					 u16 ref_nr,
6289 					 struct list_head *dev_list)
6290 {
6291 	struct netdev_adjacent *adj;
6292 
6293 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6294 		 dev->name, adj_dev->name, ref_nr);
6295 
6296 	adj = __netdev_find_adj(adj_dev, dev_list);
6297 
6298 	if (!adj) {
6299 		pr_err("Adjacency does not exist for device %s from %s\n",
6300 		       dev->name, adj_dev->name);
6301 		WARN_ON(1);
6302 		return;
6303 	}
6304 
6305 	if (adj->ref_nr > ref_nr) {
6306 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6307 			 dev->name, adj_dev->name, ref_nr,
6308 			 adj->ref_nr - ref_nr);
6309 		adj->ref_nr -= ref_nr;
6310 		return;
6311 	}
6312 
6313 	if (adj->master)
6314 		sysfs_remove_link(&(dev->dev.kobj), "master");
6315 
6316 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6317 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6318 
6319 	list_del_rcu(&adj->list);
6320 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6321 		 adj_dev->name, dev->name, adj_dev->name);
6322 	dev_put(adj_dev);
6323 	kfree_rcu(adj, rcu);
6324 }
6325 
6326 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6327 					    struct net_device *upper_dev,
6328 					    struct list_head *up_list,
6329 					    struct list_head *down_list,
6330 					    void *private, bool master)
6331 {
6332 	int ret;
6333 
6334 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6335 					   private, master);
6336 	if (ret)
6337 		return ret;
6338 
6339 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6340 					   private, false);
6341 	if (ret) {
6342 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6343 		return ret;
6344 	}
6345 
6346 	return 0;
6347 }
6348 
6349 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6350 					       struct net_device *upper_dev,
6351 					       u16 ref_nr,
6352 					       struct list_head *up_list,
6353 					       struct list_head *down_list)
6354 {
6355 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6356 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6357 }
6358 
6359 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6360 						struct net_device *upper_dev,
6361 						void *private, bool master)
6362 {
6363 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6364 						&dev->adj_list.upper,
6365 						&upper_dev->adj_list.lower,
6366 						private, master);
6367 }
6368 
6369 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6370 						   struct net_device *upper_dev)
6371 {
6372 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6373 					   &dev->adj_list.upper,
6374 					   &upper_dev->adj_list.lower);
6375 }
6376 
6377 static int __netdev_upper_dev_link(struct net_device *dev,
6378 				   struct net_device *upper_dev, bool master,
6379 				   void *upper_priv, void *upper_info,
6380 				   struct netlink_ext_ack *extack)
6381 {
6382 	struct netdev_notifier_changeupper_info changeupper_info = {
6383 		.info = {
6384 			.dev = dev,
6385 			.extack = extack,
6386 		},
6387 		.upper_dev = upper_dev,
6388 		.master = master,
6389 		.linking = true,
6390 		.upper_info = upper_info,
6391 	};
6392 	int ret = 0;
6393 
6394 	ASSERT_RTNL();
6395 
6396 	if (dev == upper_dev)
6397 		return -EBUSY;
6398 
6399 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6400 	if (netdev_has_upper_dev(upper_dev, dev))
6401 		return -EBUSY;
6402 
6403 	if (netdev_has_upper_dev(dev, upper_dev))
6404 		return -EEXIST;
6405 
6406 	if (master && netdev_master_upper_dev_get(dev))
6407 		return -EBUSY;
6408 
6409 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6410 					    &changeupper_info.info);
6411 	ret = notifier_to_errno(ret);
6412 	if (ret)
6413 		return ret;
6414 
6415 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6416 						   master);
6417 	if (ret)
6418 		return ret;
6419 
6420 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6421 					    &changeupper_info.info);
6422 	ret = notifier_to_errno(ret);
6423 	if (ret)
6424 		goto rollback;
6425 
6426 	return 0;
6427 
6428 rollback:
6429 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6430 
6431 	return ret;
6432 }
6433 
6434 /**
6435  * netdev_upper_dev_link - Add a link to the upper device
6436  * @dev: device
6437  * @upper_dev: new upper device
6438  * @extack: netlink extended ack
6439  *
6440  * Adds a link to device which is upper to this one. The caller must hold
6441  * the RTNL lock. On a failure a negative errno code is returned.
6442  * On success the reference counts are adjusted and the function
6443  * returns zero.
6444  */
6445 int netdev_upper_dev_link(struct net_device *dev,
6446 			  struct net_device *upper_dev,
6447 			  struct netlink_ext_ack *extack)
6448 {
6449 	return __netdev_upper_dev_link(dev, upper_dev, false,
6450 				       NULL, NULL, extack);
6451 }
6452 EXPORT_SYMBOL(netdev_upper_dev_link);
6453 
6454 /**
6455  * netdev_master_upper_dev_link - Add a master link to the upper device
6456  * @dev: device
6457  * @upper_dev: new upper device
6458  * @upper_priv: upper device private
6459  * @upper_info: upper info to be passed down via notifier
6460  * @extack: netlink extended ack
6461  *
6462  * Adds a link to device which is upper to this one. In this case, only
6463  * one master upper device can be linked, although other non-master devices
6464  * might be linked as well. The caller must hold the RTNL lock.
6465  * On a failure a negative errno code is returned. On success the reference
6466  * counts are adjusted and the function returns zero.
6467  */
6468 int netdev_master_upper_dev_link(struct net_device *dev,
6469 				 struct net_device *upper_dev,
6470 				 void *upper_priv, void *upper_info,
6471 				 struct netlink_ext_ack *extack)
6472 {
6473 	return __netdev_upper_dev_link(dev, upper_dev, true,
6474 				       upper_priv, upper_info, extack);
6475 }
6476 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6477 
6478 /**
6479  * netdev_upper_dev_unlink - Removes a link to upper device
6480  * @dev: device
6481  * @upper_dev: new upper device
6482  *
6483  * Removes a link to device which is upper to this one. The caller must hold
6484  * the RTNL lock.
6485  */
6486 void netdev_upper_dev_unlink(struct net_device *dev,
6487 			     struct net_device *upper_dev)
6488 {
6489 	struct netdev_notifier_changeupper_info changeupper_info = {
6490 		.info = {
6491 			.dev = dev,
6492 		},
6493 		.upper_dev = upper_dev,
6494 		.linking = false,
6495 	};
6496 
6497 	ASSERT_RTNL();
6498 
6499 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6500 
6501 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6502 				      &changeupper_info.info);
6503 
6504 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6505 
6506 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6507 				      &changeupper_info.info);
6508 }
6509 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6510 
6511 /**
6512  * netdev_bonding_info_change - Dispatch event about slave change
6513  * @dev: device
6514  * @bonding_info: info to dispatch
6515  *
6516  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6517  * The caller must hold the RTNL lock.
6518  */
6519 void netdev_bonding_info_change(struct net_device *dev,
6520 				struct netdev_bonding_info *bonding_info)
6521 {
6522 	struct netdev_notifier_bonding_info info = {
6523 		.info.dev = dev,
6524 	};
6525 
6526 	memcpy(&info.bonding_info, bonding_info,
6527 	       sizeof(struct netdev_bonding_info));
6528 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6529 				      &info.info);
6530 }
6531 EXPORT_SYMBOL(netdev_bonding_info_change);
6532 
6533 static void netdev_adjacent_add_links(struct net_device *dev)
6534 {
6535 	struct netdev_adjacent *iter;
6536 
6537 	struct net *net = dev_net(dev);
6538 
6539 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6540 		if (!net_eq(net, dev_net(iter->dev)))
6541 			continue;
6542 		netdev_adjacent_sysfs_add(iter->dev, dev,
6543 					  &iter->dev->adj_list.lower);
6544 		netdev_adjacent_sysfs_add(dev, iter->dev,
6545 					  &dev->adj_list.upper);
6546 	}
6547 
6548 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6549 		if (!net_eq(net, dev_net(iter->dev)))
6550 			continue;
6551 		netdev_adjacent_sysfs_add(iter->dev, dev,
6552 					  &iter->dev->adj_list.upper);
6553 		netdev_adjacent_sysfs_add(dev, iter->dev,
6554 					  &dev->adj_list.lower);
6555 	}
6556 }
6557 
6558 static void netdev_adjacent_del_links(struct net_device *dev)
6559 {
6560 	struct netdev_adjacent *iter;
6561 
6562 	struct net *net = dev_net(dev);
6563 
6564 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6565 		if (!net_eq(net, dev_net(iter->dev)))
6566 			continue;
6567 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6568 					  &iter->dev->adj_list.lower);
6569 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6570 					  &dev->adj_list.upper);
6571 	}
6572 
6573 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6574 		if (!net_eq(net, dev_net(iter->dev)))
6575 			continue;
6576 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6577 					  &iter->dev->adj_list.upper);
6578 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6579 					  &dev->adj_list.lower);
6580 	}
6581 }
6582 
6583 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6584 {
6585 	struct netdev_adjacent *iter;
6586 
6587 	struct net *net = dev_net(dev);
6588 
6589 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6590 		if (!net_eq(net, dev_net(iter->dev)))
6591 			continue;
6592 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6593 					  &iter->dev->adj_list.lower);
6594 		netdev_adjacent_sysfs_add(iter->dev, dev,
6595 					  &iter->dev->adj_list.lower);
6596 	}
6597 
6598 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6599 		if (!net_eq(net, dev_net(iter->dev)))
6600 			continue;
6601 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6602 					  &iter->dev->adj_list.upper);
6603 		netdev_adjacent_sysfs_add(iter->dev, dev,
6604 					  &iter->dev->adj_list.upper);
6605 	}
6606 }
6607 
6608 void *netdev_lower_dev_get_private(struct net_device *dev,
6609 				   struct net_device *lower_dev)
6610 {
6611 	struct netdev_adjacent *lower;
6612 
6613 	if (!lower_dev)
6614 		return NULL;
6615 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6616 	if (!lower)
6617 		return NULL;
6618 
6619 	return lower->private;
6620 }
6621 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6622 
6623 
6624 int dev_get_nest_level(struct net_device *dev)
6625 {
6626 	struct net_device *lower = NULL;
6627 	struct list_head *iter;
6628 	int max_nest = -1;
6629 	int nest;
6630 
6631 	ASSERT_RTNL();
6632 
6633 	netdev_for_each_lower_dev(dev, lower, iter) {
6634 		nest = dev_get_nest_level(lower);
6635 		if (max_nest < nest)
6636 			max_nest = nest;
6637 	}
6638 
6639 	return max_nest + 1;
6640 }
6641 EXPORT_SYMBOL(dev_get_nest_level);
6642 
6643 /**
6644  * netdev_lower_change - Dispatch event about lower device state change
6645  * @lower_dev: device
6646  * @lower_state_info: state to dispatch
6647  *
6648  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6649  * The caller must hold the RTNL lock.
6650  */
6651 void netdev_lower_state_changed(struct net_device *lower_dev,
6652 				void *lower_state_info)
6653 {
6654 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6655 		.info.dev = lower_dev,
6656 	};
6657 
6658 	ASSERT_RTNL();
6659 	changelowerstate_info.lower_state_info = lower_state_info;
6660 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6661 				      &changelowerstate_info.info);
6662 }
6663 EXPORT_SYMBOL(netdev_lower_state_changed);
6664 
6665 static void dev_change_rx_flags(struct net_device *dev, int flags)
6666 {
6667 	const struct net_device_ops *ops = dev->netdev_ops;
6668 
6669 	if (ops->ndo_change_rx_flags)
6670 		ops->ndo_change_rx_flags(dev, flags);
6671 }
6672 
6673 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6674 {
6675 	unsigned int old_flags = dev->flags;
6676 	kuid_t uid;
6677 	kgid_t gid;
6678 
6679 	ASSERT_RTNL();
6680 
6681 	dev->flags |= IFF_PROMISC;
6682 	dev->promiscuity += inc;
6683 	if (dev->promiscuity == 0) {
6684 		/*
6685 		 * Avoid overflow.
6686 		 * If inc causes overflow, untouch promisc and return error.
6687 		 */
6688 		if (inc < 0)
6689 			dev->flags &= ~IFF_PROMISC;
6690 		else {
6691 			dev->promiscuity -= inc;
6692 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6693 				dev->name);
6694 			return -EOVERFLOW;
6695 		}
6696 	}
6697 	if (dev->flags != old_flags) {
6698 		pr_info("device %s %s promiscuous mode\n",
6699 			dev->name,
6700 			dev->flags & IFF_PROMISC ? "entered" : "left");
6701 		if (audit_enabled) {
6702 			current_uid_gid(&uid, &gid);
6703 			audit_log(current->audit_context, GFP_ATOMIC,
6704 				AUDIT_ANOM_PROMISCUOUS,
6705 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6706 				dev->name, (dev->flags & IFF_PROMISC),
6707 				(old_flags & IFF_PROMISC),
6708 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6709 				from_kuid(&init_user_ns, uid),
6710 				from_kgid(&init_user_ns, gid),
6711 				audit_get_sessionid(current));
6712 		}
6713 
6714 		dev_change_rx_flags(dev, IFF_PROMISC);
6715 	}
6716 	if (notify)
6717 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6718 	return 0;
6719 }
6720 
6721 /**
6722  *	dev_set_promiscuity	- update promiscuity count on a device
6723  *	@dev: device
6724  *	@inc: modifier
6725  *
6726  *	Add or remove promiscuity from a device. While the count in the device
6727  *	remains above zero the interface remains promiscuous. Once it hits zero
6728  *	the device reverts back to normal filtering operation. A negative inc
6729  *	value is used to drop promiscuity on the device.
6730  *	Return 0 if successful or a negative errno code on error.
6731  */
6732 int dev_set_promiscuity(struct net_device *dev, int inc)
6733 {
6734 	unsigned int old_flags = dev->flags;
6735 	int err;
6736 
6737 	err = __dev_set_promiscuity(dev, inc, true);
6738 	if (err < 0)
6739 		return err;
6740 	if (dev->flags != old_flags)
6741 		dev_set_rx_mode(dev);
6742 	return err;
6743 }
6744 EXPORT_SYMBOL(dev_set_promiscuity);
6745 
6746 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6747 {
6748 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6749 
6750 	ASSERT_RTNL();
6751 
6752 	dev->flags |= IFF_ALLMULTI;
6753 	dev->allmulti += inc;
6754 	if (dev->allmulti == 0) {
6755 		/*
6756 		 * Avoid overflow.
6757 		 * If inc causes overflow, untouch allmulti and return error.
6758 		 */
6759 		if (inc < 0)
6760 			dev->flags &= ~IFF_ALLMULTI;
6761 		else {
6762 			dev->allmulti -= inc;
6763 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6764 				dev->name);
6765 			return -EOVERFLOW;
6766 		}
6767 	}
6768 	if (dev->flags ^ old_flags) {
6769 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6770 		dev_set_rx_mode(dev);
6771 		if (notify)
6772 			__dev_notify_flags(dev, old_flags,
6773 					   dev->gflags ^ old_gflags);
6774 	}
6775 	return 0;
6776 }
6777 
6778 /**
6779  *	dev_set_allmulti	- update allmulti count on a device
6780  *	@dev: device
6781  *	@inc: modifier
6782  *
6783  *	Add or remove reception of all multicast frames to a device. While the
6784  *	count in the device remains above zero the interface remains listening
6785  *	to all interfaces. Once it hits zero the device reverts back to normal
6786  *	filtering operation. A negative @inc value is used to drop the counter
6787  *	when releasing a resource needing all multicasts.
6788  *	Return 0 if successful or a negative errno code on error.
6789  */
6790 
6791 int dev_set_allmulti(struct net_device *dev, int inc)
6792 {
6793 	return __dev_set_allmulti(dev, inc, true);
6794 }
6795 EXPORT_SYMBOL(dev_set_allmulti);
6796 
6797 /*
6798  *	Upload unicast and multicast address lists to device and
6799  *	configure RX filtering. When the device doesn't support unicast
6800  *	filtering it is put in promiscuous mode while unicast addresses
6801  *	are present.
6802  */
6803 void __dev_set_rx_mode(struct net_device *dev)
6804 {
6805 	const struct net_device_ops *ops = dev->netdev_ops;
6806 
6807 	/* dev_open will call this function so the list will stay sane. */
6808 	if (!(dev->flags&IFF_UP))
6809 		return;
6810 
6811 	if (!netif_device_present(dev))
6812 		return;
6813 
6814 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6815 		/* Unicast addresses changes may only happen under the rtnl,
6816 		 * therefore calling __dev_set_promiscuity here is safe.
6817 		 */
6818 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6819 			__dev_set_promiscuity(dev, 1, false);
6820 			dev->uc_promisc = true;
6821 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6822 			__dev_set_promiscuity(dev, -1, false);
6823 			dev->uc_promisc = false;
6824 		}
6825 	}
6826 
6827 	if (ops->ndo_set_rx_mode)
6828 		ops->ndo_set_rx_mode(dev);
6829 }
6830 
6831 void dev_set_rx_mode(struct net_device *dev)
6832 {
6833 	netif_addr_lock_bh(dev);
6834 	__dev_set_rx_mode(dev);
6835 	netif_addr_unlock_bh(dev);
6836 }
6837 
6838 /**
6839  *	dev_get_flags - get flags reported to userspace
6840  *	@dev: device
6841  *
6842  *	Get the combination of flag bits exported through APIs to userspace.
6843  */
6844 unsigned int dev_get_flags(const struct net_device *dev)
6845 {
6846 	unsigned int flags;
6847 
6848 	flags = (dev->flags & ~(IFF_PROMISC |
6849 				IFF_ALLMULTI |
6850 				IFF_RUNNING |
6851 				IFF_LOWER_UP |
6852 				IFF_DORMANT)) |
6853 		(dev->gflags & (IFF_PROMISC |
6854 				IFF_ALLMULTI));
6855 
6856 	if (netif_running(dev)) {
6857 		if (netif_oper_up(dev))
6858 			flags |= IFF_RUNNING;
6859 		if (netif_carrier_ok(dev))
6860 			flags |= IFF_LOWER_UP;
6861 		if (netif_dormant(dev))
6862 			flags |= IFF_DORMANT;
6863 	}
6864 
6865 	return flags;
6866 }
6867 EXPORT_SYMBOL(dev_get_flags);
6868 
6869 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6870 {
6871 	unsigned int old_flags = dev->flags;
6872 	int ret;
6873 
6874 	ASSERT_RTNL();
6875 
6876 	/*
6877 	 *	Set the flags on our device.
6878 	 */
6879 
6880 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6881 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6882 			       IFF_AUTOMEDIA)) |
6883 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6884 				    IFF_ALLMULTI));
6885 
6886 	/*
6887 	 *	Load in the correct multicast list now the flags have changed.
6888 	 */
6889 
6890 	if ((old_flags ^ flags) & IFF_MULTICAST)
6891 		dev_change_rx_flags(dev, IFF_MULTICAST);
6892 
6893 	dev_set_rx_mode(dev);
6894 
6895 	/*
6896 	 *	Have we downed the interface. We handle IFF_UP ourselves
6897 	 *	according to user attempts to set it, rather than blindly
6898 	 *	setting it.
6899 	 */
6900 
6901 	ret = 0;
6902 	if ((old_flags ^ flags) & IFF_UP) {
6903 		if (old_flags & IFF_UP)
6904 			__dev_close(dev);
6905 		else
6906 			ret = __dev_open(dev);
6907 	}
6908 
6909 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6910 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6911 		unsigned int old_flags = dev->flags;
6912 
6913 		dev->gflags ^= IFF_PROMISC;
6914 
6915 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6916 			if (dev->flags != old_flags)
6917 				dev_set_rx_mode(dev);
6918 	}
6919 
6920 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6921 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6922 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6923 	 */
6924 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6925 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6926 
6927 		dev->gflags ^= IFF_ALLMULTI;
6928 		__dev_set_allmulti(dev, inc, false);
6929 	}
6930 
6931 	return ret;
6932 }
6933 
6934 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6935 			unsigned int gchanges)
6936 {
6937 	unsigned int changes = dev->flags ^ old_flags;
6938 
6939 	if (gchanges)
6940 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6941 
6942 	if (changes & IFF_UP) {
6943 		if (dev->flags & IFF_UP)
6944 			call_netdevice_notifiers(NETDEV_UP, dev);
6945 		else
6946 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6947 	}
6948 
6949 	if (dev->flags & IFF_UP &&
6950 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6951 		struct netdev_notifier_change_info change_info = {
6952 			.info = {
6953 				.dev = dev,
6954 			},
6955 			.flags_changed = changes,
6956 		};
6957 
6958 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6959 	}
6960 }
6961 
6962 /**
6963  *	dev_change_flags - change device settings
6964  *	@dev: device
6965  *	@flags: device state flags
6966  *
6967  *	Change settings on device based state flags. The flags are
6968  *	in the userspace exported format.
6969  */
6970 int dev_change_flags(struct net_device *dev, unsigned int flags)
6971 {
6972 	int ret;
6973 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6974 
6975 	ret = __dev_change_flags(dev, flags);
6976 	if (ret < 0)
6977 		return ret;
6978 
6979 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6980 	__dev_notify_flags(dev, old_flags, changes);
6981 	return ret;
6982 }
6983 EXPORT_SYMBOL(dev_change_flags);
6984 
6985 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6986 {
6987 	const struct net_device_ops *ops = dev->netdev_ops;
6988 
6989 	if (ops->ndo_change_mtu)
6990 		return ops->ndo_change_mtu(dev, new_mtu);
6991 
6992 	dev->mtu = new_mtu;
6993 	return 0;
6994 }
6995 EXPORT_SYMBOL(__dev_set_mtu);
6996 
6997 /**
6998  *	dev_set_mtu - Change maximum transfer unit
6999  *	@dev: device
7000  *	@new_mtu: new transfer unit
7001  *
7002  *	Change the maximum transfer size of the network device.
7003  */
7004 int dev_set_mtu(struct net_device *dev, int new_mtu)
7005 {
7006 	int err, orig_mtu;
7007 
7008 	if (new_mtu == dev->mtu)
7009 		return 0;
7010 
7011 	/* MTU must be positive, and in range */
7012 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7013 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7014 				    dev->name, new_mtu, dev->min_mtu);
7015 		return -EINVAL;
7016 	}
7017 
7018 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7019 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7020 				    dev->name, new_mtu, dev->max_mtu);
7021 		return -EINVAL;
7022 	}
7023 
7024 	if (!netif_device_present(dev))
7025 		return -ENODEV;
7026 
7027 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7028 	err = notifier_to_errno(err);
7029 	if (err)
7030 		return err;
7031 
7032 	orig_mtu = dev->mtu;
7033 	err = __dev_set_mtu(dev, new_mtu);
7034 
7035 	if (!err) {
7036 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7037 		err = notifier_to_errno(err);
7038 		if (err) {
7039 			/* setting mtu back and notifying everyone again,
7040 			 * so that they have a chance to revert changes.
7041 			 */
7042 			__dev_set_mtu(dev, orig_mtu);
7043 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7044 		}
7045 	}
7046 	return err;
7047 }
7048 EXPORT_SYMBOL(dev_set_mtu);
7049 
7050 /**
7051  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7052  *	@dev: device
7053  *	@new_len: new tx queue length
7054  */
7055 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7056 {
7057 	unsigned int orig_len = dev->tx_queue_len;
7058 	int res;
7059 
7060 	if (new_len != (unsigned int)new_len)
7061 		return -ERANGE;
7062 
7063 	if (new_len != orig_len) {
7064 		dev->tx_queue_len = new_len;
7065 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7066 		res = notifier_to_errno(res);
7067 		if (res) {
7068 			netdev_err(dev,
7069 				   "refused to change device tx_queue_len\n");
7070 			dev->tx_queue_len = orig_len;
7071 			return res;
7072 		}
7073 		return dev_qdisc_change_tx_queue_len(dev);
7074 	}
7075 
7076 	return 0;
7077 }
7078 
7079 /**
7080  *	dev_set_group - Change group this device belongs to
7081  *	@dev: device
7082  *	@new_group: group this device should belong to
7083  */
7084 void dev_set_group(struct net_device *dev, int new_group)
7085 {
7086 	dev->group = new_group;
7087 }
7088 EXPORT_SYMBOL(dev_set_group);
7089 
7090 /**
7091  *	dev_set_mac_address - Change Media Access Control Address
7092  *	@dev: device
7093  *	@sa: new address
7094  *
7095  *	Change the hardware (MAC) address of the device
7096  */
7097 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7098 {
7099 	const struct net_device_ops *ops = dev->netdev_ops;
7100 	int err;
7101 
7102 	if (!ops->ndo_set_mac_address)
7103 		return -EOPNOTSUPP;
7104 	if (sa->sa_family != dev->type)
7105 		return -EINVAL;
7106 	if (!netif_device_present(dev))
7107 		return -ENODEV;
7108 	err = ops->ndo_set_mac_address(dev, sa);
7109 	if (err)
7110 		return err;
7111 	dev->addr_assign_type = NET_ADDR_SET;
7112 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7113 	add_device_randomness(dev->dev_addr, dev->addr_len);
7114 	return 0;
7115 }
7116 EXPORT_SYMBOL(dev_set_mac_address);
7117 
7118 /**
7119  *	dev_change_carrier - Change device carrier
7120  *	@dev: device
7121  *	@new_carrier: new value
7122  *
7123  *	Change device carrier
7124  */
7125 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7126 {
7127 	const struct net_device_ops *ops = dev->netdev_ops;
7128 
7129 	if (!ops->ndo_change_carrier)
7130 		return -EOPNOTSUPP;
7131 	if (!netif_device_present(dev))
7132 		return -ENODEV;
7133 	return ops->ndo_change_carrier(dev, new_carrier);
7134 }
7135 EXPORT_SYMBOL(dev_change_carrier);
7136 
7137 /**
7138  *	dev_get_phys_port_id - Get device physical port ID
7139  *	@dev: device
7140  *	@ppid: port ID
7141  *
7142  *	Get device physical port ID
7143  */
7144 int dev_get_phys_port_id(struct net_device *dev,
7145 			 struct netdev_phys_item_id *ppid)
7146 {
7147 	const struct net_device_ops *ops = dev->netdev_ops;
7148 
7149 	if (!ops->ndo_get_phys_port_id)
7150 		return -EOPNOTSUPP;
7151 	return ops->ndo_get_phys_port_id(dev, ppid);
7152 }
7153 EXPORT_SYMBOL(dev_get_phys_port_id);
7154 
7155 /**
7156  *	dev_get_phys_port_name - Get device physical port name
7157  *	@dev: device
7158  *	@name: port name
7159  *	@len: limit of bytes to copy to name
7160  *
7161  *	Get device physical port name
7162  */
7163 int dev_get_phys_port_name(struct net_device *dev,
7164 			   char *name, size_t len)
7165 {
7166 	const struct net_device_ops *ops = dev->netdev_ops;
7167 
7168 	if (!ops->ndo_get_phys_port_name)
7169 		return -EOPNOTSUPP;
7170 	return ops->ndo_get_phys_port_name(dev, name, len);
7171 }
7172 EXPORT_SYMBOL(dev_get_phys_port_name);
7173 
7174 /**
7175  *	dev_change_proto_down - update protocol port state information
7176  *	@dev: device
7177  *	@proto_down: new value
7178  *
7179  *	This info can be used by switch drivers to set the phys state of the
7180  *	port.
7181  */
7182 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7183 {
7184 	const struct net_device_ops *ops = dev->netdev_ops;
7185 
7186 	if (!ops->ndo_change_proto_down)
7187 		return -EOPNOTSUPP;
7188 	if (!netif_device_present(dev))
7189 		return -ENODEV;
7190 	return ops->ndo_change_proto_down(dev, proto_down);
7191 }
7192 EXPORT_SYMBOL(dev_change_proto_down);
7193 
7194 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7195 		     struct netdev_bpf *xdp)
7196 {
7197 	memset(xdp, 0, sizeof(*xdp));
7198 	xdp->command = XDP_QUERY_PROG;
7199 
7200 	/* Query must always succeed. */
7201 	WARN_ON(bpf_op(dev, xdp) < 0);
7202 }
7203 
7204 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7205 {
7206 	struct netdev_bpf xdp;
7207 
7208 	__dev_xdp_query(dev, bpf_op, &xdp);
7209 
7210 	return xdp.prog_attached;
7211 }
7212 
7213 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7214 			   struct netlink_ext_ack *extack, u32 flags,
7215 			   struct bpf_prog *prog)
7216 {
7217 	struct netdev_bpf xdp;
7218 
7219 	memset(&xdp, 0, sizeof(xdp));
7220 	if (flags & XDP_FLAGS_HW_MODE)
7221 		xdp.command = XDP_SETUP_PROG_HW;
7222 	else
7223 		xdp.command = XDP_SETUP_PROG;
7224 	xdp.extack = extack;
7225 	xdp.flags = flags;
7226 	xdp.prog = prog;
7227 
7228 	return bpf_op(dev, &xdp);
7229 }
7230 
7231 static void dev_xdp_uninstall(struct net_device *dev)
7232 {
7233 	struct netdev_bpf xdp;
7234 	bpf_op_t ndo_bpf;
7235 
7236 	/* Remove generic XDP */
7237 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7238 
7239 	/* Remove from the driver */
7240 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7241 	if (!ndo_bpf)
7242 		return;
7243 
7244 	__dev_xdp_query(dev, ndo_bpf, &xdp);
7245 	if (xdp.prog_attached == XDP_ATTACHED_NONE)
7246 		return;
7247 
7248 	/* Program removal should always succeed */
7249 	WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7250 }
7251 
7252 /**
7253  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7254  *	@dev: device
7255  *	@extack: netlink extended ack
7256  *	@fd: new program fd or negative value to clear
7257  *	@flags: xdp-related flags
7258  *
7259  *	Set or clear a bpf program for a device
7260  */
7261 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7262 		      int fd, u32 flags)
7263 {
7264 	const struct net_device_ops *ops = dev->netdev_ops;
7265 	struct bpf_prog *prog = NULL;
7266 	bpf_op_t bpf_op, bpf_chk;
7267 	int err;
7268 
7269 	ASSERT_RTNL();
7270 
7271 	bpf_op = bpf_chk = ops->ndo_bpf;
7272 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7273 		return -EOPNOTSUPP;
7274 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7275 		bpf_op = generic_xdp_install;
7276 	if (bpf_op == bpf_chk)
7277 		bpf_chk = generic_xdp_install;
7278 
7279 	if (fd >= 0) {
7280 		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7281 			return -EEXIST;
7282 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7283 		    __dev_xdp_attached(dev, bpf_op))
7284 			return -EBUSY;
7285 
7286 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7287 					     bpf_op == ops->ndo_bpf);
7288 		if (IS_ERR(prog))
7289 			return PTR_ERR(prog);
7290 
7291 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7292 		    bpf_prog_is_dev_bound(prog->aux)) {
7293 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7294 			bpf_prog_put(prog);
7295 			return -EINVAL;
7296 		}
7297 	}
7298 
7299 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7300 	if (err < 0 && prog)
7301 		bpf_prog_put(prog);
7302 
7303 	return err;
7304 }
7305 
7306 /**
7307  *	dev_new_index	-	allocate an ifindex
7308  *	@net: the applicable net namespace
7309  *
7310  *	Returns a suitable unique value for a new device interface
7311  *	number.  The caller must hold the rtnl semaphore or the
7312  *	dev_base_lock to be sure it remains unique.
7313  */
7314 static int dev_new_index(struct net *net)
7315 {
7316 	int ifindex = net->ifindex;
7317 
7318 	for (;;) {
7319 		if (++ifindex <= 0)
7320 			ifindex = 1;
7321 		if (!__dev_get_by_index(net, ifindex))
7322 			return net->ifindex = ifindex;
7323 	}
7324 }
7325 
7326 /* Delayed registration/unregisteration */
7327 static LIST_HEAD(net_todo_list);
7328 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7329 
7330 static void net_set_todo(struct net_device *dev)
7331 {
7332 	list_add_tail(&dev->todo_list, &net_todo_list);
7333 	dev_net(dev)->dev_unreg_count++;
7334 }
7335 
7336 static void rollback_registered_many(struct list_head *head)
7337 {
7338 	struct net_device *dev, *tmp;
7339 	LIST_HEAD(close_head);
7340 
7341 	BUG_ON(dev_boot_phase);
7342 	ASSERT_RTNL();
7343 
7344 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7345 		/* Some devices call without registering
7346 		 * for initialization unwind. Remove those
7347 		 * devices and proceed with the remaining.
7348 		 */
7349 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7350 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7351 				 dev->name, dev);
7352 
7353 			WARN_ON(1);
7354 			list_del(&dev->unreg_list);
7355 			continue;
7356 		}
7357 		dev->dismantle = true;
7358 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7359 	}
7360 
7361 	/* If device is running, close it first. */
7362 	list_for_each_entry(dev, head, unreg_list)
7363 		list_add_tail(&dev->close_list, &close_head);
7364 	dev_close_many(&close_head, true);
7365 
7366 	list_for_each_entry(dev, head, unreg_list) {
7367 		/* And unlink it from device chain. */
7368 		unlist_netdevice(dev);
7369 
7370 		dev->reg_state = NETREG_UNREGISTERING;
7371 	}
7372 	flush_all_backlogs();
7373 
7374 	synchronize_net();
7375 
7376 	list_for_each_entry(dev, head, unreg_list) {
7377 		struct sk_buff *skb = NULL;
7378 
7379 		/* Shutdown queueing discipline. */
7380 		dev_shutdown(dev);
7381 
7382 		dev_xdp_uninstall(dev);
7383 
7384 		/* Notify protocols, that we are about to destroy
7385 		 * this device. They should clean all the things.
7386 		 */
7387 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7388 
7389 		if (!dev->rtnl_link_ops ||
7390 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7391 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7392 						     GFP_KERNEL, NULL, 0);
7393 
7394 		/*
7395 		 *	Flush the unicast and multicast chains
7396 		 */
7397 		dev_uc_flush(dev);
7398 		dev_mc_flush(dev);
7399 
7400 		if (dev->netdev_ops->ndo_uninit)
7401 			dev->netdev_ops->ndo_uninit(dev);
7402 
7403 		if (skb)
7404 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7405 
7406 		/* Notifier chain MUST detach us all upper devices. */
7407 		WARN_ON(netdev_has_any_upper_dev(dev));
7408 		WARN_ON(netdev_has_any_lower_dev(dev));
7409 
7410 		/* Remove entries from kobject tree */
7411 		netdev_unregister_kobject(dev);
7412 #ifdef CONFIG_XPS
7413 		/* Remove XPS queueing entries */
7414 		netif_reset_xps_queues_gt(dev, 0);
7415 #endif
7416 	}
7417 
7418 	synchronize_net();
7419 
7420 	list_for_each_entry(dev, head, unreg_list)
7421 		dev_put(dev);
7422 }
7423 
7424 static void rollback_registered(struct net_device *dev)
7425 {
7426 	LIST_HEAD(single);
7427 
7428 	list_add(&dev->unreg_list, &single);
7429 	rollback_registered_many(&single);
7430 	list_del(&single);
7431 }
7432 
7433 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7434 	struct net_device *upper, netdev_features_t features)
7435 {
7436 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7437 	netdev_features_t feature;
7438 	int feature_bit;
7439 
7440 	for_each_netdev_feature(&upper_disables, feature_bit) {
7441 		feature = __NETIF_F_BIT(feature_bit);
7442 		if (!(upper->wanted_features & feature)
7443 		    && (features & feature)) {
7444 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7445 				   &feature, upper->name);
7446 			features &= ~feature;
7447 		}
7448 	}
7449 
7450 	return features;
7451 }
7452 
7453 static void netdev_sync_lower_features(struct net_device *upper,
7454 	struct net_device *lower, netdev_features_t features)
7455 {
7456 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7457 	netdev_features_t feature;
7458 	int feature_bit;
7459 
7460 	for_each_netdev_feature(&upper_disables, feature_bit) {
7461 		feature = __NETIF_F_BIT(feature_bit);
7462 		if (!(features & feature) && (lower->features & feature)) {
7463 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7464 				   &feature, lower->name);
7465 			lower->wanted_features &= ~feature;
7466 			netdev_update_features(lower);
7467 
7468 			if (unlikely(lower->features & feature))
7469 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7470 					    &feature, lower->name);
7471 		}
7472 	}
7473 }
7474 
7475 static netdev_features_t netdev_fix_features(struct net_device *dev,
7476 	netdev_features_t features)
7477 {
7478 	/* Fix illegal checksum combinations */
7479 	if ((features & NETIF_F_HW_CSUM) &&
7480 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7481 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7482 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7483 	}
7484 
7485 	/* TSO requires that SG is present as well. */
7486 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7487 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7488 		features &= ~NETIF_F_ALL_TSO;
7489 	}
7490 
7491 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7492 					!(features & NETIF_F_IP_CSUM)) {
7493 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7494 		features &= ~NETIF_F_TSO;
7495 		features &= ~NETIF_F_TSO_ECN;
7496 	}
7497 
7498 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7499 					 !(features & NETIF_F_IPV6_CSUM)) {
7500 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7501 		features &= ~NETIF_F_TSO6;
7502 	}
7503 
7504 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7505 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7506 		features &= ~NETIF_F_TSO_MANGLEID;
7507 
7508 	/* TSO ECN requires that TSO is present as well. */
7509 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7510 		features &= ~NETIF_F_TSO_ECN;
7511 
7512 	/* Software GSO depends on SG. */
7513 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7514 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7515 		features &= ~NETIF_F_GSO;
7516 	}
7517 
7518 	/* GSO partial features require GSO partial be set */
7519 	if ((features & dev->gso_partial_features) &&
7520 	    !(features & NETIF_F_GSO_PARTIAL)) {
7521 		netdev_dbg(dev,
7522 			   "Dropping partially supported GSO features since no GSO partial.\n");
7523 		features &= ~dev->gso_partial_features;
7524 	}
7525 
7526 	if (!(features & NETIF_F_RXCSUM)) {
7527 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7528 		 * successfully merged by hardware must also have the
7529 		 * checksum verified by hardware.  If the user does not
7530 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
7531 		 */
7532 		if (features & NETIF_F_GRO_HW) {
7533 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7534 			features &= ~NETIF_F_GRO_HW;
7535 		}
7536 	}
7537 
7538 	return features;
7539 }
7540 
7541 int __netdev_update_features(struct net_device *dev)
7542 {
7543 	struct net_device *upper, *lower;
7544 	netdev_features_t features;
7545 	struct list_head *iter;
7546 	int err = -1;
7547 
7548 	ASSERT_RTNL();
7549 
7550 	features = netdev_get_wanted_features(dev);
7551 
7552 	if (dev->netdev_ops->ndo_fix_features)
7553 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7554 
7555 	/* driver might be less strict about feature dependencies */
7556 	features = netdev_fix_features(dev, features);
7557 
7558 	/* some features can't be enabled if they're off an an upper device */
7559 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7560 		features = netdev_sync_upper_features(dev, upper, features);
7561 
7562 	if (dev->features == features)
7563 		goto sync_lower;
7564 
7565 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7566 		&dev->features, &features);
7567 
7568 	if (dev->netdev_ops->ndo_set_features)
7569 		err = dev->netdev_ops->ndo_set_features(dev, features);
7570 	else
7571 		err = 0;
7572 
7573 	if (unlikely(err < 0)) {
7574 		netdev_err(dev,
7575 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7576 			err, &features, &dev->features);
7577 		/* return non-0 since some features might have changed and
7578 		 * it's better to fire a spurious notification than miss it
7579 		 */
7580 		return -1;
7581 	}
7582 
7583 sync_lower:
7584 	/* some features must be disabled on lower devices when disabled
7585 	 * on an upper device (think: bonding master or bridge)
7586 	 */
7587 	netdev_for_each_lower_dev(dev, lower, iter)
7588 		netdev_sync_lower_features(dev, lower, features);
7589 
7590 	if (!err) {
7591 		netdev_features_t diff = features ^ dev->features;
7592 
7593 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7594 			/* udp_tunnel_{get,drop}_rx_info both need
7595 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7596 			 * device, or they won't do anything.
7597 			 * Thus we need to update dev->features
7598 			 * *before* calling udp_tunnel_get_rx_info,
7599 			 * but *after* calling udp_tunnel_drop_rx_info.
7600 			 */
7601 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7602 				dev->features = features;
7603 				udp_tunnel_get_rx_info(dev);
7604 			} else {
7605 				udp_tunnel_drop_rx_info(dev);
7606 			}
7607 		}
7608 
7609 		dev->features = features;
7610 	}
7611 
7612 	return err < 0 ? 0 : 1;
7613 }
7614 
7615 /**
7616  *	netdev_update_features - recalculate device features
7617  *	@dev: the device to check
7618  *
7619  *	Recalculate dev->features set and send notifications if it
7620  *	has changed. Should be called after driver or hardware dependent
7621  *	conditions might have changed that influence the features.
7622  */
7623 void netdev_update_features(struct net_device *dev)
7624 {
7625 	if (__netdev_update_features(dev))
7626 		netdev_features_change(dev);
7627 }
7628 EXPORT_SYMBOL(netdev_update_features);
7629 
7630 /**
7631  *	netdev_change_features - recalculate device features
7632  *	@dev: the device to check
7633  *
7634  *	Recalculate dev->features set and send notifications even
7635  *	if they have not changed. Should be called instead of
7636  *	netdev_update_features() if also dev->vlan_features might
7637  *	have changed to allow the changes to be propagated to stacked
7638  *	VLAN devices.
7639  */
7640 void netdev_change_features(struct net_device *dev)
7641 {
7642 	__netdev_update_features(dev);
7643 	netdev_features_change(dev);
7644 }
7645 EXPORT_SYMBOL(netdev_change_features);
7646 
7647 /**
7648  *	netif_stacked_transfer_operstate -	transfer operstate
7649  *	@rootdev: the root or lower level device to transfer state from
7650  *	@dev: the device to transfer operstate to
7651  *
7652  *	Transfer operational state from root to device. This is normally
7653  *	called when a stacking relationship exists between the root
7654  *	device and the device(a leaf device).
7655  */
7656 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7657 					struct net_device *dev)
7658 {
7659 	if (rootdev->operstate == IF_OPER_DORMANT)
7660 		netif_dormant_on(dev);
7661 	else
7662 		netif_dormant_off(dev);
7663 
7664 	if (netif_carrier_ok(rootdev))
7665 		netif_carrier_on(dev);
7666 	else
7667 		netif_carrier_off(dev);
7668 }
7669 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7670 
7671 static int netif_alloc_rx_queues(struct net_device *dev)
7672 {
7673 	unsigned int i, count = dev->num_rx_queues;
7674 	struct netdev_rx_queue *rx;
7675 	size_t sz = count * sizeof(*rx);
7676 	int err = 0;
7677 
7678 	BUG_ON(count < 1);
7679 
7680 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7681 	if (!rx)
7682 		return -ENOMEM;
7683 
7684 	dev->_rx = rx;
7685 
7686 	for (i = 0; i < count; i++) {
7687 		rx[i].dev = dev;
7688 
7689 		/* XDP RX-queue setup */
7690 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7691 		if (err < 0)
7692 			goto err_rxq_info;
7693 	}
7694 	return 0;
7695 
7696 err_rxq_info:
7697 	/* Rollback successful reg's and free other resources */
7698 	while (i--)
7699 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7700 	kvfree(dev->_rx);
7701 	dev->_rx = NULL;
7702 	return err;
7703 }
7704 
7705 static void netif_free_rx_queues(struct net_device *dev)
7706 {
7707 	unsigned int i, count = dev->num_rx_queues;
7708 
7709 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7710 	if (!dev->_rx)
7711 		return;
7712 
7713 	for (i = 0; i < count; i++)
7714 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7715 
7716 	kvfree(dev->_rx);
7717 }
7718 
7719 static void netdev_init_one_queue(struct net_device *dev,
7720 				  struct netdev_queue *queue, void *_unused)
7721 {
7722 	/* Initialize queue lock */
7723 	spin_lock_init(&queue->_xmit_lock);
7724 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7725 	queue->xmit_lock_owner = -1;
7726 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7727 	queue->dev = dev;
7728 #ifdef CONFIG_BQL
7729 	dql_init(&queue->dql, HZ);
7730 #endif
7731 }
7732 
7733 static void netif_free_tx_queues(struct net_device *dev)
7734 {
7735 	kvfree(dev->_tx);
7736 }
7737 
7738 static int netif_alloc_netdev_queues(struct net_device *dev)
7739 {
7740 	unsigned int count = dev->num_tx_queues;
7741 	struct netdev_queue *tx;
7742 	size_t sz = count * sizeof(*tx);
7743 
7744 	if (count < 1 || count > 0xffff)
7745 		return -EINVAL;
7746 
7747 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7748 	if (!tx)
7749 		return -ENOMEM;
7750 
7751 	dev->_tx = tx;
7752 
7753 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7754 	spin_lock_init(&dev->tx_global_lock);
7755 
7756 	return 0;
7757 }
7758 
7759 void netif_tx_stop_all_queues(struct net_device *dev)
7760 {
7761 	unsigned int i;
7762 
7763 	for (i = 0; i < dev->num_tx_queues; i++) {
7764 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7765 
7766 		netif_tx_stop_queue(txq);
7767 	}
7768 }
7769 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7770 
7771 /**
7772  *	register_netdevice	- register a network device
7773  *	@dev: device to register
7774  *
7775  *	Take a completed network device structure and add it to the kernel
7776  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7777  *	chain. 0 is returned on success. A negative errno code is returned
7778  *	on a failure to set up the device, or if the name is a duplicate.
7779  *
7780  *	Callers must hold the rtnl semaphore. You may want
7781  *	register_netdev() instead of this.
7782  *
7783  *	BUGS:
7784  *	The locking appears insufficient to guarantee two parallel registers
7785  *	will not get the same name.
7786  */
7787 
7788 int register_netdevice(struct net_device *dev)
7789 {
7790 	int ret;
7791 	struct net *net = dev_net(dev);
7792 
7793 	BUG_ON(dev_boot_phase);
7794 	ASSERT_RTNL();
7795 
7796 	might_sleep();
7797 
7798 	/* When net_device's are persistent, this will be fatal. */
7799 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7800 	BUG_ON(!net);
7801 
7802 	spin_lock_init(&dev->addr_list_lock);
7803 	netdev_set_addr_lockdep_class(dev);
7804 
7805 	ret = dev_get_valid_name(net, dev, dev->name);
7806 	if (ret < 0)
7807 		goto out;
7808 
7809 	/* Init, if this function is available */
7810 	if (dev->netdev_ops->ndo_init) {
7811 		ret = dev->netdev_ops->ndo_init(dev);
7812 		if (ret) {
7813 			if (ret > 0)
7814 				ret = -EIO;
7815 			goto out;
7816 		}
7817 	}
7818 
7819 	if (((dev->hw_features | dev->features) &
7820 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7821 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7822 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7823 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7824 		ret = -EINVAL;
7825 		goto err_uninit;
7826 	}
7827 
7828 	ret = -EBUSY;
7829 	if (!dev->ifindex)
7830 		dev->ifindex = dev_new_index(net);
7831 	else if (__dev_get_by_index(net, dev->ifindex))
7832 		goto err_uninit;
7833 
7834 	/* Transfer changeable features to wanted_features and enable
7835 	 * software offloads (GSO and GRO).
7836 	 */
7837 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7838 	dev->features |= NETIF_F_SOFT_FEATURES;
7839 
7840 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7841 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7842 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7843 	}
7844 
7845 	dev->wanted_features = dev->features & dev->hw_features;
7846 
7847 	if (!(dev->flags & IFF_LOOPBACK))
7848 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7849 
7850 	/* If IPv4 TCP segmentation offload is supported we should also
7851 	 * allow the device to enable segmenting the frame with the option
7852 	 * of ignoring a static IP ID value.  This doesn't enable the
7853 	 * feature itself but allows the user to enable it later.
7854 	 */
7855 	if (dev->hw_features & NETIF_F_TSO)
7856 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7857 	if (dev->vlan_features & NETIF_F_TSO)
7858 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7859 	if (dev->mpls_features & NETIF_F_TSO)
7860 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7861 	if (dev->hw_enc_features & NETIF_F_TSO)
7862 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7863 
7864 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7865 	 */
7866 	dev->vlan_features |= NETIF_F_HIGHDMA;
7867 
7868 	/* Make NETIF_F_SG inheritable to tunnel devices.
7869 	 */
7870 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7871 
7872 	/* Make NETIF_F_SG inheritable to MPLS.
7873 	 */
7874 	dev->mpls_features |= NETIF_F_SG;
7875 
7876 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7877 	ret = notifier_to_errno(ret);
7878 	if (ret)
7879 		goto err_uninit;
7880 
7881 	ret = netdev_register_kobject(dev);
7882 	if (ret)
7883 		goto err_uninit;
7884 	dev->reg_state = NETREG_REGISTERED;
7885 
7886 	__netdev_update_features(dev);
7887 
7888 	/*
7889 	 *	Default initial state at registry is that the
7890 	 *	device is present.
7891 	 */
7892 
7893 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7894 
7895 	linkwatch_init_dev(dev);
7896 
7897 	dev_init_scheduler(dev);
7898 	dev_hold(dev);
7899 	list_netdevice(dev);
7900 	add_device_randomness(dev->dev_addr, dev->addr_len);
7901 
7902 	/* If the device has permanent device address, driver should
7903 	 * set dev_addr and also addr_assign_type should be set to
7904 	 * NET_ADDR_PERM (default value).
7905 	 */
7906 	if (dev->addr_assign_type == NET_ADDR_PERM)
7907 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7908 
7909 	/* Notify protocols, that a new device appeared. */
7910 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7911 	ret = notifier_to_errno(ret);
7912 	if (ret) {
7913 		rollback_registered(dev);
7914 		dev->reg_state = NETREG_UNREGISTERED;
7915 	}
7916 	/*
7917 	 *	Prevent userspace races by waiting until the network
7918 	 *	device is fully setup before sending notifications.
7919 	 */
7920 	if (!dev->rtnl_link_ops ||
7921 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7922 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7923 
7924 out:
7925 	return ret;
7926 
7927 err_uninit:
7928 	if (dev->netdev_ops->ndo_uninit)
7929 		dev->netdev_ops->ndo_uninit(dev);
7930 	if (dev->priv_destructor)
7931 		dev->priv_destructor(dev);
7932 	goto out;
7933 }
7934 EXPORT_SYMBOL(register_netdevice);
7935 
7936 /**
7937  *	init_dummy_netdev	- init a dummy network device for NAPI
7938  *	@dev: device to init
7939  *
7940  *	This takes a network device structure and initialize the minimum
7941  *	amount of fields so it can be used to schedule NAPI polls without
7942  *	registering a full blown interface. This is to be used by drivers
7943  *	that need to tie several hardware interfaces to a single NAPI
7944  *	poll scheduler due to HW limitations.
7945  */
7946 int init_dummy_netdev(struct net_device *dev)
7947 {
7948 	/* Clear everything. Note we don't initialize spinlocks
7949 	 * are they aren't supposed to be taken by any of the
7950 	 * NAPI code and this dummy netdev is supposed to be
7951 	 * only ever used for NAPI polls
7952 	 */
7953 	memset(dev, 0, sizeof(struct net_device));
7954 
7955 	/* make sure we BUG if trying to hit standard
7956 	 * register/unregister code path
7957 	 */
7958 	dev->reg_state = NETREG_DUMMY;
7959 
7960 	/* NAPI wants this */
7961 	INIT_LIST_HEAD(&dev->napi_list);
7962 
7963 	/* a dummy interface is started by default */
7964 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7965 	set_bit(__LINK_STATE_START, &dev->state);
7966 
7967 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7968 	 * because users of this 'device' dont need to change
7969 	 * its refcount.
7970 	 */
7971 
7972 	return 0;
7973 }
7974 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7975 
7976 
7977 /**
7978  *	register_netdev	- register a network device
7979  *	@dev: device to register
7980  *
7981  *	Take a completed network device structure and add it to the kernel
7982  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7983  *	chain. 0 is returned on success. A negative errno code is returned
7984  *	on a failure to set up the device, or if the name is a duplicate.
7985  *
7986  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7987  *	and expands the device name if you passed a format string to
7988  *	alloc_netdev.
7989  */
7990 int register_netdev(struct net_device *dev)
7991 {
7992 	int err;
7993 
7994 	rtnl_lock();
7995 	err = register_netdevice(dev);
7996 	rtnl_unlock();
7997 	return err;
7998 }
7999 EXPORT_SYMBOL(register_netdev);
8000 
8001 int netdev_refcnt_read(const struct net_device *dev)
8002 {
8003 	int i, refcnt = 0;
8004 
8005 	for_each_possible_cpu(i)
8006 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8007 	return refcnt;
8008 }
8009 EXPORT_SYMBOL(netdev_refcnt_read);
8010 
8011 /**
8012  * netdev_wait_allrefs - wait until all references are gone.
8013  * @dev: target net_device
8014  *
8015  * This is called when unregistering network devices.
8016  *
8017  * Any protocol or device that holds a reference should register
8018  * for netdevice notification, and cleanup and put back the
8019  * reference if they receive an UNREGISTER event.
8020  * We can get stuck here if buggy protocols don't correctly
8021  * call dev_put.
8022  */
8023 static void netdev_wait_allrefs(struct net_device *dev)
8024 {
8025 	unsigned long rebroadcast_time, warning_time;
8026 	int refcnt;
8027 
8028 	linkwatch_forget_dev(dev);
8029 
8030 	rebroadcast_time = warning_time = jiffies;
8031 	refcnt = netdev_refcnt_read(dev);
8032 
8033 	while (refcnt != 0) {
8034 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8035 			rtnl_lock();
8036 
8037 			/* Rebroadcast unregister notification */
8038 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8039 
8040 			__rtnl_unlock();
8041 			rcu_barrier();
8042 			rtnl_lock();
8043 
8044 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8045 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8046 				     &dev->state)) {
8047 				/* We must not have linkwatch events
8048 				 * pending on unregister. If this
8049 				 * happens, we simply run the queue
8050 				 * unscheduled, resulting in a noop
8051 				 * for this device.
8052 				 */
8053 				linkwatch_run_queue();
8054 			}
8055 
8056 			__rtnl_unlock();
8057 
8058 			rebroadcast_time = jiffies;
8059 		}
8060 
8061 		msleep(250);
8062 
8063 		refcnt = netdev_refcnt_read(dev);
8064 
8065 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8066 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8067 				 dev->name, refcnt);
8068 			warning_time = jiffies;
8069 		}
8070 	}
8071 }
8072 
8073 /* The sequence is:
8074  *
8075  *	rtnl_lock();
8076  *	...
8077  *	register_netdevice(x1);
8078  *	register_netdevice(x2);
8079  *	...
8080  *	unregister_netdevice(y1);
8081  *	unregister_netdevice(y2);
8082  *      ...
8083  *	rtnl_unlock();
8084  *	free_netdev(y1);
8085  *	free_netdev(y2);
8086  *
8087  * We are invoked by rtnl_unlock().
8088  * This allows us to deal with problems:
8089  * 1) We can delete sysfs objects which invoke hotplug
8090  *    without deadlocking with linkwatch via keventd.
8091  * 2) Since we run with the RTNL semaphore not held, we can sleep
8092  *    safely in order to wait for the netdev refcnt to drop to zero.
8093  *
8094  * We must not return until all unregister events added during
8095  * the interval the lock was held have been completed.
8096  */
8097 void netdev_run_todo(void)
8098 {
8099 	struct list_head list;
8100 
8101 	/* Snapshot list, allow later requests */
8102 	list_replace_init(&net_todo_list, &list);
8103 
8104 	__rtnl_unlock();
8105 
8106 
8107 	/* Wait for rcu callbacks to finish before next phase */
8108 	if (!list_empty(&list))
8109 		rcu_barrier();
8110 
8111 	while (!list_empty(&list)) {
8112 		struct net_device *dev
8113 			= list_first_entry(&list, struct net_device, todo_list);
8114 		list_del(&dev->todo_list);
8115 
8116 		rtnl_lock();
8117 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8118 		__rtnl_unlock();
8119 
8120 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8121 			pr_err("network todo '%s' but state %d\n",
8122 			       dev->name, dev->reg_state);
8123 			dump_stack();
8124 			continue;
8125 		}
8126 
8127 		dev->reg_state = NETREG_UNREGISTERED;
8128 
8129 		netdev_wait_allrefs(dev);
8130 
8131 		/* paranoia */
8132 		BUG_ON(netdev_refcnt_read(dev));
8133 		BUG_ON(!list_empty(&dev->ptype_all));
8134 		BUG_ON(!list_empty(&dev->ptype_specific));
8135 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8136 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8137 		WARN_ON(dev->dn_ptr);
8138 
8139 		if (dev->priv_destructor)
8140 			dev->priv_destructor(dev);
8141 		if (dev->needs_free_netdev)
8142 			free_netdev(dev);
8143 
8144 		/* Report a network device has been unregistered */
8145 		rtnl_lock();
8146 		dev_net(dev)->dev_unreg_count--;
8147 		__rtnl_unlock();
8148 		wake_up(&netdev_unregistering_wq);
8149 
8150 		/* Free network device */
8151 		kobject_put(&dev->dev.kobj);
8152 	}
8153 }
8154 
8155 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8156  * all the same fields in the same order as net_device_stats, with only
8157  * the type differing, but rtnl_link_stats64 may have additional fields
8158  * at the end for newer counters.
8159  */
8160 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8161 			     const struct net_device_stats *netdev_stats)
8162 {
8163 #if BITS_PER_LONG == 64
8164 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8165 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8166 	/* zero out counters that only exist in rtnl_link_stats64 */
8167 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8168 	       sizeof(*stats64) - sizeof(*netdev_stats));
8169 #else
8170 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8171 	const unsigned long *src = (const unsigned long *)netdev_stats;
8172 	u64 *dst = (u64 *)stats64;
8173 
8174 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8175 	for (i = 0; i < n; i++)
8176 		dst[i] = src[i];
8177 	/* zero out counters that only exist in rtnl_link_stats64 */
8178 	memset((char *)stats64 + n * sizeof(u64), 0,
8179 	       sizeof(*stats64) - n * sizeof(u64));
8180 #endif
8181 }
8182 EXPORT_SYMBOL(netdev_stats_to_stats64);
8183 
8184 /**
8185  *	dev_get_stats	- get network device statistics
8186  *	@dev: device to get statistics from
8187  *	@storage: place to store stats
8188  *
8189  *	Get network statistics from device. Return @storage.
8190  *	The device driver may provide its own method by setting
8191  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8192  *	otherwise the internal statistics structure is used.
8193  */
8194 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8195 					struct rtnl_link_stats64 *storage)
8196 {
8197 	const struct net_device_ops *ops = dev->netdev_ops;
8198 
8199 	if (ops->ndo_get_stats64) {
8200 		memset(storage, 0, sizeof(*storage));
8201 		ops->ndo_get_stats64(dev, storage);
8202 	} else if (ops->ndo_get_stats) {
8203 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8204 	} else {
8205 		netdev_stats_to_stats64(storage, &dev->stats);
8206 	}
8207 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8208 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8209 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8210 	return storage;
8211 }
8212 EXPORT_SYMBOL(dev_get_stats);
8213 
8214 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8215 {
8216 	struct netdev_queue *queue = dev_ingress_queue(dev);
8217 
8218 #ifdef CONFIG_NET_CLS_ACT
8219 	if (queue)
8220 		return queue;
8221 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8222 	if (!queue)
8223 		return NULL;
8224 	netdev_init_one_queue(dev, queue, NULL);
8225 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8226 	queue->qdisc_sleeping = &noop_qdisc;
8227 	rcu_assign_pointer(dev->ingress_queue, queue);
8228 #endif
8229 	return queue;
8230 }
8231 
8232 static const struct ethtool_ops default_ethtool_ops;
8233 
8234 void netdev_set_default_ethtool_ops(struct net_device *dev,
8235 				    const struct ethtool_ops *ops)
8236 {
8237 	if (dev->ethtool_ops == &default_ethtool_ops)
8238 		dev->ethtool_ops = ops;
8239 }
8240 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8241 
8242 void netdev_freemem(struct net_device *dev)
8243 {
8244 	char *addr = (char *)dev - dev->padded;
8245 
8246 	kvfree(addr);
8247 }
8248 
8249 /**
8250  * alloc_netdev_mqs - allocate network device
8251  * @sizeof_priv: size of private data to allocate space for
8252  * @name: device name format string
8253  * @name_assign_type: origin of device name
8254  * @setup: callback to initialize device
8255  * @txqs: the number of TX subqueues to allocate
8256  * @rxqs: the number of RX subqueues to allocate
8257  *
8258  * Allocates a struct net_device with private data area for driver use
8259  * and performs basic initialization.  Also allocates subqueue structs
8260  * for each queue on the device.
8261  */
8262 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8263 		unsigned char name_assign_type,
8264 		void (*setup)(struct net_device *),
8265 		unsigned int txqs, unsigned int rxqs)
8266 {
8267 	struct net_device *dev;
8268 	unsigned int alloc_size;
8269 	struct net_device *p;
8270 
8271 	BUG_ON(strlen(name) >= sizeof(dev->name));
8272 
8273 	if (txqs < 1) {
8274 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8275 		return NULL;
8276 	}
8277 
8278 	if (rxqs < 1) {
8279 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8280 		return NULL;
8281 	}
8282 
8283 	alloc_size = sizeof(struct net_device);
8284 	if (sizeof_priv) {
8285 		/* ensure 32-byte alignment of private area */
8286 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8287 		alloc_size += sizeof_priv;
8288 	}
8289 	/* ensure 32-byte alignment of whole construct */
8290 	alloc_size += NETDEV_ALIGN - 1;
8291 
8292 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8293 	if (!p)
8294 		return NULL;
8295 
8296 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8297 	dev->padded = (char *)dev - (char *)p;
8298 
8299 	dev->pcpu_refcnt = alloc_percpu(int);
8300 	if (!dev->pcpu_refcnt)
8301 		goto free_dev;
8302 
8303 	if (dev_addr_init(dev))
8304 		goto free_pcpu;
8305 
8306 	dev_mc_init(dev);
8307 	dev_uc_init(dev);
8308 
8309 	dev_net_set(dev, &init_net);
8310 
8311 	dev->gso_max_size = GSO_MAX_SIZE;
8312 	dev->gso_max_segs = GSO_MAX_SEGS;
8313 
8314 	INIT_LIST_HEAD(&dev->napi_list);
8315 	INIT_LIST_HEAD(&dev->unreg_list);
8316 	INIT_LIST_HEAD(&dev->close_list);
8317 	INIT_LIST_HEAD(&dev->link_watch_list);
8318 	INIT_LIST_HEAD(&dev->adj_list.upper);
8319 	INIT_LIST_HEAD(&dev->adj_list.lower);
8320 	INIT_LIST_HEAD(&dev->ptype_all);
8321 	INIT_LIST_HEAD(&dev->ptype_specific);
8322 #ifdef CONFIG_NET_SCHED
8323 	hash_init(dev->qdisc_hash);
8324 #endif
8325 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8326 	setup(dev);
8327 
8328 	if (!dev->tx_queue_len) {
8329 		dev->priv_flags |= IFF_NO_QUEUE;
8330 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8331 	}
8332 
8333 	dev->num_tx_queues = txqs;
8334 	dev->real_num_tx_queues = txqs;
8335 	if (netif_alloc_netdev_queues(dev))
8336 		goto free_all;
8337 
8338 	dev->num_rx_queues = rxqs;
8339 	dev->real_num_rx_queues = rxqs;
8340 	if (netif_alloc_rx_queues(dev))
8341 		goto free_all;
8342 
8343 	strcpy(dev->name, name);
8344 	dev->name_assign_type = name_assign_type;
8345 	dev->group = INIT_NETDEV_GROUP;
8346 	if (!dev->ethtool_ops)
8347 		dev->ethtool_ops = &default_ethtool_ops;
8348 
8349 	nf_hook_ingress_init(dev);
8350 
8351 	return dev;
8352 
8353 free_all:
8354 	free_netdev(dev);
8355 	return NULL;
8356 
8357 free_pcpu:
8358 	free_percpu(dev->pcpu_refcnt);
8359 free_dev:
8360 	netdev_freemem(dev);
8361 	return NULL;
8362 }
8363 EXPORT_SYMBOL(alloc_netdev_mqs);
8364 
8365 /**
8366  * free_netdev - free network device
8367  * @dev: device
8368  *
8369  * This function does the last stage of destroying an allocated device
8370  * interface. The reference to the device object is released. If this
8371  * is the last reference then it will be freed.Must be called in process
8372  * context.
8373  */
8374 void free_netdev(struct net_device *dev)
8375 {
8376 	struct napi_struct *p, *n;
8377 
8378 	might_sleep();
8379 	netif_free_tx_queues(dev);
8380 	netif_free_rx_queues(dev);
8381 
8382 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8383 
8384 	/* Flush device addresses */
8385 	dev_addr_flush(dev);
8386 
8387 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8388 		netif_napi_del(p);
8389 
8390 	free_percpu(dev->pcpu_refcnt);
8391 	dev->pcpu_refcnt = NULL;
8392 
8393 	/*  Compatibility with error handling in drivers */
8394 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8395 		netdev_freemem(dev);
8396 		return;
8397 	}
8398 
8399 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8400 	dev->reg_state = NETREG_RELEASED;
8401 
8402 	/* will free via device release */
8403 	put_device(&dev->dev);
8404 }
8405 EXPORT_SYMBOL(free_netdev);
8406 
8407 /**
8408  *	synchronize_net -  Synchronize with packet receive processing
8409  *
8410  *	Wait for packets currently being received to be done.
8411  *	Does not block later packets from starting.
8412  */
8413 void synchronize_net(void)
8414 {
8415 	might_sleep();
8416 	if (rtnl_is_locked())
8417 		synchronize_rcu_expedited();
8418 	else
8419 		synchronize_rcu();
8420 }
8421 EXPORT_SYMBOL(synchronize_net);
8422 
8423 /**
8424  *	unregister_netdevice_queue - remove device from the kernel
8425  *	@dev: device
8426  *	@head: list
8427  *
8428  *	This function shuts down a device interface and removes it
8429  *	from the kernel tables.
8430  *	If head not NULL, device is queued to be unregistered later.
8431  *
8432  *	Callers must hold the rtnl semaphore.  You may want
8433  *	unregister_netdev() instead of this.
8434  */
8435 
8436 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8437 {
8438 	ASSERT_RTNL();
8439 
8440 	if (head) {
8441 		list_move_tail(&dev->unreg_list, head);
8442 	} else {
8443 		rollback_registered(dev);
8444 		/* Finish processing unregister after unlock */
8445 		net_set_todo(dev);
8446 	}
8447 }
8448 EXPORT_SYMBOL(unregister_netdevice_queue);
8449 
8450 /**
8451  *	unregister_netdevice_many - unregister many devices
8452  *	@head: list of devices
8453  *
8454  *  Note: As most callers use a stack allocated list_head,
8455  *  we force a list_del() to make sure stack wont be corrupted later.
8456  */
8457 void unregister_netdevice_many(struct list_head *head)
8458 {
8459 	struct net_device *dev;
8460 
8461 	if (!list_empty(head)) {
8462 		rollback_registered_many(head);
8463 		list_for_each_entry(dev, head, unreg_list)
8464 			net_set_todo(dev);
8465 		list_del(head);
8466 	}
8467 }
8468 EXPORT_SYMBOL(unregister_netdevice_many);
8469 
8470 /**
8471  *	unregister_netdev - remove device from the kernel
8472  *	@dev: device
8473  *
8474  *	This function shuts down a device interface and removes it
8475  *	from the kernel tables.
8476  *
8477  *	This is just a wrapper for unregister_netdevice that takes
8478  *	the rtnl semaphore.  In general you want to use this and not
8479  *	unregister_netdevice.
8480  */
8481 void unregister_netdev(struct net_device *dev)
8482 {
8483 	rtnl_lock();
8484 	unregister_netdevice(dev);
8485 	rtnl_unlock();
8486 }
8487 EXPORT_SYMBOL(unregister_netdev);
8488 
8489 /**
8490  *	dev_change_net_namespace - move device to different nethost namespace
8491  *	@dev: device
8492  *	@net: network namespace
8493  *	@pat: If not NULL name pattern to try if the current device name
8494  *	      is already taken in the destination network namespace.
8495  *
8496  *	This function shuts down a device interface and moves it
8497  *	to a new network namespace. On success 0 is returned, on
8498  *	a failure a netagive errno code is returned.
8499  *
8500  *	Callers must hold the rtnl semaphore.
8501  */
8502 
8503 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8504 {
8505 	int err, new_nsid, new_ifindex;
8506 
8507 	ASSERT_RTNL();
8508 
8509 	/* Don't allow namespace local devices to be moved. */
8510 	err = -EINVAL;
8511 	if (dev->features & NETIF_F_NETNS_LOCAL)
8512 		goto out;
8513 
8514 	/* Ensure the device has been registrered */
8515 	if (dev->reg_state != NETREG_REGISTERED)
8516 		goto out;
8517 
8518 	/* Get out if there is nothing todo */
8519 	err = 0;
8520 	if (net_eq(dev_net(dev), net))
8521 		goto out;
8522 
8523 	/* Pick the destination device name, and ensure
8524 	 * we can use it in the destination network namespace.
8525 	 */
8526 	err = -EEXIST;
8527 	if (__dev_get_by_name(net, dev->name)) {
8528 		/* We get here if we can't use the current device name */
8529 		if (!pat)
8530 			goto out;
8531 		if (dev_get_valid_name(net, dev, pat) < 0)
8532 			goto out;
8533 	}
8534 
8535 	/*
8536 	 * And now a mini version of register_netdevice unregister_netdevice.
8537 	 */
8538 
8539 	/* If device is running close it first. */
8540 	dev_close(dev);
8541 
8542 	/* And unlink it from device chain */
8543 	err = -ENODEV;
8544 	unlist_netdevice(dev);
8545 
8546 	synchronize_net();
8547 
8548 	/* Shutdown queueing discipline. */
8549 	dev_shutdown(dev);
8550 
8551 	/* Notify protocols, that we are about to destroy
8552 	 * this device. They should clean all the things.
8553 	 *
8554 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8555 	 * This is wanted because this way 8021q and macvlan know
8556 	 * the device is just moving and can keep their slaves up.
8557 	 */
8558 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8559 	rcu_barrier();
8560 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8561 
8562 	new_nsid = peernet2id_alloc(dev_net(dev), net);
8563 	/* If there is an ifindex conflict assign a new one */
8564 	if (__dev_get_by_index(net, dev->ifindex))
8565 		new_ifindex = dev_new_index(net);
8566 	else
8567 		new_ifindex = dev->ifindex;
8568 
8569 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8570 			    new_ifindex);
8571 
8572 	/*
8573 	 *	Flush the unicast and multicast chains
8574 	 */
8575 	dev_uc_flush(dev);
8576 	dev_mc_flush(dev);
8577 
8578 	/* Send a netdev-removed uevent to the old namespace */
8579 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8580 	netdev_adjacent_del_links(dev);
8581 
8582 	/* Actually switch the network namespace */
8583 	dev_net_set(dev, net);
8584 	dev->ifindex = new_ifindex;
8585 
8586 	/* Send a netdev-add uevent to the new namespace */
8587 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8588 	netdev_adjacent_add_links(dev);
8589 
8590 	/* Fixup kobjects */
8591 	err = device_rename(&dev->dev, dev->name);
8592 	WARN_ON(err);
8593 
8594 	/* Add the device back in the hashes */
8595 	list_netdevice(dev);
8596 
8597 	/* Notify protocols, that a new device appeared. */
8598 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8599 
8600 	/*
8601 	 *	Prevent userspace races by waiting until the network
8602 	 *	device is fully setup before sending notifications.
8603 	 */
8604 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8605 
8606 	synchronize_net();
8607 	err = 0;
8608 out:
8609 	return err;
8610 }
8611 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8612 
8613 static int dev_cpu_dead(unsigned int oldcpu)
8614 {
8615 	struct sk_buff **list_skb;
8616 	struct sk_buff *skb;
8617 	unsigned int cpu;
8618 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8619 
8620 	local_irq_disable();
8621 	cpu = smp_processor_id();
8622 	sd = &per_cpu(softnet_data, cpu);
8623 	oldsd = &per_cpu(softnet_data, oldcpu);
8624 
8625 	/* Find end of our completion_queue. */
8626 	list_skb = &sd->completion_queue;
8627 	while (*list_skb)
8628 		list_skb = &(*list_skb)->next;
8629 	/* Append completion queue from offline CPU. */
8630 	*list_skb = oldsd->completion_queue;
8631 	oldsd->completion_queue = NULL;
8632 
8633 	/* Append output queue from offline CPU. */
8634 	if (oldsd->output_queue) {
8635 		*sd->output_queue_tailp = oldsd->output_queue;
8636 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8637 		oldsd->output_queue = NULL;
8638 		oldsd->output_queue_tailp = &oldsd->output_queue;
8639 	}
8640 	/* Append NAPI poll list from offline CPU, with one exception :
8641 	 * process_backlog() must be called by cpu owning percpu backlog.
8642 	 * We properly handle process_queue & input_pkt_queue later.
8643 	 */
8644 	while (!list_empty(&oldsd->poll_list)) {
8645 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8646 							    struct napi_struct,
8647 							    poll_list);
8648 
8649 		list_del_init(&napi->poll_list);
8650 		if (napi->poll == process_backlog)
8651 			napi->state = 0;
8652 		else
8653 			____napi_schedule(sd, napi);
8654 	}
8655 
8656 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8657 	local_irq_enable();
8658 
8659 #ifdef CONFIG_RPS
8660 	remsd = oldsd->rps_ipi_list;
8661 	oldsd->rps_ipi_list = NULL;
8662 #endif
8663 	/* send out pending IPI's on offline CPU */
8664 	net_rps_send_ipi(remsd);
8665 
8666 	/* Process offline CPU's input_pkt_queue */
8667 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8668 		netif_rx_ni(skb);
8669 		input_queue_head_incr(oldsd);
8670 	}
8671 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8672 		netif_rx_ni(skb);
8673 		input_queue_head_incr(oldsd);
8674 	}
8675 
8676 	return 0;
8677 }
8678 
8679 /**
8680  *	netdev_increment_features - increment feature set by one
8681  *	@all: current feature set
8682  *	@one: new feature set
8683  *	@mask: mask feature set
8684  *
8685  *	Computes a new feature set after adding a device with feature set
8686  *	@one to the master device with current feature set @all.  Will not
8687  *	enable anything that is off in @mask. Returns the new feature set.
8688  */
8689 netdev_features_t netdev_increment_features(netdev_features_t all,
8690 	netdev_features_t one, netdev_features_t mask)
8691 {
8692 	if (mask & NETIF_F_HW_CSUM)
8693 		mask |= NETIF_F_CSUM_MASK;
8694 	mask |= NETIF_F_VLAN_CHALLENGED;
8695 
8696 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8697 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8698 
8699 	/* If one device supports hw checksumming, set for all. */
8700 	if (all & NETIF_F_HW_CSUM)
8701 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8702 
8703 	return all;
8704 }
8705 EXPORT_SYMBOL(netdev_increment_features);
8706 
8707 static struct hlist_head * __net_init netdev_create_hash(void)
8708 {
8709 	int i;
8710 	struct hlist_head *hash;
8711 
8712 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8713 	if (hash != NULL)
8714 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8715 			INIT_HLIST_HEAD(&hash[i]);
8716 
8717 	return hash;
8718 }
8719 
8720 /* Initialize per network namespace state */
8721 static int __net_init netdev_init(struct net *net)
8722 {
8723 	if (net != &init_net)
8724 		INIT_LIST_HEAD(&net->dev_base_head);
8725 
8726 	net->dev_name_head = netdev_create_hash();
8727 	if (net->dev_name_head == NULL)
8728 		goto err_name;
8729 
8730 	net->dev_index_head = netdev_create_hash();
8731 	if (net->dev_index_head == NULL)
8732 		goto err_idx;
8733 
8734 	return 0;
8735 
8736 err_idx:
8737 	kfree(net->dev_name_head);
8738 err_name:
8739 	return -ENOMEM;
8740 }
8741 
8742 /**
8743  *	netdev_drivername - network driver for the device
8744  *	@dev: network device
8745  *
8746  *	Determine network driver for device.
8747  */
8748 const char *netdev_drivername(const struct net_device *dev)
8749 {
8750 	const struct device_driver *driver;
8751 	const struct device *parent;
8752 	const char *empty = "";
8753 
8754 	parent = dev->dev.parent;
8755 	if (!parent)
8756 		return empty;
8757 
8758 	driver = parent->driver;
8759 	if (driver && driver->name)
8760 		return driver->name;
8761 	return empty;
8762 }
8763 
8764 static void __netdev_printk(const char *level, const struct net_device *dev,
8765 			    struct va_format *vaf)
8766 {
8767 	if (dev && dev->dev.parent) {
8768 		dev_printk_emit(level[1] - '0',
8769 				dev->dev.parent,
8770 				"%s %s %s%s: %pV",
8771 				dev_driver_string(dev->dev.parent),
8772 				dev_name(dev->dev.parent),
8773 				netdev_name(dev), netdev_reg_state(dev),
8774 				vaf);
8775 	} else if (dev) {
8776 		printk("%s%s%s: %pV",
8777 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8778 	} else {
8779 		printk("%s(NULL net_device): %pV", level, vaf);
8780 	}
8781 }
8782 
8783 void netdev_printk(const char *level, const struct net_device *dev,
8784 		   const char *format, ...)
8785 {
8786 	struct va_format vaf;
8787 	va_list args;
8788 
8789 	va_start(args, format);
8790 
8791 	vaf.fmt = format;
8792 	vaf.va = &args;
8793 
8794 	__netdev_printk(level, dev, &vaf);
8795 
8796 	va_end(args);
8797 }
8798 EXPORT_SYMBOL(netdev_printk);
8799 
8800 #define define_netdev_printk_level(func, level)			\
8801 void func(const struct net_device *dev, const char *fmt, ...)	\
8802 {								\
8803 	struct va_format vaf;					\
8804 	va_list args;						\
8805 								\
8806 	va_start(args, fmt);					\
8807 								\
8808 	vaf.fmt = fmt;						\
8809 	vaf.va = &args;						\
8810 								\
8811 	__netdev_printk(level, dev, &vaf);			\
8812 								\
8813 	va_end(args);						\
8814 }								\
8815 EXPORT_SYMBOL(func);
8816 
8817 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8818 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8819 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8820 define_netdev_printk_level(netdev_err, KERN_ERR);
8821 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8822 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8823 define_netdev_printk_level(netdev_info, KERN_INFO);
8824 
8825 static void __net_exit netdev_exit(struct net *net)
8826 {
8827 	kfree(net->dev_name_head);
8828 	kfree(net->dev_index_head);
8829 	if (net != &init_net)
8830 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8831 }
8832 
8833 static struct pernet_operations __net_initdata netdev_net_ops = {
8834 	.init = netdev_init,
8835 	.exit = netdev_exit,
8836 };
8837 
8838 static void __net_exit default_device_exit(struct net *net)
8839 {
8840 	struct net_device *dev, *aux;
8841 	/*
8842 	 * Push all migratable network devices back to the
8843 	 * initial network namespace
8844 	 */
8845 	rtnl_lock();
8846 	for_each_netdev_safe(net, dev, aux) {
8847 		int err;
8848 		char fb_name[IFNAMSIZ];
8849 
8850 		/* Ignore unmoveable devices (i.e. loopback) */
8851 		if (dev->features & NETIF_F_NETNS_LOCAL)
8852 			continue;
8853 
8854 		/* Leave virtual devices for the generic cleanup */
8855 		if (dev->rtnl_link_ops)
8856 			continue;
8857 
8858 		/* Push remaining network devices to init_net */
8859 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8860 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8861 		if (err) {
8862 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8863 				 __func__, dev->name, err);
8864 			BUG();
8865 		}
8866 	}
8867 	rtnl_unlock();
8868 }
8869 
8870 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8871 {
8872 	/* Return with the rtnl_lock held when there are no network
8873 	 * devices unregistering in any network namespace in net_list.
8874 	 */
8875 	struct net *net;
8876 	bool unregistering;
8877 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8878 
8879 	add_wait_queue(&netdev_unregistering_wq, &wait);
8880 	for (;;) {
8881 		unregistering = false;
8882 		rtnl_lock();
8883 		list_for_each_entry(net, net_list, exit_list) {
8884 			if (net->dev_unreg_count > 0) {
8885 				unregistering = true;
8886 				break;
8887 			}
8888 		}
8889 		if (!unregistering)
8890 			break;
8891 		__rtnl_unlock();
8892 
8893 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8894 	}
8895 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8896 }
8897 
8898 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8899 {
8900 	/* At exit all network devices most be removed from a network
8901 	 * namespace.  Do this in the reverse order of registration.
8902 	 * Do this across as many network namespaces as possible to
8903 	 * improve batching efficiency.
8904 	 */
8905 	struct net_device *dev;
8906 	struct net *net;
8907 	LIST_HEAD(dev_kill_list);
8908 
8909 	/* To prevent network device cleanup code from dereferencing
8910 	 * loopback devices or network devices that have been freed
8911 	 * wait here for all pending unregistrations to complete,
8912 	 * before unregistring the loopback device and allowing the
8913 	 * network namespace be freed.
8914 	 *
8915 	 * The netdev todo list containing all network devices
8916 	 * unregistrations that happen in default_device_exit_batch
8917 	 * will run in the rtnl_unlock() at the end of
8918 	 * default_device_exit_batch.
8919 	 */
8920 	rtnl_lock_unregistering(net_list);
8921 	list_for_each_entry(net, net_list, exit_list) {
8922 		for_each_netdev_reverse(net, dev) {
8923 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8924 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8925 			else
8926 				unregister_netdevice_queue(dev, &dev_kill_list);
8927 		}
8928 	}
8929 	unregister_netdevice_many(&dev_kill_list);
8930 	rtnl_unlock();
8931 }
8932 
8933 static struct pernet_operations __net_initdata default_device_ops = {
8934 	.exit = default_device_exit,
8935 	.exit_batch = default_device_exit_batch,
8936 };
8937 
8938 /*
8939  *	Initialize the DEV module. At boot time this walks the device list and
8940  *	unhooks any devices that fail to initialise (normally hardware not
8941  *	present) and leaves us with a valid list of present and active devices.
8942  *
8943  */
8944 
8945 /*
8946  *       This is called single threaded during boot, so no need
8947  *       to take the rtnl semaphore.
8948  */
8949 static int __init net_dev_init(void)
8950 {
8951 	int i, rc = -ENOMEM;
8952 
8953 	BUG_ON(!dev_boot_phase);
8954 
8955 	if (dev_proc_init())
8956 		goto out;
8957 
8958 	if (netdev_kobject_init())
8959 		goto out;
8960 
8961 	INIT_LIST_HEAD(&ptype_all);
8962 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8963 		INIT_LIST_HEAD(&ptype_base[i]);
8964 
8965 	INIT_LIST_HEAD(&offload_base);
8966 
8967 	if (register_pernet_subsys(&netdev_net_ops))
8968 		goto out;
8969 
8970 	/*
8971 	 *	Initialise the packet receive queues.
8972 	 */
8973 
8974 	for_each_possible_cpu(i) {
8975 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8976 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8977 
8978 		INIT_WORK(flush, flush_backlog);
8979 
8980 		skb_queue_head_init(&sd->input_pkt_queue);
8981 		skb_queue_head_init(&sd->process_queue);
8982 #ifdef CONFIG_XFRM_OFFLOAD
8983 		skb_queue_head_init(&sd->xfrm_backlog);
8984 #endif
8985 		INIT_LIST_HEAD(&sd->poll_list);
8986 		sd->output_queue_tailp = &sd->output_queue;
8987 #ifdef CONFIG_RPS
8988 		sd->csd.func = rps_trigger_softirq;
8989 		sd->csd.info = sd;
8990 		sd->cpu = i;
8991 #endif
8992 
8993 		sd->backlog.poll = process_backlog;
8994 		sd->backlog.weight = weight_p;
8995 	}
8996 
8997 	dev_boot_phase = 0;
8998 
8999 	/* The loopback device is special if any other network devices
9000 	 * is present in a network namespace the loopback device must
9001 	 * be present. Since we now dynamically allocate and free the
9002 	 * loopback device ensure this invariant is maintained by
9003 	 * keeping the loopback device as the first device on the
9004 	 * list of network devices.  Ensuring the loopback devices
9005 	 * is the first device that appears and the last network device
9006 	 * that disappears.
9007 	 */
9008 	if (register_pernet_device(&loopback_net_ops))
9009 		goto out;
9010 
9011 	if (register_pernet_device(&default_device_ops))
9012 		goto out;
9013 
9014 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9015 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9016 
9017 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9018 				       NULL, dev_cpu_dead);
9019 	WARN_ON(rc < 0);
9020 	rc = 0;
9021 out:
9022 	return rc;
9023 }
9024 
9025 subsys_initcall(net_dev_init);
9026