1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 #include <linux/net_namespace.h> 149 150 #include "net-sysfs.h" 151 152 /* Instead of increasing this, you should create a hash table. */ 153 #define MAX_GRO_SKBS 8 154 155 /* This should be increased if a protocol with a bigger head is added. */ 156 #define GRO_MAX_HEAD (MAX_HEADER + 128) 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 static DEFINE_SPINLOCK(offload_lock); 160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 161 struct list_head ptype_all __read_mostly; /* Taps */ 162 static struct list_head offload_base __read_mostly; 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_info(unsigned long val, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static seqcount_t devnet_rename_seq; 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 static inline void rps_unlock(struct softnet_data *sd) 227 { 228 #ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230 #endif 231 } 232 233 /* Device list insertion */ 234 static void list_netdevice(struct net_device *dev) 235 { 236 struct net *net = dev_net(dev); 237 238 ASSERT_RTNL(); 239 240 write_lock_bh(&dev_base_lock); 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 243 hlist_add_head_rcu(&dev->index_hlist, 244 dev_index_hash(net, dev->ifindex)); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(net); 248 } 249 250 /* Device list removal 251 * caller must respect a RCU grace period before freeing/reusing dev 252 */ 253 static void unlist_netdevice(struct net_device *dev) 254 { 255 ASSERT_RTNL(); 256 257 /* Unlink dev from the device chain */ 258 write_lock_bh(&dev_base_lock); 259 list_del_rcu(&dev->dev_list); 260 hlist_del_rcu(&dev->name_hlist); 261 hlist_del_rcu(&dev->index_hlist); 262 write_unlock_bh(&dev_base_lock); 263 264 dev_base_seq_inc(dev_net(dev)); 265 } 266 267 /* 268 * Our notifier list 269 */ 270 271 static RAW_NOTIFIER_HEAD(netdev_chain); 272 273 /* 274 * Device drivers call our routines to queue packets here. We empty the 275 * queue in the local softnet handler. 276 */ 277 278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 279 EXPORT_PER_CPU_SYMBOL(softnet_data); 280 281 #ifdef CONFIG_LOCKDEP 282 /* 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 284 * according to dev->type 285 */ 286 static const unsigned short netdev_lock_type[] = { 287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 302 303 static const char *const netdev_lock_name[] = { 304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 319 320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 323 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 324 { 325 int i; 326 327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 328 if (netdev_lock_type[i] == dev_type) 329 return i; 330 /* the last key is used by default */ 331 return ARRAY_SIZE(netdev_lock_type) - 1; 332 } 333 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev_type); 340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 int i; 347 348 i = netdev_lock_pos(dev->type); 349 lockdep_set_class_and_name(&dev->addr_list_lock, 350 &netdev_addr_lock_key[i], 351 netdev_lock_name[i]); 352 } 353 #else 354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 355 unsigned short dev_type) 356 { 357 } 358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 359 { 360 } 361 #endif 362 363 /******************************************************************************* 364 * 365 * Protocol management and registration routines 366 * 367 *******************************************************************************/ 368 369 370 /* 371 * Add a protocol ID to the list. Now that the input handler is 372 * smarter we can dispense with all the messy stuff that used to be 373 * here. 374 * 375 * BEWARE!!! Protocol handlers, mangling input packets, 376 * MUST BE last in hash buckets and checking protocol handlers 377 * MUST start from promiscuous ptype_all chain in net_bh. 378 * It is true now, do not change it. 379 * Explanation follows: if protocol handler, mangling packet, will 380 * be the first on list, it is not able to sense, that packet 381 * is cloned and should be copied-on-write, so that it will 382 * change it and subsequent readers will get broken packet. 383 * --ANK (980803) 384 */ 385 386 static inline struct list_head *ptype_head(const struct packet_type *pt) 387 { 388 if (pt->type == htons(ETH_P_ALL)) 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 390 else 391 return pt->dev ? &pt->dev->ptype_specific : 392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 393 } 394 395 /** 396 * dev_add_pack - add packet handler 397 * @pt: packet type declaration 398 * 399 * Add a protocol handler to the networking stack. The passed &packet_type 400 * is linked into kernel lists and may not be freed until it has been 401 * removed from the kernel lists. 402 * 403 * This call does not sleep therefore it can not 404 * guarantee all CPU's that are in middle of receiving packets 405 * will see the new packet type (until the next received packet). 406 */ 407 408 void dev_add_pack(struct packet_type *pt) 409 { 410 struct list_head *head = ptype_head(pt); 411 412 spin_lock(&ptype_lock); 413 list_add_rcu(&pt->list, head); 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(dev_add_pack); 417 418 /** 419 * __dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * The packet type might still be in use by receivers 428 * and must not be freed until after all the CPU's have gone 429 * through a quiescent state. 430 */ 431 void __dev_remove_pack(struct packet_type *pt) 432 { 433 struct list_head *head = ptype_head(pt); 434 struct packet_type *pt1; 435 436 spin_lock(&ptype_lock); 437 438 list_for_each_entry(pt1, head, list) { 439 if (pt == pt1) { 440 list_del_rcu(&pt->list); 441 goto out; 442 } 443 } 444 445 pr_warn("dev_remove_pack: %p not found\n", pt); 446 out: 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(__dev_remove_pack); 450 451 /** 452 * dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * This call sleeps to guarantee that no CPU is looking at the packet 461 * type after return. 462 */ 463 void dev_remove_pack(struct packet_type *pt) 464 { 465 __dev_remove_pack(pt); 466 467 synchronize_net(); 468 } 469 EXPORT_SYMBOL(dev_remove_pack); 470 471 472 /** 473 * dev_add_offload - register offload handlers 474 * @po: protocol offload declaration 475 * 476 * Add protocol offload handlers to the networking stack. The passed 477 * &proto_offload is linked into kernel lists and may not be freed until 478 * it has been removed from the kernel lists. 479 * 480 * This call does not sleep therefore it can not 481 * guarantee all CPU's that are in middle of receiving packets 482 * will see the new offload handlers (until the next received packet). 483 */ 484 void dev_add_offload(struct packet_offload *po) 485 { 486 struct packet_offload *elem; 487 488 spin_lock(&offload_lock); 489 list_for_each_entry(elem, &offload_base, list) { 490 if (po->priority < elem->priority) 491 break; 492 } 493 list_add_rcu(&po->list, elem->list.prev); 494 spin_unlock(&offload_lock); 495 } 496 EXPORT_SYMBOL(dev_add_offload); 497 498 /** 499 * __dev_remove_offload - remove offload handler 500 * @po: packet offload declaration 501 * 502 * Remove a protocol offload handler that was previously added to the 503 * kernel offload handlers by dev_add_offload(). The passed &offload_type 504 * is removed from the kernel lists and can be freed or reused once this 505 * function returns. 506 * 507 * The packet type might still be in use by receivers 508 * and must not be freed until after all the CPU's have gone 509 * through a quiescent state. 510 */ 511 static void __dev_remove_offload(struct packet_offload *po) 512 { 513 struct list_head *head = &offload_base; 514 struct packet_offload *po1; 515 516 spin_lock(&offload_lock); 517 518 list_for_each_entry(po1, head, list) { 519 if (po == po1) { 520 list_del_rcu(&po->list); 521 goto out; 522 } 523 } 524 525 pr_warn("dev_remove_offload: %p not found\n", po); 526 out: 527 spin_unlock(&offload_lock); 528 } 529 530 /** 531 * dev_remove_offload - remove packet offload handler 532 * @po: packet offload declaration 533 * 534 * Remove a packet offload handler that was previously added to the kernel 535 * offload handlers by dev_add_offload(). The passed &offload_type is 536 * removed from the kernel lists and can be freed or reused once this 537 * function returns. 538 * 539 * This call sleeps to guarantee that no CPU is looking at the packet 540 * type after return. 541 */ 542 void dev_remove_offload(struct packet_offload *po) 543 { 544 __dev_remove_offload(po); 545 546 synchronize_net(); 547 } 548 EXPORT_SYMBOL(dev_remove_offload); 549 550 /****************************************************************************** 551 * 552 * Device Boot-time Settings Routines 553 * 554 ******************************************************************************/ 555 556 /* Boot time configuration table */ 557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 558 559 /** 560 * netdev_boot_setup_add - add new setup entry 561 * @name: name of the device 562 * @map: configured settings for the device 563 * 564 * Adds new setup entry to the dev_boot_setup list. The function 565 * returns 0 on error and 1 on success. This is a generic routine to 566 * all netdevices. 567 */ 568 static int netdev_boot_setup_add(char *name, struct ifmap *map) 569 { 570 struct netdev_boot_setup *s; 571 int i; 572 573 s = dev_boot_setup; 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 576 memset(s[i].name, 0, sizeof(s[i].name)); 577 strlcpy(s[i].name, name, IFNAMSIZ); 578 memcpy(&s[i].map, map, sizeof(s[i].map)); 579 break; 580 } 581 } 582 583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 584 } 585 586 /** 587 * netdev_boot_setup_check - check boot time settings 588 * @dev: the netdevice 589 * 590 * Check boot time settings for the device. 591 * The found settings are set for the device to be used 592 * later in the device probing. 593 * Returns 0 if no settings found, 1 if they are. 594 */ 595 int netdev_boot_setup_check(struct net_device *dev) 596 { 597 struct netdev_boot_setup *s = dev_boot_setup; 598 int i; 599 600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 602 !strcmp(dev->name, s[i].name)) { 603 dev->irq = s[i].map.irq; 604 dev->base_addr = s[i].map.base_addr; 605 dev->mem_start = s[i].map.mem_start; 606 dev->mem_end = s[i].map.mem_end; 607 return 1; 608 } 609 } 610 return 0; 611 } 612 EXPORT_SYMBOL(netdev_boot_setup_check); 613 614 615 /** 616 * netdev_boot_base - get address from boot time settings 617 * @prefix: prefix for network device 618 * @unit: id for network device 619 * 620 * Check boot time settings for the base address of device. 621 * The found settings are set for the device to be used 622 * later in the device probing. 623 * Returns 0 if no settings found. 624 */ 625 unsigned long netdev_boot_base(const char *prefix, int unit) 626 { 627 const struct netdev_boot_setup *s = dev_boot_setup; 628 char name[IFNAMSIZ]; 629 int i; 630 631 sprintf(name, "%s%d", prefix, unit); 632 633 /* 634 * If device already registered then return base of 1 635 * to indicate not to probe for this interface 636 */ 637 if (__dev_get_by_name(&init_net, name)) 638 return 1; 639 640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 641 if (!strcmp(name, s[i].name)) 642 return s[i].map.base_addr; 643 return 0; 644 } 645 646 /* 647 * Saves at boot time configured settings for any netdevice. 648 */ 649 int __init netdev_boot_setup(char *str) 650 { 651 int ints[5]; 652 struct ifmap map; 653 654 str = get_options(str, ARRAY_SIZE(ints), ints); 655 if (!str || !*str) 656 return 0; 657 658 /* Save settings */ 659 memset(&map, 0, sizeof(map)); 660 if (ints[0] > 0) 661 map.irq = ints[1]; 662 if (ints[0] > 1) 663 map.base_addr = ints[2]; 664 if (ints[0] > 2) 665 map.mem_start = ints[3]; 666 if (ints[0] > 3) 667 map.mem_end = ints[4]; 668 669 /* Add new entry to the list */ 670 return netdev_boot_setup_add(str, &map); 671 } 672 673 __setup("netdev=", netdev_boot_setup); 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return dev->ifindex; 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 /** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore 730 * or @dev_base_lock. If the name is found a pointer to the device 731 * is returned. If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736 struct net_device *__dev_get_by_name(struct net *net, const char *name) 737 { 738 struct net_device *dev; 739 struct hlist_head *head = dev_name_hash(net, name); 740 741 hlist_for_each_entry(dev, head, name_hlist) 742 if (!strncmp(dev->name, name, IFNAMSIZ)) 743 return dev; 744 745 return NULL; 746 } 747 EXPORT_SYMBOL(__dev_get_by_name); 748 749 /** 750 * dev_get_by_name_rcu - find a device by its name 751 * @net: the applicable net namespace 752 * @name: name to find 753 * 754 * Find an interface by name. 755 * If the name is found a pointer to the device is returned. 756 * If the name is not found then %NULL is returned. 757 * The reference counters are not incremented so the caller must be 758 * careful with locks. The caller must hold RCU lock. 759 */ 760 761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 762 { 763 struct net_device *dev; 764 struct hlist_head *head = dev_name_hash(net, name); 765 766 hlist_for_each_entry_rcu(dev, head, name_hlist) 767 if (!strncmp(dev->name, name, IFNAMSIZ)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_get_by_name_rcu); 773 774 /** 775 * dev_get_by_name - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * 779 * Find an interface by name. This can be called from any 780 * context and does its own locking. The returned handle has 781 * the usage count incremented and the caller must use dev_put() to 782 * release it when it is no longer needed. %NULL is returned if no 783 * matching device is found. 784 */ 785 786 struct net_device *dev_get_by_name(struct net *net, const char *name) 787 { 788 struct net_device *dev; 789 790 rcu_read_lock(); 791 dev = dev_get_by_name_rcu(net, name); 792 if (dev) 793 dev_hold(dev); 794 rcu_read_unlock(); 795 return dev; 796 } 797 EXPORT_SYMBOL(dev_get_by_name); 798 799 /** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812 { 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(__dev_get_by_index); 823 824 /** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836 { 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 849 /** 850 * dev_get_by_index - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns NULL if the device 855 * is not found or a pointer to the device. The device returned has 856 * had a reference added and the pointer is safe until the user calls 857 * dev_put to indicate they have finished with it. 858 */ 859 860 struct net_device *dev_get_by_index(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 864 rcu_read_lock(); 865 dev = dev_get_by_index_rcu(net, ifindex); 866 if (dev) 867 dev_hold(dev); 868 rcu_read_unlock(); 869 return dev; 870 } 871 EXPORT_SYMBOL(dev_get_by_index); 872 873 /** 874 * dev_get_by_napi_id - find a device by napi_id 875 * @napi_id: ID of the NAPI struct 876 * 877 * Search for an interface by NAPI ID. Returns %NULL if the device 878 * is not found or a pointer to the device. The device has not had 879 * its reference counter increased so the caller must be careful 880 * about locking. The caller must hold RCU lock. 881 */ 882 883 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 884 { 885 struct napi_struct *napi; 886 887 WARN_ON_ONCE(!rcu_read_lock_held()); 888 889 if (napi_id < MIN_NAPI_ID) 890 return NULL; 891 892 napi = napi_by_id(napi_id); 893 894 return napi ? napi->dev : NULL; 895 } 896 EXPORT_SYMBOL(dev_get_by_napi_id); 897 898 /** 899 * netdev_get_name - get a netdevice name, knowing its ifindex. 900 * @net: network namespace 901 * @name: a pointer to the buffer where the name will be stored. 902 * @ifindex: the ifindex of the interface to get the name from. 903 * 904 * The use of raw_seqcount_begin() and cond_resched() before 905 * retrying is required as we want to give the writers a chance 906 * to complete when CONFIG_PREEMPT is not set. 907 */ 908 int netdev_get_name(struct net *net, char *name, int ifindex) 909 { 910 struct net_device *dev; 911 unsigned int seq; 912 913 retry: 914 seq = raw_seqcount_begin(&devnet_rename_seq); 915 rcu_read_lock(); 916 dev = dev_get_by_index_rcu(net, ifindex); 917 if (!dev) { 918 rcu_read_unlock(); 919 return -ENODEV; 920 } 921 922 strcpy(name, dev->name); 923 rcu_read_unlock(); 924 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 925 cond_resched(); 926 goto retry; 927 } 928 929 return 0; 930 } 931 932 /** 933 * dev_getbyhwaddr_rcu - find a device by its hardware address 934 * @net: the applicable net namespace 935 * @type: media type of device 936 * @ha: hardware address 937 * 938 * Search for an interface by MAC address. Returns NULL if the device 939 * is not found or a pointer to the device. 940 * The caller must hold RCU or RTNL. 941 * The returned device has not had its ref count increased 942 * and the caller must therefore be careful about locking 943 * 944 */ 945 946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 947 const char *ha) 948 { 949 struct net_device *dev; 950 951 for_each_netdev_rcu(net, dev) 952 if (dev->type == type && 953 !memcmp(dev->dev_addr, ha, dev->addr_len)) 954 return dev; 955 956 return NULL; 957 } 958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 959 960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 961 { 962 struct net_device *dev; 963 964 ASSERT_RTNL(); 965 for_each_netdev(net, dev) 966 if (dev->type == type) 967 return dev; 968 969 return NULL; 970 } 971 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 972 973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 974 { 975 struct net_device *dev, *ret = NULL; 976 977 rcu_read_lock(); 978 for_each_netdev_rcu(net, dev) 979 if (dev->type == type) { 980 dev_hold(dev); 981 ret = dev; 982 break; 983 } 984 rcu_read_unlock(); 985 return ret; 986 } 987 EXPORT_SYMBOL(dev_getfirstbyhwtype); 988 989 /** 990 * __dev_get_by_flags - find any device with given flags 991 * @net: the applicable net namespace 992 * @if_flags: IFF_* values 993 * @mask: bitmask of bits in if_flags to check 994 * 995 * Search for any interface with the given flags. Returns NULL if a device 996 * is not found or a pointer to the device. Must be called inside 997 * rtnl_lock(), and result refcount is unchanged. 998 */ 999 1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1001 unsigned short mask) 1002 { 1003 struct net_device *dev, *ret; 1004 1005 ASSERT_RTNL(); 1006 1007 ret = NULL; 1008 for_each_netdev(net, dev) { 1009 if (((dev->flags ^ if_flags) & mask) == 0) { 1010 ret = dev; 1011 break; 1012 } 1013 } 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(__dev_get_by_flags); 1017 1018 /** 1019 * dev_valid_name - check if name is okay for network device 1020 * @name: name string 1021 * 1022 * Network device names need to be valid file names to 1023 * to allow sysfs to work. We also disallow any kind of 1024 * whitespace. 1025 */ 1026 bool dev_valid_name(const char *name) 1027 { 1028 if (*name == '\0') 1029 return false; 1030 if (strlen(name) >= IFNAMSIZ) 1031 return false; 1032 if (!strcmp(name, ".") || !strcmp(name, "..")) 1033 return false; 1034 1035 while (*name) { 1036 if (*name == '/' || *name == ':' || isspace(*name)) 1037 return false; 1038 name++; 1039 } 1040 return true; 1041 } 1042 EXPORT_SYMBOL(dev_valid_name); 1043 1044 /** 1045 * __dev_alloc_name - allocate a name for a device 1046 * @net: network namespace to allocate the device name in 1047 * @name: name format string 1048 * @buf: scratch buffer and result name string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1060 { 1061 int i = 0; 1062 const char *p; 1063 const int max_netdevices = 8*PAGE_SIZE; 1064 unsigned long *inuse; 1065 struct net_device *d; 1066 1067 if (!dev_valid_name(name)) 1068 return -EINVAL; 1069 1070 p = strchr(name, '%'); 1071 if (p) { 1072 /* 1073 * Verify the string as this thing may have come from 1074 * the user. There must be either one "%d" and no other "%" 1075 * characters. 1076 */ 1077 if (p[1] != 'd' || strchr(p + 2, '%')) 1078 return -EINVAL; 1079 1080 /* Use one page as a bit array of possible slots */ 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1082 if (!inuse) 1083 return -ENOMEM; 1084 1085 for_each_netdev(net, d) { 1086 if (!sscanf(d->name, name, &i)) 1087 continue; 1088 if (i < 0 || i >= max_netdevices) 1089 continue; 1090 1091 /* avoid cases where sscanf is not exact inverse of printf */ 1092 snprintf(buf, IFNAMSIZ, name, i); 1093 if (!strncmp(buf, d->name, IFNAMSIZ)) 1094 set_bit(i, inuse); 1095 } 1096 1097 i = find_first_zero_bit(inuse, max_netdevices); 1098 free_page((unsigned long) inuse); 1099 } 1100 1101 snprintf(buf, IFNAMSIZ, name, i); 1102 if (!__dev_get_by_name(net, buf)) 1103 return i; 1104 1105 /* It is possible to run out of possible slots 1106 * when the name is long and there isn't enough space left 1107 * for the digits, or if all bits are used. 1108 */ 1109 return -ENFILE; 1110 } 1111 1112 static int dev_alloc_name_ns(struct net *net, 1113 struct net_device *dev, 1114 const char *name) 1115 { 1116 char buf[IFNAMSIZ]; 1117 int ret; 1118 1119 BUG_ON(!net); 1120 ret = __dev_alloc_name(net, name, buf); 1121 if (ret >= 0) 1122 strlcpy(dev->name, buf, IFNAMSIZ); 1123 return ret; 1124 } 1125 1126 /** 1127 * dev_alloc_name - allocate a name for a device 1128 * @dev: device 1129 * @name: name format string 1130 * 1131 * Passed a format string - eg "lt%d" it will try and find a suitable 1132 * id. It scans list of devices to build up a free map, then chooses 1133 * the first empty slot. The caller must hold the dev_base or rtnl lock 1134 * while allocating the name and adding the device in order to avoid 1135 * duplicates. 1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1137 * Returns the number of the unit assigned or a negative errno code. 1138 */ 1139 1140 int dev_alloc_name(struct net_device *dev, const char *name) 1141 { 1142 return dev_alloc_name_ns(dev_net(dev), dev, name); 1143 } 1144 EXPORT_SYMBOL(dev_alloc_name); 1145 1146 int dev_get_valid_name(struct net *net, struct net_device *dev, 1147 const char *name) 1148 { 1149 BUG_ON(!net); 1150 1151 if (!dev_valid_name(name)) 1152 return -EINVAL; 1153 1154 if (strchr(name, '%')) 1155 return dev_alloc_name_ns(net, dev, name); 1156 else if (__dev_get_by_name(net, name)) 1157 return -EEXIST; 1158 else if (dev->name != name) 1159 strlcpy(dev->name, name, IFNAMSIZ); 1160 1161 return 0; 1162 } 1163 EXPORT_SYMBOL(dev_get_valid_name); 1164 1165 /** 1166 * dev_change_name - change name of a device 1167 * @dev: device 1168 * @newname: name (or format string) must be at least IFNAMSIZ 1169 * 1170 * Change name of a device, can pass format strings "eth%d". 1171 * for wildcarding. 1172 */ 1173 int dev_change_name(struct net_device *dev, const char *newname) 1174 { 1175 unsigned char old_assign_type; 1176 char oldname[IFNAMSIZ]; 1177 int err = 0; 1178 int ret; 1179 struct net *net; 1180 1181 ASSERT_RTNL(); 1182 BUG_ON(!dev_net(dev)); 1183 1184 net = dev_net(dev); 1185 if (dev->flags & IFF_UP) 1186 return -EBUSY; 1187 1188 write_seqcount_begin(&devnet_rename_seq); 1189 1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1191 write_seqcount_end(&devnet_rename_seq); 1192 return 0; 1193 } 1194 1195 memcpy(oldname, dev->name, IFNAMSIZ); 1196 1197 err = dev_get_valid_name(net, dev, newname); 1198 if (err < 0) { 1199 write_seqcount_end(&devnet_rename_seq); 1200 return err; 1201 } 1202 1203 if (oldname[0] && !strchr(oldname, '%')) 1204 netdev_info(dev, "renamed from %s\n", oldname); 1205 1206 old_assign_type = dev->name_assign_type; 1207 dev->name_assign_type = NET_NAME_RENAMED; 1208 1209 rollback: 1210 ret = device_rename(&dev->dev, dev->name); 1211 if (ret) { 1212 memcpy(dev->name, oldname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 write_seqcount_end(&devnet_rename_seq); 1215 return ret; 1216 } 1217 1218 write_seqcount_end(&devnet_rename_seq); 1219 1220 netdev_adjacent_rename_links(dev, oldname); 1221 1222 write_lock_bh(&dev_base_lock); 1223 hlist_del_rcu(&dev->name_hlist); 1224 write_unlock_bh(&dev_base_lock); 1225 1226 synchronize_rcu(); 1227 1228 write_lock_bh(&dev_base_lock); 1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1230 write_unlock_bh(&dev_base_lock); 1231 1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1233 ret = notifier_to_errno(ret); 1234 1235 if (ret) { 1236 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1237 if (err >= 0) { 1238 err = ret; 1239 write_seqcount_begin(&devnet_rename_seq); 1240 memcpy(dev->name, oldname, IFNAMSIZ); 1241 memcpy(oldname, newname, IFNAMSIZ); 1242 dev->name_assign_type = old_assign_type; 1243 old_assign_type = NET_NAME_RENAMED; 1244 goto rollback; 1245 } else { 1246 pr_err("%s: name change rollback failed: %d\n", 1247 dev->name, ret); 1248 } 1249 } 1250 1251 return err; 1252 } 1253 1254 /** 1255 * dev_set_alias - change ifalias of a device 1256 * @dev: device 1257 * @alias: name up to IFALIASZ 1258 * @len: limit of bytes to copy from info 1259 * 1260 * Set ifalias for a device, 1261 */ 1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1263 { 1264 struct dev_ifalias *new_alias = NULL; 1265 1266 if (len >= IFALIASZ) 1267 return -EINVAL; 1268 1269 if (len) { 1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1271 if (!new_alias) 1272 return -ENOMEM; 1273 1274 memcpy(new_alias->ifalias, alias, len); 1275 new_alias->ifalias[len] = 0; 1276 } 1277 1278 mutex_lock(&ifalias_mutex); 1279 rcu_swap_protected(dev->ifalias, new_alias, 1280 mutex_is_locked(&ifalias_mutex)); 1281 mutex_unlock(&ifalias_mutex); 1282 1283 if (new_alias) 1284 kfree_rcu(new_alias, rcuhead); 1285 1286 return len; 1287 } 1288 1289 /** 1290 * dev_get_alias - get ifalias of a device 1291 * @dev: device 1292 * @name: buffer to store name of ifalias 1293 * @len: size of buffer 1294 * 1295 * get ifalias for a device. Caller must make sure dev cannot go 1296 * away, e.g. rcu read lock or own a reference count to device. 1297 */ 1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1299 { 1300 const struct dev_ifalias *alias; 1301 int ret = 0; 1302 1303 rcu_read_lock(); 1304 alias = rcu_dereference(dev->ifalias); 1305 if (alias) 1306 ret = snprintf(name, len, "%s", alias->ifalias); 1307 rcu_read_unlock(); 1308 1309 return ret; 1310 } 1311 1312 /** 1313 * netdev_features_change - device changes features 1314 * @dev: device to cause notification 1315 * 1316 * Called to indicate a device has changed features. 1317 */ 1318 void netdev_features_change(struct net_device *dev) 1319 { 1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1321 } 1322 EXPORT_SYMBOL(netdev_features_change); 1323 1324 /** 1325 * netdev_state_change - device changes state 1326 * @dev: device to cause notification 1327 * 1328 * Called to indicate a device has changed state. This function calls 1329 * the notifier chains for netdev_chain and sends a NEWLINK message 1330 * to the routing socket. 1331 */ 1332 void netdev_state_change(struct net_device *dev) 1333 { 1334 if (dev->flags & IFF_UP) { 1335 struct netdev_notifier_change_info change_info = { 1336 .info.dev = dev, 1337 }; 1338 1339 call_netdevice_notifiers_info(NETDEV_CHANGE, 1340 &change_info.info); 1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1342 } 1343 } 1344 EXPORT_SYMBOL(netdev_state_change); 1345 1346 /** 1347 * netdev_notify_peers - notify network peers about existence of @dev 1348 * @dev: network device 1349 * 1350 * Generate traffic such that interested network peers are aware of 1351 * @dev, such as by generating a gratuitous ARP. This may be used when 1352 * a device wants to inform the rest of the network about some sort of 1353 * reconfiguration such as a failover event or virtual machine 1354 * migration. 1355 */ 1356 void netdev_notify_peers(struct net_device *dev) 1357 { 1358 rtnl_lock(); 1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1361 rtnl_unlock(); 1362 } 1363 EXPORT_SYMBOL(netdev_notify_peers); 1364 1365 static int __dev_open(struct net_device *dev) 1366 { 1367 const struct net_device_ops *ops = dev->netdev_ops; 1368 int ret; 1369 1370 ASSERT_RTNL(); 1371 1372 if (!netif_device_present(dev)) 1373 return -ENODEV; 1374 1375 /* Block netpoll from trying to do any rx path servicing. 1376 * If we don't do this there is a chance ndo_poll_controller 1377 * or ndo_poll may be running while we open the device 1378 */ 1379 netpoll_poll_disable(dev); 1380 1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1382 ret = notifier_to_errno(ret); 1383 if (ret) 1384 return ret; 1385 1386 set_bit(__LINK_STATE_START, &dev->state); 1387 1388 if (ops->ndo_validate_addr) 1389 ret = ops->ndo_validate_addr(dev); 1390 1391 if (!ret && ops->ndo_open) 1392 ret = ops->ndo_open(dev); 1393 1394 netpoll_poll_enable(dev); 1395 1396 if (ret) 1397 clear_bit(__LINK_STATE_START, &dev->state); 1398 else { 1399 dev->flags |= IFF_UP; 1400 dev_set_rx_mode(dev); 1401 dev_activate(dev); 1402 add_device_randomness(dev->dev_addr, dev->addr_len); 1403 } 1404 1405 return ret; 1406 } 1407 1408 /** 1409 * dev_open - prepare an interface for use. 1410 * @dev: device to open 1411 * 1412 * Takes a device from down to up state. The device's private open 1413 * function is invoked and then the multicast lists are loaded. Finally 1414 * the device is moved into the up state and a %NETDEV_UP message is 1415 * sent to the netdev notifier chain. 1416 * 1417 * Calling this function on an active interface is a nop. On a failure 1418 * a negative errno code is returned. 1419 */ 1420 int dev_open(struct net_device *dev) 1421 { 1422 int ret; 1423 1424 if (dev->flags & IFF_UP) 1425 return 0; 1426 1427 ret = __dev_open(dev); 1428 if (ret < 0) 1429 return ret; 1430 1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1432 call_netdevice_notifiers(NETDEV_UP, dev); 1433 1434 return ret; 1435 } 1436 EXPORT_SYMBOL(dev_open); 1437 1438 static void __dev_close_many(struct list_head *head) 1439 { 1440 struct net_device *dev; 1441 1442 ASSERT_RTNL(); 1443 might_sleep(); 1444 1445 list_for_each_entry(dev, head, close_list) { 1446 /* Temporarily disable netpoll until the interface is down */ 1447 netpoll_poll_disable(dev); 1448 1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1450 1451 clear_bit(__LINK_STATE_START, &dev->state); 1452 1453 /* Synchronize to scheduled poll. We cannot touch poll list, it 1454 * can be even on different cpu. So just clear netif_running(). 1455 * 1456 * dev->stop() will invoke napi_disable() on all of it's 1457 * napi_struct instances on this device. 1458 */ 1459 smp_mb__after_atomic(); /* Commit netif_running(). */ 1460 } 1461 1462 dev_deactivate_many(head); 1463 1464 list_for_each_entry(dev, head, close_list) { 1465 const struct net_device_ops *ops = dev->netdev_ops; 1466 1467 /* 1468 * Call the device specific close. This cannot fail. 1469 * Only if device is UP 1470 * 1471 * We allow it to be called even after a DETACH hot-plug 1472 * event. 1473 */ 1474 if (ops->ndo_stop) 1475 ops->ndo_stop(dev); 1476 1477 dev->flags &= ~IFF_UP; 1478 netpoll_poll_enable(dev); 1479 } 1480 } 1481 1482 static void __dev_close(struct net_device *dev) 1483 { 1484 LIST_HEAD(single); 1485 1486 list_add(&dev->close_list, &single); 1487 __dev_close_many(&single); 1488 list_del(&single); 1489 } 1490 1491 void dev_close_many(struct list_head *head, bool unlink) 1492 { 1493 struct net_device *dev, *tmp; 1494 1495 /* Remove the devices that don't need to be closed */ 1496 list_for_each_entry_safe(dev, tmp, head, close_list) 1497 if (!(dev->flags & IFF_UP)) 1498 list_del_init(&dev->close_list); 1499 1500 __dev_close_many(head); 1501 1502 list_for_each_entry_safe(dev, tmp, head, close_list) { 1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1504 call_netdevice_notifiers(NETDEV_DOWN, dev); 1505 if (unlink) 1506 list_del_init(&dev->close_list); 1507 } 1508 } 1509 EXPORT_SYMBOL(dev_close_many); 1510 1511 /** 1512 * dev_close - shutdown an interface. 1513 * @dev: device to shutdown 1514 * 1515 * This function moves an active device into down state. A 1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1518 * chain. 1519 */ 1520 void dev_close(struct net_device *dev) 1521 { 1522 if (dev->flags & IFF_UP) { 1523 LIST_HEAD(single); 1524 1525 list_add(&dev->close_list, &single); 1526 dev_close_many(&single, true); 1527 list_del(&single); 1528 } 1529 } 1530 EXPORT_SYMBOL(dev_close); 1531 1532 1533 /** 1534 * dev_disable_lro - disable Large Receive Offload on a device 1535 * @dev: device 1536 * 1537 * Disable Large Receive Offload (LRO) on a net device. Must be 1538 * called under RTNL. This is needed if received packets may be 1539 * forwarded to another interface. 1540 */ 1541 void dev_disable_lro(struct net_device *dev) 1542 { 1543 struct net_device *lower_dev; 1544 struct list_head *iter; 1545 1546 dev->wanted_features &= ~NETIF_F_LRO; 1547 netdev_update_features(dev); 1548 1549 if (unlikely(dev->features & NETIF_F_LRO)) 1550 netdev_WARN(dev, "failed to disable LRO!\n"); 1551 1552 netdev_for_each_lower_dev(dev, lower_dev, iter) 1553 dev_disable_lro(lower_dev); 1554 } 1555 EXPORT_SYMBOL(dev_disable_lro); 1556 1557 /** 1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1559 * @dev: device 1560 * 1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1562 * called under RTNL. This is needed if Generic XDP is installed on 1563 * the device. 1564 */ 1565 static void dev_disable_gro_hw(struct net_device *dev) 1566 { 1567 dev->wanted_features &= ~NETIF_F_GRO_HW; 1568 netdev_update_features(dev); 1569 1570 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1571 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1572 } 1573 1574 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1575 struct net_device *dev) 1576 { 1577 struct netdev_notifier_info info = { 1578 .dev = dev, 1579 }; 1580 1581 return nb->notifier_call(nb, val, &info); 1582 } 1583 1584 static int dev_boot_phase = 1; 1585 1586 /** 1587 * register_netdevice_notifier - register a network notifier block 1588 * @nb: notifier 1589 * 1590 * Register a notifier to be called when network device events occur. 1591 * The notifier passed is linked into the kernel structures and must 1592 * not be reused until it has been unregistered. A negative errno code 1593 * is returned on a failure. 1594 * 1595 * When registered all registration and up events are replayed 1596 * to the new notifier to allow device to have a race free 1597 * view of the network device list. 1598 */ 1599 1600 int register_netdevice_notifier(struct notifier_block *nb) 1601 { 1602 struct net_device *dev; 1603 struct net_device *last; 1604 struct net *net; 1605 int err; 1606 1607 rtnl_lock(); 1608 err = raw_notifier_chain_register(&netdev_chain, nb); 1609 if (err) 1610 goto unlock; 1611 if (dev_boot_phase) 1612 goto unlock; 1613 for_each_net(net) { 1614 for_each_netdev(net, dev) { 1615 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1616 err = notifier_to_errno(err); 1617 if (err) 1618 goto rollback; 1619 1620 if (!(dev->flags & IFF_UP)) 1621 continue; 1622 1623 call_netdevice_notifier(nb, NETDEV_UP, dev); 1624 } 1625 } 1626 1627 unlock: 1628 rtnl_unlock(); 1629 return err; 1630 1631 rollback: 1632 last = dev; 1633 for_each_net(net) { 1634 for_each_netdev(net, dev) { 1635 if (dev == last) 1636 goto outroll; 1637 1638 if (dev->flags & IFF_UP) { 1639 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1640 dev); 1641 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1642 } 1643 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1644 } 1645 } 1646 1647 outroll: 1648 raw_notifier_chain_unregister(&netdev_chain, nb); 1649 goto unlock; 1650 } 1651 EXPORT_SYMBOL(register_netdevice_notifier); 1652 1653 /** 1654 * unregister_netdevice_notifier - unregister a network notifier block 1655 * @nb: notifier 1656 * 1657 * Unregister a notifier previously registered by 1658 * register_netdevice_notifier(). The notifier is unlinked into the 1659 * kernel structures and may then be reused. A negative errno code 1660 * is returned on a failure. 1661 * 1662 * After unregistering unregister and down device events are synthesized 1663 * for all devices on the device list to the removed notifier to remove 1664 * the need for special case cleanup code. 1665 */ 1666 1667 int unregister_netdevice_notifier(struct notifier_block *nb) 1668 { 1669 struct net_device *dev; 1670 struct net *net; 1671 int err; 1672 1673 rtnl_lock(); 1674 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1675 if (err) 1676 goto unlock; 1677 1678 for_each_net(net) { 1679 for_each_netdev(net, dev) { 1680 if (dev->flags & IFF_UP) { 1681 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1682 dev); 1683 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1684 } 1685 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1686 } 1687 } 1688 unlock: 1689 rtnl_unlock(); 1690 return err; 1691 } 1692 EXPORT_SYMBOL(unregister_netdevice_notifier); 1693 1694 /** 1695 * call_netdevice_notifiers_info - call all network notifier blocks 1696 * @val: value passed unmodified to notifier function 1697 * @info: notifier information data 1698 * 1699 * Call all network notifier blocks. Parameters and return value 1700 * are as for raw_notifier_call_chain(). 1701 */ 1702 1703 static int call_netdevice_notifiers_info(unsigned long val, 1704 struct netdev_notifier_info *info) 1705 { 1706 ASSERT_RTNL(); 1707 return raw_notifier_call_chain(&netdev_chain, val, info); 1708 } 1709 1710 /** 1711 * call_netdevice_notifiers - call all network notifier blocks 1712 * @val: value passed unmodified to notifier function 1713 * @dev: net_device pointer passed unmodified to notifier function 1714 * 1715 * Call all network notifier blocks. Parameters and return value 1716 * are as for raw_notifier_call_chain(). 1717 */ 1718 1719 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1720 { 1721 struct netdev_notifier_info info = { 1722 .dev = dev, 1723 }; 1724 1725 return call_netdevice_notifiers_info(val, &info); 1726 } 1727 EXPORT_SYMBOL(call_netdevice_notifiers); 1728 1729 #ifdef CONFIG_NET_INGRESS 1730 static struct static_key ingress_needed __read_mostly; 1731 1732 void net_inc_ingress_queue(void) 1733 { 1734 static_key_slow_inc(&ingress_needed); 1735 } 1736 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1737 1738 void net_dec_ingress_queue(void) 1739 { 1740 static_key_slow_dec(&ingress_needed); 1741 } 1742 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1743 #endif 1744 1745 #ifdef CONFIG_NET_EGRESS 1746 static struct static_key egress_needed __read_mostly; 1747 1748 void net_inc_egress_queue(void) 1749 { 1750 static_key_slow_inc(&egress_needed); 1751 } 1752 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1753 1754 void net_dec_egress_queue(void) 1755 { 1756 static_key_slow_dec(&egress_needed); 1757 } 1758 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1759 #endif 1760 1761 static struct static_key netstamp_needed __read_mostly; 1762 #ifdef HAVE_JUMP_LABEL 1763 static atomic_t netstamp_needed_deferred; 1764 static atomic_t netstamp_wanted; 1765 static void netstamp_clear(struct work_struct *work) 1766 { 1767 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1768 int wanted; 1769 1770 wanted = atomic_add_return(deferred, &netstamp_wanted); 1771 if (wanted > 0) 1772 static_key_enable(&netstamp_needed); 1773 else 1774 static_key_disable(&netstamp_needed); 1775 } 1776 static DECLARE_WORK(netstamp_work, netstamp_clear); 1777 #endif 1778 1779 void net_enable_timestamp(void) 1780 { 1781 #ifdef HAVE_JUMP_LABEL 1782 int wanted; 1783 1784 while (1) { 1785 wanted = atomic_read(&netstamp_wanted); 1786 if (wanted <= 0) 1787 break; 1788 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1789 return; 1790 } 1791 atomic_inc(&netstamp_needed_deferred); 1792 schedule_work(&netstamp_work); 1793 #else 1794 static_key_slow_inc(&netstamp_needed); 1795 #endif 1796 } 1797 EXPORT_SYMBOL(net_enable_timestamp); 1798 1799 void net_disable_timestamp(void) 1800 { 1801 #ifdef HAVE_JUMP_LABEL 1802 int wanted; 1803 1804 while (1) { 1805 wanted = atomic_read(&netstamp_wanted); 1806 if (wanted <= 1) 1807 break; 1808 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1809 return; 1810 } 1811 atomic_dec(&netstamp_needed_deferred); 1812 schedule_work(&netstamp_work); 1813 #else 1814 static_key_slow_dec(&netstamp_needed); 1815 #endif 1816 } 1817 EXPORT_SYMBOL(net_disable_timestamp); 1818 1819 static inline void net_timestamp_set(struct sk_buff *skb) 1820 { 1821 skb->tstamp = 0; 1822 if (static_key_false(&netstamp_needed)) 1823 __net_timestamp(skb); 1824 } 1825 1826 #define net_timestamp_check(COND, SKB) \ 1827 if (static_key_false(&netstamp_needed)) { \ 1828 if ((COND) && !(SKB)->tstamp) \ 1829 __net_timestamp(SKB); \ 1830 } \ 1831 1832 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1833 { 1834 unsigned int len; 1835 1836 if (!(dev->flags & IFF_UP)) 1837 return false; 1838 1839 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1840 if (skb->len <= len) 1841 return true; 1842 1843 /* if TSO is enabled, we don't care about the length as the packet 1844 * could be forwarded without being segmented before 1845 */ 1846 if (skb_is_gso(skb)) 1847 return true; 1848 1849 return false; 1850 } 1851 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1852 1853 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1854 { 1855 int ret = ____dev_forward_skb(dev, skb); 1856 1857 if (likely(!ret)) { 1858 skb->protocol = eth_type_trans(skb, dev); 1859 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1860 } 1861 1862 return ret; 1863 } 1864 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1865 1866 /** 1867 * dev_forward_skb - loopback an skb to another netif 1868 * 1869 * @dev: destination network device 1870 * @skb: buffer to forward 1871 * 1872 * return values: 1873 * NET_RX_SUCCESS (no congestion) 1874 * NET_RX_DROP (packet was dropped, but freed) 1875 * 1876 * dev_forward_skb can be used for injecting an skb from the 1877 * start_xmit function of one device into the receive queue 1878 * of another device. 1879 * 1880 * The receiving device may be in another namespace, so 1881 * we have to clear all information in the skb that could 1882 * impact namespace isolation. 1883 */ 1884 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1885 { 1886 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1887 } 1888 EXPORT_SYMBOL_GPL(dev_forward_skb); 1889 1890 static inline int deliver_skb(struct sk_buff *skb, 1891 struct packet_type *pt_prev, 1892 struct net_device *orig_dev) 1893 { 1894 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1895 return -ENOMEM; 1896 refcount_inc(&skb->users); 1897 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1898 } 1899 1900 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1901 struct packet_type **pt, 1902 struct net_device *orig_dev, 1903 __be16 type, 1904 struct list_head *ptype_list) 1905 { 1906 struct packet_type *ptype, *pt_prev = *pt; 1907 1908 list_for_each_entry_rcu(ptype, ptype_list, list) { 1909 if (ptype->type != type) 1910 continue; 1911 if (pt_prev) 1912 deliver_skb(skb, pt_prev, orig_dev); 1913 pt_prev = ptype; 1914 } 1915 *pt = pt_prev; 1916 } 1917 1918 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1919 { 1920 if (!ptype->af_packet_priv || !skb->sk) 1921 return false; 1922 1923 if (ptype->id_match) 1924 return ptype->id_match(ptype, skb->sk); 1925 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1926 return true; 1927 1928 return false; 1929 } 1930 1931 /* 1932 * Support routine. Sends outgoing frames to any network 1933 * taps currently in use. 1934 */ 1935 1936 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1937 { 1938 struct packet_type *ptype; 1939 struct sk_buff *skb2 = NULL; 1940 struct packet_type *pt_prev = NULL; 1941 struct list_head *ptype_list = &ptype_all; 1942 1943 rcu_read_lock(); 1944 again: 1945 list_for_each_entry_rcu(ptype, ptype_list, list) { 1946 /* Never send packets back to the socket 1947 * they originated from - MvS (miquels@drinkel.ow.org) 1948 */ 1949 if (skb_loop_sk(ptype, skb)) 1950 continue; 1951 1952 if (pt_prev) { 1953 deliver_skb(skb2, pt_prev, skb->dev); 1954 pt_prev = ptype; 1955 continue; 1956 } 1957 1958 /* need to clone skb, done only once */ 1959 skb2 = skb_clone(skb, GFP_ATOMIC); 1960 if (!skb2) 1961 goto out_unlock; 1962 1963 net_timestamp_set(skb2); 1964 1965 /* skb->nh should be correctly 1966 * set by sender, so that the second statement is 1967 * just protection against buggy protocols. 1968 */ 1969 skb_reset_mac_header(skb2); 1970 1971 if (skb_network_header(skb2) < skb2->data || 1972 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1973 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1974 ntohs(skb2->protocol), 1975 dev->name); 1976 skb_reset_network_header(skb2); 1977 } 1978 1979 skb2->transport_header = skb2->network_header; 1980 skb2->pkt_type = PACKET_OUTGOING; 1981 pt_prev = ptype; 1982 } 1983 1984 if (ptype_list == &ptype_all) { 1985 ptype_list = &dev->ptype_all; 1986 goto again; 1987 } 1988 out_unlock: 1989 if (pt_prev) { 1990 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 1991 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1992 else 1993 kfree_skb(skb2); 1994 } 1995 rcu_read_unlock(); 1996 } 1997 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1998 1999 /** 2000 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2001 * @dev: Network device 2002 * @txq: number of queues available 2003 * 2004 * If real_num_tx_queues is changed the tc mappings may no longer be 2005 * valid. To resolve this verify the tc mapping remains valid and if 2006 * not NULL the mapping. With no priorities mapping to this 2007 * offset/count pair it will no longer be used. In the worst case TC0 2008 * is invalid nothing can be done so disable priority mappings. If is 2009 * expected that drivers will fix this mapping if they can before 2010 * calling netif_set_real_num_tx_queues. 2011 */ 2012 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2013 { 2014 int i; 2015 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2016 2017 /* If TC0 is invalidated disable TC mapping */ 2018 if (tc->offset + tc->count > txq) { 2019 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2020 dev->num_tc = 0; 2021 return; 2022 } 2023 2024 /* Invalidated prio to tc mappings set to TC0 */ 2025 for (i = 1; i < TC_BITMASK + 1; i++) { 2026 int q = netdev_get_prio_tc_map(dev, i); 2027 2028 tc = &dev->tc_to_txq[q]; 2029 if (tc->offset + tc->count > txq) { 2030 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2031 i, q); 2032 netdev_set_prio_tc_map(dev, i, 0); 2033 } 2034 } 2035 } 2036 2037 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2038 { 2039 if (dev->num_tc) { 2040 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2041 int i; 2042 2043 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2044 if ((txq - tc->offset) < tc->count) 2045 return i; 2046 } 2047 2048 return -1; 2049 } 2050 2051 return 0; 2052 } 2053 EXPORT_SYMBOL(netdev_txq_to_tc); 2054 2055 #ifdef CONFIG_XPS 2056 static DEFINE_MUTEX(xps_map_mutex); 2057 #define xmap_dereference(P) \ 2058 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2059 2060 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2061 int tci, u16 index) 2062 { 2063 struct xps_map *map = NULL; 2064 int pos; 2065 2066 if (dev_maps) 2067 map = xmap_dereference(dev_maps->cpu_map[tci]); 2068 if (!map) 2069 return false; 2070 2071 for (pos = map->len; pos--;) { 2072 if (map->queues[pos] != index) 2073 continue; 2074 2075 if (map->len > 1) { 2076 map->queues[pos] = map->queues[--map->len]; 2077 break; 2078 } 2079 2080 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2081 kfree_rcu(map, rcu); 2082 return false; 2083 } 2084 2085 return true; 2086 } 2087 2088 static bool remove_xps_queue_cpu(struct net_device *dev, 2089 struct xps_dev_maps *dev_maps, 2090 int cpu, u16 offset, u16 count) 2091 { 2092 int num_tc = dev->num_tc ? : 1; 2093 bool active = false; 2094 int tci; 2095 2096 for (tci = cpu * num_tc; num_tc--; tci++) { 2097 int i, j; 2098 2099 for (i = count, j = offset; i--; j++) { 2100 if (!remove_xps_queue(dev_maps, cpu, j)) 2101 break; 2102 } 2103 2104 active |= i < 0; 2105 } 2106 2107 return active; 2108 } 2109 2110 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2111 u16 count) 2112 { 2113 struct xps_dev_maps *dev_maps; 2114 int cpu, i; 2115 bool active = false; 2116 2117 mutex_lock(&xps_map_mutex); 2118 dev_maps = xmap_dereference(dev->xps_maps); 2119 2120 if (!dev_maps) 2121 goto out_no_maps; 2122 2123 for_each_possible_cpu(cpu) 2124 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2125 offset, count); 2126 2127 if (!active) { 2128 RCU_INIT_POINTER(dev->xps_maps, NULL); 2129 kfree_rcu(dev_maps, rcu); 2130 } 2131 2132 for (i = offset + (count - 1); count--; i--) 2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2134 NUMA_NO_NODE); 2135 2136 out_no_maps: 2137 mutex_unlock(&xps_map_mutex); 2138 } 2139 2140 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2141 { 2142 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2143 } 2144 2145 static struct xps_map *expand_xps_map(struct xps_map *map, 2146 int cpu, u16 index) 2147 { 2148 struct xps_map *new_map; 2149 int alloc_len = XPS_MIN_MAP_ALLOC; 2150 int i, pos; 2151 2152 for (pos = 0; map && pos < map->len; pos++) { 2153 if (map->queues[pos] != index) 2154 continue; 2155 return map; 2156 } 2157 2158 /* Need to add queue to this CPU's existing map */ 2159 if (map) { 2160 if (pos < map->alloc_len) 2161 return map; 2162 2163 alloc_len = map->alloc_len * 2; 2164 } 2165 2166 /* Need to allocate new map to store queue on this CPU's map */ 2167 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2168 cpu_to_node(cpu)); 2169 if (!new_map) 2170 return NULL; 2171 2172 for (i = 0; i < pos; i++) 2173 new_map->queues[i] = map->queues[i]; 2174 new_map->alloc_len = alloc_len; 2175 new_map->len = pos; 2176 2177 return new_map; 2178 } 2179 2180 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2181 u16 index) 2182 { 2183 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2184 int i, cpu, tci, numa_node_id = -2; 2185 int maps_sz, num_tc = 1, tc = 0; 2186 struct xps_map *map, *new_map; 2187 bool active = false; 2188 2189 if (dev->num_tc) { 2190 num_tc = dev->num_tc; 2191 tc = netdev_txq_to_tc(dev, index); 2192 if (tc < 0) 2193 return -EINVAL; 2194 } 2195 2196 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2197 if (maps_sz < L1_CACHE_BYTES) 2198 maps_sz = L1_CACHE_BYTES; 2199 2200 mutex_lock(&xps_map_mutex); 2201 2202 dev_maps = xmap_dereference(dev->xps_maps); 2203 2204 /* allocate memory for queue storage */ 2205 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2206 if (!new_dev_maps) 2207 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2208 if (!new_dev_maps) { 2209 mutex_unlock(&xps_map_mutex); 2210 return -ENOMEM; 2211 } 2212 2213 tci = cpu * num_tc + tc; 2214 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2215 NULL; 2216 2217 map = expand_xps_map(map, cpu, index); 2218 if (!map) 2219 goto error; 2220 2221 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2222 } 2223 2224 if (!new_dev_maps) 2225 goto out_no_new_maps; 2226 2227 for_each_possible_cpu(cpu) { 2228 /* copy maps belonging to foreign traffic classes */ 2229 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2230 /* fill in the new device map from the old device map */ 2231 map = xmap_dereference(dev_maps->cpu_map[tci]); 2232 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2233 } 2234 2235 /* We need to explicitly update tci as prevous loop 2236 * could break out early if dev_maps is NULL. 2237 */ 2238 tci = cpu * num_tc + tc; 2239 2240 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2241 /* add queue to CPU maps */ 2242 int pos = 0; 2243 2244 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2245 while ((pos < map->len) && (map->queues[pos] != index)) 2246 pos++; 2247 2248 if (pos == map->len) 2249 map->queues[map->len++] = index; 2250 #ifdef CONFIG_NUMA 2251 if (numa_node_id == -2) 2252 numa_node_id = cpu_to_node(cpu); 2253 else if (numa_node_id != cpu_to_node(cpu)) 2254 numa_node_id = -1; 2255 #endif 2256 } else if (dev_maps) { 2257 /* fill in the new device map from the old device map */ 2258 map = xmap_dereference(dev_maps->cpu_map[tci]); 2259 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2260 } 2261 2262 /* copy maps belonging to foreign traffic classes */ 2263 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2264 /* fill in the new device map from the old device map */ 2265 map = xmap_dereference(dev_maps->cpu_map[tci]); 2266 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2267 } 2268 } 2269 2270 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2271 2272 /* Cleanup old maps */ 2273 if (!dev_maps) 2274 goto out_no_old_maps; 2275 2276 for_each_possible_cpu(cpu) { 2277 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2278 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2279 map = xmap_dereference(dev_maps->cpu_map[tci]); 2280 if (map && map != new_map) 2281 kfree_rcu(map, rcu); 2282 } 2283 } 2284 2285 kfree_rcu(dev_maps, rcu); 2286 2287 out_no_old_maps: 2288 dev_maps = new_dev_maps; 2289 active = true; 2290 2291 out_no_new_maps: 2292 /* update Tx queue numa node */ 2293 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2294 (numa_node_id >= 0) ? numa_node_id : 2295 NUMA_NO_NODE); 2296 2297 if (!dev_maps) 2298 goto out_no_maps; 2299 2300 /* removes queue from unused CPUs */ 2301 for_each_possible_cpu(cpu) { 2302 for (i = tc, tci = cpu * num_tc; i--; tci++) 2303 active |= remove_xps_queue(dev_maps, tci, index); 2304 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2305 active |= remove_xps_queue(dev_maps, tci, index); 2306 for (i = num_tc - tc, tci++; --i; tci++) 2307 active |= remove_xps_queue(dev_maps, tci, index); 2308 } 2309 2310 /* free map if not active */ 2311 if (!active) { 2312 RCU_INIT_POINTER(dev->xps_maps, NULL); 2313 kfree_rcu(dev_maps, rcu); 2314 } 2315 2316 out_no_maps: 2317 mutex_unlock(&xps_map_mutex); 2318 2319 return 0; 2320 error: 2321 /* remove any maps that we added */ 2322 for_each_possible_cpu(cpu) { 2323 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2324 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2325 map = dev_maps ? 2326 xmap_dereference(dev_maps->cpu_map[tci]) : 2327 NULL; 2328 if (new_map && new_map != map) 2329 kfree(new_map); 2330 } 2331 } 2332 2333 mutex_unlock(&xps_map_mutex); 2334 2335 kfree(new_dev_maps); 2336 return -ENOMEM; 2337 } 2338 EXPORT_SYMBOL(netif_set_xps_queue); 2339 2340 #endif 2341 void netdev_reset_tc(struct net_device *dev) 2342 { 2343 #ifdef CONFIG_XPS 2344 netif_reset_xps_queues_gt(dev, 0); 2345 #endif 2346 dev->num_tc = 0; 2347 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2348 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2349 } 2350 EXPORT_SYMBOL(netdev_reset_tc); 2351 2352 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2353 { 2354 if (tc >= dev->num_tc) 2355 return -EINVAL; 2356 2357 #ifdef CONFIG_XPS 2358 netif_reset_xps_queues(dev, offset, count); 2359 #endif 2360 dev->tc_to_txq[tc].count = count; 2361 dev->tc_to_txq[tc].offset = offset; 2362 return 0; 2363 } 2364 EXPORT_SYMBOL(netdev_set_tc_queue); 2365 2366 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2367 { 2368 if (num_tc > TC_MAX_QUEUE) 2369 return -EINVAL; 2370 2371 #ifdef CONFIG_XPS 2372 netif_reset_xps_queues_gt(dev, 0); 2373 #endif 2374 dev->num_tc = num_tc; 2375 return 0; 2376 } 2377 EXPORT_SYMBOL(netdev_set_num_tc); 2378 2379 /* 2380 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2381 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2382 */ 2383 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2384 { 2385 int rc; 2386 2387 if (txq < 1 || txq > dev->num_tx_queues) 2388 return -EINVAL; 2389 2390 if (dev->reg_state == NETREG_REGISTERED || 2391 dev->reg_state == NETREG_UNREGISTERING) { 2392 ASSERT_RTNL(); 2393 2394 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2395 txq); 2396 if (rc) 2397 return rc; 2398 2399 if (dev->num_tc) 2400 netif_setup_tc(dev, txq); 2401 2402 if (txq < dev->real_num_tx_queues) { 2403 qdisc_reset_all_tx_gt(dev, txq); 2404 #ifdef CONFIG_XPS 2405 netif_reset_xps_queues_gt(dev, txq); 2406 #endif 2407 } 2408 } 2409 2410 dev->real_num_tx_queues = txq; 2411 return 0; 2412 } 2413 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2414 2415 #ifdef CONFIG_SYSFS 2416 /** 2417 * netif_set_real_num_rx_queues - set actual number of RX queues used 2418 * @dev: Network device 2419 * @rxq: Actual number of RX queues 2420 * 2421 * This must be called either with the rtnl_lock held or before 2422 * registration of the net device. Returns 0 on success, or a 2423 * negative error code. If called before registration, it always 2424 * succeeds. 2425 */ 2426 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2427 { 2428 int rc; 2429 2430 if (rxq < 1 || rxq > dev->num_rx_queues) 2431 return -EINVAL; 2432 2433 if (dev->reg_state == NETREG_REGISTERED) { 2434 ASSERT_RTNL(); 2435 2436 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2437 rxq); 2438 if (rc) 2439 return rc; 2440 } 2441 2442 dev->real_num_rx_queues = rxq; 2443 return 0; 2444 } 2445 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2446 #endif 2447 2448 /** 2449 * netif_get_num_default_rss_queues - default number of RSS queues 2450 * 2451 * This routine should set an upper limit on the number of RSS queues 2452 * used by default by multiqueue devices. 2453 */ 2454 int netif_get_num_default_rss_queues(void) 2455 { 2456 return is_kdump_kernel() ? 2457 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2458 } 2459 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2460 2461 static void __netif_reschedule(struct Qdisc *q) 2462 { 2463 struct softnet_data *sd; 2464 unsigned long flags; 2465 2466 local_irq_save(flags); 2467 sd = this_cpu_ptr(&softnet_data); 2468 q->next_sched = NULL; 2469 *sd->output_queue_tailp = q; 2470 sd->output_queue_tailp = &q->next_sched; 2471 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2472 local_irq_restore(flags); 2473 } 2474 2475 void __netif_schedule(struct Qdisc *q) 2476 { 2477 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2478 __netif_reschedule(q); 2479 } 2480 EXPORT_SYMBOL(__netif_schedule); 2481 2482 struct dev_kfree_skb_cb { 2483 enum skb_free_reason reason; 2484 }; 2485 2486 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2487 { 2488 return (struct dev_kfree_skb_cb *)skb->cb; 2489 } 2490 2491 void netif_schedule_queue(struct netdev_queue *txq) 2492 { 2493 rcu_read_lock(); 2494 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2495 struct Qdisc *q = rcu_dereference(txq->qdisc); 2496 2497 __netif_schedule(q); 2498 } 2499 rcu_read_unlock(); 2500 } 2501 EXPORT_SYMBOL(netif_schedule_queue); 2502 2503 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2504 { 2505 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2506 struct Qdisc *q; 2507 2508 rcu_read_lock(); 2509 q = rcu_dereference(dev_queue->qdisc); 2510 __netif_schedule(q); 2511 rcu_read_unlock(); 2512 } 2513 } 2514 EXPORT_SYMBOL(netif_tx_wake_queue); 2515 2516 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2517 { 2518 unsigned long flags; 2519 2520 if (unlikely(!skb)) 2521 return; 2522 2523 if (likely(refcount_read(&skb->users) == 1)) { 2524 smp_rmb(); 2525 refcount_set(&skb->users, 0); 2526 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2527 return; 2528 } 2529 get_kfree_skb_cb(skb)->reason = reason; 2530 local_irq_save(flags); 2531 skb->next = __this_cpu_read(softnet_data.completion_queue); 2532 __this_cpu_write(softnet_data.completion_queue, skb); 2533 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2534 local_irq_restore(flags); 2535 } 2536 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2537 2538 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2539 { 2540 if (in_irq() || irqs_disabled()) 2541 __dev_kfree_skb_irq(skb, reason); 2542 else 2543 dev_kfree_skb(skb); 2544 } 2545 EXPORT_SYMBOL(__dev_kfree_skb_any); 2546 2547 2548 /** 2549 * netif_device_detach - mark device as removed 2550 * @dev: network device 2551 * 2552 * Mark device as removed from system and therefore no longer available. 2553 */ 2554 void netif_device_detach(struct net_device *dev) 2555 { 2556 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2557 netif_running(dev)) { 2558 netif_tx_stop_all_queues(dev); 2559 } 2560 } 2561 EXPORT_SYMBOL(netif_device_detach); 2562 2563 /** 2564 * netif_device_attach - mark device as attached 2565 * @dev: network device 2566 * 2567 * Mark device as attached from system and restart if needed. 2568 */ 2569 void netif_device_attach(struct net_device *dev) 2570 { 2571 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2572 netif_running(dev)) { 2573 netif_tx_wake_all_queues(dev); 2574 __netdev_watchdog_up(dev); 2575 } 2576 } 2577 EXPORT_SYMBOL(netif_device_attach); 2578 2579 /* 2580 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2581 * to be used as a distribution range. 2582 */ 2583 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2584 unsigned int num_tx_queues) 2585 { 2586 u32 hash; 2587 u16 qoffset = 0; 2588 u16 qcount = num_tx_queues; 2589 2590 if (skb_rx_queue_recorded(skb)) { 2591 hash = skb_get_rx_queue(skb); 2592 while (unlikely(hash >= num_tx_queues)) 2593 hash -= num_tx_queues; 2594 return hash; 2595 } 2596 2597 if (dev->num_tc) { 2598 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2599 2600 qoffset = dev->tc_to_txq[tc].offset; 2601 qcount = dev->tc_to_txq[tc].count; 2602 } 2603 2604 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2605 } 2606 EXPORT_SYMBOL(__skb_tx_hash); 2607 2608 static void skb_warn_bad_offload(const struct sk_buff *skb) 2609 { 2610 static const netdev_features_t null_features; 2611 struct net_device *dev = skb->dev; 2612 const char *name = ""; 2613 2614 if (!net_ratelimit()) 2615 return; 2616 2617 if (dev) { 2618 if (dev->dev.parent) 2619 name = dev_driver_string(dev->dev.parent); 2620 else 2621 name = netdev_name(dev); 2622 } 2623 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2624 "gso_type=%d ip_summed=%d\n", 2625 name, dev ? &dev->features : &null_features, 2626 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2627 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2628 skb_shinfo(skb)->gso_type, skb->ip_summed); 2629 } 2630 2631 /* 2632 * Invalidate hardware checksum when packet is to be mangled, and 2633 * complete checksum manually on outgoing path. 2634 */ 2635 int skb_checksum_help(struct sk_buff *skb) 2636 { 2637 __wsum csum; 2638 int ret = 0, offset; 2639 2640 if (skb->ip_summed == CHECKSUM_COMPLETE) 2641 goto out_set_summed; 2642 2643 if (unlikely(skb_shinfo(skb)->gso_size)) { 2644 skb_warn_bad_offload(skb); 2645 return -EINVAL; 2646 } 2647 2648 /* Before computing a checksum, we should make sure no frag could 2649 * be modified by an external entity : checksum could be wrong. 2650 */ 2651 if (skb_has_shared_frag(skb)) { 2652 ret = __skb_linearize(skb); 2653 if (ret) 2654 goto out; 2655 } 2656 2657 offset = skb_checksum_start_offset(skb); 2658 BUG_ON(offset >= skb_headlen(skb)); 2659 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2660 2661 offset += skb->csum_offset; 2662 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2663 2664 if (skb_cloned(skb) && 2665 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2666 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2667 if (ret) 2668 goto out; 2669 } 2670 2671 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2672 out_set_summed: 2673 skb->ip_summed = CHECKSUM_NONE; 2674 out: 2675 return ret; 2676 } 2677 EXPORT_SYMBOL(skb_checksum_help); 2678 2679 int skb_crc32c_csum_help(struct sk_buff *skb) 2680 { 2681 __le32 crc32c_csum; 2682 int ret = 0, offset, start; 2683 2684 if (skb->ip_summed != CHECKSUM_PARTIAL) 2685 goto out; 2686 2687 if (unlikely(skb_is_gso(skb))) 2688 goto out; 2689 2690 /* Before computing a checksum, we should make sure no frag could 2691 * be modified by an external entity : checksum could be wrong. 2692 */ 2693 if (unlikely(skb_has_shared_frag(skb))) { 2694 ret = __skb_linearize(skb); 2695 if (ret) 2696 goto out; 2697 } 2698 start = skb_checksum_start_offset(skb); 2699 offset = start + offsetof(struct sctphdr, checksum); 2700 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2701 ret = -EINVAL; 2702 goto out; 2703 } 2704 if (skb_cloned(skb) && 2705 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2706 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2707 if (ret) 2708 goto out; 2709 } 2710 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2711 skb->len - start, ~(__u32)0, 2712 crc32c_csum_stub)); 2713 *(__le32 *)(skb->data + offset) = crc32c_csum; 2714 skb->ip_summed = CHECKSUM_NONE; 2715 skb->csum_not_inet = 0; 2716 out: 2717 return ret; 2718 } 2719 2720 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2721 { 2722 __be16 type = skb->protocol; 2723 2724 /* Tunnel gso handlers can set protocol to ethernet. */ 2725 if (type == htons(ETH_P_TEB)) { 2726 struct ethhdr *eth; 2727 2728 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2729 return 0; 2730 2731 eth = (struct ethhdr *)skb_mac_header(skb); 2732 type = eth->h_proto; 2733 } 2734 2735 return __vlan_get_protocol(skb, type, depth); 2736 } 2737 2738 /** 2739 * skb_mac_gso_segment - mac layer segmentation handler. 2740 * @skb: buffer to segment 2741 * @features: features for the output path (see dev->features) 2742 */ 2743 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2744 netdev_features_t features) 2745 { 2746 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2747 struct packet_offload *ptype; 2748 int vlan_depth = skb->mac_len; 2749 __be16 type = skb_network_protocol(skb, &vlan_depth); 2750 2751 if (unlikely(!type)) 2752 return ERR_PTR(-EINVAL); 2753 2754 __skb_pull(skb, vlan_depth); 2755 2756 rcu_read_lock(); 2757 list_for_each_entry_rcu(ptype, &offload_base, list) { 2758 if (ptype->type == type && ptype->callbacks.gso_segment) { 2759 segs = ptype->callbacks.gso_segment(skb, features); 2760 break; 2761 } 2762 } 2763 rcu_read_unlock(); 2764 2765 __skb_push(skb, skb->data - skb_mac_header(skb)); 2766 2767 return segs; 2768 } 2769 EXPORT_SYMBOL(skb_mac_gso_segment); 2770 2771 2772 /* openvswitch calls this on rx path, so we need a different check. 2773 */ 2774 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2775 { 2776 if (tx_path) 2777 return skb->ip_summed != CHECKSUM_PARTIAL && 2778 skb->ip_summed != CHECKSUM_UNNECESSARY; 2779 2780 return skb->ip_summed == CHECKSUM_NONE; 2781 } 2782 2783 /** 2784 * __skb_gso_segment - Perform segmentation on skb. 2785 * @skb: buffer to segment 2786 * @features: features for the output path (see dev->features) 2787 * @tx_path: whether it is called in TX path 2788 * 2789 * This function segments the given skb and returns a list of segments. 2790 * 2791 * It may return NULL if the skb requires no segmentation. This is 2792 * only possible when GSO is used for verifying header integrity. 2793 * 2794 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2795 */ 2796 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2797 netdev_features_t features, bool tx_path) 2798 { 2799 struct sk_buff *segs; 2800 2801 if (unlikely(skb_needs_check(skb, tx_path))) { 2802 int err; 2803 2804 /* We're going to init ->check field in TCP or UDP header */ 2805 err = skb_cow_head(skb, 0); 2806 if (err < 0) 2807 return ERR_PTR(err); 2808 } 2809 2810 /* Only report GSO partial support if it will enable us to 2811 * support segmentation on this frame without needing additional 2812 * work. 2813 */ 2814 if (features & NETIF_F_GSO_PARTIAL) { 2815 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2816 struct net_device *dev = skb->dev; 2817 2818 partial_features |= dev->features & dev->gso_partial_features; 2819 if (!skb_gso_ok(skb, features | partial_features)) 2820 features &= ~NETIF_F_GSO_PARTIAL; 2821 } 2822 2823 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2824 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2825 2826 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2827 SKB_GSO_CB(skb)->encap_level = 0; 2828 2829 skb_reset_mac_header(skb); 2830 skb_reset_mac_len(skb); 2831 2832 segs = skb_mac_gso_segment(skb, features); 2833 2834 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 2835 skb_warn_bad_offload(skb); 2836 2837 return segs; 2838 } 2839 EXPORT_SYMBOL(__skb_gso_segment); 2840 2841 /* Take action when hardware reception checksum errors are detected. */ 2842 #ifdef CONFIG_BUG 2843 void netdev_rx_csum_fault(struct net_device *dev) 2844 { 2845 if (net_ratelimit()) { 2846 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2847 dump_stack(); 2848 } 2849 } 2850 EXPORT_SYMBOL(netdev_rx_csum_fault); 2851 #endif 2852 2853 /* Actually, we should eliminate this check as soon as we know, that: 2854 * 1. IOMMU is present and allows to map all the memory. 2855 * 2. No high memory really exists on this machine. 2856 */ 2857 2858 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2859 { 2860 #ifdef CONFIG_HIGHMEM 2861 int i; 2862 2863 if (!(dev->features & NETIF_F_HIGHDMA)) { 2864 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2865 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2866 2867 if (PageHighMem(skb_frag_page(frag))) 2868 return 1; 2869 } 2870 } 2871 2872 if (PCI_DMA_BUS_IS_PHYS) { 2873 struct device *pdev = dev->dev.parent; 2874 2875 if (!pdev) 2876 return 0; 2877 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2878 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2879 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2880 2881 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2882 return 1; 2883 } 2884 } 2885 #endif 2886 return 0; 2887 } 2888 2889 /* If MPLS offload request, verify we are testing hardware MPLS features 2890 * instead of standard features for the netdev. 2891 */ 2892 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2893 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2894 netdev_features_t features, 2895 __be16 type) 2896 { 2897 if (eth_p_mpls(type)) 2898 features &= skb->dev->mpls_features; 2899 2900 return features; 2901 } 2902 #else 2903 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2904 netdev_features_t features, 2905 __be16 type) 2906 { 2907 return features; 2908 } 2909 #endif 2910 2911 static netdev_features_t harmonize_features(struct sk_buff *skb, 2912 netdev_features_t features) 2913 { 2914 int tmp; 2915 __be16 type; 2916 2917 type = skb_network_protocol(skb, &tmp); 2918 features = net_mpls_features(skb, features, type); 2919 2920 if (skb->ip_summed != CHECKSUM_NONE && 2921 !can_checksum_protocol(features, type)) { 2922 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2923 } 2924 if (illegal_highdma(skb->dev, skb)) 2925 features &= ~NETIF_F_SG; 2926 2927 return features; 2928 } 2929 2930 netdev_features_t passthru_features_check(struct sk_buff *skb, 2931 struct net_device *dev, 2932 netdev_features_t features) 2933 { 2934 return features; 2935 } 2936 EXPORT_SYMBOL(passthru_features_check); 2937 2938 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2939 struct net_device *dev, 2940 netdev_features_t features) 2941 { 2942 return vlan_features_check(skb, features); 2943 } 2944 2945 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2946 struct net_device *dev, 2947 netdev_features_t features) 2948 { 2949 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2950 2951 if (gso_segs > dev->gso_max_segs) 2952 return features & ~NETIF_F_GSO_MASK; 2953 2954 /* Support for GSO partial features requires software 2955 * intervention before we can actually process the packets 2956 * so we need to strip support for any partial features now 2957 * and we can pull them back in after we have partially 2958 * segmented the frame. 2959 */ 2960 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2961 features &= ~dev->gso_partial_features; 2962 2963 /* Make sure to clear the IPv4 ID mangling feature if the 2964 * IPv4 header has the potential to be fragmented. 2965 */ 2966 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2967 struct iphdr *iph = skb->encapsulation ? 2968 inner_ip_hdr(skb) : ip_hdr(skb); 2969 2970 if (!(iph->frag_off & htons(IP_DF))) 2971 features &= ~NETIF_F_TSO_MANGLEID; 2972 } 2973 2974 return features; 2975 } 2976 2977 netdev_features_t netif_skb_features(struct sk_buff *skb) 2978 { 2979 struct net_device *dev = skb->dev; 2980 netdev_features_t features = dev->features; 2981 2982 if (skb_is_gso(skb)) 2983 features = gso_features_check(skb, dev, features); 2984 2985 /* If encapsulation offload request, verify we are testing 2986 * hardware encapsulation features instead of standard 2987 * features for the netdev 2988 */ 2989 if (skb->encapsulation) 2990 features &= dev->hw_enc_features; 2991 2992 if (skb_vlan_tagged(skb)) 2993 features = netdev_intersect_features(features, 2994 dev->vlan_features | 2995 NETIF_F_HW_VLAN_CTAG_TX | 2996 NETIF_F_HW_VLAN_STAG_TX); 2997 2998 if (dev->netdev_ops->ndo_features_check) 2999 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3000 features); 3001 else 3002 features &= dflt_features_check(skb, dev, features); 3003 3004 return harmonize_features(skb, features); 3005 } 3006 EXPORT_SYMBOL(netif_skb_features); 3007 3008 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3009 struct netdev_queue *txq, bool more) 3010 { 3011 unsigned int len; 3012 int rc; 3013 3014 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3015 dev_queue_xmit_nit(skb, dev); 3016 3017 len = skb->len; 3018 trace_net_dev_start_xmit(skb, dev); 3019 rc = netdev_start_xmit(skb, dev, txq, more); 3020 trace_net_dev_xmit(skb, rc, dev, len); 3021 3022 return rc; 3023 } 3024 3025 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3026 struct netdev_queue *txq, int *ret) 3027 { 3028 struct sk_buff *skb = first; 3029 int rc = NETDEV_TX_OK; 3030 3031 while (skb) { 3032 struct sk_buff *next = skb->next; 3033 3034 skb->next = NULL; 3035 rc = xmit_one(skb, dev, txq, next != NULL); 3036 if (unlikely(!dev_xmit_complete(rc))) { 3037 skb->next = next; 3038 goto out; 3039 } 3040 3041 skb = next; 3042 if (netif_xmit_stopped(txq) && skb) { 3043 rc = NETDEV_TX_BUSY; 3044 break; 3045 } 3046 } 3047 3048 out: 3049 *ret = rc; 3050 return skb; 3051 } 3052 3053 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3054 netdev_features_t features) 3055 { 3056 if (skb_vlan_tag_present(skb) && 3057 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3058 skb = __vlan_hwaccel_push_inside(skb); 3059 return skb; 3060 } 3061 3062 int skb_csum_hwoffload_help(struct sk_buff *skb, 3063 const netdev_features_t features) 3064 { 3065 if (unlikely(skb->csum_not_inet)) 3066 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3067 skb_crc32c_csum_help(skb); 3068 3069 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3070 } 3071 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3072 3073 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3074 { 3075 netdev_features_t features; 3076 3077 features = netif_skb_features(skb); 3078 skb = validate_xmit_vlan(skb, features); 3079 if (unlikely(!skb)) 3080 goto out_null; 3081 3082 if (netif_needs_gso(skb, features)) { 3083 struct sk_buff *segs; 3084 3085 segs = skb_gso_segment(skb, features); 3086 if (IS_ERR(segs)) { 3087 goto out_kfree_skb; 3088 } else if (segs) { 3089 consume_skb(skb); 3090 skb = segs; 3091 } 3092 } else { 3093 if (skb_needs_linearize(skb, features) && 3094 __skb_linearize(skb)) 3095 goto out_kfree_skb; 3096 3097 /* If packet is not checksummed and device does not 3098 * support checksumming for this protocol, complete 3099 * checksumming here. 3100 */ 3101 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3102 if (skb->encapsulation) 3103 skb_set_inner_transport_header(skb, 3104 skb_checksum_start_offset(skb)); 3105 else 3106 skb_set_transport_header(skb, 3107 skb_checksum_start_offset(skb)); 3108 if (skb_csum_hwoffload_help(skb, features)) 3109 goto out_kfree_skb; 3110 } 3111 } 3112 3113 skb = validate_xmit_xfrm(skb, features, again); 3114 3115 return skb; 3116 3117 out_kfree_skb: 3118 kfree_skb(skb); 3119 out_null: 3120 atomic_long_inc(&dev->tx_dropped); 3121 return NULL; 3122 } 3123 3124 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3125 { 3126 struct sk_buff *next, *head = NULL, *tail; 3127 3128 for (; skb != NULL; skb = next) { 3129 next = skb->next; 3130 skb->next = NULL; 3131 3132 /* in case skb wont be segmented, point to itself */ 3133 skb->prev = skb; 3134 3135 skb = validate_xmit_skb(skb, dev, again); 3136 if (!skb) 3137 continue; 3138 3139 if (!head) 3140 head = skb; 3141 else 3142 tail->next = skb; 3143 /* If skb was segmented, skb->prev points to 3144 * the last segment. If not, it still contains skb. 3145 */ 3146 tail = skb->prev; 3147 } 3148 return head; 3149 } 3150 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3151 3152 static void qdisc_pkt_len_init(struct sk_buff *skb) 3153 { 3154 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3155 3156 qdisc_skb_cb(skb)->pkt_len = skb->len; 3157 3158 /* To get more precise estimation of bytes sent on wire, 3159 * we add to pkt_len the headers size of all segments 3160 */ 3161 if (shinfo->gso_size) { 3162 unsigned int hdr_len; 3163 u16 gso_segs = shinfo->gso_segs; 3164 3165 /* mac layer + network layer */ 3166 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3167 3168 /* + transport layer */ 3169 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3170 const struct tcphdr *th; 3171 struct tcphdr _tcphdr; 3172 3173 th = skb_header_pointer(skb, skb_transport_offset(skb), 3174 sizeof(_tcphdr), &_tcphdr); 3175 if (likely(th)) 3176 hdr_len += __tcp_hdrlen(th); 3177 } else { 3178 struct udphdr _udphdr; 3179 3180 if (skb_header_pointer(skb, skb_transport_offset(skb), 3181 sizeof(_udphdr), &_udphdr)) 3182 hdr_len += sizeof(struct udphdr); 3183 } 3184 3185 if (shinfo->gso_type & SKB_GSO_DODGY) 3186 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3187 shinfo->gso_size); 3188 3189 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3190 } 3191 } 3192 3193 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3194 struct net_device *dev, 3195 struct netdev_queue *txq) 3196 { 3197 spinlock_t *root_lock = qdisc_lock(q); 3198 struct sk_buff *to_free = NULL; 3199 bool contended; 3200 int rc; 3201 3202 qdisc_calculate_pkt_len(skb, q); 3203 3204 if (q->flags & TCQ_F_NOLOCK) { 3205 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3206 __qdisc_drop(skb, &to_free); 3207 rc = NET_XMIT_DROP; 3208 } else { 3209 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3210 __qdisc_run(q); 3211 } 3212 3213 if (unlikely(to_free)) 3214 kfree_skb_list(to_free); 3215 return rc; 3216 } 3217 3218 /* 3219 * Heuristic to force contended enqueues to serialize on a 3220 * separate lock before trying to get qdisc main lock. 3221 * This permits qdisc->running owner to get the lock more 3222 * often and dequeue packets faster. 3223 */ 3224 contended = qdisc_is_running(q); 3225 if (unlikely(contended)) 3226 spin_lock(&q->busylock); 3227 3228 spin_lock(root_lock); 3229 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3230 __qdisc_drop(skb, &to_free); 3231 rc = NET_XMIT_DROP; 3232 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3233 qdisc_run_begin(q)) { 3234 /* 3235 * This is a work-conserving queue; there are no old skbs 3236 * waiting to be sent out; and the qdisc is not running - 3237 * xmit the skb directly. 3238 */ 3239 3240 qdisc_bstats_update(q, skb); 3241 3242 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3243 if (unlikely(contended)) { 3244 spin_unlock(&q->busylock); 3245 contended = false; 3246 } 3247 __qdisc_run(q); 3248 } 3249 3250 qdisc_run_end(q); 3251 rc = NET_XMIT_SUCCESS; 3252 } else { 3253 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3254 if (qdisc_run_begin(q)) { 3255 if (unlikely(contended)) { 3256 spin_unlock(&q->busylock); 3257 contended = false; 3258 } 3259 __qdisc_run(q); 3260 qdisc_run_end(q); 3261 } 3262 } 3263 spin_unlock(root_lock); 3264 if (unlikely(to_free)) 3265 kfree_skb_list(to_free); 3266 if (unlikely(contended)) 3267 spin_unlock(&q->busylock); 3268 return rc; 3269 } 3270 3271 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3272 static void skb_update_prio(struct sk_buff *skb) 3273 { 3274 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3275 3276 if (!skb->priority && skb->sk && map) { 3277 unsigned int prioidx = 3278 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3279 3280 if (prioidx < map->priomap_len) 3281 skb->priority = map->priomap[prioidx]; 3282 } 3283 } 3284 #else 3285 #define skb_update_prio(skb) 3286 #endif 3287 3288 DEFINE_PER_CPU(int, xmit_recursion); 3289 EXPORT_SYMBOL(xmit_recursion); 3290 3291 /** 3292 * dev_loopback_xmit - loop back @skb 3293 * @net: network namespace this loopback is happening in 3294 * @sk: sk needed to be a netfilter okfn 3295 * @skb: buffer to transmit 3296 */ 3297 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3298 { 3299 skb_reset_mac_header(skb); 3300 __skb_pull(skb, skb_network_offset(skb)); 3301 skb->pkt_type = PACKET_LOOPBACK; 3302 skb->ip_summed = CHECKSUM_UNNECESSARY; 3303 WARN_ON(!skb_dst(skb)); 3304 skb_dst_force(skb); 3305 netif_rx_ni(skb); 3306 return 0; 3307 } 3308 EXPORT_SYMBOL(dev_loopback_xmit); 3309 3310 #ifdef CONFIG_NET_EGRESS 3311 static struct sk_buff * 3312 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3313 { 3314 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3315 struct tcf_result cl_res; 3316 3317 if (!miniq) 3318 return skb; 3319 3320 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3321 mini_qdisc_bstats_cpu_update(miniq, skb); 3322 3323 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3324 case TC_ACT_OK: 3325 case TC_ACT_RECLASSIFY: 3326 skb->tc_index = TC_H_MIN(cl_res.classid); 3327 break; 3328 case TC_ACT_SHOT: 3329 mini_qdisc_qstats_cpu_drop(miniq); 3330 *ret = NET_XMIT_DROP; 3331 kfree_skb(skb); 3332 return NULL; 3333 case TC_ACT_STOLEN: 3334 case TC_ACT_QUEUED: 3335 case TC_ACT_TRAP: 3336 *ret = NET_XMIT_SUCCESS; 3337 consume_skb(skb); 3338 return NULL; 3339 case TC_ACT_REDIRECT: 3340 /* No need to push/pop skb's mac_header here on egress! */ 3341 skb_do_redirect(skb); 3342 *ret = NET_XMIT_SUCCESS; 3343 return NULL; 3344 default: 3345 break; 3346 } 3347 3348 return skb; 3349 } 3350 #endif /* CONFIG_NET_EGRESS */ 3351 3352 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3353 { 3354 #ifdef CONFIG_XPS 3355 struct xps_dev_maps *dev_maps; 3356 struct xps_map *map; 3357 int queue_index = -1; 3358 3359 rcu_read_lock(); 3360 dev_maps = rcu_dereference(dev->xps_maps); 3361 if (dev_maps) { 3362 unsigned int tci = skb->sender_cpu - 1; 3363 3364 if (dev->num_tc) { 3365 tci *= dev->num_tc; 3366 tci += netdev_get_prio_tc_map(dev, skb->priority); 3367 } 3368 3369 map = rcu_dereference(dev_maps->cpu_map[tci]); 3370 if (map) { 3371 if (map->len == 1) 3372 queue_index = map->queues[0]; 3373 else 3374 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3375 map->len)]; 3376 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3377 queue_index = -1; 3378 } 3379 } 3380 rcu_read_unlock(); 3381 3382 return queue_index; 3383 #else 3384 return -1; 3385 #endif 3386 } 3387 3388 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3389 { 3390 struct sock *sk = skb->sk; 3391 int queue_index = sk_tx_queue_get(sk); 3392 3393 if (queue_index < 0 || skb->ooo_okay || 3394 queue_index >= dev->real_num_tx_queues) { 3395 int new_index = get_xps_queue(dev, skb); 3396 3397 if (new_index < 0) 3398 new_index = skb_tx_hash(dev, skb); 3399 3400 if (queue_index != new_index && sk && 3401 sk_fullsock(sk) && 3402 rcu_access_pointer(sk->sk_dst_cache)) 3403 sk_tx_queue_set(sk, new_index); 3404 3405 queue_index = new_index; 3406 } 3407 3408 return queue_index; 3409 } 3410 3411 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3412 struct sk_buff *skb, 3413 void *accel_priv) 3414 { 3415 int queue_index = 0; 3416 3417 #ifdef CONFIG_XPS 3418 u32 sender_cpu = skb->sender_cpu - 1; 3419 3420 if (sender_cpu >= (u32)NR_CPUS) 3421 skb->sender_cpu = raw_smp_processor_id() + 1; 3422 #endif 3423 3424 if (dev->real_num_tx_queues != 1) { 3425 const struct net_device_ops *ops = dev->netdev_ops; 3426 3427 if (ops->ndo_select_queue) 3428 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3429 __netdev_pick_tx); 3430 else 3431 queue_index = __netdev_pick_tx(dev, skb); 3432 3433 queue_index = netdev_cap_txqueue(dev, queue_index); 3434 } 3435 3436 skb_set_queue_mapping(skb, queue_index); 3437 return netdev_get_tx_queue(dev, queue_index); 3438 } 3439 3440 /** 3441 * __dev_queue_xmit - transmit a buffer 3442 * @skb: buffer to transmit 3443 * @accel_priv: private data used for L2 forwarding offload 3444 * 3445 * Queue a buffer for transmission to a network device. The caller must 3446 * have set the device and priority and built the buffer before calling 3447 * this function. The function can be called from an interrupt. 3448 * 3449 * A negative errno code is returned on a failure. A success does not 3450 * guarantee the frame will be transmitted as it may be dropped due 3451 * to congestion or traffic shaping. 3452 * 3453 * ----------------------------------------------------------------------------------- 3454 * I notice this method can also return errors from the queue disciplines, 3455 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3456 * be positive. 3457 * 3458 * Regardless of the return value, the skb is consumed, so it is currently 3459 * difficult to retry a send to this method. (You can bump the ref count 3460 * before sending to hold a reference for retry if you are careful.) 3461 * 3462 * When calling this method, interrupts MUST be enabled. This is because 3463 * the BH enable code must have IRQs enabled so that it will not deadlock. 3464 * --BLG 3465 */ 3466 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3467 { 3468 struct net_device *dev = skb->dev; 3469 struct netdev_queue *txq; 3470 struct Qdisc *q; 3471 int rc = -ENOMEM; 3472 bool again = false; 3473 3474 skb_reset_mac_header(skb); 3475 3476 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3477 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3478 3479 /* Disable soft irqs for various locks below. Also 3480 * stops preemption for RCU. 3481 */ 3482 rcu_read_lock_bh(); 3483 3484 skb_update_prio(skb); 3485 3486 qdisc_pkt_len_init(skb); 3487 #ifdef CONFIG_NET_CLS_ACT 3488 skb->tc_at_ingress = 0; 3489 # ifdef CONFIG_NET_EGRESS 3490 if (static_key_false(&egress_needed)) { 3491 skb = sch_handle_egress(skb, &rc, dev); 3492 if (!skb) 3493 goto out; 3494 } 3495 # endif 3496 #endif 3497 /* If device/qdisc don't need skb->dst, release it right now while 3498 * its hot in this cpu cache. 3499 */ 3500 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3501 skb_dst_drop(skb); 3502 else 3503 skb_dst_force(skb); 3504 3505 txq = netdev_pick_tx(dev, skb, accel_priv); 3506 q = rcu_dereference_bh(txq->qdisc); 3507 3508 trace_net_dev_queue(skb); 3509 if (q->enqueue) { 3510 rc = __dev_xmit_skb(skb, q, dev, txq); 3511 goto out; 3512 } 3513 3514 /* The device has no queue. Common case for software devices: 3515 * loopback, all the sorts of tunnels... 3516 3517 * Really, it is unlikely that netif_tx_lock protection is necessary 3518 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3519 * counters.) 3520 * However, it is possible, that they rely on protection 3521 * made by us here. 3522 3523 * Check this and shot the lock. It is not prone from deadlocks. 3524 *Either shot noqueue qdisc, it is even simpler 8) 3525 */ 3526 if (dev->flags & IFF_UP) { 3527 int cpu = smp_processor_id(); /* ok because BHs are off */ 3528 3529 if (txq->xmit_lock_owner != cpu) { 3530 if (unlikely(__this_cpu_read(xmit_recursion) > 3531 XMIT_RECURSION_LIMIT)) 3532 goto recursion_alert; 3533 3534 skb = validate_xmit_skb(skb, dev, &again); 3535 if (!skb) 3536 goto out; 3537 3538 HARD_TX_LOCK(dev, txq, cpu); 3539 3540 if (!netif_xmit_stopped(txq)) { 3541 __this_cpu_inc(xmit_recursion); 3542 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3543 __this_cpu_dec(xmit_recursion); 3544 if (dev_xmit_complete(rc)) { 3545 HARD_TX_UNLOCK(dev, txq); 3546 goto out; 3547 } 3548 } 3549 HARD_TX_UNLOCK(dev, txq); 3550 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3551 dev->name); 3552 } else { 3553 /* Recursion is detected! It is possible, 3554 * unfortunately 3555 */ 3556 recursion_alert: 3557 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3558 dev->name); 3559 } 3560 } 3561 3562 rc = -ENETDOWN; 3563 rcu_read_unlock_bh(); 3564 3565 atomic_long_inc(&dev->tx_dropped); 3566 kfree_skb_list(skb); 3567 return rc; 3568 out: 3569 rcu_read_unlock_bh(); 3570 return rc; 3571 } 3572 3573 int dev_queue_xmit(struct sk_buff *skb) 3574 { 3575 return __dev_queue_xmit(skb, NULL); 3576 } 3577 EXPORT_SYMBOL(dev_queue_xmit); 3578 3579 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3580 { 3581 return __dev_queue_xmit(skb, accel_priv); 3582 } 3583 EXPORT_SYMBOL(dev_queue_xmit_accel); 3584 3585 3586 /************************************************************************* 3587 * Receiver routines 3588 *************************************************************************/ 3589 3590 int netdev_max_backlog __read_mostly = 1000; 3591 EXPORT_SYMBOL(netdev_max_backlog); 3592 3593 int netdev_tstamp_prequeue __read_mostly = 1; 3594 int netdev_budget __read_mostly = 300; 3595 unsigned int __read_mostly netdev_budget_usecs = 2000; 3596 int weight_p __read_mostly = 64; /* old backlog weight */ 3597 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3598 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3599 int dev_rx_weight __read_mostly = 64; 3600 int dev_tx_weight __read_mostly = 64; 3601 3602 /* Called with irq disabled */ 3603 static inline void ____napi_schedule(struct softnet_data *sd, 3604 struct napi_struct *napi) 3605 { 3606 list_add_tail(&napi->poll_list, &sd->poll_list); 3607 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3608 } 3609 3610 #ifdef CONFIG_RPS 3611 3612 /* One global table that all flow-based protocols share. */ 3613 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3614 EXPORT_SYMBOL(rps_sock_flow_table); 3615 u32 rps_cpu_mask __read_mostly; 3616 EXPORT_SYMBOL(rps_cpu_mask); 3617 3618 struct static_key rps_needed __read_mostly; 3619 EXPORT_SYMBOL(rps_needed); 3620 struct static_key rfs_needed __read_mostly; 3621 EXPORT_SYMBOL(rfs_needed); 3622 3623 static struct rps_dev_flow * 3624 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3625 struct rps_dev_flow *rflow, u16 next_cpu) 3626 { 3627 if (next_cpu < nr_cpu_ids) { 3628 #ifdef CONFIG_RFS_ACCEL 3629 struct netdev_rx_queue *rxqueue; 3630 struct rps_dev_flow_table *flow_table; 3631 struct rps_dev_flow *old_rflow; 3632 u32 flow_id; 3633 u16 rxq_index; 3634 int rc; 3635 3636 /* Should we steer this flow to a different hardware queue? */ 3637 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3638 !(dev->features & NETIF_F_NTUPLE)) 3639 goto out; 3640 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3641 if (rxq_index == skb_get_rx_queue(skb)) 3642 goto out; 3643 3644 rxqueue = dev->_rx + rxq_index; 3645 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3646 if (!flow_table) 3647 goto out; 3648 flow_id = skb_get_hash(skb) & flow_table->mask; 3649 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3650 rxq_index, flow_id); 3651 if (rc < 0) 3652 goto out; 3653 old_rflow = rflow; 3654 rflow = &flow_table->flows[flow_id]; 3655 rflow->filter = rc; 3656 if (old_rflow->filter == rflow->filter) 3657 old_rflow->filter = RPS_NO_FILTER; 3658 out: 3659 #endif 3660 rflow->last_qtail = 3661 per_cpu(softnet_data, next_cpu).input_queue_head; 3662 } 3663 3664 rflow->cpu = next_cpu; 3665 return rflow; 3666 } 3667 3668 /* 3669 * get_rps_cpu is called from netif_receive_skb and returns the target 3670 * CPU from the RPS map of the receiving queue for a given skb. 3671 * rcu_read_lock must be held on entry. 3672 */ 3673 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3674 struct rps_dev_flow **rflowp) 3675 { 3676 const struct rps_sock_flow_table *sock_flow_table; 3677 struct netdev_rx_queue *rxqueue = dev->_rx; 3678 struct rps_dev_flow_table *flow_table; 3679 struct rps_map *map; 3680 int cpu = -1; 3681 u32 tcpu; 3682 u32 hash; 3683 3684 if (skb_rx_queue_recorded(skb)) { 3685 u16 index = skb_get_rx_queue(skb); 3686 3687 if (unlikely(index >= dev->real_num_rx_queues)) { 3688 WARN_ONCE(dev->real_num_rx_queues > 1, 3689 "%s received packet on queue %u, but number " 3690 "of RX queues is %u\n", 3691 dev->name, index, dev->real_num_rx_queues); 3692 goto done; 3693 } 3694 rxqueue += index; 3695 } 3696 3697 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3698 3699 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3700 map = rcu_dereference(rxqueue->rps_map); 3701 if (!flow_table && !map) 3702 goto done; 3703 3704 skb_reset_network_header(skb); 3705 hash = skb_get_hash(skb); 3706 if (!hash) 3707 goto done; 3708 3709 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3710 if (flow_table && sock_flow_table) { 3711 struct rps_dev_flow *rflow; 3712 u32 next_cpu; 3713 u32 ident; 3714 3715 /* First check into global flow table if there is a match */ 3716 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3717 if ((ident ^ hash) & ~rps_cpu_mask) 3718 goto try_rps; 3719 3720 next_cpu = ident & rps_cpu_mask; 3721 3722 /* OK, now we know there is a match, 3723 * we can look at the local (per receive queue) flow table 3724 */ 3725 rflow = &flow_table->flows[hash & flow_table->mask]; 3726 tcpu = rflow->cpu; 3727 3728 /* 3729 * If the desired CPU (where last recvmsg was done) is 3730 * different from current CPU (one in the rx-queue flow 3731 * table entry), switch if one of the following holds: 3732 * - Current CPU is unset (>= nr_cpu_ids). 3733 * - Current CPU is offline. 3734 * - The current CPU's queue tail has advanced beyond the 3735 * last packet that was enqueued using this table entry. 3736 * This guarantees that all previous packets for the flow 3737 * have been dequeued, thus preserving in order delivery. 3738 */ 3739 if (unlikely(tcpu != next_cpu) && 3740 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3741 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3742 rflow->last_qtail)) >= 0)) { 3743 tcpu = next_cpu; 3744 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3745 } 3746 3747 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3748 *rflowp = rflow; 3749 cpu = tcpu; 3750 goto done; 3751 } 3752 } 3753 3754 try_rps: 3755 3756 if (map) { 3757 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3758 if (cpu_online(tcpu)) { 3759 cpu = tcpu; 3760 goto done; 3761 } 3762 } 3763 3764 done: 3765 return cpu; 3766 } 3767 3768 #ifdef CONFIG_RFS_ACCEL 3769 3770 /** 3771 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3772 * @dev: Device on which the filter was set 3773 * @rxq_index: RX queue index 3774 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3775 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3776 * 3777 * Drivers that implement ndo_rx_flow_steer() should periodically call 3778 * this function for each installed filter and remove the filters for 3779 * which it returns %true. 3780 */ 3781 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3782 u32 flow_id, u16 filter_id) 3783 { 3784 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3785 struct rps_dev_flow_table *flow_table; 3786 struct rps_dev_flow *rflow; 3787 bool expire = true; 3788 unsigned int cpu; 3789 3790 rcu_read_lock(); 3791 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3792 if (flow_table && flow_id <= flow_table->mask) { 3793 rflow = &flow_table->flows[flow_id]; 3794 cpu = READ_ONCE(rflow->cpu); 3795 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3796 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3797 rflow->last_qtail) < 3798 (int)(10 * flow_table->mask))) 3799 expire = false; 3800 } 3801 rcu_read_unlock(); 3802 return expire; 3803 } 3804 EXPORT_SYMBOL(rps_may_expire_flow); 3805 3806 #endif /* CONFIG_RFS_ACCEL */ 3807 3808 /* Called from hardirq (IPI) context */ 3809 static void rps_trigger_softirq(void *data) 3810 { 3811 struct softnet_data *sd = data; 3812 3813 ____napi_schedule(sd, &sd->backlog); 3814 sd->received_rps++; 3815 } 3816 3817 #endif /* CONFIG_RPS */ 3818 3819 /* 3820 * Check if this softnet_data structure is another cpu one 3821 * If yes, queue it to our IPI list and return 1 3822 * If no, return 0 3823 */ 3824 static int rps_ipi_queued(struct softnet_data *sd) 3825 { 3826 #ifdef CONFIG_RPS 3827 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3828 3829 if (sd != mysd) { 3830 sd->rps_ipi_next = mysd->rps_ipi_list; 3831 mysd->rps_ipi_list = sd; 3832 3833 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3834 return 1; 3835 } 3836 #endif /* CONFIG_RPS */ 3837 return 0; 3838 } 3839 3840 #ifdef CONFIG_NET_FLOW_LIMIT 3841 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3842 #endif 3843 3844 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3845 { 3846 #ifdef CONFIG_NET_FLOW_LIMIT 3847 struct sd_flow_limit *fl; 3848 struct softnet_data *sd; 3849 unsigned int old_flow, new_flow; 3850 3851 if (qlen < (netdev_max_backlog >> 1)) 3852 return false; 3853 3854 sd = this_cpu_ptr(&softnet_data); 3855 3856 rcu_read_lock(); 3857 fl = rcu_dereference(sd->flow_limit); 3858 if (fl) { 3859 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3860 old_flow = fl->history[fl->history_head]; 3861 fl->history[fl->history_head] = new_flow; 3862 3863 fl->history_head++; 3864 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3865 3866 if (likely(fl->buckets[old_flow])) 3867 fl->buckets[old_flow]--; 3868 3869 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3870 fl->count++; 3871 rcu_read_unlock(); 3872 return true; 3873 } 3874 } 3875 rcu_read_unlock(); 3876 #endif 3877 return false; 3878 } 3879 3880 /* 3881 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3882 * queue (may be a remote CPU queue). 3883 */ 3884 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3885 unsigned int *qtail) 3886 { 3887 struct softnet_data *sd; 3888 unsigned long flags; 3889 unsigned int qlen; 3890 3891 sd = &per_cpu(softnet_data, cpu); 3892 3893 local_irq_save(flags); 3894 3895 rps_lock(sd); 3896 if (!netif_running(skb->dev)) 3897 goto drop; 3898 qlen = skb_queue_len(&sd->input_pkt_queue); 3899 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3900 if (qlen) { 3901 enqueue: 3902 __skb_queue_tail(&sd->input_pkt_queue, skb); 3903 input_queue_tail_incr_save(sd, qtail); 3904 rps_unlock(sd); 3905 local_irq_restore(flags); 3906 return NET_RX_SUCCESS; 3907 } 3908 3909 /* Schedule NAPI for backlog device 3910 * We can use non atomic operation since we own the queue lock 3911 */ 3912 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3913 if (!rps_ipi_queued(sd)) 3914 ____napi_schedule(sd, &sd->backlog); 3915 } 3916 goto enqueue; 3917 } 3918 3919 drop: 3920 sd->dropped++; 3921 rps_unlock(sd); 3922 3923 local_irq_restore(flags); 3924 3925 atomic_long_inc(&skb->dev->rx_dropped); 3926 kfree_skb(skb); 3927 return NET_RX_DROP; 3928 } 3929 3930 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 3931 { 3932 struct net_device *dev = skb->dev; 3933 struct netdev_rx_queue *rxqueue; 3934 3935 rxqueue = dev->_rx; 3936 3937 if (skb_rx_queue_recorded(skb)) { 3938 u16 index = skb_get_rx_queue(skb); 3939 3940 if (unlikely(index >= dev->real_num_rx_queues)) { 3941 WARN_ONCE(dev->real_num_rx_queues > 1, 3942 "%s received packet on queue %u, but number " 3943 "of RX queues is %u\n", 3944 dev->name, index, dev->real_num_rx_queues); 3945 3946 return rxqueue; /* Return first rxqueue */ 3947 } 3948 rxqueue += index; 3949 } 3950 return rxqueue; 3951 } 3952 3953 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3954 struct bpf_prog *xdp_prog) 3955 { 3956 struct netdev_rx_queue *rxqueue; 3957 u32 metalen, act = XDP_DROP; 3958 struct xdp_buff xdp; 3959 void *orig_data; 3960 int hlen, off; 3961 u32 mac_len; 3962 3963 /* Reinjected packets coming from act_mirred or similar should 3964 * not get XDP generic processing. 3965 */ 3966 if (skb_cloned(skb)) 3967 return XDP_PASS; 3968 3969 /* XDP packets must be linear and must have sufficient headroom 3970 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 3971 * native XDP provides, thus we need to do it here as well. 3972 */ 3973 if (skb_is_nonlinear(skb) || 3974 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 3975 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 3976 int troom = skb->tail + skb->data_len - skb->end; 3977 3978 /* In case we have to go down the path and also linearize, 3979 * then lets do the pskb_expand_head() work just once here. 3980 */ 3981 if (pskb_expand_head(skb, 3982 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 3983 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 3984 goto do_drop; 3985 if (skb_linearize(skb)) 3986 goto do_drop; 3987 } 3988 3989 /* The XDP program wants to see the packet starting at the MAC 3990 * header. 3991 */ 3992 mac_len = skb->data - skb_mac_header(skb); 3993 hlen = skb_headlen(skb) + mac_len; 3994 xdp.data = skb->data - mac_len; 3995 xdp.data_meta = xdp.data; 3996 xdp.data_end = xdp.data + hlen; 3997 xdp.data_hard_start = skb->data - skb_headroom(skb); 3998 orig_data = xdp.data; 3999 4000 rxqueue = netif_get_rxqueue(skb); 4001 xdp.rxq = &rxqueue->xdp_rxq; 4002 4003 act = bpf_prog_run_xdp(xdp_prog, &xdp); 4004 4005 off = xdp.data - orig_data; 4006 if (off > 0) 4007 __skb_pull(skb, off); 4008 else if (off < 0) 4009 __skb_push(skb, -off); 4010 skb->mac_header += off; 4011 4012 switch (act) { 4013 case XDP_REDIRECT: 4014 case XDP_TX: 4015 __skb_push(skb, mac_len); 4016 break; 4017 case XDP_PASS: 4018 metalen = xdp.data - xdp.data_meta; 4019 if (metalen) 4020 skb_metadata_set(skb, metalen); 4021 break; 4022 default: 4023 bpf_warn_invalid_xdp_action(act); 4024 /* fall through */ 4025 case XDP_ABORTED: 4026 trace_xdp_exception(skb->dev, xdp_prog, act); 4027 /* fall through */ 4028 case XDP_DROP: 4029 do_drop: 4030 kfree_skb(skb); 4031 break; 4032 } 4033 4034 return act; 4035 } 4036 4037 /* When doing generic XDP we have to bypass the qdisc layer and the 4038 * network taps in order to match in-driver-XDP behavior. 4039 */ 4040 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4041 { 4042 struct net_device *dev = skb->dev; 4043 struct netdev_queue *txq; 4044 bool free_skb = true; 4045 int cpu, rc; 4046 4047 txq = netdev_pick_tx(dev, skb, NULL); 4048 cpu = smp_processor_id(); 4049 HARD_TX_LOCK(dev, txq, cpu); 4050 if (!netif_xmit_stopped(txq)) { 4051 rc = netdev_start_xmit(skb, dev, txq, 0); 4052 if (dev_xmit_complete(rc)) 4053 free_skb = false; 4054 } 4055 HARD_TX_UNLOCK(dev, txq); 4056 if (free_skb) { 4057 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4058 kfree_skb(skb); 4059 } 4060 } 4061 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4062 4063 static struct static_key generic_xdp_needed __read_mostly; 4064 4065 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4066 { 4067 if (xdp_prog) { 4068 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4069 int err; 4070 4071 if (act != XDP_PASS) { 4072 switch (act) { 4073 case XDP_REDIRECT: 4074 err = xdp_do_generic_redirect(skb->dev, skb, 4075 xdp_prog); 4076 if (err) 4077 goto out_redir; 4078 /* fallthru to submit skb */ 4079 case XDP_TX: 4080 generic_xdp_tx(skb, xdp_prog); 4081 break; 4082 } 4083 return XDP_DROP; 4084 } 4085 } 4086 return XDP_PASS; 4087 out_redir: 4088 kfree_skb(skb); 4089 return XDP_DROP; 4090 } 4091 EXPORT_SYMBOL_GPL(do_xdp_generic); 4092 4093 static int netif_rx_internal(struct sk_buff *skb) 4094 { 4095 int ret; 4096 4097 net_timestamp_check(netdev_tstamp_prequeue, skb); 4098 4099 trace_netif_rx(skb); 4100 4101 if (static_key_false(&generic_xdp_needed)) { 4102 int ret; 4103 4104 preempt_disable(); 4105 rcu_read_lock(); 4106 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4107 rcu_read_unlock(); 4108 preempt_enable(); 4109 4110 /* Consider XDP consuming the packet a success from 4111 * the netdev point of view we do not want to count 4112 * this as an error. 4113 */ 4114 if (ret != XDP_PASS) 4115 return NET_RX_SUCCESS; 4116 } 4117 4118 #ifdef CONFIG_RPS 4119 if (static_key_false(&rps_needed)) { 4120 struct rps_dev_flow voidflow, *rflow = &voidflow; 4121 int cpu; 4122 4123 preempt_disable(); 4124 rcu_read_lock(); 4125 4126 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4127 if (cpu < 0) 4128 cpu = smp_processor_id(); 4129 4130 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4131 4132 rcu_read_unlock(); 4133 preempt_enable(); 4134 } else 4135 #endif 4136 { 4137 unsigned int qtail; 4138 4139 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4140 put_cpu(); 4141 } 4142 return ret; 4143 } 4144 4145 /** 4146 * netif_rx - post buffer to the network code 4147 * @skb: buffer to post 4148 * 4149 * This function receives a packet from a device driver and queues it for 4150 * the upper (protocol) levels to process. It always succeeds. The buffer 4151 * may be dropped during processing for congestion control or by the 4152 * protocol layers. 4153 * 4154 * return values: 4155 * NET_RX_SUCCESS (no congestion) 4156 * NET_RX_DROP (packet was dropped) 4157 * 4158 */ 4159 4160 int netif_rx(struct sk_buff *skb) 4161 { 4162 trace_netif_rx_entry(skb); 4163 4164 return netif_rx_internal(skb); 4165 } 4166 EXPORT_SYMBOL(netif_rx); 4167 4168 int netif_rx_ni(struct sk_buff *skb) 4169 { 4170 int err; 4171 4172 trace_netif_rx_ni_entry(skb); 4173 4174 preempt_disable(); 4175 err = netif_rx_internal(skb); 4176 if (local_softirq_pending()) 4177 do_softirq(); 4178 preempt_enable(); 4179 4180 return err; 4181 } 4182 EXPORT_SYMBOL(netif_rx_ni); 4183 4184 static __latent_entropy void net_tx_action(struct softirq_action *h) 4185 { 4186 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4187 4188 if (sd->completion_queue) { 4189 struct sk_buff *clist; 4190 4191 local_irq_disable(); 4192 clist = sd->completion_queue; 4193 sd->completion_queue = NULL; 4194 local_irq_enable(); 4195 4196 while (clist) { 4197 struct sk_buff *skb = clist; 4198 4199 clist = clist->next; 4200 4201 WARN_ON(refcount_read(&skb->users)); 4202 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4203 trace_consume_skb(skb); 4204 else 4205 trace_kfree_skb(skb, net_tx_action); 4206 4207 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4208 __kfree_skb(skb); 4209 else 4210 __kfree_skb_defer(skb); 4211 } 4212 4213 __kfree_skb_flush(); 4214 } 4215 4216 if (sd->output_queue) { 4217 struct Qdisc *head; 4218 4219 local_irq_disable(); 4220 head = sd->output_queue; 4221 sd->output_queue = NULL; 4222 sd->output_queue_tailp = &sd->output_queue; 4223 local_irq_enable(); 4224 4225 while (head) { 4226 struct Qdisc *q = head; 4227 spinlock_t *root_lock = NULL; 4228 4229 head = head->next_sched; 4230 4231 if (!(q->flags & TCQ_F_NOLOCK)) { 4232 root_lock = qdisc_lock(q); 4233 spin_lock(root_lock); 4234 } 4235 /* We need to make sure head->next_sched is read 4236 * before clearing __QDISC_STATE_SCHED 4237 */ 4238 smp_mb__before_atomic(); 4239 clear_bit(__QDISC_STATE_SCHED, &q->state); 4240 qdisc_run(q); 4241 if (root_lock) 4242 spin_unlock(root_lock); 4243 } 4244 } 4245 4246 xfrm_dev_backlog(sd); 4247 } 4248 4249 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4250 /* This hook is defined here for ATM LANE */ 4251 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4252 unsigned char *addr) __read_mostly; 4253 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4254 #endif 4255 4256 static inline struct sk_buff * 4257 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4258 struct net_device *orig_dev) 4259 { 4260 #ifdef CONFIG_NET_CLS_ACT 4261 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4262 struct tcf_result cl_res; 4263 4264 /* If there's at least one ingress present somewhere (so 4265 * we get here via enabled static key), remaining devices 4266 * that are not configured with an ingress qdisc will bail 4267 * out here. 4268 */ 4269 if (!miniq) 4270 return skb; 4271 4272 if (*pt_prev) { 4273 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4274 *pt_prev = NULL; 4275 } 4276 4277 qdisc_skb_cb(skb)->pkt_len = skb->len; 4278 skb->tc_at_ingress = 1; 4279 mini_qdisc_bstats_cpu_update(miniq, skb); 4280 4281 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4282 case TC_ACT_OK: 4283 case TC_ACT_RECLASSIFY: 4284 skb->tc_index = TC_H_MIN(cl_res.classid); 4285 break; 4286 case TC_ACT_SHOT: 4287 mini_qdisc_qstats_cpu_drop(miniq); 4288 kfree_skb(skb); 4289 return NULL; 4290 case TC_ACT_STOLEN: 4291 case TC_ACT_QUEUED: 4292 case TC_ACT_TRAP: 4293 consume_skb(skb); 4294 return NULL; 4295 case TC_ACT_REDIRECT: 4296 /* skb_mac_header check was done by cls/act_bpf, so 4297 * we can safely push the L2 header back before 4298 * redirecting to another netdev 4299 */ 4300 __skb_push(skb, skb->mac_len); 4301 skb_do_redirect(skb); 4302 return NULL; 4303 default: 4304 break; 4305 } 4306 #endif /* CONFIG_NET_CLS_ACT */ 4307 return skb; 4308 } 4309 4310 /** 4311 * netdev_is_rx_handler_busy - check if receive handler is registered 4312 * @dev: device to check 4313 * 4314 * Check if a receive handler is already registered for a given device. 4315 * Return true if there one. 4316 * 4317 * The caller must hold the rtnl_mutex. 4318 */ 4319 bool netdev_is_rx_handler_busy(struct net_device *dev) 4320 { 4321 ASSERT_RTNL(); 4322 return dev && rtnl_dereference(dev->rx_handler); 4323 } 4324 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4325 4326 /** 4327 * netdev_rx_handler_register - register receive handler 4328 * @dev: device to register a handler for 4329 * @rx_handler: receive handler to register 4330 * @rx_handler_data: data pointer that is used by rx handler 4331 * 4332 * Register a receive handler for a device. This handler will then be 4333 * called from __netif_receive_skb. A negative errno code is returned 4334 * on a failure. 4335 * 4336 * The caller must hold the rtnl_mutex. 4337 * 4338 * For a general description of rx_handler, see enum rx_handler_result. 4339 */ 4340 int netdev_rx_handler_register(struct net_device *dev, 4341 rx_handler_func_t *rx_handler, 4342 void *rx_handler_data) 4343 { 4344 if (netdev_is_rx_handler_busy(dev)) 4345 return -EBUSY; 4346 4347 /* Note: rx_handler_data must be set before rx_handler */ 4348 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4349 rcu_assign_pointer(dev->rx_handler, rx_handler); 4350 4351 return 0; 4352 } 4353 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4354 4355 /** 4356 * netdev_rx_handler_unregister - unregister receive handler 4357 * @dev: device to unregister a handler from 4358 * 4359 * Unregister a receive handler from a device. 4360 * 4361 * The caller must hold the rtnl_mutex. 4362 */ 4363 void netdev_rx_handler_unregister(struct net_device *dev) 4364 { 4365 4366 ASSERT_RTNL(); 4367 RCU_INIT_POINTER(dev->rx_handler, NULL); 4368 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4369 * section has a guarantee to see a non NULL rx_handler_data 4370 * as well. 4371 */ 4372 synchronize_net(); 4373 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4374 } 4375 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4376 4377 /* 4378 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4379 * the special handling of PFMEMALLOC skbs. 4380 */ 4381 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4382 { 4383 switch (skb->protocol) { 4384 case htons(ETH_P_ARP): 4385 case htons(ETH_P_IP): 4386 case htons(ETH_P_IPV6): 4387 case htons(ETH_P_8021Q): 4388 case htons(ETH_P_8021AD): 4389 return true; 4390 default: 4391 return false; 4392 } 4393 } 4394 4395 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4396 int *ret, struct net_device *orig_dev) 4397 { 4398 #ifdef CONFIG_NETFILTER_INGRESS 4399 if (nf_hook_ingress_active(skb)) { 4400 int ingress_retval; 4401 4402 if (*pt_prev) { 4403 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4404 *pt_prev = NULL; 4405 } 4406 4407 rcu_read_lock(); 4408 ingress_retval = nf_hook_ingress(skb); 4409 rcu_read_unlock(); 4410 return ingress_retval; 4411 } 4412 #endif /* CONFIG_NETFILTER_INGRESS */ 4413 return 0; 4414 } 4415 4416 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4417 { 4418 struct packet_type *ptype, *pt_prev; 4419 rx_handler_func_t *rx_handler; 4420 struct net_device *orig_dev; 4421 bool deliver_exact = false; 4422 int ret = NET_RX_DROP; 4423 __be16 type; 4424 4425 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4426 4427 trace_netif_receive_skb(skb); 4428 4429 orig_dev = skb->dev; 4430 4431 skb_reset_network_header(skb); 4432 if (!skb_transport_header_was_set(skb)) 4433 skb_reset_transport_header(skb); 4434 skb_reset_mac_len(skb); 4435 4436 pt_prev = NULL; 4437 4438 another_round: 4439 skb->skb_iif = skb->dev->ifindex; 4440 4441 __this_cpu_inc(softnet_data.processed); 4442 4443 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4444 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4445 skb = skb_vlan_untag(skb); 4446 if (unlikely(!skb)) 4447 goto out; 4448 } 4449 4450 if (skb_skip_tc_classify(skb)) 4451 goto skip_classify; 4452 4453 if (pfmemalloc) 4454 goto skip_taps; 4455 4456 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4457 if (pt_prev) 4458 ret = deliver_skb(skb, pt_prev, orig_dev); 4459 pt_prev = ptype; 4460 } 4461 4462 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4463 if (pt_prev) 4464 ret = deliver_skb(skb, pt_prev, orig_dev); 4465 pt_prev = ptype; 4466 } 4467 4468 skip_taps: 4469 #ifdef CONFIG_NET_INGRESS 4470 if (static_key_false(&ingress_needed)) { 4471 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4472 if (!skb) 4473 goto out; 4474 4475 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4476 goto out; 4477 } 4478 #endif 4479 skb_reset_tc(skb); 4480 skip_classify: 4481 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4482 goto drop; 4483 4484 if (skb_vlan_tag_present(skb)) { 4485 if (pt_prev) { 4486 ret = deliver_skb(skb, pt_prev, orig_dev); 4487 pt_prev = NULL; 4488 } 4489 if (vlan_do_receive(&skb)) 4490 goto another_round; 4491 else if (unlikely(!skb)) 4492 goto out; 4493 } 4494 4495 rx_handler = rcu_dereference(skb->dev->rx_handler); 4496 if (rx_handler) { 4497 if (pt_prev) { 4498 ret = deliver_skb(skb, pt_prev, orig_dev); 4499 pt_prev = NULL; 4500 } 4501 switch (rx_handler(&skb)) { 4502 case RX_HANDLER_CONSUMED: 4503 ret = NET_RX_SUCCESS; 4504 goto out; 4505 case RX_HANDLER_ANOTHER: 4506 goto another_round; 4507 case RX_HANDLER_EXACT: 4508 deliver_exact = true; 4509 case RX_HANDLER_PASS: 4510 break; 4511 default: 4512 BUG(); 4513 } 4514 } 4515 4516 if (unlikely(skb_vlan_tag_present(skb))) { 4517 if (skb_vlan_tag_get_id(skb)) 4518 skb->pkt_type = PACKET_OTHERHOST; 4519 /* Note: we might in the future use prio bits 4520 * and set skb->priority like in vlan_do_receive() 4521 * For the time being, just ignore Priority Code Point 4522 */ 4523 skb->vlan_tci = 0; 4524 } 4525 4526 type = skb->protocol; 4527 4528 /* deliver only exact match when indicated */ 4529 if (likely(!deliver_exact)) { 4530 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4531 &ptype_base[ntohs(type) & 4532 PTYPE_HASH_MASK]); 4533 } 4534 4535 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4536 &orig_dev->ptype_specific); 4537 4538 if (unlikely(skb->dev != orig_dev)) { 4539 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4540 &skb->dev->ptype_specific); 4541 } 4542 4543 if (pt_prev) { 4544 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4545 goto drop; 4546 else 4547 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4548 } else { 4549 drop: 4550 if (!deliver_exact) 4551 atomic_long_inc(&skb->dev->rx_dropped); 4552 else 4553 atomic_long_inc(&skb->dev->rx_nohandler); 4554 kfree_skb(skb); 4555 /* Jamal, now you will not able to escape explaining 4556 * me how you were going to use this. :-) 4557 */ 4558 ret = NET_RX_DROP; 4559 } 4560 4561 out: 4562 return ret; 4563 } 4564 4565 /** 4566 * netif_receive_skb_core - special purpose version of netif_receive_skb 4567 * @skb: buffer to process 4568 * 4569 * More direct receive version of netif_receive_skb(). It should 4570 * only be used by callers that have a need to skip RPS and Generic XDP. 4571 * Caller must also take care of handling if (page_is_)pfmemalloc. 4572 * 4573 * This function may only be called from softirq context and interrupts 4574 * should be enabled. 4575 * 4576 * Return values (usually ignored): 4577 * NET_RX_SUCCESS: no congestion 4578 * NET_RX_DROP: packet was dropped 4579 */ 4580 int netif_receive_skb_core(struct sk_buff *skb) 4581 { 4582 int ret; 4583 4584 rcu_read_lock(); 4585 ret = __netif_receive_skb_core(skb, false); 4586 rcu_read_unlock(); 4587 4588 return ret; 4589 } 4590 EXPORT_SYMBOL(netif_receive_skb_core); 4591 4592 static int __netif_receive_skb(struct sk_buff *skb) 4593 { 4594 int ret; 4595 4596 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4597 unsigned int noreclaim_flag; 4598 4599 /* 4600 * PFMEMALLOC skbs are special, they should 4601 * - be delivered to SOCK_MEMALLOC sockets only 4602 * - stay away from userspace 4603 * - have bounded memory usage 4604 * 4605 * Use PF_MEMALLOC as this saves us from propagating the allocation 4606 * context down to all allocation sites. 4607 */ 4608 noreclaim_flag = memalloc_noreclaim_save(); 4609 ret = __netif_receive_skb_core(skb, true); 4610 memalloc_noreclaim_restore(noreclaim_flag); 4611 } else 4612 ret = __netif_receive_skb_core(skb, false); 4613 4614 return ret; 4615 } 4616 4617 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 4618 { 4619 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4620 struct bpf_prog *new = xdp->prog; 4621 int ret = 0; 4622 4623 switch (xdp->command) { 4624 case XDP_SETUP_PROG: 4625 rcu_assign_pointer(dev->xdp_prog, new); 4626 if (old) 4627 bpf_prog_put(old); 4628 4629 if (old && !new) { 4630 static_key_slow_dec(&generic_xdp_needed); 4631 } else if (new && !old) { 4632 static_key_slow_inc(&generic_xdp_needed); 4633 dev_disable_lro(dev); 4634 dev_disable_gro_hw(dev); 4635 } 4636 break; 4637 4638 case XDP_QUERY_PROG: 4639 xdp->prog_attached = !!old; 4640 xdp->prog_id = old ? old->aux->id : 0; 4641 break; 4642 4643 default: 4644 ret = -EINVAL; 4645 break; 4646 } 4647 4648 return ret; 4649 } 4650 4651 static int netif_receive_skb_internal(struct sk_buff *skb) 4652 { 4653 int ret; 4654 4655 net_timestamp_check(netdev_tstamp_prequeue, skb); 4656 4657 if (skb_defer_rx_timestamp(skb)) 4658 return NET_RX_SUCCESS; 4659 4660 if (static_key_false(&generic_xdp_needed)) { 4661 int ret; 4662 4663 preempt_disable(); 4664 rcu_read_lock(); 4665 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4666 rcu_read_unlock(); 4667 preempt_enable(); 4668 4669 if (ret != XDP_PASS) 4670 return NET_RX_DROP; 4671 } 4672 4673 rcu_read_lock(); 4674 #ifdef CONFIG_RPS 4675 if (static_key_false(&rps_needed)) { 4676 struct rps_dev_flow voidflow, *rflow = &voidflow; 4677 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4678 4679 if (cpu >= 0) { 4680 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4681 rcu_read_unlock(); 4682 return ret; 4683 } 4684 } 4685 #endif 4686 ret = __netif_receive_skb(skb); 4687 rcu_read_unlock(); 4688 return ret; 4689 } 4690 4691 /** 4692 * netif_receive_skb - process receive buffer from network 4693 * @skb: buffer to process 4694 * 4695 * netif_receive_skb() is the main receive data processing function. 4696 * It always succeeds. The buffer may be dropped during processing 4697 * for congestion control or by the protocol layers. 4698 * 4699 * This function may only be called from softirq context and interrupts 4700 * should be enabled. 4701 * 4702 * Return values (usually ignored): 4703 * NET_RX_SUCCESS: no congestion 4704 * NET_RX_DROP: packet was dropped 4705 */ 4706 int netif_receive_skb(struct sk_buff *skb) 4707 { 4708 trace_netif_receive_skb_entry(skb); 4709 4710 return netif_receive_skb_internal(skb); 4711 } 4712 EXPORT_SYMBOL(netif_receive_skb); 4713 4714 DEFINE_PER_CPU(struct work_struct, flush_works); 4715 4716 /* Network device is going away, flush any packets still pending */ 4717 static void flush_backlog(struct work_struct *work) 4718 { 4719 struct sk_buff *skb, *tmp; 4720 struct softnet_data *sd; 4721 4722 local_bh_disable(); 4723 sd = this_cpu_ptr(&softnet_data); 4724 4725 local_irq_disable(); 4726 rps_lock(sd); 4727 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4728 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4729 __skb_unlink(skb, &sd->input_pkt_queue); 4730 kfree_skb(skb); 4731 input_queue_head_incr(sd); 4732 } 4733 } 4734 rps_unlock(sd); 4735 local_irq_enable(); 4736 4737 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4738 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4739 __skb_unlink(skb, &sd->process_queue); 4740 kfree_skb(skb); 4741 input_queue_head_incr(sd); 4742 } 4743 } 4744 local_bh_enable(); 4745 } 4746 4747 static void flush_all_backlogs(void) 4748 { 4749 unsigned int cpu; 4750 4751 get_online_cpus(); 4752 4753 for_each_online_cpu(cpu) 4754 queue_work_on(cpu, system_highpri_wq, 4755 per_cpu_ptr(&flush_works, cpu)); 4756 4757 for_each_online_cpu(cpu) 4758 flush_work(per_cpu_ptr(&flush_works, cpu)); 4759 4760 put_online_cpus(); 4761 } 4762 4763 static int napi_gro_complete(struct sk_buff *skb) 4764 { 4765 struct packet_offload *ptype; 4766 __be16 type = skb->protocol; 4767 struct list_head *head = &offload_base; 4768 int err = -ENOENT; 4769 4770 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4771 4772 if (NAPI_GRO_CB(skb)->count == 1) { 4773 skb_shinfo(skb)->gso_size = 0; 4774 goto out; 4775 } 4776 4777 rcu_read_lock(); 4778 list_for_each_entry_rcu(ptype, head, list) { 4779 if (ptype->type != type || !ptype->callbacks.gro_complete) 4780 continue; 4781 4782 err = ptype->callbacks.gro_complete(skb, 0); 4783 break; 4784 } 4785 rcu_read_unlock(); 4786 4787 if (err) { 4788 WARN_ON(&ptype->list == head); 4789 kfree_skb(skb); 4790 return NET_RX_SUCCESS; 4791 } 4792 4793 out: 4794 return netif_receive_skb_internal(skb); 4795 } 4796 4797 /* napi->gro_list contains packets ordered by age. 4798 * youngest packets at the head of it. 4799 * Complete skbs in reverse order to reduce latencies. 4800 */ 4801 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4802 { 4803 struct sk_buff *skb, *prev = NULL; 4804 4805 /* scan list and build reverse chain */ 4806 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4807 skb->prev = prev; 4808 prev = skb; 4809 } 4810 4811 for (skb = prev; skb; skb = prev) { 4812 skb->next = NULL; 4813 4814 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4815 return; 4816 4817 prev = skb->prev; 4818 napi_gro_complete(skb); 4819 napi->gro_count--; 4820 } 4821 4822 napi->gro_list = NULL; 4823 } 4824 EXPORT_SYMBOL(napi_gro_flush); 4825 4826 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4827 { 4828 struct sk_buff *p; 4829 unsigned int maclen = skb->dev->hard_header_len; 4830 u32 hash = skb_get_hash_raw(skb); 4831 4832 for (p = napi->gro_list; p; p = p->next) { 4833 unsigned long diffs; 4834 4835 NAPI_GRO_CB(p)->flush = 0; 4836 4837 if (hash != skb_get_hash_raw(p)) { 4838 NAPI_GRO_CB(p)->same_flow = 0; 4839 continue; 4840 } 4841 4842 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4843 diffs |= p->vlan_tci ^ skb->vlan_tci; 4844 diffs |= skb_metadata_dst_cmp(p, skb); 4845 diffs |= skb_metadata_differs(p, skb); 4846 if (maclen == ETH_HLEN) 4847 diffs |= compare_ether_header(skb_mac_header(p), 4848 skb_mac_header(skb)); 4849 else if (!diffs) 4850 diffs = memcmp(skb_mac_header(p), 4851 skb_mac_header(skb), 4852 maclen); 4853 NAPI_GRO_CB(p)->same_flow = !diffs; 4854 } 4855 } 4856 4857 static void skb_gro_reset_offset(struct sk_buff *skb) 4858 { 4859 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4860 const skb_frag_t *frag0 = &pinfo->frags[0]; 4861 4862 NAPI_GRO_CB(skb)->data_offset = 0; 4863 NAPI_GRO_CB(skb)->frag0 = NULL; 4864 NAPI_GRO_CB(skb)->frag0_len = 0; 4865 4866 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4867 pinfo->nr_frags && 4868 !PageHighMem(skb_frag_page(frag0))) { 4869 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4870 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4871 skb_frag_size(frag0), 4872 skb->end - skb->tail); 4873 } 4874 } 4875 4876 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4877 { 4878 struct skb_shared_info *pinfo = skb_shinfo(skb); 4879 4880 BUG_ON(skb->end - skb->tail < grow); 4881 4882 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4883 4884 skb->data_len -= grow; 4885 skb->tail += grow; 4886 4887 pinfo->frags[0].page_offset += grow; 4888 skb_frag_size_sub(&pinfo->frags[0], grow); 4889 4890 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4891 skb_frag_unref(skb, 0); 4892 memmove(pinfo->frags, pinfo->frags + 1, 4893 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4894 } 4895 } 4896 4897 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4898 { 4899 struct sk_buff **pp = NULL; 4900 struct packet_offload *ptype; 4901 __be16 type = skb->protocol; 4902 struct list_head *head = &offload_base; 4903 int same_flow; 4904 enum gro_result ret; 4905 int grow; 4906 4907 if (netif_elide_gro(skb->dev)) 4908 goto normal; 4909 4910 gro_list_prepare(napi, skb); 4911 4912 rcu_read_lock(); 4913 list_for_each_entry_rcu(ptype, head, list) { 4914 if (ptype->type != type || !ptype->callbacks.gro_receive) 4915 continue; 4916 4917 skb_set_network_header(skb, skb_gro_offset(skb)); 4918 skb_reset_mac_len(skb); 4919 NAPI_GRO_CB(skb)->same_flow = 0; 4920 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4921 NAPI_GRO_CB(skb)->free = 0; 4922 NAPI_GRO_CB(skb)->encap_mark = 0; 4923 NAPI_GRO_CB(skb)->recursion_counter = 0; 4924 NAPI_GRO_CB(skb)->is_fou = 0; 4925 NAPI_GRO_CB(skb)->is_atomic = 1; 4926 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4927 4928 /* Setup for GRO checksum validation */ 4929 switch (skb->ip_summed) { 4930 case CHECKSUM_COMPLETE: 4931 NAPI_GRO_CB(skb)->csum = skb->csum; 4932 NAPI_GRO_CB(skb)->csum_valid = 1; 4933 NAPI_GRO_CB(skb)->csum_cnt = 0; 4934 break; 4935 case CHECKSUM_UNNECESSARY: 4936 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4937 NAPI_GRO_CB(skb)->csum_valid = 0; 4938 break; 4939 default: 4940 NAPI_GRO_CB(skb)->csum_cnt = 0; 4941 NAPI_GRO_CB(skb)->csum_valid = 0; 4942 } 4943 4944 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4945 break; 4946 } 4947 rcu_read_unlock(); 4948 4949 if (&ptype->list == head) 4950 goto normal; 4951 4952 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4953 ret = GRO_CONSUMED; 4954 goto ok; 4955 } 4956 4957 same_flow = NAPI_GRO_CB(skb)->same_flow; 4958 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4959 4960 if (pp) { 4961 struct sk_buff *nskb = *pp; 4962 4963 *pp = nskb->next; 4964 nskb->next = NULL; 4965 napi_gro_complete(nskb); 4966 napi->gro_count--; 4967 } 4968 4969 if (same_flow) 4970 goto ok; 4971 4972 if (NAPI_GRO_CB(skb)->flush) 4973 goto normal; 4974 4975 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4976 struct sk_buff *nskb = napi->gro_list; 4977 4978 /* locate the end of the list to select the 'oldest' flow */ 4979 while (nskb->next) { 4980 pp = &nskb->next; 4981 nskb = *pp; 4982 } 4983 *pp = NULL; 4984 nskb->next = NULL; 4985 napi_gro_complete(nskb); 4986 } else { 4987 napi->gro_count++; 4988 } 4989 NAPI_GRO_CB(skb)->count = 1; 4990 NAPI_GRO_CB(skb)->age = jiffies; 4991 NAPI_GRO_CB(skb)->last = skb; 4992 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4993 skb->next = napi->gro_list; 4994 napi->gro_list = skb; 4995 ret = GRO_HELD; 4996 4997 pull: 4998 grow = skb_gro_offset(skb) - skb_headlen(skb); 4999 if (grow > 0) 5000 gro_pull_from_frag0(skb, grow); 5001 ok: 5002 return ret; 5003 5004 normal: 5005 ret = GRO_NORMAL; 5006 goto pull; 5007 } 5008 5009 struct packet_offload *gro_find_receive_by_type(__be16 type) 5010 { 5011 struct list_head *offload_head = &offload_base; 5012 struct packet_offload *ptype; 5013 5014 list_for_each_entry_rcu(ptype, offload_head, list) { 5015 if (ptype->type != type || !ptype->callbacks.gro_receive) 5016 continue; 5017 return ptype; 5018 } 5019 return NULL; 5020 } 5021 EXPORT_SYMBOL(gro_find_receive_by_type); 5022 5023 struct packet_offload *gro_find_complete_by_type(__be16 type) 5024 { 5025 struct list_head *offload_head = &offload_base; 5026 struct packet_offload *ptype; 5027 5028 list_for_each_entry_rcu(ptype, offload_head, list) { 5029 if (ptype->type != type || !ptype->callbacks.gro_complete) 5030 continue; 5031 return ptype; 5032 } 5033 return NULL; 5034 } 5035 EXPORT_SYMBOL(gro_find_complete_by_type); 5036 5037 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5038 { 5039 skb_dst_drop(skb); 5040 secpath_reset(skb); 5041 kmem_cache_free(skbuff_head_cache, skb); 5042 } 5043 5044 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5045 { 5046 switch (ret) { 5047 case GRO_NORMAL: 5048 if (netif_receive_skb_internal(skb)) 5049 ret = GRO_DROP; 5050 break; 5051 5052 case GRO_DROP: 5053 kfree_skb(skb); 5054 break; 5055 5056 case GRO_MERGED_FREE: 5057 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5058 napi_skb_free_stolen_head(skb); 5059 else 5060 __kfree_skb(skb); 5061 break; 5062 5063 case GRO_HELD: 5064 case GRO_MERGED: 5065 case GRO_CONSUMED: 5066 break; 5067 } 5068 5069 return ret; 5070 } 5071 5072 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5073 { 5074 skb_mark_napi_id(skb, napi); 5075 trace_napi_gro_receive_entry(skb); 5076 5077 skb_gro_reset_offset(skb); 5078 5079 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5080 } 5081 EXPORT_SYMBOL(napi_gro_receive); 5082 5083 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5084 { 5085 if (unlikely(skb->pfmemalloc)) { 5086 consume_skb(skb); 5087 return; 5088 } 5089 __skb_pull(skb, skb_headlen(skb)); 5090 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5091 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5092 skb->vlan_tci = 0; 5093 skb->dev = napi->dev; 5094 skb->skb_iif = 0; 5095 skb->encapsulation = 0; 5096 skb_shinfo(skb)->gso_type = 0; 5097 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5098 secpath_reset(skb); 5099 5100 napi->skb = skb; 5101 } 5102 5103 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5104 { 5105 struct sk_buff *skb = napi->skb; 5106 5107 if (!skb) { 5108 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5109 if (skb) { 5110 napi->skb = skb; 5111 skb_mark_napi_id(skb, napi); 5112 } 5113 } 5114 return skb; 5115 } 5116 EXPORT_SYMBOL(napi_get_frags); 5117 5118 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5119 struct sk_buff *skb, 5120 gro_result_t ret) 5121 { 5122 switch (ret) { 5123 case GRO_NORMAL: 5124 case GRO_HELD: 5125 __skb_push(skb, ETH_HLEN); 5126 skb->protocol = eth_type_trans(skb, skb->dev); 5127 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5128 ret = GRO_DROP; 5129 break; 5130 5131 case GRO_DROP: 5132 napi_reuse_skb(napi, skb); 5133 break; 5134 5135 case GRO_MERGED_FREE: 5136 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5137 napi_skb_free_stolen_head(skb); 5138 else 5139 napi_reuse_skb(napi, skb); 5140 break; 5141 5142 case GRO_MERGED: 5143 case GRO_CONSUMED: 5144 break; 5145 } 5146 5147 return ret; 5148 } 5149 5150 /* Upper GRO stack assumes network header starts at gro_offset=0 5151 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5152 * We copy ethernet header into skb->data to have a common layout. 5153 */ 5154 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5155 { 5156 struct sk_buff *skb = napi->skb; 5157 const struct ethhdr *eth; 5158 unsigned int hlen = sizeof(*eth); 5159 5160 napi->skb = NULL; 5161 5162 skb_reset_mac_header(skb); 5163 skb_gro_reset_offset(skb); 5164 5165 eth = skb_gro_header_fast(skb, 0); 5166 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5167 eth = skb_gro_header_slow(skb, hlen, 0); 5168 if (unlikely(!eth)) { 5169 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5170 __func__, napi->dev->name); 5171 napi_reuse_skb(napi, skb); 5172 return NULL; 5173 } 5174 } else { 5175 gro_pull_from_frag0(skb, hlen); 5176 NAPI_GRO_CB(skb)->frag0 += hlen; 5177 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5178 } 5179 __skb_pull(skb, hlen); 5180 5181 /* 5182 * This works because the only protocols we care about don't require 5183 * special handling. 5184 * We'll fix it up properly in napi_frags_finish() 5185 */ 5186 skb->protocol = eth->h_proto; 5187 5188 return skb; 5189 } 5190 5191 gro_result_t napi_gro_frags(struct napi_struct *napi) 5192 { 5193 struct sk_buff *skb = napi_frags_skb(napi); 5194 5195 if (!skb) 5196 return GRO_DROP; 5197 5198 trace_napi_gro_frags_entry(skb); 5199 5200 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5201 } 5202 EXPORT_SYMBOL(napi_gro_frags); 5203 5204 /* Compute the checksum from gro_offset and return the folded value 5205 * after adding in any pseudo checksum. 5206 */ 5207 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5208 { 5209 __wsum wsum; 5210 __sum16 sum; 5211 5212 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5213 5214 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5215 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5216 if (likely(!sum)) { 5217 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5218 !skb->csum_complete_sw) 5219 netdev_rx_csum_fault(skb->dev); 5220 } 5221 5222 NAPI_GRO_CB(skb)->csum = wsum; 5223 NAPI_GRO_CB(skb)->csum_valid = 1; 5224 5225 return sum; 5226 } 5227 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5228 5229 static void net_rps_send_ipi(struct softnet_data *remsd) 5230 { 5231 #ifdef CONFIG_RPS 5232 while (remsd) { 5233 struct softnet_data *next = remsd->rps_ipi_next; 5234 5235 if (cpu_online(remsd->cpu)) 5236 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5237 remsd = next; 5238 } 5239 #endif 5240 } 5241 5242 /* 5243 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5244 * Note: called with local irq disabled, but exits with local irq enabled. 5245 */ 5246 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5247 { 5248 #ifdef CONFIG_RPS 5249 struct softnet_data *remsd = sd->rps_ipi_list; 5250 5251 if (remsd) { 5252 sd->rps_ipi_list = NULL; 5253 5254 local_irq_enable(); 5255 5256 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5257 net_rps_send_ipi(remsd); 5258 } else 5259 #endif 5260 local_irq_enable(); 5261 } 5262 5263 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5264 { 5265 #ifdef CONFIG_RPS 5266 return sd->rps_ipi_list != NULL; 5267 #else 5268 return false; 5269 #endif 5270 } 5271 5272 static int process_backlog(struct napi_struct *napi, int quota) 5273 { 5274 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5275 bool again = true; 5276 int work = 0; 5277 5278 /* Check if we have pending ipi, its better to send them now, 5279 * not waiting net_rx_action() end. 5280 */ 5281 if (sd_has_rps_ipi_waiting(sd)) { 5282 local_irq_disable(); 5283 net_rps_action_and_irq_enable(sd); 5284 } 5285 5286 napi->weight = dev_rx_weight; 5287 while (again) { 5288 struct sk_buff *skb; 5289 5290 while ((skb = __skb_dequeue(&sd->process_queue))) { 5291 rcu_read_lock(); 5292 __netif_receive_skb(skb); 5293 rcu_read_unlock(); 5294 input_queue_head_incr(sd); 5295 if (++work >= quota) 5296 return work; 5297 5298 } 5299 5300 local_irq_disable(); 5301 rps_lock(sd); 5302 if (skb_queue_empty(&sd->input_pkt_queue)) { 5303 /* 5304 * Inline a custom version of __napi_complete(). 5305 * only current cpu owns and manipulates this napi, 5306 * and NAPI_STATE_SCHED is the only possible flag set 5307 * on backlog. 5308 * We can use a plain write instead of clear_bit(), 5309 * and we dont need an smp_mb() memory barrier. 5310 */ 5311 napi->state = 0; 5312 again = false; 5313 } else { 5314 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5315 &sd->process_queue); 5316 } 5317 rps_unlock(sd); 5318 local_irq_enable(); 5319 } 5320 5321 return work; 5322 } 5323 5324 /** 5325 * __napi_schedule - schedule for receive 5326 * @n: entry to schedule 5327 * 5328 * The entry's receive function will be scheduled to run. 5329 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5330 */ 5331 void __napi_schedule(struct napi_struct *n) 5332 { 5333 unsigned long flags; 5334 5335 local_irq_save(flags); 5336 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5337 local_irq_restore(flags); 5338 } 5339 EXPORT_SYMBOL(__napi_schedule); 5340 5341 /** 5342 * napi_schedule_prep - check if napi can be scheduled 5343 * @n: napi context 5344 * 5345 * Test if NAPI routine is already running, and if not mark 5346 * it as running. This is used as a condition variable 5347 * insure only one NAPI poll instance runs. We also make 5348 * sure there is no pending NAPI disable. 5349 */ 5350 bool napi_schedule_prep(struct napi_struct *n) 5351 { 5352 unsigned long val, new; 5353 5354 do { 5355 val = READ_ONCE(n->state); 5356 if (unlikely(val & NAPIF_STATE_DISABLE)) 5357 return false; 5358 new = val | NAPIF_STATE_SCHED; 5359 5360 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5361 * This was suggested by Alexander Duyck, as compiler 5362 * emits better code than : 5363 * if (val & NAPIF_STATE_SCHED) 5364 * new |= NAPIF_STATE_MISSED; 5365 */ 5366 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5367 NAPIF_STATE_MISSED; 5368 } while (cmpxchg(&n->state, val, new) != val); 5369 5370 return !(val & NAPIF_STATE_SCHED); 5371 } 5372 EXPORT_SYMBOL(napi_schedule_prep); 5373 5374 /** 5375 * __napi_schedule_irqoff - schedule for receive 5376 * @n: entry to schedule 5377 * 5378 * Variant of __napi_schedule() assuming hard irqs are masked 5379 */ 5380 void __napi_schedule_irqoff(struct napi_struct *n) 5381 { 5382 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5383 } 5384 EXPORT_SYMBOL(__napi_schedule_irqoff); 5385 5386 bool napi_complete_done(struct napi_struct *n, int work_done) 5387 { 5388 unsigned long flags, val, new; 5389 5390 /* 5391 * 1) Don't let napi dequeue from the cpu poll list 5392 * just in case its running on a different cpu. 5393 * 2) If we are busy polling, do nothing here, we have 5394 * the guarantee we will be called later. 5395 */ 5396 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5397 NAPIF_STATE_IN_BUSY_POLL))) 5398 return false; 5399 5400 if (n->gro_list) { 5401 unsigned long timeout = 0; 5402 5403 if (work_done) 5404 timeout = n->dev->gro_flush_timeout; 5405 5406 if (timeout) 5407 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5408 HRTIMER_MODE_REL_PINNED); 5409 else 5410 napi_gro_flush(n, false); 5411 } 5412 if (unlikely(!list_empty(&n->poll_list))) { 5413 /* If n->poll_list is not empty, we need to mask irqs */ 5414 local_irq_save(flags); 5415 list_del_init(&n->poll_list); 5416 local_irq_restore(flags); 5417 } 5418 5419 do { 5420 val = READ_ONCE(n->state); 5421 5422 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5423 5424 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5425 5426 /* If STATE_MISSED was set, leave STATE_SCHED set, 5427 * because we will call napi->poll() one more time. 5428 * This C code was suggested by Alexander Duyck to help gcc. 5429 */ 5430 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5431 NAPIF_STATE_SCHED; 5432 } while (cmpxchg(&n->state, val, new) != val); 5433 5434 if (unlikely(val & NAPIF_STATE_MISSED)) { 5435 __napi_schedule(n); 5436 return false; 5437 } 5438 5439 return true; 5440 } 5441 EXPORT_SYMBOL(napi_complete_done); 5442 5443 /* must be called under rcu_read_lock(), as we dont take a reference */ 5444 static struct napi_struct *napi_by_id(unsigned int napi_id) 5445 { 5446 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5447 struct napi_struct *napi; 5448 5449 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5450 if (napi->napi_id == napi_id) 5451 return napi; 5452 5453 return NULL; 5454 } 5455 5456 #if defined(CONFIG_NET_RX_BUSY_POLL) 5457 5458 #define BUSY_POLL_BUDGET 8 5459 5460 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5461 { 5462 int rc; 5463 5464 /* Busy polling means there is a high chance device driver hard irq 5465 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5466 * set in napi_schedule_prep(). 5467 * Since we are about to call napi->poll() once more, we can safely 5468 * clear NAPI_STATE_MISSED. 5469 * 5470 * Note: x86 could use a single "lock and ..." instruction 5471 * to perform these two clear_bit() 5472 */ 5473 clear_bit(NAPI_STATE_MISSED, &napi->state); 5474 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5475 5476 local_bh_disable(); 5477 5478 /* All we really want here is to re-enable device interrupts. 5479 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5480 */ 5481 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5482 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5483 netpoll_poll_unlock(have_poll_lock); 5484 if (rc == BUSY_POLL_BUDGET) 5485 __napi_schedule(napi); 5486 local_bh_enable(); 5487 } 5488 5489 void napi_busy_loop(unsigned int napi_id, 5490 bool (*loop_end)(void *, unsigned long), 5491 void *loop_end_arg) 5492 { 5493 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5494 int (*napi_poll)(struct napi_struct *napi, int budget); 5495 void *have_poll_lock = NULL; 5496 struct napi_struct *napi; 5497 5498 restart: 5499 napi_poll = NULL; 5500 5501 rcu_read_lock(); 5502 5503 napi = napi_by_id(napi_id); 5504 if (!napi) 5505 goto out; 5506 5507 preempt_disable(); 5508 for (;;) { 5509 int work = 0; 5510 5511 local_bh_disable(); 5512 if (!napi_poll) { 5513 unsigned long val = READ_ONCE(napi->state); 5514 5515 /* If multiple threads are competing for this napi, 5516 * we avoid dirtying napi->state as much as we can. 5517 */ 5518 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5519 NAPIF_STATE_IN_BUSY_POLL)) 5520 goto count; 5521 if (cmpxchg(&napi->state, val, 5522 val | NAPIF_STATE_IN_BUSY_POLL | 5523 NAPIF_STATE_SCHED) != val) 5524 goto count; 5525 have_poll_lock = netpoll_poll_lock(napi); 5526 napi_poll = napi->poll; 5527 } 5528 work = napi_poll(napi, BUSY_POLL_BUDGET); 5529 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5530 count: 5531 if (work > 0) 5532 __NET_ADD_STATS(dev_net(napi->dev), 5533 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5534 local_bh_enable(); 5535 5536 if (!loop_end || loop_end(loop_end_arg, start_time)) 5537 break; 5538 5539 if (unlikely(need_resched())) { 5540 if (napi_poll) 5541 busy_poll_stop(napi, have_poll_lock); 5542 preempt_enable(); 5543 rcu_read_unlock(); 5544 cond_resched(); 5545 if (loop_end(loop_end_arg, start_time)) 5546 return; 5547 goto restart; 5548 } 5549 cpu_relax(); 5550 } 5551 if (napi_poll) 5552 busy_poll_stop(napi, have_poll_lock); 5553 preempt_enable(); 5554 out: 5555 rcu_read_unlock(); 5556 } 5557 EXPORT_SYMBOL(napi_busy_loop); 5558 5559 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5560 5561 static void napi_hash_add(struct napi_struct *napi) 5562 { 5563 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5564 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5565 return; 5566 5567 spin_lock(&napi_hash_lock); 5568 5569 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5570 do { 5571 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5572 napi_gen_id = MIN_NAPI_ID; 5573 } while (napi_by_id(napi_gen_id)); 5574 napi->napi_id = napi_gen_id; 5575 5576 hlist_add_head_rcu(&napi->napi_hash_node, 5577 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5578 5579 spin_unlock(&napi_hash_lock); 5580 } 5581 5582 /* Warning : caller is responsible to make sure rcu grace period 5583 * is respected before freeing memory containing @napi 5584 */ 5585 bool napi_hash_del(struct napi_struct *napi) 5586 { 5587 bool rcu_sync_needed = false; 5588 5589 spin_lock(&napi_hash_lock); 5590 5591 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5592 rcu_sync_needed = true; 5593 hlist_del_rcu(&napi->napi_hash_node); 5594 } 5595 spin_unlock(&napi_hash_lock); 5596 return rcu_sync_needed; 5597 } 5598 EXPORT_SYMBOL_GPL(napi_hash_del); 5599 5600 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5601 { 5602 struct napi_struct *napi; 5603 5604 napi = container_of(timer, struct napi_struct, timer); 5605 5606 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5607 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5608 */ 5609 if (napi->gro_list && !napi_disable_pending(napi) && 5610 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5611 __napi_schedule_irqoff(napi); 5612 5613 return HRTIMER_NORESTART; 5614 } 5615 5616 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5617 int (*poll)(struct napi_struct *, int), int weight) 5618 { 5619 INIT_LIST_HEAD(&napi->poll_list); 5620 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5621 napi->timer.function = napi_watchdog; 5622 napi->gro_count = 0; 5623 napi->gro_list = NULL; 5624 napi->skb = NULL; 5625 napi->poll = poll; 5626 if (weight > NAPI_POLL_WEIGHT) 5627 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5628 weight, dev->name); 5629 napi->weight = weight; 5630 list_add(&napi->dev_list, &dev->napi_list); 5631 napi->dev = dev; 5632 #ifdef CONFIG_NETPOLL 5633 napi->poll_owner = -1; 5634 #endif 5635 set_bit(NAPI_STATE_SCHED, &napi->state); 5636 napi_hash_add(napi); 5637 } 5638 EXPORT_SYMBOL(netif_napi_add); 5639 5640 void napi_disable(struct napi_struct *n) 5641 { 5642 might_sleep(); 5643 set_bit(NAPI_STATE_DISABLE, &n->state); 5644 5645 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5646 msleep(1); 5647 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5648 msleep(1); 5649 5650 hrtimer_cancel(&n->timer); 5651 5652 clear_bit(NAPI_STATE_DISABLE, &n->state); 5653 } 5654 EXPORT_SYMBOL(napi_disable); 5655 5656 /* Must be called in process context */ 5657 void netif_napi_del(struct napi_struct *napi) 5658 { 5659 might_sleep(); 5660 if (napi_hash_del(napi)) 5661 synchronize_net(); 5662 list_del_init(&napi->dev_list); 5663 napi_free_frags(napi); 5664 5665 kfree_skb_list(napi->gro_list); 5666 napi->gro_list = NULL; 5667 napi->gro_count = 0; 5668 } 5669 EXPORT_SYMBOL(netif_napi_del); 5670 5671 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5672 { 5673 void *have; 5674 int work, weight; 5675 5676 list_del_init(&n->poll_list); 5677 5678 have = netpoll_poll_lock(n); 5679 5680 weight = n->weight; 5681 5682 /* This NAPI_STATE_SCHED test is for avoiding a race 5683 * with netpoll's poll_napi(). Only the entity which 5684 * obtains the lock and sees NAPI_STATE_SCHED set will 5685 * actually make the ->poll() call. Therefore we avoid 5686 * accidentally calling ->poll() when NAPI is not scheduled. 5687 */ 5688 work = 0; 5689 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5690 work = n->poll(n, weight); 5691 trace_napi_poll(n, work, weight); 5692 } 5693 5694 WARN_ON_ONCE(work > weight); 5695 5696 if (likely(work < weight)) 5697 goto out_unlock; 5698 5699 /* Drivers must not modify the NAPI state if they 5700 * consume the entire weight. In such cases this code 5701 * still "owns" the NAPI instance and therefore can 5702 * move the instance around on the list at-will. 5703 */ 5704 if (unlikely(napi_disable_pending(n))) { 5705 napi_complete(n); 5706 goto out_unlock; 5707 } 5708 5709 if (n->gro_list) { 5710 /* flush too old packets 5711 * If HZ < 1000, flush all packets. 5712 */ 5713 napi_gro_flush(n, HZ >= 1000); 5714 } 5715 5716 /* Some drivers may have called napi_schedule 5717 * prior to exhausting their budget. 5718 */ 5719 if (unlikely(!list_empty(&n->poll_list))) { 5720 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5721 n->dev ? n->dev->name : "backlog"); 5722 goto out_unlock; 5723 } 5724 5725 list_add_tail(&n->poll_list, repoll); 5726 5727 out_unlock: 5728 netpoll_poll_unlock(have); 5729 5730 return work; 5731 } 5732 5733 static __latent_entropy void net_rx_action(struct softirq_action *h) 5734 { 5735 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5736 unsigned long time_limit = jiffies + 5737 usecs_to_jiffies(netdev_budget_usecs); 5738 int budget = netdev_budget; 5739 LIST_HEAD(list); 5740 LIST_HEAD(repoll); 5741 5742 local_irq_disable(); 5743 list_splice_init(&sd->poll_list, &list); 5744 local_irq_enable(); 5745 5746 for (;;) { 5747 struct napi_struct *n; 5748 5749 if (list_empty(&list)) { 5750 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5751 goto out; 5752 break; 5753 } 5754 5755 n = list_first_entry(&list, struct napi_struct, poll_list); 5756 budget -= napi_poll(n, &repoll); 5757 5758 /* If softirq window is exhausted then punt. 5759 * Allow this to run for 2 jiffies since which will allow 5760 * an average latency of 1.5/HZ. 5761 */ 5762 if (unlikely(budget <= 0 || 5763 time_after_eq(jiffies, time_limit))) { 5764 sd->time_squeeze++; 5765 break; 5766 } 5767 } 5768 5769 local_irq_disable(); 5770 5771 list_splice_tail_init(&sd->poll_list, &list); 5772 list_splice_tail(&repoll, &list); 5773 list_splice(&list, &sd->poll_list); 5774 if (!list_empty(&sd->poll_list)) 5775 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5776 5777 net_rps_action_and_irq_enable(sd); 5778 out: 5779 __kfree_skb_flush(); 5780 } 5781 5782 struct netdev_adjacent { 5783 struct net_device *dev; 5784 5785 /* upper master flag, there can only be one master device per list */ 5786 bool master; 5787 5788 /* counter for the number of times this device was added to us */ 5789 u16 ref_nr; 5790 5791 /* private field for the users */ 5792 void *private; 5793 5794 struct list_head list; 5795 struct rcu_head rcu; 5796 }; 5797 5798 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5799 struct list_head *adj_list) 5800 { 5801 struct netdev_adjacent *adj; 5802 5803 list_for_each_entry(adj, adj_list, list) { 5804 if (adj->dev == adj_dev) 5805 return adj; 5806 } 5807 return NULL; 5808 } 5809 5810 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5811 { 5812 struct net_device *dev = data; 5813 5814 return upper_dev == dev; 5815 } 5816 5817 /** 5818 * netdev_has_upper_dev - Check if device is linked to an upper device 5819 * @dev: device 5820 * @upper_dev: upper device to check 5821 * 5822 * Find out if a device is linked to specified upper device and return true 5823 * in case it is. Note that this checks only immediate upper device, 5824 * not through a complete stack of devices. The caller must hold the RTNL lock. 5825 */ 5826 bool netdev_has_upper_dev(struct net_device *dev, 5827 struct net_device *upper_dev) 5828 { 5829 ASSERT_RTNL(); 5830 5831 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5832 upper_dev); 5833 } 5834 EXPORT_SYMBOL(netdev_has_upper_dev); 5835 5836 /** 5837 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5838 * @dev: device 5839 * @upper_dev: upper device to check 5840 * 5841 * Find out if a device is linked to specified upper device and return true 5842 * in case it is. Note that this checks the entire upper device chain. 5843 * The caller must hold rcu lock. 5844 */ 5845 5846 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5847 struct net_device *upper_dev) 5848 { 5849 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5850 upper_dev); 5851 } 5852 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5853 5854 /** 5855 * netdev_has_any_upper_dev - Check if device is linked to some device 5856 * @dev: device 5857 * 5858 * Find out if a device is linked to an upper device and return true in case 5859 * it is. The caller must hold the RTNL lock. 5860 */ 5861 bool netdev_has_any_upper_dev(struct net_device *dev) 5862 { 5863 ASSERT_RTNL(); 5864 5865 return !list_empty(&dev->adj_list.upper); 5866 } 5867 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5868 5869 /** 5870 * netdev_master_upper_dev_get - Get master upper device 5871 * @dev: device 5872 * 5873 * Find a master upper device and return pointer to it or NULL in case 5874 * it's not there. The caller must hold the RTNL lock. 5875 */ 5876 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5877 { 5878 struct netdev_adjacent *upper; 5879 5880 ASSERT_RTNL(); 5881 5882 if (list_empty(&dev->adj_list.upper)) 5883 return NULL; 5884 5885 upper = list_first_entry(&dev->adj_list.upper, 5886 struct netdev_adjacent, list); 5887 if (likely(upper->master)) 5888 return upper->dev; 5889 return NULL; 5890 } 5891 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5892 5893 /** 5894 * netdev_has_any_lower_dev - Check if device is linked to some device 5895 * @dev: device 5896 * 5897 * Find out if a device is linked to a lower device and return true in case 5898 * it is. The caller must hold the RTNL lock. 5899 */ 5900 static bool netdev_has_any_lower_dev(struct net_device *dev) 5901 { 5902 ASSERT_RTNL(); 5903 5904 return !list_empty(&dev->adj_list.lower); 5905 } 5906 5907 void *netdev_adjacent_get_private(struct list_head *adj_list) 5908 { 5909 struct netdev_adjacent *adj; 5910 5911 adj = list_entry(adj_list, struct netdev_adjacent, list); 5912 5913 return adj->private; 5914 } 5915 EXPORT_SYMBOL(netdev_adjacent_get_private); 5916 5917 /** 5918 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5919 * @dev: device 5920 * @iter: list_head ** of the current position 5921 * 5922 * Gets the next device from the dev's upper list, starting from iter 5923 * position. The caller must hold RCU read lock. 5924 */ 5925 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5926 struct list_head **iter) 5927 { 5928 struct netdev_adjacent *upper; 5929 5930 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5931 5932 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5933 5934 if (&upper->list == &dev->adj_list.upper) 5935 return NULL; 5936 5937 *iter = &upper->list; 5938 5939 return upper->dev; 5940 } 5941 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5942 5943 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5944 struct list_head **iter) 5945 { 5946 struct netdev_adjacent *upper; 5947 5948 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5949 5950 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5951 5952 if (&upper->list == &dev->adj_list.upper) 5953 return NULL; 5954 5955 *iter = &upper->list; 5956 5957 return upper->dev; 5958 } 5959 5960 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5961 int (*fn)(struct net_device *dev, 5962 void *data), 5963 void *data) 5964 { 5965 struct net_device *udev; 5966 struct list_head *iter; 5967 int ret; 5968 5969 for (iter = &dev->adj_list.upper, 5970 udev = netdev_next_upper_dev_rcu(dev, &iter); 5971 udev; 5972 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5973 /* first is the upper device itself */ 5974 ret = fn(udev, data); 5975 if (ret) 5976 return ret; 5977 5978 /* then look at all of its upper devices */ 5979 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5980 if (ret) 5981 return ret; 5982 } 5983 5984 return 0; 5985 } 5986 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5987 5988 /** 5989 * netdev_lower_get_next_private - Get the next ->private from the 5990 * lower neighbour list 5991 * @dev: device 5992 * @iter: list_head ** of the current position 5993 * 5994 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5995 * list, starting from iter position. The caller must hold either hold the 5996 * RTNL lock or its own locking that guarantees that the neighbour lower 5997 * list will remain unchanged. 5998 */ 5999 void *netdev_lower_get_next_private(struct net_device *dev, 6000 struct list_head **iter) 6001 { 6002 struct netdev_adjacent *lower; 6003 6004 lower = list_entry(*iter, struct netdev_adjacent, list); 6005 6006 if (&lower->list == &dev->adj_list.lower) 6007 return NULL; 6008 6009 *iter = lower->list.next; 6010 6011 return lower->private; 6012 } 6013 EXPORT_SYMBOL(netdev_lower_get_next_private); 6014 6015 /** 6016 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6017 * lower neighbour list, RCU 6018 * variant 6019 * @dev: device 6020 * @iter: list_head ** of the current position 6021 * 6022 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6023 * list, starting from iter position. The caller must hold RCU read lock. 6024 */ 6025 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6026 struct list_head **iter) 6027 { 6028 struct netdev_adjacent *lower; 6029 6030 WARN_ON_ONCE(!rcu_read_lock_held()); 6031 6032 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6033 6034 if (&lower->list == &dev->adj_list.lower) 6035 return NULL; 6036 6037 *iter = &lower->list; 6038 6039 return lower->private; 6040 } 6041 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6042 6043 /** 6044 * netdev_lower_get_next - Get the next device from the lower neighbour 6045 * list 6046 * @dev: device 6047 * @iter: list_head ** of the current position 6048 * 6049 * Gets the next netdev_adjacent from the dev's lower neighbour 6050 * list, starting from iter position. The caller must hold RTNL lock or 6051 * its own locking that guarantees that the neighbour lower 6052 * list will remain unchanged. 6053 */ 6054 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6055 { 6056 struct netdev_adjacent *lower; 6057 6058 lower = list_entry(*iter, struct netdev_adjacent, list); 6059 6060 if (&lower->list == &dev->adj_list.lower) 6061 return NULL; 6062 6063 *iter = lower->list.next; 6064 6065 return lower->dev; 6066 } 6067 EXPORT_SYMBOL(netdev_lower_get_next); 6068 6069 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6070 struct list_head **iter) 6071 { 6072 struct netdev_adjacent *lower; 6073 6074 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6075 6076 if (&lower->list == &dev->adj_list.lower) 6077 return NULL; 6078 6079 *iter = &lower->list; 6080 6081 return lower->dev; 6082 } 6083 6084 int netdev_walk_all_lower_dev(struct net_device *dev, 6085 int (*fn)(struct net_device *dev, 6086 void *data), 6087 void *data) 6088 { 6089 struct net_device *ldev; 6090 struct list_head *iter; 6091 int ret; 6092 6093 for (iter = &dev->adj_list.lower, 6094 ldev = netdev_next_lower_dev(dev, &iter); 6095 ldev; 6096 ldev = netdev_next_lower_dev(dev, &iter)) { 6097 /* first is the lower device itself */ 6098 ret = fn(ldev, data); 6099 if (ret) 6100 return ret; 6101 6102 /* then look at all of its lower devices */ 6103 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6104 if (ret) 6105 return ret; 6106 } 6107 6108 return 0; 6109 } 6110 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6111 6112 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6113 struct list_head **iter) 6114 { 6115 struct netdev_adjacent *lower; 6116 6117 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6118 if (&lower->list == &dev->adj_list.lower) 6119 return NULL; 6120 6121 *iter = &lower->list; 6122 6123 return lower->dev; 6124 } 6125 6126 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6127 int (*fn)(struct net_device *dev, 6128 void *data), 6129 void *data) 6130 { 6131 struct net_device *ldev; 6132 struct list_head *iter; 6133 int ret; 6134 6135 for (iter = &dev->adj_list.lower, 6136 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6137 ldev; 6138 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6139 /* first is the lower device itself */ 6140 ret = fn(ldev, data); 6141 if (ret) 6142 return ret; 6143 6144 /* then look at all of its lower devices */ 6145 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6146 if (ret) 6147 return ret; 6148 } 6149 6150 return 0; 6151 } 6152 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6153 6154 /** 6155 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6156 * lower neighbour list, RCU 6157 * variant 6158 * @dev: device 6159 * 6160 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6161 * list. The caller must hold RCU read lock. 6162 */ 6163 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6164 { 6165 struct netdev_adjacent *lower; 6166 6167 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6168 struct netdev_adjacent, list); 6169 if (lower) 6170 return lower->private; 6171 return NULL; 6172 } 6173 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6174 6175 /** 6176 * netdev_master_upper_dev_get_rcu - Get master upper device 6177 * @dev: device 6178 * 6179 * Find a master upper device and return pointer to it or NULL in case 6180 * it's not there. The caller must hold the RCU read lock. 6181 */ 6182 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6183 { 6184 struct netdev_adjacent *upper; 6185 6186 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6187 struct netdev_adjacent, list); 6188 if (upper && likely(upper->master)) 6189 return upper->dev; 6190 return NULL; 6191 } 6192 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6193 6194 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6195 struct net_device *adj_dev, 6196 struct list_head *dev_list) 6197 { 6198 char linkname[IFNAMSIZ+7]; 6199 6200 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6201 "upper_%s" : "lower_%s", adj_dev->name); 6202 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6203 linkname); 6204 } 6205 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6206 char *name, 6207 struct list_head *dev_list) 6208 { 6209 char linkname[IFNAMSIZ+7]; 6210 6211 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6212 "upper_%s" : "lower_%s", name); 6213 sysfs_remove_link(&(dev->dev.kobj), linkname); 6214 } 6215 6216 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6217 struct net_device *adj_dev, 6218 struct list_head *dev_list) 6219 { 6220 return (dev_list == &dev->adj_list.upper || 6221 dev_list == &dev->adj_list.lower) && 6222 net_eq(dev_net(dev), dev_net(adj_dev)); 6223 } 6224 6225 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6226 struct net_device *adj_dev, 6227 struct list_head *dev_list, 6228 void *private, bool master) 6229 { 6230 struct netdev_adjacent *adj; 6231 int ret; 6232 6233 adj = __netdev_find_adj(adj_dev, dev_list); 6234 6235 if (adj) { 6236 adj->ref_nr += 1; 6237 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6238 dev->name, adj_dev->name, adj->ref_nr); 6239 6240 return 0; 6241 } 6242 6243 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6244 if (!adj) 6245 return -ENOMEM; 6246 6247 adj->dev = adj_dev; 6248 adj->master = master; 6249 adj->ref_nr = 1; 6250 adj->private = private; 6251 dev_hold(adj_dev); 6252 6253 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6254 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6255 6256 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6257 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6258 if (ret) 6259 goto free_adj; 6260 } 6261 6262 /* Ensure that master link is always the first item in list. */ 6263 if (master) { 6264 ret = sysfs_create_link(&(dev->dev.kobj), 6265 &(adj_dev->dev.kobj), "master"); 6266 if (ret) 6267 goto remove_symlinks; 6268 6269 list_add_rcu(&adj->list, dev_list); 6270 } else { 6271 list_add_tail_rcu(&adj->list, dev_list); 6272 } 6273 6274 return 0; 6275 6276 remove_symlinks: 6277 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6278 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6279 free_adj: 6280 kfree(adj); 6281 dev_put(adj_dev); 6282 6283 return ret; 6284 } 6285 6286 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6287 struct net_device *adj_dev, 6288 u16 ref_nr, 6289 struct list_head *dev_list) 6290 { 6291 struct netdev_adjacent *adj; 6292 6293 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6294 dev->name, adj_dev->name, ref_nr); 6295 6296 adj = __netdev_find_adj(adj_dev, dev_list); 6297 6298 if (!adj) { 6299 pr_err("Adjacency does not exist for device %s from %s\n", 6300 dev->name, adj_dev->name); 6301 WARN_ON(1); 6302 return; 6303 } 6304 6305 if (adj->ref_nr > ref_nr) { 6306 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6307 dev->name, adj_dev->name, ref_nr, 6308 adj->ref_nr - ref_nr); 6309 adj->ref_nr -= ref_nr; 6310 return; 6311 } 6312 6313 if (adj->master) 6314 sysfs_remove_link(&(dev->dev.kobj), "master"); 6315 6316 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6317 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6318 6319 list_del_rcu(&adj->list); 6320 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6321 adj_dev->name, dev->name, adj_dev->name); 6322 dev_put(adj_dev); 6323 kfree_rcu(adj, rcu); 6324 } 6325 6326 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6327 struct net_device *upper_dev, 6328 struct list_head *up_list, 6329 struct list_head *down_list, 6330 void *private, bool master) 6331 { 6332 int ret; 6333 6334 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6335 private, master); 6336 if (ret) 6337 return ret; 6338 6339 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6340 private, false); 6341 if (ret) { 6342 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6343 return ret; 6344 } 6345 6346 return 0; 6347 } 6348 6349 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6350 struct net_device *upper_dev, 6351 u16 ref_nr, 6352 struct list_head *up_list, 6353 struct list_head *down_list) 6354 { 6355 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6356 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6357 } 6358 6359 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6360 struct net_device *upper_dev, 6361 void *private, bool master) 6362 { 6363 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6364 &dev->adj_list.upper, 6365 &upper_dev->adj_list.lower, 6366 private, master); 6367 } 6368 6369 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6370 struct net_device *upper_dev) 6371 { 6372 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6373 &dev->adj_list.upper, 6374 &upper_dev->adj_list.lower); 6375 } 6376 6377 static int __netdev_upper_dev_link(struct net_device *dev, 6378 struct net_device *upper_dev, bool master, 6379 void *upper_priv, void *upper_info, 6380 struct netlink_ext_ack *extack) 6381 { 6382 struct netdev_notifier_changeupper_info changeupper_info = { 6383 .info = { 6384 .dev = dev, 6385 .extack = extack, 6386 }, 6387 .upper_dev = upper_dev, 6388 .master = master, 6389 .linking = true, 6390 .upper_info = upper_info, 6391 }; 6392 int ret = 0; 6393 6394 ASSERT_RTNL(); 6395 6396 if (dev == upper_dev) 6397 return -EBUSY; 6398 6399 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6400 if (netdev_has_upper_dev(upper_dev, dev)) 6401 return -EBUSY; 6402 6403 if (netdev_has_upper_dev(dev, upper_dev)) 6404 return -EEXIST; 6405 6406 if (master && netdev_master_upper_dev_get(dev)) 6407 return -EBUSY; 6408 6409 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6410 &changeupper_info.info); 6411 ret = notifier_to_errno(ret); 6412 if (ret) 6413 return ret; 6414 6415 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6416 master); 6417 if (ret) 6418 return ret; 6419 6420 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6421 &changeupper_info.info); 6422 ret = notifier_to_errno(ret); 6423 if (ret) 6424 goto rollback; 6425 6426 return 0; 6427 6428 rollback: 6429 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6430 6431 return ret; 6432 } 6433 6434 /** 6435 * netdev_upper_dev_link - Add a link to the upper device 6436 * @dev: device 6437 * @upper_dev: new upper device 6438 * @extack: netlink extended ack 6439 * 6440 * Adds a link to device which is upper to this one. The caller must hold 6441 * the RTNL lock. On a failure a negative errno code is returned. 6442 * On success the reference counts are adjusted and the function 6443 * returns zero. 6444 */ 6445 int netdev_upper_dev_link(struct net_device *dev, 6446 struct net_device *upper_dev, 6447 struct netlink_ext_ack *extack) 6448 { 6449 return __netdev_upper_dev_link(dev, upper_dev, false, 6450 NULL, NULL, extack); 6451 } 6452 EXPORT_SYMBOL(netdev_upper_dev_link); 6453 6454 /** 6455 * netdev_master_upper_dev_link - Add a master link to the upper device 6456 * @dev: device 6457 * @upper_dev: new upper device 6458 * @upper_priv: upper device private 6459 * @upper_info: upper info to be passed down via notifier 6460 * @extack: netlink extended ack 6461 * 6462 * Adds a link to device which is upper to this one. In this case, only 6463 * one master upper device can be linked, although other non-master devices 6464 * might be linked as well. The caller must hold the RTNL lock. 6465 * On a failure a negative errno code is returned. On success the reference 6466 * counts are adjusted and the function returns zero. 6467 */ 6468 int netdev_master_upper_dev_link(struct net_device *dev, 6469 struct net_device *upper_dev, 6470 void *upper_priv, void *upper_info, 6471 struct netlink_ext_ack *extack) 6472 { 6473 return __netdev_upper_dev_link(dev, upper_dev, true, 6474 upper_priv, upper_info, extack); 6475 } 6476 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6477 6478 /** 6479 * netdev_upper_dev_unlink - Removes a link to upper device 6480 * @dev: device 6481 * @upper_dev: new upper device 6482 * 6483 * Removes a link to device which is upper to this one. The caller must hold 6484 * the RTNL lock. 6485 */ 6486 void netdev_upper_dev_unlink(struct net_device *dev, 6487 struct net_device *upper_dev) 6488 { 6489 struct netdev_notifier_changeupper_info changeupper_info = { 6490 .info = { 6491 .dev = dev, 6492 }, 6493 .upper_dev = upper_dev, 6494 .linking = false, 6495 }; 6496 6497 ASSERT_RTNL(); 6498 6499 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6500 6501 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6502 &changeupper_info.info); 6503 6504 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6505 6506 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6507 &changeupper_info.info); 6508 } 6509 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6510 6511 /** 6512 * netdev_bonding_info_change - Dispatch event about slave change 6513 * @dev: device 6514 * @bonding_info: info to dispatch 6515 * 6516 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6517 * The caller must hold the RTNL lock. 6518 */ 6519 void netdev_bonding_info_change(struct net_device *dev, 6520 struct netdev_bonding_info *bonding_info) 6521 { 6522 struct netdev_notifier_bonding_info info = { 6523 .info.dev = dev, 6524 }; 6525 6526 memcpy(&info.bonding_info, bonding_info, 6527 sizeof(struct netdev_bonding_info)); 6528 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 6529 &info.info); 6530 } 6531 EXPORT_SYMBOL(netdev_bonding_info_change); 6532 6533 static void netdev_adjacent_add_links(struct net_device *dev) 6534 { 6535 struct netdev_adjacent *iter; 6536 6537 struct net *net = dev_net(dev); 6538 6539 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6540 if (!net_eq(net, dev_net(iter->dev))) 6541 continue; 6542 netdev_adjacent_sysfs_add(iter->dev, dev, 6543 &iter->dev->adj_list.lower); 6544 netdev_adjacent_sysfs_add(dev, iter->dev, 6545 &dev->adj_list.upper); 6546 } 6547 6548 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6549 if (!net_eq(net, dev_net(iter->dev))) 6550 continue; 6551 netdev_adjacent_sysfs_add(iter->dev, dev, 6552 &iter->dev->adj_list.upper); 6553 netdev_adjacent_sysfs_add(dev, iter->dev, 6554 &dev->adj_list.lower); 6555 } 6556 } 6557 6558 static void netdev_adjacent_del_links(struct net_device *dev) 6559 { 6560 struct netdev_adjacent *iter; 6561 6562 struct net *net = dev_net(dev); 6563 6564 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6565 if (!net_eq(net, dev_net(iter->dev))) 6566 continue; 6567 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6568 &iter->dev->adj_list.lower); 6569 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6570 &dev->adj_list.upper); 6571 } 6572 6573 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6574 if (!net_eq(net, dev_net(iter->dev))) 6575 continue; 6576 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6577 &iter->dev->adj_list.upper); 6578 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6579 &dev->adj_list.lower); 6580 } 6581 } 6582 6583 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6584 { 6585 struct netdev_adjacent *iter; 6586 6587 struct net *net = dev_net(dev); 6588 6589 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6590 if (!net_eq(net, dev_net(iter->dev))) 6591 continue; 6592 netdev_adjacent_sysfs_del(iter->dev, oldname, 6593 &iter->dev->adj_list.lower); 6594 netdev_adjacent_sysfs_add(iter->dev, dev, 6595 &iter->dev->adj_list.lower); 6596 } 6597 6598 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6599 if (!net_eq(net, dev_net(iter->dev))) 6600 continue; 6601 netdev_adjacent_sysfs_del(iter->dev, oldname, 6602 &iter->dev->adj_list.upper); 6603 netdev_adjacent_sysfs_add(iter->dev, dev, 6604 &iter->dev->adj_list.upper); 6605 } 6606 } 6607 6608 void *netdev_lower_dev_get_private(struct net_device *dev, 6609 struct net_device *lower_dev) 6610 { 6611 struct netdev_adjacent *lower; 6612 6613 if (!lower_dev) 6614 return NULL; 6615 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6616 if (!lower) 6617 return NULL; 6618 6619 return lower->private; 6620 } 6621 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6622 6623 6624 int dev_get_nest_level(struct net_device *dev) 6625 { 6626 struct net_device *lower = NULL; 6627 struct list_head *iter; 6628 int max_nest = -1; 6629 int nest; 6630 6631 ASSERT_RTNL(); 6632 6633 netdev_for_each_lower_dev(dev, lower, iter) { 6634 nest = dev_get_nest_level(lower); 6635 if (max_nest < nest) 6636 max_nest = nest; 6637 } 6638 6639 return max_nest + 1; 6640 } 6641 EXPORT_SYMBOL(dev_get_nest_level); 6642 6643 /** 6644 * netdev_lower_change - Dispatch event about lower device state change 6645 * @lower_dev: device 6646 * @lower_state_info: state to dispatch 6647 * 6648 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6649 * The caller must hold the RTNL lock. 6650 */ 6651 void netdev_lower_state_changed(struct net_device *lower_dev, 6652 void *lower_state_info) 6653 { 6654 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 6655 .info.dev = lower_dev, 6656 }; 6657 6658 ASSERT_RTNL(); 6659 changelowerstate_info.lower_state_info = lower_state_info; 6660 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 6661 &changelowerstate_info.info); 6662 } 6663 EXPORT_SYMBOL(netdev_lower_state_changed); 6664 6665 static void dev_change_rx_flags(struct net_device *dev, int flags) 6666 { 6667 const struct net_device_ops *ops = dev->netdev_ops; 6668 6669 if (ops->ndo_change_rx_flags) 6670 ops->ndo_change_rx_flags(dev, flags); 6671 } 6672 6673 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6674 { 6675 unsigned int old_flags = dev->flags; 6676 kuid_t uid; 6677 kgid_t gid; 6678 6679 ASSERT_RTNL(); 6680 6681 dev->flags |= IFF_PROMISC; 6682 dev->promiscuity += inc; 6683 if (dev->promiscuity == 0) { 6684 /* 6685 * Avoid overflow. 6686 * If inc causes overflow, untouch promisc and return error. 6687 */ 6688 if (inc < 0) 6689 dev->flags &= ~IFF_PROMISC; 6690 else { 6691 dev->promiscuity -= inc; 6692 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6693 dev->name); 6694 return -EOVERFLOW; 6695 } 6696 } 6697 if (dev->flags != old_flags) { 6698 pr_info("device %s %s promiscuous mode\n", 6699 dev->name, 6700 dev->flags & IFF_PROMISC ? "entered" : "left"); 6701 if (audit_enabled) { 6702 current_uid_gid(&uid, &gid); 6703 audit_log(current->audit_context, GFP_ATOMIC, 6704 AUDIT_ANOM_PROMISCUOUS, 6705 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6706 dev->name, (dev->flags & IFF_PROMISC), 6707 (old_flags & IFF_PROMISC), 6708 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6709 from_kuid(&init_user_ns, uid), 6710 from_kgid(&init_user_ns, gid), 6711 audit_get_sessionid(current)); 6712 } 6713 6714 dev_change_rx_flags(dev, IFF_PROMISC); 6715 } 6716 if (notify) 6717 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6718 return 0; 6719 } 6720 6721 /** 6722 * dev_set_promiscuity - update promiscuity count on a device 6723 * @dev: device 6724 * @inc: modifier 6725 * 6726 * Add or remove promiscuity from a device. While the count in the device 6727 * remains above zero the interface remains promiscuous. Once it hits zero 6728 * the device reverts back to normal filtering operation. A negative inc 6729 * value is used to drop promiscuity on the device. 6730 * Return 0 if successful or a negative errno code on error. 6731 */ 6732 int dev_set_promiscuity(struct net_device *dev, int inc) 6733 { 6734 unsigned int old_flags = dev->flags; 6735 int err; 6736 6737 err = __dev_set_promiscuity(dev, inc, true); 6738 if (err < 0) 6739 return err; 6740 if (dev->flags != old_flags) 6741 dev_set_rx_mode(dev); 6742 return err; 6743 } 6744 EXPORT_SYMBOL(dev_set_promiscuity); 6745 6746 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6747 { 6748 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6749 6750 ASSERT_RTNL(); 6751 6752 dev->flags |= IFF_ALLMULTI; 6753 dev->allmulti += inc; 6754 if (dev->allmulti == 0) { 6755 /* 6756 * Avoid overflow. 6757 * If inc causes overflow, untouch allmulti and return error. 6758 */ 6759 if (inc < 0) 6760 dev->flags &= ~IFF_ALLMULTI; 6761 else { 6762 dev->allmulti -= inc; 6763 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6764 dev->name); 6765 return -EOVERFLOW; 6766 } 6767 } 6768 if (dev->flags ^ old_flags) { 6769 dev_change_rx_flags(dev, IFF_ALLMULTI); 6770 dev_set_rx_mode(dev); 6771 if (notify) 6772 __dev_notify_flags(dev, old_flags, 6773 dev->gflags ^ old_gflags); 6774 } 6775 return 0; 6776 } 6777 6778 /** 6779 * dev_set_allmulti - update allmulti count on a device 6780 * @dev: device 6781 * @inc: modifier 6782 * 6783 * Add or remove reception of all multicast frames to a device. While the 6784 * count in the device remains above zero the interface remains listening 6785 * to all interfaces. Once it hits zero the device reverts back to normal 6786 * filtering operation. A negative @inc value is used to drop the counter 6787 * when releasing a resource needing all multicasts. 6788 * Return 0 if successful or a negative errno code on error. 6789 */ 6790 6791 int dev_set_allmulti(struct net_device *dev, int inc) 6792 { 6793 return __dev_set_allmulti(dev, inc, true); 6794 } 6795 EXPORT_SYMBOL(dev_set_allmulti); 6796 6797 /* 6798 * Upload unicast and multicast address lists to device and 6799 * configure RX filtering. When the device doesn't support unicast 6800 * filtering it is put in promiscuous mode while unicast addresses 6801 * are present. 6802 */ 6803 void __dev_set_rx_mode(struct net_device *dev) 6804 { 6805 const struct net_device_ops *ops = dev->netdev_ops; 6806 6807 /* dev_open will call this function so the list will stay sane. */ 6808 if (!(dev->flags&IFF_UP)) 6809 return; 6810 6811 if (!netif_device_present(dev)) 6812 return; 6813 6814 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6815 /* Unicast addresses changes may only happen under the rtnl, 6816 * therefore calling __dev_set_promiscuity here is safe. 6817 */ 6818 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6819 __dev_set_promiscuity(dev, 1, false); 6820 dev->uc_promisc = true; 6821 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6822 __dev_set_promiscuity(dev, -1, false); 6823 dev->uc_promisc = false; 6824 } 6825 } 6826 6827 if (ops->ndo_set_rx_mode) 6828 ops->ndo_set_rx_mode(dev); 6829 } 6830 6831 void dev_set_rx_mode(struct net_device *dev) 6832 { 6833 netif_addr_lock_bh(dev); 6834 __dev_set_rx_mode(dev); 6835 netif_addr_unlock_bh(dev); 6836 } 6837 6838 /** 6839 * dev_get_flags - get flags reported to userspace 6840 * @dev: device 6841 * 6842 * Get the combination of flag bits exported through APIs to userspace. 6843 */ 6844 unsigned int dev_get_flags(const struct net_device *dev) 6845 { 6846 unsigned int flags; 6847 6848 flags = (dev->flags & ~(IFF_PROMISC | 6849 IFF_ALLMULTI | 6850 IFF_RUNNING | 6851 IFF_LOWER_UP | 6852 IFF_DORMANT)) | 6853 (dev->gflags & (IFF_PROMISC | 6854 IFF_ALLMULTI)); 6855 6856 if (netif_running(dev)) { 6857 if (netif_oper_up(dev)) 6858 flags |= IFF_RUNNING; 6859 if (netif_carrier_ok(dev)) 6860 flags |= IFF_LOWER_UP; 6861 if (netif_dormant(dev)) 6862 flags |= IFF_DORMANT; 6863 } 6864 6865 return flags; 6866 } 6867 EXPORT_SYMBOL(dev_get_flags); 6868 6869 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6870 { 6871 unsigned int old_flags = dev->flags; 6872 int ret; 6873 6874 ASSERT_RTNL(); 6875 6876 /* 6877 * Set the flags on our device. 6878 */ 6879 6880 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6881 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6882 IFF_AUTOMEDIA)) | 6883 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6884 IFF_ALLMULTI)); 6885 6886 /* 6887 * Load in the correct multicast list now the flags have changed. 6888 */ 6889 6890 if ((old_flags ^ flags) & IFF_MULTICAST) 6891 dev_change_rx_flags(dev, IFF_MULTICAST); 6892 6893 dev_set_rx_mode(dev); 6894 6895 /* 6896 * Have we downed the interface. We handle IFF_UP ourselves 6897 * according to user attempts to set it, rather than blindly 6898 * setting it. 6899 */ 6900 6901 ret = 0; 6902 if ((old_flags ^ flags) & IFF_UP) { 6903 if (old_flags & IFF_UP) 6904 __dev_close(dev); 6905 else 6906 ret = __dev_open(dev); 6907 } 6908 6909 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6910 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6911 unsigned int old_flags = dev->flags; 6912 6913 dev->gflags ^= IFF_PROMISC; 6914 6915 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6916 if (dev->flags != old_flags) 6917 dev_set_rx_mode(dev); 6918 } 6919 6920 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6921 * is important. Some (broken) drivers set IFF_PROMISC, when 6922 * IFF_ALLMULTI is requested not asking us and not reporting. 6923 */ 6924 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6925 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6926 6927 dev->gflags ^= IFF_ALLMULTI; 6928 __dev_set_allmulti(dev, inc, false); 6929 } 6930 6931 return ret; 6932 } 6933 6934 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6935 unsigned int gchanges) 6936 { 6937 unsigned int changes = dev->flags ^ old_flags; 6938 6939 if (gchanges) 6940 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6941 6942 if (changes & IFF_UP) { 6943 if (dev->flags & IFF_UP) 6944 call_netdevice_notifiers(NETDEV_UP, dev); 6945 else 6946 call_netdevice_notifiers(NETDEV_DOWN, dev); 6947 } 6948 6949 if (dev->flags & IFF_UP && 6950 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6951 struct netdev_notifier_change_info change_info = { 6952 .info = { 6953 .dev = dev, 6954 }, 6955 .flags_changed = changes, 6956 }; 6957 6958 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 6959 } 6960 } 6961 6962 /** 6963 * dev_change_flags - change device settings 6964 * @dev: device 6965 * @flags: device state flags 6966 * 6967 * Change settings on device based state flags. The flags are 6968 * in the userspace exported format. 6969 */ 6970 int dev_change_flags(struct net_device *dev, unsigned int flags) 6971 { 6972 int ret; 6973 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6974 6975 ret = __dev_change_flags(dev, flags); 6976 if (ret < 0) 6977 return ret; 6978 6979 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6980 __dev_notify_flags(dev, old_flags, changes); 6981 return ret; 6982 } 6983 EXPORT_SYMBOL(dev_change_flags); 6984 6985 int __dev_set_mtu(struct net_device *dev, int new_mtu) 6986 { 6987 const struct net_device_ops *ops = dev->netdev_ops; 6988 6989 if (ops->ndo_change_mtu) 6990 return ops->ndo_change_mtu(dev, new_mtu); 6991 6992 dev->mtu = new_mtu; 6993 return 0; 6994 } 6995 EXPORT_SYMBOL(__dev_set_mtu); 6996 6997 /** 6998 * dev_set_mtu - Change maximum transfer unit 6999 * @dev: device 7000 * @new_mtu: new transfer unit 7001 * 7002 * Change the maximum transfer size of the network device. 7003 */ 7004 int dev_set_mtu(struct net_device *dev, int new_mtu) 7005 { 7006 int err, orig_mtu; 7007 7008 if (new_mtu == dev->mtu) 7009 return 0; 7010 7011 /* MTU must be positive, and in range */ 7012 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7013 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 7014 dev->name, new_mtu, dev->min_mtu); 7015 return -EINVAL; 7016 } 7017 7018 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7019 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 7020 dev->name, new_mtu, dev->max_mtu); 7021 return -EINVAL; 7022 } 7023 7024 if (!netif_device_present(dev)) 7025 return -ENODEV; 7026 7027 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7028 err = notifier_to_errno(err); 7029 if (err) 7030 return err; 7031 7032 orig_mtu = dev->mtu; 7033 err = __dev_set_mtu(dev, new_mtu); 7034 7035 if (!err) { 7036 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7037 err = notifier_to_errno(err); 7038 if (err) { 7039 /* setting mtu back and notifying everyone again, 7040 * so that they have a chance to revert changes. 7041 */ 7042 __dev_set_mtu(dev, orig_mtu); 7043 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7044 } 7045 } 7046 return err; 7047 } 7048 EXPORT_SYMBOL(dev_set_mtu); 7049 7050 /** 7051 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7052 * @dev: device 7053 * @new_len: new tx queue length 7054 */ 7055 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7056 { 7057 unsigned int orig_len = dev->tx_queue_len; 7058 int res; 7059 7060 if (new_len != (unsigned int)new_len) 7061 return -ERANGE; 7062 7063 if (new_len != orig_len) { 7064 dev->tx_queue_len = new_len; 7065 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7066 res = notifier_to_errno(res); 7067 if (res) { 7068 netdev_err(dev, 7069 "refused to change device tx_queue_len\n"); 7070 dev->tx_queue_len = orig_len; 7071 return res; 7072 } 7073 return dev_qdisc_change_tx_queue_len(dev); 7074 } 7075 7076 return 0; 7077 } 7078 7079 /** 7080 * dev_set_group - Change group this device belongs to 7081 * @dev: device 7082 * @new_group: group this device should belong to 7083 */ 7084 void dev_set_group(struct net_device *dev, int new_group) 7085 { 7086 dev->group = new_group; 7087 } 7088 EXPORT_SYMBOL(dev_set_group); 7089 7090 /** 7091 * dev_set_mac_address - Change Media Access Control Address 7092 * @dev: device 7093 * @sa: new address 7094 * 7095 * Change the hardware (MAC) address of the device 7096 */ 7097 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7098 { 7099 const struct net_device_ops *ops = dev->netdev_ops; 7100 int err; 7101 7102 if (!ops->ndo_set_mac_address) 7103 return -EOPNOTSUPP; 7104 if (sa->sa_family != dev->type) 7105 return -EINVAL; 7106 if (!netif_device_present(dev)) 7107 return -ENODEV; 7108 err = ops->ndo_set_mac_address(dev, sa); 7109 if (err) 7110 return err; 7111 dev->addr_assign_type = NET_ADDR_SET; 7112 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7113 add_device_randomness(dev->dev_addr, dev->addr_len); 7114 return 0; 7115 } 7116 EXPORT_SYMBOL(dev_set_mac_address); 7117 7118 /** 7119 * dev_change_carrier - Change device carrier 7120 * @dev: device 7121 * @new_carrier: new value 7122 * 7123 * Change device carrier 7124 */ 7125 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7126 { 7127 const struct net_device_ops *ops = dev->netdev_ops; 7128 7129 if (!ops->ndo_change_carrier) 7130 return -EOPNOTSUPP; 7131 if (!netif_device_present(dev)) 7132 return -ENODEV; 7133 return ops->ndo_change_carrier(dev, new_carrier); 7134 } 7135 EXPORT_SYMBOL(dev_change_carrier); 7136 7137 /** 7138 * dev_get_phys_port_id - Get device physical port ID 7139 * @dev: device 7140 * @ppid: port ID 7141 * 7142 * Get device physical port ID 7143 */ 7144 int dev_get_phys_port_id(struct net_device *dev, 7145 struct netdev_phys_item_id *ppid) 7146 { 7147 const struct net_device_ops *ops = dev->netdev_ops; 7148 7149 if (!ops->ndo_get_phys_port_id) 7150 return -EOPNOTSUPP; 7151 return ops->ndo_get_phys_port_id(dev, ppid); 7152 } 7153 EXPORT_SYMBOL(dev_get_phys_port_id); 7154 7155 /** 7156 * dev_get_phys_port_name - Get device physical port name 7157 * @dev: device 7158 * @name: port name 7159 * @len: limit of bytes to copy to name 7160 * 7161 * Get device physical port name 7162 */ 7163 int dev_get_phys_port_name(struct net_device *dev, 7164 char *name, size_t len) 7165 { 7166 const struct net_device_ops *ops = dev->netdev_ops; 7167 7168 if (!ops->ndo_get_phys_port_name) 7169 return -EOPNOTSUPP; 7170 return ops->ndo_get_phys_port_name(dev, name, len); 7171 } 7172 EXPORT_SYMBOL(dev_get_phys_port_name); 7173 7174 /** 7175 * dev_change_proto_down - update protocol port state information 7176 * @dev: device 7177 * @proto_down: new value 7178 * 7179 * This info can be used by switch drivers to set the phys state of the 7180 * port. 7181 */ 7182 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7183 { 7184 const struct net_device_ops *ops = dev->netdev_ops; 7185 7186 if (!ops->ndo_change_proto_down) 7187 return -EOPNOTSUPP; 7188 if (!netif_device_present(dev)) 7189 return -ENODEV; 7190 return ops->ndo_change_proto_down(dev, proto_down); 7191 } 7192 EXPORT_SYMBOL(dev_change_proto_down); 7193 7194 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7195 struct netdev_bpf *xdp) 7196 { 7197 memset(xdp, 0, sizeof(*xdp)); 7198 xdp->command = XDP_QUERY_PROG; 7199 7200 /* Query must always succeed. */ 7201 WARN_ON(bpf_op(dev, xdp) < 0); 7202 } 7203 7204 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op) 7205 { 7206 struct netdev_bpf xdp; 7207 7208 __dev_xdp_query(dev, bpf_op, &xdp); 7209 7210 return xdp.prog_attached; 7211 } 7212 7213 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7214 struct netlink_ext_ack *extack, u32 flags, 7215 struct bpf_prog *prog) 7216 { 7217 struct netdev_bpf xdp; 7218 7219 memset(&xdp, 0, sizeof(xdp)); 7220 if (flags & XDP_FLAGS_HW_MODE) 7221 xdp.command = XDP_SETUP_PROG_HW; 7222 else 7223 xdp.command = XDP_SETUP_PROG; 7224 xdp.extack = extack; 7225 xdp.flags = flags; 7226 xdp.prog = prog; 7227 7228 return bpf_op(dev, &xdp); 7229 } 7230 7231 static void dev_xdp_uninstall(struct net_device *dev) 7232 { 7233 struct netdev_bpf xdp; 7234 bpf_op_t ndo_bpf; 7235 7236 /* Remove generic XDP */ 7237 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7238 7239 /* Remove from the driver */ 7240 ndo_bpf = dev->netdev_ops->ndo_bpf; 7241 if (!ndo_bpf) 7242 return; 7243 7244 __dev_xdp_query(dev, ndo_bpf, &xdp); 7245 if (xdp.prog_attached == XDP_ATTACHED_NONE) 7246 return; 7247 7248 /* Program removal should always succeed */ 7249 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL)); 7250 } 7251 7252 /** 7253 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7254 * @dev: device 7255 * @extack: netlink extended ack 7256 * @fd: new program fd or negative value to clear 7257 * @flags: xdp-related flags 7258 * 7259 * Set or clear a bpf program for a device 7260 */ 7261 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7262 int fd, u32 flags) 7263 { 7264 const struct net_device_ops *ops = dev->netdev_ops; 7265 struct bpf_prog *prog = NULL; 7266 bpf_op_t bpf_op, bpf_chk; 7267 int err; 7268 7269 ASSERT_RTNL(); 7270 7271 bpf_op = bpf_chk = ops->ndo_bpf; 7272 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7273 return -EOPNOTSUPP; 7274 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7275 bpf_op = generic_xdp_install; 7276 if (bpf_op == bpf_chk) 7277 bpf_chk = generic_xdp_install; 7278 7279 if (fd >= 0) { 7280 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk)) 7281 return -EEXIST; 7282 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7283 __dev_xdp_attached(dev, bpf_op)) 7284 return -EBUSY; 7285 7286 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7287 bpf_op == ops->ndo_bpf); 7288 if (IS_ERR(prog)) 7289 return PTR_ERR(prog); 7290 7291 if (!(flags & XDP_FLAGS_HW_MODE) && 7292 bpf_prog_is_dev_bound(prog->aux)) { 7293 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7294 bpf_prog_put(prog); 7295 return -EINVAL; 7296 } 7297 } 7298 7299 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7300 if (err < 0 && prog) 7301 bpf_prog_put(prog); 7302 7303 return err; 7304 } 7305 7306 /** 7307 * dev_new_index - allocate an ifindex 7308 * @net: the applicable net namespace 7309 * 7310 * Returns a suitable unique value for a new device interface 7311 * number. The caller must hold the rtnl semaphore or the 7312 * dev_base_lock to be sure it remains unique. 7313 */ 7314 static int dev_new_index(struct net *net) 7315 { 7316 int ifindex = net->ifindex; 7317 7318 for (;;) { 7319 if (++ifindex <= 0) 7320 ifindex = 1; 7321 if (!__dev_get_by_index(net, ifindex)) 7322 return net->ifindex = ifindex; 7323 } 7324 } 7325 7326 /* Delayed registration/unregisteration */ 7327 static LIST_HEAD(net_todo_list); 7328 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7329 7330 static void net_set_todo(struct net_device *dev) 7331 { 7332 list_add_tail(&dev->todo_list, &net_todo_list); 7333 dev_net(dev)->dev_unreg_count++; 7334 } 7335 7336 static void rollback_registered_many(struct list_head *head) 7337 { 7338 struct net_device *dev, *tmp; 7339 LIST_HEAD(close_head); 7340 7341 BUG_ON(dev_boot_phase); 7342 ASSERT_RTNL(); 7343 7344 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7345 /* Some devices call without registering 7346 * for initialization unwind. Remove those 7347 * devices and proceed with the remaining. 7348 */ 7349 if (dev->reg_state == NETREG_UNINITIALIZED) { 7350 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7351 dev->name, dev); 7352 7353 WARN_ON(1); 7354 list_del(&dev->unreg_list); 7355 continue; 7356 } 7357 dev->dismantle = true; 7358 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7359 } 7360 7361 /* If device is running, close it first. */ 7362 list_for_each_entry(dev, head, unreg_list) 7363 list_add_tail(&dev->close_list, &close_head); 7364 dev_close_many(&close_head, true); 7365 7366 list_for_each_entry(dev, head, unreg_list) { 7367 /* And unlink it from device chain. */ 7368 unlist_netdevice(dev); 7369 7370 dev->reg_state = NETREG_UNREGISTERING; 7371 } 7372 flush_all_backlogs(); 7373 7374 synchronize_net(); 7375 7376 list_for_each_entry(dev, head, unreg_list) { 7377 struct sk_buff *skb = NULL; 7378 7379 /* Shutdown queueing discipline. */ 7380 dev_shutdown(dev); 7381 7382 dev_xdp_uninstall(dev); 7383 7384 /* Notify protocols, that we are about to destroy 7385 * this device. They should clean all the things. 7386 */ 7387 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7388 7389 if (!dev->rtnl_link_ops || 7390 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7391 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7392 GFP_KERNEL, NULL, 0); 7393 7394 /* 7395 * Flush the unicast and multicast chains 7396 */ 7397 dev_uc_flush(dev); 7398 dev_mc_flush(dev); 7399 7400 if (dev->netdev_ops->ndo_uninit) 7401 dev->netdev_ops->ndo_uninit(dev); 7402 7403 if (skb) 7404 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7405 7406 /* Notifier chain MUST detach us all upper devices. */ 7407 WARN_ON(netdev_has_any_upper_dev(dev)); 7408 WARN_ON(netdev_has_any_lower_dev(dev)); 7409 7410 /* Remove entries from kobject tree */ 7411 netdev_unregister_kobject(dev); 7412 #ifdef CONFIG_XPS 7413 /* Remove XPS queueing entries */ 7414 netif_reset_xps_queues_gt(dev, 0); 7415 #endif 7416 } 7417 7418 synchronize_net(); 7419 7420 list_for_each_entry(dev, head, unreg_list) 7421 dev_put(dev); 7422 } 7423 7424 static void rollback_registered(struct net_device *dev) 7425 { 7426 LIST_HEAD(single); 7427 7428 list_add(&dev->unreg_list, &single); 7429 rollback_registered_many(&single); 7430 list_del(&single); 7431 } 7432 7433 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7434 struct net_device *upper, netdev_features_t features) 7435 { 7436 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7437 netdev_features_t feature; 7438 int feature_bit; 7439 7440 for_each_netdev_feature(&upper_disables, feature_bit) { 7441 feature = __NETIF_F_BIT(feature_bit); 7442 if (!(upper->wanted_features & feature) 7443 && (features & feature)) { 7444 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7445 &feature, upper->name); 7446 features &= ~feature; 7447 } 7448 } 7449 7450 return features; 7451 } 7452 7453 static void netdev_sync_lower_features(struct net_device *upper, 7454 struct net_device *lower, netdev_features_t features) 7455 { 7456 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7457 netdev_features_t feature; 7458 int feature_bit; 7459 7460 for_each_netdev_feature(&upper_disables, feature_bit) { 7461 feature = __NETIF_F_BIT(feature_bit); 7462 if (!(features & feature) && (lower->features & feature)) { 7463 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7464 &feature, lower->name); 7465 lower->wanted_features &= ~feature; 7466 netdev_update_features(lower); 7467 7468 if (unlikely(lower->features & feature)) 7469 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7470 &feature, lower->name); 7471 } 7472 } 7473 } 7474 7475 static netdev_features_t netdev_fix_features(struct net_device *dev, 7476 netdev_features_t features) 7477 { 7478 /* Fix illegal checksum combinations */ 7479 if ((features & NETIF_F_HW_CSUM) && 7480 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7481 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7482 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7483 } 7484 7485 /* TSO requires that SG is present as well. */ 7486 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7487 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7488 features &= ~NETIF_F_ALL_TSO; 7489 } 7490 7491 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7492 !(features & NETIF_F_IP_CSUM)) { 7493 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7494 features &= ~NETIF_F_TSO; 7495 features &= ~NETIF_F_TSO_ECN; 7496 } 7497 7498 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7499 !(features & NETIF_F_IPV6_CSUM)) { 7500 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7501 features &= ~NETIF_F_TSO6; 7502 } 7503 7504 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7505 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7506 features &= ~NETIF_F_TSO_MANGLEID; 7507 7508 /* TSO ECN requires that TSO is present as well. */ 7509 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7510 features &= ~NETIF_F_TSO_ECN; 7511 7512 /* Software GSO depends on SG. */ 7513 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7514 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7515 features &= ~NETIF_F_GSO; 7516 } 7517 7518 /* GSO partial features require GSO partial be set */ 7519 if ((features & dev->gso_partial_features) && 7520 !(features & NETIF_F_GSO_PARTIAL)) { 7521 netdev_dbg(dev, 7522 "Dropping partially supported GSO features since no GSO partial.\n"); 7523 features &= ~dev->gso_partial_features; 7524 } 7525 7526 if (!(features & NETIF_F_RXCSUM)) { 7527 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 7528 * successfully merged by hardware must also have the 7529 * checksum verified by hardware. If the user does not 7530 * want to enable RXCSUM, logically, we should disable GRO_HW. 7531 */ 7532 if (features & NETIF_F_GRO_HW) { 7533 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 7534 features &= ~NETIF_F_GRO_HW; 7535 } 7536 } 7537 7538 return features; 7539 } 7540 7541 int __netdev_update_features(struct net_device *dev) 7542 { 7543 struct net_device *upper, *lower; 7544 netdev_features_t features; 7545 struct list_head *iter; 7546 int err = -1; 7547 7548 ASSERT_RTNL(); 7549 7550 features = netdev_get_wanted_features(dev); 7551 7552 if (dev->netdev_ops->ndo_fix_features) 7553 features = dev->netdev_ops->ndo_fix_features(dev, features); 7554 7555 /* driver might be less strict about feature dependencies */ 7556 features = netdev_fix_features(dev, features); 7557 7558 /* some features can't be enabled if they're off an an upper device */ 7559 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7560 features = netdev_sync_upper_features(dev, upper, features); 7561 7562 if (dev->features == features) 7563 goto sync_lower; 7564 7565 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7566 &dev->features, &features); 7567 7568 if (dev->netdev_ops->ndo_set_features) 7569 err = dev->netdev_ops->ndo_set_features(dev, features); 7570 else 7571 err = 0; 7572 7573 if (unlikely(err < 0)) { 7574 netdev_err(dev, 7575 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7576 err, &features, &dev->features); 7577 /* return non-0 since some features might have changed and 7578 * it's better to fire a spurious notification than miss it 7579 */ 7580 return -1; 7581 } 7582 7583 sync_lower: 7584 /* some features must be disabled on lower devices when disabled 7585 * on an upper device (think: bonding master or bridge) 7586 */ 7587 netdev_for_each_lower_dev(dev, lower, iter) 7588 netdev_sync_lower_features(dev, lower, features); 7589 7590 if (!err) { 7591 netdev_features_t diff = features ^ dev->features; 7592 7593 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7594 /* udp_tunnel_{get,drop}_rx_info both need 7595 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7596 * device, or they won't do anything. 7597 * Thus we need to update dev->features 7598 * *before* calling udp_tunnel_get_rx_info, 7599 * but *after* calling udp_tunnel_drop_rx_info. 7600 */ 7601 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7602 dev->features = features; 7603 udp_tunnel_get_rx_info(dev); 7604 } else { 7605 udp_tunnel_drop_rx_info(dev); 7606 } 7607 } 7608 7609 dev->features = features; 7610 } 7611 7612 return err < 0 ? 0 : 1; 7613 } 7614 7615 /** 7616 * netdev_update_features - recalculate device features 7617 * @dev: the device to check 7618 * 7619 * Recalculate dev->features set and send notifications if it 7620 * has changed. Should be called after driver or hardware dependent 7621 * conditions might have changed that influence the features. 7622 */ 7623 void netdev_update_features(struct net_device *dev) 7624 { 7625 if (__netdev_update_features(dev)) 7626 netdev_features_change(dev); 7627 } 7628 EXPORT_SYMBOL(netdev_update_features); 7629 7630 /** 7631 * netdev_change_features - recalculate device features 7632 * @dev: the device to check 7633 * 7634 * Recalculate dev->features set and send notifications even 7635 * if they have not changed. Should be called instead of 7636 * netdev_update_features() if also dev->vlan_features might 7637 * have changed to allow the changes to be propagated to stacked 7638 * VLAN devices. 7639 */ 7640 void netdev_change_features(struct net_device *dev) 7641 { 7642 __netdev_update_features(dev); 7643 netdev_features_change(dev); 7644 } 7645 EXPORT_SYMBOL(netdev_change_features); 7646 7647 /** 7648 * netif_stacked_transfer_operstate - transfer operstate 7649 * @rootdev: the root or lower level device to transfer state from 7650 * @dev: the device to transfer operstate to 7651 * 7652 * Transfer operational state from root to device. This is normally 7653 * called when a stacking relationship exists between the root 7654 * device and the device(a leaf device). 7655 */ 7656 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7657 struct net_device *dev) 7658 { 7659 if (rootdev->operstate == IF_OPER_DORMANT) 7660 netif_dormant_on(dev); 7661 else 7662 netif_dormant_off(dev); 7663 7664 if (netif_carrier_ok(rootdev)) 7665 netif_carrier_on(dev); 7666 else 7667 netif_carrier_off(dev); 7668 } 7669 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7670 7671 static int netif_alloc_rx_queues(struct net_device *dev) 7672 { 7673 unsigned int i, count = dev->num_rx_queues; 7674 struct netdev_rx_queue *rx; 7675 size_t sz = count * sizeof(*rx); 7676 int err = 0; 7677 7678 BUG_ON(count < 1); 7679 7680 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7681 if (!rx) 7682 return -ENOMEM; 7683 7684 dev->_rx = rx; 7685 7686 for (i = 0; i < count; i++) { 7687 rx[i].dev = dev; 7688 7689 /* XDP RX-queue setup */ 7690 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 7691 if (err < 0) 7692 goto err_rxq_info; 7693 } 7694 return 0; 7695 7696 err_rxq_info: 7697 /* Rollback successful reg's and free other resources */ 7698 while (i--) 7699 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 7700 kvfree(dev->_rx); 7701 dev->_rx = NULL; 7702 return err; 7703 } 7704 7705 static void netif_free_rx_queues(struct net_device *dev) 7706 { 7707 unsigned int i, count = dev->num_rx_queues; 7708 7709 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 7710 if (!dev->_rx) 7711 return; 7712 7713 for (i = 0; i < count; i++) 7714 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 7715 7716 kvfree(dev->_rx); 7717 } 7718 7719 static void netdev_init_one_queue(struct net_device *dev, 7720 struct netdev_queue *queue, void *_unused) 7721 { 7722 /* Initialize queue lock */ 7723 spin_lock_init(&queue->_xmit_lock); 7724 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7725 queue->xmit_lock_owner = -1; 7726 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7727 queue->dev = dev; 7728 #ifdef CONFIG_BQL 7729 dql_init(&queue->dql, HZ); 7730 #endif 7731 } 7732 7733 static void netif_free_tx_queues(struct net_device *dev) 7734 { 7735 kvfree(dev->_tx); 7736 } 7737 7738 static int netif_alloc_netdev_queues(struct net_device *dev) 7739 { 7740 unsigned int count = dev->num_tx_queues; 7741 struct netdev_queue *tx; 7742 size_t sz = count * sizeof(*tx); 7743 7744 if (count < 1 || count > 0xffff) 7745 return -EINVAL; 7746 7747 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7748 if (!tx) 7749 return -ENOMEM; 7750 7751 dev->_tx = tx; 7752 7753 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7754 spin_lock_init(&dev->tx_global_lock); 7755 7756 return 0; 7757 } 7758 7759 void netif_tx_stop_all_queues(struct net_device *dev) 7760 { 7761 unsigned int i; 7762 7763 for (i = 0; i < dev->num_tx_queues; i++) { 7764 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7765 7766 netif_tx_stop_queue(txq); 7767 } 7768 } 7769 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7770 7771 /** 7772 * register_netdevice - register a network device 7773 * @dev: device to register 7774 * 7775 * Take a completed network device structure and add it to the kernel 7776 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7777 * chain. 0 is returned on success. A negative errno code is returned 7778 * on a failure to set up the device, or if the name is a duplicate. 7779 * 7780 * Callers must hold the rtnl semaphore. You may want 7781 * register_netdev() instead of this. 7782 * 7783 * BUGS: 7784 * The locking appears insufficient to guarantee two parallel registers 7785 * will not get the same name. 7786 */ 7787 7788 int register_netdevice(struct net_device *dev) 7789 { 7790 int ret; 7791 struct net *net = dev_net(dev); 7792 7793 BUG_ON(dev_boot_phase); 7794 ASSERT_RTNL(); 7795 7796 might_sleep(); 7797 7798 /* When net_device's are persistent, this will be fatal. */ 7799 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7800 BUG_ON(!net); 7801 7802 spin_lock_init(&dev->addr_list_lock); 7803 netdev_set_addr_lockdep_class(dev); 7804 7805 ret = dev_get_valid_name(net, dev, dev->name); 7806 if (ret < 0) 7807 goto out; 7808 7809 /* Init, if this function is available */ 7810 if (dev->netdev_ops->ndo_init) { 7811 ret = dev->netdev_ops->ndo_init(dev); 7812 if (ret) { 7813 if (ret > 0) 7814 ret = -EIO; 7815 goto out; 7816 } 7817 } 7818 7819 if (((dev->hw_features | dev->features) & 7820 NETIF_F_HW_VLAN_CTAG_FILTER) && 7821 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7822 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7823 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7824 ret = -EINVAL; 7825 goto err_uninit; 7826 } 7827 7828 ret = -EBUSY; 7829 if (!dev->ifindex) 7830 dev->ifindex = dev_new_index(net); 7831 else if (__dev_get_by_index(net, dev->ifindex)) 7832 goto err_uninit; 7833 7834 /* Transfer changeable features to wanted_features and enable 7835 * software offloads (GSO and GRO). 7836 */ 7837 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7838 dev->features |= NETIF_F_SOFT_FEATURES; 7839 7840 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7841 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7842 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7843 } 7844 7845 dev->wanted_features = dev->features & dev->hw_features; 7846 7847 if (!(dev->flags & IFF_LOOPBACK)) 7848 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7849 7850 /* If IPv4 TCP segmentation offload is supported we should also 7851 * allow the device to enable segmenting the frame with the option 7852 * of ignoring a static IP ID value. This doesn't enable the 7853 * feature itself but allows the user to enable it later. 7854 */ 7855 if (dev->hw_features & NETIF_F_TSO) 7856 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7857 if (dev->vlan_features & NETIF_F_TSO) 7858 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7859 if (dev->mpls_features & NETIF_F_TSO) 7860 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7861 if (dev->hw_enc_features & NETIF_F_TSO) 7862 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7863 7864 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7865 */ 7866 dev->vlan_features |= NETIF_F_HIGHDMA; 7867 7868 /* Make NETIF_F_SG inheritable to tunnel devices. 7869 */ 7870 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7871 7872 /* Make NETIF_F_SG inheritable to MPLS. 7873 */ 7874 dev->mpls_features |= NETIF_F_SG; 7875 7876 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7877 ret = notifier_to_errno(ret); 7878 if (ret) 7879 goto err_uninit; 7880 7881 ret = netdev_register_kobject(dev); 7882 if (ret) 7883 goto err_uninit; 7884 dev->reg_state = NETREG_REGISTERED; 7885 7886 __netdev_update_features(dev); 7887 7888 /* 7889 * Default initial state at registry is that the 7890 * device is present. 7891 */ 7892 7893 set_bit(__LINK_STATE_PRESENT, &dev->state); 7894 7895 linkwatch_init_dev(dev); 7896 7897 dev_init_scheduler(dev); 7898 dev_hold(dev); 7899 list_netdevice(dev); 7900 add_device_randomness(dev->dev_addr, dev->addr_len); 7901 7902 /* If the device has permanent device address, driver should 7903 * set dev_addr and also addr_assign_type should be set to 7904 * NET_ADDR_PERM (default value). 7905 */ 7906 if (dev->addr_assign_type == NET_ADDR_PERM) 7907 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7908 7909 /* Notify protocols, that a new device appeared. */ 7910 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7911 ret = notifier_to_errno(ret); 7912 if (ret) { 7913 rollback_registered(dev); 7914 dev->reg_state = NETREG_UNREGISTERED; 7915 } 7916 /* 7917 * Prevent userspace races by waiting until the network 7918 * device is fully setup before sending notifications. 7919 */ 7920 if (!dev->rtnl_link_ops || 7921 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7922 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7923 7924 out: 7925 return ret; 7926 7927 err_uninit: 7928 if (dev->netdev_ops->ndo_uninit) 7929 dev->netdev_ops->ndo_uninit(dev); 7930 if (dev->priv_destructor) 7931 dev->priv_destructor(dev); 7932 goto out; 7933 } 7934 EXPORT_SYMBOL(register_netdevice); 7935 7936 /** 7937 * init_dummy_netdev - init a dummy network device for NAPI 7938 * @dev: device to init 7939 * 7940 * This takes a network device structure and initialize the minimum 7941 * amount of fields so it can be used to schedule NAPI polls without 7942 * registering a full blown interface. This is to be used by drivers 7943 * that need to tie several hardware interfaces to a single NAPI 7944 * poll scheduler due to HW limitations. 7945 */ 7946 int init_dummy_netdev(struct net_device *dev) 7947 { 7948 /* Clear everything. Note we don't initialize spinlocks 7949 * are they aren't supposed to be taken by any of the 7950 * NAPI code and this dummy netdev is supposed to be 7951 * only ever used for NAPI polls 7952 */ 7953 memset(dev, 0, sizeof(struct net_device)); 7954 7955 /* make sure we BUG if trying to hit standard 7956 * register/unregister code path 7957 */ 7958 dev->reg_state = NETREG_DUMMY; 7959 7960 /* NAPI wants this */ 7961 INIT_LIST_HEAD(&dev->napi_list); 7962 7963 /* a dummy interface is started by default */ 7964 set_bit(__LINK_STATE_PRESENT, &dev->state); 7965 set_bit(__LINK_STATE_START, &dev->state); 7966 7967 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7968 * because users of this 'device' dont need to change 7969 * its refcount. 7970 */ 7971 7972 return 0; 7973 } 7974 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7975 7976 7977 /** 7978 * register_netdev - register a network device 7979 * @dev: device to register 7980 * 7981 * Take a completed network device structure and add it to the kernel 7982 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7983 * chain. 0 is returned on success. A negative errno code is returned 7984 * on a failure to set up the device, or if the name is a duplicate. 7985 * 7986 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7987 * and expands the device name if you passed a format string to 7988 * alloc_netdev. 7989 */ 7990 int register_netdev(struct net_device *dev) 7991 { 7992 int err; 7993 7994 rtnl_lock(); 7995 err = register_netdevice(dev); 7996 rtnl_unlock(); 7997 return err; 7998 } 7999 EXPORT_SYMBOL(register_netdev); 8000 8001 int netdev_refcnt_read(const struct net_device *dev) 8002 { 8003 int i, refcnt = 0; 8004 8005 for_each_possible_cpu(i) 8006 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8007 return refcnt; 8008 } 8009 EXPORT_SYMBOL(netdev_refcnt_read); 8010 8011 /** 8012 * netdev_wait_allrefs - wait until all references are gone. 8013 * @dev: target net_device 8014 * 8015 * This is called when unregistering network devices. 8016 * 8017 * Any protocol or device that holds a reference should register 8018 * for netdevice notification, and cleanup and put back the 8019 * reference if they receive an UNREGISTER event. 8020 * We can get stuck here if buggy protocols don't correctly 8021 * call dev_put. 8022 */ 8023 static void netdev_wait_allrefs(struct net_device *dev) 8024 { 8025 unsigned long rebroadcast_time, warning_time; 8026 int refcnt; 8027 8028 linkwatch_forget_dev(dev); 8029 8030 rebroadcast_time = warning_time = jiffies; 8031 refcnt = netdev_refcnt_read(dev); 8032 8033 while (refcnt != 0) { 8034 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8035 rtnl_lock(); 8036 8037 /* Rebroadcast unregister notification */ 8038 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8039 8040 __rtnl_unlock(); 8041 rcu_barrier(); 8042 rtnl_lock(); 8043 8044 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8045 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8046 &dev->state)) { 8047 /* We must not have linkwatch events 8048 * pending on unregister. If this 8049 * happens, we simply run the queue 8050 * unscheduled, resulting in a noop 8051 * for this device. 8052 */ 8053 linkwatch_run_queue(); 8054 } 8055 8056 __rtnl_unlock(); 8057 8058 rebroadcast_time = jiffies; 8059 } 8060 8061 msleep(250); 8062 8063 refcnt = netdev_refcnt_read(dev); 8064 8065 if (time_after(jiffies, warning_time + 10 * HZ)) { 8066 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8067 dev->name, refcnt); 8068 warning_time = jiffies; 8069 } 8070 } 8071 } 8072 8073 /* The sequence is: 8074 * 8075 * rtnl_lock(); 8076 * ... 8077 * register_netdevice(x1); 8078 * register_netdevice(x2); 8079 * ... 8080 * unregister_netdevice(y1); 8081 * unregister_netdevice(y2); 8082 * ... 8083 * rtnl_unlock(); 8084 * free_netdev(y1); 8085 * free_netdev(y2); 8086 * 8087 * We are invoked by rtnl_unlock(). 8088 * This allows us to deal with problems: 8089 * 1) We can delete sysfs objects which invoke hotplug 8090 * without deadlocking with linkwatch via keventd. 8091 * 2) Since we run with the RTNL semaphore not held, we can sleep 8092 * safely in order to wait for the netdev refcnt to drop to zero. 8093 * 8094 * We must not return until all unregister events added during 8095 * the interval the lock was held have been completed. 8096 */ 8097 void netdev_run_todo(void) 8098 { 8099 struct list_head list; 8100 8101 /* Snapshot list, allow later requests */ 8102 list_replace_init(&net_todo_list, &list); 8103 8104 __rtnl_unlock(); 8105 8106 8107 /* Wait for rcu callbacks to finish before next phase */ 8108 if (!list_empty(&list)) 8109 rcu_barrier(); 8110 8111 while (!list_empty(&list)) { 8112 struct net_device *dev 8113 = list_first_entry(&list, struct net_device, todo_list); 8114 list_del(&dev->todo_list); 8115 8116 rtnl_lock(); 8117 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8118 __rtnl_unlock(); 8119 8120 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8121 pr_err("network todo '%s' but state %d\n", 8122 dev->name, dev->reg_state); 8123 dump_stack(); 8124 continue; 8125 } 8126 8127 dev->reg_state = NETREG_UNREGISTERED; 8128 8129 netdev_wait_allrefs(dev); 8130 8131 /* paranoia */ 8132 BUG_ON(netdev_refcnt_read(dev)); 8133 BUG_ON(!list_empty(&dev->ptype_all)); 8134 BUG_ON(!list_empty(&dev->ptype_specific)); 8135 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8136 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8137 WARN_ON(dev->dn_ptr); 8138 8139 if (dev->priv_destructor) 8140 dev->priv_destructor(dev); 8141 if (dev->needs_free_netdev) 8142 free_netdev(dev); 8143 8144 /* Report a network device has been unregistered */ 8145 rtnl_lock(); 8146 dev_net(dev)->dev_unreg_count--; 8147 __rtnl_unlock(); 8148 wake_up(&netdev_unregistering_wq); 8149 8150 /* Free network device */ 8151 kobject_put(&dev->dev.kobj); 8152 } 8153 } 8154 8155 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8156 * all the same fields in the same order as net_device_stats, with only 8157 * the type differing, but rtnl_link_stats64 may have additional fields 8158 * at the end for newer counters. 8159 */ 8160 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8161 const struct net_device_stats *netdev_stats) 8162 { 8163 #if BITS_PER_LONG == 64 8164 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8165 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8166 /* zero out counters that only exist in rtnl_link_stats64 */ 8167 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8168 sizeof(*stats64) - sizeof(*netdev_stats)); 8169 #else 8170 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8171 const unsigned long *src = (const unsigned long *)netdev_stats; 8172 u64 *dst = (u64 *)stats64; 8173 8174 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8175 for (i = 0; i < n; i++) 8176 dst[i] = src[i]; 8177 /* zero out counters that only exist in rtnl_link_stats64 */ 8178 memset((char *)stats64 + n * sizeof(u64), 0, 8179 sizeof(*stats64) - n * sizeof(u64)); 8180 #endif 8181 } 8182 EXPORT_SYMBOL(netdev_stats_to_stats64); 8183 8184 /** 8185 * dev_get_stats - get network device statistics 8186 * @dev: device to get statistics from 8187 * @storage: place to store stats 8188 * 8189 * Get network statistics from device. Return @storage. 8190 * The device driver may provide its own method by setting 8191 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8192 * otherwise the internal statistics structure is used. 8193 */ 8194 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8195 struct rtnl_link_stats64 *storage) 8196 { 8197 const struct net_device_ops *ops = dev->netdev_ops; 8198 8199 if (ops->ndo_get_stats64) { 8200 memset(storage, 0, sizeof(*storage)); 8201 ops->ndo_get_stats64(dev, storage); 8202 } else if (ops->ndo_get_stats) { 8203 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8204 } else { 8205 netdev_stats_to_stats64(storage, &dev->stats); 8206 } 8207 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8208 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8209 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8210 return storage; 8211 } 8212 EXPORT_SYMBOL(dev_get_stats); 8213 8214 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8215 { 8216 struct netdev_queue *queue = dev_ingress_queue(dev); 8217 8218 #ifdef CONFIG_NET_CLS_ACT 8219 if (queue) 8220 return queue; 8221 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8222 if (!queue) 8223 return NULL; 8224 netdev_init_one_queue(dev, queue, NULL); 8225 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8226 queue->qdisc_sleeping = &noop_qdisc; 8227 rcu_assign_pointer(dev->ingress_queue, queue); 8228 #endif 8229 return queue; 8230 } 8231 8232 static const struct ethtool_ops default_ethtool_ops; 8233 8234 void netdev_set_default_ethtool_ops(struct net_device *dev, 8235 const struct ethtool_ops *ops) 8236 { 8237 if (dev->ethtool_ops == &default_ethtool_ops) 8238 dev->ethtool_ops = ops; 8239 } 8240 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8241 8242 void netdev_freemem(struct net_device *dev) 8243 { 8244 char *addr = (char *)dev - dev->padded; 8245 8246 kvfree(addr); 8247 } 8248 8249 /** 8250 * alloc_netdev_mqs - allocate network device 8251 * @sizeof_priv: size of private data to allocate space for 8252 * @name: device name format string 8253 * @name_assign_type: origin of device name 8254 * @setup: callback to initialize device 8255 * @txqs: the number of TX subqueues to allocate 8256 * @rxqs: the number of RX subqueues to allocate 8257 * 8258 * Allocates a struct net_device with private data area for driver use 8259 * and performs basic initialization. Also allocates subqueue structs 8260 * for each queue on the device. 8261 */ 8262 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8263 unsigned char name_assign_type, 8264 void (*setup)(struct net_device *), 8265 unsigned int txqs, unsigned int rxqs) 8266 { 8267 struct net_device *dev; 8268 unsigned int alloc_size; 8269 struct net_device *p; 8270 8271 BUG_ON(strlen(name) >= sizeof(dev->name)); 8272 8273 if (txqs < 1) { 8274 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8275 return NULL; 8276 } 8277 8278 if (rxqs < 1) { 8279 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8280 return NULL; 8281 } 8282 8283 alloc_size = sizeof(struct net_device); 8284 if (sizeof_priv) { 8285 /* ensure 32-byte alignment of private area */ 8286 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8287 alloc_size += sizeof_priv; 8288 } 8289 /* ensure 32-byte alignment of whole construct */ 8290 alloc_size += NETDEV_ALIGN - 1; 8291 8292 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8293 if (!p) 8294 return NULL; 8295 8296 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8297 dev->padded = (char *)dev - (char *)p; 8298 8299 dev->pcpu_refcnt = alloc_percpu(int); 8300 if (!dev->pcpu_refcnt) 8301 goto free_dev; 8302 8303 if (dev_addr_init(dev)) 8304 goto free_pcpu; 8305 8306 dev_mc_init(dev); 8307 dev_uc_init(dev); 8308 8309 dev_net_set(dev, &init_net); 8310 8311 dev->gso_max_size = GSO_MAX_SIZE; 8312 dev->gso_max_segs = GSO_MAX_SEGS; 8313 8314 INIT_LIST_HEAD(&dev->napi_list); 8315 INIT_LIST_HEAD(&dev->unreg_list); 8316 INIT_LIST_HEAD(&dev->close_list); 8317 INIT_LIST_HEAD(&dev->link_watch_list); 8318 INIT_LIST_HEAD(&dev->adj_list.upper); 8319 INIT_LIST_HEAD(&dev->adj_list.lower); 8320 INIT_LIST_HEAD(&dev->ptype_all); 8321 INIT_LIST_HEAD(&dev->ptype_specific); 8322 #ifdef CONFIG_NET_SCHED 8323 hash_init(dev->qdisc_hash); 8324 #endif 8325 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8326 setup(dev); 8327 8328 if (!dev->tx_queue_len) { 8329 dev->priv_flags |= IFF_NO_QUEUE; 8330 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8331 } 8332 8333 dev->num_tx_queues = txqs; 8334 dev->real_num_tx_queues = txqs; 8335 if (netif_alloc_netdev_queues(dev)) 8336 goto free_all; 8337 8338 dev->num_rx_queues = rxqs; 8339 dev->real_num_rx_queues = rxqs; 8340 if (netif_alloc_rx_queues(dev)) 8341 goto free_all; 8342 8343 strcpy(dev->name, name); 8344 dev->name_assign_type = name_assign_type; 8345 dev->group = INIT_NETDEV_GROUP; 8346 if (!dev->ethtool_ops) 8347 dev->ethtool_ops = &default_ethtool_ops; 8348 8349 nf_hook_ingress_init(dev); 8350 8351 return dev; 8352 8353 free_all: 8354 free_netdev(dev); 8355 return NULL; 8356 8357 free_pcpu: 8358 free_percpu(dev->pcpu_refcnt); 8359 free_dev: 8360 netdev_freemem(dev); 8361 return NULL; 8362 } 8363 EXPORT_SYMBOL(alloc_netdev_mqs); 8364 8365 /** 8366 * free_netdev - free network device 8367 * @dev: device 8368 * 8369 * This function does the last stage of destroying an allocated device 8370 * interface. The reference to the device object is released. If this 8371 * is the last reference then it will be freed.Must be called in process 8372 * context. 8373 */ 8374 void free_netdev(struct net_device *dev) 8375 { 8376 struct napi_struct *p, *n; 8377 8378 might_sleep(); 8379 netif_free_tx_queues(dev); 8380 netif_free_rx_queues(dev); 8381 8382 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8383 8384 /* Flush device addresses */ 8385 dev_addr_flush(dev); 8386 8387 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8388 netif_napi_del(p); 8389 8390 free_percpu(dev->pcpu_refcnt); 8391 dev->pcpu_refcnt = NULL; 8392 8393 /* Compatibility with error handling in drivers */ 8394 if (dev->reg_state == NETREG_UNINITIALIZED) { 8395 netdev_freemem(dev); 8396 return; 8397 } 8398 8399 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8400 dev->reg_state = NETREG_RELEASED; 8401 8402 /* will free via device release */ 8403 put_device(&dev->dev); 8404 } 8405 EXPORT_SYMBOL(free_netdev); 8406 8407 /** 8408 * synchronize_net - Synchronize with packet receive processing 8409 * 8410 * Wait for packets currently being received to be done. 8411 * Does not block later packets from starting. 8412 */ 8413 void synchronize_net(void) 8414 { 8415 might_sleep(); 8416 if (rtnl_is_locked()) 8417 synchronize_rcu_expedited(); 8418 else 8419 synchronize_rcu(); 8420 } 8421 EXPORT_SYMBOL(synchronize_net); 8422 8423 /** 8424 * unregister_netdevice_queue - remove device from the kernel 8425 * @dev: device 8426 * @head: list 8427 * 8428 * This function shuts down a device interface and removes it 8429 * from the kernel tables. 8430 * If head not NULL, device is queued to be unregistered later. 8431 * 8432 * Callers must hold the rtnl semaphore. You may want 8433 * unregister_netdev() instead of this. 8434 */ 8435 8436 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8437 { 8438 ASSERT_RTNL(); 8439 8440 if (head) { 8441 list_move_tail(&dev->unreg_list, head); 8442 } else { 8443 rollback_registered(dev); 8444 /* Finish processing unregister after unlock */ 8445 net_set_todo(dev); 8446 } 8447 } 8448 EXPORT_SYMBOL(unregister_netdevice_queue); 8449 8450 /** 8451 * unregister_netdevice_many - unregister many devices 8452 * @head: list of devices 8453 * 8454 * Note: As most callers use a stack allocated list_head, 8455 * we force a list_del() to make sure stack wont be corrupted later. 8456 */ 8457 void unregister_netdevice_many(struct list_head *head) 8458 { 8459 struct net_device *dev; 8460 8461 if (!list_empty(head)) { 8462 rollback_registered_many(head); 8463 list_for_each_entry(dev, head, unreg_list) 8464 net_set_todo(dev); 8465 list_del(head); 8466 } 8467 } 8468 EXPORT_SYMBOL(unregister_netdevice_many); 8469 8470 /** 8471 * unregister_netdev - remove device from the kernel 8472 * @dev: device 8473 * 8474 * This function shuts down a device interface and removes it 8475 * from the kernel tables. 8476 * 8477 * This is just a wrapper for unregister_netdevice that takes 8478 * the rtnl semaphore. In general you want to use this and not 8479 * unregister_netdevice. 8480 */ 8481 void unregister_netdev(struct net_device *dev) 8482 { 8483 rtnl_lock(); 8484 unregister_netdevice(dev); 8485 rtnl_unlock(); 8486 } 8487 EXPORT_SYMBOL(unregister_netdev); 8488 8489 /** 8490 * dev_change_net_namespace - move device to different nethost namespace 8491 * @dev: device 8492 * @net: network namespace 8493 * @pat: If not NULL name pattern to try if the current device name 8494 * is already taken in the destination network namespace. 8495 * 8496 * This function shuts down a device interface and moves it 8497 * to a new network namespace. On success 0 is returned, on 8498 * a failure a netagive errno code is returned. 8499 * 8500 * Callers must hold the rtnl semaphore. 8501 */ 8502 8503 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8504 { 8505 int err, new_nsid, new_ifindex; 8506 8507 ASSERT_RTNL(); 8508 8509 /* Don't allow namespace local devices to be moved. */ 8510 err = -EINVAL; 8511 if (dev->features & NETIF_F_NETNS_LOCAL) 8512 goto out; 8513 8514 /* Ensure the device has been registrered */ 8515 if (dev->reg_state != NETREG_REGISTERED) 8516 goto out; 8517 8518 /* Get out if there is nothing todo */ 8519 err = 0; 8520 if (net_eq(dev_net(dev), net)) 8521 goto out; 8522 8523 /* Pick the destination device name, and ensure 8524 * we can use it in the destination network namespace. 8525 */ 8526 err = -EEXIST; 8527 if (__dev_get_by_name(net, dev->name)) { 8528 /* We get here if we can't use the current device name */ 8529 if (!pat) 8530 goto out; 8531 if (dev_get_valid_name(net, dev, pat) < 0) 8532 goto out; 8533 } 8534 8535 /* 8536 * And now a mini version of register_netdevice unregister_netdevice. 8537 */ 8538 8539 /* If device is running close it first. */ 8540 dev_close(dev); 8541 8542 /* And unlink it from device chain */ 8543 err = -ENODEV; 8544 unlist_netdevice(dev); 8545 8546 synchronize_net(); 8547 8548 /* Shutdown queueing discipline. */ 8549 dev_shutdown(dev); 8550 8551 /* Notify protocols, that we are about to destroy 8552 * this device. They should clean all the things. 8553 * 8554 * Note that dev->reg_state stays at NETREG_REGISTERED. 8555 * This is wanted because this way 8021q and macvlan know 8556 * the device is just moving and can keep their slaves up. 8557 */ 8558 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8559 rcu_barrier(); 8560 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8561 8562 new_nsid = peernet2id_alloc(dev_net(dev), net); 8563 /* If there is an ifindex conflict assign a new one */ 8564 if (__dev_get_by_index(net, dev->ifindex)) 8565 new_ifindex = dev_new_index(net); 8566 else 8567 new_ifindex = dev->ifindex; 8568 8569 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 8570 new_ifindex); 8571 8572 /* 8573 * Flush the unicast and multicast chains 8574 */ 8575 dev_uc_flush(dev); 8576 dev_mc_flush(dev); 8577 8578 /* Send a netdev-removed uevent to the old namespace */ 8579 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8580 netdev_adjacent_del_links(dev); 8581 8582 /* Actually switch the network namespace */ 8583 dev_net_set(dev, net); 8584 dev->ifindex = new_ifindex; 8585 8586 /* Send a netdev-add uevent to the new namespace */ 8587 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8588 netdev_adjacent_add_links(dev); 8589 8590 /* Fixup kobjects */ 8591 err = device_rename(&dev->dev, dev->name); 8592 WARN_ON(err); 8593 8594 /* Add the device back in the hashes */ 8595 list_netdevice(dev); 8596 8597 /* Notify protocols, that a new device appeared. */ 8598 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8599 8600 /* 8601 * Prevent userspace races by waiting until the network 8602 * device is fully setup before sending notifications. 8603 */ 8604 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8605 8606 synchronize_net(); 8607 err = 0; 8608 out: 8609 return err; 8610 } 8611 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8612 8613 static int dev_cpu_dead(unsigned int oldcpu) 8614 { 8615 struct sk_buff **list_skb; 8616 struct sk_buff *skb; 8617 unsigned int cpu; 8618 struct softnet_data *sd, *oldsd, *remsd = NULL; 8619 8620 local_irq_disable(); 8621 cpu = smp_processor_id(); 8622 sd = &per_cpu(softnet_data, cpu); 8623 oldsd = &per_cpu(softnet_data, oldcpu); 8624 8625 /* Find end of our completion_queue. */ 8626 list_skb = &sd->completion_queue; 8627 while (*list_skb) 8628 list_skb = &(*list_skb)->next; 8629 /* Append completion queue from offline CPU. */ 8630 *list_skb = oldsd->completion_queue; 8631 oldsd->completion_queue = NULL; 8632 8633 /* Append output queue from offline CPU. */ 8634 if (oldsd->output_queue) { 8635 *sd->output_queue_tailp = oldsd->output_queue; 8636 sd->output_queue_tailp = oldsd->output_queue_tailp; 8637 oldsd->output_queue = NULL; 8638 oldsd->output_queue_tailp = &oldsd->output_queue; 8639 } 8640 /* Append NAPI poll list from offline CPU, with one exception : 8641 * process_backlog() must be called by cpu owning percpu backlog. 8642 * We properly handle process_queue & input_pkt_queue later. 8643 */ 8644 while (!list_empty(&oldsd->poll_list)) { 8645 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8646 struct napi_struct, 8647 poll_list); 8648 8649 list_del_init(&napi->poll_list); 8650 if (napi->poll == process_backlog) 8651 napi->state = 0; 8652 else 8653 ____napi_schedule(sd, napi); 8654 } 8655 8656 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8657 local_irq_enable(); 8658 8659 #ifdef CONFIG_RPS 8660 remsd = oldsd->rps_ipi_list; 8661 oldsd->rps_ipi_list = NULL; 8662 #endif 8663 /* send out pending IPI's on offline CPU */ 8664 net_rps_send_ipi(remsd); 8665 8666 /* Process offline CPU's input_pkt_queue */ 8667 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8668 netif_rx_ni(skb); 8669 input_queue_head_incr(oldsd); 8670 } 8671 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8672 netif_rx_ni(skb); 8673 input_queue_head_incr(oldsd); 8674 } 8675 8676 return 0; 8677 } 8678 8679 /** 8680 * netdev_increment_features - increment feature set by one 8681 * @all: current feature set 8682 * @one: new feature set 8683 * @mask: mask feature set 8684 * 8685 * Computes a new feature set after adding a device with feature set 8686 * @one to the master device with current feature set @all. Will not 8687 * enable anything that is off in @mask. Returns the new feature set. 8688 */ 8689 netdev_features_t netdev_increment_features(netdev_features_t all, 8690 netdev_features_t one, netdev_features_t mask) 8691 { 8692 if (mask & NETIF_F_HW_CSUM) 8693 mask |= NETIF_F_CSUM_MASK; 8694 mask |= NETIF_F_VLAN_CHALLENGED; 8695 8696 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8697 all &= one | ~NETIF_F_ALL_FOR_ALL; 8698 8699 /* If one device supports hw checksumming, set for all. */ 8700 if (all & NETIF_F_HW_CSUM) 8701 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8702 8703 return all; 8704 } 8705 EXPORT_SYMBOL(netdev_increment_features); 8706 8707 static struct hlist_head * __net_init netdev_create_hash(void) 8708 { 8709 int i; 8710 struct hlist_head *hash; 8711 8712 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8713 if (hash != NULL) 8714 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8715 INIT_HLIST_HEAD(&hash[i]); 8716 8717 return hash; 8718 } 8719 8720 /* Initialize per network namespace state */ 8721 static int __net_init netdev_init(struct net *net) 8722 { 8723 if (net != &init_net) 8724 INIT_LIST_HEAD(&net->dev_base_head); 8725 8726 net->dev_name_head = netdev_create_hash(); 8727 if (net->dev_name_head == NULL) 8728 goto err_name; 8729 8730 net->dev_index_head = netdev_create_hash(); 8731 if (net->dev_index_head == NULL) 8732 goto err_idx; 8733 8734 return 0; 8735 8736 err_idx: 8737 kfree(net->dev_name_head); 8738 err_name: 8739 return -ENOMEM; 8740 } 8741 8742 /** 8743 * netdev_drivername - network driver for the device 8744 * @dev: network device 8745 * 8746 * Determine network driver for device. 8747 */ 8748 const char *netdev_drivername(const struct net_device *dev) 8749 { 8750 const struct device_driver *driver; 8751 const struct device *parent; 8752 const char *empty = ""; 8753 8754 parent = dev->dev.parent; 8755 if (!parent) 8756 return empty; 8757 8758 driver = parent->driver; 8759 if (driver && driver->name) 8760 return driver->name; 8761 return empty; 8762 } 8763 8764 static void __netdev_printk(const char *level, const struct net_device *dev, 8765 struct va_format *vaf) 8766 { 8767 if (dev && dev->dev.parent) { 8768 dev_printk_emit(level[1] - '0', 8769 dev->dev.parent, 8770 "%s %s %s%s: %pV", 8771 dev_driver_string(dev->dev.parent), 8772 dev_name(dev->dev.parent), 8773 netdev_name(dev), netdev_reg_state(dev), 8774 vaf); 8775 } else if (dev) { 8776 printk("%s%s%s: %pV", 8777 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8778 } else { 8779 printk("%s(NULL net_device): %pV", level, vaf); 8780 } 8781 } 8782 8783 void netdev_printk(const char *level, const struct net_device *dev, 8784 const char *format, ...) 8785 { 8786 struct va_format vaf; 8787 va_list args; 8788 8789 va_start(args, format); 8790 8791 vaf.fmt = format; 8792 vaf.va = &args; 8793 8794 __netdev_printk(level, dev, &vaf); 8795 8796 va_end(args); 8797 } 8798 EXPORT_SYMBOL(netdev_printk); 8799 8800 #define define_netdev_printk_level(func, level) \ 8801 void func(const struct net_device *dev, const char *fmt, ...) \ 8802 { \ 8803 struct va_format vaf; \ 8804 va_list args; \ 8805 \ 8806 va_start(args, fmt); \ 8807 \ 8808 vaf.fmt = fmt; \ 8809 vaf.va = &args; \ 8810 \ 8811 __netdev_printk(level, dev, &vaf); \ 8812 \ 8813 va_end(args); \ 8814 } \ 8815 EXPORT_SYMBOL(func); 8816 8817 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8818 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8819 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8820 define_netdev_printk_level(netdev_err, KERN_ERR); 8821 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8822 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8823 define_netdev_printk_level(netdev_info, KERN_INFO); 8824 8825 static void __net_exit netdev_exit(struct net *net) 8826 { 8827 kfree(net->dev_name_head); 8828 kfree(net->dev_index_head); 8829 if (net != &init_net) 8830 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 8831 } 8832 8833 static struct pernet_operations __net_initdata netdev_net_ops = { 8834 .init = netdev_init, 8835 .exit = netdev_exit, 8836 }; 8837 8838 static void __net_exit default_device_exit(struct net *net) 8839 { 8840 struct net_device *dev, *aux; 8841 /* 8842 * Push all migratable network devices back to the 8843 * initial network namespace 8844 */ 8845 rtnl_lock(); 8846 for_each_netdev_safe(net, dev, aux) { 8847 int err; 8848 char fb_name[IFNAMSIZ]; 8849 8850 /* Ignore unmoveable devices (i.e. loopback) */ 8851 if (dev->features & NETIF_F_NETNS_LOCAL) 8852 continue; 8853 8854 /* Leave virtual devices for the generic cleanup */ 8855 if (dev->rtnl_link_ops) 8856 continue; 8857 8858 /* Push remaining network devices to init_net */ 8859 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8860 err = dev_change_net_namespace(dev, &init_net, fb_name); 8861 if (err) { 8862 pr_emerg("%s: failed to move %s to init_net: %d\n", 8863 __func__, dev->name, err); 8864 BUG(); 8865 } 8866 } 8867 rtnl_unlock(); 8868 } 8869 8870 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8871 { 8872 /* Return with the rtnl_lock held when there are no network 8873 * devices unregistering in any network namespace in net_list. 8874 */ 8875 struct net *net; 8876 bool unregistering; 8877 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8878 8879 add_wait_queue(&netdev_unregistering_wq, &wait); 8880 for (;;) { 8881 unregistering = false; 8882 rtnl_lock(); 8883 list_for_each_entry(net, net_list, exit_list) { 8884 if (net->dev_unreg_count > 0) { 8885 unregistering = true; 8886 break; 8887 } 8888 } 8889 if (!unregistering) 8890 break; 8891 __rtnl_unlock(); 8892 8893 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8894 } 8895 remove_wait_queue(&netdev_unregistering_wq, &wait); 8896 } 8897 8898 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8899 { 8900 /* At exit all network devices most be removed from a network 8901 * namespace. Do this in the reverse order of registration. 8902 * Do this across as many network namespaces as possible to 8903 * improve batching efficiency. 8904 */ 8905 struct net_device *dev; 8906 struct net *net; 8907 LIST_HEAD(dev_kill_list); 8908 8909 /* To prevent network device cleanup code from dereferencing 8910 * loopback devices or network devices that have been freed 8911 * wait here for all pending unregistrations to complete, 8912 * before unregistring the loopback device and allowing the 8913 * network namespace be freed. 8914 * 8915 * The netdev todo list containing all network devices 8916 * unregistrations that happen in default_device_exit_batch 8917 * will run in the rtnl_unlock() at the end of 8918 * default_device_exit_batch. 8919 */ 8920 rtnl_lock_unregistering(net_list); 8921 list_for_each_entry(net, net_list, exit_list) { 8922 for_each_netdev_reverse(net, dev) { 8923 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8924 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8925 else 8926 unregister_netdevice_queue(dev, &dev_kill_list); 8927 } 8928 } 8929 unregister_netdevice_many(&dev_kill_list); 8930 rtnl_unlock(); 8931 } 8932 8933 static struct pernet_operations __net_initdata default_device_ops = { 8934 .exit = default_device_exit, 8935 .exit_batch = default_device_exit_batch, 8936 }; 8937 8938 /* 8939 * Initialize the DEV module. At boot time this walks the device list and 8940 * unhooks any devices that fail to initialise (normally hardware not 8941 * present) and leaves us with a valid list of present and active devices. 8942 * 8943 */ 8944 8945 /* 8946 * This is called single threaded during boot, so no need 8947 * to take the rtnl semaphore. 8948 */ 8949 static int __init net_dev_init(void) 8950 { 8951 int i, rc = -ENOMEM; 8952 8953 BUG_ON(!dev_boot_phase); 8954 8955 if (dev_proc_init()) 8956 goto out; 8957 8958 if (netdev_kobject_init()) 8959 goto out; 8960 8961 INIT_LIST_HEAD(&ptype_all); 8962 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8963 INIT_LIST_HEAD(&ptype_base[i]); 8964 8965 INIT_LIST_HEAD(&offload_base); 8966 8967 if (register_pernet_subsys(&netdev_net_ops)) 8968 goto out; 8969 8970 /* 8971 * Initialise the packet receive queues. 8972 */ 8973 8974 for_each_possible_cpu(i) { 8975 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8976 struct softnet_data *sd = &per_cpu(softnet_data, i); 8977 8978 INIT_WORK(flush, flush_backlog); 8979 8980 skb_queue_head_init(&sd->input_pkt_queue); 8981 skb_queue_head_init(&sd->process_queue); 8982 #ifdef CONFIG_XFRM_OFFLOAD 8983 skb_queue_head_init(&sd->xfrm_backlog); 8984 #endif 8985 INIT_LIST_HEAD(&sd->poll_list); 8986 sd->output_queue_tailp = &sd->output_queue; 8987 #ifdef CONFIG_RPS 8988 sd->csd.func = rps_trigger_softirq; 8989 sd->csd.info = sd; 8990 sd->cpu = i; 8991 #endif 8992 8993 sd->backlog.poll = process_backlog; 8994 sd->backlog.weight = weight_p; 8995 } 8996 8997 dev_boot_phase = 0; 8998 8999 /* The loopback device is special if any other network devices 9000 * is present in a network namespace the loopback device must 9001 * be present. Since we now dynamically allocate and free the 9002 * loopback device ensure this invariant is maintained by 9003 * keeping the loopback device as the first device on the 9004 * list of network devices. Ensuring the loopback devices 9005 * is the first device that appears and the last network device 9006 * that disappears. 9007 */ 9008 if (register_pernet_device(&loopback_net_ops)) 9009 goto out; 9010 9011 if (register_pernet_device(&default_device_ops)) 9012 goto out; 9013 9014 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9015 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9016 9017 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9018 NULL, dev_cpu_dead); 9019 WARN_ON(rc < 0); 9020 rc = 0; 9021 out: 9022 return rc; 9023 } 9024 9025 subsys_initcall(net_dev_init); 9026