1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/string.h> 83 #include <linux/mm.h> 84 #include <linux/socket.h> 85 #include <linux/sockios.h> 86 #include <linux/errno.h> 87 #include <linux/interrupt.h> 88 #include <linux/if_ether.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/ethtool.h> 92 #include <linux/skbuff.h> 93 #include <linux/bpf.h> 94 #include <linux/bpf_trace.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <net/busy_poll.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/stat.h> 100 #include <net/dst.h> 101 #include <net/dst_metadata.h> 102 #include <net/pkt_sched.h> 103 #include <net/pkt_cls.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 #include <linux/crash_dump.h> 140 #include <linux/sctp.h> 141 #include <net/udp_tunnel.h> 142 #include <linux/net_namespace.h> 143 #include <linux/indirect_call_wrapper.h> 144 #include <net/devlink.h> 145 146 #include "net-sysfs.h" 147 148 #define MAX_GRO_SKBS 8 149 #define MAX_NEST_DEV 8 150 151 /* This should be increased if a protocol with a bigger head is added. */ 152 #define GRO_MAX_HEAD (MAX_HEADER + 128) 153 154 static DEFINE_SPINLOCK(ptype_lock); 155 static DEFINE_SPINLOCK(offload_lock); 156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 157 struct list_head ptype_all __read_mostly; /* Taps */ 158 static struct list_head offload_base __read_mostly; 159 160 static int netif_rx_internal(struct sk_buff *skb); 161 static int call_netdevice_notifiers_info(unsigned long val, 162 struct netdev_notifier_info *info); 163 static int call_netdevice_notifiers_extack(unsigned long val, 164 struct net_device *dev, 165 struct netlink_ext_ack *extack); 166 static struct napi_struct *napi_by_id(unsigned int napi_id); 167 168 /* 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 170 * semaphore. 171 * 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 173 * 174 * Writers must hold the rtnl semaphore while they loop through the 175 * dev_base_head list, and hold dev_base_lock for writing when they do the 176 * actual updates. This allows pure readers to access the list even 177 * while a writer is preparing to update it. 178 * 179 * To put it another way, dev_base_lock is held for writing only to 180 * protect against pure readers; the rtnl semaphore provides the 181 * protection against other writers. 182 * 183 * See, for example usages, register_netdevice() and 184 * unregister_netdevice(), which must be called with the rtnl 185 * semaphore held. 186 */ 187 DEFINE_RWLOCK(dev_base_lock); 188 EXPORT_SYMBOL(dev_base_lock); 189 190 static DEFINE_MUTEX(ifalias_mutex); 191 192 /* protects napi_hash addition/deletion and napi_gen_id */ 193 static DEFINE_SPINLOCK(napi_hash_lock); 194 195 static unsigned int napi_gen_id = NR_CPUS; 196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 197 198 static seqcount_t devnet_rename_seq; 199 200 static inline void dev_base_seq_inc(struct net *net) 201 { 202 while (++net->dev_base_seq == 0) 203 ; 204 } 205 206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 207 { 208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 209 210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 211 } 212 213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 214 { 215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 216 } 217 218 static inline void rps_lock(struct softnet_data *sd) 219 { 220 #ifdef CONFIG_RPS 221 spin_lock(&sd->input_pkt_queue.lock); 222 #endif 223 } 224 225 static inline void rps_unlock(struct softnet_data *sd) 226 { 227 #ifdef CONFIG_RPS 228 spin_unlock(&sd->input_pkt_queue.lock); 229 #endif 230 } 231 232 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 233 const char *name) 234 { 235 struct netdev_name_node *name_node; 236 237 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 238 if (!name_node) 239 return NULL; 240 INIT_HLIST_NODE(&name_node->hlist); 241 name_node->dev = dev; 242 name_node->name = name; 243 return name_node; 244 } 245 246 static struct netdev_name_node * 247 netdev_name_node_head_alloc(struct net_device *dev) 248 { 249 struct netdev_name_node *name_node; 250 251 name_node = netdev_name_node_alloc(dev, dev->name); 252 if (!name_node) 253 return NULL; 254 INIT_LIST_HEAD(&name_node->list); 255 return name_node; 256 } 257 258 static void netdev_name_node_free(struct netdev_name_node *name_node) 259 { 260 kfree(name_node); 261 } 262 263 static void netdev_name_node_add(struct net *net, 264 struct netdev_name_node *name_node) 265 { 266 hlist_add_head_rcu(&name_node->hlist, 267 dev_name_hash(net, name_node->name)); 268 } 269 270 static void netdev_name_node_del(struct netdev_name_node *name_node) 271 { 272 hlist_del_rcu(&name_node->hlist); 273 } 274 275 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 276 const char *name) 277 { 278 struct hlist_head *head = dev_name_hash(net, name); 279 struct netdev_name_node *name_node; 280 281 hlist_for_each_entry(name_node, head, hlist) 282 if (!strcmp(name_node->name, name)) 283 return name_node; 284 return NULL; 285 } 286 287 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 288 const char *name) 289 { 290 struct hlist_head *head = dev_name_hash(net, name); 291 struct netdev_name_node *name_node; 292 293 hlist_for_each_entry_rcu(name_node, head, hlist) 294 if (!strcmp(name_node->name, name)) 295 return name_node; 296 return NULL; 297 } 298 299 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 300 { 301 struct netdev_name_node *name_node; 302 struct net *net = dev_net(dev); 303 304 name_node = netdev_name_node_lookup(net, name); 305 if (name_node) 306 return -EEXIST; 307 name_node = netdev_name_node_alloc(dev, name); 308 if (!name_node) 309 return -ENOMEM; 310 netdev_name_node_add(net, name_node); 311 /* The node that holds dev->name acts as a head of per-device list. */ 312 list_add_tail(&name_node->list, &dev->name_node->list); 313 314 return 0; 315 } 316 EXPORT_SYMBOL(netdev_name_node_alt_create); 317 318 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 319 { 320 list_del(&name_node->list); 321 netdev_name_node_del(name_node); 322 kfree(name_node->name); 323 netdev_name_node_free(name_node); 324 } 325 326 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 327 { 328 struct netdev_name_node *name_node; 329 struct net *net = dev_net(dev); 330 331 name_node = netdev_name_node_lookup(net, name); 332 if (!name_node) 333 return -ENOENT; 334 __netdev_name_node_alt_destroy(name_node); 335 336 return 0; 337 } 338 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 339 340 static void netdev_name_node_alt_flush(struct net_device *dev) 341 { 342 struct netdev_name_node *name_node, *tmp; 343 344 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 345 __netdev_name_node_alt_destroy(name_node); 346 } 347 348 /* Device list insertion */ 349 static void list_netdevice(struct net_device *dev) 350 { 351 struct net *net = dev_net(dev); 352 353 ASSERT_RTNL(); 354 355 write_lock_bh(&dev_base_lock); 356 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 357 netdev_name_node_add(net, dev->name_node); 358 hlist_add_head_rcu(&dev->index_hlist, 359 dev_index_hash(net, dev->ifindex)); 360 write_unlock_bh(&dev_base_lock); 361 362 dev_base_seq_inc(net); 363 } 364 365 /* Device list removal 366 * caller must respect a RCU grace period before freeing/reusing dev 367 */ 368 static void unlist_netdevice(struct net_device *dev) 369 { 370 ASSERT_RTNL(); 371 372 /* Unlink dev from the device chain */ 373 write_lock_bh(&dev_base_lock); 374 list_del_rcu(&dev->dev_list); 375 netdev_name_node_del(dev->name_node); 376 hlist_del_rcu(&dev->index_hlist); 377 write_unlock_bh(&dev_base_lock); 378 379 dev_base_seq_inc(dev_net(dev)); 380 } 381 382 /* 383 * Our notifier list 384 */ 385 386 static RAW_NOTIFIER_HEAD(netdev_chain); 387 388 /* 389 * Device drivers call our routines to queue packets here. We empty the 390 * queue in the local softnet handler. 391 */ 392 393 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 394 EXPORT_PER_CPU_SYMBOL(softnet_data); 395 396 /******************************************************************************* 397 * 398 * Protocol management and registration routines 399 * 400 *******************************************************************************/ 401 402 403 /* 404 * Add a protocol ID to the list. Now that the input handler is 405 * smarter we can dispense with all the messy stuff that used to be 406 * here. 407 * 408 * BEWARE!!! Protocol handlers, mangling input packets, 409 * MUST BE last in hash buckets and checking protocol handlers 410 * MUST start from promiscuous ptype_all chain in net_bh. 411 * It is true now, do not change it. 412 * Explanation follows: if protocol handler, mangling packet, will 413 * be the first on list, it is not able to sense, that packet 414 * is cloned and should be copied-on-write, so that it will 415 * change it and subsequent readers will get broken packet. 416 * --ANK (980803) 417 */ 418 419 static inline struct list_head *ptype_head(const struct packet_type *pt) 420 { 421 if (pt->type == htons(ETH_P_ALL)) 422 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 423 else 424 return pt->dev ? &pt->dev->ptype_specific : 425 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 426 } 427 428 /** 429 * dev_add_pack - add packet handler 430 * @pt: packet type declaration 431 * 432 * Add a protocol handler to the networking stack. The passed &packet_type 433 * is linked into kernel lists and may not be freed until it has been 434 * removed from the kernel lists. 435 * 436 * This call does not sleep therefore it can not 437 * guarantee all CPU's that are in middle of receiving packets 438 * will see the new packet type (until the next received packet). 439 */ 440 441 void dev_add_pack(struct packet_type *pt) 442 { 443 struct list_head *head = ptype_head(pt); 444 445 spin_lock(&ptype_lock); 446 list_add_rcu(&pt->list, head); 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(dev_add_pack); 450 451 /** 452 * __dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * The packet type might still be in use by receivers 461 * and must not be freed until after all the CPU's have gone 462 * through a quiescent state. 463 */ 464 void __dev_remove_pack(struct packet_type *pt) 465 { 466 struct list_head *head = ptype_head(pt); 467 struct packet_type *pt1; 468 469 spin_lock(&ptype_lock); 470 471 list_for_each_entry(pt1, head, list) { 472 if (pt == pt1) { 473 list_del_rcu(&pt->list); 474 goto out; 475 } 476 } 477 478 pr_warn("dev_remove_pack: %p not found\n", pt); 479 out: 480 spin_unlock(&ptype_lock); 481 } 482 EXPORT_SYMBOL(__dev_remove_pack); 483 484 /** 485 * dev_remove_pack - remove packet handler 486 * @pt: packet type declaration 487 * 488 * Remove a protocol handler that was previously added to the kernel 489 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 490 * from the kernel lists and can be freed or reused once this function 491 * returns. 492 * 493 * This call sleeps to guarantee that no CPU is looking at the packet 494 * type after return. 495 */ 496 void dev_remove_pack(struct packet_type *pt) 497 { 498 __dev_remove_pack(pt); 499 500 synchronize_net(); 501 } 502 EXPORT_SYMBOL(dev_remove_pack); 503 504 505 /** 506 * dev_add_offload - register offload handlers 507 * @po: protocol offload declaration 508 * 509 * Add protocol offload handlers to the networking stack. The passed 510 * &proto_offload is linked into kernel lists and may not be freed until 511 * it has been removed from the kernel lists. 512 * 513 * This call does not sleep therefore it can not 514 * guarantee all CPU's that are in middle of receiving packets 515 * will see the new offload handlers (until the next received packet). 516 */ 517 void dev_add_offload(struct packet_offload *po) 518 { 519 struct packet_offload *elem; 520 521 spin_lock(&offload_lock); 522 list_for_each_entry(elem, &offload_base, list) { 523 if (po->priority < elem->priority) 524 break; 525 } 526 list_add_rcu(&po->list, elem->list.prev); 527 spin_unlock(&offload_lock); 528 } 529 EXPORT_SYMBOL(dev_add_offload); 530 531 /** 532 * __dev_remove_offload - remove offload handler 533 * @po: packet offload declaration 534 * 535 * Remove a protocol offload handler that was previously added to the 536 * kernel offload handlers by dev_add_offload(). The passed &offload_type 537 * is removed from the kernel lists and can be freed or reused once this 538 * function returns. 539 * 540 * The packet type might still be in use by receivers 541 * and must not be freed until after all the CPU's have gone 542 * through a quiescent state. 543 */ 544 static void __dev_remove_offload(struct packet_offload *po) 545 { 546 struct list_head *head = &offload_base; 547 struct packet_offload *po1; 548 549 spin_lock(&offload_lock); 550 551 list_for_each_entry(po1, head, list) { 552 if (po == po1) { 553 list_del_rcu(&po->list); 554 goto out; 555 } 556 } 557 558 pr_warn("dev_remove_offload: %p not found\n", po); 559 out: 560 spin_unlock(&offload_lock); 561 } 562 563 /** 564 * dev_remove_offload - remove packet offload handler 565 * @po: packet offload declaration 566 * 567 * Remove a packet offload handler that was previously added to the kernel 568 * offload handlers by dev_add_offload(). The passed &offload_type is 569 * removed from the kernel lists and can be freed or reused once this 570 * function returns. 571 * 572 * This call sleeps to guarantee that no CPU is looking at the packet 573 * type after return. 574 */ 575 void dev_remove_offload(struct packet_offload *po) 576 { 577 __dev_remove_offload(po); 578 579 synchronize_net(); 580 } 581 EXPORT_SYMBOL(dev_remove_offload); 582 583 /****************************************************************************** 584 * 585 * Device Boot-time Settings Routines 586 * 587 ******************************************************************************/ 588 589 /* Boot time configuration table */ 590 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 591 592 /** 593 * netdev_boot_setup_add - add new setup entry 594 * @name: name of the device 595 * @map: configured settings for the device 596 * 597 * Adds new setup entry to the dev_boot_setup list. The function 598 * returns 0 on error and 1 on success. This is a generic routine to 599 * all netdevices. 600 */ 601 static int netdev_boot_setup_add(char *name, struct ifmap *map) 602 { 603 struct netdev_boot_setup *s; 604 int i; 605 606 s = dev_boot_setup; 607 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 608 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 609 memset(s[i].name, 0, sizeof(s[i].name)); 610 strlcpy(s[i].name, name, IFNAMSIZ); 611 memcpy(&s[i].map, map, sizeof(s[i].map)); 612 break; 613 } 614 } 615 616 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 617 } 618 619 /** 620 * netdev_boot_setup_check - check boot time settings 621 * @dev: the netdevice 622 * 623 * Check boot time settings for the device. 624 * The found settings are set for the device to be used 625 * later in the device probing. 626 * Returns 0 if no settings found, 1 if they are. 627 */ 628 int netdev_boot_setup_check(struct net_device *dev) 629 { 630 struct netdev_boot_setup *s = dev_boot_setup; 631 int i; 632 633 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 634 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 635 !strcmp(dev->name, s[i].name)) { 636 dev->irq = s[i].map.irq; 637 dev->base_addr = s[i].map.base_addr; 638 dev->mem_start = s[i].map.mem_start; 639 dev->mem_end = s[i].map.mem_end; 640 return 1; 641 } 642 } 643 return 0; 644 } 645 EXPORT_SYMBOL(netdev_boot_setup_check); 646 647 648 /** 649 * netdev_boot_base - get address from boot time settings 650 * @prefix: prefix for network device 651 * @unit: id for network device 652 * 653 * Check boot time settings for the base address of device. 654 * The found settings are set for the device to be used 655 * later in the device probing. 656 * Returns 0 if no settings found. 657 */ 658 unsigned long netdev_boot_base(const char *prefix, int unit) 659 { 660 const struct netdev_boot_setup *s = dev_boot_setup; 661 char name[IFNAMSIZ]; 662 int i; 663 664 sprintf(name, "%s%d", prefix, unit); 665 666 /* 667 * If device already registered then return base of 1 668 * to indicate not to probe for this interface 669 */ 670 if (__dev_get_by_name(&init_net, name)) 671 return 1; 672 673 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 674 if (!strcmp(name, s[i].name)) 675 return s[i].map.base_addr; 676 return 0; 677 } 678 679 /* 680 * Saves at boot time configured settings for any netdevice. 681 */ 682 int __init netdev_boot_setup(char *str) 683 { 684 int ints[5]; 685 struct ifmap map; 686 687 str = get_options(str, ARRAY_SIZE(ints), ints); 688 if (!str || !*str) 689 return 0; 690 691 /* Save settings */ 692 memset(&map, 0, sizeof(map)); 693 if (ints[0] > 0) 694 map.irq = ints[1]; 695 if (ints[0] > 1) 696 map.base_addr = ints[2]; 697 if (ints[0] > 2) 698 map.mem_start = ints[3]; 699 if (ints[0] > 3) 700 map.mem_end = ints[4]; 701 702 /* Add new entry to the list */ 703 return netdev_boot_setup_add(str, &map); 704 } 705 706 __setup("netdev=", netdev_boot_setup); 707 708 /******************************************************************************* 709 * 710 * Device Interface Subroutines 711 * 712 *******************************************************************************/ 713 714 /** 715 * dev_get_iflink - get 'iflink' value of a interface 716 * @dev: targeted interface 717 * 718 * Indicates the ifindex the interface is linked to. 719 * Physical interfaces have the same 'ifindex' and 'iflink' values. 720 */ 721 722 int dev_get_iflink(const struct net_device *dev) 723 { 724 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 725 return dev->netdev_ops->ndo_get_iflink(dev); 726 727 return dev->ifindex; 728 } 729 EXPORT_SYMBOL(dev_get_iflink); 730 731 /** 732 * dev_fill_metadata_dst - Retrieve tunnel egress information. 733 * @dev: targeted interface 734 * @skb: The packet. 735 * 736 * For better visibility of tunnel traffic OVS needs to retrieve 737 * egress tunnel information for a packet. Following API allows 738 * user to get this info. 739 */ 740 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 741 { 742 struct ip_tunnel_info *info; 743 744 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 745 return -EINVAL; 746 747 info = skb_tunnel_info_unclone(skb); 748 if (!info) 749 return -ENOMEM; 750 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 751 return -EINVAL; 752 753 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 754 } 755 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 756 757 /** 758 * __dev_get_by_name - find a device by its name 759 * @net: the applicable net namespace 760 * @name: name to find 761 * 762 * Find an interface by name. Must be called under RTNL semaphore 763 * or @dev_base_lock. If the name is found a pointer to the device 764 * is returned. If the name is not found then %NULL is returned. The 765 * reference counters are not incremented so the caller must be 766 * careful with locks. 767 */ 768 769 struct net_device *__dev_get_by_name(struct net *net, const char *name) 770 { 771 struct netdev_name_node *node_name; 772 773 node_name = netdev_name_node_lookup(net, name); 774 return node_name ? node_name->dev : NULL; 775 } 776 EXPORT_SYMBOL(__dev_get_by_name); 777 778 /** 779 * dev_get_by_name_rcu - find a device by its name 780 * @net: the applicable net namespace 781 * @name: name to find 782 * 783 * Find an interface by name. 784 * If the name is found a pointer to the device is returned. 785 * If the name is not found then %NULL is returned. 786 * The reference counters are not incremented so the caller must be 787 * careful with locks. The caller must hold RCU lock. 788 */ 789 790 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 791 { 792 struct netdev_name_node *node_name; 793 794 node_name = netdev_name_node_lookup_rcu(net, name); 795 return node_name ? node_name->dev : NULL; 796 } 797 EXPORT_SYMBOL(dev_get_by_name_rcu); 798 799 /** 800 * dev_get_by_name - find a device by its name 801 * @net: the applicable net namespace 802 * @name: name to find 803 * 804 * Find an interface by name. This can be called from any 805 * context and does its own locking. The returned handle has 806 * the usage count incremented and the caller must use dev_put() to 807 * release it when it is no longer needed. %NULL is returned if no 808 * matching device is found. 809 */ 810 811 struct net_device *dev_get_by_name(struct net *net, const char *name) 812 { 813 struct net_device *dev; 814 815 rcu_read_lock(); 816 dev = dev_get_by_name_rcu(net, name); 817 if (dev) 818 dev_hold(dev); 819 rcu_read_unlock(); 820 return dev; 821 } 822 EXPORT_SYMBOL(dev_get_by_name); 823 824 /** 825 * __dev_get_by_index - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold either the RTNL semaphore 833 * or @dev_base_lock. 834 */ 835 836 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 837 { 838 struct net_device *dev; 839 struct hlist_head *head = dev_index_hash(net, ifindex); 840 841 hlist_for_each_entry(dev, head, index_hlist) 842 if (dev->ifindex == ifindex) 843 return dev; 844 845 return NULL; 846 } 847 EXPORT_SYMBOL(__dev_get_by_index); 848 849 /** 850 * dev_get_by_index_rcu - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns %NULL if the device 855 * is not found or a pointer to the device. The device has not 856 * had its reference counter increased so the caller must be careful 857 * about locking. The caller must hold RCU lock. 858 */ 859 860 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 struct hlist_head *head = dev_index_hash(net, ifindex); 864 865 hlist_for_each_entry_rcu(dev, head, index_hlist) 866 if (dev->ifindex == ifindex) 867 return dev; 868 869 return NULL; 870 } 871 EXPORT_SYMBOL(dev_get_by_index_rcu); 872 873 874 /** 875 * dev_get_by_index - find a device by its ifindex 876 * @net: the applicable net namespace 877 * @ifindex: index of device 878 * 879 * Search for an interface by index. Returns NULL if the device 880 * is not found or a pointer to the device. The device returned has 881 * had a reference added and the pointer is safe until the user calls 882 * dev_put to indicate they have finished with it. 883 */ 884 885 struct net_device *dev_get_by_index(struct net *net, int ifindex) 886 { 887 struct net_device *dev; 888 889 rcu_read_lock(); 890 dev = dev_get_by_index_rcu(net, ifindex); 891 if (dev) 892 dev_hold(dev); 893 rcu_read_unlock(); 894 return dev; 895 } 896 EXPORT_SYMBOL(dev_get_by_index); 897 898 /** 899 * dev_get_by_napi_id - find a device by napi_id 900 * @napi_id: ID of the NAPI struct 901 * 902 * Search for an interface by NAPI ID. Returns %NULL if the device 903 * is not found or a pointer to the device. The device has not had 904 * its reference counter increased so the caller must be careful 905 * about locking. The caller must hold RCU lock. 906 */ 907 908 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 909 { 910 struct napi_struct *napi; 911 912 WARN_ON_ONCE(!rcu_read_lock_held()); 913 914 if (napi_id < MIN_NAPI_ID) 915 return NULL; 916 917 napi = napi_by_id(napi_id); 918 919 return napi ? napi->dev : NULL; 920 } 921 EXPORT_SYMBOL(dev_get_by_napi_id); 922 923 /** 924 * netdev_get_name - get a netdevice name, knowing its ifindex. 925 * @net: network namespace 926 * @name: a pointer to the buffer where the name will be stored. 927 * @ifindex: the ifindex of the interface to get the name from. 928 * 929 * The use of raw_seqcount_begin() and cond_resched() before 930 * retrying is required as we want to give the writers a chance 931 * to complete when CONFIG_PREEMPTION is not set. 932 */ 933 int netdev_get_name(struct net *net, char *name, int ifindex) 934 { 935 struct net_device *dev; 936 unsigned int seq; 937 938 retry: 939 seq = raw_seqcount_begin(&devnet_rename_seq); 940 rcu_read_lock(); 941 dev = dev_get_by_index_rcu(net, ifindex); 942 if (!dev) { 943 rcu_read_unlock(); 944 return -ENODEV; 945 } 946 947 strcpy(name, dev->name); 948 rcu_read_unlock(); 949 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 950 cond_resched(); 951 goto retry; 952 } 953 954 return 0; 955 } 956 957 /** 958 * dev_getbyhwaddr_rcu - find a device by its hardware address 959 * @net: the applicable net namespace 960 * @type: media type of device 961 * @ha: hardware address 962 * 963 * Search for an interface by MAC address. Returns NULL if the device 964 * is not found or a pointer to the device. 965 * The caller must hold RCU or RTNL. 966 * The returned device has not had its ref count increased 967 * and the caller must therefore be careful about locking 968 * 969 */ 970 971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 972 const char *ha) 973 { 974 struct net_device *dev; 975 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type && 978 !memcmp(dev->dev_addr, ha, dev->addr_len)) 979 return dev; 980 981 return NULL; 982 } 983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 984 985 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 986 { 987 struct net_device *dev; 988 989 ASSERT_RTNL(); 990 for_each_netdev(net, dev) 991 if (dev->type == type) 992 return dev; 993 994 return NULL; 995 } 996 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 997 998 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 999 { 1000 struct net_device *dev, *ret = NULL; 1001 1002 rcu_read_lock(); 1003 for_each_netdev_rcu(net, dev) 1004 if (dev->type == type) { 1005 dev_hold(dev); 1006 ret = dev; 1007 break; 1008 } 1009 rcu_read_unlock(); 1010 return ret; 1011 } 1012 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1013 1014 /** 1015 * __dev_get_by_flags - find any device with given flags 1016 * @net: the applicable net namespace 1017 * @if_flags: IFF_* values 1018 * @mask: bitmask of bits in if_flags to check 1019 * 1020 * Search for any interface with the given flags. Returns NULL if a device 1021 * is not found or a pointer to the device. Must be called inside 1022 * rtnl_lock(), and result refcount is unchanged. 1023 */ 1024 1025 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1026 unsigned short mask) 1027 { 1028 struct net_device *dev, *ret; 1029 1030 ASSERT_RTNL(); 1031 1032 ret = NULL; 1033 for_each_netdev(net, dev) { 1034 if (((dev->flags ^ if_flags) & mask) == 0) { 1035 ret = dev; 1036 break; 1037 } 1038 } 1039 return ret; 1040 } 1041 EXPORT_SYMBOL(__dev_get_by_flags); 1042 1043 /** 1044 * dev_valid_name - check if name is okay for network device 1045 * @name: name string 1046 * 1047 * Network device names need to be valid file names to 1048 * to allow sysfs to work. We also disallow any kind of 1049 * whitespace. 1050 */ 1051 bool dev_valid_name(const char *name) 1052 { 1053 if (*name == '\0') 1054 return false; 1055 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1056 return false; 1057 if (!strcmp(name, ".") || !strcmp(name, "..")) 1058 return false; 1059 1060 while (*name) { 1061 if (*name == '/' || *name == ':' || isspace(*name)) 1062 return false; 1063 name++; 1064 } 1065 return true; 1066 } 1067 EXPORT_SYMBOL(dev_valid_name); 1068 1069 /** 1070 * __dev_alloc_name - allocate a name for a device 1071 * @net: network namespace to allocate the device name in 1072 * @name: name format string 1073 * @buf: scratch buffer and result name string 1074 * 1075 * Passed a format string - eg "lt%d" it will try and find a suitable 1076 * id. It scans list of devices to build up a free map, then chooses 1077 * the first empty slot. The caller must hold the dev_base or rtnl lock 1078 * while allocating the name and adding the device in order to avoid 1079 * duplicates. 1080 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1081 * Returns the number of the unit assigned or a negative errno code. 1082 */ 1083 1084 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1085 { 1086 int i = 0; 1087 const char *p; 1088 const int max_netdevices = 8*PAGE_SIZE; 1089 unsigned long *inuse; 1090 struct net_device *d; 1091 1092 if (!dev_valid_name(name)) 1093 return -EINVAL; 1094 1095 p = strchr(name, '%'); 1096 if (p) { 1097 /* 1098 * Verify the string as this thing may have come from 1099 * the user. There must be either one "%d" and no other "%" 1100 * characters. 1101 */ 1102 if (p[1] != 'd' || strchr(p + 2, '%')) 1103 return -EINVAL; 1104 1105 /* Use one page as a bit array of possible slots */ 1106 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1107 if (!inuse) 1108 return -ENOMEM; 1109 1110 for_each_netdev(net, d) { 1111 if (!sscanf(d->name, name, &i)) 1112 continue; 1113 if (i < 0 || i >= max_netdevices) 1114 continue; 1115 1116 /* avoid cases where sscanf is not exact inverse of printf */ 1117 snprintf(buf, IFNAMSIZ, name, i); 1118 if (!strncmp(buf, d->name, IFNAMSIZ)) 1119 set_bit(i, inuse); 1120 } 1121 1122 i = find_first_zero_bit(inuse, max_netdevices); 1123 free_page((unsigned long) inuse); 1124 } 1125 1126 snprintf(buf, IFNAMSIZ, name, i); 1127 if (!__dev_get_by_name(net, buf)) 1128 return i; 1129 1130 /* It is possible to run out of possible slots 1131 * when the name is long and there isn't enough space left 1132 * for the digits, or if all bits are used. 1133 */ 1134 return -ENFILE; 1135 } 1136 1137 static int dev_alloc_name_ns(struct net *net, 1138 struct net_device *dev, 1139 const char *name) 1140 { 1141 char buf[IFNAMSIZ]; 1142 int ret; 1143 1144 BUG_ON(!net); 1145 ret = __dev_alloc_name(net, name, buf); 1146 if (ret >= 0) 1147 strlcpy(dev->name, buf, IFNAMSIZ); 1148 return ret; 1149 } 1150 1151 /** 1152 * dev_alloc_name - allocate a name for a device 1153 * @dev: device 1154 * @name: name format string 1155 * 1156 * Passed a format string - eg "lt%d" it will try and find a suitable 1157 * id. It scans list of devices to build up a free map, then chooses 1158 * the first empty slot. The caller must hold the dev_base or rtnl lock 1159 * while allocating the name and adding the device in order to avoid 1160 * duplicates. 1161 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1162 * Returns the number of the unit assigned or a negative errno code. 1163 */ 1164 1165 int dev_alloc_name(struct net_device *dev, const char *name) 1166 { 1167 return dev_alloc_name_ns(dev_net(dev), dev, name); 1168 } 1169 EXPORT_SYMBOL(dev_alloc_name); 1170 1171 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1172 const char *name) 1173 { 1174 BUG_ON(!net); 1175 1176 if (!dev_valid_name(name)) 1177 return -EINVAL; 1178 1179 if (strchr(name, '%')) 1180 return dev_alloc_name_ns(net, dev, name); 1181 else if (__dev_get_by_name(net, name)) 1182 return -EEXIST; 1183 else if (dev->name != name) 1184 strlcpy(dev->name, name, IFNAMSIZ); 1185 1186 return 0; 1187 } 1188 1189 /** 1190 * dev_change_name - change name of a device 1191 * @dev: device 1192 * @newname: name (or format string) must be at least IFNAMSIZ 1193 * 1194 * Change name of a device, can pass format strings "eth%d". 1195 * for wildcarding. 1196 */ 1197 int dev_change_name(struct net_device *dev, const char *newname) 1198 { 1199 unsigned char old_assign_type; 1200 char oldname[IFNAMSIZ]; 1201 int err = 0; 1202 int ret; 1203 struct net *net; 1204 1205 ASSERT_RTNL(); 1206 BUG_ON(!dev_net(dev)); 1207 1208 net = dev_net(dev); 1209 1210 /* Some auto-enslaved devices e.g. failover slaves are 1211 * special, as userspace might rename the device after 1212 * the interface had been brought up and running since 1213 * the point kernel initiated auto-enslavement. Allow 1214 * live name change even when these slave devices are 1215 * up and running. 1216 * 1217 * Typically, users of these auto-enslaving devices 1218 * don't actually care about slave name change, as 1219 * they are supposed to operate on master interface 1220 * directly. 1221 */ 1222 if (dev->flags & IFF_UP && 1223 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1224 return -EBUSY; 1225 1226 write_seqcount_begin(&devnet_rename_seq); 1227 1228 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1229 write_seqcount_end(&devnet_rename_seq); 1230 return 0; 1231 } 1232 1233 memcpy(oldname, dev->name, IFNAMSIZ); 1234 1235 err = dev_get_valid_name(net, dev, newname); 1236 if (err < 0) { 1237 write_seqcount_end(&devnet_rename_seq); 1238 return err; 1239 } 1240 1241 if (oldname[0] && !strchr(oldname, '%')) 1242 netdev_info(dev, "renamed from %s\n", oldname); 1243 1244 old_assign_type = dev->name_assign_type; 1245 dev->name_assign_type = NET_NAME_RENAMED; 1246 1247 rollback: 1248 ret = device_rename(&dev->dev, dev->name); 1249 if (ret) { 1250 memcpy(dev->name, oldname, IFNAMSIZ); 1251 dev->name_assign_type = old_assign_type; 1252 write_seqcount_end(&devnet_rename_seq); 1253 return ret; 1254 } 1255 1256 write_seqcount_end(&devnet_rename_seq); 1257 1258 netdev_adjacent_rename_links(dev, oldname); 1259 1260 write_lock_bh(&dev_base_lock); 1261 netdev_name_node_del(dev->name_node); 1262 write_unlock_bh(&dev_base_lock); 1263 1264 synchronize_rcu(); 1265 1266 write_lock_bh(&dev_base_lock); 1267 netdev_name_node_add(net, dev->name_node); 1268 write_unlock_bh(&dev_base_lock); 1269 1270 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1271 ret = notifier_to_errno(ret); 1272 1273 if (ret) { 1274 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1275 if (err >= 0) { 1276 err = ret; 1277 write_seqcount_begin(&devnet_rename_seq); 1278 memcpy(dev->name, oldname, IFNAMSIZ); 1279 memcpy(oldname, newname, IFNAMSIZ); 1280 dev->name_assign_type = old_assign_type; 1281 old_assign_type = NET_NAME_RENAMED; 1282 goto rollback; 1283 } else { 1284 pr_err("%s: name change rollback failed: %d\n", 1285 dev->name, ret); 1286 } 1287 } 1288 1289 return err; 1290 } 1291 1292 /** 1293 * dev_set_alias - change ifalias of a device 1294 * @dev: device 1295 * @alias: name up to IFALIASZ 1296 * @len: limit of bytes to copy from info 1297 * 1298 * Set ifalias for a device, 1299 */ 1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1301 { 1302 struct dev_ifalias *new_alias = NULL; 1303 1304 if (len >= IFALIASZ) 1305 return -EINVAL; 1306 1307 if (len) { 1308 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1309 if (!new_alias) 1310 return -ENOMEM; 1311 1312 memcpy(new_alias->ifalias, alias, len); 1313 new_alias->ifalias[len] = 0; 1314 } 1315 1316 mutex_lock(&ifalias_mutex); 1317 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1318 mutex_is_locked(&ifalias_mutex)); 1319 mutex_unlock(&ifalias_mutex); 1320 1321 if (new_alias) 1322 kfree_rcu(new_alias, rcuhead); 1323 1324 return len; 1325 } 1326 EXPORT_SYMBOL(dev_set_alias); 1327 1328 /** 1329 * dev_get_alias - get ifalias of a device 1330 * @dev: device 1331 * @name: buffer to store name of ifalias 1332 * @len: size of buffer 1333 * 1334 * get ifalias for a device. Caller must make sure dev cannot go 1335 * away, e.g. rcu read lock or own a reference count to device. 1336 */ 1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1338 { 1339 const struct dev_ifalias *alias; 1340 int ret = 0; 1341 1342 rcu_read_lock(); 1343 alias = rcu_dereference(dev->ifalias); 1344 if (alias) 1345 ret = snprintf(name, len, "%s", alias->ifalias); 1346 rcu_read_unlock(); 1347 1348 return ret; 1349 } 1350 1351 /** 1352 * netdev_features_change - device changes features 1353 * @dev: device to cause notification 1354 * 1355 * Called to indicate a device has changed features. 1356 */ 1357 void netdev_features_change(struct net_device *dev) 1358 { 1359 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1360 } 1361 EXPORT_SYMBOL(netdev_features_change); 1362 1363 /** 1364 * netdev_state_change - device changes state 1365 * @dev: device to cause notification 1366 * 1367 * Called to indicate a device has changed state. This function calls 1368 * the notifier chains for netdev_chain and sends a NEWLINK message 1369 * to the routing socket. 1370 */ 1371 void netdev_state_change(struct net_device *dev) 1372 { 1373 if (dev->flags & IFF_UP) { 1374 struct netdev_notifier_change_info change_info = { 1375 .info.dev = dev, 1376 }; 1377 1378 call_netdevice_notifiers_info(NETDEV_CHANGE, 1379 &change_info.info); 1380 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1381 } 1382 } 1383 EXPORT_SYMBOL(netdev_state_change); 1384 1385 /** 1386 * netdev_notify_peers - notify network peers about existence of @dev 1387 * @dev: network device 1388 * 1389 * Generate traffic such that interested network peers are aware of 1390 * @dev, such as by generating a gratuitous ARP. This may be used when 1391 * a device wants to inform the rest of the network about some sort of 1392 * reconfiguration such as a failover event or virtual machine 1393 * migration. 1394 */ 1395 void netdev_notify_peers(struct net_device *dev) 1396 { 1397 rtnl_lock(); 1398 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1399 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1400 rtnl_unlock(); 1401 } 1402 EXPORT_SYMBOL(netdev_notify_peers); 1403 1404 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1405 { 1406 const struct net_device_ops *ops = dev->netdev_ops; 1407 int ret; 1408 1409 ASSERT_RTNL(); 1410 1411 if (!netif_device_present(dev)) 1412 return -ENODEV; 1413 1414 /* Block netpoll from trying to do any rx path servicing. 1415 * If we don't do this there is a chance ndo_poll_controller 1416 * or ndo_poll may be running while we open the device 1417 */ 1418 netpoll_poll_disable(dev); 1419 1420 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1421 ret = notifier_to_errno(ret); 1422 if (ret) 1423 return ret; 1424 1425 set_bit(__LINK_STATE_START, &dev->state); 1426 1427 if (ops->ndo_validate_addr) 1428 ret = ops->ndo_validate_addr(dev); 1429 1430 if (!ret && ops->ndo_open) 1431 ret = ops->ndo_open(dev); 1432 1433 netpoll_poll_enable(dev); 1434 1435 if (ret) 1436 clear_bit(__LINK_STATE_START, &dev->state); 1437 else { 1438 dev->flags |= IFF_UP; 1439 dev_set_rx_mode(dev); 1440 dev_activate(dev); 1441 add_device_randomness(dev->dev_addr, dev->addr_len); 1442 } 1443 1444 return ret; 1445 } 1446 1447 /** 1448 * dev_open - prepare an interface for use. 1449 * @dev: device to open 1450 * @extack: netlink extended ack 1451 * 1452 * Takes a device from down to up state. The device's private open 1453 * function is invoked and then the multicast lists are loaded. Finally 1454 * the device is moved into the up state and a %NETDEV_UP message is 1455 * sent to the netdev notifier chain. 1456 * 1457 * Calling this function on an active interface is a nop. On a failure 1458 * a negative errno code is returned. 1459 */ 1460 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1461 { 1462 int ret; 1463 1464 if (dev->flags & IFF_UP) 1465 return 0; 1466 1467 ret = __dev_open(dev, extack); 1468 if (ret < 0) 1469 return ret; 1470 1471 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1472 call_netdevice_notifiers(NETDEV_UP, dev); 1473 1474 return ret; 1475 } 1476 EXPORT_SYMBOL(dev_open); 1477 1478 static void __dev_close_many(struct list_head *head) 1479 { 1480 struct net_device *dev; 1481 1482 ASSERT_RTNL(); 1483 might_sleep(); 1484 1485 list_for_each_entry(dev, head, close_list) { 1486 /* Temporarily disable netpoll until the interface is down */ 1487 netpoll_poll_disable(dev); 1488 1489 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1490 1491 clear_bit(__LINK_STATE_START, &dev->state); 1492 1493 /* Synchronize to scheduled poll. We cannot touch poll list, it 1494 * can be even on different cpu. So just clear netif_running(). 1495 * 1496 * dev->stop() will invoke napi_disable() on all of it's 1497 * napi_struct instances on this device. 1498 */ 1499 smp_mb__after_atomic(); /* Commit netif_running(). */ 1500 } 1501 1502 dev_deactivate_many(head); 1503 1504 list_for_each_entry(dev, head, close_list) { 1505 const struct net_device_ops *ops = dev->netdev_ops; 1506 1507 /* 1508 * Call the device specific close. This cannot fail. 1509 * Only if device is UP 1510 * 1511 * We allow it to be called even after a DETACH hot-plug 1512 * event. 1513 */ 1514 if (ops->ndo_stop) 1515 ops->ndo_stop(dev); 1516 1517 dev->flags &= ~IFF_UP; 1518 netpoll_poll_enable(dev); 1519 } 1520 } 1521 1522 static void __dev_close(struct net_device *dev) 1523 { 1524 LIST_HEAD(single); 1525 1526 list_add(&dev->close_list, &single); 1527 __dev_close_many(&single); 1528 list_del(&single); 1529 } 1530 1531 void dev_close_many(struct list_head *head, bool unlink) 1532 { 1533 struct net_device *dev, *tmp; 1534 1535 /* Remove the devices that don't need to be closed */ 1536 list_for_each_entry_safe(dev, tmp, head, close_list) 1537 if (!(dev->flags & IFF_UP)) 1538 list_del_init(&dev->close_list); 1539 1540 __dev_close_many(head); 1541 1542 list_for_each_entry_safe(dev, tmp, head, close_list) { 1543 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1544 call_netdevice_notifiers(NETDEV_DOWN, dev); 1545 if (unlink) 1546 list_del_init(&dev->close_list); 1547 } 1548 } 1549 EXPORT_SYMBOL(dev_close_many); 1550 1551 /** 1552 * dev_close - shutdown an interface. 1553 * @dev: device to shutdown 1554 * 1555 * This function moves an active device into down state. A 1556 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1557 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1558 * chain. 1559 */ 1560 void dev_close(struct net_device *dev) 1561 { 1562 if (dev->flags & IFF_UP) { 1563 LIST_HEAD(single); 1564 1565 list_add(&dev->close_list, &single); 1566 dev_close_many(&single, true); 1567 list_del(&single); 1568 } 1569 } 1570 EXPORT_SYMBOL(dev_close); 1571 1572 1573 /** 1574 * dev_disable_lro - disable Large Receive Offload on a device 1575 * @dev: device 1576 * 1577 * Disable Large Receive Offload (LRO) on a net device. Must be 1578 * called under RTNL. This is needed if received packets may be 1579 * forwarded to another interface. 1580 */ 1581 void dev_disable_lro(struct net_device *dev) 1582 { 1583 struct net_device *lower_dev; 1584 struct list_head *iter; 1585 1586 dev->wanted_features &= ~NETIF_F_LRO; 1587 netdev_update_features(dev); 1588 1589 if (unlikely(dev->features & NETIF_F_LRO)) 1590 netdev_WARN(dev, "failed to disable LRO!\n"); 1591 1592 netdev_for_each_lower_dev(dev, lower_dev, iter) 1593 dev_disable_lro(lower_dev); 1594 } 1595 EXPORT_SYMBOL(dev_disable_lro); 1596 1597 /** 1598 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1599 * @dev: device 1600 * 1601 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1602 * called under RTNL. This is needed if Generic XDP is installed on 1603 * the device. 1604 */ 1605 static void dev_disable_gro_hw(struct net_device *dev) 1606 { 1607 dev->wanted_features &= ~NETIF_F_GRO_HW; 1608 netdev_update_features(dev); 1609 1610 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1611 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1612 } 1613 1614 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1615 { 1616 #define N(val) \ 1617 case NETDEV_##val: \ 1618 return "NETDEV_" __stringify(val); 1619 switch (cmd) { 1620 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1621 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1622 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1623 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1624 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1625 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1626 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1627 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1628 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1629 N(PRE_CHANGEADDR) 1630 } 1631 #undef N 1632 return "UNKNOWN_NETDEV_EVENT"; 1633 } 1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1635 1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1637 struct net_device *dev) 1638 { 1639 struct netdev_notifier_info info = { 1640 .dev = dev, 1641 }; 1642 1643 return nb->notifier_call(nb, val, &info); 1644 } 1645 1646 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1647 struct net_device *dev) 1648 { 1649 int err; 1650 1651 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1652 err = notifier_to_errno(err); 1653 if (err) 1654 return err; 1655 1656 if (!(dev->flags & IFF_UP)) 1657 return 0; 1658 1659 call_netdevice_notifier(nb, NETDEV_UP, dev); 1660 return 0; 1661 } 1662 1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1664 struct net_device *dev) 1665 { 1666 if (dev->flags & IFF_UP) { 1667 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1668 dev); 1669 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1670 } 1671 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1672 } 1673 1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1675 struct net *net) 1676 { 1677 struct net_device *dev; 1678 int err; 1679 1680 for_each_netdev(net, dev) { 1681 err = call_netdevice_register_notifiers(nb, dev); 1682 if (err) 1683 goto rollback; 1684 } 1685 return 0; 1686 1687 rollback: 1688 for_each_netdev_continue_reverse(net, dev) 1689 call_netdevice_unregister_notifiers(nb, dev); 1690 return err; 1691 } 1692 1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1694 struct net *net) 1695 { 1696 struct net_device *dev; 1697 1698 for_each_netdev(net, dev) 1699 call_netdevice_unregister_notifiers(nb, dev); 1700 } 1701 1702 static int dev_boot_phase = 1; 1703 1704 /** 1705 * register_netdevice_notifier - register a network notifier block 1706 * @nb: notifier 1707 * 1708 * Register a notifier to be called when network device events occur. 1709 * The notifier passed is linked into the kernel structures and must 1710 * not be reused until it has been unregistered. A negative errno code 1711 * is returned on a failure. 1712 * 1713 * When registered all registration and up events are replayed 1714 * to the new notifier to allow device to have a race free 1715 * view of the network device list. 1716 */ 1717 1718 int register_netdevice_notifier(struct notifier_block *nb) 1719 { 1720 struct net *net; 1721 int err; 1722 1723 /* Close race with setup_net() and cleanup_net() */ 1724 down_write(&pernet_ops_rwsem); 1725 rtnl_lock(); 1726 err = raw_notifier_chain_register(&netdev_chain, nb); 1727 if (err) 1728 goto unlock; 1729 if (dev_boot_phase) 1730 goto unlock; 1731 for_each_net(net) { 1732 err = call_netdevice_register_net_notifiers(nb, net); 1733 if (err) 1734 goto rollback; 1735 } 1736 1737 unlock: 1738 rtnl_unlock(); 1739 up_write(&pernet_ops_rwsem); 1740 return err; 1741 1742 rollback: 1743 for_each_net_continue_reverse(net) 1744 call_netdevice_unregister_net_notifiers(nb, net); 1745 1746 raw_notifier_chain_unregister(&netdev_chain, nb); 1747 goto unlock; 1748 } 1749 EXPORT_SYMBOL(register_netdevice_notifier); 1750 1751 /** 1752 * unregister_netdevice_notifier - unregister a network notifier block 1753 * @nb: notifier 1754 * 1755 * Unregister a notifier previously registered by 1756 * register_netdevice_notifier(). The notifier is unlinked into the 1757 * kernel structures and may then be reused. A negative errno code 1758 * is returned on a failure. 1759 * 1760 * After unregistering unregister and down device events are synthesized 1761 * for all devices on the device list to the removed notifier to remove 1762 * the need for special case cleanup code. 1763 */ 1764 1765 int unregister_netdevice_notifier(struct notifier_block *nb) 1766 { 1767 struct net *net; 1768 int err; 1769 1770 /* Close race with setup_net() and cleanup_net() */ 1771 down_write(&pernet_ops_rwsem); 1772 rtnl_lock(); 1773 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1774 if (err) 1775 goto unlock; 1776 1777 for_each_net(net) 1778 call_netdevice_unregister_net_notifiers(nb, net); 1779 1780 unlock: 1781 rtnl_unlock(); 1782 up_write(&pernet_ops_rwsem); 1783 return err; 1784 } 1785 EXPORT_SYMBOL(unregister_netdevice_notifier); 1786 1787 static int __register_netdevice_notifier_net(struct net *net, 1788 struct notifier_block *nb, 1789 bool ignore_call_fail) 1790 { 1791 int err; 1792 1793 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1794 if (err) 1795 return err; 1796 if (dev_boot_phase) 1797 return 0; 1798 1799 err = call_netdevice_register_net_notifiers(nb, net); 1800 if (err && !ignore_call_fail) 1801 goto chain_unregister; 1802 1803 return 0; 1804 1805 chain_unregister: 1806 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1807 return err; 1808 } 1809 1810 static int __unregister_netdevice_notifier_net(struct net *net, 1811 struct notifier_block *nb) 1812 { 1813 int err; 1814 1815 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1816 if (err) 1817 return err; 1818 1819 call_netdevice_unregister_net_notifiers(nb, net); 1820 return 0; 1821 } 1822 1823 /** 1824 * register_netdevice_notifier_net - register a per-netns network notifier block 1825 * @net: network namespace 1826 * @nb: notifier 1827 * 1828 * Register a notifier to be called when network device events occur. 1829 * The notifier passed is linked into the kernel structures and must 1830 * not be reused until it has been unregistered. A negative errno code 1831 * is returned on a failure. 1832 * 1833 * When registered all registration and up events are replayed 1834 * to the new notifier to allow device to have a race free 1835 * view of the network device list. 1836 */ 1837 1838 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1839 { 1840 int err; 1841 1842 rtnl_lock(); 1843 err = __register_netdevice_notifier_net(net, nb, false); 1844 rtnl_unlock(); 1845 return err; 1846 } 1847 EXPORT_SYMBOL(register_netdevice_notifier_net); 1848 1849 /** 1850 * unregister_netdevice_notifier_net - unregister a per-netns 1851 * network notifier block 1852 * @net: network namespace 1853 * @nb: notifier 1854 * 1855 * Unregister a notifier previously registered by 1856 * register_netdevice_notifier(). The notifier is unlinked into the 1857 * kernel structures and may then be reused. A negative errno code 1858 * is returned on a failure. 1859 * 1860 * After unregistering unregister and down device events are synthesized 1861 * for all devices on the device list to the removed notifier to remove 1862 * the need for special case cleanup code. 1863 */ 1864 1865 int unregister_netdevice_notifier_net(struct net *net, 1866 struct notifier_block *nb) 1867 { 1868 int err; 1869 1870 rtnl_lock(); 1871 err = __unregister_netdevice_notifier_net(net, nb); 1872 rtnl_unlock(); 1873 return err; 1874 } 1875 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1876 1877 int register_netdevice_notifier_dev_net(struct net_device *dev, 1878 struct notifier_block *nb, 1879 struct netdev_net_notifier *nn) 1880 { 1881 int err; 1882 1883 rtnl_lock(); 1884 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1885 if (!err) { 1886 nn->nb = nb; 1887 list_add(&nn->list, &dev->net_notifier_list); 1888 } 1889 rtnl_unlock(); 1890 return err; 1891 } 1892 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1893 1894 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1895 struct notifier_block *nb, 1896 struct netdev_net_notifier *nn) 1897 { 1898 int err; 1899 1900 rtnl_lock(); 1901 list_del(&nn->list); 1902 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1903 rtnl_unlock(); 1904 return err; 1905 } 1906 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1907 1908 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1909 struct net *net) 1910 { 1911 struct netdev_net_notifier *nn; 1912 1913 list_for_each_entry(nn, &dev->net_notifier_list, list) { 1914 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 1915 __register_netdevice_notifier_net(net, nn->nb, true); 1916 } 1917 } 1918 1919 /** 1920 * call_netdevice_notifiers_info - call all network notifier blocks 1921 * @val: value passed unmodified to notifier function 1922 * @info: notifier information data 1923 * 1924 * Call all network notifier blocks. Parameters and return value 1925 * are as for raw_notifier_call_chain(). 1926 */ 1927 1928 static int call_netdevice_notifiers_info(unsigned long val, 1929 struct netdev_notifier_info *info) 1930 { 1931 struct net *net = dev_net(info->dev); 1932 int ret; 1933 1934 ASSERT_RTNL(); 1935 1936 /* Run per-netns notifier block chain first, then run the global one. 1937 * Hopefully, one day, the global one is going to be removed after 1938 * all notifier block registrators get converted to be per-netns. 1939 */ 1940 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1941 if (ret & NOTIFY_STOP_MASK) 1942 return ret; 1943 return raw_notifier_call_chain(&netdev_chain, val, info); 1944 } 1945 1946 static int call_netdevice_notifiers_extack(unsigned long val, 1947 struct net_device *dev, 1948 struct netlink_ext_ack *extack) 1949 { 1950 struct netdev_notifier_info info = { 1951 .dev = dev, 1952 .extack = extack, 1953 }; 1954 1955 return call_netdevice_notifiers_info(val, &info); 1956 } 1957 1958 /** 1959 * call_netdevice_notifiers - call all network notifier blocks 1960 * @val: value passed unmodified to notifier function 1961 * @dev: net_device pointer passed unmodified to notifier function 1962 * 1963 * Call all network notifier blocks. Parameters and return value 1964 * are as for raw_notifier_call_chain(). 1965 */ 1966 1967 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1968 { 1969 return call_netdevice_notifiers_extack(val, dev, NULL); 1970 } 1971 EXPORT_SYMBOL(call_netdevice_notifiers); 1972 1973 /** 1974 * call_netdevice_notifiers_mtu - call all network notifier blocks 1975 * @val: value passed unmodified to notifier function 1976 * @dev: net_device pointer passed unmodified to notifier function 1977 * @arg: additional u32 argument passed to the notifier function 1978 * 1979 * Call all network notifier blocks. Parameters and return value 1980 * are as for raw_notifier_call_chain(). 1981 */ 1982 static int call_netdevice_notifiers_mtu(unsigned long val, 1983 struct net_device *dev, u32 arg) 1984 { 1985 struct netdev_notifier_info_ext info = { 1986 .info.dev = dev, 1987 .ext.mtu = arg, 1988 }; 1989 1990 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1991 1992 return call_netdevice_notifiers_info(val, &info.info); 1993 } 1994 1995 #ifdef CONFIG_NET_INGRESS 1996 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1997 1998 void net_inc_ingress_queue(void) 1999 { 2000 static_branch_inc(&ingress_needed_key); 2001 } 2002 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2003 2004 void net_dec_ingress_queue(void) 2005 { 2006 static_branch_dec(&ingress_needed_key); 2007 } 2008 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2009 #endif 2010 2011 #ifdef CONFIG_NET_EGRESS 2012 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2013 2014 void net_inc_egress_queue(void) 2015 { 2016 static_branch_inc(&egress_needed_key); 2017 } 2018 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2019 2020 void net_dec_egress_queue(void) 2021 { 2022 static_branch_dec(&egress_needed_key); 2023 } 2024 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2025 #endif 2026 2027 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2028 #ifdef CONFIG_JUMP_LABEL 2029 static atomic_t netstamp_needed_deferred; 2030 static atomic_t netstamp_wanted; 2031 static void netstamp_clear(struct work_struct *work) 2032 { 2033 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2034 int wanted; 2035 2036 wanted = atomic_add_return(deferred, &netstamp_wanted); 2037 if (wanted > 0) 2038 static_branch_enable(&netstamp_needed_key); 2039 else 2040 static_branch_disable(&netstamp_needed_key); 2041 } 2042 static DECLARE_WORK(netstamp_work, netstamp_clear); 2043 #endif 2044 2045 void net_enable_timestamp(void) 2046 { 2047 #ifdef CONFIG_JUMP_LABEL 2048 int wanted; 2049 2050 while (1) { 2051 wanted = atomic_read(&netstamp_wanted); 2052 if (wanted <= 0) 2053 break; 2054 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2055 return; 2056 } 2057 atomic_inc(&netstamp_needed_deferred); 2058 schedule_work(&netstamp_work); 2059 #else 2060 static_branch_inc(&netstamp_needed_key); 2061 #endif 2062 } 2063 EXPORT_SYMBOL(net_enable_timestamp); 2064 2065 void net_disable_timestamp(void) 2066 { 2067 #ifdef CONFIG_JUMP_LABEL 2068 int wanted; 2069 2070 while (1) { 2071 wanted = atomic_read(&netstamp_wanted); 2072 if (wanted <= 1) 2073 break; 2074 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2075 return; 2076 } 2077 atomic_dec(&netstamp_needed_deferred); 2078 schedule_work(&netstamp_work); 2079 #else 2080 static_branch_dec(&netstamp_needed_key); 2081 #endif 2082 } 2083 EXPORT_SYMBOL(net_disable_timestamp); 2084 2085 static inline void net_timestamp_set(struct sk_buff *skb) 2086 { 2087 skb->tstamp = 0; 2088 if (static_branch_unlikely(&netstamp_needed_key)) 2089 __net_timestamp(skb); 2090 } 2091 2092 #define net_timestamp_check(COND, SKB) \ 2093 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2094 if ((COND) && !(SKB)->tstamp) \ 2095 __net_timestamp(SKB); \ 2096 } \ 2097 2098 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2099 { 2100 unsigned int len; 2101 2102 if (!(dev->flags & IFF_UP)) 2103 return false; 2104 2105 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2106 if (skb->len <= len) 2107 return true; 2108 2109 /* if TSO is enabled, we don't care about the length as the packet 2110 * could be forwarded without being segmented before 2111 */ 2112 if (skb_is_gso(skb)) 2113 return true; 2114 2115 return false; 2116 } 2117 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2118 2119 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2120 { 2121 int ret = ____dev_forward_skb(dev, skb); 2122 2123 if (likely(!ret)) { 2124 skb->protocol = eth_type_trans(skb, dev); 2125 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2126 } 2127 2128 return ret; 2129 } 2130 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2131 2132 /** 2133 * dev_forward_skb - loopback an skb to another netif 2134 * 2135 * @dev: destination network device 2136 * @skb: buffer to forward 2137 * 2138 * return values: 2139 * NET_RX_SUCCESS (no congestion) 2140 * NET_RX_DROP (packet was dropped, but freed) 2141 * 2142 * dev_forward_skb can be used for injecting an skb from the 2143 * start_xmit function of one device into the receive queue 2144 * of another device. 2145 * 2146 * The receiving device may be in another namespace, so 2147 * we have to clear all information in the skb that could 2148 * impact namespace isolation. 2149 */ 2150 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2151 { 2152 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2153 } 2154 EXPORT_SYMBOL_GPL(dev_forward_skb); 2155 2156 static inline int deliver_skb(struct sk_buff *skb, 2157 struct packet_type *pt_prev, 2158 struct net_device *orig_dev) 2159 { 2160 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2161 return -ENOMEM; 2162 refcount_inc(&skb->users); 2163 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2164 } 2165 2166 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2167 struct packet_type **pt, 2168 struct net_device *orig_dev, 2169 __be16 type, 2170 struct list_head *ptype_list) 2171 { 2172 struct packet_type *ptype, *pt_prev = *pt; 2173 2174 list_for_each_entry_rcu(ptype, ptype_list, list) { 2175 if (ptype->type != type) 2176 continue; 2177 if (pt_prev) 2178 deliver_skb(skb, pt_prev, orig_dev); 2179 pt_prev = ptype; 2180 } 2181 *pt = pt_prev; 2182 } 2183 2184 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2185 { 2186 if (!ptype->af_packet_priv || !skb->sk) 2187 return false; 2188 2189 if (ptype->id_match) 2190 return ptype->id_match(ptype, skb->sk); 2191 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2192 return true; 2193 2194 return false; 2195 } 2196 2197 /** 2198 * dev_nit_active - return true if any network interface taps are in use 2199 * 2200 * @dev: network device to check for the presence of taps 2201 */ 2202 bool dev_nit_active(struct net_device *dev) 2203 { 2204 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2205 } 2206 EXPORT_SYMBOL_GPL(dev_nit_active); 2207 2208 /* 2209 * Support routine. Sends outgoing frames to any network 2210 * taps currently in use. 2211 */ 2212 2213 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2214 { 2215 struct packet_type *ptype; 2216 struct sk_buff *skb2 = NULL; 2217 struct packet_type *pt_prev = NULL; 2218 struct list_head *ptype_list = &ptype_all; 2219 2220 rcu_read_lock(); 2221 again: 2222 list_for_each_entry_rcu(ptype, ptype_list, list) { 2223 if (ptype->ignore_outgoing) 2224 continue; 2225 2226 /* Never send packets back to the socket 2227 * they originated from - MvS (miquels@drinkel.ow.org) 2228 */ 2229 if (skb_loop_sk(ptype, skb)) 2230 continue; 2231 2232 if (pt_prev) { 2233 deliver_skb(skb2, pt_prev, skb->dev); 2234 pt_prev = ptype; 2235 continue; 2236 } 2237 2238 /* need to clone skb, done only once */ 2239 skb2 = skb_clone(skb, GFP_ATOMIC); 2240 if (!skb2) 2241 goto out_unlock; 2242 2243 net_timestamp_set(skb2); 2244 2245 /* skb->nh should be correctly 2246 * set by sender, so that the second statement is 2247 * just protection against buggy protocols. 2248 */ 2249 skb_reset_mac_header(skb2); 2250 2251 if (skb_network_header(skb2) < skb2->data || 2252 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2253 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2254 ntohs(skb2->protocol), 2255 dev->name); 2256 skb_reset_network_header(skb2); 2257 } 2258 2259 skb2->transport_header = skb2->network_header; 2260 skb2->pkt_type = PACKET_OUTGOING; 2261 pt_prev = ptype; 2262 } 2263 2264 if (ptype_list == &ptype_all) { 2265 ptype_list = &dev->ptype_all; 2266 goto again; 2267 } 2268 out_unlock: 2269 if (pt_prev) { 2270 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2271 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2272 else 2273 kfree_skb(skb2); 2274 } 2275 rcu_read_unlock(); 2276 } 2277 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2278 2279 /** 2280 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2281 * @dev: Network device 2282 * @txq: number of queues available 2283 * 2284 * If real_num_tx_queues is changed the tc mappings may no longer be 2285 * valid. To resolve this verify the tc mapping remains valid and if 2286 * not NULL the mapping. With no priorities mapping to this 2287 * offset/count pair it will no longer be used. In the worst case TC0 2288 * is invalid nothing can be done so disable priority mappings. If is 2289 * expected that drivers will fix this mapping if they can before 2290 * calling netif_set_real_num_tx_queues. 2291 */ 2292 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2293 { 2294 int i; 2295 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2296 2297 /* If TC0 is invalidated disable TC mapping */ 2298 if (tc->offset + tc->count > txq) { 2299 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2300 dev->num_tc = 0; 2301 return; 2302 } 2303 2304 /* Invalidated prio to tc mappings set to TC0 */ 2305 for (i = 1; i < TC_BITMASK + 1; i++) { 2306 int q = netdev_get_prio_tc_map(dev, i); 2307 2308 tc = &dev->tc_to_txq[q]; 2309 if (tc->offset + tc->count > txq) { 2310 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2311 i, q); 2312 netdev_set_prio_tc_map(dev, i, 0); 2313 } 2314 } 2315 } 2316 2317 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2318 { 2319 if (dev->num_tc) { 2320 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2321 int i; 2322 2323 /* walk through the TCs and see if it falls into any of them */ 2324 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2325 if ((txq - tc->offset) < tc->count) 2326 return i; 2327 } 2328 2329 /* didn't find it, just return -1 to indicate no match */ 2330 return -1; 2331 } 2332 2333 return 0; 2334 } 2335 EXPORT_SYMBOL(netdev_txq_to_tc); 2336 2337 #ifdef CONFIG_XPS 2338 struct static_key xps_needed __read_mostly; 2339 EXPORT_SYMBOL(xps_needed); 2340 struct static_key xps_rxqs_needed __read_mostly; 2341 EXPORT_SYMBOL(xps_rxqs_needed); 2342 static DEFINE_MUTEX(xps_map_mutex); 2343 #define xmap_dereference(P) \ 2344 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2345 2346 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2347 int tci, u16 index) 2348 { 2349 struct xps_map *map = NULL; 2350 int pos; 2351 2352 if (dev_maps) 2353 map = xmap_dereference(dev_maps->attr_map[tci]); 2354 if (!map) 2355 return false; 2356 2357 for (pos = map->len; pos--;) { 2358 if (map->queues[pos] != index) 2359 continue; 2360 2361 if (map->len > 1) { 2362 map->queues[pos] = map->queues[--map->len]; 2363 break; 2364 } 2365 2366 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2367 kfree_rcu(map, rcu); 2368 return false; 2369 } 2370 2371 return true; 2372 } 2373 2374 static bool remove_xps_queue_cpu(struct net_device *dev, 2375 struct xps_dev_maps *dev_maps, 2376 int cpu, u16 offset, u16 count) 2377 { 2378 int num_tc = dev->num_tc ? : 1; 2379 bool active = false; 2380 int tci; 2381 2382 for (tci = cpu * num_tc; num_tc--; tci++) { 2383 int i, j; 2384 2385 for (i = count, j = offset; i--; j++) { 2386 if (!remove_xps_queue(dev_maps, tci, j)) 2387 break; 2388 } 2389 2390 active |= i < 0; 2391 } 2392 2393 return active; 2394 } 2395 2396 static void reset_xps_maps(struct net_device *dev, 2397 struct xps_dev_maps *dev_maps, 2398 bool is_rxqs_map) 2399 { 2400 if (is_rxqs_map) { 2401 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2402 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2403 } else { 2404 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2405 } 2406 static_key_slow_dec_cpuslocked(&xps_needed); 2407 kfree_rcu(dev_maps, rcu); 2408 } 2409 2410 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2411 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2412 u16 offset, u16 count, bool is_rxqs_map) 2413 { 2414 bool active = false; 2415 int i, j; 2416 2417 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2418 j < nr_ids;) 2419 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2420 count); 2421 if (!active) 2422 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2423 2424 if (!is_rxqs_map) { 2425 for (i = offset + (count - 1); count--; i--) { 2426 netdev_queue_numa_node_write( 2427 netdev_get_tx_queue(dev, i), 2428 NUMA_NO_NODE); 2429 } 2430 } 2431 } 2432 2433 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2434 u16 count) 2435 { 2436 const unsigned long *possible_mask = NULL; 2437 struct xps_dev_maps *dev_maps; 2438 unsigned int nr_ids; 2439 2440 if (!static_key_false(&xps_needed)) 2441 return; 2442 2443 cpus_read_lock(); 2444 mutex_lock(&xps_map_mutex); 2445 2446 if (static_key_false(&xps_rxqs_needed)) { 2447 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2448 if (dev_maps) { 2449 nr_ids = dev->num_rx_queues; 2450 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2451 offset, count, true); 2452 } 2453 } 2454 2455 dev_maps = xmap_dereference(dev->xps_cpus_map); 2456 if (!dev_maps) 2457 goto out_no_maps; 2458 2459 if (num_possible_cpus() > 1) 2460 possible_mask = cpumask_bits(cpu_possible_mask); 2461 nr_ids = nr_cpu_ids; 2462 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2463 false); 2464 2465 out_no_maps: 2466 mutex_unlock(&xps_map_mutex); 2467 cpus_read_unlock(); 2468 } 2469 2470 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2471 { 2472 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2473 } 2474 2475 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2476 u16 index, bool is_rxqs_map) 2477 { 2478 struct xps_map *new_map; 2479 int alloc_len = XPS_MIN_MAP_ALLOC; 2480 int i, pos; 2481 2482 for (pos = 0; map && pos < map->len; pos++) { 2483 if (map->queues[pos] != index) 2484 continue; 2485 return map; 2486 } 2487 2488 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2489 if (map) { 2490 if (pos < map->alloc_len) 2491 return map; 2492 2493 alloc_len = map->alloc_len * 2; 2494 } 2495 2496 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2497 * map 2498 */ 2499 if (is_rxqs_map) 2500 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2501 else 2502 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2503 cpu_to_node(attr_index)); 2504 if (!new_map) 2505 return NULL; 2506 2507 for (i = 0; i < pos; i++) 2508 new_map->queues[i] = map->queues[i]; 2509 new_map->alloc_len = alloc_len; 2510 new_map->len = pos; 2511 2512 return new_map; 2513 } 2514 2515 /* Must be called under cpus_read_lock */ 2516 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2517 u16 index, bool is_rxqs_map) 2518 { 2519 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2520 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2521 int i, j, tci, numa_node_id = -2; 2522 int maps_sz, num_tc = 1, tc = 0; 2523 struct xps_map *map, *new_map; 2524 bool active = false; 2525 unsigned int nr_ids; 2526 2527 if (dev->num_tc) { 2528 /* Do not allow XPS on subordinate device directly */ 2529 num_tc = dev->num_tc; 2530 if (num_tc < 0) 2531 return -EINVAL; 2532 2533 /* If queue belongs to subordinate dev use its map */ 2534 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2535 2536 tc = netdev_txq_to_tc(dev, index); 2537 if (tc < 0) 2538 return -EINVAL; 2539 } 2540 2541 mutex_lock(&xps_map_mutex); 2542 if (is_rxqs_map) { 2543 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2544 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2545 nr_ids = dev->num_rx_queues; 2546 } else { 2547 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2548 if (num_possible_cpus() > 1) { 2549 online_mask = cpumask_bits(cpu_online_mask); 2550 possible_mask = cpumask_bits(cpu_possible_mask); 2551 } 2552 dev_maps = xmap_dereference(dev->xps_cpus_map); 2553 nr_ids = nr_cpu_ids; 2554 } 2555 2556 if (maps_sz < L1_CACHE_BYTES) 2557 maps_sz = L1_CACHE_BYTES; 2558 2559 /* allocate memory for queue storage */ 2560 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2561 j < nr_ids;) { 2562 if (!new_dev_maps) 2563 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2564 if (!new_dev_maps) { 2565 mutex_unlock(&xps_map_mutex); 2566 return -ENOMEM; 2567 } 2568 2569 tci = j * num_tc + tc; 2570 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2571 NULL; 2572 2573 map = expand_xps_map(map, j, index, is_rxqs_map); 2574 if (!map) 2575 goto error; 2576 2577 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2578 } 2579 2580 if (!new_dev_maps) 2581 goto out_no_new_maps; 2582 2583 if (!dev_maps) { 2584 /* Increment static keys at most once per type */ 2585 static_key_slow_inc_cpuslocked(&xps_needed); 2586 if (is_rxqs_map) 2587 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2588 } 2589 2590 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2591 j < nr_ids;) { 2592 /* copy maps belonging to foreign traffic classes */ 2593 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2594 /* fill in the new device map from the old device map */ 2595 map = xmap_dereference(dev_maps->attr_map[tci]); 2596 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2597 } 2598 2599 /* We need to explicitly update tci as prevous loop 2600 * could break out early if dev_maps is NULL. 2601 */ 2602 tci = j * num_tc + tc; 2603 2604 if (netif_attr_test_mask(j, mask, nr_ids) && 2605 netif_attr_test_online(j, online_mask, nr_ids)) { 2606 /* add tx-queue to CPU/rx-queue maps */ 2607 int pos = 0; 2608 2609 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2610 while ((pos < map->len) && (map->queues[pos] != index)) 2611 pos++; 2612 2613 if (pos == map->len) 2614 map->queues[map->len++] = index; 2615 #ifdef CONFIG_NUMA 2616 if (!is_rxqs_map) { 2617 if (numa_node_id == -2) 2618 numa_node_id = cpu_to_node(j); 2619 else if (numa_node_id != cpu_to_node(j)) 2620 numa_node_id = -1; 2621 } 2622 #endif 2623 } else if (dev_maps) { 2624 /* fill in the new device map from the old device map */ 2625 map = xmap_dereference(dev_maps->attr_map[tci]); 2626 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2627 } 2628 2629 /* copy maps belonging to foreign traffic classes */ 2630 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2631 /* fill in the new device map from the old device map */ 2632 map = xmap_dereference(dev_maps->attr_map[tci]); 2633 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2634 } 2635 } 2636 2637 if (is_rxqs_map) 2638 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2639 else 2640 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2641 2642 /* Cleanup old maps */ 2643 if (!dev_maps) 2644 goto out_no_old_maps; 2645 2646 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2647 j < nr_ids;) { 2648 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2649 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2650 map = xmap_dereference(dev_maps->attr_map[tci]); 2651 if (map && map != new_map) 2652 kfree_rcu(map, rcu); 2653 } 2654 } 2655 2656 kfree_rcu(dev_maps, rcu); 2657 2658 out_no_old_maps: 2659 dev_maps = new_dev_maps; 2660 active = true; 2661 2662 out_no_new_maps: 2663 if (!is_rxqs_map) { 2664 /* update Tx queue numa node */ 2665 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2666 (numa_node_id >= 0) ? 2667 numa_node_id : NUMA_NO_NODE); 2668 } 2669 2670 if (!dev_maps) 2671 goto out_no_maps; 2672 2673 /* removes tx-queue from unused CPUs/rx-queues */ 2674 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2675 j < nr_ids;) { 2676 for (i = tc, tci = j * num_tc; i--; tci++) 2677 active |= remove_xps_queue(dev_maps, tci, index); 2678 if (!netif_attr_test_mask(j, mask, nr_ids) || 2679 !netif_attr_test_online(j, online_mask, nr_ids)) 2680 active |= remove_xps_queue(dev_maps, tci, index); 2681 for (i = num_tc - tc, tci++; --i; tci++) 2682 active |= remove_xps_queue(dev_maps, tci, index); 2683 } 2684 2685 /* free map if not active */ 2686 if (!active) 2687 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2688 2689 out_no_maps: 2690 mutex_unlock(&xps_map_mutex); 2691 2692 return 0; 2693 error: 2694 /* remove any maps that we added */ 2695 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2696 j < nr_ids;) { 2697 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2698 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2699 map = dev_maps ? 2700 xmap_dereference(dev_maps->attr_map[tci]) : 2701 NULL; 2702 if (new_map && new_map != map) 2703 kfree(new_map); 2704 } 2705 } 2706 2707 mutex_unlock(&xps_map_mutex); 2708 2709 kfree(new_dev_maps); 2710 return -ENOMEM; 2711 } 2712 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2713 2714 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2715 u16 index) 2716 { 2717 int ret; 2718 2719 cpus_read_lock(); 2720 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2721 cpus_read_unlock(); 2722 2723 return ret; 2724 } 2725 EXPORT_SYMBOL(netif_set_xps_queue); 2726 2727 #endif 2728 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2729 { 2730 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2731 2732 /* Unbind any subordinate channels */ 2733 while (txq-- != &dev->_tx[0]) { 2734 if (txq->sb_dev) 2735 netdev_unbind_sb_channel(dev, txq->sb_dev); 2736 } 2737 } 2738 2739 void netdev_reset_tc(struct net_device *dev) 2740 { 2741 #ifdef CONFIG_XPS 2742 netif_reset_xps_queues_gt(dev, 0); 2743 #endif 2744 netdev_unbind_all_sb_channels(dev); 2745 2746 /* Reset TC configuration of device */ 2747 dev->num_tc = 0; 2748 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2749 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2750 } 2751 EXPORT_SYMBOL(netdev_reset_tc); 2752 2753 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2754 { 2755 if (tc >= dev->num_tc) 2756 return -EINVAL; 2757 2758 #ifdef CONFIG_XPS 2759 netif_reset_xps_queues(dev, offset, count); 2760 #endif 2761 dev->tc_to_txq[tc].count = count; 2762 dev->tc_to_txq[tc].offset = offset; 2763 return 0; 2764 } 2765 EXPORT_SYMBOL(netdev_set_tc_queue); 2766 2767 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2768 { 2769 if (num_tc > TC_MAX_QUEUE) 2770 return -EINVAL; 2771 2772 #ifdef CONFIG_XPS 2773 netif_reset_xps_queues_gt(dev, 0); 2774 #endif 2775 netdev_unbind_all_sb_channels(dev); 2776 2777 dev->num_tc = num_tc; 2778 return 0; 2779 } 2780 EXPORT_SYMBOL(netdev_set_num_tc); 2781 2782 void netdev_unbind_sb_channel(struct net_device *dev, 2783 struct net_device *sb_dev) 2784 { 2785 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2786 2787 #ifdef CONFIG_XPS 2788 netif_reset_xps_queues_gt(sb_dev, 0); 2789 #endif 2790 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2791 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2792 2793 while (txq-- != &dev->_tx[0]) { 2794 if (txq->sb_dev == sb_dev) 2795 txq->sb_dev = NULL; 2796 } 2797 } 2798 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2799 2800 int netdev_bind_sb_channel_queue(struct net_device *dev, 2801 struct net_device *sb_dev, 2802 u8 tc, u16 count, u16 offset) 2803 { 2804 /* Make certain the sb_dev and dev are already configured */ 2805 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2806 return -EINVAL; 2807 2808 /* We cannot hand out queues we don't have */ 2809 if ((offset + count) > dev->real_num_tx_queues) 2810 return -EINVAL; 2811 2812 /* Record the mapping */ 2813 sb_dev->tc_to_txq[tc].count = count; 2814 sb_dev->tc_to_txq[tc].offset = offset; 2815 2816 /* Provide a way for Tx queue to find the tc_to_txq map or 2817 * XPS map for itself. 2818 */ 2819 while (count--) 2820 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2821 2822 return 0; 2823 } 2824 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2825 2826 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2827 { 2828 /* Do not use a multiqueue device to represent a subordinate channel */ 2829 if (netif_is_multiqueue(dev)) 2830 return -ENODEV; 2831 2832 /* We allow channels 1 - 32767 to be used for subordinate channels. 2833 * Channel 0 is meant to be "native" mode and used only to represent 2834 * the main root device. We allow writing 0 to reset the device back 2835 * to normal mode after being used as a subordinate channel. 2836 */ 2837 if (channel > S16_MAX) 2838 return -EINVAL; 2839 2840 dev->num_tc = -channel; 2841 2842 return 0; 2843 } 2844 EXPORT_SYMBOL(netdev_set_sb_channel); 2845 2846 /* 2847 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2848 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2849 */ 2850 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2851 { 2852 bool disabling; 2853 int rc; 2854 2855 disabling = txq < dev->real_num_tx_queues; 2856 2857 if (txq < 1 || txq > dev->num_tx_queues) 2858 return -EINVAL; 2859 2860 if (dev->reg_state == NETREG_REGISTERED || 2861 dev->reg_state == NETREG_UNREGISTERING) { 2862 ASSERT_RTNL(); 2863 2864 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2865 txq); 2866 if (rc) 2867 return rc; 2868 2869 if (dev->num_tc) 2870 netif_setup_tc(dev, txq); 2871 2872 dev->real_num_tx_queues = txq; 2873 2874 if (disabling) { 2875 synchronize_net(); 2876 qdisc_reset_all_tx_gt(dev, txq); 2877 #ifdef CONFIG_XPS 2878 netif_reset_xps_queues_gt(dev, txq); 2879 #endif 2880 } 2881 } else { 2882 dev->real_num_tx_queues = txq; 2883 } 2884 2885 return 0; 2886 } 2887 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2888 2889 #ifdef CONFIG_SYSFS 2890 /** 2891 * netif_set_real_num_rx_queues - set actual number of RX queues used 2892 * @dev: Network device 2893 * @rxq: Actual number of RX queues 2894 * 2895 * This must be called either with the rtnl_lock held or before 2896 * registration of the net device. Returns 0 on success, or a 2897 * negative error code. If called before registration, it always 2898 * succeeds. 2899 */ 2900 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2901 { 2902 int rc; 2903 2904 if (rxq < 1 || rxq > dev->num_rx_queues) 2905 return -EINVAL; 2906 2907 if (dev->reg_state == NETREG_REGISTERED) { 2908 ASSERT_RTNL(); 2909 2910 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2911 rxq); 2912 if (rc) 2913 return rc; 2914 } 2915 2916 dev->real_num_rx_queues = rxq; 2917 return 0; 2918 } 2919 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2920 #endif 2921 2922 /** 2923 * netif_get_num_default_rss_queues - default number of RSS queues 2924 * 2925 * This routine should set an upper limit on the number of RSS queues 2926 * used by default by multiqueue devices. 2927 */ 2928 int netif_get_num_default_rss_queues(void) 2929 { 2930 return is_kdump_kernel() ? 2931 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2932 } 2933 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2934 2935 static void __netif_reschedule(struct Qdisc *q) 2936 { 2937 struct softnet_data *sd; 2938 unsigned long flags; 2939 2940 local_irq_save(flags); 2941 sd = this_cpu_ptr(&softnet_data); 2942 q->next_sched = NULL; 2943 *sd->output_queue_tailp = q; 2944 sd->output_queue_tailp = &q->next_sched; 2945 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2946 local_irq_restore(flags); 2947 } 2948 2949 void __netif_schedule(struct Qdisc *q) 2950 { 2951 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2952 __netif_reschedule(q); 2953 } 2954 EXPORT_SYMBOL(__netif_schedule); 2955 2956 struct dev_kfree_skb_cb { 2957 enum skb_free_reason reason; 2958 }; 2959 2960 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2961 { 2962 return (struct dev_kfree_skb_cb *)skb->cb; 2963 } 2964 2965 void netif_schedule_queue(struct netdev_queue *txq) 2966 { 2967 rcu_read_lock(); 2968 if (!netif_xmit_stopped(txq)) { 2969 struct Qdisc *q = rcu_dereference(txq->qdisc); 2970 2971 __netif_schedule(q); 2972 } 2973 rcu_read_unlock(); 2974 } 2975 EXPORT_SYMBOL(netif_schedule_queue); 2976 2977 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2978 { 2979 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2980 struct Qdisc *q; 2981 2982 rcu_read_lock(); 2983 q = rcu_dereference(dev_queue->qdisc); 2984 __netif_schedule(q); 2985 rcu_read_unlock(); 2986 } 2987 } 2988 EXPORT_SYMBOL(netif_tx_wake_queue); 2989 2990 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2991 { 2992 unsigned long flags; 2993 2994 if (unlikely(!skb)) 2995 return; 2996 2997 if (likely(refcount_read(&skb->users) == 1)) { 2998 smp_rmb(); 2999 refcount_set(&skb->users, 0); 3000 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3001 return; 3002 } 3003 get_kfree_skb_cb(skb)->reason = reason; 3004 local_irq_save(flags); 3005 skb->next = __this_cpu_read(softnet_data.completion_queue); 3006 __this_cpu_write(softnet_data.completion_queue, skb); 3007 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3008 local_irq_restore(flags); 3009 } 3010 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3011 3012 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3013 { 3014 if (in_irq() || irqs_disabled()) 3015 __dev_kfree_skb_irq(skb, reason); 3016 else 3017 dev_kfree_skb(skb); 3018 } 3019 EXPORT_SYMBOL(__dev_kfree_skb_any); 3020 3021 3022 /** 3023 * netif_device_detach - mark device as removed 3024 * @dev: network device 3025 * 3026 * Mark device as removed from system and therefore no longer available. 3027 */ 3028 void netif_device_detach(struct net_device *dev) 3029 { 3030 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3031 netif_running(dev)) { 3032 netif_tx_stop_all_queues(dev); 3033 } 3034 } 3035 EXPORT_SYMBOL(netif_device_detach); 3036 3037 /** 3038 * netif_device_attach - mark device as attached 3039 * @dev: network device 3040 * 3041 * Mark device as attached from system and restart if needed. 3042 */ 3043 void netif_device_attach(struct net_device *dev) 3044 { 3045 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3046 netif_running(dev)) { 3047 netif_tx_wake_all_queues(dev); 3048 __netdev_watchdog_up(dev); 3049 } 3050 } 3051 EXPORT_SYMBOL(netif_device_attach); 3052 3053 /* 3054 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3055 * to be used as a distribution range. 3056 */ 3057 static u16 skb_tx_hash(const struct net_device *dev, 3058 const struct net_device *sb_dev, 3059 struct sk_buff *skb) 3060 { 3061 u32 hash; 3062 u16 qoffset = 0; 3063 u16 qcount = dev->real_num_tx_queues; 3064 3065 if (dev->num_tc) { 3066 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3067 3068 qoffset = sb_dev->tc_to_txq[tc].offset; 3069 qcount = sb_dev->tc_to_txq[tc].count; 3070 } 3071 3072 if (skb_rx_queue_recorded(skb)) { 3073 hash = skb_get_rx_queue(skb); 3074 while (unlikely(hash >= qcount)) 3075 hash -= qcount; 3076 return hash + qoffset; 3077 } 3078 3079 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3080 } 3081 3082 static void skb_warn_bad_offload(const struct sk_buff *skb) 3083 { 3084 static const netdev_features_t null_features; 3085 struct net_device *dev = skb->dev; 3086 const char *name = ""; 3087 3088 if (!net_ratelimit()) 3089 return; 3090 3091 if (dev) { 3092 if (dev->dev.parent) 3093 name = dev_driver_string(dev->dev.parent); 3094 else 3095 name = netdev_name(dev); 3096 } 3097 skb_dump(KERN_WARNING, skb, false); 3098 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3099 name, dev ? &dev->features : &null_features, 3100 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3101 } 3102 3103 /* 3104 * Invalidate hardware checksum when packet is to be mangled, and 3105 * complete checksum manually on outgoing path. 3106 */ 3107 int skb_checksum_help(struct sk_buff *skb) 3108 { 3109 __wsum csum; 3110 int ret = 0, offset; 3111 3112 if (skb->ip_summed == CHECKSUM_COMPLETE) 3113 goto out_set_summed; 3114 3115 if (unlikely(skb_shinfo(skb)->gso_size)) { 3116 skb_warn_bad_offload(skb); 3117 return -EINVAL; 3118 } 3119 3120 /* Before computing a checksum, we should make sure no frag could 3121 * be modified by an external entity : checksum could be wrong. 3122 */ 3123 if (skb_has_shared_frag(skb)) { 3124 ret = __skb_linearize(skb); 3125 if (ret) 3126 goto out; 3127 } 3128 3129 offset = skb_checksum_start_offset(skb); 3130 BUG_ON(offset >= skb_headlen(skb)); 3131 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3132 3133 offset += skb->csum_offset; 3134 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3135 3136 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3137 if (ret) 3138 goto out; 3139 3140 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3141 out_set_summed: 3142 skb->ip_summed = CHECKSUM_NONE; 3143 out: 3144 return ret; 3145 } 3146 EXPORT_SYMBOL(skb_checksum_help); 3147 3148 int skb_crc32c_csum_help(struct sk_buff *skb) 3149 { 3150 __le32 crc32c_csum; 3151 int ret = 0, offset, start; 3152 3153 if (skb->ip_summed != CHECKSUM_PARTIAL) 3154 goto out; 3155 3156 if (unlikely(skb_is_gso(skb))) 3157 goto out; 3158 3159 /* Before computing a checksum, we should make sure no frag could 3160 * be modified by an external entity : checksum could be wrong. 3161 */ 3162 if (unlikely(skb_has_shared_frag(skb))) { 3163 ret = __skb_linearize(skb); 3164 if (ret) 3165 goto out; 3166 } 3167 start = skb_checksum_start_offset(skb); 3168 offset = start + offsetof(struct sctphdr, checksum); 3169 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3170 ret = -EINVAL; 3171 goto out; 3172 } 3173 3174 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3175 if (ret) 3176 goto out; 3177 3178 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3179 skb->len - start, ~(__u32)0, 3180 crc32c_csum_stub)); 3181 *(__le32 *)(skb->data + offset) = crc32c_csum; 3182 skb->ip_summed = CHECKSUM_NONE; 3183 skb->csum_not_inet = 0; 3184 out: 3185 return ret; 3186 } 3187 3188 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3189 { 3190 __be16 type = skb->protocol; 3191 3192 /* Tunnel gso handlers can set protocol to ethernet. */ 3193 if (type == htons(ETH_P_TEB)) { 3194 struct ethhdr *eth; 3195 3196 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3197 return 0; 3198 3199 eth = (struct ethhdr *)skb->data; 3200 type = eth->h_proto; 3201 } 3202 3203 return __vlan_get_protocol(skb, type, depth); 3204 } 3205 3206 /** 3207 * skb_mac_gso_segment - mac layer segmentation handler. 3208 * @skb: buffer to segment 3209 * @features: features for the output path (see dev->features) 3210 */ 3211 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3212 netdev_features_t features) 3213 { 3214 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3215 struct packet_offload *ptype; 3216 int vlan_depth = skb->mac_len; 3217 __be16 type = skb_network_protocol(skb, &vlan_depth); 3218 3219 if (unlikely(!type)) 3220 return ERR_PTR(-EINVAL); 3221 3222 __skb_pull(skb, vlan_depth); 3223 3224 rcu_read_lock(); 3225 list_for_each_entry_rcu(ptype, &offload_base, list) { 3226 if (ptype->type == type && ptype->callbacks.gso_segment) { 3227 segs = ptype->callbacks.gso_segment(skb, features); 3228 break; 3229 } 3230 } 3231 rcu_read_unlock(); 3232 3233 __skb_push(skb, skb->data - skb_mac_header(skb)); 3234 3235 return segs; 3236 } 3237 EXPORT_SYMBOL(skb_mac_gso_segment); 3238 3239 3240 /* openvswitch calls this on rx path, so we need a different check. 3241 */ 3242 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3243 { 3244 if (tx_path) 3245 return skb->ip_summed != CHECKSUM_PARTIAL && 3246 skb->ip_summed != CHECKSUM_UNNECESSARY; 3247 3248 return skb->ip_summed == CHECKSUM_NONE; 3249 } 3250 3251 /** 3252 * __skb_gso_segment - Perform segmentation on skb. 3253 * @skb: buffer to segment 3254 * @features: features for the output path (see dev->features) 3255 * @tx_path: whether it is called in TX path 3256 * 3257 * This function segments the given skb and returns a list of segments. 3258 * 3259 * It may return NULL if the skb requires no segmentation. This is 3260 * only possible when GSO is used for verifying header integrity. 3261 * 3262 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3263 */ 3264 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3265 netdev_features_t features, bool tx_path) 3266 { 3267 struct sk_buff *segs; 3268 3269 if (unlikely(skb_needs_check(skb, tx_path))) { 3270 int err; 3271 3272 /* We're going to init ->check field in TCP or UDP header */ 3273 err = skb_cow_head(skb, 0); 3274 if (err < 0) 3275 return ERR_PTR(err); 3276 } 3277 3278 /* Only report GSO partial support if it will enable us to 3279 * support segmentation on this frame without needing additional 3280 * work. 3281 */ 3282 if (features & NETIF_F_GSO_PARTIAL) { 3283 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3284 struct net_device *dev = skb->dev; 3285 3286 partial_features |= dev->features & dev->gso_partial_features; 3287 if (!skb_gso_ok(skb, features | partial_features)) 3288 features &= ~NETIF_F_GSO_PARTIAL; 3289 } 3290 3291 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3292 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3293 3294 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3295 SKB_GSO_CB(skb)->encap_level = 0; 3296 3297 skb_reset_mac_header(skb); 3298 skb_reset_mac_len(skb); 3299 3300 segs = skb_mac_gso_segment(skb, features); 3301 3302 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3303 skb_warn_bad_offload(skb); 3304 3305 return segs; 3306 } 3307 EXPORT_SYMBOL(__skb_gso_segment); 3308 3309 /* Take action when hardware reception checksum errors are detected. */ 3310 #ifdef CONFIG_BUG 3311 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3312 { 3313 if (net_ratelimit()) { 3314 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3315 skb_dump(KERN_ERR, skb, true); 3316 dump_stack(); 3317 } 3318 } 3319 EXPORT_SYMBOL(netdev_rx_csum_fault); 3320 #endif 3321 3322 /* XXX: check that highmem exists at all on the given machine. */ 3323 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3324 { 3325 #ifdef CONFIG_HIGHMEM 3326 int i; 3327 3328 if (!(dev->features & NETIF_F_HIGHDMA)) { 3329 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3330 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3331 3332 if (PageHighMem(skb_frag_page(frag))) 3333 return 1; 3334 } 3335 } 3336 #endif 3337 return 0; 3338 } 3339 3340 /* If MPLS offload request, verify we are testing hardware MPLS features 3341 * instead of standard features for the netdev. 3342 */ 3343 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3344 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3345 netdev_features_t features, 3346 __be16 type) 3347 { 3348 if (eth_p_mpls(type)) 3349 features &= skb->dev->mpls_features; 3350 3351 return features; 3352 } 3353 #else 3354 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3355 netdev_features_t features, 3356 __be16 type) 3357 { 3358 return features; 3359 } 3360 #endif 3361 3362 static netdev_features_t harmonize_features(struct sk_buff *skb, 3363 netdev_features_t features) 3364 { 3365 int tmp; 3366 __be16 type; 3367 3368 type = skb_network_protocol(skb, &tmp); 3369 features = net_mpls_features(skb, features, type); 3370 3371 if (skb->ip_summed != CHECKSUM_NONE && 3372 !can_checksum_protocol(features, type)) { 3373 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3374 } 3375 if (illegal_highdma(skb->dev, skb)) 3376 features &= ~NETIF_F_SG; 3377 3378 return features; 3379 } 3380 3381 netdev_features_t passthru_features_check(struct sk_buff *skb, 3382 struct net_device *dev, 3383 netdev_features_t features) 3384 { 3385 return features; 3386 } 3387 EXPORT_SYMBOL(passthru_features_check); 3388 3389 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3390 struct net_device *dev, 3391 netdev_features_t features) 3392 { 3393 return vlan_features_check(skb, features); 3394 } 3395 3396 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3397 struct net_device *dev, 3398 netdev_features_t features) 3399 { 3400 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3401 3402 if (gso_segs > dev->gso_max_segs) 3403 return features & ~NETIF_F_GSO_MASK; 3404 3405 /* Support for GSO partial features requires software 3406 * intervention before we can actually process the packets 3407 * so we need to strip support for any partial features now 3408 * and we can pull them back in after we have partially 3409 * segmented the frame. 3410 */ 3411 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3412 features &= ~dev->gso_partial_features; 3413 3414 /* Make sure to clear the IPv4 ID mangling feature if the 3415 * IPv4 header has the potential to be fragmented. 3416 */ 3417 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3418 struct iphdr *iph = skb->encapsulation ? 3419 inner_ip_hdr(skb) : ip_hdr(skb); 3420 3421 if (!(iph->frag_off & htons(IP_DF))) 3422 features &= ~NETIF_F_TSO_MANGLEID; 3423 } 3424 3425 return features; 3426 } 3427 3428 netdev_features_t netif_skb_features(struct sk_buff *skb) 3429 { 3430 struct net_device *dev = skb->dev; 3431 netdev_features_t features = dev->features; 3432 3433 if (skb_is_gso(skb)) 3434 features = gso_features_check(skb, dev, features); 3435 3436 /* If encapsulation offload request, verify we are testing 3437 * hardware encapsulation features instead of standard 3438 * features for the netdev 3439 */ 3440 if (skb->encapsulation) 3441 features &= dev->hw_enc_features; 3442 3443 if (skb_vlan_tagged(skb)) 3444 features = netdev_intersect_features(features, 3445 dev->vlan_features | 3446 NETIF_F_HW_VLAN_CTAG_TX | 3447 NETIF_F_HW_VLAN_STAG_TX); 3448 3449 if (dev->netdev_ops->ndo_features_check) 3450 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3451 features); 3452 else 3453 features &= dflt_features_check(skb, dev, features); 3454 3455 return harmonize_features(skb, features); 3456 } 3457 EXPORT_SYMBOL(netif_skb_features); 3458 3459 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3460 struct netdev_queue *txq, bool more) 3461 { 3462 unsigned int len; 3463 int rc; 3464 3465 if (dev_nit_active(dev)) 3466 dev_queue_xmit_nit(skb, dev); 3467 3468 len = skb->len; 3469 trace_net_dev_start_xmit(skb, dev); 3470 rc = netdev_start_xmit(skb, dev, txq, more); 3471 trace_net_dev_xmit(skb, rc, dev, len); 3472 3473 return rc; 3474 } 3475 3476 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3477 struct netdev_queue *txq, int *ret) 3478 { 3479 struct sk_buff *skb = first; 3480 int rc = NETDEV_TX_OK; 3481 3482 while (skb) { 3483 struct sk_buff *next = skb->next; 3484 3485 skb_mark_not_on_list(skb); 3486 rc = xmit_one(skb, dev, txq, next != NULL); 3487 if (unlikely(!dev_xmit_complete(rc))) { 3488 skb->next = next; 3489 goto out; 3490 } 3491 3492 skb = next; 3493 if (netif_tx_queue_stopped(txq) && skb) { 3494 rc = NETDEV_TX_BUSY; 3495 break; 3496 } 3497 } 3498 3499 out: 3500 *ret = rc; 3501 return skb; 3502 } 3503 3504 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3505 netdev_features_t features) 3506 { 3507 if (skb_vlan_tag_present(skb) && 3508 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3509 skb = __vlan_hwaccel_push_inside(skb); 3510 return skb; 3511 } 3512 3513 int skb_csum_hwoffload_help(struct sk_buff *skb, 3514 const netdev_features_t features) 3515 { 3516 if (unlikely(skb->csum_not_inet)) 3517 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3518 skb_crc32c_csum_help(skb); 3519 3520 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3521 } 3522 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3523 3524 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3525 { 3526 netdev_features_t features; 3527 3528 features = netif_skb_features(skb); 3529 skb = validate_xmit_vlan(skb, features); 3530 if (unlikely(!skb)) 3531 goto out_null; 3532 3533 skb = sk_validate_xmit_skb(skb, dev); 3534 if (unlikely(!skb)) 3535 goto out_null; 3536 3537 if (netif_needs_gso(skb, features)) { 3538 struct sk_buff *segs; 3539 3540 segs = skb_gso_segment(skb, features); 3541 if (IS_ERR(segs)) { 3542 goto out_kfree_skb; 3543 } else if (segs) { 3544 consume_skb(skb); 3545 skb = segs; 3546 } 3547 } else { 3548 if (skb_needs_linearize(skb, features) && 3549 __skb_linearize(skb)) 3550 goto out_kfree_skb; 3551 3552 /* If packet is not checksummed and device does not 3553 * support checksumming for this protocol, complete 3554 * checksumming here. 3555 */ 3556 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3557 if (skb->encapsulation) 3558 skb_set_inner_transport_header(skb, 3559 skb_checksum_start_offset(skb)); 3560 else 3561 skb_set_transport_header(skb, 3562 skb_checksum_start_offset(skb)); 3563 if (skb_csum_hwoffload_help(skb, features)) 3564 goto out_kfree_skb; 3565 } 3566 } 3567 3568 skb = validate_xmit_xfrm(skb, features, again); 3569 3570 return skb; 3571 3572 out_kfree_skb: 3573 kfree_skb(skb); 3574 out_null: 3575 atomic_long_inc(&dev->tx_dropped); 3576 return NULL; 3577 } 3578 3579 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3580 { 3581 struct sk_buff *next, *head = NULL, *tail; 3582 3583 for (; skb != NULL; skb = next) { 3584 next = skb->next; 3585 skb_mark_not_on_list(skb); 3586 3587 /* in case skb wont be segmented, point to itself */ 3588 skb->prev = skb; 3589 3590 skb = validate_xmit_skb(skb, dev, again); 3591 if (!skb) 3592 continue; 3593 3594 if (!head) 3595 head = skb; 3596 else 3597 tail->next = skb; 3598 /* If skb was segmented, skb->prev points to 3599 * the last segment. If not, it still contains skb. 3600 */ 3601 tail = skb->prev; 3602 } 3603 return head; 3604 } 3605 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3606 3607 static void qdisc_pkt_len_init(struct sk_buff *skb) 3608 { 3609 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3610 3611 qdisc_skb_cb(skb)->pkt_len = skb->len; 3612 3613 /* To get more precise estimation of bytes sent on wire, 3614 * we add to pkt_len the headers size of all segments 3615 */ 3616 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3617 unsigned int hdr_len; 3618 u16 gso_segs = shinfo->gso_segs; 3619 3620 /* mac layer + network layer */ 3621 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3622 3623 /* + transport layer */ 3624 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3625 const struct tcphdr *th; 3626 struct tcphdr _tcphdr; 3627 3628 th = skb_header_pointer(skb, skb_transport_offset(skb), 3629 sizeof(_tcphdr), &_tcphdr); 3630 if (likely(th)) 3631 hdr_len += __tcp_hdrlen(th); 3632 } else { 3633 struct udphdr _udphdr; 3634 3635 if (skb_header_pointer(skb, skb_transport_offset(skb), 3636 sizeof(_udphdr), &_udphdr)) 3637 hdr_len += sizeof(struct udphdr); 3638 } 3639 3640 if (shinfo->gso_type & SKB_GSO_DODGY) 3641 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3642 shinfo->gso_size); 3643 3644 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3645 } 3646 } 3647 3648 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3649 struct net_device *dev, 3650 struct netdev_queue *txq) 3651 { 3652 spinlock_t *root_lock = qdisc_lock(q); 3653 struct sk_buff *to_free = NULL; 3654 bool contended; 3655 int rc; 3656 3657 qdisc_calculate_pkt_len(skb, q); 3658 3659 if (q->flags & TCQ_F_NOLOCK) { 3660 if ((q->flags & TCQ_F_CAN_BYPASS) && READ_ONCE(q->empty) && 3661 qdisc_run_begin(q)) { 3662 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 3663 &q->state))) { 3664 __qdisc_drop(skb, &to_free); 3665 rc = NET_XMIT_DROP; 3666 goto end_run; 3667 } 3668 qdisc_bstats_cpu_update(q, skb); 3669 3670 rc = NET_XMIT_SUCCESS; 3671 if (sch_direct_xmit(skb, q, dev, txq, NULL, true)) 3672 __qdisc_run(q); 3673 3674 end_run: 3675 qdisc_run_end(q); 3676 } else { 3677 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3678 qdisc_run(q); 3679 } 3680 3681 if (unlikely(to_free)) 3682 kfree_skb_list(to_free); 3683 return rc; 3684 } 3685 3686 /* 3687 * Heuristic to force contended enqueues to serialize on a 3688 * separate lock before trying to get qdisc main lock. 3689 * This permits qdisc->running owner to get the lock more 3690 * often and dequeue packets faster. 3691 */ 3692 contended = qdisc_is_running(q); 3693 if (unlikely(contended)) 3694 spin_lock(&q->busylock); 3695 3696 spin_lock(root_lock); 3697 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3698 __qdisc_drop(skb, &to_free); 3699 rc = NET_XMIT_DROP; 3700 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3701 qdisc_run_begin(q)) { 3702 /* 3703 * This is a work-conserving queue; there are no old skbs 3704 * waiting to be sent out; and the qdisc is not running - 3705 * xmit the skb directly. 3706 */ 3707 3708 qdisc_bstats_update(q, skb); 3709 3710 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3711 if (unlikely(contended)) { 3712 spin_unlock(&q->busylock); 3713 contended = false; 3714 } 3715 __qdisc_run(q); 3716 } 3717 3718 qdisc_run_end(q); 3719 rc = NET_XMIT_SUCCESS; 3720 } else { 3721 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3722 if (qdisc_run_begin(q)) { 3723 if (unlikely(contended)) { 3724 spin_unlock(&q->busylock); 3725 contended = false; 3726 } 3727 __qdisc_run(q); 3728 qdisc_run_end(q); 3729 } 3730 } 3731 spin_unlock(root_lock); 3732 if (unlikely(to_free)) 3733 kfree_skb_list(to_free); 3734 if (unlikely(contended)) 3735 spin_unlock(&q->busylock); 3736 return rc; 3737 } 3738 3739 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3740 static void skb_update_prio(struct sk_buff *skb) 3741 { 3742 const struct netprio_map *map; 3743 const struct sock *sk; 3744 unsigned int prioidx; 3745 3746 if (skb->priority) 3747 return; 3748 map = rcu_dereference_bh(skb->dev->priomap); 3749 if (!map) 3750 return; 3751 sk = skb_to_full_sk(skb); 3752 if (!sk) 3753 return; 3754 3755 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3756 3757 if (prioidx < map->priomap_len) 3758 skb->priority = map->priomap[prioidx]; 3759 } 3760 #else 3761 #define skb_update_prio(skb) 3762 #endif 3763 3764 /** 3765 * dev_loopback_xmit - loop back @skb 3766 * @net: network namespace this loopback is happening in 3767 * @sk: sk needed to be a netfilter okfn 3768 * @skb: buffer to transmit 3769 */ 3770 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3771 { 3772 skb_reset_mac_header(skb); 3773 __skb_pull(skb, skb_network_offset(skb)); 3774 skb->pkt_type = PACKET_LOOPBACK; 3775 skb->ip_summed = CHECKSUM_UNNECESSARY; 3776 WARN_ON(!skb_dst(skb)); 3777 skb_dst_force(skb); 3778 netif_rx_ni(skb); 3779 return 0; 3780 } 3781 EXPORT_SYMBOL(dev_loopback_xmit); 3782 3783 #ifdef CONFIG_NET_EGRESS 3784 static struct sk_buff * 3785 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3786 { 3787 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3788 struct tcf_result cl_res; 3789 3790 if (!miniq) 3791 return skb; 3792 3793 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3794 mini_qdisc_bstats_cpu_update(miniq, skb); 3795 3796 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3797 case TC_ACT_OK: 3798 case TC_ACT_RECLASSIFY: 3799 skb->tc_index = TC_H_MIN(cl_res.classid); 3800 break; 3801 case TC_ACT_SHOT: 3802 mini_qdisc_qstats_cpu_drop(miniq); 3803 *ret = NET_XMIT_DROP; 3804 kfree_skb(skb); 3805 return NULL; 3806 case TC_ACT_STOLEN: 3807 case TC_ACT_QUEUED: 3808 case TC_ACT_TRAP: 3809 *ret = NET_XMIT_SUCCESS; 3810 consume_skb(skb); 3811 return NULL; 3812 case TC_ACT_REDIRECT: 3813 /* No need to push/pop skb's mac_header here on egress! */ 3814 skb_do_redirect(skb); 3815 *ret = NET_XMIT_SUCCESS; 3816 return NULL; 3817 default: 3818 break; 3819 } 3820 3821 return skb; 3822 } 3823 #endif /* CONFIG_NET_EGRESS */ 3824 3825 #ifdef CONFIG_XPS 3826 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3827 struct xps_dev_maps *dev_maps, unsigned int tci) 3828 { 3829 struct xps_map *map; 3830 int queue_index = -1; 3831 3832 if (dev->num_tc) { 3833 tci *= dev->num_tc; 3834 tci += netdev_get_prio_tc_map(dev, skb->priority); 3835 } 3836 3837 map = rcu_dereference(dev_maps->attr_map[tci]); 3838 if (map) { 3839 if (map->len == 1) 3840 queue_index = map->queues[0]; 3841 else 3842 queue_index = map->queues[reciprocal_scale( 3843 skb_get_hash(skb), map->len)]; 3844 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3845 queue_index = -1; 3846 } 3847 return queue_index; 3848 } 3849 #endif 3850 3851 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3852 struct sk_buff *skb) 3853 { 3854 #ifdef CONFIG_XPS 3855 struct xps_dev_maps *dev_maps; 3856 struct sock *sk = skb->sk; 3857 int queue_index = -1; 3858 3859 if (!static_key_false(&xps_needed)) 3860 return -1; 3861 3862 rcu_read_lock(); 3863 if (!static_key_false(&xps_rxqs_needed)) 3864 goto get_cpus_map; 3865 3866 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3867 if (dev_maps) { 3868 int tci = sk_rx_queue_get(sk); 3869 3870 if (tci >= 0 && tci < dev->num_rx_queues) 3871 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3872 tci); 3873 } 3874 3875 get_cpus_map: 3876 if (queue_index < 0) { 3877 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3878 if (dev_maps) { 3879 unsigned int tci = skb->sender_cpu - 1; 3880 3881 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3882 tci); 3883 } 3884 } 3885 rcu_read_unlock(); 3886 3887 return queue_index; 3888 #else 3889 return -1; 3890 #endif 3891 } 3892 3893 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3894 struct net_device *sb_dev) 3895 { 3896 return 0; 3897 } 3898 EXPORT_SYMBOL(dev_pick_tx_zero); 3899 3900 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3901 struct net_device *sb_dev) 3902 { 3903 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3904 } 3905 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3906 3907 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3908 struct net_device *sb_dev) 3909 { 3910 struct sock *sk = skb->sk; 3911 int queue_index = sk_tx_queue_get(sk); 3912 3913 sb_dev = sb_dev ? : dev; 3914 3915 if (queue_index < 0 || skb->ooo_okay || 3916 queue_index >= dev->real_num_tx_queues) { 3917 int new_index = get_xps_queue(dev, sb_dev, skb); 3918 3919 if (new_index < 0) 3920 new_index = skb_tx_hash(dev, sb_dev, skb); 3921 3922 if (queue_index != new_index && sk && 3923 sk_fullsock(sk) && 3924 rcu_access_pointer(sk->sk_dst_cache)) 3925 sk_tx_queue_set(sk, new_index); 3926 3927 queue_index = new_index; 3928 } 3929 3930 return queue_index; 3931 } 3932 EXPORT_SYMBOL(netdev_pick_tx); 3933 3934 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3935 struct sk_buff *skb, 3936 struct net_device *sb_dev) 3937 { 3938 int queue_index = 0; 3939 3940 #ifdef CONFIG_XPS 3941 u32 sender_cpu = skb->sender_cpu - 1; 3942 3943 if (sender_cpu >= (u32)NR_CPUS) 3944 skb->sender_cpu = raw_smp_processor_id() + 1; 3945 #endif 3946 3947 if (dev->real_num_tx_queues != 1) { 3948 const struct net_device_ops *ops = dev->netdev_ops; 3949 3950 if (ops->ndo_select_queue) 3951 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 3952 else 3953 queue_index = netdev_pick_tx(dev, skb, sb_dev); 3954 3955 queue_index = netdev_cap_txqueue(dev, queue_index); 3956 } 3957 3958 skb_set_queue_mapping(skb, queue_index); 3959 return netdev_get_tx_queue(dev, queue_index); 3960 } 3961 3962 /** 3963 * __dev_queue_xmit - transmit a buffer 3964 * @skb: buffer to transmit 3965 * @sb_dev: suboordinate device used for L2 forwarding offload 3966 * 3967 * Queue a buffer for transmission to a network device. The caller must 3968 * have set the device and priority and built the buffer before calling 3969 * this function. The function can be called from an interrupt. 3970 * 3971 * A negative errno code is returned on a failure. A success does not 3972 * guarantee the frame will be transmitted as it may be dropped due 3973 * to congestion or traffic shaping. 3974 * 3975 * ----------------------------------------------------------------------------------- 3976 * I notice this method can also return errors from the queue disciplines, 3977 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3978 * be positive. 3979 * 3980 * Regardless of the return value, the skb is consumed, so it is currently 3981 * difficult to retry a send to this method. (You can bump the ref count 3982 * before sending to hold a reference for retry if you are careful.) 3983 * 3984 * When calling this method, interrupts MUST be enabled. This is because 3985 * the BH enable code must have IRQs enabled so that it will not deadlock. 3986 * --BLG 3987 */ 3988 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3989 { 3990 struct net_device *dev = skb->dev; 3991 struct netdev_queue *txq; 3992 struct Qdisc *q; 3993 int rc = -ENOMEM; 3994 bool again = false; 3995 3996 skb_reset_mac_header(skb); 3997 3998 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3999 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 4000 4001 /* Disable soft irqs for various locks below. Also 4002 * stops preemption for RCU. 4003 */ 4004 rcu_read_lock_bh(); 4005 4006 skb_update_prio(skb); 4007 4008 qdisc_pkt_len_init(skb); 4009 #ifdef CONFIG_NET_CLS_ACT 4010 skb->tc_at_ingress = 0; 4011 # ifdef CONFIG_NET_EGRESS 4012 if (static_branch_unlikely(&egress_needed_key)) { 4013 skb = sch_handle_egress(skb, &rc, dev); 4014 if (!skb) 4015 goto out; 4016 } 4017 # endif 4018 #endif 4019 /* If device/qdisc don't need skb->dst, release it right now while 4020 * its hot in this cpu cache. 4021 */ 4022 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4023 skb_dst_drop(skb); 4024 else 4025 skb_dst_force(skb); 4026 4027 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4028 q = rcu_dereference_bh(txq->qdisc); 4029 4030 trace_net_dev_queue(skb); 4031 if (q->enqueue) { 4032 rc = __dev_xmit_skb(skb, q, dev, txq); 4033 goto out; 4034 } 4035 4036 /* The device has no queue. Common case for software devices: 4037 * loopback, all the sorts of tunnels... 4038 4039 * Really, it is unlikely that netif_tx_lock protection is necessary 4040 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4041 * counters.) 4042 * However, it is possible, that they rely on protection 4043 * made by us here. 4044 4045 * Check this and shot the lock. It is not prone from deadlocks. 4046 *Either shot noqueue qdisc, it is even simpler 8) 4047 */ 4048 if (dev->flags & IFF_UP) { 4049 int cpu = smp_processor_id(); /* ok because BHs are off */ 4050 4051 if (txq->xmit_lock_owner != cpu) { 4052 if (dev_xmit_recursion()) 4053 goto recursion_alert; 4054 4055 skb = validate_xmit_skb(skb, dev, &again); 4056 if (!skb) 4057 goto out; 4058 4059 HARD_TX_LOCK(dev, txq, cpu); 4060 4061 if (!netif_xmit_stopped(txq)) { 4062 dev_xmit_recursion_inc(); 4063 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4064 dev_xmit_recursion_dec(); 4065 if (dev_xmit_complete(rc)) { 4066 HARD_TX_UNLOCK(dev, txq); 4067 goto out; 4068 } 4069 } 4070 HARD_TX_UNLOCK(dev, txq); 4071 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4072 dev->name); 4073 } else { 4074 /* Recursion is detected! It is possible, 4075 * unfortunately 4076 */ 4077 recursion_alert: 4078 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4079 dev->name); 4080 } 4081 } 4082 4083 rc = -ENETDOWN; 4084 rcu_read_unlock_bh(); 4085 4086 atomic_long_inc(&dev->tx_dropped); 4087 kfree_skb_list(skb); 4088 return rc; 4089 out: 4090 rcu_read_unlock_bh(); 4091 return rc; 4092 } 4093 4094 int dev_queue_xmit(struct sk_buff *skb) 4095 { 4096 return __dev_queue_xmit(skb, NULL); 4097 } 4098 EXPORT_SYMBOL(dev_queue_xmit); 4099 4100 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4101 { 4102 return __dev_queue_xmit(skb, sb_dev); 4103 } 4104 EXPORT_SYMBOL(dev_queue_xmit_accel); 4105 4106 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4107 { 4108 struct net_device *dev = skb->dev; 4109 struct sk_buff *orig_skb = skb; 4110 struct netdev_queue *txq; 4111 int ret = NETDEV_TX_BUSY; 4112 bool again = false; 4113 4114 if (unlikely(!netif_running(dev) || 4115 !netif_carrier_ok(dev))) 4116 goto drop; 4117 4118 skb = validate_xmit_skb_list(skb, dev, &again); 4119 if (skb != orig_skb) 4120 goto drop; 4121 4122 skb_set_queue_mapping(skb, queue_id); 4123 txq = skb_get_tx_queue(dev, skb); 4124 4125 local_bh_disable(); 4126 4127 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4128 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4129 ret = netdev_start_xmit(skb, dev, txq, false); 4130 HARD_TX_UNLOCK(dev, txq); 4131 4132 local_bh_enable(); 4133 4134 if (!dev_xmit_complete(ret)) 4135 kfree_skb(skb); 4136 4137 return ret; 4138 drop: 4139 atomic_long_inc(&dev->tx_dropped); 4140 kfree_skb_list(skb); 4141 return NET_XMIT_DROP; 4142 } 4143 EXPORT_SYMBOL(dev_direct_xmit); 4144 4145 /************************************************************************* 4146 * Receiver routines 4147 *************************************************************************/ 4148 4149 int netdev_max_backlog __read_mostly = 1000; 4150 EXPORT_SYMBOL(netdev_max_backlog); 4151 4152 int netdev_tstamp_prequeue __read_mostly = 1; 4153 int netdev_budget __read_mostly = 300; 4154 unsigned int __read_mostly netdev_budget_usecs = 2000; 4155 int weight_p __read_mostly = 64; /* old backlog weight */ 4156 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4157 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4158 int dev_rx_weight __read_mostly = 64; 4159 int dev_tx_weight __read_mostly = 64; 4160 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4161 int gro_normal_batch __read_mostly = 8; 4162 4163 /* Called with irq disabled */ 4164 static inline void ____napi_schedule(struct softnet_data *sd, 4165 struct napi_struct *napi) 4166 { 4167 list_add_tail(&napi->poll_list, &sd->poll_list); 4168 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4169 } 4170 4171 #ifdef CONFIG_RPS 4172 4173 /* One global table that all flow-based protocols share. */ 4174 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4175 EXPORT_SYMBOL(rps_sock_flow_table); 4176 u32 rps_cpu_mask __read_mostly; 4177 EXPORT_SYMBOL(rps_cpu_mask); 4178 4179 struct static_key_false rps_needed __read_mostly; 4180 EXPORT_SYMBOL(rps_needed); 4181 struct static_key_false rfs_needed __read_mostly; 4182 EXPORT_SYMBOL(rfs_needed); 4183 4184 static struct rps_dev_flow * 4185 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4186 struct rps_dev_flow *rflow, u16 next_cpu) 4187 { 4188 if (next_cpu < nr_cpu_ids) { 4189 #ifdef CONFIG_RFS_ACCEL 4190 struct netdev_rx_queue *rxqueue; 4191 struct rps_dev_flow_table *flow_table; 4192 struct rps_dev_flow *old_rflow; 4193 u32 flow_id; 4194 u16 rxq_index; 4195 int rc; 4196 4197 /* Should we steer this flow to a different hardware queue? */ 4198 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4199 !(dev->features & NETIF_F_NTUPLE)) 4200 goto out; 4201 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4202 if (rxq_index == skb_get_rx_queue(skb)) 4203 goto out; 4204 4205 rxqueue = dev->_rx + rxq_index; 4206 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4207 if (!flow_table) 4208 goto out; 4209 flow_id = skb_get_hash(skb) & flow_table->mask; 4210 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4211 rxq_index, flow_id); 4212 if (rc < 0) 4213 goto out; 4214 old_rflow = rflow; 4215 rflow = &flow_table->flows[flow_id]; 4216 rflow->filter = rc; 4217 if (old_rflow->filter == rflow->filter) 4218 old_rflow->filter = RPS_NO_FILTER; 4219 out: 4220 #endif 4221 rflow->last_qtail = 4222 per_cpu(softnet_data, next_cpu).input_queue_head; 4223 } 4224 4225 rflow->cpu = next_cpu; 4226 return rflow; 4227 } 4228 4229 /* 4230 * get_rps_cpu is called from netif_receive_skb and returns the target 4231 * CPU from the RPS map of the receiving queue for a given skb. 4232 * rcu_read_lock must be held on entry. 4233 */ 4234 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4235 struct rps_dev_flow **rflowp) 4236 { 4237 const struct rps_sock_flow_table *sock_flow_table; 4238 struct netdev_rx_queue *rxqueue = dev->_rx; 4239 struct rps_dev_flow_table *flow_table; 4240 struct rps_map *map; 4241 int cpu = -1; 4242 u32 tcpu; 4243 u32 hash; 4244 4245 if (skb_rx_queue_recorded(skb)) { 4246 u16 index = skb_get_rx_queue(skb); 4247 4248 if (unlikely(index >= dev->real_num_rx_queues)) { 4249 WARN_ONCE(dev->real_num_rx_queues > 1, 4250 "%s received packet on queue %u, but number " 4251 "of RX queues is %u\n", 4252 dev->name, index, dev->real_num_rx_queues); 4253 goto done; 4254 } 4255 rxqueue += index; 4256 } 4257 4258 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4259 4260 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4261 map = rcu_dereference(rxqueue->rps_map); 4262 if (!flow_table && !map) 4263 goto done; 4264 4265 skb_reset_network_header(skb); 4266 hash = skb_get_hash(skb); 4267 if (!hash) 4268 goto done; 4269 4270 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4271 if (flow_table && sock_flow_table) { 4272 struct rps_dev_flow *rflow; 4273 u32 next_cpu; 4274 u32 ident; 4275 4276 /* First check into global flow table if there is a match */ 4277 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4278 if ((ident ^ hash) & ~rps_cpu_mask) 4279 goto try_rps; 4280 4281 next_cpu = ident & rps_cpu_mask; 4282 4283 /* OK, now we know there is a match, 4284 * we can look at the local (per receive queue) flow table 4285 */ 4286 rflow = &flow_table->flows[hash & flow_table->mask]; 4287 tcpu = rflow->cpu; 4288 4289 /* 4290 * If the desired CPU (where last recvmsg was done) is 4291 * different from current CPU (one in the rx-queue flow 4292 * table entry), switch if one of the following holds: 4293 * - Current CPU is unset (>= nr_cpu_ids). 4294 * - Current CPU is offline. 4295 * - The current CPU's queue tail has advanced beyond the 4296 * last packet that was enqueued using this table entry. 4297 * This guarantees that all previous packets for the flow 4298 * have been dequeued, thus preserving in order delivery. 4299 */ 4300 if (unlikely(tcpu != next_cpu) && 4301 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4302 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4303 rflow->last_qtail)) >= 0)) { 4304 tcpu = next_cpu; 4305 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4306 } 4307 4308 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4309 *rflowp = rflow; 4310 cpu = tcpu; 4311 goto done; 4312 } 4313 } 4314 4315 try_rps: 4316 4317 if (map) { 4318 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4319 if (cpu_online(tcpu)) { 4320 cpu = tcpu; 4321 goto done; 4322 } 4323 } 4324 4325 done: 4326 return cpu; 4327 } 4328 4329 #ifdef CONFIG_RFS_ACCEL 4330 4331 /** 4332 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4333 * @dev: Device on which the filter was set 4334 * @rxq_index: RX queue index 4335 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4336 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4337 * 4338 * Drivers that implement ndo_rx_flow_steer() should periodically call 4339 * this function for each installed filter and remove the filters for 4340 * which it returns %true. 4341 */ 4342 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4343 u32 flow_id, u16 filter_id) 4344 { 4345 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4346 struct rps_dev_flow_table *flow_table; 4347 struct rps_dev_flow *rflow; 4348 bool expire = true; 4349 unsigned int cpu; 4350 4351 rcu_read_lock(); 4352 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4353 if (flow_table && flow_id <= flow_table->mask) { 4354 rflow = &flow_table->flows[flow_id]; 4355 cpu = READ_ONCE(rflow->cpu); 4356 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4357 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4358 rflow->last_qtail) < 4359 (int)(10 * flow_table->mask))) 4360 expire = false; 4361 } 4362 rcu_read_unlock(); 4363 return expire; 4364 } 4365 EXPORT_SYMBOL(rps_may_expire_flow); 4366 4367 #endif /* CONFIG_RFS_ACCEL */ 4368 4369 /* Called from hardirq (IPI) context */ 4370 static void rps_trigger_softirq(void *data) 4371 { 4372 struct softnet_data *sd = data; 4373 4374 ____napi_schedule(sd, &sd->backlog); 4375 sd->received_rps++; 4376 } 4377 4378 #endif /* CONFIG_RPS */ 4379 4380 /* 4381 * Check if this softnet_data structure is another cpu one 4382 * If yes, queue it to our IPI list and return 1 4383 * If no, return 0 4384 */ 4385 static int rps_ipi_queued(struct softnet_data *sd) 4386 { 4387 #ifdef CONFIG_RPS 4388 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4389 4390 if (sd != mysd) { 4391 sd->rps_ipi_next = mysd->rps_ipi_list; 4392 mysd->rps_ipi_list = sd; 4393 4394 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4395 return 1; 4396 } 4397 #endif /* CONFIG_RPS */ 4398 return 0; 4399 } 4400 4401 #ifdef CONFIG_NET_FLOW_LIMIT 4402 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4403 #endif 4404 4405 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4406 { 4407 #ifdef CONFIG_NET_FLOW_LIMIT 4408 struct sd_flow_limit *fl; 4409 struct softnet_data *sd; 4410 unsigned int old_flow, new_flow; 4411 4412 if (qlen < (netdev_max_backlog >> 1)) 4413 return false; 4414 4415 sd = this_cpu_ptr(&softnet_data); 4416 4417 rcu_read_lock(); 4418 fl = rcu_dereference(sd->flow_limit); 4419 if (fl) { 4420 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4421 old_flow = fl->history[fl->history_head]; 4422 fl->history[fl->history_head] = new_flow; 4423 4424 fl->history_head++; 4425 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4426 4427 if (likely(fl->buckets[old_flow])) 4428 fl->buckets[old_flow]--; 4429 4430 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4431 fl->count++; 4432 rcu_read_unlock(); 4433 return true; 4434 } 4435 } 4436 rcu_read_unlock(); 4437 #endif 4438 return false; 4439 } 4440 4441 /* 4442 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4443 * queue (may be a remote CPU queue). 4444 */ 4445 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4446 unsigned int *qtail) 4447 { 4448 struct softnet_data *sd; 4449 unsigned long flags; 4450 unsigned int qlen; 4451 4452 sd = &per_cpu(softnet_data, cpu); 4453 4454 local_irq_save(flags); 4455 4456 rps_lock(sd); 4457 if (!netif_running(skb->dev)) 4458 goto drop; 4459 qlen = skb_queue_len(&sd->input_pkt_queue); 4460 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4461 if (qlen) { 4462 enqueue: 4463 __skb_queue_tail(&sd->input_pkt_queue, skb); 4464 input_queue_tail_incr_save(sd, qtail); 4465 rps_unlock(sd); 4466 local_irq_restore(flags); 4467 return NET_RX_SUCCESS; 4468 } 4469 4470 /* Schedule NAPI for backlog device 4471 * We can use non atomic operation since we own the queue lock 4472 */ 4473 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4474 if (!rps_ipi_queued(sd)) 4475 ____napi_schedule(sd, &sd->backlog); 4476 } 4477 goto enqueue; 4478 } 4479 4480 drop: 4481 sd->dropped++; 4482 rps_unlock(sd); 4483 4484 local_irq_restore(flags); 4485 4486 atomic_long_inc(&skb->dev->rx_dropped); 4487 kfree_skb(skb); 4488 return NET_RX_DROP; 4489 } 4490 4491 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4492 { 4493 struct net_device *dev = skb->dev; 4494 struct netdev_rx_queue *rxqueue; 4495 4496 rxqueue = dev->_rx; 4497 4498 if (skb_rx_queue_recorded(skb)) { 4499 u16 index = skb_get_rx_queue(skb); 4500 4501 if (unlikely(index >= dev->real_num_rx_queues)) { 4502 WARN_ONCE(dev->real_num_rx_queues > 1, 4503 "%s received packet on queue %u, but number " 4504 "of RX queues is %u\n", 4505 dev->name, index, dev->real_num_rx_queues); 4506 4507 return rxqueue; /* Return first rxqueue */ 4508 } 4509 rxqueue += index; 4510 } 4511 return rxqueue; 4512 } 4513 4514 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4515 struct xdp_buff *xdp, 4516 struct bpf_prog *xdp_prog) 4517 { 4518 struct netdev_rx_queue *rxqueue; 4519 void *orig_data, *orig_data_end; 4520 u32 metalen, act = XDP_DROP; 4521 __be16 orig_eth_type; 4522 struct ethhdr *eth; 4523 bool orig_bcast; 4524 int hlen, off; 4525 u32 mac_len; 4526 4527 /* Reinjected packets coming from act_mirred or similar should 4528 * not get XDP generic processing. 4529 */ 4530 if (skb_is_tc_redirected(skb)) 4531 return XDP_PASS; 4532 4533 /* XDP packets must be linear and must have sufficient headroom 4534 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4535 * native XDP provides, thus we need to do it here as well. 4536 */ 4537 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4538 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4539 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4540 int troom = skb->tail + skb->data_len - skb->end; 4541 4542 /* In case we have to go down the path and also linearize, 4543 * then lets do the pskb_expand_head() work just once here. 4544 */ 4545 if (pskb_expand_head(skb, 4546 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4547 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4548 goto do_drop; 4549 if (skb_linearize(skb)) 4550 goto do_drop; 4551 } 4552 4553 /* The XDP program wants to see the packet starting at the MAC 4554 * header. 4555 */ 4556 mac_len = skb->data - skb_mac_header(skb); 4557 hlen = skb_headlen(skb) + mac_len; 4558 xdp->data = skb->data - mac_len; 4559 xdp->data_meta = xdp->data; 4560 xdp->data_end = xdp->data + hlen; 4561 xdp->data_hard_start = skb->data - skb_headroom(skb); 4562 orig_data_end = xdp->data_end; 4563 orig_data = xdp->data; 4564 eth = (struct ethhdr *)xdp->data; 4565 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4566 orig_eth_type = eth->h_proto; 4567 4568 rxqueue = netif_get_rxqueue(skb); 4569 xdp->rxq = &rxqueue->xdp_rxq; 4570 4571 act = bpf_prog_run_xdp(xdp_prog, xdp); 4572 4573 /* check if bpf_xdp_adjust_head was used */ 4574 off = xdp->data - orig_data; 4575 if (off) { 4576 if (off > 0) 4577 __skb_pull(skb, off); 4578 else if (off < 0) 4579 __skb_push(skb, -off); 4580 4581 skb->mac_header += off; 4582 skb_reset_network_header(skb); 4583 } 4584 4585 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4586 * pckt. 4587 */ 4588 off = orig_data_end - xdp->data_end; 4589 if (off != 0) { 4590 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4591 skb->len -= off; 4592 4593 } 4594 4595 /* check if XDP changed eth hdr such SKB needs update */ 4596 eth = (struct ethhdr *)xdp->data; 4597 if ((orig_eth_type != eth->h_proto) || 4598 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4599 __skb_push(skb, ETH_HLEN); 4600 skb->protocol = eth_type_trans(skb, skb->dev); 4601 } 4602 4603 switch (act) { 4604 case XDP_REDIRECT: 4605 case XDP_TX: 4606 __skb_push(skb, mac_len); 4607 break; 4608 case XDP_PASS: 4609 metalen = xdp->data - xdp->data_meta; 4610 if (metalen) 4611 skb_metadata_set(skb, metalen); 4612 break; 4613 default: 4614 bpf_warn_invalid_xdp_action(act); 4615 /* fall through */ 4616 case XDP_ABORTED: 4617 trace_xdp_exception(skb->dev, xdp_prog, act); 4618 /* fall through */ 4619 case XDP_DROP: 4620 do_drop: 4621 kfree_skb(skb); 4622 break; 4623 } 4624 4625 return act; 4626 } 4627 4628 /* When doing generic XDP we have to bypass the qdisc layer and the 4629 * network taps in order to match in-driver-XDP behavior. 4630 */ 4631 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4632 { 4633 struct net_device *dev = skb->dev; 4634 struct netdev_queue *txq; 4635 bool free_skb = true; 4636 int cpu, rc; 4637 4638 txq = netdev_core_pick_tx(dev, skb, NULL); 4639 cpu = smp_processor_id(); 4640 HARD_TX_LOCK(dev, txq, cpu); 4641 if (!netif_xmit_stopped(txq)) { 4642 rc = netdev_start_xmit(skb, dev, txq, 0); 4643 if (dev_xmit_complete(rc)) 4644 free_skb = false; 4645 } 4646 HARD_TX_UNLOCK(dev, txq); 4647 if (free_skb) { 4648 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4649 kfree_skb(skb); 4650 } 4651 } 4652 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4653 4654 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4655 4656 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4657 { 4658 if (xdp_prog) { 4659 struct xdp_buff xdp; 4660 u32 act; 4661 int err; 4662 4663 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4664 if (act != XDP_PASS) { 4665 switch (act) { 4666 case XDP_REDIRECT: 4667 err = xdp_do_generic_redirect(skb->dev, skb, 4668 &xdp, xdp_prog); 4669 if (err) 4670 goto out_redir; 4671 break; 4672 case XDP_TX: 4673 generic_xdp_tx(skb, xdp_prog); 4674 break; 4675 } 4676 return XDP_DROP; 4677 } 4678 } 4679 return XDP_PASS; 4680 out_redir: 4681 kfree_skb(skb); 4682 return XDP_DROP; 4683 } 4684 EXPORT_SYMBOL_GPL(do_xdp_generic); 4685 4686 static int netif_rx_internal(struct sk_buff *skb) 4687 { 4688 int ret; 4689 4690 net_timestamp_check(netdev_tstamp_prequeue, skb); 4691 4692 trace_netif_rx(skb); 4693 4694 #ifdef CONFIG_RPS 4695 if (static_branch_unlikely(&rps_needed)) { 4696 struct rps_dev_flow voidflow, *rflow = &voidflow; 4697 int cpu; 4698 4699 preempt_disable(); 4700 rcu_read_lock(); 4701 4702 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4703 if (cpu < 0) 4704 cpu = smp_processor_id(); 4705 4706 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4707 4708 rcu_read_unlock(); 4709 preempt_enable(); 4710 } else 4711 #endif 4712 { 4713 unsigned int qtail; 4714 4715 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4716 put_cpu(); 4717 } 4718 return ret; 4719 } 4720 4721 /** 4722 * netif_rx - post buffer to the network code 4723 * @skb: buffer to post 4724 * 4725 * This function receives a packet from a device driver and queues it for 4726 * the upper (protocol) levels to process. It always succeeds. The buffer 4727 * may be dropped during processing for congestion control or by the 4728 * protocol layers. 4729 * 4730 * return values: 4731 * NET_RX_SUCCESS (no congestion) 4732 * NET_RX_DROP (packet was dropped) 4733 * 4734 */ 4735 4736 int netif_rx(struct sk_buff *skb) 4737 { 4738 int ret; 4739 4740 trace_netif_rx_entry(skb); 4741 4742 ret = netif_rx_internal(skb); 4743 trace_netif_rx_exit(ret); 4744 4745 return ret; 4746 } 4747 EXPORT_SYMBOL(netif_rx); 4748 4749 int netif_rx_ni(struct sk_buff *skb) 4750 { 4751 int err; 4752 4753 trace_netif_rx_ni_entry(skb); 4754 4755 preempt_disable(); 4756 err = netif_rx_internal(skb); 4757 if (local_softirq_pending()) 4758 do_softirq(); 4759 preempt_enable(); 4760 trace_netif_rx_ni_exit(err); 4761 4762 return err; 4763 } 4764 EXPORT_SYMBOL(netif_rx_ni); 4765 4766 static __latent_entropy void net_tx_action(struct softirq_action *h) 4767 { 4768 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4769 4770 if (sd->completion_queue) { 4771 struct sk_buff *clist; 4772 4773 local_irq_disable(); 4774 clist = sd->completion_queue; 4775 sd->completion_queue = NULL; 4776 local_irq_enable(); 4777 4778 while (clist) { 4779 struct sk_buff *skb = clist; 4780 4781 clist = clist->next; 4782 4783 WARN_ON(refcount_read(&skb->users)); 4784 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4785 trace_consume_skb(skb); 4786 else 4787 trace_kfree_skb(skb, net_tx_action); 4788 4789 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4790 __kfree_skb(skb); 4791 else 4792 __kfree_skb_defer(skb); 4793 } 4794 4795 __kfree_skb_flush(); 4796 } 4797 4798 if (sd->output_queue) { 4799 struct Qdisc *head; 4800 4801 local_irq_disable(); 4802 head = sd->output_queue; 4803 sd->output_queue = NULL; 4804 sd->output_queue_tailp = &sd->output_queue; 4805 local_irq_enable(); 4806 4807 while (head) { 4808 struct Qdisc *q = head; 4809 spinlock_t *root_lock = NULL; 4810 4811 head = head->next_sched; 4812 4813 if (!(q->flags & TCQ_F_NOLOCK)) { 4814 root_lock = qdisc_lock(q); 4815 spin_lock(root_lock); 4816 } 4817 /* We need to make sure head->next_sched is read 4818 * before clearing __QDISC_STATE_SCHED 4819 */ 4820 smp_mb__before_atomic(); 4821 clear_bit(__QDISC_STATE_SCHED, &q->state); 4822 qdisc_run(q); 4823 if (root_lock) 4824 spin_unlock(root_lock); 4825 } 4826 } 4827 4828 xfrm_dev_backlog(sd); 4829 } 4830 4831 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4832 /* This hook is defined here for ATM LANE */ 4833 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4834 unsigned char *addr) __read_mostly; 4835 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4836 #endif 4837 4838 static inline struct sk_buff * 4839 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4840 struct net_device *orig_dev) 4841 { 4842 #ifdef CONFIG_NET_CLS_ACT 4843 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4844 struct tcf_result cl_res; 4845 4846 /* If there's at least one ingress present somewhere (so 4847 * we get here via enabled static key), remaining devices 4848 * that are not configured with an ingress qdisc will bail 4849 * out here. 4850 */ 4851 if (!miniq) 4852 return skb; 4853 4854 if (*pt_prev) { 4855 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4856 *pt_prev = NULL; 4857 } 4858 4859 qdisc_skb_cb(skb)->pkt_len = skb->len; 4860 skb->tc_at_ingress = 1; 4861 mini_qdisc_bstats_cpu_update(miniq, skb); 4862 4863 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4864 case TC_ACT_OK: 4865 case TC_ACT_RECLASSIFY: 4866 skb->tc_index = TC_H_MIN(cl_res.classid); 4867 break; 4868 case TC_ACT_SHOT: 4869 mini_qdisc_qstats_cpu_drop(miniq); 4870 kfree_skb(skb); 4871 return NULL; 4872 case TC_ACT_STOLEN: 4873 case TC_ACT_QUEUED: 4874 case TC_ACT_TRAP: 4875 consume_skb(skb); 4876 return NULL; 4877 case TC_ACT_REDIRECT: 4878 /* skb_mac_header check was done by cls/act_bpf, so 4879 * we can safely push the L2 header back before 4880 * redirecting to another netdev 4881 */ 4882 __skb_push(skb, skb->mac_len); 4883 skb_do_redirect(skb); 4884 return NULL; 4885 case TC_ACT_CONSUMED: 4886 return NULL; 4887 default: 4888 break; 4889 } 4890 #endif /* CONFIG_NET_CLS_ACT */ 4891 return skb; 4892 } 4893 4894 /** 4895 * netdev_is_rx_handler_busy - check if receive handler is registered 4896 * @dev: device to check 4897 * 4898 * Check if a receive handler is already registered for a given device. 4899 * Return true if there one. 4900 * 4901 * The caller must hold the rtnl_mutex. 4902 */ 4903 bool netdev_is_rx_handler_busy(struct net_device *dev) 4904 { 4905 ASSERT_RTNL(); 4906 return dev && rtnl_dereference(dev->rx_handler); 4907 } 4908 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4909 4910 /** 4911 * netdev_rx_handler_register - register receive handler 4912 * @dev: device to register a handler for 4913 * @rx_handler: receive handler to register 4914 * @rx_handler_data: data pointer that is used by rx handler 4915 * 4916 * Register a receive handler for a device. This handler will then be 4917 * called from __netif_receive_skb. A negative errno code is returned 4918 * on a failure. 4919 * 4920 * The caller must hold the rtnl_mutex. 4921 * 4922 * For a general description of rx_handler, see enum rx_handler_result. 4923 */ 4924 int netdev_rx_handler_register(struct net_device *dev, 4925 rx_handler_func_t *rx_handler, 4926 void *rx_handler_data) 4927 { 4928 if (netdev_is_rx_handler_busy(dev)) 4929 return -EBUSY; 4930 4931 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4932 return -EINVAL; 4933 4934 /* Note: rx_handler_data must be set before rx_handler */ 4935 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4936 rcu_assign_pointer(dev->rx_handler, rx_handler); 4937 4938 return 0; 4939 } 4940 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4941 4942 /** 4943 * netdev_rx_handler_unregister - unregister receive handler 4944 * @dev: device to unregister a handler from 4945 * 4946 * Unregister a receive handler from a device. 4947 * 4948 * The caller must hold the rtnl_mutex. 4949 */ 4950 void netdev_rx_handler_unregister(struct net_device *dev) 4951 { 4952 4953 ASSERT_RTNL(); 4954 RCU_INIT_POINTER(dev->rx_handler, NULL); 4955 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4956 * section has a guarantee to see a non NULL rx_handler_data 4957 * as well. 4958 */ 4959 synchronize_net(); 4960 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4961 } 4962 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4963 4964 /* 4965 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4966 * the special handling of PFMEMALLOC skbs. 4967 */ 4968 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4969 { 4970 switch (skb->protocol) { 4971 case htons(ETH_P_ARP): 4972 case htons(ETH_P_IP): 4973 case htons(ETH_P_IPV6): 4974 case htons(ETH_P_8021Q): 4975 case htons(ETH_P_8021AD): 4976 return true; 4977 default: 4978 return false; 4979 } 4980 } 4981 4982 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4983 int *ret, struct net_device *orig_dev) 4984 { 4985 if (nf_hook_ingress_active(skb)) { 4986 int ingress_retval; 4987 4988 if (*pt_prev) { 4989 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4990 *pt_prev = NULL; 4991 } 4992 4993 rcu_read_lock(); 4994 ingress_retval = nf_hook_ingress(skb); 4995 rcu_read_unlock(); 4996 return ingress_retval; 4997 } 4998 return 0; 4999 } 5000 5001 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 5002 struct packet_type **ppt_prev) 5003 { 5004 struct packet_type *ptype, *pt_prev; 5005 rx_handler_func_t *rx_handler; 5006 struct net_device *orig_dev; 5007 bool deliver_exact = false; 5008 int ret = NET_RX_DROP; 5009 __be16 type; 5010 5011 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5012 5013 trace_netif_receive_skb(skb); 5014 5015 orig_dev = skb->dev; 5016 5017 skb_reset_network_header(skb); 5018 if (!skb_transport_header_was_set(skb)) 5019 skb_reset_transport_header(skb); 5020 skb_reset_mac_len(skb); 5021 5022 pt_prev = NULL; 5023 5024 another_round: 5025 skb->skb_iif = skb->dev->ifindex; 5026 5027 __this_cpu_inc(softnet_data.processed); 5028 5029 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5030 int ret2; 5031 5032 preempt_disable(); 5033 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5034 preempt_enable(); 5035 5036 if (ret2 != XDP_PASS) 5037 return NET_RX_DROP; 5038 skb_reset_mac_len(skb); 5039 } 5040 5041 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5042 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5043 skb = skb_vlan_untag(skb); 5044 if (unlikely(!skb)) 5045 goto out; 5046 } 5047 5048 if (skb_skip_tc_classify(skb)) 5049 goto skip_classify; 5050 5051 if (pfmemalloc) 5052 goto skip_taps; 5053 5054 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5055 if (pt_prev) 5056 ret = deliver_skb(skb, pt_prev, orig_dev); 5057 pt_prev = ptype; 5058 } 5059 5060 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5061 if (pt_prev) 5062 ret = deliver_skb(skb, pt_prev, orig_dev); 5063 pt_prev = ptype; 5064 } 5065 5066 skip_taps: 5067 #ifdef CONFIG_NET_INGRESS 5068 if (static_branch_unlikely(&ingress_needed_key)) { 5069 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 5070 if (!skb) 5071 goto out; 5072 5073 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5074 goto out; 5075 } 5076 #endif 5077 skb_reset_tc(skb); 5078 skip_classify: 5079 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5080 goto drop; 5081 5082 if (skb_vlan_tag_present(skb)) { 5083 if (pt_prev) { 5084 ret = deliver_skb(skb, pt_prev, orig_dev); 5085 pt_prev = NULL; 5086 } 5087 if (vlan_do_receive(&skb)) 5088 goto another_round; 5089 else if (unlikely(!skb)) 5090 goto out; 5091 } 5092 5093 rx_handler = rcu_dereference(skb->dev->rx_handler); 5094 if (rx_handler) { 5095 if (pt_prev) { 5096 ret = deliver_skb(skb, pt_prev, orig_dev); 5097 pt_prev = NULL; 5098 } 5099 switch (rx_handler(&skb)) { 5100 case RX_HANDLER_CONSUMED: 5101 ret = NET_RX_SUCCESS; 5102 goto out; 5103 case RX_HANDLER_ANOTHER: 5104 goto another_round; 5105 case RX_HANDLER_EXACT: 5106 deliver_exact = true; 5107 case RX_HANDLER_PASS: 5108 break; 5109 default: 5110 BUG(); 5111 } 5112 } 5113 5114 if (unlikely(skb_vlan_tag_present(skb))) { 5115 check_vlan_id: 5116 if (skb_vlan_tag_get_id(skb)) { 5117 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5118 * find vlan device. 5119 */ 5120 skb->pkt_type = PACKET_OTHERHOST; 5121 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5122 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5123 /* Outer header is 802.1P with vlan 0, inner header is 5124 * 802.1Q or 802.1AD and vlan_do_receive() above could 5125 * not find vlan dev for vlan id 0. 5126 */ 5127 __vlan_hwaccel_clear_tag(skb); 5128 skb = skb_vlan_untag(skb); 5129 if (unlikely(!skb)) 5130 goto out; 5131 if (vlan_do_receive(&skb)) 5132 /* After stripping off 802.1P header with vlan 0 5133 * vlan dev is found for inner header. 5134 */ 5135 goto another_round; 5136 else if (unlikely(!skb)) 5137 goto out; 5138 else 5139 /* We have stripped outer 802.1P vlan 0 header. 5140 * But could not find vlan dev. 5141 * check again for vlan id to set OTHERHOST. 5142 */ 5143 goto check_vlan_id; 5144 } 5145 /* Note: we might in the future use prio bits 5146 * and set skb->priority like in vlan_do_receive() 5147 * For the time being, just ignore Priority Code Point 5148 */ 5149 __vlan_hwaccel_clear_tag(skb); 5150 } 5151 5152 type = skb->protocol; 5153 5154 /* deliver only exact match when indicated */ 5155 if (likely(!deliver_exact)) { 5156 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5157 &ptype_base[ntohs(type) & 5158 PTYPE_HASH_MASK]); 5159 } 5160 5161 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5162 &orig_dev->ptype_specific); 5163 5164 if (unlikely(skb->dev != orig_dev)) { 5165 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5166 &skb->dev->ptype_specific); 5167 } 5168 5169 if (pt_prev) { 5170 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5171 goto drop; 5172 *ppt_prev = pt_prev; 5173 } else { 5174 drop: 5175 if (!deliver_exact) 5176 atomic_long_inc(&skb->dev->rx_dropped); 5177 else 5178 atomic_long_inc(&skb->dev->rx_nohandler); 5179 kfree_skb(skb); 5180 /* Jamal, now you will not able to escape explaining 5181 * me how you were going to use this. :-) 5182 */ 5183 ret = NET_RX_DROP; 5184 } 5185 5186 out: 5187 return ret; 5188 } 5189 5190 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5191 { 5192 struct net_device *orig_dev = skb->dev; 5193 struct packet_type *pt_prev = NULL; 5194 int ret; 5195 5196 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5197 if (pt_prev) 5198 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5199 skb->dev, pt_prev, orig_dev); 5200 return ret; 5201 } 5202 5203 /** 5204 * netif_receive_skb_core - special purpose version of netif_receive_skb 5205 * @skb: buffer to process 5206 * 5207 * More direct receive version of netif_receive_skb(). It should 5208 * only be used by callers that have a need to skip RPS and Generic XDP. 5209 * Caller must also take care of handling if (page_is_)pfmemalloc. 5210 * 5211 * This function may only be called from softirq context and interrupts 5212 * should be enabled. 5213 * 5214 * Return values (usually ignored): 5215 * NET_RX_SUCCESS: no congestion 5216 * NET_RX_DROP: packet was dropped 5217 */ 5218 int netif_receive_skb_core(struct sk_buff *skb) 5219 { 5220 int ret; 5221 5222 rcu_read_lock(); 5223 ret = __netif_receive_skb_one_core(skb, false); 5224 rcu_read_unlock(); 5225 5226 return ret; 5227 } 5228 EXPORT_SYMBOL(netif_receive_skb_core); 5229 5230 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5231 struct packet_type *pt_prev, 5232 struct net_device *orig_dev) 5233 { 5234 struct sk_buff *skb, *next; 5235 5236 if (!pt_prev) 5237 return; 5238 if (list_empty(head)) 5239 return; 5240 if (pt_prev->list_func != NULL) 5241 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5242 ip_list_rcv, head, pt_prev, orig_dev); 5243 else 5244 list_for_each_entry_safe(skb, next, head, list) { 5245 skb_list_del_init(skb); 5246 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5247 } 5248 } 5249 5250 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5251 { 5252 /* Fast-path assumptions: 5253 * - There is no RX handler. 5254 * - Only one packet_type matches. 5255 * If either of these fails, we will end up doing some per-packet 5256 * processing in-line, then handling the 'last ptype' for the whole 5257 * sublist. This can't cause out-of-order delivery to any single ptype, 5258 * because the 'last ptype' must be constant across the sublist, and all 5259 * other ptypes are handled per-packet. 5260 */ 5261 /* Current (common) ptype of sublist */ 5262 struct packet_type *pt_curr = NULL; 5263 /* Current (common) orig_dev of sublist */ 5264 struct net_device *od_curr = NULL; 5265 struct list_head sublist; 5266 struct sk_buff *skb, *next; 5267 5268 INIT_LIST_HEAD(&sublist); 5269 list_for_each_entry_safe(skb, next, head, list) { 5270 struct net_device *orig_dev = skb->dev; 5271 struct packet_type *pt_prev = NULL; 5272 5273 skb_list_del_init(skb); 5274 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5275 if (!pt_prev) 5276 continue; 5277 if (pt_curr != pt_prev || od_curr != orig_dev) { 5278 /* dispatch old sublist */ 5279 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5280 /* start new sublist */ 5281 INIT_LIST_HEAD(&sublist); 5282 pt_curr = pt_prev; 5283 od_curr = orig_dev; 5284 } 5285 list_add_tail(&skb->list, &sublist); 5286 } 5287 5288 /* dispatch final sublist */ 5289 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5290 } 5291 5292 static int __netif_receive_skb(struct sk_buff *skb) 5293 { 5294 int ret; 5295 5296 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5297 unsigned int noreclaim_flag; 5298 5299 /* 5300 * PFMEMALLOC skbs are special, they should 5301 * - be delivered to SOCK_MEMALLOC sockets only 5302 * - stay away from userspace 5303 * - have bounded memory usage 5304 * 5305 * Use PF_MEMALLOC as this saves us from propagating the allocation 5306 * context down to all allocation sites. 5307 */ 5308 noreclaim_flag = memalloc_noreclaim_save(); 5309 ret = __netif_receive_skb_one_core(skb, true); 5310 memalloc_noreclaim_restore(noreclaim_flag); 5311 } else 5312 ret = __netif_receive_skb_one_core(skb, false); 5313 5314 return ret; 5315 } 5316 5317 static void __netif_receive_skb_list(struct list_head *head) 5318 { 5319 unsigned long noreclaim_flag = 0; 5320 struct sk_buff *skb, *next; 5321 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5322 5323 list_for_each_entry_safe(skb, next, head, list) { 5324 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5325 struct list_head sublist; 5326 5327 /* Handle the previous sublist */ 5328 list_cut_before(&sublist, head, &skb->list); 5329 if (!list_empty(&sublist)) 5330 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5331 pfmemalloc = !pfmemalloc; 5332 /* See comments in __netif_receive_skb */ 5333 if (pfmemalloc) 5334 noreclaim_flag = memalloc_noreclaim_save(); 5335 else 5336 memalloc_noreclaim_restore(noreclaim_flag); 5337 } 5338 } 5339 /* Handle the remaining sublist */ 5340 if (!list_empty(head)) 5341 __netif_receive_skb_list_core(head, pfmemalloc); 5342 /* Restore pflags */ 5343 if (pfmemalloc) 5344 memalloc_noreclaim_restore(noreclaim_flag); 5345 } 5346 5347 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5348 { 5349 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5350 struct bpf_prog *new = xdp->prog; 5351 int ret = 0; 5352 5353 switch (xdp->command) { 5354 case XDP_SETUP_PROG: 5355 rcu_assign_pointer(dev->xdp_prog, new); 5356 if (old) 5357 bpf_prog_put(old); 5358 5359 if (old && !new) { 5360 static_branch_dec(&generic_xdp_needed_key); 5361 } else if (new && !old) { 5362 static_branch_inc(&generic_xdp_needed_key); 5363 dev_disable_lro(dev); 5364 dev_disable_gro_hw(dev); 5365 } 5366 break; 5367 5368 case XDP_QUERY_PROG: 5369 xdp->prog_id = old ? old->aux->id : 0; 5370 break; 5371 5372 default: 5373 ret = -EINVAL; 5374 break; 5375 } 5376 5377 return ret; 5378 } 5379 5380 static int netif_receive_skb_internal(struct sk_buff *skb) 5381 { 5382 int ret; 5383 5384 net_timestamp_check(netdev_tstamp_prequeue, skb); 5385 5386 if (skb_defer_rx_timestamp(skb)) 5387 return NET_RX_SUCCESS; 5388 5389 rcu_read_lock(); 5390 #ifdef CONFIG_RPS 5391 if (static_branch_unlikely(&rps_needed)) { 5392 struct rps_dev_flow voidflow, *rflow = &voidflow; 5393 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5394 5395 if (cpu >= 0) { 5396 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5397 rcu_read_unlock(); 5398 return ret; 5399 } 5400 } 5401 #endif 5402 ret = __netif_receive_skb(skb); 5403 rcu_read_unlock(); 5404 return ret; 5405 } 5406 5407 static void netif_receive_skb_list_internal(struct list_head *head) 5408 { 5409 struct sk_buff *skb, *next; 5410 struct list_head sublist; 5411 5412 INIT_LIST_HEAD(&sublist); 5413 list_for_each_entry_safe(skb, next, head, list) { 5414 net_timestamp_check(netdev_tstamp_prequeue, skb); 5415 skb_list_del_init(skb); 5416 if (!skb_defer_rx_timestamp(skb)) 5417 list_add_tail(&skb->list, &sublist); 5418 } 5419 list_splice_init(&sublist, head); 5420 5421 rcu_read_lock(); 5422 #ifdef CONFIG_RPS 5423 if (static_branch_unlikely(&rps_needed)) { 5424 list_for_each_entry_safe(skb, next, head, list) { 5425 struct rps_dev_flow voidflow, *rflow = &voidflow; 5426 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5427 5428 if (cpu >= 0) { 5429 /* Will be handled, remove from list */ 5430 skb_list_del_init(skb); 5431 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5432 } 5433 } 5434 } 5435 #endif 5436 __netif_receive_skb_list(head); 5437 rcu_read_unlock(); 5438 } 5439 5440 /** 5441 * netif_receive_skb - process receive buffer from network 5442 * @skb: buffer to process 5443 * 5444 * netif_receive_skb() is the main receive data processing function. 5445 * It always succeeds. The buffer may be dropped during processing 5446 * for congestion control or by the protocol layers. 5447 * 5448 * This function may only be called from softirq context and interrupts 5449 * should be enabled. 5450 * 5451 * Return values (usually ignored): 5452 * NET_RX_SUCCESS: no congestion 5453 * NET_RX_DROP: packet was dropped 5454 */ 5455 int netif_receive_skb(struct sk_buff *skb) 5456 { 5457 int ret; 5458 5459 trace_netif_receive_skb_entry(skb); 5460 5461 ret = netif_receive_skb_internal(skb); 5462 trace_netif_receive_skb_exit(ret); 5463 5464 return ret; 5465 } 5466 EXPORT_SYMBOL(netif_receive_skb); 5467 5468 /** 5469 * netif_receive_skb_list - process many receive buffers from network 5470 * @head: list of skbs to process. 5471 * 5472 * Since return value of netif_receive_skb() is normally ignored, and 5473 * wouldn't be meaningful for a list, this function returns void. 5474 * 5475 * This function may only be called from softirq context and interrupts 5476 * should be enabled. 5477 */ 5478 void netif_receive_skb_list(struct list_head *head) 5479 { 5480 struct sk_buff *skb; 5481 5482 if (list_empty(head)) 5483 return; 5484 if (trace_netif_receive_skb_list_entry_enabled()) { 5485 list_for_each_entry(skb, head, list) 5486 trace_netif_receive_skb_list_entry(skb); 5487 } 5488 netif_receive_skb_list_internal(head); 5489 trace_netif_receive_skb_list_exit(0); 5490 } 5491 EXPORT_SYMBOL(netif_receive_skb_list); 5492 5493 DEFINE_PER_CPU(struct work_struct, flush_works); 5494 5495 /* Network device is going away, flush any packets still pending */ 5496 static void flush_backlog(struct work_struct *work) 5497 { 5498 struct sk_buff *skb, *tmp; 5499 struct softnet_data *sd; 5500 5501 local_bh_disable(); 5502 sd = this_cpu_ptr(&softnet_data); 5503 5504 local_irq_disable(); 5505 rps_lock(sd); 5506 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5507 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5508 __skb_unlink(skb, &sd->input_pkt_queue); 5509 kfree_skb(skb); 5510 input_queue_head_incr(sd); 5511 } 5512 } 5513 rps_unlock(sd); 5514 local_irq_enable(); 5515 5516 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5517 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5518 __skb_unlink(skb, &sd->process_queue); 5519 kfree_skb(skb); 5520 input_queue_head_incr(sd); 5521 } 5522 } 5523 local_bh_enable(); 5524 } 5525 5526 static void flush_all_backlogs(void) 5527 { 5528 unsigned int cpu; 5529 5530 get_online_cpus(); 5531 5532 for_each_online_cpu(cpu) 5533 queue_work_on(cpu, system_highpri_wq, 5534 per_cpu_ptr(&flush_works, cpu)); 5535 5536 for_each_online_cpu(cpu) 5537 flush_work(per_cpu_ptr(&flush_works, cpu)); 5538 5539 put_online_cpus(); 5540 } 5541 5542 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5543 static void gro_normal_list(struct napi_struct *napi) 5544 { 5545 if (!napi->rx_count) 5546 return; 5547 netif_receive_skb_list_internal(&napi->rx_list); 5548 INIT_LIST_HEAD(&napi->rx_list); 5549 napi->rx_count = 0; 5550 } 5551 5552 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5553 * pass the whole batch up to the stack. 5554 */ 5555 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5556 { 5557 list_add_tail(&skb->list, &napi->rx_list); 5558 if (++napi->rx_count >= gro_normal_batch) 5559 gro_normal_list(napi); 5560 } 5561 5562 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5563 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5564 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5565 { 5566 struct packet_offload *ptype; 5567 __be16 type = skb->protocol; 5568 struct list_head *head = &offload_base; 5569 int err = -ENOENT; 5570 5571 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5572 5573 if (NAPI_GRO_CB(skb)->count == 1) { 5574 skb_shinfo(skb)->gso_size = 0; 5575 goto out; 5576 } 5577 5578 rcu_read_lock(); 5579 list_for_each_entry_rcu(ptype, head, list) { 5580 if (ptype->type != type || !ptype->callbacks.gro_complete) 5581 continue; 5582 5583 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5584 ipv6_gro_complete, inet_gro_complete, 5585 skb, 0); 5586 break; 5587 } 5588 rcu_read_unlock(); 5589 5590 if (err) { 5591 WARN_ON(&ptype->list == head); 5592 kfree_skb(skb); 5593 return NET_RX_SUCCESS; 5594 } 5595 5596 out: 5597 gro_normal_one(napi, skb); 5598 return NET_RX_SUCCESS; 5599 } 5600 5601 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5602 bool flush_old) 5603 { 5604 struct list_head *head = &napi->gro_hash[index].list; 5605 struct sk_buff *skb, *p; 5606 5607 list_for_each_entry_safe_reverse(skb, p, head, list) { 5608 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5609 return; 5610 skb_list_del_init(skb); 5611 napi_gro_complete(napi, skb); 5612 napi->gro_hash[index].count--; 5613 } 5614 5615 if (!napi->gro_hash[index].count) 5616 __clear_bit(index, &napi->gro_bitmask); 5617 } 5618 5619 /* napi->gro_hash[].list contains packets ordered by age. 5620 * youngest packets at the head of it. 5621 * Complete skbs in reverse order to reduce latencies. 5622 */ 5623 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5624 { 5625 unsigned long bitmask = napi->gro_bitmask; 5626 unsigned int i, base = ~0U; 5627 5628 while ((i = ffs(bitmask)) != 0) { 5629 bitmask >>= i; 5630 base += i; 5631 __napi_gro_flush_chain(napi, base, flush_old); 5632 } 5633 } 5634 EXPORT_SYMBOL(napi_gro_flush); 5635 5636 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5637 struct sk_buff *skb) 5638 { 5639 unsigned int maclen = skb->dev->hard_header_len; 5640 u32 hash = skb_get_hash_raw(skb); 5641 struct list_head *head; 5642 struct sk_buff *p; 5643 5644 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5645 list_for_each_entry(p, head, list) { 5646 unsigned long diffs; 5647 5648 NAPI_GRO_CB(p)->flush = 0; 5649 5650 if (hash != skb_get_hash_raw(p)) { 5651 NAPI_GRO_CB(p)->same_flow = 0; 5652 continue; 5653 } 5654 5655 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5656 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5657 if (skb_vlan_tag_present(p)) 5658 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5659 diffs |= skb_metadata_dst_cmp(p, skb); 5660 diffs |= skb_metadata_differs(p, skb); 5661 if (maclen == ETH_HLEN) 5662 diffs |= compare_ether_header(skb_mac_header(p), 5663 skb_mac_header(skb)); 5664 else if (!diffs) 5665 diffs = memcmp(skb_mac_header(p), 5666 skb_mac_header(skb), 5667 maclen); 5668 NAPI_GRO_CB(p)->same_flow = !diffs; 5669 } 5670 5671 return head; 5672 } 5673 5674 static void skb_gro_reset_offset(struct sk_buff *skb) 5675 { 5676 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5677 const skb_frag_t *frag0 = &pinfo->frags[0]; 5678 5679 NAPI_GRO_CB(skb)->data_offset = 0; 5680 NAPI_GRO_CB(skb)->frag0 = NULL; 5681 NAPI_GRO_CB(skb)->frag0_len = 0; 5682 5683 if (!skb_headlen(skb) && pinfo->nr_frags && 5684 !PageHighMem(skb_frag_page(frag0))) { 5685 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5686 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5687 skb_frag_size(frag0), 5688 skb->end - skb->tail); 5689 } 5690 } 5691 5692 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5693 { 5694 struct skb_shared_info *pinfo = skb_shinfo(skb); 5695 5696 BUG_ON(skb->end - skb->tail < grow); 5697 5698 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5699 5700 skb->data_len -= grow; 5701 skb->tail += grow; 5702 5703 skb_frag_off_add(&pinfo->frags[0], grow); 5704 skb_frag_size_sub(&pinfo->frags[0], grow); 5705 5706 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5707 skb_frag_unref(skb, 0); 5708 memmove(pinfo->frags, pinfo->frags + 1, 5709 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5710 } 5711 } 5712 5713 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5714 { 5715 struct sk_buff *oldest; 5716 5717 oldest = list_last_entry(head, struct sk_buff, list); 5718 5719 /* We are called with head length >= MAX_GRO_SKBS, so this is 5720 * impossible. 5721 */ 5722 if (WARN_ON_ONCE(!oldest)) 5723 return; 5724 5725 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5726 * SKB to the chain. 5727 */ 5728 skb_list_del_init(oldest); 5729 napi_gro_complete(napi, oldest); 5730 } 5731 5732 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5733 struct sk_buff *)); 5734 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5735 struct sk_buff *)); 5736 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5737 { 5738 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5739 struct list_head *head = &offload_base; 5740 struct packet_offload *ptype; 5741 __be16 type = skb->protocol; 5742 struct list_head *gro_head; 5743 struct sk_buff *pp = NULL; 5744 enum gro_result ret; 5745 int same_flow; 5746 int grow; 5747 5748 if (netif_elide_gro(skb->dev)) 5749 goto normal; 5750 5751 gro_head = gro_list_prepare(napi, skb); 5752 5753 rcu_read_lock(); 5754 list_for_each_entry_rcu(ptype, head, list) { 5755 if (ptype->type != type || !ptype->callbacks.gro_receive) 5756 continue; 5757 5758 skb_set_network_header(skb, skb_gro_offset(skb)); 5759 skb_reset_mac_len(skb); 5760 NAPI_GRO_CB(skb)->same_flow = 0; 5761 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5762 NAPI_GRO_CB(skb)->free = 0; 5763 NAPI_GRO_CB(skb)->encap_mark = 0; 5764 NAPI_GRO_CB(skb)->recursion_counter = 0; 5765 NAPI_GRO_CB(skb)->is_fou = 0; 5766 NAPI_GRO_CB(skb)->is_atomic = 1; 5767 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5768 5769 /* Setup for GRO checksum validation */ 5770 switch (skb->ip_summed) { 5771 case CHECKSUM_COMPLETE: 5772 NAPI_GRO_CB(skb)->csum = skb->csum; 5773 NAPI_GRO_CB(skb)->csum_valid = 1; 5774 NAPI_GRO_CB(skb)->csum_cnt = 0; 5775 break; 5776 case CHECKSUM_UNNECESSARY: 5777 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5778 NAPI_GRO_CB(skb)->csum_valid = 0; 5779 break; 5780 default: 5781 NAPI_GRO_CB(skb)->csum_cnt = 0; 5782 NAPI_GRO_CB(skb)->csum_valid = 0; 5783 } 5784 5785 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5786 ipv6_gro_receive, inet_gro_receive, 5787 gro_head, skb); 5788 break; 5789 } 5790 rcu_read_unlock(); 5791 5792 if (&ptype->list == head) 5793 goto normal; 5794 5795 if (PTR_ERR(pp) == -EINPROGRESS) { 5796 ret = GRO_CONSUMED; 5797 goto ok; 5798 } 5799 5800 same_flow = NAPI_GRO_CB(skb)->same_flow; 5801 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5802 5803 if (pp) { 5804 skb_list_del_init(pp); 5805 napi_gro_complete(napi, pp); 5806 napi->gro_hash[hash].count--; 5807 } 5808 5809 if (same_flow) 5810 goto ok; 5811 5812 if (NAPI_GRO_CB(skb)->flush) 5813 goto normal; 5814 5815 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5816 gro_flush_oldest(napi, gro_head); 5817 } else { 5818 napi->gro_hash[hash].count++; 5819 } 5820 NAPI_GRO_CB(skb)->count = 1; 5821 NAPI_GRO_CB(skb)->age = jiffies; 5822 NAPI_GRO_CB(skb)->last = skb; 5823 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5824 list_add(&skb->list, gro_head); 5825 ret = GRO_HELD; 5826 5827 pull: 5828 grow = skb_gro_offset(skb) - skb_headlen(skb); 5829 if (grow > 0) 5830 gro_pull_from_frag0(skb, grow); 5831 ok: 5832 if (napi->gro_hash[hash].count) { 5833 if (!test_bit(hash, &napi->gro_bitmask)) 5834 __set_bit(hash, &napi->gro_bitmask); 5835 } else if (test_bit(hash, &napi->gro_bitmask)) { 5836 __clear_bit(hash, &napi->gro_bitmask); 5837 } 5838 5839 return ret; 5840 5841 normal: 5842 ret = GRO_NORMAL; 5843 goto pull; 5844 } 5845 5846 struct packet_offload *gro_find_receive_by_type(__be16 type) 5847 { 5848 struct list_head *offload_head = &offload_base; 5849 struct packet_offload *ptype; 5850 5851 list_for_each_entry_rcu(ptype, offload_head, list) { 5852 if (ptype->type != type || !ptype->callbacks.gro_receive) 5853 continue; 5854 return ptype; 5855 } 5856 return NULL; 5857 } 5858 EXPORT_SYMBOL(gro_find_receive_by_type); 5859 5860 struct packet_offload *gro_find_complete_by_type(__be16 type) 5861 { 5862 struct list_head *offload_head = &offload_base; 5863 struct packet_offload *ptype; 5864 5865 list_for_each_entry_rcu(ptype, offload_head, list) { 5866 if (ptype->type != type || !ptype->callbacks.gro_complete) 5867 continue; 5868 return ptype; 5869 } 5870 return NULL; 5871 } 5872 EXPORT_SYMBOL(gro_find_complete_by_type); 5873 5874 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5875 { 5876 skb_dst_drop(skb); 5877 skb_ext_put(skb); 5878 kmem_cache_free(skbuff_head_cache, skb); 5879 } 5880 5881 static gro_result_t napi_skb_finish(struct napi_struct *napi, 5882 struct sk_buff *skb, 5883 gro_result_t ret) 5884 { 5885 switch (ret) { 5886 case GRO_NORMAL: 5887 gro_normal_one(napi, skb); 5888 break; 5889 5890 case GRO_DROP: 5891 kfree_skb(skb); 5892 break; 5893 5894 case GRO_MERGED_FREE: 5895 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5896 napi_skb_free_stolen_head(skb); 5897 else 5898 __kfree_skb(skb); 5899 break; 5900 5901 case GRO_HELD: 5902 case GRO_MERGED: 5903 case GRO_CONSUMED: 5904 break; 5905 } 5906 5907 return ret; 5908 } 5909 5910 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5911 { 5912 gro_result_t ret; 5913 5914 skb_mark_napi_id(skb, napi); 5915 trace_napi_gro_receive_entry(skb); 5916 5917 skb_gro_reset_offset(skb); 5918 5919 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 5920 trace_napi_gro_receive_exit(ret); 5921 5922 return ret; 5923 } 5924 EXPORT_SYMBOL(napi_gro_receive); 5925 5926 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5927 { 5928 if (unlikely(skb->pfmemalloc)) { 5929 consume_skb(skb); 5930 return; 5931 } 5932 __skb_pull(skb, skb_headlen(skb)); 5933 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5934 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5935 __vlan_hwaccel_clear_tag(skb); 5936 skb->dev = napi->dev; 5937 skb->skb_iif = 0; 5938 5939 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5940 skb->pkt_type = PACKET_HOST; 5941 5942 skb->encapsulation = 0; 5943 skb_shinfo(skb)->gso_type = 0; 5944 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5945 skb_ext_reset(skb); 5946 5947 napi->skb = skb; 5948 } 5949 5950 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5951 { 5952 struct sk_buff *skb = napi->skb; 5953 5954 if (!skb) { 5955 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5956 if (skb) { 5957 napi->skb = skb; 5958 skb_mark_napi_id(skb, napi); 5959 } 5960 } 5961 return skb; 5962 } 5963 EXPORT_SYMBOL(napi_get_frags); 5964 5965 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5966 struct sk_buff *skb, 5967 gro_result_t ret) 5968 { 5969 switch (ret) { 5970 case GRO_NORMAL: 5971 case GRO_HELD: 5972 __skb_push(skb, ETH_HLEN); 5973 skb->protocol = eth_type_trans(skb, skb->dev); 5974 if (ret == GRO_NORMAL) 5975 gro_normal_one(napi, skb); 5976 break; 5977 5978 case GRO_DROP: 5979 napi_reuse_skb(napi, skb); 5980 break; 5981 5982 case GRO_MERGED_FREE: 5983 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5984 napi_skb_free_stolen_head(skb); 5985 else 5986 napi_reuse_skb(napi, skb); 5987 break; 5988 5989 case GRO_MERGED: 5990 case GRO_CONSUMED: 5991 break; 5992 } 5993 5994 return ret; 5995 } 5996 5997 /* Upper GRO stack assumes network header starts at gro_offset=0 5998 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5999 * We copy ethernet header into skb->data to have a common layout. 6000 */ 6001 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6002 { 6003 struct sk_buff *skb = napi->skb; 6004 const struct ethhdr *eth; 6005 unsigned int hlen = sizeof(*eth); 6006 6007 napi->skb = NULL; 6008 6009 skb_reset_mac_header(skb); 6010 skb_gro_reset_offset(skb); 6011 6012 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6013 eth = skb_gro_header_slow(skb, hlen, 0); 6014 if (unlikely(!eth)) { 6015 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6016 __func__, napi->dev->name); 6017 napi_reuse_skb(napi, skb); 6018 return NULL; 6019 } 6020 } else { 6021 eth = (const struct ethhdr *)skb->data; 6022 gro_pull_from_frag0(skb, hlen); 6023 NAPI_GRO_CB(skb)->frag0 += hlen; 6024 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6025 } 6026 __skb_pull(skb, hlen); 6027 6028 /* 6029 * This works because the only protocols we care about don't require 6030 * special handling. 6031 * We'll fix it up properly in napi_frags_finish() 6032 */ 6033 skb->protocol = eth->h_proto; 6034 6035 return skb; 6036 } 6037 6038 gro_result_t napi_gro_frags(struct napi_struct *napi) 6039 { 6040 gro_result_t ret; 6041 struct sk_buff *skb = napi_frags_skb(napi); 6042 6043 if (!skb) 6044 return GRO_DROP; 6045 6046 trace_napi_gro_frags_entry(skb); 6047 6048 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6049 trace_napi_gro_frags_exit(ret); 6050 6051 return ret; 6052 } 6053 EXPORT_SYMBOL(napi_gro_frags); 6054 6055 /* Compute the checksum from gro_offset and return the folded value 6056 * after adding in any pseudo checksum. 6057 */ 6058 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6059 { 6060 __wsum wsum; 6061 __sum16 sum; 6062 6063 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6064 6065 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6066 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6067 /* See comments in __skb_checksum_complete(). */ 6068 if (likely(!sum)) { 6069 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6070 !skb->csum_complete_sw) 6071 netdev_rx_csum_fault(skb->dev, skb); 6072 } 6073 6074 NAPI_GRO_CB(skb)->csum = wsum; 6075 NAPI_GRO_CB(skb)->csum_valid = 1; 6076 6077 return sum; 6078 } 6079 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6080 6081 static void net_rps_send_ipi(struct softnet_data *remsd) 6082 { 6083 #ifdef CONFIG_RPS 6084 while (remsd) { 6085 struct softnet_data *next = remsd->rps_ipi_next; 6086 6087 if (cpu_online(remsd->cpu)) 6088 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6089 remsd = next; 6090 } 6091 #endif 6092 } 6093 6094 /* 6095 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6096 * Note: called with local irq disabled, but exits with local irq enabled. 6097 */ 6098 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6099 { 6100 #ifdef CONFIG_RPS 6101 struct softnet_data *remsd = sd->rps_ipi_list; 6102 6103 if (remsd) { 6104 sd->rps_ipi_list = NULL; 6105 6106 local_irq_enable(); 6107 6108 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6109 net_rps_send_ipi(remsd); 6110 } else 6111 #endif 6112 local_irq_enable(); 6113 } 6114 6115 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6116 { 6117 #ifdef CONFIG_RPS 6118 return sd->rps_ipi_list != NULL; 6119 #else 6120 return false; 6121 #endif 6122 } 6123 6124 static int process_backlog(struct napi_struct *napi, int quota) 6125 { 6126 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6127 bool again = true; 6128 int work = 0; 6129 6130 /* Check if we have pending ipi, its better to send them now, 6131 * not waiting net_rx_action() end. 6132 */ 6133 if (sd_has_rps_ipi_waiting(sd)) { 6134 local_irq_disable(); 6135 net_rps_action_and_irq_enable(sd); 6136 } 6137 6138 napi->weight = dev_rx_weight; 6139 while (again) { 6140 struct sk_buff *skb; 6141 6142 while ((skb = __skb_dequeue(&sd->process_queue))) { 6143 rcu_read_lock(); 6144 __netif_receive_skb(skb); 6145 rcu_read_unlock(); 6146 input_queue_head_incr(sd); 6147 if (++work >= quota) 6148 return work; 6149 6150 } 6151 6152 local_irq_disable(); 6153 rps_lock(sd); 6154 if (skb_queue_empty(&sd->input_pkt_queue)) { 6155 /* 6156 * Inline a custom version of __napi_complete(). 6157 * only current cpu owns and manipulates this napi, 6158 * and NAPI_STATE_SCHED is the only possible flag set 6159 * on backlog. 6160 * We can use a plain write instead of clear_bit(), 6161 * and we dont need an smp_mb() memory barrier. 6162 */ 6163 napi->state = 0; 6164 again = false; 6165 } else { 6166 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6167 &sd->process_queue); 6168 } 6169 rps_unlock(sd); 6170 local_irq_enable(); 6171 } 6172 6173 return work; 6174 } 6175 6176 /** 6177 * __napi_schedule - schedule for receive 6178 * @n: entry to schedule 6179 * 6180 * The entry's receive function will be scheduled to run. 6181 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6182 */ 6183 void __napi_schedule(struct napi_struct *n) 6184 { 6185 unsigned long flags; 6186 6187 local_irq_save(flags); 6188 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6189 local_irq_restore(flags); 6190 } 6191 EXPORT_SYMBOL(__napi_schedule); 6192 6193 /** 6194 * napi_schedule_prep - check if napi can be scheduled 6195 * @n: napi context 6196 * 6197 * Test if NAPI routine is already running, and if not mark 6198 * it as running. This is used as a condition variable 6199 * insure only one NAPI poll instance runs. We also make 6200 * sure there is no pending NAPI disable. 6201 */ 6202 bool napi_schedule_prep(struct napi_struct *n) 6203 { 6204 unsigned long val, new; 6205 6206 do { 6207 val = READ_ONCE(n->state); 6208 if (unlikely(val & NAPIF_STATE_DISABLE)) 6209 return false; 6210 new = val | NAPIF_STATE_SCHED; 6211 6212 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6213 * This was suggested by Alexander Duyck, as compiler 6214 * emits better code than : 6215 * if (val & NAPIF_STATE_SCHED) 6216 * new |= NAPIF_STATE_MISSED; 6217 */ 6218 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6219 NAPIF_STATE_MISSED; 6220 } while (cmpxchg(&n->state, val, new) != val); 6221 6222 return !(val & NAPIF_STATE_SCHED); 6223 } 6224 EXPORT_SYMBOL(napi_schedule_prep); 6225 6226 /** 6227 * __napi_schedule_irqoff - schedule for receive 6228 * @n: entry to schedule 6229 * 6230 * Variant of __napi_schedule() assuming hard irqs are masked 6231 */ 6232 void __napi_schedule_irqoff(struct napi_struct *n) 6233 { 6234 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6235 } 6236 EXPORT_SYMBOL(__napi_schedule_irqoff); 6237 6238 bool napi_complete_done(struct napi_struct *n, int work_done) 6239 { 6240 unsigned long flags, val, new; 6241 6242 /* 6243 * 1) Don't let napi dequeue from the cpu poll list 6244 * just in case its running on a different cpu. 6245 * 2) If we are busy polling, do nothing here, we have 6246 * the guarantee we will be called later. 6247 */ 6248 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6249 NAPIF_STATE_IN_BUSY_POLL))) 6250 return false; 6251 6252 if (n->gro_bitmask) { 6253 unsigned long timeout = 0; 6254 6255 if (work_done) 6256 timeout = n->dev->gro_flush_timeout; 6257 6258 /* When the NAPI instance uses a timeout and keeps postponing 6259 * it, we need to bound somehow the time packets are kept in 6260 * the GRO layer 6261 */ 6262 napi_gro_flush(n, !!timeout); 6263 if (timeout) 6264 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6265 HRTIMER_MODE_REL_PINNED); 6266 } 6267 6268 gro_normal_list(n); 6269 6270 if (unlikely(!list_empty(&n->poll_list))) { 6271 /* If n->poll_list is not empty, we need to mask irqs */ 6272 local_irq_save(flags); 6273 list_del_init(&n->poll_list); 6274 local_irq_restore(flags); 6275 } 6276 6277 do { 6278 val = READ_ONCE(n->state); 6279 6280 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6281 6282 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6283 6284 /* If STATE_MISSED was set, leave STATE_SCHED set, 6285 * because we will call napi->poll() one more time. 6286 * This C code was suggested by Alexander Duyck to help gcc. 6287 */ 6288 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6289 NAPIF_STATE_SCHED; 6290 } while (cmpxchg(&n->state, val, new) != val); 6291 6292 if (unlikely(val & NAPIF_STATE_MISSED)) { 6293 __napi_schedule(n); 6294 return false; 6295 } 6296 6297 return true; 6298 } 6299 EXPORT_SYMBOL(napi_complete_done); 6300 6301 /* must be called under rcu_read_lock(), as we dont take a reference */ 6302 static struct napi_struct *napi_by_id(unsigned int napi_id) 6303 { 6304 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6305 struct napi_struct *napi; 6306 6307 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6308 if (napi->napi_id == napi_id) 6309 return napi; 6310 6311 return NULL; 6312 } 6313 6314 #if defined(CONFIG_NET_RX_BUSY_POLL) 6315 6316 #define BUSY_POLL_BUDGET 8 6317 6318 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6319 { 6320 int rc; 6321 6322 /* Busy polling means there is a high chance device driver hard irq 6323 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6324 * set in napi_schedule_prep(). 6325 * Since we are about to call napi->poll() once more, we can safely 6326 * clear NAPI_STATE_MISSED. 6327 * 6328 * Note: x86 could use a single "lock and ..." instruction 6329 * to perform these two clear_bit() 6330 */ 6331 clear_bit(NAPI_STATE_MISSED, &napi->state); 6332 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6333 6334 local_bh_disable(); 6335 6336 /* All we really want here is to re-enable device interrupts. 6337 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6338 */ 6339 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6340 /* We can't gro_normal_list() here, because napi->poll() might have 6341 * rearmed the napi (napi_complete_done()) in which case it could 6342 * already be running on another CPU. 6343 */ 6344 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6345 netpoll_poll_unlock(have_poll_lock); 6346 if (rc == BUSY_POLL_BUDGET) { 6347 /* As the whole budget was spent, we still own the napi so can 6348 * safely handle the rx_list. 6349 */ 6350 gro_normal_list(napi); 6351 __napi_schedule(napi); 6352 } 6353 local_bh_enable(); 6354 } 6355 6356 void napi_busy_loop(unsigned int napi_id, 6357 bool (*loop_end)(void *, unsigned long), 6358 void *loop_end_arg) 6359 { 6360 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6361 int (*napi_poll)(struct napi_struct *napi, int budget); 6362 void *have_poll_lock = NULL; 6363 struct napi_struct *napi; 6364 6365 restart: 6366 napi_poll = NULL; 6367 6368 rcu_read_lock(); 6369 6370 napi = napi_by_id(napi_id); 6371 if (!napi) 6372 goto out; 6373 6374 preempt_disable(); 6375 for (;;) { 6376 int work = 0; 6377 6378 local_bh_disable(); 6379 if (!napi_poll) { 6380 unsigned long val = READ_ONCE(napi->state); 6381 6382 /* If multiple threads are competing for this napi, 6383 * we avoid dirtying napi->state as much as we can. 6384 */ 6385 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6386 NAPIF_STATE_IN_BUSY_POLL)) 6387 goto count; 6388 if (cmpxchg(&napi->state, val, 6389 val | NAPIF_STATE_IN_BUSY_POLL | 6390 NAPIF_STATE_SCHED) != val) 6391 goto count; 6392 have_poll_lock = netpoll_poll_lock(napi); 6393 napi_poll = napi->poll; 6394 } 6395 work = napi_poll(napi, BUSY_POLL_BUDGET); 6396 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6397 gro_normal_list(napi); 6398 count: 6399 if (work > 0) 6400 __NET_ADD_STATS(dev_net(napi->dev), 6401 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6402 local_bh_enable(); 6403 6404 if (!loop_end || loop_end(loop_end_arg, start_time)) 6405 break; 6406 6407 if (unlikely(need_resched())) { 6408 if (napi_poll) 6409 busy_poll_stop(napi, have_poll_lock); 6410 preempt_enable(); 6411 rcu_read_unlock(); 6412 cond_resched(); 6413 if (loop_end(loop_end_arg, start_time)) 6414 return; 6415 goto restart; 6416 } 6417 cpu_relax(); 6418 } 6419 if (napi_poll) 6420 busy_poll_stop(napi, have_poll_lock); 6421 preempt_enable(); 6422 out: 6423 rcu_read_unlock(); 6424 } 6425 EXPORT_SYMBOL(napi_busy_loop); 6426 6427 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6428 6429 static void napi_hash_add(struct napi_struct *napi) 6430 { 6431 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6432 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6433 return; 6434 6435 spin_lock(&napi_hash_lock); 6436 6437 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6438 do { 6439 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6440 napi_gen_id = MIN_NAPI_ID; 6441 } while (napi_by_id(napi_gen_id)); 6442 napi->napi_id = napi_gen_id; 6443 6444 hlist_add_head_rcu(&napi->napi_hash_node, 6445 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6446 6447 spin_unlock(&napi_hash_lock); 6448 } 6449 6450 /* Warning : caller is responsible to make sure rcu grace period 6451 * is respected before freeing memory containing @napi 6452 */ 6453 bool napi_hash_del(struct napi_struct *napi) 6454 { 6455 bool rcu_sync_needed = false; 6456 6457 spin_lock(&napi_hash_lock); 6458 6459 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6460 rcu_sync_needed = true; 6461 hlist_del_rcu(&napi->napi_hash_node); 6462 } 6463 spin_unlock(&napi_hash_lock); 6464 return rcu_sync_needed; 6465 } 6466 EXPORT_SYMBOL_GPL(napi_hash_del); 6467 6468 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6469 { 6470 struct napi_struct *napi; 6471 6472 napi = container_of(timer, struct napi_struct, timer); 6473 6474 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6475 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6476 */ 6477 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6478 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6479 __napi_schedule_irqoff(napi); 6480 6481 return HRTIMER_NORESTART; 6482 } 6483 6484 static void init_gro_hash(struct napi_struct *napi) 6485 { 6486 int i; 6487 6488 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6489 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6490 napi->gro_hash[i].count = 0; 6491 } 6492 napi->gro_bitmask = 0; 6493 } 6494 6495 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6496 int (*poll)(struct napi_struct *, int), int weight) 6497 { 6498 INIT_LIST_HEAD(&napi->poll_list); 6499 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6500 napi->timer.function = napi_watchdog; 6501 init_gro_hash(napi); 6502 napi->skb = NULL; 6503 INIT_LIST_HEAD(&napi->rx_list); 6504 napi->rx_count = 0; 6505 napi->poll = poll; 6506 if (weight > NAPI_POLL_WEIGHT) 6507 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6508 weight); 6509 napi->weight = weight; 6510 list_add(&napi->dev_list, &dev->napi_list); 6511 napi->dev = dev; 6512 #ifdef CONFIG_NETPOLL 6513 napi->poll_owner = -1; 6514 #endif 6515 set_bit(NAPI_STATE_SCHED, &napi->state); 6516 napi_hash_add(napi); 6517 } 6518 EXPORT_SYMBOL(netif_napi_add); 6519 6520 void napi_disable(struct napi_struct *n) 6521 { 6522 might_sleep(); 6523 set_bit(NAPI_STATE_DISABLE, &n->state); 6524 6525 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6526 msleep(1); 6527 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6528 msleep(1); 6529 6530 hrtimer_cancel(&n->timer); 6531 6532 clear_bit(NAPI_STATE_DISABLE, &n->state); 6533 } 6534 EXPORT_SYMBOL(napi_disable); 6535 6536 static void flush_gro_hash(struct napi_struct *napi) 6537 { 6538 int i; 6539 6540 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6541 struct sk_buff *skb, *n; 6542 6543 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6544 kfree_skb(skb); 6545 napi->gro_hash[i].count = 0; 6546 } 6547 } 6548 6549 /* Must be called in process context */ 6550 void netif_napi_del(struct napi_struct *napi) 6551 { 6552 might_sleep(); 6553 if (napi_hash_del(napi)) 6554 synchronize_net(); 6555 list_del_init(&napi->dev_list); 6556 napi_free_frags(napi); 6557 6558 flush_gro_hash(napi); 6559 napi->gro_bitmask = 0; 6560 } 6561 EXPORT_SYMBOL(netif_napi_del); 6562 6563 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6564 { 6565 void *have; 6566 int work, weight; 6567 6568 list_del_init(&n->poll_list); 6569 6570 have = netpoll_poll_lock(n); 6571 6572 weight = n->weight; 6573 6574 /* This NAPI_STATE_SCHED test is for avoiding a race 6575 * with netpoll's poll_napi(). Only the entity which 6576 * obtains the lock and sees NAPI_STATE_SCHED set will 6577 * actually make the ->poll() call. Therefore we avoid 6578 * accidentally calling ->poll() when NAPI is not scheduled. 6579 */ 6580 work = 0; 6581 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6582 work = n->poll(n, weight); 6583 trace_napi_poll(n, work, weight); 6584 } 6585 6586 WARN_ON_ONCE(work > weight); 6587 6588 if (likely(work < weight)) 6589 goto out_unlock; 6590 6591 /* Drivers must not modify the NAPI state if they 6592 * consume the entire weight. In such cases this code 6593 * still "owns" the NAPI instance and therefore can 6594 * move the instance around on the list at-will. 6595 */ 6596 if (unlikely(napi_disable_pending(n))) { 6597 napi_complete(n); 6598 goto out_unlock; 6599 } 6600 6601 if (n->gro_bitmask) { 6602 /* flush too old packets 6603 * If HZ < 1000, flush all packets. 6604 */ 6605 napi_gro_flush(n, HZ >= 1000); 6606 } 6607 6608 gro_normal_list(n); 6609 6610 /* Some drivers may have called napi_schedule 6611 * prior to exhausting their budget. 6612 */ 6613 if (unlikely(!list_empty(&n->poll_list))) { 6614 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6615 n->dev ? n->dev->name : "backlog"); 6616 goto out_unlock; 6617 } 6618 6619 list_add_tail(&n->poll_list, repoll); 6620 6621 out_unlock: 6622 netpoll_poll_unlock(have); 6623 6624 return work; 6625 } 6626 6627 static __latent_entropy void net_rx_action(struct softirq_action *h) 6628 { 6629 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6630 unsigned long time_limit = jiffies + 6631 usecs_to_jiffies(netdev_budget_usecs); 6632 int budget = netdev_budget; 6633 LIST_HEAD(list); 6634 LIST_HEAD(repoll); 6635 6636 local_irq_disable(); 6637 list_splice_init(&sd->poll_list, &list); 6638 local_irq_enable(); 6639 6640 for (;;) { 6641 struct napi_struct *n; 6642 6643 if (list_empty(&list)) { 6644 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6645 goto out; 6646 break; 6647 } 6648 6649 n = list_first_entry(&list, struct napi_struct, poll_list); 6650 budget -= napi_poll(n, &repoll); 6651 6652 /* If softirq window is exhausted then punt. 6653 * Allow this to run for 2 jiffies since which will allow 6654 * an average latency of 1.5/HZ. 6655 */ 6656 if (unlikely(budget <= 0 || 6657 time_after_eq(jiffies, time_limit))) { 6658 sd->time_squeeze++; 6659 break; 6660 } 6661 } 6662 6663 local_irq_disable(); 6664 6665 list_splice_tail_init(&sd->poll_list, &list); 6666 list_splice_tail(&repoll, &list); 6667 list_splice(&list, &sd->poll_list); 6668 if (!list_empty(&sd->poll_list)) 6669 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6670 6671 net_rps_action_and_irq_enable(sd); 6672 out: 6673 __kfree_skb_flush(); 6674 } 6675 6676 struct netdev_adjacent { 6677 struct net_device *dev; 6678 6679 /* upper master flag, there can only be one master device per list */ 6680 bool master; 6681 6682 /* lookup ignore flag */ 6683 bool ignore; 6684 6685 /* counter for the number of times this device was added to us */ 6686 u16 ref_nr; 6687 6688 /* private field for the users */ 6689 void *private; 6690 6691 struct list_head list; 6692 struct rcu_head rcu; 6693 }; 6694 6695 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6696 struct list_head *adj_list) 6697 { 6698 struct netdev_adjacent *adj; 6699 6700 list_for_each_entry(adj, adj_list, list) { 6701 if (adj->dev == adj_dev) 6702 return adj; 6703 } 6704 return NULL; 6705 } 6706 6707 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6708 { 6709 struct net_device *dev = data; 6710 6711 return upper_dev == dev; 6712 } 6713 6714 /** 6715 * netdev_has_upper_dev - Check if device is linked to an upper device 6716 * @dev: device 6717 * @upper_dev: upper device to check 6718 * 6719 * Find out if a device is linked to specified upper device and return true 6720 * in case it is. Note that this checks only immediate upper device, 6721 * not through a complete stack of devices. The caller must hold the RTNL lock. 6722 */ 6723 bool netdev_has_upper_dev(struct net_device *dev, 6724 struct net_device *upper_dev) 6725 { 6726 ASSERT_RTNL(); 6727 6728 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6729 upper_dev); 6730 } 6731 EXPORT_SYMBOL(netdev_has_upper_dev); 6732 6733 /** 6734 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6735 * @dev: device 6736 * @upper_dev: upper device to check 6737 * 6738 * Find out if a device is linked to specified upper device and return true 6739 * in case it is. Note that this checks the entire upper device chain. 6740 * The caller must hold rcu lock. 6741 */ 6742 6743 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6744 struct net_device *upper_dev) 6745 { 6746 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6747 upper_dev); 6748 } 6749 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6750 6751 /** 6752 * netdev_has_any_upper_dev - Check if device is linked to some device 6753 * @dev: device 6754 * 6755 * Find out if a device is linked to an upper device and return true in case 6756 * it is. The caller must hold the RTNL lock. 6757 */ 6758 bool netdev_has_any_upper_dev(struct net_device *dev) 6759 { 6760 ASSERT_RTNL(); 6761 6762 return !list_empty(&dev->adj_list.upper); 6763 } 6764 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6765 6766 /** 6767 * netdev_master_upper_dev_get - Get master upper device 6768 * @dev: device 6769 * 6770 * Find a master upper device and return pointer to it or NULL in case 6771 * it's not there. The caller must hold the RTNL lock. 6772 */ 6773 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6774 { 6775 struct netdev_adjacent *upper; 6776 6777 ASSERT_RTNL(); 6778 6779 if (list_empty(&dev->adj_list.upper)) 6780 return NULL; 6781 6782 upper = list_first_entry(&dev->adj_list.upper, 6783 struct netdev_adjacent, list); 6784 if (likely(upper->master)) 6785 return upper->dev; 6786 return NULL; 6787 } 6788 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6789 6790 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6791 { 6792 struct netdev_adjacent *upper; 6793 6794 ASSERT_RTNL(); 6795 6796 if (list_empty(&dev->adj_list.upper)) 6797 return NULL; 6798 6799 upper = list_first_entry(&dev->adj_list.upper, 6800 struct netdev_adjacent, list); 6801 if (likely(upper->master) && !upper->ignore) 6802 return upper->dev; 6803 return NULL; 6804 } 6805 6806 /** 6807 * netdev_has_any_lower_dev - Check if device is linked to some device 6808 * @dev: device 6809 * 6810 * Find out if a device is linked to a lower device and return true in case 6811 * it is. The caller must hold the RTNL lock. 6812 */ 6813 static bool netdev_has_any_lower_dev(struct net_device *dev) 6814 { 6815 ASSERT_RTNL(); 6816 6817 return !list_empty(&dev->adj_list.lower); 6818 } 6819 6820 void *netdev_adjacent_get_private(struct list_head *adj_list) 6821 { 6822 struct netdev_adjacent *adj; 6823 6824 adj = list_entry(adj_list, struct netdev_adjacent, list); 6825 6826 return adj->private; 6827 } 6828 EXPORT_SYMBOL(netdev_adjacent_get_private); 6829 6830 /** 6831 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6832 * @dev: device 6833 * @iter: list_head ** of the current position 6834 * 6835 * Gets the next device from the dev's upper list, starting from iter 6836 * position. The caller must hold RCU read lock. 6837 */ 6838 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6839 struct list_head **iter) 6840 { 6841 struct netdev_adjacent *upper; 6842 6843 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6844 6845 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6846 6847 if (&upper->list == &dev->adj_list.upper) 6848 return NULL; 6849 6850 *iter = &upper->list; 6851 6852 return upper->dev; 6853 } 6854 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6855 6856 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6857 struct list_head **iter, 6858 bool *ignore) 6859 { 6860 struct netdev_adjacent *upper; 6861 6862 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6863 6864 if (&upper->list == &dev->adj_list.upper) 6865 return NULL; 6866 6867 *iter = &upper->list; 6868 *ignore = upper->ignore; 6869 6870 return upper->dev; 6871 } 6872 6873 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6874 struct list_head **iter) 6875 { 6876 struct netdev_adjacent *upper; 6877 6878 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6879 6880 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6881 6882 if (&upper->list == &dev->adj_list.upper) 6883 return NULL; 6884 6885 *iter = &upper->list; 6886 6887 return upper->dev; 6888 } 6889 6890 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6891 int (*fn)(struct net_device *dev, 6892 void *data), 6893 void *data) 6894 { 6895 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6896 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6897 int ret, cur = 0; 6898 bool ignore; 6899 6900 now = dev; 6901 iter = &dev->adj_list.upper; 6902 6903 while (1) { 6904 if (now != dev) { 6905 ret = fn(now, data); 6906 if (ret) 6907 return ret; 6908 } 6909 6910 next = NULL; 6911 while (1) { 6912 udev = __netdev_next_upper_dev(now, &iter, &ignore); 6913 if (!udev) 6914 break; 6915 if (ignore) 6916 continue; 6917 6918 next = udev; 6919 niter = &udev->adj_list.upper; 6920 dev_stack[cur] = now; 6921 iter_stack[cur++] = iter; 6922 break; 6923 } 6924 6925 if (!next) { 6926 if (!cur) 6927 return 0; 6928 next = dev_stack[--cur]; 6929 niter = iter_stack[cur]; 6930 } 6931 6932 now = next; 6933 iter = niter; 6934 } 6935 6936 return 0; 6937 } 6938 6939 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6940 int (*fn)(struct net_device *dev, 6941 void *data), 6942 void *data) 6943 { 6944 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6945 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6946 int ret, cur = 0; 6947 6948 now = dev; 6949 iter = &dev->adj_list.upper; 6950 6951 while (1) { 6952 if (now != dev) { 6953 ret = fn(now, data); 6954 if (ret) 6955 return ret; 6956 } 6957 6958 next = NULL; 6959 while (1) { 6960 udev = netdev_next_upper_dev_rcu(now, &iter); 6961 if (!udev) 6962 break; 6963 6964 next = udev; 6965 niter = &udev->adj_list.upper; 6966 dev_stack[cur] = now; 6967 iter_stack[cur++] = iter; 6968 break; 6969 } 6970 6971 if (!next) { 6972 if (!cur) 6973 return 0; 6974 next = dev_stack[--cur]; 6975 niter = iter_stack[cur]; 6976 } 6977 6978 now = next; 6979 iter = niter; 6980 } 6981 6982 return 0; 6983 } 6984 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6985 6986 static bool __netdev_has_upper_dev(struct net_device *dev, 6987 struct net_device *upper_dev) 6988 { 6989 ASSERT_RTNL(); 6990 6991 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 6992 upper_dev); 6993 } 6994 6995 /** 6996 * netdev_lower_get_next_private - Get the next ->private from the 6997 * lower neighbour list 6998 * @dev: device 6999 * @iter: list_head ** of the current position 7000 * 7001 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7002 * list, starting from iter position. The caller must hold either hold the 7003 * RTNL lock or its own locking that guarantees that the neighbour lower 7004 * list will remain unchanged. 7005 */ 7006 void *netdev_lower_get_next_private(struct net_device *dev, 7007 struct list_head **iter) 7008 { 7009 struct netdev_adjacent *lower; 7010 7011 lower = list_entry(*iter, struct netdev_adjacent, list); 7012 7013 if (&lower->list == &dev->adj_list.lower) 7014 return NULL; 7015 7016 *iter = lower->list.next; 7017 7018 return lower->private; 7019 } 7020 EXPORT_SYMBOL(netdev_lower_get_next_private); 7021 7022 /** 7023 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7024 * lower neighbour list, RCU 7025 * variant 7026 * @dev: device 7027 * @iter: list_head ** of the current position 7028 * 7029 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7030 * list, starting from iter position. The caller must hold RCU read lock. 7031 */ 7032 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7033 struct list_head **iter) 7034 { 7035 struct netdev_adjacent *lower; 7036 7037 WARN_ON_ONCE(!rcu_read_lock_held()); 7038 7039 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7040 7041 if (&lower->list == &dev->adj_list.lower) 7042 return NULL; 7043 7044 *iter = &lower->list; 7045 7046 return lower->private; 7047 } 7048 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7049 7050 /** 7051 * netdev_lower_get_next - Get the next device from the lower neighbour 7052 * list 7053 * @dev: device 7054 * @iter: list_head ** of the current position 7055 * 7056 * Gets the next netdev_adjacent from the dev's lower neighbour 7057 * list, starting from iter position. The caller must hold RTNL lock or 7058 * its own locking that guarantees that the neighbour lower 7059 * list will remain unchanged. 7060 */ 7061 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7062 { 7063 struct netdev_adjacent *lower; 7064 7065 lower = list_entry(*iter, struct netdev_adjacent, list); 7066 7067 if (&lower->list == &dev->adj_list.lower) 7068 return NULL; 7069 7070 *iter = lower->list.next; 7071 7072 return lower->dev; 7073 } 7074 EXPORT_SYMBOL(netdev_lower_get_next); 7075 7076 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7077 struct list_head **iter) 7078 { 7079 struct netdev_adjacent *lower; 7080 7081 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7082 7083 if (&lower->list == &dev->adj_list.lower) 7084 return NULL; 7085 7086 *iter = &lower->list; 7087 7088 return lower->dev; 7089 } 7090 7091 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7092 struct list_head **iter, 7093 bool *ignore) 7094 { 7095 struct netdev_adjacent *lower; 7096 7097 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7098 7099 if (&lower->list == &dev->adj_list.lower) 7100 return NULL; 7101 7102 *iter = &lower->list; 7103 *ignore = lower->ignore; 7104 7105 return lower->dev; 7106 } 7107 7108 int netdev_walk_all_lower_dev(struct net_device *dev, 7109 int (*fn)(struct net_device *dev, 7110 void *data), 7111 void *data) 7112 { 7113 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7114 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7115 int ret, cur = 0; 7116 7117 now = dev; 7118 iter = &dev->adj_list.lower; 7119 7120 while (1) { 7121 if (now != dev) { 7122 ret = fn(now, data); 7123 if (ret) 7124 return ret; 7125 } 7126 7127 next = NULL; 7128 while (1) { 7129 ldev = netdev_next_lower_dev(now, &iter); 7130 if (!ldev) 7131 break; 7132 7133 next = ldev; 7134 niter = &ldev->adj_list.lower; 7135 dev_stack[cur] = now; 7136 iter_stack[cur++] = iter; 7137 break; 7138 } 7139 7140 if (!next) { 7141 if (!cur) 7142 return 0; 7143 next = dev_stack[--cur]; 7144 niter = iter_stack[cur]; 7145 } 7146 7147 now = next; 7148 iter = niter; 7149 } 7150 7151 return 0; 7152 } 7153 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7154 7155 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7156 int (*fn)(struct net_device *dev, 7157 void *data), 7158 void *data) 7159 { 7160 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7161 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7162 int ret, cur = 0; 7163 bool ignore; 7164 7165 now = dev; 7166 iter = &dev->adj_list.lower; 7167 7168 while (1) { 7169 if (now != dev) { 7170 ret = fn(now, data); 7171 if (ret) 7172 return ret; 7173 } 7174 7175 next = NULL; 7176 while (1) { 7177 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7178 if (!ldev) 7179 break; 7180 if (ignore) 7181 continue; 7182 7183 next = ldev; 7184 niter = &ldev->adj_list.lower; 7185 dev_stack[cur] = now; 7186 iter_stack[cur++] = iter; 7187 break; 7188 } 7189 7190 if (!next) { 7191 if (!cur) 7192 return 0; 7193 next = dev_stack[--cur]; 7194 niter = iter_stack[cur]; 7195 } 7196 7197 now = next; 7198 iter = niter; 7199 } 7200 7201 return 0; 7202 } 7203 7204 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7205 struct list_head **iter) 7206 { 7207 struct netdev_adjacent *lower; 7208 7209 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7210 if (&lower->list == &dev->adj_list.lower) 7211 return NULL; 7212 7213 *iter = &lower->list; 7214 7215 return lower->dev; 7216 } 7217 7218 static u8 __netdev_upper_depth(struct net_device *dev) 7219 { 7220 struct net_device *udev; 7221 struct list_head *iter; 7222 u8 max_depth = 0; 7223 bool ignore; 7224 7225 for (iter = &dev->adj_list.upper, 7226 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7227 udev; 7228 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7229 if (ignore) 7230 continue; 7231 if (max_depth < udev->upper_level) 7232 max_depth = udev->upper_level; 7233 } 7234 7235 return max_depth; 7236 } 7237 7238 static u8 __netdev_lower_depth(struct net_device *dev) 7239 { 7240 struct net_device *ldev; 7241 struct list_head *iter; 7242 u8 max_depth = 0; 7243 bool ignore; 7244 7245 for (iter = &dev->adj_list.lower, 7246 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7247 ldev; 7248 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7249 if (ignore) 7250 continue; 7251 if (max_depth < ldev->lower_level) 7252 max_depth = ldev->lower_level; 7253 } 7254 7255 return max_depth; 7256 } 7257 7258 static int __netdev_update_upper_level(struct net_device *dev, void *data) 7259 { 7260 dev->upper_level = __netdev_upper_depth(dev) + 1; 7261 return 0; 7262 } 7263 7264 static int __netdev_update_lower_level(struct net_device *dev, void *data) 7265 { 7266 dev->lower_level = __netdev_lower_depth(dev) + 1; 7267 return 0; 7268 } 7269 7270 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7271 int (*fn)(struct net_device *dev, 7272 void *data), 7273 void *data) 7274 { 7275 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7276 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7277 int ret, cur = 0; 7278 7279 now = dev; 7280 iter = &dev->adj_list.lower; 7281 7282 while (1) { 7283 if (now != dev) { 7284 ret = fn(now, data); 7285 if (ret) 7286 return ret; 7287 } 7288 7289 next = NULL; 7290 while (1) { 7291 ldev = netdev_next_lower_dev_rcu(now, &iter); 7292 if (!ldev) 7293 break; 7294 7295 next = ldev; 7296 niter = &ldev->adj_list.lower; 7297 dev_stack[cur] = now; 7298 iter_stack[cur++] = iter; 7299 break; 7300 } 7301 7302 if (!next) { 7303 if (!cur) 7304 return 0; 7305 next = dev_stack[--cur]; 7306 niter = iter_stack[cur]; 7307 } 7308 7309 now = next; 7310 iter = niter; 7311 } 7312 7313 return 0; 7314 } 7315 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7316 7317 /** 7318 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7319 * lower neighbour list, RCU 7320 * variant 7321 * @dev: device 7322 * 7323 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7324 * list. The caller must hold RCU read lock. 7325 */ 7326 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7327 { 7328 struct netdev_adjacent *lower; 7329 7330 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7331 struct netdev_adjacent, list); 7332 if (lower) 7333 return lower->private; 7334 return NULL; 7335 } 7336 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7337 7338 /** 7339 * netdev_master_upper_dev_get_rcu - Get master upper device 7340 * @dev: device 7341 * 7342 * Find a master upper device and return pointer to it or NULL in case 7343 * it's not there. The caller must hold the RCU read lock. 7344 */ 7345 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7346 { 7347 struct netdev_adjacent *upper; 7348 7349 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7350 struct netdev_adjacent, list); 7351 if (upper && likely(upper->master)) 7352 return upper->dev; 7353 return NULL; 7354 } 7355 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7356 7357 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7358 struct net_device *adj_dev, 7359 struct list_head *dev_list) 7360 { 7361 char linkname[IFNAMSIZ+7]; 7362 7363 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7364 "upper_%s" : "lower_%s", adj_dev->name); 7365 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7366 linkname); 7367 } 7368 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7369 char *name, 7370 struct list_head *dev_list) 7371 { 7372 char linkname[IFNAMSIZ+7]; 7373 7374 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7375 "upper_%s" : "lower_%s", name); 7376 sysfs_remove_link(&(dev->dev.kobj), linkname); 7377 } 7378 7379 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7380 struct net_device *adj_dev, 7381 struct list_head *dev_list) 7382 { 7383 return (dev_list == &dev->adj_list.upper || 7384 dev_list == &dev->adj_list.lower) && 7385 net_eq(dev_net(dev), dev_net(adj_dev)); 7386 } 7387 7388 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7389 struct net_device *adj_dev, 7390 struct list_head *dev_list, 7391 void *private, bool master) 7392 { 7393 struct netdev_adjacent *adj; 7394 int ret; 7395 7396 adj = __netdev_find_adj(adj_dev, dev_list); 7397 7398 if (adj) { 7399 adj->ref_nr += 1; 7400 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7401 dev->name, adj_dev->name, adj->ref_nr); 7402 7403 return 0; 7404 } 7405 7406 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7407 if (!adj) 7408 return -ENOMEM; 7409 7410 adj->dev = adj_dev; 7411 adj->master = master; 7412 adj->ref_nr = 1; 7413 adj->private = private; 7414 adj->ignore = false; 7415 dev_hold(adj_dev); 7416 7417 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7418 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7419 7420 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7421 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7422 if (ret) 7423 goto free_adj; 7424 } 7425 7426 /* Ensure that master link is always the first item in list. */ 7427 if (master) { 7428 ret = sysfs_create_link(&(dev->dev.kobj), 7429 &(adj_dev->dev.kobj), "master"); 7430 if (ret) 7431 goto remove_symlinks; 7432 7433 list_add_rcu(&adj->list, dev_list); 7434 } else { 7435 list_add_tail_rcu(&adj->list, dev_list); 7436 } 7437 7438 return 0; 7439 7440 remove_symlinks: 7441 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7442 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7443 free_adj: 7444 kfree(adj); 7445 dev_put(adj_dev); 7446 7447 return ret; 7448 } 7449 7450 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7451 struct net_device *adj_dev, 7452 u16 ref_nr, 7453 struct list_head *dev_list) 7454 { 7455 struct netdev_adjacent *adj; 7456 7457 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7458 dev->name, adj_dev->name, ref_nr); 7459 7460 adj = __netdev_find_adj(adj_dev, dev_list); 7461 7462 if (!adj) { 7463 pr_err("Adjacency does not exist for device %s from %s\n", 7464 dev->name, adj_dev->name); 7465 WARN_ON(1); 7466 return; 7467 } 7468 7469 if (adj->ref_nr > ref_nr) { 7470 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7471 dev->name, adj_dev->name, ref_nr, 7472 adj->ref_nr - ref_nr); 7473 adj->ref_nr -= ref_nr; 7474 return; 7475 } 7476 7477 if (adj->master) 7478 sysfs_remove_link(&(dev->dev.kobj), "master"); 7479 7480 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7481 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7482 7483 list_del_rcu(&adj->list); 7484 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7485 adj_dev->name, dev->name, adj_dev->name); 7486 dev_put(adj_dev); 7487 kfree_rcu(adj, rcu); 7488 } 7489 7490 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7491 struct net_device *upper_dev, 7492 struct list_head *up_list, 7493 struct list_head *down_list, 7494 void *private, bool master) 7495 { 7496 int ret; 7497 7498 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7499 private, master); 7500 if (ret) 7501 return ret; 7502 7503 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7504 private, false); 7505 if (ret) { 7506 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7507 return ret; 7508 } 7509 7510 return 0; 7511 } 7512 7513 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7514 struct net_device *upper_dev, 7515 u16 ref_nr, 7516 struct list_head *up_list, 7517 struct list_head *down_list) 7518 { 7519 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7520 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7521 } 7522 7523 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7524 struct net_device *upper_dev, 7525 void *private, bool master) 7526 { 7527 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7528 &dev->adj_list.upper, 7529 &upper_dev->adj_list.lower, 7530 private, master); 7531 } 7532 7533 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7534 struct net_device *upper_dev) 7535 { 7536 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7537 &dev->adj_list.upper, 7538 &upper_dev->adj_list.lower); 7539 } 7540 7541 static int __netdev_upper_dev_link(struct net_device *dev, 7542 struct net_device *upper_dev, bool master, 7543 void *upper_priv, void *upper_info, 7544 struct netlink_ext_ack *extack) 7545 { 7546 struct netdev_notifier_changeupper_info changeupper_info = { 7547 .info = { 7548 .dev = dev, 7549 .extack = extack, 7550 }, 7551 .upper_dev = upper_dev, 7552 .master = master, 7553 .linking = true, 7554 .upper_info = upper_info, 7555 }; 7556 struct net_device *master_dev; 7557 int ret = 0; 7558 7559 ASSERT_RTNL(); 7560 7561 if (dev == upper_dev) 7562 return -EBUSY; 7563 7564 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7565 if (__netdev_has_upper_dev(upper_dev, dev)) 7566 return -EBUSY; 7567 7568 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7569 return -EMLINK; 7570 7571 if (!master) { 7572 if (__netdev_has_upper_dev(dev, upper_dev)) 7573 return -EEXIST; 7574 } else { 7575 master_dev = __netdev_master_upper_dev_get(dev); 7576 if (master_dev) 7577 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7578 } 7579 7580 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7581 &changeupper_info.info); 7582 ret = notifier_to_errno(ret); 7583 if (ret) 7584 return ret; 7585 7586 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7587 master); 7588 if (ret) 7589 return ret; 7590 7591 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7592 &changeupper_info.info); 7593 ret = notifier_to_errno(ret); 7594 if (ret) 7595 goto rollback; 7596 7597 __netdev_update_upper_level(dev, NULL); 7598 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7599 7600 __netdev_update_lower_level(upper_dev, NULL); 7601 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7602 NULL); 7603 7604 return 0; 7605 7606 rollback: 7607 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7608 7609 return ret; 7610 } 7611 7612 /** 7613 * netdev_upper_dev_link - Add a link to the upper device 7614 * @dev: device 7615 * @upper_dev: new upper device 7616 * @extack: netlink extended ack 7617 * 7618 * Adds a link to device which is upper to this one. The caller must hold 7619 * the RTNL lock. On a failure a negative errno code is returned. 7620 * On success the reference counts are adjusted and the function 7621 * returns zero. 7622 */ 7623 int netdev_upper_dev_link(struct net_device *dev, 7624 struct net_device *upper_dev, 7625 struct netlink_ext_ack *extack) 7626 { 7627 return __netdev_upper_dev_link(dev, upper_dev, false, 7628 NULL, NULL, extack); 7629 } 7630 EXPORT_SYMBOL(netdev_upper_dev_link); 7631 7632 /** 7633 * netdev_master_upper_dev_link - Add a master link to the upper device 7634 * @dev: device 7635 * @upper_dev: new upper device 7636 * @upper_priv: upper device private 7637 * @upper_info: upper info to be passed down via notifier 7638 * @extack: netlink extended ack 7639 * 7640 * Adds a link to device which is upper to this one. In this case, only 7641 * one master upper device can be linked, although other non-master devices 7642 * might be linked as well. The caller must hold the RTNL lock. 7643 * On a failure a negative errno code is returned. On success the reference 7644 * counts are adjusted and the function returns zero. 7645 */ 7646 int netdev_master_upper_dev_link(struct net_device *dev, 7647 struct net_device *upper_dev, 7648 void *upper_priv, void *upper_info, 7649 struct netlink_ext_ack *extack) 7650 { 7651 return __netdev_upper_dev_link(dev, upper_dev, true, 7652 upper_priv, upper_info, extack); 7653 } 7654 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7655 7656 /** 7657 * netdev_upper_dev_unlink - Removes a link to upper device 7658 * @dev: device 7659 * @upper_dev: new upper device 7660 * 7661 * Removes a link to device which is upper to this one. The caller must hold 7662 * the RTNL lock. 7663 */ 7664 void netdev_upper_dev_unlink(struct net_device *dev, 7665 struct net_device *upper_dev) 7666 { 7667 struct netdev_notifier_changeupper_info changeupper_info = { 7668 .info = { 7669 .dev = dev, 7670 }, 7671 .upper_dev = upper_dev, 7672 .linking = false, 7673 }; 7674 7675 ASSERT_RTNL(); 7676 7677 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7678 7679 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7680 &changeupper_info.info); 7681 7682 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7683 7684 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7685 &changeupper_info.info); 7686 7687 __netdev_update_upper_level(dev, NULL); 7688 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7689 7690 __netdev_update_lower_level(upper_dev, NULL); 7691 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7692 NULL); 7693 } 7694 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7695 7696 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7697 struct net_device *lower_dev, 7698 bool val) 7699 { 7700 struct netdev_adjacent *adj; 7701 7702 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7703 if (adj) 7704 adj->ignore = val; 7705 7706 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7707 if (adj) 7708 adj->ignore = val; 7709 } 7710 7711 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7712 struct net_device *lower_dev) 7713 { 7714 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7715 } 7716 7717 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7718 struct net_device *lower_dev) 7719 { 7720 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7721 } 7722 7723 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7724 struct net_device *new_dev, 7725 struct net_device *dev, 7726 struct netlink_ext_ack *extack) 7727 { 7728 int err; 7729 7730 if (!new_dev) 7731 return 0; 7732 7733 if (old_dev && new_dev != old_dev) 7734 netdev_adjacent_dev_disable(dev, old_dev); 7735 7736 err = netdev_upper_dev_link(new_dev, dev, extack); 7737 if (err) { 7738 if (old_dev && new_dev != old_dev) 7739 netdev_adjacent_dev_enable(dev, old_dev); 7740 return err; 7741 } 7742 7743 return 0; 7744 } 7745 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7746 7747 void netdev_adjacent_change_commit(struct net_device *old_dev, 7748 struct net_device *new_dev, 7749 struct net_device *dev) 7750 { 7751 if (!new_dev || !old_dev) 7752 return; 7753 7754 if (new_dev == old_dev) 7755 return; 7756 7757 netdev_adjacent_dev_enable(dev, old_dev); 7758 netdev_upper_dev_unlink(old_dev, dev); 7759 } 7760 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7761 7762 void netdev_adjacent_change_abort(struct net_device *old_dev, 7763 struct net_device *new_dev, 7764 struct net_device *dev) 7765 { 7766 if (!new_dev) 7767 return; 7768 7769 if (old_dev && new_dev != old_dev) 7770 netdev_adjacent_dev_enable(dev, old_dev); 7771 7772 netdev_upper_dev_unlink(new_dev, dev); 7773 } 7774 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7775 7776 /** 7777 * netdev_bonding_info_change - Dispatch event about slave change 7778 * @dev: device 7779 * @bonding_info: info to dispatch 7780 * 7781 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7782 * The caller must hold the RTNL lock. 7783 */ 7784 void netdev_bonding_info_change(struct net_device *dev, 7785 struct netdev_bonding_info *bonding_info) 7786 { 7787 struct netdev_notifier_bonding_info info = { 7788 .info.dev = dev, 7789 }; 7790 7791 memcpy(&info.bonding_info, bonding_info, 7792 sizeof(struct netdev_bonding_info)); 7793 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7794 &info.info); 7795 } 7796 EXPORT_SYMBOL(netdev_bonding_info_change); 7797 7798 static void netdev_adjacent_add_links(struct net_device *dev) 7799 { 7800 struct netdev_adjacent *iter; 7801 7802 struct net *net = dev_net(dev); 7803 7804 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7805 if (!net_eq(net, dev_net(iter->dev))) 7806 continue; 7807 netdev_adjacent_sysfs_add(iter->dev, dev, 7808 &iter->dev->adj_list.lower); 7809 netdev_adjacent_sysfs_add(dev, iter->dev, 7810 &dev->adj_list.upper); 7811 } 7812 7813 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7814 if (!net_eq(net, dev_net(iter->dev))) 7815 continue; 7816 netdev_adjacent_sysfs_add(iter->dev, dev, 7817 &iter->dev->adj_list.upper); 7818 netdev_adjacent_sysfs_add(dev, iter->dev, 7819 &dev->adj_list.lower); 7820 } 7821 } 7822 7823 static void netdev_adjacent_del_links(struct net_device *dev) 7824 { 7825 struct netdev_adjacent *iter; 7826 7827 struct net *net = dev_net(dev); 7828 7829 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7830 if (!net_eq(net, dev_net(iter->dev))) 7831 continue; 7832 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7833 &iter->dev->adj_list.lower); 7834 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7835 &dev->adj_list.upper); 7836 } 7837 7838 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7839 if (!net_eq(net, dev_net(iter->dev))) 7840 continue; 7841 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7842 &iter->dev->adj_list.upper); 7843 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7844 &dev->adj_list.lower); 7845 } 7846 } 7847 7848 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7849 { 7850 struct netdev_adjacent *iter; 7851 7852 struct net *net = dev_net(dev); 7853 7854 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7855 if (!net_eq(net, dev_net(iter->dev))) 7856 continue; 7857 netdev_adjacent_sysfs_del(iter->dev, oldname, 7858 &iter->dev->adj_list.lower); 7859 netdev_adjacent_sysfs_add(iter->dev, dev, 7860 &iter->dev->adj_list.lower); 7861 } 7862 7863 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7864 if (!net_eq(net, dev_net(iter->dev))) 7865 continue; 7866 netdev_adjacent_sysfs_del(iter->dev, oldname, 7867 &iter->dev->adj_list.upper); 7868 netdev_adjacent_sysfs_add(iter->dev, dev, 7869 &iter->dev->adj_list.upper); 7870 } 7871 } 7872 7873 void *netdev_lower_dev_get_private(struct net_device *dev, 7874 struct net_device *lower_dev) 7875 { 7876 struct netdev_adjacent *lower; 7877 7878 if (!lower_dev) 7879 return NULL; 7880 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7881 if (!lower) 7882 return NULL; 7883 7884 return lower->private; 7885 } 7886 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7887 7888 7889 /** 7890 * netdev_lower_change - Dispatch event about lower device state change 7891 * @lower_dev: device 7892 * @lower_state_info: state to dispatch 7893 * 7894 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7895 * The caller must hold the RTNL lock. 7896 */ 7897 void netdev_lower_state_changed(struct net_device *lower_dev, 7898 void *lower_state_info) 7899 { 7900 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7901 .info.dev = lower_dev, 7902 }; 7903 7904 ASSERT_RTNL(); 7905 changelowerstate_info.lower_state_info = lower_state_info; 7906 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7907 &changelowerstate_info.info); 7908 } 7909 EXPORT_SYMBOL(netdev_lower_state_changed); 7910 7911 static void dev_change_rx_flags(struct net_device *dev, int flags) 7912 { 7913 const struct net_device_ops *ops = dev->netdev_ops; 7914 7915 if (ops->ndo_change_rx_flags) 7916 ops->ndo_change_rx_flags(dev, flags); 7917 } 7918 7919 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7920 { 7921 unsigned int old_flags = dev->flags; 7922 kuid_t uid; 7923 kgid_t gid; 7924 7925 ASSERT_RTNL(); 7926 7927 dev->flags |= IFF_PROMISC; 7928 dev->promiscuity += inc; 7929 if (dev->promiscuity == 0) { 7930 /* 7931 * Avoid overflow. 7932 * If inc causes overflow, untouch promisc and return error. 7933 */ 7934 if (inc < 0) 7935 dev->flags &= ~IFF_PROMISC; 7936 else { 7937 dev->promiscuity -= inc; 7938 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7939 dev->name); 7940 return -EOVERFLOW; 7941 } 7942 } 7943 if (dev->flags != old_flags) { 7944 pr_info("device %s %s promiscuous mode\n", 7945 dev->name, 7946 dev->flags & IFF_PROMISC ? "entered" : "left"); 7947 if (audit_enabled) { 7948 current_uid_gid(&uid, &gid); 7949 audit_log(audit_context(), GFP_ATOMIC, 7950 AUDIT_ANOM_PROMISCUOUS, 7951 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7952 dev->name, (dev->flags & IFF_PROMISC), 7953 (old_flags & IFF_PROMISC), 7954 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7955 from_kuid(&init_user_ns, uid), 7956 from_kgid(&init_user_ns, gid), 7957 audit_get_sessionid(current)); 7958 } 7959 7960 dev_change_rx_flags(dev, IFF_PROMISC); 7961 } 7962 if (notify) 7963 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7964 return 0; 7965 } 7966 7967 /** 7968 * dev_set_promiscuity - update promiscuity count on a device 7969 * @dev: device 7970 * @inc: modifier 7971 * 7972 * Add or remove promiscuity from a device. While the count in the device 7973 * remains above zero the interface remains promiscuous. Once it hits zero 7974 * the device reverts back to normal filtering operation. A negative inc 7975 * value is used to drop promiscuity on the device. 7976 * Return 0 if successful or a negative errno code on error. 7977 */ 7978 int dev_set_promiscuity(struct net_device *dev, int inc) 7979 { 7980 unsigned int old_flags = dev->flags; 7981 int err; 7982 7983 err = __dev_set_promiscuity(dev, inc, true); 7984 if (err < 0) 7985 return err; 7986 if (dev->flags != old_flags) 7987 dev_set_rx_mode(dev); 7988 return err; 7989 } 7990 EXPORT_SYMBOL(dev_set_promiscuity); 7991 7992 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7993 { 7994 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7995 7996 ASSERT_RTNL(); 7997 7998 dev->flags |= IFF_ALLMULTI; 7999 dev->allmulti += inc; 8000 if (dev->allmulti == 0) { 8001 /* 8002 * Avoid overflow. 8003 * If inc causes overflow, untouch allmulti and return error. 8004 */ 8005 if (inc < 0) 8006 dev->flags &= ~IFF_ALLMULTI; 8007 else { 8008 dev->allmulti -= inc; 8009 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8010 dev->name); 8011 return -EOVERFLOW; 8012 } 8013 } 8014 if (dev->flags ^ old_flags) { 8015 dev_change_rx_flags(dev, IFF_ALLMULTI); 8016 dev_set_rx_mode(dev); 8017 if (notify) 8018 __dev_notify_flags(dev, old_flags, 8019 dev->gflags ^ old_gflags); 8020 } 8021 return 0; 8022 } 8023 8024 /** 8025 * dev_set_allmulti - update allmulti count on a device 8026 * @dev: device 8027 * @inc: modifier 8028 * 8029 * Add or remove reception of all multicast frames to a device. While the 8030 * count in the device remains above zero the interface remains listening 8031 * to all interfaces. Once it hits zero the device reverts back to normal 8032 * filtering operation. A negative @inc value is used to drop the counter 8033 * when releasing a resource needing all multicasts. 8034 * Return 0 if successful or a negative errno code on error. 8035 */ 8036 8037 int dev_set_allmulti(struct net_device *dev, int inc) 8038 { 8039 return __dev_set_allmulti(dev, inc, true); 8040 } 8041 EXPORT_SYMBOL(dev_set_allmulti); 8042 8043 /* 8044 * Upload unicast and multicast address lists to device and 8045 * configure RX filtering. When the device doesn't support unicast 8046 * filtering it is put in promiscuous mode while unicast addresses 8047 * are present. 8048 */ 8049 void __dev_set_rx_mode(struct net_device *dev) 8050 { 8051 const struct net_device_ops *ops = dev->netdev_ops; 8052 8053 /* dev_open will call this function so the list will stay sane. */ 8054 if (!(dev->flags&IFF_UP)) 8055 return; 8056 8057 if (!netif_device_present(dev)) 8058 return; 8059 8060 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8061 /* Unicast addresses changes may only happen under the rtnl, 8062 * therefore calling __dev_set_promiscuity here is safe. 8063 */ 8064 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8065 __dev_set_promiscuity(dev, 1, false); 8066 dev->uc_promisc = true; 8067 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8068 __dev_set_promiscuity(dev, -1, false); 8069 dev->uc_promisc = false; 8070 } 8071 } 8072 8073 if (ops->ndo_set_rx_mode) 8074 ops->ndo_set_rx_mode(dev); 8075 } 8076 8077 void dev_set_rx_mode(struct net_device *dev) 8078 { 8079 netif_addr_lock_bh(dev); 8080 __dev_set_rx_mode(dev); 8081 netif_addr_unlock_bh(dev); 8082 } 8083 8084 /** 8085 * dev_get_flags - get flags reported to userspace 8086 * @dev: device 8087 * 8088 * Get the combination of flag bits exported through APIs to userspace. 8089 */ 8090 unsigned int dev_get_flags(const struct net_device *dev) 8091 { 8092 unsigned int flags; 8093 8094 flags = (dev->flags & ~(IFF_PROMISC | 8095 IFF_ALLMULTI | 8096 IFF_RUNNING | 8097 IFF_LOWER_UP | 8098 IFF_DORMANT)) | 8099 (dev->gflags & (IFF_PROMISC | 8100 IFF_ALLMULTI)); 8101 8102 if (netif_running(dev)) { 8103 if (netif_oper_up(dev)) 8104 flags |= IFF_RUNNING; 8105 if (netif_carrier_ok(dev)) 8106 flags |= IFF_LOWER_UP; 8107 if (netif_dormant(dev)) 8108 flags |= IFF_DORMANT; 8109 } 8110 8111 return flags; 8112 } 8113 EXPORT_SYMBOL(dev_get_flags); 8114 8115 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8116 struct netlink_ext_ack *extack) 8117 { 8118 unsigned int old_flags = dev->flags; 8119 int ret; 8120 8121 ASSERT_RTNL(); 8122 8123 /* 8124 * Set the flags on our device. 8125 */ 8126 8127 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8128 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8129 IFF_AUTOMEDIA)) | 8130 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8131 IFF_ALLMULTI)); 8132 8133 /* 8134 * Load in the correct multicast list now the flags have changed. 8135 */ 8136 8137 if ((old_flags ^ flags) & IFF_MULTICAST) 8138 dev_change_rx_flags(dev, IFF_MULTICAST); 8139 8140 dev_set_rx_mode(dev); 8141 8142 /* 8143 * Have we downed the interface. We handle IFF_UP ourselves 8144 * according to user attempts to set it, rather than blindly 8145 * setting it. 8146 */ 8147 8148 ret = 0; 8149 if ((old_flags ^ flags) & IFF_UP) { 8150 if (old_flags & IFF_UP) 8151 __dev_close(dev); 8152 else 8153 ret = __dev_open(dev, extack); 8154 } 8155 8156 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8157 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8158 unsigned int old_flags = dev->flags; 8159 8160 dev->gflags ^= IFF_PROMISC; 8161 8162 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8163 if (dev->flags != old_flags) 8164 dev_set_rx_mode(dev); 8165 } 8166 8167 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8168 * is important. Some (broken) drivers set IFF_PROMISC, when 8169 * IFF_ALLMULTI is requested not asking us and not reporting. 8170 */ 8171 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8172 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8173 8174 dev->gflags ^= IFF_ALLMULTI; 8175 __dev_set_allmulti(dev, inc, false); 8176 } 8177 8178 return ret; 8179 } 8180 8181 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8182 unsigned int gchanges) 8183 { 8184 unsigned int changes = dev->flags ^ old_flags; 8185 8186 if (gchanges) 8187 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8188 8189 if (changes & IFF_UP) { 8190 if (dev->flags & IFF_UP) 8191 call_netdevice_notifiers(NETDEV_UP, dev); 8192 else 8193 call_netdevice_notifiers(NETDEV_DOWN, dev); 8194 } 8195 8196 if (dev->flags & IFF_UP && 8197 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8198 struct netdev_notifier_change_info change_info = { 8199 .info = { 8200 .dev = dev, 8201 }, 8202 .flags_changed = changes, 8203 }; 8204 8205 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8206 } 8207 } 8208 8209 /** 8210 * dev_change_flags - change device settings 8211 * @dev: device 8212 * @flags: device state flags 8213 * @extack: netlink extended ack 8214 * 8215 * Change settings on device based state flags. The flags are 8216 * in the userspace exported format. 8217 */ 8218 int dev_change_flags(struct net_device *dev, unsigned int flags, 8219 struct netlink_ext_ack *extack) 8220 { 8221 int ret; 8222 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8223 8224 ret = __dev_change_flags(dev, flags, extack); 8225 if (ret < 0) 8226 return ret; 8227 8228 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8229 __dev_notify_flags(dev, old_flags, changes); 8230 return ret; 8231 } 8232 EXPORT_SYMBOL(dev_change_flags); 8233 8234 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8235 { 8236 const struct net_device_ops *ops = dev->netdev_ops; 8237 8238 if (ops->ndo_change_mtu) 8239 return ops->ndo_change_mtu(dev, new_mtu); 8240 8241 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8242 WRITE_ONCE(dev->mtu, new_mtu); 8243 return 0; 8244 } 8245 EXPORT_SYMBOL(__dev_set_mtu); 8246 8247 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8248 struct netlink_ext_ack *extack) 8249 { 8250 /* MTU must be positive, and in range */ 8251 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8252 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8253 return -EINVAL; 8254 } 8255 8256 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8257 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8258 return -EINVAL; 8259 } 8260 return 0; 8261 } 8262 8263 /** 8264 * dev_set_mtu_ext - Change maximum transfer unit 8265 * @dev: device 8266 * @new_mtu: new transfer unit 8267 * @extack: netlink extended ack 8268 * 8269 * Change the maximum transfer size of the network device. 8270 */ 8271 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8272 struct netlink_ext_ack *extack) 8273 { 8274 int err, orig_mtu; 8275 8276 if (new_mtu == dev->mtu) 8277 return 0; 8278 8279 err = dev_validate_mtu(dev, new_mtu, extack); 8280 if (err) 8281 return err; 8282 8283 if (!netif_device_present(dev)) 8284 return -ENODEV; 8285 8286 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8287 err = notifier_to_errno(err); 8288 if (err) 8289 return err; 8290 8291 orig_mtu = dev->mtu; 8292 err = __dev_set_mtu(dev, new_mtu); 8293 8294 if (!err) { 8295 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8296 orig_mtu); 8297 err = notifier_to_errno(err); 8298 if (err) { 8299 /* setting mtu back and notifying everyone again, 8300 * so that they have a chance to revert changes. 8301 */ 8302 __dev_set_mtu(dev, orig_mtu); 8303 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8304 new_mtu); 8305 } 8306 } 8307 return err; 8308 } 8309 8310 int dev_set_mtu(struct net_device *dev, int new_mtu) 8311 { 8312 struct netlink_ext_ack extack; 8313 int err; 8314 8315 memset(&extack, 0, sizeof(extack)); 8316 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8317 if (err && extack._msg) 8318 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8319 return err; 8320 } 8321 EXPORT_SYMBOL(dev_set_mtu); 8322 8323 /** 8324 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8325 * @dev: device 8326 * @new_len: new tx queue length 8327 */ 8328 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8329 { 8330 unsigned int orig_len = dev->tx_queue_len; 8331 int res; 8332 8333 if (new_len != (unsigned int)new_len) 8334 return -ERANGE; 8335 8336 if (new_len != orig_len) { 8337 dev->tx_queue_len = new_len; 8338 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8339 res = notifier_to_errno(res); 8340 if (res) 8341 goto err_rollback; 8342 res = dev_qdisc_change_tx_queue_len(dev); 8343 if (res) 8344 goto err_rollback; 8345 } 8346 8347 return 0; 8348 8349 err_rollback: 8350 netdev_err(dev, "refused to change device tx_queue_len\n"); 8351 dev->tx_queue_len = orig_len; 8352 return res; 8353 } 8354 8355 /** 8356 * dev_set_group - Change group this device belongs to 8357 * @dev: device 8358 * @new_group: group this device should belong to 8359 */ 8360 void dev_set_group(struct net_device *dev, int new_group) 8361 { 8362 dev->group = new_group; 8363 } 8364 EXPORT_SYMBOL(dev_set_group); 8365 8366 /** 8367 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8368 * @dev: device 8369 * @addr: new address 8370 * @extack: netlink extended ack 8371 */ 8372 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8373 struct netlink_ext_ack *extack) 8374 { 8375 struct netdev_notifier_pre_changeaddr_info info = { 8376 .info.dev = dev, 8377 .info.extack = extack, 8378 .dev_addr = addr, 8379 }; 8380 int rc; 8381 8382 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8383 return notifier_to_errno(rc); 8384 } 8385 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8386 8387 /** 8388 * dev_set_mac_address - Change Media Access Control Address 8389 * @dev: device 8390 * @sa: new address 8391 * @extack: netlink extended ack 8392 * 8393 * Change the hardware (MAC) address of the device 8394 */ 8395 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8396 struct netlink_ext_ack *extack) 8397 { 8398 const struct net_device_ops *ops = dev->netdev_ops; 8399 int err; 8400 8401 if (!ops->ndo_set_mac_address) 8402 return -EOPNOTSUPP; 8403 if (sa->sa_family != dev->type) 8404 return -EINVAL; 8405 if (!netif_device_present(dev)) 8406 return -ENODEV; 8407 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8408 if (err) 8409 return err; 8410 err = ops->ndo_set_mac_address(dev, sa); 8411 if (err) 8412 return err; 8413 dev->addr_assign_type = NET_ADDR_SET; 8414 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8415 add_device_randomness(dev->dev_addr, dev->addr_len); 8416 return 0; 8417 } 8418 EXPORT_SYMBOL(dev_set_mac_address); 8419 8420 /** 8421 * dev_change_carrier - Change device carrier 8422 * @dev: device 8423 * @new_carrier: new value 8424 * 8425 * Change device carrier 8426 */ 8427 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8428 { 8429 const struct net_device_ops *ops = dev->netdev_ops; 8430 8431 if (!ops->ndo_change_carrier) 8432 return -EOPNOTSUPP; 8433 if (!netif_device_present(dev)) 8434 return -ENODEV; 8435 return ops->ndo_change_carrier(dev, new_carrier); 8436 } 8437 EXPORT_SYMBOL(dev_change_carrier); 8438 8439 /** 8440 * dev_get_phys_port_id - Get device physical port ID 8441 * @dev: device 8442 * @ppid: port ID 8443 * 8444 * Get device physical port ID 8445 */ 8446 int dev_get_phys_port_id(struct net_device *dev, 8447 struct netdev_phys_item_id *ppid) 8448 { 8449 const struct net_device_ops *ops = dev->netdev_ops; 8450 8451 if (!ops->ndo_get_phys_port_id) 8452 return -EOPNOTSUPP; 8453 return ops->ndo_get_phys_port_id(dev, ppid); 8454 } 8455 EXPORT_SYMBOL(dev_get_phys_port_id); 8456 8457 /** 8458 * dev_get_phys_port_name - Get device physical port name 8459 * @dev: device 8460 * @name: port name 8461 * @len: limit of bytes to copy to name 8462 * 8463 * Get device physical port name 8464 */ 8465 int dev_get_phys_port_name(struct net_device *dev, 8466 char *name, size_t len) 8467 { 8468 const struct net_device_ops *ops = dev->netdev_ops; 8469 int err; 8470 8471 if (ops->ndo_get_phys_port_name) { 8472 err = ops->ndo_get_phys_port_name(dev, name, len); 8473 if (err != -EOPNOTSUPP) 8474 return err; 8475 } 8476 return devlink_compat_phys_port_name_get(dev, name, len); 8477 } 8478 EXPORT_SYMBOL(dev_get_phys_port_name); 8479 8480 /** 8481 * dev_get_port_parent_id - Get the device's port parent identifier 8482 * @dev: network device 8483 * @ppid: pointer to a storage for the port's parent identifier 8484 * @recurse: allow/disallow recursion to lower devices 8485 * 8486 * Get the devices's port parent identifier 8487 */ 8488 int dev_get_port_parent_id(struct net_device *dev, 8489 struct netdev_phys_item_id *ppid, 8490 bool recurse) 8491 { 8492 const struct net_device_ops *ops = dev->netdev_ops; 8493 struct netdev_phys_item_id first = { }; 8494 struct net_device *lower_dev; 8495 struct list_head *iter; 8496 int err; 8497 8498 if (ops->ndo_get_port_parent_id) { 8499 err = ops->ndo_get_port_parent_id(dev, ppid); 8500 if (err != -EOPNOTSUPP) 8501 return err; 8502 } 8503 8504 err = devlink_compat_switch_id_get(dev, ppid); 8505 if (!err || err != -EOPNOTSUPP) 8506 return err; 8507 8508 if (!recurse) 8509 return -EOPNOTSUPP; 8510 8511 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8512 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8513 if (err) 8514 break; 8515 if (!first.id_len) 8516 first = *ppid; 8517 else if (memcmp(&first, ppid, sizeof(*ppid))) 8518 return -ENODATA; 8519 } 8520 8521 return err; 8522 } 8523 EXPORT_SYMBOL(dev_get_port_parent_id); 8524 8525 /** 8526 * netdev_port_same_parent_id - Indicate if two network devices have 8527 * the same port parent identifier 8528 * @a: first network device 8529 * @b: second network device 8530 */ 8531 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8532 { 8533 struct netdev_phys_item_id a_id = { }; 8534 struct netdev_phys_item_id b_id = { }; 8535 8536 if (dev_get_port_parent_id(a, &a_id, true) || 8537 dev_get_port_parent_id(b, &b_id, true)) 8538 return false; 8539 8540 return netdev_phys_item_id_same(&a_id, &b_id); 8541 } 8542 EXPORT_SYMBOL(netdev_port_same_parent_id); 8543 8544 /** 8545 * dev_change_proto_down - update protocol port state information 8546 * @dev: device 8547 * @proto_down: new value 8548 * 8549 * This info can be used by switch drivers to set the phys state of the 8550 * port. 8551 */ 8552 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8553 { 8554 const struct net_device_ops *ops = dev->netdev_ops; 8555 8556 if (!ops->ndo_change_proto_down) 8557 return -EOPNOTSUPP; 8558 if (!netif_device_present(dev)) 8559 return -ENODEV; 8560 return ops->ndo_change_proto_down(dev, proto_down); 8561 } 8562 EXPORT_SYMBOL(dev_change_proto_down); 8563 8564 /** 8565 * dev_change_proto_down_generic - generic implementation for 8566 * ndo_change_proto_down that sets carrier according to 8567 * proto_down. 8568 * 8569 * @dev: device 8570 * @proto_down: new value 8571 */ 8572 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8573 { 8574 if (proto_down) 8575 netif_carrier_off(dev); 8576 else 8577 netif_carrier_on(dev); 8578 dev->proto_down = proto_down; 8579 return 0; 8580 } 8581 EXPORT_SYMBOL(dev_change_proto_down_generic); 8582 8583 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 8584 enum bpf_netdev_command cmd) 8585 { 8586 struct netdev_bpf xdp; 8587 8588 if (!bpf_op) 8589 return 0; 8590 8591 memset(&xdp, 0, sizeof(xdp)); 8592 xdp.command = cmd; 8593 8594 /* Query must always succeed. */ 8595 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8596 8597 return xdp.prog_id; 8598 } 8599 8600 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8601 struct netlink_ext_ack *extack, u32 flags, 8602 struct bpf_prog *prog) 8603 { 8604 bool non_hw = !(flags & XDP_FLAGS_HW_MODE); 8605 struct bpf_prog *prev_prog = NULL; 8606 struct netdev_bpf xdp; 8607 int err; 8608 8609 if (non_hw) { 8610 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op, 8611 XDP_QUERY_PROG)); 8612 if (IS_ERR(prev_prog)) 8613 prev_prog = NULL; 8614 } 8615 8616 memset(&xdp, 0, sizeof(xdp)); 8617 if (flags & XDP_FLAGS_HW_MODE) 8618 xdp.command = XDP_SETUP_PROG_HW; 8619 else 8620 xdp.command = XDP_SETUP_PROG; 8621 xdp.extack = extack; 8622 xdp.flags = flags; 8623 xdp.prog = prog; 8624 8625 err = bpf_op(dev, &xdp); 8626 if (!err && non_hw) 8627 bpf_prog_change_xdp(prev_prog, prog); 8628 8629 if (prev_prog) 8630 bpf_prog_put(prev_prog); 8631 8632 return err; 8633 } 8634 8635 static void dev_xdp_uninstall(struct net_device *dev) 8636 { 8637 struct netdev_bpf xdp; 8638 bpf_op_t ndo_bpf; 8639 8640 /* Remove generic XDP */ 8641 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8642 8643 /* Remove from the driver */ 8644 ndo_bpf = dev->netdev_ops->ndo_bpf; 8645 if (!ndo_bpf) 8646 return; 8647 8648 memset(&xdp, 0, sizeof(xdp)); 8649 xdp.command = XDP_QUERY_PROG; 8650 WARN_ON(ndo_bpf(dev, &xdp)); 8651 if (xdp.prog_id) 8652 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8653 NULL)); 8654 8655 /* Remove HW offload */ 8656 memset(&xdp, 0, sizeof(xdp)); 8657 xdp.command = XDP_QUERY_PROG_HW; 8658 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8659 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8660 NULL)); 8661 } 8662 8663 /** 8664 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8665 * @dev: device 8666 * @extack: netlink extended ack 8667 * @fd: new program fd or negative value to clear 8668 * @flags: xdp-related flags 8669 * 8670 * Set or clear a bpf program for a device 8671 */ 8672 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8673 int fd, u32 flags) 8674 { 8675 const struct net_device_ops *ops = dev->netdev_ops; 8676 enum bpf_netdev_command query; 8677 struct bpf_prog *prog = NULL; 8678 bpf_op_t bpf_op, bpf_chk; 8679 bool offload; 8680 int err; 8681 8682 ASSERT_RTNL(); 8683 8684 offload = flags & XDP_FLAGS_HW_MODE; 8685 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8686 8687 bpf_op = bpf_chk = ops->ndo_bpf; 8688 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8689 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8690 return -EOPNOTSUPP; 8691 } 8692 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8693 bpf_op = generic_xdp_install; 8694 if (bpf_op == bpf_chk) 8695 bpf_chk = generic_xdp_install; 8696 8697 if (fd >= 0) { 8698 u32 prog_id; 8699 8700 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8701 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8702 return -EEXIST; 8703 } 8704 8705 prog_id = __dev_xdp_query(dev, bpf_op, query); 8706 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) { 8707 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8708 return -EBUSY; 8709 } 8710 8711 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8712 bpf_op == ops->ndo_bpf); 8713 if (IS_ERR(prog)) 8714 return PTR_ERR(prog); 8715 8716 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8717 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8718 bpf_prog_put(prog); 8719 return -EINVAL; 8720 } 8721 8722 /* prog->aux->id may be 0 for orphaned device-bound progs */ 8723 if (prog->aux->id && prog->aux->id == prog_id) { 8724 bpf_prog_put(prog); 8725 return 0; 8726 } 8727 } else { 8728 if (!__dev_xdp_query(dev, bpf_op, query)) 8729 return 0; 8730 } 8731 8732 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8733 if (err < 0 && prog) 8734 bpf_prog_put(prog); 8735 8736 return err; 8737 } 8738 8739 /** 8740 * dev_new_index - allocate an ifindex 8741 * @net: the applicable net namespace 8742 * 8743 * Returns a suitable unique value for a new device interface 8744 * number. The caller must hold the rtnl semaphore or the 8745 * dev_base_lock to be sure it remains unique. 8746 */ 8747 static int dev_new_index(struct net *net) 8748 { 8749 int ifindex = net->ifindex; 8750 8751 for (;;) { 8752 if (++ifindex <= 0) 8753 ifindex = 1; 8754 if (!__dev_get_by_index(net, ifindex)) 8755 return net->ifindex = ifindex; 8756 } 8757 } 8758 8759 /* Delayed registration/unregisteration */ 8760 static LIST_HEAD(net_todo_list); 8761 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8762 8763 static void net_set_todo(struct net_device *dev) 8764 { 8765 list_add_tail(&dev->todo_list, &net_todo_list); 8766 dev_net(dev)->dev_unreg_count++; 8767 } 8768 8769 static void rollback_registered_many(struct list_head *head) 8770 { 8771 struct net_device *dev, *tmp; 8772 LIST_HEAD(close_head); 8773 8774 BUG_ON(dev_boot_phase); 8775 ASSERT_RTNL(); 8776 8777 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8778 /* Some devices call without registering 8779 * for initialization unwind. Remove those 8780 * devices and proceed with the remaining. 8781 */ 8782 if (dev->reg_state == NETREG_UNINITIALIZED) { 8783 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8784 dev->name, dev); 8785 8786 WARN_ON(1); 8787 list_del(&dev->unreg_list); 8788 continue; 8789 } 8790 dev->dismantle = true; 8791 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8792 } 8793 8794 /* If device is running, close it first. */ 8795 list_for_each_entry(dev, head, unreg_list) 8796 list_add_tail(&dev->close_list, &close_head); 8797 dev_close_many(&close_head, true); 8798 8799 list_for_each_entry(dev, head, unreg_list) { 8800 /* And unlink it from device chain. */ 8801 unlist_netdevice(dev); 8802 8803 dev->reg_state = NETREG_UNREGISTERING; 8804 } 8805 flush_all_backlogs(); 8806 8807 synchronize_net(); 8808 8809 list_for_each_entry(dev, head, unreg_list) { 8810 struct sk_buff *skb = NULL; 8811 8812 /* Shutdown queueing discipline. */ 8813 dev_shutdown(dev); 8814 8815 dev_xdp_uninstall(dev); 8816 8817 /* Notify protocols, that we are about to destroy 8818 * this device. They should clean all the things. 8819 */ 8820 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8821 8822 if (!dev->rtnl_link_ops || 8823 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8824 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8825 GFP_KERNEL, NULL, 0); 8826 8827 /* 8828 * Flush the unicast and multicast chains 8829 */ 8830 dev_uc_flush(dev); 8831 dev_mc_flush(dev); 8832 8833 netdev_name_node_alt_flush(dev); 8834 netdev_name_node_free(dev->name_node); 8835 8836 if (dev->netdev_ops->ndo_uninit) 8837 dev->netdev_ops->ndo_uninit(dev); 8838 8839 if (skb) 8840 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8841 8842 /* Notifier chain MUST detach us all upper devices. */ 8843 WARN_ON(netdev_has_any_upper_dev(dev)); 8844 WARN_ON(netdev_has_any_lower_dev(dev)); 8845 8846 /* Remove entries from kobject tree */ 8847 netdev_unregister_kobject(dev); 8848 #ifdef CONFIG_XPS 8849 /* Remove XPS queueing entries */ 8850 netif_reset_xps_queues_gt(dev, 0); 8851 #endif 8852 } 8853 8854 synchronize_net(); 8855 8856 list_for_each_entry(dev, head, unreg_list) 8857 dev_put(dev); 8858 } 8859 8860 static void rollback_registered(struct net_device *dev) 8861 { 8862 LIST_HEAD(single); 8863 8864 list_add(&dev->unreg_list, &single); 8865 rollback_registered_many(&single); 8866 list_del(&single); 8867 } 8868 8869 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8870 struct net_device *upper, netdev_features_t features) 8871 { 8872 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8873 netdev_features_t feature; 8874 int feature_bit; 8875 8876 for_each_netdev_feature(upper_disables, feature_bit) { 8877 feature = __NETIF_F_BIT(feature_bit); 8878 if (!(upper->wanted_features & feature) 8879 && (features & feature)) { 8880 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8881 &feature, upper->name); 8882 features &= ~feature; 8883 } 8884 } 8885 8886 return features; 8887 } 8888 8889 static void netdev_sync_lower_features(struct net_device *upper, 8890 struct net_device *lower, netdev_features_t features) 8891 { 8892 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8893 netdev_features_t feature; 8894 int feature_bit; 8895 8896 for_each_netdev_feature(upper_disables, feature_bit) { 8897 feature = __NETIF_F_BIT(feature_bit); 8898 if (!(features & feature) && (lower->features & feature)) { 8899 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8900 &feature, lower->name); 8901 lower->wanted_features &= ~feature; 8902 netdev_update_features(lower); 8903 8904 if (unlikely(lower->features & feature)) 8905 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8906 &feature, lower->name); 8907 } 8908 } 8909 } 8910 8911 static netdev_features_t netdev_fix_features(struct net_device *dev, 8912 netdev_features_t features) 8913 { 8914 /* Fix illegal checksum combinations */ 8915 if ((features & NETIF_F_HW_CSUM) && 8916 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8917 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8918 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8919 } 8920 8921 /* TSO requires that SG is present as well. */ 8922 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8923 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8924 features &= ~NETIF_F_ALL_TSO; 8925 } 8926 8927 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8928 !(features & NETIF_F_IP_CSUM)) { 8929 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8930 features &= ~NETIF_F_TSO; 8931 features &= ~NETIF_F_TSO_ECN; 8932 } 8933 8934 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8935 !(features & NETIF_F_IPV6_CSUM)) { 8936 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8937 features &= ~NETIF_F_TSO6; 8938 } 8939 8940 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8941 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8942 features &= ~NETIF_F_TSO_MANGLEID; 8943 8944 /* TSO ECN requires that TSO is present as well. */ 8945 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8946 features &= ~NETIF_F_TSO_ECN; 8947 8948 /* Software GSO depends on SG. */ 8949 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8950 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8951 features &= ~NETIF_F_GSO; 8952 } 8953 8954 /* GSO partial features require GSO partial be set */ 8955 if ((features & dev->gso_partial_features) && 8956 !(features & NETIF_F_GSO_PARTIAL)) { 8957 netdev_dbg(dev, 8958 "Dropping partially supported GSO features since no GSO partial.\n"); 8959 features &= ~dev->gso_partial_features; 8960 } 8961 8962 if (!(features & NETIF_F_RXCSUM)) { 8963 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8964 * successfully merged by hardware must also have the 8965 * checksum verified by hardware. If the user does not 8966 * want to enable RXCSUM, logically, we should disable GRO_HW. 8967 */ 8968 if (features & NETIF_F_GRO_HW) { 8969 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8970 features &= ~NETIF_F_GRO_HW; 8971 } 8972 } 8973 8974 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8975 if (features & NETIF_F_RXFCS) { 8976 if (features & NETIF_F_LRO) { 8977 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8978 features &= ~NETIF_F_LRO; 8979 } 8980 8981 if (features & NETIF_F_GRO_HW) { 8982 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8983 features &= ~NETIF_F_GRO_HW; 8984 } 8985 } 8986 8987 return features; 8988 } 8989 8990 int __netdev_update_features(struct net_device *dev) 8991 { 8992 struct net_device *upper, *lower; 8993 netdev_features_t features; 8994 struct list_head *iter; 8995 int err = -1; 8996 8997 ASSERT_RTNL(); 8998 8999 features = netdev_get_wanted_features(dev); 9000 9001 if (dev->netdev_ops->ndo_fix_features) 9002 features = dev->netdev_ops->ndo_fix_features(dev, features); 9003 9004 /* driver might be less strict about feature dependencies */ 9005 features = netdev_fix_features(dev, features); 9006 9007 /* some features can't be enabled if they're off an an upper device */ 9008 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9009 features = netdev_sync_upper_features(dev, upper, features); 9010 9011 if (dev->features == features) 9012 goto sync_lower; 9013 9014 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9015 &dev->features, &features); 9016 9017 if (dev->netdev_ops->ndo_set_features) 9018 err = dev->netdev_ops->ndo_set_features(dev, features); 9019 else 9020 err = 0; 9021 9022 if (unlikely(err < 0)) { 9023 netdev_err(dev, 9024 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9025 err, &features, &dev->features); 9026 /* return non-0 since some features might have changed and 9027 * it's better to fire a spurious notification than miss it 9028 */ 9029 return -1; 9030 } 9031 9032 sync_lower: 9033 /* some features must be disabled on lower devices when disabled 9034 * on an upper device (think: bonding master or bridge) 9035 */ 9036 netdev_for_each_lower_dev(dev, lower, iter) 9037 netdev_sync_lower_features(dev, lower, features); 9038 9039 if (!err) { 9040 netdev_features_t diff = features ^ dev->features; 9041 9042 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9043 /* udp_tunnel_{get,drop}_rx_info both need 9044 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9045 * device, or they won't do anything. 9046 * Thus we need to update dev->features 9047 * *before* calling udp_tunnel_get_rx_info, 9048 * but *after* calling udp_tunnel_drop_rx_info. 9049 */ 9050 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9051 dev->features = features; 9052 udp_tunnel_get_rx_info(dev); 9053 } else { 9054 udp_tunnel_drop_rx_info(dev); 9055 } 9056 } 9057 9058 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9059 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9060 dev->features = features; 9061 err |= vlan_get_rx_ctag_filter_info(dev); 9062 } else { 9063 vlan_drop_rx_ctag_filter_info(dev); 9064 } 9065 } 9066 9067 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9068 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9069 dev->features = features; 9070 err |= vlan_get_rx_stag_filter_info(dev); 9071 } else { 9072 vlan_drop_rx_stag_filter_info(dev); 9073 } 9074 } 9075 9076 dev->features = features; 9077 } 9078 9079 return err < 0 ? 0 : 1; 9080 } 9081 9082 /** 9083 * netdev_update_features - recalculate device features 9084 * @dev: the device to check 9085 * 9086 * Recalculate dev->features set and send notifications if it 9087 * has changed. Should be called after driver or hardware dependent 9088 * conditions might have changed that influence the features. 9089 */ 9090 void netdev_update_features(struct net_device *dev) 9091 { 9092 if (__netdev_update_features(dev)) 9093 netdev_features_change(dev); 9094 } 9095 EXPORT_SYMBOL(netdev_update_features); 9096 9097 /** 9098 * netdev_change_features - recalculate device features 9099 * @dev: the device to check 9100 * 9101 * Recalculate dev->features set and send notifications even 9102 * if they have not changed. Should be called instead of 9103 * netdev_update_features() if also dev->vlan_features might 9104 * have changed to allow the changes to be propagated to stacked 9105 * VLAN devices. 9106 */ 9107 void netdev_change_features(struct net_device *dev) 9108 { 9109 __netdev_update_features(dev); 9110 netdev_features_change(dev); 9111 } 9112 EXPORT_SYMBOL(netdev_change_features); 9113 9114 /** 9115 * netif_stacked_transfer_operstate - transfer operstate 9116 * @rootdev: the root or lower level device to transfer state from 9117 * @dev: the device to transfer operstate to 9118 * 9119 * Transfer operational state from root to device. This is normally 9120 * called when a stacking relationship exists between the root 9121 * device and the device(a leaf device). 9122 */ 9123 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9124 struct net_device *dev) 9125 { 9126 if (rootdev->operstate == IF_OPER_DORMANT) 9127 netif_dormant_on(dev); 9128 else 9129 netif_dormant_off(dev); 9130 9131 if (netif_carrier_ok(rootdev)) 9132 netif_carrier_on(dev); 9133 else 9134 netif_carrier_off(dev); 9135 } 9136 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9137 9138 static int netif_alloc_rx_queues(struct net_device *dev) 9139 { 9140 unsigned int i, count = dev->num_rx_queues; 9141 struct netdev_rx_queue *rx; 9142 size_t sz = count * sizeof(*rx); 9143 int err = 0; 9144 9145 BUG_ON(count < 1); 9146 9147 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9148 if (!rx) 9149 return -ENOMEM; 9150 9151 dev->_rx = rx; 9152 9153 for (i = 0; i < count; i++) { 9154 rx[i].dev = dev; 9155 9156 /* XDP RX-queue setup */ 9157 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 9158 if (err < 0) 9159 goto err_rxq_info; 9160 } 9161 return 0; 9162 9163 err_rxq_info: 9164 /* Rollback successful reg's and free other resources */ 9165 while (i--) 9166 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9167 kvfree(dev->_rx); 9168 dev->_rx = NULL; 9169 return err; 9170 } 9171 9172 static void netif_free_rx_queues(struct net_device *dev) 9173 { 9174 unsigned int i, count = dev->num_rx_queues; 9175 9176 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9177 if (!dev->_rx) 9178 return; 9179 9180 for (i = 0; i < count; i++) 9181 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9182 9183 kvfree(dev->_rx); 9184 } 9185 9186 static void netdev_init_one_queue(struct net_device *dev, 9187 struct netdev_queue *queue, void *_unused) 9188 { 9189 /* Initialize queue lock */ 9190 spin_lock_init(&queue->_xmit_lock); 9191 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key); 9192 queue->xmit_lock_owner = -1; 9193 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9194 queue->dev = dev; 9195 #ifdef CONFIG_BQL 9196 dql_init(&queue->dql, HZ); 9197 #endif 9198 } 9199 9200 static void netif_free_tx_queues(struct net_device *dev) 9201 { 9202 kvfree(dev->_tx); 9203 } 9204 9205 static int netif_alloc_netdev_queues(struct net_device *dev) 9206 { 9207 unsigned int count = dev->num_tx_queues; 9208 struct netdev_queue *tx; 9209 size_t sz = count * sizeof(*tx); 9210 9211 if (count < 1 || count > 0xffff) 9212 return -EINVAL; 9213 9214 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9215 if (!tx) 9216 return -ENOMEM; 9217 9218 dev->_tx = tx; 9219 9220 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9221 spin_lock_init(&dev->tx_global_lock); 9222 9223 return 0; 9224 } 9225 9226 void netif_tx_stop_all_queues(struct net_device *dev) 9227 { 9228 unsigned int i; 9229 9230 for (i = 0; i < dev->num_tx_queues; i++) { 9231 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9232 9233 netif_tx_stop_queue(txq); 9234 } 9235 } 9236 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9237 9238 static void netdev_register_lockdep_key(struct net_device *dev) 9239 { 9240 lockdep_register_key(&dev->qdisc_tx_busylock_key); 9241 lockdep_register_key(&dev->qdisc_running_key); 9242 lockdep_register_key(&dev->qdisc_xmit_lock_key); 9243 lockdep_register_key(&dev->addr_list_lock_key); 9244 } 9245 9246 static void netdev_unregister_lockdep_key(struct net_device *dev) 9247 { 9248 lockdep_unregister_key(&dev->qdisc_tx_busylock_key); 9249 lockdep_unregister_key(&dev->qdisc_running_key); 9250 lockdep_unregister_key(&dev->qdisc_xmit_lock_key); 9251 lockdep_unregister_key(&dev->addr_list_lock_key); 9252 } 9253 9254 void netdev_update_lockdep_key(struct net_device *dev) 9255 { 9256 lockdep_unregister_key(&dev->addr_list_lock_key); 9257 lockdep_register_key(&dev->addr_list_lock_key); 9258 9259 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9260 } 9261 EXPORT_SYMBOL(netdev_update_lockdep_key); 9262 9263 /** 9264 * register_netdevice - register a network device 9265 * @dev: device to register 9266 * 9267 * Take a completed network device structure and add it to the kernel 9268 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9269 * chain. 0 is returned on success. A negative errno code is returned 9270 * on a failure to set up the device, or if the name is a duplicate. 9271 * 9272 * Callers must hold the rtnl semaphore. You may want 9273 * register_netdev() instead of this. 9274 * 9275 * BUGS: 9276 * The locking appears insufficient to guarantee two parallel registers 9277 * will not get the same name. 9278 */ 9279 9280 int register_netdevice(struct net_device *dev) 9281 { 9282 int ret; 9283 struct net *net = dev_net(dev); 9284 9285 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9286 NETDEV_FEATURE_COUNT); 9287 BUG_ON(dev_boot_phase); 9288 ASSERT_RTNL(); 9289 9290 might_sleep(); 9291 9292 /* When net_device's are persistent, this will be fatal. */ 9293 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9294 BUG_ON(!net); 9295 9296 spin_lock_init(&dev->addr_list_lock); 9297 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9298 9299 ret = dev_get_valid_name(net, dev, dev->name); 9300 if (ret < 0) 9301 goto out; 9302 9303 ret = -ENOMEM; 9304 dev->name_node = netdev_name_node_head_alloc(dev); 9305 if (!dev->name_node) 9306 goto out; 9307 9308 /* Init, if this function is available */ 9309 if (dev->netdev_ops->ndo_init) { 9310 ret = dev->netdev_ops->ndo_init(dev); 9311 if (ret) { 9312 if (ret > 0) 9313 ret = -EIO; 9314 goto err_free_name; 9315 } 9316 } 9317 9318 if (((dev->hw_features | dev->features) & 9319 NETIF_F_HW_VLAN_CTAG_FILTER) && 9320 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9321 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9322 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9323 ret = -EINVAL; 9324 goto err_uninit; 9325 } 9326 9327 ret = -EBUSY; 9328 if (!dev->ifindex) 9329 dev->ifindex = dev_new_index(net); 9330 else if (__dev_get_by_index(net, dev->ifindex)) 9331 goto err_uninit; 9332 9333 /* Transfer changeable features to wanted_features and enable 9334 * software offloads (GSO and GRO). 9335 */ 9336 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9337 dev->features |= NETIF_F_SOFT_FEATURES; 9338 9339 if (dev->netdev_ops->ndo_udp_tunnel_add) { 9340 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9341 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9342 } 9343 9344 dev->wanted_features = dev->features & dev->hw_features; 9345 9346 if (!(dev->flags & IFF_LOOPBACK)) 9347 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9348 9349 /* If IPv4 TCP segmentation offload is supported we should also 9350 * allow the device to enable segmenting the frame with the option 9351 * of ignoring a static IP ID value. This doesn't enable the 9352 * feature itself but allows the user to enable it later. 9353 */ 9354 if (dev->hw_features & NETIF_F_TSO) 9355 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9356 if (dev->vlan_features & NETIF_F_TSO) 9357 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9358 if (dev->mpls_features & NETIF_F_TSO) 9359 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9360 if (dev->hw_enc_features & NETIF_F_TSO) 9361 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9362 9363 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9364 */ 9365 dev->vlan_features |= NETIF_F_HIGHDMA; 9366 9367 /* Make NETIF_F_SG inheritable to tunnel devices. 9368 */ 9369 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9370 9371 /* Make NETIF_F_SG inheritable to MPLS. 9372 */ 9373 dev->mpls_features |= NETIF_F_SG; 9374 9375 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9376 ret = notifier_to_errno(ret); 9377 if (ret) 9378 goto err_uninit; 9379 9380 ret = netdev_register_kobject(dev); 9381 if (ret) { 9382 dev->reg_state = NETREG_UNREGISTERED; 9383 goto err_uninit; 9384 } 9385 dev->reg_state = NETREG_REGISTERED; 9386 9387 __netdev_update_features(dev); 9388 9389 /* 9390 * Default initial state at registry is that the 9391 * device is present. 9392 */ 9393 9394 set_bit(__LINK_STATE_PRESENT, &dev->state); 9395 9396 linkwatch_init_dev(dev); 9397 9398 dev_init_scheduler(dev); 9399 dev_hold(dev); 9400 list_netdevice(dev); 9401 add_device_randomness(dev->dev_addr, dev->addr_len); 9402 9403 /* If the device has permanent device address, driver should 9404 * set dev_addr and also addr_assign_type should be set to 9405 * NET_ADDR_PERM (default value). 9406 */ 9407 if (dev->addr_assign_type == NET_ADDR_PERM) 9408 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 9409 9410 /* Notify protocols, that a new device appeared. */ 9411 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 9412 ret = notifier_to_errno(ret); 9413 if (ret) { 9414 rollback_registered(dev); 9415 rcu_barrier(); 9416 9417 dev->reg_state = NETREG_UNREGISTERED; 9418 } 9419 /* 9420 * Prevent userspace races by waiting until the network 9421 * device is fully setup before sending notifications. 9422 */ 9423 if (!dev->rtnl_link_ops || 9424 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9425 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9426 9427 out: 9428 return ret; 9429 9430 err_uninit: 9431 if (dev->netdev_ops->ndo_uninit) 9432 dev->netdev_ops->ndo_uninit(dev); 9433 if (dev->priv_destructor) 9434 dev->priv_destructor(dev); 9435 err_free_name: 9436 netdev_name_node_free(dev->name_node); 9437 goto out; 9438 } 9439 EXPORT_SYMBOL(register_netdevice); 9440 9441 /** 9442 * init_dummy_netdev - init a dummy network device for NAPI 9443 * @dev: device to init 9444 * 9445 * This takes a network device structure and initialize the minimum 9446 * amount of fields so it can be used to schedule NAPI polls without 9447 * registering a full blown interface. This is to be used by drivers 9448 * that need to tie several hardware interfaces to a single NAPI 9449 * poll scheduler due to HW limitations. 9450 */ 9451 int init_dummy_netdev(struct net_device *dev) 9452 { 9453 /* Clear everything. Note we don't initialize spinlocks 9454 * are they aren't supposed to be taken by any of the 9455 * NAPI code and this dummy netdev is supposed to be 9456 * only ever used for NAPI polls 9457 */ 9458 memset(dev, 0, sizeof(struct net_device)); 9459 9460 /* make sure we BUG if trying to hit standard 9461 * register/unregister code path 9462 */ 9463 dev->reg_state = NETREG_DUMMY; 9464 9465 /* NAPI wants this */ 9466 INIT_LIST_HEAD(&dev->napi_list); 9467 9468 /* a dummy interface is started by default */ 9469 set_bit(__LINK_STATE_PRESENT, &dev->state); 9470 set_bit(__LINK_STATE_START, &dev->state); 9471 9472 /* napi_busy_loop stats accounting wants this */ 9473 dev_net_set(dev, &init_net); 9474 9475 /* Note : We dont allocate pcpu_refcnt for dummy devices, 9476 * because users of this 'device' dont need to change 9477 * its refcount. 9478 */ 9479 9480 return 0; 9481 } 9482 EXPORT_SYMBOL_GPL(init_dummy_netdev); 9483 9484 9485 /** 9486 * register_netdev - register a network device 9487 * @dev: device to register 9488 * 9489 * Take a completed network device structure and add it to the kernel 9490 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9491 * chain. 0 is returned on success. A negative errno code is returned 9492 * on a failure to set up the device, or if the name is a duplicate. 9493 * 9494 * This is a wrapper around register_netdevice that takes the rtnl semaphore 9495 * and expands the device name if you passed a format string to 9496 * alloc_netdev. 9497 */ 9498 int register_netdev(struct net_device *dev) 9499 { 9500 int err; 9501 9502 if (rtnl_lock_killable()) 9503 return -EINTR; 9504 err = register_netdevice(dev); 9505 rtnl_unlock(); 9506 return err; 9507 } 9508 EXPORT_SYMBOL(register_netdev); 9509 9510 int netdev_refcnt_read(const struct net_device *dev) 9511 { 9512 int i, refcnt = 0; 9513 9514 for_each_possible_cpu(i) 9515 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 9516 return refcnt; 9517 } 9518 EXPORT_SYMBOL(netdev_refcnt_read); 9519 9520 /** 9521 * netdev_wait_allrefs - wait until all references are gone. 9522 * @dev: target net_device 9523 * 9524 * This is called when unregistering network devices. 9525 * 9526 * Any protocol or device that holds a reference should register 9527 * for netdevice notification, and cleanup and put back the 9528 * reference if they receive an UNREGISTER event. 9529 * We can get stuck here if buggy protocols don't correctly 9530 * call dev_put. 9531 */ 9532 static void netdev_wait_allrefs(struct net_device *dev) 9533 { 9534 unsigned long rebroadcast_time, warning_time; 9535 int refcnt; 9536 9537 linkwatch_forget_dev(dev); 9538 9539 rebroadcast_time = warning_time = jiffies; 9540 refcnt = netdev_refcnt_read(dev); 9541 9542 while (refcnt != 0) { 9543 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 9544 rtnl_lock(); 9545 9546 /* Rebroadcast unregister notification */ 9547 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9548 9549 __rtnl_unlock(); 9550 rcu_barrier(); 9551 rtnl_lock(); 9552 9553 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 9554 &dev->state)) { 9555 /* We must not have linkwatch events 9556 * pending on unregister. If this 9557 * happens, we simply run the queue 9558 * unscheduled, resulting in a noop 9559 * for this device. 9560 */ 9561 linkwatch_run_queue(); 9562 } 9563 9564 __rtnl_unlock(); 9565 9566 rebroadcast_time = jiffies; 9567 } 9568 9569 msleep(250); 9570 9571 refcnt = netdev_refcnt_read(dev); 9572 9573 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 9574 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 9575 dev->name, refcnt); 9576 warning_time = jiffies; 9577 } 9578 } 9579 } 9580 9581 /* The sequence is: 9582 * 9583 * rtnl_lock(); 9584 * ... 9585 * register_netdevice(x1); 9586 * register_netdevice(x2); 9587 * ... 9588 * unregister_netdevice(y1); 9589 * unregister_netdevice(y2); 9590 * ... 9591 * rtnl_unlock(); 9592 * free_netdev(y1); 9593 * free_netdev(y2); 9594 * 9595 * We are invoked by rtnl_unlock(). 9596 * This allows us to deal with problems: 9597 * 1) We can delete sysfs objects which invoke hotplug 9598 * without deadlocking with linkwatch via keventd. 9599 * 2) Since we run with the RTNL semaphore not held, we can sleep 9600 * safely in order to wait for the netdev refcnt to drop to zero. 9601 * 9602 * We must not return until all unregister events added during 9603 * the interval the lock was held have been completed. 9604 */ 9605 void netdev_run_todo(void) 9606 { 9607 struct list_head list; 9608 9609 /* Snapshot list, allow later requests */ 9610 list_replace_init(&net_todo_list, &list); 9611 9612 __rtnl_unlock(); 9613 9614 9615 /* Wait for rcu callbacks to finish before next phase */ 9616 if (!list_empty(&list)) 9617 rcu_barrier(); 9618 9619 while (!list_empty(&list)) { 9620 struct net_device *dev 9621 = list_first_entry(&list, struct net_device, todo_list); 9622 list_del(&dev->todo_list); 9623 9624 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 9625 pr_err("network todo '%s' but state %d\n", 9626 dev->name, dev->reg_state); 9627 dump_stack(); 9628 continue; 9629 } 9630 9631 dev->reg_state = NETREG_UNREGISTERED; 9632 9633 netdev_wait_allrefs(dev); 9634 9635 /* paranoia */ 9636 BUG_ON(netdev_refcnt_read(dev)); 9637 BUG_ON(!list_empty(&dev->ptype_all)); 9638 BUG_ON(!list_empty(&dev->ptype_specific)); 9639 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 9640 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 9641 #if IS_ENABLED(CONFIG_DECNET) 9642 WARN_ON(dev->dn_ptr); 9643 #endif 9644 if (dev->priv_destructor) 9645 dev->priv_destructor(dev); 9646 if (dev->needs_free_netdev) 9647 free_netdev(dev); 9648 9649 /* Report a network device has been unregistered */ 9650 rtnl_lock(); 9651 dev_net(dev)->dev_unreg_count--; 9652 __rtnl_unlock(); 9653 wake_up(&netdev_unregistering_wq); 9654 9655 /* Free network device */ 9656 kobject_put(&dev->dev.kobj); 9657 } 9658 } 9659 9660 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9661 * all the same fields in the same order as net_device_stats, with only 9662 * the type differing, but rtnl_link_stats64 may have additional fields 9663 * at the end for newer counters. 9664 */ 9665 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9666 const struct net_device_stats *netdev_stats) 9667 { 9668 #if BITS_PER_LONG == 64 9669 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9670 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9671 /* zero out counters that only exist in rtnl_link_stats64 */ 9672 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9673 sizeof(*stats64) - sizeof(*netdev_stats)); 9674 #else 9675 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9676 const unsigned long *src = (const unsigned long *)netdev_stats; 9677 u64 *dst = (u64 *)stats64; 9678 9679 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9680 for (i = 0; i < n; i++) 9681 dst[i] = src[i]; 9682 /* zero out counters that only exist in rtnl_link_stats64 */ 9683 memset((char *)stats64 + n * sizeof(u64), 0, 9684 sizeof(*stats64) - n * sizeof(u64)); 9685 #endif 9686 } 9687 EXPORT_SYMBOL(netdev_stats_to_stats64); 9688 9689 /** 9690 * dev_get_stats - get network device statistics 9691 * @dev: device to get statistics from 9692 * @storage: place to store stats 9693 * 9694 * Get network statistics from device. Return @storage. 9695 * The device driver may provide its own method by setting 9696 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9697 * otherwise the internal statistics structure is used. 9698 */ 9699 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9700 struct rtnl_link_stats64 *storage) 9701 { 9702 const struct net_device_ops *ops = dev->netdev_ops; 9703 9704 if (ops->ndo_get_stats64) { 9705 memset(storage, 0, sizeof(*storage)); 9706 ops->ndo_get_stats64(dev, storage); 9707 } else if (ops->ndo_get_stats) { 9708 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9709 } else { 9710 netdev_stats_to_stats64(storage, &dev->stats); 9711 } 9712 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9713 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9714 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9715 return storage; 9716 } 9717 EXPORT_SYMBOL(dev_get_stats); 9718 9719 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9720 { 9721 struct netdev_queue *queue = dev_ingress_queue(dev); 9722 9723 #ifdef CONFIG_NET_CLS_ACT 9724 if (queue) 9725 return queue; 9726 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9727 if (!queue) 9728 return NULL; 9729 netdev_init_one_queue(dev, queue, NULL); 9730 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9731 queue->qdisc_sleeping = &noop_qdisc; 9732 rcu_assign_pointer(dev->ingress_queue, queue); 9733 #endif 9734 return queue; 9735 } 9736 9737 static const struct ethtool_ops default_ethtool_ops; 9738 9739 void netdev_set_default_ethtool_ops(struct net_device *dev, 9740 const struct ethtool_ops *ops) 9741 { 9742 if (dev->ethtool_ops == &default_ethtool_ops) 9743 dev->ethtool_ops = ops; 9744 } 9745 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9746 9747 void netdev_freemem(struct net_device *dev) 9748 { 9749 char *addr = (char *)dev - dev->padded; 9750 9751 kvfree(addr); 9752 } 9753 9754 /** 9755 * alloc_netdev_mqs - allocate network device 9756 * @sizeof_priv: size of private data to allocate space for 9757 * @name: device name format string 9758 * @name_assign_type: origin of device name 9759 * @setup: callback to initialize device 9760 * @txqs: the number of TX subqueues to allocate 9761 * @rxqs: the number of RX subqueues to allocate 9762 * 9763 * Allocates a struct net_device with private data area for driver use 9764 * and performs basic initialization. Also allocates subqueue structs 9765 * for each queue on the device. 9766 */ 9767 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9768 unsigned char name_assign_type, 9769 void (*setup)(struct net_device *), 9770 unsigned int txqs, unsigned int rxqs) 9771 { 9772 struct net_device *dev; 9773 unsigned int alloc_size; 9774 struct net_device *p; 9775 9776 BUG_ON(strlen(name) >= sizeof(dev->name)); 9777 9778 if (txqs < 1) { 9779 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9780 return NULL; 9781 } 9782 9783 if (rxqs < 1) { 9784 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9785 return NULL; 9786 } 9787 9788 alloc_size = sizeof(struct net_device); 9789 if (sizeof_priv) { 9790 /* ensure 32-byte alignment of private area */ 9791 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9792 alloc_size += sizeof_priv; 9793 } 9794 /* ensure 32-byte alignment of whole construct */ 9795 alloc_size += NETDEV_ALIGN - 1; 9796 9797 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9798 if (!p) 9799 return NULL; 9800 9801 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9802 dev->padded = (char *)dev - (char *)p; 9803 9804 dev->pcpu_refcnt = alloc_percpu(int); 9805 if (!dev->pcpu_refcnt) 9806 goto free_dev; 9807 9808 if (dev_addr_init(dev)) 9809 goto free_pcpu; 9810 9811 dev_mc_init(dev); 9812 dev_uc_init(dev); 9813 9814 dev_net_set(dev, &init_net); 9815 9816 netdev_register_lockdep_key(dev); 9817 9818 dev->gso_max_size = GSO_MAX_SIZE; 9819 dev->gso_max_segs = GSO_MAX_SEGS; 9820 dev->upper_level = 1; 9821 dev->lower_level = 1; 9822 9823 INIT_LIST_HEAD(&dev->napi_list); 9824 INIT_LIST_HEAD(&dev->unreg_list); 9825 INIT_LIST_HEAD(&dev->close_list); 9826 INIT_LIST_HEAD(&dev->link_watch_list); 9827 INIT_LIST_HEAD(&dev->adj_list.upper); 9828 INIT_LIST_HEAD(&dev->adj_list.lower); 9829 INIT_LIST_HEAD(&dev->ptype_all); 9830 INIT_LIST_HEAD(&dev->ptype_specific); 9831 INIT_LIST_HEAD(&dev->net_notifier_list); 9832 #ifdef CONFIG_NET_SCHED 9833 hash_init(dev->qdisc_hash); 9834 #endif 9835 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9836 setup(dev); 9837 9838 if (!dev->tx_queue_len) { 9839 dev->priv_flags |= IFF_NO_QUEUE; 9840 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9841 } 9842 9843 dev->num_tx_queues = txqs; 9844 dev->real_num_tx_queues = txqs; 9845 if (netif_alloc_netdev_queues(dev)) 9846 goto free_all; 9847 9848 dev->num_rx_queues = rxqs; 9849 dev->real_num_rx_queues = rxqs; 9850 if (netif_alloc_rx_queues(dev)) 9851 goto free_all; 9852 9853 strcpy(dev->name, name); 9854 dev->name_assign_type = name_assign_type; 9855 dev->group = INIT_NETDEV_GROUP; 9856 if (!dev->ethtool_ops) 9857 dev->ethtool_ops = &default_ethtool_ops; 9858 9859 nf_hook_ingress_init(dev); 9860 9861 return dev; 9862 9863 free_all: 9864 free_netdev(dev); 9865 return NULL; 9866 9867 free_pcpu: 9868 free_percpu(dev->pcpu_refcnt); 9869 free_dev: 9870 netdev_freemem(dev); 9871 return NULL; 9872 } 9873 EXPORT_SYMBOL(alloc_netdev_mqs); 9874 9875 /** 9876 * free_netdev - free network device 9877 * @dev: device 9878 * 9879 * This function does the last stage of destroying an allocated device 9880 * interface. The reference to the device object is released. If this 9881 * is the last reference then it will be freed.Must be called in process 9882 * context. 9883 */ 9884 void free_netdev(struct net_device *dev) 9885 { 9886 struct napi_struct *p, *n; 9887 9888 might_sleep(); 9889 netif_free_tx_queues(dev); 9890 netif_free_rx_queues(dev); 9891 9892 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9893 9894 /* Flush device addresses */ 9895 dev_addr_flush(dev); 9896 9897 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9898 netif_napi_del(p); 9899 9900 free_percpu(dev->pcpu_refcnt); 9901 dev->pcpu_refcnt = NULL; 9902 free_percpu(dev->xdp_bulkq); 9903 dev->xdp_bulkq = NULL; 9904 9905 netdev_unregister_lockdep_key(dev); 9906 9907 /* Compatibility with error handling in drivers */ 9908 if (dev->reg_state == NETREG_UNINITIALIZED) { 9909 netdev_freemem(dev); 9910 return; 9911 } 9912 9913 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9914 dev->reg_state = NETREG_RELEASED; 9915 9916 /* will free via device release */ 9917 put_device(&dev->dev); 9918 } 9919 EXPORT_SYMBOL(free_netdev); 9920 9921 /** 9922 * synchronize_net - Synchronize with packet receive processing 9923 * 9924 * Wait for packets currently being received to be done. 9925 * Does not block later packets from starting. 9926 */ 9927 void synchronize_net(void) 9928 { 9929 might_sleep(); 9930 if (rtnl_is_locked()) 9931 synchronize_rcu_expedited(); 9932 else 9933 synchronize_rcu(); 9934 } 9935 EXPORT_SYMBOL(synchronize_net); 9936 9937 /** 9938 * unregister_netdevice_queue - remove device from the kernel 9939 * @dev: device 9940 * @head: list 9941 * 9942 * This function shuts down a device interface and removes it 9943 * from the kernel tables. 9944 * If head not NULL, device is queued to be unregistered later. 9945 * 9946 * Callers must hold the rtnl semaphore. You may want 9947 * unregister_netdev() instead of this. 9948 */ 9949 9950 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9951 { 9952 ASSERT_RTNL(); 9953 9954 if (head) { 9955 list_move_tail(&dev->unreg_list, head); 9956 } else { 9957 rollback_registered(dev); 9958 /* Finish processing unregister after unlock */ 9959 net_set_todo(dev); 9960 } 9961 } 9962 EXPORT_SYMBOL(unregister_netdevice_queue); 9963 9964 /** 9965 * unregister_netdevice_many - unregister many devices 9966 * @head: list of devices 9967 * 9968 * Note: As most callers use a stack allocated list_head, 9969 * we force a list_del() to make sure stack wont be corrupted later. 9970 */ 9971 void unregister_netdevice_many(struct list_head *head) 9972 { 9973 struct net_device *dev; 9974 9975 if (!list_empty(head)) { 9976 rollback_registered_many(head); 9977 list_for_each_entry(dev, head, unreg_list) 9978 net_set_todo(dev); 9979 list_del(head); 9980 } 9981 } 9982 EXPORT_SYMBOL(unregister_netdevice_many); 9983 9984 /** 9985 * unregister_netdev - remove device from the kernel 9986 * @dev: device 9987 * 9988 * This function shuts down a device interface and removes it 9989 * from the kernel tables. 9990 * 9991 * This is just a wrapper for unregister_netdevice that takes 9992 * the rtnl semaphore. In general you want to use this and not 9993 * unregister_netdevice. 9994 */ 9995 void unregister_netdev(struct net_device *dev) 9996 { 9997 rtnl_lock(); 9998 unregister_netdevice(dev); 9999 rtnl_unlock(); 10000 } 10001 EXPORT_SYMBOL(unregister_netdev); 10002 10003 /** 10004 * dev_change_net_namespace - move device to different nethost namespace 10005 * @dev: device 10006 * @net: network namespace 10007 * @pat: If not NULL name pattern to try if the current device name 10008 * is already taken in the destination network namespace. 10009 * 10010 * This function shuts down a device interface and moves it 10011 * to a new network namespace. On success 0 is returned, on 10012 * a failure a netagive errno code is returned. 10013 * 10014 * Callers must hold the rtnl semaphore. 10015 */ 10016 10017 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 10018 { 10019 int err, new_nsid, new_ifindex; 10020 10021 ASSERT_RTNL(); 10022 10023 /* Don't allow namespace local devices to be moved. */ 10024 err = -EINVAL; 10025 if (dev->features & NETIF_F_NETNS_LOCAL) 10026 goto out; 10027 10028 /* Ensure the device has been registrered */ 10029 if (dev->reg_state != NETREG_REGISTERED) 10030 goto out; 10031 10032 /* Get out if there is nothing todo */ 10033 err = 0; 10034 if (net_eq(dev_net(dev), net)) 10035 goto out; 10036 10037 /* Pick the destination device name, and ensure 10038 * we can use it in the destination network namespace. 10039 */ 10040 err = -EEXIST; 10041 if (__dev_get_by_name(net, dev->name)) { 10042 /* We get here if we can't use the current device name */ 10043 if (!pat) 10044 goto out; 10045 err = dev_get_valid_name(net, dev, pat); 10046 if (err < 0) 10047 goto out; 10048 } 10049 10050 /* 10051 * And now a mini version of register_netdevice unregister_netdevice. 10052 */ 10053 10054 /* If device is running close it first. */ 10055 dev_close(dev); 10056 10057 /* And unlink it from device chain */ 10058 unlist_netdevice(dev); 10059 10060 synchronize_net(); 10061 10062 /* Shutdown queueing discipline. */ 10063 dev_shutdown(dev); 10064 10065 /* Notify protocols, that we are about to destroy 10066 * this device. They should clean all the things. 10067 * 10068 * Note that dev->reg_state stays at NETREG_REGISTERED. 10069 * This is wanted because this way 8021q and macvlan know 10070 * the device is just moving and can keep their slaves up. 10071 */ 10072 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10073 rcu_barrier(); 10074 10075 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10076 /* If there is an ifindex conflict assign a new one */ 10077 if (__dev_get_by_index(net, dev->ifindex)) 10078 new_ifindex = dev_new_index(net); 10079 else 10080 new_ifindex = dev->ifindex; 10081 10082 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10083 new_ifindex); 10084 10085 /* 10086 * Flush the unicast and multicast chains 10087 */ 10088 dev_uc_flush(dev); 10089 dev_mc_flush(dev); 10090 10091 /* Send a netdev-removed uevent to the old namespace */ 10092 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10093 netdev_adjacent_del_links(dev); 10094 10095 /* Move per-net netdevice notifiers that are following the netdevice */ 10096 move_netdevice_notifiers_dev_net(dev, net); 10097 10098 /* Actually switch the network namespace */ 10099 dev_net_set(dev, net); 10100 dev->ifindex = new_ifindex; 10101 10102 /* Send a netdev-add uevent to the new namespace */ 10103 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10104 netdev_adjacent_add_links(dev); 10105 10106 /* Fixup kobjects */ 10107 err = device_rename(&dev->dev, dev->name); 10108 WARN_ON(err); 10109 10110 /* Add the device back in the hashes */ 10111 list_netdevice(dev); 10112 10113 /* Notify protocols, that a new device appeared. */ 10114 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10115 10116 /* 10117 * Prevent userspace races by waiting until the network 10118 * device is fully setup before sending notifications. 10119 */ 10120 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10121 10122 synchronize_net(); 10123 err = 0; 10124 out: 10125 return err; 10126 } 10127 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10128 10129 static int dev_cpu_dead(unsigned int oldcpu) 10130 { 10131 struct sk_buff **list_skb; 10132 struct sk_buff *skb; 10133 unsigned int cpu; 10134 struct softnet_data *sd, *oldsd, *remsd = NULL; 10135 10136 local_irq_disable(); 10137 cpu = smp_processor_id(); 10138 sd = &per_cpu(softnet_data, cpu); 10139 oldsd = &per_cpu(softnet_data, oldcpu); 10140 10141 /* Find end of our completion_queue. */ 10142 list_skb = &sd->completion_queue; 10143 while (*list_skb) 10144 list_skb = &(*list_skb)->next; 10145 /* Append completion queue from offline CPU. */ 10146 *list_skb = oldsd->completion_queue; 10147 oldsd->completion_queue = NULL; 10148 10149 /* Append output queue from offline CPU. */ 10150 if (oldsd->output_queue) { 10151 *sd->output_queue_tailp = oldsd->output_queue; 10152 sd->output_queue_tailp = oldsd->output_queue_tailp; 10153 oldsd->output_queue = NULL; 10154 oldsd->output_queue_tailp = &oldsd->output_queue; 10155 } 10156 /* Append NAPI poll list from offline CPU, with one exception : 10157 * process_backlog() must be called by cpu owning percpu backlog. 10158 * We properly handle process_queue & input_pkt_queue later. 10159 */ 10160 while (!list_empty(&oldsd->poll_list)) { 10161 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10162 struct napi_struct, 10163 poll_list); 10164 10165 list_del_init(&napi->poll_list); 10166 if (napi->poll == process_backlog) 10167 napi->state = 0; 10168 else 10169 ____napi_schedule(sd, napi); 10170 } 10171 10172 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10173 local_irq_enable(); 10174 10175 #ifdef CONFIG_RPS 10176 remsd = oldsd->rps_ipi_list; 10177 oldsd->rps_ipi_list = NULL; 10178 #endif 10179 /* send out pending IPI's on offline CPU */ 10180 net_rps_send_ipi(remsd); 10181 10182 /* Process offline CPU's input_pkt_queue */ 10183 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10184 netif_rx_ni(skb); 10185 input_queue_head_incr(oldsd); 10186 } 10187 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10188 netif_rx_ni(skb); 10189 input_queue_head_incr(oldsd); 10190 } 10191 10192 return 0; 10193 } 10194 10195 /** 10196 * netdev_increment_features - increment feature set by one 10197 * @all: current feature set 10198 * @one: new feature set 10199 * @mask: mask feature set 10200 * 10201 * Computes a new feature set after adding a device with feature set 10202 * @one to the master device with current feature set @all. Will not 10203 * enable anything that is off in @mask. Returns the new feature set. 10204 */ 10205 netdev_features_t netdev_increment_features(netdev_features_t all, 10206 netdev_features_t one, netdev_features_t mask) 10207 { 10208 if (mask & NETIF_F_HW_CSUM) 10209 mask |= NETIF_F_CSUM_MASK; 10210 mask |= NETIF_F_VLAN_CHALLENGED; 10211 10212 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10213 all &= one | ~NETIF_F_ALL_FOR_ALL; 10214 10215 /* If one device supports hw checksumming, set for all. */ 10216 if (all & NETIF_F_HW_CSUM) 10217 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10218 10219 return all; 10220 } 10221 EXPORT_SYMBOL(netdev_increment_features); 10222 10223 static struct hlist_head * __net_init netdev_create_hash(void) 10224 { 10225 int i; 10226 struct hlist_head *hash; 10227 10228 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 10229 if (hash != NULL) 10230 for (i = 0; i < NETDEV_HASHENTRIES; i++) 10231 INIT_HLIST_HEAD(&hash[i]); 10232 10233 return hash; 10234 } 10235 10236 /* Initialize per network namespace state */ 10237 static int __net_init netdev_init(struct net *net) 10238 { 10239 BUILD_BUG_ON(GRO_HASH_BUCKETS > 10240 8 * sizeof_field(struct napi_struct, gro_bitmask)); 10241 10242 if (net != &init_net) 10243 INIT_LIST_HEAD(&net->dev_base_head); 10244 10245 net->dev_name_head = netdev_create_hash(); 10246 if (net->dev_name_head == NULL) 10247 goto err_name; 10248 10249 net->dev_index_head = netdev_create_hash(); 10250 if (net->dev_index_head == NULL) 10251 goto err_idx; 10252 10253 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 10254 10255 return 0; 10256 10257 err_idx: 10258 kfree(net->dev_name_head); 10259 err_name: 10260 return -ENOMEM; 10261 } 10262 10263 /** 10264 * netdev_drivername - network driver for the device 10265 * @dev: network device 10266 * 10267 * Determine network driver for device. 10268 */ 10269 const char *netdev_drivername(const struct net_device *dev) 10270 { 10271 const struct device_driver *driver; 10272 const struct device *parent; 10273 const char *empty = ""; 10274 10275 parent = dev->dev.parent; 10276 if (!parent) 10277 return empty; 10278 10279 driver = parent->driver; 10280 if (driver && driver->name) 10281 return driver->name; 10282 return empty; 10283 } 10284 10285 static void __netdev_printk(const char *level, const struct net_device *dev, 10286 struct va_format *vaf) 10287 { 10288 if (dev && dev->dev.parent) { 10289 dev_printk_emit(level[1] - '0', 10290 dev->dev.parent, 10291 "%s %s %s%s: %pV", 10292 dev_driver_string(dev->dev.parent), 10293 dev_name(dev->dev.parent), 10294 netdev_name(dev), netdev_reg_state(dev), 10295 vaf); 10296 } else if (dev) { 10297 printk("%s%s%s: %pV", 10298 level, netdev_name(dev), netdev_reg_state(dev), vaf); 10299 } else { 10300 printk("%s(NULL net_device): %pV", level, vaf); 10301 } 10302 } 10303 10304 void netdev_printk(const char *level, const struct net_device *dev, 10305 const char *format, ...) 10306 { 10307 struct va_format vaf; 10308 va_list args; 10309 10310 va_start(args, format); 10311 10312 vaf.fmt = format; 10313 vaf.va = &args; 10314 10315 __netdev_printk(level, dev, &vaf); 10316 10317 va_end(args); 10318 } 10319 EXPORT_SYMBOL(netdev_printk); 10320 10321 #define define_netdev_printk_level(func, level) \ 10322 void func(const struct net_device *dev, const char *fmt, ...) \ 10323 { \ 10324 struct va_format vaf; \ 10325 va_list args; \ 10326 \ 10327 va_start(args, fmt); \ 10328 \ 10329 vaf.fmt = fmt; \ 10330 vaf.va = &args; \ 10331 \ 10332 __netdev_printk(level, dev, &vaf); \ 10333 \ 10334 va_end(args); \ 10335 } \ 10336 EXPORT_SYMBOL(func); 10337 10338 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 10339 define_netdev_printk_level(netdev_alert, KERN_ALERT); 10340 define_netdev_printk_level(netdev_crit, KERN_CRIT); 10341 define_netdev_printk_level(netdev_err, KERN_ERR); 10342 define_netdev_printk_level(netdev_warn, KERN_WARNING); 10343 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 10344 define_netdev_printk_level(netdev_info, KERN_INFO); 10345 10346 static void __net_exit netdev_exit(struct net *net) 10347 { 10348 kfree(net->dev_name_head); 10349 kfree(net->dev_index_head); 10350 if (net != &init_net) 10351 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 10352 } 10353 10354 static struct pernet_operations __net_initdata netdev_net_ops = { 10355 .init = netdev_init, 10356 .exit = netdev_exit, 10357 }; 10358 10359 static void __net_exit default_device_exit(struct net *net) 10360 { 10361 struct net_device *dev, *aux; 10362 /* 10363 * Push all migratable network devices back to the 10364 * initial network namespace 10365 */ 10366 rtnl_lock(); 10367 for_each_netdev_safe(net, dev, aux) { 10368 int err; 10369 char fb_name[IFNAMSIZ]; 10370 10371 /* Ignore unmoveable devices (i.e. loopback) */ 10372 if (dev->features & NETIF_F_NETNS_LOCAL) 10373 continue; 10374 10375 /* Leave virtual devices for the generic cleanup */ 10376 if (dev->rtnl_link_ops) 10377 continue; 10378 10379 /* Push remaining network devices to init_net */ 10380 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 10381 if (__dev_get_by_name(&init_net, fb_name)) 10382 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 10383 err = dev_change_net_namespace(dev, &init_net, fb_name); 10384 if (err) { 10385 pr_emerg("%s: failed to move %s to init_net: %d\n", 10386 __func__, dev->name, err); 10387 BUG(); 10388 } 10389 } 10390 rtnl_unlock(); 10391 } 10392 10393 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 10394 { 10395 /* Return with the rtnl_lock held when there are no network 10396 * devices unregistering in any network namespace in net_list. 10397 */ 10398 struct net *net; 10399 bool unregistering; 10400 DEFINE_WAIT_FUNC(wait, woken_wake_function); 10401 10402 add_wait_queue(&netdev_unregistering_wq, &wait); 10403 for (;;) { 10404 unregistering = false; 10405 rtnl_lock(); 10406 list_for_each_entry(net, net_list, exit_list) { 10407 if (net->dev_unreg_count > 0) { 10408 unregistering = true; 10409 break; 10410 } 10411 } 10412 if (!unregistering) 10413 break; 10414 __rtnl_unlock(); 10415 10416 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 10417 } 10418 remove_wait_queue(&netdev_unregistering_wq, &wait); 10419 } 10420 10421 static void __net_exit default_device_exit_batch(struct list_head *net_list) 10422 { 10423 /* At exit all network devices most be removed from a network 10424 * namespace. Do this in the reverse order of registration. 10425 * Do this across as many network namespaces as possible to 10426 * improve batching efficiency. 10427 */ 10428 struct net_device *dev; 10429 struct net *net; 10430 LIST_HEAD(dev_kill_list); 10431 10432 /* To prevent network device cleanup code from dereferencing 10433 * loopback devices or network devices that have been freed 10434 * wait here for all pending unregistrations to complete, 10435 * before unregistring the loopback device and allowing the 10436 * network namespace be freed. 10437 * 10438 * The netdev todo list containing all network devices 10439 * unregistrations that happen in default_device_exit_batch 10440 * will run in the rtnl_unlock() at the end of 10441 * default_device_exit_batch. 10442 */ 10443 rtnl_lock_unregistering(net_list); 10444 list_for_each_entry(net, net_list, exit_list) { 10445 for_each_netdev_reverse(net, dev) { 10446 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 10447 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 10448 else 10449 unregister_netdevice_queue(dev, &dev_kill_list); 10450 } 10451 } 10452 unregister_netdevice_many(&dev_kill_list); 10453 rtnl_unlock(); 10454 } 10455 10456 static struct pernet_operations __net_initdata default_device_ops = { 10457 .exit = default_device_exit, 10458 .exit_batch = default_device_exit_batch, 10459 }; 10460 10461 /* 10462 * Initialize the DEV module. At boot time this walks the device list and 10463 * unhooks any devices that fail to initialise (normally hardware not 10464 * present) and leaves us with a valid list of present and active devices. 10465 * 10466 */ 10467 10468 /* 10469 * This is called single threaded during boot, so no need 10470 * to take the rtnl semaphore. 10471 */ 10472 static int __init net_dev_init(void) 10473 { 10474 int i, rc = -ENOMEM; 10475 10476 BUG_ON(!dev_boot_phase); 10477 10478 if (dev_proc_init()) 10479 goto out; 10480 10481 if (netdev_kobject_init()) 10482 goto out; 10483 10484 INIT_LIST_HEAD(&ptype_all); 10485 for (i = 0; i < PTYPE_HASH_SIZE; i++) 10486 INIT_LIST_HEAD(&ptype_base[i]); 10487 10488 INIT_LIST_HEAD(&offload_base); 10489 10490 if (register_pernet_subsys(&netdev_net_ops)) 10491 goto out; 10492 10493 /* 10494 * Initialise the packet receive queues. 10495 */ 10496 10497 for_each_possible_cpu(i) { 10498 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 10499 struct softnet_data *sd = &per_cpu(softnet_data, i); 10500 10501 INIT_WORK(flush, flush_backlog); 10502 10503 skb_queue_head_init(&sd->input_pkt_queue); 10504 skb_queue_head_init(&sd->process_queue); 10505 #ifdef CONFIG_XFRM_OFFLOAD 10506 skb_queue_head_init(&sd->xfrm_backlog); 10507 #endif 10508 INIT_LIST_HEAD(&sd->poll_list); 10509 sd->output_queue_tailp = &sd->output_queue; 10510 #ifdef CONFIG_RPS 10511 sd->csd.func = rps_trigger_softirq; 10512 sd->csd.info = sd; 10513 sd->cpu = i; 10514 #endif 10515 10516 init_gro_hash(&sd->backlog); 10517 sd->backlog.poll = process_backlog; 10518 sd->backlog.weight = weight_p; 10519 } 10520 10521 dev_boot_phase = 0; 10522 10523 /* The loopback device is special if any other network devices 10524 * is present in a network namespace the loopback device must 10525 * be present. Since we now dynamically allocate and free the 10526 * loopback device ensure this invariant is maintained by 10527 * keeping the loopback device as the first device on the 10528 * list of network devices. Ensuring the loopback devices 10529 * is the first device that appears and the last network device 10530 * that disappears. 10531 */ 10532 if (register_pernet_device(&loopback_net_ops)) 10533 goto out; 10534 10535 if (register_pernet_device(&default_device_ops)) 10536 goto out; 10537 10538 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 10539 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 10540 10541 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 10542 NULL, dev_cpu_dead); 10543 WARN_ON(rc < 0); 10544 rc = 0; 10545 out: 10546 return rc; 10547 } 10548 10549 subsys_initcall(net_dev_init); 10550