1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/notifier.h> 94 #include <linux/skbuff.h> 95 #include <net/sock.h> 96 #include <linux/rtnetlink.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/stat.h> 100 #include <linux/if_bridge.h> 101 #include <linux/divert.h> 102 #include <net/dst.h> 103 #include <net/pkt_sched.h> 104 #include <net/checksum.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/kmod.h> 108 #include <linux/module.h> 109 #include <linux/kallsyms.h> 110 #include <linux/netpoll.h> 111 #include <linux/rcupdate.h> 112 #include <linux/delay.h> 113 #include <linux/wireless.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 120 /* 121 * The list of packet types we will receive (as opposed to discard) 122 * and the routines to invoke. 123 * 124 * Why 16. Because with 16 the only overlap we get on a hash of the 125 * low nibble of the protocol value is RARP/SNAP/X.25. 126 * 127 * NOTE: That is no longer true with the addition of VLAN tags. Not 128 * sure which should go first, but I bet it won't make much 129 * difference if we are running VLANs. The good news is that 130 * this protocol won't be in the list unless compiled in, so 131 * the average user (w/out VLANs) will not be adversely affected. 132 * --BLG 133 * 134 * 0800 IP 135 * 8100 802.1Q VLAN 136 * 0001 802.3 137 * 0002 AX.25 138 * 0004 802.2 139 * 8035 RARP 140 * 0005 SNAP 141 * 0805 X.25 142 * 0806 ARP 143 * 8137 IPX 144 * 0009 Localtalk 145 * 86DD IPv6 146 */ 147 148 static DEFINE_SPINLOCK(ptype_lock); 149 static struct list_head ptype_base[16]; /* 16 way hashed list */ 150 static struct list_head ptype_all; /* Taps */ 151 152 #ifdef CONFIG_NET_DMA 153 static struct dma_client *net_dma_client; 154 static unsigned int net_dma_count; 155 static spinlock_t net_dma_event_lock; 156 #endif 157 158 /* 159 * The @dev_base list is protected by @dev_base_lock and the rtnl 160 * semaphore. 161 * 162 * Pure readers hold dev_base_lock for reading. 163 * 164 * Writers must hold the rtnl semaphore while they loop through the 165 * dev_base list, and hold dev_base_lock for writing when they do the 166 * actual updates. This allows pure readers to access the list even 167 * while a writer is preparing to update it. 168 * 169 * To put it another way, dev_base_lock is held for writing only to 170 * protect against pure readers; the rtnl semaphore provides the 171 * protection against other writers. 172 * 173 * See, for example usages, register_netdevice() and 174 * unregister_netdevice(), which must be called with the rtnl 175 * semaphore held. 176 */ 177 struct net_device *dev_base; 178 static struct net_device **dev_tail = &dev_base; 179 DEFINE_RWLOCK(dev_base_lock); 180 181 EXPORT_SYMBOL(dev_base); 182 EXPORT_SYMBOL(dev_base_lock); 183 184 #define NETDEV_HASHBITS 8 185 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS]; 186 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS]; 187 188 static inline struct hlist_head *dev_name_hash(const char *name) 189 { 190 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 191 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)]; 192 } 193 194 static inline struct hlist_head *dev_index_hash(int ifindex) 195 { 196 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)]; 197 } 198 199 /* 200 * Our notifier list 201 */ 202 203 static RAW_NOTIFIER_HEAD(netdev_chain); 204 205 /* 206 * Device drivers call our routines to queue packets here. We empty the 207 * queue in the local softnet handler. 208 */ 209 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL }; 210 211 #ifdef CONFIG_SYSFS 212 extern int netdev_sysfs_init(void); 213 extern int netdev_register_sysfs(struct net_device *); 214 extern void netdev_unregister_sysfs(struct net_device *); 215 #else 216 #define netdev_sysfs_init() (0) 217 #define netdev_register_sysfs(dev) (0) 218 #define netdev_unregister_sysfs(dev) do { } while(0) 219 #endif 220 221 222 /******************************************************************************* 223 224 Protocol management and registration routines 225 226 *******************************************************************************/ 227 228 /* 229 * For efficiency 230 */ 231 232 static int netdev_nit; 233 234 /* 235 * Add a protocol ID to the list. Now that the input handler is 236 * smarter we can dispense with all the messy stuff that used to be 237 * here. 238 * 239 * BEWARE!!! Protocol handlers, mangling input packets, 240 * MUST BE last in hash buckets and checking protocol handlers 241 * MUST start from promiscuous ptype_all chain in net_bh. 242 * It is true now, do not change it. 243 * Explanation follows: if protocol handler, mangling packet, will 244 * be the first on list, it is not able to sense, that packet 245 * is cloned and should be copied-on-write, so that it will 246 * change it and subsequent readers will get broken packet. 247 * --ANK (980803) 248 */ 249 250 /** 251 * dev_add_pack - add packet handler 252 * @pt: packet type declaration 253 * 254 * Add a protocol handler to the networking stack. The passed &packet_type 255 * is linked into kernel lists and may not be freed until it has been 256 * removed from the kernel lists. 257 * 258 * This call does not sleep therefore it can not 259 * guarantee all CPU's that are in middle of receiving packets 260 * will see the new packet type (until the next received packet). 261 */ 262 263 void dev_add_pack(struct packet_type *pt) 264 { 265 int hash; 266 267 spin_lock_bh(&ptype_lock); 268 if (pt->type == htons(ETH_P_ALL)) { 269 netdev_nit++; 270 list_add_rcu(&pt->list, &ptype_all); 271 } else { 272 hash = ntohs(pt->type) & 15; 273 list_add_rcu(&pt->list, &ptype_base[hash]); 274 } 275 spin_unlock_bh(&ptype_lock); 276 } 277 278 /** 279 * __dev_remove_pack - remove packet handler 280 * @pt: packet type declaration 281 * 282 * Remove a protocol handler that was previously added to the kernel 283 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 284 * from the kernel lists and can be freed or reused once this function 285 * returns. 286 * 287 * The packet type might still be in use by receivers 288 * and must not be freed until after all the CPU's have gone 289 * through a quiescent state. 290 */ 291 void __dev_remove_pack(struct packet_type *pt) 292 { 293 struct list_head *head; 294 struct packet_type *pt1; 295 296 spin_lock_bh(&ptype_lock); 297 298 if (pt->type == htons(ETH_P_ALL)) { 299 netdev_nit--; 300 head = &ptype_all; 301 } else 302 head = &ptype_base[ntohs(pt->type) & 15]; 303 304 list_for_each_entry(pt1, head, list) { 305 if (pt == pt1) { 306 list_del_rcu(&pt->list); 307 goto out; 308 } 309 } 310 311 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 312 out: 313 spin_unlock_bh(&ptype_lock); 314 } 315 /** 316 * dev_remove_pack - remove packet handler 317 * @pt: packet type declaration 318 * 319 * Remove a protocol handler that was previously added to the kernel 320 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 321 * from the kernel lists and can be freed or reused once this function 322 * returns. 323 * 324 * This call sleeps to guarantee that no CPU is looking at the packet 325 * type after return. 326 */ 327 void dev_remove_pack(struct packet_type *pt) 328 { 329 __dev_remove_pack(pt); 330 331 synchronize_net(); 332 } 333 334 /****************************************************************************** 335 336 Device Boot-time Settings Routines 337 338 *******************************************************************************/ 339 340 /* Boot time configuration table */ 341 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 342 343 /** 344 * netdev_boot_setup_add - add new setup entry 345 * @name: name of the device 346 * @map: configured settings for the device 347 * 348 * Adds new setup entry to the dev_boot_setup list. The function 349 * returns 0 on error and 1 on success. This is a generic routine to 350 * all netdevices. 351 */ 352 static int netdev_boot_setup_add(char *name, struct ifmap *map) 353 { 354 struct netdev_boot_setup *s; 355 int i; 356 357 s = dev_boot_setup; 358 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 359 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 360 memset(s[i].name, 0, sizeof(s[i].name)); 361 strcpy(s[i].name, name); 362 memcpy(&s[i].map, map, sizeof(s[i].map)); 363 break; 364 } 365 } 366 367 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 368 } 369 370 /** 371 * netdev_boot_setup_check - check boot time settings 372 * @dev: the netdevice 373 * 374 * Check boot time settings for the device. 375 * The found settings are set for the device to be used 376 * later in the device probing. 377 * Returns 0 if no settings found, 1 if they are. 378 */ 379 int netdev_boot_setup_check(struct net_device *dev) 380 { 381 struct netdev_boot_setup *s = dev_boot_setup; 382 int i; 383 384 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 385 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 386 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 387 dev->irq = s[i].map.irq; 388 dev->base_addr = s[i].map.base_addr; 389 dev->mem_start = s[i].map.mem_start; 390 dev->mem_end = s[i].map.mem_end; 391 return 1; 392 } 393 } 394 return 0; 395 } 396 397 398 /** 399 * netdev_boot_base - get address from boot time settings 400 * @prefix: prefix for network device 401 * @unit: id for network device 402 * 403 * Check boot time settings for the base address of device. 404 * The found settings are set for the device to be used 405 * later in the device probing. 406 * Returns 0 if no settings found. 407 */ 408 unsigned long netdev_boot_base(const char *prefix, int unit) 409 { 410 const struct netdev_boot_setup *s = dev_boot_setup; 411 char name[IFNAMSIZ]; 412 int i; 413 414 sprintf(name, "%s%d", prefix, unit); 415 416 /* 417 * If device already registered then return base of 1 418 * to indicate not to probe for this interface 419 */ 420 if (__dev_get_by_name(name)) 421 return 1; 422 423 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 424 if (!strcmp(name, s[i].name)) 425 return s[i].map.base_addr; 426 return 0; 427 } 428 429 /* 430 * Saves at boot time configured settings for any netdevice. 431 */ 432 int __init netdev_boot_setup(char *str) 433 { 434 int ints[5]; 435 struct ifmap map; 436 437 str = get_options(str, ARRAY_SIZE(ints), ints); 438 if (!str || !*str) 439 return 0; 440 441 /* Save settings */ 442 memset(&map, 0, sizeof(map)); 443 if (ints[0] > 0) 444 map.irq = ints[1]; 445 if (ints[0] > 1) 446 map.base_addr = ints[2]; 447 if (ints[0] > 2) 448 map.mem_start = ints[3]; 449 if (ints[0] > 3) 450 map.mem_end = ints[4]; 451 452 /* Add new entry to the list */ 453 return netdev_boot_setup_add(str, &map); 454 } 455 456 __setup("netdev=", netdev_boot_setup); 457 458 /******************************************************************************* 459 460 Device Interface Subroutines 461 462 *******************************************************************************/ 463 464 /** 465 * __dev_get_by_name - find a device by its name 466 * @name: name to find 467 * 468 * Find an interface by name. Must be called under RTNL semaphore 469 * or @dev_base_lock. If the name is found a pointer to the device 470 * is returned. If the name is not found then %NULL is returned. The 471 * reference counters are not incremented so the caller must be 472 * careful with locks. 473 */ 474 475 struct net_device *__dev_get_by_name(const char *name) 476 { 477 struct hlist_node *p; 478 479 hlist_for_each(p, dev_name_hash(name)) { 480 struct net_device *dev 481 = hlist_entry(p, struct net_device, name_hlist); 482 if (!strncmp(dev->name, name, IFNAMSIZ)) 483 return dev; 484 } 485 return NULL; 486 } 487 488 /** 489 * dev_get_by_name - find a device by its name 490 * @name: name to find 491 * 492 * Find an interface by name. This can be called from any 493 * context and does its own locking. The returned handle has 494 * the usage count incremented and the caller must use dev_put() to 495 * release it when it is no longer needed. %NULL is returned if no 496 * matching device is found. 497 */ 498 499 struct net_device *dev_get_by_name(const char *name) 500 { 501 struct net_device *dev; 502 503 read_lock(&dev_base_lock); 504 dev = __dev_get_by_name(name); 505 if (dev) 506 dev_hold(dev); 507 read_unlock(&dev_base_lock); 508 return dev; 509 } 510 511 /** 512 * __dev_get_by_index - find a device by its ifindex 513 * @ifindex: index of device 514 * 515 * Search for an interface by index. Returns %NULL if the device 516 * is not found or a pointer to the device. The device has not 517 * had its reference counter increased so the caller must be careful 518 * about locking. The caller must hold either the RTNL semaphore 519 * or @dev_base_lock. 520 */ 521 522 struct net_device *__dev_get_by_index(int ifindex) 523 { 524 struct hlist_node *p; 525 526 hlist_for_each(p, dev_index_hash(ifindex)) { 527 struct net_device *dev 528 = hlist_entry(p, struct net_device, index_hlist); 529 if (dev->ifindex == ifindex) 530 return dev; 531 } 532 return NULL; 533 } 534 535 536 /** 537 * dev_get_by_index - find a device by its ifindex 538 * @ifindex: index of device 539 * 540 * Search for an interface by index. Returns NULL if the device 541 * is not found or a pointer to the device. The device returned has 542 * had a reference added and the pointer is safe until the user calls 543 * dev_put to indicate they have finished with it. 544 */ 545 546 struct net_device *dev_get_by_index(int ifindex) 547 { 548 struct net_device *dev; 549 550 read_lock(&dev_base_lock); 551 dev = __dev_get_by_index(ifindex); 552 if (dev) 553 dev_hold(dev); 554 read_unlock(&dev_base_lock); 555 return dev; 556 } 557 558 /** 559 * dev_getbyhwaddr - find a device by its hardware address 560 * @type: media type of device 561 * @ha: hardware address 562 * 563 * Search for an interface by MAC address. Returns NULL if the device 564 * is not found or a pointer to the device. The caller must hold the 565 * rtnl semaphore. The returned device has not had its ref count increased 566 * and the caller must therefore be careful about locking 567 * 568 * BUGS: 569 * If the API was consistent this would be __dev_get_by_hwaddr 570 */ 571 572 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha) 573 { 574 struct net_device *dev; 575 576 ASSERT_RTNL(); 577 578 for (dev = dev_base; dev; dev = dev->next) 579 if (dev->type == type && 580 !memcmp(dev->dev_addr, ha, dev->addr_len)) 581 break; 582 return dev; 583 } 584 585 EXPORT_SYMBOL(dev_getbyhwaddr); 586 587 struct net_device *dev_getfirstbyhwtype(unsigned short type) 588 { 589 struct net_device *dev; 590 591 rtnl_lock(); 592 for (dev = dev_base; dev; dev = dev->next) { 593 if (dev->type == type) { 594 dev_hold(dev); 595 break; 596 } 597 } 598 rtnl_unlock(); 599 return dev; 600 } 601 602 EXPORT_SYMBOL(dev_getfirstbyhwtype); 603 604 /** 605 * dev_get_by_flags - find any device with given flags 606 * @if_flags: IFF_* values 607 * @mask: bitmask of bits in if_flags to check 608 * 609 * Search for any interface with the given flags. Returns NULL if a device 610 * is not found or a pointer to the device. The device returned has 611 * had a reference added and the pointer is safe until the user calls 612 * dev_put to indicate they have finished with it. 613 */ 614 615 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask) 616 { 617 struct net_device *dev; 618 619 read_lock(&dev_base_lock); 620 for (dev = dev_base; dev != NULL; dev = dev->next) { 621 if (((dev->flags ^ if_flags) & mask) == 0) { 622 dev_hold(dev); 623 break; 624 } 625 } 626 read_unlock(&dev_base_lock); 627 return dev; 628 } 629 630 /** 631 * dev_valid_name - check if name is okay for network device 632 * @name: name string 633 * 634 * Network device names need to be valid file names to 635 * to allow sysfs to work 636 */ 637 int dev_valid_name(const char *name) 638 { 639 return !(*name == '\0' 640 || !strcmp(name, ".") 641 || !strcmp(name, "..") 642 || strchr(name, '/')); 643 } 644 645 /** 646 * dev_alloc_name - allocate a name for a device 647 * @dev: device 648 * @name: name format string 649 * 650 * Passed a format string - eg "lt%d" it will try and find a suitable 651 * id. It scans list of devices to build up a free map, then chooses 652 * the first empty slot. The caller must hold the dev_base or rtnl lock 653 * while allocating the name and adding the device in order to avoid 654 * duplicates. 655 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 656 * Returns the number of the unit assigned or a negative errno code. 657 */ 658 659 int dev_alloc_name(struct net_device *dev, const char *name) 660 { 661 int i = 0; 662 char buf[IFNAMSIZ]; 663 const char *p; 664 const int max_netdevices = 8*PAGE_SIZE; 665 long *inuse; 666 struct net_device *d; 667 668 p = strnchr(name, IFNAMSIZ-1, '%'); 669 if (p) { 670 /* 671 * Verify the string as this thing may have come from 672 * the user. There must be either one "%d" and no other "%" 673 * characters. 674 */ 675 if (p[1] != 'd' || strchr(p + 2, '%')) 676 return -EINVAL; 677 678 /* Use one page as a bit array of possible slots */ 679 inuse = (long *) get_zeroed_page(GFP_ATOMIC); 680 if (!inuse) 681 return -ENOMEM; 682 683 for (d = dev_base; d; d = d->next) { 684 if (!sscanf(d->name, name, &i)) 685 continue; 686 if (i < 0 || i >= max_netdevices) 687 continue; 688 689 /* avoid cases where sscanf is not exact inverse of printf */ 690 snprintf(buf, sizeof(buf), name, i); 691 if (!strncmp(buf, d->name, IFNAMSIZ)) 692 set_bit(i, inuse); 693 } 694 695 i = find_first_zero_bit(inuse, max_netdevices); 696 free_page((unsigned long) inuse); 697 } 698 699 snprintf(buf, sizeof(buf), name, i); 700 if (!__dev_get_by_name(buf)) { 701 strlcpy(dev->name, buf, IFNAMSIZ); 702 return i; 703 } 704 705 /* It is possible to run out of possible slots 706 * when the name is long and there isn't enough space left 707 * for the digits, or if all bits are used. 708 */ 709 return -ENFILE; 710 } 711 712 713 /** 714 * dev_change_name - change name of a device 715 * @dev: device 716 * @newname: name (or format string) must be at least IFNAMSIZ 717 * 718 * Change name of a device, can pass format strings "eth%d". 719 * for wildcarding. 720 */ 721 int dev_change_name(struct net_device *dev, char *newname) 722 { 723 int err = 0; 724 725 ASSERT_RTNL(); 726 727 if (dev->flags & IFF_UP) 728 return -EBUSY; 729 730 if (!dev_valid_name(newname)) 731 return -EINVAL; 732 733 if (strchr(newname, '%')) { 734 err = dev_alloc_name(dev, newname); 735 if (err < 0) 736 return err; 737 strcpy(newname, dev->name); 738 } 739 else if (__dev_get_by_name(newname)) 740 return -EEXIST; 741 else 742 strlcpy(dev->name, newname, IFNAMSIZ); 743 744 err = class_device_rename(&dev->class_dev, dev->name); 745 if (!err) { 746 hlist_del(&dev->name_hlist); 747 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name)); 748 raw_notifier_call_chain(&netdev_chain, 749 NETDEV_CHANGENAME, dev); 750 } 751 752 return err; 753 } 754 755 /** 756 * netdev_features_change - device changes features 757 * @dev: device to cause notification 758 * 759 * Called to indicate a device has changed features. 760 */ 761 void netdev_features_change(struct net_device *dev) 762 { 763 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev); 764 } 765 EXPORT_SYMBOL(netdev_features_change); 766 767 /** 768 * netdev_state_change - device changes state 769 * @dev: device to cause notification 770 * 771 * Called to indicate a device has changed state. This function calls 772 * the notifier chains for netdev_chain and sends a NEWLINK message 773 * to the routing socket. 774 */ 775 void netdev_state_change(struct net_device *dev) 776 { 777 if (dev->flags & IFF_UP) { 778 raw_notifier_call_chain(&netdev_chain, 779 NETDEV_CHANGE, dev); 780 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 781 } 782 } 783 784 /** 785 * dev_load - load a network module 786 * @name: name of interface 787 * 788 * If a network interface is not present and the process has suitable 789 * privileges this function loads the module. If module loading is not 790 * available in this kernel then it becomes a nop. 791 */ 792 793 void dev_load(const char *name) 794 { 795 struct net_device *dev; 796 797 read_lock(&dev_base_lock); 798 dev = __dev_get_by_name(name); 799 read_unlock(&dev_base_lock); 800 801 if (!dev && capable(CAP_SYS_MODULE)) 802 request_module("%s", name); 803 } 804 805 static int default_rebuild_header(struct sk_buff *skb) 806 { 807 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n", 808 skb->dev ? skb->dev->name : "NULL!!!"); 809 kfree_skb(skb); 810 return 1; 811 } 812 813 814 /** 815 * dev_open - prepare an interface for use. 816 * @dev: device to open 817 * 818 * Takes a device from down to up state. The device's private open 819 * function is invoked and then the multicast lists are loaded. Finally 820 * the device is moved into the up state and a %NETDEV_UP message is 821 * sent to the netdev notifier chain. 822 * 823 * Calling this function on an active interface is a nop. On a failure 824 * a negative errno code is returned. 825 */ 826 int dev_open(struct net_device *dev) 827 { 828 int ret = 0; 829 830 /* 831 * Is it already up? 832 */ 833 834 if (dev->flags & IFF_UP) 835 return 0; 836 837 /* 838 * Is it even present? 839 */ 840 if (!netif_device_present(dev)) 841 return -ENODEV; 842 843 /* 844 * Call device private open method 845 */ 846 set_bit(__LINK_STATE_START, &dev->state); 847 if (dev->open) { 848 ret = dev->open(dev); 849 if (ret) 850 clear_bit(__LINK_STATE_START, &dev->state); 851 } 852 853 /* 854 * If it went open OK then: 855 */ 856 857 if (!ret) { 858 /* 859 * Set the flags. 860 */ 861 dev->flags |= IFF_UP; 862 863 /* 864 * Initialize multicasting status 865 */ 866 dev_mc_upload(dev); 867 868 /* 869 * Wakeup transmit queue engine 870 */ 871 dev_activate(dev); 872 873 /* 874 * ... and announce new interface. 875 */ 876 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev); 877 } 878 return ret; 879 } 880 881 /** 882 * dev_close - shutdown an interface. 883 * @dev: device to shutdown 884 * 885 * This function moves an active device into down state. A 886 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 887 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 888 * chain. 889 */ 890 int dev_close(struct net_device *dev) 891 { 892 if (!(dev->flags & IFF_UP)) 893 return 0; 894 895 /* 896 * Tell people we are going down, so that they can 897 * prepare to death, when device is still operating. 898 */ 899 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev); 900 901 dev_deactivate(dev); 902 903 clear_bit(__LINK_STATE_START, &dev->state); 904 905 /* Synchronize to scheduled poll. We cannot touch poll list, 906 * it can be even on different cpu. So just clear netif_running(), 907 * and wait when poll really will happen. Actually, the best place 908 * for this is inside dev->stop() after device stopped its irq 909 * engine, but this requires more changes in devices. */ 910 911 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 912 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) { 913 /* No hurry. */ 914 msleep(1); 915 } 916 917 /* 918 * Call the device specific close. This cannot fail. 919 * Only if device is UP 920 * 921 * We allow it to be called even after a DETACH hot-plug 922 * event. 923 */ 924 if (dev->stop) 925 dev->stop(dev); 926 927 /* 928 * Device is now down. 929 */ 930 931 dev->flags &= ~IFF_UP; 932 933 /* 934 * Tell people we are down 935 */ 936 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev); 937 938 return 0; 939 } 940 941 942 /* 943 * Device change register/unregister. These are not inline or static 944 * as we export them to the world. 945 */ 946 947 /** 948 * register_netdevice_notifier - register a network notifier block 949 * @nb: notifier 950 * 951 * Register a notifier to be called when network device events occur. 952 * The notifier passed is linked into the kernel structures and must 953 * not be reused until it has been unregistered. A negative errno code 954 * is returned on a failure. 955 * 956 * When registered all registration and up events are replayed 957 * to the new notifier to allow device to have a race free 958 * view of the network device list. 959 */ 960 961 int register_netdevice_notifier(struct notifier_block *nb) 962 { 963 struct net_device *dev; 964 int err; 965 966 rtnl_lock(); 967 err = raw_notifier_chain_register(&netdev_chain, nb); 968 if (!err) { 969 for (dev = dev_base; dev; dev = dev->next) { 970 nb->notifier_call(nb, NETDEV_REGISTER, dev); 971 972 if (dev->flags & IFF_UP) 973 nb->notifier_call(nb, NETDEV_UP, dev); 974 } 975 } 976 rtnl_unlock(); 977 return err; 978 } 979 980 /** 981 * unregister_netdevice_notifier - unregister a network notifier block 982 * @nb: notifier 983 * 984 * Unregister a notifier previously registered by 985 * register_netdevice_notifier(). The notifier is unlinked into the 986 * kernel structures and may then be reused. A negative errno code 987 * is returned on a failure. 988 */ 989 990 int unregister_netdevice_notifier(struct notifier_block *nb) 991 { 992 int err; 993 994 rtnl_lock(); 995 err = raw_notifier_chain_unregister(&netdev_chain, nb); 996 rtnl_unlock(); 997 return err; 998 } 999 1000 /** 1001 * call_netdevice_notifiers - call all network notifier blocks 1002 * @val: value passed unmodified to notifier function 1003 * @v: pointer passed unmodified to notifier function 1004 * 1005 * Call all network notifier blocks. Parameters and return value 1006 * are as for raw_notifier_call_chain(). 1007 */ 1008 1009 int call_netdevice_notifiers(unsigned long val, void *v) 1010 { 1011 return raw_notifier_call_chain(&netdev_chain, val, v); 1012 } 1013 1014 /* When > 0 there are consumers of rx skb time stamps */ 1015 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1016 1017 void net_enable_timestamp(void) 1018 { 1019 atomic_inc(&netstamp_needed); 1020 } 1021 1022 void net_disable_timestamp(void) 1023 { 1024 atomic_dec(&netstamp_needed); 1025 } 1026 1027 void __net_timestamp(struct sk_buff *skb) 1028 { 1029 struct timeval tv; 1030 1031 do_gettimeofday(&tv); 1032 skb_set_timestamp(skb, &tv); 1033 } 1034 EXPORT_SYMBOL(__net_timestamp); 1035 1036 static inline void net_timestamp(struct sk_buff *skb) 1037 { 1038 if (atomic_read(&netstamp_needed)) 1039 __net_timestamp(skb); 1040 else { 1041 skb->tstamp.off_sec = 0; 1042 skb->tstamp.off_usec = 0; 1043 } 1044 } 1045 1046 /* 1047 * Support routine. Sends outgoing frames to any network 1048 * taps currently in use. 1049 */ 1050 1051 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1052 { 1053 struct packet_type *ptype; 1054 1055 net_timestamp(skb); 1056 1057 rcu_read_lock(); 1058 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1059 /* Never send packets back to the socket 1060 * they originated from - MvS (miquels@drinkel.ow.org) 1061 */ 1062 if ((ptype->dev == dev || !ptype->dev) && 1063 (ptype->af_packet_priv == NULL || 1064 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1065 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1066 if (!skb2) 1067 break; 1068 1069 /* skb->nh should be correctly 1070 set by sender, so that the second statement is 1071 just protection against buggy protocols. 1072 */ 1073 skb2->mac.raw = skb2->data; 1074 1075 if (skb2->nh.raw < skb2->data || 1076 skb2->nh.raw > skb2->tail) { 1077 if (net_ratelimit()) 1078 printk(KERN_CRIT "protocol %04x is " 1079 "buggy, dev %s\n", 1080 skb2->protocol, dev->name); 1081 skb2->nh.raw = skb2->data; 1082 } 1083 1084 skb2->h.raw = skb2->nh.raw; 1085 skb2->pkt_type = PACKET_OUTGOING; 1086 ptype->func(skb2, skb->dev, ptype, skb->dev); 1087 } 1088 } 1089 rcu_read_unlock(); 1090 } 1091 1092 1093 void __netif_schedule(struct net_device *dev) 1094 { 1095 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1096 unsigned long flags; 1097 struct softnet_data *sd; 1098 1099 local_irq_save(flags); 1100 sd = &__get_cpu_var(softnet_data); 1101 dev->next_sched = sd->output_queue; 1102 sd->output_queue = dev; 1103 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1104 local_irq_restore(flags); 1105 } 1106 } 1107 EXPORT_SYMBOL(__netif_schedule); 1108 1109 void __netif_rx_schedule(struct net_device *dev) 1110 { 1111 unsigned long flags; 1112 1113 local_irq_save(flags); 1114 dev_hold(dev); 1115 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list); 1116 if (dev->quota < 0) 1117 dev->quota += dev->weight; 1118 else 1119 dev->quota = dev->weight; 1120 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1121 local_irq_restore(flags); 1122 } 1123 EXPORT_SYMBOL(__netif_rx_schedule); 1124 1125 void dev_kfree_skb_any(struct sk_buff *skb) 1126 { 1127 if (in_irq() || irqs_disabled()) 1128 dev_kfree_skb_irq(skb); 1129 else 1130 dev_kfree_skb(skb); 1131 } 1132 EXPORT_SYMBOL(dev_kfree_skb_any); 1133 1134 1135 /* Hot-plugging. */ 1136 void netif_device_detach(struct net_device *dev) 1137 { 1138 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1139 netif_running(dev)) { 1140 netif_stop_queue(dev); 1141 } 1142 } 1143 EXPORT_SYMBOL(netif_device_detach); 1144 1145 void netif_device_attach(struct net_device *dev) 1146 { 1147 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1148 netif_running(dev)) { 1149 netif_wake_queue(dev); 1150 __netdev_watchdog_up(dev); 1151 } 1152 } 1153 EXPORT_SYMBOL(netif_device_attach); 1154 1155 1156 /* 1157 * Invalidate hardware checksum when packet is to be mangled, and 1158 * complete checksum manually on outgoing path. 1159 */ 1160 int skb_checksum_help(struct sk_buff *skb, int inward) 1161 { 1162 unsigned int csum; 1163 int ret = 0, offset = skb->h.raw - skb->data; 1164 1165 if (inward) 1166 goto out_set_summed; 1167 1168 if (unlikely(skb_shinfo(skb)->gso_size)) { 1169 static int warned; 1170 1171 WARN_ON(!warned); 1172 warned = 1; 1173 1174 /* Let GSO fix up the checksum. */ 1175 goto out_set_summed; 1176 } 1177 1178 if (skb_cloned(skb)) { 1179 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1180 if (ret) 1181 goto out; 1182 } 1183 1184 BUG_ON(offset > (int)skb->len); 1185 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1186 1187 offset = skb->tail - skb->h.raw; 1188 BUG_ON(offset <= 0); 1189 BUG_ON(skb->csum + 2 > offset); 1190 1191 *(u16*)(skb->h.raw + skb->csum) = csum_fold(csum); 1192 1193 out_set_summed: 1194 skb->ip_summed = CHECKSUM_NONE; 1195 out: 1196 return ret; 1197 } 1198 1199 /** 1200 * skb_gso_segment - Perform segmentation on skb. 1201 * @skb: buffer to segment 1202 * @features: features for the output path (see dev->features) 1203 * 1204 * This function segments the given skb and returns a list of segments. 1205 * 1206 * It may return NULL if the skb requires no segmentation. This is 1207 * only possible when GSO is used for verifying header integrity. 1208 */ 1209 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1210 { 1211 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1212 struct packet_type *ptype; 1213 int type = skb->protocol; 1214 int err; 1215 1216 BUG_ON(skb_shinfo(skb)->frag_list); 1217 1218 skb->mac.raw = skb->data; 1219 skb->mac_len = skb->nh.raw - skb->data; 1220 __skb_pull(skb, skb->mac_len); 1221 1222 if (unlikely(skb->ip_summed != CHECKSUM_HW)) { 1223 static int warned; 1224 1225 WARN_ON(!warned); 1226 warned = 1; 1227 1228 if (skb_header_cloned(skb) && 1229 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1230 return ERR_PTR(err); 1231 } 1232 1233 rcu_read_lock(); 1234 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) { 1235 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1236 if (unlikely(skb->ip_summed != CHECKSUM_HW)) { 1237 err = ptype->gso_send_check(skb); 1238 segs = ERR_PTR(err); 1239 if (err || skb_gso_ok(skb, features)) 1240 break; 1241 __skb_push(skb, skb->data - skb->nh.raw); 1242 } 1243 segs = ptype->gso_segment(skb, features); 1244 break; 1245 } 1246 } 1247 rcu_read_unlock(); 1248 1249 __skb_push(skb, skb->data - skb->mac.raw); 1250 1251 return segs; 1252 } 1253 1254 EXPORT_SYMBOL(skb_gso_segment); 1255 1256 /* Take action when hardware reception checksum errors are detected. */ 1257 #ifdef CONFIG_BUG 1258 void netdev_rx_csum_fault(struct net_device *dev) 1259 { 1260 if (net_ratelimit()) { 1261 printk(KERN_ERR "%s: hw csum failure.\n", 1262 dev ? dev->name : "<unknown>"); 1263 dump_stack(); 1264 } 1265 } 1266 EXPORT_SYMBOL(netdev_rx_csum_fault); 1267 #endif 1268 1269 /* Actually, we should eliminate this check as soon as we know, that: 1270 * 1. IOMMU is present and allows to map all the memory. 1271 * 2. No high memory really exists on this machine. 1272 */ 1273 1274 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1275 { 1276 #ifdef CONFIG_HIGHMEM 1277 int i; 1278 1279 if (dev->features & NETIF_F_HIGHDMA) 1280 return 0; 1281 1282 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1283 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1284 return 1; 1285 1286 #endif 1287 return 0; 1288 } 1289 1290 struct dev_gso_cb { 1291 void (*destructor)(struct sk_buff *skb); 1292 }; 1293 1294 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1295 1296 static void dev_gso_skb_destructor(struct sk_buff *skb) 1297 { 1298 struct dev_gso_cb *cb; 1299 1300 do { 1301 struct sk_buff *nskb = skb->next; 1302 1303 skb->next = nskb->next; 1304 nskb->next = NULL; 1305 kfree_skb(nskb); 1306 } while (skb->next); 1307 1308 cb = DEV_GSO_CB(skb); 1309 if (cb->destructor) 1310 cb->destructor(skb); 1311 } 1312 1313 /** 1314 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1315 * @skb: buffer to segment 1316 * 1317 * This function segments the given skb and stores the list of segments 1318 * in skb->next. 1319 */ 1320 static int dev_gso_segment(struct sk_buff *skb) 1321 { 1322 struct net_device *dev = skb->dev; 1323 struct sk_buff *segs; 1324 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1325 NETIF_F_SG : 0); 1326 1327 segs = skb_gso_segment(skb, features); 1328 1329 /* Verifying header integrity only. */ 1330 if (!segs) 1331 return 0; 1332 1333 if (unlikely(IS_ERR(segs))) 1334 return PTR_ERR(segs); 1335 1336 skb->next = segs; 1337 DEV_GSO_CB(skb)->destructor = skb->destructor; 1338 skb->destructor = dev_gso_skb_destructor; 1339 1340 return 0; 1341 } 1342 1343 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1344 { 1345 if (likely(!skb->next)) { 1346 if (netdev_nit) 1347 dev_queue_xmit_nit(skb, dev); 1348 1349 if (netif_needs_gso(dev, skb)) { 1350 if (unlikely(dev_gso_segment(skb))) 1351 goto out_kfree_skb; 1352 if (skb->next) 1353 goto gso; 1354 } 1355 1356 return dev->hard_start_xmit(skb, dev); 1357 } 1358 1359 gso: 1360 do { 1361 struct sk_buff *nskb = skb->next; 1362 int rc; 1363 1364 skb->next = nskb->next; 1365 nskb->next = NULL; 1366 rc = dev->hard_start_xmit(nskb, dev); 1367 if (unlikely(rc)) { 1368 nskb->next = skb->next; 1369 skb->next = nskb; 1370 return rc; 1371 } 1372 if (unlikely(netif_queue_stopped(dev) && skb->next)) 1373 return NETDEV_TX_BUSY; 1374 } while (skb->next); 1375 1376 skb->destructor = DEV_GSO_CB(skb)->destructor; 1377 1378 out_kfree_skb: 1379 kfree_skb(skb); 1380 return 0; 1381 } 1382 1383 #define HARD_TX_LOCK(dev, cpu) { \ 1384 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1385 netif_tx_lock(dev); \ 1386 } \ 1387 } 1388 1389 #define HARD_TX_UNLOCK(dev) { \ 1390 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1391 netif_tx_unlock(dev); \ 1392 } \ 1393 } 1394 1395 /** 1396 * dev_queue_xmit - transmit a buffer 1397 * @skb: buffer to transmit 1398 * 1399 * Queue a buffer for transmission to a network device. The caller must 1400 * have set the device and priority and built the buffer before calling 1401 * this function. The function can be called from an interrupt. 1402 * 1403 * A negative errno code is returned on a failure. A success does not 1404 * guarantee the frame will be transmitted as it may be dropped due 1405 * to congestion or traffic shaping. 1406 * 1407 * ----------------------------------------------------------------------------------- 1408 * I notice this method can also return errors from the queue disciplines, 1409 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1410 * be positive. 1411 * 1412 * Regardless of the return value, the skb is consumed, so it is currently 1413 * difficult to retry a send to this method. (You can bump the ref count 1414 * before sending to hold a reference for retry if you are careful.) 1415 * 1416 * When calling this method, interrupts MUST be enabled. This is because 1417 * the BH enable code must have IRQs enabled so that it will not deadlock. 1418 * --BLG 1419 */ 1420 1421 int dev_queue_xmit(struct sk_buff *skb) 1422 { 1423 struct net_device *dev = skb->dev; 1424 struct Qdisc *q; 1425 int rc = -ENOMEM; 1426 1427 /* GSO will handle the following emulations directly. */ 1428 if (netif_needs_gso(dev, skb)) 1429 goto gso; 1430 1431 if (skb_shinfo(skb)->frag_list && 1432 !(dev->features & NETIF_F_FRAGLIST) && 1433 __skb_linearize(skb)) 1434 goto out_kfree_skb; 1435 1436 /* Fragmented skb is linearized if device does not support SG, 1437 * or if at least one of fragments is in highmem and device 1438 * does not support DMA from it. 1439 */ 1440 if (skb_shinfo(skb)->nr_frags && 1441 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1442 __skb_linearize(skb)) 1443 goto out_kfree_skb; 1444 1445 /* If packet is not checksummed and device does not support 1446 * checksumming for this protocol, complete checksumming here. 1447 */ 1448 if (skb->ip_summed == CHECKSUM_HW && 1449 (!(dev->features & NETIF_F_GEN_CSUM) && 1450 (!(dev->features & NETIF_F_IP_CSUM) || 1451 skb->protocol != htons(ETH_P_IP)))) 1452 if (skb_checksum_help(skb, 0)) 1453 goto out_kfree_skb; 1454 1455 gso: 1456 spin_lock_prefetch(&dev->queue_lock); 1457 1458 /* Disable soft irqs for various locks below. Also 1459 * stops preemption for RCU. 1460 */ 1461 rcu_read_lock_bh(); 1462 1463 /* Updates of qdisc are serialized by queue_lock. 1464 * The struct Qdisc which is pointed to by qdisc is now a 1465 * rcu structure - it may be accessed without acquiring 1466 * a lock (but the structure may be stale.) The freeing of the 1467 * qdisc will be deferred until it's known that there are no 1468 * more references to it. 1469 * 1470 * If the qdisc has an enqueue function, we still need to 1471 * hold the queue_lock before calling it, since queue_lock 1472 * also serializes access to the device queue. 1473 */ 1474 1475 q = rcu_dereference(dev->qdisc); 1476 #ifdef CONFIG_NET_CLS_ACT 1477 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1478 #endif 1479 if (q->enqueue) { 1480 /* Grab device queue */ 1481 spin_lock(&dev->queue_lock); 1482 1483 rc = q->enqueue(skb, q); 1484 1485 qdisc_run(dev); 1486 1487 spin_unlock(&dev->queue_lock); 1488 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1489 goto out; 1490 } 1491 1492 /* The device has no queue. Common case for software devices: 1493 loopback, all the sorts of tunnels... 1494 1495 Really, it is unlikely that netif_tx_lock protection is necessary 1496 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1497 counters.) 1498 However, it is possible, that they rely on protection 1499 made by us here. 1500 1501 Check this and shot the lock. It is not prone from deadlocks. 1502 Either shot noqueue qdisc, it is even simpler 8) 1503 */ 1504 if (dev->flags & IFF_UP) { 1505 int cpu = smp_processor_id(); /* ok because BHs are off */ 1506 1507 if (dev->xmit_lock_owner != cpu) { 1508 1509 HARD_TX_LOCK(dev, cpu); 1510 1511 if (!netif_queue_stopped(dev)) { 1512 rc = 0; 1513 if (!dev_hard_start_xmit(skb, dev)) { 1514 HARD_TX_UNLOCK(dev); 1515 goto out; 1516 } 1517 } 1518 HARD_TX_UNLOCK(dev); 1519 if (net_ratelimit()) 1520 printk(KERN_CRIT "Virtual device %s asks to " 1521 "queue packet!\n", dev->name); 1522 } else { 1523 /* Recursion is detected! It is possible, 1524 * unfortunately */ 1525 if (net_ratelimit()) 1526 printk(KERN_CRIT "Dead loop on virtual device " 1527 "%s, fix it urgently!\n", dev->name); 1528 } 1529 } 1530 1531 rc = -ENETDOWN; 1532 rcu_read_unlock_bh(); 1533 1534 out_kfree_skb: 1535 kfree_skb(skb); 1536 return rc; 1537 out: 1538 rcu_read_unlock_bh(); 1539 return rc; 1540 } 1541 1542 1543 /*======================================================================= 1544 Receiver routines 1545 =======================================================================*/ 1546 1547 int netdev_max_backlog = 1000; 1548 int netdev_budget = 300; 1549 int weight_p = 64; /* old backlog weight */ 1550 1551 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1552 1553 1554 /** 1555 * netif_rx - post buffer to the network code 1556 * @skb: buffer to post 1557 * 1558 * This function receives a packet from a device driver and queues it for 1559 * the upper (protocol) levels to process. It always succeeds. The buffer 1560 * may be dropped during processing for congestion control or by the 1561 * protocol layers. 1562 * 1563 * return values: 1564 * NET_RX_SUCCESS (no congestion) 1565 * NET_RX_CN_LOW (low congestion) 1566 * NET_RX_CN_MOD (moderate congestion) 1567 * NET_RX_CN_HIGH (high congestion) 1568 * NET_RX_DROP (packet was dropped) 1569 * 1570 */ 1571 1572 int netif_rx(struct sk_buff *skb) 1573 { 1574 struct softnet_data *queue; 1575 unsigned long flags; 1576 1577 /* if netpoll wants it, pretend we never saw it */ 1578 if (netpoll_rx(skb)) 1579 return NET_RX_DROP; 1580 1581 if (!skb->tstamp.off_sec) 1582 net_timestamp(skb); 1583 1584 /* 1585 * The code is rearranged so that the path is the most 1586 * short when CPU is congested, but is still operating. 1587 */ 1588 local_irq_save(flags); 1589 queue = &__get_cpu_var(softnet_data); 1590 1591 __get_cpu_var(netdev_rx_stat).total++; 1592 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1593 if (queue->input_pkt_queue.qlen) { 1594 enqueue: 1595 dev_hold(skb->dev); 1596 __skb_queue_tail(&queue->input_pkt_queue, skb); 1597 local_irq_restore(flags); 1598 return NET_RX_SUCCESS; 1599 } 1600 1601 netif_rx_schedule(&queue->backlog_dev); 1602 goto enqueue; 1603 } 1604 1605 __get_cpu_var(netdev_rx_stat).dropped++; 1606 local_irq_restore(flags); 1607 1608 kfree_skb(skb); 1609 return NET_RX_DROP; 1610 } 1611 1612 int netif_rx_ni(struct sk_buff *skb) 1613 { 1614 int err; 1615 1616 preempt_disable(); 1617 err = netif_rx(skb); 1618 if (local_softirq_pending()) 1619 do_softirq(); 1620 preempt_enable(); 1621 1622 return err; 1623 } 1624 1625 EXPORT_SYMBOL(netif_rx_ni); 1626 1627 static inline struct net_device *skb_bond(struct sk_buff *skb) 1628 { 1629 struct net_device *dev = skb->dev; 1630 1631 if (dev->master) { 1632 /* 1633 * On bonding slaves other than the currently active 1634 * slave, suppress duplicates except for 802.3ad 1635 * ETH_P_SLOW and alb non-mcast/bcast. 1636 */ 1637 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 1638 if (dev->master->priv_flags & IFF_MASTER_ALB) { 1639 if (skb->pkt_type != PACKET_BROADCAST && 1640 skb->pkt_type != PACKET_MULTICAST) 1641 goto keep; 1642 } 1643 1644 if (dev->master->priv_flags & IFF_MASTER_8023AD && 1645 skb->protocol == __constant_htons(ETH_P_SLOW)) 1646 goto keep; 1647 1648 kfree_skb(skb); 1649 return NULL; 1650 } 1651 keep: 1652 skb->dev = dev->master; 1653 } 1654 1655 return dev; 1656 } 1657 1658 static void net_tx_action(struct softirq_action *h) 1659 { 1660 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1661 1662 if (sd->completion_queue) { 1663 struct sk_buff *clist; 1664 1665 local_irq_disable(); 1666 clist = sd->completion_queue; 1667 sd->completion_queue = NULL; 1668 local_irq_enable(); 1669 1670 while (clist) { 1671 struct sk_buff *skb = clist; 1672 clist = clist->next; 1673 1674 BUG_TRAP(!atomic_read(&skb->users)); 1675 __kfree_skb(skb); 1676 } 1677 } 1678 1679 if (sd->output_queue) { 1680 struct net_device *head; 1681 1682 local_irq_disable(); 1683 head = sd->output_queue; 1684 sd->output_queue = NULL; 1685 local_irq_enable(); 1686 1687 while (head) { 1688 struct net_device *dev = head; 1689 head = head->next_sched; 1690 1691 smp_mb__before_clear_bit(); 1692 clear_bit(__LINK_STATE_SCHED, &dev->state); 1693 1694 if (spin_trylock(&dev->queue_lock)) { 1695 qdisc_run(dev); 1696 spin_unlock(&dev->queue_lock); 1697 } else { 1698 netif_schedule(dev); 1699 } 1700 } 1701 } 1702 } 1703 1704 static __inline__ int deliver_skb(struct sk_buff *skb, 1705 struct packet_type *pt_prev, 1706 struct net_device *orig_dev) 1707 { 1708 atomic_inc(&skb->users); 1709 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1710 } 1711 1712 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1713 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb); 1714 struct net_bridge; 1715 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1716 unsigned char *addr); 1717 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent); 1718 1719 static __inline__ int handle_bridge(struct sk_buff **pskb, 1720 struct packet_type **pt_prev, int *ret, 1721 struct net_device *orig_dev) 1722 { 1723 struct net_bridge_port *port; 1724 1725 if ((*pskb)->pkt_type == PACKET_LOOPBACK || 1726 (port = rcu_dereference((*pskb)->dev->br_port)) == NULL) 1727 return 0; 1728 1729 if (*pt_prev) { 1730 *ret = deliver_skb(*pskb, *pt_prev, orig_dev); 1731 *pt_prev = NULL; 1732 } 1733 1734 return br_handle_frame_hook(port, pskb); 1735 } 1736 #else 1737 #define handle_bridge(skb, pt_prev, ret, orig_dev) (0) 1738 #endif 1739 1740 #ifdef CONFIG_NET_CLS_ACT 1741 /* TODO: Maybe we should just force sch_ingress to be compiled in 1742 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1743 * a compare and 2 stores extra right now if we dont have it on 1744 * but have CONFIG_NET_CLS_ACT 1745 * NOTE: This doesnt stop any functionality; if you dont have 1746 * the ingress scheduler, you just cant add policies on ingress. 1747 * 1748 */ 1749 static int ing_filter(struct sk_buff *skb) 1750 { 1751 struct Qdisc *q; 1752 struct net_device *dev = skb->dev; 1753 int result = TC_ACT_OK; 1754 1755 if (dev->qdisc_ingress) { 1756 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1757 if (MAX_RED_LOOP < ttl++) { 1758 printk(KERN_WARNING "Redir loop detected Dropping packet (%s->%s)\n", 1759 skb->input_dev->name, skb->dev->name); 1760 return TC_ACT_SHOT; 1761 } 1762 1763 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1764 1765 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1766 1767 spin_lock(&dev->ingress_lock); 1768 if ((q = dev->qdisc_ingress) != NULL) 1769 result = q->enqueue(skb, q); 1770 spin_unlock(&dev->ingress_lock); 1771 1772 } 1773 1774 return result; 1775 } 1776 #endif 1777 1778 int netif_receive_skb(struct sk_buff *skb) 1779 { 1780 struct packet_type *ptype, *pt_prev; 1781 struct net_device *orig_dev; 1782 int ret = NET_RX_DROP; 1783 unsigned short type; 1784 1785 /* if we've gotten here through NAPI, check netpoll */ 1786 if (skb->dev->poll && netpoll_rx(skb)) 1787 return NET_RX_DROP; 1788 1789 if (!skb->tstamp.off_sec) 1790 net_timestamp(skb); 1791 1792 if (!skb->input_dev) 1793 skb->input_dev = skb->dev; 1794 1795 orig_dev = skb_bond(skb); 1796 1797 if (!orig_dev) 1798 return NET_RX_DROP; 1799 1800 __get_cpu_var(netdev_rx_stat).total++; 1801 1802 skb->h.raw = skb->nh.raw = skb->data; 1803 skb->mac_len = skb->nh.raw - skb->mac.raw; 1804 1805 pt_prev = NULL; 1806 1807 rcu_read_lock(); 1808 1809 #ifdef CONFIG_NET_CLS_ACT 1810 if (skb->tc_verd & TC_NCLS) { 1811 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 1812 goto ncls; 1813 } 1814 #endif 1815 1816 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1817 if (!ptype->dev || ptype->dev == skb->dev) { 1818 if (pt_prev) 1819 ret = deliver_skb(skb, pt_prev, orig_dev); 1820 pt_prev = ptype; 1821 } 1822 } 1823 1824 #ifdef CONFIG_NET_CLS_ACT 1825 if (pt_prev) { 1826 ret = deliver_skb(skb, pt_prev, orig_dev); 1827 pt_prev = NULL; /* noone else should process this after*/ 1828 } else { 1829 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1830 } 1831 1832 ret = ing_filter(skb); 1833 1834 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 1835 kfree_skb(skb); 1836 goto out; 1837 } 1838 1839 skb->tc_verd = 0; 1840 ncls: 1841 #endif 1842 1843 handle_diverter(skb); 1844 1845 if (handle_bridge(&skb, &pt_prev, &ret, orig_dev)) 1846 goto out; 1847 1848 type = skb->protocol; 1849 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 1850 if (ptype->type == type && 1851 (!ptype->dev || ptype->dev == skb->dev)) { 1852 if (pt_prev) 1853 ret = deliver_skb(skb, pt_prev, orig_dev); 1854 pt_prev = ptype; 1855 } 1856 } 1857 1858 if (pt_prev) { 1859 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1860 } else { 1861 kfree_skb(skb); 1862 /* Jamal, now you will not able to escape explaining 1863 * me how you were going to use this. :-) 1864 */ 1865 ret = NET_RX_DROP; 1866 } 1867 1868 out: 1869 rcu_read_unlock(); 1870 return ret; 1871 } 1872 1873 static int process_backlog(struct net_device *backlog_dev, int *budget) 1874 { 1875 int work = 0; 1876 int quota = min(backlog_dev->quota, *budget); 1877 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1878 unsigned long start_time = jiffies; 1879 1880 backlog_dev->weight = weight_p; 1881 for (;;) { 1882 struct sk_buff *skb; 1883 struct net_device *dev; 1884 1885 local_irq_disable(); 1886 skb = __skb_dequeue(&queue->input_pkt_queue); 1887 if (!skb) 1888 goto job_done; 1889 local_irq_enable(); 1890 1891 dev = skb->dev; 1892 1893 netif_receive_skb(skb); 1894 1895 dev_put(dev); 1896 1897 work++; 1898 1899 if (work >= quota || jiffies - start_time > 1) 1900 break; 1901 1902 } 1903 1904 backlog_dev->quota -= work; 1905 *budget -= work; 1906 return -1; 1907 1908 job_done: 1909 backlog_dev->quota -= work; 1910 *budget -= work; 1911 1912 list_del(&backlog_dev->poll_list); 1913 smp_mb__before_clear_bit(); 1914 netif_poll_enable(backlog_dev); 1915 1916 local_irq_enable(); 1917 return 0; 1918 } 1919 1920 static void net_rx_action(struct softirq_action *h) 1921 { 1922 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1923 unsigned long start_time = jiffies; 1924 int budget = netdev_budget; 1925 void *have; 1926 1927 local_irq_disable(); 1928 1929 while (!list_empty(&queue->poll_list)) { 1930 struct net_device *dev; 1931 1932 if (budget <= 0 || jiffies - start_time > 1) 1933 goto softnet_break; 1934 1935 local_irq_enable(); 1936 1937 dev = list_entry(queue->poll_list.next, 1938 struct net_device, poll_list); 1939 have = netpoll_poll_lock(dev); 1940 1941 if (dev->quota <= 0 || dev->poll(dev, &budget)) { 1942 netpoll_poll_unlock(have); 1943 local_irq_disable(); 1944 list_move_tail(&dev->poll_list, &queue->poll_list); 1945 if (dev->quota < 0) 1946 dev->quota += dev->weight; 1947 else 1948 dev->quota = dev->weight; 1949 } else { 1950 netpoll_poll_unlock(have); 1951 dev_put(dev); 1952 local_irq_disable(); 1953 } 1954 } 1955 out: 1956 #ifdef CONFIG_NET_DMA 1957 /* 1958 * There may not be any more sk_buffs coming right now, so push 1959 * any pending DMA copies to hardware 1960 */ 1961 if (net_dma_client) { 1962 struct dma_chan *chan; 1963 rcu_read_lock(); 1964 list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node) 1965 dma_async_memcpy_issue_pending(chan); 1966 rcu_read_unlock(); 1967 } 1968 #endif 1969 local_irq_enable(); 1970 return; 1971 1972 softnet_break: 1973 __get_cpu_var(netdev_rx_stat).time_squeeze++; 1974 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1975 goto out; 1976 } 1977 1978 static gifconf_func_t * gifconf_list [NPROTO]; 1979 1980 /** 1981 * register_gifconf - register a SIOCGIF handler 1982 * @family: Address family 1983 * @gifconf: Function handler 1984 * 1985 * Register protocol dependent address dumping routines. The handler 1986 * that is passed must not be freed or reused until it has been replaced 1987 * by another handler. 1988 */ 1989 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 1990 { 1991 if (family >= NPROTO) 1992 return -EINVAL; 1993 gifconf_list[family] = gifconf; 1994 return 0; 1995 } 1996 1997 1998 /* 1999 * Map an interface index to its name (SIOCGIFNAME) 2000 */ 2001 2002 /* 2003 * We need this ioctl for efficient implementation of the 2004 * if_indextoname() function required by the IPv6 API. Without 2005 * it, we would have to search all the interfaces to find a 2006 * match. --pb 2007 */ 2008 2009 static int dev_ifname(struct ifreq __user *arg) 2010 { 2011 struct net_device *dev; 2012 struct ifreq ifr; 2013 2014 /* 2015 * Fetch the caller's info block. 2016 */ 2017 2018 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2019 return -EFAULT; 2020 2021 read_lock(&dev_base_lock); 2022 dev = __dev_get_by_index(ifr.ifr_ifindex); 2023 if (!dev) { 2024 read_unlock(&dev_base_lock); 2025 return -ENODEV; 2026 } 2027 2028 strcpy(ifr.ifr_name, dev->name); 2029 read_unlock(&dev_base_lock); 2030 2031 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2032 return -EFAULT; 2033 return 0; 2034 } 2035 2036 /* 2037 * Perform a SIOCGIFCONF call. This structure will change 2038 * size eventually, and there is nothing I can do about it. 2039 * Thus we will need a 'compatibility mode'. 2040 */ 2041 2042 static int dev_ifconf(char __user *arg) 2043 { 2044 struct ifconf ifc; 2045 struct net_device *dev; 2046 char __user *pos; 2047 int len; 2048 int total; 2049 int i; 2050 2051 /* 2052 * Fetch the caller's info block. 2053 */ 2054 2055 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2056 return -EFAULT; 2057 2058 pos = ifc.ifc_buf; 2059 len = ifc.ifc_len; 2060 2061 /* 2062 * Loop over the interfaces, and write an info block for each. 2063 */ 2064 2065 total = 0; 2066 for (dev = dev_base; dev; dev = dev->next) { 2067 for (i = 0; i < NPROTO; i++) { 2068 if (gifconf_list[i]) { 2069 int done; 2070 if (!pos) 2071 done = gifconf_list[i](dev, NULL, 0); 2072 else 2073 done = gifconf_list[i](dev, pos + total, 2074 len - total); 2075 if (done < 0) 2076 return -EFAULT; 2077 total += done; 2078 } 2079 } 2080 } 2081 2082 /* 2083 * All done. Write the updated control block back to the caller. 2084 */ 2085 ifc.ifc_len = total; 2086 2087 /* 2088 * Both BSD and Solaris return 0 here, so we do too. 2089 */ 2090 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2091 } 2092 2093 #ifdef CONFIG_PROC_FS 2094 /* 2095 * This is invoked by the /proc filesystem handler to display a device 2096 * in detail. 2097 */ 2098 static __inline__ struct net_device *dev_get_idx(loff_t pos) 2099 { 2100 struct net_device *dev; 2101 loff_t i; 2102 2103 for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next); 2104 2105 return i == pos ? dev : NULL; 2106 } 2107 2108 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2109 { 2110 read_lock(&dev_base_lock); 2111 return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN; 2112 } 2113 2114 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2115 { 2116 ++*pos; 2117 return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next; 2118 } 2119 2120 void dev_seq_stop(struct seq_file *seq, void *v) 2121 { 2122 read_unlock(&dev_base_lock); 2123 } 2124 2125 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2126 { 2127 if (dev->get_stats) { 2128 struct net_device_stats *stats = dev->get_stats(dev); 2129 2130 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2131 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2132 dev->name, stats->rx_bytes, stats->rx_packets, 2133 stats->rx_errors, 2134 stats->rx_dropped + stats->rx_missed_errors, 2135 stats->rx_fifo_errors, 2136 stats->rx_length_errors + stats->rx_over_errors + 2137 stats->rx_crc_errors + stats->rx_frame_errors, 2138 stats->rx_compressed, stats->multicast, 2139 stats->tx_bytes, stats->tx_packets, 2140 stats->tx_errors, stats->tx_dropped, 2141 stats->tx_fifo_errors, stats->collisions, 2142 stats->tx_carrier_errors + 2143 stats->tx_aborted_errors + 2144 stats->tx_window_errors + 2145 stats->tx_heartbeat_errors, 2146 stats->tx_compressed); 2147 } else 2148 seq_printf(seq, "%6s: No statistics available.\n", dev->name); 2149 } 2150 2151 /* 2152 * Called from the PROCfs module. This now uses the new arbitrary sized 2153 * /proc/net interface to create /proc/net/dev 2154 */ 2155 static int dev_seq_show(struct seq_file *seq, void *v) 2156 { 2157 if (v == SEQ_START_TOKEN) 2158 seq_puts(seq, "Inter-| Receive " 2159 " | Transmit\n" 2160 " face |bytes packets errs drop fifo frame " 2161 "compressed multicast|bytes packets errs " 2162 "drop fifo colls carrier compressed\n"); 2163 else 2164 dev_seq_printf_stats(seq, v); 2165 return 0; 2166 } 2167 2168 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2169 { 2170 struct netif_rx_stats *rc = NULL; 2171 2172 while (*pos < NR_CPUS) 2173 if (cpu_online(*pos)) { 2174 rc = &per_cpu(netdev_rx_stat, *pos); 2175 break; 2176 } else 2177 ++*pos; 2178 return rc; 2179 } 2180 2181 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2182 { 2183 return softnet_get_online(pos); 2184 } 2185 2186 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2187 { 2188 ++*pos; 2189 return softnet_get_online(pos); 2190 } 2191 2192 static void softnet_seq_stop(struct seq_file *seq, void *v) 2193 { 2194 } 2195 2196 static int softnet_seq_show(struct seq_file *seq, void *v) 2197 { 2198 struct netif_rx_stats *s = v; 2199 2200 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2201 s->total, s->dropped, s->time_squeeze, 0, 2202 0, 0, 0, 0, /* was fastroute */ 2203 s->cpu_collision ); 2204 return 0; 2205 } 2206 2207 static struct seq_operations dev_seq_ops = { 2208 .start = dev_seq_start, 2209 .next = dev_seq_next, 2210 .stop = dev_seq_stop, 2211 .show = dev_seq_show, 2212 }; 2213 2214 static int dev_seq_open(struct inode *inode, struct file *file) 2215 { 2216 return seq_open(file, &dev_seq_ops); 2217 } 2218 2219 static struct file_operations dev_seq_fops = { 2220 .owner = THIS_MODULE, 2221 .open = dev_seq_open, 2222 .read = seq_read, 2223 .llseek = seq_lseek, 2224 .release = seq_release, 2225 }; 2226 2227 static struct seq_operations softnet_seq_ops = { 2228 .start = softnet_seq_start, 2229 .next = softnet_seq_next, 2230 .stop = softnet_seq_stop, 2231 .show = softnet_seq_show, 2232 }; 2233 2234 static int softnet_seq_open(struct inode *inode, struct file *file) 2235 { 2236 return seq_open(file, &softnet_seq_ops); 2237 } 2238 2239 static struct file_operations softnet_seq_fops = { 2240 .owner = THIS_MODULE, 2241 .open = softnet_seq_open, 2242 .read = seq_read, 2243 .llseek = seq_lseek, 2244 .release = seq_release, 2245 }; 2246 2247 #ifdef CONFIG_WIRELESS_EXT 2248 extern int wireless_proc_init(void); 2249 #else 2250 #define wireless_proc_init() 0 2251 #endif 2252 2253 static int __init dev_proc_init(void) 2254 { 2255 int rc = -ENOMEM; 2256 2257 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops)) 2258 goto out; 2259 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops)) 2260 goto out_dev; 2261 if (wireless_proc_init()) 2262 goto out_softnet; 2263 rc = 0; 2264 out: 2265 return rc; 2266 out_softnet: 2267 proc_net_remove("softnet_stat"); 2268 out_dev: 2269 proc_net_remove("dev"); 2270 goto out; 2271 } 2272 #else 2273 #define dev_proc_init() 0 2274 #endif /* CONFIG_PROC_FS */ 2275 2276 2277 /** 2278 * netdev_set_master - set up master/slave pair 2279 * @slave: slave device 2280 * @master: new master device 2281 * 2282 * Changes the master device of the slave. Pass %NULL to break the 2283 * bonding. The caller must hold the RTNL semaphore. On a failure 2284 * a negative errno code is returned. On success the reference counts 2285 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2286 * function returns zero. 2287 */ 2288 int netdev_set_master(struct net_device *slave, struct net_device *master) 2289 { 2290 struct net_device *old = slave->master; 2291 2292 ASSERT_RTNL(); 2293 2294 if (master) { 2295 if (old) 2296 return -EBUSY; 2297 dev_hold(master); 2298 } 2299 2300 slave->master = master; 2301 2302 synchronize_net(); 2303 2304 if (old) 2305 dev_put(old); 2306 2307 if (master) 2308 slave->flags |= IFF_SLAVE; 2309 else 2310 slave->flags &= ~IFF_SLAVE; 2311 2312 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2313 return 0; 2314 } 2315 2316 /** 2317 * dev_set_promiscuity - update promiscuity count on a device 2318 * @dev: device 2319 * @inc: modifier 2320 * 2321 * Add or remove promiscuity from a device. While the count in the device 2322 * remains above zero the interface remains promiscuous. Once it hits zero 2323 * the device reverts back to normal filtering operation. A negative inc 2324 * value is used to drop promiscuity on the device. 2325 */ 2326 void dev_set_promiscuity(struct net_device *dev, int inc) 2327 { 2328 unsigned short old_flags = dev->flags; 2329 2330 if ((dev->promiscuity += inc) == 0) 2331 dev->flags &= ~IFF_PROMISC; 2332 else 2333 dev->flags |= IFF_PROMISC; 2334 if (dev->flags != old_flags) { 2335 dev_mc_upload(dev); 2336 printk(KERN_INFO "device %s %s promiscuous mode\n", 2337 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2338 "left"); 2339 audit_log(current->audit_context, GFP_ATOMIC, 2340 AUDIT_ANOM_PROMISCUOUS, 2341 "dev=%s prom=%d old_prom=%d auid=%u", 2342 dev->name, (dev->flags & IFF_PROMISC), 2343 (old_flags & IFF_PROMISC), 2344 audit_get_loginuid(current->audit_context)); 2345 } 2346 } 2347 2348 /** 2349 * dev_set_allmulti - update allmulti count on a device 2350 * @dev: device 2351 * @inc: modifier 2352 * 2353 * Add or remove reception of all multicast frames to a device. While the 2354 * count in the device remains above zero the interface remains listening 2355 * to all interfaces. Once it hits zero the device reverts back to normal 2356 * filtering operation. A negative @inc value is used to drop the counter 2357 * when releasing a resource needing all multicasts. 2358 */ 2359 2360 void dev_set_allmulti(struct net_device *dev, int inc) 2361 { 2362 unsigned short old_flags = dev->flags; 2363 2364 dev->flags |= IFF_ALLMULTI; 2365 if ((dev->allmulti += inc) == 0) 2366 dev->flags &= ~IFF_ALLMULTI; 2367 if (dev->flags ^ old_flags) 2368 dev_mc_upload(dev); 2369 } 2370 2371 unsigned dev_get_flags(const struct net_device *dev) 2372 { 2373 unsigned flags; 2374 2375 flags = (dev->flags & ~(IFF_PROMISC | 2376 IFF_ALLMULTI | 2377 IFF_RUNNING | 2378 IFF_LOWER_UP | 2379 IFF_DORMANT)) | 2380 (dev->gflags & (IFF_PROMISC | 2381 IFF_ALLMULTI)); 2382 2383 if (netif_running(dev)) { 2384 if (netif_oper_up(dev)) 2385 flags |= IFF_RUNNING; 2386 if (netif_carrier_ok(dev)) 2387 flags |= IFF_LOWER_UP; 2388 if (netif_dormant(dev)) 2389 flags |= IFF_DORMANT; 2390 } 2391 2392 return flags; 2393 } 2394 2395 int dev_change_flags(struct net_device *dev, unsigned flags) 2396 { 2397 int ret; 2398 int old_flags = dev->flags; 2399 2400 /* 2401 * Set the flags on our device. 2402 */ 2403 2404 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2405 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2406 IFF_AUTOMEDIA)) | 2407 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2408 IFF_ALLMULTI)); 2409 2410 /* 2411 * Load in the correct multicast list now the flags have changed. 2412 */ 2413 2414 dev_mc_upload(dev); 2415 2416 /* 2417 * Have we downed the interface. We handle IFF_UP ourselves 2418 * according to user attempts to set it, rather than blindly 2419 * setting it. 2420 */ 2421 2422 ret = 0; 2423 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 2424 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 2425 2426 if (!ret) 2427 dev_mc_upload(dev); 2428 } 2429 2430 if (dev->flags & IFF_UP && 2431 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 2432 IFF_VOLATILE))) 2433 raw_notifier_call_chain(&netdev_chain, 2434 NETDEV_CHANGE, dev); 2435 2436 if ((flags ^ dev->gflags) & IFF_PROMISC) { 2437 int inc = (flags & IFF_PROMISC) ? +1 : -1; 2438 dev->gflags ^= IFF_PROMISC; 2439 dev_set_promiscuity(dev, inc); 2440 } 2441 2442 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 2443 is important. Some (broken) drivers set IFF_PROMISC, when 2444 IFF_ALLMULTI is requested not asking us and not reporting. 2445 */ 2446 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 2447 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 2448 dev->gflags ^= IFF_ALLMULTI; 2449 dev_set_allmulti(dev, inc); 2450 } 2451 2452 if (old_flags ^ dev->flags) 2453 rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags); 2454 2455 return ret; 2456 } 2457 2458 int dev_set_mtu(struct net_device *dev, int new_mtu) 2459 { 2460 int err; 2461 2462 if (new_mtu == dev->mtu) 2463 return 0; 2464 2465 /* MTU must be positive. */ 2466 if (new_mtu < 0) 2467 return -EINVAL; 2468 2469 if (!netif_device_present(dev)) 2470 return -ENODEV; 2471 2472 err = 0; 2473 if (dev->change_mtu) 2474 err = dev->change_mtu(dev, new_mtu); 2475 else 2476 dev->mtu = new_mtu; 2477 if (!err && dev->flags & IFF_UP) 2478 raw_notifier_call_chain(&netdev_chain, 2479 NETDEV_CHANGEMTU, dev); 2480 return err; 2481 } 2482 2483 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 2484 { 2485 int err; 2486 2487 if (!dev->set_mac_address) 2488 return -EOPNOTSUPP; 2489 if (sa->sa_family != dev->type) 2490 return -EINVAL; 2491 if (!netif_device_present(dev)) 2492 return -ENODEV; 2493 err = dev->set_mac_address(dev, sa); 2494 if (!err) 2495 raw_notifier_call_chain(&netdev_chain, 2496 NETDEV_CHANGEADDR, dev); 2497 return err; 2498 } 2499 2500 /* 2501 * Perform the SIOCxIFxxx calls. 2502 */ 2503 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd) 2504 { 2505 int err; 2506 struct net_device *dev = __dev_get_by_name(ifr->ifr_name); 2507 2508 if (!dev) 2509 return -ENODEV; 2510 2511 switch (cmd) { 2512 case SIOCGIFFLAGS: /* Get interface flags */ 2513 ifr->ifr_flags = dev_get_flags(dev); 2514 return 0; 2515 2516 case SIOCSIFFLAGS: /* Set interface flags */ 2517 return dev_change_flags(dev, ifr->ifr_flags); 2518 2519 case SIOCGIFMETRIC: /* Get the metric on the interface 2520 (currently unused) */ 2521 ifr->ifr_metric = 0; 2522 return 0; 2523 2524 case SIOCSIFMETRIC: /* Set the metric on the interface 2525 (currently unused) */ 2526 return -EOPNOTSUPP; 2527 2528 case SIOCGIFMTU: /* Get the MTU of a device */ 2529 ifr->ifr_mtu = dev->mtu; 2530 return 0; 2531 2532 case SIOCSIFMTU: /* Set the MTU of a device */ 2533 return dev_set_mtu(dev, ifr->ifr_mtu); 2534 2535 case SIOCGIFHWADDR: 2536 if (!dev->addr_len) 2537 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 2538 else 2539 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 2540 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2541 ifr->ifr_hwaddr.sa_family = dev->type; 2542 return 0; 2543 2544 case SIOCSIFHWADDR: 2545 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 2546 2547 case SIOCSIFHWBROADCAST: 2548 if (ifr->ifr_hwaddr.sa_family != dev->type) 2549 return -EINVAL; 2550 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 2551 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2552 raw_notifier_call_chain(&netdev_chain, 2553 NETDEV_CHANGEADDR, dev); 2554 return 0; 2555 2556 case SIOCGIFMAP: 2557 ifr->ifr_map.mem_start = dev->mem_start; 2558 ifr->ifr_map.mem_end = dev->mem_end; 2559 ifr->ifr_map.base_addr = dev->base_addr; 2560 ifr->ifr_map.irq = dev->irq; 2561 ifr->ifr_map.dma = dev->dma; 2562 ifr->ifr_map.port = dev->if_port; 2563 return 0; 2564 2565 case SIOCSIFMAP: 2566 if (dev->set_config) { 2567 if (!netif_device_present(dev)) 2568 return -ENODEV; 2569 return dev->set_config(dev, &ifr->ifr_map); 2570 } 2571 return -EOPNOTSUPP; 2572 2573 case SIOCADDMULTI: 2574 if (!dev->set_multicast_list || 2575 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2576 return -EINVAL; 2577 if (!netif_device_present(dev)) 2578 return -ENODEV; 2579 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 2580 dev->addr_len, 1); 2581 2582 case SIOCDELMULTI: 2583 if (!dev->set_multicast_list || 2584 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2585 return -EINVAL; 2586 if (!netif_device_present(dev)) 2587 return -ENODEV; 2588 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 2589 dev->addr_len, 1); 2590 2591 case SIOCGIFINDEX: 2592 ifr->ifr_ifindex = dev->ifindex; 2593 return 0; 2594 2595 case SIOCGIFTXQLEN: 2596 ifr->ifr_qlen = dev->tx_queue_len; 2597 return 0; 2598 2599 case SIOCSIFTXQLEN: 2600 if (ifr->ifr_qlen < 0) 2601 return -EINVAL; 2602 dev->tx_queue_len = ifr->ifr_qlen; 2603 return 0; 2604 2605 case SIOCSIFNAME: 2606 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 2607 return dev_change_name(dev, ifr->ifr_newname); 2608 2609 /* 2610 * Unknown or private ioctl 2611 */ 2612 2613 default: 2614 if ((cmd >= SIOCDEVPRIVATE && 2615 cmd <= SIOCDEVPRIVATE + 15) || 2616 cmd == SIOCBONDENSLAVE || 2617 cmd == SIOCBONDRELEASE || 2618 cmd == SIOCBONDSETHWADDR || 2619 cmd == SIOCBONDSLAVEINFOQUERY || 2620 cmd == SIOCBONDINFOQUERY || 2621 cmd == SIOCBONDCHANGEACTIVE || 2622 cmd == SIOCGMIIPHY || 2623 cmd == SIOCGMIIREG || 2624 cmd == SIOCSMIIREG || 2625 cmd == SIOCBRADDIF || 2626 cmd == SIOCBRDELIF || 2627 cmd == SIOCWANDEV) { 2628 err = -EOPNOTSUPP; 2629 if (dev->do_ioctl) { 2630 if (netif_device_present(dev)) 2631 err = dev->do_ioctl(dev, ifr, 2632 cmd); 2633 else 2634 err = -ENODEV; 2635 } 2636 } else 2637 err = -EINVAL; 2638 2639 } 2640 return err; 2641 } 2642 2643 /* 2644 * This function handles all "interface"-type I/O control requests. The actual 2645 * 'doing' part of this is dev_ifsioc above. 2646 */ 2647 2648 /** 2649 * dev_ioctl - network device ioctl 2650 * @cmd: command to issue 2651 * @arg: pointer to a struct ifreq in user space 2652 * 2653 * Issue ioctl functions to devices. This is normally called by the 2654 * user space syscall interfaces but can sometimes be useful for 2655 * other purposes. The return value is the return from the syscall if 2656 * positive or a negative errno code on error. 2657 */ 2658 2659 int dev_ioctl(unsigned int cmd, void __user *arg) 2660 { 2661 struct ifreq ifr; 2662 int ret; 2663 char *colon; 2664 2665 /* One special case: SIOCGIFCONF takes ifconf argument 2666 and requires shared lock, because it sleeps writing 2667 to user space. 2668 */ 2669 2670 if (cmd == SIOCGIFCONF) { 2671 rtnl_lock(); 2672 ret = dev_ifconf((char __user *) arg); 2673 rtnl_unlock(); 2674 return ret; 2675 } 2676 if (cmd == SIOCGIFNAME) 2677 return dev_ifname((struct ifreq __user *)arg); 2678 2679 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2680 return -EFAULT; 2681 2682 ifr.ifr_name[IFNAMSIZ-1] = 0; 2683 2684 colon = strchr(ifr.ifr_name, ':'); 2685 if (colon) 2686 *colon = 0; 2687 2688 /* 2689 * See which interface the caller is talking about. 2690 */ 2691 2692 switch (cmd) { 2693 /* 2694 * These ioctl calls: 2695 * - can be done by all. 2696 * - atomic and do not require locking. 2697 * - return a value 2698 */ 2699 case SIOCGIFFLAGS: 2700 case SIOCGIFMETRIC: 2701 case SIOCGIFMTU: 2702 case SIOCGIFHWADDR: 2703 case SIOCGIFSLAVE: 2704 case SIOCGIFMAP: 2705 case SIOCGIFINDEX: 2706 case SIOCGIFTXQLEN: 2707 dev_load(ifr.ifr_name); 2708 read_lock(&dev_base_lock); 2709 ret = dev_ifsioc(&ifr, cmd); 2710 read_unlock(&dev_base_lock); 2711 if (!ret) { 2712 if (colon) 2713 *colon = ':'; 2714 if (copy_to_user(arg, &ifr, 2715 sizeof(struct ifreq))) 2716 ret = -EFAULT; 2717 } 2718 return ret; 2719 2720 case SIOCETHTOOL: 2721 dev_load(ifr.ifr_name); 2722 rtnl_lock(); 2723 ret = dev_ethtool(&ifr); 2724 rtnl_unlock(); 2725 if (!ret) { 2726 if (colon) 2727 *colon = ':'; 2728 if (copy_to_user(arg, &ifr, 2729 sizeof(struct ifreq))) 2730 ret = -EFAULT; 2731 } 2732 return ret; 2733 2734 /* 2735 * These ioctl calls: 2736 * - require superuser power. 2737 * - require strict serialization. 2738 * - return a value 2739 */ 2740 case SIOCGMIIPHY: 2741 case SIOCGMIIREG: 2742 case SIOCSIFNAME: 2743 if (!capable(CAP_NET_ADMIN)) 2744 return -EPERM; 2745 dev_load(ifr.ifr_name); 2746 rtnl_lock(); 2747 ret = dev_ifsioc(&ifr, cmd); 2748 rtnl_unlock(); 2749 if (!ret) { 2750 if (colon) 2751 *colon = ':'; 2752 if (copy_to_user(arg, &ifr, 2753 sizeof(struct ifreq))) 2754 ret = -EFAULT; 2755 } 2756 return ret; 2757 2758 /* 2759 * These ioctl calls: 2760 * - require superuser power. 2761 * - require strict serialization. 2762 * - do not return a value 2763 */ 2764 case SIOCSIFFLAGS: 2765 case SIOCSIFMETRIC: 2766 case SIOCSIFMTU: 2767 case SIOCSIFMAP: 2768 case SIOCSIFHWADDR: 2769 case SIOCSIFSLAVE: 2770 case SIOCADDMULTI: 2771 case SIOCDELMULTI: 2772 case SIOCSIFHWBROADCAST: 2773 case SIOCSIFTXQLEN: 2774 case SIOCSMIIREG: 2775 case SIOCBONDENSLAVE: 2776 case SIOCBONDRELEASE: 2777 case SIOCBONDSETHWADDR: 2778 case SIOCBONDCHANGEACTIVE: 2779 case SIOCBRADDIF: 2780 case SIOCBRDELIF: 2781 if (!capable(CAP_NET_ADMIN)) 2782 return -EPERM; 2783 /* fall through */ 2784 case SIOCBONDSLAVEINFOQUERY: 2785 case SIOCBONDINFOQUERY: 2786 dev_load(ifr.ifr_name); 2787 rtnl_lock(); 2788 ret = dev_ifsioc(&ifr, cmd); 2789 rtnl_unlock(); 2790 return ret; 2791 2792 case SIOCGIFMEM: 2793 /* Get the per device memory space. We can add this but 2794 * currently do not support it */ 2795 case SIOCSIFMEM: 2796 /* Set the per device memory buffer space. 2797 * Not applicable in our case */ 2798 case SIOCSIFLINK: 2799 return -EINVAL; 2800 2801 /* 2802 * Unknown or private ioctl. 2803 */ 2804 default: 2805 if (cmd == SIOCWANDEV || 2806 (cmd >= SIOCDEVPRIVATE && 2807 cmd <= SIOCDEVPRIVATE + 15)) { 2808 dev_load(ifr.ifr_name); 2809 rtnl_lock(); 2810 ret = dev_ifsioc(&ifr, cmd); 2811 rtnl_unlock(); 2812 if (!ret && copy_to_user(arg, &ifr, 2813 sizeof(struct ifreq))) 2814 ret = -EFAULT; 2815 return ret; 2816 } 2817 #ifdef CONFIG_WIRELESS_EXT 2818 /* Take care of Wireless Extensions */ 2819 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 2820 /* If command is `set a parameter', or 2821 * `get the encoding parameters', check if 2822 * the user has the right to do it */ 2823 if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE 2824 || cmd == SIOCGIWENCODEEXT) { 2825 if (!capable(CAP_NET_ADMIN)) 2826 return -EPERM; 2827 } 2828 dev_load(ifr.ifr_name); 2829 rtnl_lock(); 2830 /* Follow me in net/core/wireless.c */ 2831 ret = wireless_process_ioctl(&ifr, cmd); 2832 rtnl_unlock(); 2833 if (IW_IS_GET(cmd) && 2834 copy_to_user(arg, &ifr, 2835 sizeof(struct ifreq))) 2836 ret = -EFAULT; 2837 return ret; 2838 } 2839 #endif /* CONFIG_WIRELESS_EXT */ 2840 return -EINVAL; 2841 } 2842 } 2843 2844 2845 /** 2846 * dev_new_index - allocate an ifindex 2847 * 2848 * Returns a suitable unique value for a new device interface 2849 * number. The caller must hold the rtnl semaphore or the 2850 * dev_base_lock to be sure it remains unique. 2851 */ 2852 static int dev_new_index(void) 2853 { 2854 static int ifindex; 2855 for (;;) { 2856 if (++ifindex <= 0) 2857 ifindex = 1; 2858 if (!__dev_get_by_index(ifindex)) 2859 return ifindex; 2860 } 2861 } 2862 2863 static int dev_boot_phase = 1; 2864 2865 /* Delayed registration/unregisteration */ 2866 static DEFINE_SPINLOCK(net_todo_list_lock); 2867 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 2868 2869 static inline void net_set_todo(struct net_device *dev) 2870 { 2871 spin_lock(&net_todo_list_lock); 2872 list_add_tail(&dev->todo_list, &net_todo_list); 2873 spin_unlock(&net_todo_list_lock); 2874 } 2875 2876 /** 2877 * register_netdevice - register a network device 2878 * @dev: device to register 2879 * 2880 * Take a completed network device structure and add it to the kernel 2881 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 2882 * chain. 0 is returned on success. A negative errno code is returned 2883 * on a failure to set up the device, or if the name is a duplicate. 2884 * 2885 * Callers must hold the rtnl semaphore. You may want 2886 * register_netdev() instead of this. 2887 * 2888 * BUGS: 2889 * The locking appears insufficient to guarantee two parallel registers 2890 * will not get the same name. 2891 */ 2892 2893 int register_netdevice(struct net_device *dev) 2894 { 2895 struct hlist_head *head; 2896 struct hlist_node *p; 2897 int ret; 2898 2899 BUG_ON(dev_boot_phase); 2900 ASSERT_RTNL(); 2901 2902 might_sleep(); 2903 2904 /* When net_device's are persistent, this will be fatal. */ 2905 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 2906 2907 spin_lock_init(&dev->queue_lock); 2908 spin_lock_init(&dev->_xmit_lock); 2909 dev->xmit_lock_owner = -1; 2910 #ifdef CONFIG_NET_CLS_ACT 2911 spin_lock_init(&dev->ingress_lock); 2912 #endif 2913 2914 ret = alloc_divert_blk(dev); 2915 if (ret) 2916 goto out; 2917 2918 dev->iflink = -1; 2919 2920 /* Init, if this function is available */ 2921 if (dev->init) { 2922 ret = dev->init(dev); 2923 if (ret) { 2924 if (ret > 0) 2925 ret = -EIO; 2926 goto out_err; 2927 } 2928 } 2929 2930 if (!dev_valid_name(dev->name)) { 2931 ret = -EINVAL; 2932 goto out_err; 2933 } 2934 2935 dev->ifindex = dev_new_index(); 2936 if (dev->iflink == -1) 2937 dev->iflink = dev->ifindex; 2938 2939 /* Check for existence of name */ 2940 head = dev_name_hash(dev->name); 2941 hlist_for_each(p, head) { 2942 struct net_device *d 2943 = hlist_entry(p, struct net_device, name_hlist); 2944 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 2945 ret = -EEXIST; 2946 goto out_err; 2947 } 2948 } 2949 2950 /* Fix illegal SG+CSUM combinations. */ 2951 if ((dev->features & NETIF_F_SG) && 2952 !(dev->features & NETIF_F_ALL_CSUM)) { 2953 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 2954 dev->name); 2955 dev->features &= ~NETIF_F_SG; 2956 } 2957 2958 /* TSO requires that SG is present as well. */ 2959 if ((dev->features & NETIF_F_TSO) && 2960 !(dev->features & NETIF_F_SG)) { 2961 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 2962 dev->name); 2963 dev->features &= ~NETIF_F_TSO; 2964 } 2965 if (dev->features & NETIF_F_UFO) { 2966 if (!(dev->features & NETIF_F_HW_CSUM)) { 2967 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2968 "NETIF_F_HW_CSUM feature.\n", 2969 dev->name); 2970 dev->features &= ~NETIF_F_UFO; 2971 } 2972 if (!(dev->features & NETIF_F_SG)) { 2973 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2974 "NETIF_F_SG feature.\n", 2975 dev->name); 2976 dev->features &= ~NETIF_F_UFO; 2977 } 2978 } 2979 2980 /* 2981 * nil rebuild_header routine, 2982 * that should be never called and used as just bug trap. 2983 */ 2984 2985 if (!dev->rebuild_header) 2986 dev->rebuild_header = default_rebuild_header; 2987 2988 ret = netdev_register_sysfs(dev); 2989 if (ret) 2990 goto out_err; 2991 dev->reg_state = NETREG_REGISTERED; 2992 2993 /* 2994 * Default initial state at registry is that the 2995 * device is present. 2996 */ 2997 2998 set_bit(__LINK_STATE_PRESENT, &dev->state); 2999 3000 dev->next = NULL; 3001 dev_init_scheduler(dev); 3002 write_lock_bh(&dev_base_lock); 3003 *dev_tail = dev; 3004 dev_tail = &dev->next; 3005 hlist_add_head(&dev->name_hlist, head); 3006 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex)); 3007 dev_hold(dev); 3008 write_unlock_bh(&dev_base_lock); 3009 3010 /* Notify protocols, that a new device appeared. */ 3011 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev); 3012 3013 ret = 0; 3014 3015 out: 3016 return ret; 3017 out_err: 3018 free_divert_blk(dev); 3019 goto out; 3020 } 3021 3022 /** 3023 * register_netdev - register a network device 3024 * @dev: device to register 3025 * 3026 * Take a completed network device structure and add it to the kernel 3027 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3028 * chain. 0 is returned on success. A negative errno code is returned 3029 * on a failure to set up the device, or if the name is a duplicate. 3030 * 3031 * This is a wrapper around register_netdev that takes the rtnl semaphore 3032 * and expands the device name if you passed a format string to 3033 * alloc_netdev. 3034 */ 3035 int register_netdev(struct net_device *dev) 3036 { 3037 int err; 3038 3039 rtnl_lock(); 3040 3041 /* 3042 * If the name is a format string the caller wants us to do a 3043 * name allocation. 3044 */ 3045 if (strchr(dev->name, '%')) { 3046 err = dev_alloc_name(dev, dev->name); 3047 if (err < 0) 3048 goto out; 3049 } 3050 3051 /* 3052 * Back compatibility hook. Kill this one in 2.5 3053 */ 3054 if (dev->name[0] == 0 || dev->name[0] == ' ') { 3055 err = dev_alloc_name(dev, "eth%d"); 3056 if (err < 0) 3057 goto out; 3058 } 3059 3060 err = register_netdevice(dev); 3061 out: 3062 rtnl_unlock(); 3063 return err; 3064 } 3065 EXPORT_SYMBOL(register_netdev); 3066 3067 /* 3068 * netdev_wait_allrefs - wait until all references are gone. 3069 * 3070 * This is called when unregistering network devices. 3071 * 3072 * Any protocol or device that holds a reference should register 3073 * for netdevice notification, and cleanup and put back the 3074 * reference if they receive an UNREGISTER event. 3075 * We can get stuck here if buggy protocols don't correctly 3076 * call dev_put. 3077 */ 3078 static void netdev_wait_allrefs(struct net_device *dev) 3079 { 3080 unsigned long rebroadcast_time, warning_time; 3081 3082 rebroadcast_time = warning_time = jiffies; 3083 while (atomic_read(&dev->refcnt) != 0) { 3084 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3085 rtnl_lock(); 3086 3087 /* Rebroadcast unregister notification */ 3088 raw_notifier_call_chain(&netdev_chain, 3089 NETDEV_UNREGISTER, dev); 3090 3091 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3092 &dev->state)) { 3093 /* We must not have linkwatch events 3094 * pending on unregister. If this 3095 * happens, we simply run the queue 3096 * unscheduled, resulting in a noop 3097 * for this device. 3098 */ 3099 linkwatch_run_queue(); 3100 } 3101 3102 __rtnl_unlock(); 3103 3104 rebroadcast_time = jiffies; 3105 } 3106 3107 msleep(250); 3108 3109 if (time_after(jiffies, warning_time + 10 * HZ)) { 3110 printk(KERN_EMERG "unregister_netdevice: " 3111 "waiting for %s to become free. Usage " 3112 "count = %d\n", 3113 dev->name, atomic_read(&dev->refcnt)); 3114 warning_time = jiffies; 3115 } 3116 } 3117 } 3118 3119 /* The sequence is: 3120 * 3121 * rtnl_lock(); 3122 * ... 3123 * register_netdevice(x1); 3124 * register_netdevice(x2); 3125 * ... 3126 * unregister_netdevice(y1); 3127 * unregister_netdevice(y2); 3128 * ... 3129 * rtnl_unlock(); 3130 * free_netdev(y1); 3131 * free_netdev(y2); 3132 * 3133 * We are invoked by rtnl_unlock() after it drops the semaphore. 3134 * This allows us to deal with problems: 3135 * 1) We can delete sysfs objects which invoke hotplug 3136 * without deadlocking with linkwatch via keventd. 3137 * 2) Since we run with the RTNL semaphore not held, we can sleep 3138 * safely in order to wait for the netdev refcnt to drop to zero. 3139 */ 3140 static DEFINE_MUTEX(net_todo_run_mutex); 3141 void netdev_run_todo(void) 3142 { 3143 struct list_head list; 3144 3145 /* Need to guard against multiple cpu's getting out of order. */ 3146 mutex_lock(&net_todo_run_mutex); 3147 3148 /* Not safe to do outside the semaphore. We must not return 3149 * until all unregister events invoked by the local processor 3150 * have been completed (either by this todo run, or one on 3151 * another cpu). 3152 */ 3153 if (list_empty(&net_todo_list)) 3154 goto out; 3155 3156 /* Snapshot list, allow later requests */ 3157 spin_lock(&net_todo_list_lock); 3158 list_replace_init(&net_todo_list, &list); 3159 spin_unlock(&net_todo_list_lock); 3160 3161 while (!list_empty(&list)) { 3162 struct net_device *dev 3163 = list_entry(list.next, struct net_device, todo_list); 3164 list_del(&dev->todo_list); 3165 3166 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3167 printk(KERN_ERR "network todo '%s' but state %d\n", 3168 dev->name, dev->reg_state); 3169 dump_stack(); 3170 continue; 3171 } 3172 3173 netdev_unregister_sysfs(dev); 3174 dev->reg_state = NETREG_UNREGISTERED; 3175 3176 netdev_wait_allrefs(dev); 3177 3178 /* paranoia */ 3179 BUG_ON(atomic_read(&dev->refcnt)); 3180 BUG_TRAP(!dev->ip_ptr); 3181 BUG_TRAP(!dev->ip6_ptr); 3182 BUG_TRAP(!dev->dn_ptr); 3183 3184 /* It must be the very last action, 3185 * after this 'dev' may point to freed up memory. 3186 */ 3187 if (dev->destructor) 3188 dev->destructor(dev); 3189 } 3190 3191 out: 3192 mutex_unlock(&net_todo_run_mutex); 3193 } 3194 3195 /** 3196 * alloc_netdev - allocate network device 3197 * @sizeof_priv: size of private data to allocate space for 3198 * @name: device name format string 3199 * @setup: callback to initialize device 3200 * 3201 * Allocates a struct net_device with private data area for driver use 3202 * and performs basic initialization. 3203 */ 3204 struct net_device *alloc_netdev(int sizeof_priv, const char *name, 3205 void (*setup)(struct net_device *)) 3206 { 3207 void *p; 3208 struct net_device *dev; 3209 int alloc_size; 3210 3211 /* ensure 32-byte alignment of both the device and private area */ 3212 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 3213 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3214 3215 p = kzalloc(alloc_size, GFP_KERNEL); 3216 if (!p) { 3217 printk(KERN_ERR "alloc_dev: Unable to allocate device.\n"); 3218 return NULL; 3219 } 3220 3221 dev = (struct net_device *) 3222 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3223 dev->padded = (char *)dev - (char *)p; 3224 3225 if (sizeof_priv) 3226 dev->priv = netdev_priv(dev); 3227 3228 setup(dev); 3229 strcpy(dev->name, name); 3230 return dev; 3231 } 3232 EXPORT_SYMBOL(alloc_netdev); 3233 3234 /** 3235 * free_netdev - free network device 3236 * @dev: device 3237 * 3238 * This function does the last stage of destroying an allocated device 3239 * interface. The reference to the device object is released. 3240 * If this is the last reference then it will be freed. 3241 */ 3242 void free_netdev(struct net_device *dev) 3243 { 3244 #ifdef CONFIG_SYSFS 3245 /* Compatibility with error handling in drivers */ 3246 if (dev->reg_state == NETREG_UNINITIALIZED) { 3247 kfree((char *)dev - dev->padded); 3248 return; 3249 } 3250 3251 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3252 dev->reg_state = NETREG_RELEASED; 3253 3254 /* will free via class release */ 3255 class_device_put(&dev->class_dev); 3256 #else 3257 kfree((char *)dev - dev->padded); 3258 #endif 3259 } 3260 3261 /* Synchronize with packet receive processing. */ 3262 void synchronize_net(void) 3263 { 3264 might_sleep(); 3265 synchronize_rcu(); 3266 } 3267 3268 /** 3269 * unregister_netdevice - remove device from the kernel 3270 * @dev: device 3271 * 3272 * This function shuts down a device interface and removes it 3273 * from the kernel tables. On success 0 is returned, on a failure 3274 * a negative errno code is returned. 3275 * 3276 * Callers must hold the rtnl semaphore. You may want 3277 * unregister_netdev() instead of this. 3278 */ 3279 3280 int unregister_netdevice(struct net_device *dev) 3281 { 3282 struct net_device *d, **dp; 3283 3284 BUG_ON(dev_boot_phase); 3285 ASSERT_RTNL(); 3286 3287 /* Some devices call without registering for initialization unwind. */ 3288 if (dev->reg_state == NETREG_UNINITIALIZED) { 3289 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3290 "was registered\n", dev->name, dev); 3291 return -ENODEV; 3292 } 3293 3294 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3295 3296 /* If device is running, close it first. */ 3297 if (dev->flags & IFF_UP) 3298 dev_close(dev); 3299 3300 /* And unlink it from device chain. */ 3301 for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) { 3302 if (d == dev) { 3303 write_lock_bh(&dev_base_lock); 3304 hlist_del(&dev->name_hlist); 3305 hlist_del(&dev->index_hlist); 3306 if (dev_tail == &dev->next) 3307 dev_tail = dp; 3308 *dp = d->next; 3309 write_unlock_bh(&dev_base_lock); 3310 break; 3311 } 3312 } 3313 if (!d) { 3314 printk(KERN_ERR "unregister net_device: '%s' not found\n", 3315 dev->name); 3316 return -ENODEV; 3317 } 3318 3319 dev->reg_state = NETREG_UNREGISTERING; 3320 3321 synchronize_net(); 3322 3323 /* Shutdown queueing discipline. */ 3324 dev_shutdown(dev); 3325 3326 3327 /* Notify protocols, that we are about to destroy 3328 this device. They should clean all the things. 3329 */ 3330 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev); 3331 3332 /* 3333 * Flush the multicast chain 3334 */ 3335 dev_mc_discard(dev); 3336 3337 if (dev->uninit) 3338 dev->uninit(dev); 3339 3340 /* Notifier chain MUST detach us from master device. */ 3341 BUG_TRAP(!dev->master); 3342 3343 free_divert_blk(dev); 3344 3345 /* Finish processing unregister after unlock */ 3346 net_set_todo(dev); 3347 3348 synchronize_net(); 3349 3350 dev_put(dev); 3351 return 0; 3352 } 3353 3354 /** 3355 * unregister_netdev - remove device from the kernel 3356 * @dev: device 3357 * 3358 * This function shuts down a device interface and removes it 3359 * from the kernel tables. On success 0 is returned, on a failure 3360 * a negative errno code is returned. 3361 * 3362 * This is just a wrapper for unregister_netdevice that takes 3363 * the rtnl semaphore. In general you want to use this and not 3364 * unregister_netdevice. 3365 */ 3366 void unregister_netdev(struct net_device *dev) 3367 { 3368 rtnl_lock(); 3369 unregister_netdevice(dev); 3370 rtnl_unlock(); 3371 } 3372 3373 EXPORT_SYMBOL(unregister_netdev); 3374 3375 #ifdef CONFIG_HOTPLUG_CPU 3376 static int dev_cpu_callback(struct notifier_block *nfb, 3377 unsigned long action, 3378 void *ocpu) 3379 { 3380 struct sk_buff **list_skb; 3381 struct net_device **list_net; 3382 struct sk_buff *skb; 3383 unsigned int cpu, oldcpu = (unsigned long)ocpu; 3384 struct softnet_data *sd, *oldsd; 3385 3386 if (action != CPU_DEAD) 3387 return NOTIFY_OK; 3388 3389 local_irq_disable(); 3390 cpu = smp_processor_id(); 3391 sd = &per_cpu(softnet_data, cpu); 3392 oldsd = &per_cpu(softnet_data, oldcpu); 3393 3394 /* Find end of our completion_queue. */ 3395 list_skb = &sd->completion_queue; 3396 while (*list_skb) 3397 list_skb = &(*list_skb)->next; 3398 /* Append completion queue from offline CPU. */ 3399 *list_skb = oldsd->completion_queue; 3400 oldsd->completion_queue = NULL; 3401 3402 /* Find end of our output_queue. */ 3403 list_net = &sd->output_queue; 3404 while (*list_net) 3405 list_net = &(*list_net)->next_sched; 3406 /* Append output queue from offline CPU. */ 3407 *list_net = oldsd->output_queue; 3408 oldsd->output_queue = NULL; 3409 3410 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3411 local_irq_enable(); 3412 3413 /* Process offline CPU's input_pkt_queue */ 3414 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 3415 netif_rx(skb); 3416 3417 return NOTIFY_OK; 3418 } 3419 #endif /* CONFIG_HOTPLUG_CPU */ 3420 3421 #ifdef CONFIG_NET_DMA 3422 /** 3423 * net_dma_rebalance - 3424 * This is called when the number of channels allocated to the net_dma_client 3425 * changes. The net_dma_client tries to have one DMA channel per CPU. 3426 */ 3427 static void net_dma_rebalance(void) 3428 { 3429 unsigned int cpu, i, n; 3430 struct dma_chan *chan; 3431 3432 lock_cpu_hotplug(); 3433 3434 if (net_dma_count == 0) { 3435 for_each_online_cpu(cpu) 3436 rcu_assign_pointer(per_cpu(softnet_data.net_dma, cpu), NULL); 3437 unlock_cpu_hotplug(); 3438 return; 3439 } 3440 3441 i = 0; 3442 cpu = first_cpu(cpu_online_map); 3443 3444 rcu_read_lock(); 3445 list_for_each_entry(chan, &net_dma_client->channels, client_node) { 3446 n = ((num_online_cpus() / net_dma_count) 3447 + (i < (num_online_cpus() % net_dma_count) ? 1 : 0)); 3448 3449 while(n) { 3450 per_cpu(softnet_data.net_dma, cpu) = chan; 3451 cpu = next_cpu(cpu, cpu_online_map); 3452 n--; 3453 } 3454 i++; 3455 } 3456 rcu_read_unlock(); 3457 3458 unlock_cpu_hotplug(); 3459 } 3460 3461 /** 3462 * netdev_dma_event - event callback for the net_dma_client 3463 * @client: should always be net_dma_client 3464 * @chan: DMA channel for the event 3465 * @event: event type 3466 */ 3467 static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 3468 enum dma_event event) 3469 { 3470 spin_lock(&net_dma_event_lock); 3471 switch (event) { 3472 case DMA_RESOURCE_ADDED: 3473 net_dma_count++; 3474 net_dma_rebalance(); 3475 break; 3476 case DMA_RESOURCE_REMOVED: 3477 net_dma_count--; 3478 net_dma_rebalance(); 3479 break; 3480 default: 3481 break; 3482 } 3483 spin_unlock(&net_dma_event_lock); 3484 } 3485 3486 /** 3487 * netdev_dma_regiser - register the networking subsystem as a DMA client 3488 */ 3489 static int __init netdev_dma_register(void) 3490 { 3491 spin_lock_init(&net_dma_event_lock); 3492 net_dma_client = dma_async_client_register(netdev_dma_event); 3493 if (net_dma_client == NULL) 3494 return -ENOMEM; 3495 3496 dma_async_client_chan_request(net_dma_client, num_online_cpus()); 3497 return 0; 3498 } 3499 3500 #else 3501 static int __init netdev_dma_register(void) { return -ENODEV; } 3502 #endif /* CONFIG_NET_DMA */ 3503 3504 /* 3505 * Initialize the DEV module. At boot time this walks the device list and 3506 * unhooks any devices that fail to initialise (normally hardware not 3507 * present) and leaves us with a valid list of present and active devices. 3508 * 3509 */ 3510 3511 /* 3512 * This is called single threaded during boot, so no need 3513 * to take the rtnl semaphore. 3514 */ 3515 static int __init net_dev_init(void) 3516 { 3517 int i, rc = -ENOMEM; 3518 3519 BUG_ON(!dev_boot_phase); 3520 3521 net_random_init(); 3522 3523 if (dev_proc_init()) 3524 goto out; 3525 3526 if (netdev_sysfs_init()) 3527 goto out; 3528 3529 INIT_LIST_HEAD(&ptype_all); 3530 for (i = 0; i < 16; i++) 3531 INIT_LIST_HEAD(&ptype_base[i]); 3532 3533 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++) 3534 INIT_HLIST_HEAD(&dev_name_head[i]); 3535 3536 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++) 3537 INIT_HLIST_HEAD(&dev_index_head[i]); 3538 3539 /* 3540 * Initialise the packet receive queues. 3541 */ 3542 3543 for_each_possible_cpu(i) { 3544 struct softnet_data *queue; 3545 3546 queue = &per_cpu(softnet_data, i); 3547 skb_queue_head_init(&queue->input_pkt_queue); 3548 queue->completion_queue = NULL; 3549 INIT_LIST_HEAD(&queue->poll_list); 3550 set_bit(__LINK_STATE_START, &queue->backlog_dev.state); 3551 queue->backlog_dev.weight = weight_p; 3552 queue->backlog_dev.poll = process_backlog; 3553 atomic_set(&queue->backlog_dev.refcnt, 1); 3554 } 3555 3556 netdev_dma_register(); 3557 3558 dev_boot_phase = 0; 3559 3560 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 3561 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 3562 3563 hotcpu_notifier(dev_cpu_callback, 0); 3564 dst_init(); 3565 dev_mcast_init(); 3566 rc = 0; 3567 out: 3568 return rc; 3569 } 3570 3571 subsys_initcall(net_dev_init); 3572 3573 EXPORT_SYMBOL(__dev_get_by_index); 3574 EXPORT_SYMBOL(__dev_get_by_name); 3575 EXPORT_SYMBOL(__dev_remove_pack); 3576 EXPORT_SYMBOL(dev_valid_name); 3577 EXPORT_SYMBOL(dev_add_pack); 3578 EXPORT_SYMBOL(dev_alloc_name); 3579 EXPORT_SYMBOL(dev_close); 3580 EXPORT_SYMBOL(dev_get_by_flags); 3581 EXPORT_SYMBOL(dev_get_by_index); 3582 EXPORT_SYMBOL(dev_get_by_name); 3583 EXPORT_SYMBOL(dev_open); 3584 EXPORT_SYMBOL(dev_queue_xmit); 3585 EXPORT_SYMBOL(dev_remove_pack); 3586 EXPORT_SYMBOL(dev_set_allmulti); 3587 EXPORT_SYMBOL(dev_set_promiscuity); 3588 EXPORT_SYMBOL(dev_change_flags); 3589 EXPORT_SYMBOL(dev_set_mtu); 3590 EXPORT_SYMBOL(dev_set_mac_address); 3591 EXPORT_SYMBOL(free_netdev); 3592 EXPORT_SYMBOL(netdev_boot_setup_check); 3593 EXPORT_SYMBOL(netdev_set_master); 3594 EXPORT_SYMBOL(netdev_state_change); 3595 EXPORT_SYMBOL(netif_receive_skb); 3596 EXPORT_SYMBOL(netif_rx); 3597 EXPORT_SYMBOL(register_gifconf); 3598 EXPORT_SYMBOL(register_netdevice); 3599 EXPORT_SYMBOL(register_netdevice_notifier); 3600 EXPORT_SYMBOL(skb_checksum_help); 3601 EXPORT_SYMBOL(synchronize_net); 3602 EXPORT_SYMBOL(unregister_netdevice); 3603 EXPORT_SYMBOL(unregister_netdevice_notifier); 3604 EXPORT_SYMBOL(net_enable_timestamp); 3605 EXPORT_SYMBOL(net_disable_timestamp); 3606 EXPORT_SYMBOL(dev_get_flags); 3607 3608 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 3609 EXPORT_SYMBOL(br_handle_frame_hook); 3610 EXPORT_SYMBOL(br_fdb_get_hook); 3611 EXPORT_SYMBOL(br_fdb_put_hook); 3612 #endif 3613 3614 #ifdef CONFIG_KMOD 3615 EXPORT_SYMBOL(dev_load); 3616 #endif 3617 3618 EXPORT_PER_CPU_SYMBOL(softnet_data); 3619