xref: /linux/net/core/dev.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/sock.h>
96 #include <linux/rtnetlink.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/stat.h>
100 #include <linux/if_bridge.h>
101 #include <linux/divert.h>
102 #include <net/dst.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/kmod.h>
108 #include <linux/module.h>
109 #include <linux/kallsyms.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <linux/wireless.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 
120 /*
121  *	The list of packet types we will receive (as opposed to discard)
122  *	and the routines to invoke.
123  *
124  *	Why 16. Because with 16 the only overlap we get on a hash of the
125  *	low nibble of the protocol value is RARP/SNAP/X.25.
126  *
127  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
128  *             sure which should go first, but I bet it won't make much
129  *             difference if we are running VLANs.  The good news is that
130  *             this protocol won't be in the list unless compiled in, so
131  *             the average user (w/out VLANs) will not be adversely affected.
132  *             --BLG
133  *
134  *		0800	IP
135  *		8100    802.1Q VLAN
136  *		0001	802.3
137  *		0002	AX.25
138  *		0004	802.2
139  *		8035	RARP
140  *		0005	SNAP
141  *		0805	X.25
142  *		0806	ARP
143  *		8137	IPX
144  *		0009	Localtalk
145  *		86DD	IPv6
146  */
147 
148 static DEFINE_SPINLOCK(ptype_lock);
149 static struct list_head ptype_base[16];	/* 16 way hashed list */
150 static struct list_head ptype_all;		/* Taps */
151 
152 #ifdef CONFIG_NET_DMA
153 static struct dma_client *net_dma_client;
154 static unsigned int net_dma_count;
155 static spinlock_t net_dma_event_lock;
156 #endif
157 
158 /*
159  * The @dev_base list is protected by @dev_base_lock and the rtnl
160  * semaphore.
161  *
162  * Pure readers hold dev_base_lock for reading.
163  *
164  * Writers must hold the rtnl semaphore while they loop through the
165  * dev_base list, and hold dev_base_lock for writing when they do the
166  * actual updates.  This allows pure readers to access the list even
167  * while a writer is preparing to update it.
168  *
169  * To put it another way, dev_base_lock is held for writing only to
170  * protect against pure readers; the rtnl semaphore provides the
171  * protection against other writers.
172  *
173  * See, for example usages, register_netdevice() and
174  * unregister_netdevice(), which must be called with the rtnl
175  * semaphore held.
176  */
177 struct net_device *dev_base;
178 static struct net_device **dev_tail = &dev_base;
179 DEFINE_RWLOCK(dev_base_lock);
180 
181 EXPORT_SYMBOL(dev_base);
182 EXPORT_SYMBOL(dev_base_lock);
183 
184 #define NETDEV_HASHBITS	8
185 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS];
186 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS];
187 
188 static inline struct hlist_head *dev_name_hash(const char *name)
189 {
190 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
191 	return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)];
192 }
193 
194 static inline struct hlist_head *dev_index_hash(int ifindex)
195 {
196 	return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)];
197 }
198 
199 /*
200  *	Our notifier list
201  */
202 
203 static RAW_NOTIFIER_HEAD(netdev_chain);
204 
205 /*
206  *	Device drivers call our routines to queue packets here. We empty the
207  *	queue in the local softnet handler.
208  */
209 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL };
210 
211 #ifdef CONFIG_SYSFS
212 extern int netdev_sysfs_init(void);
213 extern int netdev_register_sysfs(struct net_device *);
214 extern void netdev_unregister_sysfs(struct net_device *);
215 #else
216 #define netdev_sysfs_init()	 	(0)
217 #define netdev_register_sysfs(dev)	(0)
218 #define	netdev_unregister_sysfs(dev)	do { } while(0)
219 #endif
220 
221 
222 /*******************************************************************************
223 
224 		Protocol management and registration routines
225 
226 *******************************************************************************/
227 
228 /*
229  *	For efficiency
230  */
231 
232 static int netdev_nit;
233 
234 /*
235  *	Add a protocol ID to the list. Now that the input handler is
236  *	smarter we can dispense with all the messy stuff that used to be
237  *	here.
238  *
239  *	BEWARE!!! Protocol handlers, mangling input packets,
240  *	MUST BE last in hash buckets and checking protocol handlers
241  *	MUST start from promiscuous ptype_all chain in net_bh.
242  *	It is true now, do not change it.
243  *	Explanation follows: if protocol handler, mangling packet, will
244  *	be the first on list, it is not able to sense, that packet
245  *	is cloned and should be copied-on-write, so that it will
246  *	change it and subsequent readers will get broken packet.
247  *							--ANK (980803)
248  */
249 
250 /**
251  *	dev_add_pack - add packet handler
252  *	@pt: packet type declaration
253  *
254  *	Add a protocol handler to the networking stack. The passed &packet_type
255  *	is linked into kernel lists and may not be freed until it has been
256  *	removed from the kernel lists.
257  *
258  *	This call does not sleep therefore it can not
259  *	guarantee all CPU's that are in middle of receiving packets
260  *	will see the new packet type (until the next received packet).
261  */
262 
263 void dev_add_pack(struct packet_type *pt)
264 {
265 	int hash;
266 
267 	spin_lock_bh(&ptype_lock);
268 	if (pt->type == htons(ETH_P_ALL)) {
269 		netdev_nit++;
270 		list_add_rcu(&pt->list, &ptype_all);
271 	} else {
272 		hash = ntohs(pt->type) & 15;
273 		list_add_rcu(&pt->list, &ptype_base[hash]);
274 	}
275 	spin_unlock_bh(&ptype_lock);
276 }
277 
278 /**
279  *	__dev_remove_pack	 - remove packet handler
280  *	@pt: packet type declaration
281  *
282  *	Remove a protocol handler that was previously added to the kernel
283  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
284  *	from the kernel lists and can be freed or reused once this function
285  *	returns.
286  *
287  *      The packet type might still be in use by receivers
288  *	and must not be freed until after all the CPU's have gone
289  *	through a quiescent state.
290  */
291 void __dev_remove_pack(struct packet_type *pt)
292 {
293 	struct list_head *head;
294 	struct packet_type *pt1;
295 
296 	spin_lock_bh(&ptype_lock);
297 
298 	if (pt->type == htons(ETH_P_ALL)) {
299 		netdev_nit--;
300 		head = &ptype_all;
301 	} else
302 		head = &ptype_base[ntohs(pt->type) & 15];
303 
304 	list_for_each_entry(pt1, head, list) {
305 		if (pt == pt1) {
306 			list_del_rcu(&pt->list);
307 			goto out;
308 		}
309 	}
310 
311 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
312 out:
313 	spin_unlock_bh(&ptype_lock);
314 }
315 /**
316  *	dev_remove_pack	 - remove packet handler
317  *	@pt: packet type declaration
318  *
319  *	Remove a protocol handler that was previously added to the kernel
320  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
321  *	from the kernel lists and can be freed or reused once this function
322  *	returns.
323  *
324  *	This call sleeps to guarantee that no CPU is looking at the packet
325  *	type after return.
326  */
327 void dev_remove_pack(struct packet_type *pt)
328 {
329 	__dev_remove_pack(pt);
330 
331 	synchronize_net();
332 }
333 
334 /******************************************************************************
335 
336 		      Device Boot-time Settings Routines
337 
338 *******************************************************************************/
339 
340 /* Boot time configuration table */
341 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
342 
343 /**
344  *	netdev_boot_setup_add	- add new setup entry
345  *	@name: name of the device
346  *	@map: configured settings for the device
347  *
348  *	Adds new setup entry to the dev_boot_setup list.  The function
349  *	returns 0 on error and 1 on success.  This is a generic routine to
350  *	all netdevices.
351  */
352 static int netdev_boot_setup_add(char *name, struct ifmap *map)
353 {
354 	struct netdev_boot_setup *s;
355 	int i;
356 
357 	s = dev_boot_setup;
358 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
359 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
360 			memset(s[i].name, 0, sizeof(s[i].name));
361 			strcpy(s[i].name, name);
362 			memcpy(&s[i].map, map, sizeof(s[i].map));
363 			break;
364 		}
365 	}
366 
367 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
368 }
369 
370 /**
371  *	netdev_boot_setup_check	- check boot time settings
372  *	@dev: the netdevice
373  *
374  * 	Check boot time settings for the device.
375  *	The found settings are set for the device to be used
376  *	later in the device probing.
377  *	Returns 0 if no settings found, 1 if they are.
378  */
379 int netdev_boot_setup_check(struct net_device *dev)
380 {
381 	struct netdev_boot_setup *s = dev_boot_setup;
382 	int i;
383 
384 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
385 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
386 		    !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
387 			dev->irq 	= s[i].map.irq;
388 			dev->base_addr 	= s[i].map.base_addr;
389 			dev->mem_start 	= s[i].map.mem_start;
390 			dev->mem_end 	= s[i].map.mem_end;
391 			return 1;
392 		}
393 	}
394 	return 0;
395 }
396 
397 
398 /**
399  *	netdev_boot_base	- get address from boot time settings
400  *	@prefix: prefix for network device
401  *	@unit: id for network device
402  *
403  * 	Check boot time settings for the base address of device.
404  *	The found settings are set for the device to be used
405  *	later in the device probing.
406  *	Returns 0 if no settings found.
407  */
408 unsigned long netdev_boot_base(const char *prefix, int unit)
409 {
410 	const struct netdev_boot_setup *s = dev_boot_setup;
411 	char name[IFNAMSIZ];
412 	int i;
413 
414 	sprintf(name, "%s%d", prefix, unit);
415 
416 	/*
417 	 * If device already registered then return base of 1
418 	 * to indicate not to probe for this interface
419 	 */
420 	if (__dev_get_by_name(name))
421 		return 1;
422 
423 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
424 		if (!strcmp(name, s[i].name))
425 			return s[i].map.base_addr;
426 	return 0;
427 }
428 
429 /*
430  * Saves at boot time configured settings for any netdevice.
431  */
432 int __init netdev_boot_setup(char *str)
433 {
434 	int ints[5];
435 	struct ifmap map;
436 
437 	str = get_options(str, ARRAY_SIZE(ints), ints);
438 	if (!str || !*str)
439 		return 0;
440 
441 	/* Save settings */
442 	memset(&map, 0, sizeof(map));
443 	if (ints[0] > 0)
444 		map.irq = ints[1];
445 	if (ints[0] > 1)
446 		map.base_addr = ints[2];
447 	if (ints[0] > 2)
448 		map.mem_start = ints[3];
449 	if (ints[0] > 3)
450 		map.mem_end = ints[4];
451 
452 	/* Add new entry to the list */
453 	return netdev_boot_setup_add(str, &map);
454 }
455 
456 __setup("netdev=", netdev_boot_setup);
457 
458 /*******************************************************************************
459 
460 			    Device Interface Subroutines
461 
462 *******************************************************************************/
463 
464 /**
465  *	__dev_get_by_name	- find a device by its name
466  *	@name: name to find
467  *
468  *	Find an interface by name. Must be called under RTNL semaphore
469  *	or @dev_base_lock. If the name is found a pointer to the device
470  *	is returned. If the name is not found then %NULL is returned. The
471  *	reference counters are not incremented so the caller must be
472  *	careful with locks.
473  */
474 
475 struct net_device *__dev_get_by_name(const char *name)
476 {
477 	struct hlist_node *p;
478 
479 	hlist_for_each(p, dev_name_hash(name)) {
480 		struct net_device *dev
481 			= hlist_entry(p, struct net_device, name_hlist);
482 		if (!strncmp(dev->name, name, IFNAMSIZ))
483 			return dev;
484 	}
485 	return NULL;
486 }
487 
488 /**
489  *	dev_get_by_name		- find a device by its name
490  *	@name: name to find
491  *
492  *	Find an interface by name. This can be called from any
493  *	context and does its own locking. The returned handle has
494  *	the usage count incremented and the caller must use dev_put() to
495  *	release it when it is no longer needed. %NULL is returned if no
496  *	matching device is found.
497  */
498 
499 struct net_device *dev_get_by_name(const char *name)
500 {
501 	struct net_device *dev;
502 
503 	read_lock(&dev_base_lock);
504 	dev = __dev_get_by_name(name);
505 	if (dev)
506 		dev_hold(dev);
507 	read_unlock(&dev_base_lock);
508 	return dev;
509 }
510 
511 /**
512  *	__dev_get_by_index - find a device by its ifindex
513  *	@ifindex: index of device
514  *
515  *	Search for an interface by index. Returns %NULL if the device
516  *	is not found or a pointer to the device. The device has not
517  *	had its reference counter increased so the caller must be careful
518  *	about locking. The caller must hold either the RTNL semaphore
519  *	or @dev_base_lock.
520  */
521 
522 struct net_device *__dev_get_by_index(int ifindex)
523 {
524 	struct hlist_node *p;
525 
526 	hlist_for_each(p, dev_index_hash(ifindex)) {
527 		struct net_device *dev
528 			= hlist_entry(p, struct net_device, index_hlist);
529 		if (dev->ifindex == ifindex)
530 			return dev;
531 	}
532 	return NULL;
533 }
534 
535 
536 /**
537  *	dev_get_by_index - find a device by its ifindex
538  *	@ifindex: index of device
539  *
540  *	Search for an interface by index. Returns NULL if the device
541  *	is not found or a pointer to the device. The device returned has
542  *	had a reference added and the pointer is safe until the user calls
543  *	dev_put to indicate they have finished with it.
544  */
545 
546 struct net_device *dev_get_by_index(int ifindex)
547 {
548 	struct net_device *dev;
549 
550 	read_lock(&dev_base_lock);
551 	dev = __dev_get_by_index(ifindex);
552 	if (dev)
553 		dev_hold(dev);
554 	read_unlock(&dev_base_lock);
555 	return dev;
556 }
557 
558 /**
559  *	dev_getbyhwaddr - find a device by its hardware address
560  *	@type: media type of device
561  *	@ha: hardware address
562  *
563  *	Search for an interface by MAC address. Returns NULL if the device
564  *	is not found or a pointer to the device. The caller must hold the
565  *	rtnl semaphore. The returned device has not had its ref count increased
566  *	and the caller must therefore be careful about locking
567  *
568  *	BUGS:
569  *	If the API was consistent this would be __dev_get_by_hwaddr
570  */
571 
572 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha)
573 {
574 	struct net_device *dev;
575 
576 	ASSERT_RTNL();
577 
578 	for (dev = dev_base; dev; dev = dev->next)
579 		if (dev->type == type &&
580 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
581 			break;
582 	return dev;
583 }
584 
585 EXPORT_SYMBOL(dev_getbyhwaddr);
586 
587 struct net_device *dev_getfirstbyhwtype(unsigned short type)
588 {
589 	struct net_device *dev;
590 
591 	rtnl_lock();
592 	for (dev = dev_base; dev; dev = dev->next) {
593 		if (dev->type == type) {
594 			dev_hold(dev);
595 			break;
596 		}
597 	}
598 	rtnl_unlock();
599 	return dev;
600 }
601 
602 EXPORT_SYMBOL(dev_getfirstbyhwtype);
603 
604 /**
605  *	dev_get_by_flags - find any device with given flags
606  *	@if_flags: IFF_* values
607  *	@mask: bitmask of bits in if_flags to check
608  *
609  *	Search for any interface with the given flags. Returns NULL if a device
610  *	is not found or a pointer to the device. The device returned has
611  *	had a reference added and the pointer is safe until the user calls
612  *	dev_put to indicate they have finished with it.
613  */
614 
615 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask)
616 {
617 	struct net_device *dev;
618 
619 	read_lock(&dev_base_lock);
620 	for (dev = dev_base; dev != NULL; dev = dev->next) {
621 		if (((dev->flags ^ if_flags) & mask) == 0) {
622 			dev_hold(dev);
623 			break;
624 		}
625 	}
626 	read_unlock(&dev_base_lock);
627 	return dev;
628 }
629 
630 /**
631  *	dev_valid_name - check if name is okay for network device
632  *	@name: name string
633  *
634  *	Network device names need to be valid file names to
635  *	to allow sysfs to work
636  */
637 int dev_valid_name(const char *name)
638 {
639 	return !(*name == '\0'
640 		 || !strcmp(name, ".")
641 		 || !strcmp(name, "..")
642 		 || strchr(name, '/'));
643 }
644 
645 /**
646  *	dev_alloc_name - allocate a name for a device
647  *	@dev: device
648  *	@name: name format string
649  *
650  *	Passed a format string - eg "lt%d" it will try and find a suitable
651  *	id. It scans list of devices to build up a free map, then chooses
652  *	the first empty slot. The caller must hold the dev_base or rtnl lock
653  *	while allocating the name and adding the device in order to avoid
654  *	duplicates.
655  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
656  *	Returns the number of the unit assigned or a negative errno code.
657  */
658 
659 int dev_alloc_name(struct net_device *dev, const char *name)
660 {
661 	int i = 0;
662 	char buf[IFNAMSIZ];
663 	const char *p;
664 	const int max_netdevices = 8*PAGE_SIZE;
665 	long *inuse;
666 	struct net_device *d;
667 
668 	p = strnchr(name, IFNAMSIZ-1, '%');
669 	if (p) {
670 		/*
671 		 * Verify the string as this thing may have come from
672 		 * the user.  There must be either one "%d" and no other "%"
673 		 * characters.
674 		 */
675 		if (p[1] != 'd' || strchr(p + 2, '%'))
676 			return -EINVAL;
677 
678 		/* Use one page as a bit array of possible slots */
679 		inuse = (long *) get_zeroed_page(GFP_ATOMIC);
680 		if (!inuse)
681 			return -ENOMEM;
682 
683 		for (d = dev_base; d; d = d->next) {
684 			if (!sscanf(d->name, name, &i))
685 				continue;
686 			if (i < 0 || i >= max_netdevices)
687 				continue;
688 
689 			/*  avoid cases where sscanf is not exact inverse of printf */
690 			snprintf(buf, sizeof(buf), name, i);
691 			if (!strncmp(buf, d->name, IFNAMSIZ))
692 				set_bit(i, inuse);
693 		}
694 
695 		i = find_first_zero_bit(inuse, max_netdevices);
696 		free_page((unsigned long) inuse);
697 	}
698 
699 	snprintf(buf, sizeof(buf), name, i);
700 	if (!__dev_get_by_name(buf)) {
701 		strlcpy(dev->name, buf, IFNAMSIZ);
702 		return i;
703 	}
704 
705 	/* It is possible to run out of possible slots
706 	 * when the name is long and there isn't enough space left
707 	 * for the digits, or if all bits are used.
708 	 */
709 	return -ENFILE;
710 }
711 
712 
713 /**
714  *	dev_change_name - change name of a device
715  *	@dev: device
716  *	@newname: name (or format string) must be at least IFNAMSIZ
717  *
718  *	Change name of a device, can pass format strings "eth%d".
719  *	for wildcarding.
720  */
721 int dev_change_name(struct net_device *dev, char *newname)
722 {
723 	int err = 0;
724 
725 	ASSERT_RTNL();
726 
727 	if (dev->flags & IFF_UP)
728 		return -EBUSY;
729 
730 	if (!dev_valid_name(newname))
731 		return -EINVAL;
732 
733 	if (strchr(newname, '%')) {
734 		err = dev_alloc_name(dev, newname);
735 		if (err < 0)
736 			return err;
737 		strcpy(newname, dev->name);
738 	}
739 	else if (__dev_get_by_name(newname))
740 		return -EEXIST;
741 	else
742 		strlcpy(dev->name, newname, IFNAMSIZ);
743 
744 	err = class_device_rename(&dev->class_dev, dev->name);
745 	if (!err) {
746 		hlist_del(&dev->name_hlist);
747 		hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name));
748 		raw_notifier_call_chain(&netdev_chain,
749 				NETDEV_CHANGENAME, dev);
750 	}
751 
752 	return err;
753 }
754 
755 /**
756  *	netdev_features_change - device changes features
757  *	@dev: device to cause notification
758  *
759  *	Called to indicate a device has changed features.
760  */
761 void netdev_features_change(struct net_device *dev)
762 {
763 	raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev);
764 }
765 EXPORT_SYMBOL(netdev_features_change);
766 
767 /**
768  *	netdev_state_change - device changes state
769  *	@dev: device to cause notification
770  *
771  *	Called to indicate a device has changed state. This function calls
772  *	the notifier chains for netdev_chain and sends a NEWLINK message
773  *	to the routing socket.
774  */
775 void netdev_state_change(struct net_device *dev)
776 {
777 	if (dev->flags & IFF_UP) {
778 		raw_notifier_call_chain(&netdev_chain,
779 				NETDEV_CHANGE, dev);
780 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
781 	}
782 }
783 
784 /**
785  *	dev_load 	- load a network module
786  *	@name: name of interface
787  *
788  *	If a network interface is not present and the process has suitable
789  *	privileges this function loads the module. If module loading is not
790  *	available in this kernel then it becomes a nop.
791  */
792 
793 void dev_load(const char *name)
794 {
795 	struct net_device *dev;
796 
797 	read_lock(&dev_base_lock);
798 	dev = __dev_get_by_name(name);
799 	read_unlock(&dev_base_lock);
800 
801 	if (!dev && capable(CAP_SYS_MODULE))
802 		request_module("%s", name);
803 }
804 
805 static int default_rebuild_header(struct sk_buff *skb)
806 {
807 	printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
808 	       skb->dev ? skb->dev->name : "NULL!!!");
809 	kfree_skb(skb);
810 	return 1;
811 }
812 
813 
814 /**
815  *	dev_open	- prepare an interface for use.
816  *	@dev:	device to open
817  *
818  *	Takes a device from down to up state. The device's private open
819  *	function is invoked and then the multicast lists are loaded. Finally
820  *	the device is moved into the up state and a %NETDEV_UP message is
821  *	sent to the netdev notifier chain.
822  *
823  *	Calling this function on an active interface is a nop. On a failure
824  *	a negative errno code is returned.
825  */
826 int dev_open(struct net_device *dev)
827 {
828 	int ret = 0;
829 
830 	/*
831 	 *	Is it already up?
832 	 */
833 
834 	if (dev->flags & IFF_UP)
835 		return 0;
836 
837 	/*
838 	 *	Is it even present?
839 	 */
840 	if (!netif_device_present(dev))
841 		return -ENODEV;
842 
843 	/*
844 	 *	Call device private open method
845 	 */
846 	set_bit(__LINK_STATE_START, &dev->state);
847 	if (dev->open) {
848 		ret = dev->open(dev);
849 		if (ret)
850 			clear_bit(__LINK_STATE_START, &dev->state);
851 	}
852 
853  	/*
854 	 *	If it went open OK then:
855 	 */
856 
857 	if (!ret) {
858 		/*
859 		 *	Set the flags.
860 		 */
861 		dev->flags |= IFF_UP;
862 
863 		/*
864 		 *	Initialize multicasting status
865 		 */
866 		dev_mc_upload(dev);
867 
868 		/*
869 		 *	Wakeup transmit queue engine
870 		 */
871 		dev_activate(dev);
872 
873 		/*
874 		 *	... and announce new interface.
875 		 */
876 		raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev);
877 	}
878 	return ret;
879 }
880 
881 /**
882  *	dev_close - shutdown an interface.
883  *	@dev: device to shutdown
884  *
885  *	This function moves an active device into down state. A
886  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
887  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
888  *	chain.
889  */
890 int dev_close(struct net_device *dev)
891 {
892 	if (!(dev->flags & IFF_UP))
893 		return 0;
894 
895 	/*
896 	 *	Tell people we are going down, so that they can
897 	 *	prepare to death, when device is still operating.
898 	 */
899 	raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev);
900 
901 	dev_deactivate(dev);
902 
903 	clear_bit(__LINK_STATE_START, &dev->state);
904 
905 	/* Synchronize to scheduled poll. We cannot touch poll list,
906 	 * it can be even on different cpu. So just clear netif_running(),
907 	 * and wait when poll really will happen. Actually, the best place
908 	 * for this is inside dev->stop() after device stopped its irq
909 	 * engine, but this requires more changes in devices. */
910 
911 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
912 	while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) {
913 		/* No hurry. */
914 		msleep(1);
915 	}
916 
917 	/*
918 	 *	Call the device specific close. This cannot fail.
919 	 *	Only if device is UP
920 	 *
921 	 *	We allow it to be called even after a DETACH hot-plug
922 	 *	event.
923 	 */
924 	if (dev->stop)
925 		dev->stop(dev);
926 
927 	/*
928 	 *	Device is now down.
929 	 */
930 
931 	dev->flags &= ~IFF_UP;
932 
933 	/*
934 	 * Tell people we are down
935 	 */
936 	raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev);
937 
938 	return 0;
939 }
940 
941 
942 /*
943  *	Device change register/unregister. These are not inline or static
944  *	as we export them to the world.
945  */
946 
947 /**
948  *	register_netdevice_notifier - register a network notifier block
949  *	@nb: notifier
950  *
951  *	Register a notifier to be called when network device events occur.
952  *	The notifier passed is linked into the kernel structures and must
953  *	not be reused until it has been unregistered. A negative errno code
954  *	is returned on a failure.
955  *
956  * 	When registered all registration and up events are replayed
957  *	to the new notifier to allow device to have a race free
958  *	view of the network device list.
959  */
960 
961 int register_netdevice_notifier(struct notifier_block *nb)
962 {
963 	struct net_device *dev;
964 	int err;
965 
966 	rtnl_lock();
967 	err = raw_notifier_chain_register(&netdev_chain, nb);
968 	if (!err) {
969 		for (dev = dev_base; dev; dev = dev->next) {
970 			nb->notifier_call(nb, NETDEV_REGISTER, dev);
971 
972 			if (dev->flags & IFF_UP)
973 				nb->notifier_call(nb, NETDEV_UP, dev);
974 		}
975 	}
976 	rtnl_unlock();
977 	return err;
978 }
979 
980 /**
981  *	unregister_netdevice_notifier - unregister a network notifier block
982  *	@nb: notifier
983  *
984  *	Unregister a notifier previously registered by
985  *	register_netdevice_notifier(). The notifier is unlinked into the
986  *	kernel structures and may then be reused. A negative errno code
987  *	is returned on a failure.
988  */
989 
990 int unregister_netdevice_notifier(struct notifier_block *nb)
991 {
992 	int err;
993 
994 	rtnl_lock();
995 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
996 	rtnl_unlock();
997 	return err;
998 }
999 
1000 /**
1001  *	call_netdevice_notifiers - call all network notifier blocks
1002  *      @val: value passed unmodified to notifier function
1003  *      @v:   pointer passed unmodified to notifier function
1004  *
1005  *	Call all network notifier blocks.  Parameters and return value
1006  *	are as for raw_notifier_call_chain().
1007  */
1008 
1009 int call_netdevice_notifiers(unsigned long val, void *v)
1010 {
1011 	return raw_notifier_call_chain(&netdev_chain, val, v);
1012 }
1013 
1014 /* When > 0 there are consumers of rx skb time stamps */
1015 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1016 
1017 void net_enable_timestamp(void)
1018 {
1019 	atomic_inc(&netstamp_needed);
1020 }
1021 
1022 void net_disable_timestamp(void)
1023 {
1024 	atomic_dec(&netstamp_needed);
1025 }
1026 
1027 void __net_timestamp(struct sk_buff *skb)
1028 {
1029 	struct timeval tv;
1030 
1031 	do_gettimeofday(&tv);
1032 	skb_set_timestamp(skb, &tv);
1033 }
1034 EXPORT_SYMBOL(__net_timestamp);
1035 
1036 static inline void net_timestamp(struct sk_buff *skb)
1037 {
1038 	if (atomic_read(&netstamp_needed))
1039 		__net_timestamp(skb);
1040 	else {
1041 		skb->tstamp.off_sec = 0;
1042 		skb->tstamp.off_usec = 0;
1043 	}
1044 }
1045 
1046 /*
1047  *	Support routine. Sends outgoing frames to any network
1048  *	taps currently in use.
1049  */
1050 
1051 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1052 {
1053 	struct packet_type *ptype;
1054 
1055 	net_timestamp(skb);
1056 
1057 	rcu_read_lock();
1058 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1059 		/* Never send packets back to the socket
1060 		 * they originated from - MvS (miquels@drinkel.ow.org)
1061 		 */
1062 		if ((ptype->dev == dev || !ptype->dev) &&
1063 		    (ptype->af_packet_priv == NULL ||
1064 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1065 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1066 			if (!skb2)
1067 				break;
1068 
1069 			/* skb->nh should be correctly
1070 			   set by sender, so that the second statement is
1071 			   just protection against buggy protocols.
1072 			 */
1073 			skb2->mac.raw = skb2->data;
1074 
1075 			if (skb2->nh.raw < skb2->data ||
1076 			    skb2->nh.raw > skb2->tail) {
1077 				if (net_ratelimit())
1078 					printk(KERN_CRIT "protocol %04x is "
1079 					       "buggy, dev %s\n",
1080 					       skb2->protocol, dev->name);
1081 				skb2->nh.raw = skb2->data;
1082 			}
1083 
1084 			skb2->h.raw = skb2->nh.raw;
1085 			skb2->pkt_type = PACKET_OUTGOING;
1086 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1087 		}
1088 	}
1089 	rcu_read_unlock();
1090 }
1091 
1092 
1093 void __netif_schedule(struct net_device *dev)
1094 {
1095 	if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1096 		unsigned long flags;
1097 		struct softnet_data *sd;
1098 
1099 		local_irq_save(flags);
1100 		sd = &__get_cpu_var(softnet_data);
1101 		dev->next_sched = sd->output_queue;
1102 		sd->output_queue = dev;
1103 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1104 		local_irq_restore(flags);
1105 	}
1106 }
1107 EXPORT_SYMBOL(__netif_schedule);
1108 
1109 void __netif_rx_schedule(struct net_device *dev)
1110 {
1111 	unsigned long flags;
1112 
1113 	local_irq_save(flags);
1114 	dev_hold(dev);
1115 	list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list);
1116 	if (dev->quota < 0)
1117 		dev->quota += dev->weight;
1118 	else
1119 		dev->quota = dev->weight;
1120 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
1121 	local_irq_restore(flags);
1122 }
1123 EXPORT_SYMBOL(__netif_rx_schedule);
1124 
1125 void dev_kfree_skb_any(struct sk_buff *skb)
1126 {
1127 	if (in_irq() || irqs_disabled())
1128 		dev_kfree_skb_irq(skb);
1129 	else
1130 		dev_kfree_skb(skb);
1131 }
1132 EXPORT_SYMBOL(dev_kfree_skb_any);
1133 
1134 
1135 /* Hot-plugging. */
1136 void netif_device_detach(struct net_device *dev)
1137 {
1138 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1139 	    netif_running(dev)) {
1140 		netif_stop_queue(dev);
1141 	}
1142 }
1143 EXPORT_SYMBOL(netif_device_detach);
1144 
1145 void netif_device_attach(struct net_device *dev)
1146 {
1147 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1148 	    netif_running(dev)) {
1149 		netif_wake_queue(dev);
1150  		__netdev_watchdog_up(dev);
1151 	}
1152 }
1153 EXPORT_SYMBOL(netif_device_attach);
1154 
1155 
1156 /*
1157  * Invalidate hardware checksum when packet is to be mangled, and
1158  * complete checksum manually on outgoing path.
1159  */
1160 int skb_checksum_help(struct sk_buff *skb, int inward)
1161 {
1162 	unsigned int csum;
1163 	int ret = 0, offset = skb->h.raw - skb->data;
1164 
1165 	if (inward)
1166 		goto out_set_summed;
1167 
1168 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1169 		static int warned;
1170 
1171 		WARN_ON(!warned);
1172 		warned = 1;
1173 
1174 		/* Let GSO fix up the checksum. */
1175 		goto out_set_summed;
1176 	}
1177 
1178 	if (skb_cloned(skb)) {
1179 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1180 		if (ret)
1181 			goto out;
1182 	}
1183 
1184 	BUG_ON(offset > (int)skb->len);
1185 	csum = skb_checksum(skb, offset, skb->len-offset, 0);
1186 
1187 	offset = skb->tail - skb->h.raw;
1188 	BUG_ON(offset <= 0);
1189 	BUG_ON(skb->csum + 2 > offset);
1190 
1191 	*(u16*)(skb->h.raw + skb->csum) = csum_fold(csum);
1192 
1193 out_set_summed:
1194 	skb->ip_summed = CHECKSUM_NONE;
1195 out:
1196 	return ret;
1197 }
1198 
1199 /**
1200  *	skb_gso_segment - Perform segmentation on skb.
1201  *	@skb: buffer to segment
1202  *	@features: features for the output path (see dev->features)
1203  *
1204  *	This function segments the given skb and returns a list of segments.
1205  *
1206  *	It may return NULL if the skb requires no segmentation.  This is
1207  *	only possible when GSO is used for verifying header integrity.
1208  */
1209 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1210 {
1211 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1212 	struct packet_type *ptype;
1213 	int type = skb->protocol;
1214 	int err;
1215 
1216 	BUG_ON(skb_shinfo(skb)->frag_list);
1217 
1218 	skb->mac.raw = skb->data;
1219 	skb->mac_len = skb->nh.raw - skb->data;
1220 	__skb_pull(skb, skb->mac_len);
1221 
1222 	if (unlikely(skb->ip_summed != CHECKSUM_HW)) {
1223 		static int warned;
1224 
1225 		WARN_ON(!warned);
1226 		warned = 1;
1227 
1228 		if (skb_header_cloned(skb) &&
1229 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1230 			return ERR_PTR(err);
1231 	}
1232 
1233 	rcu_read_lock();
1234 	list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1235 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1236 			if (unlikely(skb->ip_summed != CHECKSUM_HW)) {
1237 				err = ptype->gso_send_check(skb);
1238 				segs = ERR_PTR(err);
1239 				if (err || skb_gso_ok(skb, features))
1240 					break;
1241 				__skb_push(skb, skb->data - skb->nh.raw);
1242 			}
1243 			segs = ptype->gso_segment(skb, features);
1244 			break;
1245 		}
1246 	}
1247 	rcu_read_unlock();
1248 
1249 	__skb_push(skb, skb->data - skb->mac.raw);
1250 
1251 	return segs;
1252 }
1253 
1254 EXPORT_SYMBOL(skb_gso_segment);
1255 
1256 /* Take action when hardware reception checksum errors are detected. */
1257 #ifdef CONFIG_BUG
1258 void netdev_rx_csum_fault(struct net_device *dev)
1259 {
1260 	if (net_ratelimit()) {
1261 		printk(KERN_ERR "%s: hw csum failure.\n",
1262 			dev ? dev->name : "<unknown>");
1263 		dump_stack();
1264 	}
1265 }
1266 EXPORT_SYMBOL(netdev_rx_csum_fault);
1267 #endif
1268 
1269 /* Actually, we should eliminate this check as soon as we know, that:
1270  * 1. IOMMU is present and allows to map all the memory.
1271  * 2. No high memory really exists on this machine.
1272  */
1273 
1274 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1275 {
1276 #ifdef CONFIG_HIGHMEM
1277 	int i;
1278 
1279 	if (dev->features & NETIF_F_HIGHDMA)
1280 		return 0;
1281 
1282 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1283 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1284 			return 1;
1285 
1286 #endif
1287 	return 0;
1288 }
1289 
1290 struct dev_gso_cb {
1291 	void (*destructor)(struct sk_buff *skb);
1292 };
1293 
1294 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1295 
1296 static void dev_gso_skb_destructor(struct sk_buff *skb)
1297 {
1298 	struct dev_gso_cb *cb;
1299 
1300 	do {
1301 		struct sk_buff *nskb = skb->next;
1302 
1303 		skb->next = nskb->next;
1304 		nskb->next = NULL;
1305 		kfree_skb(nskb);
1306 	} while (skb->next);
1307 
1308 	cb = DEV_GSO_CB(skb);
1309 	if (cb->destructor)
1310 		cb->destructor(skb);
1311 }
1312 
1313 /**
1314  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1315  *	@skb: buffer to segment
1316  *
1317  *	This function segments the given skb and stores the list of segments
1318  *	in skb->next.
1319  */
1320 static int dev_gso_segment(struct sk_buff *skb)
1321 {
1322 	struct net_device *dev = skb->dev;
1323 	struct sk_buff *segs;
1324 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1325 					 NETIF_F_SG : 0);
1326 
1327 	segs = skb_gso_segment(skb, features);
1328 
1329 	/* Verifying header integrity only. */
1330 	if (!segs)
1331 		return 0;
1332 
1333 	if (unlikely(IS_ERR(segs)))
1334 		return PTR_ERR(segs);
1335 
1336 	skb->next = segs;
1337 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1338 	skb->destructor = dev_gso_skb_destructor;
1339 
1340 	return 0;
1341 }
1342 
1343 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1344 {
1345 	if (likely(!skb->next)) {
1346 		if (netdev_nit)
1347 			dev_queue_xmit_nit(skb, dev);
1348 
1349 		if (netif_needs_gso(dev, skb)) {
1350 			if (unlikely(dev_gso_segment(skb)))
1351 				goto out_kfree_skb;
1352 			if (skb->next)
1353 				goto gso;
1354 		}
1355 
1356 		return dev->hard_start_xmit(skb, dev);
1357 	}
1358 
1359 gso:
1360 	do {
1361 		struct sk_buff *nskb = skb->next;
1362 		int rc;
1363 
1364 		skb->next = nskb->next;
1365 		nskb->next = NULL;
1366 		rc = dev->hard_start_xmit(nskb, dev);
1367 		if (unlikely(rc)) {
1368 			nskb->next = skb->next;
1369 			skb->next = nskb;
1370 			return rc;
1371 		}
1372 		if (unlikely(netif_queue_stopped(dev) && skb->next))
1373 			return NETDEV_TX_BUSY;
1374 	} while (skb->next);
1375 
1376 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1377 
1378 out_kfree_skb:
1379 	kfree_skb(skb);
1380 	return 0;
1381 }
1382 
1383 #define HARD_TX_LOCK(dev, cpu) {			\
1384 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
1385 		netif_tx_lock(dev);			\
1386 	}						\
1387 }
1388 
1389 #define HARD_TX_UNLOCK(dev) {				\
1390 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
1391 		netif_tx_unlock(dev);			\
1392 	}						\
1393 }
1394 
1395 /**
1396  *	dev_queue_xmit - transmit a buffer
1397  *	@skb: buffer to transmit
1398  *
1399  *	Queue a buffer for transmission to a network device. The caller must
1400  *	have set the device and priority and built the buffer before calling
1401  *	this function. The function can be called from an interrupt.
1402  *
1403  *	A negative errno code is returned on a failure. A success does not
1404  *	guarantee the frame will be transmitted as it may be dropped due
1405  *	to congestion or traffic shaping.
1406  *
1407  * -----------------------------------------------------------------------------------
1408  *      I notice this method can also return errors from the queue disciplines,
1409  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1410  *      be positive.
1411  *
1412  *      Regardless of the return value, the skb is consumed, so it is currently
1413  *      difficult to retry a send to this method.  (You can bump the ref count
1414  *      before sending to hold a reference for retry if you are careful.)
1415  *
1416  *      When calling this method, interrupts MUST be enabled.  This is because
1417  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1418  *          --BLG
1419  */
1420 
1421 int dev_queue_xmit(struct sk_buff *skb)
1422 {
1423 	struct net_device *dev = skb->dev;
1424 	struct Qdisc *q;
1425 	int rc = -ENOMEM;
1426 
1427 	/* GSO will handle the following emulations directly. */
1428 	if (netif_needs_gso(dev, skb))
1429 		goto gso;
1430 
1431 	if (skb_shinfo(skb)->frag_list &&
1432 	    !(dev->features & NETIF_F_FRAGLIST) &&
1433 	    __skb_linearize(skb))
1434 		goto out_kfree_skb;
1435 
1436 	/* Fragmented skb is linearized if device does not support SG,
1437 	 * or if at least one of fragments is in highmem and device
1438 	 * does not support DMA from it.
1439 	 */
1440 	if (skb_shinfo(skb)->nr_frags &&
1441 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1442 	    __skb_linearize(skb))
1443 		goto out_kfree_skb;
1444 
1445 	/* If packet is not checksummed and device does not support
1446 	 * checksumming for this protocol, complete checksumming here.
1447 	 */
1448 	if (skb->ip_summed == CHECKSUM_HW &&
1449 	    (!(dev->features & NETIF_F_GEN_CSUM) &&
1450 	     (!(dev->features & NETIF_F_IP_CSUM) ||
1451 	      skb->protocol != htons(ETH_P_IP))))
1452 	      	if (skb_checksum_help(skb, 0))
1453 	      		goto out_kfree_skb;
1454 
1455 gso:
1456 	spin_lock_prefetch(&dev->queue_lock);
1457 
1458 	/* Disable soft irqs for various locks below. Also
1459 	 * stops preemption for RCU.
1460 	 */
1461 	rcu_read_lock_bh();
1462 
1463 	/* Updates of qdisc are serialized by queue_lock.
1464 	 * The struct Qdisc which is pointed to by qdisc is now a
1465 	 * rcu structure - it may be accessed without acquiring
1466 	 * a lock (but the structure may be stale.) The freeing of the
1467 	 * qdisc will be deferred until it's known that there are no
1468 	 * more references to it.
1469 	 *
1470 	 * If the qdisc has an enqueue function, we still need to
1471 	 * hold the queue_lock before calling it, since queue_lock
1472 	 * also serializes access to the device queue.
1473 	 */
1474 
1475 	q = rcu_dereference(dev->qdisc);
1476 #ifdef CONFIG_NET_CLS_ACT
1477 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1478 #endif
1479 	if (q->enqueue) {
1480 		/* Grab device queue */
1481 		spin_lock(&dev->queue_lock);
1482 
1483 		rc = q->enqueue(skb, q);
1484 
1485 		qdisc_run(dev);
1486 
1487 		spin_unlock(&dev->queue_lock);
1488 		rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1489 		goto out;
1490 	}
1491 
1492 	/* The device has no queue. Common case for software devices:
1493 	   loopback, all the sorts of tunnels...
1494 
1495 	   Really, it is unlikely that netif_tx_lock protection is necessary
1496 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1497 	   counters.)
1498 	   However, it is possible, that they rely on protection
1499 	   made by us here.
1500 
1501 	   Check this and shot the lock. It is not prone from deadlocks.
1502 	   Either shot noqueue qdisc, it is even simpler 8)
1503 	 */
1504 	if (dev->flags & IFF_UP) {
1505 		int cpu = smp_processor_id(); /* ok because BHs are off */
1506 
1507 		if (dev->xmit_lock_owner != cpu) {
1508 
1509 			HARD_TX_LOCK(dev, cpu);
1510 
1511 			if (!netif_queue_stopped(dev)) {
1512 				rc = 0;
1513 				if (!dev_hard_start_xmit(skb, dev)) {
1514 					HARD_TX_UNLOCK(dev);
1515 					goto out;
1516 				}
1517 			}
1518 			HARD_TX_UNLOCK(dev);
1519 			if (net_ratelimit())
1520 				printk(KERN_CRIT "Virtual device %s asks to "
1521 				       "queue packet!\n", dev->name);
1522 		} else {
1523 			/* Recursion is detected! It is possible,
1524 			 * unfortunately */
1525 			if (net_ratelimit())
1526 				printk(KERN_CRIT "Dead loop on virtual device "
1527 				       "%s, fix it urgently!\n", dev->name);
1528 		}
1529 	}
1530 
1531 	rc = -ENETDOWN;
1532 	rcu_read_unlock_bh();
1533 
1534 out_kfree_skb:
1535 	kfree_skb(skb);
1536 	return rc;
1537 out:
1538 	rcu_read_unlock_bh();
1539 	return rc;
1540 }
1541 
1542 
1543 /*=======================================================================
1544 			Receiver routines
1545   =======================================================================*/
1546 
1547 int netdev_max_backlog = 1000;
1548 int netdev_budget = 300;
1549 int weight_p = 64;            /* old backlog weight */
1550 
1551 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1552 
1553 
1554 /**
1555  *	netif_rx	-	post buffer to the network code
1556  *	@skb: buffer to post
1557  *
1558  *	This function receives a packet from a device driver and queues it for
1559  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1560  *	may be dropped during processing for congestion control or by the
1561  *	protocol layers.
1562  *
1563  *	return values:
1564  *	NET_RX_SUCCESS	(no congestion)
1565  *	NET_RX_CN_LOW   (low congestion)
1566  *	NET_RX_CN_MOD   (moderate congestion)
1567  *	NET_RX_CN_HIGH  (high congestion)
1568  *	NET_RX_DROP     (packet was dropped)
1569  *
1570  */
1571 
1572 int netif_rx(struct sk_buff *skb)
1573 {
1574 	struct softnet_data *queue;
1575 	unsigned long flags;
1576 
1577 	/* if netpoll wants it, pretend we never saw it */
1578 	if (netpoll_rx(skb))
1579 		return NET_RX_DROP;
1580 
1581 	if (!skb->tstamp.off_sec)
1582 		net_timestamp(skb);
1583 
1584 	/*
1585 	 * The code is rearranged so that the path is the most
1586 	 * short when CPU is congested, but is still operating.
1587 	 */
1588 	local_irq_save(flags);
1589 	queue = &__get_cpu_var(softnet_data);
1590 
1591 	__get_cpu_var(netdev_rx_stat).total++;
1592 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1593 		if (queue->input_pkt_queue.qlen) {
1594 enqueue:
1595 			dev_hold(skb->dev);
1596 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1597 			local_irq_restore(flags);
1598 			return NET_RX_SUCCESS;
1599 		}
1600 
1601 		netif_rx_schedule(&queue->backlog_dev);
1602 		goto enqueue;
1603 	}
1604 
1605 	__get_cpu_var(netdev_rx_stat).dropped++;
1606 	local_irq_restore(flags);
1607 
1608 	kfree_skb(skb);
1609 	return NET_RX_DROP;
1610 }
1611 
1612 int netif_rx_ni(struct sk_buff *skb)
1613 {
1614 	int err;
1615 
1616 	preempt_disable();
1617 	err = netif_rx(skb);
1618 	if (local_softirq_pending())
1619 		do_softirq();
1620 	preempt_enable();
1621 
1622 	return err;
1623 }
1624 
1625 EXPORT_SYMBOL(netif_rx_ni);
1626 
1627 static inline struct net_device *skb_bond(struct sk_buff *skb)
1628 {
1629 	struct net_device *dev = skb->dev;
1630 
1631 	if (dev->master) {
1632 		/*
1633 		 * On bonding slaves other than the currently active
1634 		 * slave, suppress duplicates except for 802.3ad
1635 		 * ETH_P_SLOW and alb non-mcast/bcast.
1636 		 */
1637 		if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
1638 			if (dev->master->priv_flags & IFF_MASTER_ALB) {
1639 				if (skb->pkt_type != PACKET_BROADCAST &&
1640 				    skb->pkt_type != PACKET_MULTICAST)
1641 					goto keep;
1642 			}
1643 
1644 			if (dev->master->priv_flags & IFF_MASTER_8023AD &&
1645 			    skb->protocol == __constant_htons(ETH_P_SLOW))
1646 				goto keep;
1647 
1648 			kfree_skb(skb);
1649 			return NULL;
1650 		}
1651 keep:
1652 		skb->dev = dev->master;
1653 	}
1654 
1655 	return dev;
1656 }
1657 
1658 static void net_tx_action(struct softirq_action *h)
1659 {
1660 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1661 
1662 	if (sd->completion_queue) {
1663 		struct sk_buff *clist;
1664 
1665 		local_irq_disable();
1666 		clist = sd->completion_queue;
1667 		sd->completion_queue = NULL;
1668 		local_irq_enable();
1669 
1670 		while (clist) {
1671 			struct sk_buff *skb = clist;
1672 			clist = clist->next;
1673 
1674 			BUG_TRAP(!atomic_read(&skb->users));
1675 			__kfree_skb(skb);
1676 		}
1677 	}
1678 
1679 	if (sd->output_queue) {
1680 		struct net_device *head;
1681 
1682 		local_irq_disable();
1683 		head = sd->output_queue;
1684 		sd->output_queue = NULL;
1685 		local_irq_enable();
1686 
1687 		while (head) {
1688 			struct net_device *dev = head;
1689 			head = head->next_sched;
1690 
1691 			smp_mb__before_clear_bit();
1692 			clear_bit(__LINK_STATE_SCHED, &dev->state);
1693 
1694 			if (spin_trylock(&dev->queue_lock)) {
1695 				qdisc_run(dev);
1696 				spin_unlock(&dev->queue_lock);
1697 			} else {
1698 				netif_schedule(dev);
1699 			}
1700 		}
1701 	}
1702 }
1703 
1704 static __inline__ int deliver_skb(struct sk_buff *skb,
1705 				  struct packet_type *pt_prev,
1706 				  struct net_device *orig_dev)
1707 {
1708 	atomic_inc(&skb->users);
1709 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1710 }
1711 
1712 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1713 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb);
1714 struct net_bridge;
1715 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1716 						unsigned char *addr);
1717 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent);
1718 
1719 static __inline__ int handle_bridge(struct sk_buff **pskb,
1720 				    struct packet_type **pt_prev, int *ret,
1721 				    struct net_device *orig_dev)
1722 {
1723 	struct net_bridge_port *port;
1724 
1725 	if ((*pskb)->pkt_type == PACKET_LOOPBACK ||
1726 	    (port = rcu_dereference((*pskb)->dev->br_port)) == NULL)
1727 		return 0;
1728 
1729 	if (*pt_prev) {
1730 		*ret = deliver_skb(*pskb, *pt_prev, orig_dev);
1731 		*pt_prev = NULL;
1732 	}
1733 
1734 	return br_handle_frame_hook(port, pskb);
1735 }
1736 #else
1737 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(0)
1738 #endif
1739 
1740 #ifdef CONFIG_NET_CLS_ACT
1741 /* TODO: Maybe we should just force sch_ingress to be compiled in
1742  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1743  * a compare and 2 stores extra right now if we dont have it on
1744  * but have CONFIG_NET_CLS_ACT
1745  * NOTE: This doesnt stop any functionality; if you dont have
1746  * the ingress scheduler, you just cant add policies on ingress.
1747  *
1748  */
1749 static int ing_filter(struct sk_buff *skb)
1750 {
1751 	struct Qdisc *q;
1752 	struct net_device *dev = skb->dev;
1753 	int result = TC_ACT_OK;
1754 
1755 	if (dev->qdisc_ingress) {
1756 		__u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1757 		if (MAX_RED_LOOP < ttl++) {
1758 			printk(KERN_WARNING "Redir loop detected Dropping packet (%s->%s)\n",
1759 				skb->input_dev->name, skb->dev->name);
1760 			return TC_ACT_SHOT;
1761 		}
1762 
1763 		skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1764 
1765 		skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
1766 
1767 		spin_lock(&dev->ingress_lock);
1768 		if ((q = dev->qdisc_ingress) != NULL)
1769 			result = q->enqueue(skb, q);
1770 		spin_unlock(&dev->ingress_lock);
1771 
1772 	}
1773 
1774 	return result;
1775 }
1776 #endif
1777 
1778 int netif_receive_skb(struct sk_buff *skb)
1779 {
1780 	struct packet_type *ptype, *pt_prev;
1781 	struct net_device *orig_dev;
1782 	int ret = NET_RX_DROP;
1783 	unsigned short type;
1784 
1785 	/* if we've gotten here through NAPI, check netpoll */
1786 	if (skb->dev->poll && netpoll_rx(skb))
1787 		return NET_RX_DROP;
1788 
1789 	if (!skb->tstamp.off_sec)
1790 		net_timestamp(skb);
1791 
1792 	if (!skb->input_dev)
1793 		skb->input_dev = skb->dev;
1794 
1795 	orig_dev = skb_bond(skb);
1796 
1797 	if (!orig_dev)
1798 		return NET_RX_DROP;
1799 
1800 	__get_cpu_var(netdev_rx_stat).total++;
1801 
1802 	skb->h.raw = skb->nh.raw = skb->data;
1803 	skb->mac_len = skb->nh.raw - skb->mac.raw;
1804 
1805 	pt_prev = NULL;
1806 
1807 	rcu_read_lock();
1808 
1809 #ifdef CONFIG_NET_CLS_ACT
1810 	if (skb->tc_verd & TC_NCLS) {
1811 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
1812 		goto ncls;
1813 	}
1814 #endif
1815 
1816 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1817 		if (!ptype->dev || ptype->dev == skb->dev) {
1818 			if (pt_prev)
1819 				ret = deliver_skb(skb, pt_prev, orig_dev);
1820 			pt_prev = ptype;
1821 		}
1822 	}
1823 
1824 #ifdef CONFIG_NET_CLS_ACT
1825 	if (pt_prev) {
1826 		ret = deliver_skb(skb, pt_prev, orig_dev);
1827 		pt_prev = NULL; /* noone else should process this after*/
1828 	} else {
1829 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1830 	}
1831 
1832 	ret = ing_filter(skb);
1833 
1834 	if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
1835 		kfree_skb(skb);
1836 		goto out;
1837 	}
1838 
1839 	skb->tc_verd = 0;
1840 ncls:
1841 #endif
1842 
1843 	handle_diverter(skb);
1844 
1845 	if (handle_bridge(&skb, &pt_prev, &ret, orig_dev))
1846 		goto out;
1847 
1848 	type = skb->protocol;
1849 	list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
1850 		if (ptype->type == type &&
1851 		    (!ptype->dev || ptype->dev == skb->dev)) {
1852 			if (pt_prev)
1853 				ret = deliver_skb(skb, pt_prev, orig_dev);
1854 			pt_prev = ptype;
1855 		}
1856 	}
1857 
1858 	if (pt_prev) {
1859 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1860 	} else {
1861 		kfree_skb(skb);
1862 		/* Jamal, now you will not able to escape explaining
1863 		 * me how you were going to use this. :-)
1864 		 */
1865 		ret = NET_RX_DROP;
1866 	}
1867 
1868 out:
1869 	rcu_read_unlock();
1870 	return ret;
1871 }
1872 
1873 static int process_backlog(struct net_device *backlog_dev, int *budget)
1874 {
1875 	int work = 0;
1876 	int quota = min(backlog_dev->quota, *budget);
1877 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
1878 	unsigned long start_time = jiffies;
1879 
1880 	backlog_dev->weight = weight_p;
1881 	for (;;) {
1882 		struct sk_buff *skb;
1883 		struct net_device *dev;
1884 
1885 		local_irq_disable();
1886 		skb = __skb_dequeue(&queue->input_pkt_queue);
1887 		if (!skb)
1888 			goto job_done;
1889 		local_irq_enable();
1890 
1891 		dev = skb->dev;
1892 
1893 		netif_receive_skb(skb);
1894 
1895 		dev_put(dev);
1896 
1897 		work++;
1898 
1899 		if (work >= quota || jiffies - start_time > 1)
1900 			break;
1901 
1902 	}
1903 
1904 	backlog_dev->quota -= work;
1905 	*budget -= work;
1906 	return -1;
1907 
1908 job_done:
1909 	backlog_dev->quota -= work;
1910 	*budget -= work;
1911 
1912 	list_del(&backlog_dev->poll_list);
1913 	smp_mb__before_clear_bit();
1914 	netif_poll_enable(backlog_dev);
1915 
1916 	local_irq_enable();
1917 	return 0;
1918 }
1919 
1920 static void net_rx_action(struct softirq_action *h)
1921 {
1922 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
1923 	unsigned long start_time = jiffies;
1924 	int budget = netdev_budget;
1925 	void *have;
1926 
1927 	local_irq_disable();
1928 
1929 	while (!list_empty(&queue->poll_list)) {
1930 		struct net_device *dev;
1931 
1932 		if (budget <= 0 || jiffies - start_time > 1)
1933 			goto softnet_break;
1934 
1935 		local_irq_enable();
1936 
1937 		dev = list_entry(queue->poll_list.next,
1938 				 struct net_device, poll_list);
1939 		have = netpoll_poll_lock(dev);
1940 
1941 		if (dev->quota <= 0 || dev->poll(dev, &budget)) {
1942 			netpoll_poll_unlock(have);
1943 			local_irq_disable();
1944 			list_move_tail(&dev->poll_list, &queue->poll_list);
1945 			if (dev->quota < 0)
1946 				dev->quota += dev->weight;
1947 			else
1948 				dev->quota = dev->weight;
1949 		} else {
1950 			netpoll_poll_unlock(have);
1951 			dev_put(dev);
1952 			local_irq_disable();
1953 		}
1954 	}
1955 out:
1956 #ifdef CONFIG_NET_DMA
1957 	/*
1958 	 * There may not be any more sk_buffs coming right now, so push
1959 	 * any pending DMA copies to hardware
1960 	 */
1961 	if (net_dma_client) {
1962 		struct dma_chan *chan;
1963 		rcu_read_lock();
1964 		list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node)
1965 			dma_async_memcpy_issue_pending(chan);
1966 		rcu_read_unlock();
1967 	}
1968 #endif
1969 	local_irq_enable();
1970 	return;
1971 
1972 softnet_break:
1973 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
1974 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
1975 	goto out;
1976 }
1977 
1978 static gifconf_func_t * gifconf_list [NPROTO];
1979 
1980 /**
1981  *	register_gifconf	-	register a SIOCGIF handler
1982  *	@family: Address family
1983  *	@gifconf: Function handler
1984  *
1985  *	Register protocol dependent address dumping routines. The handler
1986  *	that is passed must not be freed or reused until it has been replaced
1987  *	by another handler.
1988  */
1989 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
1990 {
1991 	if (family >= NPROTO)
1992 		return -EINVAL;
1993 	gifconf_list[family] = gifconf;
1994 	return 0;
1995 }
1996 
1997 
1998 /*
1999  *	Map an interface index to its name (SIOCGIFNAME)
2000  */
2001 
2002 /*
2003  *	We need this ioctl for efficient implementation of the
2004  *	if_indextoname() function required by the IPv6 API.  Without
2005  *	it, we would have to search all the interfaces to find a
2006  *	match.  --pb
2007  */
2008 
2009 static int dev_ifname(struct ifreq __user *arg)
2010 {
2011 	struct net_device *dev;
2012 	struct ifreq ifr;
2013 
2014 	/*
2015 	 *	Fetch the caller's info block.
2016 	 */
2017 
2018 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2019 		return -EFAULT;
2020 
2021 	read_lock(&dev_base_lock);
2022 	dev = __dev_get_by_index(ifr.ifr_ifindex);
2023 	if (!dev) {
2024 		read_unlock(&dev_base_lock);
2025 		return -ENODEV;
2026 	}
2027 
2028 	strcpy(ifr.ifr_name, dev->name);
2029 	read_unlock(&dev_base_lock);
2030 
2031 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2032 		return -EFAULT;
2033 	return 0;
2034 }
2035 
2036 /*
2037  *	Perform a SIOCGIFCONF call. This structure will change
2038  *	size eventually, and there is nothing I can do about it.
2039  *	Thus we will need a 'compatibility mode'.
2040  */
2041 
2042 static int dev_ifconf(char __user *arg)
2043 {
2044 	struct ifconf ifc;
2045 	struct net_device *dev;
2046 	char __user *pos;
2047 	int len;
2048 	int total;
2049 	int i;
2050 
2051 	/*
2052 	 *	Fetch the caller's info block.
2053 	 */
2054 
2055 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2056 		return -EFAULT;
2057 
2058 	pos = ifc.ifc_buf;
2059 	len = ifc.ifc_len;
2060 
2061 	/*
2062 	 *	Loop over the interfaces, and write an info block for each.
2063 	 */
2064 
2065 	total = 0;
2066 	for (dev = dev_base; dev; dev = dev->next) {
2067 		for (i = 0; i < NPROTO; i++) {
2068 			if (gifconf_list[i]) {
2069 				int done;
2070 				if (!pos)
2071 					done = gifconf_list[i](dev, NULL, 0);
2072 				else
2073 					done = gifconf_list[i](dev, pos + total,
2074 							       len - total);
2075 				if (done < 0)
2076 					return -EFAULT;
2077 				total += done;
2078 			}
2079 		}
2080   	}
2081 
2082 	/*
2083 	 *	All done.  Write the updated control block back to the caller.
2084 	 */
2085 	ifc.ifc_len = total;
2086 
2087 	/*
2088 	 * 	Both BSD and Solaris return 0 here, so we do too.
2089 	 */
2090 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2091 }
2092 
2093 #ifdef CONFIG_PROC_FS
2094 /*
2095  *	This is invoked by the /proc filesystem handler to display a device
2096  *	in detail.
2097  */
2098 static __inline__ struct net_device *dev_get_idx(loff_t pos)
2099 {
2100 	struct net_device *dev;
2101 	loff_t i;
2102 
2103 	for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next);
2104 
2105 	return i == pos ? dev : NULL;
2106 }
2107 
2108 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2109 {
2110 	read_lock(&dev_base_lock);
2111 	return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN;
2112 }
2113 
2114 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2115 {
2116 	++*pos;
2117 	return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next;
2118 }
2119 
2120 void dev_seq_stop(struct seq_file *seq, void *v)
2121 {
2122 	read_unlock(&dev_base_lock);
2123 }
2124 
2125 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2126 {
2127 	if (dev->get_stats) {
2128 		struct net_device_stats *stats = dev->get_stats(dev);
2129 
2130 		seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2131 				"%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2132 			   dev->name, stats->rx_bytes, stats->rx_packets,
2133 			   stats->rx_errors,
2134 			   stats->rx_dropped + stats->rx_missed_errors,
2135 			   stats->rx_fifo_errors,
2136 			   stats->rx_length_errors + stats->rx_over_errors +
2137 			     stats->rx_crc_errors + stats->rx_frame_errors,
2138 			   stats->rx_compressed, stats->multicast,
2139 			   stats->tx_bytes, stats->tx_packets,
2140 			   stats->tx_errors, stats->tx_dropped,
2141 			   stats->tx_fifo_errors, stats->collisions,
2142 			   stats->tx_carrier_errors +
2143 			     stats->tx_aborted_errors +
2144 			     stats->tx_window_errors +
2145 			     stats->tx_heartbeat_errors,
2146 			   stats->tx_compressed);
2147 	} else
2148 		seq_printf(seq, "%6s: No statistics available.\n", dev->name);
2149 }
2150 
2151 /*
2152  *	Called from the PROCfs module. This now uses the new arbitrary sized
2153  *	/proc/net interface to create /proc/net/dev
2154  */
2155 static int dev_seq_show(struct seq_file *seq, void *v)
2156 {
2157 	if (v == SEQ_START_TOKEN)
2158 		seq_puts(seq, "Inter-|   Receive                            "
2159 			      "                    |  Transmit\n"
2160 			      " face |bytes    packets errs drop fifo frame "
2161 			      "compressed multicast|bytes    packets errs "
2162 			      "drop fifo colls carrier compressed\n");
2163 	else
2164 		dev_seq_printf_stats(seq, v);
2165 	return 0;
2166 }
2167 
2168 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2169 {
2170 	struct netif_rx_stats *rc = NULL;
2171 
2172 	while (*pos < NR_CPUS)
2173 	       	if (cpu_online(*pos)) {
2174 			rc = &per_cpu(netdev_rx_stat, *pos);
2175 			break;
2176 		} else
2177 			++*pos;
2178 	return rc;
2179 }
2180 
2181 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2182 {
2183 	return softnet_get_online(pos);
2184 }
2185 
2186 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2187 {
2188 	++*pos;
2189 	return softnet_get_online(pos);
2190 }
2191 
2192 static void softnet_seq_stop(struct seq_file *seq, void *v)
2193 {
2194 }
2195 
2196 static int softnet_seq_show(struct seq_file *seq, void *v)
2197 {
2198 	struct netif_rx_stats *s = v;
2199 
2200 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2201 		   s->total, s->dropped, s->time_squeeze, 0,
2202 		   0, 0, 0, 0, /* was fastroute */
2203 		   s->cpu_collision );
2204 	return 0;
2205 }
2206 
2207 static struct seq_operations dev_seq_ops = {
2208 	.start = dev_seq_start,
2209 	.next  = dev_seq_next,
2210 	.stop  = dev_seq_stop,
2211 	.show  = dev_seq_show,
2212 };
2213 
2214 static int dev_seq_open(struct inode *inode, struct file *file)
2215 {
2216 	return seq_open(file, &dev_seq_ops);
2217 }
2218 
2219 static struct file_operations dev_seq_fops = {
2220 	.owner	 = THIS_MODULE,
2221 	.open    = dev_seq_open,
2222 	.read    = seq_read,
2223 	.llseek  = seq_lseek,
2224 	.release = seq_release,
2225 };
2226 
2227 static struct seq_operations softnet_seq_ops = {
2228 	.start = softnet_seq_start,
2229 	.next  = softnet_seq_next,
2230 	.stop  = softnet_seq_stop,
2231 	.show  = softnet_seq_show,
2232 };
2233 
2234 static int softnet_seq_open(struct inode *inode, struct file *file)
2235 {
2236 	return seq_open(file, &softnet_seq_ops);
2237 }
2238 
2239 static struct file_operations softnet_seq_fops = {
2240 	.owner	 = THIS_MODULE,
2241 	.open    = softnet_seq_open,
2242 	.read    = seq_read,
2243 	.llseek  = seq_lseek,
2244 	.release = seq_release,
2245 };
2246 
2247 #ifdef CONFIG_WIRELESS_EXT
2248 extern int wireless_proc_init(void);
2249 #else
2250 #define wireless_proc_init() 0
2251 #endif
2252 
2253 static int __init dev_proc_init(void)
2254 {
2255 	int rc = -ENOMEM;
2256 
2257 	if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops))
2258 		goto out;
2259 	if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops))
2260 		goto out_dev;
2261 	if (wireless_proc_init())
2262 		goto out_softnet;
2263 	rc = 0;
2264 out:
2265 	return rc;
2266 out_softnet:
2267 	proc_net_remove("softnet_stat");
2268 out_dev:
2269 	proc_net_remove("dev");
2270 	goto out;
2271 }
2272 #else
2273 #define dev_proc_init() 0
2274 #endif	/* CONFIG_PROC_FS */
2275 
2276 
2277 /**
2278  *	netdev_set_master	-	set up master/slave pair
2279  *	@slave: slave device
2280  *	@master: new master device
2281  *
2282  *	Changes the master device of the slave. Pass %NULL to break the
2283  *	bonding. The caller must hold the RTNL semaphore. On a failure
2284  *	a negative errno code is returned. On success the reference counts
2285  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2286  *	function returns zero.
2287  */
2288 int netdev_set_master(struct net_device *slave, struct net_device *master)
2289 {
2290 	struct net_device *old = slave->master;
2291 
2292 	ASSERT_RTNL();
2293 
2294 	if (master) {
2295 		if (old)
2296 			return -EBUSY;
2297 		dev_hold(master);
2298 	}
2299 
2300 	slave->master = master;
2301 
2302 	synchronize_net();
2303 
2304 	if (old)
2305 		dev_put(old);
2306 
2307 	if (master)
2308 		slave->flags |= IFF_SLAVE;
2309 	else
2310 		slave->flags &= ~IFF_SLAVE;
2311 
2312 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2313 	return 0;
2314 }
2315 
2316 /**
2317  *	dev_set_promiscuity	- update promiscuity count on a device
2318  *	@dev: device
2319  *	@inc: modifier
2320  *
2321  *	Add or remove promiscuity from a device. While the count in the device
2322  *	remains above zero the interface remains promiscuous. Once it hits zero
2323  *	the device reverts back to normal filtering operation. A negative inc
2324  *	value is used to drop promiscuity on the device.
2325  */
2326 void dev_set_promiscuity(struct net_device *dev, int inc)
2327 {
2328 	unsigned short old_flags = dev->flags;
2329 
2330 	if ((dev->promiscuity += inc) == 0)
2331 		dev->flags &= ~IFF_PROMISC;
2332 	else
2333 		dev->flags |= IFF_PROMISC;
2334 	if (dev->flags != old_flags) {
2335 		dev_mc_upload(dev);
2336 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2337 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2338 		       					       "left");
2339 		audit_log(current->audit_context, GFP_ATOMIC,
2340 			AUDIT_ANOM_PROMISCUOUS,
2341 			"dev=%s prom=%d old_prom=%d auid=%u",
2342 			dev->name, (dev->flags & IFF_PROMISC),
2343 			(old_flags & IFF_PROMISC),
2344 			audit_get_loginuid(current->audit_context));
2345 	}
2346 }
2347 
2348 /**
2349  *	dev_set_allmulti	- update allmulti count on a device
2350  *	@dev: device
2351  *	@inc: modifier
2352  *
2353  *	Add or remove reception of all multicast frames to a device. While the
2354  *	count in the device remains above zero the interface remains listening
2355  *	to all interfaces. Once it hits zero the device reverts back to normal
2356  *	filtering operation. A negative @inc value is used to drop the counter
2357  *	when releasing a resource needing all multicasts.
2358  */
2359 
2360 void dev_set_allmulti(struct net_device *dev, int inc)
2361 {
2362 	unsigned short old_flags = dev->flags;
2363 
2364 	dev->flags |= IFF_ALLMULTI;
2365 	if ((dev->allmulti += inc) == 0)
2366 		dev->flags &= ~IFF_ALLMULTI;
2367 	if (dev->flags ^ old_flags)
2368 		dev_mc_upload(dev);
2369 }
2370 
2371 unsigned dev_get_flags(const struct net_device *dev)
2372 {
2373 	unsigned flags;
2374 
2375 	flags = (dev->flags & ~(IFF_PROMISC |
2376 				IFF_ALLMULTI |
2377 				IFF_RUNNING |
2378 				IFF_LOWER_UP |
2379 				IFF_DORMANT)) |
2380 		(dev->gflags & (IFF_PROMISC |
2381 				IFF_ALLMULTI));
2382 
2383 	if (netif_running(dev)) {
2384 		if (netif_oper_up(dev))
2385 			flags |= IFF_RUNNING;
2386 		if (netif_carrier_ok(dev))
2387 			flags |= IFF_LOWER_UP;
2388 		if (netif_dormant(dev))
2389 			flags |= IFF_DORMANT;
2390 	}
2391 
2392 	return flags;
2393 }
2394 
2395 int dev_change_flags(struct net_device *dev, unsigned flags)
2396 {
2397 	int ret;
2398 	int old_flags = dev->flags;
2399 
2400 	/*
2401 	 *	Set the flags on our device.
2402 	 */
2403 
2404 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
2405 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
2406 			       IFF_AUTOMEDIA)) |
2407 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
2408 				    IFF_ALLMULTI));
2409 
2410 	/*
2411 	 *	Load in the correct multicast list now the flags have changed.
2412 	 */
2413 
2414 	dev_mc_upload(dev);
2415 
2416 	/*
2417 	 *	Have we downed the interface. We handle IFF_UP ourselves
2418 	 *	according to user attempts to set it, rather than blindly
2419 	 *	setting it.
2420 	 */
2421 
2422 	ret = 0;
2423 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
2424 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
2425 
2426 		if (!ret)
2427 			dev_mc_upload(dev);
2428 	}
2429 
2430 	if (dev->flags & IFF_UP &&
2431 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
2432 					  IFF_VOLATILE)))
2433 		raw_notifier_call_chain(&netdev_chain,
2434 				NETDEV_CHANGE, dev);
2435 
2436 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
2437 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
2438 		dev->gflags ^= IFF_PROMISC;
2439 		dev_set_promiscuity(dev, inc);
2440 	}
2441 
2442 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
2443 	   is important. Some (broken) drivers set IFF_PROMISC, when
2444 	   IFF_ALLMULTI is requested not asking us and not reporting.
2445 	 */
2446 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
2447 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
2448 		dev->gflags ^= IFF_ALLMULTI;
2449 		dev_set_allmulti(dev, inc);
2450 	}
2451 
2452 	if (old_flags ^ dev->flags)
2453 		rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags);
2454 
2455 	return ret;
2456 }
2457 
2458 int dev_set_mtu(struct net_device *dev, int new_mtu)
2459 {
2460 	int err;
2461 
2462 	if (new_mtu == dev->mtu)
2463 		return 0;
2464 
2465 	/*	MTU must be positive.	 */
2466 	if (new_mtu < 0)
2467 		return -EINVAL;
2468 
2469 	if (!netif_device_present(dev))
2470 		return -ENODEV;
2471 
2472 	err = 0;
2473 	if (dev->change_mtu)
2474 		err = dev->change_mtu(dev, new_mtu);
2475 	else
2476 		dev->mtu = new_mtu;
2477 	if (!err && dev->flags & IFF_UP)
2478 		raw_notifier_call_chain(&netdev_chain,
2479 				NETDEV_CHANGEMTU, dev);
2480 	return err;
2481 }
2482 
2483 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
2484 {
2485 	int err;
2486 
2487 	if (!dev->set_mac_address)
2488 		return -EOPNOTSUPP;
2489 	if (sa->sa_family != dev->type)
2490 		return -EINVAL;
2491 	if (!netif_device_present(dev))
2492 		return -ENODEV;
2493 	err = dev->set_mac_address(dev, sa);
2494 	if (!err)
2495 		raw_notifier_call_chain(&netdev_chain,
2496 				NETDEV_CHANGEADDR, dev);
2497 	return err;
2498 }
2499 
2500 /*
2501  *	Perform the SIOCxIFxxx calls.
2502  */
2503 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd)
2504 {
2505 	int err;
2506 	struct net_device *dev = __dev_get_by_name(ifr->ifr_name);
2507 
2508 	if (!dev)
2509 		return -ENODEV;
2510 
2511 	switch (cmd) {
2512 		case SIOCGIFFLAGS:	/* Get interface flags */
2513 			ifr->ifr_flags = dev_get_flags(dev);
2514 			return 0;
2515 
2516 		case SIOCSIFFLAGS:	/* Set interface flags */
2517 			return dev_change_flags(dev, ifr->ifr_flags);
2518 
2519 		case SIOCGIFMETRIC:	/* Get the metric on the interface
2520 					   (currently unused) */
2521 			ifr->ifr_metric = 0;
2522 			return 0;
2523 
2524 		case SIOCSIFMETRIC:	/* Set the metric on the interface
2525 					   (currently unused) */
2526 			return -EOPNOTSUPP;
2527 
2528 		case SIOCGIFMTU:	/* Get the MTU of a device */
2529 			ifr->ifr_mtu = dev->mtu;
2530 			return 0;
2531 
2532 		case SIOCSIFMTU:	/* Set the MTU of a device */
2533 			return dev_set_mtu(dev, ifr->ifr_mtu);
2534 
2535 		case SIOCGIFHWADDR:
2536 			if (!dev->addr_len)
2537 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
2538 			else
2539 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
2540 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2541 			ifr->ifr_hwaddr.sa_family = dev->type;
2542 			return 0;
2543 
2544 		case SIOCSIFHWADDR:
2545 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
2546 
2547 		case SIOCSIFHWBROADCAST:
2548 			if (ifr->ifr_hwaddr.sa_family != dev->type)
2549 				return -EINVAL;
2550 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
2551 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2552 			raw_notifier_call_chain(&netdev_chain,
2553 					    NETDEV_CHANGEADDR, dev);
2554 			return 0;
2555 
2556 		case SIOCGIFMAP:
2557 			ifr->ifr_map.mem_start = dev->mem_start;
2558 			ifr->ifr_map.mem_end   = dev->mem_end;
2559 			ifr->ifr_map.base_addr = dev->base_addr;
2560 			ifr->ifr_map.irq       = dev->irq;
2561 			ifr->ifr_map.dma       = dev->dma;
2562 			ifr->ifr_map.port      = dev->if_port;
2563 			return 0;
2564 
2565 		case SIOCSIFMAP:
2566 			if (dev->set_config) {
2567 				if (!netif_device_present(dev))
2568 					return -ENODEV;
2569 				return dev->set_config(dev, &ifr->ifr_map);
2570 			}
2571 			return -EOPNOTSUPP;
2572 
2573 		case SIOCADDMULTI:
2574 			if (!dev->set_multicast_list ||
2575 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2576 				return -EINVAL;
2577 			if (!netif_device_present(dev))
2578 				return -ENODEV;
2579 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
2580 					  dev->addr_len, 1);
2581 
2582 		case SIOCDELMULTI:
2583 			if (!dev->set_multicast_list ||
2584 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2585 				return -EINVAL;
2586 			if (!netif_device_present(dev))
2587 				return -ENODEV;
2588 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
2589 					     dev->addr_len, 1);
2590 
2591 		case SIOCGIFINDEX:
2592 			ifr->ifr_ifindex = dev->ifindex;
2593 			return 0;
2594 
2595 		case SIOCGIFTXQLEN:
2596 			ifr->ifr_qlen = dev->tx_queue_len;
2597 			return 0;
2598 
2599 		case SIOCSIFTXQLEN:
2600 			if (ifr->ifr_qlen < 0)
2601 				return -EINVAL;
2602 			dev->tx_queue_len = ifr->ifr_qlen;
2603 			return 0;
2604 
2605 		case SIOCSIFNAME:
2606 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
2607 			return dev_change_name(dev, ifr->ifr_newname);
2608 
2609 		/*
2610 		 *	Unknown or private ioctl
2611 		 */
2612 
2613 		default:
2614 			if ((cmd >= SIOCDEVPRIVATE &&
2615 			    cmd <= SIOCDEVPRIVATE + 15) ||
2616 			    cmd == SIOCBONDENSLAVE ||
2617 			    cmd == SIOCBONDRELEASE ||
2618 			    cmd == SIOCBONDSETHWADDR ||
2619 			    cmd == SIOCBONDSLAVEINFOQUERY ||
2620 			    cmd == SIOCBONDINFOQUERY ||
2621 			    cmd == SIOCBONDCHANGEACTIVE ||
2622 			    cmd == SIOCGMIIPHY ||
2623 			    cmd == SIOCGMIIREG ||
2624 			    cmd == SIOCSMIIREG ||
2625 			    cmd == SIOCBRADDIF ||
2626 			    cmd == SIOCBRDELIF ||
2627 			    cmd == SIOCWANDEV) {
2628 				err = -EOPNOTSUPP;
2629 				if (dev->do_ioctl) {
2630 					if (netif_device_present(dev))
2631 						err = dev->do_ioctl(dev, ifr,
2632 								    cmd);
2633 					else
2634 						err = -ENODEV;
2635 				}
2636 			} else
2637 				err = -EINVAL;
2638 
2639 	}
2640 	return err;
2641 }
2642 
2643 /*
2644  *	This function handles all "interface"-type I/O control requests. The actual
2645  *	'doing' part of this is dev_ifsioc above.
2646  */
2647 
2648 /**
2649  *	dev_ioctl	-	network device ioctl
2650  *	@cmd: command to issue
2651  *	@arg: pointer to a struct ifreq in user space
2652  *
2653  *	Issue ioctl functions to devices. This is normally called by the
2654  *	user space syscall interfaces but can sometimes be useful for
2655  *	other purposes. The return value is the return from the syscall if
2656  *	positive or a negative errno code on error.
2657  */
2658 
2659 int dev_ioctl(unsigned int cmd, void __user *arg)
2660 {
2661 	struct ifreq ifr;
2662 	int ret;
2663 	char *colon;
2664 
2665 	/* One special case: SIOCGIFCONF takes ifconf argument
2666 	   and requires shared lock, because it sleeps writing
2667 	   to user space.
2668 	 */
2669 
2670 	if (cmd == SIOCGIFCONF) {
2671 		rtnl_lock();
2672 		ret = dev_ifconf((char __user *) arg);
2673 		rtnl_unlock();
2674 		return ret;
2675 	}
2676 	if (cmd == SIOCGIFNAME)
2677 		return dev_ifname((struct ifreq __user *)arg);
2678 
2679 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2680 		return -EFAULT;
2681 
2682 	ifr.ifr_name[IFNAMSIZ-1] = 0;
2683 
2684 	colon = strchr(ifr.ifr_name, ':');
2685 	if (colon)
2686 		*colon = 0;
2687 
2688 	/*
2689 	 *	See which interface the caller is talking about.
2690 	 */
2691 
2692 	switch (cmd) {
2693 		/*
2694 		 *	These ioctl calls:
2695 		 *	- can be done by all.
2696 		 *	- atomic and do not require locking.
2697 		 *	- return a value
2698 		 */
2699 		case SIOCGIFFLAGS:
2700 		case SIOCGIFMETRIC:
2701 		case SIOCGIFMTU:
2702 		case SIOCGIFHWADDR:
2703 		case SIOCGIFSLAVE:
2704 		case SIOCGIFMAP:
2705 		case SIOCGIFINDEX:
2706 		case SIOCGIFTXQLEN:
2707 			dev_load(ifr.ifr_name);
2708 			read_lock(&dev_base_lock);
2709 			ret = dev_ifsioc(&ifr, cmd);
2710 			read_unlock(&dev_base_lock);
2711 			if (!ret) {
2712 				if (colon)
2713 					*colon = ':';
2714 				if (copy_to_user(arg, &ifr,
2715 						 sizeof(struct ifreq)))
2716 					ret = -EFAULT;
2717 			}
2718 			return ret;
2719 
2720 		case SIOCETHTOOL:
2721 			dev_load(ifr.ifr_name);
2722 			rtnl_lock();
2723 			ret = dev_ethtool(&ifr);
2724 			rtnl_unlock();
2725 			if (!ret) {
2726 				if (colon)
2727 					*colon = ':';
2728 				if (copy_to_user(arg, &ifr,
2729 						 sizeof(struct ifreq)))
2730 					ret = -EFAULT;
2731 			}
2732 			return ret;
2733 
2734 		/*
2735 		 *	These ioctl calls:
2736 		 *	- require superuser power.
2737 		 *	- require strict serialization.
2738 		 *	- return a value
2739 		 */
2740 		case SIOCGMIIPHY:
2741 		case SIOCGMIIREG:
2742 		case SIOCSIFNAME:
2743 			if (!capable(CAP_NET_ADMIN))
2744 				return -EPERM;
2745 			dev_load(ifr.ifr_name);
2746 			rtnl_lock();
2747 			ret = dev_ifsioc(&ifr, cmd);
2748 			rtnl_unlock();
2749 			if (!ret) {
2750 				if (colon)
2751 					*colon = ':';
2752 				if (copy_to_user(arg, &ifr,
2753 						 sizeof(struct ifreq)))
2754 					ret = -EFAULT;
2755 			}
2756 			return ret;
2757 
2758 		/*
2759 		 *	These ioctl calls:
2760 		 *	- require superuser power.
2761 		 *	- require strict serialization.
2762 		 *	- do not return a value
2763 		 */
2764 		case SIOCSIFFLAGS:
2765 		case SIOCSIFMETRIC:
2766 		case SIOCSIFMTU:
2767 		case SIOCSIFMAP:
2768 		case SIOCSIFHWADDR:
2769 		case SIOCSIFSLAVE:
2770 		case SIOCADDMULTI:
2771 		case SIOCDELMULTI:
2772 		case SIOCSIFHWBROADCAST:
2773 		case SIOCSIFTXQLEN:
2774 		case SIOCSMIIREG:
2775 		case SIOCBONDENSLAVE:
2776 		case SIOCBONDRELEASE:
2777 		case SIOCBONDSETHWADDR:
2778 		case SIOCBONDCHANGEACTIVE:
2779 		case SIOCBRADDIF:
2780 		case SIOCBRDELIF:
2781 			if (!capable(CAP_NET_ADMIN))
2782 				return -EPERM;
2783 			/* fall through */
2784 		case SIOCBONDSLAVEINFOQUERY:
2785 		case SIOCBONDINFOQUERY:
2786 			dev_load(ifr.ifr_name);
2787 			rtnl_lock();
2788 			ret = dev_ifsioc(&ifr, cmd);
2789 			rtnl_unlock();
2790 			return ret;
2791 
2792 		case SIOCGIFMEM:
2793 			/* Get the per device memory space. We can add this but
2794 			 * currently do not support it */
2795 		case SIOCSIFMEM:
2796 			/* Set the per device memory buffer space.
2797 			 * Not applicable in our case */
2798 		case SIOCSIFLINK:
2799 			return -EINVAL;
2800 
2801 		/*
2802 		 *	Unknown or private ioctl.
2803 		 */
2804 		default:
2805 			if (cmd == SIOCWANDEV ||
2806 			    (cmd >= SIOCDEVPRIVATE &&
2807 			     cmd <= SIOCDEVPRIVATE + 15)) {
2808 				dev_load(ifr.ifr_name);
2809 				rtnl_lock();
2810 				ret = dev_ifsioc(&ifr, cmd);
2811 				rtnl_unlock();
2812 				if (!ret && copy_to_user(arg, &ifr,
2813 							 sizeof(struct ifreq)))
2814 					ret = -EFAULT;
2815 				return ret;
2816 			}
2817 #ifdef CONFIG_WIRELESS_EXT
2818 			/* Take care of Wireless Extensions */
2819 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
2820 				/* If command is `set a parameter', or
2821 				 * `get the encoding parameters', check if
2822 				 * the user has the right to do it */
2823 				if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE
2824 				    || cmd == SIOCGIWENCODEEXT) {
2825 					if (!capable(CAP_NET_ADMIN))
2826 						return -EPERM;
2827 				}
2828 				dev_load(ifr.ifr_name);
2829 				rtnl_lock();
2830 				/* Follow me in net/core/wireless.c */
2831 				ret = wireless_process_ioctl(&ifr, cmd);
2832 				rtnl_unlock();
2833 				if (IW_IS_GET(cmd) &&
2834 				    copy_to_user(arg, &ifr,
2835 					    	 sizeof(struct ifreq)))
2836 					ret = -EFAULT;
2837 				return ret;
2838 			}
2839 #endif	/* CONFIG_WIRELESS_EXT */
2840 			return -EINVAL;
2841 	}
2842 }
2843 
2844 
2845 /**
2846  *	dev_new_index	-	allocate an ifindex
2847  *
2848  *	Returns a suitable unique value for a new device interface
2849  *	number.  The caller must hold the rtnl semaphore or the
2850  *	dev_base_lock to be sure it remains unique.
2851  */
2852 static int dev_new_index(void)
2853 {
2854 	static int ifindex;
2855 	for (;;) {
2856 		if (++ifindex <= 0)
2857 			ifindex = 1;
2858 		if (!__dev_get_by_index(ifindex))
2859 			return ifindex;
2860 	}
2861 }
2862 
2863 static int dev_boot_phase = 1;
2864 
2865 /* Delayed registration/unregisteration */
2866 static DEFINE_SPINLOCK(net_todo_list_lock);
2867 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
2868 
2869 static inline void net_set_todo(struct net_device *dev)
2870 {
2871 	spin_lock(&net_todo_list_lock);
2872 	list_add_tail(&dev->todo_list, &net_todo_list);
2873 	spin_unlock(&net_todo_list_lock);
2874 }
2875 
2876 /**
2877  *	register_netdevice	- register a network device
2878  *	@dev: device to register
2879  *
2880  *	Take a completed network device structure and add it to the kernel
2881  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
2882  *	chain. 0 is returned on success. A negative errno code is returned
2883  *	on a failure to set up the device, or if the name is a duplicate.
2884  *
2885  *	Callers must hold the rtnl semaphore. You may want
2886  *	register_netdev() instead of this.
2887  *
2888  *	BUGS:
2889  *	The locking appears insufficient to guarantee two parallel registers
2890  *	will not get the same name.
2891  */
2892 
2893 int register_netdevice(struct net_device *dev)
2894 {
2895 	struct hlist_head *head;
2896 	struct hlist_node *p;
2897 	int ret;
2898 
2899 	BUG_ON(dev_boot_phase);
2900 	ASSERT_RTNL();
2901 
2902 	might_sleep();
2903 
2904 	/* When net_device's are persistent, this will be fatal. */
2905 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
2906 
2907 	spin_lock_init(&dev->queue_lock);
2908 	spin_lock_init(&dev->_xmit_lock);
2909 	dev->xmit_lock_owner = -1;
2910 #ifdef CONFIG_NET_CLS_ACT
2911 	spin_lock_init(&dev->ingress_lock);
2912 #endif
2913 
2914 	ret = alloc_divert_blk(dev);
2915 	if (ret)
2916 		goto out;
2917 
2918 	dev->iflink = -1;
2919 
2920 	/* Init, if this function is available */
2921 	if (dev->init) {
2922 		ret = dev->init(dev);
2923 		if (ret) {
2924 			if (ret > 0)
2925 				ret = -EIO;
2926 			goto out_err;
2927 		}
2928 	}
2929 
2930 	if (!dev_valid_name(dev->name)) {
2931 		ret = -EINVAL;
2932 		goto out_err;
2933 	}
2934 
2935 	dev->ifindex = dev_new_index();
2936 	if (dev->iflink == -1)
2937 		dev->iflink = dev->ifindex;
2938 
2939 	/* Check for existence of name */
2940 	head = dev_name_hash(dev->name);
2941 	hlist_for_each(p, head) {
2942 		struct net_device *d
2943 			= hlist_entry(p, struct net_device, name_hlist);
2944 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
2945 			ret = -EEXIST;
2946  			goto out_err;
2947 		}
2948  	}
2949 
2950 	/* Fix illegal SG+CSUM combinations. */
2951 	if ((dev->features & NETIF_F_SG) &&
2952 	    !(dev->features & NETIF_F_ALL_CSUM)) {
2953 		printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
2954 		       dev->name);
2955 		dev->features &= ~NETIF_F_SG;
2956 	}
2957 
2958 	/* TSO requires that SG is present as well. */
2959 	if ((dev->features & NETIF_F_TSO) &&
2960 	    !(dev->features & NETIF_F_SG)) {
2961 		printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
2962 		       dev->name);
2963 		dev->features &= ~NETIF_F_TSO;
2964 	}
2965 	if (dev->features & NETIF_F_UFO) {
2966 		if (!(dev->features & NETIF_F_HW_CSUM)) {
2967 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
2968 					"NETIF_F_HW_CSUM feature.\n",
2969 							dev->name);
2970 			dev->features &= ~NETIF_F_UFO;
2971 		}
2972 		if (!(dev->features & NETIF_F_SG)) {
2973 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
2974 					"NETIF_F_SG feature.\n",
2975 					dev->name);
2976 			dev->features &= ~NETIF_F_UFO;
2977 		}
2978 	}
2979 
2980 	/*
2981 	 *	nil rebuild_header routine,
2982 	 *	that should be never called and used as just bug trap.
2983 	 */
2984 
2985 	if (!dev->rebuild_header)
2986 		dev->rebuild_header = default_rebuild_header;
2987 
2988 	ret = netdev_register_sysfs(dev);
2989 	if (ret)
2990 		goto out_err;
2991 	dev->reg_state = NETREG_REGISTERED;
2992 
2993 	/*
2994 	 *	Default initial state at registry is that the
2995 	 *	device is present.
2996 	 */
2997 
2998 	set_bit(__LINK_STATE_PRESENT, &dev->state);
2999 
3000 	dev->next = NULL;
3001 	dev_init_scheduler(dev);
3002 	write_lock_bh(&dev_base_lock);
3003 	*dev_tail = dev;
3004 	dev_tail = &dev->next;
3005 	hlist_add_head(&dev->name_hlist, head);
3006 	hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex));
3007 	dev_hold(dev);
3008 	write_unlock_bh(&dev_base_lock);
3009 
3010 	/* Notify protocols, that a new device appeared. */
3011 	raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);
3012 
3013 	ret = 0;
3014 
3015 out:
3016 	return ret;
3017 out_err:
3018 	free_divert_blk(dev);
3019 	goto out;
3020 }
3021 
3022 /**
3023  *	register_netdev	- register a network device
3024  *	@dev: device to register
3025  *
3026  *	Take a completed network device structure and add it to the kernel
3027  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3028  *	chain. 0 is returned on success. A negative errno code is returned
3029  *	on a failure to set up the device, or if the name is a duplicate.
3030  *
3031  *	This is a wrapper around register_netdev that takes the rtnl semaphore
3032  *	and expands the device name if you passed a format string to
3033  *	alloc_netdev.
3034  */
3035 int register_netdev(struct net_device *dev)
3036 {
3037 	int err;
3038 
3039 	rtnl_lock();
3040 
3041 	/*
3042 	 * If the name is a format string the caller wants us to do a
3043 	 * name allocation.
3044 	 */
3045 	if (strchr(dev->name, '%')) {
3046 		err = dev_alloc_name(dev, dev->name);
3047 		if (err < 0)
3048 			goto out;
3049 	}
3050 
3051 	/*
3052 	 * Back compatibility hook. Kill this one in 2.5
3053 	 */
3054 	if (dev->name[0] == 0 || dev->name[0] == ' ') {
3055 		err = dev_alloc_name(dev, "eth%d");
3056 		if (err < 0)
3057 			goto out;
3058 	}
3059 
3060 	err = register_netdevice(dev);
3061 out:
3062 	rtnl_unlock();
3063 	return err;
3064 }
3065 EXPORT_SYMBOL(register_netdev);
3066 
3067 /*
3068  * netdev_wait_allrefs - wait until all references are gone.
3069  *
3070  * This is called when unregistering network devices.
3071  *
3072  * Any protocol or device that holds a reference should register
3073  * for netdevice notification, and cleanup and put back the
3074  * reference if they receive an UNREGISTER event.
3075  * We can get stuck here if buggy protocols don't correctly
3076  * call dev_put.
3077  */
3078 static void netdev_wait_allrefs(struct net_device *dev)
3079 {
3080 	unsigned long rebroadcast_time, warning_time;
3081 
3082 	rebroadcast_time = warning_time = jiffies;
3083 	while (atomic_read(&dev->refcnt) != 0) {
3084 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3085 			rtnl_lock();
3086 
3087 			/* Rebroadcast unregister notification */
3088 			raw_notifier_call_chain(&netdev_chain,
3089 					    NETDEV_UNREGISTER, dev);
3090 
3091 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3092 				     &dev->state)) {
3093 				/* We must not have linkwatch events
3094 				 * pending on unregister. If this
3095 				 * happens, we simply run the queue
3096 				 * unscheduled, resulting in a noop
3097 				 * for this device.
3098 				 */
3099 				linkwatch_run_queue();
3100 			}
3101 
3102 			__rtnl_unlock();
3103 
3104 			rebroadcast_time = jiffies;
3105 		}
3106 
3107 		msleep(250);
3108 
3109 		if (time_after(jiffies, warning_time + 10 * HZ)) {
3110 			printk(KERN_EMERG "unregister_netdevice: "
3111 			       "waiting for %s to become free. Usage "
3112 			       "count = %d\n",
3113 			       dev->name, atomic_read(&dev->refcnt));
3114 			warning_time = jiffies;
3115 		}
3116 	}
3117 }
3118 
3119 /* The sequence is:
3120  *
3121  *	rtnl_lock();
3122  *	...
3123  *	register_netdevice(x1);
3124  *	register_netdevice(x2);
3125  *	...
3126  *	unregister_netdevice(y1);
3127  *	unregister_netdevice(y2);
3128  *      ...
3129  *	rtnl_unlock();
3130  *	free_netdev(y1);
3131  *	free_netdev(y2);
3132  *
3133  * We are invoked by rtnl_unlock() after it drops the semaphore.
3134  * This allows us to deal with problems:
3135  * 1) We can delete sysfs objects which invoke hotplug
3136  *    without deadlocking with linkwatch via keventd.
3137  * 2) Since we run with the RTNL semaphore not held, we can sleep
3138  *    safely in order to wait for the netdev refcnt to drop to zero.
3139  */
3140 static DEFINE_MUTEX(net_todo_run_mutex);
3141 void netdev_run_todo(void)
3142 {
3143 	struct list_head list;
3144 
3145 	/* Need to guard against multiple cpu's getting out of order. */
3146 	mutex_lock(&net_todo_run_mutex);
3147 
3148 	/* Not safe to do outside the semaphore.  We must not return
3149 	 * until all unregister events invoked by the local processor
3150 	 * have been completed (either by this todo run, or one on
3151 	 * another cpu).
3152 	 */
3153 	if (list_empty(&net_todo_list))
3154 		goto out;
3155 
3156 	/* Snapshot list, allow later requests */
3157 	spin_lock(&net_todo_list_lock);
3158 	list_replace_init(&net_todo_list, &list);
3159 	spin_unlock(&net_todo_list_lock);
3160 
3161 	while (!list_empty(&list)) {
3162 		struct net_device *dev
3163 			= list_entry(list.next, struct net_device, todo_list);
3164 		list_del(&dev->todo_list);
3165 
3166 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3167 			printk(KERN_ERR "network todo '%s' but state %d\n",
3168 			       dev->name, dev->reg_state);
3169 			dump_stack();
3170 			continue;
3171 		}
3172 
3173 		netdev_unregister_sysfs(dev);
3174 		dev->reg_state = NETREG_UNREGISTERED;
3175 
3176 		netdev_wait_allrefs(dev);
3177 
3178 		/* paranoia */
3179 		BUG_ON(atomic_read(&dev->refcnt));
3180 		BUG_TRAP(!dev->ip_ptr);
3181 		BUG_TRAP(!dev->ip6_ptr);
3182 		BUG_TRAP(!dev->dn_ptr);
3183 
3184 		/* It must be the very last action,
3185 		 * after this 'dev' may point to freed up memory.
3186 		 */
3187 		if (dev->destructor)
3188 			dev->destructor(dev);
3189 	}
3190 
3191 out:
3192 	mutex_unlock(&net_todo_run_mutex);
3193 }
3194 
3195 /**
3196  *	alloc_netdev - allocate network device
3197  *	@sizeof_priv:	size of private data to allocate space for
3198  *	@name:		device name format string
3199  *	@setup:		callback to initialize device
3200  *
3201  *	Allocates a struct net_device with private data area for driver use
3202  *	and performs basic initialization.
3203  */
3204 struct net_device *alloc_netdev(int sizeof_priv, const char *name,
3205 		void (*setup)(struct net_device *))
3206 {
3207 	void *p;
3208 	struct net_device *dev;
3209 	int alloc_size;
3210 
3211 	/* ensure 32-byte alignment of both the device and private area */
3212 	alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
3213 	alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3214 
3215 	p = kzalloc(alloc_size, GFP_KERNEL);
3216 	if (!p) {
3217 		printk(KERN_ERR "alloc_dev: Unable to allocate device.\n");
3218 		return NULL;
3219 	}
3220 
3221 	dev = (struct net_device *)
3222 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3223 	dev->padded = (char *)dev - (char *)p;
3224 
3225 	if (sizeof_priv)
3226 		dev->priv = netdev_priv(dev);
3227 
3228 	setup(dev);
3229 	strcpy(dev->name, name);
3230 	return dev;
3231 }
3232 EXPORT_SYMBOL(alloc_netdev);
3233 
3234 /**
3235  *	free_netdev - free network device
3236  *	@dev: device
3237  *
3238  *	This function does the last stage of destroying an allocated device
3239  * 	interface. The reference to the device object is released.
3240  *	If this is the last reference then it will be freed.
3241  */
3242 void free_netdev(struct net_device *dev)
3243 {
3244 #ifdef CONFIG_SYSFS
3245 	/*  Compatibility with error handling in drivers */
3246 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3247 		kfree((char *)dev - dev->padded);
3248 		return;
3249 	}
3250 
3251 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3252 	dev->reg_state = NETREG_RELEASED;
3253 
3254 	/* will free via class release */
3255 	class_device_put(&dev->class_dev);
3256 #else
3257 	kfree((char *)dev - dev->padded);
3258 #endif
3259 }
3260 
3261 /* Synchronize with packet receive processing. */
3262 void synchronize_net(void)
3263 {
3264 	might_sleep();
3265 	synchronize_rcu();
3266 }
3267 
3268 /**
3269  *	unregister_netdevice - remove device from the kernel
3270  *	@dev: device
3271  *
3272  *	This function shuts down a device interface and removes it
3273  *	from the kernel tables. On success 0 is returned, on a failure
3274  *	a negative errno code is returned.
3275  *
3276  *	Callers must hold the rtnl semaphore.  You may want
3277  *	unregister_netdev() instead of this.
3278  */
3279 
3280 int unregister_netdevice(struct net_device *dev)
3281 {
3282 	struct net_device *d, **dp;
3283 
3284 	BUG_ON(dev_boot_phase);
3285 	ASSERT_RTNL();
3286 
3287 	/* Some devices call without registering for initialization unwind. */
3288 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3289 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3290 				  "was registered\n", dev->name, dev);
3291 		return -ENODEV;
3292 	}
3293 
3294 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3295 
3296 	/* If device is running, close it first. */
3297 	if (dev->flags & IFF_UP)
3298 		dev_close(dev);
3299 
3300 	/* And unlink it from device chain. */
3301 	for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) {
3302 		if (d == dev) {
3303 			write_lock_bh(&dev_base_lock);
3304 			hlist_del(&dev->name_hlist);
3305 			hlist_del(&dev->index_hlist);
3306 			if (dev_tail == &dev->next)
3307 				dev_tail = dp;
3308 			*dp = d->next;
3309 			write_unlock_bh(&dev_base_lock);
3310 			break;
3311 		}
3312 	}
3313 	if (!d) {
3314 		printk(KERN_ERR "unregister net_device: '%s' not found\n",
3315 		       dev->name);
3316 		return -ENODEV;
3317 	}
3318 
3319 	dev->reg_state = NETREG_UNREGISTERING;
3320 
3321 	synchronize_net();
3322 
3323 	/* Shutdown queueing discipline. */
3324 	dev_shutdown(dev);
3325 
3326 
3327 	/* Notify protocols, that we are about to destroy
3328 	   this device. They should clean all the things.
3329 	*/
3330 	raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
3331 
3332 	/*
3333 	 *	Flush the multicast chain
3334 	 */
3335 	dev_mc_discard(dev);
3336 
3337 	if (dev->uninit)
3338 		dev->uninit(dev);
3339 
3340 	/* Notifier chain MUST detach us from master device. */
3341 	BUG_TRAP(!dev->master);
3342 
3343 	free_divert_blk(dev);
3344 
3345 	/* Finish processing unregister after unlock */
3346 	net_set_todo(dev);
3347 
3348 	synchronize_net();
3349 
3350 	dev_put(dev);
3351 	return 0;
3352 }
3353 
3354 /**
3355  *	unregister_netdev - remove device from the kernel
3356  *	@dev: device
3357  *
3358  *	This function shuts down a device interface and removes it
3359  *	from the kernel tables. On success 0 is returned, on a failure
3360  *	a negative errno code is returned.
3361  *
3362  *	This is just a wrapper for unregister_netdevice that takes
3363  *	the rtnl semaphore.  In general you want to use this and not
3364  *	unregister_netdevice.
3365  */
3366 void unregister_netdev(struct net_device *dev)
3367 {
3368 	rtnl_lock();
3369 	unregister_netdevice(dev);
3370 	rtnl_unlock();
3371 }
3372 
3373 EXPORT_SYMBOL(unregister_netdev);
3374 
3375 #ifdef CONFIG_HOTPLUG_CPU
3376 static int dev_cpu_callback(struct notifier_block *nfb,
3377 			    unsigned long action,
3378 			    void *ocpu)
3379 {
3380 	struct sk_buff **list_skb;
3381 	struct net_device **list_net;
3382 	struct sk_buff *skb;
3383 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
3384 	struct softnet_data *sd, *oldsd;
3385 
3386 	if (action != CPU_DEAD)
3387 		return NOTIFY_OK;
3388 
3389 	local_irq_disable();
3390 	cpu = smp_processor_id();
3391 	sd = &per_cpu(softnet_data, cpu);
3392 	oldsd = &per_cpu(softnet_data, oldcpu);
3393 
3394 	/* Find end of our completion_queue. */
3395 	list_skb = &sd->completion_queue;
3396 	while (*list_skb)
3397 		list_skb = &(*list_skb)->next;
3398 	/* Append completion queue from offline CPU. */
3399 	*list_skb = oldsd->completion_queue;
3400 	oldsd->completion_queue = NULL;
3401 
3402 	/* Find end of our output_queue. */
3403 	list_net = &sd->output_queue;
3404 	while (*list_net)
3405 		list_net = &(*list_net)->next_sched;
3406 	/* Append output queue from offline CPU. */
3407 	*list_net = oldsd->output_queue;
3408 	oldsd->output_queue = NULL;
3409 
3410 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3411 	local_irq_enable();
3412 
3413 	/* Process offline CPU's input_pkt_queue */
3414 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
3415 		netif_rx(skb);
3416 
3417 	return NOTIFY_OK;
3418 }
3419 #endif /* CONFIG_HOTPLUG_CPU */
3420 
3421 #ifdef CONFIG_NET_DMA
3422 /**
3423  * net_dma_rebalance -
3424  * This is called when the number of channels allocated to the net_dma_client
3425  * changes.  The net_dma_client tries to have one DMA channel per CPU.
3426  */
3427 static void net_dma_rebalance(void)
3428 {
3429 	unsigned int cpu, i, n;
3430 	struct dma_chan *chan;
3431 
3432 	lock_cpu_hotplug();
3433 
3434 	if (net_dma_count == 0) {
3435 		for_each_online_cpu(cpu)
3436 			rcu_assign_pointer(per_cpu(softnet_data.net_dma, cpu), NULL);
3437 		unlock_cpu_hotplug();
3438 		return;
3439 	}
3440 
3441 	i = 0;
3442 	cpu = first_cpu(cpu_online_map);
3443 
3444 	rcu_read_lock();
3445 	list_for_each_entry(chan, &net_dma_client->channels, client_node) {
3446 		n = ((num_online_cpus() / net_dma_count)
3447 		   + (i < (num_online_cpus() % net_dma_count) ? 1 : 0));
3448 
3449 		while(n) {
3450 			per_cpu(softnet_data.net_dma, cpu) = chan;
3451 			cpu = next_cpu(cpu, cpu_online_map);
3452 			n--;
3453 		}
3454 		i++;
3455 	}
3456 	rcu_read_unlock();
3457 
3458 	unlock_cpu_hotplug();
3459 }
3460 
3461 /**
3462  * netdev_dma_event - event callback for the net_dma_client
3463  * @client: should always be net_dma_client
3464  * @chan: DMA channel for the event
3465  * @event: event type
3466  */
3467 static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
3468 	enum dma_event event)
3469 {
3470 	spin_lock(&net_dma_event_lock);
3471 	switch (event) {
3472 	case DMA_RESOURCE_ADDED:
3473 		net_dma_count++;
3474 		net_dma_rebalance();
3475 		break;
3476 	case DMA_RESOURCE_REMOVED:
3477 		net_dma_count--;
3478 		net_dma_rebalance();
3479 		break;
3480 	default:
3481 		break;
3482 	}
3483 	spin_unlock(&net_dma_event_lock);
3484 }
3485 
3486 /**
3487  * netdev_dma_regiser - register the networking subsystem as a DMA client
3488  */
3489 static int __init netdev_dma_register(void)
3490 {
3491 	spin_lock_init(&net_dma_event_lock);
3492 	net_dma_client = dma_async_client_register(netdev_dma_event);
3493 	if (net_dma_client == NULL)
3494 		return -ENOMEM;
3495 
3496 	dma_async_client_chan_request(net_dma_client, num_online_cpus());
3497 	return 0;
3498 }
3499 
3500 #else
3501 static int __init netdev_dma_register(void) { return -ENODEV; }
3502 #endif /* CONFIG_NET_DMA */
3503 
3504 /*
3505  *	Initialize the DEV module. At boot time this walks the device list and
3506  *	unhooks any devices that fail to initialise (normally hardware not
3507  *	present) and leaves us with a valid list of present and active devices.
3508  *
3509  */
3510 
3511 /*
3512  *       This is called single threaded during boot, so no need
3513  *       to take the rtnl semaphore.
3514  */
3515 static int __init net_dev_init(void)
3516 {
3517 	int i, rc = -ENOMEM;
3518 
3519 	BUG_ON(!dev_boot_phase);
3520 
3521 	net_random_init();
3522 
3523 	if (dev_proc_init())
3524 		goto out;
3525 
3526 	if (netdev_sysfs_init())
3527 		goto out;
3528 
3529 	INIT_LIST_HEAD(&ptype_all);
3530 	for (i = 0; i < 16; i++)
3531 		INIT_LIST_HEAD(&ptype_base[i]);
3532 
3533 	for (i = 0; i < ARRAY_SIZE(dev_name_head); i++)
3534 		INIT_HLIST_HEAD(&dev_name_head[i]);
3535 
3536 	for (i = 0; i < ARRAY_SIZE(dev_index_head); i++)
3537 		INIT_HLIST_HEAD(&dev_index_head[i]);
3538 
3539 	/*
3540 	 *	Initialise the packet receive queues.
3541 	 */
3542 
3543 	for_each_possible_cpu(i) {
3544 		struct softnet_data *queue;
3545 
3546 		queue = &per_cpu(softnet_data, i);
3547 		skb_queue_head_init(&queue->input_pkt_queue);
3548 		queue->completion_queue = NULL;
3549 		INIT_LIST_HEAD(&queue->poll_list);
3550 		set_bit(__LINK_STATE_START, &queue->backlog_dev.state);
3551 		queue->backlog_dev.weight = weight_p;
3552 		queue->backlog_dev.poll = process_backlog;
3553 		atomic_set(&queue->backlog_dev.refcnt, 1);
3554 	}
3555 
3556 	netdev_dma_register();
3557 
3558 	dev_boot_phase = 0;
3559 
3560 	open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
3561 	open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
3562 
3563 	hotcpu_notifier(dev_cpu_callback, 0);
3564 	dst_init();
3565 	dev_mcast_init();
3566 	rc = 0;
3567 out:
3568 	return rc;
3569 }
3570 
3571 subsys_initcall(net_dev_init);
3572 
3573 EXPORT_SYMBOL(__dev_get_by_index);
3574 EXPORT_SYMBOL(__dev_get_by_name);
3575 EXPORT_SYMBOL(__dev_remove_pack);
3576 EXPORT_SYMBOL(dev_valid_name);
3577 EXPORT_SYMBOL(dev_add_pack);
3578 EXPORT_SYMBOL(dev_alloc_name);
3579 EXPORT_SYMBOL(dev_close);
3580 EXPORT_SYMBOL(dev_get_by_flags);
3581 EXPORT_SYMBOL(dev_get_by_index);
3582 EXPORT_SYMBOL(dev_get_by_name);
3583 EXPORT_SYMBOL(dev_open);
3584 EXPORT_SYMBOL(dev_queue_xmit);
3585 EXPORT_SYMBOL(dev_remove_pack);
3586 EXPORT_SYMBOL(dev_set_allmulti);
3587 EXPORT_SYMBOL(dev_set_promiscuity);
3588 EXPORT_SYMBOL(dev_change_flags);
3589 EXPORT_SYMBOL(dev_set_mtu);
3590 EXPORT_SYMBOL(dev_set_mac_address);
3591 EXPORT_SYMBOL(free_netdev);
3592 EXPORT_SYMBOL(netdev_boot_setup_check);
3593 EXPORT_SYMBOL(netdev_set_master);
3594 EXPORT_SYMBOL(netdev_state_change);
3595 EXPORT_SYMBOL(netif_receive_skb);
3596 EXPORT_SYMBOL(netif_rx);
3597 EXPORT_SYMBOL(register_gifconf);
3598 EXPORT_SYMBOL(register_netdevice);
3599 EXPORT_SYMBOL(register_netdevice_notifier);
3600 EXPORT_SYMBOL(skb_checksum_help);
3601 EXPORT_SYMBOL(synchronize_net);
3602 EXPORT_SYMBOL(unregister_netdevice);
3603 EXPORT_SYMBOL(unregister_netdevice_notifier);
3604 EXPORT_SYMBOL(net_enable_timestamp);
3605 EXPORT_SYMBOL(net_disable_timestamp);
3606 EXPORT_SYMBOL(dev_get_flags);
3607 
3608 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
3609 EXPORT_SYMBOL(br_handle_frame_hook);
3610 EXPORT_SYMBOL(br_fdb_get_hook);
3611 EXPORT_SYMBOL(br_fdb_put_hook);
3612 #endif
3613 
3614 #ifdef CONFIG_KMOD
3615 EXPORT_SYMBOL(dev_load);
3616 #endif
3617 
3618 EXPORT_PER_CPU_SYMBOL(softnet_data);
3619