1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 135 #include "net-sysfs.h" 136 137 /* Instead of increasing this, you should create a hash table. */ 138 #define MAX_GRO_SKBS 8 139 140 /* This should be increased if a protocol with a bigger head is added. */ 141 #define GRO_MAX_HEAD (MAX_HEADER + 128) 142 143 static DEFINE_SPINLOCK(ptype_lock); 144 static DEFINE_SPINLOCK(offload_lock); 145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 146 struct list_head ptype_all __read_mostly; /* Taps */ 147 static struct list_head offload_base __read_mostly; 148 149 /* 150 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 151 * semaphore. 152 * 153 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 154 * 155 * Writers must hold the rtnl semaphore while they loop through the 156 * dev_base_head list, and hold dev_base_lock for writing when they do the 157 * actual updates. This allows pure readers to access the list even 158 * while a writer is preparing to update it. 159 * 160 * To put it another way, dev_base_lock is held for writing only to 161 * protect against pure readers; the rtnl semaphore provides the 162 * protection against other writers. 163 * 164 * See, for example usages, register_netdevice() and 165 * unregister_netdevice(), which must be called with the rtnl 166 * semaphore held. 167 */ 168 DEFINE_RWLOCK(dev_base_lock); 169 EXPORT_SYMBOL(dev_base_lock); 170 171 /* protects napi_hash addition/deletion and napi_gen_id */ 172 static DEFINE_SPINLOCK(napi_hash_lock); 173 174 static unsigned int napi_gen_id; 175 static DEFINE_HASHTABLE(napi_hash, 8); 176 177 seqcount_t devnet_rename_seq; 178 179 static inline void dev_base_seq_inc(struct net *net) 180 { 181 while (++net->dev_base_seq == 0); 182 } 183 184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 185 { 186 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 187 188 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 189 } 190 191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 192 { 193 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 194 } 195 196 static inline void rps_lock(struct softnet_data *sd) 197 { 198 #ifdef CONFIG_RPS 199 spin_lock(&sd->input_pkt_queue.lock); 200 #endif 201 } 202 203 static inline void rps_unlock(struct softnet_data *sd) 204 { 205 #ifdef CONFIG_RPS 206 spin_unlock(&sd->input_pkt_queue.lock); 207 #endif 208 } 209 210 /* Device list insertion */ 211 static void list_netdevice(struct net_device *dev) 212 { 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head_rcu(&dev->index_hlist, 221 dev_index_hash(net, dev->ifindex)); 222 write_unlock_bh(&dev_base_lock); 223 224 dev_base_seq_inc(net); 225 } 226 227 /* Device list removal 228 * caller must respect a RCU grace period before freeing/reusing dev 229 */ 230 static void unlist_netdevice(struct net_device *dev) 231 { 232 ASSERT_RTNL(); 233 234 /* Unlink dev from the device chain */ 235 write_lock_bh(&dev_base_lock); 236 list_del_rcu(&dev->dev_list); 237 hlist_del_rcu(&dev->name_hlist); 238 hlist_del_rcu(&dev->index_hlist); 239 write_unlock_bh(&dev_base_lock); 240 241 dev_base_seq_inc(dev_net(dev)); 242 } 243 244 /* 245 * Our notifier list 246 */ 247 248 static RAW_NOTIFIER_HEAD(netdev_chain); 249 250 /* 251 * Device drivers call our routines to queue packets here. We empty the 252 * queue in the local softnet handler. 253 */ 254 255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 256 EXPORT_PER_CPU_SYMBOL(softnet_data); 257 258 #ifdef CONFIG_LOCKDEP 259 /* 260 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 261 * according to dev->type 262 */ 263 static const unsigned short netdev_lock_type[] = 264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 276 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 277 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 278 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 279 280 static const char *const netdev_lock_name[] = 281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 293 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 294 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 295 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 296 297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 299 300 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 301 { 302 int i; 303 304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 305 if (netdev_lock_type[i] == dev_type) 306 return i; 307 /* the last key is used by default */ 308 return ARRAY_SIZE(netdev_lock_type) - 1; 309 } 310 311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 312 unsigned short dev_type) 313 { 314 int i; 315 316 i = netdev_lock_pos(dev_type); 317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 318 netdev_lock_name[i]); 319 } 320 321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 322 { 323 int i; 324 325 i = netdev_lock_pos(dev->type); 326 lockdep_set_class_and_name(&dev->addr_list_lock, 327 &netdev_addr_lock_key[i], 328 netdev_lock_name[i]); 329 } 330 #else 331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 332 unsigned short dev_type) 333 { 334 } 335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336 { 337 } 338 #endif 339 340 /******************************************************************************* 341 342 Protocol management and registration routines 343 344 *******************************************************************************/ 345 346 /* 347 * Add a protocol ID to the list. Now that the input handler is 348 * smarter we can dispense with all the messy stuff that used to be 349 * here. 350 * 351 * BEWARE!!! Protocol handlers, mangling input packets, 352 * MUST BE last in hash buckets and checking protocol handlers 353 * MUST start from promiscuous ptype_all chain in net_bh. 354 * It is true now, do not change it. 355 * Explanation follows: if protocol handler, mangling packet, will 356 * be the first on list, it is not able to sense, that packet 357 * is cloned and should be copied-on-write, so that it will 358 * change it and subsequent readers will get broken packet. 359 * --ANK (980803) 360 */ 361 362 static inline struct list_head *ptype_head(const struct packet_type *pt) 363 { 364 if (pt->type == htons(ETH_P_ALL)) 365 return &ptype_all; 366 else 367 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 368 } 369 370 /** 371 * dev_add_pack - add packet handler 372 * @pt: packet type declaration 373 * 374 * Add a protocol handler to the networking stack. The passed &packet_type 375 * is linked into kernel lists and may not be freed until it has been 376 * removed from the kernel lists. 377 * 378 * This call does not sleep therefore it can not 379 * guarantee all CPU's that are in middle of receiving packets 380 * will see the new packet type (until the next received packet). 381 */ 382 383 void dev_add_pack(struct packet_type *pt) 384 { 385 struct list_head *head = ptype_head(pt); 386 387 spin_lock(&ptype_lock); 388 list_add_rcu(&pt->list, head); 389 spin_unlock(&ptype_lock); 390 } 391 EXPORT_SYMBOL(dev_add_pack); 392 393 /** 394 * __dev_remove_pack - remove packet handler 395 * @pt: packet type declaration 396 * 397 * Remove a protocol handler that was previously added to the kernel 398 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 399 * from the kernel lists and can be freed or reused once this function 400 * returns. 401 * 402 * The packet type might still be in use by receivers 403 * and must not be freed until after all the CPU's have gone 404 * through a quiescent state. 405 */ 406 void __dev_remove_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 struct packet_type *pt1; 410 411 spin_lock(&ptype_lock); 412 413 list_for_each_entry(pt1, head, list) { 414 if (pt == pt1) { 415 list_del_rcu(&pt->list); 416 goto out; 417 } 418 } 419 420 pr_warn("dev_remove_pack: %p not found\n", pt); 421 out: 422 spin_unlock(&ptype_lock); 423 } 424 EXPORT_SYMBOL(__dev_remove_pack); 425 426 /** 427 * dev_remove_pack - remove packet handler 428 * @pt: packet type declaration 429 * 430 * Remove a protocol handler that was previously added to the kernel 431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 432 * from the kernel lists and can be freed or reused once this function 433 * returns. 434 * 435 * This call sleeps to guarantee that no CPU is looking at the packet 436 * type after return. 437 */ 438 void dev_remove_pack(struct packet_type *pt) 439 { 440 __dev_remove_pack(pt); 441 442 synchronize_net(); 443 } 444 EXPORT_SYMBOL(dev_remove_pack); 445 446 447 /** 448 * dev_add_offload - register offload handlers 449 * @po: protocol offload declaration 450 * 451 * Add protocol offload handlers to the networking stack. The passed 452 * &proto_offload is linked into kernel lists and may not be freed until 453 * it has been removed from the kernel lists. 454 * 455 * This call does not sleep therefore it can not 456 * guarantee all CPU's that are in middle of receiving packets 457 * will see the new offload handlers (until the next received packet). 458 */ 459 void dev_add_offload(struct packet_offload *po) 460 { 461 struct list_head *head = &offload_base; 462 463 spin_lock(&offload_lock); 464 list_add_rcu(&po->list, head); 465 spin_unlock(&offload_lock); 466 } 467 EXPORT_SYMBOL(dev_add_offload); 468 469 /** 470 * __dev_remove_offload - remove offload handler 471 * @po: packet offload declaration 472 * 473 * Remove a protocol offload handler that was previously added to the 474 * kernel offload handlers by dev_add_offload(). The passed &offload_type 475 * is removed from the kernel lists and can be freed or reused once this 476 * function returns. 477 * 478 * The packet type might still be in use by receivers 479 * and must not be freed until after all the CPU's have gone 480 * through a quiescent state. 481 */ 482 void __dev_remove_offload(struct packet_offload *po) 483 { 484 struct list_head *head = &offload_base; 485 struct packet_offload *po1; 486 487 spin_lock(&offload_lock); 488 489 list_for_each_entry(po1, head, list) { 490 if (po == po1) { 491 list_del_rcu(&po->list); 492 goto out; 493 } 494 } 495 496 pr_warn("dev_remove_offload: %p not found\n", po); 497 out: 498 spin_unlock(&offload_lock); 499 } 500 EXPORT_SYMBOL(__dev_remove_offload); 501 502 /** 503 * dev_remove_offload - remove packet offload handler 504 * @po: packet offload declaration 505 * 506 * Remove a packet offload handler that was previously added to the kernel 507 * offload handlers by dev_add_offload(). The passed &offload_type is 508 * removed from the kernel lists and can be freed or reused once this 509 * function returns. 510 * 511 * This call sleeps to guarantee that no CPU is looking at the packet 512 * type after return. 513 */ 514 void dev_remove_offload(struct packet_offload *po) 515 { 516 __dev_remove_offload(po); 517 518 synchronize_net(); 519 } 520 EXPORT_SYMBOL(dev_remove_offload); 521 522 /****************************************************************************** 523 524 Device Boot-time Settings Routines 525 526 *******************************************************************************/ 527 528 /* Boot time configuration table */ 529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 530 531 /** 532 * netdev_boot_setup_add - add new setup entry 533 * @name: name of the device 534 * @map: configured settings for the device 535 * 536 * Adds new setup entry to the dev_boot_setup list. The function 537 * returns 0 on error and 1 on success. This is a generic routine to 538 * all netdevices. 539 */ 540 static int netdev_boot_setup_add(char *name, struct ifmap *map) 541 { 542 struct netdev_boot_setup *s; 543 int i; 544 545 s = dev_boot_setup; 546 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 547 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 548 memset(s[i].name, 0, sizeof(s[i].name)); 549 strlcpy(s[i].name, name, IFNAMSIZ); 550 memcpy(&s[i].map, map, sizeof(s[i].map)); 551 break; 552 } 553 } 554 555 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 556 } 557 558 /** 559 * netdev_boot_setup_check - check boot time settings 560 * @dev: the netdevice 561 * 562 * Check boot time settings for the device. 563 * The found settings are set for the device to be used 564 * later in the device probing. 565 * Returns 0 if no settings found, 1 if they are. 566 */ 567 int netdev_boot_setup_check(struct net_device *dev) 568 { 569 struct netdev_boot_setup *s = dev_boot_setup; 570 int i; 571 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 574 !strcmp(dev->name, s[i].name)) { 575 dev->irq = s[i].map.irq; 576 dev->base_addr = s[i].map.base_addr; 577 dev->mem_start = s[i].map.mem_start; 578 dev->mem_end = s[i].map.mem_end; 579 return 1; 580 } 581 } 582 return 0; 583 } 584 EXPORT_SYMBOL(netdev_boot_setup_check); 585 586 587 /** 588 * netdev_boot_base - get address from boot time settings 589 * @prefix: prefix for network device 590 * @unit: id for network device 591 * 592 * Check boot time settings for the base address of device. 593 * The found settings are set for the device to be used 594 * later in the device probing. 595 * Returns 0 if no settings found. 596 */ 597 unsigned long netdev_boot_base(const char *prefix, int unit) 598 { 599 const struct netdev_boot_setup *s = dev_boot_setup; 600 char name[IFNAMSIZ]; 601 int i; 602 603 sprintf(name, "%s%d", prefix, unit); 604 605 /* 606 * If device already registered then return base of 1 607 * to indicate not to probe for this interface 608 */ 609 if (__dev_get_by_name(&init_net, name)) 610 return 1; 611 612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 613 if (!strcmp(name, s[i].name)) 614 return s[i].map.base_addr; 615 return 0; 616 } 617 618 /* 619 * Saves at boot time configured settings for any netdevice. 620 */ 621 int __init netdev_boot_setup(char *str) 622 { 623 int ints[5]; 624 struct ifmap map; 625 626 str = get_options(str, ARRAY_SIZE(ints), ints); 627 if (!str || !*str) 628 return 0; 629 630 /* Save settings */ 631 memset(&map, 0, sizeof(map)); 632 if (ints[0] > 0) 633 map.irq = ints[1]; 634 if (ints[0] > 1) 635 map.base_addr = ints[2]; 636 if (ints[0] > 2) 637 map.mem_start = ints[3]; 638 if (ints[0] > 3) 639 map.mem_end = ints[4]; 640 641 /* Add new entry to the list */ 642 return netdev_boot_setup_add(str, &map); 643 } 644 645 __setup("netdev=", netdev_boot_setup); 646 647 /******************************************************************************* 648 649 Device Interface Subroutines 650 651 *******************************************************************************/ 652 653 /** 654 * __dev_get_by_name - find a device by its name 655 * @net: the applicable net namespace 656 * @name: name to find 657 * 658 * Find an interface by name. Must be called under RTNL semaphore 659 * or @dev_base_lock. If the name is found a pointer to the device 660 * is returned. If the name is not found then %NULL is returned. The 661 * reference counters are not incremented so the caller must be 662 * careful with locks. 663 */ 664 665 struct net_device *__dev_get_by_name(struct net *net, const char *name) 666 { 667 struct net_device *dev; 668 struct hlist_head *head = dev_name_hash(net, name); 669 670 hlist_for_each_entry(dev, head, name_hlist) 671 if (!strncmp(dev->name, name, IFNAMSIZ)) 672 return dev; 673 674 return NULL; 675 } 676 EXPORT_SYMBOL(__dev_get_by_name); 677 678 /** 679 * dev_get_by_name_rcu - find a device by its name 680 * @net: the applicable net namespace 681 * @name: name to find 682 * 683 * Find an interface by name. 684 * If the name is found a pointer to the device is returned. 685 * If the name is not found then %NULL is returned. 686 * The reference counters are not incremented so the caller must be 687 * careful with locks. The caller must hold RCU lock. 688 */ 689 690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 691 { 692 struct net_device *dev; 693 struct hlist_head *head = dev_name_hash(net, name); 694 695 hlist_for_each_entry_rcu(dev, head, name_hlist) 696 if (!strncmp(dev->name, name, IFNAMSIZ)) 697 return dev; 698 699 return NULL; 700 } 701 EXPORT_SYMBOL(dev_get_by_name_rcu); 702 703 /** 704 * dev_get_by_name - find a device by its name 705 * @net: the applicable net namespace 706 * @name: name to find 707 * 708 * Find an interface by name. This can be called from any 709 * context and does its own locking. The returned handle has 710 * the usage count incremented and the caller must use dev_put() to 711 * release it when it is no longer needed. %NULL is returned if no 712 * matching device is found. 713 */ 714 715 struct net_device *dev_get_by_name(struct net *net, const char *name) 716 { 717 struct net_device *dev; 718 719 rcu_read_lock(); 720 dev = dev_get_by_name_rcu(net, name); 721 if (dev) 722 dev_hold(dev); 723 rcu_read_unlock(); 724 return dev; 725 } 726 EXPORT_SYMBOL(dev_get_by_name); 727 728 /** 729 * __dev_get_by_index - find a device by its ifindex 730 * @net: the applicable net namespace 731 * @ifindex: index of device 732 * 733 * Search for an interface by index. Returns %NULL if the device 734 * is not found or a pointer to the device. The device has not 735 * had its reference counter increased so the caller must be careful 736 * about locking. The caller must hold either the RTNL semaphore 737 * or @dev_base_lock. 738 */ 739 740 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 741 { 742 struct net_device *dev; 743 struct hlist_head *head = dev_index_hash(net, ifindex); 744 745 hlist_for_each_entry(dev, head, index_hlist) 746 if (dev->ifindex == ifindex) 747 return dev; 748 749 return NULL; 750 } 751 EXPORT_SYMBOL(__dev_get_by_index); 752 753 /** 754 * dev_get_by_index_rcu - find a device by its ifindex 755 * @net: the applicable net namespace 756 * @ifindex: index of device 757 * 758 * Search for an interface by index. Returns %NULL if the device 759 * is not found or a pointer to the device. The device has not 760 * had its reference counter increased so the caller must be careful 761 * about locking. The caller must hold RCU lock. 762 */ 763 764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 765 { 766 struct net_device *dev; 767 struct hlist_head *head = dev_index_hash(net, ifindex); 768 769 hlist_for_each_entry_rcu(dev, head, index_hlist) 770 if (dev->ifindex == ifindex) 771 return dev; 772 773 return NULL; 774 } 775 EXPORT_SYMBOL(dev_get_by_index_rcu); 776 777 778 /** 779 * dev_get_by_index - find a device by its ifindex 780 * @net: the applicable net namespace 781 * @ifindex: index of device 782 * 783 * Search for an interface by index. Returns NULL if the device 784 * is not found or a pointer to the device. The device returned has 785 * had a reference added and the pointer is safe until the user calls 786 * dev_put to indicate they have finished with it. 787 */ 788 789 struct net_device *dev_get_by_index(struct net *net, int ifindex) 790 { 791 struct net_device *dev; 792 793 rcu_read_lock(); 794 dev = dev_get_by_index_rcu(net, ifindex); 795 if (dev) 796 dev_hold(dev); 797 rcu_read_unlock(); 798 return dev; 799 } 800 EXPORT_SYMBOL(dev_get_by_index); 801 802 /** 803 * netdev_get_name - get a netdevice name, knowing its ifindex. 804 * @net: network namespace 805 * @name: a pointer to the buffer where the name will be stored. 806 * @ifindex: the ifindex of the interface to get the name from. 807 * 808 * The use of raw_seqcount_begin() and cond_resched() before 809 * retrying is required as we want to give the writers a chance 810 * to complete when CONFIG_PREEMPT is not set. 811 */ 812 int netdev_get_name(struct net *net, char *name, int ifindex) 813 { 814 struct net_device *dev; 815 unsigned int seq; 816 817 retry: 818 seq = raw_seqcount_begin(&devnet_rename_seq); 819 rcu_read_lock(); 820 dev = dev_get_by_index_rcu(net, ifindex); 821 if (!dev) { 822 rcu_read_unlock(); 823 return -ENODEV; 824 } 825 826 strcpy(name, dev->name); 827 rcu_read_unlock(); 828 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 829 cond_resched(); 830 goto retry; 831 } 832 833 return 0; 834 } 835 836 /** 837 * dev_getbyhwaddr_rcu - find a device by its hardware address 838 * @net: the applicable net namespace 839 * @type: media type of device 840 * @ha: hardware address 841 * 842 * Search for an interface by MAC address. Returns NULL if the device 843 * is not found or a pointer to the device. 844 * The caller must hold RCU or RTNL. 845 * The returned device has not had its ref count increased 846 * and the caller must therefore be careful about locking 847 * 848 */ 849 850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 851 const char *ha) 852 { 853 struct net_device *dev; 854 855 for_each_netdev_rcu(net, dev) 856 if (dev->type == type && 857 !memcmp(dev->dev_addr, ha, dev->addr_len)) 858 return dev; 859 860 return NULL; 861 } 862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 863 864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 865 { 866 struct net_device *dev; 867 868 ASSERT_RTNL(); 869 for_each_netdev(net, dev) 870 if (dev->type == type) 871 return dev; 872 873 return NULL; 874 } 875 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 876 877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 878 { 879 struct net_device *dev, *ret = NULL; 880 881 rcu_read_lock(); 882 for_each_netdev_rcu(net, dev) 883 if (dev->type == type) { 884 dev_hold(dev); 885 ret = dev; 886 break; 887 } 888 rcu_read_unlock(); 889 return ret; 890 } 891 EXPORT_SYMBOL(dev_getfirstbyhwtype); 892 893 /** 894 * dev_get_by_flags_rcu - find any device with given flags 895 * @net: the applicable net namespace 896 * @if_flags: IFF_* values 897 * @mask: bitmask of bits in if_flags to check 898 * 899 * Search for any interface with the given flags. Returns NULL if a device 900 * is not found or a pointer to the device. Must be called inside 901 * rcu_read_lock(), and result refcount is unchanged. 902 */ 903 904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 905 unsigned short mask) 906 { 907 struct net_device *dev, *ret; 908 909 ret = NULL; 910 for_each_netdev_rcu(net, dev) { 911 if (((dev->flags ^ if_flags) & mask) == 0) { 912 ret = dev; 913 break; 914 } 915 } 916 return ret; 917 } 918 EXPORT_SYMBOL(dev_get_by_flags_rcu); 919 920 /** 921 * dev_valid_name - check if name is okay for network device 922 * @name: name string 923 * 924 * Network device names need to be valid file names to 925 * to allow sysfs to work. We also disallow any kind of 926 * whitespace. 927 */ 928 bool dev_valid_name(const char *name) 929 { 930 if (*name == '\0') 931 return false; 932 if (strlen(name) >= IFNAMSIZ) 933 return false; 934 if (!strcmp(name, ".") || !strcmp(name, "..")) 935 return false; 936 937 while (*name) { 938 if (*name == '/' || isspace(*name)) 939 return false; 940 name++; 941 } 942 return true; 943 } 944 EXPORT_SYMBOL(dev_valid_name); 945 946 /** 947 * __dev_alloc_name - allocate a name for a device 948 * @net: network namespace to allocate the device name in 949 * @name: name format string 950 * @buf: scratch buffer and result name string 951 * 952 * Passed a format string - eg "lt%d" it will try and find a suitable 953 * id. It scans list of devices to build up a free map, then chooses 954 * the first empty slot. The caller must hold the dev_base or rtnl lock 955 * while allocating the name and adding the device in order to avoid 956 * duplicates. 957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 958 * Returns the number of the unit assigned or a negative errno code. 959 */ 960 961 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 962 { 963 int i = 0; 964 const char *p; 965 const int max_netdevices = 8*PAGE_SIZE; 966 unsigned long *inuse; 967 struct net_device *d; 968 969 p = strnchr(name, IFNAMSIZ-1, '%'); 970 if (p) { 971 /* 972 * Verify the string as this thing may have come from 973 * the user. There must be either one "%d" and no other "%" 974 * characters. 975 */ 976 if (p[1] != 'd' || strchr(p + 2, '%')) 977 return -EINVAL; 978 979 /* Use one page as a bit array of possible slots */ 980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 981 if (!inuse) 982 return -ENOMEM; 983 984 for_each_netdev(net, d) { 985 if (!sscanf(d->name, name, &i)) 986 continue; 987 if (i < 0 || i >= max_netdevices) 988 continue; 989 990 /* avoid cases where sscanf is not exact inverse of printf */ 991 snprintf(buf, IFNAMSIZ, name, i); 992 if (!strncmp(buf, d->name, IFNAMSIZ)) 993 set_bit(i, inuse); 994 } 995 996 i = find_first_zero_bit(inuse, max_netdevices); 997 free_page((unsigned long) inuse); 998 } 999 1000 if (buf != name) 1001 snprintf(buf, IFNAMSIZ, name, i); 1002 if (!__dev_get_by_name(net, buf)) 1003 return i; 1004 1005 /* It is possible to run out of possible slots 1006 * when the name is long and there isn't enough space left 1007 * for the digits, or if all bits are used. 1008 */ 1009 return -ENFILE; 1010 } 1011 1012 /** 1013 * dev_alloc_name - allocate a name for a device 1014 * @dev: device 1015 * @name: name format string 1016 * 1017 * Passed a format string - eg "lt%d" it will try and find a suitable 1018 * id. It scans list of devices to build up a free map, then chooses 1019 * the first empty slot. The caller must hold the dev_base or rtnl lock 1020 * while allocating the name and adding the device in order to avoid 1021 * duplicates. 1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1023 * Returns the number of the unit assigned or a negative errno code. 1024 */ 1025 1026 int dev_alloc_name(struct net_device *dev, const char *name) 1027 { 1028 char buf[IFNAMSIZ]; 1029 struct net *net; 1030 int ret; 1031 1032 BUG_ON(!dev_net(dev)); 1033 net = dev_net(dev); 1034 ret = __dev_alloc_name(net, name, buf); 1035 if (ret >= 0) 1036 strlcpy(dev->name, buf, IFNAMSIZ); 1037 return ret; 1038 } 1039 EXPORT_SYMBOL(dev_alloc_name); 1040 1041 static int dev_alloc_name_ns(struct net *net, 1042 struct net_device *dev, 1043 const char *name) 1044 { 1045 char buf[IFNAMSIZ]; 1046 int ret; 1047 1048 ret = __dev_alloc_name(net, name, buf); 1049 if (ret >= 0) 1050 strlcpy(dev->name, buf, IFNAMSIZ); 1051 return ret; 1052 } 1053 1054 static int dev_get_valid_name(struct net *net, 1055 struct net_device *dev, 1056 const char *name) 1057 { 1058 BUG_ON(!net); 1059 1060 if (!dev_valid_name(name)) 1061 return -EINVAL; 1062 1063 if (strchr(name, '%')) 1064 return dev_alloc_name_ns(net, dev, name); 1065 else if (__dev_get_by_name(net, name)) 1066 return -EEXIST; 1067 else if (dev->name != name) 1068 strlcpy(dev->name, name, IFNAMSIZ); 1069 1070 return 0; 1071 } 1072 1073 /** 1074 * dev_change_name - change name of a device 1075 * @dev: device 1076 * @newname: name (or format string) must be at least IFNAMSIZ 1077 * 1078 * Change name of a device, can pass format strings "eth%d". 1079 * for wildcarding. 1080 */ 1081 int dev_change_name(struct net_device *dev, const char *newname) 1082 { 1083 char oldname[IFNAMSIZ]; 1084 int err = 0; 1085 int ret; 1086 struct net *net; 1087 1088 ASSERT_RTNL(); 1089 BUG_ON(!dev_net(dev)); 1090 1091 net = dev_net(dev); 1092 if (dev->flags & IFF_UP) 1093 return -EBUSY; 1094 1095 write_seqcount_begin(&devnet_rename_seq); 1096 1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1098 write_seqcount_end(&devnet_rename_seq); 1099 return 0; 1100 } 1101 1102 memcpy(oldname, dev->name, IFNAMSIZ); 1103 1104 err = dev_get_valid_name(net, dev, newname); 1105 if (err < 0) { 1106 write_seqcount_end(&devnet_rename_seq); 1107 return err; 1108 } 1109 1110 rollback: 1111 ret = device_rename(&dev->dev, dev->name); 1112 if (ret) { 1113 memcpy(dev->name, oldname, IFNAMSIZ); 1114 write_seqcount_end(&devnet_rename_seq); 1115 return ret; 1116 } 1117 1118 write_seqcount_end(&devnet_rename_seq); 1119 1120 write_lock_bh(&dev_base_lock); 1121 hlist_del_rcu(&dev->name_hlist); 1122 write_unlock_bh(&dev_base_lock); 1123 1124 synchronize_rcu(); 1125 1126 write_lock_bh(&dev_base_lock); 1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1128 write_unlock_bh(&dev_base_lock); 1129 1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1131 ret = notifier_to_errno(ret); 1132 1133 if (ret) { 1134 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1135 if (err >= 0) { 1136 err = ret; 1137 write_seqcount_begin(&devnet_rename_seq); 1138 memcpy(dev->name, oldname, IFNAMSIZ); 1139 goto rollback; 1140 } else { 1141 pr_err("%s: name change rollback failed: %d\n", 1142 dev->name, ret); 1143 } 1144 } 1145 1146 return err; 1147 } 1148 1149 /** 1150 * dev_set_alias - change ifalias of a device 1151 * @dev: device 1152 * @alias: name up to IFALIASZ 1153 * @len: limit of bytes to copy from info 1154 * 1155 * Set ifalias for a device, 1156 */ 1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1158 { 1159 char *new_ifalias; 1160 1161 ASSERT_RTNL(); 1162 1163 if (len >= IFALIASZ) 1164 return -EINVAL; 1165 1166 if (!len) { 1167 kfree(dev->ifalias); 1168 dev->ifalias = NULL; 1169 return 0; 1170 } 1171 1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1173 if (!new_ifalias) 1174 return -ENOMEM; 1175 dev->ifalias = new_ifalias; 1176 1177 strlcpy(dev->ifalias, alias, len+1); 1178 return len; 1179 } 1180 1181 1182 /** 1183 * netdev_features_change - device changes features 1184 * @dev: device to cause notification 1185 * 1186 * Called to indicate a device has changed features. 1187 */ 1188 void netdev_features_change(struct net_device *dev) 1189 { 1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1191 } 1192 EXPORT_SYMBOL(netdev_features_change); 1193 1194 /** 1195 * netdev_state_change - device changes state 1196 * @dev: device to cause notification 1197 * 1198 * Called to indicate a device has changed state. This function calls 1199 * the notifier chains for netdev_chain and sends a NEWLINK message 1200 * to the routing socket. 1201 */ 1202 void netdev_state_change(struct net_device *dev) 1203 { 1204 if (dev->flags & IFF_UP) { 1205 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1207 } 1208 } 1209 EXPORT_SYMBOL(netdev_state_change); 1210 1211 /** 1212 * netdev_notify_peers - notify network peers about existence of @dev 1213 * @dev: network device 1214 * 1215 * Generate traffic such that interested network peers are aware of 1216 * @dev, such as by generating a gratuitous ARP. This may be used when 1217 * a device wants to inform the rest of the network about some sort of 1218 * reconfiguration such as a failover event or virtual machine 1219 * migration. 1220 */ 1221 void netdev_notify_peers(struct net_device *dev) 1222 { 1223 rtnl_lock(); 1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1225 rtnl_unlock(); 1226 } 1227 EXPORT_SYMBOL(netdev_notify_peers); 1228 1229 static int __dev_open(struct net_device *dev) 1230 { 1231 const struct net_device_ops *ops = dev->netdev_ops; 1232 int ret; 1233 1234 ASSERT_RTNL(); 1235 1236 if (!netif_device_present(dev)) 1237 return -ENODEV; 1238 1239 /* Block netpoll from trying to do any rx path servicing. 1240 * If we don't do this there is a chance ndo_poll_controller 1241 * or ndo_poll may be running while we open the device 1242 */ 1243 netpoll_rx_disable(dev); 1244 1245 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1246 ret = notifier_to_errno(ret); 1247 if (ret) 1248 return ret; 1249 1250 set_bit(__LINK_STATE_START, &dev->state); 1251 1252 if (ops->ndo_validate_addr) 1253 ret = ops->ndo_validate_addr(dev); 1254 1255 if (!ret && ops->ndo_open) 1256 ret = ops->ndo_open(dev); 1257 1258 netpoll_rx_enable(dev); 1259 1260 if (ret) 1261 clear_bit(__LINK_STATE_START, &dev->state); 1262 else { 1263 dev->flags |= IFF_UP; 1264 net_dmaengine_get(); 1265 dev_set_rx_mode(dev); 1266 dev_activate(dev); 1267 add_device_randomness(dev->dev_addr, dev->addr_len); 1268 } 1269 1270 return ret; 1271 } 1272 1273 /** 1274 * dev_open - prepare an interface for use. 1275 * @dev: device to open 1276 * 1277 * Takes a device from down to up state. The device's private open 1278 * function is invoked and then the multicast lists are loaded. Finally 1279 * the device is moved into the up state and a %NETDEV_UP message is 1280 * sent to the netdev notifier chain. 1281 * 1282 * Calling this function on an active interface is a nop. On a failure 1283 * a negative errno code is returned. 1284 */ 1285 int dev_open(struct net_device *dev) 1286 { 1287 int ret; 1288 1289 if (dev->flags & IFF_UP) 1290 return 0; 1291 1292 ret = __dev_open(dev); 1293 if (ret < 0) 1294 return ret; 1295 1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1297 call_netdevice_notifiers(NETDEV_UP, dev); 1298 1299 return ret; 1300 } 1301 EXPORT_SYMBOL(dev_open); 1302 1303 static int __dev_close_many(struct list_head *head) 1304 { 1305 struct net_device *dev; 1306 1307 ASSERT_RTNL(); 1308 might_sleep(); 1309 1310 list_for_each_entry(dev, head, unreg_list) { 1311 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1312 1313 clear_bit(__LINK_STATE_START, &dev->state); 1314 1315 /* Synchronize to scheduled poll. We cannot touch poll list, it 1316 * can be even on different cpu. So just clear netif_running(). 1317 * 1318 * dev->stop() will invoke napi_disable() on all of it's 1319 * napi_struct instances on this device. 1320 */ 1321 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1322 } 1323 1324 dev_deactivate_many(head); 1325 1326 list_for_each_entry(dev, head, unreg_list) { 1327 const struct net_device_ops *ops = dev->netdev_ops; 1328 1329 /* 1330 * Call the device specific close. This cannot fail. 1331 * Only if device is UP 1332 * 1333 * We allow it to be called even after a DETACH hot-plug 1334 * event. 1335 */ 1336 if (ops->ndo_stop) 1337 ops->ndo_stop(dev); 1338 1339 dev->flags &= ~IFF_UP; 1340 net_dmaengine_put(); 1341 } 1342 1343 return 0; 1344 } 1345 1346 static int __dev_close(struct net_device *dev) 1347 { 1348 int retval; 1349 LIST_HEAD(single); 1350 1351 /* Temporarily disable netpoll until the interface is down */ 1352 netpoll_rx_disable(dev); 1353 1354 list_add(&dev->unreg_list, &single); 1355 retval = __dev_close_many(&single); 1356 list_del(&single); 1357 1358 netpoll_rx_enable(dev); 1359 return retval; 1360 } 1361 1362 static int dev_close_many(struct list_head *head) 1363 { 1364 struct net_device *dev, *tmp; 1365 LIST_HEAD(tmp_list); 1366 1367 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1368 if (!(dev->flags & IFF_UP)) 1369 list_move(&dev->unreg_list, &tmp_list); 1370 1371 __dev_close_many(head); 1372 1373 list_for_each_entry(dev, head, unreg_list) { 1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1375 call_netdevice_notifiers(NETDEV_DOWN, dev); 1376 } 1377 1378 /* rollback_registered_many needs the complete original list */ 1379 list_splice(&tmp_list, head); 1380 return 0; 1381 } 1382 1383 /** 1384 * dev_close - shutdown an interface. 1385 * @dev: device to shutdown 1386 * 1387 * This function moves an active device into down state. A 1388 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1389 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1390 * chain. 1391 */ 1392 int dev_close(struct net_device *dev) 1393 { 1394 if (dev->flags & IFF_UP) { 1395 LIST_HEAD(single); 1396 1397 /* Block netpoll rx while the interface is going down */ 1398 netpoll_rx_disable(dev); 1399 1400 list_add(&dev->unreg_list, &single); 1401 dev_close_many(&single); 1402 list_del(&single); 1403 1404 netpoll_rx_enable(dev); 1405 } 1406 return 0; 1407 } 1408 EXPORT_SYMBOL(dev_close); 1409 1410 1411 /** 1412 * dev_disable_lro - disable Large Receive Offload on a device 1413 * @dev: device 1414 * 1415 * Disable Large Receive Offload (LRO) on a net device. Must be 1416 * called under RTNL. This is needed if received packets may be 1417 * forwarded to another interface. 1418 */ 1419 void dev_disable_lro(struct net_device *dev) 1420 { 1421 /* 1422 * If we're trying to disable lro on a vlan device 1423 * use the underlying physical device instead 1424 */ 1425 if (is_vlan_dev(dev)) 1426 dev = vlan_dev_real_dev(dev); 1427 1428 dev->wanted_features &= ~NETIF_F_LRO; 1429 netdev_update_features(dev); 1430 1431 if (unlikely(dev->features & NETIF_F_LRO)) 1432 netdev_WARN(dev, "failed to disable LRO!\n"); 1433 } 1434 EXPORT_SYMBOL(dev_disable_lro); 1435 1436 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1437 struct net_device *dev) 1438 { 1439 struct netdev_notifier_info info; 1440 1441 netdev_notifier_info_init(&info, dev); 1442 return nb->notifier_call(nb, val, &info); 1443 } 1444 1445 static int dev_boot_phase = 1; 1446 1447 /** 1448 * register_netdevice_notifier - register a network notifier block 1449 * @nb: notifier 1450 * 1451 * Register a notifier to be called when network device events occur. 1452 * The notifier passed is linked into the kernel structures and must 1453 * not be reused until it has been unregistered. A negative errno code 1454 * is returned on a failure. 1455 * 1456 * When registered all registration and up events are replayed 1457 * to the new notifier to allow device to have a race free 1458 * view of the network device list. 1459 */ 1460 1461 int register_netdevice_notifier(struct notifier_block *nb) 1462 { 1463 struct net_device *dev; 1464 struct net_device *last; 1465 struct net *net; 1466 int err; 1467 1468 rtnl_lock(); 1469 err = raw_notifier_chain_register(&netdev_chain, nb); 1470 if (err) 1471 goto unlock; 1472 if (dev_boot_phase) 1473 goto unlock; 1474 for_each_net(net) { 1475 for_each_netdev(net, dev) { 1476 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1477 err = notifier_to_errno(err); 1478 if (err) 1479 goto rollback; 1480 1481 if (!(dev->flags & IFF_UP)) 1482 continue; 1483 1484 call_netdevice_notifier(nb, NETDEV_UP, dev); 1485 } 1486 } 1487 1488 unlock: 1489 rtnl_unlock(); 1490 return err; 1491 1492 rollback: 1493 last = dev; 1494 for_each_net(net) { 1495 for_each_netdev(net, dev) { 1496 if (dev == last) 1497 goto outroll; 1498 1499 if (dev->flags & IFF_UP) { 1500 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1501 dev); 1502 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1503 } 1504 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1505 } 1506 } 1507 1508 outroll: 1509 raw_notifier_chain_unregister(&netdev_chain, nb); 1510 goto unlock; 1511 } 1512 EXPORT_SYMBOL(register_netdevice_notifier); 1513 1514 /** 1515 * unregister_netdevice_notifier - unregister a network notifier block 1516 * @nb: notifier 1517 * 1518 * Unregister a notifier previously registered by 1519 * register_netdevice_notifier(). The notifier is unlinked into the 1520 * kernel structures and may then be reused. A negative errno code 1521 * is returned on a failure. 1522 * 1523 * After unregistering unregister and down device events are synthesized 1524 * for all devices on the device list to the removed notifier to remove 1525 * the need for special case cleanup code. 1526 */ 1527 1528 int unregister_netdevice_notifier(struct notifier_block *nb) 1529 { 1530 struct net_device *dev; 1531 struct net *net; 1532 int err; 1533 1534 rtnl_lock(); 1535 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1536 if (err) 1537 goto unlock; 1538 1539 for_each_net(net) { 1540 for_each_netdev(net, dev) { 1541 if (dev->flags & IFF_UP) { 1542 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1543 dev); 1544 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1545 } 1546 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1547 } 1548 } 1549 unlock: 1550 rtnl_unlock(); 1551 return err; 1552 } 1553 EXPORT_SYMBOL(unregister_netdevice_notifier); 1554 1555 /** 1556 * call_netdevice_notifiers_info - call all network notifier blocks 1557 * @val: value passed unmodified to notifier function 1558 * @dev: net_device pointer passed unmodified to notifier function 1559 * @info: notifier information data 1560 * 1561 * Call all network notifier blocks. Parameters and return value 1562 * are as for raw_notifier_call_chain(). 1563 */ 1564 1565 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev, 1566 struct netdev_notifier_info *info) 1567 { 1568 ASSERT_RTNL(); 1569 netdev_notifier_info_init(info, dev); 1570 return raw_notifier_call_chain(&netdev_chain, val, info); 1571 } 1572 EXPORT_SYMBOL(call_netdevice_notifiers_info); 1573 1574 /** 1575 * call_netdevice_notifiers - call all network notifier blocks 1576 * @val: value passed unmodified to notifier function 1577 * @dev: net_device pointer passed unmodified to notifier function 1578 * 1579 * Call all network notifier blocks. Parameters and return value 1580 * are as for raw_notifier_call_chain(). 1581 */ 1582 1583 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1584 { 1585 struct netdev_notifier_info info; 1586 1587 return call_netdevice_notifiers_info(val, dev, &info); 1588 } 1589 EXPORT_SYMBOL(call_netdevice_notifiers); 1590 1591 static struct static_key netstamp_needed __read_mostly; 1592 #ifdef HAVE_JUMP_LABEL 1593 /* We are not allowed to call static_key_slow_dec() from irq context 1594 * If net_disable_timestamp() is called from irq context, defer the 1595 * static_key_slow_dec() calls. 1596 */ 1597 static atomic_t netstamp_needed_deferred; 1598 #endif 1599 1600 void net_enable_timestamp(void) 1601 { 1602 #ifdef HAVE_JUMP_LABEL 1603 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1604 1605 if (deferred) { 1606 while (--deferred) 1607 static_key_slow_dec(&netstamp_needed); 1608 return; 1609 } 1610 #endif 1611 static_key_slow_inc(&netstamp_needed); 1612 } 1613 EXPORT_SYMBOL(net_enable_timestamp); 1614 1615 void net_disable_timestamp(void) 1616 { 1617 #ifdef HAVE_JUMP_LABEL 1618 if (in_interrupt()) { 1619 atomic_inc(&netstamp_needed_deferred); 1620 return; 1621 } 1622 #endif 1623 static_key_slow_dec(&netstamp_needed); 1624 } 1625 EXPORT_SYMBOL(net_disable_timestamp); 1626 1627 static inline void net_timestamp_set(struct sk_buff *skb) 1628 { 1629 skb->tstamp.tv64 = 0; 1630 if (static_key_false(&netstamp_needed)) 1631 __net_timestamp(skb); 1632 } 1633 1634 #define net_timestamp_check(COND, SKB) \ 1635 if (static_key_false(&netstamp_needed)) { \ 1636 if ((COND) && !(SKB)->tstamp.tv64) \ 1637 __net_timestamp(SKB); \ 1638 } \ 1639 1640 static inline bool is_skb_forwardable(struct net_device *dev, 1641 struct sk_buff *skb) 1642 { 1643 unsigned int len; 1644 1645 if (!(dev->flags & IFF_UP)) 1646 return false; 1647 1648 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1649 if (skb->len <= len) 1650 return true; 1651 1652 /* if TSO is enabled, we don't care about the length as the packet 1653 * could be forwarded without being segmented before 1654 */ 1655 if (skb_is_gso(skb)) 1656 return true; 1657 1658 return false; 1659 } 1660 1661 /** 1662 * dev_forward_skb - loopback an skb to another netif 1663 * 1664 * @dev: destination network device 1665 * @skb: buffer to forward 1666 * 1667 * return values: 1668 * NET_RX_SUCCESS (no congestion) 1669 * NET_RX_DROP (packet was dropped, but freed) 1670 * 1671 * dev_forward_skb can be used for injecting an skb from the 1672 * start_xmit function of one device into the receive queue 1673 * of another device. 1674 * 1675 * The receiving device may be in another namespace, so 1676 * we have to clear all information in the skb that could 1677 * impact namespace isolation. 1678 */ 1679 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1680 { 1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1683 atomic_long_inc(&dev->rx_dropped); 1684 kfree_skb(skb); 1685 return NET_RX_DROP; 1686 } 1687 } 1688 1689 if (unlikely(!is_skb_forwardable(dev, skb))) { 1690 atomic_long_inc(&dev->rx_dropped); 1691 kfree_skb(skb); 1692 return NET_RX_DROP; 1693 } 1694 skb_scrub_packet(skb); 1695 skb->protocol = eth_type_trans(skb, dev); 1696 1697 /* eth_type_trans() can set pkt_type. 1698 * clear pkt_type _after_ calling eth_type_trans() 1699 */ 1700 skb->pkt_type = PACKET_HOST; 1701 1702 return netif_rx(skb); 1703 } 1704 EXPORT_SYMBOL_GPL(dev_forward_skb); 1705 1706 static inline int deliver_skb(struct sk_buff *skb, 1707 struct packet_type *pt_prev, 1708 struct net_device *orig_dev) 1709 { 1710 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1711 return -ENOMEM; 1712 atomic_inc(&skb->users); 1713 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1714 } 1715 1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1717 { 1718 if (!ptype->af_packet_priv || !skb->sk) 1719 return false; 1720 1721 if (ptype->id_match) 1722 return ptype->id_match(ptype, skb->sk); 1723 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1724 return true; 1725 1726 return false; 1727 } 1728 1729 /* 1730 * Support routine. Sends outgoing frames to any network 1731 * taps currently in use. 1732 */ 1733 1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1735 { 1736 struct packet_type *ptype; 1737 struct sk_buff *skb2 = NULL; 1738 struct packet_type *pt_prev = NULL; 1739 1740 rcu_read_lock(); 1741 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1742 /* Never send packets back to the socket 1743 * they originated from - MvS (miquels@drinkel.ow.org) 1744 */ 1745 if ((ptype->dev == dev || !ptype->dev) && 1746 (!skb_loop_sk(ptype, skb))) { 1747 if (pt_prev) { 1748 deliver_skb(skb2, pt_prev, skb->dev); 1749 pt_prev = ptype; 1750 continue; 1751 } 1752 1753 skb2 = skb_clone(skb, GFP_ATOMIC); 1754 if (!skb2) 1755 break; 1756 1757 net_timestamp_set(skb2); 1758 1759 /* skb->nh should be correctly 1760 set by sender, so that the second statement is 1761 just protection against buggy protocols. 1762 */ 1763 skb_reset_mac_header(skb2); 1764 1765 if (skb_network_header(skb2) < skb2->data || 1766 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1767 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1768 ntohs(skb2->protocol), 1769 dev->name); 1770 skb_reset_network_header(skb2); 1771 } 1772 1773 skb2->transport_header = skb2->network_header; 1774 skb2->pkt_type = PACKET_OUTGOING; 1775 pt_prev = ptype; 1776 } 1777 } 1778 if (pt_prev) 1779 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1780 rcu_read_unlock(); 1781 } 1782 1783 /** 1784 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1785 * @dev: Network device 1786 * @txq: number of queues available 1787 * 1788 * If real_num_tx_queues is changed the tc mappings may no longer be 1789 * valid. To resolve this verify the tc mapping remains valid and if 1790 * not NULL the mapping. With no priorities mapping to this 1791 * offset/count pair it will no longer be used. In the worst case TC0 1792 * is invalid nothing can be done so disable priority mappings. If is 1793 * expected that drivers will fix this mapping if they can before 1794 * calling netif_set_real_num_tx_queues. 1795 */ 1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1797 { 1798 int i; 1799 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1800 1801 /* If TC0 is invalidated disable TC mapping */ 1802 if (tc->offset + tc->count > txq) { 1803 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1804 dev->num_tc = 0; 1805 return; 1806 } 1807 1808 /* Invalidated prio to tc mappings set to TC0 */ 1809 for (i = 1; i < TC_BITMASK + 1; i++) { 1810 int q = netdev_get_prio_tc_map(dev, i); 1811 1812 tc = &dev->tc_to_txq[q]; 1813 if (tc->offset + tc->count > txq) { 1814 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1815 i, q); 1816 netdev_set_prio_tc_map(dev, i, 0); 1817 } 1818 } 1819 } 1820 1821 #ifdef CONFIG_XPS 1822 static DEFINE_MUTEX(xps_map_mutex); 1823 #define xmap_dereference(P) \ 1824 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1825 1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1827 int cpu, u16 index) 1828 { 1829 struct xps_map *map = NULL; 1830 int pos; 1831 1832 if (dev_maps) 1833 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1834 1835 for (pos = 0; map && pos < map->len; pos++) { 1836 if (map->queues[pos] == index) { 1837 if (map->len > 1) { 1838 map->queues[pos] = map->queues[--map->len]; 1839 } else { 1840 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1841 kfree_rcu(map, rcu); 1842 map = NULL; 1843 } 1844 break; 1845 } 1846 } 1847 1848 return map; 1849 } 1850 1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1852 { 1853 struct xps_dev_maps *dev_maps; 1854 int cpu, i; 1855 bool active = false; 1856 1857 mutex_lock(&xps_map_mutex); 1858 dev_maps = xmap_dereference(dev->xps_maps); 1859 1860 if (!dev_maps) 1861 goto out_no_maps; 1862 1863 for_each_possible_cpu(cpu) { 1864 for (i = index; i < dev->num_tx_queues; i++) { 1865 if (!remove_xps_queue(dev_maps, cpu, i)) 1866 break; 1867 } 1868 if (i == dev->num_tx_queues) 1869 active = true; 1870 } 1871 1872 if (!active) { 1873 RCU_INIT_POINTER(dev->xps_maps, NULL); 1874 kfree_rcu(dev_maps, rcu); 1875 } 1876 1877 for (i = index; i < dev->num_tx_queues; i++) 1878 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1879 NUMA_NO_NODE); 1880 1881 out_no_maps: 1882 mutex_unlock(&xps_map_mutex); 1883 } 1884 1885 static struct xps_map *expand_xps_map(struct xps_map *map, 1886 int cpu, u16 index) 1887 { 1888 struct xps_map *new_map; 1889 int alloc_len = XPS_MIN_MAP_ALLOC; 1890 int i, pos; 1891 1892 for (pos = 0; map && pos < map->len; pos++) { 1893 if (map->queues[pos] != index) 1894 continue; 1895 return map; 1896 } 1897 1898 /* Need to add queue to this CPU's existing map */ 1899 if (map) { 1900 if (pos < map->alloc_len) 1901 return map; 1902 1903 alloc_len = map->alloc_len * 2; 1904 } 1905 1906 /* Need to allocate new map to store queue on this CPU's map */ 1907 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1908 cpu_to_node(cpu)); 1909 if (!new_map) 1910 return NULL; 1911 1912 for (i = 0; i < pos; i++) 1913 new_map->queues[i] = map->queues[i]; 1914 new_map->alloc_len = alloc_len; 1915 new_map->len = pos; 1916 1917 return new_map; 1918 } 1919 1920 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index) 1921 { 1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1923 struct xps_map *map, *new_map; 1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1925 int cpu, numa_node_id = -2; 1926 bool active = false; 1927 1928 mutex_lock(&xps_map_mutex); 1929 1930 dev_maps = xmap_dereference(dev->xps_maps); 1931 1932 /* allocate memory for queue storage */ 1933 for_each_online_cpu(cpu) { 1934 if (!cpumask_test_cpu(cpu, mask)) 1935 continue; 1936 1937 if (!new_dev_maps) 1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1939 if (!new_dev_maps) { 1940 mutex_unlock(&xps_map_mutex); 1941 return -ENOMEM; 1942 } 1943 1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1945 NULL; 1946 1947 map = expand_xps_map(map, cpu, index); 1948 if (!map) 1949 goto error; 1950 1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1952 } 1953 1954 if (!new_dev_maps) 1955 goto out_no_new_maps; 1956 1957 for_each_possible_cpu(cpu) { 1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1959 /* add queue to CPU maps */ 1960 int pos = 0; 1961 1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1963 while ((pos < map->len) && (map->queues[pos] != index)) 1964 pos++; 1965 1966 if (pos == map->len) 1967 map->queues[map->len++] = index; 1968 #ifdef CONFIG_NUMA 1969 if (numa_node_id == -2) 1970 numa_node_id = cpu_to_node(cpu); 1971 else if (numa_node_id != cpu_to_node(cpu)) 1972 numa_node_id = -1; 1973 #endif 1974 } else if (dev_maps) { 1975 /* fill in the new device map from the old device map */ 1976 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1978 } 1979 1980 } 1981 1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1983 1984 /* Cleanup old maps */ 1985 if (dev_maps) { 1986 for_each_possible_cpu(cpu) { 1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1988 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1989 if (map && map != new_map) 1990 kfree_rcu(map, rcu); 1991 } 1992 1993 kfree_rcu(dev_maps, rcu); 1994 } 1995 1996 dev_maps = new_dev_maps; 1997 active = true; 1998 1999 out_no_new_maps: 2000 /* update Tx queue numa node */ 2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2002 (numa_node_id >= 0) ? numa_node_id : 2003 NUMA_NO_NODE); 2004 2005 if (!dev_maps) 2006 goto out_no_maps; 2007 2008 /* removes queue from unused CPUs */ 2009 for_each_possible_cpu(cpu) { 2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2011 continue; 2012 2013 if (remove_xps_queue(dev_maps, cpu, index)) 2014 active = true; 2015 } 2016 2017 /* free map if not active */ 2018 if (!active) { 2019 RCU_INIT_POINTER(dev->xps_maps, NULL); 2020 kfree_rcu(dev_maps, rcu); 2021 } 2022 2023 out_no_maps: 2024 mutex_unlock(&xps_map_mutex); 2025 2026 return 0; 2027 error: 2028 /* remove any maps that we added */ 2029 for_each_possible_cpu(cpu) { 2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2032 NULL; 2033 if (new_map && new_map != map) 2034 kfree(new_map); 2035 } 2036 2037 mutex_unlock(&xps_map_mutex); 2038 2039 kfree(new_dev_maps); 2040 return -ENOMEM; 2041 } 2042 EXPORT_SYMBOL(netif_set_xps_queue); 2043 2044 #endif 2045 /* 2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2048 */ 2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2050 { 2051 int rc; 2052 2053 if (txq < 1 || txq > dev->num_tx_queues) 2054 return -EINVAL; 2055 2056 if (dev->reg_state == NETREG_REGISTERED || 2057 dev->reg_state == NETREG_UNREGISTERING) { 2058 ASSERT_RTNL(); 2059 2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2061 txq); 2062 if (rc) 2063 return rc; 2064 2065 if (dev->num_tc) 2066 netif_setup_tc(dev, txq); 2067 2068 if (txq < dev->real_num_tx_queues) { 2069 qdisc_reset_all_tx_gt(dev, txq); 2070 #ifdef CONFIG_XPS 2071 netif_reset_xps_queues_gt(dev, txq); 2072 #endif 2073 } 2074 } 2075 2076 dev->real_num_tx_queues = txq; 2077 return 0; 2078 } 2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2080 2081 #ifdef CONFIG_RPS 2082 /** 2083 * netif_set_real_num_rx_queues - set actual number of RX queues used 2084 * @dev: Network device 2085 * @rxq: Actual number of RX queues 2086 * 2087 * This must be called either with the rtnl_lock held or before 2088 * registration of the net device. Returns 0 on success, or a 2089 * negative error code. If called before registration, it always 2090 * succeeds. 2091 */ 2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2093 { 2094 int rc; 2095 2096 if (rxq < 1 || rxq > dev->num_rx_queues) 2097 return -EINVAL; 2098 2099 if (dev->reg_state == NETREG_REGISTERED) { 2100 ASSERT_RTNL(); 2101 2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2103 rxq); 2104 if (rc) 2105 return rc; 2106 } 2107 2108 dev->real_num_rx_queues = rxq; 2109 return 0; 2110 } 2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2112 #endif 2113 2114 /** 2115 * netif_get_num_default_rss_queues - default number of RSS queues 2116 * 2117 * This routine should set an upper limit on the number of RSS queues 2118 * used by default by multiqueue devices. 2119 */ 2120 int netif_get_num_default_rss_queues(void) 2121 { 2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2123 } 2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2125 2126 static inline void __netif_reschedule(struct Qdisc *q) 2127 { 2128 struct softnet_data *sd; 2129 unsigned long flags; 2130 2131 local_irq_save(flags); 2132 sd = &__get_cpu_var(softnet_data); 2133 q->next_sched = NULL; 2134 *sd->output_queue_tailp = q; 2135 sd->output_queue_tailp = &q->next_sched; 2136 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2137 local_irq_restore(flags); 2138 } 2139 2140 void __netif_schedule(struct Qdisc *q) 2141 { 2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2143 __netif_reschedule(q); 2144 } 2145 EXPORT_SYMBOL(__netif_schedule); 2146 2147 void dev_kfree_skb_irq(struct sk_buff *skb) 2148 { 2149 if (atomic_dec_and_test(&skb->users)) { 2150 struct softnet_data *sd; 2151 unsigned long flags; 2152 2153 local_irq_save(flags); 2154 sd = &__get_cpu_var(softnet_data); 2155 skb->next = sd->completion_queue; 2156 sd->completion_queue = skb; 2157 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2158 local_irq_restore(flags); 2159 } 2160 } 2161 EXPORT_SYMBOL(dev_kfree_skb_irq); 2162 2163 void dev_kfree_skb_any(struct sk_buff *skb) 2164 { 2165 if (in_irq() || irqs_disabled()) 2166 dev_kfree_skb_irq(skb); 2167 else 2168 dev_kfree_skb(skb); 2169 } 2170 EXPORT_SYMBOL(dev_kfree_skb_any); 2171 2172 2173 /** 2174 * netif_device_detach - mark device as removed 2175 * @dev: network device 2176 * 2177 * Mark device as removed from system and therefore no longer available. 2178 */ 2179 void netif_device_detach(struct net_device *dev) 2180 { 2181 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2182 netif_running(dev)) { 2183 netif_tx_stop_all_queues(dev); 2184 } 2185 } 2186 EXPORT_SYMBOL(netif_device_detach); 2187 2188 /** 2189 * netif_device_attach - mark device as attached 2190 * @dev: network device 2191 * 2192 * Mark device as attached from system and restart if needed. 2193 */ 2194 void netif_device_attach(struct net_device *dev) 2195 { 2196 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2197 netif_running(dev)) { 2198 netif_tx_wake_all_queues(dev); 2199 __netdev_watchdog_up(dev); 2200 } 2201 } 2202 EXPORT_SYMBOL(netif_device_attach); 2203 2204 static void skb_warn_bad_offload(const struct sk_buff *skb) 2205 { 2206 static const netdev_features_t null_features = 0; 2207 struct net_device *dev = skb->dev; 2208 const char *driver = ""; 2209 2210 if (!net_ratelimit()) 2211 return; 2212 2213 if (dev && dev->dev.parent) 2214 driver = dev_driver_string(dev->dev.parent); 2215 2216 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2217 "gso_type=%d ip_summed=%d\n", 2218 driver, dev ? &dev->features : &null_features, 2219 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2220 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2221 skb_shinfo(skb)->gso_type, skb->ip_summed); 2222 } 2223 2224 /* 2225 * Invalidate hardware checksum when packet is to be mangled, and 2226 * complete checksum manually on outgoing path. 2227 */ 2228 int skb_checksum_help(struct sk_buff *skb) 2229 { 2230 __wsum csum; 2231 int ret = 0, offset; 2232 2233 if (skb->ip_summed == CHECKSUM_COMPLETE) 2234 goto out_set_summed; 2235 2236 if (unlikely(skb_shinfo(skb)->gso_size)) { 2237 skb_warn_bad_offload(skb); 2238 return -EINVAL; 2239 } 2240 2241 /* Before computing a checksum, we should make sure no frag could 2242 * be modified by an external entity : checksum could be wrong. 2243 */ 2244 if (skb_has_shared_frag(skb)) { 2245 ret = __skb_linearize(skb); 2246 if (ret) 2247 goto out; 2248 } 2249 2250 offset = skb_checksum_start_offset(skb); 2251 BUG_ON(offset >= skb_headlen(skb)); 2252 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2253 2254 offset += skb->csum_offset; 2255 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2256 2257 if (skb_cloned(skb) && 2258 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2259 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2260 if (ret) 2261 goto out; 2262 } 2263 2264 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2265 out_set_summed: 2266 skb->ip_summed = CHECKSUM_NONE; 2267 out: 2268 return ret; 2269 } 2270 EXPORT_SYMBOL(skb_checksum_help); 2271 2272 __be16 skb_network_protocol(struct sk_buff *skb) 2273 { 2274 __be16 type = skb->protocol; 2275 int vlan_depth = ETH_HLEN; 2276 2277 /* Tunnel gso handlers can set protocol to ethernet. */ 2278 if (type == htons(ETH_P_TEB)) { 2279 struct ethhdr *eth; 2280 2281 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2282 return 0; 2283 2284 eth = (struct ethhdr *)skb_mac_header(skb); 2285 type = eth->h_proto; 2286 } 2287 2288 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2289 struct vlan_hdr *vh; 2290 2291 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2292 return 0; 2293 2294 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2295 type = vh->h_vlan_encapsulated_proto; 2296 vlan_depth += VLAN_HLEN; 2297 } 2298 2299 return type; 2300 } 2301 2302 /** 2303 * skb_mac_gso_segment - mac layer segmentation handler. 2304 * @skb: buffer to segment 2305 * @features: features for the output path (see dev->features) 2306 */ 2307 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2308 netdev_features_t features) 2309 { 2310 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2311 struct packet_offload *ptype; 2312 __be16 type = skb_network_protocol(skb); 2313 2314 if (unlikely(!type)) 2315 return ERR_PTR(-EINVAL); 2316 2317 __skb_pull(skb, skb->mac_len); 2318 2319 rcu_read_lock(); 2320 list_for_each_entry_rcu(ptype, &offload_base, list) { 2321 if (ptype->type == type && ptype->callbacks.gso_segment) { 2322 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2323 int err; 2324 2325 err = ptype->callbacks.gso_send_check(skb); 2326 segs = ERR_PTR(err); 2327 if (err || skb_gso_ok(skb, features)) 2328 break; 2329 __skb_push(skb, (skb->data - 2330 skb_network_header(skb))); 2331 } 2332 segs = ptype->callbacks.gso_segment(skb, features); 2333 break; 2334 } 2335 } 2336 rcu_read_unlock(); 2337 2338 __skb_push(skb, skb->data - skb_mac_header(skb)); 2339 2340 return segs; 2341 } 2342 EXPORT_SYMBOL(skb_mac_gso_segment); 2343 2344 2345 /* openvswitch calls this on rx path, so we need a different check. 2346 */ 2347 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2348 { 2349 if (tx_path) 2350 return skb->ip_summed != CHECKSUM_PARTIAL; 2351 else 2352 return skb->ip_summed == CHECKSUM_NONE; 2353 } 2354 2355 /** 2356 * __skb_gso_segment - Perform segmentation on skb. 2357 * @skb: buffer to segment 2358 * @features: features for the output path (see dev->features) 2359 * @tx_path: whether it is called in TX path 2360 * 2361 * This function segments the given skb and returns a list of segments. 2362 * 2363 * It may return NULL if the skb requires no segmentation. This is 2364 * only possible when GSO is used for verifying header integrity. 2365 */ 2366 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2367 netdev_features_t features, bool tx_path) 2368 { 2369 if (unlikely(skb_needs_check(skb, tx_path))) { 2370 int err; 2371 2372 skb_warn_bad_offload(skb); 2373 2374 if (skb_header_cloned(skb) && 2375 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2376 return ERR_PTR(err); 2377 } 2378 2379 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2380 skb_reset_mac_header(skb); 2381 skb_reset_mac_len(skb); 2382 2383 return skb_mac_gso_segment(skb, features); 2384 } 2385 EXPORT_SYMBOL(__skb_gso_segment); 2386 2387 /* Take action when hardware reception checksum errors are detected. */ 2388 #ifdef CONFIG_BUG 2389 void netdev_rx_csum_fault(struct net_device *dev) 2390 { 2391 if (net_ratelimit()) { 2392 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2393 dump_stack(); 2394 } 2395 } 2396 EXPORT_SYMBOL(netdev_rx_csum_fault); 2397 #endif 2398 2399 /* Actually, we should eliminate this check as soon as we know, that: 2400 * 1. IOMMU is present and allows to map all the memory. 2401 * 2. No high memory really exists on this machine. 2402 */ 2403 2404 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2405 { 2406 #ifdef CONFIG_HIGHMEM 2407 int i; 2408 if (!(dev->features & NETIF_F_HIGHDMA)) { 2409 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2410 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2411 if (PageHighMem(skb_frag_page(frag))) 2412 return 1; 2413 } 2414 } 2415 2416 if (PCI_DMA_BUS_IS_PHYS) { 2417 struct device *pdev = dev->dev.parent; 2418 2419 if (!pdev) 2420 return 0; 2421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2422 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2423 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2424 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2425 return 1; 2426 } 2427 } 2428 #endif 2429 return 0; 2430 } 2431 2432 struct dev_gso_cb { 2433 void (*destructor)(struct sk_buff *skb); 2434 }; 2435 2436 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2437 2438 static void dev_gso_skb_destructor(struct sk_buff *skb) 2439 { 2440 struct dev_gso_cb *cb; 2441 2442 do { 2443 struct sk_buff *nskb = skb->next; 2444 2445 skb->next = nskb->next; 2446 nskb->next = NULL; 2447 kfree_skb(nskb); 2448 } while (skb->next); 2449 2450 cb = DEV_GSO_CB(skb); 2451 if (cb->destructor) 2452 cb->destructor(skb); 2453 } 2454 2455 /** 2456 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2457 * @skb: buffer to segment 2458 * @features: device features as applicable to this skb 2459 * 2460 * This function segments the given skb and stores the list of segments 2461 * in skb->next. 2462 */ 2463 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2464 { 2465 struct sk_buff *segs; 2466 2467 segs = skb_gso_segment(skb, features); 2468 2469 /* Verifying header integrity only. */ 2470 if (!segs) 2471 return 0; 2472 2473 if (IS_ERR(segs)) 2474 return PTR_ERR(segs); 2475 2476 skb->next = segs; 2477 DEV_GSO_CB(skb)->destructor = skb->destructor; 2478 skb->destructor = dev_gso_skb_destructor; 2479 2480 return 0; 2481 } 2482 2483 static netdev_features_t harmonize_features(struct sk_buff *skb, 2484 netdev_features_t features) 2485 { 2486 if (skb->ip_summed != CHECKSUM_NONE && 2487 !can_checksum_protocol(features, skb_network_protocol(skb))) { 2488 features &= ~NETIF_F_ALL_CSUM; 2489 } else if (illegal_highdma(skb->dev, skb)) { 2490 features &= ~NETIF_F_SG; 2491 } 2492 2493 return features; 2494 } 2495 2496 netdev_features_t netif_skb_features(struct sk_buff *skb) 2497 { 2498 __be16 protocol = skb->protocol; 2499 netdev_features_t features = skb->dev->features; 2500 2501 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2502 features &= ~NETIF_F_GSO_MASK; 2503 2504 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2505 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2506 protocol = veh->h_vlan_encapsulated_proto; 2507 } else if (!vlan_tx_tag_present(skb)) { 2508 return harmonize_features(skb, features); 2509 } 2510 2511 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2512 NETIF_F_HW_VLAN_STAG_TX); 2513 2514 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2515 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2516 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2517 NETIF_F_HW_VLAN_STAG_TX; 2518 2519 return harmonize_features(skb, features); 2520 } 2521 EXPORT_SYMBOL(netif_skb_features); 2522 2523 /* 2524 * Returns true if either: 2525 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2526 * 2. skb is fragmented and the device does not support SG. 2527 */ 2528 static inline int skb_needs_linearize(struct sk_buff *skb, 2529 netdev_features_t features) 2530 { 2531 return skb_is_nonlinear(skb) && 2532 ((skb_has_frag_list(skb) && 2533 !(features & NETIF_F_FRAGLIST)) || 2534 (skb_shinfo(skb)->nr_frags && 2535 !(features & NETIF_F_SG))); 2536 } 2537 2538 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2539 struct netdev_queue *txq) 2540 { 2541 const struct net_device_ops *ops = dev->netdev_ops; 2542 int rc = NETDEV_TX_OK; 2543 unsigned int skb_len; 2544 2545 if (likely(!skb->next)) { 2546 netdev_features_t features; 2547 2548 /* 2549 * If device doesn't need skb->dst, release it right now while 2550 * its hot in this cpu cache 2551 */ 2552 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2553 skb_dst_drop(skb); 2554 2555 features = netif_skb_features(skb); 2556 2557 if (vlan_tx_tag_present(skb) && 2558 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2559 skb = __vlan_put_tag(skb, skb->vlan_proto, 2560 vlan_tx_tag_get(skb)); 2561 if (unlikely(!skb)) 2562 goto out; 2563 2564 skb->vlan_tci = 0; 2565 } 2566 2567 /* If encapsulation offload request, verify we are testing 2568 * hardware encapsulation features instead of standard 2569 * features for the netdev 2570 */ 2571 if (skb->encapsulation) 2572 features &= dev->hw_enc_features; 2573 2574 if (netif_needs_gso(skb, features)) { 2575 if (unlikely(dev_gso_segment(skb, features))) 2576 goto out_kfree_skb; 2577 if (skb->next) 2578 goto gso; 2579 } else { 2580 if (skb_needs_linearize(skb, features) && 2581 __skb_linearize(skb)) 2582 goto out_kfree_skb; 2583 2584 /* If packet is not checksummed and device does not 2585 * support checksumming for this protocol, complete 2586 * checksumming here. 2587 */ 2588 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2589 if (skb->encapsulation) 2590 skb_set_inner_transport_header(skb, 2591 skb_checksum_start_offset(skb)); 2592 else 2593 skb_set_transport_header(skb, 2594 skb_checksum_start_offset(skb)); 2595 if (!(features & NETIF_F_ALL_CSUM) && 2596 skb_checksum_help(skb)) 2597 goto out_kfree_skb; 2598 } 2599 } 2600 2601 if (!list_empty(&ptype_all)) 2602 dev_queue_xmit_nit(skb, dev); 2603 2604 skb_len = skb->len; 2605 rc = ops->ndo_start_xmit(skb, dev); 2606 trace_net_dev_xmit(skb, rc, dev, skb_len); 2607 if (rc == NETDEV_TX_OK) 2608 txq_trans_update(txq); 2609 return rc; 2610 } 2611 2612 gso: 2613 do { 2614 struct sk_buff *nskb = skb->next; 2615 2616 skb->next = nskb->next; 2617 nskb->next = NULL; 2618 2619 if (!list_empty(&ptype_all)) 2620 dev_queue_xmit_nit(nskb, dev); 2621 2622 skb_len = nskb->len; 2623 rc = ops->ndo_start_xmit(nskb, dev); 2624 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2625 if (unlikely(rc != NETDEV_TX_OK)) { 2626 if (rc & ~NETDEV_TX_MASK) 2627 goto out_kfree_gso_skb; 2628 nskb->next = skb->next; 2629 skb->next = nskb; 2630 return rc; 2631 } 2632 txq_trans_update(txq); 2633 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2634 return NETDEV_TX_BUSY; 2635 } while (skb->next); 2636 2637 out_kfree_gso_skb: 2638 if (likely(skb->next == NULL)) { 2639 skb->destructor = DEV_GSO_CB(skb)->destructor; 2640 consume_skb(skb); 2641 return rc; 2642 } 2643 out_kfree_skb: 2644 kfree_skb(skb); 2645 out: 2646 return rc; 2647 } 2648 2649 static void qdisc_pkt_len_init(struct sk_buff *skb) 2650 { 2651 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2652 2653 qdisc_skb_cb(skb)->pkt_len = skb->len; 2654 2655 /* To get more precise estimation of bytes sent on wire, 2656 * we add to pkt_len the headers size of all segments 2657 */ 2658 if (shinfo->gso_size) { 2659 unsigned int hdr_len; 2660 u16 gso_segs = shinfo->gso_segs; 2661 2662 /* mac layer + network layer */ 2663 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2664 2665 /* + transport layer */ 2666 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2667 hdr_len += tcp_hdrlen(skb); 2668 else 2669 hdr_len += sizeof(struct udphdr); 2670 2671 if (shinfo->gso_type & SKB_GSO_DODGY) 2672 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2673 shinfo->gso_size); 2674 2675 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2676 } 2677 } 2678 2679 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2680 struct net_device *dev, 2681 struct netdev_queue *txq) 2682 { 2683 spinlock_t *root_lock = qdisc_lock(q); 2684 bool contended; 2685 int rc; 2686 2687 qdisc_pkt_len_init(skb); 2688 qdisc_calculate_pkt_len(skb, q); 2689 /* 2690 * Heuristic to force contended enqueues to serialize on a 2691 * separate lock before trying to get qdisc main lock. 2692 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2693 * and dequeue packets faster. 2694 */ 2695 contended = qdisc_is_running(q); 2696 if (unlikely(contended)) 2697 spin_lock(&q->busylock); 2698 2699 spin_lock(root_lock); 2700 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2701 kfree_skb(skb); 2702 rc = NET_XMIT_DROP; 2703 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2704 qdisc_run_begin(q)) { 2705 /* 2706 * This is a work-conserving queue; there are no old skbs 2707 * waiting to be sent out; and the qdisc is not running - 2708 * xmit the skb directly. 2709 */ 2710 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2711 skb_dst_force(skb); 2712 2713 qdisc_bstats_update(q, skb); 2714 2715 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2716 if (unlikely(contended)) { 2717 spin_unlock(&q->busylock); 2718 contended = false; 2719 } 2720 __qdisc_run(q); 2721 } else 2722 qdisc_run_end(q); 2723 2724 rc = NET_XMIT_SUCCESS; 2725 } else { 2726 skb_dst_force(skb); 2727 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2728 if (qdisc_run_begin(q)) { 2729 if (unlikely(contended)) { 2730 spin_unlock(&q->busylock); 2731 contended = false; 2732 } 2733 __qdisc_run(q); 2734 } 2735 } 2736 spin_unlock(root_lock); 2737 if (unlikely(contended)) 2738 spin_unlock(&q->busylock); 2739 return rc; 2740 } 2741 2742 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2743 static void skb_update_prio(struct sk_buff *skb) 2744 { 2745 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2746 2747 if (!skb->priority && skb->sk && map) { 2748 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2749 2750 if (prioidx < map->priomap_len) 2751 skb->priority = map->priomap[prioidx]; 2752 } 2753 } 2754 #else 2755 #define skb_update_prio(skb) 2756 #endif 2757 2758 static DEFINE_PER_CPU(int, xmit_recursion); 2759 #define RECURSION_LIMIT 10 2760 2761 /** 2762 * dev_loopback_xmit - loop back @skb 2763 * @skb: buffer to transmit 2764 */ 2765 int dev_loopback_xmit(struct sk_buff *skb) 2766 { 2767 skb_reset_mac_header(skb); 2768 __skb_pull(skb, skb_network_offset(skb)); 2769 skb->pkt_type = PACKET_LOOPBACK; 2770 skb->ip_summed = CHECKSUM_UNNECESSARY; 2771 WARN_ON(!skb_dst(skb)); 2772 skb_dst_force(skb); 2773 netif_rx_ni(skb); 2774 return 0; 2775 } 2776 EXPORT_SYMBOL(dev_loopback_xmit); 2777 2778 /** 2779 * dev_queue_xmit - transmit a buffer 2780 * @skb: buffer to transmit 2781 * 2782 * Queue a buffer for transmission to a network device. The caller must 2783 * have set the device and priority and built the buffer before calling 2784 * this function. The function can be called from an interrupt. 2785 * 2786 * A negative errno code is returned on a failure. A success does not 2787 * guarantee the frame will be transmitted as it may be dropped due 2788 * to congestion or traffic shaping. 2789 * 2790 * ----------------------------------------------------------------------------------- 2791 * I notice this method can also return errors from the queue disciplines, 2792 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2793 * be positive. 2794 * 2795 * Regardless of the return value, the skb is consumed, so it is currently 2796 * difficult to retry a send to this method. (You can bump the ref count 2797 * before sending to hold a reference for retry if you are careful.) 2798 * 2799 * When calling this method, interrupts MUST be enabled. This is because 2800 * the BH enable code must have IRQs enabled so that it will not deadlock. 2801 * --BLG 2802 */ 2803 int dev_queue_xmit(struct sk_buff *skb) 2804 { 2805 struct net_device *dev = skb->dev; 2806 struct netdev_queue *txq; 2807 struct Qdisc *q; 2808 int rc = -ENOMEM; 2809 2810 skb_reset_mac_header(skb); 2811 2812 /* Disable soft irqs for various locks below. Also 2813 * stops preemption for RCU. 2814 */ 2815 rcu_read_lock_bh(); 2816 2817 skb_update_prio(skb); 2818 2819 txq = netdev_pick_tx(dev, skb); 2820 q = rcu_dereference_bh(txq->qdisc); 2821 2822 #ifdef CONFIG_NET_CLS_ACT 2823 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2824 #endif 2825 trace_net_dev_queue(skb); 2826 if (q->enqueue) { 2827 rc = __dev_xmit_skb(skb, q, dev, txq); 2828 goto out; 2829 } 2830 2831 /* The device has no queue. Common case for software devices: 2832 loopback, all the sorts of tunnels... 2833 2834 Really, it is unlikely that netif_tx_lock protection is necessary 2835 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2836 counters.) 2837 However, it is possible, that they rely on protection 2838 made by us here. 2839 2840 Check this and shot the lock. It is not prone from deadlocks. 2841 Either shot noqueue qdisc, it is even simpler 8) 2842 */ 2843 if (dev->flags & IFF_UP) { 2844 int cpu = smp_processor_id(); /* ok because BHs are off */ 2845 2846 if (txq->xmit_lock_owner != cpu) { 2847 2848 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2849 goto recursion_alert; 2850 2851 HARD_TX_LOCK(dev, txq, cpu); 2852 2853 if (!netif_xmit_stopped(txq)) { 2854 __this_cpu_inc(xmit_recursion); 2855 rc = dev_hard_start_xmit(skb, dev, txq); 2856 __this_cpu_dec(xmit_recursion); 2857 if (dev_xmit_complete(rc)) { 2858 HARD_TX_UNLOCK(dev, txq); 2859 goto out; 2860 } 2861 } 2862 HARD_TX_UNLOCK(dev, txq); 2863 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2864 dev->name); 2865 } else { 2866 /* Recursion is detected! It is possible, 2867 * unfortunately 2868 */ 2869 recursion_alert: 2870 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2871 dev->name); 2872 } 2873 } 2874 2875 rc = -ENETDOWN; 2876 rcu_read_unlock_bh(); 2877 2878 kfree_skb(skb); 2879 return rc; 2880 out: 2881 rcu_read_unlock_bh(); 2882 return rc; 2883 } 2884 EXPORT_SYMBOL(dev_queue_xmit); 2885 2886 2887 /*======================================================================= 2888 Receiver routines 2889 =======================================================================*/ 2890 2891 int netdev_max_backlog __read_mostly = 1000; 2892 EXPORT_SYMBOL(netdev_max_backlog); 2893 2894 int netdev_tstamp_prequeue __read_mostly = 1; 2895 int netdev_budget __read_mostly = 300; 2896 int weight_p __read_mostly = 64; /* old backlog weight */ 2897 2898 /* Called with irq disabled */ 2899 static inline void ____napi_schedule(struct softnet_data *sd, 2900 struct napi_struct *napi) 2901 { 2902 list_add_tail(&napi->poll_list, &sd->poll_list); 2903 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2904 } 2905 2906 #ifdef CONFIG_RPS 2907 2908 /* One global table that all flow-based protocols share. */ 2909 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2910 EXPORT_SYMBOL(rps_sock_flow_table); 2911 2912 struct static_key rps_needed __read_mostly; 2913 2914 static struct rps_dev_flow * 2915 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2916 struct rps_dev_flow *rflow, u16 next_cpu) 2917 { 2918 if (next_cpu != RPS_NO_CPU) { 2919 #ifdef CONFIG_RFS_ACCEL 2920 struct netdev_rx_queue *rxqueue; 2921 struct rps_dev_flow_table *flow_table; 2922 struct rps_dev_flow *old_rflow; 2923 u32 flow_id; 2924 u16 rxq_index; 2925 int rc; 2926 2927 /* Should we steer this flow to a different hardware queue? */ 2928 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2929 !(dev->features & NETIF_F_NTUPLE)) 2930 goto out; 2931 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2932 if (rxq_index == skb_get_rx_queue(skb)) 2933 goto out; 2934 2935 rxqueue = dev->_rx + rxq_index; 2936 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2937 if (!flow_table) 2938 goto out; 2939 flow_id = skb->rxhash & flow_table->mask; 2940 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2941 rxq_index, flow_id); 2942 if (rc < 0) 2943 goto out; 2944 old_rflow = rflow; 2945 rflow = &flow_table->flows[flow_id]; 2946 rflow->filter = rc; 2947 if (old_rflow->filter == rflow->filter) 2948 old_rflow->filter = RPS_NO_FILTER; 2949 out: 2950 #endif 2951 rflow->last_qtail = 2952 per_cpu(softnet_data, next_cpu).input_queue_head; 2953 } 2954 2955 rflow->cpu = next_cpu; 2956 return rflow; 2957 } 2958 2959 /* 2960 * get_rps_cpu is called from netif_receive_skb and returns the target 2961 * CPU from the RPS map of the receiving queue for a given skb. 2962 * rcu_read_lock must be held on entry. 2963 */ 2964 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2965 struct rps_dev_flow **rflowp) 2966 { 2967 struct netdev_rx_queue *rxqueue; 2968 struct rps_map *map; 2969 struct rps_dev_flow_table *flow_table; 2970 struct rps_sock_flow_table *sock_flow_table; 2971 int cpu = -1; 2972 u16 tcpu; 2973 2974 if (skb_rx_queue_recorded(skb)) { 2975 u16 index = skb_get_rx_queue(skb); 2976 if (unlikely(index >= dev->real_num_rx_queues)) { 2977 WARN_ONCE(dev->real_num_rx_queues > 1, 2978 "%s received packet on queue %u, but number " 2979 "of RX queues is %u\n", 2980 dev->name, index, dev->real_num_rx_queues); 2981 goto done; 2982 } 2983 rxqueue = dev->_rx + index; 2984 } else 2985 rxqueue = dev->_rx; 2986 2987 map = rcu_dereference(rxqueue->rps_map); 2988 if (map) { 2989 if (map->len == 1 && 2990 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2991 tcpu = map->cpus[0]; 2992 if (cpu_online(tcpu)) 2993 cpu = tcpu; 2994 goto done; 2995 } 2996 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2997 goto done; 2998 } 2999 3000 skb_reset_network_header(skb); 3001 if (!skb_get_rxhash(skb)) 3002 goto done; 3003 3004 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3005 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3006 if (flow_table && sock_flow_table) { 3007 u16 next_cpu; 3008 struct rps_dev_flow *rflow; 3009 3010 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 3011 tcpu = rflow->cpu; 3012 3013 next_cpu = sock_flow_table->ents[skb->rxhash & 3014 sock_flow_table->mask]; 3015 3016 /* 3017 * If the desired CPU (where last recvmsg was done) is 3018 * different from current CPU (one in the rx-queue flow 3019 * table entry), switch if one of the following holds: 3020 * - Current CPU is unset (equal to RPS_NO_CPU). 3021 * - Current CPU is offline. 3022 * - The current CPU's queue tail has advanced beyond the 3023 * last packet that was enqueued using this table entry. 3024 * This guarantees that all previous packets for the flow 3025 * have been dequeued, thus preserving in order delivery. 3026 */ 3027 if (unlikely(tcpu != next_cpu) && 3028 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3029 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3030 rflow->last_qtail)) >= 0)) { 3031 tcpu = next_cpu; 3032 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3033 } 3034 3035 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3036 *rflowp = rflow; 3037 cpu = tcpu; 3038 goto done; 3039 } 3040 } 3041 3042 if (map) { 3043 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 3044 3045 if (cpu_online(tcpu)) { 3046 cpu = tcpu; 3047 goto done; 3048 } 3049 } 3050 3051 done: 3052 return cpu; 3053 } 3054 3055 #ifdef CONFIG_RFS_ACCEL 3056 3057 /** 3058 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3059 * @dev: Device on which the filter was set 3060 * @rxq_index: RX queue index 3061 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3062 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3063 * 3064 * Drivers that implement ndo_rx_flow_steer() should periodically call 3065 * this function for each installed filter and remove the filters for 3066 * which it returns %true. 3067 */ 3068 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3069 u32 flow_id, u16 filter_id) 3070 { 3071 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3072 struct rps_dev_flow_table *flow_table; 3073 struct rps_dev_flow *rflow; 3074 bool expire = true; 3075 int cpu; 3076 3077 rcu_read_lock(); 3078 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3079 if (flow_table && flow_id <= flow_table->mask) { 3080 rflow = &flow_table->flows[flow_id]; 3081 cpu = ACCESS_ONCE(rflow->cpu); 3082 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3083 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3084 rflow->last_qtail) < 3085 (int)(10 * flow_table->mask))) 3086 expire = false; 3087 } 3088 rcu_read_unlock(); 3089 return expire; 3090 } 3091 EXPORT_SYMBOL(rps_may_expire_flow); 3092 3093 #endif /* CONFIG_RFS_ACCEL */ 3094 3095 /* Called from hardirq (IPI) context */ 3096 static void rps_trigger_softirq(void *data) 3097 { 3098 struct softnet_data *sd = data; 3099 3100 ____napi_schedule(sd, &sd->backlog); 3101 sd->received_rps++; 3102 } 3103 3104 #endif /* CONFIG_RPS */ 3105 3106 /* 3107 * Check if this softnet_data structure is another cpu one 3108 * If yes, queue it to our IPI list and return 1 3109 * If no, return 0 3110 */ 3111 static int rps_ipi_queued(struct softnet_data *sd) 3112 { 3113 #ifdef CONFIG_RPS 3114 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3115 3116 if (sd != mysd) { 3117 sd->rps_ipi_next = mysd->rps_ipi_list; 3118 mysd->rps_ipi_list = sd; 3119 3120 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3121 return 1; 3122 } 3123 #endif /* CONFIG_RPS */ 3124 return 0; 3125 } 3126 3127 #ifdef CONFIG_NET_FLOW_LIMIT 3128 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3129 #endif 3130 3131 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3132 { 3133 #ifdef CONFIG_NET_FLOW_LIMIT 3134 struct sd_flow_limit *fl; 3135 struct softnet_data *sd; 3136 unsigned int old_flow, new_flow; 3137 3138 if (qlen < (netdev_max_backlog >> 1)) 3139 return false; 3140 3141 sd = &__get_cpu_var(softnet_data); 3142 3143 rcu_read_lock(); 3144 fl = rcu_dereference(sd->flow_limit); 3145 if (fl) { 3146 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1); 3147 old_flow = fl->history[fl->history_head]; 3148 fl->history[fl->history_head] = new_flow; 3149 3150 fl->history_head++; 3151 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3152 3153 if (likely(fl->buckets[old_flow])) 3154 fl->buckets[old_flow]--; 3155 3156 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3157 fl->count++; 3158 rcu_read_unlock(); 3159 return true; 3160 } 3161 } 3162 rcu_read_unlock(); 3163 #endif 3164 return false; 3165 } 3166 3167 /* 3168 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3169 * queue (may be a remote CPU queue). 3170 */ 3171 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3172 unsigned int *qtail) 3173 { 3174 struct softnet_data *sd; 3175 unsigned long flags; 3176 unsigned int qlen; 3177 3178 sd = &per_cpu(softnet_data, cpu); 3179 3180 local_irq_save(flags); 3181 3182 rps_lock(sd); 3183 qlen = skb_queue_len(&sd->input_pkt_queue); 3184 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3185 if (skb_queue_len(&sd->input_pkt_queue)) { 3186 enqueue: 3187 __skb_queue_tail(&sd->input_pkt_queue, skb); 3188 input_queue_tail_incr_save(sd, qtail); 3189 rps_unlock(sd); 3190 local_irq_restore(flags); 3191 return NET_RX_SUCCESS; 3192 } 3193 3194 /* Schedule NAPI for backlog device 3195 * We can use non atomic operation since we own the queue lock 3196 */ 3197 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3198 if (!rps_ipi_queued(sd)) 3199 ____napi_schedule(sd, &sd->backlog); 3200 } 3201 goto enqueue; 3202 } 3203 3204 sd->dropped++; 3205 rps_unlock(sd); 3206 3207 local_irq_restore(flags); 3208 3209 atomic_long_inc(&skb->dev->rx_dropped); 3210 kfree_skb(skb); 3211 return NET_RX_DROP; 3212 } 3213 3214 /** 3215 * netif_rx - post buffer to the network code 3216 * @skb: buffer to post 3217 * 3218 * This function receives a packet from a device driver and queues it for 3219 * the upper (protocol) levels to process. It always succeeds. The buffer 3220 * may be dropped during processing for congestion control or by the 3221 * protocol layers. 3222 * 3223 * return values: 3224 * NET_RX_SUCCESS (no congestion) 3225 * NET_RX_DROP (packet was dropped) 3226 * 3227 */ 3228 3229 int netif_rx(struct sk_buff *skb) 3230 { 3231 int ret; 3232 3233 /* if netpoll wants it, pretend we never saw it */ 3234 if (netpoll_rx(skb)) 3235 return NET_RX_DROP; 3236 3237 net_timestamp_check(netdev_tstamp_prequeue, skb); 3238 3239 trace_netif_rx(skb); 3240 #ifdef CONFIG_RPS 3241 if (static_key_false(&rps_needed)) { 3242 struct rps_dev_flow voidflow, *rflow = &voidflow; 3243 int cpu; 3244 3245 preempt_disable(); 3246 rcu_read_lock(); 3247 3248 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3249 if (cpu < 0) 3250 cpu = smp_processor_id(); 3251 3252 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3253 3254 rcu_read_unlock(); 3255 preempt_enable(); 3256 } else 3257 #endif 3258 { 3259 unsigned int qtail; 3260 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3261 put_cpu(); 3262 } 3263 return ret; 3264 } 3265 EXPORT_SYMBOL(netif_rx); 3266 3267 int netif_rx_ni(struct sk_buff *skb) 3268 { 3269 int err; 3270 3271 preempt_disable(); 3272 err = netif_rx(skb); 3273 if (local_softirq_pending()) 3274 do_softirq(); 3275 preempt_enable(); 3276 3277 return err; 3278 } 3279 EXPORT_SYMBOL(netif_rx_ni); 3280 3281 static void net_tx_action(struct softirq_action *h) 3282 { 3283 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3284 3285 if (sd->completion_queue) { 3286 struct sk_buff *clist; 3287 3288 local_irq_disable(); 3289 clist = sd->completion_queue; 3290 sd->completion_queue = NULL; 3291 local_irq_enable(); 3292 3293 while (clist) { 3294 struct sk_buff *skb = clist; 3295 clist = clist->next; 3296 3297 WARN_ON(atomic_read(&skb->users)); 3298 trace_kfree_skb(skb, net_tx_action); 3299 __kfree_skb(skb); 3300 } 3301 } 3302 3303 if (sd->output_queue) { 3304 struct Qdisc *head; 3305 3306 local_irq_disable(); 3307 head = sd->output_queue; 3308 sd->output_queue = NULL; 3309 sd->output_queue_tailp = &sd->output_queue; 3310 local_irq_enable(); 3311 3312 while (head) { 3313 struct Qdisc *q = head; 3314 spinlock_t *root_lock; 3315 3316 head = head->next_sched; 3317 3318 root_lock = qdisc_lock(q); 3319 if (spin_trylock(root_lock)) { 3320 smp_mb__before_clear_bit(); 3321 clear_bit(__QDISC_STATE_SCHED, 3322 &q->state); 3323 qdisc_run(q); 3324 spin_unlock(root_lock); 3325 } else { 3326 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3327 &q->state)) { 3328 __netif_reschedule(q); 3329 } else { 3330 smp_mb__before_clear_bit(); 3331 clear_bit(__QDISC_STATE_SCHED, 3332 &q->state); 3333 } 3334 } 3335 } 3336 } 3337 } 3338 3339 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3340 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3341 /* This hook is defined here for ATM LANE */ 3342 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3343 unsigned char *addr) __read_mostly; 3344 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3345 #endif 3346 3347 #ifdef CONFIG_NET_CLS_ACT 3348 /* TODO: Maybe we should just force sch_ingress to be compiled in 3349 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3350 * a compare and 2 stores extra right now if we dont have it on 3351 * but have CONFIG_NET_CLS_ACT 3352 * NOTE: This doesn't stop any functionality; if you dont have 3353 * the ingress scheduler, you just can't add policies on ingress. 3354 * 3355 */ 3356 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3357 { 3358 struct net_device *dev = skb->dev; 3359 u32 ttl = G_TC_RTTL(skb->tc_verd); 3360 int result = TC_ACT_OK; 3361 struct Qdisc *q; 3362 3363 if (unlikely(MAX_RED_LOOP < ttl++)) { 3364 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3365 skb->skb_iif, dev->ifindex); 3366 return TC_ACT_SHOT; 3367 } 3368 3369 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3370 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3371 3372 q = rxq->qdisc; 3373 if (q != &noop_qdisc) { 3374 spin_lock(qdisc_lock(q)); 3375 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3376 result = qdisc_enqueue_root(skb, q); 3377 spin_unlock(qdisc_lock(q)); 3378 } 3379 3380 return result; 3381 } 3382 3383 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3384 struct packet_type **pt_prev, 3385 int *ret, struct net_device *orig_dev) 3386 { 3387 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3388 3389 if (!rxq || rxq->qdisc == &noop_qdisc) 3390 goto out; 3391 3392 if (*pt_prev) { 3393 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3394 *pt_prev = NULL; 3395 } 3396 3397 switch (ing_filter(skb, rxq)) { 3398 case TC_ACT_SHOT: 3399 case TC_ACT_STOLEN: 3400 kfree_skb(skb); 3401 return NULL; 3402 } 3403 3404 out: 3405 skb->tc_verd = 0; 3406 return skb; 3407 } 3408 #endif 3409 3410 /** 3411 * netdev_rx_handler_register - register receive handler 3412 * @dev: device to register a handler for 3413 * @rx_handler: receive handler to register 3414 * @rx_handler_data: data pointer that is used by rx handler 3415 * 3416 * Register a receive hander for a device. This handler will then be 3417 * called from __netif_receive_skb. A negative errno code is returned 3418 * on a failure. 3419 * 3420 * The caller must hold the rtnl_mutex. 3421 * 3422 * For a general description of rx_handler, see enum rx_handler_result. 3423 */ 3424 int netdev_rx_handler_register(struct net_device *dev, 3425 rx_handler_func_t *rx_handler, 3426 void *rx_handler_data) 3427 { 3428 ASSERT_RTNL(); 3429 3430 if (dev->rx_handler) 3431 return -EBUSY; 3432 3433 /* Note: rx_handler_data must be set before rx_handler */ 3434 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3435 rcu_assign_pointer(dev->rx_handler, rx_handler); 3436 3437 return 0; 3438 } 3439 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3440 3441 /** 3442 * netdev_rx_handler_unregister - unregister receive handler 3443 * @dev: device to unregister a handler from 3444 * 3445 * Unregister a receive handler from a device. 3446 * 3447 * The caller must hold the rtnl_mutex. 3448 */ 3449 void netdev_rx_handler_unregister(struct net_device *dev) 3450 { 3451 3452 ASSERT_RTNL(); 3453 RCU_INIT_POINTER(dev->rx_handler, NULL); 3454 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3455 * section has a guarantee to see a non NULL rx_handler_data 3456 * as well. 3457 */ 3458 synchronize_net(); 3459 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3460 } 3461 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3462 3463 /* 3464 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3465 * the special handling of PFMEMALLOC skbs. 3466 */ 3467 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3468 { 3469 switch (skb->protocol) { 3470 case __constant_htons(ETH_P_ARP): 3471 case __constant_htons(ETH_P_IP): 3472 case __constant_htons(ETH_P_IPV6): 3473 case __constant_htons(ETH_P_8021Q): 3474 case __constant_htons(ETH_P_8021AD): 3475 return true; 3476 default: 3477 return false; 3478 } 3479 } 3480 3481 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3482 { 3483 struct packet_type *ptype, *pt_prev; 3484 rx_handler_func_t *rx_handler; 3485 struct net_device *orig_dev; 3486 struct net_device *null_or_dev; 3487 bool deliver_exact = false; 3488 int ret = NET_RX_DROP; 3489 __be16 type; 3490 3491 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3492 3493 trace_netif_receive_skb(skb); 3494 3495 /* if we've gotten here through NAPI, check netpoll */ 3496 if (netpoll_receive_skb(skb)) 3497 goto out; 3498 3499 orig_dev = skb->dev; 3500 3501 skb_reset_network_header(skb); 3502 if (!skb_transport_header_was_set(skb)) 3503 skb_reset_transport_header(skb); 3504 skb_reset_mac_len(skb); 3505 3506 pt_prev = NULL; 3507 3508 rcu_read_lock(); 3509 3510 another_round: 3511 skb->skb_iif = skb->dev->ifindex; 3512 3513 __this_cpu_inc(softnet_data.processed); 3514 3515 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3516 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3517 skb = vlan_untag(skb); 3518 if (unlikely(!skb)) 3519 goto unlock; 3520 } 3521 3522 #ifdef CONFIG_NET_CLS_ACT 3523 if (skb->tc_verd & TC_NCLS) { 3524 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3525 goto ncls; 3526 } 3527 #endif 3528 3529 if (pfmemalloc) 3530 goto skip_taps; 3531 3532 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3533 if (!ptype->dev || ptype->dev == skb->dev) { 3534 if (pt_prev) 3535 ret = deliver_skb(skb, pt_prev, orig_dev); 3536 pt_prev = ptype; 3537 } 3538 } 3539 3540 skip_taps: 3541 #ifdef CONFIG_NET_CLS_ACT 3542 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3543 if (!skb) 3544 goto unlock; 3545 ncls: 3546 #endif 3547 3548 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3549 goto drop; 3550 3551 if (vlan_tx_tag_present(skb)) { 3552 if (pt_prev) { 3553 ret = deliver_skb(skb, pt_prev, orig_dev); 3554 pt_prev = NULL; 3555 } 3556 if (vlan_do_receive(&skb)) 3557 goto another_round; 3558 else if (unlikely(!skb)) 3559 goto unlock; 3560 } 3561 3562 rx_handler = rcu_dereference(skb->dev->rx_handler); 3563 if (rx_handler) { 3564 if (pt_prev) { 3565 ret = deliver_skb(skb, pt_prev, orig_dev); 3566 pt_prev = NULL; 3567 } 3568 switch (rx_handler(&skb)) { 3569 case RX_HANDLER_CONSUMED: 3570 ret = NET_RX_SUCCESS; 3571 goto unlock; 3572 case RX_HANDLER_ANOTHER: 3573 goto another_round; 3574 case RX_HANDLER_EXACT: 3575 deliver_exact = true; 3576 case RX_HANDLER_PASS: 3577 break; 3578 default: 3579 BUG(); 3580 } 3581 } 3582 3583 if (vlan_tx_nonzero_tag_present(skb)) 3584 skb->pkt_type = PACKET_OTHERHOST; 3585 3586 /* deliver only exact match when indicated */ 3587 null_or_dev = deliver_exact ? skb->dev : NULL; 3588 3589 type = skb->protocol; 3590 list_for_each_entry_rcu(ptype, 3591 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3592 if (ptype->type == type && 3593 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3594 ptype->dev == orig_dev)) { 3595 if (pt_prev) 3596 ret = deliver_skb(skb, pt_prev, orig_dev); 3597 pt_prev = ptype; 3598 } 3599 } 3600 3601 if (pt_prev) { 3602 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3603 goto drop; 3604 else 3605 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3606 } else { 3607 drop: 3608 atomic_long_inc(&skb->dev->rx_dropped); 3609 kfree_skb(skb); 3610 /* Jamal, now you will not able to escape explaining 3611 * me how you were going to use this. :-) 3612 */ 3613 ret = NET_RX_DROP; 3614 } 3615 3616 unlock: 3617 rcu_read_unlock(); 3618 out: 3619 return ret; 3620 } 3621 3622 static int __netif_receive_skb(struct sk_buff *skb) 3623 { 3624 int ret; 3625 3626 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3627 unsigned long pflags = current->flags; 3628 3629 /* 3630 * PFMEMALLOC skbs are special, they should 3631 * - be delivered to SOCK_MEMALLOC sockets only 3632 * - stay away from userspace 3633 * - have bounded memory usage 3634 * 3635 * Use PF_MEMALLOC as this saves us from propagating the allocation 3636 * context down to all allocation sites. 3637 */ 3638 current->flags |= PF_MEMALLOC; 3639 ret = __netif_receive_skb_core(skb, true); 3640 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3641 } else 3642 ret = __netif_receive_skb_core(skb, false); 3643 3644 return ret; 3645 } 3646 3647 /** 3648 * netif_receive_skb - process receive buffer from network 3649 * @skb: buffer to process 3650 * 3651 * netif_receive_skb() is the main receive data processing function. 3652 * It always succeeds. The buffer may be dropped during processing 3653 * for congestion control or by the protocol layers. 3654 * 3655 * This function may only be called from softirq context and interrupts 3656 * should be enabled. 3657 * 3658 * Return values (usually ignored): 3659 * NET_RX_SUCCESS: no congestion 3660 * NET_RX_DROP: packet was dropped 3661 */ 3662 int netif_receive_skb(struct sk_buff *skb) 3663 { 3664 net_timestamp_check(netdev_tstamp_prequeue, skb); 3665 3666 if (skb_defer_rx_timestamp(skb)) 3667 return NET_RX_SUCCESS; 3668 3669 #ifdef CONFIG_RPS 3670 if (static_key_false(&rps_needed)) { 3671 struct rps_dev_flow voidflow, *rflow = &voidflow; 3672 int cpu, ret; 3673 3674 rcu_read_lock(); 3675 3676 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3677 3678 if (cpu >= 0) { 3679 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3680 rcu_read_unlock(); 3681 return ret; 3682 } 3683 rcu_read_unlock(); 3684 } 3685 #endif 3686 return __netif_receive_skb(skb); 3687 } 3688 EXPORT_SYMBOL(netif_receive_skb); 3689 3690 /* Network device is going away, flush any packets still pending 3691 * Called with irqs disabled. 3692 */ 3693 static void flush_backlog(void *arg) 3694 { 3695 struct net_device *dev = arg; 3696 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3697 struct sk_buff *skb, *tmp; 3698 3699 rps_lock(sd); 3700 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3701 if (skb->dev == dev) { 3702 __skb_unlink(skb, &sd->input_pkt_queue); 3703 kfree_skb(skb); 3704 input_queue_head_incr(sd); 3705 } 3706 } 3707 rps_unlock(sd); 3708 3709 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3710 if (skb->dev == dev) { 3711 __skb_unlink(skb, &sd->process_queue); 3712 kfree_skb(skb); 3713 input_queue_head_incr(sd); 3714 } 3715 } 3716 } 3717 3718 static int napi_gro_complete(struct sk_buff *skb) 3719 { 3720 struct packet_offload *ptype; 3721 __be16 type = skb->protocol; 3722 struct list_head *head = &offload_base; 3723 int err = -ENOENT; 3724 3725 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3726 3727 if (NAPI_GRO_CB(skb)->count == 1) { 3728 skb_shinfo(skb)->gso_size = 0; 3729 goto out; 3730 } 3731 3732 rcu_read_lock(); 3733 list_for_each_entry_rcu(ptype, head, list) { 3734 if (ptype->type != type || !ptype->callbacks.gro_complete) 3735 continue; 3736 3737 err = ptype->callbacks.gro_complete(skb); 3738 break; 3739 } 3740 rcu_read_unlock(); 3741 3742 if (err) { 3743 WARN_ON(&ptype->list == head); 3744 kfree_skb(skb); 3745 return NET_RX_SUCCESS; 3746 } 3747 3748 out: 3749 return netif_receive_skb(skb); 3750 } 3751 3752 /* napi->gro_list contains packets ordered by age. 3753 * youngest packets at the head of it. 3754 * Complete skbs in reverse order to reduce latencies. 3755 */ 3756 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3757 { 3758 struct sk_buff *skb, *prev = NULL; 3759 3760 /* scan list and build reverse chain */ 3761 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3762 skb->prev = prev; 3763 prev = skb; 3764 } 3765 3766 for (skb = prev; skb; skb = prev) { 3767 skb->next = NULL; 3768 3769 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3770 return; 3771 3772 prev = skb->prev; 3773 napi_gro_complete(skb); 3774 napi->gro_count--; 3775 } 3776 3777 napi->gro_list = NULL; 3778 } 3779 EXPORT_SYMBOL(napi_gro_flush); 3780 3781 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3782 { 3783 struct sk_buff *p; 3784 unsigned int maclen = skb->dev->hard_header_len; 3785 3786 for (p = napi->gro_list; p; p = p->next) { 3787 unsigned long diffs; 3788 3789 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3790 diffs |= p->vlan_tci ^ skb->vlan_tci; 3791 if (maclen == ETH_HLEN) 3792 diffs |= compare_ether_header(skb_mac_header(p), 3793 skb_gro_mac_header(skb)); 3794 else if (!diffs) 3795 diffs = memcmp(skb_mac_header(p), 3796 skb_gro_mac_header(skb), 3797 maclen); 3798 NAPI_GRO_CB(p)->same_flow = !diffs; 3799 NAPI_GRO_CB(p)->flush = 0; 3800 } 3801 } 3802 3803 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3804 { 3805 struct sk_buff **pp = NULL; 3806 struct packet_offload *ptype; 3807 __be16 type = skb->protocol; 3808 struct list_head *head = &offload_base; 3809 int same_flow; 3810 enum gro_result ret; 3811 3812 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3813 goto normal; 3814 3815 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3816 goto normal; 3817 3818 gro_list_prepare(napi, skb); 3819 3820 rcu_read_lock(); 3821 list_for_each_entry_rcu(ptype, head, list) { 3822 if (ptype->type != type || !ptype->callbacks.gro_receive) 3823 continue; 3824 3825 skb_set_network_header(skb, skb_gro_offset(skb)); 3826 skb_reset_mac_len(skb); 3827 NAPI_GRO_CB(skb)->same_flow = 0; 3828 NAPI_GRO_CB(skb)->flush = 0; 3829 NAPI_GRO_CB(skb)->free = 0; 3830 3831 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3832 break; 3833 } 3834 rcu_read_unlock(); 3835 3836 if (&ptype->list == head) 3837 goto normal; 3838 3839 same_flow = NAPI_GRO_CB(skb)->same_flow; 3840 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3841 3842 if (pp) { 3843 struct sk_buff *nskb = *pp; 3844 3845 *pp = nskb->next; 3846 nskb->next = NULL; 3847 napi_gro_complete(nskb); 3848 napi->gro_count--; 3849 } 3850 3851 if (same_flow) 3852 goto ok; 3853 3854 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3855 goto normal; 3856 3857 napi->gro_count++; 3858 NAPI_GRO_CB(skb)->count = 1; 3859 NAPI_GRO_CB(skb)->age = jiffies; 3860 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3861 skb->next = napi->gro_list; 3862 napi->gro_list = skb; 3863 ret = GRO_HELD; 3864 3865 pull: 3866 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3867 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3868 3869 BUG_ON(skb->end - skb->tail < grow); 3870 3871 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3872 3873 skb->tail += grow; 3874 skb->data_len -= grow; 3875 3876 skb_shinfo(skb)->frags[0].page_offset += grow; 3877 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3878 3879 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3880 skb_frag_unref(skb, 0); 3881 memmove(skb_shinfo(skb)->frags, 3882 skb_shinfo(skb)->frags + 1, 3883 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3884 } 3885 } 3886 3887 ok: 3888 return ret; 3889 3890 normal: 3891 ret = GRO_NORMAL; 3892 goto pull; 3893 } 3894 3895 3896 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3897 { 3898 switch (ret) { 3899 case GRO_NORMAL: 3900 if (netif_receive_skb(skb)) 3901 ret = GRO_DROP; 3902 break; 3903 3904 case GRO_DROP: 3905 kfree_skb(skb); 3906 break; 3907 3908 case GRO_MERGED_FREE: 3909 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3910 kmem_cache_free(skbuff_head_cache, skb); 3911 else 3912 __kfree_skb(skb); 3913 break; 3914 3915 case GRO_HELD: 3916 case GRO_MERGED: 3917 break; 3918 } 3919 3920 return ret; 3921 } 3922 3923 static void skb_gro_reset_offset(struct sk_buff *skb) 3924 { 3925 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3926 const skb_frag_t *frag0 = &pinfo->frags[0]; 3927 3928 NAPI_GRO_CB(skb)->data_offset = 0; 3929 NAPI_GRO_CB(skb)->frag0 = NULL; 3930 NAPI_GRO_CB(skb)->frag0_len = 0; 3931 3932 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3933 pinfo->nr_frags && 3934 !PageHighMem(skb_frag_page(frag0))) { 3935 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3936 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3937 } 3938 } 3939 3940 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3941 { 3942 skb_gro_reset_offset(skb); 3943 3944 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 3945 } 3946 EXPORT_SYMBOL(napi_gro_receive); 3947 3948 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3949 { 3950 __skb_pull(skb, skb_headlen(skb)); 3951 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3952 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3953 skb->vlan_tci = 0; 3954 skb->dev = napi->dev; 3955 skb->skb_iif = 0; 3956 3957 napi->skb = skb; 3958 } 3959 3960 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3961 { 3962 struct sk_buff *skb = napi->skb; 3963 3964 if (!skb) { 3965 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3966 if (skb) 3967 napi->skb = skb; 3968 } 3969 return skb; 3970 } 3971 EXPORT_SYMBOL(napi_get_frags); 3972 3973 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3974 gro_result_t ret) 3975 { 3976 switch (ret) { 3977 case GRO_NORMAL: 3978 case GRO_HELD: 3979 skb->protocol = eth_type_trans(skb, skb->dev); 3980 3981 if (ret == GRO_HELD) 3982 skb_gro_pull(skb, -ETH_HLEN); 3983 else if (netif_receive_skb(skb)) 3984 ret = GRO_DROP; 3985 break; 3986 3987 case GRO_DROP: 3988 case GRO_MERGED_FREE: 3989 napi_reuse_skb(napi, skb); 3990 break; 3991 3992 case GRO_MERGED: 3993 break; 3994 } 3995 3996 return ret; 3997 } 3998 3999 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4000 { 4001 struct sk_buff *skb = napi->skb; 4002 struct ethhdr *eth; 4003 unsigned int hlen; 4004 unsigned int off; 4005 4006 napi->skb = NULL; 4007 4008 skb_reset_mac_header(skb); 4009 skb_gro_reset_offset(skb); 4010 4011 off = skb_gro_offset(skb); 4012 hlen = off + sizeof(*eth); 4013 eth = skb_gro_header_fast(skb, off); 4014 if (skb_gro_header_hard(skb, hlen)) { 4015 eth = skb_gro_header_slow(skb, hlen, off); 4016 if (unlikely(!eth)) { 4017 napi_reuse_skb(napi, skb); 4018 skb = NULL; 4019 goto out; 4020 } 4021 } 4022 4023 skb_gro_pull(skb, sizeof(*eth)); 4024 4025 /* 4026 * This works because the only protocols we care about don't require 4027 * special handling. We'll fix it up properly at the end. 4028 */ 4029 skb->protocol = eth->h_proto; 4030 4031 out: 4032 return skb; 4033 } 4034 4035 gro_result_t napi_gro_frags(struct napi_struct *napi) 4036 { 4037 struct sk_buff *skb = napi_frags_skb(napi); 4038 4039 if (!skb) 4040 return GRO_DROP; 4041 4042 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4043 } 4044 EXPORT_SYMBOL(napi_gro_frags); 4045 4046 /* 4047 * net_rps_action sends any pending IPI's for rps. 4048 * Note: called with local irq disabled, but exits with local irq enabled. 4049 */ 4050 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4051 { 4052 #ifdef CONFIG_RPS 4053 struct softnet_data *remsd = sd->rps_ipi_list; 4054 4055 if (remsd) { 4056 sd->rps_ipi_list = NULL; 4057 4058 local_irq_enable(); 4059 4060 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4061 while (remsd) { 4062 struct softnet_data *next = remsd->rps_ipi_next; 4063 4064 if (cpu_online(remsd->cpu)) 4065 __smp_call_function_single(remsd->cpu, 4066 &remsd->csd, 0); 4067 remsd = next; 4068 } 4069 } else 4070 #endif 4071 local_irq_enable(); 4072 } 4073 4074 static int process_backlog(struct napi_struct *napi, int quota) 4075 { 4076 int work = 0; 4077 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4078 4079 #ifdef CONFIG_RPS 4080 /* Check if we have pending ipi, its better to send them now, 4081 * not waiting net_rx_action() end. 4082 */ 4083 if (sd->rps_ipi_list) { 4084 local_irq_disable(); 4085 net_rps_action_and_irq_enable(sd); 4086 } 4087 #endif 4088 napi->weight = weight_p; 4089 local_irq_disable(); 4090 while (work < quota) { 4091 struct sk_buff *skb; 4092 unsigned int qlen; 4093 4094 while ((skb = __skb_dequeue(&sd->process_queue))) { 4095 local_irq_enable(); 4096 __netif_receive_skb(skb); 4097 local_irq_disable(); 4098 input_queue_head_incr(sd); 4099 if (++work >= quota) { 4100 local_irq_enable(); 4101 return work; 4102 } 4103 } 4104 4105 rps_lock(sd); 4106 qlen = skb_queue_len(&sd->input_pkt_queue); 4107 if (qlen) 4108 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4109 &sd->process_queue); 4110 4111 if (qlen < quota - work) { 4112 /* 4113 * Inline a custom version of __napi_complete(). 4114 * only current cpu owns and manipulates this napi, 4115 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4116 * we can use a plain write instead of clear_bit(), 4117 * and we dont need an smp_mb() memory barrier. 4118 */ 4119 list_del(&napi->poll_list); 4120 napi->state = 0; 4121 4122 quota = work + qlen; 4123 } 4124 rps_unlock(sd); 4125 } 4126 local_irq_enable(); 4127 4128 return work; 4129 } 4130 4131 /** 4132 * __napi_schedule - schedule for receive 4133 * @n: entry to schedule 4134 * 4135 * The entry's receive function will be scheduled to run 4136 */ 4137 void __napi_schedule(struct napi_struct *n) 4138 { 4139 unsigned long flags; 4140 4141 local_irq_save(flags); 4142 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4143 local_irq_restore(flags); 4144 } 4145 EXPORT_SYMBOL(__napi_schedule); 4146 4147 void __napi_complete(struct napi_struct *n) 4148 { 4149 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4150 BUG_ON(n->gro_list); 4151 4152 list_del(&n->poll_list); 4153 smp_mb__before_clear_bit(); 4154 clear_bit(NAPI_STATE_SCHED, &n->state); 4155 } 4156 EXPORT_SYMBOL(__napi_complete); 4157 4158 void napi_complete(struct napi_struct *n) 4159 { 4160 unsigned long flags; 4161 4162 /* 4163 * don't let napi dequeue from the cpu poll list 4164 * just in case its running on a different cpu 4165 */ 4166 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4167 return; 4168 4169 napi_gro_flush(n, false); 4170 local_irq_save(flags); 4171 __napi_complete(n); 4172 local_irq_restore(flags); 4173 } 4174 EXPORT_SYMBOL(napi_complete); 4175 4176 /* must be called under rcu_read_lock(), as we dont take a reference */ 4177 struct napi_struct *napi_by_id(unsigned int napi_id) 4178 { 4179 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4180 struct napi_struct *napi; 4181 4182 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4183 if (napi->napi_id == napi_id) 4184 return napi; 4185 4186 return NULL; 4187 } 4188 EXPORT_SYMBOL_GPL(napi_by_id); 4189 4190 void napi_hash_add(struct napi_struct *napi) 4191 { 4192 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4193 4194 spin_lock(&napi_hash_lock); 4195 4196 /* 0 is not a valid id, we also skip an id that is taken 4197 * we expect both events to be extremely rare 4198 */ 4199 napi->napi_id = 0; 4200 while (!napi->napi_id) { 4201 napi->napi_id = ++napi_gen_id; 4202 if (napi_by_id(napi->napi_id)) 4203 napi->napi_id = 0; 4204 } 4205 4206 hlist_add_head_rcu(&napi->napi_hash_node, 4207 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4208 4209 spin_unlock(&napi_hash_lock); 4210 } 4211 } 4212 EXPORT_SYMBOL_GPL(napi_hash_add); 4213 4214 /* Warning : caller is responsible to make sure rcu grace period 4215 * is respected before freeing memory containing @napi 4216 */ 4217 void napi_hash_del(struct napi_struct *napi) 4218 { 4219 spin_lock(&napi_hash_lock); 4220 4221 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4222 hlist_del_rcu(&napi->napi_hash_node); 4223 4224 spin_unlock(&napi_hash_lock); 4225 } 4226 EXPORT_SYMBOL_GPL(napi_hash_del); 4227 4228 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4229 int (*poll)(struct napi_struct *, int), int weight) 4230 { 4231 INIT_LIST_HEAD(&napi->poll_list); 4232 napi->gro_count = 0; 4233 napi->gro_list = NULL; 4234 napi->skb = NULL; 4235 napi->poll = poll; 4236 if (weight > NAPI_POLL_WEIGHT) 4237 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4238 weight, dev->name); 4239 napi->weight = weight; 4240 list_add(&napi->dev_list, &dev->napi_list); 4241 napi->dev = dev; 4242 #ifdef CONFIG_NETPOLL 4243 spin_lock_init(&napi->poll_lock); 4244 napi->poll_owner = -1; 4245 #endif 4246 set_bit(NAPI_STATE_SCHED, &napi->state); 4247 } 4248 EXPORT_SYMBOL(netif_napi_add); 4249 4250 void netif_napi_del(struct napi_struct *napi) 4251 { 4252 struct sk_buff *skb, *next; 4253 4254 list_del_init(&napi->dev_list); 4255 napi_free_frags(napi); 4256 4257 for (skb = napi->gro_list; skb; skb = next) { 4258 next = skb->next; 4259 skb->next = NULL; 4260 kfree_skb(skb); 4261 } 4262 4263 napi->gro_list = NULL; 4264 napi->gro_count = 0; 4265 } 4266 EXPORT_SYMBOL(netif_napi_del); 4267 4268 static void net_rx_action(struct softirq_action *h) 4269 { 4270 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4271 unsigned long time_limit = jiffies + 2; 4272 int budget = netdev_budget; 4273 void *have; 4274 4275 local_irq_disable(); 4276 4277 while (!list_empty(&sd->poll_list)) { 4278 struct napi_struct *n; 4279 int work, weight; 4280 4281 /* If softirq window is exhuasted then punt. 4282 * Allow this to run for 2 jiffies since which will allow 4283 * an average latency of 1.5/HZ. 4284 */ 4285 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4286 goto softnet_break; 4287 4288 local_irq_enable(); 4289 4290 /* Even though interrupts have been re-enabled, this 4291 * access is safe because interrupts can only add new 4292 * entries to the tail of this list, and only ->poll() 4293 * calls can remove this head entry from the list. 4294 */ 4295 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4296 4297 have = netpoll_poll_lock(n); 4298 4299 weight = n->weight; 4300 4301 /* This NAPI_STATE_SCHED test is for avoiding a race 4302 * with netpoll's poll_napi(). Only the entity which 4303 * obtains the lock and sees NAPI_STATE_SCHED set will 4304 * actually make the ->poll() call. Therefore we avoid 4305 * accidentally calling ->poll() when NAPI is not scheduled. 4306 */ 4307 work = 0; 4308 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4309 work = n->poll(n, weight); 4310 trace_napi_poll(n); 4311 } 4312 4313 WARN_ON_ONCE(work > weight); 4314 4315 budget -= work; 4316 4317 local_irq_disable(); 4318 4319 /* Drivers must not modify the NAPI state if they 4320 * consume the entire weight. In such cases this code 4321 * still "owns" the NAPI instance and therefore can 4322 * move the instance around on the list at-will. 4323 */ 4324 if (unlikely(work == weight)) { 4325 if (unlikely(napi_disable_pending(n))) { 4326 local_irq_enable(); 4327 napi_complete(n); 4328 local_irq_disable(); 4329 } else { 4330 if (n->gro_list) { 4331 /* flush too old packets 4332 * If HZ < 1000, flush all packets. 4333 */ 4334 local_irq_enable(); 4335 napi_gro_flush(n, HZ >= 1000); 4336 local_irq_disable(); 4337 } 4338 list_move_tail(&n->poll_list, &sd->poll_list); 4339 } 4340 } 4341 4342 netpoll_poll_unlock(have); 4343 } 4344 out: 4345 net_rps_action_and_irq_enable(sd); 4346 4347 #ifdef CONFIG_NET_DMA 4348 /* 4349 * There may not be any more sk_buffs coming right now, so push 4350 * any pending DMA copies to hardware 4351 */ 4352 dma_issue_pending_all(); 4353 #endif 4354 4355 return; 4356 4357 softnet_break: 4358 sd->time_squeeze++; 4359 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4360 goto out; 4361 } 4362 4363 struct netdev_upper { 4364 struct net_device *dev; 4365 bool master; 4366 struct list_head list; 4367 struct rcu_head rcu; 4368 struct list_head search_list; 4369 }; 4370 4371 static void __append_search_uppers(struct list_head *search_list, 4372 struct net_device *dev) 4373 { 4374 struct netdev_upper *upper; 4375 4376 list_for_each_entry(upper, &dev->upper_dev_list, list) { 4377 /* check if this upper is not already in search list */ 4378 if (list_empty(&upper->search_list)) 4379 list_add_tail(&upper->search_list, search_list); 4380 } 4381 } 4382 4383 static bool __netdev_search_upper_dev(struct net_device *dev, 4384 struct net_device *upper_dev) 4385 { 4386 LIST_HEAD(search_list); 4387 struct netdev_upper *upper; 4388 struct netdev_upper *tmp; 4389 bool ret = false; 4390 4391 __append_search_uppers(&search_list, dev); 4392 list_for_each_entry(upper, &search_list, search_list) { 4393 if (upper->dev == upper_dev) { 4394 ret = true; 4395 break; 4396 } 4397 __append_search_uppers(&search_list, upper->dev); 4398 } 4399 list_for_each_entry_safe(upper, tmp, &search_list, search_list) 4400 INIT_LIST_HEAD(&upper->search_list); 4401 return ret; 4402 } 4403 4404 static struct netdev_upper *__netdev_find_upper(struct net_device *dev, 4405 struct net_device *upper_dev) 4406 { 4407 struct netdev_upper *upper; 4408 4409 list_for_each_entry(upper, &dev->upper_dev_list, list) { 4410 if (upper->dev == upper_dev) 4411 return upper; 4412 } 4413 return NULL; 4414 } 4415 4416 /** 4417 * netdev_has_upper_dev - Check if device is linked to an upper device 4418 * @dev: device 4419 * @upper_dev: upper device to check 4420 * 4421 * Find out if a device is linked to specified upper device and return true 4422 * in case it is. Note that this checks only immediate upper device, 4423 * not through a complete stack of devices. The caller must hold the RTNL lock. 4424 */ 4425 bool netdev_has_upper_dev(struct net_device *dev, 4426 struct net_device *upper_dev) 4427 { 4428 ASSERT_RTNL(); 4429 4430 return __netdev_find_upper(dev, upper_dev); 4431 } 4432 EXPORT_SYMBOL(netdev_has_upper_dev); 4433 4434 /** 4435 * netdev_has_any_upper_dev - Check if device is linked to some device 4436 * @dev: device 4437 * 4438 * Find out if a device is linked to an upper device and return true in case 4439 * it is. The caller must hold the RTNL lock. 4440 */ 4441 bool netdev_has_any_upper_dev(struct net_device *dev) 4442 { 4443 ASSERT_RTNL(); 4444 4445 return !list_empty(&dev->upper_dev_list); 4446 } 4447 EXPORT_SYMBOL(netdev_has_any_upper_dev); 4448 4449 /** 4450 * netdev_master_upper_dev_get - Get master upper device 4451 * @dev: device 4452 * 4453 * Find a master upper device and return pointer to it or NULL in case 4454 * it's not there. The caller must hold the RTNL lock. 4455 */ 4456 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4457 { 4458 struct netdev_upper *upper; 4459 4460 ASSERT_RTNL(); 4461 4462 if (list_empty(&dev->upper_dev_list)) 4463 return NULL; 4464 4465 upper = list_first_entry(&dev->upper_dev_list, 4466 struct netdev_upper, list); 4467 if (likely(upper->master)) 4468 return upper->dev; 4469 return NULL; 4470 } 4471 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4472 4473 /** 4474 * netdev_master_upper_dev_get_rcu - Get master upper device 4475 * @dev: device 4476 * 4477 * Find a master upper device and return pointer to it or NULL in case 4478 * it's not there. The caller must hold the RCU read lock. 4479 */ 4480 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4481 { 4482 struct netdev_upper *upper; 4483 4484 upper = list_first_or_null_rcu(&dev->upper_dev_list, 4485 struct netdev_upper, list); 4486 if (upper && likely(upper->master)) 4487 return upper->dev; 4488 return NULL; 4489 } 4490 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4491 4492 static int __netdev_upper_dev_link(struct net_device *dev, 4493 struct net_device *upper_dev, bool master) 4494 { 4495 struct netdev_upper *upper; 4496 4497 ASSERT_RTNL(); 4498 4499 if (dev == upper_dev) 4500 return -EBUSY; 4501 4502 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4503 if (__netdev_search_upper_dev(upper_dev, dev)) 4504 return -EBUSY; 4505 4506 if (__netdev_find_upper(dev, upper_dev)) 4507 return -EEXIST; 4508 4509 if (master && netdev_master_upper_dev_get(dev)) 4510 return -EBUSY; 4511 4512 upper = kmalloc(sizeof(*upper), GFP_KERNEL); 4513 if (!upper) 4514 return -ENOMEM; 4515 4516 upper->dev = upper_dev; 4517 upper->master = master; 4518 INIT_LIST_HEAD(&upper->search_list); 4519 4520 /* Ensure that master upper link is always the first item in list. */ 4521 if (master) 4522 list_add_rcu(&upper->list, &dev->upper_dev_list); 4523 else 4524 list_add_tail_rcu(&upper->list, &dev->upper_dev_list); 4525 dev_hold(upper_dev); 4526 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4527 return 0; 4528 } 4529 4530 /** 4531 * netdev_upper_dev_link - Add a link to the upper device 4532 * @dev: device 4533 * @upper_dev: new upper device 4534 * 4535 * Adds a link to device which is upper to this one. The caller must hold 4536 * the RTNL lock. On a failure a negative errno code is returned. 4537 * On success the reference counts are adjusted and the function 4538 * returns zero. 4539 */ 4540 int netdev_upper_dev_link(struct net_device *dev, 4541 struct net_device *upper_dev) 4542 { 4543 return __netdev_upper_dev_link(dev, upper_dev, false); 4544 } 4545 EXPORT_SYMBOL(netdev_upper_dev_link); 4546 4547 /** 4548 * netdev_master_upper_dev_link - Add a master link to the upper device 4549 * @dev: device 4550 * @upper_dev: new upper device 4551 * 4552 * Adds a link to device which is upper to this one. In this case, only 4553 * one master upper device can be linked, although other non-master devices 4554 * might be linked as well. The caller must hold the RTNL lock. 4555 * On a failure a negative errno code is returned. On success the reference 4556 * counts are adjusted and the function returns zero. 4557 */ 4558 int netdev_master_upper_dev_link(struct net_device *dev, 4559 struct net_device *upper_dev) 4560 { 4561 return __netdev_upper_dev_link(dev, upper_dev, true); 4562 } 4563 EXPORT_SYMBOL(netdev_master_upper_dev_link); 4564 4565 /** 4566 * netdev_upper_dev_unlink - Removes a link to upper device 4567 * @dev: device 4568 * @upper_dev: new upper device 4569 * 4570 * Removes a link to device which is upper to this one. The caller must hold 4571 * the RTNL lock. 4572 */ 4573 void netdev_upper_dev_unlink(struct net_device *dev, 4574 struct net_device *upper_dev) 4575 { 4576 struct netdev_upper *upper; 4577 4578 ASSERT_RTNL(); 4579 4580 upper = __netdev_find_upper(dev, upper_dev); 4581 if (!upper) 4582 return; 4583 list_del_rcu(&upper->list); 4584 dev_put(upper_dev); 4585 kfree_rcu(upper, rcu); 4586 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4587 } 4588 EXPORT_SYMBOL(netdev_upper_dev_unlink); 4589 4590 static void dev_change_rx_flags(struct net_device *dev, int flags) 4591 { 4592 const struct net_device_ops *ops = dev->netdev_ops; 4593 4594 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4595 ops->ndo_change_rx_flags(dev, flags); 4596 } 4597 4598 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4599 { 4600 unsigned int old_flags = dev->flags; 4601 kuid_t uid; 4602 kgid_t gid; 4603 4604 ASSERT_RTNL(); 4605 4606 dev->flags |= IFF_PROMISC; 4607 dev->promiscuity += inc; 4608 if (dev->promiscuity == 0) { 4609 /* 4610 * Avoid overflow. 4611 * If inc causes overflow, untouch promisc and return error. 4612 */ 4613 if (inc < 0) 4614 dev->flags &= ~IFF_PROMISC; 4615 else { 4616 dev->promiscuity -= inc; 4617 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4618 dev->name); 4619 return -EOVERFLOW; 4620 } 4621 } 4622 if (dev->flags != old_flags) { 4623 pr_info("device %s %s promiscuous mode\n", 4624 dev->name, 4625 dev->flags & IFF_PROMISC ? "entered" : "left"); 4626 if (audit_enabled) { 4627 current_uid_gid(&uid, &gid); 4628 audit_log(current->audit_context, GFP_ATOMIC, 4629 AUDIT_ANOM_PROMISCUOUS, 4630 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4631 dev->name, (dev->flags & IFF_PROMISC), 4632 (old_flags & IFF_PROMISC), 4633 from_kuid(&init_user_ns, audit_get_loginuid(current)), 4634 from_kuid(&init_user_ns, uid), 4635 from_kgid(&init_user_ns, gid), 4636 audit_get_sessionid(current)); 4637 } 4638 4639 dev_change_rx_flags(dev, IFF_PROMISC); 4640 } 4641 return 0; 4642 } 4643 4644 /** 4645 * dev_set_promiscuity - update promiscuity count on a device 4646 * @dev: device 4647 * @inc: modifier 4648 * 4649 * Add or remove promiscuity from a device. While the count in the device 4650 * remains above zero the interface remains promiscuous. Once it hits zero 4651 * the device reverts back to normal filtering operation. A negative inc 4652 * value is used to drop promiscuity on the device. 4653 * Return 0 if successful or a negative errno code on error. 4654 */ 4655 int dev_set_promiscuity(struct net_device *dev, int inc) 4656 { 4657 unsigned int old_flags = dev->flags; 4658 int err; 4659 4660 err = __dev_set_promiscuity(dev, inc); 4661 if (err < 0) 4662 return err; 4663 if (dev->flags != old_flags) 4664 dev_set_rx_mode(dev); 4665 return err; 4666 } 4667 EXPORT_SYMBOL(dev_set_promiscuity); 4668 4669 /** 4670 * dev_set_allmulti - update allmulti count on a device 4671 * @dev: device 4672 * @inc: modifier 4673 * 4674 * Add or remove reception of all multicast frames to a device. While the 4675 * count in the device remains above zero the interface remains listening 4676 * to all interfaces. Once it hits zero the device reverts back to normal 4677 * filtering operation. A negative @inc value is used to drop the counter 4678 * when releasing a resource needing all multicasts. 4679 * Return 0 if successful or a negative errno code on error. 4680 */ 4681 4682 int dev_set_allmulti(struct net_device *dev, int inc) 4683 { 4684 unsigned int old_flags = dev->flags; 4685 4686 ASSERT_RTNL(); 4687 4688 dev->flags |= IFF_ALLMULTI; 4689 dev->allmulti += inc; 4690 if (dev->allmulti == 0) { 4691 /* 4692 * Avoid overflow. 4693 * If inc causes overflow, untouch allmulti and return error. 4694 */ 4695 if (inc < 0) 4696 dev->flags &= ~IFF_ALLMULTI; 4697 else { 4698 dev->allmulti -= inc; 4699 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4700 dev->name); 4701 return -EOVERFLOW; 4702 } 4703 } 4704 if (dev->flags ^ old_flags) { 4705 dev_change_rx_flags(dev, IFF_ALLMULTI); 4706 dev_set_rx_mode(dev); 4707 } 4708 return 0; 4709 } 4710 EXPORT_SYMBOL(dev_set_allmulti); 4711 4712 /* 4713 * Upload unicast and multicast address lists to device and 4714 * configure RX filtering. When the device doesn't support unicast 4715 * filtering it is put in promiscuous mode while unicast addresses 4716 * are present. 4717 */ 4718 void __dev_set_rx_mode(struct net_device *dev) 4719 { 4720 const struct net_device_ops *ops = dev->netdev_ops; 4721 4722 /* dev_open will call this function so the list will stay sane. */ 4723 if (!(dev->flags&IFF_UP)) 4724 return; 4725 4726 if (!netif_device_present(dev)) 4727 return; 4728 4729 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4730 /* Unicast addresses changes may only happen under the rtnl, 4731 * therefore calling __dev_set_promiscuity here is safe. 4732 */ 4733 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4734 __dev_set_promiscuity(dev, 1); 4735 dev->uc_promisc = true; 4736 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4737 __dev_set_promiscuity(dev, -1); 4738 dev->uc_promisc = false; 4739 } 4740 } 4741 4742 if (ops->ndo_set_rx_mode) 4743 ops->ndo_set_rx_mode(dev); 4744 } 4745 4746 void dev_set_rx_mode(struct net_device *dev) 4747 { 4748 netif_addr_lock_bh(dev); 4749 __dev_set_rx_mode(dev); 4750 netif_addr_unlock_bh(dev); 4751 } 4752 4753 /** 4754 * dev_get_flags - get flags reported to userspace 4755 * @dev: device 4756 * 4757 * Get the combination of flag bits exported through APIs to userspace. 4758 */ 4759 unsigned int dev_get_flags(const struct net_device *dev) 4760 { 4761 unsigned int flags; 4762 4763 flags = (dev->flags & ~(IFF_PROMISC | 4764 IFF_ALLMULTI | 4765 IFF_RUNNING | 4766 IFF_LOWER_UP | 4767 IFF_DORMANT)) | 4768 (dev->gflags & (IFF_PROMISC | 4769 IFF_ALLMULTI)); 4770 4771 if (netif_running(dev)) { 4772 if (netif_oper_up(dev)) 4773 flags |= IFF_RUNNING; 4774 if (netif_carrier_ok(dev)) 4775 flags |= IFF_LOWER_UP; 4776 if (netif_dormant(dev)) 4777 flags |= IFF_DORMANT; 4778 } 4779 4780 return flags; 4781 } 4782 EXPORT_SYMBOL(dev_get_flags); 4783 4784 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4785 { 4786 unsigned int old_flags = dev->flags; 4787 int ret; 4788 4789 ASSERT_RTNL(); 4790 4791 /* 4792 * Set the flags on our device. 4793 */ 4794 4795 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4796 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4797 IFF_AUTOMEDIA)) | 4798 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4799 IFF_ALLMULTI)); 4800 4801 /* 4802 * Load in the correct multicast list now the flags have changed. 4803 */ 4804 4805 if ((old_flags ^ flags) & IFF_MULTICAST) 4806 dev_change_rx_flags(dev, IFF_MULTICAST); 4807 4808 dev_set_rx_mode(dev); 4809 4810 /* 4811 * Have we downed the interface. We handle IFF_UP ourselves 4812 * according to user attempts to set it, rather than blindly 4813 * setting it. 4814 */ 4815 4816 ret = 0; 4817 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4818 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4819 4820 if (!ret) 4821 dev_set_rx_mode(dev); 4822 } 4823 4824 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4825 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4826 4827 dev->gflags ^= IFF_PROMISC; 4828 dev_set_promiscuity(dev, inc); 4829 } 4830 4831 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4832 is important. Some (broken) drivers set IFF_PROMISC, when 4833 IFF_ALLMULTI is requested not asking us and not reporting. 4834 */ 4835 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4836 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4837 4838 dev->gflags ^= IFF_ALLMULTI; 4839 dev_set_allmulti(dev, inc); 4840 } 4841 4842 return ret; 4843 } 4844 4845 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4846 { 4847 unsigned int changes = dev->flags ^ old_flags; 4848 4849 if (changes & IFF_UP) { 4850 if (dev->flags & IFF_UP) 4851 call_netdevice_notifiers(NETDEV_UP, dev); 4852 else 4853 call_netdevice_notifiers(NETDEV_DOWN, dev); 4854 } 4855 4856 if (dev->flags & IFF_UP && 4857 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 4858 struct netdev_notifier_change_info change_info; 4859 4860 change_info.flags_changed = changes; 4861 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 4862 &change_info.info); 4863 } 4864 } 4865 4866 /** 4867 * dev_change_flags - change device settings 4868 * @dev: device 4869 * @flags: device state flags 4870 * 4871 * Change settings on device based state flags. The flags are 4872 * in the userspace exported format. 4873 */ 4874 int dev_change_flags(struct net_device *dev, unsigned int flags) 4875 { 4876 int ret; 4877 unsigned int changes, old_flags = dev->flags; 4878 4879 ret = __dev_change_flags(dev, flags); 4880 if (ret < 0) 4881 return ret; 4882 4883 changes = old_flags ^ dev->flags; 4884 if (changes) 4885 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4886 4887 __dev_notify_flags(dev, old_flags); 4888 return ret; 4889 } 4890 EXPORT_SYMBOL(dev_change_flags); 4891 4892 /** 4893 * dev_set_mtu - Change maximum transfer unit 4894 * @dev: device 4895 * @new_mtu: new transfer unit 4896 * 4897 * Change the maximum transfer size of the network device. 4898 */ 4899 int dev_set_mtu(struct net_device *dev, int new_mtu) 4900 { 4901 const struct net_device_ops *ops = dev->netdev_ops; 4902 int err; 4903 4904 if (new_mtu == dev->mtu) 4905 return 0; 4906 4907 /* MTU must be positive. */ 4908 if (new_mtu < 0) 4909 return -EINVAL; 4910 4911 if (!netif_device_present(dev)) 4912 return -ENODEV; 4913 4914 err = 0; 4915 if (ops->ndo_change_mtu) 4916 err = ops->ndo_change_mtu(dev, new_mtu); 4917 else 4918 dev->mtu = new_mtu; 4919 4920 if (!err) 4921 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4922 return err; 4923 } 4924 EXPORT_SYMBOL(dev_set_mtu); 4925 4926 /** 4927 * dev_set_group - Change group this device belongs to 4928 * @dev: device 4929 * @new_group: group this device should belong to 4930 */ 4931 void dev_set_group(struct net_device *dev, int new_group) 4932 { 4933 dev->group = new_group; 4934 } 4935 EXPORT_SYMBOL(dev_set_group); 4936 4937 /** 4938 * dev_set_mac_address - Change Media Access Control Address 4939 * @dev: device 4940 * @sa: new address 4941 * 4942 * Change the hardware (MAC) address of the device 4943 */ 4944 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4945 { 4946 const struct net_device_ops *ops = dev->netdev_ops; 4947 int err; 4948 4949 if (!ops->ndo_set_mac_address) 4950 return -EOPNOTSUPP; 4951 if (sa->sa_family != dev->type) 4952 return -EINVAL; 4953 if (!netif_device_present(dev)) 4954 return -ENODEV; 4955 err = ops->ndo_set_mac_address(dev, sa); 4956 if (err) 4957 return err; 4958 dev->addr_assign_type = NET_ADDR_SET; 4959 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4960 add_device_randomness(dev->dev_addr, dev->addr_len); 4961 return 0; 4962 } 4963 EXPORT_SYMBOL(dev_set_mac_address); 4964 4965 /** 4966 * dev_change_carrier - Change device carrier 4967 * @dev: device 4968 * @new_carrier: new value 4969 * 4970 * Change device carrier 4971 */ 4972 int dev_change_carrier(struct net_device *dev, bool new_carrier) 4973 { 4974 const struct net_device_ops *ops = dev->netdev_ops; 4975 4976 if (!ops->ndo_change_carrier) 4977 return -EOPNOTSUPP; 4978 if (!netif_device_present(dev)) 4979 return -ENODEV; 4980 return ops->ndo_change_carrier(dev, new_carrier); 4981 } 4982 EXPORT_SYMBOL(dev_change_carrier); 4983 4984 /** 4985 * dev_new_index - allocate an ifindex 4986 * @net: the applicable net namespace 4987 * 4988 * Returns a suitable unique value for a new device interface 4989 * number. The caller must hold the rtnl semaphore or the 4990 * dev_base_lock to be sure it remains unique. 4991 */ 4992 static int dev_new_index(struct net *net) 4993 { 4994 int ifindex = net->ifindex; 4995 for (;;) { 4996 if (++ifindex <= 0) 4997 ifindex = 1; 4998 if (!__dev_get_by_index(net, ifindex)) 4999 return net->ifindex = ifindex; 5000 } 5001 } 5002 5003 /* Delayed registration/unregisteration */ 5004 static LIST_HEAD(net_todo_list); 5005 5006 static void net_set_todo(struct net_device *dev) 5007 { 5008 list_add_tail(&dev->todo_list, &net_todo_list); 5009 } 5010 5011 static void rollback_registered_many(struct list_head *head) 5012 { 5013 struct net_device *dev, *tmp; 5014 5015 BUG_ON(dev_boot_phase); 5016 ASSERT_RTNL(); 5017 5018 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5019 /* Some devices call without registering 5020 * for initialization unwind. Remove those 5021 * devices and proceed with the remaining. 5022 */ 5023 if (dev->reg_state == NETREG_UNINITIALIZED) { 5024 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5025 dev->name, dev); 5026 5027 WARN_ON(1); 5028 list_del(&dev->unreg_list); 5029 continue; 5030 } 5031 dev->dismantle = true; 5032 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5033 } 5034 5035 /* If device is running, close it first. */ 5036 dev_close_many(head); 5037 5038 list_for_each_entry(dev, head, unreg_list) { 5039 /* And unlink it from device chain. */ 5040 unlist_netdevice(dev); 5041 5042 dev->reg_state = NETREG_UNREGISTERING; 5043 } 5044 5045 synchronize_net(); 5046 5047 list_for_each_entry(dev, head, unreg_list) { 5048 /* Shutdown queueing discipline. */ 5049 dev_shutdown(dev); 5050 5051 5052 /* Notify protocols, that we are about to destroy 5053 this device. They should clean all the things. 5054 */ 5055 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5056 5057 if (!dev->rtnl_link_ops || 5058 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5059 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5060 5061 /* 5062 * Flush the unicast and multicast chains 5063 */ 5064 dev_uc_flush(dev); 5065 dev_mc_flush(dev); 5066 5067 if (dev->netdev_ops->ndo_uninit) 5068 dev->netdev_ops->ndo_uninit(dev); 5069 5070 /* Notifier chain MUST detach us all upper devices. */ 5071 WARN_ON(netdev_has_any_upper_dev(dev)); 5072 5073 /* Remove entries from kobject tree */ 5074 netdev_unregister_kobject(dev); 5075 #ifdef CONFIG_XPS 5076 /* Remove XPS queueing entries */ 5077 netif_reset_xps_queues_gt(dev, 0); 5078 #endif 5079 } 5080 5081 synchronize_net(); 5082 5083 list_for_each_entry(dev, head, unreg_list) 5084 dev_put(dev); 5085 } 5086 5087 static void rollback_registered(struct net_device *dev) 5088 { 5089 LIST_HEAD(single); 5090 5091 list_add(&dev->unreg_list, &single); 5092 rollback_registered_many(&single); 5093 list_del(&single); 5094 } 5095 5096 static netdev_features_t netdev_fix_features(struct net_device *dev, 5097 netdev_features_t features) 5098 { 5099 /* Fix illegal checksum combinations */ 5100 if ((features & NETIF_F_HW_CSUM) && 5101 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5102 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5103 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5104 } 5105 5106 /* TSO requires that SG is present as well. */ 5107 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5108 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5109 features &= ~NETIF_F_ALL_TSO; 5110 } 5111 5112 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5113 !(features & NETIF_F_IP_CSUM)) { 5114 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5115 features &= ~NETIF_F_TSO; 5116 features &= ~NETIF_F_TSO_ECN; 5117 } 5118 5119 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5120 !(features & NETIF_F_IPV6_CSUM)) { 5121 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5122 features &= ~NETIF_F_TSO6; 5123 } 5124 5125 /* TSO ECN requires that TSO is present as well. */ 5126 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5127 features &= ~NETIF_F_TSO_ECN; 5128 5129 /* Software GSO depends on SG. */ 5130 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5131 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5132 features &= ~NETIF_F_GSO; 5133 } 5134 5135 /* UFO needs SG and checksumming */ 5136 if (features & NETIF_F_UFO) { 5137 /* maybe split UFO into V4 and V6? */ 5138 if (!((features & NETIF_F_GEN_CSUM) || 5139 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5140 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5141 netdev_dbg(dev, 5142 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5143 features &= ~NETIF_F_UFO; 5144 } 5145 5146 if (!(features & NETIF_F_SG)) { 5147 netdev_dbg(dev, 5148 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5149 features &= ~NETIF_F_UFO; 5150 } 5151 } 5152 5153 return features; 5154 } 5155 5156 int __netdev_update_features(struct net_device *dev) 5157 { 5158 netdev_features_t features; 5159 int err = 0; 5160 5161 ASSERT_RTNL(); 5162 5163 features = netdev_get_wanted_features(dev); 5164 5165 if (dev->netdev_ops->ndo_fix_features) 5166 features = dev->netdev_ops->ndo_fix_features(dev, features); 5167 5168 /* driver might be less strict about feature dependencies */ 5169 features = netdev_fix_features(dev, features); 5170 5171 if (dev->features == features) 5172 return 0; 5173 5174 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5175 &dev->features, &features); 5176 5177 if (dev->netdev_ops->ndo_set_features) 5178 err = dev->netdev_ops->ndo_set_features(dev, features); 5179 5180 if (unlikely(err < 0)) { 5181 netdev_err(dev, 5182 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5183 err, &features, &dev->features); 5184 return -1; 5185 } 5186 5187 if (!err) 5188 dev->features = features; 5189 5190 return 1; 5191 } 5192 5193 /** 5194 * netdev_update_features - recalculate device features 5195 * @dev: the device to check 5196 * 5197 * Recalculate dev->features set and send notifications if it 5198 * has changed. Should be called after driver or hardware dependent 5199 * conditions might have changed that influence the features. 5200 */ 5201 void netdev_update_features(struct net_device *dev) 5202 { 5203 if (__netdev_update_features(dev)) 5204 netdev_features_change(dev); 5205 } 5206 EXPORT_SYMBOL(netdev_update_features); 5207 5208 /** 5209 * netdev_change_features - recalculate device features 5210 * @dev: the device to check 5211 * 5212 * Recalculate dev->features set and send notifications even 5213 * if they have not changed. Should be called instead of 5214 * netdev_update_features() if also dev->vlan_features might 5215 * have changed to allow the changes to be propagated to stacked 5216 * VLAN devices. 5217 */ 5218 void netdev_change_features(struct net_device *dev) 5219 { 5220 __netdev_update_features(dev); 5221 netdev_features_change(dev); 5222 } 5223 EXPORT_SYMBOL(netdev_change_features); 5224 5225 /** 5226 * netif_stacked_transfer_operstate - transfer operstate 5227 * @rootdev: the root or lower level device to transfer state from 5228 * @dev: the device to transfer operstate to 5229 * 5230 * Transfer operational state from root to device. This is normally 5231 * called when a stacking relationship exists between the root 5232 * device and the device(a leaf device). 5233 */ 5234 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5235 struct net_device *dev) 5236 { 5237 if (rootdev->operstate == IF_OPER_DORMANT) 5238 netif_dormant_on(dev); 5239 else 5240 netif_dormant_off(dev); 5241 5242 if (netif_carrier_ok(rootdev)) { 5243 if (!netif_carrier_ok(dev)) 5244 netif_carrier_on(dev); 5245 } else { 5246 if (netif_carrier_ok(dev)) 5247 netif_carrier_off(dev); 5248 } 5249 } 5250 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5251 5252 #ifdef CONFIG_RPS 5253 static int netif_alloc_rx_queues(struct net_device *dev) 5254 { 5255 unsigned int i, count = dev->num_rx_queues; 5256 struct netdev_rx_queue *rx; 5257 5258 BUG_ON(count < 1); 5259 5260 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5261 if (!rx) 5262 return -ENOMEM; 5263 5264 dev->_rx = rx; 5265 5266 for (i = 0; i < count; i++) 5267 rx[i].dev = dev; 5268 return 0; 5269 } 5270 #endif 5271 5272 static void netdev_init_one_queue(struct net_device *dev, 5273 struct netdev_queue *queue, void *_unused) 5274 { 5275 /* Initialize queue lock */ 5276 spin_lock_init(&queue->_xmit_lock); 5277 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5278 queue->xmit_lock_owner = -1; 5279 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5280 queue->dev = dev; 5281 #ifdef CONFIG_BQL 5282 dql_init(&queue->dql, HZ); 5283 #endif 5284 } 5285 5286 static void netif_free_tx_queues(struct net_device *dev) 5287 { 5288 if (is_vmalloc_addr(dev->_tx)) 5289 vfree(dev->_tx); 5290 else 5291 kfree(dev->_tx); 5292 } 5293 5294 static int netif_alloc_netdev_queues(struct net_device *dev) 5295 { 5296 unsigned int count = dev->num_tx_queues; 5297 struct netdev_queue *tx; 5298 size_t sz = count * sizeof(*tx); 5299 5300 BUG_ON(count < 1 || count > 0xffff); 5301 5302 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5303 if (!tx) { 5304 tx = vzalloc(sz); 5305 if (!tx) 5306 return -ENOMEM; 5307 } 5308 dev->_tx = tx; 5309 5310 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5311 spin_lock_init(&dev->tx_global_lock); 5312 5313 return 0; 5314 } 5315 5316 /** 5317 * register_netdevice - register a network device 5318 * @dev: device to register 5319 * 5320 * Take a completed network device structure and add it to the kernel 5321 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5322 * chain. 0 is returned on success. A negative errno code is returned 5323 * on a failure to set up the device, or if the name is a duplicate. 5324 * 5325 * Callers must hold the rtnl semaphore. You may want 5326 * register_netdev() instead of this. 5327 * 5328 * BUGS: 5329 * The locking appears insufficient to guarantee two parallel registers 5330 * will not get the same name. 5331 */ 5332 5333 int register_netdevice(struct net_device *dev) 5334 { 5335 int ret; 5336 struct net *net = dev_net(dev); 5337 5338 BUG_ON(dev_boot_phase); 5339 ASSERT_RTNL(); 5340 5341 might_sleep(); 5342 5343 /* When net_device's are persistent, this will be fatal. */ 5344 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5345 BUG_ON(!net); 5346 5347 spin_lock_init(&dev->addr_list_lock); 5348 netdev_set_addr_lockdep_class(dev); 5349 5350 dev->iflink = -1; 5351 5352 ret = dev_get_valid_name(net, dev, dev->name); 5353 if (ret < 0) 5354 goto out; 5355 5356 /* Init, if this function is available */ 5357 if (dev->netdev_ops->ndo_init) { 5358 ret = dev->netdev_ops->ndo_init(dev); 5359 if (ret) { 5360 if (ret > 0) 5361 ret = -EIO; 5362 goto out; 5363 } 5364 } 5365 5366 if (((dev->hw_features | dev->features) & 5367 NETIF_F_HW_VLAN_CTAG_FILTER) && 5368 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5369 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5370 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5371 ret = -EINVAL; 5372 goto err_uninit; 5373 } 5374 5375 ret = -EBUSY; 5376 if (!dev->ifindex) 5377 dev->ifindex = dev_new_index(net); 5378 else if (__dev_get_by_index(net, dev->ifindex)) 5379 goto err_uninit; 5380 5381 if (dev->iflink == -1) 5382 dev->iflink = dev->ifindex; 5383 5384 /* Transfer changeable features to wanted_features and enable 5385 * software offloads (GSO and GRO). 5386 */ 5387 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5388 dev->features |= NETIF_F_SOFT_FEATURES; 5389 dev->wanted_features = dev->features & dev->hw_features; 5390 5391 /* Turn on no cache copy if HW is doing checksum */ 5392 if (!(dev->flags & IFF_LOOPBACK)) { 5393 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5394 if (dev->features & NETIF_F_ALL_CSUM) { 5395 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5396 dev->features |= NETIF_F_NOCACHE_COPY; 5397 } 5398 } 5399 5400 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5401 */ 5402 dev->vlan_features |= NETIF_F_HIGHDMA; 5403 5404 /* Make NETIF_F_SG inheritable to tunnel devices. 5405 */ 5406 dev->hw_enc_features |= NETIF_F_SG; 5407 5408 /* Make NETIF_F_SG inheritable to MPLS. 5409 */ 5410 dev->mpls_features |= NETIF_F_SG; 5411 5412 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5413 ret = notifier_to_errno(ret); 5414 if (ret) 5415 goto err_uninit; 5416 5417 ret = netdev_register_kobject(dev); 5418 if (ret) 5419 goto err_uninit; 5420 dev->reg_state = NETREG_REGISTERED; 5421 5422 __netdev_update_features(dev); 5423 5424 /* 5425 * Default initial state at registry is that the 5426 * device is present. 5427 */ 5428 5429 set_bit(__LINK_STATE_PRESENT, &dev->state); 5430 5431 linkwatch_init_dev(dev); 5432 5433 dev_init_scheduler(dev); 5434 dev_hold(dev); 5435 list_netdevice(dev); 5436 add_device_randomness(dev->dev_addr, dev->addr_len); 5437 5438 /* If the device has permanent device address, driver should 5439 * set dev_addr and also addr_assign_type should be set to 5440 * NET_ADDR_PERM (default value). 5441 */ 5442 if (dev->addr_assign_type == NET_ADDR_PERM) 5443 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5444 5445 /* Notify protocols, that a new device appeared. */ 5446 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5447 ret = notifier_to_errno(ret); 5448 if (ret) { 5449 rollback_registered(dev); 5450 dev->reg_state = NETREG_UNREGISTERED; 5451 } 5452 /* 5453 * Prevent userspace races by waiting until the network 5454 * device is fully setup before sending notifications. 5455 */ 5456 if (!dev->rtnl_link_ops || 5457 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5458 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5459 5460 out: 5461 return ret; 5462 5463 err_uninit: 5464 if (dev->netdev_ops->ndo_uninit) 5465 dev->netdev_ops->ndo_uninit(dev); 5466 goto out; 5467 } 5468 EXPORT_SYMBOL(register_netdevice); 5469 5470 /** 5471 * init_dummy_netdev - init a dummy network device for NAPI 5472 * @dev: device to init 5473 * 5474 * This takes a network device structure and initialize the minimum 5475 * amount of fields so it can be used to schedule NAPI polls without 5476 * registering a full blown interface. This is to be used by drivers 5477 * that need to tie several hardware interfaces to a single NAPI 5478 * poll scheduler due to HW limitations. 5479 */ 5480 int init_dummy_netdev(struct net_device *dev) 5481 { 5482 /* Clear everything. Note we don't initialize spinlocks 5483 * are they aren't supposed to be taken by any of the 5484 * NAPI code and this dummy netdev is supposed to be 5485 * only ever used for NAPI polls 5486 */ 5487 memset(dev, 0, sizeof(struct net_device)); 5488 5489 /* make sure we BUG if trying to hit standard 5490 * register/unregister code path 5491 */ 5492 dev->reg_state = NETREG_DUMMY; 5493 5494 /* NAPI wants this */ 5495 INIT_LIST_HEAD(&dev->napi_list); 5496 5497 /* a dummy interface is started by default */ 5498 set_bit(__LINK_STATE_PRESENT, &dev->state); 5499 set_bit(__LINK_STATE_START, &dev->state); 5500 5501 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5502 * because users of this 'device' dont need to change 5503 * its refcount. 5504 */ 5505 5506 return 0; 5507 } 5508 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5509 5510 5511 /** 5512 * register_netdev - register a network device 5513 * @dev: device to register 5514 * 5515 * Take a completed network device structure and add it to the kernel 5516 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5517 * chain. 0 is returned on success. A negative errno code is returned 5518 * on a failure to set up the device, or if the name is a duplicate. 5519 * 5520 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5521 * and expands the device name if you passed a format string to 5522 * alloc_netdev. 5523 */ 5524 int register_netdev(struct net_device *dev) 5525 { 5526 int err; 5527 5528 rtnl_lock(); 5529 err = register_netdevice(dev); 5530 rtnl_unlock(); 5531 return err; 5532 } 5533 EXPORT_SYMBOL(register_netdev); 5534 5535 int netdev_refcnt_read(const struct net_device *dev) 5536 { 5537 int i, refcnt = 0; 5538 5539 for_each_possible_cpu(i) 5540 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5541 return refcnt; 5542 } 5543 EXPORT_SYMBOL(netdev_refcnt_read); 5544 5545 /** 5546 * netdev_wait_allrefs - wait until all references are gone. 5547 * @dev: target net_device 5548 * 5549 * This is called when unregistering network devices. 5550 * 5551 * Any protocol or device that holds a reference should register 5552 * for netdevice notification, and cleanup and put back the 5553 * reference if they receive an UNREGISTER event. 5554 * We can get stuck here if buggy protocols don't correctly 5555 * call dev_put. 5556 */ 5557 static void netdev_wait_allrefs(struct net_device *dev) 5558 { 5559 unsigned long rebroadcast_time, warning_time; 5560 int refcnt; 5561 5562 linkwatch_forget_dev(dev); 5563 5564 rebroadcast_time = warning_time = jiffies; 5565 refcnt = netdev_refcnt_read(dev); 5566 5567 while (refcnt != 0) { 5568 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5569 rtnl_lock(); 5570 5571 /* Rebroadcast unregister notification */ 5572 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5573 5574 __rtnl_unlock(); 5575 rcu_barrier(); 5576 rtnl_lock(); 5577 5578 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5579 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5580 &dev->state)) { 5581 /* We must not have linkwatch events 5582 * pending on unregister. If this 5583 * happens, we simply run the queue 5584 * unscheduled, resulting in a noop 5585 * for this device. 5586 */ 5587 linkwatch_run_queue(); 5588 } 5589 5590 __rtnl_unlock(); 5591 5592 rebroadcast_time = jiffies; 5593 } 5594 5595 msleep(250); 5596 5597 refcnt = netdev_refcnt_read(dev); 5598 5599 if (time_after(jiffies, warning_time + 10 * HZ)) { 5600 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5601 dev->name, refcnt); 5602 warning_time = jiffies; 5603 } 5604 } 5605 } 5606 5607 /* The sequence is: 5608 * 5609 * rtnl_lock(); 5610 * ... 5611 * register_netdevice(x1); 5612 * register_netdevice(x2); 5613 * ... 5614 * unregister_netdevice(y1); 5615 * unregister_netdevice(y2); 5616 * ... 5617 * rtnl_unlock(); 5618 * free_netdev(y1); 5619 * free_netdev(y2); 5620 * 5621 * We are invoked by rtnl_unlock(). 5622 * This allows us to deal with problems: 5623 * 1) We can delete sysfs objects which invoke hotplug 5624 * without deadlocking with linkwatch via keventd. 5625 * 2) Since we run with the RTNL semaphore not held, we can sleep 5626 * safely in order to wait for the netdev refcnt to drop to zero. 5627 * 5628 * We must not return until all unregister events added during 5629 * the interval the lock was held have been completed. 5630 */ 5631 void netdev_run_todo(void) 5632 { 5633 struct list_head list; 5634 5635 /* Snapshot list, allow later requests */ 5636 list_replace_init(&net_todo_list, &list); 5637 5638 __rtnl_unlock(); 5639 5640 5641 /* Wait for rcu callbacks to finish before next phase */ 5642 if (!list_empty(&list)) 5643 rcu_barrier(); 5644 5645 while (!list_empty(&list)) { 5646 struct net_device *dev 5647 = list_first_entry(&list, struct net_device, todo_list); 5648 list_del(&dev->todo_list); 5649 5650 rtnl_lock(); 5651 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5652 __rtnl_unlock(); 5653 5654 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5655 pr_err("network todo '%s' but state %d\n", 5656 dev->name, dev->reg_state); 5657 dump_stack(); 5658 continue; 5659 } 5660 5661 dev->reg_state = NETREG_UNREGISTERED; 5662 5663 on_each_cpu(flush_backlog, dev, 1); 5664 5665 netdev_wait_allrefs(dev); 5666 5667 /* paranoia */ 5668 BUG_ON(netdev_refcnt_read(dev)); 5669 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5670 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5671 WARN_ON(dev->dn_ptr); 5672 5673 if (dev->destructor) 5674 dev->destructor(dev); 5675 5676 /* Free network device */ 5677 kobject_put(&dev->dev.kobj); 5678 } 5679 } 5680 5681 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5682 * fields in the same order, with only the type differing. 5683 */ 5684 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5685 const struct net_device_stats *netdev_stats) 5686 { 5687 #if BITS_PER_LONG == 64 5688 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5689 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5690 #else 5691 size_t i, n = sizeof(*stats64) / sizeof(u64); 5692 const unsigned long *src = (const unsigned long *)netdev_stats; 5693 u64 *dst = (u64 *)stats64; 5694 5695 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5696 sizeof(*stats64) / sizeof(u64)); 5697 for (i = 0; i < n; i++) 5698 dst[i] = src[i]; 5699 #endif 5700 } 5701 EXPORT_SYMBOL(netdev_stats_to_stats64); 5702 5703 /** 5704 * dev_get_stats - get network device statistics 5705 * @dev: device to get statistics from 5706 * @storage: place to store stats 5707 * 5708 * Get network statistics from device. Return @storage. 5709 * The device driver may provide its own method by setting 5710 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5711 * otherwise the internal statistics structure is used. 5712 */ 5713 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5714 struct rtnl_link_stats64 *storage) 5715 { 5716 const struct net_device_ops *ops = dev->netdev_ops; 5717 5718 if (ops->ndo_get_stats64) { 5719 memset(storage, 0, sizeof(*storage)); 5720 ops->ndo_get_stats64(dev, storage); 5721 } else if (ops->ndo_get_stats) { 5722 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5723 } else { 5724 netdev_stats_to_stats64(storage, &dev->stats); 5725 } 5726 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5727 return storage; 5728 } 5729 EXPORT_SYMBOL(dev_get_stats); 5730 5731 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5732 { 5733 struct netdev_queue *queue = dev_ingress_queue(dev); 5734 5735 #ifdef CONFIG_NET_CLS_ACT 5736 if (queue) 5737 return queue; 5738 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5739 if (!queue) 5740 return NULL; 5741 netdev_init_one_queue(dev, queue, NULL); 5742 queue->qdisc = &noop_qdisc; 5743 queue->qdisc_sleeping = &noop_qdisc; 5744 rcu_assign_pointer(dev->ingress_queue, queue); 5745 #endif 5746 return queue; 5747 } 5748 5749 static const struct ethtool_ops default_ethtool_ops; 5750 5751 void netdev_set_default_ethtool_ops(struct net_device *dev, 5752 const struct ethtool_ops *ops) 5753 { 5754 if (dev->ethtool_ops == &default_ethtool_ops) 5755 dev->ethtool_ops = ops; 5756 } 5757 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 5758 5759 /** 5760 * alloc_netdev_mqs - allocate network device 5761 * @sizeof_priv: size of private data to allocate space for 5762 * @name: device name format string 5763 * @setup: callback to initialize device 5764 * @txqs: the number of TX subqueues to allocate 5765 * @rxqs: the number of RX subqueues to allocate 5766 * 5767 * Allocates a struct net_device with private data area for driver use 5768 * and performs basic initialization. Also allocates subquue structs 5769 * for each queue on the device. 5770 */ 5771 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5772 void (*setup)(struct net_device *), 5773 unsigned int txqs, unsigned int rxqs) 5774 { 5775 struct net_device *dev; 5776 size_t alloc_size; 5777 struct net_device *p; 5778 5779 BUG_ON(strlen(name) >= sizeof(dev->name)); 5780 5781 if (txqs < 1) { 5782 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5783 return NULL; 5784 } 5785 5786 #ifdef CONFIG_RPS 5787 if (rxqs < 1) { 5788 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5789 return NULL; 5790 } 5791 #endif 5792 5793 alloc_size = sizeof(struct net_device); 5794 if (sizeof_priv) { 5795 /* ensure 32-byte alignment of private area */ 5796 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5797 alloc_size += sizeof_priv; 5798 } 5799 /* ensure 32-byte alignment of whole construct */ 5800 alloc_size += NETDEV_ALIGN - 1; 5801 5802 p = kzalloc(alloc_size, GFP_KERNEL); 5803 if (!p) 5804 return NULL; 5805 5806 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5807 dev->padded = (char *)dev - (char *)p; 5808 5809 dev->pcpu_refcnt = alloc_percpu(int); 5810 if (!dev->pcpu_refcnt) 5811 goto free_p; 5812 5813 if (dev_addr_init(dev)) 5814 goto free_pcpu; 5815 5816 dev_mc_init(dev); 5817 dev_uc_init(dev); 5818 5819 dev_net_set(dev, &init_net); 5820 5821 dev->gso_max_size = GSO_MAX_SIZE; 5822 dev->gso_max_segs = GSO_MAX_SEGS; 5823 5824 INIT_LIST_HEAD(&dev->napi_list); 5825 INIT_LIST_HEAD(&dev->unreg_list); 5826 INIT_LIST_HEAD(&dev->link_watch_list); 5827 INIT_LIST_HEAD(&dev->upper_dev_list); 5828 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5829 setup(dev); 5830 5831 dev->num_tx_queues = txqs; 5832 dev->real_num_tx_queues = txqs; 5833 if (netif_alloc_netdev_queues(dev)) 5834 goto free_all; 5835 5836 #ifdef CONFIG_RPS 5837 dev->num_rx_queues = rxqs; 5838 dev->real_num_rx_queues = rxqs; 5839 if (netif_alloc_rx_queues(dev)) 5840 goto free_all; 5841 #endif 5842 5843 strcpy(dev->name, name); 5844 dev->group = INIT_NETDEV_GROUP; 5845 if (!dev->ethtool_ops) 5846 dev->ethtool_ops = &default_ethtool_ops; 5847 return dev; 5848 5849 free_all: 5850 free_netdev(dev); 5851 return NULL; 5852 5853 free_pcpu: 5854 free_percpu(dev->pcpu_refcnt); 5855 netif_free_tx_queues(dev); 5856 #ifdef CONFIG_RPS 5857 kfree(dev->_rx); 5858 #endif 5859 5860 free_p: 5861 kfree(p); 5862 return NULL; 5863 } 5864 EXPORT_SYMBOL(alloc_netdev_mqs); 5865 5866 /** 5867 * free_netdev - free network device 5868 * @dev: device 5869 * 5870 * This function does the last stage of destroying an allocated device 5871 * interface. The reference to the device object is released. 5872 * If this is the last reference then it will be freed. 5873 */ 5874 void free_netdev(struct net_device *dev) 5875 { 5876 struct napi_struct *p, *n; 5877 5878 release_net(dev_net(dev)); 5879 5880 netif_free_tx_queues(dev); 5881 #ifdef CONFIG_RPS 5882 kfree(dev->_rx); 5883 #endif 5884 5885 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 5886 5887 /* Flush device addresses */ 5888 dev_addr_flush(dev); 5889 5890 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5891 netif_napi_del(p); 5892 5893 free_percpu(dev->pcpu_refcnt); 5894 dev->pcpu_refcnt = NULL; 5895 5896 /* Compatibility with error handling in drivers */ 5897 if (dev->reg_state == NETREG_UNINITIALIZED) { 5898 kfree((char *)dev - dev->padded); 5899 return; 5900 } 5901 5902 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5903 dev->reg_state = NETREG_RELEASED; 5904 5905 /* will free via device release */ 5906 put_device(&dev->dev); 5907 } 5908 EXPORT_SYMBOL(free_netdev); 5909 5910 /** 5911 * synchronize_net - Synchronize with packet receive processing 5912 * 5913 * Wait for packets currently being received to be done. 5914 * Does not block later packets from starting. 5915 */ 5916 void synchronize_net(void) 5917 { 5918 might_sleep(); 5919 if (rtnl_is_locked()) 5920 synchronize_rcu_expedited(); 5921 else 5922 synchronize_rcu(); 5923 } 5924 EXPORT_SYMBOL(synchronize_net); 5925 5926 /** 5927 * unregister_netdevice_queue - remove device from the kernel 5928 * @dev: device 5929 * @head: list 5930 * 5931 * This function shuts down a device interface and removes it 5932 * from the kernel tables. 5933 * If head not NULL, device is queued to be unregistered later. 5934 * 5935 * Callers must hold the rtnl semaphore. You may want 5936 * unregister_netdev() instead of this. 5937 */ 5938 5939 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5940 { 5941 ASSERT_RTNL(); 5942 5943 if (head) { 5944 list_move_tail(&dev->unreg_list, head); 5945 } else { 5946 rollback_registered(dev); 5947 /* Finish processing unregister after unlock */ 5948 net_set_todo(dev); 5949 } 5950 } 5951 EXPORT_SYMBOL(unregister_netdevice_queue); 5952 5953 /** 5954 * unregister_netdevice_many - unregister many devices 5955 * @head: list of devices 5956 */ 5957 void unregister_netdevice_many(struct list_head *head) 5958 { 5959 struct net_device *dev; 5960 5961 if (!list_empty(head)) { 5962 rollback_registered_many(head); 5963 list_for_each_entry(dev, head, unreg_list) 5964 net_set_todo(dev); 5965 } 5966 } 5967 EXPORT_SYMBOL(unregister_netdevice_many); 5968 5969 /** 5970 * unregister_netdev - remove device from the kernel 5971 * @dev: device 5972 * 5973 * This function shuts down a device interface and removes it 5974 * from the kernel tables. 5975 * 5976 * This is just a wrapper for unregister_netdevice that takes 5977 * the rtnl semaphore. In general you want to use this and not 5978 * unregister_netdevice. 5979 */ 5980 void unregister_netdev(struct net_device *dev) 5981 { 5982 rtnl_lock(); 5983 unregister_netdevice(dev); 5984 rtnl_unlock(); 5985 } 5986 EXPORT_SYMBOL(unregister_netdev); 5987 5988 /** 5989 * dev_change_net_namespace - move device to different nethost namespace 5990 * @dev: device 5991 * @net: network namespace 5992 * @pat: If not NULL name pattern to try if the current device name 5993 * is already taken in the destination network namespace. 5994 * 5995 * This function shuts down a device interface and moves it 5996 * to a new network namespace. On success 0 is returned, on 5997 * a failure a netagive errno code is returned. 5998 * 5999 * Callers must hold the rtnl semaphore. 6000 */ 6001 6002 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6003 { 6004 int err; 6005 6006 ASSERT_RTNL(); 6007 6008 /* Don't allow namespace local devices to be moved. */ 6009 err = -EINVAL; 6010 if (dev->features & NETIF_F_NETNS_LOCAL) 6011 goto out; 6012 6013 /* Ensure the device has been registrered */ 6014 if (dev->reg_state != NETREG_REGISTERED) 6015 goto out; 6016 6017 /* Get out if there is nothing todo */ 6018 err = 0; 6019 if (net_eq(dev_net(dev), net)) 6020 goto out; 6021 6022 /* Pick the destination device name, and ensure 6023 * we can use it in the destination network namespace. 6024 */ 6025 err = -EEXIST; 6026 if (__dev_get_by_name(net, dev->name)) { 6027 /* We get here if we can't use the current device name */ 6028 if (!pat) 6029 goto out; 6030 if (dev_get_valid_name(net, dev, pat) < 0) 6031 goto out; 6032 } 6033 6034 /* 6035 * And now a mini version of register_netdevice unregister_netdevice. 6036 */ 6037 6038 /* If device is running close it first. */ 6039 dev_close(dev); 6040 6041 /* And unlink it from device chain */ 6042 err = -ENODEV; 6043 unlist_netdevice(dev); 6044 6045 synchronize_net(); 6046 6047 /* Shutdown queueing discipline. */ 6048 dev_shutdown(dev); 6049 6050 /* Notify protocols, that we are about to destroy 6051 this device. They should clean all the things. 6052 6053 Note that dev->reg_state stays at NETREG_REGISTERED. 6054 This is wanted because this way 8021q and macvlan know 6055 the device is just moving and can keep their slaves up. 6056 */ 6057 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6058 rcu_barrier(); 6059 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6060 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6061 6062 /* 6063 * Flush the unicast and multicast chains 6064 */ 6065 dev_uc_flush(dev); 6066 dev_mc_flush(dev); 6067 6068 /* Send a netdev-removed uevent to the old namespace */ 6069 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6070 6071 /* Actually switch the network namespace */ 6072 dev_net_set(dev, net); 6073 6074 /* If there is an ifindex conflict assign a new one */ 6075 if (__dev_get_by_index(net, dev->ifindex)) { 6076 int iflink = (dev->iflink == dev->ifindex); 6077 dev->ifindex = dev_new_index(net); 6078 if (iflink) 6079 dev->iflink = dev->ifindex; 6080 } 6081 6082 /* Send a netdev-add uevent to the new namespace */ 6083 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6084 6085 /* Fixup kobjects */ 6086 err = device_rename(&dev->dev, dev->name); 6087 WARN_ON(err); 6088 6089 /* Add the device back in the hashes */ 6090 list_netdevice(dev); 6091 6092 /* Notify protocols, that a new device appeared. */ 6093 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6094 6095 /* 6096 * Prevent userspace races by waiting until the network 6097 * device is fully setup before sending notifications. 6098 */ 6099 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6100 6101 synchronize_net(); 6102 err = 0; 6103 out: 6104 return err; 6105 } 6106 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6107 6108 static int dev_cpu_callback(struct notifier_block *nfb, 6109 unsigned long action, 6110 void *ocpu) 6111 { 6112 struct sk_buff **list_skb; 6113 struct sk_buff *skb; 6114 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6115 struct softnet_data *sd, *oldsd; 6116 6117 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6118 return NOTIFY_OK; 6119 6120 local_irq_disable(); 6121 cpu = smp_processor_id(); 6122 sd = &per_cpu(softnet_data, cpu); 6123 oldsd = &per_cpu(softnet_data, oldcpu); 6124 6125 /* Find end of our completion_queue. */ 6126 list_skb = &sd->completion_queue; 6127 while (*list_skb) 6128 list_skb = &(*list_skb)->next; 6129 /* Append completion queue from offline CPU. */ 6130 *list_skb = oldsd->completion_queue; 6131 oldsd->completion_queue = NULL; 6132 6133 /* Append output queue from offline CPU. */ 6134 if (oldsd->output_queue) { 6135 *sd->output_queue_tailp = oldsd->output_queue; 6136 sd->output_queue_tailp = oldsd->output_queue_tailp; 6137 oldsd->output_queue = NULL; 6138 oldsd->output_queue_tailp = &oldsd->output_queue; 6139 } 6140 /* Append NAPI poll list from offline CPU. */ 6141 if (!list_empty(&oldsd->poll_list)) { 6142 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6143 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6144 } 6145 6146 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6147 local_irq_enable(); 6148 6149 /* Process offline CPU's input_pkt_queue */ 6150 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6151 netif_rx(skb); 6152 input_queue_head_incr(oldsd); 6153 } 6154 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6155 netif_rx(skb); 6156 input_queue_head_incr(oldsd); 6157 } 6158 6159 return NOTIFY_OK; 6160 } 6161 6162 6163 /** 6164 * netdev_increment_features - increment feature set by one 6165 * @all: current feature set 6166 * @one: new feature set 6167 * @mask: mask feature set 6168 * 6169 * Computes a new feature set after adding a device with feature set 6170 * @one to the master device with current feature set @all. Will not 6171 * enable anything that is off in @mask. Returns the new feature set. 6172 */ 6173 netdev_features_t netdev_increment_features(netdev_features_t all, 6174 netdev_features_t one, netdev_features_t mask) 6175 { 6176 if (mask & NETIF_F_GEN_CSUM) 6177 mask |= NETIF_F_ALL_CSUM; 6178 mask |= NETIF_F_VLAN_CHALLENGED; 6179 6180 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6181 all &= one | ~NETIF_F_ALL_FOR_ALL; 6182 6183 /* If one device supports hw checksumming, set for all. */ 6184 if (all & NETIF_F_GEN_CSUM) 6185 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6186 6187 return all; 6188 } 6189 EXPORT_SYMBOL(netdev_increment_features); 6190 6191 static struct hlist_head * __net_init netdev_create_hash(void) 6192 { 6193 int i; 6194 struct hlist_head *hash; 6195 6196 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6197 if (hash != NULL) 6198 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6199 INIT_HLIST_HEAD(&hash[i]); 6200 6201 return hash; 6202 } 6203 6204 /* Initialize per network namespace state */ 6205 static int __net_init netdev_init(struct net *net) 6206 { 6207 if (net != &init_net) 6208 INIT_LIST_HEAD(&net->dev_base_head); 6209 6210 net->dev_name_head = netdev_create_hash(); 6211 if (net->dev_name_head == NULL) 6212 goto err_name; 6213 6214 net->dev_index_head = netdev_create_hash(); 6215 if (net->dev_index_head == NULL) 6216 goto err_idx; 6217 6218 return 0; 6219 6220 err_idx: 6221 kfree(net->dev_name_head); 6222 err_name: 6223 return -ENOMEM; 6224 } 6225 6226 /** 6227 * netdev_drivername - network driver for the device 6228 * @dev: network device 6229 * 6230 * Determine network driver for device. 6231 */ 6232 const char *netdev_drivername(const struct net_device *dev) 6233 { 6234 const struct device_driver *driver; 6235 const struct device *parent; 6236 const char *empty = ""; 6237 6238 parent = dev->dev.parent; 6239 if (!parent) 6240 return empty; 6241 6242 driver = parent->driver; 6243 if (driver && driver->name) 6244 return driver->name; 6245 return empty; 6246 } 6247 6248 static int __netdev_printk(const char *level, const struct net_device *dev, 6249 struct va_format *vaf) 6250 { 6251 int r; 6252 6253 if (dev && dev->dev.parent) { 6254 r = dev_printk_emit(level[1] - '0', 6255 dev->dev.parent, 6256 "%s %s %s: %pV", 6257 dev_driver_string(dev->dev.parent), 6258 dev_name(dev->dev.parent), 6259 netdev_name(dev), vaf); 6260 } else if (dev) { 6261 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6262 } else { 6263 r = printk("%s(NULL net_device): %pV", level, vaf); 6264 } 6265 6266 return r; 6267 } 6268 6269 int netdev_printk(const char *level, const struct net_device *dev, 6270 const char *format, ...) 6271 { 6272 struct va_format vaf; 6273 va_list args; 6274 int r; 6275 6276 va_start(args, format); 6277 6278 vaf.fmt = format; 6279 vaf.va = &args; 6280 6281 r = __netdev_printk(level, dev, &vaf); 6282 6283 va_end(args); 6284 6285 return r; 6286 } 6287 EXPORT_SYMBOL(netdev_printk); 6288 6289 #define define_netdev_printk_level(func, level) \ 6290 int func(const struct net_device *dev, const char *fmt, ...) \ 6291 { \ 6292 int r; \ 6293 struct va_format vaf; \ 6294 va_list args; \ 6295 \ 6296 va_start(args, fmt); \ 6297 \ 6298 vaf.fmt = fmt; \ 6299 vaf.va = &args; \ 6300 \ 6301 r = __netdev_printk(level, dev, &vaf); \ 6302 \ 6303 va_end(args); \ 6304 \ 6305 return r; \ 6306 } \ 6307 EXPORT_SYMBOL(func); 6308 6309 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6310 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6311 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6312 define_netdev_printk_level(netdev_err, KERN_ERR); 6313 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6314 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6315 define_netdev_printk_level(netdev_info, KERN_INFO); 6316 6317 static void __net_exit netdev_exit(struct net *net) 6318 { 6319 kfree(net->dev_name_head); 6320 kfree(net->dev_index_head); 6321 } 6322 6323 static struct pernet_operations __net_initdata netdev_net_ops = { 6324 .init = netdev_init, 6325 .exit = netdev_exit, 6326 }; 6327 6328 static void __net_exit default_device_exit(struct net *net) 6329 { 6330 struct net_device *dev, *aux; 6331 /* 6332 * Push all migratable network devices back to the 6333 * initial network namespace 6334 */ 6335 rtnl_lock(); 6336 for_each_netdev_safe(net, dev, aux) { 6337 int err; 6338 char fb_name[IFNAMSIZ]; 6339 6340 /* Ignore unmoveable devices (i.e. loopback) */ 6341 if (dev->features & NETIF_F_NETNS_LOCAL) 6342 continue; 6343 6344 /* Leave virtual devices for the generic cleanup */ 6345 if (dev->rtnl_link_ops) 6346 continue; 6347 6348 /* Push remaining network devices to init_net */ 6349 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6350 err = dev_change_net_namespace(dev, &init_net, fb_name); 6351 if (err) { 6352 pr_emerg("%s: failed to move %s to init_net: %d\n", 6353 __func__, dev->name, err); 6354 BUG(); 6355 } 6356 } 6357 rtnl_unlock(); 6358 } 6359 6360 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6361 { 6362 /* At exit all network devices most be removed from a network 6363 * namespace. Do this in the reverse order of registration. 6364 * Do this across as many network namespaces as possible to 6365 * improve batching efficiency. 6366 */ 6367 struct net_device *dev; 6368 struct net *net; 6369 LIST_HEAD(dev_kill_list); 6370 6371 rtnl_lock(); 6372 list_for_each_entry(net, net_list, exit_list) { 6373 for_each_netdev_reverse(net, dev) { 6374 if (dev->rtnl_link_ops) 6375 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6376 else 6377 unregister_netdevice_queue(dev, &dev_kill_list); 6378 } 6379 } 6380 unregister_netdevice_many(&dev_kill_list); 6381 list_del(&dev_kill_list); 6382 rtnl_unlock(); 6383 } 6384 6385 static struct pernet_operations __net_initdata default_device_ops = { 6386 .exit = default_device_exit, 6387 .exit_batch = default_device_exit_batch, 6388 }; 6389 6390 /* 6391 * Initialize the DEV module. At boot time this walks the device list and 6392 * unhooks any devices that fail to initialise (normally hardware not 6393 * present) and leaves us with a valid list of present and active devices. 6394 * 6395 */ 6396 6397 /* 6398 * This is called single threaded during boot, so no need 6399 * to take the rtnl semaphore. 6400 */ 6401 static int __init net_dev_init(void) 6402 { 6403 int i, rc = -ENOMEM; 6404 6405 BUG_ON(!dev_boot_phase); 6406 6407 if (dev_proc_init()) 6408 goto out; 6409 6410 if (netdev_kobject_init()) 6411 goto out; 6412 6413 INIT_LIST_HEAD(&ptype_all); 6414 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6415 INIT_LIST_HEAD(&ptype_base[i]); 6416 6417 INIT_LIST_HEAD(&offload_base); 6418 6419 if (register_pernet_subsys(&netdev_net_ops)) 6420 goto out; 6421 6422 /* 6423 * Initialise the packet receive queues. 6424 */ 6425 6426 for_each_possible_cpu(i) { 6427 struct softnet_data *sd = &per_cpu(softnet_data, i); 6428 6429 memset(sd, 0, sizeof(*sd)); 6430 skb_queue_head_init(&sd->input_pkt_queue); 6431 skb_queue_head_init(&sd->process_queue); 6432 sd->completion_queue = NULL; 6433 INIT_LIST_HEAD(&sd->poll_list); 6434 sd->output_queue = NULL; 6435 sd->output_queue_tailp = &sd->output_queue; 6436 #ifdef CONFIG_RPS 6437 sd->csd.func = rps_trigger_softirq; 6438 sd->csd.info = sd; 6439 sd->csd.flags = 0; 6440 sd->cpu = i; 6441 #endif 6442 6443 sd->backlog.poll = process_backlog; 6444 sd->backlog.weight = weight_p; 6445 sd->backlog.gro_list = NULL; 6446 sd->backlog.gro_count = 0; 6447 6448 #ifdef CONFIG_NET_FLOW_LIMIT 6449 sd->flow_limit = NULL; 6450 #endif 6451 } 6452 6453 dev_boot_phase = 0; 6454 6455 /* The loopback device is special if any other network devices 6456 * is present in a network namespace the loopback device must 6457 * be present. Since we now dynamically allocate and free the 6458 * loopback device ensure this invariant is maintained by 6459 * keeping the loopback device as the first device on the 6460 * list of network devices. Ensuring the loopback devices 6461 * is the first device that appears and the last network device 6462 * that disappears. 6463 */ 6464 if (register_pernet_device(&loopback_net_ops)) 6465 goto out; 6466 6467 if (register_pernet_device(&default_device_ops)) 6468 goto out; 6469 6470 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6471 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6472 6473 hotcpu_notifier(dev_cpu_callback, 0); 6474 dst_init(); 6475 rc = 0; 6476 out: 6477 return rc; 6478 } 6479 6480 subsys_initcall(net_dev_init); 6481