1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 #include <linux/net_namespace.h> 149 150 #include "net-sysfs.h" 151 152 /* Instead of increasing this, you should create a hash table. */ 153 #define MAX_GRO_SKBS 8 154 155 /* This should be increased if a protocol with a bigger head is added. */ 156 #define GRO_MAX_HEAD (MAX_HEADER + 128) 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 static DEFINE_SPINLOCK(offload_lock); 160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 161 struct list_head ptype_all __read_mostly; /* Taps */ 162 static struct list_head offload_base __read_mostly; 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_info(unsigned long val, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static seqcount_t devnet_rename_seq; 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 static inline void rps_unlock(struct softnet_data *sd) 227 { 228 #ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230 #endif 231 } 232 233 /* Device list insertion */ 234 static void list_netdevice(struct net_device *dev) 235 { 236 struct net *net = dev_net(dev); 237 238 ASSERT_RTNL(); 239 240 write_lock_bh(&dev_base_lock); 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 243 hlist_add_head_rcu(&dev->index_hlist, 244 dev_index_hash(net, dev->ifindex)); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(net); 248 } 249 250 /* Device list removal 251 * caller must respect a RCU grace period before freeing/reusing dev 252 */ 253 static void unlist_netdevice(struct net_device *dev) 254 { 255 ASSERT_RTNL(); 256 257 /* Unlink dev from the device chain */ 258 write_lock_bh(&dev_base_lock); 259 list_del_rcu(&dev->dev_list); 260 hlist_del_rcu(&dev->name_hlist); 261 hlist_del_rcu(&dev->index_hlist); 262 write_unlock_bh(&dev_base_lock); 263 264 dev_base_seq_inc(dev_net(dev)); 265 } 266 267 /* 268 * Our notifier list 269 */ 270 271 static RAW_NOTIFIER_HEAD(netdev_chain); 272 273 /* 274 * Device drivers call our routines to queue packets here. We empty the 275 * queue in the local softnet handler. 276 */ 277 278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 279 EXPORT_PER_CPU_SYMBOL(softnet_data); 280 281 #ifdef CONFIG_LOCKDEP 282 /* 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 284 * according to dev->type 285 */ 286 static const unsigned short netdev_lock_type[] = { 287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 302 303 static const char *const netdev_lock_name[] = { 304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 319 320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 323 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 324 { 325 int i; 326 327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 328 if (netdev_lock_type[i] == dev_type) 329 return i; 330 /* the last key is used by default */ 331 return ARRAY_SIZE(netdev_lock_type) - 1; 332 } 333 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev_type); 340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 int i; 347 348 i = netdev_lock_pos(dev->type); 349 lockdep_set_class_and_name(&dev->addr_list_lock, 350 &netdev_addr_lock_key[i], 351 netdev_lock_name[i]); 352 } 353 #else 354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 355 unsigned short dev_type) 356 { 357 } 358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 359 { 360 } 361 #endif 362 363 /******************************************************************************* 364 * 365 * Protocol management and registration routines 366 * 367 *******************************************************************************/ 368 369 370 /* 371 * Add a protocol ID to the list. Now that the input handler is 372 * smarter we can dispense with all the messy stuff that used to be 373 * here. 374 * 375 * BEWARE!!! Protocol handlers, mangling input packets, 376 * MUST BE last in hash buckets and checking protocol handlers 377 * MUST start from promiscuous ptype_all chain in net_bh. 378 * It is true now, do not change it. 379 * Explanation follows: if protocol handler, mangling packet, will 380 * be the first on list, it is not able to sense, that packet 381 * is cloned and should be copied-on-write, so that it will 382 * change it and subsequent readers will get broken packet. 383 * --ANK (980803) 384 */ 385 386 static inline struct list_head *ptype_head(const struct packet_type *pt) 387 { 388 if (pt->type == htons(ETH_P_ALL)) 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 390 else 391 return pt->dev ? &pt->dev->ptype_specific : 392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 393 } 394 395 /** 396 * dev_add_pack - add packet handler 397 * @pt: packet type declaration 398 * 399 * Add a protocol handler to the networking stack. The passed &packet_type 400 * is linked into kernel lists and may not be freed until it has been 401 * removed from the kernel lists. 402 * 403 * This call does not sleep therefore it can not 404 * guarantee all CPU's that are in middle of receiving packets 405 * will see the new packet type (until the next received packet). 406 */ 407 408 void dev_add_pack(struct packet_type *pt) 409 { 410 struct list_head *head = ptype_head(pt); 411 412 spin_lock(&ptype_lock); 413 list_add_rcu(&pt->list, head); 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(dev_add_pack); 417 418 /** 419 * __dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * The packet type might still be in use by receivers 428 * and must not be freed until after all the CPU's have gone 429 * through a quiescent state. 430 */ 431 void __dev_remove_pack(struct packet_type *pt) 432 { 433 struct list_head *head = ptype_head(pt); 434 struct packet_type *pt1; 435 436 spin_lock(&ptype_lock); 437 438 list_for_each_entry(pt1, head, list) { 439 if (pt == pt1) { 440 list_del_rcu(&pt->list); 441 goto out; 442 } 443 } 444 445 pr_warn("dev_remove_pack: %p not found\n", pt); 446 out: 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(__dev_remove_pack); 450 451 /** 452 * dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * This call sleeps to guarantee that no CPU is looking at the packet 461 * type after return. 462 */ 463 void dev_remove_pack(struct packet_type *pt) 464 { 465 __dev_remove_pack(pt); 466 467 synchronize_net(); 468 } 469 EXPORT_SYMBOL(dev_remove_pack); 470 471 472 /** 473 * dev_add_offload - register offload handlers 474 * @po: protocol offload declaration 475 * 476 * Add protocol offload handlers to the networking stack. The passed 477 * &proto_offload is linked into kernel lists and may not be freed until 478 * it has been removed from the kernel lists. 479 * 480 * This call does not sleep therefore it can not 481 * guarantee all CPU's that are in middle of receiving packets 482 * will see the new offload handlers (until the next received packet). 483 */ 484 void dev_add_offload(struct packet_offload *po) 485 { 486 struct packet_offload *elem; 487 488 spin_lock(&offload_lock); 489 list_for_each_entry(elem, &offload_base, list) { 490 if (po->priority < elem->priority) 491 break; 492 } 493 list_add_rcu(&po->list, elem->list.prev); 494 spin_unlock(&offload_lock); 495 } 496 EXPORT_SYMBOL(dev_add_offload); 497 498 /** 499 * __dev_remove_offload - remove offload handler 500 * @po: packet offload declaration 501 * 502 * Remove a protocol offload handler that was previously added to the 503 * kernel offload handlers by dev_add_offload(). The passed &offload_type 504 * is removed from the kernel lists and can be freed or reused once this 505 * function returns. 506 * 507 * The packet type might still be in use by receivers 508 * and must not be freed until after all the CPU's have gone 509 * through a quiescent state. 510 */ 511 static void __dev_remove_offload(struct packet_offload *po) 512 { 513 struct list_head *head = &offload_base; 514 struct packet_offload *po1; 515 516 spin_lock(&offload_lock); 517 518 list_for_each_entry(po1, head, list) { 519 if (po == po1) { 520 list_del_rcu(&po->list); 521 goto out; 522 } 523 } 524 525 pr_warn("dev_remove_offload: %p not found\n", po); 526 out: 527 spin_unlock(&offload_lock); 528 } 529 530 /** 531 * dev_remove_offload - remove packet offload handler 532 * @po: packet offload declaration 533 * 534 * Remove a packet offload handler that was previously added to the kernel 535 * offload handlers by dev_add_offload(). The passed &offload_type is 536 * removed from the kernel lists and can be freed or reused once this 537 * function returns. 538 * 539 * This call sleeps to guarantee that no CPU is looking at the packet 540 * type after return. 541 */ 542 void dev_remove_offload(struct packet_offload *po) 543 { 544 __dev_remove_offload(po); 545 546 synchronize_net(); 547 } 548 EXPORT_SYMBOL(dev_remove_offload); 549 550 /****************************************************************************** 551 * 552 * Device Boot-time Settings Routines 553 * 554 ******************************************************************************/ 555 556 /* Boot time configuration table */ 557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 558 559 /** 560 * netdev_boot_setup_add - add new setup entry 561 * @name: name of the device 562 * @map: configured settings for the device 563 * 564 * Adds new setup entry to the dev_boot_setup list. The function 565 * returns 0 on error and 1 on success. This is a generic routine to 566 * all netdevices. 567 */ 568 static int netdev_boot_setup_add(char *name, struct ifmap *map) 569 { 570 struct netdev_boot_setup *s; 571 int i; 572 573 s = dev_boot_setup; 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 576 memset(s[i].name, 0, sizeof(s[i].name)); 577 strlcpy(s[i].name, name, IFNAMSIZ); 578 memcpy(&s[i].map, map, sizeof(s[i].map)); 579 break; 580 } 581 } 582 583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 584 } 585 586 /** 587 * netdev_boot_setup_check - check boot time settings 588 * @dev: the netdevice 589 * 590 * Check boot time settings for the device. 591 * The found settings are set for the device to be used 592 * later in the device probing. 593 * Returns 0 if no settings found, 1 if they are. 594 */ 595 int netdev_boot_setup_check(struct net_device *dev) 596 { 597 struct netdev_boot_setup *s = dev_boot_setup; 598 int i; 599 600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 602 !strcmp(dev->name, s[i].name)) { 603 dev->irq = s[i].map.irq; 604 dev->base_addr = s[i].map.base_addr; 605 dev->mem_start = s[i].map.mem_start; 606 dev->mem_end = s[i].map.mem_end; 607 return 1; 608 } 609 } 610 return 0; 611 } 612 EXPORT_SYMBOL(netdev_boot_setup_check); 613 614 615 /** 616 * netdev_boot_base - get address from boot time settings 617 * @prefix: prefix for network device 618 * @unit: id for network device 619 * 620 * Check boot time settings for the base address of device. 621 * The found settings are set for the device to be used 622 * later in the device probing. 623 * Returns 0 if no settings found. 624 */ 625 unsigned long netdev_boot_base(const char *prefix, int unit) 626 { 627 const struct netdev_boot_setup *s = dev_boot_setup; 628 char name[IFNAMSIZ]; 629 int i; 630 631 sprintf(name, "%s%d", prefix, unit); 632 633 /* 634 * If device already registered then return base of 1 635 * to indicate not to probe for this interface 636 */ 637 if (__dev_get_by_name(&init_net, name)) 638 return 1; 639 640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 641 if (!strcmp(name, s[i].name)) 642 return s[i].map.base_addr; 643 return 0; 644 } 645 646 /* 647 * Saves at boot time configured settings for any netdevice. 648 */ 649 int __init netdev_boot_setup(char *str) 650 { 651 int ints[5]; 652 struct ifmap map; 653 654 str = get_options(str, ARRAY_SIZE(ints), ints); 655 if (!str || !*str) 656 return 0; 657 658 /* Save settings */ 659 memset(&map, 0, sizeof(map)); 660 if (ints[0] > 0) 661 map.irq = ints[1]; 662 if (ints[0] > 1) 663 map.base_addr = ints[2]; 664 if (ints[0] > 2) 665 map.mem_start = ints[3]; 666 if (ints[0] > 3) 667 map.mem_end = ints[4]; 668 669 /* Add new entry to the list */ 670 return netdev_boot_setup_add(str, &map); 671 } 672 673 __setup("netdev=", netdev_boot_setup); 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return dev->ifindex; 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 /** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore 730 * or @dev_base_lock. If the name is found a pointer to the device 731 * is returned. If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736 struct net_device *__dev_get_by_name(struct net *net, const char *name) 737 { 738 struct net_device *dev; 739 struct hlist_head *head = dev_name_hash(net, name); 740 741 hlist_for_each_entry(dev, head, name_hlist) 742 if (!strncmp(dev->name, name, IFNAMSIZ)) 743 return dev; 744 745 return NULL; 746 } 747 EXPORT_SYMBOL(__dev_get_by_name); 748 749 /** 750 * dev_get_by_name_rcu - find a device by its name 751 * @net: the applicable net namespace 752 * @name: name to find 753 * 754 * Find an interface by name. 755 * If the name is found a pointer to the device is returned. 756 * If the name is not found then %NULL is returned. 757 * The reference counters are not incremented so the caller must be 758 * careful with locks. The caller must hold RCU lock. 759 */ 760 761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 762 { 763 struct net_device *dev; 764 struct hlist_head *head = dev_name_hash(net, name); 765 766 hlist_for_each_entry_rcu(dev, head, name_hlist) 767 if (!strncmp(dev->name, name, IFNAMSIZ)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_get_by_name_rcu); 773 774 /** 775 * dev_get_by_name - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * 779 * Find an interface by name. This can be called from any 780 * context and does its own locking. The returned handle has 781 * the usage count incremented and the caller must use dev_put() to 782 * release it when it is no longer needed. %NULL is returned if no 783 * matching device is found. 784 */ 785 786 struct net_device *dev_get_by_name(struct net *net, const char *name) 787 { 788 struct net_device *dev; 789 790 rcu_read_lock(); 791 dev = dev_get_by_name_rcu(net, name); 792 if (dev) 793 dev_hold(dev); 794 rcu_read_unlock(); 795 return dev; 796 } 797 EXPORT_SYMBOL(dev_get_by_name); 798 799 /** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812 { 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(__dev_get_by_index); 823 824 /** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836 { 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 849 /** 850 * dev_get_by_index - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns NULL if the device 855 * is not found or a pointer to the device. The device returned has 856 * had a reference added and the pointer is safe until the user calls 857 * dev_put to indicate they have finished with it. 858 */ 859 860 struct net_device *dev_get_by_index(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 864 rcu_read_lock(); 865 dev = dev_get_by_index_rcu(net, ifindex); 866 if (dev) 867 dev_hold(dev); 868 rcu_read_unlock(); 869 return dev; 870 } 871 EXPORT_SYMBOL(dev_get_by_index); 872 873 /** 874 * dev_get_by_napi_id - find a device by napi_id 875 * @napi_id: ID of the NAPI struct 876 * 877 * Search for an interface by NAPI ID. Returns %NULL if the device 878 * is not found or a pointer to the device. The device has not had 879 * its reference counter increased so the caller must be careful 880 * about locking. The caller must hold RCU lock. 881 */ 882 883 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 884 { 885 struct napi_struct *napi; 886 887 WARN_ON_ONCE(!rcu_read_lock_held()); 888 889 if (napi_id < MIN_NAPI_ID) 890 return NULL; 891 892 napi = napi_by_id(napi_id); 893 894 return napi ? napi->dev : NULL; 895 } 896 EXPORT_SYMBOL(dev_get_by_napi_id); 897 898 /** 899 * netdev_get_name - get a netdevice name, knowing its ifindex. 900 * @net: network namespace 901 * @name: a pointer to the buffer where the name will be stored. 902 * @ifindex: the ifindex of the interface to get the name from. 903 * 904 * The use of raw_seqcount_begin() and cond_resched() before 905 * retrying is required as we want to give the writers a chance 906 * to complete when CONFIG_PREEMPT is not set. 907 */ 908 int netdev_get_name(struct net *net, char *name, int ifindex) 909 { 910 struct net_device *dev; 911 unsigned int seq; 912 913 retry: 914 seq = raw_seqcount_begin(&devnet_rename_seq); 915 rcu_read_lock(); 916 dev = dev_get_by_index_rcu(net, ifindex); 917 if (!dev) { 918 rcu_read_unlock(); 919 return -ENODEV; 920 } 921 922 strcpy(name, dev->name); 923 rcu_read_unlock(); 924 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 925 cond_resched(); 926 goto retry; 927 } 928 929 return 0; 930 } 931 932 /** 933 * dev_getbyhwaddr_rcu - find a device by its hardware address 934 * @net: the applicable net namespace 935 * @type: media type of device 936 * @ha: hardware address 937 * 938 * Search for an interface by MAC address. Returns NULL if the device 939 * is not found or a pointer to the device. 940 * The caller must hold RCU or RTNL. 941 * The returned device has not had its ref count increased 942 * and the caller must therefore be careful about locking 943 * 944 */ 945 946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 947 const char *ha) 948 { 949 struct net_device *dev; 950 951 for_each_netdev_rcu(net, dev) 952 if (dev->type == type && 953 !memcmp(dev->dev_addr, ha, dev->addr_len)) 954 return dev; 955 956 return NULL; 957 } 958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 959 960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 961 { 962 struct net_device *dev; 963 964 ASSERT_RTNL(); 965 for_each_netdev(net, dev) 966 if (dev->type == type) 967 return dev; 968 969 return NULL; 970 } 971 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 972 973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 974 { 975 struct net_device *dev, *ret = NULL; 976 977 rcu_read_lock(); 978 for_each_netdev_rcu(net, dev) 979 if (dev->type == type) { 980 dev_hold(dev); 981 ret = dev; 982 break; 983 } 984 rcu_read_unlock(); 985 return ret; 986 } 987 EXPORT_SYMBOL(dev_getfirstbyhwtype); 988 989 /** 990 * __dev_get_by_flags - find any device with given flags 991 * @net: the applicable net namespace 992 * @if_flags: IFF_* values 993 * @mask: bitmask of bits in if_flags to check 994 * 995 * Search for any interface with the given flags. Returns NULL if a device 996 * is not found or a pointer to the device. Must be called inside 997 * rtnl_lock(), and result refcount is unchanged. 998 */ 999 1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1001 unsigned short mask) 1002 { 1003 struct net_device *dev, *ret; 1004 1005 ASSERT_RTNL(); 1006 1007 ret = NULL; 1008 for_each_netdev(net, dev) { 1009 if (((dev->flags ^ if_flags) & mask) == 0) { 1010 ret = dev; 1011 break; 1012 } 1013 } 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(__dev_get_by_flags); 1017 1018 /** 1019 * dev_valid_name - check if name is okay for network device 1020 * @name: name string 1021 * 1022 * Network device names need to be valid file names to 1023 * to allow sysfs to work. We also disallow any kind of 1024 * whitespace. 1025 */ 1026 bool dev_valid_name(const char *name) 1027 { 1028 if (*name == '\0') 1029 return false; 1030 if (strlen(name) >= IFNAMSIZ) 1031 return false; 1032 if (!strcmp(name, ".") || !strcmp(name, "..")) 1033 return false; 1034 1035 while (*name) { 1036 if (*name == '/' || *name == ':' || isspace(*name)) 1037 return false; 1038 name++; 1039 } 1040 return true; 1041 } 1042 EXPORT_SYMBOL(dev_valid_name); 1043 1044 /** 1045 * __dev_alloc_name - allocate a name for a device 1046 * @net: network namespace to allocate the device name in 1047 * @name: name format string 1048 * @buf: scratch buffer and result name string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1060 { 1061 int i = 0; 1062 const char *p; 1063 const int max_netdevices = 8*PAGE_SIZE; 1064 unsigned long *inuse; 1065 struct net_device *d; 1066 1067 if (!dev_valid_name(name)) 1068 return -EINVAL; 1069 1070 p = strchr(name, '%'); 1071 if (p) { 1072 /* 1073 * Verify the string as this thing may have come from 1074 * the user. There must be either one "%d" and no other "%" 1075 * characters. 1076 */ 1077 if (p[1] != 'd' || strchr(p + 2, '%')) 1078 return -EINVAL; 1079 1080 /* Use one page as a bit array of possible slots */ 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1082 if (!inuse) 1083 return -ENOMEM; 1084 1085 for_each_netdev(net, d) { 1086 if (!sscanf(d->name, name, &i)) 1087 continue; 1088 if (i < 0 || i >= max_netdevices) 1089 continue; 1090 1091 /* avoid cases where sscanf is not exact inverse of printf */ 1092 snprintf(buf, IFNAMSIZ, name, i); 1093 if (!strncmp(buf, d->name, IFNAMSIZ)) 1094 set_bit(i, inuse); 1095 } 1096 1097 i = find_first_zero_bit(inuse, max_netdevices); 1098 free_page((unsigned long) inuse); 1099 } 1100 1101 snprintf(buf, IFNAMSIZ, name, i); 1102 if (!__dev_get_by_name(net, buf)) 1103 return i; 1104 1105 /* It is possible to run out of possible slots 1106 * when the name is long and there isn't enough space left 1107 * for the digits, or if all bits are used. 1108 */ 1109 return -ENFILE; 1110 } 1111 1112 static int dev_alloc_name_ns(struct net *net, 1113 struct net_device *dev, 1114 const char *name) 1115 { 1116 char buf[IFNAMSIZ]; 1117 int ret; 1118 1119 BUG_ON(!net); 1120 ret = __dev_alloc_name(net, name, buf); 1121 if (ret >= 0) 1122 strlcpy(dev->name, buf, IFNAMSIZ); 1123 return ret; 1124 } 1125 1126 /** 1127 * dev_alloc_name - allocate a name for a device 1128 * @dev: device 1129 * @name: name format string 1130 * 1131 * Passed a format string - eg "lt%d" it will try and find a suitable 1132 * id. It scans list of devices to build up a free map, then chooses 1133 * the first empty slot. The caller must hold the dev_base or rtnl lock 1134 * while allocating the name and adding the device in order to avoid 1135 * duplicates. 1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1137 * Returns the number of the unit assigned or a negative errno code. 1138 */ 1139 1140 int dev_alloc_name(struct net_device *dev, const char *name) 1141 { 1142 return dev_alloc_name_ns(dev_net(dev), dev, name); 1143 } 1144 EXPORT_SYMBOL(dev_alloc_name); 1145 1146 int dev_get_valid_name(struct net *net, struct net_device *dev, 1147 const char *name) 1148 { 1149 BUG_ON(!net); 1150 1151 if (!dev_valid_name(name)) 1152 return -EINVAL; 1153 1154 if (strchr(name, '%')) 1155 return dev_alloc_name_ns(net, dev, name); 1156 else if (__dev_get_by_name(net, name)) 1157 return -EEXIST; 1158 else if (dev->name != name) 1159 strlcpy(dev->name, name, IFNAMSIZ); 1160 1161 return 0; 1162 } 1163 EXPORT_SYMBOL(dev_get_valid_name); 1164 1165 /** 1166 * dev_change_name - change name of a device 1167 * @dev: device 1168 * @newname: name (or format string) must be at least IFNAMSIZ 1169 * 1170 * Change name of a device, can pass format strings "eth%d". 1171 * for wildcarding. 1172 */ 1173 int dev_change_name(struct net_device *dev, const char *newname) 1174 { 1175 unsigned char old_assign_type; 1176 char oldname[IFNAMSIZ]; 1177 int err = 0; 1178 int ret; 1179 struct net *net; 1180 1181 ASSERT_RTNL(); 1182 BUG_ON(!dev_net(dev)); 1183 1184 net = dev_net(dev); 1185 if (dev->flags & IFF_UP) 1186 return -EBUSY; 1187 1188 write_seqcount_begin(&devnet_rename_seq); 1189 1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1191 write_seqcount_end(&devnet_rename_seq); 1192 return 0; 1193 } 1194 1195 memcpy(oldname, dev->name, IFNAMSIZ); 1196 1197 err = dev_get_valid_name(net, dev, newname); 1198 if (err < 0) { 1199 write_seqcount_end(&devnet_rename_seq); 1200 return err; 1201 } 1202 1203 if (oldname[0] && !strchr(oldname, '%')) 1204 netdev_info(dev, "renamed from %s\n", oldname); 1205 1206 old_assign_type = dev->name_assign_type; 1207 dev->name_assign_type = NET_NAME_RENAMED; 1208 1209 rollback: 1210 ret = device_rename(&dev->dev, dev->name); 1211 if (ret) { 1212 memcpy(dev->name, oldname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 write_seqcount_end(&devnet_rename_seq); 1215 return ret; 1216 } 1217 1218 write_seqcount_end(&devnet_rename_seq); 1219 1220 netdev_adjacent_rename_links(dev, oldname); 1221 1222 write_lock_bh(&dev_base_lock); 1223 hlist_del_rcu(&dev->name_hlist); 1224 write_unlock_bh(&dev_base_lock); 1225 1226 synchronize_rcu(); 1227 1228 write_lock_bh(&dev_base_lock); 1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1230 write_unlock_bh(&dev_base_lock); 1231 1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1233 ret = notifier_to_errno(ret); 1234 1235 if (ret) { 1236 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1237 if (err >= 0) { 1238 err = ret; 1239 write_seqcount_begin(&devnet_rename_seq); 1240 memcpy(dev->name, oldname, IFNAMSIZ); 1241 memcpy(oldname, newname, IFNAMSIZ); 1242 dev->name_assign_type = old_assign_type; 1243 old_assign_type = NET_NAME_RENAMED; 1244 goto rollback; 1245 } else { 1246 pr_err("%s: name change rollback failed: %d\n", 1247 dev->name, ret); 1248 } 1249 } 1250 1251 return err; 1252 } 1253 1254 /** 1255 * dev_set_alias - change ifalias of a device 1256 * @dev: device 1257 * @alias: name up to IFALIASZ 1258 * @len: limit of bytes to copy from info 1259 * 1260 * Set ifalias for a device, 1261 */ 1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1263 { 1264 struct dev_ifalias *new_alias = NULL; 1265 1266 if (len >= IFALIASZ) 1267 return -EINVAL; 1268 1269 if (len) { 1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1271 if (!new_alias) 1272 return -ENOMEM; 1273 1274 memcpy(new_alias->ifalias, alias, len); 1275 new_alias->ifalias[len] = 0; 1276 } 1277 1278 mutex_lock(&ifalias_mutex); 1279 rcu_swap_protected(dev->ifalias, new_alias, 1280 mutex_is_locked(&ifalias_mutex)); 1281 mutex_unlock(&ifalias_mutex); 1282 1283 if (new_alias) 1284 kfree_rcu(new_alias, rcuhead); 1285 1286 return len; 1287 } 1288 1289 /** 1290 * dev_get_alias - get ifalias of a device 1291 * @dev: device 1292 * @name: buffer to store name of ifalias 1293 * @len: size of buffer 1294 * 1295 * get ifalias for a device. Caller must make sure dev cannot go 1296 * away, e.g. rcu read lock or own a reference count to device. 1297 */ 1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1299 { 1300 const struct dev_ifalias *alias; 1301 int ret = 0; 1302 1303 rcu_read_lock(); 1304 alias = rcu_dereference(dev->ifalias); 1305 if (alias) 1306 ret = snprintf(name, len, "%s", alias->ifalias); 1307 rcu_read_unlock(); 1308 1309 return ret; 1310 } 1311 1312 /** 1313 * netdev_features_change - device changes features 1314 * @dev: device to cause notification 1315 * 1316 * Called to indicate a device has changed features. 1317 */ 1318 void netdev_features_change(struct net_device *dev) 1319 { 1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1321 } 1322 EXPORT_SYMBOL(netdev_features_change); 1323 1324 /** 1325 * netdev_state_change - device changes state 1326 * @dev: device to cause notification 1327 * 1328 * Called to indicate a device has changed state. This function calls 1329 * the notifier chains for netdev_chain and sends a NEWLINK message 1330 * to the routing socket. 1331 */ 1332 void netdev_state_change(struct net_device *dev) 1333 { 1334 if (dev->flags & IFF_UP) { 1335 struct netdev_notifier_change_info change_info = { 1336 .info.dev = dev, 1337 }; 1338 1339 call_netdevice_notifiers_info(NETDEV_CHANGE, 1340 &change_info.info); 1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1342 } 1343 } 1344 EXPORT_SYMBOL(netdev_state_change); 1345 1346 /** 1347 * netdev_notify_peers - notify network peers about existence of @dev 1348 * @dev: network device 1349 * 1350 * Generate traffic such that interested network peers are aware of 1351 * @dev, such as by generating a gratuitous ARP. This may be used when 1352 * a device wants to inform the rest of the network about some sort of 1353 * reconfiguration such as a failover event or virtual machine 1354 * migration. 1355 */ 1356 void netdev_notify_peers(struct net_device *dev) 1357 { 1358 rtnl_lock(); 1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1361 rtnl_unlock(); 1362 } 1363 EXPORT_SYMBOL(netdev_notify_peers); 1364 1365 static int __dev_open(struct net_device *dev) 1366 { 1367 const struct net_device_ops *ops = dev->netdev_ops; 1368 int ret; 1369 1370 ASSERT_RTNL(); 1371 1372 if (!netif_device_present(dev)) 1373 return -ENODEV; 1374 1375 /* Block netpoll from trying to do any rx path servicing. 1376 * If we don't do this there is a chance ndo_poll_controller 1377 * or ndo_poll may be running while we open the device 1378 */ 1379 netpoll_poll_disable(dev); 1380 1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1382 ret = notifier_to_errno(ret); 1383 if (ret) 1384 return ret; 1385 1386 set_bit(__LINK_STATE_START, &dev->state); 1387 1388 if (ops->ndo_validate_addr) 1389 ret = ops->ndo_validate_addr(dev); 1390 1391 if (!ret && ops->ndo_open) 1392 ret = ops->ndo_open(dev); 1393 1394 netpoll_poll_enable(dev); 1395 1396 if (ret) 1397 clear_bit(__LINK_STATE_START, &dev->state); 1398 else { 1399 dev->flags |= IFF_UP; 1400 dev_set_rx_mode(dev); 1401 dev_activate(dev); 1402 add_device_randomness(dev->dev_addr, dev->addr_len); 1403 } 1404 1405 return ret; 1406 } 1407 1408 /** 1409 * dev_open - prepare an interface for use. 1410 * @dev: device to open 1411 * 1412 * Takes a device from down to up state. The device's private open 1413 * function is invoked and then the multicast lists are loaded. Finally 1414 * the device is moved into the up state and a %NETDEV_UP message is 1415 * sent to the netdev notifier chain. 1416 * 1417 * Calling this function on an active interface is a nop. On a failure 1418 * a negative errno code is returned. 1419 */ 1420 int dev_open(struct net_device *dev) 1421 { 1422 int ret; 1423 1424 if (dev->flags & IFF_UP) 1425 return 0; 1426 1427 ret = __dev_open(dev); 1428 if (ret < 0) 1429 return ret; 1430 1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1432 call_netdevice_notifiers(NETDEV_UP, dev); 1433 1434 return ret; 1435 } 1436 EXPORT_SYMBOL(dev_open); 1437 1438 static void __dev_close_many(struct list_head *head) 1439 { 1440 struct net_device *dev; 1441 1442 ASSERT_RTNL(); 1443 might_sleep(); 1444 1445 list_for_each_entry(dev, head, close_list) { 1446 /* Temporarily disable netpoll until the interface is down */ 1447 netpoll_poll_disable(dev); 1448 1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1450 1451 clear_bit(__LINK_STATE_START, &dev->state); 1452 1453 /* Synchronize to scheduled poll. We cannot touch poll list, it 1454 * can be even on different cpu. So just clear netif_running(). 1455 * 1456 * dev->stop() will invoke napi_disable() on all of it's 1457 * napi_struct instances on this device. 1458 */ 1459 smp_mb__after_atomic(); /* Commit netif_running(). */ 1460 } 1461 1462 dev_deactivate_many(head); 1463 1464 list_for_each_entry(dev, head, close_list) { 1465 const struct net_device_ops *ops = dev->netdev_ops; 1466 1467 /* 1468 * Call the device specific close. This cannot fail. 1469 * Only if device is UP 1470 * 1471 * We allow it to be called even after a DETACH hot-plug 1472 * event. 1473 */ 1474 if (ops->ndo_stop) 1475 ops->ndo_stop(dev); 1476 1477 dev->flags &= ~IFF_UP; 1478 netpoll_poll_enable(dev); 1479 } 1480 } 1481 1482 static void __dev_close(struct net_device *dev) 1483 { 1484 LIST_HEAD(single); 1485 1486 list_add(&dev->close_list, &single); 1487 __dev_close_many(&single); 1488 list_del(&single); 1489 } 1490 1491 void dev_close_many(struct list_head *head, bool unlink) 1492 { 1493 struct net_device *dev, *tmp; 1494 1495 /* Remove the devices that don't need to be closed */ 1496 list_for_each_entry_safe(dev, tmp, head, close_list) 1497 if (!(dev->flags & IFF_UP)) 1498 list_del_init(&dev->close_list); 1499 1500 __dev_close_many(head); 1501 1502 list_for_each_entry_safe(dev, tmp, head, close_list) { 1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1504 call_netdevice_notifiers(NETDEV_DOWN, dev); 1505 if (unlink) 1506 list_del_init(&dev->close_list); 1507 } 1508 } 1509 EXPORT_SYMBOL(dev_close_many); 1510 1511 /** 1512 * dev_close - shutdown an interface. 1513 * @dev: device to shutdown 1514 * 1515 * This function moves an active device into down state. A 1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1518 * chain. 1519 */ 1520 void dev_close(struct net_device *dev) 1521 { 1522 if (dev->flags & IFF_UP) { 1523 LIST_HEAD(single); 1524 1525 list_add(&dev->close_list, &single); 1526 dev_close_many(&single, true); 1527 list_del(&single); 1528 } 1529 } 1530 EXPORT_SYMBOL(dev_close); 1531 1532 1533 /** 1534 * dev_disable_lro - disable Large Receive Offload on a device 1535 * @dev: device 1536 * 1537 * Disable Large Receive Offload (LRO) on a net device. Must be 1538 * called under RTNL. This is needed if received packets may be 1539 * forwarded to another interface. 1540 */ 1541 void dev_disable_lro(struct net_device *dev) 1542 { 1543 struct net_device *lower_dev; 1544 struct list_head *iter; 1545 1546 dev->wanted_features &= ~NETIF_F_LRO; 1547 netdev_update_features(dev); 1548 1549 if (unlikely(dev->features & NETIF_F_LRO)) 1550 netdev_WARN(dev, "failed to disable LRO!\n"); 1551 1552 netdev_for_each_lower_dev(dev, lower_dev, iter) 1553 dev_disable_lro(lower_dev); 1554 } 1555 EXPORT_SYMBOL(dev_disable_lro); 1556 1557 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1558 struct net_device *dev) 1559 { 1560 struct netdev_notifier_info info = { 1561 .dev = dev, 1562 }; 1563 1564 return nb->notifier_call(nb, val, &info); 1565 } 1566 1567 static int dev_boot_phase = 1; 1568 1569 /** 1570 * register_netdevice_notifier - register a network notifier block 1571 * @nb: notifier 1572 * 1573 * Register a notifier to be called when network device events occur. 1574 * The notifier passed is linked into the kernel structures and must 1575 * not be reused until it has been unregistered. A negative errno code 1576 * is returned on a failure. 1577 * 1578 * When registered all registration and up events are replayed 1579 * to the new notifier to allow device to have a race free 1580 * view of the network device list. 1581 */ 1582 1583 int register_netdevice_notifier(struct notifier_block *nb) 1584 { 1585 struct net_device *dev; 1586 struct net_device *last; 1587 struct net *net; 1588 int err; 1589 1590 rtnl_lock(); 1591 err = raw_notifier_chain_register(&netdev_chain, nb); 1592 if (err) 1593 goto unlock; 1594 if (dev_boot_phase) 1595 goto unlock; 1596 for_each_net(net) { 1597 for_each_netdev(net, dev) { 1598 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1599 err = notifier_to_errno(err); 1600 if (err) 1601 goto rollback; 1602 1603 if (!(dev->flags & IFF_UP)) 1604 continue; 1605 1606 call_netdevice_notifier(nb, NETDEV_UP, dev); 1607 } 1608 } 1609 1610 unlock: 1611 rtnl_unlock(); 1612 return err; 1613 1614 rollback: 1615 last = dev; 1616 for_each_net(net) { 1617 for_each_netdev(net, dev) { 1618 if (dev == last) 1619 goto outroll; 1620 1621 if (dev->flags & IFF_UP) { 1622 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1623 dev); 1624 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1625 } 1626 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1627 } 1628 } 1629 1630 outroll: 1631 raw_notifier_chain_unregister(&netdev_chain, nb); 1632 goto unlock; 1633 } 1634 EXPORT_SYMBOL(register_netdevice_notifier); 1635 1636 /** 1637 * unregister_netdevice_notifier - unregister a network notifier block 1638 * @nb: notifier 1639 * 1640 * Unregister a notifier previously registered by 1641 * register_netdevice_notifier(). The notifier is unlinked into the 1642 * kernel structures and may then be reused. A negative errno code 1643 * is returned on a failure. 1644 * 1645 * After unregistering unregister and down device events are synthesized 1646 * for all devices on the device list to the removed notifier to remove 1647 * the need for special case cleanup code. 1648 */ 1649 1650 int unregister_netdevice_notifier(struct notifier_block *nb) 1651 { 1652 struct net_device *dev; 1653 struct net *net; 1654 int err; 1655 1656 rtnl_lock(); 1657 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1658 if (err) 1659 goto unlock; 1660 1661 for_each_net(net) { 1662 for_each_netdev(net, dev) { 1663 if (dev->flags & IFF_UP) { 1664 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1665 dev); 1666 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1667 } 1668 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1669 } 1670 } 1671 unlock: 1672 rtnl_unlock(); 1673 return err; 1674 } 1675 EXPORT_SYMBOL(unregister_netdevice_notifier); 1676 1677 /** 1678 * call_netdevice_notifiers_info - call all network notifier blocks 1679 * @val: value passed unmodified to notifier function 1680 * @dev: net_device pointer passed unmodified to notifier function 1681 * @info: notifier information data 1682 * 1683 * Call all network notifier blocks. Parameters and return value 1684 * are as for raw_notifier_call_chain(). 1685 */ 1686 1687 static int call_netdevice_notifiers_info(unsigned long val, 1688 struct netdev_notifier_info *info) 1689 { 1690 ASSERT_RTNL(); 1691 return raw_notifier_call_chain(&netdev_chain, val, info); 1692 } 1693 1694 /** 1695 * call_netdevice_notifiers - call all network notifier blocks 1696 * @val: value passed unmodified to notifier function 1697 * @dev: net_device pointer passed unmodified to notifier function 1698 * 1699 * Call all network notifier blocks. Parameters and return value 1700 * are as for raw_notifier_call_chain(). 1701 */ 1702 1703 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1704 { 1705 struct netdev_notifier_info info = { 1706 .dev = dev, 1707 }; 1708 1709 return call_netdevice_notifiers_info(val, &info); 1710 } 1711 EXPORT_SYMBOL(call_netdevice_notifiers); 1712 1713 #ifdef CONFIG_NET_INGRESS 1714 static struct static_key ingress_needed __read_mostly; 1715 1716 void net_inc_ingress_queue(void) 1717 { 1718 static_key_slow_inc(&ingress_needed); 1719 } 1720 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1721 1722 void net_dec_ingress_queue(void) 1723 { 1724 static_key_slow_dec(&ingress_needed); 1725 } 1726 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1727 #endif 1728 1729 #ifdef CONFIG_NET_EGRESS 1730 static struct static_key egress_needed __read_mostly; 1731 1732 void net_inc_egress_queue(void) 1733 { 1734 static_key_slow_inc(&egress_needed); 1735 } 1736 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1737 1738 void net_dec_egress_queue(void) 1739 { 1740 static_key_slow_dec(&egress_needed); 1741 } 1742 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1743 #endif 1744 1745 static struct static_key netstamp_needed __read_mostly; 1746 #ifdef HAVE_JUMP_LABEL 1747 static atomic_t netstamp_needed_deferred; 1748 static atomic_t netstamp_wanted; 1749 static void netstamp_clear(struct work_struct *work) 1750 { 1751 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1752 int wanted; 1753 1754 wanted = atomic_add_return(deferred, &netstamp_wanted); 1755 if (wanted > 0) 1756 static_key_enable(&netstamp_needed); 1757 else 1758 static_key_disable(&netstamp_needed); 1759 } 1760 static DECLARE_WORK(netstamp_work, netstamp_clear); 1761 #endif 1762 1763 void net_enable_timestamp(void) 1764 { 1765 #ifdef HAVE_JUMP_LABEL 1766 int wanted; 1767 1768 while (1) { 1769 wanted = atomic_read(&netstamp_wanted); 1770 if (wanted <= 0) 1771 break; 1772 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1773 return; 1774 } 1775 atomic_inc(&netstamp_needed_deferred); 1776 schedule_work(&netstamp_work); 1777 #else 1778 static_key_slow_inc(&netstamp_needed); 1779 #endif 1780 } 1781 EXPORT_SYMBOL(net_enable_timestamp); 1782 1783 void net_disable_timestamp(void) 1784 { 1785 #ifdef HAVE_JUMP_LABEL 1786 int wanted; 1787 1788 while (1) { 1789 wanted = atomic_read(&netstamp_wanted); 1790 if (wanted <= 1) 1791 break; 1792 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1793 return; 1794 } 1795 atomic_dec(&netstamp_needed_deferred); 1796 schedule_work(&netstamp_work); 1797 #else 1798 static_key_slow_dec(&netstamp_needed); 1799 #endif 1800 } 1801 EXPORT_SYMBOL(net_disable_timestamp); 1802 1803 static inline void net_timestamp_set(struct sk_buff *skb) 1804 { 1805 skb->tstamp = 0; 1806 if (static_key_false(&netstamp_needed)) 1807 __net_timestamp(skb); 1808 } 1809 1810 #define net_timestamp_check(COND, SKB) \ 1811 if (static_key_false(&netstamp_needed)) { \ 1812 if ((COND) && !(SKB)->tstamp) \ 1813 __net_timestamp(SKB); \ 1814 } \ 1815 1816 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1817 { 1818 unsigned int len; 1819 1820 if (!(dev->flags & IFF_UP)) 1821 return false; 1822 1823 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1824 if (skb->len <= len) 1825 return true; 1826 1827 /* if TSO is enabled, we don't care about the length as the packet 1828 * could be forwarded without being segmented before 1829 */ 1830 if (skb_is_gso(skb)) 1831 return true; 1832 1833 return false; 1834 } 1835 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1836 1837 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1838 { 1839 int ret = ____dev_forward_skb(dev, skb); 1840 1841 if (likely(!ret)) { 1842 skb->protocol = eth_type_trans(skb, dev); 1843 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1844 } 1845 1846 return ret; 1847 } 1848 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1849 1850 /** 1851 * dev_forward_skb - loopback an skb to another netif 1852 * 1853 * @dev: destination network device 1854 * @skb: buffer to forward 1855 * 1856 * return values: 1857 * NET_RX_SUCCESS (no congestion) 1858 * NET_RX_DROP (packet was dropped, but freed) 1859 * 1860 * dev_forward_skb can be used for injecting an skb from the 1861 * start_xmit function of one device into the receive queue 1862 * of another device. 1863 * 1864 * The receiving device may be in another namespace, so 1865 * we have to clear all information in the skb that could 1866 * impact namespace isolation. 1867 */ 1868 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1869 { 1870 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1871 } 1872 EXPORT_SYMBOL_GPL(dev_forward_skb); 1873 1874 static inline int deliver_skb(struct sk_buff *skb, 1875 struct packet_type *pt_prev, 1876 struct net_device *orig_dev) 1877 { 1878 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1879 return -ENOMEM; 1880 refcount_inc(&skb->users); 1881 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1882 } 1883 1884 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1885 struct packet_type **pt, 1886 struct net_device *orig_dev, 1887 __be16 type, 1888 struct list_head *ptype_list) 1889 { 1890 struct packet_type *ptype, *pt_prev = *pt; 1891 1892 list_for_each_entry_rcu(ptype, ptype_list, list) { 1893 if (ptype->type != type) 1894 continue; 1895 if (pt_prev) 1896 deliver_skb(skb, pt_prev, orig_dev); 1897 pt_prev = ptype; 1898 } 1899 *pt = pt_prev; 1900 } 1901 1902 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1903 { 1904 if (!ptype->af_packet_priv || !skb->sk) 1905 return false; 1906 1907 if (ptype->id_match) 1908 return ptype->id_match(ptype, skb->sk); 1909 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1910 return true; 1911 1912 return false; 1913 } 1914 1915 /* 1916 * Support routine. Sends outgoing frames to any network 1917 * taps currently in use. 1918 */ 1919 1920 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1921 { 1922 struct packet_type *ptype; 1923 struct sk_buff *skb2 = NULL; 1924 struct packet_type *pt_prev = NULL; 1925 struct list_head *ptype_list = &ptype_all; 1926 1927 rcu_read_lock(); 1928 again: 1929 list_for_each_entry_rcu(ptype, ptype_list, list) { 1930 /* Never send packets back to the socket 1931 * they originated from - MvS (miquels@drinkel.ow.org) 1932 */ 1933 if (skb_loop_sk(ptype, skb)) 1934 continue; 1935 1936 if (pt_prev) { 1937 deliver_skb(skb2, pt_prev, skb->dev); 1938 pt_prev = ptype; 1939 continue; 1940 } 1941 1942 /* need to clone skb, done only once */ 1943 skb2 = skb_clone(skb, GFP_ATOMIC); 1944 if (!skb2) 1945 goto out_unlock; 1946 1947 net_timestamp_set(skb2); 1948 1949 /* skb->nh should be correctly 1950 * set by sender, so that the second statement is 1951 * just protection against buggy protocols. 1952 */ 1953 skb_reset_mac_header(skb2); 1954 1955 if (skb_network_header(skb2) < skb2->data || 1956 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1957 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1958 ntohs(skb2->protocol), 1959 dev->name); 1960 skb_reset_network_header(skb2); 1961 } 1962 1963 skb2->transport_header = skb2->network_header; 1964 skb2->pkt_type = PACKET_OUTGOING; 1965 pt_prev = ptype; 1966 } 1967 1968 if (ptype_list == &ptype_all) { 1969 ptype_list = &dev->ptype_all; 1970 goto again; 1971 } 1972 out_unlock: 1973 if (pt_prev) { 1974 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 1975 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1976 else 1977 kfree_skb(skb2); 1978 } 1979 rcu_read_unlock(); 1980 } 1981 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1982 1983 /** 1984 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1985 * @dev: Network device 1986 * @txq: number of queues available 1987 * 1988 * If real_num_tx_queues is changed the tc mappings may no longer be 1989 * valid. To resolve this verify the tc mapping remains valid and if 1990 * not NULL the mapping. With no priorities mapping to this 1991 * offset/count pair it will no longer be used. In the worst case TC0 1992 * is invalid nothing can be done so disable priority mappings. If is 1993 * expected that drivers will fix this mapping if they can before 1994 * calling netif_set_real_num_tx_queues. 1995 */ 1996 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1997 { 1998 int i; 1999 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2000 2001 /* If TC0 is invalidated disable TC mapping */ 2002 if (tc->offset + tc->count > txq) { 2003 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2004 dev->num_tc = 0; 2005 return; 2006 } 2007 2008 /* Invalidated prio to tc mappings set to TC0 */ 2009 for (i = 1; i < TC_BITMASK + 1; i++) { 2010 int q = netdev_get_prio_tc_map(dev, i); 2011 2012 tc = &dev->tc_to_txq[q]; 2013 if (tc->offset + tc->count > txq) { 2014 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2015 i, q); 2016 netdev_set_prio_tc_map(dev, i, 0); 2017 } 2018 } 2019 } 2020 2021 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2022 { 2023 if (dev->num_tc) { 2024 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2025 int i; 2026 2027 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2028 if ((txq - tc->offset) < tc->count) 2029 return i; 2030 } 2031 2032 return -1; 2033 } 2034 2035 return 0; 2036 } 2037 EXPORT_SYMBOL(netdev_txq_to_tc); 2038 2039 #ifdef CONFIG_XPS 2040 static DEFINE_MUTEX(xps_map_mutex); 2041 #define xmap_dereference(P) \ 2042 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2043 2044 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2045 int tci, u16 index) 2046 { 2047 struct xps_map *map = NULL; 2048 int pos; 2049 2050 if (dev_maps) 2051 map = xmap_dereference(dev_maps->cpu_map[tci]); 2052 if (!map) 2053 return false; 2054 2055 for (pos = map->len; pos--;) { 2056 if (map->queues[pos] != index) 2057 continue; 2058 2059 if (map->len > 1) { 2060 map->queues[pos] = map->queues[--map->len]; 2061 break; 2062 } 2063 2064 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2065 kfree_rcu(map, rcu); 2066 return false; 2067 } 2068 2069 return true; 2070 } 2071 2072 static bool remove_xps_queue_cpu(struct net_device *dev, 2073 struct xps_dev_maps *dev_maps, 2074 int cpu, u16 offset, u16 count) 2075 { 2076 int num_tc = dev->num_tc ? : 1; 2077 bool active = false; 2078 int tci; 2079 2080 for (tci = cpu * num_tc; num_tc--; tci++) { 2081 int i, j; 2082 2083 for (i = count, j = offset; i--; j++) { 2084 if (!remove_xps_queue(dev_maps, cpu, j)) 2085 break; 2086 } 2087 2088 active |= i < 0; 2089 } 2090 2091 return active; 2092 } 2093 2094 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2095 u16 count) 2096 { 2097 struct xps_dev_maps *dev_maps; 2098 int cpu, i; 2099 bool active = false; 2100 2101 mutex_lock(&xps_map_mutex); 2102 dev_maps = xmap_dereference(dev->xps_maps); 2103 2104 if (!dev_maps) 2105 goto out_no_maps; 2106 2107 for_each_possible_cpu(cpu) 2108 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2109 offset, count); 2110 2111 if (!active) { 2112 RCU_INIT_POINTER(dev->xps_maps, NULL); 2113 kfree_rcu(dev_maps, rcu); 2114 } 2115 2116 for (i = offset + (count - 1); count--; i--) 2117 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2118 NUMA_NO_NODE); 2119 2120 out_no_maps: 2121 mutex_unlock(&xps_map_mutex); 2122 } 2123 2124 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2125 { 2126 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2127 } 2128 2129 static struct xps_map *expand_xps_map(struct xps_map *map, 2130 int cpu, u16 index) 2131 { 2132 struct xps_map *new_map; 2133 int alloc_len = XPS_MIN_MAP_ALLOC; 2134 int i, pos; 2135 2136 for (pos = 0; map && pos < map->len; pos++) { 2137 if (map->queues[pos] != index) 2138 continue; 2139 return map; 2140 } 2141 2142 /* Need to add queue to this CPU's existing map */ 2143 if (map) { 2144 if (pos < map->alloc_len) 2145 return map; 2146 2147 alloc_len = map->alloc_len * 2; 2148 } 2149 2150 /* Need to allocate new map to store queue on this CPU's map */ 2151 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2152 cpu_to_node(cpu)); 2153 if (!new_map) 2154 return NULL; 2155 2156 for (i = 0; i < pos; i++) 2157 new_map->queues[i] = map->queues[i]; 2158 new_map->alloc_len = alloc_len; 2159 new_map->len = pos; 2160 2161 return new_map; 2162 } 2163 2164 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2165 u16 index) 2166 { 2167 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2168 int i, cpu, tci, numa_node_id = -2; 2169 int maps_sz, num_tc = 1, tc = 0; 2170 struct xps_map *map, *new_map; 2171 bool active = false; 2172 2173 if (dev->num_tc) { 2174 num_tc = dev->num_tc; 2175 tc = netdev_txq_to_tc(dev, index); 2176 if (tc < 0) 2177 return -EINVAL; 2178 } 2179 2180 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2181 if (maps_sz < L1_CACHE_BYTES) 2182 maps_sz = L1_CACHE_BYTES; 2183 2184 mutex_lock(&xps_map_mutex); 2185 2186 dev_maps = xmap_dereference(dev->xps_maps); 2187 2188 /* allocate memory for queue storage */ 2189 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2190 if (!new_dev_maps) 2191 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2192 if (!new_dev_maps) { 2193 mutex_unlock(&xps_map_mutex); 2194 return -ENOMEM; 2195 } 2196 2197 tci = cpu * num_tc + tc; 2198 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2199 NULL; 2200 2201 map = expand_xps_map(map, cpu, index); 2202 if (!map) 2203 goto error; 2204 2205 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2206 } 2207 2208 if (!new_dev_maps) 2209 goto out_no_new_maps; 2210 2211 for_each_possible_cpu(cpu) { 2212 /* copy maps belonging to foreign traffic classes */ 2213 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2214 /* fill in the new device map from the old device map */ 2215 map = xmap_dereference(dev_maps->cpu_map[tci]); 2216 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2217 } 2218 2219 /* We need to explicitly update tci as prevous loop 2220 * could break out early if dev_maps is NULL. 2221 */ 2222 tci = cpu * num_tc + tc; 2223 2224 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2225 /* add queue to CPU maps */ 2226 int pos = 0; 2227 2228 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2229 while ((pos < map->len) && (map->queues[pos] != index)) 2230 pos++; 2231 2232 if (pos == map->len) 2233 map->queues[map->len++] = index; 2234 #ifdef CONFIG_NUMA 2235 if (numa_node_id == -2) 2236 numa_node_id = cpu_to_node(cpu); 2237 else if (numa_node_id != cpu_to_node(cpu)) 2238 numa_node_id = -1; 2239 #endif 2240 } else if (dev_maps) { 2241 /* fill in the new device map from the old device map */ 2242 map = xmap_dereference(dev_maps->cpu_map[tci]); 2243 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2244 } 2245 2246 /* copy maps belonging to foreign traffic classes */ 2247 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2248 /* fill in the new device map from the old device map */ 2249 map = xmap_dereference(dev_maps->cpu_map[tci]); 2250 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2251 } 2252 } 2253 2254 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2255 2256 /* Cleanup old maps */ 2257 if (!dev_maps) 2258 goto out_no_old_maps; 2259 2260 for_each_possible_cpu(cpu) { 2261 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2262 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2263 map = xmap_dereference(dev_maps->cpu_map[tci]); 2264 if (map && map != new_map) 2265 kfree_rcu(map, rcu); 2266 } 2267 } 2268 2269 kfree_rcu(dev_maps, rcu); 2270 2271 out_no_old_maps: 2272 dev_maps = new_dev_maps; 2273 active = true; 2274 2275 out_no_new_maps: 2276 /* update Tx queue numa node */ 2277 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2278 (numa_node_id >= 0) ? numa_node_id : 2279 NUMA_NO_NODE); 2280 2281 if (!dev_maps) 2282 goto out_no_maps; 2283 2284 /* removes queue from unused CPUs */ 2285 for_each_possible_cpu(cpu) { 2286 for (i = tc, tci = cpu * num_tc; i--; tci++) 2287 active |= remove_xps_queue(dev_maps, tci, index); 2288 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2289 active |= remove_xps_queue(dev_maps, tci, index); 2290 for (i = num_tc - tc, tci++; --i; tci++) 2291 active |= remove_xps_queue(dev_maps, tci, index); 2292 } 2293 2294 /* free map if not active */ 2295 if (!active) { 2296 RCU_INIT_POINTER(dev->xps_maps, NULL); 2297 kfree_rcu(dev_maps, rcu); 2298 } 2299 2300 out_no_maps: 2301 mutex_unlock(&xps_map_mutex); 2302 2303 return 0; 2304 error: 2305 /* remove any maps that we added */ 2306 for_each_possible_cpu(cpu) { 2307 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2308 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2309 map = dev_maps ? 2310 xmap_dereference(dev_maps->cpu_map[tci]) : 2311 NULL; 2312 if (new_map && new_map != map) 2313 kfree(new_map); 2314 } 2315 } 2316 2317 mutex_unlock(&xps_map_mutex); 2318 2319 kfree(new_dev_maps); 2320 return -ENOMEM; 2321 } 2322 EXPORT_SYMBOL(netif_set_xps_queue); 2323 2324 #endif 2325 void netdev_reset_tc(struct net_device *dev) 2326 { 2327 #ifdef CONFIG_XPS 2328 netif_reset_xps_queues_gt(dev, 0); 2329 #endif 2330 dev->num_tc = 0; 2331 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2332 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2333 } 2334 EXPORT_SYMBOL(netdev_reset_tc); 2335 2336 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2337 { 2338 if (tc >= dev->num_tc) 2339 return -EINVAL; 2340 2341 #ifdef CONFIG_XPS 2342 netif_reset_xps_queues(dev, offset, count); 2343 #endif 2344 dev->tc_to_txq[tc].count = count; 2345 dev->tc_to_txq[tc].offset = offset; 2346 return 0; 2347 } 2348 EXPORT_SYMBOL(netdev_set_tc_queue); 2349 2350 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2351 { 2352 if (num_tc > TC_MAX_QUEUE) 2353 return -EINVAL; 2354 2355 #ifdef CONFIG_XPS 2356 netif_reset_xps_queues_gt(dev, 0); 2357 #endif 2358 dev->num_tc = num_tc; 2359 return 0; 2360 } 2361 EXPORT_SYMBOL(netdev_set_num_tc); 2362 2363 /* 2364 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2365 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2366 */ 2367 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2368 { 2369 int rc; 2370 2371 if (txq < 1 || txq > dev->num_tx_queues) 2372 return -EINVAL; 2373 2374 if (dev->reg_state == NETREG_REGISTERED || 2375 dev->reg_state == NETREG_UNREGISTERING) { 2376 ASSERT_RTNL(); 2377 2378 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2379 txq); 2380 if (rc) 2381 return rc; 2382 2383 if (dev->num_tc) 2384 netif_setup_tc(dev, txq); 2385 2386 if (txq < dev->real_num_tx_queues) { 2387 qdisc_reset_all_tx_gt(dev, txq); 2388 #ifdef CONFIG_XPS 2389 netif_reset_xps_queues_gt(dev, txq); 2390 #endif 2391 } 2392 } 2393 2394 dev->real_num_tx_queues = txq; 2395 return 0; 2396 } 2397 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2398 2399 #ifdef CONFIG_SYSFS 2400 /** 2401 * netif_set_real_num_rx_queues - set actual number of RX queues used 2402 * @dev: Network device 2403 * @rxq: Actual number of RX queues 2404 * 2405 * This must be called either with the rtnl_lock held or before 2406 * registration of the net device. Returns 0 on success, or a 2407 * negative error code. If called before registration, it always 2408 * succeeds. 2409 */ 2410 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2411 { 2412 int rc; 2413 2414 if (rxq < 1 || rxq > dev->num_rx_queues) 2415 return -EINVAL; 2416 2417 if (dev->reg_state == NETREG_REGISTERED) { 2418 ASSERT_RTNL(); 2419 2420 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2421 rxq); 2422 if (rc) 2423 return rc; 2424 } 2425 2426 dev->real_num_rx_queues = rxq; 2427 return 0; 2428 } 2429 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2430 #endif 2431 2432 /** 2433 * netif_get_num_default_rss_queues - default number of RSS queues 2434 * 2435 * This routine should set an upper limit on the number of RSS queues 2436 * used by default by multiqueue devices. 2437 */ 2438 int netif_get_num_default_rss_queues(void) 2439 { 2440 return is_kdump_kernel() ? 2441 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2442 } 2443 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2444 2445 static void __netif_reschedule(struct Qdisc *q) 2446 { 2447 struct softnet_data *sd; 2448 unsigned long flags; 2449 2450 local_irq_save(flags); 2451 sd = this_cpu_ptr(&softnet_data); 2452 q->next_sched = NULL; 2453 *sd->output_queue_tailp = q; 2454 sd->output_queue_tailp = &q->next_sched; 2455 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2456 local_irq_restore(flags); 2457 } 2458 2459 void __netif_schedule(struct Qdisc *q) 2460 { 2461 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2462 __netif_reschedule(q); 2463 } 2464 EXPORT_SYMBOL(__netif_schedule); 2465 2466 struct dev_kfree_skb_cb { 2467 enum skb_free_reason reason; 2468 }; 2469 2470 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2471 { 2472 return (struct dev_kfree_skb_cb *)skb->cb; 2473 } 2474 2475 void netif_schedule_queue(struct netdev_queue *txq) 2476 { 2477 rcu_read_lock(); 2478 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2479 struct Qdisc *q = rcu_dereference(txq->qdisc); 2480 2481 __netif_schedule(q); 2482 } 2483 rcu_read_unlock(); 2484 } 2485 EXPORT_SYMBOL(netif_schedule_queue); 2486 2487 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2488 { 2489 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2490 struct Qdisc *q; 2491 2492 rcu_read_lock(); 2493 q = rcu_dereference(dev_queue->qdisc); 2494 __netif_schedule(q); 2495 rcu_read_unlock(); 2496 } 2497 } 2498 EXPORT_SYMBOL(netif_tx_wake_queue); 2499 2500 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2501 { 2502 unsigned long flags; 2503 2504 if (unlikely(!skb)) 2505 return; 2506 2507 if (likely(refcount_read(&skb->users) == 1)) { 2508 smp_rmb(); 2509 refcount_set(&skb->users, 0); 2510 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2511 return; 2512 } 2513 get_kfree_skb_cb(skb)->reason = reason; 2514 local_irq_save(flags); 2515 skb->next = __this_cpu_read(softnet_data.completion_queue); 2516 __this_cpu_write(softnet_data.completion_queue, skb); 2517 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2518 local_irq_restore(flags); 2519 } 2520 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2521 2522 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2523 { 2524 if (in_irq() || irqs_disabled()) 2525 __dev_kfree_skb_irq(skb, reason); 2526 else 2527 dev_kfree_skb(skb); 2528 } 2529 EXPORT_SYMBOL(__dev_kfree_skb_any); 2530 2531 2532 /** 2533 * netif_device_detach - mark device as removed 2534 * @dev: network device 2535 * 2536 * Mark device as removed from system and therefore no longer available. 2537 */ 2538 void netif_device_detach(struct net_device *dev) 2539 { 2540 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2541 netif_running(dev)) { 2542 netif_tx_stop_all_queues(dev); 2543 } 2544 } 2545 EXPORT_SYMBOL(netif_device_detach); 2546 2547 /** 2548 * netif_device_attach - mark device as attached 2549 * @dev: network device 2550 * 2551 * Mark device as attached from system and restart if needed. 2552 */ 2553 void netif_device_attach(struct net_device *dev) 2554 { 2555 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2556 netif_running(dev)) { 2557 netif_tx_wake_all_queues(dev); 2558 __netdev_watchdog_up(dev); 2559 } 2560 } 2561 EXPORT_SYMBOL(netif_device_attach); 2562 2563 /* 2564 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2565 * to be used as a distribution range. 2566 */ 2567 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2568 unsigned int num_tx_queues) 2569 { 2570 u32 hash; 2571 u16 qoffset = 0; 2572 u16 qcount = num_tx_queues; 2573 2574 if (skb_rx_queue_recorded(skb)) { 2575 hash = skb_get_rx_queue(skb); 2576 while (unlikely(hash >= num_tx_queues)) 2577 hash -= num_tx_queues; 2578 return hash; 2579 } 2580 2581 if (dev->num_tc) { 2582 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2583 2584 qoffset = dev->tc_to_txq[tc].offset; 2585 qcount = dev->tc_to_txq[tc].count; 2586 } 2587 2588 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2589 } 2590 EXPORT_SYMBOL(__skb_tx_hash); 2591 2592 static void skb_warn_bad_offload(const struct sk_buff *skb) 2593 { 2594 static const netdev_features_t null_features; 2595 struct net_device *dev = skb->dev; 2596 const char *name = ""; 2597 2598 if (!net_ratelimit()) 2599 return; 2600 2601 if (dev) { 2602 if (dev->dev.parent) 2603 name = dev_driver_string(dev->dev.parent); 2604 else 2605 name = netdev_name(dev); 2606 } 2607 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2608 "gso_type=%d ip_summed=%d\n", 2609 name, dev ? &dev->features : &null_features, 2610 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2611 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2612 skb_shinfo(skb)->gso_type, skb->ip_summed); 2613 } 2614 2615 /* 2616 * Invalidate hardware checksum when packet is to be mangled, and 2617 * complete checksum manually on outgoing path. 2618 */ 2619 int skb_checksum_help(struct sk_buff *skb) 2620 { 2621 __wsum csum; 2622 int ret = 0, offset; 2623 2624 if (skb->ip_summed == CHECKSUM_COMPLETE) 2625 goto out_set_summed; 2626 2627 if (unlikely(skb_shinfo(skb)->gso_size)) { 2628 skb_warn_bad_offload(skb); 2629 return -EINVAL; 2630 } 2631 2632 /* Before computing a checksum, we should make sure no frag could 2633 * be modified by an external entity : checksum could be wrong. 2634 */ 2635 if (skb_has_shared_frag(skb)) { 2636 ret = __skb_linearize(skb); 2637 if (ret) 2638 goto out; 2639 } 2640 2641 offset = skb_checksum_start_offset(skb); 2642 BUG_ON(offset >= skb_headlen(skb)); 2643 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2644 2645 offset += skb->csum_offset; 2646 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2647 2648 if (skb_cloned(skb) && 2649 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2650 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2651 if (ret) 2652 goto out; 2653 } 2654 2655 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2656 out_set_summed: 2657 skb->ip_summed = CHECKSUM_NONE; 2658 out: 2659 return ret; 2660 } 2661 EXPORT_SYMBOL(skb_checksum_help); 2662 2663 int skb_crc32c_csum_help(struct sk_buff *skb) 2664 { 2665 __le32 crc32c_csum; 2666 int ret = 0, offset, start; 2667 2668 if (skb->ip_summed != CHECKSUM_PARTIAL) 2669 goto out; 2670 2671 if (unlikely(skb_is_gso(skb))) 2672 goto out; 2673 2674 /* Before computing a checksum, we should make sure no frag could 2675 * be modified by an external entity : checksum could be wrong. 2676 */ 2677 if (unlikely(skb_has_shared_frag(skb))) { 2678 ret = __skb_linearize(skb); 2679 if (ret) 2680 goto out; 2681 } 2682 start = skb_checksum_start_offset(skb); 2683 offset = start + offsetof(struct sctphdr, checksum); 2684 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2685 ret = -EINVAL; 2686 goto out; 2687 } 2688 if (skb_cloned(skb) && 2689 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2690 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2691 if (ret) 2692 goto out; 2693 } 2694 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2695 skb->len - start, ~(__u32)0, 2696 crc32c_csum_stub)); 2697 *(__le32 *)(skb->data + offset) = crc32c_csum; 2698 skb->ip_summed = CHECKSUM_NONE; 2699 skb->csum_not_inet = 0; 2700 out: 2701 return ret; 2702 } 2703 2704 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2705 { 2706 __be16 type = skb->protocol; 2707 2708 /* Tunnel gso handlers can set protocol to ethernet. */ 2709 if (type == htons(ETH_P_TEB)) { 2710 struct ethhdr *eth; 2711 2712 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2713 return 0; 2714 2715 eth = (struct ethhdr *)skb_mac_header(skb); 2716 type = eth->h_proto; 2717 } 2718 2719 return __vlan_get_protocol(skb, type, depth); 2720 } 2721 2722 /** 2723 * skb_mac_gso_segment - mac layer segmentation handler. 2724 * @skb: buffer to segment 2725 * @features: features for the output path (see dev->features) 2726 */ 2727 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2728 netdev_features_t features) 2729 { 2730 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2731 struct packet_offload *ptype; 2732 int vlan_depth = skb->mac_len; 2733 __be16 type = skb_network_protocol(skb, &vlan_depth); 2734 2735 if (unlikely(!type)) 2736 return ERR_PTR(-EINVAL); 2737 2738 __skb_pull(skb, vlan_depth); 2739 2740 rcu_read_lock(); 2741 list_for_each_entry_rcu(ptype, &offload_base, list) { 2742 if (ptype->type == type && ptype->callbacks.gso_segment) { 2743 segs = ptype->callbacks.gso_segment(skb, features); 2744 break; 2745 } 2746 } 2747 rcu_read_unlock(); 2748 2749 __skb_push(skb, skb->data - skb_mac_header(skb)); 2750 2751 return segs; 2752 } 2753 EXPORT_SYMBOL(skb_mac_gso_segment); 2754 2755 2756 /* openvswitch calls this on rx path, so we need a different check. 2757 */ 2758 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2759 { 2760 if (tx_path) 2761 return skb->ip_summed != CHECKSUM_PARTIAL && 2762 skb->ip_summed != CHECKSUM_UNNECESSARY; 2763 2764 return skb->ip_summed == CHECKSUM_NONE; 2765 } 2766 2767 /** 2768 * __skb_gso_segment - Perform segmentation on skb. 2769 * @skb: buffer to segment 2770 * @features: features for the output path (see dev->features) 2771 * @tx_path: whether it is called in TX path 2772 * 2773 * This function segments the given skb and returns a list of segments. 2774 * 2775 * It may return NULL if the skb requires no segmentation. This is 2776 * only possible when GSO is used for verifying header integrity. 2777 * 2778 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2779 */ 2780 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2781 netdev_features_t features, bool tx_path) 2782 { 2783 struct sk_buff *segs; 2784 2785 if (unlikely(skb_needs_check(skb, tx_path))) { 2786 int err; 2787 2788 /* We're going to init ->check field in TCP or UDP header */ 2789 err = skb_cow_head(skb, 0); 2790 if (err < 0) 2791 return ERR_PTR(err); 2792 } 2793 2794 /* Only report GSO partial support if it will enable us to 2795 * support segmentation on this frame without needing additional 2796 * work. 2797 */ 2798 if (features & NETIF_F_GSO_PARTIAL) { 2799 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2800 struct net_device *dev = skb->dev; 2801 2802 partial_features |= dev->features & dev->gso_partial_features; 2803 if (!skb_gso_ok(skb, features | partial_features)) 2804 features &= ~NETIF_F_GSO_PARTIAL; 2805 } 2806 2807 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2808 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2809 2810 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2811 SKB_GSO_CB(skb)->encap_level = 0; 2812 2813 skb_reset_mac_header(skb); 2814 skb_reset_mac_len(skb); 2815 2816 segs = skb_mac_gso_segment(skb, features); 2817 2818 if (unlikely(skb_needs_check(skb, tx_path))) 2819 skb_warn_bad_offload(skb); 2820 2821 return segs; 2822 } 2823 EXPORT_SYMBOL(__skb_gso_segment); 2824 2825 /* Take action when hardware reception checksum errors are detected. */ 2826 #ifdef CONFIG_BUG 2827 void netdev_rx_csum_fault(struct net_device *dev) 2828 { 2829 if (net_ratelimit()) { 2830 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2831 dump_stack(); 2832 } 2833 } 2834 EXPORT_SYMBOL(netdev_rx_csum_fault); 2835 #endif 2836 2837 /* Actually, we should eliminate this check as soon as we know, that: 2838 * 1. IOMMU is present and allows to map all the memory. 2839 * 2. No high memory really exists on this machine. 2840 */ 2841 2842 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2843 { 2844 #ifdef CONFIG_HIGHMEM 2845 int i; 2846 2847 if (!(dev->features & NETIF_F_HIGHDMA)) { 2848 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2849 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2850 2851 if (PageHighMem(skb_frag_page(frag))) 2852 return 1; 2853 } 2854 } 2855 2856 if (PCI_DMA_BUS_IS_PHYS) { 2857 struct device *pdev = dev->dev.parent; 2858 2859 if (!pdev) 2860 return 0; 2861 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2862 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2863 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2864 2865 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2866 return 1; 2867 } 2868 } 2869 #endif 2870 return 0; 2871 } 2872 2873 /* If MPLS offload request, verify we are testing hardware MPLS features 2874 * instead of standard features for the netdev. 2875 */ 2876 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2877 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2878 netdev_features_t features, 2879 __be16 type) 2880 { 2881 if (eth_p_mpls(type)) 2882 features &= skb->dev->mpls_features; 2883 2884 return features; 2885 } 2886 #else 2887 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2888 netdev_features_t features, 2889 __be16 type) 2890 { 2891 return features; 2892 } 2893 #endif 2894 2895 static netdev_features_t harmonize_features(struct sk_buff *skb, 2896 netdev_features_t features) 2897 { 2898 int tmp; 2899 __be16 type; 2900 2901 type = skb_network_protocol(skb, &tmp); 2902 features = net_mpls_features(skb, features, type); 2903 2904 if (skb->ip_summed != CHECKSUM_NONE && 2905 !can_checksum_protocol(features, type)) { 2906 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2907 } 2908 if (illegal_highdma(skb->dev, skb)) 2909 features &= ~NETIF_F_SG; 2910 2911 return features; 2912 } 2913 2914 netdev_features_t passthru_features_check(struct sk_buff *skb, 2915 struct net_device *dev, 2916 netdev_features_t features) 2917 { 2918 return features; 2919 } 2920 EXPORT_SYMBOL(passthru_features_check); 2921 2922 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2923 struct net_device *dev, 2924 netdev_features_t features) 2925 { 2926 return vlan_features_check(skb, features); 2927 } 2928 2929 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2930 struct net_device *dev, 2931 netdev_features_t features) 2932 { 2933 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2934 2935 if (gso_segs > dev->gso_max_segs) 2936 return features & ~NETIF_F_GSO_MASK; 2937 2938 /* Support for GSO partial features requires software 2939 * intervention before we can actually process the packets 2940 * so we need to strip support for any partial features now 2941 * and we can pull them back in after we have partially 2942 * segmented the frame. 2943 */ 2944 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2945 features &= ~dev->gso_partial_features; 2946 2947 /* Make sure to clear the IPv4 ID mangling feature if the 2948 * IPv4 header has the potential to be fragmented. 2949 */ 2950 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2951 struct iphdr *iph = skb->encapsulation ? 2952 inner_ip_hdr(skb) : ip_hdr(skb); 2953 2954 if (!(iph->frag_off & htons(IP_DF))) 2955 features &= ~NETIF_F_TSO_MANGLEID; 2956 } 2957 2958 return features; 2959 } 2960 2961 netdev_features_t netif_skb_features(struct sk_buff *skb) 2962 { 2963 struct net_device *dev = skb->dev; 2964 netdev_features_t features = dev->features; 2965 2966 if (skb_is_gso(skb)) 2967 features = gso_features_check(skb, dev, features); 2968 2969 /* If encapsulation offload request, verify we are testing 2970 * hardware encapsulation features instead of standard 2971 * features for the netdev 2972 */ 2973 if (skb->encapsulation) 2974 features &= dev->hw_enc_features; 2975 2976 if (skb_vlan_tagged(skb)) 2977 features = netdev_intersect_features(features, 2978 dev->vlan_features | 2979 NETIF_F_HW_VLAN_CTAG_TX | 2980 NETIF_F_HW_VLAN_STAG_TX); 2981 2982 if (dev->netdev_ops->ndo_features_check) 2983 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2984 features); 2985 else 2986 features &= dflt_features_check(skb, dev, features); 2987 2988 return harmonize_features(skb, features); 2989 } 2990 EXPORT_SYMBOL(netif_skb_features); 2991 2992 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2993 struct netdev_queue *txq, bool more) 2994 { 2995 unsigned int len; 2996 int rc; 2997 2998 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2999 dev_queue_xmit_nit(skb, dev); 3000 3001 len = skb->len; 3002 trace_net_dev_start_xmit(skb, dev); 3003 rc = netdev_start_xmit(skb, dev, txq, more); 3004 trace_net_dev_xmit(skb, rc, dev, len); 3005 3006 return rc; 3007 } 3008 3009 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3010 struct netdev_queue *txq, int *ret) 3011 { 3012 struct sk_buff *skb = first; 3013 int rc = NETDEV_TX_OK; 3014 3015 while (skb) { 3016 struct sk_buff *next = skb->next; 3017 3018 skb->next = NULL; 3019 rc = xmit_one(skb, dev, txq, next != NULL); 3020 if (unlikely(!dev_xmit_complete(rc))) { 3021 skb->next = next; 3022 goto out; 3023 } 3024 3025 skb = next; 3026 if (netif_xmit_stopped(txq) && skb) { 3027 rc = NETDEV_TX_BUSY; 3028 break; 3029 } 3030 } 3031 3032 out: 3033 *ret = rc; 3034 return skb; 3035 } 3036 3037 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3038 netdev_features_t features) 3039 { 3040 if (skb_vlan_tag_present(skb) && 3041 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3042 skb = __vlan_hwaccel_push_inside(skb); 3043 return skb; 3044 } 3045 3046 int skb_csum_hwoffload_help(struct sk_buff *skb, 3047 const netdev_features_t features) 3048 { 3049 if (unlikely(skb->csum_not_inet)) 3050 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3051 skb_crc32c_csum_help(skb); 3052 3053 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3054 } 3055 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3056 3057 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 3058 { 3059 netdev_features_t features; 3060 3061 features = netif_skb_features(skb); 3062 skb = validate_xmit_vlan(skb, features); 3063 if (unlikely(!skb)) 3064 goto out_null; 3065 3066 if (netif_needs_gso(skb, features)) { 3067 struct sk_buff *segs; 3068 3069 segs = skb_gso_segment(skb, features); 3070 if (IS_ERR(segs)) { 3071 goto out_kfree_skb; 3072 } else if (segs) { 3073 consume_skb(skb); 3074 skb = segs; 3075 } 3076 } else { 3077 if (skb_needs_linearize(skb, features) && 3078 __skb_linearize(skb)) 3079 goto out_kfree_skb; 3080 3081 if (validate_xmit_xfrm(skb, features)) 3082 goto out_kfree_skb; 3083 3084 /* If packet is not checksummed and device does not 3085 * support checksumming for this protocol, complete 3086 * checksumming here. 3087 */ 3088 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3089 if (skb->encapsulation) 3090 skb_set_inner_transport_header(skb, 3091 skb_checksum_start_offset(skb)); 3092 else 3093 skb_set_transport_header(skb, 3094 skb_checksum_start_offset(skb)); 3095 if (skb_csum_hwoffload_help(skb, features)) 3096 goto out_kfree_skb; 3097 } 3098 } 3099 3100 return skb; 3101 3102 out_kfree_skb: 3103 kfree_skb(skb); 3104 out_null: 3105 atomic_long_inc(&dev->tx_dropped); 3106 return NULL; 3107 } 3108 3109 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3110 { 3111 struct sk_buff *next, *head = NULL, *tail; 3112 3113 for (; skb != NULL; skb = next) { 3114 next = skb->next; 3115 skb->next = NULL; 3116 3117 /* in case skb wont be segmented, point to itself */ 3118 skb->prev = skb; 3119 3120 skb = validate_xmit_skb(skb, dev); 3121 if (!skb) 3122 continue; 3123 3124 if (!head) 3125 head = skb; 3126 else 3127 tail->next = skb; 3128 /* If skb was segmented, skb->prev points to 3129 * the last segment. If not, it still contains skb. 3130 */ 3131 tail = skb->prev; 3132 } 3133 return head; 3134 } 3135 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3136 3137 static void qdisc_pkt_len_init(struct sk_buff *skb) 3138 { 3139 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3140 3141 qdisc_skb_cb(skb)->pkt_len = skb->len; 3142 3143 /* To get more precise estimation of bytes sent on wire, 3144 * we add to pkt_len the headers size of all segments 3145 */ 3146 if (shinfo->gso_size) { 3147 unsigned int hdr_len; 3148 u16 gso_segs = shinfo->gso_segs; 3149 3150 /* mac layer + network layer */ 3151 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3152 3153 /* + transport layer */ 3154 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3155 const struct tcphdr *th; 3156 struct tcphdr _tcphdr; 3157 3158 th = skb_header_pointer(skb, skb_transport_offset(skb), 3159 sizeof(_tcphdr), &_tcphdr); 3160 if (likely(th)) 3161 hdr_len += __tcp_hdrlen(th); 3162 } else { 3163 struct udphdr _udphdr; 3164 3165 if (skb_header_pointer(skb, skb_transport_offset(skb), 3166 sizeof(_udphdr), &_udphdr)) 3167 hdr_len += sizeof(struct udphdr); 3168 } 3169 3170 if (shinfo->gso_type & SKB_GSO_DODGY) 3171 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3172 shinfo->gso_size); 3173 3174 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3175 } 3176 } 3177 3178 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3179 struct net_device *dev, 3180 struct netdev_queue *txq) 3181 { 3182 spinlock_t *root_lock = qdisc_lock(q); 3183 struct sk_buff *to_free = NULL; 3184 bool contended; 3185 int rc; 3186 3187 qdisc_calculate_pkt_len(skb, q); 3188 /* 3189 * Heuristic to force contended enqueues to serialize on a 3190 * separate lock before trying to get qdisc main lock. 3191 * This permits qdisc->running owner to get the lock more 3192 * often and dequeue packets faster. 3193 */ 3194 contended = qdisc_is_running(q); 3195 if (unlikely(contended)) 3196 spin_lock(&q->busylock); 3197 3198 spin_lock(root_lock); 3199 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3200 __qdisc_drop(skb, &to_free); 3201 rc = NET_XMIT_DROP; 3202 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3203 qdisc_run_begin(q)) { 3204 /* 3205 * This is a work-conserving queue; there are no old skbs 3206 * waiting to be sent out; and the qdisc is not running - 3207 * xmit the skb directly. 3208 */ 3209 3210 qdisc_bstats_update(q, skb); 3211 3212 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3213 if (unlikely(contended)) { 3214 spin_unlock(&q->busylock); 3215 contended = false; 3216 } 3217 __qdisc_run(q); 3218 } else 3219 qdisc_run_end(q); 3220 3221 rc = NET_XMIT_SUCCESS; 3222 } else { 3223 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3224 if (qdisc_run_begin(q)) { 3225 if (unlikely(contended)) { 3226 spin_unlock(&q->busylock); 3227 contended = false; 3228 } 3229 __qdisc_run(q); 3230 } 3231 } 3232 spin_unlock(root_lock); 3233 if (unlikely(to_free)) 3234 kfree_skb_list(to_free); 3235 if (unlikely(contended)) 3236 spin_unlock(&q->busylock); 3237 return rc; 3238 } 3239 3240 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3241 static void skb_update_prio(struct sk_buff *skb) 3242 { 3243 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3244 3245 if (!skb->priority && skb->sk && map) { 3246 unsigned int prioidx = 3247 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3248 3249 if (prioidx < map->priomap_len) 3250 skb->priority = map->priomap[prioidx]; 3251 } 3252 } 3253 #else 3254 #define skb_update_prio(skb) 3255 #endif 3256 3257 DEFINE_PER_CPU(int, xmit_recursion); 3258 EXPORT_SYMBOL(xmit_recursion); 3259 3260 /** 3261 * dev_loopback_xmit - loop back @skb 3262 * @net: network namespace this loopback is happening in 3263 * @sk: sk needed to be a netfilter okfn 3264 * @skb: buffer to transmit 3265 */ 3266 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3267 { 3268 skb_reset_mac_header(skb); 3269 __skb_pull(skb, skb_network_offset(skb)); 3270 skb->pkt_type = PACKET_LOOPBACK; 3271 skb->ip_summed = CHECKSUM_UNNECESSARY; 3272 WARN_ON(!skb_dst(skb)); 3273 skb_dst_force(skb); 3274 netif_rx_ni(skb); 3275 return 0; 3276 } 3277 EXPORT_SYMBOL(dev_loopback_xmit); 3278 3279 #ifdef CONFIG_NET_EGRESS 3280 static struct sk_buff * 3281 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3282 { 3283 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3284 struct tcf_result cl_res; 3285 3286 if (!miniq) 3287 return skb; 3288 3289 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3290 mini_qdisc_bstats_cpu_update(miniq, skb); 3291 3292 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3293 case TC_ACT_OK: 3294 case TC_ACT_RECLASSIFY: 3295 skb->tc_index = TC_H_MIN(cl_res.classid); 3296 break; 3297 case TC_ACT_SHOT: 3298 mini_qdisc_qstats_cpu_drop(miniq); 3299 *ret = NET_XMIT_DROP; 3300 kfree_skb(skb); 3301 return NULL; 3302 case TC_ACT_STOLEN: 3303 case TC_ACT_QUEUED: 3304 case TC_ACT_TRAP: 3305 *ret = NET_XMIT_SUCCESS; 3306 consume_skb(skb); 3307 return NULL; 3308 case TC_ACT_REDIRECT: 3309 /* No need to push/pop skb's mac_header here on egress! */ 3310 skb_do_redirect(skb); 3311 *ret = NET_XMIT_SUCCESS; 3312 return NULL; 3313 default: 3314 break; 3315 } 3316 3317 return skb; 3318 } 3319 #endif /* CONFIG_NET_EGRESS */ 3320 3321 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3322 { 3323 #ifdef CONFIG_XPS 3324 struct xps_dev_maps *dev_maps; 3325 struct xps_map *map; 3326 int queue_index = -1; 3327 3328 rcu_read_lock(); 3329 dev_maps = rcu_dereference(dev->xps_maps); 3330 if (dev_maps) { 3331 unsigned int tci = skb->sender_cpu - 1; 3332 3333 if (dev->num_tc) { 3334 tci *= dev->num_tc; 3335 tci += netdev_get_prio_tc_map(dev, skb->priority); 3336 } 3337 3338 map = rcu_dereference(dev_maps->cpu_map[tci]); 3339 if (map) { 3340 if (map->len == 1) 3341 queue_index = map->queues[0]; 3342 else 3343 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3344 map->len)]; 3345 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3346 queue_index = -1; 3347 } 3348 } 3349 rcu_read_unlock(); 3350 3351 return queue_index; 3352 #else 3353 return -1; 3354 #endif 3355 } 3356 3357 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3358 { 3359 struct sock *sk = skb->sk; 3360 int queue_index = sk_tx_queue_get(sk); 3361 3362 if (queue_index < 0 || skb->ooo_okay || 3363 queue_index >= dev->real_num_tx_queues) { 3364 int new_index = get_xps_queue(dev, skb); 3365 3366 if (new_index < 0) 3367 new_index = skb_tx_hash(dev, skb); 3368 3369 if (queue_index != new_index && sk && 3370 sk_fullsock(sk) && 3371 rcu_access_pointer(sk->sk_dst_cache)) 3372 sk_tx_queue_set(sk, new_index); 3373 3374 queue_index = new_index; 3375 } 3376 3377 return queue_index; 3378 } 3379 3380 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3381 struct sk_buff *skb, 3382 void *accel_priv) 3383 { 3384 int queue_index = 0; 3385 3386 #ifdef CONFIG_XPS 3387 u32 sender_cpu = skb->sender_cpu - 1; 3388 3389 if (sender_cpu >= (u32)NR_CPUS) 3390 skb->sender_cpu = raw_smp_processor_id() + 1; 3391 #endif 3392 3393 if (dev->real_num_tx_queues != 1) { 3394 const struct net_device_ops *ops = dev->netdev_ops; 3395 3396 if (ops->ndo_select_queue) 3397 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3398 __netdev_pick_tx); 3399 else 3400 queue_index = __netdev_pick_tx(dev, skb); 3401 3402 if (!accel_priv) 3403 queue_index = netdev_cap_txqueue(dev, queue_index); 3404 } 3405 3406 skb_set_queue_mapping(skb, queue_index); 3407 return netdev_get_tx_queue(dev, queue_index); 3408 } 3409 3410 /** 3411 * __dev_queue_xmit - transmit a buffer 3412 * @skb: buffer to transmit 3413 * @accel_priv: private data used for L2 forwarding offload 3414 * 3415 * Queue a buffer for transmission to a network device. The caller must 3416 * have set the device and priority and built the buffer before calling 3417 * this function. The function can be called from an interrupt. 3418 * 3419 * A negative errno code is returned on a failure. A success does not 3420 * guarantee the frame will be transmitted as it may be dropped due 3421 * to congestion or traffic shaping. 3422 * 3423 * ----------------------------------------------------------------------------------- 3424 * I notice this method can also return errors from the queue disciplines, 3425 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3426 * be positive. 3427 * 3428 * Regardless of the return value, the skb is consumed, so it is currently 3429 * difficult to retry a send to this method. (You can bump the ref count 3430 * before sending to hold a reference for retry if you are careful.) 3431 * 3432 * When calling this method, interrupts MUST be enabled. This is because 3433 * the BH enable code must have IRQs enabled so that it will not deadlock. 3434 * --BLG 3435 */ 3436 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3437 { 3438 struct net_device *dev = skb->dev; 3439 struct netdev_queue *txq; 3440 struct Qdisc *q; 3441 int rc = -ENOMEM; 3442 3443 skb_reset_mac_header(skb); 3444 3445 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3446 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3447 3448 /* Disable soft irqs for various locks below. Also 3449 * stops preemption for RCU. 3450 */ 3451 rcu_read_lock_bh(); 3452 3453 skb_update_prio(skb); 3454 3455 qdisc_pkt_len_init(skb); 3456 #ifdef CONFIG_NET_CLS_ACT 3457 skb->tc_at_ingress = 0; 3458 # ifdef CONFIG_NET_EGRESS 3459 if (static_key_false(&egress_needed)) { 3460 skb = sch_handle_egress(skb, &rc, dev); 3461 if (!skb) 3462 goto out; 3463 } 3464 # endif 3465 #endif 3466 /* If device/qdisc don't need skb->dst, release it right now while 3467 * its hot in this cpu cache. 3468 */ 3469 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3470 skb_dst_drop(skb); 3471 else 3472 skb_dst_force(skb); 3473 3474 txq = netdev_pick_tx(dev, skb, accel_priv); 3475 q = rcu_dereference_bh(txq->qdisc); 3476 3477 trace_net_dev_queue(skb); 3478 if (q->enqueue) { 3479 rc = __dev_xmit_skb(skb, q, dev, txq); 3480 goto out; 3481 } 3482 3483 /* The device has no queue. Common case for software devices: 3484 * loopback, all the sorts of tunnels... 3485 3486 * Really, it is unlikely that netif_tx_lock protection is necessary 3487 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3488 * counters.) 3489 * However, it is possible, that they rely on protection 3490 * made by us here. 3491 3492 * Check this and shot the lock. It is not prone from deadlocks. 3493 *Either shot noqueue qdisc, it is even simpler 8) 3494 */ 3495 if (dev->flags & IFF_UP) { 3496 int cpu = smp_processor_id(); /* ok because BHs are off */ 3497 3498 if (txq->xmit_lock_owner != cpu) { 3499 if (unlikely(__this_cpu_read(xmit_recursion) > 3500 XMIT_RECURSION_LIMIT)) 3501 goto recursion_alert; 3502 3503 skb = validate_xmit_skb(skb, dev); 3504 if (!skb) 3505 goto out; 3506 3507 HARD_TX_LOCK(dev, txq, cpu); 3508 3509 if (!netif_xmit_stopped(txq)) { 3510 __this_cpu_inc(xmit_recursion); 3511 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3512 __this_cpu_dec(xmit_recursion); 3513 if (dev_xmit_complete(rc)) { 3514 HARD_TX_UNLOCK(dev, txq); 3515 goto out; 3516 } 3517 } 3518 HARD_TX_UNLOCK(dev, txq); 3519 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3520 dev->name); 3521 } else { 3522 /* Recursion is detected! It is possible, 3523 * unfortunately 3524 */ 3525 recursion_alert: 3526 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3527 dev->name); 3528 } 3529 } 3530 3531 rc = -ENETDOWN; 3532 rcu_read_unlock_bh(); 3533 3534 atomic_long_inc(&dev->tx_dropped); 3535 kfree_skb_list(skb); 3536 return rc; 3537 out: 3538 rcu_read_unlock_bh(); 3539 return rc; 3540 } 3541 3542 int dev_queue_xmit(struct sk_buff *skb) 3543 { 3544 return __dev_queue_xmit(skb, NULL); 3545 } 3546 EXPORT_SYMBOL(dev_queue_xmit); 3547 3548 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3549 { 3550 return __dev_queue_xmit(skb, accel_priv); 3551 } 3552 EXPORT_SYMBOL(dev_queue_xmit_accel); 3553 3554 3555 /************************************************************************* 3556 * Receiver routines 3557 *************************************************************************/ 3558 3559 int netdev_max_backlog __read_mostly = 1000; 3560 EXPORT_SYMBOL(netdev_max_backlog); 3561 3562 int netdev_tstamp_prequeue __read_mostly = 1; 3563 int netdev_budget __read_mostly = 300; 3564 unsigned int __read_mostly netdev_budget_usecs = 2000; 3565 int weight_p __read_mostly = 64; /* old backlog weight */ 3566 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3567 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3568 int dev_rx_weight __read_mostly = 64; 3569 int dev_tx_weight __read_mostly = 64; 3570 3571 /* Called with irq disabled */ 3572 static inline void ____napi_schedule(struct softnet_data *sd, 3573 struct napi_struct *napi) 3574 { 3575 list_add_tail(&napi->poll_list, &sd->poll_list); 3576 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3577 } 3578 3579 #ifdef CONFIG_RPS 3580 3581 /* One global table that all flow-based protocols share. */ 3582 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3583 EXPORT_SYMBOL(rps_sock_flow_table); 3584 u32 rps_cpu_mask __read_mostly; 3585 EXPORT_SYMBOL(rps_cpu_mask); 3586 3587 struct static_key rps_needed __read_mostly; 3588 EXPORT_SYMBOL(rps_needed); 3589 struct static_key rfs_needed __read_mostly; 3590 EXPORT_SYMBOL(rfs_needed); 3591 3592 static struct rps_dev_flow * 3593 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3594 struct rps_dev_flow *rflow, u16 next_cpu) 3595 { 3596 if (next_cpu < nr_cpu_ids) { 3597 #ifdef CONFIG_RFS_ACCEL 3598 struct netdev_rx_queue *rxqueue; 3599 struct rps_dev_flow_table *flow_table; 3600 struct rps_dev_flow *old_rflow; 3601 u32 flow_id; 3602 u16 rxq_index; 3603 int rc; 3604 3605 /* Should we steer this flow to a different hardware queue? */ 3606 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3607 !(dev->features & NETIF_F_NTUPLE)) 3608 goto out; 3609 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3610 if (rxq_index == skb_get_rx_queue(skb)) 3611 goto out; 3612 3613 rxqueue = dev->_rx + rxq_index; 3614 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3615 if (!flow_table) 3616 goto out; 3617 flow_id = skb_get_hash(skb) & flow_table->mask; 3618 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3619 rxq_index, flow_id); 3620 if (rc < 0) 3621 goto out; 3622 old_rflow = rflow; 3623 rflow = &flow_table->flows[flow_id]; 3624 rflow->filter = rc; 3625 if (old_rflow->filter == rflow->filter) 3626 old_rflow->filter = RPS_NO_FILTER; 3627 out: 3628 #endif 3629 rflow->last_qtail = 3630 per_cpu(softnet_data, next_cpu).input_queue_head; 3631 } 3632 3633 rflow->cpu = next_cpu; 3634 return rflow; 3635 } 3636 3637 /* 3638 * get_rps_cpu is called from netif_receive_skb and returns the target 3639 * CPU from the RPS map of the receiving queue for a given skb. 3640 * rcu_read_lock must be held on entry. 3641 */ 3642 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3643 struct rps_dev_flow **rflowp) 3644 { 3645 const struct rps_sock_flow_table *sock_flow_table; 3646 struct netdev_rx_queue *rxqueue = dev->_rx; 3647 struct rps_dev_flow_table *flow_table; 3648 struct rps_map *map; 3649 int cpu = -1; 3650 u32 tcpu; 3651 u32 hash; 3652 3653 if (skb_rx_queue_recorded(skb)) { 3654 u16 index = skb_get_rx_queue(skb); 3655 3656 if (unlikely(index >= dev->real_num_rx_queues)) { 3657 WARN_ONCE(dev->real_num_rx_queues > 1, 3658 "%s received packet on queue %u, but number " 3659 "of RX queues is %u\n", 3660 dev->name, index, dev->real_num_rx_queues); 3661 goto done; 3662 } 3663 rxqueue += index; 3664 } 3665 3666 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3667 3668 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3669 map = rcu_dereference(rxqueue->rps_map); 3670 if (!flow_table && !map) 3671 goto done; 3672 3673 skb_reset_network_header(skb); 3674 hash = skb_get_hash(skb); 3675 if (!hash) 3676 goto done; 3677 3678 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3679 if (flow_table && sock_flow_table) { 3680 struct rps_dev_flow *rflow; 3681 u32 next_cpu; 3682 u32 ident; 3683 3684 /* First check into global flow table if there is a match */ 3685 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3686 if ((ident ^ hash) & ~rps_cpu_mask) 3687 goto try_rps; 3688 3689 next_cpu = ident & rps_cpu_mask; 3690 3691 /* OK, now we know there is a match, 3692 * we can look at the local (per receive queue) flow table 3693 */ 3694 rflow = &flow_table->flows[hash & flow_table->mask]; 3695 tcpu = rflow->cpu; 3696 3697 /* 3698 * If the desired CPU (where last recvmsg was done) is 3699 * different from current CPU (one in the rx-queue flow 3700 * table entry), switch if one of the following holds: 3701 * - Current CPU is unset (>= nr_cpu_ids). 3702 * - Current CPU is offline. 3703 * - The current CPU's queue tail has advanced beyond the 3704 * last packet that was enqueued using this table entry. 3705 * This guarantees that all previous packets for the flow 3706 * have been dequeued, thus preserving in order delivery. 3707 */ 3708 if (unlikely(tcpu != next_cpu) && 3709 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3710 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3711 rflow->last_qtail)) >= 0)) { 3712 tcpu = next_cpu; 3713 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3714 } 3715 3716 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3717 *rflowp = rflow; 3718 cpu = tcpu; 3719 goto done; 3720 } 3721 } 3722 3723 try_rps: 3724 3725 if (map) { 3726 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3727 if (cpu_online(tcpu)) { 3728 cpu = tcpu; 3729 goto done; 3730 } 3731 } 3732 3733 done: 3734 return cpu; 3735 } 3736 3737 #ifdef CONFIG_RFS_ACCEL 3738 3739 /** 3740 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3741 * @dev: Device on which the filter was set 3742 * @rxq_index: RX queue index 3743 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3744 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3745 * 3746 * Drivers that implement ndo_rx_flow_steer() should periodically call 3747 * this function for each installed filter and remove the filters for 3748 * which it returns %true. 3749 */ 3750 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3751 u32 flow_id, u16 filter_id) 3752 { 3753 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3754 struct rps_dev_flow_table *flow_table; 3755 struct rps_dev_flow *rflow; 3756 bool expire = true; 3757 unsigned int cpu; 3758 3759 rcu_read_lock(); 3760 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3761 if (flow_table && flow_id <= flow_table->mask) { 3762 rflow = &flow_table->flows[flow_id]; 3763 cpu = READ_ONCE(rflow->cpu); 3764 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3765 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3766 rflow->last_qtail) < 3767 (int)(10 * flow_table->mask))) 3768 expire = false; 3769 } 3770 rcu_read_unlock(); 3771 return expire; 3772 } 3773 EXPORT_SYMBOL(rps_may_expire_flow); 3774 3775 #endif /* CONFIG_RFS_ACCEL */ 3776 3777 /* Called from hardirq (IPI) context */ 3778 static void rps_trigger_softirq(void *data) 3779 { 3780 struct softnet_data *sd = data; 3781 3782 ____napi_schedule(sd, &sd->backlog); 3783 sd->received_rps++; 3784 } 3785 3786 #endif /* CONFIG_RPS */ 3787 3788 /* 3789 * Check if this softnet_data structure is another cpu one 3790 * If yes, queue it to our IPI list and return 1 3791 * If no, return 0 3792 */ 3793 static int rps_ipi_queued(struct softnet_data *sd) 3794 { 3795 #ifdef CONFIG_RPS 3796 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3797 3798 if (sd != mysd) { 3799 sd->rps_ipi_next = mysd->rps_ipi_list; 3800 mysd->rps_ipi_list = sd; 3801 3802 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3803 return 1; 3804 } 3805 #endif /* CONFIG_RPS */ 3806 return 0; 3807 } 3808 3809 #ifdef CONFIG_NET_FLOW_LIMIT 3810 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3811 #endif 3812 3813 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3814 { 3815 #ifdef CONFIG_NET_FLOW_LIMIT 3816 struct sd_flow_limit *fl; 3817 struct softnet_data *sd; 3818 unsigned int old_flow, new_flow; 3819 3820 if (qlen < (netdev_max_backlog >> 1)) 3821 return false; 3822 3823 sd = this_cpu_ptr(&softnet_data); 3824 3825 rcu_read_lock(); 3826 fl = rcu_dereference(sd->flow_limit); 3827 if (fl) { 3828 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3829 old_flow = fl->history[fl->history_head]; 3830 fl->history[fl->history_head] = new_flow; 3831 3832 fl->history_head++; 3833 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3834 3835 if (likely(fl->buckets[old_flow])) 3836 fl->buckets[old_flow]--; 3837 3838 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3839 fl->count++; 3840 rcu_read_unlock(); 3841 return true; 3842 } 3843 } 3844 rcu_read_unlock(); 3845 #endif 3846 return false; 3847 } 3848 3849 /* 3850 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3851 * queue (may be a remote CPU queue). 3852 */ 3853 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3854 unsigned int *qtail) 3855 { 3856 struct softnet_data *sd; 3857 unsigned long flags; 3858 unsigned int qlen; 3859 3860 sd = &per_cpu(softnet_data, cpu); 3861 3862 local_irq_save(flags); 3863 3864 rps_lock(sd); 3865 if (!netif_running(skb->dev)) 3866 goto drop; 3867 qlen = skb_queue_len(&sd->input_pkt_queue); 3868 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3869 if (qlen) { 3870 enqueue: 3871 __skb_queue_tail(&sd->input_pkt_queue, skb); 3872 input_queue_tail_incr_save(sd, qtail); 3873 rps_unlock(sd); 3874 local_irq_restore(flags); 3875 return NET_RX_SUCCESS; 3876 } 3877 3878 /* Schedule NAPI for backlog device 3879 * We can use non atomic operation since we own the queue lock 3880 */ 3881 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3882 if (!rps_ipi_queued(sd)) 3883 ____napi_schedule(sd, &sd->backlog); 3884 } 3885 goto enqueue; 3886 } 3887 3888 drop: 3889 sd->dropped++; 3890 rps_unlock(sd); 3891 3892 local_irq_restore(flags); 3893 3894 atomic_long_inc(&skb->dev->rx_dropped); 3895 kfree_skb(skb); 3896 return NET_RX_DROP; 3897 } 3898 3899 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3900 struct bpf_prog *xdp_prog) 3901 { 3902 u32 metalen, act = XDP_DROP; 3903 struct xdp_buff xdp; 3904 void *orig_data; 3905 int hlen, off; 3906 u32 mac_len; 3907 3908 /* Reinjected packets coming from act_mirred or similar should 3909 * not get XDP generic processing. 3910 */ 3911 if (skb_cloned(skb)) 3912 return XDP_PASS; 3913 3914 /* XDP packets must be linear and must have sufficient headroom 3915 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 3916 * native XDP provides, thus we need to do it here as well. 3917 */ 3918 if (skb_is_nonlinear(skb) || 3919 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 3920 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 3921 int troom = skb->tail + skb->data_len - skb->end; 3922 3923 /* In case we have to go down the path and also linearize, 3924 * then lets do the pskb_expand_head() work just once here. 3925 */ 3926 if (pskb_expand_head(skb, 3927 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 3928 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 3929 goto do_drop; 3930 if (skb_linearize(skb)) 3931 goto do_drop; 3932 } 3933 3934 /* The XDP program wants to see the packet starting at the MAC 3935 * header. 3936 */ 3937 mac_len = skb->data - skb_mac_header(skb); 3938 hlen = skb_headlen(skb) + mac_len; 3939 xdp.data = skb->data - mac_len; 3940 xdp.data_meta = xdp.data; 3941 xdp.data_end = xdp.data + hlen; 3942 xdp.data_hard_start = skb->data - skb_headroom(skb); 3943 orig_data = xdp.data; 3944 3945 act = bpf_prog_run_xdp(xdp_prog, &xdp); 3946 3947 off = xdp.data - orig_data; 3948 if (off > 0) 3949 __skb_pull(skb, off); 3950 else if (off < 0) 3951 __skb_push(skb, -off); 3952 skb->mac_header += off; 3953 3954 switch (act) { 3955 case XDP_REDIRECT: 3956 case XDP_TX: 3957 __skb_push(skb, mac_len); 3958 break; 3959 case XDP_PASS: 3960 metalen = xdp.data - xdp.data_meta; 3961 if (metalen) 3962 skb_metadata_set(skb, metalen); 3963 break; 3964 default: 3965 bpf_warn_invalid_xdp_action(act); 3966 /* fall through */ 3967 case XDP_ABORTED: 3968 trace_xdp_exception(skb->dev, xdp_prog, act); 3969 /* fall through */ 3970 case XDP_DROP: 3971 do_drop: 3972 kfree_skb(skb); 3973 break; 3974 } 3975 3976 return act; 3977 } 3978 3979 /* When doing generic XDP we have to bypass the qdisc layer and the 3980 * network taps in order to match in-driver-XDP behavior. 3981 */ 3982 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 3983 { 3984 struct net_device *dev = skb->dev; 3985 struct netdev_queue *txq; 3986 bool free_skb = true; 3987 int cpu, rc; 3988 3989 txq = netdev_pick_tx(dev, skb, NULL); 3990 cpu = smp_processor_id(); 3991 HARD_TX_LOCK(dev, txq, cpu); 3992 if (!netif_xmit_stopped(txq)) { 3993 rc = netdev_start_xmit(skb, dev, txq, 0); 3994 if (dev_xmit_complete(rc)) 3995 free_skb = false; 3996 } 3997 HARD_TX_UNLOCK(dev, txq); 3998 if (free_skb) { 3999 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4000 kfree_skb(skb); 4001 } 4002 } 4003 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4004 4005 static struct static_key generic_xdp_needed __read_mostly; 4006 4007 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4008 { 4009 if (xdp_prog) { 4010 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4011 int err; 4012 4013 if (act != XDP_PASS) { 4014 switch (act) { 4015 case XDP_REDIRECT: 4016 err = xdp_do_generic_redirect(skb->dev, skb, 4017 xdp_prog); 4018 if (err) 4019 goto out_redir; 4020 /* fallthru to submit skb */ 4021 case XDP_TX: 4022 generic_xdp_tx(skb, xdp_prog); 4023 break; 4024 } 4025 return XDP_DROP; 4026 } 4027 } 4028 return XDP_PASS; 4029 out_redir: 4030 kfree_skb(skb); 4031 return XDP_DROP; 4032 } 4033 EXPORT_SYMBOL_GPL(do_xdp_generic); 4034 4035 static int netif_rx_internal(struct sk_buff *skb) 4036 { 4037 int ret; 4038 4039 net_timestamp_check(netdev_tstamp_prequeue, skb); 4040 4041 trace_netif_rx(skb); 4042 4043 if (static_key_false(&generic_xdp_needed)) { 4044 int ret; 4045 4046 preempt_disable(); 4047 rcu_read_lock(); 4048 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4049 rcu_read_unlock(); 4050 preempt_enable(); 4051 4052 /* Consider XDP consuming the packet a success from 4053 * the netdev point of view we do not want to count 4054 * this as an error. 4055 */ 4056 if (ret != XDP_PASS) 4057 return NET_RX_SUCCESS; 4058 } 4059 4060 #ifdef CONFIG_RPS 4061 if (static_key_false(&rps_needed)) { 4062 struct rps_dev_flow voidflow, *rflow = &voidflow; 4063 int cpu; 4064 4065 preempt_disable(); 4066 rcu_read_lock(); 4067 4068 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4069 if (cpu < 0) 4070 cpu = smp_processor_id(); 4071 4072 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4073 4074 rcu_read_unlock(); 4075 preempt_enable(); 4076 } else 4077 #endif 4078 { 4079 unsigned int qtail; 4080 4081 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4082 put_cpu(); 4083 } 4084 return ret; 4085 } 4086 4087 /** 4088 * netif_rx - post buffer to the network code 4089 * @skb: buffer to post 4090 * 4091 * This function receives a packet from a device driver and queues it for 4092 * the upper (protocol) levels to process. It always succeeds. The buffer 4093 * may be dropped during processing for congestion control or by the 4094 * protocol layers. 4095 * 4096 * return values: 4097 * NET_RX_SUCCESS (no congestion) 4098 * NET_RX_DROP (packet was dropped) 4099 * 4100 */ 4101 4102 int netif_rx(struct sk_buff *skb) 4103 { 4104 trace_netif_rx_entry(skb); 4105 4106 return netif_rx_internal(skb); 4107 } 4108 EXPORT_SYMBOL(netif_rx); 4109 4110 int netif_rx_ni(struct sk_buff *skb) 4111 { 4112 int err; 4113 4114 trace_netif_rx_ni_entry(skb); 4115 4116 preempt_disable(); 4117 err = netif_rx_internal(skb); 4118 if (local_softirq_pending()) 4119 do_softirq(); 4120 preempt_enable(); 4121 4122 return err; 4123 } 4124 EXPORT_SYMBOL(netif_rx_ni); 4125 4126 static __latent_entropy void net_tx_action(struct softirq_action *h) 4127 { 4128 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4129 4130 if (sd->completion_queue) { 4131 struct sk_buff *clist; 4132 4133 local_irq_disable(); 4134 clist = sd->completion_queue; 4135 sd->completion_queue = NULL; 4136 local_irq_enable(); 4137 4138 while (clist) { 4139 struct sk_buff *skb = clist; 4140 4141 clist = clist->next; 4142 4143 WARN_ON(refcount_read(&skb->users)); 4144 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4145 trace_consume_skb(skb); 4146 else 4147 trace_kfree_skb(skb, net_tx_action); 4148 4149 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4150 __kfree_skb(skb); 4151 else 4152 __kfree_skb_defer(skb); 4153 } 4154 4155 __kfree_skb_flush(); 4156 } 4157 4158 if (sd->output_queue) { 4159 struct Qdisc *head; 4160 4161 local_irq_disable(); 4162 head = sd->output_queue; 4163 sd->output_queue = NULL; 4164 sd->output_queue_tailp = &sd->output_queue; 4165 local_irq_enable(); 4166 4167 while (head) { 4168 struct Qdisc *q = head; 4169 spinlock_t *root_lock; 4170 4171 head = head->next_sched; 4172 4173 root_lock = qdisc_lock(q); 4174 spin_lock(root_lock); 4175 /* We need to make sure head->next_sched is read 4176 * before clearing __QDISC_STATE_SCHED 4177 */ 4178 smp_mb__before_atomic(); 4179 clear_bit(__QDISC_STATE_SCHED, &q->state); 4180 qdisc_run(q); 4181 spin_unlock(root_lock); 4182 } 4183 } 4184 } 4185 4186 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4187 /* This hook is defined here for ATM LANE */ 4188 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4189 unsigned char *addr) __read_mostly; 4190 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4191 #endif 4192 4193 static inline struct sk_buff * 4194 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4195 struct net_device *orig_dev) 4196 { 4197 #ifdef CONFIG_NET_CLS_ACT 4198 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4199 struct tcf_result cl_res; 4200 4201 /* If there's at least one ingress present somewhere (so 4202 * we get here via enabled static key), remaining devices 4203 * that are not configured with an ingress qdisc will bail 4204 * out here. 4205 */ 4206 if (!miniq) 4207 return skb; 4208 4209 if (*pt_prev) { 4210 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4211 *pt_prev = NULL; 4212 } 4213 4214 qdisc_skb_cb(skb)->pkt_len = skb->len; 4215 skb->tc_at_ingress = 1; 4216 mini_qdisc_bstats_cpu_update(miniq, skb); 4217 4218 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4219 case TC_ACT_OK: 4220 case TC_ACT_RECLASSIFY: 4221 skb->tc_index = TC_H_MIN(cl_res.classid); 4222 break; 4223 case TC_ACT_SHOT: 4224 mini_qdisc_qstats_cpu_drop(miniq); 4225 kfree_skb(skb); 4226 return NULL; 4227 case TC_ACT_STOLEN: 4228 case TC_ACT_QUEUED: 4229 case TC_ACT_TRAP: 4230 consume_skb(skb); 4231 return NULL; 4232 case TC_ACT_REDIRECT: 4233 /* skb_mac_header check was done by cls/act_bpf, so 4234 * we can safely push the L2 header back before 4235 * redirecting to another netdev 4236 */ 4237 __skb_push(skb, skb->mac_len); 4238 skb_do_redirect(skb); 4239 return NULL; 4240 default: 4241 break; 4242 } 4243 #endif /* CONFIG_NET_CLS_ACT */ 4244 return skb; 4245 } 4246 4247 /** 4248 * netdev_is_rx_handler_busy - check if receive handler is registered 4249 * @dev: device to check 4250 * 4251 * Check if a receive handler is already registered for a given device. 4252 * Return true if there one. 4253 * 4254 * The caller must hold the rtnl_mutex. 4255 */ 4256 bool netdev_is_rx_handler_busy(struct net_device *dev) 4257 { 4258 ASSERT_RTNL(); 4259 return dev && rtnl_dereference(dev->rx_handler); 4260 } 4261 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4262 4263 /** 4264 * netdev_rx_handler_register - register receive handler 4265 * @dev: device to register a handler for 4266 * @rx_handler: receive handler to register 4267 * @rx_handler_data: data pointer that is used by rx handler 4268 * 4269 * Register a receive handler for a device. This handler will then be 4270 * called from __netif_receive_skb. A negative errno code is returned 4271 * on a failure. 4272 * 4273 * The caller must hold the rtnl_mutex. 4274 * 4275 * For a general description of rx_handler, see enum rx_handler_result. 4276 */ 4277 int netdev_rx_handler_register(struct net_device *dev, 4278 rx_handler_func_t *rx_handler, 4279 void *rx_handler_data) 4280 { 4281 if (netdev_is_rx_handler_busy(dev)) 4282 return -EBUSY; 4283 4284 /* Note: rx_handler_data must be set before rx_handler */ 4285 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4286 rcu_assign_pointer(dev->rx_handler, rx_handler); 4287 4288 return 0; 4289 } 4290 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4291 4292 /** 4293 * netdev_rx_handler_unregister - unregister receive handler 4294 * @dev: device to unregister a handler from 4295 * 4296 * Unregister a receive handler from a device. 4297 * 4298 * The caller must hold the rtnl_mutex. 4299 */ 4300 void netdev_rx_handler_unregister(struct net_device *dev) 4301 { 4302 4303 ASSERT_RTNL(); 4304 RCU_INIT_POINTER(dev->rx_handler, NULL); 4305 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4306 * section has a guarantee to see a non NULL rx_handler_data 4307 * as well. 4308 */ 4309 synchronize_net(); 4310 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4311 } 4312 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4313 4314 /* 4315 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4316 * the special handling of PFMEMALLOC skbs. 4317 */ 4318 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4319 { 4320 switch (skb->protocol) { 4321 case htons(ETH_P_ARP): 4322 case htons(ETH_P_IP): 4323 case htons(ETH_P_IPV6): 4324 case htons(ETH_P_8021Q): 4325 case htons(ETH_P_8021AD): 4326 return true; 4327 default: 4328 return false; 4329 } 4330 } 4331 4332 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4333 int *ret, struct net_device *orig_dev) 4334 { 4335 #ifdef CONFIG_NETFILTER_INGRESS 4336 if (nf_hook_ingress_active(skb)) { 4337 int ingress_retval; 4338 4339 if (*pt_prev) { 4340 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4341 *pt_prev = NULL; 4342 } 4343 4344 rcu_read_lock(); 4345 ingress_retval = nf_hook_ingress(skb); 4346 rcu_read_unlock(); 4347 return ingress_retval; 4348 } 4349 #endif /* CONFIG_NETFILTER_INGRESS */ 4350 return 0; 4351 } 4352 4353 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4354 { 4355 struct packet_type *ptype, *pt_prev; 4356 rx_handler_func_t *rx_handler; 4357 struct net_device *orig_dev; 4358 bool deliver_exact = false; 4359 int ret = NET_RX_DROP; 4360 __be16 type; 4361 4362 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4363 4364 trace_netif_receive_skb(skb); 4365 4366 orig_dev = skb->dev; 4367 4368 skb_reset_network_header(skb); 4369 if (!skb_transport_header_was_set(skb)) 4370 skb_reset_transport_header(skb); 4371 skb_reset_mac_len(skb); 4372 4373 pt_prev = NULL; 4374 4375 another_round: 4376 skb->skb_iif = skb->dev->ifindex; 4377 4378 __this_cpu_inc(softnet_data.processed); 4379 4380 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4381 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4382 skb = skb_vlan_untag(skb); 4383 if (unlikely(!skb)) 4384 goto out; 4385 } 4386 4387 if (skb_skip_tc_classify(skb)) 4388 goto skip_classify; 4389 4390 if (pfmemalloc) 4391 goto skip_taps; 4392 4393 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4394 if (pt_prev) 4395 ret = deliver_skb(skb, pt_prev, orig_dev); 4396 pt_prev = ptype; 4397 } 4398 4399 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4400 if (pt_prev) 4401 ret = deliver_skb(skb, pt_prev, orig_dev); 4402 pt_prev = ptype; 4403 } 4404 4405 skip_taps: 4406 #ifdef CONFIG_NET_INGRESS 4407 if (static_key_false(&ingress_needed)) { 4408 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4409 if (!skb) 4410 goto out; 4411 4412 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4413 goto out; 4414 } 4415 #endif 4416 skb_reset_tc(skb); 4417 skip_classify: 4418 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4419 goto drop; 4420 4421 if (skb_vlan_tag_present(skb)) { 4422 if (pt_prev) { 4423 ret = deliver_skb(skb, pt_prev, orig_dev); 4424 pt_prev = NULL; 4425 } 4426 if (vlan_do_receive(&skb)) 4427 goto another_round; 4428 else if (unlikely(!skb)) 4429 goto out; 4430 } 4431 4432 rx_handler = rcu_dereference(skb->dev->rx_handler); 4433 if (rx_handler) { 4434 if (pt_prev) { 4435 ret = deliver_skb(skb, pt_prev, orig_dev); 4436 pt_prev = NULL; 4437 } 4438 switch (rx_handler(&skb)) { 4439 case RX_HANDLER_CONSUMED: 4440 ret = NET_RX_SUCCESS; 4441 goto out; 4442 case RX_HANDLER_ANOTHER: 4443 goto another_round; 4444 case RX_HANDLER_EXACT: 4445 deliver_exact = true; 4446 case RX_HANDLER_PASS: 4447 break; 4448 default: 4449 BUG(); 4450 } 4451 } 4452 4453 if (unlikely(skb_vlan_tag_present(skb))) { 4454 if (skb_vlan_tag_get_id(skb)) 4455 skb->pkt_type = PACKET_OTHERHOST; 4456 /* Note: we might in the future use prio bits 4457 * and set skb->priority like in vlan_do_receive() 4458 * For the time being, just ignore Priority Code Point 4459 */ 4460 skb->vlan_tci = 0; 4461 } 4462 4463 type = skb->protocol; 4464 4465 /* deliver only exact match when indicated */ 4466 if (likely(!deliver_exact)) { 4467 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4468 &ptype_base[ntohs(type) & 4469 PTYPE_HASH_MASK]); 4470 } 4471 4472 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4473 &orig_dev->ptype_specific); 4474 4475 if (unlikely(skb->dev != orig_dev)) { 4476 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4477 &skb->dev->ptype_specific); 4478 } 4479 4480 if (pt_prev) { 4481 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4482 goto drop; 4483 else 4484 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4485 } else { 4486 drop: 4487 if (!deliver_exact) 4488 atomic_long_inc(&skb->dev->rx_dropped); 4489 else 4490 atomic_long_inc(&skb->dev->rx_nohandler); 4491 kfree_skb(skb); 4492 /* Jamal, now you will not able to escape explaining 4493 * me how you were going to use this. :-) 4494 */ 4495 ret = NET_RX_DROP; 4496 } 4497 4498 out: 4499 return ret; 4500 } 4501 4502 /** 4503 * netif_receive_skb_core - special purpose version of netif_receive_skb 4504 * @skb: buffer to process 4505 * 4506 * More direct receive version of netif_receive_skb(). It should 4507 * only be used by callers that have a need to skip RPS and Generic XDP. 4508 * Caller must also take care of handling if (page_is_)pfmemalloc. 4509 * 4510 * This function may only be called from softirq context and interrupts 4511 * should be enabled. 4512 * 4513 * Return values (usually ignored): 4514 * NET_RX_SUCCESS: no congestion 4515 * NET_RX_DROP: packet was dropped 4516 */ 4517 int netif_receive_skb_core(struct sk_buff *skb) 4518 { 4519 int ret; 4520 4521 rcu_read_lock(); 4522 ret = __netif_receive_skb_core(skb, false); 4523 rcu_read_unlock(); 4524 4525 return ret; 4526 } 4527 EXPORT_SYMBOL(netif_receive_skb_core); 4528 4529 static int __netif_receive_skb(struct sk_buff *skb) 4530 { 4531 int ret; 4532 4533 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4534 unsigned int noreclaim_flag; 4535 4536 /* 4537 * PFMEMALLOC skbs are special, they should 4538 * - be delivered to SOCK_MEMALLOC sockets only 4539 * - stay away from userspace 4540 * - have bounded memory usage 4541 * 4542 * Use PF_MEMALLOC as this saves us from propagating the allocation 4543 * context down to all allocation sites. 4544 */ 4545 noreclaim_flag = memalloc_noreclaim_save(); 4546 ret = __netif_receive_skb_core(skb, true); 4547 memalloc_noreclaim_restore(noreclaim_flag); 4548 } else 4549 ret = __netif_receive_skb_core(skb, false); 4550 4551 return ret; 4552 } 4553 4554 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 4555 { 4556 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4557 struct bpf_prog *new = xdp->prog; 4558 int ret = 0; 4559 4560 switch (xdp->command) { 4561 case XDP_SETUP_PROG: 4562 rcu_assign_pointer(dev->xdp_prog, new); 4563 if (old) 4564 bpf_prog_put(old); 4565 4566 if (old && !new) { 4567 static_key_slow_dec(&generic_xdp_needed); 4568 } else if (new && !old) { 4569 static_key_slow_inc(&generic_xdp_needed); 4570 dev_disable_lro(dev); 4571 } 4572 break; 4573 4574 case XDP_QUERY_PROG: 4575 xdp->prog_attached = !!old; 4576 xdp->prog_id = old ? old->aux->id : 0; 4577 break; 4578 4579 default: 4580 ret = -EINVAL; 4581 break; 4582 } 4583 4584 return ret; 4585 } 4586 4587 static int netif_receive_skb_internal(struct sk_buff *skb) 4588 { 4589 int ret; 4590 4591 net_timestamp_check(netdev_tstamp_prequeue, skb); 4592 4593 if (skb_defer_rx_timestamp(skb)) 4594 return NET_RX_SUCCESS; 4595 4596 if (static_key_false(&generic_xdp_needed)) { 4597 int ret; 4598 4599 preempt_disable(); 4600 rcu_read_lock(); 4601 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4602 rcu_read_unlock(); 4603 preempt_enable(); 4604 4605 if (ret != XDP_PASS) 4606 return NET_RX_DROP; 4607 } 4608 4609 rcu_read_lock(); 4610 #ifdef CONFIG_RPS 4611 if (static_key_false(&rps_needed)) { 4612 struct rps_dev_flow voidflow, *rflow = &voidflow; 4613 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4614 4615 if (cpu >= 0) { 4616 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4617 rcu_read_unlock(); 4618 return ret; 4619 } 4620 } 4621 #endif 4622 ret = __netif_receive_skb(skb); 4623 rcu_read_unlock(); 4624 return ret; 4625 } 4626 4627 /** 4628 * netif_receive_skb - process receive buffer from network 4629 * @skb: buffer to process 4630 * 4631 * netif_receive_skb() is the main receive data processing function. 4632 * It always succeeds. The buffer may be dropped during processing 4633 * for congestion control or by the protocol layers. 4634 * 4635 * This function may only be called from softirq context and interrupts 4636 * should be enabled. 4637 * 4638 * Return values (usually ignored): 4639 * NET_RX_SUCCESS: no congestion 4640 * NET_RX_DROP: packet was dropped 4641 */ 4642 int netif_receive_skb(struct sk_buff *skb) 4643 { 4644 trace_netif_receive_skb_entry(skb); 4645 4646 return netif_receive_skb_internal(skb); 4647 } 4648 EXPORT_SYMBOL(netif_receive_skb); 4649 4650 DEFINE_PER_CPU(struct work_struct, flush_works); 4651 4652 /* Network device is going away, flush any packets still pending */ 4653 static void flush_backlog(struct work_struct *work) 4654 { 4655 struct sk_buff *skb, *tmp; 4656 struct softnet_data *sd; 4657 4658 local_bh_disable(); 4659 sd = this_cpu_ptr(&softnet_data); 4660 4661 local_irq_disable(); 4662 rps_lock(sd); 4663 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4664 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4665 __skb_unlink(skb, &sd->input_pkt_queue); 4666 kfree_skb(skb); 4667 input_queue_head_incr(sd); 4668 } 4669 } 4670 rps_unlock(sd); 4671 local_irq_enable(); 4672 4673 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4674 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4675 __skb_unlink(skb, &sd->process_queue); 4676 kfree_skb(skb); 4677 input_queue_head_incr(sd); 4678 } 4679 } 4680 local_bh_enable(); 4681 } 4682 4683 static void flush_all_backlogs(void) 4684 { 4685 unsigned int cpu; 4686 4687 get_online_cpus(); 4688 4689 for_each_online_cpu(cpu) 4690 queue_work_on(cpu, system_highpri_wq, 4691 per_cpu_ptr(&flush_works, cpu)); 4692 4693 for_each_online_cpu(cpu) 4694 flush_work(per_cpu_ptr(&flush_works, cpu)); 4695 4696 put_online_cpus(); 4697 } 4698 4699 static int napi_gro_complete(struct sk_buff *skb) 4700 { 4701 struct packet_offload *ptype; 4702 __be16 type = skb->protocol; 4703 struct list_head *head = &offload_base; 4704 int err = -ENOENT; 4705 4706 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4707 4708 if (NAPI_GRO_CB(skb)->count == 1) { 4709 skb_shinfo(skb)->gso_size = 0; 4710 goto out; 4711 } 4712 4713 rcu_read_lock(); 4714 list_for_each_entry_rcu(ptype, head, list) { 4715 if (ptype->type != type || !ptype->callbacks.gro_complete) 4716 continue; 4717 4718 err = ptype->callbacks.gro_complete(skb, 0); 4719 break; 4720 } 4721 rcu_read_unlock(); 4722 4723 if (err) { 4724 WARN_ON(&ptype->list == head); 4725 kfree_skb(skb); 4726 return NET_RX_SUCCESS; 4727 } 4728 4729 out: 4730 return netif_receive_skb_internal(skb); 4731 } 4732 4733 /* napi->gro_list contains packets ordered by age. 4734 * youngest packets at the head of it. 4735 * Complete skbs in reverse order to reduce latencies. 4736 */ 4737 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4738 { 4739 struct sk_buff *skb, *prev = NULL; 4740 4741 /* scan list and build reverse chain */ 4742 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4743 skb->prev = prev; 4744 prev = skb; 4745 } 4746 4747 for (skb = prev; skb; skb = prev) { 4748 skb->next = NULL; 4749 4750 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4751 return; 4752 4753 prev = skb->prev; 4754 napi_gro_complete(skb); 4755 napi->gro_count--; 4756 } 4757 4758 napi->gro_list = NULL; 4759 } 4760 EXPORT_SYMBOL(napi_gro_flush); 4761 4762 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4763 { 4764 struct sk_buff *p; 4765 unsigned int maclen = skb->dev->hard_header_len; 4766 u32 hash = skb_get_hash_raw(skb); 4767 4768 for (p = napi->gro_list; p; p = p->next) { 4769 unsigned long diffs; 4770 4771 NAPI_GRO_CB(p)->flush = 0; 4772 4773 if (hash != skb_get_hash_raw(p)) { 4774 NAPI_GRO_CB(p)->same_flow = 0; 4775 continue; 4776 } 4777 4778 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4779 diffs |= p->vlan_tci ^ skb->vlan_tci; 4780 diffs |= skb_metadata_dst_cmp(p, skb); 4781 diffs |= skb_metadata_differs(p, skb); 4782 if (maclen == ETH_HLEN) 4783 diffs |= compare_ether_header(skb_mac_header(p), 4784 skb_mac_header(skb)); 4785 else if (!diffs) 4786 diffs = memcmp(skb_mac_header(p), 4787 skb_mac_header(skb), 4788 maclen); 4789 NAPI_GRO_CB(p)->same_flow = !diffs; 4790 } 4791 } 4792 4793 static void skb_gro_reset_offset(struct sk_buff *skb) 4794 { 4795 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4796 const skb_frag_t *frag0 = &pinfo->frags[0]; 4797 4798 NAPI_GRO_CB(skb)->data_offset = 0; 4799 NAPI_GRO_CB(skb)->frag0 = NULL; 4800 NAPI_GRO_CB(skb)->frag0_len = 0; 4801 4802 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4803 pinfo->nr_frags && 4804 !PageHighMem(skb_frag_page(frag0))) { 4805 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4806 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4807 skb_frag_size(frag0), 4808 skb->end - skb->tail); 4809 } 4810 } 4811 4812 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4813 { 4814 struct skb_shared_info *pinfo = skb_shinfo(skb); 4815 4816 BUG_ON(skb->end - skb->tail < grow); 4817 4818 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4819 4820 skb->data_len -= grow; 4821 skb->tail += grow; 4822 4823 pinfo->frags[0].page_offset += grow; 4824 skb_frag_size_sub(&pinfo->frags[0], grow); 4825 4826 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4827 skb_frag_unref(skb, 0); 4828 memmove(pinfo->frags, pinfo->frags + 1, 4829 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4830 } 4831 } 4832 4833 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4834 { 4835 struct sk_buff **pp = NULL; 4836 struct packet_offload *ptype; 4837 __be16 type = skb->protocol; 4838 struct list_head *head = &offload_base; 4839 int same_flow; 4840 enum gro_result ret; 4841 int grow; 4842 4843 if (netif_elide_gro(skb->dev)) 4844 goto normal; 4845 4846 gro_list_prepare(napi, skb); 4847 4848 rcu_read_lock(); 4849 list_for_each_entry_rcu(ptype, head, list) { 4850 if (ptype->type != type || !ptype->callbacks.gro_receive) 4851 continue; 4852 4853 skb_set_network_header(skb, skb_gro_offset(skb)); 4854 skb_reset_mac_len(skb); 4855 NAPI_GRO_CB(skb)->same_flow = 0; 4856 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4857 NAPI_GRO_CB(skb)->free = 0; 4858 NAPI_GRO_CB(skb)->encap_mark = 0; 4859 NAPI_GRO_CB(skb)->recursion_counter = 0; 4860 NAPI_GRO_CB(skb)->is_fou = 0; 4861 NAPI_GRO_CB(skb)->is_atomic = 1; 4862 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4863 4864 /* Setup for GRO checksum validation */ 4865 switch (skb->ip_summed) { 4866 case CHECKSUM_COMPLETE: 4867 NAPI_GRO_CB(skb)->csum = skb->csum; 4868 NAPI_GRO_CB(skb)->csum_valid = 1; 4869 NAPI_GRO_CB(skb)->csum_cnt = 0; 4870 break; 4871 case CHECKSUM_UNNECESSARY: 4872 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4873 NAPI_GRO_CB(skb)->csum_valid = 0; 4874 break; 4875 default: 4876 NAPI_GRO_CB(skb)->csum_cnt = 0; 4877 NAPI_GRO_CB(skb)->csum_valid = 0; 4878 } 4879 4880 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4881 break; 4882 } 4883 rcu_read_unlock(); 4884 4885 if (&ptype->list == head) 4886 goto normal; 4887 4888 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4889 ret = GRO_CONSUMED; 4890 goto ok; 4891 } 4892 4893 same_flow = NAPI_GRO_CB(skb)->same_flow; 4894 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4895 4896 if (pp) { 4897 struct sk_buff *nskb = *pp; 4898 4899 *pp = nskb->next; 4900 nskb->next = NULL; 4901 napi_gro_complete(nskb); 4902 napi->gro_count--; 4903 } 4904 4905 if (same_flow) 4906 goto ok; 4907 4908 if (NAPI_GRO_CB(skb)->flush) 4909 goto normal; 4910 4911 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4912 struct sk_buff *nskb = napi->gro_list; 4913 4914 /* locate the end of the list to select the 'oldest' flow */ 4915 while (nskb->next) { 4916 pp = &nskb->next; 4917 nskb = *pp; 4918 } 4919 *pp = NULL; 4920 nskb->next = NULL; 4921 napi_gro_complete(nskb); 4922 } else { 4923 napi->gro_count++; 4924 } 4925 NAPI_GRO_CB(skb)->count = 1; 4926 NAPI_GRO_CB(skb)->age = jiffies; 4927 NAPI_GRO_CB(skb)->last = skb; 4928 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4929 skb->next = napi->gro_list; 4930 napi->gro_list = skb; 4931 ret = GRO_HELD; 4932 4933 pull: 4934 grow = skb_gro_offset(skb) - skb_headlen(skb); 4935 if (grow > 0) 4936 gro_pull_from_frag0(skb, grow); 4937 ok: 4938 return ret; 4939 4940 normal: 4941 ret = GRO_NORMAL; 4942 goto pull; 4943 } 4944 4945 struct packet_offload *gro_find_receive_by_type(__be16 type) 4946 { 4947 struct list_head *offload_head = &offload_base; 4948 struct packet_offload *ptype; 4949 4950 list_for_each_entry_rcu(ptype, offload_head, list) { 4951 if (ptype->type != type || !ptype->callbacks.gro_receive) 4952 continue; 4953 return ptype; 4954 } 4955 return NULL; 4956 } 4957 EXPORT_SYMBOL(gro_find_receive_by_type); 4958 4959 struct packet_offload *gro_find_complete_by_type(__be16 type) 4960 { 4961 struct list_head *offload_head = &offload_base; 4962 struct packet_offload *ptype; 4963 4964 list_for_each_entry_rcu(ptype, offload_head, list) { 4965 if (ptype->type != type || !ptype->callbacks.gro_complete) 4966 continue; 4967 return ptype; 4968 } 4969 return NULL; 4970 } 4971 EXPORT_SYMBOL(gro_find_complete_by_type); 4972 4973 static void napi_skb_free_stolen_head(struct sk_buff *skb) 4974 { 4975 skb_dst_drop(skb); 4976 secpath_reset(skb); 4977 kmem_cache_free(skbuff_head_cache, skb); 4978 } 4979 4980 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4981 { 4982 switch (ret) { 4983 case GRO_NORMAL: 4984 if (netif_receive_skb_internal(skb)) 4985 ret = GRO_DROP; 4986 break; 4987 4988 case GRO_DROP: 4989 kfree_skb(skb); 4990 break; 4991 4992 case GRO_MERGED_FREE: 4993 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4994 napi_skb_free_stolen_head(skb); 4995 else 4996 __kfree_skb(skb); 4997 break; 4998 4999 case GRO_HELD: 5000 case GRO_MERGED: 5001 case GRO_CONSUMED: 5002 break; 5003 } 5004 5005 return ret; 5006 } 5007 5008 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5009 { 5010 skb_mark_napi_id(skb, napi); 5011 trace_napi_gro_receive_entry(skb); 5012 5013 skb_gro_reset_offset(skb); 5014 5015 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5016 } 5017 EXPORT_SYMBOL(napi_gro_receive); 5018 5019 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5020 { 5021 if (unlikely(skb->pfmemalloc)) { 5022 consume_skb(skb); 5023 return; 5024 } 5025 __skb_pull(skb, skb_headlen(skb)); 5026 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5027 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5028 skb->vlan_tci = 0; 5029 skb->dev = napi->dev; 5030 skb->skb_iif = 0; 5031 skb->encapsulation = 0; 5032 skb_shinfo(skb)->gso_type = 0; 5033 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5034 secpath_reset(skb); 5035 5036 napi->skb = skb; 5037 } 5038 5039 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5040 { 5041 struct sk_buff *skb = napi->skb; 5042 5043 if (!skb) { 5044 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5045 if (skb) { 5046 napi->skb = skb; 5047 skb_mark_napi_id(skb, napi); 5048 } 5049 } 5050 return skb; 5051 } 5052 EXPORT_SYMBOL(napi_get_frags); 5053 5054 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5055 struct sk_buff *skb, 5056 gro_result_t ret) 5057 { 5058 switch (ret) { 5059 case GRO_NORMAL: 5060 case GRO_HELD: 5061 __skb_push(skb, ETH_HLEN); 5062 skb->protocol = eth_type_trans(skb, skb->dev); 5063 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5064 ret = GRO_DROP; 5065 break; 5066 5067 case GRO_DROP: 5068 napi_reuse_skb(napi, skb); 5069 break; 5070 5071 case GRO_MERGED_FREE: 5072 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5073 napi_skb_free_stolen_head(skb); 5074 else 5075 napi_reuse_skb(napi, skb); 5076 break; 5077 5078 case GRO_MERGED: 5079 case GRO_CONSUMED: 5080 break; 5081 } 5082 5083 return ret; 5084 } 5085 5086 /* Upper GRO stack assumes network header starts at gro_offset=0 5087 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5088 * We copy ethernet header into skb->data to have a common layout. 5089 */ 5090 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5091 { 5092 struct sk_buff *skb = napi->skb; 5093 const struct ethhdr *eth; 5094 unsigned int hlen = sizeof(*eth); 5095 5096 napi->skb = NULL; 5097 5098 skb_reset_mac_header(skb); 5099 skb_gro_reset_offset(skb); 5100 5101 eth = skb_gro_header_fast(skb, 0); 5102 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5103 eth = skb_gro_header_slow(skb, hlen, 0); 5104 if (unlikely(!eth)) { 5105 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5106 __func__, napi->dev->name); 5107 napi_reuse_skb(napi, skb); 5108 return NULL; 5109 } 5110 } else { 5111 gro_pull_from_frag0(skb, hlen); 5112 NAPI_GRO_CB(skb)->frag0 += hlen; 5113 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5114 } 5115 __skb_pull(skb, hlen); 5116 5117 /* 5118 * This works because the only protocols we care about don't require 5119 * special handling. 5120 * We'll fix it up properly in napi_frags_finish() 5121 */ 5122 skb->protocol = eth->h_proto; 5123 5124 return skb; 5125 } 5126 5127 gro_result_t napi_gro_frags(struct napi_struct *napi) 5128 { 5129 struct sk_buff *skb = napi_frags_skb(napi); 5130 5131 if (!skb) 5132 return GRO_DROP; 5133 5134 trace_napi_gro_frags_entry(skb); 5135 5136 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5137 } 5138 EXPORT_SYMBOL(napi_gro_frags); 5139 5140 /* Compute the checksum from gro_offset and return the folded value 5141 * after adding in any pseudo checksum. 5142 */ 5143 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5144 { 5145 __wsum wsum; 5146 __sum16 sum; 5147 5148 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5149 5150 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5151 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5152 if (likely(!sum)) { 5153 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5154 !skb->csum_complete_sw) 5155 netdev_rx_csum_fault(skb->dev); 5156 } 5157 5158 NAPI_GRO_CB(skb)->csum = wsum; 5159 NAPI_GRO_CB(skb)->csum_valid = 1; 5160 5161 return sum; 5162 } 5163 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5164 5165 static void net_rps_send_ipi(struct softnet_data *remsd) 5166 { 5167 #ifdef CONFIG_RPS 5168 while (remsd) { 5169 struct softnet_data *next = remsd->rps_ipi_next; 5170 5171 if (cpu_online(remsd->cpu)) 5172 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5173 remsd = next; 5174 } 5175 #endif 5176 } 5177 5178 /* 5179 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5180 * Note: called with local irq disabled, but exits with local irq enabled. 5181 */ 5182 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5183 { 5184 #ifdef CONFIG_RPS 5185 struct softnet_data *remsd = sd->rps_ipi_list; 5186 5187 if (remsd) { 5188 sd->rps_ipi_list = NULL; 5189 5190 local_irq_enable(); 5191 5192 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5193 net_rps_send_ipi(remsd); 5194 } else 5195 #endif 5196 local_irq_enable(); 5197 } 5198 5199 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5200 { 5201 #ifdef CONFIG_RPS 5202 return sd->rps_ipi_list != NULL; 5203 #else 5204 return false; 5205 #endif 5206 } 5207 5208 static int process_backlog(struct napi_struct *napi, int quota) 5209 { 5210 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5211 bool again = true; 5212 int work = 0; 5213 5214 /* Check if we have pending ipi, its better to send them now, 5215 * not waiting net_rx_action() end. 5216 */ 5217 if (sd_has_rps_ipi_waiting(sd)) { 5218 local_irq_disable(); 5219 net_rps_action_and_irq_enable(sd); 5220 } 5221 5222 napi->weight = dev_rx_weight; 5223 while (again) { 5224 struct sk_buff *skb; 5225 5226 while ((skb = __skb_dequeue(&sd->process_queue))) { 5227 rcu_read_lock(); 5228 __netif_receive_skb(skb); 5229 rcu_read_unlock(); 5230 input_queue_head_incr(sd); 5231 if (++work >= quota) 5232 return work; 5233 5234 } 5235 5236 local_irq_disable(); 5237 rps_lock(sd); 5238 if (skb_queue_empty(&sd->input_pkt_queue)) { 5239 /* 5240 * Inline a custom version of __napi_complete(). 5241 * only current cpu owns and manipulates this napi, 5242 * and NAPI_STATE_SCHED is the only possible flag set 5243 * on backlog. 5244 * We can use a plain write instead of clear_bit(), 5245 * and we dont need an smp_mb() memory barrier. 5246 */ 5247 napi->state = 0; 5248 again = false; 5249 } else { 5250 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5251 &sd->process_queue); 5252 } 5253 rps_unlock(sd); 5254 local_irq_enable(); 5255 } 5256 5257 return work; 5258 } 5259 5260 /** 5261 * __napi_schedule - schedule for receive 5262 * @n: entry to schedule 5263 * 5264 * The entry's receive function will be scheduled to run. 5265 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5266 */ 5267 void __napi_schedule(struct napi_struct *n) 5268 { 5269 unsigned long flags; 5270 5271 local_irq_save(flags); 5272 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5273 local_irq_restore(flags); 5274 } 5275 EXPORT_SYMBOL(__napi_schedule); 5276 5277 /** 5278 * napi_schedule_prep - check if napi can be scheduled 5279 * @n: napi context 5280 * 5281 * Test if NAPI routine is already running, and if not mark 5282 * it as running. This is used as a condition variable 5283 * insure only one NAPI poll instance runs. We also make 5284 * sure there is no pending NAPI disable. 5285 */ 5286 bool napi_schedule_prep(struct napi_struct *n) 5287 { 5288 unsigned long val, new; 5289 5290 do { 5291 val = READ_ONCE(n->state); 5292 if (unlikely(val & NAPIF_STATE_DISABLE)) 5293 return false; 5294 new = val | NAPIF_STATE_SCHED; 5295 5296 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5297 * This was suggested by Alexander Duyck, as compiler 5298 * emits better code than : 5299 * if (val & NAPIF_STATE_SCHED) 5300 * new |= NAPIF_STATE_MISSED; 5301 */ 5302 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5303 NAPIF_STATE_MISSED; 5304 } while (cmpxchg(&n->state, val, new) != val); 5305 5306 return !(val & NAPIF_STATE_SCHED); 5307 } 5308 EXPORT_SYMBOL(napi_schedule_prep); 5309 5310 /** 5311 * __napi_schedule_irqoff - schedule for receive 5312 * @n: entry to schedule 5313 * 5314 * Variant of __napi_schedule() assuming hard irqs are masked 5315 */ 5316 void __napi_schedule_irqoff(struct napi_struct *n) 5317 { 5318 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5319 } 5320 EXPORT_SYMBOL(__napi_schedule_irqoff); 5321 5322 bool napi_complete_done(struct napi_struct *n, int work_done) 5323 { 5324 unsigned long flags, val, new; 5325 5326 /* 5327 * 1) Don't let napi dequeue from the cpu poll list 5328 * just in case its running on a different cpu. 5329 * 2) If we are busy polling, do nothing here, we have 5330 * the guarantee we will be called later. 5331 */ 5332 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5333 NAPIF_STATE_IN_BUSY_POLL))) 5334 return false; 5335 5336 if (n->gro_list) { 5337 unsigned long timeout = 0; 5338 5339 if (work_done) 5340 timeout = n->dev->gro_flush_timeout; 5341 5342 if (timeout) 5343 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5344 HRTIMER_MODE_REL_PINNED); 5345 else 5346 napi_gro_flush(n, false); 5347 } 5348 if (unlikely(!list_empty(&n->poll_list))) { 5349 /* If n->poll_list is not empty, we need to mask irqs */ 5350 local_irq_save(flags); 5351 list_del_init(&n->poll_list); 5352 local_irq_restore(flags); 5353 } 5354 5355 do { 5356 val = READ_ONCE(n->state); 5357 5358 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5359 5360 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5361 5362 /* If STATE_MISSED was set, leave STATE_SCHED set, 5363 * because we will call napi->poll() one more time. 5364 * This C code was suggested by Alexander Duyck to help gcc. 5365 */ 5366 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5367 NAPIF_STATE_SCHED; 5368 } while (cmpxchg(&n->state, val, new) != val); 5369 5370 if (unlikely(val & NAPIF_STATE_MISSED)) { 5371 __napi_schedule(n); 5372 return false; 5373 } 5374 5375 return true; 5376 } 5377 EXPORT_SYMBOL(napi_complete_done); 5378 5379 /* must be called under rcu_read_lock(), as we dont take a reference */ 5380 static struct napi_struct *napi_by_id(unsigned int napi_id) 5381 { 5382 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5383 struct napi_struct *napi; 5384 5385 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5386 if (napi->napi_id == napi_id) 5387 return napi; 5388 5389 return NULL; 5390 } 5391 5392 #if defined(CONFIG_NET_RX_BUSY_POLL) 5393 5394 #define BUSY_POLL_BUDGET 8 5395 5396 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5397 { 5398 int rc; 5399 5400 /* Busy polling means there is a high chance device driver hard irq 5401 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5402 * set in napi_schedule_prep(). 5403 * Since we are about to call napi->poll() once more, we can safely 5404 * clear NAPI_STATE_MISSED. 5405 * 5406 * Note: x86 could use a single "lock and ..." instruction 5407 * to perform these two clear_bit() 5408 */ 5409 clear_bit(NAPI_STATE_MISSED, &napi->state); 5410 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5411 5412 local_bh_disable(); 5413 5414 /* All we really want here is to re-enable device interrupts. 5415 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5416 */ 5417 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5418 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5419 netpoll_poll_unlock(have_poll_lock); 5420 if (rc == BUSY_POLL_BUDGET) 5421 __napi_schedule(napi); 5422 local_bh_enable(); 5423 } 5424 5425 void napi_busy_loop(unsigned int napi_id, 5426 bool (*loop_end)(void *, unsigned long), 5427 void *loop_end_arg) 5428 { 5429 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5430 int (*napi_poll)(struct napi_struct *napi, int budget); 5431 void *have_poll_lock = NULL; 5432 struct napi_struct *napi; 5433 5434 restart: 5435 napi_poll = NULL; 5436 5437 rcu_read_lock(); 5438 5439 napi = napi_by_id(napi_id); 5440 if (!napi) 5441 goto out; 5442 5443 preempt_disable(); 5444 for (;;) { 5445 int work = 0; 5446 5447 local_bh_disable(); 5448 if (!napi_poll) { 5449 unsigned long val = READ_ONCE(napi->state); 5450 5451 /* If multiple threads are competing for this napi, 5452 * we avoid dirtying napi->state as much as we can. 5453 */ 5454 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5455 NAPIF_STATE_IN_BUSY_POLL)) 5456 goto count; 5457 if (cmpxchg(&napi->state, val, 5458 val | NAPIF_STATE_IN_BUSY_POLL | 5459 NAPIF_STATE_SCHED) != val) 5460 goto count; 5461 have_poll_lock = netpoll_poll_lock(napi); 5462 napi_poll = napi->poll; 5463 } 5464 work = napi_poll(napi, BUSY_POLL_BUDGET); 5465 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5466 count: 5467 if (work > 0) 5468 __NET_ADD_STATS(dev_net(napi->dev), 5469 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5470 local_bh_enable(); 5471 5472 if (!loop_end || loop_end(loop_end_arg, start_time)) 5473 break; 5474 5475 if (unlikely(need_resched())) { 5476 if (napi_poll) 5477 busy_poll_stop(napi, have_poll_lock); 5478 preempt_enable(); 5479 rcu_read_unlock(); 5480 cond_resched(); 5481 if (loop_end(loop_end_arg, start_time)) 5482 return; 5483 goto restart; 5484 } 5485 cpu_relax(); 5486 } 5487 if (napi_poll) 5488 busy_poll_stop(napi, have_poll_lock); 5489 preempt_enable(); 5490 out: 5491 rcu_read_unlock(); 5492 } 5493 EXPORT_SYMBOL(napi_busy_loop); 5494 5495 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5496 5497 static void napi_hash_add(struct napi_struct *napi) 5498 { 5499 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5500 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5501 return; 5502 5503 spin_lock(&napi_hash_lock); 5504 5505 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5506 do { 5507 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5508 napi_gen_id = MIN_NAPI_ID; 5509 } while (napi_by_id(napi_gen_id)); 5510 napi->napi_id = napi_gen_id; 5511 5512 hlist_add_head_rcu(&napi->napi_hash_node, 5513 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5514 5515 spin_unlock(&napi_hash_lock); 5516 } 5517 5518 /* Warning : caller is responsible to make sure rcu grace period 5519 * is respected before freeing memory containing @napi 5520 */ 5521 bool napi_hash_del(struct napi_struct *napi) 5522 { 5523 bool rcu_sync_needed = false; 5524 5525 spin_lock(&napi_hash_lock); 5526 5527 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5528 rcu_sync_needed = true; 5529 hlist_del_rcu(&napi->napi_hash_node); 5530 } 5531 spin_unlock(&napi_hash_lock); 5532 return rcu_sync_needed; 5533 } 5534 EXPORT_SYMBOL_GPL(napi_hash_del); 5535 5536 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5537 { 5538 struct napi_struct *napi; 5539 5540 napi = container_of(timer, struct napi_struct, timer); 5541 5542 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5543 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5544 */ 5545 if (napi->gro_list && !napi_disable_pending(napi) && 5546 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5547 __napi_schedule_irqoff(napi); 5548 5549 return HRTIMER_NORESTART; 5550 } 5551 5552 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5553 int (*poll)(struct napi_struct *, int), int weight) 5554 { 5555 INIT_LIST_HEAD(&napi->poll_list); 5556 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5557 napi->timer.function = napi_watchdog; 5558 napi->gro_count = 0; 5559 napi->gro_list = NULL; 5560 napi->skb = NULL; 5561 napi->poll = poll; 5562 if (weight > NAPI_POLL_WEIGHT) 5563 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5564 weight, dev->name); 5565 napi->weight = weight; 5566 list_add(&napi->dev_list, &dev->napi_list); 5567 napi->dev = dev; 5568 #ifdef CONFIG_NETPOLL 5569 napi->poll_owner = -1; 5570 #endif 5571 set_bit(NAPI_STATE_SCHED, &napi->state); 5572 napi_hash_add(napi); 5573 } 5574 EXPORT_SYMBOL(netif_napi_add); 5575 5576 void napi_disable(struct napi_struct *n) 5577 { 5578 might_sleep(); 5579 set_bit(NAPI_STATE_DISABLE, &n->state); 5580 5581 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5582 msleep(1); 5583 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5584 msleep(1); 5585 5586 hrtimer_cancel(&n->timer); 5587 5588 clear_bit(NAPI_STATE_DISABLE, &n->state); 5589 } 5590 EXPORT_SYMBOL(napi_disable); 5591 5592 /* Must be called in process context */ 5593 void netif_napi_del(struct napi_struct *napi) 5594 { 5595 might_sleep(); 5596 if (napi_hash_del(napi)) 5597 synchronize_net(); 5598 list_del_init(&napi->dev_list); 5599 napi_free_frags(napi); 5600 5601 kfree_skb_list(napi->gro_list); 5602 napi->gro_list = NULL; 5603 napi->gro_count = 0; 5604 } 5605 EXPORT_SYMBOL(netif_napi_del); 5606 5607 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5608 { 5609 void *have; 5610 int work, weight; 5611 5612 list_del_init(&n->poll_list); 5613 5614 have = netpoll_poll_lock(n); 5615 5616 weight = n->weight; 5617 5618 /* This NAPI_STATE_SCHED test is for avoiding a race 5619 * with netpoll's poll_napi(). Only the entity which 5620 * obtains the lock and sees NAPI_STATE_SCHED set will 5621 * actually make the ->poll() call. Therefore we avoid 5622 * accidentally calling ->poll() when NAPI is not scheduled. 5623 */ 5624 work = 0; 5625 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5626 work = n->poll(n, weight); 5627 trace_napi_poll(n, work, weight); 5628 } 5629 5630 WARN_ON_ONCE(work > weight); 5631 5632 if (likely(work < weight)) 5633 goto out_unlock; 5634 5635 /* Drivers must not modify the NAPI state if they 5636 * consume the entire weight. In such cases this code 5637 * still "owns" the NAPI instance and therefore can 5638 * move the instance around on the list at-will. 5639 */ 5640 if (unlikely(napi_disable_pending(n))) { 5641 napi_complete(n); 5642 goto out_unlock; 5643 } 5644 5645 if (n->gro_list) { 5646 /* flush too old packets 5647 * If HZ < 1000, flush all packets. 5648 */ 5649 napi_gro_flush(n, HZ >= 1000); 5650 } 5651 5652 /* Some drivers may have called napi_schedule 5653 * prior to exhausting their budget. 5654 */ 5655 if (unlikely(!list_empty(&n->poll_list))) { 5656 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5657 n->dev ? n->dev->name : "backlog"); 5658 goto out_unlock; 5659 } 5660 5661 list_add_tail(&n->poll_list, repoll); 5662 5663 out_unlock: 5664 netpoll_poll_unlock(have); 5665 5666 return work; 5667 } 5668 5669 static __latent_entropy void net_rx_action(struct softirq_action *h) 5670 { 5671 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5672 unsigned long time_limit = jiffies + 5673 usecs_to_jiffies(netdev_budget_usecs); 5674 int budget = netdev_budget; 5675 LIST_HEAD(list); 5676 LIST_HEAD(repoll); 5677 5678 local_irq_disable(); 5679 list_splice_init(&sd->poll_list, &list); 5680 local_irq_enable(); 5681 5682 for (;;) { 5683 struct napi_struct *n; 5684 5685 if (list_empty(&list)) { 5686 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5687 goto out; 5688 break; 5689 } 5690 5691 n = list_first_entry(&list, struct napi_struct, poll_list); 5692 budget -= napi_poll(n, &repoll); 5693 5694 /* If softirq window is exhausted then punt. 5695 * Allow this to run for 2 jiffies since which will allow 5696 * an average latency of 1.5/HZ. 5697 */ 5698 if (unlikely(budget <= 0 || 5699 time_after_eq(jiffies, time_limit))) { 5700 sd->time_squeeze++; 5701 break; 5702 } 5703 } 5704 5705 local_irq_disable(); 5706 5707 list_splice_tail_init(&sd->poll_list, &list); 5708 list_splice_tail(&repoll, &list); 5709 list_splice(&list, &sd->poll_list); 5710 if (!list_empty(&sd->poll_list)) 5711 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5712 5713 net_rps_action_and_irq_enable(sd); 5714 out: 5715 __kfree_skb_flush(); 5716 } 5717 5718 struct netdev_adjacent { 5719 struct net_device *dev; 5720 5721 /* upper master flag, there can only be one master device per list */ 5722 bool master; 5723 5724 /* counter for the number of times this device was added to us */ 5725 u16 ref_nr; 5726 5727 /* private field for the users */ 5728 void *private; 5729 5730 struct list_head list; 5731 struct rcu_head rcu; 5732 }; 5733 5734 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5735 struct list_head *adj_list) 5736 { 5737 struct netdev_adjacent *adj; 5738 5739 list_for_each_entry(adj, adj_list, list) { 5740 if (adj->dev == adj_dev) 5741 return adj; 5742 } 5743 return NULL; 5744 } 5745 5746 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5747 { 5748 struct net_device *dev = data; 5749 5750 return upper_dev == dev; 5751 } 5752 5753 /** 5754 * netdev_has_upper_dev - Check if device is linked to an upper device 5755 * @dev: device 5756 * @upper_dev: upper device to check 5757 * 5758 * Find out if a device is linked to specified upper device and return true 5759 * in case it is. Note that this checks only immediate upper device, 5760 * not through a complete stack of devices. The caller must hold the RTNL lock. 5761 */ 5762 bool netdev_has_upper_dev(struct net_device *dev, 5763 struct net_device *upper_dev) 5764 { 5765 ASSERT_RTNL(); 5766 5767 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5768 upper_dev); 5769 } 5770 EXPORT_SYMBOL(netdev_has_upper_dev); 5771 5772 /** 5773 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5774 * @dev: device 5775 * @upper_dev: upper device to check 5776 * 5777 * Find out if a device is linked to specified upper device and return true 5778 * in case it is. Note that this checks the entire upper device chain. 5779 * The caller must hold rcu lock. 5780 */ 5781 5782 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5783 struct net_device *upper_dev) 5784 { 5785 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5786 upper_dev); 5787 } 5788 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5789 5790 /** 5791 * netdev_has_any_upper_dev - Check if device is linked to some device 5792 * @dev: device 5793 * 5794 * Find out if a device is linked to an upper device and return true in case 5795 * it is. The caller must hold the RTNL lock. 5796 */ 5797 bool netdev_has_any_upper_dev(struct net_device *dev) 5798 { 5799 ASSERT_RTNL(); 5800 5801 return !list_empty(&dev->adj_list.upper); 5802 } 5803 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5804 5805 /** 5806 * netdev_master_upper_dev_get - Get master upper device 5807 * @dev: device 5808 * 5809 * Find a master upper device and return pointer to it or NULL in case 5810 * it's not there. The caller must hold the RTNL lock. 5811 */ 5812 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5813 { 5814 struct netdev_adjacent *upper; 5815 5816 ASSERT_RTNL(); 5817 5818 if (list_empty(&dev->adj_list.upper)) 5819 return NULL; 5820 5821 upper = list_first_entry(&dev->adj_list.upper, 5822 struct netdev_adjacent, list); 5823 if (likely(upper->master)) 5824 return upper->dev; 5825 return NULL; 5826 } 5827 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5828 5829 /** 5830 * netdev_has_any_lower_dev - Check if device is linked to some device 5831 * @dev: device 5832 * 5833 * Find out if a device is linked to a lower device and return true in case 5834 * it is. The caller must hold the RTNL lock. 5835 */ 5836 static bool netdev_has_any_lower_dev(struct net_device *dev) 5837 { 5838 ASSERT_RTNL(); 5839 5840 return !list_empty(&dev->adj_list.lower); 5841 } 5842 5843 void *netdev_adjacent_get_private(struct list_head *adj_list) 5844 { 5845 struct netdev_adjacent *adj; 5846 5847 adj = list_entry(adj_list, struct netdev_adjacent, list); 5848 5849 return adj->private; 5850 } 5851 EXPORT_SYMBOL(netdev_adjacent_get_private); 5852 5853 /** 5854 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5855 * @dev: device 5856 * @iter: list_head ** of the current position 5857 * 5858 * Gets the next device from the dev's upper list, starting from iter 5859 * position. The caller must hold RCU read lock. 5860 */ 5861 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5862 struct list_head **iter) 5863 { 5864 struct netdev_adjacent *upper; 5865 5866 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5867 5868 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5869 5870 if (&upper->list == &dev->adj_list.upper) 5871 return NULL; 5872 5873 *iter = &upper->list; 5874 5875 return upper->dev; 5876 } 5877 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5878 5879 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5880 struct list_head **iter) 5881 { 5882 struct netdev_adjacent *upper; 5883 5884 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5885 5886 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5887 5888 if (&upper->list == &dev->adj_list.upper) 5889 return NULL; 5890 5891 *iter = &upper->list; 5892 5893 return upper->dev; 5894 } 5895 5896 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5897 int (*fn)(struct net_device *dev, 5898 void *data), 5899 void *data) 5900 { 5901 struct net_device *udev; 5902 struct list_head *iter; 5903 int ret; 5904 5905 for (iter = &dev->adj_list.upper, 5906 udev = netdev_next_upper_dev_rcu(dev, &iter); 5907 udev; 5908 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5909 /* first is the upper device itself */ 5910 ret = fn(udev, data); 5911 if (ret) 5912 return ret; 5913 5914 /* then look at all of its upper devices */ 5915 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5916 if (ret) 5917 return ret; 5918 } 5919 5920 return 0; 5921 } 5922 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5923 5924 /** 5925 * netdev_lower_get_next_private - Get the next ->private from the 5926 * lower neighbour list 5927 * @dev: device 5928 * @iter: list_head ** of the current position 5929 * 5930 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5931 * list, starting from iter position. The caller must hold either hold the 5932 * RTNL lock or its own locking that guarantees that the neighbour lower 5933 * list will remain unchanged. 5934 */ 5935 void *netdev_lower_get_next_private(struct net_device *dev, 5936 struct list_head **iter) 5937 { 5938 struct netdev_adjacent *lower; 5939 5940 lower = list_entry(*iter, struct netdev_adjacent, list); 5941 5942 if (&lower->list == &dev->adj_list.lower) 5943 return NULL; 5944 5945 *iter = lower->list.next; 5946 5947 return lower->private; 5948 } 5949 EXPORT_SYMBOL(netdev_lower_get_next_private); 5950 5951 /** 5952 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5953 * lower neighbour list, RCU 5954 * variant 5955 * @dev: device 5956 * @iter: list_head ** of the current position 5957 * 5958 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5959 * list, starting from iter position. The caller must hold RCU read lock. 5960 */ 5961 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5962 struct list_head **iter) 5963 { 5964 struct netdev_adjacent *lower; 5965 5966 WARN_ON_ONCE(!rcu_read_lock_held()); 5967 5968 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5969 5970 if (&lower->list == &dev->adj_list.lower) 5971 return NULL; 5972 5973 *iter = &lower->list; 5974 5975 return lower->private; 5976 } 5977 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5978 5979 /** 5980 * netdev_lower_get_next - Get the next device from the lower neighbour 5981 * list 5982 * @dev: device 5983 * @iter: list_head ** of the current position 5984 * 5985 * Gets the next netdev_adjacent from the dev's lower neighbour 5986 * list, starting from iter position. The caller must hold RTNL lock or 5987 * its own locking that guarantees that the neighbour lower 5988 * list will remain unchanged. 5989 */ 5990 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5991 { 5992 struct netdev_adjacent *lower; 5993 5994 lower = list_entry(*iter, struct netdev_adjacent, list); 5995 5996 if (&lower->list == &dev->adj_list.lower) 5997 return NULL; 5998 5999 *iter = lower->list.next; 6000 6001 return lower->dev; 6002 } 6003 EXPORT_SYMBOL(netdev_lower_get_next); 6004 6005 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6006 struct list_head **iter) 6007 { 6008 struct netdev_adjacent *lower; 6009 6010 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6011 6012 if (&lower->list == &dev->adj_list.lower) 6013 return NULL; 6014 6015 *iter = &lower->list; 6016 6017 return lower->dev; 6018 } 6019 6020 int netdev_walk_all_lower_dev(struct net_device *dev, 6021 int (*fn)(struct net_device *dev, 6022 void *data), 6023 void *data) 6024 { 6025 struct net_device *ldev; 6026 struct list_head *iter; 6027 int ret; 6028 6029 for (iter = &dev->adj_list.lower, 6030 ldev = netdev_next_lower_dev(dev, &iter); 6031 ldev; 6032 ldev = netdev_next_lower_dev(dev, &iter)) { 6033 /* first is the lower device itself */ 6034 ret = fn(ldev, data); 6035 if (ret) 6036 return ret; 6037 6038 /* then look at all of its lower devices */ 6039 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6040 if (ret) 6041 return ret; 6042 } 6043 6044 return 0; 6045 } 6046 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6047 6048 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6049 struct list_head **iter) 6050 { 6051 struct netdev_adjacent *lower; 6052 6053 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6054 if (&lower->list == &dev->adj_list.lower) 6055 return NULL; 6056 6057 *iter = &lower->list; 6058 6059 return lower->dev; 6060 } 6061 6062 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6063 int (*fn)(struct net_device *dev, 6064 void *data), 6065 void *data) 6066 { 6067 struct net_device *ldev; 6068 struct list_head *iter; 6069 int ret; 6070 6071 for (iter = &dev->adj_list.lower, 6072 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6073 ldev; 6074 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6075 /* first is the lower device itself */ 6076 ret = fn(ldev, data); 6077 if (ret) 6078 return ret; 6079 6080 /* then look at all of its lower devices */ 6081 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6082 if (ret) 6083 return ret; 6084 } 6085 6086 return 0; 6087 } 6088 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6089 6090 /** 6091 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6092 * lower neighbour list, RCU 6093 * variant 6094 * @dev: device 6095 * 6096 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6097 * list. The caller must hold RCU read lock. 6098 */ 6099 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6100 { 6101 struct netdev_adjacent *lower; 6102 6103 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6104 struct netdev_adjacent, list); 6105 if (lower) 6106 return lower->private; 6107 return NULL; 6108 } 6109 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6110 6111 /** 6112 * netdev_master_upper_dev_get_rcu - Get master upper device 6113 * @dev: device 6114 * 6115 * Find a master upper device and return pointer to it or NULL in case 6116 * it's not there. The caller must hold the RCU read lock. 6117 */ 6118 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6119 { 6120 struct netdev_adjacent *upper; 6121 6122 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6123 struct netdev_adjacent, list); 6124 if (upper && likely(upper->master)) 6125 return upper->dev; 6126 return NULL; 6127 } 6128 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6129 6130 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6131 struct net_device *adj_dev, 6132 struct list_head *dev_list) 6133 { 6134 char linkname[IFNAMSIZ+7]; 6135 6136 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6137 "upper_%s" : "lower_%s", adj_dev->name); 6138 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6139 linkname); 6140 } 6141 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6142 char *name, 6143 struct list_head *dev_list) 6144 { 6145 char linkname[IFNAMSIZ+7]; 6146 6147 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6148 "upper_%s" : "lower_%s", name); 6149 sysfs_remove_link(&(dev->dev.kobj), linkname); 6150 } 6151 6152 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6153 struct net_device *adj_dev, 6154 struct list_head *dev_list) 6155 { 6156 return (dev_list == &dev->adj_list.upper || 6157 dev_list == &dev->adj_list.lower) && 6158 net_eq(dev_net(dev), dev_net(adj_dev)); 6159 } 6160 6161 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6162 struct net_device *adj_dev, 6163 struct list_head *dev_list, 6164 void *private, bool master) 6165 { 6166 struct netdev_adjacent *adj; 6167 int ret; 6168 6169 adj = __netdev_find_adj(adj_dev, dev_list); 6170 6171 if (adj) { 6172 adj->ref_nr += 1; 6173 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6174 dev->name, adj_dev->name, adj->ref_nr); 6175 6176 return 0; 6177 } 6178 6179 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6180 if (!adj) 6181 return -ENOMEM; 6182 6183 adj->dev = adj_dev; 6184 adj->master = master; 6185 adj->ref_nr = 1; 6186 adj->private = private; 6187 dev_hold(adj_dev); 6188 6189 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6190 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6191 6192 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6193 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6194 if (ret) 6195 goto free_adj; 6196 } 6197 6198 /* Ensure that master link is always the first item in list. */ 6199 if (master) { 6200 ret = sysfs_create_link(&(dev->dev.kobj), 6201 &(adj_dev->dev.kobj), "master"); 6202 if (ret) 6203 goto remove_symlinks; 6204 6205 list_add_rcu(&adj->list, dev_list); 6206 } else { 6207 list_add_tail_rcu(&adj->list, dev_list); 6208 } 6209 6210 return 0; 6211 6212 remove_symlinks: 6213 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6214 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6215 free_adj: 6216 kfree(adj); 6217 dev_put(adj_dev); 6218 6219 return ret; 6220 } 6221 6222 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6223 struct net_device *adj_dev, 6224 u16 ref_nr, 6225 struct list_head *dev_list) 6226 { 6227 struct netdev_adjacent *adj; 6228 6229 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6230 dev->name, adj_dev->name, ref_nr); 6231 6232 adj = __netdev_find_adj(adj_dev, dev_list); 6233 6234 if (!adj) { 6235 pr_err("Adjacency does not exist for device %s from %s\n", 6236 dev->name, adj_dev->name); 6237 WARN_ON(1); 6238 return; 6239 } 6240 6241 if (adj->ref_nr > ref_nr) { 6242 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6243 dev->name, adj_dev->name, ref_nr, 6244 adj->ref_nr - ref_nr); 6245 adj->ref_nr -= ref_nr; 6246 return; 6247 } 6248 6249 if (adj->master) 6250 sysfs_remove_link(&(dev->dev.kobj), "master"); 6251 6252 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6253 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6254 6255 list_del_rcu(&adj->list); 6256 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6257 adj_dev->name, dev->name, adj_dev->name); 6258 dev_put(adj_dev); 6259 kfree_rcu(adj, rcu); 6260 } 6261 6262 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6263 struct net_device *upper_dev, 6264 struct list_head *up_list, 6265 struct list_head *down_list, 6266 void *private, bool master) 6267 { 6268 int ret; 6269 6270 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6271 private, master); 6272 if (ret) 6273 return ret; 6274 6275 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6276 private, false); 6277 if (ret) { 6278 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6279 return ret; 6280 } 6281 6282 return 0; 6283 } 6284 6285 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6286 struct net_device *upper_dev, 6287 u16 ref_nr, 6288 struct list_head *up_list, 6289 struct list_head *down_list) 6290 { 6291 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6292 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6293 } 6294 6295 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6296 struct net_device *upper_dev, 6297 void *private, bool master) 6298 { 6299 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6300 &dev->adj_list.upper, 6301 &upper_dev->adj_list.lower, 6302 private, master); 6303 } 6304 6305 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6306 struct net_device *upper_dev) 6307 { 6308 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6309 &dev->adj_list.upper, 6310 &upper_dev->adj_list.lower); 6311 } 6312 6313 static int __netdev_upper_dev_link(struct net_device *dev, 6314 struct net_device *upper_dev, bool master, 6315 void *upper_priv, void *upper_info, 6316 struct netlink_ext_ack *extack) 6317 { 6318 struct netdev_notifier_changeupper_info changeupper_info = { 6319 .info = { 6320 .dev = dev, 6321 .extack = extack, 6322 }, 6323 .upper_dev = upper_dev, 6324 .master = master, 6325 .linking = true, 6326 .upper_info = upper_info, 6327 }; 6328 int ret = 0; 6329 6330 ASSERT_RTNL(); 6331 6332 if (dev == upper_dev) 6333 return -EBUSY; 6334 6335 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6336 if (netdev_has_upper_dev(upper_dev, dev)) 6337 return -EBUSY; 6338 6339 if (netdev_has_upper_dev(dev, upper_dev)) 6340 return -EEXIST; 6341 6342 if (master && netdev_master_upper_dev_get(dev)) 6343 return -EBUSY; 6344 6345 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6346 &changeupper_info.info); 6347 ret = notifier_to_errno(ret); 6348 if (ret) 6349 return ret; 6350 6351 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6352 master); 6353 if (ret) 6354 return ret; 6355 6356 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6357 &changeupper_info.info); 6358 ret = notifier_to_errno(ret); 6359 if (ret) 6360 goto rollback; 6361 6362 return 0; 6363 6364 rollback: 6365 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6366 6367 return ret; 6368 } 6369 6370 /** 6371 * netdev_upper_dev_link - Add a link to the upper device 6372 * @dev: device 6373 * @upper_dev: new upper device 6374 * 6375 * Adds a link to device which is upper to this one. The caller must hold 6376 * the RTNL lock. On a failure a negative errno code is returned. 6377 * On success the reference counts are adjusted and the function 6378 * returns zero. 6379 */ 6380 int netdev_upper_dev_link(struct net_device *dev, 6381 struct net_device *upper_dev, 6382 struct netlink_ext_ack *extack) 6383 { 6384 return __netdev_upper_dev_link(dev, upper_dev, false, 6385 NULL, NULL, extack); 6386 } 6387 EXPORT_SYMBOL(netdev_upper_dev_link); 6388 6389 /** 6390 * netdev_master_upper_dev_link - Add a master link to the upper device 6391 * @dev: device 6392 * @upper_dev: new upper device 6393 * @upper_priv: upper device private 6394 * @upper_info: upper info to be passed down via notifier 6395 * 6396 * Adds a link to device which is upper to this one. In this case, only 6397 * one master upper device can be linked, although other non-master devices 6398 * might be linked as well. The caller must hold the RTNL lock. 6399 * On a failure a negative errno code is returned. On success the reference 6400 * counts are adjusted and the function returns zero. 6401 */ 6402 int netdev_master_upper_dev_link(struct net_device *dev, 6403 struct net_device *upper_dev, 6404 void *upper_priv, void *upper_info, 6405 struct netlink_ext_ack *extack) 6406 { 6407 return __netdev_upper_dev_link(dev, upper_dev, true, 6408 upper_priv, upper_info, extack); 6409 } 6410 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6411 6412 /** 6413 * netdev_upper_dev_unlink - Removes a link to upper device 6414 * @dev: device 6415 * @upper_dev: new upper device 6416 * 6417 * Removes a link to device which is upper to this one. The caller must hold 6418 * the RTNL lock. 6419 */ 6420 void netdev_upper_dev_unlink(struct net_device *dev, 6421 struct net_device *upper_dev) 6422 { 6423 struct netdev_notifier_changeupper_info changeupper_info = { 6424 .info = { 6425 .dev = dev, 6426 }, 6427 .upper_dev = upper_dev, 6428 .linking = false, 6429 }; 6430 6431 ASSERT_RTNL(); 6432 6433 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6434 6435 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6436 &changeupper_info.info); 6437 6438 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6439 6440 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6441 &changeupper_info.info); 6442 } 6443 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6444 6445 /** 6446 * netdev_bonding_info_change - Dispatch event about slave change 6447 * @dev: device 6448 * @bonding_info: info to dispatch 6449 * 6450 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6451 * The caller must hold the RTNL lock. 6452 */ 6453 void netdev_bonding_info_change(struct net_device *dev, 6454 struct netdev_bonding_info *bonding_info) 6455 { 6456 struct netdev_notifier_bonding_info info = { 6457 .info.dev = dev, 6458 }; 6459 6460 memcpy(&info.bonding_info, bonding_info, 6461 sizeof(struct netdev_bonding_info)); 6462 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 6463 &info.info); 6464 } 6465 EXPORT_SYMBOL(netdev_bonding_info_change); 6466 6467 static void netdev_adjacent_add_links(struct net_device *dev) 6468 { 6469 struct netdev_adjacent *iter; 6470 6471 struct net *net = dev_net(dev); 6472 6473 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6474 if (!net_eq(net, dev_net(iter->dev))) 6475 continue; 6476 netdev_adjacent_sysfs_add(iter->dev, dev, 6477 &iter->dev->adj_list.lower); 6478 netdev_adjacent_sysfs_add(dev, iter->dev, 6479 &dev->adj_list.upper); 6480 } 6481 6482 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6483 if (!net_eq(net, dev_net(iter->dev))) 6484 continue; 6485 netdev_adjacent_sysfs_add(iter->dev, dev, 6486 &iter->dev->adj_list.upper); 6487 netdev_adjacent_sysfs_add(dev, iter->dev, 6488 &dev->adj_list.lower); 6489 } 6490 } 6491 6492 static void netdev_adjacent_del_links(struct net_device *dev) 6493 { 6494 struct netdev_adjacent *iter; 6495 6496 struct net *net = dev_net(dev); 6497 6498 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6499 if (!net_eq(net, dev_net(iter->dev))) 6500 continue; 6501 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6502 &iter->dev->adj_list.lower); 6503 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6504 &dev->adj_list.upper); 6505 } 6506 6507 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6508 if (!net_eq(net, dev_net(iter->dev))) 6509 continue; 6510 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6511 &iter->dev->adj_list.upper); 6512 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6513 &dev->adj_list.lower); 6514 } 6515 } 6516 6517 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6518 { 6519 struct netdev_adjacent *iter; 6520 6521 struct net *net = dev_net(dev); 6522 6523 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6524 if (!net_eq(net, dev_net(iter->dev))) 6525 continue; 6526 netdev_adjacent_sysfs_del(iter->dev, oldname, 6527 &iter->dev->adj_list.lower); 6528 netdev_adjacent_sysfs_add(iter->dev, dev, 6529 &iter->dev->adj_list.lower); 6530 } 6531 6532 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6533 if (!net_eq(net, dev_net(iter->dev))) 6534 continue; 6535 netdev_adjacent_sysfs_del(iter->dev, oldname, 6536 &iter->dev->adj_list.upper); 6537 netdev_adjacent_sysfs_add(iter->dev, dev, 6538 &iter->dev->adj_list.upper); 6539 } 6540 } 6541 6542 void *netdev_lower_dev_get_private(struct net_device *dev, 6543 struct net_device *lower_dev) 6544 { 6545 struct netdev_adjacent *lower; 6546 6547 if (!lower_dev) 6548 return NULL; 6549 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6550 if (!lower) 6551 return NULL; 6552 6553 return lower->private; 6554 } 6555 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6556 6557 6558 int dev_get_nest_level(struct net_device *dev) 6559 { 6560 struct net_device *lower = NULL; 6561 struct list_head *iter; 6562 int max_nest = -1; 6563 int nest; 6564 6565 ASSERT_RTNL(); 6566 6567 netdev_for_each_lower_dev(dev, lower, iter) { 6568 nest = dev_get_nest_level(lower); 6569 if (max_nest < nest) 6570 max_nest = nest; 6571 } 6572 6573 return max_nest + 1; 6574 } 6575 EXPORT_SYMBOL(dev_get_nest_level); 6576 6577 /** 6578 * netdev_lower_change - Dispatch event about lower device state change 6579 * @lower_dev: device 6580 * @lower_state_info: state to dispatch 6581 * 6582 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6583 * The caller must hold the RTNL lock. 6584 */ 6585 void netdev_lower_state_changed(struct net_device *lower_dev, 6586 void *lower_state_info) 6587 { 6588 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 6589 .info.dev = lower_dev, 6590 }; 6591 6592 ASSERT_RTNL(); 6593 changelowerstate_info.lower_state_info = lower_state_info; 6594 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 6595 &changelowerstate_info.info); 6596 } 6597 EXPORT_SYMBOL(netdev_lower_state_changed); 6598 6599 static void dev_change_rx_flags(struct net_device *dev, int flags) 6600 { 6601 const struct net_device_ops *ops = dev->netdev_ops; 6602 6603 if (ops->ndo_change_rx_flags) 6604 ops->ndo_change_rx_flags(dev, flags); 6605 } 6606 6607 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6608 { 6609 unsigned int old_flags = dev->flags; 6610 kuid_t uid; 6611 kgid_t gid; 6612 6613 ASSERT_RTNL(); 6614 6615 dev->flags |= IFF_PROMISC; 6616 dev->promiscuity += inc; 6617 if (dev->promiscuity == 0) { 6618 /* 6619 * Avoid overflow. 6620 * If inc causes overflow, untouch promisc and return error. 6621 */ 6622 if (inc < 0) 6623 dev->flags &= ~IFF_PROMISC; 6624 else { 6625 dev->promiscuity -= inc; 6626 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6627 dev->name); 6628 return -EOVERFLOW; 6629 } 6630 } 6631 if (dev->flags != old_flags) { 6632 pr_info("device %s %s promiscuous mode\n", 6633 dev->name, 6634 dev->flags & IFF_PROMISC ? "entered" : "left"); 6635 if (audit_enabled) { 6636 current_uid_gid(&uid, &gid); 6637 audit_log(current->audit_context, GFP_ATOMIC, 6638 AUDIT_ANOM_PROMISCUOUS, 6639 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6640 dev->name, (dev->flags & IFF_PROMISC), 6641 (old_flags & IFF_PROMISC), 6642 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6643 from_kuid(&init_user_ns, uid), 6644 from_kgid(&init_user_ns, gid), 6645 audit_get_sessionid(current)); 6646 } 6647 6648 dev_change_rx_flags(dev, IFF_PROMISC); 6649 } 6650 if (notify) 6651 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6652 return 0; 6653 } 6654 6655 /** 6656 * dev_set_promiscuity - update promiscuity count on a device 6657 * @dev: device 6658 * @inc: modifier 6659 * 6660 * Add or remove promiscuity from a device. While the count in the device 6661 * remains above zero the interface remains promiscuous. Once it hits zero 6662 * the device reverts back to normal filtering operation. A negative inc 6663 * value is used to drop promiscuity on the device. 6664 * Return 0 if successful or a negative errno code on error. 6665 */ 6666 int dev_set_promiscuity(struct net_device *dev, int inc) 6667 { 6668 unsigned int old_flags = dev->flags; 6669 int err; 6670 6671 err = __dev_set_promiscuity(dev, inc, true); 6672 if (err < 0) 6673 return err; 6674 if (dev->flags != old_flags) 6675 dev_set_rx_mode(dev); 6676 return err; 6677 } 6678 EXPORT_SYMBOL(dev_set_promiscuity); 6679 6680 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6681 { 6682 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6683 6684 ASSERT_RTNL(); 6685 6686 dev->flags |= IFF_ALLMULTI; 6687 dev->allmulti += inc; 6688 if (dev->allmulti == 0) { 6689 /* 6690 * Avoid overflow. 6691 * If inc causes overflow, untouch allmulti and return error. 6692 */ 6693 if (inc < 0) 6694 dev->flags &= ~IFF_ALLMULTI; 6695 else { 6696 dev->allmulti -= inc; 6697 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6698 dev->name); 6699 return -EOVERFLOW; 6700 } 6701 } 6702 if (dev->flags ^ old_flags) { 6703 dev_change_rx_flags(dev, IFF_ALLMULTI); 6704 dev_set_rx_mode(dev); 6705 if (notify) 6706 __dev_notify_flags(dev, old_flags, 6707 dev->gflags ^ old_gflags); 6708 } 6709 return 0; 6710 } 6711 6712 /** 6713 * dev_set_allmulti - update allmulti count on a device 6714 * @dev: device 6715 * @inc: modifier 6716 * 6717 * Add or remove reception of all multicast frames to a device. While the 6718 * count in the device remains above zero the interface remains listening 6719 * to all interfaces. Once it hits zero the device reverts back to normal 6720 * filtering operation. A negative @inc value is used to drop the counter 6721 * when releasing a resource needing all multicasts. 6722 * Return 0 if successful or a negative errno code on error. 6723 */ 6724 6725 int dev_set_allmulti(struct net_device *dev, int inc) 6726 { 6727 return __dev_set_allmulti(dev, inc, true); 6728 } 6729 EXPORT_SYMBOL(dev_set_allmulti); 6730 6731 /* 6732 * Upload unicast and multicast address lists to device and 6733 * configure RX filtering. When the device doesn't support unicast 6734 * filtering it is put in promiscuous mode while unicast addresses 6735 * are present. 6736 */ 6737 void __dev_set_rx_mode(struct net_device *dev) 6738 { 6739 const struct net_device_ops *ops = dev->netdev_ops; 6740 6741 /* dev_open will call this function so the list will stay sane. */ 6742 if (!(dev->flags&IFF_UP)) 6743 return; 6744 6745 if (!netif_device_present(dev)) 6746 return; 6747 6748 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6749 /* Unicast addresses changes may only happen under the rtnl, 6750 * therefore calling __dev_set_promiscuity here is safe. 6751 */ 6752 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6753 __dev_set_promiscuity(dev, 1, false); 6754 dev->uc_promisc = true; 6755 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6756 __dev_set_promiscuity(dev, -1, false); 6757 dev->uc_promisc = false; 6758 } 6759 } 6760 6761 if (ops->ndo_set_rx_mode) 6762 ops->ndo_set_rx_mode(dev); 6763 } 6764 6765 void dev_set_rx_mode(struct net_device *dev) 6766 { 6767 netif_addr_lock_bh(dev); 6768 __dev_set_rx_mode(dev); 6769 netif_addr_unlock_bh(dev); 6770 } 6771 6772 /** 6773 * dev_get_flags - get flags reported to userspace 6774 * @dev: device 6775 * 6776 * Get the combination of flag bits exported through APIs to userspace. 6777 */ 6778 unsigned int dev_get_flags(const struct net_device *dev) 6779 { 6780 unsigned int flags; 6781 6782 flags = (dev->flags & ~(IFF_PROMISC | 6783 IFF_ALLMULTI | 6784 IFF_RUNNING | 6785 IFF_LOWER_UP | 6786 IFF_DORMANT)) | 6787 (dev->gflags & (IFF_PROMISC | 6788 IFF_ALLMULTI)); 6789 6790 if (netif_running(dev)) { 6791 if (netif_oper_up(dev)) 6792 flags |= IFF_RUNNING; 6793 if (netif_carrier_ok(dev)) 6794 flags |= IFF_LOWER_UP; 6795 if (netif_dormant(dev)) 6796 flags |= IFF_DORMANT; 6797 } 6798 6799 return flags; 6800 } 6801 EXPORT_SYMBOL(dev_get_flags); 6802 6803 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6804 { 6805 unsigned int old_flags = dev->flags; 6806 int ret; 6807 6808 ASSERT_RTNL(); 6809 6810 /* 6811 * Set the flags on our device. 6812 */ 6813 6814 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6815 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6816 IFF_AUTOMEDIA)) | 6817 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6818 IFF_ALLMULTI)); 6819 6820 /* 6821 * Load in the correct multicast list now the flags have changed. 6822 */ 6823 6824 if ((old_flags ^ flags) & IFF_MULTICAST) 6825 dev_change_rx_flags(dev, IFF_MULTICAST); 6826 6827 dev_set_rx_mode(dev); 6828 6829 /* 6830 * Have we downed the interface. We handle IFF_UP ourselves 6831 * according to user attempts to set it, rather than blindly 6832 * setting it. 6833 */ 6834 6835 ret = 0; 6836 if ((old_flags ^ flags) & IFF_UP) { 6837 if (old_flags & IFF_UP) 6838 __dev_close(dev); 6839 else 6840 ret = __dev_open(dev); 6841 } 6842 6843 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6844 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6845 unsigned int old_flags = dev->flags; 6846 6847 dev->gflags ^= IFF_PROMISC; 6848 6849 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6850 if (dev->flags != old_flags) 6851 dev_set_rx_mode(dev); 6852 } 6853 6854 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6855 * is important. Some (broken) drivers set IFF_PROMISC, when 6856 * IFF_ALLMULTI is requested not asking us and not reporting. 6857 */ 6858 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6859 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6860 6861 dev->gflags ^= IFF_ALLMULTI; 6862 __dev_set_allmulti(dev, inc, false); 6863 } 6864 6865 return ret; 6866 } 6867 6868 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6869 unsigned int gchanges) 6870 { 6871 unsigned int changes = dev->flags ^ old_flags; 6872 6873 if (gchanges) 6874 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6875 6876 if (changes & IFF_UP) { 6877 if (dev->flags & IFF_UP) 6878 call_netdevice_notifiers(NETDEV_UP, dev); 6879 else 6880 call_netdevice_notifiers(NETDEV_DOWN, dev); 6881 } 6882 6883 if (dev->flags & IFF_UP && 6884 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6885 struct netdev_notifier_change_info change_info = { 6886 .info = { 6887 .dev = dev, 6888 }, 6889 .flags_changed = changes, 6890 }; 6891 6892 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 6893 } 6894 } 6895 6896 /** 6897 * dev_change_flags - change device settings 6898 * @dev: device 6899 * @flags: device state flags 6900 * 6901 * Change settings on device based state flags. The flags are 6902 * in the userspace exported format. 6903 */ 6904 int dev_change_flags(struct net_device *dev, unsigned int flags) 6905 { 6906 int ret; 6907 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6908 6909 ret = __dev_change_flags(dev, flags); 6910 if (ret < 0) 6911 return ret; 6912 6913 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6914 __dev_notify_flags(dev, old_flags, changes); 6915 return ret; 6916 } 6917 EXPORT_SYMBOL(dev_change_flags); 6918 6919 int __dev_set_mtu(struct net_device *dev, int new_mtu) 6920 { 6921 const struct net_device_ops *ops = dev->netdev_ops; 6922 6923 if (ops->ndo_change_mtu) 6924 return ops->ndo_change_mtu(dev, new_mtu); 6925 6926 dev->mtu = new_mtu; 6927 return 0; 6928 } 6929 EXPORT_SYMBOL(__dev_set_mtu); 6930 6931 /** 6932 * dev_set_mtu - Change maximum transfer unit 6933 * @dev: device 6934 * @new_mtu: new transfer unit 6935 * 6936 * Change the maximum transfer size of the network device. 6937 */ 6938 int dev_set_mtu(struct net_device *dev, int new_mtu) 6939 { 6940 int err, orig_mtu; 6941 6942 if (new_mtu == dev->mtu) 6943 return 0; 6944 6945 /* MTU must be positive, and in range */ 6946 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6947 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6948 dev->name, new_mtu, dev->min_mtu); 6949 return -EINVAL; 6950 } 6951 6952 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6953 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6954 dev->name, new_mtu, dev->max_mtu); 6955 return -EINVAL; 6956 } 6957 6958 if (!netif_device_present(dev)) 6959 return -ENODEV; 6960 6961 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6962 err = notifier_to_errno(err); 6963 if (err) 6964 return err; 6965 6966 orig_mtu = dev->mtu; 6967 err = __dev_set_mtu(dev, new_mtu); 6968 6969 if (!err) { 6970 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6971 err = notifier_to_errno(err); 6972 if (err) { 6973 /* setting mtu back and notifying everyone again, 6974 * so that they have a chance to revert changes. 6975 */ 6976 __dev_set_mtu(dev, orig_mtu); 6977 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6978 } 6979 } 6980 return err; 6981 } 6982 EXPORT_SYMBOL(dev_set_mtu); 6983 6984 /** 6985 * dev_set_group - Change group this device belongs to 6986 * @dev: device 6987 * @new_group: group this device should belong to 6988 */ 6989 void dev_set_group(struct net_device *dev, int new_group) 6990 { 6991 dev->group = new_group; 6992 } 6993 EXPORT_SYMBOL(dev_set_group); 6994 6995 /** 6996 * dev_set_mac_address - Change Media Access Control Address 6997 * @dev: device 6998 * @sa: new address 6999 * 7000 * Change the hardware (MAC) address of the device 7001 */ 7002 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7003 { 7004 const struct net_device_ops *ops = dev->netdev_ops; 7005 int err; 7006 7007 if (!ops->ndo_set_mac_address) 7008 return -EOPNOTSUPP; 7009 if (sa->sa_family != dev->type) 7010 return -EINVAL; 7011 if (!netif_device_present(dev)) 7012 return -ENODEV; 7013 err = ops->ndo_set_mac_address(dev, sa); 7014 if (err) 7015 return err; 7016 dev->addr_assign_type = NET_ADDR_SET; 7017 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7018 add_device_randomness(dev->dev_addr, dev->addr_len); 7019 return 0; 7020 } 7021 EXPORT_SYMBOL(dev_set_mac_address); 7022 7023 /** 7024 * dev_change_carrier - Change device carrier 7025 * @dev: device 7026 * @new_carrier: new value 7027 * 7028 * Change device carrier 7029 */ 7030 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7031 { 7032 const struct net_device_ops *ops = dev->netdev_ops; 7033 7034 if (!ops->ndo_change_carrier) 7035 return -EOPNOTSUPP; 7036 if (!netif_device_present(dev)) 7037 return -ENODEV; 7038 return ops->ndo_change_carrier(dev, new_carrier); 7039 } 7040 EXPORT_SYMBOL(dev_change_carrier); 7041 7042 /** 7043 * dev_get_phys_port_id - Get device physical port ID 7044 * @dev: device 7045 * @ppid: port ID 7046 * 7047 * Get device physical port ID 7048 */ 7049 int dev_get_phys_port_id(struct net_device *dev, 7050 struct netdev_phys_item_id *ppid) 7051 { 7052 const struct net_device_ops *ops = dev->netdev_ops; 7053 7054 if (!ops->ndo_get_phys_port_id) 7055 return -EOPNOTSUPP; 7056 return ops->ndo_get_phys_port_id(dev, ppid); 7057 } 7058 EXPORT_SYMBOL(dev_get_phys_port_id); 7059 7060 /** 7061 * dev_get_phys_port_name - Get device physical port name 7062 * @dev: device 7063 * @name: port name 7064 * @len: limit of bytes to copy to name 7065 * 7066 * Get device physical port name 7067 */ 7068 int dev_get_phys_port_name(struct net_device *dev, 7069 char *name, size_t len) 7070 { 7071 const struct net_device_ops *ops = dev->netdev_ops; 7072 7073 if (!ops->ndo_get_phys_port_name) 7074 return -EOPNOTSUPP; 7075 return ops->ndo_get_phys_port_name(dev, name, len); 7076 } 7077 EXPORT_SYMBOL(dev_get_phys_port_name); 7078 7079 /** 7080 * dev_change_proto_down - update protocol port state information 7081 * @dev: device 7082 * @proto_down: new value 7083 * 7084 * This info can be used by switch drivers to set the phys state of the 7085 * port. 7086 */ 7087 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7088 { 7089 const struct net_device_ops *ops = dev->netdev_ops; 7090 7091 if (!ops->ndo_change_proto_down) 7092 return -EOPNOTSUPP; 7093 if (!netif_device_present(dev)) 7094 return -ENODEV; 7095 return ops->ndo_change_proto_down(dev, proto_down); 7096 } 7097 EXPORT_SYMBOL(dev_change_proto_down); 7098 7099 u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op, u32 *prog_id) 7100 { 7101 struct netdev_bpf xdp; 7102 7103 memset(&xdp, 0, sizeof(xdp)); 7104 xdp.command = XDP_QUERY_PROG; 7105 7106 /* Query must always succeed. */ 7107 WARN_ON(bpf_op(dev, &xdp) < 0); 7108 if (prog_id) 7109 *prog_id = xdp.prog_id; 7110 7111 return xdp.prog_attached; 7112 } 7113 7114 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7115 struct netlink_ext_ack *extack, u32 flags, 7116 struct bpf_prog *prog) 7117 { 7118 struct netdev_bpf xdp; 7119 7120 memset(&xdp, 0, sizeof(xdp)); 7121 if (flags & XDP_FLAGS_HW_MODE) 7122 xdp.command = XDP_SETUP_PROG_HW; 7123 else 7124 xdp.command = XDP_SETUP_PROG; 7125 xdp.extack = extack; 7126 xdp.flags = flags; 7127 xdp.prog = prog; 7128 7129 return bpf_op(dev, &xdp); 7130 } 7131 7132 /** 7133 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7134 * @dev: device 7135 * @extack: netlink extended ack 7136 * @fd: new program fd or negative value to clear 7137 * @flags: xdp-related flags 7138 * 7139 * Set or clear a bpf program for a device 7140 */ 7141 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7142 int fd, u32 flags) 7143 { 7144 const struct net_device_ops *ops = dev->netdev_ops; 7145 struct bpf_prog *prog = NULL; 7146 bpf_op_t bpf_op, bpf_chk; 7147 int err; 7148 7149 ASSERT_RTNL(); 7150 7151 bpf_op = bpf_chk = ops->ndo_bpf; 7152 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7153 return -EOPNOTSUPP; 7154 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7155 bpf_op = generic_xdp_install; 7156 if (bpf_op == bpf_chk) 7157 bpf_chk = generic_xdp_install; 7158 7159 if (fd >= 0) { 7160 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk, NULL)) 7161 return -EEXIST; 7162 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7163 __dev_xdp_attached(dev, bpf_op, NULL)) 7164 return -EBUSY; 7165 7166 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7167 bpf_op == ops->ndo_bpf); 7168 if (IS_ERR(prog)) 7169 return PTR_ERR(prog); 7170 7171 if (!(flags & XDP_FLAGS_HW_MODE) && 7172 bpf_prog_is_dev_bound(prog->aux)) { 7173 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7174 bpf_prog_put(prog); 7175 return -EINVAL; 7176 } 7177 } 7178 7179 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7180 if (err < 0 && prog) 7181 bpf_prog_put(prog); 7182 7183 return err; 7184 } 7185 7186 /** 7187 * dev_new_index - allocate an ifindex 7188 * @net: the applicable net namespace 7189 * 7190 * Returns a suitable unique value for a new device interface 7191 * number. The caller must hold the rtnl semaphore or the 7192 * dev_base_lock to be sure it remains unique. 7193 */ 7194 static int dev_new_index(struct net *net) 7195 { 7196 int ifindex = net->ifindex; 7197 7198 for (;;) { 7199 if (++ifindex <= 0) 7200 ifindex = 1; 7201 if (!__dev_get_by_index(net, ifindex)) 7202 return net->ifindex = ifindex; 7203 } 7204 } 7205 7206 /* Delayed registration/unregisteration */ 7207 static LIST_HEAD(net_todo_list); 7208 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7209 7210 static void net_set_todo(struct net_device *dev) 7211 { 7212 list_add_tail(&dev->todo_list, &net_todo_list); 7213 dev_net(dev)->dev_unreg_count++; 7214 } 7215 7216 static void rollback_registered_many(struct list_head *head) 7217 { 7218 struct net_device *dev, *tmp; 7219 LIST_HEAD(close_head); 7220 7221 BUG_ON(dev_boot_phase); 7222 ASSERT_RTNL(); 7223 7224 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7225 /* Some devices call without registering 7226 * for initialization unwind. Remove those 7227 * devices and proceed with the remaining. 7228 */ 7229 if (dev->reg_state == NETREG_UNINITIALIZED) { 7230 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7231 dev->name, dev); 7232 7233 WARN_ON(1); 7234 list_del(&dev->unreg_list); 7235 continue; 7236 } 7237 dev->dismantle = true; 7238 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7239 } 7240 7241 /* If device is running, close it first. */ 7242 list_for_each_entry(dev, head, unreg_list) 7243 list_add_tail(&dev->close_list, &close_head); 7244 dev_close_many(&close_head, true); 7245 7246 list_for_each_entry(dev, head, unreg_list) { 7247 /* And unlink it from device chain. */ 7248 unlist_netdevice(dev); 7249 7250 dev->reg_state = NETREG_UNREGISTERING; 7251 } 7252 flush_all_backlogs(); 7253 7254 synchronize_net(); 7255 7256 list_for_each_entry(dev, head, unreg_list) { 7257 struct sk_buff *skb = NULL; 7258 7259 /* Shutdown queueing discipline. */ 7260 dev_shutdown(dev); 7261 7262 7263 /* Notify protocols, that we are about to destroy 7264 * this device. They should clean all the things. 7265 */ 7266 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7267 7268 if (!dev->rtnl_link_ops || 7269 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7270 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7271 GFP_KERNEL, NULL); 7272 7273 /* 7274 * Flush the unicast and multicast chains 7275 */ 7276 dev_uc_flush(dev); 7277 dev_mc_flush(dev); 7278 7279 if (dev->netdev_ops->ndo_uninit) 7280 dev->netdev_ops->ndo_uninit(dev); 7281 7282 if (skb) 7283 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7284 7285 /* Notifier chain MUST detach us all upper devices. */ 7286 WARN_ON(netdev_has_any_upper_dev(dev)); 7287 WARN_ON(netdev_has_any_lower_dev(dev)); 7288 7289 /* Remove entries from kobject tree */ 7290 netdev_unregister_kobject(dev); 7291 #ifdef CONFIG_XPS 7292 /* Remove XPS queueing entries */ 7293 netif_reset_xps_queues_gt(dev, 0); 7294 #endif 7295 } 7296 7297 synchronize_net(); 7298 7299 list_for_each_entry(dev, head, unreg_list) 7300 dev_put(dev); 7301 } 7302 7303 static void rollback_registered(struct net_device *dev) 7304 { 7305 LIST_HEAD(single); 7306 7307 list_add(&dev->unreg_list, &single); 7308 rollback_registered_many(&single); 7309 list_del(&single); 7310 } 7311 7312 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7313 struct net_device *upper, netdev_features_t features) 7314 { 7315 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7316 netdev_features_t feature; 7317 int feature_bit; 7318 7319 for_each_netdev_feature(&upper_disables, feature_bit) { 7320 feature = __NETIF_F_BIT(feature_bit); 7321 if (!(upper->wanted_features & feature) 7322 && (features & feature)) { 7323 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7324 &feature, upper->name); 7325 features &= ~feature; 7326 } 7327 } 7328 7329 return features; 7330 } 7331 7332 static void netdev_sync_lower_features(struct net_device *upper, 7333 struct net_device *lower, netdev_features_t features) 7334 { 7335 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7336 netdev_features_t feature; 7337 int feature_bit; 7338 7339 for_each_netdev_feature(&upper_disables, feature_bit) { 7340 feature = __NETIF_F_BIT(feature_bit); 7341 if (!(features & feature) && (lower->features & feature)) { 7342 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7343 &feature, lower->name); 7344 lower->wanted_features &= ~feature; 7345 netdev_update_features(lower); 7346 7347 if (unlikely(lower->features & feature)) 7348 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7349 &feature, lower->name); 7350 } 7351 } 7352 } 7353 7354 static netdev_features_t netdev_fix_features(struct net_device *dev, 7355 netdev_features_t features) 7356 { 7357 /* Fix illegal checksum combinations */ 7358 if ((features & NETIF_F_HW_CSUM) && 7359 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7360 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7361 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7362 } 7363 7364 /* TSO requires that SG is present as well. */ 7365 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7366 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7367 features &= ~NETIF_F_ALL_TSO; 7368 } 7369 7370 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7371 !(features & NETIF_F_IP_CSUM)) { 7372 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7373 features &= ~NETIF_F_TSO; 7374 features &= ~NETIF_F_TSO_ECN; 7375 } 7376 7377 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7378 !(features & NETIF_F_IPV6_CSUM)) { 7379 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7380 features &= ~NETIF_F_TSO6; 7381 } 7382 7383 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7384 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7385 features &= ~NETIF_F_TSO_MANGLEID; 7386 7387 /* TSO ECN requires that TSO is present as well. */ 7388 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7389 features &= ~NETIF_F_TSO_ECN; 7390 7391 /* Software GSO depends on SG. */ 7392 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7393 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7394 features &= ~NETIF_F_GSO; 7395 } 7396 7397 /* GSO partial features require GSO partial be set */ 7398 if ((features & dev->gso_partial_features) && 7399 !(features & NETIF_F_GSO_PARTIAL)) { 7400 netdev_dbg(dev, 7401 "Dropping partially supported GSO features since no GSO partial.\n"); 7402 features &= ~dev->gso_partial_features; 7403 } 7404 7405 return features; 7406 } 7407 7408 int __netdev_update_features(struct net_device *dev) 7409 { 7410 struct net_device *upper, *lower; 7411 netdev_features_t features; 7412 struct list_head *iter; 7413 int err = -1; 7414 7415 ASSERT_RTNL(); 7416 7417 features = netdev_get_wanted_features(dev); 7418 7419 if (dev->netdev_ops->ndo_fix_features) 7420 features = dev->netdev_ops->ndo_fix_features(dev, features); 7421 7422 /* driver might be less strict about feature dependencies */ 7423 features = netdev_fix_features(dev, features); 7424 7425 /* some features can't be enabled if they're off an an upper device */ 7426 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7427 features = netdev_sync_upper_features(dev, upper, features); 7428 7429 if (dev->features == features) 7430 goto sync_lower; 7431 7432 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7433 &dev->features, &features); 7434 7435 if (dev->netdev_ops->ndo_set_features) 7436 err = dev->netdev_ops->ndo_set_features(dev, features); 7437 else 7438 err = 0; 7439 7440 if (unlikely(err < 0)) { 7441 netdev_err(dev, 7442 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7443 err, &features, &dev->features); 7444 /* return non-0 since some features might have changed and 7445 * it's better to fire a spurious notification than miss it 7446 */ 7447 return -1; 7448 } 7449 7450 sync_lower: 7451 /* some features must be disabled on lower devices when disabled 7452 * on an upper device (think: bonding master or bridge) 7453 */ 7454 netdev_for_each_lower_dev(dev, lower, iter) 7455 netdev_sync_lower_features(dev, lower, features); 7456 7457 if (!err) { 7458 netdev_features_t diff = features ^ dev->features; 7459 7460 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7461 /* udp_tunnel_{get,drop}_rx_info both need 7462 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7463 * device, or they won't do anything. 7464 * Thus we need to update dev->features 7465 * *before* calling udp_tunnel_get_rx_info, 7466 * but *after* calling udp_tunnel_drop_rx_info. 7467 */ 7468 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7469 dev->features = features; 7470 udp_tunnel_get_rx_info(dev); 7471 } else { 7472 udp_tunnel_drop_rx_info(dev); 7473 } 7474 } 7475 7476 dev->features = features; 7477 } 7478 7479 return err < 0 ? 0 : 1; 7480 } 7481 7482 /** 7483 * netdev_update_features - recalculate device features 7484 * @dev: the device to check 7485 * 7486 * Recalculate dev->features set and send notifications if it 7487 * has changed. Should be called after driver or hardware dependent 7488 * conditions might have changed that influence the features. 7489 */ 7490 void netdev_update_features(struct net_device *dev) 7491 { 7492 if (__netdev_update_features(dev)) 7493 netdev_features_change(dev); 7494 } 7495 EXPORT_SYMBOL(netdev_update_features); 7496 7497 /** 7498 * netdev_change_features - recalculate device features 7499 * @dev: the device to check 7500 * 7501 * Recalculate dev->features set and send notifications even 7502 * if they have not changed. Should be called instead of 7503 * netdev_update_features() if also dev->vlan_features might 7504 * have changed to allow the changes to be propagated to stacked 7505 * VLAN devices. 7506 */ 7507 void netdev_change_features(struct net_device *dev) 7508 { 7509 __netdev_update_features(dev); 7510 netdev_features_change(dev); 7511 } 7512 EXPORT_SYMBOL(netdev_change_features); 7513 7514 /** 7515 * netif_stacked_transfer_operstate - transfer operstate 7516 * @rootdev: the root or lower level device to transfer state from 7517 * @dev: the device to transfer operstate to 7518 * 7519 * Transfer operational state from root to device. This is normally 7520 * called when a stacking relationship exists between the root 7521 * device and the device(a leaf device). 7522 */ 7523 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7524 struct net_device *dev) 7525 { 7526 if (rootdev->operstate == IF_OPER_DORMANT) 7527 netif_dormant_on(dev); 7528 else 7529 netif_dormant_off(dev); 7530 7531 if (netif_carrier_ok(rootdev)) 7532 netif_carrier_on(dev); 7533 else 7534 netif_carrier_off(dev); 7535 } 7536 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7537 7538 #ifdef CONFIG_SYSFS 7539 static int netif_alloc_rx_queues(struct net_device *dev) 7540 { 7541 unsigned int i, count = dev->num_rx_queues; 7542 struct netdev_rx_queue *rx; 7543 size_t sz = count * sizeof(*rx); 7544 7545 BUG_ON(count < 1); 7546 7547 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7548 if (!rx) 7549 return -ENOMEM; 7550 7551 dev->_rx = rx; 7552 7553 for (i = 0; i < count; i++) 7554 rx[i].dev = dev; 7555 return 0; 7556 } 7557 #endif 7558 7559 static void netdev_init_one_queue(struct net_device *dev, 7560 struct netdev_queue *queue, void *_unused) 7561 { 7562 /* Initialize queue lock */ 7563 spin_lock_init(&queue->_xmit_lock); 7564 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7565 queue->xmit_lock_owner = -1; 7566 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7567 queue->dev = dev; 7568 #ifdef CONFIG_BQL 7569 dql_init(&queue->dql, HZ); 7570 #endif 7571 } 7572 7573 static void netif_free_tx_queues(struct net_device *dev) 7574 { 7575 kvfree(dev->_tx); 7576 } 7577 7578 static int netif_alloc_netdev_queues(struct net_device *dev) 7579 { 7580 unsigned int count = dev->num_tx_queues; 7581 struct netdev_queue *tx; 7582 size_t sz = count * sizeof(*tx); 7583 7584 if (count < 1 || count > 0xffff) 7585 return -EINVAL; 7586 7587 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7588 if (!tx) 7589 return -ENOMEM; 7590 7591 dev->_tx = tx; 7592 7593 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7594 spin_lock_init(&dev->tx_global_lock); 7595 7596 return 0; 7597 } 7598 7599 void netif_tx_stop_all_queues(struct net_device *dev) 7600 { 7601 unsigned int i; 7602 7603 for (i = 0; i < dev->num_tx_queues; i++) { 7604 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7605 7606 netif_tx_stop_queue(txq); 7607 } 7608 } 7609 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7610 7611 /** 7612 * register_netdevice - register a network device 7613 * @dev: device to register 7614 * 7615 * Take a completed network device structure and add it to the kernel 7616 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7617 * chain. 0 is returned on success. A negative errno code is returned 7618 * on a failure to set up the device, or if the name is a duplicate. 7619 * 7620 * Callers must hold the rtnl semaphore. You may want 7621 * register_netdev() instead of this. 7622 * 7623 * BUGS: 7624 * The locking appears insufficient to guarantee two parallel registers 7625 * will not get the same name. 7626 */ 7627 7628 int register_netdevice(struct net_device *dev) 7629 { 7630 int ret; 7631 struct net *net = dev_net(dev); 7632 7633 BUG_ON(dev_boot_phase); 7634 ASSERT_RTNL(); 7635 7636 might_sleep(); 7637 7638 /* When net_device's are persistent, this will be fatal. */ 7639 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7640 BUG_ON(!net); 7641 7642 spin_lock_init(&dev->addr_list_lock); 7643 netdev_set_addr_lockdep_class(dev); 7644 7645 ret = dev_get_valid_name(net, dev, dev->name); 7646 if (ret < 0) 7647 goto out; 7648 7649 /* Init, if this function is available */ 7650 if (dev->netdev_ops->ndo_init) { 7651 ret = dev->netdev_ops->ndo_init(dev); 7652 if (ret) { 7653 if (ret > 0) 7654 ret = -EIO; 7655 goto out; 7656 } 7657 } 7658 7659 if (((dev->hw_features | dev->features) & 7660 NETIF_F_HW_VLAN_CTAG_FILTER) && 7661 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7662 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7663 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7664 ret = -EINVAL; 7665 goto err_uninit; 7666 } 7667 7668 ret = -EBUSY; 7669 if (!dev->ifindex) 7670 dev->ifindex = dev_new_index(net); 7671 else if (__dev_get_by_index(net, dev->ifindex)) 7672 goto err_uninit; 7673 7674 /* Transfer changeable features to wanted_features and enable 7675 * software offloads (GSO and GRO). 7676 */ 7677 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7678 dev->features |= NETIF_F_SOFT_FEATURES; 7679 7680 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7681 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7682 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7683 } 7684 7685 dev->wanted_features = dev->features & dev->hw_features; 7686 7687 if (!(dev->flags & IFF_LOOPBACK)) 7688 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7689 7690 /* If IPv4 TCP segmentation offload is supported we should also 7691 * allow the device to enable segmenting the frame with the option 7692 * of ignoring a static IP ID value. This doesn't enable the 7693 * feature itself but allows the user to enable it later. 7694 */ 7695 if (dev->hw_features & NETIF_F_TSO) 7696 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7697 if (dev->vlan_features & NETIF_F_TSO) 7698 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7699 if (dev->mpls_features & NETIF_F_TSO) 7700 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7701 if (dev->hw_enc_features & NETIF_F_TSO) 7702 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7703 7704 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7705 */ 7706 dev->vlan_features |= NETIF_F_HIGHDMA; 7707 7708 /* Make NETIF_F_SG inheritable to tunnel devices. 7709 */ 7710 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7711 7712 /* Make NETIF_F_SG inheritable to MPLS. 7713 */ 7714 dev->mpls_features |= NETIF_F_SG; 7715 7716 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7717 ret = notifier_to_errno(ret); 7718 if (ret) 7719 goto err_uninit; 7720 7721 ret = netdev_register_kobject(dev); 7722 if (ret) 7723 goto err_uninit; 7724 dev->reg_state = NETREG_REGISTERED; 7725 7726 __netdev_update_features(dev); 7727 7728 /* 7729 * Default initial state at registry is that the 7730 * device is present. 7731 */ 7732 7733 set_bit(__LINK_STATE_PRESENT, &dev->state); 7734 7735 linkwatch_init_dev(dev); 7736 7737 dev_init_scheduler(dev); 7738 dev_hold(dev); 7739 list_netdevice(dev); 7740 add_device_randomness(dev->dev_addr, dev->addr_len); 7741 7742 /* If the device has permanent device address, driver should 7743 * set dev_addr and also addr_assign_type should be set to 7744 * NET_ADDR_PERM (default value). 7745 */ 7746 if (dev->addr_assign_type == NET_ADDR_PERM) 7747 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7748 7749 /* Notify protocols, that a new device appeared. */ 7750 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7751 ret = notifier_to_errno(ret); 7752 if (ret) { 7753 rollback_registered(dev); 7754 dev->reg_state = NETREG_UNREGISTERED; 7755 } 7756 /* 7757 * Prevent userspace races by waiting until the network 7758 * device is fully setup before sending notifications. 7759 */ 7760 if (!dev->rtnl_link_ops || 7761 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7762 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7763 7764 out: 7765 return ret; 7766 7767 err_uninit: 7768 if (dev->netdev_ops->ndo_uninit) 7769 dev->netdev_ops->ndo_uninit(dev); 7770 if (dev->priv_destructor) 7771 dev->priv_destructor(dev); 7772 goto out; 7773 } 7774 EXPORT_SYMBOL(register_netdevice); 7775 7776 /** 7777 * init_dummy_netdev - init a dummy network device for NAPI 7778 * @dev: device to init 7779 * 7780 * This takes a network device structure and initialize the minimum 7781 * amount of fields so it can be used to schedule NAPI polls without 7782 * registering a full blown interface. This is to be used by drivers 7783 * that need to tie several hardware interfaces to a single NAPI 7784 * poll scheduler due to HW limitations. 7785 */ 7786 int init_dummy_netdev(struct net_device *dev) 7787 { 7788 /* Clear everything. Note we don't initialize spinlocks 7789 * are they aren't supposed to be taken by any of the 7790 * NAPI code and this dummy netdev is supposed to be 7791 * only ever used for NAPI polls 7792 */ 7793 memset(dev, 0, sizeof(struct net_device)); 7794 7795 /* make sure we BUG if trying to hit standard 7796 * register/unregister code path 7797 */ 7798 dev->reg_state = NETREG_DUMMY; 7799 7800 /* NAPI wants this */ 7801 INIT_LIST_HEAD(&dev->napi_list); 7802 7803 /* a dummy interface is started by default */ 7804 set_bit(__LINK_STATE_PRESENT, &dev->state); 7805 set_bit(__LINK_STATE_START, &dev->state); 7806 7807 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7808 * because users of this 'device' dont need to change 7809 * its refcount. 7810 */ 7811 7812 return 0; 7813 } 7814 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7815 7816 7817 /** 7818 * register_netdev - register a network device 7819 * @dev: device to register 7820 * 7821 * Take a completed network device structure and add it to the kernel 7822 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7823 * chain. 0 is returned on success. A negative errno code is returned 7824 * on a failure to set up the device, or if the name is a duplicate. 7825 * 7826 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7827 * and expands the device name if you passed a format string to 7828 * alloc_netdev. 7829 */ 7830 int register_netdev(struct net_device *dev) 7831 { 7832 int err; 7833 7834 rtnl_lock(); 7835 err = register_netdevice(dev); 7836 rtnl_unlock(); 7837 return err; 7838 } 7839 EXPORT_SYMBOL(register_netdev); 7840 7841 int netdev_refcnt_read(const struct net_device *dev) 7842 { 7843 int i, refcnt = 0; 7844 7845 for_each_possible_cpu(i) 7846 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7847 return refcnt; 7848 } 7849 EXPORT_SYMBOL(netdev_refcnt_read); 7850 7851 /** 7852 * netdev_wait_allrefs - wait until all references are gone. 7853 * @dev: target net_device 7854 * 7855 * This is called when unregistering network devices. 7856 * 7857 * Any protocol or device that holds a reference should register 7858 * for netdevice notification, and cleanup and put back the 7859 * reference if they receive an UNREGISTER event. 7860 * We can get stuck here if buggy protocols don't correctly 7861 * call dev_put. 7862 */ 7863 static void netdev_wait_allrefs(struct net_device *dev) 7864 { 7865 unsigned long rebroadcast_time, warning_time; 7866 int refcnt; 7867 7868 linkwatch_forget_dev(dev); 7869 7870 rebroadcast_time = warning_time = jiffies; 7871 refcnt = netdev_refcnt_read(dev); 7872 7873 while (refcnt != 0) { 7874 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7875 rtnl_lock(); 7876 7877 /* Rebroadcast unregister notification */ 7878 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7879 7880 __rtnl_unlock(); 7881 rcu_barrier(); 7882 rtnl_lock(); 7883 7884 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7885 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7886 &dev->state)) { 7887 /* We must not have linkwatch events 7888 * pending on unregister. If this 7889 * happens, we simply run the queue 7890 * unscheduled, resulting in a noop 7891 * for this device. 7892 */ 7893 linkwatch_run_queue(); 7894 } 7895 7896 __rtnl_unlock(); 7897 7898 rebroadcast_time = jiffies; 7899 } 7900 7901 msleep(250); 7902 7903 refcnt = netdev_refcnt_read(dev); 7904 7905 if (time_after(jiffies, warning_time + 10 * HZ)) { 7906 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7907 dev->name, refcnt); 7908 warning_time = jiffies; 7909 } 7910 } 7911 } 7912 7913 /* The sequence is: 7914 * 7915 * rtnl_lock(); 7916 * ... 7917 * register_netdevice(x1); 7918 * register_netdevice(x2); 7919 * ... 7920 * unregister_netdevice(y1); 7921 * unregister_netdevice(y2); 7922 * ... 7923 * rtnl_unlock(); 7924 * free_netdev(y1); 7925 * free_netdev(y2); 7926 * 7927 * We are invoked by rtnl_unlock(). 7928 * This allows us to deal with problems: 7929 * 1) We can delete sysfs objects which invoke hotplug 7930 * without deadlocking with linkwatch via keventd. 7931 * 2) Since we run with the RTNL semaphore not held, we can sleep 7932 * safely in order to wait for the netdev refcnt to drop to zero. 7933 * 7934 * We must not return until all unregister events added during 7935 * the interval the lock was held have been completed. 7936 */ 7937 void netdev_run_todo(void) 7938 { 7939 struct list_head list; 7940 7941 /* Snapshot list, allow later requests */ 7942 list_replace_init(&net_todo_list, &list); 7943 7944 __rtnl_unlock(); 7945 7946 7947 /* Wait for rcu callbacks to finish before next phase */ 7948 if (!list_empty(&list)) 7949 rcu_barrier(); 7950 7951 while (!list_empty(&list)) { 7952 struct net_device *dev 7953 = list_first_entry(&list, struct net_device, todo_list); 7954 list_del(&dev->todo_list); 7955 7956 rtnl_lock(); 7957 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7958 __rtnl_unlock(); 7959 7960 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7961 pr_err("network todo '%s' but state %d\n", 7962 dev->name, dev->reg_state); 7963 dump_stack(); 7964 continue; 7965 } 7966 7967 dev->reg_state = NETREG_UNREGISTERED; 7968 7969 netdev_wait_allrefs(dev); 7970 7971 /* paranoia */ 7972 BUG_ON(netdev_refcnt_read(dev)); 7973 BUG_ON(!list_empty(&dev->ptype_all)); 7974 BUG_ON(!list_empty(&dev->ptype_specific)); 7975 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7976 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7977 WARN_ON(dev->dn_ptr); 7978 7979 if (dev->priv_destructor) 7980 dev->priv_destructor(dev); 7981 if (dev->needs_free_netdev) 7982 free_netdev(dev); 7983 7984 /* Report a network device has been unregistered */ 7985 rtnl_lock(); 7986 dev_net(dev)->dev_unreg_count--; 7987 __rtnl_unlock(); 7988 wake_up(&netdev_unregistering_wq); 7989 7990 /* Free network device */ 7991 kobject_put(&dev->dev.kobj); 7992 } 7993 } 7994 7995 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7996 * all the same fields in the same order as net_device_stats, with only 7997 * the type differing, but rtnl_link_stats64 may have additional fields 7998 * at the end for newer counters. 7999 */ 8000 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8001 const struct net_device_stats *netdev_stats) 8002 { 8003 #if BITS_PER_LONG == 64 8004 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8005 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8006 /* zero out counters that only exist in rtnl_link_stats64 */ 8007 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8008 sizeof(*stats64) - sizeof(*netdev_stats)); 8009 #else 8010 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8011 const unsigned long *src = (const unsigned long *)netdev_stats; 8012 u64 *dst = (u64 *)stats64; 8013 8014 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8015 for (i = 0; i < n; i++) 8016 dst[i] = src[i]; 8017 /* zero out counters that only exist in rtnl_link_stats64 */ 8018 memset((char *)stats64 + n * sizeof(u64), 0, 8019 sizeof(*stats64) - n * sizeof(u64)); 8020 #endif 8021 } 8022 EXPORT_SYMBOL(netdev_stats_to_stats64); 8023 8024 /** 8025 * dev_get_stats - get network device statistics 8026 * @dev: device to get statistics from 8027 * @storage: place to store stats 8028 * 8029 * Get network statistics from device. Return @storage. 8030 * The device driver may provide its own method by setting 8031 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8032 * otherwise the internal statistics structure is used. 8033 */ 8034 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8035 struct rtnl_link_stats64 *storage) 8036 { 8037 const struct net_device_ops *ops = dev->netdev_ops; 8038 8039 if (ops->ndo_get_stats64) { 8040 memset(storage, 0, sizeof(*storage)); 8041 ops->ndo_get_stats64(dev, storage); 8042 } else if (ops->ndo_get_stats) { 8043 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8044 } else { 8045 netdev_stats_to_stats64(storage, &dev->stats); 8046 } 8047 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8048 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8049 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8050 return storage; 8051 } 8052 EXPORT_SYMBOL(dev_get_stats); 8053 8054 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8055 { 8056 struct netdev_queue *queue = dev_ingress_queue(dev); 8057 8058 #ifdef CONFIG_NET_CLS_ACT 8059 if (queue) 8060 return queue; 8061 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8062 if (!queue) 8063 return NULL; 8064 netdev_init_one_queue(dev, queue, NULL); 8065 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8066 queue->qdisc_sleeping = &noop_qdisc; 8067 rcu_assign_pointer(dev->ingress_queue, queue); 8068 #endif 8069 return queue; 8070 } 8071 8072 static const struct ethtool_ops default_ethtool_ops; 8073 8074 void netdev_set_default_ethtool_ops(struct net_device *dev, 8075 const struct ethtool_ops *ops) 8076 { 8077 if (dev->ethtool_ops == &default_ethtool_ops) 8078 dev->ethtool_ops = ops; 8079 } 8080 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8081 8082 void netdev_freemem(struct net_device *dev) 8083 { 8084 char *addr = (char *)dev - dev->padded; 8085 8086 kvfree(addr); 8087 } 8088 8089 /** 8090 * alloc_netdev_mqs - allocate network device 8091 * @sizeof_priv: size of private data to allocate space for 8092 * @name: device name format string 8093 * @name_assign_type: origin of device name 8094 * @setup: callback to initialize device 8095 * @txqs: the number of TX subqueues to allocate 8096 * @rxqs: the number of RX subqueues to allocate 8097 * 8098 * Allocates a struct net_device with private data area for driver use 8099 * and performs basic initialization. Also allocates subqueue structs 8100 * for each queue on the device. 8101 */ 8102 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8103 unsigned char name_assign_type, 8104 void (*setup)(struct net_device *), 8105 unsigned int txqs, unsigned int rxqs) 8106 { 8107 struct net_device *dev; 8108 unsigned int alloc_size; 8109 struct net_device *p; 8110 8111 BUG_ON(strlen(name) >= sizeof(dev->name)); 8112 8113 if (txqs < 1) { 8114 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8115 return NULL; 8116 } 8117 8118 #ifdef CONFIG_SYSFS 8119 if (rxqs < 1) { 8120 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8121 return NULL; 8122 } 8123 #endif 8124 8125 alloc_size = sizeof(struct net_device); 8126 if (sizeof_priv) { 8127 /* ensure 32-byte alignment of private area */ 8128 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8129 alloc_size += sizeof_priv; 8130 } 8131 /* ensure 32-byte alignment of whole construct */ 8132 alloc_size += NETDEV_ALIGN - 1; 8133 8134 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8135 if (!p) 8136 return NULL; 8137 8138 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8139 dev->padded = (char *)dev - (char *)p; 8140 8141 dev->pcpu_refcnt = alloc_percpu(int); 8142 if (!dev->pcpu_refcnt) 8143 goto free_dev; 8144 8145 if (dev_addr_init(dev)) 8146 goto free_pcpu; 8147 8148 dev_mc_init(dev); 8149 dev_uc_init(dev); 8150 8151 dev_net_set(dev, &init_net); 8152 8153 dev->gso_max_size = GSO_MAX_SIZE; 8154 dev->gso_max_segs = GSO_MAX_SEGS; 8155 8156 INIT_LIST_HEAD(&dev->napi_list); 8157 INIT_LIST_HEAD(&dev->unreg_list); 8158 INIT_LIST_HEAD(&dev->close_list); 8159 INIT_LIST_HEAD(&dev->link_watch_list); 8160 INIT_LIST_HEAD(&dev->adj_list.upper); 8161 INIT_LIST_HEAD(&dev->adj_list.lower); 8162 INIT_LIST_HEAD(&dev->ptype_all); 8163 INIT_LIST_HEAD(&dev->ptype_specific); 8164 #ifdef CONFIG_NET_SCHED 8165 hash_init(dev->qdisc_hash); 8166 #endif 8167 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8168 setup(dev); 8169 8170 if (!dev->tx_queue_len) { 8171 dev->priv_flags |= IFF_NO_QUEUE; 8172 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8173 } 8174 8175 dev->num_tx_queues = txqs; 8176 dev->real_num_tx_queues = txqs; 8177 if (netif_alloc_netdev_queues(dev)) 8178 goto free_all; 8179 8180 #ifdef CONFIG_SYSFS 8181 dev->num_rx_queues = rxqs; 8182 dev->real_num_rx_queues = rxqs; 8183 if (netif_alloc_rx_queues(dev)) 8184 goto free_all; 8185 #endif 8186 8187 strcpy(dev->name, name); 8188 dev->name_assign_type = name_assign_type; 8189 dev->group = INIT_NETDEV_GROUP; 8190 if (!dev->ethtool_ops) 8191 dev->ethtool_ops = &default_ethtool_ops; 8192 8193 nf_hook_ingress_init(dev); 8194 8195 return dev; 8196 8197 free_all: 8198 free_netdev(dev); 8199 return NULL; 8200 8201 free_pcpu: 8202 free_percpu(dev->pcpu_refcnt); 8203 free_dev: 8204 netdev_freemem(dev); 8205 return NULL; 8206 } 8207 EXPORT_SYMBOL(alloc_netdev_mqs); 8208 8209 /** 8210 * free_netdev - free network device 8211 * @dev: device 8212 * 8213 * This function does the last stage of destroying an allocated device 8214 * interface. The reference to the device object is released. If this 8215 * is the last reference then it will be freed.Must be called in process 8216 * context. 8217 */ 8218 void free_netdev(struct net_device *dev) 8219 { 8220 struct napi_struct *p, *n; 8221 struct bpf_prog *prog; 8222 8223 might_sleep(); 8224 netif_free_tx_queues(dev); 8225 #ifdef CONFIG_SYSFS 8226 kvfree(dev->_rx); 8227 #endif 8228 8229 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8230 8231 /* Flush device addresses */ 8232 dev_addr_flush(dev); 8233 8234 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8235 netif_napi_del(p); 8236 8237 free_percpu(dev->pcpu_refcnt); 8238 dev->pcpu_refcnt = NULL; 8239 8240 prog = rcu_dereference_protected(dev->xdp_prog, 1); 8241 if (prog) { 8242 bpf_prog_put(prog); 8243 static_key_slow_dec(&generic_xdp_needed); 8244 } 8245 8246 /* Compatibility with error handling in drivers */ 8247 if (dev->reg_state == NETREG_UNINITIALIZED) { 8248 netdev_freemem(dev); 8249 return; 8250 } 8251 8252 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8253 dev->reg_state = NETREG_RELEASED; 8254 8255 /* will free via device release */ 8256 put_device(&dev->dev); 8257 } 8258 EXPORT_SYMBOL(free_netdev); 8259 8260 /** 8261 * synchronize_net - Synchronize with packet receive processing 8262 * 8263 * Wait for packets currently being received to be done. 8264 * Does not block later packets from starting. 8265 */ 8266 void synchronize_net(void) 8267 { 8268 might_sleep(); 8269 if (rtnl_is_locked()) 8270 synchronize_rcu_expedited(); 8271 else 8272 synchronize_rcu(); 8273 } 8274 EXPORT_SYMBOL(synchronize_net); 8275 8276 /** 8277 * unregister_netdevice_queue - remove device from the kernel 8278 * @dev: device 8279 * @head: list 8280 * 8281 * This function shuts down a device interface and removes it 8282 * from the kernel tables. 8283 * If head not NULL, device is queued to be unregistered later. 8284 * 8285 * Callers must hold the rtnl semaphore. You may want 8286 * unregister_netdev() instead of this. 8287 */ 8288 8289 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8290 { 8291 ASSERT_RTNL(); 8292 8293 if (head) { 8294 list_move_tail(&dev->unreg_list, head); 8295 } else { 8296 rollback_registered(dev); 8297 /* Finish processing unregister after unlock */ 8298 net_set_todo(dev); 8299 } 8300 } 8301 EXPORT_SYMBOL(unregister_netdevice_queue); 8302 8303 /** 8304 * unregister_netdevice_many - unregister many devices 8305 * @head: list of devices 8306 * 8307 * Note: As most callers use a stack allocated list_head, 8308 * we force a list_del() to make sure stack wont be corrupted later. 8309 */ 8310 void unregister_netdevice_many(struct list_head *head) 8311 { 8312 struct net_device *dev; 8313 8314 if (!list_empty(head)) { 8315 rollback_registered_many(head); 8316 list_for_each_entry(dev, head, unreg_list) 8317 net_set_todo(dev); 8318 list_del(head); 8319 } 8320 } 8321 EXPORT_SYMBOL(unregister_netdevice_many); 8322 8323 /** 8324 * unregister_netdev - remove device from the kernel 8325 * @dev: device 8326 * 8327 * This function shuts down a device interface and removes it 8328 * from the kernel tables. 8329 * 8330 * This is just a wrapper for unregister_netdevice that takes 8331 * the rtnl semaphore. In general you want to use this and not 8332 * unregister_netdevice. 8333 */ 8334 void unregister_netdev(struct net_device *dev) 8335 { 8336 rtnl_lock(); 8337 unregister_netdevice(dev); 8338 rtnl_unlock(); 8339 } 8340 EXPORT_SYMBOL(unregister_netdev); 8341 8342 /** 8343 * dev_change_net_namespace - move device to different nethost namespace 8344 * @dev: device 8345 * @net: network namespace 8346 * @pat: If not NULL name pattern to try if the current device name 8347 * is already taken in the destination network namespace. 8348 * 8349 * This function shuts down a device interface and moves it 8350 * to a new network namespace. On success 0 is returned, on 8351 * a failure a netagive errno code is returned. 8352 * 8353 * Callers must hold the rtnl semaphore. 8354 */ 8355 8356 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8357 { 8358 int err, new_nsid; 8359 8360 ASSERT_RTNL(); 8361 8362 /* Don't allow namespace local devices to be moved. */ 8363 err = -EINVAL; 8364 if (dev->features & NETIF_F_NETNS_LOCAL) 8365 goto out; 8366 8367 /* Ensure the device has been registrered */ 8368 if (dev->reg_state != NETREG_REGISTERED) 8369 goto out; 8370 8371 /* Get out if there is nothing todo */ 8372 err = 0; 8373 if (net_eq(dev_net(dev), net)) 8374 goto out; 8375 8376 /* Pick the destination device name, and ensure 8377 * we can use it in the destination network namespace. 8378 */ 8379 err = -EEXIST; 8380 if (__dev_get_by_name(net, dev->name)) { 8381 /* We get here if we can't use the current device name */ 8382 if (!pat) 8383 goto out; 8384 if (dev_get_valid_name(net, dev, pat) < 0) 8385 goto out; 8386 } 8387 8388 /* 8389 * And now a mini version of register_netdevice unregister_netdevice. 8390 */ 8391 8392 /* If device is running close it first. */ 8393 dev_close(dev); 8394 8395 /* And unlink it from device chain */ 8396 err = -ENODEV; 8397 unlist_netdevice(dev); 8398 8399 synchronize_net(); 8400 8401 /* Shutdown queueing discipline. */ 8402 dev_shutdown(dev); 8403 8404 /* Notify protocols, that we are about to destroy 8405 * this device. They should clean all the things. 8406 * 8407 * Note that dev->reg_state stays at NETREG_REGISTERED. 8408 * This is wanted because this way 8021q and macvlan know 8409 * the device is just moving and can keep their slaves up. 8410 */ 8411 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8412 rcu_barrier(); 8413 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8414 if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net) 8415 new_nsid = peernet2id_alloc(dev_net(dev), net); 8416 else 8417 new_nsid = peernet2id(dev_net(dev), net); 8418 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid); 8419 8420 /* 8421 * Flush the unicast and multicast chains 8422 */ 8423 dev_uc_flush(dev); 8424 dev_mc_flush(dev); 8425 8426 /* Send a netdev-removed uevent to the old namespace */ 8427 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8428 netdev_adjacent_del_links(dev); 8429 8430 /* Actually switch the network namespace */ 8431 dev_net_set(dev, net); 8432 8433 /* If there is an ifindex conflict assign a new one */ 8434 if (__dev_get_by_index(net, dev->ifindex)) 8435 dev->ifindex = dev_new_index(net); 8436 8437 /* Send a netdev-add uevent to the new namespace */ 8438 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8439 netdev_adjacent_add_links(dev); 8440 8441 /* Fixup kobjects */ 8442 err = device_rename(&dev->dev, dev->name); 8443 WARN_ON(err); 8444 8445 /* Add the device back in the hashes */ 8446 list_netdevice(dev); 8447 8448 /* Notify protocols, that a new device appeared. */ 8449 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8450 8451 /* 8452 * Prevent userspace races by waiting until the network 8453 * device is fully setup before sending notifications. 8454 */ 8455 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8456 8457 synchronize_net(); 8458 err = 0; 8459 out: 8460 return err; 8461 } 8462 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8463 8464 static int dev_cpu_dead(unsigned int oldcpu) 8465 { 8466 struct sk_buff **list_skb; 8467 struct sk_buff *skb; 8468 unsigned int cpu; 8469 struct softnet_data *sd, *oldsd, *remsd = NULL; 8470 8471 local_irq_disable(); 8472 cpu = smp_processor_id(); 8473 sd = &per_cpu(softnet_data, cpu); 8474 oldsd = &per_cpu(softnet_data, oldcpu); 8475 8476 /* Find end of our completion_queue. */ 8477 list_skb = &sd->completion_queue; 8478 while (*list_skb) 8479 list_skb = &(*list_skb)->next; 8480 /* Append completion queue from offline CPU. */ 8481 *list_skb = oldsd->completion_queue; 8482 oldsd->completion_queue = NULL; 8483 8484 /* Append output queue from offline CPU. */ 8485 if (oldsd->output_queue) { 8486 *sd->output_queue_tailp = oldsd->output_queue; 8487 sd->output_queue_tailp = oldsd->output_queue_tailp; 8488 oldsd->output_queue = NULL; 8489 oldsd->output_queue_tailp = &oldsd->output_queue; 8490 } 8491 /* Append NAPI poll list from offline CPU, with one exception : 8492 * process_backlog() must be called by cpu owning percpu backlog. 8493 * We properly handle process_queue & input_pkt_queue later. 8494 */ 8495 while (!list_empty(&oldsd->poll_list)) { 8496 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8497 struct napi_struct, 8498 poll_list); 8499 8500 list_del_init(&napi->poll_list); 8501 if (napi->poll == process_backlog) 8502 napi->state = 0; 8503 else 8504 ____napi_schedule(sd, napi); 8505 } 8506 8507 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8508 local_irq_enable(); 8509 8510 #ifdef CONFIG_RPS 8511 remsd = oldsd->rps_ipi_list; 8512 oldsd->rps_ipi_list = NULL; 8513 #endif 8514 /* send out pending IPI's on offline CPU */ 8515 net_rps_send_ipi(remsd); 8516 8517 /* Process offline CPU's input_pkt_queue */ 8518 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8519 netif_rx_ni(skb); 8520 input_queue_head_incr(oldsd); 8521 } 8522 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8523 netif_rx_ni(skb); 8524 input_queue_head_incr(oldsd); 8525 } 8526 8527 return 0; 8528 } 8529 8530 /** 8531 * netdev_increment_features - increment feature set by one 8532 * @all: current feature set 8533 * @one: new feature set 8534 * @mask: mask feature set 8535 * 8536 * Computes a new feature set after adding a device with feature set 8537 * @one to the master device with current feature set @all. Will not 8538 * enable anything that is off in @mask. Returns the new feature set. 8539 */ 8540 netdev_features_t netdev_increment_features(netdev_features_t all, 8541 netdev_features_t one, netdev_features_t mask) 8542 { 8543 if (mask & NETIF_F_HW_CSUM) 8544 mask |= NETIF_F_CSUM_MASK; 8545 mask |= NETIF_F_VLAN_CHALLENGED; 8546 8547 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8548 all &= one | ~NETIF_F_ALL_FOR_ALL; 8549 8550 /* If one device supports hw checksumming, set for all. */ 8551 if (all & NETIF_F_HW_CSUM) 8552 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8553 8554 return all; 8555 } 8556 EXPORT_SYMBOL(netdev_increment_features); 8557 8558 static struct hlist_head * __net_init netdev_create_hash(void) 8559 { 8560 int i; 8561 struct hlist_head *hash; 8562 8563 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8564 if (hash != NULL) 8565 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8566 INIT_HLIST_HEAD(&hash[i]); 8567 8568 return hash; 8569 } 8570 8571 /* Initialize per network namespace state */ 8572 static int __net_init netdev_init(struct net *net) 8573 { 8574 if (net != &init_net) 8575 INIT_LIST_HEAD(&net->dev_base_head); 8576 8577 net->dev_name_head = netdev_create_hash(); 8578 if (net->dev_name_head == NULL) 8579 goto err_name; 8580 8581 net->dev_index_head = netdev_create_hash(); 8582 if (net->dev_index_head == NULL) 8583 goto err_idx; 8584 8585 return 0; 8586 8587 err_idx: 8588 kfree(net->dev_name_head); 8589 err_name: 8590 return -ENOMEM; 8591 } 8592 8593 /** 8594 * netdev_drivername - network driver for the device 8595 * @dev: network device 8596 * 8597 * Determine network driver for device. 8598 */ 8599 const char *netdev_drivername(const struct net_device *dev) 8600 { 8601 const struct device_driver *driver; 8602 const struct device *parent; 8603 const char *empty = ""; 8604 8605 parent = dev->dev.parent; 8606 if (!parent) 8607 return empty; 8608 8609 driver = parent->driver; 8610 if (driver && driver->name) 8611 return driver->name; 8612 return empty; 8613 } 8614 8615 static void __netdev_printk(const char *level, const struct net_device *dev, 8616 struct va_format *vaf) 8617 { 8618 if (dev && dev->dev.parent) { 8619 dev_printk_emit(level[1] - '0', 8620 dev->dev.parent, 8621 "%s %s %s%s: %pV", 8622 dev_driver_string(dev->dev.parent), 8623 dev_name(dev->dev.parent), 8624 netdev_name(dev), netdev_reg_state(dev), 8625 vaf); 8626 } else if (dev) { 8627 printk("%s%s%s: %pV", 8628 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8629 } else { 8630 printk("%s(NULL net_device): %pV", level, vaf); 8631 } 8632 } 8633 8634 void netdev_printk(const char *level, const struct net_device *dev, 8635 const char *format, ...) 8636 { 8637 struct va_format vaf; 8638 va_list args; 8639 8640 va_start(args, format); 8641 8642 vaf.fmt = format; 8643 vaf.va = &args; 8644 8645 __netdev_printk(level, dev, &vaf); 8646 8647 va_end(args); 8648 } 8649 EXPORT_SYMBOL(netdev_printk); 8650 8651 #define define_netdev_printk_level(func, level) \ 8652 void func(const struct net_device *dev, const char *fmt, ...) \ 8653 { \ 8654 struct va_format vaf; \ 8655 va_list args; \ 8656 \ 8657 va_start(args, fmt); \ 8658 \ 8659 vaf.fmt = fmt; \ 8660 vaf.va = &args; \ 8661 \ 8662 __netdev_printk(level, dev, &vaf); \ 8663 \ 8664 va_end(args); \ 8665 } \ 8666 EXPORT_SYMBOL(func); 8667 8668 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8669 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8670 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8671 define_netdev_printk_level(netdev_err, KERN_ERR); 8672 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8673 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8674 define_netdev_printk_level(netdev_info, KERN_INFO); 8675 8676 static void __net_exit netdev_exit(struct net *net) 8677 { 8678 kfree(net->dev_name_head); 8679 kfree(net->dev_index_head); 8680 if (net != &init_net) 8681 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 8682 } 8683 8684 static struct pernet_operations __net_initdata netdev_net_ops = { 8685 .init = netdev_init, 8686 .exit = netdev_exit, 8687 }; 8688 8689 static void __net_exit default_device_exit(struct net *net) 8690 { 8691 struct net_device *dev, *aux; 8692 /* 8693 * Push all migratable network devices back to the 8694 * initial network namespace 8695 */ 8696 rtnl_lock(); 8697 for_each_netdev_safe(net, dev, aux) { 8698 int err; 8699 char fb_name[IFNAMSIZ]; 8700 8701 /* Ignore unmoveable devices (i.e. loopback) */ 8702 if (dev->features & NETIF_F_NETNS_LOCAL) 8703 continue; 8704 8705 /* Leave virtual devices for the generic cleanup */ 8706 if (dev->rtnl_link_ops) 8707 continue; 8708 8709 /* Push remaining network devices to init_net */ 8710 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8711 err = dev_change_net_namespace(dev, &init_net, fb_name); 8712 if (err) { 8713 pr_emerg("%s: failed to move %s to init_net: %d\n", 8714 __func__, dev->name, err); 8715 BUG(); 8716 } 8717 } 8718 rtnl_unlock(); 8719 } 8720 8721 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8722 { 8723 /* Return with the rtnl_lock held when there are no network 8724 * devices unregistering in any network namespace in net_list. 8725 */ 8726 struct net *net; 8727 bool unregistering; 8728 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8729 8730 add_wait_queue(&netdev_unregistering_wq, &wait); 8731 for (;;) { 8732 unregistering = false; 8733 rtnl_lock(); 8734 list_for_each_entry(net, net_list, exit_list) { 8735 if (net->dev_unreg_count > 0) { 8736 unregistering = true; 8737 break; 8738 } 8739 } 8740 if (!unregistering) 8741 break; 8742 __rtnl_unlock(); 8743 8744 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8745 } 8746 remove_wait_queue(&netdev_unregistering_wq, &wait); 8747 } 8748 8749 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8750 { 8751 /* At exit all network devices most be removed from a network 8752 * namespace. Do this in the reverse order of registration. 8753 * Do this across as many network namespaces as possible to 8754 * improve batching efficiency. 8755 */ 8756 struct net_device *dev; 8757 struct net *net; 8758 LIST_HEAD(dev_kill_list); 8759 8760 /* To prevent network device cleanup code from dereferencing 8761 * loopback devices or network devices that have been freed 8762 * wait here for all pending unregistrations to complete, 8763 * before unregistring the loopback device and allowing the 8764 * network namespace be freed. 8765 * 8766 * The netdev todo list containing all network devices 8767 * unregistrations that happen in default_device_exit_batch 8768 * will run in the rtnl_unlock() at the end of 8769 * default_device_exit_batch. 8770 */ 8771 rtnl_lock_unregistering(net_list); 8772 list_for_each_entry(net, net_list, exit_list) { 8773 for_each_netdev_reverse(net, dev) { 8774 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8775 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8776 else 8777 unregister_netdevice_queue(dev, &dev_kill_list); 8778 } 8779 } 8780 unregister_netdevice_many(&dev_kill_list); 8781 rtnl_unlock(); 8782 } 8783 8784 static struct pernet_operations __net_initdata default_device_ops = { 8785 .exit = default_device_exit, 8786 .exit_batch = default_device_exit_batch, 8787 }; 8788 8789 /* 8790 * Initialize the DEV module. At boot time this walks the device list and 8791 * unhooks any devices that fail to initialise (normally hardware not 8792 * present) and leaves us with a valid list of present and active devices. 8793 * 8794 */ 8795 8796 /* 8797 * This is called single threaded during boot, so no need 8798 * to take the rtnl semaphore. 8799 */ 8800 static int __init net_dev_init(void) 8801 { 8802 int i, rc = -ENOMEM; 8803 8804 BUG_ON(!dev_boot_phase); 8805 8806 if (dev_proc_init()) 8807 goto out; 8808 8809 if (netdev_kobject_init()) 8810 goto out; 8811 8812 INIT_LIST_HEAD(&ptype_all); 8813 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8814 INIT_LIST_HEAD(&ptype_base[i]); 8815 8816 INIT_LIST_HEAD(&offload_base); 8817 8818 if (register_pernet_subsys(&netdev_net_ops)) 8819 goto out; 8820 8821 /* 8822 * Initialise the packet receive queues. 8823 */ 8824 8825 for_each_possible_cpu(i) { 8826 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8827 struct softnet_data *sd = &per_cpu(softnet_data, i); 8828 8829 INIT_WORK(flush, flush_backlog); 8830 8831 skb_queue_head_init(&sd->input_pkt_queue); 8832 skb_queue_head_init(&sd->process_queue); 8833 INIT_LIST_HEAD(&sd->poll_list); 8834 sd->output_queue_tailp = &sd->output_queue; 8835 #ifdef CONFIG_RPS 8836 sd->csd.func = rps_trigger_softirq; 8837 sd->csd.info = sd; 8838 sd->cpu = i; 8839 #endif 8840 8841 sd->backlog.poll = process_backlog; 8842 sd->backlog.weight = weight_p; 8843 } 8844 8845 dev_boot_phase = 0; 8846 8847 /* The loopback device is special if any other network devices 8848 * is present in a network namespace the loopback device must 8849 * be present. Since we now dynamically allocate and free the 8850 * loopback device ensure this invariant is maintained by 8851 * keeping the loopback device as the first device on the 8852 * list of network devices. Ensuring the loopback devices 8853 * is the first device that appears and the last network device 8854 * that disappears. 8855 */ 8856 if (register_pernet_device(&loopback_net_ops)) 8857 goto out; 8858 8859 if (register_pernet_device(&default_device_ops)) 8860 goto out; 8861 8862 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8863 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8864 8865 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8866 NULL, dev_cpu_dead); 8867 WARN_ON(rc < 0); 8868 rc = 0; 8869 out: 8870 return rc; 8871 } 8872 8873 subsys_initcall(net_dev_init); 8874