xref: /linux/net/core/dev.c (revision 140eb5227767c6754742020a16d2691222b9c19b)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strlen(name) >= IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	if (!dev_valid_name(name))
1068 		return -EINVAL;
1069 
1070 	p = strchr(name, '%');
1071 	if (p) {
1072 		/*
1073 		 * Verify the string as this thing may have come from
1074 		 * the user.  There must be either one "%d" and no other "%"
1075 		 * characters.
1076 		 */
1077 		if (p[1] != 'd' || strchr(p + 2, '%'))
1078 			return -EINVAL;
1079 
1080 		/* Use one page as a bit array of possible slots */
1081 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 		if (!inuse)
1083 			return -ENOMEM;
1084 
1085 		for_each_netdev(net, d) {
1086 			if (!sscanf(d->name, name, &i))
1087 				continue;
1088 			if (i < 0 || i >= max_netdevices)
1089 				continue;
1090 
1091 			/*  avoid cases where sscanf is not exact inverse of printf */
1092 			snprintf(buf, IFNAMSIZ, name, i);
1093 			if (!strncmp(buf, d->name, IFNAMSIZ))
1094 				set_bit(i, inuse);
1095 		}
1096 
1097 		i = find_first_zero_bit(inuse, max_netdevices);
1098 		free_page((unsigned long) inuse);
1099 	}
1100 
1101 	snprintf(buf, IFNAMSIZ, name, i);
1102 	if (!__dev_get_by_name(net, buf))
1103 		return i;
1104 
1105 	/* It is possible to run out of possible slots
1106 	 * when the name is long and there isn't enough space left
1107 	 * for the digits, or if all bits are used.
1108 	 */
1109 	return -ENFILE;
1110 }
1111 
1112 static int dev_alloc_name_ns(struct net *net,
1113 			     struct net_device *dev,
1114 			     const char *name)
1115 {
1116 	char buf[IFNAMSIZ];
1117 	int ret;
1118 
1119 	BUG_ON(!net);
1120 	ret = __dev_alloc_name(net, name, buf);
1121 	if (ret >= 0)
1122 		strlcpy(dev->name, buf, IFNAMSIZ);
1123 	return ret;
1124 }
1125 
1126 /**
1127  *	dev_alloc_name - allocate a name for a device
1128  *	@dev: device
1129  *	@name: name format string
1130  *
1131  *	Passed a format string - eg "lt%d" it will try and find a suitable
1132  *	id. It scans list of devices to build up a free map, then chooses
1133  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *	while allocating the name and adding the device in order to avoid
1135  *	duplicates.
1136  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *	Returns the number of the unit assigned or a negative errno code.
1138  */
1139 
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145 
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 		       const char *name)
1148 {
1149 	BUG_ON(!net);
1150 
1151 	if (!dev_valid_name(name))
1152 		return -EINVAL;
1153 
1154 	if (strchr(name, '%'))
1155 		return dev_alloc_name_ns(net, dev, name);
1156 	else if (__dev_get_by_name(net, name))
1157 		return -EEXIST;
1158 	else if (dev->name != name)
1159 		strlcpy(dev->name, name, IFNAMSIZ);
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164 
1165 /**
1166  *	dev_change_name - change name of a device
1167  *	@dev: device
1168  *	@newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *	Change name of a device, can pass format strings "eth%d".
1171  *	for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175 	unsigned char old_assign_type;
1176 	char oldname[IFNAMSIZ];
1177 	int err = 0;
1178 	int ret;
1179 	struct net *net;
1180 
1181 	ASSERT_RTNL();
1182 	BUG_ON(!dev_net(dev));
1183 
1184 	net = dev_net(dev);
1185 	if (dev->flags & IFF_UP)
1186 		return -EBUSY;
1187 
1188 	write_seqcount_begin(&devnet_rename_seq);
1189 
1190 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 		write_seqcount_end(&devnet_rename_seq);
1192 		return 0;
1193 	}
1194 
1195 	memcpy(oldname, dev->name, IFNAMSIZ);
1196 
1197 	err = dev_get_valid_name(net, dev, newname);
1198 	if (err < 0) {
1199 		write_seqcount_end(&devnet_rename_seq);
1200 		return err;
1201 	}
1202 
1203 	if (oldname[0] && !strchr(oldname, '%'))
1204 		netdev_info(dev, "renamed from %s\n", oldname);
1205 
1206 	old_assign_type = dev->name_assign_type;
1207 	dev->name_assign_type = NET_NAME_RENAMED;
1208 
1209 rollback:
1210 	ret = device_rename(&dev->dev, dev->name);
1211 	if (ret) {
1212 		memcpy(dev->name, oldname, IFNAMSIZ);
1213 		dev->name_assign_type = old_assign_type;
1214 		write_seqcount_end(&devnet_rename_seq);
1215 		return ret;
1216 	}
1217 
1218 	write_seqcount_end(&devnet_rename_seq);
1219 
1220 	netdev_adjacent_rename_links(dev, oldname);
1221 
1222 	write_lock_bh(&dev_base_lock);
1223 	hlist_del_rcu(&dev->name_hlist);
1224 	write_unlock_bh(&dev_base_lock);
1225 
1226 	synchronize_rcu();
1227 
1228 	write_lock_bh(&dev_base_lock);
1229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 	write_unlock_bh(&dev_base_lock);
1231 
1232 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 	ret = notifier_to_errno(ret);
1234 
1235 	if (ret) {
1236 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1237 		if (err >= 0) {
1238 			err = ret;
1239 			write_seqcount_begin(&devnet_rename_seq);
1240 			memcpy(dev->name, oldname, IFNAMSIZ);
1241 			memcpy(oldname, newname, IFNAMSIZ);
1242 			dev->name_assign_type = old_assign_type;
1243 			old_assign_type = NET_NAME_RENAMED;
1244 			goto rollback;
1245 		} else {
1246 			pr_err("%s: name change rollback failed: %d\n",
1247 			       dev->name, ret);
1248 		}
1249 	}
1250 
1251 	return err;
1252 }
1253 
1254 /**
1255  *	dev_set_alias - change ifalias of a device
1256  *	@dev: device
1257  *	@alias: name up to IFALIASZ
1258  *	@len: limit of bytes to copy from info
1259  *
1260  *	Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264 	struct dev_ifalias *new_alias = NULL;
1265 
1266 	if (len >= IFALIASZ)
1267 		return -EINVAL;
1268 
1269 	if (len) {
1270 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 		if (!new_alias)
1272 			return -ENOMEM;
1273 
1274 		memcpy(new_alias->ifalias, alias, len);
1275 		new_alias->ifalias[len] = 0;
1276 	}
1277 
1278 	mutex_lock(&ifalias_mutex);
1279 	rcu_swap_protected(dev->ifalias, new_alias,
1280 			   mutex_is_locked(&ifalias_mutex));
1281 	mutex_unlock(&ifalias_mutex);
1282 
1283 	if (new_alias)
1284 		kfree_rcu(new_alias, rcuhead);
1285 
1286 	return len;
1287 }
1288 
1289 /**
1290  *	dev_get_alias - get ifalias of a device
1291  *	@dev: device
1292  *	@name: buffer to store name of ifalias
1293  *	@len: size of buffer
1294  *
1295  *	get ifalias for a device.  Caller must make sure dev cannot go
1296  *	away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300 	const struct dev_ifalias *alias;
1301 	int ret = 0;
1302 
1303 	rcu_read_lock();
1304 	alias = rcu_dereference(dev->ifalias);
1305 	if (alias)
1306 		ret = snprintf(name, len, "%s", alias->ifalias);
1307 	rcu_read_unlock();
1308 
1309 	return ret;
1310 }
1311 
1312 /**
1313  *	netdev_features_change - device changes features
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323 
1324 /**
1325  *	netdev_state_change - device changes state
1326  *	@dev: device to cause notification
1327  *
1328  *	Called to indicate a device has changed state. This function calls
1329  *	the notifier chains for netdev_chain and sends a NEWLINK message
1330  *	to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334 	if (dev->flags & IFF_UP) {
1335 		struct netdev_notifier_change_info change_info = {
1336 			.info.dev = dev,
1337 		};
1338 
1339 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 					      &change_info.info);
1341 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 	}
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345 
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358 	rtnl_lock();
1359 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 	rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364 
1365 static int __dev_open(struct net_device *dev)
1366 {
1367 	const struct net_device_ops *ops = dev->netdev_ops;
1368 	int ret;
1369 
1370 	ASSERT_RTNL();
1371 
1372 	if (!netif_device_present(dev))
1373 		return -ENODEV;
1374 
1375 	/* Block netpoll from trying to do any rx path servicing.
1376 	 * If we don't do this there is a chance ndo_poll_controller
1377 	 * or ndo_poll may be running while we open the device
1378 	 */
1379 	netpoll_poll_disable(dev);
1380 
1381 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 	ret = notifier_to_errno(ret);
1383 	if (ret)
1384 		return ret;
1385 
1386 	set_bit(__LINK_STATE_START, &dev->state);
1387 
1388 	if (ops->ndo_validate_addr)
1389 		ret = ops->ndo_validate_addr(dev);
1390 
1391 	if (!ret && ops->ndo_open)
1392 		ret = ops->ndo_open(dev);
1393 
1394 	netpoll_poll_enable(dev);
1395 
1396 	if (ret)
1397 		clear_bit(__LINK_STATE_START, &dev->state);
1398 	else {
1399 		dev->flags |= IFF_UP;
1400 		dev_set_rx_mode(dev);
1401 		dev_activate(dev);
1402 		add_device_randomness(dev->dev_addr, dev->addr_len);
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 /**
1409  *	dev_open	- prepare an interface for use.
1410  *	@dev:	device to open
1411  *
1412  *	Takes a device from down to up state. The device's private open
1413  *	function is invoked and then the multicast lists are loaded. Finally
1414  *	the device is moved into the up state and a %NETDEV_UP message is
1415  *	sent to the netdev notifier chain.
1416  *
1417  *	Calling this function on an active interface is a nop. On a failure
1418  *	a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422 	int ret;
1423 
1424 	if (dev->flags & IFF_UP)
1425 		return 0;
1426 
1427 	ret = __dev_open(dev);
1428 	if (ret < 0)
1429 		return ret;
1430 
1431 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 	call_netdevice_notifiers(NETDEV_UP, dev);
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437 
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440 	struct net_device *dev;
1441 
1442 	ASSERT_RTNL();
1443 	might_sleep();
1444 
1445 	list_for_each_entry(dev, head, close_list) {
1446 		/* Temporarily disable netpoll until the interface is down */
1447 		netpoll_poll_disable(dev);
1448 
1449 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450 
1451 		clear_bit(__LINK_STATE_START, &dev->state);
1452 
1453 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1454 		 * can be even on different cpu. So just clear netif_running().
1455 		 *
1456 		 * dev->stop() will invoke napi_disable() on all of it's
1457 		 * napi_struct instances on this device.
1458 		 */
1459 		smp_mb__after_atomic(); /* Commit netif_running(). */
1460 	}
1461 
1462 	dev_deactivate_many(head);
1463 
1464 	list_for_each_entry(dev, head, close_list) {
1465 		const struct net_device_ops *ops = dev->netdev_ops;
1466 
1467 		/*
1468 		 *	Call the device specific close. This cannot fail.
1469 		 *	Only if device is UP
1470 		 *
1471 		 *	We allow it to be called even after a DETACH hot-plug
1472 		 *	event.
1473 		 */
1474 		if (ops->ndo_stop)
1475 			ops->ndo_stop(dev);
1476 
1477 		dev->flags &= ~IFF_UP;
1478 		netpoll_poll_enable(dev);
1479 	}
1480 }
1481 
1482 static void __dev_close(struct net_device *dev)
1483 {
1484 	LIST_HEAD(single);
1485 
1486 	list_add(&dev->close_list, &single);
1487 	__dev_close_many(&single);
1488 	list_del(&single);
1489 }
1490 
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493 	struct net_device *dev, *tmp;
1494 
1495 	/* Remove the devices that don't need to be closed */
1496 	list_for_each_entry_safe(dev, tmp, head, close_list)
1497 		if (!(dev->flags & IFF_UP))
1498 			list_del_init(&dev->close_list);
1499 
1500 	__dev_close_many(head);
1501 
1502 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 		if (unlink)
1506 			list_del_init(&dev->close_list);
1507 	}
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510 
1511 /**
1512  *	dev_close - shutdown an interface.
1513  *	@dev: device to shutdown
1514  *
1515  *	This function moves an active device into down state. A
1516  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *	chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522 	if (dev->flags & IFF_UP) {
1523 		LIST_HEAD(single);
1524 
1525 		list_add(&dev->close_list, &single);
1526 		dev_close_many(&single, true);
1527 		list_del(&single);
1528 	}
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531 
1532 
1533 /**
1534  *	dev_disable_lro - disable Large Receive Offload on a device
1535  *	@dev: device
1536  *
1537  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *	called under RTNL.  This is needed if received packets may be
1539  *	forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543 	struct net_device *lower_dev;
1544 	struct list_head *iter;
1545 
1546 	dev->wanted_features &= ~NETIF_F_LRO;
1547 	netdev_update_features(dev);
1548 
1549 	if (unlikely(dev->features & NETIF_F_LRO))
1550 		netdev_WARN(dev, "failed to disable LRO!\n");
1551 
1552 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 		dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556 
1557 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1558 				   struct net_device *dev)
1559 {
1560 	struct netdev_notifier_info info = {
1561 		.dev = dev,
1562 	};
1563 
1564 	return nb->notifier_call(nb, val, &info);
1565 }
1566 
1567 static int dev_boot_phase = 1;
1568 
1569 /**
1570  * register_netdevice_notifier - register a network notifier block
1571  * @nb: notifier
1572  *
1573  * Register a notifier to be called when network device events occur.
1574  * The notifier passed is linked into the kernel structures and must
1575  * not be reused until it has been unregistered. A negative errno code
1576  * is returned on a failure.
1577  *
1578  * When registered all registration and up events are replayed
1579  * to the new notifier to allow device to have a race free
1580  * view of the network device list.
1581  */
1582 
1583 int register_netdevice_notifier(struct notifier_block *nb)
1584 {
1585 	struct net_device *dev;
1586 	struct net_device *last;
1587 	struct net *net;
1588 	int err;
1589 
1590 	rtnl_lock();
1591 	err = raw_notifier_chain_register(&netdev_chain, nb);
1592 	if (err)
1593 		goto unlock;
1594 	if (dev_boot_phase)
1595 		goto unlock;
1596 	for_each_net(net) {
1597 		for_each_netdev(net, dev) {
1598 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1599 			err = notifier_to_errno(err);
1600 			if (err)
1601 				goto rollback;
1602 
1603 			if (!(dev->flags & IFF_UP))
1604 				continue;
1605 
1606 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1607 		}
1608 	}
1609 
1610 unlock:
1611 	rtnl_unlock();
1612 	return err;
1613 
1614 rollback:
1615 	last = dev;
1616 	for_each_net(net) {
1617 		for_each_netdev(net, dev) {
1618 			if (dev == last)
1619 				goto outroll;
1620 
1621 			if (dev->flags & IFF_UP) {
1622 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1623 							dev);
1624 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1625 			}
1626 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1627 		}
1628 	}
1629 
1630 outroll:
1631 	raw_notifier_chain_unregister(&netdev_chain, nb);
1632 	goto unlock;
1633 }
1634 EXPORT_SYMBOL(register_netdevice_notifier);
1635 
1636 /**
1637  * unregister_netdevice_notifier - unregister a network notifier block
1638  * @nb: notifier
1639  *
1640  * Unregister a notifier previously registered by
1641  * register_netdevice_notifier(). The notifier is unlinked into the
1642  * kernel structures and may then be reused. A negative errno code
1643  * is returned on a failure.
1644  *
1645  * After unregistering unregister and down device events are synthesized
1646  * for all devices on the device list to the removed notifier to remove
1647  * the need for special case cleanup code.
1648  */
1649 
1650 int unregister_netdevice_notifier(struct notifier_block *nb)
1651 {
1652 	struct net_device *dev;
1653 	struct net *net;
1654 	int err;
1655 
1656 	rtnl_lock();
1657 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1658 	if (err)
1659 		goto unlock;
1660 
1661 	for_each_net(net) {
1662 		for_each_netdev(net, dev) {
1663 			if (dev->flags & IFF_UP) {
1664 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665 							dev);
1666 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667 			}
1668 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669 		}
1670 	}
1671 unlock:
1672 	rtnl_unlock();
1673 	return err;
1674 }
1675 EXPORT_SYMBOL(unregister_netdevice_notifier);
1676 
1677 /**
1678  *	call_netdevice_notifiers_info - call all network notifier blocks
1679  *	@val: value passed unmodified to notifier function
1680  *	@dev: net_device pointer passed unmodified to notifier function
1681  *	@info: notifier information data
1682  *
1683  *	Call all network notifier blocks.  Parameters and return value
1684  *	are as for raw_notifier_call_chain().
1685  */
1686 
1687 static int call_netdevice_notifiers_info(unsigned long val,
1688 					 struct netdev_notifier_info *info)
1689 {
1690 	ASSERT_RTNL();
1691 	return raw_notifier_call_chain(&netdev_chain, val, info);
1692 }
1693 
1694 /**
1695  *	call_netdevice_notifiers - call all network notifier blocks
1696  *      @val: value passed unmodified to notifier function
1697  *      @dev: net_device pointer passed unmodified to notifier function
1698  *
1699  *	Call all network notifier blocks.  Parameters and return value
1700  *	are as for raw_notifier_call_chain().
1701  */
1702 
1703 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1704 {
1705 	struct netdev_notifier_info info = {
1706 		.dev = dev,
1707 	};
1708 
1709 	return call_netdevice_notifiers_info(val, &info);
1710 }
1711 EXPORT_SYMBOL(call_netdevice_notifiers);
1712 
1713 #ifdef CONFIG_NET_INGRESS
1714 static struct static_key ingress_needed __read_mostly;
1715 
1716 void net_inc_ingress_queue(void)
1717 {
1718 	static_key_slow_inc(&ingress_needed);
1719 }
1720 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1721 
1722 void net_dec_ingress_queue(void)
1723 {
1724 	static_key_slow_dec(&ingress_needed);
1725 }
1726 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1727 #endif
1728 
1729 #ifdef CONFIG_NET_EGRESS
1730 static struct static_key egress_needed __read_mostly;
1731 
1732 void net_inc_egress_queue(void)
1733 {
1734 	static_key_slow_inc(&egress_needed);
1735 }
1736 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1737 
1738 void net_dec_egress_queue(void)
1739 {
1740 	static_key_slow_dec(&egress_needed);
1741 }
1742 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1743 #endif
1744 
1745 static struct static_key netstamp_needed __read_mostly;
1746 #ifdef HAVE_JUMP_LABEL
1747 static atomic_t netstamp_needed_deferred;
1748 static atomic_t netstamp_wanted;
1749 static void netstamp_clear(struct work_struct *work)
1750 {
1751 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1752 	int wanted;
1753 
1754 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1755 	if (wanted > 0)
1756 		static_key_enable(&netstamp_needed);
1757 	else
1758 		static_key_disable(&netstamp_needed);
1759 }
1760 static DECLARE_WORK(netstamp_work, netstamp_clear);
1761 #endif
1762 
1763 void net_enable_timestamp(void)
1764 {
1765 #ifdef HAVE_JUMP_LABEL
1766 	int wanted;
1767 
1768 	while (1) {
1769 		wanted = atomic_read(&netstamp_wanted);
1770 		if (wanted <= 0)
1771 			break;
1772 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1773 			return;
1774 	}
1775 	atomic_inc(&netstamp_needed_deferred);
1776 	schedule_work(&netstamp_work);
1777 #else
1778 	static_key_slow_inc(&netstamp_needed);
1779 #endif
1780 }
1781 EXPORT_SYMBOL(net_enable_timestamp);
1782 
1783 void net_disable_timestamp(void)
1784 {
1785 #ifdef HAVE_JUMP_LABEL
1786 	int wanted;
1787 
1788 	while (1) {
1789 		wanted = atomic_read(&netstamp_wanted);
1790 		if (wanted <= 1)
1791 			break;
1792 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1793 			return;
1794 	}
1795 	atomic_dec(&netstamp_needed_deferred);
1796 	schedule_work(&netstamp_work);
1797 #else
1798 	static_key_slow_dec(&netstamp_needed);
1799 #endif
1800 }
1801 EXPORT_SYMBOL(net_disable_timestamp);
1802 
1803 static inline void net_timestamp_set(struct sk_buff *skb)
1804 {
1805 	skb->tstamp = 0;
1806 	if (static_key_false(&netstamp_needed))
1807 		__net_timestamp(skb);
1808 }
1809 
1810 #define net_timestamp_check(COND, SKB)			\
1811 	if (static_key_false(&netstamp_needed)) {		\
1812 		if ((COND) && !(SKB)->tstamp)	\
1813 			__net_timestamp(SKB);		\
1814 	}						\
1815 
1816 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1817 {
1818 	unsigned int len;
1819 
1820 	if (!(dev->flags & IFF_UP))
1821 		return false;
1822 
1823 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1824 	if (skb->len <= len)
1825 		return true;
1826 
1827 	/* if TSO is enabled, we don't care about the length as the packet
1828 	 * could be forwarded without being segmented before
1829 	 */
1830 	if (skb_is_gso(skb))
1831 		return true;
1832 
1833 	return false;
1834 }
1835 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1836 
1837 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1838 {
1839 	int ret = ____dev_forward_skb(dev, skb);
1840 
1841 	if (likely(!ret)) {
1842 		skb->protocol = eth_type_trans(skb, dev);
1843 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1844 	}
1845 
1846 	return ret;
1847 }
1848 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1849 
1850 /**
1851  * dev_forward_skb - loopback an skb to another netif
1852  *
1853  * @dev: destination network device
1854  * @skb: buffer to forward
1855  *
1856  * return values:
1857  *	NET_RX_SUCCESS	(no congestion)
1858  *	NET_RX_DROP     (packet was dropped, but freed)
1859  *
1860  * dev_forward_skb can be used for injecting an skb from the
1861  * start_xmit function of one device into the receive queue
1862  * of another device.
1863  *
1864  * The receiving device may be in another namespace, so
1865  * we have to clear all information in the skb that could
1866  * impact namespace isolation.
1867  */
1868 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1869 {
1870 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1871 }
1872 EXPORT_SYMBOL_GPL(dev_forward_skb);
1873 
1874 static inline int deliver_skb(struct sk_buff *skb,
1875 			      struct packet_type *pt_prev,
1876 			      struct net_device *orig_dev)
1877 {
1878 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1879 		return -ENOMEM;
1880 	refcount_inc(&skb->users);
1881 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1882 }
1883 
1884 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1885 					  struct packet_type **pt,
1886 					  struct net_device *orig_dev,
1887 					  __be16 type,
1888 					  struct list_head *ptype_list)
1889 {
1890 	struct packet_type *ptype, *pt_prev = *pt;
1891 
1892 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1893 		if (ptype->type != type)
1894 			continue;
1895 		if (pt_prev)
1896 			deliver_skb(skb, pt_prev, orig_dev);
1897 		pt_prev = ptype;
1898 	}
1899 	*pt = pt_prev;
1900 }
1901 
1902 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1903 {
1904 	if (!ptype->af_packet_priv || !skb->sk)
1905 		return false;
1906 
1907 	if (ptype->id_match)
1908 		return ptype->id_match(ptype, skb->sk);
1909 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1910 		return true;
1911 
1912 	return false;
1913 }
1914 
1915 /*
1916  *	Support routine. Sends outgoing frames to any network
1917  *	taps currently in use.
1918  */
1919 
1920 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1921 {
1922 	struct packet_type *ptype;
1923 	struct sk_buff *skb2 = NULL;
1924 	struct packet_type *pt_prev = NULL;
1925 	struct list_head *ptype_list = &ptype_all;
1926 
1927 	rcu_read_lock();
1928 again:
1929 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1930 		/* Never send packets back to the socket
1931 		 * they originated from - MvS (miquels@drinkel.ow.org)
1932 		 */
1933 		if (skb_loop_sk(ptype, skb))
1934 			continue;
1935 
1936 		if (pt_prev) {
1937 			deliver_skb(skb2, pt_prev, skb->dev);
1938 			pt_prev = ptype;
1939 			continue;
1940 		}
1941 
1942 		/* need to clone skb, done only once */
1943 		skb2 = skb_clone(skb, GFP_ATOMIC);
1944 		if (!skb2)
1945 			goto out_unlock;
1946 
1947 		net_timestamp_set(skb2);
1948 
1949 		/* skb->nh should be correctly
1950 		 * set by sender, so that the second statement is
1951 		 * just protection against buggy protocols.
1952 		 */
1953 		skb_reset_mac_header(skb2);
1954 
1955 		if (skb_network_header(skb2) < skb2->data ||
1956 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1957 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1958 					     ntohs(skb2->protocol),
1959 					     dev->name);
1960 			skb_reset_network_header(skb2);
1961 		}
1962 
1963 		skb2->transport_header = skb2->network_header;
1964 		skb2->pkt_type = PACKET_OUTGOING;
1965 		pt_prev = ptype;
1966 	}
1967 
1968 	if (ptype_list == &ptype_all) {
1969 		ptype_list = &dev->ptype_all;
1970 		goto again;
1971 	}
1972 out_unlock:
1973 	if (pt_prev) {
1974 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1975 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1976 		else
1977 			kfree_skb(skb2);
1978 	}
1979 	rcu_read_unlock();
1980 }
1981 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1982 
1983 /**
1984  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1985  * @dev: Network device
1986  * @txq: number of queues available
1987  *
1988  * If real_num_tx_queues is changed the tc mappings may no longer be
1989  * valid. To resolve this verify the tc mapping remains valid and if
1990  * not NULL the mapping. With no priorities mapping to this
1991  * offset/count pair it will no longer be used. In the worst case TC0
1992  * is invalid nothing can be done so disable priority mappings. If is
1993  * expected that drivers will fix this mapping if they can before
1994  * calling netif_set_real_num_tx_queues.
1995  */
1996 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1997 {
1998 	int i;
1999 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2000 
2001 	/* If TC0 is invalidated disable TC mapping */
2002 	if (tc->offset + tc->count > txq) {
2003 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2004 		dev->num_tc = 0;
2005 		return;
2006 	}
2007 
2008 	/* Invalidated prio to tc mappings set to TC0 */
2009 	for (i = 1; i < TC_BITMASK + 1; i++) {
2010 		int q = netdev_get_prio_tc_map(dev, i);
2011 
2012 		tc = &dev->tc_to_txq[q];
2013 		if (tc->offset + tc->count > txq) {
2014 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2015 				i, q);
2016 			netdev_set_prio_tc_map(dev, i, 0);
2017 		}
2018 	}
2019 }
2020 
2021 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2022 {
2023 	if (dev->num_tc) {
2024 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2025 		int i;
2026 
2027 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2028 			if ((txq - tc->offset) < tc->count)
2029 				return i;
2030 		}
2031 
2032 		return -1;
2033 	}
2034 
2035 	return 0;
2036 }
2037 EXPORT_SYMBOL(netdev_txq_to_tc);
2038 
2039 #ifdef CONFIG_XPS
2040 static DEFINE_MUTEX(xps_map_mutex);
2041 #define xmap_dereference(P)		\
2042 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2043 
2044 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2045 			     int tci, u16 index)
2046 {
2047 	struct xps_map *map = NULL;
2048 	int pos;
2049 
2050 	if (dev_maps)
2051 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2052 	if (!map)
2053 		return false;
2054 
2055 	for (pos = map->len; pos--;) {
2056 		if (map->queues[pos] != index)
2057 			continue;
2058 
2059 		if (map->len > 1) {
2060 			map->queues[pos] = map->queues[--map->len];
2061 			break;
2062 		}
2063 
2064 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2065 		kfree_rcu(map, rcu);
2066 		return false;
2067 	}
2068 
2069 	return true;
2070 }
2071 
2072 static bool remove_xps_queue_cpu(struct net_device *dev,
2073 				 struct xps_dev_maps *dev_maps,
2074 				 int cpu, u16 offset, u16 count)
2075 {
2076 	int num_tc = dev->num_tc ? : 1;
2077 	bool active = false;
2078 	int tci;
2079 
2080 	for (tci = cpu * num_tc; num_tc--; tci++) {
2081 		int i, j;
2082 
2083 		for (i = count, j = offset; i--; j++) {
2084 			if (!remove_xps_queue(dev_maps, cpu, j))
2085 				break;
2086 		}
2087 
2088 		active |= i < 0;
2089 	}
2090 
2091 	return active;
2092 }
2093 
2094 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2095 				   u16 count)
2096 {
2097 	struct xps_dev_maps *dev_maps;
2098 	int cpu, i;
2099 	bool active = false;
2100 
2101 	mutex_lock(&xps_map_mutex);
2102 	dev_maps = xmap_dereference(dev->xps_maps);
2103 
2104 	if (!dev_maps)
2105 		goto out_no_maps;
2106 
2107 	for_each_possible_cpu(cpu)
2108 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2109 					       offset, count);
2110 
2111 	if (!active) {
2112 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2113 		kfree_rcu(dev_maps, rcu);
2114 	}
2115 
2116 	for (i = offset + (count - 1); count--; i--)
2117 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2118 					     NUMA_NO_NODE);
2119 
2120 out_no_maps:
2121 	mutex_unlock(&xps_map_mutex);
2122 }
2123 
2124 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2125 {
2126 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2127 }
2128 
2129 static struct xps_map *expand_xps_map(struct xps_map *map,
2130 				      int cpu, u16 index)
2131 {
2132 	struct xps_map *new_map;
2133 	int alloc_len = XPS_MIN_MAP_ALLOC;
2134 	int i, pos;
2135 
2136 	for (pos = 0; map && pos < map->len; pos++) {
2137 		if (map->queues[pos] != index)
2138 			continue;
2139 		return map;
2140 	}
2141 
2142 	/* Need to add queue to this CPU's existing map */
2143 	if (map) {
2144 		if (pos < map->alloc_len)
2145 			return map;
2146 
2147 		alloc_len = map->alloc_len * 2;
2148 	}
2149 
2150 	/* Need to allocate new map to store queue on this CPU's map */
2151 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2152 			       cpu_to_node(cpu));
2153 	if (!new_map)
2154 		return NULL;
2155 
2156 	for (i = 0; i < pos; i++)
2157 		new_map->queues[i] = map->queues[i];
2158 	new_map->alloc_len = alloc_len;
2159 	new_map->len = pos;
2160 
2161 	return new_map;
2162 }
2163 
2164 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2165 			u16 index)
2166 {
2167 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2168 	int i, cpu, tci, numa_node_id = -2;
2169 	int maps_sz, num_tc = 1, tc = 0;
2170 	struct xps_map *map, *new_map;
2171 	bool active = false;
2172 
2173 	if (dev->num_tc) {
2174 		num_tc = dev->num_tc;
2175 		tc = netdev_txq_to_tc(dev, index);
2176 		if (tc < 0)
2177 			return -EINVAL;
2178 	}
2179 
2180 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2181 	if (maps_sz < L1_CACHE_BYTES)
2182 		maps_sz = L1_CACHE_BYTES;
2183 
2184 	mutex_lock(&xps_map_mutex);
2185 
2186 	dev_maps = xmap_dereference(dev->xps_maps);
2187 
2188 	/* allocate memory for queue storage */
2189 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2190 		if (!new_dev_maps)
2191 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2192 		if (!new_dev_maps) {
2193 			mutex_unlock(&xps_map_mutex);
2194 			return -ENOMEM;
2195 		}
2196 
2197 		tci = cpu * num_tc + tc;
2198 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2199 				 NULL;
2200 
2201 		map = expand_xps_map(map, cpu, index);
2202 		if (!map)
2203 			goto error;
2204 
2205 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2206 	}
2207 
2208 	if (!new_dev_maps)
2209 		goto out_no_new_maps;
2210 
2211 	for_each_possible_cpu(cpu) {
2212 		/* copy maps belonging to foreign traffic classes */
2213 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2214 			/* fill in the new device map from the old device map */
2215 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2216 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2217 		}
2218 
2219 		/* We need to explicitly update tci as prevous loop
2220 		 * could break out early if dev_maps is NULL.
2221 		 */
2222 		tci = cpu * num_tc + tc;
2223 
2224 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2225 			/* add queue to CPU maps */
2226 			int pos = 0;
2227 
2228 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2229 			while ((pos < map->len) && (map->queues[pos] != index))
2230 				pos++;
2231 
2232 			if (pos == map->len)
2233 				map->queues[map->len++] = index;
2234 #ifdef CONFIG_NUMA
2235 			if (numa_node_id == -2)
2236 				numa_node_id = cpu_to_node(cpu);
2237 			else if (numa_node_id != cpu_to_node(cpu))
2238 				numa_node_id = -1;
2239 #endif
2240 		} else if (dev_maps) {
2241 			/* fill in the new device map from the old device map */
2242 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2243 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2244 		}
2245 
2246 		/* copy maps belonging to foreign traffic classes */
2247 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2248 			/* fill in the new device map from the old device map */
2249 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2250 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2251 		}
2252 	}
2253 
2254 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2255 
2256 	/* Cleanup old maps */
2257 	if (!dev_maps)
2258 		goto out_no_old_maps;
2259 
2260 	for_each_possible_cpu(cpu) {
2261 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2262 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2263 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2264 			if (map && map != new_map)
2265 				kfree_rcu(map, rcu);
2266 		}
2267 	}
2268 
2269 	kfree_rcu(dev_maps, rcu);
2270 
2271 out_no_old_maps:
2272 	dev_maps = new_dev_maps;
2273 	active = true;
2274 
2275 out_no_new_maps:
2276 	/* update Tx queue numa node */
2277 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2278 				     (numa_node_id >= 0) ? numa_node_id :
2279 				     NUMA_NO_NODE);
2280 
2281 	if (!dev_maps)
2282 		goto out_no_maps;
2283 
2284 	/* removes queue from unused CPUs */
2285 	for_each_possible_cpu(cpu) {
2286 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2287 			active |= remove_xps_queue(dev_maps, tci, index);
2288 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2289 			active |= remove_xps_queue(dev_maps, tci, index);
2290 		for (i = num_tc - tc, tci++; --i; tci++)
2291 			active |= remove_xps_queue(dev_maps, tci, index);
2292 	}
2293 
2294 	/* free map if not active */
2295 	if (!active) {
2296 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2297 		kfree_rcu(dev_maps, rcu);
2298 	}
2299 
2300 out_no_maps:
2301 	mutex_unlock(&xps_map_mutex);
2302 
2303 	return 0;
2304 error:
2305 	/* remove any maps that we added */
2306 	for_each_possible_cpu(cpu) {
2307 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2308 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2309 			map = dev_maps ?
2310 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2311 			      NULL;
2312 			if (new_map && new_map != map)
2313 				kfree(new_map);
2314 		}
2315 	}
2316 
2317 	mutex_unlock(&xps_map_mutex);
2318 
2319 	kfree(new_dev_maps);
2320 	return -ENOMEM;
2321 }
2322 EXPORT_SYMBOL(netif_set_xps_queue);
2323 
2324 #endif
2325 void netdev_reset_tc(struct net_device *dev)
2326 {
2327 #ifdef CONFIG_XPS
2328 	netif_reset_xps_queues_gt(dev, 0);
2329 #endif
2330 	dev->num_tc = 0;
2331 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2332 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2333 }
2334 EXPORT_SYMBOL(netdev_reset_tc);
2335 
2336 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2337 {
2338 	if (tc >= dev->num_tc)
2339 		return -EINVAL;
2340 
2341 #ifdef CONFIG_XPS
2342 	netif_reset_xps_queues(dev, offset, count);
2343 #endif
2344 	dev->tc_to_txq[tc].count = count;
2345 	dev->tc_to_txq[tc].offset = offset;
2346 	return 0;
2347 }
2348 EXPORT_SYMBOL(netdev_set_tc_queue);
2349 
2350 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2351 {
2352 	if (num_tc > TC_MAX_QUEUE)
2353 		return -EINVAL;
2354 
2355 #ifdef CONFIG_XPS
2356 	netif_reset_xps_queues_gt(dev, 0);
2357 #endif
2358 	dev->num_tc = num_tc;
2359 	return 0;
2360 }
2361 EXPORT_SYMBOL(netdev_set_num_tc);
2362 
2363 /*
2364  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2365  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2366  */
2367 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2368 {
2369 	int rc;
2370 
2371 	if (txq < 1 || txq > dev->num_tx_queues)
2372 		return -EINVAL;
2373 
2374 	if (dev->reg_state == NETREG_REGISTERED ||
2375 	    dev->reg_state == NETREG_UNREGISTERING) {
2376 		ASSERT_RTNL();
2377 
2378 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2379 						  txq);
2380 		if (rc)
2381 			return rc;
2382 
2383 		if (dev->num_tc)
2384 			netif_setup_tc(dev, txq);
2385 
2386 		if (txq < dev->real_num_tx_queues) {
2387 			qdisc_reset_all_tx_gt(dev, txq);
2388 #ifdef CONFIG_XPS
2389 			netif_reset_xps_queues_gt(dev, txq);
2390 #endif
2391 		}
2392 	}
2393 
2394 	dev->real_num_tx_queues = txq;
2395 	return 0;
2396 }
2397 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2398 
2399 #ifdef CONFIG_SYSFS
2400 /**
2401  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2402  *	@dev: Network device
2403  *	@rxq: Actual number of RX queues
2404  *
2405  *	This must be called either with the rtnl_lock held or before
2406  *	registration of the net device.  Returns 0 on success, or a
2407  *	negative error code.  If called before registration, it always
2408  *	succeeds.
2409  */
2410 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2411 {
2412 	int rc;
2413 
2414 	if (rxq < 1 || rxq > dev->num_rx_queues)
2415 		return -EINVAL;
2416 
2417 	if (dev->reg_state == NETREG_REGISTERED) {
2418 		ASSERT_RTNL();
2419 
2420 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2421 						  rxq);
2422 		if (rc)
2423 			return rc;
2424 	}
2425 
2426 	dev->real_num_rx_queues = rxq;
2427 	return 0;
2428 }
2429 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2430 #endif
2431 
2432 /**
2433  * netif_get_num_default_rss_queues - default number of RSS queues
2434  *
2435  * This routine should set an upper limit on the number of RSS queues
2436  * used by default by multiqueue devices.
2437  */
2438 int netif_get_num_default_rss_queues(void)
2439 {
2440 	return is_kdump_kernel() ?
2441 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2442 }
2443 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2444 
2445 static void __netif_reschedule(struct Qdisc *q)
2446 {
2447 	struct softnet_data *sd;
2448 	unsigned long flags;
2449 
2450 	local_irq_save(flags);
2451 	sd = this_cpu_ptr(&softnet_data);
2452 	q->next_sched = NULL;
2453 	*sd->output_queue_tailp = q;
2454 	sd->output_queue_tailp = &q->next_sched;
2455 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2456 	local_irq_restore(flags);
2457 }
2458 
2459 void __netif_schedule(struct Qdisc *q)
2460 {
2461 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2462 		__netif_reschedule(q);
2463 }
2464 EXPORT_SYMBOL(__netif_schedule);
2465 
2466 struct dev_kfree_skb_cb {
2467 	enum skb_free_reason reason;
2468 };
2469 
2470 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2471 {
2472 	return (struct dev_kfree_skb_cb *)skb->cb;
2473 }
2474 
2475 void netif_schedule_queue(struct netdev_queue *txq)
2476 {
2477 	rcu_read_lock();
2478 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2479 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2480 
2481 		__netif_schedule(q);
2482 	}
2483 	rcu_read_unlock();
2484 }
2485 EXPORT_SYMBOL(netif_schedule_queue);
2486 
2487 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2488 {
2489 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2490 		struct Qdisc *q;
2491 
2492 		rcu_read_lock();
2493 		q = rcu_dereference(dev_queue->qdisc);
2494 		__netif_schedule(q);
2495 		rcu_read_unlock();
2496 	}
2497 }
2498 EXPORT_SYMBOL(netif_tx_wake_queue);
2499 
2500 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2501 {
2502 	unsigned long flags;
2503 
2504 	if (unlikely(!skb))
2505 		return;
2506 
2507 	if (likely(refcount_read(&skb->users) == 1)) {
2508 		smp_rmb();
2509 		refcount_set(&skb->users, 0);
2510 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2511 		return;
2512 	}
2513 	get_kfree_skb_cb(skb)->reason = reason;
2514 	local_irq_save(flags);
2515 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2516 	__this_cpu_write(softnet_data.completion_queue, skb);
2517 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2518 	local_irq_restore(flags);
2519 }
2520 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2521 
2522 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2523 {
2524 	if (in_irq() || irqs_disabled())
2525 		__dev_kfree_skb_irq(skb, reason);
2526 	else
2527 		dev_kfree_skb(skb);
2528 }
2529 EXPORT_SYMBOL(__dev_kfree_skb_any);
2530 
2531 
2532 /**
2533  * netif_device_detach - mark device as removed
2534  * @dev: network device
2535  *
2536  * Mark device as removed from system and therefore no longer available.
2537  */
2538 void netif_device_detach(struct net_device *dev)
2539 {
2540 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2541 	    netif_running(dev)) {
2542 		netif_tx_stop_all_queues(dev);
2543 	}
2544 }
2545 EXPORT_SYMBOL(netif_device_detach);
2546 
2547 /**
2548  * netif_device_attach - mark device as attached
2549  * @dev: network device
2550  *
2551  * Mark device as attached from system and restart if needed.
2552  */
2553 void netif_device_attach(struct net_device *dev)
2554 {
2555 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2556 	    netif_running(dev)) {
2557 		netif_tx_wake_all_queues(dev);
2558 		__netdev_watchdog_up(dev);
2559 	}
2560 }
2561 EXPORT_SYMBOL(netif_device_attach);
2562 
2563 /*
2564  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2565  * to be used as a distribution range.
2566  */
2567 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2568 		  unsigned int num_tx_queues)
2569 {
2570 	u32 hash;
2571 	u16 qoffset = 0;
2572 	u16 qcount = num_tx_queues;
2573 
2574 	if (skb_rx_queue_recorded(skb)) {
2575 		hash = skb_get_rx_queue(skb);
2576 		while (unlikely(hash >= num_tx_queues))
2577 			hash -= num_tx_queues;
2578 		return hash;
2579 	}
2580 
2581 	if (dev->num_tc) {
2582 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2583 
2584 		qoffset = dev->tc_to_txq[tc].offset;
2585 		qcount = dev->tc_to_txq[tc].count;
2586 	}
2587 
2588 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2589 }
2590 EXPORT_SYMBOL(__skb_tx_hash);
2591 
2592 static void skb_warn_bad_offload(const struct sk_buff *skb)
2593 {
2594 	static const netdev_features_t null_features;
2595 	struct net_device *dev = skb->dev;
2596 	const char *name = "";
2597 
2598 	if (!net_ratelimit())
2599 		return;
2600 
2601 	if (dev) {
2602 		if (dev->dev.parent)
2603 			name = dev_driver_string(dev->dev.parent);
2604 		else
2605 			name = netdev_name(dev);
2606 	}
2607 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2608 	     "gso_type=%d ip_summed=%d\n",
2609 	     name, dev ? &dev->features : &null_features,
2610 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2611 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2612 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2613 }
2614 
2615 /*
2616  * Invalidate hardware checksum when packet is to be mangled, and
2617  * complete checksum manually on outgoing path.
2618  */
2619 int skb_checksum_help(struct sk_buff *skb)
2620 {
2621 	__wsum csum;
2622 	int ret = 0, offset;
2623 
2624 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2625 		goto out_set_summed;
2626 
2627 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2628 		skb_warn_bad_offload(skb);
2629 		return -EINVAL;
2630 	}
2631 
2632 	/* Before computing a checksum, we should make sure no frag could
2633 	 * be modified by an external entity : checksum could be wrong.
2634 	 */
2635 	if (skb_has_shared_frag(skb)) {
2636 		ret = __skb_linearize(skb);
2637 		if (ret)
2638 			goto out;
2639 	}
2640 
2641 	offset = skb_checksum_start_offset(skb);
2642 	BUG_ON(offset >= skb_headlen(skb));
2643 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2644 
2645 	offset += skb->csum_offset;
2646 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2647 
2648 	if (skb_cloned(skb) &&
2649 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2650 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2651 		if (ret)
2652 			goto out;
2653 	}
2654 
2655 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2656 out_set_summed:
2657 	skb->ip_summed = CHECKSUM_NONE;
2658 out:
2659 	return ret;
2660 }
2661 EXPORT_SYMBOL(skb_checksum_help);
2662 
2663 int skb_crc32c_csum_help(struct sk_buff *skb)
2664 {
2665 	__le32 crc32c_csum;
2666 	int ret = 0, offset, start;
2667 
2668 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2669 		goto out;
2670 
2671 	if (unlikely(skb_is_gso(skb)))
2672 		goto out;
2673 
2674 	/* Before computing a checksum, we should make sure no frag could
2675 	 * be modified by an external entity : checksum could be wrong.
2676 	 */
2677 	if (unlikely(skb_has_shared_frag(skb))) {
2678 		ret = __skb_linearize(skb);
2679 		if (ret)
2680 			goto out;
2681 	}
2682 	start = skb_checksum_start_offset(skb);
2683 	offset = start + offsetof(struct sctphdr, checksum);
2684 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2685 		ret = -EINVAL;
2686 		goto out;
2687 	}
2688 	if (skb_cloned(skb) &&
2689 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2690 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2691 		if (ret)
2692 			goto out;
2693 	}
2694 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2695 						  skb->len - start, ~(__u32)0,
2696 						  crc32c_csum_stub));
2697 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2698 	skb->ip_summed = CHECKSUM_NONE;
2699 	skb->csum_not_inet = 0;
2700 out:
2701 	return ret;
2702 }
2703 
2704 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2705 {
2706 	__be16 type = skb->protocol;
2707 
2708 	/* Tunnel gso handlers can set protocol to ethernet. */
2709 	if (type == htons(ETH_P_TEB)) {
2710 		struct ethhdr *eth;
2711 
2712 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2713 			return 0;
2714 
2715 		eth = (struct ethhdr *)skb_mac_header(skb);
2716 		type = eth->h_proto;
2717 	}
2718 
2719 	return __vlan_get_protocol(skb, type, depth);
2720 }
2721 
2722 /**
2723  *	skb_mac_gso_segment - mac layer segmentation handler.
2724  *	@skb: buffer to segment
2725  *	@features: features for the output path (see dev->features)
2726  */
2727 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2728 				    netdev_features_t features)
2729 {
2730 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2731 	struct packet_offload *ptype;
2732 	int vlan_depth = skb->mac_len;
2733 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2734 
2735 	if (unlikely(!type))
2736 		return ERR_PTR(-EINVAL);
2737 
2738 	__skb_pull(skb, vlan_depth);
2739 
2740 	rcu_read_lock();
2741 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2742 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2743 			segs = ptype->callbacks.gso_segment(skb, features);
2744 			break;
2745 		}
2746 	}
2747 	rcu_read_unlock();
2748 
2749 	__skb_push(skb, skb->data - skb_mac_header(skb));
2750 
2751 	return segs;
2752 }
2753 EXPORT_SYMBOL(skb_mac_gso_segment);
2754 
2755 
2756 /* openvswitch calls this on rx path, so we need a different check.
2757  */
2758 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2759 {
2760 	if (tx_path)
2761 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2762 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2763 
2764 	return skb->ip_summed == CHECKSUM_NONE;
2765 }
2766 
2767 /**
2768  *	__skb_gso_segment - Perform segmentation on skb.
2769  *	@skb: buffer to segment
2770  *	@features: features for the output path (see dev->features)
2771  *	@tx_path: whether it is called in TX path
2772  *
2773  *	This function segments the given skb and returns a list of segments.
2774  *
2775  *	It may return NULL if the skb requires no segmentation.  This is
2776  *	only possible when GSO is used for verifying header integrity.
2777  *
2778  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2779  */
2780 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2781 				  netdev_features_t features, bool tx_path)
2782 {
2783 	struct sk_buff *segs;
2784 
2785 	if (unlikely(skb_needs_check(skb, tx_path))) {
2786 		int err;
2787 
2788 		/* We're going to init ->check field in TCP or UDP header */
2789 		err = skb_cow_head(skb, 0);
2790 		if (err < 0)
2791 			return ERR_PTR(err);
2792 	}
2793 
2794 	/* Only report GSO partial support if it will enable us to
2795 	 * support segmentation on this frame without needing additional
2796 	 * work.
2797 	 */
2798 	if (features & NETIF_F_GSO_PARTIAL) {
2799 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2800 		struct net_device *dev = skb->dev;
2801 
2802 		partial_features |= dev->features & dev->gso_partial_features;
2803 		if (!skb_gso_ok(skb, features | partial_features))
2804 			features &= ~NETIF_F_GSO_PARTIAL;
2805 	}
2806 
2807 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2808 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2809 
2810 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2811 	SKB_GSO_CB(skb)->encap_level = 0;
2812 
2813 	skb_reset_mac_header(skb);
2814 	skb_reset_mac_len(skb);
2815 
2816 	segs = skb_mac_gso_segment(skb, features);
2817 
2818 	if (unlikely(skb_needs_check(skb, tx_path)))
2819 		skb_warn_bad_offload(skb);
2820 
2821 	return segs;
2822 }
2823 EXPORT_SYMBOL(__skb_gso_segment);
2824 
2825 /* Take action when hardware reception checksum errors are detected. */
2826 #ifdef CONFIG_BUG
2827 void netdev_rx_csum_fault(struct net_device *dev)
2828 {
2829 	if (net_ratelimit()) {
2830 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2831 		dump_stack();
2832 	}
2833 }
2834 EXPORT_SYMBOL(netdev_rx_csum_fault);
2835 #endif
2836 
2837 /* Actually, we should eliminate this check as soon as we know, that:
2838  * 1. IOMMU is present and allows to map all the memory.
2839  * 2. No high memory really exists on this machine.
2840  */
2841 
2842 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2843 {
2844 #ifdef CONFIG_HIGHMEM
2845 	int i;
2846 
2847 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2848 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2849 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2850 
2851 			if (PageHighMem(skb_frag_page(frag)))
2852 				return 1;
2853 		}
2854 	}
2855 
2856 	if (PCI_DMA_BUS_IS_PHYS) {
2857 		struct device *pdev = dev->dev.parent;
2858 
2859 		if (!pdev)
2860 			return 0;
2861 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2862 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2863 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2864 
2865 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2866 				return 1;
2867 		}
2868 	}
2869 #endif
2870 	return 0;
2871 }
2872 
2873 /* If MPLS offload request, verify we are testing hardware MPLS features
2874  * instead of standard features for the netdev.
2875  */
2876 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2877 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2878 					   netdev_features_t features,
2879 					   __be16 type)
2880 {
2881 	if (eth_p_mpls(type))
2882 		features &= skb->dev->mpls_features;
2883 
2884 	return features;
2885 }
2886 #else
2887 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2888 					   netdev_features_t features,
2889 					   __be16 type)
2890 {
2891 	return features;
2892 }
2893 #endif
2894 
2895 static netdev_features_t harmonize_features(struct sk_buff *skb,
2896 	netdev_features_t features)
2897 {
2898 	int tmp;
2899 	__be16 type;
2900 
2901 	type = skb_network_protocol(skb, &tmp);
2902 	features = net_mpls_features(skb, features, type);
2903 
2904 	if (skb->ip_summed != CHECKSUM_NONE &&
2905 	    !can_checksum_protocol(features, type)) {
2906 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2907 	}
2908 	if (illegal_highdma(skb->dev, skb))
2909 		features &= ~NETIF_F_SG;
2910 
2911 	return features;
2912 }
2913 
2914 netdev_features_t passthru_features_check(struct sk_buff *skb,
2915 					  struct net_device *dev,
2916 					  netdev_features_t features)
2917 {
2918 	return features;
2919 }
2920 EXPORT_SYMBOL(passthru_features_check);
2921 
2922 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2923 					     struct net_device *dev,
2924 					     netdev_features_t features)
2925 {
2926 	return vlan_features_check(skb, features);
2927 }
2928 
2929 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2930 					    struct net_device *dev,
2931 					    netdev_features_t features)
2932 {
2933 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2934 
2935 	if (gso_segs > dev->gso_max_segs)
2936 		return features & ~NETIF_F_GSO_MASK;
2937 
2938 	/* Support for GSO partial features requires software
2939 	 * intervention before we can actually process the packets
2940 	 * so we need to strip support for any partial features now
2941 	 * and we can pull them back in after we have partially
2942 	 * segmented the frame.
2943 	 */
2944 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2945 		features &= ~dev->gso_partial_features;
2946 
2947 	/* Make sure to clear the IPv4 ID mangling feature if the
2948 	 * IPv4 header has the potential to be fragmented.
2949 	 */
2950 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2951 		struct iphdr *iph = skb->encapsulation ?
2952 				    inner_ip_hdr(skb) : ip_hdr(skb);
2953 
2954 		if (!(iph->frag_off & htons(IP_DF)))
2955 			features &= ~NETIF_F_TSO_MANGLEID;
2956 	}
2957 
2958 	return features;
2959 }
2960 
2961 netdev_features_t netif_skb_features(struct sk_buff *skb)
2962 {
2963 	struct net_device *dev = skb->dev;
2964 	netdev_features_t features = dev->features;
2965 
2966 	if (skb_is_gso(skb))
2967 		features = gso_features_check(skb, dev, features);
2968 
2969 	/* If encapsulation offload request, verify we are testing
2970 	 * hardware encapsulation features instead of standard
2971 	 * features for the netdev
2972 	 */
2973 	if (skb->encapsulation)
2974 		features &= dev->hw_enc_features;
2975 
2976 	if (skb_vlan_tagged(skb))
2977 		features = netdev_intersect_features(features,
2978 						     dev->vlan_features |
2979 						     NETIF_F_HW_VLAN_CTAG_TX |
2980 						     NETIF_F_HW_VLAN_STAG_TX);
2981 
2982 	if (dev->netdev_ops->ndo_features_check)
2983 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2984 								features);
2985 	else
2986 		features &= dflt_features_check(skb, dev, features);
2987 
2988 	return harmonize_features(skb, features);
2989 }
2990 EXPORT_SYMBOL(netif_skb_features);
2991 
2992 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2993 		    struct netdev_queue *txq, bool more)
2994 {
2995 	unsigned int len;
2996 	int rc;
2997 
2998 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2999 		dev_queue_xmit_nit(skb, dev);
3000 
3001 	len = skb->len;
3002 	trace_net_dev_start_xmit(skb, dev);
3003 	rc = netdev_start_xmit(skb, dev, txq, more);
3004 	trace_net_dev_xmit(skb, rc, dev, len);
3005 
3006 	return rc;
3007 }
3008 
3009 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3010 				    struct netdev_queue *txq, int *ret)
3011 {
3012 	struct sk_buff *skb = first;
3013 	int rc = NETDEV_TX_OK;
3014 
3015 	while (skb) {
3016 		struct sk_buff *next = skb->next;
3017 
3018 		skb->next = NULL;
3019 		rc = xmit_one(skb, dev, txq, next != NULL);
3020 		if (unlikely(!dev_xmit_complete(rc))) {
3021 			skb->next = next;
3022 			goto out;
3023 		}
3024 
3025 		skb = next;
3026 		if (netif_xmit_stopped(txq) && skb) {
3027 			rc = NETDEV_TX_BUSY;
3028 			break;
3029 		}
3030 	}
3031 
3032 out:
3033 	*ret = rc;
3034 	return skb;
3035 }
3036 
3037 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3038 					  netdev_features_t features)
3039 {
3040 	if (skb_vlan_tag_present(skb) &&
3041 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3042 		skb = __vlan_hwaccel_push_inside(skb);
3043 	return skb;
3044 }
3045 
3046 int skb_csum_hwoffload_help(struct sk_buff *skb,
3047 			    const netdev_features_t features)
3048 {
3049 	if (unlikely(skb->csum_not_inet))
3050 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3051 			skb_crc32c_csum_help(skb);
3052 
3053 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3054 }
3055 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3056 
3057 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3058 {
3059 	netdev_features_t features;
3060 
3061 	features = netif_skb_features(skb);
3062 	skb = validate_xmit_vlan(skb, features);
3063 	if (unlikely(!skb))
3064 		goto out_null;
3065 
3066 	if (netif_needs_gso(skb, features)) {
3067 		struct sk_buff *segs;
3068 
3069 		segs = skb_gso_segment(skb, features);
3070 		if (IS_ERR(segs)) {
3071 			goto out_kfree_skb;
3072 		} else if (segs) {
3073 			consume_skb(skb);
3074 			skb = segs;
3075 		}
3076 	} else {
3077 		if (skb_needs_linearize(skb, features) &&
3078 		    __skb_linearize(skb))
3079 			goto out_kfree_skb;
3080 
3081 		if (validate_xmit_xfrm(skb, features))
3082 			goto out_kfree_skb;
3083 
3084 		/* If packet is not checksummed and device does not
3085 		 * support checksumming for this protocol, complete
3086 		 * checksumming here.
3087 		 */
3088 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3089 			if (skb->encapsulation)
3090 				skb_set_inner_transport_header(skb,
3091 							       skb_checksum_start_offset(skb));
3092 			else
3093 				skb_set_transport_header(skb,
3094 							 skb_checksum_start_offset(skb));
3095 			if (skb_csum_hwoffload_help(skb, features))
3096 				goto out_kfree_skb;
3097 		}
3098 	}
3099 
3100 	return skb;
3101 
3102 out_kfree_skb:
3103 	kfree_skb(skb);
3104 out_null:
3105 	atomic_long_inc(&dev->tx_dropped);
3106 	return NULL;
3107 }
3108 
3109 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3110 {
3111 	struct sk_buff *next, *head = NULL, *tail;
3112 
3113 	for (; skb != NULL; skb = next) {
3114 		next = skb->next;
3115 		skb->next = NULL;
3116 
3117 		/* in case skb wont be segmented, point to itself */
3118 		skb->prev = skb;
3119 
3120 		skb = validate_xmit_skb(skb, dev);
3121 		if (!skb)
3122 			continue;
3123 
3124 		if (!head)
3125 			head = skb;
3126 		else
3127 			tail->next = skb;
3128 		/* If skb was segmented, skb->prev points to
3129 		 * the last segment. If not, it still contains skb.
3130 		 */
3131 		tail = skb->prev;
3132 	}
3133 	return head;
3134 }
3135 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3136 
3137 static void qdisc_pkt_len_init(struct sk_buff *skb)
3138 {
3139 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3140 
3141 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3142 
3143 	/* To get more precise estimation of bytes sent on wire,
3144 	 * we add to pkt_len the headers size of all segments
3145 	 */
3146 	if (shinfo->gso_size)  {
3147 		unsigned int hdr_len;
3148 		u16 gso_segs = shinfo->gso_segs;
3149 
3150 		/* mac layer + network layer */
3151 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3152 
3153 		/* + transport layer */
3154 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3155 			const struct tcphdr *th;
3156 			struct tcphdr _tcphdr;
3157 
3158 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3159 						sizeof(_tcphdr), &_tcphdr);
3160 			if (likely(th))
3161 				hdr_len += __tcp_hdrlen(th);
3162 		} else {
3163 			struct udphdr _udphdr;
3164 
3165 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3166 					       sizeof(_udphdr), &_udphdr))
3167 				hdr_len += sizeof(struct udphdr);
3168 		}
3169 
3170 		if (shinfo->gso_type & SKB_GSO_DODGY)
3171 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3172 						shinfo->gso_size);
3173 
3174 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3175 	}
3176 }
3177 
3178 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3179 				 struct net_device *dev,
3180 				 struct netdev_queue *txq)
3181 {
3182 	spinlock_t *root_lock = qdisc_lock(q);
3183 	struct sk_buff *to_free = NULL;
3184 	bool contended;
3185 	int rc;
3186 
3187 	qdisc_calculate_pkt_len(skb, q);
3188 	/*
3189 	 * Heuristic to force contended enqueues to serialize on a
3190 	 * separate lock before trying to get qdisc main lock.
3191 	 * This permits qdisc->running owner to get the lock more
3192 	 * often and dequeue packets faster.
3193 	 */
3194 	contended = qdisc_is_running(q);
3195 	if (unlikely(contended))
3196 		spin_lock(&q->busylock);
3197 
3198 	spin_lock(root_lock);
3199 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3200 		__qdisc_drop(skb, &to_free);
3201 		rc = NET_XMIT_DROP;
3202 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3203 		   qdisc_run_begin(q)) {
3204 		/*
3205 		 * This is a work-conserving queue; there are no old skbs
3206 		 * waiting to be sent out; and the qdisc is not running -
3207 		 * xmit the skb directly.
3208 		 */
3209 
3210 		qdisc_bstats_update(q, skb);
3211 
3212 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3213 			if (unlikely(contended)) {
3214 				spin_unlock(&q->busylock);
3215 				contended = false;
3216 			}
3217 			__qdisc_run(q);
3218 		} else
3219 			qdisc_run_end(q);
3220 
3221 		rc = NET_XMIT_SUCCESS;
3222 	} else {
3223 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3224 		if (qdisc_run_begin(q)) {
3225 			if (unlikely(contended)) {
3226 				spin_unlock(&q->busylock);
3227 				contended = false;
3228 			}
3229 			__qdisc_run(q);
3230 		}
3231 	}
3232 	spin_unlock(root_lock);
3233 	if (unlikely(to_free))
3234 		kfree_skb_list(to_free);
3235 	if (unlikely(contended))
3236 		spin_unlock(&q->busylock);
3237 	return rc;
3238 }
3239 
3240 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3241 static void skb_update_prio(struct sk_buff *skb)
3242 {
3243 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3244 
3245 	if (!skb->priority && skb->sk && map) {
3246 		unsigned int prioidx =
3247 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3248 
3249 		if (prioidx < map->priomap_len)
3250 			skb->priority = map->priomap[prioidx];
3251 	}
3252 }
3253 #else
3254 #define skb_update_prio(skb)
3255 #endif
3256 
3257 DEFINE_PER_CPU(int, xmit_recursion);
3258 EXPORT_SYMBOL(xmit_recursion);
3259 
3260 /**
3261  *	dev_loopback_xmit - loop back @skb
3262  *	@net: network namespace this loopback is happening in
3263  *	@sk:  sk needed to be a netfilter okfn
3264  *	@skb: buffer to transmit
3265  */
3266 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3267 {
3268 	skb_reset_mac_header(skb);
3269 	__skb_pull(skb, skb_network_offset(skb));
3270 	skb->pkt_type = PACKET_LOOPBACK;
3271 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3272 	WARN_ON(!skb_dst(skb));
3273 	skb_dst_force(skb);
3274 	netif_rx_ni(skb);
3275 	return 0;
3276 }
3277 EXPORT_SYMBOL(dev_loopback_xmit);
3278 
3279 #ifdef CONFIG_NET_EGRESS
3280 static struct sk_buff *
3281 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3282 {
3283 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3284 	struct tcf_result cl_res;
3285 
3286 	if (!miniq)
3287 		return skb;
3288 
3289 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3290 	mini_qdisc_bstats_cpu_update(miniq, skb);
3291 
3292 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3293 	case TC_ACT_OK:
3294 	case TC_ACT_RECLASSIFY:
3295 		skb->tc_index = TC_H_MIN(cl_res.classid);
3296 		break;
3297 	case TC_ACT_SHOT:
3298 		mini_qdisc_qstats_cpu_drop(miniq);
3299 		*ret = NET_XMIT_DROP;
3300 		kfree_skb(skb);
3301 		return NULL;
3302 	case TC_ACT_STOLEN:
3303 	case TC_ACT_QUEUED:
3304 	case TC_ACT_TRAP:
3305 		*ret = NET_XMIT_SUCCESS;
3306 		consume_skb(skb);
3307 		return NULL;
3308 	case TC_ACT_REDIRECT:
3309 		/* No need to push/pop skb's mac_header here on egress! */
3310 		skb_do_redirect(skb);
3311 		*ret = NET_XMIT_SUCCESS;
3312 		return NULL;
3313 	default:
3314 		break;
3315 	}
3316 
3317 	return skb;
3318 }
3319 #endif /* CONFIG_NET_EGRESS */
3320 
3321 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3322 {
3323 #ifdef CONFIG_XPS
3324 	struct xps_dev_maps *dev_maps;
3325 	struct xps_map *map;
3326 	int queue_index = -1;
3327 
3328 	rcu_read_lock();
3329 	dev_maps = rcu_dereference(dev->xps_maps);
3330 	if (dev_maps) {
3331 		unsigned int tci = skb->sender_cpu - 1;
3332 
3333 		if (dev->num_tc) {
3334 			tci *= dev->num_tc;
3335 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3336 		}
3337 
3338 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3339 		if (map) {
3340 			if (map->len == 1)
3341 				queue_index = map->queues[0];
3342 			else
3343 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3344 									   map->len)];
3345 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3346 				queue_index = -1;
3347 		}
3348 	}
3349 	rcu_read_unlock();
3350 
3351 	return queue_index;
3352 #else
3353 	return -1;
3354 #endif
3355 }
3356 
3357 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3358 {
3359 	struct sock *sk = skb->sk;
3360 	int queue_index = sk_tx_queue_get(sk);
3361 
3362 	if (queue_index < 0 || skb->ooo_okay ||
3363 	    queue_index >= dev->real_num_tx_queues) {
3364 		int new_index = get_xps_queue(dev, skb);
3365 
3366 		if (new_index < 0)
3367 			new_index = skb_tx_hash(dev, skb);
3368 
3369 		if (queue_index != new_index && sk &&
3370 		    sk_fullsock(sk) &&
3371 		    rcu_access_pointer(sk->sk_dst_cache))
3372 			sk_tx_queue_set(sk, new_index);
3373 
3374 		queue_index = new_index;
3375 	}
3376 
3377 	return queue_index;
3378 }
3379 
3380 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3381 				    struct sk_buff *skb,
3382 				    void *accel_priv)
3383 {
3384 	int queue_index = 0;
3385 
3386 #ifdef CONFIG_XPS
3387 	u32 sender_cpu = skb->sender_cpu - 1;
3388 
3389 	if (sender_cpu >= (u32)NR_CPUS)
3390 		skb->sender_cpu = raw_smp_processor_id() + 1;
3391 #endif
3392 
3393 	if (dev->real_num_tx_queues != 1) {
3394 		const struct net_device_ops *ops = dev->netdev_ops;
3395 
3396 		if (ops->ndo_select_queue)
3397 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3398 							    __netdev_pick_tx);
3399 		else
3400 			queue_index = __netdev_pick_tx(dev, skb);
3401 
3402 		if (!accel_priv)
3403 			queue_index = netdev_cap_txqueue(dev, queue_index);
3404 	}
3405 
3406 	skb_set_queue_mapping(skb, queue_index);
3407 	return netdev_get_tx_queue(dev, queue_index);
3408 }
3409 
3410 /**
3411  *	__dev_queue_xmit - transmit a buffer
3412  *	@skb: buffer to transmit
3413  *	@accel_priv: private data used for L2 forwarding offload
3414  *
3415  *	Queue a buffer for transmission to a network device. The caller must
3416  *	have set the device and priority and built the buffer before calling
3417  *	this function. The function can be called from an interrupt.
3418  *
3419  *	A negative errno code is returned on a failure. A success does not
3420  *	guarantee the frame will be transmitted as it may be dropped due
3421  *	to congestion or traffic shaping.
3422  *
3423  * -----------------------------------------------------------------------------------
3424  *      I notice this method can also return errors from the queue disciplines,
3425  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3426  *      be positive.
3427  *
3428  *      Regardless of the return value, the skb is consumed, so it is currently
3429  *      difficult to retry a send to this method.  (You can bump the ref count
3430  *      before sending to hold a reference for retry if you are careful.)
3431  *
3432  *      When calling this method, interrupts MUST be enabled.  This is because
3433  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3434  *          --BLG
3435  */
3436 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3437 {
3438 	struct net_device *dev = skb->dev;
3439 	struct netdev_queue *txq;
3440 	struct Qdisc *q;
3441 	int rc = -ENOMEM;
3442 
3443 	skb_reset_mac_header(skb);
3444 
3445 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3446 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3447 
3448 	/* Disable soft irqs for various locks below. Also
3449 	 * stops preemption for RCU.
3450 	 */
3451 	rcu_read_lock_bh();
3452 
3453 	skb_update_prio(skb);
3454 
3455 	qdisc_pkt_len_init(skb);
3456 #ifdef CONFIG_NET_CLS_ACT
3457 	skb->tc_at_ingress = 0;
3458 # ifdef CONFIG_NET_EGRESS
3459 	if (static_key_false(&egress_needed)) {
3460 		skb = sch_handle_egress(skb, &rc, dev);
3461 		if (!skb)
3462 			goto out;
3463 	}
3464 # endif
3465 #endif
3466 	/* If device/qdisc don't need skb->dst, release it right now while
3467 	 * its hot in this cpu cache.
3468 	 */
3469 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3470 		skb_dst_drop(skb);
3471 	else
3472 		skb_dst_force(skb);
3473 
3474 	txq = netdev_pick_tx(dev, skb, accel_priv);
3475 	q = rcu_dereference_bh(txq->qdisc);
3476 
3477 	trace_net_dev_queue(skb);
3478 	if (q->enqueue) {
3479 		rc = __dev_xmit_skb(skb, q, dev, txq);
3480 		goto out;
3481 	}
3482 
3483 	/* The device has no queue. Common case for software devices:
3484 	 * loopback, all the sorts of tunnels...
3485 
3486 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3487 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3488 	 * counters.)
3489 	 * However, it is possible, that they rely on protection
3490 	 * made by us here.
3491 
3492 	 * Check this and shot the lock. It is not prone from deadlocks.
3493 	 *Either shot noqueue qdisc, it is even simpler 8)
3494 	 */
3495 	if (dev->flags & IFF_UP) {
3496 		int cpu = smp_processor_id(); /* ok because BHs are off */
3497 
3498 		if (txq->xmit_lock_owner != cpu) {
3499 			if (unlikely(__this_cpu_read(xmit_recursion) >
3500 				     XMIT_RECURSION_LIMIT))
3501 				goto recursion_alert;
3502 
3503 			skb = validate_xmit_skb(skb, dev);
3504 			if (!skb)
3505 				goto out;
3506 
3507 			HARD_TX_LOCK(dev, txq, cpu);
3508 
3509 			if (!netif_xmit_stopped(txq)) {
3510 				__this_cpu_inc(xmit_recursion);
3511 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3512 				__this_cpu_dec(xmit_recursion);
3513 				if (dev_xmit_complete(rc)) {
3514 					HARD_TX_UNLOCK(dev, txq);
3515 					goto out;
3516 				}
3517 			}
3518 			HARD_TX_UNLOCK(dev, txq);
3519 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3520 					     dev->name);
3521 		} else {
3522 			/* Recursion is detected! It is possible,
3523 			 * unfortunately
3524 			 */
3525 recursion_alert:
3526 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3527 					     dev->name);
3528 		}
3529 	}
3530 
3531 	rc = -ENETDOWN;
3532 	rcu_read_unlock_bh();
3533 
3534 	atomic_long_inc(&dev->tx_dropped);
3535 	kfree_skb_list(skb);
3536 	return rc;
3537 out:
3538 	rcu_read_unlock_bh();
3539 	return rc;
3540 }
3541 
3542 int dev_queue_xmit(struct sk_buff *skb)
3543 {
3544 	return __dev_queue_xmit(skb, NULL);
3545 }
3546 EXPORT_SYMBOL(dev_queue_xmit);
3547 
3548 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3549 {
3550 	return __dev_queue_xmit(skb, accel_priv);
3551 }
3552 EXPORT_SYMBOL(dev_queue_xmit_accel);
3553 
3554 
3555 /*************************************************************************
3556  *			Receiver routines
3557  *************************************************************************/
3558 
3559 int netdev_max_backlog __read_mostly = 1000;
3560 EXPORT_SYMBOL(netdev_max_backlog);
3561 
3562 int netdev_tstamp_prequeue __read_mostly = 1;
3563 int netdev_budget __read_mostly = 300;
3564 unsigned int __read_mostly netdev_budget_usecs = 2000;
3565 int weight_p __read_mostly = 64;           /* old backlog weight */
3566 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3567 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3568 int dev_rx_weight __read_mostly = 64;
3569 int dev_tx_weight __read_mostly = 64;
3570 
3571 /* Called with irq disabled */
3572 static inline void ____napi_schedule(struct softnet_data *sd,
3573 				     struct napi_struct *napi)
3574 {
3575 	list_add_tail(&napi->poll_list, &sd->poll_list);
3576 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3577 }
3578 
3579 #ifdef CONFIG_RPS
3580 
3581 /* One global table that all flow-based protocols share. */
3582 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3583 EXPORT_SYMBOL(rps_sock_flow_table);
3584 u32 rps_cpu_mask __read_mostly;
3585 EXPORT_SYMBOL(rps_cpu_mask);
3586 
3587 struct static_key rps_needed __read_mostly;
3588 EXPORT_SYMBOL(rps_needed);
3589 struct static_key rfs_needed __read_mostly;
3590 EXPORT_SYMBOL(rfs_needed);
3591 
3592 static struct rps_dev_flow *
3593 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3594 	    struct rps_dev_flow *rflow, u16 next_cpu)
3595 {
3596 	if (next_cpu < nr_cpu_ids) {
3597 #ifdef CONFIG_RFS_ACCEL
3598 		struct netdev_rx_queue *rxqueue;
3599 		struct rps_dev_flow_table *flow_table;
3600 		struct rps_dev_flow *old_rflow;
3601 		u32 flow_id;
3602 		u16 rxq_index;
3603 		int rc;
3604 
3605 		/* Should we steer this flow to a different hardware queue? */
3606 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3607 		    !(dev->features & NETIF_F_NTUPLE))
3608 			goto out;
3609 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3610 		if (rxq_index == skb_get_rx_queue(skb))
3611 			goto out;
3612 
3613 		rxqueue = dev->_rx + rxq_index;
3614 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3615 		if (!flow_table)
3616 			goto out;
3617 		flow_id = skb_get_hash(skb) & flow_table->mask;
3618 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3619 							rxq_index, flow_id);
3620 		if (rc < 0)
3621 			goto out;
3622 		old_rflow = rflow;
3623 		rflow = &flow_table->flows[flow_id];
3624 		rflow->filter = rc;
3625 		if (old_rflow->filter == rflow->filter)
3626 			old_rflow->filter = RPS_NO_FILTER;
3627 	out:
3628 #endif
3629 		rflow->last_qtail =
3630 			per_cpu(softnet_data, next_cpu).input_queue_head;
3631 	}
3632 
3633 	rflow->cpu = next_cpu;
3634 	return rflow;
3635 }
3636 
3637 /*
3638  * get_rps_cpu is called from netif_receive_skb and returns the target
3639  * CPU from the RPS map of the receiving queue for a given skb.
3640  * rcu_read_lock must be held on entry.
3641  */
3642 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3643 		       struct rps_dev_flow **rflowp)
3644 {
3645 	const struct rps_sock_flow_table *sock_flow_table;
3646 	struct netdev_rx_queue *rxqueue = dev->_rx;
3647 	struct rps_dev_flow_table *flow_table;
3648 	struct rps_map *map;
3649 	int cpu = -1;
3650 	u32 tcpu;
3651 	u32 hash;
3652 
3653 	if (skb_rx_queue_recorded(skb)) {
3654 		u16 index = skb_get_rx_queue(skb);
3655 
3656 		if (unlikely(index >= dev->real_num_rx_queues)) {
3657 			WARN_ONCE(dev->real_num_rx_queues > 1,
3658 				  "%s received packet on queue %u, but number "
3659 				  "of RX queues is %u\n",
3660 				  dev->name, index, dev->real_num_rx_queues);
3661 			goto done;
3662 		}
3663 		rxqueue += index;
3664 	}
3665 
3666 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3667 
3668 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3669 	map = rcu_dereference(rxqueue->rps_map);
3670 	if (!flow_table && !map)
3671 		goto done;
3672 
3673 	skb_reset_network_header(skb);
3674 	hash = skb_get_hash(skb);
3675 	if (!hash)
3676 		goto done;
3677 
3678 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3679 	if (flow_table && sock_flow_table) {
3680 		struct rps_dev_flow *rflow;
3681 		u32 next_cpu;
3682 		u32 ident;
3683 
3684 		/* First check into global flow table if there is a match */
3685 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3686 		if ((ident ^ hash) & ~rps_cpu_mask)
3687 			goto try_rps;
3688 
3689 		next_cpu = ident & rps_cpu_mask;
3690 
3691 		/* OK, now we know there is a match,
3692 		 * we can look at the local (per receive queue) flow table
3693 		 */
3694 		rflow = &flow_table->flows[hash & flow_table->mask];
3695 		tcpu = rflow->cpu;
3696 
3697 		/*
3698 		 * If the desired CPU (where last recvmsg was done) is
3699 		 * different from current CPU (one in the rx-queue flow
3700 		 * table entry), switch if one of the following holds:
3701 		 *   - Current CPU is unset (>= nr_cpu_ids).
3702 		 *   - Current CPU is offline.
3703 		 *   - The current CPU's queue tail has advanced beyond the
3704 		 *     last packet that was enqueued using this table entry.
3705 		 *     This guarantees that all previous packets for the flow
3706 		 *     have been dequeued, thus preserving in order delivery.
3707 		 */
3708 		if (unlikely(tcpu != next_cpu) &&
3709 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3710 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3711 		      rflow->last_qtail)) >= 0)) {
3712 			tcpu = next_cpu;
3713 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3714 		}
3715 
3716 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3717 			*rflowp = rflow;
3718 			cpu = tcpu;
3719 			goto done;
3720 		}
3721 	}
3722 
3723 try_rps:
3724 
3725 	if (map) {
3726 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3727 		if (cpu_online(tcpu)) {
3728 			cpu = tcpu;
3729 			goto done;
3730 		}
3731 	}
3732 
3733 done:
3734 	return cpu;
3735 }
3736 
3737 #ifdef CONFIG_RFS_ACCEL
3738 
3739 /**
3740  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3741  * @dev: Device on which the filter was set
3742  * @rxq_index: RX queue index
3743  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3744  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3745  *
3746  * Drivers that implement ndo_rx_flow_steer() should periodically call
3747  * this function for each installed filter and remove the filters for
3748  * which it returns %true.
3749  */
3750 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3751 			 u32 flow_id, u16 filter_id)
3752 {
3753 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3754 	struct rps_dev_flow_table *flow_table;
3755 	struct rps_dev_flow *rflow;
3756 	bool expire = true;
3757 	unsigned int cpu;
3758 
3759 	rcu_read_lock();
3760 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3761 	if (flow_table && flow_id <= flow_table->mask) {
3762 		rflow = &flow_table->flows[flow_id];
3763 		cpu = READ_ONCE(rflow->cpu);
3764 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3765 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3766 			   rflow->last_qtail) <
3767 		     (int)(10 * flow_table->mask)))
3768 			expire = false;
3769 	}
3770 	rcu_read_unlock();
3771 	return expire;
3772 }
3773 EXPORT_SYMBOL(rps_may_expire_flow);
3774 
3775 #endif /* CONFIG_RFS_ACCEL */
3776 
3777 /* Called from hardirq (IPI) context */
3778 static void rps_trigger_softirq(void *data)
3779 {
3780 	struct softnet_data *sd = data;
3781 
3782 	____napi_schedule(sd, &sd->backlog);
3783 	sd->received_rps++;
3784 }
3785 
3786 #endif /* CONFIG_RPS */
3787 
3788 /*
3789  * Check if this softnet_data structure is another cpu one
3790  * If yes, queue it to our IPI list and return 1
3791  * If no, return 0
3792  */
3793 static int rps_ipi_queued(struct softnet_data *sd)
3794 {
3795 #ifdef CONFIG_RPS
3796 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3797 
3798 	if (sd != mysd) {
3799 		sd->rps_ipi_next = mysd->rps_ipi_list;
3800 		mysd->rps_ipi_list = sd;
3801 
3802 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3803 		return 1;
3804 	}
3805 #endif /* CONFIG_RPS */
3806 	return 0;
3807 }
3808 
3809 #ifdef CONFIG_NET_FLOW_LIMIT
3810 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3811 #endif
3812 
3813 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3814 {
3815 #ifdef CONFIG_NET_FLOW_LIMIT
3816 	struct sd_flow_limit *fl;
3817 	struct softnet_data *sd;
3818 	unsigned int old_flow, new_flow;
3819 
3820 	if (qlen < (netdev_max_backlog >> 1))
3821 		return false;
3822 
3823 	sd = this_cpu_ptr(&softnet_data);
3824 
3825 	rcu_read_lock();
3826 	fl = rcu_dereference(sd->flow_limit);
3827 	if (fl) {
3828 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3829 		old_flow = fl->history[fl->history_head];
3830 		fl->history[fl->history_head] = new_flow;
3831 
3832 		fl->history_head++;
3833 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3834 
3835 		if (likely(fl->buckets[old_flow]))
3836 			fl->buckets[old_flow]--;
3837 
3838 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3839 			fl->count++;
3840 			rcu_read_unlock();
3841 			return true;
3842 		}
3843 	}
3844 	rcu_read_unlock();
3845 #endif
3846 	return false;
3847 }
3848 
3849 /*
3850  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3851  * queue (may be a remote CPU queue).
3852  */
3853 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3854 			      unsigned int *qtail)
3855 {
3856 	struct softnet_data *sd;
3857 	unsigned long flags;
3858 	unsigned int qlen;
3859 
3860 	sd = &per_cpu(softnet_data, cpu);
3861 
3862 	local_irq_save(flags);
3863 
3864 	rps_lock(sd);
3865 	if (!netif_running(skb->dev))
3866 		goto drop;
3867 	qlen = skb_queue_len(&sd->input_pkt_queue);
3868 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3869 		if (qlen) {
3870 enqueue:
3871 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3872 			input_queue_tail_incr_save(sd, qtail);
3873 			rps_unlock(sd);
3874 			local_irq_restore(flags);
3875 			return NET_RX_SUCCESS;
3876 		}
3877 
3878 		/* Schedule NAPI for backlog device
3879 		 * We can use non atomic operation since we own the queue lock
3880 		 */
3881 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3882 			if (!rps_ipi_queued(sd))
3883 				____napi_schedule(sd, &sd->backlog);
3884 		}
3885 		goto enqueue;
3886 	}
3887 
3888 drop:
3889 	sd->dropped++;
3890 	rps_unlock(sd);
3891 
3892 	local_irq_restore(flags);
3893 
3894 	atomic_long_inc(&skb->dev->rx_dropped);
3895 	kfree_skb(skb);
3896 	return NET_RX_DROP;
3897 }
3898 
3899 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3900 				     struct bpf_prog *xdp_prog)
3901 {
3902 	u32 metalen, act = XDP_DROP;
3903 	struct xdp_buff xdp;
3904 	void *orig_data;
3905 	int hlen, off;
3906 	u32 mac_len;
3907 
3908 	/* Reinjected packets coming from act_mirred or similar should
3909 	 * not get XDP generic processing.
3910 	 */
3911 	if (skb_cloned(skb))
3912 		return XDP_PASS;
3913 
3914 	/* XDP packets must be linear and must have sufficient headroom
3915 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3916 	 * native XDP provides, thus we need to do it here as well.
3917 	 */
3918 	if (skb_is_nonlinear(skb) ||
3919 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3920 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3921 		int troom = skb->tail + skb->data_len - skb->end;
3922 
3923 		/* In case we have to go down the path and also linearize,
3924 		 * then lets do the pskb_expand_head() work just once here.
3925 		 */
3926 		if (pskb_expand_head(skb,
3927 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3928 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3929 			goto do_drop;
3930 		if (skb_linearize(skb))
3931 			goto do_drop;
3932 	}
3933 
3934 	/* The XDP program wants to see the packet starting at the MAC
3935 	 * header.
3936 	 */
3937 	mac_len = skb->data - skb_mac_header(skb);
3938 	hlen = skb_headlen(skb) + mac_len;
3939 	xdp.data = skb->data - mac_len;
3940 	xdp.data_meta = xdp.data;
3941 	xdp.data_end = xdp.data + hlen;
3942 	xdp.data_hard_start = skb->data - skb_headroom(skb);
3943 	orig_data = xdp.data;
3944 
3945 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
3946 
3947 	off = xdp.data - orig_data;
3948 	if (off > 0)
3949 		__skb_pull(skb, off);
3950 	else if (off < 0)
3951 		__skb_push(skb, -off);
3952 	skb->mac_header += off;
3953 
3954 	switch (act) {
3955 	case XDP_REDIRECT:
3956 	case XDP_TX:
3957 		__skb_push(skb, mac_len);
3958 		break;
3959 	case XDP_PASS:
3960 		metalen = xdp.data - xdp.data_meta;
3961 		if (metalen)
3962 			skb_metadata_set(skb, metalen);
3963 		break;
3964 	default:
3965 		bpf_warn_invalid_xdp_action(act);
3966 		/* fall through */
3967 	case XDP_ABORTED:
3968 		trace_xdp_exception(skb->dev, xdp_prog, act);
3969 		/* fall through */
3970 	case XDP_DROP:
3971 	do_drop:
3972 		kfree_skb(skb);
3973 		break;
3974 	}
3975 
3976 	return act;
3977 }
3978 
3979 /* When doing generic XDP we have to bypass the qdisc layer and the
3980  * network taps in order to match in-driver-XDP behavior.
3981  */
3982 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3983 {
3984 	struct net_device *dev = skb->dev;
3985 	struct netdev_queue *txq;
3986 	bool free_skb = true;
3987 	int cpu, rc;
3988 
3989 	txq = netdev_pick_tx(dev, skb, NULL);
3990 	cpu = smp_processor_id();
3991 	HARD_TX_LOCK(dev, txq, cpu);
3992 	if (!netif_xmit_stopped(txq)) {
3993 		rc = netdev_start_xmit(skb, dev, txq, 0);
3994 		if (dev_xmit_complete(rc))
3995 			free_skb = false;
3996 	}
3997 	HARD_TX_UNLOCK(dev, txq);
3998 	if (free_skb) {
3999 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4000 		kfree_skb(skb);
4001 	}
4002 }
4003 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4004 
4005 static struct static_key generic_xdp_needed __read_mostly;
4006 
4007 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4008 {
4009 	if (xdp_prog) {
4010 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4011 		int err;
4012 
4013 		if (act != XDP_PASS) {
4014 			switch (act) {
4015 			case XDP_REDIRECT:
4016 				err = xdp_do_generic_redirect(skb->dev, skb,
4017 							      xdp_prog);
4018 				if (err)
4019 					goto out_redir;
4020 			/* fallthru to submit skb */
4021 			case XDP_TX:
4022 				generic_xdp_tx(skb, xdp_prog);
4023 				break;
4024 			}
4025 			return XDP_DROP;
4026 		}
4027 	}
4028 	return XDP_PASS;
4029 out_redir:
4030 	kfree_skb(skb);
4031 	return XDP_DROP;
4032 }
4033 EXPORT_SYMBOL_GPL(do_xdp_generic);
4034 
4035 static int netif_rx_internal(struct sk_buff *skb)
4036 {
4037 	int ret;
4038 
4039 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4040 
4041 	trace_netif_rx(skb);
4042 
4043 	if (static_key_false(&generic_xdp_needed)) {
4044 		int ret;
4045 
4046 		preempt_disable();
4047 		rcu_read_lock();
4048 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4049 		rcu_read_unlock();
4050 		preempt_enable();
4051 
4052 		/* Consider XDP consuming the packet a success from
4053 		 * the netdev point of view we do not want to count
4054 		 * this as an error.
4055 		 */
4056 		if (ret != XDP_PASS)
4057 			return NET_RX_SUCCESS;
4058 	}
4059 
4060 #ifdef CONFIG_RPS
4061 	if (static_key_false(&rps_needed)) {
4062 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4063 		int cpu;
4064 
4065 		preempt_disable();
4066 		rcu_read_lock();
4067 
4068 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4069 		if (cpu < 0)
4070 			cpu = smp_processor_id();
4071 
4072 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4073 
4074 		rcu_read_unlock();
4075 		preempt_enable();
4076 	} else
4077 #endif
4078 	{
4079 		unsigned int qtail;
4080 
4081 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4082 		put_cpu();
4083 	}
4084 	return ret;
4085 }
4086 
4087 /**
4088  *	netif_rx	-	post buffer to the network code
4089  *	@skb: buffer to post
4090  *
4091  *	This function receives a packet from a device driver and queues it for
4092  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4093  *	may be dropped during processing for congestion control or by the
4094  *	protocol layers.
4095  *
4096  *	return values:
4097  *	NET_RX_SUCCESS	(no congestion)
4098  *	NET_RX_DROP     (packet was dropped)
4099  *
4100  */
4101 
4102 int netif_rx(struct sk_buff *skb)
4103 {
4104 	trace_netif_rx_entry(skb);
4105 
4106 	return netif_rx_internal(skb);
4107 }
4108 EXPORT_SYMBOL(netif_rx);
4109 
4110 int netif_rx_ni(struct sk_buff *skb)
4111 {
4112 	int err;
4113 
4114 	trace_netif_rx_ni_entry(skb);
4115 
4116 	preempt_disable();
4117 	err = netif_rx_internal(skb);
4118 	if (local_softirq_pending())
4119 		do_softirq();
4120 	preempt_enable();
4121 
4122 	return err;
4123 }
4124 EXPORT_SYMBOL(netif_rx_ni);
4125 
4126 static __latent_entropy void net_tx_action(struct softirq_action *h)
4127 {
4128 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4129 
4130 	if (sd->completion_queue) {
4131 		struct sk_buff *clist;
4132 
4133 		local_irq_disable();
4134 		clist = sd->completion_queue;
4135 		sd->completion_queue = NULL;
4136 		local_irq_enable();
4137 
4138 		while (clist) {
4139 			struct sk_buff *skb = clist;
4140 
4141 			clist = clist->next;
4142 
4143 			WARN_ON(refcount_read(&skb->users));
4144 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4145 				trace_consume_skb(skb);
4146 			else
4147 				trace_kfree_skb(skb, net_tx_action);
4148 
4149 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4150 				__kfree_skb(skb);
4151 			else
4152 				__kfree_skb_defer(skb);
4153 		}
4154 
4155 		__kfree_skb_flush();
4156 	}
4157 
4158 	if (sd->output_queue) {
4159 		struct Qdisc *head;
4160 
4161 		local_irq_disable();
4162 		head = sd->output_queue;
4163 		sd->output_queue = NULL;
4164 		sd->output_queue_tailp = &sd->output_queue;
4165 		local_irq_enable();
4166 
4167 		while (head) {
4168 			struct Qdisc *q = head;
4169 			spinlock_t *root_lock;
4170 
4171 			head = head->next_sched;
4172 
4173 			root_lock = qdisc_lock(q);
4174 			spin_lock(root_lock);
4175 			/* We need to make sure head->next_sched is read
4176 			 * before clearing __QDISC_STATE_SCHED
4177 			 */
4178 			smp_mb__before_atomic();
4179 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4180 			qdisc_run(q);
4181 			spin_unlock(root_lock);
4182 		}
4183 	}
4184 }
4185 
4186 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4187 /* This hook is defined here for ATM LANE */
4188 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4189 			     unsigned char *addr) __read_mostly;
4190 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4191 #endif
4192 
4193 static inline struct sk_buff *
4194 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4195 		   struct net_device *orig_dev)
4196 {
4197 #ifdef CONFIG_NET_CLS_ACT
4198 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4199 	struct tcf_result cl_res;
4200 
4201 	/* If there's at least one ingress present somewhere (so
4202 	 * we get here via enabled static key), remaining devices
4203 	 * that are not configured with an ingress qdisc will bail
4204 	 * out here.
4205 	 */
4206 	if (!miniq)
4207 		return skb;
4208 
4209 	if (*pt_prev) {
4210 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4211 		*pt_prev = NULL;
4212 	}
4213 
4214 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4215 	skb->tc_at_ingress = 1;
4216 	mini_qdisc_bstats_cpu_update(miniq, skb);
4217 
4218 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4219 	case TC_ACT_OK:
4220 	case TC_ACT_RECLASSIFY:
4221 		skb->tc_index = TC_H_MIN(cl_res.classid);
4222 		break;
4223 	case TC_ACT_SHOT:
4224 		mini_qdisc_qstats_cpu_drop(miniq);
4225 		kfree_skb(skb);
4226 		return NULL;
4227 	case TC_ACT_STOLEN:
4228 	case TC_ACT_QUEUED:
4229 	case TC_ACT_TRAP:
4230 		consume_skb(skb);
4231 		return NULL;
4232 	case TC_ACT_REDIRECT:
4233 		/* skb_mac_header check was done by cls/act_bpf, so
4234 		 * we can safely push the L2 header back before
4235 		 * redirecting to another netdev
4236 		 */
4237 		__skb_push(skb, skb->mac_len);
4238 		skb_do_redirect(skb);
4239 		return NULL;
4240 	default:
4241 		break;
4242 	}
4243 #endif /* CONFIG_NET_CLS_ACT */
4244 	return skb;
4245 }
4246 
4247 /**
4248  *	netdev_is_rx_handler_busy - check if receive handler is registered
4249  *	@dev: device to check
4250  *
4251  *	Check if a receive handler is already registered for a given device.
4252  *	Return true if there one.
4253  *
4254  *	The caller must hold the rtnl_mutex.
4255  */
4256 bool netdev_is_rx_handler_busy(struct net_device *dev)
4257 {
4258 	ASSERT_RTNL();
4259 	return dev && rtnl_dereference(dev->rx_handler);
4260 }
4261 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4262 
4263 /**
4264  *	netdev_rx_handler_register - register receive handler
4265  *	@dev: device to register a handler for
4266  *	@rx_handler: receive handler to register
4267  *	@rx_handler_data: data pointer that is used by rx handler
4268  *
4269  *	Register a receive handler for a device. This handler will then be
4270  *	called from __netif_receive_skb. A negative errno code is returned
4271  *	on a failure.
4272  *
4273  *	The caller must hold the rtnl_mutex.
4274  *
4275  *	For a general description of rx_handler, see enum rx_handler_result.
4276  */
4277 int netdev_rx_handler_register(struct net_device *dev,
4278 			       rx_handler_func_t *rx_handler,
4279 			       void *rx_handler_data)
4280 {
4281 	if (netdev_is_rx_handler_busy(dev))
4282 		return -EBUSY;
4283 
4284 	/* Note: rx_handler_data must be set before rx_handler */
4285 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4286 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4287 
4288 	return 0;
4289 }
4290 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4291 
4292 /**
4293  *	netdev_rx_handler_unregister - unregister receive handler
4294  *	@dev: device to unregister a handler from
4295  *
4296  *	Unregister a receive handler from a device.
4297  *
4298  *	The caller must hold the rtnl_mutex.
4299  */
4300 void netdev_rx_handler_unregister(struct net_device *dev)
4301 {
4302 
4303 	ASSERT_RTNL();
4304 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4305 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4306 	 * section has a guarantee to see a non NULL rx_handler_data
4307 	 * as well.
4308 	 */
4309 	synchronize_net();
4310 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4311 }
4312 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4313 
4314 /*
4315  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4316  * the special handling of PFMEMALLOC skbs.
4317  */
4318 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4319 {
4320 	switch (skb->protocol) {
4321 	case htons(ETH_P_ARP):
4322 	case htons(ETH_P_IP):
4323 	case htons(ETH_P_IPV6):
4324 	case htons(ETH_P_8021Q):
4325 	case htons(ETH_P_8021AD):
4326 		return true;
4327 	default:
4328 		return false;
4329 	}
4330 }
4331 
4332 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4333 			     int *ret, struct net_device *orig_dev)
4334 {
4335 #ifdef CONFIG_NETFILTER_INGRESS
4336 	if (nf_hook_ingress_active(skb)) {
4337 		int ingress_retval;
4338 
4339 		if (*pt_prev) {
4340 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4341 			*pt_prev = NULL;
4342 		}
4343 
4344 		rcu_read_lock();
4345 		ingress_retval = nf_hook_ingress(skb);
4346 		rcu_read_unlock();
4347 		return ingress_retval;
4348 	}
4349 #endif /* CONFIG_NETFILTER_INGRESS */
4350 	return 0;
4351 }
4352 
4353 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4354 {
4355 	struct packet_type *ptype, *pt_prev;
4356 	rx_handler_func_t *rx_handler;
4357 	struct net_device *orig_dev;
4358 	bool deliver_exact = false;
4359 	int ret = NET_RX_DROP;
4360 	__be16 type;
4361 
4362 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4363 
4364 	trace_netif_receive_skb(skb);
4365 
4366 	orig_dev = skb->dev;
4367 
4368 	skb_reset_network_header(skb);
4369 	if (!skb_transport_header_was_set(skb))
4370 		skb_reset_transport_header(skb);
4371 	skb_reset_mac_len(skb);
4372 
4373 	pt_prev = NULL;
4374 
4375 another_round:
4376 	skb->skb_iif = skb->dev->ifindex;
4377 
4378 	__this_cpu_inc(softnet_data.processed);
4379 
4380 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4381 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4382 		skb = skb_vlan_untag(skb);
4383 		if (unlikely(!skb))
4384 			goto out;
4385 	}
4386 
4387 	if (skb_skip_tc_classify(skb))
4388 		goto skip_classify;
4389 
4390 	if (pfmemalloc)
4391 		goto skip_taps;
4392 
4393 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4394 		if (pt_prev)
4395 			ret = deliver_skb(skb, pt_prev, orig_dev);
4396 		pt_prev = ptype;
4397 	}
4398 
4399 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4400 		if (pt_prev)
4401 			ret = deliver_skb(skb, pt_prev, orig_dev);
4402 		pt_prev = ptype;
4403 	}
4404 
4405 skip_taps:
4406 #ifdef CONFIG_NET_INGRESS
4407 	if (static_key_false(&ingress_needed)) {
4408 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4409 		if (!skb)
4410 			goto out;
4411 
4412 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4413 			goto out;
4414 	}
4415 #endif
4416 	skb_reset_tc(skb);
4417 skip_classify:
4418 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4419 		goto drop;
4420 
4421 	if (skb_vlan_tag_present(skb)) {
4422 		if (pt_prev) {
4423 			ret = deliver_skb(skb, pt_prev, orig_dev);
4424 			pt_prev = NULL;
4425 		}
4426 		if (vlan_do_receive(&skb))
4427 			goto another_round;
4428 		else if (unlikely(!skb))
4429 			goto out;
4430 	}
4431 
4432 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4433 	if (rx_handler) {
4434 		if (pt_prev) {
4435 			ret = deliver_skb(skb, pt_prev, orig_dev);
4436 			pt_prev = NULL;
4437 		}
4438 		switch (rx_handler(&skb)) {
4439 		case RX_HANDLER_CONSUMED:
4440 			ret = NET_RX_SUCCESS;
4441 			goto out;
4442 		case RX_HANDLER_ANOTHER:
4443 			goto another_round;
4444 		case RX_HANDLER_EXACT:
4445 			deliver_exact = true;
4446 		case RX_HANDLER_PASS:
4447 			break;
4448 		default:
4449 			BUG();
4450 		}
4451 	}
4452 
4453 	if (unlikely(skb_vlan_tag_present(skb))) {
4454 		if (skb_vlan_tag_get_id(skb))
4455 			skb->pkt_type = PACKET_OTHERHOST;
4456 		/* Note: we might in the future use prio bits
4457 		 * and set skb->priority like in vlan_do_receive()
4458 		 * For the time being, just ignore Priority Code Point
4459 		 */
4460 		skb->vlan_tci = 0;
4461 	}
4462 
4463 	type = skb->protocol;
4464 
4465 	/* deliver only exact match when indicated */
4466 	if (likely(!deliver_exact)) {
4467 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4468 				       &ptype_base[ntohs(type) &
4469 						   PTYPE_HASH_MASK]);
4470 	}
4471 
4472 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4473 			       &orig_dev->ptype_specific);
4474 
4475 	if (unlikely(skb->dev != orig_dev)) {
4476 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4477 				       &skb->dev->ptype_specific);
4478 	}
4479 
4480 	if (pt_prev) {
4481 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4482 			goto drop;
4483 		else
4484 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4485 	} else {
4486 drop:
4487 		if (!deliver_exact)
4488 			atomic_long_inc(&skb->dev->rx_dropped);
4489 		else
4490 			atomic_long_inc(&skb->dev->rx_nohandler);
4491 		kfree_skb(skb);
4492 		/* Jamal, now you will not able to escape explaining
4493 		 * me how you were going to use this. :-)
4494 		 */
4495 		ret = NET_RX_DROP;
4496 	}
4497 
4498 out:
4499 	return ret;
4500 }
4501 
4502 /**
4503  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4504  *	@skb: buffer to process
4505  *
4506  *	More direct receive version of netif_receive_skb().  It should
4507  *	only be used by callers that have a need to skip RPS and Generic XDP.
4508  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4509  *
4510  *	This function may only be called from softirq context and interrupts
4511  *	should be enabled.
4512  *
4513  *	Return values (usually ignored):
4514  *	NET_RX_SUCCESS: no congestion
4515  *	NET_RX_DROP: packet was dropped
4516  */
4517 int netif_receive_skb_core(struct sk_buff *skb)
4518 {
4519 	int ret;
4520 
4521 	rcu_read_lock();
4522 	ret = __netif_receive_skb_core(skb, false);
4523 	rcu_read_unlock();
4524 
4525 	return ret;
4526 }
4527 EXPORT_SYMBOL(netif_receive_skb_core);
4528 
4529 static int __netif_receive_skb(struct sk_buff *skb)
4530 {
4531 	int ret;
4532 
4533 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4534 		unsigned int noreclaim_flag;
4535 
4536 		/*
4537 		 * PFMEMALLOC skbs are special, they should
4538 		 * - be delivered to SOCK_MEMALLOC sockets only
4539 		 * - stay away from userspace
4540 		 * - have bounded memory usage
4541 		 *
4542 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4543 		 * context down to all allocation sites.
4544 		 */
4545 		noreclaim_flag = memalloc_noreclaim_save();
4546 		ret = __netif_receive_skb_core(skb, true);
4547 		memalloc_noreclaim_restore(noreclaim_flag);
4548 	} else
4549 		ret = __netif_receive_skb_core(skb, false);
4550 
4551 	return ret;
4552 }
4553 
4554 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4555 {
4556 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4557 	struct bpf_prog *new = xdp->prog;
4558 	int ret = 0;
4559 
4560 	switch (xdp->command) {
4561 	case XDP_SETUP_PROG:
4562 		rcu_assign_pointer(dev->xdp_prog, new);
4563 		if (old)
4564 			bpf_prog_put(old);
4565 
4566 		if (old && !new) {
4567 			static_key_slow_dec(&generic_xdp_needed);
4568 		} else if (new && !old) {
4569 			static_key_slow_inc(&generic_xdp_needed);
4570 			dev_disable_lro(dev);
4571 		}
4572 		break;
4573 
4574 	case XDP_QUERY_PROG:
4575 		xdp->prog_attached = !!old;
4576 		xdp->prog_id = old ? old->aux->id : 0;
4577 		break;
4578 
4579 	default:
4580 		ret = -EINVAL;
4581 		break;
4582 	}
4583 
4584 	return ret;
4585 }
4586 
4587 static int netif_receive_skb_internal(struct sk_buff *skb)
4588 {
4589 	int ret;
4590 
4591 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4592 
4593 	if (skb_defer_rx_timestamp(skb))
4594 		return NET_RX_SUCCESS;
4595 
4596 	if (static_key_false(&generic_xdp_needed)) {
4597 		int ret;
4598 
4599 		preempt_disable();
4600 		rcu_read_lock();
4601 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4602 		rcu_read_unlock();
4603 		preempt_enable();
4604 
4605 		if (ret != XDP_PASS)
4606 			return NET_RX_DROP;
4607 	}
4608 
4609 	rcu_read_lock();
4610 #ifdef CONFIG_RPS
4611 	if (static_key_false(&rps_needed)) {
4612 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4613 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4614 
4615 		if (cpu >= 0) {
4616 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4617 			rcu_read_unlock();
4618 			return ret;
4619 		}
4620 	}
4621 #endif
4622 	ret = __netif_receive_skb(skb);
4623 	rcu_read_unlock();
4624 	return ret;
4625 }
4626 
4627 /**
4628  *	netif_receive_skb - process receive buffer from network
4629  *	@skb: buffer to process
4630  *
4631  *	netif_receive_skb() is the main receive data processing function.
4632  *	It always succeeds. The buffer may be dropped during processing
4633  *	for congestion control or by the protocol layers.
4634  *
4635  *	This function may only be called from softirq context and interrupts
4636  *	should be enabled.
4637  *
4638  *	Return values (usually ignored):
4639  *	NET_RX_SUCCESS: no congestion
4640  *	NET_RX_DROP: packet was dropped
4641  */
4642 int netif_receive_skb(struct sk_buff *skb)
4643 {
4644 	trace_netif_receive_skb_entry(skb);
4645 
4646 	return netif_receive_skb_internal(skb);
4647 }
4648 EXPORT_SYMBOL(netif_receive_skb);
4649 
4650 DEFINE_PER_CPU(struct work_struct, flush_works);
4651 
4652 /* Network device is going away, flush any packets still pending */
4653 static void flush_backlog(struct work_struct *work)
4654 {
4655 	struct sk_buff *skb, *tmp;
4656 	struct softnet_data *sd;
4657 
4658 	local_bh_disable();
4659 	sd = this_cpu_ptr(&softnet_data);
4660 
4661 	local_irq_disable();
4662 	rps_lock(sd);
4663 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4664 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4665 			__skb_unlink(skb, &sd->input_pkt_queue);
4666 			kfree_skb(skb);
4667 			input_queue_head_incr(sd);
4668 		}
4669 	}
4670 	rps_unlock(sd);
4671 	local_irq_enable();
4672 
4673 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4674 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4675 			__skb_unlink(skb, &sd->process_queue);
4676 			kfree_skb(skb);
4677 			input_queue_head_incr(sd);
4678 		}
4679 	}
4680 	local_bh_enable();
4681 }
4682 
4683 static void flush_all_backlogs(void)
4684 {
4685 	unsigned int cpu;
4686 
4687 	get_online_cpus();
4688 
4689 	for_each_online_cpu(cpu)
4690 		queue_work_on(cpu, system_highpri_wq,
4691 			      per_cpu_ptr(&flush_works, cpu));
4692 
4693 	for_each_online_cpu(cpu)
4694 		flush_work(per_cpu_ptr(&flush_works, cpu));
4695 
4696 	put_online_cpus();
4697 }
4698 
4699 static int napi_gro_complete(struct sk_buff *skb)
4700 {
4701 	struct packet_offload *ptype;
4702 	__be16 type = skb->protocol;
4703 	struct list_head *head = &offload_base;
4704 	int err = -ENOENT;
4705 
4706 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4707 
4708 	if (NAPI_GRO_CB(skb)->count == 1) {
4709 		skb_shinfo(skb)->gso_size = 0;
4710 		goto out;
4711 	}
4712 
4713 	rcu_read_lock();
4714 	list_for_each_entry_rcu(ptype, head, list) {
4715 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4716 			continue;
4717 
4718 		err = ptype->callbacks.gro_complete(skb, 0);
4719 		break;
4720 	}
4721 	rcu_read_unlock();
4722 
4723 	if (err) {
4724 		WARN_ON(&ptype->list == head);
4725 		kfree_skb(skb);
4726 		return NET_RX_SUCCESS;
4727 	}
4728 
4729 out:
4730 	return netif_receive_skb_internal(skb);
4731 }
4732 
4733 /* napi->gro_list contains packets ordered by age.
4734  * youngest packets at the head of it.
4735  * Complete skbs in reverse order to reduce latencies.
4736  */
4737 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4738 {
4739 	struct sk_buff *skb, *prev = NULL;
4740 
4741 	/* scan list and build reverse chain */
4742 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4743 		skb->prev = prev;
4744 		prev = skb;
4745 	}
4746 
4747 	for (skb = prev; skb; skb = prev) {
4748 		skb->next = NULL;
4749 
4750 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4751 			return;
4752 
4753 		prev = skb->prev;
4754 		napi_gro_complete(skb);
4755 		napi->gro_count--;
4756 	}
4757 
4758 	napi->gro_list = NULL;
4759 }
4760 EXPORT_SYMBOL(napi_gro_flush);
4761 
4762 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4763 {
4764 	struct sk_buff *p;
4765 	unsigned int maclen = skb->dev->hard_header_len;
4766 	u32 hash = skb_get_hash_raw(skb);
4767 
4768 	for (p = napi->gro_list; p; p = p->next) {
4769 		unsigned long diffs;
4770 
4771 		NAPI_GRO_CB(p)->flush = 0;
4772 
4773 		if (hash != skb_get_hash_raw(p)) {
4774 			NAPI_GRO_CB(p)->same_flow = 0;
4775 			continue;
4776 		}
4777 
4778 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4779 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4780 		diffs |= skb_metadata_dst_cmp(p, skb);
4781 		diffs |= skb_metadata_differs(p, skb);
4782 		if (maclen == ETH_HLEN)
4783 			diffs |= compare_ether_header(skb_mac_header(p),
4784 						      skb_mac_header(skb));
4785 		else if (!diffs)
4786 			diffs = memcmp(skb_mac_header(p),
4787 				       skb_mac_header(skb),
4788 				       maclen);
4789 		NAPI_GRO_CB(p)->same_flow = !diffs;
4790 	}
4791 }
4792 
4793 static void skb_gro_reset_offset(struct sk_buff *skb)
4794 {
4795 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4796 	const skb_frag_t *frag0 = &pinfo->frags[0];
4797 
4798 	NAPI_GRO_CB(skb)->data_offset = 0;
4799 	NAPI_GRO_CB(skb)->frag0 = NULL;
4800 	NAPI_GRO_CB(skb)->frag0_len = 0;
4801 
4802 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4803 	    pinfo->nr_frags &&
4804 	    !PageHighMem(skb_frag_page(frag0))) {
4805 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4806 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4807 						    skb_frag_size(frag0),
4808 						    skb->end - skb->tail);
4809 	}
4810 }
4811 
4812 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4813 {
4814 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4815 
4816 	BUG_ON(skb->end - skb->tail < grow);
4817 
4818 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4819 
4820 	skb->data_len -= grow;
4821 	skb->tail += grow;
4822 
4823 	pinfo->frags[0].page_offset += grow;
4824 	skb_frag_size_sub(&pinfo->frags[0], grow);
4825 
4826 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4827 		skb_frag_unref(skb, 0);
4828 		memmove(pinfo->frags, pinfo->frags + 1,
4829 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4830 	}
4831 }
4832 
4833 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4834 {
4835 	struct sk_buff **pp = NULL;
4836 	struct packet_offload *ptype;
4837 	__be16 type = skb->protocol;
4838 	struct list_head *head = &offload_base;
4839 	int same_flow;
4840 	enum gro_result ret;
4841 	int grow;
4842 
4843 	if (netif_elide_gro(skb->dev))
4844 		goto normal;
4845 
4846 	gro_list_prepare(napi, skb);
4847 
4848 	rcu_read_lock();
4849 	list_for_each_entry_rcu(ptype, head, list) {
4850 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4851 			continue;
4852 
4853 		skb_set_network_header(skb, skb_gro_offset(skb));
4854 		skb_reset_mac_len(skb);
4855 		NAPI_GRO_CB(skb)->same_flow = 0;
4856 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4857 		NAPI_GRO_CB(skb)->free = 0;
4858 		NAPI_GRO_CB(skb)->encap_mark = 0;
4859 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4860 		NAPI_GRO_CB(skb)->is_fou = 0;
4861 		NAPI_GRO_CB(skb)->is_atomic = 1;
4862 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4863 
4864 		/* Setup for GRO checksum validation */
4865 		switch (skb->ip_summed) {
4866 		case CHECKSUM_COMPLETE:
4867 			NAPI_GRO_CB(skb)->csum = skb->csum;
4868 			NAPI_GRO_CB(skb)->csum_valid = 1;
4869 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4870 			break;
4871 		case CHECKSUM_UNNECESSARY:
4872 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4873 			NAPI_GRO_CB(skb)->csum_valid = 0;
4874 			break;
4875 		default:
4876 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4877 			NAPI_GRO_CB(skb)->csum_valid = 0;
4878 		}
4879 
4880 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4881 		break;
4882 	}
4883 	rcu_read_unlock();
4884 
4885 	if (&ptype->list == head)
4886 		goto normal;
4887 
4888 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4889 		ret = GRO_CONSUMED;
4890 		goto ok;
4891 	}
4892 
4893 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4894 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4895 
4896 	if (pp) {
4897 		struct sk_buff *nskb = *pp;
4898 
4899 		*pp = nskb->next;
4900 		nskb->next = NULL;
4901 		napi_gro_complete(nskb);
4902 		napi->gro_count--;
4903 	}
4904 
4905 	if (same_flow)
4906 		goto ok;
4907 
4908 	if (NAPI_GRO_CB(skb)->flush)
4909 		goto normal;
4910 
4911 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4912 		struct sk_buff *nskb = napi->gro_list;
4913 
4914 		/* locate the end of the list to select the 'oldest' flow */
4915 		while (nskb->next) {
4916 			pp = &nskb->next;
4917 			nskb = *pp;
4918 		}
4919 		*pp = NULL;
4920 		nskb->next = NULL;
4921 		napi_gro_complete(nskb);
4922 	} else {
4923 		napi->gro_count++;
4924 	}
4925 	NAPI_GRO_CB(skb)->count = 1;
4926 	NAPI_GRO_CB(skb)->age = jiffies;
4927 	NAPI_GRO_CB(skb)->last = skb;
4928 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4929 	skb->next = napi->gro_list;
4930 	napi->gro_list = skb;
4931 	ret = GRO_HELD;
4932 
4933 pull:
4934 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4935 	if (grow > 0)
4936 		gro_pull_from_frag0(skb, grow);
4937 ok:
4938 	return ret;
4939 
4940 normal:
4941 	ret = GRO_NORMAL;
4942 	goto pull;
4943 }
4944 
4945 struct packet_offload *gro_find_receive_by_type(__be16 type)
4946 {
4947 	struct list_head *offload_head = &offload_base;
4948 	struct packet_offload *ptype;
4949 
4950 	list_for_each_entry_rcu(ptype, offload_head, list) {
4951 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4952 			continue;
4953 		return ptype;
4954 	}
4955 	return NULL;
4956 }
4957 EXPORT_SYMBOL(gro_find_receive_by_type);
4958 
4959 struct packet_offload *gro_find_complete_by_type(__be16 type)
4960 {
4961 	struct list_head *offload_head = &offload_base;
4962 	struct packet_offload *ptype;
4963 
4964 	list_for_each_entry_rcu(ptype, offload_head, list) {
4965 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4966 			continue;
4967 		return ptype;
4968 	}
4969 	return NULL;
4970 }
4971 EXPORT_SYMBOL(gro_find_complete_by_type);
4972 
4973 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4974 {
4975 	skb_dst_drop(skb);
4976 	secpath_reset(skb);
4977 	kmem_cache_free(skbuff_head_cache, skb);
4978 }
4979 
4980 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4981 {
4982 	switch (ret) {
4983 	case GRO_NORMAL:
4984 		if (netif_receive_skb_internal(skb))
4985 			ret = GRO_DROP;
4986 		break;
4987 
4988 	case GRO_DROP:
4989 		kfree_skb(skb);
4990 		break;
4991 
4992 	case GRO_MERGED_FREE:
4993 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4994 			napi_skb_free_stolen_head(skb);
4995 		else
4996 			__kfree_skb(skb);
4997 		break;
4998 
4999 	case GRO_HELD:
5000 	case GRO_MERGED:
5001 	case GRO_CONSUMED:
5002 		break;
5003 	}
5004 
5005 	return ret;
5006 }
5007 
5008 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5009 {
5010 	skb_mark_napi_id(skb, napi);
5011 	trace_napi_gro_receive_entry(skb);
5012 
5013 	skb_gro_reset_offset(skb);
5014 
5015 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5016 }
5017 EXPORT_SYMBOL(napi_gro_receive);
5018 
5019 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5020 {
5021 	if (unlikely(skb->pfmemalloc)) {
5022 		consume_skb(skb);
5023 		return;
5024 	}
5025 	__skb_pull(skb, skb_headlen(skb));
5026 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5027 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5028 	skb->vlan_tci = 0;
5029 	skb->dev = napi->dev;
5030 	skb->skb_iif = 0;
5031 	skb->encapsulation = 0;
5032 	skb_shinfo(skb)->gso_type = 0;
5033 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5034 	secpath_reset(skb);
5035 
5036 	napi->skb = skb;
5037 }
5038 
5039 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5040 {
5041 	struct sk_buff *skb = napi->skb;
5042 
5043 	if (!skb) {
5044 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5045 		if (skb) {
5046 			napi->skb = skb;
5047 			skb_mark_napi_id(skb, napi);
5048 		}
5049 	}
5050 	return skb;
5051 }
5052 EXPORT_SYMBOL(napi_get_frags);
5053 
5054 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5055 				      struct sk_buff *skb,
5056 				      gro_result_t ret)
5057 {
5058 	switch (ret) {
5059 	case GRO_NORMAL:
5060 	case GRO_HELD:
5061 		__skb_push(skb, ETH_HLEN);
5062 		skb->protocol = eth_type_trans(skb, skb->dev);
5063 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5064 			ret = GRO_DROP;
5065 		break;
5066 
5067 	case GRO_DROP:
5068 		napi_reuse_skb(napi, skb);
5069 		break;
5070 
5071 	case GRO_MERGED_FREE:
5072 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5073 			napi_skb_free_stolen_head(skb);
5074 		else
5075 			napi_reuse_skb(napi, skb);
5076 		break;
5077 
5078 	case GRO_MERGED:
5079 	case GRO_CONSUMED:
5080 		break;
5081 	}
5082 
5083 	return ret;
5084 }
5085 
5086 /* Upper GRO stack assumes network header starts at gro_offset=0
5087  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5088  * We copy ethernet header into skb->data to have a common layout.
5089  */
5090 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5091 {
5092 	struct sk_buff *skb = napi->skb;
5093 	const struct ethhdr *eth;
5094 	unsigned int hlen = sizeof(*eth);
5095 
5096 	napi->skb = NULL;
5097 
5098 	skb_reset_mac_header(skb);
5099 	skb_gro_reset_offset(skb);
5100 
5101 	eth = skb_gro_header_fast(skb, 0);
5102 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5103 		eth = skb_gro_header_slow(skb, hlen, 0);
5104 		if (unlikely(!eth)) {
5105 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5106 					     __func__, napi->dev->name);
5107 			napi_reuse_skb(napi, skb);
5108 			return NULL;
5109 		}
5110 	} else {
5111 		gro_pull_from_frag0(skb, hlen);
5112 		NAPI_GRO_CB(skb)->frag0 += hlen;
5113 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5114 	}
5115 	__skb_pull(skb, hlen);
5116 
5117 	/*
5118 	 * This works because the only protocols we care about don't require
5119 	 * special handling.
5120 	 * We'll fix it up properly in napi_frags_finish()
5121 	 */
5122 	skb->protocol = eth->h_proto;
5123 
5124 	return skb;
5125 }
5126 
5127 gro_result_t napi_gro_frags(struct napi_struct *napi)
5128 {
5129 	struct sk_buff *skb = napi_frags_skb(napi);
5130 
5131 	if (!skb)
5132 		return GRO_DROP;
5133 
5134 	trace_napi_gro_frags_entry(skb);
5135 
5136 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5137 }
5138 EXPORT_SYMBOL(napi_gro_frags);
5139 
5140 /* Compute the checksum from gro_offset and return the folded value
5141  * after adding in any pseudo checksum.
5142  */
5143 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5144 {
5145 	__wsum wsum;
5146 	__sum16 sum;
5147 
5148 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5149 
5150 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5151 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5152 	if (likely(!sum)) {
5153 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5154 		    !skb->csum_complete_sw)
5155 			netdev_rx_csum_fault(skb->dev);
5156 	}
5157 
5158 	NAPI_GRO_CB(skb)->csum = wsum;
5159 	NAPI_GRO_CB(skb)->csum_valid = 1;
5160 
5161 	return sum;
5162 }
5163 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5164 
5165 static void net_rps_send_ipi(struct softnet_data *remsd)
5166 {
5167 #ifdef CONFIG_RPS
5168 	while (remsd) {
5169 		struct softnet_data *next = remsd->rps_ipi_next;
5170 
5171 		if (cpu_online(remsd->cpu))
5172 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5173 		remsd = next;
5174 	}
5175 #endif
5176 }
5177 
5178 /*
5179  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5180  * Note: called with local irq disabled, but exits with local irq enabled.
5181  */
5182 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5183 {
5184 #ifdef CONFIG_RPS
5185 	struct softnet_data *remsd = sd->rps_ipi_list;
5186 
5187 	if (remsd) {
5188 		sd->rps_ipi_list = NULL;
5189 
5190 		local_irq_enable();
5191 
5192 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5193 		net_rps_send_ipi(remsd);
5194 	} else
5195 #endif
5196 		local_irq_enable();
5197 }
5198 
5199 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5200 {
5201 #ifdef CONFIG_RPS
5202 	return sd->rps_ipi_list != NULL;
5203 #else
5204 	return false;
5205 #endif
5206 }
5207 
5208 static int process_backlog(struct napi_struct *napi, int quota)
5209 {
5210 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5211 	bool again = true;
5212 	int work = 0;
5213 
5214 	/* Check if we have pending ipi, its better to send them now,
5215 	 * not waiting net_rx_action() end.
5216 	 */
5217 	if (sd_has_rps_ipi_waiting(sd)) {
5218 		local_irq_disable();
5219 		net_rps_action_and_irq_enable(sd);
5220 	}
5221 
5222 	napi->weight = dev_rx_weight;
5223 	while (again) {
5224 		struct sk_buff *skb;
5225 
5226 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5227 			rcu_read_lock();
5228 			__netif_receive_skb(skb);
5229 			rcu_read_unlock();
5230 			input_queue_head_incr(sd);
5231 			if (++work >= quota)
5232 				return work;
5233 
5234 		}
5235 
5236 		local_irq_disable();
5237 		rps_lock(sd);
5238 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5239 			/*
5240 			 * Inline a custom version of __napi_complete().
5241 			 * only current cpu owns and manipulates this napi,
5242 			 * and NAPI_STATE_SCHED is the only possible flag set
5243 			 * on backlog.
5244 			 * We can use a plain write instead of clear_bit(),
5245 			 * and we dont need an smp_mb() memory barrier.
5246 			 */
5247 			napi->state = 0;
5248 			again = false;
5249 		} else {
5250 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5251 						   &sd->process_queue);
5252 		}
5253 		rps_unlock(sd);
5254 		local_irq_enable();
5255 	}
5256 
5257 	return work;
5258 }
5259 
5260 /**
5261  * __napi_schedule - schedule for receive
5262  * @n: entry to schedule
5263  *
5264  * The entry's receive function will be scheduled to run.
5265  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5266  */
5267 void __napi_schedule(struct napi_struct *n)
5268 {
5269 	unsigned long flags;
5270 
5271 	local_irq_save(flags);
5272 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5273 	local_irq_restore(flags);
5274 }
5275 EXPORT_SYMBOL(__napi_schedule);
5276 
5277 /**
5278  *	napi_schedule_prep - check if napi can be scheduled
5279  *	@n: napi context
5280  *
5281  * Test if NAPI routine is already running, and if not mark
5282  * it as running.  This is used as a condition variable
5283  * insure only one NAPI poll instance runs.  We also make
5284  * sure there is no pending NAPI disable.
5285  */
5286 bool napi_schedule_prep(struct napi_struct *n)
5287 {
5288 	unsigned long val, new;
5289 
5290 	do {
5291 		val = READ_ONCE(n->state);
5292 		if (unlikely(val & NAPIF_STATE_DISABLE))
5293 			return false;
5294 		new = val | NAPIF_STATE_SCHED;
5295 
5296 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5297 		 * This was suggested by Alexander Duyck, as compiler
5298 		 * emits better code than :
5299 		 * if (val & NAPIF_STATE_SCHED)
5300 		 *     new |= NAPIF_STATE_MISSED;
5301 		 */
5302 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5303 						   NAPIF_STATE_MISSED;
5304 	} while (cmpxchg(&n->state, val, new) != val);
5305 
5306 	return !(val & NAPIF_STATE_SCHED);
5307 }
5308 EXPORT_SYMBOL(napi_schedule_prep);
5309 
5310 /**
5311  * __napi_schedule_irqoff - schedule for receive
5312  * @n: entry to schedule
5313  *
5314  * Variant of __napi_schedule() assuming hard irqs are masked
5315  */
5316 void __napi_schedule_irqoff(struct napi_struct *n)
5317 {
5318 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5319 }
5320 EXPORT_SYMBOL(__napi_schedule_irqoff);
5321 
5322 bool napi_complete_done(struct napi_struct *n, int work_done)
5323 {
5324 	unsigned long flags, val, new;
5325 
5326 	/*
5327 	 * 1) Don't let napi dequeue from the cpu poll list
5328 	 *    just in case its running on a different cpu.
5329 	 * 2) If we are busy polling, do nothing here, we have
5330 	 *    the guarantee we will be called later.
5331 	 */
5332 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5333 				 NAPIF_STATE_IN_BUSY_POLL)))
5334 		return false;
5335 
5336 	if (n->gro_list) {
5337 		unsigned long timeout = 0;
5338 
5339 		if (work_done)
5340 			timeout = n->dev->gro_flush_timeout;
5341 
5342 		if (timeout)
5343 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5344 				      HRTIMER_MODE_REL_PINNED);
5345 		else
5346 			napi_gro_flush(n, false);
5347 	}
5348 	if (unlikely(!list_empty(&n->poll_list))) {
5349 		/* If n->poll_list is not empty, we need to mask irqs */
5350 		local_irq_save(flags);
5351 		list_del_init(&n->poll_list);
5352 		local_irq_restore(flags);
5353 	}
5354 
5355 	do {
5356 		val = READ_ONCE(n->state);
5357 
5358 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5359 
5360 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5361 
5362 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5363 		 * because we will call napi->poll() one more time.
5364 		 * This C code was suggested by Alexander Duyck to help gcc.
5365 		 */
5366 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5367 						    NAPIF_STATE_SCHED;
5368 	} while (cmpxchg(&n->state, val, new) != val);
5369 
5370 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5371 		__napi_schedule(n);
5372 		return false;
5373 	}
5374 
5375 	return true;
5376 }
5377 EXPORT_SYMBOL(napi_complete_done);
5378 
5379 /* must be called under rcu_read_lock(), as we dont take a reference */
5380 static struct napi_struct *napi_by_id(unsigned int napi_id)
5381 {
5382 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5383 	struct napi_struct *napi;
5384 
5385 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5386 		if (napi->napi_id == napi_id)
5387 			return napi;
5388 
5389 	return NULL;
5390 }
5391 
5392 #if defined(CONFIG_NET_RX_BUSY_POLL)
5393 
5394 #define BUSY_POLL_BUDGET 8
5395 
5396 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5397 {
5398 	int rc;
5399 
5400 	/* Busy polling means there is a high chance device driver hard irq
5401 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5402 	 * set in napi_schedule_prep().
5403 	 * Since we are about to call napi->poll() once more, we can safely
5404 	 * clear NAPI_STATE_MISSED.
5405 	 *
5406 	 * Note: x86 could use a single "lock and ..." instruction
5407 	 * to perform these two clear_bit()
5408 	 */
5409 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5410 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5411 
5412 	local_bh_disable();
5413 
5414 	/* All we really want here is to re-enable device interrupts.
5415 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5416 	 */
5417 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5418 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5419 	netpoll_poll_unlock(have_poll_lock);
5420 	if (rc == BUSY_POLL_BUDGET)
5421 		__napi_schedule(napi);
5422 	local_bh_enable();
5423 }
5424 
5425 void napi_busy_loop(unsigned int napi_id,
5426 		    bool (*loop_end)(void *, unsigned long),
5427 		    void *loop_end_arg)
5428 {
5429 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5430 	int (*napi_poll)(struct napi_struct *napi, int budget);
5431 	void *have_poll_lock = NULL;
5432 	struct napi_struct *napi;
5433 
5434 restart:
5435 	napi_poll = NULL;
5436 
5437 	rcu_read_lock();
5438 
5439 	napi = napi_by_id(napi_id);
5440 	if (!napi)
5441 		goto out;
5442 
5443 	preempt_disable();
5444 	for (;;) {
5445 		int work = 0;
5446 
5447 		local_bh_disable();
5448 		if (!napi_poll) {
5449 			unsigned long val = READ_ONCE(napi->state);
5450 
5451 			/* If multiple threads are competing for this napi,
5452 			 * we avoid dirtying napi->state as much as we can.
5453 			 */
5454 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5455 				   NAPIF_STATE_IN_BUSY_POLL))
5456 				goto count;
5457 			if (cmpxchg(&napi->state, val,
5458 				    val | NAPIF_STATE_IN_BUSY_POLL |
5459 					  NAPIF_STATE_SCHED) != val)
5460 				goto count;
5461 			have_poll_lock = netpoll_poll_lock(napi);
5462 			napi_poll = napi->poll;
5463 		}
5464 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5465 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5466 count:
5467 		if (work > 0)
5468 			__NET_ADD_STATS(dev_net(napi->dev),
5469 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5470 		local_bh_enable();
5471 
5472 		if (!loop_end || loop_end(loop_end_arg, start_time))
5473 			break;
5474 
5475 		if (unlikely(need_resched())) {
5476 			if (napi_poll)
5477 				busy_poll_stop(napi, have_poll_lock);
5478 			preempt_enable();
5479 			rcu_read_unlock();
5480 			cond_resched();
5481 			if (loop_end(loop_end_arg, start_time))
5482 				return;
5483 			goto restart;
5484 		}
5485 		cpu_relax();
5486 	}
5487 	if (napi_poll)
5488 		busy_poll_stop(napi, have_poll_lock);
5489 	preempt_enable();
5490 out:
5491 	rcu_read_unlock();
5492 }
5493 EXPORT_SYMBOL(napi_busy_loop);
5494 
5495 #endif /* CONFIG_NET_RX_BUSY_POLL */
5496 
5497 static void napi_hash_add(struct napi_struct *napi)
5498 {
5499 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5500 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5501 		return;
5502 
5503 	spin_lock(&napi_hash_lock);
5504 
5505 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5506 	do {
5507 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5508 			napi_gen_id = MIN_NAPI_ID;
5509 	} while (napi_by_id(napi_gen_id));
5510 	napi->napi_id = napi_gen_id;
5511 
5512 	hlist_add_head_rcu(&napi->napi_hash_node,
5513 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5514 
5515 	spin_unlock(&napi_hash_lock);
5516 }
5517 
5518 /* Warning : caller is responsible to make sure rcu grace period
5519  * is respected before freeing memory containing @napi
5520  */
5521 bool napi_hash_del(struct napi_struct *napi)
5522 {
5523 	bool rcu_sync_needed = false;
5524 
5525 	spin_lock(&napi_hash_lock);
5526 
5527 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5528 		rcu_sync_needed = true;
5529 		hlist_del_rcu(&napi->napi_hash_node);
5530 	}
5531 	spin_unlock(&napi_hash_lock);
5532 	return rcu_sync_needed;
5533 }
5534 EXPORT_SYMBOL_GPL(napi_hash_del);
5535 
5536 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5537 {
5538 	struct napi_struct *napi;
5539 
5540 	napi = container_of(timer, struct napi_struct, timer);
5541 
5542 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5543 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5544 	 */
5545 	if (napi->gro_list && !napi_disable_pending(napi) &&
5546 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5547 		__napi_schedule_irqoff(napi);
5548 
5549 	return HRTIMER_NORESTART;
5550 }
5551 
5552 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5553 		    int (*poll)(struct napi_struct *, int), int weight)
5554 {
5555 	INIT_LIST_HEAD(&napi->poll_list);
5556 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5557 	napi->timer.function = napi_watchdog;
5558 	napi->gro_count = 0;
5559 	napi->gro_list = NULL;
5560 	napi->skb = NULL;
5561 	napi->poll = poll;
5562 	if (weight > NAPI_POLL_WEIGHT)
5563 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5564 			    weight, dev->name);
5565 	napi->weight = weight;
5566 	list_add(&napi->dev_list, &dev->napi_list);
5567 	napi->dev = dev;
5568 #ifdef CONFIG_NETPOLL
5569 	napi->poll_owner = -1;
5570 #endif
5571 	set_bit(NAPI_STATE_SCHED, &napi->state);
5572 	napi_hash_add(napi);
5573 }
5574 EXPORT_SYMBOL(netif_napi_add);
5575 
5576 void napi_disable(struct napi_struct *n)
5577 {
5578 	might_sleep();
5579 	set_bit(NAPI_STATE_DISABLE, &n->state);
5580 
5581 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5582 		msleep(1);
5583 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5584 		msleep(1);
5585 
5586 	hrtimer_cancel(&n->timer);
5587 
5588 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5589 }
5590 EXPORT_SYMBOL(napi_disable);
5591 
5592 /* Must be called in process context */
5593 void netif_napi_del(struct napi_struct *napi)
5594 {
5595 	might_sleep();
5596 	if (napi_hash_del(napi))
5597 		synchronize_net();
5598 	list_del_init(&napi->dev_list);
5599 	napi_free_frags(napi);
5600 
5601 	kfree_skb_list(napi->gro_list);
5602 	napi->gro_list = NULL;
5603 	napi->gro_count = 0;
5604 }
5605 EXPORT_SYMBOL(netif_napi_del);
5606 
5607 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5608 {
5609 	void *have;
5610 	int work, weight;
5611 
5612 	list_del_init(&n->poll_list);
5613 
5614 	have = netpoll_poll_lock(n);
5615 
5616 	weight = n->weight;
5617 
5618 	/* This NAPI_STATE_SCHED test is for avoiding a race
5619 	 * with netpoll's poll_napi().  Only the entity which
5620 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5621 	 * actually make the ->poll() call.  Therefore we avoid
5622 	 * accidentally calling ->poll() when NAPI is not scheduled.
5623 	 */
5624 	work = 0;
5625 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5626 		work = n->poll(n, weight);
5627 		trace_napi_poll(n, work, weight);
5628 	}
5629 
5630 	WARN_ON_ONCE(work > weight);
5631 
5632 	if (likely(work < weight))
5633 		goto out_unlock;
5634 
5635 	/* Drivers must not modify the NAPI state if they
5636 	 * consume the entire weight.  In such cases this code
5637 	 * still "owns" the NAPI instance and therefore can
5638 	 * move the instance around on the list at-will.
5639 	 */
5640 	if (unlikely(napi_disable_pending(n))) {
5641 		napi_complete(n);
5642 		goto out_unlock;
5643 	}
5644 
5645 	if (n->gro_list) {
5646 		/* flush too old packets
5647 		 * If HZ < 1000, flush all packets.
5648 		 */
5649 		napi_gro_flush(n, HZ >= 1000);
5650 	}
5651 
5652 	/* Some drivers may have called napi_schedule
5653 	 * prior to exhausting their budget.
5654 	 */
5655 	if (unlikely(!list_empty(&n->poll_list))) {
5656 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5657 			     n->dev ? n->dev->name : "backlog");
5658 		goto out_unlock;
5659 	}
5660 
5661 	list_add_tail(&n->poll_list, repoll);
5662 
5663 out_unlock:
5664 	netpoll_poll_unlock(have);
5665 
5666 	return work;
5667 }
5668 
5669 static __latent_entropy void net_rx_action(struct softirq_action *h)
5670 {
5671 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5672 	unsigned long time_limit = jiffies +
5673 		usecs_to_jiffies(netdev_budget_usecs);
5674 	int budget = netdev_budget;
5675 	LIST_HEAD(list);
5676 	LIST_HEAD(repoll);
5677 
5678 	local_irq_disable();
5679 	list_splice_init(&sd->poll_list, &list);
5680 	local_irq_enable();
5681 
5682 	for (;;) {
5683 		struct napi_struct *n;
5684 
5685 		if (list_empty(&list)) {
5686 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5687 				goto out;
5688 			break;
5689 		}
5690 
5691 		n = list_first_entry(&list, struct napi_struct, poll_list);
5692 		budget -= napi_poll(n, &repoll);
5693 
5694 		/* If softirq window is exhausted then punt.
5695 		 * Allow this to run for 2 jiffies since which will allow
5696 		 * an average latency of 1.5/HZ.
5697 		 */
5698 		if (unlikely(budget <= 0 ||
5699 			     time_after_eq(jiffies, time_limit))) {
5700 			sd->time_squeeze++;
5701 			break;
5702 		}
5703 	}
5704 
5705 	local_irq_disable();
5706 
5707 	list_splice_tail_init(&sd->poll_list, &list);
5708 	list_splice_tail(&repoll, &list);
5709 	list_splice(&list, &sd->poll_list);
5710 	if (!list_empty(&sd->poll_list))
5711 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5712 
5713 	net_rps_action_and_irq_enable(sd);
5714 out:
5715 	__kfree_skb_flush();
5716 }
5717 
5718 struct netdev_adjacent {
5719 	struct net_device *dev;
5720 
5721 	/* upper master flag, there can only be one master device per list */
5722 	bool master;
5723 
5724 	/* counter for the number of times this device was added to us */
5725 	u16 ref_nr;
5726 
5727 	/* private field for the users */
5728 	void *private;
5729 
5730 	struct list_head list;
5731 	struct rcu_head rcu;
5732 };
5733 
5734 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5735 						 struct list_head *adj_list)
5736 {
5737 	struct netdev_adjacent *adj;
5738 
5739 	list_for_each_entry(adj, adj_list, list) {
5740 		if (adj->dev == adj_dev)
5741 			return adj;
5742 	}
5743 	return NULL;
5744 }
5745 
5746 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5747 {
5748 	struct net_device *dev = data;
5749 
5750 	return upper_dev == dev;
5751 }
5752 
5753 /**
5754  * netdev_has_upper_dev - Check if device is linked to an upper device
5755  * @dev: device
5756  * @upper_dev: upper device to check
5757  *
5758  * Find out if a device is linked to specified upper device and return true
5759  * in case it is. Note that this checks only immediate upper device,
5760  * not through a complete stack of devices. The caller must hold the RTNL lock.
5761  */
5762 bool netdev_has_upper_dev(struct net_device *dev,
5763 			  struct net_device *upper_dev)
5764 {
5765 	ASSERT_RTNL();
5766 
5767 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5768 					     upper_dev);
5769 }
5770 EXPORT_SYMBOL(netdev_has_upper_dev);
5771 
5772 /**
5773  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5774  * @dev: device
5775  * @upper_dev: upper device to check
5776  *
5777  * Find out if a device is linked to specified upper device and return true
5778  * in case it is. Note that this checks the entire upper device chain.
5779  * The caller must hold rcu lock.
5780  */
5781 
5782 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5783 				  struct net_device *upper_dev)
5784 {
5785 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5786 					       upper_dev);
5787 }
5788 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5789 
5790 /**
5791  * netdev_has_any_upper_dev - Check if device is linked to some device
5792  * @dev: device
5793  *
5794  * Find out if a device is linked to an upper device and return true in case
5795  * it is. The caller must hold the RTNL lock.
5796  */
5797 bool netdev_has_any_upper_dev(struct net_device *dev)
5798 {
5799 	ASSERT_RTNL();
5800 
5801 	return !list_empty(&dev->adj_list.upper);
5802 }
5803 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5804 
5805 /**
5806  * netdev_master_upper_dev_get - Get master upper device
5807  * @dev: device
5808  *
5809  * Find a master upper device and return pointer to it or NULL in case
5810  * it's not there. The caller must hold the RTNL lock.
5811  */
5812 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5813 {
5814 	struct netdev_adjacent *upper;
5815 
5816 	ASSERT_RTNL();
5817 
5818 	if (list_empty(&dev->adj_list.upper))
5819 		return NULL;
5820 
5821 	upper = list_first_entry(&dev->adj_list.upper,
5822 				 struct netdev_adjacent, list);
5823 	if (likely(upper->master))
5824 		return upper->dev;
5825 	return NULL;
5826 }
5827 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5828 
5829 /**
5830  * netdev_has_any_lower_dev - Check if device is linked to some device
5831  * @dev: device
5832  *
5833  * Find out if a device is linked to a lower device and return true in case
5834  * it is. The caller must hold the RTNL lock.
5835  */
5836 static bool netdev_has_any_lower_dev(struct net_device *dev)
5837 {
5838 	ASSERT_RTNL();
5839 
5840 	return !list_empty(&dev->adj_list.lower);
5841 }
5842 
5843 void *netdev_adjacent_get_private(struct list_head *adj_list)
5844 {
5845 	struct netdev_adjacent *adj;
5846 
5847 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5848 
5849 	return adj->private;
5850 }
5851 EXPORT_SYMBOL(netdev_adjacent_get_private);
5852 
5853 /**
5854  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5855  * @dev: device
5856  * @iter: list_head ** of the current position
5857  *
5858  * Gets the next device from the dev's upper list, starting from iter
5859  * position. The caller must hold RCU read lock.
5860  */
5861 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5862 						 struct list_head **iter)
5863 {
5864 	struct netdev_adjacent *upper;
5865 
5866 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5867 
5868 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5869 
5870 	if (&upper->list == &dev->adj_list.upper)
5871 		return NULL;
5872 
5873 	*iter = &upper->list;
5874 
5875 	return upper->dev;
5876 }
5877 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5878 
5879 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5880 						    struct list_head **iter)
5881 {
5882 	struct netdev_adjacent *upper;
5883 
5884 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5885 
5886 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5887 
5888 	if (&upper->list == &dev->adj_list.upper)
5889 		return NULL;
5890 
5891 	*iter = &upper->list;
5892 
5893 	return upper->dev;
5894 }
5895 
5896 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5897 				  int (*fn)(struct net_device *dev,
5898 					    void *data),
5899 				  void *data)
5900 {
5901 	struct net_device *udev;
5902 	struct list_head *iter;
5903 	int ret;
5904 
5905 	for (iter = &dev->adj_list.upper,
5906 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5907 	     udev;
5908 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5909 		/* first is the upper device itself */
5910 		ret = fn(udev, data);
5911 		if (ret)
5912 			return ret;
5913 
5914 		/* then look at all of its upper devices */
5915 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5916 		if (ret)
5917 			return ret;
5918 	}
5919 
5920 	return 0;
5921 }
5922 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5923 
5924 /**
5925  * netdev_lower_get_next_private - Get the next ->private from the
5926  *				   lower neighbour list
5927  * @dev: device
5928  * @iter: list_head ** of the current position
5929  *
5930  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5931  * list, starting from iter position. The caller must hold either hold the
5932  * RTNL lock or its own locking that guarantees that the neighbour lower
5933  * list will remain unchanged.
5934  */
5935 void *netdev_lower_get_next_private(struct net_device *dev,
5936 				    struct list_head **iter)
5937 {
5938 	struct netdev_adjacent *lower;
5939 
5940 	lower = list_entry(*iter, struct netdev_adjacent, list);
5941 
5942 	if (&lower->list == &dev->adj_list.lower)
5943 		return NULL;
5944 
5945 	*iter = lower->list.next;
5946 
5947 	return lower->private;
5948 }
5949 EXPORT_SYMBOL(netdev_lower_get_next_private);
5950 
5951 /**
5952  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5953  *				       lower neighbour list, RCU
5954  *				       variant
5955  * @dev: device
5956  * @iter: list_head ** of the current position
5957  *
5958  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5959  * list, starting from iter position. The caller must hold RCU read lock.
5960  */
5961 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5962 					struct list_head **iter)
5963 {
5964 	struct netdev_adjacent *lower;
5965 
5966 	WARN_ON_ONCE(!rcu_read_lock_held());
5967 
5968 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5969 
5970 	if (&lower->list == &dev->adj_list.lower)
5971 		return NULL;
5972 
5973 	*iter = &lower->list;
5974 
5975 	return lower->private;
5976 }
5977 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5978 
5979 /**
5980  * netdev_lower_get_next - Get the next device from the lower neighbour
5981  *                         list
5982  * @dev: device
5983  * @iter: list_head ** of the current position
5984  *
5985  * Gets the next netdev_adjacent from the dev's lower neighbour
5986  * list, starting from iter position. The caller must hold RTNL lock or
5987  * its own locking that guarantees that the neighbour lower
5988  * list will remain unchanged.
5989  */
5990 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5991 {
5992 	struct netdev_adjacent *lower;
5993 
5994 	lower = list_entry(*iter, struct netdev_adjacent, list);
5995 
5996 	if (&lower->list == &dev->adj_list.lower)
5997 		return NULL;
5998 
5999 	*iter = lower->list.next;
6000 
6001 	return lower->dev;
6002 }
6003 EXPORT_SYMBOL(netdev_lower_get_next);
6004 
6005 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6006 						struct list_head **iter)
6007 {
6008 	struct netdev_adjacent *lower;
6009 
6010 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6011 
6012 	if (&lower->list == &dev->adj_list.lower)
6013 		return NULL;
6014 
6015 	*iter = &lower->list;
6016 
6017 	return lower->dev;
6018 }
6019 
6020 int netdev_walk_all_lower_dev(struct net_device *dev,
6021 			      int (*fn)(struct net_device *dev,
6022 					void *data),
6023 			      void *data)
6024 {
6025 	struct net_device *ldev;
6026 	struct list_head *iter;
6027 	int ret;
6028 
6029 	for (iter = &dev->adj_list.lower,
6030 	     ldev = netdev_next_lower_dev(dev, &iter);
6031 	     ldev;
6032 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6033 		/* first is the lower device itself */
6034 		ret = fn(ldev, data);
6035 		if (ret)
6036 			return ret;
6037 
6038 		/* then look at all of its lower devices */
6039 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6040 		if (ret)
6041 			return ret;
6042 	}
6043 
6044 	return 0;
6045 }
6046 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6047 
6048 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6049 						    struct list_head **iter)
6050 {
6051 	struct netdev_adjacent *lower;
6052 
6053 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6054 	if (&lower->list == &dev->adj_list.lower)
6055 		return NULL;
6056 
6057 	*iter = &lower->list;
6058 
6059 	return lower->dev;
6060 }
6061 
6062 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6063 				  int (*fn)(struct net_device *dev,
6064 					    void *data),
6065 				  void *data)
6066 {
6067 	struct net_device *ldev;
6068 	struct list_head *iter;
6069 	int ret;
6070 
6071 	for (iter = &dev->adj_list.lower,
6072 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6073 	     ldev;
6074 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6075 		/* first is the lower device itself */
6076 		ret = fn(ldev, data);
6077 		if (ret)
6078 			return ret;
6079 
6080 		/* then look at all of its lower devices */
6081 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6082 		if (ret)
6083 			return ret;
6084 	}
6085 
6086 	return 0;
6087 }
6088 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6089 
6090 /**
6091  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6092  *				       lower neighbour list, RCU
6093  *				       variant
6094  * @dev: device
6095  *
6096  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6097  * list. The caller must hold RCU read lock.
6098  */
6099 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6100 {
6101 	struct netdev_adjacent *lower;
6102 
6103 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6104 			struct netdev_adjacent, list);
6105 	if (lower)
6106 		return lower->private;
6107 	return NULL;
6108 }
6109 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6110 
6111 /**
6112  * netdev_master_upper_dev_get_rcu - Get master upper device
6113  * @dev: device
6114  *
6115  * Find a master upper device and return pointer to it or NULL in case
6116  * it's not there. The caller must hold the RCU read lock.
6117  */
6118 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6119 {
6120 	struct netdev_adjacent *upper;
6121 
6122 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6123 				       struct netdev_adjacent, list);
6124 	if (upper && likely(upper->master))
6125 		return upper->dev;
6126 	return NULL;
6127 }
6128 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6129 
6130 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6131 			      struct net_device *adj_dev,
6132 			      struct list_head *dev_list)
6133 {
6134 	char linkname[IFNAMSIZ+7];
6135 
6136 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6137 		"upper_%s" : "lower_%s", adj_dev->name);
6138 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6139 				 linkname);
6140 }
6141 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6142 			       char *name,
6143 			       struct list_head *dev_list)
6144 {
6145 	char linkname[IFNAMSIZ+7];
6146 
6147 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6148 		"upper_%s" : "lower_%s", name);
6149 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6150 }
6151 
6152 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6153 						 struct net_device *adj_dev,
6154 						 struct list_head *dev_list)
6155 {
6156 	return (dev_list == &dev->adj_list.upper ||
6157 		dev_list == &dev->adj_list.lower) &&
6158 		net_eq(dev_net(dev), dev_net(adj_dev));
6159 }
6160 
6161 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6162 					struct net_device *adj_dev,
6163 					struct list_head *dev_list,
6164 					void *private, bool master)
6165 {
6166 	struct netdev_adjacent *adj;
6167 	int ret;
6168 
6169 	adj = __netdev_find_adj(adj_dev, dev_list);
6170 
6171 	if (adj) {
6172 		adj->ref_nr += 1;
6173 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6174 			 dev->name, adj_dev->name, adj->ref_nr);
6175 
6176 		return 0;
6177 	}
6178 
6179 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6180 	if (!adj)
6181 		return -ENOMEM;
6182 
6183 	adj->dev = adj_dev;
6184 	adj->master = master;
6185 	adj->ref_nr = 1;
6186 	adj->private = private;
6187 	dev_hold(adj_dev);
6188 
6189 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6190 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6191 
6192 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6193 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6194 		if (ret)
6195 			goto free_adj;
6196 	}
6197 
6198 	/* Ensure that master link is always the first item in list. */
6199 	if (master) {
6200 		ret = sysfs_create_link(&(dev->dev.kobj),
6201 					&(adj_dev->dev.kobj), "master");
6202 		if (ret)
6203 			goto remove_symlinks;
6204 
6205 		list_add_rcu(&adj->list, dev_list);
6206 	} else {
6207 		list_add_tail_rcu(&adj->list, dev_list);
6208 	}
6209 
6210 	return 0;
6211 
6212 remove_symlinks:
6213 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6214 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6215 free_adj:
6216 	kfree(adj);
6217 	dev_put(adj_dev);
6218 
6219 	return ret;
6220 }
6221 
6222 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6223 					 struct net_device *adj_dev,
6224 					 u16 ref_nr,
6225 					 struct list_head *dev_list)
6226 {
6227 	struct netdev_adjacent *adj;
6228 
6229 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6230 		 dev->name, adj_dev->name, ref_nr);
6231 
6232 	adj = __netdev_find_adj(adj_dev, dev_list);
6233 
6234 	if (!adj) {
6235 		pr_err("Adjacency does not exist for device %s from %s\n",
6236 		       dev->name, adj_dev->name);
6237 		WARN_ON(1);
6238 		return;
6239 	}
6240 
6241 	if (adj->ref_nr > ref_nr) {
6242 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6243 			 dev->name, adj_dev->name, ref_nr,
6244 			 adj->ref_nr - ref_nr);
6245 		adj->ref_nr -= ref_nr;
6246 		return;
6247 	}
6248 
6249 	if (adj->master)
6250 		sysfs_remove_link(&(dev->dev.kobj), "master");
6251 
6252 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6253 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6254 
6255 	list_del_rcu(&adj->list);
6256 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6257 		 adj_dev->name, dev->name, adj_dev->name);
6258 	dev_put(adj_dev);
6259 	kfree_rcu(adj, rcu);
6260 }
6261 
6262 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6263 					    struct net_device *upper_dev,
6264 					    struct list_head *up_list,
6265 					    struct list_head *down_list,
6266 					    void *private, bool master)
6267 {
6268 	int ret;
6269 
6270 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6271 					   private, master);
6272 	if (ret)
6273 		return ret;
6274 
6275 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6276 					   private, false);
6277 	if (ret) {
6278 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6279 		return ret;
6280 	}
6281 
6282 	return 0;
6283 }
6284 
6285 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6286 					       struct net_device *upper_dev,
6287 					       u16 ref_nr,
6288 					       struct list_head *up_list,
6289 					       struct list_head *down_list)
6290 {
6291 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6292 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6293 }
6294 
6295 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6296 						struct net_device *upper_dev,
6297 						void *private, bool master)
6298 {
6299 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6300 						&dev->adj_list.upper,
6301 						&upper_dev->adj_list.lower,
6302 						private, master);
6303 }
6304 
6305 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6306 						   struct net_device *upper_dev)
6307 {
6308 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6309 					   &dev->adj_list.upper,
6310 					   &upper_dev->adj_list.lower);
6311 }
6312 
6313 static int __netdev_upper_dev_link(struct net_device *dev,
6314 				   struct net_device *upper_dev, bool master,
6315 				   void *upper_priv, void *upper_info,
6316 				   struct netlink_ext_ack *extack)
6317 {
6318 	struct netdev_notifier_changeupper_info changeupper_info = {
6319 		.info = {
6320 			.dev = dev,
6321 			.extack = extack,
6322 		},
6323 		.upper_dev = upper_dev,
6324 		.master = master,
6325 		.linking = true,
6326 		.upper_info = upper_info,
6327 	};
6328 	int ret = 0;
6329 
6330 	ASSERT_RTNL();
6331 
6332 	if (dev == upper_dev)
6333 		return -EBUSY;
6334 
6335 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6336 	if (netdev_has_upper_dev(upper_dev, dev))
6337 		return -EBUSY;
6338 
6339 	if (netdev_has_upper_dev(dev, upper_dev))
6340 		return -EEXIST;
6341 
6342 	if (master && netdev_master_upper_dev_get(dev))
6343 		return -EBUSY;
6344 
6345 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6346 					    &changeupper_info.info);
6347 	ret = notifier_to_errno(ret);
6348 	if (ret)
6349 		return ret;
6350 
6351 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6352 						   master);
6353 	if (ret)
6354 		return ret;
6355 
6356 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6357 					    &changeupper_info.info);
6358 	ret = notifier_to_errno(ret);
6359 	if (ret)
6360 		goto rollback;
6361 
6362 	return 0;
6363 
6364 rollback:
6365 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6366 
6367 	return ret;
6368 }
6369 
6370 /**
6371  * netdev_upper_dev_link - Add a link to the upper device
6372  * @dev: device
6373  * @upper_dev: new upper device
6374  *
6375  * Adds a link to device which is upper to this one. The caller must hold
6376  * the RTNL lock. On a failure a negative errno code is returned.
6377  * On success the reference counts are adjusted and the function
6378  * returns zero.
6379  */
6380 int netdev_upper_dev_link(struct net_device *dev,
6381 			  struct net_device *upper_dev,
6382 			  struct netlink_ext_ack *extack)
6383 {
6384 	return __netdev_upper_dev_link(dev, upper_dev, false,
6385 				       NULL, NULL, extack);
6386 }
6387 EXPORT_SYMBOL(netdev_upper_dev_link);
6388 
6389 /**
6390  * netdev_master_upper_dev_link - Add a master link to the upper device
6391  * @dev: device
6392  * @upper_dev: new upper device
6393  * @upper_priv: upper device private
6394  * @upper_info: upper info to be passed down via notifier
6395  *
6396  * Adds a link to device which is upper to this one. In this case, only
6397  * one master upper device can be linked, although other non-master devices
6398  * might be linked as well. The caller must hold the RTNL lock.
6399  * On a failure a negative errno code is returned. On success the reference
6400  * counts are adjusted and the function returns zero.
6401  */
6402 int netdev_master_upper_dev_link(struct net_device *dev,
6403 				 struct net_device *upper_dev,
6404 				 void *upper_priv, void *upper_info,
6405 				 struct netlink_ext_ack *extack)
6406 {
6407 	return __netdev_upper_dev_link(dev, upper_dev, true,
6408 				       upper_priv, upper_info, extack);
6409 }
6410 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6411 
6412 /**
6413  * netdev_upper_dev_unlink - Removes a link to upper device
6414  * @dev: device
6415  * @upper_dev: new upper device
6416  *
6417  * Removes a link to device which is upper to this one. The caller must hold
6418  * the RTNL lock.
6419  */
6420 void netdev_upper_dev_unlink(struct net_device *dev,
6421 			     struct net_device *upper_dev)
6422 {
6423 	struct netdev_notifier_changeupper_info changeupper_info = {
6424 		.info = {
6425 			.dev = dev,
6426 		},
6427 		.upper_dev = upper_dev,
6428 		.linking = false,
6429 	};
6430 
6431 	ASSERT_RTNL();
6432 
6433 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6434 
6435 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6436 				      &changeupper_info.info);
6437 
6438 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6439 
6440 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6441 				      &changeupper_info.info);
6442 }
6443 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6444 
6445 /**
6446  * netdev_bonding_info_change - Dispatch event about slave change
6447  * @dev: device
6448  * @bonding_info: info to dispatch
6449  *
6450  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6451  * The caller must hold the RTNL lock.
6452  */
6453 void netdev_bonding_info_change(struct net_device *dev,
6454 				struct netdev_bonding_info *bonding_info)
6455 {
6456 	struct netdev_notifier_bonding_info info = {
6457 		.info.dev = dev,
6458 	};
6459 
6460 	memcpy(&info.bonding_info, bonding_info,
6461 	       sizeof(struct netdev_bonding_info));
6462 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6463 				      &info.info);
6464 }
6465 EXPORT_SYMBOL(netdev_bonding_info_change);
6466 
6467 static void netdev_adjacent_add_links(struct net_device *dev)
6468 {
6469 	struct netdev_adjacent *iter;
6470 
6471 	struct net *net = dev_net(dev);
6472 
6473 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6474 		if (!net_eq(net, dev_net(iter->dev)))
6475 			continue;
6476 		netdev_adjacent_sysfs_add(iter->dev, dev,
6477 					  &iter->dev->adj_list.lower);
6478 		netdev_adjacent_sysfs_add(dev, iter->dev,
6479 					  &dev->adj_list.upper);
6480 	}
6481 
6482 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6483 		if (!net_eq(net, dev_net(iter->dev)))
6484 			continue;
6485 		netdev_adjacent_sysfs_add(iter->dev, dev,
6486 					  &iter->dev->adj_list.upper);
6487 		netdev_adjacent_sysfs_add(dev, iter->dev,
6488 					  &dev->adj_list.lower);
6489 	}
6490 }
6491 
6492 static void netdev_adjacent_del_links(struct net_device *dev)
6493 {
6494 	struct netdev_adjacent *iter;
6495 
6496 	struct net *net = dev_net(dev);
6497 
6498 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6499 		if (!net_eq(net, dev_net(iter->dev)))
6500 			continue;
6501 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6502 					  &iter->dev->adj_list.lower);
6503 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6504 					  &dev->adj_list.upper);
6505 	}
6506 
6507 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6508 		if (!net_eq(net, dev_net(iter->dev)))
6509 			continue;
6510 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6511 					  &iter->dev->adj_list.upper);
6512 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6513 					  &dev->adj_list.lower);
6514 	}
6515 }
6516 
6517 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6518 {
6519 	struct netdev_adjacent *iter;
6520 
6521 	struct net *net = dev_net(dev);
6522 
6523 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6524 		if (!net_eq(net, dev_net(iter->dev)))
6525 			continue;
6526 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6527 					  &iter->dev->adj_list.lower);
6528 		netdev_adjacent_sysfs_add(iter->dev, dev,
6529 					  &iter->dev->adj_list.lower);
6530 	}
6531 
6532 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6533 		if (!net_eq(net, dev_net(iter->dev)))
6534 			continue;
6535 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6536 					  &iter->dev->adj_list.upper);
6537 		netdev_adjacent_sysfs_add(iter->dev, dev,
6538 					  &iter->dev->adj_list.upper);
6539 	}
6540 }
6541 
6542 void *netdev_lower_dev_get_private(struct net_device *dev,
6543 				   struct net_device *lower_dev)
6544 {
6545 	struct netdev_adjacent *lower;
6546 
6547 	if (!lower_dev)
6548 		return NULL;
6549 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6550 	if (!lower)
6551 		return NULL;
6552 
6553 	return lower->private;
6554 }
6555 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6556 
6557 
6558 int dev_get_nest_level(struct net_device *dev)
6559 {
6560 	struct net_device *lower = NULL;
6561 	struct list_head *iter;
6562 	int max_nest = -1;
6563 	int nest;
6564 
6565 	ASSERT_RTNL();
6566 
6567 	netdev_for_each_lower_dev(dev, lower, iter) {
6568 		nest = dev_get_nest_level(lower);
6569 		if (max_nest < nest)
6570 			max_nest = nest;
6571 	}
6572 
6573 	return max_nest + 1;
6574 }
6575 EXPORT_SYMBOL(dev_get_nest_level);
6576 
6577 /**
6578  * netdev_lower_change - Dispatch event about lower device state change
6579  * @lower_dev: device
6580  * @lower_state_info: state to dispatch
6581  *
6582  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6583  * The caller must hold the RTNL lock.
6584  */
6585 void netdev_lower_state_changed(struct net_device *lower_dev,
6586 				void *lower_state_info)
6587 {
6588 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6589 		.info.dev = lower_dev,
6590 	};
6591 
6592 	ASSERT_RTNL();
6593 	changelowerstate_info.lower_state_info = lower_state_info;
6594 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6595 				      &changelowerstate_info.info);
6596 }
6597 EXPORT_SYMBOL(netdev_lower_state_changed);
6598 
6599 static void dev_change_rx_flags(struct net_device *dev, int flags)
6600 {
6601 	const struct net_device_ops *ops = dev->netdev_ops;
6602 
6603 	if (ops->ndo_change_rx_flags)
6604 		ops->ndo_change_rx_flags(dev, flags);
6605 }
6606 
6607 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6608 {
6609 	unsigned int old_flags = dev->flags;
6610 	kuid_t uid;
6611 	kgid_t gid;
6612 
6613 	ASSERT_RTNL();
6614 
6615 	dev->flags |= IFF_PROMISC;
6616 	dev->promiscuity += inc;
6617 	if (dev->promiscuity == 0) {
6618 		/*
6619 		 * Avoid overflow.
6620 		 * If inc causes overflow, untouch promisc and return error.
6621 		 */
6622 		if (inc < 0)
6623 			dev->flags &= ~IFF_PROMISC;
6624 		else {
6625 			dev->promiscuity -= inc;
6626 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6627 				dev->name);
6628 			return -EOVERFLOW;
6629 		}
6630 	}
6631 	if (dev->flags != old_flags) {
6632 		pr_info("device %s %s promiscuous mode\n",
6633 			dev->name,
6634 			dev->flags & IFF_PROMISC ? "entered" : "left");
6635 		if (audit_enabled) {
6636 			current_uid_gid(&uid, &gid);
6637 			audit_log(current->audit_context, GFP_ATOMIC,
6638 				AUDIT_ANOM_PROMISCUOUS,
6639 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6640 				dev->name, (dev->flags & IFF_PROMISC),
6641 				(old_flags & IFF_PROMISC),
6642 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6643 				from_kuid(&init_user_ns, uid),
6644 				from_kgid(&init_user_ns, gid),
6645 				audit_get_sessionid(current));
6646 		}
6647 
6648 		dev_change_rx_flags(dev, IFF_PROMISC);
6649 	}
6650 	if (notify)
6651 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6652 	return 0;
6653 }
6654 
6655 /**
6656  *	dev_set_promiscuity	- update promiscuity count on a device
6657  *	@dev: device
6658  *	@inc: modifier
6659  *
6660  *	Add or remove promiscuity from a device. While the count in the device
6661  *	remains above zero the interface remains promiscuous. Once it hits zero
6662  *	the device reverts back to normal filtering operation. A negative inc
6663  *	value is used to drop promiscuity on the device.
6664  *	Return 0 if successful or a negative errno code on error.
6665  */
6666 int dev_set_promiscuity(struct net_device *dev, int inc)
6667 {
6668 	unsigned int old_flags = dev->flags;
6669 	int err;
6670 
6671 	err = __dev_set_promiscuity(dev, inc, true);
6672 	if (err < 0)
6673 		return err;
6674 	if (dev->flags != old_flags)
6675 		dev_set_rx_mode(dev);
6676 	return err;
6677 }
6678 EXPORT_SYMBOL(dev_set_promiscuity);
6679 
6680 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6681 {
6682 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6683 
6684 	ASSERT_RTNL();
6685 
6686 	dev->flags |= IFF_ALLMULTI;
6687 	dev->allmulti += inc;
6688 	if (dev->allmulti == 0) {
6689 		/*
6690 		 * Avoid overflow.
6691 		 * If inc causes overflow, untouch allmulti and return error.
6692 		 */
6693 		if (inc < 0)
6694 			dev->flags &= ~IFF_ALLMULTI;
6695 		else {
6696 			dev->allmulti -= inc;
6697 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6698 				dev->name);
6699 			return -EOVERFLOW;
6700 		}
6701 	}
6702 	if (dev->flags ^ old_flags) {
6703 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6704 		dev_set_rx_mode(dev);
6705 		if (notify)
6706 			__dev_notify_flags(dev, old_flags,
6707 					   dev->gflags ^ old_gflags);
6708 	}
6709 	return 0;
6710 }
6711 
6712 /**
6713  *	dev_set_allmulti	- update allmulti count on a device
6714  *	@dev: device
6715  *	@inc: modifier
6716  *
6717  *	Add or remove reception of all multicast frames to a device. While the
6718  *	count in the device remains above zero the interface remains listening
6719  *	to all interfaces. Once it hits zero the device reverts back to normal
6720  *	filtering operation. A negative @inc value is used to drop the counter
6721  *	when releasing a resource needing all multicasts.
6722  *	Return 0 if successful or a negative errno code on error.
6723  */
6724 
6725 int dev_set_allmulti(struct net_device *dev, int inc)
6726 {
6727 	return __dev_set_allmulti(dev, inc, true);
6728 }
6729 EXPORT_SYMBOL(dev_set_allmulti);
6730 
6731 /*
6732  *	Upload unicast and multicast address lists to device and
6733  *	configure RX filtering. When the device doesn't support unicast
6734  *	filtering it is put in promiscuous mode while unicast addresses
6735  *	are present.
6736  */
6737 void __dev_set_rx_mode(struct net_device *dev)
6738 {
6739 	const struct net_device_ops *ops = dev->netdev_ops;
6740 
6741 	/* dev_open will call this function so the list will stay sane. */
6742 	if (!(dev->flags&IFF_UP))
6743 		return;
6744 
6745 	if (!netif_device_present(dev))
6746 		return;
6747 
6748 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6749 		/* Unicast addresses changes may only happen under the rtnl,
6750 		 * therefore calling __dev_set_promiscuity here is safe.
6751 		 */
6752 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6753 			__dev_set_promiscuity(dev, 1, false);
6754 			dev->uc_promisc = true;
6755 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6756 			__dev_set_promiscuity(dev, -1, false);
6757 			dev->uc_promisc = false;
6758 		}
6759 	}
6760 
6761 	if (ops->ndo_set_rx_mode)
6762 		ops->ndo_set_rx_mode(dev);
6763 }
6764 
6765 void dev_set_rx_mode(struct net_device *dev)
6766 {
6767 	netif_addr_lock_bh(dev);
6768 	__dev_set_rx_mode(dev);
6769 	netif_addr_unlock_bh(dev);
6770 }
6771 
6772 /**
6773  *	dev_get_flags - get flags reported to userspace
6774  *	@dev: device
6775  *
6776  *	Get the combination of flag bits exported through APIs to userspace.
6777  */
6778 unsigned int dev_get_flags(const struct net_device *dev)
6779 {
6780 	unsigned int flags;
6781 
6782 	flags = (dev->flags & ~(IFF_PROMISC |
6783 				IFF_ALLMULTI |
6784 				IFF_RUNNING |
6785 				IFF_LOWER_UP |
6786 				IFF_DORMANT)) |
6787 		(dev->gflags & (IFF_PROMISC |
6788 				IFF_ALLMULTI));
6789 
6790 	if (netif_running(dev)) {
6791 		if (netif_oper_up(dev))
6792 			flags |= IFF_RUNNING;
6793 		if (netif_carrier_ok(dev))
6794 			flags |= IFF_LOWER_UP;
6795 		if (netif_dormant(dev))
6796 			flags |= IFF_DORMANT;
6797 	}
6798 
6799 	return flags;
6800 }
6801 EXPORT_SYMBOL(dev_get_flags);
6802 
6803 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6804 {
6805 	unsigned int old_flags = dev->flags;
6806 	int ret;
6807 
6808 	ASSERT_RTNL();
6809 
6810 	/*
6811 	 *	Set the flags on our device.
6812 	 */
6813 
6814 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6815 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6816 			       IFF_AUTOMEDIA)) |
6817 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6818 				    IFF_ALLMULTI));
6819 
6820 	/*
6821 	 *	Load in the correct multicast list now the flags have changed.
6822 	 */
6823 
6824 	if ((old_flags ^ flags) & IFF_MULTICAST)
6825 		dev_change_rx_flags(dev, IFF_MULTICAST);
6826 
6827 	dev_set_rx_mode(dev);
6828 
6829 	/*
6830 	 *	Have we downed the interface. We handle IFF_UP ourselves
6831 	 *	according to user attempts to set it, rather than blindly
6832 	 *	setting it.
6833 	 */
6834 
6835 	ret = 0;
6836 	if ((old_flags ^ flags) & IFF_UP) {
6837 		if (old_flags & IFF_UP)
6838 			__dev_close(dev);
6839 		else
6840 			ret = __dev_open(dev);
6841 	}
6842 
6843 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6844 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6845 		unsigned int old_flags = dev->flags;
6846 
6847 		dev->gflags ^= IFF_PROMISC;
6848 
6849 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6850 			if (dev->flags != old_flags)
6851 				dev_set_rx_mode(dev);
6852 	}
6853 
6854 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6855 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6856 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6857 	 */
6858 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6859 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6860 
6861 		dev->gflags ^= IFF_ALLMULTI;
6862 		__dev_set_allmulti(dev, inc, false);
6863 	}
6864 
6865 	return ret;
6866 }
6867 
6868 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6869 			unsigned int gchanges)
6870 {
6871 	unsigned int changes = dev->flags ^ old_flags;
6872 
6873 	if (gchanges)
6874 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6875 
6876 	if (changes & IFF_UP) {
6877 		if (dev->flags & IFF_UP)
6878 			call_netdevice_notifiers(NETDEV_UP, dev);
6879 		else
6880 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6881 	}
6882 
6883 	if (dev->flags & IFF_UP &&
6884 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6885 		struct netdev_notifier_change_info change_info = {
6886 			.info = {
6887 				.dev = dev,
6888 			},
6889 			.flags_changed = changes,
6890 		};
6891 
6892 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6893 	}
6894 }
6895 
6896 /**
6897  *	dev_change_flags - change device settings
6898  *	@dev: device
6899  *	@flags: device state flags
6900  *
6901  *	Change settings on device based state flags. The flags are
6902  *	in the userspace exported format.
6903  */
6904 int dev_change_flags(struct net_device *dev, unsigned int flags)
6905 {
6906 	int ret;
6907 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6908 
6909 	ret = __dev_change_flags(dev, flags);
6910 	if (ret < 0)
6911 		return ret;
6912 
6913 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6914 	__dev_notify_flags(dev, old_flags, changes);
6915 	return ret;
6916 }
6917 EXPORT_SYMBOL(dev_change_flags);
6918 
6919 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6920 {
6921 	const struct net_device_ops *ops = dev->netdev_ops;
6922 
6923 	if (ops->ndo_change_mtu)
6924 		return ops->ndo_change_mtu(dev, new_mtu);
6925 
6926 	dev->mtu = new_mtu;
6927 	return 0;
6928 }
6929 EXPORT_SYMBOL(__dev_set_mtu);
6930 
6931 /**
6932  *	dev_set_mtu - Change maximum transfer unit
6933  *	@dev: device
6934  *	@new_mtu: new transfer unit
6935  *
6936  *	Change the maximum transfer size of the network device.
6937  */
6938 int dev_set_mtu(struct net_device *dev, int new_mtu)
6939 {
6940 	int err, orig_mtu;
6941 
6942 	if (new_mtu == dev->mtu)
6943 		return 0;
6944 
6945 	/* MTU must be positive, and in range */
6946 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6947 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6948 				    dev->name, new_mtu, dev->min_mtu);
6949 		return -EINVAL;
6950 	}
6951 
6952 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6953 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6954 				    dev->name, new_mtu, dev->max_mtu);
6955 		return -EINVAL;
6956 	}
6957 
6958 	if (!netif_device_present(dev))
6959 		return -ENODEV;
6960 
6961 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6962 	err = notifier_to_errno(err);
6963 	if (err)
6964 		return err;
6965 
6966 	orig_mtu = dev->mtu;
6967 	err = __dev_set_mtu(dev, new_mtu);
6968 
6969 	if (!err) {
6970 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6971 		err = notifier_to_errno(err);
6972 		if (err) {
6973 			/* setting mtu back and notifying everyone again,
6974 			 * so that they have a chance to revert changes.
6975 			 */
6976 			__dev_set_mtu(dev, orig_mtu);
6977 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6978 		}
6979 	}
6980 	return err;
6981 }
6982 EXPORT_SYMBOL(dev_set_mtu);
6983 
6984 /**
6985  *	dev_set_group - Change group this device belongs to
6986  *	@dev: device
6987  *	@new_group: group this device should belong to
6988  */
6989 void dev_set_group(struct net_device *dev, int new_group)
6990 {
6991 	dev->group = new_group;
6992 }
6993 EXPORT_SYMBOL(dev_set_group);
6994 
6995 /**
6996  *	dev_set_mac_address - Change Media Access Control Address
6997  *	@dev: device
6998  *	@sa: new address
6999  *
7000  *	Change the hardware (MAC) address of the device
7001  */
7002 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7003 {
7004 	const struct net_device_ops *ops = dev->netdev_ops;
7005 	int err;
7006 
7007 	if (!ops->ndo_set_mac_address)
7008 		return -EOPNOTSUPP;
7009 	if (sa->sa_family != dev->type)
7010 		return -EINVAL;
7011 	if (!netif_device_present(dev))
7012 		return -ENODEV;
7013 	err = ops->ndo_set_mac_address(dev, sa);
7014 	if (err)
7015 		return err;
7016 	dev->addr_assign_type = NET_ADDR_SET;
7017 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7018 	add_device_randomness(dev->dev_addr, dev->addr_len);
7019 	return 0;
7020 }
7021 EXPORT_SYMBOL(dev_set_mac_address);
7022 
7023 /**
7024  *	dev_change_carrier - Change device carrier
7025  *	@dev: device
7026  *	@new_carrier: new value
7027  *
7028  *	Change device carrier
7029  */
7030 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7031 {
7032 	const struct net_device_ops *ops = dev->netdev_ops;
7033 
7034 	if (!ops->ndo_change_carrier)
7035 		return -EOPNOTSUPP;
7036 	if (!netif_device_present(dev))
7037 		return -ENODEV;
7038 	return ops->ndo_change_carrier(dev, new_carrier);
7039 }
7040 EXPORT_SYMBOL(dev_change_carrier);
7041 
7042 /**
7043  *	dev_get_phys_port_id - Get device physical port ID
7044  *	@dev: device
7045  *	@ppid: port ID
7046  *
7047  *	Get device physical port ID
7048  */
7049 int dev_get_phys_port_id(struct net_device *dev,
7050 			 struct netdev_phys_item_id *ppid)
7051 {
7052 	const struct net_device_ops *ops = dev->netdev_ops;
7053 
7054 	if (!ops->ndo_get_phys_port_id)
7055 		return -EOPNOTSUPP;
7056 	return ops->ndo_get_phys_port_id(dev, ppid);
7057 }
7058 EXPORT_SYMBOL(dev_get_phys_port_id);
7059 
7060 /**
7061  *	dev_get_phys_port_name - Get device physical port name
7062  *	@dev: device
7063  *	@name: port name
7064  *	@len: limit of bytes to copy to name
7065  *
7066  *	Get device physical port name
7067  */
7068 int dev_get_phys_port_name(struct net_device *dev,
7069 			   char *name, size_t len)
7070 {
7071 	const struct net_device_ops *ops = dev->netdev_ops;
7072 
7073 	if (!ops->ndo_get_phys_port_name)
7074 		return -EOPNOTSUPP;
7075 	return ops->ndo_get_phys_port_name(dev, name, len);
7076 }
7077 EXPORT_SYMBOL(dev_get_phys_port_name);
7078 
7079 /**
7080  *	dev_change_proto_down - update protocol port state information
7081  *	@dev: device
7082  *	@proto_down: new value
7083  *
7084  *	This info can be used by switch drivers to set the phys state of the
7085  *	port.
7086  */
7087 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7088 {
7089 	const struct net_device_ops *ops = dev->netdev_ops;
7090 
7091 	if (!ops->ndo_change_proto_down)
7092 		return -EOPNOTSUPP;
7093 	if (!netif_device_present(dev))
7094 		return -ENODEV;
7095 	return ops->ndo_change_proto_down(dev, proto_down);
7096 }
7097 EXPORT_SYMBOL(dev_change_proto_down);
7098 
7099 u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op, u32 *prog_id)
7100 {
7101 	struct netdev_bpf xdp;
7102 
7103 	memset(&xdp, 0, sizeof(xdp));
7104 	xdp.command = XDP_QUERY_PROG;
7105 
7106 	/* Query must always succeed. */
7107 	WARN_ON(bpf_op(dev, &xdp) < 0);
7108 	if (prog_id)
7109 		*prog_id = xdp.prog_id;
7110 
7111 	return xdp.prog_attached;
7112 }
7113 
7114 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7115 			   struct netlink_ext_ack *extack, u32 flags,
7116 			   struct bpf_prog *prog)
7117 {
7118 	struct netdev_bpf xdp;
7119 
7120 	memset(&xdp, 0, sizeof(xdp));
7121 	if (flags & XDP_FLAGS_HW_MODE)
7122 		xdp.command = XDP_SETUP_PROG_HW;
7123 	else
7124 		xdp.command = XDP_SETUP_PROG;
7125 	xdp.extack = extack;
7126 	xdp.flags = flags;
7127 	xdp.prog = prog;
7128 
7129 	return bpf_op(dev, &xdp);
7130 }
7131 
7132 /**
7133  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7134  *	@dev: device
7135  *	@extack: netlink extended ack
7136  *	@fd: new program fd or negative value to clear
7137  *	@flags: xdp-related flags
7138  *
7139  *	Set or clear a bpf program for a device
7140  */
7141 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7142 		      int fd, u32 flags)
7143 {
7144 	const struct net_device_ops *ops = dev->netdev_ops;
7145 	struct bpf_prog *prog = NULL;
7146 	bpf_op_t bpf_op, bpf_chk;
7147 	int err;
7148 
7149 	ASSERT_RTNL();
7150 
7151 	bpf_op = bpf_chk = ops->ndo_bpf;
7152 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7153 		return -EOPNOTSUPP;
7154 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7155 		bpf_op = generic_xdp_install;
7156 	if (bpf_op == bpf_chk)
7157 		bpf_chk = generic_xdp_install;
7158 
7159 	if (fd >= 0) {
7160 		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk, NULL))
7161 			return -EEXIST;
7162 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7163 		    __dev_xdp_attached(dev, bpf_op, NULL))
7164 			return -EBUSY;
7165 
7166 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7167 					     bpf_op == ops->ndo_bpf);
7168 		if (IS_ERR(prog))
7169 			return PTR_ERR(prog);
7170 
7171 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7172 		    bpf_prog_is_dev_bound(prog->aux)) {
7173 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7174 			bpf_prog_put(prog);
7175 			return -EINVAL;
7176 		}
7177 	}
7178 
7179 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7180 	if (err < 0 && prog)
7181 		bpf_prog_put(prog);
7182 
7183 	return err;
7184 }
7185 
7186 /**
7187  *	dev_new_index	-	allocate an ifindex
7188  *	@net: the applicable net namespace
7189  *
7190  *	Returns a suitable unique value for a new device interface
7191  *	number.  The caller must hold the rtnl semaphore or the
7192  *	dev_base_lock to be sure it remains unique.
7193  */
7194 static int dev_new_index(struct net *net)
7195 {
7196 	int ifindex = net->ifindex;
7197 
7198 	for (;;) {
7199 		if (++ifindex <= 0)
7200 			ifindex = 1;
7201 		if (!__dev_get_by_index(net, ifindex))
7202 			return net->ifindex = ifindex;
7203 	}
7204 }
7205 
7206 /* Delayed registration/unregisteration */
7207 static LIST_HEAD(net_todo_list);
7208 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7209 
7210 static void net_set_todo(struct net_device *dev)
7211 {
7212 	list_add_tail(&dev->todo_list, &net_todo_list);
7213 	dev_net(dev)->dev_unreg_count++;
7214 }
7215 
7216 static void rollback_registered_many(struct list_head *head)
7217 {
7218 	struct net_device *dev, *tmp;
7219 	LIST_HEAD(close_head);
7220 
7221 	BUG_ON(dev_boot_phase);
7222 	ASSERT_RTNL();
7223 
7224 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7225 		/* Some devices call without registering
7226 		 * for initialization unwind. Remove those
7227 		 * devices and proceed with the remaining.
7228 		 */
7229 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7230 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7231 				 dev->name, dev);
7232 
7233 			WARN_ON(1);
7234 			list_del(&dev->unreg_list);
7235 			continue;
7236 		}
7237 		dev->dismantle = true;
7238 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7239 	}
7240 
7241 	/* If device is running, close it first. */
7242 	list_for_each_entry(dev, head, unreg_list)
7243 		list_add_tail(&dev->close_list, &close_head);
7244 	dev_close_many(&close_head, true);
7245 
7246 	list_for_each_entry(dev, head, unreg_list) {
7247 		/* And unlink it from device chain. */
7248 		unlist_netdevice(dev);
7249 
7250 		dev->reg_state = NETREG_UNREGISTERING;
7251 	}
7252 	flush_all_backlogs();
7253 
7254 	synchronize_net();
7255 
7256 	list_for_each_entry(dev, head, unreg_list) {
7257 		struct sk_buff *skb = NULL;
7258 
7259 		/* Shutdown queueing discipline. */
7260 		dev_shutdown(dev);
7261 
7262 
7263 		/* Notify protocols, that we are about to destroy
7264 		 * this device. They should clean all the things.
7265 		 */
7266 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7267 
7268 		if (!dev->rtnl_link_ops ||
7269 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7270 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7271 						     GFP_KERNEL, NULL);
7272 
7273 		/*
7274 		 *	Flush the unicast and multicast chains
7275 		 */
7276 		dev_uc_flush(dev);
7277 		dev_mc_flush(dev);
7278 
7279 		if (dev->netdev_ops->ndo_uninit)
7280 			dev->netdev_ops->ndo_uninit(dev);
7281 
7282 		if (skb)
7283 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7284 
7285 		/* Notifier chain MUST detach us all upper devices. */
7286 		WARN_ON(netdev_has_any_upper_dev(dev));
7287 		WARN_ON(netdev_has_any_lower_dev(dev));
7288 
7289 		/* Remove entries from kobject tree */
7290 		netdev_unregister_kobject(dev);
7291 #ifdef CONFIG_XPS
7292 		/* Remove XPS queueing entries */
7293 		netif_reset_xps_queues_gt(dev, 0);
7294 #endif
7295 	}
7296 
7297 	synchronize_net();
7298 
7299 	list_for_each_entry(dev, head, unreg_list)
7300 		dev_put(dev);
7301 }
7302 
7303 static void rollback_registered(struct net_device *dev)
7304 {
7305 	LIST_HEAD(single);
7306 
7307 	list_add(&dev->unreg_list, &single);
7308 	rollback_registered_many(&single);
7309 	list_del(&single);
7310 }
7311 
7312 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7313 	struct net_device *upper, netdev_features_t features)
7314 {
7315 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7316 	netdev_features_t feature;
7317 	int feature_bit;
7318 
7319 	for_each_netdev_feature(&upper_disables, feature_bit) {
7320 		feature = __NETIF_F_BIT(feature_bit);
7321 		if (!(upper->wanted_features & feature)
7322 		    && (features & feature)) {
7323 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7324 				   &feature, upper->name);
7325 			features &= ~feature;
7326 		}
7327 	}
7328 
7329 	return features;
7330 }
7331 
7332 static void netdev_sync_lower_features(struct net_device *upper,
7333 	struct net_device *lower, netdev_features_t features)
7334 {
7335 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7336 	netdev_features_t feature;
7337 	int feature_bit;
7338 
7339 	for_each_netdev_feature(&upper_disables, feature_bit) {
7340 		feature = __NETIF_F_BIT(feature_bit);
7341 		if (!(features & feature) && (lower->features & feature)) {
7342 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7343 				   &feature, lower->name);
7344 			lower->wanted_features &= ~feature;
7345 			netdev_update_features(lower);
7346 
7347 			if (unlikely(lower->features & feature))
7348 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7349 					    &feature, lower->name);
7350 		}
7351 	}
7352 }
7353 
7354 static netdev_features_t netdev_fix_features(struct net_device *dev,
7355 	netdev_features_t features)
7356 {
7357 	/* Fix illegal checksum combinations */
7358 	if ((features & NETIF_F_HW_CSUM) &&
7359 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7360 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7361 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7362 	}
7363 
7364 	/* TSO requires that SG is present as well. */
7365 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7366 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7367 		features &= ~NETIF_F_ALL_TSO;
7368 	}
7369 
7370 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7371 					!(features & NETIF_F_IP_CSUM)) {
7372 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7373 		features &= ~NETIF_F_TSO;
7374 		features &= ~NETIF_F_TSO_ECN;
7375 	}
7376 
7377 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7378 					 !(features & NETIF_F_IPV6_CSUM)) {
7379 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7380 		features &= ~NETIF_F_TSO6;
7381 	}
7382 
7383 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7384 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7385 		features &= ~NETIF_F_TSO_MANGLEID;
7386 
7387 	/* TSO ECN requires that TSO is present as well. */
7388 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7389 		features &= ~NETIF_F_TSO_ECN;
7390 
7391 	/* Software GSO depends on SG. */
7392 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7393 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7394 		features &= ~NETIF_F_GSO;
7395 	}
7396 
7397 	/* GSO partial features require GSO partial be set */
7398 	if ((features & dev->gso_partial_features) &&
7399 	    !(features & NETIF_F_GSO_PARTIAL)) {
7400 		netdev_dbg(dev,
7401 			   "Dropping partially supported GSO features since no GSO partial.\n");
7402 		features &= ~dev->gso_partial_features;
7403 	}
7404 
7405 	return features;
7406 }
7407 
7408 int __netdev_update_features(struct net_device *dev)
7409 {
7410 	struct net_device *upper, *lower;
7411 	netdev_features_t features;
7412 	struct list_head *iter;
7413 	int err = -1;
7414 
7415 	ASSERT_RTNL();
7416 
7417 	features = netdev_get_wanted_features(dev);
7418 
7419 	if (dev->netdev_ops->ndo_fix_features)
7420 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7421 
7422 	/* driver might be less strict about feature dependencies */
7423 	features = netdev_fix_features(dev, features);
7424 
7425 	/* some features can't be enabled if they're off an an upper device */
7426 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7427 		features = netdev_sync_upper_features(dev, upper, features);
7428 
7429 	if (dev->features == features)
7430 		goto sync_lower;
7431 
7432 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7433 		&dev->features, &features);
7434 
7435 	if (dev->netdev_ops->ndo_set_features)
7436 		err = dev->netdev_ops->ndo_set_features(dev, features);
7437 	else
7438 		err = 0;
7439 
7440 	if (unlikely(err < 0)) {
7441 		netdev_err(dev,
7442 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7443 			err, &features, &dev->features);
7444 		/* return non-0 since some features might have changed and
7445 		 * it's better to fire a spurious notification than miss it
7446 		 */
7447 		return -1;
7448 	}
7449 
7450 sync_lower:
7451 	/* some features must be disabled on lower devices when disabled
7452 	 * on an upper device (think: bonding master or bridge)
7453 	 */
7454 	netdev_for_each_lower_dev(dev, lower, iter)
7455 		netdev_sync_lower_features(dev, lower, features);
7456 
7457 	if (!err) {
7458 		netdev_features_t diff = features ^ dev->features;
7459 
7460 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7461 			/* udp_tunnel_{get,drop}_rx_info both need
7462 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7463 			 * device, or they won't do anything.
7464 			 * Thus we need to update dev->features
7465 			 * *before* calling udp_tunnel_get_rx_info,
7466 			 * but *after* calling udp_tunnel_drop_rx_info.
7467 			 */
7468 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7469 				dev->features = features;
7470 				udp_tunnel_get_rx_info(dev);
7471 			} else {
7472 				udp_tunnel_drop_rx_info(dev);
7473 			}
7474 		}
7475 
7476 		dev->features = features;
7477 	}
7478 
7479 	return err < 0 ? 0 : 1;
7480 }
7481 
7482 /**
7483  *	netdev_update_features - recalculate device features
7484  *	@dev: the device to check
7485  *
7486  *	Recalculate dev->features set and send notifications if it
7487  *	has changed. Should be called after driver or hardware dependent
7488  *	conditions might have changed that influence the features.
7489  */
7490 void netdev_update_features(struct net_device *dev)
7491 {
7492 	if (__netdev_update_features(dev))
7493 		netdev_features_change(dev);
7494 }
7495 EXPORT_SYMBOL(netdev_update_features);
7496 
7497 /**
7498  *	netdev_change_features - recalculate device features
7499  *	@dev: the device to check
7500  *
7501  *	Recalculate dev->features set and send notifications even
7502  *	if they have not changed. Should be called instead of
7503  *	netdev_update_features() if also dev->vlan_features might
7504  *	have changed to allow the changes to be propagated to stacked
7505  *	VLAN devices.
7506  */
7507 void netdev_change_features(struct net_device *dev)
7508 {
7509 	__netdev_update_features(dev);
7510 	netdev_features_change(dev);
7511 }
7512 EXPORT_SYMBOL(netdev_change_features);
7513 
7514 /**
7515  *	netif_stacked_transfer_operstate -	transfer operstate
7516  *	@rootdev: the root or lower level device to transfer state from
7517  *	@dev: the device to transfer operstate to
7518  *
7519  *	Transfer operational state from root to device. This is normally
7520  *	called when a stacking relationship exists between the root
7521  *	device and the device(a leaf device).
7522  */
7523 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7524 					struct net_device *dev)
7525 {
7526 	if (rootdev->operstate == IF_OPER_DORMANT)
7527 		netif_dormant_on(dev);
7528 	else
7529 		netif_dormant_off(dev);
7530 
7531 	if (netif_carrier_ok(rootdev))
7532 		netif_carrier_on(dev);
7533 	else
7534 		netif_carrier_off(dev);
7535 }
7536 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7537 
7538 #ifdef CONFIG_SYSFS
7539 static int netif_alloc_rx_queues(struct net_device *dev)
7540 {
7541 	unsigned int i, count = dev->num_rx_queues;
7542 	struct netdev_rx_queue *rx;
7543 	size_t sz = count * sizeof(*rx);
7544 
7545 	BUG_ON(count < 1);
7546 
7547 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7548 	if (!rx)
7549 		return -ENOMEM;
7550 
7551 	dev->_rx = rx;
7552 
7553 	for (i = 0; i < count; i++)
7554 		rx[i].dev = dev;
7555 	return 0;
7556 }
7557 #endif
7558 
7559 static void netdev_init_one_queue(struct net_device *dev,
7560 				  struct netdev_queue *queue, void *_unused)
7561 {
7562 	/* Initialize queue lock */
7563 	spin_lock_init(&queue->_xmit_lock);
7564 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7565 	queue->xmit_lock_owner = -1;
7566 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7567 	queue->dev = dev;
7568 #ifdef CONFIG_BQL
7569 	dql_init(&queue->dql, HZ);
7570 #endif
7571 }
7572 
7573 static void netif_free_tx_queues(struct net_device *dev)
7574 {
7575 	kvfree(dev->_tx);
7576 }
7577 
7578 static int netif_alloc_netdev_queues(struct net_device *dev)
7579 {
7580 	unsigned int count = dev->num_tx_queues;
7581 	struct netdev_queue *tx;
7582 	size_t sz = count * sizeof(*tx);
7583 
7584 	if (count < 1 || count > 0xffff)
7585 		return -EINVAL;
7586 
7587 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7588 	if (!tx)
7589 		return -ENOMEM;
7590 
7591 	dev->_tx = tx;
7592 
7593 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7594 	spin_lock_init(&dev->tx_global_lock);
7595 
7596 	return 0;
7597 }
7598 
7599 void netif_tx_stop_all_queues(struct net_device *dev)
7600 {
7601 	unsigned int i;
7602 
7603 	for (i = 0; i < dev->num_tx_queues; i++) {
7604 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7605 
7606 		netif_tx_stop_queue(txq);
7607 	}
7608 }
7609 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7610 
7611 /**
7612  *	register_netdevice	- register a network device
7613  *	@dev: device to register
7614  *
7615  *	Take a completed network device structure and add it to the kernel
7616  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7617  *	chain. 0 is returned on success. A negative errno code is returned
7618  *	on a failure to set up the device, or if the name is a duplicate.
7619  *
7620  *	Callers must hold the rtnl semaphore. You may want
7621  *	register_netdev() instead of this.
7622  *
7623  *	BUGS:
7624  *	The locking appears insufficient to guarantee two parallel registers
7625  *	will not get the same name.
7626  */
7627 
7628 int register_netdevice(struct net_device *dev)
7629 {
7630 	int ret;
7631 	struct net *net = dev_net(dev);
7632 
7633 	BUG_ON(dev_boot_phase);
7634 	ASSERT_RTNL();
7635 
7636 	might_sleep();
7637 
7638 	/* When net_device's are persistent, this will be fatal. */
7639 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7640 	BUG_ON(!net);
7641 
7642 	spin_lock_init(&dev->addr_list_lock);
7643 	netdev_set_addr_lockdep_class(dev);
7644 
7645 	ret = dev_get_valid_name(net, dev, dev->name);
7646 	if (ret < 0)
7647 		goto out;
7648 
7649 	/* Init, if this function is available */
7650 	if (dev->netdev_ops->ndo_init) {
7651 		ret = dev->netdev_ops->ndo_init(dev);
7652 		if (ret) {
7653 			if (ret > 0)
7654 				ret = -EIO;
7655 			goto out;
7656 		}
7657 	}
7658 
7659 	if (((dev->hw_features | dev->features) &
7660 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7661 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7662 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7663 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7664 		ret = -EINVAL;
7665 		goto err_uninit;
7666 	}
7667 
7668 	ret = -EBUSY;
7669 	if (!dev->ifindex)
7670 		dev->ifindex = dev_new_index(net);
7671 	else if (__dev_get_by_index(net, dev->ifindex))
7672 		goto err_uninit;
7673 
7674 	/* Transfer changeable features to wanted_features and enable
7675 	 * software offloads (GSO and GRO).
7676 	 */
7677 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7678 	dev->features |= NETIF_F_SOFT_FEATURES;
7679 
7680 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7681 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7682 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7683 	}
7684 
7685 	dev->wanted_features = dev->features & dev->hw_features;
7686 
7687 	if (!(dev->flags & IFF_LOOPBACK))
7688 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7689 
7690 	/* If IPv4 TCP segmentation offload is supported we should also
7691 	 * allow the device to enable segmenting the frame with the option
7692 	 * of ignoring a static IP ID value.  This doesn't enable the
7693 	 * feature itself but allows the user to enable it later.
7694 	 */
7695 	if (dev->hw_features & NETIF_F_TSO)
7696 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7697 	if (dev->vlan_features & NETIF_F_TSO)
7698 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7699 	if (dev->mpls_features & NETIF_F_TSO)
7700 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7701 	if (dev->hw_enc_features & NETIF_F_TSO)
7702 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7703 
7704 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7705 	 */
7706 	dev->vlan_features |= NETIF_F_HIGHDMA;
7707 
7708 	/* Make NETIF_F_SG inheritable to tunnel devices.
7709 	 */
7710 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7711 
7712 	/* Make NETIF_F_SG inheritable to MPLS.
7713 	 */
7714 	dev->mpls_features |= NETIF_F_SG;
7715 
7716 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7717 	ret = notifier_to_errno(ret);
7718 	if (ret)
7719 		goto err_uninit;
7720 
7721 	ret = netdev_register_kobject(dev);
7722 	if (ret)
7723 		goto err_uninit;
7724 	dev->reg_state = NETREG_REGISTERED;
7725 
7726 	__netdev_update_features(dev);
7727 
7728 	/*
7729 	 *	Default initial state at registry is that the
7730 	 *	device is present.
7731 	 */
7732 
7733 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7734 
7735 	linkwatch_init_dev(dev);
7736 
7737 	dev_init_scheduler(dev);
7738 	dev_hold(dev);
7739 	list_netdevice(dev);
7740 	add_device_randomness(dev->dev_addr, dev->addr_len);
7741 
7742 	/* If the device has permanent device address, driver should
7743 	 * set dev_addr and also addr_assign_type should be set to
7744 	 * NET_ADDR_PERM (default value).
7745 	 */
7746 	if (dev->addr_assign_type == NET_ADDR_PERM)
7747 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7748 
7749 	/* Notify protocols, that a new device appeared. */
7750 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7751 	ret = notifier_to_errno(ret);
7752 	if (ret) {
7753 		rollback_registered(dev);
7754 		dev->reg_state = NETREG_UNREGISTERED;
7755 	}
7756 	/*
7757 	 *	Prevent userspace races by waiting until the network
7758 	 *	device is fully setup before sending notifications.
7759 	 */
7760 	if (!dev->rtnl_link_ops ||
7761 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7762 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7763 
7764 out:
7765 	return ret;
7766 
7767 err_uninit:
7768 	if (dev->netdev_ops->ndo_uninit)
7769 		dev->netdev_ops->ndo_uninit(dev);
7770 	if (dev->priv_destructor)
7771 		dev->priv_destructor(dev);
7772 	goto out;
7773 }
7774 EXPORT_SYMBOL(register_netdevice);
7775 
7776 /**
7777  *	init_dummy_netdev	- init a dummy network device for NAPI
7778  *	@dev: device to init
7779  *
7780  *	This takes a network device structure and initialize the minimum
7781  *	amount of fields so it can be used to schedule NAPI polls without
7782  *	registering a full blown interface. This is to be used by drivers
7783  *	that need to tie several hardware interfaces to a single NAPI
7784  *	poll scheduler due to HW limitations.
7785  */
7786 int init_dummy_netdev(struct net_device *dev)
7787 {
7788 	/* Clear everything. Note we don't initialize spinlocks
7789 	 * are they aren't supposed to be taken by any of the
7790 	 * NAPI code and this dummy netdev is supposed to be
7791 	 * only ever used for NAPI polls
7792 	 */
7793 	memset(dev, 0, sizeof(struct net_device));
7794 
7795 	/* make sure we BUG if trying to hit standard
7796 	 * register/unregister code path
7797 	 */
7798 	dev->reg_state = NETREG_DUMMY;
7799 
7800 	/* NAPI wants this */
7801 	INIT_LIST_HEAD(&dev->napi_list);
7802 
7803 	/* a dummy interface is started by default */
7804 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7805 	set_bit(__LINK_STATE_START, &dev->state);
7806 
7807 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7808 	 * because users of this 'device' dont need to change
7809 	 * its refcount.
7810 	 */
7811 
7812 	return 0;
7813 }
7814 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7815 
7816 
7817 /**
7818  *	register_netdev	- register a network device
7819  *	@dev: device to register
7820  *
7821  *	Take a completed network device structure and add it to the kernel
7822  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7823  *	chain. 0 is returned on success. A negative errno code is returned
7824  *	on a failure to set up the device, or if the name is a duplicate.
7825  *
7826  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7827  *	and expands the device name if you passed a format string to
7828  *	alloc_netdev.
7829  */
7830 int register_netdev(struct net_device *dev)
7831 {
7832 	int err;
7833 
7834 	rtnl_lock();
7835 	err = register_netdevice(dev);
7836 	rtnl_unlock();
7837 	return err;
7838 }
7839 EXPORT_SYMBOL(register_netdev);
7840 
7841 int netdev_refcnt_read(const struct net_device *dev)
7842 {
7843 	int i, refcnt = 0;
7844 
7845 	for_each_possible_cpu(i)
7846 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7847 	return refcnt;
7848 }
7849 EXPORT_SYMBOL(netdev_refcnt_read);
7850 
7851 /**
7852  * netdev_wait_allrefs - wait until all references are gone.
7853  * @dev: target net_device
7854  *
7855  * This is called when unregistering network devices.
7856  *
7857  * Any protocol or device that holds a reference should register
7858  * for netdevice notification, and cleanup and put back the
7859  * reference if they receive an UNREGISTER event.
7860  * We can get stuck here if buggy protocols don't correctly
7861  * call dev_put.
7862  */
7863 static void netdev_wait_allrefs(struct net_device *dev)
7864 {
7865 	unsigned long rebroadcast_time, warning_time;
7866 	int refcnt;
7867 
7868 	linkwatch_forget_dev(dev);
7869 
7870 	rebroadcast_time = warning_time = jiffies;
7871 	refcnt = netdev_refcnt_read(dev);
7872 
7873 	while (refcnt != 0) {
7874 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7875 			rtnl_lock();
7876 
7877 			/* Rebroadcast unregister notification */
7878 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7879 
7880 			__rtnl_unlock();
7881 			rcu_barrier();
7882 			rtnl_lock();
7883 
7884 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7885 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7886 				     &dev->state)) {
7887 				/* We must not have linkwatch events
7888 				 * pending on unregister. If this
7889 				 * happens, we simply run the queue
7890 				 * unscheduled, resulting in a noop
7891 				 * for this device.
7892 				 */
7893 				linkwatch_run_queue();
7894 			}
7895 
7896 			__rtnl_unlock();
7897 
7898 			rebroadcast_time = jiffies;
7899 		}
7900 
7901 		msleep(250);
7902 
7903 		refcnt = netdev_refcnt_read(dev);
7904 
7905 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7906 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7907 				 dev->name, refcnt);
7908 			warning_time = jiffies;
7909 		}
7910 	}
7911 }
7912 
7913 /* The sequence is:
7914  *
7915  *	rtnl_lock();
7916  *	...
7917  *	register_netdevice(x1);
7918  *	register_netdevice(x2);
7919  *	...
7920  *	unregister_netdevice(y1);
7921  *	unregister_netdevice(y2);
7922  *      ...
7923  *	rtnl_unlock();
7924  *	free_netdev(y1);
7925  *	free_netdev(y2);
7926  *
7927  * We are invoked by rtnl_unlock().
7928  * This allows us to deal with problems:
7929  * 1) We can delete sysfs objects which invoke hotplug
7930  *    without deadlocking with linkwatch via keventd.
7931  * 2) Since we run with the RTNL semaphore not held, we can sleep
7932  *    safely in order to wait for the netdev refcnt to drop to zero.
7933  *
7934  * We must not return until all unregister events added during
7935  * the interval the lock was held have been completed.
7936  */
7937 void netdev_run_todo(void)
7938 {
7939 	struct list_head list;
7940 
7941 	/* Snapshot list, allow later requests */
7942 	list_replace_init(&net_todo_list, &list);
7943 
7944 	__rtnl_unlock();
7945 
7946 
7947 	/* Wait for rcu callbacks to finish before next phase */
7948 	if (!list_empty(&list))
7949 		rcu_barrier();
7950 
7951 	while (!list_empty(&list)) {
7952 		struct net_device *dev
7953 			= list_first_entry(&list, struct net_device, todo_list);
7954 		list_del(&dev->todo_list);
7955 
7956 		rtnl_lock();
7957 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7958 		__rtnl_unlock();
7959 
7960 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7961 			pr_err("network todo '%s' but state %d\n",
7962 			       dev->name, dev->reg_state);
7963 			dump_stack();
7964 			continue;
7965 		}
7966 
7967 		dev->reg_state = NETREG_UNREGISTERED;
7968 
7969 		netdev_wait_allrefs(dev);
7970 
7971 		/* paranoia */
7972 		BUG_ON(netdev_refcnt_read(dev));
7973 		BUG_ON(!list_empty(&dev->ptype_all));
7974 		BUG_ON(!list_empty(&dev->ptype_specific));
7975 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7976 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7977 		WARN_ON(dev->dn_ptr);
7978 
7979 		if (dev->priv_destructor)
7980 			dev->priv_destructor(dev);
7981 		if (dev->needs_free_netdev)
7982 			free_netdev(dev);
7983 
7984 		/* Report a network device has been unregistered */
7985 		rtnl_lock();
7986 		dev_net(dev)->dev_unreg_count--;
7987 		__rtnl_unlock();
7988 		wake_up(&netdev_unregistering_wq);
7989 
7990 		/* Free network device */
7991 		kobject_put(&dev->dev.kobj);
7992 	}
7993 }
7994 
7995 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7996  * all the same fields in the same order as net_device_stats, with only
7997  * the type differing, but rtnl_link_stats64 may have additional fields
7998  * at the end for newer counters.
7999  */
8000 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8001 			     const struct net_device_stats *netdev_stats)
8002 {
8003 #if BITS_PER_LONG == 64
8004 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8005 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8006 	/* zero out counters that only exist in rtnl_link_stats64 */
8007 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8008 	       sizeof(*stats64) - sizeof(*netdev_stats));
8009 #else
8010 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8011 	const unsigned long *src = (const unsigned long *)netdev_stats;
8012 	u64 *dst = (u64 *)stats64;
8013 
8014 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8015 	for (i = 0; i < n; i++)
8016 		dst[i] = src[i];
8017 	/* zero out counters that only exist in rtnl_link_stats64 */
8018 	memset((char *)stats64 + n * sizeof(u64), 0,
8019 	       sizeof(*stats64) - n * sizeof(u64));
8020 #endif
8021 }
8022 EXPORT_SYMBOL(netdev_stats_to_stats64);
8023 
8024 /**
8025  *	dev_get_stats	- get network device statistics
8026  *	@dev: device to get statistics from
8027  *	@storage: place to store stats
8028  *
8029  *	Get network statistics from device. Return @storage.
8030  *	The device driver may provide its own method by setting
8031  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8032  *	otherwise the internal statistics structure is used.
8033  */
8034 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8035 					struct rtnl_link_stats64 *storage)
8036 {
8037 	const struct net_device_ops *ops = dev->netdev_ops;
8038 
8039 	if (ops->ndo_get_stats64) {
8040 		memset(storage, 0, sizeof(*storage));
8041 		ops->ndo_get_stats64(dev, storage);
8042 	} else if (ops->ndo_get_stats) {
8043 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8044 	} else {
8045 		netdev_stats_to_stats64(storage, &dev->stats);
8046 	}
8047 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8048 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8049 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8050 	return storage;
8051 }
8052 EXPORT_SYMBOL(dev_get_stats);
8053 
8054 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8055 {
8056 	struct netdev_queue *queue = dev_ingress_queue(dev);
8057 
8058 #ifdef CONFIG_NET_CLS_ACT
8059 	if (queue)
8060 		return queue;
8061 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8062 	if (!queue)
8063 		return NULL;
8064 	netdev_init_one_queue(dev, queue, NULL);
8065 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8066 	queue->qdisc_sleeping = &noop_qdisc;
8067 	rcu_assign_pointer(dev->ingress_queue, queue);
8068 #endif
8069 	return queue;
8070 }
8071 
8072 static const struct ethtool_ops default_ethtool_ops;
8073 
8074 void netdev_set_default_ethtool_ops(struct net_device *dev,
8075 				    const struct ethtool_ops *ops)
8076 {
8077 	if (dev->ethtool_ops == &default_ethtool_ops)
8078 		dev->ethtool_ops = ops;
8079 }
8080 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8081 
8082 void netdev_freemem(struct net_device *dev)
8083 {
8084 	char *addr = (char *)dev - dev->padded;
8085 
8086 	kvfree(addr);
8087 }
8088 
8089 /**
8090  * alloc_netdev_mqs - allocate network device
8091  * @sizeof_priv: size of private data to allocate space for
8092  * @name: device name format string
8093  * @name_assign_type: origin of device name
8094  * @setup: callback to initialize device
8095  * @txqs: the number of TX subqueues to allocate
8096  * @rxqs: the number of RX subqueues to allocate
8097  *
8098  * Allocates a struct net_device with private data area for driver use
8099  * and performs basic initialization.  Also allocates subqueue structs
8100  * for each queue on the device.
8101  */
8102 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8103 		unsigned char name_assign_type,
8104 		void (*setup)(struct net_device *),
8105 		unsigned int txqs, unsigned int rxqs)
8106 {
8107 	struct net_device *dev;
8108 	unsigned int alloc_size;
8109 	struct net_device *p;
8110 
8111 	BUG_ON(strlen(name) >= sizeof(dev->name));
8112 
8113 	if (txqs < 1) {
8114 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8115 		return NULL;
8116 	}
8117 
8118 #ifdef CONFIG_SYSFS
8119 	if (rxqs < 1) {
8120 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8121 		return NULL;
8122 	}
8123 #endif
8124 
8125 	alloc_size = sizeof(struct net_device);
8126 	if (sizeof_priv) {
8127 		/* ensure 32-byte alignment of private area */
8128 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8129 		alloc_size += sizeof_priv;
8130 	}
8131 	/* ensure 32-byte alignment of whole construct */
8132 	alloc_size += NETDEV_ALIGN - 1;
8133 
8134 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8135 	if (!p)
8136 		return NULL;
8137 
8138 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8139 	dev->padded = (char *)dev - (char *)p;
8140 
8141 	dev->pcpu_refcnt = alloc_percpu(int);
8142 	if (!dev->pcpu_refcnt)
8143 		goto free_dev;
8144 
8145 	if (dev_addr_init(dev))
8146 		goto free_pcpu;
8147 
8148 	dev_mc_init(dev);
8149 	dev_uc_init(dev);
8150 
8151 	dev_net_set(dev, &init_net);
8152 
8153 	dev->gso_max_size = GSO_MAX_SIZE;
8154 	dev->gso_max_segs = GSO_MAX_SEGS;
8155 
8156 	INIT_LIST_HEAD(&dev->napi_list);
8157 	INIT_LIST_HEAD(&dev->unreg_list);
8158 	INIT_LIST_HEAD(&dev->close_list);
8159 	INIT_LIST_HEAD(&dev->link_watch_list);
8160 	INIT_LIST_HEAD(&dev->adj_list.upper);
8161 	INIT_LIST_HEAD(&dev->adj_list.lower);
8162 	INIT_LIST_HEAD(&dev->ptype_all);
8163 	INIT_LIST_HEAD(&dev->ptype_specific);
8164 #ifdef CONFIG_NET_SCHED
8165 	hash_init(dev->qdisc_hash);
8166 #endif
8167 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8168 	setup(dev);
8169 
8170 	if (!dev->tx_queue_len) {
8171 		dev->priv_flags |= IFF_NO_QUEUE;
8172 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8173 	}
8174 
8175 	dev->num_tx_queues = txqs;
8176 	dev->real_num_tx_queues = txqs;
8177 	if (netif_alloc_netdev_queues(dev))
8178 		goto free_all;
8179 
8180 #ifdef CONFIG_SYSFS
8181 	dev->num_rx_queues = rxqs;
8182 	dev->real_num_rx_queues = rxqs;
8183 	if (netif_alloc_rx_queues(dev))
8184 		goto free_all;
8185 #endif
8186 
8187 	strcpy(dev->name, name);
8188 	dev->name_assign_type = name_assign_type;
8189 	dev->group = INIT_NETDEV_GROUP;
8190 	if (!dev->ethtool_ops)
8191 		dev->ethtool_ops = &default_ethtool_ops;
8192 
8193 	nf_hook_ingress_init(dev);
8194 
8195 	return dev;
8196 
8197 free_all:
8198 	free_netdev(dev);
8199 	return NULL;
8200 
8201 free_pcpu:
8202 	free_percpu(dev->pcpu_refcnt);
8203 free_dev:
8204 	netdev_freemem(dev);
8205 	return NULL;
8206 }
8207 EXPORT_SYMBOL(alloc_netdev_mqs);
8208 
8209 /**
8210  * free_netdev - free network device
8211  * @dev: device
8212  *
8213  * This function does the last stage of destroying an allocated device
8214  * interface. The reference to the device object is released. If this
8215  * is the last reference then it will be freed.Must be called in process
8216  * context.
8217  */
8218 void free_netdev(struct net_device *dev)
8219 {
8220 	struct napi_struct *p, *n;
8221 	struct bpf_prog *prog;
8222 
8223 	might_sleep();
8224 	netif_free_tx_queues(dev);
8225 #ifdef CONFIG_SYSFS
8226 	kvfree(dev->_rx);
8227 #endif
8228 
8229 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8230 
8231 	/* Flush device addresses */
8232 	dev_addr_flush(dev);
8233 
8234 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8235 		netif_napi_del(p);
8236 
8237 	free_percpu(dev->pcpu_refcnt);
8238 	dev->pcpu_refcnt = NULL;
8239 
8240 	prog = rcu_dereference_protected(dev->xdp_prog, 1);
8241 	if (prog) {
8242 		bpf_prog_put(prog);
8243 		static_key_slow_dec(&generic_xdp_needed);
8244 	}
8245 
8246 	/*  Compatibility with error handling in drivers */
8247 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8248 		netdev_freemem(dev);
8249 		return;
8250 	}
8251 
8252 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8253 	dev->reg_state = NETREG_RELEASED;
8254 
8255 	/* will free via device release */
8256 	put_device(&dev->dev);
8257 }
8258 EXPORT_SYMBOL(free_netdev);
8259 
8260 /**
8261  *	synchronize_net -  Synchronize with packet receive processing
8262  *
8263  *	Wait for packets currently being received to be done.
8264  *	Does not block later packets from starting.
8265  */
8266 void synchronize_net(void)
8267 {
8268 	might_sleep();
8269 	if (rtnl_is_locked())
8270 		synchronize_rcu_expedited();
8271 	else
8272 		synchronize_rcu();
8273 }
8274 EXPORT_SYMBOL(synchronize_net);
8275 
8276 /**
8277  *	unregister_netdevice_queue - remove device from the kernel
8278  *	@dev: device
8279  *	@head: list
8280  *
8281  *	This function shuts down a device interface and removes it
8282  *	from the kernel tables.
8283  *	If head not NULL, device is queued to be unregistered later.
8284  *
8285  *	Callers must hold the rtnl semaphore.  You may want
8286  *	unregister_netdev() instead of this.
8287  */
8288 
8289 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8290 {
8291 	ASSERT_RTNL();
8292 
8293 	if (head) {
8294 		list_move_tail(&dev->unreg_list, head);
8295 	} else {
8296 		rollback_registered(dev);
8297 		/* Finish processing unregister after unlock */
8298 		net_set_todo(dev);
8299 	}
8300 }
8301 EXPORT_SYMBOL(unregister_netdevice_queue);
8302 
8303 /**
8304  *	unregister_netdevice_many - unregister many devices
8305  *	@head: list of devices
8306  *
8307  *  Note: As most callers use a stack allocated list_head,
8308  *  we force a list_del() to make sure stack wont be corrupted later.
8309  */
8310 void unregister_netdevice_many(struct list_head *head)
8311 {
8312 	struct net_device *dev;
8313 
8314 	if (!list_empty(head)) {
8315 		rollback_registered_many(head);
8316 		list_for_each_entry(dev, head, unreg_list)
8317 			net_set_todo(dev);
8318 		list_del(head);
8319 	}
8320 }
8321 EXPORT_SYMBOL(unregister_netdevice_many);
8322 
8323 /**
8324  *	unregister_netdev - remove device from the kernel
8325  *	@dev: device
8326  *
8327  *	This function shuts down a device interface and removes it
8328  *	from the kernel tables.
8329  *
8330  *	This is just a wrapper for unregister_netdevice that takes
8331  *	the rtnl semaphore.  In general you want to use this and not
8332  *	unregister_netdevice.
8333  */
8334 void unregister_netdev(struct net_device *dev)
8335 {
8336 	rtnl_lock();
8337 	unregister_netdevice(dev);
8338 	rtnl_unlock();
8339 }
8340 EXPORT_SYMBOL(unregister_netdev);
8341 
8342 /**
8343  *	dev_change_net_namespace - move device to different nethost namespace
8344  *	@dev: device
8345  *	@net: network namespace
8346  *	@pat: If not NULL name pattern to try if the current device name
8347  *	      is already taken in the destination network namespace.
8348  *
8349  *	This function shuts down a device interface and moves it
8350  *	to a new network namespace. On success 0 is returned, on
8351  *	a failure a netagive errno code is returned.
8352  *
8353  *	Callers must hold the rtnl semaphore.
8354  */
8355 
8356 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8357 {
8358 	int err, new_nsid;
8359 
8360 	ASSERT_RTNL();
8361 
8362 	/* Don't allow namespace local devices to be moved. */
8363 	err = -EINVAL;
8364 	if (dev->features & NETIF_F_NETNS_LOCAL)
8365 		goto out;
8366 
8367 	/* Ensure the device has been registrered */
8368 	if (dev->reg_state != NETREG_REGISTERED)
8369 		goto out;
8370 
8371 	/* Get out if there is nothing todo */
8372 	err = 0;
8373 	if (net_eq(dev_net(dev), net))
8374 		goto out;
8375 
8376 	/* Pick the destination device name, and ensure
8377 	 * we can use it in the destination network namespace.
8378 	 */
8379 	err = -EEXIST;
8380 	if (__dev_get_by_name(net, dev->name)) {
8381 		/* We get here if we can't use the current device name */
8382 		if (!pat)
8383 			goto out;
8384 		if (dev_get_valid_name(net, dev, pat) < 0)
8385 			goto out;
8386 	}
8387 
8388 	/*
8389 	 * And now a mini version of register_netdevice unregister_netdevice.
8390 	 */
8391 
8392 	/* If device is running close it first. */
8393 	dev_close(dev);
8394 
8395 	/* And unlink it from device chain */
8396 	err = -ENODEV;
8397 	unlist_netdevice(dev);
8398 
8399 	synchronize_net();
8400 
8401 	/* Shutdown queueing discipline. */
8402 	dev_shutdown(dev);
8403 
8404 	/* Notify protocols, that we are about to destroy
8405 	 * this device. They should clean all the things.
8406 	 *
8407 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8408 	 * This is wanted because this way 8021q and macvlan know
8409 	 * the device is just moving and can keep their slaves up.
8410 	 */
8411 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8412 	rcu_barrier();
8413 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8414 	if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8415 		new_nsid = peernet2id_alloc(dev_net(dev), net);
8416 	else
8417 		new_nsid = peernet2id(dev_net(dev), net);
8418 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
8419 
8420 	/*
8421 	 *	Flush the unicast and multicast chains
8422 	 */
8423 	dev_uc_flush(dev);
8424 	dev_mc_flush(dev);
8425 
8426 	/* Send a netdev-removed uevent to the old namespace */
8427 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8428 	netdev_adjacent_del_links(dev);
8429 
8430 	/* Actually switch the network namespace */
8431 	dev_net_set(dev, net);
8432 
8433 	/* If there is an ifindex conflict assign a new one */
8434 	if (__dev_get_by_index(net, dev->ifindex))
8435 		dev->ifindex = dev_new_index(net);
8436 
8437 	/* Send a netdev-add uevent to the new namespace */
8438 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8439 	netdev_adjacent_add_links(dev);
8440 
8441 	/* Fixup kobjects */
8442 	err = device_rename(&dev->dev, dev->name);
8443 	WARN_ON(err);
8444 
8445 	/* Add the device back in the hashes */
8446 	list_netdevice(dev);
8447 
8448 	/* Notify protocols, that a new device appeared. */
8449 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8450 
8451 	/*
8452 	 *	Prevent userspace races by waiting until the network
8453 	 *	device is fully setup before sending notifications.
8454 	 */
8455 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8456 
8457 	synchronize_net();
8458 	err = 0;
8459 out:
8460 	return err;
8461 }
8462 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8463 
8464 static int dev_cpu_dead(unsigned int oldcpu)
8465 {
8466 	struct sk_buff **list_skb;
8467 	struct sk_buff *skb;
8468 	unsigned int cpu;
8469 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8470 
8471 	local_irq_disable();
8472 	cpu = smp_processor_id();
8473 	sd = &per_cpu(softnet_data, cpu);
8474 	oldsd = &per_cpu(softnet_data, oldcpu);
8475 
8476 	/* Find end of our completion_queue. */
8477 	list_skb = &sd->completion_queue;
8478 	while (*list_skb)
8479 		list_skb = &(*list_skb)->next;
8480 	/* Append completion queue from offline CPU. */
8481 	*list_skb = oldsd->completion_queue;
8482 	oldsd->completion_queue = NULL;
8483 
8484 	/* Append output queue from offline CPU. */
8485 	if (oldsd->output_queue) {
8486 		*sd->output_queue_tailp = oldsd->output_queue;
8487 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8488 		oldsd->output_queue = NULL;
8489 		oldsd->output_queue_tailp = &oldsd->output_queue;
8490 	}
8491 	/* Append NAPI poll list from offline CPU, with one exception :
8492 	 * process_backlog() must be called by cpu owning percpu backlog.
8493 	 * We properly handle process_queue & input_pkt_queue later.
8494 	 */
8495 	while (!list_empty(&oldsd->poll_list)) {
8496 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8497 							    struct napi_struct,
8498 							    poll_list);
8499 
8500 		list_del_init(&napi->poll_list);
8501 		if (napi->poll == process_backlog)
8502 			napi->state = 0;
8503 		else
8504 			____napi_schedule(sd, napi);
8505 	}
8506 
8507 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8508 	local_irq_enable();
8509 
8510 #ifdef CONFIG_RPS
8511 	remsd = oldsd->rps_ipi_list;
8512 	oldsd->rps_ipi_list = NULL;
8513 #endif
8514 	/* send out pending IPI's on offline CPU */
8515 	net_rps_send_ipi(remsd);
8516 
8517 	/* Process offline CPU's input_pkt_queue */
8518 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8519 		netif_rx_ni(skb);
8520 		input_queue_head_incr(oldsd);
8521 	}
8522 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8523 		netif_rx_ni(skb);
8524 		input_queue_head_incr(oldsd);
8525 	}
8526 
8527 	return 0;
8528 }
8529 
8530 /**
8531  *	netdev_increment_features - increment feature set by one
8532  *	@all: current feature set
8533  *	@one: new feature set
8534  *	@mask: mask feature set
8535  *
8536  *	Computes a new feature set after adding a device with feature set
8537  *	@one to the master device with current feature set @all.  Will not
8538  *	enable anything that is off in @mask. Returns the new feature set.
8539  */
8540 netdev_features_t netdev_increment_features(netdev_features_t all,
8541 	netdev_features_t one, netdev_features_t mask)
8542 {
8543 	if (mask & NETIF_F_HW_CSUM)
8544 		mask |= NETIF_F_CSUM_MASK;
8545 	mask |= NETIF_F_VLAN_CHALLENGED;
8546 
8547 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8548 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8549 
8550 	/* If one device supports hw checksumming, set for all. */
8551 	if (all & NETIF_F_HW_CSUM)
8552 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8553 
8554 	return all;
8555 }
8556 EXPORT_SYMBOL(netdev_increment_features);
8557 
8558 static struct hlist_head * __net_init netdev_create_hash(void)
8559 {
8560 	int i;
8561 	struct hlist_head *hash;
8562 
8563 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8564 	if (hash != NULL)
8565 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8566 			INIT_HLIST_HEAD(&hash[i]);
8567 
8568 	return hash;
8569 }
8570 
8571 /* Initialize per network namespace state */
8572 static int __net_init netdev_init(struct net *net)
8573 {
8574 	if (net != &init_net)
8575 		INIT_LIST_HEAD(&net->dev_base_head);
8576 
8577 	net->dev_name_head = netdev_create_hash();
8578 	if (net->dev_name_head == NULL)
8579 		goto err_name;
8580 
8581 	net->dev_index_head = netdev_create_hash();
8582 	if (net->dev_index_head == NULL)
8583 		goto err_idx;
8584 
8585 	return 0;
8586 
8587 err_idx:
8588 	kfree(net->dev_name_head);
8589 err_name:
8590 	return -ENOMEM;
8591 }
8592 
8593 /**
8594  *	netdev_drivername - network driver for the device
8595  *	@dev: network device
8596  *
8597  *	Determine network driver for device.
8598  */
8599 const char *netdev_drivername(const struct net_device *dev)
8600 {
8601 	const struct device_driver *driver;
8602 	const struct device *parent;
8603 	const char *empty = "";
8604 
8605 	parent = dev->dev.parent;
8606 	if (!parent)
8607 		return empty;
8608 
8609 	driver = parent->driver;
8610 	if (driver && driver->name)
8611 		return driver->name;
8612 	return empty;
8613 }
8614 
8615 static void __netdev_printk(const char *level, const struct net_device *dev,
8616 			    struct va_format *vaf)
8617 {
8618 	if (dev && dev->dev.parent) {
8619 		dev_printk_emit(level[1] - '0',
8620 				dev->dev.parent,
8621 				"%s %s %s%s: %pV",
8622 				dev_driver_string(dev->dev.parent),
8623 				dev_name(dev->dev.parent),
8624 				netdev_name(dev), netdev_reg_state(dev),
8625 				vaf);
8626 	} else if (dev) {
8627 		printk("%s%s%s: %pV",
8628 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8629 	} else {
8630 		printk("%s(NULL net_device): %pV", level, vaf);
8631 	}
8632 }
8633 
8634 void netdev_printk(const char *level, const struct net_device *dev,
8635 		   const char *format, ...)
8636 {
8637 	struct va_format vaf;
8638 	va_list args;
8639 
8640 	va_start(args, format);
8641 
8642 	vaf.fmt = format;
8643 	vaf.va = &args;
8644 
8645 	__netdev_printk(level, dev, &vaf);
8646 
8647 	va_end(args);
8648 }
8649 EXPORT_SYMBOL(netdev_printk);
8650 
8651 #define define_netdev_printk_level(func, level)			\
8652 void func(const struct net_device *dev, const char *fmt, ...)	\
8653 {								\
8654 	struct va_format vaf;					\
8655 	va_list args;						\
8656 								\
8657 	va_start(args, fmt);					\
8658 								\
8659 	vaf.fmt = fmt;						\
8660 	vaf.va = &args;						\
8661 								\
8662 	__netdev_printk(level, dev, &vaf);			\
8663 								\
8664 	va_end(args);						\
8665 }								\
8666 EXPORT_SYMBOL(func);
8667 
8668 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8669 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8670 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8671 define_netdev_printk_level(netdev_err, KERN_ERR);
8672 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8673 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8674 define_netdev_printk_level(netdev_info, KERN_INFO);
8675 
8676 static void __net_exit netdev_exit(struct net *net)
8677 {
8678 	kfree(net->dev_name_head);
8679 	kfree(net->dev_index_head);
8680 	if (net != &init_net)
8681 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8682 }
8683 
8684 static struct pernet_operations __net_initdata netdev_net_ops = {
8685 	.init = netdev_init,
8686 	.exit = netdev_exit,
8687 };
8688 
8689 static void __net_exit default_device_exit(struct net *net)
8690 {
8691 	struct net_device *dev, *aux;
8692 	/*
8693 	 * Push all migratable network devices back to the
8694 	 * initial network namespace
8695 	 */
8696 	rtnl_lock();
8697 	for_each_netdev_safe(net, dev, aux) {
8698 		int err;
8699 		char fb_name[IFNAMSIZ];
8700 
8701 		/* Ignore unmoveable devices (i.e. loopback) */
8702 		if (dev->features & NETIF_F_NETNS_LOCAL)
8703 			continue;
8704 
8705 		/* Leave virtual devices for the generic cleanup */
8706 		if (dev->rtnl_link_ops)
8707 			continue;
8708 
8709 		/* Push remaining network devices to init_net */
8710 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8711 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8712 		if (err) {
8713 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8714 				 __func__, dev->name, err);
8715 			BUG();
8716 		}
8717 	}
8718 	rtnl_unlock();
8719 }
8720 
8721 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8722 {
8723 	/* Return with the rtnl_lock held when there are no network
8724 	 * devices unregistering in any network namespace in net_list.
8725 	 */
8726 	struct net *net;
8727 	bool unregistering;
8728 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8729 
8730 	add_wait_queue(&netdev_unregistering_wq, &wait);
8731 	for (;;) {
8732 		unregistering = false;
8733 		rtnl_lock();
8734 		list_for_each_entry(net, net_list, exit_list) {
8735 			if (net->dev_unreg_count > 0) {
8736 				unregistering = true;
8737 				break;
8738 			}
8739 		}
8740 		if (!unregistering)
8741 			break;
8742 		__rtnl_unlock();
8743 
8744 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8745 	}
8746 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8747 }
8748 
8749 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8750 {
8751 	/* At exit all network devices most be removed from a network
8752 	 * namespace.  Do this in the reverse order of registration.
8753 	 * Do this across as many network namespaces as possible to
8754 	 * improve batching efficiency.
8755 	 */
8756 	struct net_device *dev;
8757 	struct net *net;
8758 	LIST_HEAD(dev_kill_list);
8759 
8760 	/* To prevent network device cleanup code from dereferencing
8761 	 * loopback devices or network devices that have been freed
8762 	 * wait here for all pending unregistrations to complete,
8763 	 * before unregistring the loopback device and allowing the
8764 	 * network namespace be freed.
8765 	 *
8766 	 * The netdev todo list containing all network devices
8767 	 * unregistrations that happen in default_device_exit_batch
8768 	 * will run in the rtnl_unlock() at the end of
8769 	 * default_device_exit_batch.
8770 	 */
8771 	rtnl_lock_unregistering(net_list);
8772 	list_for_each_entry(net, net_list, exit_list) {
8773 		for_each_netdev_reverse(net, dev) {
8774 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8775 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8776 			else
8777 				unregister_netdevice_queue(dev, &dev_kill_list);
8778 		}
8779 	}
8780 	unregister_netdevice_many(&dev_kill_list);
8781 	rtnl_unlock();
8782 }
8783 
8784 static struct pernet_operations __net_initdata default_device_ops = {
8785 	.exit = default_device_exit,
8786 	.exit_batch = default_device_exit_batch,
8787 };
8788 
8789 /*
8790  *	Initialize the DEV module. At boot time this walks the device list and
8791  *	unhooks any devices that fail to initialise (normally hardware not
8792  *	present) and leaves us with a valid list of present and active devices.
8793  *
8794  */
8795 
8796 /*
8797  *       This is called single threaded during boot, so no need
8798  *       to take the rtnl semaphore.
8799  */
8800 static int __init net_dev_init(void)
8801 {
8802 	int i, rc = -ENOMEM;
8803 
8804 	BUG_ON(!dev_boot_phase);
8805 
8806 	if (dev_proc_init())
8807 		goto out;
8808 
8809 	if (netdev_kobject_init())
8810 		goto out;
8811 
8812 	INIT_LIST_HEAD(&ptype_all);
8813 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8814 		INIT_LIST_HEAD(&ptype_base[i]);
8815 
8816 	INIT_LIST_HEAD(&offload_base);
8817 
8818 	if (register_pernet_subsys(&netdev_net_ops))
8819 		goto out;
8820 
8821 	/*
8822 	 *	Initialise the packet receive queues.
8823 	 */
8824 
8825 	for_each_possible_cpu(i) {
8826 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8827 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8828 
8829 		INIT_WORK(flush, flush_backlog);
8830 
8831 		skb_queue_head_init(&sd->input_pkt_queue);
8832 		skb_queue_head_init(&sd->process_queue);
8833 		INIT_LIST_HEAD(&sd->poll_list);
8834 		sd->output_queue_tailp = &sd->output_queue;
8835 #ifdef CONFIG_RPS
8836 		sd->csd.func = rps_trigger_softirq;
8837 		sd->csd.info = sd;
8838 		sd->cpu = i;
8839 #endif
8840 
8841 		sd->backlog.poll = process_backlog;
8842 		sd->backlog.weight = weight_p;
8843 	}
8844 
8845 	dev_boot_phase = 0;
8846 
8847 	/* The loopback device is special if any other network devices
8848 	 * is present in a network namespace the loopback device must
8849 	 * be present. Since we now dynamically allocate and free the
8850 	 * loopback device ensure this invariant is maintained by
8851 	 * keeping the loopback device as the first device on the
8852 	 * list of network devices.  Ensuring the loopback devices
8853 	 * is the first device that appears and the last network device
8854 	 * that disappears.
8855 	 */
8856 	if (register_pernet_device(&loopback_net_ops))
8857 		goto out;
8858 
8859 	if (register_pernet_device(&default_device_ops))
8860 		goto out;
8861 
8862 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8863 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8864 
8865 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8866 				       NULL, dev_cpu_dead);
8867 	WARN_ON(rc < 0);
8868 	rc = 0;
8869 out:
8870 	return rc;
8871 }
8872 
8873 subsys_initcall(net_dev_init);
8874