1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/config.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/notifier.h> 93 #include <linux/skbuff.h> 94 #include <net/sock.h> 95 #include <linux/rtnetlink.h> 96 #include <linux/proc_fs.h> 97 #include <linux/seq_file.h> 98 #include <linux/stat.h> 99 #include <linux/if_bridge.h> 100 #include <linux/divert.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <linux/highmem.h> 105 #include <linux/init.h> 106 #include <linux/kmod.h> 107 #include <linux/module.h> 108 #include <linux/kallsyms.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #ifdef CONFIG_NET_RADIO 113 #include <linux/wireless.h> /* Note : will define WIRELESS_EXT */ 114 #include <net/iw_handler.h> 115 #endif /* CONFIG_NET_RADIO */ 116 #include <asm/current.h> 117 118 /* 119 * The list of packet types we will receive (as opposed to discard) 120 * and the routines to invoke. 121 * 122 * Why 16. Because with 16 the only overlap we get on a hash of the 123 * low nibble of the protocol value is RARP/SNAP/X.25. 124 * 125 * NOTE: That is no longer true with the addition of VLAN tags. Not 126 * sure which should go first, but I bet it won't make much 127 * difference if we are running VLANs. The good news is that 128 * this protocol won't be in the list unless compiled in, so 129 * the average user (w/out VLANs) will not be adversly affected. 130 * --BLG 131 * 132 * 0800 IP 133 * 8100 802.1Q VLAN 134 * 0001 802.3 135 * 0002 AX.25 136 * 0004 802.2 137 * 8035 RARP 138 * 0005 SNAP 139 * 0805 X.25 140 * 0806 ARP 141 * 8137 IPX 142 * 0009 Localtalk 143 * 86DD IPv6 144 */ 145 146 static DEFINE_SPINLOCK(ptype_lock); 147 static struct list_head ptype_base[16]; /* 16 way hashed list */ 148 static struct list_head ptype_all; /* Taps */ 149 150 /* 151 * The @dev_base list is protected by @dev_base_lock and the rtln 152 * semaphore. 153 * 154 * Pure readers hold dev_base_lock for reading. 155 * 156 * Writers must hold the rtnl semaphore while they loop through the 157 * dev_base list, and hold dev_base_lock for writing when they do the 158 * actual updates. This allows pure readers to access the list even 159 * while a writer is preparing to update it. 160 * 161 * To put it another way, dev_base_lock is held for writing only to 162 * protect against pure readers; the rtnl semaphore provides the 163 * protection against other writers. 164 * 165 * See, for example usages, register_netdevice() and 166 * unregister_netdevice(), which must be called with the rtnl 167 * semaphore held. 168 */ 169 struct net_device *dev_base; 170 static struct net_device **dev_tail = &dev_base; 171 DEFINE_RWLOCK(dev_base_lock); 172 173 EXPORT_SYMBOL(dev_base); 174 EXPORT_SYMBOL(dev_base_lock); 175 176 #define NETDEV_HASHBITS 8 177 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS]; 178 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS]; 179 180 static inline struct hlist_head *dev_name_hash(const char *name) 181 { 182 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 183 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)]; 184 } 185 186 static inline struct hlist_head *dev_index_hash(int ifindex) 187 { 188 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)]; 189 } 190 191 /* 192 * Our notifier list 193 */ 194 195 static struct notifier_block *netdev_chain; 196 197 /* 198 * Device drivers call our routines to queue packets here. We empty the 199 * queue in the local softnet handler. 200 */ 201 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL }; 202 203 #ifdef CONFIG_SYSFS 204 extern int netdev_sysfs_init(void); 205 extern int netdev_register_sysfs(struct net_device *); 206 extern void netdev_unregister_sysfs(struct net_device *); 207 #else 208 #define netdev_sysfs_init() (0) 209 #define netdev_register_sysfs(dev) (0) 210 #define netdev_unregister_sysfs(dev) do { } while(0) 211 #endif 212 213 214 /******************************************************************************* 215 216 Protocol management and registration routines 217 218 *******************************************************************************/ 219 220 /* 221 * For efficiency 222 */ 223 224 int netdev_nit; 225 226 /* 227 * Add a protocol ID to the list. Now that the input handler is 228 * smarter we can dispense with all the messy stuff that used to be 229 * here. 230 * 231 * BEWARE!!! Protocol handlers, mangling input packets, 232 * MUST BE last in hash buckets and checking protocol handlers 233 * MUST start from promiscuous ptype_all chain in net_bh. 234 * It is true now, do not change it. 235 * Explanation follows: if protocol handler, mangling packet, will 236 * be the first on list, it is not able to sense, that packet 237 * is cloned and should be copied-on-write, so that it will 238 * change it and subsequent readers will get broken packet. 239 * --ANK (980803) 240 */ 241 242 /** 243 * dev_add_pack - add packet handler 244 * @pt: packet type declaration 245 * 246 * Add a protocol handler to the networking stack. The passed &packet_type 247 * is linked into kernel lists and may not be freed until it has been 248 * removed from the kernel lists. 249 * 250 * This call does not sleep therefore it can not 251 * guarantee all CPU's that are in middle of receiving packets 252 * will see the new packet type (until the next received packet). 253 */ 254 255 void dev_add_pack(struct packet_type *pt) 256 { 257 int hash; 258 259 spin_lock_bh(&ptype_lock); 260 if (pt->type == htons(ETH_P_ALL)) { 261 netdev_nit++; 262 list_add_rcu(&pt->list, &ptype_all); 263 } else { 264 hash = ntohs(pt->type) & 15; 265 list_add_rcu(&pt->list, &ptype_base[hash]); 266 } 267 spin_unlock_bh(&ptype_lock); 268 } 269 270 /** 271 * __dev_remove_pack - remove packet handler 272 * @pt: packet type declaration 273 * 274 * Remove a protocol handler that was previously added to the kernel 275 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 276 * from the kernel lists and can be freed or reused once this function 277 * returns. 278 * 279 * The packet type might still be in use by receivers 280 * and must not be freed until after all the CPU's have gone 281 * through a quiescent state. 282 */ 283 void __dev_remove_pack(struct packet_type *pt) 284 { 285 struct list_head *head; 286 struct packet_type *pt1; 287 288 spin_lock_bh(&ptype_lock); 289 290 if (pt->type == htons(ETH_P_ALL)) { 291 netdev_nit--; 292 head = &ptype_all; 293 } else 294 head = &ptype_base[ntohs(pt->type) & 15]; 295 296 list_for_each_entry(pt1, head, list) { 297 if (pt == pt1) { 298 list_del_rcu(&pt->list); 299 goto out; 300 } 301 } 302 303 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 304 out: 305 spin_unlock_bh(&ptype_lock); 306 } 307 /** 308 * dev_remove_pack - remove packet handler 309 * @pt: packet type declaration 310 * 311 * Remove a protocol handler that was previously added to the kernel 312 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 313 * from the kernel lists and can be freed or reused once this function 314 * returns. 315 * 316 * This call sleeps to guarantee that no CPU is looking at the packet 317 * type after return. 318 */ 319 void dev_remove_pack(struct packet_type *pt) 320 { 321 __dev_remove_pack(pt); 322 323 synchronize_net(); 324 } 325 326 /****************************************************************************** 327 328 Device Boot-time Settings Routines 329 330 *******************************************************************************/ 331 332 /* Boot time configuration table */ 333 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 334 335 /** 336 * netdev_boot_setup_add - add new setup entry 337 * @name: name of the device 338 * @map: configured settings for the device 339 * 340 * Adds new setup entry to the dev_boot_setup list. The function 341 * returns 0 on error and 1 on success. This is a generic routine to 342 * all netdevices. 343 */ 344 static int netdev_boot_setup_add(char *name, struct ifmap *map) 345 { 346 struct netdev_boot_setup *s; 347 int i; 348 349 s = dev_boot_setup; 350 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 351 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 352 memset(s[i].name, 0, sizeof(s[i].name)); 353 strcpy(s[i].name, name); 354 memcpy(&s[i].map, map, sizeof(s[i].map)); 355 break; 356 } 357 } 358 359 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 360 } 361 362 /** 363 * netdev_boot_setup_check - check boot time settings 364 * @dev: the netdevice 365 * 366 * Check boot time settings for the device. 367 * The found settings are set for the device to be used 368 * later in the device probing. 369 * Returns 0 if no settings found, 1 if they are. 370 */ 371 int netdev_boot_setup_check(struct net_device *dev) 372 { 373 struct netdev_boot_setup *s = dev_boot_setup; 374 int i; 375 376 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 377 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 378 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 379 dev->irq = s[i].map.irq; 380 dev->base_addr = s[i].map.base_addr; 381 dev->mem_start = s[i].map.mem_start; 382 dev->mem_end = s[i].map.mem_end; 383 return 1; 384 } 385 } 386 return 0; 387 } 388 389 390 /** 391 * netdev_boot_base - get address from boot time settings 392 * @prefix: prefix for network device 393 * @unit: id for network device 394 * 395 * Check boot time settings for the base address of device. 396 * The found settings are set for the device to be used 397 * later in the device probing. 398 * Returns 0 if no settings found. 399 */ 400 unsigned long netdev_boot_base(const char *prefix, int unit) 401 { 402 const struct netdev_boot_setup *s = dev_boot_setup; 403 char name[IFNAMSIZ]; 404 int i; 405 406 sprintf(name, "%s%d", prefix, unit); 407 408 /* 409 * If device already registered then return base of 1 410 * to indicate not to probe for this interface 411 */ 412 if (__dev_get_by_name(name)) 413 return 1; 414 415 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 416 if (!strcmp(name, s[i].name)) 417 return s[i].map.base_addr; 418 return 0; 419 } 420 421 /* 422 * Saves at boot time configured settings for any netdevice. 423 */ 424 int __init netdev_boot_setup(char *str) 425 { 426 int ints[5]; 427 struct ifmap map; 428 429 str = get_options(str, ARRAY_SIZE(ints), ints); 430 if (!str || !*str) 431 return 0; 432 433 /* Save settings */ 434 memset(&map, 0, sizeof(map)); 435 if (ints[0] > 0) 436 map.irq = ints[1]; 437 if (ints[0] > 1) 438 map.base_addr = ints[2]; 439 if (ints[0] > 2) 440 map.mem_start = ints[3]; 441 if (ints[0] > 3) 442 map.mem_end = ints[4]; 443 444 /* Add new entry to the list */ 445 return netdev_boot_setup_add(str, &map); 446 } 447 448 __setup("netdev=", netdev_boot_setup); 449 450 /******************************************************************************* 451 452 Device Interface Subroutines 453 454 *******************************************************************************/ 455 456 /** 457 * __dev_get_by_name - find a device by its name 458 * @name: name to find 459 * 460 * Find an interface by name. Must be called under RTNL semaphore 461 * or @dev_base_lock. If the name is found a pointer to the device 462 * is returned. If the name is not found then %NULL is returned. The 463 * reference counters are not incremented so the caller must be 464 * careful with locks. 465 */ 466 467 struct net_device *__dev_get_by_name(const char *name) 468 { 469 struct hlist_node *p; 470 471 hlist_for_each(p, dev_name_hash(name)) { 472 struct net_device *dev 473 = hlist_entry(p, struct net_device, name_hlist); 474 if (!strncmp(dev->name, name, IFNAMSIZ)) 475 return dev; 476 } 477 return NULL; 478 } 479 480 /** 481 * dev_get_by_name - find a device by its name 482 * @name: name to find 483 * 484 * Find an interface by name. This can be called from any 485 * context and does its own locking. The returned handle has 486 * the usage count incremented and the caller must use dev_put() to 487 * release it when it is no longer needed. %NULL is returned if no 488 * matching device is found. 489 */ 490 491 struct net_device *dev_get_by_name(const char *name) 492 { 493 struct net_device *dev; 494 495 read_lock(&dev_base_lock); 496 dev = __dev_get_by_name(name); 497 if (dev) 498 dev_hold(dev); 499 read_unlock(&dev_base_lock); 500 return dev; 501 } 502 503 /** 504 * __dev_get_by_index - find a device by its ifindex 505 * @ifindex: index of device 506 * 507 * Search for an interface by index. Returns %NULL if the device 508 * is not found or a pointer to the device. The device has not 509 * had its reference counter increased so the caller must be careful 510 * about locking. The caller must hold either the RTNL semaphore 511 * or @dev_base_lock. 512 */ 513 514 struct net_device *__dev_get_by_index(int ifindex) 515 { 516 struct hlist_node *p; 517 518 hlist_for_each(p, dev_index_hash(ifindex)) { 519 struct net_device *dev 520 = hlist_entry(p, struct net_device, index_hlist); 521 if (dev->ifindex == ifindex) 522 return dev; 523 } 524 return NULL; 525 } 526 527 528 /** 529 * dev_get_by_index - find a device by its ifindex 530 * @ifindex: index of device 531 * 532 * Search for an interface by index. Returns NULL if the device 533 * is not found or a pointer to the device. The device returned has 534 * had a reference added and the pointer is safe until the user calls 535 * dev_put to indicate they have finished with it. 536 */ 537 538 struct net_device *dev_get_by_index(int ifindex) 539 { 540 struct net_device *dev; 541 542 read_lock(&dev_base_lock); 543 dev = __dev_get_by_index(ifindex); 544 if (dev) 545 dev_hold(dev); 546 read_unlock(&dev_base_lock); 547 return dev; 548 } 549 550 /** 551 * dev_getbyhwaddr - find a device by its hardware address 552 * @type: media type of device 553 * @ha: hardware address 554 * 555 * Search for an interface by MAC address. Returns NULL if the device 556 * is not found or a pointer to the device. The caller must hold the 557 * rtnl semaphore. The returned device has not had its ref count increased 558 * and the caller must therefore be careful about locking 559 * 560 * BUGS: 561 * If the API was consistent this would be __dev_get_by_hwaddr 562 */ 563 564 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha) 565 { 566 struct net_device *dev; 567 568 ASSERT_RTNL(); 569 570 for (dev = dev_base; dev; dev = dev->next) 571 if (dev->type == type && 572 !memcmp(dev->dev_addr, ha, dev->addr_len)) 573 break; 574 return dev; 575 } 576 577 struct net_device *dev_getfirstbyhwtype(unsigned short type) 578 { 579 struct net_device *dev; 580 581 rtnl_lock(); 582 for (dev = dev_base; dev; dev = dev->next) { 583 if (dev->type == type) { 584 dev_hold(dev); 585 break; 586 } 587 } 588 rtnl_unlock(); 589 return dev; 590 } 591 592 EXPORT_SYMBOL(dev_getfirstbyhwtype); 593 594 /** 595 * dev_get_by_flags - find any device with given flags 596 * @if_flags: IFF_* values 597 * @mask: bitmask of bits in if_flags to check 598 * 599 * Search for any interface with the given flags. Returns NULL if a device 600 * is not found or a pointer to the device. The device returned has 601 * had a reference added and the pointer is safe until the user calls 602 * dev_put to indicate they have finished with it. 603 */ 604 605 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask) 606 { 607 struct net_device *dev; 608 609 read_lock(&dev_base_lock); 610 for (dev = dev_base; dev != NULL; dev = dev->next) { 611 if (((dev->flags ^ if_flags) & mask) == 0) { 612 dev_hold(dev); 613 break; 614 } 615 } 616 read_unlock(&dev_base_lock); 617 return dev; 618 } 619 620 /** 621 * dev_valid_name - check if name is okay for network device 622 * @name: name string 623 * 624 * Network device names need to be valid file names to 625 * to allow sysfs to work 626 */ 627 static int dev_valid_name(const char *name) 628 { 629 return !(*name == '\0' 630 || !strcmp(name, ".") 631 || !strcmp(name, "..") 632 || strchr(name, '/')); 633 } 634 635 /** 636 * dev_alloc_name - allocate a name for a device 637 * @dev: device 638 * @name: name format string 639 * 640 * Passed a format string - eg "lt%d" it will try and find a suitable 641 * id. Not efficient for many devices, not called a lot. The caller 642 * must hold the dev_base or rtnl lock while allocating the name and 643 * adding the device in order to avoid duplicates. Returns the number 644 * of the unit assigned or a negative errno code. 645 */ 646 647 int dev_alloc_name(struct net_device *dev, const char *name) 648 { 649 int i = 0; 650 char buf[IFNAMSIZ]; 651 const char *p; 652 const int max_netdevices = 8*PAGE_SIZE; 653 long *inuse; 654 struct net_device *d; 655 656 p = strnchr(name, IFNAMSIZ-1, '%'); 657 if (p) { 658 /* 659 * Verify the string as this thing may have come from 660 * the user. There must be either one "%d" and no other "%" 661 * characters. 662 */ 663 if (p[1] != 'd' || strchr(p + 2, '%')) 664 return -EINVAL; 665 666 /* Use one page as a bit array of possible slots */ 667 inuse = (long *) get_zeroed_page(GFP_ATOMIC); 668 if (!inuse) 669 return -ENOMEM; 670 671 for (d = dev_base; d; d = d->next) { 672 if (!sscanf(d->name, name, &i)) 673 continue; 674 if (i < 0 || i >= max_netdevices) 675 continue; 676 677 /* avoid cases where sscanf is not exact inverse of printf */ 678 snprintf(buf, sizeof(buf), name, i); 679 if (!strncmp(buf, d->name, IFNAMSIZ)) 680 set_bit(i, inuse); 681 } 682 683 i = find_first_zero_bit(inuse, max_netdevices); 684 free_page((unsigned long) inuse); 685 } 686 687 snprintf(buf, sizeof(buf), name, i); 688 if (!__dev_get_by_name(buf)) { 689 strlcpy(dev->name, buf, IFNAMSIZ); 690 return i; 691 } 692 693 /* It is possible to run out of possible slots 694 * when the name is long and there isn't enough space left 695 * for the digits, or if all bits are used. 696 */ 697 return -ENFILE; 698 } 699 700 701 /** 702 * dev_change_name - change name of a device 703 * @dev: device 704 * @newname: name (or format string) must be at least IFNAMSIZ 705 * 706 * Change name of a device, can pass format strings "eth%d". 707 * for wildcarding. 708 */ 709 int dev_change_name(struct net_device *dev, char *newname) 710 { 711 int err = 0; 712 713 ASSERT_RTNL(); 714 715 if (dev->flags & IFF_UP) 716 return -EBUSY; 717 718 if (!dev_valid_name(newname)) 719 return -EINVAL; 720 721 if (strchr(newname, '%')) { 722 err = dev_alloc_name(dev, newname); 723 if (err < 0) 724 return err; 725 strcpy(newname, dev->name); 726 } 727 else if (__dev_get_by_name(newname)) 728 return -EEXIST; 729 else 730 strlcpy(dev->name, newname, IFNAMSIZ); 731 732 err = class_device_rename(&dev->class_dev, dev->name); 733 if (!err) { 734 hlist_del(&dev->name_hlist); 735 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name)); 736 notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev); 737 } 738 739 return err; 740 } 741 742 /** 743 * netdev_features_change - device changes fatures 744 * @dev: device to cause notification 745 * 746 * Called to indicate a device has changed features. 747 */ 748 void netdev_features_change(struct net_device *dev) 749 { 750 notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev); 751 } 752 EXPORT_SYMBOL(netdev_features_change); 753 754 /** 755 * netdev_state_change - device changes state 756 * @dev: device to cause notification 757 * 758 * Called to indicate a device has changed state. This function calls 759 * the notifier chains for netdev_chain and sends a NEWLINK message 760 * to the routing socket. 761 */ 762 void netdev_state_change(struct net_device *dev) 763 { 764 if (dev->flags & IFF_UP) { 765 notifier_call_chain(&netdev_chain, NETDEV_CHANGE, dev); 766 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 767 } 768 } 769 770 /** 771 * dev_load - load a network module 772 * @name: name of interface 773 * 774 * If a network interface is not present and the process has suitable 775 * privileges this function loads the module. If module loading is not 776 * available in this kernel then it becomes a nop. 777 */ 778 779 void dev_load(const char *name) 780 { 781 struct net_device *dev; 782 783 read_lock(&dev_base_lock); 784 dev = __dev_get_by_name(name); 785 read_unlock(&dev_base_lock); 786 787 if (!dev && capable(CAP_SYS_MODULE)) 788 request_module("%s", name); 789 } 790 791 static int default_rebuild_header(struct sk_buff *skb) 792 { 793 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n", 794 skb->dev ? skb->dev->name : "NULL!!!"); 795 kfree_skb(skb); 796 return 1; 797 } 798 799 800 /** 801 * dev_open - prepare an interface for use. 802 * @dev: device to open 803 * 804 * Takes a device from down to up state. The device's private open 805 * function is invoked and then the multicast lists are loaded. Finally 806 * the device is moved into the up state and a %NETDEV_UP message is 807 * sent to the netdev notifier chain. 808 * 809 * Calling this function on an active interface is a nop. On a failure 810 * a negative errno code is returned. 811 */ 812 int dev_open(struct net_device *dev) 813 { 814 int ret = 0; 815 816 /* 817 * Is it already up? 818 */ 819 820 if (dev->flags & IFF_UP) 821 return 0; 822 823 /* 824 * Is it even present? 825 */ 826 if (!netif_device_present(dev)) 827 return -ENODEV; 828 829 /* 830 * Call device private open method 831 */ 832 set_bit(__LINK_STATE_START, &dev->state); 833 if (dev->open) { 834 ret = dev->open(dev); 835 if (ret) 836 clear_bit(__LINK_STATE_START, &dev->state); 837 } 838 839 /* 840 * If it went open OK then: 841 */ 842 843 if (!ret) { 844 /* 845 * Set the flags. 846 */ 847 dev->flags |= IFF_UP; 848 849 /* 850 * Initialize multicasting status 851 */ 852 dev_mc_upload(dev); 853 854 /* 855 * Wakeup transmit queue engine 856 */ 857 dev_activate(dev); 858 859 /* 860 * ... and announce new interface. 861 */ 862 notifier_call_chain(&netdev_chain, NETDEV_UP, dev); 863 } 864 return ret; 865 } 866 867 /** 868 * dev_close - shutdown an interface. 869 * @dev: device to shutdown 870 * 871 * This function moves an active device into down state. A 872 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 873 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 874 * chain. 875 */ 876 int dev_close(struct net_device *dev) 877 { 878 if (!(dev->flags & IFF_UP)) 879 return 0; 880 881 /* 882 * Tell people we are going down, so that they can 883 * prepare to death, when device is still operating. 884 */ 885 notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev); 886 887 dev_deactivate(dev); 888 889 clear_bit(__LINK_STATE_START, &dev->state); 890 891 /* Synchronize to scheduled poll. We cannot touch poll list, 892 * it can be even on different cpu. So just clear netif_running(), 893 * and wait when poll really will happen. Actually, the best place 894 * for this is inside dev->stop() after device stopped its irq 895 * engine, but this requires more changes in devices. */ 896 897 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 898 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) { 899 /* No hurry. */ 900 msleep(1); 901 } 902 903 /* 904 * Call the device specific close. This cannot fail. 905 * Only if device is UP 906 * 907 * We allow it to be called even after a DETACH hot-plug 908 * event. 909 */ 910 if (dev->stop) 911 dev->stop(dev); 912 913 /* 914 * Device is now down. 915 */ 916 917 dev->flags &= ~IFF_UP; 918 919 /* 920 * Tell people we are down 921 */ 922 notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev); 923 924 return 0; 925 } 926 927 928 /* 929 * Device change register/unregister. These are not inline or static 930 * as we export them to the world. 931 */ 932 933 /** 934 * register_netdevice_notifier - register a network notifier block 935 * @nb: notifier 936 * 937 * Register a notifier to be called when network device events occur. 938 * The notifier passed is linked into the kernel structures and must 939 * not be reused until it has been unregistered. A negative errno code 940 * is returned on a failure. 941 * 942 * When registered all registration and up events are replayed 943 * to the new notifier to allow device to have a race free 944 * view of the network device list. 945 */ 946 947 int register_netdevice_notifier(struct notifier_block *nb) 948 { 949 struct net_device *dev; 950 int err; 951 952 rtnl_lock(); 953 err = notifier_chain_register(&netdev_chain, nb); 954 if (!err) { 955 for (dev = dev_base; dev; dev = dev->next) { 956 nb->notifier_call(nb, NETDEV_REGISTER, dev); 957 958 if (dev->flags & IFF_UP) 959 nb->notifier_call(nb, NETDEV_UP, dev); 960 } 961 } 962 rtnl_unlock(); 963 return err; 964 } 965 966 /** 967 * unregister_netdevice_notifier - unregister a network notifier block 968 * @nb: notifier 969 * 970 * Unregister a notifier previously registered by 971 * register_netdevice_notifier(). The notifier is unlinked into the 972 * kernel structures and may then be reused. A negative errno code 973 * is returned on a failure. 974 */ 975 976 int unregister_netdevice_notifier(struct notifier_block *nb) 977 { 978 return notifier_chain_unregister(&netdev_chain, nb); 979 } 980 981 /** 982 * call_netdevice_notifiers - call all network notifier blocks 983 * @val: value passed unmodified to notifier function 984 * @v: pointer passed unmodified to notifier function 985 * 986 * Call all network notifier blocks. Parameters and return value 987 * are as for notifier_call_chain(). 988 */ 989 990 int call_netdevice_notifiers(unsigned long val, void *v) 991 { 992 return notifier_call_chain(&netdev_chain, val, v); 993 } 994 995 /* When > 0 there are consumers of rx skb time stamps */ 996 static atomic_t netstamp_needed = ATOMIC_INIT(0); 997 998 void net_enable_timestamp(void) 999 { 1000 atomic_inc(&netstamp_needed); 1001 } 1002 1003 void net_disable_timestamp(void) 1004 { 1005 atomic_dec(&netstamp_needed); 1006 } 1007 1008 void __net_timestamp(struct sk_buff *skb) 1009 { 1010 struct timeval tv; 1011 1012 do_gettimeofday(&tv); 1013 skb_set_timestamp(skb, &tv); 1014 } 1015 EXPORT_SYMBOL(__net_timestamp); 1016 1017 static inline void net_timestamp(struct sk_buff *skb) 1018 { 1019 if (atomic_read(&netstamp_needed)) 1020 __net_timestamp(skb); 1021 else { 1022 skb->tstamp.off_sec = 0; 1023 skb->tstamp.off_usec = 0; 1024 } 1025 } 1026 1027 /* 1028 * Support routine. Sends outgoing frames to any network 1029 * taps currently in use. 1030 */ 1031 1032 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1033 { 1034 struct packet_type *ptype; 1035 1036 net_timestamp(skb); 1037 1038 rcu_read_lock(); 1039 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1040 /* Never send packets back to the socket 1041 * they originated from - MvS (miquels@drinkel.ow.org) 1042 */ 1043 if ((ptype->dev == dev || !ptype->dev) && 1044 (ptype->af_packet_priv == NULL || 1045 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1046 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1047 if (!skb2) 1048 break; 1049 1050 /* skb->nh should be correctly 1051 set by sender, so that the second statement is 1052 just protection against buggy protocols. 1053 */ 1054 skb2->mac.raw = skb2->data; 1055 1056 if (skb2->nh.raw < skb2->data || 1057 skb2->nh.raw > skb2->tail) { 1058 if (net_ratelimit()) 1059 printk(KERN_CRIT "protocol %04x is " 1060 "buggy, dev %s\n", 1061 skb2->protocol, dev->name); 1062 skb2->nh.raw = skb2->data; 1063 } 1064 1065 skb2->h.raw = skb2->nh.raw; 1066 skb2->pkt_type = PACKET_OUTGOING; 1067 ptype->func(skb2, skb->dev, ptype, skb->dev); 1068 } 1069 } 1070 rcu_read_unlock(); 1071 } 1072 1073 /* 1074 * Invalidate hardware checksum when packet is to be mangled, and 1075 * complete checksum manually on outgoing path. 1076 */ 1077 int skb_checksum_help(struct sk_buff *skb, int inward) 1078 { 1079 unsigned int csum; 1080 int ret = 0, offset = skb->h.raw - skb->data; 1081 1082 if (inward) { 1083 skb->ip_summed = CHECKSUM_NONE; 1084 goto out; 1085 } 1086 1087 if (skb_cloned(skb)) { 1088 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1089 if (ret) 1090 goto out; 1091 } 1092 1093 if (offset > (int)skb->len) 1094 BUG(); 1095 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1096 1097 offset = skb->tail - skb->h.raw; 1098 if (offset <= 0) 1099 BUG(); 1100 if (skb->csum + 2 > offset) 1101 BUG(); 1102 1103 *(u16*)(skb->h.raw + skb->csum) = csum_fold(csum); 1104 skb->ip_summed = CHECKSUM_NONE; 1105 out: 1106 return ret; 1107 } 1108 1109 #ifdef CONFIG_HIGHMEM 1110 /* Actually, we should eliminate this check as soon as we know, that: 1111 * 1. IOMMU is present and allows to map all the memory. 1112 * 2. No high memory really exists on this machine. 1113 */ 1114 1115 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1116 { 1117 int i; 1118 1119 if (dev->features & NETIF_F_HIGHDMA) 1120 return 0; 1121 1122 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1123 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1124 return 1; 1125 1126 return 0; 1127 } 1128 #else 1129 #define illegal_highdma(dev, skb) (0) 1130 #endif 1131 1132 /* Keep head the same: replace data */ 1133 int __skb_linearize(struct sk_buff *skb, unsigned int __nocast gfp_mask) 1134 { 1135 unsigned int size; 1136 u8 *data; 1137 long offset; 1138 struct skb_shared_info *ninfo; 1139 int headerlen = skb->data - skb->head; 1140 int expand = (skb->tail + skb->data_len) - skb->end; 1141 1142 if (skb_shared(skb)) 1143 BUG(); 1144 1145 if (expand <= 0) 1146 expand = 0; 1147 1148 size = skb->end - skb->head + expand; 1149 size = SKB_DATA_ALIGN(size); 1150 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 1151 if (!data) 1152 return -ENOMEM; 1153 1154 /* Copy entire thing */ 1155 if (skb_copy_bits(skb, -headerlen, data, headerlen + skb->len)) 1156 BUG(); 1157 1158 /* Set up shinfo */ 1159 ninfo = (struct skb_shared_info*)(data + size); 1160 atomic_set(&ninfo->dataref, 1); 1161 ninfo->tso_size = skb_shinfo(skb)->tso_size; 1162 ninfo->tso_segs = skb_shinfo(skb)->tso_segs; 1163 ninfo->nr_frags = 0; 1164 ninfo->frag_list = NULL; 1165 1166 /* Offset between the two in bytes */ 1167 offset = data - skb->head; 1168 1169 /* Free old data. */ 1170 skb_release_data(skb); 1171 1172 skb->head = data; 1173 skb->end = data + size; 1174 1175 /* Set up new pointers */ 1176 skb->h.raw += offset; 1177 skb->nh.raw += offset; 1178 skb->mac.raw += offset; 1179 skb->tail += offset; 1180 skb->data += offset; 1181 1182 /* We are no longer a clone, even if we were. */ 1183 skb->cloned = 0; 1184 1185 skb->tail += skb->data_len; 1186 skb->data_len = 0; 1187 return 0; 1188 } 1189 1190 #define HARD_TX_LOCK(dev, cpu) { \ 1191 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1192 spin_lock(&dev->xmit_lock); \ 1193 dev->xmit_lock_owner = cpu; \ 1194 } \ 1195 } 1196 1197 #define HARD_TX_UNLOCK(dev) { \ 1198 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1199 dev->xmit_lock_owner = -1; \ 1200 spin_unlock(&dev->xmit_lock); \ 1201 } \ 1202 } 1203 1204 /** 1205 * dev_queue_xmit - transmit a buffer 1206 * @skb: buffer to transmit 1207 * 1208 * Queue a buffer for transmission to a network device. The caller must 1209 * have set the device and priority and built the buffer before calling 1210 * this function. The function can be called from an interrupt. 1211 * 1212 * A negative errno code is returned on a failure. A success does not 1213 * guarantee the frame will be transmitted as it may be dropped due 1214 * to congestion or traffic shaping. 1215 * 1216 * ----------------------------------------------------------------------------------- 1217 * I notice this method can also return errors from the queue disciplines, 1218 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1219 * be positive. 1220 * 1221 * Regardless of the return value, the skb is consumed, so it is currently 1222 * difficult to retry a send to this method. (You can bump the ref count 1223 * before sending to hold a reference for retry if you are careful.) 1224 * 1225 * When calling this method, interrupts MUST be enabled. This is because 1226 * the BH enable code must have IRQs enabled so that it will not deadlock. 1227 * --BLG 1228 */ 1229 1230 int dev_queue_xmit(struct sk_buff *skb) 1231 { 1232 struct net_device *dev = skb->dev; 1233 struct Qdisc *q; 1234 int rc = -ENOMEM; 1235 1236 if (skb_shinfo(skb)->frag_list && 1237 !(dev->features & NETIF_F_FRAGLIST) && 1238 __skb_linearize(skb, GFP_ATOMIC)) 1239 goto out_kfree_skb; 1240 1241 /* Fragmented skb is linearized if device does not support SG, 1242 * or if at least one of fragments is in highmem and device 1243 * does not support DMA from it. 1244 */ 1245 if (skb_shinfo(skb)->nr_frags && 1246 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1247 __skb_linearize(skb, GFP_ATOMIC)) 1248 goto out_kfree_skb; 1249 1250 /* If packet is not checksummed and device does not support 1251 * checksumming for this protocol, complete checksumming here. 1252 */ 1253 if (skb->ip_summed == CHECKSUM_HW && 1254 (!(dev->features & (NETIF_F_HW_CSUM | NETIF_F_NO_CSUM)) && 1255 (!(dev->features & NETIF_F_IP_CSUM) || 1256 skb->protocol != htons(ETH_P_IP)))) 1257 if (skb_checksum_help(skb, 0)) 1258 goto out_kfree_skb; 1259 1260 /* Disable soft irqs for various locks below. Also 1261 * stops preemption for RCU. 1262 */ 1263 local_bh_disable(); 1264 1265 /* Updates of qdisc are serialized by queue_lock. 1266 * The struct Qdisc which is pointed to by qdisc is now a 1267 * rcu structure - it may be accessed without acquiring 1268 * a lock (but the structure may be stale.) The freeing of the 1269 * qdisc will be deferred until it's known that there are no 1270 * more references to it. 1271 * 1272 * If the qdisc has an enqueue function, we still need to 1273 * hold the queue_lock before calling it, since queue_lock 1274 * also serializes access to the device queue. 1275 */ 1276 1277 q = rcu_dereference(dev->qdisc); 1278 #ifdef CONFIG_NET_CLS_ACT 1279 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1280 #endif 1281 if (q->enqueue) { 1282 /* Grab device queue */ 1283 spin_lock(&dev->queue_lock); 1284 1285 rc = q->enqueue(skb, q); 1286 1287 qdisc_run(dev); 1288 1289 spin_unlock(&dev->queue_lock); 1290 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1291 goto out; 1292 } 1293 1294 /* The device has no queue. Common case for software devices: 1295 loopback, all the sorts of tunnels... 1296 1297 Really, it is unlikely that xmit_lock protection is necessary here. 1298 (f.e. loopback and IP tunnels are clean ignoring statistics 1299 counters.) 1300 However, it is possible, that they rely on protection 1301 made by us here. 1302 1303 Check this and shot the lock. It is not prone from deadlocks. 1304 Either shot noqueue qdisc, it is even simpler 8) 1305 */ 1306 if (dev->flags & IFF_UP) { 1307 int cpu = smp_processor_id(); /* ok because BHs are off */ 1308 1309 if (dev->xmit_lock_owner != cpu) { 1310 1311 HARD_TX_LOCK(dev, cpu); 1312 1313 if (!netif_queue_stopped(dev)) { 1314 if (netdev_nit) 1315 dev_queue_xmit_nit(skb, dev); 1316 1317 rc = 0; 1318 if (!dev->hard_start_xmit(skb, dev)) { 1319 HARD_TX_UNLOCK(dev); 1320 goto out; 1321 } 1322 } 1323 HARD_TX_UNLOCK(dev); 1324 if (net_ratelimit()) 1325 printk(KERN_CRIT "Virtual device %s asks to " 1326 "queue packet!\n", dev->name); 1327 } else { 1328 /* Recursion is detected! It is possible, 1329 * unfortunately */ 1330 if (net_ratelimit()) 1331 printk(KERN_CRIT "Dead loop on virtual device " 1332 "%s, fix it urgently!\n", dev->name); 1333 } 1334 } 1335 1336 rc = -ENETDOWN; 1337 local_bh_enable(); 1338 1339 out_kfree_skb: 1340 kfree_skb(skb); 1341 return rc; 1342 out: 1343 local_bh_enable(); 1344 return rc; 1345 } 1346 1347 1348 /*======================================================================= 1349 Receiver routines 1350 =======================================================================*/ 1351 1352 int netdev_max_backlog = 1000; 1353 int netdev_budget = 300; 1354 int weight_p = 64; /* old backlog weight */ 1355 1356 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1357 1358 1359 /** 1360 * netif_rx - post buffer to the network code 1361 * @skb: buffer to post 1362 * 1363 * This function receives a packet from a device driver and queues it for 1364 * the upper (protocol) levels to process. It always succeeds. The buffer 1365 * may be dropped during processing for congestion control or by the 1366 * protocol layers. 1367 * 1368 * return values: 1369 * NET_RX_SUCCESS (no congestion) 1370 * NET_RX_CN_LOW (low congestion) 1371 * NET_RX_CN_MOD (moderate congestion) 1372 * NET_RX_CN_HIGH (high congestion) 1373 * NET_RX_DROP (packet was dropped) 1374 * 1375 */ 1376 1377 int netif_rx(struct sk_buff *skb) 1378 { 1379 struct softnet_data *queue; 1380 unsigned long flags; 1381 1382 /* if netpoll wants it, pretend we never saw it */ 1383 if (netpoll_rx(skb)) 1384 return NET_RX_DROP; 1385 1386 if (!skb->tstamp.off_sec) 1387 net_timestamp(skb); 1388 1389 /* 1390 * The code is rearranged so that the path is the most 1391 * short when CPU is congested, but is still operating. 1392 */ 1393 local_irq_save(flags); 1394 queue = &__get_cpu_var(softnet_data); 1395 1396 __get_cpu_var(netdev_rx_stat).total++; 1397 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1398 if (queue->input_pkt_queue.qlen) { 1399 enqueue: 1400 dev_hold(skb->dev); 1401 __skb_queue_tail(&queue->input_pkt_queue, skb); 1402 local_irq_restore(flags); 1403 return NET_RX_SUCCESS; 1404 } 1405 1406 netif_rx_schedule(&queue->backlog_dev); 1407 goto enqueue; 1408 } 1409 1410 __get_cpu_var(netdev_rx_stat).dropped++; 1411 local_irq_restore(flags); 1412 1413 kfree_skb(skb); 1414 return NET_RX_DROP; 1415 } 1416 1417 int netif_rx_ni(struct sk_buff *skb) 1418 { 1419 int err; 1420 1421 preempt_disable(); 1422 err = netif_rx(skb); 1423 if (local_softirq_pending()) 1424 do_softirq(); 1425 preempt_enable(); 1426 1427 return err; 1428 } 1429 1430 EXPORT_SYMBOL(netif_rx_ni); 1431 1432 static inline struct net_device *skb_bond(struct sk_buff *skb) 1433 { 1434 struct net_device *dev = skb->dev; 1435 1436 if (dev->master) 1437 skb->dev = dev->master; 1438 1439 return dev; 1440 } 1441 1442 static void net_tx_action(struct softirq_action *h) 1443 { 1444 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1445 1446 if (sd->completion_queue) { 1447 struct sk_buff *clist; 1448 1449 local_irq_disable(); 1450 clist = sd->completion_queue; 1451 sd->completion_queue = NULL; 1452 local_irq_enable(); 1453 1454 while (clist) { 1455 struct sk_buff *skb = clist; 1456 clist = clist->next; 1457 1458 BUG_TRAP(!atomic_read(&skb->users)); 1459 __kfree_skb(skb); 1460 } 1461 } 1462 1463 if (sd->output_queue) { 1464 struct net_device *head; 1465 1466 local_irq_disable(); 1467 head = sd->output_queue; 1468 sd->output_queue = NULL; 1469 local_irq_enable(); 1470 1471 while (head) { 1472 struct net_device *dev = head; 1473 head = head->next_sched; 1474 1475 smp_mb__before_clear_bit(); 1476 clear_bit(__LINK_STATE_SCHED, &dev->state); 1477 1478 if (spin_trylock(&dev->queue_lock)) { 1479 qdisc_run(dev); 1480 spin_unlock(&dev->queue_lock); 1481 } else { 1482 netif_schedule(dev); 1483 } 1484 } 1485 } 1486 } 1487 1488 static __inline__ int deliver_skb(struct sk_buff *skb, 1489 struct packet_type *pt_prev, 1490 struct net_device *orig_dev) 1491 { 1492 atomic_inc(&skb->users); 1493 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1494 } 1495 1496 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1497 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb); 1498 struct net_bridge; 1499 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1500 unsigned char *addr); 1501 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent); 1502 1503 static __inline__ int handle_bridge(struct sk_buff **pskb, 1504 struct packet_type **pt_prev, int *ret, 1505 struct net_device *orig_dev) 1506 { 1507 struct net_bridge_port *port; 1508 1509 if ((*pskb)->pkt_type == PACKET_LOOPBACK || 1510 (port = rcu_dereference((*pskb)->dev->br_port)) == NULL) 1511 return 0; 1512 1513 if (*pt_prev) { 1514 *ret = deliver_skb(*pskb, *pt_prev, orig_dev); 1515 *pt_prev = NULL; 1516 } 1517 1518 return br_handle_frame_hook(port, pskb); 1519 } 1520 #else 1521 #define handle_bridge(skb, pt_prev, ret, orig_dev) (0) 1522 #endif 1523 1524 #ifdef CONFIG_NET_CLS_ACT 1525 /* TODO: Maybe we should just force sch_ingress to be compiled in 1526 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1527 * a compare and 2 stores extra right now if we dont have it on 1528 * but have CONFIG_NET_CLS_ACT 1529 * NOTE: This doesnt stop any functionality; if you dont have 1530 * the ingress scheduler, you just cant add policies on ingress. 1531 * 1532 */ 1533 static int ing_filter(struct sk_buff *skb) 1534 { 1535 struct Qdisc *q; 1536 struct net_device *dev = skb->dev; 1537 int result = TC_ACT_OK; 1538 1539 if (dev->qdisc_ingress) { 1540 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1541 if (MAX_RED_LOOP < ttl++) { 1542 printk("Redir loop detected Dropping packet (%s->%s)\n", 1543 skb->input_dev->name, skb->dev->name); 1544 return TC_ACT_SHOT; 1545 } 1546 1547 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1548 1549 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1550 1551 spin_lock(&dev->ingress_lock); 1552 if ((q = dev->qdisc_ingress) != NULL) 1553 result = q->enqueue(skb, q); 1554 spin_unlock(&dev->ingress_lock); 1555 1556 } 1557 1558 return result; 1559 } 1560 #endif 1561 1562 int netif_receive_skb(struct sk_buff *skb) 1563 { 1564 struct packet_type *ptype, *pt_prev; 1565 struct net_device *orig_dev; 1566 int ret = NET_RX_DROP; 1567 unsigned short type; 1568 1569 /* if we've gotten here through NAPI, check netpoll */ 1570 if (skb->dev->poll && netpoll_rx(skb)) 1571 return NET_RX_DROP; 1572 1573 if (!skb->tstamp.off_sec) 1574 net_timestamp(skb); 1575 1576 if (!skb->input_dev) 1577 skb->input_dev = skb->dev; 1578 1579 orig_dev = skb_bond(skb); 1580 1581 __get_cpu_var(netdev_rx_stat).total++; 1582 1583 skb->h.raw = skb->nh.raw = skb->data; 1584 skb->mac_len = skb->nh.raw - skb->mac.raw; 1585 1586 pt_prev = NULL; 1587 1588 rcu_read_lock(); 1589 1590 #ifdef CONFIG_NET_CLS_ACT 1591 if (skb->tc_verd & TC_NCLS) { 1592 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 1593 goto ncls; 1594 } 1595 #endif 1596 1597 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1598 if (!ptype->dev || ptype->dev == skb->dev) { 1599 if (pt_prev) 1600 ret = deliver_skb(skb, pt_prev, orig_dev); 1601 pt_prev = ptype; 1602 } 1603 } 1604 1605 #ifdef CONFIG_NET_CLS_ACT 1606 if (pt_prev) { 1607 ret = deliver_skb(skb, pt_prev, orig_dev); 1608 pt_prev = NULL; /* noone else should process this after*/ 1609 } else { 1610 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1611 } 1612 1613 ret = ing_filter(skb); 1614 1615 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 1616 kfree_skb(skb); 1617 goto out; 1618 } 1619 1620 skb->tc_verd = 0; 1621 ncls: 1622 #endif 1623 1624 handle_diverter(skb); 1625 1626 if (handle_bridge(&skb, &pt_prev, &ret, orig_dev)) 1627 goto out; 1628 1629 type = skb->protocol; 1630 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 1631 if (ptype->type == type && 1632 (!ptype->dev || ptype->dev == skb->dev)) { 1633 if (pt_prev) 1634 ret = deliver_skb(skb, pt_prev, orig_dev); 1635 pt_prev = ptype; 1636 } 1637 } 1638 1639 if (pt_prev) { 1640 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1641 } else { 1642 kfree_skb(skb); 1643 /* Jamal, now you will not able to escape explaining 1644 * me how you were going to use this. :-) 1645 */ 1646 ret = NET_RX_DROP; 1647 } 1648 1649 out: 1650 rcu_read_unlock(); 1651 return ret; 1652 } 1653 1654 static int process_backlog(struct net_device *backlog_dev, int *budget) 1655 { 1656 int work = 0; 1657 int quota = min(backlog_dev->quota, *budget); 1658 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1659 unsigned long start_time = jiffies; 1660 1661 backlog_dev->weight = weight_p; 1662 for (;;) { 1663 struct sk_buff *skb; 1664 struct net_device *dev; 1665 1666 local_irq_disable(); 1667 skb = __skb_dequeue(&queue->input_pkt_queue); 1668 if (!skb) 1669 goto job_done; 1670 local_irq_enable(); 1671 1672 dev = skb->dev; 1673 1674 netif_receive_skb(skb); 1675 1676 dev_put(dev); 1677 1678 work++; 1679 1680 if (work >= quota || jiffies - start_time > 1) 1681 break; 1682 1683 } 1684 1685 backlog_dev->quota -= work; 1686 *budget -= work; 1687 return -1; 1688 1689 job_done: 1690 backlog_dev->quota -= work; 1691 *budget -= work; 1692 1693 list_del(&backlog_dev->poll_list); 1694 smp_mb__before_clear_bit(); 1695 netif_poll_enable(backlog_dev); 1696 1697 local_irq_enable(); 1698 return 0; 1699 } 1700 1701 static void net_rx_action(struct softirq_action *h) 1702 { 1703 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1704 unsigned long start_time = jiffies; 1705 int budget = netdev_budget; 1706 void *have; 1707 1708 local_irq_disable(); 1709 1710 while (!list_empty(&queue->poll_list)) { 1711 struct net_device *dev; 1712 1713 if (budget <= 0 || jiffies - start_time > 1) 1714 goto softnet_break; 1715 1716 local_irq_enable(); 1717 1718 dev = list_entry(queue->poll_list.next, 1719 struct net_device, poll_list); 1720 have = netpoll_poll_lock(dev); 1721 1722 if (dev->quota <= 0 || dev->poll(dev, &budget)) { 1723 netpoll_poll_unlock(have); 1724 local_irq_disable(); 1725 list_del(&dev->poll_list); 1726 list_add_tail(&dev->poll_list, &queue->poll_list); 1727 if (dev->quota < 0) 1728 dev->quota += dev->weight; 1729 else 1730 dev->quota = dev->weight; 1731 } else { 1732 netpoll_poll_unlock(have); 1733 dev_put(dev); 1734 local_irq_disable(); 1735 } 1736 } 1737 out: 1738 local_irq_enable(); 1739 return; 1740 1741 softnet_break: 1742 __get_cpu_var(netdev_rx_stat).time_squeeze++; 1743 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1744 goto out; 1745 } 1746 1747 static gifconf_func_t * gifconf_list [NPROTO]; 1748 1749 /** 1750 * register_gifconf - register a SIOCGIF handler 1751 * @family: Address family 1752 * @gifconf: Function handler 1753 * 1754 * Register protocol dependent address dumping routines. The handler 1755 * that is passed must not be freed or reused until it has been replaced 1756 * by another handler. 1757 */ 1758 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 1759 { 1760 if (family >= NPROTO) 1761 return -EINVAL; 1762 gifconf_list[family] = gifconf; 1763 return 0; 1764 } 1765 1766 1767 /* 1768 * Map an interface index to its name (SIOCGIFNAME) 1769 */ 1770 1771 /* 1772 * We need this ioctl for efficient implementation of the 1773 * if_indextoname() function required by the IPv6 API. Without 1774 * it, we would have to search all the interfaces to find a 1775 * match. --pb 1776 */ 1777 1778 static int dev_ifname(struct ifreq __user *arg) 1779 { 1780 struct net_device *dev; 1781 struct ifreq ifr; 1782 1783 /* 1784 * Fetch the caller's info block. 1785 */ 1786 1787 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 1788 return -EFAULT; 1789 1790 read_lock(&dev_base_lock); 1791 dev = __dev_get_by_index(ifr.ifr_ifindex); 1792 if (!dev) { 1793 read_unlock(&dev_base_lock); 1794 return -ENODEV; 1795 } 1796 1797 strcpy(ifr.ifr_name, dev->name); 1798 read_unlock(&dev_base_lock); 1799 1800 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 1801 return -EFAULT; 1802 return 0; 1803 } 1804 1805 /* 1806 * Perform a SIOCGIFCONF call. This structure will change 1807 * size eventually, and there is nothing I can do about it. 1808 * Thus we will need a 'compatibility mode'. 1809 */ 1810 1811 static int dev_ifconf(char __user *arg) 1812 { 1813 struct ifconf ifc; 1814 struct net_device *dev; 1815 char __user *pos; 1816 int len; 1817 int total; 1818 int i; 1819 1820 /* 1821 * Fetch the caller's info block. 1822 */ 1823 1824 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 1825 return -EFAULT; 1826 1827 pos = ifc.ifc_buf; 1828 len = ifc.ifc_len; 1829 1830 /* 1831 * Loop over the interfaces, and write an info block for each. 1832 */ 1833 1834 total = 0; 1835 for (dev = dev_base; dev; dev = dev->next) { 1836 for (i = 0; i < NPROTO; i++) { 1837 if (gifconf_list[i]) { 1838 int done; 1839 if (!pos) 1840 done = gifconf_list[i](dev, NULL, 0); 1841 else 1842 done = gifconf_list[i](dev, pos + total, 1843 len - total); 1844 if (done < 0) 1845 return -EFAULT; 1846 total += done; 1847 } 1848 } 1849 } 1850 1851 /* 1852 * All done. Write the updated control block back to the caller. 1853 */ 1854 ifc.ifc_len = total; 1855 1856 /* 1857 * Both BSD and Solaris return 0 here, so we do too. 1858 */ 1859 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 1860 } 1861 1862 #ifdef CONFIG_PROC_FS 1863 /* 1864 * This is invoked by the /proc filesystem handler to display a device 1865 * in detail. 1866 */ 1867 static __inline__ struct net_device *dev_get_idx(loff_t pos) 1868 { 1869 struct net_device *dev; 1870 loff_t i; 1871 1872 for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next); 1873 1874 return i == pos ? dev : NULL; 1875 } 1876 1877 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 1878 { 1879 read_lock(&dev_base_lock); 1880 return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN; 1881 } 1882 1883 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1884 { 1885 ++*pos; 1886 return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next; 1887 } 1888 1889 void dev_seq_stop(struct seq_file *seq, void *v) 1890 { 1891 read_unlock(&dev_base_lock); 1892 } 1893 1894 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 1895 { 1896 if (dev->get_stats) { 1897 struct net_device_stats *stats = dev->get_stats(dev); 1898 1899 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 1900 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 1901 dev->name, stats->rx_bytes, stats->rx_packets, 1902 stats->rx_errors, 1903 stats->rx_dropped + stats->rx_missed_errors, 1904 stats->rx_fifo_errors, 1905 stats->rx_length_errors + stats->rx_over_errors + 1906 stats->rx_crc_errors + stats->rx_frame_errors, 1907 stats->rx_compressed, stats->multicast, 1908 stats->tx_bytes, stats->tx_packets, 1909 stats->tx_errors, stats->tx_dropped, 1910 stats->tx_fifo_errors, stats->collisions, 1911 stats->tx_carrier_errors + 1912 stats->tx_aborted_errors + 1913 stats->tx_window_errors + 1914 stats->tx_heartbeat_errors, 1915 stats->tx_compressed); 1916 } else 1917 seq_printf(seq, "%6s: No statistics available.\n", dev->name); 1918 } 1919 1920 /* 1921 * Called from the PROCfs module. This now uses the new arbitrary sized 1922 * /proc/net interface to create /proc/net/dev 1923 */ 1924 static int dev_seq_show(struct seq_file *seq, void *v) 1925 { 1926 if (v == SEQ_START_TOKEN) 1927 seq_puts(seq, "Inter-| Receive " 1928 " | Transmit\n" 1929 " face |bytes packets errs drop fifo frame " 1930 "compressed multicast|bytes packets errs " 1931 "drop fifo colls carrier compressed\n"); 1932 else 1933 dev_seq_printf_stats(seq, v); 1934 return 0; 1935 } 1936 1937 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 1938 { 1939 struct netif_rx_stats *rc = NULL; 1940 1941 while (*pos < NR_CPUS) 1942 if (cpu_online(*pos)) { 1943 rc = &per_cpu(netdev_rx_stat, *pos); 1944 break; 1945 } else 1946 ++*pos; 1947 return rc; 1948 } 1949 1950 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 1951 { 1952 return softnet_get_online(pos); 1953 } 1954 1955 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1956 { 1957 ++*pos; 1958 return softnet_get_online(pos); 1959 } 1960 1961 static void softnet_seq_stop(struct seq_file *seq, void *v) 1962 { 1963 } 1964 1965 static int softnet_seq_show(struct seq_file *seq, void *v) 1966 { 1967 struct netif_rx_stats *s = v; 1968 1969 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 1970 s->total, s->dropped, s->time_squeeze, 0, 1971 0, 0, 0, 0, /* was fastroute */ 1972 s->cpu_collision ); 1973 return 0; 1974 } 1975 1976 static struct seq_operations dev_seq_ops = { 1977 .start = dev_seq_start, 1978 .next = dev_seq_next, 1979 .stop = dev_seq_stop, 1980 .show = dev_seq_show, 1981 }; 1982 1983 static int dev_seq_open(struct inode *inode, struct file *file) 1984 { 1985 return seq_open(file, &dev_seq_ops); 1986 } 1987 1988 static struct file_operations dev_seq_fops = { 1989 .owner = THIS_MODULE, 1990 .open = dev_seq_open, 1991 .read = seq_read, 1992 .llseek = seq_lseek, 1993 .release = seq_release, 1994 }; 1995 1996 static struct seq_operations softnet_seq_ops = { 1997 .start = softnet_seq_start, 1998 .next = softnet_seq_next, 1999 .stop = softnet_seq_stop, 2000 .show = softnet_seq_show, 2001 }; 2002 2003 static int softnet_seq_open(struct inode *inode, struct file *file) 2004 { 2005 return seq_open(file, &softnet_seq_ops); 2006 } 2007 2008 static struct file_operations softnet_seq_fops = { 2009 .owner = THIS_MODULE, 2010 .open = softnet_seq_open, 2011 .read = seq_read, 2012 .llseek = seq_lseek, 2013 .release = seq_release, 2014 }; 2015 2016 #ifdef WIRELESS_EXT 2017 extern int wireless_proc_init(void); 2018 #else 2019 #define wireless_proc_init() 0 2020 #endif 2021 2022 static int __init dev_proc_init(void) 2023 { 2024 int rc = -ENOMEM; 2025 2026 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops)) 2027 goto out; 2028 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops)) 2029 goto out_dev; 2030 if (wireless_proc_init()) 2031 goto out_softnet; 2032 rc = 0; 2033 out: 2034 return rc; 2035 out_softnet: 2036 proc_net_remove("softnet_stat"); 2037 out_dev: 2038 proc_net_remove("dev"); 2039 goto out; 2040 } 2041 #else 2042 #define dev_proc_init() 0 2043 #endif /* CONFIG_PROC_FS */ 2044 2045 2046 /** 2047 * netdev_set_master - set up master/slave pair 2048 * @slave: slave device 2049 * @master: new master device 2050 * 2051 * Changes the master device of the slave. Pass %NULL to break the 2052 * bonding. The caller must hold the RTNL semaphore. On a failure 2053 * a negative errno code is returned. On success the reference counts 2054 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2055 * function returns zero. 2056 */ 2057 int netdev_set_master(struct net_device *slave, struct net_device *master) 2058 { 2059 struct net_device *old = slave->master; 2060 2061 ASSERT_RTNL(); 2062 2063 if (master) { 2064 if (old) 2065 return -EBUSY; 2066 dev_hold(master); 2067 } 2068 2069 slave->master = master; 2070 2071 synchronize_net(); 2072 2073 if (old) 2074 dev_put(old); 2075 2076 if (master) 2077 slave->flags |= IFF_SLAVE; 2078 else 2079 slave->flags &= ~IFF_SLAVE; 2080 2081 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2082 return 0; 2083 } 2084 2085 /** 2086 * dev_set_promiscuity - update promiscuity count on a device 2087 * @dev: device 2088 * @inc: modifier 2089 * 2090 * Add or remove promsicuity from a device. While the count in the device 2091 * remains above zero the interface remains promiscuous. Once it hits zero 2092 * the device reverts back to normal filtering operation. A negative inc 2093 * value is used to drop promiscuity on the device. 2094 */ 2095 void dev_set_promiscuity(struct net_device *dev, int inc) 2096 { 2097 unsigned short old_flags = dev->flags; 2098 2099 if ((dev->promiscuity += inc) == 0) 2100 dev->flags &= ~IFF_PROMISC; 2101 else 2102 dev->flags |= IFF_PROMISC; 2103 if (dev->flags != old_flags) { 2104 dev_mc_upload(dev); 2105 printk(KERN_INFO "device %s %s promiscuous mode\n", 2106 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2107 "left"); 2108 } 2109 } 2110 2111 /** 2112 * dev_set_allmulti - update allmulti count on a device 2113 * @dev: device 2114 * @inc: modifier 2115 * 2116 * Add or remove reception of all multicast frames to a device. While the 2117 * count in the device remains above zero the interface remains listening 2118 * to all interfaces. Once it hits zero the device reverts back to normal 2119 * filtering operation. A negative @inc value is used to drop the counter 2120 * when releasing a resource needing all multicasts. 2121 */ 2122 2123 void dev_set_allmulti(struct net_device *dev, int inc) 2124 { 2125 unsigned short old_flags = dev->flags; 2126 2127 dev->flags |= IFF_ALLMULTI; 2128 if ((dev->allmulti += inc) == 0) 2129 dev->flags &= ~IFF_ALLMULTI; 2130 if (dev->flags ^ old_flags) 2131 dev_mc_upload(dev); 2132 } 2133 2134 unsigned dev_get_flags(const struct net_device *dev) 2135 { 2136 unsigned flags; 2137 2138 flags = (dev->flags & ~(IFF_PROMISC | 2139 IFF_ALLMULTI | 2140 IFF_RUNNING)) | 2141 (dev->gflags & (IFF_PROMISC | 2142 IFF_ALLMULTI)); 2143 2144 if (netif_running(dev) && netif_carrier_ok(dev)) 2145 flags |= IFF_RUNNING; 2146 2147 return flags; 2148 } 2149 2150 int dev_change_flags(struct net_device *dev, unsigned flags) 2151 { 2152 int ret; 2153 int old_flags = dev->flags; 2154 2155 /* 2156 * Set the flags on our device. 2157 */ 2158 2159 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2160 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2161 IFF_AUTOMEDIA)) | 2162 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2163 IFF_ALLMULTI)); 2164 2165 /* 2166 * Load in the correct multicast list now the flags have changed. 2167 */ 2168 2169 dev_mc_upload(dev); 2170 2171 /* 2172 * Have we downed the interface. We handle IFF_UP ourselves 2173 * according to user attempts to set it, rather than blindly 2174 * setting it. 2175 */ 2176 2177 ret = 0; 2178 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 2179 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 2180 2181 if (!ret) 2182 dev_mc_upload(dev); 2183 } 2184 2185 if (dev->flags & IFF_UP && 2186 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 2187 IFF_VOLATILE))) 2188 notifier_call_chain(&netdev_chain, NETDEV_CHANGE, dev); 2189 2190 if ((flags ^ dev->gflags) & IFF_PROMISC) { 2191 int inc = (flags & IFF_PROMISC) ? +1 : -1; 2192 dev->gflags ^= IFF_PROMISC; 2193 dev_set_promiscuity(dev, inc); 2194 } 2195 2196 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 2197 is important. Some (broken) drivers set IFF_PROMISC, when 2198 IFF_ALLMULTI is requested not asking us and not reporting. 2199 */ 2200 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 2201 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 2202 dev->gflags ^= IFF_ALLMULTI; 2203 dev_set_allmulti(dev, inc); 2204 } 2205 2206 if (old_flags ^ dev->flags) 2207 rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags); 2208 2209 return ret; 2210 } 2211 2212 int dev_set_mtu(struct net_device *dev, int new_mtu) 2213 { 2214 int err; 2215 2216 if (new_mtu == dev->mtu) 2217 return 0; 2218 2219 /* MTU must be positive. */ 2220 if (new_mtu < 0) 2221 return -EINVAL; 2222 2223 if (!netif_device_present(dev)) 2224 return -ENODEV; 2225 2226 err = 0; 2227 if (dev->change_mtu) 2228 err = dev->change_mtu(dev, new_mtu); 2229 else 2230 dev->mtu = new_mtu; 2231 if (!err && dev->flags & IFF_UP) 2232 notifier_call_chain(&netdev_chain, 2233 NETDEV_CHANGEMTU, dev); 2234 return err; 2235 } 2236 2237 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 2238 { 2239 int err; 2240 2241 if (!dev->set_mac_address) 2242 return -EOPNOTSUPP; 2243 if (sa->sa_family != dev->type) 2244 return -EINVAL; 2245 if (!netif_device_present(dev)) 2246 return -ENODEV; 2247 err = dev->set_mac_address(dev, sa); 2248 if (!err) 2249 notifier_call_chain(&netdev_chain, NETDEV_CHANGEADDR, dev); 2250 return err; 2251 } 2252 2253 /* 2254 * Perform the SIOCxIFxxx calls. 2255 */ 2256 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd) 2257 { 2258 int err; 2259 struct net_device *dev = __dev_get_by_name(ifr->ifr_name); 2260 2261 if (!dev) 2262 return -ENODEV; 2263 2264 switch (cmd) { 2265 case SIOCGIFFLAGS: /* Get interface flags */ 2266 ifr->ifr_flags = dev_get_flags(dev); 2267 return 0; 2268 2269 case SIOCSIFFLAGS: /* Set interface flags */ 2270 return dev_change_flags(dev, ifr->ifr_flags); 2271 2272 case SIOCGIFMETRIC: /* Get the metric on the interface 2273 (currently unused) */ 2274 ifr->ifr_metric = 0; 2275 return 0; 2276 2277 case SIOCSIFMETRIC: /* Set the metric on the interface 2278 (currently unused) */ 2279 return -EOPNOTSUPP; 2280 2281 case SIOCGIFMTU: /* Get the MTU of a device */ 2282 ifr->ifr_mtu = dev->mtu; 2283 return 0; 2284 2285 case SIOCSIFMTU: /* Set the MTU of a device */ 2286 return dev_set_mtu(dev, ifr->ifr_mtu); 2287 2288 case SIOCGIFHWADDR: 2289 if (!dev->addr_len) 2290 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 2291 else 2292 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 2293 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2294 ifr->ifr_hwaddr.sa_family = dev->type; 2295 return 0; 2296 2297 case SIOCSIFHWADDR: 2298 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 2299 2300 case SIOCSIFHWBROADCAST: 2301 if (ifr->ifr_hwaddr.sa_family != dev->type) 2302 return -EINVAL; 2303 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 2304 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2305 notifier_call_chain(&netdev_chain, 2306 NETDEV_CHANGEADDR, dev); 2307 return 0; 2308 2309 case SIOCGIFMAP: 2310 ifr->ifr_map.mem_start = dev->mem_start; 2311 ifr->ifr_map.mem_end = dev->mem_end; 2312 ifr->ifr_map.base_addr = dev->base_addr; 2313 ifr->ifr_map.irq = dev->irq; 2314 ifr->ifr_map.dma = dev->dma; 2315 ifr->ifr_map.port = dev->if_port; 2316 return 0; 2317 2318 case SIOCSIFMAP: 2319 if (dev->set_config) { 2320 if (!netif_device_present(dev)) 2321 return -ENODEV; 2322 return dev->set_config(dev, &ifr->ifr_map); 2323 } 2324 return -EOPNOTSUPP; 2325 2326 case SIOCADDMULTI: 2327 if (!dev->set_multicast_list || 2328 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2329 return -EINVAL; 2330 if (!netif_device_present(dev)) 2331 return -ENODEV; 2332 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 2333 dev->addr_len, 1); 2334 2335 case SIOCDELMULTI: 2336 if (!dev->set_multicast_list || 2337 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2338 return -EINVAL; 2339 if (!netif_device_present(dev)) 2340 return -ENODEV; 2341 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 2342 dev->addr_len, 1); 2343 2344 case SIOCGIFINDEX: 2345 ifr->ifr_ifindex = dev->ifindex; 2346 return 0; 2347 2348 case SIOCGIFTXQLEN: 2349 ifr->ifr_qlen = dev->tx_queue_len; 2350 return 0; 2351 2352 case SIOCSIFTXQLEN: 2353 if (ifr->ifr_qlen < 0) 2354 return -EINVAL; 2355 dev->tx_queue_len = ifr->ifr_qlen; 2356 return 0; 2357 2358 case SIOCSIFNAME: 2359 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 2360 return dev_change_name(dev, ifr->ifr_newname); 2361 2362 /* 2363 * Unknown or private ioctl 2364 */ 2365 2366 default: 2367 if ((cmd >= SIOCDEVPRIVATE && 2368 cmd <= SIOCDEVPRIVATE + 15) || 2369 cmd == SIOCBONDENSLAVE || 2370 cmd == SIOCBONDRELEASE || 2371 cmd == SIOCBONDSETHWADDR || 2372 cmd == SIOCBONDSLAVEINFOQUERY || 2373 cmd == SIOCBONDINFOQUERY || 2374 cmd == SIOCBONDCHANGEACTIVE || 2375 cmd == SIOCGMIIPHY || 2376 cmd == SIOCGMIIREG || 2377 cmd == SIOCSMIIREG || 2378 cmd == SIOCBRADDIF || 2379 cmd == SIOCBRDELIF || 2380 cmd == SIOCWANDEV) { 2381 err = -EOPNOTSUPP; 2382 if (dev->do_ioctl) { 2383 if (netif_device_present(dev)) 2384 err = dev->do_ioctl(dev, ifr, 2385 cmd); 2386 else 2387 err = -ENODEV; 2388 } 2389 } else 2390 err = -EINVAL; 2391 2392 } 2393 return err; 2394 } 2395 2396 /* 2397 * This function handles all "interface"-type I/O control requests. The actual 2398 * 'doing' part of this is dev_ifsioc above. 2399 */ 2400 2401 /** 2402 * dev_ioctl - network device ioctl 2403 * @cmd: command to issue 2404 * @arg: pointer to a struct ifreq in user space 2405 * 2406 * Issue ioctl functions to devices. This is normally called by the 2407 * user space syscall interfaces but can sometimes be useful for 2408 * other purposes. The return value is the return from the syscall if 2409 * positive or a negative errno code on error. 2410 */ 2411 2412 int dev_ioctl(unsigned int cmd, void __user *arg) 2413 { 2414 struct ifreq ifr; 2415 int ret; 2416 char *colon; 2417 2418 /* One special case: SIOCGIFCONF takes ifconf argument 2419 and requires shared lock, because it sleeps writing 2420 to user space. 2421 */ 2422 2423 if (cmd == SIOCGIFCONF) { 2424 rtnl_shlock(); 2425 ret = dev_ifconf((char __user *) arg); 2426 rtnl_shunlock(); 2427 return ret; 2428 } 2429 if (cmd == SIOCGIFNAME) 2430 return dev_ifname((struct ifreq __user *)arg); 2431 2432 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2433 return -EFAULT; 2434 2435 ifr.ifr_name[IFNAMSIZ-1] = 0; 2436 2437 colon = strchr(ifr.ifr_name, ':'); 2438 if (colon) 2439 *colon = 0; 2440 2441 /* 2442 * See which interface the caller is talking about. 2443 */ 2444 2445 switch (cmd) { 2446 /* 2447 * These ioctl calls: 2448 * - can be done by all. 2449 * - atomic and do not require locking. 2450 * - return a value 2451 */ 2452 case SIOCGIFFLAGS: 2453 case SIOCGIFMETRIC: 2454 case SIOCGIFMTU: 2455 case SIOCGIFHWADDR: 2456 case SIOCGIFSLAVE: 2457 case SIOCGIFMAP: 2458 case SIOCGIFINDEX: 2459 case SIOCGIFTXQLEN: 2460 dev_load(ifr.ifr_name); 2461 read_lock(&dev_base_lock); 2462 ret = dev_ifsioc(&ifr, cmd); 2463 read_unlock(&dev_base_lock); 2464 if (!ret) { 2465 if (colon) 2466 *colon = ':'; 2467 if (copy_to_user(arg, &ifr, 2468 sizeof(struct ifreq))) 2469 ret = -EFAULT; 2470 } 2471 return ret; 2472 2473 case SIOCETHTOOL: 2474 dev_load(ifr.ifr_name); 2475 rtnl_lock(); 2476 ret = dev_ethtool(&ifr); 2477 rtnl_unlock(); 2478 if (!ret) { 2479 if (colon) 2480 *colon = ':'; 2481 if (copy_to_user(arg, &ifr, 2482 sizeof(struct ifreq))) 2483 ret = -EFAULT; 2484 } 2485 return ret; 2486 2487 /* 2488 * These ioctl calls: 2489 * - require superuser power. 2490 * - require strict serialization. 2491 * - return a value 2492 */ 2493 case SIOCGMIIPHY: 2494 case SIOCGMIIREG: 2495 case SIOCSIFNAME: 2496 if (!capable(CAP_NET_ADMIN)) 2497 return -EPERM; 2498 dev_load(ifr.ifr_name); 2499 rtnl_lock(); 2500 ret = dev_ifsioc(&ifr, cmd); 2501 rtnl_unlock(); 2502 if (!ret) { 2503 if (colon) 2504 *colon = ':'; 2505 if (copy_to_user(arg, &ifr, 2506 sizeof(struct ifreq))) 2507 ret = -EFAULT; 2508 } 2509 return ret; 2510 2511 /* 2512 * These ioctl calls: 2513 * - require superuser power. 2514 * - require strict serialization. 2515 * - do not return a value 2516 */ 2517 case SIOCSIFFLAGS: 2518 case SIOCSIFMETRIC: 2519 case SIOCSIFMTU: 2520 case SIOCSIFMAP: 2521 case SIOCSIFHWADDR: 2522 case SIOCSIFSLAVE: 2523 case SIOCADDMULTI: 2524 case SIOCDELMULTI: 2525 case SIOCSIFHWBROADCAST: 2526 case SIOCSIFTXQLEN: 2527 case SIOCSMIIREG: 2528 case SIOCBONDENSLAVE: 2529 case SIOCBONDRELEASE: 2530 case SIOCBONDSETHWADDR: 2531 case SIOCBONDSLAVEINFOQUERY: 2532 case SIOCBONDINFOQUERY: 2533 case SIOCBONDCHANGEACTIVE: 2534 case SIOCBRADDIF: 2535 case SIOCBRDELIF: 2536 if (!capable(CAP_NET_ADMIN)) 2537 return -EPERM; 2538 dev_load(ifr.ifr_name); 2539 rtnl_lock(); 2540 ret = dev_ifsioc(&ifr, cmd); 2541 rtnl_unlock(); 2542 return ret; 2543 2544 case SIOCGIFMEM: 2545 /* Get the per device memory space. We can add this but 2546 * currently do not support it */ 2547 case SIOCSIFMEM: 2548 /* Set the per device memory buffer space. 2549 * Not applicable in our case */ 2550 case SIOCSIFLINK: 2551 return -EINVAL; 2552 2553 /* 2554 * Unknown or private ioctl. 2555 */ 2556 default: 2557 if (cmd == SIOCWANDEV || 2558 (cmd >= SIOCDEVPRIVATE && 2559 cmd <= SIOCDEVPRIVATE + 15)) { 2560 dev_load(ifr.ifr_name); 2561 rtnl_lock(); 2562 ret = dev_ifsioc(&ifr, cmd); 2563 rtnl_unlock(); 2564 if (!ret && copy_to_user(arg, &ifr, 2565 sizeof(struct ifreq))) 2566 ret = -EFAULT; 2567 return ret; 2568 } 2569 #ifdef WIRELESS_EXT 2570 /* Take care of Wireless Extensions */ 2571 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 2572 /* If command is `set a parameter', or 2573 * `get the encoding parameters', check if 2574 * the user has the right to do it */ 2575 if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE) { 2576 if (!capable(CAP_NET_ADMIN)) 2577 return -EPERM; 2578 } 2579 dev_load(ifr.ifr_name); 2580 rtnl_lock(); 2581 /* Follow me in net/core/wireless.c */ 2582 ret = wireless_process_ioctl(&ifr, cmd); 2583 rtnl_unlock(); 2584 if (IW_IS_GET(cmd) && 2585 copy_to_user(arg, &ifr, 2586 sizeof(struct ifreq))) 2587 ret = -EFAULT; 2588 return ret; 2589 } 2590 #endif /* WIRELESS_EXT */ 2591 return -EINVAL; 2592 } 2593 } 2594 2595 2596 /** 2597 * dev_new_index - allocate an ifindex 2598 * 2599 * Returns a suitable unique value for a new device interface 2600 * number. The caller must hold the rtnl semaphore or the 2601 * dev_base_lock to be sure it remains unique. 2602 */ 2603 static int dev_new_index(void) 2604 { 2605 static int ifindex; 2606 for (;;) { 2607 if (++ifindex <= 0) 2608 ifindex = 1; 2609 if (!__dev_get_by_index(ifindex)) 2610 return ifindex; 2611 } 2612 } 2613 2614 static int dev_boot_phase = 1; 2615 2616 /* Delayed registration/unregisteration */ 2617 static DEFINE_SPINLOCK(net_todo_list_lock); 2618 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 2619 2620 static inline void net_set_todo(struct net_device *dev) 2621 { 2622 spin_lock(&net_todo_list_lock); 2623 list_add_tail(&dev->todo_list, &net_todo_list); 2624 spin_unlock(&net_todo_list_lock); 2625 } 2626 2627 /** 2628 * register_netdevice - register a network device 2629 * @dev: device to register 2630 * 2631 * Take a completed network device structure and add it to the kernel 2632 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 2633 * chain. 0 is returned on success. A negative errno code is returned 2634 * on a failure to set up the device, or if the name is a duplicate. 2635 * 2636 * Callers must hold the rtnl semaphore. You may want 2637 * register_netdev() instead of this. 2638 * 2639 * BUGS: 2640 * The locking appears insufficient to guarantee two parallel registers 2641 * will not get the same name. 2642 */ 2643 2644 int register_netdevice(struct net_device *dev) 2645 { 2646 struct hlist_head *head; 2647 struct hlist_node *p; 2648 int ret; 2649 2650 BUG_ON(dev_boot_phase); 2651 ASSERT_RTNL(); 2652 2653 /* When net_device's are persistent, this will be fatal. */ 2654 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 2655 2656 spin_lock_init(&dev->queue_lock); 2657 spin_lock_init(&dev->xmit_lock); 2658 dev->xmit_lock_owner = -1; 2659 #ifdef CONFIG_NET_CLS_ACT 2660 spin_lock_init(&dev->ingress_lock); 2661 #endif 2662 2663 ret = alloc_divert_blk(dev); 2664 if (ret) 2665 goto out; 2666 2667 dev->iflink = -1; 2668 2669 /* Init, if this function is available */ 2670 if (dev->init) { 2671 ret = dev->init(dev); 2672 if (ret) { 2673 if (ret > 0) 2674 ret = -EIO; 2675 goto out_err; 2676 } 2677 } 2678 2679 if (!dev_valid_name(dev->name)) { 2680 ret = -EINVAL; 2681 goto out_err; 2682 } 2683 2684 dev->ifindex = dev_new_index(); 2685 if (dev->iflink == -1) 2686 dev->iflink = dev->ifindex; 2687 2688 /* Check for existence of name */ 2689 head = dev_name_hash(dev->name); 2690 hlist_for_each(p, head) { 2691 struct net_device *d 2692 = hlist_entry(p, struct net_device, name_hlist); 2693 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 2694 ret = -EEXIST; 2695 goto out_err; 2696 } 2697 } 2698 2699 /* Fix illegal SG+CSUM combinations. */ 2700 if ((dev->features & NETIF_F_SG) && 2701 !(dev->features & (NETIF_F_IP_CSUM | 2702 NETIF_F_NO_CSUM | 2703 NETIF_F_HW_CSUM))) { 2704 printk("%s: Dropping NETIF_F_SG since no checksum feature.\n", 2705 dev->name); 2706 dev->features &= ~NETIF_F_SG; 2707 } 2708 2709 /* TSO requires that SG is present as well. */ 2710 if ((dev->features & NETIF_F_TSO) && 2711 !(dev->features & NETIF_F_SG)) { 2712 printk("%s: Dropping NETIF_F_TSO since no SG feature.\n", 2713 dev->name); 2714 dev->features &= ~NETIF_F_TSO; 2715 } 2716 2717 /* 2718 * nil rebuild_header routine, 2719 * that should be never called and used as just bug trap. 2720 */ 2721 2722 if (!dev->rebuild_header) 2723 dev->rebuild_header = default_rebuild_header; 2724 2725 /* 2726 * Default initial state at registry is that the 2727 * device is present. 2728 */ 2729 2730 set_bit(__LINK_STATE_PRESENT, &dev->state); 2731 2732 dev->next = NULL; 2733 dev_init_scheduler(dev); 2734 write_lock_bh(&dev_base_lock); 2735 *dev_tail = dev; 2736 dev_tail = &dev->next; 2737 hlist_add_head(&dev->name_hlist, head); 2738 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex)); 2739 dev_hold(dev); 2740 dev->reg_state = NETREG_REGISTERING; 2741 write_unlock_bh(&dev_base_lock); 2742 2743 /* Notify protocols, that a new device appeared. */ 2744 notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev); 2745 2746 /* Finish registration after unlock */ 2747 net_set_todo(dev); 2748 ret = 0; 2749 2750 out: 2751 return ret; 2752 out_err: 2753 free_divert_blk(dev); 2754 goto out; 2755 } 2756 2757 /** 2758 * register_netdev - register a network device 2759 * @dev: device to register 2760 * 2761 * Take a completed network device structure and add it to the kernel 2762 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 2763 * chain. 0 is returned on success. A negative errno code is returned 2764 * on a failure to set up the device, or if the name is a duplicate. 2765 * 2766 * This is a wrapper around register_netdev that takes the rtnl semaphore 2767 * and expands the device name if you passed a format string to 2768 * alloc_netdev. 2769 */ 2770 int register_netdev(struct net_device *dev) 2771 { 2772 int err; 2773 2774 rtnl_lock(); 2775 2776 /* 2777 * If the name is a format string the caller wants us to do a 2778 * name allocation. 2779 */ 2780 if (strchr(dev->name, '%')) { 2781 err = dev_alloc_name(dev, dev->name); 2782 if (err < 0) 2783 goto out; 2784 } 2785 2786 /* 2787 * Back compatibility hook. Kill this one in 2.5 2788 */ 2789 if (dev->name[0] == 0 || dev->name[0] == ' ') { 2790 err = dev_alloc_name(dev, "eth%d"); 2791 if (err < 0) 2792 goto out; 2793 } 2794 2795 err = register_netdevice(dev); 2796 out: 2797 rtnl_unlock(); 2798 return err; 2799 } 2800 EXPORT_SYMBOL(register_netdev); 2801 2802 /* 2803 * netdev_wait_allrefs - wait until all references are gone. 2804 * 2805 * This is called when unregistering network devices. 2806 * 2807 * Any protocol or device that holds a reference should register 2808 * for netdevice notification, and cleanup and put back the 2809 * reference if they receive an UNREGISTER event. 2810 * We can get stuck here if buggy protocols don't correctly 2811 * call dev_put. 2812 */ 2813 static void netdev_wait_allrefs(struct net_device *dev) 2814 { 2815 unsigned long rebroadcast_time, warning_time; 2816 2817 rebroadcast_time = warning_time = jiffies; 2818 while (atomic_read(&dev->refcnt) != 0) { 2819 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 2820 rtnl_shlock(); 2821 2822 /* Rebroadcast unregister notification */ 2823 notifier_call_chain(&netdev_chain, 2824 NETDEV_UNREGISTER, dev); 2825 2826 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 2827 &dev->state)) { 2828 /* We must not have linkwatch events 2829 * pending on unregister. If this 2830 * happens, we simply run the queue 2831 * unscheduled, resulting in a noop 2832 * for this device. 2833 */ 2834 linkwatch_run_queue(); 2835 } 2836 2837 rtnl_shunlock(); 2838 2839 rebroadcast_time = jiffies; 2840 } 2841 2842 msleep(250); 2843 2844 if (time_after(jiffies, warning_time + 10 * HZ)) { 2845 printk(KERN_EMERG "unregister_netdevice: " 2846 "waiting for %s to become free. Usage " 2847 "count = %d\n", 2848 dev->name, atomic_read(&dev->refcnt)); 2849 warning_time = jiffies; 2850 } 2851 } 2852 } 2853 2854 /* The sequence is: 2855 * 2856 * rtnl_lock(); 2857 * ... 2858 * register_netdevice(x1); 2859 * register_netdevice(x2); 2860 * ... 2861 * unregister_netdevice(y1); 2862 * unregister_netdevice(y2); 2863 * ... 2864 * rtnl_unlock(); 2865 * free_netdev(y1); 2866 * free_netdev(y2); 2867 * 2868 * We are invoked by rtnl_unlock() after it drops the semaphore. 2869 * This allows us to deal with problems: 2870 * 1) We can create/delete sysfs objects which invoke hotplug 2871 * without deadlocking with linkwatch via keventd. 2872 * 2) Since we run with the RTNL semaphore not held, we can sleep 2873 * safely in order to wait for the netdev refcnt to drop to zero. 2874 */ 2875 static DECLARE_MUTEX(net_todo_run_mutex); 2876 void netdev_run_todo(void) 2877 { 2878 struct list_head list = LIST_HEAD_INIT(list); 2879 int err; 2880 2881 2882 /* Need to guard against multiple cpu's getting out of order. */ 2883 down(&net_todo_run_mutex); 2884 2885 /* Not safe to do outside the semaphore. We must not return 2886 * until all unregister events invoked by the local processor 2887 * have been completed (either by this todo run, or one on 2888 * another cpu). 2889 */ 2890 if (list_empty(&net_todo_list)) 2891 goto out; 2892 2893 /* Snapshot list, allow later requests */ 2894 spin_lock(&net_todo_list_lock); 2895 list_splice_init(&net_todo_list, &list); 2896 spin_unlock(&net_todo_list_lock); 2897 2898 while (!list_empty(&list)) { 2899 struct net_device *dev 2900 = list_entry(list.next, struct net_device, todo_list); 2901 list_del(&dev->todo_list); 2902 2903 switch(dev->reg_state) { 2904 case NETREG_REGISTERING: 2905 err = netdev_register_sysfs(dev); 2906 if (err) 2907 printk(KERN_ERR "%s: failed sysfs registration (%d)\n", 2908 dev->name, err); 2909 dev->reg_state = NETREG_REGISTERED; 2910 break; 2911 2912 case NETREG_UNREGISTERING: 2913 netdev_unregister_sysfs(dev); 2914 dev->reg_state = NETREG_UNREGISTERED; 2915 2916 netdev_wait_allrefs(dev); 2917 2918 /* paranoia */ 2919 BUG_ON(atomic_read(&dev->refcnt)); 2920 BUG_TRAP(!dev->ip_ptr); 2921 BUG_TRAP(!dev->ip6_ptr); 2922 BUG_TRAP(!dev->dn_ptr); 2923 2924 2925 /* It must be the very last action, 2926 * after this 'dev' may point to freed up memory. 2927 */ 2928 if (dev->destructor) 2929 dev->destructor(dev); 2930 break; 2931 2932 default: 2933 printk(KERN_ERR "network todo '%s' but state %d\n", 2934 dev->name, dev->reg_state); 2935 break; 2936 } 2937 } 2938 2939 out: 2940 up(&net_todo_run_mutex); 2941 } 2942 2943 /** 2944 * alloc_netdev - allocate network device 2945 * @sizeof_priv: size of private data to allocate space for 2946 * @name: device name format string 2947 * @setup: callback to initialize device 2948 * 2949 * Allocates a struct net_device with private data area for driver use 2950 * and performs basic initialization. 2951 */ 2952 struct net_device *alloc_netdev(int sizeof_priv, const char *name, 2953 void (*setup)(struct net_device *)) 2954 { 2955 void *p; 2956 struct net_device *dev; 2957 int alloc_size; 2958 2959 /* ensure 32-byte alignment of both the device and private area */ 2960 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 2961 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 2962 2963 p = kmalloc(alloc_size, GFP_KERNEL); 2964 if (!p) { 2965 printk(KERN_ERR "alloc_dev: Unable to allocate device.\n"); 2966 return NULL; 2967 } 2968 memset(p, 0, alloc_size); 2969 2970 dev = (struct net_device *) 2971 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 2972 dev->padded = (char *)dev - (char *)p; 2973 2974 if (sizeof_priv) 2975 dev->priv = netdev_priv(dev); 2976 2977 setup(dev); 2978 strcpy(dev->name, name); 2979 return dev; 2980 } 2981 EXPORT_SYMBOL(alloc_netdev); 2982 2983 /** 2984 * free_netdev - free network device 2985 * @dev: device 2986 * 2987 * This function does the last stage of destroying an allocated device 2988 * interface. The reference to the device object is released. 2989 * If this is the last reference then it will be freed. 2990 */ 2991 void free_netdev(struct net_device *dev) 2992 { 2993 #ifdef CONFIG_SYSFS 2994 /* Compatiablity with error handling in drivers */ 2995 if (dev->reg_state == NETREG_UNINITIALIZED) { 2996 kfree((char *)dev - dev->padded); 2997 return; 2998 } 2999 3000 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3001 dev->reg_state = NETREG_RELEASED; 3002 3003 /* will free via class release */ 3004 class_device_put(&dev->class_dev); 3005 #else 3006 kfree((char *)dev - dev->padded); 3007 #endif 3008 } 3009 3010 /* Synchronize with packet receive processing. */ 3011 void synchronize_net(void) 3012 { 3013 might_sleep(); 3014 synchronize_rcu(); 3015 } 3016 3017 /** 3018 * unregister_netdevice - remove device from the kernel 3019 * @dev: device 3020 * 3021 * This function shuts down a device interface and removes it 3022 * from the kernel tables. On success 0 is returned, on a failure 3023 * a negative errno code is returned. 3024 * 3025 * Callers must hold the rtnl semaphore. You may want 3026 * unregister_netdev() instead of this. 3027 */ 3028 3029 int unregister_netdevice(struct net_device *dev) 3030 { 3031 struct net_device *d, **dp; 3032 3033 BUG_ON(dev_boot_phase); 3034 ASSERT_RTNL(); 3035 3036 /* Some devices call without registering for initialization unwind. */ 3037 if (dev->reg_state == NETREG_UNINITIALIZED) { 3038 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3039 "was registered\n", dev->name, dev); 3040 return -ENODEV; 3041 } 3042 3043 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3044 3045 /* If device is running, close it first. */ 3046 if (dev->flags & IFF_UP) 3047 dev_close(dev); 3048 3049 /* And unlink it from device chain. */ 3050 for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) { 3051 if (d == dev) { 3052 write_lock_bh(&dev_base_lock); 3053 hlist_del(&dev->name_hlist); 3054 hlist_del(&dev->index_hlist); 3055 if (dev_tail == &dev->next) 3056 dev_tail = dp; 3057 *dp = d->next; 3058 write_unlock_bh(&dev_base_lock); 3059 break; 3060 } 3061 } 3062 if (!d) { 3063 printk(KERN_ERR "unregister net_device: '%s' not found\n", 3064 dev->name); 3065 return -ENODEV; 3066 } 3067 3068 dev->reg_state = NETREG_UNREGISTERING; 3069 3070 synchronize_net(); 3071 3072 /* Shutdown queueing discipline. */ 3073 dev_shutdown(dev); 3074 3075 3076 /* Notify protocols, that we are about to destroy 3077 this device. They should clean all the things. 3078 */ 3079 notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev); 3080 3081 /* 3082 * Flush the multicast chain 3083 */ 3084 dev_mc_discard(dev); 3085 3086 if (dev->uninit) 3087 dev->uninit(dev); 3088 3089 /* Notifier chain MUST detach us from master device. */ 3090 BUG_TRAP(!dev->master); 3091 3092 free_divert_blk(dev); 3093 3094 /* Finish processing unregister after unlock */ 3095 net_set_todo(dev); 3096 3097 synchronize_net(); 3098 3099 dev_put(dev); 3100 return 0; 3101 } 3102 3103 /** 3104 * unregister_netdev - remove device from the kernel 3105 * @dev: device 3106 * 3107 * This function shuts down a device interface and removes it 3108 * from the kernel tables. On success 0 is returned, on a failure 3109 * a negative errno code is returned. 3110 * 3111 * This is just a wrapper for unregister_netdevice that takes 3112 * the rtnl semaphore. In general you want to use this and not 3113 * unregister_netdevice. 3114 */ 3115 void unregister_netdev(struct net_device *dev) 3116 { 3117 rtnl_lock(); 3118 unregister_netdevice(dev); 3119 rtnl_unlock(); 3120 } 3121 3122 EXPORT_SYMBOL(unregister_netdev); 3123 3124 #ifdef CONFIG_HOTPLUG_CPU 3125 static int dev_cpu_callback(struct notifier_block *nfb, 3126 unsigned long action, 3127 void *ocpu) 3128 { 3129 struct sk_buff **list_skb; 3130 struct net_device **list_net; 3131 struct sk_buff *skb; 3132 unsigned int cpu, oldcpu = (unsigned long)ocpu; 3133 struct softnet_data *sd, *oldsd; 3134 3135 if (action != CPU_DEAD) 3136 return NOTIFY_OK; 3137 3138 local_irq_disable(); 3139 cpu = smp_processor_id(); 3140 sd = &per_cpu(softnet_data, cpu); 3141 oldsd = &per_cpu(softnet_data, oldcpu); 3142 3143 /* Find end of our completion_queue. */ 3144 list_skb = &sd->completion_queue; 3145 while (*list_skb) 3146 list_skb = &(*list_skb)->next; 3147 /* Append completion queue from offline CPU. */ 3148 *list_skb = oldsd->completion_queue; 3149 oldsd->completion_queue = NULL; 3150 3151 /* Find end of our output_queue. */ 3152 list_net = &sd->output_queue; 3153 while (*list_net) 3154 list_net = &(*list_net)->next_sched; 3155 /* Append output queue from offline CPU. */ 3156 *list_net = oldsd->output_queue; 3157 oldsd->output_queue = NULL; 3158 3159 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3160 local_irq_enable(); 3161 3162 /* Process offline CPU's input_pkt_queue */ 3163 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 3164 netif_rx(skb); 3165 3166 return NOTIFY_OK; 3167 } 3168 #endif /* CONFIG_HOTPLUG_CPU */ 3169 3170 3171 /* 3172 * Initialize the DEV module. At boot time this walks the device list and 3173 * unhooks any devices that fail to initialise (normally hardware not 3174 * present) and leaves us with a valid list of present and active devices. 3175 * 3176 */ 3177 3178 /* 3179 * This is called single threaded during boot, so no need 3180 * to take the rtnl semaphore. 3181 */ 3182 static int __init net_dev_init(void) 3183 { 3184 int i, rc = -ENOMEM; 3185 3186 BUG_ON(!dev_boot_phase); 3187 3188 net_random_init(); 3189 3190 if (dev_proc_init()) 3191 goto out; 3192 3193 if (netdev_sysfs_init()) 3194 goto out; 3195 3196 INIT_LIST_HEAD(&ptype_all); 3197 for (i = 0; i < 16; i++) 3198 INIT_LIST_HEAD(&ptype_base[i]); 3199 3200 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++) 3201 INIT_HLIST_HEAD(&dev_name_head[i]); 3202 3203 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++) 3204 INIT_HLIST_HEAD(&dev_index_head[i]); 3205 3206 /* 3207 * Initialise the packet receive queues. 3208 */ 3209 3210 for (i = 0; i < NR_CPUS; i++) { 3211 struct softnet_data *queue; 3212 3213 queue = &per_cpu(softnet_data, i); 3214 skb_queue_head_init(&queue->input_pkt_queue); 3215 queue->completion_queue = NULL; 3216 INIT_LIST_HEAD(&queue->poll_list); 3217 set_bit(__LINK_STATE_START, &queue->backlog_dev.state); 3218 queue->backlog_dev.weight = weight_p; 3219 queue->backlog_dev.poll = process_backlog; 3220 atomic_set(&queue->backlog_dev.refcnt, 1); 3221 } 3222 3223 dev_boot_phase = 0; 3224 3225 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 3226 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 3227 3228 hotcpu_notifier(dev_cpu_callback, 0); 3229 dst_init(); 3230 dev_mcast_init(); 3231 rc = 0; 3232 out: 3233 return rc; 3234 } 3235 3236 subsys_initcall(net_dev_init); 3237 3238 EXPORT_SYMBOL(__dev_get_by_index); 3239 EXPORT_SYMBOL(__dev_get_by_name); 3240 EXPORT_SYMBOL(__dev_remove_pack); 3241 EXPORT_SYMBOL(__skb_linearize); 3242 EXPORT_SYMBOL(dev_add_pack); 3243 EXPORT_SYMBOL(dev_alloc_name); 3244 EXPORT_SYMBOL(dev_close); 3245 EXPORT_SYMBOL(dev_get_by_flags); 3246 EXPORT_SYMBOL(dev_get_by_index); 3247 EXPORT_SYMBOL(dev_get_by_name); 3248 EXPORT_SYMBOL(dev_ioctl); 3249 EXPORT_SYMBOL(dev_open); 3250 EXPORT_SYMBOL(dev_queue_xmit); 3251 EXPORT_SYMBOL(dev_remove_pack); 3252 EXPORT_SYMBOL(dev_set_allmulti); 3253 EXPORT_SYMBOL(dev_set_promiscuity); 3254 EXPORT_SYMBOL(dev_change_flags); 3255 EXPORT_SYMBOL(dev_set_mtu); 3256 EXPORT_SYMBOL(dev_set_mac_address); 3257 EXPORT_SYMBOL(free_netdev); 3258 EXPORT_SYMBOL(netdev_boot_setup_check); 3259 EXPORT_SYMBOL(netdev_set_master); 3260 EXPORT_SYMBOL(netdev_state_change); 3261 EXPORT_SYMBOL(netif_receive_skb); 3262 EXPORT_SYMBOL(netif_rx); 3263 EXPORT_SYMBOL(register_gifconf); 3264 EXPORT_SYMBOL(register_netdevice); 3265 EXPORT_SYMBOL(register_netdevice_notifier); 3266 EXPORT_SYMBOL(skb_checksum_help); 3267 EXPORT_SYMBOL(synchronize_net); 3268 EXPORT_SYMBOL(unregister_netdevice); 3269 EXPORT_SYMBOL(unregister_netdevice_notifier); 3270 EXPORT_SYMBOL(net_enable_timestamp); 3271 EXPORT_SYMBOL(net_disable_timestamp); 3272 EXPORT_SYMBOL(dev_get_flags); 3273 3274 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 3275 EXPORT_SYMBOL(br_handle_frame_hook); 3276 EXPORT_SYMBOL(br_fdb_get_hook); 3277 EXPORT_SYMBOL(br_fdb_put_hook); 3278 #endif 3279 3280 #ifdef CONFIG_KMOD 3281 EXPORT_SYMBOL(dev_load); 3282 #endif 3283 3284 EXPORT_PER_CPU_SYMBOL(softnet_data); 3285