xref: /linux/net/core/dev.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/config.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/notifier.h>
93 #include <linux/skbuff.h>
94 #include <net/sock.h>
95 #include <linux/rtnetlink.h>
96 #include <linux/proc_fs.h>
97 #include <linux/seq_file.h>
98 #include <linux/stat.h>
99 #include <linux/if_bridge.h>
100 #include <linux/divert.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <linux/highmem.h>
105 #include <linux/init.h>
106 #include <linux/kmod.h>
107 #include <linux/module.h>
108 #include <linux/kallsyms.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #ifdef CONFIG_NET_RADIO
113 #include <linux/wireless.h>		/* Note : will define WIRELESS_EXT */
114 #include <net/iw_handler.h>
115 #endif	/* CONFIG_NET_RADIO */
116 #include <asm/current.h>
117 
118 /*
119  *	The list of packet types we will receive (as opposed to discard)
120  *	and the routines to invoke.
121  *
122  *	Why 16. Because with 16 the only overlap we get on a hash of the
123  *	low nibble of the protocol value is RARP/SNAP/X.25.
124  *
125  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
126  *             sure which should go first, but I bet it won't make much
127  *             difference if we are running VLANs.  The good news is that
128  *             this protocol won't be in the list unless compiled in, so
129  *             the average user (w/out VLANs) will not be adversly affected.
130  *             --BLG
131  *
132  *		0800	IP
133  *		8100    802.1Q VLAN
134  *		0001	802.3
135  *		0002	AX.25
136  *		0004	802.2
137  *		8035	RARP
138  *		0005	SNAP
139  *		0805	X.25
140  *		0806	ARP
141  *		8137	IPX
142  *		0009	Localtalk
143  *		86DD	IPv6
144  */
145 
146 static DEFINE_SPINLOCK(ptype_lock);
147 static struct list_head ptype_base[16];	/* 16 way hashed list */
148 static struct list_head ptype_all;		/* Taps */
149 
150 /*
151  * The @dev_base list is protected by @dev_base_lock and the rtln
152  * semaphore.
153  *
154  * Pure readers hold dev_base_lock for reading.
155  *
156  * Writers must hold the rtnl semaphore while they loop through the
157  * dev_base list, and hold dev_base_lock for writing when they do the
158  * actual updates.  This allows pure readers to access the list even
159  * while a writer is preparing to update it.
160  *
161  * To put it another way, dev_base_lock is held for writing only to
162  * protect against pure readers; the rtnl semaphore provides the
163  * protection against other writers.
164  *
165  * See, for example usages, register_netdevice() and
166  * unregister_netdevice(), which must be called with the rtnl
167  * semaphore held.
168  */
169 struct net_device *dev_base;
170 static struct net_device **dev_tail = &dev_base;
171 DEFINE_RWLOCK(dev_base_lock);
172 
173 EXPORT_SYMBOL(dev_base);
174 EXPORT_SYMBOL(dev_base_lock);
175 
176 #define NETDEV_HASHBITS	8
177 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS];
178 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS];
179 
180 static inline struct hlist_head *dev_name_hash(const char *name)
181 {
182 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
183 	return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)];
184 }
185 
186 static inline struct hlist_head *dev_index_hash(int ifindex)
187 {
188 	return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)];
189 }
190 
191 /*
192  *	Our notifier list
193  */
194 
195 static struct notifier_block *netdev_chain;
196 
197 /*
198  *	Device drivers call our routines to queue packets here. We empty the
199  *	queue in the local softnet handler.
200  */
201 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL };
202 
203 #ifdef CONFIG_SYSFS
204 extern int netdev_sysfs_init(void);
205 extern int netdev_register_sysfs(struct net_device *);
206 extern void netdev_unregister_sysfs(struct net_device *);
207 #else
208 #define netdev_sysfs_init()	 	(0)
209 #define netdev_register_sysfs(dev)	(0)
210 #define	netdev_unregister_sysfs(dev)	do { } while(0)
211 #endif
212 
213 
214 /*******************************************************************************
215 
216 		Protocol management and registration routines
217 
218 *******************************************************************************/
219 
220 /*
221  *	For efficiency
222  */
223 
224 int netdev_nit;
225 
226 /*
227  *	Add a protocol ID to the list. Now that the input handler is
228  *	smarter we can dispense with all the messy stuff that used to be
229  *	here.
230  *
231  *	BEWARE!!! Protocol handlers, mangling input packets,
232  *	MUST BE last in hash buckets and checking protocol handlers
233  *	MUST start from promiscuous ptype_all chain in net_bh.
234  *	It is true now, do not change it.
235  *	Explanation follows: if protocol handler, mangling packet, will
236  *	be the first on list, it is not able to sense, that packet
237  *	is cloned and should be copied-on-write, so that it will
238  *	change it and subsequent readers will get broken packet.
239  *							--ANK (980803)
240  */
241 
242 /**
243  *	dev_add_pack - add packet handler
244  *	@pt: packet type declaration
245  *
246  *	Add a protocol handler to the networking stack. The passed &packet_type
247  *	is linked into kernel lists and may not be freed until it has been
248  *	removed from the kernel lists.
249  *
250  *	This call does not sleep therefore it can not
251  *	guarantee all CPU's that are in middle of receiving packets
252  *	will see the new packet type (until the next received packet).
253  */
254 
255 void dev_add_pack(struct packet_type *pt)
256 {
257 	int hash;
258 
259 	spin_lock_bh(&ptype_lock);
260 	if (pt->type == htons(ETH_P_ALL)) {
261 		netdev_nit++;
262 		list_add_rcu(&pt->list, &ptype_all);
263 	} else {
264 		hash = ntohs(pt->type) & 15;
265 		list_add_rcu(&pt->list, &ptype_base[hash]);
266 	}
267 	spin_unlock_bh(&ptype_lock);
268 }
269 
270 /**
271  *	__dev_remove_pack	 - remove packet handler
272  *	@pt: packet type declaration
273  *
274  *	Remove a protocol handler that was previously added to the kernel
275  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
276  *	from the kernel lists and can be freed or reused once this function
277  *	returns.
278  *
279  *      The packet type might still be in use by receivers
280  *	and must not be freed until after all the CPU's have gone
281  *	through a quiescent state.
282  */
283 void __dev_remove_pack(struct packet_type *pt)
284 {
285 	struct list_head *head;
286 	struct packet_type *pt1;
287 
288 	spin_lock_bh(&ptype_lock);
289 
290 	if (pt->type == htons(ETH_P_ALL)) {
291 		netdev_nit--;
292 		head = &ptype_all;
293 	} else
294 		head = &ptype_base[ntohs(pt->type) & 15];
295 
296 	list_for_each_entry(pt1, head, list) {
297 		if (pt == pt1) {
298 			list_del_rcu(&pt->list);
299 			goto out;
300 		}
301 	}
302 
303 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
304 out:
305 	spin_unlock_bh(&ptype_lock);
306 }
307 /**
308  *	dev_remove_pack	 - remove packet handler
309  *	@pt: packet type declaration
310  *
311  *	Remove a protocol handler that was previously added to the kernel
312  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
313  *	from the kernel lists and can be freed or reused once this function
314  *	returns.
315  *
316  *	This call sleeps to guarantee that no CPU is looking at the packet
317  *	type after return.
318  */
319 void dev_remove_pack(struct packet_type *pt)
320 {
321 	__dev_remove_pack(pt);
322 
323 	synchronize_net();
324 }
325 
326 /******************************************************************************
327 
328 		      Device Boot-time Settings Routines
329 
330 *******************************************************************************/
331 
332 /* Boot time configuration table */
333 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
334 
335 /**
336  *	netdev_boot_setup_add	- add new setup entry
337  *	@name: name of the device
338  *	@map: configured settings for the device
339  *
340  *	Adds new setup entry to the dev_boot_setup list.  The function
341  *	returns 0 on error and 1 on success.  This is a generic routine to
342  *	all netdevices.
343  */
344 static int netdev_boot_setup_add(char *name, struct ifmap *map)
345 {
346 	struct netdev_boot_setup *s;
347 	int i;
348 
349 	s = dev_boot_setup;
350 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
351 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
352 			memset(s[i].name, 0, sizeof(s[i].name));
353 			strcpy(s[i].name, name);
354 			memcpy(&s[i].map, map, sizeof(s[i].map));
355 			break;
356 		}
357 	}
358 
359 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
360 }
361 
362 /**
363  *	netdev_boot_setup_check	- check boot time settings
364  *	@dev: the netdevice
365  *
366  * 	Check boot time settings for the device.
367  *	The found settings are set for the device to be used
368  *	later in the device probing.
369  *	Returns 0 if no settings found, 1 if they are.
370  */
371 int netdev_boot_setup_check(struct net_device *dev)
372 {
373 	struct netdev_boot_setup *s = dev_boot_setup;
374 	int i;
375 
376 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
377 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
378 		    !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
379 			dev->irq 	= s[i].map.irq;
380 			dev->base_addr 	= s[i].map.base_addr;
381 			dev->mem_start 	= s[i].map.mem_start;
382 			dev->mem_end 	= s[i].map.mem_end;
383 			return 1;
384 		}
385 	}
386 	return 0;
387 }
388 
389 
390 /**
391  *	netdev_boot_base	- get address from boot time settings
392  *	@prefix: prefix for network device
393  *	@unit: id for network device
394  *
395  * 	Check boot time settings for the base address of device.
396  *	The found settings are set for the device to be used
397  *	later in the device probing.
398  *	Returns 0 if no settings found.
399  */
400 unsigned long netdev_boot_base(const char *prefix, int unit)
401 {
402 	const struct netdev_boot_setup *s = dev_boot_setup;
403 	char name[IFNAMSIZ];
404 	int i;
405 
406 	sprintf(name, "%s%d", prefix, unit);
407 
408 	/*
409 	 * If device already registered then return base of 1
410 	 * to indicate not to probe for this interface
411 	 */
412 	if (__dev_get_by_name(name))
413 		return 1;
414 
415 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
416 		if (!strcmp(name, s[i].name))
417 			return s[i].map.base_addr;
418 	return 0;
419 }
420 
421 /*
422  * Saves at boot time configured settings for any netdevice.
423  */
424 int __init netdev_boot_setup(char *str)
425 {
426 	int ints[5];
427 	struct ifmap map;
428 
429 	str = get_options(str, ARRAY_SIZE(ints), ints);
430 	if (!str || !*str)
431 		return 0;
432 
433 	/* Save settings */
434 	memset(&map, 0, sizeof(map));
435 	if (ints[0] > 0)
436 		map.irq = ints[1];
437 	if (ints[0] > 1)
438 		map.base_addr = ints[2];
439 	if (ints[0] > 2)
440 		map.mem_start = ints[3];
441 	if (ints[0] > 3)
442 		map.mem_end = ints[4];
443 
444 	/* Add new entry to the list */
445 	return netdev_boot_setup_add(str, &map);
446 }
447 
448 __setup("netdev=", netdev_boot_setup);
449 
450 /*******************************************************************************
451 
452 			    Device Interface Subroutines
453 
454 *******************************************************************************/
455 
456 /**
457  *	__dev_get_by_name	- find a device by its name
458  *	@name: name to find
459  *
460  *	Find an interface by name. Must be called under RTNL semaphore
461  *	or @dev_base_lock. If the name is found a pointer to the device
462  *	is returned. If the name is not found then %NULL is returned. The
463  *	reference counters are not incremented so the caller must be
464  *	careful with locks.
465  */
466 
467 struct net_device *__dev_get_by_name(const char *name)
468 {
469 	struct hlist_node *p;
470 
471 	hlist_for_each(p, dev_name_hash(name)) {
472 		struct net_device *dev
473 			= hlist_entry(p, struct net_device, name_hlist);
474 		if (!strncmp(dev->name, name, IFNAMSIZ))
475 			return dev;
476 	}
477 	return NULL;
478 }
479 
480 /**
481  *	dev_get_by_name		- find a device by its name
482  *	@name: name to find
483  *
484  *	Find an interface by name. This can be called from any
485  *	context and does its own locking. The returned handle has
486  *	the usage count incremented and the caller must use dev_put() to
487  *	release it when it is no longer needed. %NULL is returned if no
488  *	matching device is found.
489  */
490 
491 struct net_device *dev_get_by_name(const char *name)
492 {
493 	struct net_device *dev;
494 
495 	read_lock(&dev_base_lock);
496 	dev = __dev_get_by_name(name);
497 	if (dev)
498 		dev_hold(dev);
499 	read_unlock(&dev_base_lock);
500 	return dev;
501 }
502 
503 /**
504  *	__dev_get_by_index - find a device by its ifindex
505  *	@ifindex: index of device
506  *
507  *	Search for an interface by index. Returns %NULL if the device
508  *	is not found or a pointer to the device. The device has not
509  *	had its reference counter increased so the caller must be careful
510  *	about locking. The caller must hold either the RTNL semaphore
511  *	or @dev_base_lock.
512  */
513 
514 struct net_device *__dev_get_by_index(int ifindex)
515 {
516 	struct hlist_node *p;
517 
518 	hlist_for_each(p, dev_index_hash(ifindex)) {
519 		struct net_device *dev
520 			= hlist_entry(p, struct net_device, index_hlist);
521 		if (dev->ifindex == ifindex)
522 			return dev;
523 	}
524 	return NULL;
525 }
526 
527 
528 /**
529  *	dev_get_by_index - find a device by its ifindex
530  *	@ifindex: index of device
531  *
532  *	Search for an interface by index. Returns NULL if the device
533  *	is not found or a pointer to the device. The device returned has
534  *	had a reference added and the pointer is safe until the user calls
535  *	dev_put to indicate they have finished with it.
536  */
537 
538 struct net_device *dev_get_by_index(int ifindex)
539 {
540 	struct net_device *dev;
541 
542 	read_lock(&dev_base_lock);
543 	dev = __dev_get_by_index(ifindex);
544 	if (dev)
545 		dev_hold(dev);
546 	read_unlock(&dev_base_lock);
547 	return dev;
548 }
549 
550 /**
551  *	dev_getbyhwaddr - find a device by its hardware address
552  *	@type: media type of device
553  *	@ha: hardware address
554  *
555  *	Search for an interface by MAC address. Returns NULL if the device
556  *	is not found or a pointer to the device. The caller must hold the
557  *	rtnl semaphore. The returned device has not had its ref count increased
558  *	and the caller must therefore be careful about locking
559  *
560  *	BUGS:
561  *	If the API was consistent this would be __dev_get_by_hwaddr
562  */
563 
564 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha)
565 {
566 	struct net_device *dev;
567 
568 	ASSERT_RTNL();
569 
570 	for (dev = dev_base; dev; dev = dev->next)
571 		if (dev->type == type &&
572 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
573 			break;
574 	return dev;
575 }
576 
577 struct net_device *dev_getfirstbyhwtype(unsigned short type)
578 {
579 	struct net_device *dev;
580 
581 	rtnl_lock();
582 	for (dev = dev_base; dev; dev = dev->next) {
583 		if (dev->type == type) {
584 			dev_hold(dev);
585 			break;
586 		}
587 	}
588 	rtnl_unlock();
589 	return dev;
590 }
591 
592 EXPORT_SYMBOL(dev_getfirstbyhwtype);
593 
594 /**
595  *	dev_get_by_flags - find any device with given flags
596  *	@if_flags: IFF_* values
597  *	@mask: bitmask of bits in if_flags to check
598  *
599  *	Search for any interface with the given flags. Returns NULL if a device
600  *	is not found or a pointer to the device. The device returned has
601  *	had a reference added and the pointer is safe until the user calls
602  *	dev_put to indicate they have finished with it.
603  */
604 
605 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask)
606 {
607 	struct net_device *dev;
608 
609 	read_lock(&dev_base_lock);
610 	for (dev = dev_base; dev != NULL; dev = dev->next) {
611 		if (((dev->flags ^ if_flags) & mask) == 0) {
612 			dev_hold(dev);
613 			break;
614 		}
615 	}
616 	read_unlock(&dev_base_lock);
617 	return dev;
618 }
619 
620 /**
621  *	dev_valid_name - check if name is okay for network device
622  *	@name: name string
623  *
624  *	Network device names need to be valid file names to
625  *	to allow sysfs to work
626  */
627 static int dev_valid_name(const char *name)
628 {
629 	return !(*name == '\0'
630 		 || !strcmp(name, ".")
631 		 || !strcmp(name, "..")
632 		 || strchr(name, '/'));
633 }
634 
635 /**
636  *	dev_alloc_name - allocate a name for a device
637  *	@dev: device
638  *	@name: name format string
639  *
640  *	Passed a format string - eg "lt%d" it will try and find a suitable
641  *	id. Not efficient for many devices, not called a lot. The caller
642  *	must hold the dev_base or rtnl lock while allocating the name and
643  *	adding the device in order to avoid duplicates. Returns the number
644  *	of the unit assigned or a negative errno code.
645  */
646 
647 int dev_alloc_name(struct net_device *dev, const char *name)
648 {
649 	int i = 0;
650 	char buf[IFNAMSIZ];
651 	const char *p;
652 	const int max_netdevices = 8*PAGE_SIZE;
653 	long *inuse;
654 	struct net_device *d;
655 
656 	p = strnchr(name, IFNAMSIZ-1, '%');
657 	if (p) {
658 		/*
659 		 * Verify the string as this thing may have come from
660 		 * the user.  There must be either one "%d" and no other "%"
661 		 * characters.
662 		 */
663 		if (p[1] != 'd' || strchr(p + 2, '%'))
664 			return -EINVAL;
665 
666 		/* Use one page as a bit array of possible slots */
667 		inuse = (long *) get_zeroed_page(GFP_ATOMIC);
668 		if (!inuse)
669 			return -ENOMEM;
670 
671 		for (d = dev_base; d; d = d->next) {
672 			if (!sscanf(d->name, name, &i))
673 				continue;
674 			if (i < 0 || i >= max_netdevices)
675 				continue;
676 
677 			/*  avoid cases where sscanf is not exact inverse of printf */
678 			snprintf(buf, sizeof(buf), name, i);
679 			if (!strncmp(buf, d->name, IFNAMSIZ))
680 				set_bit(i, inuse);
681 		}
682 
683 		i = find_first_zero_bit(inuse, max_netdevices);
684 		free_page((unsigned long) inuse);
685 	}
686 
687 	snprintf(buf, sizeof(buf), name, i);
688 	if (!__dev_get_by_name(buf)) {
689 		strlcpy(dev->name, buf, IFNAMSIZ);
690 		return i;
691 	}
692 
693 	/* It is possible to run out of possible slots
694 	 * when the name is long and there isn't enough space left
695 	 * for the digits, or if all bits are used.
696 	 */
697 	return -ENFILE;
698 }
699 
700 
701 /**
702  *	dev_change_name - change name of a device
703  *	@dev: device
704  *	@newname: name (or format string) must be at least IFNAMSIZ
705  *
706  *	Change name of a device, can pass format strings "eth%d".
707  *	for wildcarding.
708  */
709 int dev_change_name(struct net_device *dev, char *newname)
710 {
711 	int err = 0;
712 
713 	ASSERT_RTNL();
714 
715 	if (dev->flags & IFF_UP)
716 		return -EBUSY;
717 
718 	if (!dev_valid_name(newname))
719 		return -EINVAL;
720 
721 	if (strchr(newname, '%')) {
722 		err = dev_alloc_name(dev, newname);
723 		if (err < 0)
724 			return err;
725 		strcpy(newname, dev->name);
726 	}
727 	else if (__dev_get_by_name(newname))
728 		return -EEXIST;
729 	else
730 		strlcpy(dev->name, newname, IFNAMSIZ);
731 
732 	err = class_device_rename(&dev->class_dev, dev->name);
733 	if (!err) {
734 		hlist_del(&dev->name_hlist);
735 		hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name));
736 		notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev);
737 	}
738 
739 	return err;
740 }
741 
742 /**
743  *	netdev_features_change - device changes fatures
744  *	@dev: device to cause notification
745  *
746  *	Called to indicate a device has changed features.
747  */
748 void netdev_features_change(struct net_device *dev)
749 {
750 	notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev);
751 }
752 EXPORT_SYMBOL(netdev_features_change);
753 
754 /**
755  *	netdev_state_change - device changes state
756  *	@dev: device to cause notification
757  *
758  *	Called to indicate a device has changed state. This function calls
759  *	the notifier chains for netdev_chain and sends a NEWLINK message
760  *	to the routing socket.
761  */
762 void netdev_state_change(struct net_device *dev)
763 {
764 	if (dev->flags & IFF_UP) {
765 		notifier_call_chain(&netdev_chain, NETDEV_CHANGE, dev);
766 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
767 	}
768 }
769 
770 /**
771  *	dev_load 	- load a network module
772  *	@name: name of interface
773  *
774  *	If a network interface is not present and the process has suitable
775  *	privileges this function loads the module. If module loading is not
776  *	available in this kernel then it becomes a nop.
777  */
778 
779 void dev_load(const char *name)
780 {
781 	struct net_device *dev;
782 
783 	read_lock(&dev_base_lock);
784 	dev = __dev_get_by_name(name);
785 	read_unlock(&dev_base_lock);
786 
787 	if (!dev && capable(CAP_SYS_MODULE))
788 		request_module("%s", name);
789 }
790 
791 static int default_rebuild_header(struct sk_buff *skb)
792 {
793 	printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
794 	       skb->dev ? skb->dev->name : "NULL!!!");
795 	kfree_skb(skb);
796 	return 1;
797 }
798 
799 
800 /**
801  *	dev_open	- prepare an interface for use.
802  *	@dev:	device to open
803  *
804  *	Takes a device from down to up state. The device's private open
805  *	function is invoked and then the multicast lists are loaded. Finally
806  *	the device is moved into the up state and a %NETDEV_UP message is
807  *	sent to the netdev notifier chain.
808  *
809  *	Calling this function on an active interface is a nop. On a failure
810  *	a negative errno code is returned.
811  */
812 int dev_open(struct net_device *dev)
813 {
814 	int ret = 0;
815 
816 	/*
817 	 *	Is it already up?
818 	 */
819 
820 	if (dev->flags & IFF_UP)
821 		return 0;
822 
823 	/*
824 	 *	Is it even present?
825 	 */
826 	if (!netif_device_present(dev))
827 		return -ENODEV;
828 
829 	/*
830 	 *	Call device private open method
831 	 */
832 	set_bit(__LINK_STATE_START, &dev->state);
833 	if (dev->open) {
834 		ret = dev->open(dev);
835 		if (ret)
836 			clear_bit(__LINK_STATE_START, &dev->state);
837 	}
838 
839  	/*
840 	 *	If it went open OK then:
841 	 */
842 
843 	if (!ret) {
844 		/*
845 		 *	Set the flags.
846 		 */
847 		dev->flags |= IFF_UP;
848 
849 		/*
850 		 *	Initialize multicasting status
851 		 */
852 		dev_mc_upload(dev);
853 
854 		/*
855 		 *	Wakeup transmit queue engine
856 		 */
857 		dev_activate(dev);
858 
859 		/*
860 		 *	... and announce new interface.
861 		 */
862 		notifier_call_chain(&netdev_chain, NETDEV_UP, dev);
863 	}
864 	return ret;
865 }
866 
867 /**
868  *	dev_close - shutdown an interface.
869  *	@dev: device to shutdown
870  *
871  *	This function moves an active device into down state. A
872  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
873  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
874  *	chain.
875  */
876 int dev_close(struct net_device *dev)
877 {
878 	if (!(dev->flags & IFF_UP))
879 		return 0;
880 
881 	/*
882 	 *	Tell people we are going down, so that they can
883 	 *	prepare to death, when device is still operating.
884 	 */
885 	notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev);
886 
887 	dev_deactivate(dev);
888 
889 	clear_bit(__LINK_STATE_START, &dev->state);
890 
891 	/* Synchronize to scheduled poll. We cannot touch poll list,
892 	 * it can be even on different cpu. So just clear netif_running(),
893 	 * and wait when poll really will happen. Actually, the best place
894 	 * for this is inside dev->stop() after device stopped its irq
895 	 * engine, but this requires more changes in devices. */
896 
897 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
898 	while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) {
899 		/* No hurry. */
900 		msleep(1);
901 	}
902 
903 	/*
904 	 *	Call the device specific close. This cannot fail.
905 	 *	Only if device is UP
906 	 *
907 	 *	We allow it to be called even after a DETACH hot-plug
908 	 *	event.
909 	 */
910 	if (dev->stop)
911 		dev->stop(dev);
912 
913 	/*
914 	 *	Device is now down.
915 	 */
916 
917 	dev->flags &= ~IFF_UP;
918 
919 	/*
920 	 * Tell people we are down
921 	 */
922 	notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev);
923 
924 	return 0;
925 }
926 
927 
928 /*
929  *	Device change register/unregister. These are not inline or static
930  *	as we export them to the world.
931  */
932 
933 /**
934  *	register_netdevice_notifier - register a network notifier block
935  *	@nb: notifier
936  *
937  *	Register a notifier to be called when network device events occur.
938  *	The notifier passed is linked into the kernel structures and must
939  *	not be reused until it has been unregistered. A negative errno code
940  *	is returned on a failure.
941  *
942  * 	When registered all registration and up events are replayed
943  *	to the new notifier to allow device to have a race free
944  *	view of the network device list.
945  */
946 
947 int register_netdevice_notifier(struct notifier_block *nb)
948 {
949 	struct net_device *dev;
950 	int err;
951 
952 	rtnl_lock();
953 	err = notifier_chain_register(&netdev_chain, nb);
954 	if (!err) {
955 		for (dev = dev_base; dev; dev = dev->next) {
956 			nb->notifier_call(nb, NETDEV_REGISTER, dev);
957 
958 			if (dev->flags & IFF_UP)
959 				nb->notifier_call(nb, NETDEV_UP, dev);
960 		}
961 	}
962 	rtnl_unlock();
963 	return err;
964 }
965 
966 /**
967  *	unregister_netdevice_notifier - unregister a network notifier block
968  *	@nb: notifier
969  *
970  *	Unregister a notifier previously registered by
971  *	register_netdevice_notifier(). The notifier is unlinked into the
972  *	kernel structures and may then be reused. A negative errno code
973  *	is returned on a failure.
974  */
975 
976 int unregister_netdevice_notifier(struct notifier_block *nb)
977 {
978 	return notifier_chain_unregister(&netdev_chain, nb);
979 }
980 
981 /**
982  *	call_netdevice_notifiers - call all network notifier blocks
983  *      @val: value passed unmodified to notifier function
984  *      @v:   pointer passed unmodified to notifier function
985  *
986  *	Call all network notifier blocks.  Parameters and return value
987  *	are as for notifier_call_chain().
988  */
989 
990 int call_netdevice_notifiers(unsigned long val, void *v)
991 {
992 	return notifier_call_chain(&netdev_chain, val, v);
993 }
994 
995 /* When > 0 there are consumers of rx skb time stamps */
996 static atomic_t netstamp_needed = ATOMIC_INIT(0);
997 
998 void net_enable_timestamp(void)
999 {
1000 	atomic_inc(&netstamp_needed);
1001 }
1002 
1003 void net_disable_timestamp(void)
1004 {
1005 	atomic_dec(&netstamp_needed);
1006 }
1007 
1008 void __net_timestamp(struct sk_buff *skb)
1009 {
1010 	struct timeval tv;
1011 
1012 	do_gettimeofday(&tv);
1013 	skb_set_timestamp(skb, &tv);
1014 }
1015 EXPORT_SYMBOL(__net_timestamp);
1016 
1017 static inline void net_timestamp(struct sk_buff *skb)
1018 {
1019 	if (atomic_read(&netstamp_needed))
1020 		__net_timestamp(skb);
1021 	else {
1022 		skb->tstamp.off_sec = 0;
1023 		skb->tstamp.off_usec = 0;
1024 	}
1025 }
1026 
1027 /*
1028  *	Support routine. Sends outgoing frames to any network
1029  *	taps currently in use.
1030  */
1031 
1032 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1033 {
1034 	struct packet_type *ptype;
1035 
1036 	net_timestamp(skb);
1037 
1038 	rcu_read_lock();
1039 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1040 		/* Never send packets back to the socket
1041 		 * they originated from - MvS (miquels@drinkel.ow.org)
1042 		 */
1043 		if ((ptype->dev == dev || !ptype->dev) &&
1044 		    (ptype->af_packet_priv == NULL ||
1045 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1046 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1047 			if (!skb2)
1048 				break;
1049 
1050 			/* skb->nh should be correctly
1051 			   set by sender, so that the second statement is
1052 			   just protection against buggy protocols.
1053 			 */
1054 			skb2->mac.raw = skb2->data;
1055 
1056 			if (skb2->nh.raw < skb2->data ||
1057 			    skb2->nh.raw > skb2->tail) {
1058 				if (net_ratelimit())
1059 					printk(KERN_CRIT "protocol %04x is "
1060 					       "buggy, dev %s\n",
1061 					       skb2->protocol, dev->name);
1062 				skb2->nh.raw = skb2->data;
1063 			}
1064 
1065 			skb2->h.raw = skb2->nh.raw;
1066 			skb2->pkt_type = PACKET_OUTGOING;
1067 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1068 		}
1069 	}
1070 	rcu_read_unlock();
1071 }
1072 
1073 /*
1074  * Invalidate hardware checksum when packet is to be mangled, and
1075  * complete checksum manually on outgoing path.
1076  */
1077 int skb_checksum_help(struct sk_buff *skb, int inward)
1078 {
1079 	unsigned int csum;
1080 	int ret = 0, offset = skb->h.raw - skb->data;
1081 
1082 	if (inward) {
1083 		skb->ip_summed = CHECKSUM_NONE;
1084 		goto out;
1085 	}
1086 
1087 	if (skb_cloned(skb)) {
1088 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1089 		if (ret)
1090 			goto out;
1091 	}
1092 
1093 	if (offset > (int)skb->len)
1094 		BUG();
1095 	csum = skb_checksum(skb, offset, skb->len-offset, 0);
1096 
1097 	offset = skb->tail - skb->h.raw;
1098 	if (offset <= 0)
1099 		BUG();
1100 	if (skb->csum + 2 > offset)
1101 		BUG();
1102 
1103 	*(u16*)(skb->h.raw + skb->csum) = csum_fold(csum);
1104 	skb->ip_summed = CHECKSUM_NONE;
1105 out:
1106 	return ret;
1107 }
1108 
1109 #ifdef CONFIG_HIGHMEM
1110 /* Actually, we should eliminate this check as soon as we know, that:
1111  * 1. IOMMU is present and allows to map all the memory.
1112  * 2. No high memory really exists on this machine.
1113  */
1114 
1115 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1116 {
1117 	int i;
1118 
1119 	if (dev->features & NETIF_F_HIGHDMA)
1120 		return 0;
1121 
1122 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1123 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1124 			return 1;
1125 
1126 	return 0;
1127 }
1128 #else
1129 #define illegal_highdma(dev, skb)	(0)
1130 #endif
1131 
1132 /* Keep head the same: replace data */
1133 int __skb_linearize(struct sk_buff *skb, unsigned int __nocast gfp_mask)
1134 {
1135 	unsigned int size;
1136 	u8 *data;
1137 	long offset;
1138 	struct skb_shared_info *ninfo;
1139 	int headerlen = skb->data - skb->head;
1140 	int expand = (skb->tail + skb->data_len) - skb->end;
1141 
1142 	if (skb_shared(skb))
1143 		BUG();
1144 
1145 	if (expand <= 0)
1146 		expand = 0;
1147 
1148 	size = skb->end - skb->head + expand;
1149 	size = SKB_DATA_ALIGN(size);
1150 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
1151 	if (!data)
1152 		return -ENOMEM;
1153 
1154 	/* Copy entire thing */
1155 	if (skb_copy_bits(skb, -headerlen, data, headerlen + skb->len))
1156 		BUG();
1157 
1158 	/* Set up shinfo */
1159 	ninfo = (struct skb_shared_info*)(data + size);
1160 	atomic_set(&ninfo->dataref, 1);
1161 	ninfo->tso_size = skb_shinfo(skb)->tso_size;
1162 	ninfo->tso_segs = skb_shinfo(skb)->tso_segs;
1163 	ninfo->nr_frags = 0;
1164 	ninfo->frag_list = NULL;
1165 
1166 	/* Offset between the two in bytes */
1167 	offset = data - skb->head;
1168 
1169 	/* Free old data. */
1170 	skb_release_data(skb);
1171 
1172 	skb->head = data;
1173 	skb->end  = data + size;
1174 
1175 	/* Set up new pointers */
1176 	skb->h.raw   += offset;
1177 	skb->nh.raw  += offset;
1178 	skb->mac.raw += offset;
1179 	skb->tail    += offset;
1180 	skb->data    += offset;
1181 
1182 	/* We are no longer a clone, even if we were. */
1183 	skb->cloned    = 0;
1184 
1185 	skb->tail     += skb->data_len;
1186 	skb->data_len  = 0;
1187 	return 0;
1188 }
1189 
1190 #define HARD_TX_LOCK(dev, cpu) {			\
1191 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
1192 		spin_lock(&dev->xmit_lock);		\
1193 		dev->xmit_lock_owner = cpu;		\
1194 	}						\
1195 }
1196 
1197 #define HARD_TX_UNLOCK(dev) {				\
1198 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
1199 		dev->xmit_lock_owner = -1;		\
1200 		spin_unlock(&dev->xmit_lock);		\
1201 	}						\
1202 }
1203 
1204 /**
1205  *	dev_queue_xmit - transmit a buffer
1206  *	@skb: buffer to transmit
1207  *
1208  *	Queue a buffer for transmission to a network device. The caller must
1209  *	have set the device and priority and built the buffer before calling
1210  *	this function. The function can be called from an interrupt.
1211  *
1212  *	A negative errno code is returned on a failure. A success does not
1213  *	guarantee the frame will be transmitted as it may be dropped due
1214  *	to congestion or traffic shaping.
1215  *
1216  * -----------------------------------------------------------------------------------
1217  *      I notice this method can also return errors from the queue disciplines,
1218  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1219  *      be positive.
1220  *
1221  *      Regardless of the return value, the skb is consumed, so it is currently
1222  *      difficult to retry a send to this method.  (You can bump the ref count
1223  *      before sending to hold a reference for retry if you are careful.)
1224  *
1225  *      When calling this method, interrupts MUST be enabled.  This is because
1226  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1227  *          --BLG
1228  */
1229 
1230 int dev_queue_xmit(struct sk_buff *skb)
1231 {
1232 	struct net_device *dev = skb->dev;
1233 	struct Qdisc *q;
1234 	int rc = -ENOMEM;
1235 
1236 	if (skb_shinfo(skb)->frag_list &&
1237 	    !(dev->features & NETIF_F_FRAGLIST) &&
1238 	    __skb_linearize(skb, GFP_ATOMIC))
1239 		goto out_kfree_skb;
1240 
1241 	/* Fragmented skb is linearized if device does not support SG,
1242 	 * or if at least one of fragments is in highmem and device
1243 	 * does not support DMA from it.
1244 	 */
1245 	if (skb_shinfo(skb)->nr_frags &&
1246 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1247 	    __skb_linearize(skb, GFP_ATOMIC))
1248 		goto out_kfree_skb;
1249 
1250 	/* If packet is not checksummed and device does not support
1251 	 * checksumming for this protocol, complete checksumming here.
1252 	 */
1253 	if (skb->ip_summed == CHECKSUM_HW &&
1254 	    (!(dev->features & (NETIF_F_HW_CSUM | NETIF_F_NO_CSUM)) &&
1255 	     (!(dev->features & NETIF_F_IP_CSUM) ||
1256 	      skb->protocol != htons(ETH_P_IP))))
1257 	      	if (skb_checksum_help(skb, 0))
1258 	      		goto out_kfree_skb;
1259 
1260 	/* Disable soft irqs for various locks below. Also
1261 	 * stops preemption for RCU.
1262 	 */
1263 	local_bh_disable();
1264 
1265 	/* Updates of qdisc are serialized by queue_lock.
1266 	 * The struct Qdisc which is pointed to by qdisc is now a
1267 	 * rcu structure - it may be accessed without acquiring
1268 	 * a lock (but the structure may be stale.) The freeing of the
1269 	 * qdisc will be deferred until it's known that there are no
1270 	 * more references to it.
1271 	 *
1272 	 * If the qdisc has an enqueue function, we still need to
1273 	 * hold the queue_lock before calling it, since queue_lock
1274 	 * also serializes access to the device queue.
1275 	 */
1276 
1277 	q = rcu_dereference(dev->qdisc);
1278 #ifdef CONFIG_NET_CLS_ACT
1279 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1280 #endif
1281 	if (q->enqueue) {
1282 		/* Grab device queue */
1283 		spin_lock(&dev->queue_lock);
1284 
1285 		rc = q->enqueue(skb, q);
1286 
1287 		qdisc_run(dev);
1288 
1289 		spin_unlock(&dev->queue_lock);
1290 		rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1291 		goto out;
1292 	}
1293 
1294 	/* The device has no queue. Common case for software devices:
1295 	   loopback, all the sorts of tunnels...
1296 
1297 	   Really, it is unlikely that xmit_lock protection is necessary here.
1298 	   (f.e. loopback and IP tunnels are clean ignoring statistics
1299 	   counters.)
1300 	   However, it is possible, that they rely on protection
1301 	   made by us here.
1302 
1303 	   Check this and shot the lock. It is not prone from deadlocks.
1304 	   Either shot noqueue qdisc, it is even simpler 8)
1305 	 */
1306 	if (dev->flags & IFF_UP) {
1307 		int cpu = smp_processor_id(); /* ok because BHs are off */
1308 
1309 		if (dev->xmit_lock_owner != cpu) {
1310 
1311 			HARD_TX_LOCK(dev, cpu);
1312 
1313 			if (!netif_queue_stopped(dev)) {
1314 				if (netdev_nit)
1315 					dev_queue_xmit_nit(skb, dev);
1316 
1317 				rc = 0;
1318 				if (!dev->hard_start_xmit(skb, dev)) {
1319 					HARD_TX_UNLOCK(dev);
1320 					goto out;
1321 				}
1322 			}
1323 			HARD_TX_UNLOCK(dev);
1324 			if (net_ratelimit())
1325 				printk(KERN_CRIT "Virtual device %s asks to "
1326 				       "queue packet!\n", dev->name);
1327 		} else {
1328 			/* Recursion is detected! It is possible,
1329 			 * unfortunately */
1330 			if (net_ratelimit())
1331 				printk(KERN_CRIT "Dead loop on virtual device "
1332 				       "%s, fix it urgently!\n", dev->name);
1333 		}
1334 	}
1335 
1336 	rc = -ENETDOWN;
1337 	local_bh_enable();
1338 
1339 out_kfree_skb:
1340 	kfree_skb(skb);
1341 	return rc;
1342 out:
1343 	local_bh_enable();
1344 	return rc;
1345 }
1346 
1347 
1348 /*=======================================================================
1349 			Receiver routines
1350   =======================================================================*/
1351 
1352 int netdev_max_backlog = 1000;
1353 int netdev_budget = 300;
1354 int weight_p = 64;            /* old backlog weight */
1355 
1356 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1357 
1358 
1359 /**
1360  *	netif_rx	-	post buffer to the network code
1361  *	@skb: buffer to post
1362  *
1363  *	This function receives a packet from a device driver and queues it for
1364  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1365  *	may be dropped during processing for congestion control or by the
1366  *	protocol layers.
1367  *
1368  *	return values:
1369  *	NET_RX_SUCCESS	(no congestion)
1370  *	NET_RX_CN_LOW   (low congestion)
1371  *	NET_RX_CN_MOD   (moderate congestion)
1372  *	NET_RX_CN_HIGH  (high congestion)
1373  *	NET_RX_DROP     (packet was dropped)
1374  *
1375  */
1376 
1377 int netif_rx(struct sk_buff *skb)
1378 {
1379 	struct softnet_data *queue;
1380 	unsigned long flags;
1381 
1382 	/* if netpoll wants it, pretend we never saw it */
1383 	if (netpoll_rx(skb))
1384 		return NET_RX_DROP;
1385 
1386 	if (!skb->tstamp.off_sec)
1387 		net_timestamp(skb);
1388 
1389 	/*
1390 	 * The code is rearranged so that the path is the most
1391 	 * short when CPU is congested, but is still operating.
1392 	 */
1393 	local_irq_save(flags);
1394 	queue = &__get_cpu_var(softnet_data);
1395 
1396 	__get_cpu_var(netdev_rx_stat).total++;
1397 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1398 		if (queue->input_pkt_queue.qlen) {
1399 enqueue:
1400 			dev_hold(skb->dev);
1401 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1402 			local_irq_restore(flags);
1403 			return NET_RX_SUCCESS;
1404 		}
1405 
1406 		netif_rx_schedule(&queue->backlog_dev);
1407 		goto enqueue;
1408 	}
1409 
1410 	__get_cpu_var(netdev_rx_stat).dropped++;
1411 	local_irq_restore(flags);
1412 
1413 	kfree_skb(skb);
1414 	return NET_RX_DROP;
1415 }
1416 
1417 int netif_rx_ni(struct sk_buff *skb)
1418 {
1419 	int err;
1420 
1421 	preempt_disable();
1422 	err = netif_rx(skb);
1423 	if (local_softirq_pending())
1424 		do_softirq();
1425 	preempt_enable();
1426 
1427 	return err;
1428 }
1429 
1430 EXPORT_SYMBOL(netif_rx_ni);
1431 
1432 static inline struct net_device *skb_bond(struct sk_buff *skb)
1433 {
1434 	struct net_device *dev = skb->dev;
1435 
1436 	if (dev->master)
1437 		skb->dev = dev->master;
1438 
1439 	return dev;
1440 }
1441 
1442 static void net_tx_action(struct softirq_action *h)
1443 {
1444 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1445 
1446 	if (sd->completion_queue) {
1447 		struct sk_buff *clist;
1448 
1449 		local_irq_disable();
1450 		clist = sd->completion_queue;
1451 		sd->completion_queue = NULL;
1452 		local_irq_enable();
1453 
1454 		while (clist) {
1455 			struct sk_buff *skb = clist;
1456 			clist = clist->next;
1457 
1458 			BUG_TRAP(!atomic_read(&skb->users));
1459 			__kfree_skb(skb);
1460 		}
1461 	}
1462 
1463 	if (sd->output_queue) {
1464 		struct net_device *head;
1465 
1466 		local_irq_disable();
1467 		head = sd->output_queue;
1468 		sd->output_queue = NULL;
1469 		local_irq_enable();
1470 
1471 		while (head) {
1472 			struct net_device *dev = head;
1473 			head = head->next_sched;
1474 
1475 			smp_mb__before_clear_bit();
1476 			clear_bit(__LINK_STATE_SCHED, &dev->state);
1477 
1478 			if (spin_trylock(&dev->queue_lock)) {
1479 				qdisc_run(dev);
1480 				spin_unlock(&dev->queue_lock);
1481 			} else {
1482 				netif_schedule(dev);
1483 			}
1484 		}
1485 	}
1486 }
1487 
1488 static __inline__ int deliver_skb(struct sk_buff *skb,
1489 				  struct packet_type *pt_prev,
1490 				  struct net_device *orig_dev)
1491 {
1492 	atomic_inc(&skb->users);
1493 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1494 }
1495 
1496 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1497 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb);
1498 struct net_bridge;
1499 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1500 						unsigned char *addr);
1501 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent);
1502 
1503 static __inline__ int handle_bridge(struct sk_buff **pskb,
1504 				    struct packet_type **pt_prev, int *ret,
1505 				    struct net_device *orig_dev)
1506 {
1507 	struct net_bridge_port *port;
1508 
1509 	if ((*pskb)->pkt_type == PACKET_LOOPBACK ||
1510 	    (port = rcu_dereference((*pskb)->dev->br_port)) == NULL)
1511 		return 0;
1512 
1513 	if (*pt_prev) {
1514 		*ret = deliver_skb(*pskb, *pt_prev, orig_dev);
1515 		*pt_prev = NULL;
1516 	}
1517 
1518 	return br_handle_frame_hook(port, pskb);
1519 }
1520 #else
1521 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(0)
1522 #endif
1523 
1524 #ifdef CONFIG_NET_CLS_ACT
1525 /* TODO: Maybe we should just force sch_ingress to be compiled in
1526  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1527  * a compare and 2 stores extra right now if we dont have it on
1528  * but have CONFIG_NET_CLS_ACT
1529  * NOTE: This doesnt stop any functionality; if you dont have
1530  * the ingress scheduler, you just cant add policies on ingress.
1531  *
1532  */
1533 static int ing_filter(struct sk_buff *skb)
1534 {
1535 	struct Qdisc *q;
1536 	struct net_device *dev = skb->dev;
1537 	int result = TC_ACT_OK;
1538 
1539 	if (dev->qdisc_ingress) {
1540 		__u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1541 		if (MAX_RED_LOOP < ttl++) {
1542 			printk("Redir loop detected Dropping packet (%s->%s)\n",
1543 				skb->input_dev->name, skb->dev->name);
1544 			return TC_ACT_SHOT;
1545 		}
1546 
1547 		skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1548 
1549 		skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
1550 
1551 		spin_lock(&dev->ingress_lock);
1552 		if ((q = dev->qdisc_ingress) != NULL)
1553 			result = q->enqueue(skb, q);
1554 		spin_unlock(&dev->ingress_lock);
1555 
1556 	}
1557 
1558 	return result;
1559 }
1560 #endif
1561 
1562 int netif_receive_skb(struct sk_buff *skb)
1563 {
1564 	struct packet_type *ptype, *pt_prev;
1565 	struct net_device *orig_dev;
1566 	int ret = NET_RX_DROP;
1567 	unsigned short type;
1568 
1569 	/* if we've gotten here through NAPI, check netpoll */
1570 	if (skb->dev->poll && netpoll_rx(skb))
1571 		return NET_RX_DROP;
1572 
1573 	if (!skb->tstamp.off_sec)
1574 		net_timestamp(skb);
1575 
1576 	if (!skb->input_dev)
1577 		skb->input_dev = skb->dev;
1578 
1579 	orig_dev = skb_bond(skb);
1580 
1581 	__get_cpu_var(netdev_rx_stat).total++;
1582 
1583 	skb->h.raw = skb->nh.raw = skb->data;
1584 	skb->mac_len = skb->nh.raw - skb->mac.raw;
1585 
1586 	pt_prev = NULL;
1587 
1588 	rcu_read_lock();
1589 
1590 #ifdef CONFIG_NET_CLS_ACT
1591 	if (skb->tc_verd & TC_NCLS) {
1592 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
1593 		goto ncls;
1594 	}
1595 #endif
1596 
1597 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1598 		if (!ptype->dev || ptype->dev == skb->dev) {
1599 			if (pt_prev)
1600 				ret = deliver_skb(skb, pt_prev, orig_dev);
1601 			pt_prev = ptype;
1602 		}
1603 	}
1604 
1605 #ifdef CONFIG_NET_CLS_ACT
1606 	if (pt_prev) {
1607 		ret = deliver_skb(skb, pt_prev, orig_dev);
1608 		pt_prev = NULL; /* noone else should process this after*/
1609 	} else {
1610 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1611 	}
1612 
1613 	ret = ing_filter(skb);
1614 
1615 	if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
1616 		kfree_skb(skb);
1617 		goto out;
1618 	}
1619 
1620 	skb->tc_verd = 0;
1621 ncls:
1622 #endif
1623 
1624 	handle_diverter(skb);
1625 
1626 	if (handle_bridge(&skb, &pt_prev, &ret, orig_dev))
1627 		goto out;
1628 
1629 	type = skb->protocol;
1630 	list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
1631 		if (ptype->type == type &&
1632 		    (!ptype->dev || ptype->dev == skb->dev)) {
1633 			if (pt_prev)
1634 				ret = deliver_skb(skb, pt_prev, orig_dev);
1635 			pt_prev = ptype;
1636 		}
1637 	}
1638 
1639 	if (pt_prev) {
1640 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1641 	} else {
1642 		kfree_skb(skb);
1643 		/* Jamal, now you will not able to escape explaining
1644 		 * me how you were going to use this. :-)
1645 		 */
1646 		ret = NET_RX_DROP;
1647 	}
1648 
1649 out:
1650 	rcu_read_unlock();
1651 	return ret;
1652 }
1653 
1654 static int process_backlog(struct net_device *backlog_dev, int *budget)
1655 {
1656 	int work = 0;
1657 	int quota = min(backlog_dev->quota, *budget);
1658 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
1659 	unsigned long start_time = jiffies;
1660 
1661 	backlog_dev->weight = weight_p;
1662 	for (;;) {
1663 		struct sk_buff *skb;
1664 		struct net_device *dev;
1665 
1666 		local_irq_disable();
1667 		skb = __skb_dequeue(&queue->input_pkt_queue);
1668 		if (!skb)
1669 			goto job_done;
1670 		local_irq_enable();
1671 
1672 		dev = skb->dev;
1673 
1674 		netif_receive_skb(skb);
1675 
1676 		dev_put(dev);
1677 
1678 		work++;
1679 
1680 		if (work >= quota || jiffies - start_time > 1)
1681 			break;
1682 
1683 	}
1684 
1685 	backlog_dev->quota -= work;
1686 	*budget -= work;
1687 	return -1;
1688 
1689 job_done:
1690 	backlog_dev->quota -= work;
1691 	*budget -= work;
1692 
1693 	list_del(&backlog_dev->poll_list);
1694 	smp_mb__before_clear_bit();
1695 	netif_poll_enable(backlog_dev);
1696 
1697 	local_irq_enable();
1698 	return 0;
1699 }
1700 
1701 static void net_rx_action(struct softirq_action *h)
1702 {
1703 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
1704 	unsigned long start_time = jiffies;
1705 	int budget = netdev_budget;
1706 	void *have;
1707 
1708 	local_irq_disable();
1709 
1710 	while (!list_empty(&queue->poll_list)) {
1711 		struct net_device *dev;
1712 
1713 		if (budget <= 0 || jiffies - start_time > 1)
1714 			goto softnet_break;
1715 
1716 		local_irq_enable();
1717 
1718 		dev = list_entry(queue->poll_list.next,
1719 				 struct net_device, poll_list);
1720 		have = netpoll_poll_lock(dev);
1721 
1722 		if (dev->quota <= 0 || dev->poll(dev, &budget)) {
1723 			netpoll_poll_unlock(have);
1724 			local_irq_disable();
1725 			list_del(&dev->poll_list);
1726 			list_add_tail(&dev->poll_list, &queue->poll_list);
1727 			if (dev->quota < 0)
1728 				dev->quota += dev->weight;
1729 			else
1730 				dev->quota = dev->weight;
1731 		} else {
1732 			netpoll_poll_unlock(have);
1733 			dev_put(dev);
1734 			local_irq_disable();
1735 		}
1736 	}
1737 out:
1738 	local_irq_enable();
1739 	return;
1740 
1741 softnet_break:
1742 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
1743 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
1744 	goto out;
1745 }
1746 
1747 static gifconf_func_t * gifconf_list [NPROTO];
1748 
1749 /**
1750  *	register_gifconf	-	register a SIOCGIF handler
1751  *	@family: Address family
1752  *	@gifconf: Function handler
1753  *
1754  *	Register protocol dependent address dumping routines. The handler
1755  *	that is passed must not be freed or reused until it has been replaced
1756  *	by another handler.
1757  */
1758 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
1759 {
1760 	if (family >= NPROTO)
1761 		return -EINVAL;
1762 	gifconf_list[family] = gifconf;
1763 	return 0;
1764 }
1765 
1766 
1767 /*
1768  *	Map an interface index to its name (SIOCGIFNAME)
1769  */
1770 
1771 /*
1772  *	We need this ioctl for efficient implementation of the
1773  *	if_indextoname() function required by the IPv6 API.  Without
1774  *	it, we would have to search all the interfaces to find a
1775  *	match.  --pb
1776  */
1777 
1778 static int dev_ifname(struct ifreq __user *arg)
1779 {
1780 	struct net_device *dev;
1781 	struct ifreq ifr;
1782 
1783 	/*
1784 	 *	Fetch the caller's info block.
1785 	 */
1786 
1787 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
1788 		return -EFAULT;
1789 
1790 	read_lock(&dev_base_lock);
1791 	dev = __dev_get_by_index(ifr.ifr_ifindex);
1792 	if (!dev) {
1793 		read_unlock(&dev_base_lock);
1794 		return -ENODEV;
1795 	}
1796 
1797 	strcpy(ifr.ifr_name, dev->name);
1798 	read_unlock(&dev_base_lock);
1799 
1800 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
1801 		return -EFAULT;
1802 	return 0;
1803 }
1804 
1805 /*
1806  *	Perform a SIOCGIFCONF call. This structure will change
1807  *	size eventually, and there is nothing I can do about it.
1808  *	Thus we will need a 'compatibility mode'.
1809  */
1810 
1811 static int dev_ifconf(char __user *arg)
1812 {
1813 	struct ifconf ifc;
1814 	struct net_device *dev;
1815 	char __user *pos;
1816 	int len;
1817 	int total;
1818 	int i;
1819 
1820 	/*
1821 	 *	Fetch the caller's info block.
1822 	 */
1823 
1824 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
1825 		return -EFAULT;
1826 
1827 	pos = ifc.ifc_buf;
1828 	len = ifc.ifc_len;
1829 
1830 	/*
1831 	 *	Loop over the interfaces, and write an info block for each.
1832 	 */
1833 
1834 	total = 0;
1835 	for (dev = dev_base; dev; dev = dev->next) {
1836 		for (i = 0; i < NPROTO; i++) {
1837 			if (gifconf_list[i]) {
1838 				int done;
1839 				if (!pos)
1840 					done = gifconf_list[i](dev, NULL, 0);
1841 				else
1842 					done = gifconf_list[i](dev, pos + total,
1843 							       len - total);
1844 				if (done < 0)
1845 					return -EFAULT;
1846 				total += done;
1847 			}
1848 		}
1849   	}
1850 
1851 	/*
1852 	 *	All done.  Write the updated control block back to the caller.
1853 	 */
1854 	ifc.ifc_len = total;
1855 
1856 	/*
1857 	 * 	Both BSD and Solaris return 0 here, so we do too.
1858 	 */
1859 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
1860 }
1861 
1862 #ifdef CONFIG_PROC_FS
1863 /*
1864  *	This is invoked by the /proc filesystem handler to display a device
1865  *	in detail.
1866  */
1867 static __inline__ struct net_device *dev_get_idx(loff_t pos)
1868 {
1869 	struct net_device *dev;
1870 	loff_t i;
1871 
1872 	for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next);
1873 
1874 	return i == pos ? dev : NULL;
1875 }
1876 
1877 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
1878 {
1879 	read_lock(&dev_base_lock);
1880 	return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN;
1881 }
1882 
1883 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1884 {
1885 	++*pos;
1886 	return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next;
1887 }
1888 
1889 void dev_seq_stop(struct seq_file *seq, void *v)
1890 {
1891 	read_unlock(&dev_base_lock);
1892 }
1893 
1894 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
1895 {
1896 	if (dev->get_stats) {
1897 		struct net_device_stats *stats = dev->get_stats(dev);
1898 
1899 		seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
1900 				"%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
1901 			   dev->name, stats->rx_bytes, stats->rx_packets,
1902 			   stats->rx_errors,
1903 			   stats->rx_dropped + stats->rx_missed_errors,
1904 			   stats->rx_fifo_errors,
1905 			   stats->rx_length_errors + stats->rx_over_errors +
1906 			     stats->rx_crc_errors + stats->rx_frame_errors,
1907 			   stats->rx_compressed, stats->multicast,
1908 			   stats->tx_bytes, stats->tx_packets,
1909 			   stats->tx_errors, stats->tx_dropped,
1910 			   stats->tx_fifo_errors, stats->collisions,
1911 			   stats->tx_carrier_errors +
1912 			     stats->tx_aborted_errors +
1913 			     stats->tx_window_errors +
1914 			     stats->tx_heartbeat_errors,
1915 			   stats->tx_compressed);
1916 	} else
1917 		seq_printf(seq, "%6s: No statistics available.\n", dev->name);
1918 }
1919 
1920 /*
1921  *	Called from the PROCfs module. This now uses the new arbitrary sized
1922  *	/proc/net interface to create /proc/net/dev
1923  */
1924 static int dev_seq_show(struct seq_file *seq, void *v)
1925 {
1926 	if (v == SEQ_START_TOKEN)
1927 		seq_puts(seq, "Inter-|   Receive                            "
1928 			      "                    |  Transmit\n"
1929 			      " face |bytes    packets errs drop fifo frame "
1930 			      "compressed multicast|bytes    packets errs "
1931 			      "drop fifo colls carrier compressed\n");
1932 	else
1933 		dev_seq_printf_stats(seq, v);
1934 	return 0;
1935 }
1936 
1937 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
1938 {
1939 	struct netif_rx_stats *rc = NULL;
1940 
1941 	while (*pos < NR_CPUS)
1942 	       	if (cpu_online(*pos)) {
1943 			rc = &per_cpu(netdev_rx_stat, *pos);
1944 			break;
1945 		} else
1946 			++*pos;
1947 	return rc;
1948 }
1949 
1950 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
1951 {
1952 	return softnet_get_online(pos);
1953 }
1954 
1955 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1956 {
1957 	++*pos;
1958 	return softnet_get_online(pos);
1959 }
1960 
1961 static void softnet_seq_stop(struct seq_file *seq, void *v)
1962 {
1963 }
1964 
1965 static int softnet_seq_show(struct seq_file *seq, void *v)
1966 {
1967 	struct netif_rx_stats *s = v;
1968 
1969 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
1970 		   s->total, s->dropped, s->time_squeeze, 0,
1971 		   0, 0, 0, 0, /* was fastroute */
1972 		   s->cpu_collision );
1973 	return 0;
1974 }
1975 
1976 static struct seq_operations dev_seq_ops = {
1977 	.start = dev_seq_start,
1978 	.next  = dev_seq_next,
1979 	.stop  = dev_seq_stop,
1980 	.show  = dev_seq_show,
1981 };
1982 
1983 static int dev_seq_open(struct inode *inode, struct file *file)
1984 {
1985 	return seq_open(file, &dev_seq_ops);
1986 }
1987 
1988 static struct file_operations dev_seq_fops = {
1989 	.owner	 = THIS_MODULE,
1990 	.open    = dev_seq_open,
1991 	.read    = seq_read,
1992 	.llseek  = seq_lseek,
1993 	.release = seq_release,
1994 };
1995 
1996 static struct seq_operations softnet_seq_ops = {
1997 	.start = softnet_seq_start,
1998 	.next  = softnet_seq_next,
1999 	.stop  = softnet_seq_stop,
2000 	.show  = softnet_seq_show,
2001 };
2002 
2003 static int softnet_seq_open(struct inode *inode, struct file *file)
2004 {
2005 	return seq_open(file, &softnet_seq_ops);
2006 }
2007 
2008 static struct file_operations softnet_seq_fops = {
2009 	.owner	 = THIS_MODULE,
2010 	.open    = softnet_seq_open,
2011 	.read    = seq_read,
2012 	.llseek  = seq_lseek,
2013 	.release = seq_release,
2014 };
2015 
2016 #ifdef WIRELESS_EXT
2017 extern int wireless_proc_init(void);
2018 #else
2019 #define wireless_proc_init() 0
2020 #endif
2021 
2022 static int __init dev_proc_init(void)
2023 {
2024 	int rc = -ENOMEM;
2025 
2026 	if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops))
2027 		goto out;
2028 	if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops))
2029 		goto out_dev;
2030 	if (wireless_proc_init())
2031 		goto out_softnet;
2032 	rc = 0;
2033 out:
2034 	return rc;
2035 out_softnet:
2036 	proc_net_remove("softnet_stat");
2037 out_dev:
2038 	proc_net_remove("dev");
2039 	goto out;
2040 }
2041 #else
2042 #define dev_proc_init() 0
2043 #endif	/* CONFIG_PROC_FS */
2044 
2045 
2046 /**
2047  *	netdev_set_master	-	set up master/slave pair
2048  *	@slave: slave device
2049  *	@master: new master device
2050  *
2051  *	Changes the master device of the slave. Pass %NULL to break the
2052  *	bonding. The caller must hold the RTNL semaphore. On a failure
2053  *	a negative errno code is returned. On success the reference counts
2054  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2055  *	function returns zero.
2056  */
2057 int netdev_set_master(struct net_device *slave, struct net_device *master)
2058 {
2059 	struct net_device *old = slave->master;
2060 
2061 	ASSERT_RTNL();
2062 
2063 	if (master) {
2064 		if (old)
2065 			return -EBUSY;
2066 		dev_hold(master);
2067 	}
2068 
2069 	slave->master = master;
2070 
2071 	synchronize_net();
2072 
2073 	if (old)
2074 		dev_put(old);
2075 
2076 	if (master)
2077 		slave->flags |= IFF_SLAVE;
2078 	else
2079 		slave->flags &= ~IFF_SLAVE;
2080 
2081 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2082 	return 0;
2083 }
2084 
2085 /**
2086  *	dev_set_promiscuity	- update promiscuity count on a device
2087  *	@dev: device
2088  *	@inc: modifier
2089  *
2090  *	Add or remove promsicuity from a device. While the count in the device
2091  *	remains above zero the interface remains promiscuous. Once it hits zero
2092  *	the device reverts back to normal filtering operation. A negative inc
2093  *	value is used to drop promiscuity on the device.
2094  */
2095 void dev_set_promiscuity(struct net_device *dev, int inc)
2096 {
2097 	unsigned short old_flags = dev->flags;
2098 
2099 	if ((dev->promiscuity += inc) == 0)
2100 		dev->flags &= ~IFF_PROMISC;
2101 	else
2102 		dev->flags |= IFF_PROMISC;
2103 	if (dev->flags != old_flags) {
2104 		dev_mc_upload(dev);
2105 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2106 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2107 		       					       "left");
2108 	}
2109 }
2110 
2111 /**
2112  *	dev_set_allmulti	- update allmulti count on a device
2113  *	@dev: device
2114  *	@inc: modifier
2115  *
2116  *	Add or remove reception of all multicast frames to a device. While the
2117  *	count in the device remains above zero the interface remains listening
2118  *	to all interfaces. Once it hits zero the device reverts back to normal
2119  *	filtering operation. A negative @inc value is used to drop the counter
2120  *	when releasing a resource needing all multicasts.
2121  */
2122 
2123 void dev_set_allmulti(struct net_device *dev, int inc)
2124 {
2125 	unsigned short old_flags = dev->flags;
2126 
2127 	dev->flags |= IFF_ALLMULTI;
2128 	if ((dev->allmulti += inc) == 0)
2129 		dev->flags &= ~IFF_ALLMULTI;
2130 	if (dev->flags ^ old_flags)
2131 		dev_mc_upload(dev);
2132 }
2133 
2134 unsigned dev_get_flags(const struct net_device *dev)
2135 {
2136 	unsigned flags;
2137 
2138 	flags = (dev->flags & ~(IFF_PROMISC |
2139 				IFF_ALLMULTI |
2140 				IFF_RUNNING)) |
2141 		(dev->gflags & (IFF_PROMISC |
2142 				IFF_ALLMULTI));
2143 
2144 	if (netif_running(dev) && netif_carrier_ok(dev))
2145 		flags |= IFF_RUNNING;
2146 
2147 	return flags;
2148 }
2149 
2150 int dev_change_flags(struct net_device *dev, unsigned flags)
2151 {
2152 	int ret;
2153 	int old_flags = dev->flags;
2154 
2155 	/*
2156 	 *	Set the flags on our device.
2157 	 */
2158 
2159 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
2160 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
2161 			       IFF_AUTOMEDIA)) |
2162 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
2163 				    IFF_ALLMULTI));
2164 
2165 	/*
2166 	 *	Load in the correct multicast list now the flags have changed.
2167 	 */
2168 
2169 	dev_mc_upload(dev);
2170 
2171 	/*
2172 	 *	Have we downed the interface. We handle IFF_UP ourselves
2173 	 *	according to user attempts to set it, rather than blindly
2174 	 *	setting it.
2175 	 */
2176 
2177 	ret = 0;
2178 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
2179 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
2180 
2181 		if (!ret)
2182 			dev_mc_upload(dev);
2183 	}
2184 
2185 	if (dev->flags & IFF_UP &&
2186 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
2187 					  IFF_VOLATILE)))
2188 		notifier_call_chain(&netdev_chain, NETDEV_CHANGE, dev);
2189 
2190 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
2191 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
2192 		dev->gflags ^= IFF_PROMISC;
2193 		dev_set_promiscuity(dev, inc);
2194 	}
2195 
2196 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
2197 	   is important. Some (broken) drivers set IFF_PROMISC, when
2198 	   IFF_ALLMULTI is requested not asking us and not reporting.
2199 	 */
2200 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
2201 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
2202 		dev->gflags ^= IFF_ALLMULTI;
2203 		dev_set_allmulti(dev, inc);
2204 	}
2205 
2206 	if (old_flags ^ dev->flags)
2207 		rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags);
2208 
2209 	return ret;
2210 }
2211 
2212 int dev_set_mtu(struct net_device *dev, int new_mtu)
2213 {
2214 	int err;
2215 
2216 	if (new_mtu == dev->mtu)
2217 		return 0;
2218 
2219 	/*	MTU must be positive.	 */
2220 	if (new_mtu < 0)
2221 		return -EINVAL;
2222 
2223 	if (!netif_device_present(dev))
2224 		return -ENODEV;
2225 
2226 	err = 0;
2227 	if (dev->change_mtu)
2228 		err = dev->change_mtu(dev, new_mtu);
2229 	else
2230 		dev->mtu = new_mtu;
2231 	if (!err && dev->flags & IFF_UP)
2232 		notifier_call_chain(&netdev_chain,
2233 				    NETDEV_CHANGEMTU, dev);
2234 	return err;
2235 }
2236 
2237 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
2238 {
2239 	int err;
2240 
2241 	if (!dev->set_mac_address)
2242 		return -EOPNOTSUPP;
2243 	if (sa->sa_family != dev->type)
2244 		return -EINVAL;
2245 	if (!netif_device_present(dev))
2246 		return -ENODEV;
2247 	err = dev->set_mac_address(dev, sa);
2248 	if (!err)
2249 		notifier_call_chain(&netdev_chain, NETDEV_CHANGEADDR, dev);
2250 	return err;
2251 }
2252 
2253 /*
2254  *	Perform the SIOCxIFxxx calls.
2255  */
2256 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd)
2257 {
2258 	int err;
2259 	struct net_device *dev = __dev_get_by_name(ifr->ifr_name);
2260 
2261 	if (!dev)
2262 		return -ENODEV;
2263 
2264 	switch (cmd) {
2265 		case SIOCGIFFLAGS:	/* Get interface flags */
2266 			ifr->ifr_flags = dev_get_flags(dev);
2267 			return 0;
2268 
2269 		case SIOCSIFFLAGS:	/* Set interface flags */
2270 			return dev_change_flags(dev, ifr->ifr_flags);
2271 
2272 		case SIOCGIFMETRIC:	/* Get the metric on the interface
2273 					   (currently unused) */
2274 			ifr->ifr_metric = 0;
2275 			return 0;
2276 
2277 		case SIOCSIFMETRIC:	/* Set the metric on the interface
2278 					   (currently unused) */
2279 			return -EOPNOTSUPP;
2280 
2281 		case SIOCGIFMTU:	/* Get the MTU of a device */
2282 			ifr->ifr_mtu = dev->mtu;
2283 			return 0;
2284 
2285 		case SIOCSIFMTU:	/* Set the MTU of a device */
2286 			return dev_set_mtu(dev, ifr->ifr_mtu);
2287 
2288 		case SIOCGIFHWADDR:
2289 			if (!dev->addr_len)
2290 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
2291 			else
2292 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
2293 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2294 			ifr->ifr_hwaddr.sa_family = dev->type;
2295 			return 0;
2296 
2297 		case SIOCSIFHWADDR:
2298 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
2299 
2300 		case SIOCSIFHWBROADCAST:
2301 			if (ifr->ifr_hwaddr.sa_family != dev->type)
2302 				return -EINVAL;
2303 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
2304 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2305 			notifier_call_chain(&netdev_chain,
2306 					    NETDEV_CHANGEADDR, dev);
2307 			return 0;
2308 
2309 		case SIOCGIFMAP:
2310 			ifr->ifr_map.mem_start = dev->mem_start;
2311 			ifr->ifr_map.mem_end   = dev->mem_end;
2312 			ifr->ifr_map.base_addr = dev->base_addr;
2313 			ifr->ifr_map.irq       = dev->irq;
2314 			ifr->ifr_map.dma       = dev->dma;
2315 			ifr->ifr_map.port      = dev->if_port;
2316 			return 0;
2317 
2318 		case SIOCSIFMAP:
2319 			if (dev->set_config) {
2320 				if (!netif_device_present(dev))
2321 					return -ENODEV;
2322 				return dev->set_config(dev, &ifr->ifr_map);
2323 			}
2324 			return -EOPNOTSUPP;
2325 
2326 		case SIOCADDMULTI:
2327 			if (!dev->set_multicast_list ||
2328 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2329 				return -EINVAL;
2330 			if (!netif_device_present(dev))
2331 				return -ENODEV;
2332 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
2333 					  dev->addr_len, 1);
2334 
2335 		case SIOCDELMULTI:
2336 			if (!dev->set_multicast_list ||
2337 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2338 				return -EINVAL;
2339 			if (!netif_device_present(dev))
2340 				return -ENODEV;
2341 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
2342 					     dev->addr_len, 1);
2343 
2344 		case SIOCGIFINDEX:
2345 			ifr->ifr_ifindex = dev->ifindex;
2346 			return 0;
2347 
2348 		case SIOCGIFTXQLEN:
2349 			ifr->ifr_qlen = dev->tx_queue_len;
2350 			return 0;
2351 
2352 		case SIOCSIFTXQLEN:
2353 			if (ifr->ifr_qlen < 0)
2354 				return -EINVAL;
2355 			dev->tx_queue_len = ifr->ifr_qlen;
2356 			return 0;
2357 
2358 		case SIOCSIFNAME:
2359 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
2360 			return dev_change_name(dev, ifr->ifr_newname);
2361 
2362 		/*
2363 		 *	Unknown or private ioctl
2364 		 */
2365 
2366 		default:
2367 			if ((cmd >= SIOCDEVPRIVATE &&
2368 			    cmd <= SIOCDEVPRIVATE + 15) ||
2369 			    cmd == SIOCBONDENSLAVE ||
2370 			    cmd == SIOCBONDRELEASE ||
2371 			    cmd == SIOCBONDSETHWADDR ||
2372 			    cmd == SIOCBONDSLAVEINFOQUERY ||
2373 			    cmd == SIOCBONDINFOQUERY ||
2374 			    cmd == SIOCBONDCHANGEACTIVE ||
2375 			    cmd == SIOCGMIIPHY ||
2376 			    cmd == SIOCGMIIREG ||
2377 			    cmd == SIOCSMIIREG ||
2378 			    cmd == SIOCBRADDIF ||
2379 			    cmd == SIOCBRDELIF ||
2380 			    cmd == SIOCWANDEV) {
2381 				err = -EOPNOTSUPP;
2382 				if (dev->do_ioctl) {
2383 					if (netif_device_present(dev))
2384 						err = dev->do_ioctl(dev, ifr,
2385 								    cmd);
2386 					else
2387 						err = -ENODEV;
2388 				}
2389 			} else
2390 				err = -EINVAL;
2391 
2392 	}
2393 	return err;
2394 }
2395 
2396 /*
2397  *	This function handles all "interface"-type I/O control requests. The actual
2398  *	'doing' part of this is dev_ifsioc above.
2399  */
2400 
2401 /**
2402  *	dev_ioctl	-	network device ioctl
2403  *	@cmd: command to issue
2404  *	@arg: pointer to a struct ifreq in user space
2405  *
2406  *	Issue ioctl functions to devices. This is normally called by the
2407  *	user space syscall interfaces but can sometimes be useful for
2408  *	other purposes. The return value is the return from the syscall if
2409  *	positive or a negative errno code on error.
2410  */
2411 
2412 int dev_ioctl(unsigned int cmd, void __user *arg)
2413 {
2414 	struct ifreq ifr;
2415 	int ret;
2416 	char *colon;
2417 
2418 	/* One special case: SIOCGIFCONF takes ifconf argument
2419 	   and requires shared lock, because it sleeps writing
2420 	   to user space.
2421 	 */
2422 
2423 	if (cmd == SIOCGIFCONF) {
2424 		rtnl_shlock();
2425 		ret = dev_ifconf((char __user *) arg);
2426 		rtnl_shunlock();
2427 		return ret;
2428 	}
2429 	if (cmd == SIOCGIFNAME)
2430 		return dev_ifname((struct ifreq __user *)arg);
2431 
2432 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2433 		return -EFAULT;
2434 
2435 	ifr.ifr_name[IFNAMSIZ-1] = 0;
2436 
2437 	colon = strchr(ifr.ifr_name, ':');
2438 	if (colon)
2439 		*colon = 0;
2440 
2441 	/*
2442 	 *	See which interface the caller is talking about.
2443 	 */
2444 
2445 	switch (cmd) {
2446 		/*
2447 		 *	These ioctl calls:
2448 		 *	- can be done by all.
2449 		 *	- atomic and do not require locking.
2450 		 *	- return a value
2451 		 */
2452 		case SIOCGIFFLAGS:
2453 		case SIOCGIFMETRIC:
2454 		case SIOCGIFMTU:
2455 		case SIOCGIFHWADDR:
2456 		case SIOCGIFSLAVE:
2457 		case SIOCGIFMAP:
2458 		case SIOCGIFINDEX:
2459 		case SIOCGIFTXQLEN:
2460 			dev_load(ifr.ifr_name);
2461 			read_lock(&dev_base_lock);
2462 			ret = dev_ifsioc(&ifr, cmd);
2463 			read_unlock(&dev_base_lock);
2464 			if (!ret) {
2465 				if (colon)
2466 					*colon = ':';
2467 				if (copy_to_user(arg, &ifr,
2468 						 sizeof(struct ifreq)))
2469 					ret = -EFAULT;
2470 			}
2471 			return ret;
2472 
2473 		case SIOCETHTOOL:
2474 			dev_load(ifr.ifr_name);
2475 			rtnl_lock();
2476 			ret = dev_ethtool(&ifr);
2477 			rtnl_unlock();
2478 			if (!ret) {
2479 				if (colon)
2480 					*colon = ':';
2481 				if (copy_to_user(arg, &ifr,
2482 						 sizeof(struct ifreq)))
2483 					ret = -EFAULT;
2484 			}
2485 			return ret;
2486 
2487 		/*
2488 		 *	These ioctl calls:
2489 		 *	- require superuser power.
2490 		 *	- require strict serialization.
2491 		 *	- return a value
2492 		 */
2493 		case SIOCGMIIPHY:
2494 		case SIOCGMIIREG:
2495 		case SIOCSIFNAME:
2496 			if (!capable(CAP_NET_ADMIN))
2497 				return -EPERM;
2498 			dev_load(ifr.ifr_name);
2499 			rtnl_lock();
2500 			ret = dev_ifsioc(&ifr, cmd);
2501 			rtnl_unlock();
2502 			if (!ret) {
2503 				if (colon)
2504 					*colon = ':';
2505 				if (copy_to_user(arg, &ifr,
2506 						 sizeof(struct ifreq)))
2507 					ret = -EFAULT;
2508 			}
2509 			return ret;
2510 
2511 		/*
2512 		 *	These ioctl calls:
2513 		 *	- require superuser power.
2514 		 *	- require strict serialization.
2515 		 *	- do not return a value
2516 		 */
2517 		case SIOCSIFFLAGS:
2518 		case SIOCSIFMETRIC:
2519 		case SIOCSIFMTU:
2520 		case SIOCSIFMAP:
2521 		case SIOCSIFHWADDR:
2522 		case SIOCSIFSLAVE:
2523 		case SIOCADDMULTI:
2524 		case SIOCDELMULTI:
2525 		case SIOCSIFHWBROADCAST:
2526 		case SIOCSIFTXQLEN:
2527 		case SIOCSMIIREG:
2528 		case SIOCBONDENSLAVE:
2529 		case SIOCBONDRELEASE:
2530 		case SIOCBONDSETHWADDR:
2531 		case SIOCBONDSLAVEINFOQUERY:
2532 		case SIOCBONDINFOQUERY:
2533 		case SIOCBONDCHANGEACTIVE:
2534 		case SIOCBRADDIF:
2535 		case SIOCBRDELIF:
2536 			if (!capable(CAP_NET_ADMIN))
2537 				return -EPERM;
2538 			dev_load(ifr.ifr_name);
2539 			rtnl_lock();
2540 			ret = dev_ifsioc(&ifr, cmd);
2541 			rtnl_unlock();
2542 			return ret;
2543 
2544 		case SIOCGIFMEM:
2545 			/* Get the per device memory space. We can add this but
2546 			 * currently do not support it */
2547 		case SIOCSIFMEM:
2548 			/* Set the per device memory buffer space.
2549 			 * Not applicable in our case */
2550 		case SIOCSIFLINK:
2551 			return -EINVAL;
2552 
2553 		/*
2554 		 *	Unknown or private ioctl.
2555 		 */
2556 		default:
2557 			if (cmd == SIOCWANDEV ||
2558 			    (cmd >= SIOCDEVPRIVATE &&
2559 			     cmd <= SIOCDEVPRIVATE + 15)) {
2560 				dev_load(ifr.ifr_name);
2561 				rtnl_lock();
2562 				ret = dev_ifsioc(&ifr, cmd);
2563 				rtnl_unlock();
2564 				if (!ret && copy_to_user(arg, &ifr,
2565 							 sizeof(struct ifreq)))
2566 					ret = -EFAULT;
2567 				return ret;
2568 			}
2569 #ifdef WIRELESS_EXT
2570 			/* Take care of Wireless Extensions */
2571 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
2572 				/* If command is `set a parameter', or
2573 				 * `get the encoding parameters', check if
2574 				 * the user has the right to do it */
2575 				if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE) {
2576 					if (!capable(CAP_NET_ADMIN))
2577 						return -EPERM;
2578 				}
2579 				dev_load(ifr.ifr_name);
2580 				rtnl_lock();
2581 				/* Follow me in net/core/wireless.c */
2582 				ret = wireless_process_ioctl(&ifr, cmd);
2583 				rtnl_unlock();
2584 				if (IW_IS_GET(cmd) &&
2585 				    copy_to_user(arg, &ifr,
2586 					    	 sizeof(struct ifreq)))
2587 					ret = -EFAULT;
2588 				return ret;
2589 			}
2590 #endif	/* WIRELESS_EXT */
2591 			return -EINVAL;
2592 	}
2593 }
2594 
2595 
2596 /**
2597  *	dev_new_index	-	allocate an ifindex
2598  *
2599  *	Returns a suitable unique value for a new device interface
2600  *	number.  The caller must hold the rtnl semaphore or the
2601  *	dev_base_lock to be sure it remains unique.
2602  */
2603 static int dev_new_index(void)
2604 {
2605 	static int ifindex;
2606 	for (;;) {
2607 		if (++ifindex <= 0)
2608 			ifindex = 1;
2609 		if (!__dev_get_by_index(ifindex))
2610 			return ifindex;
2611 	}
2612 }
2613 
2614 static int dev_boot_phase = 1;
2615 
2616 /* Delayed registration/unregisteration */
2617 static DEFINE_SPINLOCK(net_todo_list_lock);
2618 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
2619 
2620 static inline void net_set_todo(struct net_device *dev)
2621 {
2622 	spin_lock(&net_todo_list_lock);
2623 	list_add_tail(&dev->todo_list, &net_todo_list);
2624 	spin_unlock(&net_todo_list_lock);
2625 }
2626 
2627 /**
2628  *	register_netdevice	- register a network device
2629  *	@dev: device to register
2630  *
2631  *	Take a completed network device structure and add it to the kernel
2632  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
2633  *	chain. 0 is returned on success. A negative errno code is returned
2634  *	on a failure to set up the device, or if the name is a duplicate.
2635  *
2636  *	Callers must hold the rtnl semaphore. You may want
2637  *	register_netdev() instead of this.
2638  *
2639  *	BUGS:
2640  *	The locking appears insufficient to guarantee two parallel registers
2641  *	will not get the same name.
2642  */
2643 
2644 int register_netdevice(struct net_device *dev)
2645 {
2646 	struct hlist_head *head;
2647 	struct hlist_node *p;
2648 	int ret;
2649 
2650 	BUG_ON(dev_boot_phase);
2651 	ASSERT_RTNL();
2652 
2653 	/* When net_device's are persistent, this will be fatal. */
2654 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
2655 
2656 	spin_lock_init(&dev->queue_lock);
2657 	spin_lock_init(&dev->xmit_lock);
2658 	dev->xmit_lock_owner = -1;
2659 #ifdef CONFIG_NET_CLS_ACT
2660 	spin_lock_init(&dev->ingress_lock);
2661 #endif
2662 
2663 	ret = alloc_divert_blk(dev);
2664 	if (ret)
2665 		goto out;
2666 
2667 	dev->iflink = -1;
2668 
2669 	/* Init, if this function is available */
2670 	if (dev->init) {
2671 		ret = dev->init(dev);
2672 		if (ret) {
2673 			if (ret > 0)
2674 				ret = -EIO;
2675 			goto out_err;
2676 		}
2677 	}
2678 
2679 	if (!dev_valid_name(dev->name)) {
2680 		ret = -EINVAL;
2681 		goto out_err;
2682 	}
2683 
2684 	dev->ifindex = dev_new_index();
2685 	if (dev->iflink == -1)
2686 		dev->iflink = dev->ifindex;
2687 
2688 	/* Check for existence of name */
2689 	head = dev_name_hash(dev->name);
2690 	hlist_for_each(p, head) {
2691 		struct net_device *d
2692 			= hlist_entry(p, struct net_device, name_hlist);
2693 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
2694 			ret = -EEXIST;
2695  			goto out_err;
2696 		}
2697  	}
2698 
2699 	/* Fix illegal SG+CSUM combinations. */
2700 	if ((dev->features & NETIF_F_SG) &&
2701 	    !(dev->features & (NETIF_F_IP_CSUM |
2702 			       NETIF_F_NO_CSUM |
2703 			       NETIF_F_HW_CSUM))) {
2704 		printk("%s: Dropping NETIF_F_SG since no checksum feature.\n",
2705 		       dev->name);
2706 		dev->features &= ~NETIF_F_SG;
2707 	}
2708 
2709 	/* TSO requires that SG is present as well. */
2710 	if ((dev->features & NETIF_F_TSO) &&
2711 	    !(dev->features & NETIF_F_SG)) {
2712 		printk("%s: Dropping NETIF_F_TSO since no SG feature.\n",
2713 		       dev->name);
2714 		dev->features &= ~NETIF_F_TSO;
2715 	}
2716 
2717 	/*
2718 	 *	nil rebuild_header routine,
2719 	 *	that should be never called and used as just bug trap.
2720 	 */
2721 
2722 	if (!dev->rebuild_header)
2723 		dev->rebuild_header = default_rebuild_header;
2724 
2725 	/*
2726 	 *	Default initial state at registry is that the
2727 	 *	device is present.
2728 	 */
2729 
2730 	set_bit(__LINK_STATE_PRESENT, &dev->state);
2731 
2732 	dev->next = NULL;
2733 	dev_init_scheduler(dev);
2734 	write_lock_bh(&dev_base_lock);
2735 	*dev_tail = dev;
2736 	dev_tail = &dev->next;
2737 	hlist_add_head(&dev->name_hlist, head);
2738 	hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex));
2739 	dev_hold(dev);
2740 	dev->reg_state = NETREG_REGISTERING;
2741 	write_unlock_bh(&dev_base_lock);
2742 
2743 	/* Notify protocols, that a new device appeared. */
2744 	notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);
2745 
2746 	/* Finish registration after unlock */
2747 	net_set_todo(dev);
2748 	ret = 0;
2749 
2750 out:
2751 	return ret;
2752 out_err:
2753 	free_divert_blk(dev);
2754 	goto out;
2755 }
2756 
2757 /**
2758  *	register_netdev	- register a network device
2759  *	@dev: device to register
2760  *
2761  *	Take a completed network device structure and add it to the kernel
2762  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
2763  *	chain. 0 is returned on success. A negative errno code is returned
2764  *	on a failure to set up the device, or if the name is a duplicate.
2765  *
2766  *	This is a wrapper around register_netdev that takes the rtnl semaphore
2767  *	and expands the device name if you passed a format string to
2768  *	alloc_netdev.
2769  */
2770 int register_netdev(struct net_device *dev)
2771 {
2772 	int err;
2773 
2774 	rtnl_lock();
2775 
2776 	/*
2777 	 * If the name is a format string the caller wants us to do a
2778 	 * name allocation.
2779 	 */
2780 	if (strchr(dev->name, '%')) {
2781 		err = dev_alloc_name(dev, dev->name);
2782 		if (err < 0)
2783 			goto out;
2784 	}
2785 
2786 	/*
2787 	 * Back compatibility hook. Kill this one in 2.5
2788 	 */
2789 	if (dev->name[0] == 0 || dev->name[0] == ' ') {
2790 		err = dev_alloc_name(dev, "eth%d");
2791 		if (err < 0)
2792 			goto out;
2793 	}
2794 
2795 	err = register_netdevice(dev);
2796 out:
2797 	rtnl_unlock();
2798 	return err;
2799 }
2800 EXPORT_SYMBOL(register_netdev);
2801 
2802 /*
2803  * netdev_wait_allrefs - wait until all references are gone.
2804  *
2805  * This is called when unregistering network devices.
2806  *
2807  * Any protocol or device that holds a reference should register
2808  * for netdevice notification, and cleanup and put back the
2809  * reference if they receive an UNREGISTER event.
2810  * We can get stuck here if buggy protocols don't correctly
2811  * call dev_put.
2812  */
2813 static void netdev_wait_allrefs(struct net_device *dev)
2814 {
2815 	unsigned long rebroadcast_time, warning_time;
2816 
2817 	rebroadcast_time = warning_time = jiffies;
2818 	while (atomic_read(&dev->refcnt) != 0) {
2819 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
2820 			rtnl_shlock();
2821 
2822 			/* Rebroadcast unregister notification */
2823 			notifier_call_chain(&netdev_chain,
2824 					    NETDEV_UNREGISTER, dev);
2825 
2826 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
2827 				     &dev->state)) {
2828 				/* We must not have linkwatch events
2829 				 * pending on unregister. If this
2830 				 * happens, we simply run the queue
2831 				 * unscheduled, resulting in a noop
2832 				 * for this device.
2833 				 */
2834 				linkwatch_run_queue();
2835 			}
2836 
2837 			rtnl_shunlock();
2838 
2839 			rebroadcast_time = jiffies;
2840 		}
2841 
2842 		msleep(250);
2843 
2844 		if (time_after(jiffies, warning_time + 10 * HZ)) {
2845 			printk(KERN_EMERG "unregister_netdevice: "
2846 			       "waiting for %s to become free. Usage "
2847 			       "count = %d\n",
2848 			       dev->name, atomic_read(&dev->refcnt));
2849 			warning_time = jiffies;
2850 		}
2851 	}
2852 }
2853 
2854 /* The sequence is:
2855  *
2856  *	rtnl_lock();
2857  *	...
2858  *	register_netdevice(x1);
2859  *	register_netdevice(x2);
2860  *	...
2861  *	unregister_netdevice(y1);
2862  *	unregister_netdevice(y2);
2863  *      ...
2864  *	rtnl_unlock();
2865  *	free_netdev(y1);
2866  *	free_netdev(y2);
2867  *
2868  * We are invoked by rtnl_unlock() after it drops the semaphore.
2869  * This allows us to deal with problems:
2870  * 1) We can create/delete sysfs objects which invoke hotplug
2871  *    without deadlocking with linkwatch via keventd.
2872  * 2) Since we run with the RTNL semaphore not held, we can sleep
2873  *    safely in order to wait for the netdev refcnt to drop to zero.
2874  */
2875 static DECLARE_MUTEX(net_todo_run_mutex);
2876 void netdev_run_todo(void)
2877 {
2878 	struct list_head list = LIST_HEAD_INIT(list);
2879 	int err;
2880 
2881 
2882 	/* Need to guard against multiple cpu's getting out of order. */
2883 	down(&net_todo_run_mutex);
2884 
2885 	/* Not safe to do outside the semaphore.  We must not return
2886 	 * until all unregister events invoked by the local processor
2887 	 * have been completed (either by this todo run, or one on
2888 	 * another cpu).
2889 	 */
2890 	if (list_empty(&net_todo_list))
2891 		goto out;
2892 
2893 	/* Snapshot list, allow later requests */
2894 	spin_lock(&net_todo_list_lock);
2895 	list_splice_init(&net_todo_list, &list);
2896 	spin_unlock(&net_todo_list_lock);
2897 
2898 	while (!list_empty(&list)) {
2899 		struct net_device *dev
2900 			= list_entry(list.next, struct net_device, todo_list);
2901 		list_del(&dev->todo_list);
2902 
2903 		switch(dev->reg_state) {
2904 		case NETREG_REGISTERING:
2905 			err = netdev_register_sysfs(dev);
2906 			if (err)
2907 				printk(KERN_ERR "%s: failed sysfs registration (%d)\n",
2908 				       dev->name, err);
2909 			dev->reg_state = NETREG_REGISTERED;
2910 			break;
2911 
2912 		case NETREG_UNREGISTERING:
2913 			netdev_unregister_sysfs(dev);
2914 			dev->reg_state = NETREG_UNREGISTERED;
2915 
2916 			netdev_wait_allrefs(dev);
2917 
2918 			/* paranoia */
2919 			BUG_ON(atomic_read(&dev->refcnt));
2920 			BUG_TRAP(!dev->ip_ptr);
2921 			BUG_TRAP(!dev->ip6_ptr);
2922 			BUG_TRAP(!dev->dn_ptr);
2923 
2924 
2925 			/* It must be the very last action,
2926 			 * after this 'dev' may point to freed up memory.
2927 			 */
2928 			if (dev->destructor)
2929 				dev->destructor(dev);
2930 			break;
2931 
2932 		default:
2933 			printk(KERN_ERR "network todo '%s' but state %d\n",
2934 			       dev->name, dev->reg_state);
2935 			break;
2936 		}
2937 	}
2938 
2939 out:
2940 	up(&net_todo_run_mutex);
2941 }
2942 
2943 /**
2944  *	alloc_netdev - allocate network device
2945  *	@sizeof_priv:	size of private data to allocate space for
2946  *	@name:		device name format string
2947  *	@setup:		callback to initialize device
2948  *
2949  *	Allocates a struct net_device with private data area for driver use
2950  *	and performs basic initialization.
2951  */
2952 struct net_device *alloc_netdev(int sizeof_priv, const char *name,
2953 		void (*setup)(struct net_device *))
2954 {
2955 	void *p;
2956 	struct net_device *dev;
2957 	int alloc_size;
2958 
2959 	/* ensure 32-byte alignment of both the device and private area */
2960 	alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
2961 	alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
2962 
2963 	p = kmalloc(alloc_size, GFP_KERNEL);
2964 	if (!p) {
2965 		printk(KERN_ERR "alloc_dev: Unable to allocate device.\n");
2966 		return NULL;
2967 	}
2968 	memset(p, 0, alloc_size);
2969 
2970 	dev = (struct net_device *)
2971 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
2972 	dev->padded = (char *)dev - (char *)p;
2973 
2974 	if (sizeof_priv)
2975 		dev->priv = netdev_priv(dev);
2976 
2977 	setup(dev);
2978 	strcpy(dev->name, name);
2979 	return dev;
2980 }
2981 EXPORT_SYMBOL(alloc_netdev);
2982 
2983 /**
2984  *	free_netdev - free network device
2985  *	@dev: device
2986  *
2987  *	This function does the last stage of destroying an allocated device
2988  * 	interface. The reference to the device object is released.
2989  *	If this is the last reference then it will be freed.
2990  */
2991 void free_netdev(struct net_device *dev)
2992 {
2993 #ifdef CONFIG_SYSFS
2994 	/*  Compatiablity with error handling in drivers */
2995 	if (dev->reg_state == NETREG_UNINITIALIZED) {
2996 		kfree((char *)dev - dev->padded);
2997 		return;
2998 	}
2999 
3000 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3001 	dev->reg_state = NETREG_RELEASED;
3002 
3003 	/* will free via class release */
3004 	class_device_put(&dev->class_dev);
3005 #else
3006 	kfree((char *)dev - dev->padded);
3007 #endif
3008 }
3009 
3010 /* Synchronize with packet receive processing. */
3011 void synchronize_net(void)
3012 {
3013 	might_sleep();
3014 	synchronize_rcu();
3015 }
3016 
3017 /**
3018  *	unregister_netdevice - remove device from the kernel
3019  *	@dev: device
3020  *
3021  *	This function shuts down a device interface and removes it
3022  *	from the kernel tables. On success 0 is returned, on a failure
3023  *	a negative errno code is returned.
3024  *
3025  *	Callers must hold the rtnl semaphore.  You may want
3026  *	unregister_netdev() instead of this.
3027  */
3028 
3029 int unregister_netdevice(struct net_device *dev)
3030 {
3031 	struct net_device *d, **dp;
3032 
3033 	BUG_ON(dev_boot_phase);
3034 	ASSERT_RTNL();
3035 
3036 	/* Some devices call without registering for initialization unwind. */
3037 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3038 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3039 				  "was registered\n", dev->name, dev);
3040 		return -ENODEV;
3041 	}
3042 
3043 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3044 
3045 	/* If device is running, close it first. */
3046 	if (dev->flags & IFF_UP)
3047 		dev_close(dev);
3048 
3049 	/* And unlink it from device chain. */
3050 	for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) {
3051 		if (d == dev) {
3052 			write_lock_bh(&dev_base_lock);
3053 			hlist_del(&dev->name_hlist);
3054 			hlist_del(&dev->index_hlist);
3055 			if (dev_tail == &dev->next)
3056 				dev_tail = dp;
3057 			*dp = d->next;
3058 			write_unlock_bh(&dev_base_lock);
3059 			break;
3060 		}
3061 	}
3062 	if (!d) {
3063 		printk(KERN_ERR "unregister net_device: '%s' not found\n",
3064 		       dev->name);
3065 		return -ENODEV;
3066 	}
3067 
3068 	dev->reg_state = NETREG_UNREGISTERING;
3069 
3070 	synchronize_net();
3071 
3072 	/* Shutdown queueing discipline. */
3073 	dev_shutdown(dev);
3074 
3075 
3076 	/* Notify protocols, that we are about to destroy
3077 	   this device. They should clean all the things.
3078 	*/
3079 	notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
3080 
3081 	/*
3082 	 *	Flush the multicast chain
3083 	 */
3084 	dev_mc_discard(dev);
3085 
3086 	if (dev->uninit)
3087 		dev->uninit(dev);
3088 
3089 	/* Notifier chain MUST detach us from master device. */
3090 	BUG_TRAP(!dev->master);
3091 
3092 	free_divert_blk(dev);
3093 
3094 	/* Finish processing unregister after unlock */
3095 	net_set_todo(dev);
3096 
3097 	synchronize_net();
3098 
3099 	dev_put(dev);
3100 	return 0;
3101 }
3102 
3103 /**
3104  *	unregister_netdev - remove device from the kernel
3105  *	@dev: device
3106  *
3107  *	This function shuts down a device interface and removes it
3108  *	from the kernel tables. On success 0 is returned, on a failure
3109  *	a negative errno code is returned.
3110  *
3111  *	This is just a wrapper for unregister_netdevice that takes
3112  *	the rtnl semaphore.  In general you want to use this and not
3113  *	unregister_netdevice.
3114  */
3115 void unregister_netdev(struct net_device *dev)
3116 {
3117 	rtnl_lock();
3118 	unregister_netdevice(dev);
3119 	rtnl_unlock();
3120 }
3121 
3122 EXPORT_SYMBOL(unregister_netdev);
3123 
3124 #ifdef CONFIG_HOTPLUG_CPU
3125 static int dev_cpu_callback(struct notifier_block *nfb,
3126 			    unsigned long action,
3127 			    void *ocpu)
3128 {
3129 	struct sk_buff **list_skb;
3130 	struct net_device **list_net;
3131 	struct sk_buff *skb;
3132 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
3133 	struct softnet_data *sd, *oldsd;
3134 
3135 	if (action != CPU_DEAD)
3136 		return NOTIFY_OK;
3137 
3138 	local_irq_disable();
3139 	cpu = smp_processor_id();
3140 	sd = &per_cpu(softnet_data, cpu);
3141 	oldsd = &per_cpu(softnet_data, oldcpu);
3142 
3143 	/* Find end of our completion_queue. */
3144 	list_skb = &sd->completion_queue;
3145 	while (*list_skb)
3146 		list_skb = &(*list_skb)->next;
3147 	/* Append completion queue from offline CPU. */
3148 	*list_skb = oldsd->completion_queue;
3149 	oldsd->completion_queue = NULL;
3150 
3151 	/* Find end of our output_queue. */
3152 	list_net = &sd->output_queue;
3153 	while (*list_net)
3154 		list_net = &(*list_net)->next_sched;
3155 	/* Append output queue from offline CPU. */
3156 	*list_net = oldsd->output_queue;
3157 	oldsd->output_queue = NULL;
3158 
3159 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3160 	local_irq_enable();
3161 
3162 	/* Process offline CPU's input_pkt_queue */
3163 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
3164 		netif_rx(skb);
3165 
3166 	return NOTIFY_OK;
3167 }
3168 #endif /* CONFIG_HOTPLUG_CPU */
3169 
3170 
3171 /*
3172  *	Initialize the DEV module. At boot time this walks the device list and
3173  *	unhooks any devices that fail to initialise (normally hardware not
3174  *	present) and leaves us with a valid list of present and active devices.
3175  *
3176  */
3177 
3178 /*
3179  *       This is called single threaded during boot, so no need
3180  *       to take the rtnl semaphore.
3181  */
3182 static int __init net_dev_init(void)
3183 {
3184 	int i, rc = -ENOMEM;
3185 
3186 	BUG_ON(!dev_boot_phase);
3187 
3188 	net_random_init();
3189 
3190 	if (dev_proc_init())
3191 		goto out;
3192 
3193 	if (netdev_sysfs_init())
3194 		goto out;
3195 
3196 	INIT_LIST_HEAD(&ptype_all);
3197 	for (i = 0; i < 16; i++)
3198 		INIT_LIST_HEAD(&ptype_base[i]);
3199 
3200 	for (i = 0; i < ARRAY_SIZE(dev_name_head); i++)
3201 		INIT_HLIST_HEAD(&dev_name_head[i]);
3202 
3203 	for (i = 0; i < ARRAY_SIZE(dev_index_head); i++)
3204 		INIT_HLIST_HEAD(&dev_index_head[i]);
3205 
3206 	/*
3207 	 *	Initialise the packet receive queues.
3208 	 */
3209 
3210 	for (i = 0; i < NR_CPUS; i++) {
3211 		struct softnet_data *queue;
3212 
3213 		queue = &per_cpu(softnet_data, i);
3214 		skb_queue_head_init(&queue->input_pkt_queue);
3215 		queue->completion_queue = NULL;
3216 		INIT_LIST_HEAD(&queue->poll_list);
3217 		set_bit(__LINK_STATE_START, &queue->backlog_dev.state);
3218 		queue->backlog_dev.weight = weight_p;
3219 		queue->backlog_dev.poll = process_backlog;
3220 		atomic_set(&queue->backlog_dev.refcnt, 1);
3221 	}
3222 
3223 	dev_boot_phase = 0;
3224 
3225 	open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
3226 	open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
3227 
3228 	hotcpu_notifier(dev_cpu_callback, 0);
3229 	dst_init();
3230 	dev_mcast_init();
3231 	rc = 0;
3232 out:
3233 	return rc;
3234 }
3235 
3236 subsys_initcall(net_dev_init);
3237 
3238 EXPORT_SYMBOL(__dev_get_by_index);
3239 EXPORT_SYMBOL(__dev_get_by_name);
3240 EXPORT_SYMBOL(__dev_remove_pack);
3241 EXPORT_SYMBOL(__skb_linearize);
3242 EXPORT_SYMBOL(dev_add_pack);
3243 EXPORT_SYMBOL(dev_alloc_name);
3244 EXPORT_SYMBOL(dev_close);
3245 EXPORT_SYMBOL(dev_get_by_flags);
3246 EXPORT_SYMBOL(dev_get_by_index);
3247 EXPORT_SYMBOL(dev_get_by_name);
3248 EXPORT_SYMBOL(dev_ioctl);
3249 EXPORT_SYMBOL(dev_open);
3250 EXPORT_SYMBOL(dev_queue_xmit);
3251 EXPORT_SYMBOL(dev_remove_pack);
3252 EXPORT_SYMBOL(dev_set_allmulti);
3253 EXPORT_SYMBOL(dev_set_promiscuity);
3254 EXPORT_SYMBOL(dev_change_flags);
3255 EXPORT_SYMBOL(dev_set_mtu);
3256 EXPORT_SYMBOL(dev_set_mac_address);
3257 EXPORT_SYMBOL(free_netdev);
3258 EXPORT_SYMBOL(netdev_boot_setup_check);
3259 EXPORT_SYMBOL(netdev_set_master);
3260 EXPORT_SYMBOL(netdev_state_change);
3261 EXPORT_SYMBOL(netif_receive_skb);
3262 EXPORT_SYMBOL(netif_rx);
3263 EXPORT_SYMBOL(register_gifconf);
3264 EXPORT_SYMBOL(register_netdevice);
3265 EXPORT_SYMBOL(register_netdevice_notifier);
3266 EXPORT_SYMBOL(skb_checksum_help);
3267 EXPORT_SYMBOL(synchronize_net);
3268 EXPORT_SYMBOL(unregister_netdevice);
3269 EXPORT_SYMBOL(unregister_netdevice_notifier);
3270 EXPORT_SYMBOL(net_enable_timestamp);
3271 EXPORT_SYMBOL(net_disable_timestamp);
3272 EXPORT_SYMBOL(dev_get_flags);
3273 
3274 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
3275 EXPORT_SYMBOL(br_handle_frame_hook);
3276 EXPORT_SYMBOL(br_fdb_get_hook);
3277 EXPORT_SYMBOL(br_fdb_put_hook);
3278 #endif
3279 
3280 #ifdef CONFIG_KMOD
3281 EXPORT_SYMBOL(dev_load);
3282 #endif
3283 
3284 EXPORT_PER_CPU_SYMBOL(softnet_data);
3285