1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 137 #include "net-sysfs.h" 138 139 /* Instead of increasing this, you should create a hash table. */ 140 #define MAX_GRO_SKBS 8 141 142 /* This should be increased if a protocol with a bigger head is added. */ 143 #define GRO_MAX_HEAD (MAX_HEADER + 128) 144 145 /* 146 * The list of packet types we will receive (as opposed to discard) 147 * and the routines to invoke. 148 * 149 * Why 16. Because with 16 the only overlap we get on a hash of the 150 * low nibble of the protocol value is RARP/SNAP/X.25. 151 * 152 * NOTE: That is no longer true with the addition of VLAN tags. Not 153 * sure which should go first, but I bet it won't make much 154 * difference if we are running VLANs. The good news is that 155 * this protocol won't be in the list unless compiled in, so 156 * the average user (w/out VLANs) will not be adversely affected. 157 * --BLG 158 * 159 * 0800 IP 160 * 8100 802.1Q VLAN 161 * 0001 802.3 162 * 0002 AX.25 163 * 0004 802.2 164 * 8035 RARP 165 * 0005 SNAP 166 * 0805 X.25 167 * 0806 ARP 168 * 8137 IPX 169 * 0009 Localtalk 170 * 86DD IPv6 171 */ 172 173 #define PTYPE_HASH_SIZE (16) 174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 175 176 static DEFINE_SPINLOCK(ptype_lock); 177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 178 static struct list_head ptype_all __read_mostly; /* Taps */ 179 180 /* 181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 182 * semaphore. 183 * 184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 185 * 186 * Writers must hold the rtnl semaphore while they loop through the 187 * dev_base_head list, and hold dev_base_lock for writing when they do the 188 * actual updates. This allows pure readers to access the list even 189 * while a writer is preparing to update it. 190 * 191 * To put it another way, dev_base_lock is held for writing only to 192 * protect against pure readers; the rtnl semaphore provides the 193 * protection against other writers. 194 * 195 * See, for example usages, register_netdevice() and 196 * unregister_netdevice(), which must be called with the rtnl 197 * semaphore held. 198 */ 199 DEFINE_RWLOCK(dev_base_lock); 200 EXPORT_SYMBOL(dev_base_lock); 201 202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 203 { 204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 206 } 207 208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 209 { 210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 211 } 212 213 static inline void rps_lock(struct softnet_data *sd) 214 { 215 #ifdef CONFIG_RPS 216 spin_lock(&sd->input_pkt_queue.lock); 217 #endif 218 } 219 220 static inline void rps_unlock(struct softnet_data *sd) 221 { 222 #ifdef CONFIG_RPS 223 spin_unlock(&sd->input_pkt_queue.lock); 224 #endif 225 } 226 227 /* Device list insertion */ 228 static int list_netdevice(struct net_device *dev) 229 { 230 struct net *net = dev_net(dev); 231 232 ASSERT_RTNL(); 233 234 write_lock_bh(&dev_base_lock); 235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 237 hlist_add_head_rcu(&dev->index_hlist, 238 dev_index_hash(net, dev->ifindex)); 239 write_unlock_bh(&dev_base_lock); 240 return 0; 241 } 242 243 /* Device list removal 244 * caller must respect a RCU grace period before freeing/reusing dev 245 */ 246 static void unlist_netdevice(struct net_device *dev) 247 { 248 ASSERT_RTNL(); 249 250 /* Unlink dev from the device chain */ 251 write_lock_bh(&dev_base_lock); 252 list_del_rcu(&dev->dev_list); 253 hlist_del_rcu(&dev->name_hlist); 254 hlist_del_rcu(&dev->index_hlist); 255 write_unlock_bh(&dev_base_lock); 256 } 257 258 /* 259 * Our notifier list 260 */ 261 262 static RAW_NOTIFIER_HEAD(netdev_chain); 263 264 /* 265 * Device drivers call our routines to queue packets here. We empty the 266 * queue in the local softnet handler. 267 */ 268 269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 270 EXPORT_PER_CPU_SYMBOL(softnet_data); 271 272 #ifdef CONFIG_LOCKDEP 273 /* 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 275 * according to dev->type 276 */ 277 static const unsigned short netdev_lock_type[] = 278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 293 ARPHRD_VOID, ARPHRD_NONE}; 294 295 static const char *const netdev_lock_name[] = 296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 311 "_xmit_VOID", "_xmit_NONE"}; 312 313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 315 316 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 317 { 318 int i; 319 320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 321 if (netdev_lock_type[i] == dev_type) 322 return i; 323 /* the last key is used by default */ 324 return ARRAY_SIZE(netdev_lock_type) - 1; 325 } 326 327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 328 unsigned short dev_type) 329 { 330 int i; 331 332 i = netdev_lock_pos(dev_type); 333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 334 netdev_lock_name[i]); 335 } 336 337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 338 { 339 int i; 340 341 i = netdev_lock_pos(dev->type); 342 lockdep_set_class_and_name(&dev->addr_list_lock, 343 &netdev_addr_lock_key[i], 344 netdev_lock_name[i]); 345 } 346 #else 347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 348 unsigned short dev_type) 349 { 350 } 351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 352 { 353 } 354 #endif 355 356 /******************************************************************************* 357 358 Protocol management and registration routines 359 360 *******************************************************************************/ 361 362 /* 363 * Add a protocol ID to the list. Now that the input handler is 364 * smarter we can dispense with all the messy stuff that used to be 365 * here. 366 * 367 * BEWARE!!! Protocol handlers, mangling input packets, 368 * MUST BE last in hash buckets and checking protocol handlers 369 * MUST start from promiscuous ptype_all chain in net_bh. 370 * It is true now, do not change it. 371 * Explanation follows: if protocol handler, mangling packet, will 372 * be the first on list, it is not able to sense, that packet 373 * is cloned and should be copied-on-write, so that it will 374 * change it and subsequent readers will get broken packet. 375 * --ANK (980803) 376 */ 377 378 static inline struct list_head *ptype_head(const struct packet_type *pt) 379 { 380 if (pt->type == htons(ETH_P_ALL)) 381 return &ptype_all; 382 else 383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 384 } 385 386 /** 387 * dev_add_pack - add packet handler 388 * @pt: packet type declaration 389 * 390 * Add a protocol handler to the networking stack. The passed &packet_type 391 * is linked into kernel lists and may not be freed until it has been 392 * removed from the kernel lists. 393 * 394 * This call does not sleep therefore it can not 395 * guarantee all CPU's that are in middle of receiving packets 396 * will see the new packet type (until the next received packet). 397 */ 398 399 void dev_add_pack(struct packet_type *pt) 400 { 401 struct list_head *head = ptype_head(pt); 402 403 spin_lock(&ptype_lock); 404 list_add_rcu(&pt->list, head); 405 spin_unlock(&ptype_lock); 406 } 407 EXPORT_SYMBOL(dev_add_pack); 408 409 /** 410 * __dev_remove_pack - remove packet handler 411 * @pt: packet type declaration 412 * 413 * Remove a protocol handler that was previously added to the kernel 414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 415 * from the kernel lists and can be freed or reused once this function 416 * returns. 417 * 418 * The packet type might still be in use by receivers 419 * and must not be freed until after all the CPU's have gone 420 * through a quiescent state. 421 */ 422 void __dev_remove_pack(struct packet_type *pt) 423 { 424 struct list_head *head = ptype_head(pt); 425 struct packet_type *pt1; 426 427 spin_lock(&ptype_lock); 428 429 list_for_each_entry(pt1, head, list) { 430 if (pt == pt1) { 431 list_del_rcu(&pt->list); 432 goto out; 433 } 434 } 435 436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 437 out: 438 spin_unlock(&ptype_lock); 439 } 440 EXPORT_SYMBOL(__dev_remove_pack); 441 442 /** 443 * dev_remove_pack - remove packet handler 444 * @pt: packet type declaration 445 * 446 * Remove a protocol handler that was previously added to the kernel 447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 448 * from the kernel lists and can be freed or reused once this function 449 * returns. 450 * 451 * This call sleeps to guarantee that no CPU is looking at the packet 452 * type after return. 453 */ 454 void dev_remove_pack(struct packet_type *pt) 455 { 456 __dev_remove_pack(pt); 457 458 synchronize_net(); 459 } 460 EXPORT_SYMBOL(dev_remove_pack); 461 462 /****************************************************************************** 463 464 Device Boot-time Settings Routines 465 466 *******************************************************************************/ 467 468 /* Boot time configuration table */ 469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 470 471 /** 472 * netdev_boot_setup_add - add new setup entry 473 * @name: name of the device 474 * @map: configured settings for the device 475 * 476 * Adds new setup entry to the dev_boot_setup list. The function 477 * returns 0 on error and 1 on success. This is a generic routine to 478 * all netdevices. 479 */ 480 static int netdev_boot_setup_add(char *name, struct ifmap *map) 481 { 482 struct netdev_boot_setup *s; 483 int i; 484 485 s = dev_boot_setup; 486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 488 memset(s[i].name, 0, sizeof(s[i].name)); 489 strlcpy(s[i].name, name, IFNAMSIZ); 490 memcpy(&s[i].map, map, sizeof(s[i].map)); 491 break; 492 } 493 } 494 495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 496 } 497 498 /** 499 * netdev_boot_setup_check - check boot time settings 500 * @dev: the netdevice 501 * 502 * Check boot time settings for the device. 503 * The found settings are set for the device to be used 504 * later in the device probing. 505 * Returns 0 if no settings found, 1 if they are. 506 */ 507 int netdev_boot_setup_check(struct net_device *dev) 508 { 509 struct netdev_boot_setup *s = dev_boot_setup; 510 int i; 511 512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 514 !strcmp(dev->name, s[i].name)) { 515 dev->irq = s[i].map.irq; 516 dev->base_addr = s[i].map.base_addr; 517 dev->mem_start = s[i].map.mem_start; 518 dev->mem_end = s[i].map.mem_end; 519 return 1; 520 } 521 } 522 return 0; 523 } 524 EXPORT_SYMBOL(netdev_boot_setup_check); 525 526 527 /** 528 * netdev_boot_base - get address from boot time settings 529 * @prefix: prefix for network device 530 * @unit: id for network device 531 * 532 * Check boot time settings for the base address of device. 533 * The found settings are set for the device to be used 534 * later in the device probing. 535 * Returns 0 if no settings found. 536 */ 537 unsigned long netdev_boot_base(const char *prefix, int unit) 538 { 539 const struct netdev_boot_setup *s = dev_boot_setup; 540 char name[IFNAMSIZ]; 541 int i; 542 543 sprintf(name, "%s%d", prefix, unit); 544 545 /* 546 * If device already registered then return base of 1 547 * to indicate not to probe for this interface 548 */ 549 if (__dev_get_by_name(&init_net, name)) 550 return 1; 551 552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 553 if (!strcmp(name, s[i].name)) 554 return s[i].map.base_addr; 555 return 0; 556 } 557 558 /* 559 * Saves at boot time configured settings for any netdevice. 560 */ 561 int __init netdev_boot_setup(char *str) 562 { 563 int ints[5]; 564 struct ifmap map; 565 566 str = get_options(str, ARRAY_SIZE(ints), ints); 567 if (!str || !*str) 568 return 0; 569 570 /* Save settings */ 571 memset(&map, 0, sizeof(map)); 572 if (ints[0] > 0) 573 map.irq = ints[1]; 574 if (ints[0] > 1) 575 map.base_addr = ints[2]; 576 if (ints[0] > 2) 577 map.mem_start = ints[3]; 578 if (ints[0] > 3) 579 map.mem_end = ints[4]; 580 581 /* Add new entry to the list */ 582 return netdev_boot_setup_add(str, &map); 583 } 584 585 __setup("netdev=", netdev_boot_setup); 586 587 /******************************************************************************* 588 589 Device Interface Subroutines 590 591 *******************************************************************************/ 592 593 /** 594 * __dev_get_by_name - find a device by its name 595 * @net: the applicable net namespace 596 * @name: name to find 597 * 598 * Find an interface by name. Must be called under RTNL semaphore 599 * or @dev_base_lock. If the name is found a pointer to the device 600 * is returned. If the name is not found then %NULL is returned. The 601 * reference counters are not incremented so the caller must be 602 * careful with locks. 603 */ 604 605 struct net_device *__dev_get_by_name(struct net *net, const char *name) 606 { 607 struct hlist_node *p; 608 struct net_device *dev; 609 struct hlist_head *head = dev_name_hash(net, name); 610 611 hlist_for_each_entry(dev, p, head, name_hlist) 612 if (!strncmp(dev->name, name, IFNAMSIZ)) 613 return dev; 614 615 return NULL; 616 } 617 EXPORT_SYMBOL(__dev_get_by_name); 618 619 /** 620 * dev_get_by_name_rcu - find a device by its name 621 * @net: the applicable net namespace 622 * @name: name to find 623 * 624 * Find an interface by name. 625 * If the name is found a pointer to the device is returned. 626 * If the name is not found then %NULL is returned. 627 * The reference counters are not incremented so the caller must be 628 * careful with locks. The caller must hold RCU lock. 629 */ 630 631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 632 { 633 struct hlist_node *p; 634 struct net_device *dev; 635 struct hlist_head *head = dev_name_hash(net, name); 636 637 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 638 if (!strncmp(dev->name, name, IFNAMSIZ)) 639 return dev; 640 641 return NULL; 642 } 643 EXPORT_SYMBOL(dev_get_by_name_rcu); 644 645 /** 646 * dev_get_by_name - find a device by its name 647 * @net: the applicable net namespace 648 * @name: name to find 649 * 650 * Find an interface by name. This can be called from any 651 * context and does its own locking. The returned handle has 652 * the usage count incremented and the caller must use dev_put() to 653 * release it when it is no longer needed. %NULL is returned if no 654 * matching device is found. 655 */ 656 657 struct net_device *dev_get_by_name(struct net *net, const char *name) 658 { 659 struct net_device *dev; 660 661 rcu_read_lock(); 662 dev = dev_get_by_name_rcu(net, name); 663 if (dev) 664 dev_hold(dev); 665 rcu_read_unlock(); 666 return dev; 667 } 668 EXPORT_SYMBOL(dev_get_by_name); 669 670 /** 671 * __dev_get_by_index - find a device by its ifindex 672 * @net: the applicable net namespace 673 * @ifindex: index of device 674 * 675 * Search for an interface by index. Returns %NULL if the device 676 * is not found or a pointer to the device. The device has not 677 * had its reference counter increased so the caller must be careful 678 * about locking. The caller must hold either the RTNL semaphore 679 * or @dev_base_lock. 680 */ 681 682 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 683 { 684 struct hlist_node *p; 685 struct net_device *dev; 686 struct hlist_head *head = dev_index_hash(net, ifindex); 687 688 hlist_for_each_entry(dev, p, head, index_hlist) 689 if (dev->ifindex == ifindex) 690 return dev; 691 692 return NULL; 693 } 694 EXPORT_SYMBOL(__dev_get_by_index); 695 696 /** 697 * dev_get_by_index_rcu - find a device by its ifindex 698 * @net: the applicable net namespace 699 * @ifindex: index of device 700 * 701 * Search for an interface by index. Returns %NULL if the device 702 * is not found or a pointer to the device. The device has not 703 * had its reference counter increased so the caller must be careful 704 * about locking. The caller must hold RCU lock. 705 */ 706 707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 708 { 709 struct hlist_node *p; 710 struct net_device *dev; 711 struct hlist_head *head = dev_index_hash(net, ifindex); 712 713 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 714 if (dev->ifindex == ifindex) 715 return dev; 716 717 return NULL; 718 } 719 EXPORT_SYMBOL(dev_get_by_index_rcu); 720 721 722 /** 723 * dev_get_by_index - find a device by its ifindex 724 * @net: the applicable net namespace 725 * @ifindex: index of device 726 * 727 * Search for an interface by index. Returns NULL if the device 728 * is not found or a pointer to the device. The device returned has 729 * had a reference added and the pointer is safe until the user calls 730 * dev_put to indicate they have finished with it. 731 */ 732 733 struct net_device *dev_get_by_index(struct net *net, int ifindex) 734 { 735 struct net_device *dev; 736 737 rcu_read_lock(); 738 dev = dev_get_by_index_rcu(net, ifindex); 739 if (dev) 740 dev_hold(dev); 741 rcu_read_unlock(); 742 return dev; 743 } 744 EXPORT_SYMBOL(dev_get_by_index); 745 746 /** 747 * dev_getbyhwaddr_rcu - find a device by its hardware address 748 * @net: the applicable net namespace 749 * @type: media type of device 750 * @ha: hardware address 751 * 752 * Search for an interface by MAC address. Returns NULL if the device 753 * is not found or a pointer to the device. 754 * The caller must hold RCU or RTNL. 755 * The returned device has not had its ref count increased 756 * and the caller must therefore be careful about locking 757 * 758 */ 759 760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 761 const char *ha) 762 { 763 struct net_device *dev; 764 765 for_each_netdev_rcu(net, dev) 766 if (dev->type == type && 767 !memcmp(dev->dev_addr, ha, dev->addr_len)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 773 774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 775 { 776 struct net_device *dev; 777 778 ASSERT_RTNL(); 779 for_each_netdev(net, dev) 780 if (dev->type == type) 781 return dev; 782 783 return NULL; 784 } 785 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 786 787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 788 { 789 struct net_device *dev, *ret = NULL; 790 791 rcu_read_lock(); 792 for_each_netdev_rcu(net, dev) 793 if (dev->type == type) { 794 dev_hold(dev); 795 ret = dev; 796 break; 797 } 798 rcu_read_unlock(); 799 return ret; 800 } 801 EXPORT_SYMBOL(dev_getfirstbyhwtype); 802 803 /** 804 * dev_get_by_flags_rcu - find any device with given flags 805 * @net: the applicable net namespace 806 * @if_flags: IFF_* values 807 * @mask: bitmask of bits in if_flags to check 808 * 809 * Search for any interface with the given flags. Returns NULL if a device 810 * is not found or a pointer to the device. Must be called inside 811 * rcu_read_lock(), and result refcount is unchanged. 812 */ 813 814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 815 unsigned short mask) 816 { 817 struct net_device *dev, *ret; 818 819 ret = NULL; 820 for_each_netdev_rcu(net, dev) { 821 if (((dev->flags ^ if_flags) & mask) == 0) { 822 ret = dev; 823 break; 824 } 825 } 826 return ret; 827 } 828 EXPORT_SYMBOL(dev_get_by_flags_rcu); 829 830 /** 831 * dev_valid_name - check if name is okay for network device 832 * @name: name string 833 * 834 * Network device names need to be valid file names to 835 * to allow sysfs to work. We also disallow any kind of 836 * whitespace. 837 */ 838 int dev_valid_name(const char *name) 839 { 840 if (*name == '\0') 841 return 0; 842 if (strlen(name) >= IFNAMSIZ) 843 return 0; 844 if (!strcmp(name, ".") || !strcmp(name, "..")) 845 return 0; 846 847 while (*name) { 848 if (*name == '/' || isspace(*name)) 849 return 0; 850 name++; 851 } 852 return 1; 853 } 854 EXPORT_SYMBOL(dev_valid_name); 855 856 /** 857 * __dev_alloc_name - allocate a name for a device 858 * @net: network namespace to allocate the device name in 859 * @name: name format string 860 * @buf: scratch buffer and result name string 861 * 862 * Passed a format string - eg "lt%d" it will try and find a suitable 863 * id. It scans list of devices to build up a free map, then chooses 864 * the first empty slot. The caller must hold the dev_base or rtnl lock 865 * while allocating the name and adding the device in order to avoid 866 * duplicates. 867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 868 * Returns the number of the unit assigned or a negative errno code. 869 */ 870 871 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 872 { 873 int i = 0; 874 const char *p; 875 const int max_netdevices = 8*PAGE_SIZE; 876 unsigned long *inuse; 877 struct net_device *d; 878 879 p = strnchr(name, IFNAMSIZ-1, '%'); 880 if (p) { 881 /* 882 * Verify the string as this thing may have come from 883 * the user. There must be either one "%d" and no other "%" 884 * characters. 885 */ 886 if (p[1] != 'd' || strchr(p + 2, '%')) 887 return -EINVAL; 888 889 /* Use one page as a bit array of possible slots */ 890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 891 if (!inuse) 892 return -ENOMEM; 893 894 for_each_netdev(net, d) { 895 if (!sscanf(d->name, name, &i)) 896 continue; 897 if (i < 0 || i >= max_netdevices) 898 continue; 899 900 /* avoid cases where sscanf is not exact inverse of printf */ 901 snprintf(buf, IFNAMSIZ, name, i); 902 if (!strncmp(buf, d->name, IFNAMSIZ)) 903 set_bit(i, inuse); 904 } 905 906 i = find_first_zero_bit(inuse, max_netdevices); 907 free_page((unsigned long) inuse); 908 } 909 910 if (buf != name) 911 snprintf(buf, IFNAMSIZ, name, i); 912 if (!__dev_get_by_name(net, buf)) 913 return i; 914 915 /* It is possible to run out of possible slots 916 * when the name is long and there isn't enough space left 917 * for the digits, or if all bits are used. 918 */ 919 return -ENFILE; 920 } 921 922 /** 923 * dev_alloc_name - allocate a name for a device 924 * @dev: device 925 * @name: name format string 926 * 927 * Passed a format string - eg "lt%d" it will try and find a suitable 928 * id. It scans list of devices to build up a free map, then chooses 929 * the first empty slot. The caller must hold the dev_base or rtnl lock 930 * while allocating the name and adding the device in order to avoid 931 * duplicates. 932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 933 * Returns the number of the unit assigned or a negative errno code. 934 */ 935 936 int dev_alloc_name(struct net_device *dev, const char *name) 937 { 938 char buf[IFNAMSIZ]; 939 struct net *net; 940 int ret; 941 942 BUG_ON(!dev_net(dev)); 943 net = dev_net(dev); 944 ret = __dev_alloc_name(net, name, buf); 945 if (ret >= 0) 946 strlcpy(dev->name, buf, IFNAMSIZ); 947 return ret; 948 } 949 EXPORT_SYMBOL(dev_alloc_name); 950 951 static int dev_get_valid_name(struct net_device *dev, const char *name) 952 { 953 struct net *net; 954 955 BUG_ON(!dev_net(dev)); 956 net = dev_net(dev); 957 958 if (!dev_valid_name(name)) 959 return -EINVAL; 960 961 if (strchr(name, '%')) 962 return dev_alloc_name(dev, name); 963 else if (__dev_get_by_name(net, name)) 964 return -EEXIST; 965 else if (dev->name != name) 966 strlcpy(dev->name, name, IFNAMSIZ); 967 968 return 0; 969 } 970 971 /** 972 * dev_change_name - change name of a device 973 * @dev: device 974 * @newname: name (or format string) must be at least IFNAMSIZ 975 * 976 * Change name of a device, can pass format strings "eth%d". 977 * for wildcarding. 978 */ 979 int dev_change_name(struct net_device *dev, const char *newname) 980 { 981 char oldname[IFNAMSIZ]; 982 int err = 0; 983 int ret; 984 struct net *net; 985 986 ASSERT_RTNL(); 987 BUG_ON(!dev_net(dev)); 988 989 net = dev_net(dev); 990 if (dev->flags & IFF_UP) 991 return -EBUSY; 992 993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 994 return 0; 995 996 memcpy(oldname, dev->name, IFNAMSIZ); 997 998 err = dev_get_valid_name(dev, newname); 999 if (err < 0) 1000 return err; 1001 1002 rollback: 1003 ret = device_rename(&dev->dev, dev->name); 1004 if (ret) { 1005 memcpy(dev->name, oldname, IFNAMSIZ); 1006 return ret; 1007 } 1008 1009 write_lock_bh(&dev_base_lock); 1010 hlist_del_rcu(&dev->name_hlist); 1011 write_unlock_bh(&dev_base_lock); 1012 1013 synchronize_rcu(); 1014 1015 write_lock_bh(&dev_base_lock); 1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1017 write_unlock_bh(&dev_base_lock); 1018 1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1020 ret = notifier_to_errno(ret); 1021 1022 if (ret) { 1023 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1024 if (err >= 0) { 1025 err = ret; 1026 memcpy(dev->name, oldname, IFNAMSIZ); 1027 goto rollback; 1028 } else { 1029 printk(KERN_ERR 1030 "%s: name change rollback failed: %d.\n", 1031 dev->name, ret); 1032 } 1033 } 1034 1035 return err; 1036 } 1037 1038 /** 1039 * dev_set_alias - change ifalias of a device 1040 * @dev: device 1041 * @alias: name up to IFALIASZ 1042 * @len: limit of bytes to copy from info 1043 * 1044 * Set ifalias for a device, 1045 */ 1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1047 { 1048 ASSERT_RTNL(); 1049 1050 if (len >= IFALIASZ) 1051 return -EINVAL; 1052 1053 if (!len) { 1054 if (dev->ifalias) { 1055 kfree(dev->ifalias); 1056 dev->ifalias = NULL; 1057 } 1058 return 0; 1059 } 1060 1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1062 if (!dev->ifalias) 1063 return -ENOMEM; 1064 1065 strlcpy(dev->ifalias, alias, len+1); 1066 return len; 1067 } 1068 1069 1070 /** 1071 * netdev_features_change - device changes features 1072 * @dev: device to cause notification 1073 * 1074 * Called to indicate a device has changed features. 1075 */ 1076 void netdev_features_change(struct net_device *dev) 1077 { 1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1079 } 1080 EXPORT_SYMBOL(netdev_features_change); 1081 1082 /** 1083 * netdev_state_change - device changes state 1084 * @dev: device to cause notification 1085 * 1086 * Called to indicate a device has changed state. This function calls 1087 * the notifier chains for netdev_chain and sends a NEWLINK message 1088 * to the routing socket. 1089 */ 1090 void netdev_state_change(struct net_device *dev) 1091 { 1092 if (dev->flags & IFF_UP) { 1093 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1095 } 1096 } 1097 EXPORT_SYMBOL(netdev_state_change); 1098 1099 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1100 { 1101 return call_netdevice_notifiers(event, dev); 1102 } 1103 EXPORT_SYMBOL(netdev_bonding_change); 1104 1105 /** 1106 * dev_load - load a network module 1107 * @net: the applicable net namespace 1108 * @name: name of interface 1109 * 1110 * If a network interface is not present and the process has suitable 1111 * privileges this function loads the module. If module loading is not 1112 * available in this kernel then it becomes a nop. 1113 */ 1114 1115 void dev_load(struct net *net, const char *name) 1116 { 1117 struct net_device *dev; 1118 int no_module; 1119 1120 rcu_read_lock(); 1121 dev = dev_get_by_name_rcu(net, name); 1122 rcu_read_unlock(); 1123 1124 no_module = !dev; 1125 if (no_module && capable(CAP_NET_ADMIN)) 1126 no_module = request_module("netdev-%s", name); 1127 if (no_module && capable(CAP_SYS_MODULE)) { 1128 if (!request_module("%s", name)) 1129 pr_err("Loading kernel module for a network device " 1130 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s " 1131 "instead\n", name); 1132 } 1133 } 1134 EXPORT_SYMBOL(dev_load); 1135 1136 static int __dev_open(struct net_device *dev) 1137 { 1138 const struct net_device_ops *ops = dev->netdev_ops; 1139 int ret; 1140 1141 ASSERT_RTNL(); 1142 1143 if (!netif_device_present(dev)) 1144 return -ENODEV; 1145 1146 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1147 ret = notifier_to_errno(ret); 1148 if (ret) 1149 return ret; 1150 1151 set_bit(__LINK_STATE_START, &dev->state); 1152 1153 if (ops->ndo_validate_addr) 1154 ret = ops->ndo_validate_addr(dev); 1155 1156 if (!ret && ops->ndo_open) 1157 ret = ops->ndo_open(dev); 1158 1159 if (ret) 1160 clear_bit(__LINK_STATE_START, &dev->state); 1161 else { 1162 dev->flags |= IFF_UP; 1163 net_dmaengine_get(); 1164 dev_set_rx_mode(dev); 1165 dev_activate(dev); 1166 } 1167 1168 return ret; 1169 } 1170 1171 /** 1172 * dev_open - prepare an interface for use. 1173 * @dev: device to open 1174 * 1175 * Takes a device from down to up state. The device's private open 1176 * function is invoked and then the multicast lists are loaded. Finally 1177 * the device is moved into the up state and a %NETDEV_UP message is 1178 * sent to the netdev notifier chain. 1179 * 1180 * Calling this function on an active interface is a nop. On a failure 1181 * a negative errno code is returned. 1182 */ 1183 int dev_open(struct net_device *dev) 1184 { 1185 int ret; 1186 1187 if (dev->flags & IFF_UP) 1188 return 0; 1189 1190 ret = __dev_open(dev); 1191 if (ret < 0) 1192 return ret; 1193 1194 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1195 call_netdevice_notifiers(NETDEV_UP, dev); 1196 1197 return ret; 1198 } 1199 EXPORT_SYMBOL(dev_open); 1200 1201 static int __dev_close_many(struct list_head *head) 1202 { 1203 struct net_device *dev; 1204 1205 ASSERT_RTNL(); 1206 might_sleep(); 1207 1208 list_for_each_entry(dev, head, unreg_list) { 1209 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1210 1211 clear_bit(__LINK_STATE_START, &dev->state); 1212 1213 /* Synchronize to scheduled poll. We cannot touch poll list, it 1214 * can be even on different cpu. So just clear netif_running(). 1215 * 1216 * dev->stop() will invoke napi_disable() on all of it's 1217 * napi_struct instances on this device. 1218 */ 1219 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1220 } 1221 1222 dev_deactivate_many(head); 1223 1224 list_for_each_entry(dev, head, unreg_list) { 1225 const struct net_device_ops *ops = dev->netdev_ops; 1226 1227 /* 1228 * Call the device specific close. This cannot fail. 1229 * Only if device is UP 1230 * 1231 * We allow it to be called even after a DETACH hot-plug 1232 * event. 1233 */ 1234 if (ops->ndo_stop) 1235 ops->ndo_stop(dev); 1236 1237 dev->flags &= ~IFF_UP; 1238 net_dmaengine_put(); 1239 } 1240 1241 return 0; 1242 } 1243 1244 static int __dev_close(struct net_device *dev) 1245 { 1246 int retval; 1247 LIST_HEAD(single); 1248 1249 list_add(&dev->unreg_list, &single); 1250 retval = __dev_close_many(&single); 1251 list_del(&single); 1252 return retval; 1253 } 1254 1255 static int dev_close_many(struct list_head *head) 1256 { 1257 struct net_device *dev, *tmp; 1258 LIST_HEAD(tmp_list); 1259 1260 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1261 if (!(dev->flags & IFF_UP)) 1262 list_move(&dev->unreg_list, &tmp_list); 1263 1264 __dev_close_many(head); 1265 1266 list_for_each_entry(dev, head, unreg_list) { 1267 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1268 call_netdevice_notifiers(NETDEV_DOWN, dev); 1269 } 1270 1271 /* rollback_registered_many needs the complete original list */ 1272 list_splice(&tmp_list, head); 1273 return 0; 1274 } 1275 1276 /** 1277 * dev_close - shutdown an interface. 1278 * @dev: device to shutdown 1279 * 1280 * This function moves an active device into down state. A 1281 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1282 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1283 * chain. 1284 */ 1285 int dev_close(struct net_device *dev) 1286 { 1287 if (dev->flags & IFF_UP) { 1288 LIST_HEAD(single); 1289 1290 list_add(&dev->unreg_list, &single); 1291 dev_close_many(&single); 1292 list_del(&single); 1293 } 1294 return 0; 1295 } 1296 EXPORT_SYMBOL(dev_close); 1297 1298 1299 /** 1300 * dev_disable_lro - disable Large Receive Offload on a device 1301 * @dev: device 1302 * 1303 * Disable Large Receive Offload (LRO) on a net device. Must be 1304 * called under RTNL. This is needed if received packets may be 1305 * forwarded to another interface. 1306 */ 1307 void dev_disable_lro(struct net_device *dev) 1308 { 1309 u32 flags; 1310 1311 /* 1312 * If we're trying to disable lro on a vlan device 1313 * use the underlying physical device instead 1314 */ 1315 if (is_vlan_dev(dev)) 1316 dev = vlan_dev_real_dev(dev); 1317 1318 if (dev->ethtool_ops && dev->ethtool_ops->get_flags) 1319 flags = dev->ethtool_ops->get_flags(dev); 1320 else 1321 flags = ethtool_op_get_flags(dev); 1322 1323 if (!(flags & ETH_FLAG_LRO)) 1324 return; 1325 1326 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO); 1327 if (unlikely(dev->features & NETIF_F_LRO)) 1328 netdev_WARN(dev, "failed to disable LRO!\n"); 1329 } 1330 EXPORT_SYMBOL(dev_disable_lro); 1331 1332 1333 static int dev_boot_phase = 1; 1334 1335 /** 1336 * register_netdevice_notifier - register a network notifier block 1337 * @nb: notifier 1338 * 1339 * Register a notifier to be called when network device events occur. 1340 * The notifier passed is linked into the kernel structures and must 1341 * not be reused until it has been unregistered. A negative errno code 1342 * is returned on a failure. 1343 * 1344 * When registered all registration and up events are replayed 1345 * to the new notifier to allow device to have a race free 1346 * view of the network device list. 1347 */ 1348 1349 int register_netdevice_notifier(struct notifier_block *nb) 1350 { 1351 struct net_device *dev; 1352 struct net_device *last; 1353 struct net *net; 1354 int err; 1355 1356 rtnl_lock(); 1357 err = raw_notifier_chain_register(&netdev_chain, nb); 1358 if (err) 1359 goto unlock; 1360 if (dev_boot_phase) 1361 goto unlock; 1362 for_each_net(net) { 1363 for_each_netdev(net, dev) { 1364 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1365 err = notifier_to_errno(err); 1366 if (err) 1367 goto rollback; 1368 1369 if (!(dev->flags & IFF_UP)) 1370 continue; 1371 1372 nb->notifier_call(nb, NETDEV_UP, dev); 1373 } 1374 } 1375 1376 unlock: 1377 rtnl_unlock(); 1378 return err; 1379 1380 rollback: 1381 last = dev; 1382 for_each_net(net) { 1383 for_each_netdev(net, dev) { 1384 if (dev == last) 1385 break; 1386 1387 if (dev->flags & IFF_UP) { 1388 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1389 nb->notifier_call(nb, NETDEV_DOWN, dev); 1390 } 1391 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1392 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1393 } 1394 } 1395 1396 raw_notifier_chain_unregister(&netdev_chain, nb); 1397 goto unlock; 1398 } 1399 EXPORT_SYMBOL(register_netdevice_notifier); 1400 1401 /** 1402 * unregister_netdevice_notifier - unregister a network notifier block 1403 * @nb: notifier 1404 * 1405 * Unregister a notifier previously registered by 1406 * register_netdevice_notifier(). The notifier is unlinked into the 1407 * kernel structures and may then be reused. A negative errno code 1408 * is returned on a failure. 1409 */ 1410 1411 int unregister_netdevice_notifier(struct notifier_block *nb) 1412 { 1413 int err; 1414 1415 rtnl_lock(); 1416 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1417 rtnl_unlock(); 1418 return err; 1419 } 1420 EXPORT_SYMBOL(unregister_netdevice_notifier); 1421 1422 /** 1423 * call_netdevice_notifiers - call all network notifier blocks 1424 * @val: value passed unmodified to notifier function 1425 * @dev: net_device pointer passed unmodified to notifier function 1426 * 1427 * Call all network notifier blocks. Parameters and return value 1428 * are as for raw_notifier_call_chain(). 1429 */ 1430 1431 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1432 { 1433 ASSERT_RTNL(); 1434 return raw_notifier_call_chain(&netdev_chain, val, dev); 1435 } 1436 EXPORT_SYMBOL(call_netdevice_notifiers); 1437 1438 /* When > 0 there are consumers of rx skb time stamps */ 1439 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1440 1441 void net_enable_timestamp(void) 1442 { 1443 atomic_inc(&netstamp_needed); 1444 } 1445 EXPORT_SYMBOL(net_enable_timestamp); 1446 1447 void net_disable_timestamp(void) 1448 { 1449 atomic_dec(&netstamp_needed); 1450 } 1451 EXPORT_SYMBOL(net_disable_timestamp); 1452 1453 static inline void net_timestamp_set(struct sk_buff *skb) 1454 { 1455 if (atomic_read(&netstamp_needed)) 1456 __net_timestamp(skb); 1457 else 1458 skb->tstamp.tv64 = 0; 1459 } 1460 1461 static inline void net_timestamp_check(struct sk_buff *skb) 1462 { 1463 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1464 __net_timestamp(skb); 1465 } 1466 1467 static inline bool is_skb_forwardable(struct net_device *dev, 1468 struct sk_buff *skb) 1469 { 1470 unsigned int len; 1471 1472 if (!(dev->flags & IFF_UP)) 1473 return false; 1474 1475 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1476 if (skb->len <= len) 1477 return true; 1478 1479 /* if TSO is enabled, we don't care about the length as the packet 1480 * could be forwarded without being segmented before 1481 */ 1482 if (skb_is_gso(skb)) 1483 return true; 1484 1485 return false; 1486 } 1487 1488 /** 1489 * dev_forward_skb - loopback an skb to another netif 1490 * 1491 * @dev: destination network device 1492 * @skb: buffer to forward 1493 * 1494 * return values: 1495 * NET_RX_SUCCESS (no congestion) 1496 * NET_RX_DROP (packet was dropped, but freed) 1497 * 1498 * dev_forward_skb can be used for injecting an skb from the 1499 * start_xmit function of one device into the receive queue 1500 * of another device. 1501 * 1502 * The receiving device may be in another namespace, so 1503 * we have to clear all information in the skb that could 1504 * impact namespace isolation. 1505 */ 1506 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1507 { 1508 skb_orphan(skb); 1509 nf_reset(skb); 1510 1511 if (unlikely(!is_skb_forwardable(dev, skb))) { 1512 atomic_long_inc(&dev->rx_dropped); 1513 kfree_skb(skb); 1514 return NET_RX_DROP; 1515 } 1516 skb_set_dev(skb, dev); 1517 skb->tstamp.tv64 = 0; 1518 skb->pkt_type = PACKET_HOST; 1519 skb->protocol = eth_type_trans(skb, dev); 1520 return netif_rx(skb); 1521 } 1522 EXPORT_SYMBOL_GPL(dev_forward_skb); 1523 1524 static inline int deliver_skb(struct sk_buff *skb, 1525 struct packet_type *pt_prev, 1526 struct net_device *orig_dev) 1527 { 1528 atomic_inc(&skb->users); 1529 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1530 } 1531 1532 /* 1533 * Support routine. Sends outgoing frames to any network 1534 * taps currently in use. 1535 */ 1536 1537 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1538 { 1539 struct packet_type *ptype; 1540 struct sk_buff *skb2 = NULL; 1541 struct packet_type *pt_prev = NULL; 1542 1543 rcu_read_lock(); 1544 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1545 /* Never send packets back to the socket 1546 * they originated from - MvS (miquels@drinkel.ow.org) 1547 */ 1548 if ((ptype->dev == dev || !ptype->dev) && 1549 (ptype->af_packet_priv == NULL || 1550 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1551 if (pt_prev) { 1552 deliver_skb(skb2, pt_prev, skb->dev); 1553 pt_prev = ptype; 1554 continue; 1555 } 1556 1557 skb2 = skb_clone(skb, GFP_ATOMIC); 1558 if (!skb2) 1559 break; 1560 1561 net_timestamp_set(skb2); 1562 1563 /* skb->nh should be correctly 1564 set by sender, so that the second statement is 1565 just protection against buggy protocols. 1566 */ 1567 skb_reset_mac_header(skb2); 1568 1569 if (skb_network_header(skb2) < skb2->data || 1570 skb2->network_header > skb2->tail) { 1571 if (net_ratelimit()) 1572 printk(KERN_CRIT "protocol %04x is " 1573 "buggy, dev %s\n", 1574 ntohs(skb2->protocol), 1575 dev->name); 1576 skb_reset_network_header(skb2); 1577 } 1578 1579 skb2->transport_header = skb2->network_header; 1580 skb2->pkt_type = PACKET_OUTGOING; 1581 pt_prev = ptype; 1582 } 1583 } 1584 if (pt_prev) 1585 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1586 rcu_read_unlock(); 1587 } 1588 1589 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1590 * @dev: Network device 1591 * @txq: number of queues available 1592 * 1593 * If real_num_tx_queues is changed the tc mappings may no longer be 1594 * valid. To resolve this verify the tc mapping remains valid and if 1595 * not NULL the mapping. With no priorities mapping to this 1596 * offset/count pair it will no longer be used. In the worst case TC0 1597 * is invalid nothing can be done so disable priority mappings. If is 1598 * expected that drivers will fix this mapping if they can before 1599 * calling netif_set_real_num_tx_queues. 1600 */ 1601 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1602 { 1603 int i; 1604 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1605 1606 /* If TC0 is invalidated disable TC mapping */ 1607 if (tc->offset + tc->count > txq) { 1608 pr_warning("Number of in use tx queues changed " 1609 "invalidating tc mappings. Priority " 1610 "traffic classification disabled!\n"); 1611 dev->num_tc = 0; 1612 return; 1613 } 1614 1615 /* Invalidated prio to tc mappings set to TC0 */ 1616 for (i = 1; i < TC_BITMASK + 1; i++) { 1617 int q = netdev_get_prio_tc_map(dev, i); 1618 1619 tc = &dev->tc_to_txq[q]; 1620 if (tc->offset + tc->count > txq) { 1621 pr_warning("Number of in use tx queues " 1622 "changed. Priority %i to tc " 1623 "mapping %i is no longer valid " 1624 "setting map to 0\n", 1625 i, q); 1626 netdev_set_prio_tc_map(dev, i, 0); 1627 } 1628 } 1629 } 1630 1631 /* 1632 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1633 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1634 */ 1635 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1636 { 1637 int rc; 1638 1639 if (txq < 1 || txq > dev->num_tx_queues) 1640 return -EINVAL; 1641 1642 if (dev->reg_state == NETREG_REGISTERED || 1643 dev->reg_state == NETREG_UNREGISTERING) { 1644 ASSERT_RTNL(); 1645 1646 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1647 txq); 1648 if (rc) 1649 return rc; 1650 1651 if (dev->num_tc) 1652 netif_setup_tc(dev, txq); 1653 1654 if (txq < dev->real_num_tx_queues) 1655 qdisc_reset_all_tx_gt(dev, txq); 1656 } 1657 1658 dev->real_num_tx_queues = txq; 1659 return 0; 1660 } 1661 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1662 1663 #ifdef CONFIG_RPS 1664 /** 1665 * netif_set_real_num_rx_queues - set actual number of RX queues used 1666 * @dev: Network device 1667 * @rxq: Actual number of RX queues 1668 * 1669 * This must be called either with the rtnl_lock held or before 1670 * registration of the net device. Returns 0 on success, or a 1671 * negative error code. If called before registration, it always 1672 * succeeds. 1673 */ 1674 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1675 { 1676 int rc; 1677 1678 if (rxq < 1 || rxq > dev->num_rx_queues) 1679 return -EINVAL; 1680 1681 if (dev->reg_state == NETREG_REGISTERED) { 1682 ASSERT_RTNL(); 1683 1684 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1685 rxq); 1686 if (rc) 1687 return rc; 1688 } 1689 1690 dev->real_num_rx_queues = rxq; 1691 return 0; 1692 } 1693 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1694 #endif 1695 1696 static inline void __netif_reschedule(struct Qdisc *q) 1697 { 1698 struct softnet_data *sd; 1699 unsigned long flags; 1700 1701 local_irq_save(flags); 1702 sd = &__get_cpu_var(softnet_data); 1703 q->next_sched = NULL; 1704 *sd->output_queue_tailp = q; 1705 sd->output_queue_tailp = &q->next_sched; 1706 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1707 local_irq_restore(flags); 1708 } 1709 1710 void __netif_schedule(struct Qdisc *q) 1711 { 1712 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1713 __netif_reschedule(q); 1714 } 1715 EXPORT_SYMBOL(__netif_schedule); 1716 1717 void dev_kfree_skb_irq(struct sk_buff *skb) 1718 { 1719 if (atomic_dec_and_test(&skb->users)) { 1720 struct softnet_data *sd; 1721 unsigned long flags; 1722 1723 local_irq_save(flags); 1724 sd = &__get_cpu_var(softnet_data); 1725 skb->next = sd->completion_queue; 1726 sd->completion_queue = skb; 1727 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1728 local_irq_restore(flags); 1729 } 1730 } 1731 EXPORT_SYMBOL(dev_kfree_skb_irq); 1732 1733 void dev_kfree_skb_any(struct sk_buff *skb) 1734 { 1735 if (in_irq() || irqs_disabled()) 1736 dev_kfree_skb_irq(skb); 1737 else 1738 dev_kfree_skb(skb); 1739 } 1740 EXPORT_SYMBOL(dev_kfree_skb_any); 1741 1742 1743 /** 1744 * netif_device_detach - mark device as removed 1745 * @dev: network device 1746 * 1747 * Mark device as removed from system and therefore no longer available. 1748 */ 1749 void netif_device_detach(struct net_device *dev) 1750 { 1751 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1752 netif_running(dev)) { 1753 netif_tx_stop_all_queues(dev); 1754 } 1755 } 1756 EXPORT_SYMBOL(netif_device_detach); 1757 1758 /** 1759 * netif_device_attach - mark device as attached 1760 * @dev: network device 1761 * 1762 * Mark device as attached from system and restart if needed. 1763 */ 1764 void netif_device_attach(struct net_device *dev) 1765 { 1766 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1767 netif_running(dev)) { 1768 netif_tx_wake_all_queues(dev); 1769 __netdev_watchdog_up(dev); 1770 } 1771 } 1772 EXPORT_SYMBOL(netif_device_attach); 1773 1774 /** 1775 * skb_dev_set -- assign a new device to a buffer 1776 * @skb: buffer for the new device 1777 * @dev: network device 1778 * 1779 * If an skb is owned by a device already, we have to reset 1780 * all data private to the namespace a device belongs to 1781 * before assigning it a new device. 1782 */ 1783 #ifdef CONFIG_NET_NS 1784 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1785 { 1786 skb_dst_drop(skb); 1787 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1788 secpath_reset(skb); 1789 nf_reset(skb); 1790 skb_init_secmark(skb); 1791 skb->mark = 0; 1792 skb->priority = 0; 1793 skb->nf_trace = 0; 1794 skb->ipvs_property = 0; 1795 #ifdef CONFIG_NET_SCHED 1796 skb->tc_index = 0; 1797 #endif 1798 } 1799 skb->dev = dev; 1800 } 1801 EXPORT_SYMBOL(skb_set_dev); 1802 #endif /* CONFIG_NET_NS */ 1803 1804 /* 1805 * Invalidate hardware checksum when packet is to be mangled, and 1806 * complete checksum manually on outgoing path. 1807 */ 1808 int skb_checksum_help(struct sk_buff *skb) 1809 { 1810 __wsum csum; 1811 int ret = 0, offset; 1812 1813 if (skb->ip_summed == CHECKSUM_COMPLETE) 1814 goto out_set_summed; 1815 1816 if (unlikely(skb_shinfo(skb)->gso_size)) { 1817 /* Let GSO fix up the checksum. */ 1818 goto out_set_summed; 1819 } 1820 1821 offset = skb_checksum_start_offset(skb); 1822 BUG_ON(offset >= skb_headlen(skb)); 1823 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1824 1825 offset += skb->csum_offset; 1826 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1827 1828 if (skb_cloned(skb) && 1829 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1830 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1831 if (ret) 1832 goto out; 1833 } 1834 1835 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1836 out_set_summed: 1837 skb->ip_summed = CHECKSUM_NONE; 1838 out: 1839 return ret; 1840 } 1841 EXPORT_SYMBOL(skb_checksum_help); 1842 1843 /** 1844 * skb_gso_segment - Perform segmentation on skb. 1845 * @skb: buffer to segment 1846 * @features: features for the output path (see dev->features) 1847 * 1848 * This function segments the given skb and returns a list of segments. 1849 * 1850 * It may return NULL if the skb requires no segmentation. This is 1851 * only possible when GSO is used for verifying header integrity. 1852 */ 1853 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features) 1854 { 1855 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1856 struct packet_type *ptype; 1857 __be16 type = skb->protocol; 1858 int vlan_depth = ETH_HLEN; 1859 int err; 1860 1861 while (type == htons(ETH_P_8021Q)) { 1862 struct vlan_hdr *vh; 1863 1864 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1865 return ERR_PTR(-EINVAL); 1866 1867 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1868 type = vh->h_vlan_encapsulated_proto; 1869 vlan_depth += VLAN_HLEN; 1870 } 1871 1872 skb_reset_mac_header(skb); 1873 skb->mac_len = skb->network_header - skb->mac_header; 1874 __skb_pull(skb, skb->mac_len); 1875 1876 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1877 struct net_device *dev = skb->dev; 1878 struct ethtool_drvinfo info = {}; 1879 1880 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1881 dev->ethtool_ops->get_drvinfo(dev, &info); 1882 1883 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n", 1884 info.driver, dev ? dev->features : 0L, 1885 skb->sk ? skb->sk->sk_route_caps : 0L, 1886 skb->len, skb->data_len, skb->ip_summed); 1887 1888 if (skb_header_cloned(skb) && 1889 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1890 return ERR_PTR(err); 1891 } 1892 1893 rcu_read_lock(); 1894 list_for_each_entry_rcu(ptype, 1895 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1896 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1897 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1898 err = ptype->gso_send_check(skb); 1899 segs = ERR_PTR(err); 1900 if (err || skb_gso_ok(skb, features)) 1901 break; 1902 __skb_push(skb, (skb->data - 1903 skb_network_header(skb))); 1904 } 1905 segs = ptype->gso_segment(skb, features); 1906 break; 1907 } 1908 } 1909 rcu_read_unlock(); 1910 1911 __skb_push(skb, skb->data - skb_mac_header(skb)); 1912 1913 return segs; 1914 } 1915 EXPORT_SYMBOL(skb_gso_segment); 1916 1917 /* Take action when hardware reception checksum errors are detected. */ 1918 #ifdef CONFIG_BUG 1919 void netdev_rx_csum_fault(struct net_device *dev) 1920 { 1921 if (net_ratelimit()) { 1922 printk(KERN_ERR "%s: hw csum failure.\n", 1923 dev ? dev->name : "<unknown>"); 1924 dump_stack(); 1925 } 1926 } 1927 EXPORT_SYMBOL(netdev_rx_csum_fault); 1928 #endif 1929 1930 /* Actually, we should eliminate this check as soon as we know, that: 1931 * 1. IOMMU is present and allows to map all the memory. 1932 * 2. No high memory really exists on this machine. 1933 */ 1934 1935 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1936 { 1937 #ifdef CONFIG_HIGHMEM 1938 int i; 1939 if (!(dev->features & NETIF_F_HIGHDMA)) { 1940 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1941 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1942 return 1; 1943 } 1944 1945 if (PCI_DMA_BUS_IS_PHYS) { 1946 struct device *pdev = dev->dev.parent; 1947 1948 if (!pdev) 1949 return 0; 1950 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1951 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1952 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1953 return 1; 1954 } 1955 } 1956 #endif 1957 return 0; 1958 } 1959 1960 struct dev_gso_cb { 1961 void (*destructor)(struct sk_buff *skb); 1962 }; 1963 1964 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1965 1966 static void dev_gso_skb_destructor(struct sk_buff *skb) 1967 { 1968 struct dev_gso_cb *cb; 1969 1970 do { 1971 struct sk_buff *nskb = skb->next; 1972 1973 skb->next = nskb->next; 1974 nskb->next = NULL; 1975 kfree_skb(nskb); 1976 } while (skb->next); 1977 1978 cb = DEV_GSO_CB(skb); 1979 if (cb->destructor) 1980 cb->destructor(skb); 1981 } 1982 1983 /** 1984 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1985 * @skb: buffer to segment 1986 * @features: device features as applicable to this skb 1987 * 1988 * This function segments the given skb and stores the list of segments 1989 * in skb->next. 1990 */ 1991 static int dev_gso_segment(struct sk_buff *skb, int features) 1992 { 1993 struct sk_buff *segs; 1994 1995 segs = skb_gso_segment(skb, features); 1996 1997 /* Verifying header integrity only. */ 1998 if (!segs) 1999 return 0; 2000 2001 if (IS_ERR(segs)) 2002 return PTR_ERR(segs); 2003 2004 skb->next = segs; 2005 DEV_GSO_CB(skb)->destructor = skb->destructor; 2006 skb->destructor = dev_gso_skb_destructor; 2007 2008 return 0; 2009 } 2010 2011 /* 2012 * Try to orphan skb early, right before transmission by the device. 2013 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2014 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2015 */ 2016 static inline void skb_orphan_try(struct sk_buff *skb) 2017 { 2018 struct sock *sk = skb->sk; 2019 2020 if (sk && !skb_shinfo(skb)->tx_flags) { 2021 /* skb_tx_hash() wont be able to get sk. 2022 * We copy sk_hash into skb->rxhash 2023 */ 2024 if (!skb->rxhash) 2025 skb->rxhash = sk->sk_hash; 2026 skb_orphan(skb); 2027 } 2028 } 2029 2030 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 2031 { 2032 return ((features & NETIF_F_GEN_CSUM) || 2033 ((features & NETIF_F_V4_CSUM) && 2034 protocol == htons(ETH_P_IP)) || 2035 ((features & NETIF_F_V6_CSUM) && 2036 protocol == htons(ETH_P_IPV6)) || 2037 ((features & NETIF_F_FCOE_CRC) && 2038 protocol == htons(ETH_P_FCOE))); 2039 } 2040 2041 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features) 2042 { 2043 if (!can_checksum_protocol(features, protocol)) { 2044 features &= ~NETIF_F_ALL_CSUM; 2045 features &= ~NETIF_F_SG; 2046 } else if (illegal_highdma(skb->dev, skb)) { 2047 features &= ~NETIF_F_SG; 2048 } 2049 2050 return features; 2051 } 2052 2053 u32 netif_skb_features(struct sk_buff *skb) 2054 { 2055 __be16 protocol = skb->protocol; 2056 u32 features = skb->dev->features; 2057 2058 if (protocol == htons(ETH_P_8021Q)) { 2059 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2060 protocol = veh->h_vlan_encapsulated_proto; 2061 } else if (!vlan_tx_tag_present(skb)) { 2062 return harmonize_features(skb, protocol, features); 2063 } 2064 2065 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2066 2067 if (protocol != htons(ETH_P_8021Q)) { 2068 return harmonize_features(skb, protocol, features); 2069 } else { 2070 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2071 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2072 return harmonize_features(skb, protocol, features); 2073 } 2074 } 2075 EXPORT_SYMBOL(netif_skb_features); 2076 2077 /* 2078 * Returns true if either: 2079 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2080 * 2. skb is fragmented and the device does not support SG, or if 2081 * at least one of fragments is in highmem and device does not 2082 * support DMA from it. 2083 */ 2084 static inline int skb_needs_linearize(struct sk_buff *skb, 2085 int features) 2086 { 2087 return skb_is_nonlinear(skb) && 2088 ((skb_has_frag_list(skb) && 2089 !(features & NETIF_F_FRAGLIST)) || 2090 (skb_shinfo(skb)->nr_frags && 2091 !(features & NETIF_F_SG))); 2092 } 2093 2094 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2095 struct netdev_queue *txq) 2096 { 2097 const struct net_device_ops *ops = dev->netdev_ops; 2098 int rc = NETDEV_TX_OK; 2099 unsigned int skb_len; 2100 2101 if (likely(!skb->next)) { 2102 u32 features; 2103 2104 /* 2105 * If device doesn't need skb->dst, release it right now while 2106 * its hot in this cpu cache 2107 */ 2108 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2109 skb_dst_drop(skb); 2110 2111 if (!list_empty(&ptype_all)) 2112 dev_queue_xmit_nit(skb, dev); 2113 2114 skb_orphan_try(skb); 2115 2116 features = netif_skb_features(skb); 2117 2118 if (vlan_tx_tag_present(skb) && 2119 !(features & NETIF_F_HW_VLAN_TX)) { 2120 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2121 if (unlikely(!skb)) 2122 goto out; 2123 2124 skb->vlan_tci = 0; 2125 } 2126 2127 if (netif_needs_gso(skb, features)) { 2128 if (unlikely(dev_gso_segment(skb, features))) 2129 goto out_kfree_skb; 2130 if (skb->next) 2131 goto gso; 2132 } else { 2133 if (skb_needs_linearize(skb, features) && 2134 __skb_linearize(skb)) 2135 goto out_kfree_skb; 2136 2137 /* If packet is not checksummed and device does not 2138 * support checksumming for this protocol, complete 2139 * checksumming here. 2140 */ 2141 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2142 skb_set_transport_header(skb, 2143 skb_checksum_start_offset(skb)); 2144 if (!(features & NETIF_F_ALL_CSUM) && 2145 skb_checksum_help(skb)) 2146 goto out_kfree_skb; 2147 } 2148 } 2149 2150 skb_len = skb->len; 2151 rc = ops->ndo_start_xmit(skb, dev); 2152 trace_net_dev_xmit(skb, rc, dev, skb_len); 2153 if (rc == NETDEV_TX_OK) 2154 txq_trans_update(txq); 2155 return rc; 2156 } 2157 2158 gso: 2159 do { 2160 struct sk_buff *nskb = skb->next; 2161 2162 skb->next = nskb->next; 2163 nskb->next = NULL; 2164 2165 /* 2166 * If device doesn't need nskb->dst, release it right now while 2167 * its hot in this cpu cache 2168 */ 2169 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2170 skb_dst_drop(nskb); 2171 2172 skb_len = nskb->len; 2173 rc = ops->ndo_start_xmit(nskb, dev); 2174 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2175 if (unlikely(rc != NETDEV_TX_OK)) { 2176 if (rc & ~NETDEV_TX_MASK) 2177 goto out_kfree_gso_skb; 2178 nskb->next = skb->next; 2179 skb->next = nskb; 2180 return rc; 2181 } 2182 txq_trans_update(txq); 2183 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2184 return NETDEV_TX_BUSY; 2185 } while (skb->next); 2186 2187 out_kfree_gso_skb: 2188 if (likely(skb->next == NULL)) 2189 skb->destructor = DEV_GSO_CB(skb)->destructor; 2190 out_kfree_skb: 2191 kfree_skb(skb); 2192 out: 2193 return rc; 2194 } 2195 2196 static u32 hashrnd __read_mostly; 2197 2198 /* 2199 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2200 * to be used as a distribution range. 2201 */ 2202 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2203 unsigned int num_tx_queues) 2204 { 2205 u32 hash; 2206 u16 qoffset = 0; 2207 u16 qcount = num_tx_queues; 2208 2209 if (skb_rx_queue_recorded(skb)) { 2210 hash = skb_get_rx_queue(skb); 2211 while (unlikely(hash >= num_tx_queues)) 2212 hash -= num_tx_queues; 2213 return hash; 2214 } 2215 2216 if (dev->num_tc) { 2217 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2218 qoffset = dev->tc_to_txq[tc].offset; 2219 qcount = dev->tc_to_txq[tc].count; 2220 } 2221 2222 if (skb->sk && skb->sk->sk_hash) 2223 hash = skb->sk->sk_hash; 2224 else 2225 hash = (__force u16) skb->protocol ^ skb->rxhash; 2226 hash = jhash_1word(hash, hashrnd); 2227 2228 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2229 } 2230 EXPORT_SYMBOL(__skb_tx_hash); 2231 2232 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2233 { 2234 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2235 if (net_ratelimit()) { 2236 pr_warning("%s selects TX queue %d, but " 2237 "real number of TX queues is %d\n", 2238 dev->name, queue_index, dev->real_num_tx_queues); 2239 } 2240 return 0; 2241 } 2242 return queue_index; 2243 } 2244 2245 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2246 { 2247 #ifdef CONFIG_XPS 2248 struct xps_dev_maps *dev_maps; 2249 struct xps_map *map; 2250 int queue_index = -1; 2251 2252 rcu_read_lock(); 2253 dev_maps = rcu_dereference(dev->xps_maps); 2254 if (dev_maps) { 2255 map = rcu_dereference( 2256 dev_maps->cpu_map[raw_smp_processor_id()]); 2257 if (map) { 2258 if (map->len == 1) 2259 queue_index = map->queues[0]; 2260 else { 2261 u32 hash; 2262 if (skb->sk && skb->sk->sk_hash) 2263 hash = skb->sk->sk_hash; 2264 else 2265 hash = (__force u16) skb->protocol ^ 2266 skb->rxhash; 2267 hash = jhash_1word(hash, hashrnd); 2268 queue_index = map->queues[ 2269 ((u64)hash * map->len) >> 32]; 2270 } 2271 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2272 queue_index = -1; 2273 } 2274 } 2275 rcu_read_unlock(); 2276 2277 return queue_index; 2278 #else 2279 return -1; 2280 #endif 2281 } 2282 2283 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2284 struct sk_buff *skb) 2285 { 2286 int queue_index; 2287 const struct net_device_ops *ops = dev->netdev_ops; 2288 2289 if (dev->real_num_tx_queues == 1) 2290 queue_index = 0; 2291 else if (ops->ndo_select_queue) { 2292 queue_index = ops->ndo_select_queue(dev, skb); 2293 queue_index = dev_cap_txqueue(dev, queue_index); 2294 } else { 2295 struct sock *sk = skb->sk; 2296 queue_index = sk_tx_queue_get(sk); 2297 2298 if (queue_index < 0 || skb->ooo_okay || 2299 queue_index >= dev->real_num_tx_queues) { 2300 int old_index = queue_index; 2301 2302 queue_index = get_xps_queue(dev, skb); 2303 if (queue_index < 0) 2304 queue_index = skb_tx_hash(dev, skb); 2305 2306 if (queue_index != old_index && sk) { 2307 struct dst_entry *dst = 2308 rcu_dereference_check(sk->sk_dst_cache, 1); 2309 2310 if (dst && skb_dst(skb) == dst) 2311 sk_tx_queue_set(sk, queue_index); 2312 } 2313 } 2314 } 2315 2316 skb_set_queue_mapping(skb, queue_index); 2317 return netdev_get_tx_queue(dev, queue_index); 2318 } 2319 2320 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2321 struct net_device *dev, 2322 struct netdev_queue *txq) 2323 { 2324 spinlock_t *root_lock = qdisc_lock(q); 2325 bool contended; 2326 int rc; 2327 2328 qdisc_skb_cb(skb)->pkt_len = skb->len; 2329 qdisc_calculate_pkt_len(skb, q); 2330 /* 2331 * Heuristic to force contended enqueues to serialize on a 2332 * separate lock before trying to get qdisc main lock. 2333 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2334 * and dequeue packets faster. 2335 */ 2336 contended = qdisc_is_running(q); 2337 if (unlikely(contended)) 2338 spin_lock(&q->busylock); 2339 2340 spin_lock(root_lock); 2341 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2342 kfree_skb(skb); 2343 rc = NET_XMIT_DROP; 2344 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2345 qdisc_run_begin(q)) { 2346 /* 2347 * This is a work-conserving queue; there are no old skbs 2348 * waiting to be sent out; and the qdisc is not running - 2349 * xmit the skb directly. 2350 */ 2351 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2352 skb_dst_force(skb); 2353 2354 qdisc_bstats_update(q, skb); 2355 2356 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2357 if (unlikely(contended)) { 2358 spin_unlock(&q->busylock); 2359 contended = false; 2360 } 2361 __qdisc_run(q); 2362 } else 2363 qdisc_run_end(q); 2364 2365 rc = NET_XMIT_SUCCESS; 2366 } else { 2367 skb_dst_force(skb); 2368 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2369 if (qdisc_run_begin(q)) { 2370 if (unlikely(contended)) { 2371 spin_unlock(&q->busylock); 2372 contended = false; 2373 } 2374 __qdisc_run(q); 2375 } 2376 } 2377 spin_unlock(root_lock); 2378 if (unlikely(contended)) 2379 spin_unlock(&q->busylock); 2380 return rc; 2381 } 2382 2383 static DEFINE_PER_CPU(int, xmit_recursion); 2384 #define RECURSION_LIMIT 10 2385 2386 /** 2387 * dev_queue_xmit - transmit a buffer 2388 * @skb: buffer to transmit 2389 * 2390 * Queue a buffer for transmission to a network device. The caller must 2391 * have set the device and priority and built the buffer before calling 2392 * this function. The function can be called from an interrupt. 2393 * 2394 * A negative errno code is returned on a failure. A success does not 2395 * guarantee the frame will be transmitted as it may be dropped due 2396 * to congestion or traffic shaping. 2397 * 2398 * ----------------------------------------------------------------------------------- 2399 * I notice this method can also return errors from the queue disciplines, 2400 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2401 * be positive. 2402 * 2403 * Regardless of the return value, the skb is consumed, so it is currently 2404 * difficult to retry a send to this method. (You can bump the ref count 2405 * before sending to hold a reference for retry if you are careful.) 2406 * 2407 * When calling this method, interrupts MUST be enabled. This is because 2408 * the BH enable code must have IRQs enabled so that it will not deadlock. 2409 * --BLG 2410 */ 2411 int dev_queue_xmit(struct sk_buff *skb) 2412 { 2413 struct net_device *dev = skb->dev; 2414 struct netdev_queue *txq; 2415 struct Qdisc *q; 2416 int rc = -ENOMEM; 2417 2418 /* Disable soft irqs for various locks below. Also 2419 * stops preemption for RCU. 2420 */ 2421 rcu_read_lock_bh(); 2422 2423 txq = dev_pick_tx(dev, skb); 2424 q = rcu_dereference_bh(txq->qdisc); 2425 2426 #ifdef CONFIG_NET_CLS_ACT 2427 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2428 #endif 2429 trace_net_dev_queue(skb); 2430 if (q->enqueue) { 2431 rc = __dev_xmit_skb(skb, q, dev, txq); 2432 goto out; 2433 } 2434 2435 /* The device has no queue. Common case for software devices: 2436 loopback, all the sorts of tunnels... 2437 2438 Really, it is unlikely that netif_tx_lock protection is necessary 2439 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2440 counters.) 2441 However, it is possible, that they rely on protection 2442 made by us here. 2443 2444 Check this and shot the lock. It is not prone from deadlocks. 2445 Either shot noqueue qdisc, it is even simpler 8) 2446 */ 2447 if (dev->flags & IFF_UP) { 2448 int cpu = smp_processor_id(); /* ok because BHs are off */ 2449 2450 if (txq->xmit_lock_owner != cpu) { 2451 2452 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2453 goto recursion_alert; 2454 2455 HARD_TX_LOCK(dev, txq, cpu); 2456 2457 if (!netif_tx_queue_stopped(txq)) { 2458 __this_cpu_inc(xmit_recursion); 2459 rc = dev_hard_start_xmit(skb, dev, txq); 2460 __this_cpu_dec(xmit_recursion); 2461 if (dev_xmit_complete(rc)) { 2462 HARD_TX_UNLOCK(dev, txq); 2463 goto out; 2464 } 2465 } 2466 HARD_TX_UNLOCK(dev, txq); 2467 if (net_ratelimit()) 2468 printk(KERN_CRIT "Virtual device %s asks to " 2469 "queue packet!\n", dev->name); 2470 } else { 2471 /* Recursion is detected! It is possible, 2472 * unfortunately 2473 */ 2474 recursion_alert: 2475 if (net_ratelimit()) 2476 printk(KERN_CRIT "Dead loop on virtual device " 2477 "%s, fix it urgently!\n", dev->name); 2478 } 2479 } 2480 2481 rc = -ENETDOWN; 2482 rcu_read_unlock_bh(); 2483 2484 kfree_skb(skb); 2485 return rc; 2486 out: 2487 rcu_read_unlock_bh(); 2488 return rc; 2489 } 2490 EXPORT_SYMBOL(dev_queue_xmit); 2491 2492 2493 /*======================================================================= 2494 Receiver routines 2495 =======================================================================*/ 2496 2497 int netdev_max_backlog __read_mostly = 1000; 2498 int netdev_tstamp_prequeue __read_mostly = 1; 2499 int netdev_budget __read_mostly = 300; 2500 int weight_p __read_mostly = 64; /* old backlog weight */ 2501 2502 /* Called with irq disabled */ 2503 static inline void ____napi_schedule(struct softnet_data *sd, 2504 struct napi_struct *napi) 2505 { 2506 list_add_tail(&napi->poll_list, &sd->poll_list); 2507 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2508 } 2509 2510 /* 2511 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2512 * and src/dst port numbers. Returns a non-zero hash number on success 2513 * and 0 on failure. 2514 */ 2515 __u32 __skb_get_rxhash(struct sk_buff *skb) 2516 { 2517 int nhoff, hash = 0, poff; 2518 const struct ipv6hdr *ip6; 2519 const struct iphdr *ip; 2520 u8 ip_proto; 2521 u32 addr1, addr2, ihl; 2522 union { 2523 u32 v32; 2524 u16 v16[2]; 2525 } ports; 2526 2527 nhoff = skb_network_offset(skb); 2528 2529 switch (skb->protocol) { 2530 case __constant_htons(ETH_P_IP): 2531 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff)) 2532 goto done; 2533 2534 ip = (const struct iphdr *) (skb->data + nhoff); 2535 if (ip->frag_off & htons(IP_MF | IP_OFFSET)) 2536 ip_proto = 0; 2537 else 2538 ip_proto = ip->protocol; 2539 addr1 = (__force u32) ip->saddr; 2540 addr2 = (__force u32) ip->daddr; 2541 ihl = ip->ihl; 2542 break; 2543 case __constant_htons(ETH_P_IPV6): 2544 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff)) 2545 goto done; 2546 2547 ip6 = (const struct ipv6hdr *) (skb->data + nhoff); 2548 ip_proto = ip6->nexthdr; 2549 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2550 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2551 ihl = (40 >> 2); 2552 break; 2553 default: 2554 goto done; 2555 } 2556 2557 ports.v32 = 0; 2558 poff = proto_ports_offset(ip_proto); 2559 if (poff >= 0) { 2560 nhoff += ihl * 4 + poff; 2561 if (pskb_may_pull(skb, nhoff + 4)) { 2562 ports.v32 = * (__force u32 *) (skb->data + nhoff); 2563 if (ports.v16[1] < ports.v16[0]) 2564 swap(ports.v16[0], ports.v16[1]); 2565 } 2566 } 2567 2568 /* get a consistent hash (same value on both flow directions) */ 2569 if (addr2 < addr1) 2570 swap(addr1, addr2); 2571 2572 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2573 if (!hash) 2574 hash = 1; 2575 2576 done: 2577 return hash; 2578 } 2579 EXPORT_SYMBOL(__skb_get_rxhash); 2580 2581 #ifdef CONFIG_RPS 2582 2583 /* One global table that all flow-based protocols share. */ 2584 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2585 EXPORT_SYMBOL(rps_sock_flow_table); 2586 2587 static struct rps_dev_flow * 2588 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2589 struct rps_dev_flow *rflow, u16 next_cpu) 2590 { 2591 u16 tcpu; 2592 2593 tcpu = rflow->cpu = next_cpu; 2594 if (tcpu != RPS_NO_CPU) { 2595 #ifdef CONFIG_RFS_ACCEL 2596 struct netdev_rx_queue *rxqueue; 2597 struct rps_dev_flow_table *flow_table; 2598 struct rps_dev_flow *old_rflow; 2599 u32 flow_id; 2600 u16 rxq_index; 2601 int rc; 2602 2603 /* Should we steer this flow to a different hardware queue? */ 2604 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2605 !(dev->features & NETIF_F_NTUPLE)) 2606 goto out; 2607 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2608 if (rxq_index == skb_get_rx_queue(skb)) 2609 goto out; 2610 2611 rxqueue = dev->_rx + rxq_index; 2612 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2613 if (!flow_table) 2614 goto out; 2615 flow_id = skb->rxhash & flow_table->mask; 2616 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2617 rxq_index, flow_id); 2618 if (rc < 0) 2619 goto out; 2620 old_rflow = rflow; 2621 rflow = &flow_table->flows[flow_id]; 2622 rflow->cpu = next_cpu; 2623 rflow->filter = rc; 2624 if (old_rflow->filter == rflow->filter) 2625 old_rflow->filter = RPS_NO_FILTER; 2626 out: 2627 #endif 2628 rflow->last_qtail = 2629 per_cpu(softnet_data, tcpu).input_queue_head; 2630 } 2631 2632 return rflow; 2633 } 2634 2635 /* 2636 * get_rps_cpu is called from netif_receive_skb and returns the target 2637 * CPU from the RPS map of the receiving queue for a given skb. 2638 * rcu_read_lock must be held on entry. 2639 */ 2640 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2641 struct rps_dev_flow **rflowp) 2642 { 2643 struct netdev_rx_queue *rxqueue; 2644 struct rps_map *map; 2645 struct rps_dev_flow_table *flow_table; 2646 struct rps_sock_flow_table *sock_flow_table; 2647 int cpu = -1; 2648 u16 tcpu; 2649 2650 if (skb_rx_queue_recorded(skb)) { 2651 u16 index = skb_get_rx_queue(skb); 2652 if (unlikely(index >= dev->real_num_rx_queues)) { 2653 WARN_ONCE(dev->real_num_rx_queues > 1, 2654 "%s received packet on queue %u, but number " 2655 "of RX queues is %u\n", 2656 dev->name, index, dev->real_num_rx_queues); 2657 goto done; 2658 } 2659 rxqueue = dev->_rx + index; 2660 } else 2661 rxqueue = dev->_rx; 2662 2663 map = rcu_dereference(rxqueue->rps_map); 2664 if (map) { 2665 if (map->len == 1 && 2666 !rcu_dereference_raw(rxqueue->rps_flow_table)) { 2667 tcpu = map->cpus[0]; 2668 if (cpu_online(tcpu)) 2669 cpu = tcpu; 2670 goto done; 2671 } 2672 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) { 2673 goto done; 2674 } 2675 2676 skb_reset_network_header(skb); 2677 if (!skb_get_rxhash(skb)) 2678 goto done; 2679 2680 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2681 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2682 if (flow_table && sock_flow_table) { 2683 u16 next_cpu; 2684 struct rps_dev_flow *rflow; 2685 2686 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2687 tcpu = rflow->cpu; 2688 2689 next_cpu = sock_flow_table->ents[skb->rxhash & 2690 sock_flow_table->mask]; 2691 2692 /* 2693 * If the desired CPU (where last recvmsg was done) is 2694 * different from current CPU (one in the rx-queue flow 2695 * table entry), switch if one of the following holds: 2696 * - Current CPU is unset (equal to RPS_NO_CPU). 2697 * - Current CPU is offline. 2698 * - The current CPU's queue tail has advanced beyond the 2699 * last packet that was enqueued using this table entry. 2700 * This guarantees that all previous packets for the flow 2701 * have been dequeued, thus preserving in order delivery. 2702 */ 2703 if (unlikely(tcpu != next_cpu) && 2704 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2705 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2706 rflow->last_qtail)) >= 0)) 2707 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2708 2709 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2710 *rflowp = rflow; 2711 cpu = tcpu; 2712 goto done; 2713 } 2714 } 2715 2716 if (map) { 2717 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2718 2719 if (cpu_online(tcpu)) { 2720 cpu = tcpu; 2721 goto done; 2722 } 2723 } 2724 2725 done: 2726 return cpu; 2727 } 2728 2729 #ifdef CONFIG_RFS_ACCEL 2730 2731 /** 2732 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2733 * @dev: Device on which the filter was set 2734 * @rxq_index: RX queue index 2735 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2736 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2737 * 2738 * Drivers that implement ndo_rx_flow_steer() should periodically call 2739 * this function for each installed filter and remove the filters for 2740 * which it returns %true. 2741 */ 2742 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2743 u32 flow_id, u16 filter_id) 2744 { 2745 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2746 struct rps_dev_flow_table *flow_table; 2747 struct rps_dev_flow *rflow; 2748 bool expire = true; 2749 int cpu; 2750 2751 rcu_read_lock(); 2752 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2753 if (flow_table && flow_id <= flow_table->mask) { 2754 rflow = &flow_table->flows[flow_id]; 2755 cpu = ACCESS_ONCE(rflow->cpu); 2756 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2757 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2758 rflow->last_qtail) < 2759 (int)(10 * flow_table->mask))) 2760 expire = false; 2761 } 2762 rcu_read_unlock(); 2763 return expire; 2764 } 2765 EXPORT_SYMBOL(rps_may_expire_flow); 2766 2767 #endif /* CONFIG_RFS_ACCEL */ 2768 2769 /* Called from hardirq (IPI) context */ 2770 static void rps_trigger_softirq(void *data) 2771 { 2772 struct softnet_data *sd = data; 2773 2774 ____napi_schedule(sd, &sd->backlog); 2775 sd->received_rps++; 2776 } 2777 2778 #endif /* CONFIG_RPS */ 2779 2780 /* 2781 * Check if this softnet_data structure is another cpu one 2782 * If yes, queue it to our IPI list and return 1 2783 * If no, return 0 2784 */ 2785 static int rps_ipi_queued(struct softnet_data *sd) 2786 { 2787 #ifdef CONFIG_RPS 2788 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2789 2790 if (sd != mysd) { 2791 sd->rps_ipi_next = mysd->rps_ipi_list; 2792 mysd->rps_ipi_list = sd; 2793 2794 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2795 return 1; 2796 } 2797 #endif /* CONFIG_RPS */ 2798 return 0; 2799 } 2800 2801 /* 2802 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2803 * queue (may be a remote CPU queue). 2804 */ 2805 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2806 unsigned int *qtail) 2807 { 2808 struct softnet_data *sd; 2809 unsigned long flags; 2810 2811 sd = &per_cpu(softnet_data, cpu); 2812 2813 local_irq_save(flags); 2814 2815 rps_lock(sd); 2816 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2817 if (skb_queue_len(&sd->input_pkt_queue)) { 2818 enqueue: 2819 __skb_queue_tail(&sd->input_pkt_queue, skb); 2820 input_queue_tail_incr_save(sd, qtail); 2821 rps_unlock(sd); 2822 local_irq_restore(flags); 2823 return NET_RX_SUCCESS; 2824 } 2825 2826 /* Schedule NAPI for backlog device 2827 * We can use non atomic operation since we own the queue lock 2828 */ 2829 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2830 if (!rps_ipi_queued(sd)) 2831 ____napi_schedule(sd, &sd->backlog); 2832 } 2833 goto enqueue; 2834 } 2835 2836 sd->dropped++; 2837 rps_unlock(sd); 2838 2839 local_irq_restore(flags); 2840 2841 atomic_long_inc(&skb->dev->rx_dropped); 2842 kfree_skb(skb); 2843 return NET_RX_DROP; 2844 } 2845 2846 /** 2847 * netif_rx - post buffer to the network code 2848 * @skb: buffer to post 2849 * 2850 * This function receives a packet from a device driver and queues it for 2851 * the upper (protocol) levels to process. It always succeeds. The buffer 2852 * may be dropped during processing for congestion control or by the 2853 * protocol layers. 2854 * 2855 * return values: 2856 * NET_RX_SUCCESS (no congestion) 2857 * NET_RX_DROP (packet was dropped) 2858 * 2859 */ 2860 2861 int netif_rx(struct sk_buff *skb) 2862 { 2863 int ret; 2864 2865 /* if netpoll wants it, pretend we never saw it */ 2866 if (netpoll_rx(skb)) 2867 return NET_RX_DROP; 2868 2869 if (netdev_tstamp_prequeue) 2870 net_timestamp_check(skb); 2871 2872 trace_netif_rx(skb); 2873 #ifdef CONFIG_RPS 2874 { 2875 struct rps_dev_flow voidflow, *rflow = &voidflow; 2876 int cpu; 2877 2878 preempt_disable(); 2879 rcu_read_lock(); 2880 2881 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2882 if (cpu < 0) 2883 cpu = smp_processor_id(); 2884 2885 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2886 2887 rcu_read_unlock(); 2888 preempt_enable(); 2889 } 2890 #else 2891 { 2892 unsigned int qtail; 2893 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2894 put_cpu(); 2895 } 2896 #endif 2897 return ret; 2898 } 2899 EXPORT_SYMBOL(netif_rx); 2900 2901 int netif_rx_ni(struct sk_buff *skb) 2902 { 2903 int err; 2904 2905 preempt_disable(); 2906 err = netif_rx(skb); 2907 if (local_softirq_pending()) 2908 do_softirq(); 2909 preempt_enable(); 2910 2911 return err; 2912 } 2913 EXPORT_SYMBOL(netif_rx_ni); 2914 2915 static void net_tx_action(struct softirq_action *h) 2916 { 2917 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2918 2919 if (sd->completion_queue) { 2920 struct sk_buff *clist; 2921 2922 local_irq_disable(); 2923 clist = sd->completion_queue; 2924 sd->completion_queue = NULL; 2925 local_irq_enable(); 2926 2927 while (clist) { 2928 struct sk_buff *skb = clist; 2929 clist = clist->next; 2930 2931 WARN_ON(atomic_read(&skb->users)); 2932 trace_kfree_skb(skb, net_tx_action); 2933 __kfree_skb(skb); 2934 } 2935 } 2936 2937 if (sd->output_queue) { 2938 struct Qdisc *head; 2939 2940 local_irq_disable(); 2941 head = sd->output_queue; 2942 sd->output_queue = NULL; 2943 sd->output_queue_tailp = &sd->output_queue; 2944 local_irq_enable(); 2945 2946 while (head) { 2947 struct Qdisc *q = head; 2948 spinlock_t *root_lock; 2949 2950 head = head->next_sched; 2951 2952 root_lock = qdisc_lock(q); 2953 if (spin_trylock(root_lock)) { 2954 smp_mb__before_clear_bit(); 2955 clear_bit(__QDISC_STATE_SCHED, 2956 &q->state); 2957 qdisc_run(q); 2958 spin_unlock(root_lock); 2959 } else { 2960 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2961 &q->state)) { 2962 __netif_reschedule(q); 2963 } else { 2964 smp_mb__before_clear_bit(); 2965 clear_bit(__QDISC_STATE_SCHED, 2966 &q->state); 2967 } 2968 } 2969 } 2970 } 2971 } 2972 2973 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 2974 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 2975 /* This hook is defined here for ATM LANE */ 2976 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2977 unsigned char *addr) __read_mostly; 2978 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2979 #endif 2980 2981 #ifdef CONFIG_NET_CLS_ACT 2982 /* TODO: Maybe we should just force sch_ingress to be compiled in 2983 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2984 * a compare and 2 stores extra right now if we dont have it on 2985 * but have CONFIG_NET_CLS_ACT 2986 * NOTE: This doesn't stop any functionality; if you dont have 2987 * the ingress scheduler, you just can't add policies on ingress. 2988 * 2989 */ 2990 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 2991 { 2992 struct net_device *dev = skb->dev; 2993 u32 ttl = G_TC_RTTL(skb->tc_verd); 2994 int result = TC_ACT_OK; 2995 struct Qdisc *q; 2996 2997 if (unlikely(MAX_RED_LOOP < ttl++)) { 2998 if (net_ratelimit()) 2999 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 3000 skb->skb_iif, dev->ifindex); 3001 return TC_ACT_SHOT; 3002 } 3003 3004 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3005 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3006 3007 q = rxq->qdisc; 3008 if (q != &noop_qdisc) { 3009 spin_lock(qdisc_lock(q)); 3010 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3011 result = qdisc_enqueue_root(skb, q); 3012 spin_unlock(qdisc_lock(q)); 3013 } 3014 3015 return result; 3016 } 3017 3018 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3019 struct packet_type **pt_prev, 3020 int *ret, struct net_device *orig_dev) 3021 { 3022 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3023 3024 if (!rxq || rxq->qdisc == &noop_qdisc) 3025 goto out; 3026 3027 if (*pt_prev) { 3028 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3029 *pt_prev = NULL; 3030 } 3031 3032 switch (ing_filter(skb, rxq)) { 3033 case TC_ACT_SHOT: 3034 case TC_ACT_STOLEN: 3035 kfree_skb(skb); 3036 return NULL; 3037 } 3038 3039 out: 3040 skb->tc_verd = 0; 3041 return skb; 3042 } 3043 #endif 3044 3045 /** 3046 * netdev_rx_handler_register - register receive handler 3047 * @dev: device to register a handler for 3048 * @rx_handler: receive handler to register 3049 * @rx_handler_data: data pointer that is used by rx handler 3050 * 3051 * Register a receive hander for a device. This handler will then be 3052 * called from __netif_receive_skb. A negative errno code is returned 3053 * on a failure. 3054 * 3055 * The caller must hold the rtnl_mutex. 3056 * 3057 * For a general description of rx_handler, see enum rx_handler_result. 3058 */ 3059 int netdev_rx_handler_register(struct net_device *dev, 3060 rx_handler_func_t *rx_handler, 3061 void *rx_handler_data) 3062 { 3063 ASSERT_RTNL(); 3064 3065 if (dev->rx_handler) 3066 return -EBUSY; 3067 3068 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3069 rcu_assign_pointer(dev->rx_handler, rx_handler); 3070 3071 return 0; 3072 } 3073 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3074 3075 /** 3076 * netdev_rx_handler_unregister - unregister receive handler 3077 * @dev: device to unregister a handler from 3078 * 3079 * Unregister a receive hander from a device. 3080 * 3081 * The caller must hold the rtnl_mutex. 3082 */ 3083 void netdev_rx_handler_unregister(struct net_device *dev) 3084 { 3085 3086 ASSERT_RTNL(); 3087 rcu_assign_pointer(dev->rx_handler, NULL); 3088 rcu_assign_pointer(dev->rx_handler_data, NULL); 3089 } 3090 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3091 3092 static int __netif_receive_skb(struct sk_buff *skb) 3093 { 3094 struct packet_type *ptype, *pt_prev; 3095 rx_handler_func_t *rx_handler; 3096 struct net_device *orig_dev; 3097 struct net_device *null_or_dev; 3098 bool deliver_exact = false; 3099 int ret = NET_RX_DROP; 3100 __be16 type; 3101 3102 if (!netdev_tstamp_prequeue) 3103 net_timestamp_check(skb); 3104 3105 trace_netif_receive_skb(skb); 3106 3107 /* if we've gotten here through NAPI, check netpoll */ 3108 if (netpoll_receive_skb(skb)) 3109 return NET_RX_DROP; 3110 3111 if (!skb->skb_iif) 3112 skb->skb_iif = skb->dev->ifindex; 3113 orig_dev = skb->dev; 3114 3115 skb_reset_network_header(skb); 3116 skb_reset_transport_header(skb); 3117 skb->mac_len = skb->network_header - skb->mac_header; 3118 3119 pt_prev = NULL; 3120 3121 rcu_read_lock(); 3122 3123 another_round: 3124 3125 __this_cpu_inc(softnet_data.processed); 3126 3127 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3128 skb = vlan_untag(skb); 3129 if (unlikely(!skb)) 3130 goto out; 3131 } 3132 3133 #ifdef CONFIG_NET_CLS_ACT 3134 if (skb->tc_verd & TC_NCLS) { 3135 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3136 goto ncls; 3137 } 3138 #endif 3139 3140 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3141 if (!ptype->dev || ptype->dev == skb->dev) { 3142 if (pt_prev) 3143 ret = deliver_skb(skb, pt_prev, orig_dev); 3144 pt_prev = ptype; 3145 } 3146 } 3147 3148 #ifdef CONFIG_NET_CLS_ACT 3149 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3150 if (!skb) 3151 goto out; 3152 ncls: 3153 #endif 3154 3155 rx_handler = rcu_dereference(skb->dev->rx_handler); 3156 if (rx_handler) { 3157 if (pt_prev) { 3158 ret = deliver_skb(skb, pt_prev, orig_dev); 3159 pt_prev = NULL; 3160 } 3161 switch (rx_handler(&skb)) { 3162 case RX_HANDLER_CONSUMED: 3163 goto out; 3164 case RX_HANDLER_ANOTHER: 3165 goto another_round; 3166 case RX_HANDLER_EXACT: 3167 deliver_exact = true; 3168 case RX_HANDLER_PASS: 3169 break; 3170 default: 3171 BUG(); 3172 } 3173 } 3174 3175 if (vlan_tx_tag_present(skb)) { 3176 if (pt_prev) { 3177 ret = deliver_skb(skb, pt_prev, orig_dev); 3178 pt_prev = NULL; 3179 } 3180 if (vlan_do_receive(&skb)) { 3181 ret = __netif_receive_skb(skb); 3182 goto out; 3183 } else if (unlikely(!skb)) 3184 goto out; 3185 } 3186 3187 /* deliver only exact match when indicated */ 3188 null_or_dev = deliver_exact ? skb->dev : NULL; 3189 3190 type = skb->protocol; 3191 list_for_each_entry_rcu(ptype, 3192 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3193 if (ptype->type == type && 3194 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3195 ptype->dev == orig_dev)) { 3196 if (pt_prev) 3197 ret = deliver_skb(skb, pt_prev, orig_dev); 3198 pt_prev = ptype; 3199 } 3200 } 3201 3202 if (pt_prev) { 3203 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3204 } else { 3205 atomic_long_inc(&skb->dev->rx_dropped); 3206 kfree_skb(skb); 3207 /* Jamal, now you will not able to escape explaining 3208 * me how you were going to use this. :-) 3209 */ 3210 ret = NET_RX_DROP; 3211 } 3212 3213 out: 3214 rcu_read_unlock(); 3215 return ret; 3216 } 3217 3218 /** 3219 * netif_receive_skb - process receive buffer from network 3220 * @skb: buffer to process 3221 * 3222 * netif_receive_skb() is the main receive data processing function. 3223 * It always succeeds. The buffer may be dropped during processing 3224 * for congestion control or by the protocol layers. 3225 * 3226 * This function may only be called from softirq context and interrupts 3227 * should be enabled. 3228 * 3229 * Return values (usually ignored): 3230 * NET_RX_SUCCESS: no congestion 3231 * NET_RX_DROP: packet was dropped 3232 */ 3233 int netif_receive_skb(struct sk_buff *skb) 3234 { 3235 if (netdev_tstamp_prequeue) 3236 net_timestamp_check(skb); 3237 3238 if (skb_defer_rx_timestamp(skb)) 3239 return NET_RX_SUCCESS; 3240 3241 #ifdef CONFIG_RPS 3242 { 3243 struct rps_dev_flow voidflow, *rflow = &voidflow; 3244 int cpu, ret; 3245 3246 rcu_read_lock(); 3247 3248 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3249 3250 if (cpu >= 0) { 3251 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3252 rcu_read_unlock(); 3253 } else { 3254 rcu_read_unlock(); 3255 ret = __netif_receive_skb(skb); 3256 } 3257 3258 return ret; 3259 } 3260 #else 3261 return __netif_receive_skb(skb); 3262 #endif 3263 } 3264 EXPORT_SYMBOL(netif_receive_skb); 3265 3266 /* Network device is going away, flush any packets still pending 3267 * Called with irqs disabled. 3268 */ 3269 static void flush_backlog(void *arg) 3270 { 3271 struct net_device *dev = arg; 3272 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3273 struct sk_buff *skb, *tmp; 3274 3275 rps_lock(sd); 3276 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3277 if (skb->dev == dev) { 3278 __skb_unlink(skb, &sd->input_pkt_queue); 3279 kfree_skb(skb); 3280 input_queue_head_incr(sd); 3281 } 3282 } 3283 rps_unlock(sd); 3284 3285 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3286 if (skb->dev == dev) { 3287 __skb_unlink(skb, &sd->process_queue); 3288 kfree_skb(skb); 3289 input_queue_head_incr(sd); 3290 } 3291 } 3292 } 3293 3294 static int napi_gro_complete(struct sk_buff *skb) 3295 { 3296 struct packet_type *ptype; 3297 __be16 type = skb->protocol; 3298 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3299 int err = -ENOENT; 3300 3301 if (NAPI_GRO_CB(skb)->count == 1) { 3302 skb_shinfo(skb)->gso_size = 0; 3303 goto out; 3304 } 3305 3306 rcu_read_lock(); 3307 list_for_each_entry_rcu(ptype, head, list) { 3308 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3309 continue; 3310 3311 err = ptype->gro_complete(skb); 3312 break; 3313 } 3314 rcu_read_unlock(); 3315 3316 if (err) { 3317 WARN_ON(&ptype->list == head); 3318 kfree_skb(skb); 3319 return NET_RX_SUCCESS; 3320 } 3321 3322 out: 3323 return netif_receive_skb(skb); 3324 } 3325 3326 inline void napi_gro_flush(struct napi_struct *napi) 3327 { 3328 struct sk_buff *skb, *next; 3329 3330 for (skb = napi->gro_list; skb; skb = next) { 3331 next = skb->next; 3332 skb->next = NULL; 3333 napi_gro_complete(skb); 3334 } 3335 3336 napi->gro_count = 0; 3337 napi->gro_list = NULL; 3338 } 3339 EXPORT_SYMBOL(napi_gro_flush); 3340 3341 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3342 { 3343 struct sk_buff **pp = NULL; 3344 struct packet_type *ptype; 3345 __be16 type = skb->protocol; 3346 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3347 int same_flow; 3348 int mac_len; 3349 enum gro_result ret; 3350 3351 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3352 goto normal; 3353 3354 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3355 goto normal; 3356 3357 rcu_read_lock(); 3358 list_for_each_entry_rcu(ptype, head, list) { 3359 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3360 continue; 3361 3362 skb_set_network_header(skb, skb_gro_offset(skb)); 3363 mac_len = skb->network_header - skb->mac_header; 3364 skb->mac_len = mac_len; 3365 NAPI_GRO_CB(skb)->same_flow = 0; 3366 NAPI_GRO_CB(skb)->flush = 0; 3367 NAPI_GRO_CB(skb)->free = 0; 3368 3369 pp = ptype->gro_receive(&napi->gro_list, skb); 3370 break; 3371 } 3372 rcu_read_unlock(); 3373 3374 if (&ptype->list == head) 3375 goto normal; 3376 3377 same_flow = NAPI_GRO_CB(skb)->same_flow; 3378 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3379 3380 if (pp) { 3381 struct sk_buff *nskb = *pp; 3382 3383 *pp = nskb->next; 3384 nskb->next = NULL; 3385 napi_gro_complete(nskb); 3386 napi->gro_count--; 3387 } 3388 3389 if (same_flow) 3390 goto ok; 3391 3392 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3393 goto normal; 3394 3395 napi->gro_count++; 3396 NAPI_GRO_CB(skb)->count = 1; 3397 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3398 skb->next = napi->gro_list; 3399 napi->gro_list = skb; 3400 ret = GRO_HELD; 3401 3402 pull: 3403 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3404 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3405 3406 BUG_ON(skb->end - skb->tail < grow); 3407 3408 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3409 3410 skb->tail += grow; 3411 skb->data_len -= grow; 3412 3413 skb_shinfo(skb)->frags[0].page_offset += grow; 3414 skb_shinfo(skb)->frags[0].size -= grow; 3415 3416 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3417 put_page(skb_shinfo(skb)->frags[0].page); 3418 memmove(skb_shinfo(skb)->frags, 3419 skb_shinfo(skb)->frags + 1, 3420 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3421 } 3422 } 3423 3424 ok: 3425 return ret; 3426 3427 normal: 3428 ret = GRO_NORMAL; 3429 goto pull; 3430 } 3431 EXPORT_SYMBOL(dev_gro_receive); 3432 3433 static inline gro_result_t 3434 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3435 { 3436 struct sk_buff *p; 3437 3438 for (p = napi->gro_list; p; p = p->next) { 3439 unsigned long diffs; 3440 3441 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3442 diffs |= p->vlan_tci ^ skb->vlan_tci; 3443 diffs |= compare_ether_header(skb_mac_header(p), 3444 skb_gro_mac_header(skb)); 3445 NAPI_GRO_CB(p)->same_flow = !diffs; 3446 NAPI_GRO_CB(p)->flush = 0; 3447 } 3448 3449 return dev_gro_receive(napi, skb); 3450 } 3451 3452 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3453 { 3454 switch (ret) { 3455 case GRO_NORMAL: 3456 if (netif_receive_skb(skb)) 3457 ret = GRO_DROP; 3458 break; 3459 3460 case GRO_DROP: 3461 case GRO_MERGED_FREE: 3462 kfree_skb(skb); 3463 break; 3464 3465 case GRO_HELD: 3466 case GRO_MERGED: 3467 break; 3468 } 3469 3470 return ret; 3471 } 3472 EXPORT_SYMBOL(napi_skb_finish); 3473 3474 void skb_gro_reset_offset(struct sk_buff *skb) 3475 { 3476 NAPI_GRO_CB(skb)->data_offset = 0; 3477 NAPI_GRO_CB(skb)->frag0 = NULL; 3478 NAPI_GRO_CB(skb)->frag0_len = 0; 3479 3480 if (skb->mac_header == skb->tail && 3481 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3482 NAPI_GRO_CB(skb)->frag0 = 3483 page_address(skb_shinfo(skb)->frags[0].page) + 3484 skb_shinfo(skb)->frags[0].page_offset; 3485 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3486 } 3487 } 3488 EXPORT_SYMBOL(skb_gro_reset_offset); 3489 3490 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3491 { 3492 skb_gro_reset_offset(skb); 3493 3494 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3495 } 3496 EXPORT_SYMBOL(napi_gro_receive); 3497 3498 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3499 { 3500 __skb_pull(skb, skb_headlen(skb)); 3501 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3502 skb->vlan_tci = 0; 3503 skb->dev = napi->dev; 3504 skb->skb_iif = 0; 3505 3506 napi->skb = skb; 3507 } 3508 3509 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3510 { 3511 struct sk_buff *skb = napi->skb; 3512 3513 if (!skb) { 3514 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3515 if (skb) 3516 napi->skb = skb; 3517 } 3518 return skb; 3519 } 3520 EXPORT_SYMBOL(napi_get_frags); 3521 3522 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3523 gro_result_t ret) 3524 { 3525 switch (ret) { 3526 case GRO_NORMAL: 3527 case GRO_HELD: 3528 skb->protocol = eth_type_trans(skb, skb->dev); 3529 3530 if (ret == GRO_HELD) 3531 skb_gro_pull(skb, -ETH_HLEN); 3532 else if (netif_receive_skb(skb)) 3533 ret = GRO_DROP; 3534 break; 3535 3536 case GRO_DROP: 3537 case GRO_MERGED_FREE: 3538 napi_reuse_skb(napi, skb); 3539 break; 3540 3541 case GRO_MERGED: 3542 break; 3543 } 3544 3545 return ret; 3546 } 3547 EXPORT_SYMBOL(napi_frags_finish); 3548 3549 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3550 { 3551 struct sk_buff *skb = napi->skb; 3552 struct ethhdr *eth; 3553 unsigned int hlen; 3554 unsigned int off; 3555 3556 napi->skb = NULL; 3557 3558 skb_reset_mac_header(skb); 3559 skb_gro_reset_offset(skb); 3560 3561 off = skb_gro_offset(skb); 3562 hlen = off + sizeof(*eth); 3563 eth = skb_gro_header_fast(skb, off); 3564 if (skb_gro_header_hard(skb, hlen)) { 3565 eth = skb_gro_header_slow(skb, hlen, off); 3566 if (unlikely(!eth)) { 3567 napi_reuse_skb(napi, skb); 3568 skb = NULL; 3569 goto out; 3570 } 3571 } 3572 3573 skb_gro_pull(skb, sizeof(*eth)); 3574 3575 /* 3576 * This works because the only protocols we care about don't require 3577 * special handling. We'll fix it up properly at the end. 3578 */ 3579 skb->protocol = eth->h_proto; 3580 3581 out: 3582 return skb; 3583 } 3584 EXPORT_SYMBOL(napi_frags_skb); 3585 3586 gro_result_t napi_gro_frags(struct napi_struct *napi) 3587 { 3588 struct sk_buff *skb = napi_frags_skb(napi); 3589 3590 if (!skb) 3591 return GRO_DROP; 3592 3593 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3594 } 3595 EXPORT_SYMBOL(napi_gro_frags); 3596 3597 /* 3598 * net_rps_action sends any pending IPI's for rps. 3599 * Note: called with local irq disabled, but exits with local irq enabled. 3600 */ 3601 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3602 { 3603 #ifdef CONFIG_RPS 3604 struct softnet_data *remsd = sd->rps_ipi_list; 3605 3606 if (remsd) { 3607 sd->rps_ipi_list = NULL; 3608 3609 local_irq_enable(); 3610 3611 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3612 while (remsd) { 3613 struct softnet_data *next = remsd->rps_ipi_next; 3614 3615 if (cpu_online(remsd->cpu)) 3616 __smp_call_function_single(remsd->cpu, 3617 &remsd->csd, 0); 3618 remsd = next; 3619 } 3620 } else 3621 #endif 3622 local_irq_enable(); 3623 } 3624 3625 static int process_backlog(struct napi_struct *napi, int quota) 3626 { 3627 int work = 0; 3628 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3629 3630 #ifdef CONFIG_RPS 3631 /* Check if we have pending ipi, its better to send them now, 3632 * not waiting net_rx_action() end. 3633 */ 3634 if (sd->rps_ipi_list) { 3635 local_irq_disable(); 3636 net_rps_action_and_irq_enable(sd); 3637 } 3638 #endif 3639 napi->weight = weight_p; 3640 local_irq_disable(); 3641 while (work < quota) { 3642 struct sk_buff *skb; 3643 unsigned int qlen; 3644 3645 while ((skb = __skb_dequeue(&sd->process_queue))) { 3646 local_irq_enable(); 3647 __netif_receive_skb(skb); 3648 local_irq_disable(); 3649 input_queue_head_incr(sd); 3650 if (++work >= quota) { 3651 local_irq_enable(); 3652 return work; 3653 } 3654 } 3655 3656 rps_lock(sd); 3657 qlen = skb_queue_len(&sd->input_pkt_queue); 3658 if (qlen) 3659 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3660 &sd->process_queue); 3661 3662 if (qlen < quota - work) { 3663 /* 3664 * Inline a custom version of __napi_complete(). 3665 * only current cpu owns and manipulates this napi, 3666 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3667 * we can use a plain write instead of clear_bit(), 3668 * and we dont need an smp_mb() memory barrier. 3669 */ 3670 list_del(&napi->poll_list); 3671 napi->state = 0; 3672 3673 quota = work + qlen; 3674 } 3675 rps_unlock(sd); 3676 } 3677 local_irq_enable(); 3678 3679 return work; 3680 } 3681 3682 /** 3683 * __napi_schedule - schedule for receive 3684 * @n: entry to schedule 3685 * 3686 * The entry's receive function will be scheduled to run 3687 */ 3688 void __napi_schedule(struct napi_struct *n) 3689 { 3690 unsigned long flags; 3691 3692 local_irq_save(flags); 3693 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3694 local_irq_restore(flags); 3695 } 3696 EXPORT_SYMBOL(__napi_schedule); 3697 3698 void __napi_complete(struct napi_struct *n) 3699 { 3700 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3701 BUG_ON(n->gro_list); 3702 3703 list_del(&n->poll_list); 3704 smp_mb__before_clear_bit(); 3705 clear_bit(NAPI_STATE_SCHED, &n->state); 3706 } 3707 EXPORT_SYMBOL(__napi_complete); 3708 3709 void napi_complete(struct napi_struct *n) 3710 { 3711 unsigned long flags; 3712 3713 /* 3714 * don't let napi dequeue from the cpu poll list 3715 * just in case its running on a different cpu 3716 */ 3717 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3718 return; 3719 3720 napi_gro_flush(n); 3721 local_irq_save(flags); 3722 __napi_complete(n); 3723 local_irq_restore(flags); 3724 } 3725 EXPORT_SYMBOL(napi_complete); 3726 3727 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3728 int (*poll)(struct napi_struct *, int), int weight) 3729 { 3730 INIT_LIST_HEAD(&napi->poll_list); 3731 napi->gro_count = 0; 3732 napi->gro_list = NULL; 3733 napi->skb = NULL; 3734 napi->poll = poll; 3735 napi->weight = weight; 3736 list_add(&napi->dev_list, &dev->napi_list); 3737 napi->dev = dev; 3738 #ifdef CONFIG_NETPOLL 3739 spin_lock_init(&napi->poll_lock); 3740 napi->poll_owner = -1; 3741 #endif 3742 set_bit(NAPI_STATE_SCHED, &napi->state); 3743 } 3744 EXPORT_SYMBOL(netif_napi_add); 3745 3746 void netif_napi_del(struct napi_struct *napi) 3747 { 3748 struct sk_buff *skb, *next; 3749 3750 list_del_init(&napi->dev_list); 3751 napi_free_frags(napi); 3752 3753 for (skb = napi->gro_list; skb; skb = next) { 3754 next = skb->next; 3755 skb->next = NULL; 3756 kfree_skb(skb); 3757 } 3758 3759 napi->gro_list = NULL; 3760 napi->gro_count = 0; 3761 } 3762 EXPORT_SYMBOL(netif_napi_del); 3763 3764 static void net_rx_action(struct softirq_action *h) 3765 { 3766 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3767 unsigned long time_limit = jiffies + 2; 3768 int budget = netdev_budget; 3769 void *have; 3770 3771 local_irq_disable(); 3772 3773 while (!list_empty(&sd->poll_list)) { 3774 struct napi_struct *n; 3775 int work, weight; 3776 3777 /* If softirq window is exhuasted then punt. 3778 * Allow this to run for 2 jiffies since which will allow 3779 * an average latency of 1.5/HZ. 3780 */ 3781 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3782 goto softnet_break; 3783 3784 local_irq_enable(); 3785 3786 /* Even though interrupts have been re-enabled, this 3787 * access is safe because interrupts can only add new 3788 * entries to the tail of this list, and only ->poll() 3789 * calls can remove this head entry from the list. 3790 */ 3791 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3792 3793 have = netpoll_poll_lock(n); 3794 3795 weight = n->weight; 3796 3797 /* This NAPI_STATE_SCHED test is for avoiding a race 3798 * with netpoll's poll_napi(). Only the entity which 3799 * obtains the lock and sees NAPI_STATE_SCHED set will 3800 * actually make the ->poll() call. Therefore we avoid 3801 * accidentally calling ->poll() when NAPI is not scheduled. 3802 */ 3803 work = 0; 3804 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3805 work = n->poll(n, weight); 3806 trace_napi_poll(n); 3807 } 3808 3809 WARN_ON_ONCE(work > weight); 3810 3811 budget -= work; 3812 3813 local_irq_disable(); 3814 3815 /* Drivers must not modify the NAPI state if they 3816 * consume the entire weight. In such cases this code 3817 * still "owns" the NAPI instance and therefore can 3818 * move the instance around on the list at-will. 3819 */ 3820 if (unlikely(work == weight)) { 3821 if (unlikely(napi_disable_pending(n))) { 3822 local_irq_enable(); 3823 napi_complete(n); 3824 local_irq_disable(); 3825 } else 3826 list_move_tail(&n->poll_list, &sd->poll_list); 3827 } 3828 3829 netpoll_poll_unlock(have); 3830 } 3831 out: 3832 net_rps_action_and_irq_enable(sd); 3833 3834 #ifdef CONFIG_NET_DMA 3835 /* 3836 * There may not be any more sk_buffs coming right now, so push 3837 * any pending DMA copies to hardware 3838 */ 3839 dma_issue_pending_all(); 3840 #endif 3841 3842 return; 3843 3844 softnet_break: 3845 sd->time_squeeze++; 3846 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3847 goto out; 3848 } 3849 3850 static gifconf_func_t *gifconf_list[NPROTO]; 3851 3852 /** 3853 * register_gifconf - register a SIOCGIF handler 3854 * @family: Address family 3855 * @gifconf: Function handler 3856 * 3857 * Register protocol dependent address dumping routines. The handler 3858 * that is passed must not be freed or reused until it has been replaced 3859 * by another handler. 3860 */ 3861 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3862 { 3863 if (family >= NPROTO) 3864 return -EINVAL; 3865 gifconf_list[family] = gifconf; 3866 return 0; 3867 } 3868 EXPORT_SYMBOL(register_gifconf); 3869 3870 3871 /* 3872 * Map an interface index to its name (SIOCGIFNAME) 3873 */ 3874 3875 /* 3876 * We need this ioctl for efficient implementation of the 3877 * if_indextoname() function required by the IPv6 API. Without 3878 * it, we would have to search all the interfaces to find a 3879 * match. --pb 3880 */ 3881 3882 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3883 { 3884 struct net_device *dev; 3885 struct ifreq ifr; 3886 3887 /* 3888 * Fetch the caller's info block. 3889 */ 3890 3891 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3892 return -EFAULT; 3893 3894 rcu_read_lock(); 3895 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3896 if (!dev) { 3897 rcu_read_unlock(); 3898 return -ENODEV; 3899 } 3900 3901 strcpy(ifr.ifr_name, dev->name); 3902 rcu_read_unlock(); 3903 3904 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3905 return -EFAULT; 3906 return 0; 3907 } 3908 3909 /* 3910 * Perform a SIOCGIFCONF call. This structure will change 3911 * size eventually, and there is nothing I can do about it. 3912 * Thus we will need a 'compatibility mode'. 3913 */ 3914 3915 static int dev_ifconf(struct net *net, char __user *arg) 3916 { 3917 struct ifconf ifc; 3918 struct net_device *dev; 3919 char __user *pos; 3920 int len; 3921 int total; 3922 int i; 3923 3924 /* 3925 * Fetch the caller's info block. 3926 */ 3927 3928 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3929 return -EFAULT; 3930 3931 pos = ifc.ifc_buf; 3932 len = ifc.ifc_len; 3933 3934 /* 3935 * Loop over the interfaces, and write an info block for each. 3936 */ 3937 3938 total = 0; 3939 for_each_netdev(net, dev) { 3940 for (i = 0; i < NPROTO; i++) { 3941 if (gifconf_list[i]) { 3942 int done; 3943 if (!pos) 3944 done = gifconf_list[i](dev, NULL, 0); 3945 else 3946 done = gifconf_list[i](dev, pos + total, 3947 len - total); 3948 if (done < 0) 3949 return -EFAULT; 3950 total += done; 3951 } 3952 } 3953 } 3954 3955 /* 3956 * All done. Write the updated control block back to the caller. 3957 */ 3958 ifc.ifc_len = total; 3959 3960 /* 3961 * Both BSD and Solaris return 0 here, so we do too. 3962 */ 3963 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3964 } 3965 3966 #ifdef CONFIG_PROC_FS 3967 /* 3968 * This is invoked by the /proc filesystem handler to display a device 3969 * in detail. 3970 */ 3971 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3972 __acquires(RCU) 3973 { 3974 struct net *net = seq_file_net(seq); 3975 loff_t off; 3976 struct net_device *dev; 3977 3978 rcu_read_lock(); 3979 if (!*pos) 3980 return SEQ_START_TOKEN; 3981 3982 off = 1; 3983 for_each_netdev_rcu(net, dev) 3984 if (off++ == *pos) 3985 return dev; 3986 3987 return NULL; 3988 } 3989 3990 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3991 { 3992 struct net_device *dev = v; 3993 3994 if (v == SEQ_START_TOKEN) 3995 dev = first_net_device_rcu(seq_file_net(seq)); 3996 else 3997 dev = next_net_device_rcu(dev); 3998 3999 ++*pos; 4000 return dev; 4001 } 4002 4003 void dev_seq_stop(struct seq_file *seq, void *v) 4004 __releases(RCU) 4005 { 4006 rcu_read_unlock(); 4007 } 4008 4009 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4010 { 4011 struct rtnl_link_stats64 temp; 4012 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4013 4014 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4015 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4016 dev->name, stats->rx_bytes, stats->rx_packets, 4017 stats->rx_errors, 4018 stats->rx_dropped + stats->rx_missed_errors, 4019 stats->rx_fifo_errors, 4020 stats->rx_length_errors + stats->rx_over_errors + 4021 stats->rx_crc_errors + stats->rx_frame_errors, 4022 stats->rx_compressed, stats->multicast, 4023 stats->tx_bytes, stats->tx_packets, 4024 stats->tx_errors, stats->tx_dropped, 4025 stats->tx_fifo_errors, stats->collisions, 4026 stats->tx_carrier_errors + 4027 stats->tx_aborted_errors + 4028 stats->tx_window_errors + 4029 stats->tx_heartbeat_errors, 4030 stats->tx_compressed); 4031 } 4032 4033 /* 4034 * Called from the PROCfs module. This now uses the new arbitrary sized 4035 * /proc/net interface to create /proc/net/dev 4036 */ 4037 static int dev_seq_show(struct seq_file *seq, void *v) 4038 { 4039 if (v == SEQ_START_TOKEN) 4040 seq_puts(seq, "Inter-| Receive " 4041 " | Transmit\n" 4042 " face |bytes packets errs drop fifo frame " 4043 "compressed multicast|bytes packets errs " 4044 "drop fifo colls carrier compressed\n"); 4045 else 4046 dev_seq_printf_stats(seq, v); 4047 return 0; 4048 } 4049 4050 static struct softnet_data *softnet_get_online(loff_t *pos) 4051 { 4052 struct softnet_data *sd = NULL; 4053 4054 while (*pos < nr_cpu_ids) 4055 if (cpu_online(*pos)) { 4056 sd = &per_cpu(softnet_data, *pos); 4057 break; 4058 } else 4059 ++*pos; 4060 return sd; 4061 } 4062 4063 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4064 { 4065 return softnet_get_online(pos); 4066 } 4067 4068 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4069 { 4070 ++*pos; 4071 return softnet_get_online(pos); 4072 } 4073 4074 static void softnet_seq_stop(struct seq_file *seq, void *v) 4075 { 4076 } 4077 4078 static int softnet_seq_show(struct seq_file *seq, void *v) 4079 { 4080 struct softnet_data *sd = v; 4081 4082 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4083 sd->processed, sd->dropped, sd->time_squeeze, 0, 4084 0, 0, 0, 0, /* was fastroute */ 4085 sd->cpu_collision, sd->received_rps); 4086 return 0; 4087 } 4088 4089 static const struct seq_operations dev_seq_ops = { 4090 .start = dev_seq_start, 4091 .next = dev_seq_next, 4092 .stop = dev_seq_stop, 4093 .show = dev_seq_show, 4094 }; 4095 4096 static int dev_seq_open(struct inode *inode, struct file *file) 4097 { 4098 return seq_open_net(inode, file, &dev_seq_ops, 4099 sizeof(struct seq_net_private)); 4100 } 4101 4102 static const struct file_operations dev_seq_fops = { 4103 .owner = THIS_MODULE, 4104 .open = dev_seq_open, 4105 .read = seq_read, 4106 .llseek = seq_lseek, 4107 .release = seq_release_net, 4108 }; 4109 4110 static const struct seq_operations softnet_seq_ops = { 4111 .start = softnet_seq_start, 4112 .next = softnet_seq_next, 4113 .stop = softnet_seq_stop, 4114 .show = softnet_seq_show, 4115 }; 4116 4117 static int softnet_seq_open(struct inode *inode, struct file *file) 4118 { 4119 return seq_open(file, &softnet_seq_ops); 4120 } 4121 4122 static const struct file_operations softnet_seq_fops = { 4123 .owner = THIS_MODULE, 4124 .open = softnet_seq_open, 4125 .read = seq_read, 4126 .llseek = seq_lseek, 4127 .release = seq_release, 4128 }; 4129 4130 static void *ptype_get_idx(loff_t pos) 4131 { 4132 struct packet_type *pt = NULL; 4133 loff_t i = 0; 4134 int t; 4135 4136 list_for_each_entry_rcu(pt, &ptype_all, list) { 4137 if (i == pos) 4138 return pt; 4139 ++i; 4140 } 4141 4142 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4143 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4144 if (i == pos) 4145 return pt; 4146 ++i; 4147 } 4148 } 4149 return NULL; 4150 } 4151 4152 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4153 __acquires(RCU) 4154 { 4155 rcu_read_lock(); 4156 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4157 } 4158 4159 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4160 { 4161 struct packet_type *pt; 4162 struct list_head *nxt; 4163 int hash; 4164 4165 ++*pos; 4166 if (v == SEQ_START_TOKEN) 4167 return ptype_get_idx(0); 4168 4169 pt = v; 4170 nxt = pt->list.next; 4171 if (pt->type == htons(ETH_P_ALL)) { 4172 if (nxt != &ptype_all) 4173 goto found; 4174 hash = 0; 4175 nxt = ptype_base[0].next; 4176 } else 4177 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4178 4179 while (nxt == &ptype_base[hash]) { 4180 if (++hash >= PTYPE_HASH_SIZE) 4181 return NULL; 4182 nxt = ptype_base[hash].next; 4183 } 4184 found: 4185 return list_entry(nxt, struct packet_type, list); 4186 } 4187 4188 static void ptype_seq_stop(struct seq_file *seq, void *v) 4189 __releases(RCU) 4190 { 4191 rcu_read_unlock(); 4192 } 4193 4194 static int ptype_seq_show(struct seq_file *seq, void *v) 4195 { 4196 struct packet_type *pt = v; 4197 4198 if (v == SEQ_START_TOKEN) 4199 seq_puts(seq, "Type Device Function\n"); 4200 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4201 if (pt->type == htons(ETH_P_ALL)) 4202 seq_puts(seq, "ALL "); 4203 else 4204 seq_printf(seq, "%04x", ntohs(pt->type)); 4205 4206 seq_printf(seq, " %-8s %pF\n", 4207 pt->dev ? pt->dev->name : "", pt->func); 4208 } 4209 4210 return 0; 4211 } 4212 4213 static const struct seq_operations ptype_seq_ops = { 4214 .start = ptype_seq_start, 4215 .next = ptype_seq_next, 4216 .stop = ptype_seq_stop, 4217 .show = ptype_seq_show, 4218 }; 4219 4220 static int ptype_seq_open(struct inode *inode, struct file *file) 4221 { 4222 return seq_open_net(inode, file, &ptype_seq_ops, 4223 sizeof(struct seq_net_private)); 4224 } 4225 4226 static const struct file_operations ptype_seq_fops = { 4227 .owner = THIS_MODULE, 4228 .open = ptype_seq_open, 4229 .read = seq_read, 4230 .llseek = seq_lseek, 4231 .release = seq_release_net, 4232 }; 4233 4234 4235 static int __net_init dev_proc_net_init(struct net *net) 4236 { 4237 int rc = -ENOMEM; 4238 4239 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4240 goto out; 4241 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4242 goto out_dev; 4243 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4244 goto out_softnet; 4245 4246 if (wext_proc_init(net)) 4247 goto out_ptype; 4248 rc = 0; 4249 out: 4250 return rc; 4251 out_ptype: 4252 proc_net_remove(net, "ptype"); 4253 out_softnet: 4254 proc_net_remove(net, "softnet_stat"); 4255 out_dev: 4256 proc_net_remove(net, "dev"); 4257 goto out; 4258 } 4259 4260 static void __net_exit dev_proc_net_exit(struct net *net) 4261 { 4262 wext_proc_exit(net); 4263 4264 proc_net_remove(net, "ptype"); 4265 proc_net_remove(net, "softnet_stat"); 4266 proc_net_remove(net, "dev"); 4267 } 4268 4269 static struct pernet_operations __net_initdata dev_proc_ops = { 4270 .init = dev_proc_net_init, 4271 .exit = dev_proc_net_exit, 4272 }; 4273 4274 static int __init dev_proc_init(void) 4275 { 4276 return register_pernet_subsys(&dev_proc_ops); 4277 } 4278 #else 4279 #define dev_proc_init() 0 4280 #endif /* CONFIG_PROC_FS */ 4281 4282 4283 /** 4284 * netdev_set_master - set up master pointer 4285 * @slave: slave device 4286 * @master: new master device 4287 * 4288 * Changes the master device of the slave. Pass %NULL to break the 4289 * bonding. The caller must hold the RTNL semaphore. On a failure 4290 * a negative errno code is returned. On success the reference counts 4291 * are adjusted and the function returns zero. 4292 */ 4293 int netdev_set_master(struct net_device *slave, struct net_device *master) 4294 { 4295 struct net_device *old = slave->master; 4296 4297 ASSERT_RTNL(); 4298 4299 if (master) { 4300 if (old) 4301 return -EBUSY; 4302 dev_hold(master); 4303 } 4304 4305 slave->master = master; 4306 4307 if (old) 4308 dev_put(old); 4309 return 0; 4310 } 4311 EXPORT_SYMBOL(netdev_set_master); 4312 4313 /** 4314 * netdev_set_bond_master - set up bonding master/slave pair 4315 * @slave: slave device 4316 * @master: new master device 4317 * 4318 * Changes the master device of the slave. Pass %NULL to break the 4319 * bonding. The caller must hold the RTNL semaphore. On a failure 4320 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4321 * to the routing socket and the function returns zero. 4322 */ 4323 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4324 { 4325 int err; 4326 4327 ASSERT_RTNL(); 4328 4329 err = netdev_set_master(slave, master); 4330 if (err) 4331 return err; 4332 if (master) 4333 slave->flags |= IFF_SLAVE; 4334 else 4335 slave->flags &= ~IFF_SLAVE; 4336 4337 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4338 return 0; 4339 } 4340 EXPORT_SYMBOL(netdev_set_bond_master); 4341 4342 static void dev_change_rx_flags(struct net_device *dev, int flags) 4343 { 4344 const struct net_device_ops *ops = dev->netdev_ops; 4345 4346 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4347 ops->ndo_change_rx_flags(dev, flags); 4348 } 4349 4350 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4351 { 4352 unsigned short old_flags = dev->flags; 4353 uid_t uid; 4354 gid_t gid; 4355 4356 ASSERT_RTNL(); 4357 4358 dev->flags |= IFF_PROMISC; 4359 dev->promiscuity += inc; 4360 if (dev->promiscuity == 0) { 4361 /* 4362 * Avoid overflow. 4363 * If inc causes overflow, untouch promisc and return error. 4364 */ 4365 if (inc < 0) 4366 dev->flags &= ~IFF_PROMISC; 4367 else { 4368 dev->promiscuity -= inc; 4369 printk(KERN_WARNING "%s: promiscuity touches roof, " 4370 "set promiscuity failed, promiscuity feature " 4371 "of device might be broken.\n", dev->name); 4372 return -EOVERFLOW; 4373 } 4374 } 4375 if (dev->flags != old_flags) { 4376 printk(KERN_INFO "device %s %s promiscuous mode\n", 4377 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4378 "left"); 4379 if (audit_enabled) { 4380 current_uid_gid(&uid, &gid); 4381 audit_log(current->audit_context, GFP_ATOMIC, 4382 AUDIT_ANOM_PROMISCUOUS, 4383 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4384 dev->name, (dev->flags & IFF_PROMISC), 4385 (old_flags & IFF_PROMISC), 4386 audit_get_loginuid(current), 4387 uid, gid, 4388 audit_get_sessionid(current)); 4389 } 4390 4391 dev_change_rx_flags(dev, IFF_PROMISC); 4392 } 4393 return 0; 4394 } 4395 4396 /** 4397 * dev_set_promiscuity - update promiscuity count on a device 4398 * @dev: device 4399 * @inc: modifier 4400 * 4401 * Add or remove promiscuity from a device. While the count in the device 4402 * remains above zero the interface remains promiscuous. Once it hits zero 4403 * the device reverts back to normal filtering operation. A negative inc 4404 * value is used to drop promiscuity on the device. 4405 * Return 0 if successful or a negative errno code on error. 4406 */ 4407 int dev_set_promiscuity(struct net_device *dev, int inc) 4408 { 4409 unsigned short old_flags = dev->flags; 4410 int err; 4411 4412 err = __dev_set_promiscuity(dev, inc); 4413 if (err < 0) 4414 return err; 4415 if (dev->flags != old_flags) 4416 dev_set_rx_mode(dev); 4417 return err; 4418 } 4419 EXPORT_SYMBOL(dev_set_promiscuity); 4420 4421 /** 4422 * dev_set_allmulti - update allmulti count on a device 4423 * @dev: device 4424 * @inc: modifier 4425 * 4426 * Add or remove reception of all multicast frames to a device. While the 4427 * count in the device remains above zero the interface remains listening 4428 * to all interfaces. Once it hits zero the device reverts back to normal 4429 * filtering operation. A negative @inc value is used to drop the counter 4430 * when releasing a resource needing all multicasts. 4431 * Return 0 if successful or a negative errno code on error. 4432 */ 4433 4434 int dev_set_allmulti(struct net_device *dev, int inc) 4435 { 4436 unsigned short old_flags = dev->flags; 4437 4438 ASSERT_RTNL(); 4439 4440 dev->flags |= IFF_ALLMULTI; 4441 dev->allmulti += inc; 4442 if (dev->allmulti == 0) { 4443 /* 4444 * Avoid overflow. 4445 * If inc causes overflow, untouch allmulti and return error. 4446 */ 4447 if (inc < 0) 4448 dev->flags &= ~IFF_ALLMULTI; 4449 else { 4450 dev->allmulti -= inc; 4451 printk(KERN_WARNING "%s: allmulti touches roof, " 4452 "set allmulti failed, allmulti feature of " 4453 "device might be broken.\n", dev->name); 4454 return -EOVERFLOW; 4455 } 4456 } 4457 if (dev->flags ^ old_flags) { 4458 dev_change_rx_flags(dev, IFF_ALLMULTI); 4459 dev_set_rx_mode(dev); 4460 } 4461 return 0; 4462 } 4463 EXPORT_SYMBOL(dev_set_allmulti); 4464 4465 /* 4466 * Upload unicast and multicast address lists to device and 4467 * configure RX filtering. When the device doesn't support unicast 4468 * filtering it is put in promiscuous mode while unicast addresses 4469 * are present. 4470 */ 4471 void __dev_set_rx_mode(struct net_device *dev) 4472 { 4473 const struct net_device_ops *ops = dev->netdev_ops; 4474 4475 /* dev_open will call this function so the list will stay sane. */ 4476 if (!(dev->flags&IFF_UP)) 4477 return; 4478 4479 if (!netif_device_present(dev)) 4480 return; 4481 4482 if (ops->ndo_set_rx_mode) 4483 ops->ndo_set_rx_mode(dev); 4484 else { 4485 /* Unicast addresses changes may only happen under the rtnl, 4486 * therefore calling __dev_set_promiscuity here is safe. 4487 */ 4488 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4489 __dev_set_promiscuity(dev, 1); 4490 dev->uc_promisc = 1; 4491 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4492 __dev_set_promiscuity(dev, -1); 4493 dev->uc_promisc = 0; 4494 } 4495 4496 if (ops->ndo_set_multicast_list) 4497 ops->ndo_set_multicast_list(dev); 4498 } 4499 } 4500 4501 void dev_set_rx_mode(struct net_device *dev) 4502 { 4503 netif_addr_lock_bh(dev); 4504 __dev_set_rx_mode(dev); 4505 netif_addr_unlock_bh(dev); 4506 } 4507 4508 /** 4509 * dev_ethtool_get_settings - call device's ethtool_ops::get_settings() 4510 * @dev: device 4511 * @cmd: memory area for ethtool_ops::get_settings() result 4512 * 4513 * The cmd arg is initialized properly (cleared and 4514 * ethtool_cmd::cmd field set to ETHTOOL_GSET). 4515 * 4516 * Return device's ethtool_ops::get_settings() result value or 4517 * -EOPNOTSUPP when device doesn't expose 4518 * ethtool_ops::get_settings() operation. 4519 */ 4520 int dev_ethtool_get_settings(struct net_device *dev, 4521 struct ethtool_cmd *cmd) 4522 { 4523 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings) 4524 return -EOPNOTSUPP; 4525 4526 memset(cmd, 0, sizeof(struct ethtool_cmd)); 4527 cmd->cmd = ETHTOOL_GSET; 4528 return dev->ethtool_ops->get_settings(dev, cmd); 4529 } 4530 EXPORT_SYMBOL(dev_ethtool_get_settings); 4531 4532 /** 4533 * dev_get_flags - get flags reported to userspace 4534 * @dev: device 4535 * 4536 * Get the combination of flag bits exported through APIs to userspace. 4537 */ 4538 unsigned dev_get_flags(const struct net_device *dev) 4539 { 4540 unsigned flags; 4541 4542 flags = (dev->flags & ~(IFF_PROMISC | 4543 IFF_ALLMULTI | 4544 IFF_RUNNING | 4545 IFF_LOWER_UP | 4546 IFF_DORMANT)) | 4547 (dev->gflags & (IFF_PROMISC | 4548 IFF_ALLMULTI)); 4549 4550 if (netif_running(dev)) { 4551 if (netif_oper_up(dev)) 4552 flags |= IFF_RUNNING; 4553 if (netif_carrier_ok(dev)) 4554 flags |= IFF_LOWER_UP; 4555 if (netif_dormant(dev)) 4556 flags |= IFF_DORMANT; 4557 } 4558 4559 return flags; 4560 } 4561 EXPORT_SYMBOL(dev_get_flags); 4562 4563 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4564 { 4565 int old_flags = dev->flags; 4566 int ret; 4567 4568 ASSERT_RTNL(); 4569 4570 /* 4571 * Set the flags on our device. 4572 */ 4573 4574 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4575 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4576 IFF_AUTOMEDIA)) | 4577 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4578 IFF_ALLMULTI)); 4579 4580 /* 4581 * Load in the correct multicast list now the flags have changed. 4582 */ 4583 4584 if ((old_flags ^ flags) & IFF_MULTICAST) 4585 dev_change_rx_flags(dev, IFF_MULTICAST); 4586 4587 dev_set_rx_mode(dev); 4588 4589 /* 4590 * Have we downed the interface. We handle IFF_UP ourselves 4591 * according to user attempts to set it, rather than blindly 4592 * setting it. 4593 */ 4594 4595 ret = 0; 4596 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4597 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4598 4599 if (!ret) 4600 dev_set_rx_mode(dev); 4601 } 4602 4603 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4604 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4605 4606 dev->gflags ^= IFF_PROMISC; 4607 dev_set_promiscuity(dev, inc); 4608 } 4609 4610 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4611 is important. Some (broken) drivers set IFF_PROMISC, when 4612 IFF_ALLMULTI is requested not asking us and not reporting. 4613 */ 4614 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4615 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4616 4617 dev->gflags ^= IFF_ALLMULTI; 4618 dev_set_allmulti(dev, inc); 4619 } 4620 4621 return ret; 4622 } 4623 4624 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4625 { 4626 unsigned int changes = dev->flags ^ old_flags; 4627 4628 if (changes & IFF_UP) { 4629 if (dev->flags & IFF_UP) 4630 call_netdevice_notifiers(NETDEV_UP, dev); 4631 else 4632 call_netdevice_notifiers(NETDEV_DOWN, dev); 4633 } 4634 4635 if (dev->flags & IFF_UP && 4636 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4637 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4638 } 4639 4640 /** 4641 * dev_change_flags - change device settings 4642 * @dev: device 4643 * @flags: device state flags 4644 * 4645 * Change settings on device based state flags. The flags are 4646 * in the userspace exported format. 4647 */ 4648 int dev_change_flags(struct net_device *dev, unsigned flags) 4649 { 4650 int ret, changes; 4651 int old_flags = dev->flags; 4652 4653 ret = __dev_change_flags(dev, flags); 4654 if (ret < 0) 4655 return ret; 4656 4657 changes = old_flags ^ dev->flags; 4658 if (changes) 4659 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4660 4661 __dev_notify_flags(dev, old_flags); 4662 return ret; 4663 } 4664 EXPORT_SYMBOL(dev_change_flags); 4665 4666 /** 4667 * dev_set_mtu - Change maximum transfer unit 4668 * @dev: device 4669 * @new_mtu: new transfer unit 4670 * 4671 * Change the maximum transfer size of the network device. 4672 */ 4673 int dev_set_mtu(struct net_device *dev, int new_mtu) 4674 { 4675 const struct net_device_ops *ops = dev->netdev_ops; 4676 int err; 4677 4678 if (new_mtu == dev->mtu) 4679 return 0; 4680 4681 /* MTU must be positive. */ 4682 if (new_mtu < 0) 4683 return -EINVAL; 4684 4685 if (!netif_device_present(dev)) 4686 return -ENODEV; 4687 4688 err = 0; 4689 if (ops->ndo_change_mtu) 4690 err = ops->ndo_change_mtu(dev, new_mtu); 4691 else 4692 dev->mtu = new_mtu; 4693 4694 if (!err && dev->flags & IFF_UP) 4695 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4696 return err; 4697 } 4698 EXPORT_SYMBOL(dev_set_mtu); 4699 4700 /** 4701 * dev_set_group - Change group this device belongs to 4702 * @dev: device 4703 * @new_group: group this device should belong to 4704 */ 4705 void dev_set_group(struct net_device *dev, int new_group) 4706 { 4707 dev->group = new_group; 4708 } 4709 EXPORT_SYMBOL(dev_set_group); 4710 4711 /** 4712 * dev_set_mac_address - Change Media Access Control Address 4713 * @dev: device 4714 * @sa: new address 4715 * 4716 * Change the hardware (MAC) address of the device 4717 */ 4718 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4719 { 4720 const struct net_device_ops *ops = dev->netdev_ops; 4721 int err; 4722 4723 if (!ops->ndo_set_mac_address) 4724 return -EOPNOTSUPP; 4725 if (sa->sa_family != dev->type) 4726 return -EINVAL; 4727 if (!netif_device_present(dev)) 4728 return -ENODEV; 4729 err = ops->ndo_set_mac_address(dev, sa); 4730 if (!err) 4731 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4732 return err; 4733 } 4734 EXPORT_SYMBOL(dev_set_mac_address); 4735 4736 /* 4737 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4738 */ 4739 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4740 { 4741 int err; 4742 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4743 4744 if (!dev) 4745 return -ENODEV; 4746 4747 switch (cmd) { 4748 case SIOCGIFFLAGS: /* Get interface flags */ 4749 ifr->ifr_flags = (short) dev_get_flags(dev); 4750 return 0; 4751 4752 case SIOCGIFMETRIC: /* Get the metric on the interface 4753 (currently unused) */ 4754 ifr->ifr_metric = 0; 4755 return 0; 4756 4757 case SIOCGIFMTU: /* Get the MTU of a device */ 4758 ifr->ifr_mtu = dev->mtu; 4759 return 0; 4760 4761 case SIOCGIFHWADDR: 4762 if (!dev->addr_len) 4763 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4764 else 4765 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4766 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4767 ifr->ifr_hwaddr.sa_family = dev->type; 4768 return 0; 4769 4770 case SIOCGIFSLAVE: 4771 err = -EINVAL; 4772 break; 4773 4774 case SIOCGIFMAP: 4775 ifr->ifr_map.mem_start = dev->mem_start; 4776 ifr->ifr_map.mem_end = dev->mem_end; 4777 ifr->ifr_map.base_addr = dev->base_addr; 4778 ifr->ifr_map.irq = dev->irq; 4779 ifr->ifr_map.dma = dev->dma; 4780 ifr->ifr_map.port = dev->if_port; 4781 return 0; 4782 4783 case SIOCGIFINDEX: 4784 ifr->ifr_ifindex = dev->ifindex; 4785 return 0; 4786 4787 case SIOCGIFTXQLEN: 4788 ifr->ifr_qlen = dev->tx_queue_len; 4789 return 0; 4790 4791 default: 4792 /* dev_ioctl() should ensure this case 4793 * is never reached 4794 */ 4795 WARN_ON(1); 4796 err = -ENOTTY; 4797 break; 4798 4799 } 4800 return err; 4801 } 4802 4803 /* 4804 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4805 */ 4806 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4807 { 4808 int err; 4809 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4810 const struct net_device_ops *ops; 4811 4812 if (!dev) 4813 return -ENODEV; 4814 4815 ops = dev->netdev_ops; 4816 4817 switch (cmd) { 4818 case SIOCSIFFLAGS: /* Set interface flags */ 4819 return dev_change_flags(dev, ifr->ifr_flags); 4820 4821 case SIOCSIFMETRIC: /* Set the metric on the interface 4822 (currently unused) */ 4823 return -EOPNOTSUPP; 4824 4825 case SIOCSIFMTU: /* Set the MTU of a device */ 4826 return dev_set_mtu(dev, ifr->ifr_mtu); 4827 4828 case SIOCSIFHWADDR: 4829 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4830 4831 case SIOCSIFHWBROADCAST: 4832 if (ifr->ifr_hwaddr.sa_family != dev->type) 4833 return -EINVAL; 4834 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4835 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4836 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4837 return 0; 4838 4839 case SIOCSIFMAP: 4840 if (ops->ndo_set_config) { 4841 if (!netif_device_present(dev)) 4842 return -ENODEV; 4843 return ops->ndo_set_config(dev, &ifr->ifr_map); 4844 } 4845 return -EOPNOTSUPP; 4846 4847 case SIOCADDMULTI: 4848 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4849 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4850 return -EINVAL; 4851 if (!netif_device_present(dev)) 4852 return -ENODEV; 4853 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4854 4855 case SIOCDELMULTI: 4856 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4857 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4858 return -EINVAL; 4859 if (!netif_device_present(dev)) 4860 return -ENODEV; 4861 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4862 4863 case SIOCSIFTXQLEN: 4864 if (ifr->ifr_qlen < 0) 4865 return -EINVAL; 4866 dev->tx_queue_len = ifr->ifr_qlen; 4867 return 0; 4868 4869 case SIOCSIFNAME: 4870 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4871 return dev_change_name(dev, ifr->ifr_newname); 4872 4873 /* 4874 * Unknown or private ioctl 4875 */ 4876 default: 4877 if ((cmd >= SIOCDEVPRIVATE && 4878 cmd <= SIOCDEVPRIVATE + 15) || 4879 cmd == SIOCBONDENSLAVE || 4880 cmd == SIOCBONDRELEASE || 4881 cmd == SIOCBONDSETHWADDR || 4882 cmd == SIOCBONDSLAVEINFOQUERY || 4883 cmd == SIOCBONDINFOQUERY || 4884 cmd == SIOCBONDCHANGEACTIVE || 4885 cmd == SIOCGMIIPHY || 4886 cmd == SIOCGMIIREG || 4887 cmd == SIOCSMIIREG || 4888 cmd == SIOCBRADDIF || 4889 cmd == SIOCBRDELIF || 4890 cmd == SIOCSHWTSTAMP || 4891 cmd == SIOCWANDEV) { 4892 err = -EOPNOTSUPP; 4893 if (ops->ndo_do_ioctl) { 4894 if (netif_device_present(dev)) 4895 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4896 else 4897 err = -ENODEV; 4898 } 4899 } else 4900 err = -EINVAL; 4901 4902 } 4903 return err; 4904 } 4905 4906 /* 4907 * This function handles all "interface"-type I/O control requests. The actual 4908 * 'doing' part of this is dev_ifsioc above. 4909 */ 4910 4911 /** 4912 * dev_ioctl - network device ioctl 4913 * @net: the applicable net namespace 4914 * @cmd: command to issue 4915 * @arg: pointer to a struct ifreq in user space 4916 * 4917 * Issue ioctl functions to devices. This is normally called by the 4918 * user space syscall interfaces but can sometimes be useful for 4919 * other purposes. The return value is the return from the syscall if 4920 * positive or a negative errno code on error. 4921 */ 4922 4923 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4924 { 4925 struct ifreq ifr; 4926 int ret; 4927 char *colon; 4928 4929 /* One special case: SIOCGIFCONF takes ifconf argument 4930 and requires shared lock, because it sleeps writing 4931 to user space. 4932 */ 4933 4934 if (cmd == SIOCGIFCONF) { 4935 rtnl_lock(); 4936 ret = dev_ifconf(net, (char __user *) arg); 4937 rtnl_unlock(); 4938 return ret; 4939 } 4940 if (cmd == SIOCGIFNAME) 4941 return dev_ifname(net, (struct ifreq __user *)arg); 4942 4943 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4944 return -EFAULT; 4945 4946 ifr.ifr_name[IFNAMSIZ-1] = 0; 4947 4948 colon = strchr(ifr.ifr_name, ':'); 4949 if (colon) 4950 *colon = 0; 4951 4952 /* 4953 * See which interface the caller is talking about. 4954 */ 4955 4956 switch (cmd) { 4957 /* 4958 * These ioctl calls: 4959 * - can be done by all. 4960 * - atomic and do not require locking. 4961 * - return a value 4962 */ 4963 case SIOCGIFFLAGS: 4964 case SIOCGIFMETRIC: 4965 case SIOCGIFMTU: 4966 case SIOCGIFHWADDR: 4967 case SIOCGIFSLAVE: 4968 case SIOCGIFMAP: 4969 case SIOCGIFINDEX: 4970 case SIOCGIFTXQLEN: 4971 dev_load(net, ifr.ifr_name); 4972 rcu_read_lock(); 4973 ret = dev_ifsioc_locked(net, &ifr, cmd); 4974 rcu_read_unlock(); 4975 if (!ret) { 4976 if (colon) 4977 *colon = ':'; 4978 if (copy_to_user(arg, &ifr, 4979 sizeof(struct ifreq))) 4980 ret = -EFAULT; 4981 } 4982 return ret; 4983 4984 case SIOCETHTOOL: 4985 dev_load(net, ifr.ifr_name); 4986 rtnl_lock(); 4987 ret = dev_ethtool(net, &ifr); 4988 rtnl_unlock(); 4989 if (!ret) { 4990 if (colon) 4991 *colon = ':'; 4992 if (copy_to_user(arg, &ifr, 4993 sizeof(struct ifreq))) 4994 ret = -EFAULT; 4995 } 4996 return ret; 4997 4998 /* 4999 * These ioctl calls: 5000 * - require superuser power. 5001 * - require strict serialization. 5002 * - return a value 5003 */ 5004 case SIOCGMIIPHY: 5005 case SIOCGMIIREG: 5006 case SIOCSIFNAME: 5007 if (!capable(CAP_NET_ADMIN)) 5008 return -EPERM; 5009 dev_load(net, ifr.ifr_name); 5010 rtnl_lock(); 5011 ret = dev_ifsioc(net, &ifr, cmd); 5012 rtnl_unlock(); 5013 if (!ret) { 5014 if (colon) 5015 *colon = ':'; 5016 if (copy_to_user(arg, &ifr, 5017 sizeof(struct ifreq))) 5018 ret = -EFAULT; 5019 } 5020 return ret; 5021 5022 /* 5023 * These ioctl calls: 5024 * - require superuser power. 5025 * - require strict serialization. 5026 * - do not return a value 5027 */ 5028 case SIOCSIFFLAGS: 5029 case SIOCSIFMETRIC: 5030 case SIOCSIFMTU: 5031 case SIOCSIFMAP: 5032 case SIOCSIFHWADDR: 5033 case SIOCSIFSLAVE: 5034 case SIOCADDMULTI: 5035 case SIOCDELMULTI: 5036 case SIOCSIFHWBROADCAST: 5037 case SIOCSIFTXQLEN: 5038 case SIOCSMIIREG: 5039 case SIOCBONDENSLAVE: 5040 case SIOCBONDRELEASE: 5041 case SIOCBONDSETHWADDR: 5042 case SIOCBONDCHANGEACTIVE: 5043 case SIOCBRADDIF: 5044 case SIOCBRDELIF: 5045 case SIOCSHWTSTAMP: 5046 if (!capable(CAP_NET_ADMIN)) 5047 return -EPERM; 5048 /* fall through */ 5049 case SIOCBONDSLAVEINFOQUERY: 5050 case SIOCBONDINFOQUERY: 5051 dev_load(net, ifr.ifr_name); 5052 rtnl_lock(); 5053 ret = dev_ifsioc(net, &ifr, cmd); 5054 rtnl_unlock(); 5055 return ret; 5056 5057 case SIOCGIFMEM: 5058 /* Get the per device memory space. We can add this but 5059 * currently do not support it */ 5060 case SIOCSIFMEM: 5061 /* Set the per device memory buffer space. 5062 * Not applicable in our case */ 5063 case SIOCSIFLINK: 5064 return -ENOTTY; 5065 5066 /* 5067 * Unknown or private ioctl. 5068 */ 5069 default: 5070 if (cmd == SIOCWANDEV || 5071 (cmd >= SIOCDEVPRIVATE && 5072 cmd <= SIOCDEVPRIVATE + 15)) { 5073 dev_load(net, ifr.ifr_name); 5074 rtnl_lock(); 5075 ret = dev_ifsioc(net, &ifr, cmd); 5076 rtnl_unlock(); 5077 if (!ret && copy_to_user(arg, &ifr, 5078 sizeof(struct ifreq))) 5079 ret = -EFAULT; 5080 return ret; 5081 } 5082 /* Take care of Wireless Extensions */ 5083 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5084 return wext_handle_ioctl(net, &ifr, cmd, arg); 5085 return -ENOTTY; 5086 } 5087 } 5088 5089 5090 /** 5091 * dev_new_index - allocate an ifindex 5092 * @net: the applicable net namespace 5093 * 5094 * Returns a suitable unique value for a new device interface 5095 * number. The caller must hold the rtnl semaphore or the 5096 * dev_base_lock to be sure it remains unique. 5097 */ 5098 static int dev_new_index(struct net *net) 5099 { 5100 static int ifindex; 5101 for (;;) { 5102 if (++ifindex <= 0) 5103 ifindex = 1; 5104 if (!__dev_get_by_index(net, ifindex)) 5105 return ifindex; 5106 } 5107 } 5108 5109 /* Delayed registration/unregisteration */ 5110 static LIST_HEAD(net_todo_list); 5111 5112 static void net_set_todo(struct net_device *dev) 5113 { 5114 list_add_tail(&dev->todo_list, &net_todo_list); 5115 } 5116 5117 static void rollback_registered_many(struct list_head *head) 5118 { 5119 struct net_device *dev, *tmp; 5120 5121 BUG_ON(dev_boot_phase); 5122 ASSERT_RTNL(); 5123 5124 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5125 /* Some devices call without registering 5126 * for initialization unwind. Remove those 5127 * devices and proceed with the remaining. 5128 */ 5129 if (dev->reg_state == NETREG_UNINITIALIZED) { 5130 pr_debug("unregister_netdevice: device %s/%p never " 5131 "was registered\n", dev->name, dev); 5132 5133 WARN_ON(1); 5134 list_del(&dev->unreg_list); 5135 continue; 5136 } 5137 dev->dismantle = true; 5138 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5139 } 5140 5141 /* If device is running, close it first. */ 5142 dev_close_many(head); 5143 5144 list_for_each_entry(dev, head, unreg_list) { 5145 /* And unlink it from device chain. */ 5146 unlist_netdevice(dev); 5147 5148 dev->reg_state = NETREG_UNREGISTERING; 5149 } 5150 5151 synchronize_net(); 5152 5153 list_for_each_entry(dev, head, unreg_list) { 5154 /* Shutdown queueing discipline. */ 5155 dev_shutdown(dev); 5156 5157 5158 /* Notify protocols, that we are about to destroy 5159 this device. They should clean all the things. 5160 */ 5161 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5162 5163 if (!dev->rtnl_link_ops || 5164 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5165 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5166 5167 /* 5168 * Flush the unicast and multicast chains 5169 */ 5170 dev_uc_flush(dev); 5171 dev_mc_flush(dev); 5172 5173 if (dev->netdev_ops->ndo_uninit) 5174 dev->netdev_ops->ndo_uninit(dev); 5175 5176 /* Notifier chain MUST detach us from master device. */ 5177 WARN_ON(dev->master); 5178 5179 /* Remove entries from kobject tree */ 5180 netdev_unregister_kobject(dev); 5181 } 5182 5183 /* Process any work delayed until the end of the batch */ 5184 dev = list_first_entry(head, struct net_device, unreg_list); 5185 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5186 5187 rcu_barrier(); 5188 5189 list_for_each_entry(dev, head, unreg_list) 5190 dev_put(dev); 5191 } 5192 5193 static void rollback_registered(struct net_device *dev) 5194 { 5195 LIST_HEAD(single); 5196 5197 list_add(&dev->unreg_list, &single); 5198 rollback_registered_many(&single); 5199 list_del(&single); 5200 } 5201 5202 u32 netdev_fix_features(struct net_device *dev, u32 features) 5203 { 5204 /* Fix illegal checksum combinations */ 5205 if ((features & NETIF_F_HW_CSUM) && 5206 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5207 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5208 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5209 } 5210 5211 if ((features & NETIF_F_NO_CSUM) && 5212 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5213 netdev_warn(dev, "mixed no checksumming and other settings.\n"); 5214 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5215 } 5216 5217 /* Fix illegal SG+CSUM combinations. */ 5218 if ((features & NETIF_F_SG) && 5219 !(features & NETIF_F_ALL_CSUM)) { 5220 netdev_dbg(dev, 5221 "Dropping NETIF_F_SG since no checksum feature.\n"); 5222 features &= ~NETIF_F_SG; 5223 } 5224 5225 /* TSO requires that SG is present as well. */ 5226 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5227 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5228 features &= ~NETIF_F_ALL_TSO; 5229 } 5230 5231 /* TSO ECN requires that TSO is present as well. */ 5232 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5233 features &= ~NETIF_F_TSO_ECN; 5234 5235 /* Software GSO depends on SG. */ 5236 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5237 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5238 features &= ~NETIF_F_GSO; 5239 } 5240 5241 /* UFO needs SG and checksumming */ 5242 if (features & NETIF_F_UFO) { 5243 /* maybe split UFO into V4 and V6? */ 5244 if (!((features & NETIF_F_GEN_CSUM) || 5245 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5246 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5247 netdev_dbg(dev, 5248 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5249 features &= ~NETIF_F_UFO; 5250 } 5251 5252 if (!(features & NETIF_F_SG)) { 5253 netdev_dbg(dev, 5254 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5255 features &= ~NETIF_F_UFO; 5256 } 5257 } 5258 5259 return features; 5260 } 5261 EXPORT_SYMBOL(netdev_fix_features); 5262 5263 int __netdev_update_features(struct net_device *dev) 5264 { 5265 u32 features; 5266 int err = 0; 5267 5268 ASSERT_RTNL(); 5269 5270 features = netdev_get_wanted_features(dev); 5271 5272 if (dev->netdev_ops->ndo_fix_features) 5273 features = dev->netdev_ops->ndo_fix_features(dev, features); 5274 5275 /* driver might be less strict about feature dependencies */ 5276 features = netdev_fix_features(dev, features); 5277 5278 if (dev->features == features) 5279 return 0; 5280 5281 netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n", 5282 dev->features, features); 5283 5284 if (dev->netdev_ops->ndo_set_features) 5285 err = dev->netdev_ops->ndo_set_features(dev, features); 5286 5287 if (unlikely(err < 0)) { 5288 netdev_err(dev, 5289 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n", 5290 err, features, dev->features); 5291 return -1; 5292 } 5293 5294 if (!err) 5295 dev->features = features; 5296 5297 return 1; 5298 } 5299 5300 /** 5301 * netdev_update_features - recalculate device features 5302 * @dev: the device to check 5303 * 5304 * Recalculate dev->features set and send notifications if it 5305 * has changed. Should be called after driver or hardware dependent 5306 * conditions might have changed that influence the features. 5307 */ 5308 void netdev_update_features(struct net_device *dev) 5309 { 5310 if (__netdev_update_features(dev)) 5311 netdev_features_change(dev); 5312 } 5313 EXPORT_SYMBOL(netdev_update_features); 5314 5315 /** 5316 * netdev_change_features - recalculate device features 5317 * @dev: the device to check 5318 * 5319 * Recalculate dev->features set and send notifications even 5320 * if they have not changed. Should be called instead of 5321 * netdev_update_features() if also dev->vlan_features might 5322 * have changed to allow the changes to be propagated to stacked 5323 * VLAN devices. 5324 */ 5325 void netdev_change_features(struct net_device *dev) 5326 { 5327 __netdev_update_features(dev); 5328 netdev_features_change(dev); 5329 } 5330 EXPORT_SYMBOL(netdev_change_features); 5331 5332 /** 5333 * netif_stacked_transfer_operstate - transfer operstate 5334 * @rootdev: the root or lower level device to transfer state from 5335 * @dev: the device to transfer operstate to 5336 * 5337 * Transfer operational state from root to device. This is normally 5338 * called when a stacking relationship exists between the root 5339 * device and the device(a leaf device). 5340 */ 5341 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5342 struct net_device *dev) 5343 { 5344 if (rootdev->operstate == IF_OPER_DORMANT) 5345 netif_dormant_on(dev); 5346 else 5347 netif_dormant_off(dev); 5348 5349 if (netif_carrier_ok(rootdev)) { 5350 if (!netif_carrier_ok(dev)) 5351 netif_carrier_on(dev); 5352 } else { 5353 if (netif_carrier_ok(dev)) 5354 netif_carrier_off(dev); 5355 } 5356 } 5357 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5358 5359 #ifdef CONFIG_RPS 5360 static int netif_alloc_rx_queues(struct net_device *dev) 5361 { 5362 unsigned int i, count = dev->num_rx_queues; 5363 struct netdev_rx_queue *rx; 5364 5365 BUG_ON(count < 1); 5366 5367 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5368 if (!rx) { 5369 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5370 return -ENOMEM; 5371 } 5372 dev->_rx = rx; 5373 5374 for (i = 0; i < count; i++) 5375 rx[i].dev = dev; 5376 return 0; 5377 } 5378 #endif 5379 5380 static void netdev_init_one_queue(struct net_device *dev, 5381 struct netdev_queue *queue, void *_unused) 5382 { 5383 /* Initialize queue lock */ 5384 spin_lock_init(&queue->_xmit_lock); 5385 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5386 queue->xmit_lock_owner = -1; 5387 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5388 queue->dev = dev; 5389 } 5390 5391 static int netif_alloc_netdev_queues(struct net_device *dev) 5392 { 5393 unsigned int count = dev->num_tx_queues; 5394 struct netdev_queue *tx; 5395 5396 BUG_ON(count < 1); 5397 5398 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5399 if (!tx) { 5400 pr_err("netdev: Unable to allocate %u tx queues.\n", 5401 count); 5402 return -ENOMEM; 5403 } 5404 dev->_tx = tx; 5405 5406 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5407 spin_lock_init(&dev->tx_global_lock); 5408 5409 return 0; 5410 } 5411 5412 /** 5413 * register_netdevice - register a network device 5414 * @dev: device to register 5415 * 5416 * Take a completed network device structure and add it to the kernel 5417 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5418 * chain. 0 is returned on success. A negative errno code is returned 5419 * on a failure to set up the device, or if the name is a duplicate. 5420 * 5421 * Callers must hold the rtnl semaphore. You may want 5422 * register_netdev() instead of this. 5423 * 5424 * BUGS: 5425 * The locking appears insufficient to guarantee two parallel registers 5426 * will not get the same name. 5427 */ 5428 5429 int register_netdevice(struct net_device *dev) 5430 { 5431 int ret; 5432 struct net *net = dev_net(dev); 5433 5434 BUG_ON(dev_boot_phase); 5435 ASSERT_RTNL(); 5436 5437 might_sleep(); 5438 5439 /* When net_device's are persistent, this will be fatal. */ 5440 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5441 BUG_ON(!net); 5442 5443 spin_lock_init(&dev->addr_list_lock); 5444 netdev_set_addr_lockdep_class(dev); 5445 5446 dev->iflink = -1; 5447 5448 ret = dev_get_valid_name(dev, dev->name); 5449 if (ret < 0) 5450 goto out; 5451 5452 /* Init, if this function is available */ 5453 if (dev->netdev_ops->ndo_init) { 5454 ret = dev->netdev_ops->ndo_init(dev); 5455 if (ret) { 5456 if (ret > 0) 5457 ret = -EIO; 5458 goto out; 5459 } 5460 } 5461 5462 dev->ifindex = dev_new_index(net); 5463 if (dev->iflink == -1) 5464 dev->iflink = dev->ifindex; 5465 5466 /* Transfer changeable features to wanted_features and enable 5467 * software offloads (GSO and GRO). 5468 */ 5469 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5470 dev->features |= NETIF_F_SOFT_FEATURES; 5471 dev->wanted_features = dev->features & dev->hw_features; 5472 5473 /* Turn on no cache copy if HW is doing checksum */ 5474 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5475 if ((dev->features & NETIF_F_ALL_CSUM) && 5476 !(dev->features & NETIF_F_NO_CSUM)) { 5477 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5478 dev->features |= NETIF_F_NOCACHE_COPY; 5479 } 5480 5481 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default, 5482 * vlan_dev_init() will do the dev->features check, so these features 5483 * are enabled only if supported by underlying device. 5484 */ 5485 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA); 5486 5487 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5488 ret = notifier_to_errno(ret); 5489 if (ret) 5490 goto err_uninit; 5491 5492 ret = netdev_register_kobject(dev); 5493 if (ret) 5494 goto err_uninit; 5495 dev->reg_state = NETREG_REGISTERED; 5496 5497 __netdev_update_features(dev); 5498 5499 /* 5500 * Default initial state at registry is that the 5501 * device is present. 5502 */ 5503 5504 set_bit(__LINK_STATE_PRESENT, &dev->state); 5505 5506 dev_init_scheduler(dev); 5507 dev_hold(dev); 5508 list_netdevice(dev); 5509 5510 /* Notify protocols, that a new device appeared. */ 5511 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5512 ret = notifier_to_errno(ret); 5513 if (ret) { 5514 rollback_registered(dev); 5515 dev->reg_state = NETREG_UNREGISTERED; 5516 } 5517 /* 5518 * Prevent userspace races by waiting until the network 5519 * device is fully setup before sending notifications. 5520 */ 5521 if (!dev->rtnl_link_ops || 5522 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5523 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5524 5525 out: 5526 return ret; 5527 5528 err_uninit: 5529 if (dev->netdev_ops->ndo_uninit) 5530 dev->netdev_ops->ndo_uninit(dev); 5531 goto out; 5532 } 5533 EXPORT_SYMBOL(register_netdevice); 5534 5535 /** 5536 * init_dummy_netdev - init a dummy network device for NAPI 5537 * @dev: device to init 5538 * 5539 * This takes a network device structure and initialize the minimum 5540 * amount of fields so it can be used to schedule NAPI polls without 5541 * registering a full blown interface. This is to be used by drivers 5542 * that need to tie several hardware interfaces to a single NAPI 5543 * poll scheduler due to HW limitations. 5544 */ 5545 int init_dummy_netdev(struct net_device *dev) 5546 { 5547 /* Clear everything. Note we don't initialize spinlocks 5548 * are they aren't supposed to be taken by any of the 5549 * NAPI code and this dummy netdev is supposed to be 5550 * only ever used for NAPI polls 5551 */ 5552 memset(dev, 0, sizeof(struct net_device)); 5553 5554 /* make sure we BUG if trying to hit standard 5555 * register/unregister code path 5556 */ 5557 dev->reg_state = NETREG_DUMMY; 5558 5559 /* NAPI wants this */ 5560 INIT_LIST_HEAD(&dev->napi_list); 5561 5562 /* a dummy interface is started by default */ 5563 set_bit(__LINK_STATE_PRESENT, &dev->state); 5564 set_bit(__LINK_STATE_START, &dev->state); 5565 5566 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5567 * because users of this 'device' dont need to change 5568 * its refcount. 5569 */ 5570 5571 return 0; 5572 } 5573 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5574 5575 5576 /** 5577 * register_netdev - register a network device 5578 * @dev: device to register 5579 * 5580 * Take a completed network device structure and add it to the kernel 5581 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5582 * chain. 0 is returned on success. A negative errno code is returned 5583 * on a failure to set up the device, or if the name is a duplicate. 5584 * 5585 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5586 * and expands the device name if you passed a format string to 5587 * alloc_netdev. 5588 */ 5589 int register_netdev(struct net_device *dev) 5590 { 5591 int err; 5592 5593 rtnl_lock(); 5594 err = register_netdevice(dev); 5595 rtnl_unlock(); 5596 return err; 5597 } 5598 EXPORT_SYMBOL(register_netdev); 5599 5600 int netdev_refcnt_read(const struct net_device *dev) 5601 { 5602 int i, refcnt = 0; 5603 5604 for_each_possible_cpu(i) 5605 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5606 return refcnt; 5607 } 5608 EXPORT_SYMBOL(netdev_refcnt_read); 5609 5610 /* 5611 * netdev_wait_allrefs - wait until all references are gone. 5612 * 5613 * This is called when unregistering network devices. 5614 * 5615 * Any protocol or device that holds a reference should register 5616 * for netdevice notification, and cleanup and put back the 5617 * reference if they receive an UNREGISTER event. 5618 * We can get stuck here if buggy protocols don't correctly 5619 * call dev_put. 5620 */ 5621 static void netdev_wait_allrefs(struct net_device *dev) 5622 { 5623 unsigned long rebroadcast_time, warning_time; 5624 int refcnt; 5625 5626 linkwatch_forget_dev(dev); 5627 5628 rebroadcast_time = warning_time = jiffies; 5629 refcnt = netdev_refcnt_read(dev); 5630 5631 while (refcnt != 0) { 5632 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5633 rtnl_lock(); 5634 5635 /* Rebroadcast unregister notification */ 5636 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5637 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5638 * should have already handle it the first time */ 5639 5640 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5641 &dev->state)) { 5642 /* We must not have linkwatch events 5643 * pending on unregister. If this 5644 * happens, we simply run the queue 5645 * unscheduled, resulting in a noop 5646 * for this device. 5647 */ 5648 linkwatch_run_queue(); 5649 } 5650 5651 __rtnl_unlock(); 5652 5653 rebroadcast_time = jiffies; 5654 } 5655 5656 msleep(250); 5657 5658 refcnt = netdev_refcnt_read(dev); 5659 5660 if (time_after(jiffies, warning_time + 10 * HZ)) { 5661 printk(KERN_EMERG "unregister_netdevice: " 5662 "waiting for %s to become free. Usage " 5663 "count = %d\n", 5664 dev->name, refcnt); 5665 warning_time = jiffies; 5666 } 5667 } 5668 } 5669 5670 /* The sequence is: 5671 * 5672 * rtnl_lock(); 5673 * ... 5674 * register_netdevice(x1); 5675 * register_netdevice(x2); 5676 * ... 5677 * unregister_netdevice(y1); 5678 * unregister_netdevice(y2); 5679 * ... 5680 * rtnl_unlock(); 5681 * free_netdev(y1); 5682 * free_netdev(y2); 5683 * 5684 * We are invoked by rtnl_unlock(). 5685 * This allows us to deal with problems: 5686 * 1) We can delete sysfs objects which invoke hotplug 5687 * without deadlocking with linkwatch via keventd. 5688 * 2) Since we run with the RTNL semaphore not held, we can sleep 5689 * safely in order to wait for the netdev refcnt to drop to zero. 5690 * 5691 * We must not return until all unregister events added during 5692 * the interval the lock was held have been completed. 5693 */ 5694 void netdev_run_todo(void) 5695 { 5696 struct list_head list; 5697 5698 /* Snapshot list, allow later requests */ 5699 list_replace_init(&net_todo_list, &list); 5700 5701 __rtnl_unlock(); 5702 5703 while (!list_empty(&list)) { 5704 struct net_device *dev 5705 = list_first_entry(&list, struct net_device, todo_list); 5706 list_del(&dev->todo_list); 5707 5708 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5709 printk(KERN_ERR "network todo '%s' but state %d\n", 5710 dev->name, dev->reg_state); 5711 dump_stack(); 5712 continue; 5713 } 5714 5715 dev->reg_state = NETREG_UNREGISTERED; 5716 5717 on_each_cpu(flush_backlog, dev, 1); 5718 5719 netdev_wait_allrefs(dev); 5720 5721 /* paranoia */ 5722 BUG_ON(netdev_refcnt_read(dev)); 5723 WARN_ON(rcu_dereference_raw(dev->ip_ptr)); 5724 WARN_ON(rcu_dereference_raw(dev->ip6_ptr)); 5725 WARN_ON(dev->dn_ptr); 5726 5727 if (dev->destructor) 5728 dev->destructor(dev); 5729 5730 /* Free network device */ 5731 kobject_put(&dev->dev.kobj); 5732 } 5733 } 5734 5735 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5736 * fields in the same order, with only the type differing. 5737 */ 5738 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5739 const struct net_device_stats *netdev_stats) 5740 { 5741 #if BITS_PER_LONG == 64 5742 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5743 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5744 #else 5745 size_t i, n = sizeof(*stats64) / sizeof(u64); 5746 const unsigned long *src = (const unsigned long *)netdev_stats; 5747 u64 *dst = (u64 *)stats64; 5748 5749 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5750 sizeof(*stats64) / sizeof(u64)); 5751 for (i = 0; i < n; i++) 5752 dst[i] = src[i]; 5753 #endif 5754 } 5755 5756 /** 5757 * dev_get_stats - get network device statistics 5758 * @dev: device to get statistics from 5759 * @storage: place to store stats 5760 * 5761 * Get network statistics from device. Return @storage. 5762 * The device driver may provide its own method by setting 5763 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5764 * otherwise the internal statistics structure is used. 5765 */ 5766 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5767 struct rtnl_link_stats64 *storage) 5768 { 5769 const struct net_device_ops *ops = dev->netdev_ops; 5770 5771 if (ops->ndo_get_stats64) { 5772 memset(storage, 0, sizeof(*storage)); 5773 ops->ndo_get_stats64(dev, storage); 5774 } else if (ops->ndo_get_stats) { 5775 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5776 } else { 5777 netdev_stats_to_stats64(storage, &dev->stats); 5778 } 5779 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5780 return storage; 5781 } 5782 EXPORT_SYMBOL(dev_get_stats); 5783 5784 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5785 { 5786 struct netdev_queue *queue = dev_ingress_queue(dev); 5787 5788 #ifdef CONFIG_NET_CLS_ACT 5789 if (queue) 5790 return queue; 5791 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5792 if (!queue) 5793 return NULL; 5794 netdev_init_one_queue(dev, queue, NULL); 5795 queue->qdisc = &noop_qdisc; 5796 queue->qdisc_sleeping = &noop_qdisc; 5797 rcu_assign_pointer(dev->ingress_queue, queue); 5798 #endif 5799 return queue; 5800 } 5801 5802 /** 5803 * alloc_netdev_mqs - allocate network device 5804 * @sizeof_priv: size of private data to allocate space for 5805 * @name: device name format string 5806 * @setup: callback to initialize device 5807 * @txqs: the number of TX subqueues to allocate 5808 * @rxqs: the number of RX subqueues to allocate 5809 * 5810 * Allocates a struct net_device with private data area for driver use 5811 * and performs basic initialization. Also allocates subquue structs 5812 * for each queue on the device. 5813 */ 5814 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5815 void (*setup)(struct net_device *), 5816 unsigned int txqs, unsigned int rxqs) 5817 { 5818 struct net_device *dev; 5819 size_t alloc_size; 5820 struct net_device *p; 5821 5822 BUG_ON(strlen(name) >= sizeof(dev->name)); 5823 5824 if (txqs < 1) { 5825 pr_err("alloc_netdev: Unable to allocate device " 5826 "with zero queues.\n"); 5827 return NULL; 5828 } 5829 5830 #ifdef CONFIG_RPS 5831 if (rxqs < 1) { 5832 pr_err("alloc_netdev: Unable to allocate device " 5833 "with zero RX queues.\n"); 5834 return NULL; 5835 } 5836 #endif 5837 5838 alloc_size = sizeof(struct net_device); 5839 if (sizeof_priv) { 5840 /* ensure 32-byte alignment of private area */ 5841 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5842 alloc_size += sizeof_priv; 5843 } 5844 /* ensure 32-byte alignment of whole construct */ 5845 alloc_size += NETDEV_ALIGN - 1; 5846 5847 p = kzalloc(alloc_size, GFP_KERNEL); 5848 if (!p) { 5849 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5850 return NULL; 5851 } 5852 5853 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5854 dev->padded = (char *)dev - (char *)p; 5855 5856 dev->pcpu_refcnt = alloc_percpu(int); 5857 if (!dev->pcpu_refcnt) 5858 goto free_p; 5859 5860 if (dev_addr_init(dev)) 5861 goto free_pcpu; 5862 5863 dev_mc_init(dev); 5864 dev_uc_init(dev); 5865 5866 dev_net_set(dev, &init_net); 5867 5868 dev->gso_max_size = GSO_MAX_SIZE; 5869 5870 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5871 dev->ethtool_ntuple_list.count = 0; 5872 INIT_LIST_HEAD(&dev->napi_list); 5873 INIT_LIST_HEAD(&dev->unreg_list); 5874 INIT_LIST_HEAD(&dev->link_watch_list); 5875 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5876 setup(dev); 5877 5878 dev->num_tx_queues = txqs; 5879 dev->real_num_tx_queues = txqs; 5880 if (netif_alloc_netdev_queues(dev)) 5881 goto free_all; 5882 5883 #ifdef CONFIG_RPS 5884 dev->num_rx_queues = rxqs; 5885 dev->real_num_rx_queues = rxqs; 5886 if (netif_alloc_rx_queues(dev)) 5887 goto free_all; 5888 #endif 5889 5890 strcpy(dev->name, name); 5891 dev->group = INIT_NETDEV_GROUP; 5892 return dev; 5893 5894 free_all: 5895 free_netdev(dev); 5896 return NULL; 5897 5898 free_pcpu: 5899 free_percpu(dev->pcpu_refcnt); 5900 kfree(dev->_tx); 5901 #ifdef CONFIG_RPS 5902 kfree(dev->_rx); 5903 #endif 5904 5905 free_p: 5906 kfree(p); 5907 return NULL; 5908 } 5909 EXPORT_SYMBOL(alloc_netdev_mqs); 5910 5911 /** 5912 * free_netdev - free network device 5913 * @dev: device 5914 * 5915 * This function does the last stage of destroying an allocated device 5916 * interface. The reference to the device object is released. 5917 * If this is the last reference then it will be freed. 5918 */ 5919 void free_netdev(struct net_device *dev) 5920 { 5921 struct napi_struct *p, *n; 5922 5923 release_net(dev_net(dev)); 5924 5925 kfree(dev->_tx); 5926 #ifdef CONFIG_RPS 5927 kfree(dev->_rx); 5928 #endif 5929 5930 kfree(rcu_dereference_raw(dev->ingress_queue)); 5931 5932 /* Flush device addresses */ 5933 dev_addr_flush(dev); 5934 5935 /* Clear ethtool n-tuple list */ 5936 ethtool_ntuple_flush(dev); 5937 5938 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5939 netif_napi_del(p); 5940 5941 free_percpu(dev->pcpu_refcnt); 5942 dev->pcpu_refcnt = NULL; 5943 5944 /* Compatibility with error handling in drivers */ 5945 if (dev->reg_state == NETREG_UNINITIALIZED) { 5946 kfree((char *)dev - dev->padded); 5947 return; 5948 } 5949 5950 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5951 dev->reg_state = NETREG_RELEASED; 5952 5953 /* will free via device release */ 5954 put_device(&dev->dev); 5955 } 5956 EXPORT_SYMBOL(free_netdev); 5957 5958 /** 5959 * synchronize_net - Synchronize with packet receive processing 5960 * 5961 * Wait for packets currently being received to be done. 5962 * Does not block later packets from starting. 5963 */ 5964 void synchronize_net(void) 5965 { 5966 might_sleep(); 5967 if (rtnl_is_locked()) 5968 synchronize_rcu_expedited(); 5969 else 5970 synchronize_rcu(); 5971 } 5972 EXPORT_SYMBOL(synchronize_net); 5973 5974 /** 5975 * unregister_netdevice_queue - remove device from the kernel 5976 * @dev: device 5977 * @head: list 5978 * 5979 * This function shuts down a device interface and removes it 5980 * from the kernel tables. 5981 * If head not NULL, device is queued to be unregistered later. 5982 * 5983 * Callers must hold the rtnl semaphore. You may want 5984 * unregister_netdev() instead of this. 5985 */ 5986 5987 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5988 { 5989 ASSERT_RTNL(); 5990 5991 if (head) { 5992 list_move_tail(&dev->unreg_list, head); 5993 } else { 5994 rollback_registered(dev); 5995 /* Finish processing unregister after unlock */ 5996 net_set_todo(dev); 5997 } 5998 } 5999 EXPORT_SYMBOL(unregister_netdevice_queue); 6000 6001 /** 6002 * unregister_netdevice_many - unregister many devices 6003 * @head: list of devices 6004 */ 6005 void unregister_netdevice_many(struct list_head *head) 6006 { 6007 struct net_device *dev; 6008 6009 if (!list_empty(head)) { 6010 rollback_registered_many(head); 6011 list_for_each_entry(dev, head, unreg_list) 6012 net_set_todo(dev); 6013 } 6014 } 6015 EXPORT_SYMBOL(unregister_netdevice_many); 6016 6017 /** 6018 * unregister_netdev - remove device from the kernel 6019 * @dev: device 6020 * 6021 * This function shuts down a device interface and removes it 6022 * from the kernel tables. 6023 * 6024 * This is just a wrapper for unregister_netdevice that takes 6025 * the rtnl semaphore. In general you want to use this and not 6026 * unregister_netdevice. 6027 */ 6028 void unregister_netdev(struct net_device *dev) 6029 { 6030 rtnl_lock(); 6031 unregister_netdevice(dev); 6032 rtnl_unlock(); 6033 } 6034 EXPORT_SYMBOL(unregister_netdev); 6035 6036 /** 6037 * dev_change_net_namespace - move device to different nethost namespace 6038 * @dev: device 6039 * @net: network namespace 6040 * @pat: If not NULL name pattern to try if the current device name 6041 * is already taken in the destination network namespace. 6042 * 6043 * This function shuts down a device interface and moves it 6044 * to a new network namespace. On success 0 is returned, on 6045 * a failure a netagive errno code is returned. 6046 * 6047 * Callers must hold the rtnl semaphore. 6048 */ 6049 6050 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6051 { 6052 int err; 6053 6054 ASSERT_RTNL(); 6055 6056 /* Don't allow namespace local devices to be moved. */ 6057 err = -EINVAL; 6058 if (dev->features & NETIF_F_NETNS_LOCAL) 6059 goto out; 6060 6061 /* Ensure the device has been registrered */ 6062 err = -EINVAL; 6063 if (dev->reg_state != NETREG_REGISTERED) 6064 goto out; 6065 6066 /* Get out if there is nothing todo */ 6067 err = 0; 6068 if (net_eq(dev_net(dev), net)) 6069 goto out; 6070 6071 /* Pick the destination device name, and ensure 6072 * we can use it in the destination network namespace. 6073 */ 6074 err = -EEXIST; 6075 if (__dev_get_by_name(net, dev->name)) { 6076 /* We get here if we can't use the current device name */ 6077 if (!pat) 6078 goto out; 6079 if (dev_get_valid_name(dev, pat) < 0) 6080 goto out; 6081 } 6082 6083 /* 6084 * And now a mini version of register_netdevice unregister_netdevice. 6085 */ 6086 6087 /* If device is running close it first. */ 6088 dev_close(dev); 6089 6090 /* And unlink it from device chain */ 6091 err = -ENODEV; 6092 unlist_netdevice(dev); 6093 6094 synchronize_net(); 6095 6096 /* Shutdown queueing discipline. */ 6097 dev_shutdown(dev); 6098 6099 /* Notify protocols, that we are about to destroy 6100 this device. They should clean all the things. 6101 6102 Note that dev->reg_state stays at NETREG_REGISTERED. 6103 This is wanted because this way 8021q and macvlan know 6104 the device is just moving and can keep their slaves up. 6105 */ 6106 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6107 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6108 6109 /* 6110 * Flush the unicast and multicast chains 6111 */ 6112 dev_uc_flush(dev); 6113 dev_mc_flush(dev); 6114 6115 /* Actually switch the network namespace */ 6116 dev_net_set(dev, net); 6117 6118 /* If there is an ifindex conflict assign a new one */ 6119 if (__dev_get_by_index(net, dev->ifindex)) { 6120 int iflink = (dev->iflink == dev->ifindex); 6121 dev->ifindex = dev_new_index(net); 6122 if (iflink) 6123 dev->iflink = dev->ifindex; 6124 } 6125 6126 /* Fixup kobjects */ 6127 err = device_rename(&dev->dev, dev->name); 6128 WARN_ON(err); 6129 6130 /* Add the device back in the hashes */ 6131 list_netdevice(dev); 6132 6133 /* Notify protocols, that a new device appeared. */ 6134 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6135 6136 /* 6137 * Prevent userspace races by waiting until the network 6138 * device is fully setup before sending notifications. 6139 */ 6140 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6141 6142 synchronize_net(); 6143 err = 0; 6144 out: 6145 return err; 6146 } 6147 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6148 6149 static int dev_cpu_callback(struct notifier_block *nfb, 6150 unsigned long action, 6151 void *ocpu) 6152 { 6153 struct sk_buff **list_skb; 6154 struct sk_buff *skb; 6155 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6156 struct softnet_data *sd, *oldsd; 6157 6158 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6159 return NOTIFY_OK; 6160 6161 local_irq_disable(); 6162 cpu = smp_processor_id(); 6163 sd = &per_cpu(softnet_data, cpu); 6164 oldsd = &per_cpu(softnet_data, oldcpu); 6165 6166 /* Find end of our completion_queue. */ 6167 list_skb = &sd->completion_queue; 6168 while (*list_skb) 6169 list_skb = &(*list_skb)->next; 6170 /* Append completion queue from offline CPU. */ 6171 *list_skb = oldsd->completion_queue; 6172 oldsd->completion_queue = NULL; 6173 6174 /* Append output queue from offline CPU. */ 6175 if (oldsd->output_queue) { 6176 *sd->output_queue_tailp = oldsd->output_queue; 6177 sd->output_queue_tailp = oldsd->output_queue_tailp; 6178 oldsd->output_queue = NULL; 6179 oldsd->output_queue_tailp = &oldsd->output_queue; 6180 } 6181 6182 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6183 local_irq_enable(); 6184 6185 /* Process offline CPU's input_pkt_queue */ 6186 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6187 netif_rx(skb); 6188 input_queue_head_incr(oldsd); 6189 } 6190 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6191 netif_rx(skb); 6192 input_queue_head_incr(oldsd); 6193 } 6194 6195 return NOTIFY_OK; 6196 } 6197 6198 6199 /** 6200 * netdev_increment_features - increment feature set by one 6201 * @all: current feature set 6202 * @one: new feature set 6203 * @mask: mask feature set 6204 * 6205 * Computes a new feature set after adding a device with feature set 6206 * @one to the master device with current feature set @all. Will not 6207 * enable anything that is off in @mask. Returns the new feature set. 6208 */ 6209 u32 netdev_increment_features(u32 all, u32 one, u32 mask) 6210 { 6211 if (mask & NETIF_F_GEN_CSUM) 6212 mask |= NETIF_F_ALL_CSUM; 6213 mask |= NETIF_F_VLAN_CHALLENGED; 6214 6215 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6216 all &= one | ~NETIF_F_ALL_FOR_ALL; 6217 6218 /* If device needs checksumming, downgrade to it. */ 6219 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM)) 6220 all &= ~NETIF_F_NO_CSUM; 6221 6222 /* If one device supports hw checksumming, set for all. */ 6223 if (all & NETIF_F_GEN_CSUM) 6224 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6225 6226 return all; 6227 } 6228 EXPORT_SYMBOL(netdev_increment_features); 6229 6230 static struct hlist_head *netdev_create_hash(void) 6231 { 6232 int i; 6233 struct hlist_head *hash; 6234 6235 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6236 if (hash != NULL) 6237 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6238 INIT_HLIST_HEAD(&hash[i]); 6239 6240 return hash; 6241 } 6242 6243 /* Initialize per network namespace state */ 6244 static int __net_init netdev_init(struct net *net) 6245 { 6246 INIT_LIST_HEAD(&net->dev_base_head); 6247 6248 net->dev_name_head = netdev_create_hash(); 6249 if (net->dev_name_head == NULL) 6250 goto err_name; 6251 6252 net->dev_index_head = netdev_create_hash(); 6253 if (net->dev_index_head == NULL) 6254 goto err_idx; 6255 6256 return 0; 6257 6258 err_idx: 6259 kfree(net->dev_name_head); 6260 err_name: 6261 return -ENOMEM; 6262 } 6263 6264 /** 6265 * netdev_drivername - network driver for the device 6266 * @dev: network device 6267 * @buffer: buffer for resulting name 6268 * @len: size of buffer 6269 * 6270 * Determine network driver for device. 6271 */ 6272 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 6273 { 6274 const struct device_driver *driver; 6275 const struct device *parent; 6276 6277 if (len <= 0 || !buffer) 6278 return buffer; 6279 buffer[0] = 0; 6280 6281 parent = dev->dev.parent; 6282 6283 if (!parent) 6284 return buffer; 6285 6286 driver = parent->driver; 6287 if (driver && driver->name) 6288 strlcpy(buffer, driver->name, len); 6289 return buffer; 6290 } 6291 6292 static int __netdev_printk(const char *level, const struct net_device *dev, 6293 struct va_format *vaf) 6294 { 6295 int r; 6296 6297 if (dev && dev->dev.parent) 6298 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6299 netdev_name(dev), vaf); 6300 else if (dev) 6301 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6302 else 6303 r = printk("%s(NULL net_device): %pV", level, vaf); 6304 6305 return r; 6306 } 6307 6308 int netdev_printk(const char *level, const struct net_device *dev, 6309 const char *format, ...) 6310 { 6311 struct va_format vaf; 6312 va_list args; 6313 int r; 6314 6315 va_start(args, format); 6316 6317 vaf.fmt = format; 6318 vaf.va = &args; 6319 6320 r = __netdev_printk(level, dev, &vaf); 6321 va_end(args); 6322 6323 return r; 6324 } 6325 EXPORT_SYMBOL(netdev_printk); 6326 6327 #define define_netdev_printk_level(func, level) \ 6328 int func(const struct net_device *dev, const char *fmt, ...) \ 6329 { \ 6330 int r; \ 6331 struct va_format vaf; \ 6332 va_list args; \ 6333 \ 6334 va_start(args, fmt); \ 6335 \ 6336 vaf.fmt = fmt; \ 6337 vaf.va = &args; \ 6338 \ 6339 r = __netdev_printk(level, dev, &vaf); \ 6340 va_end(args); \ 6341 \ 6342 return r; \ 6343 } \ 6344 EXPORT_SYMBOL(func); 6345 6346 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6347 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6348 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6349 define_netdev_printk_level(netdev_err, KERN_ERR); 6350 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6351 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6352 define_netdev_printk_level(netdev_info, KERN_INFO); 6353 6354 static void __net_exit netdev_exit(struct net *net) 6355 { 6356 kfree(net->dev_name_head); 6357 kfree(net->dev_index_head); 6358 } 6359 6360 static struct pernet_operations __net_initdata netdev_net_ops = { 6361 .init = netdev_init, 6362 .exit = netdev_exit, 6363 }; 6364 6365 static void __net_exit default_device_exit(struct net *net) 6366 { 6367 struct net_device *dev, *aux; 6368 /* 6369 * Push all migratable network devices back to the 6370 * initial network namespace 6371 */ 6372 rtnl_lock(); 6373 for_each_netdev_safe(net, dev, aux) { 6374 int err; 6375 char fb_name[IFNAMSIZ]; 6376 6377 /* Ignore unmoveable devices (i.e. loopback) */ 6378 if (dev->features & NETIF_F_NETNS_LOCAL) 6379 continue; 6380 6381 /* Leave virtual devices for the generic cleanup */ 6382 if (dev->rtnl_link_ops) 6383 continue; 6384 6385 /* Push remaining network devices to init_net */ 6386 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6387 err = dev_change_net_namespace(dev, &init_net, fb_name); 6388 if (err) { 6389 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6390 __func__, dev->name, err); 6391 BUG(); 6392 } 6393 } 6394 rtnl_unlock(); 6395 } 6396 6397 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6398 { 6399 /* At exit all network devices most be removed from a network 6400 * namespace. Do this in the reverse order of registration. 6401 * Do this across as many network namespaces as possible to 6402 * improve batching efficiency. 6403 */ 6404 struct net_device *dev; 6405 struct net *net; 6406 LIST_HEAD(dev_kill_list); 6407 6408 rtnl_lock(); 6409 list_for_each_entry(net, net_list, exit_list) { 6410 for_each_netdev_reverse(net, dev) { 6411 if (dev->rtnl_link_ops) 6412 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6413 else 6414 unregister_netdevice_queue(dev, &dev_kill_list); 6415 } 6416 } 6417 unregister_netdevice_many(&dev_kill_list); 6418 list_del(&dev_kill_list); 6419 rtnl_unlock(); 6420 } 6421 6422 static struct pernet_operations __net_initdata default_device_ops = { 6423 .exit = default_device_exit, 6424 .exit_batch = default_device_exit_batch, 6425 }; 6426 6427 /* 6428 * Initialize the DEV module. At boot time this walks the device list and 6429 * unhooks any devices that fail to initialise (normally hardware not 6430 * present) and leaves us with a valid list of present and active devices. 6431 * 6432 */ 6433 6434 /* 6435 * This is called single threaded during boot, so no need 6436 * to take the rtnl semaphore. 6437 */ 6438 static int __init net_dev_init(void) 6439 { 6440 int i, rc = -ENOMEM; 6441 6442 BUG_ON(!dev_boot_phase); 6443 6444 if (dev_proc_init()) 6445 goto out; 6446 6447 if (netdev_kobject_init()) 6448 goto out; 6449 6450 INIT_LIST_HEAD(&ptype_all); 6451 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6452 INIT_LIST_HEAD(&ptype_base[i]); 6453 6454 if (register_pernet_subsys(&netdev_net_ops)) 6455 goto out; 6456 6457 /* 6458 * Initialise the packet receive queues. 6459 */ 6460 6461 for_each_possible_cpu(i) { 6462 struct softnet_data *sd = &per_cpu(softnet_data, i); 6463 6464 memset(sd, 0, sizeof(*sd)); 6465 skb_queue_head_init(&sd->input_pkt_queue); 6466 skb_queue_head_init(&sd->process_queue); 6467 sd->completion_queue = NULL; 6468 INIT_LIST_HEAD(&sd->poll_list); 6469 sd->output_queue = NULL; 6470 sd->output_queue_tailp = &sd->output_queue; 6471 #ifdef CONFIG_RPS 6472 sd->csd.func = rps_trigger_softirq; 6473 sd->csd.info = sd; 6474 sd->csd.flags = 0; 6475 sd->cpu = i; 6476 #endif 6477 6478 sd->backlog.poll = process_backlog; 6479 sd->backlog.weight = weight_p; 6480 sd->backlog.gro_list = NULL; 6481 sd->backlog.gro_count = 0; 6482 } 6483 6484 dev_boot_phase = 0; 6485 6486 /* The loopback device is special if any other network devices 6487 * is present in a network namespace the loopback device must 6488 * be present. Since we now dynamically allocate and free the 6489 * loopback device ensure this invariant is maintained by 6490 * keeping the loopback device as the first device on the 6491 * list of network devices. Ensuring the loopback devices 6492 * is the first device that appears and the last network device 6493 * that disappears. 6494 */ 6495 if (register_pernet_device(&loopback_net_ops)) 6496 goto out; 6497 6498 if (register_pernet_device(&default_device_ops)) 6499 goto out; 6500 6501 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6502 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6503 6504 hotcpu_notifier(dev_cpu_callback, 0); 6505 dst_init(); 6506 dev_mcast_init(); 6507 rc = 0; 6508 out: 6509 return rc; 6510 } 6511 6512 subsys_initcall(net_dev_init); 6513 6514 static int __init initialize_hashrnd(void) 6515 { 6516 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6517 return 0; 6518 } 6519 6520 late_initcall_sync(initialize_hashrnd); 6521 6522